

February 26, 2021

Mr. David W. Gibson, Executive Officer California Regional Water Quality Control Board 2375 Northside Drive, Suite 100 San Diego, CA 92108

Subject: 2020 Pretreatment Annual Report for the Point Loma POTW Board Order No. R9-2017-0007

Dear Mr. Gibson:

An amended San Diego Wastewater Pretreatment Program Annual Report is hereby submitted in accordance with the requirements of NPDES Permit No. CA0107409, adopted by the Regional Water Quality Control Board on April 12, 2017 and issued by the U.S. Environmental Protection Agency on October 1, 2017. Because flows from industries tributary to the South Bay Water Reclamation Plant can be diverted to the Point Loma POTW, this Report also includes data for industries tributary to the South Bay Water Reclamation Plant and Ocean Outfall.

The City is committed to protecting public health and the environment through a program of environmental management, which includes source control, wastewater treatment, an improved ocean outfall, and extensive monitoring. One key element of the program is an aggressive pretreatment and pollution prevention program to minimize toxic discharges to the sewerage system. This report includes a summary of Pretreatment Program activities and accomplishments throughout jurisdictions tributary to the Metropolitan Sewerage System, which includes the Point Loma Wastewater Treatment Plant, the North City Water Reclamation Plant, and the South Bay Water Reclamation Plant.

The Industrial Wastewater Control Program (IWCP) was created in 1982 after being formally approved by the U.S. Environmental Protection Agency. Since that time, significant enhancements have been made to the program including: (1) implementation of an Enforcement Response Plan in 1987, (2) implementation of an Annual Local Limits Re-Evaluation in 1998, and (3) establishment of a focused Enhanced Source Control group in 2003. However, with the exception of these enhancements, the program has not changed significantly since its inception.

With the City's Pure Water Program coming on-line, the Public Utilities Department determined that critical evaluation of the IWCP and its effectiveness in protecting human and environmental health was necessary. In June 2018, the City embarked on an evaluation of the IWCP by engaging two external consultants with extensive experience in managing and evaluating large municipal pretreatment programs. The IWCP was evaluated for the following six areas including: (1) Permit processing, (2) Compliance inspection, (3) Compliance enforcement, (4) Industrial discharge monitoring, (5) Records management, and (6) Organization. Multiple areas for improvement were documented and IWCP started the process of implementing all consultant recommendations by increasing the staff and Page 2 Mr. David W. Gibson February 26, 2021

reorganizing the Program. IWCP expected to have all new staff hired in 2020 but due to the Pandemic the Program is hoping to have all staff hired in 2021. The Program has shifted its focus to have three programmatic components by giving each one its own designated work group: (1) Significant Industrial Users (SIUs); (2) Industries considered part of the Enhanced Source Control Program tributary to Point Loma with its NPDES permit and associated waiver from secondary treatment; and (3) Industries considered part of the Enhanced Source Control Program mandated by the Pure Water NPDES permit.

This report was generated using the current data available in the IWCP's Pretreatment Information Management System (PIMS). The consultants identified issues with how some data are managed within the PIMS, and actions to correct these deficiencies are underway. Until these corrections are made, the state of the data presented here is the most accurate the program is able to provide. However, the program has flagged data on several pages throughout the report to indicate numbers that are expected to change once programmatic improvements occur. Brief explanations regarding how and why numbers may change are provided where applicable.

Should you have any questions concerning the information provided herein, or wish to discuss the report in detail, please contact John Steger, Pretreatment Program Manager, at (858) 654-4103.

Sincerely,

Kg/

Peter S. Vroom, Ph.D. Deputy Director, Public Utilities Department

JAS/jn

cc: Juan Guerreiro, Executive Assistant Director of Public Utilities, City of San Diego Joy Newman, Industrial Wastewater Control Program Manager, City of San Diego R9Pretreatment@epa.gov

POTW PRETREATMENT ANNUAL REPORT

COVER SHEET

NPDES Permit Holder or Sewer Authority Name:	City of San Diego
Report Date:	March 1, 2021
Period Covered by This Report:	January 1, 2020 to December 31, 2020
Period Covered by Previous Report:	January 1, 2019 to December 31, 2019
<u>Name of Wastewater Treatment Plant(s)</u>	South Bay Water Reclamation Plant
NPDES Permit Number	<u>CA 0109045</u>

Person to contact concerning information contained in this report:

Name:John StegerTitle:Pretreatment Program ManagerMailing Address:9192 Topaz Way, MS 901DSan Diego, CA 92123-1119Telephone No.:(858) 654-4103

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

02-25-2021

Date

ron

Peter Vroom, Ph.D. Deputy Director Public Utilities

PRETREATMENT ANNUAL REPORT

PCS Data Entry Form

PPS1

POTW NAME:	<u>City of San Diego South Bay Water Reclamation Plant and Ocean Outfall</u> Flows from this plant can be diverted to the City of San Diego EW Blom Point Loma Plant, NPDES Permit No. CA0107409; therefore, this information is also included in the PCS for that POTW.				
NPDES Permit #:	<u>CA0109045</u>				
Period Covered by	Гhis Report:	<u>01/01/20 (</u> PSSD) Start Date	<u>12/31/2</u> End Da	<u>0 (PSED)</u> ate	
0	ant Industrial Users (S with Pretreatment Cor	IU) in Significant Non- npliance Schedule:	0	(SSNC)	
Number of Notices		nd Administrative Orders	19	(FENF)	

Issued Against SIUs:		(121(1))
Number of Civil & Criminal Judicial Actions against SIUs	0	(JUDI)
Number of SIUs with Significant Violations Published:	4	(SVPU)
Number of SIUs from Which Penalties Have Been Collected:	0	(IUPN)

SOUTH BAY WATER RECLAMATION PLANT & OCEAN OUTFALL PRETREATMENT ANNUAL REPORT

NPDES PERMIT No. CA 0109045 SDRWQCB ORDER No. R9-2013-0006 as Amended By Order No. R9-2014-0071 AND Order R9-2017-0023

JANUARY 1 – DECEMBER 31, 2020

Environmental Monitoring and Technical Services Public Utilities Department 2392 Kincaid Road Mail Station 45A San Diego, CA 92101 Tel (619) 758-2310 • Fax (619) 758-2309

TABLE OF CONTENTS

Chapter	Subject	Page
Chapter 1	Introduction	
1.1	Description of the South Bay Water Reclamation Plant and Its Service Area	1
Chapter 2	Program Structure	
2.1	Pollution Prevention Plan Requirements	2
2.2	Programs San Diego has implemented to reduce pollutants from non-SIUs	2
2.3	Pretreatment Program Changes	2
2.4	Annual Pretreatment Program Budget	2
Chapter 3	Discharge Permits	
3.1	Active Permits	3
3.2	Changes in SIU Inventory	3
3.3	Baseline Monitoring Reports	3
Chapter 4	SIU Enforcement	
4.1	Annual Compliance Summary	10
4.2	Characterization of the Compliance Status of Each SIU	10
4.3	SIU Enforcement Actions Initiated, Continued, or Finalized	10
4.4	Public Information and Involvement	11
Chapter 5	Pretreatment Program Effectiveness	
5.1	Heavy Metal Loadings and Monitoring Data	17
2.2	Upset, Interference, and Pass-through	17
5.3	Biosolids Disposal Methods	17
5.4	Other Concerns	17

LIST OF REPORTS

Subject	Page
SIU Category, Process, and Pretreatment Technology	4
SIU Category, Regulated Parameters by Connection	6
Active Non-SIU Permits	8
Active Groundwater Permits	8
Zero Discharge from Categorical Operations	8
Film Processors Subject to BMPs	9
Dry Cleaners subject to BMPs	9
	-
Dental Offices subject to Dental Amalgam BMPs	9
Annual SIU Compliance Status	12
NOV Issued for SIUs	13
Sampling in 2020 at SIUs	14
South Bay Water Reclamation Plant Sewage Influent and Effluent Monitoring:	
BOD Influent and Effluent Concentrations and Percent Removal	19
TSS Influent and Effluent Concentrations and Percent Removal	20
Influent to Plant	21
Effluent Ocean Outfall	22
Trace Metals	23
Ammonia-Nitrogen and Total Cyanide	26
Anions	27
Cations	28
Chlorinated Pesticides	29
Organophosphorus Pesticides	31
Dioxin & Furan	32
BNAs - Acid Extractables Compounds	36
BNAs - Base/Neutrals Compounds	37
VOCs - Purgeable Compounds	39
Radioactivity	41
Tributyl Tin	42

	Subject	Page
3.1-1	Permit Inventory by Class and Flow	3
3.1-2	Facilities with BMP Authorizations and No Permit Required	3
3.2-1	Changes in SIU Inventory	3
3.3-1	Baseline Monitoring Reports Requested or Received	3
3.3-2	Facilities Operating under a Baseline Monitoring Report	3
4.4-1	Significant Industrial Users in SNC	11
5.1.1	Influent Heavy Metals	18
5.1.2	Effluent Heavy Metals	18

BMP	Best Management Practice
BMR	Baseline Monitoring Report
BOD	Biochemical Oxygen Demand
CWA	Clean Water Act
DDW	Division of Drinking Water
EDR	Electrodialysis Reversal
GAPS	Grove Avenue Pump Station
GPD	Gallons Per Day
IBWC	International Boundary and Water Commission
IU	Industrial User
IW	Industrial Wastewater
IWCP	Industrial Wastewater Control Program
IWTP	International Wastewater Treatment Plant
MDL	Method Detection Limit
MGD	Million Gallons Per Day
Non-SIU	Non-Significant Industrial User
NOV	Notice of Violation
NPDES	National Pollutant Discharge Elimination System
ORPS	Otay River Pump Station
PLWTP	Point Loma Wastewater Treatment Plant
POTW	Publicly Owned Treatment Works
PSED	Pretreatment Summary Start Date
PSSD	Pretreatment Summary End Date
RO	Reverse Osmosis
RFP	Request for Proposal
SBWRP	South Bay Water Reclamation Plant
SIU	Significant Industrial User
SMR	Self-Monitoring Report
SNC	Significant Non-Compliance
SBOO	South Bay Ocean Outfall
TDS	Total Dissolved Solids
TOMP	Toxic Organics Management Plan
TRC	Technical Review Criteria
TSS	Total Suspended Solids
USEPA	United States Environmental Protection Agency
UV	Ultraviolet

CHAPTER 1 – INTRODUCTION

1.1 Description of the South Bay Water Reclamation Plant and Its Service Area

The South Bay Water Reclamation Plant (SBWRP) is located on a 22-acre site near Dairy Mart Road and Monument Road in the eastern portion of the Tijuana River Valley. The site is just north of the international boundary between Mexico and the United States and less than a half mile west of the International Wastewater Treatment Plant (IWTP). The SBWRP treats raw wastewater collected from the southern portion of the City of San Diego, the City of Imperial Beach, the City of Chula Vista, and the unincorporated portions of south and east San Diego County, a total of approximately 44 square miles, and serves a population of about 110,000 people.

The plant is designed to treat up to 15 million gallons per day (MGD) of raw wastewater to secondary and/or tertiary reclaimed water standards. All SBWRP tertiary treated wastewater in excess of reclaimed water demands is discharged to the Pacific Ocean through the South Bay Ocean Outfall (SBOO). The SBOO was constructed for shared use by the IWTP, operated by the International Boundary and Water Commission (IBWC), and the City of San Diego's SBWRP. The SBOO extends westward approximately 23,600 feet from the mouth of the Tijuana River and terminates in a "wye" with two 1980-foot-long diffusers. The IWTP currently discharges a maximum of 25 MGD of secondary treated wastewater from the City of Tijuana. The total average design capacity of the outfall is 174 MGD with a peak hydraulic capacity of 233 MGD. The effluent from the SBWRP is combined with the effluent from the IWTP within the SBOO prior to discharge to the Pacific Ocean.

The SBWRP's primary and secondary processes consist of influent screening using mechanically cleaned bar screens, grit removal using aerated grit chambers, primary sedimentation clarifiers with chain and flight sludge collectors and tilting trough scum collectors, primary effluent flow equalization storage tanks, air activated sludge biological treatment with anoxic selector, and secondary clarifiers with chain and flight sludge collectors. The tertiary treatment process consists of filter feed pumping, coagulation with chemical addition, and direct filtration with conventional deep bed mono-media filters, backwash facilities, electrodialysis reversal (EDR) units, and disinfection using ultraviolet (UV) light. Sludge processing is handled at the Point Loma Wastewater Treatment Plant (PLWTP) and the Metropolitan Biosolids Center. Solids from the SBWRP are pumped to the PLWTP through the South Metro Interceptor.

The SBWRP began operations in 2002, accepting an average of 3.5 MGD influent through the Grove Avenue Pump Station (GAPS). In October 2003 the Otay River Pump Station (ORPS) came on-line. The ORPS is divided into two pumping streams, with one sending high total dissolved solids (TDS) flows from the Imperial Beach Sewer directly to the South Metro Interceptor influent to the PLWTP, and the other sending flows from the Otay Trunk Sewer and Salt Creek Trunk Sewer to the GAPS. Since start-up, the ORPS facility has been directing nearly 5 MGD to the GAPS, which combines with the more than 3 MGD GAPS flow for a total of nearly 8 MGD influent to the SBWRP. Since some wastewater from areas tributary to the GAPS and ORPS can be diverted to the PLWTP via the South Metro Interceptor, facilities tributary to the GAPS and ORPS are included in Annual Pretreatment Reports for both plants.

In 2017, the SBWRP installed two refurbished EDR units to provide for TDS and chloride removal, but several issues affecting their performance has limited the ability to run the two units to about 50% of the time. The results have indicated success reducing chloride but not sodium.

SBWRP management has approved a project to replace the EDRs with Reverse Osmosis (RO) units. The City is planning to advertise a request for proposal (RFP) for design engineering services for the RO project soon.

The facility did not produce recycled water in the first 6 months of the year due to the replacement of the UV units finalized in April 2020. The Division of Drinking Water (DDW) accepted the Title 22 Engineering Report Addendum for the new UV system with the April 2020 results, and established operating conditions and a requirement to submit an operations plan. The operations plan was submitted in June 2020, and after its approval, the facility was enrolled by the Regional Board under Order R9-2019-0005 Waiver No. 2 – Discharge to Land of Recycled Water, SBWRP on June 30, 2020. The waiver allows the plant to produce recycled water until a new permit is drafted, provided the discharge complies with both the general and specific conditions in the waiver. Recycled water production, distribution, and monitoring recommenced in July 2020.

CHAPTER 2 – PROGRAM STRUCTURE

2.1 **Pollution Prevention Plan Requirements**

No significant industrial users (SIUs) have been required to prepare or implement a pollution prevention plan as the result of non-compliance.

2.2 Programs San Diego has Implemented to Reduce Pollutants from non-SIUs

The City controls pollutants discharged by non-Significan Industrial Users (non-SIUs) and by nonindustrial sources through a combination of Class 2 and 3 permits, Best Management Practice (BMP) Certification programs, and Hazardous Waste Collection events and facilities throughout the Metropolitan Sewerage System service area in cooperation with contributing agencies. For details, see Chapters 2 and 3 of the Annual Report for the Point Loma Publicly Owned Treatment Works (POTW).

2.3 Pretreament Program Changes

Chages in administrative structure are found in Chapter 2 of the Annual Report for the Point Loma POTW.

2.4 Annual Pretreatment Program Budget

The pretreatment program budget is administered as a single budget for the three treatment plants in the Metropolitan Sewerage System service area. See Chapter 2, Section 2.3 of the Annual Report for the Point Loma POTW, for details.

CHAPTER 3 – DISCHARGE PERMITS

3.1 Active Permits

The Industrial Wastewater Control Program (IWCP) implements an industrial wastewater discharge permit system for the City of San Diego and 11 other Participating Agencies. At the end of the year IWCP administered 30 permits for facilities tributary to the SBWRP in class 1, 2, and 3. The facilities classified in class 2F, 4C, 4Z, 4M, 4, and 5 do not require a permit. The inventory of facilities is shown in Table 3.1-1. See Chapter 3 of the Pretreatment Annual Report for the Point Loma POTW for further details.

