

February 29, 2016

Mr. David W. Gibson, Executive Officer California Regional Water Quality Control Board 2375 Northside Drive, Suite 100 San Diego, CA 92108

Attention: Pretreatment Coordinator

Dear Mr. Gibson:

Subject: Board Order No. R9-2013-0006 NPDES Permit No. CA0109045 CY2015 Pretreatment Annual Report for the South Bay Water Reclamation Plant

The City of San Diego South Bay Water Reclamation Plant Pretreatment Program Annual Report for calendar year 2015, due March 1, 2016, is hereby submitted in accordance with the requirements of NPDES Permit No.CA0109045, adopted February 13, 2013. The Pretreatment Program operated by the City of San Diego administers the program for the entire Metropolitan Sewerage System tributary area, under a single budget and implementation strategy. Therefore, this report incorporates sections of the EW Blom Point Loma Pretreatment Program Annual Report relating to program budget, structure, and implementation strategy by reference. The City is committed to protecting public health and the environment through a program of environmental management, which includes source control, wastewater treatment, water reclamation, and extensive monitoring. One key element of the program is an aggressive pretreatment and pollution prevention program to minimize toxic discharges to the sewerage system. This report includes a summary of Pretreatment Program activities and accomplishments throughout jurisdictions tributary to the South Bay Water Reclamation Plant.

Should you have any questions concerning the information provided herein, or wish to meet with City staff to discuss the report in detail, please contact Barbara Sharatz, of my staff, at (858) 654-4106.

Sincerely,

Peter S. Vroom, Ph.D. Public Utilities Deputy Director

BLS/rad

Amelia Whitson, Pretreatment Coordinator, EPA Region IX, via email only
 Regulatory Unit, Water Quality Div., State Water Resources Control Board, via email only
 Halla Razak, Director of Public Utilities, City of San Diego
 Barbara Sharatz, Pretreatment Program Manager, City of San Diego
 File

2392 Kincaid Road Mail Station 45A San Diego, CA 92101 PVroom@sandiego.gov

T (619) 758-2301 sandiego.gov

POTW PRETREATMENT ANNUAL REPORT

COVER SHEET

NPDES Permit Holder or Sewer Authority Name:

Report Date:

City of San Diego

<u>March 1, 2016</u>

Period Covered by This Report:

Period Covered by Previous Report:

January 1, 2014 to December 31, 2014

January 1, 2015 to December 31, 2015

Name of Wastewater Treatment Plant(s) South Bay Water Reclamation Plant NPDES Permit Number CA 0109045

Person to contact concerning information contained in this report:

Name: Barbara Sharatz Title: Industrial Wastewater Control Program Manager Mailing Address: 9192 Topaz Way, MS 901D San Diego, CA 92123-1119 Telephone No.: (858) 654-4106

I have personally examined and am familiar with the information submitted in this document and attachments. Based upon my inquiry of those individuals immediately responsible for obtaining the information reported herein, I believe that the submitted information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment.

2-25-2016

Date

Peter S. Vroom, Ph.D. Deputy Director, Environmental Monitoring and Technical Services

PRETREATMENT ANNUAL REPORT

PCS Data Entry Form

PPS1

POTW NAME:	Flows from this pla Point Loma Plant,	<u>City of San Diego South Bay Water Reclamation Plant and Ocean Outfall</u> Flows from this plant can be diverted to the City of San Diego EW Blom Point Loma Plant, NPDES Permit No. CA0107409; therefore, this information is also included in the PCS for that POTW.							
NPDES Permit #:	<u>CA0109045</u>								
Period Covered By	This Report:	<u>01/01/15</u> (PSSD) Start Date	<u>12/31/15</u> (PSED) End Date						
Number of Significat Pretreatment Compli		n SNC with	<u>0</u> (SSNC)						
Number of Notices o Issued Against Signi			<u>11</u> (FENF)						
Number of Civil & C Significant Industrial		minal Judicial Actions against 0 (J Jsers:							
Number of Significat Violations Published	ant Industrial Users with Significant (SVPU d:								
Number of Industrial Been Collected:	Users from Which	Penalties Have	<u>0</u> (IUPN)						

SOUTH BAY WATER RECLAMATION PLANT & OCEAN OUTFALL ANNUAL PRETREATMENT REPORT

NPDES PERMIT No. CA 0109045 SDRWQCB ORDER No. R9-2013-0006

JANUARY 1 – DECEMBER 31, 2015

Environmental Monitoring and Technical Services Public Utilities Department 2392 Kincaid Road Mail Station 45A San Diego, CA 92101 Tel (619) 758-2310 • Fax (619) 758-2309

CY2015 ANNUAL PRETREATMENT REPORT FOR SOUTH BAY WATER RECLAMATION PLANT

I. Description of the South Bay Water Reclamation Plant and Its Service Area

The South Bay Water Reclamation Plant (SBWRP) is located on a 22.3 acre site near Dairy Mart Road and Monument Road in the eastern portion of the Tijuana River Valley. The site is approximately 300 feet north of the international boundary between Mexico and the United States and approximately 2000 feet west of the International Wastewater treatment Plant. The SBWRP treats raw wastewater collected from the southern portion of the City of San Diego, the City of Imperial Beach, the City of Chula Vista, and the unincorporated portions of south and east San Diego County, a total of approximately 44 square miles, and serves a population of nearly 107,000 people.

The plant is designed to treat up to 15 MGD of raw wastewater to secondary and/or tertiary reclaimed water standards. All SBWRP tertiary treated wastewater in excess of reclaimed water demands is discharged to the Pacific Ocean through the South Bay Ocean Outfall (SBOO). The SBOO was constructed for shared use by the International Wastewater Treatment Plant (IWTP), operated by the International Boundary and Water Commission (IBWC), and the City of San Diego's SBWRP. The SBOO extends westward approximately 23,600 feet from the mouth of the Tijuana River and terminates in a "wye" with two 1980 foot long diffusers. The IWTP currently discharges a maximum of 25 MGD of secondary treated wastewater from the City of Tijuana. This discharge is regulated by Regional Board Order No. R9-2014-0009 (NPDES Permit No. CA0108928). The total average design capacity of the outfall is 174 MGD with a peak hydraulic capacity of 233 MGD. The effluent from the SBWRP is combined with the effluent from the IWTP within the SBOO prior to discharge to the Pacific Ocean.

The SBWRP's primary and secondary processes consist of influent screening using mechanically cleaned bar screens, grit removal using aerated grit chambers, primary sedimentation clarifiers with chain and flight sludge collectors and tilting trough scum collectors, primary effluent flow equalization storage tanks, air activated sludge biological treatment with anoxic selector, and secondary clarifiers with chain and flight sludge collectors. The tertiary treatment process consists of filter feed pumping, coagulation with chemical addition, and direct filtration with conventional deep bed mono-media filters, backwash facilities, and disinfection using ultraviolet light. Sludge processing is handled at the Point Loma Wastewater Treatment Plant (PLWWTP) and the Metropolitan Biosolids Center. Solids from the SBWRP are pumped to the PLWWTP through the South Metro Interceptor.

The City is in the process of moving two electrodialysis reversal (EDR) units from the North City Water Reclamation Plant to the SBWRP in order to provide for TDS and Chloride removal. The two units were originally expected to be operational by August 2015, however there were unanticipated delays; the relocation of the two EDR units, including installation and operation, is now expected to be completed by April 2016. A continuous pH monitor is also expected to be installed and operational on the South Bay influent sewer line by April 2016.

The SBWRP began operations in CY2002, accepting an average of 3.5 MGD influent through the Grove Avenue Pump Station (GAPS). In October 2003 the Otay River Pump Station (ORPS) came on-line. The ORPS is divided into two pumping streams, with one sending high TDS flows from the Imperial Beach Sewer directly to the South Metro Interceptor influent to the PLWTWTP, and the other sending flows from the Otay Trunk Sewer and Salt Creek Trunk Sewer to the GAPS. Since start-up, the ORPS facility has been directing nearly 5 MGD to the GAPS, which combines with the more than 3 MGD GAPS flow for a total of nearly 8 MGD influent to the SBWRP. In that some wastewater from areas tributary to the GAP and ORPS is able to be diverted to the PLWWTP via the South Metro Interceptor, facilities tributary to the GAP and ORPS are included in Annual Pretreatment Reports for both plants.

II. Program Structure

A. Pollution Prevention Plan Requirements

No IUs have been required to prepare or implement a pollution prevention plan as the result of non-compliance.

B. Programs San Diego has implemented to reduce pollutants from industrial users not classified as SIUs

The Metropolitan Wastewater Department of San Diego controls pollutants discharged by non-SIUs and by non-industrial sources through a combination of Class 2 and 3 permits, Best Management Practice Certification programs, and Hazardous Waste Collection events and facilities throughout the Metropolitan Sewerage System service area in cooperation with contributing agencies. For details, see Chapters Two and Three of the CY2015 Annual Report for the Point Loma POTW, NPDES Permit No. CA 0107409.

C. Pretreatment Program Changes

During CY2015, the Environmental Monitoring and Technical Services Division was restructured. See Chapter Two, Section 2.4 of the CY2015 Annual Report for the Point Loma POTW, NPDES Permit No. CA 0107409 for details.

There were no other significant changes in operating the pretreatment program in the areas of administrative structure, local limits, monitoring program, legal authority, enforcement policy, or funding or staffing levels.

D. Annual Pretreatment Program Budget

The pretreatment program budget is administered as a single budget for the three treatment plants in the Metropolitan Sewerage System service area. See Chapter 2, Section 2.3 of the CY2015 Annual Report for the Point Loma POTW, NPDES Permit No. CA 0107409, for details.

III. Permit Inventory as of December 31, 2015

A. List of Deletions, Additions, and Name Changes of Significant Industrial Users during CY2015

SIU FACI	LITIES THAT BECAME SIUS IN 201	15		Note: U'	Γ; = Extracted Groundwater Permit					
Facility	Name	Class	Permit	Date	Comments					
13-0048	Hyspan Precision Products	1	03-A	18-May-15	Metal finishing, conducting passivation and associated processes					
SIU FACILITIES THAT REPORTED A NAME CHANGE IN 2015										
IU #	ТО	Class	Permit	Date	FROM					
12-0285	US General Services Administration - SYLPOE	3	01-B	06-Mar-15	General Services Administration - SYLPOE					
FORMER	SIU FACILITIES THAT BECAME	NON-S	SIUs IN	2015						
Facility	Name	Class	Permit	Date	Comments					
13-0048	Hyspan Precision Products	1	03-A	14-Jun-15	Industry discontinued metal finishing core operation (passivation)					
GWL DA GI										
	LITIES INACTIVATED IN 2015	-								
Facility	Name	Class	Permit	Date	Comments					
NONE										

A.1 Permit Inventory by Class and Flow

Area	Class	IW	Class	IW	Class	IW	BMP	Total	Total	Class	Class
	1	(GPD)	2	(GPD)	3	(GPD)		Permits	GPD	4C	4
12	3	242	5	10,590	9	344,796	18	35	355,663	4	78
13	1	913	8	8,325	2	6,711	13	24	15,973	0	49
36	1	43,032	0	0	1	2,187	0	2	45,221	0	2
Total	5	44,187	13	18,915	12	353,694	31	61	416,857	4	129

B. Baseline Monitoring Reports Requested or Received in CY2015

Facility Name	Facility #	BMR Requested	BMR Received
NONE			

B.1 Facilities Operating under a Baseline Monitoring Report CY2015

Facility Name	Facility #	BMR Received
AP Precision Metals	12-0144	17-Apr-2001
Doncasters GCE Industries	13-0115	16-May-2002
Emerald Textiles LLC	12-0065	21-Apr-1999
Harcon Precision Metals Inc	12-0244	17-Jun-2010
Heinz Frozen Foods	12-0154	30-Aug-2002
Otay Mesa Energy Center LLC	36-0001	20-Jun-2007
Spec-Built Systems Inc	12-0202	28-Jun-2005

C. SIU Facilities Federal Category, Process, and Pretreatment Technology by Connection Treatment Plant 6

Report run on:	Wednesday, January 6, 2016 6:44 pn	ı							Page 1
Facility Permit	Name IW Di	scharged	Conn	Principle Process	Federal/	CFR		Order	Pre Treat
		(gpd)			Local		Section		Code
12-0038 05-A	RJ Donovan Correctional Facility	55,595	100	Prison Sewer Main	Local	133		1 2 3	GREASE GRIND SCREEN
12-0065 04-A	Emerald Textiles LLC	66,242	110	Commercial Laundry	Local	133		1 2 3 4	LINT SETTLE HAUL RECYL
12-0144 04-A	AP Precision Metals	75	110	Metal Coating (Iron Phosphating)	Federal	433	.17	1	SETTLE
12-0154 04-A	Heinz Frozen Foods	63,749		Food Manufacturing	Local	137		1 2 3 4 5	EQUAL SCREEN DAF+C GREASE HAUL
12-0202 03-A	Spec-Built Systems Inc	30	110	Iron Phosphating	Federal	433	.17	1 2 3	SETTLE RECYL PH
12-0220 04-A	Southwest Products LLC dba Circle Foods	99,222	110	Food manufacturing	Local	137		1 2 3 4	EQUAL SCREEN DAF+C SD-FP
12-0244 02-A	Harcon Precision Metals Inc	137	110	Chemical conversion coating & water Jet	Federal	433	.17	1 2 3 4 5	PH MIXER SETTLE HAUL EVAP
12-0275 02-A	Jensen Meat Company Inc	18,436	110	Meat processing, cleaning/sanitizing	Local	137		1 2 3 4 5	SCREEN ELBOW SETTLE HAUL DIVRTA
12-0283 02-A	Spectex Inc dba Specialty Textile Services	29,000	110	Commerical Laundry	Local	133		3 1 2 3 4	SETTLE LINT UF HAUL
12-0285 02-A	US General Services Administration - SYLPOE	556	110	Waste activated sludge	Local			1 2 3	SCREEN EQUAL BIO-AS
			120	Untreated wastewater	Local			1	SCREEN
			130	Treated wastewater	Local			1 2 3	SCREEN EQUAL BIO-AS

C. (cont.) SIU Facilities Federal Category, Process, and Pretreatment Technology by Connection Treatment Plant 6

Report run on: Wednesday, January 6, 2016 6:44 pm

Page 2

Facility Permi	t Name	IW Discharged (gpd)	Conn	Principle Process	Federal/ Local	CFR Part	CFR Section	Order	Pre Treat Code
12-0285 02-A	US General Services Administration - SYLPOE	556	130					4 5 6 7	UF UV HAUL OZONE
13-0115 05-A	Doncasters GCE Industries	913	200	Bldg 2 Lateral, 1887 Nirvana Av	Local			1 2	ZERO HAUL
			300	Bldg 3 Lateral, 757 Main St	Local	130 433	.17	1 2	ERU+1 HAUL
			330	Dye Pen / Vibra Clean	Federal	433	.17	1 2 3	SETTLE IX FILT-O
			410	Dye Pen / Water Jet Cutting	Federal	433	.17	1 2 3 4 5	SETTLE IX FILT-O O/W HAUL
36-0001 02-A	Otay Mesa Energy Center L	LLC 43,032	110	WetSac blowdown + OWS	Federal	423	.17	1 2	SETTLE PH
			120 140	PCB zero discharge Turbine washing	Federal Federal	423 423	.17 .17	1 1	ZERO SETTLE
SIUs: 12									

D. SIU Facilities: Regulated Parameters by Connection Treatment Plant

Report run on: Wednesday, January 6, 2016	6:42 pm										Page 1
Facility Pmt Name	Address	Conn 7	Total IW	Parmcode	City	Self	Cat	Period	l Lowe	r Uppe	er Units
			(gpd)		freq	freq			Limit	Limi	t
12-0038 05-A RJ Donovan Correctional Facil	ity480 Alta Rd, San Diego	100	55,595	OIL/GREASE PH	Q M	Q Q	L L	DM DM	5	500 12.5	mg/L pH
12-0065 04-A Emerald Textiles LLC	1725 Dornoch Ct, San	110	66,217	OIL/GREASE	Q	Q	L	DM		500	mg/L
	Diego			PH PH HIGHEST	Q Q	Q	L L	DM DM	5	12.5 12.5	рН pH
				SULFIDE DISSOLVD	Ν		L	DM		1	mg/L
12-0144 04-A AP Precision Metals	1215 30th St, San Diego	110	75	CADMIUM	Q	Q	F	DM MO		.11 .07	mg/L mg/L
				CHROMIUM	Q	Q	F	DM		2.77	mg/L
				COPPER	Q	Q	F	MO DM		1.71 3.38	mg/L mg/L
							Б	MO		2.07	mg/L
				CYANIDE(T)	Q	Q	F	DM MO		1.2 .65	mg/L mg/L
				LEAD	Q	Q	F	DM		.69	mg/L
				NICKEL	Q	Q	F	MO DM		.43 3.98	mg/L mg/L
				MCKEL	Q	Q	1	MO		2.38	mg/L mg/L
				PH	Q	Q	L	DM	5	12.5	pH
				SILVER	Q	Q	F	DM MO		.43 .24	mg/L mg/L
				TTO(413+433)-P	А	Q	F	DM		2130	ug/L
				ZINC	Q	Q	F	DM		2.61	mg/L
12-0154 04-A Heinz Frozen Foods	7878 Airway Rd, San	110	63,749	CHROMIUM	Q	Q	L	MO DM		1.48 5	mg/L mg/L
12-015+ 0+-A Heniz 1102en 100us	Diego	110	05,747	OIL/G SCREEN	N	X	A	DM		500	mg/L
	Diego			OIL/GREASE	Н	М	L	DM		500	mg/L
				PH	Н	М	L	DM	5	12.5	рĤ
				PH HIGHEST	Ν		L	DM		12.5	рН
				SULFIDE DISSOLVD	Ν		L	DM		1	mg/L
				TEMP	Н	М	F	DM		65.5	DegC
12-0202 03-A Spec-Built Systems Inc	2150 Michael Faraday D	r, 110	30	CADMIUM	S	Q	F	DM		.11	mg/L
	San Diego			CHROMIUM	S	0	F	MO DM		.07 2.77	mg/L mg/I
				СПКОМІОМ	3	Q	Г	MO		1.71	mg/L mg/L
				COPPER	S	Q	F	DM		3.38	mg/L
				CYANIDE(T)	S	Q	F	MO DM		2.07 1.2	mg/L mg/L
					5	Y	1.	MO		.65	mg/L mg/L
				LEAD	S	Q	F	DM		.69	mg/L
				NICKEI	a	0	Б	MO		.43	mg/L
	SBWRP Annual	Pretreatmen	t Report - P	NICKEL	S	Q	F	DM		3.98	mg/L

Report run on: Wednesday, January 6, 2016 6:42 pm Page 2 Facility Pmt Name Conn Total IW Parmcode Address City Self Cat Period Lower Upper Units (gpd)freq freq Limit Limit 12-0202 03-A Spec-Built Systems Inc 2150 Michael Faraday Dr, 30 NICKEL F 110 S Q MO 2.38 mg/L Ō S L PH DM 5 12.5 pН San Diego SILVER S 0 F .43 DM mg/L MO .24 mg/L Q F TTO(413+433)-P А DM 2130 ug/L ò S F ZINC DM 2.61 mg/L MO 1.48 mg/L 8411 Siempre Viva Rd, San 110 12-0220 04-A Southwest Products LLC dba 99.222 OIL/G SCREEN Ν А DM 500 mg/L **OIL/GREASE** Η Μ L DM 500 mg/L **Circle Foods** Diego PH Η Μ L DM 5 12.5 pН PH HIGHEST Ν L DM 12.5 pН SULFIDE DISSOLVD Ν L DM 1 mg/L L TEMP Η Μ DM 65.5 DegC S 12-0244 02-A Harcon Precision Metals Inc 1790 Dornoch Ct. San 110 137 CADMIUM S F DM .11 mg/L MO .07 mg/L Diego S CHROMIUM S F DM 2.77 mg/L MO 1.71 mg/L S COPPER S F DM 3.38 mg/L MO 2.07mg/L CYANIDE(T) S S F 1.2 DM mg/L MO .65 mg/L LEAD S S F DM .69 mg/L MO .43 mg/L NICKEL S S F DM 3.98 mg/L MO 2.38 mg/L PH S S L DM 5 12.5 pН S S F SILVER DM .43 mg/L MO .24 mg/L S TTO(413+433)-P А F DM 2130 ug/L S S F ZINC DM 2.61 mg/L MO 1.48 mg/L 18,436 OIL/GREASE 12-0275 02-A Jensen Meat Company Inc 2550 Britannia Bl Suite 110 Q Q L DM 500 mg/L L PH Q 0 DM 5 12.5 pН 101, San Diego PH HIGHEST Q L DM 12.5 pН DM SULFIDE DISSOLVD Ν L 1 mg/L 12-0283 02-A Spectex Inc dba Specialty Textile1333 30th St Suite A, San 29.000 OIL/GREASE 110 Q 0 L DM 500 mg/L Q L PH Ο DM 5 12.5 pН Services Diego PH HIGHEST Q L DM 12.5 pН L SULFIDE DISSOLVD Ν DM 1 mg/L 12-0285 02-A US General Services Q L 720 E San Ysidro Bl, San 110 106 SULFIDE DISSOLVD Q DM 1 mg/L L TSS Q Μ DM 10000 mg/L

757 Main St, Chula Vista 330 572 CADMIUM SBWRP Annual Pretreatment Report - Page 7 of 47

0

Q

F

DM

.11

mg/L

Administration - SYLPOE

13-0115 05-A Doncasters GCE Industries

Diego

D. (cont.) SIU Facilities: Regulated Parameters by Connection Treatment Plant

Report run on: Wednesday, January 6, 2016 6	-										Page 3
Facility Pmt Name	Address	Conn		Parmcode	City	Self	Cat	Period	Lower	· Uppe	er Units
			(gpd)		freq	freq			Limit	Limit	ţ
13-0115 05-A Doncasters GCE Industries	757 Main St, Chula Vista	330) 572	CADMIUM	Q	Q	F	MO		.07	mg/L
				CHROMIUM	Q	Q	F	DM		2.77	mg/L
				COPPER	Q	Q	F	MO DM		1.71 3.38	mg/L mg/L
				COTTER	×	×	1	MO		2.07	mg/L
				CYANIDE(T)	Q	Q	F	DM		1.2	mg/L
				LEAD	0	0	Б	MO		.65	mg/L
				LEAD	Q	Q	F	DM MO		.69 .43	mg/L mg/L
				NICKEL	Q	Q	F	DM		3.98	mg/L
								MO		2.38	mg/L
				PH	Q	Q	L	DM	5	12.5	pН
				PH HIGHEST SILVER	S Q	Q	L F	DM DM		12.5 .43	pH mg/L
				SILVLK	Q	Q	1	MO		.24	mg/L
				TTO(413+433)-P	А	Q	F	DM		2130	ug/L
				ZINC	Q	Q	F	DM		2.61	mg/L
		410) 340	CADMIUM	Q	Q	F	MO DM		1.48 .11	mg/L mg/L
		410) 340	CADIVITOIVI	Q	Q	Г	MO		.07	mg/L mg/L
				CHROMIUM	Q	Q	F	DM		2.77	mg/L
				~~~~~			-	MO		1.71	mg/L
				COPPER	Q	Q	F	DM MO		3.38 2.07	mg/L mg/I
				CYANIDE(T)	Q	Q	F	DM		1.2	mg/L mg/L
				0111(122(1)	×	×	-	MO		.65	mg/L
				LEAD	Q	Q	F	DM		.69	mg/L
				NICKEI	0	0	Б	MO		.43	mg/L
				NICKEL	Q	Q	F	DM MO		3.98 2.38	mg/L mg/L
				PH	Q	Q	L	DM	5	12.5	pH
				PH HIGHEST	S		L	DM		12.5	рН
				SILVER	Q	Q	F	DM		.43	mg/L
				TTO(413+433)-P	А	Q	F	MO DM		.24 2130	mg/L ug/L
				ZINC	Q	Q	F	DM		2.61	mg/L
					×	×	-	MO		1.48	mg/L
36-0001 02-A Otay Mesa Energy Center LLC	606 De La Fuente Ct, Sar	n 110	) 43,000	CHROMIUM	Q	Q	F	DM		.2	mg/L
	Diego			OIL/GREASE PH	Q	Q	L	DM DM	5	500	mg/L
				PH PH HIGHEST	Q N	Q	L L	DM DM	5	12.5 12.5	рН pH
				TDS	S	Q	L	DM		2000	mg/L
	SBWRP Annual I	Pretreatm	ent Report - P			~					÷

