Viewpoint Old Town [223 Apartments]
 City of San Diego
 4620 Pacific Highway
 August 4, 2023

City of San Diego PRJ-1056469

Local Mohility Analysis Report

Prepared for:
Viewpoint Development LLC
16830 Ventura Blvd, Suite 360
Encino, CA 91436

Prepared by Justin Rasas (TR 2135) a principal with:
LOS Engineering, Inc.
11622 El Camino Real, Suite 100, San Diego, CA 92130
Phone 619-890-1253

Executive Summary
1.0 Introduction / Proposed Project 1
2.0 Analysis Methodology 4
2.1 Study Scenarios 7
2.2 Traffic Analysis Methodology 7
2.2.1 Intersections 7
2.2.2 Intersection Queuing 7
2.2.3 Street Segments 8
2.2.4 Project Traffic Effect Thresholds 9
3.0 Existing Conditions for All Modes 10
3.1 Existing Intersection Geometrics \& Traffic Volumes 10
3.1.1 Existing Street System 10
3.2 Existing Traffic Conditions 12
3.3 Project Trip Generation 15
3.3.1 Project Trip Generation and Distribution 15
4.0 Opening Year (2026) 18
4.1 Cumulative Projects 18
4.2 Opening Year (2026) Transportation Network \& Traffic Volumes 20
4.3 Opening Year (2026) Without Project 21
4.4 Opening Year (2026) With Project 22
4.5 Identification of Improvements 24
5.0 Pedestrian, Bicycle, and Transit Assessment 25
5.1 Pedestrian Assessment 25
5.2 Bicycle Assessment 27
5.3 Transit Assessment 29
6.0 Project Access \& Circulation 32
7.0 Parking / Loading 33
8.0 Systemic Safety Analysis 34
8.1 Pedestrian Systemic Safety Review 34
8.2 Bicycle Systemic Safety Review 35
8.3 Vehicle Systemic Safety Review 36
8.4 Systemic Safety Review Recommended Countermeasures 37

Figure 1: Project Location 2
Figure 2: Site Plan 3
Figure 3: LMA Study Area $1 / 2$ Mile Limits and Study Elements 6
Figure 4: Existing Vehicular Conditions 11
Figure 5: Existing Traffic Volumes 13
Figure 6: Project Trip Distribution 16
Figure 7: Project Trip Assignment 17
Figure 8: Ambient Growth Volumes for Opening Year (2026) 19
Figure 9: Opening Year (2026) No Project Volumes (Existing + Ambient Growth) 20
Figure 10: Opening Year (2026) Plus Project Volumes 23
Figure 11: Conceptual Drawing of Proposed Improvement 24
Figure 12: Pedestrian Sidewalk Analysis (1/2 Mile Walking Distance) 26
Figure 13: Bicycle Analysis (1/2 Mile Biking Distance) 28
Figure 14: Nearby Transit Service. 29
Figure 15: Bus Stop Analysis (1/2 Mile Walking Distance) 31
Figure 16: City of San Diego Pedestrian Systemic Hotspot Map. 34

Table E-1: Project Parking Summary v
Table 1: Project Unadjusted Aveage Daily Trip Generation 4
Table 2: Intersection Level of Service Definitions ($6^{\text {th }}$ Edition HCM) 7
Table 3: Street Segment Daily Capacity and LOS (City of San Diego) 8
Table 4: City of San Diego Traffic Thresholds for Potential Roadway Improvements 9
Table 5: Existing Intersection LOS 14
Table 6: Existing Intersection Turn Lane Queuing 14
Table 7: Existing Segment ADT Volumes and LOS. 14
Table 8: Existing Site Trip Generation. 15
Table 9: Project Net Trip Generation 15
Table 10: Opening Year (2026) No Project Intersection LOS 21
Table 11: Opening Year (2026) No Project Intersection Turn Lane Queuing. 21
Table 12: Opening Year (2026) No Project Segment ADT Volumes and LOS 21
Table 13: Opening Year (2026) Plus Project Intersection LOS 22
Table 14: Opening Year (2026) Plus Project Intersection Turn Lane Queuing 22
Table 15: Opening Year (2026) Plus Project Segment ADT Volumes and LOS 22
Table 16: Weekday Transit Service Operations and Frequency 29
Table 17: Weekend Transit Service Operations and Frequency 30
Table 18: Project Parking Summary. 33
Table 19: Pedestrian Systemic Safety Review 35
Table 20: Bicycle Systemic Safety Review 35
Table 21: Vehicle Systemic Safety Review 36

Appendix A City of San Diego Roadway Segment Capacity Table Appendix B Excerpts from City of San Diego TSM for Roadway Improvement Criteria Appendix C... Excerpts from Old Town San Diego and Midway-Pacific Highway Community Plans Appendix D Count Data
Appendix E Signal Timing Sheets
Appendix F Existing LOS and Queuing Worksheets
Appendix G Existing Project Site Driveway Count
Appendix H Historical Traffic Data and Ambient Growth Calculations Appendix I................................Opening Year (2026) without Project LOS and Queuing Worksheets Appendix J Opening Year (2026) plus Project LOS and Queuing Worksheets Appendix K.. City Average Daily Trips (ADT) Data for Systemic Analysis Appendix L Pacific Highway/Rosecrans St/Taylor St Crosswalks and Countdown Heads Appendix M..................Pacific Highway/Rosecrans St/Taylor St Bike Loop Detectors and Markings Appendix N.............................Pacific Highway/Rosecrans St/Taylor St Bike Type E Loop Detectors

The proposed project includes 223 multi-family dwelling units (48 studios, 113 1-bedroom and 62 2-bedroom, including 33 affordable units with 15% at very low and 10% moderate income) and one level of at-grade and one level of above-grade parking for 240 vehicles. On-site residential amenities include two amenity decks, a gym, pool and jacuzzi.

The project is located at 4620 Pacific Highway in a Parking Standards Transit Priority Area (TPA), Transit Area Overlay Zone, Mobility Zone 2, and OTMCR-1-3 zone within the Old Town San Diego Community Planning Area. Local vehicular access to the site is proposed via one right-in/right-out only driveway located along Pacific Highway that will provide access to a gated parking structure. There is an existing center raised median on Pacific Highway at the driveway location. An entrance-only driveway on Rosecrans Street and exit-only driveway on Pacific Highway is proposed for loading, deliveries, and service vehicles only. The following discretionary approvals are required as part of the project:

1) Neighborhood Development Permit
2) Easement Vacation

The project does not require nor propose a Community Plan Amendment or rezone.

Trip Generation and Vehicle Operations

The project is expected to generate a minimum of 1,338 Average Daily Trips (ADT), with 107 AM peak hour trips (21 inbound and 86 outbound) and 120 PM peak hour trips (84 inbound and 36 outbound). The project site includes an existing and operating restaurant and the existing driveway trips at the site's eight (8) driveways were counted on Tuesday, December $20^{\text {th }}, 2022$ and Wednesday, December $21^{\text {st }}, 2022$. The net trips expected to be generated at the project site is 591 ADT with -2 AM peak hour trips (-43 inbound and 41 outbound) and 111 PM peak hour trips (81 inbound and 30 outbound). A Local Mobility Analysis ("LMA") is required because the project is calculated to generate 1,338 unadjusted ADT, which is greater than the $1,000 \mathrm{ADT}$ threshold stated in the TSM. Though the total expected trip generation was used to evaluate the scope of study area, only the net trips were distributed to the study intersections.

Based on the study criteria in the Transportation Study Manual (TSM), an evaluation of the project's potential transportation effects and operations at three (3) intersections, and two (2) roadway segments were evaluated in the following scenarios:

- Existing
- Opening Year (2026) without Project
- Opening Year (2026) with Project

Study intersections included: 1) Pacific Highway at Anna Ave, 2) Pacific Hwy at Project Driveway, and 3) Pacific Hwy at Rosecrans Street/Taylor Street. The street segments included: 1) Pacific Hwy between Anna Ave and the Project Driveway, and 2) Pacific Hwy between the Project Driveway and Rosecrans St/Taylor St Ave.

LOS and Queuing

Under all study scenarios, the study intersections and segments were calculated to operate at LOS C or better under AM peak hour, PM peak hour, and daily traffic conditions.

Under Existing Conditions, at the intersection of Pacific Highway/Rosecrans St/Taylor St, the southbound right turn lane is calculated to exceed the right turn storage lane of 60 feet by an additional 35 feet in the PM peak hour based on the $95^{\text {th }}$ percentile. A PM peak hour maximum queue of approximately 75 feet (exceeding the 60 foot storage by 15 feet) was observed on 6/6/23.

Under Opening Year 2026 No Project scenario, at the intersection of Pacific Highway/Rosecrans St /Taylor St , the southbound right turn lane is anticipated to exceed the right turn storage lane by 2 feet in the AM peak hour and 38 feet in the PM peak hour based on the forecasted $95^{\text {th }}$ percentile.

Under Opening Year 2026 Plus Project scenario, at the intersection of Pacific Highway/Rosecrans $\mathrm{St} /$ Taylor St , the southbound right turn lane is anticipated to exceed the right turn storage lane by 23 feet in the AM peak hour and 47 feet in the PM peak hour based on the $95^{\text {th }}$ percentile forecast. The project proposes to extend the striping for the southbound right turn lane by an additional 50 feet (from 60 feet to 110 feet) to accommodate the forecasted $95^{\text {th }}$ percentile queue. A conceptual striping plan is shown in Figure 11 within the body of this report.

Summary of Vehicular Improvements:

1) At the intersection of Pacific Hwy/Rosecrans St/Taylor St, extend the striping along Pacific Highway for the southbound right turn lane (and adjacent bike lane) by an additional 50 feet (from 60 feet to 110 feet) to accommodate the forecasted $95^{\text {th }}$ percentile queue.

Parking

Project parking is proposed in a parking garage. All parking modes are located within the parking garage or building. The number of required and provided parking spaces by mode are shown in Table E-1.

* 中 中

Parking Mode	Minimum Required Parking	Proposed Parking
Vehicle	0	234
Vehicle Accessible	6	6
Motorcycle	23	23
Bicycle	96	97

Source: Carrier Johnson Architects

Active Transportation Improvements

Pedestrian facilities within the half mile walking shed along the study roadways includes segments of missing sidewalks and curb ramps. The project will reconstruct the fronting sidewalks along Pacific Highway and Rosecrans St from contiguous to non-contiguous and add landscaping along the project frontage. The project does not propose to construct or install additional sidewalk or curb ramps, as none of the missing sidewalk is adjacent to the project site.

Bicycle facilities within a half mile bicycling distance along the study roadways identified locations without planned bicycle facilities. The project will replace the existing Class II with a one-way Class IV Cycle Track along its Pacific Highway frontage, and stripe a Class II Bicycle Lane its Rosecrans Street frontage. The project will provide a combination of short-term bicycle parking, long-term bicycle parking, and bicycle storage rooms for its residents per the SDMC and Climate Action Plan (CAP) Consistency Checklist requirements.

Transit facilities within a half mile walking shed includes the Old Town Transit Center that provides access to Amtrak rail, North County Transit District commuter rail, the Metropolitan Transit System (MTS) UCSD Blue Line Trolley, the MTS Orange Line Trolley, an airport shuttle (the "Old Town Flyer"), and 11 MTS bus routes. Based on the TSM criteria, no transit improvements are required or proposed.

Summary of Active Transportation Improvements:

1) Dedicate and improve the frontage along Pacific Highway and Rosecrans St to construct non-contiguous sidewalks buffered by landscaping along each of project frontages. Along its Pacific Highway frontage the project will dedicate 1.6 feet to create a 14 feet wide parkway (6 feet wide sidewalk with an 8 foot wide landscape buffer). Along its Rosecrans Street frontage, the project will dedicate 13 feet to create a 22 foot wide parkway (7 foot wide sidewalk with a 15 feet landscape buffer).
2) Stripe a buffered Class II Bicycle Lane along the project's Rosecrans Street frontage, and replace the existing Class II buffered Bicycle Lane with a one-way Class IV Cycle Track along the project's Pacific Highway frontage.
3) At the intersection of Pacific Hwy/Rosecrans St/Taylor St, upgrade and install signal heads with backplates that have retroreflective borders on each approach.

Systemic Safety Review

The City of San Diego Systemic Safety: The Data-Driven Path to Vision Zero (April 2019) policy promotes safe roadway design with a goal toward preventing collisions. As part of that goal, a systemic safety review provides an assessment of hotspots and recommended countermeasures to align with Vision Zero. The systemic safety review identified the following locations that match the criteria for potential improvements:

1) The intersection of Pacific Hwy/Rosecrans St/Taylor St meets the Bicycle Footprint \#1 systemic criteria for potential countermeasures. The Class II bike lanes on Pacific Highway/Rosecrans St/Taylor St currently have bike loop detectors and green colored pavement along Pacific Highway approaching Rosecrans St/Taylor St. A possible countermeasure is a public safety messaging campaign; however, such a campaign is beyond the scope of this project. Therefore, no countermeasure is proposed.
2) The intersection of Pacific Hwy/Rosecrans St/Taylor St meets the Vehicle Footprint \#3 systemic criteria for potential countermeasures. The recommended vehicle countermeasure is for the project to upgrade and install signal heads with backplates that have retroreflective borders for better visibility for each approach.

The proposed project includes 223 multi-family dwelling units (48 studios, 113 1-bedroom and 62 2 -bedroom, including 33 affordable units with 15% at very low and 10% moderate income) and one level of at-grade and one level of above-grade parking for 240 vehicles. On-site residential amenities include two amenity decks, a gym, pool and jacuzzi.

The project is located at 4620 Pacific Highway in a Parking Standards Transit Priority Area ("TPA"), Transit Area Overlay Zone, Mobility Zone 2, and OTMCR-1-3 zone within the Old Town San Diego Community Planning Area. Local access to the site is proposed via one right-in/right-out only driveway located along Pacific Highway that will provide access to a gated parking structure. There is an existing center raised median on Pacific Highway at the driveway location. An entranceonly driveway on Rosecrans Street and exit-only driveway on Pacific Highway is proposed for service vehicles only.

