5.0 HORIZON YEAR (2030) WITH ALTERNATIVE 1

This section summarizes the results of the Horizon Year (2030) conditions analysis within the Barrio Logan community taking into account the land use changes proposed under the Alternative 1 of the Community Plan Update.

Roadway Network

No roadway network changes are assumed to take place under this scenario, with the exception of the addition of a High Occupancy Vehicle (HOV) lane along the I-5 Corridor for both directions of traffic. The additional HOV lane is listed in Sandag's 2030 Regional Transportation Plan (RTP).

Traffic Volumes

The Horizon Year Average Daily Traffic (ADT) volumes on the roadway segments in the study area were derived from a City of San Diego traffic forecast model that incorporated the land use changes proposed under the Alternative 1 scenario. A copy of the forecast model is included in Appendix G.

Table 5-1 presents a more detailed trip generation summary for the community with the land uses included in the Alternative 1 of the Community Plan Update. As shown in the table, the land use designation of Alternative 1 would generate a total of approximately 137,267 average daily trips, including 8,540 (5,216 in and 3,324 out) morning peak-hour trips and 13,692 (76,213 in and 7,479 out) afternoon peak-hour trips.

Modeled forecast volumes experienced some minor refinements. In the process of calibrating the existing model, it was concluded that three post model adjustments should be made to the 2030 traffic models. Traffic volumes along Cesar Chavez Parkway between Newton Avenue and Main Street were reduced by 4,300 ADT to account for Newton Avenue not being in the model. Traffic volumes on $28^{\text {th }}$ Street and $32^{\text {nd }}$ between Main Street and Harbor Drive were increased by 4,000 ADT and 600 ADT, respectively, per calibration between base year model and actual traffic volume counts. Minor smoothing of traffic volumes were made to reflect the gross nature of model loadings from TAZs. Volumes for streets that were not in the traffic model were estimated applying a growth rate generally consistent with other facilities in the community. Resulting daily traffic volumes for the Adopted Community Plan are depicted in Figure 5-1.

To estimate the turning movement volumes at the study intersections, the existing turning movements at each respective study intersection were factored up based on the projected Average Daily Traffic (ADT) volumes along each segment shown in the model plot. Each respective movement was derived using an iterative approach that balances the inflows and outflows for each approach. The input values include the existing turning movement volumes and future year peak-hour approach and departure volumes along each leg of the intersection. The future peak-hour approach volumes would be estimated by applying the existing peak-hour factor (K-factor) and directional distributional percentage (D -factor) to the future ADT volumes along each approach. A more detailed description of the methodology used to forecast turning movement volumes is contained in National Cooperative Highway Research Program (NCHRP) 255 Highway Traffic Data for Urbanized Area Project Planning and Design, Chapter 8. An Excel model computes the forecast turning volumes from existing turning movement volumes and forecasted approach and departure volumes by the techniques described in NCHRP 255. A copy of the NCHRP 255 Report and excel calculation worksheets are included in Appendix H. Figure 5-2 displays the Horizon Year peak-hour turning movements used in the analysis of Alternative 1.

Land Use	VERATI	SU	$\begin{aligned} & A B L E 5-1 \\ & \text { MARY (} A L \end{aligned}$	$R N A$	$V E 1-$	OTAL				
	Units ${ }^{1}$		Daily Trips	AM Peak-Hour			PM Peak-Hour			
			In	Out	Total	In	Out	Total		
ACTIVE PARK	9.10	acre		398	0	16	16	0	32	32
ELEMENTARY SCHOOL (stu)	529.00	stu	1,539	286	191	477	117	175	292	
FAST FOOD REST. (ksf)	19.50	ksf	13,675	328	219	547	547	548	1,095	
FIRE OR POLICE STATION	1.00	site	229	31	3	34	3	31	34	
HEAVY INDUSTRY (ksf)	3,130.40	ksf	12,682	1,256	139	1,395	304	1,218	1,522	
JUNIOR COLLEGE (ksf)	70.00	ksf	1,295	0	0	0	0	0	0	
LIGHT INDUSTRY (ksf)	79.50	ksf	1,272	126	14	140	31	122	153	
LOW RISE OFFICE(FT3917)(ksf)	258.50	ksf	3,467	406	45	451	97	388	485	
LOW RISE OFFICE(FT3921)(ksf)	162.90	ksf	2,435	285	32	317	68	273	341	
LOW RISE OFFICE(FT3957)(ksf)	81.90	ksf	1,450	170	19	189	41	162	203	
LOW RISE OFFICE(FT3988)(ksf)	121.30	ksf	1,943	227	26	253	54	218	272	
LOW RISE OFFICE(FT3985)(ksf)	15.70	ksf	414	48	6	54	12	46	58	
LUMBER STORE (mtro)(ksf)	0.00	ksf	0	0	0	0	0	0	0	
MARINA (CCDC)	0.00	acre	0	0	0	0	0	0	0	
MARINE TERMINAL	0.00	acre	0	0	0	0	0	0	0	
MILITARY USE (Gate 9-site)	0.00	site	0	0	0	0	0	0	0	
MULTI-FAMILY(BL)(over 20DU)	4,203	du	25,377	407	1,622	2,029	1,599	686	2,285	
NEIGHBORHOOD SHOP CNT (ksf)	175.10	ksf	20,813	500	333	833	1,146	1,143	2,289	
OTHER HEALTH CARE (ksf)	112.70	ksf	5,610	269	67	336	168	393	561	
OTHER PUBLIC SERVICE	0.20	acre	58	5	0	5	2	5	7	
OTHER TRANSPORTATION	5.10	acre	433	42	19	61	19	46	65	
PARKING	0.50	cre	0	0	0	0	0	0	0	
RAIL STATION (BL)	0.60	acre	181	0	0	0	0	0	0	
REGIONAL COMM.(Mtro)(ksf)	0.00	ksf	0	0	0	0	0	0	0	
SINGLE FAMILY (BL)	69	du	607	9	38	47	43	19	62	
SPECIALTY COMM.(mtro)(ksf)	0.00	ksf	0	0	0	0	0	0	0	
STREETFRONT COMMERCIAL (ksf)	1,071.30	ksf	42,930	773	514	1,287	1,933	1,930	3,863	
WAREHOUSING (ksf)	90.60	ksf	459	48	21	69	29	44	73	
WHOLESALE TRADE	0.00	acre	0	0	0	0	0	0	0	
Total			137,267	5,216	3,324	8,540	6,213	7,479	13,692	
Note: 1. $\mathrm{du}=$ Dwelling Unit; $\mathrm{stu}=$ Students; $\mathrm{ksf}=$ Thousand square feet										