## D. (cont.) SIU Facilities: Regulated Parameters by Connection Treatment Plant

SBWRP Annual Pretreatment Report - Page 8 of 47

## D. (cont.) SIU Facilities: Regulated Parameters by Connection Treatment Plant

Report run on: Wednesday, January 6, 2016 6	:42 pm										Page 4
Facility Pmt Name	Address	Conn 2	Total IW	Parmcode	City	Self	Cat	Period	Lower	Upper	r Units
			(gpd)		freq	freq			Limit	Limit	
36-0001 02-A Otay Mesa Energy Center LLC	606 De La Fuente Ct, San	110	43,000	ZINC	Q	Q	F	DM		1	mg/L
	Diego	140	22	COPPER	S	S	F	DM		1	mg/L

## E. Active Non-SIU Permits, Treatment Plant 6

Page 1

Report run on: Wednesday, January 6, 2016 6:06 pm

Class 2 Facility Permit Name Address 12-0140 01-A Kaiser Foundation Health Plan 4652 Palm Av, San Diego 12-0143 03-A ADESA California LLC dba ADESA San Diego 2175 Cactus Rd, San Diego Larkspur Energy 9355 Otay Mesa Rd, San Diego 12-0145 04-A 8490 Avenida De La Fuente, San Diego Truck Net LLC 12-0177 02-A 12-0254 01-A Northwest Circuits Corp 8660 Avenida Costa Blanca, San Diego 13-0048 04-A Hyspan Precision Products 1685 Brandywine Av, Chula Vista SOS Metals San Diego 635 Anita St, Chula Vista 13-0159 04-A Republic Services dba Allied Waste Services 13-0278 04-A 881 Energy Wy, Chula Vista Fuller Ford 560 Auto Park Dr, Chula Vista 13-0316 02-A 13-0327 03-A Dresser-Rand 1675 Brandywine Av Suite E&F, Chula Vista 13-0399 02-A Veolia Transportation 3650A Main St, Chula Vista 13-0533 01-A Fleetwash Inc 649 Anita St Suite 1A. Chula Vista 13-0534 01-A Super Welding of Southern California 609 Anita St, Chula Vista 13 Class 3 Facility Permit Name Address 12-0024 03-A **US Border Patrol** 3752 Beyer Bl, San Diego 12-0028 01-A Palm Ave LLC 1835 Palm Av, San Diego Chula Vista Energy Center LLC 3497 Main St, Chula Vista 13-0298 03-A 13-0439 01-A Toyota Chula Vista 650 Main St, Chula Vista **Kiewit Power Constructors** 610 Alta Rd, San Diego 36-0010 01-A 5 Grand total: 18

### F. Active Groundwater Permits, Treatment Plant 6

Report run on: Wednesday, January 6, 2016 6:09 pm

0

Grand total:

## G. Dry Cleaners subject to BMPs, Treatment Plant 6

Report run on: Wednesday, January 6, 2016 6:10 pm

Class'' 4I	D		
Facility"	Permit"	Name"	Address"
12-0106	02-A	Saturn Cleaners	655 Saturn Bl Suite E, San Diego
12-0108	03-A	Rainbow Cleaners	2004 Dairy Mart Rd Suite 121, San Diego
		2	
Grand tota	ıl:	2	

## H. Film Processors subject to BMPs, Treatment Plant 6

Report run on: Wednesday, January 6, 2016 6:13 pm

Page 1

FacilityPermitNameAddress12-008100-ASan Ysidro Health Center4004 Beyer BI, San Diego12-010001-ACounty; George Bailey Detention446 Alta Rd, San Diego12-011201-ANAC1330 30th St Suite E, San Diego12-011301-ASo San Diego Veterinary Hosp2910 Coronado Av, San Diego12-011402-AEZ Smiles Dental Care1850 Coronado Av, San Diego12-011501-ALewis J Dorria DDS2930 Coronado Av, San Diego12-011701-AMontgomery High School3250 Palm Av, San Diego12-011901-AJeffrey W Brown DDS1761 Palm Av, San Diego12-012101-AJerome A Bannister DDS1770 Picador BI Suite C, San Diego12-012202-ACarlos Garcia DDS1270 Picador BI Suite C, San Diego12-012302-ASouthland Plaza Dental655 Saturn BI Suite G, San Diego12-012502-ASan Ysidro Dental Care2004 Dairy Mart Rd, San Diego12-012201-AJose L Lopez DDS Inc3490 Palm Av Unit 1, San Diego12-022201-AJose L Lopez DDS Inc326 Marsat St Suite D, Chula Vista13-023501-AHhoto Max1367 3rd Av, Chula Vista13-023501-ALangford Chiropractor330 Gxford St, Chula Vista13-023601-ALangford Chiropractor330 Gxford St, Chula Vista13-025601-AHancho Vistal Photo Lab #7811130 Broadway, Chula Vista13-025601-AHangford Chiropractor330 Oxford St, Chula Vist	Class 2	2F		
12-010001-ACounty; George Bailey Detention446 Alta Rd, San Diego12-011201-ANAC1330 30th St Suite E, San Diego12-011301-ASo San Diego Veterinary Hosp2910 Coronado Av, San Diego12-011402-AEZ Smiles Dental Care1850 Coronado Av, San Diego12-011501-ALewis J Dorria DDS2930 Coronado Av, San Diego12-011701-AMontgomery High School3250 Palm Av, San Diego12-011901-AJeffrey W Brown DDS1761 Palm Av, San Diego12-012101-AJerome A Bannister DDS1270 Picador Bl Suite L-M, San Diego12-012302-ASouthland Plaza Dental655 Saturn Bl Suite C, San Diego12-012401-A1-5 Palm Ave Medical Clinic655 Saturn Bl, San Diego12-012502-ASan theode At Therapy Center Inc3420 Palm Av Unit I, San Diego12-02201-AJose L Lopez DDS Inc3490 Palm Av Unit I, San Diego12-023101-AJuvenile Detention Facility446 Alta Rd, San Diego13-023501-APhoto Max1367 3rd Av, Chula Vista13-025501-AHilltop Dentistry11 Naples St, Chula Vista13-025601-ALangford Chiropractor4360 Main St Suite 20, Chula Vista13-025601-ARobert N Woodall DDS Inc330 Oxford St, Chula Vista13-025601-AHangford Chiropractor4360 Main St, Chula Vista13-025701-APalomar Dental Group648 Palomar St, Chula Vista13-037901-AAmazon Animal Hospi	Facility	Permit	Name	Address
12-011201-ANAC1330 30th St Suite E, San Diego12-011301-ASo San Diego Veterinary Hosp2910 Coronado Av, San Diego12-011402-AEZ Smiles Dental Care1850 Coronado Av, San Diego12-011701-ALewis J Dorria DDS2930 Coronado Av, San Diego12-011901-AJeffrey W Brown DDS1761 Palm Av, San Diego12-012101-AJeffrey W Brown DDS1761 Palm Av, San Diego12-012202-ACarlos Garcia DDS1270 Picador Bl Suite L-M, San Diego12-012302-ASouthland Plaza Dental655 Saturn Bl Suite C, San Diego12-012401-AI-5 Palm Ave Medical Clinic655 Saturn Bl Suite G, San Diego12-012502-ASan Ysidro Dental Care2004 Dairy Mart Rd, San Diego12-012601-ARancho Vista Medical & Therapy Center Inc3420 Palm Av Unit 1, San Diego12-023101-AJose L Lopez DDS Inc34490 Palm Av Unit 1, San Diego13-024901-AJose L Porez DDS Inc3440 Palm Av Unit 1, San Diego13-025501-AHoto Max1367 3rd Av, Chula Vista13-025501-AHillop Dentistry11 Naples St, Chula Vista13-025601-ALangford Chiropractor4360 Main St Suite 209, Chula Vista13-025601-ARobert N Woodall DDS Inc330 Oxford St, Chula Vista13-037901-AAmazon Animal Hospital1172 3rd Av Suite D8, Chula Vista13-037901-AAmazon Animal Hospital1172 3rd Av Suite D8, Chula Vista13-037901-A </td <td>12-0081</td> <td>00-A</td> <td>San Ysidro Health Center</td> <td>4004 Beyer Bl, San Diego</td>	12-0081	00-A	San Ysidro Health Center	4004 Beyer Bl, San Diego
12-011301-ASo San Diego Veterinary Hosp2910 Coronado Av, San Diego12-011402-AEZ Smiles Dental Care1850 Coronado Av, San Diego12-011501-ALewis J Dorria DDS2930 Coronado Av, San Diego12-011701-AMontgomery High School3250 Palm Av, San Diego12-011901-AJeffrey W Brown DDS1761 Palm Av, San Diego12-012101-AJerome A Bannister DDS1761 Palm Av, San Diego12-012202-ACarlos Garcia DDS1270 Picador Bl Suite L-M, San Diego12-012302-ASouthland Plaza Dental655 Saturn Bl Suite G, San Diego12-012401-AI-5 Palm Ave Medical Clinic655 Saturn Bl Suite G, San Diego12-012502-ASan Ysidro Dental Care2004 Dairy Mart Rd, San Diego12-012201-AJose L Lopez DDS Inc3490 Palm Av Unit 1, San Diego12-022201-AJose L Lopez DDS Inc3490 Palm Av Unit 1, San Diego12-01701-AHoto Max1367 3rd Av, Chula Vista13-023501-AHoto Max1367 3rd Av, Chula Vista13-025601-AHalford Chiropractor4360 Main St Suite 209, Chula Vista13-025701-ARobert N Woodall DDS Inc330 Oxford St, Chula Vista13-025601-APalomar Dental Group644 Palomar St, Chula Vista13-025701-AHalford Chiropractor4360 Main St Suite 209, Chula Vista13-033301-ACostco Wholesale Photo Lab #7811130 Broadway, Chula Vista13-037901-AAmazon Animal	12-0100	01-A	County; George Bailey Detention	446 Alta Rd, San Diego
12-011402-AEZ Smiles Dental Care1850 Coronado Av, San Diego12-011501-ALewis J Dorria DDS2930 Coronado Av, San Diego12-011701-AMontgomery High School3250 Palm Av, San Diego12-011901-AJeffrey W Brown DDS1761 Palm Av, San Diego12-012101-AJerome A Bannister DDS4370 Palm Av, San Diego12-012302-ACarlos Garcia DDS1270 Picador Bl Suite L-M, San Diego12-012401-AI-5 Palm Ave Medical Clinic655 Saturn Bl Suite G, San Diego12-012502-ASan Ysidro Dental Care2004 Dairy Mart Rd, San Diego12-012501-ARancho Vista Medical & Therapy Center Inc3420 Palm Av Unit 1, San Diego12-012601-AJose L Lopez DDS Inc3490 Palm Av Unit 1, San Diego12-022101-AJuvenile Detention Facility446 Alta Rd, San Diego12-023501-APhoto Max1367 3rd Av, Chula Vista13-023501-APhoto Max1367 3rd Av, Chula Vista13-025501-AHilltop Dentistry11 Naples St, Chula Vista13-025601-ARobert N Woodall DDS Inc330 Oxford St, Chula Vista13-033301-ACostco Wholesale Photo Lab # 7811130 Broadway, Chula Vista13-037901-AAmazon Animal Hospital1172 3rd Av Suite D8, Chula Vista13-037801-APalomar Dental Group664 Palomar St, Chula Vista13-037801-APalomar Dental Group664 Palomar St, Chula Vista13-037801-APalomar Dental	12-0112	01-A	NAC	1330 30th St Suite E, San Diego
12-011501-ALewis J Dorria DDS2930 Coronado Av, San Diego12-011701-AMontgomery High School3250 Palm Av, San Diego12-011901-AJeffrey W Brown DDS1761 Palm Av, San Diego12-012101-AJerome A Bannister DDS4370 Palm Av, Suite C, San Diego12-012202-ACarlos Garcia DDS1270 Picador BI Suite C, San Diego12-012302-ASouthland Plaza Dental655 Saturn BI Suite G, San Diego12-012401-AI-5 Palm Ave Medical Clinic655 Saturn BI Suite G, San Diego12-012502-ASan Ysidro Dental Care2004 Dairy Mart Rd, San Diego12-022101-ARancho Vista Medical & Therapy Center Inc3420 Palm Av Unit 1, San Diego12-023101-ARancho Vista Medical & Therapy Center Inc3490 Palm Av Unit 1, San Diego12-023201-AJose L Lopez DDS Inc3490 Palm Av Unit 1, San Diego12-023501-APhoto Max1367 3rd Av, Chula Vista13-024901-AThe Pet Clinic3326 Main St, Chula Vista13-025501-AHilltop Dentistry11 Naples St, Chula Vista13-025601-ARobert N Woodall DDS Inc330 Oxford St, Chula Vista13-033301-ACostco Wholesale Photo Lab # 7811130 Broadway, Chula Vista13-033301-APerpecta Dental Group648 Palomar St, Chula Vista13-037901-AAmazon Animal Hospital1172 3rd Av Suite D8, Chula Vista13-038801-APerpecta Dental Group664 Palomar St, Chula Vista	12-0113	01-A	So San Diego Veterinary Hosp	2910 Coronado Av, San Diego
12-011701-AMontgomery High School3250 Palm Av, San Diego12-011901-AJeffrey W Brown DDS1761 Palm Av, San Diego12-012101-AJerome A Bannister DDS4370 Palm Av Suite C, San Diego12-012202-ACarlos Garcia DDS1270 Picador Bl Suite L-M, San Diego12-012302-ASouthland Plaza Dental655 Saturn Bl Suite G, San Diego12-012401-A1-5 Palm Ave Medical Clinic655 Saturn Bl Suite G, San Diego12-012502-ASan Ysidro Dental Care2004 Dairy Mart Rd, San Diego12-012201-AJose L Lopez DDS Inc3490 Palm Av Unit 1, San Diego12-022201-AJose L Lopez DDS Inc3490 Palm Av Unit 1, San Diego12-023101-AJuvenile Detention Facility446 Alta Rd, San Diego13-011702-ABay Port Press645 Marsat St Suite D, Chula Vista13-023501-APhoto Max1367 3rd Av, Chula Vista13-024901-AThe Pet Clinic3326 Main St, Chula Vista13-025601-ALangford Chiropractor4360 Main St Suite 209, Chula Vista13-025701-ARobert N Woodall DDS Inc330 Oxford St, Chula Vista13-033301-ACostco Wholesale Photo Lab # 7811130 Broadway, Chula Vista13-037901-AAmazon Animal Hospital1172 3rd Av Suite D8, Chula Vista13-037901-APalomar Dental Group644 Palomar St, Chula Vista13-037601-APalomar Dental Group314 Palomar St, Chula Vista13-037601-A <t< td=""><td>12-0114</td><td>02-A</td><td>EZ Smiles Dental Care</td><td>1850 Coronado Av, San Diego</td></t<>	12-0114	02-A	EZ Smiles Dental Care	1850 Coronado Av, San Diego
12-011901-AJeffrey W Brown DDS1761 Palm Av, San Diego12-012101-AJerome A Bannister DDS4370 Palm Av Suite C, San Diego12-012202-ACarlos Garcia DDS1270 Picador BI Suite L-M, San Diego12-012302-ASouthland Plaza Dental655 Saturn BI Suite G, San Diego12-012401-AI-5 Palm Ave Medical Clinic655 Saturn BI, San Diego12-012502-ASan Ysidro Dental Care2004 Dairy Mart Rd, San Diego12-012601-ARancho Vista Medical & Therapy Center Inc342 W San Ysidro BI Suite F, San Diego12-022201-AJose L Lopez DDS Inc3490 Palm Av Unit 1, San Diego12-013702-ABay Port Press645 Marsat St Suite D, Chula Vista13-023501-APhoto Max1367 3rd Av, Chula Vista13-025501-AHilltop Dentistry11 Naples St, Chula Vista13-025601-ALangford Chiropractor4360 Main St Suite 209, Chula Vista13-025701-ARobert N Woodall DDS Inc330 Oxford St, Chula Vista13-025701-APalomar Dental Group648 Palomar St, Chula Vista13-033301-ACostoc Wholesale Photo Lab # 7811130 Broadway, Chula Vista13-037901-APerpecta Dental Group314 Palomar St, Suite D8, Chula Vista13-038801-APalomar Dental Group664 Palomar St, Suite 103, Chula Vista13-038801-APalomar Dental Group14 Palomar St, Suite 103, Chula Vista13-034201-APalomar Dental Group664 Palomar St, Suite 10	12-0115	01-A	Lewis J Dorria DDS	2930 Coronado Av, San Diego
12-011901-AJeffrey W Brown DDS1761 Palm Av, San Diego12-012101-AJerome A Bannister DDS4370 Palm Av Suite C, San Diego12-012202-ACarlos Garcia DDS1270 Picador BI Suite L-M, San Diego12-012302-ASouthland Plaza Dental655 Saturn BI Suite G, San Diego12-012401-AI-5 Palm Ave Medical Clinic655 Saturn BI, San Diego12-012502-ASan Ysidro Dental Care2004 Dairy Mart Rd, San Diego12-012601-ARancho Vista Medical & Therapy Center Inc342 W San Ysidro BI Suite F, San Diego12-022201-AJose L Lopez DDS Inc3490 Palm Av Unit 1, San Diego12-023101-AJuvenile Detention Facility446 Alta Rd, San Diego13-011702-ABay Port Press645 Marsat St Suite D, Chula Vista13-025501-APhoto Max1367 3rd Av, Chula Vista13-025601-AHiltop Dentistry11 Naples St, Chula Vista13-025701-ARobert N Woodall DDS Inc330 Oxford St, Chula Vista13-025701-ARobert N Woodall DDS Inc330 Oxford St, Chula Vista13-033301-ACostoc Wholesale Photo Lab # 7811130 Broadway, Chula Vista13-037901-AAmazon Animal Hospital1172 3rd Av Suite D8, Chula Vista13-038801-APalomar Dental Group664 Palomar St, Chula Vista13-038801-APalomar Dental Group664 Palomar St, Chula Vista13-038801-APalomar Dental Group664 Palomar St, Chula Vista13-0342<	12-0117	01-A	Montgomery High School	3250 Palm Av, San Diego
12-012202-ACarlos Garcia DDS1270 Picador Bl Suite L-M, San Diego12-012302-ASouthland Plaza Dental655 Saturn Bl Suite G, San Diego12-012401-AI-5 Palm Ave Medical Clinic655 Saturn Bl, San Diego12-012502-ASan Ysidro Dental Care2004 Dairy Mart Rd, San Diego12-012601-ARancho Vista Medical & Therapy Center Inc342 W San Ysidro Bl Suite F, San Diego12-022201-AJose L Lopez DDS Inc3490 Palm Av Unit 1, San Diego12-012502-ABay Port Press645 Marsat St Suite D, Chula Vista13-01702-ABay Port Press645 Marsat St Suite D, Chula Vista13-024901-AThe Pet Clinic3326 Main St, Chula Vista13-025501-AHilltop Dentistry11 Naples St, Chula Vista13-025601-ALangford Chiropractor4360 Main St Suite 209, Chula Vista13-025701-ARobert N Woodall DDS Inc330 Oxford St, Chula Vista13-025101-APalomar Dental Group648 Palomar St, Chula Vista13-025701-ARobert N Woodall DDS Inc330 Oxford St, Chula Vista13-033301-ACostco Wholesale Photo Lab # 7811130 Broadway, Chula Vista13-033701-APerpecta Dental Group314 Palomar St, Chula Vista13-038801-APalomar Dental Group664 Palomar St, Suite 1103, Chula Vista13-038801-APalomar Dental Group664 Palomar St, Suite 1103, Chula Vista13-044201-AWal-Mart # 35161360 Eastlake Py, Chula Vist	12-0119	01-A	Jeffrey W Brown DDS	1761 Palm Av, San Diego
12-012302-ASouthland Plaza Dental655 Saturn Bl Suite G, San Diego12-012401-AI-5 Palm Ave Medical Clinic655 Saturn Bl, San Diego12-012502-ASan Ysidro Dental Care2004 Dairy Mart Rd, San Diego12-018601-ARancho Vista Medical & Therapy Center Inc342 W San Ysidro Bl Suite F, San Diego12-022201-AJose L Lopez DDS Inc3490 Palm Av Unit 1, San Diego12-023101-AJuvenile Detention Facility446 Alta Rd, San Diego13-011702-ABay Port Press645 Marsat St Suite D, Chula Vista13-023501-APhoto Max1367 3rd Av, Chula Vista13-024901-AThe Pet Clinic3326 Main St, Chula Vista13-025501-AHilltop Dentistry11 Naples St, Chula Vista13-025601-ALangford Chiropractor330 Oxford St, Chula Vista13-025701-ARobert N Woodall DDS Inc330 Oxford St, Chula Vista13-037901-AAmazon Animal Hospital1172 3rd Av Suite D8, Chula Vista13-037901-AAmazon Animal Hospital1172 3rd Av Suite D8, Chula Vista13-038701-APerpecta Dental Group664 Palomar St, Suite 1103, Chula Vista13-038801-APalomar Dental Group664 Palomar St Suite 1103, Chula Vista13-044201-AWal-Mart # 35161360 Eastlake Py, Chula Vista13-045601-AEast Lake Plaza Dental2060 Otay Lakes Rd Suite 230, Chula Vista	12-0121	01-A	Jerome A Bannister DDS	4370 Palm Av Suite C, San Diego
12-012401-AI-5 Palm Ave Medical Clinic655 Saturn Bl, San Diego12-012502-ASan Ysidro Dental Care2004 Dairy Mart Rd, San Diego12-018601-ARancho Vista Medical & Therapy Center Inc342 W San Ysidro Bl Suite F, San Diego12-022201-AJose L Lopez DDS Inc3490 Palm Av Unit 1, San Diego12-023101-AJuvenile Detention Facility446 Alta Rd, San Diego13-011702-ABay Port Press645 Marsat St Suite D, Chula Vista13-023501-APhoto Max1367 3rd Av, Chula Vista13-025501-AHilltop Dentistry11 Naples St, Chula Vista13-025601-ALangford Chiropractor4360 Main St Suite 209, Chula Vista13-025701-ARobert N Woodall DDS Inc330 Oxford St, Chula Vista13-033301-ACostco Wholesale Photo Lab # 7811130 Broadway, Chula Vista13-037901-AAmazon Animal Hospital1172 3rd Av Suite D8, Chula Vista13-038801-APalomar Dental Group664 Palomar St, Chula Vista13-044201-AWal-Mart # 35161360 Eastlake Py, Chula Vista13-045601-AEast Lake Plaza Dental2060 Otay Lakes Rd Suite 230, Chula Vista	12-0122	02-A	Carlos Garcia DDS	1270 Picador Bl Suite L-M, San Diego
12-012502-ASan Ysidro Dental Care2004 Dairy Mart Rd, San Diego12-018601-ARancho Vista Medical & Therapy Center Inc342 W San Ysidro BI Suite F, San Diego12-022201-AJose L Lopez DDS Inc3490 Palm Av Unit 1, San Diego12-023101-AJuvenile Detention Facility446 Alta Rd, San Diego13-011702-ABay Port Press645 Marsat St Suite D, Chula Vista13-023501-APhoto Max1367 3rd Av, Chula Vista13-024901-AThe Pet Clinic3326 Main St, Chula Vista13-025501-AHilltop Dentistry11 Naples St, Chula Vista13-025601-ALangford Chiropractor4360 Main St Suite 209, Chula Vista13-025701-ARobert N Woodall DDS Inc330 Oxford St, Chula Vista13-026102-APalomar Dental Group648 Palomar St, Chula Vista13-033301-ACostco Wholesale Photo Lab # 7811130 Broadway, Chula Vista13-038701-APerpecta Dental Group314 Palomar St, Chula Vista13-038801-APalomar Dental Group664 Palomar St Suite 1103, Chula Vista13-044201-AWal-Mart # 35161360 Eastlake Py, Chula Vista13-045601-AEast Lake Plaza Dental2060 Otay Lakes Rd Suite 230, Chula Vista	12-0123	02-A	Southland Plaza Dental	655 Saturn Bl Suite G, San Diego
12-018601-ARancho Vista Medical & Therapy Center Inc342 W San Ysidro Bl Suite F, San Diego12-022201-AJose L Lopez DDS Inc3490 Palm Av Unit 1, San Diego12-023101-AJuvenile Detention Facility446 Alta Rd, San Diego13-01702-ABay Port Press645 Marsat St Suite D, Chula Vista13-023501-APhoto Max1367 3rd Av, Chula Vista13-024901-AThe Pet Clinic3326 Main St, Chula Vista13-025501-AHilltop Dentistry11 Naples St, Chula Vista13-025601-ALangford Chiropractor4360 Main St Suite 209, Chula Vista13-025701-ARobert N Woodall DDS Inc330 Oxford St, Chula Vista13-026102-APalomar Dental Group648 Palomar St, Chula Vista13-033301-ACostco Wholesale Photo Lab # 7811130 Broadway, Chula Vista13-038701-APerpecta Dental Group314 Palomar St, Chula Vista13-038801-APalomar Dental Group664 Palomar St Suite 1103, Chula Vista13-038801-APalomar Dental Group664 Palomar St Suite 1103, Chula Vista13-044201-AWal-Mart # 35161360 Eastlake Py, Chula Vista13-045601-AEast Lake Plaza Dental2060 Otay Lakes Rd Suite 230, Chula Vista	12-0124	01-A	I-5 Palm Ave Medical Clinic	655 Saturn Bl, San Diego
12-022201-AJose L Lopez DDS Inc3490 Palm Av Unit 1, San Diego12-023101-AJuvenile Detention Facility446 Alta Rd, San Diego13-011702-ABay Port Press645 Marsat St Suite D, Chula Vista13-023501-APhoto Max1367 3rd Av, Chula Vista13-024901-AThe Pet Clinic3326 Main St, Chula Vista13-025501-AHilltop Dentistry11 Naples St, Chula Vista13-025601-ALangford Chiropractor4360 Main St Suite 209, Chula Vista13-025701-ARobert N Woodall DDS Inc330 Oxford St, Chula Vista13-026102-APalomar Dental Group648 Palomar St, Chula Vista13-033301-ACostco Wholesale Photo Lab # 7811130 Broadway, Chula Vista13-038701-APerpecta Dental Group314 Palomar St, Chula Vista13-038801-APalomar Dental Group664 Palomar St Suite 1103, Chula Vista13-044201-AWal-Mart # 35161360 Eastlake Py, Chula Vista13-045601-AEast Lake Plaza Dental2060 Otay Lakes Rd Suite 230, Chula Vista	12-0125	02-A	San Ysidro Dental Care	2004 Dairy Mart Rd, San Diego
12-023101-AJuvenile Detention Facility446 Alta Rd, San Diego13-011702-ABay Port Press645 Marsat St Suite D, Chula Vista13-023501-APhoto Max1367 3rd Av, Chula Vista13-024901-AThe Pet Clinic3326 Main St, Chula Vista13-025501-AHilltop Dentistry11 Naples St, Chula Vista13-025601-ALangford Chiropractor4360 Main St Suite 209, Chula Vista13-025701-ARobert N Woodall DDS Inc330 Oxford St, Chula Vista13-026102-APalomar Dental Group648 Palomar St, Chula Vista13-033301-ACostco Wholesale Photo Lab # 7811130 Broadway, Chula Vista13-037901-AAmazon Animal Hospital1172 3rd Av Suite D8, Chula Vista13-038801-APerpecta Dental Group664 Palomar St, Chula Vista13-042201-AWal-Mart # 35161360 Eastlake Py, Chula Vista13-045601-AEast Lake Plaza Dental2060 Otay Lakes Rd Suite 230, Chula Vista	12-0186	01-A	Rancho Vista Medical & Therapy Center Inc	342 W San Ysidro Bl Suite F, San Diego
13-011702-ABay Port Press645 Marsat St Suite D, Chula Vista13-023501-APhoto Max1367 3rd Av, Chula Vista13-024901-AThe Pet Clinic3326 Main St, Chula Vista13-025501-AHilltop Dentistry11 Naples St, Chula Vista13-025601-ALangford Chiropractor4360 Main St Suite 209, Chula Vista13-025701-ARobert N Woodall DDS Inc330 Oxford St, Chula Vista13-026102-APalomar Dental Group648 Palomar St, Chula Vista13-033301-ACostco Wholesale Photo Lab # 7811130 Broadway, Chula Vista13-037901-AAmazon Animal Hospital1172 3rd Av Suite D8, Chula Vista13-038801-APalomar Dental Group664 Palomar St, Chula Vista13-038801-APalomar Dental Group664 Palomar St, Chula Vista13-042201-AWal-Mart # 35161360 Eastlake Py, Chula Vista13-045601-AEast Lake Plaza Dental2060 Otay Lakes Rd Suite 230, Chula Vista	12-0222	01-A	Jose L Lopez DDS Inc	3490 Palm Av Unit 1, San Diego
13-023501-APhoto Max1367 3rd Av, Chula Vista13-024901-AThe Pet Clinic3326 Main St, Chula Vista13-025501-AHilltop Dentistry11 Naples St, Chula Vista13-025601-ALangford Chiropractor4360 Main St Suite 209, Chula Vista13-025701-ARobert N Woodall DDS Inc330 Oxford St, Chula Vista13-026102-APalomar Dental Group648 Palomar St, Chula Vista13-033301-ACostco Wholesale Photo Lab # 7811130 Broadway, Chula Vista13-037901-AAmazon Animal Hospital1172 3rd Av Suite D8, Chula Vista13-038701-APerpecta Dental Group664 Palomar St, Chula Vista13-042201-AWal-Mart # 35161360 Eastlake Py, Chula Vista13-045601-AEast Lake Plaza Dental2060 Otay Lakes Rd Suite 230, Chula Vista	12-0231	01-A	Juvenile Detention Facility	446 Alta Rd, San Diego
13-024901-AThe Pet Clinic3326 Main St, Chula Vista13-025501-AHilltop Dentistry11 Naples St, Chula Vista13-025601-ALangford Chiropractor4360 Main St Suite 209, Chula Vista13-025701-ARobert N Woodall DDS Inc330 Oxford St, Chula Vista13-026102-APalomar Dental Group648 Palomar St, Chula Vista13-033301-ACostco Wholesale Photo Lab # 7811130 Broadway, Chula Vista13-037901-AAmazon Animal Hospital1172 3rd Av Suite D8, Chula Vista13-038701-APerpecta Dental Group314 Palomar St, Chula Vista13-038801-APalomar Dental Group664 Palomar St Suite 1103, Chula Vista13-044201-AWal-Mart # 35161360 Eastlake Py, Chula Vista13-045601-AEast Lake Plaza Dental2060 Otay Lakes Rd Suite 230, Chula Vista	13-0117	02-A		645 Marsat St Suite D, Chula Vista
13-025501-AHilltop Dentistry11 Naples St, Chula Vista13-025601-ALangford Chiropractor4360 Main St Suite 209, Chula Vista13-025701-ARobert N Woodall DDS Inc330 Oxford St, Chula Vista13-026102-APalomar Dental Group648 Palomar St, Chula Vista13-033301-ACostco Wholesale Photo Lab # 7811130 Broadway, Chula Vista13-037901-AAmazon Animal Hospital1172 3rd Av Suite D8, Chula Vista13-038701-APerpecta Dental Group314 Palomar St, Chula Vista13-038801-APalomar Dental Group664 Palomar St Suite 1103, Chula Vista13-044201-AWal-Mart # 35161360 Eastlake Py, Chula Vista13-045601-AEast Lake Plaza Dental2060 Otay Lakes Rd Suite 230, Chula Vista	13-0235	01-A	Photo Max	1367 3rd Av, Chula Vista
13-025601-ALangford Chiropractor4360 Main St Suite 209, Chula Vista13-025701-ARobert N Woodall DDS Inc330 Oxford St, Chula Vista13-026102-APalomar Dental Group648 Palomar St, Chula Vista13-033301-ACostco Wholesale Photo Lab # 7811130 Broadway, Chula Vista13-037901-AAmazon Animal Hospital1172 3rd Av Suite D8, Chula Vista13-038701-APerpecta Dental Group314 Palomar St, Chula Vista13-038801-APalomar Dental Group664 Palomar St Suite 1103, Chula Vista13-044201-AWal-Mart # 35161360 Eastlake Py, Chula Vista13-045601-AEast Lake Plaza Dental2060 Otay Lakes Rd Suite 230, Chula Vista	13-0249	01-A	The Pet Clinic	3326 Main St, Chula Vista
13-025701-ARobert N Woodall DDS Inc330 Oxford St, Chula Vista13-026102-APalomar Dental Group648 Palomar St, Chula Vista13-033301-ACostco Wholesale Photo Lab # 7811130 Broadway, Chula Vista13-037901-AAmazon Animal Hospital1172 3rd Av Suite D8, Chula Vista13-038701-APerpecta Dental Group314 Palomar St, Chula Vista13-038801-APalomar Dental Group664 Palomar St Suite 1103, Chula Vista13-044201-AWal-Mart # 35161360 Eastlake Py, Chula Vista13-045601-AEast Lake Plaza Dental2060 Otay Lakes Rd Suite 230, Chula Vista	13-0255			
13-026102-APalomar Dental Group648 Palomar St, Chula Vista13-033301-ACostco Wholesale Photo Lab # 7811130 Broadway, Chula Vista13-037901-AAmazon Animal Hospital1172 3rd Av Suite D8, Chula Vista13-038701-APerpecta Dental Group314 Palomar St, Chula Vista13-038801-APalomar Dental Group664 Palomar St Suite 1103, Chula Vista13-044201-AWal-Mart # 35161360 Eastlake Py, Chula Vista13-045601-AEast Lake Plaza Dental2060 Otay Lakes Rd Suite 230, Chula Vista	13-0256	01-A	Langford Chiropractor	4360 Main St Suite 209, Chula Vista
13-033301-ACostco Wholesale Photo Lab # 7811130 Broadway, Chula Vista13-037901-AAmazon Animal Hospital1172 3rd Av Suite D8, Chula Vista13-038701-APerpecta Dental Group314 Palomar St, Chula Vista13-038801-APalomar Dental Group664 Palomar St Suite 1103, Chula Vista13-044201-AWal-Mart # 35161360 Eastlake Py, Chula Vista13-045601-AEast Lake Plaza Dental2060 Otay Lakes Rd Suite 230, Chula Vista	13-0257	01-A	Robert N Woodall DDS Inc	
13-037901-AAmazon Animal Hospital1172 3rd Av Suite D8, Chula Vista13-038701-APerpecta Dental Group314 Palomar St, Chula Vista13-038801-APalomar Dental Group664 Palomar St Suite 1103, Chula Vista13-044201-AWal-Mart # 35161360 Eastlake Py, Chula Vista13-045601-AEast Lake Plaza Dental2060 Otay Lakes Rd Suite 230, Chula Vista			1	
13-038701-APerpecta Dental Group314 Palomar St, Chula Vista13-038801-APalomar Dental Group664 Palomar St Suite 1103, Chula Vista13-044201-AWal-Mart # 35161360 Eastlake Py, Chula Vista13-045601-AEast Lake Plaza Dental2060 Otay Lakes Rd Suite 230, Chula Vista				•
13-038801-APalomar Dental Group664 Palomar St Suite 1103, Chula Vista13-044201-AWal-Mart # 35161360 Eastlake Py, Chula Vista13-045601-AEast Lake Plaza Dental2060 Otay Lakes Rd Suite 230, Chula Vista				
13-044201-AWal-Mart # 35161360 Eastlake Py, Chula Vista13-045601-AEast Lake Plaza Dental2060 Otay Lakes Rd Suite 230, Chula Vista				
13-045601-AEast Lake Plaza Dental2060 Otay Lakes Rd Suite 230, Chula Vista			1	
5 /				•
29	13-0456	01-A	East Lake Plaza Dental	2060 Otay Lakes Rd Suite 230, Chula Vista
			29	