Table 3.1-1 Permit Inventory by Class and Flow										
Class	Cl	ass 1	Class 2		Class 3			Total		
Area	SIU	IW (GPD)	SIU	Non- SIU	IW (GPD)	SIU	Non- SIU	IW (GPD)	No. of Permits	IW (GPD)
12	3	224	0	6	14,654	8	2	364,597	19	379,475
13	0	0	1	8	21,935	0	1	3,268	10	25,203
36	1	33,375*	0	0	0	0	0	0	1	33,375
Total	4	33,599	1	14	36,589	8	3	367,865	30	438,053

*The Pio Pico Energy Center facility is geographically located in Area 36; however, the facility does not discharge industrial wastewater to the SBWRP. Industrial flows and monitoring data are reported under its trucked waste permit (#25-0379). See Chapter 3 of the Annual Report for the Point Loma POTW, NPDES Permit No. CA 0107409 for details.

		Table 3.1-2 Facilities with BMP Authorizations and/or No Permit Required						
Area	Class 2F	Class 4C	Class 4D	Class 4Z	Class 4M	Class 4	Class 5	Total
12	1	5	0	0	9	83	25	123
13	0	0	0	0	12	55	7	74
36	0	0	0	0	1	1	0	2
Total	1	5	0	0	22	139	32	199

3.2 Changes in SIU Inventory

Table 3.2-1 Changes in SIU Inventory
FACILITIES that BECAME SIUs: None
SIU FACILITIES INACTIVATED: None
SIU FACILITIES that REPORTED a NAME CHANGE: None
FORMER SIU FACILITIES THAT BECAME NON-SIUs: None

3.3 Baseline Monitoring Reports

Table 3.3-1 Baseline Monitoring Reports (BMR) Requested or Received
No BMRs were requested or received during the reporting period

	Table 3.3-2 Facilities Operating under a BMR						
Facility #	Facility Name	BMR Received					
12-0144	AP Precision Metals	17-Apr-2001					
12-0154	Heinz Frozen Foods	30-Aug-2002					
36-0001	Otay Mesa Energy Center LLC	20-Jun-2007					
12-0202	Spec-Built Systems Inc	28-Jun-2005					
12-0244	Harcon Precision Metals Inc	17-Jun-2010					

SIU Facilities Federal Category, Process, and Pretreatment Technology by Connection

Report run on: Tuesday, January 21, 2020 11:43 am

Class 1

Facility Permi	t Name	IW Discharged (gpd)	Conn	Principle Process	Federal/ Local	CFR Part	CFR Section	Order	Pre Treat Code
12-0144 05-A	AP Precision Metals	128	110	Metal Coating (Iron Phosphating)	Federal	433	.17	1 2 3	FILT-O SETTLE PH
12-0202 04-A	Spec-Built Systems Inc	26	110	Iron Phosphating	Federal	433	.17	1 2 3	SETTLE RECYL PH
12-0244 03-A	Harcon Precision Metals In	ic 70	110	Conversion coating & assoc processes	Federal	433	.17	1 2 3 4 5	PH MIXER SETTLE HAUL EVAP
36-0001 03-A	Otay Mesa Energy Center	LLC 33,375	110	WetSac blowdown + OWS	Federal	423	.17	1 2	SETTLE PH
			120 140	PCB zero discharge Turbine washing	Federal Federal	423 423	.17 .17	1 1	ZERO SETTLE

SIUs: 4

Class 2

			Section		Code
0549 02-A UT; Brenntag Pacific Inc 10,080 100 Groundwater Remediation	Local	101		1 2 3 4 5 6	O/W SETTLE CENT BIO+O2 FILT-O ADS-C

SIUs: 1

Class 3

Facility Permit	t Name IW D	ischarged (gpd)	Conn	Principle Process	Federal/ Local	CFR Part	CFR Section	Order	Pre Treat Code
12-0038 06-A 12-0065 05-A	RJ Donovan Correctional Facility Emerald Textiles LLC	13,700 79,194	100 110	Prison Sewer Main Commercial Laundry	Local Local	133 133		1 2 3 1 2 3 4	GRIND SCREEN SOURCE LINT SETTLE HAUL RECYL
12-0154 05-A	Kraft Heinz Foods Company	102,142	110	Food Manufacturing	Local	137		1 2 3 4 5	EQUAL SCREEN DAF+C GREASE HAUL
12-0212 02-A	Tarantino Wholesale Food Distributors	7,112	100	Sewer Lateral	Local	137		1 2 3	EQUAL SCREEN HAUL
			210	Sausage manufacturing	Local			1 2 3	SETTLE HAUL ELBOW
12-0220 05-A	Ajinomoto Foods North America Inc	76,000	110	Food manufacturing	Local	137		1 2 3 4	EQUAL SCREEN DAF+C SD-FP
12-0275 03-A	Jensen Meat Company Inc	18,478	110	Meat processing, cleaning/sanitizing	Local	137		1 2 3 4	SCREEN ELBOW SETTLE HAUL
12-0283 03-A	Spectex Inc dba Specialty Textile Services	47,853	110	Commerical Laundry	Local	133		5 1 2 3	DIVRTA SETTLE LINT UF

Report run on: Tuesday, January 21, 2020 11:43 am

Class 3

Facility Permit	t Name	IW Discharged Con (gpd)	n Principle Process	Federal/ Local	CFR Section	Order	Pre Treat Code
12-0285 03-A	US General Services Administration - SYLPOE	50 110	Waste activated sludge	Local		1 2 3	SCREEN EQUAL BIO-AS
		120	Untreated wastewater	Local		1	SCREEN
		130	Treated wastewater	Local		1 2 3 4 5 6	SCREEN EQUAL BIO-AS UF UV HAUL

SIUs: 8

Facility Pmt Name	Address C	onn 1		Parmcode			Cat	Period			
			(gpd)		freq	freq			Limit	Limit	
2-0038 06-A RJ Donovan Correctional Fac	ility480 Alta Rd, San Diego	100	13,700	OIL/GREASE	Н	Q	L	DM		500	mg/L
2 0065 05 A Encoded Tractiles LLC	1725 Dame at Ct Sector 100	110	70 104	PH OUL/CREASE	Н	Q	L	DM	5	12.5	pH
2-0065 05-A Emerald Textiles LLC	1725 Dornoch Ct Suite 100, San Diago	110	/9,194	OIL/GREASE PH	Q Q	Q Q	L L	DM DM	5	500 12.5	mg/L pH
	San Diego			PH HIGHEST	Q	-	Ĺ	DM	U	12.5	pH
				SULFIDE DISSOLVD	Q	Q	L	DM		1	mg/L
2-0144 05-A AP Precision Metals	1215 30th St, San Diego	110	128	CADMIUM	Q	Q	F	DM MO		.11 .07	mg/L
				CHROMIUM	Q	Q	F	DM MO		.07 2.77 1.71	mg/L mg/L mg/I
				COPPER	Q	Q	F	DM MO		3.38 2.07	mg/L mg/L mg/L
				CYANIDE(T)	Q	Q	F	DM MO		1.2 .65	mg/L mg/L
				LEAD	Q	Q	F	DM MO		.69 .43	mg/L mg/L
				NICKEL	Q	Q	F	DM MO		3.98 2.38	mg/L
				РН	0	Q	L	DM	5	12.58	mg/L pH
				SILVER	Q Q	Q	F	DM MO		.43 .24	mg/L mg/L
				TTO(413+433)-P	А	Q	F	DM		2130	ug/L
				ZINC	Q	Q	F	DM		2.61	mg/L
	7070 A: D1 G	110	102 142	OIL /C CODEEN	N			MO		1.48	mg/L
2-0154 05-A Kraft Heinz Foods Company	7878 Airway Rd, San	110	102,142	OIL/G SCREEN OIL/GREASE	N Q	М	A L	DM DM		500 500	mg/L mg/L
	Diego			PH	Q	M	Ĺ	DM	5	12.5	pH
				PH HIGHEST	Ň		L	DM		12.5	рН
				SULFIDE DISSOLVD	Q	Q	L	DM		1	mg/L
				TEMP	Q	Μ	L	DM		65.5	Deg
2-0202 04-A Spec-Built Systems Inc	2150 Michael Faraday Dr, San Diego	110	26	CADMIUM	S	Q	F	DM MO		.11 .07	mg/L mg/L
	-			CHROMIUM	S	Q	F	DM MO		2.77 1.71	mg/L mg/L
				COPPER	S	Q	F	DM MO		3.38 2.07	mg/L mg/L
				CYANIDE(T)	S	Q	F	DM MO		1.2 .65	mg/L mg/L
				LEAD	S	Q	F	DM MO		.69 .43	mg/L mg/L
				NICKEL	S	Q	F	DM MO		3.98 2.38	mg/L mg/L
2-0202 04-A Spec-Built Systems Inc	2150 Michael Faraday Dr,	110	26	РН	S	Q	L	DM	5	12.5	pН
2 0202 01 A Spee Built Systems me	San Diego	110	20	SILVER	S	Q	F	DM MO	U	.43 .24	mg/L mg/L
				TTO(413+433)-P	А	Q	F	DM		2130	ug/L
				ZINC	S	Q	F	DM MO		2.61 1.48	mg/L mg/L
			2 1 4 6	OIL/GREASE	Q	Н	L	DM DM	5	500 12.5	mg/L pH
	7651 Saint Andrews Av,	100	5,140			н			5	14.5	
2-0212 02-A Tarantino Wholesale Food Distributors	7651 Saint Andrews Av, San Diego	100	5,140	PH	Q	Н	L L			12.5	рн
		100	5,140			Н Н	L L L	DM DM DM		12.5 1	pH mg/I
		100 210	,	PH PH HIGHEST	Q Q		L	DM			mg/I
			,	PH PH HIGHEST SULFIDE DISSOLVD OIL/GREASE PH	Q Q Q Q Q Q	н	L L L L	DM DM DM DM	5	1 500 12.5	mg/l mg/l pH
	San Diego	210	3,966	PH PH HIGHEST SULFIDE DISSOLVD OIL/GREASE PH PH HIGHEST	Q Q Q Q Q Q Q	н	L L L L	DM DM DM DM DM	5	1 500 12.5 12.5	mg/I mg/I pH pH
Distributors 2-0220 05-A Ajinomoto Foods North Amer	San Diego rica 8411 Siempre Viva Rd, San	210	3,966	PH PH HIGHEST SULFIDE DISSOLVD OIL/GREASE PH PH HIGHEST OIL/G SCREEN	Q Q Q Q Q Q Q N	H H	L L L L O	DM DM DM DM DM DM	5	1 500 12.5 12.5 500	mg/I mg/I pH pH mg/I
Distributors	San Diego	210	3,966	PH PH HIGHEST SULFIDE DISSOLVD OIL/GREASE PH PH HIGHEST OIL/G SCREEN OIL/GREASE	Q Q Q Q Q Q Q N Q	H H M	L L L L O L	DM DM DM DM DM DM DM		1 500 12.5 12.5 500 500	mg/I mg/I pH pH mg/I mg/I
Distributors 2-0220 05-A Ajinomoto Foods North Amer	San Diego rica 8411 Siempre Viva Rd, San	210	3,966	PH PH HIGHEST SULFIDE DISSOLVD OIL/GREASE PH PH HIGHEST OIL/G SCREEN OIL/GREASE PH		H H	L L L L O L L	DM DM DM DM DM DM DM	5	1 500 12.5 12.5 500 500 12.5	mg/I mg/I pH pH mg/I mg/I pH
Distributors 2-0220 05-A Ajinomoto Foods North Amer	San Diego rica 8411 Siempre Viva Rd, San	210	3,966	PH PH HIGHEST SULFIDE DISSOLVD OIL/GREASE PH PH HIGHEST OIL/G SCREEN OIL/GREASE	Q Q Q Q Q Q Q N Q	H H M	L L L L O L	DM DM DM DM DM DM DM		1 500 12.5 12.5 500 500	mg/I mg/I pH pH mg/I mg/I

SIU Facilities: Regulated Parameters by Connection

Report run on: Tuesday, January 5, 2021 3:55 Facility Pmt Name	Address	Conn	Total IW	Parmcode	City.	Self	Cat	Period	Lowe	r Unne	r I Init
ruciuly 1 mi Nume	Auuress	Conn	(gpd)	1 urmeoue	freq		Cui	1 eriou		Limit	
12-0244 03-A Harcon Precision Metals Inc	1790 Dornoch Ct, San	110	70	CADMIUM	S	S	F	DM MO		.11 .07	mg/L mg/L
	Diego			CHROMIUM	S	S	F	DM		2.77	mg/L
				COPPER	S	S	F	MO DM MO		1.71 3.38 2.07	mg/L mg/L
				CYANIDE(T)	S	S	F	DM		1.2	mg/L mg/L
				LEAD	S	S	F	MO DM		.65 .69	mg/L mg/L
				NICKEL	S	S	F	MO DM		.43 3.98	mg/L mg/L
				OIL/GREASE	S	S	L	MO DM	_	2.38 500	mg/L mg/L
				PH SILVER	S S	S S	L F	DM DM	5	12.5 .43	pH mg/L
				TTO(413+433)-P	A S	S S	F F	MO DM		.24 2130	mg/L ug/L
		110	10.470	ZINC			-	DM MO		2.61 1.48	mg/L mg/L
12-0275 03-A Jensen Meat Company Inc	2550 Britannia Bl Suite 101, San Diego	110	18,478	OIL/GREASE PH	Q Q	Q Q	L L	DM DM	5	500 12.5	mg/L pH
				PH HIGHEST SULFIDE DISSOLVD	Q Q		L L	DM DM		12.5 1	pH mg/L
12-0283 03-A Spectex Inc dba Specialty Textil Services	e1333 30th St Suite A, Sar Diego	n 110	47,853	OIL/GREASE PH	Q Q	Q Q	L L	DM DM	5	500 12.5	mg/L pH
	Diego			PH HIGHEST SULFIDE DISSOLVD	S Q	Q	L L	DM DM		12.5 1	pH mg/L
12-0285 03-A US General Services Administration - SYLPOE	720 E San Ysidro Bl, Sar Diego	n 110	50	SULFIDE DISSOLVD TSS	Q Q	Q M	L L	DM DM		1 10000	mg/L mg/L
13-0549 02-A UT; Brenntag Pacific Inc	1888 Nirvana Av, Chula	100	10,080	3CLETHE 4CLETHE	Q Q	Q Q	L L	DM DM		26 700	ug/L ug/L
	Vista			BNZ(W/OAGG) BTEX	Q Q Q	QQ	L L	DM DM DM		50 750	ug/L
				FLOW MAX	Q	Ň	L	DM		10080	
36-0001 03-A Otay Mesa Energy Center LLC	606 De La Fuente Ct, Sar	n 110	33,357	FLOW RATE MAX CHROMIUM	Q	M Q	L F	DM DM		20 .2	gpm mg/L
	Diego			OIL/GREASE PH	Q Q	Q Q	L L	DM DM	5	500 12.5	mg/L pH
				PH HIGHEST TDS	N S	Q	L L	DM DM		12.5 2000	pH mg/L
		140	8	ZINC COPPER	Q S	Q S	F F	DM DM		1 1	mg/L mg/L

SIU Facilities: Regulated Parameters by Connection

Active NonSIU Permits

Report run on: Tuesday, January 5, 2021 3:33 pm

Class	2		
Facility	Permit	Name	Address
12-0140	02-A	Kaiser Foundation Health Plan	4652 Palm Av, San Diego
12-0143	04-A	ADESA California LLC dba ADESA San Diego	2175 Cactus Rd, San Diego
12-0145	05-A	Larkspur Energy LLC	9355 Otay Mesa Rd, San Diego
12-0177	02-A	Truck Net LLC	8490 Avenida De La Fuente, San Diego
12-0254	01-A	Northwest Circuits Corp	8660 Avenida Costa Blanca, San Diego
12-0298	01-A	Advanced ElectroMagnetics Inc	1320 Air Wing Rd Suite 101, San Diego
13-0008	06-A	Sharp Chula Vista Medical Center	751 Medical Center Ct, Chula Vista
13-0048	04-A	Hyspan Precision Products	1685 Brandywine Av, Chula Vista
13-0278	04-A	Republic Services dba Allied Waste Services	881 Energy Wy, Chula Vista
13-0298	04-A	Chula Vista Energy Center LLC	3497 Main St, Chula Vista
13-0316	03-A	Fuller Ford Kia	560 Auto Park Dr, Chula Vista
13-0327	03-A	Dresser-Rand	1675 Brandywine Av Suite E&F, Chula
			Vista
13-0533	01-A	Fleetwash Inc	649 Anita St Suite 1A, Chula Vista
13-0534	01-A	Super Welding of Southern California	609 Anita St, Chula Vista
		14	
Class	3		
Facility	Permit	Name	Address
12-0024	04-A	US Border Patrol	3752 Beyer Bl, San Diego
12-0028	02-A	Palm Ave LLC	1835 Palm Av, San Diego
13-0439	02-A	Toyota Chula Vista	650 Main St, Chula Vista
		3	
Grand to	tal:	17	

