

February 26, 2020

Mr. David W. Gibson, Executive Officer California Regional Water Quality Control Board 2375 Northside Drive, Suite 100 San Diego, CA 92108

Subject: 2019 Pretreatment Annual Report for the South Bay Water Reclamation Plant Order No. R9-2013-0006 as Amended by Order No. R9-2014-0071

Dear Mr. Gibson:

The City of San Diego South Bay Water Reclamation Plant Pretreatment Program Annual Report is hereby submitted in accordance with the requirements of National Pollutant Discharge Elimination System (NPDES) Permit No.CA0109045, adopted February 13, 2013. The Pretreatment Program operated by the City of San Diego administers the program for the entire Metropolitan Sewerage System tributary area, under a single budget and implementation strategy. Therefore, this report incorporates sections of the Point Loma Pretreatment Program Annual Report relating to program budget, structure, and implementation strategy by reference.

The City is committed to protecting public health and the environment through a program of environmental management, which includes source control, wastewater treatment, water reclamation, and extensive monitoring. One key element of the program is an aggressive pretreatment and pollution prevention program to minimize toxic discharges to the sewerage system. This report includes a summary of Pretreatment Program activities and accomplishments throughout jurisdictions tributary to the South Bay Water Reclamation Plant.

Should you have any questions concerning the information provided herein, or wish to discuss the report in detail, please contact John Steger, Pretreatment Program Manager, at (858) 654-4103.

Sincerely,

Peter S. Vroom, Ph.D. Deputy Director, Public Utilities Department

JAS

cc: Matthew Vespi, Executive Assistant Director of Public Utilities, City of San Diego Joy Newman, Industrial Wastewater Control Program Manager, City of San Diego R9Pretreatment@epa.gov

POTW PRETREATMENT ANNUAL REPORT

COVER SHEET

NPDES Permit Holder or Sewer Authority Name:	City of San Diego
Report Date:	<u>March 1, 2020</u>
Period Covered by This Report:	January 1, 2019 to December 31, 2019
Period Covered by Previous Report:	January 1, 2018 to December 31, 2018
<u>Name of Wastewater Treatment Plant(s)</u>	South Bay Water Reclamation Plant
NPDES Permit Number	<u>CA 0109045</u>

Person to contact concerning information contained in this report:

Name:	John Steger
Title:	Pretreatment Program Manager
Mailing Address:	9192 Topaz Way, MS 901D
	San Diego, CA 92123-1119
Telephone No.:	(858) 654-4103

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

2-25-2020 Date

Peter Vroom, Ph.D. **Deputy Director Public Utilities**

PRETREATMENT ANNUAL REPORT

PCS Data Entry Form

PPS1

POTW NAME:	<u>City of San Diego South Bay Water Reclamation Plant and Ocean Outfall</u> Flows from this plant can be diverted to the City of San Diego EW Blom Point Loma Plant, NPDES Permit No. CA0107409; therefore, this information is also included in the PCS for that POTW.					
NPDES Permit #:	<u>CA0109045</u>					
Period Covered by	This Report:	<u>01/01/19 (</u> PSSD) Start Date	<u>12/31/19</u> (PSED) End Date			
Number of Significa Pretreatment Compl	nt Industrial Users iance Schedule:	in SNC with	<u> </u>			
Number of Notices Issued Against Sign	of Violation and Adificant Industrial U	dministrative Orders sers:	<u>41</u> (FENF)			
Number of Civil & (Significant Industria	Criminal Judicial A Il Users:	ctions against	<u> </u>			
Number of Significa Violations Published	nt Industrial Users d:	with Significant	<u> </u>			
Number of Industria Been Collected:	<u> </u>					

SOUTH BAY WATER RECLAMATION PLANT & OCEAN OUTFALL PRETREATMENT ANNUAL REPORT

NPDES PERMIT No. CA 0109045 SDRWQCB ORDER No. R9-2013-0006 AS AMENDED BY ORDER NO. R9-2014-0071

JANUARY 1 – DECEMBER 31, 2019

Environmental Monitoring and Technical Services Public Utilities Department 2392 Kincaid Road Mail Station 45A San Diego, CA 92101 Tel (619) 758-2310 • Fax (619) 758-2309

TABLE OF CONTENTS

Chapter	Subject	Page				
Chapter 1	Introduction					
1.1	Description of the South Bay Water Reclamation Plant and Its Service Area	1				
Chapter 2	Program Structure					
2.1	Pollution Prevention Plan Requirements	2				
2.2	Programs San Diego has implemented to reduce pollutants from non-SIUs	2				
2.3	Pretreatment Program Changes	2				
2.4	Annual Pretreatment Program Budget	2				
Chapter 3	Discharge Permits					
3.1	Active Permits	3				
3.2	Changes in SIU Inventory	3				
3.2	Baseline Monitoring Reports	3				
Chapter 4	SIU Enforcement					
4.1	Annual Compliance Summary	10				
4.2	Characterization of the Compliance Status of Each SIU	10				
4.3	SIU Enforcement Actions Initiated, Continued, or Finalized	10				
4.4	Public Information and Involvement	11				
Chapter 5	Pretreatment Program Effectiveness					
5.1	Heavy Metal Loadings and Monitoring Data	17				
2.2	Upset, Interference, and Pass-through	17				
5.3	Biosolids Disposal Methods	17				
5.4	Other Concerns	17				

LIST OF TABLES

	Subject	Page
3.1-1	Permit Inventory by Class and Flow	3
3.1-2	Facilities with BMP Authorizations and No Permit Required	3
3.2-1	Changes in SIU Inventory	3
3.3-1	Baseline Monitoring Reports Requested or Received	3
3.3-2	Facilities Operating under a Baseline Monitoring Report	3
5.1.1	Influent Heavy Metals	18
5.1.2	Effluent Heavy Metals	18

LIST OF REPORTS

Subject	Page
SIU Category, Process, and Pretreatment Technology	4
SIU Category, Regulated Parameters by Connection	6
Active Non-SIU Permits	8
Active Groundwater Permits	8
Zero Discharge from Categorical Operations	8
Film Processors Subject to BMPs	9
Dry Cleaner Subject to BMPs	9
Annual SIU Compliance Status	12
NOV Issued for SIUs	13
Sampling in 2019 at SIUs	14
South Bay Water Reclamation Plant Sewage Influent and Effluent Monitoring.	
	10
BOD Influent and Effluent Concentrations and Percent Removal	19
TSS Influent and Effluent Concentrations and Percent Removal	20
Effluent and Influent to Ocean Outfall	21
Trace Metals	23
Ammonia-Nitrogen and Total Cyanide	26
Anions	27
Cations	28
Chlorinated and Organophosphorus Pesticides	29
Dioxin & Furan	32
BNAs - Acid Extractables Compounds	36
BNAs - Base/Neutrals Compounds	37
VOCs - Purgeable Compounds	39
Radioactivity	<i></i>
	40
	42

ACRONYMS

BMP	Best Management Practice
BMR	Baseline Monitoring Report
CIP	Capital Improvement Project
CWA	Clean Water Act
EDR	Electrodialysis Reversal
GAPS	Grove Avenue Pump Station
IBWC	International Boundary and Water Commission
IU	Industrial User
IWCP	Industrial Wastewater Control Program
IWTP	International Wastewater Treatment Plant
MDL	Method Detection Limit
MGD	Million Gallons Per Day
Non-SIU	Non-Significant Industrial User
NOV	Notice of Violation
NPDES	National Pollutant Discharge Elimination System
ORPS	Otay River Pump Station
PLWTP	Point Loma Wastewater Treatment Plant
POTW	Publicly Owned Treatment Works
SBWRP	South Bay Water Reclamation Plant
SIU	Significant Industrial User
SMR	Self-Monitoring Report
SNC	Significant Non-Compliance
SBOO	South Bay Ocean Outfall
TDS	Total Dissolved Solids
TRC	Technical Review Criteria
USEPA	United States Environmental Protection Agency
UV	Ultraviolet

CHAPTER 1 – INTRODUCTION

1.1 Description of the South Bay Water Reclamation Plant and Its Service Area

The South Bay Water Reclamation Plant (SBWRP) is located on a 22-acre site near Dairy Mart Road and Monument Road in the eastern portion of the Tijuana River Valley. The site is just north of the international boundary between Mexico and the United States and less than a half mile west of the International Wastewater Treatment Plant (IWTP). The SBWRP treats raw wastewater collected from the southern portion of the City of San Diego, the City of Imperial Beach, the City of Chula Vista, and the unincorporated portions of south and east San Diego County, a total of approximately 44 square miles, and serves a population of about 110,000 people.

The plant is designed to treat up to 15 MGD of raw wastewater to secondary and/or tertiary reclaimed water standards. All SBWRP tertiary treated wastewater in excess of reclaimed water demands is discharged to the Pacific Ocean through the South Bay Ocean Outfall (SBOO). The SBOO was constructed for shared use by the IWTP, operated by the International Boundary and Water Commission (IBWC), and the City of San Diego's SBWRP. The SBOO extends westward approximately 23,600 feet from the mouth of the Tijuana River and terminates in a "wye" with two 1980-foot-long diffusers. The IWTP currently discharges a maximum of 25 MGD of secondary treated wastewater from the City of Tijuana. The total average design capacity of the outfall is 174 MGD with a peak hydraulic capacity of 233 MGD. The effluent from the SBWRP is combined with the effluent from the IWTP within the SBOO prior to discharge to the Pacific Ocean.

The SBWRP's primary and secondary processes consist of influent screening using mechanically cleaned bar screens, grit removal using aerated grit chambers, primary sedimentation clarifiers with chain and flight sludge collectors and tilting trough scum collectors, primary effluent flow equalization storage tanks, air activated sludge biological treatment with anoxic selector, and secondary clarifiers with chain and flight sludge collectors. The tertiary treatment process consists of filter feed pumping, coagulation with chemical addition, and direct filtration with conventional deep bed mono-media filters, backwash facilities, electrodialysis reversal (EDR) units, and disinfection using ultraviolet light. Sludge processing is handled at the Point Loma Wastewater Treatment Plant (PLWTP) and the Metropolitan Biosolids Center. Solids from the SBWRP are pumped to the PLWTP through the South Metro Interceptor.

The SBWRP began operations in 2002, accepting an average of 3.5 MGD influent through the Grove Avenue Pump Station (GAPS). In October 2003 the Otay River Pump Station (ORPS) came on-line. The ORPS is divided into two pumping streams, with one sending high total dissolved solids (TDS) flows from the Imperial Beach Sewer directly to the South Metro Interceptor influent to the PLWTP, and the other sending flows from the Otay Trunk Sewer and Salt Creek Trunk Sewer to the GAPS. Since start-up, the ORPS facility has been directing nearly 5 MGD to the GAPS, which combines with the more than 3 MGD GAPS flow for a total of nearly 8 MGD influent to the SBWRP. Since some wastewater from areas tributary to the GAPS and ORPS can be diverted to the PLWTP via the South Metro Interceptor, facilities tributary to the GAPS and ORPS are included in Annual Pretreatment Reports for both plants.

In 2017, the City installed two refurbished EDR units to provide for TDS and chloride removal. Several issues have surfaced affecting their performance and while it's likely the units could be serviceable; they may not be reliable long term. Violations for recycled water monitoring were listed for chloride and percent sodium in 2017 and continued through 2018. In response to the staff enforcement letter received January 29, 2019, the City increased the monitoring frequency for chloride and four cations (sodium, potassium, calcium, and manganese) in the recycled water. The Business Case Evaluation draft for determining the best possible option to return the plant to compliance was completed in July 2018. Funds were obtained for a Capital Improvement Project (CIP) to replace the existing disinfection system at the SBWRP and Public Utilities has sought the services of a consultant, Carollo Engineers. The City staff are working closely with Carollo to understand the changes since the 2001 Recycled Water Engineer's Report. Carollo will prepare an Addendum to this Title 22 Engineer's Report to capture the changes made to the SBWRP Ultraviolet (UV) disinfection system and the two EDR units installed to reduce sodium and chloride. Additionally, Carollo will assist the City in coordinating with the Regional Board and the Division of Drinking Water regarding review and approval of the Engineering Report Addendum.

CHAPTER 2 – PROGRAM STRUCTURE

2.1 **Pollution Prevention Plan Requirements**

No significant industrial users (SIUs) have been required to prepare or implement a pollution prevention plan as the result of non-compliance.

2.2 Programs San Diego has Implemented to Reduce Pollutants from non-SIUs

The City controls pollutants discharged by non-Significan Industrial Users (non-SIUs) and by nonindustrial sources through a combination of Class 2 and 3 permits, Best Management Practice (BMP) Certification programs, and Hazardous Waste Collection events and facilities throughout the Metropolitan Sewerage System service area in cooperation with contributing agencies. For details, see Chapters 2 and 3 of the Annual Report for the Point Loma Publicly Owned Treatment Works (POTW).

2.3 Pretreament Program Changes

Chages in administrative structure are found in Chapter 2 of the Annual Report for the Point Loma POTW.

2.4 Annual Pretreatment Program Budget

The pretreatment program budget is administered as a single budget for the three treatment plants in the Metropolitan Sewerage System service area. See Chapter 2, Section 2.3 of the Annual Report for the Point Loma POTW, for details.

CHAPTER 3 – DISCHARGE PERMITS

3.1 Active Permits

Table 3.1-1 Permit Inventory by Class and Flow										
Class	Cl	ass 1		Class 2	2	Class 3			Total	
Area		IW		Non-	IW		Non-	IW	No. of	IW
	SIU	(GPD)	SIU	SIU	(GPD)	SIU	SIU	(GPD)	Permits	GPD
12	3	224	0	5	14,554	8	2	364,631	18	379,409
13	0	0	1	8	20,950	0	1	6,685	10	27,635
36	1	33,375	0	0	0	0	0	0	1	33,375
Total	4	33,599	1	13	35,504	8	3	371,316	29	440,419

*The Pio Pico Energy Center facility is geographically located in Area 36; however, the facility does not discharge industrial wastewater to the SBWRP. Industrial flows and monitoring data are reported under its trucked waste permit (#25-0379). See Chapter 3 of the Annual Report for the Point Loma POTW, NPDES Permit No. CA 0107409 for details.

Table 3.1-2 Facilities with BMP Authorizations and No Permit Required							
Area	Class 2F	Class 4D	Class 4C	Class 4Z	Class 4	Class 5	Total
12	4	0	5	0	78	24	111
13	4	0	0	0	52	7	63
36	0	0	0	0	2	0	2
Total	8	0	5	0	132	31	176

3.2 Changes in SIU Inventory

Table 3.2-1 Changes in SIU Inventory						
FACILITIES that BECAME SIUS Note: UT; = Extracted Groundwater Permit						
Facility	Name	Class	Permit	Date	Comments	
No non-S	IU facilities became SIUs during th	ne reportin	g period			
SIU FAC	ILITIES INACTIVATED					
Facility	Name	Class	Permit	Date	Comments	
13-0555	UT; Frey Environmental Inc	2	01-A 02-Oct-2018 Sewer connection disconnecte			
SIU FAC	ILITIES that REPORTED a NAMI	E CHANG	ìΕ			
Facility	Name	Class	Permit	Date	Previous Name	
12-0154	Kraft Heinz Foods Company	3	05-A	01-Feb-2019	Heinz Frozen Foods	
FORMER SIU FACILITIES THAT BECAME NON-SIUS						
Facility	Name	Class	Permit	Date	Comments	
No SIU fa	acilities became non-SIUs during th	ne reportin	g period			

3.3 Baseline Monitoring Reports

Table 3.3-1 Baseline Monitoring Reports (BMR) Requested or Received					
Facility #	Facility Name	BMR Requested	BMR Received		
No BMRs were requested or received during the reporting period					

Table 3.3-2 Facilities Operating under a Baseline Monitoring Report						
Facility #	Facility Name	BMR Received				
12-0144	AP Precision Metals	17-Apr-2001				
12-0154	Heinz Frozen Foods	30-Aug-2002				
36-0001	Otay Mesa Energy Center LLC	20-Jun-2007				
12-0202	Spec-Built Systems Inc	28-Jun-2005				
12-0244	Harcon Precision Metals Inc	17-Jun-2010				

SIU Facilities Federal Category, Process, and Pretreatment Technology by Connection