Page 1

Page 1

### **IV. SIU Compliance and Enforcement**

### A. Annual Compliance Summary

During CY2015 the program administered 12 SIU permits, covering 13 outfalls and monitored at 14 sample points. No facilities or outfalls were in SNC during the year. These facilities are included in the calculation of the Metro System annual Significant Non-Compliance Rate reported in the CY2015 Pretreatment Annual Report for the Point Loma POTW, NPDES Permit No. CA 0107409

### **B.** Characterization of the Compliance Status of Each SIU

The Annual SIU Compliance Status Report for CY2015, which follows this page, lists the industry name, address, permit number, permit class; industrial flow by connection; violation dates and descriptions, if applicable; discharge standard and period, and actual value resulting in the violation; whether the violation exceeded the TRC; and whether the industry has been in Significant Non-Compliance (SNC) at any time during the year.

### C. SIU Enforcement Actions Initiated, Continued, or Finalized in CY2015 None

### **D.** Public Information and Involvement

Each year, a combined list of all facilities in the Metropolitan Sewerage System service area that were in SNC at any time during the year is published in the Union Tribune; this list is included in Chapter 4 of the CY2015 Annual Report for the Point Loma POTW NPDES Permit No. CA 0107409

In CY2015, the following SIUs discharging tributary to the SBWRP were in Significant Non-Compliance:

Name

Address

**Pollutant in Violation** 

None

## Annual SIU Compliance Status Report

01-Jan-2015 through 31-Dec-2015

Page 1

SIU Name	IU#	Class	IW Disch	SNC?	[If Yes, Why]	Conn	Violation Date	Description/Parameter	Value	Limit	Period	Cat	TRC
AP Precision Metals	12-0144	4 1	75	No		110	29-Jan-15	SMR Late - written notice					
1215 30th St, San Diego						110	18-Feb-15	SMR Incomplete					
						110	11-May-15	SMR Incomplete					
Doncasters GCE Industries	13-011	51	913	No		NA							
757 Main St, Chula Vista													
Emerald Textiles LLC	12-006	53	66242	No		NA							
1725 Dornoch Ct, San Diego													
Harcon Precision Metals Inc	12-024	4 1	137	No		NA							
1790 Dornoch Ct, San Diego													
Heinz Frozen Foods	12-0154	4 3	63749	No		110	23-Feb-15	Oil and grease, Total-Instantaneous	1890	500	DM	L	Y
7878 Airway Rd, San Diego													
Hyspan Precision Products	13-0048	32	199	No		NA							
1685 Brandywine Av, Chula Vista													
Jensen Meat Company Inc	12-027	53	18436	No		110	27-Apr-15	SMR Incomplete					
2550 Britannia Bl Suite 101, Sa Diego	n												
Otay Mesa Energy Center LLC 606 De La Fuente Ct, San Dieg	36-000 [.] o	1 1	43032	No		NA							
<b>RJ Donovan Correctional</b> <b>Facility</b> 480 Alta Rd, San Diego	12-0038	3 3	55595	No		100	27-Jul-15	SMR Incomplete					

## Annual SIU Compliance Status Report

### 01-Jan-2015 through 31-Dec-2015

Page 2

SIU Name	IU#	Class	IW Disch	SNC?	[If Yes, Why]	Conn	Violation Date	Description/Parameter	Value	Limit	Period	Cat	TRC
Southwest Products LLC	12-0220	3	99222	No		110	20-Feb-15	Oil and grease screen	501	500	DM	L	N
dba Circle Foods 8411 Siempre Viva Rd, San						110	25-Feb-15	Oil and grease screen	501	500	DM	L	Ν
Diego						110	07-May-15	Oil and grease, Total-Instantaneous	943	500	DM	L	Y
- 5						110	27-May-15	Oil and grease, Total-Instantaneous	620	500	DM	L	Ν
						110	22-Jun-15	SMR Incomplete - failed notify in 24 hrs					
Spec-Built Systems Inc	12-0202	1	30	No		110	27-Jul-15	SMR Incomplete					
2150 Michael Faraday Dr, San Diego													
Spectex Inc dba Specialty Textile Services 1333 30th St Suite A, San Diego	12-0283 ว	3	29000	No		110	02-Dec-15	Oil and grease, Total-Instantaneous	673	500	DM	L	Ν
US General Services Administration - SYLPOE	12-0285	3	556	No		110 110	27-Jul-15 25-Nov-15	SMR Incomplete SMR Incomplete					
720 E San Ysidro Bl, San Diego	)					120	25-Nov-15	SMR Incomplete					
						130	25-Nov-15	SMR Incomplete					

## B. NOVs Issued in 2015 for SIUs Discharging to Treatment Plant 6

Page 1

Report run on: Friday, February 26, 2016 3:30 pm

Name	Facility	Conn	NOV	Identified	Action	Viol Date	Fee	Level
AP Precision Metals	12-0144	110	77275	29-Jan-2015	29-Jan-2015		100	Initial notice
			77443	18-Feb-2015	18-Feb-2015		50	Notice only
			78268	11-May-2015	12-May-2015		100	Initial notice
Heinz Frozen Foods	12-0154	110	78283	11-May-2015	11-May-2015	24-Feb-2015	100	Initial notice
Jensen Meat Company Inc	12-0275	110	78108	27-Apr-2015	04-May-2015	05-Mar-2015	50	Notice only
RJ Donovan Correctional Facility	12-0038	100	79061	27-Jul-2015	28-Jul-2015	30-Jun-2015	100	Initial notice
Southwest Products LLC dba Circle Foods	12-0220	110	78248	08-May-2015	08-May-2015	20-Feb-2015	100	Initial notice
			78249	08-May-2015	08-May-2015	25-Feb-2015	100	Initial notice
			78824	22-Jun-2015	22-Jun-2015	27-May-2015	100	Initial notice
			79222	10-Aug-2015	11-Aug-2015	07-May-2015	300	Prelim Conf
Spec-Built Systems Inc	12-0202	110	79062	27-Jul-2015	28-Jul-2015	03-Jun-2015	50	Notice only
US General Services Administration - SYLPOE	12-0285	110	79063	27-Jul-2015	28-Jul-2015	05-Jun-2015	50	Notice only
	Total fees:						\$1,200	
NOV count:			12					

Sampling in 2015 at SIUs discharging to Treatment Plant 6

-	Thursday, February 25, 2016 4:30 pm						Page 1
Facility Pmt	Name	Conn	Principle Process	Pmt	Parmcode	City	Self
				Include		Samples	Samples
12-0038 05-A	RJ Donovan Correctional Facility	100	Prison Sewer Main	L	BIOHAZARD CERT		
					COD	5 3	3
					OIL/GREASE	3	3 3 3
					PH	5	3
					SOLVENT CERT	_	_
			~	_	TSS	5	3 2 4
12-0065 04-A	Emerald Textiles LLC	110	Commercial Laundry	L	CHLORIDE	1	2
					COD	1	4
					FLOW		12
					FLOW MAX		12
					OIL/GREASE	1	4
					PH	1	4
					PH HIGHEST		
					PH LOWEST		
					SULFIDE DISSOLVD TDS	1	2
					TSS	1	2
12-0144 04-A	AP Precision Metals	110	Metal Coating (Iron	F	CADMIUM	1	4
12-0144 04-A	AF FIEcision Metals	110	÷ .	Г	CHROMIUM	$\frac{2}{2}$	5
			Phosphating)		COPPER	$\frac{2}{2}$	5
					CYANIDE(T)	2 2 2 2	4 5 5 5 5 4
					FLOW	2	4
					FLOW MAX		
					LEAD	2	5
					NICKEL	$\frac{1}{2}$	5
					PH	2 2 2 2	5
					SILVER	2	4 5 5 5 5
					TTO CERT		4
					TTO(413+433)-P	1	
					ZINC	2	5
12-0154 04-A	Heinz Frozen Foods	110	Food Manufacturing	L	CHROMIUM	4	3
					COD	11	10
					FLOW		12
					FLOW MAX		12
					FLOW TOTIMPORTED		12
					FLOWMETER READ 1	9	12
					FLOWMETER READ 2	9	12
					OIL/G SCREEN	10	10
					OIL/GREASE	12	10
					PH DH HIGHEST	12	10
					PH HIGHEST PH LOWEST	4	
					SULFIDE DISSOLVD	4	
		SBW	/RP Annual Pretreatment Report - Page 16	of 47	SOLLIDE DISSOLAD		

## Sampling in 2015 at SIUs discharging to Treatment Plant 6

Report run on:	Thursday, February 25, 2016 4:30 pm						Page 2
Facility Pmt	Name	Conn	Principle Process	Pmt	Parmcode	City	Self
				Include		Samples	Samples
12-0154 04-A	Heinz Frozen Foods	110			TEMP	9	10
12 0202 02 4	Space Duilt Systems Inc.	110	Iron Dhoonhating	E	TSS CADMIUM	5 2 2 2 2 2	10
12-0202 03-A	Spec-Built Systems Inc	110	Iron Phosphating	F	CHROMIUM	$\frac{2}{2}$	2 2 2 2 4
					COPPER	$\frac{2}{2}$	$\frac{2}{2}$
					CYANIDE(T)	2	2
					FLOW		
					FLOW MAX	_	4 2 2 1
					LEAD	2 2 2 2	$\frac{2}{2}$
					NICKEL PH	2	2
					SILVER	$\frac{2}{2}$	2
					TTO CERT	2	4
					TTO(413+433)-P	1	-
					ZINC	2	2
12-0220 04-A	Southwest Products LLC dba Circle	110	Food manufacturing	L	OIL/G SCREEN	9	
	Foods				OIL/GREASE	12	20
					PH PH HIGHEST	14	11
					PH LOWEST	7 7	
					SULFIDE DISSOLVD	/	
					TEMP	14	11
12-0244 02-A	Harcon Precision Metals Inc	110	Chemical conversion coating &	F	CADMIUM		
			water Jet		CHROMIUM	2	2
					COD	2	2
					COPPER	2 2 2 2 2 2	$\frac{2}{2}$
					CYANIDE(T) FLOW	2	$\frac{2}{2}$
					FLOW MAX		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
					LEAD	2	$\frac{1}{2}$
					NICKEL	2 2 2 2 2	2
					PH	2	2
					SILVER	2	2
					TSS TTO CEPT	2	$\frac{2}{2}$
					TTO CERT TTO(413+433)-P	1	2
					ZINC	$\frac{1}{2}$	2
12-0275 02-A	Jensen Meat Company Inc	110	Meat processing,	L	CHLORIDE	6	4
	······································		cleaning/sanitizing		CLARIFIER RPT	~	3
			B		COD	6	4
					FLOW		12
					FLOW MAX	1 /	12
		SBW	/RP Annual Pretreatment Report - Page 17	of 47	OIL/GREASE	14	8

## Sampling in 2015 at SIUs discharging to Treatment Plant 6

Report run on:	Thursday, February 25, 2016 4:30 pm						Page 3
Facility Pmt	Name	Conn	Principle Process	Pmt	Parmcode	City	Self
				Include		Samples	Samples
12-0275 02-A	Jensen Meat Company Inc	110			PH PH HIGHEST PH LOWEST RAIN DIVERT CERT SULFIDE DISSOLVD TDS TFDS	11 4 6 5	3 1 4 4
12-0283 02-A	Spectex Inc dba Specialty Textile Services	110	Commerical Laundry	L	TSS COD FLOW FLOW MAX OIL/GREASE PH PH HIGHEST PH LOWEST SULFIDE DISSOLVD TSS	6 4 4 4	4 4 12 12 4 4 4
12-0285 02-A	US General Services Administration - SYLPOE	110	Waste activated sludge	L	COD SULFIDE DISSOLVD TDS TSS	3 2 1 3	12 3 12
		120	Untreated wastewater	L			
		130	Treated wastewater	L			
13-0115 05-A	Doncasters GCE Industries	200	Bldg 2 Lateral, 1887 Nirvana Av	L	ZERODISCHRG CERT		4
		300	Bldg 3 Lateral, 757 Main St	L			
		330	Dye Pen / Vibra Clean	F	CADMIUM CHROMIUM COPPER CYANIDE(T) FLOW FLOW MAX	2 2 2 2	4 4 4 4 4 4
					LEAD	2	4
					NICKEL	2 2 2	4
					PH PH HIGHEST PH LOWEST	2 1 1	4
					SILVER	2	4
					TTO CERT	—	4
					TTO(413+433)-P	1	
					ZINC	2	4
		410	Dye Pen / Water Jet Cutting	F	CADMIUM	$\overline{2}$	4
		Ū.	,		CHROMIUM	$\overline{2}$	4
		SBW	/RP Annual Pretreatment Report - Page 18 o	of 47	COPPER	$\overline{2}$	4

## Sampling in 2015 at SIUs discharging to Treatment Plant 6

Report run on:	Thursday, February 25, 2016 4:30 pm						Page 4
Facility Pmt	Name	Conn	Principle Process	Pmt	Parmcode	City	Self
			-	Include		Samples	Samples
13-0115 05-A	Doncasters GCE Industries	410			CYANIDE(T) FLOW FLOW MAX	2	4 4 4
					LEAD	2	4
					NICKEL	2 2	4
					PH	2	4
					PH HIGHEST	1	
					PH LOWEST	1	
					SILVER	2	4
					TTO CERT	_	4
					TTO(413+433)-P	1	
				_	ZINC	2 4	4
36-0001 02-A	Otay Mesa Energy Center LLC	110	WetSac blowdown + OWS	F	CHROMIUM	4	4
					FLOW		4
					FLOW MAX	4	4
					OIL/GREASE	4	4
					PH	4	4
					PH HIGHEST		
					PH LOWEST	2	
					TDS	2	4
		100		Б	ZINC	4	4
		120	PCB zero discharge	F	ZERODISCHRG CERT		4
		140	Turbine washing	F	COPPER	2	
					FLOW		2
					FLOW MAX		2

SIUs:

12

## TTO Sampling in 2015 at SIUs discharging to Treatment Plant 6

Report run on:	Thursday, February 25, 2016 4:35 pm						Page 1
<b>FacilityPmt</b>	Name	Conn	Principle Process	Batch	City TTO	Self TTO	Self
					Samples	Samples	Cert
12-0144 04-A	AP Precision Metals	110	Metal Coating (Iron Phosphating)	Ν	1		4
12-0202 03-A	Spec-Built Systems Inc	110	Iron Phosphating	Y	1		4
12-0244 02-A	Harcon Precision Metals Inc	110	Chemical conversion coating & water Jet	Ν	1		2
13-0048 03-A	Hyspan Precision Products	110	Dye pen & hydrotest	Ν			
		120	Dye Penetrant	Ν			
13-0115 05-A	Doncasters GCE Industries	330	Dye Pen / Vibra Clean	Ν	1		4
		410	Dye Pen / Water Jet Cutting	Ν	1		4

## E. SBWRP SIU Enforcement Actions Initiated, Continued, or Finalized in CY2015

None

### V. Pretreatment Program Effectiveness

A. Summary of analytical results from representative flow-proportioned, 24-hour composite sampling of the SBWRP influent and effluent for those pollutants that the USEPA has identified under Section 307(a) of the CWA, and which are known or suspected to be discharged by industrial users. The summary must include a full priority pollutant scan.