Figure 5-1: Horizon Year (2030) ADT Volumes (Alternative 1)
January 2011 Barrio Logan Community Plan Update

Barrio Logan Community Plan Update

Barrio Logan Community Plan Update

13 	$$	14	$\begin{aligned} & \frac{0}{\ddagger} \\ & \frac{0}{0} \\ & \\ & \hline \end{aligned}$		$$	15	$\begin{aligned} & \text { 요 } \\ & \stackrel{o}{寸} \\ & 0 \end{aligned}$		$\begin{array}{cc} \lessgtr & 65 / 120 \\ \hookleftarrow & 50 / 70 \\ \square & 40 / 90 \\ & \text { Newton Ave } \end{array}$	16		$$
$\begin{aligned} & 140 / 130 \\ & 280 / 420 \\ & 120 / 230 \end{aligned}$ see note below			$\begin{aligned} & 190 / 300 \\ & 250 / 400 \\ & 180 / 290 \end{aligned}$	$\begin{aligned} & \Rightarrow \\ & \Rightarrow \\ & y \end{aligned}$			$\begin{aligned} & 75 / 13 \\ & 40 / 130 \\ & 60 / 70 \end{aligned}$	$\begin{aligned} & \approx \\ & \Rightarrow \\ & s \end{aligned}$			$\begin{array}{cc} 150 / 120 \\ 190 / 290 & \Rightarrow \\ 15 / 25 \end{array}$	
17	$$	18			$\begin{array}{cc} \text { B } & 84 / 73 \\ \lessgtr & 127 / 158 \\ & \\ & \text { Logan Ave } \end{array}$	19			$\begin{array}{r} \text { م } 276 / 260 \\ \text { National Ave } \end{array}$	20		$\begin{array}{cc} \text { B } & 26 / 23 \\ \hdashline & 226 / 192 \\ \square & 37 / 32 \\ \text { National Ave } \end{array}$
$\begin{aligned} & 118 / 468 \\ & 398 / 1500 \\ & 40 / 40 \end{aligned}$			$\begin{gathered} 497 / 933 \\ 182 / 527 \\ 2 / 8 \end{gathered}$				128 ／ 308	\Rightarrow			$\begin{array}{cc} 17 / 37 & \Rightarrow \\ 115 / 390 & \Rightarrow \\ 22 / 36 & \approx \end{array}$	
21	$\begin{array}{rr} & 30 / 27 \\ 6 & 63 / 70 \\ 16 / 27 \\ \text { Newton Ave } \end{array}$	22	$\frac{\stackrel{0}{6}}{\stackrel{5}{6}}$ \square	$\begin{array}{ll} \stackrel{N}{N} & \bar{\omega} \\ \dot{\circ} & \stackrel{y}{0} \\ & \underset{\sim}{w} \end{array}$	$\begin{array}{cc} \text { B } & 65 / 62 \\ \sim & 350 / 239 \\ & \\ & \text { Main St } \end{array}$	23	$\begin{aligned} & \stackrel{m}{\square} \\ & \underset{\square}{\square} \end{aligned}$		$$			$\begin{array}{cc} \text { B } & 100 / 100 \\ \hdashline & 104 / 70 \\ \text { National Ave } \end{array}$
$\begin{array}{ll} 23 / 24 & \Rightarrow \\ 87 / 124 & \Rightarrow \\ 22 / 41 & \approx \end{array}$			$\begin{gathered} 33 / 12 \\ 153 / 270 \end{gathered}$	π			$\begin{aligned} & 110 / 108 \\ & 224 / 25 \\ & 163 / 20 \end{aligned}$	$\begin{aligned} & \Rightarrow \\ & \Rightarrow \end{aligned}$			$\begin{array}{ll} 75 / 162 & \Rightarrow \\ 50 / 111 & \Rightarrow \\ 15 / 12 & \approx \end{array}$	

The northbounf right－turn volumes for Logan Avenue／SR－75 and Cesar Chavez Parkway intersection include the vehicles turning north from Cesar Chavez Parkway using the free northbound right－turn lane．The intersection analysis did not include a reduction for these volumes．

NOTTOSCALE

Barrio Logan Community Plan Update

Barrio Logan Community Plan Update

Intersection Analysis

Table 5-2 displays the LOS analysis results for the study intersections under Horizon Year with the Barrio Logan Community Plan Update conditions for Alternative 1 scenario. As shown in the table, all intersections would operate at LOS D or better during both peak-hour periods, with the exception of the following fourteen intersections:

- National Avenue and 16th Street (LOS F during both peak-hour periods);
- Harbor Drive and Sigsbee Street (LOS F during both peak-hour periods);
- Logan Avenue and Beardsley Street/I-5 SB off-ramp (LOS F during the afternoon peak-hour period);
- National Avenue and Beardsley Street (LOS E and LOS F in the morning and afternoon peakhour periods, respectively);
- Harbor Drive and Beardsley Street (LOS F during both peak-hour periods);
- Logan Avenue and Cesar Chavez Parkway (LOS E in the afternoon peak-hour period);
- Harbor Drive and Cesar Chavez Parkway (LOS E and LOS F in the morning and afternoon peakhour periods, respectively);
- Logan Avenue and Sampson Street (LOS F during both peak-hour periods);
- Harbor Drive and Schley Street (LOS E in the morning peak-hour period);
- National Avenue and 28th Street (LOS F and LOS E in the morning and afternoon peak-hour periods, respectively);
- Harbor Drive and 28th Street (LOS F in the afternoon peak-hour period);
- Boston Avenue and I-5 Southbound On-ramp (LOS F in the afternoon peak-hour period);
- 32nd Street and Wabash Street (LOS F during both peak-hour periods); and
- Harbor Drive and 32nd Street (LOS F during both peak-hour periods).

The Barrio Logan Community Plan Update Alternative 1 is considered to have a cumulative traffic related impact at all fourteen intersections listed above.

Appendix D contains the LOS calculation worksheets.

