

February 28, 2019

VIA E-MAIL

Mr. David W. Gibson, Executive Officer California Regional Water Quality Control Board 2375 Northside Drive, Suite 100 San Diego, CA 92108

Subject: 2018 Pretreatment Annual Report for the South Bay Water Reclamation Plant Order No. R9-2013-0006 as Amended by Order No. R9-2014-0071

Dear Mr. Gibson:

The City of San Diego South Bay Water Reclamation Plant Pretreatment Program Annual Report is hereby submitted in accordance with the requirements of NPDES Permit No.CA0109045, adopted February 13, 2013. The Pretreatment Program operated by the City of San Diego administers the program for the entire Metropolitan Sewerage System tributary area, under a single budget and implementation strategy. Therefore, this report incorporates sections of the Point Loma Pretreatment Program Annual Report relating to program budget, structure, and implementation strategy by reference.

The City is committed to protecting public health and the environment through a program of environmental management, which includes source control, wastewater treatment, water reclamation, and extensive monitoring. One key element of the program is an aggressive pretreatment and pollution prevention program to minimize toxic discharges to the sewerage system. This report includes a summary of Pretreatment Program activities and accomplishments throughout jurisdictions tributary to the South Bay Water Reclamation Plant.

Should you have any questions concerning the information provided herein, or wish to discuss the report in detail, please contact John Steger of my staff, at (858) 654-4103.

Sincerely,

Peter S. Vroom, Ph.D. Deputy Director, Public Utilities Department

JAS/rd

cc: R9Pretreatment@epa.gov John Helminski, Assistant Director of Public Utilities, City of San Diego

POTW PRETREATMENT ANNUAL REPORT

COVER SHEET

NPDES Permit Holder or Sewer Authority Name:	<u>City of San Diego</u>
Report Date:	March 1, 2019
Period Covered by This Report:	January 1, 2018 to December 31, 2018
Period Covered by Previous Report:	January 1, 2017 to December 31, 2017
<u>Name of Wastewater Treatment Plant(s)</u>	South Bay Water Reclamation Plant
NPDES Permit Number	<u>CA 0109045</u>

Person to contact concerning information contained in this report:

Name:John StegerTitle:Industrial Wastewater Control Program ManagerMailing Address:9192 Topaz Way, MS 901D
San Diego, CA 92123-1119Telephone No.:(858) 654-4103

I have personally examined and am familiar with the information submitted in this document and attachments. Based upon my inquiry of those individuals immediately responsible for obtaining the information reported herein, I believe that the submitted information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment.

2-28-2019

Date

Those

Peter Vroom, Ph.D. Deputy Director Public Utilities

PRETREATMENT ANNUAL REPORT

PCS Data Entry Form

PPS1

POTW NAME:	<u>Plant and Ocean Outfall</u> of San Diego EW Blom 09; therefore, this POTW.		
NPDES Permit #:	CA0109045		
Period Covered By	This Report:	<u>01/01/18</u> (PSSD) Start Date	<u>12/31/18</u> (PSED) End Date
Number of Significat	nt Industrial Users ance Schedule:	in SNC with	<u> </u>
Number of Notices o Issued Against Signi	f Violation and Ac ficant Industrial U	lministrative Orders sers:	47(FENF)
Number of Civil & C Significant Industrial	Criminal Judicial A Users:	ctions against	<u> </u>
Number of Significat Violations Published	nt Industrial Users :	with Significant	4 (SVPU)
Number of Industrial Been Collected:	Users from Which	n Penalties Have	(IUPN)

SOUTH BAY WATER RECLAMATION PLANT & OCEAN OUTFALL PRETREATMENT ANNUAL REPORT

NPDES PERMIT No. CA 0109045 SDRWQCB ORDER No. R9-2013-0006 AS AMENDED BY ORDER No. R9-2014-0071

JANUARY 1 – DECEMBER 31, 2018

Environmental Monitoring and Technical Services Public Utilities Department 2392 Kincaid Road Mail Station 45A San Diego, CA 92101 Tel (619) 758-2310 • Fax (619) 758-2309

2018 ANNUAL PRETREATMENT REPORT SOUTH BAY WATER RECLAMATION PLANT

I. Description of the South Bay Water Reclamation Plant and Its Service Area

The South Bay Water Reclamation Plant (SBWRP) is located on a 22 acre site near Dairy Mart Road and Monument Road in the eastern portion of the Tijuana River Valley. The site is just north of the international boundary between Mexico and the United States and less than a half mile west of the International Wastewater Treatment Plant (IWTP). The SBWRP treats raw wastewater collected from the southern portion of the City of San Diego, the City of Imperial Beach, the City of Chula Vista, and the unincorporated portions of south and east San Diego County, a total of approximately 44 square miles, and serves a population of about 107,000 people.

The plant is designed to treat up to 15 MGD of raw wastewater to secondary and/or tertiary reclaimed water standards. All SBWRP tertiary treated wastewater in excess of reclaimed water demands is discharged to the Pacific Ocean through the South Bay Ocean Outfall (SBOO). The SBOO was constructed for shared use by the IWTP, operated by the International Boundary and Water Commission (IBWC), and the City of San Diego's SBWRP. The SBOO extends westward approximately 23,600 feet from the mouth of the Tijuana River and terminates in a "wye" with two 1980 foot long diffusers. The IWTP currently discharges a maximum of 25 MGD of secondary treated wastewater from the City of Tijuana. The total average design capacity of the outfall is 174 MGD with a peak hydraulic capacity of 233 MGD. The effluent from the SBWRP is combined with the effluent from the IWTP within the SBOO prior to discharge to the Pacific Ocean.

The SBWRP's primary and secondary processes consist of influent screening using mechanically cleaned bar screens, grit removal using aerated grit chambers, primary sedimentation clarifiers with chain and flight sludge collectors and tilting trough scum collectors, primary effluent flow equalization storage tanks, air activated sludge biological treatment with anoxic selector, and secondary clarifiers with chain and flight sludge collectors. The tertiary treatment process consists of filter feed pumping, coagulation with chemical addition, and direct filtration with conventional deep bed mono-media filters, backwash facilities, electrodialysis reversal (EDR) units, and disinfection using ultraviolet light. Sludge processing is handled at the Point Loma Wastewater Treatment Plant (PLWTP) and the Metropolitan Biosolids Center. Solids from the SBWRP are pumped to the PLWTP through the South Metro Interceptor.

The SBWRP began operations in 2002, accepting an average of 3.5 MGD influent through the Grove Avenue Pump Station (GAPS). In October 2003 the Otay River Pump Station (ORPS) came on-line. The ORPS is divided into two pumping streams, with one sending high TDS flows from the Imperial Beach Sewer directly to the South Metro Interceptor influent to the PLWTP, and the other sending flows from the Otay Trunk Sewer and Salt Creek Trunk Sewer to the GAPS. Since start-up, the ORPS facility has been directing nearly 5 MGD to the GAPS, which combines with the more than 3 MGD GAPS flow for a total of nearly 8 MGD influent to the SBWRP. Since some wastewater from areas tributary to the GAP and ORPS can be diverted to the PLWTP via

the South Metro Interceptor, facilities tributary to the GAP and ORPS are included in Annual Pretreatment Reports for both plants.

In 2017, the City installed two refurbished EDR units to provide for total dissolved solids (TDS) and chloride removal. Several issues have surfaced affecting their performance and while it's likely the units could be serviceable, they may not be reliable in a long term. Violations for recycled water monitoring were listed for chloride and percent sodium in 2017 and continued through 2018. In response to the staff enforcement letter received January 29, 2019, the City increased the monitoring frequency for chloride and four cations (sodium, potassium, calcium, and manganese) in the recycled water. The Business Case Evaluation draft for determining the best possible option to return the plant to compliance was completed in July 2018. Funds were obtained for a Capital Improvement Project to replace the existing disinfection system at the SBWRP and secure consultant services. The City hired Carollo Engineers to evaluate the changes since the 2001 Title 22 Recycled Water Engineer's Report. Carollo is preparing an adendum to the document to capture the changes made to the SBWRP Ultraviolet (UV) disinfection system and the two EDR units installed to reduce sodium and chloride. Meanwhile, the City's Wastewater Treatment and Disposal Division continues to perform maintenance and repairs on the EDR units.

II. Program Structure

A. Pollution Prevention Plan Requirements

No IUs have been required to prepare or implement a pollution prevention plan as the result of non-compliance.

B. Programs San Diego has implemented to reduce pollutants from non-SIUs

The City controls pollutants discharged by non-SIUs and by non-industrial sources through a combination of Class 2 and 3 permits, Best Management Practice Certification programs, and Hazardous Waste Collection events and facilities throughout the Metropolitan Sewerage System service area in cooperation with contributing agencies. For details, see Chapters 2 and 3 of the Annual Report for the Point Loma POTW.

C. Pretreatment Program Changes

There were no significant changes in operating the pretreatment program in the areas of administrative structure, local limits, monitoring program, legal authority, enforcement policy, or funding or staffing levels.

D. Annual Pretreatment Program Budget

The pretreatment program budget is administered as a single budget for the three treatment plants in the Metropolitan Sewerage System service area. See Chapter 2, Section 2.3 of the Annual Report for the Point Loma POTW, for details.

III. Permit Inventory

A. List of Additions, Deletions, and Name Changes of Significant Industrial Users

FACILITI	ES that BECAME SIUs			Note: UT ; = E	Extracted Groundwater Permit		
Facility	Name	Class	Permit	Date	Comments		
13-0555	UT; Frey Environmental Inc	2	01-A	25-Jun-2018	GW remediation Class 2		
SIU FACI	LITIES INACTIVATED						
Facility	Name	Class	Permit	Date	Comments		
13-0115	Integrated Energy Technologies Inc	1	06-A 02-Oct-2018 All operations ceased				
SIU FACI	LITIES that REPORTED a NAME CHAN	GE					
Facility	Name	Class	Permit	Date	Previous Name		
12-0220	Ajinomoto Foods North America Inc	3	05-A	10-May-2018	Southwest Products LLC dba		
					Circle Foods		
FORMER	SIU FACILITIES THAT BECAME NON	-SIUs					
Facility	Name	Class	Permit	Date	Comments		
None							

A.1 Permit Inventory by Class and Flow

Class	Cla	ss 1		Class 2		Class 3			Total			
Area		IW		Non-	IW		Non- IW		No. of	IW		
	SIU	(GPD)	SIU	SIU	(GPD)	SIU	SIU	(GPD)	Permits	GPD		
12	3	224	0	5	14,687	8 2		380,073	18	394,984		
13	0	0	2	8	42,642	0	1	6,685	11	49,327		
36	1	33,375	0	0	0	0	0	0	1	33,375		
Total	4	33,599	2	13	57,329	8	3	386,758	30	477,686		

*The Pio Pico Energy Center facility is geographically located in Area 36; however, the facility does not discharge industrial wastewater to the SBWRP. Industrial flows and monitoring data are reported under its trucked waste permit (#25-0379). See Chapter 3 of the Annual Report for the Point Loma POTW, NPDES Permit No. CA 0107409 for details.

A.2 Facilities with BMP Authorizations and No Permit Required

Area	Class	Class	Class	Class	Class	Class	Total
	2F	4D	4C	4Z	4	5	
12	16	2	5	0	71	19	113
13	13	0	0	0	51	7	71
36	0	0	0	0	2	0	2
Total	29	2	5	0	124	26	186

B. Baseline Monitoring Reports Requested or Received

Facility Name	Facility #	BMR Requested	BMR Received
NONE			

B.1 Facilities Operating under a Baseline Monitoring Report

Facility Name	Facility #	BMR Received
AP Precision Metals	12-0144	17-Apr-2001
Harcon Precision Metals Inc	12-0244	17-Jun-2010
Heinz Frozen Foods	12-0154	30-Aug-2002
Otay Mesa Energy Center LLC	36-0001	20-Jun-2007
Spec-Built Systems Inc	12-0202	28-Jun-2005

SIU Facilities Federal Category, Process, and Pretreatment Technology by Connection Treatment Plant 6

Report run on: S	Sunday, February 17, 2019 4:04 pr	1							Page 1
Facility Permit	Name IW I	Discharged (gpd)	Conn	Principle Process	Federal/ Local	CFR Part	CFR Section	Order	Pre Treat Code
12-0038 05-A	RJ Donovan Correctional Facility	55,595	100	Prison Sewer Main	Local	133		1 2 3	GREASE GRIND SCREEN
12-0065 05-A	Emerald Textiles LLC	79,194	110	Commercial Laundry	Local	133		1 2 3 4	LINT SETTLE HAUL RECYL
12-0144 05-A	AP Precision Metals	128	110	Metal Coating (Iron Phosphating)	Federal	433	.17	1 2 3	FILT-O SETTLE PH
12-0154 05-A	Heinz Frozen Foods	102,142	110	Food Manufacturing	Local	137		1 2 3 4 5	EQUAL SCREEN DAF+C GREASE HAUL
12-0202 04-A	Spec-Built Systems Inc	26	110	Iron Phosphating	Federal	433	.17	1 2 3	SETTLE RECYL PH
12-0212 02-A	Tarantino Wholesale Food Distributors	7,112	100	Sewer Lateral	Local	137		1 2 3	EQUAL SCREEN HAUL
			210	Sausage manufacturing	Local			1 2 3	SETTLE HAUL ELBOW
12-0220 05-A	Ajinomoto Foods North America Inc	76,000	110	Food manufacturing	Local	137		1 2 3 4	EQUAL SCREEN DAF+C SD-FP
12-0244 03-A	Harcon Precision Metals Inc	70	110	Conversion coating & assoc processes	Federal	433	.17	1 2 3 4 5	PH MIXER SETTLE HAUL EVAP
12-0275 03-A	Jensen Meat Company Inc	18,478	110	Meat processing, cleaning/sanitizing	Local	137		1 2 3 4 5	SCREEN ELBOW SETTLE HAUL DIVRTA
12-0283 02-A	Spectex Inc dba Specialty Textile Services	29,000	110	Commerical Laundry	Local	133		1 2 3	SETTLE LINT UF

SIU Facilities Federal Category, Process, and Pretreatment Technology by Connection Treatment Plant 6

Report run on: S	Sunday, February 17, 2019 4:	04 pm							Page 2
Facility Permit	Name	IW Discharged	Conn	Principle Process	Federal/	CFR Part	CFR Section	Order	Pre Treat
12-0283 02-4	Spectev Inc dba Specialty T	$\begin{array}{c} (spa) \\ \text{extile} & 29,000 \end{array}$	110		Locui	1 un	Section	4	HAIII
12-0203 02-A	Services	extile 29,000	110					-	IIAOL
12-0285 02-A	US General Services	556	110	Waste activated sludge	Local			1	SCREEN
	Administration - SYLPOE							2	EQUAL
			120	Untrasted wastewater	Local			3 1	BIO-AS SCREEN
			120	Transfer I and a starset and	Local			1	SCREEN
			130	I reated wastewater	Local			$\frac{1}{2}$	SCREEN
								3	BIO-AS
								4	UF
								5	UV
								6	HAUL
								7	OZONE
13-0549 02-A	UT; Brenntag Pacific Inc	10,080	100	Groundwater Remediation	Local	101		1	O/W
								2	SETTLE
								3	CENT
								4	BIO+O2
								5	ADS-C
13-0555 01-A	UT. Frey Environmental Ind	c 21.600	100	Groundwater remediation	Local	101		1	SETTLE
10 0000 01 11		21,000	100	Ground water remoundation	Locui	101		2	ADS-C
36-0001 03-A	Otay Mesa Energy Center L	LC 33,375	110	WetSac blowdown + OWS	Federal	423	.17	1	SETTLE
								2	PH
			120	PCB zero discharge	Federal	423	.17	1	ZERO
			140	Turbine washing	Federal	423	.17	1	SETTLE
SIUs: 14									