Tables V. A-1 and V. A-2, below, summarize influent and effluent heavy metal loadings by month.

Pages 22 through 45 provide results for all influent and effluent during CY2015 for all priority pollutants and other pollutants of concern. These reports were extracted from the South Bay Treatment Plant and Ocean Outfall Annual Report. The summary includes a full priority pollutant scan.

SOUTH BAY W	ATER RE		LE V.A-1 ON PLAN			/Y META	LS			
Average Concentration and Loadings for 2015										
Zero = ND										
Month	Flow MGD	Cd ug/L	Cr ug/L	Cu ug/L	Pb ug/L	Ni ug/L	Ag ug/L	Zn ug/L		
MDL(ug/L)		0.26	0.54	2.16	1.68	0.53	0.73	4.19		
Jan	7.71	0.33	3.2	89	4	5.08	0	176		
Feb	7.84	0.37	2.8	74	2	4.29	0	159		
Mar	7.93	0.43	3.8	94	2	4.10	0	174		
Apr	7.84	0.38	2.7	82	2	4.48	0	153		
May	7.64	0	1.6	0	0	4.02	0	114		
Jun	7.62	0	4.5	84	3	4.73	0	173		
Jul	7.55	0	3.9	89	3	5.00	0.8	181		
Aug	7.67	0	4.3	98	0	13.8	0	171		
Sep	7.58	0.30	2.5	57	2	7.80	0	95		
Oct	7.53	0.30	7.6	93	4	9.10	0	183		
Nov	7.43	0.60	4.7	103	2	5.80	0	189		
Dec	5.29	0	4.3	72	0	5.40	0.90	131		
Average Flow MGD	7.47									
Average ug/L		0.23	3.83	77.92	2.00	6.13	0.14	158.25		
LBS/day		0.01	0.24	4.85	0.12	0.38	0.01	9.86		
Total lb HM	15.48									
Total lb (-)Ag	15.47									

			LE V.A-2				10			
SOUTH BAY WATER RECLAMATION PLANT EFFLUENT HEAVY METALS Average Concentration and Loadings for 2015										
Zero = ND										
Month	Flow MGD	Cd ug/L	Cr ug/L	Cu ug/L	Pb ug/L	Ni ug/L	Ag ug/L	Zn ug/L		
MDL(ug/L)		0.26	0.54	2.16	1.68	0.53	0.73	4.19		
Jan	5.17	0	0.7	12	0	3.17	0	30		
Feb	4.36	0	0.6	7	0	2.67	0	18.1		
Mar	4.32	0	1.8	12	0	2.3	0	26.4		
Apr	2.68	0	1.1	12	0	3.54	0	24.4		
May	4.09	0	0.7	18	0	3.12	0	33.8		
Jun	1.97	0	1.8	12	0	2.54	0	30.6		
Jul	2.75	0	1.3	12	0	3.0	0	33		
Aug	2.08	0	0	21	0	10.8	0	17.5		
Sep	3.03	0	1.2	11	0	6.85	0	26		
Oct	3.17	0	0.9	9	0	7.6	0	32		
Nov	4.73	0.3	2	12	2	4.0	0	52		
Dec	3.56	0	1.6	9	0	4.2	0	52		
Average Flow MGD	3.49									
Average ug/L		0.04	1.14	12.25	0.17	4.48	0.00	31.32		
LBS/day		0.00	0.03	0.36	0.00	0.13	0.00	0.91		
Total lb HM	1.44									
Total lb (-)Ag	1.44									

## SOUTH BAY WATER RECLAMATION PLANT SEWAGE INFLUENT and EFFLUENT

#### Annual 2015

## Biochemical Oxygen Demand Concentration (24-hour composite)

Source:	Influent Flow	Daily Influent Value	Daily Influent Value	Effluent Flow	Daily Effluent Value	Daily Effluent Value	Percent Removal BOD
Month/ Units:	(MGD)	(mg/L)	(lbs/Day)	(MGD)	(mg/L)	(lbs/Day)	(%)
============== JANUARY -2015		========= 329	21155	5.17	======= : 18	======= : 776	94.5
FEBRUARY - 2015	7.84	327	21381	4.36	18	655	94.5
MARCH -2015	7.93	322	21296	4.32	23	829	92.9
APRIL -2015	7.84	355	23212	2.68	18	402	94.9
MAY -2015	7.64	369	23512	4.09	16	546	95.7
JUNE - 2015	7.62	382	24276	1.97	12	197	96.9
JULY -2015	7.55	334	21031	2.75	13	298	96.1
AUGUST - 2015	7.67	346	22133	2.08	23	399	93.4
SEPTEMBER-2015	7.58	319	20166	3.03	18	455	94.4
OCTOBER -2015	7.53	345	21666	3.17	9	238	97.4
NOVEMBER -2015	7.43	374	23175	4.73	10	394	97.3
DECEMBER -2015	5.29	375	16544	3.56	11	327	97.1
================					=================		
Average	7.47	348	21629	3.49	16	460	95.4

Annual Mass Emissions are calculated from monthly averages of flow for BOD, whereas Monthly Report average mass emissions are calculated from average daily mass emissions.

ND=not detected

#### SOUTH BAY WATER RECLAMATION PLANT SEWAGE INFLUENT and EFFLUENT

#### Annual 2015

## Total Suspended Solids Concentration (24-hour composite)

Source:	Influent Flow	Influent Daily	Influent Daily	Percent	Influent Daily
	1100	TSS	VSS		Mass Emission
Month/ Units:	(MGD)	(mg/L)	(mg/L)	(%)	(lbs/Day)
==================	(100)	("6/")	("6/ ⊑/	(%)	(103/Ddy)
JANUARY -2015	7.71	281	261	92.9	18069
FEBRUARY -2015	7.84	267	240	89.9	17458
MARCH - 2015	7.93	271	249	91.9	17923
APRIL -2015	7.84	271	251	92.6	17719
MAY -2015	7.64	271	249	91.9	17267
JUNE -2015	7.62	289	264	91.3	18366
JULY -2015	7.55	261	239	91.6	16434
AUGUST -2015	7.67	252	232	92.1	16120
SEPTEMBER-2015	7.58	273	249	91.2	17258
OCTOBER -2015	7.53	274	250	91.2	17207
NOVEMBER -2015	7.43	286	265	92.7	17722
DECEMBER -2015	5.29	267	246	92.1	11780
Average	7.47	272	250		16944

## Total Suspended Solids Concentration (24-hour composite)

Source:	Effluent Flow	Daily Effluent TSS	Daily Effluent VSS		Mass Emission	Percent Removal TSS	Percent Removal VSS
Month/ Units:	(MGD)	(mg/L)	(mg/L)	(%)	(lbs/Day)	(%)	(%)
JANUARY -2015	5.17	8.4	7.4	88.1	362	97.0	97.2
FEBRUARY -2015	4.36	6.2	5.4	87.1	225	97.7	97.8
MARCH - 2015	4.32	6.5	5.8	89.2	234	97.6	97.7
APRIL -2015	2.68	6.7	6.1	91.0	150	97.5	97.6
MAY -2015	4.09	6.9	6.1	88.4	235	97.5	97.6
JUNE - 2015	1.97	8.3	7.4	89.2	136	97.1	97.2
JULY -2015	2.75	7.2	6.5	90.3	165	97.2	97.3
AUGUST - 2015	2.08	7.0	6.2	88.6	121	97.2	97.3
SEPTEMBER-2015	3.03	11.4	10.3	90.4	288	95.8	95.9
OCTOBER -2015	3.17	9.3	8.4	90.3	246	96.6	96.6
NOVEMBER -2015	4.73	7.8	7.1	91.0	308	97.3	97.3
DECEMBER -2015	3.56	9.7	8.8	90.7	288	96.4	96.4
Average	3.49	8.0 ⁸	7.1		230	97.1	97.2

Annual Mass Emissions are calculated from monthly averages of flow and TSS, whereas Monthly Report average mass emissions are calculated from average daily mass emissions.

VSS= Volatile Suspended Solids TSS= Total Suspended Solids

### SOUTH BAY WATER RECLAMATION PLANT

### Annual 2015

## Effluent to Ocean Outfall (SB_OUTFALL_01)

Analyte:	Flow	рН	Settleable Solids	Biochemical Oxygen Demand	Total Suspended Solids	Volatile Suspended Solids	Total Dissolved Solids
Units:	(mgd)	(pH)	(ml/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
JANUARY -2015	5.17	7.27	ND	18	8.4	7.4	1060
FEBRUARY -2015	4.36	7.31	ND	18	6.2	5.4	1070
MARCH - 2015	4.32	7.31	ND	23	6.5	5.8	1080
APRIL -2015	2.68	7.25	ND	18	6.7	6.1	1100
MAY -2015	4.09	7.27	ND	16	6.9	6.1	1020
JUNE - 2015	1.97	7.27	<0.1	12	8.3	7.4	1050
JULY -2015	2.75	7.29	ND	13	7.2	6.5	1030
AUGUST - 2015	2.08	7.45	ND	23	7.0	6.2	1070
SEPTEMBER-2015	3.03	7.35	0.1	18	11.4	10.3	1080
OCTOBER -2015	3.17	7.30	ND	9	9.3	8.4	1080
NOVEMBER -2015	4.73	7.34	ND	10	7.8	7.1	1070
DECEMBER -2015	3.56	7.26	ND	11	9.7	8.8	979
=======	=========						
Average	3.49	7.31	<0.1	16	8.0	7.1	1057

Analyte:	0il &	Outfall	Residual	Turbidity	Dissolved
	Grease	Temperature	Chlorine		Oxygen
Units:	(mg/L)	(°C)	(mg/L)	(NTU)	(mg/L)
JANUARY -2015	2.1	23.7	0.05	3.77	2.04
FEBRUARY -2015	2.3	23.7	0.03	3.24	1.91
MARCH - 2015	2.1	24.5	0.04	3.03	2.79
APRIL -2015	2.4	25.4	0.05	3.06	2.17
MAY -2015	ND	25.3	0.03	3.01	2.09
JUNE - 2015	1.6	26.4	0.04	3.47	2.25
JULY -2015	1.4	27.9	0.04	3.17	2.24
AUGUST - 2015	1.5	28.4	0.03	2.84	3.16
SEPTEMBER-2015	1.2	28.9	0.11	5.89	2.56
OCTOBER -2015	4.7	28.1	0.05	4.00	1.79
NOVEMBER -2015	3.1	25.7	0.05	3.24	2.15
DECEMBER -2015	5.2	23.3	0.05	3.71	2.88
Average	2.3	25.9	0.05	3.54	2.34
OCTOBER -2015 NOVEMBER -2015 DECEMBER -2015	4.7 3.1 5.2	28.1 25.7 23.3	0.05 0.05 0.05	4.00 3.24 3.71	1.79 2.15 2.88

ND=not detected NR=not required

### SOUTH BAY WATER RECLAMATION PLANT

### Annual 2015

## Influent to Plant (SB_INF_02)

Analyte: Units:	Flow (mgd)	рН (рН)	Total Dissolved Solids (mg/L)	Biochemical Oxygen Demand (mg/L)	Total Suspended Solids (mg/L)	Volatile Suspended Solids (mg/L)	Turbidity (NTU)
	========	========	===========	=========	=======	=======	======
JANUARY -2015	7.71	NR	1110	329	281	261	NR
FEBRUARY -2015	7.84	7.65	1090	327	267	240	180
MARCH - 2015	7.93	NR	1090	322	271	249	NR
APRIL -2015	7.84	NR	1090	355	271	251	NR
MAY -2015	7.64	7.54	1050	369	271	249	197
JUNE - 2015	7.62	NR	1020	382	289	264	NR
JULY -2015	7.55	NR	1050	334	261	239	NR
AUGUST -2015	7.67	7.36	1070	346	252	232	191
SEPTEMBER-2015	7.58	NR	1070	319	273	249	NR
OCTOBER -2015	7.53	7.53	1080	345	274	250	198
NOVEMBER -2015	7.43	NR	1110	374	286	265	NR
DECEMBER -2015	5.29	NR	1050	375	267	246	NR
Average	7.47	7.52	1073	348	272	250	192

ND=not detected NR=not required

## SOUTH BAY WATER RECLAMATION PLANT ANNUAL SEWAGE

### Trace Metals

### Annual 2015

Analyte:	Aluminum	Aluminum	Antimony	Antimony	Arsenic	Arsenic
MDL Units:	23.8 UG/L	23.8 UG/L	2.44 UG/L	2.44 UG/L	.06 UG/L	.06 UG/L
Source:	Influent	Effluent	Influent	Effluent	Influent	Effluent
Month/Limit:						2800
JANUARY -2015	711	46	2.5	ND	0.4	0.7
FEBRUARY -2015	557	ND	ND	<2.4	1.1	0.6
MARCH -2015	718	<24	4.0	<2.4	0.9	0.7
APRIL -2015	540	31	4.5	<2.4	0.6	0.5
MAY -2015	322	55	ND	4.1	0.2	0.7
JUNE -2015	697	166	ND	ND	0.8	0.9
JULY -2015	622	212	ND	ND	0.8	0.8
AUGUST -2015	704	ND	ND	ND	1.2	1.0
SEPTEMBER-2015	222	ND	ND	<2.4	1.0	1.1
OCTOBER -2015	662	31	<2.4	3.0	1.3	0.9
NOVEMBER -2015	916	52	4.0	4.0	1.3	1.0
DECEMBER -2015	555	48	5.0	3.0	0.9	0.8
================				=========	==================	
AVERAGE	602	53	1.7	1.2	0.9	0.8
AVENAGE	002	55	1.7	1.2	0.5	0.0
Analyte:	Barium	Barium	Beryllium	Beryllium	Boron	Boron
MDL Units:	.7 UG/L	.7 UG/L	.05 UG/L	.05 UG/L	1.4 UG/L	1.4 UG/L
Source:	Influent	Effluent	Influent	Effluent	Influent	Effluent
Month/Limit:	Infidenc	LITIGENC	Infidenc	LITIGENC	Infidenc	LITTUENC
=======================================						
JANUARY -2015	135	93.3	ND	0.18	308	304
FEBRUARY -2015	135	92.6	ND	ND	300	309
MARCH -2015	131	89.9	ND	ND	305	314
APRIL -2015	135	102	ND	ND	322	325
MAY -2015	106	94.5	ND	ND	321	322
JUNE -2015	128	81.5	ND	ND	357	357
JULY -2015	104	70.5	ND	ND	336	369
AUGUST -2015	124	80.2	ND	ND	347	331
SEPTEMBER-2015	106	85.2	ND	ND	301	317
OCTOBER -2015	130	90.6	<0.05	ND	360	346
NOVEMBER -2015	120	87.1	ND	ND	323	317
DECEMBER -2015	86.6	58.6	ND	ND	361	350
AVERAGE	119.383	85.500	<0.05	0.015	328	330
Analyte:	Cadmium	Cadmium	Chromium	Chromium	Cobalt	Cobalt
MDL Units:	.26 UG/L	.26 UG/L	.54 UG/L	.54 UG/L	.24 UG/L	.24 UG/L
Source:	Influent	Effluent	Influent	Effluent	Influent	Effluent
Month/Limit:		48		760		
JANUARY -2015	0.33	<0.26	3.2	0.7	0.95	0.58
FEBRUARY -2015	0.37	ND	2.8	0.6	0.76	0.46
MARCH -2015	0.43	<0.26	3.8	1.8	0.84	0.52
APRIL -2015	0.38	ND	2.7	1.1	NR	0.40
MAY -2015	ND	<0.26	1.6	0.7	0.94	0.38
JUNE -2015	ND	ND	4.5	1.8	NR	0.51
JULY -2015	ND	ND	3.9	1.3	NR	0.61
AUGUST -2015	ND	ND	4.3	ND	0.48	ND
SEPTEMBER-2015	0.30	<0.26	2.5	1.2	NR	0.55
OCTOBER -2015	0.30	ND	7.6	0.9	7.95	0.40
NOVEMBER -2015	0.60	0.30	4.7	2.0	NR	0.50
DECEMBER -2015	ND	ND	4.3	1.6	NR	0.60
AVERAGE	0.23	0.03	3.8	1.1	1.99	0.46

ND= not detected NR= not required

### SOUTH BAY WATER RECLAMATION PLANT ANNUAL SEWAGE

### Trace Metals

### Annual 2015

Analyte: MDL Units: Source: Month/Limit: ====================================	Copper 2.16 UG/L Influent	Copper 2.16 UG/L Effluent 960	Iron 15.6 UG/L Influent	Iron 15.6 UG/L Effluent	Lead 1.68 UG/L Influent	Lead 1.68 UG/L Effluent 760
JANUARY -2015	89	12	798	64	4.0	ND
FEBRUARY -2015	74	7	802	42	2.0	ND
MARCH -2015	94	12	795	192	1.8	ND
APRIL -2015	82	12	694	67	1.9	ND
MAY -2015	<2	18	289	55	ND	ND
JUNE -2015	84	12	703	45	3.1	ND
JULY -2015	89	12	805	70	2.9	ND
AUGUST -2015	98	21	820	108	ND	ND
SEPTEMBER-2015	57	11	342	100	2.0	ND
OCTOBER -2015	93	9	953	59	4.0	ND
NOVEMBER -2015	103	12	954	62	2.0	2.0
DECEMBER -2015	72	9	553	64	ND	ND
=======	=============		===============		===========	
AVERAGE	78	12	709	77	2.0	0.2
Analyte:	Manganese	Manganese	Mercury	Mercury	Molybdenum	Molybdenum
MDL Units:	.78 UG/L	.78 UG/L	0.013 UG/Ĺ	.005 UG/L	.32 UG/L	.32 UG/L
MDL Únits: Source:	0	•	,	.005 UG/L Effluent	,	,
MDL Únits: Source: Month/Limit:	.78 UG/L Influent	.78 UG/L Effluent	0.013 UG/Ĺ Influent	.005 UG/L Effluent 15.00	.32 UG/L Influent	.32 UG/L Effluent
MDL Units: Source: Month/Limit: ========	.78 UG/L Influent	.78 UG/L Effluent	0.013 UG/L Influent	.005 UG/L Effluent 15.00	.32 UG/L Influent	.32 UG/L Effluent
MDL Units: Source: Month/Limit: JANUARY -2015	.78 UG/L Influent	.78 UG/L Effluent ====================================	0.013 UG/L Influent 	.005 UG/L Effluent 15.00	.32 UG/L Influent 	.32 UG/L Effluent
MDL Units: Source: Month/Limit: JANUARY -2015 FEBRUARY -2015	.78 UG/L Influent 	.78 UG/L Effluent ====== 51.8 60.2	0.013 UG/L Influent  0.217 0.125	.005 UG/L Effluent 15.00  ND ND	.32 UG/L Influent 	.32 UG/L Effluent  4.29 3.61
MDL Units: Source: Month/Limit: JANUARY -2015 FEBRUARY -2015 MARCH -2015	.78 UG/L Influent 	.78 UG/L Effluent 	0.013 UG/L Influent 0.217 0.125 0.489	.005 UG/L Effluent 15.00 ND ND 0.005	.32 UG/L Influent 	.32 UG/L Effluent 4.29 3.61 3.73
MDL Units: Source: Month/Limit: JANUARY -2015 FEBRUARY -2015 MARCH -2015 APRIL -2015	.78 UG/L Influent 86.3 90.0 114 89.6	.78 UG/L Effluent 51.8 60.2 45.5 51.1	0.013 UG/L Influent 0.217 0.125 0.489 0.085	.005 UG/L Effluent 15.00 ND ND 0.005 ND	.32 UG/L Influent 	.32 UG/L Effluent 4.29 3.61 3.73 3.53
MDL Units: Source: Month/Limit: JANUARY -2015 FEBRUARY -2015 MARCH -2015 APRIL -2015 MAY -2015	.78 UG/L Influent 	.78 UG/L Effluent 51.8 60.2 45.5 51.1 29.3	0.013 UG/L Influent 0.217 0.125 0.489 0.085 0.130	.005 UG/L Effluent 15.00 ND ND 0.005 ND	.32 UG/L Influent 	.32 UG/L Effluent 4.29 3.61 3.73 3.53 3.93
MDL Units: Source: Month/Limit: JANUARY -2015 FEBRUARY -2015 MARCH -2015 APRIL -2015 MAY -2015 JUNE -2015	.78 UG/L Influent 	.78 UG/L Effluent 51.8 60.2 45.5 51.1 29.3 23.5	0.013 UG/L Influent 0.217 0.125 0.489 0.085 0.130 0.090	.005 UG/L Effluent 15.00 ND ND 0.005 ND ND ND	.32 UG/L Influent ====================================	.32 UG/L Effluent 4.29 3.61 3.73 3.53 3.93 2.42
MDL Units: Source: Month/Limit: JANUARY -2015 FEBRUARY -2015 MARCH -2015 APRIL -2015 MAY -2015 JUNE -2015 JUNE -2015 JULY -2015	.78 UG/L Influent 	.78 UG/L Effluent ====== 51.8 60.2 45.5 51.1 29.3 23.5 40.0	0.013 UG/L Influent 0.217 0.125 0.489 0.085 0.130 0.090 0.096	.005 UG/L Effluent 15.00 ND ND 0.005 ND ND ND ND	.32 UG/L Influent ====================================	.32 UG/L Effluent 4.29 3.61 3.73 3.53 3.93 2.42 3.42
MDL Units: Source: Month/Limit: ====================================	.78 UG/L Influent 	.78 UG/L Effluent 51.8 60.2 45.5 51.1 29.3 23.5 40.0 55.5	0.013 UG/L Influent 0.217 0.125 0.489 0.085 0.130 0.090 0.096 0.083	.005 UG/L Effluent 15.00 ND 0.005 ND ND ND ND ND ND ND 0.005	.32 UG/L Influent 10.3 6.91 6.87 NR 0.70 NR NR 7.43	.32 UG/L Effluent 4.29 3.61 3.73 3.53 3.93 2.42 3.42 3.42 3.15
MDL Units: Source: Month/Limit: ========================= JANUARY -2015 FEBRUARY -2015 MARCH -2015 APRIL -2015 MAY -2015 JULY -2015 JULY -2015 AUGUST -2015 SEPTEMBER-2015	.78 UG/L Influent 	.78 UG/L Effluent 51.8 60.2 45.5 51.1 29.3 23.5 40.0 55.5 41.8	0.013 UG/L Influent 0.217 0.125 0.489 0.085 0.130 0.090 0.096 0.083 0.077	.005 UG/L Effluent 15.00 ND 0.005 ND ND ND ND ND ND ND 0.005 0.005	.32 UG/L Influent 10.3 6.91 6.87 NR 0.70 NR NR 7.43 NR	.32 UG/L Effluent 4.29 3.61 3.73 3.53 3.93 2.42 3.42 3.42 3.15 4.50
MDL Units: Source: Month/Limit: ======================== JANUARY -2015 FEBRUARY -2015 MARCH -2015 APRIL -2015 MAY -2015 JUNE -2015 JUNE -2015 AUGUST -2015 SEPTEMBER-2015 OCTOBER -2015	.78 UG/L Influent 	.78 UG/L Effluent ====== 51.8 60.2 45.5 51.1 29.3 23.5 40.0 55.5 41.8 22.0	0.013 UG/L Influent 0.217 0.125 0.489 0.085 0.130 0.090 0.096 0.096 0.083 0.077 0.065	.005 UG/L Effluent 15.00 ND 0.005 ND ND ND ND ND 0.005 0.005 ND	.32 UG/L Influent 10.3 6.91 6.87 NR 0.70 NR NR 7.43 NR 8.45	.32 UG/L Effluent 4.29 3.61 3.73 3.53 2.42 3.42 3.42 3.42 3.15 4.50 4.00
MDL Units: Source: Month/Limit: ====================================	.78 UG/L Influent 	.78 UG/L Effluent 51.8 60.2 45.5 51.1 29.3 23.5 40.0 55.5 41.8 22.0 28.5	0.013 UG/L Influent 0.217 0.125 0.489 0.085 0.130 0.090 0.096 0.096 0.083 0.077 0.065 0.097	.005 UG/L Effluent 15.00 ND ND 0.005 ND ND ND ND 0.005 0.005 ND ND ND	.32 UG/L Influent 10.3 6.91 6.87 NR 0.70 NR 7.43 NR 8.45 7.9	.32 UG/L Effluent 4.29 3.61 3.73 3.53 2.42 3.42 3.42 3.15 4.50 4.00 4.70
MDL Units: Source: Month/Limit: ======================== JANUARY -2015 FEBRUARY -2015 MARCH -2015 APRIL -2015 MAY -2015 JUNE -2015 JUNE -2015 AUGUST -2015 SEPTEMBER-2015 OCTOBER -2015	.78 UG/L Influent 	.78 UG/L Effluent 51.8 60.2 45.5 51.1 29.3 23.5 40.0 55.5 41.8 22.0 28.5 26.2	0.013 UG/L Influent 0.217 0.125 0.489 0.085 0.130 0.090 0.096 0.096 0.083 0.077 0.065	.005 UG/L Effluent 15.00 ND 0.005 ND ND ND ND 0.005 0.005 0.005 ND ND ND	.32 UG/L Influent 10.3 6.91 6.87 NR 0.70 NR NR 7.43 NR 8.45	.32 UG/L Effluent 4.29 3.61 3.73 3.53 2.42 3.42 3.42 3.15 4.50 4.00 4.70 3.90