Report run on: Tuesday, January 21, 2020 11:43 am

Class 1

Facility Permit	Name	IW Discharged (gpd)	Conn	Principle Process	Federal/ Local	CFR Part	CFR Section	Order	Pre Treat Code
12-0144 05-A	AP Precision Metals	128	110	Metal Coating (Iron Phosphating)	Federal	433	.17	1 2 3	FILT-O SETTLE PH
12-0202 04-A	Spec-Built Systems Inc	26	110	Iron Phosphating	Federal	433	.17	1 2 3	SETTLE RECYL PH
12-0244 03-A	Harcon Precision Metals In	c 70	110	Conversion coating & assoc processes	Federal	433	.17	1 2 3 4 5	PH MIXER SETTLE HAUL EVAP
36-0001 03-A	Otay Mesa Energy Center I	LC 33,375	110	WetSac blowdown + OWS	Federal	423	.17	1 2	SETTLE PH
			120	PCB zero discharge	Federal	423	.17	1	ZERO
			140	Turbine washing	Federal	423	.17	1	SETTLE

SIUs: 4

Class 2

Facility Permit	Name	IW Discharged Conn (gpd)	Principle Process	Federal/ Local	CFR Part	CFR Section	Order	Pre Treat Code
13-0549 02-A	UT; Brenntag Pacific Inc	10,080 100	Groundwater Remediation	Local	101		1 2 3 4 5 6	O/W SETTLE CENT BIO+O2 FILT-O ADS-C

SIUs: 1

Class 3

ŀ	Facility Permit	Name	IW Discharged (gpd)	Conn	Principle Process	Federal/ Local	CFR Part	CFR Section	Order	Pre Treat Code
1	2-0038 06-A	RJ Donovan Correctional F	acility 13,700	100	Prison Sewer Main	Local	133		1 2 3	GRIND SCREEN SOURCE
1	2-0065 05-A	Emerald Textiles LLC	79,194	110	Commercial Laundry	Local	133		1 2 3 4	LINT SETTLE HAUL RECYL
1	2-0154 05-A	Kraft Heinz Foods Compan	y 102,142	110	Food Manufacturing	Local	137		1 2 3 4 5	EQUAL SCREEN DAF+C GREASE HAUL
1	2-0212 02-A	Tarantino Wholesale Food Distributors	7,112	100	Sewer Lateral	Local	137		1 2 3	EQUAL SCREEN HAUL
				210	Sausage manufacturing	Local			1 2 3	SETTLE HAUL ELBOW
1	2-0220 05-A	Ajinomoto Foods North An Inc	nerica 76,000	110	Food manufacturing	Local	137		1 2 3 4	EQUAL SCREEN DAF+C SD-FP
1	2-0275 03-A	Jensen Meat Company Inc	18,478	110	Meat processing, cleaning/sanitizing	Local	137		1 2 3 4 5	SCREEN ELBOW SETTLE HAUL DIVRTA
1	2-0283 03-A	Spectex Inc dba Specialty T Services	[°] extile 47,853	110	Commerical Laundry	Local	133		1 2 3	SETTLE LINT UF

Report run on: Tuesday, January 21, 2020 11:43 am

Class 3

Facility Permit	Name	IW Discharged Co (gpd)	onn	Principle Process	Federal/ Local	CFR Part	CFR Section	Order	Pre Treat Code
12-0285 03-A	US General Services Administration - SYLPOE	50 1	10 20	Waste activated sludge Untreated wastewater	Local			1 2 3 1	SCREEN EQUAL BIO-AS SCREEN
		1:	30	Treated wastewater	Local			1 2 3 4 5 6	SCREEN EQUAL BIO-AS UF UV HAUL

SIUs: 8

Report run on	: Tuesday, January 21, 2020 11:4	46 am	Com	Total IW	Danmaada	City	Salf	Cat	Douios	Low	u IImn	au I Inita
Facility Pmt	Name	Address	Conn	(gpd)	Parmcoae	freq	Self freq	Cat	Perioa	Lowel	r Oppe Limi	er Units t
12-0038 06-A	RJ Donovan Correctional Facilit	y480 Alta Rd, San Diego	100	13,700	OIL/GREASE	Н	Q	L	DM	~	500	mg/L
12-0065 05-A	Emerald Textiles LLC	1725 Dornoch Ct Suite 10	0 110	79 194	OIL/GREASE	н О	ð	L	DM DM	3	12.5 500	рн mg/L
12 0000 00 11		San Diego	0, 110	,,,,,,,,	PH	Q	Q	L	DM	5	12.5	pH
		0			PH HIGHEST	Q	0	L	DM		12.5	pH ma/I
12-0144 05-A	AP Precision Metals	1215 30th St. San Diego	110	128	CADMIUM	ŏ	õ	F	DM		.11	mg/L mg/L
									MO		.07	mg/L
					CHROMIUM	Q	Q	F	DM MO		2.77	mg/L mg/I
					COPPER	0	0	F	DM		3.38	mg/L mg/L
									MO		2.07	mg/L
					CYANIDE(T)	Q	Q	F	DM MO		1.2	mg/L mg/I
					LEAD	Q	Q	F	DM		.69	mg/L mg/L
									MO		.43	mg/L
					NICKEL	Q	Q	F	DM MO		3.98	mg/L mg/I
					PH	Q	Q	L	DM	5	12.5	pH
					SILVER	Q	Q	F	DM		.43	mg/L
					TTO(413+433)-P	А	0	F	DM		.24 2130	mg/L
					ZINC	Q	Q	F	DM		2.61	mg/L
12 0154 05 4	Kardt Haine Facela Commence	7070 Aimmen D.I. Com	110	102 142	OIL /C SCREEN	N			MO		1.48	mg/L
12-0154 05-A	Kraft Heinz Foods Company	7878 Alfway Ku, San	110	102,142	OIL/GREASE	0	М	L	DM		500	mg/L mg/L
		Diego			PH	Q	М	L	DM	5	12.5	рĤ
					PH HIGHEST	M	0	L	DM DM		12.5	pH mg/I
					TEMP	ŏ	M	L	DM		65.5	DegC
12-0202 04-A	Spec-Built Systems Inc	2150 Michael Faraday Dr,	110	26	CADMIUM	Š	Q	F	DM		.11	mg/L
		San Diego			CHROMIUM	S	0	F	MO DM		.07 2 77	mg/L mg/I
					Спкомном	5	Q	1	MO		1.71	mg/L mg/L
					COPPER	S	Q	F	DM		3.38	mg/L
					CYANIDE(T)	S	0	F	MO DM		2.07	mg/L mg/L
						5	×		MO		.65	mg/L
					LEAD	S	Q	F	DM		.69	mg/L mg/I
					NICKEL	S	Q	F	DM		.45 3.98	mg/L mg/L
					РН	S	-	L	MO DM	5	2 38 12 5	mg/I nH
					SILVER	Š	Q	F	DM	0	.43	mg/L
					TTO(412 + 422) D		Q		MO		.24	mg/L
					110(413+455)-P		Q	F	DM		2130	ug/L
					ZINC		Q	F	DM		2.61	mg/L
12-0212 02-A	Tarantino Wholesale Food	7651 Saint Andrews Av	100	3 146	OIL/GREASE		Н		DM		1.48 500	mg/L mg/L
12 0212 02 11	Distributors	San Diego	100	5,110	PH		Н		DM	5	12.5	pH
		0			PH HIGHEST SULFIDE DISSOLVD		ц		DM		12.5	pH ma/I
			210	3,966	OIL/GREASE		Н		DM		500	mg/L mg/L
				, 0	PH ph highest				DM	5	12.5	pĤ
12-0220 05-4	Aijnomoto Foods North America	8411 Siempre Viva Rd Sa	n 110	76.000	OIL/G SCREEN				DM DM		12.5 500	рн mg/L
12 0220 00-11	Inc	Diego	. 110	, 0,000	OIL/GREASE				DM		500	mg/L
		5			PH PH HIGHEST				DM	5	12.5	pH
					SULFIDE DISSOLVD				DM		12.3	рп mg/L
					TEMP				DM		65.5	DegC

SIU Facilities: Regulated Parameters by Connection

SIU Facilities: Regulated Parameters by Connection

Report run on: Tuesday, January 21, 2020 11:46 am

Facility Pmt Name		Address	Conn	Total IW (gpd)	Parmcode	City freq	Self freq	Cat	Period	Lower Limit	· Uppe Limit	e r Units t
12-0244 03-A Harcon Precision Me	etals Inc	1790 Dornoch Ct, San	110	70	CADMIUM	S	S	F	DM MO		.11 07	mg/L mg/L
		Diego			CHROMIUM	S	S	F	DM		2.77	mg/L
					COPPER	S	S	F	MO DM MO		1.71 3.38 2.07	mg/L mg/L mg/I
					CYANIDE(T)	S	S	F	DM MO		1.2 65	mg/L mg/L
					LEAD	S	S	F	DM MO		.69 43	mg/L mg/L
					NICKEL	S	S	F	DM MO		3.98 2.38	mg/L mg/L
					OIL/GREASE	S	S	L	DM		500	mg/L
					PH	S	S	L	DM	5	12.5	pH
					SILVER	S	S	F	DM		.43	mg/L
					$TTO(412\pm422)$ D	٨	c	Б	DM		.24	mg/L
					TIO(415+455)-P ZINC	A S	S	г F	DM		2130	ug/L mg/I
					LINC	5	5	1	MO		1 48	mg/L mg/L
12-0275 03-A Jensen Meat Compar	ny Inc	2550 Britannia Bl Suite	110	18 478	OIL/GREASE	0	0	L	DM		500	mg/L
12 02/5 05 IT sensen mear compa	ily ille	101 San Diego	110	10,170	PH	ò	ò	Ĺ	DM	5	12.5	pH
		101, San Diego			PH HIGHEST	Q		L	DM		12.5	pH
					SULFIDE DISSOLVD	Q		L	DM		1	mg/L
12-0283 03-A Spectex Inc dba Spec	cialty Textil	e1333 30th St Suite A, San	n 110	47,853	OIL/GREASE	Q	Q	L	DM		500	mg/L
Services		Diego			PH	Q	Q	L	DM	5	12.5	pН
		2			PH HIGHEST	S		L	DM		12.5	pH
10 0005 00 A MG G 1.G .			110	50	SULFIDE DISSOLVD	Q	Q	L	DM		1	mg/L
12-0285 03-A US General Services	DOF	/20 E San Ysidro Bl, San	110	50	SULFIDE DISSULVD	Q	Q M	L	DM		1	mg/L mg/I
Administration - SYI	LPOE	Diego			155	Q	IVI	L	DIVI		10000	iiig/L
13-0549 02-A UT; Brenntag Pacific	e Inc	1888 Nirvana Av, Chula	100	10,080	3CLETHE	Q	Q	L	DM		26	ug/L
		Vista			4CLETHE	Q	Q	L	DM		700	ug/L
					DNZ(W/UAGG) RTEY	Q	Q	L	DM		30 750	ug/L
					FLOW MAX	Q	M	I	DM		10080	and
					FLOW RATE MAX		M	Ľ	DM		20	gnm
36-0001 03-A Otay Mesa Energy C	enter LLC	606 De La Fuente Ct. Sar	n 110	33.357	CHROMIUM	0	0	F	DM		.2	mg/L
		Diego		,,	OIL/GREASE	ò	ò	L	DM		500	mg/L
		2.260			PH	Q	Q	L	DM	5	12.5	pĤ
					PH HIGHEST	Ν		L	DM		12.5	pН
					TDS	S	Q	L	DM		2000	mg/L
				-	ZINC	Q	Q	F	DM		1	mg/L
			140	8	COPPER	S	S	F	DM		1	mg/L

Active NonSIU Permits

Report run on: Tuesday, January 21, 2020 11:47 am

Class	2		
Facility	Permit	Name	Address
12-0140	02-A	Kaiser Foundation Health Plan	4652 Palm Av, San Diego
12-0143	04-A	ADESA California LLC dba ADESA San Diego	2175 Cactus Rd, San Diego
12-0145	05-A	Larkspur Energy LLC	9355 Otay Mesa Rd, San Diego
12-0177	02-A	Truck Net LLC	8490 Avenida De La Fuente, San Diego
12-0254	01-A	Northwest Circuits Corp	8660 Avenida Costa Blanca, San Diego
13-0008	05-A	Sharp Chula Vista Medical Center	751 Medical Center Ct, Chula Vista
13-0048	04-A	Hyspan Precision Products	1685 Brandywine Av, Chula Vista
13-0278	04-A	Republic Services dba Allied Waste Services	881 Energy Wy, Chula Vista
13-0298	04-A	Chula Vista Energy Center LLC	3497 Main St, Chula Vista
13-0316	03-A	Fuller Ford Kia	560 Auto Park Dr, Chula Vista
13-0327	03-A	Dresser-Rand	1675 Brandywine Av Suite E&F, Chula
			Vista
13-0533	01-A	Fleetwash Inc	649 Anita St Suite 1A, Chula Vista
13-0534	01-A	Super Welding of Southern California	609 Anita St, Chula Vista
		13	
Class	3		
Facility	Permit	Name	Address
12-0024	03-A	US Border Patrol	3752 Beyer Bl, San Diego
12-0028	02-A	Palm Ave LLC	1835 Palm Av, San Diego
13-0439	01-A	Toyota Chula Vista	650 Main St, Chula Vista
		3	
Grand to	otal:	16	

Active Groundwater Permits

Report run on: Tuesday, January 21, 2020 11:48 am

1

Class	2		
Facility	Permit	Name	Address
13-0549	02-A	UT; Brenntag Pacific Inc	1888 Nirvana Av, Chula Vista
		1	

Grand total:

Zero Discharge from Categorical Operations

Report run on: Tuesday, January 21, 2020 11:49 am

Class 4	4C		
Facility	Permit	Name	Address
12-0067	04-A	Resideo Technologies Inc.	2055 Dublin Dr Suite 100, San Diego
12-0094	06-A	Parker Hannifin Corp CSS Division	7664 Panasonic Wy, San Diego
12-0137	04-A	General Dynamics Global Imaging Technologies	7603 Saint Andrews Av Suite H, San Diego
12-0150	03-A	Leidos Innovations Corp	1330 30th St Suite A, San Diego
12-0167	04-A	Crower Cams & Equipment Co Inc	6180 Business Center Ct, San Diego
		5	
Grand total:		5 Page 8 of 42	

Film Processors subject to BMPs

Report run on: Tuesday, January 21, 2020 11:48 am

Class	2F		
Facility	Permit	Name	Address
12-0119	01-A	Jeffrey W Brown DDS	1761 Palm Av, San Diego
12-0121	01-A	Jerome A Bannister DDS	4370 Palm Av Suite C, San Diego
12-0186	01-A	Rancho Vista Medical & Therapy Center Inc	342 W San Ysidro Bl Suite F, San Diego
12-0231	01-A	Juvenile Detention Facility	446 Alta Rd, San Diego
13-0117	02-A	Bay Port Press	645 Marsat St Suite D, Chula Vista
13-0235	01-A	Photo Max	1367 3rd Av, Chula Vista
13-0257	01-A	Robert N Woodall DDS Inc	330 Oxford St, Chula Vista
13-0387	01-A	Perpecta Dental Group	314 Palomar St, Chula Vista
		8	

Grand total:

Dry Cleaners subject to BMPs

Report run on: Tuesday, January 21, 2020 11:47 am 0

8

Grand total:

CHAPTER 4 – SIU ENFORCEMENT

4.1 Annual Compliance Summary

During the year covered in this report the program administered 14 SIU permits, covering 16 outfalls and monitored at 15 sample points. Three facilities were in significant non-compliance (SNC) during the year. These facilities are included in the calculation of the Metro System annual Significant Non-Compliance (SNC) rate reported in the Pretreatment Annual Report for the Point Loma POTW.

4.2 Characterization of the Compliance Status of Each SIU

The Annual SIU Compliance Status Report, which follows this page, lists the industry name, address, permit number, permit class; industrial flow by connection; violation dates and descriptions, if applicable; discharge standard and period, and actual value resulting in the violation; whether the violation exceeded the Technical Review Criteria (TRC); and whether the industry has been in SNC at any time during the year.

4.3 SIU Enforcement Actions Initiated, Continued, or Finalized

Jensen Meat Company Inc; IU # 12-0275

This meat processing facility was initially permitted in February of 2014 and now discharges about 27,000 gpd, after pretreatment, from cleaning and sanitizing operations. The IU met the criteria for SNC status for the six-month period ending in the 3rd quarter of 2019, when 5 of the 6 samples collected exceeded the daily maximum for dissolved sulfide by more than the TRC. The IU responded that its contractor concluded "we have too much decomposing or too much organic matter in our grease trap" and that they are taking several steps to improve their cleaning procedures including: jet-cleaning the drain pipes 3 times a year instead of 2, cleaning the grease trap once a month and deep cleaning it twice a year, and implementing a new cleaning procedure to reduce the solids into the drains. Notice of Violations (NOV) were issued for the violations and additional program monitoring will be scheduled for the first half of 2020 to determine whether these actions are sufficient to achieve compliance.

