

# **Annual Reports and Summary**

# Point Loma Wastewater Treatment Plant & Ocean Outfall

NPDES PERMIT NO. CA 0107409 SDRWQCB Order No. R9-2009-0001

and amended by Order No. R9-2017-0007 (effective 10/1/17)

# 2017

Environmental Monitoring and Technical Services 2392 Kincaid Road • Mail Station 45A • San Diego, CA 92101 Tel (619) 758-2300 Fax (619) 758-2309



This page intentionally left blank.

#### City of San Diego Public Utilities Department (PUD)

### 2017 Annual Reports and Summary for the Point Loma Wastewater Treatment Plant & Ocean Outfall

This report consists of the 2017 Point Loma Wastewater Treatment Plant and Ocean Outfall Annual Reports and Summary, as specified in discharge Order No. R9-2009-0001 and amended by R9-2017-007 on October 1, 2017, NPDES Permit No. CA0107409.

Section I is an Executive Summary providing general background information regarding the review and summary of findings and conclusions for 2017.

Section II through IX contain reports and information for 2017 as listed in the Table of Contents.

This page intentionally left blank.

## City of San Diego Public Utilities Department Environmental Monitoring and Technical Services Division PLWTP Annual Reports and Summary

# **Table of Contents**

| I.   | INTRODUCTION                                                                              | 9     |
|------|-------------------------------------------------------------------------------------------|-------|
|      | A. EXECUTIVE SUMMARY                                                                      | 11    |
|      | B. EXPLANATORY NOTES                                                                      | 14    |
|      | C. OVERVIEW OF THE METRO SYSTEM                                                           | 16    |
|      | D. OVERVIEW OF POINT LOMA WASTEWATER TREATMENT PLANT                                      | 20    |
|      | E. DISCUSSION OF COMPLIANCE RECORD                                                        | 22    |
|      | F. PLANT FACILITY OPERATION REPORT                                                        | 24    |
|      | G. CORRELATIONS OF RESULTS TO PLANT CONDITIONS                                            | 30    |
| II.  | INFLUENT AND EFFLUENT DATA SUMMARY                                                        | 41    |
|      | A. Mass Emissions                                                                         | 43    |
|      | B. DISCHARGE LIMITS                                                                       | 45    |
|      | C. INFLUENT AND EFFLUENT DATA SUMMARIES                                                   | 49    |
|      | D. INFLUENT AND EFFLUENT GRAPHS                                                           | 79    |
|      | E. DAILY VALUES OF SELECTED PARAMETERS                                                    | 113   |
|      | F. TOXICITY BIOASSAYS                                                                     | 133   |
| III. | PLANT OPERATIONS SUMMARY                                                                  | 145   |
|      | A. FLOWS                                                                                  | 147   |
|      | B. RAIN DAYS                                                                              | 153   |
|      | C. SOLIDS PRODUCTION                                                                      | 155   |
|      | D. CHEMICAL USAGE                                                                         | 156   |
|      | E. GAS PRODUCTION                                                                         | 157   |
|      | F. GRAPHS OF CHEMICAL USAGE                                                               | 158   |
|      | G. GRITAND SCREENINGS                                                                     | 101   |
|      | I. NAW SLUDGE DATA SUMMARY                                                                | 1/1   |
|      | 1. DIGESTER AND DIGESTED SLODGE DATA SUMMARY                                              | 1/2   |
| IV.  | METRO BIOSOLIDS CENTER (MBC) DATA                                                         | 175   |
|      | A. MBC DIAGRAMS                                                                           | 177   |
|      | B. RETURN STREAM DATA SUMMARY                                                             | 179   |
|      | C. MBC DIGESTER AND DIGESTED SLUDGE DATA SUMMARY                                          | 198   |
|      | D. GAS PRODUCTION                                                                         | 199   |
|      | E. CHEMICAL USAGE                                                                         | 200   |
|      | F. GRAPHS OF MONTHLY CHEMICAL USAGE                                                       | 201   |
|      | G. SOLIDS HANDLING ANNUAL REPORT<br>H DESULTS OF "TITLE 22" SULDCE HAZADDOLIS WASTE TESTS | 203   |
|      | 11. RESULTS OF TITLE 22 SLUDGE HAZARDOUS WASTE TESTS                                      | 232   |
| V.   | OCEAN MONITORING DATA SUMMARY                                                             | 237   |
| VI.  | ANNUAL PRETREATMENT PROGRAM ANALYSES                                                      | . 239 |
|      | A. POINT LOMA WASTEWATER TREATMENT PLANT AND METRO BIOSOLIDS CENTER SOURCES               | 241   |
| VII. | OTHER REQUIRED INFORMATION                                                                | . 289 |
|      | A. NOTES ON SPECIFIC ANALYSIS                                                             | 291   |
|      | B. REPORT OF OPERATOR CERTIFICATION                                                       | 292   |
|      | C. STATUS OF THE OPERATIONS AND MAINTENANCE MANUAL                                        | 296   |

| APPENDICES                                                |                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A. TERMS AND ABBREVIATIONS USED IN THIS REPORT            | 299                                                                                                                                                                                                                                                                                                                                                                               |
| B. METHODS OF ANALYSIS                                    | 302                                                                                                                                                                                                                                                                                                                                                                               |
| C. FREQUENCY OF ANALYSIS AND TYPE OF SAMPLE - 2017        | 317                                                                                                                                                                                                                                                                                                                                                                               |
| D. QA Report Summary                                      | 318                                                                                                                                                                                                                                                                                                                                                                               |
| E. LABORATORIES CONTRIBUTING RESULTS USED IN THIS REPORT. | 320                                                                                                                                                                                                                                                                                                                                                                               |
| F. STAFF CONTRIBUTING TO THIS REPORT                      | 328                                                                                                                                                                                                                                                                                                                                                                               |
| G. System-wide calculation definition                     | 330                                                                                                                                                                                                                                                                                                                                                                               |
|                                                           | <ul> <li>APPENDICES.</li> <li>A. TERMS AND ABBREVIATIONS USED IN THIS REPORT</li> <li>B. METHODS OF ANALYSIS</li> <li>C. FREQUENCY OF ANALYSIS AND TYPE OF SAMPLE - 2017</li> <li>D. QA REPORT SUMMARY</li> <li>E. LABORATORIES CONTRIBUTING RESULTS USED IN THIS REPORT.</li> <li>F. STAFF CONTRIBUTING TO THIS REPORT</li> <li>G. SYSTEM-WIDE CALCULATION DEFINITION</li> </ul> |

Credits and Acknowledgements

# Point Loma Wastewater Treatment Plant and Ocean Outfall Annual Monitoring Report 2017

City of San Diego Public Utilities Department Environmental Monitoring & Technical Services Division Environmental Chemistry Services Laboratory 5530 Kiowa Drive La Mesa, CA 91942 Phone: (619) 668-3215 FAX: (619) 668-3250

> Supervising Editors & Science Staff: Elvira Mercado Lee King

## Editorial Production & Support Data Management, Report Generation, Data Tables & Graphics Armando Martinez Fernando Martinez Maria Noller Corinna Quinata

For Section VIII. Discussion of Results, subsection A. Plant Facility Operation Report

Wastewater Treatment & Disposal Division 1902 Gatchell Road San Diego, CA Phone: (619) 221-8770 FAX: (619) 221-8305

Point Loma Wastewater Treatment Superintendent David Marlow

Senior WW Operations Supervisor Daniel G Moreno Senior Plant Technician Supervisor Theodore Taylor

WW Operations Supervisor- Process Control Carlos Nunez

> Senior Civil Engineer Richard Snow

Senior Power Plant Supervisor Steve Hiczewski This page intentionally left blank.

## I. Introduction

- A. Executive Summary
- B. Explanatory notes
- C. Overview of Metro System
- D. Overview of Point Loma Wastewater Treatment Plant
- E. Discussion of Compliance Record
- F. Plant Facility Operation Report
- G. Correlation of Results to Plant Conditions
- H. Special Studies

This page intentionally left blank.

#### I. Introduction

## A. Executive Summary

### Purpose:

This report meets the annual reporting requirements as specified in San Diego Regional Water Quality Control Board, Order No. R9-2009-0001<sup>1</sup> and the amending Order No. R9-2017-0007 that became effective October 1, 2017 for NPDES Permit No. CA0107409 for the E. W. Blom Point Loma Wastewater Treatment Plant (PLWTP). It also serves as a comprehensive historical record and reference of operational and compliance metrics.

### Background:

The Point Loma Wastewater Treatment Plant is located at 1902 Gatchell Road, San Diego, California and is the main treatment facility in the Metropolitan Wastewater System. Located on a 40-acre site at the western end of Point Loma, the plant went into operation in 1963 to serve the growing needs of the region. The plant serves approximately 2.2 million people and treats approximately 152 million gallons (5-year average) of wastewater per day with a maximum capacity of 240 million gallons per day (mgd). In 1993, the outfall was extended from a length of two miles to its present length of four and a half miles off the coast of Point Loma. The 12-foot diameter outfall pipe terminates at a depth of approximately 320 feet in the Pacific Ocean in a Y-shaped diffuser structure to ensure dispersal of effluent. The Advanced Primary<sup>2</sup> Treatment system includes chemically enhanced primary sedimentation and anaerobic biosolids processing. For a detailed discussion of the plant and treatment process, see subsection D. and section III. Plant Operations Summary.

<sup>&</sup>lt;sup>1</sup> This is a Clean Water Act section 301(h) modified permit (Clean Water Act), as modified by the Ocean Pollution Reduction Act of 1994 (OPRA).

<sup>&</sup>lt;sup>2</sup> Sometimes called Chemically Enhanced Primary Treatment (CEPT).

The following table summarizes the 2017 results, as annual averages or annual ranges, of analyses obtained during the monitoring of the effluent at the PLWTP.

| 2017 NPD         | 2017 NPDES Compliance Assessment for Conventional Pollutants for the Point Loma         |                    |                   |                                    |  |  |  |
|------------------|-----------------------------------------------------------------------------------------|--------------------|-------------------|------------------------------------|--|--|--|
| WWTP (           | WWIP (Amending Order No. R9-2017-0007 to Order No. R9-2009-0001/NPDES No.<br>CA0107409) |                    |                   |                                    |  |  |  |
| Parameter        |                                                                                         |                    | Values and Annual |                                    |  |  |  |
|                  | NPDES Pern                                                                              | nit Limits         | Ranges            | Note                               |  |  |  |
| BOD <sub>5</sub> | Average Annual<br>% Removal                                                             | ≥ 58 %             | 58.3 - 65.3%      | System-wide<br>(monthly averages). |  |  |  |
| TSS              | Average Monthly<br>% Removal                                                            | ≥ 80 %             | 85.5-91.1%        | System-wide (monthly averages).    |  |  |  |
|                  | Average Monthly                                                                         | 75 mg/L            | 34 - 52           |                                    |  |  |  |
|                  | Mass Emissions<br>(Order No. R9-<br>2017-0007)                                          | none               |                   |                                    |  |  |  |
|                  | Mass Emissions<br>(Order No. R9-<br>2009-0001)                                          | 13,598 mt/yr       | 7,112             |                                    |  |  |  |
| Oil and          | Average Monthly                                                                         | 25 mg/L            | 9.5 – 16.0        |                                    |  |  |  |
| Grease           |                                                                                         | 42,743 lbs/day     | 11,618 - 17,160   |                                    |  |  |  |
|                  | Average Weekly*                                                                         | 40 mg/L            | 8.1 - 18.4        |                                    |  |  |  |
|                  |                                                                                         | 68,388 lbs/day     | 10,874-20,259     |                                    |  |  |  |
|                  | Instant. Maximum                                                                        | 75 mg/L            | 27.1              |                                    |  |  |  |
|                  |                                                                                         | 128,228<br>lbs/day | 28,729            |                                    |  |  |  |
| Settleable       | Average Monthly                                                                         | 1.0 mL/L           | ND - 0.5          |                                    |  |  |  |
| Solids           | Average Weekly*                                                                         | 1.5 mL/L           | ND - 0.8          |                                    |  |  |  |
|                  | Instant. Maximum                                                                        | 3.0 mL/L           | 3.15              | Limit exceeded on 11/28/2017       |  |  |  |
| Turbidity        | Average Monthly                                                                         | 75 NTU             | 27-63             |                                    |  |  |  |
|                  | Average Weekly*                                                                         | 100 NTU            | 20.3 - 64.1       |                                    |  |  |  |
|                  | Instant. Maximum                                                                        | 225 NTU            | 92                |                                    |  |  |  |
| pН               | Range                                                                                   | 6.0 – 9.0 pH       | 7.07 - 7.27       |                                    |  |  |  |

\* = Weekly Average: defined as the highest allowable average of daily discharges over a calendar week (Sunday through Saturday). Data averaged from 01-Jan-2017 to 30-Dec-2017 as per weekly average definition.

| Other Key Metrics   | Annual        | Annual Total      |  |
|---------------------|---------------|-------------------|--|
| for 2017            | Daily Average | (million gallons) |  |
| Effluent Flow (mgd) | 139.3         | 50,788            |  |

|                  | Annual Daily<br>Average | System-wide<br>Removal | Plant<br>Removal | Annual Mass<br>Emission |
|------------------|-------------------------|------------------------|------------------|-------------------------|
| Parameter        | (mg/L)                  | (%)                    | (%)              | (metric tons)           |
| TSS <sup>3</sup> | 37                      | 89.9                   | 89.6             | 7,112                   |
| BOD <sup>4</sup> | 124                     | 62.8                   | 59.9             | 23,834                  |

Compliance:

The required monitoring program creates over 15,000 opportunities to be in non-compliance, as well as several dozen annual Mass Emissions Benchmarks applicable to the discharge from the PLWTP. The settleable solids exceedance resulted from a sampling event performed during dewatering operations at high peak flow. The plant is susceptible to momentary solids upset during maintenance or operational activities that can stir up solids in the sedimentation tanks. The major permit discharge limitations including flows, TSS and BOD removals were within discharge requirements.

<sup>&</sup>lt;sup>3</sup> Total Suspended Solids; mg/L, i.e. parts per million

<sup>&</sup>lt;sup>4</sup> Biochemical Oxygen Demand; mg/L

## B. Explanatory Notes

The purpose of this document is to meet the requirements of the Monitoring and Reporting Program (MRP) in Order No. R9-2009-0001 and amending Order NO. R9-2017-0007 that became effective October 1, 2017 for NPDES Permit No. CA0107409, and to provide a reference source and resource tools for both regulatory agencies and City staff and their consultants. To this end, the past year's data are presented in tabular and graphical form. Monitoring results only reported annually are presented, as well as the special items and discussions itemized in Order No. R9-2009-0001.

This document is comprehensive, including supporting information on analytical methods, frequency and changes in analyses, long term tables of selected analytes, operational data, background analyses, and treatment plant process control. Where the permit sets limits or requests the analysis of various groups of compounds (such as chlorinated and non-chlorinated phenols, PCBs, hexachlorocyclohexanes, etc.), we have provided summaries and averages of these groups and the individual compounds.

For averaging and other calculations, "less than" (<) and "not detected" (nd) values were treated as zero. In many parts of the report, zero values are found. Our Laboratory Information Management System (LIMS) reads "less than" values as zero in calculating summary values such as monthly or annual averages. When zeros are found, the reader can reasonably apply the method detection limits (MDL) in evaluating the data. Because "less than" values are averaged as zero, values in summary tables may be less than detection limits; these are simple numeric means (or minimums). The data tables may also contain values expressed as a <X (less than), where X represents the MDL. MDLs are typically included in the summary tables.

A further limitation is that statistical confidence in the results of an analysis is heavily dependent upon the concentration relative to the Method Detection Limit (MDL). Essentially all of our detection limits have been established using the procedure in 40 CFR, part 136. This statistical basis for the MDL results in a defined statistical confidence (at the 99% Confidence Interval) of essentially  $\pm 100\%$  where the result is at or near the MDL. Only at concentrations approximately 5 times the MDL is the confidence interval at  $\pm 20\%$ . While the precision of our methods generally ranges from 2–3 significant figures, the above limitations of confidence should always be considered.

Where possible, the influent and effluent values of a given parameter have been included on the same graph to make the removals and other relationships readily apparent. Please note that many of the graphs are on expanded scales where the y-axes (concentration) do not start at zero, but instead are scaled to highlight the range of concentrations where variation takes place. These expanded scales make differences and some trends obvious that might normally not be noticed; however, they also may inadvertently place more weight on relatively minor changes or trends than they deserve. Please reference the chart axis scales.

## Detected, Not Quantifiable ("DNQ" Qualifier):

The "DNQ" qualifier is used for NPDES effluent reporting. DNQ is a qualifier associated with analytical results that are less than the minimum level (ML), but greater than or equal to the MDL. Data annotated with DNQ will include a value, and the method's MDL (see example below).

| Source                            |            |               | PLE              | PLE      | PLE      | PLE     | PLE     | PLE     |
|-----------------------------------|------------|---------------|------------------|----------|----------|---------|---------|---------|
| Analyte                           | MDL        | Units         | P874990          | P878338  | P893657  | P895088 | P904899 | P909662 |
|                                   | ===        | =====         | =======          |          |          |         |         |         |
| Demeton O                         | .15        | UG/L          | ND               | ND       | ND       | ND      | ND      | ND      |
| Demeton S                         | .08        | UG/L          | ND               | ND       | ND       | ND      | ND      | ND      |
| Diazinon                          | .04        | UG/L          | ND               | ND       | ND       | ND      | ND      | ND      |
| Guthion                           | .15        | UG/L          | ND               | ND       | ND       | ND      | ND      | ND      |
| Malathion                         | .06        | UG/L          | DNQ0.11          | ND       | ND       | ND      | ND      | ND      |
| Chlorpyrifos                      | .04        | UG/L          | ND               | ND       | ND       | ND      | ND      | ND      |
| Coumaphos                         | .15        | UG/L          | ND               | ND       | ND       | ND      | ND      | ND      |
| Dichlorvos                        | .05        | UG/L          | ND               | ND       | ND       | 0.1     | ND      | ND      |
| Dimethoate                        | .12        | UG/L          | ND               | ND       | NR       | NR      | NR      | NR      |
| Disulfoton                        | .04        | UG/L          | ND               | ND       | ND       | ND      | ND      | ND      |
| Stirophos                         | .05        | UG/L          | ND               | ND       | ND       | ND      | ND      | ND      |
| Thiophosphorus Pesticides         | .15        | =====<br>UG/L | ========<br>0.00 | 0.00     | 0.00     | 0.00    | 0.00    | 0.00    |
| Demeton -0, -S                    | .15        | UG/L          | 0.00             | 0.00     | 0.00     | 0.00    | 0.00    | 0.00    |
| Total Organophosphorus Pesticides | ===<br>.15 | =====<br>UG/L | <br>0.00         | <br>0.00 | <br>0.00 | 0.10    | 0.00    | 0.00    |

#### E" Qualifier, estimated concentrations:

Ocean data for chlorinated pesticides and PCB congeners contain values that are qualified with a prefixed "E" (see example below). This indicates <u>estimated</u> concentrations. The GC/MS-MS analytical technique is sufficiently specific and sensitive enough so that qualitative identification has high confidence while the quantitative data are below 40CFR136 confidence intervals for MDL concentrations. The concentrations reported with this qualifier indicate that one or more tests identified the compound as present but below detection limits for quantification. When reported as part of annual averages, an "E" qualifier may accompany average concentration values either below or above MDLs.

|                       |      |       | SD-14 | SD-17  | SD-18 | SD-19  | SD-20 | SD-21 | RF-1  |
|-----------------------|------|-------|-------|--------|-------|--------|-------|-------|-------|
|                       |      |       | 2001  | 2001   | 2001  | 2001   | 2001  | 2001  | 2001  |
| Analyte               | MDL  | Units | Avg   | Avg    | Avg   | Avg    | Avg   | Avg   | Avg   |
| Hexachlorobenzene     | 13.3 | UG/KG | <13.3 | <13.3  | <13.3 | <13.3  | E3.7  | <13.3 | E2.8  |
| BHC, Gamma isomer     | 100  | UG/KG | ND    | ND     | ND    | ND     | ND    | ND    | ND    |
| Heptachlor            | 20   | UG/KG | ND    | ND     | ND    | ND     | ND    | ND    | ND    |
| Aldrin                | 133  | UG/KG | ND    | ND     | ND    | ND     | ND    | ND    | ND    |
| Heptachlor epoxide    | 20   | UG/KG | ND    | ND     | ND    | ND     | ND    | ND    | ND    |
| o,p-DDE               | 13.3 | UG/KG | <13.3 | E43.5  | <13.3 | E107.0 | <13.3 | <13.3 | E22.0 |
| Alpha Endosulfan      | 133  | UG/KG | ND    | ND     | ND    | ND     | ND    | ND    | ND    |
| Alpha (cis) Chlordane | 13.3 | UG/KG | <13.3 | <13.3  | ND    | <13.3  | <13.3 | ND    | <13.3 |
| Trans Nonachlor       | 20   | UG/KG | E11.3 | <20.0  | <20.0 | <20.0  | <20.0 | <20.0 | <20.0 |
| p,p-DDE               | 13.3 | UG/KG | 713.0 | 1460.0 | 459.0 | 2030.0 | 618.0 | 693.0 | 712.0 |
| Dieldrin              | 20   | UG/KG | ND    | ND     | ND    | ND     | ND    | ND    | ND    |
| o,p-DDD               | 13.3 | UG/KG | ND    | ND     | ND    | <13.3  | <13.3 | <13.3 | <13.3 |
| Endrin                | 20   | UG/KG | ND    | ND     | ND    | ND     | ND    | ND    | ND    |
| o,p-DDT               | 13.3 | UG/KG | <13.3 | ND     | ND    | <13.3  | <13.3 | ND    | <13.3 |
| p,p-DDD               | 13.3 | UG/KG | E7.5  | E5.5   | <13.3 | <13.3  | E7.8  | <13.3 | E18.2 |
| p,p-DDT               | 13.3 | UG/KG | E5.9  | <13.3  | <13.3 | <13.3  | E5.4  | <13.3 | <13.3 |
| Mirex                 | 13.3 | UG/KG | <13.3 | ND     | ND    | ND     | ND    | ND    | ND    |

NA= not analyzed

NS= not sampled

E=estimated value, value is less than the Method Detection Limit but confirmed by GC/MS-MS

#### Variation in summary data in tables

Very small differences may occur (<0.1%), between tables for annual or monthly averages, totals, and other<sup>5</sup> statistical summary data due to rounding differences or how the underlying data are treated. For example, the computerized report programs may perform summary calculations using daily values (even though only monthly values display on the table) or monthly averages. There will be small rounding variation between the two approaches.

Typically, mass emissions reported in the monthly summary tables are calculated from the monthly averages shown in the table. In these tables, raw data are rounded one significant figure on the intermediate result. A calculation rounded only after the result will generally be slightly different in the last significant figure. Additionally, statistical summary data of calculated values (e.g. mass emissions, dry tons, etc.) may be calculated from monthly averages or using the annual average data. This may also introduce variation that is statistically insignificant.

<sup>&</sup>lt;sup>5</sup> e.g. <u>mass emissions</u>, percent removals, etc.

## C. Overview of the Metro System

The City operates wastewater facilities to transport, treat, reclaim, reuse, and discharge wastewater and its by-products collected from the Metropolitan Wastewater System (the System). The System serves a population of approximately 2.2 million people in providing conveyance, treatment, reuse, and disposal of wastewater within a 450-square mile service area. The Metro System currently consists of several service areas including the City of San Diego (serviced by the Municipal Sub-System) and the 15 regional Participating Agencies. Wastewater treatment for the System is provided at the North City Water Reclamation Plant (NCWRP), the South Bay Water Reclamation Plant (SBWRP), and the Point Loma Wastewater Treatment Plant (PLWTP). Solids treatment and handling are provided at the PLWTP and the Metro Biosolids Center (MBC).

Each Participating Agency is responsible for the wastewater collection system within its boundaries to the point of discharge to the System. Wastewater flows from the Municipal Sub-System comprise approximately 65% of the Metro Sub-System flows. All System facilities are owned by the City of San Diego and are managed by PUD.

A map detailing major facilities in the System and the participating agencies is included.

The System is a complex network of pipelines and pump stations that collect wastewater and convey it for treatment and disposal or reuse. The PLWTP serves as the terminus for the System and is capable of treating all flows generated within the System. Within the System are two water reclamation plants, the NCWRP and the SBWRP, that pull flow from the sewers for treatment and reuse. The System also includes the Metro Biosolids Center (MBC) that treats and disposes of all treatment process solids material removed by the treatment plants.

The PLWTP is the largest of the wastewater treatment plants in the System and is the terminus of the system. It is an advanced primary treatment plant that uses chemical addition to increase performance of the primary clarifiers. The PLWTP discharges effluent through the Point Loma Ocean Outfall (PLOO). As an advanced primary treatment plant, performance and effluent limits are singly determined by effluent quality, but also against the California Ocean Plan and the Basin Plan that, combined, address the water quality and beneficial uses of the Pacific Ocean.

The plant has a rated capacity of 240 million gallons per day (mgd) and currently operates at an average daily flow rate of 132 mgd. The NCWRP has a rated capacity of 30 mgd and currently operates at a nominal flow rate of 15.4 mgd. The SBWRP has a rated capacity of 15 mgd and is currently treating a nominal 8.0 mgd. The PLWTP is a modern primary treatment facility and the NCWRP and SBWRP are both modern tertiary treatment facilities.

The other two facilities, NCWRP and SBWRP, are scalping plants that divert water from the System and treat it for reclamation purposes. Both plants currently operate as secondary treatment plants and reclaim water to tertiary standards to meet demand. Demand will fluctuate depending on the time of year and the type and number of customers. The NCWRP returns all secondary effluent that is not reclaimed back to the System for treatment at the PLWTP. However, the solids that are removed, either by sedimentation or biological oxidation, are

pumped to the MBC for further treatment. The SBWRP discharges excess secondary effluent to the South Bay Ocean Outfall (SBOO) and returns all solids removed from the sewage to the System for transport to the PLWTP. Performance of both water reclamation plants is measured by each facility's ability to treat reclaimed water to the required standards when discharging to the reclaimed system. Performance of the SBWRP is also measured via secondary treatment standards, as defined in the facility's NPDES permit, when discharging to SBOO.

The MBC processes primary and secondary solids from the NCWRP through anaerobic digestion and dewatering, and processes the digested biosolids from the PLWTP through dewatering. The dewatered biosolids are beneficially used as cover at a local landfill or used as a soil amendment for agricultural purposes. The centrate from the centrifuges is returned to the sewer and treated at the PLWTP. Performance of this facility is measured by the quality of the solids product generated for use or disposal.



ISO 14001 Certification

Wastewater Treatment and Disposal Division (formerly called Operations and Maintenance Division) and the Monitoring and Reporting Programs operated by the Environmental Monitoring and Technical Services Division are certified in ISO<sup>6</sup> 14001, Environmental Management Systems.



<sup>&</sup>lt;sup>6</sup> International Organization for Standardization.

#### D. Overview of Point Loma Wastewater Treatment Plant

The Point Loma Wastewater Treatment Plant (PLWTP) is the largest treatment facility in the Metropolitan Wastewater System. The facility is located on a 40-acre site on the Fort Rosecrans military reservation and adjoins the Cabrillo National Monument at the southern tip of Point Loma in the City of San Diego. The plant was first put into operation in 1963 discharging primary treated wastewater 2.5 miles off the coast of Point Loma. In

1993, the existing outfall was lengthened to 4.5 miles which extends 320 feet below the surface in a Y-shaped diffuser to provide for a wide dispersal of effluent into ocean waters.

Presently, the plant is an advanced primary treatment plant capable of removing 85% to 90% of the influent solids and processes approximately 155 million gallons of sewage per day generated by about 2.2 million people. It is the terminal treatment plant in the Metro System. The removed solids are treated in anaerobic digesters before being pumped to the MBC. The current plant configuration can treat up to 240 mgd average daily flow and 432 mgd peak wet weather flow.

Removed solids are anaerobically digested on site. The digestion process yields two products: methane gas and digested biosolids. The methane gas is utilized onsite to fuel electrical generators that produce enough power to make the PLWTP energy self-sufficient. Additional co-generation of electrical power comes from on-site hydroelectric generator utilizing the millions of gallons of daily effluent flow and the energy in the approximately 90-foot drop from the plant to outfall. The plant sells the excess energy it produces to the local electricity grid,

offsetting the energy costs at pump stations throughout the service area. The biosolids are conveyed, via a 17-mile pipeline, to the Metro Biosolids Center for dewatering and beneficial use (e.g. soil amendments and landfill cover) or disposal.

The Point Loma Wastewater Treatment Plant earned the 2014 Platinum Peak Performance Award from the National Association of Clean Water Agencies (NACWA) in recognition of twenty one years of 100% compliance with National Pollutant Discharge Elimination System permit requirements. For 2016, the plant received a NACWA Silver Peak Performance Award that is presented to facilities with no more than







five NPDES permit violations. In 2017, a Gold Peak Performance Award was received. The plant must receive four more consecutive Gold Awards to again be eligible for another Platinum Award.

### E. Discussion of Compliance Record

All permit limits and benchmarks are shown for reference in Chapter 2, Influent and Effluent Data, of this report.

### Chemical and Physical Parameters

The Point Loma Wastewater Treatment Plant met the two key discharge limits based on annual performance, including BOD (Biochemical Oxygen Demand) annual average removal and TSS (Total Suspended Solids) mass emissions.

|                                                                          | 2017 Annual<br>Average           |                     |
|--------------------------------------------------------------------------|----------------------------------|---------------------|
|                                                                          | System-wide                      | Plant               |
|                                                                          | Removal                          | Removal             |
| Annual Requirement                                                       | (%)                              | (%)                 |
| BOD - met the required ≥58% BOD                                          |                                  |                     |
| removal on both the system-wide                                          | 62.8                             | 59.7                |
| (required) and plant-only basis.                                         |                                  |                     |
|                                                                          | 2017 Annual M<br>Emission(metric | <b>ass</b><br>tons) |
| <b>TSS</b> - Mass emission of TSS shall be no greater than 15,000 mt/yr. | 7,112                            |                     |

Other chemical parameters, microbiology, and toxicity.

Note: Permit limits are detailed in Section 1 of this report and effluent data are presented in summary tables in section 2 of this report.

#### Mass Emissions Benchmarks:



All Mass Emissions Benchmarks were met with the continued exception of non-chlorinated

phenols. The Mass Emissions Rate (MER) of 6.21 metric tons/year, for non-chlorinated phenols<sup>7</sup> was higher than the bench mark of 2.57 metric tons/year and higher than last year's 5.60 metric tons.

This was based on an average concentration of 32.3 ug/L, which represents approximately 37.5 pounds per day. On average, in 2017 the plant removed 22.5% of the phenol and 32.2% last year.

Tijuana Interceptor Closure Summary

The Tijuana Interceptor (emergency connection) continues to be a non-factor in the operation of the Metropolitan (Metro) Wastewater System and Point Loma WWTP operations. We received no flows from the connector during the year. There are no monitoring data to report and the previously included section discussing the interceptor in the annual reports has been discontinued.

According to the International Boundary Water Commission's staff reports and our flow meter section data, there was no flow of wastewater through the Tijuana Interceptor for 2017. IBWC staff reported that the emergency connection was not open during 2017.

No samples were taken the entire year of 2017.

Y:\EMTS\41.Sections\WCS\REPORTS\PLWWTP\Annuals\Annual2017\Final\_Reports\2017\_!\_Annual.docx

Appendices 8.23

<sup>&</sup>lt;sup>7</sup> All found was as phenol itself.

### F. Plant Facility Operation Report

#### POINT LOMA 2017 ANNUAL FACILITY REPORT Document prepared under the direction of Plant Superintendent David Marlow.

The facility report addresses Process Control concerns and considerations and summarizes Plant Operations and Engineering activities.

#### PROCESS CONTROL: FACTORS IMPACTING PLANT PERFORMANCE 2017

The following information is being reported in an effort to identify some of the factors, operational and otherwise, that may have impacted plant performance during 2017. Much of the information contained herein is based on assumptions regarding plant performance for this period. The main point of this effort is to continue identifying possible factors influencing plant performance which in turn will help to more effectively operate this facility. The information is presented in chronological order when possible. Please note that the numerical values used here are largely based on analysis performed by Plant staff at the Process Laboratory and have not always been validated for official reporting purposes.

Areas that will be covered include: influent temperature and seasonal impacts, sludge blanket levels in the sedimentation basins and raw sludge pumping volumes, plant performance and coagulation chemical application.

#### INFLUENT TEMPERATURE AND SEASONAL IMPACTS

Influent temperature variations at the Point Loma Facility are usually minimal throughout the year. The temperature of the influent flow, for 2017, ranged from 73.7 to 83.1 degrees Fahrenheit. Typically, the influent temperature changes are very subtle as each season progresses. The most pronounced changes in this parameter occur during the winter, after the rainy season begins and during the summer, after periods of sustained warm weather. Temperature changes related to rain storms were normal in 2017. The effect of these temperature changes is difficult to analyze due to the number of variables affected by the rainfall. The average daily influent temperature was calculated for the same period of time seen previously in this report, and the results are recorded below.

| For Th | e Period from January 1 through December 31 |
|--------|---------------------------------------------|
| Year   | Average Daily Influent Temperature          |
| 2004   | 76.7 degrees Fahrenheit                     |
| 2005   | 76.8 degrees Fahrenheit                     |
| 2006   | 77.0 degrees Fahrenheit                     |
| 2007   | 77.0 degrees Fahrenheit                     |
| 2008   | 77.5 degrees Fahrenheit                     |
| 2009   | 77.6 degrees Fahrenheit                     |
| 2010   | 77.0 degrees Fahrenheit                     |
| 2011   | 76.3 degrees Fahrenheit                     |
| 2012   | 77.4 degrees Fahrenheit                     |
| 2013   | 77.6 degrees Fahrenheit                     |
| 2014   | 78.8 degrees Fahrenheit                     |
| 2015   | 79.1 degrees Fahrenheit                     |
| 2016   | 79.1 degrees Fahrenheit                     |
| 2017   | 78.6 degrees Fahrenheit                     |

#### SLUDGE BLANKET LEVELS AND RAW SLUDGE PUMPING VOLUMES

In most circumstances it is assumed that maintaining lower sludge blanket levels in sedimentation basins and increased raw sludge pumping will produce a plant effluent with a lower total suspended solids (TSS) concentration. Review of data, for daily average sludge blanket levels and daily average total raw sludge pumped shows that the averages for the last ten years were too close to draw any conclusions about the validity of the above assumption.

The average effluent TSS concentration was calculated for 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, and 2017. This average was then compared to the average sludge blanket level, for all basins in operation, and the average daily raw sludge pumping volume for this same period. The information below reflects the data gathered for this comparison.

| For The Period from January 1 through December 31 |                                       |                                       |                                    |  |  |  |
|---------------------------------------------------|---------------------------------------|---------------------------------------|------------------------------------|--|--|--|
| Year                                              | Effluent TSS Average<br>Concentration | Average Daily Sludge<br>Blanket Level | Average Daily Raw<br>Sludge Volume |  |  |  |
| 2003                                              | 42.0 mg/L                             | 158.0 inches                          | 1.15 MGD                           |  |  |  |
| 2004                                              | 42.6 mg/L                             | 168.0 inches                          | 1.09 MGD                           |  |  |  |
| 2005                                              | 40.7 mg/L                             | 159.0 inches                          | 1.11 MGD                           |  |  |  |
| 2006                                              | 34.9 mg/L                             | 161.0 inches                          | 0.99 MGD                           |  |  |  |
| 2007                                              | 33.9 mg/L                             | 166.0 inches                          | 0.95 MGD                           |  |  |  |
| 2008                                              | 32.2 mg/L                             | 156.4 inches                          | 1.04 MGD                           |  |  |  |
| 2009                                              | 32.2 mg/L                             | 166.2 inches                          | 1.17 MGD                           |  |  |  |
| 2010                                              | 37.1 mg/L                             | 166.5 inches                          | 1.15 MGD                           |  |  |  |
| 2011                                              | 41.3 mg/L                             | 165.5 inches                          | 1.17 MGD                           |  |  |  |
| 2012                                              | 37.1 mg/L                             | 171.0 inches                          | 1.18 MGD                           |  |  |  |
| 2013                                              | 33.5 mg/L                             | 172.0 inches                          | 1.22 MGD                           |  |  |  |
| 2014                                              | 27.3 mg/L                             | 165.0 inches                          | 1.12 MGD                           |  |  |  |
| 2015                                              | 29.6 mg/L                             | 168.7 inches                          | 1.08 MGD                           |  |  |  |
| 2016                                              | 44.3 mg/L                             | 188.3 inches                          | 1.04 MGD                           |  |  |  |
| 2017                                              | 36.43 mg/L                            | 175.0 inches                          | 1.04 MGD                           |  |  |  |

#### PLANT PERFORMANCE

The patented PRISC-CEPT (Peroxide Regeneration of Iron for Sulfide Control and Chemically Enhanced Primary Treatment) technology in partnership with US Peroxide was utilized in 2017. Essentially, the process consists of ferrous chloride addition at Pump Station 1 for hydrogen sulfide control, hydrogen peroxide addition at Pump Station 2 to regenerate the available iron, hydrogen peroxide addition upstream of PLWTP for regeneration of the available iron, and then ferric chloride addition at the plant for coagulation at a target dose rate of 10.5 mg/L, increased to 12.5 in August 2013. In addition, the PRISC process has been implemented upstream of PLWWTP and North City Water Reclamation Plant (NCWRP). City staff is looking at additional sites within the Metro System to implement the PRISC-CEPT process.

The table below demonstrates the average daily gallons of each chemical utilized in the treatment process at the Pump Stations as well as Point Loma Wastewater Treatment Plant for 2007 (baseline) and 2017. For comparison purposes, the average gallons per day from January 1 – December 31 will be utilized for both years. It should be noted that the ferric chloride and anionic polymer application at PLWTP is flow paced. The ferrous chloride used for hydrogen sulfide control at PLWTP is dependent on the digester gas hydrogen sulfide levels.

| 1/1 -12/31     | Ferric   | Ferrous  | Anionic | Hydrogen |
|----------------|----------|----------|---------|----------|
| 2007           | Chloride | Chloride | Polymer | Peroxide |
| Daily          | gallons  | gallons  | lbs.    | Gallons  |
| Average        |          |          |         |          |
| Pump Station 1 | 0        | 4034     | 0       | 0        |
| Pump Station 2 | 2317     | 0        | 0       | 0        |
| PLWTP          | 6937*    | 1346     | 189*    | 0        |
| Total          | 9254     | 5380     | 189     | 0        |

\*Flow paced

| 1/1 - 12/31    | Ferric   | Ferrous  | Anionic | Hydrogen |
|----------------|----------|----------|---------|----------|
| 2017           | Chloride | Chloride | Polymer | Peroxide |
| Daily          | gallons  | gallons  | lbs.    | gallons  |
| Average        |          |          |         |          |
| Pump Station 1 | 0        | 4740     | 0       | 0        |
| Pump Station 2 | 0        | 0        | 0       | 782      |
| PLWTP          | 3108*    | 3440     | 196*    | 722      |
| Total          | 3108     | 8180     | 196     | 1504     |

\*Flow paced

The PRISC-CEPT technology has proven to provide TSS and BOD removal rates well above the permit requirements, while reducing the reliance on iron by regenerating the available iron, reducing the amount of iron in the effluent, and reducing costs.

Turbidity testing at the sedimentation basin effluents continued in 2017. This has continued to help identify basins where mechanical or other problems are occurring. Analysis of 24-hour discrete effluent samples for TSS concentration continues on an as-needed basis and is providing data on diurnal variations in plant performance. Data from this analytical work has been and will be used to help develop more effective chemical dosing strategies in the plant.

#### COAGULATION CHEMICAL APPLICATION

Data for ferric chloride and anionic polymer doses was reviewed to determine the impact that rates of product application have on plant performance. The average daily dose for each chemical was calculated and compared to the TSS and BOD concentrations and removal rates.

| For The Period from January 1 through December 31 |                     |           |                         |                                            |                         |                                               |  |
|---------------------------------------------------|---------------------|-----------|-------------------------|--------------------------------------------|-------------------------|-----------------------------------------------|--|
| Year                                              | Ferric<br>Chloride  | Polymer   | Average Effluent<br>TSS | Average<br>Effluent TSS<br>Removal<br>Rate | Average Effluent<br>BOD | Average<br>Effluent<br>BOD<br>Removal<br>Rate |  |
| 2004                                              | 29.7 mg/L 0.17 mg/L |           | 42.6 mg/L               | 85.2%                                      | 101.8 mg/L              | 60.2%                                         |  |
| 2005                                              | 26.5 mg/L           | 0.17 mg/L | 40.7 mg/L               | 85.1%                                      | 104.5 mg/L              | 58.4%                                         |  |
| 2006                                              | 24.0 mg/L           | 0.14 mg/L | 34.9 mg/L               | 87.7%                                      | 101.8 mg/L              | 62.3%                                         |  |
| 2007                                              | 24.0 mg/L           | 0.14 mg/L | 33.9 mg/L               | 89.1%                                      | 95.3 mg/L               | 68.4%                                         |  |
| 2008                                              | 15.0 mg/L*          | 0.14 mg/L | 32.2 mg/L               | 88.2%                                      | 96.0 mg/L               | 65.5%                                         |  |
| 2009                                              | 10.9 mg/L*          | 0.14 mg/  | 32.0 mg/L               | 89.6%                                      | 100 mg/L                | 65.5%                                         |  |
| 2010                                              | 10.7 mg/L*          | 0.14 mg/L | 37.1 mg/L               | 88.3%                                      | 104 mg/L                | 63.6%                                         |  |
| 2011                                              | 10.5 mg/L*          | 0.14 mg/L | 41.3 mg/L               | 87.5%                                      | 108 mg/L                | 62.0%                                         |  |
| 2012                                              | 10.4 mg/L*          | 0.14 mg/L | 37.2 mg/L               | 89.4%                                      | 116 mg/L                | 62.0%                                         |  |
| 2013                                              | 11.3 mg/L           | 0.16 mg/L | 33.5 mg/L               | 90.4%                                      | 106 mg/L                | 63.0%                                         |  |
| 2014                                              | 12.5 mg/L           | 0.17 mg/L | 27.3 mg/L               | 92.1%                                      | 109 mg/L                | 66.4%                                         |  |
| 2015                                              | 13.5 mg/L           | 0.17 mg/L | 29.6 mg/L               | 91.7%                                      | 109 mg/L                | 66.9%                                         |  |
| 2016                                              | 15.4 mg/L           | 0.18 mg/L | 44.4 mg/L               | 87.8%                                      | 132 mg/L                | 60.7%                                         |  |
| 2017                                              | 13.4 mg/L           | 0.17 mg/L | 36.43 mg/L              | 89.5%                                      | 124 mg/L                | 59.6%                                         |  |

\*PRISC related reduction

#### SPECIAL PROJECTS

On September 3, 2008 PLWTP initiated operation of a prototype effluent disinfection system. This was implemented because of a recent determination by USEPA that bacterial water quality objectives in the San Diego Region apply surface to bottom, up to three nautical miles from shore. USEPA's interpretation of the applicability of bacterial objectives was incorporated into the requirements of Order Number R9-2009-0001, NPDES Number CA0107409. In 2016, Environmental Monitoring and Technical Services (EMTS) along with Plant Staff collected samples and compiled data to determine the ability of the plant to comply with both the bacterial objectives and chlorine residual parameters in the NPDES permit. Continuous monitoring of the chlorine residual was incorporated into the new permit. Plant staff initiated a search to find an available technology that would provide reliable monitoring taking into consideration the quality of the plant's effluent. This has proved to be very difficult due to the nature of the application, the effluent quality, and the limitations of current technology. Plant staff continue the search for an appropriate in-line monitoring device. In 2012, Brown and Caldwell was commissioned to assist in finding a chlorine residual analyzer that will work with the plant's effluent characteristics.

To date, there has been only occasional detectable total chlorine residual in the manual grabs of effluent. The in-line continuous monitoring equipment has not detected total chlorine residual in the effluent during this time period. A chlorine analyzer that utilizes new monitoring technology was installed in 2016 and is currently being evaluated. In conjunction with evaluating the performance of this new technology, plant staff are also working with vendors on a filtration method that aims to improve effluent quality in an effort to mitigate analyzer performance issues. If this unit is found to be successful, the result of this new technology should allow the implementation of continuous chlorine residual monitoring at Point Loma. Laboratory testing, according to the previously approved protocols, is being continued.

In October of 2017, a special study was conducted by Brown and Caldwell to assess the impact on plant performance from the addition of a brine waste stream coming from Phase 1 of the planned Pure Water program. Although the completion of Phase 1 of the Pure Water program is still years away, it was determined prudent to conduct an analysis to determine the feasibility of treating this brine waste stream. In conclusion, it was determined that the effects from the addition of brine under Phase 1 could potentially be mitigated by increasing the coagulant dose at the facility.

#### **CONCLUSIONS**

Plant performance in the year 2017 complied with all NPDES Permit requirements.

## **ENGINEERING REPORT 2017**

The following engineering projects were completed during the 2017 reporting period:

- Completion of the Cleaning of Digesters S1/S2 and 7
- Digester S1 Gas Compressor Fin Fan Cooling System installation
- Digester 7 mixing pump #1 seal water retrofit project
- 2016 Gould flow meter certification (completed in 2017)
- GUF Heat Exchanger Replacement
- Point Loma Arc Flash Study
- Abel Main Sludge Pump P-safe replacement project Phases I and II

#### **Status of the Operations and Maintenance Manual**

#### Point Loma WWTP:

There is an approved O&M Manual for the PLWTP. Plant staff continue to review and update the Manual and associated Standard Operating Procedures (SOPs) as necessary to keep current with changes in equipment, processes, and standards of practice. New procedures are included as needs are identified. For example: PLWWTP Staff, in conjunction with the Safety Staff, have developed and established a standard Lock-Out/Tag-Out Program to serve all PUD Facilities.

Plant Personnel continue the ISO certification and operate the PLWTP facility under the guidelines of the Environmental Management System established under our ISO 14001 program. This program has helped to organize and consolidate facility SOPs, and has been effective in enhancing plant personnel's awareness of industrial and environmental issues as they relate to the work place.

## G. Correlations of Results to Plant Conditions

## **Flow**

The 2017 daily average influent flow to the Point Loma WWTP was 139.3 MGD.



Despite predictions of water usage generated in the 1970s and '80s based on population growth, the data show a continued reduction in the wastewater flow. It appears that the reduced flows caused by drought-induced water conservation efforts have become permanent. In the past 20-years, there is no discernible increase in flows on a sustained basis.

It is likely that recycling water by North City Water Reclamation Plant is also having an impact on the total system flows. We have not yet quantified and evaluated these contributions.

#### Annual Totals

| Year | SBWRP<br>Influent | SBWRP<br>Discharge<br>to South<br>Bay<br>Outfall | System<br>Return<br>Stream | Net<br>removed<br>from<br>Metro | SBWRP<br>Distributed<br>Recycled<br>Water | NCWRP<br>Reclaimed<br>Water Flow<br>to<br>Distribution<br>System |
|------|-------------------|--------------------------------------------------|----------------------------|---------------------------------|-------------------------------------------|------------------------------------------------------------------|
|      | (million<br>gals) | (million<br>gals)                                | (million<br>gals)          | (million<br>gals)               | (million gals)                            | (million gals)                                                   |
| 2017 | 2699              | 1268                                             | 357                        | 2366                            | 1098                                      | 2220                                                             |
| 2016 | 2732              | 1209                                             | 401                        | 2,326                           | 1117                                      | 2041                                                             |
| 2015 | 2724              | 1274                                             | 479                        | 2,230                           | 956                                       | 2022                                                             |
| 2014 | 2,908             | 1075                                             | 586                        | 2,291                           | 1,216                                     | 2,428                                                            |
| 2013 | 2,948             | 1,171                                            | 590                        | 2,343                           | 1,172                                     | 2,182                                                            |
| 2012 | 2,942             | 1,194                                            | 479                        | 2,441                           | 1,247                                     | 2,082                                                            |
| 2011 | 3,000             | 1,288                                            | 505                        | 2,465                           | 1,177                                     | 1,831                                                            |
| 2010 | 3,003             | 1,248                                            | 571                        | 2,404                           | 1,156                                     | 1,588                                                            |
| 2009 | 3,042             | 957                                              | 564                        | 2,458                           | 1,501                                     | 1,672                                                            |
| 2008 | 3,173             | 1,167                                            | 601                        | 2,555                           | 1,388                                     | 1,731                                                            |
| 2007 | 3,158             | 1,467                                            | 527                        | 2,568                           | 1,101                                     | 1,630                                                            |



### Precipitation:

The total rainfall of 10.10 inches in 2017 was lower than the total rainfall of 11.22 inches in 2016.

#### Historical perspective:

The table on this page shows flows from 1972 to the present. New Parshall flumes were installed and calibrated in 1985 and fine-tuned over the next year; this accounts for the jump in flow rates from 1984 to 1986. Since 1986, multiple meters on the flumes have been calibrated yearly and closely match Venturi meter data at Pump Station II (see tables in the Plant Operations section).

A historical synopsis of changes to the flow rates and the factors affecting those changes are discussed comprehensively in previous Annual Reports. Those factors include:

- Weather patterns, drought, and water conservation;
- The Tijuana Interceptor;
- Water Reclamation and Reuse by the North City Water Reclamation Plant, and later, by the South Bay Water Reclamation Plant;
- Population;
- Industrial discharger.

Weather and the various components of water conservation have emerged as more significant factors affecting flows, supplanting the historical role that population growth played.

| Historical Average Daily Flows |       |      |       |  |  |  |
|--------------------------------|-------|------|-------|--|--|--|
| YEAR                           | FLOW  | YEAR | FLOW  |  |  |  |
|                                | (MGD) |      | (MGD) |  |  |  |
|                                |       | 1994 | 172   |  |  |  |
| 1972                           | 95    | 1995 | 188   |  |  |  |
| 1973                           | 100   | 1996 | 179   |  |  |  |
| 1974                           | 104   | 1997 | 189   |  |  |  |
| 1975                           | 107   | 1998 | 194   |  |  |  |
| 1976                           | 118   | 1999 | 175   |  |  |  |
| 1977                           | 115   | 2000 | 174   |  |  |  |
| 1978                           | 127   | 2001 | 175   |  |  |  |
| 1979                           | 128   | 2002 | 169   |  |  |  |
| 1980                           | 130   | 2003 | 170   |  |  |  |
| 1981                           | 131   | 2004 | 174   |  |  |  |
| 1982                           | 132   | 2005 | 183   |  |  |  |
| 1983                           | 138   | 2006 | 170   |  |  |  |
| 1984                           | 140   | 2007 | 161   |  |  |  |
| 1985                           | 156   | 2008 | 162   |  |  |  |
| 1986                           | 177   | 2009 | 153   |  |  |  |
| 1987                           | 183   | 2010 | 157   |  |  |  |
| 1988                           | 186   | 2011 | 156   |  |  |  |
| 1989                           | 191   | 2012 | 148   |  |  |  |
| 1990                           | 186   | 2013 | 144   |  |  |  |
| 1991                           | 173   | 2014 | 139   |  |  |  |
| 1992                           | 179   | 2015 | 132   |  |  |  |
| 1993                           | 187   | 2016 | 136   |  |  |  |
|                                |       | 2017 | 139   |  |  |  |

#### Suspended Solids, Volatile Suspended Solids and Percent Suspended Solids Removal:

Year 2017 data showed that influent TSS concentrations ranged from 214 to 598 mg/L and averaged 350 mg/L.



The historical picture of changes in the annual TSS removals and MER and the factors effecting those changes are discussed comprehensively in previous Annual Reports. The factors include:

- Changes in base industries (e.g., tuna canneries);
- Weather and infiltration;
- Sludge handling;
- Water reclamation plants;
- Population changes;
- Tijuana Interceptor.

Effluent TSS concentrations also correlate similarly to the MER pattern.

#### SUSPENDED SOLIDS TRENDS AVERAGE DAILY SOLIDS

| Year  | Flow.   | Rainfall. | TSS        | TSS             | TSS      | TSS Mass         | ISS Mass |
|-------|---------|-----------|------------|-----------------|----------|------------------|----------|
| , out | Annual  | Annual    | INFLUENT   | FFFLUENT        | %        | Emission         | Emission |
|       | Average | Total     | (ma/L)     | (ma/L)          | Removal  | (lbs/day)        | (metric  |
|       | Daily   | (inches)  | (····g/ =/ | ( <u>9</u> , _) | lionora  | (                | tons     |
|       | (mad)   | (1101103) |            |                 |          |                  | /vear)   |
|       | (gu)    |           |            |                 |          |                  | , , ,    |
| 1972  | 95      |           | 257        | 135             | 47       | 106,600          | 17,697   |
| 1973  | 100     |           | 310        | 154             | 50       | 127,947          | 21,183   |
| 1974  | 104     |           | 346        | 138             | 60       | 119,143          | 19,726   |
| 1975  | 107     |           | 215        | 115             | 46       | 103,135          | 17,075   |
| 1976  | 118     |           | 238        | 127             | 46       | 125,281          | 20,799   |
| 1977  | 115     |           | 273        | 128             | 53       | 123,277          | 20,410   |
| 1978  | 127     |           | 245        | 151             | 38       | 159,428          | 26,396   |
| 1979  | 128     |           | 248        | 143             | 43       | 150.933          | 24,989   |
| 1980  | 130     |           | 255        | 113             | 56       | 121 088          | 20 103   |
| 1981  | 131     |           | 289        | 114             | 61       | 122 705          | 20,100   |
| 1982  | 132     |           | 296        | 126             | 57       | 139 563          | 23 107   |
| 1983  | 132     |           | 310        | 98              | 68       | 110 789          | 18 343   |
| 1703  | 140     |           | 272        | 90<br>00        | 67       | 102 175          | 17 120   |
| 1704  | 140     |           | 272        | 70<br>70        | 07<br>70 | 01 100           | 17,127   |
| 1905  | 130     |           | 201        | 70              | 74       | 91,190           | 15,090   |
| 1900  | 1//     |           | 201        | 04              | 70       | 94,470           | 15,042   |
| 1987  | 183     |           | 289        | 6/              |          | 102,257          | 16,930   |
| 1988  | 186     |           | 303        | /0              | 11       | 108,587          | 18,027   |
| 1989  | 191     | 3.8       | 305        | 60              | 80       | 95,576           | 15,824   |
| 1990  | 186     | 7.29      | 307        | 65              | 78       | 101,301          | 16,772   |
| 1991  | 1/3     | 13.46     | 295        | 81              | /3       | 116,810          | 19,340   |
| 1992  | 179     | 12.71     | 317        | 72              | 78       | 107,903          | 17,914   |
| 1993  | 187     | 17.26     | 298        | 55              | 82       | 88,724           | 14,690   |
| 1994  | 1/2     | 9.43      | 276        | 46              | 83       | 65,///           | 10,890   |
| 1995  | 188     | 17.04     | 289        | 43              | 85       | 67,492           | 11,174   |
| 1996  | 1/9     | 1.21      | 295        | 43              | 85       | 64,541           | 10,715   |
| 1997  | 189     | 1/ 05     | 284        | 39              | 86       | 61,923           | 10,252   |
| 1998  | 194     | 16.05     | 278        | 39              | 86       | 64,171           | 10,624   |
| 1999  | 175     | 5.43      | 273        | 38              | 80       | 55,130           | 9,128    |
| 2000  | 174     | 0.9       | 278        | 37              | 8/<br>0F | 54,413           | 9,034    |
| 2001  | 1/5     | 0.40      | 275        | 43              | 00<br>04 | 61,931           | 10,204   |
| 2002  | 109     | 4.23      | 207        | 44              | 00<br>0E | 61,493<br>50,450 | 10,101   |
| 2003  | 170     | 9.10      | 200        | 42              | 00<br>95 | 59,439           | 9,044    |
| 2004  | 1/4     | 14.02     | 271        | 43              | 00       | 62,028           | 10,290   |
| 2005  | 103     | 6 16      | 274        | 41<br>25        | 00       | 40 591           | 9 200    |
| 2000  | 1/0     | 1 22      | 207        | 24              | 90       | 47,301           | 7 596    |
| 2007  | 162     | 4.23      | 277        | 34              | 88       | 43,822           | 7,300    |
| 2000  | 152     | 4.83      | 308        | 32              | 90       | 40,214           | 6 658    |
| 2010  | 157     | 8.06      | 323        | 37              | 88       | 49 361           | 8 172    |
| 2011  | 156     | 8.62      | 332        | 42              | 88       | 53 439           | 8 848    |
| 2012  | 148     | 13.67     | 354        | 37              | 90       | 46.039           | 7.622    |
| 2013  | 144     | 5.46      | 349        | 34              | 91       | 40.311           | 6.674    |
| 2014  | 139.2   | 7.75      | 348        | 27              | 92       | 31.830           | 5.270    |
| 2015  | 131.6   | 9.89      | 361        | 30              | 92       | 32.570           | 5.392    |
| 2016  | 136.1   | 11.22     | 365        | 45              | 87.7     | 50.900           | 8,427    |
| 2017  | 139.3   | 10.1      | 350        | 37              | 89.6     | 41,943           | 6,944    |

(In the table there is more scatter in the data before 1980 because monthly averages were calculated using only the two suspended solids values done on "complete analysis" days, rather than averaging all of the daily test results).


|                   | Influent | Effluent | % Removal |                   | Influent | Effluent | % Removal |
|-------------------|----------|----------|-----------|-------------------|----------|----------|-----------|
| 1995 - Total      | 273      | 107      | 61%       | 2006 - Total      | 271      | 102      | 62%       |
| Adjusted Total*   | 270      | 107      | 60%       | System-wide Total | 295      | 102      | 65%       |
| Soluble           | 99       | 79       | 20%       | Soluble           | 87       | 73       | 16%       |
| 1996 - Total      | 285      | 119      | 58%       | 2007 - Total      | 304      | 95       | 69%       |
| Adjusted Total*   | 283      | 119      | 58%       | System-wide Total | 317      | 95       | 70%       |
| Soluble           | 104      | 89       | 14%       | Soluble           | 85       | 69       | 19%       |
| 1997 - Total      | 258      | 105      | 59%       | 2008 - Total      | 280      | 96       | 66%       |
| Adjusted Total*   | 256      | 105      | 59%       | System-wide Total | 296      | 96       | 68%       |
| Soluble           | 92       | . 79     | 14%       | Soluble           | 85       | 69       | 19%       |
| 1998 - Total      | 246      | 106      | 57%       | 2009 - Total      | 292      | 100      | 66%       |
| Adjusted Total*   | 244      | 106      | 57%       | System-wide Total | 310      | 100      | 68%       |
| Soluble           | 89       | 81       | 9%        | Soluble           | 76       | 68       | 11%       |
| 1999- Total       | 247      | 102      | 59%       | 2010 - Total      | 287      | 104      | 64%       |
| System-wide Total | 251      | 102      | 59%       | System-wide Total | 312      | 104      | 66%       |
| Soluble           | 96       | 79       | 18%       | Soluble           | 72       | 70       | 3%        |
| 2000 - Total      | 237      | 94       | 60%       | 2011 - Total      | 285      | 108      | 62%       |
| System-wide Total | 248      | 94       | 62%       | System-wide Total | 312      | 108      | 66%       |
| Soluble           | 84       | 69       | 18%       | Soluble           | 77       | 73       | 5%        |
| 2001 - Total      | 254      | 94       | 63%       | 2012- Total       | 306      | 116      | 62%       |
| System-wide Total | 270      | 94       | 65%       | System-wide Total | 328      | 116      | 65%       |
| Soluble           | 84       | 58       | 31%       | Soluble           | 84       | 79       | 3%        |
| 2002 - Total      | 266      | 94       | 65%       | 2013- Total       | 313      | 115      | 63%       |
| System-wide Total | 287      | 94       | 67%       | System-wide Total | 328      | 115      | 65%       |
| Soluble           | 86       | 59       | 31%       | Soluble           | 84       | 81       | 4%        |
| 2003 - Total      | 271      | 105      | 61%       | 2014- Total       | 326      | 109      | 66%       |
| System-wide Total | 292      | 105      | 64%       | System-wide Total | 352      | 109      | 69%       |
| Soluble           | 86       | 70       | 19%       | Soluble           | 92       | 82       | 10%       |
| 2004 - Total      | 255      | 101      | 60%       | 2015- Total       | 332      | 110      | 67%       |
| System-wide Total | 273      | 101      | 63%       | System-wide Total | 367      | 110      | 70%       |
| Soluble           | 80       | 70       | 12%       | Soluble           | 96       | 83       | 14%       |
| 2005 - Total      | 252      | 105      | 58%       | 2016- Total       | 336      | 132      | 61%       |
| System-wide Total | 269      | 105      | 61%       | System-wide Total | 368      | 132      | 64%       |
| Soluble           | 88       | 75       | 15%       | Soluble           | 104      | 98       | 6%        |
|                   |          |          |           | 2017- Total       | 307      | 124      | 60%       |
|                   |          |          |           | System-wide Total | 333      | 124      | 63%       |
|                   |          |          |           | Soluble           | 98       | 98       | 0%        |

BOD Concentration mg/L

#### H. Special Studies

#### Partial Disinfection System Status Report

#### **Regulatory History:**

On August 13, 2008 Addendum No. 2 to Order No. R9-2002-0025 (NPDES NO. CA0107409) was approved by the San Diego Regional Water Control Board. This addendum permitted the use of sodium hypochlorite (NaOCl) in a prototype partial disinfection system of Point Loma Ocean Outfall (PLOO) effluent.

On August 1, 2010 Order No. R9-2009-001 became effective requiring continuous monitoring of residual chlorine within 180 days.

#### The system:

Since sodium hypochlorite solution was already in use for odor control at the Point Loma facility, metering pumps and distribution piping were installed and connected to an existing bulk storage tank. Administration of concentrated hypochlorite solution is accomplished by a feed system that adds a flow-proportional dose of hypochlorite necessary to achieve a predetermined nominal concentration of hypochlorite in effluent. The hypochlorite solution is delivered by tanker truck in concentrate form (~12.5%) and added to the hypochlorite bulk storage. Hypochlorite solution is added to the feed tanks on demand. Hypochlorite and carrier water are injected into the effluent channel just after sedimentation tanks at the mid-point of the effluent channel.

#### **Operations**:

The first administration of hypochlorite solution began on September 3, 2008. Hypochlorite feed started at an initial rate calculated to obtain a nominal dose of 6 ppm hypochlorite in effluent. An 8.0 ppm dose rate was obtained on the September 4, 2008. Between September 17 and the 24<sup>th</sup>, feed rates were incrementally increased to a nominal dose of 11 ppm. On October 1, 2008 the dose was increased to 12ppm. During September and October 2008 the system was shutdown several times to make minor repairs and to make modifications in the feed system to allow for better mixing of the hypochlorite within the effluent. By the end of October 2008 the system was back in continuous operation and nominal chlorine feed rates was maintained at 12 ppm until February 2009. From February 25th, 2009 to April 4, 2012 the nominal feed rate target remained at 10 ppm. In April 2012 the target dose was gradually increased during the year from 10 ppm to 20 ppm. The dose was lowered to a nominal feed rate target of 18 ppm on 10/20/2012 and adjusted manually. In 2013 the dose rate continued to be manually adjusted daily according to flow, lowered during high flow and increased during low flow. January 2013 started with a flow rate around 18 mg/L and went as high as 50 mg/L in November. The dosage was then lowered below 20 mg/L due to one bulk sodium hypochlorite tank out for repairs. As a result of an analysis of compliance in the ocean, in August of 2014, the dose rate was reduced to 15 ppm and in October 2014 it was reduced to 6 ppm. It has remained at 6 ppm since October 2014.

### Monitoring:

Monitoring in accordance with Addendum 2 was initiated on September 3, 2008, coincidental with the initial use of hypochlorite, and has continued. This monitoring consists of 4 daily grab samples taken during the work day at 2 hour intervals.

Pilot testing and use of an in-line continuous monitoring equipment for chlorine residual monitoring began in the winter of 2010. The first summary report of instrument output from the in-line continuous monitoring equipment was included in the monthly SMR.

Summary reports of the 2017 instantaneous maximum values of both the in-line continuous monitoring and the laboratory analysis of daily manual grabs are included in this annual report. There has been only occasional detectable total chlorine residual in the manual grabs of effluent. The in-line continuous monitoring equipment has not detected total chlorine residual in the effluent during this time period. The new chlorine analyzer that utilizes a built-in chlorine bias was installed in 2016 and evaluated, but was very maintenance intense. Plant staff are also working with another vendor on a filtration method aimed to improve effluent quality to mitigate analyzer performance issues as well as waiting for a different analyzer to be brought in for testing. If this unit is found to be successful, the result of this new technology should allow the implementation of continuous chlorine residual monitoring at Point Loma. Laboratory testing according to the previously approved protocols is being continued.

No impacts on conventional monitoring parameters, e.g. BOD, pH, TSS, and turbidity, have been observed.

This page intentionally left blank.

#### II. Influent and Effluent Data Summary

The results of all analyses performed on the PLWTP influent and effluent are summarized in tables with monthly and annual averages calculated. In some cases, annual totals are also calculated. Graphs of monthly averages are also presented.

- A. Mass Emissions
- B. Discharge Limits
- C. Influent and Effluent Data Summaries
- D. Influent and Effluent Graphs
- E. Daily Values of selected Parameters
- F. Toxicity Bioassays

This page intentionally left blank.

Mass Emissions of Effluent Using 2017 Monthly Averages DISCHARGE SPECIFICATIONS from NPDES Permit No. CA0107409/RWQCB Order No. R9-2009-0001 effective on August 1, 2010 with limits on pollutant discharges.

|                                      | Benchmarks    | 2017      | 2017          |       |
|--------------------------------------|---------------|-----------|---------------|-------|
|                                      |               | Mass      |               |       |
|                                      | (mt/yr)       | Emissions | Concentration |       |
| Constituent/Property                 |               | (mt/yr)   |               | Units |
| Flow (MGD)                           |               |           | 139.3         | MGD   |
| Total Suspended Solids               | <u>13,598</u> | 7,112     | 37            | mg/L  |
| BOD                                  | -             | 23,834    | 124           | mg/L  |
| Arsenic                              | 0.88          | 0.10      | 0.51          | ug/L  |
| Cadmium                              | 1.4           | 0.00      | 0.00          | ug/L  |
| Chromium                             | 14.2          | 0.25      | 1.3           | ug/L  |
| Copper                               | 26            | 2.85      | 14.8          | ug/L  |
| Lead                                 | 14.2          | 0.14      | 0.7           | ug/L  |
| Mercury                              | 0.19          | 0.002     | 0.0119        | ug/L  |
| Nickel                               | 11.3          | 0.88      | 4.6           | ug/L  |
| Selenium                             | 0.44          | 0.22      | 1.14          | ug/L  |
| Silver                               | 2.8           | 0.02      | 0.13          | ug/L  |
| Zinc                                 | 18.3          | 5.19      | 27            | ug/L  |
| Cyanide                              | 1.57          | 0.04      | 0.0002        | mg/L  |
| Residual Chlorine                    |               | 0.58      | 0.003         | mg/L  |
| Ammonia                              | 8018          | 7,746     | 40.3          | mg/L  |
| Non-Chor. Phenols                    | 2.57          | 6.21      | 32.3          | ug/L  |
| Chlorinated Phenols                  | 1.73          | 0.00      | 0.00          | ug/L  |
| Endosulfan                           | 0.006         | 0.0000    | 0.00          | ng/L  |
| Endrin                               | 0.008         | 0.00      | 0.00          | ng/L  |
| hexachlorocyclohexanes *(HCH)        | 0.025         | 0.0000    | 0.00          | ng/L  |
| * (all as Lindane, the gamma isomer) |               |           |               |       |
| Acrolein                             | 17.6          | 0.00      | 0.00          | ug/L  |
| Antimony                             | 56.6          | 0.04      | 0.2           | ug/L  |
| Bis(2-chloroethoxy) methane          | 1.5           | 0.00      | 0.00          | ug/L  |
| Bis(2-chloroisopropyl) ether         | 1.61          | 0.00      | 0.00          | ug/L  |
| Chlorobenzene                        | 1.7           | 0.00      | 0.00          | ug/L  |
| Chromium (III)                       |               |           |               |       |
| di-n-butyl phthalate                 | 1.33          | 0.00      | 0.00          | ug/L  |
| dichlorobenzenes                     | 2.8           | 0.00      | 0.00          | ug/L  |
| 1,1-dichloroethylene                 | 0.79          | 0.00      | 0.00          | ug/L  |
| Diethyl phthalate                    | 6.23          | 1.17      | 6.1           | ug/L  |
| Dimethyl phthalate                   | 1.59          | 0.00      | 0.00          | ug/L  |
| 4,6-dinitro-2-methylphenol           | 6.8           | 0.00      | 0.00          | ug/L  |
| 2,4-dinitrophenol                    | 11.9          | 0.00      | 0.00          | ug/L  |
| Ethylbenzene                         | 2.04          | 0.00      | 0.00          | ug/L  |
| Fluoranthene                         | 0.62          | 0.00      | 0.00          | ug/L  |
| Nitrobenzene                         | 2.07          | 0.00      | 0.00          | ug/L  |
| Thallium                             | 36.8          | 0.00      | 0.00          | ug/L  |
| Toluene                              | 3.31          | 0.56      | DNQ2.9        | ug/L  |
| 1,1,2,2-tetrachloroethane            | 1.95          | 0.00      | 0.00          | ug/L  |

|                                      | Benchmarks | 2017        | 2017          |       |
|--------------------------------------|------------|-------------|---------------|-------|
|                                      |            | Mass        |               |       |
|                                      | (mt/yr)    | Emissions   | Concentration |       |
| Constituent/Property                 |            | (mt/yr)     |               | Units |
| Tributyltin                          | 0.001      | 0.00        | 0.00          | ug/L  |
| 1,1,1-trichloroethane                | 2.51       | 0.00        | 0.00          | ug/L  |
| 1,1,2-trichloroethane                | 1.42       | 0.00        | 0.00          | ug/L  |
| Acrylonitrile                        | 5.95       | 0.00        | 0.00          | ug/L  |
| Aldrin                               | 0.006      | 0.00        | 0.00          | ng/L  |
| Benzene                              | 1.25       | 0.00        | 0.00          | ug/L  |
| Benzidine                            | 12.5       | 0.00        | 0.00          | ug/L  |
| Beryllium                            | 1.42       | 0.000       | 0.000         | ug/L  |
| Bis(2-chloroethyl) ether             | 1.61       | 0.00        | 0.00          | ug/L  |
| Bis(2-ethylhexyl) phthalate          | 2.89       | 1.33        | 6.9           | ug/L  |
| Carbon Tetrachloride                 | 0.79       | 0.00        | 0.00          | ug/L  |
| Chlordane                            | 0.014      | 0.0000      | 0.00          | ng/L  |
| Chloroform                           | 2.19       | 0.71        | 3.7           | ug/L  |
| DDT                                  | 0.043      | 0.00        | 0.00          | ng/L  |
| 1,4-dichlorobenzene                  | 1.25       | 0.00000     | 0             | ug/L  |
| 3,3-dichlorobenzidine                | 4.67       | 0.00        | 0.00          | ug/L  |
| 1,2-dichloroethane                   | 0.79       | 0.00        | 0.00          | ug/L  |
| Dichloromethane (Methylene Chloride) | 13.7       | 0.13        | DNQ0.69       | ug/L  |
| 1,3-dichloropropene                  | 1.42       | 0.00        | 0.00          | ug/L  |
| Dieldrin                             | 0.011      | 0.00        | 0.00          | ng/L  |
| 2,4-dinitrotoluene                   | 1.61       | 0.00        | 0.00          | ug/L  |
| 1,2-diphenylhydrazine                | 1.52       | 0.00        | 0.00          | ug/L  |
| Halomethanes                         | 5.86       | 0.54        | 2.8           | ug/L  |
| Heptachlor                           | 0.001      | 0.00000     | 0.00          | ng/L  |
| Heptachlor epoxide                   | 0.024      | 0.00        | 0.00          | ng/L  |
| Hexachlorobenzene                    | 0.54       | 0.00        | 0.00          | ug/L  |
| Hexachlorobutadiene                  | 0.054      | 0.00        | 0.00          | ug/L  |
| Hexachloroethane                     | 1.13       | 0.00        | 0.00          | ug/L  |
| Isophorone                           | 0.71       | 0.00        | 0.00          | ug/L  |
| N-nitrosodimethylamine               | 0.76       | 0.00        | 0.00          | ug/L  |
| N-nitrosodiphenylamine               | 1.47       | 0.00        | 0.00          | ug/L  |
| PAHs                                 | 15.45      | 0.00        | 0.00          | ug/L  |
| PCBs                                 | 0.275      | 0.00        | 0.00          | ng/L  |
| TCDD equivalents                     |            | 0.000000000 | 0.000         | pg/L  |
| Tetrachloroethylene                  | 4          | 0.00        | 0.00          | ug/L  |
| Toxaphene                            | 0.068      | 0.00        | 0.00          | ng/L  |
| Trichloroethylene                    | 1.56       | 0.00        | 0.00          | ug/L  |
| 2,4,6-trichlorophenol                | 0.96       | 0.00        | 0.00          | ug/L  |
| Vinyl Chloride                       | 0.4        | 0.00        | 0.00          | ug/L  |

DNQ= Detected but not quantified. Sample result is less than minimum Level but greater than or equal to MDL.

#### B. Discharge Limits

DISCHARGE SPECIFICATIONS from NPDES Permit No. CA0107409/RWQCB amending Order No. R9-2017-0007 effective on October 1, 2017 with limits on pollutant discharges.

The discharge of waste through the Point Loma Ocean Outfall containing pollutants in excess of the following effluent limitations are prohibited:

| Effluent Limitations <sup>2,3</sup>                                     |                                          |                     |            |                                                                                                                                  |             |             |          |         |
|-------------------------------------------------------------------------|------------------------------------------|---------------------|------------|----------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|----------|---------|
| Parameter                                                               | Units                                    | Average             | Average    | Average                                                                                                                          | Maximum     | Instant     | aneous   | Six-    |
|                                                                         |                                          | Annual              | Monthly    | Effluent Limitations <sup>2.3</sup> Instantaneous<br>Maximum<br>Daily  Instantaneous<br>Minimum  Six-<br>monti<br>Maximum    240 | Median      |             |          |         |
| Flow                                                                    | MGD                                      |                     | 240        |                                                                                                                                  |             |             |          |         |
|                                                                         | milligram per<br>liter (mg/L)            |                     | 604        |                                                                                                                                  |             |             |          |         |
| Tee                                                                     | Facility percent<br>removal              |                     | 754        |                                                                                                                                  | -           |             |          | -       |
| TSS                                                                     | System-wide<br>percent removal           |                     | ≥80⁵       |                                                                                                                                  | -           |             |          | -       |
|                                                                         | metric ton per                           | 12,000 <sup>6</sup> |            |                                                                                                                                  |             |             |          |         |
|                                                                         | year (mt/yr)                             | 11,999 <sup>7</sup> |            |                                                                                                                                  | -           |             |          |         |
| BOD₅                                                                    | System-wide<br>percent removal           | ≥58⁵                |            |                                                                                                                                  | -           |             |          | -       |
| Oil and                                                                 | mg/L                                     |                     | 25         | 40                                                                                                                               | -           |             | 75       |         |
| Grease                                                                  | pounds per day<br>(lbs/day)              |                     | 42,743     | 68,388                                                                                                                           | -           | -           | 128,228  | 1       |
| Settleable<br>Solids                                                    | milliliter per liter<br>(ml/L)           |                     | 1.0        | 1.5                                                                                                                              | -           |             | 3.0      | -       |
| Turbidity                                                               | nephelometric<br>turbidity unit<br>(NTU) |                     | 75         | 100                                                                                                                              | -           |             | 225      | -       |
| pH                                                                      | standard units                           |                     |            |                                                                                                                                  | -           | 6.0         | 9.0      |         |
|                                                                         | BASED ON OCEA                            | N PLAN OBJ          | ECTIVES FO | R PROTECT                                                                                                                        | TION OF MAI | RINE AQUAT  | IC LIFE  |         |
| Total<br>Residual                                                       | microgram per<br>liter (µg/L)            |                     | -          |                                                                                                                                  | 1.6E+03     | -           | 1.2E+04  | 4.1E+02 |
| Chlorine                                                                | lbs/day                                  |                     |            |                                                                                                                                  | 2.7E+03     | -           | 2.1E+04  | 7.0E+02 |
| Chronic<br>Toxicity (Test<br>of Significant<br>Toxicity) <sup>8,9</sup> | "Pass" / "Fail"                          |                     | -          |                                                                                                                                  | "Pass"      | -           | -        |         |
| BASE                                                                    | D ON OCEAN PLA                           | N OBJECTIV          | ES FOR PR  | DTECTION (                                                                                                                       | OF HUMAN H  | IEALTH – CA | RCINOGEN | S       |
| Aldrin                                                                  | µg/L                                     |                     | 4.5E-03    |                                                                                                                                  |             |             |          |         |
| Aldrin                                                                  | lbs/day                                  |                     | 7.7E-03    |                                                                                                                                  | -           | -           | -        |         |

| Table 5. Effluent Limita | ations, Discharg | e Point No | . 0011 |
|--------------------------|------------------|------------|--------|
|--------------------------|------------------|------------|--------|

1. See Attachment A for definitions of abbreviations and a glossary of common terms used in this Order/Permit.

 The mass emission rate (MER) limitation, in Ibs/day, was calculated based on the following equation: MER (Ibs/day) = 8.34 x Q x C, where Q is the 301(h)-variance-based flow of 205 MGD and C is the concentration (in mg/L). The 301(h)variance-based flow rate of 205 MGD was taken from the 1995 301(h) application and carried over from Orders Nos. 95-106, R9-2002-0025, and R9-2009-0001 (see section II.C of the Fact Sheet (Attachment F) for more info).

3. Scientific "E" notation is used to express certain values. In scientific "E" notation, the number following the "E" indicates the position of the decimal point in the value. Negative numbers after the "E" indicate that the value is less than 1, and positive numbers after the "E" indicate that the value is greater than 1. In this notation a value of 6.1E-02 represents 6.1 x 10<sup>-2</sup> or 0.061, 6.1E+02 represents 6.1 x 10<sup>2</sup> or 610, and 6.1E+00 represents 6.1 x 10<sup>0</sup> or 6.1.

4. The Dischargers shall, as an average monthly, remove 75% of suspended solids from the influent stream before discharging wastewaters to the ocean, except that the effluent limitation to be met shall not be lower than 60 mg/l. This effluent limitation was derived from the Ocean Plan, Table 2.

 The average monthly system-wide percent removal was derived from CWA sections 301(h) and (j)(5). Percent removal shall be calculated on a system-wide basis, as provided in section VII.G of this Order/Permit. Section VII.G of this Order/Permit is carried over from Orders Nos. R9-2002-0025 and R9-2009-0001.

#### NPDES Permit No. CA0107409/RWQCB Order No. R9-2009-0001

DISCHARGE SPECIFICATIONS from NPDES Permit No. CA0107409/RWQCB Order No. R9-2009-0001 effective on August 1, 2010 to October 1, 2017 with limits on pollutant discharges.

| The discharge of waste through the Point Loma Ocean Outfall containing pollutants in excess of the following effluent limitation | ns are |
|----------------------------------------------------------------------------------------------------------------------------------|--------|
| prohibited:                                                                                                                      |        |

| NPDES Permit No. CA0107409/RWQCB Order No. R9-2009-0001 as modified by addendum 2 to the order |                                  |           |                               |                |                |                                              |  |
|------------------------------------------------------------------------------------------------|----------------------------------|-----------|-------------------------------|----------------|----------------|----------------------------------------------|--|
| Constituent                                                                                    | Units                            | 6-month   | 30-day                        | 7-Day          | Daily          | Instantaneous Maximum                        |  |
|                                                                                                |                                  | Median    | Average                       | Average        | Maximum        |                                              |  |
| Biochemical<br>Oxygen Demand<br>BOD <sub>5</sub> @ 20°C                                        | % removal <sup>1</sup>           | The "Mea  | n Annual Per                  | rcent Remo     | val" limit for | BOD is 58%. There is no mass emission limit. |  |
| Total Suspended                                                                                | % removal <sup>1</sup>           |           | >80                           |                |                |                                              |  |
| Solids                                                                                         | mg/L<br>metric                   |           | $75^4$<br>15,000 <sup>2</sup> |                |                |                                              |  |
|                                                                                                | tons/year<br>metric<br>tons/year |           | 13,598 <sup>3</sup>           |                |                |                                              |  |
| рН                                                                                             | pH units                         | Within th | e limits of 6.0               | ) - 9.0 at all | times.         |                                              |  |
| Grease & Oil                                                                                   | mg/L<br>lb/day                   |           | 25<br>42,743                  | 40<br>68,388   |                | 75<br>128,228                                |  |
| Settleable Solids                                                                              | mL/L                             |           | 1.0                           | 1.5            |                | 3.0                                          |  |
| Turbidity                                                                                      | NTU                              |           | 75                            | 100            |                | 225                                          |  |
| Acute Toxicity                                                                                 | TUa                              |           |                               |                | 6.42           |                                              |  |
| Arsenic                                                                                        | ug/L                             | 1,000     |                               |                | 5,900          | 16,000                                       |  |
| Cadmium                                                                                        | ug/L                             | 210       |                               |                | 820            | 2,100                                        |  |
| Chromium <sup>8</sup><br>(Hexavalent)                                                          | ug/L                             | 410       |                               |                | 1,600          | 4,100                                        |  |
| Copper                                                                                         | ug/L                             | 210       |                               |                | 2,100          | 5,700                                        |  |
| Lead                                                                                           | ug/L                             | 410       |                               |                | 1,600          | 4,100                                        |  |
| Mercury                                                                                        | ug/L                             | 8.1       |                               |                | 33             | 82                                           |  |
| Nickel                                                                                         | ug/L                             | 1,000     |                               |                | 4,100          | 10,000                                       |  |
| Selenium                                                                                       | ug/L                             | 3,100     |                               |                | 12,000         | 31,000                                       |  |
| Silver                                                                                         | ug/L                             | 110       |                               |                | 540            | 1,000                                        |  |
| Zinc                                                                                           | ug/L                             | 2,500     |                               |                | 15,000         | 39,400                                       |  |
| Cyanide                                                                                        | mg/L                             | 0.2       |                               |                | 0.8            | 2.1                                          |  |
| Total Residual<br>Chlorine(TRC)                                                                | mg/L                             | 0.41      |                               |                | 1.6            | 12                                           |  |
| Ammonia                                                                                        | mg/L                             | 120       |                               |                | 490            | 1,200                                        |  |
| Chronic Toxicity                                                                               | TUc                              |           |                               |                | 205            |                                              |  |
| Phenolic<br>Compounds<br>(non- chlorinated)                                                    | ug/L                             | 6,200     |                               |                | 25,000         | 62,000                                       |  |
| Chlorinated<br>Phenolics                                                                       | ug/L                             | 210       |                               |                | 820            | 2,100                                        |  |
| Endosulfan                                                                                     | ng/L                             | 1,800     |                               |                | 3,700          | 5,500                                        |  |

 $Y: EMTS \ 41. Sections \ WCS \ EPORTS \ EVWTP \ Annuals \ Annual 2017 \ Final \ Reports \ 2017 \ ! \ Annual \ docx$ 

Appendices 8.46

<sup>1</sup> To be calculated on a system-wide basis, as provided In Addendum No.1 to Order No. R9-2002-0025.

<sup>2</sup> To be achieved on permit effective date through December 31, 2013. Applies only to TSS discharges from POTWs owned and operated by the Discharger and the Discharger's wastewater generated in the Metro System service area; does not apply to wastewater (and the resulting TSS) generated in Mexico which, as a result of upset or shutdown, is treated at and discharged from Point Loma WTP.

<sup>3</sup> To be achieved on January 1, 2014. Applies only to TSS discharges from POTWs owned and operated by the Discharger and the Discharger's wastewater generated in the Metro System service area; does not apply to wastewater (and the resulting TSS) generated in Mexico which, as a result of upset or shutdown, is treated at and discharged from Point loma WTP.

<sup>4</sup> Based on average monthly performance data (1990 through 1994) for the Point Loma WTP provided by the Discharger for the 1995 301 (h) application.

| NPDES Permit No. CA0107409/RWQCB Order No. R9-2009-0001 as modified by addendum 2 to the order |       |                   |                   |                  |                  |                       |  |  |
|------------------------------------------------------------------------------------------------|-------|-------------------|-------------------|------------------|------------------|-----------------------|--|--|
| Constituent                                                                                    | Units | 6-month<br>Median | 30-day<br>Average | 7-Day<br>Average | Daily<br>Maximum | Instantaneous Maximum |  |  |
|                                                                                                | -     | 820               |                   | ŭ                | 1,600            | 2,500                 |  |  |

| LIMITATIONS FOR PROTECTION OF |       |             |  |  |  |  |  |  |
|-------------------------------|-------|-------------|--|--|--|--|--|--|
| HUMAN HEALTHNONC              | ARCIN | OGENS       |  |  |  |  |  |  |
| Constituent                   | Units | Monthly     |  |  |  |  |  |  |
|                               |       | Average     |  |  |  |  |  |  |
|                               |       | (30-Day)    |  |  |  |  |  |  |
| Acrolein                      | ug/L  | 45,000      |  |  |  |  |  |  |
| Antimony                      | ug/L  | 250,000     |  |  |  |  |  |  |
| Bis(2-chloroethoxy)           | ug/L  | 900         |  |  |  |  |  |  |
| methane                       |       |             |  |  |  |  |  |  |
| Bis(2-chloroisopropyl) ether  | ug/L  | 250,000     |  |  |  |  |  |  |
| Chlorobenzene                 | ug/L  | 120,000     |  |  |  |  |  |  |
| Chromium (III) <sup>12</sup>  | ug/L  | 39,000,000  |  |  |  |  |  |  |
| di-n-butyl phthalate          | ug/L  | 720,000     |  |  |  |  |  |  |
| dichlorobenzenes              | ug/L  | 1,000,000   |  |  |  |  |  |  |
| Diethyl phthalate             | ug/L  | 6,800,000   |  |  |  |  |  |  |
| Dimethyl phthalate            | ug/L  | 170,000,000 |  |  |  |  |  |  |
| 4,6-dinitro-2-methylphenol    | ug/L  | 45,000      |  |  |  |  |  |  |
| 2,4-dinitrophenol             | ug/L  | 820         |  |  |  |  |  |  |
| Ethylbenzene                  | ug/L  | 840,000     |  |  |  |  |  |  |
| Fluoranthene                  | ug/L  | 3,100       |  |  |  |  |  |  |
| Hexachlorocyclopentadiene     | ug/L  | 12,000      |  |  |  |  |  |  |
| Nitrobenzene                  | ug/L  | 1,000       |  |  |  |  |  |  |
| Thallium                      | ug/L  | 400         |  |  |  |  |  |  |
| Toluene                       | ug/L  | 17,000,000  |  |  |  |  |  |  |
| Tributyltin                   | ug/L  | 0.29        |  |  |  |  |  |  |
| 1.1.1-trichloroethane         | ug/L  | 110.000.000 |  |  |  |  |  |  |

#### LIMITATIONS FOR PROTECTION OF HUMAN HEALTH—CARCINOGENS

| Constituent               | Units | Monthly<br>Average<br>(30-Day) |
|---------------------------|-------|--------------------------------|
| Acrylonitrile             | ug/L  | 21                             |
| Aldrin                    | ng/L  | 4.5                            |
| Benzene                   | ug/L  | 1,200                          |
| Benzidine                 | ug/L  | 0.014                          |
| Beryllium                 | ug/L  | 6.8                            |
| Bis(2-chloroethyl)ether   | ug/L  | 9.2                            |
| Bis(2-                    | ug/L  | 720                            |
| ethylhexyl)phthalate      |       |                                |
| Carbon Tetrachloride      | ug/L  | 180                            |
| Chlordane                 | ng/L  | 4.7                            |
| Chloroform                | ug/L  | 27,000                         |
| DDT                       | ng/L  | 35                             |
| 1,1,2,2-tetrachloroethane | ug/L  | 470                            |
| 1,1-dichloroethylene      | ug/L  | 200                            |
| 1,1,2-trichloroethane     | ug/L  | 1,900                          |
| 1,4-dichlorobenzene       | ug/L  | 3,700                          |
| 3,3-dichlorobenzidine     | ug/L  | 1.7                            |
| 1,2-dichloroethane        | ug/L  | 5,700                          |
| Dichloromethane           | ug/L  | 92,000                         |
| 1,3-dichloropropene       | ug/L  | 1,800                          |
| Dieldrin                  | ng/L  | 8.20                           |
| 2,4-dinitrotoluene        | ug/L  | 530                            |
| 1,2-diphenylhydrazine     | ug/L  | 33                             |
| Halomethanes              | ug/L  | 27,000                         |
| Heptachlor                | ng/L  | 10                             |
| Hexachlorobenzene         | ug/L  | 0.043                          |
| Hexachlorobutadiene       | ug/L  | 2,900                          |
| Hexachloroethane          | ug/L  | 510                            |
| Isophorone                | ug/L  | 150,000                        |
| N-nitrosodimethylamine    | ug/L  | 1,500                          |
| N-nitrosodiphenylamine    | ug/L  | 510                            |
| PAHs                      | ug/L  | 1.80                           |
| PCBs                      | ng/L  | 3.90                           |
| TCDD equivalents          | pg/L  | 0.8                            |
| Tetrachloroethylene       | ug/L  | 410                            |
| Toxaphene                 | ng/L  | 430                            |
| Trichloroethylene         | ug/L  | 5,500                          |
| Vinyl Chloride            | ug/L  | 7,400                          |

This page intentionally left blank.

#### C. Influent and Effluent Data Summaries

The results of all analyses performed on the PLWTP influent and effluent are summarized in tables with monthly and annual averages. In some cases, annual totals are also calculated. This page intentionally left blank.

# Point Loma Wastewater Treatment Plant



This page intentionally left blank.

### POINT LOMA WASTEWATER TREATMENT PLANT SEWAGE ANNUAL

#### Annual 2017

#### Biochemical Oxygen Demand Concentration SM 5210B (24-hour composite)

|                                                                                     |                                                                                        |                                                                               | Daily<br>Influent<br>Value                                  | Daily<br>Influent<br>Value                                                             | Daily<br>Effluent<br>Value                                  | Daily<br>Effluent<br>Value                                                             | Percent<br>Removal<br>BOD                                            |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Date                                                                                |                                                                                        | Flow                                                                          | (mg/L)                                                      | (lbs/Day)                                                                              | (mg/L)                                                      | (lbs/Day)                                                                              | (%)                                                                  |
| JANUARY<br>FEBRUARY<br>MARCH<br>APRIL<br>MAY<br>JUNE<br>JULY<br>AUGUST<br>SEPTEMBEF | - 2017<br>- 2017<br>- 2017<br>- 2017<br>- 2017<br>- 2017<br>- 2017<br>- 2017<br>2 2017 | 172.0<br>165.0<br>157.1<br>141.0<br>138.7<br>129.3<br>130.1<br>128.6<br>127.8 | 277<br>290<br>305<br>327<br>317<br>316<br>312<br>309<br>300 | 397351<br>399069<br>399615<br>384532<br>366692<br>340762<br>338531<br>331410<br>319756 | 102<br>109<br>111<br>126<br>126<br>134<br>135<br>135<br>135 | 146317<br>149995<br>145434<br>148168<br>145752<br>144501<br>146480<br>144791<br>125771 | 63.2<br>62.4<br>63.6<br>61.5<br>60.3<br>57.6<br>56.7<br>56.3<br>60.7 |
| OCTOBER<br>NOVEMBER<br>DECEMBER                                                     | -2017<br>-2017<br>-2017                                                                | 127.5<br>126.8<br>127.3                                                       | 307<br>307<br>321                                           | 326448<br>324656<br>340800                                                             | 117<br>124<br>145                                           | 124412<br>131131<br>153944                                                             | 61.9<br>59.6<br>54.8                                                 |
| ========<br>Average                                                                 |                                                                                        | 139.3                                                                         | <br>307                                                     | 355802                                                                                 | <br>124                                                     | <br>142225                                                                             | <br>59.9                                                             |

#### Total Suspended Solids Concentration SM 2540D (24-hour composite)

|           |        |       | Daily           | Daily           | Percent          | Daily     | Daily          | Daily          | Percent           | Daily     |
|-----------|--------|-------|-----------------|-----------------|------------------|-----------|----------------|----------------|-------------------|-----------|
|           |        |       | Influent        | Influent        | VSS of           | Influent  | Effluent       | Effluent       | VSS of            | Effluent  |
|           |        |       | TSS             | VSS             | TSS              | Value     | TSS            | VSS            | TSS               | Value     |
| Date      |        | Flow  | (mg/L)          | (mg/L)          | (%)              | (lbs/Day) | (mg/L)         | (mg/L)         | (%)               | (lbs/Day) |
|           | -2017  | 172 0 | ========<br>306 | ========<br>264 | ========<br>۶۶ ع | 438951    | ========<br>30 | ========<br>24 | =========<br>80 0 | 43034     |
| FEBRUARY  | -2017  | 165.0 | 343             | 291             | 84.8             | 472002    | 34             | 27             | 79.4              | 46787     |
| MARCH     | -2017  | 157.1 | 332             | 290             | 87.3             | 434991    | 30             | 24             | 80.0              | 39306     |
| APRIL     | -2017  | 141.0 | 348             | 310             | 89.1             | 409227    | 32             | 25             | 78.1              | 37630     |
| MAY       | -2017  | 138.7 | 344             | 306             | 89.0             | 397925    | 34             | 27             | 79.4              | 39330     |
| JUNE      | -2017  | 129.3 | 365             | 319             | 87.4             | 393602    | 39             | 31             | 79.5              | 42056     |
| JULY      | -2017  | 130.1 | 369             | 325             | 88.1             | 400378    | 40             | 32             | 80.0              | 43401     |
| AUGUST    | -2017  | 128.6 | 358             | 315             | 88.0             | 383964    | 42             | 34             | 81.0              | 45046     |
| SEPTEMBER | R-2017 | 127.8 | 368             | 322             | 87.5             | 392234    | 34             | 27             | 79.4              | 36239     |
| OCTOBER   | -2017  | 127.5 | 359             | 315             | 87.7             | 381743    | 34             | 28             | 82.4              | 36154     |
| NOVEMBER  | -2017  | 126.8 | 358             | 315             | 88.0             | 378589    | 37             | 30             | 81.1              | 39128     |
| DECEMBER  | -2017  | 127.3 | 352             | 314             | 89.2             | 373712    | 52             | 42             | 80.8              | 55207     |
|           |        |       |                 |                 |                  |           |                |                |                   |           |
| Average   |        | 139.3 | 350             | 307             |                  | 404777    | 37             | 29             |                   | 41943     |

| Date           | Percent<br>Removal<br>TSS<br>(%) | Percent<br>Removal<br>VSS<br>(%) |
|----------------|----------------------------------|----------------------------------|
|                |                                  |                                  |
| JANUARY -2017  | 90.2                             | 90.9                             |
| FEBRUARY -2017 | 90.1                             | 90.7                             |
| MARCH -2017    | 91.0                             | 91.7                             |
| APRIL -2017    | 90.8                             | 91.9                             |
| MAY -2017      | 90.1                             | 91.2                             |
| JUNE -2017     | 89.3                             | 90.3                             |
| JULY -2017     | 89.2                             | 90.2                             |
| AUGUST -2017   | 88.3                             | 89.2                             |
| SEPTEMBER-2017 | 90.8                             | 91.6                             |
| OCTOBER -2017  | 90.5                             | 91.1                             |
| NOVEMBER -2017 | 89.7                             | 90.5                             |
| DECEMBER -2017 | 85.2                             | 86.6                             |
|                |                                  |                                  |
| Average        | 89.6                             | 90.5                             |

Annual Mass Emissions are calculated from monthly averages of flow and TSS, whereas monthly report average mass emissions are calculated from average daily mass emissions.

#### POINT LOMA WASTEWATER TREATMENT PLANT

#### Systemwide BOD Removals

Annual 2017

|         | Pt. Loma<br>Influent<br>Mass | NCWRP<br>PS64<br>Mass | NCWRP<br>Penasquitos<br>Mass | MBC<br>Return<br>Mass | NCWRP<br>Return<br>Mass | Total<br>Return<br>Mass | Pt. Loma<br>Effluent<br>Mass | System wide<br>Adjusted<br>BOD | Pt. Loma<br>Daily<br>BOD | Pt. Loma<br>Daily<br>BOD |
|---------|------------------------------|-----------------------|------------------------------|-----------------------|-------------------------|-------------------------|------------------------------|--------------------------------|--------------------------|--------------------------|
| MONTH   | Emissions                    | Emissions             | Emissions                    | Emissions             | Emissions               | Emissions               | Emissions                    | Removals                       | Removals                 | Ett Conc.                |
| 01-2017 | 402,162                      | 23,639                | 16,768                       | 5,097                 | 9,583                   | 14,680                  | 148,909                      | 65.2                           | 62.9                     | 104                      |
| 02-2017 | 391,850                      | 22,888                | 16,786                       | 5,348                 | 8,926                   | 14,274                  | 147,174                      | 64.4                           | 62.2                     | 109                      |
| 03-2017 | 396,243                      | 18,448                | 16,200                       | 5,422                 | 4,794                   | 10,216                  | 145,206                      | 65.3                           | 63.2                     | 111                      |
| 04-2017 | 384,827                      | 29,352                | 15,917                       | 5,269                 | 6,580                   | 11,849                  | 148,685                      | 64.4                           | 61.3                     | 126                      |
| 05-2017 | 367,768                      | 28,172                | 15,215                       | 3,842                 | 9,442                   | 13,284                  | 145,958                      | 63.0                           | 60.0                     | 126                      |
| 06-2017 | 341,495                      | 31,253                | 13,415                       | 4,065                 | 6,506                   | 10,572                  | 145,218                      | 61.3                           | 57.4                     | 135                      |
| 07-2017 | 338,363                      | 30,195                | 12,216                       | 4,726                 | 6,230                   | 10,957                  | 146,260                      | 60.4                           | 56.6                     | 135                      |
| 08-2017 | 334,456                      | 30,880                | 11,040                       | 5,079                 | 4,805                   | 9,884                   | 144,249                      | 60.5                           | 56.8                     | 134                      |
| 09-2017 | 322,377                      | 28,989                | 10,518                       | 4,475                 | 12,227                  | 16,703                  | 127,094                      | 62.9                           | 60.4                     | 119                      |
| 10-2017 | 330,284                      | 30,738                | 11,765                       | 5,689                 | 7,827                   | 13,515                  | 126,154                      | 64.8                           | 61.6                     | 119                      |
| 11-2017 | 325,810                      | 32,470                | 9,832                        | 5,507                 | 4,973                   | 10,481                  | 131,118                      | 63.2                           | 59.6                     | 124                      |
| 12-2017 | 340,069                      | 33,973                | 11,430                       | 7,466                 | 6,931                   | 14,397                  | 153,460                      | 58.3                           | 54.5                     | 145                      |
| avg     | 356,309                      | 28,416                | 13,425                       | 5,165                 | 7,402                   | 12,568                  | 142,457                      | 62.8                           | 59.7                     | 124                      |

#### Systemwide TSS Removals

#### Annual 2017

| MONTH   | Pt. Loma<br>Influent<br>Mass<br>Emissions<br>Lbs/day | NCWRP<br>PS64<br>Mass<br>Emissions<br>Lbs/day | NCWRP<br>Penasquitos<br>Mass<br>Emissions<br>Lbs/day | MBC<br>Return<br>Mass<br>Emissions<br>Lbs/day | NCWRP<br>Return<br>Mass<br>Emissions<br>Lbs/day | Total<br>Return<br>Mass<br>Emissions<br>Lbs/day | Pt. Loma<br>Effluent<br>Mass<br>Emissions<br>Lbs/day | System wide<br>Adjusted<br>TSS<br>Removals | Pt. Loma<br>Daily<br>TSS<br>Removals | Pt. Loma<br>Daily<br>TSS<br>Eff Conc.<br>mg/L |
|---------|------------------------------------------------------|-----------------------------------------------|------------------------------------------------------|-----------------------------------------------|-------------------------------------------------|-------------------------------------------------|------------------------------------------------------|--------------------------------------------|--------------------------------------|-----------------------------------------------|
| 01-2017 | 437,343                                              | 21,854                                        | 21,270                                               | 14,655                                        | 9,462                                           | 24,118                                          | 44,206                                               | 90.4                                       | 90.0                                 | 30                                            |
| 02-2017 | 467,600                                              | 23,968                                        | 21,455                                               | 12,376                                        | 12,124                                          | 24,500                                          | 47,466                                               | 90.4                                       | 89.9                                 | 34                                            |
| 03-2017 | 430,817                                              | 18,604                                        | 20,099                                               | 14,223                                        | 9,563                                           | 23,786                                          | 39,810                                               | 91.0                                       | 90.7                                 | 30                                            |
| 04-2017 | 409,464                                              | 23,936                                        | 16,309                                               | 13,218                                        | 9,603                                           | 22,821                                          | 37,695                                               | 91.1                                       | 90.8                                 | 32                                            |
| 05-2017 | 396, 390                                             | 24,742                                        | 16,909                                               | 9,612                                         | 11,504                                          | 21,116                                          | 39,407                                               | 90.5                                       | 90.0                                 | 34                                            |
| 06-2017 | 393,108                                              | 29,059                                        | 16,636                                               | 8,814                                         | 11,265                                          | 20,078                                          | 42,607                                               | 89.6                                       | 88.9                                 | 40                                            |
| 07-2017 | 400,073                                              | 28,670                                        | 13,322                                               | 10,945                                        | 9,755                                           | 20,700                                          | 43,165                                               | 89.7                                       | 89.2                                 | 40                                            |
| 08-2017 | 384,307                                              | 28,116                                        | 12,704                                               | 13,027                                        | 8,996                                           | 22,023                                          | 45,500                                               | 88.6                                       | 88.0                                 | 42                                            |
| 09-2017 | 392,419                                              | 28,083                                        | 13,071                                               | 12,063                                        | 16,640                                          | 28,702                                          | 35,935                                               | 91.0                                       | 90.8                                 | 34                                            |
| 10-2017 | 382,077                                              | 28,984                                        | 13,850                                               | 13,414                                        | 11,541                                          | 24,956                                          | 36,400                                               | 90.7                                       | 90.2                                 | 34                                            |
| 11-2017 | 377,794                                              | 28,279                                        | 11,774                                               | 12,015                                        | 11,575                                          | 23,591                                          | 39,428                                               | 89.8                                       | 89.4                                 | 37                                            |
| 12-2017 | 372,947                                              | 30,039                                        | 13,094                                               | 15,579                                        | 12,469                                          | 28,048                                          | 54,765                                               | 85.5                                       | 84.8                                 | 52                                            |
| avg     | 403,695                                              | 26,195                                        | 15,874                                               | 12,495                                        | 11,208                                          | 23,703                                          | 42,199                                               | 89.9                                       | 89.4                                 | 37                                            |

Annual mass emissions are calculated from monthly averages of flow and TSS, whereas monthly report average mass emissions are calculated from average daily mass emissions.

#### Annual 2017

## Influent to Plant (PLR)

|           |        |            |            | Biochemical | Hexane      |             |              |             |
|-----------|--------|------------|------------|-------------|-------------|-------------|--------------|-------------|
|           |        |            | Settleable | Oxygen      | Extractable |             | Floating     |             |
|           |        | pН         | Solids     | Demand      | Material    | Temperature | Particulates | 5 Turbidity |
| Date      |        |            | (ml/L)     | (mg/L)      | (mg/L)      | ( C )       | (mg/L)       | (NTU)       |
| ========  |        | ========== |            |             |             |             |              |             |
| JANUARY   | -2017  | 7.43       | 16.5       | 277         | 39.8        | 23.2        | <1.40        | 115         |
| FEBRUARY  | -2017  | 7.42       | 16.1       | 290         | 45.3        | 23.2        | <1.40        | 109         |
| MARCH     | -2017  | 7.39       | 16.8       | 305         | 46.1        | 24.1        | <1.40        | 105         |
| APRIL     | -2017  | 7.30       | 15.9       | 327         | 54.1        | 25.0        | <1.40        | 107         |
| MAY       | -2017  | 7.27       | 19.3       | 317         | 59.5        | 25.5        | <1.40        | 118         |
| JUNE      | -2017  | 7.27       | 18.5       | 316         | 59.8        | 26.5        | <1.40        | 109         |
| JULY      | -2017  | 7.20       | 17.5       | 312         | 66.3        | 27.6        | <1.40        | 115         |
| AUGUST    | -2017  | 7.22       | 18.6       | 309         | 61.0        | 28.2        | <1.40        | 110         |
| SEPTEMBER | R-2017 | 7.27       | 18.3       | 300         | 60.5        | 28.4        | <1.00        | 124         |
| OCTOBER   | -2017  | 7.28       | 17.9       | 307         | 64.4        | 27.7        | <1.00        | 106         |
| NOVEMBER  | -2017  | 7.29       | 18.4       | 307         | 64.1        | 26.7        | <1.00        | 115         |
| DECEMBER  | -2017  | 7.24       | 15.8       | 321         | 61.6        | 25.0        | 1.00         | 116         |
| ========= |        | =========  |            |             |             |             |              |             |
| Average   |        | 7.30       | 17.5       | 307         | 56.9        | 25.9        | <1.40        | 112         |

### Effluent to Ocean Outfall (PLE)

|           |        |          |            | Biochemical | Hexane      |             |              |           |
|-----------|--------|----------|------------|-------------|-------------|-------------|--------------|-----------|
|           |        |          | Settleable | Oxygen      | Extractable |             | Floating     |           |
|           |        | рН       | Solids     | Demand      | Material    | Temperature | Particulates | Turbidity |
| Date      |        |          | (ml/L)     | (mg/L)      | (mg/L)      | ( C )       | (mg/L)       | (NTU)     |
|           |        |          |            |             |             |             |              |           |
| JANUARY   | -2017  | 7.27     | 0.2        | 102         | 9.5         | 23.5        | <1.40        | 27        |
| FEBRUARY  | -2017  | 7.24     | 0.1        | 109         | 10.1        | 23.4        | <1.40        | 27        |
| MARCH     | -2017  | 7.23     | 0.1        | 111         | 10.6        | 24.3        | <1.40        | 30        |
| APRIL     | -2017  | 7.18     | 0.2        | 126         | 12.0        | 25.2        | <1.40        | 41        |
| MAY       | -2017  | 7.15     | 0.2        | 126         | 13.1        | 25.9        | <1.40        | 44        |
| JUNE      | -2017  | 7.14     | 0.2        | 134         | 14.1        | 26.8        | <1.40        | 45        |
| JULY      | -2017  | 7.11     | 0.2        | 135         | 15.1        | 28.0        | <1.40        | 56        |
| AUGUST    | -2017  | 7.07     | 0.5        | 135         | 16.0        | 28.5        | <1.40        | 63        |
| SEPTEMBER | R-2017 | 7.18     | 0.1        | 118         | 10.9        | 28.7        | <1.00        | 50        |
| OCTOBER   | -2017  | 7.18     | 0.2        | 117         | 12.5        | 27.9        | <1.00        | 46        |
| NOVEMBER  | -2017  | 7.14     | 0.3        | 124         | 13.1        | 26.9        | <1.00        | 47        |
| DECEMBER  | -2017  | 7.12     | 0.2        | 145         | 13.4        | 25.4        | <1.00        | 42        |
|           |        | ======== |            |             |             |             |              |           |
| Average   |        | 7.17     | 0.2        | 124         | 12.5        | 26.2        | <1.40        | 43        |

pH by SM4500H Setteble Solids by SM4540F BOD by SM5210B HEM by EPA 1664B Turbidity by SM2130B

#### Trace Metals EPA Method 200.7 and 200.8

| Analyte:                 | Antimony                                | Antimony | Arsenic      | Arsenic | BerylliumB   | eryllium | Cadmium | Cadmium |
|--------------------------|-----------------------------------------|----------|--------------|---------|--------------|----------|---------|---------|
| MDL                      | 2.44                                    | 2.44     | 1.84         | 1.84    | .12          | .12      | .26     | .26     |
| Units                    | UG/L                                    | UG/L     | UG/L         | UG/L    | UG/L         | UG/L     | UG/L    | UG/L    |
| Source:                  | PLR                                     | PLE      | PLR          | PLE     | PLR          | PLE      | PLR     | PLE     |
|                          |                                         |          |              |         |              |          |         |         |
| JANUARY -2017            | ND                                      | ND       | 1.61         | 0.85    | ND           | ND       | 1.08    | ND      |
| FEBRUARY -2017           | <2.44                                   | <2.44    | 2.18         | 1.30    | <0.05        | ND       | <0.26   | <0.26   |
| MARCH -2017              | 4.34                                    | <2.44    | 1.61         | 0.67    | 0.09         | <0.05    | <0.26   | <0.26   |
| APRIL -2017              | <2.44                                   | <2.44    | 1.45         | 0.87    | ND           | ND       | <0.26   | ND      |
| MAY -2017                | <2.44                                   | ND       | 1.24         | 0.79    | ND           | ND       | <0.26   | ND      |
| JUNE -2017               | <2.44                                   | ND       | 1.27         | 0.90    | ND           | ND       | 0.39    | ND      |
| JULY -2017               | <2.44                                   | <2.44    | 1.21         | 0.71    | ND           | <0.05    | <0.26   | ND      |
| AUGUST -2017             | <0.12                                   | <0.12    | 2.08         | <1.84   | ND           | ND       | <0.075  | ND      |
| SEPTEMBER-2017           | 0.90                                    | 0.55     | <1.84        | ND      | ND           | ND       | 0.14    | ND      |
| OCTOBER -2017            | 0.94                                    | 0.55     | <1.84        | ND      | ND           | ND       | 0.09    | ND      |
| NOVEMBER -2017           | 1.06                                    | 0.59     | <1.84        | ND      | ND           | ND       | 0.16    | ND      |
| DECEMBER -2017           | 1.07                                    | 0.59     | <1.84        | ND      | ND           | ND       | 0.17    | ND      |
|                          |                                         |          | =========    |         |              |          |         |         |
| AVERAGE                  | 0.69                                    | 0.19     | 1.05         | 0.51    | 0.01         | 0.00     | 0.17    | 0.00    |
| Analyte:                 | Chromium                                | Chromium | Copper       | Copper  | Iron         | Iron     | Lead    | Lead    |
| MDL                      | .54                                     | .54      | 2.16         | 2.16    | 17.1         | 17.1     | 1.68    | 1.68    |
| Units                    | UG/L                                    | UG/L     | UG/L         | UG/L    | UG/L         | UG/L     | UG/L    | UG/L    |
| Source:                  | PLR                                     | PLE      | PLR          | PLE     | PLR          | PLE      | PLR     | PLE     |
|                          | ======================================= | 1 67     | 110          | 10 4    |              |          |         |         |
|                          | /.//                                    | 1.0/     | 110          | 19.4    | 9270         | 5220     | 2.55    | <1.00   |
|                          | 4.57                                    | 1,15     | 104          | 10.0    | 8/10         | 2270     | 2.20    | <1.00   |
| MARCH -2017              | 4.40                                    | 1.52     | 104          | 20.1    | 0440<br>0250 | 2200     | 2.40    |         |
| AFRIL -2017<br>MAV _2017 | 4.52                                    | 1.37     | 103          | 13 5    | 8250         | 3010     | 2.15    | ×1 69   |
| TINE _2017               | 4.1/<br>5 10                            | 1.20     | 104          | 15.5    | 8530         | 3440     | 5 80    | 6.46    |
| JUILV _2017              | 5.19                                    | 1.51     | 110          | 15.2    | 8830         | 2080     | 1 30    | 21.40   |
| AUGUST _ 2017            | 3.00                                    | 1.50     | 77 9         | 16.2    | 6560         | 2300     | 4.55    | <0.074  |
| SEDTEMBER 2017           | 3.70                                    | 1.55     | 77.0         | 10.5    | 8470         | 2570     | 2.50    | 0.074   |
|                          | 3.90                                    | 0 02     | 92.7         | 9.4     | 7300         | 2370     | 1 80    | 0.55    |
|                          | J.40<br>/ 10                            | 1 07     | 03.7<br>90 0 | 10 0    | 0000         | 2450     | 2.05    | 0.29    |
| DECEMBER -2017           | 4.15                                    | 1 00     | 03.0         | 11 7    | 0000         | 2000     | 2.91    | 0.90    |
| DLCCMDER -2017           | 4.00                                    |          |              |         | 9560         | 000C<br> | 2.35    |         |
| AVERAGE                  | 4.64                                    | 1.28     | 100          | 14.8    | 8281         | 3046     | 3.19    | 0.71    |

Note: MDL values were updated in August 2017.

ND= not detected NA= not analyzed NS= not sampled

#### Trace Metals EPA Method 200.7 and 200.8

| Analyte:<br>MDL<br>Units<br>Source: |        | Nickel<br>.53<br>UG/L<br>PLR | Nickel<br>.53<br>UG/L<br>PLE | Selenium<br>.662<br>UG/L<br>PLR | Selenium<br>.662<br>UG/L<br>PLE | Silver<br>.73<br>UG/L<br>PLR | Silver<br>.73<br>.UG/L<br>PLE | Thallium<br>3.12<br>UG/L<br>PLR | Thallium<br>3.12<br>UG/L<br>PLE |
|-------------------------------------|--------|------------------------------|------------------------------|---------------------------------|---------------------------------|------------------------------|-------------------------------|---------------------------------|---------------------------------|
| JANUARY                             | -2017  | 13.8                         | 4.76                         | 1.46                            | 1.50                            | ND                           | ND ND                         | ND                              | ND                              |
| FEBRUARY                            | -2017  | 7.35                         | 4.60                         | 2.73                            | 1.47                            | 0.79                         | <0.73                         | ND                              | ND                              |
| MARCH                               | -2017  | 8.64                         | 5.15                         | 1.71                            | 1.11                            | <0.73                        | ND ND                         | ND                              | ND                              |
| APRIL                               | -2017  | 6.80                         | 4.56                         | 1.32                            | 0.86                            | <0.73                        | ND ND                         | ND                              | ND                              |
| MAY                                 | -2017  | 6.74                         | 4.20                         | 1.45                            | 0.86                            | <0.73                        | 1.53                          | ND                              | ND                              |
| JUNE                                | -2017  | 7.02                         | 4.71                         | 1.38                            | 0.89                            | <0.73                        | ND ND                         | ND                              | ND                              |
| JULY                                | -2017  | 7.57                         | 5.16                         | 1.60                            | 0.76                            | <0.73                        | ND ND                         | ND                              | ND                              |
| AUGUST                              | -2017  | 6.74                         | 4.82                         | 2.39                            | 1.64                            | <0.024                       | <0.024                        | ND                              | ND                              |
| SEPTEMBER                           | R-2017 | 7.24                         | 4.48                         | 1.78                            | 0.71                            | 0.42                         | ND                            | ND                              | ND                              |
| OCTOBER                             | -2017  | 5.73                         | 4.06                         | 2.48                            | 1.73                            | 0.42                         | ND                            | ND                              | ND                              |
| NOVEMBER                            | -2017  | 6.34                         | 4.63                         | 1.80                            | 1.19                            | 0.35                         | <0.02                         | ND                              | ND                              |
| DECEMBER                            | -2017  | 6.36                         | 3.92                         | 1.76                            | 0.98                            | 0.53                         | 0.04                          | ND                              | ND                              |
| AVERAGE                             | =      | 7.53                         | 4.59                         | 1.82                            | 1.14                            | 0.21                         | 0.13                          | ND                              | ND                              |

| Analyte:    |      | Zinc | Zinc | Mercury  | Mercury |
|-------------|------|------|------|----------|---------|
| MDL         |      | 4.19 | 4.19 | .002     | .001    |
| Units       |      | UG/L | UG/L | UG/L     | UG/L    |
| Source:     |      | PLR  | PLE  | PLR      | PLE     |
|             | ==== |      |      |          |         |
| JANUARY -2  | 2017 | 192  | 42.0 | 0.0643   | 0.0080  |
| FEBRUARY -2 | 2017 | 209  | 29.3 | 0.1250   | 0.0089  |
| MARCH -2    | 2017 | 171  | 30.6 | 0.1008   | 0.0111  |
| APRIL -2    | 2017 | 177  | 31.9 | 0.1303   | 0.0137  |
| MAY -2      | 2017 | 182  | 22.4 | 0.1398   | 0.0106  |
| JUNE -2     | 2017 | 180  | 28.5 | 0.0882   | 0.0287  |
| JULY -2     | 2017 | 205  | 30.2 | 0.1463   | 0.0101  |
| AUGUST -2   | 2017 | 129  | 28.9 | 0.0934   | 0.0127  |
| SEPTEMBER-2 | 2017 | 167  | 19.6 | 0.1128   | 0.0076  |
| OCTOBER -2  | 2017 | 142  | 18.9 | 0.0750   | 0.0100  |
| NOVEMBER -2 | 2017 | 150  | 25.4 | 0.1210   | 0.0100  |
| DECEMBER -2 | 2017 | 131  | 16.2 | 0.1013   | 0.0114  |
|             | ==== |      |      | ======== |         |
| AVERAGE     |      | 170  | 27.0 | 0.1082   | 0.0119  |

Mercury by EPA Method 1631E

Note: MDL values were updated in August 2017.

ND= not detected NA= not analyzed NS= not sampled

Ammonia-Nitrogen and Total Cyanides

| Analyte        | Ammonia-N | Ammonia-N | Cyanide, Total   | Cyanide, Total |
|----------------|-----------|-----------|------------------|----------------|
| MDL/Units      | .3 MG/L   | .3 MG/L   | .005 MG/L        | .005 MG/L      |
| Source         | PLR       | PLE       | PLR              | PLE            |
| Limit          |           | 123       |                  | 0.200          |
|                |           |           | ================ |                |
| JANUARY -2017  | 34.4      | 34.2      | <0.0020          | <0.0020        |
| FEBRUARY -2017 | 36.7      | 36.2      | <0.0020          | 0.0024         |
| MARCH -2017    | 37.0      | 36.5      | <0.0020          | <0.0020        |
| APRIL -2017    | 42.7      | 42.3      | 0.0020           | <0.0020        |
| MAY -2017      | 41.7      | 41.8      | 0.0023           | <0.0020        |
| JUNE -2017     | 43.0      | 42.6      | <0.0020          | <0.0020        |
| JULY -2017     | 42.5      | 42.1      | <0.0050          | <0.0050        |
| AUGUST -2017   | 42.5      | 41.2      | <0.0050          | <0.0050        |
| SEPTEMBER-2017 | 41.8      | 41.0      | <0.0050          | <0.0050        |
| OCTOBER -2017  | 43.2      | 42.6      | <0.0050          | <0.0050        |
| NOVEMBER -2017 | 42.6      | 41.8      | <0.0050          | <0.0050        |
| DECEMBER -2017 | 42.3      | 41.5      | <0.0050          | <0.0050        |
|                |           |           |                  |                |
| Average:       | 40.9      | 40.3      | 0.0004           | 0.0002         |

| Analyte<br>MDL/Units<br>Source | ;     | Chlorine Residual,<br>.03 MG/L<br>PLE | Total |
|--------------------------------|-------|---------------------------------------|-------|
| ========                       | ===== |                                       |       |
| JANUARY                        | -2017 | 0.037                                 |       |
| FEBRUARY                       | -2017 | <0.030                                |       |
| MARCH                          | -2017 | <0.030                                |       |
| APRIL                          | -2017 | ND                                    |       |
| MAY                            | -2017 | ND                                    |       |
| JUNE                           | -2017 | ND                                    |       |
| JULY                           | -2017 | ND                                    |       |
| AUGUST                         | -2017 | ND                                    |       |
| SEPTEMBER                      | 2017  | ND                                    |       |
| OCTOBER                        | -2017 | ND                                    |       |
| NOVEMBER                       | -2017 | ND                                    |       |
| DECEMBER                       | -2017 | ND                                    |       |
|                                | ===== |                                       |       |
| Average:                       |       | 0.003                                 |       |

Ammonia by SM5210B Cyanide by SM4500-CN B/E Chlorine by SM4500-Cl G

Note: MDL values for total cyanide were updated in July 2017.

ND= not detected NA= not analyzed NS= not sampled

#### Radioactivity EPA Method 900.0

| Source  | Month     |        | Gross Alpha   | Radiation | Gross E  | Beta Radiation |
|---------|-----------|--------|---------------|-----------|----------|----------------|
| ======  | ========  | =====  | ============= |           | ======== |                |
| PLR     | JANUARY   | -2017  |               | 5.5±2.9   |          | 13.7±2.5       |
| PLR     | FEBRUARY  | -2017  |               | 11.0±3.1  |          | 15.4±2.2       |
| PLR     | MARCH     | -2017  |               | 9.3±2.9   |          | 12.3±2.0       |
| PLR     | APRIL     | -2017  |               | 9.0±2.9   |          | 19.8±2.3       |
| PLR     | MAY       | -2017  |               | 7.9±2.6   |          | 17.1±2.2       |
| PLR     | JUNE      | -2017  |               | 4.4±1.7   |          | 13.8±1.7       |
| PLR     | JULY      | -2017  |               | 5.3±2.7   |          | 15.5±2.8       |
| PLR     | AUGUST    | -2017  |               | 13.9±2.8  |          | 11.9±2.1       |
| PLR     | SEPTEMBER | R-2017 |               | 5.7±2.4   |          | 17.7±2.6       |
| PLR     | OCTOBER   | -2017  |               | 2.9±2.1   |          | 23.7±2.9       |
| PLR     | NOVEMBER  | -2017  |               | 1.6±2.0   |          | 24.3±2.7       |
| PLR     | DECEMBER  | -2017  |               | 9.0±2.7   |          | 12.9±2.0       |
|         | ========  |        | ===========   |           | ======== |                |
| AVERAGE |           |        |               | 6.9±2.5   |          | 16.5±2.3       |

| Source  | Month     |        | Gross  | Alpha  | Radiati | ion | Gross   | Beta  | Radiation |
|---------|-----------|--------|--------|--------|---------|-----|---------|-------|-----------|
|         |           |        | ====== | ====== |         |     |         |       |           |
| PLE     | JANUARY   | -2017  |        |        | 5.7±2   | 2.3 |         |       | 13.8±1.9  |
| PLE     | FEBRUARY  | -2017  |        |        | 8.9±2   | 2.8 |         |       | 14.5±2.0  |
| PLE     | MARCH     | -2017  |        |        | 11.8±2  | 2.1 |         |       | 13.1±1.6  |
| PLE     | APRIL     | -2017  |        |        | 7.9±1   | L.8 |         |       | 13.5±1.6  |
| PLE     | MAY       | -2017  |        |        | 5.6±1   | 1.9 |         |       | 4.7±1.5   |
| PLE     | JUNE      | -2017  |        |        | 6.8±2   | 2.5 |         |       | 19.3±2.4  |
| PLE     | JULY      | -2017  |        |        | 5.8±3   | 3.2 |         |       | 15.4±2.8  |
| PLE     | AUGUST    | -2017  |        |        | 4.9±2   | 2.0 |         |       | 12.7±1.9  |
| PLE     | SEPTEMBER | R-2017 |        |        | 2.7±1   | 1.9 |         |       | 19.1±2.8  |
| PLE     | OCTOBER   | -2017  |        |        | 2.8±1   | 1.8 |         |       | 21.2±2.8  |
| PLE     | NOVEMBER  | -2017  |        |        | 2.6±2   | 2.1 |         |       | 21.6±2.7  |
| PLE     | DECEMBER  | -2017  |        |        | 6.7±3   | 3.3 |         |       | 20.3±2.4  |
| ======  |           |        | ====== | =====  |         | === | ======= | ===== |           |
| AVERAGE |           |        |        |        | 5.8±2   | 2.4 |         |       | 15.8±2.2  |

Analyzed by: FGL Environmental Agricultural Analytical

ND= not detected NA= not analyzed NS= not sampled

Units in picocuries/liter (pCi/L)

#### Chlorinated Pesticide Analysis EPA Method 608

| Source                                              |             |               | PLR        |
|-----------------------------------------------------|-------------|---------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Analyte                                             | MDL         | Units         | Avg        | Avg        | Avg        | APR<br>Avg | Avg        | Avg        | Avg        | AUG<br>Avg | Avg        | Avg        | Avg        | Avg        | Average    |
|                                                     | ====        | =====         |            | =====      | =====      | =====      |            |            |            |            |            |            |            | =====      |            |
| Aldrin                                              | 100         | NG/L          | ND         |
| Dieldrin                                            | 200         | NG/L          | ND         |
| BHC, Alpha isomer                                   | 200         | NG/L          | ND         |
| BHC, Beta isomer                                    | 50          | NG/L          | ND         |
| BHC, Gamma isomer                                   | 100         | NG/L          | ND         |
| BHC, Delta isomer                                   | 50          | NG/L          | ND         |
| p,p-DDD                                             | 16          | NG/L          | ND         | ND'        | * ND       | ND         | ND         |
| p,p-DDE                                             | 200         | NG/L          | ND         |
| p,p-DDI                                             | 50          | NG/L          | ND         |
| o,p-DDD                                             | 10          | NG/L          | ND         | NA         | ND         | ND         | ND         | ND         |
| o,p-DDE                                             | 20          | NG/L          | ND         | NA         | ND         | ND         | ND         | ND         |
| o,p-DDI                                             | 5           | NG/L          | ND         | NA         | ND         | ND         | ND         | ND         |
| Heptachlor                                          | 50          | NG/L          | ND         |
| Heptachlor epoxide                                  | 50          | NG/L          | ND         |
| Alpha (cis) Chlordane                               | 45          | NG/L          | ND         |
| Gamma (trans) Chlordane                             | 45          | NG/L          | ND         |
| Alpha Chlordene                                     |             | NG/L          | NA         |
| Gamma Chlordene                                     |             | NG/L          | NA         |
| Oxychlordane                                        | 1.21        | NG/L          | ND         | NA         | NA         | ND         | ND         | ND         |
| Irans Nonachlor                                     | 5           | NG/L          | ND         | NA         | ND         | ND         | ND         | ND         |
| Cis Nonachlor                                       | 5           | NG/L          | ND         | NA         | ND         | ND         | ND         | ND         |
| Alpha Endosultan                                    | 210         | NG/L          | ND         |
| Beta Endosultan                                     | 200         | NG/L          | ND         |
| Endosultan Sultate                                  | 880         | NG/L          | ND         |
| Endrin                                              | 50          | NG/L          | ND         |
| Endrin aldenyde                                     | /3          | NG/L          | ND         |
| Mirex                                               | 5           | NG/L          | ND         | NA         | ND         | ND         | ND         | ND         |
| Methoxychlor                                        | 460         | NG/L          | ND         | NA         | ND         | ND         | ND         |
| loxaphene                                           | 2500        | NG/L          | ND         |
| PCB 1016                                            | 2500        | NG/L          | ND         |
| PCB 1221                                            | 2500        | NG/L          | ND         |            | ND         |
| PCB 1232                                            | 2100        |               |            |            |            |            |            |            |            |            |            |            |            |            |            |
| PCB 1242                                            | 2000        | NG/L          | ND         |
| PLB 1248                                            | 1400        | NG/L          | ND         |
| PCB 1254                                            | 2500        |               |            |            |            |            |            |            |            |            |            |            |            |            |            |
| PCB 1260                                            | 2500        |               |            |            |            |            |            |            |            |            | ND         | ND         |            |            |            |
| PCB 1262                                            | 500         | NG/L          | ND         | NA         | NA         | ND         | ND         | ND         |
| Aldain · Dialdain                                   | 200         |               | =====      | =====      | =====      | =====      | =====      | =====      | =====      | =====      | =====      | =====      | =====      | =====      | =====      |
| Aldrin + Dieldrin                                   | 200         |               | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |
| Hexachiorocyclonexanes                              | 200         |               | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |
| Chlandara i related errod                           | 200         |               | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |
| Delychleningtod hinhenyle                           | 45          |               | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |
| Folychiorinated Dipnenyis                           | 2500        |               | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |
| ENUUSUITANS<br>==================================== | 000<br>==== | NG/L<br>===== | 0<br>===== | ھ<br>===== | 0<br>===== | 0<br>===== | 0<br>===== | 0<br>===== | ں<br>===== | 0<br>===== | 0<br>===== | 0<br>===== | 0<br>===== | 0<br>===== | 0<br>===== |
| Heptachlors                                         | 50          | NG/L          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |
|                                                     | ====        |               |            | =====      | =====      | =====      | =====      |            | =====      |            |            |            |            |            | =====      |
| Chlorinated Hydrocarbons                            | 2500        | NG/L          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |

\* = One or more quality control criteria not met; value not used in average calculations.

#### Chlorinated Pesticide Analysis EPA Method 608

| Source                     |             |               | PLE        |
|----------------------------|-------------|---------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|                            |             |               | JAN        | FEB        | MAR        | APR        | MAY        | JUN        | JUL        | AUG        | SEP        | 0CT        | NOV        | DEC        |            |
| Analyte                    | MDL         | Units         | Avg        | Average    |
|                            | ====        |               |            |            |            | =====      | =====      |            |            | =====      |            | =====      |            |            |            |
| Aldrin                     | 100         | NG/L          | ND         |
| Dieldrin                   | 200         | NG/L          | ND         |
| BHC, Alpha isomer          | 200         | NG/L          | ND         |
| BHC, Beta isomer           | 50          | NG/L          | ND         |
| BHC, Gamma isomer          | 100         | NG/L          | ND         |
| BHC, Delta isomer          | 50          | NG/L          | ND         |
| p,p-DDD                    | 16          | NG/L          | ND         | ND'        | * ND       | ND         | ND         |
| p,p-DDE                    | 200         | NG/L          | ND         |
| p,p-DDT                    | 50          | NG/L          | ND         |
| o,p-DDD                    | 10          | NG/L          | ND         | NA         | ND         | ND         | ND         | ND         |
| o,p-DDE                    | 20          | NG/L          | ND         | NA         | ND         | ND         | ND         | ND         |
| o,p-DDT                    | 5           | NG/L          | ND         | NA         | ND         | ND         | ND         | ND         |
| Heptachlor                 | 50          | NG/L          | ND         |
| Heptachlor epoxide         | 50          | NG/L          | ND         |
| Alpha (cis) Chlordane      | 45          | NG/L          | ND         |
| Gamma (trans) Chlordane    | 45          | NG/L          | ND         |
| Alpha Chlordene            |             | NG/L          | NA         |
| Gamma Chlordene            |             | NG/L          | NA         |
| Oxychlordane               | 1.21        | NG/L          | ND         | NA         | NA         | ND         | ND         | ND         |
| Trans Nonachlor            | 5           | NG/L          | ND         | NA         | ND         | ND         | ND         | ND         |
| Cis Nonachlor              | 5           | NG/L          | ND         | NA         | ND         | ND         | ND         | ND         |
| Alpha Endosulfan           | 210         | NG/L          | ND         |
| Beta Endosulfan            | 200         | NG/L          | ND         |
| Endosulfan Sulfate         | 880         | NG/L          | ND         |
| Endrin                     | 50          | NG/L          | ND         |
| Endrin aldehyde            | 73          | NG/L          | ND         |
| Mirex                      | 5           | NG/L          | ND         | NA         | ND         | ND         | ND         | ND         |
| Methoxychlor               | 460         | NG/L          | ND         | NA         | ND         | ND         | ND         |
| Toxaphene                  | 2500        | NG/L          | ND         |
| PCB 1016                   | 2500        | NG/L          | ND         |
| PCB 1221                   | 2500        | NG/L          | ND         |
| PCB 1232                   | 2100        | NG/L          | ND         |
| PCB 1242                   | 2000        | NG/L          | ND         |
| PCB 1248                   | 1400        | NG/L          | ND         |
| PCB 1254                   | 2500        | NG/L          | ND         |
| PCB 1260                   | 2500        | NG/L          | ND         |
| PCB 1262                   | 500         | NG/L          | ND         | NA         | NA         | ND         | ND         | ND         |
| Aldrin + Dieldrin          | ====<br>200 | =====<br>NG/L | =====<br>0 |
| Hexachlorocyclohexanes     | 200         | NG/L          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |
| DDT and derivatives        | 200         | NG/L          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |
| Chlordane + related cmpds. | 45          | NG/L          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |
| Polychlorinated biphenyls  | 2500        | NG/L          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |
| Endosulfans                | 880         | NG/L          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |
|                            | ====        | =====         | =====      |            | =====      |            | =====      | =====      | =====      | =====      | =====      | =====      | =====      | =====      |            |
| Heptachlors                | 50          | NG/L          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |
| Chlorinated Hydrocarbons   | 2500        | =<br>NG/L     | =====<br>0 | =====<br>0 | ==<br>0    | =====<br>0 | ==<br>0    | =<br>0     |
|                            |             |               | · ·        | v          | •          | °,         | · ·        | · ·        | °,         | •          | · ·        | °,         | v          | •          | -          |

\* = One or more quality control criteria not met; value not used in average calculations.