SIU Facilities: Regulated Parameters by Connection Treatment Plant 6

Report run on:	: Sunday, February 17, 2019 4:02	2 pm										Page 1
Facility Pmt	Name	Address	Conn	Total IW	Parmcode	City	Self	Cat	Period	Lower	· Uppe	er Units
				(gpd)		freq	freq			Limit	Limi	t
12-0038 05-A	RJ Donovan Correctional Facility	v480 Alta Rd, San Diego	100) 55.595	OIL/GREASE	Н	Q	L	DM		500	mg/L
					PH	Н	Ò	L	DM	5	12.5	рЙ
12-0065 05-A	Emerald Textiles LLC	1725 Dornoch Ct Suite 10	0. 110) 79.194	OIL/GREASE	Q	Ò	L	DM		500	mg/L
		San Diego	- ,	, .	PH	Ò	Ò	L	DM	5	12.5	рЙ
		San Diego			PH HIGHEST	ò		L	DM		12.5	pH
					SULFIDE DISSOLVD	ò	0	L	DM		1	mg/L
12-0144 05-A	AP Precision Metals	1215 30th St. San Diego	110) 128	CADMIUM	Ò	Ò	F	DM		.11	mg/L
		6		-					MO		.07	mg/L
					CHROMIUM	0	0	F	DM		2.77	mg/L
									MO		1.71	mg/L
					COPPER	0	0	F	DM		3.38	mg/L
									MO		2.07	mg/L
					CYANIDE(T)	0	0	F	DM		1.2	mg/L
						· ·	•		MO		.65	mg/L
					LEAD	0	0	F	DM		.69	mg/L
						· ·	•		MO		.43	mg/L
					NICKEL	0	0	F	DM		3.98	mg/L
						· ·	•		MO		2.38	mg/L
					РН	0	0	L	DM	5	12.5	рЙ
					SILVER	ò	ò	F	DM	-	.43	mg/L
						Č	×.		MO		.24	mg/L
					TTO(413+433)-P	А	0	F	DM		2130	ug/L
					ZINC	0	ò	F	DM		2.61	mg/L
						× ×	×.	_	MO		1.48	mg/L
12-0154 05-A	Heinz Frozen Foods	7878 Airway Rd San	110) 102 142	OIL/G SCREEN	Ν		А	DM		500	mg/L
12 010 1 00 11		Diago	110	, 102,112	OIL/GREASE	0	М	L	DM		500	mg/L
		Diego			PH	ò	M	L	DM	5	12.5	рН
					PH HIGHEST	Ň		L	DM		12.5	рН
					SULFIDE DISSOLVD	0	0	L	DM		1	mg/L
					TEMP	ò	Ň	L	DM		65.5	DegC
12-0202 04-A	Spec-Built Systems Inc	2150 Michael Faraday Dr	110) 26	CADMIUM	Š	0	F	DM		.11	mg/L
12 0202 0111	Spee Dant Systems me	Son Diago	, 110	, 20		~	×.	_	MO		.07	mg/L
		Sali Diego			CHROMIUM	S	0	F	DM		2.77	mg/L
						2	×	-	MO		1.71	mg/L
					COPPER	S	0	F	DM		3.38	mg/L
					COTTEN	2	×	-	MO		2.07	mg/L
					CYANIDE(T)	S	0	F	DM		12	mg/L
						5	×	•	MO		65	mg/L
					LEAD	S	0	F	DM		.69	mg/L
						5	×	•	MO		43	mg/L
					NICKEL	S	0	F	DM		3.98	mg/L
						~	×	-	MO		2.38	mg/L

SIU Facilities: Regulated Parameters by Connection Treatment Plant 6

Report run on:	Sunday, February 17, 2019 4:02	2 pm										Page 2
Facility Pmt	Name	Address	Conn	Total IW	Parmcode	City	Self	Cat	Period	Lower	Uppe	er Units
				(gpd)		freq	freq			Limit	Limit	L.
12-0202 04-A	Spec-Built Systems Inc	2150 Michael Faraday Dr.	, 11() 26	PH	S	Q	L	DM	5	12.5	pН
	1 5	San Diego			SILVER	S	Q	F	DM		.43	mg/L
		6							MO		.24	mg/L
					ТТО(413+433)-Р	A	Q	F	DM		2130	ug/L
					ZINC	S	Q	F	DM		2.61	mg/L
12 0212 02 4	Towarting Wholesole Food	7651 Spint Andrews Ar	100) 214c		0	тт	т	MO DM		1.48	mg/L mg/I
12-0212 02-A	Tarantino wholesale Food	7651 Saint Andrews AV,	100) 3,146	UIL/GREASE	Q	п u	L		5	12.5	mg/L
	Distributors	San Diego			гп ри ніснеят	Q	п	L	DM	5	12.5	рп pH
					SUI FIDE DISSOI VD	Q	н	L I	DM		12.5	mg/I
			210	3 966	OIL/GREASE	Q O	Н	Ĺ	DM		500	mg/L mg/L
			210	5,700	PH	õ		Ĺ	DM	5	12.5	nH
					PH HIGHEST	ò		Ĺ	DM	-	12.5	pH
12-0220 05-A	Aiinomoto Foods North America	a 8411 Siempre Viva Rd. Sa	an 110	76.000	OIL/G SCREEN	Ň		0	DM		500	mg/L
	Inc	Diego			OIL/GREASE	Q	М	L	DM		500	mg/L
	lite	Diego			PH	Q	Μ	L	DM	5	12.5	pĤ
					PH HIGHEST	Μ		L	DM		12.5	pН
					SULFIDE DISSOLVD	Q	Q	L	DM		1	mg/L
					TEMP	Q	Μ	L	DM		65.5	DegC
12-0244 03-A	Harcon Precision Metals Inc	1790 Dornoch Ct, San	11() 70	CADMIUM	S	S	F	DM		.11	mg/L
		Diego				a	C	Б	MO		.07	mg/L
					CHROMIUM	S	S	F	DM		2.77	mg/L
					CODDED	C	c	Б	MO		1./1	mg/L
					COPPER	2	3	Г			3.38 2.07	mg/L mg/I
					CVANIDE(T)	S	S	F			2.07	mg/L mg/I
					CTANDE(1)	5	5	1.	MO		65	mg/L mg/I
					LEAD	S	S	F	DM		.00 69	mg/L
						D	5	•	MO		.43	mg/L
					NICKEL	S	S	F	DM		3.98	mg/L
									MO		2.38	mg/L
					OIL/GREASE	S	S	L	DM		500	mg/L
					PH	S	S	L	DM	5	12.5	pĤ
					SILVER	S	S	F	DM		.43	mg/L
									MO		.24	mg/L
					TTO(413+433)-P	Α	S	F	DM		2130	ug/L
					ZINC	S	S	F	DM		2.61	mg/L
10.0075.00			1 1 /	10 470		~	0	т	MO		1.48	mg/L
12-02/5 03-A	Jensen Meat Company Inc	2550 Britannia Bl Suite	11(18,478	UIL/GKEASE	Q	Q	L	DM	~	500 12 5	mg/L
		101, San Diego			ГП DU UICUEST	Q	Q	L I		3	12.5	рн nu
					SUI FIDE DISSOI VD	Q O		L I	DM		12.J	рн mg/I
					SOFLIDE DISSOFAD	V V		L			T	mg/∟

SIU Facilities: Regulated Parameters by Connection Treatment Plant 6

Report run on:	Sunday, February 17, 2019 4:02	2 pm										Page 3
Facility Pmt	Name	Address	Conn	Total IW	Parmcode	City	Self	Cat	Period	Lower	Upper	r Units
				(gpd)		freq	freq			Limit	Limit	
12-0283 02-A	Spectex Inc dba Specialty Textile Services	e1333 30th St Suite A, San Diego	110	29,000	OIL/GREASE PH	Q Q N	Q Q	L L	DM DM	5	500 12.5	mg/L pH
12-0285 02-A	US General Services	720 E San Ysidro Bl. San	11() 106	SULFIDE DISSOLVD	M O	0	L L L	DM DM DM		12.5 1 1	рн mg/L mg/L
12 0200 02 11	Administration - SYLPOE	Diego	110	, 100	TSS	Q	M	Ĺ	DM		10000	mg/L
13-0549 02-A	UT; Brenntag Pacific Inc	1888 Nirvana Av, Chula Vista	100) 10,080	3CLETHE 4CLETHE BNZ(W/OAGG) BTEX FLOW MAX ELOW RATE MAX	Q Q Q Q	Q Q Q Q M M	L L L L L	DM DM DM DM DM		26 700 50 750 10080 20	ug/L ug/L ug/L ug/L gpd gpm
13-0555 01-A	UT; Frey Environmental Inc	825 Energy Wy, Chula Vista	100) 21,600	BNZ(W/OAGG) BTEX FLOW RATE MAX MANGANESE	Q Q O	H H M H	L L L L L	DM DM DM DM DM		20 50 750 15 .05	gpm ug/L gpm mg/L
36-0001 03-A	Otay Mesa Energy Center LLC	606 De La Fuente Ct, San Diego	110) 33,357	CHROMIUM OIL/GREASE PH PH HIGHEST TDS ZINC CODDED	Q Q Q N S Q S		F L L L F F	DM DM DM DM DM DM	5	.2 500 12.5 12.5 2000 1	mg/L mg/L pH pH mg/L mg/L
			140	, 0	COFFER	3	3	1,	DM		1	mg/L

Report run on: Sunday, February 17, 2019 4:16 pm

Class	2		
Facility	Permit	Name	Address
12-0140	02-A	Kaiser Foundation Health Plan	4652 Palm Av, San Diego
12-0143	03-A	ADESA California LLC dba ADESA San Diego	2175 Cactus Rd, San Diego
12-0145	05-A	Larkspur Energy LLC	9355 Otay Mesa Rd, San Diego
12-0177	02-A	Truck Net LLC	8490 Avenida De La Fuente, San Diego
12-0254	01-A	Northwest Circuits Corp	8660 Avenida Costa Blanca, San Diego
13-0048	04-A	Hyspan Precision Products	1685 Brandywine Av, Chula Vista
13-0278	04-A	Republic Services dba Allied Waste Services	881 Energy Wy, Chula Vista
13-0298	04-A	Chula Vista Energy Center LLC	3497 Main St, Chula Vista
13-0316	03-A	Fuller Ford Kia	560 Auto Park Dr, Chula Vista
13-0327	03-A	Dresser-Rand	1675 Brandywine Av Suite E&F, Chula
			Vista
13-0399	02-A	Veolia Transportation	3650A Main St, Chula Vista
13-0533	01-A	Fleetwash Inc	649 Anita St Suite 1A, Chula Vista
13-0534	01-A	Super Welding of Southern California	609 Anita St, Chula Vista
		13	
Class	3		
Facility	Permit	Name	Address
12-0024	03-A	US Border Patrol	3752 Beyer Bl, San Diego
12-0028	01-A	Palm Ave LLC	1835 Palm Av, San Diego
13-0439	01-A	Toyota Chula Vista	650 Main St, Chula Vista
		3	
Grand to	otal:	16	

Active Groundwater Permits, Treatment Plant 6

Report run on: Sunday, February 17, 2019 3:43 pm

Class 2 Facility Permit Name Address UT; Brenntag Pacific Inc 13-0549 02-A 1888 Nirvana Av, Chula Vista UT; Frey Environmental Inc 13-0555 01-A 825 Energy Wy, Chula Vista 2 2 Grand total:

Zero Discharge from Categorical Operations, Treatment Plant 6

Report run on: Sunday, February 17, 2019 3:47 pm

Class	4C		
Facility	Permit	Name	Address
12-0067	04-A	Resideo Technologies Inc.	2055 Dublin Dr Suite 100, San Diego
12-0094	06-A	Parker Hannifin Corp CSS Division	7664 Panasonic Wy, San Diego
12-0137	04-A	General Dynamics Global Imaging Technologies	7603 Saint Andrews Av Suite H, San Diego
12-0150	03-A	Leidos Innovations Corp	1330 30th St Suite A, San Diego
12-0167	04-A	Crower Cams & Equipment Co Inc	6180 Business Center Ct, San Diego
		5	
Grand to	otal:	5 SBWRP Pretreatment Annual Report - Pag	ge 9 of 49

Page 1

Page 1

Report run on: Sunday, February 17, 2019 3:45 pm

Class $2\mathbf{F}$ Facility Permit Name **Address** 12-0081 San Ysidro Health Center 4004 Beyer Bl, San Diego 00-A 12-0100 01-A County; George Bailey Detention 446 Alta Rd, San Diego 1330 30th St Suite E, San Diego 12-0112 01-A NAC 2910 Coronado Av, San Diego 12-0113 01-A So San Diego Veterinary Hosp 12-0114 02-A EZ Smiles Dental Care 1850 Coronado Av, San Diego 12-0115 Lewis J Dorria DDS 2930 Coronado Av, San Diego 01-A 3250 Palm Av, San Diego 12-0117 01-A Montgomery High School 12-0119 01-A Jeffrey W Brown DDS 1761 Palm Av, San Diego Jerome A Bannister DDS 4370 Palm Av Suite C, San Diego 12-0121 01-A 12-0122 02-A Carlos Garcia DDS 1270 Picador Bl Suite L-M, San Diego 12-0123 Southland Plaza Dental 655 Saturn Bl Suite G, San Diego 02-A 12-0124 01-A I-5 Palm Ave Medical Clinic 655 Saturn Bl, San Diego 2004 Dairy Mart Rd, San Diego 12-0125 02-A San Ysidro Dental Care 12-0186 01-A Rancho Vista Medical & Therapy Center Inc 342 W San Ysidro Bl Suite F, San Diego 12-0222 01-A Jose L Lopez DDS Inc 3490 Palm Av Unit 1, San Diego Juvenile Detention Facility 12-0231 01-A 446 Alta Rd, San Diego **Bav Port Press** 645 Marsat St Suite D, Chula Vista 13-0117 02-A 13-0235 01-A Photo Max 1367 3rd Av, Chula Vista 13-0249 The Pet Clinic 01-A 3326 Main St, Chula Vista 13-0255 01-A Hilltop Dentistry 11 Naples St, Chula Vista 13-0256 01-A Langford Chiropractor 4360 Main St Suite 209, Chula Vista Robert N Woodall DDS Inc 330 Oxford St, Chula Vista 13-0257 01-A Palomar Dental Group 13-0261 02-A 648 Palomar St, Chula Vista 13-0333 01-A Costco Wholesale Photo Lab # 781 1130 Broadway, Chula Vista 13-0379 01-A Amazon Animal Hospital 1172 3rd Av Suite D8, Chula Vista 13-0387 01-A Perpecta Dental Group 314 Palomar St. Chula Vista 13-0388 01-A Palomar Dental Group 664 Palomar St Suite 1103, Chula Vista Wal-Mart # 3516 1360 Eastlake Py, Chula Vista 13-0442 01-A East Lake Plaza Dental 2060 Otay Lakes Rd Suite 230, Chula Vista 13-0456 01-A 29 Grand total: 29

Dry Cleaners subject to BMPs, Treatment Plant 6

Report run on: Sunday, February 17, 2019 3:46 pm

Class	4 D		
Facility	Permit	Name	Address
12-0106	02-A	Saturn Cleaners	655 Saturn Bl Suite E, San Diego
12-0108	03-A	Rainbow Cleaners	2004 Dairy Mart Rd Suite 121, San Diego
		2	
Grand to	otal:	2	

Page 1

IV. SIU Compliance and Enforcement

A. Annual Compliance Summary

During the year covered in this report the program administered 14 SIU permits, covering 16 outfalls and monitored at 13 sample points and 4 facilities were in SNC during the year. These facilities are included in the calculation of the Metro System annual Significant Non-Compliance (SNC) rate reported in the Pretreatment Annual Report for the Point Loma POTW.

B. Characterization of the Compliance Status of Each SIU

The Annual SIU Compliance Status Report, which follows this page, lists the industry name, address, permit number, permit class; industrial flow by connection; violation dates and descriptions, if applicable; discharge standard and period, and actual value resulting in the violation; whether the violation exceeded the TRC; and whether the industry has been in SNC at any time during the year.

C. SIU Enforcement Actions Initiated, Continued, or Finalized

Ajinomoto Foods North America Inc; IU # 12-0220

This large food manufacturing facility came under new ownership in spring of 2018. A permit compliance condition was established requiring the IU to update the Slug Discharge Prevention and Control Plan by July 1, 2018. The IU overlooked the requirement and has yet to submit the plan. An NOV was issued requiring the plan be submitted by April 1, 2019. No further enforcement actions are planned unless the IU fails to satisfactorily update the plan.

AP Precision Metals; IU# 12-0144

This metal finisher is a custom manufacturer of metal housings for electronic controllers and machine copper tips and performs iron phosphating of aluminum and steel parts. The facility discharges an average of 130 gpd. This CIU was identified and permitted in 2001 and after complying with pollutant limits since 2003, one of two samples collected in March resulted in a monthly average violation for cadmium and SNC status for the six-month period ending with the 2nd quarter of 2018. In addition, the IU failed to notify IWCP of the daily maximum violation prior to submitting the Self-Monitoring Report (SMR). In response to the NOV, the IU attributed the violation to washing some customer parts prior to powder coating, an uncommon practice at the facility. To prevent recurrence the IU will visually inspect the parts to confirm they are free of contaminants. Subsequent monitoring by the IU and IWCP have demonstrated compliance and no further enforcement actions are planned.

RJ Donovan Correctional Facility; IU # 12-0038

This medium security prison discharges about 55,000 gpd from its laundry, kitchen, and bakery. The permit requires quarterly self-monitoring at the combined outfall designated as Connection 100 and the IU was in SNC for late reporting in both 2016 and 2017. The IU has not submitted the SMR due April 15, 2018 (120+ days late) and therefore is in SNC for late reporting in the 2nd quarter of 2018. An NOV was issued, and the report due July 15, 2018 was received on time. The SMR due October 15, 2018 was received 23 days late, and the SMR due January 15, 2019 has not yet been received. NOVs were issued and further escalation is planned to ensure future SMRs are received on time.