Spec-Built Systems; IU # 12-0202

This metal finisher performs iron phosphating on maritime cabinets and shelves. Since 2008 the IU has reused its rinse water and discharged an average of 4 batches of wastewater per year, equivalent to about 30 gpd. The IU had not violated a pollutant limit since 2008. Then the sample taken by the IU during its batch discharge on June 4, 2018 exceeded the daily maximum and monthly average limits for zinc and resulted in SNC status for the six-month period ending with the 2nd quarter of 2018. In addition, the IU failed to notify IWCP of daily maximum violation prior to submitting the Self-Monitoring Reports (SMR). Subsequently the next batch discharge on September 11 resulted in a monthly average violation for zinc, and the final batch discharge of 2018 on December 11 resulted in a daily maximum violation for zinc and monthly average violations for copper and zinc. Due to these violations the IU stayed in SNC status for the six-month periods ending with the 3rd and 4th quarters of 2018.

Then the only batch discharge in the first half of 2019 on February 4, also resulted in a daily maximum violation for zinc and monthly average violations for copper and zinc. Thus, the IU's SNC status extended into the six-month period ending with the 1st quarter of 2019. NOVs were issued and the IU responded that it has concluded the elevated metal levels are due to reductions in its rinse water use to less than 10 gpd that have also resulted in quality control issues for the powder coating process. To correct, the IU plans to return its water use to the previous volumes. The IU refrained from making any further discharges for the rest of 2019, therefore monitoring in 2020 will establish whether these actions are sufficient to return the IU to compliance.

Tarantino Wholesale Food Distributors; IU # 12-0212

This small food manufacturing facility was first permitted in April of 2018 for discharges averaging less than 10,000 gpd. First a single sample in November 2018 exceeded the local daily maximum limit (1 mg/L) for dissolved sulfides and this resulted in SNC status for the six-month period ending with the 1st quarter of 2019. Then the IU failed to submit the SMR due January 15, 2019 for both of its monitoring points, and thus was also SNC for late reporting in the 1st quarter. NOVs were issued and to address the elevated dissolved sulfides the IU stated it was having the tank pumped and cleaned. All 8 results for the rest of 2019 demonstrated compliance and the IU submitted its SMRs due in April and July, on time and then within 10 days of the due date, respectively, thus no further enforcement actions are planned.

4.4 **Public Information and Involvement**

Each year, a combined list of all facilities in the Metropolitan Sewerage System service area that were in SNC at any time during the year is published in the Union Tribune; this list is included in Chapter 4 of the Pretreatment Annual Report for the Point Loma POTW.

Industrial User	Address	Pollutant/Other
Jensen Meat Company Inc	2550 Britannia Bl, San Diego	dissolved sulfides
Spec-Built Systems	2150 Michael Faraday Dr, San Diego	copper, zinc
Tarantino Wholesale Food Distributors	7651 Saint Andrews Av, San Diego	dissolved sulfides ¹ , SM Report Late > 30 days

The following SIUs discharging tributary to the SBWRP were in SNC:

¹ SNC due to a single sample in violation for the pollutant listed

Annual SIU Compliance Status Report

01-Jan-2019 through 31-Dec-2019

SIU Name	IU#	Class	IW Disch	SNO	C? [If Yes, Why]	Conn	Violation Date	Description/Parameter	Value	Limit	Period	Cat	TRC
AP Precision Metals	12-0144	1	128	No		110	22-Oct-19	SMR Late - written notice					
1215 30th St, San Diego													
Ajinomoto Foods North America Inc 8411 Siempre Viva Rd, San Diego	12-0220	3	76000	No		110	26-Feb-19	Delinquent Requirement					
Emerald Textiles LLC	12-0065	3	79194	No		110	29-Apr-19	SMR Incomplete					
1725 Dornoch Ct Suite 100, Sa Diego	n												
Harcon Precision Metals Inc	12-0244	1	70	No		110	08-Feb-19	SMR Late - written notice					
1790 Dornoch Ct. San Diego						110	19-Feb-19	SMR Incomplete					
n de Bonnoen et, oan Biege						110	16-Jul-19	SMR Incomplete					
						120	08-Feb-19	SMR Late - written notice					
						120	19-Feb-19	SMR Incomplete					
Jensen Meat Company Inc	12-0275	3	18478	Yes	SNC2 - TRC (DM): SulfD	110	29-Apr-19	SMR Incomplete					
2550 Britannia Bl Suite 101, Sa	n				2/2,SulfD 4/4	110	24-Jun-19	Sulfides, Dissolved-Instantaneous	4.5	1	DM	L	Y
Diego						110	24-Jun-19	Sulfides, Dissolved-Instantaneous	8.5	1	DM	L	Y
						110	25-Jun-19	Sulfides, Dissolved-Instantaneous	7	1	DM	L	Y
						110	18-Sep-19	Sulfides, Dissolved-Instantaneous	2.3	1	DM	L	Y
						110	19-Sep-19	Sulfides, Dissolved-Instantaneous	2.5	1	DM	L	Y
Kraft Heinz Foods Company	12-0154	3	102142	No		110	29-Apr-19	SMR Incomplete					
7979 Ainway Ed San Diago						110	22-May-19	SMR Late - written notice					
1010 Aliway Ru, Sali Diego						110	03-Jun-19	SMR Incomplete					
						110	19-Sep-19	Oil and grease, Total-Instantaneous	1000	500	DM	L	Y
Otay Mesa Energy Center LLC	36-0001	1	33375	No		110	28-Oct-19	SMR Incomplete					
606 De La Fuente Ct, San Dieg	0												
RJ Donovan Correctional	12-0038	3 3	13700	No		100	08-Feb-19	SMR Late - written notice					
480 Alta Rd, San Diego						100	11-Mar-19	SMR Incomplete					
400 Ala Nu, Sali Diego							31-Dec-19	Delinquent Requirement					
Spec-Built Systems Inc	12-0202	2 1	26	Yes	SNC2 - TRC (MO): Cu 1/1,Cu	110	01-Feb-19	Copper, Total	2.7	2.07	MO	F	Y
2150 Michael Faraday Dr. San					2/2,Zn 1/1,Zn 2/2 (DM): Zn	110	01-Feb-19	Zinc, Total	3.8	1.48	MO	F	Y
Diego					1/1,211 1/2	110	04-Feb-19	Zinc, Total	3.8	2.61	DM	F	Y
						110	20-May-19	SMR Incomplete - failed notify in 24 hrs					
Spectex Inc dba Specialty	12-0283	3 3	47853	No		110	17-Jan-19	Oil and grease, Total-Instantaneous	625	500	DM	L	Ν
Textile Services	~					110	28-Oct-19	SMR Incomplete					
1555 Souri Si Suite A, San Diegi	0					110	21-Nov-19	SMR Late - written notice					
						110	11-Feb-20	SMR Incomplete					
Tarantino Wholesale Food	12-0212	2 3	7112	Yes	SNC2 - TRC (DM): SulfD 1/3;	100	08-Feb-19	SMR Late - written notice					
Distributors					SNC6 - Report Late > 30	100	23-Jul-19	SMR Late - written notice					
Diego					uays	210	08-Feb-19	SMR Late - written notice					
						210	23-Jul-19	SMR Late - written notice					
US General Services Administration - SYLPOE 720 E San Ysidro BI, San Diego	12-0285 o	5 3	50	No		NA							
UT; Brenntag Pacific Inc	13-0549) 2	10080	No		NA							
1888 Nirvana Av, Chula Vista													
UT; Frey Environmental Inc	13-0555	5 2	21600	No		NA							
825 Energy Wy, Chula Vista													

NOVs Issued in 2019 for SIUs

Report run on: Thursday, February 20, 2020 5:14 pm											
Name	Facility	Conn	NOV	Identified	Action	Viol Date	Fee	Level			
AP Precision Metals	12-0144	110	94539	22-Oct-2019	22-Oct-2019		100	Initial notice			
Ajinomoto Foods North America Inc	12-0220	110	92342	26-Feb-2019	26-Feb-2019		100	Initial notice			
Emerald Textiles LLC	12-0065	110	92708	29-Apr-2019	29-Apr-2019	16-Jan-2019	50	Notice only			
Harcon Precision Metals Inc	12-0244	110	91851	08-Feb-2019	14-Feb-2019		50	Notice only			
			91888	19-Feb-2019	19-Feb-2019	02-Nov-2018	50	Notice only			
			93451	16-Jul-2019	16-Jul-2019	30-Jun-2019	50	Notice only			
Harcon Precision Metals Inc	12-0244	120	91852	08-Feb-2019	14-Feb-2019		50	Notice only			
			91889	19-Feb-2019	19-Feb-2019	31-Dec-2018	50	Notice only			
Jensen Meat Company Inc	12-0275	110	92710	29-Apr-2019	29-Apr-2019	31-Mar-2019	50	Notice only			
			93702	12-Aug-2019	12-Aug-2019	25-Jun-2019	100	Initial notice			
			94689	18-Nov-2019	18-Nov-2019	19-Sep-2019	100	Initial notice			
Kraft Heinz Foods Company	12-0154	110	92712	29-Apr-2019	29-Apr-2019	14-Mar-2019	50	Notice only			
			93219	22-May-2019	22-May-2019		50	Notice only			
			93268	03-Jun-2019	03-Jun-2019	10-Apr-2019	50	Notice only			
			94711	18-Nov-2019	18-Nov-2019	19-Sep-2019	100	Initial notice			
Otay Mesa Energy Center LLC	36-0001	110	94550	22-Oct-2019	23-Oct-2019	-	0	Notice only			
			94615	28-Oct-2019	28-Oct-2019	30-Sep-2019	50	Notice only			
Otay Mesa Energy Center LLC	36-0001	120	94551	22-Oct-2019	23-Oct-2019		0	Notice only			
RJ Donovan Correctional Facility	12-0038	100	91848	08-Feb-2019	08-Feb-2019		100	Initial notice			
-			91848	08-Feb-2019	02-May-2019		75	Second notice			
			92408	11-Mar-2019	11-Mar-2019	31-Dec-2018	50	Notice only			
Spec-Built Systems Inc	12-0202	110	91242	19-Nov-2018	09-Jan-2019	11-Sep-2018	75	Second notice			
1			91913	19-Feb-2019	19-Feb-2019	11-Dec-2018	100	Initial notice			
			91913	19-Feb-2019	18-Mar-2019	11-Dec-2018	75	Second notice			
			92158	20-Feb-2019	20-Feb-2019	11-Dec-2018	100	Initial notice			
			92158	20-Feb-2019	19-Mar-2019	11-Dec-2018	75	Second notice			
			92928	20-May-2019	20-May-2019	04-Feb-2019	100	Initial notice			
			93014	20-May-2019	20-May-2019	04-Feb-2019	100	Initial notice			
Spectex Inc dba Specialty Textile Services	12-0283	110	92639	15-Apr-2019	15-Apr-2019	18-Jan-2019	100	Initial notice			
1 1 2			94570	28-Oct-2019	28-Oct-2019	10-Jul-2019	50	Notice only			
			95094	21-Nov-2019	21-Nov-2019		50	Notice only			
Tarantino Wholesale Food Distributors	12-0212	100	91849	08-Feb-2019	08-Feb-2019		100	Initial notice			
			91849	08-Feb-2019	18-Mar-2019		75	Second notice			
			91849	08-Feb-2019	30-Apr-2019		100	Final notice			
			91918	19-Feb-2019	19-Feb-2019	08-Nov-2018	100	Initial notice			
			93557	23-Jul-2019	25-Jul-2019		50	Notice only			
Tarantino Wholesale Food Distributors	12-0212	210	91850	08-Feb-2019	08-Feb-2019		100	Initial notice			
			91850	08-Feb-2019	19-Mar-2019		75	Second notice			
			91850	08-Feb-2019	30-Apr-2019		100	Final notice			
			92328	25-Feb-2019	26-Feb-2019	08-Nov-2018	100	Initial notice			
			93558	23-Jul-2019	25-Jul-2019	20107 2010	50	Notice only			
	Total fees:						\$2,950				
NOV count:			41				<i>~_,>00</i>				

Sampling in 2019 at SIUs

Report run on: Facility Pmt	Tuesday, January 21, 2020 11:52 am Name	Conn	Principle Process	Pmt Include	Parmcode	City Samples	Self Samples
12-0038 06-A	RJ Donovan Correctional Facility	100	Prison Sewer Main	L	SOLVENT CERT COD PH PHARMA HC CERT BIOHAZARD CERT OIL/GREASE TSS	1 1 1	1 2 2 1 1 2 2
12-0065 05-A	Emerald Textiles LLC	110	Commercial Laundry	L	PH HIGHEST PH LOWEST SULFIDE DISSOLVD TDS OIL/GREASE CHLORIDE FLOW TSS COD	1 1 2 1 1 1	2 2 2 2 6 2 2
12-0144 05-A	AP Precision Metals	110	Metal Coating (Iron Phosphating)	F	PH FLOW MAX NICKEL TTO CERT CADMIUM PH SILVER TTO(413+433)-P CHROMIUM FLOW LEAD CYANIDE(T)	1 2 2 2 2 1 2 2 2 2 2 2 2 2	2 1 1 1 1 1 1 1 1 1 1
12-0154 05-A	Kraft Heinz Foods Company	110	Food Manufacturing	L	ZINC FLOWMETER READ 1 FLOWMETER READ 2 TEMP FLOW FLOW TOTIMPORTED PH PH HIGHEST TSS OIL/G SCREEN OIL/GREASE COD SULFIDE DISSOLVD PH LOWEST	2 2 1 3 3 3 3 3 3 3 3 3 3	1 1 6 6 6 6 6 6 6 6 2
12-0202 04-A	Spec-Built Systems Inc	110	Iron Phosphating	F	COPPER TSS TTO(413+433)-P CHROMIUM FLOW LEAD PH TTO CERT NICKEL CADMIUM CYANIDE(T) SILVER ZINC COD	2	1
12-0212 02-A	Tarantino Wholesale Food Distributors	s 100	Sewer Lateral	L	PH LOWEST OIL/GREASE COD FLOW PH HIGHEST SULFIDE DISSOLVD TSS CHLORIDE PH	1 3 1 1 1 1 1 1	3 3 3 3 3 3 3 3
		210	Sausage manufacturing	L	IDS COD FLOW PH TSS OIL/GREASE CLARIFIER RPT TDS	1 1 1 3	3 3 3 3 3 3

Sampling in 2019 at SIUs

Report run on:	Tuesday, January 21, 2020 11:52 am						
Facility Pmt	Name	Conn	Principle Process	Pmt Include	Parmcode	City Samples	Self Samples
12-0220 05-A	Ajinomoto Foods North America Inc	110	Food manufacturing	L	FLOW OIL/GREASE TDS FLOWMETER READ 2 PH HIGHEST TFDS TSS TEMP CHLORIDE PH FLOWMETER READ 1 COD	2 3 3 3 2 3 2 3 2	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
12-0244 03-A	Harcon Precision Metals Inc	110	Conversion coating & assoc processes	F	PH LOWEST SULFIDE DISSOLVD TTO(413+433)-P LEAD SILVER CADMIUM COD CYANIDE(T) NICKEL TSS FLOW	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1
12-0275 03-A	Jensen Meat Company Inc	110	Meat processing, cleaning/sanitizing	L	FLOW MAX PH CHROMIUM TTO CERT COPPER OIL/GREASE ZINC CHLORIDE OIL/GREASE PH LOWEST TFDS PH HIGHEST CLARIFIER RPT	2 2 1 2 1 3 1 1 1	2 2 2 2
12-0283 03-A	Spectex Inc dba Specialty Textile Services	110	Commerical Laundry	L	PH TSS RAIN DIVERT CERT COD SULFIDE DISSOLVD TDS SULFIDE DISSOLVD TSS OIL/GREASE PH LOWEST	3 1 3 1 2 1	2 2 2 1 2 2 1 2 2 1 1 2 1
12-0285 03-A	US General Services Administration - SYLPOE	110	Waste activated sludge	L	PH COD FLOW PH HIGHEST FLOW FLOW MAX FLOW TOTIMPORTED TDS TSS	1 1	1 1 4 1 1 6
		120 130	Untreated waste30ater Treated wastewater		COD SULFIDE DISSOLVD FLOW TOTIMPORTED FLOW TOTIMPORTED		1 1 6 6

Sampling in 2019 at SIUs

Report run on:	Tuesday, January 21, 2020 11:52 am						
Facility Pmt	Name	Conn	Principle Process	Pmt Include	Parmcode	City Samples	Self Samples
13-0549 02-A	UT; Brenntag Pacific Inc	100	Groundwater Remediation	L L	FLASH BNZ(W/OAGG) COD FLOW RATE MIN FLOW TOTIMPORTED FLOWMETER READ 2 4CLETHE AUTOSHUTDOWN RPT TSS FLOW RATE MAX BTEX FLOWMETER READ 1 3CLETHE FLOW MAX		$ \begin{array}{c} 4 \\ 4 \\ 6 \\ 6 \\ 6 \\ 4 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6$
36-0001 03-A	Otay Mesa Energy Center LLC	110	WetSac blowdown + OWS	F	ZINC OIL/GREASE PH HIGHEST TDS FLOW FLOW MAX PH PH LOWEST CHROMIUM	1 1 1	1 1 1 1 1
		120 140	PCB zero discharge Turbine washing	F F	ZERODISCHRG CERT COPPER FLOW MAX FLOW	1	1

SIUs: 13

CHAPTER 5 – PRETREATMENT PROGRAM EFFECTIVENESS

5.1 Heavy Metal Loadings and Monitoring Data

Summary of analytical results from representative flow-proportioned, 24-hour composite sampling of the SBWRP influent and effluent for those pollutants that the United State Environmental Protection Agency (USEPA) has identified under Section 307(a) of the Clean Water Act (CWA), and which are known or suspected to be discharged by industrial users. The summary must include a full priority pollutant scan. Tables 5.1-1 and 5.1-2 summarize influent and effluent heavy metal loadings by month.