#### POINT LOMA WASTEWATER TREATMENT PLANT

#### ANNUAL 2017

#### Organophosphorus Pesticides EPA Method 614

| Source                            |           |               | PLR              | PLR                                    | PLR              | PLR                                    | PLR                                    | PLR              |
|-----------------------------------|-----------|---------------|------------------|----------------------------------------|------------------|----------------------------------------|----------------------------------------|------------------|
| Date                              |           |               | 09-JAN-2017      | 07-FEB-2017                            | 06-MAR-2017      | 12-APR-2017                            | 02-MAY-2017                            | 08-JUN-2017      |
| Analyte                           | MDL       | Units         | P916018          | P919163                                | P926350          | P933028                                | P936544                                | P946712          |
|                                   | ===       | =====         |                  |                                        |                  |                                        |                                        |                  |
| Demeton O                         | .01       | UG/L          | ND               | ND                                     | ND               | ND                                     | ND                                     | ND               |
| Demeton S                         | .04       | UG/L          | ND               | ND                                     | ND               | ND                                     | ND                                     | ND               |
| Diazinon                          | .02       | UG/L          | ND               | ND                                     | ND               | ND                                     | ND                                     | ND               |
| Guthion                           | .03       | UG/L          | ND               | ND                                     | ND               | ND                                     | ND                                     | ND               |
| Malathion                         | .02       | UG/L          | ND               | ND                                     | DNQ0.04          | ND                                     | DNQ0.08                                | 0.10             |
| Parathion                         | .01       | UG/L          | ND               | ND                                     | ND               | ND                                     | ND                                     | ND               |
| Chlorpyrifos                      | .02       | UG/L          | ND               | ND                                     | ND               | ND                                     | ND                                     | ND               |
| Coumaphos                         | .05       | UG/L          | ND               | ND                                     | ND               | ND                                     | ND                                     | ND               |
| Dichlorvos                        | .01       | UG/L          | ND               | ND                                     | ND               | DNQ0.01                                | ND                                     | ND               |
| Disulfoton                        | .01       | UG/L          | ND               | ND                                     | ND               | ND                                     | ND                                     | ND               |
| Stirophos                         | .01       | UG/L          | ND               | ND                                     | ND               | ND                                     | ND                                     | 0.3              |
| Thiophosphorus Pesticides         | ===<br>03 | =====<br>UG/I | ========<br>0 00 | ========<br>0 00                       | ========<br>0 00 | ========<br>0 00                       | ========<br>0 00                       | ========<br>0 10 |
| Demeton -0, -S                    | .04       | UG/L          | 0.00             | 0.00                                   | 0.00             | 0.00                                   | 0.00                                   | 0.00             |
|                                   | ===       | =====         | =========        |                                        |                  |                                        | =======                                | =======          |
| Total Organophosphorus Pesticides | .05       | UG/L          | 0.00             | 0.00                                   | 0.00             | 0.00                                   | 0.00                                   | 0.40             |
| Source                            |           |               | PLR              | PLR                                    | PLR              | PLR                                    | PLR                                    | PLR              |
| Date                              |           |               | 12-JUL-2017      | 01-AUG-2017                            | 13-SEP-2017      | 03-0CT-2017                            | 06-NOV-2017                            | 13-DEC-2017      |
| Analyte                           | MDL       | Units         | P954715          | P959720                                | P967832          | P973069                                | P981464                                | P987753          |
| Demeton O                         | ===<br>01 | =====<br>UG/I |                  | ====================================== |                  | ====================================== | ====================================== |                  |
| Demeton S                         | .01       |               |                  |                                        |                  |                                        |                                        |                  |
| Diazinon                          | .04       |               |                  |                                        |                  |                                        |                                        |                  |
| Guthion                           | .02       |               |                  |                                        |                  |                                        |                                        |                  |
| Malathion                         | .05<br>60 |               |                  |                                        |                  |                                        |                                        |                  |
| Parathion                         | .02       |               |                  | רט. טעאים                              |                  |                                        |                                        |                  |
|                                   |           |               |                  |                                        |                  |                                        |                                        |                  |

| Diazinon                          | .02 UG/L | ND   | ND      | ND   | ND   | ND   | ND     |
|-----------------------------------|----------|------|---------|------|------|------|--------|
| Guthion                           | .03 UG/L | ND   | ND      | ND   | ND   | ND   | ND     |
| Malathion                         | .02 UG/L | ND   | DNQ0.07 | ND   | ND   | ND   | ND     |
| Parathion                         | .01 UG/L | ND   | ND      | ND   | ND   | ND   | ND     |
| Chlorpyrifos                      | .02 UG/L | ND   | NA      | ND   | ND   | ND   | DNQ0.1 |
| Coumaphos                         | .05 UG/L | ND   | ND      | ND   | ND   | ND   | ND     |
| Dichlorvos                        | .01 UG/L | ND   | ND      | ND   | ND   | ND   | ND     |
| Disulfoton                        | .01 UG/L | ND   | ND      | ND   | ND   | ND   | ND     |
| Stirophos                         | .01 UG/L | ND   | ND      | ND   | ND   | ND   | ND     |
|                                   |          |      |         |      |      |      |        |
| Thiophosphorus Pesticides         | .03 UG/L | 0.00 | 0.00    | 0.00 | 0.00 | 0.00 | 0.00   |
| Demeton -0, -S                    | .04 UG/L | 0.00 | 0.00    | 0.00 | 0.00 | 0.00 | 0.00   |
| Total Organophosphorus Pesticides | .05 UG/L | 0.00 | 0.00    | 0.00 | 0.00 | 0.00 | 0.00   |

ND=not detected NS=not sampled NA=not analyzed

DNQ= Detected but not quantified. Sample result is less than the Minimum Level but greater than or equal to MDL.

#### Organophosphorus Pesticides EPA Method 614

| Source                            |     |       | PLE         | PLE         | PLE         | PLE         | PLE         | PLE         |
|-----------------------------------|-----|-------|-------------|-------------|-------------|-------------|-------------|-------------|
| Date                              |     |       | 09-JAN-2017 | 07-FEB-2017 | 06-MAR-2017 | 12-APR-2017 | 02-MAY-2017 | 08-JUN-2017 |
| Analyte                           | MDL | Units | P916015     | P919157     | P926347     | P933025     | P936538     | P946709     |
|                                   | === | ===== |             |             |             |             | ==========  |             |
| Demeton O                         | .01 | UG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| Demeton S                         | .04 | UG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| Diazinon                          | .02 | UG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| Guthion                           | .03 | UG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| Malathion                         | .02 | UG/L  | ND          | DNQ0.02     | DNQ0.05     | ND          | DNQ0.10     | DNQ0.06     |
| Parathion                         | .01 | UG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| Chlorpyrifos                      | .02 | UG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| Coumaphos                         | .05 | UG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| Dichlorvos                        | .01 | UG/L  | ND          | DNQ0.01     | ND          | DNQ0.1      | ND          | ND          |
| Disulfoton                        | .01 | UG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| Stirophos                         | .01 | UG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
|                                   | === | ===== |             |             |             |             |             |             |
| Thiophosphorus Pesticides         | .03 | UG/L  | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        |
| Demeton -O, -S                    | .04 | UG/L  | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        |
|                                   | === | ===== |             |             |             |             |             |             |
| Total Organophosphorus Pesticides | .05 | UG/L  | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        |

| Source                            |     |               | PLE         | PLE         | PLE         | PLE         | PLE         | PLE         |
|-----------------------------------|-----|---------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Date                              |     |               | 12-JUL-2017 | 01-AUG-2017 | 13-SEP-2017 | 03-0CT-2017 | 06-NOV-2017 | 13-DEC-2017 |
| Analyte                           | MDL | Units         | P954712     | P959714     | P967829     | P973063     | P981461     | P987750     |
|                                   | === | =====         | ==========  |             |             | =========   |             |             |
| Demeton O                         | .01 | UG/L          | ND          | ND          | ND          | ND          | ND          | ND          |
| Demeton S                         | .04 | UG/L          | ND          | ND          | ND          | ND          | ND          | ND          |
| Diazinon                          | .02 | UG/L          | ND          | ND          | ND          | ND          | ND          | ND          |
| Guthion                           | .03 | UG/L          | ND          | ND          | ND          | ND          | ND          | ND          |
| Malathion                         | .02 | UG/L          | ND          | 0.17        | DNQ0.07     | ND          | ND          | ND          |
| Parathion                         | .01 | UG/L          | ND          | ND          | ND          | ND          | ND          | ND          |
| Chlorpyrifos                      | .02 | UG/L          | ND          | NA          | ND          | ND          | ND          | ND          |
| Coumaphos                         | .05 | UG/L          | ND          | ND          | ND          | ND          | ND          | ND          |
| Dichlorvos                        | .01 | UG/L          | ND          | ND          | ND          | ND          | ND          | ND          |
| Disulfoton                        | .01 | UG/L          | ND          | ND          | ND          | ND          | ND          | ND          |
| Stirophos                         | .01 | UG/L          | ND          | ND          | ND          | ND          | ND          | ND          |
|                                   | === | =====         |             |             |             |             |             |             |
| Thiophosphorus Pesticides         | .03 | UG/L          | 0.00        | 0.17        | 0.00        | 0.00        | 0.00        | 0.00        |
| Demeton -O, -S                    | .04 | UG/L          | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        |
| Total Organophosphorus Pesticides | .05 | =====<br>UG/L | 0.00        | 0.17        | 0.00        | 0.00        | 0.00        | 0.00        |

ND=not detected NS=not sampled NA=not analyzed

DNQ= Detected but not quantified. Sample result is less than the Minimum Level but greater than or equal to MDL.

#### POINT LOMA WASTEWATER TREATMENT PLANT

#### ANNUAL 2017

#### Tributyl Tin analysis

| Source                                 |       |       | PLR       | PLR      | PLR | PLR     | PLR | PLR | PLR | PLR | PLR |
|----------------------------------------|-------|-------|-----------|----------|-----|---------|-----|-----|-----|-----|-----|
|                                        |       |       | JAN       | FEB      | MAR | APR     | MAY | JUN | JUL | AUG | SEP |
| Analyte                                | MDL   | Units |           |          |     |         |     |     |     |     |     |
|                                        | ===== | ===== | ========= |          |     |         |     |     |     |     |     |
| Dibutyltin                             | .0102 | UG/L  | ND        | ND       | ND  | ND      | ND  | ND  | ND  | ND  | ND  |
| Monobutyltin                           | .013  | UG/L  | ND        | ND       | ND  | ND      | ND  | ND  | ND  | ND  | ND  |
| Tributyltin                            | .0083 | UG/L  | ND        | ND       | ND  | ND      | ND  | ND  | ND  | ND  | ND  |
|                                        |       |       |           |          |     |         |     |     |     |     |     |
| Source                                 |       |       | PLR       | PIR      | PIR |         |     |     |     |     |     |
| Source                                 |       |       | 000       | NOV      | DEC |         |     |     |     |     |     |
| Analyte                                | MDL   | Units | 001       | Nov      | DLC | Average |     |     |     |     |     |
| ====================================== | ===== | ===== | ========  | ======== |     |         |     |     |     |     |     |
| DibutyItin                             | .0102 | UG/L  | ND        | ND       | ND  | ND      |     |     |     |     |     |
| Monobutyltin                           | .013  | UG/L  | ND        | NA       | ND  | ND      |     |     |     |     |     |
| Tributyltin                            | .0083 | UG/L  | ND        | ND       | ND  | ND      |     |     |     |     |     |

| Source                                    |                        |                      | PLE<br>JAN     | PLE<br>FEB     | PLE<br>MAR        | PLE<br>APR           | PLE<br>MAY           | PLE<br>JUN     | PLE            | PLE<br>AUG     | PLE<br>SEP     |
|-------------------------------------------|------------------------|----------------------|----------------|----------------|-------------------|----------------------|----------------------|----------------|----------------|----------------|----------------|
| Analyte                                   | MDL                    | Units                |                |                |                   |                      |                      |                |                |                |                |
| Dibutyltin<br>Monobutyltin<br>Tributyltin | .0102<br>.013<br>.0083 | UG/L<br>UG/L<br>UG/L | ND<br>ND<br>ND | ND<br>ND<br>ND | 0.041<br>ND<br>ND | ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND | ND<br>ND<br>ND | ND<br>ND<br>ND | ND<br>ND<br>ND |
| Source                                    |                        |                      | PLE<br>OCT     | PLE<br>NOV     | PLE<br>DEC        |                      |                      |                |                |                |                |
| Analyte                                   | MDL                    | Units                |                |                |                   | Average              |                      |                |                |                |                |
| Dibutyltin<br>Monobutyltin<br>Tributyltin | .0102<br>.013<br>.0083 | UG/L<br>UG/L<br>UG/L | ND<br>ND<br>ND | ND<br>NA<br>ND | ND<br>ND<br>ND    | 0.003<br>ND<br>ND    |                      |                |                |                |                |

#### Phenolic Compounds EPA Method 625

| Source                             |              |               | PLR               |               |
|------------------------------------|--------------|---------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|---------------|
| Analyte                            | мрі          | Units         | JAN<br>Δνσ        | ΓΕΡ<br>Δνσ        | Δνσ               | ΑΡΚ<br>Δνσ        | ΜΑΥ<br>Δνσ        |                   |                   | AUG               | Δνσ               |                   | ΝΟν               | Δνσ               |               |
| Average                            |              | 011105        | A*6               |               |
|                                    |              | =====         |                   | =====             | =====             |                   |                   |                   | =====             |                   |                   | =====             |                   |                   |               |
| 2-Chlorophenol                     | 1.32         | UG/L          | ND                | ND            |
| <pre>4-Chloro-3-methylphenol</pre> | 1.67         | UG/L          | ND                | ND            |
| 2,4-Dichlorophenol                 | 1.01         | UG/L          | ND                | ND            |
| 2,4-Dimethylphenol                 | 2.01         | UG/L          | ND                | ND            |
| 2,4-Dinitrophenol                  | 2.16         | UG/L          | ND                | ND            |
| 2-Methyl-4,6-dinitrophenol         | 1.52         | UG/L          | ND                | ND            |
| 2-Nitrophenol                      | 1.55         | UG/L          | ND                | ND            |
| 4-Nitrophenol                      | 1.14         | UG/L          | ND                | ND            |
| Pentachlorophenol                  | 1.12         | UG/L          | ND                | ND            |
| Phenol                             | 1.76         | UG/L          | 36.0              | 36.8              | 29.8              | 39.8              | 42.4              | 41.8              | 46.8              | 50.6              | 40.1              | 46.7              | 45.1              | 44.6              | 41.7          |
| 2,4,6-Trichlorophenol              | 1.65         | UG/L          | ND                | ND            |
| Total Chlorinated Phenols          | 1.67         | UG/L          | 0.0               | 0.0               | 0.0               | 0.0               | 0.0               | 0.0               | 0.0               | 0.0               | 0.0               | 0.0               | 0.0               | 0.0               | 0.0           |
| Total Non-Chlorinated Phenols      | ====<br>2.16 | =====<br>UG/L | =====<br>36.0     | =====<br>36.8     | =====<br>29.8     | =====<br>39.8     | =====<br>42.4     | =====<br>41.8     | =====<br>46.8     | =====<br>50.6     | =====<br>40.1     | =====<br>46.7     | =====<br>45.1     | =====<br>44.6     | =====<br>41.7 |
| Phenols                            | ====<br>2.16 | =====<br>UG/L | =====<br>36.0     | =====<br>36.8     | =====<br>29.8     | =====<br>39.8     | =====<br>42.4     | =====<br>41.8     | =====<br>46.8     | =====<br>50.6     | =====<br>40.1     | =====<br>46.7     | =====<br>45.1     | =====<br>44.6     | =====<br>41.7 |
| Additional Analytes Determined:    |              |               |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |               |
|                                    | ====         |               | =====             |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |               |
| 2-Methylphenol                     | 2.15         | UG/L          | ND                | ND            |
| 4-Methylphenol(3-MP is unresolved) | 2.11         | UG/L          | 61.3              | 64.0              | 55.1              | 68.4              | 72.8              | 65.9              | 67.1              | 70.9              | 53.9              | 57.4              | 70.1              | 71.5              | 64.9          |
| 2,4,5-Trichlorophenol              | 1.66         | UG/L          | ND                | ND            |
| Source                             | MDI          | Units         | PLE<br>JAN<br>Avg | PLE<br>FEB<br>Avg | PLE<br>MAR<br>Avg | PLE<br>APR<br>Avg | PLE<br>MAY<br>Avg | PLE<br>JUN<br>Avg | PLE<br>JUL<br>Avg | PLE<br>AUG<br>Avg | PLE<br>SEP<br>Avg | PLE<br>OCT<br>Avg | PLE<br>NOV<br>Avg | PLE<br>DEC<br>Avg |               |
| Average                            | 1102         | 0112 05       |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |               |
|                                    | ====         |               | =====             | =====             |                   |                   | =====             |                   |                   |                   |                   | =====             |                   |                   |               |
| 2-Chlorophenol                     | 1.32         | UG/L          | ND                | ND            |
| <pre>4-Chloro-3-methylphenol</pre> | 1.67         | UG/L          | ND                | ND            |
| 2,4-Dichlorophenol                 | 1.01         | UG/L          | ND                | <1.01             | ND                | ND                | ND                | ND                | ND            |
| 2,4-Dimethylphenol                 | 2.01         | UG/L          | ND                | <2.01             | ND                | ND            |
| 2,4-Dinitrophenol                  | 2.16         | UG/L          | ND                | ND                | ND                | ND                | ND                | <2.16             | ND                | ND                | ND                | ND                | ND                | ND                | ND            |
| 2-Methyl-4,6-dinitrophenol         | 1.52         | UG/L          | ND                | ND            |
| 2-Nitrophenol                      | 1.55         | UG/L          | ND                | ND            |
| 4-Nitrophenol                      | 1.14         | UG/L          | ND                | ND            |
| Pentachlorophenol                  | 1.12         | UG/L          | ND                | ND            |
| Phenol                             | 1.76         | UG/L          | 29.4              | 26.6              | 32.3              | 34.7              | 31.8              | 32.0              | 30.9              | 35.4              | 34.7              | 35.2              | 32.0              | 32.9              | 32.3          |
| 2,4,6-Trichlorophenol              | 1.65         | UG/L          | ND                | ND            |
| Total Chlorinated Phenols          | 1.67         | UG/L          | 0.0               | 0.0               | 0.0               | 0.0               | 0.0               | 0.0               | 0.0               | 0.0               | 0.0               | 0.0               | 0.0               | 0.0               | 0.0           |
| Total Non-Chlorinated Phenols      | ====<br>2.16 | =====<br>UG/L | 29.4              | 26.6              | 32.3              | =====<br>34.7     | 31.8              | 32.0              | =====<br>30.9     | 35.4              | =====<br>34.7     | =====<br>35.2     | 32.0              | 32.9              | 32.3          |
| Phenols                            | ====<br>2.16 | =====<br>UG/L | 29.4              | 26.6              | 32.3              | =====<br>34.7     | 31.8              | 32.0              | =====<br>30.9     | 35.4              | =====<br>34.7     | =====<br>35.2     | 32.0              | 32.9              | 32.3          |
| Additional Analytes Determined:    |              |               |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |               |
| 2-Methylnhenol                     | ====<br>2.15 | =====<br>UG/I | =====<br>ND       | =====<br>ND   |
| 4-Methylphenol(3-MP is unresolved) | 2.11         |               | 55.1              | 48.4              | 61.2              | 55.0              | 54.0              | 47.9              | 46.8              | 42.8              | 36.4              | 42.6              | 38.8              | 41.2              | 47.5          |
| 2,4,5-Trichlorophenol              | 1.66         | UG/L          | ND                | ND            |

#### POINT LOMA WASTEWATER TREATMENT PLANT

#### ANNUAL 2017

#### Priority Pollutants Base/Neutrals EPA Method 625

| Source                         |              |               | PLR           | PLR           | PLR           | PLR          | PLR          | PLR                    | PLR        | PLR          | PLR             | PLR          | PLR          | PLR          | PLR           |
|--------------------------------|--------------|---------------|---------------|---------------|---------------|--------------|--------------|------------------------|------------|--------------|-----------------|--------------|--------------|--------------|---------------|
| Analyte                        | MDL          | Units         | JAN<br>Avg    | Avg           | MAR<br>Avg    | APR<br>Avg   | MAY<br>Avg   | JUN<br>Avg<br>====== = | JUL<br>Avg | AUG<br>Avg   | Avg             | Avg          | NOV<br>Avg   | DEC<br>Avg   | Average       |
| Acenaphthene                   | 1.8          | UG/L          | ND            | ND            | ND            | ND           | ND           | ND*                    | ND         | ND           | ND              | ND           | ND           | ND           | ND            |
| Acenaphthylene                 | 1.77         | UG/L          | ND            | ND            | ND            | ND           | ND           | ND*                    | ND         | ND           | ND              | ND           | ND           | ND           | ND            |
| Anthracene                     | 1.29         | UG/L          | ND            | ND            | ND            | ND           | ND           | ND                     | ND         | ND           | ND              | ND           | ND           | ND           | ND            |
| Benzidine                      | 1.52         | UG/L          | ND*           | ND            | ND*           | ND           | ND*          | ND                     | ND         | ND           | ND#             | ND           | ND           | ND           | ND            |
| Benzo[a]anthracene             | 1.1          | UG/L          | ND            | ND            | ND            | ND           | ND           | ND                     | ND         | ND           | ND              | ND           | ND           | ND           | ND            |
| 3,4-Benzo(b)+Luoranthene       | 1.35         | UG/L          | ND            | ND            | ND            | ND           | ND           | ND                     | ND         | ND           | ND              | ND           | ND           | ND           | ND            |
| Benzo[k]+luoranthene           | 1.49         | UG/L          | ND            | ND            | ND            | ND           | ND           | ND                     | ND         | ND           | ND              | ND           | ND           | ND           | ND            |
| Benzo[a]pyrene                 | 1.25         | UG/L          | ND            | ND            | ND            | ND           |              | ND                     | ND         | ND           | ND              | ND           | ND           | ND           | ND            |
| Benzolg, n, 1 ]perylene        | 1.09         |               |               |               |               |              |              |                        |            |              |                 |              |              |              | ND            |
| Pis (2 chlopothoxy) mothano    | 1 01         |               |               |               |               |              |              |                        |            |              |                 |              |              |              |               |
| Bis-(2-chloroethyl) ether      | 1 38         |               |               |               |               |              |              |                        |            |              |                 |              |              |              |               |
| Bis-(2-chloroisonronyl) ether  | 1 16         |               | ND            | ND            | ND            | ND           | ND           | ND                     | ND         | ND           |                 | ND           | ND           |              | ND            |
| 4-Chlorophenyl phenyl ether    | 1.57         |               | ND            | ND            | ND            | ND           | ND           | ND                     | ND         | ND           | ND              | ND           | ND           | ND           | ND            |
| 2-Chloronaphthalene            | 1.87         | UG/L          | ND            | ND            | ND            | ND           | ND           | ND                     | ND         | ND           | ND              | ND           | ND           | ND           | ND            |
| Chrysene                       | 1.16         | UG/L          | ND            | ND            | ND            | ND           | ND           | ND                     | ND         | ND           | ND              | ND           | ND           | ND           | ND            |
| Dibenzo(a,h)anthracene         | 1.01         | UG/L          | ND            | ND            | ND            | ND           | ND           | ND                     | ND         | ND           | ND              | ND           | ND           | ND           | ND            |
| Butyl benzyl phthalate         | 2.84         | UG/L          | ND            | ND            | ND            | ND           | ND           | ND                     | ND         | ND           | ND              | ND           | ND           | ND           | ND            |
| Di-n-butyl phthalate           | 3.96         | UG/L          | ND            | ND            | ND            | ND           | ND           | ND                     | ND         | ND           | ND              | ND           | ND           | ND           | ND            |
| Bis-(2-ethylhexyl) phthalate   | 8.96         | UG/L          | 12.5          | 10.3          | 50.8          | ND           | ND           | ND                     | ND         | ND           | 9.78            | ND           | ND           | ND           | 6.90          |
| Diethyl phthalate              | 3.05         | UG/L          | 4.8           | 3.5           | ND            | 3.8          | 3.8          | ND                     | ND         | 3.2          | 5.2             | ND           | 3.2          | 7.1          | 2.9           |
| Dimethyl phthalate             | 1.44         | UG/L          | ND            | ND            | ND            | ND           | ND           | ND                     | ND         | ND           | ND              | ND           | ND           | ND           | ND            |
| Di-n-octyl phthalate           | 1            | UG/L          | ND            | ND            | ND            | ND           | ND           | ND                     | 3.9        | ND           | ND              | ND           | ND           | ND           | 0.3           |
| 3,3-Dichlorobenzidine          | 2.44         | UG/L          | ND            | ND            | ND            | ND           | ND           | ND                     | ND         | ND           | ND#             | ND           | ND           | ND           | ND            |
| 2,4-Dinitrotoluene             | 1.36         | UG/L          | ND            | ND            | ND            | ND           | ND           | ND                     | ND         | ND           | ND              | ND           | ND           | ND           | ND            |
| 2,6-Dinitrotoluene             | 1.53         | UG/L          | ND            | ND            | ND            | ND           | ND           | ND*                    | ND         | ND           | ND              | ND           | ND           | ND           | ND            |
| 1,2-Diphenylhydrazine          | 1.37         | UG/L          | ND            | ND            | ND            | ND           | ND           | ND*                    | ND         | ND           | ND              | ND           | ND           | ND           | ND            |
| Fluoranthene                   | 1.33         | UG/L          | ND            | ND            | ND            | ND           | ND           | ND                     | ND         | ND           | ND              | ND           | ND           | ND           | ND            |
| Fluorene                       | 1.61         | UG/L          | ND            | ND            | ND            | ND           | ND           | ND*                    | ND         | ND           | ND              | ND           | ND           | ND           | ND            |
| Hexachlorobenzene              | 1.48         |               |               |               |               |              |              |                        |            |              |                 |              |              |              | ND            |
| Hexachlonocyclonentadiono      | 1.04         |               |               |               |               |              |              |                        |            |              |                 |              |              |              |               |
| Hovachlonoothano               | 1 22         |               |               |               |               |              |              |                        |            |              |                 |              |              |              |               |
| Indeno(1 2 3-CD) nyrene        | 1 14         |               | ND            | ND            | ND            | ND           |              | ND                     | ND         | ND           |                 |              | ND           | ND           | ND            |
| Isonhorone                     | 1.53         |               | ND            | ND            | ND            | ND           | ND           | ND                     | ND         | ND           | ND              | ND           | ND           | ND           | ND            |
| Naphthalene                    | 1.65         | UG/L          | ND            | ND            | ND            | ND           | ND           | ND*                    | ND         | ND           | ND              | ND           | ND           | ND           | ND            |
| Nitrobenzene                   | 1.6          | UG/L          | ND            | ND            | ND            | ND           | ND           | ND                     | ND         | ND           | ND              | ND           | ND           | ND           | ND            |
| N-nitrosodimethylamine         | 1.27         | UG/L          | ND            | ND            | ND            | ND           | ND           | ND*                    | ND         | ND           | ND              | ND           | ND           | ND           | ND            |
| N-nitrosodi-n-propylamine      | 1.16         | UG/L          | ND            | ND            | ND            | ND           | ND           | ND                     | ND         | ND           | ND              | ND           | ND           | ND           | ND            |
| N-nitrosodiphenylamine         | 3.48         | UG/L          | ND            | ND            | ND            | ND           | ND           | ND                     | ND         | ND           | ND              | ND           | ND           | ND           | ND            |
| Phenanthrene                   | 1.34         | UG/L          | ND            | ND            | ND            | ND           | ND           | ND                     | ND         | ND           | ND              | ND           | ND           | ND           | ND            |
| Pyrene                         | 1.43         | UG/L          | ND            | ND            | ND            | ND           | ND           | ND                     | ND         | ND           | ND              | ND           | ND           | ND           | ND            |
| 1,2,4-Trichlorobenzene         | 1.52         | UG/L          | ND            | ND            | ND            | ND           | ND           | ND                     | ND         | ND           | ND              | ND           | ND           | ND           | ND            |
| Polynuc. Aromatic Hydrocarbons | ====<br>1.77 | =====<br>UG/L | =====<br>0.0  | =====<br>0.0  | =====<br>0.0  | =====<br>0.0 | 0.0          | ===== =<br>0.0         | 0.0        | =====<br>0.0 | 0.0             | 0.0          | =====<br>0.0 | <br>0.0      | =====<br>0.0  |
| Base/Neutral Compounds         | ====<br>8.96 | =====<br>UG/L | =====<br>17.3 | =====<br>13.8 | =====<br>50.8 | =====<br>3.8 | =====<br>3.8 | ===== =<br>0.0         | 3.9        | =====<br>3.2 | ===== :<br>15.0 | =====<br>0.0 | =====<br>3.2 | =====<br>7.1 | =====<br>10.2 |
| Additional Analytes Determined | :            |               |               |               |               |              |              |                        |            |              |                 |              |              |              |               |
|                                | ====         | =====         | =====         | =====         | =====         |              |              | ===== =                |            | =====        |                 |              |              | =====        | =====         |
| Benzolejpyrene                 | 1.44         | UG/L          | ND            | ND            | ND            | ND           | ND           | ND                     | ND         | ND           | ND              | ND           | ND           | ND           | ND            |
| Bipnenyi                       | 2.29         |               | ND            | ND            | ND            | ND           | ND           | ND*                    | ND         | ND           | ND              | ND           | ND           | ND           | ND            |
| 2,0-UIMETNYINAPNTNAIENE        | 2.10         |               |               |               |               |              |              | ND*<br>ND*             |            |              |                 |              |              |              | ND            |
| 1 Mothylphonanthaana           | 2.10<br>1 /C |               |               |               |               |              |              |                        |            |              |                 |              |              |              |               |
| 1-methylphenanthrene           | 1.40<br>2 1/ |               |               |               |               |              |              | ND<br>ND*              |            |              |                 |              |              |              |               |
| 2.3.5-Trimethylnanhthalene     | 2.14         |               |               |               |               |              |              |                        |            |              |                 |              |              |              | ND            |
|                                | 1 /1         |               |               |               |               |              |              |                        |            |              |                 |              |              |              | ND            |
|                                | +1           | 50, L         |               | ND            |               |              | ND           |                        | ND         | ND           |                 | ND           |              | ND           |               |

\* = Recovery of compound in internal check and/or matrix spike sample outside method acceptance limits; value is not used in average calculations.

# = Known concentration of Benzidine and 3,3-dichlorobenzidine was added to the Internal Check and Matrix Spike samples during the base neutral phase of the extraction procedure. Sample result is non-reportable and not included in average calculations.

#### Priority Pollutants Base/Neutrals EPA Method 625

| Source                         |                |       | PLE<br>JAN    | PLE<br>FEB  | PLE<br>MAR  | PLE<br>APR  | PLE<br>MAY | PLE<br>JUN    | PLE<br>JUL  | PLE<br>AUG  | PLE<br>SEP | PLE<br>OCT  | PLE<br>NOV  | PLE<br>DEC | PLE              |
|--------------------------------|----------------|-------|---------------|-------------|-------------|-------------|------------|---------------|-------------|-------------|------------|-------------|-------------|------------|------------------|
| Analyte                        | MDL<br>====    | Units | Avg           | Avg         | Avg         | Avg         | Avg        | Avg           | Avg         | Avg         | Avg        | Avg         | Avg         | Avg        | Average<br>===== |
| Acenaphthene                   | 1.8            | UG/L  | ND            | ND          | ND          | ND          | ND         | ND*           | ND          | ND          | ND         | ND          | ND          | ND         | ND               |
| Acenaphthylene                 | 1.77           | UG/L  | ND            | ND          | ND          | ND          | ND         | ND*           | ND          | ND          | ND         | ND          | ND          | ND         | ND               |
| Anthracene                     | 1.29           | UG/L  | ND            | ND          | ND          | ND          | ND         | ND            | ND          | ND          | ND         | ND          | ND          | ND         | ND               |
| Benzidine                      | 1.52           | UG/L  | ND*           | ND          | ND*         | ND          | ND*        | ND            | ND          | ND          | ND#        | ND          | ND          | ND         | ND               |
| Benzo[a]anthracene             | 1.1            | UG/L  | ND            | ND          | ND          | ND          | ND         | ND            | ND          | ND          | ND         | ND          | ND          | ND         | ND               |
| 3,4-Benzo(b)fluoranthene       | 1.35           | UG/L  | ND            | ND          | ND          | ND          | ND         | ND            | ND          | ND          | ND         | ND          | ND          | ND         | ND               |
| Benzo[k]fluoranthene           | 1.49           | UG/L  | ND            | ND          | ND          | ND          | ND         | ND            | ND          | ND          | ND         | ND          | ND          | ND         | ND               |
| Benzo[a]pyrene                 | 1.25           | UG/L  | ND            | ND          | ND          | ND          | ND         | ND            | ND          | ND          | ND         | ND          | ND          | ND         | ND               |
| Benzo[g,h,1]perylene           | 1.09           | UG/L  | ND            | ND          | ND          | ND          | ND         | ND            | ND          | ND          | ND         | ND          | ND          | ND         | ND               |
| 4-Bromophenyl phenyl ether     | 1.4            | UG/L  | ND            | ND          | ND          | ND          | ND         | ND            | ND          | ND          | ND         | ND          | ND          | ND         | ND               |
| Bis-(2-chloroethoxy) methane   | 1.01           |       | ND            |             |             | ND          |            |               |             |             | ND         |             |             |            | ND               |
| Bis-(2-chloroethyl) ether      | 1.38           |       |               |             |             | ND          |            | ND*           |             | ND          |            |             | ND          |            |                  |
| A Chlopophopyl phopyl othor    | 1.10           |       |               |             |             |             |            |               |             |             |            |             |             |            |                  |
| 2 Chlononanhthalono            | 1 07           |       |               |             |             |             |            |               |             |             |            |             |             |            |                  |
| Chrysone                       | 1 16           |       |               |             |             |             |            |               |             |             |            |             |             |            |                  |
| Dibenzo(a h)anthracene         | 1 01           |       | ND            | ND          | ND          | ND          | ND         | ND            | ND          | ND          | ND         |             |             |            | ND               |
| Butyl benzyl nhthalate         | 2 84           |       | ND            | ND          | ND          | ND          | ND         | ND            | ND          | ND          | ND         | ND          | ND          | ND         | ND               |
| Di-n-butyl phthalate           | 3.96           |       | ND            | ND          | ND          | ND          | ND         | ND            | ND          | ND          | ND         | ND          | ND          | ND         | ND               |
| Bis-(2-ethylhexyl) phthalate   | 8.96           |       | ND            | ND          | ND          | ND          | ND         | ND            | ND          | ND          | ND         | ND          | ND          | ND         | ND               |
| Diethyl phthalate              | 3.05           | UG/L  | 4.3           | <3.1        | <3.1        | 4.1         | ND         | ND            | 4.9         | ND          | 5.4        | 3.3         | 47.4        | 4.1        | 6.1              |
| Dimethyl phthalate             | 1.44           | UG/L  | ND            | ND          | ND          | ND          | ND         | ND            | ND          | ND          | ND         | ND          | ND          | ND         | ND               |
| Di-n-octvl phthalate           | 1              | UG/L  | ND            | ND          | ND          | ND          | ND         | ND            | ND          | ND          | ND         | ND          | ND          | ND         | ND               |
| 3,3-Dichlorobenzidine          | 2.44           | UG/L  | ND            | ND          | ND          | ND          | ND         | ND            | ND          | ND          | ND#        | ND          | ND          | ND         | ND               |
| 2,4-Dinitrotoluene             | 1.36           | UG/L  | ND            | ND          | ND          | ND          | ND         | ND            | ND          | ND          | ND         | ND          | ND          | ND         | ND               |
| 2,6-Dinitrotoluene             | 1.53           | UG/L  | ND            | ND          | ND          | ND          | ND         | ND*           | ND          | ND          | ND         | ND          | ND          | ND         | ND               |
| 1,2-Diphenylhydrazine          | 1.37           | UG/L  | ND            | ND          | ND          | ND          | ND         | ND*           | ND          | ND          | ND         | ND          | ND          | ND         | ND               |
| Fluoranthene                   | 1.33           | UG/L  | ND            | ND          | ND          | ND          | ND         | ND            | ND          | ND          | ND         | ND          | ND          | ND         | ND               |
| Fluorene                       | 1.61           | UG/L  | ND            | ND          | ND          | ND          | ND         | ND*           | ND          | ND          | ND         | ND          | ND          | ND         | ND               |
| Hexachlorobenzene              | 1.48           | UG/L  | ND            | ND          | ND          | ND          | ND         | ND            | ND          | ND          | ND         | ND          | ND          | ND         | ND               |
| Hexachlorobutadiene            | 1.64           | UG/L  | ND            | ND          | ND          | ND          | ND         | ND*           | ND          | ND          | ND         | ND          | ND          | ND         | ND               |
| Hexachlorocyclopentadiene      | 1.25           | UG/L  | ND            | ND          | ND          | ND          | ND         | ND            | ND          | ND          | ND         | ND          | ND          | ND         | ND               |
| Hexachloroethane               | 1.32           | UG/L  | ND            | ND          | ND          | ND          | ND         | ND            | ND          | ND          | ND         | ND          | ND          | ND         | ND               |
| Indeno(1,2,3-CD)pyrene         | 1.14           | UG/L  | ND            | ND          | ND          | ND          | ND         | ND            | ND          | ND          | ND         | ND          | ND          | ND         | ND               |
| Isophorone                     | 1.53           | UG/L  | ND            | ND          | ND          | ND          | ND         | ND            | ND          | ND          | ND         | ND          | ND          | ND         | ND               |
| Naphthalene                    | 1.65           | UG/L  | ND            | ND          | ND          | ND          | ND         | ND*           | ND          | ND          | ND         | ND          | ND          | ND         | ND               |
| Nitrobenzene                   | 1.6            | UG/L  | ND            | ND          | ND          | ND          | ND         | ND            | ND          | ND          | ND         | ND          | ND          | ND         | ND               |
| N-nitrosodimetnylamine         | 1.2/           | UG/L  | ND            | ND          | ND          | ND          | ND         | ND*           | ND          | ND          | ND         | ND          | ND          | ND         | ND               |
| N-nitrosodi-n-propylamine      | 1.16           |       | ND            |             |             |             |            |               |             |             | ND         |             |             |            | ND               |
| N-HICROSOUIPHENYIamine         | 2.40           |       |               |             |             |             |            |               |             |             |            |             |             |            |                  |
| Prienditumene                  | 1 /3           |       |               |             |             |             |            |               |             |             |            |             |             |            |                  |
| 1.2.4-Trichlorobenzene         | 1 52           |       | ND            | ND          | ND          | ND          | ND         | ND            | ND          | ND          | ND         | ND          | ND          | ND         | ND               |
|                                | ====           | ===== | ===== =       | =====       | =====       | =====       | =====      | ===== =       | ====        | =====       | ===== :    | =====       | =====       | =====      | =====            |
| Polynuc. Aromatic Hydrocarbons | 1.77           | UG/L  | 0.0           | 0.0         | 0.0         | 0.0         | 0.0        | 0.0           | 0.0         | 0.0         | 0.0        | 0.0         | 0.0         | 0.0        | 0.0              |
| Base/Neutral Compounds         | 8.96           | UG/L  | 4.3           | 0.0         | 0.0         | 4.1         | 0.0        | 0.0           | 4.9         | 0.0         | 5.4        | 3.3         | 47.4        | 4.1        | 6.1              |
| Additional Analytes Determined | :              |       |               |             |             |             |            |               |             |             |            |             |             |            |                  |
| Benzo[e]nyrene                 | ====<br>1 // / | ===== | ===== =<br>ND | =====<br>ND | =====<br>ND | =====<br>ND |            | ===== =<br>ND | =====<br>ND | =====<br>ND |            | =====<br>ND | =====<br>ND | -====      | =====<br>ND      |
| Binhenvl                       | 2 20           |       |               |             |             |             |            | ND*           |             |             |            |             |             |            |                  |
| 2.6-Dimethylnaphthalene        | 2.29           |       |               | ND          |             |             |            | ND*           | ND          |             |            |             |             |            | ND               |
| 1-Methylnanhthalene            | 2.10           |       | ND            | ND          | ND          | ND          |            | ND*           |             | ND          | ND         |             | ND          |            | ND               |
| 1-Methylphenanthrene           | 1.46           |       | ND            | ND          |             | ND          | ND         | ND            | ND          | ND          | ND         | ND          | ND          |            | ND               |
| 2-Methylnanhthalene            | 2.14           |       | ND            | ND          | ND          | ND          | ND         | ND*           | ND          | ND          | ND         | ND          | ND          |            | ND               |
| 2.3.5-Trimethylnanhthalene     | 2.18           | UG/I  | ND            | ND          | ND          | ND          | ND         | ND            | ND          | ND          | ND         | ND          | ND          | ND         | ND               |
| Pervlene                       | 1.41           | UG/L  | ND            | ND          | ND          | ND          | ND         | ND            | ND          | ND          | ND         | ND          | ND          | ND         | ND               |
|                                |                |       |               |             |             |             |            |               |             |             |            |             |             |            |                  |

\* = Recovery of compound in internal check and/or matrix spike sample outside method acceptance limits; value is not used in average calculations.

# = Known concentration of Benzidine and 3,3-dichlorobenzidine was added to the Internal Check and Matrix Spike samples during the base neutral phase of the extraction procedure. Sample result is non-reportable and not included in average calculations.

#### POINT LOMA WASTEWATER TREATMENT PLANT

#### ANNUAL 2017

#### Priority Pollutants Purgeables EPA Method 8260B

| Source                        |             |       | PLR          | PLR          | PLR             | PLR            | PLR          | PLR    | PLR     | PLR          | PLR          | PLR          | PLR          | PLR            | PLR             |
|-------------------------------|-------------|-------|--------------|--------------|-----------------|----------------|--------------|--------|---------|--------------|--------------|--------------|--------------|----------------|-----------------|
| Applyto                       | мрі         | Unito | JAN          | FEB          | MAR             | APR            | MAY          | JUN    | JUL     | AUG          | SEP          | OCT          | NOV          | DEC            | Avonago         |
| Analyte                       | MDL<br>==== |       | Avg<br>===== | Avg<br>===== | Avg<br>=====    | Avg            | Avg<br>===== | Avg    | Avg     | Avg<br>===== | Avg<br>===== | Avg<br>===== | Avg<br>===== | Avg<br>=====   | average         |
| Acrolein                      | .94         | UG/L  | ND           | ND           | ND              | ND             | ND           | ND     | ND      | ND           | ND           | ND           | ND           | ND             | ND              |
| Acrylonitrile                 | .48         | UG/L  | ND           | ND           | ND              | ND             | ND           | ND     | ND      | ND           | ND           | ND           | ND           | ND             | ND              |
| Benzene                       | .37         | UG/L  | ND           | ND           | ND              | ND             | ND           | ND     | ND      | ND           | ND           | ND           | ND           | ND             | ND              |
| Bromodichloromethane          | .37         | UG/L  | ND           | ND           | ND              | ND             | ND           | ND     | ND      | ND           | ND           | ND           | ND           | ND             | ND              |
| Bromoform                     | .36         | UG/L  | ND           | ND           | ND              | ND             | ND           | ND     | ND      | ND           | ND           | ND           | ND           | ND             | ND              |
| Bromomethane                  | .22         | UG/L  | ND           | DNQ.3*       | ND              | ND             | ND           | ND     | DNQ.5   | *DNQ.4*      | DNQ.         | 3*DNQ.4      | *DNQ.3       | 3* ND          | 0.0             |
| Carbon tetrachloride          | .4          | UG/L  | ND           | ND           | ND              | ND             | ND           | ND     | ND      | ND           | ND           | ND           | ND           | ND             | ND              |
| Chlorobenzene                 | .46         | UG/L  | ND           | ND           | ND              | ND             | ND           | ND     | ND      | ND           | ND           | ND           | ND           | ND             | ND              |
| Chloroethane                  | .24         | UG/L  | ND           | ND           | ND              | ND             | ND           | ND     | ND      | ND           | ND           | ND           | ND           | ND             | ND              |
| Chloroform                    | .31         | UG/L  | 3.4          | 2.9          | DNQ1.5          | 2.8            | 3.7          | 2.2    | 2.9     | 2.8          | 2.5          | 11.9         | DNQ1.5       | 5 2.3          | 3.1             |
| Chloromethane                 | .27         | UG/L  | ND           | ND           | ND              | ND             | ND           | DNQ0.3 | 3 ND    | ND           | ND           | ND           | ND           | ND             | DNQ0.03         |
| Dibromochloromethane          | .34         | UG/L  | ND           | DNQ0.4       | ND              | ND             | ND           | ND     | ND      | ND           | ND           | ND           | ND           | ND             | DNQ0.03         |
| 1,2-Dichlorobenzene           | .36         | UG/L  | ND           | ND           | ND              | ND             | ND           | ND     | ND      | ND           | ND           | ND           | ND           | ND             | ND              |
| 1,3-Dichlorobenzene           | .47         | UG/L  | ND           | ND           | ND              | ND             | ND           | ND     | ND      | ND           | ND           | ND           | ND           | ND             | ND              |
| 1,4-Dichlorobenzene           | .46         |       | ND           | ND           | ND              | ND             | ND           | ND     | ND      | ND           | ND           | ND           | ND           | ND             | ND              |
| Dichloroditluoromethane       | 2.39        |       |              |              |                 |                | ND           |        |         |              |              |              |              |                |                 |
| 1,1-Dichlonoothane            | .32         |       |              |              |                 |                |              |        |         |              |              |              |              |                |                 |
| 1,2-Dichlonosthono            | .52         |       |              |              |                 |                |              |        |         |              |              |              |              |                |                 |
| thans 1.2 dichlonoothono      | . 57        |       |              |              |                 |                |              |        |         |              |              |              |              |                |                 |
| 1 2-Dichloropropage           | .54         |       |              |              |                 |                |              |        |         |              |              |              |              |                |                 |
| cis-1 3-dichloronronene       | 38          |       | ND           | ND           |                 | ND             |              | ND     |         |              | ND           | ND           |              |                | ND              |
| trans_1 3_dichloronronene     | 35          |       | ND           | ND           | ND              | ND             | ND           | ND     | ND      | ND           | ND           | ND           | ND           | ND             | ND              |
| Ethylbenzene                  | .43         |       | ND           | ND           | ND              | ND             | ND           | ND     | ND      | ND           | ND           | ND           | ND           | ND             | ND              |
| Methylene chloride            | . 37        |       | 1.0          | DN01.5       | * ND            | ND             | DN01.2       |        | 9DN01.0 | 3DN01.1      | DNO . 9      |              | DN01.1       | I*DN01.        | 9 DN00.1        |
| 1,1,2,2-Tetrachloroethane     | .34         | UG/L  | ND           | ND           | ND              | ND             | ND           | ND     | ND      | ND           | ND           | ND           | ND           | ND             | ND              |
| Tetrachloroethene             | .5          | UG/L  | ND           | ND           | ND              | ND             | ND           | ND     | ND      | ND           | ND           | ND           | ND           | ND             | ND              |
| Toluene                       | .45         | UG/L  | ND           | DNQ0.5       | DNQ0.6          | DNQ0.7         | 7DNQ1.0      | DNQ1.1 | LDNQ0.  | 7DNQ0.6      | DNQ0.        | 7 2.8        | DNQ0.6       | 5DNQ1.0        | DNQ0.2          |
| 1,1,1-Trichloroethane         | .4          | UG/L  | ND           | ND           | ND              | ND             | ND           | ND     | ND      | ND           | ND           | ND           | ND           | ND             | ND              |
| 1,1,2-Trichloroethane         | .32         | UG/L  | ND           | ND           | ND              | ND             | ND           | ND     | ND      | ND           | ND           | ND           | ND           | ND             | ND              |
| Trichloroethene               | .43         | UG/L  | ND           | ND           | ND              | ND             | ND           | ND     | ND      | ND           | ND           | ND           | ND           | ND             | ND              |
| Trichlorofluoromethane        | .43         | UG/L  | ND           | ND           | ND              | ND             | ND           | ND     | DNQ0.   | 5 ND         | ND           | ND           | ND           | ND             | 0.0             |
| Vinyl chloride                | .33         | UG/L  | ND           | ND           | ND              | ND             | ND           | ND     | ND      | ND           | ND           | ND           | ND           | ND             | ND              |
|                               | ====        | ===== | =====        | =====        | =====           |                | =====        | =====  | =====   |              | =====        | =====        | =====        |                | =====           |
| Halomethane Purgeable Cmpnds  | .36         | UG/L  | 0.0          | 0.0          | 0.0             | 0.0            | 0.0          | 0.0    | 0.0     | 0.0          | 0.0          | 0.0          | 0.0          | 0.0            | 0.0             |
| Dichlorobenzenes              | .47         | UG/L  | 0.0          | 0.0          | 0.0             | 0.0            | 0.0          | 0.0    | 0.0     | 0.0          | 0.0          | 0.0          | 0.0          | 0.0            | 0.0             |
| Total Chloromethanes          | .4          | UG/L  | 4.4          | 2.9          | 0.0             | 2.8            | 3.7          | 2.2    | 2.9     | 2.8          | 2.5          | 11.9         | 0.0          | 2.3            | 3.2             |
| Purgeable Compounds           | 2.39        | UG/L  | 4.4          | 2.9          | 0.0             | 2.8            | 3.7          | 2.2    | 2.9     | 2.8          | 2.5          | 14.7         | 0.0          | 2.3            | 3.4             |
|                               |             | ===== |              |              |                 |                |              |        |         |              |              |              |              |                | =====           |
| Additional Analytes Determine | ed:         |       |              |              |                 |                |              |        |         |              |              |              |              |                |                 |
|                               | ====        | ===== | =====        | =====        | =====           |                | =====        | =====  | =====   |              | =====        | =====        | =====        |                | =====           |
| Acetone                       | 16          | UG/L  | 740          | 1020         | 757             | 478            | 526          | 590    | 621     | 283          | 489          | 849          | 321          | 942            | 635             |
| Allyl chloride                | .44         | UG/L  | NA           | ND           | ND              | ND             | ND           | ND     | ND      | ND           | ND           | ND           | ND           | ND             | ND              |
| Benzyl chloride               | .65         | UG/L  | NA           | ND           | ND              | ND             | ND           | ND     | ND      | ND           | ND           | ND           | ND           | ND             | ND              |
| 2-Butanone                    | 5.56        | UG/L  | 5.6          | ND           | 71.4            | 13.2           | 25.8         | ND     | DNQ7.8  | BDNQ6.6      | DNQ8.8       | BDNQ8.3      | DNQ6.2       | 2DNQ17.        | 0DNQ14.2        |
| Carbon disulfide              | 1           | UG/L  | 2.4          | 1.1          | DNQ0.9          | 1.9            | 2.3          | 2.3    | 2.1     | 2.2          | 2.7          | 2.1          | 1.8          | 3.1            | DNQ2.0          |
| Chloroprene                   | .09         | UG/L  | NA           | ND           | ND              | ND             | ND           | ND     | ND      | ND           | ND           | ND           | ND           | ND             | ND              |
| 1,2-Dibromoethane             | .41         | UG/L  | ND           | ND           | ND              | ND             | ND           | ND     | ND      | ND           | ND           | ND           | ND           | ND             | ND              |
| IsopropyIdenzene              | .41         |       | ND           | ND           | ND              | ND             | ND           | ND     | ND      | ND           | ND           | ND           | ND           | ND             | ND              |
| Methyl Iodide                 | .32         |       | NA           | ND           |                 |                |              |        | ND      |              | ND           | ND           |              |                |                 |
| Mothyl topt butyl athan       | .52         |       |              |              |                 |                | UN<br>2 1    |        |         |              |              |              |              |                | עצו<br>רב מסוות |
| 2-Nitropropane                | . 30<br>01  |       |              |              |                 |                | 2.1          |        |         | -100 אום     |              |              |              | 4.שטאוט<br>אור | 25.90אות        |
| ortho-yulana                  | .49<br>21   |       |              |              |                 |                |              |        |         |              |              |              |              |                |                 |
| Styrene                       | - 34<br>38  |       |              |              | עשו<br>ד מסווחי | עזי<br>ד מחאחי |              |        |         |              |              |              |              | ND             | DNOA 21         |
| 1.2.4-Trichlorobenzene        | 1.52        |       |              | ND           | ND              | ND             | ND           |        |         |              |              |              |              | ND             | NU<br>NU        |
| meta.para xvlenes             | .85         | UG/I  | ND           | ND           | ND              | ND             | ND           | ND     | ND      | ND           | ND           | DN01.2       | ND           | DN01.0         | DN00.18         |
| 2-Chloroethylvinyl ether      | .29         | UG/L  | ND           | ND           | ND              | ND             | ND           | ND     | ND      | ND           | ND           | ND           | ND           | ND             | ND              |

\* = Method blank value above the MDL; sample result not included in average calculations.

ND

.52 UG/L

4-Methyl-2-pentanone

DNQ= Detected but not quantified. Sample result is less than minimum Level but greater than or equal to MDL. ND=not detected; NS=not sampled; NA=not analyzed

ND DNQ1.0 ND DNQ1.7 ND

ND

ND

ND

ND

ND DNQ1.0 DNQ0.3

#### POINT LOMA WASTEWATER TREATMENT PLANT

#### ANNUAL 2017

#### Priority Pollutants Purgeables EPA Method 8260B

| Source                        |             |               | PLE         | PLE    | PLE         | PLE           | PLE         | PLE          | PLE         | PLE        | PLE         | PLE         | PLE         | PLE         | PLE          |
|-------------------------------|-------------|---------------|-------------|--------|-------------|---------------|-------------|--------------|-------------|------------|-------------|-------------|-------------|-------------|--------------|
| Analyte                       | MDL         | Units         | JAN<br>Avg  | Avg    | MAR<br>Avg  | APR<br>Avg    | MAY<br>Avg  | JUN<br>Avg   | JUL<br>Avg  | AUG<br>Avg | Avg         | Avg         | Avg         | Avg         | Average      |
| Acrolein                      | .94         | =====<br>UG/L | ND          | ND     | ND          | ND            | =====<br>ND | ND           | =====<br>ND | ND         | =====<br>ND | =====<br>ND | ND          | ND          | =====<br>ND  |
| Acrylonitrile                 | .48         | UG/L          | ND          | ND     | ND          | ND            | ND          | ND           | ND          | ND         | ND          | ND          | ND          | ND          | ND           |
| Benzene                       | .37         | UG/L          | ND          | ND     | ND          | ND            | ND          | ND           | ND          | ND         | ND          | ND          | ND          | ND          | ND           |
| Bromodichloromethane          | .37         | UG/L          | 1.6         | DNQ0.9 | ) ND        | ND            | ND          | ND           | ND          | DNQ0.0     | 5 ND        | ND          | ND          | DNQ0.8      | DNQ0.33      |
| Bromoform                     | .36         | UG/L          | ND          | ND     | ND          | ND            | ND          | ND           | ND          | ND         | ND          | ND          | ND          | ND          | ND           |
| Bromomethane                  | .22         | UG/L          | ND          | DNQ.3* | * ND        | DNQ.2         | ND          | ND           | DNQ.4       | *DNQ.4     | *DNQ.6      | *DNQ.5*     | DNQ.4       | *DNQ1.2     | DNQ0.02      |
| Carbon tetrachloride          | .4          | UG/L          | ND          | ND     | ND          | ND            | ND          | ND           | ND          | ND         | ND          | ND          | ND          | ND          | ND           |
| Chlorobenzene                 | .46         | UG/L          | ND          | ND     | ND          | ND            | ND          | ND           | ND          | ND         | ND          | ND          | ND          |             | ND<br>DNO0 2 |
| Chloroetnane                  | .24         |               | ND          |        | ND<br>2 1   | עא<br>כ כ     |             |              |             |            |             |             |             | 2.5         |              |
| Chlonomothano                 | .31<br>27   |               | 4.1         | 5.2    | 2.1         | 5.5<br>1 1010 |             | 3.1<br>2.2.2 | 2.9         | 4.7        | 4.5         | 2.3         | 2.5         | 16 2        | 2.7          |
| Dibromochloromethane          | -27         |               | 1 2         |        |             |               |             |              | 2.5         | 4.J        |             | 2.4<br>ND   | 2.4         | 20.2        | 0 15         |
| 1 2-Dichlorobenzene           | 36          |               | ND          | ND     |             | ND            | ND          | ND           | ND          |            |             | ND          |             |             | ND ND        |
| 1.3-Dichlorobenzene           | 47          |               | ND          | ND     | ND          | ND            | ND          | ND           | ND          | ND         | ND          | ND          | ND          | ND          | ND           |
| 1.4-Dichlorobenzene           | .46         |               | ND          | ND     | ND          | ND            | ND          | ND           | ND          | ND         | ND          | ND          | ND          | ND          | ND           |
| Dichlorodifluoromethane       | 2.39        | UG/L          | ND          | ND     | ND          | ND            | ND          | ND           | ND          | ND         | ND          | ND          | ND          | ND          | ND           |
| 1,1-Dichloroethane            | .32         | UG/L          | ND          | ND     | ND          | ND            | ND          | ND           | ND          | ND         | ND          | ND          | ND          | ND          | ND           |
| 1,2-Dichloroethane            | .32         | UG/L          | ND          | ND     | ND          | ND            | ND          | ND           | ND          | ND         | ND          | ND          | ND          | ND          | ND           |
| 1,1-Dichloroethene            | .37         | UG/L          | ND          | ND     | ND          | ND            | ND          | ND           | ND          | ND         | ND          | ND          | ND          | ND          | ND           |
| trans-1,2-dichloroethene      | .34         | UG/L          | ND          | ND     | ND          | ND            | ND          | ND           | ND          | ND         | ND          | ND          | ND          | ND          | ND           |
| 1,2-Dichloropropane           | .43         | UG/L          | ND          | ND     | ND          | ND            | ND          | ND           | ND          | ND         | ND          | ND          | ND          | ND          | ND           |
| cis-1,3-dichloropropene       | .38         | UG/L          | ND          | ND     | ND          | ND            | ND          | ND           | ND          | ND         | ND          | ND          | ND          | ND          | ND           |
| trans-1,3-dichloropropene     | .35         | UG/L          | ND          | ND     | ND          | ND            | ND          | ND           | ND          | ND         | ND          | ND          | ND          | ND          | ND           |
| Ethylbenzene                  | .43         | UG/L          | ND          | ND     | ND          | ND            | ND          | ND           | ND          | ND         | ND          | ND          | ND          | ND          | ND           |
| Methylene chloride            | .37         | UG/L          | ND          | DNQ.7* | *DNQ1.1     | 1 ND I        | DNQ.8DN     | Q1.2D        | NQ1.2D      | VQ1.0D     | VQ1.1D      | NQ1.3*C     | DNQ1.3      | *DNQ1.9     | DNQ0.69      |
| 1,1,2,2-Tetrachloroethane     | .34         | UG/L          | ND          | ND     | ND          | ND            | ND          | ND           | ND          | ND         | ND          | ND          | ND          | ND          | ND           |
| Tetrachloroethene             | .5          | UG/L          | ND          | ND     | ND          | ND            | ND          | ND           | ND          | ND         | ND          | ND          | ND          | ND          | ND           |
| Toluene                       | .45         | UG/L          | 18.0        | 2.4    | DNQ1.       | 7DNQ0.        | 7DNQ0.8     | BDNQ1.       | 4DNQ0.9     | DNQ0.9     | DNQ1.       | 9 2.2       | DNQ1.       | 9DNQ1.7     | DNQ2.9       |
| 1,1,1-Irichloroethane         | .4          | UG/L          | ND          | ND     | ND          | ND            | ND          | ND           | ND          | ND         | ND          | ND          | ND          | ND          | ND           |
| 1,1,2-Irichloroethane         | .32         | UG/L          | ND          | ND     | ND          | ND            | ND          | ND           | ND          | ND         | ND          | ND          | ND          | ND          | ND           |
| Irichloroethene               | .43         | UG/L          | ND          | ND     | ND          | ND            | ND          | ND           | ND          |            | ND          | ND          | ND          | ND          |              |
| Vinyl chlonide                | .43         |               |             |        |             |               |             |              |             | + ND       |             |             |             |             |              |
|                               | .35<br>==== | UG/L<br>===== | ND<br>===== | =====  | ND<br>===== | ND<br>=====   | ND<br>===== | ND<br>=====  | ND<br>===== | =====      | ND<br>===== | =====       | ND<br>===== | ND<br>===== | =====        |
| Halomethane Purgeable Cmpnds  | .36         | UG/L          | 0.0         | 0.0    | 0.0         | 0.0           | 0.0         | 3.2          | 2.5         | 4.5        | 3.3         | 2.4         | 2.4         | 16.2        | 2.8          |
| Dichlorobenzenes              | .47         | UG/L          | 0.0         | 0.0    | 0.0         | 0.0           | 0.0         | 0.0          | 0.0         | 0.0        | 0.0         | 0.0         | 0.0         | 0.0         | 0.0          |
| Total Chloromethanes          | .4          | UG/L          | 4.1         | 3.2    | 2.1         | 3.3           | 4.5         | 6.3          | 5.3         | 4.7        | 4.5         | 4.7         | 4.9         | 23.4        | 5.9          |
| Purgeable Compounds           | 2.39        | UG/L          | 24.9        | 5.6    | 2.1         | 3.3           | 4.5         | 6.3          | 5.3         | 9.2        | 7.8         | 6.9         | 4.9         | 25.9        | 8.9          |
| Additional Analytes Determine | ====<br>ed: | =====         |             |        |             |               | =====       |              |             |            |             |             |             |             | =====        |
|                               | ====        | =====         | =====       | =====  | =====       | =====         | =====       | =====        | =====       | =====      | =====       | =====       | =====       | =====       | =====        |
| Acetone                       | 16          | UG/L          | 730         | 1460   | 643         | 1010          | 974         | 496          | 526         | 418        | 359         | 608         | 467         | 846         | 711          |
| Allyl chloride                | .44         | UG/L          | NA          | ND     | ND          | ND            | ND          | ND           | ND          | ND         | ND          | ND          | ND          | ND          | ND           |
| Benzyl chloride               | .65         | UG/L          | NA          | ND     | ND          | ND            | ND          | ND           | ND          | ND         | ND          | ND          | ND          | DNQ1.6      | DNQ0.13      |
| 2-Butanone                    | 5.56        | UG/L          | 7.2         | ND     | DNQ5.6      | 5 14.9        | 15.6        | DNQ/.        | 5DNQ/.      | 16./       | DNQ6.       | 2DNQ9.5     | DNQ6.       | 9 23.2      | DNQ10.03     |
| Carbon disulfide              | 1           | UG/L          | 2.0         | 1.1    | 1.3         | 1.9           | 2.3         | 2.9          | 2.7         | 2.9        | 2.0         | 2.0         | 1.7         | 3.0         | 2.2          |
| La Dipromosthano              | .09         |               | NA<br>ND    |        |             |               |             |              |             |            |             |             |             |             |              |
| I,2-DIDROMOECHARE             | .41         |               |             |        |             |               |             |              |             |            |             |             |             |             |              |
| Mothyl Todido                 | .41         |               |             |        |             |               |             |              |             |            |             |             |             |             |              |
| Methyl methacrylate           | . 52        |               | NA<br>NA    |        |             |               |             |              |             |            |             |             |             |             |              |
| Methyl tert-hutyl ether       | 36          |               | ND          | ND     | 1 2         | ND            | 2 0         | ND           | ND          |            |             | ND          |             | ND          | 03           |
| 2-Nitropropane                | . 50        |               | NΔ          | ND     | ND          | ND            | 2.0<br>ND   | ND           | ND          | ND         | ND          | ND          | ND          | ND          | ND           |
| ortho-xvlene                  | .34         |               |             |        | DNOA        |               |             |              |             |            |             |             | 5 ND        |             |              |
| Stvrene                       | .38         | UG/L          | ND          | DN00   | 5 ND        | DN00.         | 5DN00.4     |              | ND          | ND         | ND          | ND          | ND          | ND          | DN00.12      |
| 1,2,4-Trichlorobenzene        | 1.52        | UG/L          | ND          | ND     | ND          | ND            | ND          | ND           | ND          | ND         | ND          | ND          | ND          | ND          | ND           |
| meta, para xylenes            | .85         | UG/L          | ND          | ND     | DN01.0      | 3 ND          | ND          | ND           | ND          | ND         | ND          | DNO0.9      | ) ND        | DN00.9      | DN00.23      |
| 2-Chloroethylvinyl ether      | .29         | UG/L          | ND          | ND     | ND          | ND            | ND          | ND           | ND          | ND         | ND          | ND          | ND          | ND          | ND           |
| 4-Methyl-2-pentanone          | .52         | UG/L          | ND          | ND     | ND          | ND            | ND          | ND           | ND          | ND         | ND          | ND          | ND          | 2.0         | 0.2          |

\* = Method blank value above the MDL; sample result not included in average calculations.

DNQ= Detected but not quantified. Sample result is less than minimum Level but greater than or equal to MDL.

#### Dioxin and Furan Analysis EPA Method 1613

| SOurce                  |      |       | PLR      | PLR     |
|-------------------------|------|-------|---------|---------|---------|---------|---------|---------|----------|---------|
| Month                   |      |       | JAN     | FEB     | MAR     | APR     | MAY     | JUN     | JUL      | AUG     |
| Analyte                 | MDL  | Units | P914715 | P919163 | P925684 | P932305 | P936544 | P946048 | P953432  | P959720 |
|                         | ==== | ===== | ======= |         | ======= |         |         |         |          |         |
| 2,3,7,8-tetra CDD       | .209 | PG/L  | ND       | ND      |
| 1,2,3,7,8-penta CDD     | .366 | PG/L  | ND       | ND      |
| 1,2,3,4,7,8_hexa_CDD    | .331 | PG/L  | ND       | ND      |
| 1,2,3,6,7,8-hexa CDD    | .37  | PG/L  | ND       | ND      |
| 1,2,3,7,8,9-hexa CDD    | .324 | PG/L  | ND       | ND      |
| 1,2,3,4,6,7,8-hepta CDD | .408 | PG/L  | DNQ14.5 | DNQ22.4 | DNQ12.8 | DNQ16.2 | DNQ18.3 | DNQ16.8 | DNQ17.1  | DNQ12.7 |
| octa CDD                | 1.1  | PG/L  | 160     | 180     | 110     | 160     | 190     | 140     | 140      | 100     |
| 2,3,7,8-tetra CDF       | .196 | PG/L  | ND      | ND      | ND      | ND      | ND      | DNQ1.09 | ND       | ND      |
| 1,2,3,7,8-penta CDF     | .32  | PG/L  | ND       | ND      |
| 2,3,4,7,8-penta CDF     | .303 | PG/L  | ND       | ND      |
| 1,2,3,4,7,8-hexa CDF    | .29  | PG/L  | ND       | ND      |
| 1,2,3,6,7,8-hexa CDF    | .311 | PG/L  | ND      | DNQ1.10 | ND      | ND      | 2.02    | DNQ2.29 | DNQ2.61  | ND      |
| 1,2,3,7,8,9-hexa CDF    | .359 | PG/L  | ND       | ND      |
| 2,3,4,6,7,8-hexa CDF    | .376 | PG/L  | ND      | ND      | ND      | ND      | ND      | ND      | DNQ2.150 | ND      |
| 1,2,3,4,6,7,8-hepta CDF | .346 | PG/L  | DNQ4.25 | DNQ3.24 | DNQ2.33 | DNQ3.23 | DNQ4.70 | DNQ3.86 | DNQ4.15  | DNQ3.08 |
| 1,2,3,4,7,8,9-hepta CDF | .484 | PG/L  | ND       | ND      |
| octa CDF                | .858 | PG/L  | DNQ11.0 | DNQ7.82 | DNQ5.72 | DNQ7.48 | DNQ8.70 | DNQ8.84 | DNQ8.62  | DNQ7.64 |

| Source                  |      |       | PLR     | PLR     | PLR      | PLR      |
|-------------------------|------|-------|---------|---------|----------|----------|
| Month                   |      |       | SEP     | ОСТ     | NOV      | DEC      |
| Analyte                 | MDL  | Units | P970354 | P973069 | P979793  | P986773  |
|                         | ==== | ===== | ======= |         |          |          |
| 2,3,7,8-tetra CDD       | .209 | PG/L  | ND      | ND      | ND       | ND       |
| 1,2,3,7,8-penta CDD     | .366 | PG/L  | ND      | ND      | ND       | ND       |
| 1,2,3,4,7,8_hexa_CDD    | .331 | PG/L  | ND      | ND      | ND       | ND       |
| 1,2,3,6,7,8-hexa CDD    | .37  | PG/L  | ND      | ND      | ND       | ND       |
| 1,2,3,7,8,9-hexa CDD    | .324 | PG/L  | ND      | ND      | ND       | ND       |
| 1,2,3,4,6,7,8-hepta CDD | .408 | PG/L  | DNQ17.6 | DNQ12.6 | DNQ13.8  | DNQ10.8  |
| octa CDD                | 1.1  | PG/L  | 140     | 110     | 150      | 99.0     |
| 2,3,7,8-tetra CDF       | .196 | PG/L  | ND      | ND      | DNQ0.932 | DNQ0.853 |
| 1,2,3,7,8-penta CDF     | .32  | PG/L  | ND      | ND      | ND       | ND       |
| 2,3,4,7,8-penta CDF     | .303 | PG/L  | ND      | ND      | ND       | ND       |
| 1,2,3,4,7,8-hexa CDF    | .29  | PG/L  | ND      | ND      | ND       | ND       |
| 1,2,3,6,7,8-hexa CDF    | .311 | PG/L  | ND      | ND      | ND       | ND       |
| 1,2,3,7,8,9-hexa CDF    | .359 | PG/L  | ND      | ND      | ND       | ND       |
| 2,3,4,6,7,8-hexa CDF    | .376 | PG/L  | ND      | ND      | ND       | ND       |
| 1,2,3,4,6,7,8-hepta CDF | .346 | PG/L  | DNQ4.73 | DNQ4.21 | DNQ4.43  | DNQ3.31  |
| 1,2,3,4,7,8,9-hepta CDF | .484 | PG/L  | ND      | ND      | ND       | ND       |
| octa CDF                | .858 | PG/L  | DNQ8.56 | DNQ7.75 | DNQ7.43  | DNQ7.75  |

Above are permit required CDD/CDF isomers. ND=not detected; NS=not sampled; NA=not analyzed; NR=not required DNQ= Detected but not quantified. Sample result is less than minimum Level but greater than or equal to MDL. ANALYZED BY: Frontier Analytical Laboratories

#### Dioxin and Furan Analysis EPA Method 1613

| Source<br>Month         | 1151 |       | PLE<br>JAN | PLE<br>FEB | PLE<br>MAR | PLE<br>APR | PLE<br>MAY | PLE<br>JUN | PLE<br>JUL | PLE<br>AUG |
|-------------------------|------|-------|------------|------------|------------|------------|------------|------------|------------|------------|
| Analyte                 | MDL  | Units | P914712    | P919127    | P925681    | P932302    | P936538    | P946045    | P953429    | P959714    |
|                         | 210  |       | =======    | =======    |            | ======     |            | ======     |            | =======    |
| 2,3,7,8-tetra CDD       | .310 | PG/L  | ND         |
| 1,2,3,7,8-penta CDD     | .607 | PG/L  | ND         |
| 1,2,3,4,7,8_hexa_CDD    | .808 | PG/L  | ND         |
| 1,2,3,6,7,8-hexa CDD    | .891 | PG/L  | ND         |
| 1,2,3,7,8,9-hexa CDD    | .756 | PG/L  | ND         |
| 1,2,3,4,6,7,8-hepta CDD | .857 | PG/L  | DNQ2.47    | DNQ2.43    | DNQ2.69    | DNQ2.56    | DNQ3.00    | DNQ3.10    | DNQ3.64    | DNQ3.35    |
| octa CDD                | 1.2  | PG/L  | DNQ15.0    | DNQ14.0    | DNQ15.0    | DNQ16.0    | DNQ21.0    | DNQ17.0    | DNQ45.0    | DNQ21.0    |
| 2,3,7,8-tetra CDF       | .307 | PG/L  | ND         |
| 1,2,3,7,8-penta CDF     | .421 | PG/L  | ND         |
| 2,3,4,7,8-penta CDF     | .431 | PG/L  | ND         |
| 1,2,3,4,7,8-hexa CDF    | .486 | PG/L  | ND         |
| 1,2,3,6,7,8-hexa CDF    | .521 | PG/L  | ND         |
| 1,2,3,7,8,9-hexa CDF    | .663 | PG/L  | ND         |
| 2,3,4,6,7,8-hexa CDF    | .556 | PG/L  | ND         |
| 1,2,3,4,6,7,8-hepta CDF | .489 | PG/L  | ND         |
| 1,2,3,4,7,8,9-hepta CDF | .69  | PG/L  | ND         |
| octa CDF                | 1.7  | PG/L  | ND         | ND         | ND         | ND         | ND         | ND         | DNQ2.50    | ND         |

|                         |      |       | PLE     | PLE     | PLE     | PLE     |
|-------------------------|------|-------|---------|---------|---------|---------|
|                         |      |       | SEP     | ОСТ     | NOV     | DEC     |
| Analyte                 | MDL  | Units | P970351 | P973063 | P979790 | P986770 |
|                         | ==== | ===== | ======= |         |         |         |
| 2,3,7,8-tetra CDD       | .316 | PG/L  | ND      | ND      | ND      | ND      |
| 1,2,3,7,8-penta CDD     | .607 | PG/L  | ND      | ND      | ND      | ND      |
| 1,2,3,4,7,8_hexa_CDD    | .808 | PG/L  | ND      | ND      | ND      | ND      |
| 1,2,3,6,7,8-hexa CDD    | .891 | PG/L  | ND      | ND      | ND      | ND      |
| 1,2,3,7,8,9-hexa CDD    | .756 | PG/L  | ND      | ND      | ND      | ND      |
| 1,2,3,4,6,7,8-hepta CDD | .857 | PG/L  | DNQ2.53 | DNQ2.33 | ND      | DNQ2.49 |
| octa CDD                | 1.2  | PG/L  | DNQ16.0 | DNQ11.0 | DNQ8.90 | DNQ17.0 |
| 2,3,7,8-tetra CDF       | .307 | PG/L  | ND      | ND      | ND      | ND      |
| 1,2,3,7,8-penta CDF     | .421 | PG/L  | ND      | ND      | ND      | ND      |
| 2,3,4,7,8-penta CDF     | .431 | PG/L  | ND      | ND      | ND      | ND      |
| 1,2,3,4,7,8-hexa CDF    | .486 | PG/L  | ND      | ND      | ND      | ND      |
| 1,2,3,6,7,8-hexa CDF    | .521 | PG/L  | ND      | ND      | ND      | ND      |
| 1,2,3,7,8,9-hexa CDF    | .663 | PG/L  | ND      | ND      | ND      | ND      |
| 2,3,4,6,7,8-hexa CDF    | .556 | PG/L  | ND      | ND      | ND      | ND      |
| 1,2,3,4,6,7,8-hepta CDF | .489 | PG/L  | ND      | ND      | ND      | ND      |
| 1,2,3,4,7,8,9-hepta CDF | .69  | PG/L  | ND      | ND      | ND      | ND      |
| octa CDF                | 1.7  | PG/L  | ND      | ND      | ND      | ND      |

Above are permit required CDD/CDF isomers. ND=not detected; NS=not sampled; NA=not analyzed; NR=not required DNQ= Detected but not quantified. Sample result is less than minimum Level but greater than or equal to MDL. ANALYZED BY: Frontier Analytical Laboratories

#### POINT LOMA WASTEWATER TREATMENT

#### ANNUAL 2017

#### Dioxin and Furan Analysis

#### EPA Method 1613

| Source                  |      |               |                | PLR           | PLR           | PLR           | PLR          | PLR           | PLR           |
|-------------------------|------|---------------|----------------|---------------|---------------|---------------|--------------|---------------|---------------|
|                         |      |               |                | TCDD          | TCDD          | TCDD          | TCDD         | TCDD          | TCDD          |
| Month                   |      |               |                | JAN           | FEB           | MAR           | MAY          | JUN           | JUL           |
| Analyte                 | MDL  | Units         | Equiv          | P914715       | P919163       | P925684       | P936544      | P946048       | P953432       |
| 2,3,7,8-tetra CDD       | .209 | =====<br>PG/L | =====<br>1.000 | =======<br>ND | =======<br>ND | =======<br>ND | ======<br>ND | =======<br>ND | =======<br>ND |
| 1,2,3,7,8-penta CDD     | .366 | PG/L          | 0.500          | ND            | ND            | ND            | ND           | ND            | ND            |
| 1,2,3,4,7,8_hexa_CDD    | .331 | PG/L          | 0.100          | ND            | ND            | ND            | ND           | ND            | ND            |
| 1,2,3,6,7,8-hexa CDD    | .37  | PG/L          | 0.100          | ND            | ND            | ND            | ND           | ND            | ND            |
| 1,2,3,7,8,9-hexa CDD    | .324 | PG/L          | 0.100          | ND            | ND            | ND            | ND           | ND            | ND            |
| 1,2,3,4,6,7,8-hepta CDD | .408 | PG/L          | 0.010          | DNQ0.145      | DNQ0.224      | DNQ0.128      | DNQ0.183     | DNQ0.168      | DNQ0.171      |
| octa CDD                | 1.1  | PG/L          | 0.001          | 0.160         | 0.180         | 0.110         | 0.190        | 0.140         | 0.140         |
| 2,3,7,8-tetra CDF       | .196 | PG/L          | 0.100          | ND            | ND            | ND            | ND           | ND            | DNQ0.109      |
| 1,2,3,7,8-penta CDF     | .32  | PG/L          | 0.050          | ND            | ND            | ND            | ND           | ND            | ND            |
| 2,3,4,7,8-penta CDF     | .303 | PG/L          | 0.500          | ND            | ND            | ND            | ND           | ND            | ND            |
| 1,2,3,4,7,8-hexa CDF    | .29  | PG/L          | 0.100          | ND            | ND            | ND            | ND           | ND            | ND            |
| 1,2,3,6,7,8-hexa CDF    | .311 | PG/L          | 0.100          | ND            | DNQ0.110      | ND            | 0.202        | DNQ0.229      | DNQ0.261      |
| 1,2,3,7,8,9-hexa CDF    | .359 | PG/L          | 0.100          | ND            | ND            | ND            | ND           | ND            | ND            |
| 2,3,4,6,7,8-hexa CDF    | .376 | PG/L          | 0.100          | ND            | ND            | ND            | ND           | ND            | ND            |
| 1,2,3,4,6,7,8-hepta CDF | .346 | PG/L          | 0.010          | DNQ0.043      | DNQ0.032      | DNQ0.023      | DNQ0.047     | DNQ0.039      | DNQ0.042      |
| 1,2,3,4,7,8,9-hepta CDF | .484 | PG/L          | 0.010          | ND            | ND            | ND            | ND           | ND            | ND            |
| octa CDF                | .858 | PG/L          | 0.001          | DNQ0.011      | DNQ0.008      | DNQ0.006      | DNQ0.009     | DNQ0.009      | DNQ0.009      |

| Source                  |        |       |       | PLR      | PLR      | PLR      | PLR      |
|-------------------------|--------|-------|-------|----------|----------|----------|----------|
|                         |        |       |       | TCDD     | TCDD     | TCDD     | TCDD     |
| Month                   |        |       |       | SEP      | ОСТ      | NOV      | DEC      |
| Analyte                 | MDL    | Units | Equiv | P970354  | P973069  | P979793  | P986773  |
|                         | ====== | ===== | ===== | =======  | =======  | =======  | =======  |
| 2,3,7,8-tetra CDD       | .209   | PG/L  | 1.000 | ND       | ND       | ND       | ND       |
| 1,2,3,7,8-penta CDD     | .366   | PG/L  | 0.500 | ND       | ND       | ND       | ND       |
| 1,2,3,4,7,8_hexa_CDD    | .331   | PG/L  | 0.100 | ND       | ND       | ND       | ND       |
| 1,2,3,6,7,8-hexa CDD    | .37    | PG/L  | 0.100 | ND       | ND       | ND       | ND       |
| 1,2,3,7,8,9-hexa CDD    | .324   | PG/L  | 0.100 | ND       | ND       | ND       | ND       |
| 1,2,3,4,6,7,8-hepta CDD | .408   | PG/L  | 0.010 | DNQ0.176 | DNQ0.126 | DNQ0.138 | DNQ0.108 |
| octa CDD                | 1.1    | PG/L  | 0.001 | 0.140    | 0.110    | 0.150    | 0.099    |
| 2,3,7,8-tetra CDF       | .196   | PG/L  | 0.100 | ND       | ND       | DNQ0.093 | DNQ0.085 |
| 1,2,3,7,8-penta CDF     | .32    | PG/L  | 0.050 | ND       | ND       | ND       | ND       |
| 2,3,4,7,8-penta CDF     | .303   | PG/L  | 0.500 | ND       | ND       | ND       | ND       |
| 1,2,3,4,7,8-hexa CDF    | .29    | PG/L  | 0.100 | ND       | ND       | ND       | ND       |
| 1,2,3,6,7,8-hexa CDF    | .311   | PG/L  | 0.100 | ND       | ND       | ND       | ND       |
| 1,2,3,7,8,9-hexa CDF    | .359   | PG/L  | 0.100 | ND       | ND       | ND       | ND       |
| 2,3,4,6,7,8-hexa CDF    | .376   | PG/L  | 0.100 | ND       | ND       | ND       | ND       |
| 1,2,3,4,6,7,8-hepta CDF | .346   | PG/L  | 0.010 | DNQ0.047 | DNQ0.042 | DNQ0.044 | DNQ0.033 |
| 1,2,3,4,7,8,9-hepta CDF | .484   | PG/L  | 0.010 | ND       | ND       | ND       | ND       |
| octa CDF                | .858   | PG/L  | 0.001 | DNQ0.009 | DNQ0.008 | DNQ0.007 | DNQ0.008 |

Above are permit required CDD/CDF isomers. ND=not detected; NS=not sampled; NA=not analyzed; NR=not required DNQ= Detected but not quantified. Sample result is less than minimum Level but greater than or equal to MDL. ANALYZED BY: Frontier Analytical Laboratories

Y:\EMTS\41.Sections\WCS\REPORTS\PLWWTP\Annuals\Annual2017\Final\_Reports\2017\_!\_Annual.docx Influent and Effluent Data Summary 2.72
#### POINT LOMA WASTEWATER TREATMENT

#### ANNUAL 2017

#### Dioxin and Furan Analysis

#### EPA Method 1613

| Source                  |       |       |       | PLE      | PLE      | PLE      | PLE      | PLE      | PLE      |
|-------------------------|-------|-------|-------|----------|----------|----------|----------|----------|----------|
|                         |       |       |       | TCDD     | TCDD     | TCDD     | TCDD     | TCDD     | TCDD     |
| Month                   |       |       |       | JAN      | FEB      | MAR      | MAY      | JUN      | JUL      |
| Analyte                 | MDL   | Units | Equiv | P914712  | P919157  | P925681  | P936538  | P946045  | P953429  |
|                         | ===== | ===== | ===== | =======  | =======  |          |          |          |          |
| 2,3,7,8-tetra CDD       | .316  | PG/L  | 1.000 | ND       | ND       | ND       | ND       | ND       | ND       |
| 1,2,3,7,8-penta CDD     | .607  | PG/L  | 0.500 | ND       | ND       | ND       | ND       | ND       | ND       |
| 1,2,3,4,7,8_hexa_CDD    | .808  | PG/L  | 0.100 | ND       | ND       | ND       | ND       | ND       | ND       |
| 1,2,3,6,7,8-hexa CDD    | .891  | PG/L  | 0.100 | ND       | ND       | ND       | ND       | ND       | ND       |
| 1,2,3,7,8,9-hexa CDD    | .756  | PG/L  | 0.100 | ND       | ND       | ND       | ND       | ND       | ND       |
| 1,2,3,4,6,7,8-hepta CDD | .857  | PG/L  | 0.010 | DNQ0.025 | DNQ0.024 | DNQ0.027 | DNQ0.030 | DNQ0.031 | DNQ0.036 |
| octa CDD                | 1.2   | PG/L  | 0.001 | DNQ0.015 | DNQ0.014 | DNQ0.015 | DNQ0.021 | DNQ0.017 | DNQ0.045 |
| 2,3,7,8-tetra CDF       | .307  | PG/L  | 0.100 | ND       | ND       | ND       | ND       | ND       | ND       |
| 1,2,3,7,8-penta CDF     | .421  | PG/L  | 0.050 | ND       | ND       | ND       | ND       | ND       | ND       |
| 2,3,4,7,8-penta CDF     | .431  | PG/L  | 0.500 | ND       | ND       | ND       | ND       | ND       | ND       |
| 1,2,3,4,7,8-hexa CDF    | .486  | PG/L  | 0.100 | ND       | ND       | ND       | ND       | ND       | ND       |
| 1,2,3,6,7,8-hexa CDF    | .521  | PG/L  | 0.100 | ND       | ND       | ND       | ND       | ND       | ND       |
| 1,2,3,7,8,9-hexa CDF    | .663  | PG/L  | 0.100 | ND       | ND       | ND       | ND       | ND       | ND       |
| 2,3,4,6,7,8-hexa CDF    | .556  | PG/L  | 0.100 | ND       | ND       | ND       | ND       | ND       | ND       |
| 1,2,3,4,6,7,8-hepta CDF | .489  | PG/L  | 0.010 | ND       | ND       | ND       | ND       | ND       | ND       |
| 1,2,3,4,7,8,9-hepta CDF | .69   | PG/L  | 0.010 | ND       | ND       | ND       | ND       | ND       | ND       |
| octa CDF                | 1.7   | PG/L  | 0.001 | ND       | ND       | ND       | ND       | ND       | DNQ0.003 |

| Sounco                  |       |       |       | DIE      | DIE      | DIE      | DIE      |
|-------------------------|-------|-------|-------|----------|----------|----------|----------|
| Source                  |       |       |       |          |          |          |          |
|                         |       |       |       | ICDD     | ICDD     | TCDD     |          |
| Month                   |       |       |       | SEP      | UC I     | NOV      | DEC      |
| Analyte                 | MDL   | Units | Equiv | P970351  | P973063  | P979790  | P986770  |
|                         | ===== | ===== | ===== | =======  |          |          |          |
| 2,3,7,8-tetra CDD       | .316  | PG/L  | 1.000 | ND       | ND       | ND       | ND       |
| 1,2,3,7,8-penta CDD     | .607  | PG/L  | 0.500 | ND       | ND       | ND       | ND       |
| 1,2,3,4,7,8_hexa_CDD    | .808  | PG/L  | 0.100 | ND       | ND       | ND       | ND       |
| 1,2,3,6,7,8-hexa CDD    | .891  | PG/L  | 0.100 | ND       | ND       | ND       | ND       |
| 1,2,3,7,8,9-hexa CDD    | .756  | PG/L  | 0.100 | ND       | ND       | ND       | ND       |
| 1,2,3,4,6,7,8-hepta CDD | .857  | PG/L  | 0.010 | DNQ0.025 | DNQ0.023 | ND       | DNQ0.025 |
| octa CDD                | 1.2   | PG/L  | 0.001 | DNQ0.016 | DNQ0.011 | DNQ0.009 | DNQ0.017 |
| 2,3,7,8-tetra CDF       | .307  | PG/L  | 0.100 | ND       | ND       | ND       | ND       |
| 1,2,3,7,8-penta CDF     | .421  | PG/L  | 0.050 | ND       | ND       | ND       | ND       |
| 2,3,4,7,8-penta CDF     | .431  | PG/L  | 0.500 | ND       | ND       | ND       | ND       |
| 1,2,3,4,7,8-hexa CDF    | .486  | PG/L  | 0.100 | ND       | ND       | ND       | ND       |
| 1,2,3,6,7,8-hexa CDF    | .521  | PG/L  | 0.100 | ND       | ND       | ND       | ND       |
| 1,2,3,7,8,9-hexa CDF    | .663  | PG/L  | 0.100 | ND       | ND       | ND       | ND       |
| 2,3,4,6,7,8-hexa CDF    | .556  | PG/L  | 0.100 | ND       | ND       | ND       | ND       |
| 1,2,3,4,6,7,8-hepta CDF | .489  | PG/L  | 0.010 | ND       | ND       | ND       | ND       |
| 1,2,3,4,7,8,9-hepta CDF | .69   | PG/L  | 0.010 | ND       | ND       | ND       | ND       |
| octa CDF                | 1.7   | PG/L  | 0.001 | ND       | ND       | ND       | ND       |

Above are permit required CDD/CDF isomers.

ND=not detected; NS=not sampled; NA=not analyzed; NR=not required

DNQ= Detected but not quantified. Sample result is less than minimum Level but greater than or equal to MDL.

ANALYZED BY: Frontier Analytical Laboratories

## 2017 Point Loma Wastewater Treatment Plant

#### **Bacteriological Parameters**

The following are the monthly bacteriological results of the Point Loma Wastewater Treatment Plant Effluent. The values are stated in terms of Most Probable Number (MPN) per 100 milliliters for the total and fecal coliform densities and in terms of Colony Forming Unit (CFU) per 100 millilitiers for enterococcus.

| DATE             | COLIF<br>(MPN Ind | ENTEROCOCCUS**<br>(CFU/100 ml) |         |
|------------------|-------------------|--------------------------------|---------|
|                  | Total             | Fecal                          |         |
| January 3, 2017  | 3,300,000         | 330,000                        | 3,000   |
| January 9, 2017  | 7,000,000         | 7,000,000                      | 40,000  |
| January 17, 2017 | 11,000,000        | 2,200,000                      | 25,000  |
| January 23, 2017 | 4,900,000         | 1,100,000                      | 50,000e |
| January 30, 2017 | 1,100,000         | 230,000                        | 700e    |
| Average          | 5,500,000         | 2,200,000                      | 24,000  |

| DATE              | COLIFORM*<br>(MPN Index/100ml) |            | ENTEROCOCCUS**<br>(CFU/100 ml) |
|-------------------|--------------------------------|------------|--------------------------------|
|                   | Total                          | Fecal      |                                |
| February 7, 2017  | 7,900,000                      | 1,100,000  | 90,000e                        |
| February 13, 2017 | 7,900,000                      | 4,900,000  | 240,000                        |
| February 21, 2017 | 7,900,000                      | 1,700,000  | 33,000                         |
| February 27, 2017 | 79,000,000                     | 14,000,000 | 240,000                        |
| Average           | 26,000,000                     | 5,400,000  | 150,000                        |

| DATE           | COLIFORM*<br>(MPN Index/100ml) |           | ENTEROCOCCUS**<br>(CFU/100 ml) |
|----------------|--------------------------------|-----------|--------------------------------|
|                | Total                          | Fecal     |                                |
| March 6, 2017  | 13,000,000                     | 2,200,000 | 34,000                         |
| March 14, 2017 | 2,300,000                      | 790,000   | 80,000e                        |
| March 20, 2017 | 13,000,000                     | 1,400,000 | 13,000e                        |
| March 27, 2017 | 17,000,000                     | 7,000,000 | 42,000                         |
| Average        | 11,000,000                     | 2,800,000 | 42,000                         |

| DATE           | COLII<br>(MPN Inc | ENTEROCOCCUS**<br>(CFU/100 ml) |          |
|----------------|-------------------|--------------------------------|----------|
|                | Total             | Fecal                          |          |
| April 3 2017   | 24,000,000        | 3,300,000                      | 80,000e  |
| April 11, 2017 | 24,000,000        | 7,900,000                      | 260,000  |
| April 17, 2017 | 13,000,000        | 2,200,000                      | 28,000   |
| April 24, 2017 | 11,000,000        | 7,000,000                      | 170,000e |
| Average        | 18,000,000        | 5,100,000                      | 130,000  |

| DATE         | COLIF<br>(MPN Ind | ENTEROCOCCUS**<br>(CFU/100 ml) |          |
|--------------|-------------------|--------------------------------|----------|
|              | Total             | Fecal                          |          |
| May 1, 2017  | 11,000,000        | 2,300,000                      | 160,000e |
| May 8, 2017  | 17,000,000        | 4,600,000                      | 70,000e  |
| May 15, 2017 | 7,900,000         | 3,300,000                      | 36,000   |
| May 22, 2017 | 13,000,000        | 4,900,000                      | 58,000   |
| May 31, 2017 | 54,000,000        | 24,000,000                     | 170,000  |
| Average      | 21,000,000        | 7,800,000                      | 99,000   |

| DATE          | COLIF<br>(MPN Ind | ENTEROCOCCUS**<br>(CFU/100 ml) |         |
|---------------|-------------------|--------------------------------|---------|
|               | Total             | Fecal                          |         |
| June 5, 2017  | 13,000,000        | 3,300,000                      | 76,000e |
| June 12, 2017 | 11,000,000        | 2,300,000                      | 290,000 |
| June 19, 2017 | 7,900,000         | 2,300,000                      | 16,000e |
| June 26, 2017 | 35,000,000        | 4,900,000                      | 90,000e |
| Average       | 17,000,000        | 3,200,000                      | 120,000 |

| DATE          | COLIF<br>(MPN Ind | ENTEROCOCCUS**<br>(CFU/100 ml) |          |
|---------------|-------------------|--------------------------------|----------|
|               | Total             | Fecal                          |          |
| July 3, 2017  | 11,000,000        | 1,700,000                      | 36,000   |
| July 10, 2017 | 54,000,000        | 7,900,000                      | 170,000e |
| July 17, 2017 | 13,000,000        | 3,300,000                      | 110,000e |
| July 24, 2017 | 35,000,000        | 13,000,000                     | 60,000e  |
| July 31, 2017 | 35,000,000        | 4,900,000                      | 52,000   |
| Average       | 30,000,000        | 6,200,000                      | 86,000   |

| DATE            | COLII<br>(MPN Inc | ENTEROCOCCUS**<br>(CFU/100 ml) |        |
|-----------------|-------------------|--------------------------------|--------|
|                 | Total             | Fecal                          |        |
| August 7, 2017  | 35,000,000        | 4,900,000                      | 27,000 |
| August 14, 2017 | 35,000,000        | 13,000,000                     | 53,000 |
| August 21, 2017 | 14,000,000        | 4,900,000                      | 44,000 |
| August 28, 2017 | 17,000,000        | 3,300,000                      | 43,000 |
| Average         | 25,000,000        | 6,500,000                      | 42,000 |

| DATE               | COLIFORM*<br>(MPN Index/100ml) |            | ENTEROCOCCUS**<br>(CFU/100 ml) |
|--------------------|--------------------------------|------------|--------------------------------|
|                    | Total Fecal                    |            |                                |
| September 5, 2017  | 17,000,000                     | 13,000,000 | 30,000                         |
| September 12, 2017 | 13,000,000                     | 2,200,000  | 190,000e                       |
| September 18, 2017 | 11,000,000                     | 7,000,000  | 180,000e                       |
| September 25, 2017 | 24,000,000                     | 4,900,000  | 25,000                         |
| Average            | 16,000,000                     | 6,800,000  | 110,000                        |

| DATE             | COLIFORM*<br>(MPN Index/100ml) |           | ENTEROCOCCUS**<br>(CFU/100 ml) |
|------------------|--------------------------------|-----------|--------------------------------|
|                  | Total                          | Fecal     |                                |
| October 2, 2017  | 11,000,000                     | 9,900,000 | 24,000                         |
| October 9, 2017  | 24,000,000                     | 4,900,000 | 57,000                         |
| October 16, 2017 | 22,000,000                     | 4,900,000 | 47,000                         |
| October 23, 2017 | 13,000,000                     | 7,900,000 | 59,000                         |
| October 30, 2017 | 54,000,000                     | 4,600,000 | 34,000                         |
| Average          | 25,000,000                     | 5,400,000 | 44,000                         |

| DATE              | COLIE<br>(MPN Inc | ENTEROCOCCUS**<br>(CFU/100 ml) |         |
|-------------------|-------------------|--------------------------------|---------|
|                   | Total             | Fecal                          |         |
| November 7, 2017  | 35,000,000        | 7,900,000                      | 310,000 |
| November 13, 2017 | 17,000,000        | 3,100,000                      | 480,000 |
| November 20, 2017 | 7,000,000         | 3,300,000                      | 15,000e |
| November 27, 2017 | 7,900,000         | 3,300,000                      | 24,000  |
| Average           | 17,000,000        | 4,400,000                      | 210,000 |

| DATE              | COLII<br>(MPN Inc | ENTEROCOCCUS**<br>(CFU/100 ml) |          |  |
|-------------------|-------------------|--------------------------------|----------|--|
|                   | Total             | Fecal                          |          |  |
| December 4, 2017  | 11,000,000        | 2,300,000                      | 40,000   |  |
| December 11, 2017 | 7,900,000         | 2,300,000                      | 42,000   |  |
| December 18, 2017 | 28,000,000        | 4,900,000                      | 110,000e |  |
| December 26, 2017 | 24,000,000        | 13,000,000                     | 34,000   |  |
| Average           | 18,000,000        | 5,600,000                      | 57,000   |  |

\*Multiple tube Fermentation Technique (MTF) SM 9221B (Total Coliform) & SM9221E (Fecal coliform) \*\*Membrane Filtration (MF) – EPA 1600

"e", estimated value, plate count falls outside the acceptable range per EPA method guidelines. ^Method used for this analysis is IDEXX Quanti-Tray using Colilert Reagents.

#### POINT LOMA WASTEWATER TREATMENT PLANT

#### ANNUAL 2017

| Analyte                                | Tot<br>Hardne | al<br>ess    | Calc<br>Hardne  | ium<br>ss     | Mag<br>Hardn                            | nesium<br>ess | Cal                | .cium           | Mag              | nesium          |
|----------------------------------------|---------------|--------------|-----------------|---------------|-----------------------------------------|---------------|--------------------|-----------------|------------------|-----------------|
| MDL/Units<br>Source                    | .878<br>PLR   | mg/L<br>PLE  | .335<br>PLR     | mg/L<br>PLE   | .544<br>PLR                             | mg/L<br>PLE   | .134<br>PLR        | mg/L<br>PLE     | .132<br>PLR      | mg/L<br>PLE     |
| JANUARY -2017                          | 409           | 403          | 208             | 205           | 201                                     | 198           | 83.4               | 82.1            | 48.6             | 48.0            |
| FEBRUARY -2017                         | 434           | 424          | 220             | 215           | 215                                     | 209           | 88.0               | 86.0            | 52.1             | 50.9            |
| MARCH - 2017                           | 418           | 421          | 212             | 213           | 207                                     | 208           | 84.8               | 85.4            | 50.2             | 50.5            |
| APRIL -2017                            | 391           | 384          | 190             | 187           | 200                                     | 197           | 76.3               | 74.9            | 48.6             | 48.0            |
| MAY -2017                              | 365           | 356          | 174             | 169           | 192                                     | 187           | 69.4               | 67.7            | 46.6             | 45.4            |
| JUNE - 2017                            | 364           | 356          | 162             | 160           | 203                                     | 196           | 64.7               | 64.0            | 49.2             | 47.7            |
| JULY -2017                             | 353           | 356          | 157             | 159           | 196                                     | 197           | 62.7               | 63.7            | 47.7             | 47.8            |
| AUGUST -2017                           | 365           | 361          | 165             | 162           | 200                                     | 199           | 66.3               | 64.9            | 48.6             | 48.4            |
| SEPTEMBER-2017                         | 359           | 353          | 161             | 158           | 198                                     | 195           | 64.6               | 63.2            | 48.1             | 47.4            |
| OCTOBER -2017                          | 553           | 385          | 296             | 167           | 257                                     | 219           | 118                | 66.7            | 62.4             | 53.2            |
| NOVEMBER - 2017                        | 387           | 388          | 165             | 165           | 222                                     | 223           | 66.1               | 66.3            | 53.9             | 54.1            |
| DECEMBER -2017                         | 397           | 391<br>===== | 163<br>======== | 160<br>====== | 234<br>=======                          | 230<br>====== | 65.1<br>=======    | 64.3            | 56.9<br>=======  | 55.9<br>======  |
| Average:                               | 400           | 382          | 189             | 177           | 210                                     | 205           | 75.8               | 70.8            | 51.1             | 49.8            |
| Analyte                                | Alka          | alinity      | Tot             | al            | Total                                   | Vol.          | Condu              | ctivity         | Flu              | oride           |
|                                        |               |              | Solid           | IS ,          | Soli                                    | ds ,          |                    | . ,             |                  |                 |
| MDL/Units<br>Source                    | 20<br>PLR     | mg/L<br>PLE  | 10<br>PLR       | mg/L<br>PLE   | 100<br>PLR                              | mg/L<br>PLE   | 10u<br>PLR         | imnos/cm<br>PLE | .05<br>PLR       | mg/L<br>PLE     |
| ====================================== | 300           | <br>292      | 1830            | 1550          | ======================================= | 213           | 2630               | 2650            | ========<br>0 55 | =======<br>0 53 |
| FERRIARY _ 2017                        | 326           | 305          | 1990            | 1670          | 59/                                     | 364           | 2050               | 2000            | 0.55             | 0.55            |
| MARCH _ 2017                           | 320           | 312          | 2060            | 1710          | 640                                     | 386           | 27760              | 2700            | 0.75             | 0.75            |
| ADRTI _ 2017                           | 329           | 21/          | 1080            | 1630          | 686                                     | /12           | 2700               | 2770            | 0.05             | 0.04            |
| MAV _2017                              | 317           | 302          | 1880            | 1560          | 589                                     | 316           | 2770               | 2700            | 0.01             | 0.00            |
| TINE _2017                             | 327           | 306          | 1930            | 1570          | 615                                     | 337           | 2710               | 2750            | 0.07             | 0.00<br>0 79    |
| -2017                                  | 320           | 300          | 19/0            | 1610          | 595                                     | 326           | 2750               | 2700            | 0.05             | 0.7J<br>0.73    |
| AUGUST - 2017                          | 316           | 298          | 1990            | 1680          | 605                                     | 338           | 2750               | 2750            | 0.75             | 0.75            |
| SEPTEMBER - 2017                       | 316           | 300          | 1890            | 1590          | 564                                     | 306           | 2000               | 2070            | 0.50<br>0.77     | 0.05<br>0 71    |
| OCTOBER -2017                          | 320           | 307          | 2050            | 1760          | 612                                     | 393           | 2950               | 2970            | 0.62             | 0.72            |
| NOVEMBER - 2017                        | 318           | 303          | 2000            | 1690          | 618                                     | 356           | 2970               | 2970            | 0.65             | 0.62            |
| DECEMBER -2017                         | 313           | 298          | 2080            | 1770          | 620                                     | 319           | 3100               | 3120            | 1.23             | 1.16            |
| Average:                               | 320           | 303          | 1971            | 1649          | =======<br>606                          | ======<br>347 | 2815               | 2826            | <br>0.76         | ======<br>0.76  |
| Analyte                                | Cł            | nloride      | В               | romide        |                                         | Sulfate       |                    | Nitrate         | Dheash           | Ortho           |
| MDL /Unite                             | 7             | ma /1        | 1               | mg / I        | ٥                                       | ma / I        | 04                 | mα / I          | Pilospii<br>2    | ale<br>ma/l     |
| Source                                 | PLR           | PLE          | PLR             | PLE           | PLR                                     | PLE           | PLR                | PLE             | PLR              | PLE             |
| =======<br>JANUARY -2017               | 511           | 523          | 1.2             | 1.1           | ========<br>270                         | ======<br>264 | =========<br><0.04 | 0.14            | ========<br>2.6  | =======<br>1.3  |
| FEBRUARY -2017                         | 526           | 539          | 1.1             | 1.1           | 274                                     | 270           | 0.08               | 0.16            | 3.3              | 1.5             |
| MARCH -2017                            | 535           | 543          | 1.2             | 1.2           | 255                                     | 248           | 0.06               | 0.44            | 3.8              | 2.3             |
| APRIL -2017                            | 549           | 568          | 1.4             | 1.3           | 202                                     | 203           | 0.04               | 0.57            | 6.3              | 4.8             |
| MAY -2017                              | 562           | 567          | 1.7             | 1.5           | 166                                     | 159           | ND                 | 0.21            | 6.0              | 4.9             |
| JUNE -2017                             | 577           | 578          | 1.6             | 1.5           | 161                                     | 151           | 0.08               | 0.34            | 6.8              | 5.5             |
| JULY -2017                             | 591           | 597          | 1.6             | 1.6           | 144                                     | 136           | 0.06               | 0.27            | 7.4              | 6.5             |
| AUGUST -2017                           | 617           | 621          | 1.6             | 1.5           | 147                                     | 141           | 0.07               | 0.23            | 7.2              | 6.5             |
| SEPTEMBER-2017                         | 591           | 604          | 1.4             | 1.3           | 141                                     | 134           | 0.06               | 0.32            | 7.0              | 6.0             |
| OCTOBER -2017                          | 867           | 659          | 0.8             | 1.2           | 122                                     | 157           | 0.26               | 0.11            | 4.1              | 5.0             |
| NOVEMBER - 2017                        | 635           | 647          | 1.6             | 0.9           | 152                                     | 146           | 0.06               | 0.47            | 6.5              | 4.7             |
| DECEMBER -2017                         | 681           | 690          | 2.7             | 2.6           | 158                                     | 152           | 0.04               | 0.14            | 7.0              | 5.0             |
| Average:                               | 604           | <br>595      | 1.5             | 1.4           | 183                                     | 180           | 0.07               | 0.28            | 5.7              | <br>4.5         |

METALS by EPA 200.8 ANIONS/CATIONS by EPA 300.0 ALKALINITY by SM2320B ND=not detected; NS=not sampled; NA=not analyzed

#### POINT LOMA WASTEWATER TREATMENT PLANT

#### ANNUAL 2017

| Analyte         | te Lit           |                | :                  | Sodium Pot      |                    | otassium      |                  | emical                | Soluble             |                |
|-----------------|------------------|----------------|--------------------|-----------------|--------------------|---------------|------------------|-----------------------|---------------------|----------------|
|                 |                  |                |                    |                 |                    |               | Oxygen D         | emand                 | BOD                 |                |
| MDL/Units       | .015             | mg/L           | 1.89               | mg/L            | .84                | mg/L          | 18               | mg/L                  | 2                   | mg/L           |
| Source          | PLR              | PLE            | PLR                | PLE             | PLR                | PLE           | PLR              | PLE                   | PLR                 | PLE            |
| JANUARY -2017   | 0.045            | 0.046          | 321                | 319             | 25.0               | 24.3          | 609              | 252                   | 83                  | 85             |
| FEBRUARY -2017  | 0.048            | 0.048          | 339                | 337             | 26.5               | 25.7          | 682              | 266                   | 88                  | 89             |
| MARCH - 2017    | 0.039            | 0.039          | 347                | 349             | 25.0               | 25.1          | 686              | 281                   | 88                  | 90             |
| APRIL -2017     | 0.034            | 0.033          | 341                | 342             | 29.3               | 28.8          | 793              | 318                   | 103                 | 106            |
| MAY -2017       | 0.030            | 0.028          | 344                | 348             | 29.6               | 28.9          | 780              | 285                   | 98                  | 102            |
| JUNE - 2017     | 0.032            | 0.030          | 355                | 349             | 29.8               | 29.0          | 738              | 299                   | 102                 | 104            |
| JULY -2017      | 0.027            | 0.028          | 356                | 359             | 30.9               | 30.9          | 780              | 316                   | 102                 | 104            |
| AUGUST - 2017   | 0.030            | 0.031          | 378                | 383             | 30.7               | 30.6          | 726              | 326                   | 106                 | 105            |
| SEPTEMBER-2017  | 0.026            | 0.026          | 374                | 376             | 29.8               | 29.2          | 736              | 271                   | 101                 | 95             |
| OCTOBER -2017   | 0.026            | 0.027          | 391                | 397             | 38.5               | 29.7          | 674              | 259                   | 101                 | 95             |
| NOVEMBER - 2017 | 0.024            | 0.023          | 392                | 397             | 30.7               | 30.0          | 743              | 292                   | 96                  | 97             |
| DECEMBER -2017  | 0.023            | 0.022          | 419                | 417             | 33.0               | 32.2          | 766              | 323                   | 109                 | 108            |
| Average:        | 0.03             | 0.03           | 363                | 364             | 29.9               | 28.7          | 726              | 291                   | 98<br>98            | <br>98         |
| Analyte         | Total Disol      | ved            | Floatable          | 5               | Turbidity          |               | Aluminum         |                       | Barium              |                |
| MDL /Unite      | 250              | μας / I        | 1 /                | mg / I          | 12                 | NTU           | 22.0             | ug /1                 | 7                   | ug /1          |
| Source          | PLR              | PLE            | PLR                | PLE             | PLR                | PLE           | PLR              | PLE                   | PLR                 | PLE            |
|                 | ========         | 1500           |                    | ======          |                    | =====<br>27   |                  | ======                |                     |                |
| JANUARY -2017   | 1520             | 1500           | <1.40              | 1 40            | 115                | 27            | 700              | 90<br>71              | 115                 | 45             |
| FEBRUARY - 2017 | 1530             | 1510           | <1.40              | <1.40           | 109                | 27            | /14              | /1                    | 117                 | 47             |
| MARCH -2017     | 1630             | 1620           | <1.40              | ND              | 105                | 30            | 694              | 67                    | 102                 | 41             |
| APRIL -2017     | 1550             | 1530           | <1.40              | ND              | 107                | 41            | 531              | 55                    | 86                  | 33             |
| MAY -2017       | 1480             | 1460           | <1.40              | ND              | 118                | 44            | 605              | 5/                    | //                  | 2/             |
| JUNE -2017      | 1550             | 1510           | <1.40              | ND              | 109                | 45            | 540              | /1                    | /1                  | 26             |
| JULY -2017      | 1530             | 1520           | <1.40              | ND              | 115                | 56            | 619              | 69                    | /4                  | 2/             |
| AUGUSI -2017    | 1570             | 1540           | <1.40              | ND              | 110                | 63            | 429              | 75                    | 62                  | 31             |
| SEPTEMBER-2017  | 1510             | 1500           | <1.00              | ND              | 124                | 50            | 699              | 154                   | 74                  | 25             |
| OCTOBER -2017   | 1630             | 1600           | <1.00              | ND              | 106                | 46            | 681              | 181                   | 72                  | 27             |
| NOVEMBER -2017  | 1610             | 1580           | <1.00              | <1.00           | 115                | 47            | 647              | 46                    | 76                  | 28             |
| DECEMBER - 2017 | 1680<br>=======  | 1660<br>====== | 1.00               | ND<br>======    | 116<br>==========  | 42            | 630<br>========  | 47                    | 73                  | 23<br>======   |
| Average:        | 1566             | 1544           | 0.08               | 0.00            | 112                | 43            | 630              | 82                    | 83                  | 32             |
| Analyte         | Boron            |                | Cobalt             |                 | Molyhdenum         |               | Manganese        |                       | Vanadium            |                |
| MDL /Units      | 1 /              | ug /1          | 24                 | ug /1           | 32                 | uσ/I          | 78               | uσ/I                  | 2 77                | uσ/I           |
| Source          | PLR              | PLE            | PLR                | PLE             | PLR                | PLE           | PLR              | PLE                   | PLR                 | PLE            |
|                 | =======<br>407   | ======<br>407  | =========<br>1 530 | ======<br>0 877 | =========<br>10 40 | =====<br>7 50 | =========<br>142 | =====<br>128          | ========<br>4 86    | ======<br>۵ 66 |
| FEBRUARY _2017  | 407              | 397            | 1 780              | 1 220           | 9 95               | 7 81          | 155              | 137                   | 5 73                | 1 30           |
| MARCH _2017     | 405              | 106            | 1 910              | 1 060           | 10 /0              | 8 08          | 150              | 132                   | 1 77                | 1 3/           |
| ADRTI _2017     | 400              | 396            | 1 /80              | 1 060           | 7 90               | 6 02          | 150              | 1/2                   | 3 88                | 1 10           |
| ΜΔΥ -2017       | 400              | 412            | 1 410              | 0 945           | 7.50               | 5 73          | 162              | 139                   | 3 89                | 0 88           |
| TINE -2017      | 403              | 399            | 1 450              | 1 040           | 7.64               | 5 77          | 158              | 146                   | 3 41                | 0.00<br>0 82   |
| -2017           | 405              | /18            | 1 /30              | 0 907           | 9.04               | 5 51          | 153              | 130                   | 3 36                | 0.02           |
| AUGUST _ 2017   | 421              | 410            | 1 020              | 0.762           | 55 ک<br>10.6       | 6 20          | 1/0              | 150                   | 7.20                | 20.71          |
| CEDTEMPED 2017  | 433              | 434            | 0.745              | 0.703           |                    | 5 74          | 140              | 1 4 1                 | 4.59                | (2.77          |
|                 | 449              | 441<br>160     | 0.745              | 0.3/3           | 0./J<br>7 01       | 5.74          | 140              | 1/1<br>1/1            | U.30                | ×2.11          |
| NOVEMBED 2017   | 408<br>155       | 405            | 001.00             | 0.420           | 0 20<br>1.91       | 5.5/          | 157              | 141                   | 85.C<br>مر <i>ا</i> | <2.//          |
| DECEMBER -2017  | 399              | 412            | 0.867              | 0.484           | 8.82               | 5.96          | 147              | 138                   | 4.28                | ND             |
|                 | ========<br>//2/ | ======<br>∕\วว | =========<br>1     | ======          | =========<br>مع ه  | 6 76          | =========<br>150 | =====<br>1 <i>1</i> 0 | =========<br>/ 6/   | ======<br>0 74 |
| Average:        | 424              | 422            | 1.270              | 0.005           | 0.00               | 0.20          | 102              | 140                   | 4.04                | 0.74           |

Metals by EPA 200.8 Turbidity by SM2130B TDS by SM2540C COD by HACH 8000

ND=not detected; NS=not sampled; NA=not analyzed

### D. Influent and Effluent Graphs

Graphs of monthly averages for permit parameters with measurable concentration averages are presented in this section.

Where possible, the influent and effluent values of a given parameter have been included on the same graph so that removals and other relationships are readily apparent. Please note that many of the graphs are on expanded scales. That is, they may not go to zero concentrations but show, in magnified scale, that range of concentrations where variation takes place. This makes differences and some trends obvious that normally might not be noticed. However, it also provides the temptation to interpret minor changes or trends as being of more significance than they are. Frequent reference to the scales and the actual differences in concentrations is, therefore, necessary.

The trend for percent BOD and TSS removals in the last three months of 2016 was slightly lower than the norm as the plant experienced problems in effectively getting raw sludge out of sedimentation tanks and into digesters due to vivianite buildup in the raw sludge pipes. Nonetheless, percent removal requirements per the NPDES permit have been met. Operations staff promptly resolved the issue by contracting with a vendor to clean the pipelines, and implemented operational changes to eliminate or reduce vivianite buildup.



# Point Loma Wastewater Treatment Plant 2017 Daily Flows (mgd)







Total Suspended Solids (mg/L) 2017 Monthly Averages







# Biochemical Oxygen Demand (%) Removal 2017 Monthly Averages











pH 2017 Monthly Averages



Temperature (°C) 2017 Monthly Averages













Alkalinity (mg/L) 2017 Monthly Averages





Beta Radiation 2017 Monthly Averages





Ammonia-N

Total Cyanides 2017 Monthly Averages

- Effluent





Antimony 2017 Monthly Averages





Beryllium 2017 Monthly Averages



# Cadmium 2017 Monthly Averages



Chromium 2017 Monthly Averages





Copper 2017 Monthly Averages

Iron 2017 Monthly Averages



Lead 2017 Monthly Averages



Nickel 2017 Monthly Averages



Selenium 2017 Monthly Averages



Silver 2017 Monthly Averages



Thallium 2017 Monthly Averages



Zinc 2017 Monthly Averages



Aluminum 2017 Monthly Averages



Barium 2017 Monthly Averages



Boron 2017 Monthly Averages



Cobalt 2017 Monthly Averages



Manganese 2017 Monthly Averages





Molybdenum 2017 Monthly Averages

Vanadium 2017 Monthly Average





Purgeables Organic Compunds 2017 Monthly Averages

Phenols 2017 Monthly Averages





### Total Chlorinated Hydrocarbons 2017 Monthly Averages



Calcium 2017 Monthly Averages

Magnesium 2017 Monthly Averages





Magnesium Hardness 2017 Monthly Averages





Total Hardness 2017 Monthly Averages

Lithium 2017 Monthly Averages





Potassium 2017 Monthly Averages

Sodium 2017 Monthly Averages




Bromide 2017 Monthly Averages

Chloride 2017 Monthly Averages











O-Phosphate 2017 Monthly Averages

Sulfate 2017 Monthly Averages



This page intentionally left blank.