Spec-Built Systems Inc; IU# 12-0202

This metal finisher performs iron phosphating on maritime cabinets and shelves. Since 2008 the IU has reused its rinse water and discharged an average of 4 batches of wastewater per year, equivalent to less than 30 gpd. The IU had not violated a pollutant limit since 2008. Then the sample taken by the IU during its batch discharge on June 4, 2018 exceeded the daily maximum and monthly average limits for zinc and resulted in SNC status for the six-month period ending with the 2nd quarter of 2018. In addition, the IU failed to notify IWCP of daily maximum violation prior to submitting the SMR. Subsequently the next batch discharge on September 11 resulted in a monthly average violation for zinc, and the final batch discharge of 2018 on December 11 resulted in a daily maximum violation for zinc and monthly average violations for copper and zinc. Due to these violations the IU stayed in SNC status for the six-month periods ending with the 3rd and 4th quarters of 2018. NOVs were issued and the IUs responses thus far have been inadequate and simply indicate they don't know the source of the elevated metals. Further escalation is planned unless the response to the NOVs due March 15, 2019 clearly establishes how the IU will quickly return to compliance.

D. Public Information and Involvement

Each year, a combined list of all facilities in the Metropolitan Sewerage System service area that were in SNC at any time during the year is published in the Union Tribune; this list is included in Chapter 4 of the Pretreatment Annual Report for the Point Loma POTW.

Industrial User	Address	Pollutant/Other
Ajinomoto Foods North America	8411 Siempre Viva Rd, San Diego	Missed Milestone > 90 days
AP Precision Metals	1215 30 th St, San Diego	Cadmium ¹
RJ Donovan Correctional Facility	480 Alta Rd, San Diego	SM Report late > 30 days
Spec-Built Systems	2150 Michael Faraday Dr, San Diego	Copper ¹ , Zinc

The following SIUs discharging tributary to the SBWRP were in SNC:

¹ SNC due to a single sample in violation for the pollutant listed

Annual SIU Compliance Status Report

01-Jan-2018 through 31-Dec-2018

SIU Name	IU#	Class	IW Disch	SNC?	[If Yes, Why]	Conn	Violation Date	Description/Parameter	Value	Limit	Period	Cat	TRC
AP Precision Metals	12-0144	¥ 1	128	Yes SN	IC2 - TRC (MO): Cd 1/3	110	01-Mar-18	Cadmium, Total	.11	.07	MO	F	Y
1215 30th St. San Diego						110	06-Mar-18	Cadmium, Total	.22	.11	DM	F	Y
1210 Cour Ol, Call Diego						110	30-Apr-18	SMR Incomplete - failed notify in 24 hrs					
						110	30-Apr-18	SMR Incomplete - failed to resample					
						110	21-Jun-18	SMR Late - written notice					
						110	25-Jul-18	SMR Late - written notice					
						110	13-Aug-18	SMR Incomplete					
Ajinomoto Foods North	12-0220) 3	76000	Yes SN	IC5 - Missed Milestone >	110	25-Jul-18	SMR Late - written notice					
America Inc 8411 Siempre Viva Rd, San Diego				90	days	110	06-Aug-18	SMR Incomplete					
Emerald Textiles LLC	12-0065	53	66242	No		NA							
1725 Dornoch Ct Suite 100, Sa Diego	n												
Harcon Precision Metals Inc	12-0244	1	109	No		NA							
1790 Dornoch Ct, San Diego													
Heinz Frozen Foods	12-0154	13	63749	No		110	15-Mar-18	Oil and grease, Total-Instantaneous	1000	500	DM	L	Y
7979 Ainway Pd San Diago						110	28-Aug-18	SMR Late - written notice					
1010 Aliway Ru, Sali Diego													
Integrated Energy Technologies Inc 757 Main St, Chula Vista	13-0115	5 1	321	No		330	14-Aug-18	SMR Incomplete					
Jensen Meat Company Inc	12-0275	53	18478	No		NA							
2550 Britannia Bl Suite 101, Sa Diego	n												

Annual SIU Compliance Status Report

01-Jan-2018 through 31-Dec-2018

SIU Name	IU#	Class	IW Disch	SNC	? [If Yes, Why]	Conn	Violation Date	Description/Parameter	Value	Limit	Period	Cat	TRC
Otay Mesa Energy Center LLC	36-0001	1	33375	No		NA							
606 De La Fuente Ct, San Diego	C												
RJ Donovan Correctional	12-0038	3	55595	Yes	SNC6 - Report Late > 30	100	02-May-18	SMR Late - written notice					
Facility					days	100	07-May-18	SMR Incomplete					
480 Alta Rd, San Diego						100	24-Oct-18	SMR Late - written notice					
						100	26-Nov-18	SMR Incomplete					
						100	27-Nov-18	SMR Incomplete					
						100	27-Nov-18	SMR Incomplete					
Spec-Built Systems Inc	12-0202	2 1	26	Yes	SNC2 - TRC (MO): Cu 1/2,	110	29-Jan-18	SMR Late - written notice					
2150 Michael Faraday Dr. San					Zn 2/2 (DM): Zn 1/2	110	07-May-18	SMR Incomplete					
Diego						110	01-Jun-18	Zinc, Total	3.8	1.48	MO	F	Y
						110	04-Jun-18	Zinc, Total	3.8	2.61	DM	F	Y
						110	06-Aug-18	SMR Incomplete - failed notify in 24 hrs					
						110	01-Sep-18	Zinc, Total	2	1.48	MO	F	Y
						110	05-Nov-18	SMR Incomplete					
						110	01-Dec-18	Copper, Total	2.86	2.07	MO	F	Y
						110	01-Dec-18	Zinc, Total	2.64	1.48	MO	F	Y
						110	11-Dec-18	Zinc, Total	2.64	2.61	DM	F	Ν
Spectex Inc dba Specialty	12-0283	3	29000	No		110	23-Jan-18	SMR Late - written notice					
Textile Services						110	30-Apr-18	SMR Incomplete					
1333 30th St Suite A, San Diego						110	06-Aug-18	SMR Incomplete					
						110	30-Aug-18	Oil and grease, Total-Instantaneous	591	500	DM	L	Ν
						110	05-Nov-18	SMR Incomplete - failed to resample					

Annual SIU Compliance Status Report

01-Jan-2018 through 31-Dec-2018

SIU Name	IU#	Class	IW Disch	SNC?	[If Yes, Why]	Conn	Violation Date	Description/Parameter	Value	Limit	Period	Cat	TRC
Tarantino Wholesale Food	12-0212	3	7112	No		100	25-Jul-18	SMR Late - written notice					
Distributors						100	06-Aug-18	SMR Incomplete					
7651 Saint Andrews Av, San						100	07-Nov-18	Sulfides, Dissolved-Instantaneous	4.2	1	DM	L	Y
Diogo						100	03-Dec-18	SMR Incomplete					
						210	25-Jul-18	SMR Late - written notice					
						210	13-Aug-18	SMR Incomplete					
						210	15-Oct-18	SMR Incomplete					
						210	08-Nov-18	pH-lowest value	4.6	5	DM	L	Ν
US General Services Administration - SYLPOE 720 E San Ysidro BI, San Diego	12-0285 D	3	556	No		NA							
UT; Brenntag Pacific Inc	13-0549	2	10080	No		NA							
1888 Nirvana Av, Chula Vista													
UT; Frey Environmental Inc	13-0555	2	21600	No		100	26-Sep-18	SMR Incomplete					
825 Energy Wy, Chula Vista						110	26-Sep-18	SMR Late - written notice					

NOVs Issued in 2018 for SIUs Discharging to Treatment Plant 6

Page 1

Report run on: Thursday, February 21, 2019 5:01 pm

Name	Facility	Conn	NOV	Identified	Action	Viol Date	Fee	Level
AP Precision Metals	12-0144	110	89087	30-Apr-2018	30-Apr-2018	06-Mar-2018	100	Initial notice
			89087	30-Apr-2018	02-May-2018	06-Mar-2018	100	Final notice
			89087	30-Apr-2018	23-May-2018	06-Mar-2018	75	Second notice
			89087	30-Apr-2018	05-Jun-2018	06-Mar-2018	75	Second notice
			89087	30-Apr-2018	02-Jul-2018	06-Mar-2018	100	Final notice
			89550	30-May-2018	30-May-2018	20-Mar-2018	100	Notice only
			89550	30-May-2018	02-Jul-2018	20-Mar-2018	100	Final notice
			89668	21-Jun-2018	03-Jul-2018		50	Notice only
			89930	25-Jul-2018	25-Jul-2018		50	Notice only
			90167	13-Aug-2018	13-Aug-2018		50	Notice only
Ajinomoto Foods North America Inc	12-0220	110	89933	25-Jul-2018	02-Aug-2018		50	Notice only
			90073	06-Aug-2018	06-Aug-2018	13-Jun-2018	50	Notice only
			90074	06-Aug-2018	06-Aug-2018	09-May-2018	50	Notice only
Heinz Frozen Foods	12-0154	110	87548	20-Nov-2017	28-Feb-2018	20-Jul-2017	100	Final notice
			88999	24-Apr-2018	24-Apr-2018	15-Mar-2018	100	Initial notice
			90525	28-Aug-2018	28-Aug-2018		50	Notice only
RJ Donovan Correctional Facility	12-0038	100	83771	24-Oct-2016	19-Sep-2018		75	Final notice
			85043	10-Feb-2017	19-Sep-2018		75	Final notice
			86518	27-Jul-2017	19-Sep-2018		75	Final notice
			86958	31-Mar-2017	08-Aug-2018		270	Final notice
			88348	07-May-2018	08-May-2018	31-Dec-2017	50	Notice only
			89125	02-May-2018	02-May-2018		100	Initial notice
			89125	02-May-2018	19-Sep-2018		75	Second notice
			90905	24-Oct-2018	24-Oct-2018		100	Initial notice
			91408	26-Nov-2018	27-Nov-2018		50	Notice only
			91431	27-Nov-2018	27-Nov-2018		50	Notice only
			91432	27-Nov-2018	27-Nov-2018		50	Notice only
Spec-Built Systems Inc	12-0202	110	88194	29-Jan-2018	29-Jan-2018		50	Notice only
			89153	07-May-2018	07-May-2018	31-Mar-2018	50	Notice only
			90078	06-Aug-2018	06-Aug-2018	04-Jun-2018	100	Initial notice
			90354	14-Aug-2018	14-Aug-2018	04-Jun-2018	100	Initial notice
			90988	05-Nov-2018	05-Nov-2018	30-Sep-2018	50	Notice only
			91242	19-Nov-2018	19-Nov-2018	11-Sep-2018	100	Initial notice
Spectex Inc dba Specialty Textile Services	12-0283	110	87949	23-Jan-2018	23-Jan-2018		50	Notice only
			88984	24-Apr-2018	24-Apr-2018	09-Jan-2018	0	Initial notice
			89030	30-Apr-2018	30-Apr-2018	31-Mar-2018	50	Notice only

SBWRP Pretreatment Annual Report - Page 16 of 49

NOVs Issued in 2018 for SIUs Discharging to Treatment Plant 6

Report run on: Thursday, February 21, 2019 5:01 pm

Name	Facility	Conn	NOV	Identified	Action	Viol Date	Fee	Level
Spectex Inc dba Specialty Textile Services	12-0283	110	90071	06-Aug-2018	06-Aug-2018		50	Notice only
			91020	05-Nov-2018	05-Nov-2018	30-Aug-2018	100	Initial notice
			91020	05-Nov-2018	06-Nov-2018	30-Aug-2018	100	Final notice
Tarantino Wholesale Food Distributors	12-0212	100	89931	25-Jul-2018	02-Aug-2018		50	Notice only
			90069	06-Aug-2018	06-Aug-2018	30-Jun-2018	50	Notice only
			91448	03-Dec-2018	03-Dec-2018		50	Notice only
Tarantino Wholesale Food Distributors	12-0212	210	89932	25-Jul-2018	02-Aug-2018		50	Notice only
			90165	13-Aug-2018	13-Aug-2018	30-Jun-2018	50	Notice only
			90770	15-Oct-2018	15-Oct-2018	31-Aug-2018	100	Initial notice
UT; Frey Environmental Inc	13-0555	100	90673	26-Sep-2018	26-Sep-2018		50	Notice only
UT; Frey Environmental Inc	13-0555	110	90674	26-Sep-2018	26-Sep-2018		50	Notice only
	Total fees:						\$3,420	
NOV count:			47					

NOVs Issued in 2018 for nonSIUs Discharging to Treatment Plant 6

Report run on: Sunday, February 17, 2019 4:00 pm										
Name	Facility	Conn	NOV	Identified	Action	Viol Date	Fee	Level		
	Total fees:									
NOV count: 0										

Sampling in 2018 at SIUs discharging to Treatment Plant 6

Report run on:	Sunday, February 17, 2019 4:00 pm						Page 1
Facility Pmt	Name	Conn	Principle Process	Pmt	Parmcode	City	Self
· ·			*	Include		Samples	Samples
12-0038 05-A	RJ Donovan Correctional Facility	100	Prison Sewer Main	L	COD OIL/GREASE BIOHAZARD CERT SOLVENT CERT TSS	1	2 2 1 1 2 2
12-0065 05-A	Emerald Textiles LLC	110	Commercial Laundry	L	PH HIGHEST PH LOWEST SULFIDE DISSOLVD TDS OIL/GREASE CHLORIDE FLOW TSS COD PH	3 3 6 3 3 3 3 3 3	4 4 4 12 4 4 4
12-0144 05-A	AP Precision Metals	110	Metal Coating (Iron Phosphating)	F	FLOW MAX FLOW MAX NICKEL TTO CERT CADMIUM PH SILVER TTO(413+433)-P CHROMIUM FLOW LEAD CYANIDE(T) COPPER ZINC	$ \begin{array}{c} 4 \\ 4 \\ 4 \\ 4 \\ 1 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4$	4 5 4 5 5 5 5 4 5 5 5 5 5 5 5
12-0154 05-A	Heinz Frozen Foods	110	Food Manufacturing	L	FLOWMETER READ 1 FLOWMETER READ 2 TEMP FLOW FLOW TOTIMPORTED PH PH HIGHEST TSS OIL/G SCREEN OIL/GREASE COD SULFIDE DISSOLVD PH LOWEST	5 5 9 11 11 11 9 11 9 11	12 12 12 12 12 12 12 12 12 12 12
12-0202 04-A	Spec-Built Systems Inc	110 SBW	Iron Phosphating RP Pretreatment Annual Report - Page 19	F of 49	COPPER	1	3

Sampling in 2018 at SIUs discharging to Treatment Plant 6

Report run on:	Sunday, February 17, 2019 4:00 pm						Page 2
Facility Pmt	Name	Conn	Principle Process	Pmt	Parmcode	City	Self
				Include		Samples	Samples
12-0202 04-A	Spec-Built Systems Inc	110			TSS TTO(413+433)-P CHROMIUM FLOW LEAD	1 1 1 1	1 3 4 3
					TTO CERT NICKEL CADMIUM CYANIDE(T) SILVER ZINC COD	1 1 1 1 1 1 1	3 2 3 3 3 3 1
12-0212 02-A	Tarantino Wholesale Food Distributors	100	Sewer Lateral	L	PH LOWEST OIL/GREASE COD FLOW	1 3 1	4 3 3 2
					PH HIGHEST SULFIDE DISSOLVD TSS CHLORIDE PH TD C	1 1 1 1	3 3 3 3
		210	Sausage manufacturing	L	TDS COD FLOW PH	1 1 1	3 3 2
					TSS OIL/GREASE CLARIFIER RPT TDS	1 3	3 3 1 3
12-0220 05-A	Ajinomoto Foods North America Inc	110	Food manufacturing	L	FLOW OIL/GREASE TDS FLOWMETER READ 2	2 10	12 12 12 12
					PH HIGHEST TFDS TSS TEMP	9 10 10 2	12 12 12 12
					CHLORIDE PH FLOWMETER READ 1	10 2	12 12 12
		SBW	/RP Pretreatment Annual Report - Page 20	of 49	COD	10	12

Sampling in 2018 at SIUs discharging to Treatment Plant 6

Report run on:	Sunday, February 17, 2019 4:00 pm						Page 3
Facility Pmt	Name	Conn	Principle Process	Pmt	Parmcode	City	Self
·			*	Include		Samples	Samples
12-0220 05-A	Ajinomoto Foods North America Inc	110			PH LOWEST SULFIDE DISSOLVD	9 2	2
12-0244 03-A	Harcon Precision Metals Inc	110	Conversion coating & assoc	F	TTO(413+433)-P LEAD	1 1	2
			processes		SILVER	1	$\frac{1}{2}$
					CADMIUM	1	2
					COD	1	2
					CYANIDE(T)	1	2
					NICKEL	1	2
					TSS	1	2
					FLOW		2
					FLOW MAX	1	2
						1	2
					TTO CERT	1	2 1
					COPPER	1	$\frac{1}{2}$
					OIL/GREASE	1	2
					ZINC	1	2
12-0275 03-A	Jensen Meat Company Inc	110	Meat processing,	L	CHLORIDE	2	4
			cleaning/sanitizing		OIL/GREASE	6	4
					PH LOWEST	2	
					TFDS	2	4
					PH HIGHEST	2	
					CLARIFIER RPT		4
						C	12
					ГП TSS	0	4
					RAIN DIVERT CERT	2	4
					COD	2	4
					SULFIDE DISSOLVD	<u>-</u> 6	•
					TDS	2	4
12-0283 02-A	Spectex Inc dba Specialty Textile	110	Commerical Laundry	L	PH	3	5
	Services				FLOW		11
					PH HIGHEST	3	
					SULFIDE DISSOLVD	6	_
					OIL/GREASE	3	5
					PH LOWEST	3	~
						3	5
					ELOW MAY	3	5 11
12-0285 02 4	US General Services Administration	110	Waste activated sludge	Т	SUI FIDE DISSOI VD	1	11
12-020J 02-A	SVI DOE	110	masic activated studge	L	TDS	1	1
	SILFUE				TSS	1	4
		SBW	RP Pretreatment Annual Report - Page	21 of 49		-	•

