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ABSTRACT

As an increasing number of metropolitan areas study the possibility of implementing Light Rail Transit
(LRT) as part of their overall transportation system, the need to depict the impacts of LRT to the current
or future roadway system must be determined.  A recent LRT impact analysis study of offset running
LRT was conducted to better understand the impacts to traffic flow when LRT is introduced at an isolated
intersection.

Delay and queue impacts were determined using the microscopic traffic engineering software program
SimTraffic Version 4.0.  Although the program was not explicitly designed to handle transit analysis,
recent enhancements have enabled advanced users to program work-arounds to approximate the behavior
of the LRT crossing controllers as well as depict the interaction of the LRT and vehicular traffic.  Specific
programming enhancements include the ability to program the ring and barrier design and the ability to
cluster multiple intersection controllers, thereby more accurately representing the interaction of LRT and
vehicular traffic.

Analysis output included vehicular delay and queues for LRT and non-LRT scenarios.  For the case study
presented in this paper and the actual impact study project, the level of service impact to vehicular traffic
due to LRT was approximately one increment degradation from non-LRT conditions.  All simulation
scenarios were run multiple times to achieve statistical confidence.  An overview of the major work-
arounds is presented in this paper.

Although this paper covers LRT analysis applications, almost any interaction of traffic and headway-
based flow can be modeled to develop an understanding of impacts to the traffic stream.

INTRODUCTION

As an increasing number of metropolitan areas study the possibility of implementing Light Rail Transit
(LRT) as part of their overall transportation system, the need to depict the impacts of LRT to the current
or future roadway system must be determined.  This paper covers the analysis methodology that was used
in a recent LRT impact analysis study.  The purpose of the study was to better understand the impacts to
vehicular traffic when LRT is introduced into an existing corridor at isolated intersections.  For purposes
of this paper an isolated intersection is defined as any intersection that would not be normally considered
for coordination.  The microsimulation traffic analysis tool, SimTraffic 4.0, was used to determine the
impacts of LRT.

Several questions this paper will address are:
• Why study the impacts of LRT on vehicular traffic?
• Is SimTraffic the correct software tool to conduct this analysis?
• How was SimTraffic programmed to conduct this analysis?
• What were the results of the study?

It is worth noting the goal of the study referenced in this paper and the methodology used to conduct the
analysis is of an impact perspective, not to generate detailed timing and preemption plans.



BACKGROUND INFORMATION ON LRT OPERATIONS

According to ITE Recommended Practice1: Where a signalized highway intersection exists in close
proximity to a railroad grade crossing, the railroad signal control equipment and the traffic signal control
equipment should be interconnected, and the normal operation of the traffic signals controlling the
intersection should be preempted to operate in a special control mode when trains are approaching.  A
preemption sequence compatible with the railroad grade crossing active warning devices, such as gates
and flashing lights, is extremely important to provide safe vehicular, pedestrian, and train movements.
Such preemption serves to ensure that the actions of these separate traffic control devices complement
rather than conflict with each other.

Given this mandate, traffic engineers may be required to determine the impacts of LRT on the current or
proposed transportation systems.  For purposes of this paper, the term LRT will be used to describe a
transit vehicle facility that operates at a predetermined headway on its own right-of-way in close
proximity to roadway infrastructure.  Certainly many configurations of LRT interaction with vehicular
traffic are in use today, this paper focuses on only the “offset” LRT arrangement depicted in Figure 1.

LRT Track

Intersection

Figure 1: LRT-Intersection Diagram

The main reason, from the point of view of the traffic engineer, for studying the interaction of LRT and
vehicular traffic is to understand the delay and queue impacts to the vehicular traffic stream.  It is
assumed that for purposes of this paper that the LRT will preempt the traffic signal controller in order to
transition through the intersection with minimal delay to the LRT vehicle.  More detail on the preemption
of the traffic signal controller is presented in later sections.  Given this assumption, it is clear that any
impacts of LRT will be observed on the “traffic side” of the modal system.  “How bad will LRT affect
traffic?” is the essence of the analysis.

LRT Variables
There are several variables that describe LRT characteristics.  A brief discussion of each is presented
below.

Headway
An important variable when analyzing LRT is the operating headways.  Headway is defined as the time
between LRT vehicles operating in the same direction.  Headways can vary over the day by demand but
for our purposes is considered constant.  A 10-minute headway indicates that a LRT vehicle will be



generated from each direction approximately every 10 minutes.  Since the analysis considers two-way
operation of the LRT track, authors assumed the worst case impact to be when the LRT vehicles arrive at
the intersection every 5 minutes.