The following discretionary approvals are required as part of the project:

1) Neighborhood Development Permit
2) Easement Vacation

The project does not require nor propose a Community Plan Amendment or rezone.
The location of the project is shown in Figure 1 with a preliminary site plan shown in Figure 2. The format of this study includes the following chapters:
1.0 Introduction / Proposed Project
2.0 Analysis Methodology
3.0 Existing Conditions for All Modes
4.0 Opening Year (2026)
5.0 Pedestrian, Bicycle, and Transit Assessment
6.0 Site Access \& Circulation
7.0 Parking / Loading
8.0 Systemic Safety Analysis

Source: Google Maps

The City of San Diego Transportation Study Manual, ("TSM") September 2022 states that all projects must complete a Local Mobility Analysis ("LMA") unless they meet the following trip generation screening criteria:

1) Land uses consistent with the Community Plan/Zoning Designation: Generate less than 1,000 daily unadjusted driveway vehicle trips,
2) Land uses inconsistent with the Community Plan/Zoning Designation: Generate less than 500 daily unadjusted driveway vehicle trips, or
3) Projects in the Downtown Community Planning Area that generate less than 2,400 daily unadjusted trips.

As shown in Table 1, the project is anticipated to generate approximately 1,338 unadjusted average daily trips; therefore, a LMA is required.

Proposed Land Use	Rate		Size \& Units		Average Daily Trips
Multi-Family Dwelling Unit (>20 du/acre)	6	/DU	223	DU	1,338

Source: City of San Diego Trip Generation Manual , May 2003. DU: Dwelling Unit.
The extent of the LMA study elements is based on the City's study criteria for each mobility mode as follows:

1) Pedestrian: Documentation of pedestrian facilities and basic deficiencies (missing sidewalk, curb ramps, and major obstructions) within $1 / 2$ mile walking distance measured from each pedestrian access point (for example, driveways, internal project sidewalk connections to the street, etc.).
Sidewalks within a $1 / 2$ mile walking distance classified in the respective community plans as connector, corridor, or district were included in this analysis.
2) Bicycle: Documentation of bicycle facilities and basic deficiencies (bike lane gaps, obstructions) within $1 / 2$ mile bicycling distance measured from the center of the intersection formed by each project driveway.
Bicycle facilities within a $1 / 2$ mile bicycling distance were included in this analysis.
3) Transit: Identification of the closest transit routes and stops to the project. If the transit stops are within $1 / 2$ mile walking distance of each pedestrian access point, the condition of the stop amenities must be described/evaluated.
Bus stops with a $1 / 2$ mile walking distance and the Old Town Transit Center were included in this analysis.
4) Systemic Safety Review: Identification of study area intersections that satisfy the systemic safety criteria.

All three study intersections including 1) Pacific Highway/Anna Ave, 2) Pacific Highway/Project Driveway, and 3) Pacific Highway/Rosecrans St/Taylor St were included in this analysis.

5) Intersection Operations (projects with less than 2,400 daily final driveway trips):
a. All signalized intersections within $1 / 2$ mile path of travel from the center of the intersection formed by each project driveway AND the project will add 50 or more peak hour final primary (cumulative) trips to any turning movement at the intersection.
b. All unsignalized intersections (side street stop controlled, all-way stop controlled, and roundabouts) and unsignalized project driveways located within $1 / 2$ mile path of travel distance measured from the center of the intersection formed by each project driveway AND the project will add 50 or more peak hour final primary (cumulative) trips in either direction.
c. All freeway ramp terminal intersections where a project adds 50 or more peak hour final primary (cumulative) AM or PM net new trips in either direction must be analyzed regardless of their distance from the project site.

All three study intersections satisfied the above criteria and are included in this analysis: 1) Pacific Highway/Anna Ave, 2) Pacific Highway/Project Driveway, and 3) Pacific Highway/Rosecrans St/Taylor St.
6) Roadway Segments: The study area should include any roadway segments where the project adds 1,000 or more daily final primary trips (cumulative trips) if consistent with the Community Plan, or 500 or more daily final primary trips (cumulative trips) if inconsistent with the Community Plan AND:
a. Have improvements identified in the Community Plan; OR
b. Not built to the Community Plan ultimate classification (including planned new circulation element roadways).

Both of the study segments satisfied the above criteria and are included in this analysis: Pacific Highway (Anna Ave to Project Driveway), and Pacific Highway (Project Driveway to Rosecrans St).

The study area and elements for this LMA are shown in Figure 3.

The number of study scenarios is dependent on the estimated trips generated by the project and whether the project would require a Community Plan Amendment and/or re-zone. For this project, the following scenarios were analyzed:

1) Existing Conditions
2) Opening Year 2026 No Project
3) Opening Year 2026 plus Project

The Local Mobility Analysis prepared for this study was based on the $6^{\text {th }}$ Edition Highway Capacity Manual (HCM) operations analysis using Level of Service (LOS) evaluation criteria. The operating conditions of the study intersections, street segments, and freeway segments were measured using the HCM LOS designations, which ranges from A through F. LOS A represents the best operating condition and LOS F denotes the worst operating condition. The individual LOS criteria for each roadway component are described below.

- On

The study intersections were analyzed based on the operational analysis outlined in the $6^{\text {th }}$ Edition HCM, (2016). This process defines LOS in terms of average control delay per vehicle, which is measured in seconds. LOS at the intersections were calculated using the computer software program Synchro 11 (Trafficware Corporation). The $6^{\text {th }}$ Edition HCM LOS for the range of delay by seconds for intersections is shown in Table 2.

Level of Service	Un-Signalized Control Delay for TWSC, AWSC, and Roundabout (sec/veh where v/c $\leq 1)$	Signalized Control Delay (sec/veh where v/c $\leq 1)$
A	$0-10$	≤ 10
B	$>10-15$	$>10-20$
C	$>15-25$	$>20-35$
D	$>25-35$	$>35-55$
E	$>35-50$	$>55-80$
F	>50	>80

Source: $6^{\text {th }}$ Edition HCM. TWSC: Two Way Stop Control. AWSC: All Way Stop Control. For unsignalized intersections, the control delay is the worst movement delay in seconds/vehicle.

The $95^{\text {th }}$ percentile queue for study intersections located within the City of San Diego with more than 50 project peak hour turns were analyzed using SimTraffic 11 software. If only one peak hour had greater than 50 trips, both peak hours were analyzed. The queue was calculated running ten $60-$ minute simulations runs with a ten-minute seeding time. The $95^{\text {th }}$ percentile queue was compared to the turn pocket storage that is generally measured from the intersection stop bar to the end of the turn pocket striping.

The street segments were analyzed based on the functional classification of the roadway using the City of San Diego Roadway Segment LOS by Classification and Average Daily Traffic capacity lookup table (Appendix A). The roadway segment capacity and LOS standards used to analyze street segments are summarized in Table 3.

Circulation Element	LOS	LOS	LOS	LOS	LOS
Road Classification	A	B	C	D	E
Prime Arterial - 7 Lanes	$<30,000$	$<42,500$	$<60,000$	$<65,000$	$<70,000$
Prime Arterial - 6 Lanes	$<25,000$	$<35,000$	$<50,000$	$<55,000$	$<60,000$
Prime Arterial - 5 Lanes	$<20,000$	$<28,000$	$<40,000$	$<45,000$	$<50,000$
Major Arterial -6 Lanes	$<20,000$	$<28,000$	$<40,000$	$<45,000$	$<50,000$
Major Arterial - 5 Lanes	$<17,500$	$<24,500$	$<35,000$	$<40,000$	$<45,000$
Major Arterial - 4 Lanes	$<15,000$	$<21,000$	$<30,000$	$<35,000$	$<40,000$
Collector - 5 Lanes	$<12,500$	$<17,500$	$<25,000$	$<30,750$	$<37,500$
Collector - 4 Lanes	$<10,000$	$<14,000$	$<20,000$	$<25,000$	$<30,000$
Collector (no Center Ln) - 4 Lanes Collector (with TWLTL) - 2 Lanes	$<5,000$	$<7,000$	$<10,000$	$<13,000$	$<15,000$
Collector - 2 Lanes (no fronting property)	$<4,000$	$<5,500$	$<7,500$	$<9,000$	$<10,000$
Collector - 2 Lanes (without two-way left turn lane)	$<2,500$	$<3,500$	$<5,000$	$<6,500$	$<8,000$
Sub-Collector - 2 Lanes					
(single-family)			$<2,200$		

Source: City of San Diego Transportation Study Manual September 19, 2022.

A project Owner/Permittee should consider an improvement if the project traffic exceeds the City of San Diego Transportation Study Manual (TSM) defined thresholds as shown in Table 4 (TSM excerpts included in Appendix B).

Facility	Thresholds for Considering an Improvement
Transit	Project causes transit movement to operate at LOS E or worse
Signalized Intersection	No Existing Left-Turn Lane: If the project adds traffic to an individual left turn movement causing the total number of peak hour left turns to exceed 100, consider adding a left turn lane. Existing Single Left-Turn Lane: If the project adds traffic to an individual left turn movement causing the total number of peak hour left turns to exceed 300, consider adding a second left turn lane. No Existing Right Turn-Lane: If the addition of a right turn lane will not negatively affect other roadway users, will maintain a comfortable roadway environment, AND the project adds traffic to an individual right turn movement causing the total number of peak hour right turns to exceed 500 , consider adding a right turn lane. Existing Single Right-Turn Lane: If the addition of a right turn lane will not negatively affect other roadway users, will maintain a comfortable roadway environment, AND the project adds traffic to an individual right turn movement causing the total number of peak hour right turns to exceed 800, consider adding a second right turn lane. Lengthening a Turn Pocket: If the project adds traffic to a turning movement and causes the $95^{\text {th }}$ percentile queue to exceed the available turn pocket length, consider lengthening the turn pocket. Signal Timing Improvements/Signal Modification should be considered for study intersections within a $1 / 2$ mile path of travel of a Major Transit Stop, if the project causes or adds traffic to an LOS F intersection, or outside $1 / 2$ mile path of travel of a Major Transit Stop, if the project causes or adds traffic to an LOS E/F intersection.
	An Intersection Control Evaluation should be prepared if:
Signalized Intersection	All Way Stop Control: Within a $1 / 2$ mile path of travel of a Major Transit Stop, if the project causes intersection to degrade to LOS F, or if the project adds traffic to an intersection already operating at LOS F. All Way Stop Control: Outside of a $1 / 2$ mile path of travel of a Major Transit Stop, if the project causes intersection to degrade to LOS E or F, or if the project adds traffic to an intersection already operating at LOS E or F. Side Street Stop Control: Within a $1 / 2$ mile path of travel of a Major Transit Stop, if the project causes the worst movement to degrade to LOS F, or if the project adds traffic to an intersection already operating at LOS F. Side Street Stop Control: Outside a $1 / 2$ mile path of travel of a Major Transit Stop, if the project causes the worst movement to degrade to LOS E or F, or if the project adds traffic to an intersection already operating at LOS E or F.
Roadway Segment	If the project adds greater than 50% of total daily vehicle trips on the segment, the project should consider implementing the improvements as identified in the community plan. If the project adds less than or equal to 50% of total daily vehicle trips on the segment, the project should evaluate its fair share toward the improvement.

Source: City of San Diego Transportation Study Manual, 9/19/2022.

The traffic analysis includes specific study scenarios, methodology for the analysis of roadway operations, and determination of potential off-site improvements triggered by the project traffic. Details for each of these parameters are included herein.

This section describes the existing study area street system, peak hour intersection volumes, daily roadway volumes, existing LOS, and queuing.

The following is a description of the existing roadway network in the study area.
Pacific Highway is classified as a 2-Lane Collector Street with Center Left Turn Lane from Rosecrans Street/Taylor Street to Anna Ave per the Old Town San Diego Community Plan, 2018. It is constructed as a four-lane divided roadway from Rosecrans Street/Taylor Street northerly for approximately 330 feet, then as a two-lane undivided roadway with a center two way left turn lane between the raised median and Anna Avenue. There are Class II bike lanes in each direction. On the west side of the roadway, there is a contiguous sidewalk, curb, and gutter of approximately 13feet in width from Rosecrans Street/Taylor Street northerly for approximately 375 feet, after which there is no sidewalk. On the east side of the roadway, there is a contiguous sidewalk, curb, and gutter that varies between approximately 5 and 10 feet in width from Rosecrans Street/Taylor Street northerly for approximately 1,680 feet, after which there is no sidewalk. On-street parking is generally permitted on both sides of the roadway, except for the segment between the San Diego River Bikeway and Anna Avenue where parking is restricted due to the narrowed overcrossing. The posted speed limit is 45 MPH within the Project vicinity.

Taylor Street is classified as a 4-Lane Major Street from Pacific Highway to Congress Street per the Old Town San Diego Community Plan, 2018. It is constructed as a four-lane divided roadway with a raised median. There are contiguous sidewalks on both sides of the street with a range in width of approximately 8 to 11 feet on the north side and approximately 9 to 15 feet on the south side within the study area. There are no bicycle facilities within the study area. The posted speed limit is 35 mph within the Project vicinity.

Rosecrans Street is classified as a 4-Lane Collector Street with Center Left Turn Lane from Pacific Highway to Sports Arena Blvd per the Midway - Pacific Highway Community Plan, 2018. It is constructed as a four-lane roadway with a center left turn lane except along the project frontage where it has one westbound through lane, two eastbound through lanes, and one eastbound bus only travel lane. The north side of the street has sections of contiguous sidewalk approximately 4-feet in width present and sections with no sidewalk. The south side of the street has an approximately 4feet wide contiguous sidewalk present. There are no bicycle facilities within the study area. The posted speed limit is 30 MPH within the Project vicinity.