Sampling in 2018 at SIUs discharging to Treatment Plant 6

Report run on:	Sunday, February 17, 2019 4:00 pm						Page 4
Facility Pmt	Name	Conn	Principle Process	Pmt	Parmcode	City	Self
				Include		Samples	Samples
12-0285 02-A	US General Services Administration - SYLPOE	110 120 130	Untreated wastewater Treated wastewater	L L	COD	1	4
13-0549 02-A	UT; Brenntag Pacific Inc	100	Groundwater Remediation	L	FLASH BNZ(W/OAGG) COD FLOW RATE MIN FLOW TOTIMPORTED FLOWMETER READ 2 4CLETHE AUTOSHUTDOWN RPT TSS FLOW RATE MAX BTEX FLOWMETER READ 1 3CLETHE FLOW MAX	1 1 1 1 1 1 1	5 5 12 12 12 12 5 12 12 12 5 12 5 12 5
13-0555 01-A	UT; Frey Environmental Inc	100	groundwater remediation	L	MANGANESE BNZ(W/OAGG) BTEX FLOWMETER READ 2 FLOW TOTIMPORTED FLASH FLOW RATE MAX FLOW RATE MIN	1 1 1	
36-0001 03-A	Otay Mesa Energy Center LLC	110	WetSac blowdown + OWS	F	FLOWMETER READ T ZINC OIL/GREASE PH HIGHEST TDS FLOW FLOW MAX PH PH LOWEST CURDOMIUM	3 3 2 3	5 4 4 4 4 4 4
		120 140	PCB zero discharge Turbine washing	F F	CHROMIUM ZERODISCHRG CERT COPPER FLOW MAX FLOW	3	4 4

V. Pretreatment Program Effectiveness

A. Summary of analytical results from representative flow-proportioned, 24-hour composite sampling of the SBWRP influent and effluent for those pollutants that the USEPA has identified under Section 307(a) of the CWA, and which are known or suspected to be discharged by industrial users. The summary must include a full priority pollutant scan.

Tables V. A-1 and V. A-2, below, summarize influent and effluent heavy metal loadings by month.

The following Tables provide results for all influent and effluent of all priority pollutants and other pollutants of concern. These reports were extracted from the South Bay Treatment Plant and Ocean Outfall Annual Report. The summary includes a full priority pollutant scan.

TABLE V.A-1										
SOUTH BAY WATER RECLAMATION PLANT INFLUENT HEAVY METALS										
		Average (Concentration	on and Loa	dings					
ND or $<$ MDL = 0										
	Flow	Cd	Cr	Cu	Pb	Ni	Ag	Zn		
	MGD	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L		
MDL(ug/L)		0.26	0.54	2.16	1.68	0.53	0.73	4.19		
Jan	6.59	0.129	2.17	88.4	1.63	3.87	0.240	136		
Feb	6.46	0.104	2.04	80.4	1.48	3.64	0.294	120		
Mar	6.60	0.13	2.38	84.2	2.11	4.08	0.166	150		
Apr	6.59	0.248	3.81	90.4	2.11	4.28	0.425	172		
May	6.63	0.149	2.66	89.3	1.47	4.00	0.128	214		
Jun	6.61	0.113	2.42	84.6	1.41	3.85	0.143	148		
Jul	6.61	0.154	2.36	85.3	1.71	5.32	0.107	182		
Aug	6.49	0.131	2.49	83.7	1.49	4.21	0.155	170		
Sep	6.53	0.131	2.80	92.7	1.30	4.10	0.233	198		
Oct	6.48	0.14	1.88	79.6	1.32	3.68	0.252	165		
Nov	6.41	0.134	2.59	85.4	1.68	4.00	0.258	178		
Dec	6.32	0.157	2.47	77.7	1.75	3.92	0.198	176		
Average Flow MGD	6.53									
Average ug/L		0.14	2.51	85.14	1.62	4.08	0.22	167.42		
LBS/day		0.01	0.14	4.63	0.09	0.22	0.01	9.11		
PL Total Lbs HM	14.21									
PL Total lb (-)Ag	14.20									

TABLE V.A-2 SOUTH DAX WATED DECLAMATION DI ANTI EFEL HENT HEAVY METALS										
Average Concentration and Loadings										
ND or $<$ MDL = 0										
Month	Flow MGD	Cd ug/L	Cr ug/L	Cu ug/L	Pb ug/L	Ni ug/L	Ag ug/L	Zn ug/L		
MDL(ug/L)		0.26	0.54	2.16	1.68	0.53	0.73	4.19		
Jan	4.80	0	0.411	18.5	0.279	2.96	0	45.3		
Feb	4.17	0	0.370	7.95	0.241	1.74	0	43.6		
Mar	5.01	0	0.388	5.53	0.177	1.68	0	44.0		
Apr	2.77	0	0.554	5.04	0.104	1.89	0	18.4		
May	2.50	0	0.564	5.85	0.405	1.87	0	53.2		
Jun	1.87	0	0	3.79	0.216	1.94	0	42.7		
Jul	1.51	0	0.383	3.82	0.111	2.13	0	41.1		
Aug	1.32	0	0.412	4.88	0.273	2.35	0	59.8		
Sep	1.78	0	0.419	5.55	0.300	2.39	0	61.2		
Oct	2.65	0	0	8.23	0.272	2.13	0	46.0		
Nov	3.53	0	0.410	7.05	0.313	2.23	0	49.6		
Dec	5.84	0	0.411	5.37	0.222	2.01	0	53.8		
Average Flow MGD	3.49									
Average ug/L		0.00	0.36	6.80	0.24	2.11	0.00	46.56		
LBS/day		0.00	0.01	0.20	0.01	0.06	0.00	1.36		
Total lb HM	1.6									
Total lb (-)Ag	1.6									

SOUTH BAY WATER RECLAMATION PLANT SEWAGE INFLUENT and EFFLUENT

Annual 2018

Total Suspended Solids Concentration (24-hour composite)

Source:		Influent	Influent	Influent		Influent
		Flow	Daily	Daily	Percent	Daily
Analyte:			TSS	VSS	VSS	Mass Emission
Month/ Un	its:	(MGD)	(mg/L)	(mg/L)	(%)	(lbs/Day)
	=====					
JANUARY	-2018	6.59	261	242	92.7	14345
FEBRUARY	-2018	6.46	294	274	93.2	15840
MARCH	-2018	6.60	304	281	92.4	16733
APRIL	-2018	6.59	283	263	92.9	15554
MAY	-2018	6.63	293	269	91.8	16201
JUNE	-2018	6.61	307	275	89.6	16924
JULY	-2018	6.61	289	264	91.3	15932
AUGUST	-2018	6.49	277	251	90.6	14993
SEPTEMBER	-2018	6.53	270	246	91.1	14704
OCTOBER	-2018	6.48	292	264	90.4	15781
NOVEMBER	-2018	6.41	292	269	92.1	15610
DECEMBER	-2018	6.32	291	264	90.7	15338
	=====					
Average		6.53	288	264		15663

Total Suspended Solids Concentration (24-hour composite)

Source:	Effluent Flow	Effluent Daily	Effluent Daily	Percent	Effluent Daily	Percent Removal	Percent Removal
Analyte: Month/Unite:		(mg (L)	VSS (mg/L)	VSS (%)	Mass Emission	on 155 (%)	VSS (%)
	("00")	(IIIg/L)	(IIIg/L)	(%)	(105/Day)	(%)	(%)
JANUARY -2018	4.80	7.8	7.1	91.0	312	97.0	97.1
FEBRUARY -2018	4.17	4.4	4.0	90.9	153	98.5	98.5
MARCH - 2018	5.01	4.4	4.0	90.9	184	98.6	98.6
APRIL -2018	2.77	3.9	3.4	87.2	90	98.6	98.7
MAY -2018	2.50	4.6	3.9	84.8	96	98.4	98.6
JUNE -2018	1.87	<2.5	<2.5	*	0	100.0	100.0
JULY -2018	1.51	<2.5	<2.5	*	0	100.0	100.0
AUGUST - 2018	1.32	<3.0	<3.0	*	0	100.0	100.0
SEPTEMBER-2018	1.78	<2.5	<2.5	*	0	100.0	100.0
OCTOBER -2018	2.65	2.5	<2.5	0.0	55	99.1	100.0
NOVEMBER -2018	3.53	4.2	3.7	88.1	124	98.6	98.6
DECEMBER -2018	5.84	3.9	3.3	84.6	190	98.7	98.8
Average	3.15	3.0	2.5		100	99.0	99.1

 \ast = undetermined, the percent VSS was not calculated because TSS and VSS results were below the MDL.

Annual Mass Emissions are calculated from monthly averages of flow and TSS, whereas Monthly Report average mass emissions are calculated from average daily mass emissions.

VSS= Volatile Suspended Solids TSS= Total Suspended Solids

SOUTH BAY WATER RECLAMATION PLANT

Annual 2018

Influent to Plant (SB_INF_02)

Analyte: Units:	Flow (mgd)	рН (рН)	Total Dissolved Solids (mg/L)	Biochemical Oxygen Demand (mg/L)	Total Suspended Solids (mg/L)	Volatile Suspended Solids (mg/L)	Turbidity (NTU)
JANUARY -2018	6.59	NR	1060	281	261	242	NR
FEBRUARY -2018	6.46	7.62	1060	336	294	274	184
MARCH -2018	6.60	NR	1050	314	304	281	NR
APRIL -2018	6.59	NR	1080	326	283	263	NR
MAY -2018	6.63	7.67	1090	311	293	269	184
JUNE -2018	6.61	NR	1100	303	307	275	NR
JULY -2018	6.61	NR	1100	315	289	264	NR
AUGUST -2018	6.49	7.20	982	346	277	251	226
SEPTEMBER-2018	6.53	NR	968	321	270	246	NR
OCTOBER -2018	6.48	7.36	983	327	292	264	207
NOVEMBER -2018	6.41	NR	971	318	292	269	NR
DECEMBER -2018	6.32	NR	1010	317	291	264	NR
Average	6.53	7.46	1038	318	288	264	200

ND=not detected; NR=not required

SOUTH BAY WATER RECLAMATION PLANT

Annual 2018

Effluent to Ocean Outfall (SB_OUTFALL_01)

Analyte:	Flow	pH	Settleable	Biochemical	Total	Volatile	Total
			Solids	0xygen	Suspended	Suspended	Dissolved
				Demand	Solids	Solids	Solids
Units:	(mgd)	(pH)	(ml/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
			=======				
JANUARY - 201	.8 4.80	7.22	ND	9	7.8	7.1	1020
FEBRUARY - 201	.8 4.17	7.28	ND	4	4.4	4.0	1010
MARCH - 201	.8 5.01	7.28	ND	4	4.4	4.0	1020
APRIL -201	.8 2.77	7.32	ND	6	3.9	3.4	1050
MAY - 201	.8 2.50	7.42	ND	6	4.6	3.9	1040
JUNE - 201	.8 1.87	7.48	ND	<2	<2.5	<2.5	1110
JULY - 201	.8 1.51	7.39	ND	<2	<2.5	<2.5	1090
AUGUST - 201	.8 1.32	7.38	ND	<2	<3.0	<3.0	1010
SEPTEMBER-201	.8 1.78	7.36	1.5	3	<2.5	<2.5	965
OCTOBER -201	.8 2.65	7.37	ND	4	2.5	<2.5	972
NOVEMBER - 201	.8 3.53	7.34	ND	5	4.2	3.7	971
DECEMBER -201	.8 5.84	7.40	ND	5	3.9	3.3	985
Average	3.15	7.35	0.1	4	3.0	2.5	1020

Analyte:		0il &	Outfall	Residual	Turbidity	Dissolved
		Grease	Temperature	Chlorine		Oxygen
Units:		(mg/L)	(°C)	(mg/L)	(NTU)	(mg/L)
JANUARY	-2018	4.4	23.6	<0.03	3.19	4.30
FEBRUARY	-2018	7.4	24.0	<0.03	2.16	5.37
MARCH	-2018	3.2	23.5	<0.03	2.20	4.43
APRIL	-2018	4.4	24.1	<0.03	2.00	5.07
MAY	-2018	2.5	24.6	<0.03	2.54	5.46
JUNE	-2018	5.5	26.0	ND	0.94	4.85
JULY	-2018	4.5	27.4	<0.03	1.15	5.14
AUGUST	-2018	2.5	28.4	<0.03	1.32	4.43
SEPTEMBER	-2018	3.4	28.0	<0.03	1.55	3.85
OCTOBER	-2018	2.4	27.0	ND	1.66	5.02
NOVEMBER	-2018	3.1	25.6	<0.03	2.11	5.43
DECEMBER	-2018	2.6	24.0	<0.03	2.11	5.74
	=====					
Average		3.8	25.5	0.00	1.91	4.92

ND=not detected; NR=not required

Ammonia-Nitrogen and Total Cyanides

Annual 2018

Analyte:		Ammonia-N	Ammonia-N	Total Cvanide	Total Cvanide
Max MDL/	Units:	.3	.3	5 UG/L	5 UG/L
Source:		SB_INF_02	SB_OUTFALL_0	1 SB_INF_02	SB_OUTFALL_01
	=====	=========		=========	======
JANUARY	-2018	40.0	1.3	<5	<5
FEBRUARY	-2018	37.5	0.4	<5	<5
MARCH	-2018	41.8	ND	<5	<5
APRIL	-2018	42.3	ND	<5	<5
MAY	-2018	35.1	ND	ND	ND
JUNE	-2018	44.0	ND	ND	ND
JULY	-2018	40.6	ND	ND	ND
AUGUST	-2018	43.6	ND	ND	ND
SEPTEMBER	-2018	43.5	0.3	ND	ND
OCTOBER	-2018	39.7	ND	ND	ND
NOVEMBER	-2018	44.6	ND	ND	ND
DECEMBER	-2018	45.6	ND	ND	ND
	=====				
Average:		41.5	0.2	0	0

Trace Metals

Annual 2018

Analyte: MAX_MDL Units: Source: Month/Limit:	Aluminum 5.97 UG/L Influent	Aluminum 5.97 UG/L Effluent	Antimony .071 UG/L Influent	Antimony .071 UG/L Effluent	Arsenic .316 UG/L Influent	Arsenic .316 UG/L Effluent 2800
JANUARY -2018	452	26.5	1.16	0.714	1.46	0.973
FFBRUARY -2018	418	27.9	1.27	0.694	1.31	0,936
MARCH -2018	678	13.8	1.00	0.594	1.45	0.955
ΔPRTI -2018	660	16 3	1 24	0 661	1 50	0 921
ΜΔΥ -2018	1050	33 0	0 98	0 618	1 50	1 090
JUNE -2018	423	11.9	0.891	0.546	1.28	0.877
7ULY -2018	575	9.67	1 48	0 821	1 75	1 050
AUGUST -2018	944	16 2	1.40	0.021	1 58	1 020
SEPTEMBER-2018	538	11 9	1 31	0.856	1 42	0 908
OCTOBER -2018	499	17.2	1.47	0.864	1.40	0.792
NOVEMBER -2018	550	14.1	1.51	0.899	1.55	0.988
DECEMBER -2018	756	23.9	1.51	0.055	1 39	0 784
		======		=======		
AVERAGE	629	18.5	1.25	0.767	1.47	0.941
Analyta	Banium	Banjum	Popullium	Popullium	Banan	Panan
MAX MDL Uniter						
MAX_MDL UNILS.	.100 UG/L	.100 UG/L	.122 UG/L	.122 UG/L	.307 UG/L	567 UG/L
Month/Limit:	Influenc	ETTTUELL	Influenc	Enfluenc	Infidenc	ETTTUEIIC
=======================================		==========	============	=======	==================	=======
JANUARY -2018	75.2	51.0	ND	ND	428	411
FEBRUARY -2018	68.4	43.0	ND	ND	363	375
MARCH -2018	75.1	46.2	ND	ND	358	342
APRIL -2018	80.8	29.9	ND	ND	593	426
MAY -2018	76.6	41.2	ND	ND	545	367
JUNE -2018	73.7	43.8	ND	ND	391	363
JULY -2018	104	57.7	ND	ND	491	437
AUGUST -2018	89.6	52.9	ND	ND	381	402
SEPTEMBER-2018	94.1	46.8	ND	ND	396	375
OCTOBER -2018	87.4	49.9	ND	ND	398	314
NOVEMBER -2018	87.9	49.0	ND	ND	471	398
DECEMBER -2018	97.6	55.4	ND	ND	414	346
AVERAGE	======================================	47.2	 0.0	0.0	436	======= 380
Analyte:	Cadmium	Cadmium	Chromium	Chromium	Cobalt	Cobalt
MAX_MDL Units:	.044 UG/L	.044 UG/L	.332 UG/L	.332 UG/L	.023 UG/L	.023 UG/L
Source:	Influent	Effluent	Influent	Effluent	Influent	Effluent
Month/Limit:		48		760		
======================================	======== ρ 120		======================================	======= ρ /111	======================================	======== 0 201
54N04K1 -2018	0.129	ND	2.17	0.411	0.402	0.204
	0.104		2.04	0.370	0.500	0.200 A 100
MARCH -2010	0.150	ND	2.30	0.500	0.500	0.190
MAV _ 2010	0.240		5.01 5.61	0.554 0 561	0.020	0.219
	0.149 0 112		2.00	0.004 ND	0.4/J 0 20E	0.235
	0.113		2.42	עאו עאו	0.255 0.177	0.140 0 107
	0.104 0.121		2.50	0.JUJ	0.472	0.10/
SEDTEMBED - 2010	0.131		2.49	0.41Z 0 /10	0.59/ 0.207	0.104
OCTORER _ 2010	0.131		2.00	0.419 ND	0.592	0.1/4 0 172
NOVEMBER _ 2010	0.140		1.00	0 /10	0.5/4 A 205	0.1/J 0 10J
DECEMBER -2018	0.154 0.157		2.59 2.47	0.410 0 411	0.595 0 608	0.103
=======================================	============		===========	=======	============	=======
AVERAGE	0.143	0.0	2.51	0.360	0.455	0.191