INTERSECTION		HORIZON $P E A I$	$\begin{aligned} & T \\ & \text { YEAR (2030) } \\ & \text { KHOUR INTER } \end{aligned}$	BLE 5-2 ONDITIONS ECTION LOS	LTERNA SUMMA						
		TRAFFIC CONTROL	PEAK HOUR	EXISTING		ALTERNATIVE 1			$\Delta(\mathrm{c})$	SIGNIFICANT?	
		DELAY (a)		LOS (b)	DEL	(a)	LOS (b)				
1	Commercial St \& 16th St		Signal	AM	19.4	B	12.8		B	-6.6	NO
		PM		24.6	C	27.7		C	3.1	NO	
2	National Ave \& 16th St	Two-Way Stop	AM	11.7	B	51.7	(NB)	F	40.0	YES	
			PM	12.5	B	232.1	(SB)	F	219.6	YES	
3	National Ave \& Sigsbee St	Signal	AM	9.6	A	8.1		A	-1.5	NO	
			PM	9.6	A	7.3		A	-2.3	NO	
4	Newton Ave \& Sigsbee St	All-Way Stop	AM	7.9	A	8.8		A	0.9	NO	
			PM	7.6	A	8.0		A	0.4	NO	
5	Main St \& Sigsbee St	All-Way Stop	AM	7.4	A	8.1		A	0.7	NO	
			PM	7.4	A	7.8		A	0.4	NO	
6	Harbor Dr \& Sigsbee St	One-Way Stop	AM	17.0	C	ECL	(SB)	F	--	YES	
			PM	18.1	C	ECL	(SB)	F	--	YES	
7	Logan Ave \& Beardsley St- I-5 SB ramp	All-Way Stop	AM	11.1	B	33.1		D	22.0	NO	
			PM	11.9	B	81.9	(EB)	F	70.0	YES	
8	National Ave \& Beardsley St	All-Way Stop	AM	8.5	A	39.9		E	31.4	YES	
			PM	8.7	A	129.0	(EBL)	F	120.3	YES	
9	Newton Ave \& Beardsley St	All-Way Stop	AM	8.5	A	9.4		A	0.9	NO	
			PM	8.2	A	8.6		A	0.4	NO	
10	Main St \& Beardsley St	All-Way Stop	AM	8.5	A	15.5		C	7.0	NO	
			PM	7.8	A	9.5		A	1.7	NO	
11	Harbor Dr \& Beardsley St	One-Way Stop	AM	20.3	C	173.7	(SB)	F	153.4	YES	
			PM	18.3	C	51.6	(SB)	F	33.3	YES	
12	Kearney St \& Cesar E. Chavez Pkwy	Signal	AM	21.7	C	46.6		D	24.9	NO	
			PM	21.2	C	34.0		C	12.8	NO	
13	Logan Ave \& Cesar E. Chavez Pkwy	Signal	AM	14.0	B	31.1		C	17.1	NO	
			PM	13.0	B	62.1		E	49.1	YES	
14	National Ave \& Cesar E. Chavez Pkwy	Signal	AM	11.0	B	30.4		C	19.4	NO	
			PM	14.0	B	52.4		D	38.4	NO	
15	Newton Ave \& Cesar E. Chavez Pkwy	Signal	AM	8.1	A	9.1		A	1.0	NO	
			PM	9.1	A	15.3		B	6.2	NO	
16	Main St \& Cesar E. Chavez Pkwy	Signal	AM	9.6	A	39.3		D	29.7	NO	
			PM	8.7	A	42.5		D	33.8	NO	
17	Harbor Dr \& Cesar E. Chavez Pkwy	Signal	AM	33.2	C	77.5		E	44.3	YES	
			PM	43.6	D	85.2		F	41.6	YES	
18	Logan Ave \& I-5 SB On-ramp	One-Way Stop	AM	8.8	A	9.5		A	0.7	NO	
			PM	9.9	A	16.3		C	6.4	NO	
19	National Ave \& SR-75 Off-ramp	One-Way Stop	AM	10.1	B	13.2		B	3.1	NO	
			PM	11.0	B	13.8		B	2.8	NO	
20	National Ave \& Evans St	Two-Way Stop	AM	11.2	B	14.6		B	3.4	NO	
			PM	11.9	B	21.0		C	9.1	NO	
les:	lues indicate intersections operating at LOS E or uthbound; NB= Northbound; EB=Eastbound; W y refers to the average control delay for the entir calculations are based on the methodology outl	Westbound tersection, measured in secon in the 2000 Highway Capaci	sper vehicle. At a y Manual and perfo	o-way stop-cont ned using Synch	ed intersecti .0	elay refe	the worst	ovement.			

K:ISND_TPTOI095707000|Excel\[707000IN01.xlsm]Alt1

Roadway Segment Analysis

Table 5-3 displays the roadway segment analysis under the Horizon Year (2030) conditions for the Alternative 1 scenario. As shown in the table, based on planning level analysis and on ADT volumes, the Alternative 1 scenario would be considered having a cumulative roadway segment impact along the following roadway segments:

- Cesar Chavez Parkway between Logan Avenue and National Avenue (LOS E);
- Cesar Chavez Parkway between National Avenue and Newton Avenue (LOS F);
- Cesar Chavez Parkway between Newton Avenue and Main Street (LOS E);
- Sampson Street between National Avenue and Harbor Drive (LOS E);
- $26^{\text {th }}$ Street between National Avenue and Main Street (LOS E);
- $28^{\text {th }}$ Street between I-5 and Boston Avenue (LOS F);
- $32^{\text {nd }}$ Street between Main Street and Wabash Boulevard (LOS E);
- Vesta Street between Main Street and I-5 Ramps (LOS E);
- Logan Avenue between Sigsbee Street and Cesar Chavez Parkway (LOS F);
- National Avenue between Beardsley Street and Cesar Chavez Parkway (LOS F);
- National Avenue between Cesar Chavez Parkway and Evans Street (LOS F);
- National Avenue between Sicard Street and $27^{\text {th }}$ Street (LOS F);
- Boston Avenue between $28^{\text {th }}$ Street and $29^{\text {th }}$ Street (LOS F);
- Boston Avenue between $29^{\text {th }}$ Street and $32^{\text {nd }}$ Street (LOS F);
- Main Street between Cesar Chavez Parkway and Evans Street (LOS E);
- Main Street between Evans Street and $26{ }^{\text {th }}$ Street (LOS E);
- Main Street between $26^{\text {th }}$ Street and $28^{\text {th }}$ Street (LOS F);
- Main Street between $28^{\text {th }}$ Street and $29^{\text {th }}$ Street (LOS F);
- Main Street between $29^{\text {th }}$ Street and $32^{\text {nd }}$ Street (LOS F);
- Main Street between $32^{\text {nd }}$ Street and Rigel Street (LOS F);
- Main Street between Rigel Street and Una Street (LOS F); and
- Main Street between Una Street and I-5 SB Off-ramp (LOS F)