Excerpts from the Community Plans are included in Appendix C. The existing conditions are shown in Figure 4.
Source: USGS (Image date: 5/20/2020)

Existing intersection counts were collected between 7:00 AM and 9:00 AM for the AM commuter period and from 4:00 PM to 6:00 PM for the PM commuter period on Thursday, February 9, 2023. Street segment counts were also collected on Thursday, February 9, 2023. San Diego Unified School District school were in session during the data collection. The intersections included:

1) Pacific Hwy at Anna Ave
2) No Count (Future Project Driveway)
3) Pacific Hwy at Rosecrans St/Taylor St

The street segments included:

1) Pacific Hwy between Anna Ave and the project driveway.
2) Pacific Hwy between the project driveway and Rosecrans $\mathrm{St} /$ Taylor St.

The existing AM, PM, and daily volumes are shown on Figure 5, with count data included in Appendix D.

EGEND

No Scale

The intersection LOS is shown in Table 5. The $95^{\text {th }}$ percentile turning queues where the project are expected to add trips, are shown in Table 6. The segment LOS is shown in Table 7. The intersections were analyzed based on existing signal timing, which was obtained from the City of San Diego. The signal timing sheets are included in Appendix E. The intersection LOS and queueing worksheets are included in Appendix F.

Intersection and	Approach	Study		Existing
(Analysis)				
1) Pacific Highway at		Period	Delay $^{\mathbf{2}}$	LOS $^{\mathbf{3}}$
Anna Ave (U)	WB	AM	9.9	A
2) Pacific Highway at	PB	PM	13.3	B
Project Driveway (U)	EB	AM	Future	NA
3) Pacific Highway at	All	PM	Driveway	NA
Rosecrans St (S)	All	AM	31.4	C

Notes: 1) Intersection Analysis - (S) Signalized, (U) Unsignalized. 2) Delay - HCM Average Control Delay in seconds. 3) LOS: Level of Service. NA: Not Applicable.

Intersection	Peak Hour	Approach	Storage Length in feet (notes)	Existing $\mathbf{9 5}^{\text {th }} \%$ Queue ${ }^{1}$ (ft)	Exceeds Storage?	Distance Exceeding Storage (ft)	
1) Pacific Highway at	AM	WBL	50	(2)	26	No	NA
Anna Ave (U)	PM	WBL	50	(2)	30	No	NA
3) Pacific Highway at	AM	EBL	160	(2)	56	No	NA
Rosecrans St (S)	AM	SBL	230	(2)	56	No	NA
	AM	SBR	60	(2)	59	No	NA
	PM	EBL	160	(2)	57	No	NA
	PM	SBL	230	(2)	109	No	NA
	PM	SBR	60	(2)	95	Yes	35

Notes: WBL: Westbound Left. EBL: Eastbound Left. SBL: Southbound Left. SBR: Southbound Right. (1) Queue is 95th percentile from SimTraffic analysis. (2) Stop bar to end of turn lane striping. BOLD = SimTraffic 95th percentile forecasted queue beyond storage bay capacity.
*

| Segment | | | Existing | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Functional | | | |
| Classification | | | | |

Notes: 2 Ln Coll. +TWLTL = 2 un-divided lanes + two way left turn lane. Daily volume is a 24 hour volume. LOS: Level of Service. V/C: Volume to Capacity Ratio.

Under Existing Conditions, at the intersection of Pacific Highway/Rosecrans St/Taylor St, the southbound right turn lane queue is estimated to exceed the right turn storage lane of 60 feet by 35 feet in the PM peak hour based on the $95^{\text {th }}$ percentile forecast. A PM peak hour maximum queue of approximately 75 feet (exceeding the 60 foot storage by 15 feet) was observed on 6/6/23.

The project site has an approximately $4,980 \mathrm{sf}$ existing sit-down high turnover restaurant that is open, operational, and generating trips. A site-specific trip generation was collected from two days (48 hours) of video counts on Tuesday, December 20, 2022, and on Wednesday, December 21, 2022 that included all eight existing driveways (Appendix G). Schools were not in session during the data collection and would not be an issue for trip generation in this area because there are no primary or secondary schools in the project vicinity. The existing restaurant will be removed and replaced by the residential project. The existing site trip generation is shown in Table 8.

Perry's Café	ADT	AM			PM		
		IN	OUT	Total	IN	OUT	Total
Driveway Counts Tue 12-20-22	750	55	43	98	3	7	10
Driveway Counts Wed 12-21-22	744	73	47	120	2	6	8
Average Driveway Trips:	747	64	45	109	3	6	9

The City of San Diego Trip Generation Manual, May 2003 was used to estimate the trip generation for the project. The proposed project includes 223 multi-family dwelling units. The project is expected to generate unadjusted trips in the amount of 1,338 ADT with 107 AM peak hour trips (21 inbound and 86 outbound) and 120 PM peak hour trips (84 inbound and 36 outbound). The net trip generation is expected to be approximately 591 ADT with -2 AM peak hour trips (-43 inbound and 41 outbound) and 111 PM peak hour trips (81 inbound and 30 outbound). The trip generation for the existing use, proposed project, unadjusted, and adjusted trips are shown in Table 9.
*

Source: City of San Diego Trip Generation Manual , May 2003. KSF - 1,000 Square Feet; DU: Dwelling Unit. SF: Square Feet.

Project trips were distributed to the adjacent roadway network based on engineering judgement, freeway access, and surrounding attractions. The project distribution is shown in Figure 6. The project assignment is shown in Figure 7, which shows the adjusted negative AM inbound trips as zero.

Source: USGS (Image date: 5/20/2020)
LEGEND
XX AM peak hour volumes at intersections
(Y) PM peak hour volumes at intersections

Z,ZZZ ADT volumes shown along segments
\# Intersection Reference Number to LOS Tables
\# Adjusted Project Trips reflecting trip credit
Intersection Reference Number to LOS Tables Unadjusted Project Trips, thus will not match adjacent intersection volumes
Existing Roadways

No Scale

This scenario describes the anticipated roadway operations during the opening year of the project, anticipated to be in 2026.

No immediately surrounding cumulative projects were identified; therefore, year 2026 volumes are based on historical ambient growth of daily traffic adjacent to the project site. Historical daily traffic volumes were obtained from the City of San Diego. The historical average growth of daily volumes adjacent to the project site is calculated at 2.5% per year (calculations included in Appendix H).

Applying a compound growth factor, the 2.5% per year over three (3) years to Opening Year 2026 results in a total growth factor of 7.7% based on the following formula.

$$
\begin{aligned}
& \text { Compound growth }=(1+\text { Annual Growth Rate } / 1)^{\text {Years }}-1 \\
& \text { Compound growth }=(1+0.025 / 1)^{3}-1=7.7 \%
\end{aligned}
$$

Ambient growth volumes (existing volumes multiplied by 7.7\%) are shown in Figure 8.

Source: USGS (Image date: 5/20/2020)

LEGEND

XX	AM peak hour volumes at intersections
(YY)	PM peak hour volumes at intersections
Z,ZZZ	ADT volumes shown along segments
\# Intersection Reference Number	
to LOS Tables	

Opening Year 2026 No Project traffic volumes (existing + ambient growth) are shown in Figure 9.

Source: USGS (Image date: 5/20/2020)

LEGEND
XX AM peak hour volumes at intersections
(Y) PM peak hour volumes at intersections

Z,ZZZ ADT volumes shown along segments
(\#) Intersection Reference Number
to LOS Tables
Existing Roadways

The Opening Year (2025) Without Project intersection LOS are shown in Table 10. The $95^{\text {th }}$ percentile turning queues where the project will add traffic are shown in Table 11. The segment LOS is shown in Table 12. The intersection LOS and queueing worksheets are included in Appendix I.

| Intersection and | Approach | Peak | Opening Year | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| (Analysis) 1 | | Hour | Delay $^{\mathbf{2}}$ | LOS $^{\mathbf{3}}$ |
| 1) Pacific Highway at | WB | AM | 10.1 | B |
| Anna Ave (U) | WB | PM | 14.0 | B |
| 2) Pacific Highway at | EB | AM | Future | NA |
| Project Driveway (U) | EB | PM | Driveway | NA |
| 3) Pacific Highway at | All | AM | 33.7 | C |
| Rosecrans St (S) | All | PM | 33.3 | C |

Notes: 1) Intersection Analysis - (S) Signalized, (U) Unsignalized. 2) Delay - HCM Average Control Delay in seconds. 3) LOS: Level of Service. DNE: Does Not Exist. NA: Not Applicable.

Intersection	Peak	Approach	Storage Length in feet (notes)	Opening Year $\mathbf{9 5}^{\text {th }} \%$ \%ile Queue $^{\mathbf{1}}$ (ft)	Exceeds Storage?	Distance Exceeding Storage (ft)	
1) Pacific Highway	AM	WBL	50	(2)	28	No	NA
at Anna Ave (U)	PM	WBL	50	(2)	31	No	NA
3) Pacific Highway	AM	EBL	160	(2)	77	No	NA
at Rosecrans St (S)	AM	SBL	230	(2)	57	No	NA
	AM	SBR	60	(2)	62	Yes	2
	PM	EBL	160	(2)	89	No	NA
	PM	SBL	230	(2)	116	No	NA
	PM	SBR	60	(2)	98	Yes	38

Notes: WBL: Westbound Left. EBL: Eastbound Left. SBL: Southbound Left. SBR: Southbound Right. (1) Queue is 95th percentile from SimTraffic analysis. (2) Stop bar to end of turn lane striping. BOLD = SimTraffic 95th percentile forecasted queue beyond storage bay capacity.

Daily	Functional Classification	LOS E Capacity	Opening Year		
			$\begin{gathered} \text { Daily } \\ \text { Volume } \end{gathered}$	V/C	LOS
Pacific Highway					
Anna Ave to Project Dwy	2 Ln Coll. + TWLTL	15,000	4,942	0.329	A
Project Dwy to Rosecrans	4 Ln Major	40,000	6,195	0.155	A

Notes: 2 Ln Coll. +TWLTL = 2 un-divided lanes + two way left turn lane. Daily volume is a 24 hour volume. LOS: Level of Service. V/C: Volume to Capacity Ratio.

Under the Opening Year (2026) No Project scenario, at the intersection of Pacific Highway/Rosecrans St/Taylor St, the queue in the southbound right turn lane would be expected to exceed the right turn storage lane by 2 feet in the AM peak hour and 38 feet in the PM peak hour based on the $95^{\text {th }}$ percentile forecast.

This scenario documents the addition of Project trips onto Opening Year (2026). The volumes shown in Figure 10. The intersection LOS is shown in Table 13. The $95^{\text {th }}$ percentile turning queues where the project will add trips, are shown in Table 14. The segment LOS is shown in Table 15. The intersection LOS and queueing worksheets are included in Appendix J.

Intersection and (Analysis) ${ }^{1}$	Approach	Peak Hour	Opening Year		Opening Year + Project		
			Delay ${ }^{2}$	$L^{\text {OS }}{ }^{3}$	Delay ${ }^{2}$	LOS 3	Delta ${ }^{4}$
1) Pacific Highway at	WB	AM	10.1	B	10.2	B	0.1
Anna Ave (U)	WB	PM	14.0	B	19.5	C	5.5
2) Pacific Highway at	EB	AM	Future	NA	9.5	A	NA
Project Driveway (U)	EB	PM	Driveway	NA	10.7	B	NA
3) Pacific Highway at	All	AM	33.7	C	34.0	C	NA
Rosecrans St (S)	All	PM	33.3	C	33.8	C	0.5

Notes: 1) Intersection Analysis - (S) Signalized, (U) Unsignalized. 2) Delay - HCM Average Control Delay in seconds. 3) LOS: Level of Service. 4) Delta is the increase in delay from project. NA: Not Applicable.

Intersection	Peak Hour	Approach	Storage Length in feet (notes)		Opening Year	Opening Year + Project		
					$95^{\text {th }} \%$ ile Queue ${ }^{1}$ (ft)	$\begin{gathered} 95^{\text {th }} \% \text { ile } \\ \text { Queue }^{1}(\mathrm{ft}) \end{gathered}$	Exceeds Storage?	Distance in feet
1) Pacific Highway	AM	WBL	50	(2)	28	31	No	NA
at Anna Ave (U)	PM	WBL	50	(2)	31	50	No	NA
3) Pacific Highway	AM	EBL	160	(2)	77	88	No	NA
at Rosecrans St (S)	AM	SBL	230	(2)	57	88	No	NA
	AM	SBR	60	(2)	62	83	Yes	23
	PM	EBL	160	(2)	89	111	No	NA
	PM	SBL	230	(2)	116	125	No	NA
	PM	SBR	60	(2)	98	107	Yes	47

Notes: WBL: Westbound Left. EBL: Eastbound Left. SBL: Southbound Left. SBR: Southbound Right. (1) Queue is 95 th percentile from SimTraffic analysis. (2) Stop bar to end of turn lane striping. BOLD $=$ SimTraffic 95 th percentile forecasted queue beyond storage bay capacity.

Segment	Functional Classification	LOS E Capacity	Opening Year			Project Daily Volume	Opening Year + Project			
			Daily Volume	V/C	LOS		Daily Volume			Change in V/C
Pacific Highway										
Anna Ave to Project Dwy 2	Ln Coll. + TWLTL	15,000	4,942	0.329	A	1,271	6,213	0.414	A	0.085
Project Dwy to Rosecrans	4 Ln Major	40,000	6,195	0.155	A	1,271	7,466	0.187	A	0.032
Notes: 2 Ln Coll. +TWLTL = 2 VIC: Volume to Capacity Ratio	divided lanes	$\overline{0} \text { way le }$	inn lan							

At the intersection of Pacific Highway/Rosecrans St/Taylor St in the Opening Year 2026 Plus Project scenario, the queue in the southbound right turn lane is expected to exceed the right turn storage lane by 23 feet in the AM peak hour and 47 feet in the PM peak hour based on the $95^{\text {th }}$ percentile forecast.

