EXHIBIT B

PILOT TEST UNIT SPECIFICATIONS
Technical Addendum to Proposal

USFilter/Kruger Products is pleased to provide an equipment list and technical specifications for the Biostyr® pilot test unit to be used at the referenced site.

BIOSTYR® Pilot Unit

Equipment

The Biostyr® pilot unit contains the following equipment:
- One (1) 36” OD tank
- Media (4.5 mm polystyrene beads)
- One (1) pH meter and transmitter
- One (1) dissolved oxygen meter and transmitter
- Two (2) flow meters and transmitters
- One (1) temperature sensor and transmitter
- One (1) 1700 gallon fiberglass backwash tank
- One (1) 0.75 HP/1725 RPM motor powering an agitator for backwash tank mixing
- One (1) 8.6 SCFM @ 100 PSIG air compressor with 60-gallon horizontal receiver
- One (1) compressed air dryer
- One (1) process air flow controller
- All necessary air distribution piping both for air grid and valves
- Two (2) air actuated butterfly valves with actuator and solenoid
- Two (2) manual butterfly valves for manual flow adjustments
- Two (2) submersible non-clog centrifugal pumps
- Two (2) check valves ensuring forward flow
- One (1) SCADA system to control and monitor process

Technical Specifications

Dimensions

- Biostyr® tower’s assembled height is 28’6” in height by 8’ wide by 8’ in Length.
- Biostyr® tower’s shipping height is 18’6”.
- Biostyr® tower weighs approximately 10,000 LBS without water and 13,245 LBS loaded with water.
- Control Building is 8’2” in height by 7’7” wide by 12’3” in length
- Backwash drain tank is 6’6” OD fiberglass tank and weighs approximately 240 LBS without water and 15,000 LBS with water
Capacity

Water:
Nominal Flow: 16 GPM
Minimum Flow: 7 GPM

Air:
Forward flow: 2 CFM @ < 10 psi
Backflush: 5 CFM @ < 10 psi

Hydraulic Connections:
Influent:
Customer supplies feed tank. Pre-wired, pre-piped pump is placed in feed tank. US Filter provides approximately 10’ of flex hose for immersion in feed tank. Customer provides a standard ¾” hose bib and sufficient garden hose to reach Biostyr® tower.

Effluent:
One (1) 3”, 150 LB flange connection for backwash drain tank overflow
One (1) 3” NPT valve to drain 1700 gallon backwash drain tank
One (1) 4”, 150 LB flange connection for water back flush discharge
One (1) ¾” nipple connection for compressed air dryer discharge

Electrical
Customer provides 480 volt, 100 Amp service.

Foundation
Customer provides level paved surface to support the Biostyr® tower, the backwash drain tank, and field office.

Protocol, Data and Visitation
Pilot study protocol must be agreed upon by both the client/engineer and US Filter prior to the start of treatment.
US Filter reserves the right to all data collected (including Biostyr® running conditions and laboratory samples) by the client/engineer or US Filter. All data shall be shared between the client/engineer and US Filter at the time the data is collected or available. US Filter reserves the right to use any collected data.
US Filter reserves the right to bring visitors to the pilot unit throughout the course of the study.
Description:
The Biofor™ Pilot Plant accurately simulates the Biofor™ process, a fixed-film aerobic biological treatment system. It operates on the principle of an upflow co-current flow of process and air. The media, Biolite, is an expanded clay material with a high specific area to provide a surface for the biomass to attach to and filter suspended solids.

Weight:
- 10,000 lbs. (shipping)
- 14,000 lbs. (operating)

Overall Plan Area:
- 7’0” x 10’-0” (skid)
- 8’0” diameter x 5’8” (clearwell)

Overall Height:
- 22’-0”

Electrical Requirements:
- 480V, 3 Phase, 25 amps
- Raw Water Pump: 3.0 hp, 60 Hz
- Backwash Pump: 1.5 hp, 60 Hz
- Scour Air Compressor: 2 hp, 60 Hz
- Process Air Compressor: 1 hp, 60 Hz

Connections:
- Influent: 2” half coupling
- Effluent: 4” male NPT
- Service Water: 0.75” female connection
ONDEO Technical Data Sheet
Degremont, Inc.