5.2. Upset, Interference and Pass-Through

No incidents of interference with the collection system, pump stations, or treatment plant operations were reported.

5.3. Biosolids Disposal Method

Biosolids from the SBWRP are conveyed to Point Loma, and from there to the Metro Biosolids Center for processing and disposal in combination with biosolids from throughout the Metropolitan Sewerage System service area. See details of biosolids disposal locations and beneficial uses on Chapter 5 Section 5.5 of this year's Annual Report for the Point Loma POTW, NPDES Permit No. CA 0107409.

5.4. Other Concerns

There are no other concerns pertaining to the administration of the pretreatment program or control of industrial contributions to the headworks loadings at the SBWRP currently.

SOUTH	TABLE 5.1-1 SOUTH BAY WATER RECLAMATION PLANT INFLUENT HEAVY METALS											
Average Concentration and Loadings												
ND or $<$ MDL = 0												
Month	Flow MGD	Cd	Cr	Cu	Pb	Ni	Ag	Zn				
Jan- Nov MDL (ug/L)*		0.04	0.2	0.42	0.08	0.09	0.01	0.86				
Dec MDL (ug/L)*		0.452	7.17	9.37	5.93	3.35	1.57	10.40				
Jan	6.46	0.169	1.78	66.2	1.07	3.24	0.156	140				
Feb	6.26	0.116	7.60	65.2	1.39	6.40	0.146	128				
Mar	6.06	0.111	2.38	77.8	1.51	3.64	0.188	158				
Apr	6.23	0.166	4.27	127	1.43	5.47	0.268	163				
May	6.31	0.139	2.62	85.6	1.59	4.16	0.206	177				
Jun	6.64	0.141	2.46	99.4	1.44	4.93	0	174				
Jul	6.88	0.133	3.42	81.8	1.20	4.40	0	168				
Aug	6.74	0.102	8.13	230	1.40	9.17	0	213				
Sep	6.46	0.213	2.56	82.3	1.22	3.81	0.223	180				
Oct	6.35	0.2	2.90	104	1.35	4.40	0.189	204				
Nov	6.35	0.105	14.00	66.8	1.40	10.60	0.124	153				
Dec	6.54	0	0	77.2	0	4.63	0	154				
Average Flow MGD	6.44											
Average ug/L		0.13	4.34	96.94	1.25	5.40	0.13	167.67				
LBS/day		0.01	0.23	5.21	0.07	0.29	0.01	9.01				
Total Lbs HM	14.82											
Total lb (-) Ag	14.81											

*NOTE: For Jan to Nov 2019, the metal analysis were performed using EPA 200.8. method. In Dember, they were performed using EPA 200.7 method.

TABLE 5.1-2 SOUTH BAY WATER RECLAMATION PLANT EFFLUENT HEAVY METALS												
Average Concentration and Loadings												
ND or $<$ MDL = 0												
Month	Flow MGD	Cd	Cr	Cu	Pb	Ni	Ag	Zn				
Jan- Nov MDL (ug/L)*		0.04	0.2	0.42	0.08	0.09	0.01	0.86				
Dec MDL (ug/L)*	0	0.452	7.17	9.37	5.93	3.35	1.57	10.40				
Jan	5.93	0	0.364	5.25	0.214	1.88	0	47.4				
Feb	5.82	0	0.338	5.27	0.250	1.70	0	48.8				
Mar	4.75	0	0.412	8.32	0.259	2.08	0	50.1				
Apr	2.11	0	0.390	11.3	0.191	1.94	0	44.3				
May	3.80	0	0.490	7.46	0.234	2.32	0	54.6				
Jun	2.60	0	0.49	8.76	0.296	2.31	0	63.9				
Jul	1.85	0	0.393	7.18	0.166	1.64	0	51.4				
Aug	1.81	0	0.529	9.39	0.211	2.84	0	68.1				
Sep	1.88	0	0.416	14	0.175	2.29	0	56.1				
Oct	1.98	0	0	6.23	0.194	1.96	0	63.5				
Nov	3.93	0	0.459	6.66	0.196	1.77	0	60.0				
Dec	5.97	0	0	0	0	0	0	57.7				
Average Flow MGD	3.49											
Average ug/L		0.00	0.39	7.49	0.20	1.89	0.00	55.49				
LBS/day		0.00	0.01	0.22	0.01	0.06	0.00	1.62				
Total Lbs HM	1.9											
Total lb (-) Ag	1.9											

*NOTE: For Jan to Nov 2019, the metal analysis were performed using EPA 200.8. method. In Dember, they were performed using EPA 200.7 method.

SOUTH BAY WATER RECLAMATION PLANT SEWAGE INFLUENT and EFFLUENT

Annual 2019

From 01-JAN-2019 To 31-DEC-2019

Biochemical Oxygen Demand Concentration (24-hour composite)

	Influent Flow	Daily Influent	Daily Influent	Effluent Flow	Daily Effluent	Daily Effluent	Percent Removal
		Value	Value		Value	Value	BOD
Month/ Units:	(MGD)	(mg/L)	(lbs/Day)	(MGD)	(mg/L)	(lbs/Day)	(%)
JANUARY -2019	6.46	320	17240	5.93	5	247	98.4
FEBRUARY -2019	6.26	283	14775	5.82	6	291	97.9
MARCH - 2019	6.06	345	17436	4.75	5	198	98.6
APRIL -2019	6.23	311	16159	2.11	2	35	99.4
MAY -2019	6.31	311	16366	3.80	4	127	98.7
JUNE -2019	6.64	324	17942	2.60	3	65	99.1
JULY -2019	6.88	379	21747	1.85	4	62	98.9
AUGUST -2019	6.74	382	21473	1.81	4	60	99.0
SEPTEMBER-2019	6.46	380	20473	1.88	3	47	99.2
OCTOBER -2019	6.35	343	18165	1.98	4	66	98.8
NOVEMBER -2019	6.35	385	20389	3.93	4	131	99.0
DECEMBER -2019	6.54	349	19036	5.97	4	199	98.9
Average	6.44	343	18433	3.54	4	127	98.8

Annual Mass Emissions are calculated from monthly averages of flow for BOD, whereas Monthly Report average mass emissions are calculated from average daily mass emissions.

SOUTH BAY WATER RECLAMATION PLANT SEWAGE INFLUENT and EFFLUENT

Annual 2019

Total Suspended Solids Concentration (24-hour composite)

	Influent	Influent	Influent		Influent
	Flow	Daily	Daily	Percent	Daily
		TSS	VSS	VSS	Mass Emission
its:	(MGD)	(mg/L)	(mg/L)	(%)	(lbs/Day)
=====	==========				
-2019	6.46	342	318	93.0	18426
-2019	6.26	271	244	90.0	14148
-2019	6.06	308	276	89.6	15566
-2019	6.23	305	281	92.1	15847
-2019	6.31	294	268	91.2	15472
-2019	6.64	309	287	92.9	17112
-2019	6.88	335	305	91.0	19222
-2019	6.74	341	310	90.9	19168
-2019	6.46	316	285	90.2	17025
-2019	6.35	320	290	90.6	16947
-2019	6.35	356	318	89.3	18853
-2019	6.54	318	291	91.5	17345
=====					=======
	6.44	318	289	91.0	17094
	its: -2019 -2019 -2019 -2019 -2019 -2019 -2019 -2019 -2019 -2019 -2019 -2019 -2019 -2019 -2019	Influent Flow (MGD) 	Influent Influent Flow Daily TSS its: (MGD) -2019 6.46 -2019 6.26 -2019 6.06 -2019 6.23 -2019 6.31 -2019 6.64 -2019 6.74 -2019 6.74 -2019 6.74 -2019 6.35 -2019 6.46 -2019 6.46 -2019 6.46 -2019 6.74 -2019 6.46 -2019 6.46 -2019 6.46 -2019 6.46 -2019 6.35 -2019 6.35 -2019 6.54 -2019 6.54 -2019 6.54	Influent Influent Influent Flow Daily Daily TSS VSS its: (MGD) (mg/L) (mg/L)	Influent Influent Influent Flow Daily Daily Percent TSS VSS VSS its: (MGD) (mg/L) (mg/L) (%)

Total Suspended Solids Concentration (24-hour composite)

Source: Analvte:	Effluent Flow	Effluent Daily TSS	Effluent Daily VSS	Percent VSS	Effluent Daily Mass Emissio	Percent Removal	Percent Removal VSS
Month/ Units:	(MGD)	(mg/L)	(mg/L)	(%)	(lbs/Day)	(%)	(%)
======================================	========= 5.93	4.4	3.9	88.6	218	98.7	98.8
FEBRUARY -2019	5.82	6.0	5.3	88.3	291	97.8	97.8
MARCH -2019	4.75	4.8	4.2	87.5	190	98.4	98.5
APRIL -2019	2.11	<5.0	<5.0	*	0	100.0	100.0
MAY -2019	3.80	4.9	4.4	89.8	155	98.3	98.4
JUNE - 2019	2.60	2.8	2.6	92.9	61	99.1	99.1
JULY -2019	1.85	3.9	3.1	79.5	60	98.8	99.0
AUGUST - 2019	1.81	2.7	<2.5	0.0	41	99.2	100.0
SEPTEMBER-2019	1.88	<2.5	<2.5	*	0	100.0	100.0
OCTOBER -2019	1.98	<2.5	<2.5	*	0	100.0	100.0
NOVEMBER -2019	3.93	3.2	2.5	78.1	105	99.1	99.2
DECEMBER -2019	5.97	4.9	4.2	85.7	244	98.5	98.6
Average	3.54	3.1	2.5		114	99.0	99.1

 \ast = undetermined, the percent VSS was not calculated because TSS and VSS results were below the MDL.

Annual Mass Emissions are calculated from monthly averages of flow and TSS, whereas Monthly Report average mass emissions are calculated from average daily mass emissions.

VSS= Volatile Suspended Solids TSS= Total Suspended Solids

SOUTH BAY WATER RECLAMATION PLANT

Annual 2019

Influent to Plant (SB_INF_02)

Analyte:	Flow	рН	Total Dissolved Solids	Biochemical Oxygen Demand	Total Suspended Solids	Volatile Suspended Solids	Turbidity
Units:	(mgd)	(pH)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(NTU)
JANUARY -2019	6.46	NR	1070	320	342	318	NR
FEBRUARY -2019	6.26	7.28	1060	283	271	244	186.00
MARCH - 2019	6.06	NR	1060	345	308	276	NR
APRIL -2019	6.23	NR	1020	311	305	281	NR
MAY -2019	6.31	7.48	976	311	294	268	155.00
JUNE - 2019	6.64	NR	975	324	309	287	NR
JULY -2019	6.88	NR	963	379	335	305	NR
AUGUST - 2019	6.74	7.10	934	382	341	310	141.00
SEPTEMBER-2019	6.46	NR	922	380	316	285	NR
OCTOBER -2019	6.35	7.30	935	343	320	290	NR
NOVEMBER -2019	6.35	NR	947	385	356	318	NR
DECEMBER -2019	6.54	NR	920	349	318	291	NR
Average	6.44	7.29	982	343	318	289	161

ND=not detected; NR=not required

SOUTH BAY WATER RECLAMATION PLANT

Annual 2019

Effluent to Ocean Outfall (SB_OUTFALL_01)

Analyte:	Flow	pH	Settleable	Biochemical	Total	Volatile	Total
			Solids	0xygen	Suspended	Suspended	Dissolved
				Demand	Solids	Solids	Solids
Units:	(mgd)	(pH)	(ml/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
JANUARY -2019	5.93	7.34	ND	5	4.4	3.9	1030
FEBRUARY -2019	5.82	7.35	ND	6	6.0	5.3	1010
MARCH - 2019	4.75	7.36	ND	5	4.8	4.2	1010
APRIL -2019	2.11	7.38	ND	2	<5.0	<5.0	956
MAY -2019	3.80	7.34	ND	4	4.9	4.4	922
JUNE - 2019	2.60	7.32	ND	3	2.8	2.6	901
JULY -2019	1.85	7.31	ND	4	3.9	3.1	916
AUGUST -2019	1.81	7.30	ND	4	2.7	<2.5	873
SEPTEMBER-2019	1.88	7.32	ND	3	<2.5	<2.5	879
OCTOBER -2019	1.98	7.34	ND	4	<2.5	<2.5	882
NOVEMBER -2019	3.93	7.31	ND	4	3.2	2.5	885
DECEMBER -2019	5.97	7.33	ND	4	4.9	4.2	870
Average	3.54	7.33	0.0	4	3.1	2.5	928

Analyte:		0il &	Outfall	Residual	Turbidity	Dissolved
		Grease	Temperature	Chlorine		Oxygen
Units:		(mg/L)	(°C)	(mg/L)	(NTU)	(mg/L)
JANUARY	-2019	4.4	23.0	<0.03	2.55	5.43
FEBRUARY	-2019	4.2	22.0	<0.03	2.74	5.08
MARCH	-2019	4.6	23.1	0.03	2.83	4.30
APRIL	-2019	4.0	24.2	0.03	1.53	4.53
MAY	-2019	3.8	24.6	<0.03	2.25	3.75
JUNE	-2019	6.6	25.4	ND	1.64	3.64
JULY	-2019	4.6	26.6	0.15	2.03	3.31
AUGUST	-2019	5.4	27.7	ND	1.51	3.52
SEPTEMBER	2019	4.8	27.9	ND	1.29	3.64
OCTOBER	-2019	4.7	26.6	<0.03	1.56	3.86
NOVEMBER	-2019	4.7	25.1	<0.03	1.77	3.45
DECEMBER	-2019	4.0	23.2	<0.03	2.24	4.88
	=====	===========				
Average		4.7	25.0	0.02	2.00	4.12