LRT Vehicle Speed and Size
LRT vehicle speed indicates the operating speed of the vehicle on level terrain in a tangent section of
track.  For purposes of this analysis, a speed of 15 mph was chosen to represent the speed at which the
LRT vehicle traverses the intersection.  LRT transit vehicles vary in size, capacity, and performance.  A
LRT vehicle length of 90 feet and a maximum acceleration of 4 feet/sec2 were chosen.  It is worth noting
that the goal of the analysis was to determine impacts to traffic based on some general LRT
characteristics, not to analyze the LRT mode.

Distance between the tracks and signalized intersection
The distance between the LRT track crossing and the signalized intersection is assumed to be fixed by
design standards and right-of-way constraints.  The analysis conducted assumed a distance of
approximately 200 feet from the center of the intersection to the center of the LRT track.  According to
the Manual of Uniform Traffic Control Devices2 (MUTCD) a distance of 200 feet between the grade
crossing and the intersection would require the two controllers to operate together.  Additional guidance
on the interconnection of closely spaced grade crossings and vehicular intersections can is provided in
reference three.  More information concerning the operation of the LRT track crossing controller and the
intersection signal controller is discussed in later sections.

There are many other variables when considering the LRT facility design including but not limited to
intersection and crossing geometry:
• crossing angle
• length of crossing
• track clearance distance
• intersection width
• sight distance issues
• approach grades and parallel streets

Clearly, there are many factors that go into the design and operation of a LRT crossing.  More detail on
all these issues can be found in the references listed at the end of this paper.

Sequence of Controller Operation
Given that two closely spaced intersections, one LRT crossing and one signalized for traffic, are required
to operate as a system an understanding of the operation of these controllers is needed.  Figures 2 through
4 illustrate the phasing sequence of operations prior to and while a LRT vehicle approaches the grade
crossing.



LRT CrossingIntersection

Normal phasing sequences, LRT crossing rests in green for traffic movements

or

Figure 2 :  Sequence of Controller Operation, No LRT

LRT CrossingIntersection

Traffic stops entering area between LRT crossing and the intersection and any vehicles in that area clear

Figure 3 :  Sequence of Controller Operation, LRT Approaching

LRT CrossingIntersection

LRT vehicle crosses the roadway and north-south traffic movements are permitted to operate

Figure 4 :  Sequence of Controller Operation, LRT Crossing



Prior to and after a LRT vehicle has been serviced the traffic controller will operate normally, servicing
phases based on detection calls from traffic flow and showing green for the traffic movements at the
grade crossing.  This operation is illustrated in Figure 2.

Once a LRT vehicle has placed a request for service the controller terminates the current phases,
providing the proper change intervals and without violating local standards for pedestrian timing.  The
traffic signal controller then provides a “clearance” phase and services the traffic between the intersection
and the LRT grade crossing.  This is accomplished by terminating westbound traffic movements across
the grade crossing and providing an exclusive westbound phase for traffic at the signalized intersection.
These two operations prevent additional traffic from entering the area between the intersection and the
LRT crossing and clear out any vehicles from this area.  This operation is illustrated in Figure 3.  The
required clearance time can be calculated by using the following formula:

t(sec) = 4 + 2(n)

where n = the number of vehicles that queue between the intersection and the LRT crossing3

Once the proper clearance phase has terminated the LRT movement phase is serviced.  It is allowable to
provide green time to non-conflicting traffic movements while servicing the LRT.  In the case of our
example, the north and south movements can be serviced, however, northbound right turns are not
allowed.  This operation is illustrated in Figure 4.  Once the LRT has cleared the crossing, normal
operation can be resumed.

ANALYSIS METHODS

Given the complexities of the phasing sequence and variables involved, a macroscopic analysis tool does
not provide for the most accurate analysis.  A microscopic analysis tool would provide for the complex
interaction of individual vehicles operating under the phase scheme described previously.  The traffic
engineering software package SimTraffic was chosen as the traffic analysis tool.