E. Daily Values of Selected Parameters

Daily values and statistical summaries of selected parameters (e.g. TSS, Flow, TSS Removals, etc.) are tabulated and presented graphically. The straight horizontal lines on the graphs in this section represent annual means for the constituent.



| Day     | Jan    | Feb    | Mar    | Apr    | May    | Jun    | Jul    | Aug    | Sep    | Oct    | Nov    | Dec    | =       |
|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|
| 1       | 178.4  | 155.6  | 217.1  | 139.4  | 141.0  | 127.3  | 127.1  | 129.9  | 131.1  | 130.3  | 122.5  | 135.0  | _       |
| 2       | 162.8  | 157.3  | 189.4  | 139.9  | 136.4  | 130.0  | 127.4  | 127.5  | 132.7  | 124.2  | 129.3  | 131.0  |         |
| 3       | 158.7  | 154.6  | 185.4  | 144.5  | 137.0  | 132.2  | 128.6  | 127.9  | 128.5  | 125.9  | 126.2  | 134.3  |         |
| 4       | 152.6  | 152.2  | 175.7  | 144.2  | 136.0  | 131.3  | 124.8  | 133.6  | 134.9  | 129.5  | 131.2  | 128.6  |         |
| 5       | 156.1  | 152.3  | 167.0  | 140.6  | 135.4  | 133.4  | 128.0  | 126.9  | 132.8  | 127.3  | 135.1  | 130.5  |         |
| 6       | 155.1  | 153.1  | 173.1  | 142.7  | 141.4  | 130.1  | 129.9  | 133.8  | 128.8  | 122.0  | 127.8  | 124.3  |         |
| 7       | 152.6  | 162.0  | 162.5  | 143.4  | 164.2  | 129.1  | 141.1  | 131.6  | 129.1  | 128.2  | 126.3  | 133.0  |         |
| 8       | 151.3  | 159.4  | 159.5  | 142.2  | 158.8  | 127.6  | 147.3  | 130.2  | 132.9  | 129.7  | 127.9  | 128.8  |         |
| 9       | 152.4  | 156.5  | 158.6  | 142.1  | 147.0  | 126.8  | 131.9  | 127.1  | 127.2  | 126.5  | 124.3  | 129.2  |         |
| 10      | 152.2  | 155.6  | 164.7  | 143.8  | 143.8  | 131.2  | 129.1  | 129.4  | 134.7  | 127.3  | 128.4  | 130.6  |         |
| 11      | 153.0  | 154.6  | 157.5  | 141.1  | 142.6  | 130.4  | 131.2  | 129.4  | 130.7  | 126.5  | 129.8  | 125.2  |         |
| 12      | 157.2  | 152.1  | 152.7  | 140.0  | 144.5  | 127.9  | 129.7  | 132.0  | 122.7  | 129.6  | 129.9  | 129.9  |         |
| 13      | 191.4  | 157.6  | 155.5  | 140.6  | 140.6  | 128.4  | 132.5  | 129.8  | 130.4  | 126.6  | 126.9  | 125.7  |         |
| 14      | 170.5  | 149.7  | 154.9  | 141.7  | 137.4  | 127.3  | 126.3  | 126.6  | 123.1  | 130.4  | 125.0  | 121.7  |         |
| 15      | 158.2  | 151.2  | 153.2  | 139.6  | 141.8  | 130.7  | 128.0  | 126.8  | 129.0  | 129.3  | 132.4  | 132.8  |         |
| 16      | 159.3  | 144.6  | 147.6  | 140.6  | 141.0  | 125.9  | 133.6  | 127.7  | 129.4  | 126.2  | 122.3  | 126.6  |         |
| 17      | 153.1  | 166.5  | 157.5  | 139.8  | 136.6  | 133.9  | 126.8  | 127.8  | 133.0  | 124.8  | 126.5  | 129.0  |         |
| 18      | 153.2  | 209.5  | 149.8  | 141.8  | 141.3  | 130.2  | 127.3  | 126.3  | 119.3  | 129.3  | 134.3  | 120.9  |         |
| 19      | 177.0  | 173.1  | 149.9  | 140.0  | 132.6  | 125.6  | 130.9  | 128.1  | 131.0  | 130.2  | 125.8  | 129.3  |         |
| 20      | 215.5  | 167.2  | 148.9  | 139.7  | 141.4  | 132.0  | 129.9  | 130.9  | 114.9  | 129.5  | 125.2  | 120.9  |         |
| 21      | 229.1  | 164.9  | 152.7  | 141.3  | 139.9  | 126.9  | 133.1  | 126.2  | 123.4  | 127.1  | 122.9  | 129.5  |         |
| 22      | 196.2  | 159.7  | 144.6  | 140.6  | 138.6  | 126.7  | 126.9  | 128.0  | 126.5  | 130.5  | 130.4  | 122.4  |         |
| 23      | 231.4  | 162.7  | 143.0  | 144.5  | 134.0  | 132.8  | 132.6  | 125.6  | 129.9  | 127.4  | 126.5  | 127.8  |         |
| 24      | 220.9  | 154.7  | 151.8  | 144.4  | 135.6  | 130.5  | 130.2  | 125.3  | 126.6  | 123.4  | 112.7  | 127.2  |         |
| 25      | 190.3  | 152.3  | 143.8  | 137.8  | 130.0  | 128.4  | 127.5  | 126.4  | 124.7  | 127.7  | 119.5  | 111.4  |         |
| 26      | 181.0  | 153.4  | 145.5  | 138.4  | 131.9  | 130.8  | 129.6  | 131.5  | 119.5  | 125.7  | 126.5  | 118.9  |         |
| 27      | 172.2  | 201.6  | 144.0  | 138.8  | 129.4  | 127.8  | 120.6  | 127.5  | 128.7  | 127.2  | 124.5  | 129.1  |         |
| 28      | 166.7  | 287.0  | 143.5  | 137.4  | 128.1  | 127.6  | 136.6  | 132.0  | 125.9  | 130.2  | 131.4  | 129.6  |         |
| 29      | 165.9  |        | 141.3  | 140.1  | 129.3  | 131.3  | 128.7  | 127.2  | 126.7  | 129.8  | 126.7  | 126.1  |         |
| 30      | 163.0  |        | 138.0  | 138.8  | 128.9  | 126.3  | 126.2  | 129.1  | 126.6  | 126.2  | 124.1  | 124.7  | Annual  |
| 31      | 157.5  |        | 142.2  |        | 133.0  |        | 130.2  | 127.9  |        | 124.4  |        | 132.8  | Summary |
| Average | 172.1  | 165.0  | 157.1  | 141.0  | 138.7  | 129.4  | 130.1  | 128.7  | 127.8  | 127.5  | 126.8  | 127.3  | 139.2   |
| Minimum | 151.3  | 144.6  | 138.0  | 137.4  | 128.1  | 125.6  | 120.6  | 125.3  | 114.9  | 122.0  | 112.7  | 111.4  | 111.4   |
| Maximum | 231.4  | 287.0  | 217.1  | 144.5  | 164.2  | 133.9  | 147.3  | 133.8  | 134.9  | 130.5  | 135.1  | 135.0  | 287.0   |
| Total   | 5334.5 | 4621.3 | 4871.1 | 4229.7 | 4299.1 | 3880.6 | 4033.6 | 3989.7 | 3834.8 | 3952.9 | 3802.7 | 3947.2 | 50797   |

# Point Loma Wastewater Treatment Plant 2017 Flows (mgd)

## 650 550 450 (**1**)<sup>350</sup> **SSL** 250 150 50 W ALW -50 1211 ŕdo P.D. Jun $\mathcal{D}_{\mathcal{C}_{\mathcal{C}}}$ May ANG Mai Jay QČ 202 Date Effluent Influent Avg Effluent -Avg Influent

# Point Loma Wastewater Treatment Plant 2017 Total Suspended Solids

|            | Ja  | n   | Fe         | eb       | N   | Iar  | Ap         | or       | Μ          | ay       | Ju         | ın       | Jı  | ıl              | A          | ıg       | Se  | ep       | 0   | ct       | No         | ov  | I   | Dec      |            |          |
|------------|-----|-----|------------|----------|-----|------|------------|----------|------------|----------|------------|----------|-----|-----------------|------------|----------|-----|----------|-----|----------|------------|-----|-----|----------|------------|----------|
| Day        | Inf | Eff | Inf        | Eff      | Inf | Eff  | Inf        | Eff      | Inf        | Eff      | Inf        | Eff      | Inf | Eff             | Inf        | Eff      | Inf | Eff      | Inf | Eff      | Inf        | Eff | Inf | Eff      |            |          |
| 1          | 228 | 22  | 370        | 35       | 214 | 30   | 340        | 25       | 248        | 31       | 226        | 42       | 348 | 37              | 350        | 58       | 394 | 28       | 378 | 31       | 362        | 29  | 394 | 44       |            |          |
| 2          | 314 | 27  | 404        | 30       | 304 | 25   | 326        | 25       | 402        | 38       | 380        | 41       | 336 | 31              | 418        | 56       | 338 | 30       | 426 | 34       | 390        | 27  | 326 | 45.5     |            |          |
| 3          | 326 | 22  | 332        | 26       | 294 | 32   | 362        | 29       | 350        | 26       | 372        | 43       | 378 | 37              | 456        | 52       | 386 | 32       | 304 | 36       | 392        | 34  | 362 | 43       |            |          |
| 4          | 320 | 30  | 326        | 34       | 278 | 30   | 376        | 32       | 390        | 24       | 368        | 38       | 312 | 35              | 384        | 61       | 310 | 36       | 442 | 36       | 344        | 32  | 340 | 41.5     |            |          |
| 5          | 286 | 21  | 312        | 35       | 264 | 28   | 250        | 27       | 364        | 35       | 350        | 42       | 380 | 33              | 328        | 50       | 384 | 39       | 332 | 27       | 314        | 42  | 376 | 39.5     |            |          |
| 6          | 304 | 20  | 348        | 38       | 336 | 35   | 350        | 88       | 340        | 25       | 478        | 42       | 298 | 39              | 314        | 50       | 366 | 30       | 352 | 30       | 354        | 33  | 378 | 45       |            |          |
| 7          | 304 | 20  | 322        | 30       | 352 | 35   | 376        | 29       | 256        | 34       | 598        | 47       | 400 | 33              | 358        | 44       | 402 | 32       | 484 | 34       | 370        | 72  | 390 | 34       |            |          |
| 8          | 304 | 24  | 356        | 38       | 312 | 23   | 324        | 25       | 320        | 33       | 348        | 47       | 362 | 36              | 388        | 54       | 380 | 37       | 258 | 31       | 340        | 32  | 426 | 39       |            |          |
| 9          | 240 | 24  | 382        | 37       | 324 | 28   | 292        | 24       | 318        | 30       | 358        | 36       | 322 | 37              | 400        | 56       | 346 | 31       | 350 | 39       | 402        | 30  | 326 | 40       |            |          |
| 10         | 264 | 27  | 396        | 30       | 370 | 35.5 | 322        | 34       | 316        | 34       | 352        | 40       | 380 | 48              | 358        | 34       | 270 | 31       | 392 | 30       | 370        | 31  | 320 | 36.5     |            |          |
| 11         | 326 | 25  | 346        | 30       | 316 | 26   | 338        | 34       | 332        | 28       | 286        | 39       | 298 | 35              | 344        | 36       | 402 | 39       | 272 | 22       | 340        | 35  | 330 | 36       |            |          |
| 12         | 386 | 22  | 226        | 24       | 292 | 22.5 | 378        | 32       | 356        | 33       | 330        | 43       | 442 | 44              | 326        | 35       | 376 | 29       | 418 | 49       | 392        | 37  | 334 | 35.5     |            |          |
| 13         | 322 | 25  | 332        | 38       | 328 | 46   | 338        | 26       | 350        | 29       | 358        | 38       | 382 | 37              | 324        | 39       | 354 | 38       | 410 | 31       | 416        | 43  | 272 | 42       |            |          |
| 14         | 278 | 26  | 362        | 37       | 332 | 21.5 | 366        | 35       | 316        | 31       | 354        | 35       | 364 | 39              | 276        | 59       | 384 | 26       | 358 | 34       | 404        | 35  | 330 | 473      |            |          |
| 15         | 322 | 24  | 408        | 34       | 312 | 43.5 | 324        | 24       | 360        | 44       | 372        | 38       | 378 | 39              | 384        | 42       | 388 | 29       | 268 | 39       | 372        | 34  | 360 | 35.5     |            |          |
| 16         | 344 | 31  | 468        | 40       | 354 | 16.5 | 312        | 27       | 332        | 33       | 398        | 42       | 348 | 32              | 388        | 49       | 332 | 33       | 298 | 46       | 390        | 34  | 346 | 38       |            |          |
| 17         | 330 | 34  | 300        | 38       | 340 | 32.5 | 352        | 35       | 328        | 30       | 340        | 46       | 368 | 39              | 288        | 39       | 356 | 32       | 322 | 43       | 416        | 38  | 285 | 38.5     |            |          |
| 18         | 414 | 37  | 346        | 36       | 328 | 30   | 396        | 43       | 358        | 32       | 306        | 38       | 380 | 35              | 368        | 35       | 232 | 30       | 288 | 34       | 354        | 42  | 356 | 39.5     |            |          |
| 19         | 326 | 27  | 266        | 33       | 314 | 29.5 | 352        | 32       | 392        | 44       | 356        | 43       | 392 | 38              | 334        | 31       | 408 | 37       | 392 | 34       | 280        | 39  | 384 | 30.5     |            |          |
| 20         | 292 | 49  | 420        | 41       | 382 | 34   | 390        | 32       | 334        | 38       | 342        | 43       | 348 | 42              | 314        | 30       | 448 | 49       | 414 | 44       | 366        | 41  | 384 | 33.5     |            |          |
| 21         | 316 | 34  | 296        | 30       | 378 | 31   | 356        | 34       | 350        | 33       | 362        | 38       | 436 | 56              | 352        | 46       | 450 | 39       | 368 | 33       | 302        | 41  | 382 | 39       |            |          |
| 22         | 296 | 32  | 304        | 24       | 352 | 34.5 | 450        | 33       | 338        | 34       | 390        | 36       | 362 | 34              | 340        | 42       | 376 | 33       | 256 | 29       | 318        | 40  | 338 | 31.5     |            |          |
| 23         | 290 | 41  | 342        | 23       | 358 | 24.5 | 310        | 24       | 344        | 35       | 376        | 44       | 360 | 43              | 300        | 36       | 342 | 31       | 390 | 35       | 366        | 38  | 347 | 37       |            |          |
| 24         | 276 | 45  | 358        | 31       | 366 | 29   | 356        | 36       | 394        | 35       | 374        | 36       | 386 | 43              | 432        | 41       | 302 | 30       | 344 | 37       | 400        | 38  | 343 | 36       |            |          |
| 25         | 272 | 43  | 348        | 27       | 340 | 27   | 392        | 30       | 372        | 34       | 330        | 31       | 382 | 44              | 362        | 38       | 368 | 35       | 440 | 31       | 362        | 33  | 370 | 33       |            |          |
| 26         | 316 | 37  | 314        | 27       | 312 | 26.5 | 348        | 33       | 386        | 42       | 356        | 36       | 412 | 47              | 336        | 37       | 368 | 29       | 434 | 29       | 278        | 36  | 358 | 30       |            |          |
| 27         | 248 | 31  | 390        | 56       | 392 | 39   | 364        | 24       | 352        | 35       | 372        | 36       | 416 | 37              | 328        | 37       | 364 | 33       | 388 | 32       | 350        | 44  | 350 | 33       |            |          |
| 28         | 284 | 31  | 232        | 47       | 332 | 27   | 374        | 34       | 324        | 39       | 344        | 30       | 390 | 44              | 372        | 39       | 434 | 40       | 338 | 33       | 358        | 31  | 354 | 39       |            |          |
| 29         | 286 | 37  |            |          | 410 | 25.8 | 326        | 27       | 270        | 39       | 406        | 33       | 380 | 48              | 424        | 31       | 404 | 41       | 310 | 30       | 306        | 41  | 304 | 31.5     |            |          |
| 30         | 328 | 29  |            |          | 364 | 36   | 310        | 28       | 362        | 41       | 354        | 42       | 330 | 38              | 390        | 31       | 390 | 33       | 352 | 34       | 322        | 37  | 374 | 45       | Sum        | mary     |
| 31         | 346 | 38  | 242        | 24       | 332 | 32.5 | 240        | 22       | 400        | 40       | 265        | 20       | 356 | <u>53</u><br>20 | 370        | 26       | 269 | 22       | 362 | 34       | 250        | 27  | 348 | 44.5     | Inf        | Eff      |
| Avg<br>Min | 228 | 20  | 545<br>226 | 54<br>23 | 214 | 17   | 548<br>250 | 52<br>24 | 244<br>248 | 54<br>24 | 205<br>226 | 39<br>30 | 298 | 31              | 558<br>276 | 42<br>26 | 232 | 55<br>26 | 256 | 54<br>22 | 558<br>278 | 27  | 272 | 32<br>30 | 350<br>214 | 30<br>17 |
| Max        | 414 | 49  | 468        | 23<br>56 | 410 | 46   | 450        | 24<br>88 | 402        | 44       | 598        | 47       | 442 | 56              | 456        | 20<br>61 | 450 | 20<br>49 | 484 | 49       | 416        | 72. | 426 | 473      | 598        | 473      |
|            |     |     |            |          |     |      |            |          |            |          |            |          |     |                 |            | ~ -      |     |          |     |          |            |     | .=5 |          |            |          |

Point Loma Wastewater Treatment Plant 2017 Total Suspended Solids (mg/L)



## Point Loma Wastewater Treatment Plant 2017 TSS Removal (%) at Point Loma

|     | Jan   | Feb   | Mar   | Apr   | May   | Jun   | Jul   | Aug   | Sep   | Oct   | Nov   | Dec   |         |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------|
| Day | % Rem |         |
| 1   | 90.4  | 90.5  | 86.2  | 92.6  | 87.5  | 81.6  | 89.4  | 83.4  | 92.9  | 91.9  | 92.1  | 89.0  |         |
| 2   | 91.4  | 92.7  | 91.8  | 92.5  | 90.5  | 89.3  | 90.9  | 86.7  | 91.3  | 92.1  | 93.1  | 86.0  |         |
| 3   | 93.4  | 92.2  | 89.1  | 92.1  | 92.6  | 88.4  | 90.2  | 88.6  | 91.7  | 88.3  | 91.5  | 88.1  |         |
| 4   | 90.8  | 89.7  | 89.2  | 91.5  | 94.0  | 89.8  | 88.8  | 84.2  | 88.5  | 91.9  | 90.8  | 87.8  |         |
| 5   | 92.8  | 88.8  | 89.4  | 89.4  | 90.4  | 88.1  | 91.3  | 84.9  | 90.0  | 92.0  | 86.8  | 89.5  |         |
| 6   | 93.6  | 89.2  | 89.6  | 75.0  | 92.8  | 91.3  | 86.9  | 84.2  | 91.8  | 91.5  | 90.7  | 88.1  |         |
| 7   | 93.4  | 90.7  | 90.1  | 92.3  | 86.7  | 92.2  | 91.9  | 87.7  | 92.2  | 93.0  | 80.5  | 91.3  |         |
| 8   | 92.1  | 89.3  | 92.6  | 92.3  | 89.7  | 86.6  | 90.2  | 86.2  | 90.4  | 88.2  | 90.6  | 90.8  |         |
| 9   | 90.2  | 90.3  | 91.4  | 91.8  | 90.6  | 90.1  | 88.5  | 86.0  | 91.2  | 89.0  | 92.7  | 87.7  |         |
| 10  | 90.0  | 92.4  | 90.4  | 89.4  | 89.2  | 88.6  | 87.4  | 90.5  | 88.6  | 92.5  | 91.6  | 88.6  |         |
| 11  | 92.3  | 91.5  | 91.8  | 90.1  | 91.6  | 86.5  | 88.3  | 89.7  | 90.3  | 91.9  | 89.9  | 89.1  |         |
| 12  | 94.4  | 89.4  | 92.3  | 91.7  | 90.9  | 87.1  | 90.2  | 89.3  | 92.4  | 88.4  | 90.6  | 89.4  |         |
| 13  | 92.4  | 88.6  | 86.0  | 92.5  | 91.9  | 89.4  | 90.4  | 88.0  | 89.4  | 92.6  | 89.7  | 84.6  |         |
| 14  | 90.6  | 89.8  | 93.5  | 90.6  | 90.3  | 90.3  | 89.4  | 78.6  | 93.2  | 90.6  | 91.5  | -43.3 |         |
| 15  | 92.7  | 91.7  | 86.1  | 92.6  | 87.9  | 89.8  | 89.7  | 89.0  | 92.5  | 85.6  | 91.0  | 90.1  |         |
| 16  | 91.1  | 91.6  | 95.3  | 91.5  | 90.1  | 89.4  | 90.9  | 87.5  | 90.1  | 84.7  | 91.3  | 89.0  |         |
| 17  | 89.8  | 87.3  | 90.4  | 90.1  | 90.9  | 86.6  | 89.5  | 86.5  | 91.0  | 86.8  | 91.0  | 86.5  |         |
| 18  | 91.1  | 89.7  | 90.9  | 89.3  | 91.1  | 87.7  | 90.9  | 90.5  | 87.3  | 88.2  | 88.1  | 88.9  |         |
| 19  | 91.9  | 87.6  | 90.6  | 91.1  | 88.8  | 88.1  | 90.4  | 90.7  | 90.9  | 91.3  | 86.1  | 92.1  |         |
| 20  | 83.2  | 90.2  | 91.1  | 91.8  | 88.6  | 87.4  | 87.9  | 90.4  | 89.1  | 89.4  | 88.9  | 91.3  |         |
| 21  | 89.4  | 90.0  | 91.8  | 90.4  | 90.7  | 89.5  | 87.2  | 86.9  | 91.3  | 91.2  | 86.4  | 89.8  |         |
| 22  | 89.2  | 92.1  | 90.2  | 92.7  | 89.9  | 90.8  | 90.7  | 87.5  | 91.4  | 88.9  | 87.4  | 90.7  |         |
| 23  | 85.9  | 93.4  | 93.2  | 92.3  | 90.0  | 88.4  | 88.2  | 88.0  | 91.1  | 91.0  | 89.6  | 89.3  |         |
| 24  | 83.9  | 91.5  | 92.1  | 90.0  | 91.1  | 90.4  | 89.0  | 90.5  | 90.2  | 89.2  | 90.6  | 89.5  |         |
| 25  | 84.2  | 92.4  | 92.1  | 92.5  | 90.9  | 90.6  | 88.6  | 89.5  | 90.6  | 93.0  | 91.0  | 91.1  |         |
| 26  | 88.3  | 91.4  | 91.5  | 90.7  | 89.2  | 90.0  | 88.7  | 89.0  | 92.1  | 93.4  | 87.1  | 91.6  |         |
| 27  | 87.5  | 85.6  | 90.1  | 93.4  | 90.1  | 90.3  | 91.2  | 88.9  | 91.1  | 91.8  | 87.6  | 90.6  |         |
| 28  | 89.1  | 79.8  | 91.9  | 90.9  | 88.1  | 91.4  | 88.7  | 89.7  | 90.8  | 90.4  | 91.3  | 89.0  |         |
| 29  | 87.2  |       | 93.7  | 91.9  | 85.7  | 92.0  | 87.5  | 92.8  | 90.0  | 90.5  | 86.8  | 89.6  |         |
| 30  | 91.2  |       | 90.1  | 91.0  | 88.8  | 88.1  | 88.6  | 92.1  | 91.5  | 90.5  | 88.5  | 88.0  | Annual  |
| 31  | 89.2  |       | 90.2  |       | 90.0  |       | 85.3  | 93.1  |       | 90.7  |       | 87.2  | Summary |
| Avg | 90.1  | 90.0  | 90.8  | 90.9  | 90.0  | 89.0  | 89.3  | 88.1  | 90.8  | 90.3  | 89.5  | 84.9  | 89.5    |
| Min | 83.2  | 79.8  | 86.0  | 75.0  | 85.7  | 81.6  | 85.3  | 78.6  | 87.3  | 84.7  | 80.5  | -43.3 | -43.3   |
| Max | 94.4  | 93.4  | 95.3  | 93.4  | 94.0  | 92.2  | 91.9  | 93.1  | 93.2  | 93.4  | 93.1  | 92.1  | 95.3    |

#### Point Loma Wastewater Treatment Plant 2017 Total Suspended Solids Removals (%) at Point Loma



# Point Loma Wastewater Treatment Plant 2017 TSS Removal (%) Systemwide

# Point Loma Wastewater Treatment Plant 2017 Total Suspended Solids Removals (%) Systemwide

|     | Jan   | Feb   | Mar   | Apr   | May   | Jun   | Jul   | Aug   | Sep   | Oct   | Nov   | Dec   |         |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------|
| Day | % Rem | -       |
| 1   | 90.8  | 91.1  | 92.0  | 92.2  | 91.2  | 90.3  | 91.7  | 87.6  | 91.9  | 92.6  | 93.5  | 87.1  |         |
| 2   | 91.7  | 93.2  | 90.0  | 92.1  | 93.1  | 89.0  | 90.8  | 89.2  | 92.1  | 89.3  | 92.0  | 88.8  |         |
| 3   | 93.9  | 92.8  | 89.7  | 92.0  | 94.4  | 90.5  | 90.1  | 85.3  | 89.5  | 92.3  | 91.2  | 88.7  |         |
| 4   | 91.4  | 90.4  | 90.0  | 90.3  | 90.9  | 89.3  | 91.9  | 85.5  | 90.5  | 92.6  | 87.7  | 90.2  |         |
| 5   | 93.3  | 89.7  | 90.1  | 75.8  | 93.0  | 91.8  | 88.2  | 84.9  | 92.3  | 92.1  | 91.2  | 88.8  |         |
| 6   | 94.0  | 90.2  | 90.3  | 92.6  | 87.7  | 92.7  | 92.3  | 88.3  | 92.6  | 93.3  | 81.3  | 92.3  |         |
| 7   | 93.8  | 91.4  | 92.9  | 92.7  | 90.3  | 87.8  | 90.7  | 86.4  | 91.0  | 88.7  | 91.4  | 91.2  |         |
| 8   | 92.6  | 87.4  | 91.8  | 92.3  | 91.1  | 90.9  | 88.9  | 86.7  | 91.8  | 90.0  | 93.2  | 88.5  |         |
| 9   | 91.2  | 89.2  | 90.8  | 90.4  | 90.2  | 89.4  | 88.2  | 91.1  | 89.4  | 92.3  | 92.3  | 89.3  |         |
| 10  | 91.0  | 92.1  | 91.9  | 90.5  | 92.1  | 87.8  | 89.1  | 90.7  | 90.8  | 92.5  | 90.5  | 90.3  |         |
| 11  | 92.8  | 92.0  | 92.8  | 92.3  | 91.0  | 88.3  | 90.7  | 89.9  | 92.9  | 89.0  | 91.1  | 90.2  |         |
| 12  | 94.5  | 90.0  | 86.7  | 92.6  | 92.3  | 90.4  | 91.0  | 88.7  | 90.1  | 92.6  | 90.3  | 85.8  |         |
| 13  | 92.8  | 89.3  | 93.9  | 91.2  | 91.1  | 90.9  | 89.9  | 80.7  | 93.7  | 91.1  | 91.9  | -31.1 |         |
| 14  | 91.1  | 90.3  | 87.2  | 93.1  | 88.7  | 90.5  | 90.4  | 89.6  | 93.1  | 86.8  | 91.6  | 90.9  |         |
| 15  | 93.3  | 92.1  | 95.6  | 92.2  | 90.7  | 89.9  | 91.5  | 88.5  | 90.8  | 85.8  | 91.8  | 89.2  |         |
| 16  | 91.7  | 92.1  | 91.1  | 90.4  | 91.6  | 87.2  | 90.5  | 86.8  | 91.5  | 88.0  | 89.4  | 87.1  |         |
| 17  | 90.7  | 88.3  | 91.6  | 90.0  | 91.7  | 88.3  | 91.5  | 91.2  | 88.5  | 89.4  | 89.1  | 90.4  |         |
| 18  | 91.4  | 90.1  | 91.0  | 91.0  | 89.7  | 89.3  | 91.1  | 91.4  | 91.5  | 91.7  | 86.9  | 92.3  |         |
| 19  | 92.3  | 88.4  | 91.5  | 92.3  | 89.0  | 87.6  | 88.8  | 91.0  | 89.7  | 89.9  | 89.5  | 91.6  |         |
| 20  | 84.0  | 90.7  | 91.9  | 91.2  | 89.5  | 90.2  | 87.8  | 87.8  | 91.8  | 91.6  | 87.3  | 90.8  |         |
| 21  | 88.9  | 90.5  | 90.7  | 93.0  | 90.4  | 91.4  | 91.5  | 88.5  | 91.9  | 89.7  | 88.1  | 91.0  |         |
| 22  | 88.4  | 92.7  | 93.5  | 92.8  | 90.6  | 89.2  | 88.8  | 89.1  | 91.6  | 91.6  | 90.4  | 89.9  |         |
| 23  | 85.5  | 94.0  | 92.5  | 90.6  | 91.3  | 90.8  | 89.7  | 91.0  | 90.8  | 90.1  | 91.4  | 89.6  |         |
| 24  | 84.0  | 92.0  | 92.5  | 92.9  | 90.5  | 91.4  | 89.3  | 90.3  | 91.2  | 93.4  | 92.0  | 91.4  |         |
| 25  | 82.8  | 92.5  | 92.1  | 91.4  | 90.0  | 91.0  | 89.3  | 89.7  | 92.7  | 93.8  | 85.0  | 92.2  |         |
| 26  | 87.2  | 92.3  | 90.4  | 93.9  | 90.8  | 91.3  | 91.9  | 89.7  | 91.3  | 92.4  | 88.5  | 91.0  |         |
| 27  | 88.3  | 86.7  | 92.4  | 91.5  | 89.1  | 92.7  | 89.5  | 90.4  | 90.8  | 90.9  | 91.9  | 89.2  |         |
| 28  | 89.3  | 79.8  | 94.0  | 92.3  | 86.8  | 92.7  | 88.3  | 93.3  | 87.0  | 91.1  | 88.1  | 89.8  |         |
| 29  | 87.9  | 85.2  | 90.7  | 91.5  | 89.6  | 89.2  | 89.4  | 92.6  | 90.2  | 91.4  | 89.0  | 88.4  |         |
| 30  | 92.0  |       | 90.7  | 88.7  | 90.7  | 90.1  | 86.4  | 93.6  | 92.0  | 91.5  | 89.5  | 87.4  | Annual  |
| 31  | 89.9  |       | 93.0  |       | 85.0  |       | 84.5  | 93.5  |       | 92.4  |       | 0.0   | Summary |
| Avg | 90.4  | 90.2  | 91.5  | 91.2  | 90.5  | 90.1  | 89.8  | 89.1  | 91.2  | 91.0  | 89.9  | 83.0  | 89.8    |
| Min | 82.8  | 79.8  | 86.7  | 75.8  | 85.0  | 87.2  | 84.5  | 80.7  | 87.0  | 85.8  | 81.3  | -31.1 | -31.1   |
| Max | 94.5  | 94.0  | 95.6  | 93.9  | 94.4  | 92.7  | 92.3  | 93.6  | 93.7  | 93.8  | 93.5  | 92.3  | 95.6    |



# Point Loma Wastewater Treatment Plant 2017 Biochemical Oxygen Demand

#### Point Loma Wastewater Treatment Plant

#### 2017 Biochemical Oxygen Demand (mg/L)

|     | Ja  | n   | Fe  | b   | Μ   | lar | A   | pr  | Μ   | ay  | Ju  | ın  | Jı  | ul  | Α   | ug  | Se  | ep  | 0   | ct  | N   | ov  | D   | ec  |     |      |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
| Day | Inf | Eff |     |      |
| 1   | 209 | 88  | 305 | 98  | 194 | 78  | 343 | 117 | 265 | 133 | 364 | 133 | 314 | 135 | 275 | 147 | 310 | 115 | 328 | 117 | 279 | 105 | 283 | 142 |     |      |
| 2   | 286 | 105 | 304 | 108 | 230 | 92  | 321 | 111 | 352 | 126 | 344 | 138 | 289 | 116 | 332 | 152 | 305 | 120 | 278 | 117 | 336 | 132 | 290 | 137 |     |      |
| 3   | 308 | 116 | 309 | 118 | 280 | 101 | 314 | 121 | 311 | 116 | 319 | 139 | 302 | 139 | 334 | 145 | 320 | 101 | 250 | 120 | 325 | 115 | 303 | 130 |     |      |
| 4   | 284 | 110 | 332 | 119 | 256 | 106 | 343 | 115 | 338 | 121 | 320 | 129 | 285 | 119 | 325 | 169 | 355 | 141 | 351 | 128 | 305 | 108 | 276 | 139 |     |      |
| 5   | 283 | 112 | 296 | 115 | 257 | 109 | 293 | 124 | 351 | 135 | 359 | 144 | 320 | 121 | 327 | 137 | 291 | 118 | 270 | 121 | 279 | 92  | 279 | 133 |     |      |
| 6   | 355 | 116 | 256 | 101 | 285 | 125 | 323 | 145 | 309 | 124 | 302 | 128 | 289 | 135 | 297 | 134 | 298 | 111 | 336 | 132 | 312 | 104 | 298 | 126 |     |      |
| 7   | 313 | 105 | 323 | 116 | 318 | 112 | 357 | 118 | 259 | 114 | 322 | 130 | 318 | 142 | 323 | 151 | 336 | 132 | 347 | 116 | 306 | 121 | 288 | 114 |     |      |
| 8   | 309 | 103 | 307 | 115 | 285 | 116 | 303 | 126 | 336 | 132 | 309 | 128 | 308 | 129 | 325 | 153 | 336 | 132 | 294 | 112 | 308 | 106 | 336 | 132 |     |      |
| 9   | 256 | 104 | 330 | 109 | 290 | 109 | 292 | 124 | 336 | 132 | 296 | 124 | 279 | 116 | 339 | 149 | 261 | 119 | 326 | 123 | 347 | 116 | 239 | 130 |     |      |
| 10  | 256 | 102 | 341 | 117 | 317 | 116 | 323 | 136 | 289 | 123 | 302 | 133 | 281 | 137 | 316 | 139 | 234 | 107 | 341 | 116 | 331 | 133 | 327 | 128 |     |      |
| 11  | 292 | 110 | 306 | 127 | 279 | 115 | 339 | 138 | 326 | 129 | 281 | 129 | 262 | 142 | 311 | 145 | 309 | 129 | 295 | 129 | 329 | 125 | 304 | 147 |     |      |
| 12  | 307 | 101 | 238 | 118 | 277 | 115 | 346 | 131 | 326 | 126 | 329 | 146 | 350 | 154 | 271 | 144 | 260 | 109 | 384 | 166 | 304 | 107 | 307 | 134 |     |      |
| 13  | 253 | 92  | 269 | 130 | 341 | 109 | 342 | 134 | 336 | 127 | 282 | 139 | 367 | 152 | 292 | 128 | 291 | 103 | 326 | 129 | 332 | 137 | 334 | 129 |     |      |
| 14  | 285 | 83  | 297 | 117 | 291 | 105 | 379 | 137 | 320 | 118 | 331 | 145 | 334 | 141 | 336 | 132 | 314 | 107 | 322 | 124 | 294 | 113 | 312 | 341 |     |      |
| 15  | 296 | 97  | 338 | 118 | 292 | 112 | 308 | 102 | 328 | 132 | 333 | 132 | 334 | 144 | 336 | 132 | 319 | 115 | 264 | 100 | 308 | 131 | 346 | 136 |     |      |
| 16  | 295 | 113 | 333 | 126 | 312 | 112 | 311 | 113 | 301 | 122 | 309 | 126 | 301 | 119 | 336 | 132 | 282 | 110 | 279 | 131 | 334 | 116 | 313 | 128 |     |      |
| 17  | 300 | 117 | 275 | 110 | 336 | 132 | 282 | 112 | 331 | 133 | 302 | 136 | 335 | 144 | 281 | 123 | 278 | 102 | 262 | 122 | 351 | 145 | 309 | 129 |     |      |
| 18  | 299 | 108 | 223 | 87  | 299 | 118 | 340 | 129 | 317 | 124 | 298 | 125 | 294 | 124 | 324 | 137 | 239 | 114 | 336 | 132 | 317 | 135 | 310 | 142 |     |      |
| 19  | 336 | 132 | 250 | 94  | 303 | 115 | 337 | 134 | 356 | 139 | 301 | 129 | 325 | 140 | 317 | 128 | 302 | 128 | 315 | 109 | 265 | 116 | 307 | 146 |     |      |
| 20  | 221 | 88  | 307 | 91  | 299 | 117 | 352 | 122 | 360 | 129 | 320 | 138 | 318 | 129 | 296 | 127 | 337 | 132 | 319 | 111 | 290 | 129 | 377 | 144 |     |      |
| 21  | 336 | 132 | 289 | 109 | 347 | 105 | 343 | 144 | 336 | 114 | 334 | 155 | 349 | 143 | 305 | 122 | 323 | 112 | 304 | 114 | 276 | 146 | 366 | 143 |     |      |
| 22  | 336 | 132 | 290 | 111 | 336 | 114 | 316 | 130 | 255 | 119 | 331 | 130 | 317 | 134 | 303 | 137 | 318 | 127 | 293 | 102 | 302 | 145 | 357 | 145 |     |      |
| 23  | 210 | 72  | 288 | 109 | 406 | 112 | 283 | 121 | 250 | 110 | 344 | 142 | 323 | 130 | 297 | 133 | 286 | 125 | 310 | 119 | 331 | 142 | 318 | 136 |     |      |
| 24  | 193 | 77  | 322 | 114 | 350 | 135 | 335 | 137 | 343 | 132 | 341 | 137 | 271 | 133 | 329 | 134 | 291 | 101 | 302 | 111 | 360 | 157 | 337 | 129 |     |      |
| 25  | 256 | 90  | 300 | 109 | 305 | 111 | 362 | 132 | 346 | 130 | 332 | 124 | 290 | 134 | 265 | 125 | 279 | 141 | 342 | 105 | 325 | 141 | 379 | 160 |     |      |
| 26  | 292 | 97  | 308 | 109 | 303 | 113 | 338 | 133 | 308 | 117 | 293 | 129 | 301 | 123 | 284 | 125 | 323 | 130 | 287 | 107 | 273 | 119 | 350 | 158 |     |      |
| 27  | 239 | 106 | 240 | 93  | 318 | 93  | 323 | 127 | 319 | 137 | 311 | 137 | 323 | 131 | 294 | 112 | 301 | 126 | 306 | 100 | 283 | 131 | 377 | 154 |     |      |
| 28  | 271 | 93  | 154 | 61  | 321 | 114 | 349 | 139 | 319 | 119 | 289 | 126 | 319 | 143 | 312 | 124 | 342 | 127 | 310 | 107 | 271 | 108 | 359 | 160 |     |      |
| 29  | 282 | 96  |     |     | 362 | 107 | 303 | 124 | 255 | 128 | 296 | 139 | 342 | 142 | 320 | 115 | 336 | 122 | 281 | 96  | 296 | 124 | 325 | 147 |     |      |
| 30  | 292 | 121 |     |     | 359 | 122 | 326 | 118 | 296 | 132 | 313 | 150 | 326 | 134 | 309 | 110 | 301 | 122 | 336 | 132 | 288 | 129 | 335 | 147 | Sum | mary |
| 31  | 311 | 120 |     |     | 333 | 115 |     |     | 394 | 142 |     |     | 305 | 152 | 357 | 125 |     |     | 336 | 132 |     |     | 310 | 130 | Inf | Eff  |
| Avg | 283 | 104 | 290 | 109 | 306 | 111 | 328 | 126 | 318 | 126 | 361 | 135 | 312 | 135 | 312 | 134 | 303 | 119 | 311 | 119 | 309 | 124 | 321 | 145 | 313 | 124  |
| Min | 193 | 72  | 154 | 61  | 194 | 78  | 282 | 102 | 250 | 110 | 281 | 124 | 262 | 116 | 265 | 110 | 234 | 101 | 250 | 96  | 265 | 92  | 239 | 114 | 154 | 61   |
| Max | 355 | 132 | 341 | 130 | 406 | 135 | 379 | 145 | 394 | 142 | 364 | 155 | 367 | 154 | 357 | 169 | 355 | 141 | 384 | 166 | 360 | 157 | 379 | 341 | 406 | 341  |



Point Loma Wastewater Treatment 2017 BOD Removal (%) at Point Loma

Date

|     |       |       |       | 2017 DI00 | illeniicai Oxyge | ii Demanu Kei | liovais (70) at i | onn Lonia |       |       |       |       |                |
|-----|-------|-------|-------|-----------|------------------|---------------|-------------------|-----------|-------|-------|-------|-------|----------------|
|     | Jan   | Feb   | Mar   | Apr       | May              | Jun           | Jul               | Aug       | Sep   | Oct   | Nov   | Dec   |                |
| Day | % Rem | % Rem | % Rem | % Rem     | % Rem            | % Rem         | % Rem             | % Rem     | % Rem | % Rem | % Rem | % Rem | _              |
| 1   | 57.8  | 67.9  | 59.8  | 65.9      | 49.8             | 63.4          | 57.0              | 46.5      | 62.8  | 64.3  | 62.3  | 49.7  |                |
| 2   | 63.3  | 64.4  | 60.0  | 65.4      | 64.2             | 59.8          | 59.8              | 54.1      | 60.7  | 57.9  | 60.9  | 52.8  |                |
| 3   | 62.3  | 61.8  | 63.9  | 61.5      | 62.7             | 56.4          | 54.0              | 56.5      | 68.4  | 51.9  | 64.6  | 57.0  |                |
| 4   | 61.2  | 64.2  | 58.6  | 66.4      | 64.2             | 59.6          | 58.2              | 47.9      | 60.3  | 63.5  | 64.6  | 49.6  |                |
| 5   | 60.4  | 61.1  | 57.5  | 57.6      | 61.5             | 59.9          | 62.2              | 58.1      | 59.5  | 55.1  | 67.0  | 52.3  |                |
| 6   | 67.3  | 60.5  | 56.1  | 55.1      | 59.9             | 57.5          | 53.3              | 54.8      | 62.7  | 60.9  | 66.7  | 57.7  |                |
| 7   | 66.5  | 64.0  | 64.8  | 66.9      | 56.0             | 59.6          | 55.3              | 53.3      | 60.9  | 66.6  | 60.5  | 60.4  |                |
| 8   | 66.7  | 62.5  | 59.3  | 58.4      | 60.9             | 58.5          | 58.1              | 52.9      | 60.9  | 61.8  | 65.5  | 60.9  |                |
| 9   | 59.4  | 67.0  | 62.4  | 57.5      | 60.9             | 58.1          | 58.3              | 56.0      | 54.4  | 62.2  | 66.5  | 45.6  |                |
| 10  | 60.2  | 65.6  | 63.3  | 57.9      | 57.4             | 56.0          | 51.2              | 56.0      | 54.2  | 66.0  | 59.8  | 60.9  |                |
| 11  | 62.3  | 58.5  | 58.8  | 59.3      | 60.4             | 54.0          | 45.7              | 53.4      | 58.3  | 56.3  | 62.0  | 51.6  |                |
| 12  | 67.0  | 50.4  | 58.5  | 62.1      | 61.3             | 55.6          | 56.0              | 46.9      | 58.1  | 56.7  | 64.7  | 56.3  |                |
| 13  | 63.6  | 51.7  | 68.0  | 60.8      | 62.2             | 50.7          | 58.5              | 56.2      | 64.6  | 60.4  | 58.7  | 61.3  |                |
| 14  | 70.9  | 60.5  | 63.9  | 63.8      | 63.1             | 56.1          | 57.8              | 60.9      | 65.9  | 61.5  | 61.6  | -9.5  |                |
| 15  | 67.2  | 65.0  | 61.6  | 66.9      | 59.8             | 60.4          | 56.9              | 60.9      | 63.9  | 62.1  | 57.5  | 60.7  |                |
| 16  | 61.7  | 62.2  | 64.1  | 63.6      | 59.4             | 59.2          | 60.4              | 60.9      | 61.0  | 53.0  | 65.2  | 59.1  |                |
| 17  | 61.0  | 60.0  | 60.9  | 60.3      | 59.8             | 55.0          | 57.0              | 56.2      | 63.3  | 53.4  | 58.7  | 58.3  |                |
| 18  | 63.8  | 61.0  | 60.5  | 62.1      | 60.9             | 58.0          | 57.8              | 57.7      | 52.3  | 60.9  | 57.4  | 54.2  |                |
| 19  | 60.9  | 62.3  | 62.0  | 60.2      | 61.0             | 57.1          | 56.9              | 59.6      | 57.5  | 65.3  | 56.2  | 52.4  |                |
| 20  | 60.2  | 70.4  | 60.9  | 65.3      | 64.2             | 56.9          | 59.4              | 57.1      | 60.8  | 65.1  | 55.5  | 61.8  |                |
| 21  | 60.9  | 62.3  | 69.7  | 58.0      | 66.0             | 53.6          | 59.0              | 60.0      | 65.3  | 62.5  | 47.0  | 60.9  |                |
| 22  | 60.9  | 61.7  | 66.1  | 58.9      | 53.3             | 60.7          | 57.7              | 54.7      | 60.0  | 65.1  | 51.9  | 59.3  |                |
| 23  | 65.7  | 62.2  | 72.4  | 57.2      | 56.0             | 58.7          | 59.7              | 55.3      | 56.3  | 61.6  | 57.1  | 57.2  |                |
| 24  | 60.1  | 64.6  | 61.4  | 59.1      | 61.5             | 59.8          | 50.9              | 59.2      | 65.2  | 63.2  | 56.4  | 61.8  |                |
| 25  | 64.8  | 63.7  | 63.6  | 63.5      | 62.4             | 62.7          | 53.8              | 52.8      | 49.5  | 69.3  | 56.6  | 57.8  |                |
| 26  | 66.7  | 64.6  | 62.7  | 60.6      | 62.0             | 56.0          | 59.1              | 56.0      | 59.7  | 62.7  | 56.4  | 54.8  |                |
| 27  | 55.6  | 61.3  | 70.8  | 60.7      | 57.1             | 55.9          | 59.4              | 61.8      | 58.1  | 67.3  | 53.7  | 59.1  |                |
| 28  | 65.7  | 60.3  | 64.5  | 60.1      | 62.7             | 56.4          | 55.2              | 60.3      | 62.9  | 65.5  | 60.1  | 55.4  |                |
| 29  | 65.9  |       | 70.4  | 59.1      | 49.8             | 53.0          | 58.5              | 64.1      | 63.7  | 65.8  | 58.1  | 54.8  |                |
| 30  | 58.6  |       | 66.0  | 63.8      | 55.4             | 52.1          | 58.8              | 64.4      | 59.5  | 60.9  | 55.2  | 56.1  |                |
| 31  | 61.4  |       | 65.4  |           | 64.0             |               | 50.2              | 65.0      |       | 60.9  |       | 58.1  | Annual Summary |
| Avg | 62.9  | 62.2  | 63.2  | 61.3      | 60.0             | 57.4          | 56.6              | 56.8      | 60.4  | 61.6  | 59.6  | 54.5  | 59.7           |
| Min | 55.6  | 50.4  | 56.1  | 55.1      | 49.8             | 50.7          | 45.7              | 46.5      | 49.5  | 51.9  | 47.0  | -9.5  | -9.5           |
| Max | 70.9  | 70.4  | 72.4  | 66.9      | 66.0             | 63.4          | 62.2              | 65.0      | 68.4  | 69.3  | 67.0  | 61.8  | 72.4           |

#### Point Loma Wastewater Treatment Plant 2017 Biochemical Oxygan Damand Pamouple (%) at Point Loma



|     | Jan   | Feb   | Mar   | Apr   | May   | Jun   | Jul   | Aug   | Sep   | Oct   | Nov   | Dec   |         |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------|
| Day | % Rem | -       |
| 1   | 60.2  | 70.8  | 59.1  | 68.4  | 55.9  | 66.4  | 60.5  | 52.1  | 66.6  | 65.9  | 65.6  | 53.2  |         |
| 2   | 66.9  | 67.7  | 61.8  | 66.8  | 67.5  | 63.8  | 64.0  | 58.4  | 64.0  | 62.9  | 65.1  | 57.4  |         |
| 3   | 65.8  | 65.1  | 65.1  | 63.9  | 66.6  | 60.8  | 58.8  | 60.1  | 70.5  | 58.6  | 67.8  | 60.9  |         |
| 4   | 65.0  | 66.7  | 61.2  | 68.5  | 67.1  | 63.3  | 63.3  | 52.1  | 63.3  | 66.8  | 66.7  | 55.8  |         |
| 5   | 64.5  | 64.5  | 61.5  | 62.2  | 65.1  | 64.5  | 66.4  | 61.0  | 63.3  | 60.2  | 70.4  | 58.2  |         |
| 6   | 69.8  | 63.3  | 59.4  | 58.8  | 62.3  | 60.6  | 58.9  | 59.3  | 65.9  | 63.9  | 69.8  | 65.6  |         |
| 7   | 69.1  | 67.0  | 66.3  | 69.6  | 59.5  | 63.9  | 59.0  | 57.4  | 64.6  | 68.8  | 63.6  | 65.8  |         |
| 8   | 69.4  | 55.0  | 61.6  | 61.7  | 63.4  | 63.1  | 61.5  | 58.2  | 63.9  | 64.7  | 68.8  | 64.6  |         |
| 9   | 64.0  | 69.2  | 65.1  | 61.1  | 64.1  | 62.9  | 61.7  | 60.1  | 59.3  | 65.9  | 70.1  | 50.9  |         |
| 10  | 64.4  | 66.5  | 65.8  | 61.9  | 62.5  | 60.1  | 56.4  | 60.9  | 59.0  | 68.1  | 63.6  | 64.4  |         |
| 11  | 64.4  | 61.4  | 61.5  | 64.9  | 64.0  | 59.3  | 52.0  | 58.0  | 62.2  | 61.2  | 64.9  | 58.2  |         |
| 12  | 69.7  | 54.8  | 60.7  | 66.3  | 65.4  | 60.0  | 59.9  | 51.9  | 63.3  | 59.9  | 67.9  | 60.3  |         |
| 13  | 66.2  | 56.2  | 69.9  | 66.0  | 64.8  | 57.2  | 61.8  | 60.3  | 68.5  | 63.4  | 62.9  | 65.5  |         |
| 14  | 73.1  | 64.3  | 66.5  | 66.9  | 66.4  | 60.4  | 61.1  | 64.6  | 69.7  | 64.5  | 66.1  | 3.5   |         |
| 15  | 70.3  | 67.9  | 64.7  | 70.0  | 63.5  | 63.9  | 60.7  | 64.6  | 67.1  | 66.2  | 61.6  | 64.3  |         |
| 16  | 65.5  | 65.7  | 66.7  | 66.8  | 63.5  | 63.1  | 64.1  | 64.8  | 64.8  | 58.5  | 68.6  | 61.4  |         |
| 17  | 64.5  | 63.6  | 64.1  | 65.1  | 63.7  | 58.0  | 61.3  | 60.8  | 66.4  | 59.2  | 60.8  | 61.7  |         |
| 18  | 68.0  | 63.6  | 63.7  | 65.5  | 64.8  | 61.6  | 61.9  | 61.7  | 58.4  | 65.1  | 60.3  | 61.2  |         |
| 19  | 63.4  | 65.0  | 65.3  | 63.4  | 64.8  | 63.4  | 61.0  | 63.0  | 62.1  | 68.4  | 60.8  | 57.7  |         |
| 20  | 63.0  | 72.5  | 63.8  | 68.3  | 65.9  | 57.9  | 63.5  | 61.1  | 65.0  | 67.9  | 60.9  | 65.0  |         |
| 21  | 60.7  | 64.6  | 71.2  | 61.5  | 68.0  | 57.9  | 62.6  | 63.9  | 68.2  | 66.0  | 53.1  | 64.5  |         |
| 22  | 60.8  | 65.0  | 68.5  | 62.1  | 58.1  | 63.8  | 62.1  | 58.9  | 63.1  | 68.3  | 55.8  | 61.9  |         |
| 23  | 66.5  | 64.9  | 74.1  | 61.4  | 60.8  | 62.4  | 63.6  | 60.1  | 60.6  | 66.2  | 61.2  | 60.9  |         |
| 24  | 60.0  | 67.0  | 63.8  | 62.8  | 62.2  | 63.3  | 57.1  | 62.9  | 68.6  | 68.0  | 61.3  | 64.1  |         |
| 25  | 63.6  | 66.4  | 66.3  | 66.6  | 64.2  | 66.3  | 59.1  | 58.3  | 54.7  | 72.3  | 61.9  | 60.8  |         |
| 26  | 64.4  | 67.7  | 65.7  | 64.5  | 66.3  | 61.4  | 63.8  | 60.2  | 63.7  | 66.7  | 59.3  | 57.5  |         |
| 27  | 58.8  | 64.6  | 72.9  | 64.0  | 61.1  | 61.5  | 63.6  | 65.4  | 60.4  | 70.4  | 59.3  | 62.6  |         |
| 28  | 67.5  | 61.1  | 67.6  | 63.9  | 66.1  | 63.3  | 59.0  | 64.0  | 61.4  | 68.1  | 64.4  | 58.1  |         |
| 29  | 68.4  |       | 72.5  | 62.6  | 54.9  | 59.4  | 61.8  | 69.6  | 66.9  | 69.1  | 64.8  | 57.8  |         |
| 30  | 62.2  |       | 68.5  | 66.7  | 60.1  | 56.8  | 62.8  | 67.6  | 50.2  | 65.2  | 60.2  | 58.3  | Annual  |
| 31  | 64.7  |       | 67.7  |       | 66.6  |       | 55.1  | 68.1  |       | 64.8  |       | 61.5  | Summary |
| Avg | 65.3  | 64.7  | 65.6  | 64.7  | 63.5  | 61.7  | 60.9  | 60.9  | 63.5  | 65.3  | 63.6  | 58.8  | 63.2    |
| Min | 58.8  | 54.8  | 59.1  | 58.8  | 54.9  | 56.8  | 52.0  | 51.9  | 50.2  | 58.5  | 53.1  | 3.5   | 3.5     |
| Max | 73.1  | 72.5  | 74.1  | 70.0  | 68.0  | 66.4  | 66.4  | 69.6  | 70.5  | 72.3  | 70.4  | 65.8  | 74.1    |

#### Point Loma Wastewater Treatment Plant 2017 Biochemical Oxygen Demand Removals (%) Systemwide



| Point Loma Wastewater T | Freatment Plant |
|-------------------------|-----------------|
|-------------------------|-----------------|

2017 Total Dissolved Solids (mg/L)

|      | Jar  | n    | Fel  | b    | Ma   | ar   | Ар   | or   | Ma   | у    | Jui  | 1    | Ju   |      | Au   | g    | Sej  | р     | Oc   | t _  | No    | v    | Dee  | 2    |          |          |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------|------|------|-------|------|------|------|----------|----------|
| Day  | Inf  | Eff   | Inf  | Eff  | Inf   | Eff  | Inf  | Eff  |          |          |
| 1    | 1350 | 1290 | 1600 | 1570 | 1420 | 1380 | 1680 | 1630 | 1590 | 1460 | 1520 | 1520 | 1520 | 1500 | 1390 | 1420 | 1490 | 1440  | 1520 | 1490 | 1650  | 1630 | 1790 | 1740 |          |          |
| 2    | 1570 | 1560 | 1520 | 1510 | 1410 | 1420 | 1540 | 1560 | 1510 | 1510 | 1470 | 1430 | 1450 | 1450 | 1490 | 1460 | 1470 | 1500  | 1560 | 1570 | 1600  | 1570 | 1780 | 1750 |          |          |
| 3    | 1550 | 1470 | 1600 | 1580 | 1580 | 1520 | 1580 | 1590 | 1560 | 1550 | 1480 | 1490 | 1470 | 1450 | 1510 | 1490 | 1530 | 1480  | 1730 | 1690 | 1790  | 1710 | 1740 | 1750 |          |          |
| 4    | 1520 | 1550 | 1610 | 1600 | 1610 | 1600 | 1590 | 1580 | 1500 | 1470 | 1430 | 1390 | 1520 | 1490 | 1380 | 1390 | 1530 | 1520  | 1600 | 1610 | 1850  | 1820 | 1840 | 1830 |          |          |
| 5    | 1570 | 1560 | 1560 | 1590 | 1630 | 1590 | 1540 | 1560 | 1510 | 1470 | 1520 | 1470 | 1530 | 1550 | 1480 | 1480 | 1520 | 1480  | 1720 | 1660 | 1630  | 1650 | 1850 | 1810 |          |          |
| 6    | 1690 | 1650 | 1650 | 1630 | 1620 | 1550 | 1560 | 1570 | 1480 | 1520 | 1610 | 1540 | 1540 | 1560 | 1500 | 1520 | 1570 | 1530  | 1740 | 1710 | 1690  | 1630 | 1750 | 1760 |          |          |
| 7    | 1580 | 1590 | 1600 | 1560 | 1610 | 1560 | 1590 | 1520 | 1320 | 1360 | 1370 | 1520 | 1580 | 1540 | 1540 | 1540 | 1540 | 1520  | 1710 | 1700 | 1710  | 1660 | 1650 | 1640 |          |          |
| 8    | 1570 | 1560 | 1590 | 1560 | 1580 | 1650 | 1650 | 1580 | 1320 | 1250 | 1460 | 1400 | 1440 | 1430 | 1610 | 1590 | 1510 | 1500  | 1610 | 1580 | 1590  | 1600 | 1620 | 1520 |          |          |
| 9    | 1590 | 1580 | 1430 | 1390 | 1580 | 1600 | 1560 | 1560 | 1470 | 1410 | 1550 | 1520 | 1510 | 1510 | 1580 | 1570 | 1490 | 1500  | 1590 | 1600 | 1540  | 1550 | 1580 | 1580 |          |          |
| 10   | 1650 | 1660 | 1660 | 1620 | 1540 | 1580 | 1490 | 1570 | 1380 | 1420 | 1480 | 1480 | 1490 | 1460 | 1510 | 1490 | 1480 | 1430  | 1540 | 1520 | 1640  | 1590 | 1550 | 1530 |          |          |
| 11   | 1660 | 1640 | 1600 | 1600 | 1700 | 1660 | 1530 | 1520 | 1430 | 1420 | 1480 | 1450 | 1510 | 1500 | 1540 | 1520 | 1530 | 1470  | 1880 | 1820 | 1610  | 1590 | 1580 | 1600 |          |          |
| 12   | 1730 | 1720 | 1590 | 1550 | 1620 | 1590 | 1570 | 1500 | 1400 | 1370 | 1490 | 1410 | 1460 | 1420 | 1460 | 1490 | 1510 | 1470  | 1700 | 1680 | 1520  | 1490 | 1680 | 1710 |          |          |
| 13   | 1470 | 1460 | 1560 | 1530 | 1730 | 1670 | 1470 | 1420 | 1360 | 1370 | 1660 | 1510 | 1450 | 1450 | 1480 | 1420 | 1410 | 1410  | 1750 | 1680 | 1590  | 1570 | 1610 | 1630 |          |          |
| 14   | 1550 | 1540 | 1530 | 1490 | 1670 | 1710 | 1580 | 1530 | 1370 | 1390 | 1460 | 1440 | 1480 | 1400 | 1660 | 1630 | 1430 | 1460  | 1560 | 1540 | 1550  | 1520 | 1770 | 1740 |          |          |
| 15   | 1510 | 1520 | 1640 | 1580 | 1700 | 1700 | 1440 | 1460 | 1400 | 1380 | 1450 | 1360 | 1520 | 1500 | 1570 | 1510 | 1560 | 1550  | 1610 | 1640 | 1550  | 1520 | 1740 | 1710 |          |          |
| 16   | 1450 | 1410 | 1550 | 1470 | 1690 | 1680 | 1520 | 1490 | 1440 | 1430 | 1470 | 1490 | 1420 | 1420 | 1580 | 1590 | 1410 | 1470  | 1810 | 1720 | 1620  | 1590 | 1810 | 1770 |          |          |
| 17   | 1580 | 1590 | 1530 | 1570 | 1540 | 1560 | 1480 | 1480 | 1460 | 1440 | 1410 | 1420 | 1460 | 1460 | 1580 | 1530 | 1530 | 1530  | 1580 | 1620 | 1560  | 1570 | 1740 | 1710 |          |          |
| 18   | 1530 | 1500 | 1300 | 1240 | 1550 | 1560 | 1480 | 1470 | 1420 | 1440 | 1380 | 1360 | 1520 | 1480 | 1630 | 1550 | 1630 | 1590  | 1610 | 1560 | 1520  | 1530 | 1620 | 1630 |          |          |
| 19   | 1380 | 1400 | 1350 | 1440 | 1650 | 1640 | 1390 | 1380 | 1540 | 1460 | 1520 | 1350 | 1470 | 1490 | 1680 | 1680 | 1620 | 1690  | 1530 | 1550 | 1510  | 1490 | 1710 | 1670 |          |          |
| 20   | 1200 | 1200 | 1480 | 1510 | 1660 | 1620 | 1540 | 1470 | 1490 | 1490 | 1490 | 1440 | 1510 | 1490 | 1680 | 1680 | 1630 | 1570  | 1570 | 1520 | 1610  | 1530 | 1660 | 1620 |          |          |
| 21   | 1340 | 1310 | 1610 | 1470 | 1680 | 1660 | 1500 | 1460 | 1590 | 1550 | 1610 | 1520 | 1570 | 1570 | 1780 | 1740 | 1540 | 1540  | 1650 | 1640 | 1670  | 1610 | 1600 | 1580 |          |          |
| 22   | 1440 | 1430 | 1580 | 1570 | 1650 | 1660 | 1470 | 1450 | 1500 | 1520 | 1720 | 1640 | 1730 | 1760 | 1830 | 1790 | 1570 | 1560  | 1510 | 1500 | 1530  | 1640 | 1660 | 1580 |          |          |
| 23   | 1240 | 1220 | 1570 | 1550 | 1640 | 1580 | 1470 | 1450 | 1410 | 1410 | 1780 | 1730 | 1700 | 1750 | 1700 | 1700 | 1470 | 1470  | 1670 | 1530 | 1530  | 1510 | 1540 | 1500 |          |          |
| 24   | 1340 | 1340 | 1660 | 1620 | 1650 | 1660 | 1610 | 1660 | 1540 | 1480 | 1810 | 1830 | 1840 | 1810 | 1630 | 1650 | 1510 | 1470  | 1610 | 1620 | 1660  | 1640 | 1530 | 1510 |          |          |
| 25   | 1500 | 1460 | 1650 | 1650 | 1630 | 1630 | 1670 | 1700 | 1620 | 1600 | 1770 | 1800 | 1780 | 1790 | 1600 | 1570 | 1500 | 1480  | 1570 | 1610 | 1540  | 1560 | 1810 | 1670 |          |          |
| 26   | 1580 | 1500 | 1650 | 1640 | 1830 | 1800 | 1580 | 1520 | 1710 | 1710 | 1700 | 1670 | 1500 | 1590 | 1520 | 1510 | 1520 | 1520  | 1630 | 1590 | 1500  | 1490 | 1530 | 1560 |          |          |
| 27   | 1580 | 1540 | 1090 | 1140 | 1710 | 1680 | 1570 | 1540 | 1660 | 1670 | 1680 | 1640 | 1560 | 1570 | 1480 | 1460 | 1460 | 1470  | 1550 | 1500 | 1730  | 1470 | 1490 | 1460 |          |          |
| 28   | 1540 | 1530 | 1070 | 1040 | 1860 | 1830 | 1570 | 1650 | 1580 | 1570 | 1600 | 1570 | 1530 | 1520 | 1560 | 1530 | 1460 | 1470  | 1540 | 1540 | 1550  | 1570 | 1620 | 1560 |          |          |
| 29   | 1600 | 1550 |      |      | 1640 | 1650 | 1660 | 1620 | 1560 | 1510 | 1480 | 1500 | 1400 | 1420 | 1560 | 1540 | 1420 | 1410  | 1570 | 1560 | 1590  | 1570 | 1700 | 1670 |          |          |
| 30   | 1550 | 1490 |      |      | 1600 | 1590 | 1510 | 1500 | 1420 | 1410 | 1550 | 1460 | 1440 | 1430 | 1530 | 1450 | 1540 | 1470  | 1550 | 1550 | 1660  | 1640 | 1740 | 1760 | Sum      | nary     |
| . 31 | 1640 | 1610 | 1500 | 1510 | 1670 | 1700 | 1715 | 1500 | 1400 | 1420 | 1545 | 1510 | 1420 | 1400 | 1480 | 1470 | 1510 | 1.400 | 1740 | 1590 | 1.610 | 1504 | 1910 | 1830 | Influent | Effluent |
| Avg  | 1518 | 1498 | 1530 | 1510 | 1634 | 1622 | 1546 | 1533 | 1482 | 1466 | 1547 | 1512 | 1526 | 1521 | 1565 | 1547 | 1513 | 1499  | 1629 | 1603 | 1610  | 1584 | 1684 | 1657 | 1565     | 1546     |
| Min  | 1200 | 1200 | 10/0 | 1040 | 1410 | 1380 | 1390 | 1380 | 1320 | 1250 | 1370 | 1350 | 1400 | 1400 | 1380 | 1390 | 1410 | 1410  | 1510 | 1490 | 1500  | 1470 | 1490 | 1460 | 1070     | 1040     |
| Max  | 1730 | 1720 | 1660 | 1650 | 1860 | 1830 | 1680 | 1700 | 1710 | 1710 | 1810 | 1830 | 1840 | 1810 | 1830 | 1790 | 1630 | 1690  | 1880 | 1820 | 1850  | 1820 | 1910 | 1830 | 1910     | 1830     |

| -   | /    | '    |      |      |      | '           |      |      | ~    |      |      | -    |         |
|-----|------|------|------|------|------|-------------|------|------|------|------|------|------|---------|
| Day | Jan  | Feb  | Mar  | Apr  | May  | Jun         | Jul  | Aug  | Sep  | Oct  | Nov  | Dec  | _       |
| 1   | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00        | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |         |
| 2   | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00        | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |         |
| 3   | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00        | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |         |
| 4   | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00        | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |         |
| 5   | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00        | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |         |
| 6   | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00        | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |         |
| 7   | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00        | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |         |
| 8   | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00        | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |         |
| 9   | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00        | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |         |
| 10  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00        | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |         |
| 11  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00        | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |         |
| 12  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00        | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |         |
| 13  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00        | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |         |
| 14  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00        | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |         |
| 15  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00        | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |         |
| 16  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00        | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |         |
| 17  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00        | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |         |
| 18  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00        | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |         |
| 19  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00        | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |         |
| 20  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00        | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |         |
| 21  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00        | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |         |
| 22  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00        | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |         |
| 23  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00        | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |         |
| 24  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00        | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |         |
| 25  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00        | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |         |
| 26  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00        | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |         |
| 27  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00        | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |         |
| 28  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00        | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |         |
| 29  | 0.00 | /    | 0.00 | 0.00 | 0.00 | 0.00        | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |         |
| 30  | 0.00 | /    | 0.00 | 0.00 | 0.00 | 0.00        | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | Annual  |
| 31  | 0.00 | /    | 0.00 |      | 0.00 | · · · · · · | 0.00 | 0.00 |      | 0.00 |      | 0.00 | Summary |
| Avg | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00        | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00    |
| Min | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00        | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00    |
| Max | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00        | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00    |

### Point Loma Wastewater Treatment Plant 2017 Instantaneous Maximum Chlorine (mg/L) - online meter

Continuous monitoring was initiated on February 1, 2011. To ensure daily monitoring of chlorine residual, during periods when the continuous monitoring equipment was off-line or down for maintenance, monitoring of chlorine was accomplished by the on-site laboratory following the schedule previously stipulated in Addendum No. 2 of Order R9-2002-0025.

## Point Loma Wastewater Treatment Plant 2017 Instantaneous Maximum Chlorine (mg/L) - Laboratory Grab

|         | JAN  | FEB  | MAR  | APR  | MAY  | JUN  | JUL  | AUG  | SEP  | OCT  | NOV  | DEC  |         |
|---------|------|------|------|------|------|------|------|------|------|------|------|------|---------|
| 1       | 0    | 0    | 1.95 | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |         |
| 2       | 0    | 0    | 0.22 | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |         |
| 3       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |         |
| 4       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |         |
| 5       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |         |
| 6       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |         |
| 7       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |         |
| 8       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |         |
| 9       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |         |
| 10      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |         |
| 11      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |         |
| 12      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |         |
| 13      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |         |
| 14      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |         |
| 15      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |         |
| 16      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |         |
| 17      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |         |
| 18      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |         |
| 19      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |         |
| 20      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |         |
| 21      | 2.16 | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |         |
| 22      | 1.15 | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |         |
| 23      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |         |
| 24      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |         |
| 25      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |         |
| 26      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |         |
| 27      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |         |
| 28      | 0    | 1.4  | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |         |
| 29      | 0    |      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |         |
| 30      | 0    |      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | Annual  |
| 31      | 0    |      | 0    |      | 0    |      | 0    | 0    |      | 0    |      | 0    | Summary |
| Average | 0.11 | 0.05 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02    |
| Maximum | 2.16 | 1.40 | 1.95 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2.16    |

This page intentionally left blank.

#### F. Toxicity Bioassays

#### **Toxicity Testing: Point Loma Wastewater Treatment Plant 2017**

#### **INTRODUCTION**

The City of San Diego's Toxicology Laboratory (CSDTL) conducted aquatic toxicity tests (bioassays) for the Point Loma Wastewater Treatment Plant (PLWTP) as required by NPDES Permit No. CA0107409 (Order No. R9-2009-0001) from January 1 to September 30, 2017; and (Order No. R9-2017-0007) from October 1 to December 31, 2017. The testing requirements are designed to determine the acute and chronic toxicity of effluent samples collected from the PLWTP. This chapter presents summaries and discussion of all toxicity tests conducted in the calendar year 2017.

Toxicity testing of wastewater effluent measures the bioavailability of toxicants in a complex mixture, accounts for interactions among potential toxicants, and integrates the effects of all constituents. Acute and chronic bioassays are characterized by the duration of exposure of test organisms to a toxicant as well as the adverse effect (measured response) produced as the result of exposure to a toxicant.

Acute toxicity testing consists of a short-term exposure period, usually 96 hours or less, and the acute effect refers to mortality of the test animals. The City of San Diego was required to conduct acute toxicity tests of PLWTP effluent on a semiannual schedule under NPDES Permit No. CA0107409 (Order No. R9-2009-0001). Order No. R9-2017-0007, effective October 1, 2017, removed performance goals and monitoring requirements for acute toxicity and retained effluent limitations for chronic toxicity only.

Chronic toxicity testing, in the classic sense, refers to long-term exposure of the test organism to a potential toxicant. This may involve exposing the test organism for its entire reproductive life cycle, which may exceed 12 months for organisms such as fish. In general, chronic tests are inherently more sensitive to detecting toxicants than acute tests in that adverse effects can be identified at lower toxicant concentrations. The City of San Diego is required to conduct monthly critical/early life stage chronic tests of PLWTP effluent that are intermediate between the acute and chronic toxicity testing protocols discussed above. These test results serve as short-term estimates of chronic toxicity.

All required toxicity analyses in 2017 were performed by the CSDTL's internal toxicology laboratory. The laboratory is certified by the California State Water Resources Control Board Environmental Laboratory Accreditation Program (Certificate No. 1989).

### **MATERIALS & METHODS**

#### **Test Materials**

Under Permit Order No. R9-2009-0001, effective from January 1 to September 30, 2017 twentyfour hour, flow-weighted, composite effluent samples were collected at the PLWTP and stored between 0 - 6 °C with minimal light exposure until test initiation. All tests were initiated within 36 hours of sample collection. The effluent exposure series consisted of 3.88, 7.75, 15.5, 31.0, and 62.0 percent (nominal) for the acute tests and 0.15, 0.27, 0.49, 0.88, and 1.56 percent for the chronic tests. Un-impacted receiving water from station B8 was used as dilution water in accordance with permit requirements. A receiving water control was included for all acute and chronic tests.

The B8 receiving water samples were collected from a depth of 2 m and stored at 0 - 6 °C until the initiation of chronic tests within 96 hours of collection. For the acute tests, receiving water may be collected and stored at 0 - 6 °C for up to two weeks prior to test initiation. The station coordinates are as follows:

| Collection Location | Latitude/Longitude          | Station Depth (m) |
|---------------------|-----------------------------|-------------------|
| B-8                 | 32° 45.50' N, 117° 20.77' W | 88.4              |

Dilution water for the acute and chronic reference toxicant tests was obtained from the Scripps Institution of Oceanography (SIO), filtered to 0.2  $\mu$ m, and held at the appropriate test temperature until test initiation. All toxicity tests were conducted according to established USEPA protocols for each bioassay, and detailed descriptions for all tests are provided in the CSDTL Quality Assurance Manual (City of San Diego 2017).

Under Permit Order No. R9-2017-0007, effective October 1, 2017, twenty-four hour, flowweighted, composite effluent samples were collected at the PLWTP and stored between 0 - 6 °C with minimal light exposure until test initiation. All tests were initiated within 36 hours of sample collection. Permit Order No. R9-2017-0007 updates effluent testing requirements from an exposure series to a single-concentration test at the discharge In-stream Waste Concentration (IWC). The discharge In-stream Waste Concentration for chronic toxicity is 0.49 percent effluent. Test results are determined by comparing control performance with the IWC for chronic toxicity (0.49 % effluent). Dilution water for all tests (effluent and reference toxicant) was obtained from the Scripps Institution of Oceanography (SIO), filtered to 0.2  $\mu$ m, held at approximately 15 °C, and used within 96 hours of collection or frozen to produce hypersaline brine. Detailed descriptions for all toxicity test procedures are provided in the City of San Diego Toxicology Laboratory Quality Assurance Manual (City of San Diego, 2017).

### **Acute Bioassays**

#### Mysid Survival Bioassay

Under Permit Order No. R9-2009-0001, effective from January 1 to September 30, 2017, acute bioassays using the mysid shrimp *Americamysis bahia* (*Mysidopsis bahia*), were conducted for the PLWTP Effluent as a part of the biennial monitoring in June in accordance with USEPA protocol EPA-821-R02-012 (USEPA 2002). Permit Order No. R9-2017-0007, effective October 1, 2017, no longer requires acute monitoring and therefore a second biennial testing event was not conducted.

Larval mysids (4-5 days old) were purchased from Aquatic Bio Systems (Fort Collins, CO), and acclimated to test temperature and salinity for at least 24 hours prior to test initiation. Upon test initiation, the mysids (5 per replicate) were exposed for  $96 \pm 2$  h in a static-renewal system to the effluent exposure series. Receiving water and salt controls were also tested. The test solutions were renewed at 48 hours and the organisms were fed twice daily.

Simultaneous reference toxicant testing was performed using reagent grade copper chloride plus a negative control (i.e., SIO seawater). Test concentrations consisted of 56, 100, 180, 320, and 560  $\mu$ g/L copper. Dilution water consisted of natural seawater from SIO held at test temperature. Upon conclusion of the exposure period, percent survival was recorded. Tests were declared valid if mean control mortality did not exceed 10 percent.

### **Chronic Bioassays**

In 2016 the City conducted chronic bioassays of the PLWTP effluent in accordance with the biennial species sensitivity re-screening requirement using the red abalone (*Haliotis rufescens*), giant kelp (*Macrocystis pyrifera*), and topsmelt (*Atherinops affinis*). The giant kelp was selected as the most sensitive species for continued monitoring of the PLWTP effluent in accordance with USEPA protocol EPA/600/R-95/136 (USEPA 1995).

#### Kelp Germination and Growth Test

During the current reporting period (January–December 2017), chronic bioassays using the giant kelp, *Macrocystis pyrifera*, were conducted for the PLWTP effluent on a monthly basis as a part of routine monitoring in accordance with USEPA protocol EPA/600/R-95/136 (USEPA 1995).

Kelp zoospores were obtained from the reproductive blades (sporophylls) of adult *Macrocystis* plants at the kelp beds near Point Loma and/or La Jolla, California, one day prior to test initiation. The zoospores were exposed in a static system for  $48 \pm 3$  hours to the effluent exposure series. At the end of the exposure period, 100 randomly-selected zoospores from each replicate were examined and the percent germination was recorded. In addition, germination tube (germ-tube) length was measured as an estimate of growth and recorded for 10 of the germinated zoospores.

Simultaneous reference toxicant testing was performed using reagent grade copper chloride. The exposure series consisted of 10, 32, 100, 180, 320, and 560  $\mu$ g/L copper. An SIO seawater control was also tested.

Data were analyzed in accordance with "Flowchart for statistical analysis of giant kelp, *Macrocystis pyrifera*, germination data" and "Flowchart for statistical analysis of giant kelp, *Macrocystis pyrifera*, growth data" (USEPA 1995).

### **Statistical Methods**

All data were analyzed using a combination of multiple comparison and point estimation methods prescribed by USEPA (1995, 2002). Comprehensive Environmental Toxicity Information System (CETIS) Software (Tidepool Scientific 2016) was used for statistical analyses. In addition, all multi-concentration tests were subjected to an evaluation of the concentration-response relationship.

In accordance with USEPA guidelines on method variability, the lower "Percent Minimum Significant Difference" (PMSD) bound was also evaluated for chronic toxicity test data in order to minimize Type 1 error (i.e., false positives). If the relative difference between an exposure concentration and the control was smaller than the 10<sup>th</sup> percentile PMSD value listed for the test method in the USEPA guidance document, then the exposure concentration was further evaluated using other EPA-approved statistical strategies (USEPA 2000).

Under Permit Order No. R9-2017-0007, effective October 1, 2017, the PLWTP effluent discharge performance at the IWC was evaluated using the Test of Significant Toxicity (TST) statistical t-test approach described in National Pollutant Discharge Elimination System Test of Significant Toxicity Implementation Document (EPA 833-R-10-004, 2010). The TST is a statistical analysis that determines if the means of two test concentrations (the laboratory control and IWC) are statistically different (i.e., if the IWC concentration differs from the control). The TST test results are reported as "Pass" or "Fail," and "Percent Effect" at the discharge IWC relative to control performance.

#### **RESULTS & DISCUSSION**

#### Acute Toxicity of PLWTP Effluent

In 2017, all acute bioassays of the PLWTP effluent using the mysid shrimp met the acceptability criterion of > 90 percent mean control survival and demonstrated compliance with permit standards (Table T.1).

#### TABLE T.1

Results of PLWTP effluent semi-annual acute toxicity tests conducted in 2017. Data are presented as acute toxic units  $(TUa^1)$ .

| Sample Date       | Mysid<br>96-Hour Bioassay |  |
|-------------------|---------------------------|--|
| 06/05/2017        | 4.0                       |  |
| NA <sup>2</sup>   | NA <sup>2</sup>           |  |
| N                 | 1                         |  |
| No. in compliance | 1                         |  |
| Mean TUa          | 4.0                       |  |

<sup>1</sup>NPDES permit limit: 6.42 TUa

<sup>2</sup>Permit Order No. R9-2017-0007, effective October 1, 2017, no longer requires acute monitoring and therefore a second biennial testing event was not conducted.

### **Chronic Toxicity of PLWTP Effluent**

All chronic bioassays in 2017 were conducted with Giant kelp, *Macrocystis pyrifera*, and met the test acceptability criteria and the NPDES permit's chronic toxicity performance goal (Table T.2 and T.3).

### TABLE T.2

Results of PLWTP effluent monthly chronic toxicity tests conducted from January 1, 2017 to September 30, 2017 as required by Permit Order No. R9-2009-0001. Data are presented as chronic toxic units (TUc).

|                             | Giant Kelp  |        |  |
|-----------------------------|-------------|--------|--|
| Sample Date                 | Germination | Growth |  |
| 01/17/2017                  | <64.1       | 114    |  |
| 02/06/2017                  | <64.1       | <64.1  |  |
| 03/06/2017                  | <64.1       | <64.1  |  |
| 04/10/2017                  | 114         | <64.1  |  |
| 05/15/2017                  | <64.1       | <64.1  |  |
| 06/05/2017                  | <64.1       | <64.1  |  |
| 07/17/2017                  | 114         | 114    |  |
| 08/07/2017                  | <64.1       | <64.1  |  |
| 09/18/2017                  | <64.1       | 114    |  |
| N                           | 9           | 9      |  |
| No. in Compliance           | 9           | 9      |  |
| Median TUc                  | <64.1       | <64.1  |  |
| Mean TUc (Detected values)  | <75.2       | <80.7  |  |
| NPDES permit limit: 205 TUc |             |        |  |

Y:\EMTS\41.Sections\WCS\REPORTS\PLWWTP\Annuals\Annual2017\Final\_Reports\2017\_!\_Annual.docx Influent and Effluent Data Summary 2.138

### TABLE T.3

Results of PLWTP effluent monthly chronic toxicity tests conducted from October 1, 2017 to December 31, 2017 as required by Permit Order No. R9-2017-0007. Data are presented using TST test results which are reported as "Pass" or "Fail," and "Percent Effect" at the discharge IWC relative to control performance.

|                          | Giant Kelp              |                             |                         |                             |
|--------------------------|-------------------------|-----------------------------|-------------------------|-----------------------------|
| Sample Date              | Germination             |                             | Growth                  |                             |
| -                        | TST Result <sup>3</sup> | Percent Effect <sup>4</sup> | TST result <sup>3</sup> | Percent Effect <sup>4</sup> |
| 10/16/2017               | Pass                    | - 0.7                       | Pass                    | - 6.4                       |
| 11/06/2017               | Pass                    | - 1.3                       | Pass                    | - 0.9                       |
| 12/06/2016               | Pass                    | - 0.9                       | Pass                    | 0.8                         |
| N                        | 3                       | 3                           | 3                       | 3                           |
| No. in Compliance        | 3                       | 3                           | 3                       | 3                           |
| Median Percent<br>Effect | NA                      | -0.9                        | NA                      | -0.9                        |
| Mean Percent Effect      | NA                      | -1.0                        | NA                      | -2.2                        |

 $^{3}$  TST = Test of Significant Toxicity conducted on the Discharge In-stream Waste Concentration (IWC) for Chronic Toxicity (0.49 % effluent)

<sup>4</sup> Percent Effect at the IWC = ((Mean control response - Mean discharge IWC response)  $\div$  Mean control response)  $\times$  100. A negative Percent Effect indicates that the IWC outperformed the control.

Permit Compliance Limit = Pass

#### LITERATURE CITED

City of San Diego. 2017. Quality Assurance Manual for Toxicity Testing. City of San Diego Ocean Monitoring Program, Public Utilities Department, Environmental Monitoring and Technical Services Division, San Diego, CA.

Hemmer, MJ, DP Middaugh, V Comparetta. 1992. Comparative Acute Sensitivity of Larval Topsmelt, *Atherinops affinis*, and Inland Silverside, *Menidia beryllina*, to 11 Chemicals. Environmental Toxicology and Chemistry, 11(3): 401-408.

Tidepool Scientific Software. 2013. Comprehensive Environmental Toxicity Information System Software. Version 1.8.7.20.

USEPA. 1995. Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms. U.S. Environmental Protection Agency, Environmental Monitoring and Support Laboratory, Cincinnati, OH, EPA/600/R-95-136.

USEPA. 2000. Understanding and Accounting for Method Variability in Whole Effluent Toxicity Applications Under the National Pollutant Discharge Elimination System Program. U.S. Environmental Protection Agency, Office of Water (4203), EPA 833-R-00-003.

USEPA. 2002. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms. Fifth Edition. U.S. Environmental Protection Agency, Office of Water (4303T), Washington, DC, EPA-821-R-02-012.



## POINT LOMA TREATMENT PLANT PROCESS FLOW DIAGRAM







÷

Screening

Screening ÷



S7 🛐

Point Loma Wastewater Treatment Plant

This page intentionally left blank
# III. Plant Operations Summary

- A. Flows
- B. Rain Days
- C. Solids Production
- D. Chemical Usage
- E. Gas Production
- F. Graphs of Chemical Usage
- G. Grit Analyses
- H. Raw Sludge Data Summary
- I. Digester and Digested Sludge Data Summary

This page intentionally left blank.

### A. Flows

#### Point Loma Wastewater Treatment Plant Annual Monitoring Report Flow Report - 2017

|     | Daily   | Average | Flows - | Millions | of Gallons |
|-----|---------|---------|---------|----------|------------|
|     | Pt. L   | Pt. L   | PS#2    | PS#2     | PS#1       |
| Mon | Gould   | ADS     | Flow    | Pumps    | Flows      |
|     | 172 0   | 100 4   | 1.0 4   | 100 0    |            |
| 91  | 1/2.0   | 169.4   | 169.4   | 100.0    | 62.5       |
| 02  | 165.0   | 161.3   | 165.9   | 153.3    | 57.1       |
| 03  | 157.1   | 154.4   | 157.0   | 120.1    | 53.7       |
| 04  | 141.0   | 140.3   | 141.7   | 72.1     | 48.5       |
| 05  | 138.7   | 137.1   | 136.6   | 68.0     | 47.9       |
| 06  | 129.3   | 133.9   | 129.8   | 81.0     | 49.2       |
| 07  | 130.1   | 134.9   | 130.5   | 124.8    | 50.9       |
| 08  | 128.6   | 120.6   | 129.9   | 124.1    | 49.4       |
| 09  | 127.8   | 112.9   | 129.9   | 131.6    | 48.6       |
| 10  | 127.5   | 120.3   | 128.7   | 126.9    | 48.4       |
| 11  | 126.8   | 126.3   | 127.6   | 123.8    | 49.4       |
| 12  | 127.3   | 129.9   | 127.9   | 120.3    | 50.8       |
|     |         |         |         |          |            |
| avg | 139.3   | 136.8   | 139.6   | 117.2    | 51.4       |
| sum | 1,671.2 | 1,641.5 | 1,675.1 | 1,406.7  | 616.4      |

WASTEWATER FLOWS

#### WASTEWATER FLOWS Monthly Total Flows - Millions of Gallons

|     | Pt. L  | Pt. L  | PS#2   | PS#2   | PS#1   |
|-----|--------|--------|--------|--------|--------|
| Mon | Gould  | ADS    | Flow   | Pumps  | Flows  |
|     |        |        |        |        |        |
| 01  | 5,333  | 5,253  | 5,251  | 4,977  | 1,937  |
| 02  | 4,620  | 4,517  | 4,646  | 4,294  | 1,598  |
| 03  | 4,871  | 4,787  | 4,867  | 3,722  | 1,664  |
| 04  | 4,229  | 4,208  | 4,250  | 2,164  | 1,456  |
| 05  | 4,299  | 4,251  | 4,234  | 2,109  | 1,485  |
| 06  | 3,879  | 4,018  | 3,894  | 2,430  | 1,475  |
| 07  | 4,034  | 4,183  | 4,046  | 3,869  | 1,578  |
| 08  | 3,988  | 3,739  | 4,028  | 3,848  | 1,530  |
| 09  | 3,835  | 3,386  | 3,898  | 3,947  | 1,457  |
| 10  | 3,953  | 3,730  | 3,991  | 3,935  | 1,501  |
| 11  | 3,803  | 3,788  | 3,829  | 3,714  | 1,483  |
| 12  | 3,947  | 4,028  | 3,966  | 3,731  | 1,576  |
|     |        |        |        |        |        |
| avg | 4,232  | 4,157  | 4,242  | 3,562  | 1,562  |
| sum | 50,788 | 49,890 | 50,900 | 42,740 | 18,740 |

NOTES: Flows taken at the Point Loma WTP are from the Parshall flumes at the headworks. Water depth in the flume is measured by 2 meters: the Gould meters measure water pressure while the ADS meters are sonar devices that measure the distance of the water level below the meter. The flows through Pump Station II (PS#2) are from Venturi meters. PS#2 flow is the flow from the totalizer to which all of the Venturi meters feed. PS#2 Pumps is the sum of the readings on the individual Venturi meters which are connected to each of the pumps at the pump station. PS#1 is the flow from the Venturi meters at Pump Station 1.

# Point Loma Wastewater Treatment Plant 2017 Daily Flows (mgd)



|         |        |        |        |        |        |        | $\sim 0$ |        |        |        |        |        |         |
|---------|--------|--------|--------|--------|--------|--------|----------|--------|--------|--------|--------|--------|---------|
| Day     | Jan    | Feb    | Mar    | Apr    | May    | Jun    | Jul      | Aug    | Sep    | Oct    | Nov    | Dec    | _       |
| 1       | 178.4  | 155.6  | 217.1  | 139.4  | 141.0  | 127.3  | 127.1    | 129.9  | 131.1  | 130.3  | 122.5  | 135.0  | _       |
| 2       | 162.8  | 157.3  | 189.4  | 139.9  | 136.4  | 130.0  | 127.4    | 127.5  | 132.7  | 124.2  | 129.3  | 131.0  |         |
| 3       | 158.7  | 154.6  | 185.4  | 144.5  | 137.0  | 132.2  | 128.6    | 127.9  | 128.5  | 125.9  | 126.2  | 134.3  |         |
| 4       | 152.6  | 152.2  | 175.7  | 144.2  | 136.0  | 131.3  | 124.8    | 133.6  | 134.9  | 129.5  | 131.2  | 128.6  |         |
| 5       | 156.1  | 152.3  | 167.0  | 140.6  | 135.4  | 132.4  | 128.0    | 126.1  | 132.8  | 127.3  | 135.1  | 130.5  |         |
| 6       | 155.1  | 153.1  | 173.1  | 142.7  | 141.4  | 130.1  | 129.9    | 133.8  | 128.8  | 122.0  | 127.8  | 124.3  |         |
| 7       | 152.6  | 162.0  | 162.5  | 143.4  | 163.8  | 129.1  | 141.1    | 131.6  | 129.1  | 128.2  | 126.3  | 133.0  |         |
| 8       | 151.3  | 158.4  | 159.5  | 142.2  | 158.8  | 127.6  | 147.3    | 130.2  | 132.9  | 129.7  | 127.9  | 128.8  |         |
| 9       | 152.4  | 156.5  | 158.6  | 142.1  | 147.0  | 126.0  | 131.9    | 127.1  | 127.2  | 126.5  | 124.3  | 129.2  |         |
| 10      | 152.2  | 155.6  | 164.7  | 143.8  | 143.8  | 131.2  | 129.1    | 129.4  | 134.7  | 127.3  | 128.4  | 130.6  |         |
| 11      | 153.0  | 154.6  | 157.1  | 141.1  | 142.6  | 130.4  | 131.2    | 129.4  | 130.7  | 126.5  | 129.8  | 125.2  |         |
| 12      | 157.2  | 152.1  | 152.7  | 140.0  | 144.5  | 127.9  | 129.7    | 132.0  | 122.7  | 129.6  | 129.9  | 129.9  |         |
| 13      | 191.4  | 157.6  | 155.5  | 140.6  | 140.6  | 128.4  | 132.5    | 129.8  | 130.4  | 126.6  | 126.9  | 125.7  |         |
| 14      | 170.5  | 149.7  | 154.9  | 141.7  | 137.4  | 127.3  | 126.3    | 126.6  | 123.1  | 130.4  | 125.0  | 121.7  |         |
| 15      | 158.2  | 151.2  | 153.2  | 139.6  | 141.8  | 130.7  | 128.0    | 126.8  | 129.0  | 129.3  | 132.4  | 132.8  |         |
| 16      | 159.3  | 144.6  | 147.6  | 140.6  | 141.0  | 125.9  | 133.6    | 127.7  | 129.4  | 126.2  | 122.3  | 126.6  |         |
| 17      | 153.1  | 166.5  | 157.5  | 139.8  | 136.6  | 133.9  | 126.8    | 127.8  | 133.0  | 124.8  | 126.5  | 129.0  |         |
| 18      | 153.2  | 209.5  | 149.8  | 141.8  | 141.3  | 130.2  | 127.3    | 126.3  | 119.3  | 129.3  | 134.3  | 120.9  |         |
| 19      | 177.0  | 173.1  | 149.9  | 140.0  | 132.6  | 125.6  | 130.9    | 128.1  | 131.0  | 130.2  | 125.8  | 129.3  |         |
| 20      | 215.5  | 167.2  | 148.9  | 139.7  | 141.4  | 132.0  | 129.9    | 130.1  | 114.9  | 129.5  | 125.2  | 120.9  |         |
| 21      | 229.1  | 164.4  | 152.7  | 141.3  | 139.9  | 126.9  | 133.1    | 126.2  | 123.4  | 127.1  | 122.9  | 129.5  |         |
| 22      | 196.2  | 159.7  | 144.6  | 140.6  | 138.6  | 126.7  | 126.9    | 128.0  | 126.5  | 130.5  | 130.4  | 122.4  |         |
| 23      | 231.4  | 162.7  | 143.0  | 143.5  | 134.0  | 132.8  | 132.6    | 125.6  | 129.9  | 127.4  | 126.5  | 127.8  |         |
| 24      | 220.9  | 154.7  | 151.8  | 144.4  | 135.6  | 130.5  | 130.2    | 125.3  | 126.6  | 123.4  | 112.7  | 127.2  |         |
| 25      | 188.3  | 152.3  | 143.8  | 137.8  | 130.0  | 128.4  | 127.5    | 126.4  | 124.7  | 127.7  | 119.5  | 111.4  |         |
| 26      | 181.0  | 153.4  | 145.5  | 138.4  | 131.9  | 130.8  | 129.6    | 131.5  | 119.5  | 125.7  | 126.5  | 118.9  |         |
| 27      | 172.2  | 201.6  | 144.0  | 138.8  | 129.4  | 127.8  | 120.6    | 127.5  | 128.7  | 127.2  | 124.5  | 129.1  |         |
| 28      | 166.7  | 287.0  | 143.5  | 137.4  | 128.1  | 127.6  | 136.6    | 132.0  | 125.9  | 130.2  | 131.4  | 129.6  |         |
| 29      | 165.9  |        | 141.2  | 140.1  | 129.3  | 131.3  | 128.7    | 127.2  | 126.7  | 129.8  | 126.7  | 126.1  |         |
| 30      | 163.0  |        | 138.0  | 138.8  | 128.9  | 126.3  | 126.2    | 129.1  | 126.6  | 126.2  | 124.1  | 124.7  | Annual  |
| 31      | 157.5  |        | 142.2  |        | 133.0  |        | 130.2    | 127.9  |        | 124.4  |        | 132.8  | Summary |
| Average | 172.0  | 165.0  | 157.1  | 141.0  | 138.7  | 129.3  | 130.1    | 128.6  | 127.8  | 127.5  | 126.8  | 127.3  | 139.1   |
| Minimum | 151.3  | 144.6  | 138.0  | 137.4  | 128.1  | 125.6  | 120.6    | 125.3  | 114.9  | 122.0  | 112.7  | 111.4  | 111.4   |
| Maximum | 231.4  | 287.0  | 217.1  | 144.5  | 163.8  | 133.9  | 147.3    | 133.8  | 134.9  | 130.5  | 135.1  | 135.0  | 287.0   |
| Total   | 5332.5 | 4619.8 | 4870.6 | 4228.7 | 4298.7 | 3878.8 | 4033.6   | 3988.1 | 3834.8 | 3952.9 | 3802.7 | 3947.2 | 50788   |

# Point Loma Wastewater Treatment Plant 2017 Flows (mgd)

# Point Loma Wastewater Treatment Plant 2017 Dry Wethaer Flows (mgd)



|         |        |        |        |        | •      |        |        | $\sim 0$ |        |        |        |        |         |
|---------|--------|--------|--------|--------|--------|--------|--------|----------|--------|--------|--------|--------|---------|
| Day     | Jan    | Feb    | Mar    | Apr    | May    | Jun    | Jul    | Aug      | Sep    | Oct    | Nov    | Dec    | _       |
| 1       |        | 155.6  | 217.1  | 139.4  | 141.0  | 127.3  | 127.1  |          | 131.1  | 130.3  | 122.5  | 135.0  |         |
| 2       |        | 157.3  | 189.4  | 139.9  | 136.4  | 130.0  | 127.4  | 127.5    | 132.7  | 124.2  | 129.3  | 131.0  |         |
| 3       | 158.7  | 154.6  | 185.4  | 144.5  | 137.0  | 132.2  | 128.6  | 127.9    |        | 125.9  | 126.2  | 134.3  |         |
| 4       | 152.6  | 152.2  | 175.7  | 144.2  | 136.0  | 131.3  | 124.8  | 133.6    | 134.9  | 129.5  | 131.2  | 128.6  |         |
| 5       |        | 152.3  |        | 140.6  | 135.4  | 132.4  | 128.0  | 126.1    | 132.8  | 127.3  | 135.1  | 130.5  |         |
| 6       | 155.1  |        | 173.1  | 142.7  |        | 130.1  | 129.9  | 133.8    | 128.8  | 122.0  | 127.8  | 124.3  |         |
| 7       | 152.6  |        | 162.5  | 143.4  |        | 129.1  | 141.1  | 131.6    | 129.1  | 128.2  |        | 133.0  |         |
| 8       | 151.3  | 158.4  | 159.5  | 142.2  |        | 127.6  | 147.3  | 130.2    |        | 129.7  | 127.9  | 128.8  |         |
| 9       |        | 156.5  | 158.6  | 142.1  |        | 126.0  |        | 127.1    |        | 126.5  | 124.3  | 129.2  |         |
| 10      | 152.2  | 155.6  | 164.7  | 143.8  | 143.8  | 131.2  | 129.1  | 129.4    | 134.7  | 127.3  | 128.4  | 130.6  |         |
| 11      |        |        | 157.1  | 141.1  | 142.6  |        | 131.2  | 129.4    | 130.7  | 126.5  | 129.8  | 125.2  |         |
| 12      |        | 152.1  | 152.7  | 140.0  | 144.5  | 127.9  | 129.7  | 132.0    | 122.7  | 129.6  | 129.9  | 129.9  |         |
| 13      |        | 157.6  | 155.5  | 140.6  | 140.6  | 128.4  | 132.5  | 129.8    | 130.4  | 126.6  | 126.9  | 125.7  |         |
| 14      |        | 149.7  | 154.9  | 141.7  | 137.4  | 127.3  | 126.3  | 126.6    |        | 130.4  | 125.0  | 121.7  |         |
| 15      | 158.2  | 151.2  | 153.2  | 139.6  |        | 130.7  | 128.0  | 126.8    | 129.0  | 129.3  | 132.4  | 132.8  |         |
| 16      | 159.3  | 144.6  | 147.6  | 140.6  | 141.0  | 125.9  | 133.6  | 127.7    | 129.4  | 126.2  | 122.3  |        |         |
| 17      | 153.1  |        | 157.5  | 139.8  | 136.6  | 133.9  | 126.8  | 127.8    | 133.0  | 124.8  | 126.5  | 129.0  |         |
| 18      |        |        | 149.8  | 141.8  | 141.3  | 130.2  | 127.3  | 126.3    | 119.3  | 129.3  | 134.3  | 120.9  |         |
| 19      |        |        | 149.9  | 140.0  | 132.6  | 125.6  | 130.9  | 128.1    | 131.0  | 130.2  | 125.8  | 129.3  |         |
| 20      |        | 167.2  | 148.9  | 139.7  | 141.4  | 132.0  | 129.9  | 130.1    | 114.9  |        | 125.2  |        |         |
| 21      |        | 164.4  |        | 141.3  | 139.9  | 126.9  | 133.1  | 126.2    |        | 127.1  | 122.9  | 129.5  |         |
| 22      |        |        |        | 140.6  | 138.6  | 126.7  | 126.9  | 128.0    | 126.5  | 130.5  | 130.4  | 122.4  |         |
| 23      |        | 162.7  |        | 143.5  | 134.0  | 132.8  | 132.6  | 125.6    | 129.9  | 127.4  | 126.5  | 127.8  |         |
| 24      |        | 154.7  |        | 144.4  | 135.6  | 130.5  |        | 125.3    | 126.6  | 123.4  | 112.7  | 127.2  |         |
| 25      | 188.3  | 152.3  |        | 137.8  | 130.0  | 128.4  | 127.5  | 126.4    | 124.7  | 127.7  | 119.5  | 111.4  |         |
| 26      | 181.0  |        | 145.5  | 138.4  | 131.9  | 130.8  | 129.6  | 131.5    | 119.5  | 125.7  | 126.5  | 118.9  |         |
| 27      | 172.2  |        | 144.0  | 138.8  | 129.4  | 127.8  | 120.6  | 127.5    | 128.7  | 127.2  | 124.5  | 129.1  |         |
| 28      | 166.7  |        | 143.5  | 137.4  | 128.1  | 127.6  | 136.6  | 132.0    | 125.9  | 130.2  | 131.4  | 129.6  |         |
| 29      | 165.9  |        | 141.2  | 140.1  | 129.3  | 131.3  | 128.7  | 127.2    | 126.7  | 129.8  | 126.7  | 126.1  |         |
| 30      | 163.0  |        | 138.0  | 138.8  | 128.9  | 126.3  | 126.2  | 129.1    | 126.6  | 126.2  | 124.1  | 124.7  | Annual  |
| 31      | 157.5  |        | 142.2  |        | 133.0  |        | 130.2  | 127.9    |        |        |        | 132.8  | Summary |
| Average | 161.7  | 155.5  | 158.7  | 141.0  | 136.4  | 129.3  | 130.1  | 128.6    | 128.0  | 127.5  | 126.8  | 127.6  | 135.8   |
| Minimum | 151.3  | 144.6  | 138.0  | 137.4  | 128.1  | 125.6  | 120.6  | 125.3    | 114.9  | 122.0  | 112.7  | 111.4  | 111.4   |
| Maximum | 188.3  | 167.2  | 217.1  | 144.5  | 144.5  | 133.9  | 147.3  | 133.8    | 134.9  | 130.5  | 135.1  | 135.0  | 217.1   |
| Total   | 2587.4 | 2799.3 | 3967.7 | 4228.7 | 3546.0 | 3748.4 | 3771.6 | 3858.2   | 3199.7 | 3698.9 | 3676.4 | 3699.7 | 42782   |

# Point Loma Wastewater Treatment Plant 2017 Dry Weather Flows (mgd)

Y:\EMTS\41.Sections\WCS\REPORTS\PLWWTP\Annuals\Annual2017\Final\_Reports\2017\_!\_Annual.docx Plant Operations Summary 3.151

This page intentionally left blank.

# B. Rain Days



# San Diego Precipitation -2017 Daily Rainfall - Lindbergh Field

# San Diego Precipitation – 2017 Daily Rainfall – Lindbergh Field

| Total A   | nnual Pre | cipitation = | 10.1 | Maximu    | ım=2.21 | Trace     | e=0  |
|-----------|-----------|--------------|------|-----------|---------|-----------|------|
| First     |           | Second       |      | Third     |         | Fourth    |      |
| Quarter   |           | Quarter      |      | Quarter   |         | Quarter   |      |
| Date      | Rain      | Date         | Rain | Date      | Rain    | Date      | Rain |
| 1-Jan-1/  | 0.03      | 6-May-17     | 0.06 | 9-Jul-17  | I       | 20-Oct-17 |      |
| 2-Jan-17  |           | 7-May-17     | 1.25 | 24-Jul-17 | 0.01    | 31-Oct-17 |      |
| 5-Jan-17  | 0.19      | 8-May-17     | 0.01 | 1-Aug-17  | Т       | 7-Nov-17  | 0.31 |
| 9-Jan-17  | 0.06      | 9-May-17     | Т    | 3-Sep-17  | 0.02    | 16-Dec-17 | Т    |
| 11-Jan-17 | 0.05      | 15-May-17    | Т    | 8-Sep-17  | 0.08    | 20-Dec-17 | 0.09 |
| 12-Jan-17 | 0.34      | 11-Jun-17    | Т    | 9-Sep-17  | Т       |           |      |
| 13-Jan-17 | 0.74      |              |      | 14-Sep-17 | Т       |           |      |
| 14-Jan-17 | 0.04      |              |      | 21-Sep-17 | 0.03    |           |      |
| 18-Jan-17 | 0.04      |              |      |           |         |           |      |
| 19-Jan-17 | 0.49      |              |      |           |         |           |      |
| 20-Jan-17 | 0.79      |              |      |           |         |           |      |
| 21-Jan-17 | Т         |              |      |           |         |           |      |
| 22-Jan-17 | 0.22      |              |      |           |         |           |      |
| 23-Jan-17 | 0.73      |              |      |           |         |           |      |
| 24-Jan-17 | 0.25      |              |      |           |         |           |      |
| 6-Feb-17  | Т         |              |      |           |         |           |      |
| 7-Feb-17  | 0.19      |              |      |           |         |           |      |
| 11-Feb-17 | 0.03      |              |      |           |         |           |      |
| 17-Feb-17 | 1.28      |              |      |           |         |           |      |
| 18-Feb-17 | 0.28      |              |      |           |         |           |      |
| 19-Feb-17 | 0.06      |              |      |           |         |           |      |
| 22-Feb-17 | Т         |              |      |           |         |           |      |
| 26-Feb-17 | 0.07      |              |      |           |         |           |      |
| 27-Feb-17 | 2.21      |              |      |           |         |           |      |
| 28-Feb-17 | 0.06      |              |      |           |         |           |      |
| 5-Mar-17  | 0.01      |              |      |           |         |           |      |
| 21-Mar-17 | 0.01      |              |      |           |         |           |      |
| 22-Mar-17 | 0.03      |              |      |           |         |           |      |
| 23-Mar-17 | 0.04      |              |      |           |         |           |      |
| 24-Mar-17 | т         |              |      |           |         |           |      |
| 25-Mar-17 | т         |              |      |           |         |           |      |
|           |           |              |      |           |         |           |      |
| TOTALS    | 8.24      |              | 1.32 |           | 0.14    |           | 0.4  |

# C. Solids Production

#### Point Loma Annual Monitoring Report Solids Report - TOTALS

From 01-JAN-2017 TO 31-DEC-2017

|       |             |        | Pt.Loma     |        | MBC         |        | MBC       |        |
|-------|-------------|--------|-------------|--------|-------------|--------|-----------|--------|
|       | Pt. Loma    |        | Digested    |        | Combined    |        | Dewatered |        |
|       | Raw sludge  | Dry    | Sludge      | Dry    | Centrate    | Dry    | Sludge    | Dry    |
| Month | Gallons     | Tons   | Gallons     | Tons   | Gallons     | Tons   | Wet Tons  | Tons   |
|       |             |        |             |        |             |        |           |        |
| 01    | 33,670,810  | 6,190  | 33,670,810  | 3,510  | 57,994,171  | 843    | 10,763    | 3,022  |
| 02    | 31,276,951  | 5,703  | 31,276,951  | 3,247  | 57,666,252  | 915    | 9,857     | 2,861  |
| 03    | 36,002,141  | 6,205  | 36,002,141  | 3,705  | 67,944,095  | 877    | 11,508    | 3,331  |
| 04    | 54,495,260  | 9,544  | 54,495,260  | 5,386  | 62,845,958  | 917    | 10,428    | 2,903  |
| 05    | 34,924,265  | 6,080  | 34,731,909  | 3,397  | 62,785,603  | 895    | 10,548    | 2,973  |
| 06    | 29,936,461  | 5,579  | 29,936,461  | 3,041  | 60,664,332  | 810    | 10,845    | 2,979  |
| 07    | 31,475,133  | 5,684  | 31,475,133  | 3,203  | 62,215,032  | 891    | 10,807    | 2,920  |
| 08    | 31,941,239  | 5,512  | 31,941,239  | 3,233  | 63,349,032  | 903    | 10,639    | 2,833  |
| 09    | 31,905,776  | 5,782  | 31,232,303  | 3,230  | 62,114,078  | 850    | 9,940     | 2,607  |
| 10    | 31,611,776  | 5,405  | 31,611,776  | 3,236  | 66,166,985  | 899    | 10,963    | 2,908  |
| 11    | 28,409,517  | 4,976  | 28,409,517  | 2,902  | 63,721,425  | 846    | 11,301    | 2,982  |
| 12    | 28,471,501  | 5,030  | 28,471,501  | 2,980  | 65,677,716  | 835    | 10,412    | 2,756  |
|       |             |        |             |        |             |        |           |        |
| avg   | 33,676,736  | 5,974  | 33,604,583  | 3,423  | 62,762,057  | 873    | 10,668    | 2,923  |
| sum   | 404,120,830 | 71,690 | 403,255,001 | 41,070 | 753,144,679 | 10,481 | 128,012   | 35,075 |

#### Point Loma Annual Monitoring Report Solids Report - Daily Averages by Month

From 01-JAN-2017 TO 31-DEC-2017

| Year<br>Month | Pt. Loma<br>Raw sludge<br>Gallons | %TS | Dry<br>Tons | Pt.Loma<br>Digested<br>Sludge<br>Gallons | %TS | Dry<br>Tons | MBC<br>Combined<br>Centrate<br>Gallons | %TS  | Dry<br>Tons | MBC<br>Dewatered<br>Sludge<br>Wet Tons | %TS  | Dry<br>Tons |
|---------------|-----------------------------------|-----|-------------|------------------------------------------|-----|-------------|----------------------------------------|------|-------------|----------------------------------------|------|-------------|
| 17-01         | 1,086,155                         | 4.4 | 200         | 1,086,155                                | 2.5 | 113         | 1,870,780                              | 0.35 | 27.2        | 347                                    | 28.1 | 97.5        |
| 17-02         | 1,117,034                         | 4.4 | 205         | 1,117,034                                | 2.5 | 116         | 2,059,509                              | 0.38 | 32.6        | 352                                    | 29.0 | 102.2       |
| 17-03         | 1,161,359                         | 4.1 | 201         | 1,161,359                                | 2.5 | 121         | 2,191,745                              | 0.31 | 28.4        | 371                                    | 28.9 | 107.5       |
| 17-04         | 1,816,509                         | 4.2 | 322         | 1,816,509                                | 2.4 | 184         | 2,094,865                              | 0.35 | 30.5        | 348                                    | 27.8 | 96.8        |
| 17-05         | 1,126,589                         | 4.2 | 197         | 1,120,384                                | 2.3 | 111         | 2,025,342                              | 0.34 | 28.8        | 340                                    | 28.2 | 95.9        |
| 17-06         | 997,882                           | 4.5 | 189         | 997,882                                  | 2.4 | 100         | 2,022,144                              | 0.32 | 27.1        | 362                                    | 27.5 | 99.3        |
| 17-07         | 1,015,327                         | 4.3 | 185         | 1,015,327                                | 2.4 | 103         | 2,006,937                              | 0.34 | 28.9        | 349                                    | 27.0 | 94.2        |
| 17-08         | 1,030,363                         | 4.1 | 177         | 1,030,363                                | 2.4 | 104         | 2,043,517                              | 0.34 | 29.5        | 343                                    | 26.6 | 91.4        |
| 17-09         | 1,063,526                         | 4.3 | 188         | 1,041,077                                | 2.5 | 107         | 2,070,469                              | 0.33 | 28.4        | 331                                    | 26.2 | 86.9        |
| 17-10         | 1,019,735                         | 4.1 | 174         | 1,019,735                                | 2.5 | 104         | 2,134,419                              | 0.33 | 29.1        | 354                                    | 26.5 | 93.8        |
| 17-11         | 946,984                           | 4.2 | 168         | 946,984                                  | 2.5 | 96          | 2,124,048                              | 0.32 | 28.2        | 377                                    | 26.4 | 99.4        |
| 17-12         | 918,436                           | 4.2 | 164         | 918,436                                  | 2.5 | 96          | 2,118,636                              | 0.30 | 26.9        | 336                                    | 26.5 | 88.9        |
| avg           | 1,108,325                         | 4.3 | 198         | 1,105,937                                | 2.5 | 113         | 2,063,534                              | 0.33 | 28.8        | 351                                    | 27.4 | 96.1        |

Note: A ton is a "short ton" or 2000 lbs of dry solids. The mechanical condition of the cake pumps and the variability of sludge concentrations can affect the overall accuracies of these reported values.

### Point Loma Annual Chemical Usage Report Monthly Totals

Annual 2017

|       |           | ACTIVE  | Ferric   | Ferrous  | Ferric    | Sodium    | Sodium    | Sodium    |         |         |           |       |        |         |
|-------|-----------|---------|----------|----------|-----------|-----------|-----------|-----------|---------|---------|-----------|-------|--------|---------|
|       | Polymer   | Polymer | Chloride | Chloride | Chloride  | hydroxide | hydroxide | hydroxide | NaOCl   | NaOC1   | NaOCl     | Salt  | Salt   | Salt    |
|       | Pt.Loma   | Pt.Loma | PS #2    | PS #2    | Pt.Loma   | PS #1     | PS #2     | Pt.Loma   | PS #1   | PS #2   | Pt.Loma   | PS #1 | PS #2  | Pt.Loma |
| Month | Gallons   | Lbs.    | Gallons  | Gallons  | Gallons   | Gallons   | Gallons   | Gallons   | Gallons | Gallons | Gallons   | Lbs.  | Lbs.   | Lbs.    |
| 01    | 179,944   | 7,563   |          |          | 116,325   | 642       | 48        | 3,303     | 537     | 2,852   | 157,398   | 550   | 909    | 15,500  |
| 02    | 151,481   | 6,367   |          |          | 102,151   | 257       | 35        | 2,361     | 1,872   | 1,922   | 184,693   | 500   | 350    | 14,000  |
| 03    | 155,985   | 6,560   |          |          | 105,822   | 270       | 40        | 2,914     | 924     | 2,042   | 209,334   | 700   | 1,450  | 15,500  |
| 04    | 135,509   | 5,693   |          |          | 92,202    | 70        | 45        | 2,947     | 2,819   | 1,736   | 204,303   | 650   | 1,850  | 15,000  |
| 05    | 137,404   | 5,776   |          |          | 93,949    | 54        | 106       | 3,944     | 2,185   | 1,988   | 186,492   | 600   | 2,100  | 15,500  |
| 06    | 124,049   | 5,215   |          |          | 84,459    | 15        | 72        | 4,671     | 3,434   | 1,922   | 181,533   | 550   | 1,750  | 15,000  |
| 07    | 128,955   | 5,420   |          |          | 87,434    | 7         | 68        | 4,800     | 1,840   | 2,075   | 190,859   | 550   | 1,950  | 15,500  |
| 08    | 135,598   | 5,699   |          |          | 89,297    | 5         | 134       | 4,586     | 2,170   | 1,808   | 184,059   | 800   | 3,150  | 15,500  |
| 09    | 132,323   | 5,561   |          |          | 84,669    | 5         | 60        | 4,520     | 2,215   | 1,922   | 191,725   | 400   | 4,350  | 15,000  |
| 10    | 142,513   | 5,991   |          |          | 92,358    | 0         | 122       | 4,592     | 1,780   | 2,046   | 188,083   | 650   | 1,400  | 15,500  |
| 11    | 136,976   | 5,760   |          |          | 90,080    | 0         | 20        | 4,410     | 2,028   | 2,438   | 188,667   | 150   | 900    | 15,000  |
| 12    | 142,267   | 5,984   |          |          | 95,822    | 0         | 80        | 3,743     | 2,350   | 3,348   | 189,525   | 350   | 1,000  | 15,500  |
| avg   | 141,917   | 5,966   |          |          | 94,547    | 110       | 69        | 3,899     | 2,013   | 2,175   | 188,056   | 538   | 1,763  | 15,208  |
| sum   | 1,703,004 | 71,589  |          |          | 1,134,568 | 1,325     | 830       | 46,791    | 24,154  | 26,099  | 2,256,671 | 6,450 | 21,159 | 182,500 |

## E. Gas Production

#### Point Loma Wastewater Treatment Plant Gas Report

#### Annual 2017

#### Daily Monthly Averages

GAS PRODUCTION (x1000 Cu. Ft.)

GAS CONSUMPTION (x1000 Cu. Ft.)

| Month | N-1-P | N-2-P | C-1-P | C-2-P | S-1-P | S-2-P | Dig 7 | Dig 8 | Total   | Boilers | Burners | GUF   | Total |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------|---------|---------|-------|-------|
| 01    | 518.7 | 566.4 |       | 428.5 | .0    | 464.1 | 120.5 |       | 2,526.7 | 227     | 1,085   | 1,817 | 3,129 |
| 02    | 534.5 | 556.5 | 515.7 | 420.7 | .0    | 422.6 | 104.8 | 779.4 | 2,450.0 | 280     | 1,053   | 1,824 | 3,157 |
| 03    | 593.3 | 682.6 | 605.8 | 482.4 | .0    | 1.7   | 119.3 | 889.0 | 2,365.8 | 171     | 1,220   | 1,738 | 3,128 |
| 04    | 583.3 | 670.6 | 607.9 | 485.6 | .0    | .0    | 120.8 | 893.3 | 2,347.4 | 142     | 625     | 1,515 | 2,282 |
| 05    | 558.0 | 629.7 | 633.9 | 484.0 | .0    | .0    | 100.9 | 826.3 | 2,305.6 | 34      | 929     | 1,598 | 2,561 |
| 06    | 533.0 | 589.5 | 649.8 | 491.4 | .0    | .0    | 15.8  | 807.3 | 2,263.6 | 18      | 839     | 1,826 | 2,683 |
| 07    | 506.8 | 605.1 | 633.9 | 487.5 | .0    | .0    | .0    | 775.1 | 2,233.4 | 16      | 925     | 1,730 | 2,671 |
| 08    | 479.8 | 580.8 | 578.8 | 450.7 | .0    | .0    | 34.5  | 653.1 | 2,090.2 | 17      | 150     | 1,813 | 1,980 |
| 09    | 454.7 | 562.0 | 589.8 | 421.3 | 270.9 | .0    | 124.1 | 627.0 | 2,298.7 | 16      | 193     | 1,833 | 2,042 |
| 10    | 411.1 | 544.1 | 606.4 | 416.5 | 489.4 | .0    | 111.0 | 553.6 | 2,467.5 | 21      | 400     | 1,772 | 2,192 |
| 11    | 381.0 | 537.3 | 666.1 | 414.0 | 466.2 | .0    | 113.7 | 507.9 | 2,464.5 | 19      | 111     | 1,799 | 1,929 |
| 12    | 383.1 | 546.2 | 672.0 | 435.0 | 461.6 | .0    | 126.5 | 558.4 | 2,497.9 | 42      | 201     | 1,799 | 2,042 |
| avg   | 494.8 | 589.2 | 609.1 | 451.5 | 140.7 | 74.0  | 91.0  | 717.9 | 2,359.3 | 83      | 644     | 1,755 | 2,483 |

#### Monthly Totals

GAS PRODUCTION (x1000 Cu. Ft.)

GAS CONSUMPTION (x1000 Cu. Ft.)

| Month | N-1-P     | N-2-P     | C-1-P     | C-2-P     | S-1-P    | S-2-P    | Dig 7    | Dig 8     | Total     | Boilers | Burners | GUF     | Total   |
|-------|-----------|-----------|-----------|-----------|----------|----------|----------|-----------|-----------|---------|---------|---------|---------|
| 01    | 16,079.0  | 17,557.0  | 17,022.0  | 13,283.0  | .0       | 14,386.0 | 3,737.0  | 23,084.0  | 78,327.0  | 7,033   | 33,628  | 56,336  | 96,997  |
| 02    | 14,965.0  | 15,582.0  | 14,440.0  | 11,779.0  | .0       | 11,834.0 | 2,934.0  | 21,824.0  | 68,600.0  | 7,830   | 29,488  | 51,085  | 88,403  |
| 03    | 18,392.0  | 21,160.0  | 18,780.0  | 14,954.0  | .0       | 54.0     | 3,697.0  | 27,560.0  | 73,340.0  | 5,302   | 37,807  | 53,872  | 96,981  |
| 04    | 17,499.0  | 20,117.0  | 18,238.0  | 14,568.0  | .0       | .0       | 3,625.0  | 26,798.0  | 70,422.0  | 4,266   | 18,738  | 45,451  | 68,455  |
| 05    | 17,299.0  | 19,521.0  | 19,650.0  | 15,005.0  | .0       | .0       | 3,128.0  | 25,614.0  | 71,475.0  | 1,044   | 28,807  | 49,538  | 79,389  |
| 06    | 15,990.0  | 17,684.0  | 19,493.0  | 14,742.0  | .0       | .0       | 475.0    | 24,219.0  | 67,909.0  | 528     | 25,163  | 54,788  | 80,479  |
| 07    | 15,710.0  | 18,759.0  | 19,652.0  | 15,113.0  | .0       | .0       | .0       | 24,027.0  | 69,234.0  | 487     | 28,679  | 53,634  | 82,800  |
| 08    | 14,875.0  | 18,005.0  | 17,944.0  | 13,973.0  | .0       | .0       | 1,070.0  | 20,246.0  | 64,797.0  | 539     | 4,637   | 56,190  | 61,366  |
| 09    | 13,641.0  | 16,860.0  | 17,693.0  | 12,640.0  | 8,127.0  | .0       | 3,722.0  | 18,810.0  | 68,961.0  | 486     | 5,793   | 54,995  | 61,274  |
| 10    | 12,743.0  | 16,868.0  | 18,799.0  | 12,910.0  | 15,172.0 | .0       | 3,441.0  | 17,161.0  | 76,492.0  | 643     | 12,398  | 54,925  | 67,966  |
| 11    | 11,431.0  | 16,118.0  | 19,982.0  | 12,419.0  | 13,986.0 | .0       | 3,411.0  | 15,236.0  | 73,936.0  | 571     | 3,324   | 53,968  | 57,863  |
| 12    | 11,876.0  | 16,932.0  | 20,831.0  | 13,485.0  | 14,310.0 | .0       | 3,921.0  | 17,311.0  | 77,434.0  | 1,289   | 6,229   | 55,774  | 63,292  |
| avg   | 15,041.7  | 17,930.3  | 18,543.7  | 13,739.3  | 4,299.6  | 2,189.5  | 2,763.4  | 21,824.2  | 71,743.9  | 2,502   | 19,558  | 53,380  | 75,439  |
| sum   | 180,500.0 | 215,163.0 | 222,524.0 | 164,871.0 | 51,595.0 | 26,274.0 | 33,161.0 | 261,890.0 | 860,927.0 | 30,018  | 234,691 | 640,556 | 905,265 |

# F. Graphs of Chemical Usage











## G. Grit and Screenings

The following are reports of the analyses of grit samples taken from the Point Loma WTP headworks (grit removal chambers) in 2017. Reports include Title 22 analyses and Total Solids. Title 22 sampling and analysis of PLR grit occurs on a Semi-Annual basis. Samples from the grit bins are taken daily for 7 consecutive days and composited together to form the Semi-Annual sample. While PLR refers to Point Loma WTP raw influent sewage everywhere else in this report, in this section it refers to the grit removed from the grit chambers at the headworks building at the influent end of the plant.

| Gr  | it   | Heady    | vorks | Sludge Screenings |      |  |
|-----|------|----------|-------|-------------------|------|--|
|     |      | Scree    | nings |                   |      |  |
| JAN | 73.4 | JAN      | 38.2  | JAN               | 50.3 |  |
| FEB | 72.2 | FEB      | 38.9  | FEB               | 46.1 |  |
| MAR | 73.9 | MAR      | 38.8  | MAR               | 46.8 |  |
| APR | 69.2 | APR      | 39.8  | APR               | 41.2 |  |
| MAY | 65.2 | MAY      | 40.0  | MAY               | 49.6 |  |
| JUN | 74.5 | JUN      | 39.6  | JUN               | 44.0 |  |
| JUL | 75.2 | JUL      | 40.4  | JUL               | 45.4 |  |
| AUG | 75.4 | AUG      | 40.9  | AUG               | 41.1 |  |
| SEP | 77.7 | SEP      | 40.9  | SEP               | 46.3 |  |
| OCT | 76.7 | OCT      | 41.8  | OCT               | 41.2 |  |
| NOV | 78.8 | NOV      | 41.4  | NOV               | 44.0 |  |
| DEC | 61.0 | DEC      | 39.6  | DEC               | 48.7 |  |
| AVG | 72.8 | AVG 40.0 |       | AVG               | 45.4 |  |

Point Loma Wastewater Treatment Plant Grit and Screenings 2017- Monthly Total Solids Averages (% WT)

# Point Loma Wastewater Treatment Plant

|     | 2017 Gr | it Total Sol | lid (%WT) |  |  |
|-----|---------|--------------|-----------|--|--|
|     | Average | Minimum      | Maximum   |  |  |
|     | %WT     | %WT          | %WT       |  |  |
| JAN | 73.4    | 66.6         | 83.7      |  |  |
| FEB | 72.2    | 57.2         | 84.8      |  |  |
| MAR | 73.9    | 62.3         | 85.3      |  |  |
| APR | 69.2    | 64.2         | 81.7      |  |  |
| MAY | 65.2    | 55.8         | 83.2      |  |  |
| JUN | 74.5    | 53.9         | 86.9      |  |  |
| JUL | 75.2    | 53.0         | 85.9      |  |  |
| AUG | 75.4    | 63.8         | 89.1      |  |  |
| SEP | 77.7    | 71.2         | 87.0      |  |  |
| OCT | 76.7    | 62.7         | 84.8      |  |  |
| NOV | 78.8    | 67.1         | 91.0      |  |  |
| DEC | 61.0    | 52.8         | 76.2      |  |  |

## 2017 Sludge Screenings Total Solids (%WT)

|     | Average | Minimum | Maximum |
|-----|---------|---------|---------|
|     | %WT     | %WT     | %WT     |
| JAN | 50.3    | 40.0    | 63.6    |
| FEB | 46.1    | 36.8    | 50.9    |
| MAR | 46.8    | 40.4    | 54.5    |
| APR | 41.2    | 25.9    | 52.7    |
| MAY | 49.6    | 39.8    | 59.1    |
| JUN | 44.0    | 33.6    | 52.1    |
| JUL | 45.4    | 34.1    | 57.6    |
| AUG | 41.1    | 31.1    | 48.7    |
| SEP | 46.3    | 35.4    | 57.1    |
| OCT | 41.2    | 35.8    | 54.5    |
| NOV | 44.0    | 37.9    | 49.1    |
| DEC | 48.7    | 37.6    | 63.8    |

## 2017 Headworks Screenings Total Solids (%WT)

|     | Average | Minimum | Maximum |
|-----|---------|---------|---------|
|     | %WT     | %WT     | %WT     |
| JAN | 38.2    | 32.7    | 46.5    |
| FEB | 38.9    | 33.6    | 44.3    |
| MAR | 38.8    | 35.5    | 44.1    |
| APR | 39.8    | 35.6    | 48.8    |
| MAY | 40.0    | 33.8    | 45.9    |
| JUN | 39.6    | 34.2    | 45.3    |
| JUL | 40.4    | 34.5    | 46.4    |
| AUG | 40.9    | 36.5    | 44.9    |
| SEP | 40.9    | 37.2    | 44.9    |
| OCT | 41.8    | 38.1    | 47.2    |
| NOV | 41.4    | 36.6    | 45.3    |
| DEC | 39.6    | 36.2    | 41.9    |

#### POINT LOMA WASTEWATER TREATMENT PLANT CALIFORNIA HAZARDOUS WASTE IDENTIFICATION TESTS (Title 22) Metro Biosolids Center Dewatered Sludge

2017 Annual

CA Hoolth &

Source: PLR Sample ID: P943304 Sample Date: 01-JUN-17

| Constituent ME        | L. Units  | Total<br>Dry Wt.<br>mg/Kg | Total<br>Wet Wt.<br>mg/Kg | TTLC<br>Wet Wt.<br>mg/Kg | W.E.T.<br>Wet Wt.<br>mg/L | STLC<br>Wet Wt.<br>mg/L | 40 CFR 503<br>Limits **<br>mg/Kg | Safety code<br>Limits ***<br>mg/Kg |
|-----------------------|-----------|---------------------------|---------------------------|--------------------------|---------------------------|-------------------------|----------------------------------|------------------------------------|
| Antimony 6            | 8 MG/KG   | 3 85                      | <br>2 60                  | <br>500                  | · · ·                     | 15 00                   |                                  |                                    |
| Arsenic 0             | 14  MG/KG | 1.76                      | 1.18                      | 500                      | *                         | 5.00                    | 41                               |                                    |
| Barium 0.             | 08 MG/KG  | 132                       | 89.2                      | 10000                    | *                         | 100.00                  |                                  |                                    |
| Bervllium Ø.          | 02 MG/KG  | 0.02                      | 0.013                     | 75                       | *                         | 0.75                    |                                  |                                    |
| Cadmium               | .1 MG/KG  | 0.57                      | 0.385                     | 100                      | *                         | 1.00                    | 39                               |                                    |
| Chromium (VI)         |           | NA                        | NA                        | 500                      | NA                        | 5.00                    | •                                |                                    |
| Chromium              | .1 MG/KG  | 50.2                      | 33.9                      | 2500                     | *                         | 560.00                  | 1,200                            |                                    |
| Cobalt @              | .2 MG/KG  | 4.36                      | 2.95                      | 8000                     | *                         | 80.00                   | ,                                |                                    |
| Copper                | .7 MG/KG  | 444                       | 300                       | 2500                     | *                         | 25.00                   | 1,500                            | 2,500                              |
| Lead# @               | .3 MG/KG  | 16.9                      | 11.4                      | 1000                     | *                         | 5.00                    | 300                              | 350                                |
| Mercury               | .2 MG/KG  | 0.12                      | 0.081                     | 20                       | *                         | 0.20                    | 17                               |                                    |
| Molybdenum @          | .2 MG/KG  | 8.05                      | 5.44                      | 3500                     | *                         | 350.00                  |                                  |                                    |
| Nickel @              | .3 MG/KG  | 33.3                      | 22.5                      | 2000                     | *                         | 20.00                   | 420                              | 2,000                              |
| Selenium 0.           | 19 MG/KG  | 0.53                      | 0.358                     | 100                      | *                         | 1.00                    | 100                              |                                    |
| Silver 0.             | 21 MG/KG  | 2.42                      | 1.64                      | 500                      | *                         | 5.00                    |                                  |                                    |
| Thallium 6            | .4 MG/KG  | 0.43                      | 0.29                      | 700                      | *                         | 7.00                    |                                  |                                    |
| Vanadium 6            | .3 MG/KG  | 17.7                      | 11.9                      | 2400                     | *                         | 24.00                   |                                  |                                    |
| Zinc 1                | .5 MG/KG  | 589                       | 398                       | 5000                     | *                         | 250.00                  | 2,800                            |                                    |
| Total Solids          | WT%       | 67.6                      |                           |                          |                           |                         |                                  |                                    |
| Total Volatile Solids | WT%       | 25.4                      |                           |                          |                           |                         |                                  |                                    |
| рН                    | PH        | 7.36                      |                           | >2 - <12                 | 2                         |                         |                                  |                                    |
| Aldrin 0.00           | 02 MG/KG  | ND                        | ND                        | 1.4                      | *                         | 0.14                    |                                  |                                    |
| Chlordanes 0.00       | 05 MG/KG  | ND                        | ND                        | 2.5                      | *                         | 0.25                    |                                  |                                    |
| DDT, DDE, DDD 0.00    | 03 MG/KG  | ND                        | ND                        | 1.0                      | *                         | 0.10                    |                                  |                                    |
| Dieldrin 0.00         | 02 MG/KG  | ND                        | ND                        | 8.0                      | *                         | 0.80                    |                                  |                                    |
| Endrin 0.00           | 03 MG/KG  | ND                        | ND                        | 0.2                      | *                         | 0.02                    |                                  |                                    |
| Heptachlor 0.00       | 01 MG/KG  | ND                        | ND                        | 4.7                      | *                         | 0.47                    |                                  |                                    |
| Lindane 0.00          | 09 MG/KG  | ND                        | ND                        | 4.0                      | *                         | 0.40                    |                                  |                                    |
| Kepone                |           | NA                        | NA                        | 21                       | NA                        | 2.10                    |                                  |                                    |
| BHC, Total 0.00       | 03 MG/KG  | ND                        | ND                        | 4.0                      | *                         | 0.40                    |                                  |                                    |
| Methoxychlor 0.00     | 02 MG/KG  | ND                        | ND                        | 100                      | *                         | 10.00                   |                                  |                                    |
| Mirex 0.00            | 03 MG/KG  | ND                        | ND                        | 21                       | *                         | 2.10                    |                                  |                                    |
| Pentachlorophenol 1.  | 17 MG/KG  | ND                        | ND                        | 17                       | *                         | 1.70                    |                                  |                                    |
| PCBs (Arochlors) 0.   | 67 MG/KG  | ND                        | ND                        | 50                       | *                         | 5.00                    |                                  |                                    |
| Toxaphene 0.          | 05 MG/KG  | ND                        | ND                        | 5                        | *                         | 0.50                    |                                  |                                    |
| Trichloroethene 0.0   | 03 MG/KG  | ND                        | ND                        | 2040                     | *                         | 204.00                  |                                  |                                    |
| 2,4,5-TP 2.           | 87 MG/KG  | ND                        | ND                        | 10                       | *                         | 1.00                    |                                  |                                    |

On the basis of these analyses, I certify that this dried sludge is non-hazardous as defined by California Code, Title 22, Section 66699.

TTLC = Total Threshold Limit Concentration.

STLC = Soluble Threshold Limit Concentration.

- W.E.T. = Waste Extraction Technique.
- = The total wet concentration is less than 10 times the STLC. Therefore by definition, \*
- this substance is present in concentrations that are less than the limits for hazardous wastes. \*\*
  - = Limits are in mg/Kg (dry weight) based on 40 CFR part 503.13 Table 3 "Limits for Land Application".
- \*\*\* = The California State Health and Safety Code 25157.8 established lower a limit for Lead.
- = Not Analyzed, ND= Not Detected, NS= Not Sampled, NR= Not Required NA
- = Method Detection Limit (are in mg/Kg per dry weight; except for pH and Total and Volatile Solids) MDL
- MBCDEWCN = Metro Biosolids Center Dewatered Centrifuged Sludge.

# = Calibration did not meet requirements.

#### POINT LOMA WASTEWATER TREATMENT PLANT CALIFORNIA HAZARDOUS WASTE IDENTIFICATION TESTS (Title 22) Metro Biosolids Center Dewatered Sludge

2017 Annual

CA Health &

Source: PLR Sample ID: P991093 Sample Date: 26-DEC-17

| Constituent           | MDL.   | Units | Total<br>Dry Wt.<br>mg/Kg | Total<br>Wet Wt.<br>mg/Kg | TTLC<br>Wet Wt.<br>mg/Kg | W.E.T.<br>Wet Wt.<br>mg/L | STLC<br>Wet Wt.<br>mg/L | 40 CFR 503<br>Limits **<br>mg/Kg | Safety code<br>Limits ***<br>mg/Kg |
|-----------------------|--------|-------|---------------------------|---------------------------|--------------------------|---------------------------|-------------------------|----------------------------------|------------------------------------|
| Antimony              | 1.5    | MG/KG | ND                        | <br>ND                    | <br>500                  | *                         | 15.00                   |                                  |                                    |
| Arsenic               | 0.14   | MG/KG | 1.51                      | 0.945                     | 500                      | *                         | 5.00                    | 41                               |                                    |
| Barium                | 0.51   | MG/KG | 69                        | 43.2                      | 10000                    | *                         | 100.00                  |                                  |                                    |
| Beryllium             | 0.08   | MG/KG | ND                        | ND                        | 75                       | *                         | 0.75                    |                                  |                                    |
| Cadmium               | 0.1    | MG/KG | 0.15                      | 0.093                     | 100                      | *                         | 1.00                    | 39                               |                                    |
| Chromium (VI)         |        |       | NA                        |                           | 500                      | NA                        | 5.00                    |                                  |                                    |
| Chromium              | 0.1    | MG/KG | 17.4                      | 10.9                      | 2500                     | *                         | 560.00                  | 1,200                            |                                    |
| Cobalt                | 0.2    | MG/KG | 2.24                      | 1.40                      | 8000                     | *                         | 80.00                   |                                  |                                    |
| Copper                | 0.7    | MG/KG | 193                       | 121                       | 2500                     | *                         | 25.00                   | 1,500                            | 2,500                              |
| Lead                  | 0.3    | MG/KG | 6.7                       | 4.2                       | 1000                     | *                         | 5.00                    | 300                              | 350                                |
| Mercury               | 0.2    | MG/KG | 0.25                      | 0.156                     | 20                       | *                         | 0.20                    | 17                               |                                    |
| Molybdenum            | 0.1    | MG/KG | 3.68                      | 2.30                      | 3500                     | *                         | 350.00                  |                                  |                                    |
| Nickel                | 0.1    | MG/KG | 15.9                      | 9.95                      | 2000                     | *                         | 20.00                   | 420                              | 2,000                              |
| Selenium              | 1.7    | MG/KG | ND                        | ND                        | 100                      | *                         | 1.00                    | 100                              |                                    |
| Silver                | 0.21   | MG/KG | 0.72                      | 0.450                     | 500                      | *                         | 5.00                    |                                  |                                    |
| Thallium              | 0.2    | MG/KG | ND                        | ND                        | 700                      | *                         | 7.00                    |                                  |                                    |
| Vanadium              | 0.3    | MG/KG | 7.2                       | 4.50                      | 2400                     | *                         | 24.00                   |                                  |                                    |
| Zinc                  | 1.5    | MG/KG | 192                       | 119                       | 5000                     | *                         | 250.00                  | 2,800                            |                                    |
| Total Solids          |        | WT%   | 62.6                      |                           |                          |                           |                         |                                  |                                    |
| Total Volatile Solids |        | WT%   | 39.3                      |                           |                          |                           |                         |                                  |                                    |
| рН                    |        | PH    | 7.11                      |                           | >2 - <12                 | 2                         |                         |                                  |                                    |
| Aldrin#               | 0.0002 | MG/KG | ND                        | ND                        | 1.4                      | *                         | 0.14                    |                                  |                                    |
| Chlordanes#           | 0.0005 | MG/KG | ND                        | ND                        | 2.5                      | *                         | 0.25                    |                                  |                                    |
| DDT, DDE, DDD#        | 0.0003 | MG/KG | ND                        | ND                        | 1.0                      | *                         | 0.10                    |                                  |                                    |
| Dieldrin#             | 0.0002 | MG/KG | ND                        | ND                        | 8.0                      | *                         | 0.80                    |                                  |                                    |
| Endrin#               | 0.0003 | MG/KG | ND                        | ND                        | 0.2                      | *                         | 0.02                    |                                  |                                    |
| Heptachlor#           | 0.0001 | MG/KG | ND                        | ND                        | 4.7                      | *                         | 0.47                    |                                  |                                    |
| Lindane#              | 0.0009 | MG/KG | ND                        | ND                        | 4.0                      | *                         | 0.40                    |                                  |                                    |
| Kepone                |        |       | NA                        | NA                        | 21                       | NA                        | 2.10                    |                                  |                                    |
| BHC, Total#           | 0.0003 | MG/KG | ND                        | ND                        | 4.0                      | *                         | 0.40                    |                                  |                                    |
| Methoxychlor#         | 0.0002 | MG/KG | ND                        | ND                        | 100                      | *                         | 10.00                   |                                  |                                    |
| Mirex#                | 0.0003 | MG/KG | ND                        | ND                        | 21                       | *                         | 2.10                    |                                  |                                    |
| Pentachlorophenol     | 0.8    | MG/KG | ND                        | ND                        | 17                       | *                         | 1.70                    |                                  |                                    |
| PCBs (Arochlors)#     | 0.67   | MG/KG | ND                        | ND                        | 50                       | *                         | 5.00                    |                                  |                                    |
| Toxaphene#            | 0.05   | MG/KG | ND                        | ND                        | 5                        | *                         | 0.50                    |                                  |                                    |
| Trichloroethene       | 0.003  | MG/KG | ND                        | ND                        | 2040                     | *                         | 204.00                  |                                  |                                    |
| 2,4,5-TP              | 17     |       | ND                        | ND                        | 10                       | *                         | 1.00                    |                                  |                                    |

On the basis of these analyses, I certify that this dried sludge is non-hazardous as defined by California Code, Title 22, Section 66699.

TTLC = Total Threshold Limit Concentration.

STLC = Soluble Threshold Limit Concentration.

W.E.T. = Waste Extraction Technique.

\* = The total wet concentration is less than 10 times the STLC. Therefore by definition,

. this substance is present in concentrations that are less than the limits for hazardous wastes.

\*\* = Limits are in mg/Kg (dry weight) based on 40 CFR part 503.13 Table 3 "Limits for Land Application".

\*\*\* = The California State Health and Safety Code 25157.8 established lower a limit for Lead.

NA = Not Analyzed, ND= Not Detected, NS= Not Sampled, NR= Not Required

MDL = Method Detection Limit (are in mg/Kg per dry weight; except for pH and Total and Volatile Solids) MBCDEWCN = Metro Biosolids Center Dewatered Centrifuged Sludge.

# = Samples analyzed out of holding time.

#### ANNUAL 2017

#### GRIT COMPOSITES Inorganics and Organics

| Source                |         |       | GRIT COMP   | GRIT COMP   |
|-----------------------|---------|-------|-------------|-------------|
| Date                  |         |       | 01-JUN-2017 | 26-DEC-2017 |
| Analyte               | MDL     | Units | P943304     | P991093     |
|                       | ======  | ===== |             |             |
| Aluminum              | 18      | MG/KG | 3680        | 2280        |
| Antimony              | 1.47    | MG/KG | 3.9         | <1.47       |
| Arsenic               | .308    | MG/KG | 1.76        | DNQ1.67     |
| Barium                | .511    | MG/KG | 132         | 69.1        |
| Beryllium             | .02     | MG/KG | <0.02       | ND          |
| Cadmium               | .13     | MG/KG | 0.6         | <0.13       |
| Chromium              | .136    | MG/KG | 50.2        | 17.3        |
| Cobalt                | .15     | MG/KG | 4.4         | 2.3         |
| Copper                | 1.9     | MG/KG | 444         | 193         |
| Iron                  | 5.97    | MG/KG | 51400       | 22200       |
| Lead                  | .3      | MG/KG | ND          | 7           |
| Manganese             | .359    | MG/KG | 293         | 95          |
| Mercury               | .2      | MG/KG | <0.20       | 0.25        |
| Molybdenum            | .15     | MG/KG | 8.1         | 3.8         |
| Nickel                | .3      | MG/KG | 33          | 16          |
| Selenium              | 1.7     | MG/KG | 0.53        | <1.70       |
| Silver                | .295    | MG/KG | 2.4         | DNQ0.7      |
| Thallium              | .43     | MG/KG | <0.43       | ND          |
| Vanadium              | .32     | MG/KG | 17.7        | 7.1         |
| Zinc                  | 1.45    | MG/KG | 589         | 193         |
| рН                    |         | PH    | 7.36        | 7.11        |
| Total Solids          | .24     | WT%   | 67.6        | 62.6        |
| Total Volatile Solids | .11     | WT%   | 25.4        | 39.3        |
| 2,4-D                 | .025    | MG/KG | ND          | ND          |
| Aldrin                | .000169 | MG/KG | ND          | ND*         |
| Dieldrin              | .000178 | MG/KG | ND          | ND*         |
| Endrin                | .000305 | MG/KG | ND          | ND*         |
| Heptachlor            | .000129 | MG/KG | ND          | ND*         |
| BHC, Gamma isomer     | .000266 | MG/KG | ND          | ND*         |
| Methoxychlor          | .000214 | MG/KG | ND          | ND*         |
| Pentachlorophenol     | 1.17    | MG/KG | ND          | ND          |
| Toxaphene             | .04866  | MG/KG | ND          | ND*         |
| Trichloroethene       | .0026   | MG/KG | ND          | ND          |
| 2,4,5-TP (Silvex)     | .027    | MG/KG | ND          | ND          |

\* = Sample analyzed outside holding time; therefore is non-reportable.