Active Groundwater Permits

Report run on: Tuesday, January 5, 2021 3:30 pm

1

Class	2		
Facility	Permit	Name	Address
13-0549	02-A	UT; Brenntag Pacific Inc	1888 Nirvana Av, Chula Vista
		1	

Grand total:

Zero Discharge from Categorical Operations

Report run on: Tuesday, January 5, 2021 3:34 pm

Class 4	4C		
Facility	Permit	Name	Address
12-0067	04-A	Resideo Technologies Inc.	2055 Dublin Dr Suite 100, San Diego
12-0094	06-A	Parker Hannifin Corp CSS Division	7664 Panasonic Wy, San Diego
12-0137	04-A	General Dynamics Global Imaging Technologies	7603 Saint Andrews Av Suite H, San Diego
12-0150	03-A	Leidos Innovations Corp	1330 30th St Suite A-C, San Diego
12-0167	04-A	Crower Cams & Equipment Co Inc	6180 Business Center Ct, San Diego
		5	
Grand total:		5	642

Film Processors subject to BMPs

Report run on: Tuesday, January 5, 2021 3:31 pm

Class 2	F		
Facility	Permit	Name	Address
12-0231	01-A	Juvenile Detention Facility	446 Alta Rd, San Diego
		1	
Grand tot	tal:	1	

Dry Cleaners subject to BMPs

Report run on: Tuesday, January 5, 2021 3:28 pm 0

Grand total:

Dental Offices subject to Dental Amalgam BMPs

Class 4	4M		
Facility	Permit	Name	Address
12-0103	03-A	Dental Arts of Palm Ave	3388 Palm Av Suite 101, San Diego
12-0121	02-A	Ismole Dental	4370 Palm Av Suite C, San Diego
12-0122	03-A	Carlos Garcia DDS	1270 Picador Bl Suite L-M, San Diego
12-0123	03-A	Southland Plaza Dental	655 Saturn Bl Suite G
12-0125	03-A	San Ysidro Dental Care	2004 Dairy Mart Rd, San Diego
12-0222	02-A	Jose L Lopez DDS Inc	3490 Palm Av Unit 1, San Diego
12-0314	01-A	Bajars & Bajars, DDS INC	2930 Coronado Av Suite C, San Diego
12-0315	01-A	South Bay Family Dental	1850 Coronado Av Suite 404
12-0317	01-A	Cynthia Tuason DDS Inc	1061 Saturn Bl Suite 103, San Diego
13-0387	02-A	Perfecta Dental Group	314 Palomar St, Chula Vista
13-0388	02-A	Palomar Dental Group	664 Palomar St Suite 1103, Chula Vista
13-0472	02-A	Melrose Dental Care	1456 Melrose Av, Chula Vista
13-0558	01-A	Great Dental Group	1310 3rd Av Suite A2, Chula Vista
13-0559	01-A	Sunbow Family Dentistry	1351 Medical Center Dr Suite B, Chula Vista
13-0563	01-A	Southwest Dental	1660 Broadway Suite 4 4, Chula Vista
13-0575	01-A	John Tillner Dental Corp	769 Medical Center Ct 200, Chula Vista
13-0579	01-A	Latino Family Dental	1635 3rd Av Suite D, Chula Vista
13-0582	01-A	Guzman Dental Office	2638 Main St Suite J, Chula Vista
13-0588	01-A	Albert Broas DDS Inc	1295 Broadway Suite 204, Chula Vista
13-0617	01-A	Familiy First Dental Care	1392 E Palomar St Suite 201, Chula Vista
13-0622	01-A	Maroon Lopez DDS, PC	2648 Main Street Suite A, Chula Vista
36-0013	01-A	Otay Mesa Detention Center	7488 Calzada de la Fuente. Otay Mesa
		22	
Grand to	otal:	22	

CHAPTER 4 – SIU ENFORCEMENT

4.1 Annual Compliance Summary

During the year covered in this report the program administered 13 SIU permits, covering 14 outfalls and monitored at 15 sample points. Four facilities were in significant non-compliance (SNC) during the year. These facilities are included in the calculation of the Metro System annual SNC rate reported in the Pretreatment Annual Report for the Point Loma POTW.

4.2 Characterization of the Compliance Status of Each SIU

The Annual SIU Compliance Status Report, which follows after section 4.4, lists the industry name, address, permit number, permit class; industrial flow by connection; violation dates and descriptions, if applicable; discharge standard and period, and actual value resulting in the violation; whether the violation exceeded the Technical Review Criteria (TRC); and whether the industry has been in SNC at any time during the year.

4.3 SIU Enforcement Actions Initiated, Continued, or Finalized

Jensen Meat Company Inc; IU # 12-0275

This meat processing facility discharges about 27,000 gpd after pretreatment from cleaning and sanitizing operations. The IU met the SNC criteria for the six-month period ending in the third quarter of 2019, when 5 of the 6 samples collected exceeded the daily maximum for dissolved sulfide by more than the TRC. The IU responded that its contractor concluded "we have too much decomposing or too much organic matter in our grease trap" and that they are taking several steps to improve their cleaning procedures including: jet-cleaning the drainpipes 3 times a year instead of 2, cleaning the grease trap once a month and deep cleaning it twice a year, and implementing a new cleaning procedure to reduce the solids into the drains. NOVs were issued for the violations and additional program monitoring was planned for the first half of 2020 to determine whether these actions were sufficient to achieve compliance.

The IU was not in SNC for the first half of 2020; however, no monitoring for dissolved sulfides was conducted. The IU met the SNC criteria for the six-month periods ending in the third and fourth quarters of 2020, when 4 of the 6 samples collected exceeded the daily maximum for dissolved sulfide by more than the TRC. The IU responded that it will further improve its cleaning steps by increasing the jet-cleaning of the drainpipes to 4 times a year instead of 3 and by increasing the grease trap cleaning frequency to 17 times (every 3 weeks) a year instead of 12. NOVs were issued for the violations and additional program monitoring is planned for the first half of 2021 to determine whether these new actions are sufficient to achieve compliance.

RJ Donovan Correctional Facility; IU # 12-0038

This medium security prison discharges about 55,000 gpd from its laundry, kitchen, and bakery. The IU was in SNC for late reporting in 2016, 2017, and 2018, but it avoided SNC status in 2019. However, the IU failed to comply with its permit condition to submit an updated Toxic Organics Management Plan (TOMP) by December 1, 2019. As a result, the IU was in SNC for missing a

compliance schedule milestone by more than 90 days. First and second NOVs were issued and IU submitted the TOMP on August 17, 2020. No further enforcement actions are planned.

Spectex Inc dba Specialty Textile Services; IU # 12-0283

This commercial laundry currently discharges about 48,000 gpd after pretreatment from laundry operations and is required to self-monitor monthly. The IU submitted its self-monitoring report due June 15, 2020 on August 6, 2020 (57 days late) and thus was in SNC for late reporting in the second quarter. An NOV was issued, and no further enforcement actions are planned.

US General Services Administration – SYLPOE; IU # 12-0285

This border crossing facility has a wastewater reclamation plant that discharges high strength activated sludge into the upstream end of the sewer main. The IU was initially permitted in May 2014 when it discharged 1,000 gpd but this flow has fallen to a daily average of only 50 gpd of high strength wastewater. The IU failed to comply with its permit condition due January 1, 2020, requiring it to submit an updated TOMP. An NOV was issued, and the IU submitted the TOMP on August 30, 2020. Thus, the IU missed its compliance schedule milestone by more than 90 days. No further enforcement actions are planned.

4.4 Public Information and Involvement

Each year, a combined list of all facilities in the Metropolitan Sewerage System service area that were in SNC at any time during the year is published in the Union Tribune; this list is included in Chapter 4 of the Pretreatment Annual Report for the Point Loma POTW.

Table	Table 4.4-1 Significant Industrial Users in SNC								
Industrial User	Address	Pollutant/Other							
Jensen Meat Company Inc	2550 Britannia Bl Suite 101, San Diego	Dissolved sulfides							
RJ Donovan Correctional Facility	480 Alta Rd, San Diego	Missed Milestone > 90 days							
Spectex Inc dba Specialty Textile Services	1333 30th St Suite A, San Diego	SM Report Late > 30 days							
US General Services Administration - SYLPOE	720 E San Ysidro Bl, San Diego	Missed Milestone > 90 days							

The following SIUs discharging tributary to the SBWRP were in SNC:

Annual SIU Compliance Status Report

01-Jan-2020	through 31-Dec-2020
-------------	---------------------

SIU Name AP Precision Metals 1245-20th St. Sap Diago	IU# 12-0144	Class	IW Disch	SNC	? [If Yes, Why]	Conn	Violation	Description/Parameter	Value	Limit	Period	Cat	TRC
	12-0144						Date						
1215 20th St. Son Diago		1	128	No		110	22-Oct-20	SMR Late - written notice					
1215 30th St, San Diego													
Ajinomoto Foods North America Inc 8411 Siempre Viva Rd, San Diego	12-0220	3	76000	No		110	01-Sep-20	Oil and grease, Total-Instantaneous	1000	500	DM	L	Y
Emerald Textiles LLC	12-0065	3	79194	No		NA							
1725 Dornoch Ct Suite 100, Sar Diego	n												
Harcon Precision Metals Inc	12-0244	1	70	No		NA							
1790 Dornoch Ct, San Diego													
Jensen Meat Company Inc	12-0275	3	18478		SNC1 - Chronic (DM): SulfD	110	01-Sep-20	Sulfides, Dissolved-Instantaneous	2.4	1	DM	L	Y
2550 Britannia Bl Suite 101, Sa Diego	n				2/2; SNC2 - TRC (DM): SulfD 2/2,SulfD 3/5	110 110	02-Sep-20 23-Nov-20	Sulfides, Dissolved-Instantaneous Sulfides, Dissolved-Instantaneous	4.9 3.3	1 1	DM DM	L	Y Y
Kraft Heinz Foods Company	12-0154	3	102142	No		NA							
7878 Airway Rd, San Diego													
Otay Mesa Energy Center LLC 606 De La Fuente Ct, San Dieg	36-0001 o	1	33375	No		NA							
RJ Donovan Correctional Facility 480 Alta Rd, San Diego	12-0038	3	13700		SNC5 - Missed Milestone > 00 days		01-Mar-20	Delinquent Requirement					
Spec-Built Systems Inc	12-0202	1	26	No		NA							
2150 Michael Faraday Dr, San Diego													
Spectex Inc dba Specialty Textile Services 1333 30th St Suite A, San Diego	12-0283	3	47853		NC6 - Report Late > 45 ays	110 110 110 110 110 110	24-Jan-20 03-Feb-20 08-Aug-20 11-Aug-20 12-Aug-20 12-Aug-20	SMR Late - written notice SMR Incomplete SMR Incomplete SMR Late - written notice SMR Late - written notice					
Tarantino Wholesale Food Distributors 7651 Saint Andrews Av, San Diego	12-0212	3	7112	No		100 100 210 210	01-Sep-20 30-Nov-20 08-Aug-20 30-Nov-20	pH-lowest value SMR Incomplete SMR Incomplete SMR Incomplete	3.2	5	DM	L	Ν
US General Services Administration - SYLPOE 720 E San Ysidro BI, San Diego	12-0285	3	50		NC5 - Missed Milestone > 0 days		01-Apr-20	Delinquent Requirement					
UT; Brenntag Pacific Inc	13-0549	2	10080	No		NA							
1888 Nirvana Av, Chula Vista													

NOVs Issued in 2020 for SIUs

Report run on: Friday, February 19, 2021 7:11 pm

	L							
Name	Facility	Conn	NOV Ide	entified	Action	Viol Date	Fee	Level
AP Precision Metals	12-0144	110	97566 22-	-Oct-2020	22-Oct-2020		50	Notice only
Ajinomoto Foods North America Inc	12-0220	110	97934 19-	-Nov-2020	19-Nov-2020	02-Sep-2020	100	Initial notice
Jensen Meat Company Inc	12-0275	110	95854 31-	-Dec-2019	15-Jul-2020	31-Dec-2019	284	Final notice
			97794 09-	-Nov-2020	09-Nov-2020	02-Sep-2020	100	Initial notice
Otay Mesa Energy Center LLC	36-0001	110	95454 30-	-Jan-2020	06-Feb-2020		0	Notice only
Otay Mesa Energy Center LLC	36-0001	120	95456 30-	-Jan-2020	06-Feb-2020		0	Notice only
Otay Mesa Energy Center LLC	36-0001	140	95455 30-	-Jan-2020	06-Feb-2020		0	Notice only
RJ Donovan Correctional Facility	12-0038		95845 01-	-Mar-2020	19-Feb-2020		100	Initial notice
			95845 01-	-Mar-2020	13-Aug-2020		75	Second notice
Spec-Built Systems Inc	12-0202	110	94109 31-	-Mar-2019	26-Mar-2020	31-Mar-2019	284	Final notice
Spectex Inc dba Specialty Textile Services	12-0283	110	95380 24-	-Jan-2020	29-Jan-2020		50	Notice only
			95457 03-	-Feb-2020	03-Feb-2020	12-Dec-2019	50	Notice only
			96291 08-	-Aug-2020	08-Aug-2020	09-Mar-2020	50	Notice only
			96635 11-	-Aug-2020	11-Aug-2020	25-Jun-2020	50	Notice only
			96941 12-	-Aug-2020	12-Aug-2020		50	Notice only
			96983 12-	-Aug-2020	12-Aug-2020		50	Notice only
Tarantino Wholesale Food Distributors	12-0212	100	94110 31-	-Mar-2019	21-Jul-2020	31-Mar-2019	284	Final notice
Tarantino Wholesale Food Distributors	12-0212	210	96192 08-	-Aug-2020	08-Aug-2020	30-Apr-2020	50	Notice only
US General Services Administration - SYLPOE	12-0285		97239 01-	-Apr-2020	30-Jun-2020		100	Initial notice
	Total fees:						\$1,727	
NOV count:			19					

Sampling in 2020 at SIUs

Report run o	n: Friday, February 19, 2021 7:23 pm						Page 1
Facility Pm	t Name	Conn	Principle Process	Pmt Include	Parmcode	City Samples	Self Samples
12-0038 06	A RJ Donovan Correctional Facility	100	Prison Sewer Main	L	SOLVENT CERT COD PH PHARMA HC CERT BIOHAZARD CERT OIL/GREASE TSS	1 1 1 1	2 4 4 2 2 4 4
12-0065 05	A Emerald Textiles LLC	110	Commercial Laundry	L	PH HIGHEST PH LOWEST SULFIDE DISSOLVD TDS OIL/GREASE CHLORIDE FLOW TSS COD PH	4 4 8 4 4 4 4 4 4 4	4 4 4 12 4 4 4 4 4 3 4 4 4
12-0144 05	A AP Precision Metals	110	Metal Coating (Iron Phosphating)	F	FIOW MAX FLOW MAX NICKEL TTO CERT CADMIUM PH SILVER TTO(413+433)-P CHROMIUM FLOW LEAD CYANIDE(T) COPPER ZINC	4 4 5 4 1 4 5 4 4 4	4 4 3 4 4 4 4 4 4 4 4 4 4 12
12-0154 05-	A Kraft Heinz Foods Company	110	Food Manufacturing	L	FLOWMETER READ 1 FLOWMETER READ 2 TEMP FLOW FLOW TOTIMPORTED PH PH HIGHEST TSS OIL/G SCREEN OIL/GREASE COD SULFIDE DISSOLVD PH LOWEST	5 4 5 6 7 5 7 5 6	12 12 12 12 12 12 12 12 12 12 12 12 12 1
12-0202 04	A Spec-Built Systems Inc	110	Iron Phosphating	F	COPPER TSS TTO(413+433)-P CHROMIUM FLOW LEAD PH TTO CERT NICKEL CADMIUM CYANIDE(T) SILVER ZINC COD FLOW MAX		
12-0212 02-	A Tarantino Wholesale Food Distributo	rs 100	Sewer Lateral	L	PH LOWEST OIL/GREASE COD FLOW PH HIGHEST SULFIDE DISSOLVD TSS CHLORIDE PH TDS	2 5 2 2 2 2 2 2 2 2 2 2 2	6 6 6 6 6 6 6