Project Driveway	$\begin{gathered} \hline 21 \\ (84) \end{gathered}$	$\begin{gathered} 168 \\ (447) \\ \downarrow \end{gathered}$		
86 (36)	∇	$\begin{gathered} \text { (2) } \\ \uparrow \\ 238 \\ (258) \end{gathered}$		
Rosecrans Street	$\begin{gathered} \hline 72 \\ (101) \end{gathered}$	$\begin{gathered} 79 \\ (248) \end{gathered}$	$\begin{gathered} \hline 57 \\ (128) \end{gathered}$	
$\begin{array}{cl} 45 & (54) \\ 205 & (393) \end{array}$	$\xrightarrow{\wedge}$	(3)	$\stackrel{\uparrow}{\leftarrow}$	$\begin{array}{cc} 65 & (76) \\ 208 & (198) \end{array}$
61 (84)	$\begin{aligned} & \downarrow \\ & \neq \\ & 75 \\ & (129) \\ & \hline \end{aligned}$	$\begin{gathered} \uparrow \\ 89 \\ (113) \\ \hline \end{gathered}$	$\begin{gathered} \nabla \\ \stackrel{\rightharpoonup}{r} \\ 102 \\ (494) \\ \hline \end{gathered}$	206 (190) Taylor St

Source: USGS (Image date: 5/20/2020)

LEGEND

\qquad

No Scale

The project proposes to extend the striping for the southbound right turn lane (and adjacent oneway Class IV Cycle Track) by an additional 50 feet (from 60 feet to 110 feet) to accommodate the forecasted $95^{\text {th }}$ percentile queue. A conceptual drawing of the proposed improvement is shown in Figure 11.

This chapter describes pedestrian, bicycle, and transit facilities.

The pedestrian analysis consists of documenting existing pedestrian facilities and basic deficiencies such as missing sidewalk sections, curb ramps, and major obstructions within half mile walking from the project access along the study roadways. Sidewalks within a half mile walking distance classified in the respective community plans as connector, corridor, or district were included in this analysis as shown in Figure 12. Excerpts from the Old Town and MidwayPacific Highway community plans are included in Appendix C.

The TSM states that off-site improvements should be considered as follows:

Closing Sidewalk Gaps/Removing Obstructions:

o The project should construct sidewalks to close sidewalk gaps adjacent to the project site.
o The project should remove sidewalk obstructions that constrain pedestrian access route to less than four feet adjacent to the project site.
o The project should construct curb ramps/meet accessibility standards for any intersections adjacent to the project site.

Accommodating Pedestrian Demand:
o The project should consider adding traffic calming and pedestrian-related signal timing changes (such as pedestrian hybrid beacons, leading pedestrian interval signal timing, etc.) to accommodate an increase in pedestrian demand on roadways and intersections adjacent to the project site.

As shown in Figure 4, there are several areas within the half mile walking shed with missing sidewalks and curb ramps; however, these missing sections are not adjacent to the project site. The missing sidewalk on the west side of Pacific Highway immediately north of the project site is not proposed to be completed by the Owner/Permittee because there are no pedestrian amenities immediately north of the project site and the bridge over the San Diego River does not have sidewalks. Additionally, a Caltrans support column for the fly over ramp occupies the entire space between the Caltrans ROW fence and back of curb just north of the project site. Nearby retail, food, and park attractions are located within walking distance along existing sidewalks to the south and east of the project site.

Based on the TSM criteria and the SDMC, the project shall dedicate frontage along the project site and reconstruct existing sidewalks along Pacific Highway and Rosecrans St to create noncontiguous sidewalks with landscaping along the project frontages as follows:

1) Pacific Highway will have a 14 - ft wide parkway including a 6 foot wide non-contiguous sidewalk with an 8 foot width of landscape buffer.
2) Rosecrans Street will have a 22 - ft wide parkway including a 7 foot wide non-contiguous sidewalk and a 15 foot width of landscape buffer.

The bicycle assessment consists of documenting existing bicycle facilities and basic deficiencies (bike lane gaps, obstructions) within half mile bicycling distance measured from the center of the intersection formed by each project driveway. The existing and proposed bicycle facilities were obtained from the respective community plan with excerpts included in Appendix C. Bicycle facilities within a half mile bicycling distance were included in this analysis as shown in Figure 13.

The TSM states that off-site improvements should be considered as follows:
Accommodating Bicycle Demand:
o The project should construct (or reserve space for) any planned bicycle facility per the Community Plan or Bicycle Master Plan.
o The project should consider upgrading adjacent bicycle facilities by adding upgraded treatments (such as green bike lane paint, buffers, etc. where appropriate) to accommodate an increase in bicycle demand.

Based on the TSM criteria, the project shall replace the existing Class II Bicycle Lane with the planned one-way Class IV Cycle Track along its Pacific Highway frontage and stripe a Class II Bicycle Lane along its Rosecrans Street frontage, consistent with the Old Town and MidwayPacific Highway Community Plans, respectively. The project will provide a combination of short-term bicycle parking, long-term bicycle parking, and bicycle storage rooms for its residents per the SDMC and CAP Consistency Checklist.

The project is located within a Parking Standards Transit Priority Area (TPA), Transit Area Overlay Zone, Mobility Zone 2, and OTMCR-1-3 zone per the City of San Diego Project Tracking System. The project building entrance is approximately 800 feet walking distance from the Old Town Transit Center, which provides service to 11 bus routes operated by the Metropolitan Transit System (MTS), the UCSD Blue Line Trolley, and the Sycuan Green Line Trolley, North County Transit Center (NCTD) Coaster rail, Amtrak rail, and an airport shuttle (the "Old Town Flyer" service). Transit services adjacent to the project are shown in Figure 14.

Source: San Diego Metropolitan Transit System
A summary of peak hour and off-peak transit services for weekdays is shown in Table 16 with weekend services shown in Table 17.

Bus Route	Weekday (Mon-Fri) Service Operations (Off-Peak Service Frequency Range)	7-9 AM Peak Hour Service Frequency	4-6 PM Peak Hour Service Frequency
Bus Route 8	$\approx 5: 00 \mathrm{AM}$ to $\approx 1: 00 \mathrm{AM}$ ($\sim 20-30 \mathrm{~min}$.)	20 minutes	20 minutes
Bus Route 9	$\approx 6: 00 \mathrm{AM}$ to $\approx 10: 30 \mathrm{PM}(\approx 20-30 \mathrm{~min}$.)	30 minutes	20 minutes
Bus Route 10	$\approx 5: 00 \mathrm{AM}$ to $\approx 12: 00 \mathrm{AM}(\approx 15-30 \mathrm{~min}$.)	15 minutes	15 minutes
Bus Route 28	$\approx 5: 30 \mathrm{AM}$ to $\approx 11: 00 \mathrm{PM}(\approx 30 \mathrm{~min}$.)	20 minutes	30 minutes
Bus Route 30	$\approx 5: 00 \mathrm{AM}$ to $\approx 12: 30 \mathrm{AM}(\approx 20-40 \mathrm{~min}$.)	15 minutes	15 minutes
Bus Route 35	$\approx 5: 30 \mathrm{AM}$ to $\approx 11: 00 \mathrm{PM}(\approx 20-30 \mathrm{~min}$.	20 minutes	20 minutes
Bus Route 44	$\approx 5: 00 \mathrm{AM}$ to $\approx 11: 30 \mathrm{PM}$ ($\approx 15-30$ minutes)	15 minutes*	15 minutes
Bus Route 83	$\approx 6: 30 \mathrm{AM}$ to $\approx 6: 30 \mathrm{PM}(\approx 70 \mathrm{~min}$.)	70 minutes	70 minutes
Bus Route 84	**	**	**
Bus Route 88	$\approx 6: 00 \mathrm{AM}$ to $\approx 9: 00 \mathrm{PM}(\approx 30 \mathrm{~min}$.)	30 minutes	30 minutes
Bus Route 105	$\approx 5: 00 \mathrm{AM}$ to $\approx 10: 30 \mathrm{PM}(\approx 30-60 \mathrm{~min}$.)	30 minutes	30 minutes

[^0]| Bus Route | Saturday Service Operations (Service Frequency Range) | Sunday Service Operations (Service Frequency Range) |
| :---: | :---: | :---: |
| Bus Route 8 | $\approx 6: 00 \mathrm{AM}$ to $\approx 12: 30 \mathrm{AM}(\approx 20-30 \mathrm{~min}$.) | $\approx 6: 00$ AM to $\approx 10: 30$ PM ($\approx 20-30 \mathrm{~min}$.) |
| Bus Route 9 | $\approx 6: 30 \mathrm{AM}$ to $\approx 10: 00 \mathrm{PM}(\approx 30 \mathrm{~min}$.) | $\approx 7: 30 \mathrm{AM}$ to $\approx 9: 00 \mathrm{PM}(\approx 30 \mathrm{~min}$.) |
| Bus Route 10 | $\approx 5: 30 \mathrm{AM}$ to $\approx 12: 00 \mathrm{AM}(\approx 20-30 \mathrm{~min}$.) | $\approx 6: 00 \mathrm{AM}$ to $\approx 9: 30 \mathrm{PM}(\approx 30 \mathrm{~min}$.) |
| Bus Route 28 | $\approx 6: 00 \mathrm{AM}$ to $\approx 10: 30 \mathrm{PM}(\approx 30 \mathrm{~min}$.) | $\approx 6: 30 \mathrm{AM}$ to $\approx 8: 00 \mathrm{PM}(\approx 60 \mathrm{~min}$.) |
| Bus Route 30 | $\approx 5: 30 \mathrm{AM}$ to $\approx 12: 30 \mathrm{AM}(\approx 30 \mathrm{~min}$.) | $\approx 6: 00 \mathrm{AM}$ to $\approx 12: 00 \mathrm{AM}(\approx 30 \mathrm{~min}$.) |
| Bus Route 35 | $\approx 6: 30 \mathrm{AM}$ to $\approx 11: 00 \mathrm{PM}(\approx 30 \mathrm{~min}$.) | $\approx 6: 30 \mathrm{AM}$ to $\approx 9: 30 \mathrm{PM}(\approx 30 \mathrm{~min}$.) |
| Bus Route 44 | $\approx 6: 00 \mathrm{AM}$ to $\approx 11: 00 \mathrm{PM}(\approx 30 \mathrm{~min}$.) | $\approx 6: 00 \mathrm{AM}$ to $\approx 10: 00 \mathrm{PM}(\approx 30 \mathrm{~min}$.) |
| Bus Route 83 | NA | NA |
| Bus Route 84 | NA | NA |
| Bus Route 88 | $\approx 6: 00 \mathrm{AM}$ to $\approx 8: 30 \mathrm{PM}(\approx 30 \mathrm{~min}$.) | NA |
| Bus Route 105 | $\approx 6: 00 \mathrm{AM}$ to $\approx 8: 30 \mathrm{PM}(\approx 60 \mathrm{~min}$.) | $\approx 7: 00 \mathrm{AM}$ to $\approx 8: 30 \mathrm{PM}(\approx 60 \mathrm{~min}$.) |

The transit analysis also includes identifying the closest bus stops to the project site. If the stops are within $1 / 2$ mile walking distance of the project access, the condition of the stop amenities must be describe/evaluated. Bus stops with a $1 / 2$ mile walking distance and the Old Town Transit Center were included in this analysis as shown in Figure 15.

The City of San Diego Transportation Study Manual, September 2022 states that off-site improvements should be considered as follows:

Transit Priority Treatments/Improvements

o The project should consider transit priority treatments when operational analysis determines a transit movement would experience LOS E or worse.
o The project should consider transit priority treatments identified within the Community Plan for the study area.

Proposed Transit Stops:

o The project should consider accommodating transit stops to serve existing or proposed transit services, including those identified in the Community Plan, RTIP and/or RTP within the study area. The project should coordinate any identified transit stops with SANDAG, the Metropolitan Transit System (MTS) and/or the North County Transit District (NCTD).

Transit Stop Amenities:

o The project should coordinate with MTS and/or the NCTD, as applicable, to determine additional or upgraded transit stop amenities.

The SANDAG 2050 Regional Transportation Plan identifies proposed high speed rail and express light rail transit adjacent/near the project site as part of the 2050 Revenue Constrained Transit Network.

Based on the TSM criteria, no transit improvements are required or proposed.

*

Vehicular access is proposed from a right-in/right-out only driveway on Pacific Highway that will serve a gated parking structure. Additionally, service vehicles will have access to a right-in only driveway on Rosecrans St for a loading area within the site, and exit-only driveway on Pacific Highway at the north end of the project site. Eight existing driveways (6 on Pacific Highway and 2 on Rosecrans Street) will be closed and replaced with full height curb, gutter, and sidewalk.

The parking structure will have a gated entrance with an automated key operating system and accessed only by the residents who have assigned parking. The location of the gate is 40 feet from the back side of the sidewalk to the face of the gate. This allows for queuing and is compliant with the SDMC Section $142.0560(\mathrm{j})(4)$ and Diagram 142-05A. Turnaround is not proposed for entry to the parking structure, due to the assigned parking arrangement. To avoid vehicle backup for vehicles that are unexpected, there will be a key/access console to allow contact to the leasing office allowing entrance and turnaround within the parking structure.

On-site circulation for tenants and guests is from the main right-in/right-out only driveway on Pacific Coast Highway.

On-site circulation for loading and deliveries is along the back side of the building. The one-way ingress driveway on Rosecrans St has a gate approximately 78 feet from the property line at the back of sidewalk. The egress driveway is also gated approximately 25 feet from the property line at the back of sidewalk.

Project parking is proposed in a parking garage. All parking modes are located within the parking garage or building. The number of required and provided parking spaces by mode are shown in Table 18.
*

Parking Mode	Minimum Required Parking	Proposed Parking
Vehicle	0	234
Vehicle Accessible	6	6
Motorcycle	23	23
Bicycle	96	97

Source: Carrier Johnson Architects
The project is in a Parking Standards Transportation Planning Area (PSTPA); therefore, the Owner/Permittee is required to provide at least 2 points worth of transportation amenities. This is accomplished by providing a bike repair station near the site entrance along Pacific Coast Hwy. Because the proposed development consists of multiple dwelling units within a Parking Standards TPA that provides transportation amenity requirements, Mobility Choice regulations do not apply per Section $143.1102(\mathrm{~g})$ of the SDMC.