NA= Not Analyzed, ND= Not Detected, NS= Not Sampled, NR= Not Required

Metals by EPA200.7 pH by SM4500H Pesticides by EPA608 Herbicides by EPA8151 Total Solids by SM2540B

#### ANNUAL 2017

#### Chlorinated Pesticide Analysis EPA METHOD 8081A/8082

Grit

| Source                     |                 |                | PLR         | PLR         |
|----------------------------|-----------------|----------------|-------------|-------------|
| Date                       |                 |                | 01-JUN-2017 | 26-DEC-2017 |
| Analyte                    | MDL             | Units          | P943304     | P991093*    |
|                            |                 | =====          |             |             |
| Aldrin                     | 169             | NG/KG          | ND          | ND          |
| Dieldrin                   | 178             | NG/KG          | ND          | ND          |
| BHC, Alpha isomer          | 88              | NG/KG          | ND          | ND          |
| BHC, Beta isomer           | 274             | NG/KG          | ND          | ND          |
| BHC, Gamma isomer          | 266             | NG/KG          | ND          | ND          |
| BHC, Delta isomer          | 198             | NG/KG          | ND          | ND          |
| o,p-DDD                    | 202             | NG/KG          | ND          | ND          |
| o,p-DDE                    | 309             | NG/KG          | ND          | ND          |
| o,p-DDT                    | 274             | NG/KG          | ND          | ND          |
| p,p-DDD                    | 218             | NG/KG          | ND          | ND          |
| p,p-DDE                    | 294             | NG/KG          | ND          | ND          |
| p,p-DDT                    | 119             | NG/KG          | ND          | ND          |
| Heptachlor                 | 129             | NG/KG          | ND          | ND          |
| Heptachlor epoxide         | 369             | NG/KG          | ND          | ND          |
| Alpha (cis) Chlordane      | 363             | NG/KG          | ND          | ND          |
| Gamma (trans) Chlordane    | 452             | NG/KG          | ND          | ND          |
| Alpha Chlordene            | -               | NG/KG          | NA          | NA          |
| Gamma Chlordene            |                 | NG/KG          | NA          | NA          |
| Oxychlordane               | 288             | NG/KG          | ND          | ND          |
| Trans Nonachlor            | 331             | NG/KG          | ND          | ND          |
| Cis Nonachlor              | 265             | NG/KG          | ND          | ND          |
| Alpha Endosulfan           | 256             | NG/KG          | ND          | ND          |
| Beta Endosulfan            | 113             | NG/KG          | ND          | ND          |
| Endosulfan Sulfate         | 70              | NG/KG          | ND          | ND          |
| Endrin                     | 305             | NG/KG          | ND          | ND          |
| Endrin aldebyde            | 197             | NG/KG          | ND          | ND          |
| Toxanhene                  | 48660           | NG/KG          | ND          | ND          |
| Mirey                      | 3/0             |                |             | ND          |
| Methoxychlon               | 21/             |                |             |             |
|                            | 83300           |                |             |             |
| DCB 1221                   | 667000          |                |             |             |
| DCR 1222                   | 500000          |                |             |             |
| PCB 1232                   | 66860           |                |             |             |
| PCB 1242                   | 83300           |                |             |             |
|                            | 002200          |                |             |             |
| PCB 1254                   | 222000          |                |             |             |
| PCB 1260                   | 22200           |                |             |             |
| FCD 1202                   |                 |                |             | ND          |
| Aldnin + Dioldnin          | 170             |                |             | <br>0       |
| Alurin + Dielurin          | 170             |                | 0           | 0           |
| DDT and denivatives        | 2/4             |                | 0           | 0           |
| Chlandana , nalated emid   | 209             |                | 0           | 0           |
| Chioruane + related Cmpds. | 452             |                | 0           | 0           |
| Polychiorinated Dipnenyls  | 00/000          |                | 0           | 0           |
| Chlorinated Hydrocarbons   | _====<br>667000 | _====<br>NG/KG | <br>0       | <br>0       |

\* = Sample collected on 26-DEC-2017 was analyzed out of holding time.

ND=not detected; NS=not sampled; NA=not analyzed

#### POINT LOMA WASTEWATER TREATMENT PLANT

#### ANNUAL 2017

#### GRIT ACID EXTRACTABLE COMPOUNDS EPA Method 8270C

| Source                        |      |       | PLR         | PLR         |
|-------------------------------|------|-------|-------------|-------------|
| Date                          |      |       | 01-JUN-2017 | 26-DEC-2017 |
| Analyte                       | MDL  | Units | P943304     | P991093     |
|                               | ==== | ===== |             |             |
| 2-Chlorophenol                | 1310 | UG/KG | ND          | ND          |
| 4-Chloro-3-methylphenol       | 1900 | UG/KG | ND          | ND          |
| 2,4-Dichlorophenol            | 914  | UG/KG | ND          | ND          |
| 2,4-Dimethylphenol            | 1070 | UG/KG | ND          | ND          |
| 2,4-Dinitrophenol             | 330  | UG/KG | ND          | ND          |
| 2-Methyl-4,6-dinitrophenol    | 800  | UG/KG | ND          | ND          |
| 2-Nitrophenol                 | 1600 | UG/KG | ND          | ND          |
| 4-Nitrophenol                 | 800  | UG/KG | ND          | ND          |
| Pentachlorophenol             | 1170 | UG/KG | ND          | ND          |
| Phenol                        | 1440 | UG/KG | ND          | ND          |
| 2,4,6-Trichlorophenol         | 1600 | UG/KG | ND          | ND          |
|                               | ==== | ===== | ==========  |             |
| Total Chlorinated Phenols     | 1900 | UG/KG | 0.0         | 0.0         |
| Total Non-Chlorinated Phenols | 1600 | UG/KG | 0.0         | 0.0         |
|                               | ==== | ===== |             |             |
| Phenols                       | 1900 | UG/KG | 0.0         | 0.0         |

#### ANNUAL 2017

#### GRIT Base/Neutral Compounds EPA METHOD 8270C

| Source                        |      |       | PLR         | PLR         |
|-------------------------------|------|-------|-------------|-------------|
| Date                          |      |       | 01-JUN-2017 | 26-DEC-2017 |
| Sample                        | MDL  | Units | P943304     | P991093     |
|                               | ==== | ===== | =========== |             |
| Acenaphthene                  | 863  | UG/KG | ND          | ND          |
| Acenaphthylene                | 584  | UG/KG | ND          | ND          |
| Anthracene                    | 986  | UG/KG | ND          | ND          |
| Benzidine                     | 330  | UG/KG | ND          | ND          |
| Benzo[a]anthracene            | 1100 | UG/KG | ND          | ND          |
| 3,4-Benzo(b)fluoranthene      | 1127 | UG/KG | ND          | ND          |
| Benzo[k]fluoranthene          | 1930 | UG/KG | ND          | ND          |
| Benzo[a]pyrene                | 741  | UG/KG | ND          | ND          |
| Benzo[g,h,i]perylene          | 330  | UG/KG | 384         | ND          |
| 4-Bromophenyl phenyl ether    | 1030 | UG/KG | ND          | ND          |
| Bis-(2-chloroethoxy) methane  | 1630 | UG/KG | ND          | ND          |
| Bis-(2-chloroethyl) ether     | 1420 | UG/KG | ND          | ND          |
| Bis-(2-chloroisopropyl) ether | 1090 | UG/KG | ND          | ND          |
| 4-Chlorophenyl phenyl ether   | 362  | UG/KG | ND          | ND          |
| 2-Chloronaphthalene           |      | UG/KG | ND          | 63          |
| Chrysene                      | 352  | UG/KG | ND          | ND          |
| Dibenzo(a,h)anthracene        | 616  | UG/KG | ND          | ND          |
| Butyl benzyl phthalate        | 2210 | UG/KG | ND          | ND          |
| Di-n-butyl phthalate          | 1450 | UG/KG | <1450       | ND          |
| Bis-(2-ethylhexyl) phthalate  | 3960 | UG/KG | <3960       | ND          |
| Diethvl phthalate             | 1400 | UG/KG | ND          | <330        |
| Dimethyl phthalate            | 356  | UG/KG | 675         | ND          |
| Di-n-octvl phthalate          | 3460 | UG/KG | ND          | ND          |
| 3.3-Dichlorobenzidine         | 2030 | UG/KG | ND          | ND          |
| 2,4-Dinitrotoluene            | 1030 | UG/KG | ND          | ND          |
| 2.6-Dinitrotoluene            | 1890 | UG/KG | ND          | ND          |
| 1.2-Diphenvlhvdrazine         | 1590 | UG/KG | ND          | ND          |
| Fluoranthene                  | 330  | UG/KG | 1330        | 365         |
| Fluorene                      | 2520 | UG/KG | ND          | ND          |
| Hexachlorobenzene             | 813  | UG/KG | ND          | ND          |
| Hexachlorobutadiene           | 940  | UG/KG | ND          | ND          |
| Hexachlorocyclopentadiene     | 1890 | UG/KG | ND          | ND          |
| Hexachloroethane              | 382  | UG/KG | ND          | ND          |
| Indeno(1,2,3-CD)pyrene        | 953  | UG/KG | ND          | ND          |
| Tsophorone                    | 1820 | UG/KG | ND          | ND          |
| Naphthalene                   | 2150 | UG/KG | ND          | ND          |
| Nitrohenzene                  | 2800 |       | ND          | ND          |
| N-nitrosodimethylamine        | 330  |       | ND          | ND          |
| N-nitrosodi-n-nronylamine     | 1360 |       | ND          | ND          |
| N-nitrosodinhenvlamine        | 1330 |       | ND          | ND          |
| Phenanthrene                  | 1040 |       | ND          | ND          |
| Pyrono                        | 1150 |       | 1190        | 39/         |
| 1 2 A-Trichlorobenzene        | 330  |       |             |             |
| 1 3-Dichlonohonzono           | 222  |       |             |             |
| 1.2-Dichlonobenzene           | 212  |       |             |             |
| 1 A-Dichlonobenzone           | 1270 |       |             | עבב√<br>חוי |
|                               |      |       |             |             |
| Polynuc Anomatic Hydrocanhons | 2520 |       | 1574        | 201         |
| Total Dichlonohonzonos        | 2320 |       | 15/4        | 554<br>م    |
|                               | ==   |       |             |             |
| Base/Neutral Compounds        | 3960 | UG/KG | 3579        | 822         |

ND= not detected, NA= not analyzed, NS= not sampled

#### POINT LOMA WASTEWATER TREATMENT PLANT

#### ANNUAL 2017

#### GRIT Priority Pollutants Purgeable Compounds EPA METHOD 8260B

| Source                        |            |       | PLR         | PLR              |
|-------------------------------|------------|-------|-------------|------------------|
| Date                          |            |       | 01-JUN-2017 | 26-DEC-2017      |
| Analyte                       | MDL        | Units | P943304     | P991093          |
|                               | ====       | ===== |             |                  |
| Acrolein                      | 6.4        | UG/KG | ND          | ND               |
| Acrylonitrile                 | 3.9        | UG/KG | ND          | ND               |
| Benzene                       | 2.1        | UG/KG | ND          | ND               |
| Bromodichloromethane          | 2.2        | UG/KG | ND          | ND               |
| Bromoform                     | 2.4        | UG/KG | ND          | ND               |
| Bromomethane                  | 6.9        | UG/KG | ND          | ND               |
| Carbon tetrachloride          | 3          | UG/KG | ND          | ND               |
| Chlorobenzene                 | 1          | UG/KG | ND          | DNQ4.6           |
| Chloroethane                  | 3.6        | UG/KG | ND          | ND               |
| Chloroform                    | 2.3        | UG/KG | ND          | DNQ3.2           |
| Chloromethane                 | 3.4        | UG/KG | ND          | ND               |
| Dibromochloromethane          | 2.4        | UG/KG | ND          | ND               |
| 1,2-Dichlorobenzene           | 1.5        | UG/KG | ND          | ND               |
| 1,3-Dichlorobenzene           | 1.8        | UG/KG | ND          | ND               |
| 1,4-Dichlorobenzene           | 1.5        | UG/KG | 267         | 445              |
| 1,1-Dichloroethane            | 1.9        | UG/KG | ND          | ND               |
| 1,1-Dichloroethene            | 5          | UG/KG | ND          | ND               |
| 1,2-Dichloroethane            | 3.6        | UG/KG | ND          | ND               |
| trans-1,2-dichloroethene      | 3.5        | UG/KG | ND          | ND               |
| 1,2-Dichloropropane           | 2.6        | UG/KG | ND          | ND               |
| cis-1,3-dichloropropene       | 2.5        | UG/KG | ND          | ND               |
| trans-1,3-dichloropropene     | 2.1        | UG/KG | ND          | ND               |
| Ethylbenzene                  | 1.4        | UG/KG | ND          | DNQ4.7           |
| Methylene chloride            | 3.5        | UG/KG | ND          | DNQ6.2           |
| 1,1,2,2-Tetrachloroethane     | 5.9        | UG/KG | ND          | ND               |
| Tetrachloroethene             | 2.8        | UG/KG | ND          | ND               |
| Toluene                       | 1.2        | UG/KG | 54.9        | <sup>k</sup> 200 |
| 1,1,1-Trichloroethane         | 3.2        | UG/KG | ND          | ND               |
| 1,1,2-Trichloroethane         | 2.8        | UG/KG | ND          | ND               |
| Trichloroethene               | 2.6        | UG/KG | ND          | ND               |
| Vinyl chloride                | 4.8        | UG/KG | ND          | ND               |
| Uslamathana Dunashla Counda   | ====       |       |             |                  |
| Halomethane Purgeable Cmphds  | 6.9        | UG/KG | 0.0         | 0.0              |
| Total Dichlorobenzenes        | 1.8        | UG/KG | 267         | 0.0              |
|                               | ====       | ===== | ========    | ========         |
| Purgeable Compounds           | 6.9        | UG/KG | 267         | 645              |
|                               |            |       |             |                  |
| Additional Analytes determine | ea:        |       |             |                  |
| Acotopo                       | 21 /       |       | 702         | 0020             |
| Allyl chlonido                | 2 6        |       | 793<br>ND   | 0266             |
| Benzyl chloride               | J.U<br>1 3 |       |             |                  |
| 2-Butanone                    | 36 3       |       | ND          | 2450             |
| Carbon disulfide              | 1 7        |       | 38.8        | 51 6             |
| Chloronrene                   | 3 1        |       |             |                  |
| 1 2-Dibromoethane             | 2 5        |       | ND          | ND               |
| Isopropylbenzene              | 1 3        |       | ND          | 10 0             |
| Methyl Todide                 | 3 8        |       | ND          | ND               |
| Methyl methacrylate           | 2 4        |       | ND          | ND               |
| 2-Nitropropane                | 45.8       |       | ND          | ND               |
| ortho-xylene                  | 1 9        |       | DN03 4      | DN05 6           |
| Styrene                       | 1.7        | UG/KG | DN01 7      | R FOND           |
| 1.2.4-Trichlorobenzene        | 979        | UG/KG | ND          | ND               |
| meta.para xylenes             | 4.2        | UG/KG | DN05.8      | DN011.4          |
| Trichlorofluoromethane        | 2.2        | UG/KG | ND          | ND               |
| 2-Chloroethylvinyl ether      | 5.5        | UG/KG | ND          | ND               |
| 4-Methyl-2-pentanone          | 9.7        | UG/KG | ND          | ND               |

\* = Method blank value above the MDL; sample result not included in average calculations.

ND= not detected, NA= not analyzed, NS= not sampled

DNQ (detected but not quantified) = estimated analyte concentration is above the method detection limit (MDL) but below the minimum level (ML).

#### POINT LOMA WASTEWATER TREATMENT PLANT

#### ANNUAL 2017

#### GRIT Herbicides EPA METHOD 8151

|                                |      |       | PLR         | PLR         |
|--------------------------------|------|-------|-------------|-------------|
|                                |      |       | 01-JUN-2017 | 26-DEC-2017 |
| Analyte                        | MDL  | Units | P943304     | P991093     |
|                                | ==== | ===== | =========== | ==========  |
| 2,4-Dichlorophenoxyacetic acid | 2.66 | MG/KG | ND          | ND          |
| 2,4,5-TP (Silvex)              | 2.87 | MG/KG | ND          | ND          |

ND=not detected NS=not sampled NA=not analyzed

# H. Raw Sludge Data Summary

### POINT LOMA WASTEWATER TREATMENT PLANT ANNUAL REPORT ANNUAL 2017

| Month     | pН   | %Total Solids | %Total          |
|-----------|------|---------------|-----------------|
|           |      |               | Volatile Solids |
| January   | 5.92 | 4.4           | 77.7            |
| February  | 5.91 | 4.4           | 78.0            |
| March     | 5.89 | 4.1           | 78.5            |
| April     | 5.62 | 4.2           | 80.0            |
| May       | 5.58 | 4.2           | 79.5            |
| June      | 5.38 | 4.5           | 79.9            |
| July      | 5.36 | 4.3           | 80.0            |
| August    | 5.42 | 4.1           | 79.6            |
| September | 5.52 | 4.4           | 79.5            |
| October   | 5.60 | 4.2           | 79.1            |
| November  | 5.44 | 4.2           | 79.6            |
| December  | 5.48 | 4.2           | 79.0            |
| Averages  | 5.59 | 4.3           | 79.2            |

### Raw Sludge Monthly average of daily average

# I. Digester and Digested Sludge Data Summary

# Point Loma Wastewater Treatment Plant Annual Report Digesters

### Annual: 2017

#### N1P

|                | рН       | Total<br>Solids<br>(%) | Volatile<br>Solids<br>(%) | Alkal-<br>inity<br>(mg/L) | Volatile<br>Acids<br>(mg/L) | Methane<br>(%) | Carbon<br>Dioxide<br>(%) |
|----------------|----------|------------------------|---------------------------|---------------------------|-----------------------------|----------------|--------------------------|
|                |          |                        |                           | 2440                      |                             |                |                          |
| JANUARY -2017  | /.11     | 2.5                    | 60.4                      | 2440                      | 60                          | 61.6           | 38.2                     |
| FEBRUARY -2017 | 7.25     | 2.5                    | 60.3                      | 2630                      | 75                          | 61.9           | 37.8                     |
| MARCH - 2017   | 7.17     | 2.6                    | 58.9                      | 2610                      | 76                          | 61.6           | 38.1                     |
| APRIL -2017    | 7.16     | 2.4                    | 62.9                      | 2270                      | 69                          | 61.8           | 37.9                     |
| MAY -2017      | 7.11     | 2.3                    | 63.1                      | 2280                      | 66                          | 61.4           | 38.4                     |
| JUNE -2017     | 7.15     | 2.4                    | 64.6                      | 2320                      | 72                          | 61.8           | 37.8                     |
| JULY -2017     | 7.16     | 2.4                    | 64.7                      | 2270                      | 73                          | 62.0           | 37.7                     |
| AUGUST -2017   | 7.13     | 2.4                    | 64.9                      | 2100                      | 65                          | 61.9           | 37.9                     |
| SEPTEMBER-2017 | 7.07     | 2.5                    | 64.2                      | 2000                      | 60                          | 61.7           | 38.1                     |
| OCTOBER -2017  | 7.08     | 2.4                    | 63.0                      | 2170                      | 67                          | 61.8           | 37.9                     |
| NOVEMBER -2017 | 7.05     | 2.4                    | 62.7                      | 2120                      | 60                          | 61.7           | 38.1                     |
| DECEMBER -2017 | 7.18     | 2.3                    | 61.5                      | 2140                      | 57                          | 61.9           | 37.9                     |
|                | ======== |                        |                           |                           |                             |                |                          |
| Average:       | 7.14     | 2.4                    | 62.6                      | 2279                      | 67                          | 61.8           | 38.0                     |

|            |      | рН   | Total<br>Solids<br>(%) | Volatile<br>Solids<br>(%) | Alkal-<br>inity<br>(mg/L) | Volatile<br>Acids<br>(mg/L) | Methane<br>(%) | Carbon<br>Dioxide<br>(%) |
|------------|------|------|------------------------|---------------------------|---------------------------|-----------------------------|----------------|--------------------------|
| JANUARY -  | 2017 | 7.12 | 2.4                    | 60.6                      | 2450                      | 58                          | 61.7           | 38.0                     |
| FEBRUARY - | 2017 | 7.22 | 2.4                    | 60.5                      | 2640                      | 73                          | 61.9           | 37.9                     |
| MARCH -    | 2017 | 7.17 | 2.4                    | 59.7                      | 2620                      | 76                          | 61.6           | 38.1                     |
| APRIL -    | 2017 | 7.12 | 2.3                    | 62.8                      | 2290                      | 70                          | 61.9           | 37.9                     |
| MAY -      | 2017 | 7.09 | 2.3                    | 63.2                      | 2310                      | 67                          | 61.3           | 38.5                     |
| JUNE -2    | 2017 | 7.14 | 2.4                    | 64.1                      | 2350                      | 72                          | 61.8           | 37.9                     |
| JULY -     | 2017 | 7.13 | 2.4                    | 64.6                      | 2250                      | 72                          | 62.0           | 37.7                     |
| AUGUST -   | 2017 | 7.14 | 2.4                    | 64.7                      | 2090                      | 65                          | 62.1           | 37.6                     |
| SEPTEMBER- | 2017 | 7.07 | 2.4                    | 65.0                      | 1940                      | 62                          | 62.0           | 37.7                     |
| OCTOBER -  | 2017 | 7.05 | 2.4                    | 63.8                      | 2100                      | 68                          | 61.9           | 37.7                     |
| NOVEMBER - | 2017 | 7.00 | 2.4                    | 63.5                      | 2010                      | 62                          | 61.8           | 37.9                     |
| DECEMBER - | 2017 | 7.17 | 2.4                    | 62.7                      | 2060                      | 59                          | 62.0           | 37.7                     |
| Average:   | ==== | 7.12 | 2.4                    | 62.9                      | 2259                      | <br>67                      | 61.8           | 37.9                     |

C1P

N2P

|           |       |            | Total  | Volatile | Alkal- | Volatile |         | Carbon  |     |
|-----------|-------|------------|--------|----------|--------|----------|---------|---------|-----|
|           |       |            | Solids | Solids   | inity  | Acids    | Methane | Dioxide | H2S |
|           |       | рН         | (%)    | (%)      | (mg/L) | (mg/L)   | (%)     | (%)     | ppm |
|           |       | ========== |        |          |        |          |         |         |     |
| JANUARY   | -2017 | 7.06       | 2.6    | 60.4     | 2340   | 69       | 61.8    | 38.0    | 24  |
| FEBRUARY  | -2017 | 7.20       | 2.4    | 60.2     | 2570   | 76       | 61.9    | 37.8    | 25  |
| MARCH     | -2017 | 7.12       | 2.4    | 59.8     | 2480   | 83       | 61.7    | 38.1    | 29  |
| APRIL     | -2017 | 7.10       | 2.4    | 63.4     | 2150   | 72       | 61.9    | 37.8    | 29  |
| MAY       | -2017 | 7.03       | 2.4    | 63.9     | 2110   | 67       | 61.3    | 38.4    | 29  |
| JUNE      | -2017 | 7.11       | 2.5    | 64.9     | 2090   | 72       | 61.6    | 38.1    | 30  |
| JULY      | -2017 | 7.01       | 2.5    | 65.7     | 2030   | 72       | 62.1    | 37.7    | 31  |
| AUGUST    | -2017 | 7.03       | 2.5    | 65.5     | 1830   | 61       | 62.1    | 37.7    | 30  |
| SEPTEMBER | 2017  | 6.99       | 2.5    | 65.2     | 1720   | 61       | 61.6    | 38.1    | 32  |
| OCTOBER   | -2017 | 6.98       | 2.6    | 64.2     | 1820   | 63       | 61.6    | 38.1    | 30  |
| NOVEMBER  | -2017 | 6.92       | 2.5    | 65.9     | 1650   | 58       | 61.5    | 38.1    | 28  |
| DECEMBER  | -2017 | 7.04       | 2.5    | 64.7     | 1650   | 58       | 61.9    | 37.8    | 29  |
| Average:  |       | 7.05       | 2.5    | 63.7     | 2037   | 68       | 61.8    | 38.0    | 29  |

 $Y: EMTS \ 41. Sections \ WCS \ EPORTS \ EVUVIP \ Annual \ Annual \ 2017 \ Final \ Reports \ 2017 \ ! \ Annual \ docx$ 

# Point Loma Wastewater Treatment Plant Annual Report Digesters

### Annual: 2017

### C2P

|           |        | рН   | Total<br>Solids<br>(%) | Volatile<br>Solids<br>(%) | Alkal-<br>inity<br>(mg/L) | Volatile<br>Acids<br>(mg/L) | Methane<br>(%) | Carbon<br>Dioxide<br>(%) |
|-----------|--------|------|------------------------|---------------------------|---------------------------|-----------------------------|----------------|--------------------------|
|           | 2017   | 7 12 | 2 4                    | E0 0                      | 2400                      |                             | £1 £           | 20 00                    |
| JANUARY   | -2017  | 7.12 | 2.4                    | 59.0                      | 2400                      | 04                          | 01.0           | 50.0                     |
| FEBRUARY  | -2017  | 7.13 | 2.4                    | 58.9                      | 2650                      | /6                          | 61.9           | 37.6                     |
| MARCH     | -2017  | 7.16 | 2.4                    | 58.3                      | 2630                      | 77                          | 61.5           | 38.1                     |
| APRIL     | -2017  | 7.11 | 2.4                    | 61.3                      | 2260                      | 71                          | 61.8           | 37.9                     |
| MAY       | -2017  | 7.06 | 2.3                    | 62.0                      | 2290                      | 65                          | 61.3           | 38.4                     |
| JUNE      | -2017  | 7.12 | 2.4                    | 63.4                      | 2310                      | 71                          | 61.9           | 37.9                     |
| JULY      | -2017  | 7.07 | 2.5                    | 64.2                      | 2210                      | 69                          | 61.9           | 37.9                     |
| AUGUST    | -2017  | 7.07 | 2.4                    | 62.7                      | 2070                      | 67                          | 61.9           | 37.7                     |
| SEPTEMBER | R-2017 | 7.07 | 2.5                    | 62.9                      | 1960                      | 61                          | 61.6           | 37.9                     |
| OCTOBER   | -2017  | 7.04 | 2.4                    | 62.0                      | 2070                      | 62                          | 61.7           | 37.9                     |
| NOVEMBER  | -2017  | 6.99 | 2.4                    | 61.8                      | 2070                      | 57                          | 61.6           | 38.0                     |
| DECEMBER  | -2017  | 7.12 | 2.4                    | 61.5                      | 2040                      | 53                          | 61.9           | 37.8                     |
|           |        |      |                        |                           |                           |                             |                |                          |
| Average:  |        | 7.09 | 2.4                    | 61.6                      | 2247                      | 66                          | 61.7           | 37.9                     |

### S1P

|           |        |           | Total  | Volatile | Alkal- | Volatile |         | Carbon  |     |
|-----------|--------|-----------|--------|----------|--------|----------|---------|---------|-----|
|           |        |           | Solids | Solids   | inity  | Acids    | Methane | Dioxide | H2S |
|           |        | рН        | (%)    | (%)      | (mg/L) | (mg/L)   | (%)     | (%)     | ppm |
|           | =====  | ========= |        |          |        |          |         |         |     |
| JANUARY   | -2017  | *         | *      | *        | *      | *        | *       | *       | *   |
| FEBRUARY  | -2017  | *         | *      | *        | *      | *        | *       | *       | *   |
| MARCH     | -2017  | *         | *      | *        | *      | *        | *       | *       | *   |
| APRIL     | -2017  | *         | *      | *        | *      | *        | *       | *       | *   |
| MAY       | -2017  | *         | *      | *        | *      | *        | *       | *       | *   |
| JUNE      | -2017  | *         | *      | *        | *      | *        | *       | *       | *   |
| JULY      | -2017  | 7.40      | 0.8    | 58.9     | 2970   | 85       | *       | *       | *   |
| AUGUST    | -2017  | 7.21      | 2.7    | 61.4     | 2310   | 81       | *       | *       | *   |
| SEPTEMBER | R-2017 | 7.17      | 2.5    | 64.3     | 2270   | 67       | 59.6    | 33.8    | *   |
| OCTOBER   | -2017  | 7.08      | 2.4    | 63.4     | 2150   | 66       | 62.1    | 37.6    | *   |
| NOVEMBER  | -2017  | 7.06      | 2.6    | 63.2     | 2210   | 68       | 61.8    | 37.7    | *   |
| DECEMBER  | -2017  | 7.20      | 2.7    | 61.9     | 2410   | 66       | 62.1    | 37.6    | *   |
| Average:  |        | <br>7.19  | 2.3    | 62.2     | 2387   | 72       | 61.4    | 36.7    | *   |

S2P

|           |        |             | Total  | Volatile | Alkal- | Volatile    |             | Carbon  |     |
|-----------|--------|-------------|--------|----------|--------|-------------|-------------|---------|-----|
|           |        |             | Solids | Solids   | inity  | Acids       | Methane     | Dioxide | H2S |
|           |        | рН          | (%)    | (%)      | (mg/L) | (mg/L)      | (%)         | (%)     | ppm |
| ========  |        | =========== |        |          |        | =========== | =========== |         |     |
| JANUARY   | -2017  | 7.05        | 2.5    | 60.7     | 2340   | 66          | 61.6        | 38.0    | *   |
| FEBRUARY  | -2017  | 7.19        | 2.6    | 60.2     | 2530   | 81          | 62.0        | 37.7    | *   |
| MARCH     | -2017  | *           | *      | *        | *      | *           | *           | *       | *   |
| APRIL     | -2017  | *           | *      | *        | *      | *           | *           | *       | *   |
| MAY       | -2017  | *           | *      | *        | *      | *           | *           | *       | *   |
| JUNE      | -2017  | *           | *      | *        | *      | *           | *           | *       | *   |
| JULY      | -2017  | *           | *      | *        | *      | *           | *           | *       | *   |
| AUGUST    | -2017  | *           | *      | *        | *      | *           | *           | *       | *   |
| SEPTEMBER | R-2017 | *           | *      | *        | *      | *           | *           | *       | *   |
| OCTOBER   | -2017  | *           | *      | *        | *      | *           | *           | *       | *   |
| NOVEMBER  | -2017  | *           | *      | *        | *      | *           | *           | *       | *   |
| DECEMBER  | -2017  | *           | *      | *        | *      | *           | *           | *       | *   |
|           |        |             |        |          |        |             |             |         |     |
| Average:  |        | 7.12        | 2.6    | 60.5     | 2435   | 74          | 61.8        | 37.9    | *   |

\*Note in service.

# Point Loma Wastewater Treatment Plant Annual Report Digesters

### Annual: 2017

### DIG 7

|           |        | рН       | Total<br>Solids<br>(%) | Volatile<br>Solids<br>(%) | Alkal-<br>inity<br>(mg/L) | Volatile<br>Acids<br>(mg/L) | Methane<br>(%) | Carbon<br>Dioxide<br>(%) | H2S<br>ppm |
|-----------|--------|----------|------------------------|---------------------------|---------------------------|-----------------------------|----------------|--------------------------|------------|
|           | 1005   | *        | *                      | *                         | *                         | *                           | *              | *                        | *          |
|           | - 2017 | 7.09     | 2.2                    | 60.2                      | 2560                      | 63                          | 63.5           | 36.0                     | *          |
| FEBRUARY  | -2017  | 7.24     | 2.3                    | 59.5                      | 2690                      | 76                          | 64.1           | 35.5                     | *          |
| MARCH     | -2017  | 7.20     | 2.2                    | 58.3                      | 2750                      | 80                          | 64.0           | 35.7                     | *          |
| APRIL     | -2017  | 7.15     | 2.2                    | 61.4                      | 2370                      | 71                          | 64.3           | 35.3                     | *          |
| MAY       | -2017  | 7.11     | 2.2                    | 61.9                      | 2380                      | 66                          | 64.0           | 35.7                     | *          |
| JUNE      | -2017  | 7.14     | 2.3                    | 64.0                      | 2260                      | 73                          | 64.1           | 35.6                     | *          |
| JULY      | -2017  | 7.09     | 2.4                    | 65.5                      | 2160                      | 71                          | *              | *                        | *          |
| AUGUST    | -2017  | 7.15     | 2.3                    | 65.1                      | 2100                      | 65                          | 48.7           | 28.8                     | *          |
| SEPTEMBER | R-2017 | 7.14     | 2.3                    | 63.9                      | 2090                      | 65                          | 62.6           | 37.0                     | *          |
| OCTOBER   | -2017  | 7.14     | 2.4                    | 62.0                      | 2220                      | 67                          | 62.6           | 37.1                     | *          |
| NOVEMBER  | -2017  | 7.10     | 2.2                    | 63.1                      | 2130                      | 62                          | 62.7           | 36.9                     | *          |
| DECEMBER  | -2017  | 7.20     | 2.2                    | 61.5                      | 2180                      | 57                          | 62.8           | 36.9                     | *          |
| Average:  |        | <br>7.15 | 2.3                    | 62.2                      | 2324                      | <br>68                      | <br>62.1       | <br>35.5                 | *          |
|           |        |          |                        |                           |                           |                             |                |                          |            |

|           |        | рН   | Total<br>Solids<br>(%) | Volatile<br>Solids<br>(%) | Alkal-<br>inity<br>(mg/L) | Volatile<br>Acids<br>(mg/L) | Methane<br>(%) | Carbon<br>Dioxide<br>(%) | H2S<br>ppm |
|-----------|--------|------|------------------------|---------------------------|---------------------------|-----------------------------|----------------|--------------------------|------------|
|           | -1905  | *    | *                      | *                         | *                         | *                           | *              | *                        | *          |
| JANUARY   | -2017  | 7.09 | 2.4                    | 60.5                      | 2420                      | 62                          | 61.7           | 38.0                     | *          |
| FEBRUARY  | -2017  | 7.25 | 2.3                    | 60.3                      | 2580                      | 73                          | 62.0           | 37.7                     | *          |
| MARCH     | -2017  | 7.16 | 2.4                    | 59.9                      | 2500                      | 78                          | 61.5           | 38.3                     | *          |
| APRIL     | -2017  | 7.12 | 2.3                    | 63.6                      | 2120                      | 69                          | 61.7           | 38.0                     | *          |
| MAY       | -2017  | 7.06 | 2.3                    | 63.3                      | 2160                      | 62                          | 61.5           | 38.3                     | *          |
| JUNE      | -2017  | 7.12 | 2.4                    | 64.7                      | 2190                      | 71                          | 61.7           | 37.9                     | *          |
| JULY      | -2017  | 7.08 | 2.5                    | 65.2                      | 2120                      | 71                          | 62.0           | 37.8                     | *          |
| AUGUST    | -2017  | 7.12 | 2.3                    | 65.0                      | 1960                      | 63                          | 62.1           | 37.5                     | *          |
| SEPTEMBER | R-2017 | 7.04 | 2.4                    | 65.2                      | 1830                      | 63                          | 61.9           | 37.8                     | *          |
| OCTOBER   | -2017  | 7.05 | 2.3                    | 63.2                      | 2080                      | 69                          | 61.8           | 37.9                     | *          |
| NOVEMBER  | -2017  | 7.03 | 2.3                    | 63.9                      | 2030                      | 60                          | 62.1           | 37.6                     | *          |
| DECEMBER  | -2017  | 7.17 | 2.2                    | 62.7                      | 2140                      | 62                          | 62.1           | 37.6                     | *          |
| Average:  |        | 7.11 | 2.3                    | 63.1                      | 2178                      | 67                          | 61.8           | 37.9                     | *          |

\*Not in service.

#### DIG 8

- IV. Metro Biosolids Center (MBC) Data
  - A. MBC Diagrams
  - B. Return Stream Data Summary
  - C. Digester and Digested Sludge Data Summary
  - D. Gas Production
  - E. Chemical Usage
  - F. Graphs of Chemical Usage
  - G. Solids Handling Annual Report
  - H. Results of "Title 22" Sludge Hazardous Waste Tests

This page intentionally left blank.





# B. Return Stream Data Summary

This section presents the results of analyses of the Metro Biosolids Center (MBC) return stream (MBC\_COMBCN) for 2017. This return stream is continuously sampled by a flow-proportioned autosampler connected to the return stream lines at MBC. Each 24-hour composite is collected and analyzed for pH, BOD, TSS, TVSS, TS, and TVS daily. An aliquot is preserved and added to a monthly (calendar month) composite for analysis of trace metals.

The data is presented in tables of monthly averages and graphs of the monthly averages of select parameters. Tables of daily values for select parameters (such as TSS, Flow, etc.) along with graphs are also provided.



#### Metro Biosolids Center Annual Summary Combined Sludge Concentrate Annual 2017

|           |        | FLOW<br>MGD | PH<br>pH Units | BOD<br>mg/L | TSS<br>mg/L | VSS<br>mg/L   | TS<br>Wt% | TVS<br>Wt%    | TSS Mass<br>Emmissions<br>(lbs/Day) |
|-----------|--------|-------------|----------------|-------------|-------------|---------------|-----------|---------------|-------------------------------------|
|           |        |             |                | ==========  | ==========  | ==========    |           |               | ==========                          |
| JANUARY   | -2017  | 1.87        | 7.95           | 320         | 925         | 664           | 0.35      | 43            | 14426                               |
| FEBRUARY  | -2017  | 2.06        | 7.97           | 311         | 727         | 557           | 0.38      | 43            | 12490                               |
| MARCH     | -2017  | 2.19        | 8.04           | 295         | 775         | 581           | 0.31      | 44            | 14155                               |
| APRIL     | -2017  | 2.09        | 8.04           | 300         | 751         | 586           | 0.35      | 47            | 13090                               |
| MAY       | -2017  | 2.03        | 8.01           | 221         | 570         | 436           | 0.34      | 48            | 9650                                |
| JUNE      | -2017  | 2.02        | 7.95           | 243         | 520         | 403           | 0.32      | 48            | 8760                                |
| JULY      | -2017  | 2.01        | 7.96           | 284         | 656         | 508           | 0.34      | 48            | 10997                               |
| AUGUST    | -2017  | 2.04        | 8.00           | 300         | 767         | 584           | 0.34      | 46            | 13049                               |
| SEPTEMBER | R-2017 | 2.07        | 8.02           | 250         | 700         | 532           | 0.33      | 44            | 12085                               |
| OCTOBER   | -2017  | 2.13        | 8.02           | 317         | 748         | 569           | 0.33      | 37            | 13288                               |
| NOVEMBER  | -2017  | 2.12        | 7.97           | 310         | 676         | 523           | 0.32      | 40            | 11952                               |
| DECEMBER  | -2017  | 2.12        | 7.97           | 426         | 882         | 676           | 0.31      | 41            | 15594                               |
| Average   |        | 2.06        | <br>7.99       | 298         | 725         | ======<br>552 | 0.34      | =======<br>44 | =======<br>12461                    |

pH by SM4500H BOD by SM5210B TSS by SM 2540D Total Solids by SM2540B

'Average' = Annual average of Monthly Averages.






**MBC Combined Centrate** 2017 Monthly Averages - TSS 1200 1000 800 mg/L 600 400 200 0 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC Month



MBC Combined Centrate 2017 Monthly Averages - TS









# Metro Biosolids Center 2017 MBC Return Stream Daily Flows (mgd)

| Day | Jan  | Feb  | Mar  | Apr  | May  | Jun  | Jul  | Aug  | Sep  | Oct  | Nov  | Dec  | _              |
|-----|------|------|------|------|------|------|------|------|------|------|------|------|----------------|
| 1   | 1.93 | 2.21 | 1.80 | 2.14 | 2.03 | 2.23 | 2.17 | 2.06 | 1.56 | 2.04 | 1.88 | 2.17 | ]              |
| 2   | 1.86 | 2.30 | 2.40 | 1.77 | 2.06 | 1.82 | 2.28 | 2.06 | 1.51 | 2.40 | 2.35 | 2.08 |                |
| 3   | 1.88 | 2.17 | 1.80 | 1.76 | 2.12 | 1.97 | 2.17 | 2.07 | 2.04 | 2.22 | 2.31 | 2.08 |                |
| 4   | 1.89 | 2.19 | 1.97 | 1.91 | 1.74 | 2.21 | 1.91 | 2.14 | 2.07 | 2.22 | 2.05 | 2.02 |                |
| 5   | 1.89 | 2.09 | 2.25 | 2.24 | 2.13 | 2.30 | 2.19 | 2.22 | 2.55 | 2.11 | 2.13 | 2.20 |                |
| 6   | 1.83 | 2.20 | 2.31 | 2.31 | 2.12 | 2.06 | 2.33 | 2.12 | 2.50 | 2.05 | 2.06 | 2.17 |                |
| 7   | 1.91 | 2.00 | 2.28 | 2.17 | 2.12 | 2.02 | 2.05 | 2.18 | 2.23 | 2.13 | 2.13 | 2.18 |                |
| 8   | 1.89 | 1.54 | 2.18 | 2.06 | 2.14 | 2.02 | 2.09 | 1.97 | 2.11 | 2.01 | 2.11 | 2.15 |                |
| 9   | 1.91 | 1.18 | 2.22 | 2.18 | 2.00 | 2.01 | 2.05 | 2.44 | 1.85 | 2.10 | 1.95 | 2.14 |                |
| 10  | 1.96 | 1.46 | 2.38 | 2.16 | 2.10 | 1.69 | 2.02 | 2.17 | 2.12 | 1.90 | 2.01 | 2.08 |                |
| 11  | 1.88 | 2.04 | 2.43 | 2.04 | 2.11 | 1.47 | 2.10 | 2.28 | 2.16 | 2.25 | 2.18 | 2.02 |                |
| 12  | 2.18 | 2.21 | 2.51 | 2.69 | 1.74 | 1.50 | 2.08 | 2.43 | 2.07 | 2.39 | 2.08 | 2.28 |                |
| 13  | 2.15 | 2.16 | 2.13 | 2.38 | 2.11 | 1.50 | 1.99 | 2.21 | 2.16 | 2.07 | 2.11 | 2.12 |                |
| 14  | 1.89 | 2.15 | 2.17 | 2.17 | 2.00 | 1.85 | 2.07 | 2.19 | 2.24 | 2.08 | 2.20 | 2.10 |                |
| 15  | 1.83 | 2.08 | 2.20 | 2.11 | 2.17 | 1.83 | 2.04 | 2.39 | 2.04 | 2.00 | 2.25 | 2.01 |                |
| 16  | 1.67 | 2.32 | 2.13 | 2.08 | 2.12 | 1.79 | 1.93 | 2.27 | 2.35 | 2.14 | 2.17 | 2.05 |                |
| 17  | 1.85 | 2.20 | 2.20 | 2.10 | 2.07 | 2.10 | 1.98 | 2.04 | 2.28 | 2.10 | 1.96 | 1.99 |                |
| 18  | 2.10 | 2.21 | 2.15 | 2.06 | 2.09 | 2.02 | 2.10 | 2.00 | 2.04 | 2.11 | 2.22 | 2.15 |                |
| 19  | 1.96 | 2.09 | 2.06 | 2.13 | 2.07 | 2.09 | 1.90 | 1.73 | 2.14 | 2.05 | 2.19 | 2.27 |                |
| 20  | 2.04 | 2.19 | 1.94 | 2.04 | 1.68 | 1.94 | 1.92 | 2.11 | 2.16 | 2.05 | 2.11 | 2.26 |                |
| 21  | 1.68 | 2.09 | 2.31 | 1.92 | 1.57 | 2.13 | 1.92 | 1.46 | 2.20 | 2.05 | 2.26 | 2.30 |                |
| 22  | 1.29 | 2.10 | 2.40 | 2.06 | 1.96 | 2.16 | 1.90 | 1.00 | 2.19 | 2.03 | 2.35 | 2.45 |                |
| 23  | 1.41 | 2.27 | 2.42 | 1.99 | 2.27 | 1.98 | 1.89 | 1.64 | 2.12 | 2.02 | 2.37 | 2.09 |                |
| 24  | 1.00 | 2.15 | 2.37 | 2.02 | 1.85 | 2.22 | 2.05 | 2.59 | 2.17 | 2.11 | 2.00 | 2.01 |                |
| 25  | 1.47 | 2.06 | 2.24 | 2.11 | 1.71 | 2.20 | 1.96 | 2.22 | 2.17 | 2.40 | 1.97 | 1.91 |                |
| 26  | 1.80 | 2.07 | 2.06 | 2.09 | 2.18 | 2.29 | 2.05 | 2.00 | 2.00 | 2.06 | 1.34 | 2.13 |                |
| 27  | 2.19 | 2.10 | 2.27 | 2.08 | 2.21 | 2.19 | 2.04 | 2.15 | 1.94 | 2.31 | 2.33 | 2.12 |                |
| 28  | 2.17 | 1.84 | 2.20 | 2.01 | 2.05 | 2.41 | 1.87 | 2.11 | 1.66 | 2.40 | 2.26 | 2.09 |                |
| 29  | 2.26 |      | 2.15 | 1.99 | 2.06 | 2.37 | 1.71 | 1.52 | 1.81 | 2.08 | 2.13 | 1.99 |                |
| 30  | 2.22 |      | 2.12 | 2.07 | 2.19 | 2.28 | 1.59 | 1.73 | 1.68 | 2.19 | 2.29 | 2.08 |                |
| 31  | 1.99 |      | 1.92 |      | 2.03 |      | 1.86 | 1.83 |      | 2.10 |      | 1.97 | Annual Summary |
| Avg | 1.87 | 2.06 | 2.19 | 2.09 | 2.03 | 2.02 | 2.01 | 2.04 | 2.07 | 2.13 | 2.12 | 2.12 | 2.06           |
| Min | 1.00 | 1.18 | 1.80 | 1.76 | 1.57 | 1.47 | 1.59 | 1.00 | 1.51 | 1.90 | 1.34 | 1.91 | 1.00           |
| Max | 2.26 | 2.32 | 2.51 | 2.69 | 2.27 | 2.41 | 2.33 | 2.59 | 2.55 | 2.40 | 2.37 | 2.45 | 2.69           |

#### POINT LOMA WASTEWATER TREATMENT PLANT METRO BIOSOLIDS CENTER ANNUAL 2017 Trace Metals EPA METHOD 200.7

213

42400

3.32

530

0.17

7.50

20.5

5.30

1.11

12.60

ND

300

174

35800

2.69

495

0.05

7.31

18.9

2.84

0.82

3.89

ND

262

245

47700

3.81

512

0.20

9.66

23.0

4.61

4.11

5.69

343

ND

| Source:     |      |      | MBC_COMBCN  | MBC_COMBCN  | MBC_COMBCN  | MBC_COMBCN  | MBC_COMBCN<br>31-MAY-2017 | MBC_COMBCN     |
|-------------|------|------|-------------|-------------|-------------|-------------|---------------------------|----------------|
| Sample ID:  |      |      | P920342     | P925829     | P932212     | P937937     | P945970                   | P953131        |
| =========== | ==== |      |             |             |             |             |                           |                |
| Aluminum    | 23.8 | UG/L | 1730        | 2190        | 18900       | 1720        | 1050                      | 1220           |
| Antimony    | 2.44 | UG/L | 4.78        | 6.95        | 266.00      | 4.53        | 3.55                      | 4.99           |
| Arsenic     | 1.84 | UG/L | 5.56        | 5.99        | 6.42        | 3.53        | 2.39                      | 2.35           |
| Barium      | .7   | UG/L | 442         | 390         | 576         | 262         | 180                       | 166            |
| Beryllium   | .12  | UG/L | ND          | 0.07        | 16.10       | ND          | ND                        | ND             |
| Cadmium     | .26  | UG/L | 0.40        | 0.54        | 35.30       | 0.59        | ND                        | 0.93           |
| Chromium    | .54  | UG/L | 21.4        | 20.2        | 16.0        | 15.4        | 10.0                      | 12.4           |
| Cobalt      | .24  | UG/L | 6.95        | 7.05        | 64.20       | 6.36        | 5.11                      | 5.17           |
| Copper      | 2.16 | UG/L | 304         | 287         | 221         | 260         | 138                       | 153            |
| Iron        | 17.1 | UG/L | 61000       | 51800       | 30200       | 40600       | 34000                     | 33000          |
| Lead        | 1.68 | UG/L | 6.29        | 8.76        | 156.00      | 7.91        | 3.44                      | 7.30           |
| Manganese   | .78  | UG/L | 409         | 406         | 424         | 457         | 424                       | 404            |
| Mercury     | .02  | UG/L | 0.25        | 0.40        | 0.23        | 0.21        | 0.18                      | 0.17           |
| Molybdenum  | .32  | UG/L | 12.80       | 11.30       | 58.30       | 8.27        | 6.09                      | 7.50           |
| Nickel      | .53  | UG/L | 25.1        | 25.2        | 44.9        | 20.2        | 17.0                      | 20.3           |
| Selenium    | .662 | UG/L | 1.09        | 3.54        | 3.46        | 2.35        | 2.16                      | 2.83           |
| Silver      | .73  | UG/L | 2.05        | 2.26        | 53.60       | 2.06        | ND                        | ND             |
| Thallium    | 3.12 | UG/L | ND          | ND          | 24.60       | ND          | ND                        | ND             |
| Vanadium    | 2.77 | UG/L | 6.52        | 9.11        | ND          | 5.68        | 2.55                      | 3.31           |
| Zinc        | 4.19 | UG/L | 471         | 426         | 6640        | 408         | 237                       | 274            |
| Source:     |      |      | MBC COMBCN                | MBC COMBCN     |
| Date:       |      |      | 31-JUL-2017 | 30-AUG-2017 | 30-SEP-2017 | 31-0CT-2017 | 30-NOV-2017               | 31-DEC-2017    |
| Sample ID:  |      |      | P959637     | P966458     | P974185     | P979342     | P986441                   | ***Multiple*** |
|             | ==== | ==== |             |             |             | =========== |                           |                |
| Aluminum    | 23.8 | UG/L | 2020        | 1860        | 2160        | 1970        | 1780                      | 2760           |
| Antimony    | 2.44 | UG/L | 4.72        | 1.12        | 0.99        | 1.29        | 1.15                      | 1.51           |
| Arsenic     | 1.84 | UG/L | 2.64        | 4.23        | 4.35        | 5.67        | 4.47                      | 4.98           |
| Barium      | .7   | UG/L | 188         | 174         | 167         | 200         | 195                       | 257            |
| Beryllium   | .12  | UG/L | ND          | ND          | ND          | ND          | ND                        | ND             |
| Cadmium     | .26  | UG/L | 0.30        | 0.39        | 0.16        | 0.25        | 0.19                      | 0.34           |
| Chromium    | .54  | UG/L | 15.6        | 12.0        | 12.4        | 15.4        | 12.5                      | 20.2           |
| Cobalt      | .24  | UG/L | 5.71        | 4.29        | 4.07        | 4.50        | 4.14                      | 5.14           |

ND= Not Detected

Copper

Mercury

Nickel

Silver

Zinc

Selenium

Thallium

Vanadium

Iron Lead 2.16 UG/L

17.1 UG/L

1.68 UG/L

.02 UG/L

.53 UG/L

.662 UG/L

.73 UG/L

3.12 UG/L

2.77 UG/L

4.19 UG/L

Manganese .78 UG/L

Molybdenum .32 UG/L

MBC\_COMBCN= Metro Biosolids Center Combined Sludge Centrate.

225

43700

5.28

561

0.04

9.69

20.5

2.69

3.78

340

ND

ND

185

37500

4.49

512

0.17

19.2

1.88

1.15

2.92

282

ND

10.70

177

37800

3.17

502

0.13

8.41

19.2

4.05

2.13

2.99

257

ND

























\*October analysis run under different method. Result was 170 ng/L with 0.5 ng/L MDL.









Vanadium 2017 Monthly Averages





# C. MBC Digester and Digested Sludge Data Summary

## Metro Biosolids Center Annual Report Digesters

Annual 2017

## Digester 1

|                                                                                                                        |                                                                                                                   | рН              | Total<br>Solids<br>(%) | Volatile<br>Solids<br>(%) | Alkal-<br>inity<br>(mg/L)               | Volatile<br>Acids<br>(mg/L) | Methane<br>(%) | Carbon<br>Dioxide<br>(%) | H2S<br>ppm |
|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------|------------------------|---------------------------|-----------------------------------------|-----------------------------|----------------|--------------------------|------------|
| JANUARY<br>FEBRUARY<br>MARCH<br>APRIL<br>MAY<br>JUNE<br>JULY<br>AUGUST<br>SEPTEMBEF<br>OCTOBER<br>NOVEMBER<br>DECEMBER | -2017<br>-2017<br>-2017<br>-2017<br>-2017<br>-2017<br>-2017<br>-2017<br>-2017<br>-2017<br>-2017<br>-2017<br>-2017 |                 |                        |                           | NOT IN S                                | SERVICE                     |                |                          |            |
| Average:                                                                                                               |                                                                                                                   | *               | *                      | *                         | *                                       | *                           | *              | *                        | *          |
| Averuget                                                                                                               |                                                                                                                   |                 |                        |                           |                                         |                             |                |                          |            |
|                                                                                                                        |                                                                                                                   |                 |                        |                           | Digester                                | 2                           |                |                          |            |
|                                                                                                                        |                                                                                                                   |                 | Total                  | Volatile                  | Alkal-                                  | Volatile                    |                | Carbon                   |            |
|                                                                                                                        |                                                                                                                   | nH              | Solids                 | Solids<br>(%)             | inity<br>(mg/L)                         | Acids                       | Methane<br>(%) | Dioxide<br>(%)           | H2S        |
|                                                                                                                        |                                                                                                                   | =========       | ==========             | ========                  | ("""""""""""""""""""""""""""""""""""""" | (iiig/ L )                  | ==========     | =========                |            |
| JANUARY<br>FEBRUARY<br>MARCH<br>APRIL<br>MAY<br>JUNE<br>JULY<br>AUGUST<br>SEPTEMBEF<br>OCTOBER<br>NOVEMBER<br>DECEMBER | -2017<br>-2017<br>-2017<br>-2017<br>-2017<br>-2017<br>-2017<br>-2017<br>-2017<br>-2017<br>-2017<br>-2017<br>-2017 |                 |                        |                           | NOT IN S                                | SERVICE                     |                |                          |            |
| Average:                                                                                                               |                                                                                                                   | *               | *                      | *                         | *                                       | *                           | *              | *                        | *          |
|                                                                                                                        |                                                                                                                   |                 |                        |                           | Digester                                | 3                           |                |                          |            |
|                                                                                                                        |                                                                                                                   | рН              | Total<br>Solids<br>(%) | Volatile<br>Solids<br>(%) | Alkal-<br>inity<br>(mg/L)               | Volatile<br>Acids<br>(mg/L) | Methane<br>(%) | Carbon<br>Dioxide<br>(%) | H2S<br>ppm |
| JANUARY                                                                                                                | -2017                                                                                                             | <br>6.90        | 2.0                    | 63.4                      | 1640                                    | 37                          | 60.9           | 39.1                     | 20         |
| FEBRUARY                                                                                                               | -2017                                                                                                             | 6.91            | 2.2                    | 66.6                      | 1700                                    | 40                          | 60.3           | 39.7                     | 21         |
|                                                                                                                        | -2017                                                                                                             | 6.95            | 2.2                    | 66.6<br>60.1              | 1810                                    | 41                          | 59.9           | 40.1                     | 21         |
| ΜΔΥ                                                                                                                    | -2017                                                                                                             | 6.85            | 2.0                    | 68 8                      | 1540                                    | 40                          | 60.1           | 39.4                     | 22         |
| JUNE                                                                                                                   | -2017                                                                                                             | 6.89            | 2.4                    | 69.6                      | 1700                                    | 39                          | 59.8           | 40.2                     | 22         |
| JULY                                                                                                                   | -2017                                                                                                             | 6.86            | 2.3                    | 69.4                      | 1630                                    | 40                          | 60.1           | 39.9                     | 20         |
| AUGUST                                                                                                                 | -2017                                                                                                             | 6.83            | 2.2                    | 69.4                      | 1540                                    | 44                          | 60.8           | 39.2                     | 20         |
| SEPTEMBER                                                                                                              | 8-2017                                                                                                            | 6.85            | 2.3                    | 68.3                      | 1560                                    | 43                          | 59.5           | 40.5                     | 19         |
| OCTOBER                                                                                                                | -2017                                                                                                             | 6.79            | 2.2                    | 66.0                      | 1540                                    | 40                          | 60.9           | 39.1                     | 15         |
| NOVEMBER                                                                                                               | -2017                                                                                                             | 6.78            | 2.0                    | 69.9                      | 1590                                    | 42                          | 60.8           | 39.2                     | 12         |
| DECEMBER                                                                                                               | -201/                                                                                                             | 6.84<br>======= | 2.2                    | 69.0<br>=======           | 1/10                                    | 44                          | 59.8           | 40.2                     | 1/         |
| Average:                                                                                                               |                                                                                                                   | 6.86            | 2.2                    | 68.0                      | 1624                                    | 41                          | 60.3           | 39.7                     | 19         |

# D. Gas Production

#### Metro Biosolids Center

Gas Report - 2017

## Daily Monthly Averages

|       | GAS PRODUCTION | (x1000 | Cu. Ft.)  |            | GAS CONSU | JMPTION (x1000 | ) Cu. Ft.)  |
|-------|----------------|--------|-----------|------------|-----------|----------------|-------------|
|       |                |        |           | Total Gas  | GAS       | GAS            | Total Gas   |
| Month | DIG 1          | DIG 2  | DIG 3     | Production | FLARES    | COGENERATION   | Consumption |
| 01    |                |        | 198,941.9 | 198,941.9  | 743       | 203,204        | 203,947     |
| 02    |                |        | 277,681.2 | 277,681.2  | 1,155     | 269,289        | 270,444     |
| 03    |                |        | 285,503.4 | 285,503.4  | 1,613     | 276,213        | 277,826     |
| 04    |                |        | 290,342.0 | 290,342.0  | 1,292     | 281,622        | 282,913     |
| 05    |                |        | 287,520.0 | 287,520.0  | 6,526     | 276,575        | 283,100     |
| 06    |                |        | 324,195.7 | 324,195.7  | 3,999     | 320,516        | 324,516     |
| 07    |                |        | 275,279.2 | 275,279.2  | 1,523     | 315,587        | 317,110     |
| 08    |                |        | 282,360.5 | 282,360.5  | 1,899     | 326,043        | 327,942     |
| 09    |                |        | 247,088.7 | 247,088.7  | 647       | 272,816        | 273,463     |
| 10    |                |        | 250,213.3 | 250,213.3  | 3,543     | 276,206        | 279,749     |
| 11    |                |        | 268,765.7 | 268,765.7  | 2,010     | 280,878        | 282,888     |
| 12    | .0             |        | 250,751.2 | 250,751.2  | 1,219     | 264,539        | 265,758     |
| avg   | .0             |        | 269,886.9 | 269,886.9  | 2,181     | 280,291        | 282,471     |

## Monthly Totals

GAS PRODUCTION (x1000 Cu. Ft.)

GAS CONSUMPTION (x1000 Cu. Ft.)

|       |       |       |              | Total Gas    | Gas     | Gas          | Total Gas   |
|-------|-------|-------|--------------|--------------|---------|--------------|-------------|
| Month | DIG 1 | DIG 2 | DIG 3        | Production   | Flares  | Cogeneration | Consumption |
| 01    |       |       | 6,167,198.0  | 6,167,198.0  | 23,034  | 6,299,323    | 6,322,357   |
| 02    |       |       | 7,775,074.0  | 7,775,074.0  | 32,335  | 7,540,084    | 7,572,419   |
| 03    |       |       | 8,850,606.0  | 8,850,606.0  | 50,006  | 8,562,593    | 8,612,599   |
| 04    |       |       | 8,710,260.0  | 8,710,260.0  | 38,746  | 8,448,652    | 8,487,398   |
| 05    |       |       | 8,913,121.0  | 8,913,121.0  | 202,295 | 8,573,820    | 8,776,115   |
| 06    |       |       | 9,725,872.0  | 9,725,872.0  | 119,983 | 9,615,491    | 9,735,474   |
| 07    |       |       | 8,533,654.0  | 8,533,654.0  | 47,215  | 9,783,191    | 9,830,406   |
| 08    |       |       | 8,753,177.0  | 8,753,177.0  | 58,873  | 10,107,336   | 10,166,209  |
| 09    |       |       | 7,412,660.0  | 7,412,660.0  | 19,411  | 8,184,482    | 8,203,893   |
| 10    |       |       | 7,756,613.0  | 7,756,613.0  | 109,846 | 8,562,380    | 8,672,226   |
| 11    |       |       | 8,062,972.0  | 8,062,972.0  | 60,307  | 8,426,344    | 8,486,651   |
| 12    |       |       | 7,773,288.0  | 7,773,288.0  | 37,799  | 8,200,694    | 8,238,493   |
| avg   |       |       | 8.202.874.6  | 8.202.874.6  | 66.654  | 8,525,366    | 8.592.020   |
| sum   |       |       | 98,434,495.0 | 98,434,495.0 | 799,850 | 102,304,390  | 103,104,240 |

# E. Chemical Usage

Metro Biosolids Center - Monthly Chemical Usage Report

## Annual 2017

|       |           | Ferric   | Ferrous  | Sodium    | Sodium       | Sulfuric |
|-------|-----------|----------|----------|-----------|--------------|----------|
|       | Polymer   | Chloride | Chloride | Hydroxide | Hypochlorite | Acid     |
| MONTH | Gallons   | Gallons  | Gallons  | Gallons   | Gallons      | Gallons  |
|       |           |          |          |           |              |          |
| 01    | 144,928   | 0        | 12,593   | 1,953     | 2,985        | 0        |
| 02    | 114,796   | 0        | 9,347    | 1,271     | 3,115        | 0        |
| 03    | 134,095   | 0        | 10,100   | 1,146     | 3,365        | 0        |
| 04    | 127,268   | 0        | 10,766   | 1,257     | 3,266        | 72       |
| 05    | 140,772   | 0        | 10,636   | 1,095     | 3,073        | 0        |
| 06    | 153,727   | 0        | 10,579   | 1,208     | 4,241        | 0        |
| 07    | 156,553   | 0        | 11,415   | 1,359     | 4,017        | 0        |
| 08    | 154,754   | 0        | 11,663   | 1,249     | 3,719        | 43       |
| 09    | 147,070   | 0        | 10,544   | 1,054     | 3,660        | 181      |
| 10    | 153,638   | 0        | 10,483   | 1,335     | 3,827        | 0        |
| 11    | 143,243   | 0        | 9,152    | 1,317     | 2,801        | 43       |
| 12    | 149,054   | 0        | 9,746    | 952       | 2,915        | 0        |
|       |           |          |          |           |              |          |
| avg   | 143,325   | 0        | 10,585   | 1,266     | 3,415        | 28       |
| sum   | 1,719,898 | 0        | 127,024  | 15,196    | 40,984       | 339      |

F. Graphs of Monthly Chemical Usage









Y:\EMTS\41.Sections\WCS\REPORTS\PLWWTP\Annuals\Annual2017\Final\_Reports\2017\_!\_Annual.docx Metro Biosolids Center (MBC) Data 4.202

# G. Solids Handling Annual Report 2017 Annual Biosolids Beneficial Use & Disposal Report

Facilities:

| Sources of biosolids:                                                                 | Biosolids treatment and processing:                                                   |
|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Point Loma Wastewater Treatment Plant<br>(PLWWTP)<br>1902 Gatchell Rd., San Diego, CA | Metro Biosolids Center (MBC)<br>5240 Convoy Street, San Diego, CA 92111               |
| North City Water Reclamation Plant (NCWRP)<br>4949 Eastgate Mall, San Diego, CA 92121 | Point Loma Wastewater Treatment<br>Plant (PLWWTP)<br>1902 Gatchell Rd., San Diego, CA |

The Point Loma Wastewater Treatment Plant (PLWWTP) and the North City Water Reclamation Plant produced and disposed of **128,011.77** wet tons or **35,058.64** dry tons (**31,805.20** dry metric tons) of digested sludge (biosolids) in 2017.

All digested sludge produced at the Point Loma WWTP was pumped to the Metro Biosolids Center (MBC) for dewatering by centrifuges. All biosolids were then hauled to a disposal site (Local Landfill) or beneficial use site. During this reporting period all of the raw sludge produced at the North City Water Reclamation Plant (NCWRP) was diverted to the Metro Biosolids Center for thickening, degritting, digestion and blended with the digested solids from the PLWWTP prior to dewatering. The <u>MBC Monthly Biosolids Processing Reports</u> include the biosolids processed from the PLWWTP and the NCWRP. Copies of the <u>MBC Monthly Biosolids Processing Reports</u> and the <u>MBC Biosolids Beneficial Use</u> and Disposal Monthly Summary Reports detailing daily biosolids processing and beneficial use/disposal are included as Enclosures 1 and 5, respectively.

All of the sludge/biosolids produced by the City of San Diego at Point Loma Wastewater Treatment Plant and North City Water Reclamation Plant were dewatered at the Metro Biosolids Center(MBC) and disposition is summarized in the following table.

| Disposition                                                            | Wet tons (short) | Dry tons <sup>13</sup> | Dry metric tons |
|------------------------------------------------------------------------|------------------|------------------------|-----------------|
| Disposal in sanitary<br>Iandfill                                       | 12,155.43        | 3,454.64               | 3,134.05        |
| Beneficial reuse as<br>Alternative Daily<br>Cover (ADC) at<br>Iandfill | 108,181.47       | 29,529.40              | 26,789.07       |
| Land application in<br>Arizona                                         | 7,674.87         | 2,074.60               | 1,882.08        |

All Biosolids produced by the City of San Diego were treated to Class B standards through Anaerobic Digestion for a minimum of 15 days at a temperature of 35 to 55 degrees Centigrade (Alternative 3, Process 3). Vector Attraction requirements were achieved by reducing the volatile solids content to a minimum of 38 percent

(Option 1).

# Land Applier: Solids Solutions, LLC

Address:2001 Key Street Colton, CA 92324Period:January 1, 2017 - December 31, 2017

<sup>&</sup>lt;sup>13</sup> (based on sum of monthly total tons)

**Reuse method:** Direct land application. Digested dewatered sludge from the MBC centrifuges were land applied directly to fields in Yuma County, AZ. The sludge was certified by the City of San Diego as meeting Class B pathogen and vector attraction reduction requirements of 40 CFR 503. Copies of the City of San Diego's certifications (which also serve as notification of nitrogen content) are included as Enclosure 2. Copies of Solid Solutions' certification statements are included as Enclosures 11 & 12.

The MBC provides two essential treatment processes, thickening and digestion of the raw solids from the NCWRP and dewatering of biosolids generated at the NCWRP and the PLWWTP. The digested biosolids from the PLWWTP are pumped to MBC in a 17-mile pipeline into one of the two storage tanks on site where it is blended with the digested biosolids from the NCWRP. Before these biosolids are sent to the dewatering process polymer is added to condition the biosolids, which enhances the dewaterability of the biosolids and minimizes the potential of scale formation.

Eight dewatering centrifuges are used to separate the liquid and solids fractions of the conditioned biosolids. The liquid fraction, (centrate), is returned to the PLWWTP via the Rose Canyon Interceptor and the solids recovered, (cake), is pumped to one of the ten storage silos on site before it is loaded into trucks for disposal and beneficial use as Alternative Daily Cover at Otay Landfill or beneficially used for land application in Yuma County, Arizona (Tables 1B and Table 1C).

The digested biosolids, centrate and dewatered cake are sampled on a daily basis to ensure regulatory compliance and to track plant process performance. Grab samples are collected daily on the incoming biosolids from the PLWWTP and the blended biosolids, which include the digested biosolids from the NCWRP. The operations staff also collect a 24-hour composite sample from the centrate return stream from the dewatering process and from the blended centrate return stream that includes the centrate flow from the thickening and dewatering processes.

Daily grab samples of dewatered cake are collected from each individual dewatering centrifuge that are in operation during the 24-hour period , and a portion of each of these grab samples are combined to provide a daily composite of dewatered cake produced. All sampling at MBC is performed by Wastewater lab staff who are certified by the State of California and in conformance with established sampling techniques listed in Standard Methods.

Because the dewatered cake samples are a daily composite and the Land Applier's (Solids Solutions) samples are a monthly grab sample, the dry ton calculations may differ slightly.

Biosolids used for all uses in 2017 continued to meet all regulatory requirements. Concentration of pollutants were all below the limits listed in California Title 22 Hazardous Waste thresholds including TTLC (Total Threshold Limit Concentration), STLC (Soluble Threshold Limit Concentration), and 40 CFR part 503.13 Table 3 "Limits for Land Application", the lower lead limit established by the California State Health and Safety Code 25157.8. It also met the A.C.C. (Arizona Administrative Code) R18-9-1005 Table 2. Monthly Average Pollutant Concentration limits.

Additional analyses, including the rest of the "priority pollutant list"<sup>14</sup>, were performed during 2017 and the reports of these analyses are included in Enclosure 7.

<sup>&</sup>lt;sup>14</sup> Includes volatile organic compounds, phenols, base/neutral organic compounds, organophosphorus pesticides, chlorinated pesticides and PCBs.

 Table 1.A.
 Landfill location used during 2017 is as follows:

|                                   | ,                                    |
|-----------------------------------|--------------------------------------|
| Otay Landfill                     | 12,155 wet tons (3,455 dry tons or   |
| 1700 Maxwell Road                 | 3,134 dry metric tons), based on sum |
| Chula Vista, San Diego County, CA | of monthly totals disposed of from   |
| 91911                             | January to December 2017 at this     |
|                                   | landfill.                            |

No biosolids were shipped to or disposed of at a surface disposal site.

No biosolids were disposed of or reused by any other method than those listed above.

| 2017<br>Month              | Otay Landfill<br>Beneficial Use <sup>1</sup><br>( <sup>FTL)</sup><br>(wet Tons)                                     | Otay Landfill<br>Beneficial<br>Use <sup>1 (MBC)</sup><br>(wet Tons) | Otay Landfill<br><sup>(९१८)</sup><br>(wetTons) | Otay Landfill<br>(MBC)<br>(wetTons) | Otay Landfill<br>Total<br>(wet Tons) | Copper Mountain,<br>Yuma, AZ<br>Beneficial Use <sup>2</sup><br>(wet Tons) | Cullison Farms,<br>Yuma, AZ<br>Beneficial Use <sup>2</sup><br>(wet Tons) | Norris Farm<br>Aztec, Yuma<br>County, AZ<br>Beneficial Use <sup>2</sup><br>(wet Tons) | Desert Ridge Farms<br>Yuma, AZ<br>Beneficial Use <sup>2</sup><br>(wet Tons) | Otay & AZ<br>Total<br>(wetTons) | %TS  | Total Dry Tons | Total<br>Biosolids<br>(dry metric tons) |
|----------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------|-------------------------------------|--------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------|------|----------------|-----------------------------------------|
| January                    |                                                                                                                     | 6,005.14                                                            |                                                |                                     | 6,005.14                             |                                                                           | 270.49                                                                   |                                                                                       |                                                                             | 6,275.63                        | 28.1 | 1,762.20       | 1,598.67                                |
| February                   | 630.96                                                                                                              | 5,082.81                                                            |                                                | 4,404.00                            | 10,117.77                            | 149.94                                                                    | 370.18                                                                   |                                                                                       |                                                                             | 10,637.89                       | 29.0 | 3,087.12       | 2,800.63                                |
| March                      | 951.68                                                                                                              | 8,544.21                                                            |                                                | 2,691.09                            | 12,186.98                            |                                                                           | 272.24                                                                   |                                                                                       |                                                                             | 12,459.22                       | 29.0 | 3,606.94       | 3,272.22                                |
| April                      |                                                                                                                     | 10,206.46                                                           | 61.42                                          |                                     | 10,267.88                            |                                                                           | 221.94                                                                   |                                                                                       |                                                                             | 10,489.82                       | 27.8 | 2,920.37       | 2,649.36                                |
| May                        |                                                                                                                     | 9,573.20                                                            | 72.68                                          | 423.86                              | 10,069.74                            |                                                                           | 551.06                                                                   |                                                                                       |                                                                             | 10,620.80                       | 28.2 | 2,994.00       | 2,716.16                                |
| June                       |                                                                                                                     | 10,220.05                                                           | 1,147.40                                       |                                     | 11,367.45                            |                                                                           | 624.96                                                                   |                                                                                       |                                                                             | 11,992.41                       | 27.5 | 3,294.32       | 2,988.60                                |
| July                       |                                                                                                                     | 9,929.18                                                            | 1,748.19                                       |                                     | 11,677.37                            |                                                                           | 877.97                                                                   |                                                                                       |                                                                             | 12,555.34                       | 27.0 | 3,392.45       | 3,077.63                                |
| August                     |                                                                                                                     | 9,237.64                                                            |                                                |                                     | 9,237.64                             |                                                                           | 1,401.30                                                                 |                                                                                       |                                                                             | 10,638.94                       | 26.6 | 2,833.15       | 2,570.23                                |
| September                  |                                                                                                                     | 8,447.19                                                            |                                                |                                     | 8,447.19                             |                                                                           | 1,492.90                                                                 |                                                                                       |                                                                             | 9,940.09                        | 26.2 | 2,607.29       | 2,365.33                                |
| October                    |                                                                                                                     | 10,053.62                                                           |                                                |                                     | 10,053.62                            |                                                                           | 909.31                                                                   |                                                                                       |                                                                             | 10,962.93                       | 26.5 | 2,908.47       | 2,638.56                                |
| November                   |                                                                                                                     | 10,594.48                                                           |                                                | 148.78                              | 10,743.26                            |                                                                           | 557.73                                                                   |                                                                                       |                                                                             | 11,300.99                       | 26.4 | 2,982.33       | 2,705.57                                |
| December                   |                                                                                                                     | 10,287.49                                                           |                                                |                                     | 10,287.49                            |                                                                           | 124.79                                                                   |                                                                                       |                                                                             | 10,412.28                       | 26.5 | 2,756.13       | 2,500.36                                |
| Total:                     | 1,582.64                                                                                                            | 108,181.47                                                          |                                                |                                     | 120,461.53                           | 149.94                                                                    | 7,674.87                                                                 | 0.00                                                                                  | 0.00                                                                        | 128,286.34                      |      | 35,144.76      | 31,883.32                               |
| Monthly<br>Average:        |                                                                                                                     | 9,015.12                                                            |                                                |                                     | 10,038.46                            | 149.94                                                                    | 639.57                                                                   |                                                                                       |                                                                             | 10,690.53                       | 27.4 | 2,928.73       | 2,656.94                                |
|                            |                                                                                                                     |                                                                     |                                                |                                     |                                      |                                                                           |                                                                          |                                                                                       |                                                                             |                                 |      |                |                                         |
| <sup>1</sup> beneficial us | <sup>1</sup> beneficial use as Alternative Daily Cover. Point Loma (PTL) or Metro Biosolids Center (MBC) or YUMA AZ |                                                                     |                                                |                                     |                                      |                                                                           |                                                                          |                                                                                       |                                                                             |                                 |      |                |                                         |
| <sup>2</sup> beneficial us | e in Land Applica                                                                                                   | ation.                                                              |                                                |                                     |                                      |                                                                           |                                                                          |                                                                                       |                                                                             |                                 |      |                |                                         |

# Table 1B. Biosolids Production for MBC

|             | Desert Ridge, |          | Norris, Yuma City, Cu |         | Cullison, | Yuma      | Butler Diamond, |                 | Total    | Total    | Total    |          |
|-------------|---------------|----------|-----------------------|---------|-----------|-----------|-----------------|-----------------|----------|----------|----------|----------|
|             |               | Yuma Ci  | ty, AZ                | A       | z         | Count     | y, AZ           | Yuma County, AZ |          | Monthly  | Monthly  | Metric   |
| 2017        |               |          |                       |         |           |           |                 |                 |          |          |          |          |
| Month       | %TS           | wet tons | dry tons              | wettons | dry tons  | w et tons | dry tons        | wet tons        | dry tons | wettons  | dry tons | dry tons |
| January     | 28.1          |          | 0.00                  |         | 0.00      | 270.49    | 75.95           |                 | 0.00     | 270.49   | 75.95    | 68.91    |
| February    | 29.0          |          | 0.00                  |         | 0.00      | 370.18    | 107.35          |                 | 0.00     | 370.18   | 107.35   | 97.39    |
| March       | 29.0          |          | 0.00                  |         | 0.00      | 272.24    | 78.95           |                 | 0.00     | 272.24   | 78.95    | 71.62    |
| April       | 27.8          |          | 0.00                  |         | 0.00      | 221.94    | 61.70           |                 | 0.00     | 221.94   | 61.70    | 55.97    |
| May         | 28.2          |          | 0.00                  |         | 0.00      | 551.06    | 155.40          |                 | 0.00     | 551.06   | 155.40   | 140.98   |
| June        | 27.5          |          | 0.00                  |         | 0.00      | 624.96    | 171.86          |                 | 0.00     | 624.96   | 171.86   | 155.92   |
| July        | 27.0          |          | 0.00                  |         | 0.00      | 877.97    | 237.05          |                 | 0.00     | 877.97   | 237.05   | 215.05   |
| August      | 26.6          |          | 0.00                  |         | 0.00      | 1,401.30  | 372.75          |                 | 0.00     | 1,401.30 | 372.75   | 338.15   |
| September   | 26.2          |          | 0.00                  |         | 0.00      | 1,492.90  | 391.14          |                 | 0.00     | 1,492.90 | 391.14   | 354.84   |
| October     | 26.5          |          | 0.00                  |         | 0.00      | 909.31    | 240.97          |                 | 0.00     | 909.31   | 240.97   | 218.61   |
| November    | 26.4          |          | 0.00                  |         | 0.00      | 557.73    | 147.24          |                 | 0.00     | 557.73   | 147.24   | 133.58   |
| December    | 26.5          |          | 0.00                  |         | 0.00      | 124.79    | 33.07           |                 | 0.00     | 124.79   | 33.07    | 30.00    |
| 2017 Totals | Avg = 27.4    | 0.00     | 0.00                  | 0.00    | 0.00      | 7,674.87  | 2,073.43        | 0.00            | 0.00     | 7,674.87 | 2,073.43 | 1,881.02 |

# Table 1C. 2017 Biosolids Land Application

| 2017<br>Month: | Copper<br>Mountain<br>Landfill<br>Scum<br>(Tons) | Otay<br>Landfill<br>Scum<br>(Tons) | Otay<br>Landfill<br>Digester<br>Cleanings<br>(Tons) | South<br>Yuma<br>Landfill<br><b>Scum</b><br>(Tons) | Miramar<br>Landfill<br>Grit<br>(Tons) | Miramar Landfill<br>Rags &<br>Screenings<br>(Tons) |
|----------------|--------------------------------------------------|------------------------------------|-----------------------------------------------------|----------------------------------------------------|---------------------------------------|----------------------------------------------------|
| January        | 27.79                                            | 9.09                               | 0.00                                                |                                                    | 120.70                                | 413.15                                             |
| February       | 26.35                                            |                                    | 630.96                                              |                                                    | 109.22                                | 535.34                                             |
| March          | 31.45                                            |                                    | 951.68                                              |                                                    | 138.61                                | 614.77                                             |
| April          | 29.28                                            |                                    | 61.42                                               |                                                    | 72.15                                 | 476.86                                             |
| Мау            | 15.32                                            |                                    | 72.68                                               |                                                    | 119.58                                | 602.40                                             |
| June           | 31.36                                            | 8.75                               | 1,147.40                                            |                                                    | 117.29                                | 618.64                                             |
| July           | 14.60                                            |                                    | 1,748.19                                            |                                                    | 98.86                                 | 627.12                                             |
| August         | 29.30                                            | 4.86                               | 0.00                                                |                                                    | 81.23                                 | 581.49                                             |
| September      | 17.46                                            |                                    | 0.00                                                |                                                    | 73.53                                 | 718.80                                             |
| October        | 34.81                                            |                                    | 0.00                                                |                                                    | 84.47                                 | 630.94                                             |
| November       | 17.42                                            | 8.53                               | 0.00                                                |                                                    | 100.81                                | 566.87                                             |
| December       | 15.95                                            | P                                  | 0.00                                                |                                                    | 70.42                                 | 584.02                                             |
| Total:         | 291.09                                           | 31.23                              | 4,612.33                                            |                                                    | 1,186.87                              | 6,970.40                                           |
| Average:       | 24.26                                            | 7.81                               | 384.36                                              |                                                    | 98.91                                 | 580.87                                             |

 Table 1D. Other Solids disposal (weights are gross wet weight)

### Point Loma Annual Monitoring Report Solids Report - TOTALS

#### Annual 2017

|       |             |        | Pt.Loma     |        | MBC         |        | MBC       |        |
|-------|-------------|--------|-------------|--------|-------------|--------|-----------|--------|
|       | Pt. Loma    |        | Digested    |        | Combined    |        | Dewatered |        |
|       | Raw sludge  | Dry    | Sludge      | Dry    | Centrate    | Dry    | Sludge    | Dry    |
| Month | Gallons     | Tons   | Gallons     | Tons   | Gallons     | Tons   | Wet Tons  | Tons   |
| 01    | 33,670,810  | 6,190  | 33,670,810  | 3,510  | 57,994,171  | 843    | 10,763    | 3,022  |
| 02    | 31,276,951  | 5,703  | 31,276,951  | 3,247  | 57,666,252  | 915    | 9,857     | 2,861  |
| 03    | 36,002,141  | 6,205  | 36,002,141  | 3,705  | 67,944,095  | 877    | 11,508    | 3,331  |
| 04    | 54,495,260  | 9,544  | 54,495,260  | 5,386  | 62,845,958  | 917    | 10,428    | 2,903  |
| 05    | 34,924,265  | 6,080  | 34,731,909  | 3,397  | 62,785,603  | 895    | 10,548    | 2,973  |
| 06    | 29,936,461  | 5,579  | 29,936,461  | 3,041  | 60,664,332  | 810    | 10,845    | 2,979  |
| 07    | 31,475,133  | 5,684  | 31,475,133  | 3,203  | 62,215,032  | 891    | 10,807    | 2,920  |
| 08    | 31,941,239  | 5,512  | 31,941,239  | 3,233  | 63,349,032  | 903    | 10,639    | 2,833  |
| 09    | 31,905,776  | 5,782  | 31,232,303  | 3,230  | 62,114,078  | 850    | 9,940     | 2,607  |
| 10    | 31,611,776  | 5,405  | 31,611,776  | 3,236  | 66,166,985  | 899    | 10,963    | 2,908  |
| 11    | 28,409,517  | 4,976  | 28,409,517  | 2,902  | 63,721,425  | 846    | 11,301    | 2,982  |
| 12    | 28,471,501  | 5,030  | 28,471,501  | 2,980  | 65,677,716  | 835    | 10,412    | 2,756  |
| avg   | 33,676,736  | 5,974  | 33,604,583  | 3,423  | 62,762,057  | 873    | 10,668    | 2,923  |
| sum   | 404,120,830 | 71,690 | 403,255,001 | 41,070 | 753,144,679 | 10,481 | 128,012   | 35,075 |

Point Loma Annual Monitoring Report Solids Report - Daily Averages by Month

#### Annual 2017

|       |            |     |      | Pt.Loma   |     |      | MBC       |      |      | MBC       |      |       |
|-------|------------|-----|------|-----------|-----|------|-----------|------|------|-----------|------|-------|
|       | Pt. Loma   |     |      | Digested  |     |      | Combined  |      |      | Dewatered |      |       |
| Year  | Raw sludge |     | Dry  | Sludge    |     | Dry  | Centrate  |      | Dry  | Sludge    |      | Dry   |
| Month | Gallons    | %TS | Tons | Gallons   | %TS | Tons | Gallons   | %TS  | Tons | Wet Tons  | %TS  | Tons  |
| 17-01 | 1.086.155  | 4.4 | 200  | 1.086.155 | 2.5 | 113  | 1.870.780 | 0.35 | 27.2 | 347       | 28.1 | 97.5  |
| 17-02 | 1,117,034  | 4.4 | 205  | 1,117,034 | 2.5 | 116  | 2,059,509 | 0.38 | 32.6 | 352       | 29.0 | 102.2 |
| 17-03 | 1,161,359  | 4.1 | 201  | 1,161,359 | 2.5 | 121  | 2,191,745 | 0.31 | 28.4 | 371       | 28.9 | 107.5 |
| 17-04 | 1,816,509  | 4.2 | 322  | 1,816,509 | 2.4 | 184  | 2,094,865 | 0.35 | 30.5 | 348       | 27.8 | 96.8  |
| 17-05 | 1,126,589  | 4.2 | 197  | 1,120,384 | 2.3 | 111  | 2,025,342 | 0.34 | 28.8 | 340       | 28.2 | 95.9  |
| 17-06 | 997,882    | 4.5 | 189  | 997,882   | 2.4 | 100  | 2,022,144 | 0.32 | 27.1 | 362       | 27.5 | 99.3  |
| 17-07 | 1,015,327  | 4.3 | 185  | 1,015,327 | 2.4 | 103  | 2,006,937 | 0.34 | 28.9 | 349       | 27.0 | 94.2  |
| 17-08 | 1,030,363  | 4.1 | 177  | 1,030,363 | 2.4 | 104  | 2,043,517 | 0.34 | 29.5 | 343       | 26.6 | 91.4  |
| 17-09 | 1,063,526  | 4.3 | 188  | 1,041,077 | 2.5 | 107  | 2,070,469 | 0.33 | 28.4 | 331       | 26.2 | 86.9  |
| 17-10 | 1,019,735  | 4.1 | 174  | 1,019,735 | 2.5 | 104  | 2,134,419 | 0.33 | 29.1 | 354       | 26.5 | 93.8  |
| 17-11 | 946,984    | 4.2 | 168  | 946,984   | 2.5 | 96   | 2,124,048 | 0.32 | 28.2 | 377       | 26.4 | 99.4  |
| 17-12 | 918,436    | 4.2 | 164  | 918,436   | 2.5 | 96   | 2,118,636 | 0.30 | 26.9 | 336       | 26.5 | 88.9  |
|       |            |     |      |           |     |      |           |      |      |           |      |       |
| avg   | 1,108,325  | 4.3 | 198  | 1,105,937 | 2.5 | 113  | 2,063,534 | 0.33 | 28.8 | 351       | 27.4 | 96.1  |

Note: A ton is a "short ton" or 2000 lbs of dry solids. The mechanical condition of the cake pumps and the variability of sludge concentrations can affect the overall accuracies of these reported values. Tables showing the analyses for metals (including priority pollutants), pH, total and volatile solids, pesticides & PCBs, and organic priority pollutant compounds of sewage biosolids samples taken in 2017.

#### ANNUAL 2017

#### Trace Metals

| Source:                 |      |       | MBCDEWCN    | MBCDEWCN    | MBCDEWCN    | MBCDEWCN    | MBCDEWCN    | MBCDEWCN    |
|-------------------------|------|-------|-------------|-------------|-------------|-------------|-------------|-------------|
| Date:                   |      |       | 31-JAN-2017 | 28-FEB-2017 | 31-MAR-2017 | 30-APR-2017 | 31-MAY-2017 | 30-JUN-2017 |
| Sample ID:              | MDL  | Units | P920340     | P925827     | P932213     | P937935     | P945968     | P953132     |
|                         | ==== | ===== | ==========  |             |             | ==========  |             | ==========  |
| Aluminum                | 18   | MG/KG | 3810        | 3500        | 5490        | 3890        | 3450        | 3580        |
| Antimony                | 2.5  | MG/KG | 6.5         | 5.8         | 6.0         | 6.3         | 3.7         | 5.8         |
| Arsenic                 | .54  | MG/KG | 6.40        | 6.45        | 8.22        | 5.38        | 3.41        | 3.73        |
| Barium                  | .65  | MG/KG | 465         | 514         | 472         | 385         | 337         | 316         |
| Beryllium               | .08  | MG/KG | 0.06        | 0.09        | 0.07        | 0.05        | 0.03        | 0.04        |
| Cadmium                 | .13  | MG/KG | ND          | 0.4         | 0.3         | 0.9         | 0.6         | 0.8         |
| Chromium                | .21  | MG/KG | 44          | 44          | 43          | 40          | 43          | 46          |
| Cobalt                  | .15  | MG/KG | 4.0         | 4.0         | 4.0         | 3.6         | 2.4         | 3.8         |
| Cyanide, Total          | .1   | MG/KG | NR          | 4.65        | NR          | NR          | 58.2        | NR          |
| Copper                  | 1.9  | MG/KG | 633         | 719         | 695         | 634         | 611         | 603         |
| Iron                    | 5.97 | MG/KG | 106000      | 81100       | 93800       | 89400       | 101000      | 86200       |
| Lead                    | .3   | MG/KG | 15          | 16          | 16          | 15          | 9           | 14          |
| Manganese               | .359 | MG/KG | 359         | 366         | 367         | 370         | 366         | 351         |
| Mercury                 | .2   | MG/KG | 1.07        | 0.61        | 1.09        | 1.05        | 1.47        | 1.67        |
| Molybdenum              | .15  | MG/KG | 19          | 17          | 16          | 16          | 10          | 18          |
| Nickel                  | .3   | MG/KG | 24          | 26          | 28          | 24          | 15          | 26          |
| Selenium                | 1.7  | MG/KG | 4.26        | 1.56        | 4.11        | 2.10        | 4.53        | 4.49        |
| Silver                  | .295 | MG/KG | 3.30        | 4.24        | 3.72        | 3.63        | 2.10        | 3.12        |
| Thallium                | .43  | MG/KG | ND          | <0.43       | <0.43       | ND          | <0.43       | ND          |
| Vanadium                | .52  | MG/KG | 24          | 28          | 30          | 22          | 13          | 19          |
| Zinc                    | 1.7  | MG/KG | 984         | 990         | 1010        | 951         | 968         | 946         |
| Sulfides-Reactive       | 11   | MG/KG | 125         | 44          | 40*         | 39*         | 52          | 43          |
| Sulfides-Total          | 500  | MG/KG | 13200       | 10200       | 4200        | 11700       | 13900       | 10800       |
| Total Nitrogen          | 100  | MG/KG | 46400       | 47000       | 47000       | 56000       | 52700       | 52600       |
| Total Kjeldahl Nitrogen | .04  | WT%   | 4.99        | 4.70        | 4.71        | 5.60        | 5.26        | 5.26        |
| Total Volatile Solids   |      | WT%   | 60.5        | 59.4        | 58.4        | 62.2        | 62.3        | 63.6        |
| Total Solids            |      | WT%   | 27.1        | 28.4        | 28.0        | 27.3        | 27.1        | 27.0        |
| рН                      |      | PH    | 7.95        | 7.97        | 7.97        | 7.91        | 7.94        | 7.84        |

ND= Not Detected NA= Not Analyzed NS= Not Sampled NR= Not Required

\* = Recovery of compound in internal check and matrix spike sample outside method acceptance limits; value is not used in average calculations.

MBCDEWCN= Metro Biosolids Center Dewatered Centrifuged Sludge.

#### ANNUAL 2017

#### Trace Metals

| Source:                 |      |       | MBCDEWCN    | MBCDEWCN    | MBCDEWCN    | MBCDEWCN    | MBCDEWCN    | MBCDEWCN    |
|-------------------------|------|-------|-------------|-------------|-------------|-------------|-------------|-------------|
| Date:                   |      |       | 31-JUL-2017 | 31-AUG-2017 | 30-SEP-2017 | 31-0CT-2017 | 30-NOV-2017 | 31-DEC-2017 |
| Sample ID:              | MDL  | Units | P959635     | P966456     | P974186     | P979340     | P986442     | P992862     |
|                         | ==== | ===== | ==========  |             | =========== | ==========  | ==========  | ==========  |
| Aluminum                | 18   | MG/KG | 3760        | 3870        | 990         | 880         | 3330        | 3460        |
| Antimony                | 2.5  | MG/KG | 7.0         | 6.8         | ND          | ND          | 8.2         | 6.3         |
| Arsenic                 | .54  | MG/KG | 3.55        | 3.36        | 4.10        | DNQ1.40     | 2.78        | DNQ2.53     |
| Barium                  | .65  | MG/KG | 320         | 301         | 82          | 47          | 285         | 276         |
| Beryllium               | .08  | MG/KG | 0.05        | 0.08        | 0.06        | DNQ0.02     | ND          | ND          |
| Cadmium                 | .13  | MG/KG | 0.8         | 0.9         | 0.4         | DNQ0.3      | 0.7         | 0.8         |
| Chromium                | .21  | MG/KG | 44          | 46          | 13          | 11          | 50          | 45          |
| Cobalt                  | .15  | MG/KG | 3.8         | 4.1         | 1.1         | DNQ0.9      | 3.7         | 3.9         |
| Cyanide, Total          | .1   | MG/KG | NR          | 7.55        | NR          | 3.70        | NR          | NR          |
| Copper                  | 1.9  | MG/KG | 652         | 659         | 180         | 150         | 653         | 609         |
| Iron                    | 5.97 | MG/KG | 91100       | 91300       | 25000       | 21000       | 99500       | 102000      |
| Lead                    | .3   | MG/KG | 14          | 16          | 5           | 4           | 17          | 14          |
| Manganese               | .359 | MG/KG | 352         | 336         | 100         | 86          | 387         | 360         |
| Mercury                 | .2   | MG/KG | 1.11        | 1.27        | 1.09        | 0.85        | 0.63        | 0.68        |
| Molybdenum              | .15  | MG/KG | 21          | 24          | 6           | 5           | 20          | 19          |
| Nickel                  | .3   | MG/KG | 26          | 26          | 8           | 6           | 20          | 21          |
| Selenium                | 1.7  | MG/KG | 4.72        | 4.15        | ND          | NA          | 3.25        | 4.85        |
| Silver                  | .295 | MG/KG | 3.88        | 3.58        | 1.20        | DNQ0.80     | 2.92        | 3.78        |
| Thallium                | .43  | MG/KG | ND          | ND          | ND          | ND          | ND          | ND          |
| Vanadium                | .52  | MG/KG | 19          | 17          | 4           | 4           | 13          | 14          |
| Zinc                    | 1.7  | MG/KG | 1000        | 1050        | 250         | 220         | 915         | 906         |
| Sulfides-Reactive       | 11   | MG/KG | 79          | 58          | 33          | 47          | 61          | 77          |
| Sulfides-Total          | 500  | MG/KG | 17600       | 8250        | 15000       | 18900       | 14000       | 19900       |
| Total Nitrogen          | 100  | MG/KG | 52500       | 52300       | 54300       | 52000       | 52400       | 52500       |
| Total Kjeldahl Nitrogen | .04  | WT%   | 5.25        | 5.23        | 5.43        | 5.20        | 5.24        | 5.25        |
| Total Volatile Solids   |      | WT%   | 65.2        | 64.0        | 63.7        | 63.4        | 63.7        | 63.4        |
| Total Solids            |      | WT%   | 26.8        | 26.4        | 25.3        | 26.1        | 26.3        | 26.8        |
| рН                      |      | PH    | 7.85        | 7.85        | 7.91        | 7.94        | 7.82        | 7.88        |

ND= Not Detected NA= Not Analyzed NS= Not Sampled NR= Not Required

DNQ= Detected but not quantified. Sample result is less than minimum Level but greater than or equal to MDL.

MBCDEWCN= Metro Biosolids Center Dewatered Centrifuged Sludge.

### ANNUAL 2017

#### TOTAL NITROGEN

| Source:<br>Date:<br>Sample ID: | MDL         | Units          | MBCDEWCN<br>31-JAN-2017<br>P920340 | MBCDEWCN<br>28-FEB-2017<br>P925827 | MBCDEWCN<br>31-MAR-2017<br>P932213 | MBCDEWCN<br>30-APR-2017<br>P937935 | MBCDEWCN<br>31-MAY-2017<br>P945968 | MBCDEWCN<br>30-JUN-2017<br>P953132 |
|--------------------------------|-------------|----------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|
| Total Nitrogen                 | ====<br>100 | =====<br>MG/KG | 46400                              | 47000                              | 47000                              | 56000                              | 52700                              | ======<br>52600                    |
| Source:                        |             |                | MBCDEWCN                           | MBCDEWCN                           | MBCDEWCN                           | MBCDEWCN                           | MBCDEWCN                           | MBCDEWCN                           |
| Date:<br>Sample ID:            | MDL         | Units          | 31-JUL-2017<br>P959635             | 31-AUG-2017<br>P966456             | 30-SEP-2017<br>P974186             | 31-0CT-2017<br>P979340             | 30-NOV-2017<br>P986442             | 31-DEC-2017<br>P992862             |
| Total Nitrogen                 | ====<br>100 | =====<br>MG/KG | ======<br>52500                    | ======<br>52300                    | =======<br>54300                   | ======<br>52000                    | =======<br>52400                   | =======<br>52500                   |

ND=not detected; NS=not sampled; NA=not analyzed

#### Radioactivity Analyzed by FGL Environmental

| Source     | Sample Date | Sample ID | Gross Alpha Radiation | Gross Beta Radiation |
|------------|-------------|-----------|-----------------------|----------------------|
|            |             | ========  |                       |                      |
| PLE        | 07-FEB-2017 | P919157   | 8.9±2.8               | 14.5±2.0             |
| PLE        | 02-MAY-2017 | P936538   | 5.6±1.5               | 4.7±1.5              |
| PLE        | 01-AUG-2017 | P959714   | 4.9±2.0               | 12.7±1.9             |
| PLE        | 03-0CT-2017 | P973063   | 2.8±1.8               | 21.2±2.8             |
|            |             | ========  |                       |                      |
| PLE        | ANNUAL      | AVERAGE   | 4.9±2.2               | 13.3±2.1             |
|            |             |           |                       |                      |
| PIR        | 07-FFB-2017 | P919163   | 11 0+3 1              | 15 4+2 2             |
| PIR        | 02-MAY-2017 | P936544   | 7,9+2,6               | 17,1+2,2             |
| PIR        | 01-AUG-2017 | P959720   | 13.9+2.8              | 11.9+2.1             |
| PLR        | 03-0CT-2017 | P973069   | 2.9±2.1               | 23.7±2.9             |
|            |             |           |                       |                      |
| PLR        | ANNUAL      | AVERAGE   | 8.2±2.6               | 17.0±2.3             |
|            |             |           |                       |                      |
| MBC COMBCN | 07-FFB-2017 | P919174   | 10.7+4.3              | 35,9+2,8             |
| MBC COMBCN | 02-MAY-2017 | P936555   | 8.3+2.6               | 34,0+2,7             |
| MBC_COMBCN | 01-ΔUG-2017 | P959726   | 5 8+2 9               | 37 2+2 9             |
| MBC_COMBCN | 03-0CT-2017 | P973075   | 4 9+2 4               | 38 6+3 3             |
|            |             |           | 4.9±2.4               |                      |
|            |             |           | ==<br>7 /+2 1         |                      |
| HDC_COHDCN | ANNUAL      | AVENAGE   | 7.415.1               | 50.412.9             |

Units in picocuries per Liter (pCi/L)

ND= Not Detected NA= Not Analyzed NS= Not Sampled NR= Not Required

#### ANNUAL 2017

#### Radioactivity Analyzed by FGL Environmental

| Source   | Sample Date | Sample ID | Gross Alpha Radiation | Gross Beta Radiation |
|----------|-------------|-----------|-----------------------|----------------------|
|          |             |           |                       |                      |
| MBCDEWCN | 28-FEB-2017 | P925827   | 9950.0±1340           | 6500.0±1280          |
| MBCDEWCN | 31-MAY-2017 | P945968   | 31100.0±3180          | 18500.0±2430         |
| MBCDEWCN | 31-AUG-2017 | P966456   | 0.015.0±0.00176       | 0.0106±0.00168       |
| MBCDEWCN | 31-0CT-2017 | P979340   | 0.0128±0.002          | 0.006±0.0016         |
|          |             |           |                       |                      |

ND= Not Detected NA= Not Analyzed NS= Not Sampled NR= Not Required

Units in picocuries/liter (pCi/kg)

### ANNUAL 2017

#### Chlorinated Pesticide Analysis

| Source                     |                |                | MBCDEWCN    | MBCDEWCN    | MBCDEWCN    | MBCDEWCN    | MBCDEWCN    |
|----------------------------|----------------|----------------|-------------|-------------|-------------|-------------|-------------|
| Date                       |                |                | 31-JAN-2017 | 28-FEB-2017 | 31-MAR-2017 | 30-APR-2017 | 31-MAY-2017 |
| Analyte                    | MDL<br>======= | Units<br>===== | P920340     | P925827     | P932213     | P937935     | P945968     |
| Aldrin                     | 180000         | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| Dieldrin                   | 190000         | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| BHC, Alpha isomer          | 220000         | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| BHC, Beta isomer           | 250000         | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| BHC, Gamma isomer          | 210000         | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| BHC, Delta isomer          | 200000         | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| p,p-DDD                    | 190000         | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| p,p-DDE                    | 170000         | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| p,p-DDT                    | 230000         | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| o,p-DDD                    | 970            | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| o,p-DDE                    | 640            | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| o,p-DDT                    | 940            | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| Heptachlor                 | 270000         | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| Heptachlor epoxide         | 240000         | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| Alpha (cis) Chlordane      | 840            | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| Gamma (trans) Chlordane    | 540            | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| Alpha Chlordene            |                | NG/KG          | NA          | NA          | NA          | NA          | NA          |
| Gamma Chlordene            |                | NG/KG          | NA          | NA          | NA          | NA          | NA          |
| Oxychlordane               | 360            | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| Trans Nonachlor            | 1000           | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| Cis Nonachlor              | 850            | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| Alpha Endosulfan           | 200000         | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| Beta Endosulfan            | 240000         | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| Endosulfan Sulfate         | 190000         | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| Endrin aldehyde            | 200000         | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| Toxaphene                  | 7400000        | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| Mirex                      | 680            | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| Methoxychlor               | 250000         | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| PCB 1016                   | 3800000        | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| PCB 1221                   | 33000000       | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| PCB 1232                   | 6700000        | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| PCB 1242                   | 39000000       | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| PCB 1248                   | 29000000       | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| PCB 1254                   | 1100000        | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| PCB 1260                   | 3800000        | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| PCB 1262                   | 83300          | NG/KG          | ND          | ND          | ND          | ND          | ND          |
|                            |                | =====          | ==========  | =========   | =========   | =======     |             |
| Aldrin + Dieldrin          | 190000         | NG/KG          | 0           | 0           | 0           | 0           | 0           |
| Hexachlorocyclohexanes     | 250000         | NG/KG          | 0           | 0           | 0           | 0           | 0           |
| DDT and derivatives        | 230000         | NG/KG          | 0           | 0           | 0           | 0           | 0           |
| Chlordane + related cmpds. | 840            | NG/KG          | 0           | 0           | 0           | 0           | 0           |
| Polychlorinated biphenyls  | 39000000       | NG/KG          | 0           | 0           | 0           | 0           | 0           |
| Chlorinated Hydrocarbons   | 39000000       | NG/KG          |             | 0           | 0           | 0           | 0           |

ND= not detected NA= not analyzed NS= not sampled
## ANNUAL 2017

## Chlorinated Pesticide Analysis

| Source                                          |                |                | MBCDEWCN    | MBCDEWCN    | MBCDEWCN    | MBCDEWCN    | MBCDEWCN    |
|-------------------------------------------------|----------------|----------------|-------------|-------------|-------------|-------------|-------------|
| Date                                            |                |                | 30-JUN-2017 | 31-JUL-2017 | 31-AUG-2017 | 30-SEP-2017 | 31-0CT-2017 |
| Analyte<br>==================================== | MDL<br>======= | Units<br>===== | P953132     | P959635     | P966456     | P974186     | P979340     |
| Aldrin                                          | 180000         | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| Dieldrin                                        | 190000         | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| BHC, Alpha isomer                               | 220000         | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| BHC, Beta isomer                                | 250000         | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| BHC, Gamma isomer                               | 210000         | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| BHC, Delta isomer                               | 200000         | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| p,p-DDD                                         | 190000         | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| p,p-DDE                                         | 170000         | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| p,p-DDT                                         | 230000         | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| o,p-DDD                                         | 970            | NG/KG          | ND          | ND          | NA          | NA          | ND          |
| o,p-DDE                                         | 640            | NG/KG          | ND          | ND          | NA          | NA          | ND          |
| o,p-DDT                                         | 940            | NG/KG          | ND          | ND          | NA          | NA          | ND          |
| Heptachlor                                      | 270000         | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| Heptachlor epoxide                              | 240000         | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| Alpha (cis) Chlordane                           | 840            | NG/KG          | ND          | ND          | NA          | NA          | ND          |
| Gamma (trans) Chlordane                         | 540            | NG/KG          | ND          | ND          | NA          | NA          | ND          |
| Alpha Chlordene                                 |                | NG/KG          | NA          | NA          | NA          | NA          | NA          |
| Gamma Chlordene                                 |                | NG/KG          | NA          | NA          | NA          | NA          | NA          |
| Oxychlordane                                    | 360            | NG/KG          | ND          | ND          | NA          | NA          | ND          |
| Trans Nonachlor                                 | 1000           | NG/KG          | ND          | ND          | NA          | NA          | ND          |
| Cis Nonachlor                                   | 850            | NG/KG          | ND          | ND          | NA          | NA          | ND          |
| Alpha Endosulfan                                | 200000         | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| Beta Endosulfan                                 | 240000         | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| Endosulfan Sulfate                              | 190000         | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| Endrin aldehyde                                 | 200000         | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| Toxaphene                                       | 7400000        | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| Mirex                                           | 680            | NG/KG          | ND          | ND          | NA          | NA          | ND          |
| Methoxychlor                                    | 250000         | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| PCB 1016                                        | 3800000        | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| PCB 1221                                        | 33000000       | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| PCB 1232                                        | 6700000        | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| PCB 1242                                        | 39000000       | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| PCB 1248                                        | 29000000       | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| PCB 1254                                        | 1100000        | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| PCB 1260                                        | 3800000        | NG/KG          | ND          | ND          | ND          | ND          | ND          |
| PCB 1262                                        | 83300          | NG/KG          | ND          | ND          | NA          | NA          | ND          |
|                                                 |                | =====          |             |             | ==========  |             |             |
| Aldrin + Dieldrin                               | 190000         | NG/KG          | 0           | 0           | 0           | 0           | 0           |
| Hexachlorocyclohexanes                          | 250000         | NG/KG          | 0           | 0           | 0           | 0           | 0           |
| DDT and derivatives                             | 230000         | NG/KG          | 0           | 0           | 0           | 0           | 0           |
| Chlordane + related cmpds.                      | 840            | NG/KG          | 0           | 0           | *           | *           | 0           |
| Polychlorinated biphenyls                       | 39000000       | NG/KG          | 0           | 0           | 0           | 0           | 0           |
| Chlorinated Hydrocarbons                        | 39000000       | NG/KG          |             |             |             |             | 0           |

\* = No chlordane sum available, analytes not analyzed by BABCOCK LABORATORIES.

ND= not detected NA= not analyzed NS= not sampled

## ANNUAL 2017

## Chlorinated Pesticide Analysis

| Chlorinated Hydrocarbons                | 39000000         | NG/KG | <br>0       | 0           | 0          |
|-----------------------------------------|------------------|-------|-------------|-------------|------------|
|                                         | 29000000         | NG/KG | 0           | 0           | 0          |
| Chiordane + related cmpds.              | 840<br>20000000  |       | 0           | 0           | 0          |
| Chlandene i nalitat in h                | 230000           |       | 0           | 0           | 0          |
| nexacniorocyclonexanes                  | 250000           |       | 0           | 0           | 0          |
| Alarin + Dieldrin                       | 720000<br>720000 |       | 0           | 0           | 0          |
| Aldein · Dieldein                       | =======          | ===== |             |             |            |
| PCB 1262                                | 83300            | NG/KG | ND          | ND          | ND         |
| PCB 1260                                | 3800000          | NG/KG | ND          | ND          | ND         |
| PCB 1254                                | 1100000          | NG/KG | ND          | ND          | ND         |
| PCB 1248                                | 29000000         |       | ND          | ND          | ND         |
| PCB 1242                                | 39000000         | NG/KG | ND          | ND          | ND         |
| PCB 1232                                | 6700000          | NG/KG | ND          | ND          | ND         |
| PCB 1221                                | 33000000         | NG/KG | ND          | ND          | ND         |
| PCB 1016                                | 3800000          | NG/KG | ND          | ND          | ND         |
| metnoxychior                            | 250000           | NG/KG | ND          | ND          | ND         |
| Mirex                                   | 680              | NG/KG | ND          | ND          | ND         |
| Ioxapnene                               | /400000          | NG/KG | ND          | ND          | ND         |
| Endrin aldehyde                         | 200000           | NG/KG | ND          | ND          | ND         |
| Endosulfan Sulfate                      | 190000           | NG/KG | ND          | ND          | ND         |
| Beta Endosulfan                         | 240000           | NG/KG | ND          | ND          | ND         |
| Alpha Endosulfan                        | 200000           | NG/KG | ND          | ND          | ND         |
| Cis Nonachlor                           | 850              | NG/KG | ND          | ND          | ND         |
| Trans Nonachlor                         | 1000             | NG/KG | ND          | ND          | ND         |
| Oxychlordane                            | 360              | NG/KG | ND          | ND          | ND         |
| Gamma Chlordene                         |                  | NG/KG | NA          | NA          | NA         |
| Alpha Chlordene                         |                  | NG/KG | NA          | NA          | NA         |
| Gamma (trans) Chlordane                 | 540              | NG/KG | ND          | ND          | ND         |
| Alpha (cis) Chlordane                   | 840              | NG/KG | ND          | ND          | ND         |
| Heptachlor epoxide                      | 240000           | NG/KG | ND          | ND          | ND         |
| Heptachlor                              | 270000           | NG/KG | ND          | ND          | ND         |
| o,p-DDT                                 | 940              | NG/KG | ND          | ND          | ND         |
| o,p-DDE                                 | 640              | NG/KG | ND          | ND          | ND         |
| o,p-DDD                                 | 970              | NG/KG | ND          | ND          | ND         |
| p,p-DDT                                 | 230000           | NG/KG | ND          | ND          | ND         |
| p,p-DDE                                 | 170000           | NG/KG | ND          | ND          | ND         |
| p,p-DDD                                 | 190000           | NG/KG | ND          | ND          | ND         |
| BHC, Delta isomer                       | 200000           | NG/KG | ND          | ND          | ND         |
| BHC, Gamma isomer                       | 210000           | NG/KG | ND          | ND          | ND         |
| BHC, Beta isomer                        | 250000           | NG/KG | ND          | ND          | ND         |
| BHC, Alpha isomer                       | 220000           | NG/KG | ND          | ND          | ND         |
| Dieldrin                                | 190000           | NG/KG | ND          | ND          | ND         |
| Aldrin                                  | 180000           | NG/KG | ND          | ND          | ND         |
| ======================================= |                  | ===== |             |             | ========== |
| Analyte                                 | MDL              | Units | P986442     | P992862     | Average    |
| Date                                    |                  |       | 30-NOV-2017 | 31-DFC-2017 | Annual     |
| Source                                  |                  |       | MBCDEWCN    | MBCDEWCN    |            |

ND= not detected NA= not analyzed NS= not sampled

## ANNUAL 2017

Tributyl Tin (Sludge)

|        |                                     | MBCDEWCN                                     | MBCDEWCN                                                                                                  |
|--------|-------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------|
|        |                                     | 31-MAY-2017                                  | 31-0CT-2017                                                                                               |
|        |                                     | P945968                                      | P979340                                                                                                   |
|        | =====                               | ===========                                  | =======                                                                                                   |
| 9.9012 | UG/KG                               | ND                                           | ND                                                                                                        |
| 5.8174 | UG/KG                               | ND                                           | ND                                                                                                        |
| 7.7925 | UG/KG                               | ND                                           | ND                                                                                                        |
|        | =====<br>9.9012<br>5.8174<br>7.7925 | 9.9012 UG/KG<br>5.8174 UG/KG<br>7.7925 UG/KG | MBCDEWCN<br>31-MAY-2017<br>P945968<br>===== ====<br>9.9012 UG/KG ND<br>5.8174 UG/KG ND<br>7.7925 UG/KG ND |

ND= not detected NA= not analyzed NS= not sampled

## ANNUAL 2017

## HERBICIDES

|                                |       |       | MBCDEWCN    | MBCDEWCN    | MBCDEWCN    |
|--------------------------------|-------|-------|-------------|-------------|-------------|
|                                | Max*' | *     | 28-FEB-2017 | 31-MAY-2017 | 31-AUG-2017 |
| Analyte                        | MDL   | Units | P925827     | P945968     | P966456     |
|                                | ====  | ===== | ==========  |             |             |
| 2,4-Dichlorophenoxyacetic acid | 3300  | UG/KG | ND          | ND          | *           |
| 2,4,5-TP (Silvex)              | 3300  | UG/KG | ND          | ND          | 12.0        |

\* not analyzed by Babcock Lab

\*\*Sample P925827 MDL 3300ug/kg, 10x dilution due to matrix effect. Sample P945968 MDL 2.66 and 2.87 ug/kg for 2,4-Dichlorophenoxyacetic acid and 2,4,5-TP (Silvex), respectively. Sample P966456 MDL 11 ug/kg for 2,4,5-TP (Silvex).

nd= not detected NA= not analyzed NS= not sampled

#### ANNUAL 2017

# Organophosphorus Pesticides

| Source                            |     |       | PLR         | PLR         | PLR         | PLR         | PLR         | PLR         |
|-----------------------------------|-----|-------|-------------|-------------|-------------|-------------|-------------|-------------|
| Date                              |     |       | 09-JAN-2017 | 07-FEB-2017 | 06-MAR-2017 | 12-APR-2017 | 02-MAY-2017 | 08-JUN-2017 |
| Analyte                           | MDL | Units | P916018     | P919163     | P926350     | P933028     | P936544     | P946712     |
|                                   | === | ===== |             |             |             |             |             |             |
| Demeton O                         | .01 | UG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| Demeton S                         | .04 | UG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| Diazinon                          | .02 | UG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| Guthion                           | .03 | UG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| Malathion                         | .02 | UG/L  | ND          | ND          | DNQ0.04     | ND          | DNQ0.08     | 0.10        |
| Parathion                         | .01 | UG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| Chlorpyrifos                      | .02 | UG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| Coumaphos                         | .05 | UG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| Dichlorvos                        | .01 | UG/L  | ND          | ND          | ND          | DNQ0.01     | ND          | ND          |
| Disulfoton                        | .01 | UG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| Stirophos                         | .01 | UG/L  | ND          | ND          | ND          | ND          | ND          | 0.3         |
|                                   | === | ===== |             |             |             |             |             |             |
| Thiophosphorus Pesticides         | .03 | UG/L  | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        | 0.10        |
| Demeton -0, -S                    | .04 | UG/L  | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        |
| Total Organophosphorus Pesticides | .05 | UG/L  | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        | 0.40        |

| Source                            |         |               | PLR               | PLR              | PLR         | PLR         | PLR         | PLR         |
|-----------------------------------|---------|---------------|-------------------|------------------|-------------|-------------|-------------|-------------|
| Date                              |         |               | 12-JUL-2017       | 01-AUG-2017      | 13-SEP-2017 | 03-0CT-2017 | 06-NOV-2017 | 13-DEC-2017 |
| Analyte                           | MDL     | Units         | P954715           | P959720          | P967832     | P973069     | P981464     | P987753     |
|                                   | ===     | =====         | ==========        |                  | =========== | ==========  | ==========  | ==========  |
| Demeton O                         | .01     | UG/L          | ND                | ND               | ND          | ND          | ND          | ND          |
| Demeton S                         | .04     | UG/L          | ND                | ND               | ND          | ND          | ND          | ND          |
| Diazinon                          | .02     | UG/L          | ND                | ND               | ND          | ND          | ND          | ND          |
| Guthion                           | .03     | UG/L          | ND                | ND               | ND          | ND          | ND          | ND          |
| Malathion                         | .02     | UG/L          | ND                | DNQ0.07          | ND          | ND          | ND          | ND          |
| Parathion                         | .01     | UG/L          | ND                | ND               | ND          | ND          | ND          | ND          |
| Chlorpyrifos                      | .02     | UG/L          | ND                | NA               | ND          | ND          | ND          | DNQ0.1      |
| Coumaphos                         | .05     | UG/L          | ND                | ND               | ND          | ND          | ND          | ND          |
| Dichlorvos                        | .01     | UG/L          | ND                | ND               | ND          | ND          | ND          | ND          |
| Disulfoton                        | .01     | UG/L          | ND                | ND               | ND          | ND          | ND          | ND          |
| Stirophos                         | .01     | UG/L          | ND                | ND               | ND          | ND          | ND          | ND          |
| Thiophosphorus Pesticides         | .03     | UG/L          | 0.00              | 0.00             | 0.00        | 0.00        | 0.00        | 0.00        |
| Demeton -0, -S                    | .04     | UG/L          | 0.00              | 0.00             | 0.00        | 0.00        | 0.00        | 0.00        |
| Total Organophosphorus Pesticides | <br>.05 | =====<br>UG/L | =========<br>0.00 | ========<br>0.00 | 0.00        | 0.00        | 0.00        | 0.00        |

## ANNUAL 2017

## Organophosphorus Pesticides

| Source                            |     |       | PLE         | PLE         | PLE         | PLE         | PLE         | PLE         |
|-----------------------------------|-----|-------|-------------|-------------|-------------|-------------|-------------|-------------|
| Date                              |     |       | 09-JAN-2017 | 07-FEB-2017 | 06-MAR-2017 | 12-APR-2017 | 02-MAY-2017 | 08-JUN-2017 |
| Analyte                           | MDL | Units | P916015     | P919157     | P926347     | P933025     | P936538     | P946709     |
|                                   | === | ===== | =========   |             |             | =========   | ==========  |             |
| Demeton O                         | .01 | UG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| Demeton S                         | .04 | UG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| Diazinon                          | .02 | UG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| Guthion                           | .03 | UG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| Malathion                         | .02 | UG/L  | ND          | DNQ0.02     | DNQ0.05     | ND          | DNQ0.10     | DNQ0.06     |
| Parathion                         | .01 | UG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| Chlorpyrifos                      | .02 | UG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| Coumaphos                         | .05 | UG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| Dichlorvos                        | .01 | UG/L  | ND          | DNQ0.01     | ND          | DNQ0.1      | ND          | ND          |
| Disulfoton                        | .01 | UG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| Stirophos                         | .01 | UG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| Thisphesekseys Destinides         | === | ===== |             |             |             |             |             |             |
| Intophosphorus Pesticides         | .03 | UG/L  | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        |
| Demeton -0, -S                    | .04 | UG/L  | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        |
| Total Organophosphorus Pesticides | .05 | UG/L  | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        |

| Source                            |     |               | PLE         | PLE         | PLE         | PLE         | PLE         | PLE         |
|-----------------------------------|-----|---------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Date                              |     |               | 12-JUL-2017 | 01-AUG-2017 | 13-SEP-2017 | 03-0CT-2017 | 06-NOV-2017 | 13-DEC-2017 |
| Analyte                           | MDL | Units         | P954712     | P959714     | P967829     | P973063     | P981461     | P987750     |
|                                   | === | =====         | =========   |             | =========== | ==========  | ==========  |             |
| Demeton O                         | .01 | UG/L          | ND          | ND          | ND          | ND          | ND          | ND          |
| Demeton S                         | .04 | UG/L          | ND          | ND          | ND          | ND          | ND          | ND          |
| Diazinon                          | .02 | UG/L          | ND          | ND          | ND          | ND          | ND          | ND          |
| Guthion                           | .03 | UG/L          | ND          | ND          | ND          | ND          | ND          | ND          |
| Malathion                         | .02 | UG/L          | ND          | 0.17        | DNQ0.07     | ND          | ND          | ND          |
| Parathion                         | .01 | UG/L          | ND          | ND          | ND          | ND          | ND          | ND          |
| Chlorpyrifos                      | .02 | UG/L          | ND          | NA          | ND          | ND          | ND          | ND          |
| Coumaphos                         | .05 | UG/L          | ND          | ND          | ND          | ND          | ND          | ND          |
| Dichlorvos                        | .01 | UG/L          | ND          | ND          | ND          | ND          | ND          | ND          |
| Disulfoton                        | .01 | UG/L          | ND          | ND          | ND          | ND          | ND          | ND          |
| Stirophos                         | .01 | UG/L          | ND          | ND          | ND          | ND          | ND          | ND          |
|                                   | === | =====         | =========   |             |             |             |             |             |
| Thiophosphorus Pesticides         | .03 | UG/L          | 0.00        | 0.17        | 0.00        | 0.00        | 0.00        | 0.00        |
| Demeton -O, -S                    | .04 | UG/L          | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        |
| Total Organophosphorus Pesticides | .05 | =====<br>UG/L | 0.00        | 0.17        | 0.00        | 0.00        | 0.00        | 0.00        |

## ANNUAL 2017

## Organophosphorus Pesticides

| Source                            |     |       | MBC_COMBCN  | MBC_COMBCN  |
|-----------------------------------|-----|-------|-------------|-------------|
| Date                              |     |       | 02-MAY-2017 | 03-0CT-2017 |
| Analyte                           | MDL | Units | P936555     | P973075     |
|                                   | === |       | ==========  | ==========  |
| Demeton 0                         | .01 | UG/L  | ND          | ND          |
| Demeton S                         | .04 | UG/L  | ND          | ND          |
| Diazinon                          | .02 | UG/L  | ND          | ND          |
| Guthion                           | .03 | UG/L  | ND          | ND          |
| Malathion                         | .02 | UG/L  | ND          | ND          |
| Parathion                         | .01 | UG/L  | ND          | ND          |
| Chlorpyrifos                      | .02 | UG/L  | ND          | ND          |
| Coumaphos                         | .05 | UG/L  | ND          | ND          |
| Dichlorvos                        | .01 | UG/L  | ND          | ND          |
| Disulfoton                        | .01 | UG/L  | ND          | ND          |
| Stirophos                         | .01 | UG/L  | ND          | ND          |
|                                   | === | ===== | =========== |             |
| Thiophosphorus Pesticides         | .03 | UG/L  | 0.00        | 0.00        |
| Demeton -O, -S                    | .04 | UG/L  | 0.00        | 0.00        |
|                                   | === |       | ==========  | ==========  |
| Total Organophosphorus Pesticides | .05 | UG/L  | 0.00        | 0.00        |

| Source                            |     |       | MBC_NC_DSL  | MBC_NC_DSL  |
|-----------------------------------|-----|-------|-------------|-------------|
| Date                              |     |       | 02-MAY-2017 | 03-0CT-2017 |
| Analyte                           | MDL | Units | P936609     | P973109     |
|                                   | === | ===== |             |             |
| Demeton O                         | .01 | UG/L  | ND          | ND          |
| Demeton S                         | .04 | UG/L  | ND          | ND          |
| Diazinon                          | .02 | UG/L  | ND          | ND          |
| Guthion                           | .03 | UG/L  | ND          | ND          |
| Malathion                         | .02 | UG/L  | ND          | ND          |
| Parathion                         | .01 | UG/L  | ND          | ND          |
| Chlorpyrifos                      | .02 | UG/L  | ND          | ND          |
| Coumaphos                         | .05 | UG/L  | ND          | ND          |
| Dichlorvos                        | .01 | UG/L  | ND          | ND          |
| Disulfoton                        | .01 | UG/L  | ND          | ND          |
| Stirophos                         | .01 | UG/L  | ND          | ND          |
|                                   | === | ===== | =========   |             |
| Thiophosphorus Pesticides         | .03 | UG/L  | 0.00        | 0.00        |
| Demeton -0, -S                    | .04 | UG/L  | 0.00        | 0.00        |
|                                   | === | ===== | =========   |             |
| Total Organophosphorus Pesticides | .05 | UG/L  | 0.00        | 0.00        |

## ANNUAL 2017

## Organophosphorus Pesticides

| Source                            |     |       | MBC_NC_RSL  | MBC_NC_RSL  |
|-----------------------------------|-----|-------|-------------|-------------|
| Date                              |     |       | 02-MAY-2017 | 03-0CT-2017 |
| Analyte                           | MDL | Units | P936607     | P973107     |
|                                   | === | ===== | ==========  | ==========  |
| Demeton O                         | .01 | UG/L  | ND          | ND          |
| Demeton S                         | .04 | UG/L  | ND          | ND          |
| Diazinon                          | .02 | UG/L  | ND          | ND          |
| Guthion                           | .03 | UG/L  | ND          | ND          |
| Malathion                         | .02 | UG/L  | ND          | ND          |
| Parathion                         | .01 | UG/L  | ND          | ND          |
| Chlorpyrifos                      | .02 | UG/L  | ND          | ND          |
| Coumaphos                         | .05 | UG/L  | ND          | ND          |
| Dichlorvos                        | .01 | UG/L  | ND          | ND          |
| Disulfoton                        | .01 | UG/L  | ND          | ND          |
| Stirophos                         | .01 | UG/L  | ND          | ND          |
|                                   | === | ===== | ==========  | ==========  |
| Thiophosphorus Pesticides         | .03 | UG/L  | 0.00        | 0.00        |
| Demeton -O, -S                    | .04 | UG/L  | 0.00        | 0.00        |
|                                   | === | ===== | ==========  | ==========  |
| Total Organophosphorus Pesticides | .05 | UG/L  | 0.00        | 0.00        |

| Source                            |     |       | RAW COMP    | RAW COMP    |
|-----------------------------------|-----|-------|-------------|-------------|
| Date                              |     |       | 02-MAY-2017 | 03-0CT-2017 |
| Analyte                           | MDL | Units | P936580     | P973080     |
|                                   | === | ===== | ==========  |             |
| Demeton O                         | .01 | UG/L  | ND          | ND          |
| Demeton S                         | .04 | UG/L  | ND          | ND          |
| Diazinon                          | .02 | UG/L  | ND          | ND          |
| Guthion                           | .03 | UG/L  | ND          | ND          |
| Malathion                         | .02 | UG/L  | ND          | ND          |
| Parathion                         | .01 | UG/L  | ND          | ND          |
| Chlorpyrifos                      | .02 | UG/L  | ND          | ND          |
| Coumaphos                         | .05 | UG/L  | ND          | ND          |
| Dichlorvos                        | .01 | UG/L  | ND          | ND          |
| Disulfoton                        | .01 | UG/L  | ND          | ND          |
| Stirophos                         | .01 | UG/L  | ND          | ND          |
|                                   | === | ===== | =========   |             |
| Thiophosphorus Pesticides         | .03 | UG/L  | 0.00        | 0.00        |
| Demeton -O, -S                    | .04 | UG/L  | 0.00        | 0.00        |
|                                   | === | ===== | =========   |             |
| Total Organophosphorus Pesticides | .05 | UG/L  | 0.00        | 0.00        |

## ANNUAL 2017

## Organophosphorus Pesticides

| Source                            |     |       | DIG COMP    | DIG COMP    |
|-----------------------------------|-----|-------|-------------|-------------|
| Date                              |     |       | 02-MAY-2017 | 03-0CT-2017 |
| Analyte                           | MDL | Units | P936594     | P973094     |
|                                   | === | ===== | ==========  | =========   |
| Demeton O                         | .01 | UG/L  | ND          | ND          |
| Demeton S                         | .04 | UG/L  | ND          | ND          |
| Diazinon                          | .02 | UG/L  | ND          | ND          |
| Guthion                           | .03 | UG/L  | ND          | ND          |
| Malathion                         | .02 | UG/L  | ND          | ND          |
| Parathion                         | .01 | UG/L  | ND          | ND          |
| Chlorpyrifos                      | .02 | UG/L  | ND          | ND          |
| Coumaphos                         | .05 | UG/L  | ND          | ND          |
| Dichlorvos                        | .01 | UG/L  | ND          | ND          |
| Disulfoton                        | .01 | UG/L  | ND          | ND          |
| Stirophos                         | .01 | UG/L  | ND          | ND          |
|                                   | === | ===== |             |             |
| Thiophosphorus Pesticides         | .03 | UG/L  | 0.00        | 0.00        |
| Demeton -0, -S                    | .04 | UG/L  | 0.00        | 0.00        |
|                                   | === | ===== |             |             |
| Total Organophosphorus Pesticides | .05 | UG/L  | 0.00        | 0.00        |

## ANNUAL 2017

# Organophosphorus Pesticides

| Source                            |      |       | MBCDEWCN    | MBCDEWCN    |
|-----------------------------------|------|-------|-------------|-------------|
| Date                              |      |       | 31-MAY-2017 | 31-0CT-2017 |
| Analyte                           | MDL  | Units | P945968     | P979340     |
|                                   | ==== | ===== |             |             |
| Demeton O                         | 2.41 | UG/KG | ND          | ND          |
| Demeton S                         | 11.7 | UG/KG | ND          | ND          |
| Diazinon                          | 1.57 | UG/KG | ND          | ND          |
| Guthion                           | 13.2 | UG/KG | ND          | ND          |
| Malathion                         | 1.78 | UG/KG | ND          | ND          |
| Parathion                         | 2.04 | UG/KG | ND          | ND          |
| Chlorpyrifos                      | 1.94 | UG/KG | 42.3        | ND          |
| Coumaphos                         | 5.54 | UG/KG | ND          | ND          |
| Dichlorvos                        | 1.12 | UG/KG | ND          | ND          |
| Disulfoton                        | 4.1  | UG/KG | ND          | ND          |
| Stirophos                         | 3.55 | UG/KG | ND          | ND          |
|                                   | ==== | ===== |             |             |
| Thiophosphorus Pesticides         | 13.2 | UG/KG | 0.0         | 0.0         |
| Demeton -O, -S                    | 11.7 | UG/KG | 0.0         | 0.0         |
|                                   | ==== | ===== | ==========  | ==========  |
| Total Organophosphorus Pesticides | 13.2 | UG/KG | 42.3        | 0.0         |

## ANNUAL 2017

#### Base/Neutrals

| Source                          |     |       | MBCDEWCN                               | MBCDEWCN               | MBCDEWCN               | MBCDEWCN   |
|---------------------------------|-----|-------|----------------------------------------|------------------------|------------------------|------------|
| Analyte                         | мпі | Units | 28-FEB-2017<br>P925827                 | 51-MAY-2017<br>P945968 | 21-AUG-2017<br>P966456 | D979340    |
|                                 | === | ===== | ===========                            | ===========            | ===========            | ========== |
| Acenaphthene                    | 330 | UG/KG | ND                                     | ND                     | ND                     | ND         |
| Acenaphthylene                  | 330 | UG/KG | ND                                     | ND                     | ND                     | ND         |
| Anthracene                      | 330 | UG/KG | ND                                     | ND                     | ND                     | ND         |
| Benzidine                       | 330 | UG/KG | ND                                     | ND                     | ND                     | ND         |
| 3,4-Benzo(b)fluoranthene        | 330 | UG/KG | ND                                     | ND                     | ND                     | ND         |
| Benzo[k]fluoranthene            | 330 | UG/KG | ND                                     | ND                     | ND                     | ND         |
| Benzolajanthracene              | 330 | UG/KG | ND                                     | ND                     | ND                     | ND         |
| Benzo[a]pyrene                  | 330 | UG/KG | ND                                     | ND                     | ND                     | ND         |
| Benzolg,n,1]perylene            | 330 |       | ND                                     | ND                     | ND                     | ND         |
| Ris (2 chlonosthoxy) mothano    | 220 |       |                                        |                        |                        |            |
| Bis-(2-chloroethyl) ether       | 330 |       |                                        |                        |                        |            |
| Bis-(2-chloroisonronyl) ether   | 330 |       | ND                                     | ND                     | ND                     | ND         |
| 4-Chlorophenyl phenyl ether     | 330 | UG/KG | ND                                     | ND                     | ND                     | ND         |
| 2-Chloronaphthalene             |     | UG/KG | ND                                     | ND                     | ND                     | ND         |
| Chrysene                        | 330 | UG/KG | ND                                     | ND                     | ND                     | ND         |
| Dibenzo(a,h)anthracene          | 330 | UG/KG | ND                                     | ND                     | ND                     | ND         |
| Butyl benzyl phthalate          | 330 | UG/KG | ND                                     | ND                     | ND                     | 620        |
| Di-n-butyl phthalate            | 330 | UG/KG | ND                                     | <330                   | ND                     | ND         |
| Bis-(2-ethylhexyl) phthalate    | 330 | UG/KG | 53700                                  | 64900                  | ND                     | 70900      |
| Diethyl phthalate               | 330 | UG/KG | ND                                     | ND                     | ND                     | ND         |
| Dimethyl phthalate              | 330 | UG/KG | ND                                     | ND                     | ND                     | ND         |
| Di-n-octyl phthalate            | 330 | UG/KG | ND                                     | ND                     | 660                    | ND         |
| 3,3-Dichlorobenzidine           | 330 | UG/KG | ND                                     | ND                     | ND                     | ND         |
| 2,4-Dinitrotoluene              | 330 | UG/KG | ND                                     | ND                     | ND                     | ND         |
| 2,6-Dinitrotoluene              | 330 | UG/KG | ND                                     | ND                     | ND                     | ND         |
| 1,2-Diphenyinydrazine           | 220 |       |                                        | ND                     | ND                     | ND         |
| Fluoranchene                    | 330 |       | < 330                                  | ND                     | ND                     |            |
| Heyachlorobenzene               | 330 |       |                                        |                        |                        |            |
| Hexachlorobutadiene             | 330 |       | ND                                     | ND                     | ND                     | ND         |
| Hexachlorocyclopentadiene       | 330 |       | ND                                     | ND                     | ND                     | ND         |
| Hexachloroethane                | 330 | UG/KG | ND                                     | ND                     | ND                     | ND         |
| Indeno(1,2,3-CD)pyrene          | 330 | UG/KG | ND                                     | ND                     | ND                     | ND         |
| Isophorone                      | 330 | UG/KG | ND                                     | ND                     | ND                     | ND         |
| Naphthalene                     | 330 | UG/KG | 385                                    | 399                    | ND                     | ND         |
| Nitrobenzene                    | 330 | UG/KG | ND                                     | ND                     | ND                     | ND         |
| N-nitrosodimethylamine          | 330 | UG/KG | ND                                     | ND                     | ND                     | ND         |
| N-nitrosodi-n-propylamine       | 330 | UG/KG | ND                                     | ND                     | ND                     | ND         |
| N-nitrosodiphenylamine          | 330 | UG/KG | ND                                     | ND                     | ND                     | ND         |
| Phenanthrene                    | 330 | UG/KG | 632                                    | 407                    | 385                    | ND         |
| Pyrene                          | 330 | UG/KG | <330                                   | ND                     | ND                     | <330       |
| 1,2,4-Irichlorobenzene          | 330 | UG/KG | ND                                     | ND                     | ND                     | ND         |
| 1,2-Dichlorobenzene             | 330 |       | ND                                     | ND                     | ND                     | ND         |
| 1,3-Dichlonobenzene             | 330 |       | ND                                     | ND                     | ND                     |            |
| 1,4-DICHIOPODEHZENE             | 550 |       | UN<br>                                 | UN                     | UN                     | UN<br>     |
| PolyNuc Aromatic Hydrocarbons   | 330 |       | 632                                    | 407                    | 385                    |            |
| Dichlorobenzenes                | 330 | UG/KG | 0.52                                   | 407<br>0               | 905                    | 0          |
|                                 | === | ===== |                                        |                        |                        |            |
| Base/Neutral Compounds          | 330 | UG/KG | 54717                                  | 65706                  | 1045                   | 71520      |
| Additional Analytes Determined; | ;   |       |                                        |                        |                        |            |
| Benzo[e]nurene                  | === | ===== | ====================================== |                        |                        |            |
| Binbenyl                        |     |       |                                        | ND<br>105              | IND<br>ND              |            |
| 2.6-Dimethylnanhthalene         |     |       | 2020<br>2020                           | 1300                   | 1160                   | 1420       |
| 1-Methylnaphthalene             |     |       |                                        | UN<br>1996             | ND                     |            |
| 1-Methylphenanthrene            |     | UG/KG | ND                                     | ND                     | ND                     | ND         |
| 2-Methylnaphthalene             |     | UG/KG | 1060                                   | 542                    | 415                    | 345        |
| 2,3,5-Trimethylnaphthalene      |     | UG/KG | ND                                     | ND                     | ND                     | ND         |
| Perylene                        | 330 | UG/KG | ND                                     | ND                     | ND                     | ND         |
| Pyridine                        |     | UG/KG | ND                                     | ND                     | 218                    | ND         |

ND= not detected, NA= not analyzed, NS= not sampled

## ANNUAL 2017

#### Phenolics

| Source                             |     |       | MBCDEWCN    | MBCDEWCN    | MBCDEWCN    | MBCDEWCN    |           |
|------------------------------------|-----|-------|-------------|-------------|-------------|-------------|-----------|
| Date                               |     |       | 28-FEB-2017 | 31-MAY-2017 | 31-AUG-2017 | 31-0CT-2017 |           |
| Analyte                            | MDL | Units | P925827     | P945968     | P966456     | P979340     | Average   |
|                                    | === | ===== |             | ==========  |             |             | ========= |
| 2-Chlorophenol                     | 330 | UG/KG | ND          | ND          | ND          | ND          | ND        |
| <pre>4-Chloro-3-methylphenol</pre> | 330 | UG/KG | ND          | ND          | ND          | ND          | ND        |
| 2,4-Dichlorophenol                 | 330 | UG/KG | ND          | ND          | ND          | ND          | ND        |
| 2,4-Dimethylphenol                 | 330 | UG/KG | ND          | ND          | ND          | ND          | ND        |
| 2,4-Dinitrophenol                  | 330 | UG/KG | ND          | ND          | ND          | ND          | ND        |
| 2-Methyl-4,6-dinitrophenol         | 800 | UG/KG | ND          | ND          | ND          | ND          | ND        |
| 2-Nitrophenol                      | 330 | UG/KG | ND          | ND          | ND          | ND          | ND        |
| 4-Nitrophenol                      | 800 | UG/KG | ND          | ND          | ND          | ND          | ND        |
| Pentachlorophenol                  | 800 | UG/KG | ND          | ND          | ND          | ND          | ND        |
| Phenol                             | 330 | UG/KG | 4090        | 4630        | 4510        | 3270        | 4125      |
| 2,4,6-Trichlorophenol              | 330 | UG/KG | ND          | ND          | ND          | ND          | ND        |
| Total Chlorinated Phenols          | 800 | UG/KG | 0           | 0           | 0           | 0           | 0         |
|                                    | === | ===== |             | ==========  |             |             |           |
| Total Non-Chlorinated Phenols      | 800 | UG/KG | 4970        | 8150        | 6910        | 4240        | 6068      |
|                                    | === | ===== | ==========  | =========== | =========== |             |           |
| Phenols                            | 800 | UG/KG | 4970        | 8150        | 6910        | 4240        | 6068      |
| Additional Analytes Determined:    |     |       |             |             |             |             |           |
|                                    | === | ===== | =========   |             |             |             |           |
| 2-Methylphenol                     | 330 | UG/KG | ND          | 1690        | ND          | ND          | 423       |
| 4-Methylphenol(3-MP is unresolved) | 330 | UG/KG | 880         | 1830        | 2400        | 970         | 1520      |
| 2,4,5-Trichlorophenol              | 800 | UG/KG | ND          | ND          | ND          | ND          | ND        |

372

421

410

297

============

375

800 UG/KG

ND= not detected NA= not analyzed NS= not sampled

Phenols average

## ANNUAL 2017

# Purgeables

| Source<br>Date<br>Analyte       | MDL      | Units | MBCDEWCN<br>31-JAN-2017<br>P920340 | MBCDEWCN<br>28-FEB-2017<br>P925827 | MBCDEWCN<br>31-MAR-2017<br>P932213 | MBCDEWCN<br>30-APR-2017<br>P937935 | MBCDEWCN<br>31-MAY-2017<br>P945968 | MBCDEWCN<br>30-JUN-2017<br>P953132 |
|---------------------------------|----------|-------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|
|                                 | ====     |       |                                    |                                    |                                    |                                    |                                    |                                    |
| Acrolein                        | 6.4      | UG/KG | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 |
| Acrylonitrile                   | 3.9      | UG/KG | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 |
| Benzene                         | 2.1      | UG/KG | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 | DNQ11.2                            |
| Bromodichloromethane            | 2.2      | UG/KG | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 |
| Bromoform                       | 2.4      | UG/KG | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 |
| Bromomethane                    | 6.9      | UG/KG | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 | DNQ7.5                             |
| Carbon tetrachloride            | 3        | UG/KG | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 |
| Chlorobenzene                   | 1        | UG/KG | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 |
| Chloroethane                    | 3.6      | UG/KG | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 |
| Chlorotorm                      | 2.3      | UG/KG | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 |
| Chloromethane                   | 3.4      | UG/KG | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 |
| Dibromochloromethane            | 2.4      | UG/KG | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 |
| 1,2-Dichlorobenzene             | 1.5      | UG/KG | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 |
| 1,3-Dichlorobenzene             | 1.8      | UG/KG | ND                                 |                                    | ND                                 | ND                                 | ND                                 | ND                                 |
| 1,4-Dichlorobenzene             | 1.5      | UG/KG | 64.2                               | //.2                               | 91.2                               | 108                                | 85.1                               | 66.1                               |
| Dichlorodifluoromethane         | 5.56     |       | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 |
| 1,1-Dichlereethane              | 1.9      |       | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 |
| 1,2-Dichloroethane              | 3.6      |       | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 |
| 1,1-Dichioroethene              | э<br>э г |       | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 |                                    |
| 1.2 Dishlanannanan              | 3.5      |       | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 |                                    |
| i, 2-Dichioropropane            | 2.0      |       | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 |                                    |
| thans 1 2 dichlononnonon        | 2.5      |       |                                    |                                    |                                    |                                    |                                    |                                    |
| Ethylbonzono                    | 2.1      |       | 211                                | 100                                | 120                                | 100                                | 140                                | 255                                |
| Mothylono chlonido              | 25       |       |                                    | 409                                | 420<br>ND                          | 499<br>DNO7 1                      |                                    |                                    |
| 1 1 2 2 Totpachlopoothano       | 5.5      |       |                                    |                                    |                                    |                                    |                                    |                                    |
| Tetrachloroethene               | 2.9      |       |                                    |                                    |                                    |                                    |                                    |                                    |
| Toluene                         | 2.0      |       | 103                                | 133                                | 132                                | 144                                | * 127                              | 122                                |
| 1 1 1-Trichloroethane           | 3.2      |       | ND<br>103                          | 133                                | 132                                | 144<br>ND                          | · 127                              | ND                                 |
| 1 1 2-Trichloroethane           | 2.2      |       |                                    |                                    |                                    |                                    |                                    |                                    |
| Trichloroethene                 | 2.0      |       | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 |
| Trichlorofluoromethane          | 2.0      |       | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 |
| Vinvl chloride                  | 4 8      |       | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 |
| 1.2.4-Trichlorobenzene          | 2.5      |       | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 |
|                                 | ====     | ===== | =======                            | =======                            | =======                            | =======                            | =======                            |                                    |
| Halomethane Purgeable Compounds | 6.9      | UG/KG | 0.0                                | 0.0                                | 0.0                                | 0.0                                | 0.0                                | 0.0                                |
| Purgeable Compounds             | 6.9      | UG/KG | 239.1                              | 619.2                              | 651.2                              | 607.0                              | 652.1                              | 543.1                              |
| Additional Analytes Determined: |          |       |                                    |                                    |                                    |                                    |                                    |                                    |
|                                 | ====     | ===== |                                    |                                    |                                    |                                    |                                    |                                    |
| Acetone                         | 31.4     | UG/KG | 23200                              | 19400                              | 26200                              | 24600                              | 24400                              | 36800                              |
| Allyl chloride                  | 3.6      | UG/KG | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 |
| Benzyl chloride                 | 4.3      | UG/KG | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 |
| 2-Butanone                      | 36.3     | UG/KG | 7020                               | 5860                               | 7400                               | 7590                               | 6530                               | 15200                              |
| Carbon disulfide                | 4.7      | UG/KG | 75.5                               | 71.1                               | 98.6                               | 113                                | 127                                | 94.5                               |
| Chloroprene                     | 3.1      | UG/KG | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 |
| 1,2-Dibromoethane               | 2.5      | UG/KG | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 |
| Isopropylbenzene                | 1.3      | UG/KG | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 |
| Methyl Iodide                   | 3.8      | UG/KG | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 |
| Methyl methacrylate             | 2.4      | UG/KG | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 |
| Methyl tert-butyl ether         | 3.4      | UG/KG | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 |
| 2-Nitropropane                  | 45.8     | UG/KG | _ ND                               | ND                                 | ND                                 | _ND                                | ND                                 | ND                                 |
| ortho-xylene                    | 1.9      | UG/KG | 35.6                               | 41.4                               | 38.0                               | 45.4                               | 42.1                               | 37.8                               |
| Styrene                         | 1.7      | UG/KG | 47.7                               | 66.5                               | 60.2                               | 78.9                               | 70.5                               | 82.3                               |
| meta, para xylenes              | 4.2      | UG/KG | /3.3                               | /7.5                               | /2.1                               | 83.7                               | /7.8                               | 68.8                               |
| 2-Chioroethyivinyi ether        | 5.5      |       | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 | ND                                 |
| 4-methy1-2-pentanone            | 9./      | UG/KG | 31.2                               | 31.5                               | 43.1                               | 38.3                               | 44.8                               | 89.0                               |

ND= not detected, NA= not analyzed, NS= not sampled

\* = Method blank value above the MDL; sample result not included in average calculations.