ND=not detected; NR=not required

Trace Metals

Annual 2019

Analyte: MAX_MDL Units: Source: Month/Limit:	Aluminum 57.9 UG/L Influent	Aluminum 57.9 UG/L Effluent	Antimony 2.43 UG/L Influent	Antimony 2.43 UG/L Effluent	Arsenic 2.4 UG/L Influent	Arsenic 2.4 UG/L Effluent 2800
JANUARY -2019	364	22.7	1.11	0.836	1.39	0.948
FEBRUARY -2019	667	16.5	1.20	0.699	2.07	1.28
MARCH -2019	892	34.6	1.26	0.714	1.54	1.13
APRIL -2019	1070	19.7	1.24	0.812	1.54	0.955
MAY -2019	645	25.1	1.31	0.770	1.50	0.964
JUNE -2019	561	21.5	1.48	0.843	1.28	0.757
JULY -2019	598	19.7	1.43	0.805	1.26	0.777
AUGUST -2019	556	20.1	1.46	1.020	1.71	1.03
SEPTEMBER-2019	672	22.9	1.33	0.844	1.40	0.728
OCTOBER -2019	884	19.7	1.27	0.775	1.42	0.680
NOVEMBER - 2019	916	24 2	1 34	0 977	1 28	0 877
DECEMBER _2019	920	ND			1120 ND	
======================================			==================		=======================================	ND ==========
AVERAGE	734	20.6	1.20	0.758	1.37	0.844
_						
Analyte:	Barium	Barium	Beryllium	Beryllium	Boron	Boron
MAX_MDL Units:	.17 UG/L	.17 UG/L	.156 UG/L	.156 UG/L	3.86 UG/L	3.86 UG/L
Source: Month/Limit:	Influent	Effluent	Influent	Effluent	Influent	Effluent
	=============		=============		===============	
JANUARY -2019	81.4	50.7	ND	ND	392	376
FEBRUARY -2019	71.2	43.6	ND	ND	393	346
MARCH -2019	71.7	45.4	ND	ND	460	417
APRIL -2019	64.9	40.1	ND	ND	472	411
MAY -2019	72.3	32.5	ND	ND	397	357
TUNE -2019	73 8	42 1	ND	ND	531	457
7012 - 2019	73.8	41 9	ND	ND	417	396
AUGUST - 2019	81.0	37 6	ND	ND	366	390
	66.8	34 7	ND		J00 /16	350
	64.7	24.7			205	444
NOVEMBER 2019	64.7	24.2			202	424
NUVEMBER -2019	63.5	34.3	ND	ND	432	407
DECEMBER - 2013	57.8	36.6	ND	ND	363	3/8
AVERAGE	70.1	39.9	 0.0	0.0	419	400 400
Analyte:	Cadmium	Cadmium	Chromium	Chromium	Cobalt	Cobalt
MAX_MDL Units:	.452 UG/L	.452 UG/L	7.17 UG/L	7.17 UG/L	.618 UG/L	.618 UG/L
Source:	Influent	Effluent	Influent	Effluent	Influent	Effluent
Month/Limit:		48		760		
			1 70			
	0.109		1./8	0.304	0.349	0.155
FEBRUARY -2019	0.116	ND	/.60	0.338	0.558	0.209
MARCH -2019	0.111	ND	2.38	0.412	0.465	0.239
APRIL -2019	0.166	ND	4.27	0.390	0.537	0.206
MAY -2019	0.139	ND	2.62	0.490	0.490	0.198
JUNE -2019	0.141	ND	2.46	0.490	0.481	0.238
JULY -2019	0.133	ND	3.42	0.393	0.414	0.177
AUGUST -2019	0.102	ND	8.13	0.529	0.770	0.230
SEPTEMBER-2019	0.213	ND	2.56	0.416	0.383	0.168
OCTOBER -2019	0.200	ND	2.90	0.353	0.540	0.186
NOVEMBER -2019	0.105	ND	14.0	0.459	0.633	0.174
DECEMBER -2019	ND	ND	ND	ND	0.892	ND
AVERAGE	0.133		============== 4.34	0.386	0.543	0.182

Trace Metals

Annual 2019

Analyte: MAX_MDL Units: Source: Month/Limit:	Copper 9.37 UG/L Influent	Copper 9.37 UG/L Effluent 960	Iron 42.6 UG/L Influent	Iron 42.6 UG/L Effluent	Lead 5.93 UG/L Influent	Lead 5.93 UG/L Effluent 760
JANUARY -2019 FEBRUARY -2019 MARCH -2019 APRIL -2019 MAY -2019 JUNE -2019	66.2 65.2 77.8 127 85.6 99.4	5.25 5.27 8.32 11.3 7.46 8.76	536 979 613 925 856 672	44.7 ND 58.3 ND 45.5 58.0	1.07 1.39 1.51 1.43 1.59 1.44	0.214 0.250 0.259 0.191 0.234 0.296
JULY -2019 AUGUST -2019 SEPTEMBER-2019 OCTOBER -2019	81.8 230 82.3 104	7.18 9.39 14.0 6.23	627 2030 649 1200	ND ND 82.0 45.5	1.20 1.40 1.22 1.35	0.166 0.211 0.175 0.194
NOVEMBER -2019 DECEMBER -2019	66.8 77.2	6.66 ND	854 838 =========	44.4 66.3	1.40 ND	0.196 ND
AVERAGE	96.9	7.49	898	37.1	1.25	0.199
Analyte: MAX_MDL Units: Source: Month/Limit:	Manganese 1.24 UG/L Influent	Manganese 1.24 UG/L Effluent	Mercury .003 UG/L Influent	Mercury .0011 UG/L Effluent 15.00	Molybdenum .742 UG/L Influent	Molybdenum .742 UG/L Effluent
JANUARY -2019 FEBRUARY -2019	123 102	11.0 6.83	0.081 0.075	0.004 0.003	5.61 20.2	4.00 8.63
MARCH -2019 APRIL -2019 MAY -2019	101 97.8 112	22.5 10.7 6.14	0.087 0.089 0.091	0.004 ND ND	6.83 8.56 6.66	4.55 4.16 3.53
JUNE -2019 JULY -2019 AUGUST -2019	115 97.3 106	28.5 13.3 28.4	0.095 0.107 0.105	0.002 ND 0.003	7.10 5.57 6.78	4.01 2.87 3.52
SEPTEMBER-2019 OCTOBER -2019 NOVEMBER -2019	93.3 82.4 93.8	32.4 19.7 24.5	0.118 0.200 0.036	0.002 0.002 0.002	5.76 5.55 6.58	2.68 1.55 2.82
DECEMBER -2019 ====================================	118 ======= 103	13.7 18.1	0.073 ====== 0.096	0.002 ====== 0.002	5.25 ======= 7.54	3.16 3.79
Analvte:	Nickel	Nickel	Selenium	Selenium	Silver	Silver
MAX_MDL Units: Source: Month/Limit:	3.35 UG/L Influent	3.35 UG/L Effluent 1900	5.78 UG/L Influent	5.78 UG/L Effluent 5700	1.57 UG/L Influent	1.57 UG/L Effluent 250
JANUARY -2019 FEBRUARY -2019 MARCH -2019	3.24 6.40 3.64	1.88 1.70 2.08	1.97 1.96 1.63	ND ND 0 925	0.156 0.146 0.188	ND ND
APRIL -2019 MAY -2019 JUNE -2019	5.47 4.16 4.93	1.94 2.32 2.31	2.03 1.63	ND ND	0.268 0.206	ND ND ND
JULY -2019 AUGUST -2019 SEDTEMBEP -2019	4.40 9.17	1.64 2.84	1.30 1.44 1.20	ND ND ND	ND ND ND	ND ND
OCTOBER -2019 NOVEMBER -2019 DECEMBER -2019	4.40 10.6	1.96 1.77	1.10 1.25 <0.85	ND ND ND	0.123 0.189 0.124	ND ND ND
AVERAGE	4.03 ======== 5.40	لاہ ======= 1.89		0.077	ND ====================================	0.0

Trace Metals

Annual 2019

Analyte: MAX_MDL Units: Source: Month/Limit:	Thallium 3.37 UG/L Influent	Thallium 3.37 UG/L Effluent	Vanadium 1.10 UG/L Influent	Vanadium 1.10 UG/L Effluent	Zinc 10.4 UG/L Influent	Zinc 10.4 UG/L Effluent 6900
			============			
JANUARY -2019	ND	ND	3.33	1.63	140	47.4
FEBRUARY -2019	ND	ND	5.73	2.43	128	48.8
MARCH - 2019	ND	ND	4.96	2.32	158	50.1
APRIL -2019	ND	ND	4.35	2.02	163	44.3
MAY -2019	ND	ND	4.63	1.88	177	54.6
JUNE -2019	ND	ND	3.60	1.71	174	63.9
JULY -2019	ND	ND	3.38	1.71	168	51.4
AUGUST -2019	ND	ND	5.25	1.75	213	68.1
SEPTEMBER-2019	ND	ND	3.04	1.59	180	56.1
OCTOBER -2019	ND	ND	3.26	1.56	204	63.5
NOVEMBER -2019	ND	ND	4.04	1.81	153	60.0
DECEMBER -2019	ND	ND	3.86	2.32	154	57.7
AVERAGE	0.0	0.0	4.12	1.90	168	55.5

Ammonia-Nitrogen and Total Cyanides

Annual 2019

Analyte:		Ammonia-N	Ammonia-N	Total Cyanide	Total Cyanide
Max MDL/	Units:	0.3	0.3	5 UG/L	5 UG/L
Source:		SB_INF_02	SB_OUTFALL_0	1 SB_INF_02	SB_OUTFALL_01
=======	=====	=========	======	=========	======
JANUARY	-2019	47.8	ND	ND	ND
FEBRUARY	-2019	36.1	ND	ND	ND
MARCH	-2019	40.0	ND	ND	ND
APRIL	-2019	40.3	ND	ND	ND
MAY	-2019	43.4	ND	ND	ND
JUNE	-2019	41.8	ND	ND	ND
JULY	-2019	41.0	ND	ND	ND
AUGUST	-2019	43.6	ND	ND	ND
SEPTEMBER	-2019	43.4	ND	ND	ND
OCTOBER	-2019	40.5	ND	ND	ND
NOVEMBER	-2019	41.8	ND	ND	ND
DECEMBER	-2019	43.0	ND	ND	ND
	=====				
Average:		41.9	0.0	0.0	0.0

Anions

ANNUAL 2019

Analyte: Max MDL: Units: Source:		Bromide 0.1 MG/L INFLUENT	Bromide 0.1 MG/L EFFLUENT	Chloride 15 MG/L INFLUENT	Chloride 15 MG/L EFFLUENT	Fluoride 0.092 MG/L INFLUENT	Fluoride 0.092 MG/L EFFLUENT
 ΊΔΝΙΙΔΒΥ	-2019	 0 681	 0 378	248	271	 0 271	0 484
FFBRUARY	-2019	0.557	0.508	262	299	0.443	0.568
MARCH	-2019	0.532	0.615	261	309	0.540	0.542
APRIL	-2019	0.526	0.643	272	328	0.532	0.587
MAY	-2019	0.499	0.471	250	265	0.494	0.513
JUNE	-2019	0.456	0.435	263	260	0.507	0.450
JULY	-2019	0.494	0.458	254	280	0.471	0.427
AUGUST	-2019	0.437	0.428	251	262	0.506	0.479
SEPTEMBER	R-2019	0.422	0.390	241	255	0.486	0.535
OCTOBER	-2019	0.476	0.342	239	262	0.513	0.610
NOVEMBER	-2019	0.529	0.450	242	257	0.459	0.641
DECEMBER	-2019	0.432	0.472	248	253	0.491	0.601
AVERAGE		0.503	0.466	253	275	0.476	0.536
Analyte:		Nitrate	Nitrate	0-Phosphate	0-Phosphate	(as P) Sulfate	Sulfate
Max MDL:		1	6	0.26	0.26	15	15
Units:		MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
Source:		INFLUENT	EFFLUENT	INFLUENT	EFFLUENT	INFLUENT	EFFLUENT
						============	
JANUARY	-2019	1.20	46.2	10.6	6.50	130	184
FEBRUARY	-2019	1.31	42.4	9.38	8.91	126	166
MARCH	-2019	0.872	40.7	9.31	8.45	101	158
APRIL	-2019	0.809	35.6	11.9	5.74	101	155
MAY	-2019	1.20	44.8	11.3	9.95	88.6	132
JUNE	-2019	0.127	40.9	9.67	2.59	88.9	122
JULY	-2019	0.254	41.7	11.4	1.19	77.9	123
AUGUST	-2019	0.178	39.7	13.0	11.0	75.3	114
SEPTEMBER	2019	<0.24	41.9	9.25	3.34	90.2	122
OCTOBER	-2019	0.374	36.1	10.3	0.518	96.4	123
NOVEMBER	-2019	ND	44.7	11.2	8.70	92.8	137
DECEMBER	-2019	<0.24	45.8	11.6	4.32	112	136
AVERAGE		0.527	41.7	10.7	5.93	98.3	139

Cations

Annual 2019

Analyte:	United	Calcium		Ν	Magnesium	l	Lithium		
Source:	units.	INF	EFF	INF	EFF	INF	EFF		
		=========		=========					
JANUARY	-2019	66.6	68.4	30.0	28.5	0.024	0.022		
FEBRUARY	-2019	67.5	67.3	30.7	31.2	0.023	0.019		
MARCH	-2019	61.7	65.5	28.1	29.6	0.018	0.020		
APRIL	-2019	62.0	68.4	28.9	31.4	0.015	0.018		
MAY	-2019	56.5	60.3	25.8	27.4	0.015	0.015		
JUNE	-2019	56.6	58.4	26.3	24.9	0.014	0.013		
JULY	-2019	55.8	58.9	25.6	26.0	0.014	0.015		
AUGUST	-2019	47.4	52.2	20.8	22.7	0.012	0.014		
SEPTEMBER	-2019	52.8	53.1	23.3	21.6	0.015	0.013		
OCTOBER	-2019	49.6	52.6	22.6	21.3	0.016	0.013		
NOVEMBER	-2019	51.5	52.1	23.7	22.7	0.015	0.015		
DECEMBER	-2019	55.4	58.2	25.0	24.5	0.013	0.014		
		==========		==========		==========			
Average:		57.0	59.6	25.9	26.0	0.016	0.016		

So	odium	Pc	Potassium			
1	mg/L	0.	18 mg/L			
INF	EFF	INF	EFF			
207	218	21.0	19.1			
221	231	19.2	18.0			
208	231	19.3	18.2			
217	240	20.6	18.9			
202	206	19.5	18.6			
206	204	19.6	17.6			
198	213	19.3	17.6			
185	197	17.8	17.3			
185	193	18.8	16.3			
188	199	19.0	16.6			
193	204	19.8	18.3			
197	191	18.4	17.1			
========= ===		=======================================				
201	211	19.4	17.8			
	Sc 1 INF 207 221 208 217 202 206 198 185 185 185 185 185 185 185 187 207 201	Sodium 1 mg/L INF EFF 207 218 221 231 208 231 217 240 202 206 206 204 198 213 185 197 185 193 185 193 188 199 193 204 197 191 	Sodium Pc 1 mg/L 0. INF EFF INF 207 218 21.0 221 231 19.2 208 231 19.3 217 240 20.6 202 206 19.5 206 204 19.3 185 197 17.8 185 193 18.8 185 193 18.8 193 204 19.8 197 191 18.4 ====== 201 211 19.4			

SOUTH BAY WATER RECLAMATION PLANT SOURCE: INFLUENT (SB_INF_02)

CHLORINATED PESTICIDE ANALYSIS, EPA Method 608 and 608.3 (WITH ADDITIONS)

Annual 2019

Source:				INF	LUENT		
Date:			FEB	MAY	AUG	ОСТ	
Analyte	Max MDL	Units					Avg
	=======	=====	=====	=====	=====	=====	=====
Aldrin	2.65	NG/L	ND	ND	ND	ND	ND
Dieldrin	4.93	NG/L	ND	ND	ND	ND	ND
BHC. Alpha isomer	2.21	NG/L	ND	ND	ND	ND	ND
BHC. Beta isomer	3.33	NG/I	ND	ND	ND	ND	ND
BHC, Gamma isomer	1.76	NG/I	ND	ND	ND	ND	ND
BHC, Delta isomer	2.9	NG/I	ND	ND	ND	ND	ND
n.n-DDD	3.7	NG/I	ND	ND	ND	ND	ND
n.n-DDF	3.15	NG/I	ND	ND	ND	ND	ND
n.n-DDT	5 05	NG/I	ND	ND	ND	ND	ND
o n-DDD	3 03	NG/I	ND	ND	ND	ND	ND
o n-DDE	3 66	NG/L	ND	ND	ND	ND	ND
o n-DDT	2 78	NG/L	ND	ND	ND	ND	ND
Hentachlor	2.70		ND	ND	ND	ND	ND
Hentachlor enovide	3 3/		ND	ND	ND	ND	ND
Alpha (cis) Chlordane	3 37						
Gamma (trans) Chlordane	1 88						
Alpha Chlondene	0		NA	NA	NA	NA	NA
Camma Chlondene	0		NA	NA NA		NA NA	NA
Oxychlondano	7 61						
Thans Nonachlon	7.04						
	2.20						
Alpha Endoculfan	2.27						
Rota Endocultan	2.1						
Endoculfon Sulfato	2.0/						
Endosuitan Suitale	2.22						
Endrin Endrin oldebude	2.92						
Endrin aldenyde	4.55						
Mathannahlan	9.4/		ND	ND	ND	ND	ND
Methoxychior	3.25		ND	ND	ND	ND	ND
loxaphene	257	NG/L	ND	ND	ND	ND	ND
PCB 1016	282	NG/L	ND	ND	ND	ND	ND
PCB 1221	2058	NG/L	ND	ND	ND	ND	ND
PCB 1232	//2	NG/L	ND	ND	ND	ND	ND
PCB 1242	282	NG/L	ND	ND	ND	ND	ND
PCB 1248	282	NG/L	ND	ND	ND	ND	ND
PCB 1254	514	NG/L	ND	ND	ND	ND	ND
PCB 1260	514	NG/L	ND	ND	ND	ND	ND
PCB 1262	514	NG/L	ND	ND	ND	ND	ND
		=====	=====	=====			
Aldrin + Dieldrin	4.93	NG/L	0	0	0	0	0
Hexachlorocyclohexanes	3.33	NG/L	0	0	0	0	0
DDT and derivatives	5.05	NG/L	0	0	0	0	0
Chlordane + related cmpds.	7.64	NG/L	0	0	0	0	0
Polychlorinated biphenyls	2058	NG/L	0	0	0	0	0
Endosulfans	3.53	NG/L	0	0	0	0	0
Heptachlors	3.34	NG/L	 0	 0	 0	0	 0
Chlorinated Hydrocarbons	====== 2058	===== NG/L	===== 0	===== 0	===== 0	===== 0	===== 0

ND= not detected; NA= not analyzed

Standards for alpha and gamma chlordene are no longer available in the U.S. for the analysis of these compounds.