SimTraffic

SimTraffic is not an explicit analysis tool for transit applications.  In fact, the developers of SimTraffic
have cautioned users from attempting this analysis unless they have advanced knowledge of the program.
However, given the ability to program the ring and barrier designer and the ability to cluster two or more
intersections, the authors felt this was a reasonable tool to approximate the LRT interaction.  Additionally,
at the time of development of this methodology, LRT operations were being analyzed with the CORSIM
package.  The authors felt that the SimTraffic option was far superior to the CORSIM program for the
ability to approximate the interaction of LRT and vehicular traffic.  It is also acknowledged that there are
transit software packages available that conduct this analysis without the need for “work-arounds”.  The
specific work-arounds will be described in later sections of this paper.

SimTraffic is a microscopic, stochastic model that provides the ability to test alternatives based on input
variables such as traffic volumes, traffic signal control schemes, geometric conditions, and a host of other
variables.  The input processor for the SimTraffic model is Synchro.  The package version that was used
for this analysis was 4.0.

CASE STUDY

The inspiration for this paper comes from a recent project in Union County, New Jersey.  The objectives
of that project were to determine the impacts to traffic at an existing isolated intersection once LRT



operations were introduced.  The actual project included an analysis of four peak periods over three
volume horizon years.  To better illustrate the concepts presented in this paper, the intersection geometry
and traffic volumes used for the analysis were simplified.  The traffic volumes and geometry used for this
paper’s analysis are illustrated in Figure 5.

Figure 5 :  Case Study Hourly Traffic Volumes and Geometry

Figure 6 :  Image of the SimTraffic Animation (LRT moving southbound)



Coding Issues

To ensure proper evaluation of the intersection impacts several assumptions were made concerning
intersection operations and SimTraffic coding.  Specific SimTraffic coding issues follow:

1. Simulation of the LRT vehicles.
Simulation of the LRT vehicle was achieved by coding another “roadway” link within close proximity to
the standard traffic roadway links.  The LRT roadway volumes were coded to only contain 100 percent
heavy vehicles.  To ensure trucks were evaluated within the traffic stream, a vehicle type in SimTraffic
was altered to have the same size and performance characteristics as standard trucks.  The LRT vehicles
were coded to replicate the size and acceleration parameters desired.

2. Operation of the complex phasing arrangement and timing.
Programming the ring and barrier designer in Synchro allowed for the complex phasing arrangement
needed.  The traffic signal phases were coded in rings A and B, and the LRT phases were coded using
ring C.

3. Operation of the clearance phases.
The clearance phase was programmed using the ring and barrier designer and the ability to code
movements under several phases.  The specific time of the clearance phase was determined by using the
equation presented in earlier sections.

4. Operation of the intersection and LRT crossing as one controller.
The cluster editor feature in Synchro was used to operate both the traffic intersection and the LRT
crossing intersection as one controller.  Figure 7 illustrates the final timing and phasing sequence for the
signal controller.  The traffic intersection movements are indicated with the shaded arrows and the non-
shaded arrows indicate the LRT crossing phases.  As illustrated in Figure 5, the traffic intersection was
coded with a node number of 10 and the grade crossing was coded as a node number of 1.

5. Preempting the traffic signal controllers.
Preempting the traffic signal controller is not within the capability of the Synchro or SimTraffic
programs.  To approximate the preemption, advance detectors were placed upstream of the LRT crossing.
As a LRT vehicle approaches the grade crossing a call is placed to the controller so that the intersection
would conduct the clearance phase and be operating in the LRT movement phase when the LRT arrived.
The operating phase is not terminated by an LRT call.  This is a deviation from the actual operating
parameters that would be observed in the field.  To better replicate the LRT interruption, a second set of
LRT clearance and LRT crossing phases was introduced after each barrier point.  This is illustrated in
Figure 7.  It is worth noting that in some instances the LRT vehicle does get delayed prior to crossing.
Keeping in mind that impacts to the traffic stream were the main concern, these minor LRT delays were
not considered to affect the results of the study.

6. Metering the LRT vehicle headways.
Since the LRT track is simply another roadway link, an inlet meter was developed to control the arrival
rate of the LRT vehicles.  The original LRT headways were at 10-minute intervals.  The limit of
Synchro’s cycle length is 360 seconds.  Using the Universal Traffic Data Formatting (UTDF) features of
Synchro a separate database file was created to allow for long cycle lengths at the inlet meters.