ND= not detected NR= not required

### SOUTH BAY WATER RECLAMATION PLANT ANNUAL SEWAGE

### Trace Metals

### Annual 2015

Analyte: MDL Units: Source: Month/Limit:	Nickel .53 UG/L Influent	Nickel .53 UG/L Effluent 1900	Selenium .08 UG/L Influent	Selenium .08 UG/L Effluent 5700	Silver .73 UG/L Influent	Silver .73 UG/L Effluent 250
JANUARY -2015	5.08	3.17	1.35	0.84	ND	ND
FEBRUARY -2015	4.29	2.67	2.19	1.05	ND	ND
MARCH -2015	4.10	2.30	1.95	0.94	ND	ND
APRIL -2015	4.48	3.54	1.87	0.97	ND	ND
MAY -2015	4.02	3.12	1.18	1.03	ND	ND
JUNE -2015	4.73	2.54	1.65	0.73	ND	ND
JULY -2015	5.00	3.00	1.36	0.69	0.75	ND
AUGUST -2015	13.8	10.8	1.78	0.62	ND	ND
SEPTEMBER-2015	7.80	6.85	1.30	0.62	ND	ND
OCTOBER -2015	9.10	7.60	2.04	0.69	<0.73	ND
NOVEMBER -2015	5.80	4.00	1.58	0.72	ND	ND
DECEMBER -2015	5.40	4.20	1.13	0.37	0.90	ND
AVERAGE	6.13	4.48	1.62	0.77	0.14	ND
Analyte:	Thallium	Thallium	Vanadium	Vanadium	Zinc	Zinc
MDL Units:	3.12 UG/L	3.12 UG/L	.45 UG/L	.45 UG/L	4.19 UG/L	4.19 UG/L
Source:	Influent	Effluent	Influent	Effluent	Influent	Effluent
Month/Limit:						6900
JANUARY -2015	ND	ND	2.10	0.96	176	30.0
FEBRUARY -2015	ND	ND	1.81	0.63	159	18.1
MARCH -2015	ND	ND	NR	0.68	174	26.4
APRIL -2015	ND	ND	NR	0.84	153	24.4
MAY -2015	ND	ND	1.47	0.88	114	33.8
JUNE -2015	ND	ND	NR	0.66	173	30.6
JULY -2015	ND	ND	NR	1.03	181	33.0
AUGUST -2015	ND	ND	0.50	ND	171	17.5
SEPTEMBER-2015	ND	ND	1.20	0.95	95.0	26.0
OCTOBER -2015	ND	ND	2.15	1.10	183	32.0
NOVEMBER -2015	ND	ND	3.20	1.20	189	52.0
DECEMBER -2015	ND	ND	NR	1.40	131	52.0
			==============			
AVERAGE	ND	ND	1.78	0.86	158	31.3

ND= not detected NR= not required

### SOUTH BAY WATER RECLAMATION PLANT ANNUAL SEWAGE

Ammonia-Nitrogen and Total Cyanides

### Annual 2015

Analyte:	Ammonia-N	Ammonia-N	Total Tota				
			Cyanides	Cyanides			
MDL/Units:	.3 MG/L	.3 MG/L	.002 MG/L	.002 MG/L			
Source:	SB_INF_02	SB_OUTFALL_01	SB_INF_02	SB_OUTFALL_01			
	=========	===========	=========	=======			
JANUARY -2015	31.9	2.3	ND	ND			
FEBRUARY -2015	39.1	9.2	ND	ND			
MARCH - 2015	32.6	1.0	ND	ND			
APRIL -2015	36.1	6.7	ND	0.002			
MAY -2015	40.7	ND	ND	ND			
JUNE - 2015	31.8	ND	ND	0.003			
JULY -2015	28.1	ND	ND	0.003			
AUGUST - 2015	34.5	10.4	ND	ND			
SEPTEMBER-2015	34.4	0.8	ND	ND			
OCTOBER -2015	34.5	ND	ND	ND			
NOVEMBER -2015	37.1	ND	ND	ND			
DECEMBER -2015	32.4	ND	ND	ND			
		===========					
Average:	34.4	2.5	ND	0.001			

ND= not detected

### SOUTH BAY WATER RECLAMATION PLANT Radioactivity Effluent to the Ocean (SB_OUTFALL_01)

### Analyzed by: TestAmerica Laboratories Richland

### Annual 2015

Month	Gross Alpha Radiation	Gross Beta Radiation
JANUARY -2015	2.0 ± 4.5	19.4 ± 4.3
FEBRUARY -2015	$3.5 \pm 6.8$	23.3 ± 11.0
MARCH -2015	2.2 ± 4.0	20.4 ± 4.0
APRIL -2015	0.8 ± 4.3	24.5 ± 4.6
MAY -2015	2.9 ± 4.2	20.7 ± 4.3
JUNE -2015	$-2.7 \pm 4.3$	21.2 ± 4.4
JULY -2015	$1.1 \pm 4.4$	21.5 ± 4.2
AUGUST -2015	1.5 ± 6.0	17.9 ± 5.0
SEPTEMBER-2015	$1.1 \pm 4.6$	19.0 ± 5.0
OCTOBER -2015	1.7 ± 3.7	23.1 ± 4.7
NOVEMBER -2015	2.8 ± 3.1	20.7 ± 4.9
DECEMBER -2015	3.1 ± 4.2	19.7 ± 4.6
AVERAGE	1.7 ± 4.5	21.0 ± 5.1

Units in picocuries/liter (pCi/L)

### SOUTH BAY WATER RECLAMATION PLANT SEWAGE ANNUAL - Chlorinated Pesticide Analysis

Annual 2015

Source:								EFF	LUENT						
Date:			JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	
Analyte	MDL	Units													Avg
	====	=====	=====	=====		=====	=====	=====	=====	=====	=====	=====	=====	=====	=====
Aldrin	4	NG/L	ND												
Dieldrin	4.3	NG/L	ND												
BHC, Alpha isomer	.2	NG/L	ND												
BHC, Beta isomer	2	NG/L	ND												
BHC, Gamma isomer	.34	NG/L	ND												
BHC, Delta isomer	2	NG/L	ND												
p,p-DDD	4	NG/L	ND												
p,p-DDE	1.4	NG/L	ND												
p,p-DDT	3	NG/L	ND												
o,p-DDD	4	NG/L	ND												
o,p-DDE	2	NG/L	ND												
o,p-DDT	2.4	NG/L	ND												
Heptachlor	.6	NG/L	ND												
Heptachlor epoxide	9.4	NG/L	ND												
Alpha (cis) Chlordane	1.4	NG/L	ND												
Gamma (trans) Chlordane	1.3	NG/L	ND												
Alpha Chlordene	0	NG/L	NA												
Gamma Chlordene	0	NG/L	NA												
Oxychlordane	2	NG/L	ND												
Trans Nonachlor	1.1	NG/L	ND												
Cis Nonachlor	4	NG/L	ND												
Alpha Endosulfan	1.5	NG/L	ND												
Beta Endosulfan	3.1	NG/L	ND												
Endosulfan Sulfate	7	NG/L	ND												
Endrin	6	NG/L	ND												
Endrin aldehyde	5.4	NG/L	ND												
Mirex	2.3	NG/L	ND												
Methoxychlor	20	NG/L	ND												
Toxaphene	250	NG/L	ND												
PCB 1016	250	NG/L	ND												
PCB 1221	2000	NG/L	ND												
PCB 1232	750	NG/L	ND												
PCB 1242	250	NG/L	ND												
PCB 1248	250	NG/L	ND												
PCB 1254	500	NG/L	ND												
PCB 1260	500	NG/L	ND												
PCB 1262	500	NG/L	ND												
	====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====
Aldrin + Dieldrin	4.3	NG/L	0	0	0	0	0	0	0	0	0	0	0	0	0
Hexachlorocyclohexanes	2	NG/L	0	0	0	0	0	0	0	0	0	0	0	0	0
DDT and derivatives	4	NG/L	0	0	0	0	0	0	0	0	0	0	0	0	0
Chlordane + related cmpds.	2	NG/L	0	0	0	0	0	0	0	0	0	0	0	0	0
Polychlorinated biphenyls	2000	NG/L	0	0	0	0	0	0	0	0	0	0	0	0	0
Endosulfans	7	NG/L	0	0	0	0	0	0	0	0	0	0	0	0	0
Heptachlors	9.4	NG/L	0	0	0	0	0	0	0	0	0	0	0	0	0
Chlorinated Hydrocarbons	2000	NG/L	0	0	0	0	0	0	0	0	0	0	0	0	0

ND=not detected NA=not analyzed

Standards for alpha and gamma chlordene are no longer available in the U.S. for the analysis of these compounds.

## SOUTH BAY WATER RECLAMATION PLANT SEWAGE ANNUAL - Chlorinated Pesticide Analysis

#### Annual 2015

Source:				IN	LUENT		
Date:			FEB	MAY	AUG	0CT	
Analyte	MDL	Units					Avg
		=====	=====		=====	=====	=====
Aldrin	4	NG/L	ND	ND	ND	ND	ND
Dieldrin	4.3	NG/L	ND	ND	ND	ND	ND
BHC, Alpha isomer	.2	NG/L	ND	ND	ND	ND	ND
BHC, Beta isomer	2	NG/L	ND	ND	ND	ND	ND
BHC, Gamma isomer	.34	NG/L	ND	ND	ND	ND	ND
BHC, Delta isomer	2	NG/L	ND	ND	ND	ND	ND
p,p-DDD	4	NG/L	ND	ND	ND	ND	ND
p,p-DDE	1.4	NG/L	ND	ND	ND	ND	ND
p,p-DDT	3	NG/L	ND	ND	ND	ND	ND
o,p-DDD	4	NG/L	ND	ND	ND	ND	ND
o,p-DDE	2	NG/L	ND	ND	ND	ND	ND
o,p-DDT	2.4	NG/L	ND	ND	ND	ND	ND
Heptachlor	.6	NG/L	ND	ND	ND	ND	ND
Heptachlor epoxide	9.4	NG/L	ND	ND	ND	ND	ND
Alpha (cis) Chlordane	1.4	NG/L	ND	ND	ND	ND	ND
Gamma (trans) Chlordane	1.3	NG/L	ND	ND	ND	ND	ND
Alpha Chlordene	0	NG/L	NA	NA	NA	NA	NA
Gamma Chlordene	0	NG/L	NA	NA	NA	NA	NA
Oxychlordane	2	NG/L	ND	ND	ND	ND	ND
Trans Nonachlor	1.1	NG/L	ND	ND	ND	ND	ND
Cis Nonachlor	4	NG/L	ND	ND	ND	ND	ND
Alpha Endosulfan	1.5	NG/L	ND	ND	ND	ND	ND
Beta Endosulfan	3.1	NG/L	ND	ND	ND	ND	ND
Endosulfan Sulfate	7	NG/L	ND	ND	ND	ND	ND
Endrin	6	NG/L	ND	ND	ND	ND	ND
Endrin aldehyde	5.4	NG/L	ND	ND	ND	ND	ND
Mirex	2.3	NG/L	ND	ND	ND	ND	ND
Methoxychlor	20	NG/L	ND	ND	ND	ND	ND
Toxaphene	250	NG/L	ND	ND	ND	ND	ND
PCB 1016	250	NG/L	ND	ND	ND	ND	ND
PCB 1221	2000		ND	ND	ND	ND	ND
PCB 1232	750	NG/L	ND	ND	ND	ND	ND
PCB 1242	250	NG/L	ND	ND	ND	ND	ND
PCB 1248	250	NG/L	ND	ND	ND	ND	ND
PCB 1254	500	NG/L	ND	ND	ND	ND	ND
PCB 1260	500	NG/L	ND	ND	ND	ND	ND
PCB 1262	500	NG/L	ND	ND	ND	ND	ND
	====		=====	=====	=====	=====	=====
Aldrin + Dieldrin	4.3	NG/L	0	0	0	0	0
Hexachlorocyclohexanes	2	NG/L	0	0	0	0	0
DDT and derivatives	4	NG/L	0	0	0	0	0
Chlordane + related cmpds.	2	NG/L	0	0	0	0	0
Polychlorinated biphenyls	2000		0	0	0	0	0
Endosulfans	7	NG/L	0	0	0	0	0
Hentachlong				=====		=====	=====
Heptachlors	9.4	NG/L	0	0	0	0	0
Chloninatod Hydrocanhons	==== 2000	===== NG / I	===== 0	===== 0	===== 0		===== 0
Chlorinated Hydrocarbons	2000	NG/L	0	0	0	0	0

ND=not detected NA=not analyzed

Standards for alpha and gamma chlordene are no longer available in the U.S. for the analysis of these compounds.

# SOUTH BAY WATER RECLAMATION PLANT Organophosphorus PesticidesEPA Method 614/622 (with additions)

# INFLUENT(SB_INF_02) & EFFLUENT(SB_OUTFALL_01)

# Annual 2015

Source:			Effluent	Effluent	Influent	Influent
Date:			05-MAY-2015	06-0CT-2015	07-MAY-2015	06-0CT-2015
Analyte	MDL	Units	P778749	P807375	P783699	P807370
	===	=====	=========			
Demeton O	.15	UG/L	ND	ND	ND	ND
Demeton S	.08	UG/L	ND	ND	ND	ND
Diazinon	.03	UG/L	ND	ND	ND	ND
Guthion	.15	UG/L	ND	ND	ND	ND
Malathion	.03	UG/L	ND	ND	ND	ND
Parathion	.03	UG/L	ND	ND	ND	ND
Dichlorvos	.05	UG/L	ND	ND	ND	0.28
Disulfoton	.02	UG/L	ND	ND	ND	ND
Dimethoate	.04	UG/L	ND	ND	ND	ND
Stirophos	.03	UG/L	ND	ND	ND	ND
Coumaphos	.15	UG/L	ND	ND	ND	ND
Chlorpyrifos	.03	UG/L	ND	ND	ND	ND
	===	=====				
Thiophosphorus Pesticides	.15	UG/L	0.0	0.0	0.0	0.0
Demeton -O, -S	.15	UG/L	0.0	0.0	0.0	0.0
	===	=====	==========			
Total Organophosphorus Pesticides	.15	UG/L	0.0	0.0	0.0	0.28

ND=not detected

## SOUTH BAY WATER RECLAMATION PLANT ANNUAL SEWAGE - Tributyl Tin Analysis

## Annual 2015

Source:			EFFLUENT											
Date:			FEB	MAY	AUG	0CT								
Analyte	MDL	Units					Average							
	===	=====	=====	=====	=====	=====	=====							
Dibutyltin	7	UG/L	ND	ND	ND	ND	ND							
Monobutyltin	16	UG/L	ND	ND	ND	ND	ND							
Tributyltin	2	UG/L	ND	ND	ND	ND	ND							

Source:			INFLUENT											
Date:			FEB	MAY	AUG	0CT								
Analyte	MDL	Units					Average							
	===	=====	=====	=====	=====	=====	=====							
Dibutyltin	7	UG/L	ND	ND	ND	ND	ND							
Monobutyltin	16	UG/L	ND	ND	ND	ND	ND							
Tributyltin	2	UG/L	ND	ND	ND	ND	ND							

## ND=not detected

# SOUTH BAY WATER RECLAMATION PLANT SEWAGE ANNUAL - Acid Extractables

#### Annual 2015

Source:								EFF	LUENT						
Date:			JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	0CT	NOV	DEC	
Analyte	MDL	Units													AVG
	====	=====	=====		=====		=====	=====	=====	=====	=====	=====		=====	=====
2-Chlorophenol		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dichlorophenol		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Chloro-3-methylphenol		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4,6-Trichlorophenol		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pentachlorophenol		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenol		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Nitrophenol		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dimethylphenol		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dinitrophenol		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Nitrophenol		UG/L	ND	ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND
2-Methyl-4,6-dinitrophenol	1.52	UG/L	ND	ND		ND	ND	ND	ND		ND	ND	ND	ND	ND
Total Chlorinated Phenols	1.67	 UG/L	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Non-Chlorinated Phenols		UG/L	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	====	=====	=====	=====	=====	=====	=====	=====	=====	=====			=====	=====	=====
Total Phenols	2.16	UG/L	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Additional analytes determined															
	====														
2-Methylphenol	2.15	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3-Methylphenol(4-MP is unresolved)		UG/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-Methylphenol(3-MP is unresolved)		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4,5-Trichlorophenol		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Source:					LUENT		
Date: Analyte	MDL	Units	FEB	MAY	AUG	OCT	AVG
2-Chlorophenol	1.32	UG/L	ND	ND	ND	ND	ND
2,4-Dichlorophenol	1.01	UG/L	ND	ND	ND	ND	ND
4-Chloro-3-methylphenol	1.67	UG/L	ND	ND	ND	ND	ND
2,4,6-Trichlorophenol	1.65	UG/L	ND	ND	ND	ND	ND
Pentachlorophenol	1.12	UG/L	ND	ND	ND	ND	ND
Phenol	1.76	UG/L	49.9	54.8	48.7	50.0	50.9
2-Nitrophenol	1.55	UG/L	ND	ND	ND	ND	ND
2,4-Dimethylphenol	2.01	UG/L	ND	ND	ND	ND	ND
2,4-Dinitrophenol	2.16	UG/L	ND	ND	ND	ND	ND
4-Nitrophenol	1.14	UG/L	ND	ND	ND	ND	ND
2-Methyl-4,6-dinitrophenol	1.52	UG/L	ND	ND	ND	ND	ND
		=====	=====				
Total Chlorinated Phenols	1.67	UG/L	0.0	0.0	0.0	0.0	0.0
Total Non-Chlorinated Phenols	2.16	UG/L	49.9	54.8	48.7	50.0	50.9
	====	=====	=====	=====	=====	=====	=====
Total Phenols	2.16	UG/L	49.9	54.8	48.7	50.0	50.9

Additional analytes determined							
	====	=====	=====	=====	=====	=====	=====
2-Methylphenol	2.15	UG/L	ND	ND	ND	ND	ND
3-Methylphenol(4-MP is unresolved)		UG/L	NA	NA	NA	NA	NA
4-Methylphenol(3-MP is unresolved)	2.11	UG/L	139	130	117	144	133
2,4,5-Trichlorophenol	1.66	UG/L	ND	ND	ND	ND	ND

ND=not detected NA=not analyzed

# SOUTH BAY WATER RECLAMATION PLANT SEWAGE ANNUAL Priority Pollutants Base/Neutrals

#### Annual 2015

Source:				EFFL	UENT		
Date:			FEB	MAY	AUG	ОСТ	
Analyte	MDL	Units					AVG
	====	=====	=====				=====
Bis-(2-chloroethyl) ether	1.38	UG/L	ND	ND	ND	ND	ND
Bis-(2-chloroisopropyl) ether	1.16	UG/L	ND	ND	ND	ND	ND
N-nitrosodi-n-propylamine	1.16	UG/L	ND	ND	ND	ND	ND
Nitrobenzene	1.6	UG/L	ND	ND	ND	ND	ND
Hexachloroethane	1.32		ND	ND	ND	ND	ND
Isophorone	1.53	UG/L	ND	ND	ND	ND	ND
Bis-(2-chloroethoxy) methane	1.01	UG/L	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	1.52	UG/L	ND	ND	ND	ND	ND
Naphthalene	1.65	UG/L	ND	ND	ND	ND	ND
Hexachlorobutadiene	1.64	UG/L	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene	1.25	UG/L	ND	ND	ND	ND	ND
Acenaphthylene	1.77	UG/L	ND	ND	ND	ND	ND
Dimethyl phthalate	1.44	UG/L	ND	ND	ND	ND	ND
2,6-Dinitrotoluene	1.53		ND	ND	ND	ND	ND
Acenaphthene	1.8	UG/L	ND	ND	ND	ND	ND
2,4-Dinitrotoluene	1.36	UG/L	ND	ND	ND	ND	ND
Fluorene	1.61	UG/L	ND	ND	ND	ND	ND
4-Chlorophenyl phenyl ether	1.57	UG/L	ND	ND	ND	ND	ND
Diethyl phthalate	3.05	UG/L	ND	ND	ND	ND	ND
N-nitrosodiphenylamine	3.48	UG/L	ND	ND	ND	ND	ND
4-Bromophenyl phenyl ether	1.4	UG/L	ND	ND	ND	ND	ND
Hexachlorobenzene	1.48	UG/L	ND	ND	ND	ND	ND
Phenanthrene	1.34	UG/L	ND	ND	ND	ND	ND
Anthracene	1.29	UG/L	ND	ND	ND	ND	ND
Di-n-butyl phthalate	3.96	UG/L	ND	ND	ND	ND	ND
N-nitrosodimethylamine	1.27	UG/L	ND	ND	ND	ND	ND
Fluoranthene	1.33	UG/L	ND	ND	ND	ND	ND
Pyrene	1.43	UG/L	ND	ND	ND	ND	ND
Benzidine	1.52	UG/L	ND	ND	ND	ND	ND
Butyl benzyl phthalate	2.84	UG/L	ND	ND	ND	ND	ND
Chrysene	1.16	UG/L	ND	ND	ND	ND	ND
Benzo[a]anthracene	1.1	UG/L	ND	ND	ND	ND	ND
Bis-(2-ethylhexyl) phthalate	8.96	UG/L	ND	ND	15.8	ND	4.0
Di-n-octyl phthalate	1	UG/L	ND	ND	ND	ND	ND
3,3-Dichlorobenzidine	2.44	UG/L	ND	ND	ND	ND	ND
Benzo[k]fluoranthene	1.49		ND	ND	ND	ND	ND
3,4-Benzo(b)fluoranthene	1.35	UG/L	ND	ND	ND	ND	ND
Benzo[a]pyrene	1.25		ND	ND	ND	ND	ND
Indeno(1,2,3-CD)pyrene		UG/L	ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene		UG/L	ND	ND	ND	ND	ND
Benzo[g,h,i]perylene	1.09		ND	ND	ND	ND	ND
1,2-Diphenylhydrazine	1.37		ND	ND	ND	ND	ND
Polymuc Anomatic Hydrocombons		=====	=====	===== 0.0			
Polynuc. Aromatic Hydrocarbons	1.//	0G/L	0.0	0.0	0.0	0.0	0.0
Base/Neutral Compounds	8 96	UG/L	0.0	0.0	15.8	0.0	4.0
base/weathar compounds	0.50	00/L	0.0	0.0	15.0	0.0	4.0
Additional analytes determined							
	====						
1-Methylnaphthalene	2.18	UG/L	ND	ND	ND	ND	ND
2-Methylnaphthalene		UG/L	ND	ND	ND	ND	ND
2,6-Dimethylnaphthalene		UG/L	ND	ND	ND	ND	ND

z-nethyinaphthaitene	2.14 00/1	ND	ND	ND	ND	ND
2,6-Dimethylnaphthalene	2.16 UG/L	ND	ND	ND	ND	ND
2,3,5-Trimethylnaphthalene	2.18 UG/L	ND	ND	ND	ND	ND
1-Methylphenanthrene	1.46 UG/L	ND	ND	ND	ND	ND
Benzo[e]pyrene	1.44 UG/L	ND	ND	ND	ND	ND
Perylene	1.41 UG/L	ND	ND	ND	ND	ND
Biphenyl	2.29 UG/L	ND	ND	ND	ND	ND