X (

The City of San Diego Systemic Safety: The Data-Driven Path to Vision Zero (April 2019) policy promotes safe roadway design with a goal toward preventing collisions. As part of that goal, a systemic safety review provides an assessment of hotspots and possible countermeasures to align with Vision Zero. The City of San Diego Transportation Study Manual states on page 40:
"Study intersections should be compared to the City of San Diego Systemic Safety: The Data-Driven Path to Vision Zero report to determine if a study intersection meets any hot spot criteria identified in Appendix C: Identification of Systemic Hotspots of the report. If a study intersection meets any of the criteria, the applicant should evaluate any potential countermeasures and coordinate with the Development Services Department Transportation Development Section staff to determine appropriate intersection improvements."

The City of San Diego pedestrian hotspot map includes intersections that have historical safety concerns. The City's hot spot map is shown in Figure 16.

Source: City of San Diego
The pedestrian hotspot analysis was applied to determine if countermeasure should be implemented at the intersection of Pacific Highway/Rosecrans St/Taylor St because it is a study intersection and identified on the City's Hotspot Map. The criteria require application of Average Daily Traffic
(ADT) volumes for both the major and minor approaches. The major and minor ADTs were obtained from City of San Diego traffic data included in Appendix K. The pedestrian systemic safety review requires all criteria to be satisfied to consider implementing a countermeasure, which was not satisfied for the study intersection as shown in Table 19.

	Pedestrian Footprint \#1 Criteria			Pedestrian Footprint \#2 Criteria			Pedestrian Footprint \#2 Criteria		
Intersection	Sig?	One- Way $3 \operatorname{Ln} x$ 4 Ln	$\begin{gathered} \text { Major } \\ \text { Rd } \\ \text { ADT: } \\ 7,001- \\ 15,000 \\ \hline \end{gathered}$	Sig?	$\begin{gathered} 4 \operatorname{Ln} \\ x \\ 2 \operatorname{Ln} \end{gathered}$	Major Road ADT: 7,00125,000	Sig?	$\begin{gathered} 4 \operatorname{Ln} \\ x \\ 2 \mathrm{Ln} \end{gathered}$	$\begin{gathered} \hline \text { Major } \\ \text { Road } \\ \text { ADT: } \\ \text { 15,001- } \\ 25,000 \\ \hline \end{gathered}$
\#3 Pacific Hwy at Rosecrans St	Yes	No	Yes	Yes	No	Yes	Yes	No	No

Notes: Sig? = Signalized (yes or no). One-Way $3 \operatorname{Ln} x 4 \operatorname{Ln}=3$ lane (1-way) roadway intersects with a 4 lane (2-way) roadway. 4 Ln $\mathrm{x} 2 \mathrm{Ln}=4$ lane (2-way) roadway intersects with a 2 lane (2-way) roadway. BOLD and shaded indicates footprint criteria satisfied to consider implementing a countermeasure.

None of the pedestrian safety review criteria are satisfied; therefore, no countermeasures are recommended. The intersection of Pacific Hwy/Rosecrans St/Taylor St currently has existing countermeasures that include high visibility crosswalks and pedestrian countdown signal heads (photos included in Appendix L).

All the study intersections were evaluated to find out if any of the bicycle systemic safety criteria would be satisfied to determine if countermeasure should be implemented. The bicycle systemic safety review findings are shown in Table 20.
*

Intersection	Bicycle Footprint \#1 Criteria		Bicycle Footprint \#2 Criteria	
	Signalized?	4Ln $\times 2$ Ln? OR 4 Ln x4 Ln?	SSSC?	2Ln $\times 2$ Ln?
\#1 Pacific Hwy at Anna Ave	No	No	Yes	No (a)
\#2 Pacific Hwy at Project Driveway	No	No (b)	Yes	No
\#3 Pacific Hwy at Rosecrans St	YES	YES	No	No

Notes: $4 \mathrm{Ln} \times 2 \mathrm{Ln}=4$ lane (2-way) roadway intersects with a 2 lane (2-way) roadway. $4 \mathrm{Ln} \times 4 \mathrm{Ln}=4$ lane (2-way) roadway intersects with a 4 lane (2-way) roadway. SSSC = Side Street Stop Control. (a) Criterion is for crossing a full intersection. West leg is a gated ingress only private driveway; therefore, this criterion of crossing a full intersection from the SSSC leg is not applicable. (b) Criterion is for crossing a full intersection. There is no east leg; therefore, this criterion of crossing a full intersection from the SSSC leg is not applicable. BOLD and shaded indicates footprint criteria satisfied to consider implementing a countermeasure.

The intersection of Pacific Hwy/Rosecrans St/Taylor St meets the Bicycle Footprint \#1 systemic criteria for potential countermeasures. Potential bicycle countermeasures include: 1) Bike loop detectors, 2) Public safety messaging campaign, and 3) Bicycle red light running enforcement. The Class II bike lanes on Pacific Highway/Rosecrans St/Taylor St currently have bike loop detectors and green colored pavement (photos included in Appendix M). A possible countermeasure is a public safety messaging campaign; however, such a campaign is beyond the scope of this project.

PRJ-1056469 Viewpoint Old Town LMA

All the study intersections were evaluated to find out if any of the vehicle systemic safety criteria would be satisfied to determine if countermeasures should be implemented. The vehicle systemic safety review findings are shown in Table 21.

Intersection	Vehicle Footprint \#1 Criteria				Vehicle Footprint \#2 Criteria			
	Sig?	$\begin{gathered} 4 \operatorname{Ln} x 2 \\ \operatorname{Ln} ? \end{gathered}$	$\begin{aligned} & \text { Major } \\ & >15 k \\ & \text { ADT } \end{aligned}$	$\begin{aligned} & \text { Minor } \\ & \leq 7 \mathrm{k} \\ & \text { ADT } \end{aligned}$	Sig?	$\begin{gathered} 6 \operatorname{Ln} x 4 \\ \operatorname{Ln} ? \end{gathered}$	$\begin{aligned} & \text { Major } \\ & >15 \mathrm{k} \\ & \text { ADT } \end{aligned}$	$\begin{aligned} & \text { Minor } \\ & >7 \mathrm{k} \\ & \text { ADT } \end{aligned}$
\#1 Pacific Hwy at Anna Ave	No	No	No	Yes	No	No	No	No
\#2 Pacific Hwy at Project Driveway	No	No (a)	No	Yes	No	No	No	No
\#3 Pacific Hwy at Rosecrans St	Yes	No	No	No	Yes	No	No	Yes

Table continued

Intersection	Vehicle Footprint \#3 Criteria			Vehicle Footprint \#4 Criteria			
	Sig?	$4 \operatorname{Lnx}$ $4 \operatorname{Ln} ?$	Minor >7k ADT	Sig?	$3 \operatorname{Ln}(1-$-way $\times 3$ $\operatorname{Ln}(1-w a y) ?$	Major $>15 \mathrm{k}$ ADT	Minor $>7 \mathrm{k}$ ADT
	No						
\#2 Pacific Hwy at Project Driveway	No						
\#3 Pacific Hwy at Rosecrans St	YES	YES	YES	Yes	No	No	Yes

Notes: Sig? = Signalized (yes or no).
$4 \mathrm{Ln} \times 2 \mathrm{Ln}=4$ lane (2-way) roadway intersects with a 2 lane (2-way) roadway.
$4 \operatorname{Ln} \times 4 \mathrm{Ln}=4$ lane (2-way) roadway intersects with a 4 lane (2-way) roadway.
(a) There is no east leg; therefore, this criterion of crossing a full intersection is not applicable.

BOLD and shaded indicates all criteria satisfied to consider implementing a countermeasure.
The intersection of Pacific Hwy/Rosecrans St/Taylor St meets the Vehicle Footprint \#3 systemic criteria for potential countermeasures. Potential countermeasures include: 1) Signal hardware updates such as signal heads with backplates that have retroreflective borders for better visibility, 2) Convert the signalized intersection to a roundabout, 3) Intersection control awareness campaign, or 4) Vehicle red light enforcement. Each approach currently has Type E Modified front loops (pictures in Appendix \mathbf{N}). The recommended vehicle countermeasure is for the project to upgrade and install signal heads with backplates that have retroreflective borders for better visibility for each approach at the intersection of Pacific Hwy/Rosecrans St/Taylor St.

In summary, the systemic safety review identified the following locations that match the criteria for recommended improvements:

1) The intersection of Pacific Hwy/Rosecrans St/Taylor St meets the Bicycle Footprint \#1 systemic criteria for potential countermeasures. The Class II bike lanes on Pacific Highway/Rosecrans St/Taylor St currently have bike loop detectors and green colored pavement along Pacific Highway approaching Rosecrans St/Taylor St. A possible countermeasure is a public safety messaging campaign; however, such a campaign is beyond the scope of this project. Therefore, no countermeasure is proposed.
2) The intersection of Pacific Hwy/Rosecrans St/Taylor St meets the Vehicle Footprint \#3 systemic criteria for potential countermeasures. The recommended vehicle countermeasure is for the project to upgrade and install signal heads with backplates that have retroreflective borders for better visibility for each approach.
＊工桃旦相＊

Transportation Study Manual (TSM)

DATE: 09/19/2022

Roadway Segment LOS by Classification and Average Daily Traffic (ADT)

Table Appendix F-1 provides street classifications and associated LOS thresholds dependent on the roadway's average daily traffic (ADT).

TABLE APPENDIX F-1
ROADWAY CLASSIFICATIONS, LOS, AND AVERAGE DAILY TRAFFIC (ADT)

STREET CLASSIFICATION	LANES	LEVEL OF SERVICE				
		A	B	C	D	E
Expressway	8 lanes	40,000	56,000	80,000	93,500	107,000
Expressway	7 lanes	35,000	49,000	70,000	82,000	93,500
Expressway	6 lanes	30,000	42,000	60,000	70,000	80,000
Prime Arterial ${ }^{1}$	8 lanes	35,000	50,000	70,000	75,000	80,000
Prime Arterial ${ }^{1}$	7 lanes	30,000	42,500	60,000	65,000	70,000
Prime Arterial	6 lanes	25,000	35,000	50,000	55,000	60,000
Prime Arterial ${ }^{10}$	5 lanes	20,000	28,000	40,000	45,000	50,000
Prime Arterial ${ }^{11}$	4 lanes	17,500	24,500	35,000	40,000	45,000
Major Arterial ${ }^{2}$	7 lanes	22,500	31,500	45,000	50,000	55,000
Major Arterial	6 lanes	20,000	28,000	40,000	45,000	50,000
Major Arterial ${ }^{3}$	5 lanes	17,500	24,500	35,000	40,000	45,000
Major Arterial	4 lanes	15,000	21,000	30,000	35,000	40,000
Major Arterial	3 lanes	11,250	15,750	22,500	26,250	30,000
Major Arterial	2 lanes	7,500	10,500	15,000	17,500	20,000
Major Arterial (one-way) ${ }^{4}$	3 lanes	12,500	16,500	22,500	25,000	27,500
Major Arterial (one-way) ${ }^{5}$	2 lanes	10,000	13,000	17,500	20,000	22,500

		LEVEL OF SERVICE				
CLASSIFICATION	LANES	A	B	C	D	E
Collector (with two-way left turn lane)	5 lanes	12,500	17,500	25,000	30,750	37,500
Collector (with two-way left turn lane)	4 lanes	10,000	14,000	20,000	25,000	30,000
Collector (with two-way left turn lane)	3 lanes	7,500	10,500	15,000	18,750	22,500
Collector (with two-way left turn lane)	2 lanes	5,000	7,000	10,000	13,000	15,000
Collector (without two-way left turn lane)	4 lanes	5,000	7,000	10,000	13,000	15,000
Collector (without two-way left turn lane) ${ }^{6}$	3 lanes	4,000	5,000	7,500	10,000	11,000
Collector (without two-way left turn lane)	2 lanes	2,500	3,500	5,000	6,500	8,000
Collector (with no fronting property)	2 lanes	4,000	5,500	7,500	9,000	10,000
Collector (one-way) ${ }^{7}$	3 lanes	11,000	14,000	19,000	22,500	26,000
Collector (one-way) ${ }^{8}$	2 lanes	7,500	9,500	12,500	15,000	17,500
Collector (one-way) ${ }^{9}$	1 lane	2,500	3,500	5,000	6,500	7,500
Sub-Collector (Singlefamily)	2 lanes	--	--	2,200	--	--

Notes:
The volumes and the average daily level of service listed above are only intended as a general planning guideline. Levels of service are not applied to residential streets since their primary purpose is to serve abutting lots, not carry through traffic. Levels of service normally apply to roads carrying through traffic between major trip generators and attractors.
${ }^{1}$ Calculated assuming that each additional lane above a 6-Ln Arterial adds 5,000 ADT for LOS A, 7,500 ADT for LOS B and 10,000 ADT for LOS C, D, and E
${ }^{2}$ Calculated assuming that ADT is $1 / 2$ way between steps of a 6 -Ln Major Arterial \& 6 Ln Prime Arterial
${ }^{3}$ Calculated assuming that ADT is $1 / 2$ way between steps of a 4-Ln Major Arterial \& 6 Ln Major Arterial
${ }^{4}$ Calculated using: Capacity $=0.5$ (6-Ln Major (2-way) + Added Capacity of 2,500 ADT)
${ }^{5}$ Calculated using: Capacity $=0.5$ (4-Ln Major (2-way) + Added Capacity of 2,500 ADT)
${ }^{6}$ Calculated using: Capacity $=4$-Ln Collector (no center lane) * (3/4)
${ }^{7}$ Calculated using: Capacity $=2$-Ln Collector (one-way) * (3/2)
${ }^{8}$ Calculated using: Capacity $=0.5$ (4-Ln Collector w/continuous left turn lane) + Added Capacity of 2,500 ADT)
${ }^{9}$ Calculated using: Capacity $=0.5$ (2-Ln Collector w/ continuous left turn lane). Capacity took into account parking friction from both sides of roadway
${ }^{10}$ Calculated by applying same differences between 8-Ln Prime \& 7-Ln Prime \& 7-Ln Prime \& 6-Ln Prime
${ }^{11}$ Calculated assuming ratio between 6-Ln Prime \& 6-Ln Major applied to 4-Ln Major

Transportation Study Manual (TSM)

DATE: 09/19/2022

Roadway Segment Analysis

Roadway segment analysis should be evaluated for any roadway segment that has identified improvements (including planned new circulation element roadways) in the Community Plan and the project is expected to add 1,000 or more daily final primary trips (cumulative trips) if consistent with the Community Plan, or 500 or more daily final primary trips (cumulative trips) if inconsistent with the Community Plan. Roadways should be evaluated using Appendix F: Roadway Segment LOS by Classification and Average Daily Traffic (ADT). The intent of this analysis is to determine if the project results in the need to implement roadway improvements as identified in the Community Plan. The functional classification of the roadway segment should be evaluated in this analysis.