Trace Metals

Annual 2018

Analyte: MAX_MDL Units: Source: Month/Limit:	Copper .345 UG/L Influent	Copper .345 UG/L Effluent 960	Iron 20.6 UG/L Influent	Iron 20.6 UG/L Effluent	Lead .078 UG/L Influent	Lead .078 UG/L Effluent 760
JANUARY -2018 FEBRUARY -2018 MARCH -2018 APRIL -2018 MAY -2018	88.4 80.4 84.2 90.4 89.3	18.5 7.95 5.53 5.04 5.85	670 558 506 2730 698	55.5 50.7 23.0 136 108	1.63 1.48 2.11 2.11 1.47	0.279 0.241 0.177 0.104 0.405
JUNE -2018	84.6	3.79	1030	42.4	1.41	0.216
JULY -2018	85.3	3.82	1400	50.2	1.71	0.111
AUGUSI -2018	83./	4.88	662 1620	39.1	1.49	0.2/3
OCTOBER -2018	79.6	8.23	550	27.0	1.30	0.272
NOVEMBER -2018	85.4	7.05	683	36.2	1.68	0.313
DECEMBER -2018	77.7	5.37	717	43.1	1.75	0.222
AVERAGE	85.1	6.80	985	53.2	1.62	0.243
Analyte:	Manganese	Manganese	Mercury	Mercury	Molybdenum	Molybdenum
MAX_MDL Units:	.076 UG/L	.076 UG/L	.005 UG/L	.002 UG/L	.112 UG/L	.112 UG/L
Source: Month/Limit:	Influent	Effluent	Influent	Effluent 15.0	Influent	Effluent
JANUARY -2018	130		0.097	0.006	4.79	2.77
FEBRUARY -2018	106	20.3	0.100	0.002	5.16	2.93
MARCH -2018	134	11.7	0.104	0.003	6.61	3.43
APRIL -2018	145	86.9	0.093	0.001	9.38	6.77
MAY -2018	133	36.2	0.096	0.003	12.0	7.52
JUNE -2018	130	6.55	0.0/2	0.002	7.90	9.20
AUGUST - 2018	103	21 9	0.180 0.074	0 002	8 10	4 36
SEPTEMBER-2018	100	8.51	0.113	ND	9.39	4.75
OCTOBER -2018	84.5	11.7	0.096	0.003	7.59	3.58
NOVEMBER -2018	87.3	14.6	0.174	0.003	6.64	3.54
DECEMBER -2018	114	16.2	0.085	0.002	7.58	3.85
AVERAGE	======= 115	22.8	 0.108	0.002	7.71	4.69
Analyte:	Nickel	Nickel	Selenium	Selenium	Silver	Silver
MAX_MDL Units:	.088 UG/L	.088 UG/L	.851 UG/L	.851 UG/L	.104 UG/L	.104 UG/L
Source: Month/Limit:	Influent	1900	Influent	5700	Influent	250
JANUARY -2018	3.87	2.96	1.17	ND	0.240	ND
FEBRUARY -2018	3.64	1.74	1.09	ND	0.294	ND
MARCH -2018	4.08	1.68	1.24	ND	0.166	ND
APRIL -2018	4.28	1.89	1.41	ND	0.425	ND
MAY -2018	4.00 2 or	1.87	2.04		0.128	
JUNE -2018	3.85 5.27	1.94 2 12	1.24 2 11	ND ND	0.143 0 107	UN סוא
AUGUST -2018	4.21	2.35	1.69	ND	0.155	ND
SEPTEMBER-2018	4.10	2.39	2.27	ND	0.233	ND
OCTOBER -2018	3.68	2.13	1.35	ND	0.252	ND
NOVEMBER -2018	4.00	2.23	1.87	ND	0.258	ND
DECEMBER -2018	3.92	2.01	3.13	1.010	0.198	ND
AVERAGE	4.08	2.11	1.72	0.084	======================================	.0.0

Trace Metals

Annual 2018

Analyte: MAX_MDL Units: Source: Month/Limit:	Thallium .1 UG/L Influent	Thallium .1 UG/L Effluent	Vanadium .599 UG/L Influent	Vanadium .599 UG/L Effluent	Zinc 1.05 UG/L Influent	Zinc 1.05 UG/L Effluent 6900
JANUARY -2018	ND	ND	2.94	1.73	136	45.3
FEBRUARY -2018	ND	ND	2.53	1.70	120	43.6
MARCH -2018	ND	ND	3.53	1.48	150	44.0
APRIL -2018	ND	ND	5.71	2.03	172	18.4
MAY -2018	0.23	ND	4.40	1.55	214	53.2
JUNE -2018	ND	ND	3.07	1.49	148	42.7
JULY -2018	ND	ND	4.16	1.91	182	41.1
AUGUST -2018	ND	ND	3.02	1.76	170	59.8
SEPTEMBER-2018	ND	ND	3.39	1.70	198	61.2
OCTOBER -2018	ND	ND	2.99	1.34	165	46.0
NOVEMBER -2018	ND	ND	3.44	1.34	178	49.6
DECEMBER -2018	ND	ND	4.13	1.48	176	53.8
	===============				============	
AVERAGE	0.02	0.0	3.61	1.63	167	46.6

SOUTH BAY WATER RECLAMATION PLANT Radioactivity Effluent to the Ocean (SB_OUTFALL_01)

Analyzed by: FGL Environmental Agricultural Analytical

Annual 2018

Gross Alpha Radiation	Gross Beta Radiation
2.3 ± 1.7	15.6 ± 2.2
3.2 ± 2.2	9.0 ± 1.6
2.0 ± 1.4	9.8 ± 1.5
12.4 ± 3.8	17.2 ± 3.0
4.1 ± 2.3	10.0 ± 2.2
1.9 ± 1.5	8.0 ± 2.1
6.4 ± 3.6	8.7 ± 3.9
29.1 ± 4.3	59.4 ± 3.5
4.9 ± 1.8	11.6 ± 2.5
4.1 ± 2.2	12.3 ± 1.8
1.4 ± 1.6	8.5 ± 1.9
5.3 ± 2.9	20.8 ± 2.9
5.9 ± 2.4	15.9 ± 2.4
	Gross Alpha Radiation 2.3 ± 1.7 3.2 ± 2.2 2.0 ± 1.4 12.4 ± 3.8 4.1 ± 2.3 1.9 ± 1.5 6.4 ± 3.6 29.1 ± 4.3 4.9 ± 1.8 4.1 ± 2.2 1.4 ± 1.6 5.3 ± 2.9 5.9 ± 2.4

Units in picocuries/liter (pCi/L)

SOUTH BAY WATER RECLAMATION PLANT SOURCE: INFLUENT (SB_INF_02)

CHLORINATED PESTICIDE ANALYSIS, EPA Method 608 (WITH ADDITIONS)

Annual 2018

Source:				INFI	UENT		
Date:			FEB	MAY	AUG	ОСТ	
Analyte	Max MDL	Units					Avg
	======	=====	=====	===== :		=====	=====
Aldrin	1.17	NG/L	ND	ND	ND	ND	ND
Dieldrin	.73	NG/L	ND	ND	ND	ND	ND
BHC, Alpha isomer	2.22	NG/L	ND	ND	ND	ND	ND
BHC, Beta isomer	1.4	NG/L	ND	ND	ND	ND	ND
BHC, Gamma isomer	1.76	NG/L	ND	ND	ND	ND	ND
BHC, Delta isomer	.86	NG/L	ND	ND	ND	ND	ND
p,p-DDD	.71	NG/L	ND	ND	ND	ND	ND
p,p-DDE	1	NG/L	ND	ND	ND	ND	ND
p,p-DDT	1.14	NG/L	ND	ND	ND	ND	ND
o,p-DDD	1.11	NG/L	ND	ND	ND	ND	ND
o,p-DDE	1.82	NG/L	ND	ND	ND	ND	ND
o,p-DDT	.69	NG/L	ND	ND	ND	ND	ND
Heptachlor	.96	NG/L	ND	ND	ND	ND	ND
Heptachlor epoxide	3.52	NG/L	ND	ND	ND	ND	ND
Alpha (cis) Chlordane	.89	NG/L	ND	ND	ND	ND	ND
Gamma (trans) Chlordane	1.89	NG/L	ND	ND	ND	ND	ND
Alpha Chlordene	0	NG/L	NA	NA	NA	NA	NA
Gamma Chlordene	0	NG/L	NA	NA	NA	NA	NA
Oxychlordane	1.31	NG/I	ND	ND	ND	ND	ND
Trans Nonachlor	.6	NG/L	ND	ND	ND	ND	ND
Cis Nonachlor	.39	NG/I	ND	ND	ND	ND	ND
Alpha Endosulfan	.83	NG/I	ND	ND	ND	ND	ND
Beta Endosulfan	2.91	NG/I	ND	ND	ND	ND	ND
Endosulfan Sulfate	1 15	NG/I	ND	ND	ND	ND	ND
Endrin	89	NG/I	ND	ND	ND	ND	ND
Endrin aldehvde	1 92	NG/I	ND	ND	ND	ND	ND
Mirex	1.66	NG/I	ND	ND	ND	ND	ND
Methoxychlor	2.57	NG/I	ND	ND	ND	ND	ND
Toxanhene	258	NG/I	ND	ND	ND	ND	ND
PCB 1016	271	NG/I	ND	ND	ND	ND	ND
PCB 1221	2060	NG/I	ND	ND	ND	ND	ND
PCB 1232	774	NG/L	ND	ND	ND	ND	ND
PCB 12/2	774 271			ND	ND	ND	ND
PCB 1242	271						
PCB 1254	516	NG/L	ND	ND	ND	ND	ND
PCB 1260	516	NG/L	ND	ND	ND	ND	ND
PCB 1262	516	NG/L	ND	ND	ND	ND	ND
	=======	=====	=====	===== :		=====	=====
Aldrin + Dieldrin	1 17	NG/I	o	، م	، م	 0	 0
Hevachlorocyclohevanes	2 22		a a	a a	a	a	a
DDT and denivatives	1 92		0	0	0	0	0
Chlondana + nelated cmnds	1 90		0	0	0	0	0
Polychloninated hinhenyls	2060		0	0	0	0	0
Endoculfonc	2000		0	0	0	0	0
	2.91	NG/ L	0				U
Hentachlors	2 50	=	i	= 0	: <u>تـــــ</u>	 0	<u></u>
			=====				
Chlorinated Hydrocarbons	2060	NG/L	0	0	0	0	0

ND= not detected; NA= not analyzed

Standards for alpha and gamma chlordene are no longer available in the U.S. for the analysis of these compounds.

SOUTH BAY WATER RECLAMATION PLANT SOURCE: EFFLUENT (SB_OUTFALL_01)

CHLORINATED PESTICIDE ANALYSIS, EPA Method 608 (WITH ADDITIONS)

Annual 2018

Source:								EFI	-LUENI						
Date:			JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	0CT	NOV	DEC	
Analyte	Max MDL	Units													Avg
		=====								=====					=====
Aldrin	1.17	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dieldrin	.73	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BHC, Alpha isomer	2.22	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BHC, Beta isomer	1.4	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BHC, Gamma isomer	1.76	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BHC, Delta isomer	.86	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p,p-DDD	.71	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p,p-DDE	1	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p,p-DDT	1.14	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o,p-DDD	1.11	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o,p-DDE	1.82	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o,p-DDT	.69	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptachlor	.96	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptachlor epoxide	3.52	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Alpha (cis) Chlordane	.89	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Gamma (trans) Chlordane	1.89	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Alpha Chlordene	0	NG/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gamma Chlordene	0	NG/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Oxychlordane	1.31	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trans Nonachlor	.6	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cis Nonachlor	.39	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Alpha Endosulfan	.83	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Beta Endosulfan	2.91	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endosulfan Sulfate	1.15	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endrin	.89	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endrin aldehvde	1.92	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Mirex	1.66	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methoxychlor	2.57	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toxaphene	258	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB 1016	271	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB 1221	2060	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB 1232	774	NG/I	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB 1242	271	NG/I	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB 1248	271	NG/I	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB 1254	516	NG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB 1260	516	NG/I	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB 1262	516	NG/I	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	=======	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====
Aldrin + Dieldrin	1.17	NG/L	0	0	0	0	0	0	0	0	0	0	0	0	0
Hexachlorocvclohexanes	2.22	NG/L	0	0	0	0	0	0	0	0	0	0	0	0	0
DDT and derivatives	1.82	NG/L	0	0	0	0	0	0	0	0	0	0	0	0	0
Chlordane + related cmpds.	1.89	NG/L	0	0	0	0	0	0	0	0	0	0	0	0	0
Polychlorinated binhenvls	2060	NG/I	0	0	0	0	0	0	0	0	0	0	0	0	0
Endosulfans	2.91	NG/L	õ	õ	ø	ø	ø	ด้	ø	ø	ø	õ	õ	õ	ñ
		=====	=====	=====		=====	=====	=====	=====	=====	=====	=====	=====		=====
Heptachlors	3.52	NG/L	0	0	0	0	0	0	0	0	0	0	0	0	0
Chlorinated Hydrocarbons	2060	= NG/L	===== 0	 0	===== 0	 0	===== 0								

ND= not detected; NA= not analyzed

~

Standards for alpha and gamma chlordene are no longer available in the U.S. for the analysis of these compounds.

Organophosphorus Pesticides - EPA Method 614/622 (with additions)

Annual 2018

Source:			Influent*	Influent'	Effluent	Effluent
Date:			02-MAY-2018	02-0CT-2018	02-MAY-2018	02-0CT-2018
Analyte	Max MD	L Units	P1017142	P1047085	P1017147	P1047090
		= =====				
Demeton O	.01	UG/L	ND	ND	ND	ND
Demeton S	.04	UG/L	ND	ND	ND	ND
Diazinon	.02	UG/L	ND	ND	ND	ND
Guthion	.03	UG/L	ND	ND	ND	ND
Malathion	.02	UG/L	ND	ND	ND	ND
Parathion	.01	UG/L	ND	ND	ND	ND
Dichlorvos	.02	UG/L	ND	ND	ND	ND
Disulfoton	.01	UG/L	ND	ND	ND	ND
Stirophos	.01	UG/L	ND	ND	ND	ND
Coumaphos	.05	UG/L	ND	ND	ND	ND
Chlorpyrifos	.02	UG/L	ND	ND	ND	ND
Thiophosphorus Pesticides	.03	UG/L	0.00	0.00	0.00	0.00
Demeton -0, -S	.04	UG/L	0.00	0.00	0.00	0.00
Total Organophosphorus Pesticides	====== .05	UG/L	======== 0.00	0.00	0.00	0.00

*= Surrogate recovery in sample outside method acceptance limits; sample result not included in average calculations.

Tributyl Tin Analysis

Annual 2018

Source:		INFLUENT									
Date:			FEE	3 MAN	/ AU	G OCT	Г				
Analyte	Max MDL	Units					Average				
		=====	========								
Dibutyltin	.0092	UG/L	ND	ND	ND	ND	ND				
Monobutyltin	.013	UG/L	ND	ND	ND	ND	ND				
Tributyltin	.0045	UG/L	ND	ND	ND	ND	ND				

Source:					EFFLUEN	IT	
Date:			FEB	MAY	Y AUC	G OCT	Г
Analyte	Max MDL	Units					Average
		=====			========	========	========
Dibutyltin	.0092	UG/L	ND	ND	DNQ0.0182	ND	DNQ0.0046
Monobutyltin	.013	UG/L	ND	ND	DNQ0.018	ND	DNQ0.005
Tributyltin	.0045	UG/L	ND	ND	ND	ND	ND

ND=not detected DNQ= (Detected but not quantified). Estimated analyte concentration below calibration range.