SOUTH BAY WATER RECLAMATION PLANT SOURCE: EFFLUENT (SB_OUTFALL_01)

CHLORINATED PESTICIDE ANALYSIS, EPA Method 608 and 608.3 (WITH ADDITIONS)

Annual 2019

Source:							EFFL	UENT						
Date:			JAN	FEB	MAR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	
Analyte	Max MDL	Units												Avg
			=====											=====
Aldrin	2.65	NG/L	ND											
Dieldrin	4.93	NG/L	ND											
BHC. Alpha isomer	2.21	NG/L	ND											
BHC. Beta isomer	3.33	NG/I	ND											
BHC, Gamma isomer	1.76	NG/I	ND											
BHC. Delta isomer	2.9	NG/I	ND											
n.n-DDD	3 7	NG/I	ND											
n.n-DDF	3 15	NG/I	ND											
n n-DDT	5 05	NG/L	ND	ND*	* ND	ND	ND	ND						
o n-DDD	3 03	NG/L	ND											
o n-DDE	3 66	NG/L	ND											
o n-DDT	2 78	NG/L	ND											
Hentachlor	2.70													
Hentachlor enovide	3 3/													
Alpha (cis) Chlondane	2 27													
Camma (trans) Chlondano	1 00													
Alpha Chlondono	1.00													
Alpha Chiordene	0					INA NA					INA NA		NA NA	
Quuchlandana	7 64													
Trans Nenachlen	7.04													
	5.50													
Alaba Endeaulter	3.3/													
Alpha Endosultan	3.1													
Beta Endosultan	2.8/	NG/L	ND											
Endosultan Sultate	3.53	NG/L	ND	ND	ND	34.4	ND	2.8/						
Endrin	2.92	NG/L	ND											
Endrin aldenyde	4.55	NG/L	ND											
Mirex	9.4/	NG/L	ND											
Methoxychior	3.25	NG/L	ND											
loxaphene	257	NG/L	ND											
PCB 1016	282	NG/L	ND											
PCB 1221	2058	NG/L	ND											
PCB 1232	772	NG/L	ND											
PCB 1242	282	NG/L	ND											
PCB 1248	282	NG/L	ND											
PCB 1254	514	NG/L	ND											
PCB 1260	514	NG/L	ND											
PCB 1262	514	NG/L	ND											
		=====	=====	=====		=====			=====		=====			=====
Aldrin + Dieldrin	4.93	NG/L	0	0	0	0	0	0	0	0	0	0	0	0
Hexachlorocyclohexanes	3.33	NG/L	0	0	0	0	0	0	0	0	0	0	0	0
DDT and derivatives	5.05	NG/L	0	0	0	0	0	0	0	0	0	0	0	0
Chlordane + related cmpds.	7.64	NG/L	0	0	0	0	0	0	0	0	0	0	0	0
Polychlorinated biphenyls	2058	NG/L	0	0	0	0	0	0	0	0	0	0	0	0
Endosulfans	3.53	NG/L	0	0	0	34.4	0	0	0	0	0	0	0	2.87
Heptachlors	====== 3.34	===== NG/L	===== 0											
		=====	=====	=====	=====	=====	=====		=====	=====	=====	=====	=====	=====
Chlorinated Hydrocarbons	2058	NG/L	0	0	0	34.4	0	0	0	0	0	0	0	2.87

*= Analyte recovery in the closing calibration verification standard outside the method's acceptance range; therefore, is not reportable

ND= not detected; NA= not analyzed

Standards for alpha and gamma chlordene are no longer available in the U.S. for the analysis of these compounds.

Organophosphorus Pesticides - EPA Method 614/622 (with additions)

Annual 2019

Source:			Influent	Influent	Influent	Effluent
Analyte	Max MDL	Units	P1088350	P1107725	P1120482	P1088355
Demeton 0	====== 0 274	===== UG/I	======================================	======================================	======================================	======================================
Demeton S	1.91	UG/L	ND	ND	ND	ND
Diazinon	0.444	UG/L	ND	ND	ND	ND
Guthion	0.828	UG/L	ND	ND	ND	ND
Malathion	0.344	UG/L	ND	ND	ND	ND
Parathion	0.153	UG/L	ND	ND	ND	ND
Dichlorvos	0.268	UG/L	ND	ND	ND	ND
Disulfoton	0.181	UG/L	ND	ND	ND	ND
Stirophos	0.33	UG/L	ND	ND	ND	ND
Coumaphos	0.2	UG/L	ND	ND	ND	ND
Chlorpyrifos	0.08	UG/L	ND	ND	ND	ND
		=====				
Thiophosphorus Pesticides	0.828	UG/L	0.0	0.0	0.0	0.0
Demeton -0, -S	1.91	UG/L	0.0	0.0	0.0	0.0
Total Organophosphorus Pesticides	1.91	===== UG/L	0.0	0.0	0.0	0.0

Source:			Effluent	Effluent
Date:			06-AUG-2019	01-0CT-2019
Analyte	Max MDL	Units	P1107730	P1120487
Demeton O	0.274	UG/L	ND	ND
Demeton S	1.91	UG/L	ND	ND
Diazinon	0.444	UG/L	ND	ND
Guthion	0.828	UG/L	ND	ND
Malathion	0.344	UG/L	ND	ND
Parathion	0.153	UG/L	ND	ND
Dichlorvos	0.268	UG/L	ND	ND
Disulfoton	0.181	UG/L	ND	ND
Stirophos	0.332	UG/L	ND	ND
Coumaphos	0.2	UG/L	ND	ND
Chlorpyrifos	0.08	UG/L	ND	ND
	======	=====		
Thiophosphorus Pesticides	0.828	UG/L	0.0	0.0
Demeton -O, -S	1.91	UG/L	0.0	0.0
		=====		
Total Organophosphorus Pesticides	1.91	UG/L	0.0	0.0

SOUTH BAY WATER RECLAMATION PLANT SAMPLE SOURCE: INFLUENT (SB_INF_02)

Dioxin and Furan Analysis

Annual 2019

Source:				INF	INF	INF	INF
Date:				JAN	FEB	MAR	APR
Analyte	MDL	Units	Equiv	P1064415	P1071273	P1077138	P1082499
2 3 7 8-tetra CDD	====== 0 118	======= PG/I	===== 1 000				
1.2.3.7.8-nenta CDD	0.440	PG/L	0 500	ND	ND	ND	ND
1.2.3.4.7.8 hexa CDD	0.0548	PG/I	0.100	ND	ND	ND	ND
1.2.3.6.7.8-hexa CDD	0.0525	PG/L	0.100	ND	ND	ND	ND
1.2.3.7.8.9-hexa CDD	0.0525	PG/L	0.100	ND	ND	ND	ND
1 2 3 4 6 7 8-henta CDD	0.0502		0.100				
octa CDD	0.00372		0.010	100	190	91 0	130
2 3 7 8-tetra CDF	0.00112		0.001				
1 2 3 7 8-penta CDE	0.07185		0.100		ND		
2 3 4 7 8-penta CDF	0.02405		0.000				
1 2 3 4 7 8-beva CDE	0.2400		0.000				
1, 2, 3, 4, 7, 0 - Hexa CDF	0.0500		0.100				
1,2,3,0,7,0-HEXA CDF	0.052		0.100		ND		
1,2,3,7,8,9-fiexa CDF	0.0474	PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-nexa CDF	0.0504	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-nepta CDF	0.00548	PG/L	0.010	DNQ2.30	DNQ6.07	ND	DNQ2.48
1,2,3,4,7,8,9-hepta CDF	0.00613	PG/L	0.010	ND	ND	ND	ND
octa CDF	0.00097	PG/L	0.001	DNQ5.06	DNQ10.6	DNQ5.52	DNQ5.72
Source				TNE	TNE	TNE	TNE
Data:							
Analyte	MDL	Units	Equiv	P1088350	P1096449	P1101301	P1107725
	=====	========	=====				
2,3,7,8-tetra CDD	0.448	PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD	0.2365	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD	0.0548	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	0.0525	PG/L	0.100	DNQ2.79	ND	ND	DNQ3.08
1,2,3,7,8,9-hexa CDD	0.0502	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD	0.00572	PG/L	0.010	DNQ23.6	DNQ14.7	DNQ13.6	DNQ22.7
octa CDD	0.00112	PG/L	0.001	120	97.0	77.0	80.0
2,3,7,8-tetra CDF	0.041	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8-penta CDF	0.02485	PG/L	0.050	ND	ND	ND	ND
2.3.4.7.8-penta CDF	0.2455	PG/L	0.500	ND	ND	ND	ND
1.2.3.4.7.8-hexa CDF	0.0506	PG/L	0.100	ND	ND	ND	ND
1.2.3.6.7.8-hexa CDF	0.052	PG/I	0.100	ND	ND	ND	ND
1 2 3 7 8 9-beva CDE	0 0474	PG/1	0 100	ND	ND	ND	ND
2 3 4 6 7 8-beva CDF	0.0474		0.100		ND	ND	ND
1 2 3 4 6 7 8 honto CDE	0.0004		0.100		ND		
1,2,3,4,6,7,8-Hepta CDF	0.00540		0.010		ND		
1,2,3,4,7,8,9-nepta CDF	0.00013	PG/L	0.010				
OCTA CDF	0.00097	PG/L	0.001	DNQ6.37	DNQ5.63	DNQ5.25	DNQ4.42
Source:				TNF	TNF	TNF	TNF
Date:				SEP	OCT	NOV	DEC
Analyte	MDL	Units	Equiv	P1114920	P1120482	P1127186	P1132781
2 3 7 8-tetra CDD	===== 0 118	======= PG/I	===== 1 000		======================================	======================================	======================================
$1 2 3 7 8_{nenta}$ CDD	0.770		0 500		ND		
1 2 3 4 7 9 hove CDD	0.2505		0.000	ND			
1,2,3,4,7,8_NEXA_CDD	0.0540		0.100				
1,2,3,6,7,8-NEXA CDD	0.0525		0.100			ND	ND
1,2,3,7,8,9-nexa CDD	0.0502	PG/L	0.100		ND	ND	ND DN010 0
1,2,3,4,6,7,8-nepta CDD	0.005/2	PG/L	0.010	37.1	DNQ25.6	DNQ8.53	DNQ10.9
octa CDD	0.00112	PG/L	0.001	1100	110	77.0	95.0
2,3,7,8-tetra CDF	0.041	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8-penta CDF	0.02485	PG/L	0.050	ND	ND	ND	ND
2,3,4,7,8-penta CDF	0.2455	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF	0.0506	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDF	0.052	PG/L	0.100	ND	ND	ND	DNQ2.03
1,2,3,7,8,9-hexa CDF	0.0474	PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF	0.0504	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDF	0.00548	PG/L	0.010	DN09.20	DNQ2.53	DNQ2.13	DN02.42
1,2,3,4,7,8,9-hepta CDF	0.00613	PG/L	0.010	ND	ND	ND	ND
octa CDF	0.00097	PG/L	0.001	DNQ20.8	DNQ6.99	DNQ4.10	DNQ4.83
				-	-	-	-

ND= not detected DNQ= (Detected but not quantified). Estimated analyte concentration below calibration range. Above are permit required CDD/CDF isomers.

Dioxin and Furan Analysis

Annual 2019

Source: Date: Analyte	MDL	Units	Equiv	EFF JAN P1064418	EFF FEB P1071278	EFF MAR P1077141	EFF APR P1082502
2 3 7 8-tetra CDD	====== = 0 448	PG/I	===== 1 000	======================================	======================================	======================================	======================================
1.2.3.7.8-penta CDD	0.2365	PG/L	0.500	ND	ND	ND	ND
1.2.3.4.7.8 hexa CDD	0.0548	PG/I	0.100	ND	ND	ND	ND
1.2.3.6.7.8-hexa CDD	0.0525	PG/I	0.100	ND	ND	ND	ND
1.2.3.7.8.9-hexa CDD	0.0502	PG/I	0.100	ND	ND	ND	ND
1.2.3.4.6.7.8-henta CDD	0.00572	PG/I	0.010	ND	ND	ND	ND
octa CDD	0.00112	PG/L	0.001	DN05.19	ND	DN07.97	ND
2.3.7.8-tetra CDF	0.041	PG/I	0.100	ND	ND	ND	ND
1.2.3.7.8-penta CDF	0.02485	PG/L	0.050	ND	ND	ND	ND
2.3.4.7.8-penta CDF	0.2455	PG/L	0.500	ND	ND	ND	ND
1.2.3.4.7.8-hexa CDF	0.0506	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDF	0.052	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDF	0.0474	PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF	0.0504	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDF	0.00548	PG/L	0.010	ND	ND	ND	ND
1,2,3,4,7,8,9-hepta CDF	0.00613	PG/L	0.010	ND	ND	ND	ND
octa CDF	0.00097	PG/L	0.001	ND	ND	ND	ND
		·					
Source:				EFF	EFF	EFF	EFF
Date:				MAY	JUN	JUL	AUG
Analyte	MDL	Units	Equiv	P1088355	P1096452	P1101304	P1107730
	======		=====				
2,3,7,8-tetra CDD	0.448	PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD	0.2365	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD	0.0548	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	0.0525	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD	0.0502	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD	0.00572	PG/L	0.010	ND	ND	ND	ND
octa CDD	0.00112	PG/L	0.001	ND	ND	ND	ND
2,3,7,8-tetra CDF	0.041	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8-penta CDF	0.02485	PG/L	0.050	ND	ND	ND	ND
2,3,4,7,8-penta CDF	0.2455	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF	0.0506	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,/,8-hexa CDF	0.052	PG/L	0.100	ND	ND	ND	ND
1,2,3,/,8,9-hexa CDF	0.04/4	PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF	0.0504	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDF	0.00548	PG/L	0.010	ND	ND	ND	ND
1,2,3,4,/,8,9-hepta CDF	0.00613	PG/L	0.010	ND	ND	ND	ND
octa CDF	0.00097	PG/L	0.001	ND	ND	ND	ND
C							
Source:				EFF	EFF	EFF	EFF
			Fault	D1114022	ULI	NUV	DEC
analyte	MDL =====	============	Equiv	P1114923	P1120487	P112/189	P1132784
2,3,7,8-tetra CDD	0.448	PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD	0.2365	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD	0.0548	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	0.0525	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD	0.0502	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD	0.00572	PG/L	0.010	ND	ND	ND	ND
octa CDD	0.00112	PG/L	0.001	ND	ND	ND	DNQ5.42
2,3,7,8-tetra CDF	0.041	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8-penta CDF	0.02485	PG/L	0.050	ND	ND	ND	ND
2,3,4,7,8-penta CDF	0.2455	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF	0.0506	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDF	0.052	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDF	0.0474	PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF	0.0504	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDF	0.00548	PG/L	0.010	ND	ND	ND	ND
1,2,3,4,7,8,9-hepta CDF	0.00613	PG/L	0.010	ND	ND	ND	ND
octa CDF	0.00097	PG/L	0.001	ND	ND	ND	ND

ND= not detected DNQ= (Detected but not quantified). Estimated analyte concentration below calibration range. Above are permit required CDD/CDF isomers.