Freeway Interchange Analysis

Freeway analysis should focus on off-ramp queuing spillbacks onto freeway mainline. Studies should normally document changes in off-ramp maximum queues and propose mitigation for queues that spill back onto mainline (or exacerbate conditions already or projected to be) occurring. Freeway interchange analysis should be coordinated with Caltrans.

Identifying Off-Site Improvements

Off-site improvements to accommodate project traffic that address access, circulation and safety for all modes should be determined using the following analysis methods for each type of improvement:

Pedestrian Facilities

- Closing Sidewalk Gaps/Removing Obstructions:
- The project should construct sidewalks to close sidewalk gaps adjacent to the project site.
- The project should remove sidewalk obstructions that constrain pedestrian access route to less than four feet adjacent to the project site.
- The project should construct curb ramps/meet accessibility standards for any intersections adjacent to the project site.
- Accommodating Pedestrian Demand:
- The project should consider adding traffic calming and pedestrian-related signal timing changes (such as pedestrian hybrid beacons, leading pedestrian interval signal timing, etc.) to accommodate an increase in pedestrian demand on roadways and intersections adjacent to the project site.

Bicycle Facilities

- Accommodating Bicycle Demand:
- The project should construct (or reserve space for) any planned bicycle facility per the Community Plan or Bicycle Master Plan.
- The project should consider upgrading adjacent bicycle facilities by adding upgraded treatments (such as green bike lane paint, buffers, etc. where appropriate) to accommodate an increase in bicycle demand.

Transit Facilities

- Transit Priority Treatments/Improvements
- The project should consider transit priority treatments when operational analysis determines a transit movement would experience LOS E or worse.
- The project should consider transit priority treatments identified within the Community Plan for the study area.
- Proposed Transit Stops:
- The project should consider accommodating transit stops to serve existing or proposed transit services, including those identified in the Community Plan, RTIP and/or RTP within the study area. The project should coordinate any identified transit stops with SANDAG, the Metropolitan Transit System (MTS) and/or the North County Transit District (NCTD).
- Transit Stop Amenities:
- The project should coordinate with MTS and/or the NCTD, as applicable, to determine additional or upgraded transit stop amenities.

Signalized Intersections

- Adding or lengthening a turn lane:
- Considerations for intersection improvements:

When considering intersection improvements for circulation, access, and safety for all modes, factors that should be considered include, but are not limited to, conflicting pedestrian movements, existing and proposed bicycle facilities, transit priority, protected or permissive turn movement phasing, number of lanes, speed of prevailing traffic and expected queue lengths.

- Left Turn Lane:
- No Existing Left-Turn Lane: If the project adds traffic to an individual left turn movement causing the total number of peak hour left turns to exceed 100, consider adding a left turn lane. ${ }^{8}$
- Existing Single Left-Turn Lane: If the project adds traffic to an individual left turn movement causing the total number of peak hour left turns to exceed 300, consider adding a second left turn lane.
- Right Turn Lane:
- No Existing Right-Turn Lane: If the addition of a right turn lane will not negatively affect other roadway users, will maintain a comfortable roadway environment, AND the project adds traffic to an individual right turn movement causing the total number of peak hour right turns to exceed 500, consider adding a right turn lane.
- Existing Single Right-Turn Lane: If the addition of a right turn lane will not negatively affect other roadway users, will maintain a comfortable roadway environment, AND the project adds traffic to an individual right turn movement causing the total number of peak hour right turns to exceed 800, consider adding a second right turn lane. In addition to the considerations previously stated, dual-right turn (or more) treatments may require supplementary improvements including but not limited to no right-turn on red with blank-out signs, lead pedestrian intervals (LPIs) for pedestrians and cycle track treatment for bicyclists.
- Lengthening a Turn Pocket:
- If the project adds traffic to a turning movement and causes the $95^{\text {th }}$ percentile queue to exceed the available turn pocket length, consider lengthening the turn pocket.
- Signal Timing Improvements/Signal Modifications:
- Determined based on intersection operations analysis as follows:
${ }^{8}$ FHWA, Signalized Intersections: Informational Guide, August 2004. This source also provides additional factors which can be used to determine the need of a single left turn lane or additional left turn lanes including, left-turn volumes on the major and minor approaches, number of lanes, and vehicles per hour.
- Within a $1 / 2$ mile path of travel of a Major Transit Stop: If the project causes an intersection to degrade to LOS F, or if the project adds traffic to a signal already operating at LOS F.
- Outside of a $1 / 2$ mile path of travel of a Major Transit Stop: If the project causes an intersection to degrade to LOS E or F, or if the project adds traffic to a signal already operating at LOS E or F.
- Types of signal improvements that can be considered are:
- Updating signal split times
- Transit signal priority improvements
- Right turn overlap phasing
- Signal phasing changes
- Intelligent Transportation Systems (ITS) improvements

Unsignalized Intersections

- Considerations for intersection improvements:
- When considering intersection improvements for circulation, access, and safety for all modes, factors that should be considered include, but are not limited to, conflicting pedestrian movements, existing and proposed bicycle facilities, transit priority, protected or permissive turn movement phasing, number of lanes, speed of prevailing traffic and expected queue lengths.
- Constructing a Roundabout or Traffic Signal at an all-way stop-controlled intersection: If the project causes the operations at an all-way stop-controlled intersection to degrade (see below), perform an intersection control evaluation that includes a signal warrant analysis and a roundabout LOS analysis. Prepare a roundabout conceptual layout (prepared by a consultant qualified/experienced in roundabout design) to determine the geometric impact of a roundabout. Coordinate with Development Services Department Transportation Development Section staff on appropriate intersection control improvement. Staff may request additional lifecycle safety and mobility
- The intersection control evaluation should be prepared If the project causes an all-way stop-controlled intersection to degrade as follows:
- Within a $1 / 2$ mile path of travel of a Major Transit Stop: If the project causes an all-way stop-controlled intersection located to degrade to LOS F, or if the project adds traffic to an all-way stop-controlled intersection already operating at LOS F.
- Outside of a $1 / 2$ mile path of travel of a Major Transit Stop: If the project causes an all-way stop-controlled intersection to degrade to LOS E or F, or if the project adds traffic to a adds traffic to an all-way stop controlled intersection already operating at LOS E or F.
- Constructing a Roundabout or Traffic Signal at a side-street stop-controlled intersection: If the project causes the operations at a side-street stop-controlled intersection to degrade (see below), perform an intersection control evaluation that includes a signal warrant analysis and a roundabout LOS analysis. Prepare a roundabout conceptual layout (prepared by a consultant qualified/experienced in roundabout design) to determine the geometric impact of a roundabout. Coordinate with Development Services Department Transportation Development Section staff on appropriate intersection control improvement. Staff may request additional lifecycle safety and mobility
- The intersection control evaluation should be prepared If the project causes a side-street stop-controlled intersection to degrade as follows:
- Within a $1 / 2$ mile path of travel of a Major Transit Stop: If the project causes the worst movement of a side-street stop-controlled intersection to degrade to LOS F, or if the project adds traffic to the worst movement of a side-street stop-controlled intersection that is already operating at LOS F.
- Outside of a $1 / 2$ mile path of travel of a Major Transit Stop: If the project causes the worst movement of a side-street stop-controlled intersection to degrade to LOS E or F, or if the project adds traffic to the worst movement of a side-street stop-controlled intersection that is already operating at LOS E or F.
- Improvements to a Roundabout Intersection
- If the project causes a roundabout intersection to degrade determined based on operations analysis as follows:
- Within a $1 / 2$ mile path of travel of a Major Transit Stop: If the project causes an intersection to degrade to LOS F, or if the project adds traffic to a roundabout already operating at LOS F.
- Outside of a $1 / 2$ mile path of travel of a Major Transit Stop: If the project causes an intersection to degrade to LOS E or F, or if the project adds traffic to a roundabout already operating at LOS E or F.
- Determine improvements to the roundabout to reduce vehicle delay, such as metering traffic during peak hours or other geometric improvements - such
as adding a right turn bypass lane or multilane segments within the roundabout.

Roadway Segments

- Improvements identified in the community plan (including upgrading to ultimate classification):
- If the project adds greater than 50% of total daily vehicle trips on the segment, the project should consider implementing the improvement as identified in the community plan.
- If the project adds less than or equal to 50% of total daily vehicle trips on the segment, the project should evaluate its fair share towards the improvement.
- Planned new circulation element roadways:
- If the project adds greater than 50% of total daily vehicle trips on the segment, the project should consider implementing the improvement as identified in the community plan.
- If the project adds less than or equal to 50% of total daily vehicle trips on the segment, the project should evaluate its fair share towards the improvement.

In addition, the project should make improvements to study intersections and roadways to preserve consistency with Community Plan/PFFP/IFS identified improvements. The project applicant will have responsibility for the implementation of identified improvements.

The improvement types listed above are typical mobility improvements. Other types of mobility improvements may be proposed by the applicant or considered thorough coordination with the Development Services Departments Transportation Development Section staff.
－工相是相：\because

The City of San Diego

Approval of the Old Town San Diego Community Plan

Description	Date Approved by Report Number	Date Approved by Resolution Number
Adoption of the Old Town San Diego Community Plan	July 26, 2018 Report No. PC-18-015	October 29, 2018 R-312027

4.2 Bicycling

Bicycle routes reinforce the connections between visitor destinations, parks, the Core, the OldTownTransit Center and the San Diego River Park, as shown in Figure 4-2. The bicycle route types are defined in Box 4-2, and are based on the City's Bicycle Master Plan. Old Town San Diego's street network is primarily composed of narrow streets, many with vehicle parking on both sides of the street, which limits the potential to install marked bicycle lanes. However, San Diego Avenue, Congress Street, and Juan Street have adequate width to support bicycles sharing a lane with motor vehicles. The Community Plan envisions the creation of an improved bicycle environment along Pacific Highway and Taylor Street within the existing right-of-way to provide connections to the regional bicycle network including the San Diego River bicycle path. Bicycle improvements along existing streets could include the incorporation of bicycle-oriented wayfinding signs and bicycle parking that are consistent with the community's historical character, as addressed in the Urban Design Element.

POLICIES

ME-2.1 Provide bicycle connections between historic and cultural attractions, the Old Town Transit Center, the regional bicycle network, and the San Diego River Park as shown in Figure 4-2.
ME-2.2 Provide bicycle facilities and amenities that enhance the bicycle environment and are consistent with the community's historic character.
ME-2.3 Coordinate with Caltrans to improve bicycle connections to adjacent communities and reduce conflicts with motor vehicles at the freeway underpasses at Morena Boulevard, Pacific Highway, and Rosecrans Street and at the Old Town Avenue bridge.
ME-2.4 Implement additional bicycle facilities in conjunction with relocation of existing on-street parking spaces, where feasible, including a Class II facility along Congress Street between San Diego Avenue and Taylor Street.

Improving bicycle facilities in Old Town will increase the community's popularity as a recreational and commuter bicycling destination.

BOX 4-2: BICYCLE ROUTE CLASSIFICATIONS

Class I - Bicycle Path

Routes that are physically separated from vehicular traffic and are constructed in the roadway or have exclusive right-of-way.

Class II - Bicycle Lane

Routes that provide exclusive or preferential bicycle travel with pavement striping and signage on the side of the roadway.
Class III - Bicycle Route
Routes that provide shared use with motor vehicle traffic within the same travel lane.

Class IV - Cycle Track

Bikeways that are located in the roadway right-of-way but separated from vehicle lanes by physical barriers or buffers.

FIGURE 4-1: PLANNED PEDESTRIAN FACILITIES

FIGURE 4-2: EXISTING AND PLANNED BICYCLE FACILITIES

4.3 Transit

The Old Town Transit Center is a focal point for transit access for OldTown San Diego and adjacent communities (see Box 4-3). The Community Plan envisions maintaining and enhancing the transit-rider experience through the installation of amenities including additional shelters, seating, lighting, paving, and landscaping consistent with Old Town's historical character from the 1846-1872 Early American Period. The Transit Center's surface parking is shared by transit riders and Old Town San Diego State Historic Park visitors. The Parking section provides policies regarding development of a parking structure that will provide additional capacity for park-and-ride transit riders and Old Town State Historic Park visitors.

The Taylor Street at-grade rail crossing is a location where rail-based transit services operations can conflict with pedestrian, bicycle, and vehicle circulation. Conflicts at this intersection include the wait time during train crossings. The Community Plan envisions reducing conflicts at the Taylor Street intersection through nearterm improvements, including signal timing changes and pedestrian crossing arms. Grade separation of the rail crossing is a long-term option that could include partial grade separation for pedestrians and bicyclists or full grade separation for automobiles (see the Streets and Freeways section for related policies).