PRIORITY POLLUTANT ANALYSIS-ACID EXTRACTABLE COMPOUNDS, EPA Method 625

Annual 2018

Source: Date:			FEB	IN MAY	IFLUET ′ AUG	* 0C1	т	
Analyte	Max MDL	Units					Average	
		=====	=====	=====	=====	=====	=====	
2-Chlorophenol	1.87	UG/L	ND	ND	ND	ND	ND	
2,4-Dichlorophenol	1.43	UG/L	ND	ND	ND	ND	ND	
4-Chloro-3-methylphenol	2.36	UG/L	ND	ND	ND	ND	ND	
2,4,6-Trichlorophenol	2.33	UG/L	ND	ND	ND	ND	ND	
Pentachlorophenol	1.58	UG/L	ND	ND	ND	ND	ND	
Phenol	2.49	UG/L	117	54.2	21.0	64.5	78.6	
2-Nitrophenol	2.19	UG/L	ND	ND	ND	ND	ND	
2,4-Dimethylphenol	2.84	UG/L	ND	ND	ND	ND	ND	
2,4-Dinitrophenol	3.06	UG/L	ND	ND	ND	ND	ND	
4-Nitrophenol	1.61	UG/L	ND	ND	ND	ND	ND	
4,6-dinitro-2-methylphenol	2.15	UG/L	ND	ND	ND	ND	ND	
Total Chlorinated Phenols	2.36	===== UG/L	===== 0.0	0.0	===== 0.0	0.0	===== 0.0	
Total Non-Chlorinated Phenols	3.06	UG/L	117	54.2	21.0	64.5	78.6	
Total Phenols	====== 3.06	===== UG/L	===== 117	===== 54.2	21.0	64.5	===== 78.6	

Additional analytes determined

	======	=====	=====	=====	=====	=====	
2-Methylphenol	3.04	UG/L	ND	ND	ND	ND	ND
3-Methylphenol(4-MP is unresolved)		UG/L	NA	NA	NA	NA	NA
4-Methylphenol(3-MP is unresolved)	2.98	UG/L	113	101	25.1	86.6	100
2,4,5-Trichlorophenol	2.35	UG/L	ND	ND	ND	ND	ND

Source:							EF	FLUENT							
Date:			JAN	FEB	MAF	R APF	R MAY	/ JUN	JUL	AUG	* SEF	ост	NOV	DE	С
Analyte	Max MDL	Units													Average
		=====	===== =		=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====
2-Chlorophenol	1.87	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dichlorophenol	1.43	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Chloro-3-methylphenol	2.36	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4,6-Trichlorophenol	2.33	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pentachlorophenol	1.58	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenol	2.49	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Nitrophenol	2.19	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dimethylphenol	2.84	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dinitrophenol	3.06	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Nitrophenol	1.61	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4,6-dinitro-2-methylphenol	2.15	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Chlorinated Phenols	2 36	===== UG/I	===== = 0 0	===== 0 0											
Total Non-Chlorinated Phenols	3.06	UG/L	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Phenols	====== 3.06	===== UG/L	0.0	0.0	0.0	0.0	0.0	===== 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Additional analytes determined															
2-Methylphenol	====== 3 04	===== UG/I	===== = ND	===== ND	===== ND	===== ND	===== ND		===== ND						
3-Methylphenol(4-MP is unresolved)	5.04		NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ
4-Methylphenol(3-MP is unresolved)	2 98		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4,5-Trichlorophenol	2.35	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

*= Surrogate recovery in method blank outside acceptance limits; sample result not included in average calculations.

ND= not detected; NA= not analyzed

SOUTH BAY WATER RECLAMATION PLANT SAMPLE SOURCE: INFLUENT (SB_INF_02)

Priority Pollutants Base/Neutral Compounds, EPA Method 625

Annual 2018

Source:				INF	LUENT		
Date:			FEB	MAY	AUG	ОСТ	
Analyte	Max MDL	Units	Avg	Avg	Avg	Avg	Average
			=====	=====	=====		
Bis-(2-chloroethyl) ether	1.78	UG/L	ND	ND	ND	ND	ND
Bis-(2-chloroisopropyl) ether	1.49	UG/L	ND	ND	ND	ND	ND
N-nitrosodi-n-propylamine	1.49	UG/L	ND	ND	ND	ND	ND
Nitrobenzene	2.06	UG/L	ND	ND	ND	ND	ND
Hexachloroethane	1.7	UG/L	ND	ND	ND	ND	ND
Isophorone	1.97	UG/L	ND	ND	ND	ND	ND
Bis-(2-chloroethoxy) methane	1.3	UG/L	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	1.96	UG/L	ND	ND	ND	ND	ND
Naphthalene	2.12	UG/L	ND	ND	ND	ND	ND
Hexachlorobutadiene	2.11	UG/L	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene	1.61	UG/L	ND	ND	ND	ND	ND
Acenaphthylene	2.28	UG/L	ND	ND	ND	ND	ND
Dimethyl phthalate	1.85	UG/L	ND	ND	ND	ND	ND
2,6-Dinitrotoluene	1.97	UG/L	ND	ND	ND	ND	ND
Acenaphthene	2.32	UG/L	ND	ND	ND	ND	ND
2,4-Dinitrotoluene	1./5	UG/L	ND	ND	ND	ND	ND
Fluorene	2.07	UG/L	ND	ND	ND	ND	ND
4-Chlorophenyl phenyl ether	2.02	UG/L	ND	ND	ND	ND	ND
Diethyl phthalate	3.93	UG/L	10.3	4.09	4.28	5.73	6.10
N-nitrosodiphenylamine	4.48	UG/L	ND	ND	ND	ND	ND
4-Bromophenyl phenyl ether	1.8	UG/L	ND	ND	ND	ND	ND
Hexachlorobenzene	1.9	UG/L	ND	ND	ND	ND	ND
Phenanthrene	1.72	UG/L	ND	ND	ND	ND	ND
Anthracene	1.66	UG/L	ND	ND	ND	ND	ND
Di-n-butyl phthalate	5.1	UG/L	ND	ND	ND	ND	ND
N-nitrosodimethylamine	1.63	UG/L	ND	ND	ND	ND	ND
Fluoranthene	1.71	UG/L	ND	ND	ND	ND	ND
Pyrene	1.84	UG/L	ND	ND	ND	ND	ND
Benzidine	1.96	UG/L	ND	ND	ND	ND	ND
Butyl benzyl phthalate	3.66	UG/L	ND	ND	ND	ND	ND
Chrysene	1.49	UG/L	ND	ND	ND	ND	ND
Benzo[a]anthracene	1.42	UG/L	ND	ND	ND	ND	ND
Bis-(2-ethylhexyl) phthalate	11.5	UG/L	26.7	ND	ND	ND	6.68
Di-n-octyl phthalate	1.29	UG/L	14.0	6.19	ND	ND	5.05
3,3-Dichlorobenzidine	3.14	UG/L	ND	ND	ND	ND	ND
Benzo[k]fluoranthene	1.92	UG/L	ND	ND	ND	ND	ND
3,4-Benzo(b)fluoranthene	1.74	UG/L	ND	ND	ND	ND	ND
Benzo[a]pyrene	1.61	UG/L	ND	ND	ND	ND	ND
Indeno(1,2,3-CD)pyrene	1.47	UG/L	ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene	1.3	UG/L	ND	ND	ND	ND	ND
Benzo[g,h,i]perylene	1.4	UG/L	ND	ND	ND	ND	ND
1,2-Diphenylhydrazine	1.76	UG/L	ND	ND	ND	ND	ND
Polynuc. Aromatic Hydrocarbons	2.28	UG/L	0.0	0.0	0.0	0.0	0.0
			=====	=====	=====	=====	=====
Base/Neutral Compounds	11.5	UG/L	51.0	10.3	4.28	5.73	17.8
Additional analytes determined							
1-Methylnaphthalene	2.81	UG/L	ND	ND	ND	ND	ND
2-Methylnaphthalene	2.75	UG/L	ND	ND	ND	ND	ND
2,6-Dimethylnaphthalene	2.78	UG/L	ND	ND	ND	ND	ND
2,3,5-Trimethylnaphthalene	2.81	UG/L	ND	ND	ND	ND	ND
1-Methylphenanthrene	1.88	UG/L	ND	ND	ND	ND	ND
Benzo[e]pyrene	1.85	UG/L	ND	ND	ND	ND	ND
Perylene	1.81	UG/L	ND	ND	ND	ND	ND
Biphenyl	2.95	UG/L	ND	ND	ND	ND	ND

SOUTH BAY WATER RECLAMATION PLANT SAMPLE SOURCE: EFFLUENT (SB_OUTFALL_01)

Priority Pollutants Base/Neutral Compounds, EPA Method 625

Annual 2018

Source:				EFF	LUENT		
Date:			FEB	MAY	AUG	001	г
Analyte	Max MDL	Units	Avg	Avg	Avg	Avg	Average
	======	=====	=====	===== =		=====	=====
Bis-(2-chloroethyl) ether	1.78	UG/L	ND	ND	ND	ND	ND
Bis-(2-chloroisopropyl) ether	1.49	UG/L	ND	ND	ND	ND	ND
N-nitrosodi-n-propylamine	1.49	UG/L	ND	ND	ND	ND	ND
Nitrobenzene	2.06	UG/L	ND	ND	ND	ND	ND
Hexachloroethane	1.7	UG/L	ND	ND	ND	ND	ND
Isophorone	1.97	UG/L	ND	ND	ND	ND	ND
Bis-(2-chloroethoxy) methane	1.3	UG/L	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	1.96	UG/L	ND	ND	ND	ND	ND
Naphthalene	2.12	UG/L	ND	ND	ND	ND	ND
Hexachlorobutadiene	2.11	UG/L	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene	1.61	UG/L	ND	ND	ND	ND	ND
Acenaphthylene	2.28	UG/L	ND	ND	ND	ND	ND
Dimethyl phthalate	1.85	UG/L	ND	ND	ND	ND	ND
2,6-Dinitrotoluene	1.97	UG/L	ND	ND	ND	ND	ND
Acenaphthene	2.32	UG/L	ND	ND	ND	ND	ND
2,4-Dinitrotoluene	1.75	UG/L	ND	ND	ND	ND	ND
Fluorene	2.07	UG/L	ND	ND	ND	ND	ND
4-Chlorophenyl phenyl ether	2.02	UG/L	ND	ND	ND	ND	ND
Diethyl phthalate	3.93	UG/L	ND	4.42	ND	3.60	2.01
N-nitrosodiphenylamine	4.48	UG/L	ND	ND	ND	ND	ND
4-Bromophenyl phenyl ether	1.8	UG/L	ND	ND	ND	ND	ND
Hexachlorobenzene	1.9	UG/L	ND	ND	ND	ND	ND
Phenanthrene	1.72	UG/L	ND	ND	ND	ND	ND
Anthracene	1.66	UG/L	ND	ND	ND	ND	ND
Di-n-butyl phthalate	5.1	UG/L	ND	ND	ND	ND	ND
N-nitrosodimethylamine	1.63	UG/L	ND	ND	ND	ND	ND
Fluoranthene	1.71	UG/L	ND	ND	ND	ND	ND
Pyrene	1.84	UG/L	ND	ND	ND	ND	ND
Benzidine	1.96	UG/L	ND	ND	ND	ND	ND
Butyl benzyl phthalate	3.66	UG/L	ND	ND	ND	ND	ND
Chrysene	1.49	UG/L	ND	ND	ND	ND	ND
Benzo[a]anthracene	1.42	UG/L	ND	ND	ND	ND	ND
Bis-(2-ethylhexyl) phthalate	11.5	UG/L	ND	ND	ND	ND	ND
Di-n-octyl phthalate	1.29	UG/L	ND	ND	ND	ND	ND
3,3-Dichlorobenzidine	3.14	UG/L	ND	ND	ND	ND	ND
Benzo[k]fluoranthene	1.92	UG/L	ND	ND	ND	ND	ND
3,4-Benzo(b)fluoranthene	1.74	UG/L	ND	ND	ND	ND	ND
Benzo[a]pyrene	1.61	UG/L	ND	ND	ND	ND	ND
Indeno(1,2,3-CD)pyrene	1.47	UG/L	ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene	1.3	UG/L	ND	ND	ND	ND	ND
<pre>Benzo[g,h,i]perylene</pre>	1.4	UG/L	ND	ND	ND	ND	ND
1,2-Diphenylhydrazine	1.76	UG/L	ND	ND	ND	ND	ND
			=====				=====
Polynuc. Aromatic Hydrocarbons	2.28	UG/L	0.0	0.00	0.0	0.00	0.00
		=====	=====				=====
Base/Neutral Compounds	11.5	UG/L	0.0	4.42	0.0	3.60	2.01
Additional analytes determined							
		=====	=====	===== =			
1-Methylnaphthalene	2.81	UG/L	ND	ND	ND	ND	ND
2-MethyInaphthalene	2.75	UG/L	ND	ND	ND	ND	ND
2,6-DimethyInaphthalene	2./8	UG/L	ND	ND	ND	ND	ND
2,3,5-TrimethyInaphthalene	2.81	UG/L	ND	ND	ND	ND	ND
1-Methylphenanthrene	1.88	UG/L	ND	ND	ND	ND	ND
Benzolejpyrene	1.85	UG/L	ND	ND	ND	ND	ND
Perylene	1.81	UG/L	ND	ND	ND	ND	ND
Biphenyl	2.95	UG/L	ND	ND	ND	ND	ND

SOUTH BAY WATER RECLAMATION PLANT SOURCE: INFLUENT (SB_INF_02) Priority Pollutants Purgeable Compounds, EPA Method 8260B

Annual 2018

Source:			INF	INF	INF	INF
Analyte		Unite	FED	I'IA I	AUG	Avenage
		=====				=======
Dichlorodifluoromethane	2.39	UG/L	ND	ND	ND	ND
Chloromethane	.19	UG/L	ND	ND	ND	ND
Vinyl chloride	.24	UG/L	ND	ND	ND	ND
Bromomethane	.22	UG/L	ND	ND	DNQ0.34*	ND
Chloroethane	.24	UG/L	ND	ND	ND	ND
Trichlorofluoromethane	.26	UG/L	ND	ND	ND	ND
Acrolein	.94	UG/L	ND	ND	ND	ND
1,1-Dichloroethane	.28	UG/L	ND	ND	ND	ND
Methylene chloride	.37	UG/L	DNQ1.05*	DNQ0.82	DNQ0.65	DNQ0.74
trans-1,2-dichloroethene	.34	UG/L	ND	ND	ND	ND
1,1-Dichloroethene	.37	UG/L	ND	ND	ND	ND
Acrylonitrile	.48	UG/L	ND	ND	ND	ND
Chlorotorm	.3	UG/L	DNQ1./8	DNQ0.96	DNQ0.94	DNQ1.23
1,1,1-Irichloroethane	.4	UG/L	ND	ND	ND	ND
Carbon tetrachloride	.4	UG/L	ND	ND	ND	ND
Benzene	.3/	UG/L	ND	ND	ND	ND
I, 2-DICHIOPOethane	. 32					
1 2 Dichlonoppopp	.45					
Representation of opene	27					
2-Chloroethylyinyl ether	25			ND		
cis-1 3-dichloronronene	38		ND	ND	ND	ND
Toluene	.37		DN00.91	DN01.42*	DN00.82	DN00.87
trans-1.3-dichloropropene	.35		ND	ND	ND	ND
1.1.2-Trichloroethane	.32	UG/L	ND	ND	ND	ND
Tetrachloroethene	.4	UG/L	ND	ND	ND	ND
Dibromochloromethane	.34	UG/L	ND	ND	ND	ND
Chlorobenzene	.4	UG/L	ND	ND	ND	ND
Ethylbenzene	.41	UG/L	ND	ND	ND	ND
Bromoform	.36	UG/L	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	.33	UG/L	ND	ND	ND	ND
1,3-Dichlorobenzene	.47	UG/L	ND	ND	ND	ND
1,4-Dichlorobenzene	.46	UG/L	ND	ND	ND	ND
1,2-Dichlorobenzene	.36	UG/L	ND	ND	ND	ND
1,2,4-Trichlorobenzene	1.96	UG/L	ND	ND	ND	ND
		=====	=======			
Halomethane Purgeable Cmphas	.36	UG/L	0.00	0.00	0.00	0.00
Total Dichlonohonzonoc	47	=====		· =======	======= 0 00	======= 0 00
	.4/	00/L	0.00	0.00 =======	0.00	0.00
Total Chloromethanes	.4	UG/I	0.00	0.00	0.00	0.00
		=====	========	=========	=======	=======
Purgeable Compounds	.94	UG/L	0.00	0.00	0.00	0.00
Additional analytes determine	ed					
Mothyl Todido	======= > 2	=====				
Metnyl loalde	.32			ND 1 70		ND 1 CC
	.3/		DNQ2.04	1.70	1.25	1.66
Allyl chlonido	0.74		201	192		
Mothyl topt butyl othon	.44					0 27
Chloroprepe	. 30					0.27 ND
1 2-Dibromoethane	.05		ND		ND	
2-Butanone	5.56	UG/I	DN06.45	ND	DN06.11	4.19
Methyl methacrylate	.32	UG/1		ND	ND	ND
2-Nitropropane	.49	UG/L	ND^	ND	ND	ND
4-Methyl-2-pentanone	.39	UG/L	ND	ND	ND	ND
meta,para xylenes	.85	UG/L	ND	ND	ND	ND
ortho-xylene	.34	UG/L	ND	ND	ND	ND
Isopropylbenzene	.41	UG/L	ND	ND	ND	ND
Styrene	.38	UG/L	ND	ND	ND	ND
Benzyl chloride	.65	UG/L	ND	ND	ND	ND

*= Method blank value above the MDL; sample result not included in average calculations.