Biofor™ Process
(2-Foot Column) Single Stage Unit

Process Data:
- Column Area: 3.1 ft²

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Process</th>
<th>Carboneous Pollution Removal</th>
<th>Nitrification</th>
<th>Denitrification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw Water m/h (USGPM/ft²)</td>
<td>Minimum 4 (1.64)</td>
<td>4 (1.64)</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum 20 (8.20)</td>
<td>20 (8.20)</td>
<td>30 (12.26)</td>
<td></td>
</tr>
<tr>
<td>Process Air m/h</td>
<td>Minimum 4</td>
<td>4</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum 15-20</td>
<td>35</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Loadings kg/m³/d</td>
<td>COD 15</td>
<td>8</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suspended Solids 5</td>
<td>3</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total BOD₅ 6</td>
<td>3</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N-NH₄ 6</td>
<td>1.6</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NO₃-N 4</td>
<td>4</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Filter Run hours</td>
<td>Maximum 48</td>
<td>48</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Head Loss m WC (in WC)</td>
<td>Maximum 0.4 (16)</td>
<td>0.4 (16)</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>
Description:
The Biofor™ “DN” Pilot Plant accurately simulates the Biofor™ “denitrification” process, a fixed-film anoxic biological treatment system. It operates on the principle of an upflow flow. The media, Biolite, is an expanded clay material with a high specific area to provide a surface for the biomass to attach to and filter suspended solids.

Weight:
- 10,000 lbs. (shipping)
- 12,000 lbs. (operating)

Overall Plan Area:
- 7’0” x 10’0” (skid)
- 8’0” diameter x 5’8” (clearwell)

Overall Height:
- 22’0”

Electrical Requirements:
- 480V, 3 Phase, 25 amps
- Raw Water Pump: 3.0 hp, 60 Hz
- Backwash Pump: 1.5 hp, 60 Hz

Connections:
- Influent: 2” half coupling
- Effluent: 4” male NPT
- Service water: 0.75” female connection
Process Data:
- Column Area: 0.78 ft²

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Process</th>
<th>Carboneous Pollution Removal</th>
<th>Nitrification</th>
<th>Denitirification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw Water m/h (USGPM/ft²)</td>
<td>Minimum</td>
<td>4 (1.64)</td>
<td>4 (1.64)</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Maximum</td>
<td>20 (8.20)</td>
<td>20 (8.20)</td>
<td>30 (12.26)</td>
</tr>
<tr>
<td>Process Air SCFM</td>
<td>Minimum</td>
<td>4</td>
<td>4</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Maximum</td>
<td>15-20</td>
<td>35</td>
<td>--</td>
</tr>
<tr>
<td>Loading kg/m³/d</td>
<td>(Maximum)</td>
<td>15</td>
<td>8</td>
<td>--</td>
</tr>
<tr>
<td>COD</td>
<td></td>
<td>5</td>
<td>3</td>
<td>--</td>
</tr>
<tr>
<td>Suspended Solids</td>
<td></td>
<td>6</td>
<td>3</td>
<td>--</td>
</tr>
<tr>
<td>Total BOD₅</td>
<td></td>
<td>--</td>
<td>1.6</td>
<td>--</td>
</tr>
<tr>
<td>N-NH₄</td>
<td></td>
<td>--</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td>NO₃-N</td>
<td></td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Filter Run hours</td>
<td>Maximum</td>
<td>48</td>
<td>48</td>
<td>24</td>
</tr>
<tr>
<td>Head Loss (per meter of media) height m WC (in WC)</td>
<td>(Maximum)</td>
<td>0.4 (16)</td>
<td>0.4 (16)</td>
<td>--</td>
</tr>
</tbody>
</table>