Freeway Segment Analysis

Table 5-4 displays the freeway segments analysis under the Horizon Year (2030) conditions for the Alternative 1 scenario. As shown in the table, the Alternative 1 scenario would have a cumulative traffic related impact along the following freeway segments:

- I-5 from J Street to SR-75 Junction (LOS F and LOS E for the morning and afternoon peak-hour periods, respectively);
- I-5 from SR-75 Junction to $28^{\text {th }}$ Street (LOS F and LOS E for the morning and afternoon peakhour periods, respectively);
- I-5 from $28^{\text {th }}$ Street to I-15 Interchange (LOS E during the morning peak-hour periods);
- I-5 from I-15 Interchange to Division Street (LOS F both peak-hour periods); and
- I-15 from I-5 Interchange to Ocean View Boulevard (LOS F during the afternoon peak-hour period)

TABLE 5-4 HORIZON YEAR (2030) CONDITIONS ALTERNATIVE 1 freeway segment los summary															
		EXISTING						ALTERNATIVE 1						$\begin{gathered} \text { V/C } \\ \text { RATIO } \Delta \\ \hline \end{gathered}$	SIGNIFICANT?
FREEWAY SEGMENT	DIRECTION	NUMBER OF	CAPACITY (a)	ADT (b)	PEAK-HOUR VOLUME (c)	$\begin{gathered} \text { V/C } \\ \text { RATIO } \\ \hline \end{gathered}$	LOS	NUMBER OF LANES	CAPACITY (a)	ADT (b)	$\begin{gathered} \text { PEAK- } \\ \text { HOUR } \\ \text { VOLUME (c) } \end{gathered}$	$\begin{gathered} \text { V/C } \\ \text { RATIO } \\ \hline \end{gathered}$	LOS		
AM PEAK															
I-5															
J Street to SR-75 Junction	NB	4M	9,400	164,000	7,793	0.829	D	$4 \mathrm{M}+1 \mathrm{H}$	11,000	243,100	11,551	1.050	F0	0.22	YES
	SB	4 M	9,400					$4 \mathrm{M}+1 \mathrm{H}$	11,000						--
SR-75 Junction to 28th Street	NB	4 M	9,400	160,000	7,603	0.809	D	$4 \mathrm{M}+1 \mathrm{H}$	11,000	241,300	11,466	1.042	F0	0.23	YES
	SB	4 M	9,400					$4 \mathrm{M}+1 \mathrm{H}$	11,000						--
28th Street to I-15 Interchange	NB	4 M	9,400	154,000	7,317	0.778	C	$4 \mathrm{M}+1 \mathrm{H}$	11,000	221,600	10,530	0.957	E	0.18	YES
	SB	4 M	9,400					$4 \mathrm{M}+1 \mathrm{H}$	11,000						--
$\mathrm{I}-15$ Interchange to Division St	NB	4 M	9,400	188,000	8,933	0.950	E	$4 \mathrm{M}+1 \mathrm{H}$	11,000	261,700	12,435	1.130	F0	0.18	YES
	SB	4 M	9,400					$4 \mathrm{M}+1 \mathrm{H}$	11,000						--
I-15															
I-5 Interchange to Ocean View B1	NB	3 M	7,050	95,000				3 M	7,050	129,700					--
	SB	3 M	7,050		4,722	0.670	C	3 M	7,050		6,447	0.914	D	0.24	--
SR-75 (d)															--
I-5 Interchange to Glorietta Blvd	WB	2 M	4,700	73,000				2 M	4,700	93,500					--
	EB	3 M	7,050		4,629	0.657	C	3 M	7,050		5,929	0.841	D	0.18	--
PM PEAK															
I-5															
J Street to SR-75 Junction	NB	4 M	9,400	164,000				$4 \mathrm{M}+1 \mathrm{H}$	11,000	243,100					--
	SB	4 M	9,400		7,036	0.749	C	$4 \mathrm{M}+1 \mathrm{H}$	11,000		10,430	0.948	E	0.20	YES
SR-75 Junction to 28th Street	NB	4 M	9,400	160,000				$4 \mathrm{M}+1 \mathrm{H}$	11,000	241,300					--
	SB	4 M	9,400		6,865	0.730	C	$4 \mathrm{M}+1 \mathrm{H}$	11,000		10,353	0.941	E	0.21	YES
28th Street to I-15 Interchange	NB	4 M	9,400	154,000				$4 \mathrm{M}+1 \mathrm{H}$	11,000	221,600					--
	SB	4 M	9,400		6,607	0.703	C	$4 \mathrm{M}+1 \mathrm{H}$	11,000		9,508	0.864	D	0.16	--
I-15 Interchange to Division St	NB	4 M	9,400	188,000				$4 \mathrm{M}+1 \mathrm{H}$	11,000	261,700					--
	SB	4 M	9,400		8,066	0.858	D	$4 \mathrm{M}+1 \mathrm{H}$	11,000		11,228	1.021	F0	0.16	YES
I-15															
I-5 Interchange to Ocean View Bl	NB	3 M	7,050	95,000	5,216	0.740	C	3 M	7,050	129,700	7,121	1.010	F0	0.27	YES
	SB	3 M	7,050					3 M	7,050						--
SR-75 (d)															
I-5 Interchange to Glorietta Blvd	WB	3 M	7,050	73,000	4,585	0.650	C	3 M	7,050	93,500	5,873	0.833	D	0.18	--
	EB	2 M	4,700					2 M	4,700						--
Notes:															
Bold values indicate freeway segments opera M=Main Lane; A=Auxiliary Lane; $\mathrm{H}=\mathrm{HOV}$ This analysis evaluates the higher peak-hour (a) The capacity is calculated as $2,350 \mathrm{ADT}$ (b) Traffic volumes provided by Caltrans (c) Peak-hour volume calculated by: (ADT* (d) SR-75 has reversable lanes.	ting at LOS E or F Lane. direction of traffic per main lane and *D)/Truck Factor	1,200 ADT per au	uxiliary lane												

Mitigation

The following intersection improvements are needed to mitigate the peak-hour intersection impacts of the proposed Barrio Logan Community Plan Update Land Use Alternative 1:

- National Avenue and 16th Street: A new traffic signal is recommended to be installed at this intersection. A signal warrant worksheet for this intersection is included in Appendix I. This intersection would meet the peak-hour warrant evaluation based on the Horizon Year 2030 volumes.
- Harbor Drive and Sigsbee Street: A traffic signal is recommended to be installed at the intersection of Sigsbee Street and Harbor Drive. The signal is needed to serve the increased traffic from land uses proposed, as well as accommodating the traffic that would be diverted from Beardsley Street due to the median closure along Harbor Drive. A signal warrant worksheet for this intersection is included in Appendix I. This intersection would meet the peak-hour warrant evaluation based on the Horizon Year 2030 volumes.
- Logan Avenue and Beardsley Street/I-5 SB off-ramp: A traffic signal is recommended to be installed at the intersection. A signal warrant worksheet for this intersection is included in Appendix I. This intersection would meet the peak-hour warrant evaluation based on the Horizon Year 2030 volumes.
- National Avenue and Beardsley Street: A traffic signal is recommended to be installed at the intersection. A signal warrant worksheet for this intersection is included in Appendix I. This intersection would meet the peak-hour warrant evaluation based on the Horizon Year 2030 volumes.
- Harbor Drive and Beardsley Street: This improvement would extend the raised median along Harbor Drive in front of Beardsley Street converting the intersection to right-in/right-out only movements.
- Logan Avenue and Cesar Chavez Parkway: The addition of an exclusive eastbound right-turn lane and a northbound right-turn overlap phase are recommended to be installed at this intersection. The addition of the exclusive eastbound right-turn lane could be implemented by restriping changes only. An existing MTS bus stop is located where the exclusive right-turn lane is recommended. To reduce the impact to on-street parking, the relocation of the existing MTS bus stop is not recommended at this point. Further coordination with MTS is required before the implementation of this improvement. This improvement will not affect the existing on-street parking. The entrance to the State Route 75 ramps would be reconfigured to improve pedestrian circulation. This improvement could include the removal of the free northbound right-turn access from Cesar Chavez Parkway to the State Route 75 ramps.
- National Avenue and Cesar Chavez Parkway: Exclusive eastbound and westbound right-turn lanes are recommended to be installed at this intersection in order to reduce queuing along National Avenue. These improvements could be implemented by restriping changes only. These improvements will not affect the existing on-street parking. An existing MTS bus stop is located where the exclusive westbound right-turn lane is recommended. To reduce the impact to on-street parking, the relocation of the existing MTS bus stop is not recommended at this point. Further coordination with MTS is required before the implementation of this improvement.
- Main Street and Cesar Chavez Parkway: An exclusive westbound right-turn lane is recommended to be installed at this intersection in order to reduce queuing along Main Street. This improvement could be implemented by restriping changes only. This improvement will not affect the existing on-street parking. An existing MTS bus stop is located where the exclusive westbound right-turn lane is recommended. To reduce the impact to on-street parking, the relocation of the existing MTS bus stop is not recommended at this point. Further coordination with MTS is required before the implementation of this improvement.
- Harbor Drive and Cesar Chavez Parkway: A southbound right-turn overlap phase, dual eastbound left-turn lanes and an exclusive northbound right-turn lane are recommended to be installed. It is anticipated that the exclusive northbound right-turn lane will be completed by Caltrans in conjunction with the extension of the westbound left-turn lane.
- Logan Avenue and Sampson Street: A traffic signal is recommended to be installed. Also, southbound and northbound left-turn lanes are recommended. These lanes could be added with restriping changes only at the time of signalization, and would not require roadway widening. The configuration changes would require the removal of on-street parking along Sampson Street. A total of 16 parking spaces are anticipated to be removed as part of this improvement. The removed parking spaces are likely serving commercial uses along Logan Avenue and multifamily residential units along Sampson Street. The removal of on-street parking spaces will create a shortage of on-street parking within the vicinity of this intersection. A signal warrant worksheet for this intersection is included in Appendix I. This intersection would meet the peak-hour warrant evaluation based on the Horizon Year 2030 volumes.
- Main Street and 26th Street: A partial street closure is recommended at the intersection for truck traffic restrictions. The northbound through and eastbound left movements would be eliminated. This improvement is not required to mitigate intersection level of services, but it is recommended for a reduction of truck traffic along residential streets within the community.
- Harbor Drive and Schley Street: The southbound through and southbound left-turn movements are recommended to be prohibited. Right-turn overlap signal phasing is recommended for the southbound movement.
- National Avenue and 28th Street: An exclusive southbound right-turn lane is recommended to be added. This improvement could be accomplished by restriping the roadway without the need for widening. A removal of one on-street parking space would be required along the west side of National Avenue to accommodate a 100 -foot southbound exclusive right-turn lane.
- Harbor Drive and 28th Street: A second southbound left-turn lane and a second eastbound leftturn lane are recommended to be added.
- Boston Avenue and Interstate 5 Southbound Ramp-29 ${ }^{\text {th }}$ Street: This recommendation includes a truck right-turn prohibition for the northbound movement at the intersection of 28th Street and Boston Avenue and truck turning signage to encourage vehicles to use Main Street and 29th Street to enter the Interstate 5 southbound freeway. The Interstate 5 Southbound Ramp and Boston Avenue intersection is recommended to be signalized. A signal warrant worksheet for this intersection is included in Appendix I. This intersection would meet the peak-hour warrant evaluation based on the Horizon Year 2030 volumes.
- $32^{\text {nd }}$ Street and Wabash Boulevard: Potential improvements at this intersection will be further defined once Caltrans completes its truck access improvement study.
- Harbor Drive and 32nd Street: Same as the improvements for Wabash Boulevard and 32nd Street.

Figure 5-3 illustrates the intersection geometrics within Barrio Logan with the recommended intersection improvements listed above.

The following roadway segment improvements are recommended to mitigate the roadway segment cumulative impacts of the proposed Barrio Logan Community Plan Update. The improvements listed would be the same for both land use alternatives.