ND=not detected

#### SOUTH BAY WATER RECLAMATION PLANT SEWAGE ANNUAL Priority Pollutants Base/Neutrals

#### Annual 2015

Source: Date:			FEB	INI MAY		ост	
Analyte	MDL	Units	FED	MAY	AUG	001	AVG
Bis-(2-chloroethyl) ether		===== UG/L	===== ND	===== ND	===== : ND	===== ND	===== ND
Bis-(2-chloroisopropyl) ether		UG/L	ND	ND	ND	ND	ND
N-nitrosodi-n-propylamine		UG/L	ND	ND	ND	ND	ND
Nitrobenzene	1.10	UG/L	ND	ND	ND	ND	ND
Hexachloroethane		UG/L	ND	ND	ND	ND	ND
Isophorone		UG/L	ND	ND	ND	ND	ND
Bis-(2-chloroethoxy) methane		UG/L	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene		UG/L	ND	ND	ND	ND	ND
Naphthalene		UG/L	ND	ND	ND	ND	ND
Hexachlorobutadiene		UG/L					
			ND	ND	ND	ND	ND
Hexachlorocyclopentadiene		UG/L	ND	ND	ND	ND	ND
Acenaphthylene		UG/L	ND	ND	ND	ND	ND
Dimethyl phthalate		UG/L	ND	ND	ND	ND	ND
2,6-Dinitrotoluene		UG/L	ND	ND	ND	ND	ND
Acenaphthene	1.8	UG/L	ND	ND	ND	ND	ND
2,4-Dinitrotoluene		UG/L	ND	ND	ND	ND	ND
Fluorene		UG/L	ND	ND	ND	ND	ND
4-Chlorophenyl phenyl ether		UG/L	ND	ND	ND	ND	ND
Diethyl phthalate		UG/L	4.7	8.5	4.5	5.3	5.8
N-nitrosodiphenylamine		UG/L	ND	ND	ND	ND	ND
4-Bromophenyl phenyl ether	1.4	UG/L	ND	ND	ND	ND	ND
Hexachlorobenzene		UG/L	ND	ND	ND	ND	ND
Phenanthrene		UG/L	ND	ND	ND	ND	ND
Anthracene		UG/L	ND	ND	ND	ND	ND
Di-n-butyl phthalate		UG/L	ND	ND	ND	ND	ND
N-nitrosodimethylamine		UG/L	ND	ND	ND	ND	ND
Fluoranthene		UG/L	ND	ND	ND	ND	ND
Pyrene		UG/L	ND	ND	ND	ND	ND
Benzidine		UG/L	ND	ND	ND	ND	ND
Butyl benzyl phthalate		UG/L	3.0		DNQ3.0	ND	0.8
Chrysene		UG/L	ND	ND	ND	ND	ND
Benzo[a]anthracene	1.1	UG/L	ND	ND	ND	ND	ND
Bis-(2-ethylhexyl) phthalate	8.96	UG/L	13.2	28.2	34.0	33.6	27.3
Di-n-octyl phthalate	1	UG/L	ND	ND	ND	ND	ND
3,3-Dichlorobenzidine	2.44	UG/L	ND	ND	ND	ND	ND
Benzo[k]fluoranthene	1.49	UG/L	ND	ND	ND	ND	ND
3,4-Benzo(b)fluoranthene	1.35	UG/L	ND	ND	ND	ND	ND
Benzo[a]pyrene	1.25	UG/L	ND	ND	ND	ND	ND
Indeno(1,2,3-CD)pyrene	1.14	UG/L	ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene	1.01	UG/L	ND	ND	ND	ND	ND
Benzo[g,h,i]perylene	1.09	UG/L	ND	ND	ND	ND	ND
1,2-Diphenylhydrazine	1.37	UG/L	ND	ND	ND	ND	ND
	====	=====	=====	=====	=====	=====	=====
Polynuc. Aromatic Hydrocarbons			0.0	0.0	0.0	0.0	0.0
Base/Neutral Compounds		===== UG/L	===== 20.9	===== 36.7	===== 38.5	===== 38.9	===== 33.9
Additional analytes determined							

## Additional analytes determined

	====	=====	=====	=====	=====	=====	=====
1-Methylnaphthalene	2.18	UG/L	ND	ND	ND	ND	ND
2-Methylnaphthalene	2.14	UG/L	ND	ND	ND	ND	ND
2,6-Dimethylnaphthalene	2.16	UG/L	ND	ND	ND	ND	ND
2,3,5-Trimethylnaphthalene	2.18	UG/L	ND	ND	ND	ND	ND
1-Methylphenanthrene	1.46	UG/L	ND	ND	ND	ND	ND
Benzo[e]pyrene	1.44	UG/L	ND	ND	ND	ND	ND
Perylene	1.41	UG/L	ND	ND	ND	ND	ND
Biphenyl	2.29	UG/L	ND	ND	ND	ND	ND

ND=not detected DNQ= (Detected but not quantified). Estimated analyte concentration below calibration range.

### SOUTH BAY WATER RECLAMATION PLANT SEWAGE ANNUAL Priority Pollutants Purgeables

#### Annual 2015

#### Source:

#### EFFLUENT

Analyte	MDL ====	Units	FEB =====	MAY	AUG	0CT	AVG	
Dichlorodifluoromethane	.66	UG/L	ND	ND	ND	ND	ND	
Chloromethane	.5	UG/L	ND	ND	ND	ND	ND	
Vinyl chloride	.4	UG/L	ND	ND	ND	ND	ND	
Bromomethane	.7	UG/L	ND	ND	ND	ND	ND	
Chloroethane	.9	UG/L	ND	ND	ND	ND	ND	
Trichlorofluoromethane	.3	UG/L	ND	ND	ND	ND	ND	
Acrolein	1.3	UG/L	ND	ND	ND	ND	ND	
1,1-Dichloroethane	.4	UG/L	ND	ND	ND	ND	ND	
Methylene chloride	.4	UG/L	ND	ND	ND	ND	ND	
trans-1,2-dichloroethene	.6	UG/L	ND	ND	ND	ND	ND	
1,1-Dichloroethene	.0	UG/L	ND	ND	ND	ND	ND	
Acrylonitrile	.4	UG/L	ND	ND	ND	ND	ND	
Chloroform	.7	UG/L	ND		DNQ0.7			
1,1,1-Trichloroethane	.2	UG/L	ND	ND	ND	ND ND	ND	
Carbon tetrachloride	.4	UG/L	ND	ND	ND	ND	ND	
	.4 .4	UG/L	ND	ND	ND	ND		
Benzene	.4 .5	UG/L UG/L	ND	ND	ND	ND	ND ND	
1,2-Dichloroethane	.5 .7							
Trichloroethene		UG/L	ND	ND	ND	ND	ND	
1,2-Dichloropropane	.3	UG/L	ND	ND	ND	ND	ND	
Bromodichloromethane	.5	UG/L	ND	ND	ND	ND	ND	
2-Chloroethylvinyl ether	1.1	UG/L	ND	ND	ND	ND	ND	
cis-1,3-dichloropropene	.3	UG/L	ND	ND	ND	ND	ND	
Toluene	.4	UG/L	ND	ND	ND	ND	ND	
trans-1,3-dichloropropene	.5	UG/L	ND	ND	ND	ND	ND	
1,1,2-Trichloroethane	.5	UG/L	ND	ND	ND	ND	ND	
Tetrachloroethene	1.1	UG/L	ND	ND	ND	ND	ND	
Dibromochloromethane	.6	UG/L	ND	ND	ND	ND	ND	
Chlorobenzene	.4	UG/L	ND	ND	ND	ND	ND	
Ethylbenzene	.3	UG/L	ND	ND	ND	ND	ND	
Bromoform	.5	UG/L	ND	ND	ND	ND	ND	
1,1,2,2-Tetrachloroethane	.5	UG/L	ND	ND	ND	ND	ND	
1,3-Dichlorobenzene	.5	UG/L	ND	ND	ND	ND	ND	
1,4-Dichlorobenzene	.4	UG/L	ND	ND	ND	ND	ND	
1,2-Dichlorobenzene	.4	UG/L	ND	ND	ND	ND	ND	
1,2,4-Trichlorobenzene		UG/L	ND	ND	ND	ND	ND	
					=====			
Halomethane Purgeable Cmpnds	.7 ====	UG/L =====	0.0 =====	0.0 =====	0.0 =====	0.0 =====	0.0 =====	
Total Dichlorobenzenes	.5	UG/L	0.0	0.0	0.0	0.0	0.0	
Total Chloromethanes	 .5	===== UG/L	===== 0.0	===== 1.5	===== 0.0	===== 0.0	===== 0.4	
	====	=====	=====	=====	=====	=====	=====	
Purgeable Compounds	1.3	UG/L	0.0	1.5	0.0	0.0	0.4	
Additional analytes determin								
Methyl Iodide	.6	UG/L	ND	ND	ND	ND	ND	
Carbon disulfide	.6	UG/L	ND	ND	ND	ND	ND	

Methyl Iodide	.6	UG/L	ND	ND	ND	ND	ND
Carbon disulfide	.6	UG/L	ND	ND	ND	ND	ND
Acetone	4.5	UG/L	ND	ND	ND	ND	ND
Allyl chloride	.6	UG/L	ND	ND	ND	ND	ND
Methyl tert-butyl ether	.4	UG/L	ND	ND	ND	ND	ND
Chloroprene	.4	UG/L	ND	ND	ND	ND	ND
1,2-Dibromoethane	.3	UG/L	ND	ND	ND	ND	ND
2-Butanone	6.3	UG/L	ND	ND	ND	ND	ND
Methyl methacrylate	.8	UG/L	ND	ND	ND	ND	ND
2-Nitropropane	12	UG/L	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	1.3	UG/L	ND	ND	ND	ND	ND
meta,para xylenes	.6	UG/L	ND	ND	ND	ND	ND
ortho-xylene	.4	UG/L	ND	ND	ND	ND	ND
Isopropylbenzene	.3	UG/L	ND	ND	ND	ND	ND
Styrene	.3	UG/L	ND	ND	ND	ND	ND
Benzyl chloride	1.1	UG/L	ND	ND	ND	ND	ND

ND= not detected DNQ= (Detected but not quantified). Estimated analyte concentration below calibration range.