Sampling in 2020 at SIUs

Report run on: Facility Pmt	Friday, February 19, 2021 7:23 pm <i>Name</i>	Conn	Principle Process	Pmt	Parmcode	City	Self
				Include		Samples	Samples
12-0212 02-A	Tarantino Wholesale Food Distributors	s 210	Sausage manufacturing	L	COD FLOW PH TSS OIL/GREASE CLARIFIER RPT TDS	2 2 5	6 6 5 6
12-0220 05-A	Ajinomoto Foods North America Inc	110	Food manufacturing	L	FLOW OIL/GREASE TDS FLOWMETER READ 2 PH HIGHEST TFDS TSS TEMP CHLORIDE	2 7 7 7 7 2 7	12 12 12 12 12 12 12 12 12 12
12-0244 03-A	Harcon Precision Metals Inc	110	Conversion coating & assoc processes	F	PH FLOWMETER READ 1 COD PH LOWEST SULFIDE DISSOLVD TTO(413+433)-P LEAD SILVER CADMIUM COD CYANIDE(T) NICKEL TSS FLOW	2 7 7 2 1 1 1 1 1 1 1 1 1 1	12 12 12 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
12-0275 03-A	Jensen Meat Company Inc	110	Meat processing, cleaning/sanitizing	L	FLOW MAX PH CHROMIUM TTO CERT COPPER OIL/GREASE ZINC CHLORIDE OIL/GREASE PH LOWEST TFDS PH HIGHEST CLARIFIER RPT FLOW PH TSS RAIN DIVERT CERT COD	$ \begin{array}{c} 1\\ 1\\ 1\\ 1\\ 2\\ 4\\ 2\\ 2\\ 2\\ 4\\ 2\\ 2\\ 2\\ 2\\ 4\\ 2\\ 2\\ 2\\ 2\\ 4\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\$	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
12-0283 03-A	Spectex Inc dba Specialty Textile Services	110	Commerical Laundry	L	SULFIDE DISSOLVD TDS SULFIDE DISSOLVD TSS OIL/GREASE PH LOWEST PH COD FLOW	6 2 8 4 4 1 4 4	4 2 4 4 4 4 12
12-0285 03-A	US General Services Administration - SYLPOE	110	Waste activated sludge	L	PH HIGHEST FLOW FLOW MAX FLOW TOTIMPORTED TDS TSS COD	1 1 1 1	2 2 12
		120 130	Untreated wastewater Treated wastewater	L L	SULFIDE DISSOLVD FLOW TOTIMPORTED FLOW TOTIMPORTED	1	12 12

Sampling in 2020 at SIUs

Report run on:	Friday, February 19, 2021 7:23 pm						
Facility Pmt	Name	Conn	Principle Process	Pmt	Parmcode	City	Self
				Include		Samples	Samples
13-0549 02-A	UT; Brenntag Pacific Inc	100	Groundwater Remediation	L	FLASH	1	10
					BNZ(W/OAGG)	1	10
					COD	1	12 12
					FLOW RATE MIN		12
					FLOW TOTIMPORTED FLOWMETER READ 2		12 12
					4CLETHE	1	12
					AUTOSHUTDOWN RPT	1	10
					TSS	1	12
					FLOW RATE MAX	1	12
					BTEX	1	10
					FLOWMETER READ 1		12
					3CLETHE	1	10
					FLOW MAX		12
36-0001 03-A	Otay Mesa Energy Center LLC	110	WetSac blowdown + OWS	F	ZINC	3	4
					OIL/GREASE	3	4
					PH HIGHEST TDS	1	4
					FLOW	1	4
					FLOW MAX		4
					PH	3	4
					PH LOWEST	5	·
					CHROMIUM	3	4
		120	PCB zero discharge	F	ZERODISCHRG CERT		4
		140	Turbine washing	F	COPPER		
			-		FLOW MAX		
					FLOW		

SIUs: 13

CHAPTER 5 – PRETREATMENT PROGRAM EFFECTIVENESS

5.1 Heavy Metal Loadings and Monitoring Data

Summary of analytical results from representative flow-proportioned, 24-hour composite sampling of the SBWRP influent and effluent for those pollutants that the United State Environmental Protection Agency (USEPA) has identified under Section 307(a) of the Clean Water Act (CWA), and which are known or suspected to be discharged by industrial users. The summary must include a full priority pollutant scan. Tables 5.1-1 and 5.1-2 summarize influent and effluent heavy metal loadings by month.

5.2. Upset, Interference and Pass-Through

No incidents of interference with the collection system, pump stations, or treatment plant operations were reported.

5.3. Biosolids Disposal Method

Biosolids from the SBWRP are conveyed to Point Loma, and from there to the Metro Biosolids Center for processing and disposal in combination with biosolids from throughout the Metropolitan Sewerage System service area. See details of biosolids disposal locations and beneficial uses on Chapter 5 Section 5.5 of this year's Annual Report for the Point Loma POTW, NPDES Permit No. CA 0107409.

5.4. Other Concerns

There are no other concerns pertaining to the administration of the pretreatment program or control of industrial contributions to the headworks loadings at the SBWRP currently.

	TABLE 5.1-1 SOUTH DAY WATED DECLAMATION DI ANT INEL HENT HEAVY METALS										
SOUTH BAY WATER RECLAMATION PLANT INFLUENT HEAVY METALS Average Concentration and Loadings for 2020											
ND or $<$ MDL = 0											
	Flow (mgd)	Cd	Cr	Cu	Pb	Ni	Ag	Zn			
Jan-Jun MDL (ug/L)		0.48	7.17	9.37	5.93	3.35	1.57	10.40			
Jul-Dec MDL (ug/L)		0.04	0.20	0.42	0.08	0.09	0.01	0.86			
Jan	6.45	0.00	0.00	87.80	0.00	5.12	0.00	198.00			
Feb	6.29	0.00	0.00	305.00	0.00	3.64	0.00	199.00			
Mar	6.65	0.00	0.00	127.00	0.00	4.08	0.00	242.00			
Apr	6.75	0.00	0.00	73.80	3.95	4.28	0.00	154.00			
May	6.83	0.00	0.00	113.00	3.33	4.00	0.00	221.00			
Jun	5.89	0.00	0.00	101.00	0.00	3.85	0.00	189.00			
Jul	6.59	0.20	2.33	83.40	1.32	5.32	0.19	172.00			
Aug	6.66	0.20	2.66	89.10	1.44	4.21	0.24	181.00			
Sep	6.69	0.23	3.15	72.80	3.78	4.10	0.32	171.00			
Oct	6.52	0.27	4.34	73.20	1.98	3.68	0.43	162.00			
Nov	6.44	0.27	3.15	119.00	1.87	4.00	0.25	184.00			
Dec	6.21	0.26	4.10	65.90	1.27	3.92	0.43	157.00			
Average Flow MGD	6.50										
Average ug/L		0.12	1.64	109.25	1.58	4.18	0.15	185.83			
LBS/day		0.01	0.09	5.92	0.09	0.23	0.01	10.07			
Total lbs HM	16.41										
Total lbs (-)Ag	16.40										

*NOTE: From January to June 2020, the metal analyses were performed using EPA method 200.7. From July to December 2020, they were performed using EPA method 200.8.

TABLE 5.1-2 SOUTH BAY WATER RECLAMATION PLANT EFFLUENT HEAVY METALS										
Average Concentration and Loadings for 2020										
ND or \leq MDL = 0										
Month	Flow (mgd)	Cd	Cr	Cu	Pb	Ni	Ag	Zn		
Jan-Jun MDL (ug/L)		0.48	7.17	9.37	5.93	3.35	1.57	10.40		
Jul-Dec MDL (ug/L)		0.04	0.20	0.42	0.08	0.09	0.01	0.86		
Jan	6.03	0.00	0.00	0.00	0.00	0.00	0.00	56.10		
Feb	5.70	0.00	0.00	17.50	0.00	2.20	0.00	66.90		
Mar	6.04	0.00	0.00	9.38	0.00	2.36	0.00	60.80		
Apr	6.09	0.00	0.00	6.97	0.00	0.00	0.00	54.50		
May	6.16	0.00	0.00	10.20	0.00	2.29	0.00	69.20		
Jun	5.36	0.00	0.00	8.66	0.00	2.91	0.00	58.30		
Jul	1.47	0.05	0.62	8.17	0.24	2.10	0.00	51.80		
Aug	1.67	0.04	0.38	6.56	0.23	1.92	0.00	48.50		
Sep	1.56	1.33	0.37	5.36	0.21	2.20	0.00	36.00		
Oct	2.03	0.00	0.42	8.35	0.13	2.37	0.00	34.20		
Nov	2.88	0.00	0.32	4.27	0.18	1.76	0.00	32.70		
Dec	2.65	0.00	0.37	4.92	0.15	1.81	0.00	35.80		
Average Flow MGD	3.97									
Average ug/L		0.12	0.21	7.53	0.09	1.83	0.00	50.40		
LBS/day		0.00	0.01	0.25	0.00	0.06	0.00	1.67		
Total lbs HM	1.99									
Total lbs (-)Ag	1.99									

SOUTH BAY WATER RECLAMATION PLANT SEWAGE INFLUENT and EFFLUENT

Annual 2020

Biochemical Oxygen Demand Concentration (24-hour composite)

	Influent Flow	Daily Influent Value	Daily Influent Value	Effluent Flow	Daily Effluent Value	Daily Effluent Value	Percent Removal BOD
Month/ Units:	(MGD)	(mg/L)	(lbs/Day)	(MGD)	(mg/L)	(lbs/Day)	(%)
=============							
JANUARY -2020	6.45	347	18666	6.03	9	453	97.4
FEBRUARY -2020	6.29	341	17888	5.70	10	475	97.1
MARCH - 2020	6.65	355	19689	6.04	6	302	98.3
APRIL -2020	6.75	332	18690	6.09	6	305	98.2
MAY - 2020	6.83	361	20563	6.16	5	257	98.6
JUNE - 2020	5.89	387	19010	5.36	3	134	99.2
JULY -2020	6.59	393	21600	1.47	2	25	99.5
AUGUST - 2020	6.66	350	19441	1.67	3	42	99.1
SEPTEMBER-2020	6.69	399	22262	1.56	<2	0	100.0
OCTOBER -2020	6.52	382	20772	2.03	2	34	99.5
NOVEMBER -2020	6.44	429	23041	2.88	3	72	99.3
DECEMBER -2020	6.21	505	26155	2.65	4	88	99.2
Average	6.50	382	20648	3.97	4	182	98.8

Annual Mass Emissions are calculated from monthly averages of flow for BOD, whereas Monthly Report average mass emissions are calculated from average daily mass emissions.

ND=not detected

SOUTH BAY WATER RECLAMATION PLANT SEWAGE INFLUENT and EFFLUENT

Annual 2020

Total Suspended Solids Concentration (24-hour composite)

Source:	Influent Flow	Influent Daily	Influent Daily	Percent	Influent Daily
Analyte:		TSS	VSS	VSS	Mass Emission
Month/ Units:	(MGD)	(mg/L)	(mg/L)	(%)	(lbs/Day)
==============		=======			======
JANUARY -2020	6.45	359	332	92.5	19312
FEBRUARY -2020	6.29	313	291	93.0	16420
MARCH - 2020	6.65	326	286	87.7	18080
APRIL -2020	6.75	448	414	92.4	25220
MAY - 2020	6.83	303	281	92.7	17260
JUNE - 2020	5.89	308	286	92.9	15130
JULY -2020	6.59	335	306	91.3	18412
AUGUST - 2020	6.66	269	251	93.3	14941
SEPTEMBER-2020	6.69	322	297	92.2	17966
OCTOBER -2020	6.52	359	342	95.3	19521
NOVEMBER -2020	6.44	300	281	93.7	16113
DECEMBER -2020	6.21	433	397	91.7	22426
					======
Average	6.50	340	314	92.4	18400

Total Suspended Solids Concentration (24-hour composite)

Source: Analyte: Month/ Units:	Effluent Flow (MGD)	Effluent Daily TSS (mg/L)	Effluent Daily VSS (mg/L)	Percent VSS (%)	Effluent Daily Mass Emission (lbs/Day)	Percent Removal TSS (%)	Percent Removal VSS (%)
JANUARY -2020	6.03	9.6	8.6	89.6	483	97.3	97.4
FEBRUARY -2020	5.70	9.6	8.8	91.7	456	96.9	97.0
MARCH - 2020	6.04	6.9	6.0	87.0	348	97.9	97.9
APRIL -2020	6.09	5.7	5.1	89.5	290	98.7	98.8
MAY -2020	6.16	5.0	4.4	88.0	257	98.3	98.4
JUNE - 2020	5.36	<3.1	<3.1	*	0	100.0	100.0
JULY -2020	1.47	<2.5	<2.5	*	0	100.0	100.0
AUGUST - 2020	1.67	<2.5	<2.5	*	0	100.0	100.0
SEPTEMBER-2020	1.56	<2.5	ND	*	0	100.0	100.0
OCTOBER -2020	2.03	<2.5	<2.5	*	0	100.0	100.0
NOVEMBER -2020	2.88	<2.5	ND	*	0	100.0	100.0
DECEMBER -2020	2.65	3.1	2.9	93.5	69	99.3	99.3
Average	======================================	3.3	3.0		159	99.0	====== 99.1

*= undetermined, the percent VSS was not calculated because TSS and VSS results were below the MDL.

Annual Mass Emissions are calculated from monthly averages of flow and TSS, whereas Monthly Report average mass emissions are calculated from average daily mass emissions.

VSS= Volatile Suspended Solids TSS= Total Suspended Solids

ND= not detected

SOUTH BAY WATER RECLAMATION PLANT

Annual 2020

Influent to Plant (SB_INF_02)

Analyte:	Flow	рН	Total Dissolved Solids	Biochemical Oxygen Demand	Total Suspended Solids	Volatile Suspended Solids	Turbidity
Month/ Units:	(mgd)	(pH)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(NTU)
 JANUARY -2020	6.45	NR	998	347	359	332	NR
FEBRUARY -2020	6.29	7.43	1000	341	313	291	NR
MARCH - 2020	6.65	NR	966	355	326	286	NR
APRIL -2020	6.75	NR	958	332	448	414	NR
MAY -2020	6.83	6.87	933	361	303	281	185
JUNE - 2020	5.89	NR	1090	387	308	286	NR
JULY -2020	6.59	NR	973	393	335	306	NR
AUGUST - 2020	6.66	7.38	986	350	269	251	NR
SEPTEMBER-2020	6.69	NR	1020	399	322	297	NR
OCTOBER -2020	6.52	7.41	1020	382	359	342	NR
NOVEMBER - 2020	6.44	NR	1090	429	300	281	NR
DECEMBER -2020	6.21	NR	1080	505	433	397	NR
	=======						
Average	6.50	7.27	1010	382	340	314	185

ND= not detected; NR= not required

SOUTH BAY WATER RECLAMATION PLANT

Annual 2020

Effluent to Ocean Outfall (SB_OUTFALL_01)

Analyte:	Flow	рН	Settleable Solids	Biochemical Oxygen Demand	Total Suspended Solids	Volatile Suspended Solids	Total Dissolved Solids
Month/ Units:	(mgd)	(pH)	(ml/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
================= JANUARY -2020	6.03	7.21	0.4	9	9.6	8.6	======== 882
FEBRUARY -2020	5.70	7.25	0.1	10	9.6	8.8	920
MARCH - 2020	6.04	7.30	0.1	6	6.9	6.0	880
APRIL -2020	6.09	7.20	ND	6	5.7	5.1	904
MAY -2020	6.16	7.30	ND	5	5.0	4.4	900
JUNE - 2020	5.36	7.42	ND	3	<3.1	<3.1	940
JULY -2020	1.47	7.32	ND	2	<2.5	<2.5	876
AUGUST - 2020	1.67	7.32	ND	3	<2.5	<2.5	915
SEPTEMBER-2020	1.56	7.29	ND	<2	<2.5	ND	942
OCTOBER -2020	2.03	7.34	ND	2	<2.5	<2.5	945
NOVEMBER - 2020	2.88	7.37	ND	3	<2.5	ND	978
DECEMBER -2020	2.65	7.34	ND	4	3.1	2.9	959
=================							
Average	3.97	7.31	0.05	4	3.3	3.0	920