DNQ= Detected but not quantified. Sample result is less than minimum Level but greater than or equal to MDL.

## ANNUAL 2017

# Purgeables

| Source                                          |             |       | MBCDEWCN     | MBCDEWCN    | MBCDEWCN    | MBCDEWCN     | MBCDEWCN     | Average                            |
|-------------------------------------------------|-------------|-------|--------------|-------------|-------------|--------------|--------------|------------------------------------|
| Date                                            |             |       | 31-JUL-201/  | 31-AUG-201/ | 30-SEP-2017 | 31-001-2017  | 31-DEC-2017  |                                    |
| Analyte                                         | MDL         | Units | P959635      | P966456     | P974186     | P979340      | P992862      |                                    |
|                                                 | ====        | ===== | =======      |             |             |              |              |                                    |
| Acrolein                                        | 6.4         | UG/KG | ND           | ND          | ND          | ND           | ND           | ND                                 |
| Acrytonicrite                                   | 3.9         |       |              | ND          | ND          | ND           | ND           | ND<br>0.0                          |
| Benzene                                         | 2.1         |       | DNQ4.7       | ND          | ND          | ND           | ND           | 0.0                                |
| Bromodichioromethane                            | 2.2         |       | ND           | ND          | ND          | ND           | ND           | ND                                 |
| Bromotorm                                       | 2.4         |       | ND           | ND          | ND          | ND           | ND           | ND                                 |
| Bromometnane                                    | 6.9         |       | ND           | ND          | ND          | ND           | ND           | 0.0                                |
| Carbon tetrachioride                            | 3           |       | ND           | ND          | ND          | ND           | ND           | ND                                 |
| Chlorobenzene                                   | 1           |       | ND           | ND          | ND          | ND           | ND           | ND                                 |
| Chlonoform                                      | 3.0         |       | ND           |             | ND          | ND           | ND           | ND                                 |
| Chlorotorm                                      | 2.3         |       | ND           | ND          | ND          | ND           | ND           | ND                                 |
|                                                 | 3.4         |       | ND           | ND          | ND          | ND           | ND           | ND                                 |
| 1 2 Dishlashasana                               | 2.4         |       | ND           | ND          | ND          | ND           | ND           | ND                                 |
| 1,2-Dichlorobenzene                             | 1.5         |       | ND           | ND          | ND          | ND           | ND           | ND                                 |
| 1,3-Dichlorobenzene                             | 1.8         | UG/KG |              | ND          | ND          |              |              |                                    |
| 1,4-Dichlorobenzene                             | 1.5         | UG/KG | 57.3         | 49.2        | 65.1        | 5/.2         | 63.2         | /1.3                               |
| Dichlorodifluoromethane                         | 5.56        | UG/KG | ND           | ND          | ND          | ND           | ND           | ND                                 |
| 1,1-Dichloroethane                              | 1.9         | UG/KG | ND           | ND          | ND          | ND           | ND           | ND                                 |
| 1,2-Dichloroethane                              | 3.6         | UG/KG | ND           | ND          | ND          | ND           | ND           | ND                                 |
| 1,1-Dichloroethene                              | 5           | UG/KG | ND           | ND          | ND          | ND           | ND           | ND                                 |
| trans-1,2-dichloroethene                        | 3.5         | UG/KG | ND           | ND          | ND          | ND           | ND           | ND                                 |
| 1,2-Dichloropropane                             | 2.6         | UG/KG | ND           | ND          | ND          | ND           | ND           | ND                                 |
| cis-1,3-dichloropropene                         | 2.5         | UG/KG | ND           | ND          | ND          | ND           | ND           | ND                                 |
| trans-1,3-dichloropropene                       | 2.1         | UG/KG | ND           | ND          | ND          | ND           | ND           | ND                                 |
| Ethylbenzene                                    | 1.4         | UG/KG | 362          | 2/8         | 321         | 303          | 247          | 360                                |
| Methylene chloride                              | 3.5         | UG/KG | DNQ5.2       | DNQ4.8      | 101'        | s ND         | DNQ6.4       | 0.0                                |
| 1,1,2,2-Tetrachloroethane                       | 5.9         | UG/KG | ND           | ND          | ND          | ND           | ND           | ND                                 |
| Tetrachloroethene                               | 2.8         | UG/KG | ND           | ND          | ND          | ND           | ND           | ND                                 |
| loluene                                         | 1.2         | UG/KG | 1/5          | 137         | 146         | 109          | 125          | 131                                |
| 1,1,1-Trichloroethane                           | 3.2         | UG/KG | ND           | ND          | ND          | ND           | ND           | ND                                 |
| 1,1,2-Trichloroethane                           | 2.8         | UG/KG | ND           | ND          | ND          | ND           | ND           | ND                                 |
| Trichloroethene                                 | 2.6         | UG/KG | ND           | ND          | ND          | ND           | ND           | ND                                 |
| Trichlorofluoromethane                          | 2.2         | UG/KG | ND           | ND          | ND          | ND           | ND           | ND                                 |
| Vinyl chloride                                  | 4.8         | UG/KG | ND           | ND          | ND          | ND           | ND           | ND                                 |
| 1,2,4-Trichlorobenzene                          | 2.5         | UG/KG | ND           | ND          | ND          | ND           | ND           | ND                                 |
|                                                 |             | ===== |              |             |             |              |              |                                    |
| Halomethane Purgeable Compounds                 | 6.9         | UG/KG | 0.0          | 0.0         | 0.0         | 0.0          | 0.0          | 0.0                                |
| Purgeable Compounds                             | ====<br>6.9 | UG/KG | 594.3        | 464.2       | 532.1       | 469.2        | 435.2        | 562                                |
|                                                 |             |       |              |             |             |              |              |                                    |
| Additional Analytes Determined:                 |             |       |              |             |             |              |              |                                    |
|                                                 | 31 /        |       | 20000        | 22800       | 10/00       | 18200        | 18000        | ================================== |
| Allyl chlonido                                  | 2 6         |       | 29900        | 22000       | 19400       | 10200        | 10900        | 23982<br>ND                        |
| Renzyl chlonide                                 | 1.0         |       |              |             |             | ND           |              |                                    |
| 2 Rutanono                                      | 26 2        |       | ND<br>8650   | 1020        | 5940        | 5200         | 5920         |                                    |
| Carbon disulfido                                | 1 7         |       | 00.00        | 4930        | 102         | 2300         | 00.0         | 07 1                               |
| Chlononnana                                     | 4.7         |       | 9.0C         | 113         | 102         | 00.3         | 00.4         | 57.1                               |
| 1 2 Dibnemeethane                               | 2.1         |       |              |             |             | ND           | ND           |                                    |
| I, 2-DIDPOMOECHARE                              | 2.5         |       |              |             |             |              |              |                                    |
| Mothyl Todido                                   | 2.2         |       |              |             | ND          | ND           | ND           |                                    |
| Mothyl mothachylato                             | 5.0<br>2 /  |       |              | IND ND      |             |              |              |                                    |
| Mothyl topt butyl othon                         | 2.4         |       |              | ND<br>ND    |             |              |              |                                    |
| 2 Nithonponano                                  | 2.4<br>۸۶ ۹ |       |              | ND ND       | IND ND      |              |              | ND                                 |
| 2-NICLOUROPARE                                  | 40.0<br>1 0 |       |              | עאו<br>ססר  |             | עע<br>סבר    |              | עוא<br>סיסכ                        |
| Stypopo                                         | 17          |       | 0.85         | 20.2        | 40.2        | 22.2         | 52.9<br>20 C | 50.0<br>60 F                       |
| mota nana vulones                               | 1./<br>/ 2  |       | 92.8<br>72 4 | 141<br>20 4 | 45.3        | 39.8<br>CE 7 | 39.0         | 5.5ט.1<br>ר כד                     |
| nicca, para xyrenes<br>2 Chlonoothylyinyl othon | 4.2<br>5 5  |       | /2.4         | 00.4        | /2.9        | /.co<br>مالا | .4           | /2.1                               |
| 4 Mothyl 2 poptarana                            | 5.5<br>0 7  |       | ND<br>4.2 1  |             |             |              |              |                                    |
| 4-methy1-2-pentanone                            | 3.1         | 00/K0 | 43.1         | 39.5        | 20.0        | 30.2         | 30.8         | 40./                               |

ND= not detected, NA= not analyzed, NS= not sampled

\* = Method blank value above the MDL; sample result not included in average calculations.

DNQ= Detected but not quantified. Sample result is less than minimum Level but greater than or equal to MDL.

#### ANNUAL 2017

# Dioxin and Furan AnalysiS

| Source                  |       |       | MBCDEWCN    |
|-------------------------|-------|-------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Date                    |       |       | 31-JAN-2017 | 28-FEB-2017 | 31-MAR-2017 | 30-APR-2017 | 31-MAY-2017 | 30-JUN-2017 | 31-JUL-2017 |
| Analyte                 | MDL   | Units | P920340     | P925827     | P932213     | P937935     | P945968     | P953132     | P959635     |
|                         | ===== | ===== |             | ==========  | =======     |             | =========== |             |             |
| 2,3,7,8-tetra CDD       | .315  | PG/G  | DNQ0.902    | ND          | DNQ0.733    | ND          | ND          | DNQ0.887    | ND          |
| 1,2,3,7,8-penta CDD     | .084  | PG/G  | DNQ2.78     | DNQ2.26     | DNQ5.4      | ND          | ND          | DNQ2.58     | DNQ2.19     |
| 1,2,3,4,7,8_hexa_CDD    | .0793 | PG/G  | DNQ2.29     | DNQ1.58     | DNQ1.81     | DNQ1.87     | DNQ1.89     | DNQ1.69     | DNQ1.69     |
| 1,2,3,6,7,8-hexa CDD    | .094  | PG/G  | 16.0        | 13.3        | 14.9        | 18.3        | 11.0        | 14.7        | 11.2        |
| 1,2,3,7,8,9-hexa CDD    | .0823 | PG/G  | DNQ6.70     | DNQ5.41     | DNQ6.39     | DNQ6.81     | DNQ4.63     | DNQ4.98     | DNQ4.06     |
| 1,2,3,4,6,7,8-hepta CDD | .0842 | PG/G  | 338         | 289         | 281         | 280         | 205         | 246         | 212         |
| octa CDD                | .172  | PG/G  | 1570        | 1400        | 1400        | 1240        | 1030        | 1150        | 934         |
| 2,3,7,8-tetra CDF       | .0277 | PG/G  | 4.22        | 3.70        | 3.70        | 5.07        | 4.02        | 476         | 4.64        |
| 1,2,3,7,8-penta CDF     | .0449 | PG/G  | DNQ1.68     | DNQ1.15     | DNQ1.43     | DNQ1.78     | DNQ1.65     | DNQ1.67     | DNQ1.67     |
| 2,3,4,7,8-penta CDF     | .0468 | PG/G  | DNQ2.01     | DNQ1.37     | DNQ2.36     | DNQ2.10     | DNQ2.76     | DNQ1.46     | DNQ1.73     |
| 1,2,3,4,7,8-hexa CDF    | .0437 | PG/G  | DNQ2.16     | DNQ1.81     | DNQ2.20     | DNQ2.37     | DNQ1.89     | DNQ2.32     | DNQ2.31     |
| 1,2,3,6,7,8-hexa CDF    | .0417 | PG/G  | DNQ2.13     | DNQ1.49     | DNQ2.08     | DNQ2.35     | DNQ2.64     | DNQ3.21     | DNQ2.66     |
| 1,2,3,7,8,9-hexa CDF    | .0657 | PG/G  | DNQ0.983    | L DNQ0.625  | DNQ0.946    | DNQ1.12     | DNQ0.929    | DNQ1.04     | DNQ0.816    |
| 2,3,4,6,7,8-hexa CDF    | .0574 | PG/G  | DNQ2.31     | DNQ1.86     | DNQ2.26     | DNQ2.41     | DNQ2.11     | DNQ2.71     | DNQ2.67     |
| 1,2,3,4,6,7,8-hepta CDF | .0747 | PG/G  | 25.2        | 18.3        | 22.8        | 23.2        | 18.8        | 21.3        | 19.6        |
| 1,2,3,4,7,8,9-hepta CDF | .0883 | PG/G  | DNQ1.84     | DNQ1.30     | DNQ1.75     | DNQ1.57     | DNQ1.45     | DNQ1.71     | DNQ1.06     |
| octa CDF                | .776  | PG/G  | 61.9        | 46.4        | 58.9        | 56.9        | 43.3        | 54.9        | 42.7        |

| Source                  |       |       | MBCDEWCN    | MBCDEWCN    | MBCDEWCN    | MBCDEWCN    | MBCDEWCN    |
|-------------------------|-------|-------|-------------|-------------|-------------|-------------|-------------|
| Date                    |       |       | 31-AUG-2017 | 30-SEP-2017 | 31-0CT-2017 | 30-NOV-2017 | 31-DEC-2017 |
| Analyte                 | MDL   | Units | P966456     | P974186     | P979340     | P986442     | P992862     |
|                         | ===== | ===== | ==========  |             |             |             |             |
| 2,3,7,8-tetra CDD       | .315  | PG/G  | ND          | DNQ0.644    | ND          | DNQ0.799    | ND          |
| 1,2,3,7,8-penta CDD     | .084  | PG/G  | DNQ2.09     | DNQ2.88     | DNQ4.21     | DNQ5.05     | ND          |
| 1,2,3,4,7,8_hexa_CDD    | .0793 | PG/G  | DNQ1.58     | DNQ1.63     | DNQ1.72     | DNQ1.76     | DNQ1.66     |
| 1,2,3,6,7,8-hexa CDD    | .094  | PG/G  | 14.3        | 11.2        | 16.0        | 15.5        | 10.6        |
| 1,2,3,7,8,9-hexa CDD    | .0823 | PG/G  | DNQ4.79     | DNQ3.96     | DNQ5.15     | DNQ5.62     | DNQ3.86     |
| 1,2,3,4,6,7,8-hepta CDD | .0842 | PG/G  | 247         | 235         | 248         | 251         | 225         |
| octa CDD                | .172  | PG/G  | 993         | 1180        | 1040        | 1010        | 1100        |
| 2,3,7,8-tetra CDF       | .0277 | PG/G  | 3.71        | 4.48        | 4.60        | 4.11        | 3.84        |
| 1,2,3,7,8-penta CDF     | .0449 | PG/G  | DNQ1.60     | DNQ1.64     | DNQ2.06     | DNQ2.35     | DNQ1.79     |
| 2,3,4,7,8-penta CDF     | .0468 | PG/G  | DNQ2.80     | DNQ1.67     | DNQ2.38     | DNQ2.19     | DNQ1.95     |
| 1,2,3,4,7,8-hexa CDF    | .0437 | PG/G  | DNQ2.16     | DNQ2.46     | DNQ2.26     | DNQ2.54     | DNQ2.57     |
| 1,2,3,6,7,8-hexa CDF    | .0417 | PG/G  | DNQ2.15     | DNQ2.01     | DNQ2.17     | DNQ2.07     | DNQ3.23     |
| 1,2,3,7,8,9-hexa CDF    | .0657 | PG/G  | DNQ1.15     | DNQ1.01     | DNQ1.23     | DNQ1.11     | DNQ0.942    |
| 2,3,4,6,7,8-hexa CDF    | .0574 | PG/G  | DNQ2.52     | DNQ2.76     | DNQ2.90     | DNQ2.94     | DNQ2.69     |
| 1,2,3,4,6,7,8-hepta CDF | .0747 | PG/G  | 18.9        | 20.8        | 19.8        | 21.0        | 20.5        |
| 1,2,3,4,7,8,9-hepta CDF | .0883 | PG/G  | DNQ1.76     | DNQ1.65     | DNQ2.36     | DNQ1.63     | DNQ1.61     |
| octa CDF                | .776  | PG/G  | 40.0        | 47.1        | 44.9        | 48.2        | 48.5        |

Above are permit required CDD/CDF isomers.

ND=not detected; NS=not sampled; NA=not analyzed; NR=not required

DNQ= Detected but not quantified. Sample result is less than minimum Level but greater than or equal to MDL.

ANALYZED BY: Frontier Analytical Laboratories

H. Results of "Title 22" Sludge Hazardous Waste Tests

# **Title 22 CCR Summary Tables**

Concentrations of Title 22 analytes (metals and organics) both on a wet weight and dry weight basis for monthly composite of daily samples of sludge being hauled from the Metro Biosolids Center are presented.

The tables also list the TTLC (Total Threshold Limit Concentration) or STLC (Soluble Threshold Limit Concentration) limits in the left column for each analyte.

Definition: MBCDEWCN = Metro Biosolids Center dewatered sludge.

#### 2017 POINT LOMA WASTEWATER TREATMENT PLANT ANNUAL REPORT

Y\'EM TS\41.Sec tions \WCS\REP ORTS\P LWWTP \Annua k\Annua120 I7\Bioso lids\[SLDG\_T22 xkx]SLDG\_T22

CALIFORNIA HAZARDOUS WASTE IDENTIFICATION TEST (TITLE 22)

METRO BIOSOLIDS CENTER (MBC)

| METALS                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                    | W ET V                                                                                                                                                                                                              | VEIGHT Concentra                                                                                                                                                                                                                                                                                                    | tion (calculated                                                                                                                                                                                    | )                                                                                                                                                                                                                                               |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                       |                                                                                                                                                                                                           |                                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                            | TILC                                                                                                                                                                               | MBCDEWCN                                                                                                                                                                                                            | MBCDEW CN                                                                                                                                                                                                                                                                                                           | MBCDEWCN                                                                                                                                                                                            | MBCDEWCN                                                                                                                                                                                                                                        | MBCDEWCN                                                                                                                                                                                                                 | MBCDEWCN                                                                                                                                                                                                                         | MBCDEWCN                                                                                                                                                                                                                         | MBCDEWCN                                                                                                                                                                                                                     | MBCDEW CN                                                                                                                                                                                                                               | MBCDEWCN                                                                                                                                                                                                              | MBCDEW CN                                                                                                                                                                                                 | MBCDEWCN                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                            | Wet wt                                                                                                                                                                             | Jan-17                                                                                                                                                                                                              | Feb-17                                                                                                                                                                                                                                                                                                              | Mar-17                                                                                                                                                                                              | Apr-17                                                                                                                                                                                                                                          | May-17                                                                                                                                                                                                                   | Jun-17                                                                                                                                                                                                                           | Jul-17                                                                                                                                                                                                                           | Aug-17                                                                                                                                                                                                                       | Sep-17                                                                                                                                                                                                                                  | Oct-17                                                                                                                                                                                                                | Nov-17                                                                                                                                                                                                    | Dec-17                                                                                                                                                                                                  |
| ANALYTE                                                                                                                                                                                                                                                                                                                    | mg/Kg                                                                                                                                                                              | P920340                                                                                                                                                                                                             | P925827                                                                                                                                                                                                                                                                                                             | P932213                                                                                                                                                                                             | P937935                                                                                                                                                                                                                                         | P945968                                                                                                                                                                                                                  | P953132                                                                                                                                                                                                                          | P959635                                                                                                                                                                                                                          | P966456                                                                                                                                                                                                                      | P974186                                                                                                                                                                                                                                 | P979340                                                                                                                                                                                                               | P986442                                                                                                                                                                                                   | P992862                                                                                                                                                                                                 |
| ANT IMONY                                                                                                                                                                                                                                                                                                                  | 500                                                                                                                                                                                | 1.76                                                                                                                                                                                                                | 1.65                                                                                                                                                                                                                                                                                                                | 1.68                                                                                                                                                                                                | 1.71                                                                                                                                                                                                                                            | 1.01                                                                                                                                                                                                                     | 1.56                                                                                                                                                                                                                             | 1.88                                                                                                                                                                                                                             | 1.78                                                                                                                                                                                                                         | < 0.091                                                                                                                                                                                                                                 | < 0.09                                                                                                                                                                                                                | 2.16                                                                                                                                                                                                      | 1.52                                                                                                                                                                                                    |
| ARSENIC                                                                                                                                                                                                                                                                                                                    | 500                                                                                                                                                                                | 1.8                                                                                                                                                                                                                 | 1.83                                                                                                                                                                                                                                                                                                                | 2.3                                                                                                                                                                                                 | 1.47                                                                                                                                                                                                                                            | 0.92                                                                                                                                                                                                                     | 1.01                                                                                                                                                                                                                             | 0.43                                                                                                                                                                                                                             | 0.89                                                                                                                                                                                                                         | 1.0                                                                                                                                                                                                                                     | 0.37                                                                                                                                                                                                                  | 0.73                                                                                                                                                                                                      | 0.78                                                                                                                                                                                                    |
| BARIUM                                                                                                                                                                                                                                                                                                                     | 10000                                                                                                                                                                              | 126                                                                                                                                                                                                                 | 146                                                                                                                                                                                                                                                                                                                 | 132                                                                                                                                                                                                 | 105                                                                                                                                                                                                                                             | 91.3                                                                                                                                                                                                                     | 85                                                                                                                                                                                                                               | 85.8                                                                                                                                                                                                                             | 79.5                                                                                                                                                                                                                         | 20.7                                                                                                                                                                                                                                    | 12.3                                                                                                                                                                                                                  | 75.0                                                                                                                                                                                                      | 78.5                                                                                                                                                                                                    |
| BERYLLIUM                                                                                                                                                                                                                                                                                                                  | 75                                                                                                                                                                                 | 0.016                                                                                                                                                                                                               | 0.026                                                                                                                                                                                                                                                                                                               | 0.86                                                                                                                                                                                                | 0.014                                                                                                                                                                                                                                           | 0.008                                                                                                                                                                                                                    | 0.01                                                                                                                                                                                                                             | 0.013                                                                                                                                                                                                                            | 0.021                                                                                                                                                                                                                        | DNQ 0.015                                                                                                                                                                                                                               | 0.005                                                                                                                                                                                                                 | < 0.017                                                                                                                                                                                                   | < 0.005                                                                                                                                                                                                 |
| CADMIUM                                                                                                                                                                                                                                                                                                                    | 100                                                                                                                                                                                | < 0.027                                                                                                                                                                                                             | 0.105                                                                                                                                                                                                                                                                                                               | 0.09                                                                                                                                                                                                | 0.25                                                                                                                                                                                                                                            | 0.154                                                                                                                                                                                                                    | 0.22                                                                                                                                                                                                                             | 0.22                                                                                                                                                                                                                             | 0.238                                                                                                                                                                                                                        | DNQ 0.10                                                                                                                                                                                                                                | 0.078                                                                                                                                                                                                                 | 0.187                                                                                                                                                                                                     | 0.198                                                                                                                                                                                                   |
| CHROMIUM(VI)                                                                                                                                                                                                                                                                                                               | 500                                                                                                                                                                                | NA                                                                                                                                                                                                                  | NA                                                                                                                                                                                                                                                                                                                  | NA                                                                                                                                                                                                  | NA                                                                                                                                                                                                                                              | NA                                                                                                                                                                                                                       | NA                                                                                                                                                                                                                               | NA                                                                                                                                                                                                                               | NA                                                                                                                                                                                                                           | NA                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                    | NA                                                                                                                                                                                                        | NA                                                                                                                                                                                                      |
| CHROMIUM(total)                                                                                                                                                                                                                                                                                                            | 2500                                                                                                                                                                               | 12                                                                                                                                                                                                                  | 12.6                                                                                                                                                                                                                                                                                                                | 12.1                                                                                                                                                                                                | 11                                                                                                                                                                                                                                              | 11.7                                                                                                                                                                                                                     | 12.4                                                                                                                                                                                                                             | 11.9                                                                                                                                                                                                                             | 12.038                                                                                                                                                                                                                       | 3.29                                                                                                                                                                                                                                    | 2.87                                                                                                                                                                                                                  | 13.1                                                                                                                                                                                                      | 11.2                                                                                                                                                                                                    |
| COBALT                                                                                                                                                                                                                                                                                                                     | 8000                                                                                                                                                                               | 1.08                                                                                                                                                                                                                | 1.13                                                                                                                                                                                                                                                                                                                | 1.13                                                                                                                                                                                                | 0.994                                                                                                                                                                                                                                           | 0.64                                                                                                                                                                                                                     | 1.02                                                                                                                                                                                                                             | 1.01                                                                                                                                                                                                                             | 1.09                                                                                                                                                                                                                         | DNQ 0.278                                                                                                                                                                                                                               | 0.232                                                                                                                                                                                                                 | 0.970                                                                                                                                                                                                     | 0.949                                                                                                                                                                                                   |
| COPPER                                                                                                                                                                                                                                                                                                                     | 2500                                                                                                                                                                               | 172                                                                                                                                                                                                                 | 204                                                                                                                                                                                                                                                                                                                 | 195                                                                                                                                                                                                 | 173                                                                                                                                                                                                                                             | 166                                                                                                                                                                                                                      | 163                                                                                                                                                                                                                              | 175                                                                                                                                                                                                                              | 174                                                                                                                                                                                                                          | 45.5                                                                                                                                                                                                                                    | 39.2                                                                                                                                                                                                                  | 172                                                                                                                                                                                                       | 172                                                                                                                                                                                                     |
| LEAD                                                                                                                                                                                                                                                                                                                       | 1000                                                                                                                                                                               | 4.1                                                                                                                                                                                                                 | 4.5                                                                                                                                                                                                                                                                                                                 | 4.4                                                                                                                                                                                                 | 4.0                                                                                                                                                                                                                                             | 2.4                                                                                                                                                                                                                      | 3.7                                                                                                                                                                                                                              | 3.7                                                                                                                                                                                                                              | 4.1                                                                                                                                                                                                                          | 1.2                                                                                                                                                                                                                                     | 1.0                                                                                                                                                                                                                   | 4.3                                                                                                                                                                                                       | 3.4                                                                                                                                                                                                     |
| MERCURY^                                                                                                                                                                                                                                                                                                                   | 20                                                                                                                                                                                 | 0.29                                                                                                                                                                                                                | 0.17                                                                                                                                                                                                                                                                                                                | 0.305                                                                                                                                                                                               | 0.289                                                                                                                                                                                                                                           | 0.398                                                                                                                                                                                                                    | 0.45                                                                                                                                                                                                                             | 0.297                                                                                                                                                                                                                            | 0.335                                                                                                                                                                                                                        | 0.276                                                                                                                                                                                                                                   | 0.222                                                                                                                                                                                                                 | 0.231                                                                                                                                                                                                     | 0.064                                                                                                                                                                                                   |
| MERCURY#                                                                                                                                                                                                                                                                                                                   | 20                                                                                                                                                                                 | 0.33                                                                                                                                                                                                                | 0.202                                                                                                                                                                                                                                                                                                               | 0.308                                                                                                                                                                                               | 0.281                                                                                                                                                                                                                                           | 0.350                                                                                                                                                                                                                    | 0.437                                                                                                                                                                                                                            | 0.306                                                                                                                                                                                                                            | 0.441                                                                                                                                                                                                                        | 0.309                                                                                                                                                                                                                                   | 0.081                                                                                                                                                                                                                 | 0.037                                                                                                                                                                                                     | 0.241                                                                                                                                                                                                   |
| MOLYBDENUM                                                                                                                                                                                                                                                                                                                 | 3500                                                                                                                                                                               | 5.23                                                                                                                                                                                                                | 4.88                                                                                                                                                                                                                                                                                                                | 4.34                                                                                                                                                                                                | 4.23                                                                                                                                                                                                                                            | 2.82                                                                                                                                                                                                                     | 4.78                                                                                                                                                                                                                             | 5.60                                                                                                                                                                                                                             | 6.23                                                                                                                                                                                                                         | 1.62                                                                                                                                                                                                                                    | 1.28                                                                                                                                                                                                                  | 5.26                                                                                                                                                                                                      | 4.72                                                                                                                                                                                                    |
| NICKEL                                                                                                                                                                                                                                                                                                                     | 2000                                                                                                                                                                               | 6.48                                                                                                                                                                                                                | 7.33                                                                                                                                                                                                                                                                                                                | 7.87                                                                                                                                                                                                | 6.47                                                                                                                                                                                                                                            | 3.96                                                                                                                                                                                                                     | 7.1                                                                                                                                                                                                                              | 6.97                                                                                                                                                                                                                             | 6.84                                                                                                                                                                                                                         | 1.97                                                                                                                                                                                                                                    | 1.62                                                                                                                                                                                                                  | 5.26                                                                                                                                                                                                      | 5.68                                                                                                                                                                                                    |
| SELENIUM                                                                                                                                                                                                                                                                                                                   | 100                                                                                                                                                                                | 1.44                                                                                                                                                                                                                | 0.443                                                                                                                                                                                                                                                                                                               | 1.15                                                                                                                                                                                                | 0.573                                                                                                                                                                                                                                           | 1.23                                                                                                                                                                                                                     | 1.21                                                                                                                                                                                                                             | 1.26                                                                                                                                                                                                                             | 1.10                                                                                                                                                                                                                         | < 0.43                                                                                                                                                                                                                                  | < 0.14                                                                                                                                                                                                                | 0.855                                                                                                                                                                                                     | 0.99                                                                                                                                                                                                    |
| SILVER                                                                                                                                                                                                                                                                                                                     | 500                                                                                                                                                                                | 0.89                                                                                                                                                                                                                | 1.2                                                                                                                                                                                                                                                                                                                 | 1.04                                                                                                                                                                                                | 0.99                                                                                                                                                                                                                                            | 0.569                                                                                                                                                                                                                    | 0.842                                                                                                                                                                                                                            | 1.04                                                                                                                                                                                                                             | 0.942                                                                                                                                                                                                                        | DNO 0.304                                                                                                                                                                                                                               | 0.209                                                                                                                                                                                                                 | 0.768                                                                                                                                                                                                     | 0.943                                                                                                                                                                                                   |
| THALLIUM                                                                                                                                                                                                                                                                                                                   | 700                                                                                                                                                                                | < 0.11                                                                                                                                                                                                              | 0.122                                                                                                                                                                                                                                                                                                               | 0.12                                                                                                                                                                                                | < 0.11                                                                                                                                                                                                                                          | 0.117                                                                                                                                                                                                                    | < 0.108                                                                                                                                                                                                                          | < 0.11                                                                                                                                                                                                                           | < 0.106                                                                                                                                                                                                                      | < 0.129                                                                                                                                                                                                                                 | < 0.08                                                                                                                                                                                                                | < 0.05                                                                                                                                                                                                    | < 0.11                                                                                                                                                                                                  |
| VANADIUM                                                                                                                                                                                                                                                                                                                   | 2400                                                                                                                                                                               | 6.37                                                                                                                                                                                                                | 7.90                                                                                                                                                                                                                                                                                                                | 7.50                                                                                                                                                                                                | 6.06                                                                                                                                                                                                                                            | 3.44                                                                                                                                                                                                                     | 5.24                                                                                                                                                                                                                             | 4.96                                                                                                                                                                                                                             | 4.49                                                                                                                                                                                                                         | 0.89                                                                                                                                                                                                                                    | 0.99                                                                                                                                                                                                                  | 3.42                                                                                                                                                                                                      | 3.56                                                                                                                                                                                                    |
| ZINC                                                                                                                                                                                                                                                                                                                       | 5000                                                                                                                                                                               | 267                                                                                                                                                                                                                 | 281                                                                                                                                                                                                                                                                                                                 | 283                                                                                                                                                                                                 | 260                                                                                                                                                                                                                                             | 262                                                                                                                                                                                                                      | 255                                                                                                                                                                                                                              | 269                                                                                                                                                                                                                              | 276                                                                                                                                                                                                                          | 63                                                                                                                                                                                                                                      | 57                                                                                                                                                                                                                    | 241                                                                                                                                                                                                       | 260                                                                                                                                                                                                     |
| FLUORIDE                                                                                                                                                                                                                                                                                                                   | 18000                                                                                                                                                                              | 8.21                                                                                                                                                                                                                | 9.34                                                                                                                                                                                                                                                                                                                | 8.09                                                                                                                                                                                                | 9.25                                                                                                                                                                                                                                            | 9.85                                                                                                                                                                                                                     | 7.91                                                                                                                                                                                                                             | 8.20                                                                                                                                                                                                                             | 8.32                                                                                                                                                                                                                         | 8.93                                                                                                                                                                                                                                    | 7.5                                                                                                                                                                                                                   | 8.1                                                                                                                                                                                                       | 7.48                                                                                                                                                                                                    |
| SULFIDES-REACTIVE                                                                                                                                                                                                                                                                                                          | NA                                                                                                                                                                                 | 34                                                                                                                                                                                                                  | 12                                                                                                                                                                                                                                                                                                                  | 11.2                                                                                                                                                                                                | 10.6                                                                                                                                                                                                                                            | 14                                                                                                                                                                                                                       | 12                                                                                                                                                                                                                               | 21                                                                                                                                                                                                                               | 15                                                                                                                                                                                                                           | 8                                                                                                                                                                                                                                       | 12.3                                                                                                                                                                                                                  | 16                                                                                                                                                                                                        | 21                                                                                                                                                                                                      |
| SUL FIDE S-T OT AL                                                                                                                                                                                                                                                                                                         | NA                                                                                                                                                                                 | 3577                                                                                                                                                                                                                | 2883                                                                                                                                                                                                                                                                                                                | 1176                                                                                                                                                                                                | 3194                                                                                                                                                                                                                                            | 3753                                                                                                                                                                                                                     | 2916                                                                                                                                                                                                                             | 4717                                                                                                                                                                                                                             | 2170                                                                                                                                                                                                                         | 3795                                                                                                                                                                                                                                    | 4933                                                                                                                                                                                                                  | 3669                                                                                                                                                                                                      | 5320                                                                                                                                                                                                    |
| TOT AL SOLIDS (%)                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                    | 27.1                                                                                                                                                                                                                | 28.4                                                                                                                                                                                                                                                                                                                | 2.8.0                                                                                                                                                                                               | 27.3                                                                                                                                                                                                                                            | 2.7                                                                                                                                                                                                                      | 2.7.0                                                                                                                                                                                                                            | 26.8                                                                                                                                                                                                                             | 2.6.4                                                                                                                                                                                                                        | 25.3                                                                                                                                                                                                                                    | 26.1                                                                                                                                                                                                                  | 26.3                                                                                                                                                                                                      | 2.6.8                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                    |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                       |                                                                                                                                                                                                           |                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                    |                                                                                                                                                                                                                     | DRV WEICHT C                                                                                                                                                                                                                                                                                                        | a na an tration                                                                                                                                                                                     |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                       |                                                                                                                                                                                                           |                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                  |                                                                                                                                                                                                                     | DKI WEIGHI C                                                                                                                                                                                                                                                                                                        | oncentration                                                                                                                                                                                        |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                       |                                                                                                                                                                                                           |                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                            | TILC                                                                                                                                                                               | MBCDEWCN                                                                                                                                                                                                            | MBCDEWCN                                                                                                                                                                                                                                                                                                            | MBCDEWCN                                                                                                                                                                                            | MBCDEWCN                                                                                                                                                                                                                                        | MBCDEWCN                                                                                                                                                                                                                 | MBCDEWCN                                                                                                                                                                                                                         | MBCDEWCN                                                                                                                                                                                                                         | MBCDEWCN                                                                                                                                                                                                                     | MBCDEW CN                                                                                                                                                                                                                               | MBCDEWCN                                                                                                                                                                                                              | MBCDEW CN                                                                                                                                                                                                 | MBCDEWCN                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                            | TTLC<br>Wet wt                                                                                                                                                                     | MBCDEWCN<br>Jan-17                                                                                                                                                                                                  | MBCDEW CN<br>Feb-17                                                                                                                                                                                                                                                                                                 | MBCDEWCN<br>Mar-17                                                                                                                                                                                  | MBCDEWCN<br>Apr-17                                                                                                                                                                                                                              | MBCDEWCN<br>May-17                                                                                                                                                                                                       | MBCDEWCN<br>Jun-17                                                                                                                                                                                                               | MBCDEWCN<br>Jul-17                                                                                                                                                                                                               | MBCDEWCN<br>Aug-17                                                                                                                                                                                                           | MBCDEW CN<br>Sep-17                                                                                                                                                                                                                     | MBCDEWCN<br>Oct-17                                                                                                                                                                                                    | MBCDEW CN<br>Nov-17                                                                                                                                                                                       | MBCDEWCN<br>Dec-17                                                                                                                                                                                      |
| ANALYTE                                                                                                                                                                                                                                                                                                                    | TTLC<br>Wet wt<br>mg/Kg                                                                                                                                                            | MBCDEWCN<br>Jan-17<br>P920340                                                                                                                                                                                       | MBCDEW CN<br>Feb-17<br>P925827                                                                                                                                                                                                                                                                                      | MBCDEWCN<br>Mar-17<br>P932213                                                                                                                                                                       | MBCDEWCN<br>Apr-17<br>P937935                                                                                                                                                                                                                   | MBCDEWCN<br>May-17<br>P945968                                                                                                                                                                                            | MBCDEWCN<br>Jun-17<br>P953132                                                                                                                                                                                                    | MBCDEWCN<br>Jul-17<br>P959635                                                                                                                                                                                                    | MBCDEWCN<br>Aug-17<br>P966456                                                                                                                                                                                                | MBCDEW CN<br>Sep-17<br>P974186                                                                                                                                                                                                          | MBCDEWCN<br>Oct-17<br>P979340                                                                                                                                                                                         | MBCDEWCN<br>Nov-17<br>P986442                                                                                                                                                                             | MBCDEWCN<br>Dec-17<br>P992862                                                                                                                                                                           |
| ANALYTE<br>ANT IMONY                                                                                                                                                                                                                                                                                                       | TTLC<br>Wet wt<br>mg/Kg<br>500                                                                                                                                                     | MBCDEWCN<br>Jan-17<br>P920340<br>6.5                                                                                                                                                                                | MBCDEW CN<br>Feb-17<br>P925827<br>5.8                                                                                                                                                                                                                                                                               | MBCDEWCN<br>Mar-17<br>P932213<br>6.0                                                                                                                                                                | MBCDEWCN<br>Apr-17<br>P937935<br>6                                                                                                                                                                                                              | MBCDEWCN<br>May-17<br>P945968<br>3.74                                                                                                                                                                                    | MBCDEWCN<br>Jun-17<br>P953132<br>5.77                                                                                                                                                                                            | MBCDEWCN<br>Jul-17<br>P959635<br>7.01                                                                                                                                                                                            | MBCDEWCN<br>Aug-17<br>P966456<br>6.74                                                                                                                                                                                        | MBCDEW CN<br>Sep-17<br>P974186<br>< 0.4                                                                                                                                                                                                 | MBCDEWCN<br>Oct-17<br>P979340<br>< 0.36                                                                                                                                                                               | MBCDEW CN<br>Nov-17<br>P986442<br>8.2                                                                                                                                                                     | MBCDEWCN<br>Dec-17<br>P992862<br>5.66                                                                                                                                                                   |
| ANALYTE<br>ANT IMONY<br>ARSENIC                                                                                                                                                                                                                                                                                            | TTLC<br>Wet wt<br>mg/Kg<br>500<br>500                                                                                                                                              | MBCDEWCN<br>Jan-17<br>P920340<br>6.5<br>6.66                                                                                                                                                                        | MBCDEW CN<br>Feb-17<br>P925827<br>5.8<br>6.45                                                                                                                                                                                                                                                                       | MBCDEWCN<br>Mar-17<br>P932213<br>6.0<br>8.22                                                                                                                                                        | MBCDEWCN<br>Apr-17<br>P937935<br>6<br>5.38                                                                                                                                                                                                      | MBCDEWCN<br>May-17<br>P945968<br>3.74<br>3.41                                                                                                                                                                            | MBCDEWCN<br>Jun-17<br>P953132<br>5.77<br>3.73                                                                                                                                                                                    | MBCDEWCN<br>Jul-17<br>P959635<br>7.01<br>1.59                                                                                                                                                                                    | MBCDEWCN<br>Aug-17<br>P966456<br>6.74<br>3.36                                                                                                                                                                                | MBCDEW CN<br>Sep-17<br>P974186<br>< 0.4<br>4.1                                                                                                                                                                                          | MBCDEWCN<br>Oct-17<br>P979340<br>< 0.36<br>DNQ 1.40                                                                                                                                                                   | MBCDEW CN<br>Nov-17<br>P986442<br>8.2<br>2.78                                                                                                                                                             | MBCDEWCN<br>Dec-17<br>P992862<br>5.66<br>2.9                                                                                                                                                            |
| ANALYTE<br>ANT IMONY<br>ARSENIC<br>BARIUM                                                                                                                                                                                                                                                                                  | TTLC<br>Wet wt<br><u>mg/Kg</u><br>500<br>500<br>10000                                                                                                                              | MBCDEWCN<br>Jan-17<br>P920340<br>6.5<br>6.66<br>465                                                                                                                                                                 | MBCDEW CN<br>Feb 17<br>P925827<br>5.8<br>6.45<br>514                                                                                                                                                                                                                                                                | MBCDEWCN<br>Mar-17<br>P932213<br>6.0<br>8.22<br>472                                                                                                                                                 | MBCDEWCN<br>Apr-17<br>P937935<br>6<br>5.38<br>385                                                                                                                                                                                               | MBCDEWCN<br>May-17<br>P945968<br>3.74<br>3.41<br>337                                                                                                                                                                     | MBCDEWCN<br>Jun-17<br>P953132<br>5.77<br>3.73<br>316                                                                                                                                                                             | MBCDEWCN<br>Jul-17<br>P959635<br>7.01<br>1.59<br>320                                                                                                                                                                             | MBCDEWCN<br>Aug-17<br>P966456<br>6.74<br>3.36<br>301                                                                                                                                                                         | MBCDEW CN<br>Sep-17<br>P974186<br>< 0.4<br>4.1<br>82                                                                                                                                                                                    | MBCDEWCN<br>Oct-17<br>P979340<br>< 0.36<br>DNQ 1.40<br>47                                                                                                                                                             | MBCDEW CN<br>Nov-17<br>P986442<br>8.2<br>2.78<br>285                                                                                                                                                      | MBCDEWCN<br>Dec-17<br>P992862<br>5.66<br>2.9<br>293                                                                                                                                                     |
| ANALYTE<br>ANT IMONY<br>ARSENIC<br>BARIUM<br>BERYLLIUM                                                                                                                                                                                                                                                                     | TTLC<br>Wet wt<br>mg/Kg<br>500<br>500<br>10000<br>75                                                                                                                               | MBCDEWCN<br>Jan-17<br>P920340<br>6.5<br>6.66<br>465<br>0.06                                                                                                                                                         | MBCDEW CN<br>Feb-17<br>P925827<br>5.8<br>6.45<br>514<br>0.09                                                                                                                                                                                                                                                        | MBCDE WCN<br>Mar-17<br>P932213<br>6.0<br>8.22<br>472<br>3.07                                                                                                                                        | MBCDEWCN<br>Apr-17<br>P937935<br>6<br>5.38<br>385<br>0.05                                                                                                                                                                                       | MBCDEWCN<br>May-17<br>P945968<br>3.74<br>3.41<br>337<br>0.03                                                                                                                                                             | MBCDEWCN<br>Jun-17<br>P953132<br>5.77<br>3.73<br>316<br>0.04                                                                                                                                                                     | MBCDEWCN<br>Jul-17<br>P959635<br>7.01<br>1.59<br>320<br>0.05                                                                                                                                                                     | MBCDEWCN<br>Aug-17<br>P966456<br>6.74<br>3.36<br>301<br>0.08                                                                                                                                                                 | MBCDEW CN<br>Sep-17<br>P974186<br>< 0.4<br>4.1<br>82<br>DNQ 0.06                                                                                                                                                                        | MBCDEWCN<br>Oct-17<br>P979340<br>< 0.36<br>DNQ 1.40<br>47<br>DNQ 0.02                                                                                                                                                 | MBCDEW CN<br>Nov-17<br>P986442<br>8.2<br>2.78<br>285<br>< 0.07                                                                                                                                            | MBCDE W CN<br>Dec-17<br>P992862<br>5.66<br>2.9<br>293<br>< 0.02                                                                                                                                         |
| ANALYTE<br>ANTIMONY<br>ARSENIC<br>BARIUM<br>BERYLLIUM<br>CADMIUM                                                                                                                                                                                                                                                           | TTLC<br>Wet wt<br>mg/Kg<br>500<br>500<br>10000<br>75<br>100                                                                                                                        | MBCDEWCN<br>Jan-17<br>P920340<br>6.5<br>6.66<br>465<br>0.06<br>< 0.1                                                                                                                                                | MBCDEW CN<br>Feb-17<br>P925827<br>5.8<br>6.45<br>514<br>0.09<br>0.37                                                                                                                                                                                                                                                | MBCDEWCN<br>Mar-17<br>P932213<br>6.0<br>8.22<br>472<br>3.07<br>0.32                                                                                                                                 | MBCDEWCN<br>Apr-17<br>P937935<br>6<br>5.38<br>385<br>0.05<br>0.92                                                                                                                                                                               | MBCDEW CN<br>May-17<br>P945968<br>3.74<br>3.41<br>337<br>0.03<br>0.57                                                                                                                                                    | MBCDEWCN<br>Jun-17<br>P953132<br>5.77<br>3.73<br>316<br>0.04<br>0.81                                                                                                                                                             | MBCDEWCN<br>Jul-17<br>P959635<br>7.01<br>1.59<br>320<br>0.05<br>0.82                                                                                                                                                             | MBCDEWCN<br>Aug-17<br>P966456<br>6.74<br>3.36<br>301<br>0.08<br>0.9                                                                                                                                                          | MBCDEW CN<br>Sep-17<br>P974186<br>< 0.4<br>4.1<br>82<br>DNQ 0.06<br>DNQ 0.39                                                                                                                                                            | MBCDEWCN<br>Oct-17<br>P979340<br>< 0.36<br>DNQ 1.40<br>47<br>DNQ 0.02<br>DNQ 0.3                                                                                                                                      | MBCDEW CN<br>Nov-17<br>P986442<br>8.2<br>2.78<br>285<br>< 0.07<br>0.71                                                                                                                                    | MBCDEWCN<br>Dec-17<br>P992862<br>5.66<br>2.9<br>293<br>< 0.02<br>0.74                                                                                                                                   |
| ANALYTE<br>ANTIMONY<br>ARSENIC<br>BARIUM<br>BERYLLIUM<br>CADMIUM<br>CHROMIUM(VI)                                                                                                                                                                                                                                           | TTLC<br>Wet wt<br>mg/Kg<br>500<br>500<br>10000<br>75<br>100<br>500                                                                                                                 | MBCDEWCN<br>Jan-17<br>P920340<br>6.5<br>6.66<br>465<br>0.06<br>< 0.1<br>NA                                                                                                                                          | MBCDEW CN<br>Feb 17<br>P925827<br>5.8<br>6.45<br>514<br>0.09<br>0.37<br>NA                                                                                                                                                                                                                                          | MBCDEWCN<br>Mar-17<br>P932213<br>6.0<br>8.22<br>472<br>3.07<br>0.32<br>NA                                                                                                                           | MBCDEWCN<br>Apr-17<br>P937935<br>6<br>5.38<br>385<br>0.05<br>0.92<br>NA                                                                                                                                                                         | MBCDEW CN<br>May-17<br>P945968<br>3.74<br>3.41<br>337<br>0.03<br>0.57<br>NA                                                                                                                                              | MBCDEWCN<br>Jun-17<br>P953132<br>5.77<br>3.73<br>316<br>0.04<br>0.81<br>NA                                                                                                                                                       | MBCDEW CN<br>Jul-17<br>P959635<br>7.01<br>1.59<br>320<br>0.05<br>0.05<br>0.82<br>NA                                                                                                                                              | MBCDEWCN<br>Aug-17<br>P966456<br>6.74<br>3.36<br>301<br>0.08<br>0.9<br>NA                                                                                                                                                    | MBCDEW CN<br>Sep-17<br>P974186<br>< 0.4<br>4.1<br>82<br>DNQ 0.06<br>DNQ 0.39<br>NA                                                                                                                                                      | MBCDEWCN<br>Oct-17<br>P979340<br>< 0.36<br>DNQ 1.40<br>47<br>DNQ 0.02<br>DNQ 0.3<br>NA                                                                                                                                | MBCDEW CN<br>Nov-17<br>P986442<br>8.2<br>2.78<br>285<br>< 0.07<br>0.71<br>NA                                                                                                                              | MBCDEWCN<br>Dec-17<br>P992862<br>5.66<br>2.9<br>293<br>< 0.02<br>0.74<br>NA                                                                                                                             |
| ANALYTE<br>ANTIMONY<br>ARSENIC<br>BARIUM<br>BERYLLIUM<br>CADMIUM<br>CHROMIUM(VI)<br>CHROMIUM(VI)                                                                                                                                                                                                                           | TILC   Wet wt   mg/Kg   500   500   10000   75   100   500   2500                                                                                                                  | MBCDEWCN<br>Jan-17<br>P920340<br>6.5<br>6.66<br>465<br>0.06<br>< 0.1<br>NA<br>44.2                                                                                                                                  | MBCDEW CN<br>Feb 17<br>P925827<br>5.8<br>6.45<br>514<br>0.09<br>0.37<br>NA<br>44.3                                                                                                                                                                                                                                  | MBCDEWCN<br>Mar-17<br>P932213<br>6.0<br>8.22<br>472<br>3.07<br>0.32<br>NA<br>43.2                                                                                                                   | MBCDEWCN<br>Apr-17<br>P937935<br>6<br>5.38<br>385<br>0.05<br>0.92<br>NA<br>40.2                                                                                                                                                                 | MBCDEW CN<br>May-17<br>P945968<br>3.74<br>3.41<br>337<br>0.03<br>0.57<br>NA<br>43.2                                                                                                                                      | MBCDEWCN<br>Jun-17<br>P953132<br>5.77<br>3.73<br>316<br>0.04<br>0.81<br>NA<br>45.9                                                                                                                                               | MBCDEW CN<br>Jul-17<br>P959635<br>7.01<br>1.59<br>320<br>0.05<br>0.82<br>NA<br>44.4                                                                                                                                              | MBCDEWCN<br>Aug-17<br>P966456<br>6.74<br>3.36<br>301<br>0.08<br>0.9<br>NA<br>45.6                                                                                                                                            | MBCDEW CN<br>Sep-17<br>P974186<br>< 0.4<br>4.1<br>82<br>DNQ 0.06<br>DNQ 0.39<br>NA<br>13.0                                                                                                                                              | MBCDEWCN<br>Oct-17<br>P979340<br>< 0.36<br>DNQ 1.40<br>47<br>DNQ 0.02<br>DNQ 0.3<br>NA<br>11                                                                                                                          | MBCDEW CN<br>Nov-17<br>P986442<br>8.2<br>2.78<br>285<br>< 0.07<br>0.71<br>NA<br>49.8                                                                                                                      | MBCDEWCN<br>Dec-17<br>P992862<br>5.66<br>2.9<br>293<br>< 0.02<br>0.74<br>NA<br>41.9                                                                                                                     |
| ANALYTE<br>ANT IMONY<br>ARSENIC<br>BARIUM<br>BERYLLIUM<br>CADMIUM<br>CHROMIUM(VI)<br>CHROMIUM(total)<br>COBALT                                                                                                                                                                                                             | TILC   Wet wt   mg/Kg   500   500   10000   75   100   500   2500   8000                                                                                                           | MBCDEWCN<br>Jan-17<br>P920340<br>6.5<br>6.66<br>465<br>0.06<br>< 0.1<br>NA<br>44.2<br>3.99                                                                                                                          | MBCDEW CN<br>Feb 17<br>P925827<br>5.8<br>6.45<br>514<br>0.09<br>0.37<br>NA<br>44.3<br>3.98                                                                                                                                                                                                                          | MBCDEWCN<br>Mar-17<br>P932213<br>6.0<br>8.22<br>472<br>3.07<br>0.32<br>NA<br>43.2<br>4.03                                                                                                           | MBCDEWCN<br>Apr-17<br>P937935<br>6<br>5.38<br>385<br>0.05<br>0.92<br>NA<br>40.2<br>3.6                                                                                                                                                          | MBCDEW CN<br>May-17<br>P945968<br>3.74<br>3.41<br>337<br>0.03<br>0.57<br>NA<br>43.2<br>2.36                                                                                                                              | MBCDEWCN<br>Jun-17<br>P953132<br>5.77<br>3.73<br>316<br>0.04<br>0.81<br>NA<br>45.9<br>3.76                                                                                                                                       | MBCDEW CN<br>Jul-17<br>P959635<br>7.01<br>1.59<br>320<br>0.05<br>0.82<br>NA<br>44.4<br>3.76                                                                                                                                      | MBCDEWCN<br>Aug-17<br>P966456<br>6.74<br>3.36<br>301<br>0.08<br>0.9<br>NA<br>45.6<br>4.13                                                                                                                                    | MBCDEW CN<br>Sep-17<br>P974186<br>< 0.4<br>4.1<br>82<br>DNQ 0.06<br>DNQ 0.39<br>NA<br>13.0<br>DNQ 1.1                                                                                                                                   | MBCDEWCN<br>Oct-17<br>P979340<br>< 0.36<br>DNQ 1.40<br>47<br>DNQ 0.02<br>DNQ 0.3<br>NA<br>11<br>DNQ 0.9                                                                                                               | MBCDEW CN<br>Nov-17<br>P986442<br>8.2<br>2.78<br>285<br>< 0.07<br>0.71<br>NA<br>49.8<br>3.69                                                                                                              | MBCDEWCN<br>Dec-17<br>P992862<br>5.66<br>2.9<br>293<br>< 0.02<br>0.74<br>NA<br>41.9<br>3.54                                                                                                             |
| ANALYTE<br>ANT IMONY<br>ARSENIC<br>BARIUM<br>BERYLLIUM<br>CADMIUM<br>CHROMIUM(VI)<br>CHROMIUM(total)<br>COBALT<br>COPPER                                                                                                                                                                                                   | TTLC<br>Wet wt<br>mg/Kg<br>500<br>500<br>10000<br>75<br>100<br>500<br>2500<br>8000<br>2500                                                                                         | MBCDEWCN<br>Jan-17<br>P920340<br>6.5<br>6.66<br>465<br>0.06<br>< 0.1<br>NA<br>44.2<br>3.99<br>633                                                                                                                   | MBCDEW CN<br>Feb 17<br>P925827<br>5.8<br>6.45<br>514<br>0.09<br>0.37<br>NA<br>44.3<br>3.98<br>719                                                                                                                                                                                                                   | MBCDEWCN<br>Mar-17<br>P932213<br>6.0<br>8.22<br>472<br>3.07<br>0.32<br>NA<br>43.2<br>4.03<br>695                                                                                                    | MBCDEWCN<br>Apr-17<br>P937935<br>6<br>5.38<br>385<br>0.05<br>0.92<br>NA<br>40.2<br>3.6<br>634                                                                                                                                                   | MBCDEW CN<br>May-17<br>P945968<br>3.74<br>3.41<br>337<br>0.03<br>0.57<br>NA<br>43.2<br>2.36<br>611                                                                                                                       | MBCDEWCN<br>Jun-17<br>P953132<br>5.77<br>3.73<br>316<br>0.04<br>0.81<br>NA<br>45.9<br>3.76<br>603                                                                                                                                | MBCDEW CN<br>Jul-17<br>P959635<br>7.01<br>1.59<br>320<br>0.05<br>0.82<br>NA<br>44.4<br>3.76<br>652                                                                                                                               | MBCDEWCN<br>Aug-17<br>P966456<br>6.74<br>3.36<br>301<br>0.08<br>0.9<br>NA<br>45.6<br>4.13<br>659                                                                                                                             | MBCDEW CN<br>Sep-17<br>P974186<br>< 0.4<br>4.1<br>82<br>DNQ 0.06<br>DNQ 0.39<br>NA<br>13.0<br>DNQ 1.1<br>180                                                                                                                            | MBCDEWCN<br>Oct-17<br>P979340<br>< 0.36<br>DNQ 1.40<br>47<br>DNQ 0.02<br>DNQ 0.3<br>NA<br>11<br>DNQ 0.9<br>150                                                                                                        | MBCDEW CN<br>Nov-17<br>P986442<br>2.78<br>285<br>< 0.07<br>0.71<br>NA<br>49.8<br>3.69<br>653                                                                                                              | MBCDEWCN<br>Dec-17<br>P992862<br>5.66<br>2.9<br>293<br>< 0.02<br>0.74<br>NA<br>41.9<br>3.54<br>643                                                                                                      |
| ANALYTE<br>ANT IMONY<br>ARSENIC<br>BARIUM<br>BERYLLIUM<br>CADMIUM<br>CHROMIUM(VI)<br>CHROMIUM(total)<br>COBALT<br>COPPER<br>LEAD                                                                                                                                                                                           | TTLC   Wet wt   mg/Kg   500   10000   75   100   500   2500   8000   2500   1000                                                                                                   | MBCDEWCN<br>Jan-17<br>P920340<br>6.5<br>6.66<br>465<br>0.06<br>< 0.1<br>NA<br>44.2<br>3.99<br>633<br>15.3                                                                                                           | MBCDEW CN<br>Feb 17<br>P925827<br>5.8<br>6.45<br>514<br>0.09<br>0.37<br>NA<br>44.3<br>3.98<br>719<br>15.7                                                                                                                                                                                                           | MBCDEWCN<br>Mar-17<br>P932213<br>6.0<br>8.22<br>472<br>3.07<br>0.32<br>NA<br>43.2<br>4.03<br>695<br>15.8                                                                                            | MBCDEWCN<br>Apr-17<br>P937935<br>6<br>5.38<br>385<br>0.05<br>0.92<br>NA<br>40.2<br>3.6<br>634<br>14.5                                                                                                                                           | MBCDEW CN<br>May-17<br>P945968<br>3.74<br>3.41<br>337<br>0.03<br>0.57<br>NA<br>43.2<br>2.36<br>611<br>8.9                                                                                                                | MBCDEWCN<br>Jun-17<br>P953132<br>5.77<br>3.73<br>316<br>0.04<br>0.81<br>NA<br>45.9<br>3.76<br>603<br>13.8                                                                                                                        | MBCDEW CN<br>Jul-17<br>P959635<br>7.01<br>1.59<br>320<br>0.05<br>0.82<br>NA<br>44.4<br>3.76<br>652<br>13.8                                                                                                                       | MBCDEWCN<br>Aug-17<br>P966456<br>6.74<br>3.36<br>301<br>0.08<br>0.9<br>NA<br>45.6<br>4.13<br>659<br>15.5                                                                                                                     | MBCDEW CN<br>Sep-17<br>P974186<br>< 0.4<br>4.1<br>82<br>DNQ 0.06<br>DNQ 0.39<br>NA<br>13.0<br>DNQ 1.1<br>180<br>4.8                                                                                                                     | MBCDEWCN<br>Oct-17<br>P979340<br>< 0.36<br>DNQ 1.40<br>47<br>DNQ 0.02<br>DNQ 0.3<br>NA<br>11<br>DNQ 0.9<br>150<br>4                                                                                                   | MBCDEW CN<br>Nov-17<br>P986442<br>2.78<br>285<br>< 0.07<br>0.71<br>NA<br>49.8<br>3.69<br>653<br>16.5                                                                                                      | MBCDEWCN<br>Dec-17<br>P992862<br>5.66<br>2.9<br>293<br>< 0.02<br>0.74<br>NA<br>41.9<br>3.54<br>643<br>12.6                                                                                              |
| ANALYTE<br>ANTIMONY<br>ARSENIC<br>BARIUM<br>BERYLLIUM<br>CADMIUM<br>CHROMIUM(VI)<br>CHROMIUM(total)<br>COBALT<br>COPPER<br>LEAD<br>MERCURY^                                                                                                                                                                                | TTLC   Wet wt   mg/Kg   500   500   10000   75   100   2500   8000   2500   1000   2500   200   1000   200                                                                         | MBCDEWCN<br>Jan-17<br>P920340<br>6.5<br>6.66<br>465<br>0.06<br>< 0.1<br>NA<br>44.2<br>3.99<br>633<br>15.3<br>1.07                                                                                                   | MBCDEW CN<br>Feb.17<br>P925827<br>5.8<br>6.45<br>514<br>0.09<br>0.37<br>NA<br>44.3<br>3.98<br>719<br>15.7<br>0.61                                                                                                                                                                                                   | MBCDEWCN<br>Mar-17<br>P932213<br>6.0<br>8.22<br>472<br>3.07<br>0.32<br>NA<br>43.2<br>4.03<br>695<br>15.8<br>1.09                                                                                    | MBCDEWCN<br>Apr-17<br>P937935<br>6<br>5.38<br>385<br>0.05<br>0.92<br>NA<br>40.2<br>3.6<br>634<br>14.5<br>1.06                                                                                                                                   | MBCDEW CN<br>May-17<br>P945968<br>3.74<br>3.41<br>337<br>0.03<br>0.57<br>NA<br>43.2<br>2.36<br>611<br>8.9<br>1.47                                                                                                        | MBCDEWCN<br>Jun-17<br>P953132<br>5.77<br>3.73<br>316<br>0.04<br>0.81<br>NA<br>45.9<br>3.76<br>603<br>13.8<br>1.67                                                                                                                | MBCDEW CN<br>Jul-17<br>P959635<br>7.01<br>1.59<br>320<br>0.05<br>0.82<br>NA<br>44.4<br>3.76<br>652<br>13.8<br>1.11                                                                                                               | MBCDEWCN<br>Aug-17<br>P966456<br>6.74<br>3.36<br>301<br>0.08<br>0.9<br>NA<br>45.6<br>4.13<br>659<br>15.5<br>1.27                                                                                                             | MBCDEWCN<br>Sep-17<br>P974186<br>< 0.4<br>4.1<br>82<br>DNQ 0.06<br>DNQ 0.39<br>NA<br>13.0<br>DNQ 1.1<br>180<br>4.8<br>1.09                                                                                                              | MBCDEWCN<br>Oct-17<br>P979340<br>< 0.36<br>DNQ 1.40<br>47<br>DNQ 0.02<br>DNQ 0.3<br>NA<br>11<br>DNQ 0.9<br>150<br>4<br>0.85                                                                                           | MBCDEW CN<br>Nov-17<br>P986442<br>8.2<br>2.78<br>285<br>< 0.07<br>0.71<br>NA<br>49.8<br>3.69<br>653<br>16.5<br>0.88                                                                                       | MBCDEWCN<br>Dec-17<br>P992862<br>5.66<br>2.9<br>293<br>< 0.02<br>0.74<br>NA<br>41.9<br>3.54<br>643<br>12.6<br>0.24                                                                                      |
| ANALYTE<br>ANTIMONY<br>ARSENIC<br>BARIUM<br>BERYLLIUM<br>CADMIUM<br>CHROMIUM(VI)<br>CHROMIUM(VI)<br>COBALT<br>COPPER<br>LEAD<br>MERCURY^<br>MERCURY#                                                                                                                                                                       | TTLC   Wet wt   mg/Kg   500   500   10000   75   100   500   2500   8000   2500   10000   2500   2000                                                                              | MBCDEWCN<br>Jan-17<br>P920340<br>6.5<br>6.66<br>465<br>0.06<br>< 0.1<br>NA<br>44.2<br>3.99<br>633<br>15.3<br>1.07<br>1.2                                                                                            | MBCDEW CN<br>Feb 17<br>P925827<br>5.8<br>6.45<br>514<br>0.09<br>0.37<br>NA<br>44.3<br>3.98<br>719<br>15.7<br>0.61<br>0.71                                                                                                                                                                                           | MBCDEWCN<br>Mar-17<br>P932213<br>6.0<br>8.22<br>472<br>3.07<br>0.32<br>NA<br>43.2<br>4.03<br>695<br>15.8<br>1.09<br>1.1                                                                             | MBCDEWCN<br>Apr-17<br>P937935<br>6<br>5.38<br>385<br>0.05<br>0.92<br>NA<br>40.2<br>3.6<br>634<br>14.5<br>1.06<br>1.03                                                                                                                           | MBCDEW CN<br>May-17<br>P945968<br>3.74<br>3.41<br>337<br>0.03<br>0.03<br>0.57<br>NA<br>43.2<br>2.36<br>611<br>8.9<br>1.47<br>1.29                                                                                        | MBCDEWCN<br>Jun-17<br>P953132<br>5.77<br>3.73<br>316<br>0.04<br>0.81<br>NA<br>45.9<br>3.76<br>603<br>13.8<br>1.67<br>1.62                                                                                                        | MBCDEW CN<br>Jul-17<br>P959635<br>7.01<br>1.59<br>320<br>0.05<br>0.82<br>NA<br>44.4<br>3.76<br>652<br>13.8<br>1.11<br>1.14                                                                                                       | MBCDEWCN<br>Aug-17<br>P966456<br>6.74<br>3.36<br>301<br>0.08<br>0.9<br>NA<br>45.6<br>4.13<br>659<br>15.5<br>1.27<br>1.67                                                                                                     | MBCDEWCN<br>Sep-17<br>P974186<br>< 0.4<br>4.1<br>82<br>DNQ 0.06<br>DNQ 0.39<br>NA<br>13.0<br>DNQ 1.1<br>180<br>4.8<br>1.09<br>1.22                                                                                                      | MBCDEWCN<br>Oct-17<br>P979340<br>< 0.36<br>DNQ 1.40<br>47<br>DNQ 0.02<br>DNQ 0.3<br>NA<br>11<br>DNQ 0.9<br>150<br>4<br>0.85<br>0.3                                                                                    | MBCDEW CN<br>Nov-17<br>P986442<br>8.2<br>2.78<br>285<br>< 0.07<br>0.71<br>NA<br>49.8<br>3.69<br>653<br>16.5<br>0.88<br>0.14                                                                               | MBCDEWCN<br>Dec-17<br>P992862<br>5.66<br>2.9<br>293<br>< 0.02<br>0.74<br>NA<br>41.9<br>3.54<br>643<br>12.6<br>0.24<br>0.9                                                                               |
| ANALYTE<br>ANT IMONY<br>ARSENIC<br>BARIUM<br>BERYLLIUM<br>CADMIUM<br>CHROMIUM(VI)<br>CHROMIUM(total)<br>COBALT<br>COPPER<br>LEAD<br>MERCURY^<br>MERCURY#<br>MOLYBDENUM                                                                                                                                                     | TTLC   Wet wt   mg/Kg   500   500   10000   75   100   500   2500   8000   2500   1000   2500   3500   3500                                                                        | MBCDEWCN<br>Jan-17<br>P920340<br>6.5<br>6.66<br>465<br>0.06<br>< 0.1<br>NA<br>44.2<br>3.99<br>633<br>15.3<br>1.07<br>1.2<br>19.3                                                                                    | MBCDEW CN<br>Feb 17<br>P925827<br>5.8<br>6.45<br>514<br>0.09<br>0.37<br>NA<br>44.3<br>3.98<br>719<br>15.7<br>0.61<br>0.71<br>17.2                                                                                                                                                                                   | MBCDEWCN<br>Mar-17<br>P932213<br>6.0<br>8.22<br>472<br>3.07<br>0.32<br>NA<br>43.2<br>4.03<br>695<br>15.8<br>1.09<br>1.1<br>15.5                                                                     | MBCDEWCN<br>Apr-17<br>P937935<br>6<br>5.38<br>385<br>0.05<br>0.92<br>NA<br>40.2<br>3.6<br>634<br>14.5<br>1.06<br>1.03<br>15.5                                                                                                                   | MBCDEW CN<br>May-17<br>P945968<br>3.74<br>3.41<br>337<br>0.03<br>0.57<br>NA<br>43.2<br>2.36<br>611<br>8.9<br>1.47<br>1.29<br>10.4                                                                                        | MBCDEWCN<br>Jun-17<br>P953132<br>5.77<br>3.73<br>316<br>0.04<br>0.81<br>NA<br>45.9<br>3.76<br>603<br>13.8<br>1.67<br>1.62<br>17.7                                                                                                | MBCDEW CN<br>Jul-17<br>P959635<br>7.01<br>1.59<br>320<br>0.05<br>0.82<br>NA<br>44.4<br>3.76<br>652<br>13.8<br>1.11<br>1.14<br>20.9                                                                                               | MBCDEWCN<br>Aug-17<br>P966456<br>6.74<br>3.36<br>301<br>0.08<br>0.9<br>NA<br>45.6<br>4.13<br>659<br>15.5<br>1.27<br>1.67<br>23.6                                                                                             | MBCDEW CN<br>Sep-17<br>P974186<br>< 0.4<br>4.1<br>82<br>DNQ 0.06<br>DNQ 0.39<br>NA<br>13.0<br>DNQ 1.1<br>180<br>4.8<br>1.09<br>1.22<br>6.4                                                                                              | MBCDEWCN<br>Oct-17<br>P979340<br>< 0.36<br>DNQ 1.40<br>47<br>DNQ 0.02<br>DNQ 0.3<br>NA<br>11<br>DNQ 0.9<br>150<br>4<br>0.85<br>0.3<br>4.9                                                                             | MBCDEW CN<br>Nov-17<br>P986442<br>8.2<br>2.78<br>285<br>< 0.07<br>0.71<br>NA<br>49.8<br>3.69<br>653<br>16.5<br>0.88<br>0.14<br>20                                                                         | MBCDEWCN<br>Dec-17<br>P992862<br>5.66<br>2.9<br>293<br>< 0.02<br>0.74<br>NA<br>41.9<br>3.54<br>643<br>12.6<br>0.24<br>0.9<br>17.6                                                                       |
| ANALYTE<br>ANTIMONY<br>ARSENIC<br>BARIUM<br>BERYLLIUM<br>CADMIUM<br>CHROMIUM(VI)<br>CHROMIUM(vtal)<br>COBALT<br>COPPER<br>LEAD<br>MERCURY^<br>MERCURY#<br>MOLYBDENUM<br>NICKEL                                                                                                                                             | TTLC   Wet wt   mg/Kg   500   500   10000   75   100   500   2500   2500   1000   2500   3500   2000                                                                               | MBCDEWCN<br>Jan-17<br>P920340<br>6.5<br>6.66<br>465<br>0.06<br>< 0.1<br>NA<br>44.2<br>3.99<br>633<br>15.3<br>1.07<br>1.2<br>19.3<br>23.9                                                                            | MBCDEW CN<br>Feb 17<br>P925827<br>5.8<br>6.45<br>514<br>0.09<br>0.37<br>NA<br>44.3<br>3.98<br>719<br>15.7<br>0.61<br>0.71<br>17.2<br>25.8                                                                                                                                                                           | MBCDEWCN<br>Mar-17<br>P932213<br>6.0<br>8.22<br>472<br>3.07<br>0.32<br>NA<br>43.2<br>4.03<br>695<br>15.8<br>1.09<br>1.1<br>15.5<br>28.1                                                             | MBCDEWCN<br>Apr-17<br>P937935<br>6<br>5.38<br>385<br>0.05<br>0.92<br>NA<br>40.2<br>3.6<br>634<br>14.5<br>1.06<br>1.03<br>15.5<br>23.7                                                                                                           | MBCDEW CN<br>May-17<br>P945968<br>3.74<br>3.41<br>337<br>0.03<br>0.57<br>NA<br>43.2<br>2.36<br>611<br>8.9<br>1.47<br>1.29<br>10.4<br>14.6                                                                                | MBCDEWCN<br>Jun-17<br>P953132<br>5.77<br>3.73<br>316<br>0.04<br>0.81<br>NA<br>45.9<br>3.76<br>603<br>13.8<br>1.67<br>1.62<br>17.7<br>26.4                                                                                        | MBCDEW CN<br>Jul-17<br>P959635<br>7.01<br>1.59<br>320<br>0.05<br>0.82<br>NA<br>44.4<br>3.76<br>652<br>13.8<br>1.11<br>1.14<br>20.9<br>26.0                                                                                       | MBCDEWCN<br>Aug-17<br>P966456<br>6.74<br>3.36<br>301<br>0.08<br>0.9<br>NA<br>45.6<br>4.13<br>659<br>15.5<br>1.27<br>1.67<br>23.6<br>25.9                                                                                     | MBCDEW CN<br>Sep-17<br>P974186<br>< 0.4<br>4.1<br>82<br>DNQ 0.06<br>DNQ 0.39<br>NA<br>13.0<br>DNQ 1.1<br>180<br>4.8<br>1.09<br>1.22<br>6.4<br>7.8                                                                                       | MBCDEWCN<br>Oct-17<br>P979340<br>< 0.36<br>DNQ 1.40<br>47<br>DNQ 0.02<br>DNQ 0.3<br>NA<br>11<br>DNQ 0.9<br>150<br>4<br>0.85<br>0.3<br>4.9<br>6.2                                                                      | MBCDEW CN<br>Nov-17<br>P986442<br>8.2<br>2.78<br>285<br>< 0.07<br>0.71<br>NA<br>49.8<br>3.69<br>653<br>16.5<br>0.88<br>0.14<br>20<br>20                                                                   | MBCDEWCN<br>Dec-17<br>P992862<br>5.66<br>2.9<br>293<br>< 0.02<br>0.74<br>NA<br>41.9<br>3.54<br>643<br>12.6<br>0.24<br>0.9<br>17.6<br>21.2                                                               |
| ANALYTE<br>ANT IMONY<br>ARSENIC<br>BARIUM<br>BERYLLIUM<br>CADMIUM<br>CHROMIUM(VI)<br>CHROMIUM(total)<br>COBALT<br>COPPER<br>LEAD<br>MERCURY^<br>MERCURY#<br>MOLYBDENUM<br>NICKEL<br>SELENIUM                                                                                                                               | TTLC   Wet wt   mg/Kg   500   500   10000   75   100   500   2500   2500   1000   2500   1000   2500   3500   2000   100                                                           | MBCDEWCN<br>Jan-17<br>P920340<br>6.5<br>6.66<br>465<br>0.06<br>< 0.1<br>NA<br>44.2<br>3.99<br>633<br>15.3<br>1.07<br>1.2<br>19.3<br>23.9<br>5.33                                                                    | MBCDEW CN<br>Feb 17<br>P925827<br>5.8<br>6.45<br>514<br>0.09<br>0.37<br>NA<br>44.3<br>3.98<br>719<br>15.7<br>0.61<br>0.71<br>17.2<br>25.8<br>1.56                                                                                                                                                                   | MBCDEWCN<br>Mar-17<br>P932213<br>6.0<br>8.22<br>472<br>3.07<br>0.32<br>NA<br>43.2<br>4.03<br>695<br>15.8<br>1.09<br>1.1<br>15.5<br>28.1<br>4.11                                                     | MBCDEWCN<br>Apr-17<br>P937935<br>6<br>5.38<br>385<br>0.05<br>0.92<br>NA<br>40.2<br>3.6<br>634<br>14.5<br>1.06<br>1.03<br>15.5<br>23.7<br>2.1                                                                                                    | MBCDEW CN<br>May-17<br>P945968<br>3.74<br>3.41<br>337<br>0.03<br>0.57<br>NA<br>43.2<br>2.36<br>611<br>8.9<br>1.47<br>1.29<br>10.4<br>14.6<br>4.53                                                                        | MBCDEWCN<br>Jun-17<br>P953132<br>5.77<br>3.73<br>316<br>0.04<br>0.81<br>NA<br>45.9<br>3.76<br>603<br>13.8<br>1.67<br>1.62<br>17.7<br>26.4<br>4.49                                                                                | MBCDEW CN<br>Jul-17<br>P959635<br>7.01<br>1.59<br>320<br>0.05<br>0.82<br>NA<br>44.4<br>3.76<br>652<br>13.8<br>1.11<br>1.14<br>20.9<br>26.0<br>4.72                                                                               | MBCDEWCN<br>Aug-17<br>P966456<br>6.74<br>3.36<br>301<br>0.08<br>0.9<br>NA<br>45.6<br>4.13<br>659<br>15.5<br>1.27<br>1.67<br>23.6<br>25.9<br>4.15                                                                             | MBCDEW CN<br>Sep-17<br>P974186<br>< 0.4<br>4.1<br>82<br>DNQ 0.06<br>DNQ 0.39<br>NA<br>13.0<br>DNQ 1.1<br>180<br>4.8<br>1.09<br>1.22<br>6.4<br>7.8<br>< 1.7                                                                              | MBCDEWCN<br>Oct-17<br>P979340<br>< 0.36<br>DNQ 1.40<br>47<br>DNQ 0.02<br>DNQ 0.3<br>NA<br>11<br>DNQ 0.9<br>150<br>4<br>0.85<br>0.3<br>4.9<br>6.2<br>< 0.55                                                            | MBCDEW CN<br>Nov-17<br>P986442<br>8.2<br>2.78<br>285<br>< 0.07<br>0.71<br>NA<br>49.8<br>3.69<br>653<br>16.5<br>0.88<br>0.14<br>20<br>20<br>3.25                                                           | MBCDEWCN<br>Dec-17<br>P992862<br>5.66<br>2.9<br>293<br>< 0.02<br>0.74<br>NA<br>41.9<br>3.54<br>643<br>12.6<br>0.24<br>0.9<br>17.6<br>21.2<br>3.7                                                        |
| ANALYTE<br>ANT IMONY<br>ARSENIC<br>BARIUM<br>BERYLLIUM<br>CADMIUM(VI)<br>CHROMIUM(VI)<br>CHROMIUM(total)<br>COBALT<br>COPPER<br>LEAD<br>MERCURY^<br>MERCURY*<br>MOLYBDENUM<br>NICKEL<br>SELENIUM<br>SILVER                                                                                                                 | TTLC   Wet wt   mg/Kg   500   500   10000   75   100   500   2500   2500   2500   2500   1000   200   3500   2000   1000   500                                                     | MBCDEWCN<br>Jan-17<br>P920340<br>6.5<br>6.66<br>465<br>0.06<br>< 0.1<br>NA<br>44.2<br>3.99<br>633<br>15.3<br>1.07<br>1.2<br>19.3<br>23.9<br>5.33<br>3.3                                                             | MBCDEW CN<br>Feb 17<br>P925827<br>5.8<br>6.45<br>514<br>0.09<br>0.37<br>NA<br>44.3<br>3.98<br>719<br>15.7<br>0.61<br>0.71<br>17.2<br>25.8<br>5.8<br>6.45<br>514<br>0.09<br>0.37<br>NA<br>44.3<br>3.98<br>719<br>15.7<br>0.61<br>0.71<br>17.2<br>25.8<br>5.8<br>5.8<br>5.8<br>5.8<br>5.8<br>5.8<br>5.8<br>5.8<br>5.8 | MBCDEWCN<br>Mar-17<br>P932213<br>6.0<br>8.22<br>472<br>3.07<br>0.32<br>NA<br>43.2<br>4.03<br>695<br>15.8<br>1.09<br>1.1<br>15.5<br>28.1<br>4.11<br>3.72                                             | MBCDEWCN<br>Apr-17<br>P937935<br>6<br>5.38<br>385<br>0.05<br>0.92<br>NA<br>40.2<br>3.6<br>634<br>14.5<br>1.06<br>1.03<br>15.5<br>23.7<br>2.1<br>3.63                                                                                            | MBCDEW CN<br>May-17<br>P945968<br>3.74<br>3.41<br>337<br>0.03<br>0.57<br>NA<br>43.2<br>2.36<br>611<br>8.9<br>1.47<br>1.29<br>10.4<br>14.6<br>4.53<br>2.1                                                                 | MBCDEWCN<br>Jun-17<br>P953132<br>5.77<br>3.73<br>316<br>0.04<br>0.81<br>NA<br>45.9<br>3.76<br>603<br>13.8<br>1.67<br>1.62<br>17.7<br>26.4<br>4.49<br>3.12                                                                        | MBCDEW CN<br>Jul-17<br>P959635<br>7.01<br>1.59<br>320<br>0.05<br>0.82<br>NA<br>44.4<br>3.76<br>652<br>13.8<br>1.11<br>1.14<br>20.9<br>26.0<br>4.72<br>3.88                                                                       | MBCDEWCN<br>Aug-17<br>P966456<br>6.74<br>3.36<br>301<br>0.08<br>0.9<br>NA<br>45.6<br>4.13<br>659<br>15.5<br>1.27<br>1.67<br>23.6<br>25.9<br>4.15<br>3.57                                                                     | MBCDEW CN<br>Sep-17<br>P974186<br>< 0.4<br>4.1<br>82<br>DNQ 0.06<br>DNQ 0.39<br>NA<br>13.0<br>DNQ 1.1<br>180<br>4.8<br>1.09<br>1.22<br>6.4<br>7.8<br>< 1.7<br>DNQ 1.2                                                                   | MBCDEWCN<br>Oct-17<br>P979340<br>< 0.36<br>DNQ 1.40<br>47<br>DNQ 0.02<br>DNQ 0.3<br>NA<br>11<br>DNQ 0.9<br>150<br>4<br>0.85<br>0.3<br>4.9<br>6.2<br>< 0.55<br>DNQ 0.8                                                 | MBCDEW CN<br>Nov-17<br>P986442<br>2.78<br>285<br>< 0.07<br>0.71<br>NA<br>49.8<br>3.69<br>653<br>16.5<br>0.88<br>0.14<br>20<br>20<br>3.25<br>2.92                                                          | MBCDEWCN<br>Dec-17<br>P992862<br>5.66<br>2.9<br>293<br>< 0.02<br>0.74<br>NA<br>41.9<br>3.54<br>643<br>12.6<br>0.24<br>0.9<br>17.6<br>21.2<br>3.7<br>3.52                                                |
| ANALYTE<br>ANTIMONY<br>ARSENIC<br>BARIUM<br>BERYLLIUM<br>CADMIUM<br>CHROMIUM(VI)<br>CHROMIUM(VI)<br>COBALT<br>COPPER<br>LEAD<br>MERCURY^<br>MERCURY^<br>MERCURY#<br>MOLYBDENUM<br>NICKEL<br>SELENIUM<br>SILVER<br>THALLIUM                                                                                                 | TTLC   Wet wt   mg/Kg   500   500   1000   75   100   500   2500   8000   2500   1000   200   3500   2000   100   500   700                                                        | MBCDEWCN<br>Jan-17<br>P920340<br>6.5<br>6.66<br>465<br>0.06<br>< 0.1<br>NA<br>44.2<br>3.99<br>633<br>15.3<br>1.07<br>1.2<br>19.3<br>23.9<br>5.33<br>3.3<br>< 0.4                                                    | MBCDEW CN<br>Feb.17<br>P925827<br>5.8<br>6.45<br>514<br>0.09<br>0.37<br>NA<br>44.3<br>3.98<br>719<br>15.7<br>0.61<br>0.71<br>17.2<br>25.8<br>1.56<br>4.24<br>0.43                                                                                                                                                   | MBCDEWCN<br>Mar-17<br>P932213<br>6.0<br>8.22<br>472<br>3.07<br>0.32<br>NA<br>43.2<br>4.03<br>695<br>15.8<br>1.09<br>1.1<br>15.5<br>28.1<br>4.11<br>3.72<br>0.43                                     | MBCDEWCN<br>Apr-17<br>P937935<br>6<br>5.38<br>385<br>0.05<br>0.92<br>NA<br>40.2<br>3.6<br>634<br>14.5<br>1.06<br>1.03<br>15.5<br>23.7<br>2.1<br>3.63<br>< 0.4                                                                                   | MBCDEW CN<br>May-17<br>P945968<br>3.74<br>3.41<br>337<br>0.03<br>0.57<br>NA<br>43.2<br>2.36<br>611<br>8.9<br>1.47<br>1.29<br>10.4<br>14.6<br>4.53<br>2.1<br>0.43                                                         | MBCDEWCN<br>Jun-17<br>P953132<br>5.77<br>3.73<br>316<br>0.04<br>0.81<br>NA<br>45.9<br>3.76<br>603<br>13.8<br>1.67<br>1.62<br>17.7<br>26.4<br>4.49<br>3.12<br>< 0.4                                                               | MBCDEW CN<br>Jul-17<br>P959635<br>7.01<br>1.59<br>320<br>0.05<br>0.82<br>NA<br>44.4<br>3.76<br>652<br>13.8<br>1.11<br>1.14<br>20.9<br>26.0<br>4.72<br>3.88<br>< 0.4                                                              | MBCDEWCN<br>Aug-17<br>P966456<br>6.74<br>3.36<br>301<br>0.08<br>0.9<br>NA<br>45.6<br>4.13<br>659<br>15.5<br>1.27<br>1.67<br>23.6<br>25.9<br>4.15<br>3.57<br>< 0.4                                                            | MBCDEW CN<br>Sep-17<br>P974186<br>< 0.4<br>4.1<br>82<br>DNQ 0.06<br>DNQ 0.39<br>NA<br>13.0<br>DNQ 1.1<br>180<br>4.8<br>1.09<br>1.22<br>6.4<br>7.8<br>< 1.7<br>DNQ 1.2<br>< 0.51                                                         | MBCDEWCN<br>Oct-17<br>P979340<br>< 0.36<br>DNQ 1.40<br>47<br>DNQ 0.02<br>DNQ 0.3<br>NA<br>11<br>DNQ 0.9<br>150<br>4<br>0.85<br>0.3<br>4.9<br>6.2<br>< 0.55<br>DNQ 0.8<br>< 0.32                                       | MBCDEW CN<br>Nov-17<br>P986442<br>8.2<br>2.78<br>285<br>< 0.07<br>0.71<br>NA<br>49.8<br>3.69<br>653<br>16.5<br>0.88<br>0.14<br>20<br>20<br>3.25<br>2.92<br>< 0.19                                         | MBCDEWCN<br>Dec-17<br>P992862<br>5.66<br>2.9<br>293<br>< 0.02<br>0.74<br>NA<br>41.9<br>3.54<br>643<br>12.6<br>0.24<br>0.9<br>17.6<br>21.2<br>3.7<br>3.52<br>3.7<br>3.52<br>< 0.4                        |
| ANALYTE<br>ANTIMONY<br>ARSENIC<br>BARIUM<br>BERYLLIUM<br>CADMIUM<br>CHROMIUM(VI)<br>CHROMIUM(VI)<br>COBALT<br>COPPER<br>LEAD<br>MERCURY^<br>MERCURY*<br>MOLYBDENUM<br>NICKEL<br>SELENIUM<br>SILVER<br>THALLIUM<br>VANADIUM                                                                                                 | TTLC   Wet wt   mg/Kg   500   500   10000   75   100   500   2500   8000   2500   2000   3500   2000   100   500   2000   100   500   2000   100   500   7000   2400               | MBCDEWCN<br>Jan-17<br>P920340<br>6.5<br>6.66<br>465<br>0.06<br>< 0.1<br>NA<br>44.2<br>3.99<br>633<br>15.3<br>1.07<br>1.2<br>19.3<br>23.9<br>5.33<br>3.3<br>< 0.4<br>23.5                                            | MBCDEW CN<br>Feb 17<br>P925827<br>5.8<br>6.45<br>514<br>0.09<br>0.37<br>NA<br>44.3<br>3.98<br>719<br>15.7<br>0.61<br>0.71<br>17.2<br>25.8<br>1.56<br>4.24<br>0.43<br>0.43<br>0.78                                                                                                                                   | MBCDEWCN<br>Mar-17<br>P932213<br>6.0<br>8.22<br>472<br>3.07<br>0.32<br>NA<br>43.2<br>4.03<br>695<br>15.8<br>1.09<br>1.1<br>15.5<br>28.1<br>4.11<br>3.72<br>0.43<br>26.8                             | MBCDEWCN<br>Apr-17<br>P937935<br>6<br>5.38<br>385<br>0.05<br>0.92<br>NA<br>40.2<br>3.6<br>634<br>14.5<br>1.06<br>1.03<br>15.5<br>23.7<br>2.1<br>3.63<br>< 0.4<br>22.2                                                                           | MBCDEW CN<br>May-17<br>P945968<br>3.74<br>3.41<br>337<br>0.03<br>0.57<br>NA<br>43.2<br>2.36<br>611<br>8.9<br>1.47<br>1.29<br>10.4<br>14.6<br>4.53<br>2.1<br>0.43<br>12.7                                                 | MBCDEWCN<br>Jun-17<br>P953132<br>5.77<br>3.73<br>316<br>0.04<br>0.81<br>NA<br>45.9<br>3.76<br>603<br>13.8<br>1.67<br>1.62<br>17.7<br>26.4<br>4.49<br>3.12<br>< 0.4<br>19.4                                                       | MBCDEWCN<br>Jul-17<br>P959635<br>7.01<br>1.59<br>320<br>0.05<br>0.82<br>NA<br>44.4<br>3.76<br>652<br>13.8<br>1.11<br>1.14<br>20.9<br>26.0<br>4.72<br>3.88<br>< 0.4<br>18.5                                                       | MBCDEWCN<br>Aug-17<br>P966456<br>6.74<br>3.36<br>301<br>0.08<br>0.9<br>NA<br>45.6<br>4.13<br>659<br>15.5<br>1.27<br>1.67<br>23.6<br>25.9<br>4.15<br>3.57<br>< 0.4<br>17.0                                                    | MBCDEW CN<br>Sep-17<br>P974186<br>< 0.4<br>4.1<br>82<br>DNQ 0.06<br>DNQ 0.39<br>NA<br>13.0<br>DNQ 1.1<br>180<br>4.8<br>1.09<br>1.22<br>6.4<br>7.8<br>< 1.7<br>DNQ 1.2<br>< 0.51<br>3.5                                                  | MBCDEWCN<br>Oct-17<br>P979340<br>< 0.36<br>DNQ 1.40<br>47<br>DNQ 0.02<br>DNQ 0.3<br>NA<br>11<br>DNQ 0.9<br>150<br>4<br>0.85<br>0.3<br>4.9<br>6.2<br>< 0.55<br>DNQ 0.8<br>< 0.32<br>3.80                               | MBCDEW CN<br>Nov-17<br>P986442<br>8.2<br>2.78<br>285<br>< 0.07<br>0.71<br>NA<br>49.8<br>3.69<br>653<br>16.5<br>0.88<br>0.14<br>20<br>20<br>3.25<br>2.92<br>< 0.19<br>13.0                                 | MBCDEWCN<br>Dec-17<br>P992862<br>5.66<br>2.9<br>293<br>< 0.02<br>0.74<br>NA<br>41.9<br>3.54<br>643<br>12.6<br>0.24<br>0.9<br>17.6<br>21.2<br>3.7<br>3.52<br>< 0.4<br>13.3                               |
| ANALYTE<br>ANTIMONY<br>ARSENIC<br>BARIUM<br>BERYLLIUM<br>CADMIUM<br>CHROMIUM(VI)<br>CHROMIUM(VI)<br>CHROMIUM(total)<br>COBALT<br>COPPER<br>LEAD<br>MERCURY^<br>MERCURY^<br>MERCURY#<br>MOLYBDENUM<br>NICKEL<br>SELENIUM<br>SILVER<br>THALLIUM<br>VANADIUM<br>ZINC                                                          | TTLC   Wet wt   mg/Kg   500   500   10000   75   100   500   2500   8000   2500   1000   2500   3500   2000   100   500   2000   100   500   700   24000                           | MBCDEWCN<br>Jan-17<br>P920340<br>6.5<br>6.66<br>465<br>0.06<br>< 0.1<br>NA<br>44.2<br>3.99<br>633<br>15.3<br>1.07<br>1.2<br>19.3<br>23.9<br>5.33<br>3.3<br>< 0.4<br>23.5<br>984                                     | MBCDEW CN<br>Feb 17<br>P925827<br>5.8<br>6.45<br>514<br>0.09<br>0.37<br>NA<br>44.3<br>3.98<br>719<br>15.7<br>0.61<br>0.71<br>17.2<br>25.8<br>1.56<br>4.24<br>0.43<br>27.8<br>990                                                                                                                                    | MBCDEWCN<br>Mar-17<br>P932213<br>6.0<br>8.22<br>472<br>3.07<br>0.32<br>NA<br>43.2<br>4.03<br>695<br>15.8<br>1.09<br>1.1<br>15.5<br>28.1<br>4.11<br>3.72<br>0.43<br>26.8<br>1010                     | MBCDEWCN<br>Apr-17<br>P937935<br>6<br>5.38<br>385<br>0.05<br>0.92<br>NA<br>40.2<br>3.6<br>634<br>14.5<br>1.06<br>1.03<br>15.5<br>23.7<br>2.1<br>3.63<br>< 0.4<br>22.2<br>951                                                                    | MBCDEW CN<br>May-17<br>P945968<br>3.74<br>3.41<br>337<br>0.03<br>0.57<br>NA<br>43.2<br>2.36<br>611<br>8.9<br>1.47<br>1.29<br>10.4<br>14.6<br>4.53<br>2.1<br>0.43<br>12.7<br>968                                          | MBCDEWCN<br>Jun-17<br>P953132<br>5.77<br>3.73<br>316<br>0.04<br>0.81<br>NA<br>45.9<br>3.76<br>603<br>13.8<br>1.67<br>1.62<br>17.7<br>26.4<br>4.49<br>3.12<br>< 0.4<br>19.4<br>946                                                | MBCDEW CN<br>Jul-17<br>P959635<br>7.01<br>1.59<br>320<br>0.05<br>0.82<br>NA<br>44.4<br>3.76<br>652<br>13.8<br>1.11<br>1.14<br>20.9<br>26.0<br>4.72<br>3.88<br>< 0.4<br>18.5<br>1003                                              | MBCDEWCN<br>Aug-17<br>P966456<br>6.74<br>3.36<br>301<br>0.08<br>0.9<br>NA<br>45.6<br>4.13<br>659<br>15.5<br>1.27<br>1.67<br>23.6<br>25.9<br>4.15<br>3.57<br>< 0.4<br>17.0<br>1045                                            | MBCDEW CN<br>Sep-17<br>P974186<br>< 0.4<br>4.1<br>82<br>DNQ 0.06<br>DNQ 0.39<br>NA<br>13.0<br>DNQ 1.1<br>180<br>4.8<br>1.09<br>1.22<br>6.4<br>7.8<br>< 1.7<br>DNQ 1.2<br>< 0.51<br>3.5<br>250                                           | MBCDEWCN<br>Oct-17<br>P979340<br>< 0.36<br>DNQ 1.40<br>47<br>DNQ 0.02<br>DNQ 0.3<br>NA<br>11<br>DNQ 0.9<br>150<br>4<br>0.85<br>0.3<br>4.9<br>6.2<br>< 0.55<br>DNQ 0.8<br>< 0.32<br>3.80<br>220                        | MBCDEW CN<br>Nov-17<br>P986442<br>8.2<br>2.78<br>285<br>< 0.07<br>0.71<br>NA<br>49.8<br>3.69<br>653<br>16.5<br>0.88<br>0.14<br>20<br>20<br>3.25<br>2.92<br>< 0.19<br>13.0<br>915                          | MBCDEWCN<br>Dec-17<br>P992862<br>5.66<br>2.9<br>293<br>< 0.02<br>0.74<br>NA<br>41.9<br>3.54<br>643<br>12.6<br>0.24<br>0.9<br>17.6<br>21.2<br>3.7<br>3.52<br>< 0.4<br>13.3<br>969                        |
| ANALYTE<br>ANT IMONY<br>ARSENIC<br>BARIUM<br>BERYLLIUM<br>CADMIUM<br>CHROMIUM(VI)<br>CHROMIUM(total)<br>COBALT<br>COPPER<br>LEAD<br>MERCURY^<br>MOLYBDENUM<br>NICKEL<br>SELENIUM<br>SILVER<br>THALLIUM<br>VANADIUM<br>ZINC<br>FLUORIDE                                                                                     | TTLC   Wet wt   mg/Kg   500   500   10000   75   100   2500   8000   2500   1000   2500   3500   2000   100   500   2000   100   500   2400   5000   18000                         | MBCDEWCN<br>Jan-17<br>P920340<br>6.5<br>6.66<br>465<br>0.06<br>< 0.1<br>NA<br>44.2<br>3.99<br>633<br>15.3<br>1.07<br>1.2<br>19.3<br>23.9<br>5.33<br>3.3<br>< 0.4<br>23.5<br>984<br>30.3                             | MBCDEW CN<br>Feb 17<br>P925827<br>5.8<br>6.45<br>514<br>0.09<br>0.37<br>NA<br>44.3<br>3.98<br>719<br>15.7<br>0.61<br>0.71<br>17.2<br>25.8<br>1.56<br>4.24<br>0.43<br>27.8<br>99<br>90<br>32.9                                                                                                                       | MBCDEWCN<br>Mar-17<br>P932213<br>6.0<br>8.22<br>472<br>3.07<br>0.32<br>NA<br>43.2<br>4.03<br>695<br>15.8<br>1.09<br>1.1<br>15.5<br>28.1<br>4.11<br>3.72<br>0.43<br>26.8<br>1010<br>28.9             | MBCDEWCN<br>Apr-17<br>P937935<br>6<br>5.38<br>385<br>0.05<br>0.92<br>NA<br>40.2<br>3.6<br>634<br>14.5<br>1.06<br>1.03<br>15.5<br>23.7<br>2.1<br>3.63<br>< 0.4<br>22.2<br>951<br>33.9                                                            | MBCDEW CN<br>May-17<br>P945968<br>3.74<br>3.41<br>337<br>0.03<br>0.57<br>NA<br>43.2<br>2.36<br>611<br>8.9<br>1.47<br>1.29<br>10.4<br>14.6<br>4.53<br>2.1<br>0.43<br>12.7<br>968<br>36.35                                 | MBCDEWCN<br>Jun-17<br>P953132<br>5.77<br>3.73<br>316<br>0.04<br>0.81<br>NA<br>45.9<br>3.76<br>603<br>13.8<br>1.67<br>1.62<br>17.7<br>26.4<br>4.49<br>3.12<br>< 0.4<br>19.4<br>946<br>29.3                                        | MBCDEW CN<br>Jul-17<br>P959635<br>7.01<br>1.59<br>320<br>0.05<br>0.82<br>NA<br>44.4<br>3.76<br>652<br>13.8<br>1.11<br>1.14<br>20.9<br>26.0<br>4.72<br>3.88<br>< 0.4<br>18.5<br>1003<br>30.6                                      | MBCDEWCN<br>Aug-17<br>P966456<br>6.74<br>3.36<br>301<br>0.08<br>0.9<br>NA<br>45.6<br>4.13<br>659<br>15.5<br>1.27<br>1.67<br>23.6<br>25.9<br>4.15<br>3.57<br>< 0.4<br>17.0<br>1045<br>31.5                                    | MBCDEW CN<br>Sep-17<br>P974186<br>< 0.4<br>4.1<br>82<br>DNQ 0.06<br>DNQ 0.39<br>NA<br>13.0<br>DNQ 1.1<br>180<br>4.8<br>1.09<br>1.22<br>6.4<br>7.8<br>< 1.7<br>DNQ 1.2<br>6.4<br>7.8<br>< 1.7<br>DNQ 1.2<br>< 0.51<br>3.5<br>250<br>35.3 | MBCDEWCN<br>Oct-17<br>P979340<br>< 0.36<br>DNQ 1.40<br>47<br>DNQ 0.02<br>DNQ 0.3<br>NA<br>11<br>DNQ 0.9<br>150<br>4<br>0.85<br>0.3<br>4.9<br>6.2<br>< 0.55<br>DNQ 0.8<br>< 0.32<br>3.80<br>220<br>28.7                | MBCDEW CN<br>Nov-17<br>P986442<br>8.2<br>2.78<br>285<br>< 0.07<br>0.71<br>NA<br>49.8<br>3.69<br>653<br>16.5<br>0.88<br>0.14<br>20<br>20<br>3.25<br>2.92<br>< 0.19<br>13.0<br>915<br>30.9                  | MBCDEWCN<br>Dec-17<br>P992862<br>5.66<br>2.9<br>293<br>< 0.02<br>0.74<br>NA<br>41.9<br>3.54<br>643<br>12.6<br>0.24<br>0.9<br>17.6<br>21.2<br>3.7<br>3.52<br>< 0.4<br>13.3<br>969<br>27.9                |
| ANALYTE<br>ANT IMONY<br>ARSENIC<br>BARIUM<br>BERYLLIUM<br>CADMIUM<br>CHROMIUM(VI)<br>CHROMIUM(total)<br>COBALT<br>COPPER<br>LEAD<br>MERCURY^<br>MERCURY*<br>MOLYBDENUM<br>NICKEL<br>SELENUM<br>SILVER<br>THALLIUM<br>VANADIUM<br>ZINC<br>FLUORIDE<br>SULFIDES-REACTIVE                                                     | TTLC   Wet wt   mg/Kg   500   10000   75   100   2500   2500   2500   2500   2500   2500   3500   2000   3500   2000   3500   2000   1000   2000   1000   1000   1000   NA         | MBCDEWCN<br>Jan-17<br>P920340<br>6.5<br>6.66<br>465<br>0.06<br>< 0.1<br>NA<br>44.2<br>3.99<br>633<br>15.3<br>1.07<br>1.2<br>19.3<br>23.9<br>5.33<br>3.3<br>< 0.4<br>23.5<br>984<br>30.3<br>125                      | MBCDEW CN<br>Feb 17<br>P925827<br>5.8<br>6.45<br>514<br>0.09<br>0.37<br>NA<br>44.3<br>3.98<br>719<br>15.7<br>0.61<br>0.71<br>17.2<br>25.8<br>1.56<br>4.24<br>0.43<br>27.8<br>990<br>32.9<br>44                                                                                                                      | MBCDEWCN<br>Mar-17<br>P932213<br>6.0<br>8.22<br>472<br>3.07<br>0.32<br>NA<br>43.2<br>4.03<br>695<br>15.8<br>1.09<br>1.1<br>15.5<br>28.1<br>4.11<br>3.72<br>0.43<br>26.8<br>1010<br>28.9<br>40       | MBCDEWCN<br>Apr-17<br>P937935<br>6<br>5.38<br>385<br>0.05<br>0.92<br>NA<br>40.2<br>3.6<br>634<br>14.5<br>1.06<br>1.03<br>15.5<br>23.7<br>2.1<br>3.63<br>< 0.4<br>22.2<br>951<br>33.9<br>39                                                      | MBCDEW CN<br>May-17<br>P945968<br>3.74<br>3.41<br>337<br>0.03<br>0.57<br>NA<br>43.2<br>2.36<br>611<br>8.9<br>1.47<br>1.29<br>10.4<br>1.47<br>1.29<br>10.4<br>14.6<br>4.53<br>2.1<br>0.43<br>12.7<br>968<br>36.35<br>52   | MBCDEWCN<br>Jun-17<br>P953132<br>5.77<br>3.73<br>316<br>0.04<br>0.81<br>NA<br>45.9<br>3.76<br>603<br>13.8<br>1.67<br>1.62<br>17.7<br>26.4<br>4.49<br>3.12<br>< 0.4<br>19.4<br>946<br>29.3<br>43                                  | MBCDEW CN<br>Jul-17<br>P959635<br>7.01<br>1.59<br>320<br>0.05<br>0.82<br>NA<br>44.4<br>3.76<br>652<br>13.8<br>1.11<br>1.14<br>20.9<br>26.0<br>4.72<br>3.88<br>< 0.4<br>18.5<br>1003<br>30.6<br>79                                | MBCDEWCN<br>Aug-17<br>P966456<br>6.74<br>3.36<br>301<br>0.08<br>0.9<br>NA<br>45.6<br>4.13<br>659<br>15.5<br>1.27<br>1.67<br>23.6<br>25.9<br>4.15<br>3.57<br>< 0.4<br>17.0<br>1045<br>31.5<br>57                              | MBCDEW CN<br>Sep-17<br>P974186<br>< 0.4<br>4.1<br>82<br>DNQ 0.06<br>DNQ 0.39<br>NA<br>13.0<br>DNQ 1.1<br>180<br>4.8<br>1.09<br>1.22<br>6.4<br>7.8<br>< 1.7<br>DNQ 1.2<br>< 0.51<br>3.5<br>250<br>35.3<br>33                             | MBCDEWCN<br>Oct-17<br>P979340<br>< 0.36<br>DNQ 1.40<br>47<br>DNQ 0.02<br>DNQ 0.3<br>NA<br>11<br>DNQ 0.9<br>150<br>4<br>0.85<br>0.3<br>4.9<br>6.2<br>< 0.55<br>DNQ 0.8<br>< 0.32<br>3.80<br>220<br>28.7<br>47          | MBCDEW CN<br>Nov-17<br>P986442                                                                                                                                                                            | MBCDEWCN<br>Dec-17<br>P992862<br>5.66<br>2.9<br>293<br>< 0.02<br>0.74<br>NA<br>41.9<br>3.54<br>643<br>12.6<br>0.24<br>0.9<br>17.6<br>21.2<br>3.7<br>3.52<br>< 0.4<br>13.3<br>969<br>27.9<br>77          |
| ANALYTE<br>ANT IMONY<br>ARSENIC<br>BARIUM<br>BERYLLIUM<br>CADMIUM<br>CHROMIUM(VI)<br>CHROMIUM(total)<br>COBALT<br>COPPER<br>LEAD<br>MERCURY^<br>MERCURY^<br>MERCURY#<br>MOLYBDENUM<br>NICKEL<br>SELENIUM<br>SILVER<br>THALLIUM<br>VANADIUM<br>ZINC<br>FLUORIDE<br>SULFIDES-REACTIVE<br>SULFIDES-TOTAL                      | TTLC   Wet wt   mg/Kg   500   500   1000   500   2500   8000   2500   8000   2500   3500   2000   3500   2000   3500   2000   1000   500   700   2400   5000   18000   NA          | MBCDEWCN<br>Jan-17<br>P920340<br>6.5<br>6.66<br>465<br>0.06<br>< 0.1<br>NA<br>44.2<br>3.99<br>633<br>15.3<br>1.07<br>1.2<br>19.3<br>23.9<br>5.33<br>3.3<br>< 0.4<br>23.5<br>984<br>30.3<br>125<br>13200             | MBCDEWCN<br>Feb.17<br>P925827<br>5.8<br>6.45<br>514<br>0.09<br>0.37<br>NA<br>44.3<br>3.98<br>719<br>15.7<br>0.61<br>0.71<br>17.2<br>25.8<br>1.56<br>4.24<br>0.43<br>27.8<br>990<br>32.9<br>4<br>10150                                                                                                               | MBCDEWCN<br>Mar-17<br>P932213<br>6.0<br>8.22<br>472<br>3.07<br>0.32<br>NA<br>43.2<br>4.03<br>695<br>15.8<br>1.09<br>1.1<br>15.5<br>28.1<br>4.11<br>3.72<br>0.43<br>26.8<br>1010<br>28.9<br>40       | MBCDEWCN<br>Apr-17<br>P937935<br>6<br>5.38<br>385<br>0.05<br>0.92<br>NA<br>40.2<br>3.6<br>634<br>14.5<br>1.06<br>1.03<br>15.5<br>23.7<br>2.1<br>3.63<br>< 0.4<br>22.2<br>951<br>33.9<br>39<br>11700                                             | MBCDEW CN<br>May-17<br>P945968<br>3.74<br>3.41<br>337<br>0.03<br>0.57<br>NA<br>43.2<br>2.36<br>611<br>8.9<br>1.47<br>1.29<br>10.4<br>14.6<br>4.53<br>2.1<br>0.43<br>12.7<br>968<br>36.35<br>52<br>13850                  | MBCDEWCN<br>Jun-17<br>P953132<br>5.77<br>3.73<br>316<br>0.04<br>0.81<br>NA<br>45.9<br>3.76<br>603<br>13.8<br>1.67<br>1.62<br>17.7<br>26.4<br>4.49<br>3.12<br>< 0.4<br>19.4<br>946<br>29.3<br>43<br>10800                         | MBCDEW CN<br>Jul-17<br>P959635<br>7.01<br>1.59<br>320<br>0.05<br>0.82<br>NA<br>44.4<br>3.76<br>652<br>13.8<br>1.11<br>1.14<br>20.9<br>26.0<br>4.72<br>3.88<br>< 0.4<br>18.5<br>1003<br>30.6<br>79<br>17600                       | MBCDEWCN<br>Aug-17<br>P966456<br>6.74<br>3.36<br>301<br>0.08<br>0.9<br>NA<br>45.6<br>4.13<br>659<br>15.5<br>1.27<br>1.67<br>23.6<br>25.9<br>4.15<br>3.57<br>< 0.4<br>17.0<br>1045<br>31.5<br>57<br>8220                      | MBCDEWCN<br>Sep-17<br>P974186<br>< 0.4<br>4.1<br>82<br>DNQ 0.06<br>DNQ 0.39<br>NA<br>13.0<br>DNQ 1.1<br>180<br>4.8<br>1.09<br>1.22<br>6.4<br>7.8<br>< 1.7<br>DNQ 1.2<br>< 0.51<br>3.5<br>250<br>35.3<br>33<br>15000                     | MBCDEWCN<br>Oct-17<br>P979340<br>< 0.36<br>DNQ 1.40<br>47<br>DNQ 0.02<br>DNQ 0.3<br>NA<br>11<br>DNQ 0.9<br>150<br>4<br>0.85<br>0.3<br>4.9<br>6.2<br>< 0.55<br>DNQ 0.8<br>< 0.32<br>3.80<br>220<br>28.7<br>47<br>18900 | MBCDEW CN<br>Nov-17<br>P986442<br>8.2<br>2.78<br>285<br>< 0.07<br>0.71<br>NA<br>49.8<br>3.69<br>653<br>16.5<br>0.88<br>0.14<br>20<br>20<br>3.25<br>2.92<br>< 0.19<br>13.0<br>915<br>30.9<br>61.0<br>13950 | MBCDEWCN<br>Dec-17<br>P992862<br>5.66<br>2.9<br>293<br>< 0.02<br>0.74<br>NA<br>41.9<br>3.54<br>643<br>12.6<br>0.24<br>0.9<br>17.6<br>21.2<br>3.7<br>3.52<br>< 0.4<br>13.3<br>969<br>27.9<br>77<br>19850 |
| ANALYTE<br>ANTIMONY<br>ARSENIC<br>BARIUM<br>BERYLLIUM<br>CADMIUM<br>CHROMIUM(VI)<br>CHROMIUM(total)<br>COBPLR<br>LEAD<br>MERCURY^<br>MERCURY^<br>MERCURY#<br>MOLYBDENUM<br>NICKEL<br>SELENIUM<br>SILVER<br>THALLIUM<br>VANADIUM<br>ZINC<br>FLUORIDE<br>SULFIDES-REACTIVE<br>SULFIDES-TOTAL<br>TTLC = Total Threshold Limit | TTLC   Wet wt   mg/Kg   500   500   1000   2500   8000   2500   8000   2500   1000   200   3500   2000   100   5000   2000   100   5000   700   2400   5000   NA   NA   Concentrat | MBCDEWCN<br>Jan-17<br>P920340<br>6.5<br>6.66<br>465<br>0.06<br>< 0.1<br>NA<br>44.2<br>3.99<br>633<br>15.3<br>1.07<br>1.2<br>19.3<br>23.9<br>5.33<br>3.3<br>< 0.4<br>23.5<br>984<br>30.3<br>125<br>13200<br>ion STLC | MBCDEW CN<br>Feb.17<br>P925827<br>5.8<br>6.45<br>514<br>0.09<br>0.37<br>NA<br>44.3<br>3.98<br>719<br>15.7<br>0.61<br>0.71<br>17.2<br>25.8<br>1.56<br>4.24<br>0.43<br>27.8<br>990<br>32.9<br>4<br>4<br>10150<br>= Soluble Threshold L                                                                                | MBCDEWCN<br>Mar-17<br>P932213<br>6.0<br>8.22<br>472<br>3.07<br>0.32<br>NA<br>43.2<br>4.03<br>695<br>15.8<br>1.09<br>1.1<br>15.5<br>28.1<br>4.11<br>3.72<br>0.43<br>26.8<br>1010<br>28.9<br>40<br>40 | MBCDEWCN<br>Apr-17<br>P937935<br>6<br>5.38<br>385<br>0.05<br>0.92<br>NA<br>40.2<br>3.6<br>634<br>14.5<br>1.06<br>1.03<br>15.5<br>23.7<br>2.1<br>3.63<br>< 0.4<br>22.2<br>951<br>33.9<br>9<br>9<br>9<br>9<br>9<br>0<br>11700<br>tr ^ = To comply | MBCDEW CN<br>May-17<br>P945968<br>3.74<br>3.41<br>337<br>0.03<br>0.57<br>NA<br>43.2<br>2.36<br>611<br>8.9<br>1.47<br>1.29<br>10.4<br>14.6<br>4.53<br>2.1<br>0.43<br>12.7<br>968<br>36.35<br>52<br>1350<br>with CA ELAP C | MBCDEWCN<br>Jun-17<br>P953132<br>5.77<br>3.73<br>316<br>0.04<br>0.81<br>NA<br>45.9<br>3.76<br>603<br>13.8<br>1.67<br>1.62<br>17.7<br>26.4<br>4.49<br>3.12<br>< 0.4<br>19.4<br>9.46<br>29.3<br>43<br>10800<br>ertification # = To | MBCDE W CN<br>Jul-17<br>P959635<br>7.01<br>1.59<br>320<br>0.05<br>0.82<br>NA<br>44.4<br>3.76<br>652<br>13.8<br>1.11<br>1.14<br>20.9<br>26.0<br>4.72<br>3.88<br>< 0.4<br>18.5<br>1003<br>30.6<br>79<br>17600<br>comply with Arizo | MBCDEWCN<br>Aug-17<br>P966456<br>6.74<br>3.36<br>301<br>0.08<br>0.9<br>NA<br>45.6<br>4.13<br>659<br>15.5<br>1.27<br>1.67<br>23.6<br>25.9<br>4.15<br>3.57<br>< 0.4<br>17.0<br>1045<br>31.5<br>57<br>8220<br>na Certification. | MBCDEW CN<br>Sep-17<br>P974186<br>< 0.4<br>4.1<br>82<br>DNQ 0.06<br>DNQ 0.39<br>NA<br>13.0<br>DNQ 1.1<br>180<br>4.8<br>1.09<br>1.22<br>6.4<br>7.8<br>< 1.7<br>DNQ 1.2<br>< 0.51<br>3.5<br>250<br>35.3<br>33<br>15000                    | MBCDEWCN<br>Oct-17<br>P979340<br>< 0.36<br>DNQ 1.40<br>47<br>DNQ 0.02<br>DNQ 0.3<br>NA<br>11<br>DNQ 0.9<br>150<br>4<br>0.85<br>0.3<br>4.9<br>6.2<br>< 0.55<br>DNQ 0.8<br>< 0.32<br>3.80<br>220<br>28.7<br>47<br>18900 | MBCDEW CN<br>Nov-17<br>P986442<br>8.2<br>2.78<br>285<br>< 0.07<br>0.71<br>NA<br>49.8<br>3.69<br>653<br>16.5<br>0.88<br>0.14<br>20<br>20<br>3.25<br>2.92<br>< 0.19<br>13.0<br>915<br>30.9<br>61.0<br>13950 | MBCDEWCN<br>Dec-17<br>P992862<br>5.66<br>2.9<br>293<br>< 0.02<br>0.74<br>NA<br>41.9<br>3.54<br>643<br>12.6<br>0.24<br>0.9<br>17.6<br>21.2<br>3.7<br>3.52<br>< 0.4<br>13.3<br>969<br>27.9<br>77<br>19850 |

\* = The total concentration is less than 10 times the the STLC, therefore by definition this substance is below hazardous concentrations. NA = Not Analyzed, NS = Not Sampled

| ORGANICS                     |                |                    | W                  | ET WEIGHT Con      | ce ntration     | (calcula    | ted)          |        |             |               |                |       |            |                |                   |     |                     |                  |      |                |       |
|------------------------------|----------------|--------------------|--------------------|--------------------|-----------------|-------------|---------------|--------|-------------|---------------|----------------|-------|------------|----------------|-------------------|-----|---------------------|------------------|------|----------------|-------|
|                              | TTLC           | MBCDEWCN           | MBCDEWCN           | MBCDE WO           | N MBCI          | DE WCN      | MBCI          | DE WCN | MBO         | CDE WCN       | MBCI           | DEWCN | MBO        | CDE WCN        | MBCDEWC           | N N | MBCDE WCN           | MBCDEV           | NCN  | MBCD           | E WCN |
|                              | Wet wt         | Jan-17             | Feb-17             | Mar-17             | Apr-1           | 7           | May-1         | 17     | Jun-        | 17            | <b>Jul-1</b> 7 |       | Aug        | -17            | Sep-17            |     | Oct-17              | Nov-17           |      | Dec-1          | 7     |
| ANALYTE                      | m g/Kg         | p920340            | P925827            | P932213            | P9379           | 935         | P9459         | 968    | P95         | 3132          | P9596          | 535   | P960       | 6456           | P974186           | T   | 979340              | P986442          |      | P99286         | 62    |
| ALDRIN                       | 1.4            | nd                 | nd                 | nd                 |                 | nd          |               | nd     |             | nd            |                | nd    |            | nd             | nd                |     | nd                  |                  | nd   |                | nd    |
| CHLORDANE                    | 2.5            | nd                 | nd                 | nd                 |                 | nd          |               | nd     |             | nd            |                | nd    |            | NA             | nd                |     | nd                  | <b>F</b>         | nd   | •              | nd    |
| DDT,DDE,DDD                  | 1.0            | nd                 | nd                 | nd                 |                 | nd          |               | nd     |             | nd            |                | nd    |            | nd             | nd                |     | nd                  |                  | nd   |                | nd    |
| 2,4-DCPAA                    | 100            | NA                 | NA                 | NA NA              |                 | NA          |               | nd     |             |               |                | NA    | - E.       | nd             | NA                |     | nd                  |                  | nd   |                | 0.000 |
| DIELDRIN                     | 8.0            | nd                 | nd                 | nd                 |                 | nd          |               | nd     | •           | nd            |                | nd    |            | nd             | nd                |     | nd                  | •                | nd   |                | nd    |
| ENDRIN                       | 0.2            | nd                 | nd                 | nd                 |                 | nd          | •             | nd     |             | nd            |                | nd    |            | nd             | nd                |     | nd                  |                  | nd   |                | nd    |
| HEPTACHLOR                   | 4.7            | nd                 | nd                 | nd                 |                 | nd          |               | nd     |             | nd            |                | nd    |            | nd             | nd                |     | nd                  |                  | nd   |                | nd    |
| KEPONE                       | 21             | NA                 | NA                 | NA                 |                 | NA          |               | NA     |             | NA            |                | NA    |            | NA             | NA                |     | NA                  |                  | NA   |                | NA    |
| LINDANE                      | 4.0            | nd                 | nd                 | nd                 |                 | nd          |               | nd     |             | nd            |                | nd    | <b>F</b>   | nd             | nd                |     | nd                  |                  | nd   |                | nd    |
| METHOXYCHLOR                 | 100            | nd                 | nd                 | nd                 |                 | nd          |               | nd     |             | nd            |                | nd    |            | nd             | nd                |     | nd                  |                  | nd   |                | nd    |
| MIREX                        | 21             | nd                 | nd                 | nd                 |                 | nd          |               | nd     |             | nd            |                | nd    |            | NA             | NA                |     | nd                  |                  | nd   |                | nd    |
| PENT ACHLOROPHENOL           | 17             | NA                 | nd                 | nd                 |                 | NA          |               | nd     | •           |               |                | NA    |            | nd             | NA                |     | nd                  | <b>F</b> 1       | NA   | •              | NA    |
| PCBs(TOTAL)                  | 50             | nd                 | nd                 | nd                 |                 | nd          |               | nd     |             | nd            |                | nd    |            | nd             | nd                |     | nd                  |                  | nd   |                | nd    |
| TOXAPHENE                    | 5              | nd                 | nd                 | nd                 |                 | nd          |               | nd     | •           | nd            |                | nd    | •          | nd             | nd                |     | nd                  |                  | nd   |                | nd    |
| TRICHLOROETHENE              | 2040           | nd                 | nd                 | nd                 |                 | nd          | •             | nd     | •           | nd            |                | nd    |            | nd             | nd                |     | nd                  | <b>r</b> - 1     | nd   |                | nd    |
| 2,4,5-T CPP A                | 10             | NA                 | NA                 | NA NA              |                 | NA          | •             | nd     |             | NA            |                | NA    |            | 0.012          | NA                |     | nd                  |                  | NA   |                | NA    |
| TOT AL SOLIDS (%)            |                | 27.1               | 28                 | 4 28               | 0               | 27.3        |               | 27.1   |             | 27.0          |                | 26.8  |            | 26.4           | 25.               | 3   | 26.1                |                  | 26.3 |                | 26.8  |
| Hq                           | >2-<12         | 7.95               | 7.9                | 7 7.9              | 7               | 7.91        |               | 7.94   |             | 7.84          |                | 7.85  |            | 7.85           | 7.9               | 1   | 7.94                |                  | 7.8  |                | 7.88  |
|                              | TTLC<br>Wet wt | MBCDEWCN<br>Jan-17 | MBCDEWCN<br>Feb-17 | MBCDE WO<br>Mar-17 | N MBCI<br>Apr-1 | DE WCN<br>7 | MBCI<br>May-1 | DE WCN | MBO<br>Jun- | CDE WCN<br>17 | MBCI<br>Jul-17 | DEWCN | MB(<br>Aug | CDE WCN<br>-17 | MBCDEWC<br>Sep-17 | N N | MBCDE WCN<br>Oct-17 | MBCDEV<br>Nov-17 | VCN  | MBCDI<br>Dec-1 | E WCN |
| ANALYTE                      | m g/Kg         | P920340            | P925827            | P932213            | P9379           | 935         | P9459         | 968    | P95         | 3132          | P9596          | 535   | P960       | 6456           | P974186           | T   | 979340              | P986442          |      | P9928(         | 62    |
| ALDRIN                       | 1.4            | l 1                | nd                 | nd                 | nd              | n           | ıd            | n      | đ           |               | nd             | n     | đ          | t              | ıd                | nd  | n                   | d                | n    | d              | nd    |
| CHLORDANE                    | 2.5            | i 1                | nd                 | nd                 | nd              | n           | d             | n      | đ           |               | nd             | n     | d          | Ν              | A                 | nd  | n                   | đ                | n    | d              | nd    |
| DDT,DDE,DDD                  | 1.0            | ) 1                | nd                 | nd                 | nd              | n           | d             | n      | d           |               | nd             | n     | đ          | 1              | ıd                | nd  | n                   | d                | n    | d              | nd    |
| 2,4-DCPAA                    | 100            | N                  | A                  | NA                 | NA              | NA          | A             | n      | đ           |               | nd             | N     | A          | 1              | ıd                | NA  | n                   | d                | n    | d              |       |
| DIELDRIN                     | 8.0            | ) 1                | nd                 | nd                 | nd              | n           | ıd            | n      | d           |               | nd             | n     | d          | 1              | ıd                | nd  | n                   | d                | n    | d              | nd    |
| ENDRIN                       | 0.2            | 1 1                | nd                 | nd                 | nd              | n           | d             | n      | đ           |               | nd             | n     | đ          | 1              | ıd                | nd  | n                   | d                | n    | d              | nd    |
| HEPTACHLOR                   | 4.7            | 1 1                | nd                 | nd                 | nd              | n           | ıd            | n      | đ           |               | nd             | n     | đ          | 1              | ıd                | nd  | n                   | đ                | n    | d              | nd    |
| KEPONE                       | 21             | N                  | A                  | NA                 | NA              | NA          | A             | NA     | A           | :             | NA             | N     | A          | N              | A                 | NA  | N                   | A                | N.   | A              | NA    |
| LINDANE                      | 4              | - I                | nđ                 | nd                 | nd              | n           | d             | n      | đ           |               | nd             | n     | đ          | 1              | ıd                | nd  | n                   | d                | n    | d              | nd    |
| METHOXYCHLOR                 | 100            | ) 1                | nd                 | nd                 | nđ              | n           | d             | n      | đ           |               | nđ             | n     | đ          | 1              | ıd                | nd  | n                   | d                | n    | d              | nd    |
| MIREX                        | 21             | 1                  | nd                 | nd                 | nd              | n           | d             | n      | d           |               | nd             | n     | đ          | N              | A                 | NA  | n                   | d                | n    | d              | nd    |
| PENT ACHLOROPHENOL           | 17             | N N                | A                  | nd                 | nd              | NA          | A             | n      | d           |               | NA             | N     | A          | 1              | ıd                | NA  | n                   | d                | N.   | A              | NA    |
| PCBs(TOTAL)                  | 50             | ) 1                | nd                 | nd                 | nd              | n           | d             | n      | d           |               | nd             | n     | d          | 1              | ıd                | nd  | n                   | d                | n    | d              | nd    |
| TOXAPHENE                    | 5              | i 1                | nd                 | nd                 | nd              | n           | d             | n      | đ           |               | nd             | n     | đ          | 1              | ıd                | nd  | n                   | d                | n    | d              | nd    |
| TRICHLOROETHENE              | 2040           | ) 1                | nd                 | nd                 | nd              | n           | d             | n      | d           |               | nd             | n     | đ          | 1              | ıd                | nd  | n                   | d                | n    | d              | nd    |
| 2,4,5-T CPP A                | 10             | ) N                | A                  | NA                 | NA              | NA          | A             | n      | đ           | :             | NA             | N     | A          | 1              | ıd                | NA  | n                   | d                | N.   | A              | NA    |
| TTLC = T otal Threshold Limi | t Concentra    | tion               | STLC = Soluble     | Threshold Limit    | Concentrati     | on          |               |        |             |               |                |       |            |                |                   |     |                     |                  |      |                |       |

|                 | STLC N   | MBCDEWCN      | MBCDEWCN | MBCDE WCN | MBCDE WCN | MBCDE WCN | MBCDE WCN      | MBCDEWCN       | MBCDE WCN | MBCDEWCN | MBCDE WCN | MBCDE WCN | MBCDE WCN |
|-----------------|----------|---------------|----------|-----------|-----------|-----------|----------------|----------------|-----------|----------|-----------|-----------|-----------|
|                 | Wet wt J | <b>an-1</b> 7 | Feb-17   | Mar-17    | Apr-17    | May-17    | <b>Jun-1</b> 7 | <b>Jul-1</b> 7 | Aug-17    | Sep-17   | Oct-17    | Nov-17    | Dec-17    |
| ANALYTE         | mg/LP    | 920340        | P925827  | P932213   | P937935   | P945968   | P953132        | P959635        | P966456   | P974186  | P979340   | P986442   | P992862   |
| ANTIMONY        | 15.0     | *             | *        | *         | *         | *         | *              | *              | *         | *        | *         | *         | *         |
| ARSENIC         | 5.0      | *             | *        | *         | *         | *         | *              | *              | *         | *        | *         | *         | *         |
| BARIUM          | 100.0    | *             | *        | *         | *         | *         | *              | *              | *         | *        | *         | *         | *         |
| BERYLLIUM       | 0.75     | *             | *        | *         | *         | *         | *              | *              | *         | *        | *         | *         | *         |
| CADMIUM         | 1.0      | *             | *        | *         | *         | *         | *              | *              | *         | *        | *         | *         | *         |
| CHROMIUM(VI)    | 5.0      | NA            | NA       | NA        | NA        | NA        | NA             | NA             | NA        | NA       | NA        | NA        | NA        |
| CHROMIUM(total) | 560.0    | *             | *        | *         | *         | *         | *              | *              | *         | *        | *         | *         | *         |
| COBALT          | 80.0     | *             | *        | *         | *         | *         | *              | *              | *         | *        | *         | *         | *         |
| COPPER          | 25.0     | *             | *        | *         | *         | *         | *              | *              | *         | *        | *         | *         | *         |
| LE AD           | 5.0      | *             | *        | *         | *         | *         | *              | *              | *         | *        | *         | *         | *         |
| MERCURY^        | 0.20     | *             | *        | *         | *         | *         | *              | *              | *         | *        | *         | *         | NA        |
| MERCURY#        | 0.20     | *             | *        | *         | *         | *         | *              | *              | *         | *        | *         | *         | *         |
| MOL Y BDENUM    | 350.0    | *             | *        | *         | *         | *         | *              | *              | *         | *        | *         | *         | *         |
| NICKEL          | 20.0     | *             | *        | *         | *         | *         | *              | *              | *         | *        | *         | *         | *         |
| SELENIUM        | 1.0      | *             | *        | *         | *         | *         | *              | *              | *         | *        | *         | *         | *         |
| SILVER          | 5.0      | *             | *        | *         | *         | *         | *              | *              | *         | *        | *         | *         | *         |
| THALLIUM        | 7.0      | *             | *        | *         | *         | *         | *              | *              | *         | *        | *         | *         | *         |
| VANADIUM        | 24.0     | *             | *        | *         | *         | *         | *              | *              | *         | *        | *         | *         | *         |
| ZINC            | 250.0    | *             | *        | *         | *         | *         | *              | *              | *         | *        | *         | *         | *         |

\* = The total concentrations are less than 10 times the the STLC, this substance is below STLC limits by definition.