^= Analyst error of improper identification in retention time; sample result not included in average calculation.

ND= not detected DNQ= (Detected but not quantified). Estimated analyte concentration below calibration range.

SOUTH BAY WATER RECLAMATION PLANT SOURCE: EFFLUENT (SB_OUTFALL_01) Priority Pollutants Purgeable Compounds, EPA Method 8260B

Annual 2018

Source:			EFF FFB	EFF	EFF	EFF
Analyte	Max MDL	Units	120		AUG	Average
		=====				
Dichlorodifluoromethane	2.39	UG/L	ND	ND	ND	ND
Chloromethane	.19	UG/L	ND	ND	ND	ND
Vinyi chioride Reemomothano	.24					
Chlopoothano	.22				Q0.52	
Trichlorofluoromethane	.24					
Acrolein	94		ND	ND	ND	ND
1.1-Dichloroethane	28		ND	ND	ND	ND
Methylene chloride	.37	UG/L	DN00.84*	DN00.60	ND	DN00.30
trans-1.2-dichloroethene	.34	UG/L	ND	ND	ND	ND
1,1-Dichloroethene	.37	UG/L	ND	ND	ND	ND
Acrylonitrile	.48	UG/L	ND	ND	ND	ND
Chloroform	.3	UG/L	DNQ1.39	DNQ0.41	ND	DNQ0.58
1,1,1-Trichloroethane	.4	UG/L	ND	ND	ND	ND
Carbon tetrachloride	.4	UG/L	ND	ND	ND	ND
Benzene	.37	UG/L	ND	ND	ND	ND
1,2-Dichloroethane	.32	UG/L	ND	ND	ND	ND
Trichloroethene	.43	UG/L	ND	ND	ND	ND
1,2-Dichloropropane	.43	UG/L	ND	ND	ND	ND
Bromodichloromethane	.37	UG/L	ND	ND	ND	ND
2-Chloroethylvinyl ether	.25	UG/L	ND	ND	ND	ND
cis-1,3-dichloropropene	.38	UG/L	ND		ND	ND
Ioluene	.3/	UG/L	DNQ0.42	<0.37	ND	DNQ0.14
trans-1,3-dichioropropene	.35	UG/L	ND	ND	ND	ND
1,1,2-Inichionoethana	. 52					
Dibnomochlonomothono	.4					
Chlorobenzene	. 54					
Ethylbenzene	.4		ND	ND	ND	ND
Bromoform	.36		ND	ND	ND	ND
1.1.2.2-Tetrachloroethane	.33	UG/L	ND	ND	ND	ND
1,3-Dichlorobenzene	.47	UG/L	ND	ND	ND	ND
1,4-Dichlorobenzene	.46	UG/L	ND	ND	ND	ND
1,2-Dichlorobenzene	.36	UG/L	ND	ND	ND	ND
1,2,4-Trichlorobenzene	1.96	UG/L	ND	ND	ND	ND
		=====	=======			
Halomethane Purgeable Cmphds	.36	UG/L	0.00	0.00	0.00	0.00
Total Dichlorobenzenes	.47	UG/L	0.00	0.00	0.00	0.00
	======	=====				
Total Chloromethanes	.4	UG/L	0.00	0.00	0.00	0.00
Purgeable Compounds	.94	UG/L	0.00	0.00	0.00	0.00
Additional analytes determine	he					
	=======					
Methvl Iodide	.32	UG/L	ND	ND	ND	ND
Carbon disulfide	.37	UG/L	ND	ND	ND	ND
Acetone	6.74	UG/L	ND	<6.74	ND	0.00
Allyl chloride	.44	UG/L	ND	ND	ND	ND
Methyl tert-butyl ether	.36	UG/L	ND	ND	ND	ND
Chloroprene	.09	UG/L	ND	ND	ND	ND
1,2-Dibromoethane	.41	UG/L	ND	ND	ND	ND
2-Butanone	5.56	UG/L	ND	ND	ND	ND
Methyl methacrylate	.32	UG/L	ND	ND	ND	ND
2-Nitropropane	.49	UG/L	ND^	ND	ND	ND
4-Methyl-2-pentanone	.39	UG/L	ND	ND	ND	ND
meta,para xylenes	.85	UG/L	ND	ND	ND	ND
ortno-xylene	.34	UG/L	ND	ND	ND	ND
1sopropy1benzene	.41	UG/L	ND	ND	ND	ND
Styrene Ronzyl chlonida	.38		ND	ND	ND	ND
penzar curourae	.00	00/L	ND	ND	ND	ND

*= Method blank value above the MDL; sample result not included in average calculations.

^= Analyst error of improper identification in retention time; sample result not included in average calculation.

ND= not detected DNQ= (Detected but not quantified). Estimated analyte concentration below calibration range.

SOUTH BAY WATER RECLAMATION PLANT SOURCE: INFLUENT (SB_INF_02) Priority Pollutants Purgeable Compounds, EPA Method 624

Annual 2018

Source:				INF
Analyte	Max MDI	Units	001	Average
	=======	=====		========
Chloromethane	.19	UG/I	ND	ND
Vinvl chloride	.24	UG/L	ND	ND
Bromomethane	.22	UG/1	ND	ND
Chloroethane	.24	UG/1	ND	ND
Trichlorofluoromethane	.26	UG/1	ND	ND
Acrolein	.94	UG/1	ND	ND
1.1-Dichloroethane	.28	UG/1	ND	ND
Methylene chloride	.37	UG/I	DN00.86*	s ND
trans-1.2-dichloroethene	. 34	UG/I	ND	ND
1.1-Dichloroethene	. 37	UG/1	ND	ND
Acrylonitrile	.48	UG/1	ND	ND
Chloroform	.3	UG/1	2.10	2.10
1.1.1-Trichloroethane	.4	UG/I	ND	ND
Carbon tetrachloride	4		ND	ND
Benzene	37		ND	ND
1.2-Dichloroethane	32		ND	ND
Trichloroethene	43		ND	ND
1.2-Dichloropropane	43		ND	ND
Bromodichloromethane	37		ND	ND
2-Chloroethylvinyl ether	25		ND	ND
cis-1.3-dichloropropene	38		ND	ND
Toluene	37		DN09 72	DN09 72
trans-1.3-dichloropropene	.35	UG/I	ND	ND
1.1.2-Trichloroethane	32		ND	ND
Tetrachloroethene	4		ND	ND
Dibromochloromethane	.34	UG/I	ND	ND
Chlorobenzene	.4	UG/I	ND	ND
Ethvlbenzene	.41	UG/L	ND	ND
Bromoform	.36	UG/L	ND	ND
1,1,2,2-Tetrachloroethane	.33	UG/L	ND	ND
1.3-Dichlorobenzene	.47	UG/L	ND	ND
1.4-Dichlorobenzene	.46	UG/L	DN00.52	DN00.52
1.2-Dichlorobenzene	.36	UG/L	ND	ND
	=======	=====		
Halomethane Purgeable Cmpnds	.36	UG/L	0.00	0.00
=======================================	=======	=====		
Total Dichlorobenzenes	.47	UG/L	0.00	0.00
		=====		
Total Chloromethanes	.4	UG/L	2.10	2.10
Purgeable Compounds	.94	= UG/L	2.10	2.10

*= Method blank value above the MDL; sample result not included in average calculations.

ND= not detected DNQ= (Detected but not quantified). Estimated analyte concentration below calibration range.

SOUTH BAY WATER RECLAMATION PLANT SAMPLE SOURCE: INFLUENT (SB_INF_02)

Dioxin and Furan Analysis

Annual 2018

Source:				INF	INF	INF	INF
Date:		Unite	Fault	JAN	FEB	MAR	APR
Analyte	Max MDL	Units	Equiv	P996239	P998924	P1005593	P1011729
2.3.7.8-tetra CDD	.209	PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD	.289	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD	.311	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	.37	PG/L	0.100	ND	DNQ4.51	ND	ND
1,2,3,7,8,9-hexa CDD	.324	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD	.408	PG/L	0.010	25.5	67.5	ND	DNQ19.3
octa CDD	1.1	PG/L	0.001	180	230	ND	170
2,3,7,8-tetra CDF	.196	PG/L	0.100	DNQ1.5	5.29	ND	ND
1,2,3,7,8-penta CDF	.3	PG/L	0.050	ND	ND	ND	ND
2,3,4,7,8-penta CDF	.311	PG/L	0.500	ND	DNQ4.13	ND	ND
1,2,3,4,7,8-hexa CDF	.29	PG/L	0.100	ND	DNQ3.17	ND	ND
1,2,3,6,7,8-hexa CDF	.264	PG/L	0.100	DNQ2.12	DNQ2.87	ND	ND
1,2,3,7,8,9-hexa CDF	.359	PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF	.376	PG/L	0.100	ND	DNQ2.73	ND	ND
1,2,3,4,6,7,8-hepta CDF	.346	PG/L	0.010	DNQ3.58	DNQ10.4	ND	DNQ2.92
1,2,3,4,7,8,9-hepta CDF	.484	PG/L	0.010	ND	ND	ND	ND
octa CDF	.858	PG/L	0.001	DNQ6.24	DNQ8.89	ND	DNQ8.68
-							
Source:				INF	INF	INF	INF
Date:				MAY	JUN	JUL	AUG
Analyte	Max MDL	Units	Equ1V =====	P101/142	P1023420	P1030413	P103/623
2,3,7,8-tetra CDD	.209	PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD	.289	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD	.311	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	.37	PG/L	0.100	ND	ND	DNQ4.56	DNQ3.55
1,2,3,7,8,9-hexa CDD	.324	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD	.408	PG/L	0.010	26.0	DNQ18.1	38.4	DNQ20.7
octa CDD	1.1	PG/L	0.001	130	150	210	97.0
2,3,7,8-tetra CDF	.196	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8-penta CDF	.3	PG/L	0.050	ND	ND	ND	ND
2,3,4,7,8-penta CDF	.311	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF	.29	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDF	.264	PG/L	0.100	ND	ND	ND	DNQ2.51
1,2,3,7,8,9-hexa CDF	.359	PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-nexa CDF	.3/6	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-nepta CDF	.346	PG/L	0.010	DNQ4.15	DNQ3.27	DNQ3.52	DNQ2.85
1,2,3,4,7,8,9-nepta CDF	.484	PG/L	0.010				ND
OCLA CDF	.000	PG/L	0.001	υννο.ο/	DNQ7.31	DNQ7.63	ND
Courses						Thir	
Source:							
Analyte	Max MDL	Units	Equiv	P1042801	P1047085	P1053387	P1059162
		=======					
2,3,7,8-tetra CDD	.209	PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD	.289	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD	.311	PG/L	0.100	ND	ND	DNQ1.79	ND
1,2,3,6,7,8-hexa CDD	.37	PG/L	0.100	DNQ2.87	ND	DNQ6.17	ND
1,2,3,7,8,9-nexa CDD	.324	PG/L	0.100		ND	DNQ2.54	ND DNO20
1,2,3,4,6,7,8-nepta CDD	.408	PG/L	0.010	DNQ23.8	DNQ20.4	48.5	DNQ20.5
	100	PG/L	0.001	150	140	100	150
2,3,/,8-LELN'A LUF	. 190		0.100	ND	ND		ND
1,2,3,7,8 penta LDF	.5		0.050	ND			
2,0,4,7,0-Pelild LDF	.511		0.500			ND ND	
1 2 3 6 7 8 hove CDF	264		0.100		עוי סוא		עוי סוא
1 2 3 7 8 9 hove CDF	350		0.100	םאו סוא	עצו סעו	UN חוא	UVI סעו
2 3 4 6 7 8-hava CDF	376		0.100	םא חוא	טאו סוא	עא חוא	טאו סוא
1.2.3.4.6.7.8-henta CDF	346	PG/I	0 010		סדי סד כחאם		עוי בעוח
1.2.3.4.7.8.9-henta CDF	.484	PG/L	0.010	ND	ND	2.10-1.00 ND	ND
octa CDF	.858	PG/L	0.001	DNQ7.11	DNQ7.77	DNQ6.29	DNQ6.32

ND= not detected DNQ= (Detected but not quantified). Estimated analyte concentration below calibration range. Above are permit required CDD/CDF isomers. SOUTH BAY WATER RECLAMATION PLANT SAMPLE SOURCE: EFFLUENT (SB_OUTFALL_01)

SBWRP Pretreatment Annual Report - Page 43 of 49

Dioxin and Furan Analysis

Annual 2018

Source: Date: Analyte	Max MDL	Units	Equiv	EFF JAN P996243	EFF FEB P998929	EFF MAR P1005597	EFF APR P1011733
2 3 7 8-tetra CDD	200	======= PG/I	===== 1 000	======================================		======================================	
1.2.3.7.8-nenta CDD	289		0 500			ND	ND
1.2.3.4.7.8 hexa CDD	311	PG/I	0.300	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	37	PG/I	0.100	ND	ND	ND	ND
1.2.3.7.8.9-hexa CDD	. 324	PG/L	0.100	ND	ND	ND	ND
1.2.3.4.6.7.8-henta CDD	.408	PG/I	0.010	DN02.81	ND	ND	ND
octa CDD	1.1	PG/1	0.001	DN012.6	DN010.0	ND	DN013.0
2.3.7.8-tetra CDF	. 196	PG/I	0.100	ND	ND	ND	ND
1.2.3.7.8-penta CDF	.3	PG/L	0.050	ND	ND	ND	ND
2.3.4.7.8-penta CDF	.311	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF	.29	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDF	.264	PG/L	0.100	ND	ND	ND	ND
1.2.3.7.8.9-hexa CDF	.359	PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF	.376	PG/L	0.100	ND	ND	ND	ND
1.2.3.4.6.7.8-hepta CDF	. 346	PG/L	0.010	ND	ND	ND	ND
1,2,3,4,7,8,9-hepta CDF	.484	PG/L	0.010	ND	ND	ND	ND
octa CDF	.858	PG/L	0.001	ND	ND	ND	ND
	.050	10/2	0.001	ne			
Source:				FFF	FFF	FFF	FFF
Date:				MAY	JUN	JUL	AUG
Analyte	Max MDL	Units	Equiv	P1017147	P1023424	P1030416	P1037628
2 3 7 8-totra CDD	209	======== PG/I	===== 1 000	======== ND	======================================	======================================	======================================
1, 3, 7, 8 popta CDD	209		0 500				
1 2 3 4 7 8 heva CDD	311		0.000				
1 2 3 6 7 8-beva CDD	37		0.100	ND			ND
1 2 3 7 8 9-heva CDD	324		0.100	ND			ND
1 2 3 4 6 7 8 - benta CDD	108		0.100	ND			
octa CDD	.400		0.010				
2 3 7 8-tetra (DE	196		0.001				
$1 2 3 7 8_{penta}$ CDF	3		0.100				
2 3 4 7 8-penta CDF	311		0.000	ND			
1 2 3 4 7 8-beva CDF	20		0.000	ND			
1 2 3 6 7 8-heva CDF	264		0.100	ND			
1,2,3,7,8,9-beva CDE	359		0.100 0 100	ND			
2 3 4 6 7 8-beva CDE	376		0.100				
1 2 3 4 6 7 8-henta CDF	346		0.100	ND			
1 2 3 4 7 8 9	181		0.010	ND			
	858		0.010				
	.010	FG/L	0.001	ND	ND	ND	ND
Source:				EFF	EFF	EFF	EFF
Date:				SEP	ОСТ	NOV	DEC
Analyte	Max MDL	Units	Equiv	P1042804	P1047090	P1053390	P1059165
2 3 7 8-tetra CDD	209	PG/I	1 000				
1,2,3,7,8-nenta (DD	289	PG/L	0 500	ND	ND	ND	ND
1 2 3 4 7 8 heva CDD	311		0.300	ND	ND		ND
1,2,3,6,7,8-hexa CDD	37	PG/I	0.100	ND	ND	ND	ND
1.2.3.7.8.9-hexa CDD	324	PG/I	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-henta CDD	408	PG/L	0.100	ND	ND	ND	ND
octa CDD	1	PG/I	0 001	ND	ND	DN05 68	ND
2.3.7.8-tetra CDF	.196	PG/L	0.100	ND	ND	ND	ND
1.2.3.7.8-penta CDF	.3	PG/L	0.050			ND	ND
2.3.4.7.8-nenta CDF	.311	PG/I	0.500				
1.2.3.4.7.8-heva CDF	.29	PG/I	0.100				
1.2.3.6.7.8-hexa CDF	. 264	PG/I	0.100				
1.2.3.7.8.9-hexa CDF	.359	PG/L	0.100			ND	ND
2,3,4,6,7,8-hexa CDF	.376	PG/L	0.100	ND	ND	ND	ND
1.2.3.4.6.7.8-henta CDF	.346	-, _ PG/L	0.010	ND	ND	ND	ND
1.2.3.4.7.8.9-henta CDF	. 484	PG/I	0.010				
octa CDF	.858	PG/L	0.001			ND	ND
		-, -		.10	.10		ne

ND= not detected

DNQ= (Detected but not quantified). Estimated analyte concentration below calibration range. Above are permit required CDD/CDF isomers.