SOUTH BAY WATER RECLAMATION PLANT SOURCE: INFLUENT (SB_INF_02)

Dioxin and Furan Analysis

Annual 2019

Source:				INF	INF	INF	INF
Date:				JAN	FEB	MAR	APR
Analyte	MDL	Units	Equiv	P1064415	P1071273	P1077138	P1082499
2 2 7 8 totas CDD	======	======================================	1 000	========			
2,3,7,8-letra CDD	0.448		1.000		ND	ND	ND
1, 2, 3, 7, 8 beva CDD	0.2505		0.500				
$1,2,3,4,7,8$ _hexa_CDD	0.0540		0.100				
1, 2, 3, 0, 7, 8 hove CDD	0.0525		0.100				
1, 2, 3, 7, 6, 5-nexa CDD	0.0302		0.100				
1,2,3,4,0,7,8-hepta CDD	0.00372		0.010	0 10	DNQ0.207 0 19	0 001	0 13
2 3 7 8 total CDE	0.00112		0.001	0.10	0.19	0.031	0.13
2, 3, 7, 6-letra CDF	0.041		0.100				
2 3 4 7 8-penta CDF	0.02405		0.050				
1 2 3 4 7 8 here CDF	0.2455		0.000				
1,2,3,4,7,8-nexa CD	0.0500		0.100	ND			ND
1, 2, 3, 7, 8, 9 here CDF	0.052		0.100	ND			
2 3 4 6 7 8-beva CDF	0.0474		0.100	ND			ND
1 2 3 4 6 7 8-henta CDF	0.0004		0.100 0 010				
1,2,3,4,0,7,8 -hepta CDF	0.00040		0.010	ND	DNQ0.001		ND
octa CDE	0.00013		0.010				
	0.00057	FO/L	0.001	DNQ0.005	DNQ0.011	DNQ0.000	DNQ0.000
Source:				INF	INF	INF	INF
				TCCD	TCCD	TCCD	TCCD
Date:				MAY	JUN	JUL	AUG
Analyte	MDL	Units	Equiv	P1088350	P1096449	P1101301	P1107725
			=====				
2,3,7,8-tetra CDD	0.448	PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD	0.2365	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD	0.0548	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	0.0525	PG/L	0.100	DNQ0.279	ND	ND	DNQ0.308
1,2,3,7,8,9-hexa CDD	0.0502	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD	0.00572	PG/L	0.010	DNQ0.236	DNQ0.147	DNQ0.136	DNQ0.227
octa CDD	0.00112	PG/L	0.001	0.12	0.097	0.077	0.08
2,3,7,8-tetra CDF	0.041	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8-penta CDF	0.02485	PG/L	0.050	ND	ND	ND	ND
2,3,4,7,8-penta CDF	0.2455	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF	0.0506	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDF	0.052	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDF	0.0474	PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF	0.0504	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDF	0.00548	PG/L	0.010	DNQ0.04	ND	DNQ0.039	DNQ0.021
1,2,3,4,7,8,9-hepta CDF	0.00613	PG/L	0.010	ND	ND	ND	ND
octa CDF	0.00097	PG/L	0.001	DNQ0.006	DNQ0.006	DNQ0.005	DNQ0.004
Sourco				TNE	TNE	TNE	TNE
3001 CE.							
Date:				SED	000	NOV	
Analyte	мы	Unite	Fauiv	D111/020	D1120/82	D1127186	D1130781
=======================================	======	===========	=====	===========	===========	===========	===========
2,3,7,8-tetra CDD	0.448	PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD	0.2365	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8 hexa CDD	0.0548	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	0.0525	PG/L	0.100	DN00.302	DN00.377	ND	ND
1,2,3,7,8,9-hexa CDD	0.0502	PG/L	0.100	ND	ND	ND	ND
1.2.3.4.6.7.8-hepta CDD	0.00572	PG/L	0.010	0.371	DN00.256	DN00.085	DN00.109
octa CDD	0.00112	PG/L	0.001	1.10	0.11	0.077	0.095
2,3,7,8-tetra CDF	0.041	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8-penta CDF	0.02485	PG/L	0.050	ND	ND	ND	ND
2,3,4,7,8-penta CDF	0.2455	PG/L	0.500	ND	ND	ND	ND
1.2.3.4.7.8-hexa CDF	0.0506	PG/L	0.100		ND	ND	ND
1.2.3.6.7.8-heva CDF	0 052	PG/I	0 100				
1.2.3.7.8.9-heva CDF	0 0474	PG/I	0 100	םויז חוא		םא סא	NIN NIN
2.3.4.6.7.8-heva CDF	0 0501	PG/I	0 100	םויז חוא		םא סא	
1 2 3 4 6 7 8 - hanta CDF	0 005/0		0 010	כסט מחווח			
1 2 3 4 7 8 9	0.000040		0.010	260.097	220.020	דבהי הלאות	24סטאוט 24
octa CDE	0.00015		0.010				
	0.0009/		0.001	DIAGO OZT	DIAGO . 001	DNQ0.004	DIAGO . 003

ND= not detected

DNQ= (Detected but not quantified). Estimated analyte concentration below calibration range. Above are permit required CDD/CDF isomers.

SOUTH BAY WATER RECLAMATION PLANT SOURCE: EFFLUENT (SB_OUTFALL_01)

Dioxin and Furan Analysis

Annual 2019

Effluent Limit (TCDD): 0.37 pg/L (30-day Average)

Source:				EFF TCCD	EFF TCCD	EFF TCCD	EFF TCCD
Date:				JAN	FEB	MAR	APR
Analyte	MDL	Units	Equiv	P1064418	P1071278	P1077141	P1082502
2.3.7.8-tetra CDD	0.448	PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD	0.2365	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8 hexa CDD	0.0548	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	0.0525	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD	0.0502	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD	0.00572	PG/L	0.010	ND	ND	ND	ND
octa CDD	0.00112	PG/L	0.001	DNQ0.005	ND	DNQ0.008	ND
2,3,7,8-tetra CDF	0.041	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8-penta CDF	0.02485	PG/L	0.050	ND	ND	ND	ND
2,3,4,7,8-penta CDF	0.2455	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF	0.0506	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDF	0.052	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDF	0.0474	PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF	0.0504	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDF	0.00548	PG/L	0.010	ND	ND	ND	ND
1,2,3,4,7,8,9-hepta CDF	0.00613	PG/L	0.010	ND	ND	ND	ND
octa CDF	0.00097	PG/L	0.001	ND	ND	ND	ND
		, _					
Source:				EFF	EFF	EFF	EFF
				TCCD	TCCD	TCCD	TCCD
Date:				MAY	JUN	JUL	AUG
Analyte	MDL	Units	Equiv	P1088355	P1096452	P1101304	P1107730
	======		=====				
2,3,7,8-tetra CDD	0.448	PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD	0.2365	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD	0.0548	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	0.0525	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD	0.0502	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD	0.00572	PG/L	0.010	ND	ND	ND	ND
octa CDD	0.00112	PG/L	0.001	ND	ND	ND	ND
2,3,7,8-tetra CDF	0.041	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8-penta CDF	0.02485	PG/L	0.050	ND	ND	ND	ND
2,3,4,7,8-penta CDF	0.2455	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF	0.0506	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDF	0.052	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDF	0.0474	PG/L	0.100	ND	ND	ND	ND
2.3.4.6.7.8-hexa CDF	0.0504	PG/L	0.100	ND	ND	ND	ND
1.2.3.4.6.7.8-hepta CDF	0.00548	PG/L	0.010	ND	ND	ND	ND
1.2.3.4.7.8.9-hepta CDF	0.00613	PG/L	0.010	ND	ND	ND	ND
octa CDF	0.00097	PG/L	0.001	ND	ND	ND	ND
		, -					
Source:				EFF	EFF	EFF	EFF
				TCCD	TCCD	TCCD	TCCD
Date:				SEP	0CT	NOV	DEC
Analyte	MDL	Units	Eauiv	P1114923	P1120487	P1127189	P1132784
			=====				
2,3,7,8-tetra CDD	0.448	PG/L	1.000	ND	ND	ND	ND
1.2.3.7.8-penta CDD	0.2365	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8 hexa CDD	0.0548	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	0.0525	PG/L	0.100	ND	ND	ND	ND
1.2.3.7.8.9-hexa CDD	0.0502	PG/I	0.100	ND	ND	ND	ND
1.2.3.4.6.7.8-henta CDD	0.00572	PG/I	0.010	ND	ND	ND	ND
octa CDD	0.00112	PG/I	0.001	ND	ND	ND	DN00.005
2.3.7.8-tetra CDF	0.041	PG/L	0.100	ND	ND	ND	ND
1.2.3.7.8-penta CDF	0.02485	PG/L	0.050	ND	ND	ND	ND
2.3.4.7.8-penta CDF	0 2455	PG/1	0 500				
1 2 3 4 7 8 have CDF	0 0506		0 100	םאו עוא			סא
1 2 3 6 7 8-hava CDF	0.0500		0.100	םא חוא	םאו הוא	םוא תוא	םא חוא
$1 2 3 7 8 9_{-hava}$ CDF	0.052		0.100	םא חוא	םאו הוא	םוא תוא	םא חוא
2 3 4 6 7 9 have CDE	0.04/4		0.100				
2, 3, 4, 0, 7, 0 -fiexd LUF	0.0004		0.100	ND			
1,2,3,4,0,7,0-inepta CDF	0.000048		0.010				
octa CDE	0.00013		0.010	IND ND	DNI חוא		ND ND
	5.00057		0.00T	ND	ND	ND	ND

ND= not detected

DNQ= (Detected but not quantified). Estimated analyte concentration below calibration range. Above are permit required CDD/CDF isomers.

PRIORITY POLLUTANT ANALYSIS-ACID EXTRACTABLE COMPOUNDS, EPA Method 625 and 625.1

Annual 2019

Source:				INF	LUENT		
Date:			FEB	MAY	AUG	0CT	
Analyte	Max MDL	Units					Average
	======	=====	=====		=====	=====	=====
2-Chlorophenol	5.6	UG/L	ND	ND	ND	ND	0.0
2,4-Dichlorophenol	5.2	UG/L	ND	ND	ND	ND	0.0
<pre>4-Chloro-3-methylphenol</pre>	4.6	UG/L	ND	ND	ND	ND	0.0
2,4,6-Trichlorophenol	4.4	UG/L	ND	ND	ND	ND	0.0
Pentachlorophenol	8	UG/L	ND	ND	ND	ND	0.0
Phenol	3.61	UG/L	30.3	56.9	59.3	21.0	41.9
2-Nitrophenol	5.2	UG/L	ND	ND	ND	ND	0.0
2,4-Dimethylphenol	6	UG/L	ND	ND	ND	ND	0.0
2,4-Dinitrophenol	7.5	UG/L	ND	ND	ND	ND	0.0
4-Nitrophenol	4.9	UG/L	ND	ND	ND	ND	0.0
4,6-dinitro-2-methylphenol	5.6	UG/L	ND	ND	ND	ND	0.0
2-Methylphenol	4.41	UG/L	ND	ND	ND	NA*	0.0
3-Methylphenol(4-MP is unresolved)		UG/L	NA	NA	NA	NA*	^s NA
4-Methylphenol(3-MP is unresolved)	4.33	UG/L	63.1	111.0	81.6	NA*	85.2
2,4,5-Trichlorophenol	3.41	UG/L	ND	ND	ND	NA*	0.0
		=====					=====
Total Chlorinated Phenols	8	UG/L	0.0	0.0	0.0	0.0	0.0
Total Non-Chlorinated Phenols	7.5	UG/L	93.4	168	141	21.0	106
	======	=====	=====	=====	=====	=====	=====
Total Phenols	8	UG/L	93.4	168	141	21.0	106

Source:							EI	FFLUEN	Г					
Date:			JAN	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	
Analyte	Max MDL	Units												Average
2-Chlorophenol	5.6	===== UG/L	===== ND	ND	ND	 ND	ND	0.0						
2,4-Dichlorophenol	5.2	UG/L	ND	ND	ND	ND	0.0							
4-Chloro-3-methylphenol	4.6	UG/L	ND	ND	ND	ND	0.0							
2,4,6-Trichlorophenol	4.4	UG/L	ND	ND	ND	ND	0.0							
Pentachlorophenol	8	UG/L	ND	ND	ND	ND	0.0							
Phenol	3.61	UG/L	ND	ND	ND	ND	0.0							
2-Nitrophenol	5.2	UG/L	ND	ND	ND	ND	0.0							
2,4-Dimethylphenol	6	UG/L	ND	ND	ND	ND	0.0							
2,4-Dinitrophenol	7.5	UG/L	ND	ND	ND	ND	0.0							
4-Nitrophenol	4.9	UG/L	ND	ND	ND	ND	0.0							
4,6-dinitro-2-methylphenol	5.6	UG/L	ND	ND	ND	ND	0.0							
2-Methylphenol	4.41	UG/L	ND	NA*	NA*	ND	0.0							
3-Methylphenol(4-MP is unresolved)		UG/L	NA	NA*	NA*	NA	NA							
4-Methylphenol(3-MP is unresolved)	4.33	UG/L	ND	NA*	NA*	ND	0.0							
2,4,5-Trichlorophenol	3.41	UG/L	ND	NA*	NA*	ND	0.0							
	======	=====	=====	=====	=====	=====	=====	=====	=====	=====	===== :			=====
Total Chlorinated Phenols	8	UG/L	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Non-Chlorinated Phenols	7.5	UG/L	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Phenols	====== 8	===== UG/L	===== 0.0	0.0	• ===== 0.0	0.0	===== 0.0							

*= not analyzed by WECK Laboratories

ND=not detected; NA=not analyzed

SOUTH BAY WATER RECLAMATION PLANT SAMPLE SOURCE: INFLUENT (SB_INF_02)

Priority Pollutants Base/Neutral Compounds, EPA Method 625 and 625.1

Annual 2019

Source:				INFL	UENT		
Date:			FEB	MAY	AUG	ОСТ	
Analyte	Max MDL	Units	Avg	Avg	Avg	Avg	Average
			=====	=====	===== =	====	=====
Bis-(2-chloroethyl) ether	5.4	UG/L	ND	ND	ND	ND	ND
Bis-(2-chloroisopropyl) ether	7.6	UG/L	ND	ND	ND	ND	ND
N-nitrosodi-n-propylamine	5.2	UG/L	ND	ND	ND	ND	ND
Nitrobenzene	7.2	UG/L	ND	ND	ND	ND	ND
Hexachloroethane	10	UG/L	ND	ND	ND	ND	ND
Isophorone	4.2	UG/L	ND	ND	ND	ND	ND
Bis-(2-chloroethoxy) methane	5	UG/L	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	9.8	UG/L	ND	ND	ND	ND	ND
Naphthalene	9.8	UG/L	ND	ND	ND	ND	ND
Hexachlorobutadiene	9.4	UG/L	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene	/.8	UG/L	ND	ND	ND	ND	ND
Acenaphthylene	3.63	UG/L	ND	ND	ND	ND	ND
Dimethyl phthalate	3.6	UG/L	ND	ND	ND	ND	ND
2,6-Dinitrotoluene	5.4	UG/L	ND	ND	ND	ND	ND
Acenaphthene	7.6		ND	ND	ND	ND	ND
2,4-Dinitrotoluene	3.6		ND	ND	ND	ND	ND
Fluorene	/						
4-Chiorophenyi phenyi ether	8.2		עא דכ כ				
N nitnacadinhanylamina	0.20		5.57 ND	5.25 ND	2.39		5.50
A Reamonhopyl phonyl othon	7.15						
4-Brollophenyi phenyi ether	0.0						
Phenanthnene	5.0						
Anthracene	2 65						
Di-n-butyl phthalate	2.05						
N-nitrosodimethylamine	10						
Fluoranthene	2 73		ND	ND	ND	ND	ND
Pyrene	5		ND	ND	ND	ND	ND
Benzidine	21		ND	ND	ND^	ND	ND
Butvl benzvl phthalate	5.83	UG/L	ND	ND	ND	ND	ND
Chrysene	3.8	UG/I	ND	ND	ND	ND	ND
Benzo[a]anthracene	3.8	UG/L	ND	ND	ND	ND	ND
Bis-(2-ethvlhexvl) phthalate	46	UG/L	ND	ND	ND	ND	ND
Di-n-octvl phthalate	9.2	UG/L	ND	ND	ND	ND	ND
3,3-Dichlorobenzidine	24	UG/L	ND	ND	ND^	ND	ND
Benzo[k]fluoranthene	4.4	UG/L	ND	ND	ND	ND	ND
3,4-Benzo(b)fluoranthene	9.2	UG/L	ND	ND	ND	ND	ND
Benzo[a]pyrene	7.8	UG/L	ND	ND	ND	ND	ND
Indeno(1,2,3-CD)pyrene	11	UG/L	ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene	11	UG/L	ND	ND	ND	ND	ND
Benzo[g,h,i]perylene	8.4	UG/L	ND	ND	ND	ND	ND
1,2-Diphenylhydrazine	6	UG/L	ND	ND	ND	ND	ND
			=====		=		=====
Polynuc. Aromatic Hydrocarbons	11	UG/L	0.0	0.0	0.0	0.0	0.0
		=====			===== =	====	
Base/Neutral Compounds	46	UG/L	3.37	5.23	5.39	0.0	3.50
Additional analytes determined							
1-Methvlnaphthalene	4.48	UG/L	ND	ND	ND	NA*	s ND
2-Methylnaphthalene	4.39	UG/L	ND	ND	ND	NA*	'ND
2,6-Dimethylnaphthalene	4.44	UG/L	ND	ND	ND	NA*	<pre> ND </pre>
2,3,5-Trimethylnaphthalene	4.48	UG/L	ND	ND	ND	NA*	<pre>ND</pre>
1-Methylphenanthrene	3	UG/L	ND	ND	ND	NA*	s ND
Benzo[e]pyrene	2.96	UG/L	ND	ND	ND	NA*	s ND
Perylene	2.9	UG/L	ND	ND	ND	NA*	s ND
Biphenyl	4.7	UG/L	ND	ND	ND	NA	s ND