#### SOUTH BAY WATER RECLAMATION PLANT SEWAGE ANNUAL Priority Pollutants Purgeables

Annual 2015

#### Source:

INFLUENT

Dichlorodifluoromethane .66 UG/L ND ND ND ND ND ND ND Vinyl chloride .4 UG/L ND ND ND ND ND ND Schoromethane .7 UG/L ND ND ND ND ND ND Chloroethane .9 UG/L ND ND ND ND ND ND Trichlorofluoromethane .3 UG/L ND ND ND ND ND ND Acrolein 1.3 UG/L ND ND ND ND ND ND 1,1-Dichloroethane .4 UG/L ND ND ND ND ND ND trans-1,2-dichloroethane .4 UG/L ND ND ND ND ND ND Acrylonitrile .7 UG/L ND ND ND ND ND ND Benzene .4 UG/L ND ND ND ND ND ND Acrylonitrile .7 UG/L ND ND ND ND ND Chloroform .2 UG/L ND ND ND ND ND Acrylonitrile .7 UG/L ND ND ND ND ND Benzene .4 UG/L ND ND ND ND ND ND ND ND ND ND Carbon tetrachloride .4 UG/L ND ND ND ND ND 1,2-Dichloroethane .5 UG/L ND ND ND ND ND 2-Chloroethane .5 UG/L ND ND ND N	Analyte	MDL	Units	FEB =====	MAY	AUG	0CT	AVG
Chloromethane.5UG/LNDNDNDNDNDNDVinyl chloride.4UG/LNDNDNDNDNDBromomethane.7UG/LNDNDNDNDNDChloroethane.9UG/LNDNDNDNDNDAcrolein1.3UG/LNDNDNDNDNDAcrolein1.3UG/LNDNDNDNDNDAcrolein1.3UG/LNDNDNDNDNDMethylene chloride.3UG/LNDNDNDNDND1,1-Dichloroethane.4UG/LNDNDNDNDNDAcrylonitrile.7UG/LNDNDNDNDNDChloroform.2UG/L1.52.5DNQ1.82.01.51,1,1-Trichloroethane.4UG/LNDNDNDNDNDCarbon tetrachloride.4UG/LNDNDNDND1,2-Dichloroethane.5UG/LNDNDNDND1,2-Dichloropopane.3UG/LNDNDNDND2-Chloroothylvinyl ether1.1UG/LNDNDNDND2-Chloroothyloethane.5UG/LNDNDNDND1,1,2-Trichloropopane.3UG/LNDNDNDND1,1,2,2-Trichloroothane.5UG/L <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Bromomethane.7UG/LNDNDNDNDNDChloroethane.9UG/LNDNDNDNDNDTrichlorofluoromethane.3UG/LNDNDNDNDNDAcrolein1.3UG/LNDNDNDNDNDND1,1-Dichloroethane.4UG/LNDNDNDNDNDNDMethylene chloride.3UG/LNDNDNDNDNDND1,1-Dichloroethene.4UG/LNDNDNDNDNDNDAcrylonitrile.7UG/LNDNDNDNDNDNDChloroform.2UG/L1.52.5DNQ1.82.01.51.51,1,1-Trichloroethane.4UG/LNDNDNDNDNDNDBerzene.4UG/LNDNDNDNDNDND1,2-Dichloroethane.5UG/LNDNDNDNDND1,2-Dichloropropane.3UG/LNDNDNDNDND2-Chloroethylvinyl ether1.1UG/LNDNDNDNDND1,1,2-Trichloroethane.5UG/LNDNDNDNDND1,1,2-Trichloroethane.5UG/LNDNDNDNDND1,1,2-Trichloroethane.5UG/LNDNDNDNDND <td< td=""><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td></td<>			•					
Chloroethane         .9         UG/L         ND         ND         ND         ND         ND         ND           Acrolein         1.3         UG/L         ND         ND         ND         ND         ND         ND           Acrolein         1.3         UG/L         ND         ND         ND         ND         ND         ND           Methylene chloride         .4         UG/L         ND         ND <t< td=""><td>Vinyl chloride</td><td>.4</td><td>UG/L</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></t<>	Vinyl chloride	.4	UG/L	ND	ND	ND	ND	ND
Trichlorofluoromethane       .3       UG/L       ND	Bromomethane	.7	UG/L	ND	ND	ND	ND	ND
Acrolein1.3UG/LNDNDNDNDNDND1,1-Dichloroethane.4UG/LNDNDNDNDNDNDMethylene chloride.3UG/LNDNDNDNDNDND1,1-Dichloroethene.4UG/LNDNDNDNDNDND1,1-Dichloroethene.4UG/LNDNDNDNDNDNDChloroform.2UG/L1.52.5DNQ1.82.01.51,1,1-Trichloroethane.4UG/LNDNDNDNDNDCarbon tetrachloride.4UG/LNDNDNDNDNDCarbon tetrachloride.5UG/LNDNDNDNDND1,2-Dichloroethane.5UG/LNDNDNDNDND1,2-Dichloropopane.3UG/LNDNDNDNDND2-Chloroethane.5UG/LNDNDNDNDND2-Chloroethane.5UG/LNDNDNDNDND2-Chloroethane.5UG/LNDNDNDNDND2-Chloroethane.5UG/LNDNDNDNDND2-Chloroethane.5UG/LNDNDNDND2-Chloroethane.5UG/LNDNDNDND2-Chloroethane.5UG/LNDND <td< td=""><td>Chloroethane</td><td>.9</td><td>UG/L</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></td<>	Chloroethane	.9	UG/L	ND	ND	ND	ND	ND
1,1-Dichloroethane.4UG/LNDNDNDNDNDMethylene chloride.3UG/LNDDNQ0.8DNQ0.6DNQ0.4*NDtrans-1,2-dichloroethene.6UG/LNDNDNDND1,1-Dichloroethene.4UG/LNDNDNDNDAcrylonitrile.7UG/LNDNDNDNDChloroform.2UG/L1.52.5DNQ1.82.01.51,1-Trichloroethane.4UG/LNDNDNDNDNDCarbon tetrachloride.4UG/LNDNDNDNDNDBenzene.4UG/LNDNDNDNDND1,2-Dichloroethane.5UG/LNDNDNDNDND1,2-Dichloroethane.5UG/LNDNDNDNDND1,2-Dichloropropane.3UG/LNDNDNDNDND2-Chloroethylvinyl ether1.1UG/LNDNDNDNDND1,1,2-Trichloropropene.5UG/LNDNDNDNDND1,1,2-Trichloroethane.5UG/LNDNDNDNDND1,1,2,2-Tetrachloroethane.5UG/LNDNDNDNDND1,3-Dichlorobenzene.4UG/LNDNDNDNDND1,3,2,2-Tetrachloroethane.5UG/LNDNDNDND <td>Trichlorofluoromethane</td> <td>.3</td> <td>UG/L</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td>	Trichlorofluoromethane	.3	UG/L	ND	ND	ND	ND	ND
Methylene chloride         .3         UG/L         ND         DNQ0.8DNQ0.6DNQ0.4*         ND           trans-1,2-dichloroethene         .6         UG/L         ND         ND         ND         ND         ND           1,1-Dichloroethene         .4         UG/L         ND         ND         ND         ND         ND         ND           Acrylonitrile         .7         UG/L         ND         ND         ND         ND         ND         ND           Chloroform         .2         UG/L         1.5         2.5         DNQ1.8         2.0         1.5           1,1,1-Trichloroethane         .4         UG/L         ND         ND         ND         ND         ND           Benzene         .4         UG/L         ND         ND         ND         ND         ND         ND         ND           1,2-Dichloroethane         .5         UG/L         ND         ND         ND         ND         ND         ND         ND         ND         ND           2-Chloroethylvinyl ether         1.1         UG/L         ND	Acrolein	1.3	UG/L	ND	ND	ND	ND	ND
trans-1,2-dichloroethene.6UG/LNDNDNDNDNDND1,1-Dichloroethene.4UG/LNDNDNDNDNDAcrylonitrile.7UG/LNDNDNDNDNDChloroform.2UG/L1.52.5DNO1.82.01.51,1,1-Trichloroethane.4UG/LNDNDNDNDNDCarbon tetrachloride.4UG/LNDNDNDNDNDBenzene.4UG/LNDNDNDNDND1,2-Dichloroethane.5UG/LNDNDNDNDND1,2-Dichloropropane.3UG/LNDNDNDNDND2-Chloroethylvinyl ether1.1UG/LNDNDNDNDND2-Chloroethylvinyl ether1.1UG/LNDNDNDNDND2-Chloroethane.5UG/LNDNDNDNDNDND1,1,2-Trichloroethane.5UG/LNDNDNDNDND1,1,2-Trichloroethane.6UG/LNDNDNDNDND1,1,2-Trichloroethane.6UG/LNDNDNDND1,1,2-Trichloroethane.5UG/LNDNDNDND1,1,2-Trichloroethane.5UG/LNDNDNDND1,3-Dichloroethane.5UG/LNDND<	1,1-Dichloroethane	.4	UG/L	ND	ND	ND	ND	ND
1,1-Dichloroethene       .4       UG/L       ND       ND       ND       ND       ND         Acrylonitrile       .7       UG/L       ND       ND       ND       ND       ND       ND         Chloroform       .2       UG/L       1.5       2.5       DNQ1.8       2.0       1.5         1,1-Trichloroethane       .4       UG/L       ND       ND       ND       ND       ND         Carbon tetrachloride       .4       UG/L       ND       ND       ND       ND       ND       ND       ND         Benzene       .4       UG/L       ND	Methylene chloride	.3	UG/L	ND	DNQ0.8	3DNQ0.6	DNQ0.4*	^s ND
Acrylonitrile.7UG/LNDNDNDNDNDChloroform.2UG/L1.52.5DNQ1.82.01.51,1,1-Trichloroethane.4UG/LNDNDNDNDNDCarbon tetrachloride.4UG/LNDNDNDNDNDBenzene.4UG/LNDNDNDNDNDND1,2-Dichloroethane.5UG/LNDNDNDNDNDTrichloroethene.7UG/LNDNDNDNDND2-Chloroethylvinyl ether1.1UG/LNDNDNDNDND2-Chloroethylvinyl ether1.1UG/LNDNDNDNDNDToluene.4UG/LNDNDNDNDNDND1,1,2-Trichloroethane.5UG/LNDNDNDNDND1,1,2-Trichloroethane.5UG/LNDNDNDNDND1,1,2-Trichloroethane.5UG/LNDNDNDNDND1,1,2-Trichloroethane.6UG/LNDNDNDNDND1,1,2-Trichloroethane.6UG/LNDNDNDNDND1,1,2-Trichloroethane.6UG/LNDNDNDNDND1,1,2-Trichloroethane.5UG/LNDNDNDNDND1,1,2,2-Tetrachloroethane.5 <t< td=""><td>trans-1,2-dichloroethene</td><td>.6</td><td>UG/L</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></t<>	trans-1,2-dichloroethene	.6	UG/L	ND	ND	ND	ND	ND
Chloroform       .2       UG/L       1.5       2.5       DNQ1.8       2.0       1.5         1,1,1-Trichloroethane       .4       UG/L       ND       ND       ND       ND       ND         Benzene       .4       UG/L       ND       ND       ND       ND       ND       ND       ND         1,2-Dichloroethane       .5       UG/L       ND       ND </td <td>1,1-Dichloroethene</td> <td>.4</td> <td>UG/L</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td>	1,1-Dichloroethene	.4	UG/L	ND	ND	ND	ND	ND
1,1,1-Trichloroethane.4UG/LNDNDNDNDNDNDCarbon tetrachloride.4UG/LNDNDNDNDNDNDBenzene.4UG/LNDNDNDNDNDND1,2-Dichloroethane.5UG/LNDNDNDNDNDTrichloroethene.7UG/LNDNDNDNDNDBromodichloromethane.5UG/LNDNDNDNDND2-Chloroethylvinyl ether1.1UG/LNDNDNDNDNDCis-1,3-dichloropropene.3UG/LNDNDNDNDNDToluene.4UG/LNDNDNDNDNDNDToluene.4UG/LNDNDNDNDNDNDToluene.4UG/LNDNDNDNDNDToluene.4UG/LNDNDNDNDND1,1,2-Trichloroethane.5UG/LNDNDNDND1,1,2-Trichloroethane.5UG/LNDNDNDNDDibromochloromethane.6UG/LNDNDNDNDChlorobenzene.4UG/LNDNDNDNDLinorobenzene.5UG/LNDNDNDND1,1,2,2-Tetrachloroethane.5UG/LNDNDNDND1,3-D	Acrylonitrile	.7	UG/L	ND	ND	ND	ND	ND
Carbon tetrachloride.4UG/LNDNDNDNDNDNDBenzene.4UG/LNDNDNDNDNDND1,2-Dichloroethane.5UG/LNDNDNDNDND1,2-Dichloropropane.3UG/LNDNDNDNDND1,2-Dichloropropane.3UG/LNDNDNDNDND2-Chloroethylvinyl ether1.1UG/LNDNDNDNDND2-Chloroethylvinyl ether1.1UG/LNDNDNDNDNDcis-1,3-dichloropropene.3UG/LNDNDNDNDNDToluene.4UG/LNDNDNDNDND1,2-Trichloroethane.5UG/LNDNDNDNDND1,2-Trichloroethane.5UG/LNDNDNDNDND1,2-Trichloroethane.6UG/LNDNDNDNDND1,2,2-Tetrachloroethane.6UG/LNDNDNDNDNDChlorobenzene.4UG/LNDNDNDNDND1,3-Dichlorobenzene.5UG/LNDNDNDND1,3-Dichlorobenzene.5UG/LNDNDNDND1,2,2-Tetrachloroethane.5UG/LNDNDNDND1,3-Dichlorobenzene.5UG/LNDNDN	Chloroform	.2	UG/L	1.5	2.5	DNQ1.8	2.0	1.5
Benzene.4UG/LNDNDNDNDNDND1,2-Dichloroethane.5UG/LNDNDNDNDNDNDTrichloroethene.7UG/LNDNDNDNDNDND1,2-Dichloropropane.3UG/LNDNDNDNDNDBromodichloromethane.5UG/LNDNDNDNDND2-Chloroethylvinyl ether1.1UG/LNDNDNDNDND2-Chloroethyloropropene.3UG/LNDNDNDNDNDToluene.4UG/LNDNDNDNDNDToluene.4UG/LNDNDNDNDND1,1,2-Trichloroethane.5UG/LNDNDNDND1,1,2-Trichloroethane.6UG/LNDNDNDNDDibromochloromethane.6UG/LNDNDNDNDDibromochloromethane.5UG/LNDNDNDND1,1,2,2-Tetrachloroethane.5UG/LNDNDNDND1,3-Dichlorobenzene.5UG/LNDNDNDND1,4-Dichlorobenzene.5UG/LNDNDNDND1,2,4-Trichlorobenzene.5UG/LNDNDNDND1,2,4-Trichlorobenzene.5UG/LNDNDNDND1,2,4-Trichlorobenze	1,1,1-Trichloroethane	.4	UG/L	ND	ND	ND	ND	ND
1,2-Dichloroethane.5UG/LNDNDNDNDNDNDTrichloroethene.7UG/LNDNDNDNDNDND1,2-Dichloropropane.3UG/LNDNDNDNDNDNDBromodichloromethane.5UG/LNDNDNDNDND2-Chloroethylvinyl ether1.1UG/LNDNDNDNDNDcis-1,3-dichloropropene.3UG/LNDNDNDNDNDToluene.4UG/LNDNDNDNDND1,1,2-Trichloroethane.5UG/LNDNDNDND1,1,2-Trichloroethane.5UG/LNDNDNDNDDibromochloromethane.6UG/LNDNDNDNDDibromochloromethane.6UG/LNDNDNDNDChlorobenzene.4UG/LNDNDNDNDBromoform.5UG/LNDNDNDND1,3,2-Tetrachloroethane.5UG/LNDNDNDND1,3,2-Tetrachloroethane.5UG/LNDNDNDND1,4-Dichlorobenzene.4UG/LNDNDNDND1,3,2-Tetrachloroethane.5UG/LNDNDNDND1,4-Dichlorobenzene.4UG/LNDNDNDND1,2-Dichlorobenzene.4 <td>Carbon tetrachloride</td> <td>.4</td> <td>UG/L</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td>	Carbon tetrachloride	.4	UG/L	ND	ND	ND	ND	ND
Trichloroethene.7UG/LNDNDNDNDNDND1,2-Dichloropropane.3UG/LNDNDNDNDNDNDBromodichloromethane.5UG/LNDNDNDNDNDND2-Chloroethylvinyl ether1.1UG/LNDNDNDNDND2-Chloroethylvinyl ether1.1UG/LNDNDNDNDND2-Chloroethylvinyl ether1.1UG/LNDNDNDNDNDToluene.4UG/LNDNDNDNDNDToluene.4UG/LNDNDNDNDND1,1,2-Trichloroethane.5UG/LNDNDNDNDTetrachloroethene1.1UG/LNDNDNDNDDibromochloromethane.6UG/LNDNDNDNDChlorobenzene.4UG/LNDNDNDNDEthylbenzene.3UG/LNDNDNDNDDibromochloromethane.6UG/LNDNDNDND1,1,2,2-Tetrachloroethane.5UG/LNDNDNDND1,3-Dichlorobenzene.4UG/LNDNDNDND1,4-Dichlorobenzene.4UG/LNDNDNDND1,2-Dichlorobenzene.4UG/LNDNDNDND1,2-Dichlorobenzene.5 </td <td>Benzene</td> <td>.4</td> <td>UG/L</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td>	Benzene	.4	UG/L	ND	ND	ND	ND	ND
1,2-Dichloropropane.3UG/LNDNDNDNDNDNDBromodichloromethane.5UG/LNDNDNDNDNDND2-Chloroethylvinyl ether1.1UG/LNDNDNDNDNDNDcis-1,3-dichloropropene.3UG/LNDNDNDNDNDNDToluene.4UG/LNDNDNDNDNDNDtrans-1,3-dichloropropene.5UG/LNDNDNDNDND1,1,2-Trichloroethane.5UG/LNDNDNDNDNDTetrachloroethene1.1UG/LNDNDNDNDNDDibromochloromethane.6UG/LNDNDNDNDNDChlorobenzene.4UG/LNDNDNDNDNDEthylbenzene.3UG/LNDNDNDNDNDBromoform.5UG/LNDNDNDNDND1,1,2,2-Tetrachloroethane.5UG/LNDNDNDND1,3-Dichlorobenzene.4UG/LNDNDNDND1,2-Dichlorobenzene.4UG/LNDNDNDND1,2-Dichlorobenzene.4UG/LNDNDNDND1,2-A-Trichlorobenzene.5UG/LNDNDNDND1,2,4-Trichlorobenzene.5UG/L0.0 <t< td=""><td>1,2-Dichloroethane</td><td>.5</td><td>UG/L</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></t<>	1,2-Dichloroethane	.5	UG/L	ND	ND	ND	ND	ND
Bromodichloromethane.5UG/LNDNDNDNDNDND2-Chloroethylvinyl ether1.1UG/LNDNDNDNDNDNDcis-1,3-dichloropropene.3UG/LNDNDNDNDNDNDToluene.4UG/LNDNDNDNDNDNDtrans-1,3-dichloropropene.5UG/LNDNDNDNDND1,1,2-Trichloroethane.5UG/LNDNDNDNDNDTetrachloroethene1.1UG/LNDNDNDNDNDDibromochloromethane.6UG/LNDNDNDNDNDChlorobenzene.4UG/LNDNDNDNDNDEthylbenzene.3UG/LNDNDNDNDNDBromoform.5UG/LNDNDNDNDND1,3-2-Tetrachloroethane.5UG/LNDNDNDND1,3-2-Tetrachloroethane.5UG/LNDNDNDND1,2-2-Tetrachlorobenzene.4UG/LNDNDNDND1,2-2-1chlorobenzene.4UG/LNDNDNDND1,2-2-1chlorobenzene.4UG/LNDNDNDND1,2-4-Trichlorobenzene.5UG/LNDNDNDND1,2-4-Trichlorobenzene.5UG/L0.00.0 <td< td=""><td>Trichloroethene</td><td>.7</td><td>UG/L</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></td<>	Trichloroethene	.7	UG/L	ND	ND	ND	ND	ND
2-Chloroethylvinyl ether1.1UG/LNDNDNDNDNDcis-1,3-dichloropropene.3UG/LNDNDNDNDNDNDToluene.4UG/LNDNDNDNDNDNDNDtrans-1,3-dichloropropene.5UG/LNDNDNDNDNDND1,1,2-Trichloroethane.5UG/LNDNDNDNDNDNDTetrachloroethene1.1UG/LNDNDNDNDNDDibromochloromethane.6UG/LNDNDNDNDNDChlorobenzene.4UG/LNDNDNDNDNDEthylbenzene.3UG/LNDNDNDNDNDBromoform.5UG/LNDNDNDNDND1,3-Dichlorobenzene.5UG/LNDNDNDND1,4-Dichlorobenzene.4UG/LNDNDNDND1,2,4-Trichlorobenzene.7UG/LNDNDNDND	1,2-Dichloropropane	.3	UG/L	ND	ND	ND	ND	ND
cis-1,3-dichloropropene.3UG/LNDNDNDNDNDToluene.4UG/LNDNDDNQ0.5DNQ0.4NDtrans-1,3-dichloropropene.5UG/LNDNDNDND1,1,2-Trichloroethane.5UG/LNDNDNDNDTetrachloroethane1.1UG/LNDNDNDNDDibromochloromethane.6UG/LNDNDNDNDDibromochloromethane.6UG/LNDNDNDNDChlorobenzene.4UG/LNDNDNDNDBromoform.5UG/LNDNDNDND1,3,2,2-Tetrachloroethane.5UG/LNDNDND1,3-Dichlorobenzene.4UG/LNDNDNDND1,4-Dichlorobenzene.4UG/LNDNDNDND1,2,4-Trichlorobenzene1.52UG/LNDNDNDND1,2,4-Trichlorobenzene.5UG/L0.00.00.00.0Total Dichlorobenzenes.5UG/L0.00.00.00.00.0Total Dichlorobenzenes.5UG/L1.52.50.02.01.5		.5	UG/L	ND	ND	ND	ND	ND
Toluene.4UG/LNDNDDNQ0.5DNQ0.4NDtrans-1,3-dichloropropene.5UG/LNDNDNDNDND1,1,2-Trichloroethane.5UG/LNDNDNDNDNDNDTetrachloroethene1.1UG/LNDNDNDNDNDNDDibromochloromethane.6UG/LNDNDNDNDNDChlorobenzene.4UG/LNDNDNDNDNDEthylbenzene.3UG/LNDNDNDNDNDBromoform.5UG/LNDNDNDNDND1,1,2,2-Tetrachloroethane.5UG/LNDNDNDND1,3-Dichlorobenzene.4UG/LNDNDNDND1,4-Dichlorobenzene.4UG/LNDNDNDND1,2,4-Trichlorobenzene.4UG/LNDNDNDND1,2,4-Trichlorobenzene.5UG/L0.00.00.00.0Total Dichlorobenzenes.5UG/L0.00.00.00.00.0Total Chloromethanes.5UG/L1.52.50.02.01.5	2-Chloroethylvinyl ether	1.1	UG/L	ND	ND	ND	ND	ND
trans-1,3-dichloropropene.5UG/LNDNDNDNDND1,1,2-Trichloroethane.5UG/LNDNDNDNDNDTetrachloroethene1.1UG/LNDNDNDNDNDDibromochloromethane.6UG/LNDNDNDNDNDDibromochloromethane.6UG/LNDNDNDNDNDChlorobenzene.4UG/LNDNDNDNDNDBromoform.5UG/LNDNDNDNDND1,1,2,2-Tetrachloroethane.5UG/LNDNDNDND1,3-Dichlorobenzene.5UG/LNDNDNDND1,4-Dichlorobenzene.4UG/LNDNDNDND1,2-Dichlorobenzene.4UG/LNDNDNDND1,2,4-Trichlorobenzene1.52UG/LNDNDNDNDHalomethane Purgeable Cmpnds.7UG/L0.00.00.00.0Total Dichlorobenzenes.5UG/L1.52.50.02.01.5Total Chloromethanes.5UG/L1.52.50.02.01.5	cis-1,3-dichloropropene	.3	UG/L	ND	ND	ND	ND	ND
1,1,2-Trichloroethane.5UG/LNDNDNDNDNDNDTetrachloroethene1.1UG/LNDNDNDNDNDNDDibromochloromethane.6UG/LNDNDNDNDNDNDChlorobenzene.4UG/LNDNDNDNDNDNDEthylbenzene.3UG/LNDNDNDNDNDBromoform.5UG/LNDNDNDNDND1,1,2,2-Tetrachloroethane.5UG/LNDNDNDND1,3-Dichlorobenzene.4UG/LNDNDNDND1,4-Dichlorobenzene.4UG/LNDNDNDND1,2-A-Trichlorobenzene.4UG/LNDNDNDND1,2,4-Trichlorobenzene.7UG/L0.00.00.00.0Halomethane Purgeable Cmpnds.7UG/L0.00.00.00.00.0Total Dichlorobenzenes.5UG/L1.52.50.02.01.5	Toluene	.4	UG/L	ND	ND	DNQ0.5	DNQ0.4	ND
Tetrachloroethene1.1UG/LNDNDNDNDNDNDDibromochloromethane.6UG/LNDNDNDNDNDNDChlorobenzene.4UG/LNDNDNDNDNDNDEthylbenzene.3UG/LNDNDNDNDNDBromoform.5UG/LNDNDNDNDND1,1,2,2-Tetrachloroethane.5UG/LNDNDNDND1,3-Dichlorobenzene.4UG/LNDNDNDND1,4-Dichlorobenzene.4UG/LNDNDNDND1,2-Dichlorobenzene.4UG/LNDNDNDND1,2,4-Trichlorobenzene1.52UG/LNDNDNDNDHalomethane Purgeable Cmpnds.7UG/L0.00.00.00.0Total Dichlorobenzenes.5UG/L1.52.50.02.01.5Total Chloromethanes.5UG/L1.52.50.02.01.5		.5	UG/L	ND	ND	ND	ND	ND
Dibromochloromethane.6UG/LNDNDNDNDNDNDChlorobenzene.4UG/LNDNDNDNDNDNDEthylbenzene.3UG/LNDNDNDNDNDNDBromoform.5UG/LNDNDNDNDNDND1,1,2,2-Tetrachloroethane.5UG/LNDNDNDNDND1,3-Dichlorobenzene.4UG/LNDNDNDNDND1,2-Dichlorobenzene.4UG/LNDNDNDNDND1,2,4-Trichlorobenzene1.52UG/LNDNDNDNDHalomethane Purgeable Cmpnds.7UG/L0.00.00.00.0Total Dichlorobenzenes.5UG/L1.52.50.02.01.5	1,1,2-Trichloroethane	.5	UG/L	ND	ND	ND	ND	ND
Chlorobenzene.4UG/LNDNDNDNDNDNDEthylbenzene.3UG/LNDNDNDNDNDNDBromoform.5UG/LNDNDNDNDNDND1,1,2,2-Tetrachloroethane.5UG/LNDNDNDNDND1,3-Dichlorobenzene.5UG/LNDNDNDNDND1,4-Dichlorobenzene.4UG/LNDNDNDNDND1,2-Dichlorobenzene1.52UG/LNDNDNDNDND1,2,4-Trichlorobenzene1.52UG/LNDNDNDNDNDHalomethane Purgeable Cmpnds.7UG/L0.00.00.00.00.0Total Dichlorobenzenes.5UG/L1.52.50.02.01.5	Tetrachloroethene	1.1	UG/L	ND	ND	ND	ND	ND
Ethylbenzene       .3       UG/L       ND       ND <td>Dibromochloromethane</td> <td>.6</td> <td>UG/L</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td>	Dibromochloromethane	.6	UG/L	ND	ND	ND	ND	ND
Bromoform.5UG/LNDNDNDNDND1,1,2,2-Tetrachloroethane.5UG/LNDNDNDNDND1,3-Dichlorobenzene.5UG/LNDNDNDNDND1,4-Dichlorobenzene.4UG/LNDNDNDNDND1,2-Dichlorobenzene.4UG/LNDNDNDNDND1,2,4-Trichlorobenzene1.52UG/LNDNDNDNDNDHalomethane Purgeable Cmpnds.7UG/L0.00.00.00.0Total Dichlorobenzenes.5UG/L0.00.00.00.0Total Chloromethanes.5UG/L1.52.50.02.01.5		• •	UG/L	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane       .5       UG/L       ND			/	ND	ND	ND	ND	ND
1,3-Dichlorobenzene       .5       UG/L       ND       ND <t< td=""><td></td><td></td><td> /</td><td></td><td></td><td></td><td></td><td></td></t<>			/					
1,4-Dichlorobenzene       .4       UG/L       ND       ND       ND       DNQ0.4       ND         1,2-Dichlorobenzene       .4       UG/L       ND			•					
1,2-Dichlorobenzene       .4       UG/L       ND       ND <t< td=""><td>1,3-Dichlorobenzene</td><td>.5</td><td>UG/L</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></t<>	1,3-Dichlorobenzene	.5	UG/L	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene       1.52       UG/L       ND		• •	/				<b>C</b>	
Halomethane Purgeable Cmpnds       .7       UG/L       0.0       0.0       0.0       0.0       0.0         Total Dichlorobenzenes       .5       UG/L       0.0       0.0       0.0       0.0       0.0         Total Chloromethanes       .5       UG/L       1.5       2.5       0.0       2.0       1.5	-		/					
Halomethane Purgeable Cmpnds       .7       UG/L       0.0       0.0       0.0       0.0       0.0         Total Dichlorobenzenes       .5       UG/L       0.0       0.0       0.0       0.0       0.0         Total Chloromethanes       .5       UG/L       1.5       2.5       0.0       2.0       1.5			•	ND	ND	ND	ND	ND
Total Dichlorobenzenes         .5         UG/L         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0								
Total Dichlorobenzenes         .5         UG/L         0.0         0.0         0.0         0.0         0.0           Total Chloromethanes         .5         UG/L         1.5         2.5         0.0         2.0         1.5	<b>o</b> .		/					
Total Chloromethanes         .5         UG/L         1.5         2.5         0.0         2.0         1.5								
Total Chloromethanes         .5         UG/L         1.5         2.5         0.0         2.0         1.5			/					
			•					
Purgeable Compounds 1.3 UG/L 1.5 2.5 0.0 2.8 1.5								
	Purgeable Compounds	1.3	UG/L	1.5	2.5	0.0	2.8	1.5

Additional analytes determined

	====	=====	=====	=====	=====	=====	=====
Methyl Iodide	.6	UG/L	ND	ND	ND	ND	ND
Carbon disulfide	.6	UG/L	4.9	DNQ2.5	1.6	4.2	2.7
Acetone	4.5	UG/L	203	154	108	147	153
Allyl chloride	.6	UG/L	ND	ND	ND	ND	ND
Methyl tert-butyl ether	.4	UG/L	1.0	ND	ND	ND	<0.4
Chloroprene	.4	UG/L	ND	ND	ND	ND	ND
1,2-Dibromoethane	.3	UG/L	ND	ND	ND	ND	ND
2-Butanone	6.3	UG/L	DNQ6.5	ND	ND	ND	ND
Methyl methacrylate	.8	UG/L	ND	ND	ND	ND	ND
2-Nitropropane	12	UG/L	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	1.3	UG/L	ND	ND	ND	ND	ND
meta,para xylenes	.6	UG/L	ND	ND	ND	ND	ND
ortho-xylene	.4	UG/L	ND	ND	ND	ND	ND
Isopropylbenzene	.3	UG/L	ND	ND	ND	ND	ND
Styrene	.3	UG/L	ND	ND	ND	ND	ND
Benzyl chloride	1.1	UG/L	ND	ND	ND	ND	ND

ND= not detected

 ${\tt DNQ=}$  (Detected but not quantified). Estimated analyte concentration below calibration range.

*= The Response factor RSD of 59.5% is above 15% calibration criteria limit; therefore sample is not included in averages.

#### Annual 2015

Source: Date: Analyte 	MDL	Units	Equiv	INF JAN P754673	INF FEB P756049	INF MAR P770704	INF APR P775460
2,3,7,8-tetra CDD	.86	PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD	1.1	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD	.66	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	.62	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD	.46	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD	.49	PG/L	0.010	DNQ18.1	DNQ21.6	DNQ14.8	29.1
octa CDD	1.4	PG/L	0.001	220	230	160	220
2,3,7,8-tetra CDF	.48	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8-penta CDF	.61	PG/L	0.050	ND	ND	ND	ND
2,3,4,7,8-penta CDF	.66	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF	.44 .39	PG/L PG/L	0.100 0.100	ND DNQ1.31	ND ND	ND ND	ND ND
1,2,3,7,8,9-hexa CDF	.36	PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF	.36	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDF		PG/L	0.010	DNQ4.03	DNQ3.38	DNQ3.02	DNQ4.36
1,2,3,4,7,8,9-hepta CDF		PG/L	0.010	ND	ND	ND	ND
octa CDF		PG/L	0.001	DNQ14.0	8.0	DNQ7.82	DNQ13.2
		-,		C to			
Source:				INF	INF	INF	INF
Date:				MAY	JUN	JUL	AUG
Analyte	MDL	Units	Equiv	P783699	P787468	P793713	P795178
	====						
2,3,7,8-tetra CDD	.86	PG/L	1.000	ND	DNQ1.18	ND	ND
1,2,3,7,8-penta CDD	1.1	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD	.66	PG/L	0.100	ND	ND	DNQ1.5	DNQ1.4
1,2,3,6,7,8-hexa CDD	.62	PG/L	0.100	ND	DNQ3.11	DNQ4.3	DNQ9.4
1,2,3,7,8,9-hexa CDD	.46	PG/L	0.100	ND	ND	DNQ3.3	DNQ2.9
1,2,3,4,6,7,8-hepta CDD	.49	PG/L	0.010	DNQ20.4	25.8	DNQ39.0	DNQ54.0
octa CDD	1.4	PG/L	0.001	170 DNO1 47	230	150	140 DN00 00
2,3,7,8-tetra CDF	.48 .61	PG/L PG/L	0.100 0.050	DNQ1.47 ND	DNQ1.05 ND	DNQ1.7 DNQ0.87	DNQ0.99 ND
1,2,3,7,8-penta CDF 2,3,4,7,8-penta CDF	.61	PG/L PG/L	0.500	ND	ND	DNQ0.67	ND
1,2,3,4,7,8-hexa CDF	.44	PG/L	0.100	ND	ND	DNQ0.07	DNQ10.0
1,2,3,6,7,8-hexa CDF	.39	PG/L	0.100	ND	DNQ1.58	DNQ1.3	DNQ1.3
1,2,3,7,8,9-hexa CDF	.36	PG/L	0.100	ND	ND	DNQ0.92	DNQ0.92
2,3,4,6,7,8-hexa CDF	.36	PG/L	0.100	ND	ND	DNQ1.2	DNQ0.82
1,2,3,4,6,7,8-hepta CDF		PG/L	0.010	DNQ4.14	DNQ5.56	DNQ6.0	DNQ5.0
1,2,3,4,7,8,9-hepta CDF		PG/L	0.010	ND	ND	ND	ND
octa CDF		PG/L	0.001	DNQ10.2	DNQ15.7	DNQ15.0	DNQ9.3
Source:				INF	INF	INF	INF
Date:				SEP	OCT	NOV	DEC
Analyte	MDL	Units	Equiv	P804539	P807370	P815297	P822496
2,3,7,8-tetra CDD	.86	PG/L	1.000	ND	DNQ0.77	ND	ND
1,2,3,7,8-penta CDD	1.1	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD	.66	PG/L	0.100	ND	DNQ0.95	DNQ2.2	ND
1,2,3,6,7,8-hexa CDD	.62	PG/L	0.100	DNQ1.6	DNQ2.6	DNQ4.3	ND
1,2,3,7,8,9-hexa CDD	.46	PG/L	0.100	DNQ0.68	DNQ2.1	DNQ3.5	ND
1,2,3,4,6,7,8-hepta CDD	.49	PG/L	0.010	35.0	DNQ31.0	74.0	DNQ20.3
octa CDD	1.4	PG/L	0.001	300	270	530	150
2,3,7,8-tetra CDF	.48	PG/L	0.100	DNQ1.3	DNQ1.4	DNQ1.4	ND
1,2,3,7,8-penta CDF	.61	PG/L	0.050	DNQ0.61	ND	DNQ2.3	ND
2,3,4,7,8-penta CDF	.66	PG/L	0.500	DNQ0.66	ND	ND	ND
1,2,3,4,7,8-hexa CDF	.44	PG/L	0.100	DNQ0.59	DNQ1.4	DNQ2.6	ND
1,2,3,6,7,8-hexa CDF	.39	PG/L	0.100	DNQ0.52	DNQ1.2	DNQ2.4	ND
1,2,3,7,8,9-hexa CDF	.36	PG/L	0.100	DNQ0.55	DNQ0.95	DNQ2.3	ND
2,3,4,6,7,8-hexa CDF	.36	PG/L	0.100	ND	ND	DNQ2.6	ND
1,2,3,4,6,7,8-hepta CDF		PG/L PG/L	0.010	DNQ3.9	ND	DNQ6.8	DNQ5.94
1,2,3,4,7,8,9-hepta CDF octa CDF		PG/L PG/L	0.010 0.001	ND DNQ14.0	ND DNQ16.0	ND 19.0	ND DNQ12.9
	•••••	. 0/ L	5.001	PU/674.0	DIAGTO . O	10.0	DIAGTS 2

ND= not detected DNQ= (Detected but not quantified). Estimated analyte concentration below calibration range. Above are permit required CDD/CDF isomers.