Analyte:					
	0il &	Outfall	Residual	Turbidity	Dissolved
	Grease	Temperature	Chlorine		Oxygen
Month/ Units:	(mg/L)	(°C)	(mg/L)	(NTU)	(mg/L)
JANUARY -2020	6.2	22.7	<0.065	3.69	2.64
FEBRUARY -2020	7.3	22.9	<0.065	3.42	2.97
MARCH - 2020	12.7	22.5	<0.065	2.94	4.87
APRIL -2020	3.0	26.2	ND	2.40	3.08
MAY -2020	<2.7	24.9	ND	1.76	4.14
JUNE - 2020	<2.7	25.7	ND	1.17	3.07
JULY -2020	<2.7	26.4	ND	0.95	2.28
AUGUST - 2020	6.3	27.8	ND	1.35	2.24
SEPTEMBER-2020	ND	27.7	<0.065	0.87	1.24
OCTOBER - 2020	ND	26.7	ND	1.05	1.68
NOVEMBER -2020	ND	25.0	<0.065	0.89	2.16
DECEMBER -2020	ND	24.0	ND	1.50	2.20
Average	3.0	25.2	0.0	1.83	2.71

ND= not detected; NR= not required

Trace Metals EPA Method 200.8 and 200.7*

Annual 2020

Analyte: MAX_MDL Units: Source:	Aluminum 57.9 UG/L Influent	Aluminum 57.9 UG/L Effluent	Antimony 2.43 UG/L Influent	Antimony 2.43 UG/L Effluent	Arsenic 3.21 UG/L Influent	Arsenic 3.21 UG/L Effluent
Month/Limit:						2800
JANUARY -2020	1030	ND	ND	ND	ND	ND
FEBRUARY -2020 MARCH -2020	578 680	ND	2.22 2.34	ND	ND	ND ND
APRIL -2020	701	ND ND	2.34 ND	ND ND	ND ND	ND
MAY -2020	603	ND	ND	ND	ND	ND
JUNE -2020	527	ND	ND	<2.43	ND	ND
JULY -2020	500	17.2	1.46	1.12	1.430	0.894
AUGUST -2020	529	20.0	1.53	0.851	1.570	0.729
SEPTEMBER-2020	468	14.5	1.29	0.895	1.400	0.688
OCTOBER -2020	525	15.6	1.30	0.894	1.490	1.000
NOVEMBER -2020	551	12.7	1.66	0.871	1.740	0.855
DECEMBER -2020	538	12.8	1.30	0.879	1.290	0.437
======================================	603	7.73	1.09	0.459	••••••••••••••••••••••••••••••••••••••	0.384
Analyte:	Barium	Barium	Beryllium	Beryllium	Boron	Boron
MAX_MDL Units:	0.095 UG/L	0.095 UG/L	0.4 UG/L	0.4 UG/L	3.86 UG/L	3.86 UG/L
Source:	Influent	Effluent	Influent	Effluent	Influent	Effluent
Month/Limit:						
JANUARY -2020	60.4	38.1	ND	ND	390	369
FEBRUARY -2020 MARCH -2020	64.3 65.4	42.2 36.9	ND ND	ND ND	503 410	410 430
APRIL -2020	60.4	43.0	ND	ND	319	361
MAY -2020	72.4	45.0	ND	ND	390	398
JUNE -2020	74.4	53.2	ND	ND	355	368
JULY -2020	66.3	39.6	ND	ND	386	398
AUGUST -2020	69.6	49.0	ND	ND	460	426
SEPTEMBER-2020	82.6	53.0	ND	ND	379	391
OCTOBER -2020	87.1	52.8	ND	ND	398	397
NOVEMBER -2020	110	58.8	ND	ND	493	401
DECEMBER -2020	84.4	57.9 ======	ND	ND	392	375
AVERAGE	74.8	47.6	0.0	0.0	406	394
Analyte:	Cadmium	Cadmium	Chromium	Chromium	Cobalt	Cobalt
MAX_MDL Units:	0.484 UG/L	0.484 UG/L	7.17 UG/L	7.17 UG/L	0.618 UG/L	0.618 UG/L
Source:	Influent	Effluent	Influent	Effluent	Influent	Effluent
Month/Limit:		48		760		
======= JANUARY -2020	ND	========= ND	ND	ND	0.846	======= ND
FEBRUARY -2020	ND	ND	ND	ND	0.855	ND
MARCH -2020	ND	ND	ND	ND	0.889	ND
APRIL -2020	ND	ND	ND	ND	0.860	ND
MAY -2020	ND	ND	ND	ND	1.050	ND
JUNE - 2020	ND	ND	ND	ND	0.707	ND
JULY -2020	0.201	0.051	2.33	0.616	0.526*	* 0.309**
AUGUST -2020	0.195	0.036	2.66	0.376	0.763	0.172
SEPTEMBER-2020	0.227	1.330	3.15	0.371	0.416	0.164
OCTOBER -2020	0.270	ND	4.34	0.419	0.479	0.185
NOVEMBER - 2020	0.273	ND	3.15	0.315	0.493	0.149
DECEMBER -2020	0.261	ND	4.10	0.370	0.568	0.114
AVERAGE	.119 0 .119	0.118	1.64	0.206	0.721	0.071

**= Relative percent difference of sample duplicates outside method acceptance criteria; value is not used in average calculations.

ND= not detected

Trace Metals EPA Method 200.8 and 200.7*

Annual 2020

Analyte: MAX_MDL Units: Source: Month/Limit:	Copper 9.37 UG/L Influent	Copper 9.37 UG/L Effluent 960	Iron 36.7 UG/L Influent	Iron 36.7 UG/L Effluent	Lead 5.93 UG/L Influent	Lead 5.93 UG/L Effluent 760
JANUARY - 2020 FEBRUARY - 2020 MARCH - 2020 APRIL - 2020 JUNE - 2020 JULY - 2020 JULY - 2020 SEPTEMBER - 2020 OCTOBER - 2020 NOVEMBER - 2020	87.8 305 127 73.8 113 101 83.4 89.1 72.8 73.2 119	ND 17.5 9.38 6.97 10.2 8.66 8.17 6.56 5.36 8.35 4.27	991 728 697 805 885 563 638 706 836 1020 790	ND 64.1 69.4 65.4 ND <36.7 40.3 32.3 24.6 28.9 22.2	ND ND 3.95 3.33 ND 1.32 1.44 3.78 1.98 1.87	ND ND ND ND 0.235 0.225 0.212 0.129 0.179
DECEMBER -2020	65.9	4.92	727	27.8	1.27	0.145
AVERAGE	109	7.53	782	31.3	1.58	0.094
Analyte: MAX_MDL Units: Source: Month/Limit:	Manganese 2.63 UG/L Influent	Manganese 2.63 UG/L Effluent	Mercury 0.003 UG/L Influent	Mercury 0.003 UG/L Effluent 15.0	Molybdenum 0.742 UG/L Influent	Molybdenum 0.742 UG/L Effluent
JANUARY -2020 FEBRUARY -2020 MARCH -2020 MAY -2020 JUNE -2020 JUNE -2020 JULY -2020 JULY -2020 AUGUST -2020 SEPTEMBER -2020 OCTOBER -2020 NOVEMBER -2020 DECEMBER -2020	112 103 104 89.0 105 93.7 89.9 104 103 96.2 120 103	58.7 21.2 21.3 6.66 27.0 19.0 3.40 4.90 9.86 11.1 6.99 3.04	0.072 0.087 0.135 0.035 0.078 0.091 0.086 0.078 0.059 0.046 0.056 0.090	0.002 0.003 0.002 0.004 0.002 0.002 0.002 0.002 ND ND ND	6.19 5.67 6.97 5.38 7.66 5.98 6.09 5.81 7.28 8.90 12.2 5.90	2.84 3.26 3.00 3.01 2.78 2.96 3.69 3.20 3.32 4.47 4.06 2.88
AVERAGE	102	16.1	0.076	0.002	7.00	3.29
Analyte: MAX_MDL Units: Source: Month/Limit: ====================================	Nickel 3.35 UG/L Influent	Nickel 3.35 UG/L Effluent 1900	Selenium 5.78 UG/L Influent	Selenium 5.78 UG/L Effluent 5700	Silver 1.57 UG/L Influent	Silver 1.57 UG/L Effluent 250
JANUARY -2020 FEBRUARY -2020 MARCH -2020 APRIL -2020 MAY -2020 JUNE -2020	5.12 4.80 8.70 3.82 7.49 4.01	ND 2.20 2.36 ND 2.29 2.91	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND
JULY -2020 AUGUST -2020 SEPTEMBER -2020 OCTOBER -2020 NOVEMBER -2020 DECEMBER -2020	3.82 5.02 4.40 6.90 6.12 4.87	2.10 1.92 2.20 2.37 1.76 1.81	2.60 2.19 2.06 2.33 2.72 1.75	0.715 0.925 0.724 0.835 0.864 0.677	0.194 0.242 0.318 0.426 0.248 0.430	ND ND ND ND ND
AVERAGE	5.42	1.83	 1.14	 0.395	 0.155	0.0

ND= not detected

Trace Metals EPA Method 200.8 and 200.7*

Annual 2020

Analyte: MAX_MDL Units: Source: Month/Limit:	Thallium 3.37 UG/L Influent	Thallium 3.37 UG/L Effluent	Vanadium 1.09 UG/L Influent	Vanadium 1.09 UG/L Effluent	Zinc 10.4 UG/L Influent	Zinc 10.4 UG/L Effluent 6900
=======================================						
JANUARY -2020	ND	ND	4.76	1.94	198	56.1
FEBRUARY -2020	ND	ND	2.95	2.08	199	66.9
MARCH - 2020	ND	ND	3.29	1.82	242	60.8
APRIL -2020	ND	ND	4.91	1.78	154	54.5
MAY -2020	ND	ND	4.08	1.37	221	69.2
JUNE -2020	ND	ND	3.28	1.69	189	58.3
JULY -2020	ND	ND	2.76	1.38	172	51.8
AUGUST -2020	ND	ND	3.11	1.45	181	48.5
SEPTEMBER-2020	ND	ND	2.64	1.30	171	36.0
OCTOBER -2020	ND	ND	2.56	1.49	162	34.2
NOVEMBER -2020	ND	ND	3.11	1.18	184	32.7
DECEMBER -2020	ND	ND	2.43	1.06	157	35.8
=======================================					===============	
AVERAGE	0.0	0.0	3.32	1.55	186	50.4

ND= not detected

Ammonia-Nitrogen and Total Cyanides

Annual 2020

Analyte:	Ammonia-N	Ammonia-N	Total Cyanide	Total Cyanide
Max MDL/ Units:	0.3	0.3	4 UG/L	4 UG/L
Source:	SB_INF_02	SB_OUTFALL_01	SB_INF_02	SB_OUTFALL_01
==============	==========	==========		
JANUARY -2020	38.7	ND	ND	ND
FEBRUARY -2020	40.0	ND	ND*	* ND
MARCH - 2020	33.9	ND	ND	ND
APRIL -2020	32.6	1.7	ND	ND
MAY -2020	35.5	ND	ND	ND
JUNE - 2020	42.2	ND	ND	ND
JULY -2020	40.8	0.6	ND	ND
AUGUST - 2020	42.1	0.8	ND	ND
SEPTEMBER-2020	41.7	0.3	ND	ND
OCTOBER -2020	40.0	ND	ND	ND
NOVEMBER - 2020	39.8	ND	ND	ND
DECEMBER -2020	39.6	ND	ND	ND
	=========	======		=========
Average:	38.9	0.3	0.0	0.0

*= Sample analyzed outside holding time; result is not used in average calculations.

Ammonia as N by SM4500-NH3 C Cyanide, Total by EPA 335.4

ND= not detected; NR= not required

Anions EPA 300.0

ANNUAL 2020

Analyte: Max MDL: Units: Source:	Bromide 0.045 MG/L INFLUENT	Bromide 0.045 MG/L EFFLUENT	Chloride 124 MG/L INFLUENT	Chloride 124 MG/L EFFLUENT	Fluoride 0.151 MG/L INFLUENT	Fluoride 0.151 MG/L EFFLUENT
JANUARY -2020	0.444	0.353	259	259	0.499	0.660
FEBRUARY -2020	0.434	0.370	270	287	0.565	0.531
MARCH - 2020	0.409	0.416	253	265	0.515	0.534
APRIL -2020	0.452	ND	258	261	0.532	0.560
MAY -2020	ND	ND	262	311	0.353	0.547
JUNE -2020	ND	NA	356	NA	0.382	NA
JULY -2020	ND	0.552	253	259	0.512	0.582
AUGUST -2020	0.053	NR	245	NR	0.462	NR
SEPTEMBER-2020	0.165	0.448	240	256	0.413	0.619
OCTOBER -2020	ND	0.432	235	247	0.442	0.508
NOVEMBER - 2020	ND	0.492*	254	272*	<0.151	0.552*
DECEMBER -2020	0.074	0.423	252	268	1.780	0.442
AVERAGE	0.169	0.333	261	268	0.538	0.554
Analyte:	Nitrate	Nitrate	0-Phosphate	0-Phosphate ((as P) Sulfate	Sulfate
Max MDL:	6.0	6.0	0.63	0.63	57.7	57.7
Units:	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
Source:	INFLUENT	EFFLUENT	INFLUENT	EFFLUENT	INFLUENT	EFFLUENT
======== JANUARY -2020	 0.502	 39.6	13.0	6.13	======================================	 156
FEBRUARY -2020	0.302 ND	46.7	13.7	7.41	120	147
MARCH - 2020	1.10	36.8	7.23	4.56	105	136
APRIL -2020	0.585	37.3*	7.00	0.976	135	135
MAY -2020	1.02	29.9	13.5	ND	120	152
JUNE -2020	ND	NA	13.4	NA	85.3	NA
JULY -2020	ND	9.33	12.8	6.46	98.8	130
AUGUST -2020	<6.0	NR	11.1	NR	120	NR
SEPTEMBER-2020	ND	33.8	11.9	0.829	115	163
OCTOBER -2020	<6.0	43.5	11.4	7.08	132	185
NOVEMBER -2020	0.396	36.7*	12.4	6.08	125	160*
DECEMBER -2020	<6.0	30.8**	9.60	ND**		171
======================================	=======================================	==========	================	============	===============	

*= Analyte recovery in matrix spike sample outside method acceptance limits; value not used in average calculations. **= Recovery of compound in matrix spike sample outside method acceptance limits; value is not used in average calculations.

ND= not detected; NA= not analyzed; NR= not required

SOUTH BAY WATER RECLAMATION PLANT SAMPLE SOURCE: INFLUENT (SB_INF_02) AND EFFLUENT (SB_OUTFALL_01)

Cations EPA 200.7

Annual 2020

Analyte: Max MDL/ Units:		alcium 03 mg/L	Mag 0.0		Lithium 0.003 mg/L				
Source:	INF	EFF	INF	EFF	INF	EFF			
	=======================================		=======================================		=========				
JANUARY -2020	60.1	60.3	27.1	28.4	0.014	0.014			
FEBRUARY -2020	60.1	65.0	28.1	29.9	0.015	0.015			
MARCH - 2020	60.3	61.1	26.3	25.6	0.019	0.014			
APRIL -2020	64.7	66.6	29.9	27.2	0.021	0.019			
MAY - 2020	64.1	72.3	30.3	33.7	0.025	0.021			
JUNE - 2020	72.6	65.4	31.9	28.8	0.023	0.022			
JULY -2020	59.8	63.2	29.0	27.5	0.022	0.021			
AUGUST - 2020	63.3	61.8	29.5	27.8	0.026	0.024			
SEPTEMBER-2020	67.9	73.6	30.1	28.3	0.029	0.029			
OCTOBER - 2020	71.3	73.7	29.3	30.2	0.033	0.033			
NOVEMBER -2020	70.5	71.8	30.2	29.2	0.029	0.026			
DECEMBER -2020	74.2	70.6	29.1	28.5	0.031	0.027			
Average:	65.7	67.1	29.2	28.8	0.024	0.022			

Analyte:		Sodium	F	Potassium				
Max MDL/ Units:		1 mg/L	6	0.12 mg/L				
Source:	INF	EFF	INF	EFF				
	==========	==========	=========					
JANUARY -2020	201	195	19.0	16.2				
FEBRUARY -2020	204	214	19.2	18.2				
MARCH - 2020	196	204	19.2	18.0				
APRIL -2020	210	198	19.2	17.3				
MAY -2020	224	256	21.5	19.4				
JUNE - 2020	230	217	20.4	18.4				
JULY -2020	215	207	21.1	18.7				
AUGUST -2020	217	214	20.9	17.8				
SEPTEMBER-2020	223	221	21.2	18.1				
OCTOBER -2020	215	226	20.6	19.4				
NOVEMBER - 2020	218	226	20.4	18.5				
DECEMBER -2020	214	224	20.7	18.0				
	===========		==========					
Average:	214	217	20.3	18.2				

ND=not detected

CHLORINATED PESTICIDE ANALYSIS, EPA Method 608.3 (WITH ADDITIONS)