#### WASTE EXTRACTION TEST - ORGANICS

|                    | STLC     | MBCDEWCN | MBCDEWCN | MBCDE WCN | MBCDE WCN | MBCDE WCN | MBCDE WCN      | MBCDEWCN       | MBCDE WCN | MBCDEWCN | MBCDE WCN | MBCDE WCN | MBCDE WCN |
|--------------------|----------|----------|----------|-----------|-----------|-----------|----------------|----------------|-----------|----------|-----------|-----------|-----------|
|                    | Wet wt J | Jan-17   | Feb-17   | Mar-17    | Apr-17    | May-17    | <b>Jun-1</b> 7 | <b>Jul</b> -17 | Aug-17    | Sep-17   | Oct-17    | Nov-17    | Dec-17    |
| ANALYTE            | mg/L     | P920340  | P925827  | P932213   | P937935   | P945968   | P953132        | P575132        | P966456   | P974186  | P979340   | P986442   | P992862   |
| ALDRIN             | 0.14     | *        | *        | *         | *         | *         | *              | *              | *         | *        | *         | *         | *         |
| CHLORDANE          | 0.25     | *        | *        | *         | *         | *         | *              | *              | NA        | *        | *         | *         | *         |
| DDT,DDE,DDD        | 0.1      | *        | *        | *         | *         | *         | *              | *              | *         | *        | *         | *         | *         |
| 2,4-DCPAA          | 10.0     | NA       | NA       | NA        | NA        | *         | NA             | NA             | *         | NA       | *         |           |           |
| DIELDRIN           | 0.80     | *        | *        | *         | *         | *         | *              | *              | *         | *        | *         | *         | *         |
| ENDRIN             | 0.02     | *        | *        | *         | *         | *         | *              | *              | *         | *        | *         | *         | *         |
| HEPTACHLOR         | 0.47     | *        | *        | *         | *         | *         | *              | *              | *         | *        | *         | *         | *         |
| KEPONE             | 2.10     | NA       | NA       | NA        | NA        | NA        | NA             | NA             | NA        | NA       | NA        | NA        | NA        |
| LINDANE            | 0.40     | *        | *        | *         | *         | *         | *              | *              | *         | *        | *         | *         | *         |
| METHOXYCHLOR       | 10.0     | *        | *        | *         | *         | *         | *              | *              | *         | *        | *         | *         | *         |
| MIREX              | 2.10     | *        | *        | *         | *         | *         | *              | *              | NA        | NA       | *         | *         | *         |
| PENT ACHLOROPHENOL | 1.70     | NA       | *        | NA        | NA        | *         | NA             | NA             | *         | NA       | *         | NA        | NA        |
| PCBs(TOTAL)        | 5.00     | *        | *        | *         | *         | *         | *              | *              | *         | *        | *         | *         | *         |
| TOXAPHENE          | 0.50     | *        | *        | *         | *         | *         | *              | *              | *         | *        | *         | *         | *         |
| TRICHLOROETHENE    | 204.0    | *        | *        | *         | *         | *         | *              | *              | *         | *        | *         | *         | *         |
| 2,4,5-T CPP A      | 1.00     | NA       | NA       | NA        | NA        | *         | NA             | NA             | *         | NA       | *         | NA        | NA        |

TTLC = T ot al Threshold Limit Concentration

STLC = Soluble Threshold Limit Concentration

NA = Not Analyzed, NS = Not Sampled ^= To comply with CAELAP Certification. #= To comply with Arizona Certification.

\* = The total concentrations are less than 10 times the the STLC, this substance is below STLC limits by definition.

# 2017 POINT LOMA WASTEWATER TREATMENT PLANT ANNUAL REPORT

Y: EMTS \41Sections \WCS \REPORTS \PLWWTP \Annuals \Annual2017\Biosolids \[SLDG\_T22.xlsx]SLDG\_T22\_tb12

CALIFORNIA HAZARDOUS WASTE IDENTIFICATION TEST (TITLE 22)

MET RO BIOSOLIDS CENTER (MBC)

METALS

| MLIALS              |                          |          |          |         |          |       |          |         |         |       |          |          |          |          |          |
|---------------------|--------------------------|----------|----------|---------|----------|-------|----------|---------|---------|-------|----------|----------|----------|----------|----------|
|                     | DRY WEIGHT Concentration |          |          |         |          |       |          |         |         |       |          |          |          |          |          |
|                     | TILC                     | MBCDEWCN | MBCDEWCI | MBCDE   | WCN MBCD | EWCN  | MBCDEWCN | MBCDEW  | CN MBCD | DEWCN | MBCDEWCN | MBCDEWCN | MBCDEWCN | MBCDEWCN | MBCDEWCN |
|                     | Wet wt                   | Jan-17   | Feb-17   | Mar-17  | Apr-17   |       | ######   | Jun-17  | Jul-1   | 7     | Aug-17   | Sep-17   | Oct-17   | Nov-17   | Dec-17   |
| ANALYTE             | mg/Kg                    | P920340  | P925827  | P932213 | P937935  | Р     | 945968   | P953132 | P95963  | 5     | P966456  | P974186  | P979340  | P986442  | P992862  |
| AMMONIA-N           |                          | 570      | 00 7:    | 260     | 6105     | 4660  | 843      | 0       | 8215    | 824   | 0 724    | 0 8465   | 6285     | 6610     | 6595     |
| NITRITE AND NITRATE |                          |          |          |         |          |       |          |         |         |       |          |          |          |          |          |
| CALCULATION         |                          | 7        | .1 8     | .47     | 11.01    | 6.75  | 7.9      | 1       | 5.17    | 5.5   | 1 4.5    | 1 5.76   | 4.75     | 13.40    | 14.50    |
| ORGANIC NITROGEN    |                          |          |          |         |          |       |          |         |         |       |          |          |          |          |          |
| CALCULATION         |                          | 4420     | 0 39     | .69     | 40945    | 51300 | 4417     | 0       | 44335   | 4421  | 0 4501   | 0 45785  | 45715    | 45740    | 45855    |
| TOTAL KJELDAHL      |                          |          |          |         |          |       |          |         |         |       |          |          |          |          |          |
| NITROGEN            | 0.04                     | 4990     | 00 46    | 50      | 47050    | 55960 | 5260     | 0       | 52550   | 5245  | 0 5225   | 0 54250  | 52000    | 52350    | 52450    |

TTLC = Total Threshold Limit Concentration

NA = Not Analyzed, NS = Not Sampled

V. Ocean Monitoring Data Summary

Please refer to our Ocean Monitoring Reports located on the City's website at

https://www.sandiego.gov/mwwd/environment/oceanmonitor/reports

This page intentionally left blank.

# VI. Annual Pretreatment Program Analyses

# 2017 Annual Pretreatment Program Analyses (QUARTERLY SLUDGE PROJECT)

The Quarterly Sludge Project is part of the Point Loma WWTP NPDES (Permit No. CA0107409/Order No. R9-2009-0001) monitoring requirements. The sampling plan is designed to provide a "snapshot" of all of the physical and chemical characteristics monitored of the wastewater treatment waste streams for a short interval of time (1-2 days). This is conducted quarterly.

The Quarterly Sludge Project was conducted four times during 2017. Sampling occurred on February 07, May 02, August 01, and October 03. Monthly composite samples of MBC dewatered sludge during the respective calendar months were taken and analyzed for a similar suite of parameters. The tables showing the results of these analyses in this section follow.

Point Loma WTP Influent (PLR) and effluent (PLE) sewage are flow-proportioned 24-hr composites\* taken by a refrigerated automatic continuous autosampler over the 24-hr periods from midnight to midnight of the sampling days. Two days of sampling were required for all of the required samples. The sampling locations are the influent and effluent channels.

Digested and raw sludge are sampled by Operations staff and composited by the laboratory. The digested sludge sample is composited from 12 manual grab samples collected at two-hour intervals from Digester 7. The raw sludge sample is composited from 12 manual grabs collected at two hour intervals.

The Metro Biosolids Center (MBC) uses a centrifuge dewatering process; the MBC centrate is the return stream source. This is a 24-hr composite collected with the refrigerated automatic composite sampler currently installed on the MBC combined centrate return stream line. MBC\_NC\_DSL and MBC\_NC\_RSL are the MBC Digested Sludge Line and NCWRP to MBC Raw Sludge Line, respectively. MBC\_NC\_DSL composite sample is compiled from grabs collected every 2 hours for the 24 hours of the sampling program each quarter while MBC\_NC\_RSL is a 24-hr composite collected with the refrigerated automatic composite sample collected with the refrigerated automatic composite sample is completed.

\* pH, Grease & Oils, temperature, and conductivity are determined from grab samples.

| Abbreviations: |                                       |            |                                                    |
|----------------|---------------------------------------|------------|----------------------------------------------------|
| PLR            | Point Loma WTP influent.              | RAW COMP   | Point Loma WTP raw sludge composite                |
| PLE            | Point Loma WTP effluent.              | DIG COMP   | Point Loma WTP digested sludge composite           |
| MBCDEWCN       | MBC dewatered sludge from centrifuges | MBC_COMBCN | MBC combined centrate from dewatering centrifuges. |
| MBC_NC_RSL     | NCWRP to MBC raw sludge line          | MBC_NC_DSL | MBC digested sludge line                           |

This page intentionally left blank.

# A. Point Loma Wastewater Treatment Plant and Metro Biosolids Center Sources

POINT LOMA WASTEWATER TREATMENT PLANT Physical/Aggregate Properties Report

Annual 2017

## Point Loma

| Source                          |      |          | PLR         | PLR         | PLR         | PLR         |
|---------------------------------|------|----------|-------------|-------------|-------------|-------------|
| Analyte                         | MDL  | Units    | 07-FEB-2017 | 02-MAY-2017 | 01-AUG-2017 | 03-0CT-2017 |
|                                 | ==== |          |             |             | =======     |             |
| Conductivity                    | 10   | umhos/cm | 2820        | 2790        | 2720        | 2970        |
| HEM (Grease & Oil)              | 1.01 | mg/L     | 45.6        | 54.1        | 64.2        | 69.5        |
| Total Suspended Solids          | 2.5  | mg/L     | 322         | 402         | 350         | 304         |
| Volatile Suspended Solids       | 2.5  | mg/L     | 282         | 362         | 296         | 278         |
| Total Alkalinity (bicarbonate)  | 20   | mg/L     | 324         | 333         | 318         | 323         |
| Total Solids                    | 10   | mg/L     | 1950        | 1950        | 1850        | 2110        |
| Total Volatile Solids           | 100  | mg/L     | 528         | 624         | 536         | 616         |
| Total Kjeldahl Nitrogen         | 1.2  | mg/L     | 52          | 76          | 61          | 57          |
| BOD (Biochemical Oxygen Demand) | 2    | mg/L     | 323         | 352         | 275         | 250         |
| Chemical Oxygen Demand          | 18   | mg/L     | 684         | 881         | 725         | 670         |
| pH (grab)                       |      | pH Units | 7.45        | 7.31        | 7.16        | 7.21        |
| Ammonia-N                       | .3   | mg/L     | 35.8        | 43.4        | 43.8        | 43.1        |
| Turbidity                       | .13  | NTU      | 115         | 146         | 115         | 113         |
| Total Dissolved Solids          | 250  | mg/L     | 1600        | 1510        | 1390        | 1730        |
| MBAS (Surfactants)              | .03  | mg/L     | 5.36        | 6.94*       | 6.18        | 6.00        |

| Source                          |      |          | PLE         | PLE         | PLE         | PLE         |
|---------------------------------|------|----------|-------------|-------------|-------------|-------------|
| Analyte                         | MDL  | Units    | 07-FEB-2017 | 02-MAY-2017 | 01-AUG-2017 | 03-0CT-2017 |
|                                 | ==== | =======  |             |             |             |             |
| Conductivity                    | 10   | umhos/cm | 2840        | 2850        | 2710        | 2930        |
| HEM (Grease & Oil)              | 1.01 | mg/L     | 10.9        | 12.9        | 19.3        | 11.1        |
| Total Suspended Solids          | 2.5  | mg/L     | 30          | 38          | 58          | 36          |
| Volatile Suspended Solids       | 2.5  | mg/L     | 24          | 29          | 48          | 33          |
| Total Alkalinity (bicarbonate)  | 20   | mg/L     | 302         | 313         | 304         | 307         |
| Total Solids                    | 10   | mg/L     | 1680        | 1610        | 1580        | 1840        |
| Total Volatile Solids           | 100  | mg/L     | 286         | 326         | 300         | 406         |
| Total Kjeldahl Nitrogen         | 1.2  | mg/L     | 41          | 53          | 52          | 47          |
| BOD (Biochemical Oxygen Demand) | 2    | mg/L     | 116         | 126         | 147         | 120         |
| Chemical Oxygen Demand          | 18   | mg/L     | 263         | 291         | 349         | 257         |
| pH (grab)                       |      | pH Units | 7.27        | 7.17        | 7.08        | 7.19        |
| Ammonia-N                       | .3   | mg/L     | 36.1        | 43.5        | 42.5        | 42.7        |
| Turbidity                       | .13  | NTU      | 23.5        | 47.0        | 66.9        | 37.8        |
| Total Dissolved Solids          | 250  | mg/L     | 1560        | 1510        | 1420        | 1690        |
| MBAS (Surfactants)              | .03  | mg/L     | 4.19        | 4.66*       | 4.81        | 4.79        |

\* = Sample collected on May  $8^{th}$ , 2017.

BOD by SM5210B/4500-0 C,G TSS/VSS by SM2540D pH by SM4500-H Turbidity by SM2130B HEM by EPA 1664B Ammonia by SM5210B Conductivity by SM2510B Total Solids by SM2540B Alkalinity by SM2540C TKN by SM4500-NorgB COD by HACH8000 MBAS by SM5540C

# POINT LOMA WASTEWATER TREATMENT PLANT Physical/Aggregate Properties Report

## Point Loma

| Source<br>Analyte              |      | Units    | RAW COMP<br>08-FEB-2017 | RAW COMP<br>02-MAY-2017 | RAW COMP<br>01-AUG-2017 | RAW COMP<br>03-0CT-2017 |  |
|--------------------------------|------|----------|-------------------------|-------------------------|-------------------------|-------------------------|--|
|                                | ==== | =======  |                         | =============           | ===========             | =============           |  |
| Total Alkalinity (bicarbonate) | 20   | mg/L     | 455                     | 440                     | 386                     | 417                     |  |
| Total Solids                   |      | Wt%      | 4.05                    | 4.25                    | 3.65                    | 4.20                    |  |
| Total Volatile Solids          |      | Wt%      | 79                      | 81                      | 79                      | 80                      |  |
| Total Kjeldahl Nitrogen        | .04  | Wt%      | 3.3                     | 3.4                     | 3.6                     | 2.7                     |  |
| pH (grab)                      |      | pH Units | 5.95                    | 5.68                    | 5.39                    | 5.48                    |  |

| Source<br>Analvte              | MDL  | Units    | DIG COMP<br>08-FEB-2017 | DIG COMP<br>02-MAY-2017 | DIG COMP<br>01-AUG-2017 | DIG COMP<br>03-0CT-2017 |
|--------------------------------|------|----------|-------------------------|-------------------------|-------------------------|-------------------------|
|                                | ==== |          |                         |                         |                         |                         |
| Total Alkalinity (bicarbonate) | 20   | mg/L     | 2600                    | 2350                    | 2100                    | 2170                    |
| Volatile Organic Acids         | 5    | mg/L     | 66                      | 80                      | 69                      | 65                      |
| Total Solids                   |      | Wt%      | 2.20                    | 2.20                    | 2.25                    | 2.20                    |
| Total Volatile Solids          |      | Wt%      | 59                      | 62                      | 65                      | 62                      |
| Total Kjeldahl Nitrogen        | .04  | Wt%      | 7.3                     | 6.9                     | 6.7                     | 5.6                     |
| pH (grab)                      |      | pH Units | 7.42                    | 7.13                    | 7.03                    | 7.05                    |

MBC

| Source<br>Analyte               | MDL  | Units    | MBC_COMBCN<br>07-FEB-2017 | MBC_COMBCN<br>02-MAY-2017 | MBC_COMBCN<br>01-AUG-2017 | MBC_COMBCN<br>03-OCT-2017 |
|---------------------------------|------|----------|---------------------------|---------------------------|---------------------------|---------------------------|
|                                 | ==== |          |                           |                           |                           |                           |
| Conductivity                    | 10   | umhos/cm | 5700                      | 5420                      | 5210                      | 5020*                     |
| HEM (Grease & Oil)              | 1.01 | mg/L     | 4.0                       | 17.2                      | 39.6                      | 37.7                      |
| Total Suspended Solids          | 2.5  | mg/L     | 525                       | 690                       | 860                       | 737                       |
| Volatile Suspended Solids       | 2.5  | mg/L     | 450                       | 520                       | 637                       | 554                       |
| Total Alkalinity (bicarbonate)  | 20   | mg/L     | 1630                      | 1390                      | 1150                      | 1160*                     |
| Total Solids                    |      | Wt%      | 0.4                       | 0.4                       | 0.3                       | 0.4                       |
| Total Volatile Solids           |      | Wt%      | 52                        | 53                        | 40                        | 47                        |
| Total Kjeldahl Nitrogen         | 1.2  | mg/L     | 517                       | 430                       | 398                       | 375                       |
| BOD (Biochemical Oxygen Demand) | 2    | mg/L     | 248                       | 241                       | 332                       | 234                       |
| Chemical Oxygen Demand          | 18   | mg/L     | 956                       | 1240                      | 688                       | 1760                      |
| pH                              |      | pH Units | 7.91                      | 8.02                      | 8.09                      | 8.01                      |
| pH (grab sample)                |      | pH Units | 7.69                      | 7.79                      | 7.69                      | 7.68                      |
| Ammonia-N                       | .3   | mg/L     | 378                       | 338                       | NR                        | NR                        |

\* = Sample analyzed outside holding time; result is not used in average calculations.

ND=not detected; NS=not sampled; NA=not analyzed; NR=not required

BOD by SM5210B/4500-0 C,G TSS/VSS by SM2540D pH by SM4500-H Turbidity by SM2130B HEM by EPA 1664B Ammonia by SM5210B Conductivity by SM2510B Total Solids by SM2540B Alkalinity by SM2320B TDS by SM2540C TKN by SM4500-NorgB COD by HACH8000

# POINT LOMA WASTEWATER TREATMENT PLANT Physical/Aggregate Properties Report

## Annual 2017

# MBC

| Source                  |      |          | MBCDEWCN    | MBCDEWCN    | MBCDEWCN    | MBCDEWCN    |
|-------------------------|------|----------|-------------|-------------|-------------|-------------|
| Analyte                 | MDL  | Units    | 28-FEB-2017 | 31-MAY-2017 | 31-AUG-2017 | 31-001-2017 |
|                         | ==== | =======  |             |             |             |             |
| Total Solids            |      | Wt%      | 28.4        | 27.1        | 26.4        | 26.1        |
| Total Volatile Solids   |      | Wt%      | 59          | 62          | 64          | 63          |
| Total Kjeldahl Nitrogen | .04  | Wt%      | 4.7         | 5.3         | 5.2         | 5.2         |
| рН                      |      | pH Units | 7.97        | 7.94        | 7.85        | 7.94        |

| Source                         |      |          | MBC_NC_DSL   | MBC_NC_DSL   | MBC_NC_DSL   | MBC_NC_DSL   |
|--------------------------------|------|----------|--------------|--------------|--------------|--------------|
| Analyte                        | MDL  | Units    | 07-FEB-2017  | 02-MAY-2017  | 01-AUG-2017  | 03-0CT-2017  |
|                                | ==== | =======  | ============ | ============ | ============ | ============ |
| Total Alkalinity (bicarbonate) | 20   | mg/L     | 1590         | 1390         | 1460         | 1420         |
| Total Solids                   |      | Wt%      | 2.1          | 2.0          | NR           | 2.9          |
| Total Volatile Solids          |      | Wt%      | 68           | 72           | NR           | 51           |
| Total Kjeldahl Nitrogen        | 1.2  | mg/L     | 1420         | 1630         | 1540         | 1100         |
| рН                             |      | pH Units | 6.88         | 6.81         | 6.84         | 6.78         |
|                                |      |          |              |              |              |              |

| Source<br>Analyte              | MDL  | Units    | MBC_NC_RSL<br>07-FEB-2017 | MBC_NC_RSL<br>02-MAY-2017 | MBC_NC_RSL<br>01-AUG-2017 | MBC_NC_RSL<br>03-0CT-2017 |
|--------------------------------|------|----------|---------------------------|---------------------------|---------------------------|---------------------------|
|                                | ==== |          | ===========               |                           |                           |                           |
| Total Suspended Solids         | 2.5  | mg/L     | 6850                      | 2100                      | 6500                      | 1860                      |
| Volatile Suspended Solids      | 2.5  | mg/L     | 5700                      | 1750                      | 5380                      | 1640                      |
| Total Alkalinity (bicarbonate) | 20   | mg/L     | 350                       | 390                       | 356                       | 381                       |
| Total Solids                   |      | Wt%      | 0.8                       | 0.3                       | 0.7                       | 0.3                       |
| Total Volatile Solids          |      | Wt%      | 74                        | 66                        | 76                        | 63                        |
| Total Kjeldahl Nitrogen        | 1.2  | mg/L     | 69                        | 95                        | 238                       | 65                        |
| рН                             |      | pH Units | 6.90                      | 6.79                      | 7.03                      | 6.58                      |

ND=not detected; NS=not sampled; NA=not analyzed; NR=not required

Total Solids by SM2540B Alkalinity by SM2320B TSS/VSS by SM2540D TKN by SM4500-NorgB pH by SM4500-H

## POINT LOMA WASTEWATER TREATMENT PLANT QUARTERLY SLUDGE PROJECT

(Metals from Digestion and Ions from Supernatant)

## ANNUAL 2017

| Source:                   |                |                | PLR                | PLR                | PLR                  | PLR         |  |
|---------------------------|----------------|----------------|--------------------|--------------------|----------------------|-------------|--|
| Date:                     |                |                | 07-FEB-2017        | 02-MAY-2017        | 01-AUG-2017          | 03-0CT-2017 |  |
| Sample ID:                | MDL Ur         | nits           | P919163            | P936544            | P959720              | P973069     |  |
| Aluminum                  | 23.8           | UG/L           | 657                | 713                | 322                  | 917         |  |
| Antimony                  | 2.44           | UG/L           | ND                 | ND                 | ND                   | 1.02        |  |
| Arsenic                   | 1.84           | UG/L           | 2.18               | 1.53               | 1.85                 | 2.15        |  |
| Barium                    | .7             | UG/L           | 116                | 93.4               | 48.4                 | 86.0        |  |
| Beryllium                 | .12            | UG/L           | 0.0610             | ND                 | ND                   | ND          |  |
| Boron                     | 1.4            | UG/L           | 394                | 408                | 428                  | 409         |  |
| Cadmium                   | .26            | UG/L           | 0.572              | 0.394              | ND                   | 0.157       |  |
| Chromium                  | .54            | UG/L           | 4.66               | 4.59               | 2.64                 | 4.85        |  |
| Cobalt                    | .24            | UG/L           | 2.22               | 1.44               | 1.39                 | 1.03        |  |
| Copper                    | 2.16           | UG/L           | 128                | 126                | 64.3                 | 110         |  |
| Iron                      | 17.1           | UG/L           | 7940               | 8620               | 5100                 | 9460        |  |
| Lead                      | 1.68           | UG/L           | 3.49               | 3.99               | ND                   | 2.69        |  |
| Manganese                 | .78            | UG/L           | 148                | 163                | 156                  | 157         |  |
| Mercury                   | .02            | UG/L           | 0.180              | 0.194              | 0.138                | 0.074       |  |
| Molybdenum                | .32            | UG/L           | 11.00              | 9.36               | 9.45                 | 7.72        |  |
| Nickel                    | .53            | UG/L           | 8.20               | 6.91               | 5.32                 | 6.88        |  |
| Selenium                  | .662           | UG/L           | NA                 | 1.43               | 2.06                 | 2.98        |  |
| Silver                    | .73            | UG/L           | 0.811              | 1.290              | ND                   | 0.741       |  |
| Thallium                  | 3.12           | UG/L           | ND                 | ND                 | ND                   | ND          |  |
| Vanadium                  | 2.77           | UG/L           | 6.08               | 3.94               | 1.79                 | 5.76        |  |
| Zinc                      | 4.19           | UG/L           | 305                | 219                | 96.7                 | 181         |  |
| calcium                   | .059           | = ====<br>MG/I | 89.2               | 78.3               | 63.2                 | 278         |  |
| lithium                   | .002           | MG/I           | 0.053              | 0.034              | 0.030                | 0.035       |  |
| Magnesium                 | .078           | MG/I           | 52.6               | 48.8               | 47.2                 | 88.0        |  |
| Potassium                 | .1             | MG/I           | 26.9               | 30.1               | 28.9                 | 63.2        |  |
| Sodium                    | .927           | MG/L           | 348                | 362                | 367                  | 384         |  |
|                           |                | = ====         |                    |                    |                      |             |  |
| Bromide                   | .1             | MG/L           | 1.14               | 1.70               | 1.53                 | ND<br>1500  |  |
|                           | /              | MG/L           | 541                | 5/4                | 574                  | 1530        |  |
| Fluoride                  | .05            | MG/L           | 0.857              | 0.911              | 1.380                | 0.2/2       |  |
| Nitrate                   | .04            |                | 0.058              |                    | 0.061                | 0.742       |  |
| Cultate (as PO4)          | .2             | MG/L           | 3.39               | 6.3/               | 8.65                 | 0.42        |  |
| Sultate                   | 9<br>======    | MG/L           | 269                | 191                | 142                  | ND          |  |
| Calcium Hardness          | .147           | MG/L           | 223                | 196                | 158                  | 694         |  |
| Magnesium Hardness        | .321           | MG/L           | 217                | 201                | 194                  | 362         |  |
| Total Hardness            | .469           | MG/L           | 440                | 397                | 352                  | 1060        |  |
| <pre>cvanide. Total</pre> | ======<br>.005 | = ====<br>MG/I | =======<br>0.00200 | =======<br>0.00300 | ==========<br><0.005 | <0.005      |  |
| Sulfides-Total            | .35            | MG/I           | 1.79               | 3,57               | 9,36                 | 5.43        |  |
| Total Kieldahl Nitrogen   | 1.2            | MG/I           | 52.4               | 76.4               | 61.3                 | 57.2        |  |
|                           |                | 1.5/ L         | 52.4               | ,0.4               | 01.5                 | 57.2        |  |

NA= Not Analyzed, ND= Not Detected, NS= Not Sampled, NR= Not Required

Metals by EPA Method 200.7 and 200.8 Arsenic and Selenium by SM3114B Mercury by EPA Method 1631E Cations by EPA 300.0 Hardness Calculcation by SM2340B Cyanide by SM4500-CN B/C Sulfides by Section 7.3 SW-846 TKN by SM4500-NorgB

## POINT LOMA WASTEWATER TREATMENT PLANT QUARTERLY SLUDGE PROJECT (Metals from Digestion and Ions from Supernatant)

## ANNUAL 2017

| Source:                  |         |              | PLE         | PLE               | PLE         | PLE         |
|--------------------------|---------|--------------|-------------|-------------------|-------------|-------------|
| Date:                    |         |              | 07-FEB-2017 | 02-MAY-2017       | 01-AUG-2017 | 03-0CT-2017 |
| Sample ID:               | MDL Un: | its          | P919157     | P936538           | P959714     | P973063     |
|                          | ======  | ====         | =======     |                   | =========== | ==========  |
| Aluminum                 | 23.8    | UG/L         | 76.9        | 48.9              | 101         | 174         |
| Antimony                 | 2.44    | UG/L         | ND          | ND                | ND          | 0.52        |
| Arsenic                  | 1.84    | UG/L         | 1.40        | 0.80              | 1.01        | ND          |
| Barium                   | .7      | UG/L         | 46.3        | 32.3              | 29.9        | 27.8        |
| Beryllium                | .12     | UG/L         | ND          | ND                | ND          | ND          |
| Boron                    | 1.4     | UG/L         | 404         | 422               | 426         | 420         |
| Cadmium                  | .26     | UG/L         | ND          | ND                | ND          | ND          |
| Chromium                 | .54     | UG/L         | 1.67        | 1.11              | 1.47        | 0.92        |
| Cobalt                   | .24     | UG/L         | 1.72        | 0.73              | 0.91        | 0.43        |
| Copper                   | 2.16    | UG/L         | 23.0        | 13.5              | 22.9        | 10.6        |
| Iron                     | 17.1    | UG/L         | 3250        | 2760              | 3510        | 2370        |
| Lead                     | 1.68    | UG/L         | <1.68       | ND                | <1.68       | 0.30        |
| Manganese                | .78     | UG/L         | 149         | 137               | 155         | 144         |
| Mercury                  | .02     | UG/L         | 0.0090      | 0.0095            | 0.0130      | 0.0100      |
| Molybdenum               | .32     | UG/L         | 9.03        | 6.78              | 8.39        | 4.84        |
| Nickel                   | .53     | UG/L         | 5.58        | 4.17              | 5.00        | 3.94        |
| Selenium                 | .662    | UG/L         | 1.37        | 0.77              | 1.93        | 1.32        |
| Silver                   | .73     | UG/L         | ND          | ND                | ND          | ND          |
| Thallium                 | 3.12    | UG/L         | ND          | ND                | ND          | ND          |
| Vanadium                 | 2.77    | UG/L         | 1.16        | 0.80              | 0.64        | ND          |
| Zinc                     | 4.19    | UG/L         | 32.1        | 21.9              | 31.3        | 14.9        |
| Calcium                  | .059    | ====<br>MG/L | 86.4        |                   | 65.1        | 73.7        |
| Lithium                  | .002    | MG/L         | 0.0500      | 0.0320            | 0.0270      | 0.0330      |
| Magnesium                | .078    | MG/L         | 51.4        | 47.9              | 47.1        | 53.9        |
| Potassium                | .1      | MG/L         | 27.0        | 29.4              | 28.7        | 29.8        |
| Sodium                   | .927    | MG/L         | 346         | 366               | 367         | 405         |
|                          | ======  | ====         |             |                   |             |             |
| Bromide                  | .1      | MG/L         | 1.18        | 1.46              | 1.44        | 1.36        |
| Chloride                 | 7       | MG/L         | 554         | 589               | 574         | 663         |
| Fluoride                 | .05     | MG/L         | 0.807       | 0.976             | 1.300       | 0.801       |
| Nitrate                  | .04     | MG/L         | 0.136       | 0.187             | 0.0635      | 0.0570      |
| Ortho Phosphate (as PO4) | .2      | MG/L         | 1.54        | 5.47              | 7.02        | 5.83        |
| Sulfate                  | 9       | MG/L         | 265         | 188               | 135         | 167         |
| Calcium Hardness         | .147    | ====<br>MG/L | 216         | ==========<br>199 | 162         | 184         |
| Magnesium Hardness       | .321    | MG/L         | 212         | 197               | 194         | 222         |
| Total Hardness           | .469    | MG/L         | 428         | 396               | 356         | 406         |
|                          |         | ====         |             |                   |             |             |
| Cyanide, Total           | .005    | MG/L         | 0.00300     | 0.00300           | <0.00500    | <0.00500    |
| Sulfides-Total           | .35     | MG/L         | 0.390       | 0.650             | 1.10        | 0.810       |
| Total Kjeldahl Nitrogen  | 1.2     | MG/L         | 40.8        | 53.4              | 51.6        | 46.6        |

NA= Not Analyzed, ND= Not Detected, NS= Not Sampled, NR= Not Required

Metals by EPA Method 200.7 and 200.8 Arsenic and Selenium by SM3114B Mercury by EPA Method 1631E Cations by EPA 300.0 Hardness Calculcation by SM2340B Cyanide by SM4500-CN B/C Sulfides by Section 7.3 SW-846 TKN by SM4500-NorgB

## POINT LOMA WASTEWATER TREATMENT PLANT QUARTERLY SLUDGE PROJECT (Metals from Digestion and Ions from Supernatant)

## ANNUAL 2017

| Source:<br>Date:<br>Sample ID:          | MDL Un         | its   | MBC_COMBCN<br>07-FEB-2017<br>P919174 | MBC_COMBCN<br>02-MAY-2017<br>P936555 | MBC_COMBCN<br>01-AUG-2017<br>P959726 | MBC_COMBCN<br>03-OCT-2017<br>P973075 |
|-----------------------------------------|----------------|-------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
|                                         | ======<br>23 8 | ===== | =======<br>711                       | 2310                                 | 213                                  | 3/20                                 |
| Antimony                                | 23.0           |       | 5 20                                 | 5 /1                                 | 0.78                                 | 1 26                                 |
| Ancimony                                | 1 9/           |       | 5 72                                 | 3 /3                                 | 2.69                                 | 5 15                                 |
| Banium                                  | 7              |       | 201                                  | 25/                                  | 92.05                                | 206                                  |
| Bervllium                               | .7             |       | ND                                   | 2.54<br>ND                           | JZ.J<br>ND                           |                                      |
| Boron                                   | 1 4            |       | 377                                  | 362                                  | 363                                  | 327                                  |
| Cadmium                                 | 26             |       | 0 368                                | 0 435                                |                                      | 0 331                                |
| Chromium                                | 5/             |       | 9.500                                | 16 /                                 | 3 79                                 | 19 /                                 |
| Cobalt                                  | 24             |       | 5.00<br>6.21                         | 6 20                                 | 3.18                                 | 1 25                                 |
| Connon                                  | ·24<br>2 16    |       | 110                                  | 230                                  | 28.40                                | 4.25                                 |
| Thon                                    | 17 1           |       | 30000                                | 15000                                | 20.0                                 | 18000                                |
| Load                                    | 1 69           |       | 3 57                                 | 45500                                | 1 00                                 | 48500                                |
| Manganoso                               | 79             |       | 220                                  | 180                                  | 1.00                                 | 4.50                                 |
| Moncuny                                 | .70            |       | 0 097                                | 409                                  | 0 030                                | 0 161                                |
| Molyhdonum                              | 22             |       | 6 50                                 | 8 73                                 | 5 36                                 | 0.101                                |
| Nickol                                  | .52            |       | 21.2                                 | 0./3                                 | 5.50<br>1/ 1                         | 9.20                                 |
| Solonium                                | .55            |       | 21.5                                 | 1 90                                 | 14.1                                 | 20.1                                 |
| Silvon                                  | .002           |       | 2.50                                 | 1.00                                 | 0.12E                                | 2.70                                 |
|                                         | ·/5<br>5 1 2   |       | 1.02                                 |                                      | 0.133                                | 1.00                                 |
| Vapadium                                | 2.12           |       | 1 04                                 | ND<br>4 04                           |                                      | UNI<br>2 1 2                         |
| Zinc                                    | 2.//           |       | 4.04                                 | 4.04                                 |                                      | 5.15                                 |
| 21IIC                                   | 4.19           | 00/L  | 170                                  | 906                                  |                                      |                                      |
| Calcium                                 | 059            | MG/I  | 202                                  | 178                                  | 164                                  | 169                                  |
| lithium                                 | .002           | MG/I  | 0.0540                               | 0.038*                               | 0.0310                               | 0.0280                               |
| Magnesium                               | .078           | MG/I  | 67.1                                 | 56.3                                 | 56.7                                 | 57.0                                 |
| Potassium                               | .1             | MG/I  | 53.7                                 | 51.9                                 | 46.9                                 | 44.8                                 |
| Sodium                                  | .927           | MG/I  | 297                                  | 273                                  | 295                                  | 271                                  |
| ======================================= | ======         | ====  | =======                              |                                      |                                      |                                      |
| Bromide                                 | .1             | MG/L  | 0.692                                | 0.863                                | 1.010                                | 0.471                                |
| Chloride                                | 7              | MG/L  | 941                                  | 893                                  | 938                                  | 926                                  |
| Fluoride                                | .05            | MG/L  | 0.279                                | 0.455                                | 0.482                                | 0.402                                |
| Nitrate                                 | .04            | MG/L  | 0.212                                | 0.248                                | 0.147                                | 0.141                                |
| Ortho Phosphate (as PO4)                | .2             | MG/L  | 3.42                                 | 7.30                                 | 3.26                                 | 2.02                                 |
| Sulfate                                 | 9              | MG/L  | 44.5                                 | 20.9                                 | 23.2                                 | 25.8                                 |
|                                         | ======         | ====  |                                      |                                      |                                      |                                      |
| Calcium Hardness                        | .147           | MG/L  | 503                                  | 444                                  | 410                                  | 423                                  |
| Magnesium Hardness                      | .321           | MG/L  | 276                                  | 232                                  | 233                                  | 235                                  |
| Total Hardness                          | .469           | MG/L  | 779                                  | 676                                  | 643                                  | 658                                  |
|                                         | =====          | ====  |                                      |                                      |                                      |                                      |
| Cyanide, Total                          | .005           | MG/L  | 0.0530                               | 0.0760                               | <0.005                               | <0.005#                              |
| Sulfides-Total                          | .35            | MG/L  | 1.480                                | 6.820                                | 1.340                                | 6.080                                |
| Total Kjeldahl Nitrogen                 | 1.2            | MG/L  | 517.0                                | 430.0                                | 398.0                                | 375.0                                |

\* = Relative percent difference of sample duplicates outside method acceptance criteria; value is not used in average calculations.

# = Minimum level acceptance criteria was not met, sample result not included in average calculations.

NA= Not Analyzed, ND= Not Detected, NS= Not Sampled, NR= Not Required

Metals by EPA Method 200.7 and 200.8 Arsenic and Selenium by SM3114B Mercury by EPA Method 245.7 Cations by EPA 300.0 Hardness Calculcation by SM2340B Cyanide by SM4500-CN B/C Sulfides by Section 7.3 SW-846 TKN by SM4500-NorgB

#### POINT LOMA WASTEWATER TREATMENT PLANT QUARTERLY SLUDGE PROJECT (Metals from Digestion and Ions from Supernatant)

#### ANNUAL 2017

| Source:                  |      |               | MBC_NC_DSL          | MBC_NC_DSL         | MBC_NC_DSL  | MBC_NC_DSL          |
|--------------------------|------|---------------|---------------------|--------------------|-------------|---------------------|
| Date:                    |      |               | 07-FEB-2017         | 02-MAY-2017        | 01-AUG-2017 | 03-0CT-2017         |
| Sample ID:               | MDL  | Units         | P919228             | P936609            | P959760     | P973109             |
| Aluminum                 | 23.8 | =====<br>UG/L | 68100               | 110000             | 132000      | 127000              |
| Antimony                 | 2.44 | UG/L          | 116                 | 93.2               | 64.4        | 22.1                |
| Arsenic                  | 1.84 | UG/L          | 114                 | 81.5               | 101         | 105                 |
| Barium                   | .7   | UG/L          | 8510                | 5340               | 5450        | 5380                |
| Beryllium                | .12  | UG/L          | 2.64                | 2.09               | 1.32        | 0.83                |
| Boron                    | 1.4  | UG/L          | 794                 | 710                | 776         | 750                 |
| Cadmium                  | .26  | UG/L          | 7.08                | 9.14               | 10.1        | 10.8                |
| Chromium                 | .54  | UG/L          | 965                 | 784                | 899         | 870                 |
| Cobalt                   | .24  | UG/L          | 89.0                | 63.8               | 62.8        | 81.8                |
| Copper                   | 2.16 | UG/L          | 11500               | 10600              | 12900       | 10200               |
| Iron                     | 17.1 | UG/L          | 1900000             | 1390000            | 1570000     | 1660000             |
| Lead                     | 1.68 | UG/L          | 165                 | 151                | 164         | 131                 |
| Manganese                | .78  | UG/L          | 7710                | 6770               | 7650        | 8210                |
| Mercury                  | .2   | UG/L          | 15.0                | 11.5               | 12.3        | 10.5                |
| Molybdenum               | .32  | UG/L          | 275                 | 272                | 290         | 296                 |
| Nickel                   | .53  | UG/L          | 477                 | 389                | 449         | 491                 |
| Selenium                 | .662 | UG/L          | 93.5                | 20.7               | 106         | 33.0                |
| Silver                   | .73  | UG/L          | 153                 | 46.9               | 61.4        | 183                 |
| Thallium                 | 3.12 | UG/L          | ND                  | ND                 | ND          | ND                  |
| Vanadium                 | 2.77 | UG/L          | 227                 | 164                | 196         | 167                 |
| Zinc                     | 4.19 | UG/L          | 12000               | 12800              | 14500       | 11500               |
|                          | ==== | =====         |                     |                    |             |                     |
| Calcium                  | .059 | MG/L          | 224                 | 152                | 149         | 183                 |
| Lithium                  | .002 | MG/L          | 0.0530              | 0.0420*            | 0.0310      | 0.0290              |
| Magnesium                | .078 | MG/L          | 70.7                | 54.3               | 48.9        | 57.8                |
| Potassium                | .1   | MG/L          | 52.3                | 54.8               | 45.5        | 48.4                |
| Sodium                   | .927 | MG/L          | 213                 | 206                | 168         | 177                 |
| Bromide                  | .1   | =====<br>MG/L | 0.259               | <b>0.576</b>       | 0.487       | ND                  |
| Chloride                 | 7    | MG/L          | 1140                | 948                | 951         | 1090                |
| Fluoride                 | .05  | MG/L          | 0.373               | 0.501              | 0.409       | 0.425               |
| Nitrate                  | .04  | MG/L          | 0.168               | 0.503              | 0.208       | 0.277               |
| Ortho Phosphate (as PO4) | .2   | MG/L          | ND                  | ND                 | 1.2         | 0.8                 |
| Sulfate                  | 9    | MG/L          | 16.9                | 19.4               | 21.5        | 20.5                |
| Cyanide, Total           | .002 | =====<br>MG/L | =========<br>0.0180 | ========<br>0.0170 | 0.0140      | =========<br>0.0155 |
| Sulfides-Reactive        | 11   | MG/KG         | 68.0                | 58.0#              | 93.0        | 100                 |
| Total Kjeldahl Nitrogen  | 1.2  | MG/L          | 1420                | 1630               | 1540        | 1100                |

\* = Relative percent difference of sample duplicates outside method acceptance criteria; value is not used in average calculations.

# =Recovery of compound in internal check and matrix spike sample outside method acceptance limits; value is not used in average calculations.

NA= Not Analyzed, ND= Not Detected, NS= Not Sampled, NR= Not Required

Metals by EPA Method 200.7 and 200.8 Arsenic and Selenium by SM3114B Mercury by EPA Method 245.7 Cations by EPA 300.0 Hardness Calculcation by SM2340B Cyanide by SM4500-CN B/C Sulfides by Section 7.3 SW-846 TKN by SM4500-NorgB

#### QUARTERLY SLUDGE PROJECT (Metals from Digestion and Ions from Supernatant)

#### ANNUAL 2017

| Source:                  |      |               | MBC_NC_RSL  | MBC_NC_RSL  | MBC_NC_RSL  | MBC_NC_RSL  |
|--------------------------|------|---------------|-------------|-------------|-------------|-------------|
| Date:                    |      |               | 07-FEB-2017 | 02-MAY-2017 | 01-AUG-2017 | 03-0CT-2017 |
| Sample ID:               | MDL  | Units         | P919226     | P936607     | P959758     | P973107     |
| Aluminum                 | 23.8 | =====<br>UG/L | 1810        | 6220        | 10100       | 35600       |
| Antimony                 | 2.44 | UG/L          | 4.46        | 5.84        | 8.48        | 5.81        |
| Arsenic                  | 1.84 | UG/L          | 4.29        | 5.42        | 13.3        | 31.5        |
| Barium                   | .7   | UG/L          | 164         | 161         | 787         | 1040        |
| Beryllium                | .12  | UG/L          | ND          | ND          | ND          | ND          |
| Boron                    | 1.4  | UG/L          | 318         | 357         | 385         | 409         |
| Cadmium                  | .26  | UG/L          | 0.439       | 0.487       | 1.280       | 1.24        |
| Chromium                 | .54  | UG/L          | 18.3        | 26.5        | 119         | 179         |
| Cobalt                   | .24  | UG/L          | 2.92        | 3.96        | 8.12        | 13.6        |
| Copper                   | 2.16 | UG/L          | 282         | 311         | 1930        | 2230        |
| Iron                     | 17.1 | UG/L          | 40200       | 59900       | 196000      | 257000      |
| Lead                     | 1.68 | UG/L          | 1.81        | 4.39        | 24.2        | 42.3        |
| Manganese                | .78  | UG/L          | 492         | 578         | 1220        | 1720        |
| Mercury                  | .2   | UG/L          | 0.165       | 0.375       | 1.21        | 0.090       |
| Molybdenum               | .32  | UG/L          | 8.83        | 11.2        | 49.8        | 64.1        |
| Nickel                   | .53  | UG/L          | 14.8        | 16.4        | 65.2        | 91.8        |
| Selenium                 | .662 | UG/L          | 2.26        | 3.64        | 4.80        | 32.3        |
| Silver                   | .73  | UG/L          | 5.18        | ND          | 10.9        | 23.0        |
| Thallium                 | 3.12 | UG/L          | ND          | ND          | <3.12       | ND          |
| Vanadium                 | 2.77 | UG/L          | 4.39        | 5.34        | 24.1        | 29.1        |
| Zinc                     | 4.19 | UG/L          | 337         | 478         | 2240        | 2580        |
| Calcium                  | .059 | =====<br>MG/L | 87.5        | 65.1        | 60.6        | 60.5        |
| Lithium                  | .002 | MG/L          | 0.045       | 0.0280*     | 0.0250      | 0.0220      |
| Magnesium                | .078 | MG/L          | 43.0        | 31.9        | 32.0        | 30.5        |
| Potassium                | .1   | MG/L          | 26.8        | 29.1        | 28.6        | 27.7        |
| Sodium                   | .927 | MG/L          | 201         | 181         | 176         | 164         |
| Bromide                  | .1   | =====<br>MG/L | 0.470       | 0.523       | 0.608       | 0.480       |
| Chloride                 | 7    | MG/L          | 385         | 368         | 355         | 339         |
| Fluoride                 | .05  | MG/L          | 0.474       | 0.462       | 0.485       | 0.402       |
| Nitrate                  | .04  | MG/L          | 0.175       | 0.218       | 0.136       | 0.147       |
| Ortho Phosphate (as PO4) | .2   | MG/L          | 10.6        | 19.3        | 13.4        | 13.7        |
| Sulfate                  | 9    | MG/L          | 76.5        | 22.8        | 21.9        | 21.0        |
| Cyanide, Total           | .002 | =====<br>MG/L | 0.0120      | 0.0130      | 0.0070      | 0.0090      |
| Sulfides-Reactive        | 11   | MG/KG         | 13.0        | ND#         | 24.0        | ND          |
| Total Kjeldahl Nitrogen  | 1.2  | MG/L          | 69.2        | 94.5        | 238         | 64.6        |

\* = Relative percent difference of sample duplicates outside method acceptance criteria; value is not used in average calculations.

# =Recovery of compound in internal check and matrix spike sample outside method acceptance limits; value is not used in average calculations.

NA= Not Analyzed, ND= Not Detected, NS= Not Sampled, NR= Not Required

Metals by EPA Method 200.7 and 200.8 Arsenic and Selenium by SM3114B Mercury by EPA Method 245.7 Cations by EPA 300.0 Hardness Calculcation by SM2340B Cyanide by SM4500-CN B/C Sulfides by Section 7.3 SW-846 TKN by SM4500-NorgB

QUARTERLY SLUDGE PROJECT (Metals from Digestion and Ions from Supernatant)

ANNUAL 2017

| Source:                                         |              |                | RAW COMP               | RAW COMP               | RAW COMP               | RAW COMP               |
|-------------------------------------------------|--------------|----------------|------------------------|------------------------|------------------------|------------------------|
| Date:<br>Sample ID:                             | MDL          | Units          | 08-FEB-2017<br>P919199 | 02-MAY-2017<br>P936580 | 01-AUG-2017<br>P959731 | 03-0C1-2017<br>P973080 |
| <pre>====================================</pre> | ====<br>16.1 | =====<br>MG/KG | ==========<br>1670     | ==========<br>1650     | ==========<br>1900     | ===========<br>1540    |
| Antimony                                        | 2.5          | MG/KG          | 2.92                   | 2.59                   | 3.62                   | 2.90                   |
| Arsenic                                         | .54          | MG/KG          | 2.20                   | 2.04                   | 1.41                   | NA                     |
| Barium                                          | .65          | MG/KG          | 214                    | 152                    | 148                    | 133                    |
| Beryllium                                       | .066         | MG/KG          | ND                     | ND                     | ND                     | ND                     |
| Boron                                           | .64          | MG/KG          | 7.44                   | 15.40                  | 9.14                   | 7.62                   |
| Cadmium                                         | .13          | MG/KG          | ND                     | 0.392                  | 0.514                  | DNQ0.400               |
| Chromium                                        | .21          | MG/KG          | 19.7                   | 17.4                   | 23.3                   | 17.1                   |
| Cobalt                                          | .15          | MG/KG          | 2.36                   | 1.89                   | 2.07                   | 1.69                   |
| Copper                                          | 1.73         | MG/KG          | 348                    | 275                    | 346                    | 292                    |
| Iron                                            | 5.29         | MG/KG          | 40900                  | 39100                  | 47200                  | 42100                  |
| Lead                                            | .3           | MG/KG          | 6.31                   | 6.62                   | 7.33                   | 6.27                   |
| Manganese                                       | .34          | MG/KG          | 170                    | 175                    | 170                    | 132                    |
| Mercury                                         | .2           | MG/KG          | 0.282                  | 0.555                  | 0.393                  | 0.258                  |
| Molybdenum                                      | .15          | MG/KG          | 6.48                   | 8.21                   | 11.10                  | 8.08                   |
| Nickel                                          | .3           | MG/KG          | 12.1                   | 10.1                   | 12.9                   | 8.1                    |
| Selenium                                        | .19          | MG/KG          | ND                     | 0.38                   | 2.18                   | NA                     |
| Silver                                          | .26          | MG/KG          | 1.42                   | 1.54                   | 1.35                   | 1.24                   |
| Thallium                                        | .43          | MG/KG          | ND                     | ND                     | ND                     | ND                     |
| Vanadium                                        | .52          | MG/KG          | 13.0                   | 7.6                    | 10.5                   | 7.9                    |
| Zinc                                            | 1.7          | MG/KG          | 492                    | 453                    | 553                    | 450                    |
|                                                 | ====         | =====          |                        |                        | ===========            |                        |
| Bromide                                         | 3            | MG/KG          | 69.9                   | 164                    | 340                    | 239                    |
| Chloride                                        | 180          | MG/KG          | 25200                  | 33400                  | 40700                  | 32400                  |
| Fluoride                                        | 1            | MG/KG          | 3.41                   | 5.59                   | 6.46                   | 4.11                   |
| Nitrate                                         | 1            | MG/KG          | ND                     | 4.99                   | 5.42                   | 3.88                   |
| Ortho Phosphate (as PO4)                        | 4            | MG/KG          | 37.9                   | 164                    | 888                    | 1180                   |
| Sulfate                                         | 220          | MG/KG          | 710                    | 439                    | 594                    | 502                    |
|                                                 | ====         | =====          |                        |                        | =======                |                        |
| Cyanide, Total                                  | .1           | MG/KG          | 4.10                   | 6.70                   | 4.60                   | 6.90                   |
| Cyanide, Releaseable                            | .018         | MG/KG          | 0.0230                 | ND                     | ND                     | ND                     |
| Sulfides-Total                                  | 500          | MG/KG          | 5400                   | 8700                   | 14000                  | 12700                  |
| Sulfides-Reactive                               | 11           | MG/KG          | 64.0                   | 103*                   | 108                    | 105                    |
| Total Kjeldahl Nitrogen                         | .04          | WT%            | 3.31                   | 3.37                   | 3.57                   | 2.72                   |

\* = Recovery of compound in internal check and matrix spike sample outside method acceptance limits; value is not used in average calculations.

NA= Not Analyzed, ND= Not Detected, NS= Not Sampled, NR= Not Required

RAW COMP = Point Loma Raw Sludge Composite

Metals by EPA Method 200.7 Arsenic and Selenium by SM3114B Mercury by EPA Method 245.7 Cyanide by SM4500-CN B/C Sulfides by Section 7.3 SW-846 TKN by SM4500-NorgB

QUARTERLY SLUDGE PROJECT (Metals from Digestion and Ions from Supernatant)

#### ANNUAL 2017

| Source:<br>Date:<br>Sample ID: | MDL  | Units          | DIG COMP<br>08-FEB-2017<br>P919213 | DIG COMP<br>02-MAY-2017<br>P936594     | DIG COMP<br>01-AUG-2017<br>P959745     | DIG COMP<br>03-0CT-2017<br>P973094 |
|--------------------------------|------|----------------|------------------------------------|----------------------------------------|----------------------------------------|------------------------------------|
| Aluminum                       | 16.1 | MG/KG          | 3850                               | 3020                                   | 2980                                   | 2700                               |
| Antimony                       | 2.5  | MG/KG          | 5.41                               | 6.04                                   | 6.61                                   | 5.59                               |
| Arsenic                        | .54  | MG/KG          | 7.33                               | 3.69                                   | 2.84                                   | NA                                 |
| Barium                         | .65  | MG/KG          | 452                                | 346                                    | 283                                    | 259                                |
| Beryllium                      | .066 | MG/KG          | 0.0880                             | 0.0230                                 | 0.0310                                 | ND                                 |
| Boron                          | .64  | MG/KG          | 21.5                               | 19.2                                   | 22.1                                   | 17.8                               |
| Cadmium                        | .13  | MG/KG          | 0.142                              | 0.939                                  | 0.832                                  | 0.686                              |
| Chromium                       | .21  | MG/KG          | 38.0                               | 35.5                                   | 39.5                                   | 36.5                               |
| Cobalt                         | .15  | MG/KG          | 3.63                               | 3.65                                   | 3.71                                   | 3.17                               |
| Copper                         | 1.73 | MG/KG          | 605                                | 576                                    | 613                                    | 561                                |
| Iron                           | 5.29 | MG/KG          | 84100                              | 79600                                  | 79300                                  | 86400                              |
| Lead                           | .3   | MG/KG          | 13.6                               | 12.1                                   | 13.1                                   | 12.3                               |
| Manganese                      | .34  | MG/KG          | 317                                | 332                                    | 311                                    | 295                                |
| Mercury                        | .2   | MG/KG          | 0.770                              | 0.524                                  | 0.885                                  | 1.08                               |
| Molybdenum                     | .15  | MG/KG          | 15.1                               | 14.9                                   | 20.0                                   | 17.2                               |
| Nickel                         | .3   | MG/KG          | 22.7                               | 18.7                                   | 21.4                                   | 18.3                               |
| Selenium                       | .19  | MG/KG          | 3.27                               | 2.34                                   | 3.52                                   | NA                                 |
| Silver                         | .26  | MG/KG          | 3.03                               | 3.18                                   | 2.47                                   | 2.66                               |
| Thallium                       | .43  | MG/KG          | ND                                 | ND                                     | ND                                     | ND                                 |
| Vanadium                       | .52  | MG/KG          | 26.8                               | 19.5                                   | 16.5                                   | 13.1                               |
| Zinc                           | 1.7  | MG/KG          | 911                                | 908                                    | 961                                    | 849                                |
| Bromide                        | 3    | =====<br>MG/KG | 37.8                               | 62.8                                   | 63.7                                   | 442                                |
| Chloride                       | 180  | MG/KG          | 50200                              | 58500                                  | 65400                                  | 62900                              |
| Fluoride                       | 1    | MG/KG          | 13.6                               | 30.2                                   | 27.1                                   | 7.42                               |
| Nitrate                        | 1    | MG/KG          | 7.13                               | 11.8                                   | 8.76                                   | 7.47                               |
| Ortho Phosphate (as PO4)       | 4    | MG/KG          | 88.6                               | 61.3                                   | 53.8                                   | 2040                               |
| Sulfate                        | 220  | MG/KG          | 790                                | 872                                    | 973                                    | 976                                |
| Cyanido Total                  | 1    | =====<br>MG/KG | 11 0                               | ====================================== | ====================================== | 14 2                               |
| Cyanida Poloscophia            | .1   |                | 0 0216                             | 12.3                                   | T0'2                                   | 14.2                               |
| Cyaniue, Releaseable           | -019 |                | 14000                              | ND<br>17200                            | 24666                                  |                                    |
| Sulfidos Posstivo              | 11   |                | 101                                | 17200                                  | 24000                                  | 20200                              |
| Total Kjeldahl Nitrogen        | .04  | WT%            | 7.32                               | 6.87                                   | 6.68                                   | 5.55                               |

NA= Not Analyzed, ND= Not Detected, NS= Not Sampled, NR= Not Required

DIG COMP = Point Loma Digested Sludge Composite

Metals by EPA Method 200.7 Arsenic and Selenium by SM3114B Mercury by EPA Method 245.7 Cyanide by SM4500-CN B/C Sulfides by Section 7.3 SW-846 TKN by SM4500-NorgB

QUARTERLY SLUDGE PROJECT (Metals from Digestion and Ions from Supernatant)

#### ANNUAL 2017

| Source:                 |      |       | MBCDEWCN    | MBCDEWCN    | MBCDEWCN    | MBCDEWCN    |
|-------------------------|------|-------|-------------|-------------|-------------|-------------|
| Date:                   |      |       | 28-FEB-2017 | 31-MAY-2017 | 31-AUG-2017 | 31-0CT-2017 |
| Sample ID:              | MDL  | Units | P925827     | P945968     | P966456     | P979340     |
|                         | ==== | ===== |             |             |             |             |
| Aluminum                | 16.1 | MG/KG | 3500        | 3450        | 3870        | 880         |
| Antimony                | 2.5  | MG/KG | 5.82        | 3.74        | 6.75        | ND          |
| Arsenic                 | .54  | MG/KG | 6.45        | 3.41        | 3.36        | DNQ1.40     |
| Barium                  | .65  | MG/KG | 514         | 337         | 301         | 47          |
| Beryllium               | .066 | MG/KG | 0.0925      | 0.0300      | 0.0785      | DNQ0.024    |
| Boron                   | .64  | MG/KG | 12.20       | 6.75        | 13.40       | DNQ9.20     |
| Cadmium                 | .13  | MG/KG | 0.370       | 0.574       | 0.902       | DNQ0.300    |
| Chromium                | .21  | MG/KG | 44.3        | 43.2        | 45.6        | 11.0        |
| Cobalt                  | .15  | MG/KG | 3.98        | 2.36        | 4.13        | DNQ0.89     |
| Copper                  | 1.73 | MG/KG | 719         | 611         | 659         | 150         |
| Iron                    | 5.29 | MG/KG | 81100       | 101000      | 91300       | 21000       |
| Lead                    | .3   | MG/KG | 15.7        | 8.90        | 15.5        | 4.00        |
| Manganese               | .34  | MG/KG | 366         | 366         | 336         | 86          |
| Mercury                 | .2   | MG/KG | 0.613       | 1.47        | 1.27        | 0.848       |
| Molybdenum              | .15  | MG/KG | 17.2        | 10.4        | 23.6        | 4.90        |
| Nickel                  | .3   | MG/KG | 25.8        | 14.6        | 25.9        | 6.2         |
| Selenium                | .19  | MG/KG | 1.56        | 4.53        | 4.15        | NA          |
| Silver                  | .26  | MG/KG | 4.24        | 2.10        | 3.58        | DNQ0.80     |
| Thallium                | .43  | MG/KG | 0.430       | <0.430      | ND          | ND          |
| Vanadium                | .52  | MG/KG | 27.8        | 12.7        | 17.0        | 3.8         |
| Zinc                    | 1.7  | MG/KG | 990         | 968         | 1050        | 220         |
| Fluoride                | 1    | MG/KG | 32.9        | 36.4        | 31.5        | 28.7        |
| Nitrate                 | 1    | MG/KG | 21.1        | 14.4        | 15.0        | 16.6        |
|                         | ==== | ===== |             |             |             |             |
| Cyanide, Total          | .1   | MG/KG | 4.65        | 58.2        | 7.55        | 3.70        |
| Cyanide, Releaseable    | .018 | MG/KG | 0.0714      | 0.0525      | ND          | ND          |
| Sulfides-Total          | 500  | MG/KG | 10200       | 13900       | 8250        | 18900       |
| Sulfides-Reactive       | 11   | MG/KG | 43.5        | 51.5        | 58.0        | 46.5        |
| Total Kjeldahl Nitrogen | .04  | WT%   | 4.70        | 5.26        | 5.23        | 5.20        |

NA= Not Analyzed, ND= Not Detected, NS= Not Sampled, NR= Not Required

DNQ= Detected but not quantified. Sample result is less than minimum Level but greater than or equal to MDL.

MBCDEWCN = MBC Dewatered Sludge Composite

Metals by EPA Method 200.7 Arsenic and Selenium by SM3114B Mercury by EPA Method 245.7 Cyanide by SM4500-CN B/C Sulfides by Section 7.3 SW-846 TKN by SM4500-NorgB

## POINT LOMA WASTEWATER TREATMENT PLANT Radioactivity

## Method: EPA 900.0

#### Annual 2017

| Source     | Sample Date | Sample ID | Gross Alpha Radiation | Gross Beta Radiation |
|------------|-------------|-----------|-----------------------|----------------------|
|            |             | ========  |                       |                      |
| PLE        | 07-FEB-2017 | P919157   | 8.9±2.8               | 14.5±2.0             |
| PLE        | 02-MAY-2017 | P936538   | 5.6±1.5               | 4.7±1.5              |
| PLE        | 01-AUG-2017 | P959714   | 4.9±2.0               | 12.7±1.9             |
| PLE        | 03-0CT-2017 | P973063   | 2.8±1.8               | 21.2±2.8             |
|            |             | ========  |                       |                      |
|            |             |           |                       |                      |
|            |             |           |                       |                      |
| PLR        | 07-FEB-2017 | P919163   | 11.0±3.1              | 15.4±2.2             |
| PLR        | 02-MAY-2017 | P936544   | 7.9±2.6               | 17.1±2.2             |
| PLR        | 01-AUG-2017 | P959720   | 13.9±2.8              | 11.9±2.1             |
| PLR        | 03-0CT-2017 | P973069   | 2.9±2.1               | 23.7±2.9             |
|            |             |           |                       |                      |
|            |             |           |                       |                      |
|            |             | ========  |                       |                      |
| MBC_COMBCN | 07-FEB-2017 | P919174   | 10.7±4.3              | 35.9±2.8             |
| MBC_COMBCN | 02-MAY-2017 | P936555   | 8.3±2.6               | 34.0±2.7             |
| MBC_COMBCN | 01-AUG-2017 | P959726   | 5.8±2.9               | 37.2±2.9             |
| MBC_COMBCN | 03-0CT-2017 | P973075   | 4.9±2.4               | 38.6±3.3             |
|            |             | ========= |                       |                      |

Units in picocuries per Liter (pCi/L)

|          |             |           | ===================   | ==================   |
|----------|-------------|-----------|-----------------------|----------------------|
| MBCDEWCN | 31-0CT-2017 | P979340   | 0.0128±0.002          | 0.006±0.0016         |
| MBCDEWCN | 31-AUG-2017 | P966456   | 0.015.0±0.00176       | 0.0106±0.00168       |
| MBCDEWCN | 31-MAY-2017 | P945968   | 31100.0±3180          | 18500.0±2430         |
| MBCDEWCN | 28-FEB-2017 | P925827   | 9950.0±1340           | 6500.0±1280          |
|          |             |           |                       |                      |
| Source   | Sample Date | Sample ID | Gross Alpha Radiation | Gross Beta Radiation |

ND= Not Detected NA= Not Analyzed NS= Not Sampled NR= Not Required

Units in picocuries/liter (pCi/kg)

Analyzed by: FGL Environmental Agricultural Analytical
### ANNUAL 2017

#### CHLORINATED PESTICIDES EPA Method 608

| Source                            |       |       | PLR          | PLR          | PLR          | PLR         | PLE         | PLE         |
|-----------------------------------|-------|-------|--------------|--------------|--------------|-------------|-------------|-------------|
| Date                              |       |       | 07-FEB-2017  | 02-MAY-2017  | 01-AUG-2017  | 03-0CT-2017 | 07-FEB-2017 | 02-MAY-2017 |
| Analyte                           | MDL   | Units | P919163      | P936544      | P959720      | P973069     | P919157     | P936538     |
|                                   | ===== | ===== |              |              |              |             |             |             |
| Aldrin                            | 1.13  | NG/L  | ND           | ND           | ND           | ND*         | · ND        | ND          |
| BHC, Alpha isomer                 | 2.15  | NG/L  | ND           | ND           | ND           | ND*         | s ND        | ND          |
| BHC, Beta isomer                  | 250   | NG/L  | ND           | ND           | ND           | ND          | ND          | ND          |
| BHC, Delta isomer                 | .83   | NG/L  | ND           | ND           | ND           | ND*         | ND          | ND          |
| BHC, Gamma isomer                 | 1000  | NG/L  | ND           | ND           | ND           | ND          | ND          | ND          |
| Alpha (cis) Chlordane             | 50    | NG/L  | ND           | ND           | ND           | ND          | ND          | ND          |
| Gamma (trans) Chlordane           | 50    | NG/L  | ND           | ND           | ND           | ND          | ND          | ND          |
| Alpha Chlordene                   |       | NG/L  | NA           | NA           | NA           | NA          | NA          | NA          |
| Gamma Chlordene                   |       | NG/L  | NA           | NA           | NA           | NA          | NA          | NA          |
| Cis Nonachlor                     | 50    | NG/L  | ND           | ND           | ND           | ND          | ND          | ND          |
| Dieldrin                          | .71   | NG/L  | ND           | ND           | ND           | ND*         | . ND        | ND          |
| Endosulfan Sulfate                | 1.11  | NG/L  | ND           | ND           | ND           | ND*         | . ND        | ND          |
| Alpha Endosulfan                  | .8    | NG/L  | ND           | ND           | ND           | ND*         | . ND        | ND          |
| Beta Endosulfan                   | 2.69  | NG/L  | ND           | ND           | ND           | ND*         | · ND        | ND          |
| Endrin                            | 500   | NG/L  | ND           | ND           | ND           | ND          | ND          | ND          |
| Endrin aldehvde                   | 500   | NG/L  | ND           | ND           | ND           | ND          | ND          | ND          |
| Heptachlor                        | 500   | NG/L  | ND           | ND           | ND           | ND          | ND          | ND          |
| Heptachlor epoxide                | 500   | NG/L  | ND           | ND           | ND           | ND          | ND          | ND          |
| Methoxychlor                      | 460   | NG/I  | ND           | ND           | ND           | NA          | ND          | ND          |
| Mirex                             | 50    | NG/I  | ND           | ND           | ND           | ND          | ND          | ND          |
| o,p-DDD                           | 100   | NG/L  | ND           | ND           | ND           | ND          | ND          | ND          |
| o,p-DDE                           | 200   | NG/L  | ND           | ND           | ND           | ND          | ND          | ND          |
| o.p-DDT                           | 50    | NG/I  | ND           | ND           | ND           | ND          | ND          | ND          |
| Oxychlordane                      | 1.21  | NG/L  | ND           | ND           | ND           | NA          | ND          | ND          |
| PCB 1016                          | 25000 | NG/I  | ND           | ND           | ND           | ND          | ND          | ND          |
| PCB 1221                          | 25000 | NG/I  | ND           | ND           | ND           | ND          | ND          | ND          |
| PCB 1232                          | 21000 | NG/I  | ND           | ND           | ND           | ND          | ND          | ND          |
| PCB 1242                          | 20000 | NG/I  | ND           | ND           | ND           | ND          | ND          | ND          |
| PCB 1248                          | 14000 | NG/I  | ND           | ND           | ND           | ND          | ND          | ND          |
| PCB 1254                          | 25000 | NG/I  | ND           | ND           | ND           | ND          | ND          | ND          |
| PCB 1260                          | 25000 | NG/I  | ND           | ND           | ND           | ND          | ND          | ND          |
| PCB 1262                          | 500   | NG/I  | ND           | ND           | ND           | NA          | ND          | ND          |
| n n-DDD                           | .69   | NG/L  | ND           | ND           | ND           | ND*         | ND          | ND          |
| n.n-DDF                           | .97   | NG/I  | ND           | ND           | ND           | ND*         | · ND        | ND          |
| n n-DDT                           | 500   | NG/I  | ND           | ND           | ND           | ND          | ND          | ND          |
| Toxanhene                         | 25000 | NG/L  | ND           | ND           | ND           | ND          | ND          | ND          |
| Trans Nonachlor                   | 50    | NG/L  | ND           | ND           | ND           | ND          | ND          | ND          |
|                                   | ===== | ===== | ==========   | ==========   | ==========   | ==========  | =========   | =========== |
| Hentachlors                       | 500   | NG/I  | 0.00         | 0.00         | 0.00         | 0.00        | 0.00        | 0.00        |
| Endosulfans                       | 2.69  | NG/I  | 0.00         | 0.00         | 0.00         | 0.00*       | 9.99        | 0.00        |
| Polychlorinated hinhenvls         | 25000 | NG/L  | 0.00         | 0.00         | 0.00         | 0.00        | 0.00        | 0.00        |
| Chlordane + related cmpds         | 50    | NG/I  | 0.00<br>0.00 | 0.00<br>0.00 | 0.00<br>0.00 | 0.00        | 0.00        | 0.00        |
| DDT and derivatives               | 500   | NG/I  | 0.00<br>0.00 | 0.00<br>0.00 | 0.00<br>0.00 | 0.00        | 0.00        | 0.00        |
| Hexachlorocyclohexanes            | 1000  | NG/I  | 0.00<br>0.00 | 0.00<br>0.00 | 0.00<br>0.00 | 0.00        | 0.00        | 0.00        |
| $\Delta$ ldrin + Dieldrin         | 1.13  | NG/I  | 0.00<br>0 00 | 0.00<br>0 00 | 0.00<br>0 00 | 0.00*       | · 0.00      | 0.00        |
| Chlorinated Hydrocarbons          | 25000 | NG/I  | 0.00         | 0.00         | 0.00         | 0.00        | 0.00        | 0.00        |
| eniger englister inger seen bolis | 0     |       | 0.00         | 5.00         | 0.00         | 0.00        | 0.00        | 0.00        |

Standards for alpha and gamma chlordene are no longer available in the U.S. for the analysis of these compounds.

\* = Calibration Verification recovery was above the method control limit for this analyte.

### ANNUAL 2017

#### CHLORINATED PESTICIDES EPA Method 608

| Source                    |       |       | PLE         | PLE         | MBC_COMBCN  | MBC_COMBCN  | MBC_COMBCN  | MBC_COMBCN  |
|---------------------------|-------|-------|-------------|-------------|-------------|-------------|-------------|-------------|
| Date                      |       |       | 01-AUG-2017 | 03-0CT-2017 | 07-FEB-2017 | 02-MAY-2017 | 01-AUG-2017 | 03-0CT-2017 |
| Analyte                   | MDL   | Units | P959714     | P973063     | P919174     | P936555     | P959726     | P973075     |
|                           | ===== | ===== |             |             |             |             |             |             |
| Aldrin                    | 1.13  | NG/L  | ND          | ND*         | ⊧ ND        | ND          | ND          | ND*         |
| BHC, Alpha isomer         | 2.15  | NG/L  | ND          | ND*         | ⊧ ND        | ND          | ND          | ND*         |
| BHC, Beta isomer          | 250   | NG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| BHC, Delta isomer         | .83   | NG/L  | ND          | ND*         | ⊧ ND        | ND          | ND          | ND*         |
| BHC, Gamma isomer         | 1000  | NG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| Alpha (cis) Chlordane     | 50    | NG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| Gamma (trans) Chlordane   | 50    | NG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| Alpha Chlordene           |       | NG/L  | NA          | NA          | NA          | NA          | NA          | NA          |
| Gamma Chlordene           |       | NG/L  | NA          | NA          | NA          | NA          | NA          | NA          |
| Cis Nonachlor             | 50    | NG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| Dieldrin                  | .71   | NG/L  | ND          | ND*         | ∗ ND        | ND          | ND          | ND*         |
| Endosulfan Sulfate        | 1.11  | NG/L  | ND          | ND*         | ⊧ ND        | ND          | ND          | ND*         |
| Alpha Endosulfan          | .8    | NG/L  | ND          | ND*         | ∗ ND        | ND          | ND          | ND*         |
| Beta Endosulfan           | 2.69  | NG/L  | ND          | ND*         | k ND        | ND          | ND          | ND*         |
| Endrin                    | 500   | NG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| Endrin aldehvde           | 500   | NG/I  | ND          | ND          | ND          | ND          | ND          | ND          |
| Hentachlor                | 500   | NG/I  | ND          | ND          | ND          | ND          | ND          | ND          |
| Hentachlor enoxide        | 500   | NG/I  | ND          | ND          | ND          | ND          | ND          | ND          |
| Methoxychlor              | 460   | NG/I  | ND          | NA          | ND          | ND          | ND          | NA          |
| Mirex                     | 50    | NG/I  | ND          | ND          | ND          | ND          | ND          | ND          |
| o.n-DDD                   | 100   | NG/I  | ND          | ND          | ND          | ND          | ND          | ND          |
| o.p-DDF                   | 200   | NG/I  | ND          | ND          | ND          | ND          | ND          | ND          |
| o.p-DDT                   | 50    | NG/I  | ND          | ND          | ND          | ND          | ND          | ND          |
| Oxychlordane              | 1.21  | NG/I  | ND          | NA          | ND          | ND          | ND          | NA          |
| PCB 1016                  | 25000 | NG/I  | ND          | ND          | ND          | ND          | ND          | ND          |
| PCB 1221                  | 25000 | NG/I  | ND          | ND          | ND          | ND          | ND          | ND          |
| PCB 1232                  | 21000 | NG/I  | ND          | ND          | ND          | ND          | ND          | ND          |
| PCB 1242                  | 20000 | NG/I  | ND          | ND          | ND          | ND          | ND          | ND          |
| PCB 1248                  | 14000 | NG/I  | ND          | ND          | ND          | ND          | ND          | ND          |
| PCB 1254                  | 25000 | NG/I  | ND          | ND          | ND          | ND          | ND          | ND          |
| PCB 1260                  | 25000 | NG/I  | ND          | ND          | ND          | ND          | ND          | ND          |
| PCB 1262                  | 500   | NG/I  | ND          | NΔ          | ND          | ND          | ND          | NΔ          |
| n n-DDD                   | 69    | NG/L  | ND          | ND*         | * ND        | ND          | ND          | ND*         |
| n n-DDF                   | 97    | NG/L  | ND          |             | * ND        | ND          | ND          | ND*         |
| n n-DDT                   | 500   | NG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| Toxanhene                 | 25000 | NG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| Trans Nonachlor           | 50    |       | ND          |             | ND          |             | ND          |             |
|                           | ===== | ===== |             |             |             |             |             |             |
| Hentachlors               | 500   | NG/I  | <br>0 00    | <br>0 00    | <br>        | A AA        | A AA        | <br>0 00    |
| Endosulfans               | 2 69  |       | 0.00        | 0.00        | k 0.00      | 0.00        | 0.00        | 0.00        |
| Polychloninated hinhonyls | 25000 |       | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        |
| Chlondano + polatod cmpds | 50    |       | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        |
| DDT and derivatives       | 500   |       | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        |
| Hovachlonocyclohovanoc    | 1000  |       | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        |
| Aldrin - Dioldrin         | 1 1 2 |       | 0.00        | 0.00        | k 0.00      | 0.00        | 0.00        | 0.00        |
| Chloningtod Undergraphere | 1.13  |       | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00*       |
| Chiorinated Hydrocarbons  | 22000 | NG/L  | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        |

Standards for alpha and gamma chlordene are no longer available in the U.S. for the analysis of these compounds.

\* = Calibration Verification recovery was above the method control limit for this analyte.

### ANNUAL 2017

#### CHLORINATED PESTICIDES EPA Method 608

| Source                     |        |       | MBC_NC_DSL  | MBC_NC_DSL  | MBC_NC_DSL  | MBC_NC_DSL  |
|----------------------------|--------|-------|-------------|-------------|-------------|-------------|
| Date                       |        |       | 07-FEB-2017 | 02-MAY-2017 | 01-AUG-2017 | 03-0CT-2017 |
| Analyte                    | MDL    | Units | P919228     | P936609     | P959760     | P973109     |
|                            | =====  | ===== |             |             |             |             |
| Aldrin                     | 1.13   | NG/L  | ND          | ND          | ND          | ND*         |
| BHC, Alpha isomer          | 2.15   | NG/L  | ND          | ND          | ND          | ND*         |
| BHC, Beta isomer           | 250    | NG/L  | ND          | ND          | ND          | ND          |
| BHC, Delta isomer          | .83    | NG/L  | ND          | ND          | ND          | ND*         |
| BHC, Gamma isomer          | 1000   | NG/L  | ND          | ND          | ND          | ND          |
| Alpha (cis) Chlordane      | 50     | NG/L  | ND          | ND          | ND          | ND          |
| Gamma (trans) Chlordane    | 50     | NG/L  | ND          | ND          | ND          | ND          |
| Alpha Chlordene            |        | NG/L  | NA          | NA          | NA          | NA          |
| Gamma Chlordene            |        | NG/L  | NA          | NA          | NA          | NA          |
| Cis Nonachlor              | 50     | NG/L  | ND          | ND          | ND          | ND          |
| Dieldrin                   | .71    | NG/L  | ND          | ND          | ND          | ND*         |
| Endosulfan Sulfate         | 1.11   | NG/L  | ND          | ND          | ND          | ND*         |
| Alpha Endosulfan           | .8     | NG/L  | ND          | ND          | ND          | ND*         |
| Beta Endosulfan            | 2.69   | NG/L  | ND          | ND          | ND          | ND*         |
| Endrin                     | 500    | NG/L  | ND          | ND          | ND          | ND          |
| Endrin aldehyde            | 500    | NG/L  | ND          | ND          | ND          | ND          |
| Heptachlor                 | 500    | NG/L  | ND          | ND          | ND          | ND          |
| Heptachlor epoxide         | 500    | NG/L  | ND          | ND          | ND          | ND          |
| Methoxychlor               | 460    | NG/L  | ND          | ND          | ND          | NA          |
| Mirex                      | 50     | NG/L  | ND          | ND          | ND          | ND          |
| o,p-DDD                    | 100    | NG/L  | ND          | ND          | ND          | ND          |
| o,p-DDE                    | 200    | NG/L  | ND          | ND          | ND          | ND          |
| o,p-DDT                    | 50     | NG/L  | ND          | ND          | ND          | ND          |
| Oxychlordane               | 1.21   | NG/L  | ND          | ND          | ND          | NA          |
| PCB 1016                   | 25000  | NG/L  | ND          | ND          | ND          | ND          |
| PCB 1221                   | 25000  | NG/L  | ND          | ND          | ND          | ND          |
| PCB 1232                   | 21000  | NG/L  | ND          | ND          | ND          | ND          |
| PCB 1242                   | 20000  | NG/L  | ND          | ND          | ND          | ND          |
| PCB 1248                   | 14000  | NG/L  | ND          | ND          | ND          | ND          |
| PCB 1254                   | 25000  | NG/L  | ND          | ND          | ND          | ND          |
| PCB 1260                   | 25000  | NG/L  | ND          | ND          | ND          | ND          |
| PCB 1262                   | 500    | NG/L  | ND          | ND          | ND          | NA          |
| p,p-DDD                    | .69    | NG/L  | ND          | ND          | ND          | ND*         |
| p,p-DDE                    | .97    | NG/L  | ND          | ND          | ND          | ND*         |
| p,p-DDT                    | 500    | NG/L  | ND          | ND          | ND          | ND          |
| Toxaphene                  | 25000  | NG/L  | ND          | ND          | ND          | ND          |
| Trans Nonachlor            | 50<br> | NG/L  | ND          | ND          | ND          | ND          |
| Heptachlors                | 500    | NG/I  | 0.00        | 9.00        | 9.00        | 0.00        |
| Endosulfans                | 2.69   | NG/I  | 0.00        | 0.00        | 0.00        | 0.00*       |
| Polychlorinated biphenyls  | 25000  | NG/L  | 0.00        | 0.00        | 0.00        | 0.00        |
| Chlordane + related cmpds. | 50     | NG/L  | 0.00        | 0.00        | 0.00        | 0.00        |
| DDT and derivatives        | 500    | NG/L  | 0.00        | 0.00        | 0.00        | 0.00        |
| Hexachlorocyclohexanes     | 1000   | NG/L  | 0.00        | 0.00        | 0.00        | 0.00        |
| Aldrin + Dieldrin          | 1.13   | NG/L  | 0.00        | 0.00        | 0.00        | 0.00*       |
| Chlorinated Hydrocarbons   | 25000  | NG/L  | 0.00        | 0.00        | 0.00        | 0.00        |
| ,                          |        | - •   |             |             |             |             |

Standards for alpha and gamma chlordene are no longer available in the U.S. for the analysis of these compounds.

\* = Calibration Verification recovery was above the method control limit for this analyte.

### ANNUAL 2017

#### CHLORINATED PESTICIDES EPA Method 608

| Source                     |       |       | MBC_NC_RSL  | MBC_NC_RSL  | MBC_NC_RSL  | MBC_NC_RSL  | RAW COMP    | RAW COMP    |
|----------------------------|-------|-------|-------------|-------------|-------------|-------------|-------------|-------------|
| Date                       |       |       | 07-FEB-2017 | 02-MAY-2017 | 01-AUG-2017 | 03-0CT-2017 | 08-FEB-2017 | 02-MAY-2017 |
| Analyte                    | MDL   | Units | P919226     | P936607     | P959758     | P973107     | P919199     | P936580     |
|                            | ===== | ===== |             |             |             |             |             |             |
| Aldrin                     | 1.13  | NG/L  | ND          | ND          | ND          | ND*         | s ND        | ND          |
| BHC, Alpha isomer          | 2.15  | NG/L  | ND          | ND          | ND          | ND*         | s ND        | ND          |
| BHC, Beta isomer           | 250   | NG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| BHC, Delta isomer          | .83   | NG/L  | ND          | ND          | ND          | ND*         | s ND        | ND          |
| BHC, Gamma isomer          | 1000  | NG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| Alpha (cis) Chlordane      | 50    | NG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| Gamma (trans) Chlordane    | 50    | NG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| Alpha Chlordene            |       | NG/L  | NA          | NA          | NA          | NA          | NA          | NA          |
| Gamma Chlordene            |       | NG/L  | NA          | NA          | NA          | NA          | NA          | NA          |
| Cis Nonachlor              | 50    | NG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| Dieldrin                   | .71   | NG/L  | ND          | ND          | ND          | ND*         | s ND        | ND          |
| Endosulfan Sulfate         | 1.11  | NG/L  | ND          | ND          | ND          | ND*         | s ND        | ND          |
| Alpha Endosulfan           | .8    | NG/L  | ND          | ND          | ND          | ND*         | s ND        | ND          |
| Beta Endosulfan            | 2.69  | NG/L  | ND          | ND          | ND          | ND*         | s ND        | ND          |
| Endrin                     | 500   | NG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| Endrin aldehyde            | 500   | NG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| Heptachlor                 | 500   | NG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| Heptachlor epoxide         | 500   | NG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| Methoxychlor               | 460   | NG/L  | ND          | ND          | ND          | NA          | ND          | ND          |
| Mirex                      | 50    | NG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| o,p-DDD                    | 100   | NG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| o,p-DDE                    | 200   | NG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| o,p-DDT                    | 50    | NG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| Oxychlordane               | 1.21  | NG/L  | ND          | ND          | ND          | NA          | ND          | ND          |
| PCB 1016                   | 25000 | NG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| PCB 1221                   | 25000 | NG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| PCB 1232                   | 21000 | NG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| PCB 1242                   | 20000 | NG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| PCB 1248                   | 14000 | NG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| PCB 1254                   | 25000 | NG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| PCB 1260                   | 25000 | NG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| PCB 1262                   | 500   | NG/L  | ND          | ND          | ND          | NA          | ND          | ND          |
| p,p-DDD                    | .69   | NG/L  | ND          | ND          | ND          | ND*         | s ND        | ND          |
| p,p-DDE                    | .97   | NG/L  | ND          | ND          | ND          | ND*         | s ND        | ND          |
| p,p-DDT                    | 500   | NG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| Toxaphene                  | 25000 | NG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
| Trans Nonachlor            | 50    | NG/L  | ND          | ND          | ND          | ND          | ND          | ND          |
|                            |       |       |             |             |             |             |             |             |
| Heptachlors                | 500   | NG/L  | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        |
| Endosulfans                | 2.69  | NG/L  | 0.00        | 0.00        | 0.00        | 0.00*       | .00         | 0.00        |
| Polychlorinated biphenyls  | 25000 | NG/L  | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        |
| Chlordane + related cmpds. | 50    | NG/L  | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        |
| DDT and derivatives        | 500   | NG/L  | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        |
| Hexachlorocyclohexanes     | 1000  | NG/L  | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        |
| Aldrin + Dieldrin          | 1.13  | NG/L  | 0.00        | 0.00        | 0.00        | 0.00*       | ° 0.00      | 0.00        |
| Chlorinated Hydrocarbons   | 25000 | NG/L  | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        |

Standards for alpha and gamma chlordene are no longer available in the U.S. for the analysis of these compounds.

\* = Calibration Verification recovery was above the method control limit for this analyte.

#### CHLORINATED PESTICIDES EPA Method 608

| Analyte MDL Units P959731 P973080 P919213 P936594 P95973 P973080   atdrin 1.13 NG/L ND <t< th=""><th>Source<br/>Date</th><th></th><th></th><th>RAW COMP</th><th>RAW COMP</th><th>DIG COMP<br/>08-EEB-2017</th><th>DIG COMP</th><th>DIG COMP</th><th>DIG COMP</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Source<br>Date             |       |       | RAW COMP  | RAW COMP        | DIG COMP<br>08-EEB-2017 | DIG COMP | DIG COMP   | DIG COMP  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------|-------|-----------|-----------------|-------------------------|----------|------------|-----------|
| action instruction <t< td=""><td>Analyte</td><td>MDL</td><td>Units</td><td>P959731</td><td>P973080</td><td>P919213</td><td>P936594</td><td>P959745</td><td>P973094</td></t<> | Analyte                    | MDL   | Units | P959731   | P973080         | P919213                 | P936594  | P959745    | P973094   |
| Aldrin1.13NG/LNDND*NDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDND<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |       | ===== | ========= | =======         |                         |          | ========== | ========= |
| BHC, Alpha isomer2.15NG/LNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDND <t< td=""><td>Aldrin</td><td>1.13</td><td>NG/L</td><td>ND</td><td>ND<sup>3</sup></td><td>* ND</td><td>ND</td><td>ND</td><td>ND*</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Aldrin                     | 1.13  | NG/L  | ND        | ND <sup>3</sup> | * ND                    | ND       | ND         | ND*       |
| BHC, Beta isomer250NG/LNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BHC, Alpha isomer          | 2.15  | NG/L  | ND        | ND'             | * ND                    | ND       | ND         | ND*       |
| BHC, Delta isomer.83NG/LNDNDNDNDNDNDNDNDAlpha (cis) Chlordane50NG/LNDNDNDNDNDNDNDAlpha (cis) Chlordane50NG/LNDNDNDNDNDNDNDAlpha Chlordane50NG/LNANANANANANANAGamma ChlordeneNG/LNANANANANANANAGamma ChlordeneNG/LNDNDNDNDNDNDNDDialdrin.71NG/LNDND*NDNDNDNDNDPoiselarin.71NG/LNDND*NDNDNDNDNDAlpha Endosulfan.69NG/LNDND*NDNDNDNDNDAlpha Endosulfan.69NG/LNDNDNDNDNDNDNDEndrin500NG/LNDNDNDNDNDNDNDNDNDHeptachlor500NG/LNDNDNDNDNDNDNDNDNDNDHeptachlor500NG/LNDNDNDNDNDNDNDNDNDNDO,p-DDL100NG/LNDNDNDNDNDNDNDNDNDNDO,p-DDL100NG/LNDND<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BHC, Beta isomer           | 250   | NG/L  | ND        | ND              | ND                      | ND       | ND         | ND        |
| BHC, Gamma isomer1000NG/LNDNDNDNDNDNDNDNDGamma (trans) Chlordane50NG/LNDNDNDNDNDNDNDNDAlpha (cis) Chlordane50NG/LNDNDNDNDNDNDNDNDAlpha (cis) ChlordaneNG/LNANANANANANANANAAlpha (cis) ChlordaneNG/LNANANANANANANAAlpha (cis) Chlordane50NG/LNDNDNDNDNDNDDieldrin.71NG/LNDNDNDNDNDNDNDEndosulfan Sulfate1.11NG/LNDNDNDNDNDNDNDBeta Endosulfan.8NG/LNDNDNDNDNDNDNDNDEndrin500NG/LNDNDNDNDNDNDNDNDNDEndrin aldehyde500NG/LNDNDNDNDNDNDNDNDNDHeptachlor500NG/LNDNDNDNDNDNDNDNDNDop.pDD100NG/LNDNDNDNDNDNDNDNDNDop.p-DDT50NG/LNDNDNDNDNDNDNDNDNDNDop                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BHC, Delta isomer          | .83   | NG/L  | ND        | ND'             | * ND                    | ND       | ND         | ND*       |
| Alpha (cis) Chlordane 50 NG/L ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BHC, Gamma isomer          | 1000  | NG/L  | ND        | ND              | ND                      | ND       | ND         | ND        |
| Gamma (trans) Chlordane 50 NG/L ND NA ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Alpha (cis) Chlordane      | 50    | NG/L  | ND        | ND              | ND                      | ND       | ND         | ND        |
| Alpha ChlordeneNG/LNANANANANANANANAGamma ChlordeneNG/LNANANANANANANAGamma Chlordene50NG/LNDNDNDNDNDNDNDDieldrin.71NG/LNDND*NDNDNDNDNDNDEndosulfan.8NG/LNDND*NDNDNDNDNDBeta Endosulfan2.69NG/LNDNDNDNDNDNDNDEndrin aldehyde500NG/LNDNDNDNDNDNDNDHeptachlor500NG/LNDNDNDNDNDNDNDHeptachlor500NG/LNDNDNDNDNDNDNDHeptachlor500NG/LNDNDNDNDNDNDNDHeptachlor500NG/LNDNDNDNDNDNDNDO,p-DDD100NG/LNDNDNDNDNDNDNDNDo,p-DDT50NG/LNDNDNDNDNDNDNDNDO,p-DDT50NG/LNDNDNDNDNDNDNDNDOcsp-12125000NG/LNDNDNDNDNDNDNDNDPCB 122125000 <td>Gamma (trans) Chlordane</td> <td>50</td> <td>NG/L</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td>                                                                                                                                                                                                                                                                                                                                                                         | Gamma (trans) Chlordane    | 50    | NG/L  | ND        | ND              | ND                      | ND       | ND         | ND        |
| Gamma ChlordeneNG/LNANANANANANANANANACis Nonachlor50NG/LNDNDNDNDNDNDNDDieldrin.71NG/LNDND*NDNDNDNDNDEndosulfan Sulfate1.11NG/LNDND*NDNDNDNDND*Alpha Endosulfan.69NG/LNDND*NDNDNDNDND*Endrin500NG/LNDNDNDNDNDNDNDNDEndrin aldehyde500NG/LNDNDNDNDNDNDNDHeptachlor500NG/LNDNDNDNDNDNDNDHeptachlor60NG/LNDNDNDNDNDNDNDo,p-DDD100NG/LNDNDNDNDNDNDNDNDo,p-DDT50NG/LNDNDNDNDNDNDNDNDOycychlordane1.21NG/LNDNDNDNDNDNDNDNDPCB 12322000NG/LNDNDNDNDNDNDNDNDOycychlordane1.21NG/LNDNDNDNDNDNDNDNDPCB 12322000NG/LNDNDNDNDNDND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Alpha Chlordene            |       | NG/L  | NA        | NA              | NA                      | NA       | NA         | NA        |
| Cis Nonachlor 50 NG/L ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Gamma Chlordene            |       | NG/L  | NA        | NA              | NA                      | NA       | NA         | NA        |
| Dieldrin.71NG/LNDND*NDNDNDNDNDEndosulfan1.11NG/LNDNDNDNDNDNDND*Alpha Endosulfan2.69NG/LNDNDND*NDNDNDNDBeta Endosulfan2.69NG/LNDNDNDNDNDNDNDEndrin500NG/LNDNDNDNDNDNDNDEndrin aldehyde500NG/LNDNDNDNDNDNDNDHeptachlor500NG/LNDNDNDNDNDNDNDHeptachlor500NG/LNDNDNDNDNDNDNDMethoxychlor460NG/LNDNDNDNDNDNDNDNDo,p-DDE100NG/LNDNDNDNDNDNDNDNDo,p-DDT50NG/LNDNDNDNDNDNDNDNDOxychlordane1.21NG/LNDNDNDNDNDNDNDNDPCB 122125000NG/LNDNDNDNDNDNDNDNDNDPCB 124425000NG/LNDNDNDNDNDNDNDNDNDPCB 124425000NG/LNDNDNDNDNDND <t< td=""><td>Cis Nonachlor</td><td>50</td><td>NG/L</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></t<>                                                                                                                                                                                                                                                                                                                                                                                | Cis Nonachlor              | 50    | NG/L  | ND        | ND              | ND                      | ND       | ND         | ND        |
| Endosulfan 1.11 NG/L ND ND* ND ND ND ND   Alpha Endosulfan .8 NG/L ND ND* ND ND ND ND ND   Beta Endosulfan 2.69 NG/L ND ND ND ND ND ND ND   Endrin 500 NG/L ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dieldrin                   | .71   | NG/L  | ND        | ND'             | s ND                    | ND       | ND         | ND*       |
| Alpha Endosulfan.8NG/LNDNDNDNDNDNDNDBeta Endosulfan2.69NG/LNDNDNDNDNDNDNDEndrin500NG/LNDNDNDNDNDNDNDEndrin aldehyde500NG/LNDNDNDNDNDNDNDHeptachlor500NG/LNDNDNDNDNDNDNDHeptachlor epoxide500NG/LNDNANDNDNDNDNDMethoxychlor460NG/LNDNDNDNDNDNDNDNDo,p-DDD100NG/LNDNDNDNDNDNDNDNDNDo,p-DDT50NG/LNDNDNDNDNDNDNDNDNDNDo,p-DDT50NG/LNDNDNDNDNDNDNDNDNDNDOxychlordane1.21NG/LNDNDNDNDNDNDNDNDNDNDPCB 122125000NG/LNDNDNDNDNDNDNDNDNDNDPCB 123221000NG/LNDNDNDNDNDNDNDNDNDNDPCB 124226000NG/LNDNDNDNDNDNDNDND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Endosulfan Sulfate         | 1.11  | NG/L  | ND        | ND'             | s ND                    | ND       | ND         | ND*       |
| Beta Endosulfan2.69NG/LNDNDNDNDNDNDNDEndrin500NG/LNDNDNDNDNDNDNDNDEndrin aldehyde500NG/LNDNDNDNDNDNDNDNDHeptachlor500NG/LNDNDNDNDNDNDNDNDHeptachlor epoxide500NG/LNDNDNDNDNDNDNDMethoxychlor460NG/LNDNDNDNDNDNDNDo,p-DDD100NG/LNDNDNDNDNDNDNDo,p-DDT50NG/LNDNDNDNDNDNDNDo,p-DTT50NG/LNDNDNDNDNDNDNDo,y-bdf2500NG/LNDNDNDNDNDNDNDo,y-bdf25000NG/LNDNDNDNDNDNDNDo,y-bdf25000NG/LNDNDNDNDNDNDNDNDPCB 122125000NG/LNDNDNDNDNDNDNDNDNDPCB 124220000NG/LNDNDNDNDNDNDNDNDNDPCB 125425000NG/LNDNDNDNDNDNDND <td< td=""><td>Alpha Endosulfan</td><td>.8</td><td>NG/L</td><td>ND</td><td>ND'</td><td>s ND</td><td>ND</td><td>ND</td><td>ND*</td></td<>                                                                                                                                                                                                                                                                                                                                                                                 | Alpha Endosulfan           | .8    | NG/L  | ND        | ND'             | s ND                    | ND       | ND         | ND*       |
| Endrin500NG/LNDNDNDNDNDNDNDNDEndrin aldehyde500NG/LNDNDNDNDNDNDNDHeptachlor500NG/LNDNDNDNDNDNDNDNDHeptachlor epoxide500NG/LNDNDNDNDNDNDNDNDMethoxychlor460NG/LNDNDNDNDNDNDNDNDo,p-DDD100NG/LNDNDNDNDNDNDNDNDo,p-DDE200NG/LNDNDNDNDNDNDNDNDo,p-DDT50NG/LNDNDNDNDNDNDNDNDo,p-DT500NG/LNDNDNDNDNDNDNDNDOxychlordane1.21NG/LNDNDNDNDNDNDNDNDPCB 123221000NG/LNDNDNDNDNDNDNDNDNDPCB 124220000NG/LNDNDNDNDNDNDNDNDNDPCB 125425000NG/LNDNDNDNDNDNDNDNDNDNDPCB 1260500NG/LNDNDNDNDNDNDNDNDNDNDPCB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Beta Endosulfan            | 2.69  | NG/L  | ND        | ND'             | s ND                    | ND       | ND         | ND*       |
| Endrin aldehyde500NG/LNDNDNDNDNDNDNDNDHeptachlor500NG/LNDNDNDNDNDNDNDNDHeptachlor epoxide500NG/LNDNDNDNDNDNDNDNDMethoxychlor460NG/LNDNDNDNDNDNDNDNDo,p-DDD100NG/LNDNDNDNDNDNDNDNDo,p-DDT500NG/LNDNDNDNDNDNDNDNDo,p-DT500NG/LNDNDNDNDNDNDNDNDo,p-DT500NG/LNDNDNDNDNDNDNDNDOxychlordane1.21NG/LNDNDNDNDNDNDNDNDPCB 122125000NG/LNDNDNDNDNDNDNDNDNDPCB 124220000NG/LNDNDNDNDNDNDNDNDNDNDPCB 124414000NG/LNDNDNDNDNDNDNDNDNDNDPCB 126425000NG/LNDNDNDNDNDNDNDNDNDNDPCB 1262500NG/LNDNDNDNDNDNDND<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Endrin                     | 500   | NG/L  | ND        | ND              | ND                      | ND       | ND         | ND        |
| Heptachlor500NG/LNDNDNDNDNDNDNDNDHeptachlor epoxide500NG/LNDNDNDNDNDNDNDMethoxychlor460NG/LNDNDNDNDNDNDNDNDo,p-DDD100NG/LNDNDNDNDNDNDNDNDo,p-DDT200NG/LNDNDNDNDNDNDNDNDo,p-DT50NG/LNDNDNDNDNDNDNDNDOxychlordane1.21NG/LNDNDNDNDNDNDNDNDPCB 101625000NG/LNDNDNDNDNDNDNDNDNDPCB 122125000NG/LNDNDNDNDNDNDNDNDNDPCB 124220000NG/LNDNDNDNDNDNDNDNDNDNDPCB 124814000NG/LNDNDNDNDNDNDNDNDNDNDPCB 126025000NG/LNDNDNDNDNDNDNDNDNDPCB 12625000NG/LNDNDNDNDNDNDNDNDNDPCB 12625000NG/LNDNDNDNDNDNDND <td< td=""><td>Endrin aldehyde</td><td>500</td><td>NG/L</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></td<>                                                                                                                                                                                                                                                                                                                                                                                              | Endrin aldehyde            | 500   | NG/L  | ND        | ND              | ND                      | ND       | ND         | ND        |
| Heptachlor epoxide500NG/LNDNDNDNDNDNDNDNDMethoxychlor460NG/LNDNDNANDNDNDNAMirex50NG/LNDNDNDNDNDNDNDNDo,p-DDD100NG/LNDNDNDNDNDNDNDNDo,p-DDF200NG/LNDNDNDNDNDNDNDNDo,p-DDT50NG/LNDNDNDNDNDNDNDNDOxychlordane1.21NG/LNDNDNDNDNDNDNDNDPCB 101625000NG/LNDNDNDNDNDNDNDNDNDPCB 122125000NG/LNDNDNDNDNDNDNDNDNDPCB 124220000NG/LNDNDNDNDNDNDNDNDNDNDPCB 125425000NG/LNDNDNDNDNDNDNDNDNDNDNDPCB 1262500NG/LNDNDNDNDNDNDNDNDNDNDPCB 126425000NG/LNDNDNDNDNDNDNDNDNDPCB 1264500NG/LNDNDNDNDNDND <td>Heptachlor</td> <td>500</td> <td>NG/L</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td>                                                                                                                                                                                                                                                                                                                                                                                                                 | Heptachlor                 | 500   | NG/L  | ND        | ND              | ND                      | ND       | ND         | ND        |
| Methoxychlor460NG/LNDNANDNDNDNDNAMirex50NG/LNDNDNDNDNDNDNDNDo,p-DDD100NG/LNDNDNDNDNDNDNDo,p-DDE200NG/LNDNDNDNDNDNDNDNDo,p-DDT50NG/LNDNDNDNDNDNDNDNDOxychlordane1.21NG/LNDNDNDNDNDNDNDNDPCB 101625000NG/LNDNDNDNDNDNDNDNDNDPCB 122125000NG/LNDNDNDNDNDNDNDNDNDPCB 123221000NG/LNDNDNDNDNDNDNDNDNDPCB 124814000NG/LNDNDNDNDNDNDNDNDNDPCB 126025000NG/LNDNDNDNDNDNDNDNDNDNDPCB 1262500NG/LNDNDNDNDNDNDNDNDNDNDPCB 1262500NG/LNDNDNDNDNDNDNDNDNDNDP,p-DDT.69NG/LNDNDNDNDNDNDNDND <td>Heptachlor epoxide</td> <td>500</td> <td>NG/L</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td>                                                                                                                                                                                                                                                                                                                                                                                                                  | Heptachlor epoxide         | 500   | NG/L  | ND        | ND              | ND                      | ND       | ND         | ND        |
| Mirex50NG/LNDNDNDNDNDNDNDNDo,p-DDD100NG/LNDNDNDNDNDNDNDNDo,p-DDE200NG/LNDNDNDNDNDNDNDNDNDo,p-DT50NG/LNDNDNDNDNDNDNDNDNDOxychlordane1.21NG/LNDNDNDNDNDNDNDNDPCB 101625000NG/LNDNDNDNDNDNDNDNDPCB 122125000NG/LNDNDNDNDNDNDNDNDPCB 123221000NG/LNDNDNDNDNDNDNDNDPCB 124220000NG/LNDNDNDNDNDNDNDNDPCB 124814000NG/LNDNDNDNDNDNDNDNDNDPCB 126025000NG/LNDNDNDNDNDNDNDNDNDNDP,p-DDT.69NG/LNDNDNDNDNDNDND*ND*ND*p,p-DDT500NG/LNDNDNDNDNDND*ND*ND*ND*p,p-DDT500NG/LNDNDNDNDNDNDNDND*ND*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Methoxychlor               | 460   | NG/L  | ND        | NA              | ND                      | ND       | ND         | NA        |
| o,p-DDD100NG/LNDNDNDNDNDNDNDo,p-DDE200NG/LNDNDNDNDNDNDNDo,p-DDT50NG/LNDNDNDNDNDNDNDOxychlordane1.21NG/LNDNDNDNDNDNDNDPCB 101625000NG/LNDNDNDNDNDNDNDPCB 122125000NG/LNDNDNDNDNDNDNDPCB 123221000NG/LNDNDNDNDNDNDNDPCB 124220000NG/LNDNDNDNDNDNDNDPCB 124814000NG/LNDNDNDNDNDNDNDPCB 125425000NG/LNDNDNDNDNDNDNDPCB 126025000NG/LNDNDNDNDNDNDNDPCB 1262500NG/LNDNDNDNDNDNDNDP,p-DDD.69NG/LNDNDNDNDNDNDNDP,p-DDE.97NG/LNDNDNDNDNDNDNDP,p-DDT500NG/LNDNDNDNDNDNDNDToxaphene25000NG/LNDNDNDNDND <t< td=""><td>Mirex</td><td>50</td><td>NG/L</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                          | Mirex                      | 50    | NG/L  | ND        | ND              | ND                      | ND       | ND         | ND        |
| o,p-DDE200NG/LNDNDNDNDNDNDNDNDo,p-DDT50NG/LNDNDNDNDNDNDNDNDOxychlordane1.21NG/LNDNDNDNDNDNDNDNDPCB 101625000NG/LNDNDNDNDNDNDNDNDPCB 122125000NG/LNDNDNDNDNDNDNDPCB 123221000NG/LNDNDNDNDNDNDNDPCB 124220000NG/LNDNDNDNDNDNDNDPCB 124314000NG/LNDNDNDNDNDNDNDPCB 125425000NG/LNDNDNDNDNDNDNDPCB 126025000NG/LNDNDNDNDNDNDNDPCB 1262500NG/LNDNDNDNDNDNDNDP,p-DDD.69NG/LNDND*NDNDNDNDNDP,p-DDE.97NG/LNDNDNDNDNDNDNDP,p-DDT500NG/LNDNDNDNDNDNDNDToxaphene25000NG/LNDNDNDNDNDNDND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | o,p-DDD                    | 100   | NG/L  | ND        | ND              | ND                      | ND       | ND         | ND        |
| o,p-DDT50NG/LNDNDNDNDNDNDNDNDOxychlordane1.21NG/LNDNDNANDNDNDNAPCB 101625000NG/LNDNDNDNDNDNDNDNDPCB 122125000NG/LNDNDNDNDNDNDNDNDPCB 123221000NG/LNDNDNDNDNDNDNDNDPCB 124220000NG/LNDNDNDNDNDNDNDNDPCB 124814000NG/LNDNDNDNDNDNDNDNDPCB 125425000NG/LNDNDNDNDNDNDNDPCB 126025000NG/LNDNDNDNDNDNDNDPCB 1262500NG/LNDNDNDNDNDNDNDP,p-DDD.69NG/LNDND*NDNDNDNDNDP,p-DDT500NG/LNDND*NDNDNDNDNDToxaphene25000NG/LNDNDNDNDNDNDND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | o,p-DDE                    | 200   | NG/L  | ND        | ND              | ND                      | ND       | ND         | ND        |
| Oxychlordane 1.21 NG/L ND NA ND ND ND NA   PCB 1016 25000 NG/L ND <td< td=""><td>o,p-DDT</td><td>50</td><td>NG/L</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | o,p-DDT                    | 50    | NG/L  | ND        | ND              | ND                      | ND       | ND         | ND        |
| PCB 1016 25000 NG/L ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Oxychlordane               | 1.21  | NG/L  | ND        | NA              | ND                      | ND       | ND         | NA        |
| PCB 1221 25000 NG/L ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PCB 1016                   | 25000 | NG/L  | ND        | ND              | ND                      | ND       | ND         | ND        |
| PCB 1232 21000 NG/L ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PCB 1221                   | 25000 | NG/L  | ND        | ND              | ND                      | ND       | ND         | ND        |
| PCB 1242 2000 NG/L ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PCB 1232                   | 21000 | NG/L  | ND        | ND              | ND                      | ND       | ND         | ND        |
| PCB 1248 14000 NG/L ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PCB 1242                   | 20000 | NG/L  | ND        | ND              | ND                      | ND       | ND         | ND        |
| PCB 1254 2500 NG/L ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PCB 1248                   | 14000 | NG/L  | ND        | ND              | ND                      | ND       | ND         | ND        |
| PCB 1260 2500 NG/L ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PCB 1254                   | 25000 | NG/L  | ND        | ND              | ND                      | ND       | ND         | ND        |
| PCB 1262 500 NG/L ND NA ND ND ND NA   p,p-DDD .69 NG/L ND ND* ND ND ND ND ND   p,p-DDE .97 NG/L ND ND* ND ND ND ND*   p,p-DDT 500 NG/L ND ND ND ND ND ND   Toxaphene 2500 NG/L ND ND ND ND ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PCB 1260                   | 25000 | NG/L  | ND        | ND              | ND                      | ND       | ND         | ND        |
| p,p-DDD .69 NG/L ND ND* ND ND ND ND ND*   p,p-DDE .97 NG/L ND ND* ND ND ND ND*   p,p-DDT 500 NG/L ND ND ND ND ND ND   Toxaphene 2500 NG/L ND ND ND ND ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PCB 1262                   | 500   | NG/L  | ND        | NA              | ND                      | ND       | ND         | NA        |
| p,p-DDE .97 NG/L ND ND* ND ND ND* ND ND ND* ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | p,p-DDD                    | .69   | NG/L  | ND        | ND <sup>3</sup> | s ND                    | ND       | ND         | ND*       |
| p,p-DDT 500 NG/L ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | p,p-DDE                    | .97   | NG/L  | ND        | ND <sup>3</sup> | s ND                    | ND       | ND         | ND*       |
| Toxaphene 25000 NG/L ND ND ND ND ND ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | p,p-DDT                    | 500   | NG/L  | ND        | ND              | ND                      | ND       | ND         | ND        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Toxaphene                  | 25000 | NG/L  | ND        | ND              | ND                      | ND       | ND         | ND        |
| Trans Nonachlor 50 NG/L ND ND ND ND ND ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Trans Nonachlor            | 50    | NG/L  | ND        | ND              | ND                      | ND       | ND         | ND        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            | ===== | ===== |           |                 |                         |          |            |           |
| Heptachlors 500 NG/L 0.00 0.00 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Heptachlors                | 500   | NG/L  | 0.00      | 0.00            | 0.00                    | 0.00     | 0.00       | 0.00      |
| Endosulfans 2.69 NG/L 0.00 0.00* 0.00 0.00 0.00 0.00*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Endosulfans                | 2.69  | NG/L  | 0.00      | 0.00            | .00                     | 0.00     | 0.00       | 0.00*     |
| Polychlorinated biphenyls 25000 NG/L 0.00 0.00 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Polychlorinated biphenyls  | 25000 | NG/L  | 0.00      | 0.00            | 0.00                    | 0.00     | 0.00       | 0.00      |
| Chlordane + related cmpds. 50 NG/L 0.00 0.00 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Chlordane + related cmpds. | 50    | NG/L  | 0.00      | 0.00            | 0.00                    | 0.00     | 0.00       | 0.00      |
| DDT and derivatives 500 NG/L 0.00 0.00 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DDT and derivatives        | 500   | NG/L  | 0.00      | 0.00            | 0.00                    | 0.00     | 0.00       | 0.00      |
| Hexachlorocyclohexanes 1000 NG/L 0.00 0.00 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hexachlorocyclohexanes     | 1000  | NG/L  | 0.00      | 0.00            | 0.00                    | 0.00     | 0.00       | 0.00      |
| Aldrin + Dieldrin 1.13 NG/L 0.00 0.00* 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Aldrin + Dieldrin          | 1.13  | NG/L  | 0.00      | 0.00'           | < 0.00                  | 0.00     | 0.00       | 0.00*     |
| Chlorinated Hydrocarbons 25000 NG/L 0.00 0.00 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Chlorinated Hydrocarbons   | 25000 | NG/L  | 0.00      | 0.00            | 0.00                    | 0.00     | 0.00       | 0.00      |

Standards for alpha and gamma chlordene are no longer available in the U.S. for the analysis of these compounds. \* = Calibration Verification recovery was above the method control limit for this analyte.

#### ANNUAL 2017

### Chlorinated Pesticide Analysis EPA Method 8081A

| Source                                  |          |       | MBCDEWCN    | MBCDEWCN    | MBCDEWCN    | MBCDEWCN    | MBCDEWCN    |
|-----------------------------------------|----------|-------|-------------|-------------|-------------|-------------|-------------|
| Date                                    |          |       | 31-JAN-2017 | 28-FEB-2017 | 31-MAR-2017 | 30-APR-2017 | 31-MAY-2017 |
| Analyte                                 | MDL      | Units | P920340     | P925827     | P932213     | P937935     | P945968     |
|                                         |          |       |             | ==========  | ==========  |             | =========== |
| Aldrin                                  | 180000   | NG/KG | ND          | ND          | ND          | ND          | ND          |
| Dieldrin                                | 190000   | NG/KG | ND          | ND          | ND          | ND          | ND          |
| BHC, Alpha isomer                       | 220000   | NG/KG | ND          | ND          | ND          | ND          | ND          |
| BHC, Beta isomer                        | 250000   | NG/KG | ND          | ND          | ND          | ND          | ND          |
| BHC, Gamma isomer                       | 210000   | NG/KG | ND          | ND          | ND          | ND          | ND          |
| BHC, Delta isomer                       | 200000   | NG/KG | ND          | ND          | ND          | ND          | ND          |
| p,p-DDD                                 | 190000   | NG/KG | ND          | ND          | ND          | ND          | ND          |
| p,p-DDE                                 | 170000   | NG/KG | ND          | ND          | ND          | ND          | ND          |
| p,p-DDT                                 | 230000   | NG/KG | ND          | ND          | ND          | ND          | ND          |
| o,p-DDD                                 | 970      | NG/KG | ND          | ND          | ND          | ND          | ND          |
| o,p-DDE                                 | 640      | NG/KG | ND          | ND          | ND          | ND          | ND          |
| o,p-DDT                                 | 940      | NG/KG | ND          | ND          | ND          | ND          | ND          |
| Heptachlor                              | 270000   | NG/KG | ND          | ND          | ND          | ND          | ND          |
| Heptachlor epoxide                      | 240000   | NG/KG | ND          | ND          | ND          | ND          | ND          |
| Alpha (cis) Chlordane                   | 840      | NG/KG | ND          | ND          | ND          | ND          | ND          |
| Gamma (trans) Chlordane                 | 540      | NG/KG | ND          | ND          | ND          | ND          | ND          |
| Alpha Chlordene                         |          | NG/KG | NA          | NA          | NA          | NA          | NA          |
| Gamma Chlordene                         |          | NG/KG | NA          | NA          | NA          | NA          | NA          |
| Oxychlordane                            | 360      | NG/KG | ND          | ND          | ND          | ND          | ND          |
| Trans Nonachlor                         | 1000     | NG/KG | ND          | ND          | ND          | ND          | ND          |
| Cis Nonachlor                           | 850      | NG/KG | ND          | ND          | ND          | ND          | ND          |
| Alpha Endosulfan                        | 200000   | NG/KG | ND          | ND          | ND          | ND          | ND          |
| Beta Endosulfan                         | 240000   | NG/KG | ND          | ND          | ND          | ND          | ND          |
| Endosulfan Sulfate                      | 190000   | NG/KG | ND          | ND          | ND          | ND          | ND          |
| Endrin aldehvde                         | 200000   | NG/KG | ND          | ND          | ND          | ND          | ND          |
| Toxaphene                               | 7400000  | NG/KG | ND          | ND          | ND          | ND          | ND          |
| Mirex                                   | 680      | NG/KG | ND          | ND          | ND          | ND          | ND          |
| Methoxychlor                            | 250000   | NG/KG | ND          | ND          | ND          | ND          | ND          |
| PCB 1016                                | 3800000  | NG/KG | ND          | ND          | ND          | ND          | ND          |
| PCB 1221                                | 33000000 | NG/KG | ND          | ND          | ND          | ND          | ND          |
| PCB 1232                                | 6700000  | NG/KG | ND          | ND          | ND          | ND          | ND          |
| PCB 1242                                | 39000000 | NG/KG | ND          | ND          | ND          | ND          | ND          |
| PCB 1248                                | 29000000 | NG/KG | ND          | ND          | ND          | ND          | ND          |
| PCB 1254                                | 1100000  | NG/KG | ND          | ND          | ND          | ND          | ND          |
| PCB 1260                                | 3800000  | NG/KG | ND          | ND          | ND          | ND          | ND          |
| PCB 1262                                | 83300    | NG/KG | ND          | ND          | ND          | ND          | ND          |
|                                         | ======== | ===== |             |             |             |             |             |
| Aldrin + Dieldrin                       | 190000   | NG/KG | 0           | 0           | Ø           | Ø           | 0           |
| Hexachlorocyclohexanes                  | 250000   | NG/KG | e<br>e      | e<br>e      | e<br>e      | â           | 9           |
| DDT and derivatives                     | 230000   | NG/KG | a<br>a      | a<br>a      | a           | a           | a<br>a      |
| Chlordane + related cmpds               | 840      | NG/KG | a<br>a      | a<br>a      | a<br>a      | a<br>a      | 0<br>0      |
| Polychlorinated binhenvis               | 39000000 | NG/KG | a<br>a      | a<br>a      | a<br>a      | a<br>a      | 0<br>0      |
| ======================================= | ======== | ===== |             |             |             |             |             |
| Chlorinated Hydrocarbons                | 39000000 | NG/KG | 0           | 0           | 0           | 0           | 0           |

Standards for alpha and gamma chlordene are no longer available in the U.S. for the analysis of these compounds.

### ANNUAL 2017

#### Chlorinated Pesticide Analysis EPA Method 8081A

| Source                    |          |       | MBCDEWCN    | MBCDEWCN     | MBCDEWCN    | MBCDEWCN    | MBCDEWCN    |
|---------------------------|----------|-------|-------------|--------------|-------------|-------------|-------------|
| Date                      |          |       | 30-JUN-2017 | 31-JUL-2017  | 31-AUG-2017 | 30-SEP-2017 | 31-0CT-2017 |
| Analyte                   | MDL      | Units | P953132     | P959635      | P966456     | P974186     | P979340     |
|                           | =======  | ===== |             |              |             |             |             |
| Aldrin                    | 180000   | NG/KG | ND          | ND           | ND          | ND          | ND          |
| Dieldrin                  | 190000   | NG/KG | ND          | ND           | ND          | ND          | ND          |
| BHC, Alpha isomer         | 220000   | NG/KG | ND          | ND           | ND          | ND          | ND          |
| BHC, Beta isomer          | 250000   | NG/KG | ND          | ND           | ND          | ND          | ND          |
| BHC, Gamma isomer         | 210000   | NG/KG | ND          | ND           | ND          | ND          | ND          |
| BHC, Delta isomer         | 200000   | NG/KG | ND          | ND           | ND          | ND          | ND          |
| p,p-DDD                   | 190000   | NG/KG | ND          | ND           | ND          | ND          | ND          |
| p,p-DDE                   | 170000   | NG/KG | ND          | ND           | ND          | ND          | ND          |
| p,p-DDT                   | 230000   | NG/KG | ND          | ND           | ND          | ND          | ND          |
| o,p-DDD                   | 970      | NG/KG | ND          | ND           | NA          | NA          | ND          |
| o,p-DDE                   | 640      | NG/KG | ND          | ND           | NA          | NA          | ND          |
| o,p-DDT                   | 940      | NG/KG | ND          | ND           | NA          | NA          | ND          |
| Heptachlor                | 270000   | NG/KG | ND          | ND           | ND          | ND          | ND          |
| Heptachlor epoxide        | 240000   | NG/KG | ND          | ND           | ND          | ND          | ND          |
| Alpha (cis) Chlordane     | 840      | NG/KG | ND          | ND           | NA          | NA          | ND          |
| Gamma (trans) Chlordane   | 540      | NG/KG | ND          | ND           | NA          | NA          | ND          |
| Alpha Chlordene           |          | NG/KG | NA          | NA           | NA          | NA          | NA          |
| Gamma Chlordene           |          | NG/KG | NA          | NA           | NA          | NA          | NA          |
| Oxychlordane              | 360      | NG/KG | ND          | ND           | NA          | NA          | ND          |
| Trans Nonachlor           | 1000     | NG/KG | ND          | ND           | NA          | NA          | ND          |
| Cis Nonachlor             | 850      | NG/KG | ND          | ND           | NA          | NA          | ND          |
| Alpha Endosulfan          | 200000   | NG/KG | ND          | ND           | ND          | ND          | ND          |
| Beta Endosulfan           | 240000   | NG/KG | ND          | ND           | ND          | ND          | ND          |
| Endosulfan Sulfate        | 190000   | NG/KG | ND          | ND           | ND          | ND          | ND          |
| Endrin aldebyde           | 200000   | NG/KG | ND          | ND           | ND          | ND          | ND          |
| Toxanhene                 | 7400000  | NG/KG | ND          | ND           | ND          | ND          | ND          |
| Mirex                     | 680      | NG/KG | ND          | ND           | NΔ          | NΔ          | ND          |
| Methoxychlor              | 250000   | NG/KG | ND          | ND           | ND          | ND          | ND          |
| PCB 1016                  | 3800000  | NG/KG | ND          | ND           | ND          | ND          | ND          |
| PCB 1221                  | 33000000 | NG/KG | ND          | ND           | ND          | ND          | ND          |
| PCB 1221                  | 6700000  | NG/KG | ND          | ND           | ND          | ND          | ND          |
| DCB 12/2                  | 39000000 |       |             |              |             |             | ND          |
| PCB 1242                  | 29000000 | NG/KG | ND          | ND           | ND          | ND          | ND          |
| DCB 1254                  | 1100000  |       |             |              |             |             | ND          |
| DCB 1260                  | 3800000  |       |             |              |             |             |             |
| DCB 1260                  | 83300    |       |             |              | NA          | NA          |             |
|                           |          |       |             |              |             |             |             |
| Aldrin + Dieldrin         | 190000   |       |             |              |             |             |             |
| Herzehlenecycloberanes    | 250000   |       | 0           | 0            | 0           | 0           | 0           |
| DDT and denivatives       | 230000   |       | 0           | 0            | 0           | 0           | 0           |
| Chlondono + nolotod cmode | 230000   |       | 0           | 0            | ۲<br>*      | ۲<br>*      | 0           |
| Dolychloninated hinhonyle | 20000000 |       | 0           | 0            | 0           | 0           | 0           |
|                           |          |       |             | <del>ا</del> | 0           |             | 0           |
| Chlorinated Hydrocarbons  | 39000000 | NG/KG |             | 0            | 0           | 0           | 0           |

\* = No chlordane sum available, chlordane related compounds were not analyzed by BABCOCK LABORATORIES.