Figure 7 :  Timing and Phasing Operation

FINDINGS

Output Measures of Effectiveness

The output summarized in this section was developed from three 60-minute runs of the SimTraffic
program.  The random seed number was changed for each run to develop the stochastic robustness of the
simulation.  Each individual vehicle’s statistics are tracked throughout the simulation period, providing
measures of effectiveness (MOEs) that otherwise would be difficult to obtain.  The output measures of
delay and queue lengths were determined to be of most interest.  The comparisons presented in this
section are between No-LRT and the 10-minute headway operation of LRT.  The only difference between
the two models was that under the No-LRT scenario the clearance and LRT phases were never called.

The overall Level of Service for the intersection went from C (33.3 seconds of delay per vehicle) to D
(39.9 seconds of delay per vehicle), an approximately 12 percent increase in delay.  Given that the north-
south movements were provided green time during the LRT crossings, this result is well within what was
expected.  Although the specific input variables of traffic volume and intersection geometry were altered
for this paper, a one-increment LOS degradation was generally observed for all peak periods for the
actual project variables.

Queue lengths for the east and west approaches were expected to increase; however the north and south
approach queue lengths were not expected to degrade with any significance.  The eastbound queue
(maximum observed queue) went from 245 feet to 308 feet, an approximate 26 percent increase.  The
westbound approach queue length went from 207 feet to 259 feet, an approximate 25 percent increase.
The westbound approach queue accounted for the queues at both the intersection and the LRT crossing.

Sensitivity Analysis

In an effort to determine the impacts of varying the LRT headways, a sensitivity analysis was conducted
at 5-minute and 20-minute headways.  The same coding parameters were utilized as with the 10-minute
headway LRT scenarios, with the minor exception of changes in the LRT meter cycle length to achieve
the desired headways.

Table 1 summarizes the average delay for the No-LRT and the three LRT headway scenarios studied.  As
would be expected, delay increases once LRT is introduced into the system for the eastbound and
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westbound approaches.  However, the northbound and southbound approaches do not incur any
significant delay, and in some cases delay decreases, due to the fact that these phases receive green time
when the LRT crossing is in operation.

Table 1 LRT Headway Sensitivity Analysis, Average Delay
Average Delay/Vehicle (sec)Scenario

Eastbound Westbound Northbound Southbound
No LRT 36.4 35.8 29.2 30.9
LRT (5 Minute Headways) 66.1 51.8 30.9 29.1
LRT (10 Minute Headways) 46.4 41.1 30.2 28.7
LRT (20 Minute Headways) 42.1 39.4 29.7 29.8

Table 2 summarizes the average queue lengths for the No-LRT and the three LRT headway scenarios
studied.  As with the delay MOEs, queues increase once LRT is introduced into the system at the
eastbound and westbound approaches.  The northbound and southbound queue lengths did not increase
under any of the LRT scenarios.

Table 2 LRT Headway Sensitivity Analysis, Queue Lengths
Average Queue Lengths (feet/percent increase)Scenario

Eastbound Eastbound Westbound Westbound
No LRT 245 ---- 207 ----
LRT (5 Minute Headways) 387 58% 322 56%
LRT (10 Minute Headways) 308 26% 259 25%
LRT (20 Minute Headways) 282 15% 232 12%

CONCLUSIONS

As more municipalities study the possibility of introducing LRT into the existing traffic infrastructure the
analysis methods need to provide accurate impact measures of effectiveness.  This paper reviewed the
analysis of the impacts to vehicular traffic at an offset-running LRT crossing using the simulation
package SimTraffic 4.0.

The LOS impacts of introducing offset-running LRT appear to be approximately a one LOS degradation,
with the conflicting approaches absorbing nearly all of the delay.  Depending on the LRT headways,
queue lengths on the conflicting approaches can increase dramatically.  Of course, inputs such as signal
timing, traffic volumes, and LRT headways will have a major impact on the results of any particular
analysis.

SimTraffic does not explicitly model transit operations.  However, given the recent enhancements to the
program and the ability of the traffic engineer to provide clever work-arounds, the resulting output can be
very helpful in determining the impacts of LRT on the current traffic network.  It is worth noting that
other “off-the-shelf” programs are available to model transit operations and should be evaluated at the
onset of a project to determine the best program to meet your project goals.

Two final comments.  It is not the intention of the authors to either endorse or discourage the use of any
traffic software analysis package.  The SimTraffic program was used to conduct this analysis because it
offered several enhancements over the current methodology and it was readily available to the analysts.
Finally, the coding procedures used to study the LRT impacts could easily be applied to any headway-
based or reoccurring interruption to a traffic stream.  Other applications could be drawbridge operations,
heavy-rail applications, or special incidents to name a few.
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