- Cesar Chavez Parkway between Logan Avenue and Harbor Drive: This roadway segment will be reclassified as a three-lane urban major facility between Logan Avenue and Main Street. Between Main Street and Harbor Drive, the roadway segment will be reclassified as a three-lane major arterial. A raised median will be installed between Harbor Drive and Logan Avenue. The
roadway segment will have two lanes in the northbound direction and one lane in the southbound direction. On-street parking will be allowed between Logan Avenue and Main Street. A southbound right-turn auxiliary lane will be present between Main Street and Harbor Drive. The entire roadway segment should be considered for "sharrow" bicycle marking treatment and will be considered a class III bicycle facility.
- $28^{\text {th }}$ Street between I-5 and National Avenue: This roadway segment will be reconfigured as a four-lane major arterial with a five-foot raised median. The new configuration would allow for two-lanes in each direction and an auxiliary lane in the southbound direction.
- National Avenue between Cesar Chavez and Evans Street: This roadway segment will be reclassified as a two-lane collector with a two-way left-turn lane.
- National Avenue between Sicard and $27^{\text {th }}$ Street: This roadway segment will be reclassified as a two-lane collector with a two-way left-turn lane.
- Main Street between Evans Street and $26^{\text {th }}$ Street: This roadway segment will be reclassified as a two-lane collector with a two-way left-turn lane.

It is anticipated that traffic patterns within the community will change based on some of the improvements listed above. Fewer vehicles are anticipated to use the roadway segment of Boston Avenue between 28th Street and 29th Street. This is due to the proposed improvements along 28th Street and Main Street and the signalization of Boston Avenue and 29th Street intersection, which serves as an entrance ramp to the I-5 Southbound freeway. It is anticipated that more vehicles would use Main Street and 29th Street. Figure 5-4 illustrates the peak-hour turning volumes within the community with the anticipated change in traffic patterns.

Table 5-5 displays the summary of the intersection peak-hour analysis with the proposed intersections and roadway segments improvements described above. As shown in Table, with the implementation of the recommended improvements, all intersections within the study area would operate at LOS D or better with the following exceptions:

- Harbor Drive and $28^{\text {th }}$ Street (will continue to operate at LOS E during the afternoon peak-hour period);
- $32^{\text {nd }}$ Street and Wabash Street (will continue to operate at LOS F and LOS E during the morning and afternoon peak-hour periods, respectively); and
- Harbor Drive and $32^{\text {nd }}$ Street (will continue to operate at LOS F during both peak-hour periods).

The Harbor Drive $/ 32^{\text {nd }}$ Street and $32^{\text {nd }}$ Street/Wabash Street intersections are being studied further in an on-going Caltrans study. The latest report includes the installation of a unidirectional connector ramp from eastbound Harbor Drive to northbound State Route 15. Another improvement under study is the Vesta Street Overcrossing at Harbor Drive which would connect the wet and dry sides of the Naval Base San Diego. On November 1, 2010 the Navy temporarily closed the eastern leg (Norman Scott Road) of the $32^{\text {nd }}$ Street/Norman Street-Wabash Street intersection to improve safety. The Navy is monitoring traffic to determine if this closure should remain. A preliminary analysis indicates that the mentioned projects would improve the intersection to acceptable levels and decrease the potential queuing problems.

Harbor Drive $/ 28^{\text {th }}$ Street is projected to operate at LOS E, even with improvements. There is the potential that improvements to be made between Harbor Drive and State Route 15 (Caltrans study) could divert some traffic off of $28^{\text {th }}$ Street, further improving this intersection

SANDAGs 2050 Regional Transportation Plan (RTP) unconstrained network recommends the grade separation of the trolley lines at $28^{\text {th }}$ Street and at $32^{\text {nd }}$ Street. A peak-hour intersection analysis was conducted for the intersections of $28^{\text {th }}$ Street and $32^{\text {nd }}$ Street with Harbor Drive assuming these proposed

Barrio Logan Community Plan Update

$\begin{aligned} & \text { Commercial St/ } \\ & \text { 16th St } \end{aligned}$	National Ave/ 16th St	National Ave/ Sigsbee St	Newton Ave/ Sigsbee St
$\begin{array}{c\|c} \rightarrow-f t & \frac{A}{b} \\ \underset{\rightarrow}{+} \mid-4 \end{array}$	$\rightarrow \frac{1}{7}+\frac{1}{4}$		
Main St/ Sigsbee St	Harbor Dr/ Sigsbee St	Logan Ave/Beardsley St I-5 SB off-ramp	National Ave/ Beardsley St
Newton Ave/ Beardsley St	Main St/ Beardsley St	Harbor Dr/ Beardsley St	Kearney St/ Cesar Chavez Pkwy

NOT TO SCALE

Barrio Logan Community Plan Update

Logan Ave/ Cesar Chavez Pkwy	National Ave/ Cesar Chavez Pkwy	Newton Ave/ Cesar Chavez Pkwy	Main St/ Cesar Chavez Pkwy
Harbor Dr/ Cesar Chavez Pkwy	Logan Ave/ l-5 SB On-ramp	National Ave/ SR-75 Off-ramp	National Ave/ Evans St
		$\underset{\rightarrow}{\rightarrow-19}$	$\frac{(20) \frac{1}{r}}{\frac{r^{\prime}}{r}}$
Newton Ave/ Evans St	Main St/ Evans St	Logan Ave/ Sampson St	National Ave/ Sampson St
$\frac{(101) \frac{A}{i}}{\left.\left.\frac{1}{t}\right\|^{21}-4-\sqrt{100}\right)}$	$\underset{\underset{\rightarrow}{\rightarrow}}{\underset{\sim}{\infty}}$		$\xrightarrow[\rightarrow\|c\| c]{\rightarrow-\frac{1}{r}}$

not to scale

Barrio Logan Community Plan Update

Newton Ave/ Sampson St	Main St/ Sampson St	Harbor Dr/ Sampson St	National Ave/ Sicard St
	$\frac{5-\left.4\right\|^{\frac{1}{2}}}{\frac{4}{1}}$	$\left.\frac{1}{\stackrel{i}{7}}\right\|^{\frac{1}{i}}$	$\frac{()^{-1}-\frac{1}{4}}{\left.\stackrel{4}{4}\right\|^{-4}}$
National Ave/ 26th St	National Ave/ 27th St	$\begin{gathered} \hline \text { Main St/ } \\ \text { 26th St } \end{gathered}$	Harbor Dr/ Schley St
	$\left.\rightarrow\right\|^{30}$		
National Ave/ 28th St	Boston Ave/ 28th St	$\begin{gathered} \hline \text { Main St/ } \\ \text { 28th St } \end{gathered}$	Harbor Dr/ 28th St
		$\frac{-\left.\sqrt{16}\right\|_{-\frac{1}{r}} ^{\frac{15}{r}}}{\stackrel{(3)}{\Rightarrow}}$	

NOT TO SCALE

Barrio Logan Community Plan Update

Legend:
Signalized \quad (Right-turn overlap

* Unsignalized

not to scale

Kimley-Horn
and Associates, Inc.