Standards for alpha and gamma chlordene are no longer available in the U.S. for the analysis of these compounds.

### Chlorinated Pesticide Analysis EPA Method 8081A

| Source                     |                |                | MBCDEWCN      | MBCDEWCN    |         |
|----------------------------|----------------|----------------|---------------|-------------|---------|
| Date                       |                |                | 30-NOV-2017   | 31-DEC-2017 | Annual  |
| Analyte                    | MDL<br>======= | Units<br>===== | P986442       | P992862     | Average |
| Aldrin                     | 180000         | NG/KG          | ND            | ND          | ND      |
| Dieldrin                   | 190000         | NG/KG          | ND            | ND          | ND      |
| BHC, Alpha isomer          | 220000         | NG/KG          | ND            | ND          | ND      |
| BHC, Beta isomer           | 250000         | NG/KG          | ND            | ND          | ND      |
| BHC, Gamma isomer          | 210000         | NG/KG          | ND            | ND          | ND      |
| BHC, Delta isomer          | 200000         | NG/KG          | ND            | ND          | ND      |
| p,p-DDD                    | 190000         | NG/KG          | ND            | ND          | ND      |
| p,p-DDE                    | 170000         | NG/KG          | ND            | ND          | ND      |
| p,p-DDT                    | 230000         | NG/KG          | ND            | ND          | ND      |
| o,p-DDD                    | 970            | NG/KG          | ND            | ND          | ND      |
| o,p-DDE                    | 640            | NG/KG          | ND            | ND          | ND      |
| o,p-DDT                    | 940            | NG/KG          | ND            | ND          | ND      |
| Heptachlor                 | 270000         | NG/KG          | ND            | ND          | ND      |
| Heptachlor epoxide         | 240000         | NG/KG          | ND            | ND          | ND      |
| Alpha (cis) Chlordane      | 840            | NG/KG          | ND            | ND          | ND      |
| Gamma (trans) Chlordane    | 540            | NG/KG          | ND            | ND          | ND      |
| Alpha Chlordene            |                | NG/KG          | NA            | NA          | NA      |
| Gamma Chlordene            |                | NG/KG          | NA            | NA          | NA      |
| Oxychlordane               | 360            | NG/KG          | ND            | ND          | ND      |
| Trans Nonachlor            | 1000           | NG/KG          | ND            | ND          | ND      |
| Cis Nonachlor              | 850            | NG/KG          | ND            | ND          | ND      |
| Alpha Endosulfan           | 200000         | NG/KG          | ND            | ND          | ND      |
| Beta Endosulfan            | 240000         | NG/KG          | ND            | ND          | ND      |
| Endosulfan Sulfate         | 190000         | NG/KG          | ND            | ND          | ND      |
| Endrin aldehyde            | 200000         | NG/KG          | ND            | ND          | ND      |
| Toxaphene                  | 7400000        | NG/KG          | ND            | ND          | ND      |
| Mirex                      | 680            | NG/KG          | ND            | ND          | ND      |
| Methoxychlor               | 250000         | NG/KG          | ND            | ND          | ND      |
| PCB 1016                   | 3800000        | NG/KG          | ND            | ND          | ND      |
| PCB 1221                   | 33000000       | NG/KG          | ND            | ND          | ND      |
| PCB 1232                   | 6700000        | NG/KG          | ND            | ND          | ND      |
| PCB 1242                   | 39000000       | NG/KG          | ND            | ND          | ND      |
| PCB 1248                   | 29000000       | NG/KG          | ND            | ND          | ND      |
| PCB 1254                   | 1100000        | NG/KG          | ND            | ND          | ND      |
| PCB 1260                   | 3800000        | NG/KG          | ND            | ND          | ND      |
| PCB 1262                   | 83300          | NG/KG          | ND            | ND          | ND      |
|                            | =======        | =====          |               |             |         |
| Aldrin + Dieldrin          | 190000         | NG/KG          | 0             | 0           | 0       |
| Hexachlorocyclohexanes     | 250000         | NG/KG          | 0             | 0           | 0       |
| DDT and derivatives        | 230000         | NG/KG          | 0             | 0           | 0       |
| Chiordane + related cmpds. | 840            | NG/KG          | 0             | 0           | 0       |
| Polychlorinated biphenyls  | 39000000       | NG/KG          | 0             | 0           | 0       |
| Chlorinated Hydrocarbons   | 39000000       | NG/KG          | <b>_</b><br>0 | <br>0       | 0       |

Standards for alpha and gamma chlordene are no longer available in the U.S. for the analysis of these compounds.

# ANNUAL 2017

## Organophosphorus Pesticides EPA Method 614

| Source                            |            |               | PLR              | PLR              | PLR              | PLR              | PLR              | PLR                  |
|-----------------------------------|------------|---------------|------------------|------------------|------------------|------------------|------------------|----------------------|
| Date                              |            |               | 09-JAN-2017      | 07-FEB-2017      | 06-MAR-2017      | 12-APR-2017      | 02-MAY-2017      | 08-JUN-2017          |
| Analyte                           | MDL        | Units         | P916018          | P919163          | P926350          | P933028          | P936544          | P946712              |
|                                   | ===        | =====         |                  |                  |                  |                  |                  |                      |
| Demeton O                         | .01        | UG/L          | ND               | ND               | ND               | ND               | ND               | ND                   |
| Demeton S                         | .04        | UG/L          | ND               | ND               | ND               | ND               | ND               | ND                   |
| Diazinon                          | .02        | UG/L          | ND               | ND               | ND               | ND               | ND               | ND                   |
| Guthion                           | .03        | UG/L          | ND               | ND               | ND               | ND               | ND               | ND                   |
| Malathion                         | .02        | UG/L          | ND               | ND               | DNQ0.04          | ND               | DNQ0.08          | 0.10                 |
| Parathion                         | .01        | UG/L          | ND               | ND               | ND               | ND               | ND               | ND                   |
| Chlorpyrifos                      | .02        | UG/L          | ND               | ND               | ND               | ND               | ND               | ND                   |
| Coumaphos                         | .05        | UG/L          | ND               | ND               | ND               | ND               | ND               | ND                   |
| Dichlorvos                        | .01        | UG/L          | ND               | ND               | ND               | DNQ0.01          | ND               | ND                   |
| Disulfoton                        | .01        | UG/L          | ND               | ND               | ND               | ND               | ND               | ND                   |
| Stirophos                         | .01        | UG/L          | ND               | ND               | ND               | ND               | ND               | 0.3                  |
|                                   | ===        | =====         | =========        |                  |                  |                  |                  |                      |
| Thiophosphorus Pesticides         | .03        | UG/L          | 0.00             | 0.00             | 0.00             | 0.00             | 0.00             | 0.10                 |
| Demeton -O, -S                    | .04        | UG/L          | 0.00             | 0.00             | 0.00             | 0.00             | 0.00             | 0.00                 |
| Total Organophosphorus Pesticides | ===<br>05  | =====<br>UG/I | ========<br>0 00 | ============<br>0 40 |
| Total Organophosphorus Pesticides | ===<br>.05 | =====<br>UG/L | <br>0.00         | <br>0.00         | <br>0.00         | <br>0.00         | <br>0.00         | <br>0.40             |

| Source<br>Date                    |         |               | PLR<br>12-JUL-2017 | PLR<br>01-AUG-2017 | PLR<br>13-SEP-2017 | PLR<br>03-0CT-2017 | PLR<br>06-NOV-2017 | PLR<br>13-DEC-2017 |
|-----------------------------------|---------|---------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| Analyte                           | MDL     | Units         | P954715            | P959720            | P967832            | P973069            | P981464            | P987753            |
|                                   | ===     | =====         |                    |                    |                    |                    |                    |                    |
| Demeton O                         | .01     | UG/L          | ND                 | ND                 | ND                 | ND                 | ND                 | ND                 |
| Demeton S                         | .04     | UG/L          | ND                 | ND                 | ND                 | ND                 | ND                 | ND                 |
| Diazinon                          | .02     | UG/L          | ND                 | ND                 | ND                 | ND                 | ND                 | ND                 |
| Guthion                           | .03     | UG/L          | ND                 | ND                 | ND                 | ND                 | ND                 | ND                 |
| Malathion                         | .02     | UG/L          | ND                 | DNQ0.07            | ND                 | ND                 | ND                 | ND                 |
| Parathion                         | .01     | UG/L          | ND                 | ND                 | ND                 | ND                 | ND                 | ND                 |
| Chlorpyrifos                      | .02     | UG/L          | ND                 | NA                 | ND                 | ND                 | ND                 | DNQ0.1             |
| Coumaphos                         | .05     | UG/L          | ND                 | ND                 | ND                 | ND                 | ND                 | ND                 |
| Dichlorvos                        | .01     | UG/L          | ND                 | ND                 | ND                 | ND                 | ND                 | ND                 |
| Disulfoton                        | .01     | UG/L          | ND                 | ND                 | ND                 | ND                 | ND                 | ND                 |
| Stirophos                         | .01     | UG/L          | ND                 | ND                 | ND                 | ND                 | ND                 | ND                 |
| Thiophosphorus Pesticides         | <br>.03 | =====<br>UG/L | <br>0.00           | 0.00               | 0.00               | 0.00               | 0.00               | 0.00               |
| Demeton -0, -S                    | .04     | UG/L          | 0.00               | 0.00               | 0.00               | 0.00               | 0.00               | 0.00               |
| Total Organophosphorus Pesticides | <br>.05 | =====<br>UG/L | =========<br>0.00  | =======<br>0.00    | =======<br>0.00    | ========<br>0.00   | ========<br>0.00   | 0.00               |

# ANNUAL 2017

## Organophosphorus Pesticides EPA Method 614

| Source                            |            |               | PLE                                    | PLE                                    | PLE                                    | PLE                                    | PLE                                    | PLE                                    |
|-----------------------------------|------------|---------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
| Date                              |            |               | 09-JAN-2017                            | 07-FEB-2017                            | 06-MAR-2017                            | 12-APR-2017                            | 02-MAY-2017                            | 08-JUN-2017                            |
| Analyte                           | MDL        | Units         | P916015                                | P919157                                | P926347                                | P933025                                | P936538                                | P946709                                |
| Demeton 0                         | .01        | =====<br>UG/I | ====================================== | ====================================== | ====================================== | ====================================== | ====================================== | ====================================== |
| Demeton S                         | .04        | UG/L          | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     |
| Diazinon                          | .02        | UG/L          | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     |
| Guthion                           | .03        | UG/L          | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     |
| Malathion                         | .02        | UG/L          | ND                                     | DN00.02                                | DN00.05                                | ND                                     | DN00.10                                | DN00.06                                |
| Parathion                         | .01        | UG/L          | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     |
| Chlorpyrifos                      | .02        | UG/L          | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     |
| Coumaphos                         | .05        | UG/L          | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     |
| Dichlorvos                        | .01        | UG/L          | ND                                     | DNQ0.01                                | ND                                     | DNQ0.1                                 | ND                                     | ND                                     |
| Disulfoton                        | .01        | UG/L          | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     |
| Stirophos                         | .01        | UG/L          | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     |
|                                   | ===        |               |                                        |                                        |                                        |                                        |                                        |                                        |
| Thiophosphorus Pesticides         | .03        | UG/L          | 0.00                                   | 0.00                                   | 0.00                                   | 0.00                                   | 0.00                                   | 0.00                                   |
| Demeton -0, -S                    | .04        | UG/L          | 0.00                                   | 0.00                                   | 0.00                                   | 0.00                                   | 0.00                                   | 0.00                                   |
| Total Organophosphorus Pesticides | .05        | =====<br>UG/L | <br>0.00                               | 0.00                                   | 0.00                                   | 0.00                                   | 0.00                                   | 0.00                                   |
| Source                            |            |               | PLE                                    | PLE                                    | PLE                                    | PLE                                    | PLE                                    | PLE                                    |
| Date                              |            |               | 12-JUL-2017                            | 01-AUG-2017                            | 13-SEP-2017                            | 03-0CT-2017                            | 06-NOV-2017                            | 13-DEC-2017                            |
| Analyte                           | MDL        | Units         | P954712                                | P959714                                | P967829                                | P973063                                | P981461                                | P987750                                |
| Demeton 0                         | .01        | =====<br>UG/L | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     |
| Demeton S                         | .04        | UG/L          | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     |
| Diazinon                          | .02        | UG/L          | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     |
| Guthion                           | .03        | UG/L          | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     |
| Malathion                         | .02        | UG/L          | ND                                     | 0.17                                   | DNQ0.07                                | ND                                     | ND                                     | ND                                     |
| Parathion                         | .01        | UG/L          | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     |
| Chlorpyrifos                      | .02        | UG/L          | ND                                     | NA                                     | ND                                     | ND                                     | ND                                     | ND                                     |
| Coumaphos                         | .05        | UG/L          | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     |
| Dichlorvos                        | .01        | UG/L          | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     |
| Disulfoton                        | .01        | UG/L          | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     |
| Stirophos                         | .01        | UG/L          | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     |
| Thiophosphorus Pesticides         | .03        | =====<br>UG/L | <br>0.00                               | 0.17                                   | 0.00                                   | 0.00                                   | 0.00                                   | 0.00                                   |
| Demeton -0, -S                    | .04        | UG/L          | 0.00                                   | 0.00                                   | 0.00                                   | 0.00                                   | 0.00                                   | 0.00                                   |
| Total Organophosphorus Pesticides | ===<br>.05 | =====<br>UG/L | <br>0.00                               | 0.17                                   | 0.00                                   | .00                                    | 0.00                                   | 0.00                                   |

# ANNUAL 2017

### Organophosphorus Pesticides EPA Method 614

| Source                            |     |       | MBC_COMBCN  | MBC_COMBCN  |
|-----------------------------------|-----|-------|-------------|-------------|
| Date                              |     |       | 02-MAY-2017 | 03-0CT-2017 |
| Analyte                           | MDL | Units | P936555     | P973075     |
|                                   | === |       | ==========  |             |
| Demeton 0                         | .01 | UG/L  | ND          | ND          |
| Demeton S                         | .04 | UG/L  | ND          | ND          |
| Diazinon                          | .02 | UG/L  | ND          | ND          |
| Guthion                           | .03 | UG/L  | ND          | ND          |
| Malathion                         | .02 | UG/L  | ND          | ND          |
| Parathion                         | .01 | UG/L  | ND          | ND          |
| Chlorpyrifos                      | .02 | UG/L  | ND          | ND          |
| Coumaphos                         | .05 | UG/L  | ND          | ND          |
| Dichlorvos                        | .01 | UG/L  | ND          | ND          |
| Disulfoton                        | .01 | UG/L  | ND          | ND          |
| Stirophos                         | .01 | UG/L  | ND          | ND          |
|                                   | === | ===== |             |             |
| Thiophosphorus Pesticides         | .03 | UG/L  | 0.00        | 0.00        |
| Demeton -O, -S                    | .04 | UG/L  | 0.00        | 0.00        |
|                                   | === | ===== | =========== |             |
| Total Organophosphorus Pesticides | .05 | UG/L  | 0.00        | 0.00        |

| Source<br>Date                    |     |       | MBC_NC_DSL<br>02-MAY-2017 | MBC_NC_DSL<br>03-0CT-2017 |
|-----------------------------------|-----|-------|---------------------------|---------------------------|
| Analyte                           | MDL | Units | P936609                   | P973109                   |
|                                   | === | ===== | ===========               | ==========                |
| Demeton O                         | .01 | UG/L  | ND                        | ND                        |
| Demeton S                         | .04 | UG/L  | ND                        | ND                        |
| Diazinon                          | .02 | UG/L  | ND                        | ND                        |
| Guthion                           | .03 | UG/L  | ND                        | ND                        |
| Malathion                         | .02 | UG/L  | ND                        | ND                        |
| Parathion                         | .01 | UG/L  | ND                        | ND                        |
| Chlorpyrifos                      | .02 | UG/L  | ND                        | ND                        |
| Coumaphos                         | .05 | UG/L  | ND                        | ND                        |
| Dichlorvos                        | .01 | UG/L  | ND                        | ND                        |
| Disulfoton                        | .01 | UG/L  | ND                        | ND                        |
| Stirophos                         | .01 | UG/L  | ND                        | ND                        |
|                                   | === | ===== |                           |                           |
| Thiophosphorus Pesticides         | .03 | UG/L  | 0.00                      | 0.00                      |
| Demeton -O, -S                    | .04 | UG/L  | 0.00                      | 0.00                      |
|                                   | === | ===== |                           |                           |
| Total Organophosphorus Pesticides | .05 | UG/L  | 0.00                      | 0.00                      |

## ANNUAL 2017

### Organophosphorus Pesticides EPA Method 614

| Source                            |     |       | MBC_NC_RSL  | MBC_NC_RSL  |
|-----------------------------------|-----|-------|-------------|-------------|
| Date                              |     |       | 02-MAY-2017 | 03-0CT-2017 |
| Analyte                           | MDL | Units | P936607     | P973107     |
|                                   | === | ===== |             |             |
| Demeton 0                         | .01 | UG/L  | ND          | ND          |
| Demeton S                         | .04 | UG/L  | ND          | ND          |
| Diazinon                          | .02 | UG/L  | ND          | ND          |
| Guthion                           | .03 | UG/L  | ND          | ND          |
| Malathion                         | .02 | UG/L  | ND          | ND          |
| Parathion                         | .01 | UG/L  | ND          | ND          |
| Chlorpyrifos                      | .02 | UG/L  | ND          | ND          |
| Coumaphos                         | .05 | UG/L  | ND          | ND          |
| Dichlorvos                        | .01 | UG/L  | ND          | ND          |
| Disulfoton                        | .01 | UG/L  | ND          | ND          |
| Stirophos                         | .01 | UG/L  | ND          | ND          |
|                                   | === | ===== | =========   |             |
| Thiophosphorus Pesticides         | .03 | UG/L  | 0.00        | 0.00        |
| Demeton -0, -S                    | .04 | UG/L  | 0.00        | 0.00        |
|                                   | === | ===== |             |             |
| Total Organophosphorus Pesticides | .05 | UG/L  | 0.00        | 0.00        |

| Source                            |     |       | RAW COMP    | RAW COMP    |
|-----------------------------------|-----|-------|-------------|-------------|
| Date                              |     |       | 02-MAY-2017 | 03-0CT-2017 |
| Analyte                           | MDL | Units | P936580     | P973080     |
|                                   | === | ===== | =========   |             |
| Demeton O                         | .01 | UG/L  | ND          | ND          |
| Demeton S                         | .04 | UG/L  | ND          | ND          |
| Diazinon                          | .02 | UG/L  | ND          | ND          |
| Guthion                           | .03 | UG/L  | ND          | ND          |
| Malathion                         | .02 | UG/L  | ND          | ND          |
| Parathion                         | .01 | UG/L  | ND          | ND          |
| Chlorpyrifos                      | .02 | UG/L  | ND          | ND          |
| Coumaphos                         | .05 | UG/L  | ND          | ND          |
| Dichlorvos                        | .01 | UG/L  | ND          | ND          |
| Disulfoton                        | .01 | UG/L  | ND          | ND          |
| Stirophos                         | .01 | UG/L  | ND          | ND          |
|                                   | === | ===== |             |             |
| Thiophosphorus Pesticides         | .03 | UG/L  | 0.00        | 0.00        |
| Demeton -0, -S                    | .04 | UG/L  | 0.00        | 0.00        |
|                                   | === | ===== |             |             |
| Iotal Organophosphorus Pesticides | .05 | UG/L  | 0.00        | 0.00        |

# ANNUAL 2017

### Organophosphorus Pesticides EPA Method 614

| Source                            |     |       | DIG COMP    | DIG COMP    |
|-----------------------------------|-----|-------|-------------|-------------|
| Date                              |     |       | 02-MAY-2017 | 03-0CT-2017 |
| Analyte                           | MDL | Units | P936594     | P973094     |
|                                   | === | ===== |             |             |
| Demeton O                         | .01 | UG/L  | ND          | ND          |
| Demeton S                         | .04 | UG/L  | ND          | ND          |
| Diazinon                          | .02 | UG/L  | ND          | ND          |
| Guthion                           | .03 | UG/L  | ND          | ND          |
| Malathion                         | .02 | UG/L  | ND          | ND          |
| Parathion                         | .01 | UG/L  | ND          | ND          |
| Chlorpyrifos                      | .02 | UG/L  | ND          | ND          |
| Coumaphos                         | .05 | UG/L  | ND          | ND          |
| Dichlorvos                        | .01 | UG/L  | ND          | ND          |
| Disulfoton                        | .01 | UG/L  | ND          | ND          |
| Stirophos                         | .01 | UG/L  | ND          | ND          |
|                                   | === | ===== | ==========  |             |
| Thiophosphorus Pesticides         | .03 | UG/L  | 0.00        | 0.00        |
| Demeton -O, -S                    | .04 | UG/L  | 0.00        | 0.00        |
|                                   | === | ===== |             |             |
| Total Organophosphorus Pesticides | .05 | UG/L  | 0.00        | 0.00        |

## ANNUAL 2017

# Organophosphorus Pesticides EPA Method 8141A

| Source                            |      |       | MBCDEWCN    | MBCDEWCN    |
|-----------------------------------|------|-------|-------------|-------------|
| Date                              |      |       | 31-MAY-2017 | 31-0CT-2017 |
| Analyte                           | MDL  | Units | P945968     | P979340     |
|                                   | ==== | ===== | ==========  | ==========  |
| Demeton O                         | 2.41 | UG/KG | ND          | ND          |
| Demeton S                         | 11.7 | UG/KG | ND          | ND          |
| Diazinon                          | 1.57 | UG/KG | ND          | ND          |
| Guthion                           | 13.2 | UG/KG | ND          | ND          |
| Malathion                         | 1.78 | UG/KG | ND          | ND          |
| Parathion                         | 2.04 | UG/KG | ND          | ND          |
| Chlorpyrifos                      | 1.94 | UG/KG | 42.3        | ND          |
| Coumaphos                         | 5.54 | UG/KG | ND          | ND          |
| Dichlorvos                        | 1.12 | UG/KG | ND          | ND          |
| Disulfoton                        | 4.1  | UG/KG | ND          | ND          |
| Stirophos                         | 3.55 | UG/KG | ND          | ND          |
|                                   | ==== | ===== |             |             |
| Thiophosphorus Pesticides         | 13.2 | UG/KG | 0.0         | 0.0         |
| Demeton -O, -S                    | 11.7 | UG/KG | 0.0         | 0.0         |
|                                   | ==== | ===== |             | ======      |
| Total Organophosphorus Pesticides | 13.2 | UG/KG | 42.3        | 0.0         |

## ANNUAL 2017

# Tributyl Tin

| Source       | PLE         | PLE         | PLE         | PLE         | PLR         | PLR         | PLR         |
|--------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Date         | 07-FEB-2017 | 02-MAY-2017 | 01-AUG-2017 | 03-0CT-2017 | 07-FEB-2017 | 02-MAY-2017 | 01-AUG-2017 |
| Analye       | P919157     | P936538     | P959714     | P973063     | P919163     | P936544     | P959720     |
|              |             |             |             |             |             |             |             |
| Monobutyltin | ND          |
| Dibutyltin   | ND          |
| Tributyltin  | ND          |

| Source       | PLR         | MBC_COMBCN  | MBC_COMBCN  | MBC_COMBCN  | MBC_COMBCN  | MBCDEWCN    | MBCDEWCN    |
|--------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Date         | 03-0CT-2017 | 07-FEB-2017 | 02-MAY-2017 | 01-AUG-2017 | 03-0CT-2017 | 31-MAY-2017 | 31-0CT-2017 |
| Analyte      | P973069     | P919174     | P936555     | P959726     | P973075     | P945968     | P979340     |
|              |             |             |             |             |             |             |             |
| Monobutyltin | ND          |
| Dibutyltin   | ND          |
| Tributyltin  | ND          |

### ANNUAL 2017

### HERBICIDES EPA Method 8151A

| Source                         |     |       | MBCDEWCN    | MBCDEWCN    |
|--------------------------------|-----|-------|-------------|-------------|
| Date                           |     |       | 28-FEB-2017 | 31-AUG-2017 |
| Sample                         | MDL | Units | P925827     | P966456     |
|                                | === | ===== | ==========  | =======     |
| 2,4-Dichlorophenoxyacetic acid | 11  | MG/KG | ND          | NA*         |
| 2,4,5-TP (Silvex)              | 11  | MG/KG | ND          | 12          |

\* = Not analyzed by Weck laboratories.

### ACID EXTRACTABLE COMPOUNDS EPA Method 625

| Source                             |              |               | PLR         | PLR         | PLR         | PLR         | PLE         | PLE         |
|------------------------------------|--------------|---------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Date                               |              |               | 07-FEB-2017 | 02-MAY-2017 | 01-AUG-2017 | 03-0CT-2017 | 07-FEB-2017 | 02-MAY-2017 |
| Analyte                            | MDL          | Units         | P919163     | P936544     | P959720     | P973069     | P919157     | P936538     |
|                                    | ====         | =====         | =========   |             |             |             |             |             |
| 2-Chlorophenol                     | 1.32         | UG/L          | ND          | ND          | ND          | ND          | ND          | ND          |
| 4-Chloro-3-methylphenol            | 1.67         | UG/L          | ND          | ND          | ND          | ND          | ND          | ND          |
| 2,4-Dichlorophenol                 | 1.01         | UG/L          | ND          | ND          | ND          | ND          | ND          | ND          |
| 2,4-Dimethylphenol                 | 2.01         | UG/L          | ND          | ND          | ND          | ND          | ND          | ND          |
| 2,4-Dinitrophenol                  | 2.16         | UG/L          | ND          | ND          | ND          | ND          | ND          | ND          |
| 2-Methyl-4,6-dinitrophenol         | 1.52         | UG/L          | ND          | ND          | ND          | ND          | ND          | ND          |
| 2-Nitrophenol                      | 1.55         | UG/L          | ND          | ND          | ND          | ND          | ND          | ND          |
| 4-Nitrophenol                      | 1.14         | UG/L          | ND          | ND          | ND          | ND          | ND          | ND          |
| Pentachlorophenol                  | 1.12         | UG/L          | ND          | ND          | ND          | ND          | ND          | ND          |
| Phenol                             | 1.76         | UG/L          | 34.2        | 34.3        | 48.3        | 32.6        | 27.2        | 28.9        |
| 2,4,6-Trichlorophenol              | 1.65         | UG/L          | ND          | ND          | ND          | ND          | ND          | ND          |
| Total Chlorinated Phenols          | ====<br>1.67 | =====<br>UG/L | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        |
| Total Non-Chlorinated Phenols      | ====<br>2.16 | =====<br>UG/L | 34.2        | 34.3        | 48.3        | 32.6        | 27.2        | 28.9        |
| Phenols                            | 2.16         | UG/L          | 34.2        | 34.3        | 48.3        | 32.6        | 27.2        | 28.9        |
| Additional Analytes Determined:    |              |               |             |             |             |             |             |             |
| 2-Methylphenol                     | 2.15         | ===<br>UG/L   | =<br>ND     | = ND        | ND          | ND          | ND          | ND          |
| 4-Methylphenol(3-MP is unresolved) | 2.11         | UG/L          | 72.6        | 71.0        | 71.6        | 52.7        | 52.8        | 55.3        |
| 2,4,5-Trichlorophenol              | 1.66         | UG/L          | ND          | ND          | ND          | ND          | ND          | ND          |

| Source                             |      |               | PLE         | PLE         | MBC_COMBCN  | MBC_COMBCN  | MBC_COMBCN        | MBC_COMBCN  |
|------------------------------------|------|---------------|-------------|-------------|-------------|-------------|-------------------|-------------|
| Date                               |      |               | 01-AUG-2017 | 03-0CT-2017 | 07-FEB-2017 | 02-MAY-2017 | 01-AUG-2017       | 03-0CT-2017 |
| Analyte                            | MDL  | Units         | P959714     | P973063     | P919174     | P936555     | P959726           | P973075     |
|                                    | ==== | =====         |             |             |             |             |                   |             |
| 2-Chlorophenol                     | 1.32 | UG/L          | ND          | ND          | ND          | ND          | ND                | ND          |
| <pre>4-Chloro-3-methylphenol</pre> | 1.67 | UG/L          | ND          | ND          | ND          | ND          | ND                | ND          |
| 2,4-Dichlorophenol                 | 1.01 | UG/L          | ND          | ND          | ND          | ND          | ND                | ND          |
| 2,4-Dimethylphenol                 | 2.01 | UG/L          | ND          | ND          | 25.2        | 18.3        | ND                | 3.5         |
| 2,4-Dinitrophenol                  | 2.16 | UG/L          | ND          | ND          | ND          | ND          | ND                | ND          |
| 2-Methyl-4,6-dinitrophenol         | 1.52 | UG/L          | ND          | ND          | ND          | ND          | ND                | ND          |
| 2-Nitrophenol                      | 1.55 | UG/L          | ND          | ND          | ND          | ND          | ND                | ND          |
| 4-Nitrophenol                      | 1.14 | UG/L          | ND          | ND          | ND          | ND          | ND                | ND          |
| Pentachlorophenol                  | 1.12 | UG/L          | ND          | ND          | ND          | ND          | ND                | ND          |
| Phenol                             | 1.76 | UG/L          | 26.5        | 28.0        | ND          | ND          | ND                | ND          |
| 2,4,6-Trichlorophenol              | 1.65 | UG/L          | ND          | ND          | ND          | ND          | ND                | ND          |
|                                    | ==== | =====         | =========   |             |             |             |                   |             |
| Total Chlorinated Phenols          | 1.67 | UG/L          | 0.00        | 0.00        | 0.00        | 0.00        | 0.00              | 0.00        |
| Total Non-Chlorinated Phenols      | 2 16 | =====<br>UG/I | 26 5        | 28 0        | 25 2        | 18 3        | =========<br>0 00 | 3 50        |
|                                    | ==== | =====         |             |             |             |             |                   |             |
| Phenols                            | 2.16 | UG/L          | 26.5        | 28.0        | 25.2        | 18.3        | 0.00              | 3.50        |
| Additional Analytes Determined:    |      |               |             |             |             |             |                   |             |
| 2 Mathemal                         |      | =====         |             |             |             |             |                   |             |
| 2-Metnylphenol                     | 2.15 | UG/L          | ND          | ND          | ND          | ND          | ND                | ND          |
| 4-Methylphenol(3-MP is unresolved) | 2.11 | UG/L          | 36.4        | 40.9        | ND          | ND          | 2.29              | 2.50        |
| 2,4,5-Irichlorophenol              | 1.66 | UG/L          | ND          | ND          | ND          | ND          | ND                | ND          |

### ANNUAL 2017

### ACID EXTRACTABLE COMPOUNDS EPA Method 625

| Source                             |              |               | PLE         | PLE         | MBC_COMBCN  | MBC_COMBCN  | MBC_COMBCN  | MBC_COMBCN  |
|------------------------------------|--------------|---------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Date                               |              |               | 01-AUG-2017 | 03-0CT-2017 | 07-FEB-2017 | 02-MAY-2017 | 01-AUG-2017 | 03-0CT-2017 |
| Analyte                            | MDL          | Units         | P959714     | P973063     | P919174     | P936555     | P959726     | P973075     |
|                                    | ====         | =====         | =========   |             |             |             |             |             |
| 2-Chlorophenol                     | 1.32         | UG/L          | ND          | ND          | ND          | ND          | ND          | ND          |
| 4-Chloro-3-methylphenol            | 1.67         | UG/L          | ND          | ND          | ND          | ND          | ND          | ND          |
| 2,4-Dichlorophenol                 | 1.01         | UG/L          | ND          | ND          | ND          | ND          | ND          | ND          |
| 2,4-Dimethylphenol                 | 2.01         | UG/L          | ND          | ND          | 25.2        | 18.3        | ND          | 3.5         |
| 2,4-Dinitrophenol                  | 2.16         | UG/L          | ND          | ND          | ND          | ND          | ND          | ND          |
| 2-Methyl-4,6-dinitrophenol         | 1.52         | UG/L          | ND          | ND          | ND          | ND          | ND          | ND          |
| 2-Nitrophenol                      | 1.55         | UG/L          | ND          | ND          | ND          | ND          | ND          | ND          |
| 4-Nitrophenol                      | 1.14         | UG/L          | ND          | ND          | ND          | ND          | ND          | ND          |
| Pentachlorophenol                  | 1.12         | UG/L          | ND          | ND          | ND          | ND          | ND          | ND          |
| Phenol                             | 1.76         | UG/L          | 26.5        | 28.0        | ND          | ND          | ND          | ND          |
| 2,4,6-Trichlorophenol              | 1.65         | UG/L          | ND          | ND          | ND          | ND          | ND          | ND          |
| Total Chlorinated Phenols          | ====<br>1.67 | =====<br>UG/L | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        |
| Total Non-Chlorinated Phenols      | ====<br>2.16 | =====<br>UG/L | 26.5        | 28.0        | 25.2        | 18.3        | 0.00        | 3.50        |
| Phenols                            | ====<br>2.16 | =====<br>UG/L | 26.5        | 28.0        | 25.2        | 18.3        | 0.00        | 3.50        |
| Additional Analytes Determined:    |              |               |             |             |             |             |             |             |
| 2-Methylphenol                     | 2.15         | UG/L          | ==<br>ND    | ND          | ND          | ND          | ND          | ND          |
| 4-Methylphenol(3-MP is unresolved) | 2.11         | UG/L          | 36.4        | 40.9        | ND          | ND          | 2.29        | 2.50        |
| 2,4,5-Trichlorophenol              | 1.66         | UG/L          | ND          | ND          | ND          | ND          | ND          | ND          |
|                                    |              |               |             |             |             |             |             |             |

| Source                                                          |              |               | RAW COMP    | RAW COMP    | RAW COMP    | DIG COMP                               | DIG COMP                               | DIG COMP    |
|-----------------------------------------------------------------|--------------|---------------|-------------|-------------|-------------|----------------------------------------|----------------------------------------|-------------|
| Date                                                            |              |               | 08-FEB-2017 | 02-MAY-2017 | 01-AUG-2017 | 08-FEB-2017                            | 02-MAY-2017                            | 01-AUG-2017 |
| Analyte                                                         | MDL          | Units         | P919199     | P936580     | P959731     | P919213                                | P936594                                | P959745     |
|                                                                 | ====         | =====         |             |             |             |                                        |                                        |             |
| 2-Chlorophenol                                                  | 1.32         | UG/L          | ND          | ND          | ND          | ND                                     | ND                                     | DNQ8.9      |
| <pre>4-Chloro-3-methylphenol</pre>                              | 1.67         | UG/L          | ND          | ND          | ND          | ND                                     | ND                                     | ND          |
| 2,4-Dichlorophenol                                              | 1.01         | UG/L          | ND          | ND          | ND          | ND                                     | ND                                     | ND          |
| 2,4-Dimethylphenol                                              | 2.01         | UG/L          | ND          | ND          | ND          | 38.3                                   | 46.7                                   | DNQ7.3      |
| 2,4-Dinitrophenol                                               | 2.16         | UG/L          | ND          | ND          | ND          | ND                                     | ND                                     | ND          |
| 2-Methyl-4,6-dinitrophenol                                      | 1.52         | UG/L          | ND          | ND          | ND          | ND                                     | ND                                     | ND          |
| 2-Nitrophenol                                                   | 1.55         | UG/L          | ND          | ND          | ND          | ND                                     | ND                                     | ND          |
| 4-Nitrophenol                                                   | 1.14         | UG/L          | ND          | ND          | ND          | ND                                     | ND                                     | ND          |
| Pentachlorophenol                                               | 1.12         | UG/L          | ND          | ND          | ND          | ND                                     | ND                                     | ND          |
| Phenol                                                          | 1.76         | UG/L          | 99.5        | 86.7        | 59.7        | ND                                     | ND                                     | ND          |
| 2,4,6-Trichlorophenol                                           | 1.65         | UG/L          | ND          | ND          | ND          | ND                                     | ND                                     | ND          |
|                                                                 | ====         | =====         |             |             |             |                                        |                                        |             |
| Total Chlorinated Phenols                                       | 1.67         | UG/L          | 0.00        | 0.00        | 0.00        | 0.00                                   | 0.00                                   | 8.90        |
|                                                                 | ====         | =====         | =========   |             |             | =======                                | ==========                             | ==========  |
| Total Non-Chlorinated Phenols                                   | 2.16         | UG/L          | 99.5        | 86.7        | 59.7        | 38.3                                   | 46.7                                   | 7.30        |
| Phenols                                                         | ====<br>2.16 | =====<br>UG/L | 99.5        | 86.7        | 59.7        | 38.3                                   | 46.7                                   | 16.2        |
| Additional Analytes Determined:                                 |              |               |             |             |             |                                        |                                        |             |
| 2-Mathylphanal                                                  | 2 15         | =====         |             |             |             | ====================================== | ====================================== |             |
| A-Methylphenol(3-MP is uppereduced)                             | 2.15         |               |             | 264         | 100         |                                        |                                        |             |
| $-\pi$ -methyphenot(5-m is unresolved)<br>2.4.5-Thichlononhonol | 1 66         |               |             | 504<br>ND   | 100         |                                        |                                        |             |
| 2,4, 5-11 ICHIOLOPHENDI                                         | <b>T</b> .00 | 00/L          | ND ND       | ND          | ND          | ND                                     | ND                                     | ND          |

ND= not detected, NA= not analyzed, NS= not sampled

DNQ= Detected but not quantified. Sample result is less than minimum Level but greater than or equal to MDL.

### ACID EXTRACTABLE COMPOUNDS EPA Method 625

| Source                             |      |               | DIG COMP                               | MBC_NC_DSL                             | MBC_NC_DSL                             | MBC_NC_DSL                             | MBC_NC_DSL                             | MBC_NC_RSL                             |
|------------------------------------|------|---------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
| Date                               |      |               | 03-0CT-2017                            | 07-FEB-2017                            | 02-MAY-2017                            | 01-AUG-2017                            | 03-0CT-2017                            | 07-FEB-2017                            |
| Analyte                            | MDL  | Units         | P973094                                | P919228                                | P936609                                | P959760                                | P973109                                | P919226                                |
|                                    | ==== | =====         | =========                              |                                        | ==========                             | ==========                             | ==========                             | =======                                |
| 2-Chlorophenol                     | 1.32 | UG/L          | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     |
| 4-Chloro-3-methylphenol            | 1.67 | UG/L          | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     |
| 2,4-Dichlorophenol                 | 1.01 | UG/L          | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     |
| 2,4-Dimethylphenol                 | 2.01 | UG/L          | DNQ9.7                                 | 24.1                                   | 26.1                                   | ND                                     | 19.9                                   | ND                                     |
| 2,4-Dinitrophenol                  | 2.16 | UG/L          | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     |
| 2-Methyl-4,6-dinitrophenol         | 1.52 | UG/L          | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     |
| 2-Nitrophenol                      | 1.55 | UG/L          | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     |
| 4-Nitrophenol                      | 1.14 | UG/L          | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     |
| Pentachlorophenol                  | 1.12 | UG/L          | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     |
| Phenol                             | 1.76 | UG/L          | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     |
| 2,4,6-Trichlorophenol              | 1.65 | UG/L          | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     |
|                                    | ==== | =====         | ========                               |                                        |                                        |                                        | ==========                             | =======                                |
| Total Chlorinated Phenols          | 1.67 | UG/L          | 0.00                                   | 0.00                                   | 0.00                                   | 0.00                                   | 0.00                                   | 0.00                                   |
|                                    | ==== | =====         | =========                              |                                        |                                        |                                        |                                        |                                        |
| Total Non-Chlorinated Phenols      | 2.16 | UG/L          | 9.70                                   | 24.1                                   | 26.1                                   | 0.00                                   | 19.9                                   | 0.00                                   |
|                                    | ==== | =====         |                                        |                                        |                                        |                                        |                                        |                                        |
| Phenols                            | 2.16 | UG/L          | 9.70                                   | 24.1                                   | 26.1                                   | 0.00                                   | 19.9                                   | 0.00                                   |
| Additional Analytes Determined:    |      |               |                                        |                                        |                                        |                                        |                                        |                                        |
| 2-Methylphenol                     | 2.15 | =====<br>UG/I | ====================================== | ====================================== | ====================================== | ====================================== | ====================================== | ====================================== |
| 4-Methylphenol(3-MP is unresolved) | 2.11 |               | DN04 97                                |                                        | DNO6 96                                |                                        | 20.2                                   | 57 4                                   |
| 2,4,5-Trichlorophenol              | 1.66 | UG/L          | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     | ND                                     |

| Source                        |      |       | MBC_NC_RSL  | MBC_NC_RSL  | MBC_NC_RSL  |
|-------------------------------|------|-------|-------------|-------------|-------------|
| Date                          |      |       | 02-MAY-2017 | 01-AUG-2017 | 03-0CT-2017 |
| Analyte                       | MDL  | Units | P936607     | P959758     | P973107     |
|                               | ==== | ===== |             |             |             |
| 2-Chlorophenol                | 1.32 | UG/L  | ND          | ND          | ND          |
| 4-Chloro-3-methylphenol       | 1.67 | UG/L  | ND          | ND          | ND          |
| 2,4-Dichlorophenol            | 1.01 | UG/L  | ND          | ND          | ND          |
| 2,4-Dimethylphenol            | 2.01 | UG/L  | ND          | ND          | ND          |
| 2,4-Dinitrophenol             | 2.16 | UG/L  | ND          | ND          | ND          |
| 2-Methyl-4,6-dinitrophenol    | 1.52 | UG/L  | ND          | ND          | ND          |
| 2-Nitrophenol                 | 1.55 | UG/L  | ND          | ND          | ND          |
| 4-Nitrophenol                 | 1.14 | UG/L  | ND          | ND          | ND          |
| Pentachlorophenol             | 1.12 | UG/L  | DNQ2.8      | ND          | ND          |
| Phenol                        | 1.76 | UG/L  | ND          | ND          | ND          |
| 2,4,6-Trichlorophenol         | 1.65 | UG/L  | ND          | ND          | ND          |
|                               | ==== | ===== | ==========  |             |             |
| Total Chlorinated Phenols     | 1.67 | UG/L  | 2.80        | 0.00        | 0.00        |
|                               | ==== | ===== | =========== | ==========  | ==========  |
| Total Non-Chlorinated Phenols | 2.16 | UG/L  | 0.00        | 0.00        | 0.00        |
|                               | ==== | ===== | ==========  |             |             |
| Phenols                       | 2.16 | UG/L  | 2.80        | 0.00        | 0.00        |

## Additional Analytes Determined:

|                                    | ==== | ===== |          |       |       |
|------------------------------------|------|-------|----------|-------|-------|
| 2-Methylphenol                     | 2.15 | UG/L  | <2.2     | ND    | ND    |
| 4-Methylphenol(3-MP is unresolved) | 2.11 | UG/L  | DNQ31.70 | 66.30 | 88.30 |
| 2,4,5-Trichlorophenol              | 1.66 | UG/L  | ND       | ND    | ND    |

ND= not detected, NA= not analyzed, NS= not sampled

DNQ= Detected but not quantified. Sample result is less than minimum Level but greater than or equal to MDL.

# ACID EXTRACTABLE COMPOUNDS EPA Method 625

| Source                             |             |       | MBCDEWCN    | MBCDEWCN    | MBCDEWCN    | MBCDEWCN     |
|------------------------------------|-------------|-------|-------------|-------------|-------------|--------------|
| Date                               |             |       | 28-FEB-2017 | 31-MAY-2017 | 31-AUG-2017 | 31-0CT-2017  |
| Analyte                            | MDL         | Units | P925827     | P945968     | P966456     | P979340      |
|                                    | ====        | ===== | ==========  | ==========  |             |              |
| 2-Chlorophenol                     | 330         | UG/KG | ND          | ND          | ND          | ND           |
| 4-Chloro-3-methylphenol            | 330         | UG/KG | ND          | ND          | ND          | ND           |
| 2,4-Dichlorophenol                 | 330         | UG/KG | ND          | ND          | ND          | ND           |
| 2,4-Dimethylphenol                 | 330         | UG/KG | ND          | ND          | ND          | ND           |
| 2,4-Dinitrophenol                  | 330         | UG/KG | ND          | ND          | ND          | ND           |
| 2-Methyl-4,6-dinitrophenol         | 800         | UG/KG | ND          | ND          | ND          | ND           |
| 2-Nitrophenol                      | 330         | UG/KG | ND          | ND          | ND          | ND           |
| 4-Nitrophenol                      | 800         | UG/KG | ND          | ND          | ND          | ND           |
| Pentachlorophenol                  | 3300        | UG/KG | ND          | ND          | ND          | ND           |
| Phenol                             | 330         | UG/KG | 4090        | 4630        | 4510        | 3270         |
| 2,4,6-Trichlorophenol              | 330         | UG/KG | ND          | ND          | ND          | ND           |
| Total Chlorinated Phenols          | 3300        | UG/KG | 0.0         | 0.0         | 0.0         | 0.0          |
|                                    | ====        | ===== | =========   |             |             |              |
| lotal Non-Chlorinated Phenols      | 800         | UG/KG | 4090        | 4630        | 4510        | 3270         |
|                                    | ====        | ===== |             |             |             |              |
| Phenols                            | 3300        | UG/KG | 4090        | 4630        | 4510        | 3270         |
| Additional Analytes Determined:    |             |       |             |             |             |              |
| 2-Methvlphenol                     | ====<br>330 | UG/KG | =<br>ND     | 1690        | =<br>ND     | ======<br>ND |
| 4-Methylphenol(3-MP is unresolved) | 330         | UG/KG | 880         | 1830        | 2400        | 970          |
| 2,4,5-Trichlorophenol              | 800         | UG/KG | ND          | ND          | ND          | ND           |

### PURGEABLE COMPOUNDS EPA Method 8260B

| Source                       |       |         | PLR         | PLR         | PLR         | PLR         | PLE         | PLE         |
|------------------------------|-------|---------|-------------|-------------|-------------|-------------|-------------|-------------|
| Date                         |       |         | 07-FEB-2017 | 02-MAY-2017 | 01-AUG-2017 | 03-0CT-2017 | 07-FEB-2017 | 02-MAY-2017 |
| Analyte                      | MDL   | Units   | P919166     | P936547     | P959723     | P973072     | P919160     | P936541     |
|                              | ====  | =====   | =========   | ==========  |             |             |             |             |
| Acrolein                     | .94   | UG/L    | ND          | ND          | ND          | ND          | ND          | ND          |
| Acrylonitrile                | .48   | UG/L    | ND          | ND          | ND          | ND          | ND          | ND          |
| Benzene                      | .37   | UG/L    | ND          | ND          | ND          | ND          | ND          | ND          |
| Bromodichloromethane         | .37   | UG/L    | ND          | ND          | ND          | ND          | DNQ0.900    | ND          |
| Bromoform                    | .36   | UG/L    | ND          | ND          | ND          | ND          | ND          | ND          |
| Bromomethane                 | .22   | UG/L    | DNQ0.3      | * ND        | DNQ0.4*     | dNQ0.4      | k DNQ0.3*   | s ND        |
| Carbon tetrachloride         | .4    | UG/L    | ND          | ND          | ND          | ND          | ND          | ND          |
| Chlorobenzene                | .4    | UG/L    | ND          | ND          | ND          | ND          | ND          | ND          |
| Chloroethane                 | .24   | UG/I    | ND          | ND          | ND          | ND          | ND          | ND          |
| Chloroform                   | .3    | UG/I    | 2.88        | 3.68        | 2.83        | 11.9        | 3.19        | 4.53        |
| Chloromethane                | .19   |         |             | ND          |             | ND          | DN00.910    | DN01.84     |
| Dibromochloromethane         | 3/    |         |             |             |             |             | DN00 645    |             |
| 1 2-Dichlorobenzene          | 36    |         |             |             |             |             |             |             |
| 1 2 Dichlonohonzono          | .30   |         |             |             |             |             |             |             |
| 1 4 Dichlonohonzono          | .47   |         | ND          | ND          |             |             |             | ND          |
| 1,4-Dichlensethens           | .40   |         | ND          | ND          |             |             |             | ND          |
| 1,1-Dichlensethane           | .28   |         | ND          | ND          | ND          | ND          | ND          | ND          |
| 1,2-Dichloroethane           | .32   | UG/L    | ND          | ND          | ND          | ND          | ND          | ND          |
| 1,1-Dichloroethene           | .3/   | UG/L    | ND          | ND          | ND          | ND          | ND          | ND          |
| trans-1,2-dichloroethene     | .34   | UG/L    | ND          | ND          | ND          | ND          | ND          | ND          |
| 1,2-Dichloropropane          | .43   | UG/L    | ND          | ND          | ND          | ND          | ND          | ND          |
| cis-1,3-dichloropropene      | .38   | UG/L    | ND          | ND          | ND          | ND          | ND          | ND          |
| trans-1,3-dichloropropene    | .35   | UG/L    | ND          | ND          | ND          | ND          | ND          | ND          |
| Ethylbenzene                 | .41   | UG/L    | ND          | ND          | ND          | ND          | ND          | ND          |
| Methylene chloride           | .37   | UG/L    | DNQ1.5'     | * DNQ1.16   | DNQ1.09     | DNQ1.1*     | * DNQ0.7*   | DNQ0.820    |
| 1,1,2,2-Tetrachloroethane    | .33   | UG/L    | ND          | ND          | ND          | ND          | ND          | ND          |
| Tetrachloroethene            | .4    | UG/L    | ND          | ND          | ND          | ND          | ND          | ND          |
| Toluene                      | .37   | UG/L    | DNQ0.540    | DNQ0.980    | DNQ0.570    | 2.820       | 2.42        | DNQ0.800    |
| 1,1,1-Trichloroethane        | .4    | UG/L    | ND          | ND          | ND          | ND          | ND          | ND          |
| 1,1,2-Trichloroethane        | .32   | UG/L    | ND          | ND          | ND          | ND          | ND          | ND          |
| Trichloroethene              | .43   | UG/L    | ND          | ND          | ND          | ND          | ND          | ND          |
| Trichlorofluoromethane       | .26   | UG/L    | ND          | ND          | ND          | ND          | ND          | ND          |
| Vinvl chloride               | .24   | UG/L    | ND          | ND          | ND          | ND          | ND          | ND          |
|                              | ====  | =====   |             |             |             |             |             |             |
| Halomethane Purgeable Cmpnds | .36   | UG/L    | 0.000       | 0.000       | 0.000       | 0.000       | 0.000       | 0.000       |
| Total Dichlorobenzenes       | .47   | UG/L    | 0.000       | 0.000       | 0.000       | 0.000       | 0.000       | 0.000       |
| Purgeable Compounds          | .94   | UG/L    | 3.42        | 3.68        | 2.83        | 14.7        | 5.61        | 4.53        |
| Additional volatile organic  | compo | unds de | etermined:  |             |             |             |             |             |
|                              | ====  | =====   |             |             |             |             |             |             |
| Acetone                      | 6.74  | UG/L    | 1020        | 526         | 283         | 849         | 1460        | 974         |
| Allvl chloride               | .44   | UG/L    | ND          | ND          | ND          | ND          | ND          | ND          |
| Benzvl chloride              | .65   | UG/L    | ND          | ND          | ND          | ND          | ND          | ND          |
| 2-Butanone                   | 5.56  | UG/I    | ND          | 25.8        | DN05.95     | DN08.32     | ND          | 15.6        |
| Carbon disulfide             | 37    |         | 1.09        | 2.25        | 2.24        | 2.06        | 1.14        | 2.34        |
| Chloronrene                  | 09    |         |             |             |             |             |             |             |
| 1 2-Dibromoethane            | .05   |         |             | ND          |             |             |             | ND          |
| I,2-DIDI Olloctiane          | .41   |         |             |             |             |             |             |             |
| Mothyl Todido                | .41   |         |             | ND          |             |             |             | ND          |
| Methyl methocnylate          | . 52  |         | ND          |             |             | ND          |             | ND ND       |
| 2 Nithonnonono               | . 52  |         | ND          | ND          | ND          | ND          | ND          | ND          |
| 2-Nitropropane               | .49   |         | ND          | ND          | ND          | ND          | ND          | ND          |
| ortno-xyiene                 | .34   | UG/L    | ND          | ND          | ND          | DN00.010    | ND          | ND          |
| Styrene                      | .38   | UG/L    | DNQ0.670    | DNQ0.390    | ND          | ND          | DNQ0.510    | DNQ0.420    |
| 1,2,4-Irichlorobenzene       | .51   | UG/L    | ND          | ND          | ND          | ND          | ND          | ND          |
| meta,para xylenes            | .85   | UG/L    | ND          | ND          | ND          | DNQ1.22     | ND          | ND          |
| 2-Chloroethylvinyl ether     | .25   | UG/L    | ND          | ND          | ND          | ND          | ND          | ND          |
| 4-Methyl-2-pentanone         | .39   | UG/L    | ND          | DNQ1.68     | ND          | ND          | ND          | ND          |

\* = Method blank value above the MDL; sample result not included in average calculations.

ND= not detected, NA= not analyzed, NS= not sampled DNQ= Detected but not quantified. Sample result is less than minimum Level but greater than or equal to MDL.

## PURGEABLE COMPOUNDS EPA Method 8260B

| Source                                 |       |         | PLE         | PLE                                    | MBC_COMBCN                             | MBC_COMBCN                             | MBC_COMBCN                      | MBC_COMBCN                             |
|----------------------------------------|-------|---------|-------------|----------------------------------------|----------------------------------------|----------------------------------------|---------------------------------|----------------------------------------|
| Date                                   |       |         | 01-AUG-2017 | 03-0CT-2017                            | 07-FEB-2017                            | 02-MAY-2017                            | 01-AUG-2017                     | 03-0CT-2017                            |
| Analyte                                | MDL   | Units   | P959717     | P973066                                | P919177                                | P936558                                | P959729                         | P973078                                |
| Acnoloin                               | ====  | =====   | =======     | ====================================== | ====================================== | ====================================== | =============================== | ====================================== |
| Acrylonitrilo                          | . 94  |         |             |                                        |                                        |                                        |                                 |                                        |
| Bonzono                                | .40   |         |             |                                        |                                        |                                        |                                 |                                        |
| Bromodichlanomothana                   | .57   |         |             |                                        | ND                                     | ND                                     |                                 |                                        |
| Bromodichioromethane                   | .37   |         | DINQ0.550   | ND                                     | ND                                     | ND                                     | ND                              | DINÓ0.210                              |
| Bromotorm                              | .36   | UG/L    | ND          |                                        | ND                                     | ND                                     | ND                              |                                        |
| Bromomethane                           | .22   | UG/L    | DNQ0.4      | DNQ0.5 <sup>2</sup>                    | ND ND                                  | ND                                     | DNQ0.4                          | DNQ0.351                               |
| Carbon tetrachloride                   | .4    | UG/L    | ND          | ND                                     | ND                                     | ND                                     | ND                              | ND                                     |
| Chlorobenzene                          | .4    | UG/L    | ND          | ND                                     | ND                                     | ND                                     | ND                              | ND                                     |
| Chloroethane                           | .24   | UG/L    | DNQ0.665    | ND                                     | ND                                     | ND                                     | ND                              | ND                                     |
| Chloroform                             | .3    | UG/L    | 4.68        | 2.30                                   | 2.37                                   | DNQ1.11                                | DNQ1.05                         | 3.75                                   |
| Chloromethane                          | .19   | UG/L    | 4.51        | 2.38                                   | ND                                     | DNQ0.330                               | DNQ0.440                        | ND                                     |
| Dibromochloromethane                   | .34   | UG/L    | <0.340      | ND                                     | ND                                     | ND                                     | ND                              | DNQ0.400                               |
| 1,2-Dichlorobenzene                    | .36   | UG/L    | ND          | ND                                     | ND                                     | ND                                     | ND                              | ND                                     |
| 1,3-Dichlorobenzene                    | .47   | UG/L    | ND          | ND                                     | ND                                     | ND                                     | ND                              | ND                                     |
| 1,4-Dichlorobenzene                    | .46   | UG/L    | ND          | ND                                     | ND                                     | ND                                     | ND                              | ND                                     |
| 1,1-Dichloroethane                     | .28   | UG/L    | ND          | ND                                     | ND                                     | ND                                     | ND                              | ND                                     |
| 1,2-Dichloroethane                     | .32   | UG/L    | ND          | ND                                     | ND                                     | ND                                     | ND                              | ND                                     |
| 1.1-Dichloroethene                     | .37   | UG/L    | ND          | ND                                     | ND                                     | ND                                     | ND                              | ND                                     |
| trans-1.2-dichloroethene               | . 34  | UG/L    | ND          | ND                                     | ND                                     | ND                                     | ND                              | ND                                     |
| 1.2-Dichloronronane                    | 43    |         | ND          | ND                                     | ND                                     | ND                                     | ND                              | ND                                     |
| cis-1 3-dichloronronene                | 38    |         | ND          | ND                                     | ND                                     | ND                                     | ND                              | ND                                     |
| trans_1_3_dichloropropene              | 35    |         | ND          |                                        |                                        | ND                                     |                                 |                                        |
| Ethylbenzene                           | . 55  |         |             |                                        |                                        |                                        |                                 |                                        |
| Mothylono chlonido                     | .41   |         |             |                                        |                                        |                                        |                                 |                                        |
| 1 1 2 2 Totpachlopoothano              | . 57  |         |             |                                        |                                        |                                        | DINGT.01                        |                                        |
| I,I,Z,Z-Tetrachioroethane              |       |         | ND          | ND                                     | ND                                     | ND                                     | ND                              |                                        |
|                                        | .4    | UG/L    | ND          | ND                                     | ND                                     |                                        | ND                              | ND<br>2 20                             |
| loluene                                | .3/   | UG/L    | DNQ0.850    | 2.23                                   | DNQ0.840                               | 2.75                                   | DNQ1.70                         | 2.38                                   |
| 1,1,1-Irichloroethane                  | .4    | UG/L    | ND          | ND                                     | ND                                     | ND                                     | ND                              | ND                                     |
| 1,1,2-Trichloroethane                  | .32   | UG/L    | ND          | ND                                     | ND                                     | ND                                     | ND                              | ND                                     |
| Trichloroethene                        | .43   | UG/L    | ND          | ND                                     | ND                                     | ND                                     | ND                              | ND                                     |
| Trichlorofluoromethane                 | .26   | UG/L    | ND          | ND                                     | ND                                     | ND                                     | ND                              | ND                                     |
| Vinyl chloride                         | .24   | UG/L    | ND          | ND                                     | ND                                     | ND                                     | ND                              | ND                                     |
| unionethere Duracehie Counde           | ====  | =====   |             |                                        |                                        |                                        |                                 |                                        |
| Halomethane Purgeable Cmphus           | .30   |         | 4.51        | 2.38                                   | 0.000                                  | 0.000                                  | 0.000                           | 0.000                                  |
| lotal Dichlorobenzenes                 | .47   | UG/L    | 0.000       | 0.000                                  | 0.000                                  | 0.000                                  | 0.000                           | 0.000                                  |
| Purgeable Compounds                    | .94   | UG/L    | 9.19        | 6.91                                   | 2.37                                   | 2.75                                   | 0.000                           | 6.13                                   |
| Additional volatile organic            | compo | unds de | etermined;  |                                        |                                        |                                        |                                 |                                        |
|                                        | ====  | =====   |             |                                        |                                        |                                        | 120                             | 142                                    |
| Allul ablamida                         | o./4  |         | 418         | 608                                    | 20.1                                   | 122                                    | 138                             | 143                                    |
| Allyl chloride                         | .44   | UG/L    | ND          | ND                                     | ND                                     | ND                                     | ND                              | ND                                     |
| Benzyl chloride                        | .65   | UG/L    | ND          | ND                                     | ND                                     | ND                                     | ND                              | ND                                     |
| 2-Butanone                             | 5.56  | UG/L    | 16.7        | DNQ9.45                                | ND                                     | ND                                     | ND                              | DNQ6.05                                |
| Carbon disulfide                       | .37   | UG/L    | 2.90        | 1.98                                   | DNQ0.700                               | ND                                     | ND                              | DNQ0.940                               |
| Chloroprene                            | .09   | UG/L    | ND          | ND                                     | ND                                     | ND                                     | ND                              | ND                                     |
| 1,2-Dibromoethane                      | .41   | UG/L    | ND          | ND                                     | ND                                     | ND                                     | ND                              | ND                                     |
| Isopropylbenzene                       | .41   | UG/L    | ND          | ND                                     | ND                                     | ND                                     | ND                              | ND                                     |
| Methyl Iodide                          | .32   | UG/L    | ND          | ND                                     | ND                                     | ND                                     | ND                              | ND                                     |
| Methyl methacrylate                    | .32   | UG/L    | ND          | ND                                     | ND                                     | ND                                     | ND                              | ND                                     |
| 2-Nitropropane                         | .49   | UG/L    | ND          | ND                                     | ND                                     | ND                                     | ND                              | ND                                     |
| ortho-xylene                           | .34   | UG/L    | ND          | DN00.485                               | ND                                     | ND                                     | ND                              | ND                                     |
| Styrene                                | .38   | UG/L    | ND          | ND                                     | ND                                     | ND                                     | ND                              | ND                                     |
| 1.2.4-Trichlorobenzene                 | .51   | UG/L    | ND          | ND                                     | ND                                     | ND                                     | ND                              | ND                                     |
| meta.para xvlenes                      | .85   | UG/1    | ND          | DN00.885                               | ND                                     | ND                                     | ND                              | ND                                     |
| 2-Chloroethylvinvl ether               | .25   |         |             | ND                                     |                                        |                                        |                                 | ND                                     |
| 4-Methyl-2-pentanone                   | 39    |         |             |                                        | 1 20                                   |                                        | DN09.769                        |                                        |
| · ···································· |       | 00/L    | 10          |                                        | 1.20                                   |                                        | 220.700                         | ND                                     |

\* = Method blank value above the MDL; sample result not included in average calculations.

ND= not detected, NA= not analyzed, NS= not sampled DNQ= Detected but not quantified. Sample result is less than minimum Level but greater than or equal to MDL.

### PURGEABLE COMPOUNDS EPA Method 8260B

| Source                       |             |         | DIG COMP         | DIG COMP         | DIG COMP         | DIG COMP         | RAW COMP            | RAW COMP         |
|------------------------------|-------------|---------|------------------|------------------|------------------|------------------|---------------------|------------------|
| Date                         |             |         | 08-FEB-2017      | 02-MAY-2017      | 01-AUG-2017      | 03-0CT-2017      | 08-FEB-2017         | 02-MAY-2017      |
| Analyte                      | MDL         | Units   | P919213          | P936594          | P959745          | P973094          | P919199             | P936580          |
| Acrolein                     | ====<br>6.4 | UG/KG   | ND               | ND               | ND               | ND               | ND                  | ND               |
| Acrylonitrile                | 3.9         | UG/KG   | ND               | ND               | ND               | ND               | ND                  | ND               |
| Benzene                      | 2.1         | UG/KG   | ND               | ND               | ND               | ND               | ND                  | ND               |
| Bromodichloromethane         | 2.2         | UG/KG   | ND               | ND               | ND               | ND               | ND                  | ND               |
| Bromoform                    | 2.4         | UG/KG   | ND               | ND               | ND               | ND               | ND                  | ND               |
| Bromomethane                 | 6.9         | UG/KG   | DNQ58.9          | ND               | DNQ89.6          | DNQ76.7          | ⊧ ND                | ND               |
| Carbon tetrachloride         | 3           | UG/KG   | ND               | ND               | ND               | ND               | ND                  | ND               |
| Chlorobenzene                | 1           | UG/KG   | ND               | ND               | ND               | ND               | ND                  | ND               |
| Chloroethane                 | 3.6         | UG/KG   | ND               | ND               | ND               | ND               | ND                  | ND               |
| Chloroform                   | 2.3         | UG/KG   | ND               | ND               | ND               | ND               | ND                  | ND               |
| Chloromethane                | 3.4         | UG/KG   | DNQ275           | ND               | ND               | ND               | ND                  | ND               |
| Dibromochloromethane         | 2.4         | UG/KG   | ND               | ND               | ND               | ND               | ND                  | ND               |
| 1,2-Dichlorobenzene          | 1.5         | UG/KG   | ND               | ND               | ND               | ND               | ND                  | ND               |
| 1,3-Dichlorobenzene          | 1.8         | UG/KG   | ND               | ND               | ND               | ND               | ND                  | ND               |
| 1,4-Dichlorobenzene          | 1.5         | UG/KG   | ND               | ND               | ND               | ND               | 1010                | ND               |
| 1,1-Dichloroethane           | 1.9         | UG/KG   | ND               | ND               | ND               | ND               | ND                  | ND               |
| 1,2-Dichloroethane           | 3.6         | UG/KG   | ND               | ND               | ND               | ND               | ND                  | ND               |
| 1,1-Dichloroethene           | 5           | UG/KG   | ND               | ND               | ND               | ND               | ND                  | ND               |
| trans-1,2-dichloroethene     | 3.5         | UG/KG   | ND               | ND               | ND               | ND               | ND                  | ND               |
| 1,2-Dichloropropane          | 2.6         | UG/KG   | ND               | ND               | ND               | ND               | ND                  | ND               |
| cis-1,3-dichloropropene      | 2.5         | UG/KG   | ND               | ND               | ND               | ND               | ND                  | ND               |
| trans-1,3-dichloropropene    | 2.1         | UG/KG   | ND               | ND               | ND               | ND               | ND                  | ND               |
| Ethylbenzene                 | 1.4         | UG/KG   | DNQ158           | 806              | DNQ93            | DNQ355           | DNQ49               | DNQ86            |
| Methylene chloride           | 3.5         | UG/KG   | 11500            | ND               | ND               | 678*             | <sup>k</sup> 400000 | DNQ82.1          |
| 1,1,2,2-Tetrachloroethane    | 5.9         | UG/KG   | ND               | ND               | ND               | ND               | ND                  | ND               |
| Tetrachloroethene            | 2.8         | UG/KG   | ND               | ND               | ND               | ND               | ND                  | ND               |
| Toluene                      | 1.2         | UG/KG   | 564              | DNQ419           | DNQ240           | DNQ234           | 484                 | 444              |
| 1,1,1-Trichloroethane        | 3.2         | UG/KG   | ND               | ND               | ND               | ND               | ND                  | ND               |
| 1,1,2-Trichloroethane        | 2.8         | UG/KG   | ND               | ND               | ND               | ND               | ND                  | ND               |
| Trichloroethene              | 2.6         | UG/KG   | ND               | ND               | ND               | ND               | ND                  | ND               |
| Trichlorofluoromethane       | 2.2         | UG/KG   | ND               | ND               | ND               | ND               | ND                  | ND               |
| Vinyl chloride               | 4.8         | UG/KG   | ND               | ND               | ND               | ND               | ND                  | ND               |
| Halomethane Purgeable (monds | ====<br>6 9 | =====   | ========<br>0 00    | ========<br>0 00 |
| Total Dichlorohenzenes       | 1 8         |         | 0.00<br>0 00     | 0.00             | 0.00             | 0.00             | 0.00                | 0.00             |
| Purgeable Compounds          | 6.9         |         | 12064            | 806              | 0.00             | 0.00             | 401494              | 444              |
|                              | 0.5         | 00,10   |                  | 000              | 0.00             | 0.00             | 102131              |                  |
| Additional volatile organic  | compo       | unds de | termined;        |                  |                  |                  |                     |                  |
| Acetone                      | 31.4        | UG/KG   | ND               | DNQ5230          | DNQ2750          | 3370*            | * 54300             | 19400            |
| Allyl chloride               | 3.6         | UG/KG   | ND               | ND               | ND               | ND               | ND                  | ND               |
| Benzyl chloride              | 4.3         | UG/KG   | ND               | ND               | ND               | ND               | ND                  | ND               |
| 2-Butanone                   | 36.3        | UG/KG   | DNQ703           | DNQ1610          | DNQ557           | DNQ968           | 4110                | 4340             |
| Carbon disulfide             | 4.7         | UG/KG   | DNQ120           | 288              | ND               | DNQ124           | DNQ94               | 128              |
| Chloroprene                  | 3.1         | UG/KG   | ND               | ND               | ND               | ND               | ND                  | ND               |
| 1,2-Dibromoethane            | 2.5         | UG/KG   | ND               | ND               | ND               | ND               | ND                  | ND               |
| Isopropylbenzene             | 1.3         | UG/KG   | ND               | ND               | ND               | ND               | ND                  | ND               |
| Methyl Iodide                | 3.8         | UG/KG   | ND               | ND               | ND               | ND               | ND                  | ND               |
| Methyl methacrylate          | 2.4         | UG/KG   | ND               | ND               | ND               | ND               | ND                  | ND               |
| 2-Nitropropane               | 45.8        | UG/KG   | ND               | ND               | ND               | ND               | ND                  | ND               |
| ortho-xylene                 | 1.9         | UG/KG   | ND               | ND               | ND               | ND               | ND                  | ND               |
| Styrene                      | 1.7         | UG/KG   | DNQ28.7          | DNQ83.0          | DNQ24.7          | DNQ37.8          | 476                 | 566              |
| 1,2,4-Trichlorobenzene       | 2.5         | UG/KG   | ND               | ND               | ND               | ND               | ND                  | ND               |
| meta,para xylenes            | 4.2         | UG/KG   | DNQ42.7          | DNQ106           | DNQ23.5          | DNQ71.9          | DNQ133              | DNQ219           |
| 2-Chloroethylvinyl ether     | 5.5         | UG/KG   | ND               | ND               | ND               | ND               | ND                  | ND               |
| 4-Methyl-2-pentanone         | 9.7         | UG/KG   | ND               | ND               | ND               | ND               | ND                  | ND               |

\* = Method blank value above the MDL; sample result not included in average calculations.

ND= not detected, NA= not analyzed, NS= not sampled

DNQ= Detected but not quantified. Sample result is less than minimum Level but greater than or equal to MDL.

### PURGEABLE COMPOUNDS EPA Method 8260B

| Source                         |        |          | RAW COMP    | RAW COMP    |
|--------------------------------|--------|----------|-------------|-------------|
| Date                           |        |          | 01-AUG-2017 | 03-0CT-2017 |
| Analyte                        | MDL    | Units    | P959731     | P973080     |
|                                | ====   | =====    | ==========  |             |
| Acrolein                       | 6.4    | UG/KG    | ND          | ND          |
| Acrylonitrile                  | 3.9    | UG/KG    | ND          | ND          |
| Benzene                        | 2.1    | UG/KG    | ND          | ND          |
| Bromodichloromethane           | 2.2    | UG/KG    | ND          | ND          |
| Bromoform                      | 2.4    | UG/KG    | ND          | ND          |
| Bromomethane                   | 6.9    | UG/KG    | DNQ40.2     | ND          |
| Carbon tetrachloride           | 3      | UG/KG    | ND          | ND          |
| Chlorobenzene                  | 1      | UG/KG    | ND          | ND          |
| Chloroethane                   | 3.6    | UG/KG    | ND          | ND          |
| Chloroform                     | 2.3    | UG/KG    | DN014.8     | ND          |
| Chloromethane                  | 3.4    | UG/KG    | ND          | ND          |
| Dibromochloromethane           | 2.4    | UG/KG    | ND          | ND          |
| 1.2-Dichlorobenzene            | 1.5    | UG/KG    | ND          | ND          |
| 1.3-Dichlorobenzene            | 1.8    |          | ND          | ND          |
| 1.4-Dichlorobenzene            | 1.5    |          | ND          | DN0122      |
| 1 1-Dichloroethane             | 1 9    |          | ND          | ND          |
| 1 2-Dichloroethane             | 3 6    |          |             |             |
| 1 1-Dichlonoothono             | 5.0    |          |             |             |
| thans 1.2 dichlonoothono       | 2 5    |          |             | ND          |
| 1 2 Dichlenonnenano            | 5.5    |          |             |             |
| i, 2-Dichiorophopane           | 2.0    |          |             |             |
| trans 1.2 dishlarannana        | 2.5    |          |             |             |
| Trans-1, 3-dichioropropene     | 2.1    |          |             |             |
| Ethylbenzene                   | 1.4    |          | DINQ/1      | DNQ90       |
| Metnylene chloride             | 3.5    |          | DNQ80.4     | DNQ128*     |
| 1,1,2,2-Tetrachioroethane      | 5.9    | UG/KG    | ND          | ND          |
| letrachloroethene              | 2.8    | UG/KG    | DNQ18.4     | ND          |
| loluene                        | 1.2    | UG/KG    | 537         | 613         |
| 1,1,1-Irichloroethane          | 3.2    | UG/KG    | ND          | ND          |
| 1,1,2-Trichloroethane          | 2.8    | UG/KG    | ND          | ND          |
| Trichloroethene                | 2.6    | UG/KG    | ND          | ND          |
| Trichlorofluoromethane         | 2.2    | UG/KG    | ND          | ND          |
| Vinyl chloride                 | 4.8    | UG/KG    | ND          | ND          |
|                                | ====   | =====    |             |             |
| Halomethane Purgeable Cmpnds   | 6.9    | UG/KG    | 0.00        | 0.00        |
| Total Dichlorobenzenes         | 1.8    | UG/KG    | 0.00        | 0.00        |
| Purgeable Compounds            | 6.9    | UG/KG    | 537         | 613         |
|                                |        |          |             |             |
| Additional volatile organic of | compou | unds det | termined;   |             |
|                                | ====   | =====    |             |             |
| Acetone                        | 31.4   | UG/KG    | 18300       | 12100       |
| Allyl chloride                 | 3.6    | UG/KG    | ND          | ND          |
| Benzyl chloride                | 4.3    | UG/KG    | ND          | ND          |
| 2-Butanone                     | 36.3   | UG/KG    | 2800        | 2530        |
| Carbon disulfide               | 4.7    | UG/KG    | DNQ103      | 115         |
| Chloroprene                    | 3.1    | UG/KG    | ND          | ND          |
| 1,2-Dibromoethane              | 2.5    | UG/KG    | ND          | ND          |
| Isopropylbenzene               | 1.3    | UG/KG    | ND          | ND          |
| Methyl Iodide                  | 3.8    | UG/KG    | ND          | ND          |
| Methyl methacrylate            | 2.4    | UG/KG    | ND          | ND          |
| 2-Nitropropane                 | 45.8   | UG/KG    | ND          | ND          |
| ortho-xylene                   | 1.9    | UG/KG    | DNQ48.3     | DNQ108      |
| Styrene                        | 1.7    | UG/KG    | 254         | 478         |
| 1,2,4-Trichlorobenzene         | 2.5    | UG/KG    | ND          | ND          |
| meta,para xylenes              | 4.2    | UG/KG    | DNQ101      | DNQ226      |
| 2-Chloroethylvinyl ether       | 5.5    | UG/KG    | ND          | ND          |
| 4-Methyl-2-pentanone           | 9.7    | UG/KG    | ND          | ND          |

\* = Method blank value above the MDL; sample result not included in average calculations.

ND= not detected, NA= not analyzed, NS= not sampled DNQ= Detected but not quantified. Sample result is less than minimum Level but greater than or equal to MDL.

#### ANNUAL 2017

# Purgeables

| Source                                  |           |       | MBCDEWCN                               | MBCDEWCN                               | MBCDEWCN                               | MBCDEWCN    | MBCDEWCN                               | MBCDEWCN    |
|-----------------------------------------|-----------|-------|----------------------------------------|----------------------------------------|----------------------------------------|-------------|----------------------------------------|-------------|
| Date                                    |           |       | 31-JAN-2017                            | 28-FEB-2017                            | 31-MAR-2017                            | 30-APR-2017 | 31-MAY-2017                            | 30-JUN-2017 |
| Analyte                                 | MDL       | Units | P920340                                | P925827                                | P932213                                | P937935     | P945968                                | P953132     |
| Accoloin                                | ====      | ===== | ====================================== | ====================================== | ====================================== |             | ====================================== | =======     |
| Acrolein                                | 0.4       |       | ND                                     |                                        | ND                                     | ND          | ND                                     |             |
| Densor                                  | 2.9       |       | ND                                     |                                        | ND                                     | ND          | ND                                     |             |
| Benzene                                 | 2.1       |       | ND                                     | ND                                     | ND                                     | ND          | ND                                     | DINQ11.2    |
| Bromodichioromethane                    | 2.2       |       | ND                                     | ND                                     | ND                                     | ND          | ND                                     | ND          |
| Bromotorm                               | 2.4       | UG/KG | ND                                     | ND                                     | ND                                     | ND          | ND                                     | ND          |
| Bromomethane                            | 6.9       | UG/KG | ND                                     | ND                                     | ND                                     | ND          | ND                                     | DNQ7.5      |
| Carbon tetrachloride                    | 3         | UG/KG | ND                                     | ND                                     | ND                                     | ND          | ND                                     | ND          |
| Chlorobenzene                           | 1         | UG/KG | ND                                     | ND                                     | ND                                     | ND          | ND                                     | ND          |
| Chloroethane                            | 3.6       | UG/KG | ND                                     | ND                                     | ND                                     | ND          | ND                                     | ND          |
| Chloroform                              | 2.3       | UG/KG | ND                                     | ND                                     | ND                                     | ND          | ND                                     | ND          |
| Chloromethane                           | 3.4       | UG/KG | ND                                     | ND                                     | ND                                     | ND          | ND                                     | ND          |
| Dibromochloromethane                    | 2.4       | UG/KG | ND                                     | ND                                     | ND                                     | ND          | ND                                     | ND          |
| 1,2-Dichlorobenzene                     | 1.5       | UG/KG | ND                                     | ND                                     | ND                                     | ND          | ND                                     | ND          |
| 1,3-Dichlorobenzene                     | 1.8       | UG/KG | ND                                     | ND                                     | ND                                     | ND          | ND                                     | ND          |
| 1,4-Dichlorobenzene                     | 1.5       | UG/KG | 64.2                                   | 77.2                                   | 91.2                                   | 108         | 85.1                                   | 66.1        |
| Dichlorodifluoromethane                 | 5.56      | UG/KG | ND                                     | ND                                     | ND                                     | ND          | ND                                     | ND          |
| 1.1-Dichloroethane                      | 1.9       | UG/KG | ND                                     | ND                                     | ND                                     | ND          | ND                                     | ND          |
| 1 2-Dichloroethane                      | 3 6       |       | ND                                     | ND                                     | ND                                     | ND          | ND                                     | ND          |
| 1 1-Dichlonoethene                      | 5.0       |       |                                        |                                        |                                        |             |                                        |             |
| thans 1.2 dichlonoothono                | 2 5       |       |                                        |                                        |                                        |             |                                        |             |
| 1.2 Dishlanananana                      | 3.5       |       | ND                                     |                                        | ND                                     | ND          | ND                                     | ND          |
| 1,2-Dichioropropane                     | 2.6       |       | ND                                     | ND                                     | ND                                     | ND          | ND                                     | ND          |
| cis-1,3-dichloropropene                 | 2.5       | UG/KG | ND                                     | ND                                     | ND                                     | ND          | ND                                     | ND          |
| trans-1,3-dichloropropene               | 2.1       | UG/KG | ND                                     | ND                                     | ND                                     | ND          | ND                                     | ND          |
| Ethylbenzene                            | 1.4       | UG/KG | 311                                    | 409                                    | 428                                    | 499         | 440                                    | 355         |
| Methylene chloride                      | 3.5       | UG/KG | DNQ18.4                                | ND                                     | ND                                     | DNQ7.1      | DNQ5.4                                 | DNQ5.3      |
| 1,1,2,2-Tetrachloroethane               | 5.9       | UG/KG | ND                                     | ND                                     | ND                                     | ND          | ND                                     | ND          |
| Tetrachloroethene                       | 2.8       | UG/KG | ND                                     | ND                                     | ND                                     | ND          | ND                                     | ND          |
| Toluene                                 | 1.2       | UG/KG | 103                                    | 133                                    | 132                                    | 144'        | * 127                                  | 122         |
| 1,1,1-Trichloroethane                   | 3.2       | UG/KG | ND                                     | ND                                     | ND                                     | ND          | ND                                     | ND          |
| 1,1,2-Trichloroethane                   | 2.8       | UG/KG | ND                                     | ND                                     | ND                                     | ND          | ND                                     | ND          |
| Trichloroethene                         | 2.6       | UG/KG | ND                                     | ND                                     | ND                                     | ND          | ND                                     | ND          |
| Trichlorofluoromethane                  | 2.2       | UG/KG | ND                                     | ND                                     | ND                                     | ND          | ND                                     | ND          |
| Vinvl chloride                          | 4.8       |       | ND                                     | ND                                     | ND                                     | ND          | ND                                     | ND          |
| 1 2 A-Trichlorobenzene                  | 2 5       |       | ND                                     |                                        |                                        |             |                                        |             |
| ======================================= | ====      | ===== | ========                               | ==========                             | =========                              | =========   | =========                              | ========    |
| Halomethane Purgeable Compounds         | 6.9       | UG/KG | 0.0                                    | 0.0                                    | 0.0                                    | 0.0         | 0.0                                    | 0.0         |
| Purgeable Compounds                     | 6.9       | UG/KG | 478                                    | 619                                    | 651                                    | 607         | 652                                    | 543         |
| Additional Analytes Determined:         |           |       |                                        |                                        |                                        |             |                                        |             |
|                                         | ====      | ===== | ==========                             |                                        |                                        |             |                                        |             |
| Acetone                                 | 31.4      | UG/KG | 23200                                  | 19400                                  | 26200                                  | 24600       | 24400                                  | 36800       |
| Allyl chloride                          | 3.6       | UG/KG | ND                                     | ND                                     | ND                                     | ND          | ND                                     | ND          |
| Benzvl chloride                         | 4.3       | UG/KG | ND                                     | ND                                     | ND                                     | ND          | ND                                     | ND          |
| 2-Butanone                              | 36.3      | UG/KG | 7020                                   | 5860                                   | 7400                                   | 7590        | 6530                                   | 15200       |
| Carbon disulfide                        | 4.7       |       | 75.5                                   | 71.1                                   | 98.6                                   | 113         | 127                                    | 94.5        |
| Chloronrene                             | 3 1       |       |                                        |                                        |                                        | ND          | ND                                     |             |
| 1 2-Dibnomoothano                       | 2 5       |       |                                        |                                        |                                        |             |                                        |             |
| I, 2-DIDI Olloethalle                   | 2.5       |       |                                        |                                        |                                        |             |                                        |             |
| Mathul Tadida                           | 1.5       |       |                                        |                                        | ND                                     | ND          |                                        |             |
| Methyl methoday/lata                    | 5.8<br>24 |       | ND                                     | ND                                     | ND                                     | ND          | ND                                     | ND          |
| metnyi metnacryiate                     | 2.4       | UG/KG | ND                                     | ND                                     | ND                                     | ND          | ND                                     | ND          |
| metnyi tert-butyi ether                 | 3.4       | UG/KG | ND                                     | ND                                     | ND                                     | ND          | ND                                     | ND          |
| 2-Nitropropane                          | 45.8      | UG/KG | ND                                     | ND                                     | ND                                     | ND          | ND                                     | ND          |
| ortho-xylene                            | 1.9       | UG/KG | 35.6                                   | 41.4                                   | 38.0                                   | 45.4        | 42.1                                   | 37.8        |
| Styrene                                 | 1.7       | UG/KG | 47.7                                   | 66.5                                   | 60.2                                   | 78.9        | 70.5                                   | 82.3        |
| meta,para xylenes                       | 4.2       | UG/KG | 73.3                                   | 77.5                                   | 72.1                                   | 83.7        | 77.8                                   | 68.8        |
| 2-Chloroethylvinyl ether                | 5.5       | UG/KG | ND                                     | ND                                     | ND                                     | ND          | ND                                     | ND          |
| 4-Methyl-2-pentanone                    | 9.7       | UG/KG | 31.2                                   | 31.5                                   | 43.1                                   | 38.3        | 44.8                                   | 89.0        |

ND= not detected, NA= not analyzed, NS= not sampled

\* = Method blank value above the MDL; sample result not included in average calculations. DNQ= Detected but not quantified. Sample result is less than minimum Level but greater than or equal to MDL.

## Purgeables

| Source                                  |            |       | MBCDEWCN    | MBCDEWCN    | MBCDEWCN    | MBCDEWCN     | MBCDEWCN    |
|-----------------------------------------|------------|-------|-------------|-------------|-------------|--------------|-------------|
| Date                                    |            |       | 31-JUL-2017 | 31-AUG-2017 | 30-SEP-2017 | 31-0CT-2017  | 31-DEC-2017 |
| Analyte                                 | MDL        | Units | P959635     | P966456     | P974186     | P979340      | P992862     |
|                                         | ====       | ===== |             |             |             |              |             |
| Acrolein                                | 6.4        | UG/KG | ND          | ND          | ND          | ND           | ND          |
| Acrylonitrile                           | 3.9        | UG/KG | ND          | ND          | ND          | ND           | ND          |
| Benzene                                 | 2.1        | UG/KG | DNQ4.7      | ND          | ND          | ND           | ND          |
| Bromodichloromethane                    | 2.2        | UG/KG | ND          | ND          | ND          | ND           | ND          |
| Bromotorm                               | 2.4        | UG/KG | ND          | ND          | ND          | ND           | ND          |
| Bromomethane                            | 6.9        | UG/KG | ND          | ND          | ND          | ND           | ND          |
| Carbon tetrachloride                    | 3          | UG/KG | ND          | ND          | ND          | ND           | ND          |
| Chlorobenzene                           | 1          | UG/KG | ND          | ND          | ND          | ND           | ND          |
| Chloroethane                            | 3.6        | UG/KG | ND          | ND          | ND          | ND           | ND          |
| Chlorotorm<br>Chloroterm                | 2.3        | UG/KG | ND          | ND          | ND          | ND           | ND          |
| Chioromethane                           | 3.4        | UG/KG | ND          | ND          | ND          | ND           | ND          |
| Dibromochioromethane                    | 2.4        | UG/KG | ND          | ND          | ND          | ND           | ND          |
| 1,2-Dichlanahangana                     | 1.5        | UG/KG | ND          | ND          | ND          | ND           | ND          |
| 1,3-Dichlanahangana                     | 1.8        | UG/KG |             | ND          |             |              |             |
| 1,4-Dichlorobenzene                     | 1.5        | UG/KG | 57.3        | 49.2        | 65.1        | 57.2         | 63.2        |
| Dichlorodifluoromethane                 | 5.56       | UG/KG | ND          | ND          | ND          | ND           | ND          |
| 1,1-Dichleroethane                      | 1.9        | UG/KG | ND          | ND          | ND          | ND           | ND          |
| 1,2-Dichleroethane                      | 3.6        | UG/KG | ND          | ND          | ND          | ND           | ND          |
| 1,1-Dichloroethene                      | 5          |       | ND          | ND          | ND          | ND           | ND          |
| trans-1,2-dichloroethene                | 3.5        | UG/KG | ND          | ND          | ND          | ND           | ND          |
| 1,2-Dichioropropane                     | 2.6        |       | ND          | ND          | ND          | ND           | ND          |
| cis-i, 3-dichloropropene                | 2.5        |       | ND          | ND          | ND          | ND           | ND          |
| Trans-1,3-dichioropropene               | 2.1        |       |             |             | NU<br>2.21  |              |             |
| Echylona chlanida                       | 1.4        |       |             |             | 521         | כשכ<br>א בשכ |             |
| 1 1 2 2 Tetrachloneethane               | 5.5        |       |             |             | TOT         |              |             |
| I, I, Z, Z-Tetrachionoethane            | 5.9        |       | ND          |             | ND          |              | ND          |
|                                         | 2.0        |       | ND<br>175   | עוז<br>דכ 1 | ND<br>146   | 100          | 125         |
| 101uene                                 | 1.2        |       | 1/2         | 127         | 140         | TOA          | 125         |
| 1,1,1-Trichlonoethane                   | 2.2        |       | ND          |             | ND          |              | ND          |
| Thichlonoothono                         | 2.0        |       |             |             |             |              |             |
| Trichlonofluonomothana                  | 2.0        |       |             |             |             |              |             |
| Vinyl chlonido                          | 2.2<br>1 0 |       |             |             |             |              |             |
| 1.2 A-Trichlonohonzono                  | 4.0        |       |             |             |             |              |             |
| ======================================= | ====       | ===== | =========== | ND          | =========== | ND           | ==========  |
| Halomethane Purgeable Compounds         | 6.9        | UG/KG | 0.0         | 0.0         | 0.0         | 0.0          | 0.0         |
|                                         | ====       |       |             |             |             |              |             |
| Purgeable Compounds                     | 6.9        | UG/KG | 594         | 464         | 532         | 469          | 435         |
| Additional Analytes Determined:         |            |       |             |             |             |              |             |
|                                         | ====       | ===== |             |             |             |              |             |
| Acetone                                 | 31.4       | UG/KG | 29900       | 22800       | 19400       | 18200        | 18900       |
| Allyl chloride                          | 3.6        | UG/KG | ND          | ND          | ND          | ND           | ND          |
| Benzyl chloride                         | 4.3        | UG/KG | ND          | ND          | ND          | ND           | ND          |
| 2-Butanone                              | 36.3       | UG/KG | 8650        | 4930        | 5840        | 5300         | 5830        |
| Carbon disulfide                        | 4.7        | UG/KG | 99.0        | 119         | 102         | 80.3         | 88.4        |
| Chloroprene                             | 3.1        | UG/KG | ND          | ND          | ND          | ND           | ND          |
| 1,2-Dibromoethane                       | 2.5        | UG/KG | ND          | ND          | ND          | ND           | ND          |
| IsopropyIbenzene                        | 1.3        | UG/KG | ND          | ND          | ND          | ND           | ND          |
| Methyl lodide                           | 3.8        | UG/KG | ND          | ND          | ND          | ND           | ND          |
| Methyl methacrylate                     | 2.4        | UG/KG | ND          | ND          | ND          | ND           | ND          |
| Metnyl tert-butyl ether                 | 3.4        | UG/KG | ND          | ND          | ND          | ND           | ND          |
| 2-NITropropane                          | 45.8       |       | ND          | ND          | ND          | ND           | ND          |
| ortno-xyiene                            | 1.9        |       | 39.0        | 38.5        | 40.2        | 35.5         | 32.9        |
| Styrene                                 | 1./        |       | 92.8        | 141         | 45.3        | 39.8         | 39.6        |
| meta, para xyienes                      | 4.2        |       | /2.4        | 68.4        | /2.9        | 65.7         | 60.4        |
| 2-CHIOROETHYIVINYI ETHER                | 5.5        |       | ND          |             | ND<br>DC C  | ND           | ND<br>20.0  |
| 4-methy1-2-pentanone                    | 9./        | UG/KG | 43.1        | 39.5        | 26.6        | 30.2         | 30.8        |

ND= not detected, NA= not analyzed, NS= not sampled

\* = Method blank value above the MDL; sample result not included in average calculations.

DNQ= Detected but not quantified. Sample result is less than minimum Level but greater than or equal to MDL.

## Purgeables EPA Method 8260B

| Source                          |             |                | MBCDEWCN#   | Average    |
|---------------------------------|-------------|----------------|-------------|------------|
| Date                            |             |                | 30-NOV-2017 |            |
| Analyte                         | MDL         | Units          | P986442     |            |
| Acrolein                        |             | UG/KG          | NA          | 0.0        |
| Acrylonitrile                   | 79          | UG/KG          | ND          | 0.0        |
| Benzene                         | 27          | UG/KG          | ND          | 0.0        |
| Bromodichloromethane            | 11          | UG/KG          | ND          | 0.0        |
| Bromoform                       | 87          | UG/KG          | ND          | 0.0        |
| Bromomethane                    | 250         | UG/KG          | ND          | 0.0        |
| Carbon tetrachloride            | 18          | UG/KG          | ND          | 0.0        |
| Chlorobenzene                   | 32          | UG/KG          | ND          | 0.0        |
| Chloroethane                    | 26          | UG/KG          | ND          | 0.0        |
| Chloroform                      | 14          | UG/KG          | ND          | 0.0        |
| Chloromethane                   | 50          | UG/KG          | ND          | 0.0        |
| Dibromochloromethane            | 100         | UG/KG          | ND          | 0.0        |
| 1,2-Dichlorobenzene             | 43          | UG/KG          | ND          | 0.0        |
| 1,3-Dichlorobenzene             | 22          | UG/KG          | ND          | 0.0        |
| 1,4-Dichlorobenzene             | 21          | UG/KG          | ND          | 71.3       |
| Dichlorodifluoromethane         | 70          | UG/KG          | ND          | 0.0        |
| 1,1-Dichloroethane              | 16          | UG/KG          | ND          | 0.0        |
| 1.2-Dichloroethane              | 34          | UG/KG          | ND          | 0.0        |
| 1.1-Dichloroethene              | 23          | UG/KG          | ND          | 0.0        |
| trans-1.2-dichloroethene        | 27          | UG/KG          | ND          | 0.0        |
| 1.2-Dichloropropane             | 25          | UG/KG          | ND          | 0.0        |
| cis-1.3-dichloropropene         | 17          | UG/KG          | ND          | 0.0        |
| trans-1.3-dichloropropene       | 15          | UG/KG          | ND          | 0.0        |
| Ethvlbenzene                    | 22          | UG/KG          | ND          | 360        |
| Methylene chloride              | 300         | UG/KG          | ND          | 0.0        |
| 1.1.2.2-Tetrachloroethane       | 50          | UG/KG          | ND          | 0.0        |
| Tetrachloroethene               | 26          | UG/KG          | ND          | 0.0        |
| Toluene                         | 39          |                | ND          | 131        |
| 1.1.1-Trichloroethane           | 21          |                | ND          | 9.9        |
| 1.1.2-Trichloroethane           | 24          |                | ND          | 0.0        |
| Trichloroethene                 | 29          |                | ND          | 0.0        |
| Trichlorofluoromethane          | 27          |                | ND          | 0.0        |
| Vinvl chloride                  | 42          |                | ND          | 0.0        |
| 1.2.4-Trichlorobenzene          | 62          |                | ND          | 0.0        |
|                                 | ====        | =====          | =======     | =======    |
| Halomethane Purgeable Compounds | 390         | UG/KG          | 0.0         | 0.0        |
| Duneachla Compaunda             | ====        |                |             | EEEEEEEEEE |
| erreadle Compounds              | 300<br>==== | UG/KG<br>===== | 0.0         | 562        |
| Acetone                         | 1000        | UG/KG          | 7200        | 22583      |
| Allyl chloride                  |             | UG/KG          | NA          | 0.0        |
| Benzyl chloride                 |             | UG/KG          | NA          | 0.0        |
| 2-Butanone                      | 500         | UG/KG          | ND          | 7287       |
| Carbon disulfide                |             | UG/KG          | NA          | 97.1       |
| Chloroprene                     |             | UG/KG          | NA          | 0.0        |
| 1,2-Dibromoethane               | 36          | UG/KG          | ND          | 0.0        |
| Isopropylbenzene                |             | UG/KG          | NA          | 0.0        |
| Methyl Iodide                   |             | UG/KG          | NA          | 0.0        |
| Methyl methacrylate             |             | UG/KG          | NA          | 0.0        |
| Methyl tert-butyl ether         | 32          | UG/KG          | ND          | 0.0        |
| 2-Nitropropane                  |             | UG/KG          | NA          | 0.0        |
| ortho-xylene                    | 24          | UG/KG          | ND          | 38.8       |
| Styrene                         | 17          | UG/KG          | ND          | 69.5       |
| meta,para xylenes               | 200         | UG/KG          | ND          | 72.1       |
| 2-Chloroethylvinyl ether        |             | UG/KG          | NA          | 0.0        |
| 4-Methyl-2-pentanone            |             | UG/KG          | NA          | 40.7       |

# = Sample analyzed by Babcock Laboratories.

## BASE/NEUTRAL COMPOUNDS EPA Method 625

| Source                         |              |                  | PLR            | PLR             | PLR            | PLR            | PLE            | PLE         |
|--------------------------------|--------------|------------------|----------------|-----------------|----------------|----------------|----------------|-------------|
| Date                           | мпі          | Unite            | 0/-FEB-201/    | 02-MAY-2017     | 01-AUG-2017    | 03-UCI-2017    | 0/-FEB-201/    | 02-MAY-2017 |
| Anaryte                        | MDL<br>====  | =====            | P919105        | P 930344        | P959720        |                | P919137        | P 930338    |
| Acenaphthene                   | 1.8          | UG/L             | ND             | ND              | ND             | ND             | ND             | ND          |
| Acenaphthylene                 | 1.77         | UG/L             | ND             | ND              | ND             | ND             | ND             | ND          |
| Anthracene                     | 1.29         | UG/L             | ND             | ND              | ND             | ND             | ND             | ND          |
| Benzidine                      | 1.52         | UG/L             | ND             | ND <sup>3</sup> | * ND           | ND             | ND             | ND*         |
| Benzo[a]anthracene             | 1.1          | UG/L             | ND             | ND              | ND             | ND             | ND             | ND          |
| 3,4-Benzo(b)fluoranthene       | 1.35         | UG/L             | ND             | ND              | ND             | ND             | ND             | ND          |
| Benzo[k]fluoranthene           | 1.49         | UG/L             | ND             | ND              | ND             | ND             | ND             | ND          |
| Benzo[a]pyrene                 | 1.25         | UG/L             | ND             | ND              | ND             | ND             | ND             | ND          |
| Benzo[g,h,i]perylene           | 1.09         | UG/L             | ND             | ND              | ND             | ND             | ND             | ND          |
| 4-Bromophenyl phenyl ether     | 1.4          | UG/L             | ND             | ND              | ND             | ND             | ND             | ND          |
| Bis-(2-chloroethoxy) methane   | 1.01         | UG/L             | ND             | ND              | ND             | ND             | ND             | ND          |
| Bis-(2-chloroisopropyl) ether  | 1,10         |                  | ND             | ND              | ND             | ND             | ND             |             |
| A-Chlononhonyl nhonyl othon    | 1 57         |                  |                |                 |                |                |                |             |
| Chrysene                       | 1 16         |                  |                |                 |                |                |                |             |
| Dibenzo(a, h)anthracene        | 1.01         |                  | ND             | ND              | ND             | ND             | ND             | ND          |
| Butvl benzvl phthalate         | 2.84         |                  | ND             | ND              | ND             | ND             | ND             | ND          |
| Di-n-butyl phthalate           | 3.96         | UG/L             | ND             | ND              | ND             | ND             | ND             | ND          |
| Bis-(2-ethylhexvl) phthalate   | 8.96         | UG/L             | 10.3           | ND              | ND             | ND             | ND             | ND          |
| Diethyl phthalate              | 3.05         | UG/L             | 3.54           | 3.75            | 3.22           | ND             | <3.05          | ND          |
| Dimethyl phthalate             | 1.44         | UG/L             | ND             | ND              | ND             | ND             | ND             | ND          |
| Di-n-octyl phthalate           | 1            | UG/L             | ND             | ND              | ND             | ND             | ND             | ND          |
| 3,3-Dichlorobenzidine          | 2.44         | UG/L             | ND             | ND              | ND             | ND             | ND             | ND          |
| 2,4-Dinitrotoluene             | 1.36         | UG/L             | ND             | ND              | ND             | ND             | ND             | ND          |
| 2,6-Dinitrotoluene             | 1.53         | UG/L             | ND             | ND              | ND             | ND             | ND             | ND          |
| 1,2-Diphenylhydrazine          | 1.37         | UG/L             | ND             | ND              | ND             | ND             | ND             | ND          |
| Fluoranthene                   | 1.33         | UG/L             | ND             | ND              | ND             | ND             | ND             | ND          |
| Fluorene                       | 1.61         | UG/L             | ND             | ND              | ND             | ND             | ND             | ND          |
| Hexachlorobenzene              | 1.48         | UG/L             | ND             | ND              | ND             | ND             | ND             | ND          |
| Hexachlorobutadiene            | 1.64         | UG/L             | ND             | ND              | ND             | ND             | ND             | ND          |
| Hexachlorocyclopentadiene      | 1.25         |                  | ND             | ND              | ND             | ND             | ND             |             |
| Trdono(1, 2, 3-CD) pypopo      | 1 1/         |                  |                |                 |                |                |                |             |
| Indeno(1,2,3-CD)pyrene         | 1 53         |                  |                |                 |                |                |                |             |
| Nanhthalene                    | 1 65         |                  | ND             | ND              | ND             | ND             | ND             | ND          |
| Nitrobenzene                   | 1.6          |                  | ND             | ND              | ND             | ND             | ND             | ND          |
| N-nitrosodimethvlamine         | 1.27         | UG/L             | ND             | ND              | ND             | ND             | ND             | ND          |
| N-nitrosodi-n-propylamine      | 1.16         | UG/L             | ND             | ND              | ND             | ND             | ND             | ND          |
| N-nitrosodiphenylamine         | 3.48         | UG/L             | ND             | ND              | ND             | ND             | ND             | ND          |
| Phenanthrene                   | 1.34         | UG/L             | ND             | ND              | ND             | ND             | ND             | ND          |
| Pyrene                         | 1.43         | UG/L             | ND             | ND              | ND             | ND             | ND             | ND          |
| 1,2,4-Trichlorobenzene         | 1.52         | UG/L             | ND             | ND              | ND             | ND             | ND             | ND          |
| Polynuc Aromatic Hydrocarbons  | ====<br>1 77 | =====<br>LIG / I | =======<br>0 0 | =======<br>0 0  | =======<br>0 0 | =======<br>0 0 | =======<br>0 0 |             |
|                                | ====         | =====            | ==========     | ===========     | ==========     | ==========     | ===========    | =========== |
| Base/Neutral Compounds         | 8.96         | UG/L             | 13.8           | 3.8             | 3.2            | 0.0            | 0.0            | 0.0         |
| Additional Analytes Determined | :            |                  |                |                 |                |                |                |             |
|                                |              |                  |                |                 |                |                |                |             |
| Benzo[e]pyrene                 | 1.44         | UG/L             | ND             | ND              | ND             | ND             | ND             | ND          |
| Biphenyl                       | 2.29         | UG/L             | ND             | ND              | ND             | ND             | ND             | ND          |
| 2,6-Dimethylnaphthalene        | 2.16         | UG/L             | ND             | ND              | ND             | ND             | ND             | ND          |
| 1-Methylnaphthalene            | 2.18         | UG/L             | ND             | ND              | ND             | ND             | ND             | ND          |
| 1-Methylphenanthrene           | 1.46         | UG/L             | ND             | ND              | ND             | ND             | ND             | ND          |
| 2-Methylnaphthalene            | 2.14         | UG/L             | ND             | ND              | ND             | ND             | ND             | ND          |
| 2,3,5-Trimethylnaphthalene     | 2.18         | UG/L             | ND             | ND              | ND             | ND             | ND             | ND          |
| Perylene                       | 1.41         | UG/L             | ND             | ND              | ND             | ND             | ND             | ND          |
| 2-Chioronaphthalene            | 1.87         | UG/L             | ND             | ND              | ND             | ND             | ND             | ND          |

\* = Recovery of compound in internal check and/or matrix spike sample outside method acceptance limits; value is not used in average calculations.

## BASE/NEUTRAL COMPOUNDS EPA Method 625

| Source                         |              |               | PLE                                    | PLE                                    | MBC_COMBCN  | MBC_COMBCN                             | MBC_COMBCN  | MBC_COMBCN                             |
|--------------------------------|--------------|---------------|----------------------------------------|----------------------------------------|-------------|----------------------------------------|-------------|----------------------------------------|
| Date                           |              |               | 01-AUG-2017                            | 03-0CT-2017                            | 07-FEB-2017 | 02-MAY-2017                            | 01-AUG-2017 | 03-0CT-2017                            |
| Analyte                        | MDL          | Units         | P959714                                | P973063                                | P919174     | P936555                                | P959726     | P973075                                |
| Aconantthene                   | ====<br>1 8  | =====         | ====================================== | ====================================== |             | ====================================== |             | ====================================== |
| Acenaphthylene                 | 1.77         |               | ND                                     | ND                                     | ND          | ND                                     | ND          | ND                                     |
| Anthracene                     | 1 29         |               | ND                                     | ND                                     | ND          | ND                                     | ND          | ND                                     |
| Benzidine                      | 1 52         |               |                                        |                                        |             | ND?                                    | * DNO1 6    |                                        |
| Benzo[a]anthracene             | 1 1          |               |                                        |                                        |             |                                        |             |                                        |
| 3 A-Benzo(h)fluoranthene       | 1 35         |               |                                        |                                        |             |                                        |             |                                        |
| Benzo[k]f]uoranthene           | 1 /9         |               |                                        |                                        |             |                                        |             |                                        |
| Benzo[a]nvrene                 | 1 25         |               | ND                                     | ND                                     | ND          | ND                                     | ND          | ND                                     |
| Benzo[g h i]nerv]ene           | 1 09         |               | ND                                     | ND                                     | ND          | ND                                     | ND          | ND                                     |
| A-Bromonhenyl nhenyl ether     | 1 4          |               | ND                                     | ND                                     | ND          | ND                                     | ND          | ND                                     |
| Bis-(2-chloroethoxy) methane   | 1 01         |               | ND                                     | ND                                     | ND          | ND                                     | ND          | ND                                     |
| Bis-(2-chloroisonronyl) ether  | 1 16         |               | ND                                     | ND                                     | ND          | ND                                     | ND          | ND                                     |
| Bis-(2-chloroethyl) ether      | 1.38         |               | ND                                     | ND                                     | ND          | ND                                     | ND          | ND                                     |
| 4-Chlorophenyl phenyl ether    | 1.57         |               | ND                                     | ND                                     | ND          | ND                                     | ND          | ND                                     |
| Chrysene                       | 1.16         |               | ND                                     | ND                                     | ND          | ND                                     | ND          | ND                                     |
| Dibenzo(a.h)anthracene         | 1.01         |               | ND                                     | ND                                     | ND          | ND                                     | ND          | ND                                     |
| Butyl henzyl nhthalate         | 2.84         |               | ND                                     | ND                                     | ND          | ND                                     | ND          | ND                                     |
| Di-n-butyl phthalate           | 3.96         |               | ND                                     | ND                                     | ND          | ND                                     | ND          | ND                                     |
| Bis-(2-ethylhexyl) nhthalate   | 8 96         |               | ND                                     | ND                                     | 22.8        | ND                                     | ND          | ND                                     |
| Diethyl nhthalate              | 3.05         |               | ND                                     | 3,33                                   | ND          | ND                                     | ND          | ND                                     |
| Dimethyl phthalate             | 1 44         |               | ND                                     |                                        | ND          | ND                                     | ND          | ND                                     |
| Di-n-octyl phthalate           | 1            |               | ND                                     | ND                                     | ND          | 1.1                                    | ND          | ND                                     |
| 3.3-Dichlorobenzidine          | 2.44         |               | ND                                     | ND                                     | ND          | ND                                     | ND          | ND                                     |
| 2.4-Dinitrotoluene             | 1.36         |               | ND                                     | ND                                     | ND          | ND                                     | ND          | ND                                     |
| 2.6-Dinitrotoluene             | 1.53         |               | ND                                     | ND                                     | ND          | ND                                     | ND          | ND                                     |
| 1.2-Dinhenvlhvdrazine          | 1.37         |               | ND                                     | ND                                     | ND          | ND                                     | ND          | ND                                     |
| Fluoranthene                   | 1.33         |               | ND                                     | ND                                     | ND          | ND                                     | ND          | ND                                     |
| Fluorene                       | 1.61         | UG/I          | ND                                     | ND                                     | ND          | ND                                     | ND          | ND                                     |
| Hexachlorobenzene              | 1.48         | UG/I          | ND                                     | ND                                     | ND          | ND                                     | ND          | ND                                     |
| Hexachlorobutadiene            | 1.64         | UG/I          | ND                                     | ND                                     | ND          | ND                                     | ND          | ND                                     |
| Hexachlorocyclopentadiene      | 1.25         | UG/I          | ND                                     | ND                                     | ND          | ND                                     | ND          | ND                                     |
| Hexachloroethane               | 1.32         | UG/L          | ND                                     | ND                                     | ND          | ND                                     | ND          | ND                                     |
| Indeno(1,2,3-CD)pyrene         | 1.14         | UG/L          | ND                                     | ND                                     | ND          | ND                                     | ND          | ND                                     |
| Isophorone                     | 1.53         | UG/L          | ND                                     | ND                                     | ND          | ND                                     | ND          | ND                                     |
| Naphthalene                    | 1.65         | UG/L          | ND                                     | ND                                     | ND          | ND                                     | ND          | ND                                     |
| Nitrobenzene                   | 1.6          | UG/L          | ND                                     | ND                                     | ND          | ND                                     | ND          | ND                                     |
| N-nitrosodimethylamine         | 1.27         | UG/L          | ND                                     | ND                                     | DN02.92     | ND                                     | ND          | ND                                     |
| N-nitrosodi-n-propylamine      | 1.16         | UG/L          | ND                                     | ND                                     | ND          | ND                                     | ND          | ND                                     |
| N-nitrosodiphenylamine         | 3.48         | UG/L          | ND                                     | ND                                     | ND          | ND                                     | ND          | ND                                     |
| Phenanthrene                   | 1.34         | UG/L          | ND                                     | ND                                     | ND          | ND                                     | ND          | ND                                     |
| Pyrene                         | 1.43         | UG/L          | ND                                     | ND                                     | ND          | ND                                     | ND          | ND                                     |
| 1,2,4-Trichlorobenzene         | 1.52         | UG/L          | ND                                     | ND                                     | ND          | ND                                     | ND          | ND                                     |
| Polynuc. Aromatic Hydrocarbons | ====<br>1.77 | =====<br>UG/L | <br>0.0                                | .0.0                                   | .0.0        |                                        | .0.0        |                                        |
| Base/Neutral Compounds         | ====<br>8.96 | =====<br>UG/L | <br>0.0                                | 3.3                                    | 22.8        | 1.1                                    | 0.0         | 0.0                                    |
| Additional Analytes Determined | :            |               |                                        |                                        |             |                                        |             |                                        |
|                                | ====         | =====         |                                        |                                        |             |                                        |             |                                        |
| Benzo[e]pyrene                 | 1.44         | UG/L          | ND                                     | ND                                     | ND          | ND                                     | ND          | ND                                     |
| Biphenyl                       | 2.29         | UG/L          | ND                                     | ND                                     | ND          | ND                                     | ND          | ND                                     |
| 2,6-DimethyInaphthalene        | 2.16         | UG/L          | ND                                     | ND                                     | ND          | ND                                     | ND          | ND                                     |
| 1-Methylnaphthalene            | 2.18         | UG/L          | ND                                     | ND                                     | ND          | ND                                     | ND          | ND                                     |
| 1-Methylphenanthrene           | 1.46         | UG/L          | ND                                     | ND                                     | ND          | ND                                     | ND          | ND                                     |
| 2-MethyInaphthalene            | 2.14         | UG/L          | ND                                     | ND                                     | ND          | ND                                     | ND          | ND                                     |
| 2,3,5-Irimethyinaphthalene     | 2.18         | UG/L          | ND                                     | ND                                     | ND          | ND                                     | ND          | ND                                     |
| Perylene                       | 1.41         | UG/L          | ND                                     | ND                                     | ND          | ND                                     | ND          | ND                                     |
| z-chioronaphtnalene            | 1.8/         | UG/L          | ND                                     | ND                                     | ND          | ND                                     | ND          | ND                                     |

\* = Recovery of compound in internal check and/or matrix spike sample outside method acceptance limits; value is not used in average calculations.

## BASE/NEUTRAL COMPOUNDS EPA Method 8270C

| Source                         |     |       | MBCDEWCN    | MBCDEWCN    | MBCDEWCN    | MBCDEWCN    |
|--------------------------------|-----|-------|-------------|-------------|-------------|-------------|
| Date<br>Applyto                | мпі | Unite | 28-FEB-201/ | 31-MAY-2017 | 31-AUG-2017 | 31-001-2017 |
|                                | === | ===== | F 923627    | F 94 9 908  | F 900490    | F 97 9340   |
| Acenaphthene                   | 330 | UG/KG | ND          | ND          | ND          | ND          |
| Acenaphthylene                 | 330 | UG/KG | ND          | ND          | ND          | ND          |
| Anthracene                     | 330 | UG/KG | ND          | ND          | ND          | ND          |
| Benzidine                      | 330 | UG/KG | ND          | ND          | ND          | ND          |
| 3,4-Benzo(b)fluoranthene       | 330 | UG/KG | ND          | ND          | ND          | ND          |
| Benzo[k]fluoranthene           | 330 | UG/KG | ND          | ND          | ND          | ND          |
| Benzo[a]anthracene             | 330 | UG/KG | ND          | ND          | ND          | ND          |
| Benzo[a]pyrene                 | 330 | UG/KG | ND          | ND          | ND          | ND          |
| Benzo[g,h,i]perylene           | 330 | UG/KG | ND          | ND          | ND          | ND          |
| 4-Bromophenyl phenyl ether     | 330 |       | ND          | ND          | ND          | ND          |
| Bis-(2-chloroethoxy) methane   | 330 |       | ND          | ND          | ND          | ND          |
| Bis (2 chlonoisonnonyl) othon  | 220 |       |             |             |             |             |
| 4_Chlorophenyl phenyl ether    | 220 |       |             |             |             |             |
| 2-Chloronanhthalene            | 550 |       |             |             |             |             |
| Chrysene                       | 330 |       |             |             | ND          |             |
| Dibenzo(a.h)anthracene         | 330 |       | ND          | ND          | ND          | ND          |
| Butyl benzyl phthalate         | 330 |       | ND          | ND          | ND          | 620         |
| Di-n-butyl phthalate           | 330 | UG/KG | ND          | <330        | ND          | ND          |
| Bis-(2-ethylhexvl) phthalate   | 330 | UG/KG | 53700       | 64900       | ND          | 70900       |
| Diethyl phthalate              | 330 | UG/KG | ND          | ND          | ND          | ND          |
| Dimethyl phthalate             | 330 | UG/KG | ND          | ND          | ND          | ND          |
| Di-n-octyl phthalate           | 330 | UG/KG | ND          | ND          | 660         | ND          |
| 3,3-Dichlorobenzidine          | 330 | UG/KG | ND          | ND          | ND          | ND          |
| 2,4-Dinitrotoluene             | 330 | UG/KG | ND          | ND          | ND          | ND          |
| 2,6-Dinitrotoluene             | 330 | UG/KG | ND          | ND          | ND          | ND          |
| 1,2-Diphenylhydrazine          |     | UG/KG | ND          | ND          | ND          | ND          |
| Fluoranthene                   | 330 | UG/KG | <330        | ND          | ND          | ND          |
| Fluorene                       | 330 | UG/KG | ND          | ND          | ND          | ND          |
| Hexachlorobenzene              | 330 | UG/KG | ND          | ND          | ND          | ND          |
| Hexachlorobutadiene            | 330 | UG/KG | ND          | ND          | ND          | ND          |
| Hexachlorocyclopentadiene      | 330 | UG/KG | ND          | ND          | ND          | ND          |
| Hexachloroethane               | 330 | UG/KG | ND          | ND          | ND          | ND          |
| Indeno(1,2,3-CD)pyrene         | 330 | UG/KG | ND          | ND          | ND          | ND          |
| Isophorone                     | 330 | UG/KG | ND          | ND          | ND          | ND          |
| Naphthalene                    | 330 | UG/KG | 385         | 399         | ND          | ND          |
| Nitrobenzene                   | 330 | UG/KG | ND          | ND          | ND          | ND          |
| N-nitrosodimethylamine         | 330 | UG/KG | ND          | ND          | ND          | ND          |
| N-nitrosodi-n-propylamine      | 330 | UG/KG | ND          | ND          | ND          | ND          |
| N-nitrosodiphenylamine         | 330 | UG/KG | ND          | ND          | ND          | ND          |
| Phenanthrene                   | 330 | UG/KG | 632         | 407         | 385         | ND          |
| Pyrene                         | 330 | UG/KG | <330        | ND          | ND          | <330        |
| 1,2,4-Trichlorobenzene         | 330 |       | ND          | ND          | ND          | ND          |
| 1,2-Dichlonobenzene            | 330 |       | ND          | ND          | ND          |             |
| 1 4 Dichlonobonzono            | 220 |       |             |             |             |             |
|                                |     | ===== | ND          | ND          | ND          |             |
| PolyNuc Aromatic Hydrocarbons  | 330 |       | 632         | 407         | 385         |             |
| Dichlorobenzenes               | 330 |       | 052         | 407<br>Ø    | 905         | 9           |
|                                | === | ===== |             |             |             |             |
| Base/Neutral Compounds         | 330 | UG/KG | 54717       | 65706       | 1045        | 71520       |
| Additional Analytoc Dotonminod |     |       |             |             |             |             |
|                                | ;   |       |             |             |             |             |
| Benzo[e]pyrene                 |     | UG/KG | ND          | ND          | ND          | ND          |
| Biphenyl                       |     | UG/KG | ND          | 195         | ND          | ND          |
| 2,6-Dimethylnaphthalene        |     | UG/KG | 2020        | 1390        | 1160        | 1420        |
| 1-Methylnaphthalene            |     | UG/KG | ND          | ND          | ND          | ND          |
| 1-Methylphenanthrene           |     | UG/KG | ND          | ND          | ND          | ND          |
| 2-Methylnaphthalene            |     | UG/KG | 1060        | 542         | 415         | 345         |
| 2,3,5-Trimethylnaphthalene     |     | UG/KG | ND          | ND          | ND          | ND          |
| Perylene                       | 330 | UG/KG | ND          | ND          | ND          | ND          |
| Pyridine                       |     | UG/KG | ND          | ND          | 218         | ND          |

### Dioxin and Furan Analysis EPA Method 1613

| Source                  |      |       | PLR      | PLR     |
|-------------------------|------|-------|---------|---------|---------|---------|---------|---------|----------|---------|
| Month                   |      |       | JAN     | MAR     | APR     | MAY     | JUN     | JUL     | AUG      | SEP     |
| Analyte                 | MDL  | Units | P914715 | P925684 | P932305 | P936544 | P946048 | P953432 | P959720  | P970354 |
|                         | ==== | ===== | ======= |         | ======= |         | ======= |         |          |         |
| 2,3,7,8-tetra CDD       | .209 | PG/L  | ND       | ND      |
| 1,2,3,7,8-penta CDD     | .366 | PG/L  | ND       | ND      |
| 1,2,3,4,7,8_hexa_CDD    | .331 | PG/L  | ND       | ND      |
| 1,2,3,6,7,8-hexa CDD    | .37  | PG/L  | ND       | ND      |
| 1,2,3,7,8,9-hexa CDD    | .324 | PG/L  | ND       | ND      |
| 1,2,3,4,6,7,8-hepta CDD | .408 | PG/L  | DNQ14.5 | DNQ12.8 | DNQ16.2 | DNQ18.3 | DNQ16.8 | DNQ17.1 | DNQ12.7  | DNQ17.6 |
| octa CDD                | 1.1  | PG/L  | 160     | 110     | 160     | 190     | 140     | 140     | 100      | 140     |
| 2,3,7,8-tetra CDF       | .196 | PG/L  | ND      | ND      | ND      | ND      | ND      | DNQ1.09 | ND       | ND      |
| 1,2,3,7,8-penta CDF     | .32  | PG/L  | ND       | ND      |
| 2,3,4,7,8-penta CDF     | 303  | PG/L  | ND       | ND      |
| 1,2,3,4,7,8-hexa CDF    | .29  | PG/L  | ND       | ND      |
| 1,2,3,6,7,8-hexa CDF    | .311 | PG/L  | ND      | ND      | ND      | 2.02    | DNQ2.29 | DNQ2.61 | ND       | ND      |
| 1,2,3,7,8,9-hexa CDF    | .359 | PG/L  | ND       | ND      |
| 2,3,4,6,7,8-hexa CDF    | .376 | PG/L  | ND      | ND      | ND      | ND      | ND      | ND      | DNQ2.150 | ND      |
| 1,2,3,4,6,7,8-hepta CDF | .346 | PG/L  | DNQ4.25 | DNQ2.33 | DNQ3.23 | DNQ4.70 | DNQ3.86 | DNQ4.15 | DNQ3.08  | DNQ4.73 |
| 1,2,3,4,7,8,9-hepta CDF | .484 | PG/L  | ND       | ND      |
| octa CDF                | .858 | PG/L  | DNQ11.0 | DNQ5.72 | DNQ7.48 | DNQ8.70 | DNQ8.84 | DNQ8.62 | DNQ7.64  | DNQ8.56 |

| Source                  |      |       | PLR      | PLR      |
|-------------------------|------|-------|----------|----------|
| Month                   |      |       | NOV      | DEC      |
| Analyte                 | MDL  | Units | P979793  | P986773  |
|                         | ==== | ===== | =======  | =======  |
| 2,3,7,8-tetra CDD       | .209 | PG/L  | ND       | ND       |
| 1,2,3,7,8-penta CDD     | .366 | PG/L  | ND       | ND       |
| 1,2,3,4,7,8_hexa_CDD    | .331 | PG/L  | ND       | ND       |
| 1,2,3,6,7,8-hexa CDD    | .37  | PG/L  | ND       | ND       |
| 1,2,3,7,8,9-hexa CDD    | .324 | PG/L  | ND       | ND       |
| 1,2,3,4,6,7,8-hepta CDD | .408 | PG/L  | DNQ13.8  | DNQ10.8  |
| octa CDD                | 1.1  | PG/L  | 150      | 99.0     |
| 2,3,7,8-tetra CDF       | .196 | PG/L  | DNQ0.932 | DNQ0.853 |
| 1,2,3,7,8-penta CDF     | .32  | PG/L  | ND       | ND       |
| 2,3,4,7,8-penta CDF     | 303  | PG/L  | ND       | ND       |
| 1,2,3,4,7,8-hexa CDF    | .29  | PG/L  | ND       | ND       |
| 1,2,3,6,7,8-hexa CDF    | .311 | PG/L  | ND       | ND       |
| 1,2,3,7,8,9-hexa CDF    | .359 | PG/L  | ND       | ND       |
| 2,3,4,6,7,8-hexa CDF    | .376 | PG/L  | ND       | ND       |
| 1,2,3,4,6,7,8-hepta CDF | .346 | PG/L  | DNQ4.43  | DNQ3.31  |
| 1,2,3,4,7,8,9-hepta CDF | .484 | PG/L  | ND       | ND       |
| octa CDF                | .858 | PG/L  | DNQ7.43  | DNQ7.75  |

Above are permit required CDD/CDF isomers.

ND=not detected; NS=not sampled; NA=not analyzed; NR=not required DNQ= Detected but not quantified. Sample result is less than the Minimum Level but greater than or equal to MDL. ANALYZED BY: Frontier Analytical Laboratories

# ANNUAL 2017

### Dioxin and Furan Analysis EPA Method 1613

| Source                  |      |       | PLE     |
|-------------------------|------|-------|---------|---------|---------|---------|---------|---------|---------|---------|
| Month                   |      |       | JAN     | FEB     | MAR     | APR     | MAY     | JUN     | JUL     | AUG     |
| Analyte                 | MDL  | Units | P914712 | P919157 | P925681 | P932302 | P936538 | P946045 | P953429 | P959714 |
|                         | ==== | ===== | ======= |         | ======= |         | ======= | ======  | ======  |         |
| 2,3,7,8-tetra CDD       | .316 | PG/L  | ND      |
| 1,2,3,7,8-penta CDD     | .607 | PG/L  | ND      |
| 1,2,3,4,7,8_hexa_CDD    | .808 | PG/L  | ND      |
| 1,2,3,6,7,8-hexa CDD    | .891 | PG/L  | ND      |
| 1,2,3,7,8,9-hexa CDD    | .756 | PG/L  | ND      |
| 1,2,3,4,6,7,8-hepta CDD | .857 | PG/L  | DNQ2.47 | DNQ2.43 | DNQ2.69 | DNQ2.56 | DNQ3.00 | DNQ3.10 | DNQ3.64 | DNQ3.35 |
| octa CDD                | 1.2  | PG/L  | DNQ15.0 | DNQ14.0 | DNQ15.0 | DNQ16.0 | DNQ21.0 | DNQ17.0 | DNQ45.0 | DNQ21.0 |
| 2,3,7,8-tetra CDF       | .307 | PG/L  | ND      |
| 1,2,3,7,8-penta CDF     | .421 | PG/L  | ND      |
| 2,3,4,7,8-penta CDF     | .431 | PG/L  | ND      |
| 1,2,3,4,7,8-hexa CDF    | .486 | PG/L  | ND      |
| 1,2,3,6,7,8-hexa CDF    | .521 | PG/L  | ND      |
| 1,2,3,7,8,9-hexa CDF    | .663 | PG/L  | ND      |
| 2,3,4,6,7,8-hexa CDF    | .556 | PG/L  | ND      |
| 1,2,3,4,6,7,8-hepta CDF | .489 | PG/L  | ND      |
| 1,2,3,4,7,8,9-hepta CDF | .69  | PG/L  | ND      |
| octa CDF                | 1.7  | PG/L  | ND      | ND      | ND      | ND      | ND      | ND      | DNQ2.50 | ND      |

|                         |      |       | PLE     | PLE     | PLE     | PLE     |
|-------------------------|------|-------|---------|---------|---------|---------|
|                         |      |       | SEP     | OCT     | NOV     | DEC     |
| Analyte                 | MDL  | Units | P970351 | P973063 | P979790 | P986770 |
|                         | ==== | ===== |         |         | ======= | ======= |
| 2,3,7,8-tetra CDD       | .316 | PG/L  | ND      | ND      | ND      | ND      |
| 1,2,3,7,8-penta CDD     | .607 | PG/L  | ND      | ND      | ND      | ND      |
| 1,2,3,4,7,8_hexa_CDD    | .808 | PG/L  | ND      | ND      | ND      | ND      |
| 1,2,3,6,7,8-hexa CDD    | .891 | PG/L  | ND      | ND      | ND      | ND      |
| 1,2,3,7,8,9-hexa CDD    | .756 | PG/L  | ND      | ND      | ND      | ND      |
| 1,2,3,4,6,7,8-hepta CDD | .857 | PG/L  | DNQ2.53 | DNQ2.33 | ND      | DNQ2.49 |
| octa CDD                | 1.2  | PG/L  | DNQ16.0 | DNQ11.0 | DNQ8.90 | DNQ17.0 |
| 2,3,7,8-tetra CDF       | .307 | PG/L  | ND      | ND      | ND      | ND      |
| 1,2,3,7,8-penta CDF     | .421 | PG/L  | ND      | ND      | ND      | ND      |
| 2,3,4,7,8-penta CDF     | .431 | PG/L  | ND      | ND      | ND      | ND      |
| 1,2,3,4,7,8-hexa CDF    | .486 | PG/L  | ND      | ND      | ND      | ND      |
| 1,2,3,6,7,8-hexa CDF    | .521 | PG/L  | ND      | ND      | ND      | ND      |
| 1,2,3,7,8,9-hexa CDF    | .663 | PG/L  | ND      | ND      | ND      | ND      |
| 2,3,4,6,7,8-hexa CDF    | .556 | PG/L  | ND      | ND      | ND      | ND      |
| 1,2,3,4,6,7,8-hepta CDF | .489 | PG/L  | ND      | ND      | ND      | ND      |
| 1,2,3,4,7,8,9-hepta CDF | .69  | PG/L  | ND      | ND      | ND      | ND      |
| octa CDF                | 1.7  | PG/L  | ND      | ND      | ND      | ND      |

Above are permit required CDD/CDF isomers. ND=not detected; NS=not sampled; NA=not analyzed; NR=not required DNQ= Detected but not quantified. Sample result is less than the Minimum Level but greater than or equal to MDL. ANALYZED BY: Frontier Analytical Laboratories

#### Dioxin and Furan Analysis EPA Method 1613

| Source                  |      |       |       | PLR      | PLR      | PLR      | PLR      | PLR      | PLR      |
|-------------------------|------|-------|-------|----------|----------|----------|----------|----------|----------|
|                         |      |       |       | TCDD     | TCDD     | TCDD     | TCDD     | TCDD     | TCDD     |
| Month                   |      |       |       | JAN      | FEB      | MAR      | MAY      | JUN      | JUL      |
| Analyte                 | MDL  | Units | Equiv | P914715  | P919163  | P925684  | P936544  | P946048  | P953432  |
|                         |      | ===== |       |          |          |          |          |          |          |
| 2,3,7,8-tetra CDD       | .209 | PG/L  | 1.000 | ND       | ND       | ND       | ND       | ND       | ND       |
| 1,2,3,7,8-penta CDD     | .366 | PG/L  | 0.500 | ND       | ND       | ND       | ND       | ND       | ND       |
| 1,2,3,4,7,8_hexa_CDD    | .331 | PG/L  | 0.100 | ND       | ND       | ND       | ND       | ND       | ND       |
| 1,2,3,6,7,8-hexa CDD    | .37  | PG/L  | 0.100 | ND       | ND       | ND       | ND       | ND       | ND       |
| 1,2,3,7,8,9-hexa CDD    | .324 | PG/L  | 0.100 | ND       | ND       | ND       | ND       | ND       | ND       |
| 1,2,3,4,6,7,8-hepta CDD | .408 | PG/L  | 0.010 | DNQ0.145 | DNQ0.224 | DNQ0.128 | DNQ0.183 | DNQ0.168 | DNQ0.171 |
| octa CDD                | 1.1  | PG/L  | 0.001 | 0.160    | 0.180    | 0.110    | 0.190    | 0.140    | 0.140    |
| 2,3,7,8-tetra CDF       | .196 | PG/L  | 0.100 | ND       | ND       | ND       | ND       | ND       | DNQ0.109 |
| 1,2,3,7,8-penta CDF     | .32  | PG/L  | 0.050 | ND       | ND       | ND       | ND       | ND       | ND       |
| 2,3,4,7,8-penta CDF     | .303 | PG/L  | 0.500 | ND       | ND       | ND       | ND       | ND       | ND       |
| 1,2,3,4,7,8-hexa CDF    | .29  | PG/L  | 0.100 | ND       | ND       | ND       | ND       | ND       | ND       |
| 1,2,3,6,7,8-hexa CDF    | .311 | PG/L  | 0.100 | ND       | DNQ0.110 | ND       | 0.202    | DNQ0.229 | DNQ0.261 |
| 1,2,3,7,8,9-hexa CDF    | .359 | PG/L  | 0.100 | ND       | ND       | ND       | ND       | ND       | ND       |
| 2,3,4,6,7,8-hexa CDF    | .376 | PG/L  | 0.100 | ND       | ND       | ND       | ND       | ND       | ND       |
| 1,2,3,4,6,7,8-hepta CDF | .346 | PG/L  | 0.010 | DNQ0.043 | DNQ0.032 | DNQ0.023 | DNQ0.047 | DNQ0.039 | DNQ0.042 |
| 1,2,3,4,7,8,9-hepta CDF | .484 | PG/L  | 0.010 | ND       | ND       | ND       | ND       | ND       | ND       |
| octa CDF                | .858 | PG/L  | 0.001 | DNQ0.011 | DNQ0.008 | DNQ0.006 | DNQ0.009 | DNQ0.009 | DNQ0.009 |

| Source                  |      |       |       | PLR      | PLR      | PLR      | PLR      |
|-------------------------|------|-------|-------|----------|----------|----------|----------|
|                         |      |       |       | TCDD     | TCDD     | TCDD     | TCDD     |
| Month                   |      |       |       | SEP      | ОСТ      | NOV      | DEC      |
| Analyte                 | MDL  | Units | Equiv | P970354  | P973069  | P979793  | P986773  |
|                         |      | ===== | ===== | =======  | =======  | =======  | =======  |
| 2,3,7,8-tetra CDD       | .209 | PG/L  | 1.000 | ND       | ND       | ND       | ND       |
| 1,2,3,7,8-penta CDD     | .366 | PG/L  | 0.500 | ND       | ND       | ND       | ND       |
| 1,2,3,4,7,8_hexa_CDD    | .331 | PG/L  | 0.100 | ND       | ND       | ND       | ND       |
| 1,2,3,6,7,8-hexa CDD    | .37  | PG/L  | 0.100 | ND       | ND       | ND       | ND       |
| 1,2,3,7,8,9-hexa CDD    | .324 | PG/L  | 0.100 | ND       | ND       | ND       | ND       |
| 1,2,3,4,6,7,8-hepta CDD | .408 | PG/L  | 0.010 | DNQ0.176 | DNQ0.126 | DNQ0.138 | DNQ0.108 |
| octa CDD                | 1.1  | PG/L  | 0.001 | 0.140    | 0.110    | 0.150    | 0.099    |
| 2,3,7,8-tetra CDF       | .196 | PG/L  | 0.100 | ND       | ND       | DNQ0.093 | DNQ0.085 |
| 1,2,3,7,8-penta CDF     | .32  | PG/L  | 0.050 | ND       | ND       | ND       | ND       |
| 2,3,4,7,8-penta CDF     | .303 | PG/L  | 0.500 | ND       | ND       | ND       | ND       |
| 1,2,3,4,7,8-hexa CDF    | .29  | PG/L  | 0.100 | ND       | ND       | ND       | ND       |
| 1,2,3,6,7,8-hexa CDF    | .311 | PG/L  | 0.100 | ND       | ND       | ND       | ND       |
| 1,2,3,7,8,9-hexa CDF    | .359 | PG/L  | 0.100 | ND       | ND       | ND       | ND       |
| 2,3,4,6,7,8-hexa CDF    | .376 | PG/L  | 0.100 | ND       | ND       | ND       | ND       |
| 1,2,3,4,6,7,8-hepta CDF | .346 | PG/L  | 0.010 | DNQ0.047 | DNQ0.042 | DNQ0.044 | DNQ0.033 |
| 1,2,3,4,7,8,9-hepta CDF | .484 | PG/L  | 0.010 | ND       | ND       | ND       | ND       |
| octa CDF                | .858 | PG/L  | 0.001 | DNQ0.009 | DNQ0.008 | DNQ0.007 | DNQ0.008 |

Above are permit required CDD/CDF isomers.