SOUTH BAY WATER RECLAMATION PLANT SOURCE: INFLUENT (SB_INF_02)

Dioxin and Furan Analysis

Annual 2018

Source:				INF	INF	INF	INF
				TCCD	TCCD	TCCD	TCCD
Date:				JAN	FEB	MAR	APR
Analyte	Max MDL	Units	Equiv	P996239	P998924	P1005593	P1011729
			=====				
2,3,7,8-tetra CDD	.209	PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD	.289	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD	.311	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	.37	PG/L	0.100	ND	DNQ0.451	ND	ND
1,2,3,7,8,9-hexa CDD	.324	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD	.408	PG/L	0.010	0.255	0.675	ND	DNQ0.193
octa CDD	1.1	PG/L	0.001	0.180	0.230	ND	0.170
2,3,7,8-tetra CDF	.196	PG/L	0.100	DNQ0.15	0.529	ND	ND
1,2,3,7,8-penta CDF	.3	PG/L	0.050	ND	ND	ND	ND
2,3,4,7,8-penta CDF	.311	PG/L	0.500	ND	DNQ2.065	ND	ND
1,2,3,4,7,8-hexa CDF	.29	PG/L	0.100	ND	DNQ0.317	ND	ND
1,2,3,6,7,8-hexa CDF	.264	PG/L	0.100	DNQ0.212	DNQ0.287	ND	ND
1,2,3,7,8,9-hexa CDF	.359	PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF	.376	PG/L	0.100	ND	DNQ0.273	ND	ND
1,2,3,4,6,7,8-hepta CDF	.346	PG/L	0.010	DNQ0.036	DNQ0.104	ND	DNQ0.029
1,2,3,4,7,8,9-hepta CDF	.484	PG/L	0.010	ND	ND	ND	ND
octa CDF	.858	PG/L	0.001	DNQ0.006	DNQ0.009	ND	DNQ0.009
				•	-		-
Source:				INF	INF	INF	INF
				TCCD	TCCD	TCCD	TCCD
Date:				MAY	JUN	JUL	AUG
Analyte	Max MDL	Units	Equiv	P1017142	P1023420	P1030413	P1037623
	======						
2.3.7.8-tetra CDD	.209	PG/L	1.000	ND	ND	ND	ND
1.2.3.7.8-penta CDD	289	PG/I	0.500	ND	ND	ND	ND
1.2.3.4.7.8 hexa CDD	. 311	PG/L	0.100	ND	ND	ND	ND
1.2.3.6.7.8-hexa CDD	37	PG/I	0 100	ND	ND	DN00 456	DN00 355
1.2.3.7.8.9-hexa CDD	324	PG/I	0.100	ND	ND	ND	ND
1.2.3.4.6.7.8-henta CDD	.408	PG/I	0.010	0.260	DN00.181	0.384	DN00.207
octa CDD	1 1	PG/1	0 001	0 130	0 150	0 210	0 097
2.3.7.8-tetra CDE	196	PG/L	0.001	ND	ND	ND	
1 2 3 7 8-penta CDF	3		0.100 0 050	ND	ND		ND
2 3 4 7 8-penta CDF	311	PG/L	0.000	ND	ND	ND	
1 2 3 4 7 8-heva CDF	29	PG/I	0.300 0 100	ND	ND	ND	
1,2,3,4,7,8 here CD	264		0.100				
1,2,3,0,7,8 -hexa CDI	350		0.100				
1,2,3,7,0,9-fiexa CDF			0.100				
2, 3, 4, 0, 7, 0-fiexd CDF	. 570		0.100				
1,2,3,4,0,7,0-Hepta CDF	. 540		0.010				
1,2,3,4,7,8,9-nepta CDF	.484	PG/L	0.010				ND
OCTA CDF	.858	PG/L	0.001	DNQ0.007	DNQ0.007	DNQ0.008	ND
						-	
Source:					INF		INF
				ICCD	ICCD	ICCD	ICCD
Date:				SEP	001	NOV	DEC
Analyte	Max MDL	Units	Equiv	P1042801	P1047085	P1053387	P1059162
			=====				
2,3,7,8-tetra CDD	.209	PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD	.289	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD	.311	PG/L	0.100	ND	ND	DNQ0.179	ND
1,2,3,6,7,8-hexa CDD	.37	PG/L	0.100	DNQ0.287	ND	DNQ0.617	ND
1,2,3,7,8,9-hexa CDD	.324	PG/L	0.100	ND	ND	DNQ0.254	ND
1,2,3,4,6,7,8-hepta CDD	.408	PG/L	0.010	DNQ0.238	DNQ0.204	0.485	DNQ0.205
octa CDD	1.1	PG/L	0.001	0.150	0.140	0.160	0.150
2,3,7,8-tetra CDF	.196	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8-penta CDF	.3	PG/L	0.050	ND	ND	DNQ0.080	ND
2,3,4,7,8-penta CDF	.311	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF	.29	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDF	.264	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDF	.359	PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF	.376	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDF	.346	PG/L	0.010	DNQ0.029	DNQ0.028	DNQ0.041	DNQ0.035
1,2,3,4,7,8,9-hepta CDF	.484	PG/L	0.010	ND	ND	- ND	ND
octa CDF	.858	PG/L	0.001	DNQ0.007	DNQ0.008	DNQ0.006	DNQ0.006
				-		-	-

ND= not detected DNQ= (Detected but not quantified). Estimated analyte concentration below calibration range. Above are permit required CDD/CDF isomers.

> SOUTH BAY WATER RECLAMATION PLANT SOURCE: EFFLUENT (SB_OUTFALL_01) SBWRP Pretreatment Annual Report - Page 45 of 49

Dioxin and Furan Analysis

Annual 2018

Effluent Limit (TCDD): 0.37 pg/L (30-day Average)

Source:				EFF	EFF	EFF	EFF
Date:				JAN	FEB	MAR	APR
Analyte	Max MDL	Units	Equiv	P996243	P998929	P1005597	P1011733
2 3 7 8-tetra CDD	200	======= DG/I	===== 1 000		======================================	======================================	======================================
1, 3, 7, 8-renta CDD	289		0 500				
1 2 3 4 7 8 heva CDD	311		0.300 0 100	ND	ND	ND	
1 2 3 6 7 8-beva CDD	37		0.100 0 100	ND		ND	
1,2,3,0,7,8 -hexa CDD	324		0.100	ND			
1 2 3 4 6 7 8-henta CDD	408		0.100 0 010			ND	
1,2,3,4,0,7,8-hepta cbb	.400		0.010	DN00 013			
2 3 7 8-tetra CDF	196		0.001 0 100	ND	ND	ND	ND NO
1 2 3 7 8-nenta CDF	3		0.100	ND			
2 3 4 7 8-penta CDF	311		0.000	ND		ND	
1 2 3 4 7 8-beva CDF	29	PG/L	0.300 0 100	ND	ND	ND	ND
1,2,3,4,7,0 Hexa CDF	264		0.100 0 100	ND	ND		
1 2 3 7 8 9-heva CDF	359		0.100 0 100	ND		ND	
2 - 4 - 6 - 7 - 9 - 10 - 7 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	276		0.100				
2, 3, 4, 0, 7, 0-fiexa CDF	246		0.100				
1,2,3,4,0,7,8-hepta CDF	. 540		0.010				
1,2,3,4,7,0,9-Hepta CDF	.404		0.010		ND		
OCLA CDF	.000	PG/L	0.001	ND	ND	ND	ND
Source:				FFF	FFF	FFF	FFF
Date:				ΜΔΥ			
Analyte	Max MDI	Units	Fauiv	P1017147	P1023424	P1030416	P1037628
===============================	======	=========	=====	===========	===========	===========	==========
2,3,7,8-tetra CDD	.209	PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD	.289	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8 hexa CDD	.311	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	.37	PG/L	0.100	ND	ND	ND	ND
1.2.3.7.8.9-hexa CDD	324	PG/1	0 100	ND	ND	ND	ND
1,2,3,4,6,7,8-henta (DD	408	PG/I	0.100	ND	ND	ND	ND
octa CDD	1.1	PG/L	0.001	DN00.008	ND	DN00.003	DN00.005
2 3 7 8-tetra CDF	196		0.001 0 100	ND	ND	ND	ND
1 2 3 7 8-nenta (DE	3	PG/I	0.100	ND	ND	ND	ND
2 - 2 + 7 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 -	211		0.000	ND	ND	ND	ND
1 2 2 4 7 9 hove CDE			0.100				
1, 2, 3, 4, 7, 0-Hexa CDF	.29		0.100		ND	ND	
1,2,3,0,7,0-Hexa CDF	.204		0.100		ND	ND	
1,2,3,7,8,9-nexa CDF	.359	PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-nexa CDF	.3/6	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,/,8-hepta CDF	.346	PG/L	0.010	ND	ND	ND	ND
1,2,3,4,/,8,9-hepta CDF	.484	PG/L	0.010	ND	ND	ND	ND
octa CDF	.858	PG/L	0.001	ND	ND	ND	ND
Source				FFF	FFF	FFF	FFF
Jour cc.				тсср	тсср	тсср	
Date:				SEP	000	NOV	DEC
Analyte	Max MDL	Units	Eauiv	P1042804	P1047090	P1053390	P1059165
================================	=======		=====				
2,3,7,8-tetra CDD	.209	PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD	.289	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD	.311	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	.37	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD	.324	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD	.408	PG/L	0.010	ND	ND	ND	ND
octa CDD 1	1.1	PG/L	0.001	ND	ND	DN00.006	ND
2.3.7.8-tetra CDF	.196	PG/L	0.100	ND	ND	ND	ND
1.2.3.7.8-penta CDF	.3	PG/1	0.050				
2.3.4.7.8-penta CDF	. 311	PG/I	0.500			ND	
1.2.3.4.7 8-heya CDF	.29	PG/1	0.100			ND	
1 2 3 6 7 8 hove CDF	264		0 100			םאי עוא	
1 2 2 7 9 0 hove CDF	250		0.100				
1,2,3,7,0,7-112Xd LDF	. 555 270		0.100	ND			ND ND
2, 3, 4, 0, 7, 8 - NEXA LUF	.3/0		0.100		ND	ND	ND
1,2,3,4,0,7,8-nepta LDF	. 540		0.010		ND	ND	ND
1,2,3,4,7,8,9-nepta CDF	.484		0.010		ND	ND	ND
ULLA LUF	.000	FU/L	0.001	ND	ND	ND	ND

ND= not detected DNQ= (Detected but not quantified). Estimated analyte concentration below calibration range. Above are permit required CDD/CDF isomers.

Cations

Annual 2018

Analyte:		Calc	ium	Magne	esium	Lith	nium
Max MDL/	Units:	.059	mg/L	.08	mg/L	.012	2 mg/L
Source:		INF	EFF	INF	EFF	INF	EFF
========		=========					
JANUARY	-2018	61.9	62.7	31.9	32.6	0.016	0.014
FEBRUARY	-2018	60.0	63.5	31.4	32.2	0.012	0.018
MARCH	-2018	62.6	65.5	32.4	32.5	0.012	ND
APRIL	-2018	62.4	64.9	32.3	32.5	0.020	0.024
MAY	-2018	65.0	65.7	32.7	32.2	0.021	0.020
JUNE	-2018	68.4	66.2	31.8	31.9	0.028	0.025
JULY	-2018	67.1	68.9	30.5	30.0	0.022	0.026
AUGUST	-2018	62.5	66.5	25.0	26.8	0.028	0.032
SEPTEMBER	R-2018	62.2	63.2	25.5	25.2	0.026	0.027
OCTOBER	-2018	64.4	65.0	26.1	25.8	0.027	0.027
NOVEMBER	-2018	64.9	62.9	25.5	23.7	0.028	0.027
DECEMBER	-2018	68.8	71.1	28.1	28.2	0.028	0.033
Average:		======= 64.2	======== 65.5	======== 29.4	29.5	0.022	0.023

Analyte:		Soc	dium	Potas	ssium
Max MDL/	Units:	1.4	mg/L	.2 r	ng/L
Source:		INF	EFF	INF	EFF
JANUARY	-2018	217	218	21.4	21.0
FEBRUARY	-2018	217	221	20.8	19.7
MARCH	-2018	219	223	21.1	19.7
APRIL	-2018	217	219	21.5	19.8
MAY	-2018	224	230	21.5	20.6
JUNE	-2018	218	226	21.0	20.1
JULY	-2018	218	227	20.9	20.4
AUGUST	-2018	194	223	20.2	19.1
SEPTEMBER	2018	196	206	20.5	20.0
OCTOBER	-2018	206	211	20.9	19.8
NOVEMBER	-2018	207	216	21.2	19.2
DECEMBER	-2018	205	220	21.2	20.7
Average:		212	220	21.0	20.0

Anions

ANNUAL 2018

Analyte: Max MDL:		Bromide .1	Bromide .1	Chloride 7	Chloride 7	Fluoride .05	Fluoride .05
Units:		MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
Source:		INFLUENT	EFFLUENT	INFLUENT	EFFLUENT	INFLUENT	EFFLUENT
JANUARY	-2018	0.5	0.7	276	294	0.47	0.61
FEBRUARY	-2018	0.6	0.6	274	295	0.42	0.52
MARCH	-2018	0.6	0.6	280	298	0.42	0.57
APRIL	-2018	0.8	0.5	291	308	0.45	0.61
MAY	-2018	0.6	0.6	290	302	0.45	0.50
JUNE	-2018	0.5	0.6	280	307	0.40	0.54
JULY	-2018	0.6	0.5	279	298	0.40	0.58
AUGUST	-2018	0.4	0.5	225	276	0.31	0.48
SEPTEMBE	R-2018	0.3	0.4	230	251	0.34	0.42
OCTOBER	-2018	0.4	0.4	236	243	0.24	0.34
NOVEMBER	-2018	0.4	0.4	235	257	0.21	0.43
DECEMBER	-2018	0.5	0.4	252	253	0.19	0.45
	=====			===========			
AVERAGE		0.5	0.5	262	282	0.36	0.50
Analvte:		Nitrate	Nitrate	0-Phosphate	0-Phosphate	(as P) Sulfa	te Sulfate
Max MDI:		.04	.04	.2	.2	9	9
Units:		MG/I	MG/I	MG/I	MG/L	MG/I	MG/I
Source:		INFLUENT	EFFLUENT	INFLUENT	EFFLUENT	INFLUENT	EFFLUENT
=======							
JANUARY	-2018	2.72	50.4	11.4	12.6	107	136
FEBRUARY	-2018	1.66	47.4	12.0	12.8	97	139
MARCH	-2018	2.68	35.2	11.1	11.0	99	139
APRIL	-2018	1.08	44.2	11.1	6.5	111	140
MAY	-2018	2.21	44.5	11.2	6.3	111	147
JUNE	-2018	1.61	40.4	8.8	4.6	187	154
JULY	-2018	1.17	45.9	16.1	7.6	141	188
AUGUST	-2018	0.93	43.3	12.5	7.7	119	175
SEPTEMBEI	R-2018	0.81	61.7	14.8	13.5	120	168
OCTOBER	-2018	0.90	47.1	13.0	11.7	125	168
NOVEMBER	-2018	0.61	43.1*	12.8	10.0	127	156
DECEMBER	-2018	2.04	44.8	12.7	8.9	143	178
========							
AVERAGE		1.54	45.9	12.3	9.4	124	157

*= Method blank value above the MDL; sample result not included in average calculations.

B. Upset, Interference, and Pass-through

No incidents of interference with the collection system, pump stations, or treatment plant operations were reported.

C. Biosolids Disposal Methods

Biosolids from the SBWRP is conveyed to Point Loma, and from there to the Miramar Biosolids Center for processing and disposal in combination with biosolids from throughout the Metropolitan Sewerage System service area. See details of biosolids disposal locations and beneficial uses on Chapter 5 Section 5.5 of this year's Annual Report for the Point Loma POTW, NPDES Permit No. CA 0107409.

D. Other Concerns

There are no other concerns pertaining to the administration of the pretreatment program or control of industrial contributions to the headworks loadings at the SBWRP currently.