Barrio Logan Community Plan Update

Barrio Logan Community Plan Update

Barrio Logan Community Plan Update

Barrio Logan Community Plan Update

grade separations. The results of the analysis indicated that the proposed grade separation would improve both intersections to LOS D or better during both peak-hour periods under the H orizon Y ear scenario with either alternative. The proposed grade separations are included in the "revenue constrained scenario". Due to the benefits to adjacent intersections, these grade separation projects are recommended.

Table 5-6 displays the summary of the roadway segment analysis with the roadway segment improvements described above. As shown in the table, the following roadway segments would continue to operate at LOS E or F even with the implementation of the recommended improvements:

- Sampson Street between National A venue and Harbor Drive (LOS E);
- $26^{\text {th }}$ Street betw een N ational A venue and M ain Street (LOS E);
- $32^{\text {nd }}$ St between M ain St. and W abash Blvd (LOS E);
- V esta Street betw een M ain Street and I-5 Ramps (LOS E);
- L ogan A venue between Sigsbee Street and C esar Chavez Parkway (LOS F);
- National A venue between B eardsley Street and Cesar C havez Parkway (LOS F);
- B oston A venue between $28^{\text {th }}$ Street and $29^{\text {th }}$ Street (LOS F);
- B oston A venue between $29^{\text {th }}$ Street and $32^{\text {nd }}$ Street (LOS F);
- M ain Street betw een C esar Chavez Parkway and Evans Street (LOS E);
- M ain Street betw een $26^{\text {th }}$ Street and $28^{\text {th }}$ Street (LOS F);
- M ain Street betw een $28^{\text {th }}$ Street and $29^{\text {th }}$ Street (LOS F);
- M ain Street between $29^{\text {th }}$ Street and $32^{\text {nd }}$ Street (LOS F);
- M ain Street betw een $32^{\text {nd }}$ Street and Rigel Street (LOS F);
- M ain Street between Rigel Street and Una Street (LOS F); and
- M ain Street between Una Street and I-5 SB Off-ramp (LOS F)

Boston A venue, National Avenue and $26^{\text {th }}$ Street are desired by the community of Barrio Logan to be more pedestrian and bicycle friendly corridors. The widening of these roadways to improve vehicular circulation was not desired by the community. The vehicular operations along these three facilities could be congested during peak periods and vehicular speeds would be low. Additional widening is not recommended. Traffic calming measures should be evaluated along N ational A venue to further enhance the pedestrian and bicycle circulation.

Additional improvements to the failing roadway segments of Sampson Street, $32^{\text {nd }}$ Street, V esta Street, Logan Avenue and M ain Street are not recommended since the roadway segment analysis used in this study is based on theoretical capacities based on the number of travel lanes. The analysis does not take into account other physical features that can affect the capacity of a roadway segment like grades, number of traffic signals, number of driveways, parking availability, etc. In addition, the analysis does not take into account the different traffic peak periods experienced on these roadways due to the surrounding land uses. As an example, the Barrio Logan traffic patterns are unique in that they are heavily influenced by the Port of San Diego and the Navy B ase traffic generators whose peak-hour of use do not correspond to typical peak-hour commuter traffic. To better represent the conditions of a roadway segment within the Barrio Logan community, the operations of the upstream and downstream intersections of each respective segment during the peak periods would indicate whether the roadway segment would have adequate capacity. As shown in the intersection analysis tables, all intersections along the failing roadway segments would operate at acceptable LOS.

In addition to the roadway segment improvements listed above, it is recommended that $28^{\text {th }}$ Street between Harbor Drive and the I-5 Ramps be classified as a four-lane major arterial. For the segment between Harbor Drive and M ain Street, a raised median should be installed with an entrance to the Navy

Commissary. The proposed configuration would allow two lanes in each direction with an auxiliary lane for the heavy southbound right-turn movements at Harbor Drive. Parking would need to be removed along both sides of the roadway, with a total loss of approximately 20 parking spaces. The removed parking spaces are likely utilized by NASCO employees or Naval Base San Diego employees or visitors. Additional diagonal parking is recommended to be evaluated for installation along Boston Avenue between $28^{\text {th }}$ Street and $29^{\text {th }}$ Street to replace the loss of parking along $28^{\text {th }}$ Street. The west side of the roadway could be widened by 4 feet to accommodate the proposed interim cross-sections. The east sidewalk will widen to 10 feet to enhance pedestrian circulation. This improvement is not part of mitigation for a roadway segment impact. The improvement is recommended to encourage heavy truck traffic to use $28^{\text {th }}$ Street instead of Main Street and to provide for pedestrians. The ultimate recommended cross-section of $28^{\text {th }}$ Street will include a designated bike lane along both sides of the roadway and a fourteen foot parkway. The ultimate configuration along $28^{\text {th }}$ Street will require additional roadway widening and right-of-way acquisition. An alignment study is required to further define the extent of additional right-way needed and future widening

Conceptual roadway segments improvement figures, including the proposed cross-sections are included in Appendix K.

Based on the freeway segment capacity analysis included in this study, Alternative 1 land use scenario is considered to have a cumulative traffic related impact along the following freeway segments:

- I-5 from J Street to SR-75 Junction;
- I-5 from SR-75 Junction to 28th Street;
- I-5 from 28th Street to I-15 Interchange;
- I-5 from I-15 Interchange to Division Street; and
- I-15 from I-5 Interchange to Ocean View Boulevard

SANDAG's Draft 2050 Regional Transportation Plan (RTP) hybrid network includes the following freeway improvements:

- Operational freeway improvements along Interstate 5 between Interstate 15 and Interstate 8; and
- Addition of one (1) main lane and one (1) managed lane in each direction between Interstate 15 and State Route 54;

Both improvements listed above were included in the hybrid network's revenue constrained scenario, approved by SANDAG's board for further study on December 17th, 2010. The improvements included in the RTP are recommended to enhance the regional connectivity and accommodate the forecasted growth of the San Diego region. It should be noted that both land use alternatives presented on this plan would generate less traffic than the current adopted Community Plan land use alternative. Either proposed alternative would lessen, but not eliminate cumulative freeway traffic impacts.