Annual 2020

Source:				1		Т		
Date:			FEB	MAY	JUN	AUG	ОСТ	
Analyte	Max MDL	Units						Avg
2		=====	=====	=====	=====	=====	=====	=====
Aldrin	6.88	NG/L	ND	ND	ND	ND	ND	ND
Dieldrin	5.15	NG/L	ND	ND	ND	ND	ND	ND
BHC, Alpha isomer	6.2	NG/L	ND	ND	ND	ND	ND	ND
BHC, Beta isomer	4.76	NG/L	ND	ND	ND	ND	ND	ND
BHC, Gamma isomer	6.64	NG/L	ND	ND	ND	ND	ND	ND
BHC, Delta isomer	6.44	NG/L	ND	ND	ND	ND	ND	ND
p,p-DDD	6.13	NG/L	ND	ND	ND	ND	ND	ND
p,p-DDE	4.96	NG/L	ND	ND	ND	ND	ND	ND
p,p-DDT	8.64	NG/L	ND	ND	ND	ND	ND	ND
o,p-DDD	7.26	NG/L	ND	ND	ND	ND	ND	ND
o,p-DDE	6.48	NG/L	ND	ND	ND	ND	ND	ND
o,p-DDT	7.51	NG/L	ND	ND	ND	ND	ND	ND
Heptachlor	9.4	NG/L	ND	ND	ND	ND	ND	ND
Heptachlor epoxide	8	NG/L	ND	ND	ND	ND	ND	ND
Alpha (cis) Chlordane	6.6	NG/L	ND	ND	ND	ND	ND	ND
Gamma (trans) Chlordane	4.87	NG/L	ND	ND	ND	ND	ND	ND
Alpha Chlordene	0	NG/L	NA	NA	NA	NA	NA	NA
Gamma Chlordene	0	NG/L	NA	NA	NA	NA	NA	NA
Oxychlordane	19.3	NG/L	ND	ND	ND	ND	ND	ND
Trans Nonachlor	9.13	NG/L	ND	ND	ND	ND	ND	ND
Cis Nonachlor	9.48	NG/L	ND	ND	ND	ND	ND	ND
Alpha Endosulfan	7.61	NG/L	ND	ND	ND	ND	ND	ND
Beta Endosulfan	13	NG/L	ND	ND	ND	ND	ND	ND
Endosulfan Sulfate	8.8	NG/L	ND	ND	ND	ND	ND	ND
Endrin	8.84	NG/L	ND	ND	ND	ND	ND	ND
Endrin aldehyde	8.36	NG/L	ND	ND	ND	ND	ND	ND
Mirex	12.7	NG/L	ND	ND	ND	ND	ND	ND
Methoxychlor	8.78	NG/L	ND	ND	ND	ND	ND	ND
Toxaphene	584	NG/L	ND	ND	ND	ND	ND	ND
PCB 1016	761	NG/L	ND	ND	ND	ND	ND	ND
PCB 1221	761	NG/L	ND	ND	ND	ND	ND	ND
PCB 1232	761	NG/L	ND	ND	ND	ND	ND	ND
PCB 1242	761	NG/L	ND	ND	ND	ND	ND	ND
PCB 1248	761	NG/L	ND	ND	ND	ND	ND	ND
PCB 1254	761	NG/L	ND	ND	ND	ND	ND	ND
PCB 1260	761	NG/L	ND	ND	ND	ND	ND	ND
PCB 1262	761	NG/L	ND	ND	ND	ND	ND	ND
		=====	=====					
Aldrin + Dieldrin	6.88	NG/L	0	0	0	0	0	0
Hexachlorocyclohexanes	6.64	NG/L	0	0	0	0	0	0
DDT and derivatives	8.64	NG/L	0	0	0	0	0	0
Chlordane + related cmpds.		NG/L	0	0	0	0	0	0
Polychlorinated biphenyls	761	NG/L	0	0	0	0	0	0
Endosulfans	13	NG/L	0	0	0	0	0	0
			=====	=====	=====	=====	=====	=====
Heptachlors	9.4	NG/L =====	0	0	0	0	0	0 =====
	761	===== NG/L	===== 0	===== 0	===== 0	===== 0	===== 0	===== 0
Chlorinated Hydrocarbons	101	NG/L	0	0	Ø	Ø	0	Ø

ND= not detected; NA= not analyzed

Standards for alpha and gamma chlordene are no longer available in the U.S. for the analysis of these compounds.

CHLORINATED PESTICIDE ANALYSIS, EPA Method 608.3 (WITH ADDITIONS)

Annual 2020

Source:								EFFL	UENT						
Date:			JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	
Analyte	Max MDL	Units													Avg
	======	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====
Aldrin	6.88	NG/L	ND												
Dieldrin	5.15	NG/L	ND												
BHC, Alpha isomer	6.2	NG/L	ND												
BHC, Beta isomer	4.76	NG/L	ND												
BHC, Gamma isomer	6.64	NG/L	ND												
BHC, Delta isomer	6.44	NG/L	ND												
p,p-DDD	6.13	NG/L	ND												
p,p-DDE	4.96	NG/L	ND												
p,p-DDT	8.64	NG/L	ND												
o,p-DDD	7.26	NG/L	ND												
o,p-DDE	6.48	NG/L	ND												
o,p-DDT	7.51	NG/L	ND												
Heptachlor	9.4	NG/L	ND												
Heptachlor epoxide	8	NG/L	ND												
Alpha (cis) Chlordane	6.6	NG/L	ND												
Gamma (trans) Chlordane	4.87	NG/L	ND												
Alpha Chlordene	0	NG/L	NA												
Gamma Chlordene	0	NG/L	NA												
Oxychlordane	19.3	NG/L	ND												
Trans Nonachlor	9.13	NG/L	ND												
Cis Nonachlor	9.48	NG/L	ND												
Alpha Endosulfan	7.61	NG/L	ND												
Beta Endosulfan	13	NG/L	ND												
Endosulfan Sulfate	8.8	NG/L	ND												
Endrin	8.84	NG/L	ND												
Endrin aldehyde	8.36	NG/L	ND												
Mirex	12.7	NG/L	ND												
Methoxychlor	8.78	NG/L	ND												
Toxaphene	584	NG/L	ND												
PCB 1016	761	NG/L	ND												
PCB 1221	761	NG/L	ND												
PCB 1232	761	NG/L	ND												
PCB 1242	761	NG/L	ND												
PCB 1248	761	NG/L	ND												
PCB 1254	761	NG/L	ND												
PCB 1260	761	NG/L	ND												
PCB 1262	761	NG/L	ND												
======================================	====== 6.88	===== NG/L	===== 0												
	6.64	NG/L NG/L	0	0	0	0	0	0	0	0	0	0	0	0	0
Hexachlorocyclohexanes DDT and derivatives	8.64	NG/L	0	0	0	0	0	0	0	0	0	0	0	0	0
		NG/L	0	0	0	0	0	0	0	0	0	0	0	0	0
Chlordane + related cmpds.															
Polychlorinated biphenyls Endosulfans	761 12	NG/L	0 0												
Endosultans	13 ======	NG/L =====		0 =====	-			-	0 =====						
Heptachlors	9.4	NG/L	0	0	0	0	0	0	0	0 	0	0	0	0	0
Chlorinated Hydrocarbons	====== 761	===== NG/L	===== 0												

ND= not detected; NA= not analyzed

Standards for alpha and gamma chlordene are no longer available in the U.S. for the analysis of these compounds.

SOUTH BAY WATER RECLAMATION PLANT SAMPLE SOURCE: INFLUENT(SB_INF_02) & EFFLUENT(SB_OUTFALL_01)

Organophosphorus Pesticides - EPA Method 614 (with additions)

Annual 2020

Source: Date: Analyte	Max MDL	Units	Influent 04-FEB-2020 P1143886	Influent 05-MAY-2020 P1163168	Influent 11-AUG-2020 P1182189	Influent* 06-0CT-2020 P1194410
Demeton O	0.0875	UG/L	ND	ND	ND	ND
Demeton S	0.608	UG/L	ND	ND	ND	ND
Diazinon	0.142	UG/L	ND	ND	ND	ND
Guthion	0.264	UG/L	ND	ND	ND	ND
Malathion	0.11	UG/L	ND	ND	ND	ND
Parathion	0.0489	UG/L	ND	ND	ND	ND
Dichlorvos	0.0853	UG/L	ND	ND	ND	ND
Disulfoton	0.0577	UG/L	ND	ND	ND	ND
Stirophos	0.106	UG/L	ND	ND	ND	ND
Coumaphos	0.0638	UG/L	ND	ND	ND	ND
Chlorpyrifos	0.0902	UG/L	ND	ND	ND	ND
	=======	=====				
Thiophosphorus Pesticides	0.264	UG/L	0.0	0.0	0.0	0.0
Demeton -O, -S	0.608	UG/L	0.0	0.0	0.0	0.0
	=======					
Total Organophosphorus Pesticides	0.608	UG/L	0.0	0.0	0.0	0.0
Source:			Effluent	Effluent	Effluent	Effluent*

Source.			LIIIuenic	LIIIuent	LIIIuenit	LIIIuenc	
Date:			04-FEB-2020	05-MAY-2020	11-AUG-2020	06-0CT-2020	
Analyte	Max MDL	Units	P1143891	P1163173	P1182192	P1194415	
		=====					
Demeton O	0.0875	UG/L	ND	ND	ND	ND	
Demeton S	0.608	UG/L	ND	ND	ND	ND	
Diazinon	0.142	UG/L	ND	ND	ND	ND	
Guthion	0.264	UG/L	ND	ND	ND	ND	
Malathion	0.11	UG/L	ND	ND	ND	ND	
Parathion	0.0489	UG/L	ND	ND	ND	ND	
Dichlorvos	0.0853	UG/L	ND	ND	ND	ND	
Disulfoton	0.0577	UG/L	ND	ND	ND	ND	
Stirophos	0.106	UG/L	ND	ND	ND	ND	
Coumaphos	0.0638	UG/L	ND	ND	ND	ND	
Chlorpyrifos	0.0902	UG/L	ND	ND	ND	ND	
	=======	=====	=========			=======	
Thiophosphorus Pesticides	0.264	UG/L	0.0	0.0	0.0	0.0	
Demeton -O, -S	0.608	UG/L	0.0	0.0	0.0	0.0	
	=======	=====	=========				
Total Organophosphorus Pesticides	0.608	UG/L	0.0	0.0	0.0	0.0	

*= Data quality review deemed the batch as not reportable due to the recoveries of several analytes not meeting the method acceptance criteria in either the initial or closing calibration verification standards.

ND= not detected

Dioxin and Furan Analysis EPA Method 1613

Annual 2020

Source: Date: Analyte	Max MDL	Units	Equiv	INF JAN P1137988	INF FEB P1143886	INF MAR P1152021	INF APR P1158732
======================================	====== 0.448	======= PG/L	===== 1.000	======= ND	ND	ND	ND
1,2,3,7,8-penta CDD	0.2875	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8 hexa CDD	0.0687	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	0.0715	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD	0.0663	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD	0.00793	PG/L	0.010	DNQ10.2	DNQ10.1	DNQ8.00	DNQ11.30
octa CDD	0.00105	PG/L	0.001	100	100	79.0	120
2,3,7,8-tetra CDF	0.041	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8-penta CDF	0.0261	PG/L	0.050	ND	ND	ND	ND
2,3,4,7,8-penta CDF	0.2455	PG/L PG/L	0.500	ND ND	ND ND	ND ND	ND ND
1,2,3,4,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF	0.0506 0.052	PG/L PG/L	0.100 0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDF	0.0618	PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF	0.0524	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDF		PG/L	0.010	DNQ5.19	ND	ND	ND
1,2,3,4,7,8,9-hepta CDF		PG/L	0.010	ND	ND	ND	ND
octa CDF	0.000992	PG/L	0.001	DNQ7.61	ND	ND	ND
Source:				INF	INF	INF	INF
Date:				MAY	JUN	JUL	AUG
Analyte =========	Max MDL	Units ========	Equiv =====	P1163168	P1171515	P1177566	P1181616
2,3,7,8-tetra CDD	0.448	PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD	0.2875	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD	0.0687	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	0.0715	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD	0.0663	PG/L PG/L	0.100 0.010		ND DNQ9.44		
1,2,3,4,6,7,8-hepta CDD octa CDD	0.00105	PG/L PG/L	0.010	DNQ13.4 120	80.0	DNQ18.3 180	DNQ17.6 150
2,3,7,8-tetra CDF	0.00105	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8-penta CDF	0.0261	PG/L	0.050	ND	ND	ND	ND
2,3,4,7,8-penta CDF	0.2455	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF	0.0506	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDF	0.052	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDF	0.0618	PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF	0.0524	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDF		PG/L	0.010	DNQ2.53	DNQ3.92	DNQ3.74	DNQ3.32
1,2,3,4,7,8,9-hepta CDF		PG/L	0.010	ND	ND	ND	ND
octa CDF	0.000992	PG/L	0.001	DNQ5.19	DNQ5.37	DNQ6.99	DNQ6.57
Courses				тыг	тыг		
Source: Date:				INF SEP	INF OCT	INF NOV	INF DEC
Analyte	Max MDL	Units	Equiv	P1188642	P1194410	P1199472	P1205598
2,3,7,8-tetra CDD	0.448	PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD	0.2875	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD	0.0687	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD 1,2,3,7,8,9-hexa CDD	0.0715 0.0663	PG/L PG/L	0.100 0.100	ND ND	ND ND	ND ND	ND ND
1,2,3,4,6,7,8-hepta CDD		PG/L	0.010	DNQ12.8	DNQ10.2	DNQ14.4	DNQ7.12
octa CDD	0.00105	PG/L	0.001	93.0	120	150	80.0
2,3,7,8-tetra CDF	0.041	PG/L	0.100	ND	ND	DNQ1.05	ND
1,2,3,7,8-penta CDF	0.0261	PG/L	0.050	ND	ND	ND	ND
2,3,4,7,8-penta CDF	0.2455	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF	0.0506	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDF	0.052	PG/L	0.100	ND	ND	DNQ1.86	ND
1,2,3,7,8,9-hexa CDF	0.0618	PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF	0.0524	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDF		PG/L	0.010	DNQ2.79	DNQ3.03	DNQ2.54	DNQ2.38
1,2,3,4,7,8,9-hepta CDF		PG/L	0.010	ND	ND	ND	ND
octa CDF	0.000992	PG/L	0.001	DNQ4.34	DNQ5.46	DNQ5.29	ND

ND= not detected

DNQ= (Detected but not quantified). Estimated analyte concentration below calibration range. Above are permit required CDD/CDF isomers.

SOUTH BAY WATER RECLAMATION PLANT SAMPLE SOURCE: EFFLUENT (SB_OUTFALL_01)

Dioxin and Furan Analysis EPA Method 1613

Annual 2020

Source: Date:				EFF JAN	EFF FEB	EFF MAR	EFF APR
Analyte	Max MDL	Units	Equiv	P1139384	P1143891	P1152024	P1158735
2,3,7,8-tetra CDD	0.448	PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD	0.2875	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD	0.0687	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	0.0715	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD	0.0663	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD octa CDD	0.00105	PG/L PG/L	0.010	DNQ1.83 DNQ8.58	ND DNQ8.16	ND ND	ND ND
2,3,7,8-tetra CDF	0.00105	PG/L PG/L	0.001 0.100	ND	ND	ND	ND
1,2,3,7,8-penta CDF	0.0261	PG/L	0.050	ND	ND	ND	ND
2,3,4,7,8-penta CDF	0.2455	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF	0.0506	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDF	0.052	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDF	0.0618	PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF	0.0524	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDF		PG/L	0.010	ND	ND	ND	ND
1,2,3,4,7,8,9-hepta CDF octa CDF	0.00735	PG/L	0.010 0.001	ND ND	ND ND	ND ND	ND ND
	0.000992	PU/L	0.001	ND	ND	ND	ND
Source:				EFF	EFF	EFF	EFF
Date:				MAY	JUN	JUL	AUG
Analyte	Max MDL	Units	Equiv	P1163173	P1171694	P1177569	P1181621
======================================	====== 0.448	====== PG/L	===== 1.000	ND	======= : ND	======= : ND	 ND
1,2,3,7,8-penta CDD	0.2875	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD	0.0687	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	0.0715	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD	0.0663	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD		PG/L	0.010	ND	ND	DNQ2.83	DNQ1.80
octa CDD	0.00105	PG/L	0.001	ND	ND	DNQ17.3	DNQ11.0
2,3,7,8-tetra CDF 1,2,3,7,8-penta CDF	0.041 0.0261	PG/L PG/L	0.100 0.050	ND ND	ND ND	ND ND	ND ND
2,3,4,7,8-penta CDF	0.2455	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF	0.0506	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDF	0.052	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDF	0.0618	PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF	0.0524	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDF		PG/L	0.010	ND	ND	ND	ND
1,2,3,4,7,8,9-hepta CDF		PG/L	0.010	ND	ND	ND	ND
octa CDF	0.000992	PG/L	0.001	ND	ND	ND	ND
Source:				EFF	EFF	EFF	EFF
Date:				SEP	OCT	NOV	DEC
Analyte	Max MDL	Units	Equiv	P1188645	P1194415	P1199475	P1205601
2,3,7,8-tetra CDD	0.448	PG/L	===== 1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD	0.2875	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD	0.0687	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	0.0715	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD	0.0663	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD		PG/L	0.010	ND	ND	ND	ND
octa CDD	0.00105	PG/L	0.001	DNQ4.78	ND	ND	ND
2,3,7,8-tetra CDF 1,2,3,7,8-penta CDF	0.041 0.0261	PG/L PG/L	0.100	ND ND	ND ND	ND ND	ND ND
2,3,4,7,8-penta CDF	0.2455	PG/L PG/L	0.050 0.500	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF	0.0506	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDF	0.052	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDF	0.0618	PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF	0.0524	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDF		PG/L	0.010	ND	ND	ND	ND
1,2,3,4,7,8,9-hepta CDF		PG/L	0.010	ND	ND	ND	ND
octa CDF	0.000992	PG/L	0.001	ND	ND	ND	ND

ND= not detected DNQ= (Detected but not quantified). Estimated analyte concentration below calibration range. Above are permit required CDD/CDF isomers.