^= analyte quality control criteria not met; sample result not included in average calculations *= not analyzed by WECK Laboratories ND= not detected

SOUTH BAY WATER RECLAMATION PLANT SAMPLE SOURCE: EFFLUENT (SB_OUTFALL_01)

Priority Pollutants Base/Neutral Compounds, EPA Method 625

Annual 2019

Source:				EFFL	UENT		
Date:			FEB	MAY	AUG	ост	
Analyte	Max MDL	Units	Avg	Avg	Avg	Avg	Average
		=====	=====	=====	=====	=====	=====
Bis-(2-chloroethyl) ether	5.4	UG/L	ND	ND	ND	ND	ND
Bis-(2-chloroisopropyl) ether	7.6	UG/L	ND	ND	ND	ND	ND
N-nitrosodi-n-propylamine	5.2	UG/L	ND	ND	ND	ND	ND
Nitrobenzene	7.2	UG/L	ND	ND	ND	ND	ND
Hexachloroethane	10	UG/L	ND	ND	ND	ND	ND
Isophorone	4.2	UG/L	ND	ND	ND	ND	ND
Bis-(2-chloroethoxy) methane	5	UG/L	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	9.8	UG/L	ND	ND	ND	ND	ND
Naphthalene	9.8	UG/L	ND	ND	ND	ND	ND
Hexachlorobutadiene	9.4	UG/L	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene	7.8	UG/L	ND	ND	ND	ND	ND
Acenaphthylene	3.63	UG/L	ND	ND	ND	ND	ND
Dimethyl phthalate	3.6	UG/L	ND	ND	ND	ND	ND
2,6-Dinitrotoluene	5.4	UG/L	ND	ND	ND	ND	ND
Acenaphthene	7.6	UG/L	ND	ND	ND	ND	ND
2,4-Dinitrotoluene	3.6	UG/L	ND	ND	ND	ND	ND
Fluorene	7	UG/L	ND	ND	ND	ND	ND
4-Chlorophenyl phenyl ether	8.2	UG/L	ND	ND	ND	ND	ND
Diethyl phthalate	6.26	UG/L	ND	ND	ND	ND	ND
N-nitrosodiphenylamine	7.15	UG/L	ND	ND	ND	ND	ND
4-Bromophenyl phenyl ether	7.2	UG/L	ND	ND	ND	ND	ND
Hexachlorobenzene	9.8	UG/L	ND	ND	ND	ND	ND
Phenanthrene	6.4	UG/L	ND	ND	ND	ND	ND
Anthracene	2.65	UG/L	ND	ND	ND	ND	ND
Di-n-butyl phthalate	8.13	UG/L	ND	ND	ND	ND	ND
N-nitrosodimethylamine	10	UG/L	ND	ND	ND	ND	ND
Fluoranthene	2.73	UG/L	ND	ND	ND	ND	ND
Pyrene	5	UG/L	ND	ND	ND	ND	ND
Benzidine	21	UG/L	ND	ND	ND^	ND	ND
Butyl benzyl phthalate	5.83	UG/L	ND	ND	ND	ND	ND
Chrysene	3.8	UG/L	ND	ND	ND	ND	ND
Benzo[a]anthracene	3.8	UG/L	ND	ND	ND	ND	ND
Bis-(2-ethylhexvl) phthalate	46	UG/L	ND	ND	ND	ND	ND
Di-n-octvl phthalate	9.2	UG/L	ND	ND	ND	ND	ND
3.3-Dichlorobenzidine	24	UG/L	ND	ND	ND^	ND	ND
Benzo[k]fluoranthene	4.4	UG/L	ND	ND	ND	ND	ND
3.4-Benzo(b)fluoranthene	9.2	UG/L	ND	ND	ND	ND	ND
Benzo[a]pvrene	7.8	UG/L	ND	ND	ND	ND	ND
Indeno(1.2.3-CD)pyrene	11	UG/L	ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene	11	UG/L	ND	ND	ND	ND	ND
Benzo[g.h.i]pervlene	8.4	UG/L	ND	ND	ND	ND	ND
1.2-Diphenvlhvdrazine	6	UG/L	ND	ND	ND	ND	ND
		=====	=====	=====	=====	=====	=====
Polynuc, Aromatic Hydrocarbons	11	UG/L	0.0	0.0	0.0	0.0	0.0
		=====	=====	=====	=====	=====	=====
Base/Neutral Compounds	46	UG/L	0.0	0.0	0.0	0.0	0.0
		00, -	0.0				
Additional analytes determined							
			=====				
1-Methvlnaphthalene	4.48	UG/L	ND	ND	ND	NA*	ND
2-Methylnaphthalene	4.39	UG/L	ND	ND	ND	NA*	ND
2.6-Dimethylnaphthalene	4.44	UG/I	ND	ND	ND	NA*	* ND
2.3.5-Trimethvlnanhthalene	4.48	UG/I	ND	ND	ND	NA*	ND
1-Methylphenanthrene	3	UG/I	ND	ND	ND	NA*	ND
Benzolelpyrene	2.96	UG/I	ND	ND	ND	NA*	ND
Pervlene	2.9	UG/I	ND	ND	ND	NA*	ND
Biphenyl	4.7	UG/L	ND	ND	ND	NA*	* ND

^= analyte quality control criteria not met; sample result not included in average calculations *= not analyzed by WECK Laboratories ND= not detected

SOUTH BAY WATER RECLAMATION PLANT SOURCE: INFLUENT (SB_INF_02) Priority Pollutants Purgeable Compounds, EPA Method 624 and 624.1

Annual 2019

Source:				IN	FLUENT			
Date:			FEB	MAY	AUG	OCT*	*	
Analyte	Max MDL	Units					Average	
D ;		=====	======= :	======== NA *	======= : NA *			
Dichlorodifluoromethane	0.44		NA*	NA*	NA*	ND	ND	
Chloromethane	0.26	UG/L	ND	ND	ND	ND	ND	
Vinyl chloride	0.33	UG/L	ND	ND	ND	ND	ND	
Bromomethane	0.4/	UG/L	ND	ND	ND	ND	ND	
Chloroethane	0.24	UG/L	ND	ND	ND	ND	ND	
Trichlorofluoromethane	0.53	UG/L	ND	ND	ND	ND	ND	
Acrolein	2.2	UG/L	ND	ND	ND	ND	ND	
1,1-Dichloroethane	0.28	UG/L	ND	ND	ND	ND	ND	
Methylene chloride	0.37	UG/L	2.45^	1.08	DNQ0.84	ND	0.36	
trans-1,2-dichloroethene	0.34	UG/L	ND	ND	ND	ND	ND	
1,1-Dichloroethene	0.39	UG/L	ND	ND	ND	ND	ND	
Acrylonitrile	0.66	UG/L	ND	ND	ND	ND	ND	
Chloroform	0.3	UG/L	1.41	5.72	1.65	1.40	2.55	
1,1,1-Trichloroethane	0.4	UG/L	ND	ND	ND	ND	ND	
Carbon tetrachloride	0.4	UG/L	ND	ND	ND	ND	ND	
Benzene	0.47	UG/L	ND	ND	ND	ND	ND	
1,2-Dichloroethane	0.54	UG/L	ND	ND	ND	ND	ND	
Trichloroethene	0.43	UG/L	ND	ND	ND	ND	ND	
1,2-Dichloropropane	0.43	UG/L	ND	ND	ND	ND	ND	
Bromodichloromethane	0.37	UG/L	ND	ND	ND	ND	ND	
2-Chloroethylvinyl ether	0.28	UG/L	ND	ND	ND	ND	ND	
cis-1,3-dichloropropene	0.38	UG/L	ND	ND	ND	ND	ND	
Toluene	0.37	UG/L	DNQ0.67	DNQ0.70	DNQ0.93	ND	ND	
trans-1,3-dichloropropene	0.35	UG/L	ND	ND	ND	ND	ND	
1,1,2-Trichloroethane	0.32	UG/L	ND	ND	ND	ND	ND	
Tetrachloroethene	0.4	UG/L	ND	ND	ND	ND	ND	
Dibromochloromethane	0.38	UG/L	ND	ND	ND	ND	ND	
Chlorobenzene	0.4	UG/L	ND	ND	ND	ND	ND	
Ethylbenzene	0.41	UG/L	ND	ND	ND	ND	ND	
Bromoform	0.36	UG/L	ND	ND	ND	ND	ND	
1,1,2,2-Tetrachloroethane	0.38	UG/L	ND	ND	ND	ND	ND	
1,3-Dichlorobenzene	0.47	UG/L	ND	ND	ND	ND	ND	
1,4-Dichlorobenzene	0.46	UG/L	ND	DNQ0.49	DNQ0.54	ND	ND	
1,2-Dichlorobenzene	0.36	UG/L	ND	ND	ND	ND	ND	
Halomethane Purgeable Cmpnds	====== 0 47	===== UG/I	====== : 0 00	: ======= 0 00	: ======= 0 00	======= 0 00	======= 0 00	
================================	======	=====	=========	=======	==========	=======	=======	
Total Dichlorobenzenes	0.47	UG/L	0.00	0.00	0.00	0.00	0.00	
Total Chloromethanes	0.4	 UG/L	1.41	6.80	1.65	1.40	2.91	
Purgeable Compounds	2.2	UG/L	1.41	6.80	1.65	1.40	2.91	
Additional analytes								
Methyl tert-butyl ether	e=====================================	===== UG/I	====== : NΔ*	======= ΝΔ*	======= ΝΔ*	====== חא	====== ND	
meta.nara xvlenes	0.29	UG/I	NΔ*	NΔ*	NΔ*	ND	ND	
ortho-xvlene	0.32	UG/I	NΔ*	NΔ*	NΔ*	ND	ND	
1,2,4-Trichlorobenzene	9.8	UG/L	ND	ND	ND	ND	ND	

*= not analyzed by Environmental Monitoring Technical Services

**= analyzed by WECK Laboratories

 $^{\rm -}=$ Method blank value above the MDL; sample result not included in average calculations

ND= not detected

DNQ= (Detected but not quantified). Estimated analyte concentration below calibration range

SOUTH BAY WATER RECLAMATION PLANT SOURCE: EFFLUENT (SB_OUTFALL_01) Priority Pollutants Purgeable Compounds, EPA Method 624 and 624.1

Annual 2019

Source:	EFFLUENT						
Date:			FEB	MAY	AUG	0CT*	*
Analyte	Max MDL	Units					Average
Dichlorodifluoromethane	0.44	UG/L	 NA*			ND	ND
Chloromethane	0.26	UG/L	ND	ND	ND	ND	ND
Vinyl chloride	0.33	UG/L	ND	ND	ND	ND	ND
Bromomethane	0.47	UG/L	ND	ND	ND	ND	ND
Chloroethane	0.24	UG/L	ND	ND	ND	ND	ND
Trichlorofluoromethane	0.53	UG/L	ND	ND	ND	ND	ND
Acrolein	2.2	UG/L	ND	ND	ND	ND	ND
1,1-Dichloroethane	0.28	UG/L	ND	ND	ND	ND	ND
Methylene chloride	0.37	UG/L	DN00.9*	ND	ND	ND	ND
trans-1,2-dichloroethene	0.34	UG/L	ND	ND	ND	ND	ND
1.1-Dichloroethene	0.39	UG/L	ND	ND	ND	ND	ND
Acrylonitrile	0.66	UG/L	ND	ND	ND	ND	ND
Chloroform	0.3	UG/L	15.1	DN00.62	DN00.58	ND	4.08
1.1.1-Trichloroethane	0.4	UG/L	ND	ND	ND	ND	ND
Carbon tetrachloride	0.4	UG/L	ND	ND	ND	ND	ND
Benzene	0.47	UG/L	ND	ND	ND	ND	ND
1.2-Dichloroethane	0.54	UG/L	ND	ND	ND	ND	ND
Trichloroethene	0.43	UG/L	ND	ND	ND	ND	ND
1.2-Dichloropropane	0.43	UG/L	ND	ND	ND	ND	ND
Bromodichloromethane	0.37	UG/I	24.7	ND	ND	ND	6.18
2-Chloroethvlvinvl ether	0.28	UG/L	ND	ND	ND	ND	ND
cis-1.3-dichloropropene	0.38	UG/L	ND	ND	ND	ND	ND
Toluene	0.37	UG/L	ND	ND	ND	ND	ND
trans-1.3-dichloropropene	0.35	UG/I	ND	ND	ND	ND	ND
1.1.2-Trichloroethane	0.32	UG/I	ND	ND	ND	ND	ND
Tetrachloroethene	0.4	UG/I	ND	ND	ND	ND	ND
Dibromochloromethane	0.38	UG/I	18.2	ND	ND	ND	4.55
Chlorobenzene	0.4	UG/I	ND	ND	ND	ND	ND
Fthylbenzene	0.41	UG/I	ND	ND	ND	ND	ND
Bromoform	0.36		3,90	ND	ND	ND	0.98
1.1.2.2-Tetrachloroethane	0.38	UG/1	ND	ND	ND	ND	ND
1.3-Dichlorobenzene	0 47		ND	ND	ND	ND	ND
1.4-Dichlorobenzene	0.17		ND	ND	ND	ND	ND
1,2-Dichlorobenzene	0.36	UG/L	ND	ND	ND	ND	ND
Halomethane Purgeable Cmpnds	====== 0.47	===== UG/L	====== = 3.90	0.00	.00	====== 0.00	====== 0.98
Total Dichlorobenzenes		===== UG/L	====== = 0.00	.00.00	.00	0.00	 0.00
Total Chloromethanes	====== 0.4	===== UG/L	======= = 15.1	.00.00	====== = 0.00	====== 0.00	4.08
		=====	======= =		======= =		
Purgeable Compounds	2.2	UG/L	61.9	0.00	0.00	0.00	15.8
Additional analytes							
		=====	======= =				
Metnyi tert-butyi ether	0.25	UG/L	NA*	NA*	NA*	ND	ND
meta, para xylenes	0.29	UG/L	NA*	NA*	NA*	ND	ND
ortno-xylene	0.32	UG/L	NA*	NA*	NA*	ND	ND
1,2,4-Trichlorobenzene	9.8	UG/L	ND	ND	ND	ND	ND

*= not analyzed by Environmental Monitoring Technical Services
**= analyzed by WECK Laboratories

ND= not detected

DNQ= (Detected but not quantified). Estimated analyte concentration below calibration range

SOUTH BAY WATER RECLAMATION PLANT Radioactivity Effluent to the Ocean (SB_OUTFALL_01)

Analyzed by: FGL Environmental Agricultural Analytical

Annual 2019

Month/ Year	Gross Alpha Radiation	Gross Beta Radiation
JANUARY -2019	7.6 ± 2.1	7.6 ± 1.3
FEBRUARY -2019	2.5 ± 1.4	9.7 ± 1.3
MARCH -2019	6.2 ± 1.6	8.7 ± 1.2
APRIL -2019	3.0 ± 1.4	8.7 ± 1.2
MAY -2019	4.7 ± 1.6	21.0 ± 1.7
JUNE -2019	9.0 ± 1.9	21.9 ± 2.1
JULY -2019	11.4 ± 1.8	6.6 ± 1.4
AUGUST -2019	5.3 ± 1.5	11.0 ± 1.3
SEPTEMBER-2019	8.4 ± 1.8	20.2 ± 2.0
OCTOBER -2019	9.3 ± 1.6	9.0 ± 1.5
NOVEMBER -2019	6.8 ± 1.1	9.3 ± 1.3
DECEMBER -2019	3.8 ± 1.1	17.4 ± 1.7
AVERAGE	6.5 ± 1.6	12.6 ± 1.5

Units in picocuries/liter (pCi/L)

Tributyl Tin Analysis

Annual 2019

Source:			INFLUENT							
Date:			FEB	MA'	/ AUG	G OCT	Г			
Analyte	Max MDL	Units					Average			
	======	=====								
Dibutyltin	0.0323	UG/L	ND	ND	ND	ND	0.0			
Monobutyltin	0.019	UG/L	ND	ND	ND	ND	0.0			
Tributyltin	0.0184	UG/L	ND	ND	ND	ND	0.0			

Source:			EFFLUENT							
Date:			FEE	3 MAN	/ AUG	G 0C1	Г			
Analyte	Max MDL	Units					Average			
		=====				========				
Dibutyltin	0.0323	UG/L	ND	ND	ND	ND	0.0			
Monobutyltin	0.019	UG/L	ND	ND	ND	ND	0.0			
Tributyltin	0.0184	UG/L	ND	ND	ND	ND	0.0			