Annual 2015

Source: Date: Analyte	MDL	Units	Equiv	EFF JAN P754677	EFF FEB P756054	EFF MAR P770708	EFF APR P775464
2,3,7,8-tetra CDD	.86	PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD	1.1	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD	.66	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	.62	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD	.46	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD	.49	PG/L	0.010	ND	ND	ND	ND
octa CDD	1.4	PG/L	0.001	ND	ND	DNQ7.69	DNQ6.71
2,3,7,8-tetra CDF	.48	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8-penta CDF	.61	PG/L	0.050	ND	ND	ND	ND
2,3,4,7,8-penta CDF	.66	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF	.44	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDF 1,2,3,7,8,9-hexa CDF	.39 .36	PG/L PG/L	0.100 0.100	ND ND	ND ND	ND ND	ND ND
2,3,4,6,7,8-hexa CDF	.36	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDF		PG/L	0.010	ND	ND	ND	ND
1,2,3,4,7,8,9-hepta CDF		PG/L	0.010	ND	ND	ND	ND
octa CDF		PG/L	0.001	ND	ND	ND	ND
		, _					
Source:				EFF	EFF	EFF	EFF
Date:				MAY	JUN	JUL	AUG
Analyte	MDL	Units	Equiv	P778749	P787472	P793717	P795183
2 2 7 8 totas (DD		======================================		================	======================================		
2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD	.86 1.1	PG/L PG/L	1.000 0.500	ND ND	ND ND	ND ND	ND ND
1,2,3,4,7,8_hexa_CDD	.66	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	.62	PG/L	0.100	ND	ND	DNQ0.55	ND
1,2,3,7,8,9-hexa CDD	.46	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD		PG/L	0.010	ND	ND	DNQ2.3	DNQ2.0
octa CDD	1.4	PG/L	0.001	DNQ7.77	ND	DNQ10.0	DNQ11.0
2,3,7,8-tetra CDF	.48	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8-penta CDF	.61	PG/L	0.050	ND	ND	ND	ND
2,3,4,7,8-penta CDF	.66	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF	.44	PG/L	0.100	ND	ND	DNQ0.46	DNQ0.66
1,2,3,6,7,8-hexa CDF	.39	PG/L	0.100	ND	ND	DNQ0.44	ND
1,2,3,7,8,9-hexa CDF	.36	PG/L	0.100	ND	ND	DNQ0.41	ND
2,3,4,6,7,8-hexa CDF	.36	PG/L	0.100	ND	ND	DNQ0.25	ND DNO1
1,2,3,4,6,7,8-hepta CDF 1,2,3,4,7,8,9-hepta CDF		PG/L PG/L	0.010	ND ND	ND ND	DNQ1.2 ND	DNQ1.0 ND
octa CDF		PG/L PG/L	0.010 0.001	ND	ND	DNQ5.1	DNQ3.7
	.750	F G/ L	0.001	ND	ND	Diregs.1	Dilgo.
Source:				EFF	EFF	EFF	EFF
Date:				SEP	ОСТ	NOV	DEC
Analyte	MDL	Units	Equiv	P804543	P807375	P815301	P822500
		========					
2,3,7,8-tetra CDD	.86	PG/L	1.000	ND	ND		ND
1,2,3,7,8-penta CDD	1.1	PG/L PG/L	0.500 0.100	ND	ND ND	DNQ3.8	ND
1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD	.66 .62	PG/L	0.100	ND ND	ND	DNQ2.9 DNQ3.0	ND ND
1,2,3,7,8,9-hexa CDD	.46	PG/L	0.100	ND	DNQ0.95	DNQ2.9	ND
1,2,3,4,6,7,8-hepta CDD		PG/L	0.010	DNQ2.1	DNQ2.6	DNQ3.3	ND
octa CDD	1.4	PG/L	0.001	DNQ8.0	DNQ12.0	DNQ15.0	ND
2,3,7,8-tetra CDF	.48	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8-penta CDF	.61	PG/L	0.050	ND	DNQ0.75	ND	ND
2,3,4,7,8-penta CDF	.66	PG/L	0.500	ND	ND	DNQ4.400	ND
1,2,3,4,7,8-hexa CDF	.44	PG/L	0.100	DNQ0.63	DNQ0.96	DNQ2.9	ND
1,2,3,6,7,8-hexa CDF	.39	PG/L	0.100	ND	DNQ0.86	DNQ2.9	ND
1,2,3,7,8,9-hexa CDF	.36	PG/L	0.100	ND	DNQ1.0	DNQ2.2	ND
2,3,4,6,7,8-hexa CDF	.36	PG/L	0.100	ND	DNQ0.84	DNQ2.8	ND
1,2,3,4,6,7,8-hepta CDF		PG/L PG/L	0.010	DNQ0.62		DNQ3.2	ND
1,2,3,4,7,8,9-hepta CDF octa CDF		PG/L PG/L	0.010 0.001	ND DNQ2.5	DNQ1.0 DNQ3.5	DNQ1.6 DNQ50.0	ND ND
	., 50		0.001	כיבטיים	ר י כאווס	0.02010	ND

ND= not detected DNQ= (Detected but not quantified). Estimated analyte concentration below calibration range. Above are permit required CDD/CDF isomers.

Annual 2015

Source:				INF TCCD	INF TCCD	INF TCCD	INF TCCD
Date: Analyte ====================================	MDL	Units ========	Equiv	JAN P754673	FEB P756049	MAR P770704	APR P775460
2,3,7,8-tetra CDD	.86	PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD	1.1	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD	.66	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	.62	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD	.46	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD	.49	PG/L PG/L	0.010	DNQ0.181 0.22	DNQ0.216 0.23	DNQ0.148 0.16	0.291 0.22
octa CDD 2,3,7,8-tetra CDF	1.4 .48	PG/L PG/L	0.001 0.100	0.22 ND	0.23 ND	0.16 ND	0.22 ND
1,2,3,7,8-penta CDF	.40	PG/L	0.050	ND	ND	ND	ND
2,3,4,7,8-penta CDF	.66	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF	.44	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDF	.39	PG/L	0.100	DNQ0.131	ND	ND	ND
1,2,3,7,8,9-hexa CDF	.36	PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF	.36	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDF		PG/L	0.010	DNQ0.04	DNQ0.034	DNQ0.03	DNQ0.044
1,2,3,4,7,8,9-hepta CDF		PG/L	0.010	ND	ND	ND	ND
octa CDF	./38	PG/L	0.001	DNQ0.014	0.008	DNQ0.008	DNQ0.013
Source:				INF	INF	INF	INF
				TCCD	TCCD	TCCD	TCCD
Date:				MAY	JUN	JUL	AUG
Analyte ========	MDL	Units =========	Equiv =====	P783699	P787468	P793713	P795178
2,3,7,8-tetra CDD	.86	======= PG/L	1.000	ND	DNQ1.18	ND	ND
1,2,3,7,8-penta CDD	1.1	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD	.66	PG/L	0.100	ND	ND	DNQ0.15	DNQ0.14
1,2,3,6,7,8-hexa CDD	.62	PG/L	0.100	ND	DNQ0.311	DNQ0.43	DNQ0.94
1,2,3,7,8,9-hexa CDD	.46	PG/L	0.100	ND	ND	DNQ0.33	DNQ0.29
1,2,3,4,6,7,8-hepta CDD	.49	PG/L	0.010	DNQ0.204	0.258	DNQ0.39	DNQ0.54
octa CDD	1.4	PG/L	0.001	0.17	0.23	0.15	0.14
2,3,7,8-tetra CDF	.48	PG/L	0.100	DNQ0.147	DNQ0.105	DNQ0.17	DNQ0.099
1,2,3,7,8-penta CDF	.61	PG/L	0.050	ND	ND	DNQ0.044	ND
2,3,4,7,8-penta CDF	.66	PG/L	0.500	ND	ND	DNQ0.335	ND DNO1 0
1,2,3,4,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF	.44 .39	PG/L PG/L	0.100 0.100	ND ND	ND DNQ0.158	DNQ0.13 DNQ0.13	DNQ1.0 DNQ0.13
1,2,3,7,8,9-hexa CDF	.36	PG/L	0.100	ND	ND	DNQ0.092	DNQ0.092
2,3,4,6,7,8-hexa CDF	.36	PG/L	0.100	ND	ND	DNQ0.12	DNQ0.082
1,2,3,4,6,7,8-hepta CDF		PG/L	0.010	DNQ0.041	DNQ0.056	DNQ0.06	DNQ0.05
1,2,3,4,7,8,9-hepta CDF		PG/L	0.010	ND	ND	ND	ND
octa CDF	.738	PG/L	0.001	DNQ0.01	DNQ0.016	DNQ0.015	DNQ0.009
Source:				INF	INF	INF	INF
500.001				TCCD	TCCD	TCCD	TCCD
Date:				SEP	ОСТ	NOV	DEC
Analyte	MDL	Units	Equiv	P804539	P807370	P815297	P822496
	====		=====		======================================		
2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD	.86 1.1	PG/L PG/L	1.000 0.500	ND ND	DNQ0.77 ND	ND ND	ND ND
1,2,3,4,7,8 hexa CDD	.66	PG/L	0.100	ND	DNQ0.095	DNQ0.22	ND
1,2,3,6,7,8-hexa CDD	.62	PG/L	0.100	DNQ0.16	DNQ0.26	DNQ0.43	ND
1,2,3,7,8,9-hexa CDD	.46	PG/L	0.100	DNQ0.068	DNQ0.21	DNQ0.35	ND
1,2,3,4,6,7,8-hepta CDD	.49	PG/L	0.010	0.35	DNQ0.31	0.74	DNQ0.203
octa CDD	1.4	PG/L	0.001	0.3	0.27	0.53	0.15
2,3,7,8-tetra CDF	.48	PG/L	0.100	DNQ0.13	DNQ0.14	DNQ0.14	ND
1,2,3,7,8-penta CDF	.61	PG/L	0.050	DNQ0.02	ND	DNQ0.115	ND
2,3,4,7,8-penta CDF	.66	PG/L	0.500	DNQ0.18	ND	ND	ND
1,2,3,4,7,8-hexa CDF	.44	PG/L	0.100	DNQ0.059	DNQ0.14	DNQ0.26	ND
1,2,3,6,7,8-hexa CDF	.39	PG/L	0.100	DNQ0.052	DNQ0.12	DNQ0.24	ND
1,2,3,7,8,9-hexa CDF	.36	PG/L	0.100	DNQ0.053	DNQ0.095	DNQ0.23	ND
2,3,4,6,7,8-hexa CDF 1,2,3,4,6,7,8-hepta CDF	.36 1 6	PG/L PG/L	0.100 0.010	ND DNQ0.039	ND ND	DNQ0.26 DNQ0.068	ND DNQ0.059
	1.6 .83	PG/L PG/L	0.010	ND	ND	ND	ND
octa CDF		PG/L	0.001	DNQ0.014	DNQ0.016	0.019	DNQ0.013
		, -		2201014	220.010	0.019	2201013

ND= not detected DNQ= (Detected but not quantified). Estimated analyte concentration below calibration range. Above are permit required CDD/CDF isomers.

#### Annual 2015

# Effluent Limit (TCDD): 0.37 pg/L (30-day Average)

		2111			.5, 68,5 (30	day Average	/
Source:				EFF	EFF	EFF	EFF
				TCCD	TCCD	TCCD	TCCD
Date:				JAN	FEB	MAR	APR
Analyte	MDL	Units	Equiv	P754677	P756054	P770708	P775464
2,3,7,8-tetra CDD	.86	======= PG/L	===== 1.000	======== ND	============ ND	ND	======= ND
1,2,3,7,8-penta CDD	1.1	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD	.66	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	.62	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD	.46	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD		PG/L	0.010	ND	ND	ND	ND
octa CDD	1.4	PG/L	0.001	ND	ND	DNQ0.008	DNQ0.007
2,3,7,8-tetra CDF	.48	PG/L PG/L	0.100	ND ND	ND ND	ND ND	ND ND
1,2,3,7,8-penta CDF 2,3,4,7,8-penta CDF	.61 .66	PG/L PG/L	0.050 0.500	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF	.44	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDF	.39	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDF	.36	PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF	.36	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDF		PG/L	0.010	ND	ND	ND	ND
1,2,3,4,7,8,9-hepta CDF		PG/L	0.010	ND	ND	ND	ND
octa CDF	./38	PG/L	0.001	ND	ND	ND	ND
Source:				EFF	EFF	EFF	EFF
Source.				TCCD	TCCD	TCCD	TCCD
Date:				MAY	JUN	JUL	AUG
Analyte	MDL	Units	Equiv	P778749	P787472	P793717	P795183
	====		=====		======		
2,3,7,8-tetra CDD	.86	PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD	1.1	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD	.66 .62	PG/L PG/L	0.100 0.100	ND ND	ND ND	ND DNQ0.055	ND ND
1,2,3,7,8,9-hexa CDD	.46	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD		PG/L	0.010	ND	ND	DNQ0.023	DNQ0.02
octa CDD	1.4	PG/L	0.001	DNQ0.008	ND	DNQ0.01	DNQ0.011
2,3,7,8-tetra CDF	.48	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8-penta CDF	.61	PG/L	0.050	ND	ND	ND	ND
2,3,4,7,8-penta CDF	.66	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF	.44 .39	PG/L PG/L	0.100	ND	ND	DNQ0.046	DNQ0.066
1,2,3,6,7,8-hexa CDF 1,2,3,7,8,9-hexa CDF	.39	PG/L PG/L	0.100 0.100	ND ND	ND ND	DNQ0.044 DNQ0.041	ND ND
2,3,4,6,7,8-hexa CDF	.36	PG/L	0.100	ND	ND	DNQ0.025	ND
1,2,3,4,6,7,8-hepta CDF		PG/L	0.010	ND	ND	DNQ0.012	DNQ0.01
1,2,3,4,7,8,9-hepta CDF		PG/L	0.010	ND	ND	ND	ND
octa CDF	.738	PG/L	0.001	ND	ND	DNQ0.005	DNQ0.004
_							
Source:				EFF	EFF	EFF	EFF
Date:				TCCD SEP	TCCD OCT	TCCD NOV	TCCD DEC
Analyte	MDL	Units	Equiv	P804543	P807375	P815301	P822500
=======================================	====	=========	=====	==========	=======	==========	=========
2,3,7,8-tetra CDD	.86	PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD	1.1	PG/L	0.500	ND	ND	DNQ1.9	ND
1,2,3,4,7,8_hexa_CDD	.66	PG/L	0.100	ND	ND	DNQ0.29	ND
1,2,3,6,7,8-hexa CDD	.62	PG/L	0.100	ND	ND	DNQ0.3	ND
1,2,3,7,8,9-hexa CDD 1,2,3,4,6,7,8-hepta CDD	.46 .49	PG/L PG/L	0.100 0.010	ND DNQ0.021	DNQ0.095 DNQ0.026	DNQ0.29 DNQ0.033	ND ND
octa CDD	.49 1.4	PG/L PG/L	0.001	DNQ0.008	DNQ0.028	DNQ0.015	ND
2,3,7,8-tetra CDF	.48	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8-penta CDF	.61	PG/L	0.050	ND	DNQ0.038	ND	ND
2,3,4,7,8-penta CDF	.66	PG/L	0.500	ND	ND	DNQ2.2	ND
1,2,3,4,7,8-hexa CDF	.44	PG/L	0.100	DNQ0.063	DNQ0.096	DNQ0.29	ND
1,2,3,6,7,8-hexa CDF	.39	PG/L	0.100	ND	DNQ0.086	DNQ0.29	ND
1,2,3,7,8,9-hexa CDF	.36	PG/L	0.100	ND	DNQ0.1	DNQ0.22	ND
2,3,4,6,7,8-hexa CDF 1,2,3,4,6,7,8-hepta CDF	.36 1 6	PG/L PG/L	0.100 0.010	ND DNQ0.006	DNQ0.084 ND	DNQ0.28 DNQ0.032	ND ND
1,2,3,4,7,8,9-hepta CDF		PG/L PG/L	0.010	DNQ0.000 ND	DNQ0.01	DNQ0.032	ND
octa CDF		PG/L	0.001	DNQ0.003	DNQ0.004	DNQ0.05	ND
					-		

ND= not detected; Above are permit required CDD/CDF isomers. DNQ= (Detected but not quantified). Estimated analyte concentration below calibration range.

# SOUTH BAY WATER RECLAMATION PLANT Annual Sewage Cations

#### Annual 2015

Source: MDL/Units:		Calcium 04 mg/L	Ν	Nagnesium .1 mg/L		Lithium .002 mg/L		
Source:	INF	EFF	INF	EFF	INF	EFF		
=============								
JANUARY -2015	86.9	87.2	33.9	32.1	0.055	0.051		
FEBRUARY -2015	82.2	88.0	30.7	31.7	0.058	0.049		
MARCH - 2015	80.2	76.7	29.6	27.7	0.052	0.046		
APRIL -2015	83.1	88.5	30.9	31.3	0.047	0.045		
MAY -2015	82.9	86.6	29.1	28.3	0.052	0.050		
JUNE -2015	78.5	80.4	30.9	29.0	0.049	0.045		
JULY -2015	67.0	71.9	26.9	26.5	0.041	0.039		
AUGUST - 2015	73.5	74.6	30.4	31.7	0.054	0.046		
SEPTEMBER-2015	86.8	88.2	33.3	32.9	0.042	0.042		
OCTOBER -2015	79.8	85.9	30.8	31.9	0.049	0.049		
NOVEMBER -2015	64.9	66.7	29.9	29.3	0.047	0.049		
DECEMBER -2015	60.4	64.3	29.8	30.2	0.041	0.043		
===============								
Average:	77.2	79.9	30.5	30.2	0.049	0.046		
Source:		Sodium	F	Potassium				

Source:			Soaium	Potassium	
MDL/Units	::		1 mg/L		.3 mg/L
Source:		INF	EFF	INF	EFF
JANUARY	-2015	203	207	20.2	18.0
FEBRUARY	-2015	184	199	18.2	17.3
MARCH	-2015	188	186	16.7	14.8
APRIL	-2015	211	207	20.1	18.3
MAY	-2015	213	207	23.0	19.9
JUNE	-2015	203	214	21.9	19.5
JULY	-2015	180	196	20.1	19.1
AUGUST	-2015	201	216	20.4	19.6
SEPTEMBER	2015	220	228	20.2	19.2
OCTOBER	-2015	216	227	18.7	18.1
NOVEMBER	-2015	190	181	18.8	16.9
DECEMBER	-2015	186	201	18.3	17.3
Average:		200	206	19.7	18.2

ND=not detected

INF= Influent EFF= Effluent

# SOUTH BAY WATER RECLAMATION PLANT ANNUAL SEWAGE

#### Anions

## Annual 2015

Analyte: MDL: Units: Source:	Bromide .1 MG/L INFLUENT	Bromide .1 MG/L EFFLUENT	Chloride 7 MG/L INFLUENT	Chloride 7 MG/L EFFLUENT	Fluoride .05 MG/L INFLUENT	Fluoride .05 MG/L EFFLUENT
======================================		======= 0.3	235	238		
FEBRUARY -2015	0.2	0.3	237	243	0.43	0.60
MARCH - 2015	0.3	0.3	249	246	0.42	0.56
APRIL -2015	0.3	0.3	232	237	0.34	0.58
MAY -2015	0.3	0.3	232	222	0.33	0.53
JUNE -2015	0.4	0.2	218	246	0.26	0.55
JULY -2015	0.4	0.2	243	237	0.30	0.52
AUGUST -2015	0.2	0.3	215	252	0.29	0.51
SEPTEMBER-2015	0.2	0.2	222	223	0.23	0.45
OCTOBER -2015	0.2	0.2	219	232	0.18	0.42
NOVEMBER -2015	0.4	0.3	252	237	0.26	0.50
DECEMBER -2015	0.3	0.4	235	263	0.26	0.50
AVERAGE		0.3	232	240	.31 .31	0.51

Analyte:	Nitrate	Nitrate	0-Phosphate	0-Phosphate	Sulfate	Sulfate
MDL:	.04	.04	.2	.2	9	9
Units:	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
Source:	INFLUENT	EFFLUENT	INFLUENT	EFFLUENT	INFLUENT	EFFLUENT
	===============	=========	==============			=======
JANUARY -2015	0.92	38.9	10.5	0.7	219	258
FEBRUARY -2015	0.05	26.4	10.8	0.9	211	261
MARCH -2015	0.08	43.3	10.4	ND	203	246
APRIL -2015	0.16	30.5	11.2	0.6	197	253
MAY -2015	<0.04	46.7	10.3	0.9	186	240
JUNE -2015	0.19	43.7	10.6	0.9	157	229
JULY -2015	1.21	51.6	10.5	1.6	151	190
AUGUST -2015	1.09	39.7	8.8	1.9	189	208
SEPTEMBER-2015	2.29	44.6	11.0	5.4	208	254
OCTOBER -2015	1.29	61.2	10.9	6.2	212	254
NOVEMBER -2015	2.00	61.0	11.4	3.8	167	223
DECEMBER -2015	2.54	63.7	10.7	1.7	135	182
	=================		===============			
AVERAGE	0.99	45.9	10.6	2.1	186	233

ND= not detected

# **B.** Upset, Interference, and Pass-through

In CY2015, there were no reported incidents of interference with pump station or treatment plant operations by rags, suggesting the sewer grinder and solids removal system installed by the RJ Donovan Correctional Center continues to function reliably and effectively. However, the plant and the collection system did experience the following problems:

- 1. Continued elevated animal and vegetable grease and oil in the influent. In July, August, and September of 2013, significant amounts of grease were observed in the influent to the Otay River Pump Station (ORPS). The grease clogged the air intakes to the chopper pumps in the pump station resulting in 3 pumps failing. To lessen any potential impact on the treatment process from this change in the influent wastewater quality an additional aeration basin and two tertiary filters were placed in service on July 17, 2013. The program has aggressively inspected and monitored several large food manufacturing facilities for grease and oil, and corrected the compliance period for the 500 mg/L grease and oil limit from daily maximum to instantaneous in all permits for these dischargers. At one facility, we are currently confirming the accuracy of the design parameters for the dissolved air flotation (DAF) pretreatment system, which was upgraded in February 2014, and the operation and maintenance of the DAF unit order to evaluate whether high flows or loads during nightly cleaning in place (CIP) are overwhelming the system.
- 2. In August and September 2015, the plant experienced a situation in which the biological population in the secondary basin decreased substantially. Initial review of monitoring data showed an extremely high peak (>500 ppm) of hydrogen sulfide (H2S) at the Grove Avenue Pump Station (GAPS) just before this occurred. There was an associated increase in the turbidity of the product water above specifications, so that the production of reclaimed water was suspended for several days. Further investigation indicated an increase in the ammonia levels in the mixer liquor at the plant. The program conducted an investigation of industrial users in the contributory area. No accidental spills, non-routine discharges, or other slug discharges to the sewerage system in the contributory area were reported to the program or to other regulatory agencies during this period. The increase of the H2S levels could also be attributed to the 2015 drought conditions, extremely high environmental temperatures and decrease in water consumption and wastewater flow, which potentially resulted in less frequent pumping from GAPS, with the warmer flows remaining stagnant longer than previously, and then releasing high levels of H2S in the turbulence caused when the pumps came on. Prior to this situation, the plant experienced exceedances of the reclaimed water monthly average limit of 250 mg/L for sulfate in January, February, March, April and May 2015. The exceedance of the monthly average limit for sulfate was also observed in September, October and November 2015. The cause of the increase in sulfate concentrations is still under investigation.
- 3. The recycled water monthly average limit of 260 mg/L for chloride was exceeded in October, November and December 2015 and the daily maximum limit of 1,200 mg/L for total dissolved solids (TDS) was exceeded in two instances in October 2015. The elevated levels of TDS and Chloride have been attributed to a combination of infiltration and an increase in the number of SIUs tributary to the plant discharging high TDS waste-streams from food

processing, self-regenerating water softeners, laundering, and power generation cooling systems. The program has established action levels for Chloride and TDS; if the action level is exceeded, the facility must capture and haul waste concentrated brine regenerant used to regenerate spent water softeners and continue to look for opportunities to reduce chloride and TDS in their discharge. The program also continues to conduct monthly monitoring for TDS and Chloride at locations tributary to the SBWRP to quickly identify new infiltration. Some facilities have opted to transport the brine generated at their facilities to Pump Station 1 (PS1), the Metro System designated dumpsite (see CY2015 Pretreatment Annual Report for the Point Loma POTW, NPDES Permit No. CA 0107409). In addition to source control efforts to manage loadings, the City is also installing new instrumentation at the SBWRP, including pH and conductivity meters to increase the monitoring of the influent to the TDS and chloride in the recycled water product. The new instruments and the two EDR units are expected to be on-line by April 2016.

- 4. The recycled water 7 day median limit of 2.2 MPN for coliform was exceeded in February, March and April 2015. The coliform exceedances were hypothesized to have been caused by homogenized grease entering the treatment plant from ORPS and fouling the UV disinfection system. The coliform count decreased just after the chopper mixer at ORPS was taken offline on April 3, 2015. As a result compliance was re-established.
- 5. Foaming: Early in the morning on November 12, 2015 the SBWRP experienced foaming in the influent that expanded out of openings in the treatment train throughout the plant. After some hours of investigation it was speculated that excess foaming solution, which is activated by hydrogen peroxide during nightly (CIP) sanitation processes at some food manufacturing facilities, may have been activated when the plant influent was dosed with hydrogen peroxide as part of the Department's H2S control and ferric chloride reuse system. Late in the day, the program notified and visited tributary food manufacturers that use foam. The foaming occurred again the next morning, however there have been no further incidents. The foaming did not impact plant operations or reclaimed product water.

# **C. Biosolids Disposal Methods**

Biosolids from the SBWRP is conveyed to Pt Loma, and from there to the Miramar Biosolids Center for processing and disposal in combination with biosolids from throughout the Metropolitan Sewerage System service area. See Chapter 5 Section 5.5 of this year's Annual Report for the Point Loma POTW, NPDES Permit No. CA 0107409, for details on CY15 biosolids disposal locations and beneficial uses.

# **D.** Other Concerns

There are no other concerns pertaining to the administration of the pretreatment program or control of industrial contributions to the headworks loadings at the SBWRP at this time.