Dioxin and Furan Analysis EPA Method 1613

Annual 2020

Source:				INF TCCD	INF TCCD	INF TCCD	INF TCCD
Date: Analyte ====================================	Max MDL =======	Units ========	Equiv	JAN P1137988	FEB P1143886	MAR P1152021	APR P1158732
2,3,7,8-tetra CDD	0.448	PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD	0.2875	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD	0.0687	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	0.0715	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD	0.0663	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD	0.00793	PG/L	0.010	DNQ0.102	DNQ0.101	DNQ0.080	DNQ0.113
octa CDD	0.00105	PG/L	0.001	0.10	0.10	0.079	0.12
2,3,7,8-tetra CDF	0.041	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8-penta CDF	0.0261	PG/L	0.050	ND	ND	ND	ND
2,3,4,7,8-penta CDF	0.2455	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF	0.0506	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDF	0.052	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDF	0.0618	PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF	0.0524	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDF	0.00548	PG/L	0.010	DNQ0.052	ND	ND	ND
1,2,3,4,7,8,9-hepta CDF	0.00735	PG/L	0.010	ND	ND	ND	ND
octa CDF	0.000992	PG/L	0.001	DNQ0.008	ND	ND	ND
Source:				INF	INF	INF	INF
5001 001				TCCD	TCCD	TCCD	TCCD
Date:				MAY	JUN	JUL	AUG
Analvte	Max MDL	Units	Eguiv	P1163168	P1171515	P1177566	P1181616
			=====				
2,3,7,8-tetra CDD	0.448	PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD	0.2875	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD	0.0687	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	0.0715	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD	0.0663	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD		PG/L	0.010	DNQ0.134	DNQ0.094	DNQ0.183	DNQ0.176
octa CDD	0.00105	PG/L	0.001	0.12	0.080	0.180	0.150
2,3,7,8-tetra CDF	0.041	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8-penta CDF	0.0261	PG/L	0.050	ND	ND	ND	ND
2,3,4,7,8-penta CDF	0.2455	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF	0.0506	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDF	0.052	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDF	0.0618	PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF	0.0524	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDF		PG/L	0.010	DN00.025	DN00.039	DN00.037	DN00.033
1,2,3,4,7,8,9-hepta CDF		PG/L	0.010	ND	ND	ND	ND
octa CDF	0.000992		0.001	DN00.005	DN00.005	DN00.007	DN00.007
	0.000552	10/2	0.001	51160.002	51120.005	51120.007	51120.007
Source:				INF	INF	INF	INF
				TCCD	TCCD	TCCD	TCCD
Date:				SEP	OCT	NOV	DEC
Analyte	Max MDL	Units	Equiv	P1188642	P1194410	P1199472	P1205598
2,3,7,8-tetra CDD	0.448	PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD	0.2875	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD	0.0687	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	0.0715	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD	0.0663	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD	0.00793	PG/L	0.010	DNQ0.128	DNQ0.102	DNQ0.144	DNQ0.071
octa CDD	0.00105	PG/L	0.001	0.093	0.120	0.150	0.080
2,3,7,8-tetra CDF	0.041	PG/L	0.100	ND	ND	DNQ0.105	ND
1,2,3,7,8-penta CDF	0.0261	PG/L	0.050	ND	ND	ND	ND
2,3,4,7,8-penta CDF	0.2455	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF	0.0506	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDF	0.052	PG/L	0.100	ND	ND	DNQ0.186	ND
1,2,3,7,8,9-hexa CDF	0.0618	PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF	0.0524	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDF		PG/L	0.010	DNQ0.028	DNQ0.030	DNQ0.025	DNQ0.024
1,2,3,4,7,8,9-hepta CDF		PG/L	0.010	ND	ND	ND	ND
octa CDF	0.000992		0.001	DNQ0.004	DNQ0.005	DNQ0.005	ND
		-				.	

ND= not detected

DNQ= (Detected but not quantified). Estimated analyte concentration below calibration range. Above are permit required CDD/CDF isomers.

SOUTH BAY WATER RECLAMATION PLANT SAMPLE SOURCE: EFFLUENT (SB_OUTFALL_01)

Dioxin and Furan Analysis EPA Method 1613

Annual 2020

Effluent Limit (TCDD): 0.37 pg/L (30-day Average)

		LIIIue			57 pg/L (50-	uay Average)	
Source:				EFF	EFF	EFF	EFF
				TCCD	TCCD	TCCD	TCCD
Date:				JAN	FEB	MAR	APR
Analyte	Max MDL	Units	Equiv	P1139384	P1143891	P1152024	P1158735
		========	=====				========
2,3,7,8-tetra CDD	0.448	PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD	0.2875	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD	0.0687	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	0.0715	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD	0.0663	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD	0.00793	PG/L	0.010	DNQ0.018	ND	ND	ND
octa CDD	0.00105	PG/L	0.001	DNQ0.009	DNQ0.008	ND	ND
2,3,7,8-tetra CDF	0.041	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8-penta CDF	0.0261	PG/L	0.050	ND	ND	ND	ND
2,3,4,7,8-penta CDF	0.2455	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF	0.0506	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDF	0.052	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDF	0.0618	PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF	0.0524	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDF	0.00548	PG/L	0.010	ND	ND	ND	ND
1,2,3,4,7,8,9-hepta CDF		PG/L	0.010	ND	ND	ND	ND
octa CDF	0.000992	PG/L	0.001	ND	ND	ND	ND
Source:				EFF	EFF	EFF	EFF
D				TCCD	TCCD	TCCD	TCCD
Date:				MAY	JUN	JUL	AUG
Analyte	Max MDL	Units	Equiv	P1163173	P1171694	P1177569	P1181621
2 2 7 9 total CDD	======= 0.448	======= PG/L	===== 1.000	======== ND	ND	ND	======= ND
2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD	0.2875	PG/L PG/L	0.500	ND	ND	ND	ND
	0.0687	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD	0.0715	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD	0.0663	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD		PG/L	0.010	ND	ND	DNQ0.028	DNQ0.018
octa CDD	0.00105	PG/L	0.001	ND	ND	DNQ0.017	DNQ0.011
2,3,7,8-tetra CDF	0.041	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8-penta CDF	0.0261	PG/L	0.050	ND	ND	ND	ND
2,3,4,7,8-penta CDF	0.2455	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF	0.0506	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDF	0.052	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDF	0.0618	PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF	0.0524	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDF		PG/L	0.010	ND	ND	ND	ND
1,2,3,4,7,8,9-hepta CDF		PG/L	0.010	ND	ND	ND	ND
octa CDF	0.000992		0.001	ND	ND	ND	ND
	0.000352	10/2	0.001				
Source:				EFF	EFF	EFF	EFF
				TCCD	TCCD	TCCD	TCCD
Date:				SEP	OCT	NOV	DEC
Analyte	Max MDL	Units	Equiv	P1188645	P1194415	P1199475	P1205601
	======						
2,3,7,8-tetra CDD	0.448	PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD	0.2875	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD	0.0687	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	0.0715	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD	0.0663	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD	0.00793	PG/L	0.010	ND	ND	ND	ND
octa CDD	0.00105	PG/L	0.001	DNQ0.005	ND	ND	ND
2,3,7,8-tetra CDF	0.041	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8-penta CDF	0.0261	PG/L	0.050	ND	ND	ND	ND
2,3,4,7,8-penta CDF	0.2455	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF	0.0506	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDF	0.052	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDF	0.0618	PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF	0.0524	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDF	0.00548	PG/L	0.010	ND	ND	ND	ND
1,2,3,4,7,8,9-hepta CDF	0.00735	PG/L	0.010	ND	ND	ND	ND
			0.010 0.001	ND ND	ND ND	ND ND	ND ND

ND= not detected

 ${\sf DNQ}{\sf =}$ (Detected but not quantified). Estimated analyte concentration below calibration range. Above are permit required CDD/CDF isomers.

SOUTH BAY WATER RECLAMATION PLANT SAMPLE SOURCE: INFLUENT (SB_INF_02) AND EFFLUENT (SB_OUTFALL_01)

PRIORITY POLLUTANT ANALYSIS-ACID EXTRACTABLE COMPOUNDS, EPA Method 625.1

Annual 2020

Source:		INFLUENT							
Date:			FEB	S MAY	′ AUG	G 0C1	Г		
Analyte	Max MDL	Units					Average		
	=======	=====	=====	=====	=====	=====			
2-Chlorophenol	0.468	UG/L	ND	ND	ND	ND	ND		
2,4-Dichlorophenol	0.537	UG/L	ND	ND	ND	ND	ND		
4-Chloro-3-methylphenol	0.460	UG/L	ND	ND	ND	ND	ND		
2,4,6-Trichlorophenol	0.605	UG/L	ND	ND	ND	ND	ND		
Pentachlorophenol	0.914	UG/L	ND	ND	ND	ND	ND		
Phenol	0.487	UG/L	38.1	54.3	58.8	55.6	51.7		
2-Nitrophenol	0.546	UG/L	ND	ND	ND	ND	ND		
2,4-Dimethylphenol	2.01	UG/L	ND	ND	ND	ND	ND		
2,4-Dinitrophenol	2.44	UG/L	ND	ND	ND	ND	ND		
4-Nitrophenol	0.626	UG/L	ND	ND	ND	ND	ND		
4,6-dinitro-2-methylphenol	1.33	UG/L	ND	ND	ND	ND	ND		
2-Methylphenol	0.270	UG/L	ND	ND	ND	ND	ND		
3-Methylphenol(4-MP is unresolved)		UG/L	NA	NA	NA	NA	NA		
4-Methylphenol(3-MP is unresolved)	0.402	UG/L	67.3	80.4	99.8	96.4	86.0		
2,4,5-Trichlorophenol	0.631	UG/L	ND	ND	ND	ND	ND		
	=======	=====	=====	=====	=====	=====			
Total Chlorinated Phenols	0.914	UG/L	0.0	0.0	0.0	0.0	0.0		
Total Non-Chlorinated Phenols	2.44	UG/L	105	135	159	152	138		
	=======	=====	=====		=====	=====			
Total Phenols	2.44	UG/L	105	135	159	152	138		

Source:									LUENT						
Date:			JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	0CT	NOV	DEC	
Analyte	Max MDL	Units												A	verage
		=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====
2-Chlorophenol	0.468	UG/L	ND												
2,4-Dichlorophenol	0.537	UG/L	ND												
4-Chloro-3-methylphenol	0.460	UG/L	ND												
2,4,6-Trichlorophenol	0.605	UG/L	ND												
Pentachlorophenol	0.914	UG/L	ND												
Phenol	0.487	UG/L	ND												
2-Nitrophenol	0.546	UG/L	ND												
2,4-Dimethylphenol	2.01	UG/L	ND												
2,4-Dinitrophenol	2.44	UG/L	ND												
4-Nitrophenol	0.626	UG/L	ND												
4,6-dinitro-2-methylphenol	1.33	UG/L	ND												
2-Methylphenol	0.270	UG/L	ND												
3-Methylphenol(4-MP is unresolved)		UG/L	NA												
4-Methylphenol(3-MP is unresolved)	0.402	UG/L	ND												
2,4,5-Trichlorophenol	0.631	UG/L	ND												
		=====	=====					=====						=====	=====
Total Chlorinated Phenols	0.914	UG/L	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Non-Chlorinated Phenols	2.44	UG/L	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Phenols	2.44	===== UG/L	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

ND=not detected; NA=not analyzed

Priority Pollutants Base/Neutral Compounds, EPA Method 625.1

Annual 2020

				-			
Source:					LUENT		
Date:			FEB	MAY	AUG	0CT	
Analyte	Max MDL	Units	Avg	Avg	Avg	-	Average
Pic (2 chlonoothyl) othon	======= 0.561	===== UG/L	===== ND	===== ND	===== ND	===== ND	===== ND
Bis-(2-chloroethyl) ether	0.561	/	ND	ND	ND	ND	ND
Bis-(2-chloroisopropyl) ether		UG/L	ND	ND	ND	ND	ND
N-nitrosodi-n-propylamine Nitrobenzene	0.549	UG/L					
Hexachloroethane	0.665	UG/L	ND ND	ND ND	ND ND	ND ND	ND ND
	0.455 0.525	UG/L	ND	ND	ND	ND	ND
Isophorone	0.323	UG/L	ND	ND	ND	ND	ND
Bis-(2-chloroethoxy) methane 1,2,4-Trichlorobenzene	0.473	UG/L UG/L	ND	ND	ND	ND	ND
					ND	ND	
Naphthalene Hexachlorobutadiene	0.550 0.484	UG/L UG/L	ND ND	ND ND	ND	ND	ND ND
Hexachlorocyclopentadiene	0.484	UG/L UG/L	ND	ND	ND	ND	ND
		/	ND	ND	ND	ND	ND
Acenaphthylene Dimethyl phthalate	0.665 0.526	UG/L UG/L	ND	ND	ND	ND	ND
2,6-Dinitrotoluene	0.326	UG/L UG/L	ND	ND	ND	ND	ND
Acenaphthene	0.544	UG/L UG/L	ND	ND	ND	ND	ND
2,4-Dinitrotoluene	0.562	UG/L	ND	ND	ND	ND	ND
Fluorene	0.562	UG/L	ND	ND	ND	ND	ND
4-Chlorophenyl phenyl ether	0.535	UG/L	ND	ND	ND	ND	ND
Diethyl phthalate	1.68	UG/L	3.32	2.86	4.08	3.58	3.46
N-nitrosodiphenylamine	0.562	UG/L	ND	2.80 ND	4.08 ND	ND	ND
4-Bromophenyl phenyl ether	0.645	UG/L	ND	ND	ND	ND	ND
Hexachlorobenzene	0.043	UG/L	ND	ND	ND	ND	ND
Phenanthrene	0.549	UG/L	ND	ND	ND	ND	ND
Anthracene	0.717	UG/L	ND	ND	ND	ND	ND
Di-n-butyl phthalate	1.37	UG/L	ND		NQ0.96		
N-nitrosodimethylamine	1.08	UG/L	ND	ND	ND	ND	ND
Fluoranthene	0.882	UG/L	ND	ND	ND	ND	ND
Pyrene	0.697	UG/L	ND	ND	ND	ND	ND
Benzidine	3.34	UG/L	ND	ND	ND^		ND
Butyl benzyl phthalate	0.776	UG/L	ND	ND	1.93	ND	0.48
Chrysene	0.611	UG/L	ND	ND	ND	ND	ND
Benzo[a]anthracene	0.782	UG/L	ND	ND	ND	ND	ND
Bis-(2-ethylhexyl) phthalate	3.84	UG/L		* 14 . 7	9.90		**12.3
Di-n-octyl phthalate	0.738	UG/L	ND	ND	ND	ND	ND
3,3-Dichlorobenzidine	1.85	UG/L	ND	ND	ND	ND	ND
Benzo[k]fluoranthene	0.725	UG/L	ND	ND	ND	ND	ND
3,4-Benzo(b)fluoranthene	0.697	UG/L	ND	ND	ND	ND	ND
Benzo[a]pyrene	0.687	UG/L	ND	ND	ND	ND	ND
Indeno(1,2,3-CD)pyrene	0.641	UG/L	ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene	0.613	UG/L	ND	ND	ND	ND	ND
Benzo[g,h,i]perylene	0.665	UG/L	ND	ND	ND	ND	ND
1,2-Diphenylhydrazine	0.828	UG/L	ND	ND	ND	ND	ND
							=====
Polynuc. Aromatic Hydrocarbons	0.782	UG/L	0.0	0.0	0.0	0.0	0.0
Base/Neutral Compounds	3.84	UG/L	3.32	17.6	15.9	3.58	10.1

Additional analytes determined

	=======	=====	=====	=====	=====	=====	=====
1-Methylnaphthalene	0.628	UG/L	ND	ND	ND	ND	ND
2-Methylnaphthalene	0.644	UG/L	ND	ND	ND	ND	ND
2,6-Dimethylnaphthalene	0.560	UG/L	ND	ND	ND	ND	ND
2,3,5-Trimethylnaphthalene	0.582	UG/L	ND	ND	ND	ND	ND
1-Methylphenanthrene	0.823	UG/L	ND	ND	ND	ND	ND
Benzo[e]pyrene	0.665	UG/L	ND	ND	ND	ND	ND
Perylene	1.04	UG/L	ND	ND	ND	ND	ND
Biphenyl	0.616	UG/L	ND	ND	ND	DNQ0.2	7 DNQ0.07

*= Analyte present in method blank at a concentration >10% of the sample result; therefore, not reportable. **= Recovery of the internal standard outside method acceptance criteria; value not included in average calculations. ^= Relative percent difference of sample duplicates outside method acceptance criteria; value not included in average calculations.