ND=not detected; NS=not sampled; NA=not analyzed; NR=not required

DNQ= Detected but not quantified. Sample result is less than the Minimum Level but greater than or equal to MDL.

ANALYZED BY: Frontier Analytical Laboratories

#### Dioxin and Furan Analysis EPA Method 1613

| Source                  |       |       |       | PLE      | PLE      | PLE      | PLE      | PLE      | PLE      |
|-------------------------|-------|-------|-------|----------|----------|----------|----------|----------|----------|
|                         |       |       |       | TCDD     | TCDD     | TCDD     | TCDD     | TCDD     | TCDD     |
| Month                   |       |       |       | JAN      | FEB      | MAR      | MAY      | JUN      | JUL      |
| Analyte                 | MDL   | Units | Equiv | P914712  | P919157  | P925681  | P936538  | P946045  | P953429  |
|                         | ===== | ===== | ===== | =======  | =======  | =======  | =======  | =======  | =======  |
| 2,3,7,8-tetra CDD       | .316  | PG/L  | 1.000 | ND       | ND       | ND       | ND       | ND       | ND       |
| 1,2,3,7,8-penta CDD     | .607  | PG/L  | 0.500 | ND       | ND       | ND       | ND       | ND       | ND       |
| 1,2,3,4,7,8_hexa_CDD    | .808  | PG/L  | 0.100 | ND       | ND       | ND       | ND       | ND       | ND       |
| 1,2,3,6,7,8-hexa CDD    | .891  | PG/L  | 0.100 | ND       | ND       | ND       | ND       | ND       | ND       |
| 1,2,3,7,8,9-hexa CDD    | .756  | PG/L  | 0.100 | ND       | ND       | ND       | ND       | ND       | ND       |
| 1,2,3,4,6,7,8-hepta CDD | .857  | PG/L  | 0.010 | DNQ0.025 | DNQ0.024 | DNQ0.027 | DNQ0.030 | DNQ0.031 | DNQ0.036 |
| octa CDD                | 1.2   | PG/L  | 0.001 | DNQ0.015 | DNQ0.014 | DNQ0.015 | DNQ0.021 | DNQ0.017 | DNQ0.045 |
| 2,3,7,8-tetra CDF       | .307  | PG/L  | 0.100 | ND       | ND       | ND       | ND       | ND       | ND       |
| 1,2,3,7,8-penta CDF     | .421  | PG/L  | 0.050 | ND       | ND       | ND       | ND       | ND       | ND       |
| 2,3,4,7,8-penta CDF     | .431  | PG/L  | 0.500 | ND       | ND       | ND       | ND       | ND       | ND       |
| 1,2,3,4,7,8-hexa CDF    | .486  | PG/L  | 0.100 | ND       | ND       | ND       | ND       | ND       | ND       |
| 1,2,3,6,7,8-hexa CDF    | .521  | PG/L  | 0.100 | ND       | ND       | ND       | ND       | ND       | ND       |
| 1,2,3,7,8,9-hexa CDF    | .663  | PG/L  | 0.100 | ND       | ND       | ND       | ND       | ND       | ND       |
| 2,3,4,6,7,8-hexa CDF    | .556  | PG/L  | 0.100 | ND       | ND       | ND       | ND       | ND       | ND       |
| 1,2,3,4,6,7,8-hepta CDF | .489  | PG/L  | 0.010 | ND       | ND       | ND       | ND       | ND       | ND       |
| 1,2,3,4,7,8,9-hepta CDF | .69   | PG/L  | 0.010 | ND       | ND       | ND       | ND       | ND       | ND       |
| octa CDF                | 1.7   | PG/L  | 0.001 | ND       | ND       | ND       | ND       | ND       | DNQ0.003 |

| Source                  |       |       |       | PLE      | PLE      | PLE      | PLE      |
|-------------------------|-------|-------|-------|----------|----------|----------|----------|
|                         |       |       |       | TCDD     | TCDD     | TCDD     | TCDD     |
| Month                   |       |       |       | SEP      | 0CT      | NOV      | DEC      |
| Analyte                 | MDL   | Units | Equiv | P970351  | P973063  | P979790  | P986770  |
|                         | ===== | ===== | ===== | =======  |          | ======== | ======== |
| 2,3,7,8-tetra CDD       | .316  | PG/L  | 1.000 | ND       | ND       | ND       | ND       |
| 1,2,3,7,8-penta CDD     | .607  | PG/L  | 0.500 | ND       | ND       | ND       | ND       |
| 1,2,3,4,7,8_hexa_CDD    | .808  | PG/L  | 0.100 | ND       | ND       | ND       | ND       |
| 1,2,3,6,7,8-hexa CDD    | .891  | PG/L  | 0.100 | ND       | ND       | ND       | ND       |
| 1,2,3,7,8,9-hexa CDD    | .756  | PG/L  | 0.100 | ND       | ND       | ND       | ND       |
| 1,2,3,4,6,7,8-hepta CDD | .857  | PG/L  | 0.010 | DNQ0.025 | DNQ0.023 | ND       | DNQ0.025 |
| octa CDD                | 1.2   | PG/L  | 0.001 | DNQ0.016 | DNQ0.011 | DNQ0.009 | DNQ0.017 |
| 2,3,7,8-tetra CDF       | .307  | PG/L  | 0.100 | ND       | ND       | ND       | ND       |
| 1,2,3,7,8-penta CDF     | .421  | PG/L  | 0.050 | ND       | ND       | ND       | ND       |
| 2,3,4,7,8-penta CDF     | .431  | PG/L  | 0.500 | ND       | ND       | ND       | ND       |
| 1,2,3,4,7,8-hexa CDF    | .486  | PG/L  | 0.100 | ND       | ND       | ND       | ND       |
| 1,2,3,6,7,8-hexa CDF    | .521  | PG/L  | 0.100 | ND       | ND       | ND       | ND       |
| 1,2,3,7,8,9-hexa CDF    | .663  | PG/L  | 0.100 | ND       | ND       | ND       | ND       |
| 2,3,4,6,7,8-hexa CDF    | .556  | PG/L  | 0.100 | ND       | ND       | ND       | ND       |
| 1,2,3,4,6,7,8-hepta CDF | .489  | PG/L  | 0.010 | ND       | ND       | ND       | ND       |
| 1,2,3,4,7,8,9-hepta CDF | .69   | PG/L  | 0.010 | ND       | ND       | ND       | ND       |
| octa CDF                | 1.7   | PG/L  | 0.001 | ND       | ND       | ND       | ND       |

Above are permit required CDD/CDF isomers.

ND=not detected; NS=not sampled; NA=not analyzed; NR=not required

DNQ= Detected but not quantified. Sample result is less than minimum Level but greater than or equal to MDL.

ANALYZED BY: Frontier Analytical Laboratories

## ANNUAL 2017

#### Dioxin and Furan AnalysiS EPA Method 8290

| Source                  |       |       | MBCDEWCN    |
|-------------------------|-------|-------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Date                    |       |       | 31-JAN-2017 | 28-FEB-2017 | 31-MAR-2017 | 30-APR-2017 | 31-MAY-2017 | 30-JUN-2017 | 31-JUL-2017 |
| Analyte                 | MDL   | Units | P920340     | P925827     | P932213     | P937935     | P945968     | P953132     | P959635     |
|                         | ===== | ===== | ==========  |             |             |             |             |             |             |
| 2,3,7,8-tetra CDD       | .315  | PG/G  | DNQ0.902    | ND          | DNQ0.733    | ND          | ND          | DNQ0.887    | ND          |
| 1,2,3,7,8-penta CDD     | .084  | PG/G  | DNQ2.78     | DNQ2.26     | DNQ5.4      | ND          | ND          | DNQ2.58     | DNQ2.19     |
| 1,2,3,4,7,8_hexa_CDD    | .0793 | PG/G  | DNQ2.29     | DNQ1.58     | DNQ1.81     | DNQ1.87     | DNQ1.89     | DNQ1.69     | DNQ1.69     |
| 1,2,3,6,7,8-hexa CDD    | .094  | PG/G  | 16.0        | 13.3        | 14.9        | 18.3        | 11.0        | 14.7        | 11.2        |
| 1,2,3,7,8,9-hexa CDD    | .0823 | PG/G  | DNQ6.70     | DNQ5.41     | DNQ6.39     | DNQ6.81     | DNQ4.63     | DNQ4.98     | DNQ4.06     |
| 1,2,3,4,6,7,8-hepta CDD | .0842 | PG/G  | 338         | 289         | 281         | 280         | 205         | 246         | 212         |
| octa CDD                | .172  | PG/G  | 1570        | 1400        | 1400        | 1240        | 1030        | 1150        | 934         |
| 2,3,7,8-tetra CDF       | .0277 | PG/G  | 4.22        | 3.70        | 3.70        | 5.07        | 4.02        | 476         | 4.64        |
| 1,2,3,7,8-penta CDF     | .0449 | PG/G  | DNQ1.68     | DNQ1.15     | DNQ1.43     | DNQ1.78     | DNQ1.65     | DNQ1.67     | DNQ1.67     |
| 2,3,4,7,8-penta CDF     | .0468 | PG/G  | DNQ2.01     | DNQ1.37     | DNQ2.36     | DNQ2.10     | DNQ2.76     | DNQ1.46     | DNQ1.73     |
| 1,2,3,4,7,8-hexa CDF    | .0437 | PG/G  | DNQ2.16     | DNQ1.81     | DNQ2.20     | DNQ2.37     | DNQ1.89     | DNQ2.32     | DNQ2.31     |
| 1,2,3,6,7,8-hexa CDF    | .0417 | PG/G  | DNQ2.13     | DNQ1.49     | DNQ2.08     | DNQ2.35     | DNQ2.64     | DNQ3.21     | DNQ2.66     |
| 1,2,3,7,8,9-hexa CDF    | .0657 | PG/G  | DNQ0.981    | L DNQ0.625  | DNQ0.946    | DNQ1.12     | DNQ0.929    | DNQ1.04     | DNQ0.816    |
| 2,3,4,6,7,8-hexa CDF    | .0574 | PG/G  | DNQ2.31     | DNQ1.86     | DNQ2.26     | DNQ2.41     | DNQ2.11     | DNQ2.71     | DNQ2.67     |
| 1,2,3,4,6,7,8-hepta CDF | .0747 | PG/G  | 25.2        | 18.3        | 22.8        | 23.2        | 18.8        | 21.3        | 19.6        |
| 1,2,3,4,7,8,9-hepta CDF | .0883 | PG/G  | DNQ1.84     | DNQ1.30     | DNQ1.75     | DNQ1.57     | DNQ1.45     | DNQ1.71     | DNQ1.06     |
| octa CDF                | .776  | PG/G  | 61.9        | 46.4        | 58.9        | 56.9        | 43.3        | 54.9        | 42.7        |

| Source<br>Date<br>Analyte | MDL   | Units | MBCDEWCN<br>31-AUG-2017<br>P966456 | MBCDEWCN<br>30-SEP-2017<br>P974186 | MBCDEWCN<br>31-OCT-2017<br>P979340 | MBCDEWCN<br>30-NOV-2017<br>P986442 | MBCDEWCN<br>31-DEC-2017<br>P992862 |
|---------------------------|-------|-------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|
| 2,3,7,8-tetra CDD         | .315  | PG/G  | ND                                 | DNQ0.644                           | ND                                 | DNQ0.799                           | ND                                 |
| 1,2,3,7,8-penta CDD       | .084  | PG/G  | DNQ2.09                            | DNQ2.88                            | DNQ4.21                            | DNQ5.05                            | ND                                 |
| 1,2,3,4,7,8_hexa_CDD      | .0793 | PG/G  | DNQ1.58                            | DNQ1.63                            | DNQ1.72                            | DNQ1.76                            | DNQ1.66                            |
| 1,2,3,6,7,8-hexa CDD      | .094  | PG/G  | 14.3                               | 11.2                               | 16.0                               | 15.5                               | 10.6                               |
| 1,2,3,7,8,9-hexa CDD      | .0823 | PG/G  | DNQ4.79                            | DNQ3.96                            | DNQ5.15                            | DNQ5.62                            | DNQ3.86                            |
| 1,2,3,4,6,7,8-hepta CDD   | .0842 | PG/G  | 247                                | 235                                | 248                                | 251                                | 225                                |
| octa CDD                  | .172  | PG/G  | 993                                | 1180                               | 1040                               | 1010                               | 1100                               |
| 2,3,7,8-tetra CDF         | .0277 | PG/G  | 3.71                               | 4.48                               | 4.60                               | 4.11                               | 3.84                               |
| 1,2,3,7,8-penta CDF       | .0449 | PG/G  | DNQ1.60                            | DNQ1.64                            | DNQ2.06                            | DNQ2.35                            | DNQ1.79                            |
| 2,3,4,7,8-penta CDF       | .0468 | PG/G  | DNQ2.80                            | DNQ1.67                            | DNQ2.38                            | DNQ2.19                            | DNQ1.95                            |
| 1,2,3,4,7,8-hexa CDF      | .0437 | PG/G  | DNQ2.16                            | DNQ2.46                            | DNQ2.26                            | DNQ2.54                            | DNQ2.57                            |
| 1,2,3,6,7,8-hexa CDF      | .0417 | PG/G  | DNQ2.15                            | DNQ2.01                            | DNQ2.17                            | DNQ2.07                            | DNQ3.23                            |
| 1,2,3,7,8,9-hexa CDF      | .0657 | PG/G  | DNQ1.15                            | DNQ1.01                            | DNQ1.23                            | DNQ1.11                            | DNQ0.942                           |
| 2,3,4,6,7,8-hexa CDF      | .0574 | PG/G  | DNQ2.52                            | DNQ2.76                            | DNQ2.90                            | DNQ2.94                            | DNQ2.69                            |
| 1,2,3,4,6,7,8-hepta CDF   | .0747 | PG/G  | 18.9                               | 20.8                               | 19.8                               | 21.0                               | 20.5                               |
| 1,2,3,4,7,8,9-hepta CDF   | .0883 | PG/G  | DNQ1.76                            | DNQ1.65                            | DNQ2.36                            | DNQ1.63                            | DNQ1.61                            |
| octa CDF                  | .776  | PG/G  | 40.0                               | 47.1                               | 44.9                               | 48.2                               | 48.5                               |

Above are permit required CDD/CDF isomers.

ND=not detected; NS=not sampled; NA=not analyzed; NR=not required DNQ= Detected but not quantified. Sample result is less than the Minimum Level but greater than or equal to MDL. ANALYZED BY: Frontier Analytical Laboratories This page intentionally left blank.
# VII. Other Required Information

- A. Notes on Specific Analysis
- B. Report of Operator Certification
- C. Status of the Operations and Maintenance Manual

This page intentionally left blank

#### A. Notes on Specific Analysis

It should be noted that some of the reference methods are equivalent. The organic priority pollutant analyses listed in EPA's <u>Test Methods for Evaluating Solid Waste</u>, <u>Physical/Chemical Methods</u>, SW-846 (ref. c) are equivalent to the methods EPA prescribes for water in <u>Methods for Chemical Analysis of Water and Wastes</u>, (ref. a). Specifically, wastewater methods 3510 and 8270 (ref. d) together are the same as water method 625 (ref. a), and Method 8260B (ref. c) is equivalent to Method 624 (ref. a). Methods 3550 and 8270 together are equivalent to the <u>E.P.A. Contract Laboratory Program's</u> (ref. aa) method for ultrasonication and gas chromatograph-mass spectrometric analysis. The EPA's metals analyses for water (ref. a) generally just refers to the procedure in <u>Standard Methods</u> (ref. b, bb).

#### 2. Detection Limit

MDLs for various analyses were updated in 2017. The MDLs referenced in this report are the maximum MDL for the calendar year. The following is a table listing the changes in the laboratory MDLs that occurred in 2017, by Analyses Code and Analyte Name. All MDL studies were performed following CFR136.3. MDL studies utilized clean matrix, i.e. Deionized Water or clean sand.

| ANALYSIS_CODE | ANALYTE_NAME        | EFFECTIVE_DATE | CURRENT_MDL | PAST_MDL | UNITS |
|---------------|---------------------|----------------|-------------|----------|-------|
|               | 1,2,4-              |                |             |          |       |
| BN_GRIT       | Trichlorobenzene    | 1-Oct-17       | 330         | 979      | UG/KG |
| BN_GRIT       | 1,2-Dichlorobenzene | 1-Oct-17       | 330         | 342      | UG/KG |
| BN_GRIT       | 1,3-Dichlorobenzene | 1-Oct-17       | 330         | 733      | UG/KG |
| BN_GRIT       | 1,4-Dichlorobenzene | 1-Oct-17       | 330         | 1270     | UG/KG |
| OPHOS_DSLDG   | Chlorpyrifos        | 5-Apr-17       | 1.94        | 2        | UG/KG |
| OPHOS_DSLDG   | Coumaphos           | 5-Apr-17       | 5.54        | 33       | UG/KG |
| OPHOS_DSLDG   | Demeton O           | 5-Apr-17       | 2.41        | 67       | UG/KG |
| OPHOS_DSLDG   | Demeton S           | 5-Apr-17       | 11.7        | 27       | UG/KG |
| OPHOS_DSLDG   | Diazinon            | 5-Apr-17       | 1.57        | 2        | UG/KG |
| OPHOS_DSLDG   | Dichlorvos          | 5-Apr-17       | 1.12        | 17       | UG/KG |
| OPHOS_DSLDG   | Disulfoton          | 5-Apr-17       | 4.1         | 20       | UG/KG |
| OPHOS_DSLDG   | Guthion             | 5-Apr-17       | 13.2        | 33       | UG/KG |
| OPHOS_DSLDG   | Malathion           | 5-Apr-17       | 1.78        | 20       | UG/KG |
| OPHOS_DSLDG   | Parathion           | 5-Apr-17       | 2.04        | 20       | UG/KG |
| OPHOS_DSLDG   | Stirophos           | 5-Apr-17       | 3.55        | 20       | UG/KG |

# B. Report of Operator Certification

#### **Report of Operator Certification**

The following list includes all Wastewater Treatment Plant Operators working for the Public Utilities Wastewater Department at the Point Loma Wastewater Treatment Plant and their California State certification status **as of January 2018**. Name, Certification Grade, Certification Number, and expiration date are shown for each operator.

| NAME                                                    | Grade | Cert # | Expiration |
|---------------------------------------------------------|-------|--------|------------|
| Chief Plant Operator of the Metro<br>Wastewater System: |       |        |            |
| Juan C. Guerreiro                                       | V     | 27670  | Dec 2020   |
| PTL Superintendent:                                     |       |        |            |
| Marlow, David                                           | V     | 10216  | Dec 2018   |
| Senior Operations Supervisors:                          |       |        |            |
| Moreno, Daniel G                                        | V     | 40707  | Dec 2018   |
| <b>Operations Supervisors:</b>                          |       |        |            |
| Avila, Juan                                             | III   | 28383  | Dec 2020   |
| Decatur, Herb                                           | III   | 28880  | Jun 2020   |
| Gonzales-Bueno Noemi                                    | III   | 41833  | Jul 2020   |
| Nuñez, Carlos                                           | III   | 7626   | Jun 2021   |
| Hayvert, William                                        | III   | 27959  | Dec 2020   |
| Plant Operators:                                        |       |        |            |
| Ayers, Jeffrey                                          | Π     | 40253  | May 2021   |
| Carroll, Gregory                                        | Π     | 34033  | May 2020   |
| Childress, Linda                                        | Π     | 41589  | Jan 2020   |
| Dornfeld, Michael                                       | II    | 7678   | Dec 2018   |
| Hernandez, Ricardo                                      | OIT   |        | Feb 2021   |
| Hill, Shalamar                                          | II    | 43545  | Apr 2021   |
| Jaime, Eugene                                           | OIT   |        | Feb 2021   |

| NAME               | Grade | Cert # | Expiration |
|--------------------|-------|--------|------------|
| Jimenez, Francisco | OIT   |        | Feb 2021   |
| Langford, Craig    | Π     | 41084  | Aug 2021   |
| Majors, Michael    | OIT   |        | Jan 2020   |
| Mohler, Victor     | III   | 28869  | Jun 2021   |
| Robosa, Michael    | III   | 42729  | Jun 2021   |
| Sardina, Michael   | Π     | 42415  | Sept 2018  |
| Valenzuela, Sam    | Π     | 40695  | Jan 2020   |
| Wade, Brian        | II    | 9141   | Dec 2018   |

The following list includes all Wastewater Treatment Plant Operators working for the Public Utilities Wastewater Department at the Metro Biosolids Center and their California State certification status <u>as of June</u> <u>2018</u>, Name, Certification Grade, Certification Number, and expiration date are shown for each operator.

| NAME                           | Grade | Cert # | Expiration |
|--------------------------------|-------|--------|------------|
| MBC Superintendent:            |       |        |            |
| Richard Pitchford              | V     | 9851   | Jun 2020   |
| Senior Operations Supervisors: |       |        |            |
| Paul Farnsworth                | v     | 9664   | Dec 2020   |
| Operations Supervisors:        |       |        |            |
| John Cauzza                    | III   | 8563   | Jun 2021   |
| Dedric Evans                   | III   | 10196  | Jun 2021   |
| Adolfo Gonzalez                | III   | 40774  | Feb 2021   |
| Eric Griffiths                 | III   | 28975  | Dec 2020   |
| Matt Tomas                     | III   | 29044  | Dec 2020   |
| Javier Zavala                  | III   | 9635   | Jun 2020   |
| Plant Operators:               |       |        |            |
| Larren Colum                   | II    | 41857  | Dec 2018   |
| Joaquun Contreras              | OIT   |        | Dec 2020   |
| Raymond Crowder                | III   | 40563  | Aug 2021   |
| Montrell Harris                | III   | 43222  | Aug 2021   |
| Laura Kaiser                   | II    | 28842  | Jun 2021   |
| Boun Keokham                   | OIT   |        | Jun 2021   |
| Robert Lane                    | III   | 42574  | Feb 2021   |
| Eric Neptune                   | II    | 28839  | Jun 2020   |
| John Reeder                    | III   | 42592  | Feb 2021   |
| Ben Reynolds                   | II    | 6638   | Dec 2020   |

The following list includes all Wastewater Treatment Plant Operators working for the Public Utilities Wastewater Department at the Metro Biosolids Center and their California State certification status <u>as of June</u> <u>2018</u>. Name, Certification Grade, Certification Number, and expiration date are shown for each operator.

| NAME                           | Grade | Cert # | Expiration |
|--------------------------------|-------|--------|------------|
| СОМС                           |       |        |            |
| Senior Operations Supervisors: |       |        |            |
| Paul Farnsworth                | V     | 9664   | Dec 2020   |
| <b>Operations Supervisors:</b> |       |        |            |
| Barry Calton                   | III   | 10178  | Jun 2021   |
| Romeo Feliciano                | III   | 28436  | Jun 2020   |
| Frank Perea                    | III   | 7968   | Jun 2020   |
| Sony Reth                      | III   | 29023  | Jun 2021   |
| Senior Wastewater Operator     |       |        |            |
| Traci Squyres                  | III   | 35602  | Sep 2018   |
| Gilbert Alpas                  | III   | 6314   | 12/31/18   |

The following list includes all Wastewater Treatment Plant Operators working for the Public Utilities Wastewater Department at the North City Water Reclamation Plant (NCWRP) and their California State certification status **as of June 2017.** Name, Certification Grade, Certification Number, and expiration date are shown for each operator.

| NAME                           | Grade    | Cert # | Expiration |
|--------------------------------|----------|--------|------------|
| NCWRP Superintendent:          |          |        |            |
| Tom Rosales                    | V        | 7529   | 12/14/2018 |
| Senior Operations Supervisors: |          |        |            |
| Elisabete Pinto                | V        | 10265  | 06/30/2020 |
| Steven Bates                   | V        | 42759  | 04/28/2020 |
| <b>Operations Supervisors:</b> |          |        |            |
| John Cozad                     | III      | 7138   | 12/31/2020 |
| Richie Jacques                 | III      | 27921  | 06/30/2021 |
| John Carroll                   | V        | 28867  | 06/09/2020 |
| Rob Relph                      | III      | 6742   | 12/31/2018 |
| Plant Operators:               |          |        |            |
| George Wendorf                 | Π        | 9774   | 12/31/2020 |
| Carlos Costa                   | OIT - II | N/A    | 02/21/2021 |
| Nahdia Mohammed                | OIT - I  | N/A    | 04/04/2020 |

| NAME            | Grade    | Cert # | Expiration |
|-----------------|----------|--------|------------|
| Kira Woodson    | OIT – I  | N/A    | 06/15/2021 |
| Giacomo Vitko   | OIT – II | N/A    | 08/15/2021 |
| Marshall Hullin | III      | 42679  | 04/11/2020 |
| Mathew Birchett | III      | 42338  | 04/10/2021 |
| Noel Saulog     | II       | 10299  | 12/31/2018 |

The following list includes all Wastewater Treatment Plant Operators working for the Public Utilities Wastewater Department at the South Bay Water Reclamation Plant (SBWRP) and their California State certification status **as of June 2017.** Name, Certification Grade, Certification Number, and expiration date are shown for each operator.

| NAME                                      | Grade | Cert # | Expiration |
|-------------------------------------------|-------|--------|------------|
| SBWRP Superintendent:                     |       |        |            |
| Ernesto Molas                             | V     | 7227   | 12/31/2020 |
| Senior Wastewater Operations Supervisors: |       |        |            |
| Eileen McNeil                             | V     | 28965  | 4/29/2020  |
| Wastewater Operations Supervisors-PC:     |       |        |            |
| Eddy Mata                                 | III   | 7027   | 6/30/2020  |
| Wastewater Operations Supervisors:        |       |        |            |
| Teresa Gardiner                           | III   | 10657  | 12/31/2020 |
| William Mercado                           | III   | 41838  | 9/23/2020  |
| Wastewater Operators:                     |       |        |            |
| Austin Maddox                             | IV    | 44147  | 10/23/2020 |
| Douglas Evans                             | Π     | 9844   | 6/30/2018  |
| Romeo Millan                              | Π     | 9846   | 6/30/2018  |
| Gabriel Duresseau                         | II    | 28294  | 7/1/2018   |
| James Johnson                             | II    | 29021  | 6/30/2020  |
| Mohamed Dembele                           | OIT-I |        | 7/9/2021   |

#### C. Status of the Operations and Maintenance Manual

#### Point Loma WTP:

There is an approved O&M Manual for the PLWTP. Plant staff continues to review and update the Manual and Standard Operating Procedures (SOP's) as necessary to keep current with changes in equipment, processes, and standards of practice. New procedures are included as needs are identified. For example, PLWTP Staff, in conjunction with the Safety Staff, have developed and established a standard Lock-Out/Tag-Out Program to serve all Public Utilities Department Facilities.

# VIII. Appendices

- A. Terms and Abbreviations used in this Report
- B. Methods of Analysis
- C. Frequency of Analysis and Type of Sample
- D. Laboratories contributing Results used in this report
- E. QA Summary Report
- F. Staff Contributing to this Report
- G. System wide calculation definition

This page intentionally left blank.

# A. Terms and Abbreviations used in this Report

Along with standard abbreviations the following is a list of local/uncommon abbreviations and terms for the readers' reference.

# TERMINOLOGY and ABBREVIATIONS for REFERENCE

| Biosolids              | - Digested or processed sludge                                                        |
|------------------------|---------------------------------------------------------------------------------------|
| C-1-P                  | - Central Digester Number 1, Primary, Point Loma                                      |
| C-2-P                  | - Central Digester Number 2, Primary, Point Loma                                      |
| Dig 1                  | - MBC Digester number 1                                                               |
| Dig 2                  | - MBC Digester number 2                                                               |
| Dig 3                  | - MBC Digester number 3                                                               |
| Dig 7                  | - Digester Number 7, Primary, Point Loma                                              |
| Dig 8                  | - Digester Number 8. Primary, Point Loma                                              |
| DIG COMP               | - Digested Biosolids Composite; a composite of grabs taken from each of the           |
|                        | in-service digesters                                                                  |
| DNO                    | - Detected, but Not Quantified                                                        |
| EFF                    | - Effluent                                                                            |
| Field Replicate        | - Separate samples collected at approximately the same time from the same sample site |
| INF                    | - Influent                                                                            |
| MBC                    | - Metro Biosolids Center                                                              |
| MBC COMBCN             | - MBC Combined Centrate: the centrate from all the dewatering centrifuges             |
| (The return stream fro | om MBC to the sewer system)                                                           |
| MBC NC DSL             | - North City to Metropolitan Biosolids Center (MBC) Digested Sludge Line              |
| MBCDEWCN               | - Metro Biosolids Center Dewatering Centrifuges: typically the dewatered              |
|                        | biosolids from these these centrifuges                                                |
| MGD                    | - million gallons per day                                                             |
| N01-PEN                | - The plant primary Influent from the Penasquitos Pump Station                        |
| N01-PS_INF             | - The plant primary Influent from Pump Station 64                                     |
| N10-PSP COMB           | - raw sludge                                                                          |
| N15-WAS LCP            | - Waste Activated Sludge – low capacity pumps                                         |
| N-1-P                  | - North Digester Number 1, Primary, Point Loma                                        |
| N-2-P                  | - North Digester Number 2, Primary, Point Loma                                        |
| N30-DFE                | - NCWRP Disinfected Final Effluent                                                    |
| N34-REC WATER          | - NCWRP Reclaimed Water                                                               |
| NA                     | - not analyzed                                                                        |
| NCWRP                  | - North City Water Reclamation Plant                                                  |
| ND                     | - not dectected                                                                       |
| NPDES                  | - National Pollutant Discharge Elimination System                                     |
| NR                     | - not required                                                                        |
| NS                     | - not sampled                                                                         |
| PLE                    | - Point Loma Effluent (effluent from the plant)                                       |
| PLR                    | - Point Loma Raw (influent to the plant)                                              |
| PLWTP                  | - Point Loma Wastewater Treatment Plant                                               |
| RAW COMP               | - A Composite of Raw Sludge taken over the preceding 24 hours                         |
| S-1-P                  | - South Digester Number 1, Primary, Point Loma                                        |
| S-2-P                  | - South Digester Number 2, Primary, Point Loma                                        |
| U.S.EPA                | - United States Environmental Protection Agency                                       |
| WRP                    | - Water Reclamation Plant                                                             |
| WTP                    | - Wastewater Treatment Plant                                                          |

### <u>UNITS</u>

| mg/L          | milligrams per liter                       |
|---------------|--------------------------------------------|
| ug/L          | micrograms per liter = 0.001 mg/L          |
| ng/L          | nanograms per liter = $0.001 \text{ ug/L}$ |
| mg/Kg         | milligrams per kilogram                    |
| ug/Kg         | micrograms per kilogram                    |
| ng/Kg         | nanograms per kilogram                     |
| pg/L          | picograms per liter                        |
| pg/Kg         | picograms per kilogram                     |
| pc/L or pCi/L | pico curies per liter                      |
| TU            | toxicity units                             |
| ntu           | nephelometric turbidity units              |
| °C            | . degrees Celsius = degrees centigrade     |
| MGD           | million gallons per day                    |
| umhos/cm      | micromhos per centimeter                   |
| uS            | microsiemens = umhos                       |
| mils/100 mL   | millions per 100 milliliters               |
| nd            | not detected                               |
| NA            | not analyzed (when in a data column)       |
| NR            | not required                               |
| NS            | not sampled                                |
|               |                                            |

#### CHEMICAL TERMS & ABBREVIATIONS:

| AA                  | Atomic Absorption Spectroscopy    |
|---------------------|-----------------------------------|
| BOD                 | Biochemical Oxygen Demand         |
| BOD5                | . 5-Day Biochemical Oxygen        |
| Demand              |                                   |
| CN <sup>-</sup>     | .Cyanide                          |
| COD                 | Chemical Oxygen Demand            |
| $Cr^{6+}$           | .Hexavalent Chromium              |
| D.O                 | .Dissolved Oxygen                 |
| DDD                 | Dichlorodiphenyldichloroethane    |
|                     | .(a.k.a. TDE-                     |
|                     | tetrachlorodiphenylethane)        |
| DDE                 | .Dichlorodiphenyldichloroethylene |
| DDT                 | Dichlorodiphenyltrichloroethane   |
| FeCl <sub>3</sub>   | .Ferric Chloride                  |
| G&O                 | .Grease and Oil                   |
| GC                  | .Gas chromatography.              |
| GC-ECD              | Electron Capture Detector         |
| GC-FID              | Flame Ionization Detector         |
| GC-FPD              | Flame Photometric Detector        |
| GC-MS               | Mass Spectroscopy                 |
| $H_2S.\ldots\ldots$ | .Hydrogen Sulfide                 |
| Hg                  | .Mercury                          |
| IC                  | .Ion Chromatography               |
| ICP-AES             | Inductively Coupled Plasma-       |
|                     | Atomic Emission Spectroscopy      |

| MDL                           | Method Detection Limit            |
|-------------------------------|-----------------------------------|
| MSD                           | .Mass Spectroscopy Detector       |
| NH3                           | Ammonia                           |
| NH <sub>3</sub> -N            | .Ammonia Nitrogen                 |
| $NH_4^+$                      | .Ammonium ion                     |
| NO3 <sup>-</sup>              | Nitrate                           |
| PAD                           | .Pulsed Amperometric Detector     |
| PCB                           | .Polychlorinated Biphenyls        |
| PO4 <sup>3-</sup>             | Phosphate                         |
| SO <sub>4</sub> <sup>2-</sup> | Sulfate                           |
| SS                            | Suspended Solids                  |
| TBT                           | Tributyl tin                      |
| TCH                           | .Total Chlorinated Hydrocarbons   |
|                               | (i.e. chlorinated pesticides &    |
|                               | PCB's)                            |
| TCLP                          | .Toxicity Characteristic Leaching |
|                               | Procedure                         |
| TDS                           | Total Dissolved Solids            |
| TS                            | Total Solids                      |
| TVS                           | Total Volatile Solids             |
| VSS                           | Volatile Suspended Solids         |

# B. Methods of Analysis

#### WASTEWATER INFLUENT and EFFLUENT (General)

| Analyte                                       | Description 2017                                         | Instrumentation 2016                                                                                                                 | Instrumentation 2017                                                                        | Method 2017                                                 |
|-----------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Alkalinity                                    | Selected Endpoint Titration                              | Mettler DL-21 & 25<br>Titrator<br>Orion 950<br>Mettler DL-15                                                                         | Mettler DL-21 & 25<br>Titrator<br>Orion 950<br>Mettler DL-15                                | SM 2320 B-1997                                              |
| Ammonia<br>Nitrogen                           | Distillation and Titration                               | Buchi Distillation Unit<br>K-314, B-324, K-350<br>Orion 950 pH Meter<br>Mettler DL25 titrator<br>Mettler DL15 titrator<br>Orion 250A | Buchi Distillation Unit K-<br>314 & K-350<br>Orion 950 pH<br>Meter/Titrator                 | SM 4500-NH3 B,C-<br>1997                                    |
| Biochemical<br>Oxygen Demand<br>(BOD-5 Day)   | Dissolved Oxygen Meter with<br>Dissolved Oxygen Probe    | YSI-5000 DO Meter<br>YSI-5100 DO Meter<br>YSI 59 DO Meter (5905<br>Probe)                                                            | YSI-5000 DO Meter<br>YSI-5100 DO Meter<br>YSI 59 DO Meter (5905<br>Probe)                   | SM 5210 B-2001                                              |
| Biochemical<br>Oxygen Demand<br>(BOD-Soluble) | Dissolved Oxygen Probe                                   | YSI-5000 DO Meter<br>YSI-5100 DO Meter<br>YSI 59 DO Meter (5905<br>Probe)                                                            | YSI-5000 DO Meter<br>YSI-5100 DO Meter<br>YSI 59 DO Meter (5905<br>Probe)<br>YSI Probe 5010 | SM 5210 B-2001                                              |
| Chemical Oxygen<br>Demand<br>(COD)            | Closed Reflux / Colorimetric                             | Hach DR-2010 UV/Vis<br>spectrophotometer<br>Hach DR2700                                                                              | Hach DR-2010 UV/Vis<br>spectrophotometer<br>Hach DR2700<br>Hach DR1900                      | HACH 8000                                                   |
| Conductivity                                  | Conductivity Meter with<br>Wheatstone Bridge probe       | YSI-3100, YSI-3200,<br>Orion 115A,Orion 250,<br>Accumet Model 150                                                                    | YSI-3100, YSI-3200,<br>Orion 115A,Orion 250,<br>Accumet Model 150                           | SM 2510 B-1997                                              |
| Cyanide                                       | Acid Digest/Distil./Colorimetric                         | Hach DR-4000/Vis                                                                                                                     | Hot plate distillation and<br>Hach DR4000<br>Midi-Vap 4000<br>Distillation & Hach<br>DR1900 | SM4500-CN E 1999 &<br>SM4500 CN B or C<br>1999<br>EPA 335.4 |
| Floating<br>Particulates                      | Flotation Funnel                                         | Various models of balances.                                                                                                          | Metler Toledo ML204T<br>analytical balance                                                  | SM 2530 B-2010                                              |
| Flow                                          | Continuous Meter                                         | Gould (pressure sensor),<br>ADS (sonic sensor), or<br>Venturi (velocity sensor)                                                      | Gould (pressure sensor),<br>ADS (sonic sensor), or<br>Venturi (velocity sensor)             |                                                             |
| Hardness; Ca,<br>Mg, Total                    | ICP-OES / Calculation                                    | IRIS INTREPID DUO &<br>ICAP 6300                                                                                                     | ICAP 6300 & ICAP 7600                                                                       | EPA 200.7, Rev. 4.4<br>(1994) & SM 2340 B-<br>1997          |
| Kjeldahl Nitrogen<br>(TKN)                    | Macro-Digestion / Titration                              | Velp scientificA<br>Buchi K-314 distiller &<br>Orion 950 pH meter                                                                    | Buchi Distillation Unit K-<br>314 & K-350<br>Orion 950 pH<br>Meter/Titrator                 | SM-4500-Norg B-<br>1997                                     |
| Oil and Grease                                | Hexane Extraction / Gravimetric                          | Various models of balances.                                                                                                          | Various models of balances.                                                                 | EPA 1664B                                                   |
| Organic Carbon<br>(TOC)                       | Catalytic Oxidation / IR<br>Water Production Laboratory) | Shimadzu ASI-5000                                                                                                                    | Shimadzu ASI-5000                                                                           | 5310 B (Water<br>Production<br>Laboratory)                  |

 $Y: EMTS \ ions \ WCS \ EPORTS \ EVWTP \ Annual 2017 \ Final\_Reports \ 2017\_! Annual \ docx$ 

| Analyte                                                           | Description 2017                             | Instrumentation 2016                    | Instrumentation 2017                           | Method 2017                               |
|-------------------------------------------------------------------|----------------------------------------------|-----------------------------------------|------------------------------------------------|-------------------------------------------|
| рН                                                                | Hydrogen+Reference Electrode                 | Various models of pH meters.            | Various models of pH meters.                   | SM 4500-Н\+\ В-<br>2000                   |
| Radiation (alpha & beta)                                          | Alpha Spectroscopy<br>Gamma Spectroscopy     | External Laboratory<br>(FGL)            | External Laboratory (FGL)                      | EPA 900 (External<br>Laboratory)          |
| Sulfides                                                          | Acid Digest-Distillation /<br>Titration      | Class A Manual Buret                    | Hot plate distillation/Class A<br>Manual Buret | EPA 9034 &<br>EPA 9030B<br>(Distillation) |
| Solids, Dissolved-<br>Total                                       | Gravimetric @ 180°C using analytical balance | Various models of balances.             | Various models of balances.                    | SM 2540 C-1997                            |
| Solids, Settleable                                                | Volumetric                                   | Imhoff Cone                             | Imhoff Cone                                    | SM 2540 F-1997                            |
| Solids, Suspended-<br>Total                                       | Gravimetric @ 103-105°C                      | Various models of balances.             | Various models of balances.                    | SM 2540 D-1997                            |
| Solids, Suspended-<br>Volatile                                    | Gravimetric @ 500°C                          | Various models of balances.             | Various models of balances.                    | SM 2540 E-1997                            |
| Solids, Total                                                     | Gravimetric @ 103-105°C                      | Various models of balances.             | Various models of balances.                    | SM 2540 B-1997                            |
| Solids, Total-<br>Volatile                                        | Gravimetric @ 500°C                          | Various models of balances.             | Various models of balances.                    | EPA 160.4 (Issued 1971)                   |
| Temperature                                                       | Direct Reading                               | Fisher Digital<br>Thermometer           | Fisher Digital Thermometer                     | SM 2550 B-2010                            |
| Turbidity                                                         | Nephelometer Turbidimeter                    | Hach 2100-N Meter<br>Hach 2100-AN Meter | Hach 2100-N Meter<br>Hach 2100-AN Meter        | SM 2130B-2001                             |
| Bromide, Chloride,<br>Fluoride,<br>Nitrate, Phosphate,<br>Sulfate | Ion Chromatography                           | Dionex ICS-3000                         | Dionex ICS-3000                                | EPA 300.0, Rev 2.1<br>(1993)              |

# WASTEWATER INFLUENT and EFFLUENT (Metals)

| Analyte   | Description 2017               | Instrumentation 2016             | Instrumentation 2017       | Method 2017                                             |
|-----------|--------------------------------|----------------------------------|----------------------------|---------------------------------------------------------|
| Aluminum  | Acid Digestion / ICP-OES       | ICAP 6300                        | ICAP 6300 & NexION<br>300X | EPA 200.7 Rev. 4.4 (1994) &<br>EPA 200.8 Rev 5.4 (1994) |
| Antimony  | Acid Digestion / ICP-OES       | ICAP 6300                        | ICAP 6300/NexION 300X      | EPA 200.7 Rev. 4.4 (1994) &<br>EPA 200.8 Rev 5.4 (1994) |
| Arsenic   | Hydride Generation AA / ICP-MS | Thermo iCE 3000                  | ICAP 6300 & NexION<br>300X | EPA 200.7 Rev. 4.4 (1994) &<br>EPA 200.8 Rev 5.4 (1994) |
| Barium    | Acid Digestion / ICP-OES       | ICAP 6300                        | ICAP 6300 & NexION<br>300X | EPA 200.7 Rev. 4.4 (1994) &<br>EPA 200.8 Rev 5.4 (1994) |
| Beryllium | Acid Digestion / ICP-OES       | ICAP 6300                        | ICAP 6300 & NexION<br>300X | EPA 200.7 Rev. 4.4 (1994) &<br>EPA 200.8 Rev 5.4 (1994) |
| Boron     | Acid Digestion / ICP-OES       | ICAP 6300                        | ICAP 6300 & NexION<br>300X | EPA 200.7 Rev. 4.4 (1994) &<br>EPA 200.8 Rev 5.4 (1994) |
| Cadmium   | Acid Digestion / ICP-OES       | ICAP 6300                        | ICAP 6300 & NexION<br>300X | EPA 200.7 Rev. 4.4 (1994) &<br>EPA 200.8 Rev 5.4 (1994) |
| Calcium   | ICP-OES                        | IRIS INTREPID DUO<br>& ICAP 6300 | ICAP 6300 & ICAP 7600      | EPA 200.7, Rev. 4.4 (1994)                              |
| Chromium  | Acid Digestion / ICP-OES       | ICAP 6300                        | ICAP 6300 & NexION<br>300X | EPA 200.7 Rev. 4.4 (1994) &<br>EPA 200.8 Rev 5.4 (1994) |
| Cobalt    | Acid Digestion / ICP-OES       | ICAP 6300                        | ICAP 6300 & NexION<br>300X | EPA 200.7 Rev. 4.4 (1994) &<br>EPA 200.8 Rev 5.4 (1994) |

| Analyte    | Description 2017                                         | Instrumentation 2016                                 | Instrumentation 2017                              | Method 2017                                                      |
|------------|----------------------------------------------------------|------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------|
| Copper     | Acid Digestion / ICP-OES                                 | ICAP 6300                                            | ICAP 6300 & NexION<br>300X                        | EPA 200.7 Rev. 4.4 (1994) &<br>EPA 200.8 Rev 5.4 (1994)          |
| Lead       | Acid Digestion / ICP-OES                                 | ICAP 6300                                            | ICAP 6300 & NexION<br>300X                        | EPA 200.7 Rev. 4.4 (1994) &<br>EPA 200.8 Rev 5.4 (1994)          |
| Lithium    | ICP-OES                                                  | IRIS INTREPID DUO<br>& ICAP 6300                     | ICAP 6300 & ICAP 7600                             | EPA 200.7, Rev. 4.4 (1994)                                       |
| Magnesium  | ICP-OES                                                  | IRIS INTREPID DUO<br>& ICAP 6300                     | ICAP 6300 & ICAP 7600                             | EPA 200.7, Rev. 4.4 (1994)                                       |
| Manganese  | Acid Digestion / ICP-OES                                 | ICAP 6300                                            | ICAP 6300 & NexION<br>300X                        | EPA 200.7 Rev. 4.4 (1994) &<br>EPA 200.8 Rev 5.4 (1994)          |
| Mercury    | Cold vapor atomic<br>fluorescence spectroscopy<br>(CVAF) | PSAnalytical PSA<br>10.035 Millennium<br>Merlin 1631 | PSAnalytical PSA 10.035<br>Millennium Merlin 1631 | EPA 1631E for Point Loma samples only/EPA 245.7                  |
| Molybdenum | Acid Digestion / ICP-AES                                 | ICAP 6300                                            | ICAP 6300 & NexION<br>300X                        | EPA 200.7 Rev. 4.4 (1994) &<br>EPA 200.8 Rev 5.4 (1994)          |
| Nickel     | Acid Digestion / ICP-AES                                 | ICAP 6300                                            | ICAP 6300 & NexION<br>300X                        | EPA 200.7 Rev. 4.4 (1994) &<br>EPA 200.8 Rev 5.4 (1994)          |
| Potassium  | Acid Digestion / ICP-AES                                 | ICAP 6300                                            | ICAP 6300 & NexION<br>300X                        | EPA 200.7 Rev. 4.4 (1994) &<br>EPA 200.8 Rev 5.4 (1994)          |
| Selenium   | Hydride Generation AA /<br>ICP-MS                        | Thermo iCE 3000                                      | Thermo iCE 3000/<br>NexION 300X                   | SM 3114 B-2009<br>& SM 3114 C-2009 & EPA<br>200.8 Rev 5.4 (1994) |
| Silver     | Acid Digestion / ICP-AES                                 | ICAP 6300                                            | ICAP 6300 & NexION<br>300X                        | EPA 200.7 Rev. 4.4 (1994) &<br>EPA 200.8 Rev 5.4 (1994)          |
| Sodium     | ICP-OES                                                  | IRIS INTREPID DUO<br>& ICAP 6300                     | ICAP 6300 & ICAP 7600                             | EPA 200.7 Rev. 4.4 (1994) &<br>EPA 200.8 Rev 5.4 (1994)          |
| Thallium   | Acid Digestion / ICP-AES                                 | ICAP 6300                                            | ICAP 6300 & NexION<br>300X                        | EPA 200.7 Rev. 4.4 (1994) &<br>EPA 200.8 Rev 5.4 (1994)          |
| Vanadium   | Acid Digestion / ICP-AES                                 | ICAP 6300                                            | ICAP 6300 & NexION<br>300X                        | EPA 200.7 Rev. 4.4 (1994) &<br>EPA 200.8 Rev 5.4 (1994)          |
| Zinc       | Acid Digestion / ICP-AES                                 | ICAP 6300                                            | ICAP 6300 & NexION<br>300X                        | EPA 200.7 Rev. 4.4 (1994) &<br>EPA 200.8 Rev 5.4 (1994)          |

# WASTEWATER INFLUENT and EFFLUENT (Organics)

| Analyte                        | Description 2017                                                                                 | Instrumentation 2016                                                                                                      | Instrumentation 2017                                                                                            | Method 2017                          |
|--------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Acrolein and<br>Acrylonitrile  | Purge & Trap, GC-<br>MSD                                                                         | O-I Analytical Eclipse<br>4660purge&trap/4552autosampler<br>Agilent-6890N GC /5973N MSD<br>Capillary J&W DB-624           | O-I Analytical Eclipse<br>4660purge&trap/4552autosampler<br>Agilent-6890N GC /5973N MSD<br>Capillary J&W DB-624 | EPA 8260 B                           |
| Base/Neutral<br>Extractables   | Basic / Methylene<br>Chloride<br>continuous extraction,<br>GC-MSD                                | HP-6890GC / 5973MSD<br>Capillary DB-5.625                                                                                 | Agilent 7890A GC / 5975C MSD<br>Capillary DB-5.625                                                              | EPA 625                              |
| Benzidines                     | Basic / Methylene<br>Chloride<br>continuous extraction,<br>GC-MSD                                | HP-6890GC / 5973MSD<br>Capillary DB-5.625                                                                                 | Agilent 7890A GC / 5975C MSD<br>Capillary DB-5.625                                                              | EPA 625                              |
| Chlorinated<br>Compounds       | Methylene Chloride<br>extraction,<br>GC-ECD                                                      | Perkin Elmer Clarus 680<br>Elite-CLP 30M/0.32mm/0.5um<br>Elite-CLP2 30M/0.32mm/0.25um                                     | Agilent 7890B GC-ECD<br>Elite-CLP 30M/0.32mm/0.5um<br>Elite-CLP2 30M/0.32mm/0.25um                              | EPA 608                              |
| Dioxin                         | Outside Contract<br>(Frontier)                                                                   | External Laboratory (Frontier & TestAmerica)                                                                              | External Laboratory (Frontier)                                                                                  | EPA 1613<br>(external<br>laboratory) |
| Organophosphorus<br>Pesticides | Methylene Chloride<br>15% / Hexane 85%<br>extraction,<br>GC-PFPD                                 | Shimadzu GC-2010 PFPD RTX-<br>OPP 30m/0.32mm/0.5um<br>RTX-OPP2 30m/0.32mm/0.32um                                          | Shimadzu GC-2010 PFPD RTX-OPP<br>30m/0.32mm/0.5um<br>RTX-OPP2 30m/0.32mm/0.32um                                 | EPA 614                              |
| Phenolic<br>Compounds          | Acidic / Methylene<br>Chloride<br>continuous extraction,<br>GC-MSD                               | HP-6890GC / 5973MSD<br>Capillary DB-5.625                                                                                 | Agilent 7890A GC / 5975C MSD<br>Capillary DB-5.625                                                              | EPA 625                              |
| Purgeables (VOCs)              | Purge & Trap, GC-<br>MSD                                                                         | O-I Analytical Eclipse<br>4660purge&trap/4552autosampler<br>Agilent-6890N GC /5973N MSD<br>Capillary J&W DB-624           | O-I Analytical Eclipse<br>4660purge&trap/4552autosampler<br>Agilent-6890N GC /5973N MSD<br>Capillary J&W DB-624 | EPA 8260 B                           |
| Tri, Di, and<br>Monobutyl Tin  | Methylene Chloride<br>extraction,<br>derivatization,<br>hexane exchange,<br>GC-PFPD & GC-<br>FPD | Varian 3400 GC-FPD<br>DB-608/30m<br>DB-1/30m<br>&<br>Shimadzu GC-2010PFPD<br>RTX-1 30m/0.25mm/1um RTX-5<br>30m/0.25mm/1um | Shimadzu GC-2010PFPD<br>RTX-1 30m/0.25mm/1um RTX-5<br>30m/0.25mm/1um                                            | In house<br>method                   |

| Analyte                    | Description 2017                         | Instrumentation 2016             | Instrumentation 2017                                                               | Method 2017                               |
|----------------------------|------------------------------------------|----------------------------------|------------------------------------------------------------------------------------|-------------------------------------------|
| Alkalinity                 | Selected Endpoint Titration              | Mettler 25 Titrator<br>Orion 950 | Mettler 25 Titrator<br>Orion 950                                                   | SM 2320 B-1997                            |
| Cyanide                    | Acid Digest-Distil /<br>Colorimetric     | Hach DR/4000V                    | Hot plate distillation & Hach<br>DR4000<br>Hot plate distillation & Hach<br>DR6000 | EPA 9014 &<br>EPA 9010B<br>(Distillation) |
| рН                         | Hydrogen+Reference<br>Electrode          | Various models of pH meters.     | Various models of pH meters.                                                       | SM 4500-Н\+\ В-<br>2000                   |
| Radiation (alpha & beta)   | Alpha Spectroscopy<br>Gamma Spectroscopy | External Laboratory<br>(FGL)     | External Laboratory (FGL)                                                          | EPA 900                                   |
| Sulfides                   | Acid Digest-Distil / Titration           | Class A Manual Buret             | Class A Manual Buret                                                               | EPA 9034 &<br>EPA 9030B<br>(Distillation) |
| Sulfides, reactive         | Distillation / Titration                 | Class A Manual Buret             | Class A Manual Buret                                                               | Section 7.3 SW-846<br>EPA 9034            |
| Solids, Total              | Gravimetric @ 103-105°C                  | Various models of balances.      | Various models of balances.                                                        | SM 2540G 1997                             |
| Solids, Total-<br>Volatile | Gravimetric @ 500°C                      | Various models of balances.      | Various models of balances.                                                        | SM 2540G 1997                             |

# LIQUID SLUDGE: Raw, Digested, and Filtrate (General)

| A 1.       | D ::: 0017                                                                                              |                                                                                                                                                                | J                                                                                                                                                        | N 4 1 2017                        |
|------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Analyte    | Description 2017                                                                                        | Instrumentation 2016                                                                                                                                           | Instrumentation 2017                                                                                                                                     | Method 2017                       |
| Aluminum   | Acid Digestion / ICP-OES                                                                                | IRIS INTREPID DUO &<br>ICAP 6300                                                                                                                               | ICAP 6300                                                                                                                                                | EPA 6010B                         |
| Antimony   | Acid Digestion / ICP-OES                                                                                | IRIS INTREPID DUO &<br>ICAP 6300                                                                                                                               | ICAP 6300                                                                                                                                                | EPA 6010B                         |
| Arsenic    | Hydride Generation / AA                                                                                 | Thermo iCE 3000                                                                                                                                                | Thermo iCE 3000                                                                                                                                          | EPA 7062                          |
| Beryllium  | Acid Digestion / ICP-OES                                                                                | IRIS INTREPID DUO & ICAP 6300                                                                                                                                  | ICAP 6300                                                                                                                                                | EPA 6010B                         |
| Barium     | Acid Digestion / ICP-OES                                                                                | IRIS INTREPID DUO & ICAP 6300                                                                                                                                  | ICAP 6300                                                                                                                                                | EPA 6010B                         |
| Boron      | Acid Digestion / ICP-OES                                                                                | IRIS INTREPID DUO & ICAP 6300                                                                                                                                  | ICAP 6300                                                                                                                                                | EPA 6010B                         |
| Cadmium    | Acid Digestion / ICP-OES                                                                                | IRIS INTREPID DUO & ICAP 6300                                                                                                                                  | ICAP 6300                                                                                                                                                | EPA 6010B                         |
| Chromium   | Acid Digestion / ICP-OES                                                                                | IRIS INTREPID DUO & ICAP 6300                                                                                                                                  | ICAP 6300                                                                                                                                                | EPA 6010B                         |
| Cobalt     | Acid Digestion / ICP-OES                                                                                | IRIS INTREPID DUO & ICAP 6300                                                                                                                                  | ICAP 6300                                                                                                                                                | EPA 6010B                         |
| Copper     | Acid Digestion / ICP-OES                                                                                | IRIS INTREPID DUO & ICAP 6300                                                                                                                                  | ICAP 6300                                                                                                                                                | EPA 6010B                         |
| Iron       | Acid Digestion / ICP-OES                                                                                | IRIS INTREPID DUO & ICAP 6300                                                                                                                                  | ICAP 6300                                                                                                                                                | EPA 6010B                         |
| Lead       | Acid Digestion / ICP-OES                                                                                | IRIS INTREPID DUO & ICAP 6300                                                                                                                                  | ICAP 6300                                                                                                                                                | EPA 6010B                         |
| Manganese  | Acid Digestion / ICP-OES                                                                                | IRIS INTREPID DUO & ICAP 6300                                                                                                                                  | ICAP 6300                                                                                                                                                | EPA 6010B                         |
| Mercury    | Cold Vapor Atomic<br>Absorption (CVAA) &<br>backup method Thermal<br>decomposition atomic<br>absorption | PSAnalytical PSA 10.045<br>Millennium<br>Backup: Milestone<br>DMA80 (thermal<br>decomposition,<br>amalgamation, and<br>atomic absorption<br>spectrophotometry) | PSAnalytical PSA 10.045<br>Millennium<br>Backup: Milestone DMA80<br>(thermal decomposition,<br>amalgamation, and atomic<br>absorption spectrophotometry) | EPA 7471A and<br>Backup: EPA 7473 |
| Molybdenum | Acid Digestion / ICP-OES                                                                                | IRIS INTREPID DUO & ICAP 6300                                                                                                                                  | ICAP 6300                                                                                                                                                | EPA 6010B                         |
| Nickel     | Acid Digestion / ICP-OES                                                                                | IRIS INTREPID DUO &<br>ICAP 6300                                                                                                                               | ICAP 6300                                                                                                                                                | EPA 6010B                         |
| Selenium   | Hydride Generation / AA                                                                                 | Thermo iCE 3000                                                                                                                                                | Thermo iCE 3000                                                                                                                                          | EPA 7742                          |
| Silver     | Acid Digestion / ICP-OES                                                                                | IRIS INTREPID DUO &<br>ICAP 6300                                                                                                                               | ICAP 6300                                                                                                                                                | EPA 6010B                         |
| Thallium   | Acid Digestion / ICP-OES                                                                                | IRIS INTREPID DUO & ICAP 6300                                                                                                                                  | ICAP 6300                                                                                                                                                | EPA 6010B                         |
| Vanadium   | Acid Digestion / ICP-OES                                                                                | IRIS INTREPID DUO &<br>ICAP 6300                                                                                                                               | ICAP 6300                                                                                                                                                | EPA 6010B                         |
| Zinc       | Acid Digestion / ICP-OES                                                                                | IRIS INTREPID DUO &<br>ICAP 6300                                                                                                                               | ICAP 6300                                                                                                                                                | EPA 6010B                         |

# LIQUID SLUDGE: Raw, Digested, and Filtrate (Metals)

| Analyte                        | Description 2017                                                                                    | Instrumentation 2016                                                                                                      | Instrumentation 2017                                                                                            | Method 2017                          |
|--------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Acrolein and<br>Acrylonitrile  | Purge & Trap, GC-<br>MSD                                                                            | O-I Analytical Eclipse<br>4660purge&trap/4552autosampler<br>Agilent-6890N GC /5973N MSD<br>Capillary J&W DB-624           | O-I Analytical Eclipse<br>4660purge&trap/4552autosampler<br>Agilent-6890N GC /5973N MSD<br>Capillary J&W DB-624 | EPA 8260B                            |
| Base/Neutral<br>Extractables   | Basic / Methylene<br>Chloride<br>continuous<br>extraction,<br>GC-MSD                                | HP-6890GC / 5973MSD<br>Capillary DB-5.625                                                                                 | Agilent 7890A GC / 5975C MSD<br>Capillary DB-5.625                                                              | EPA 625                              |
| Benzidines                     | Basic / Methylene<br>Chloride<br>continuous<br>extraction, GC-<br>MSD                               | HP-6890GC / 5973MSD<br>Capillary DB-5.625                                                                                 | Agilent 7890A GC / 5975C MSD<br>Capillary DB-5.625                                                              | EPA 625                              |
| Chlorinated<br>Compounds       | Methylene<br>Chloride<br>extraction,<br>GC-ECD                                                      | Perkin Elmer Clarus 680<br>Elite-CLP 30M/0.32mm/0.5um<br>Elite-CLP2 30M/0.32mm/0.25um                                     | Agilent 7890B GC-ECD<br>Elite-CLP 30M/0.32mm/0.5um<br>Elite-CLP2 30M/0.32mm/0.25um                              | EPA 8081A                            |
| PCBs                           | Methylene<br>Chloride<br>extraction,<br>GC-ECD                                                      | Perkin Elmer Clarus 680<br>Elite-CLP 30M/0.32mm/0.5um<br>Elite-CLP2 30M/0.32mm/0.25um                                     | Agilent 7890B GC-ECD<br>Elite-CLP 30M/0.32mm/0.5um<br>Elite-CLP2 30M/0.32mm/0.25um                              | EPA 8082                             |
| Dioxin                         | Outside Contract<br>(Frontier)                                                                      | External Laboratory (Frontier & TestAmerica)                                                                              | External Laboratory (Frontier & TestAmerica)                                                                    | EPA 8290<br>(External<br>Laboratory) |
| Organophosphorus<br>Pesticides | Methylene<br>Chloride 15% /<br>Hexane 85%<br>extraction,<br>GC-PFPD                                 | Shimadzu GC-2010 PFPD RTX-OPP<br>30m/0.32mm/0.5um<br>RTX-OPP2 30m/0.32mm/0.32um                                           | Shimadzu GC-2010 PFPD RTX-OPP<br>30m/0.32mm/0.5um<br>RTX-OPP2 30m/0.32mm/0.32um                                 | EPA 614                              |
| Phenolic<br>Compounds          | Acidic / Methylene<br>Chloride<br>continuous<br>extraction, GC-<br>MSD                              | HP-6890GC / 5973MSD<br>Capillary DB-5.625                                                                                 | Agilent 7890A GC / 5975C MSD<br>Capillary DB-5.625                                                              | EPA 625                              |
| Purgeables (VOCs)              | Purge & Trap, GC-<br>MSD                                                                            | O-I Analytical Eclipse<br>4660purge&trap/4552autosampler<br>Agilent-6890N GC /5973N MSD<br>Capillary J&W DB-624           | O-I Analytical Eclipse<br>4660purge&trap/4552autosampler<br>Agilent-6890N GC /5973N MSD<br>Capillary J&W DB-624 | EPA 8260B                            |
| Tri, Di, and<br>Monobutyl Tin  | Methylene<br>Chloride<br>extraction,<br>derivatization,<br>hexane exchange,<br>GC-PFPD & GC-<br>FPD | Varian 3400 GC-FPD<br>DB-608/30m<br>DB-1/30m<br>&<br>Shimadzu GC-2010PFPD<br>RTX-1 30m/0.25mm/1um RTX-5<br>30m/0.25mm/1um | Shimadzu GC-2010PFPD<br>RTX-1 30m/0.25mm/1um RTX-5<br>30m/0.25mm/1um                                            | In house<br>method                   |

| Analyte          | Description 2017   | Instrumentation 2016        | Instrumentation 2017        | Method 2017                      |
|------------------|--------------------|-----------------------------|-----------------------------|----------------------------------|
| Methane          | Gas Chromatography | SRI 8610C GC<br>EG&G 100AGC | SRI 8610C GC<br>EG&G 100AGC | In house method (Based on 2720C) |
| Carbon Dioxide   | Gas Chromatography | SRI 8610C GC<br>EG&G 100AGC | SRI 8610C GC<br>EG&G 100AGC | In house method (Based on 2720C) |
| Hydrogen Sulfide | Colorimetric       | Drager H <sub>2</sub> S     | Drager H <sub>2</sub> S     | Commercial Tubes                 |

LIQUID SLUDGE: Raw, Digested, and Decant (Digester Gases)

DRIED SLUDGE: Metro Biosolids Center (General)

| Analyte                     | Description 2017                         | Instrumentation 2016         | Instrumentation 2017                                                               | Method 2017                            |
|-----------------------------|------------------------------------------|------------------------------|------------------------------------------------------------------------------------|----------------------------------------|
| Cyanide                     | Acid Digest-Distillation<br>Colorimetric | Hach DR/4000V<br>UV/Vis      | Hot plate distillation &<br>Hach DR4000<br>Hot plate distillation &<br>Hach DR6000 | EPA 9014 &<br>EPA 9010B (Distillation) |
| Cyanide Reactive            | Distillation / Colorimetric              | Hach DR/4000V<br>UV/Vis      | Hot plate distillation &<br>Hach DR4000<br>Hot plate distillation &<br>Hach DR6000 | EPA SW-846 Chapter 7.3<br>& EPA 9014   |
| рН                          | Hydrogen+Reference<br>Electrode          | Various models of pH meters  | Various models of pH meters                                                        | EPA 9045C                              |
| Radiation (alpha<br>& beta) | Alpha Spectroscopy<br>Gamma Spectroscopy | External Laboratory<br>(FGL) | External Laboratory (FGL)                                                          | External Laboratory                    |
| Sulfides                    | Acid Digest-Distil / Titration           | Class A Manual Buret         | Class A Manual Buret                                                               | EPA 9034 &<br>EPA 9030B (Distillation) |
| Sulfides, reactive          | Distillation / Titration                 | Class A Manual Buret         | Class A Manual Buret                                                               | Section 7.3 SW-846<br>EPA 9034         |
| Solids, Total               | Gravimetric @ 103-105 C°                 | Various models<br>balances   | Various models balances                                                            | SM 2540G 1997                          |
| Solids, Total-<br>Volatile  | Gravimetric @ 500 C°                     | Various models balances      | Various models balances                                                            | SM 2540G 1997                          |

| Analyte    | Description 2017                                                                       | Instrumentation 2016                                                                                                                               | Instrumentation 2017                                                                                                                                  | Method 2017                                               |
|------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Aluminum   | Acid Digestion / ICP-<br>OES                                                           | IRIS INTREPID DUO &<br>ICAP 6300                                                                                                                   | ICAP 6300                                                                                                                                             | EPA 6010B for CA &<br>EPA 6010C for AZ                    |
| Antimony   | Acid Digestion / ICP-<br>OES                                                           | IRIS INTREPID DUO &<br>ICAP 6300                                                                                                                   | ICAP 6300                                                                                                                                             | EPA 6010B for CA & EPA 6010C for AZ                       |
| Arsenic    | Hydride Generation /<br>AA                                                             | Thermo iCE 3000                                                                                                                                    | Thermo iCE 3000                                                                                                                                       | EPA 7062                                                  |
| Barium     | Acid Digestion / ICP-<br>OES                                                           | IRIS INTREPID DUO &<br>ICAP 6300                                                                                                                   | ICAP 6300                                                                                                                                             | EPA 6010B for CA &<br>EPA 6010C for AZ                    |
| Beryllium  | Acid Digestion / ICP-<br>OES                                                           | IRIS INTREPID DUO &<br>ICAP 6300                                                                                                                   | ICAP 6300                                                                                                                                             | EPA 6010B for CA & EPA 6010C for AZ                       |
| Boron      | Acid Digestion / ICP-<br>OES                                                           | IRIS INTREPID DUO &<br>ICAP 6300                                                                                                                   | ICAP 6300                                                                                                                                             | EPA 6010B for CA &<br>EPA 6010C for AZ                    |
| Cadmium    | Acid Digestion / ICP-<br>OES                                                           | IRIS INTREPID DUO &<br>ICAP 6300                                                                                                                   | ICAP 6300                                                                                                                                             | EPA 6010B for CA &<br>EPA 6010C for AZ                    |
| Chromium   | Acid Digestion / ICP-<br>OES                                                           | IRIS INTREPID DUO &<br>ICAP 6300                                                                                                                   | ICAP 6300                                                                                                                                             | EPA 6010B for CA &<br>EPA 6010C for AZ                    |
| Cobalt     | Acid Digestion / ICP-<br>OES                                                           | IRIS INTREPID DUO &<br>ICAP 6300                                                                                                                   | ICAP 6300                                                                                                                                             | EPA 6010B for CA &<br>EPA 6010C for AZ                    |
| Copper     | Acid Digestion / ICP-<br>OES                                                           | IRIS INTREPID DUO &<br>ICAP 6300                                                                                                                   | ICAP 6300                                                                                                                                             | EPA 6010B for CA &<br>EPA 6010C for AZ                    |
| Iron       | Acid Digestion / ICP-<br>OES                                                           | IRIS INTREPID DUO &<br>ICAP 6300                                                                                                                   | ICAP 6300                                                                                                                                             | EPA 6010B for CA &<br>EPA 6010C for AZ                    |
| Lead       | Acid Digestion / ICP-<br>OES                                                           | IRIS INTREPID DUO &<br>ICAP 6300                                                                                                                   | ICAP 6300                                                                                                                                             | EPA 6010B for CA &<br>EPA 6010C for AZ                    |
| Manganese  | Acid Digestion / ICP-<br>OES                                                           | IRIS INTREPID DUO &<br>ICAP 6300                                                                                                                   | ICAP 6300                                                                                                                                             | EPA 6010B for CA &<br>EPA 6010C for AZ                    |
| Mercury    | Cold Vapor Atomic<br>Absorption (CVAA) &<br>Thermal decomposition<br>atomic absorption | PSAnalytical PSA 10.045<br>Millennium & Milestone<br>DMA80 (thermal<br>decomposition, amalgamation,<br>and atomic absorption<br>spectrophotometry) | PSAnalytical PSA 10.045<br>Millennium & Milestone<br>DMA80 (thermal<br>decomposition,<br>amalgamation, and atomic<br>absorption<br>spectrophotometry) | EPA Methods 7471A for<br>California & 7473 for<br>Arizona |
| Molybdenum | Acid Digestion / ICP-<br>OES                                                           | IRIS INTREPID DUO &<br>ICAP 6300                                                                                                                   | ICAP 6300                                                                                                                                             | EPA 6010B for CA &<br>EPA 6010C for AZ                    |
| Nickel     | Acid Digestion / ICP-<br>AES                                                           | IRIS INTREPID DUO &<br>ICAP 6000                                                                                                                   | IRIS INTREPID DUO &<br>ICAP 6000                                                                                                                      | EPA 6010B                                                 |
| Selenium   | Hydride Generation /<br>AA                                                             | Thermo iCE 3000                                                                                                                                    | Thermo iCE 3000                                                                                                                                       | EPA 7742                                                  |
| Silver     | Acid Digestion / ICP-<br>OES                                                           | IRIS INTREPID DUO &<br>ICAP 6300                                                                                                                   | ICAP 6300                                                                                                                                             | EPA 6010B for CA & EPA 6010C for AZ                       |
| Thallium   | Acid Digestion / ICP-<br>OES                                                           | IRIS INTREPID DUO &<br>ICAP 6300                                                                                                                   | ICAP 6300                                                                                                                                             | EPA 6010B for CA &<br>EPA 6010C for AZ                    |
| Vanadium   | Acid Digestion / ICP-<br>OES                                                           | IRIS INTREPID DUO &<br>ICAP 6300                                                                                                                   | ICAP 6300                                                                                                                                             | EPA 6010B for CA &<br>EPA 6010C for AZ                    |
| Zinc       | Acid Digestion / ICP-<br>OES                                                           | IRIS INTREPID DUO &<br>ICAP 6300                                                                                                                   | ICAP 6300                                                                                                                                             | EPA 6010B for CA & EPA 6010C for AZ                       |

 $Y: EMTS \ 41. Sections \ WCS \ EPORTS \ EVWTP \ Annual \ 2017 \ Final\_Reports \ 2017\_! \ Annual \ docx$ 

# DRIED SLUDGE: Metro Biosolids Center (Organics)

| Analyte                        | Description 2017                                                                                 | Instrument 2016                                                                                                 | Instrument 2017                                                                                                 | Method 2017                        |
|--------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------|
| Acrolein and<br>Acrylonitrile  | Purge & Trap, GC-<br>MSD                                                                         | O-I Analytical Eclipse<br>4660purge&trap/4552autosampler<br>Agilent-6890N GC /5973N MSD<br>Capillary J&W DB-624 | O-I Analytical Eclipse<br>4660purge&trap/4552autosampler<br>Agilent-6890N GC /5973N MSD<br>Capillary J&W DB-624 | EPA 8260B                          |
| Base/Neutral<br>Extractable    | Methylene Chloride<br>50% / Acetone 50%<br>Sonication Extraction<br>GC-MSD                       | Agilent-7890GC/5975 MSD<br>Capillary DB-5.625                                                                   | Agilent-7890GC/5975 MSD<br>Capillary DB-5.625                                                                   | EPA 8270C<br>EPA 3550A             |
| Chlorinated<br>Compounds       | Methylene Chloride<br>50% / Acetone 50%<br>Sonication Extraction,<br>Hexane exchange<br>GC-ECD   | Perkin Elmer Clarus 680<br>Elite-CLP 30M/0.32mm/0.5um<br>Elite-CLP2 30M/0.32mm/0.25um                           | Perkin Elmer Clarus 680<br>Elite-CLP 30M/0.32mm/0.5um<br>Elite-CLP2 30M/0.32mm/0.25um                           | EPA 8081A                          |
| PCBs                           | Methylene Chloride<br>50% / Acetone 50%<br>Sonication Extraction,<br>Hexane exchange<br>GC-ECD   | Perkin Elmer Clarus 680<br>Elite-CLP 30M/0.32mm/0.5um<br>Elite-CLP2 30M/0.32mm/0.25um                           | Perkin Elmer Clarus 680<br>Elite-CLP 30M/0.32mm/0.5um<br>Elite-CLP2 30M/0.32mm/0.25um                           | EPA 8082                           |
| Dioxin                         | Outside Contract<br>(Frontier)                                                                   | External Laboratory (Frontier & TestAmerica)                                                                    | External Laboratory (Frontier)                                                                                  | EPA 8290<br>External<br>Laboratory |
| Organophosphorus<br>Pesticides | Methylene Chloride<br>50% / Acetone 50%<br>Sonication Extraction,<br>hexane exchange,<br>GC-PFPD | Shimadzu GC-2010 PFPD RTX-<br>OPP 30m/0.32mm/0.5um<br>RTX-OPP2 30m/0.32mm/0.32um                                | Shimadzu GC-2010 PFPD RTX-<br>OPP 30m/0.32mm/0.5um<br>RTX-OPP2 30m/0.32mm/0.32um                                | EPA 8141A                          |
| Phenolic<br>Compounds          | Methylene Chloride<br>50% / Acetone 50%<br>Sonication Extraction<br>GC-MSD                       | Agilent-7890GC/5975 MSD<br>Capillary DB-5.625                                                                   | Agilent-7890GC/5975 MSD<br>Capillary DB-5.625                                                                   | EPA 8270C<br>EPA 3550A             |
| Purgeables (VOCs)              | Purge & Trap, GC-<br>MSD                                                                         | O-I Analytical Eclipse<br>4660purge&trap/4552autosampler<br>Agilent-6890N GC /5973N MSD<br>Capillary J&W DB-624 | O-I Analytical Eclipse<br>4660purge&trap/4552autosampler<br>Agilent-6890N GC /5973N MSD<br>Capillary J&W DB-624 | EPA 8260B                          |

| Analyte                       | Description 2017                                                             | Instrumentation 2016                                                                                                      | Instrumentation 2017                                                                                                      | Method 2017                                                                  |
|-------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Tri, Di, and<br>Monobutyl Tin | Hexane extraction,<br>derivatization,<br>GC-PFPD                             | Varian 3400 GC-FPD<br>DB-608/30m<br>DB-1/30m<br>&<br>Shimadzu GC-2010PFPD<br>RTX-1 30m/0.25mm/1um RTX-5<br>30m/0.25mm/1um | Varian 3400 GC-FPD<br>DB-608/30m<br>DB-1/30m<br>&<br>Shimadzu GC-2010PFPD<br>RTX-1 30m/0.25mm/1um<br>RTX-5 30m/0.25mm/1um | In house method                                                              |
| Total Nitrogen (TN)           | Calculation Sum all<br>Nitrogen (TKN, NO <sub>2</sub> ,<br>NO <sub>3</sub> ) | Calculation: Sum all Nitrogen<br>(TKN, NO <sub>2</sub> , NO <sub>3</sub> )                                                | Calculation: Sum all Nitrogen<br>(TKN, NO <sub>2</sub> , NO <sub>3</sub> )                                                | Calculation Sum<br>all Nitrogen<br>(TKN, NO <sub>2</sub> , NO <sub>3</sub> ) |

### OCEAN SEDIMENT (General)

| Analyte                                                     | Description 2017                                                  | Instrumentation 2016                             | Instrumentation 2017    | Method 2017                                                                                                                  |  |
|-------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------|--|
| Biochemical Oxygen<br>Demand<br>(BOD-5 Day)                 | Dissolved Oxygen<br>Probe                                         | YSI-5000 DO Meter                                | YSI-5000 DO Meter       | SM 5210 B-2001 modified                                                                                                      |  |
| Particle Size                                               | Coarse fraction by<br>sieve;<br>fine fraction by laser<br>scatter | Horiba Partica LA-<br>950V2                      | Horiba Partica LA-950V2 | EPA/CE-81-1                                                                                                                  |  |
| Sulfides                                                    | Acid Digest-Distil / IC-<br>PAD                                   | Dionex ICS3000-<br>PAD(Ag)                       | Dionex ICS3000-PAD(Ag)  | DIONEX AU 107 & EPA<br>9030B Distillation                                                                                    |  |
| Solids, Total                                               | Gravimetric @ 103-105<br>C°                                       | Various balances                                 | Various balances        | SM 2540 G                                                                                                                    |  |
| Solids, Total-<br>Volatile                                  | Gravimetric @ 500 C°                                              | Various balances                                 | Various balances        | SM 2540 G                                                                                                                    |  |
| Total Organic<br>Carbon (TOC)<br>and Total Nitrogen<br>(TN) |                                                                   | Carlo-Erba NC-2500<br>Porapak QS & FLASH<br>2000 | FLASH 2000              | In house method based on<br>"TOC/TN in Marine<br>Sediments", SCCWRP<br>Annual Report, 1990-1991,<br>and 1991-1992 & EPA 9060 |  |

### OCEAN SEDIMENT (Metals)

| Analyte  | Description 2017         | Instrument 2016                  | Instrument 2017 | Method 2017 |
|----------|--------------------------|----------------------------------|-----------------|-------------|
| Aluminum | Acid Digestion / ICP-OES | IRIS INTREPID DUO &<br>ICAP 6300 | ICAP 6300       | EPA 6010B   |
| Antimony | Acid Digestion / ICP-OES | IRIS INTREPID DUO &<br>ICAP 6300 | ICAP 6300       | EPA 6010B   |

### OCEAN SEDIMENT (Metals)

| Analyte   | Description 2017                                    | Instrumentation 2016             | Instrumentation 2017        | Method 2017          |
|-----------|-----------------------------------------------------|----------------------------------|-----------------------------|----------------------|
| Arsenic   | Hydride Generation AA &<br>Acid Digestion / ICP-OES | IRIS INTREPID DUO &<br>ICAP 6300 | ICAP 6300                   | EPA 7062 & EPA 6010B |
| Beryllium | Acid Digestion / ICP-OES                            | IRIS INTREPID DUO &<br>ICAP 6300 | ICAP 6300                   | EPA 6010B            |
| Cadmium   | Acid Digestion / ICP-OES                            | IRIS INTREPID DUO &<br>ICAP 6300 | ICAP 6300                   | EPA 6010B            |
| Chromium  | Acid Digestion / ICP-OES                            | IRIS INTREPID DUO &<br>ICAP 6300 | ICAP 6300                   | EPA 6010B            |
| Copper    | Acid Digestion / ICP-OES                            | IRIS INTREPID DUO &<br>ICAP 6300 | ICAP 6300                   | EPA 6010B            |
| Iron      | Acid Digestion / ICP-OES                            | IRIS INTREPID DUO &<br>ICAP 6300 | ICAP 6300                   | EPA 6010B            |
| Lead      | Acid Digestion / ICP-OES                            | IRIS INTREPID DUO &<br>ICAP 6300 | ICAP 6300                   | EPA 6010B            |
| Manganese | Acid Digestion / ICP-OES                            | IRIS INTREPID DUO &<br>ICAP 6300 | ICAP 6300                   | EPA 6010B            |
| Mercury   | Thermal decomposition atomic absorption             | Milestone DMA80                  | Milestone DMA80             | EPA 7473             |
| Nickel    | Acid Digestion / ICP-OES                            | IRIS INTREPID DUO &<br>ICAP 6300 | ICAP 6300                   | EPA 6010B            |
| Selenium  | Hydride Generation AA & Acid Digestion / ICP-OES    | Thermo iCE 3000                  | Thermo iCE 3000 & ICAP 6300 | EPA 7742 & EPA 6010B |
| Silver    | Acid Digestion / ICP-OES                            | IRIS INTREPID DUO &<br>ICAP 6300 | ICAP 6300                   | EPA 6010B            |
| Thallium  | Acid Digestion / ICP-OES                            | IRIS INTREPID DUO &<br>ICAP 6300 | ICAP 6300                   | EPA 6010B            |
| Tin       | Acid Digestion / ICP-OES                            | IRIS INTREPID DUO &<br>ICAP 6300 | ICAP 6300                   | EPA 6010B            |
| Zinc      | Acid Digestion / ICP-OES                            | IRIS INTREPID DUO &<br>ICAP 6300 | ICAP 6300                   | EPA 6010B            |

### OCEAN SEDIMENT (Organics)

| Analyte                      | Description 2017                                                                                          | Instrumentation 2016                                                      | Instrumentation 2017                                                      | Method 2017              |
|------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------|
| Base/Neutral<br>Extractables | Methylene Chloride 50% /<br>Acetone 50%<br>Accelerated Solvent (ASE)<br>Extraction<br>GC-MSD              | Dionex ASE-350<br>Agilent-7890GC/5975 MSD<br>Capillary DB-5.625           | Dionex ASE-350<br>Agilent-7890GC/5975 MSD<br>Capillary DB-5.625           | EPA 8270C /<br>EPA 3545A |
| Chlorinated<br>Compounds     | Methylene Chloride 50% /<br>Hexane 50% extraction,<br>Accelerated Solvent<br>Extraction<br>GC-MS/MS       | Dionex ASE-350<br>Varian 3800 GC<br>Saturn 2000 MS-Ion Trap<br>DB-XLB/60m | Dionex ASE-350<br>Varian 3800 GC<br>Saturn 2000 MS-Ion Trap<br>DB-XLB/60m | EPA 8081A /<br>EPA 3545A |
| PCBs as Congeners            | Methylene Chloride 50% /<br>Hexane 50% extraction,<br>Accelerated Solvent (ASE)<br>Extraction<br>GC-MS/MS | Dionex ASE-350<br>Varian 3800 GC<br>Saturn 2000 MS-Ion Trap<br>DB-XLB/60m | Dionex ASE-350<br>Varian 3800 GC<br>Saturn 2000 MS-Ion Trap<br>DB-XLB/60m | EPA 8082 /<br>EPA 3545A  |

#### FISH TISSUE: Liver, Muscle, and Whole (General)

| Analyte       | Description 2017                            | Instrumentation 2016                    | Instrumentation 2017                    | Method 2017                                                                                    |
|---------------|---------------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------|
| Solids, Total | Freeze Drying<br>Gravimetric                | Labconco Freezone 6<br>Various balances | Labconco Freezone 6<br>Various balances | "A Guide to Freeze Drying for<br>the Laboratory",<br>LABCONCO, 3-53-5/94-<br>Rosse-5M-R3, 1994 |
| Lipids        | Hexane/Acetone<br>Extraction<br>Gravimetric | Dionex ASE-350<br>Various balances      | Dionex ASE-350<br>Various balances      | In house method                                                                                |

| FISH TISSUE: Liver, Muscle, and Whole | (Metals) |
|---------------------------------------|----------|
|---------------------------------------|----------|

| Analyte   | Description 2017                                                                      | Instrumentation 2016             | Instrumentation 2017        | Method 2017              |
|-----------|---------------------------------------------------------------------------------------|----------------------------------|-----------------------------|--------------------------|
| Aluminum  | Acid Digestion / ICP-OES                                                              | IRIS INTREPID DUO &<br>ICAP 6300 | ICAP 6300                   | EPA 200.7 / EPA<br>200.3 |
| Antimony  | Acid Digestion / ICP-OES                                                              | IRIS INTREPID DUO &<br>ICAP 6300 | ICAP 6300                   | EPA 200.7 / EPA<br>200.3 |
| Arsenic   | Hydride Generation AA & Acid Digestion / ICP-OES                                      | IRIS INTREPID DUO &<br>ICAP 6300 | Thermo iCE 3000 & ICAP 6300 | EPA 200.7 / EPA<br>200.3 |
| Beryllium | Acid Digestion / ICP-OES                                                              | IRIS INTREPID DUO &<br>ICAP 6300 | ICAP 6300                   | EPA 200.7 / EPA<br>200.3 |
| Cadmium   | Acid Digestion / ICP-OES                                                              | IRIS INTREPID DUO &<br>ICAP 6300 | ICAP 6300                   | EPA 200.7 / EPA<br>200.3 |
| Chromium  | Acid Digestion / ICP-OES                                                              | IRIS INTREPID DUO &<br>ICAP 6300 | ICAP 6300                   | EPA 200.7 / EPA<br>200.3 |
| Copper    | Acid Digestion / ICP-OES                                                              | IRIS INTREPID DUO &<br>ICAP 6300 | ICAP 6300                   | EPA 200.7 / EPA<br>200.3 |
| Iron      | Acid Digestion / ICP-OES                                                              | IRIS INTREPID DUO &<br>ICAP 6300 | ICAP 6300                   | EPA 200.7 / EPA<br>200.3 |
| Lead      | Acid Digestion / ICP-OES                                                              | IRIS INTREPID DUO &<br>ICAP 6300 | ICAP 6300                   | EPA 200.7 / EPA<br>200.3 |
| Manganese | Acid Digestion / ICP-OES                                                              | IRIS INTREPID DUO &<br>ICAP 6300 | ICAP 6300                   | EPA 200.7 / EPA<br>200.3 |
| Mercury   | Thermal decomposition,<br>amalgamation, and atomic<br>absorption<br>spectrophotometry | Milestone DMA80                  | Milestone DMA80             | EPA 7473                 |
| Nickel    | Acid Digestion / ICP-OES                                                              | IRIS INTREPID DUO &<br>ICAP 6300 | ICAP 6300                   | EPA 200.7 / EPA<br>200.3 |
| Selenium  | Hydride Generation AA & Acid Digestion / ICP-OES                                      | Thermo iCE 3000                  | Thermo iCE 3000 & ICAP 6300 | EPA 7742                 |
| Silver    | Acid Digestion / ICP-OES                                                              | IRIS INTREPID DUO &<br>ICAP 6300 | ICAP 6300                   | EPA 200.7 / EPA<br>200.3 |
| Thallium  | Acid Digestion / ICP-OES                                                              | IRIS INTREPID DUO &<br>ICAP 6300 | ICAP 6300                   | EPA 200.7 / EPA<br>200.3 |
| Tin       | Acid Digestion / ICP-OES                                                              | IRIS INTREPID DUO &<br>ICAP 6300 | ICAP 6300                   | EPA 200.7 / EPA<br>200.3 |
| Zinc      | Acid Digestion / ICP-OES                                                              | IRIS INTREPID DUO &<br>ICAP 6300 | ICAP 6300                   | EPA 200.7 / EPA 200.3    |

### FISH TISSUE: Liver, Muscle, and Whole (Organics)

| Analyte                     | Description 2017                                                                       | Instrumentation 2016                                            | Instrumentation 2017                                            | Method 2017              |
|-----------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|--------------------------|
| Base/Neutral<br>Extractable | Basic / Methylene<br>Chloride<br>ASE extraction,<br>GC-MSD                             | Dionex ASE-350<br>Agilent-7890GC/5975 MSD<br>Capillary DB-5.625 | Dionex ASE-350<br>Agilent-7890GC/5975 MSD<br>Capillary DB-5.625 | EPA 8270C /<br>3545A     |
| Chlorinated<br>Compounds    | Methylene Chloride<br>50% / Hexane 50%<br>extraction,<br>exchange,<br>GC- MS/MS        | Bruker 450-GC<br>Bruker 300MS<br>DB-XLB/60m                     | Bruker 450-GC<br>Bruker 300MS<br>DB-XLB/60m                     | EPA 8081A /<br>EPA 3545A |
| PCBs                        | Methylene Chloride<br>50% / Hexane 50%<br>extraction,<br>hexane exchange,<br>GC- MS/MS | Bruker 450-GC<br>Bruker 300MS<br>DB-XLB/60m                     | Bruker 450-GC<br>Bruker 300MS<br>DB-XLB/60m                     | EPA 8082 /<br>EPA 3545A  |

 $Y: EMTS 41. Sections WCS REPORTS PLWWTP Annuals Annual 2017 Final_Reports 2017 - !- Annual docx WCS Reports Annual Annu$ 

Appendices 8.315

Method References: Methods of Analysis Used to Produce the Data Presented in this Report.

- a) Methods for Chemical Analysis of Water and Wastes, EPA, Environmental Monitoring and Support Laboratory, Cincinnati, Ohio, March 1979 (EPA-600/4-79-020), 1983 Revision, and March 1984 (EPA-600/4-84-017).
- b) U.S. EPA Contract Laboratory Program, Statement of Work for Organic Analysis, Multi-Media, Multi-Concentration, 7/85 revision and 1/91 revision.
- c) Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, U.S. EPA Office of Solid Waste and emergency Response, Washington, D.C. 20460, November 1986, SW-846, Third Edition. Revision 0 September 1994, December 1996, Revision 2
- d) The Determination of Inorganic Anions in Water by Ion Chromatography, Revision 2.1, August 1993
- e) U.S. EPA. The Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry. Method 200.7, Revision 4.4, EMMC Version, 1994
- f) U.S. EPA. Determination of Trace Elements in Water and Wastes by Inductively Coupled Plasma-Mass Spectrometry. Method 200.8, Revision 5.4, EMMC Version, 1994
- g) Standard Methods for the Examination of Water and Wastewater, APHA, AWWA, WPCF, 18th Edition, 1992.
- h) Standard Methods for the Examination of Water and Wastewater, APHA, AWWA, WPCF, 19th Edition, 1995.
- i) Standard Methods for the Examination of Water and Wastewater, APHA, AWWA, WPCF, 20th Edition, 1998.
- j) Criteria for Identification of Hazardous and Extremely Hazardous Wastes, California Code of Regulations (CCR), Title 22.
- k) DIONEX AU 107, R.D.Rocklin and E.L.Johnson, ANAL. CHEM., 1986, 55, 4
- Adaptation of method by the Naval Ocean Systems Center, San Diego, Marine Environment Branch, San Diego, CA 92152-5000
- m) "TOC/TN in Marine Sediments...", SCCWRP Annual Report, 1990-1991, and 1991-1992.
- n) "A Guide to Freeze Drying for the Laboratory...", LABCONCO, 3-53-5/94-Rosse-5M-R3, 1994.
- o) "Lipids Content in Fish Tissues via Accelerated Solvent Extraction...", WWChem, EMTS/MWWD, 1998
- p) Standard Methods for the Examination of Water and Wastewater, APHA, AWWA, WPCF, 22th Edition, 2012.
- v) Procedures for Handling and Chemical Analysis of Sediment and Water Samples, Russel H. Plumb, Jr., May 1981, EPA/Corp of Engineers Technical Committee on Criteria for Dredged and Fill Material, EPA Contract 4805572010.
- w) Method 1631, Revision E: Mercury in water by oxidation, purge and trap, and cold vapor atomic fluorescence spectrometry
- Method 245.7
  Mercury in Water by Cold Vapor Atomic Fluorescend Spectrometry, Revision 2.0, February 2005

# C. Frequency of analysis and Type of Sample - 2017

|                                                               |           | Sample    | Permit Required |          |                                                      |
|---------------------------------------------------------------|-----------|-----------|-----------------|----------|------------------------------------------------------|
| CONSTITUENT                                                   | Frequency | Туре      | Influent        | Effluent | Comments                                             |
| Process Control                                               |           |           |                 |          |                                                      |
| Biochemical Oxygen Demand -Total                              | Daily     | Composite | Х               | Х        |                                                      |
| Biochemical Oxygen Demand -Soluble*                           | Daily     | Composite |                 |          | Monday-Friday                                        |
| Chemical Oxygen Demand*                                       | Weekly    | Composite |                 |          |                                                      |
| Conductivity*                                                 | Weekly    | Composite |                 |          |                                                      |
| Floating Particulates                                         | Daily     | Composite | Х               | Х        |                                                      |
| Flow                                                          | Daily     | -         | Х               | Х        | Same meter used                                      |
| Oil and Grease                                                | Daily     | Grab      | Х               | Х        |                                                      |
| pH                                                            | Daily     | Grab      | Х               | Х        |                                                      |
| Settleable Solids                                             | Daily     | Grab      | Х               | Х        |                                                      |
| Temperature                                                   | Daily     | Grab      | Х               | Х        |                                                      |
| Total Dissolved Solids                                        | Daily     | Composite | Х               | Х        |                                                      |
| Total Solids*                                                 | Weekly    | Composite |                 |          |                                                      |
| Total Suspended Solids                                        | Daily     | Composite | х               | х        |                                                      |
| Total Volatile Solids                                         | Daily     | Composite |                 | X        |                                                      |
| Turbidity                                                     | Daily     | Composite | x               | X        |                                                      |
| Volatile Suspended Solids                                     | Daily     | Composite | x               | X        |                                                      |
| Metals                                                        | Dury      | composite |                 | 21       |                                                      |
| As Cd Cr Cu Ph Hg Ni Se Ag Zn                                 | Weekly    | Composite | x               | x        |                                                      |
| Sh Be Tl                                                      | Weekly    | Composite | X               | X        | Rea Frequency–Monthly                                |
| Fe                                                            | Weekly    | Composite | Λ               | Λ        | Keq. Prequency_wonting                               |
| lons                                                          | Weekly    | Composite |                 |          |                                                      |
| Alkalinity                                                    | Weekly    | Composite |                 |          |                                                      |
| Ammonia Nitrogon                                              | Weekly    | Composite | v               | v        |                                                      |
| Animonia-Nitrogen                                             | Weekly    | Composite | Λ               | Λ        |                                                      |
| Allions ( $F$ -, $Cl$ -, $Bl$ -, $SO42$ -, $NO5$ -, $PO45$ -) | Weekly    | Composite |                 |          |                                                      |
| Cuonida                                                       | Weekly    | Composite | v               | v        |                                                      |
| Usednoog (Total Co. Ma)                                       | Weekly    | Composite | Λ               | Λ        | Dry coloulation                                      |
| Granic Drivity Dellatents                                     | weekiy    | Composite |                 |          | By calculation                                       |
| Organic Priority Pollutants                                   | M 41      |           | V               | V        | M (1 1926)                                           |
| Acrolein and Acrylonitrile                                    | Monthly   | Grab      | X               | X        | Method 8260                                          |
| Base/Neutral Compounds                                        | Monthly   | Composite | X               | X        | Method 625                                           |
| Benzidines                                                    | Monthly   | Composite | X               | X        | Method 625                                           |
| Dioxin                                                        | Monthly   | Composite | X               | X        | Method 1613                                          |
| Pesticides, chlorinated                                       | Monthly   | Composite | X               | Х        | Weekly, DDT                                          |
| Pesticides, organophosphorus                                  | Annual    | Composite |                 |          |                                                      |
| Phenols non-chlorinated                                       | Weekly    | Composite | x               | x        | Method 625                                           |
| Phenols chlorinated                                           | Weekly    | Composite | x               | x        | Method 625                                           |
| Polychlorinated Binhenyls                                     | Weekly    | Composite | x               | x        |                                                      |
| Purgeable (Volatile) Compounds                                | Monthly   | Grab      | x               | x        | Method 8260/624                                      |
| Tri Di & monobutyl tins                                       | Monthly   | Composite | X               | X<br>X   | Wethou 8200/024                                      |
| Miscellaneous                                                 | Wonding   | Composite | Λ               | Λ        |                                                      |
| Padiation                                                     | Monthly   | Composite | v               | v        | Performed by a contract lab                          |
|                                                               | Wolldhy   | Composite |                 | Λ        | Reported in the monthly                              |
| Toxicity (Acute & Chronic)                                    | Monthly   | Composite | X               | Х        | Toxicity<br>Testing Report by the Biology<br>Section |
| * not required in R9-2017-0007                                |           |           |                 |          |                                                      |
| · · · · · · · · · · · · · · · · · · ·                         | 1         | 1         |                 | 1        |                                                      |

# D. QA Report Summary

#### Summary and Overview:

The Environmental Chemistry Services (ECS) Section of the Environmental Monitoring and Technical Services (EMTS) Division performs most of the NPDES permits and other regulatory permits analytical and/or reporting functions for the City of San Diego Public Utilities Department's wastewater treatment facilities. In addition, the section provides process control testing services for the City of San Diego's E.W. Bloom Point Loma Wastewater Treatment Plant (PLWTP), South Bay Water Reclamation Plant (SBWRP), and the Metro Biosolids Center (MBC) at its laboratories located onsite each plant. The section continues to analyze North City Water Reclamation Plant (NCWRP) parameters related to the Point Loma NPDES permit.

The ECS laboratory staff also performs the chemical and physical testing of ocean sediment and fish tissue samples in support of the Ocean Monitoring Program for the City of San Diego's Point Loma Ocean Outfall (PLOO) and the SBWRP Ocean Outfall (SBOO), which is shared with the International Boundary and Water Commission's International Water Treatment Plant (IWTP). Recently, these analytical services have also been expanded to strengthen the City of San Diego's Industrial Waste Control Program (IWCP) in its compliance evaluation of industrial facilities discharging into the Metro sewerage System. Work for the IWCP also includes quarterly sampling and analysis throughout the collection system to support the annual review of local wastewater discharge limits (Local Limits) as required by the PLWTP NPDES permit. Additionally, laboratory staff provide environmental testing services to various customers, both internal to the City of San Diego county.

The QA/QC activities of the Laboratory are comprehensive and extensive. Of the 49,015 samples received in the Laboratory in 2017, approximately 38.1% were Quality Control (QC) samples, such as blanks, check samples, and standard reference materials. A total of 147 different analyses were performed throughout the year resulting in 436,666 analytical determinations that consist of 166,836 (~38.2%) QC determinations (e.g. blanks, laboratory replicates, matrix spikes, surrogates, etc.) used to determine the accuracy, precision, and performance of each analysis and batch.

There are four (4) separate laboratory facility locations, each is independently certified by the California ELAP (Environmental Laboratory Accreditation Program) for the fields of testing required under California regulations, and one of these laboratories also owns a certification for fields of testing under the Arizona Department of Health Services (ADHS). Copies of these certifications are included as Attachment 1. These are rigorous programs involving continuing independent blind performance testing, biannual comprehensive audits, and extensive documentation requirements. California ELAP and Arizona DHS certify fields of testing for Water, Wastewater, and Hazardous Materials with methods published in the Federal Register, or specifically approved in regulation by the United States Environmental Protection Agency (USEPA). Additionally, the Laboratory performs analyses using methods for which certification does not exist, such as ocean sediment and sea water determinations. These methods have been developed in-house, derived from, or in collaboration with other scientific laboratories (e.g. Scripps Institute of Oceanography, Southern California Coastal Water Research Project, et. al.) and have been used extensively in multi-agency EPA and State sponsored studies over the past several years. Methods of analysis developed for matrices and applications not within ELAP jurisdiction have been adapted from ELAP listed methods to which we apply generally accepted standards of performance and quality control.

Furthermore, the Wastewater Treatment & Disposal Division (WWTD) facilities and all EMTS laboratories maintained International Standards Organization (ISO) 14001 Environmental Management Systems certification. Contract laboratories are also required to use only approved methods for which they hold ELAP certification, and/or are approved by the appropriate regulatory agency (e.g. San Diego RWQCB). Copies of their certifications are included as Attachment 2.

The following report summarizes the QA/QC activities during 2017 and documents the laboratory information and certifications for those laboratories which provided data used in NPDES and other permit monitoring or environmental testing during the year.

# E. Laboratories Contributing Results used in this report.

| Laboratory Name                                 | EPA<br>Lab<br>Code | ADHS<br>Cert# | ELAP<br>Cert.# | Address                                               | Phone #              | Contribution                                                         |
|-------------------------------------------------|--------------------|---------------|----------------|-------------------------------------------------------|----------------------|----------------------------------------------------------------------|
| Alvarado Environmental*<br>Chemistry Laboratory | CA00380            | AZ0783*       | ELAP 1609      | 5530 Kiowa Drive<br>L Mesa, CA  91942                 | (619) 668-3212       | All results except those listed below.                               |
| Pt. Loma Wastewater<br>Chemistry Laboratory     | CA01435            |               | 2474           | 1902 Gatchell Road<br>San Diego, CA  92106            | (619) 221-8765       | Process Control analyses and wet methods for the<br>treatment plant. |
| Metro Biosolids Center<br>Chemistry Laboratory  | CA01437            |               | 2478           | 5240 Convoy Street<br>San Diego, CA  92111            | (858) 614-5834       | Process Control analyses and wet methods for the treatment plant.    |
| South Bay Wastewater<br>Chemistry Laboratory    | CA00080            |               | 2539           | 2411 Dairy Mart Road<br>San Diego, CA  92173          | (619) 428-7349       | Process Control analyses and wet methods for the treatment plant.    |
| City of San Diego Water<br>Quality Laboratory   | CA01393            |               | 1058           | 5530 Kiowa Drive<br>La Mesa, CA  91942                | (619) 668-3237       | Total Organic Carbon in Wastewater; Thallium in Water                |
| North City Wastewater<br>Chemistry Laboratory   | CA01436            |               | 2477           | 4949 Eastgate Mall<br>San Diego, CA  92121            | (858) 824-6009       | Process Control analyses and wet methods for the treatment plant.    |
| City of San Diego-<br>Marine Microbiology       | CA01302            |               | 2185           | 2392 Kincaid Road<br>San Diego, CA  92101             | (619) 758-2312       | Microbiology                                                         |
| City of San Diego<br>Toxicology Laboratory      |                    |               | 1989           | 2392 Kincaid Road<br>San Diego, CA  92101             | (619) 758-2341       | Bioassays                                                            |
| Nautilus Environmental                          |                    |               | 1802           | 4340 Vandever Ave<br>San Diego, CA 92120              | (858) 587-7333       | Bioassays                                                            |
| TestAmerica<br>Laboratories, Inc                |                    |               | 2425           | 2800 George Washington<br>Way, Richland, WA 99354     | (509) 375-3131       | Gross Alpha/Beta Radioactivity                                       |
| TestAmerica<br>Nashville Division               |                    |               | 01168CA        | 2960 Foster Creighton Drive Nashville, TN 37204       | (615) 756-0177       | Herbicides                                                           |
| Frontier Analytical<br>Laboratory               |                    |               | 02113CA        | 5172 Hillsdale Circle<br>El Dorado Hills, CA 95762    | (916) 934-0900       | Dioxin/Furan in Wastewater and Solids                                |
| Weck Laboratories, Inc.                         |                    |               | 1132           | 14859 East Clark Avenue<br>City of Industry, CA 91745 | 626-336-2139<br>x141 | Organics (Volatile & semi-volatile); Herbicides                      |
| Fruit Growers Laboratories,<br>Inc.             |                    |               | 1573           | 853 Corporation Street<br>Santa Paula, CA 93060       | (805) 392-2000       | Gross Alpha/Beta Radioactivity                                       |
| Babcock Laboratories, Inc.                      |                    |               | 2698           | 6100 Quail Valley Court<br>Riverside CA, 92507        | (951) 653-3351       | Chlorinated Pesticides (608), Aroclors 8081/8082, 8151A, 200.8       |
| * Licensed & certified as                       | Arizona Out        | -of-State La  | boratory       |                                                       |                      |                                                                      |

# Facilities & Scope:

The Environmental Chemistry Services (ECS) comprises four geographically separated laboratories - the main laboratory facilities located at the Alvarado Joint Laboratory building in La Mesa and three satellite chemistry laboratories located at Public Utilities Department's wastewater treatment plants. Each maintains individual California Environmental Laboratory Accreditation Program (ELAP) certification in its respective Fields of Testing (FoT). The Alvarado laboratory is also certified by the state of Arizona as an out of–state laboratory. Each laboratory also has its own USEPA Lab Code as shown in the following table.

| Laboratory Facility                                | Laboratory                                        | Address                                     | Phone #      | EPA Lab<br>Code | ADHS<br>Cert# | ELAP<br>Cert.# |
|----------------------------------------------------|---------------------------------------------------|---------------------------------------------|--------------|-----------------|---------------|----------------|
| Alvarado Laboratory                                | Wastewater Chemistry<br>Laboratory                | 5530 Kiowa Drive<br>La Mesa, CA 91942       | 619.668.3215 | CA00380         | AZ0783        | 1609           |
| Point Loma Satellite Lab                           | Pt. Loma Wastewater<br>Chemistry Laboratory       | 1902 Gatchell Road<br>San Diego, CA 92106   | 619.221.8765 | CA01435         |               | 2474           |
| Metro Biosolids Center<br>Satellite Lab            | Metro Biosolids<br>Center Chemistry<br>Laboratory | 5240 Convoy Street<br>San Diego, CA 92111   | 858.614.5834 | CA01437         |               | 2478           |
| South Bay Water Reclamation<br>Plant Satellite Lab | South Bay Wastewater<br>Chemistry Laboratory      | 2411 Dairy Mart Road<br>San Diego, CA 92173 | 619.428.7349 | CA01460         |               | 2539           |

The information presented in this report applies to ECS, including all of the laboratories listed above, unless specified otherwise. The main office for ECS is headquartered at the Alvarado laboratory, which also houses the most extensive laboratory facilities of the section. Along with a variety of process control and wet chemistry analyses, the main laboratory also handles all of the trace metals, pesticides, organics determinations, and other analyses. The satellite laboratories are primarily dedicated to process control, wet chemistry, and other analyses to directly support operations of the co-located wastewater treatment plants.

As previously reported, the North City Water Reclamation Plant Satellite Laboratory was shifted to the City of San Diego's Water Quality Chemistry Services (WQCS) Section that also consists of the Water Quality Laboratory during the October 2015 divisional restructuring. With this realignment, the now obsolete Industrial Waste Laboratory (IWL) was similarly moved to become part of ECS. Though separate databases are still maintained to simplify sectional operation, a final integration is expected with the upcoming acquisition of a new divisional Laboratory Information Management System (LIMS) in Fall 2018. Please note that ECS QA data will include only IWL samples analyzed by ECS and logged in ECS's database for the reporting period of January to December 2017.

Environmental Chemistry Services performs most of the NPDES analytical monitoring requirements and other permit process control chemical and physical testing for the:

- <u>E.W. Blom, Point Loma Wastewater Treatment Plant (PLWTP)</u>, NPDES No. CA0107409/ Order No. R9-2017-0007, including the ocean monitoring program.
- <u>Metro Biosolids Center (MBC)</u>, no permit, but monitoring requirements are contained in Permit No. R9-2017-0007.
- South Bay Water Reclamation Plant (SBWRP), NPDES No. CA0109045/ Order No. R9-2013-0006.
- North City Water Reclamation Plant (NCWRP), Order No. R9-2015-0091.

- City of San Diego's Industrial Pretreatment Program
- Ocean monitoring program for the PLOO and SBOO, which is shared with the International Boundary and Water Commission's International Treatment Plant.
- <u>Other environmental testing services for various customers</u>, both internal to the City of San Diego and other external public agencies.

A small portion of the analyses required for permit monitoring was outsourced to laboratories certified by ELAP, specifically:

- Gross Alpha- and Beta radiations to Test America Laboratories, Inc. (Richland Division) and Fruit Growers Laboratory
- Herbicides to Test America Laboratories, Inc. (Nashville Division) and Weck Laboratories
- Total organic carbon (TOC) and thallium in water to the Water Quality Laboratory, City of San Diego, Public Utilities Department
- Dioxin and Furans in solids and wastewater to Frontier Analytical Laboratories
- Organics (Semi-volatile & Volatile) analyses to Weck Laboratories, Inc.

The City of San Diego pays for additional QC samples (replicates, blanks, and spikes) as a routine quality check on contracted laboratory work. This is beyond the usual and customary practices with contract laboratory work.

#### Ocean Monitoring:

While there are no recognized State certifications for laboratory analyses of marine environmental samples (e.g. seawater, sediments, various tissues, etc.), the City of San Diego has been a leader in the development and standardization of analytical methods for determinations in these areas.

Many of the methods are novel approaches developed after extensive research and development from other published work (e.g. organotin analyses, sediment grain size, etc.) or adaptations of existing EPA methods (e.g. SW 846 Method 8082 for PCB congeners in sediments, etc.). For example, standards which are received as tin chlorides and sample extracts must be alkylated in order to be detected by gas chromatography for organotin determination. Recently, the laboratory successfully investigated and adopted a new, safer derivatization procedure using sodium tetraethylborate (STEB). This work was completed in collaboration with OI Analytical and results presented at Pittcon 2018.

The laboratory participate in extensive inter-laboratory calibration studies. Some of the most extensive studies have involved several academic/research, public, and private laboratories under the umbrella of the Southern California Coastal Water Research Project (SCCWRP). These studies are repeated periodically as part of the Southern California Bight Regional Monitoring/Survey Project, which is a massive sampling and monitoring program, participated in by all of the major Publicly Owned Treatment Works (POTWs), California Water Resource Control Boards, and research organizations.

Our laboratory is a reference (referee) laboratory for the NRCC (National Research Council of Canada) CARP-2 Certified Reference Material (CRM) for fish tissue. This sample was adopted as the standard reference material for QC requirement of the Southern California Bight Regional Project, and also used worldwide as a standard reference material. Additionally, we have worked with NIST to develop a West Coast marine sediment and fish tissue standard reference material (SRM).

#### **QA/QC Activities Summary:**

# Report for January 1, 2017 - December 31, 2017.<sup>15</sup>

The sample distribution increased 5.1% in year 2017 from 2016. Of the 434,447 analytical determinations made on 49,014 samples received by the Laboratory in 2017 (see table A.) 19,085 or 38.94% were Quality Control (QC) samples: 12.22% blanks; and 25.96% were check or reference samples.

|                                    | 2017              |                          | 2016         |
|------------------------------------|-------------------|--------------------------|--------------|
|                                    | Number of Samples | Percent of total samples | % Difference |
| Table A. Samples                   |                   |                          |              |
| Customer/Environmental samples     | 29,929            | 61.06%                   | 5.1%         |
| Quality Control (QC) samples       | 19,085            | 38.94%                   | 0.5%         |
| Total Samples                      | 49,014            | 100.00%                  | 3.3%         |
|                                    |                   |                          |              |
| QC Samples:                        |                   |                          |              |
| Blanks:                            |                   |                          |              |
| FIELD_BLANK                        | 244               | 0.50%                    | 2.9%         |
| REAGENT_BLANK                      | 33                | 0.07%                    | -69.7%       |
| TRIPBLANK                          | 1                 | 0.00%                    | -500.0%      |
| METHOD_BLANK                       | 5,713             | 11.66 <mark>%</mark>     | -3.4%        |
| Total Blanks:                      | 5,991             | 12.22%                   |              |
| Check samples:                     |                   |                          |              |
| External Check samples             | 5,591             | 11.41%                   | -3.9%        |
| Internal Check samples             | 7,084             | 14.45%                   | -1.5%        |
| Low Level MDL Verification         | 19                | 0.04%                    | -100.0%      |
| SRMs (Standard Reference Material) | 31                | 0.06%                    | -51.6%       |
| Total Check Samples:               | 12,725            | 25.96%                   | -2.8%        |
| Total QC Samples:                  | 18,716            | 38.19%                   | -3.1%        |

A high level of Quality Control is used for laboratory determinations. Of the 434,447 determinations (see Table A.2), 50.3% were QC (e.g. blanks, lab replicates, matrix spikes, surrogates, etc.). If calculated for the 420,173 customer determinations only, the percentage increases to 52.0%.

A small percentage (3.3%) of the total results did not meet internal QA review due to a variety of reasons - e.g. unsuccessful calibration, unacceptable QC performance, outside acceptance criteria, etc. Samples from analytical determinations that were rejected are either reanalyzed, the data is not reported, or data is reported and flagged as having not met data quality objectives and may not be suitable for compliance determination.

<sup>&</sup>lt;sup>15</sup> Data counts (metrics) were obtained on March 12, 2018 and do not include analyses that were underway but incomplete as of that time. All table data is based on samples collected between January 1, 2017 and December 31, 2017. This data summary is comprehensive and includes all laboratory analyses work for all customers, projects, and programs unless otherwise indicated.

 $Y: EMTS \ 41. Sections \ WCS \ EPORTS \ Annual \ Annual \ 2017 \ Final \ Reports \ 2017 \ Annual \ docx \ Annual \ Annuu \ Annual \ Annual \ Annual \ Annu$ 

|                                                                    | Number  | Percent of total<br>(434447) | Percent of total<br>(420173) |
|--------------------------------------------------------------------|---------|------------------------------|------------------------------|
| Total number of analytes/results determined:                       | 434,447 | NA                           |                              |
| Total results not complete <sup>2</sup> :                          | 14,274  | 3.3%                         |                              |
| No. of results for Customer/Environmental Samples <sup>1,3</sup> : | 420,173 | 96.7%                        |                              |
| Total number of rejected results:                                  | 140,513 | 36.06%                       |                              |
| No. of results for blanks <sup>3</sup> :                           | 36,425  | 8.4%                         | 8.7%                         |
| No. of results for matrix spikes <sup>3</sup> :                    | 23,666  | 5.4%                         | 5.6%                         |
| No. of results for Check samples <sup>3</sup> :                    | 79,789  | 18.4%                        | 19.0%                        |
| No. of results for Replicates <sup>3</sup> :                       | 48,625  | 11.2%                        | 11.6%                        |
| No. of results for surrogates <sup>3</sup> :                       | 29,925  | 6.9%                         | 7.1%                         |
| Total QC analyses run <sup>3</sup> :                               | 218.430 | 50.3%                        | 52.0%                        |



1 – matrix spike, replicates, surrogates are also part of the total for Customer/Environmental samples.

2 – as of March 26, 2017.

3 – percent of QC samples calculated from grand total of 420,173.
NOTE: Analysis, for metrics purposes used in this report, generally refers to a parameter determined in each sample in a batch. Determination of several metals in a sample (e.g. iron, nickel, lead) would equal as three (3) analyses in the expression of totals such as those in the Analyses table on the preceding page. This means of calculation that has been used for many years with batch and method, is a useful comparative measure of laboratory performance and is one of the fundamental constants in applying quality control measures.

|                                              | No. of  |                  |
|----------------------------------------------|---------|------------------|
|                                              | Batches | Percent of total |
| Total number of analytical batches:          | 15,695  | 100.00%          |
| Total number of rejected analytical batches: | 147     | 0.94%            |
| Incomplete batches (as of March 26, 2017):   | 360     | 2.29%            |
|                                              | 16,202  |                  |

## **Outside laboratories**

A small number of permit required analyses are contracted out, as summarized below.

| Results from sub-contracted labs.  |          |                |
|------------------------------------|----------|----------------|
|                                    |          | Total in-house |
| Laboratory                         | Analytes | Analytes       |
| Frontier Analytical                | 4533     | 1.43%          |
| Weck Laboratory                    | 37       | 0.01%          |
| Fruit Growers Laboratory, Inc.     | 94       | 0.03%          |
| San Diego Water Quality Laboratory | 110      | 0.03%          |
| Test America                       | 682      | 0.22%          |
| Total outside results:             | 5,456    | 1.72%          |

\* Nautilus Environmental results not included in calculations.

# QA Plan:

A copy of our Laboratory's current Quality Assurance Plan is included as Attachment 4. The Quality Assurance Plan was updated in March 2018.

## Summary of 2017 Performance Testing (PT) Studies:

The Environmental Chemistry Services Laboratories participated in required ELAP and USEPA PT studies throughout the year. Each of the geographically separated laboratory facilities participated individually (as required by ELAP) in 31 PT studies for 2017. PT studies successfully completed were purchased from ERA, Absolute Standards, and Phenova. When results submitted were determined to be outside of study acceptance limits, the laboratory reviewed its internal protocols, modified procedures as necessary, and participated in a subsequent study for the analytes in question. A PT study was completed with satisfactory results for all analytes by in-house chemistry laboratories.

The results of the Laboratory PT studies for 2017 are summarized in the following tables.

| PT Study             | Number of Analytes | Number of<br>Acceptable results | Success Rate<br>(%) |  |
|----------------------|--------------------|---------------------------------|---------------------|--|
| WP 0070              | 1                  | 1                               | 100%                |  |
| R20556 (DRO GRO CN)  | 3                  | 3                               | 100%                |  |
| R20556 (Pest in WW)  | 19                 | 14                              | 74%                 |  |
| R20557 (OPP in soil) | 11                 | 11                              | 100%                |  |
| R2557 (PCBs in soil) | 7                  | 7                               | 100%                |  |
| R2557 (Pest in soil) | 15                 | 15                              | 100%                |  |
| R20673 (Pest in WW)  | 19                 | 19                              | 100%                |  |
| HW0117               | 28                 | 28                              | 100%                |  |
| HW0417               | 125                | 122                             | 98%                 |  |
| HW0717               | 31                 | 31                              | 100%                |  |
| WP2017               | 14                 | 14                              | 100%                |  |
| WP267                | 2                  | 2                               | 100%                |  |
| WP268                | 31                 | 31                              | 100%                |  |
| WP270                | 2                  | 2                               | 100%                |  |
| WP0317               | 169                | 167                             | 99%                 |  |
| WP0417               | 18                 | 18                              | 100%                |  |
| WP266                | 8                  | 8                               | 100%                |  |
| Total analytes:      | 503                | 493                             | 98%                 |  |

Alvarado Environmental Chemistry Laboratory: See attachment 6 for copy of reports.

| Metro Biosolids Center | (MBC) | ) Chemistry | Laboratory: See | attachment | 8 for | copy of repor | ts. |
|------------------------|-------|-------------|-----------------|------------|-------|---------------|-----|
|------------------------|-------|-------------|-----------------|------------|-------|---------------|-----|

| PT Study        | Number of Analytes | Number of<br>Acceptable results | Success Rate |  |
|-----------------|--------------------|---------------------------------|--------------|--|
|                 |                    |                                 | (%)          |  |
| WP0317          | 5                  | 5                               | 100%         |  |
| HW0417          | 2                  | 2                               | 100%         |  |
| Total analytes: | 7                  | 7                               | 100%         |  |

Pt. Loma Environmental Chemistry Laboratory: See attachment 9 for copy of reports.

| PT Study        | Number of Analytes | Number of<br>Acceptable results | Success Rate<br>(%) |
|-----------------|--------------------|---------------------------------|---------------------|
| HW0417          | 2                  | 2                               | 100%                |
| WP0317          | 10                 | 10                              | 100%                |
| WP0417          | 1                  | 1                               | 100%                |
| WP0517          | 1                  | 1                               | 100%                |
| HW0717          | 2                  | 2                               | 100%                |
| Total analytes: | 16                 | 16                              | 100%                |

| South Bay | Wastewater | Chemistry | Laboratory: | See attachment | 10 for | copy of reports. |
|-----------|------------|-----------|-------------|----------------|--------|------------------|
|           |            |           |             |                |        |                  |

| PT Study        | Number of Analytes | Number of<br>Acceptable results | Success Rate<br>(%) |
|-----------------|--------------------|---------------------------------|---------------------|
| HW07017         | 2                  | 2                               | 100%                |
| WP267           | 1                  | 1                               | 100%                |
| WP268           | 2                  | 2                               | 100%                |
| WP270           | 1                  | 1                               | 100%                |
| WP0417          | 15                 | 14                              | 93%                 |
| WP0517          | 2                  | 2                               | 100%                |
| WS249           | 1                  | 1                               | 100%                |
| Total analytes: | 24                 | 23                              | 96%                 |

# F. Staff Contributing to this Report

Staff Contributing to this Report in 2017

| Initi | als        | ID           | First Name | e Last Name Signature                         |
|-------|------------|--------------|------------|-----------------------------------------------|
| KB    |            | KBANU        | Khaleda    | Banu                                          |
| VB    | TAB        | VBASILAN     | Virginia   | Basilan MJSme                                 |
| EB    | eder       | EBLANCO      | Enrique    | Blanco guerreblacel                           |
| TC    | DC         | TJCANNON     | Tim        | Cannon Tritlon                                |
| JC    | JL         | JCASTRO      | Jose       | Castro                                        |
| JCM   | JCM        | JCAZARES     | Jacqueline | Cazares-Medina M. Jacquering Gig ores Mcolina |
| KC    | K.C.       | KCHAUVIN     | Kai        | Chauvin Man Chausen                           |
| BC    | B.C        | BCHING       | Brett      | Ching                                         |
| MC    | MC.        | MCORONEL     | Maricela   | Coronel Mainely Econol                        |
| -GM-  | Cly        | CCORRAO      | Christine  | Corrao Chilic                                 |
| JCM   | Sh         | -JCZAJKOWSKI | Jerry      | Czajkowski 7 Ein Cowrky                       |
| KD    | 10         | KDANG        | Ken        | Dang Vicenma                                  |
| MM    |            | MMDAOUD      | Mike       | Daoud                                         |
| SD    | (Tio)      | SDAUGHTERS   | Susan      | Daughters Sum Warn                            |
| BD    |            | BDONAHUE     | Brad       | Donahue                                       |
| BLD   |            | BDOWELL      | Brenda     | Dowell Forgenell                              |
| ACD   | A-).       | ADURAN       | Angelica   | Duran Chrigelen Durm                          |
| AJE   |            | AJENTERA     | Angela     | Entera                                        |
| MF    | MF         | MFERRY       | Matthew    | Ferry hyuthing                                |
| EFIT  | ZQL        | EFITZGERALD  | Erica      | Fitzgerald Cynllk                             |
| GAF   | GF         | GAFLORES     | Gabriel    | Flores John Mm                                |
| AF    | AF         | AFULLER      | Alma       | Fuller                                        |
| BSG   | B.G        | BSGARCIA     | Brenda     | Garcia Presedes Mareir                        |
| TG    | TG         | TGARCIA      | Tatsiana   | Garcia Gramy                                  |
| NG    | . ,        | NGRIMAUD     | Nicole     | Grimaud                                       |
| DH    | Dah        | DHUANTE      | Daniel     | Huante ()                                     |
| EH    |            | EHUNT        | Eric       | Hunt Em the                                   |
| RJ    | (PC)       | RJARDINE     | Ron        | Jardine le le                                 |
| BK    |            | BKELLEY      | Brett      | Kelley                                        |
| 1K    | LNK        | LKING        | Lee        | King Keen. Km                                 |
| JK-   | JK         | JKIRBY       | Jeanette   | Kirby                                         |
| GK    | GK         | GKOBAYAHI    | Glen       | Kobayashi ulin Mujish                         |
| VK    | VK         | VKOZAREV     | Vesselka   | Kozarev V. Knoww                              |
| EL    | EL         | ELANEZ       | Estela     | Lanez Histor Jan                              |
| AM    | h14111     | AMARTINEZ    | Armando    | Martinez / 200 200 (1)                        |
| FM    | HN         | FMARTINEZ    | Fernando   | Martinez Andrad                               |
| CGIV  | 1          |              | Connie     | Mata                                          |
| JIVI  | <i>p</i> . | JMCANALLY    | Jen        | MicAnally                                     |
|       | met        |              | Oscar      | Miranda Out                                   |
|       | OM         | INIETO       | locus      | Nintanua (Karst                               |
| MN    | 200        | MNOLLEP      | Maria      | Noller 70.5.5.2.1.5                           |
| DD    | M          |              | Paola      | Parra (                                       |
| CP    |            | CPAYAN       | Ciara      | Pavan                                         |
| AP    | 94         | ALEREDOP     | Alfredo    | Porez Minand                                  |
| TCP   | PD         | TPRIEST      | Taylor     | Priest FLATING                                |
| IP    | 20         |              | Leonard    | Przybylo                                      |
| CAO   | ~          | COLINATA     | Corinna    | Quinata                                       |
| YXR   | R          | YREYNOSOMAR  | Yolanda    | Revnoso Martin Ustrandre Lalara Martin        |
| SR    | SER        | SEROMERO     | Sonii      | Romero America Antico Alla Contrata           |
| RR    | RR         | RRONSAIRO    | Rowena     | Ronsairo Anus & Brown                         |
| RS    | RS         | RSANDOVAL    | Robert     | Sandoval Kulung                               |
| VS    | 1.2        | VSANTIBANEZ  | Victoria   | Santibanez                                    |
| GS    | 65         | GSCHLIMME    | Grea       | Schlimme                                      |
| SV    | SV         | SVALENZUELA  | Sandra     | Valenzuela Samo Vola                          |
| FV    | F.V.       | FVEGA        | Felipe     | Vega the Will X                               |
| JWC   | m          | JWEBB        | Julie      | Webb Quite m belob                            |
| EW    | AN         | EWESTCOTT    | Erica      | Westcott                                      |
| MY    |            | MYOUNAN      | Michael    | Younan Michard Lavnum                         |
|       |            |              |            | CHANN Set Street                              |

 $Y: EMTS 41. Sections WCS REPORTS PLWWTP Annuals Annual 2017 Final_Reports 2017 \_ Annual docx WCS Reports 2017 \_ Annual docx WCS Annual Annual Annual Annual 2017 Final_Reports 2017 \_ Annual docx WCS Annual Annual Annual 2017 = 2000 Annual Annual 2017 = 2000 Annual Annual Annual 2017 = 2000 Annual Annual Annual Annual 2017 = 2000 Annual Annual Annual 2017 = 2000 Annual Annual Annual Annual 2017 = 2000 Annual Annual Annual 2017 = 2000 Annual Annual Annual Annual 2017 = 2000 Annual Annual$ 

### Public Utilities Department Environmental Monitoring and Technical Services Division Environmental Chemistry Services



\*Primarily assigned to this group but performs additional assignment in support of another ECS work group.

### G. System-wide calculation definition

System-wide removals are a practical extension of the "Adjusted Removals" previously reported. Adjusted removals were used to determine removal efficiency of TSS and BOD, during the period when biosolids dewatering occurred at Fiesta Island. The wastewater removed by dewatering (e.g. belt filter press or drying bed decant) was returned to the Point Loma WWTP headworks and contained a certain amount of solids. In order to account for the removal and return of TSS and BOD, on a complete mass-balance basis, the Adjusted Removals were determined. That calculation was relatively straight forward and included removing the contribution to the Pt. Loma WWTP influent of the returned stream. The calculation was done on a mass balance basis to fully account for the solids and BOD contributions returned back to the system.

With the replacement of Fiesta Island biosolids processing by the Metro Biosolids Center (MBC) and the addition of the NCWRP (North City Water Reclamation Plant) in the Metro System, the removal and return of solids to Pt. Loma WWTP was complicated by the addition of multiple inputs and outputs to the system. To calculate the systemwide removals, the net total inputs and outputs were determined and included in the updated calculation13. The determination of System-wide removals is represented by Equation 1 on the next page. This simplified diagram graphically shows the relationships of the input and output streams. The Tijuana interceptor (emergency connection) has not contributed flows since September 2003. The South Bay Water Reclamation Plant (SBWRP) is not shown since it currently has no net contribution or solids removal.



<sup>13</sup> Calculations are performed by a computer database application working with Metro System flow and concentration data.

| Equatior<br>System-v | Equation 1.<br>System-wide %Removal= <u>(ΣSystem Influents)–(ΣReturn Streams) – (ΣOutfall Discharge)</u> x 100%<br>ΣSystem Influents – ΣReturn Streams |   |                                                                                                                                                                                        |  |  |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Where,               |                                                                                                                                                        |   |                                                                                                                                                                                        |  |  |
|                      | System Influents                                                                                                                                       | = | Point Loma Wastewater Treatment Plant Influents,<br>NCWRP Influent Pump Station (i.e. Pump station 64),<br>NCWRP Influent from Penasquitos Pump Station                                |  |  |
|                      | Return Streams                                                                                                                                         | = | NCWRP Filter Backwash,<br>NCWRP Plant Drain,<br>NCWRP Secondary Effluent,<br>NCWRP Un-disinfected Filtered Effluent Bypass,<br>NCWRP Final Effluent<br>Metro Biosolids Center Centrate |  |  |

The TSS and BOD<sub>5</sub> concentrations, together with the flow rate, of each stream are measured daily and mass emissions (pounds a day) for each stream determined. The above formula is applied on the resultant mass balances and the system-wide removals calculated for each day. In the event that a data value (e.g. flow rate measurement, TSS concentration or BOD<sub>5</sub> concentration) is not available for a stream, the median value for the previous calendar year for that stream is used as a surrogate number to allow completion of the calculation. The annual averages and summaries in the system-wide data tables are derived (arithmetic mean) from the monthly averages of the daily calculated mass emissions values and removal rates.

This page intentionally left blank