POLICIES

ME-3.1 Coordinate with SANDAG, MTS, and NCTD to support and incorporate transit infrastructure and service enhancements for the Old Town Transit Center in the Regional Plan as funded improvements that complement the community's historical character.
ME-3.2 Enhance the environment at the Old Town Transit Center through installation of additional shelters, additional seating, lighting, bicycle parking and lockers, and landscaping consistent with the 1846-1872 Early American Period.
ME-3.3 Coordinate with MTS and NCTD to ensure accessibility and compatibility between transit operations and private and public development and infrastructure projects.

ME-3.4 Coordinate with MTS to improve bus stops on Taylor Street near Hotel Circle South.
ME-3.5 Coordinate with MTS to support the installation of benches and shelters that reflect Old Town's pre-1872 character at the bus stops along Taylor Street.
ME-3.6 Coordinate with MTS to discourage the placement of advertising at benches and shelters at the Old Town Transit Center and bus stops within Old Town.
ME-3.7 Support the implementation of transit priority measures within Old Town, including the Taylor Street / Pacific Highway / Rosecrans Street intersection.

BOX 4-3: TRANSIT SYSTEM

San Diego Trolley
The San Diego Trolley, operated by the Metropolitan Transit System (MTS), connects Old Town to Mission Valley, San Diego State University, El Cajon, and Santee in the east, and to Midway - Pacific Highway, Downtown, National City, Chula Vista, and San Ysidro in the south. Trolley service will be extended from Old Town San Diego to the University of California San Diego and the University community.

Coaster

The Coaster, operated by North County Transit District (NCTD), is a commuter rail service connecting the Oceanside Transit Center, Carlsbad Village, Carlsbad Poinsettia, Encinitas, Solana Beach, Sorrento Valley, Old Town San Diego, and Downtown.

Rapid Bus

Rapid bus operated by MTS will provide a higher-speed service, which will be available at the Old Town Transit Center.

Local Bus

Local bus routes are operated by MTS with stops at the Old Town Transit Center and on Taylor Street.

Amtrak

Amtrak provides passenger rail service from San Diego to several destinations throughout the state and country. The main route serving San Diego is the Pacific Surfliner which connects major cities along California's coast.

FIGURE 4-3: PLANNED TRANSIT FACILITIES

4.4 Streets and Freeways

The community's existing grid network of streets, shown in Figure 4-3, reflects the historic layout of the Old Town San Diego settlement and will be maintained. Enhancements to the community's streets and freeway connections can optimize vehicle circulation, improve the multimodal environment, improve connections and accessibility to community destinations and adjacent communities, and reduce conflicts between transportation modes.

The permanent closures of local streets are generally not consistent with the community character, unless the street closure will enhance the pedestrian environment or preserve subsurface archaeological resources. Street widening is also not consistent with the community character. Operational controls such as street signs and intersection controls can be implemented to assist in the management of vehicle circulation without street widening. Street widths or lane widths could be reduced in order to construct enhanced pedestrian or bicycle facilities if it would not result in a net loss of on-street parking or if on-street parking can be relocated to a new or expanded public off-street facility.

Freeway access points within Old Town are also recommended for improvement. Commuters traveling primarily from the Midway-Pacific Highway community useTaylorStreet to access the I-8 freeway.The Community Plan envisions freeway access improvements within the Midway-Pacific Highway community and at the Morena Boulevard interchange, and the closure of the Taylor Street I-8 freeway ramps, to reduce congestion and cut-through traffic in Old Town. At the Old Town Avenue freeway interchange and bridge, desired improvements include enhancements to the pedestrian and bicycle environment to facilitate access to Old Town. Should Caltrans renovate or reconstruct the Old Town Avenue bridge, the bridge is envisioned to incorporation of wider sidewalks, bicycle lanes, and bridge design elements that highlight Old Town and its heritage. The Community Plan also recommends improving vehicular access at the I-5 southbound on- and off-ramps at OldTown Avenue, which could include reconstructing the ramps and modifying the

The odd-angled intersection of San Diego Avenue and Congress Street is recommended for improvements to improve access and safety, which could include a roundabout.
auxiliary lane length along I-5. In conjunction with these improvements, enhanced crosswalks at the intersections with Moore Street and Hancock Street will support pedestrian and bicycle activity and safety.

Street and freeway access improvements in Old Town San Diego will be designed to be consistent with the vision for key community street corridors found in the Urban Design Element. Streetscape design, which unifies the various components of a street, will establish street theme consistent with Old Town's character.

POLICIES

ME-4.1 Consider the implementation of operational improvements to streets that assist in the management of vehicular circulation and enhance the pedestrian and bicycle environment without widening streets.

ME-4.2 Maintain the existing grid network of streets.

ME-4.3 Maintain the existing curb-to-curb width of streets except where pedestrian improvements would narrow curb-to-curb width.

ME-4.4 Consider implementing a roundabout or other improvements at the intersection of San Diego Avenue, Congress Street, and Ampudia Street, to improve multimodal mobility and safety.

FIGURE 4-4: EXISTING AND PLANNED STREET CLASSIFICATIONS

ME-4.9 Coordinate with SANDAG, CPUC, MTS, and NCTD to evaluate enhancements for the at-grade railroad crossing at Taylor Street, including grade separation, that would improve pedestrian, bicyclist and vehicular circulation and safety.
a. Ensure that grade separation does not affect the Old Town State Historic Park.
b. Ensure that grade separation does not negatively affect access to Congress Street or Juan Street.
c. Ensure that grade separation does not result in the elevation of Taylor Street.
d. Ensure that grade separation does not result in increased curb-to-curb width along Taylor Street east of Congress Street.
ME-4.10 Seek regional, state, and federal funding for improvements that address motor vehicle congestion at the Pacific Highway and Taylor Street intersection due to the rail crossing gates.
ME-4.11 Seek regional, state, and federal funding for improvements at the Taylor Street at-grade rail crossing to address pedestrian and bicyclist safety and accessibility.

The at-grade rail crossing at the Transit Center on Taylor Street can be improved to reduce crossing delays and enhance safety.

Streets and Freeways
FIGURE 4-5: RECOMMENDED MOBILITY IMPROVEMENTS

Midway - Pacific Highway

ACKNOWLEDGMENTS

MAYOR
Kevin Faulconer
CITY ATTORNEY
Mara Elliott

CITY COUNCIL
Barbara Bry, District 1
Lorie Zapf, District 2
Christopher Ward, District 3
Myrtle Cole, District 4
Mark Kersey, District 5
Chris Cate, District 6
Scott Sherman, District 7
David Alvarez, District 8
Georgette Gomez, District 9

PLANNING COMMISSION

Stephen Haase
Susan Peerson
Douglas Austin
Vicki Granowitz
William Hofman
Dennis Otsuji
James Whalen

PLANNING DEPARTMENT

Mike Hansen, Director
Tom Tomlinson, Assistant Director
Laura C. Black, AICP, Deputy Director, Long-Range Planning
Alyssa Muto, Deputy Director, CEQA Policy and Review
Tait Galloway, Program Manager
Vickie White, Senior Planner/Project Manager
Elizabeth Ocampo Vivero, Senior Planner
Samir Hajjiri, Senior Traffic Engineer
Tanner French, Associate Traffic Engineer
Christine Mercado, Associate Traffic Engineer
Meghan Cedeno, Assistant Traffic Engineer
Robin Shifflet, Park Planning Manager
Craig Hooker, Park Designer
Kelley Stanco, Senior Planner
Michael Klein, GIS Analyst
Leo Dejesus, Mapping Technician

CONTRIBUTORS

Bernard Turgeon, Senior Planner
Michael Prinz, Senior Planner
Sara Osborn, Senior Planner
Raynard Abalos, Senior Planner
Dan Normandin, Development Project Manager
Susan Morrison, Environmental Planner
Myra Herrmann, Environmental Planner
Bobby Mordenti, Associate Planner
Nathen Causman, Assistant Planner
Garrett Sauls, Planning Intern

CONSULTANT TEAM

AECOM - Urban Design, Environmental Impact Report, Prehistoric Cultural Resources Survey Report Chen Ryan Associates - Mobility Report, Traffic Impact Study
Galvin Preservation Associates - Historic Resources Reconnaissance Survey
Keyser Marston Associates - Market Assessment Report
Kimley-Horn and Associates - Mobility Analysis
Wilson Geosciences - Seismic and Geologic Technical Background Report
Ninyo \& Moore - Hazardous Materials Technical Study
Fehr \& Peers - Existing Conditions Mobility Report
San Diego Natural History Museum - Paleontological Resource Assessment