In addition to the proposed freeway improvements listed in the SANDAG's Draft 2050 RTP, the following freeway access improvements are recommended within the Barrio Logan Community:

- Signalization of the intersection of Logan Avenue and Beardsley Street/ Interstate 5 SB off-ramp;
- Traffic signal modification at the intersection of Logan Avenue and Cesar Chavez Parkway (State Route 75 on-ramp);
- Signalization of the intersection of Boston Avenue and Interstate 5 SB on-ramp- $29^{\text {th }}$ Street;
- Roadway improvements along 28th Street to accommodate an additional southbound lane, including the potential for widening the Interstate 5 overcrossing;
- Signalization of the intersection of $28^{\text {th }}$ Street and Interstate 5 southbound off-ramp;
- Changes to the roadway striping along Main Street between 28th Street and 29th Street to facilitate freeway access to the Interstate 5 southbound on-ramp at Boston Avenue;
- Installation of a unidirectional connector ramp from eastbound Harbor Drive to northbound State Route 15 (under study by the Port of San Diego, and Caltrans);
- Construction of the Vesta Street Overcrossing at Harbor Drive (under study by the Navy);
- Coordination of City of San Diego and Navy related to the closure of the east leg of the $32^{\text {nd }}$ Street and Norman Street-Wabash Street intersection (recently completed on a trial basis by the Navy); and
- Grade separation of the trolley tracks at the $28^{\text {th }}$ Street and Harbor Drive and $32^{\text {nd }}$ Street and Harbor Drive intersections (to be completed by SANDAG and part of the 2050 draft RTP).

The improvements listed above would decrease congestion along the major freeway access locations within the community.

TABLE 5-5HORIZON YEAR (2030) ALTERNATIVE 1 WITH IMPROVEMENTSPEAK-HOUR INTERSECTION LOS SUMMARY													
INTERSECTION		PEAK HOUR	ALTERNATIVE 1		ALTERNATIVE 1 WITH IMPROVEMENTS		DESCRIPTION OF IMPROVEMENT						
		DELAY (a)	LOS (b)	DELAY (a)	LOS (b)								
2	National Ave \& 16th St		AM	51.7	F	14.1	B	Install Traffic Signal.					
		PM	232.1	F	8.5	A							
6	Harbor Dr \& Sigsbee St	AM	ECL	F	12.7	B	Install Traffic Signal.						
		PM	ECL	F	7.6	A							
7	Logan Ave \& Beardsley St- I-5 SB ramp	AM	33.1	D	26.7	C	Install Traffic Signal. (This improvement requires Caltrans approval)						
		PM	81.9	F	46.8	D							
8	National Ave \& Beardsley St	AM	39.9	E	12.9	B	Install Traffic Signal.						
		PM	129.0	F	13.3	B							
11	Harbor Dr \& Beardsley St	AM	173.7	F	17.5	C	Modify raised median along Harbor Drive and restrict the eastbound left-turn movements and southbound left-turn movements.						
		PM	51.6	F	11.6	B							
13	Logan Ave \& Cesar E. Chavez Pkwy	AM	31.1	C	26.9	C	Add exclusive eastbound right-turn lane. Add northbound overlap phase. (This improvement requires Caltrans approval)						
		PM	62.1	E	52.6	D							
14	National Ave \& Cesar E. Chavez Pkwy	AM	30.4	C	19.9	B	Add exclusive eastbound and westbound right-turn lanes. This improvement is recommended to mitigate a potential queing impact.						
		PM	52.4	D	21.5	C							
16	Main St \& Cesar E. Chavez Pkwy	AM	39.3	D	21.6	C	Add exclusive westbound right-turn lane. This improvement is recommended to mitigate a potential queing impact.						
		PM	42.5	D	18.7	B							
17	Harbor Dr \& Cesar E. Chavez Pkwy	AM	77.5	E	48.2	D	Add second eastbound left-turn lane, a southbound right-turn overlap phase and a northbound exclusive right-turn lane. In addition, extend the westbound left-turn pocket (to be done by Caltrans).						
		PM	85.2	F	49.2	D							
23	Logan Ave \& Sampson St	AM	143.5	F	10.0	B	Install Traffic Signal. Add northbound and southbound left-turn lanes.						
		PM	197.1	F	29.7	C							
31	Main St \& 26th St-Schley St	AM	8.2	A	8.2	A	Eliminate northbound through movement. This improvement is not needed based on a delay impact. It is part of a truck route improvement.						
		PM	8.0	A	8.0	A							
32	Harbor Dr \& Schley St	AM	76.2	E	32.9	C	Eliminate southbound left/through movement. Add southbound right-turn overlap phase.						
		PM	28.8	C	16.0	B							
33	National Ave \& 28th St	AM	81.2	F	39.7	D	Add exclusive southbound right-turn lane.						
		PM	70.8	E	49.3	D							
34	Boston Ave \& 28th St	AM	36.9	D	22.3	C	Add southbound through lane and remove exclusive northbound right-turn lane.						
		PM	45.1	D	36.1	D							
36	Harbor Dr \& 28th St (c)	AM	43.3	D	46.2	D	Add second eastbound and southbound left-turn lanes.						
		PM	92.2	F	76.4	E							
37	Boston Ave \& I-5 SB On-ramp-29th St	AM	21.0	C	20.0	C	Install Traffic Signal. (This improvement requires Caltrans approval)						
		PM	523.6	F	31.9	C							
39	32nd St \& Wabash St	AM	112.7	F	103.4	F	Construct a direct connector from Harbor Dr. to Wabash St. (under study by Caltrans)						
		PM	85.1	F	75.4	E							
40	Harbor Dr \& 32nd St (c)	AM	146.8	F	127.7	F							
		PM	92.3	F	90.2	F							
42	I-5 SB off-ramp \& 28th St	AM	The intersection was not analyzed under this scenario		14.7	B	Install Traffic Signal. (This improvement requires Caltransapproval)						
		PM			11.7	B							
Notes: Bold values indicate intersections operating at LOS E or F . (a) Delay refers to the average control delay for the entire intersection, measured in seconds per vehicle. At a two-way stop-controlled intersection, delay refers to the worst movement. (b) LOS calculations are based on the methodology outlined in the 2000 Highway Capacity Manual and performed using Synchro 6.0 D or better. See appendix L for synchro results.													

K:SND TPTO:095707000 Excell/707000iNol . xsmlalle mitl