ND= not detected DNQ= (Detected but not quantified). Estimated analyte concentration below calibration range.

Priority Pollutants Base/Neutral Compounds, EPA Method 625.1

Annual 2020

Source:					UENT		
Date:			FEB	MAY	AUG	ост	
Analyte	Max MDL	Units	Avg	Avg	Avg		Average
			=====		====		=====
Bis-(2-chloroethyl) ether	0.561	UG/L	ND	ND	ND	ND	ND
Bis-(2-chloroisopropyl) ether	0.609	UG/L	ND	ND	ND	ND	ND
N-nitrosodi-n-propylamine	0.549	UG/L	ND	ND	ND	ND	ND
Nitrobenzene	0.665	UG/L	ND	ND	ND	ND	ND
Hexachloroethane	0.455	UG/L	ND	ND	ND	ND	ND
Isophorone	0.525	UG/L	ND	ND	ND	ND	ND
Bis-(2-chloroethoxy) methane	0.473	UG/L	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	0.561 0.550	UG/L	ND	ND ND	ND	ND	ND ND
Naphthalene Hexachlorobutadiene	0.484	UG/L UG/L	ND ND	ND	ND ND	ND ND	ND
Hexachlorocyclopentadiene	0.515	UG/L	ND	ND	ND	ND	ND
Acenaphthylene	0.665	UG/L	ND	ND	ND	ND	ND
Dimethyl phthalate	0.526	UG/L	ND	ND	ND	ND	ND
2,6-Dinitrotoluene	0.495	UG/L	ND	ND	ND	ND	ND
Acenaphthene	0.544	UG/L	ND	ND	ND	ND	ND
2,4-Dinitrotoluene	0.562	UG/L	ND	ND	ND	ND	ND
Fluorene	0.609	UG/L	ND	ND	ND	ND	ND
4-Chlorophenyl phenyl ether	0.535	UG/L	ND	ND	ND	ND	ND
Diethyl phthalate	1.68	UG/L	ND	DNQ0.24	12 ND	ND	DNQ0.061
N-nitrosodiphenylamine	0.562	UG/L	ND	ND	ND	ND	ND
4-Bromophenyl phenyl ether	0.645	UG/L	ND	ND	ND	ND	ND
Hexachlorobenzene	0.712	UG/L	ND	ND	ND	ND	ND
Phenanthrene	0.549	UG/L	ND	ND	ND	ND	ND
Anthracene	0.717	UG/L	ND	ND	ND	ND	ND
Di-n-butyl phthalate	1.37	UG/L	ND	ND	ND	ND	ND
N-nitrosodimethylamine	1.08	UG/L	ND	ND	ND	ND	ND
Fluoranthene	0.882 0.697	UG/L UG/L	ND	ND ND	ND	ND ND	ND ND
Pyrene Benzidine	3.34	UG/L UG/L	ND ND	ND	ND ND^	ND	ND
Butyl benzyl phthalate	0.776	UG/L	ND	ND	ND	ND	ND
Chrysene	0.611	UG/L	ND	ND	ND	ND	ND
Benzo[a]anthracene	0.782	UG/L	ND	ND	ND	ND	ND
Bis-(2-ethylhexyl) phthalate	3.84	UG/L	6.50	9.30	ND	ND	3.95
Di-n-octyl phthalate	0.738	UG/L	ND	ND	ND	ND	ND
3,3-Dichlorobenzidine	1.85	UG/L	ND	ND	ND	ND	ND
Benzo[k]fluoranthene	0.725	UG/L	ND	ND	ND	ND	ND
3,4-Benzo(b)fluoranthene	0.697	UG/L	ND	ND	ND	ND	ND
Benzo[a]pyrene	0.687	UG/L	ND	ND	ND	ND	ND
Indeno(1,2,3-CD)pyrene	0.641	UG/L	ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene	0.613	UG/L	ND	ND	ND	ND	ND
Benzo[g,h,i]perylene	0.665	UG/L	ND	ND	ND	ND	ND
1,2-Diphenylhydrazine	0.828	UG/L	ND	ND	ND	ND	ND
Polynuc. Aromatic Hydrocarbons		===== UG/L	===== 0.0	0.0	0.0	 0.0	===== 0.0
Base/Neutral Compounds	3.84	UG/L	6.50	9.30	0.0	0.0	3.95
Additional analytes determined							
1 Mathalasakthalasa		=====	=====	===== =		=====	=====
1-Methylnaphthalene	0.628	UG/L	ND	ND	ND	ND	ND
2-Methylnaphthalene	0.644	UG/L	ND		ND	ND	ND ND
2,6-Dimethylnaphthalene 2,3,5-Trimethylnaphthalene	0.560 0.582	UG/L UG/L	ND ND	ND ND	ND ND	ND ND	ND ND
1-Methylphenanthrene	0.823	UG/L UG/L	ND	ND	ND	ND	ND
Benzo[e]pyrene	0.823	UG/L UG/L	ND	ND	ND	ND	ND
Perylene		JG/L	ND	ND	ND	ND	ND
Biphenyl	0.616	UG/L	ND	ND	ND	ND	ND
/		, -					

^= Relative percent difference of sample duplicates outside method acceptance criteria; value not included in average calculations.

ND= not detected DNQ= (Detected but not quantified). Estimated analyte concentration below calibration range.

SOUTH BAY WATER RECLAMATION PLANT SOURCE: INFLUENT (SB_INF_02) AND EFFLUENT (SB_OUTFALL_01) Priority Pollutants Purgeable Compounds, EPA Method 624.1

Annual 2020

Source:				I	NFLUENT		
Date:			FEB	MAY	AUG	OCT	
Analyte	Max MDL	Units					Average
			=======				
Chloromethane	0.729	UG/L	ND	ND	ND	ND	ND
Vinyl chloride	0.948	UG/L	ND	ND	ND	ND	ND
Bromomethane	1.02	UG/L	ND	ND	ND	ND	ND
Chloroethane	0.405	UG/L	ND	ND	ND	ND	ND
Trichlorofluoromethane	0.411	UG/L	ND	ND	ND	ND	ND
Acrolein	0.748	UG/L	ND	ND	ND	ND	ND
1,1-Dichloroethane	0.381	UG/L	ND	ND	ND	ND	ND
Methylene chloride	0.563	UG/L	DNQ0.679	DNQ0.738	DNQ0.807	ND	ND
trans-1,2-dichloroethene	0.364	UG/L	ND	ND	ND	ND	ND
1,1-Dichloroethene	0.375	UG/L	ND	ND	ND	ND	ND
Acrylonitrile	0.585	UG/L	ND	ND	ND	ND	ND
Chloroform	0.446	UG/L	DNQ1.43	4.35	DNQ1.79	DNQ1.27	1.09
1,1,1-Trichloroethane	0.335	UG/L	ND	ND	ND	ND	ND
Carbon tetrachloride	0.422	UG/L	ND	ND	ND	ND	ND
Benzene	0.354	UG/L	ND	ND	ND	ND	ND
1,2-Dichloroethane	0.652	UG/L	ND	ND	ND	ND	ND
Trichloroethene	0.337	UG/L	ND	ND	ND	ND	ND
1,2-Dichloropropane	0.280	UG/L	ND	ND	ND	ND	ND
Bromodichloromethane	0.436	UG/L	ND	2.44	ND	ND	0.61
2-Chloroethylvinyl ether	0.488	UG/L	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	0.196	UG/L	ND	ND	ND	ND	ND
Toluene	0.241	UG/L	DNQ1.24	2.17	3.53	DNQ0.644	1.43
trans-1,3-dichloropropene	0.287	UG/L	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	0.268	UG/L	ND	ND	ND	ND	ND
Tetrachloroethene	0.482	UG/L	ND	ND	ND	ND	ND
Dibromochloromethane	0.458	UG/L	ND	DNQ1.39	ND	ND	ND
Chlorobenzene	0.309	UG/L	ND	ND	ND	ND	ND
Ethylbenzene	0.236	UG/L	ND	DNQ0.667	ND	ND	ND
Bromoform	0.385	UG/L	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	0.390	UG/L	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	0.293	UG/L	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	0.289	UG/L	ND		DN00.722		ND
1,2-Dichlorobenzene	0.327	UG/L	ND	ND	ND	ND	ND
=======================================		/				=======	
Halomethane Purgeable Cmpnds	1.02	UG/L	0.00	0.00	0.00	0.00	0.00
Total Dichlorobenzenes		UG/L	0.00	0.00	0.00	 0.00	0.00
Total Chloromethanes	0.729	UG/L	0.00	4.35	0.00	 0.00	1.09
Purgeable Compounds	======= 1.02	===== UG/L	======= 0.00	====== 8.96	====== 3.53	 0.00	======= 3.13
Additional analytes							
				=======	=======		
1,2,4-Trichlorobenzene	0.561	UG/L	ND	ND	ND	ND	ND

ND= not detected DNQ= (Detected but not quantified). Estimated analyte concentration below calibration range

SOUTH BAY WATER RECLAMATION PLANT SOURCE: EFFLUENT (SB_OUTFALL_01) Priority Pollutants Purgeable Compounds, EPA Method 624.1

Annual 2020

Source:		EF	FLUENT				
Date:			FEB	MAY	AUG	OCT	
Analyte	Max MDL	Units					Average
Chloromethane	0.729	UG/L	ND	ND	ND	ND	ND
Vinyl chloride	0.948	UG/L	ND	ND	ND	ND	ND
Bromomethane	1.02	UG/L	ND	ND	ND	ND	ND
Chloroethane	0.405	UG/L	ND	ND	ND	ND	ND
Trichlorofluoromethane	0.411	UG/L	ND	ND	ND	ND	ND
Acrolein	0.748	UG/L	ND	ND	ND	ND	ND
1,1-Dichloroethane	0.381	UG/L	ND	ND	ND	ND	ND
Methylene chloride	0.563	UG/L	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	0.364	UG/L	ND	ND	ND	ND	ND
1,1-Dichloroethene	0.375	UG/L	ND	ND	ND	ND	ND
Acrylonitrile	0.585	UG/L	ND	ND	ND	ND	ND
Chloroform	0.446	UG/L	DN00.708	DNQ0.503	ND	DNQ0.793	ND
1,1,1-Trichloroethane	0.335	UG/L	ND	ND	ND	ND	ND
Carbon tetrachloride	0.422	UG/L	ND	ND	ND	ND	ND
Benzene	0.354	UG/L	ND	ND	ND	ND	ND
1,2-Dichloroethane	0.652	UG/L	ND	ND	ND	ND	ND
Trichloroethene	0.337	UG/L	ND	ND	ND	ND	ND
1,2-Dichloropropane	0.280	UG/L	ND	ND	ND	ND	ND
Bromodichloromethane	0.436	UG/L	ND	ND	ND	ND	ND
2-Chloroethylvinyl ether	0.488	UG/L	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	0.196	UG/L	ND	ND	ND	ND	ND
Toluene	0.241	UG/L	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	0.287	UG/L	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	0.268	UG/L	ND	ND	ND	ND	ND
Tetrachloroethene	0.482	UG/L	ND	ND	ND	ND	ND
Dibromochloromethane	0.458	UG/L	ND	ND	ND	ND	ND
Chlorobenzene	0.309	UG/L	ND	ND	ND	ND	ND
Ethylbenzene	0.236	UG/L	ND	ND	ND	ND	ND
Bromoform	0.385	UG/L	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	0.390	UG/L	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	0.293	UG/L	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	0.289	UG/L	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	0.327	UG/L =====	ND ======	ND	ND	ND	ND
Halomethane Purgeable Cmpnds	1.02	UG/L	0.00	0.00	0.00	0.00	0.00
Total Dichlorobenzenes		UG/L	0.00	0.00	0.00	====== 0.00	0.00
Total Chloromethanes	====== 0.729	===== UG/L	======= 0.00	====== 0.00	======= 0.00	====== 0.00	 0.00
<pre>====================================</pre>	======= 1.02	===== UG/L	======= 0.00	 0.00	 0.00	====== 0.00	 0.00
Additional analytes							
<pre>====================================</pre>	======= 0.561	===== UG/L	====== ND	====== ND	====== ND	====== ND	====== ND
i, i, i i i i i i i i i i i i i i i i i	0.001	50/ L	ND	ND	ND	ND	

ND= not detected DNQ= (Detected but not quantified). Estimated analyte concentration below calibration range

SOUTH BAY WATER RECLAMATION PLANT Radioactivity EPA Method 900.0

Effluent to the Ocean (SB_OUTFALL_01)

Analyzed by: FGL Environmental Agricultural Analytical

Annual 2020

Month/ Year	Gross Alpha Radiation	Gross Beta Radiation
JANUARY -2020	8.36 ± 1.89	17.5 ± 1.93
FEBRUARY -2020	8.83 ± 1.39	10.8 ± 1.33
MARCH -2020	15.1 ± 2.27	18.8 ± 2.05
APRIL -2020	10.5 ± 1.67	16.5 ± 1.76
MAY -2020	9.16 ± 1.94	11.9 ± 1.78
JUNE -2020	9.68 ± 1.30	6.39 ± 0.85
JULY -2020	14.3 ± 2.18	11.9 ± 1.85
AUGUST -2020	15.2 ± 2.06	8.62 ± 1.78
SEPTEMBER-2020	9.89 ± 1.12	10.5 ± 1.55
OCTOBER -2020	14.3 ± 2.37	8.73 ± 1.73
NOVEMBER -2020	10.7 ± 2.06	9.06 ± 1.71
DECEMBER -2020	11.0 ± 1.77	8.64 ± 1.49
AVERAGE	11.4 ± 1.84	11.6 ± 1.65

Units in picocuries/liter (pCi/L)

SOUTH BAY WATER RECLAMATION PLANT SAMPLE SOURCE: INFLUENT (SB_INF_02) AND EFFLUENT (SB_OUTFALL_01)

Tributyl Tin Analysis (In-house Method)

Annual 2020

Source:			INFLUENT						
Date:			FEE	3 MA'	Y AUG	G 0CT	-		
Analyte	Max MDL	Units					Average		
============	=======	=====		========		========	======		
Dibutyltin	0.0301	UG/L	ND	ND	ND	ND	0.0		
Monobutyltin	0.0177	UG/L	ND	ND	ND	ND	0.0		
Tributyltin	0.0171	UG/L	ND	ND	ND	ND	0.0		

Source:			EFFLUENT							
Date:			FEI	3 MA1	/ AUG	G OC1	Г			
Analyte	Max MDL	Units					Average			
		=====		========	========	=========				
Dibutyltin	0.0301	UG/L	ND	ND	ND	ND	0.0			
Monobutyltin	0.0177	UG/L	ND	ND	ND	ND	0.0			
Tributyltin	0.0171	UG/L	ND	ND	ND	ND	0.0			

ND= not detected