MIDWAY-PACIFIC HIGHWAY COMMUNITY PLANNING GROUP - 2018

George Diaz
Judy Holiday
Tod Howarth
Gilbert Kennedy
Cathy Kenton
Randall LaRocco
Dawn Reilly
Dave Siegler
Amy Stark
Kurt Sullivan
Mike Swanston
Jason Vieira

```
FORMER PLANNING GROUP AND COMMUNITY
PLAN UPDATE ADVISORY COMMITTEE MEMBERS
Walter Anderson
Lyle Butler
Roger Copeland
Lindsey Cox
Michael Drogin
Celeste Grant
Donna Kaup
William Kenton
Jacob McKean
Meg Newcomb
Melanie Nickel
Chuck Pretto
Ken Rae
Victor Ravago
Joe Scaglione
Kristy Swanston
Dave Vigil

\section*{Midway - Pacific Highway}

\section*{APPROVAL OF THE MIDWAY-PACIFIC HIGHWAY COMMUNITY PLAN}
\begin{tabular}{|c|c|c|c|}
\hline DESCRIPTION & \begin{tabular}{l}
DATE APPROVED BY \\
PLANNING COMMISSION \& \\
REPORT NUMBER
\end{tabular} & \begin{tabular}{l}
DATE ADOPTED BY \\
CITY COUNCIL \& \\
RESOLUTION NUMBER
\end{tabular} & DATE CERTIFIED BY COASTAL COMMISSION \& CERTIFICATION NUMBER \\
\hline Adoption of Midway-Pacific Highway Community Plan & \[
\begin{aligned}
& \text { April 26, } 2018 \\
& \text { PC-18-014 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { September 17, } 2018 \\
& \text { R-311973 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { March 7, } 2019 \\
& \text { LCP-6-CCP-18-0094-4 }
\end{aligned}
\] \\
\hline
\end{tabular}

FIGURE 3-1: PLANNED PEDESTRIAN FACILITIES


FIGURE 3-3: EXISTING AND PLANNED BICYCLE FACILITIES


\section*{Midway - Pacific Highway}

FIGURE 3-4: PLANNED TRANSIT FACILITIES


ME-64 Midway - Pacific Highway Community Plan

Midway - Pacific Highway
FIGURE 3-5: EXISTING (2017) STREET CLASSIFICATIONS


ME-68 Midway - Pacific Highway Community Plan Viewpoint Old Town LMA Appendix
（工桃旦䊾：\％
\(\because \square\)






24 Hour Volume Plot
Pacific Highway
S/ Anna Avenue
2/9/2023


Volumes represent the combined totals for both directions


24 Hour Volume Plot
Pacific Highway

\section*{N/ Rosecrans Avenue}

2/9/2023
\begin{tabular}{|c|c|}
\hline Start Time & \(2 / 9 / 2023\) \\
\hline 12:00 AM & 31 \\
\hline 1:00 AM & 34 \\
\hline \(2: 00 \mathrm{AM}\) & 31 \\
\hline \(3: 00 \mathrm{AM}\) & 27 \\
\hline 4:00 AM & 40 \\
\hline 5:00 AM & 90 \\
\hline 6:00 AM & 178 \\
\hline \(7: 00 \mathrm{AM}\) & 287 \\
\hline 8:00 AM & 330 \\
\hline 9:00 AM & 337 \\
\hline 10:00 AM & 362 \\
\hline 11:00 AM & 377 \\
\hline 12:00 PM & 372 \\
\hline 1:00 PM & 373 \\
\hline 2:00 PM & 349 \\
\hline 3:00 PM & 500 \\
\hline 4:00 PM & 564 \\
\hline 5:00 PM & 557 \\
\hline \(6: 00 \mathrm{PM}\) & 351 \\
\hline 7:00 PM & 164 \\
\hline 8:00 PM & 141 \\
\hline 9:00 PM & 92 \\
\hline 10:00 PM & 91 \\
\hline 11:00 PM & 74 \\
\hline Total & 5752 \\
\hline & \\
\hline
\end{tabular}


Volumes represent the combined totals for both directions


\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ Change Record } \\
\hline Timing Sheet By & Approved By & Date \\
\hline M2S & M2 2 & \\
\hline & & \\
\hline
\end{tabular}
\(\underset{\langle C / 1+F+0\rangle}{\text { Free Lag }}\)


Notes: 1- Adjust Railroad timing to check bus detection during limited service
2- Make sure Detector ASSIGN flelds are correctly set to remove DET SET2
Manval Plan for all phase 2 detection except within the bus lane and phase 2 ped.
\(1-9=\) Automatle
\(1-9=\) Plan \(1-9\)\(\frac{\text { RR2 }}{3 \text {-Rput calls Special Event Sequence } 1 \text { and Calls DET SET2. }}\)

\(15=\) Flash
the overlapping phase.
Manual Offse
\(0=\) Automaticto
\(1=0\) afsee \(A\)
\(2=0\) iffset \(B\)
\(2=0\) Offert B
\(3=0\) Offser C
\begin{tabular}{|c|c|c|}
\hline Flash Start & 0 & \(<\mathrm{F} / 1+0+\mathrm{E}\) \\
\hline Red Revert & 5.0 & \(1+0+\) \\
\hline All Red Stat & 0.0 & \(1+\mathrm{C}+\) \\
\hline FYA Red Revert & 0.0 & \(1+0\) \\
\hline OVLP CHG Red & 0.0 & < \(/ 1 / 1+0\) \\
\hline
\end{tabular}

Start/Revert Times
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{3}{*}{Cohumn Numbers \(\rightarrow\)-m>}} & \multicolumn{3}{|c|}{ROSECRANS} & \multicolumn{2}{|l|}{PACIFIC HWY} & \multicolumn{2}{|l|}{TAYLOR} & PACIFIC H \\
\hline & & \multicolumn{8}{|c|}{Phase} \\
\hline & & - 410 &  & 28 \({ }^{2}\) & - 4 463 &  & 143.6. & War &  \\
\hline Row &  & \[
\sqrt{\Gamma_{1+8}}
\] &  & \(\frac{4}{2+3}\) & II & \(\cdots\) & \(\square-\) & \(\xrightarrow{\longrightarrow}\) & 11 \\
\hline 0 & Ped Walk & & 7 & & 7 & & 7 & & 7 \\
\hline 4 & Ped FDW & & 29 & & 31 & & 22 & & 29 \\
\hline 2 & Min Green & 4 & 10 & 4 & 10 & 4 & 10 & 4 & 10 \\
\hline 3 & Type 3 Disconnect & & & & & & & & \\
\hline 4 & Added per Vehicle & & & & & & & & \\
\hline 5 & Veh Extension & 2.0 & 3.5 & 2.0 & 2.0 & 2.0 & 2.2 & 2.0 & 3.0 \\
\hline 6 & Max Gap & 2.0 & 3.5 & 2.0 & 2.0 & 2.0 & 2.2 & 2.0 & 3.0 \\
\hline \({ }^{7}\) & Min Gap & 2.0 & 0.2 & 2.0 & 0.2 & 2.0 & 0.2 & 2.0 & 0.2 \\
\hline 8 & Max Limit & 30 & 40 & 30 & 40 & 30 & 40 & 30 & 40 \\
\hline 9 & Max Limit 2 & & & & & & & & \\
\hline 4 & Adv. / Delay Waik & & & & & & & & \\
\hline B & PE Min Ped FDW & & 1 & & 1 & & 1 & & 1 \\
\hline C & Cond Serv Check & & & & & & & & \\
\hline 0 & Reduce Every & & 0.9 & & 1.7 & & 1.5 & & 1.1 \\
\hline 5 & Yellow Change & 3.4 & 3.9 & 3.4 & 4.7 & 3.4 & 3.9 & 3.4 & 4.7 \\
\hline - & Red Clear & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 \\
\hline
\end{tabular}

Phase timing - Bank \(1<F / 1+\) Phase+Row>


ROSECRANS
(
\begin{tabular}{|l||c|}
\hline Manual Plan & 14 \\
\hline Manual Offset & \(\ll / 0+\mathrm{A}+1>\) \\
\hline Manual Selection & 0 \\
\(<\mathrm{C} / 0+\mathrm{B}+1>\)
\end{tabular}

\section*{Flash Stan}

\section*{Exclusive Waik 0 < \(/ 1+0+0>\) \begin{tabular}{|c|c|}
\hline Exclusive FDW & 0 \\
\hline & \(<\mathrm{F} / 1+0+0>\) \\
\hline
\end{tabular} \begin{tabular}{|l|c|}
\hline Exclusive FDW & 0 \\
\hline All Red Clear & 0.0 \\
\(<\mathrm{F} / 1+0+1>\) \\
\(<\mathrm{F} / 1+0+2>\)
\end{tabular} Exclusive Ped Phase \\ (Outputs speolfled In Asslanable}

Outputs at E/127+A+E \& F)


Alternate Timing <F/1+Column+Phase>

(1) ALS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Cotumn Numbers ---->}} & \multicolumn{8}{|c|}{Overlap} \\
\hline & & 4534 &  &  &  &  & 54, 6 & H20 &  \\
\hline Row & Overtap Name -...> & & & & & & & & \\
\hline \% 0 & Load Switch Number & & & 10 & & & & & \\
\hline 11 & Veh Set 1. Phases & 1 - 8 & 23 & 2 & & & & & \\
\hline 2 & Veh Set 2 -Phases & & 3 & & & & & & \\
\hline 3 & Veh Set 3 - Phases & & & & & & & & \\
\hline 4 4 & Neg Veh Phases & \(2 \quad 7\) & 14 & 1_34-78 & & & & & \\
\hline 5 & Neg Ped Phases & 2 & 2.4 & 4.8 & & & & & \\
\hline 6, & Green Omit Phases & 8 & 2 & & & & & & \\
\hline 4\% & Green Clear Omit Phs. & & & & & & & & \\
\hline 8 & Overlap Recall & & & & & & & & \\
\hline 12 & Queue Jump Phase & & & & & & & & \\
\hline 4 & Queue Jump Time & & & & & & & & \\
\hline B & Minimum Green & & & & & & & & \\
\hline 6\% & Maximum Green & & & & & & & & \\
\hline D & Green Clear & & & & & & & & \\
\hline 5 \({ }^{3}\) & Yellow Change & 4.7 & 3.9 & 3.9 & & & & & \\
\hline  & Red Clear & 2.0 & 2.0 & 2.0 & & & & & \\
\hline
\end{tabular}

Extra 1.Flags \(1=\) TBC Type 1
\(2=\) NEMA Ext. Coord \(3=\) Auto Daylight Savings 4 = Solid FDW on EV \(4=\) Solid FDW on E
\(5=\) Extended Status \(5=\) Extended Status
\(6=\) international Ped \(7=\) Flash - Clear Outputs \(\mathrm{g}=\) Split Ring

Extra 2 Flags
\(1=\) AWB During Intitial
\(2=\) Reserved
3 = Disable Min Walk
\(4=\) QuicNet System
5 = ignore P/P on EV
\(6=\) Manual Hold in FDW
\(7=\) Allow QuicNet PE
\(8=\) Flash Gm B4 Yellow

\begin{tabular}{|c|c|c|c|c|}
\hline & \[
\text { [6 } 6
\] & & & 23\% \\
\hline Fast Green Flash Phase & & & & \\
\hline Green Flash Phases & & & Phase 1 & 10 \\
\hline Flashing Walk Phases & & Flash to PE \& & Phase 2 & 10 \\
\hline Guaranteed Passage & & PENOn-Lock & Phase 3 & 10 \\
\hline Simultaneous Gap Term & 12345678 & \[
1=\mathrm{EVA} \quad 5=\mathrm{RR} 1
\] & Phase 4 & 10 \\
\hline Sequential Timing & & \(3=E V C \quad 7=\) SE 1 & Phase 5 & 10 \\
\hline Advance Walk Phases & & \(4=E V D \quad 8=S E 2\) & Phase 6 & 10 \\
\hline Delay Walk Phases & & & Phase 7 & 10 \\
\hline External Recall & & IC Select Flags & Phase 8 & 10 \\
\hline Start-up Overlap Green & & & \multicolumn{2}{|l|}{\multirow[t]{4}{*}{Coordination Transition Minimums \(<\mathrm{C} / 5+2+\) Row \(>\)}} \\
\hline Max Extension & & \(3=7\)-Wire Slave & & \\
\hline Inhibit Ped Reservice & & \(4=\) & & \\
\hline Semi-Actuated & & \(5=\) & & \\
\hline Start-up Overlap Yellow & & 6 = Simplex Master & & \\
\hline Start-up Vehicle Calls & 12345678 & \(8=\) Offset Interrudter & & \\
\hline Start-up Ped Calis & 12345678 & & & \\
\hline
\end{tabular}


\begin{tabular}{|l||c|}
\hline Cabinet Type & 30 \\
\hline
\end{tabular}
Enable Redirection
(Enable Redirection = 30)


Detector Failure Monitor

Detector Attributes
1 = Full Time Delay
= Ped Call
Overlap
\(4=\) Count
\(5=\) Extension
\(5=\) Type 3
= Calling
8 = Alternate

Det. Assignments
1 = Det. Set 1
\(2=\) Det. Set 2
= Det. Set 3
\(4=\)
\(5=\)
\(6=\) Failure - Min Recall
7 = Failure - Max Recall
= Report on Failure


Delay Logic Times
<D/0+B+Row> (seconds)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Column Numbers \(-\cdots->\)}} & \multicolumn{9}{|c|}{Pran Plan} \\
\hline & & 2xumay &  &  &  & 525 5 5xy &  & 18127\% &  & 4-3 9 \% \\
\hline Row & Plan Name ---> & & & & & & & & & \\
\hline 0 & Cycle Length & & & & & & & & & \\
\hline 1 & Phase 1-ForceOff & & & & & & & & & \\
\hline 2 & Phase 2-ForceOff & & & & & & & & & \\
\hline 3 & Phase 3-ForceOff & & & & & & & & & \\
\hline 4 & Phase 4 - ForceOff & & & & & & & & & \\
\hline 5 & Phase 5 - ForceOff & & & & & & & & & \\
\hline 6 & Phase 6-ForceOff & & & & & & & & & \\
\hline 7 & Phase 7-ForceOff & & & & & & & & & \\
\hline -8 & Phase 8-ForceOff & & & & & & & & & \\
\hline 9 & Ring Offset & & & & & & & & & \\
\hline 5 & Offset 1. & & & & & & & & & \\
\hline B & Offset 2 & & & & & & & & & \\
\hline - 6 & Offset 3 & & & & & & & & & \\
\hline D & Perm 1 - End & & & & & & & & & \\
\hline \% & Hold Release & & & & & & & & & \\
\hline F Fix & Reserved & & & & & & & & & \\
\hline
\end{tabular}

Coordination - Bank 1 <C/1+Plan+Row>


Coord Extra
\(1=\) Programmed WALK Time for Sync Phases = Always Terminate Sync Phase Peds
\begin{tabular}{|c|c|c|}
\hline & W0, \({ }^{\text {asax }}\) & Row \\
\hline & & 0 \\
\hline Plan 1-Sync & & 1 \\
\hline Plan 2-Sync & & 2 \\
\hline Plan 3-Sync & & \\
\hline Plan 4-Sync & & 4 \\
\hline Plan 5-Sync & & 5 \\
\hline Plan 6 - Sync & & 9 \\
\hline Plan 7 - Sync & & T. \\
\hline Plan 8 - Sync & & 8 \\
\hline Plan 9-Sync & & 9 \\
\hline NEMA Sync & & A \\
\hline NEMA Hold & & 8 \\
\hline & & 6 \\
\hline & & D \\
\hline Coord Extra & & E \\
\hline & & \\
\hline
\end{tabular}

Sync Phases <C/1+E+Row>


Lag Phases <C/1+F+Row>
Coordination Timing By:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Row & Column 8 & Column 9 & Column A & Column B & Column C & \multicolumn{2}{|l|}{Column D} & \multicolumn{2}{|l|}{Column E} & \multicolumn{2}{|l|}{Column F} & Row \\
\hline 0 & One-Shot Timer & Latch 1 Set & NOT-3 & Max 2 & Pretimed & Set Monday & & Dial 2 (7-Wire) & & Sim Term & 0 & 0 \\
\hline 1 & AND-5 (a) & Latch 1 Reset & NOT-4 & Reserved & Plan 1 & Ext. Perm 1 & & Dial 3 (7-Wire) & & EV-A & 71 & 1 \\
\hline 2 & AND-5 (b) & Latch 2 Set & OR-4 (a) & Reserved & Plan 2 & Ext. Perm 2 & & Offset 1 (7-Wire) & & EV-B & 72 & 2 \\
\hline 3 & AND-6 (a) & Latch 2 Reset & OR-4 (b) & Reserved & Plan 3 & Gate Down & & Offset 2 (7-Wire) & & EV-C & 73 & 3 \\
\hline 4 & AND-6 (b) & NAND-3 (a) & OR-5 (a) & Reserved & Plan 4 & Set Clock & & Offset 3 (7-Wire) & & EV-D & 74 & 4 \\
\hline 5 & Reserved & NAND-3 (b) & OR-5 (b) & Reserved & Plan 5 & Stop Time & 82 & Free (7-Wire) & & RR-1 & 51 & 5 \\
\hline 6 & Reserved & NAND-4 (a) & OR-6 (a) & Reserved & Plan 6 & Flash Sense & 81 & Flash (7-Wire) & & RR-2 & 52 & 6 \\
\hline 7 & Reserved & NAND-4 (b) & OR-6 (b) & Reserved & Plan 7 & Manual Enable & & Excl. Ped Omit & & Spec. Event 1 & & 7 \\
\hline 8 & Spec. Funct. 1 & OR-7 (a) & EXTMR & Reserved & Plan 8 & Man. Advance & & NOT-1 & & Spec. Event 2 & 52 & 8 \\
\hline 9 & Spec. Funct. 2 & OR-7 (b) & Reserved & Max Inhibit (nema) & Plan 9 & External Alarm & & NOT-2 & & External Lag & & 9 \\
\hline A & Spec. Funct. 3 & OR-7 (c) & AND-4 (a) & Force A (nema) & DELAY-A & Phase Bank 2 & & OR-1 (a) & 15 & AND-1 (a) & 200 & A \\
\hline B & Spec. Funct. 4 & OR-7 (d) & AND-4 (b) & Force B (nema) & DELAY-B & Phase Bank 3 & & OR-1 (b) & 201 & AND-1 (b) & 13 & B \\
\hline C & Reserved & OR-8 (a) & NAND-1 (a) & C.N.A. (nema) & DELAY-C & Overlap Set 2 & 52 & OR-2 (a) & 12 & AND-2 (a) & & C \\
\hline D & Reserved & OR-8 (b) & NAND-1 (b) & Hold (nema) & DELAY-D & Overlap Set 3 & & OR-2 (b) & & AND-2 (b) & & D \\
\hline E & Reserved & OR-8 (c) & NAND-2 (a) & Max Recall & DELAY-E & Detector Set 2 & 52 & OR-3 (a) & & AND-3 (a) & & E \\
\hline F & Reserved & OR-8 (d) & NAND-2 (b) & Min Recall & DELAY-F & Detector Set 3 & & OR-3 (b) & & AND-3 (b) & & F \\
\hline
\end{tabular}



Phase Timing - Bank 2 \(\quad<\mathrm{C}+0+\mathrm{F}=2>\)


Phase Timing - Bank 3
\(<C+0+F=3>\)


Alternate Timing

\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Daylight Savings} & Begin Month & 3 & \multirow[t]{2}{*}{\[
\begin{aligned}
& <C / 5+2+A> \\
& <C / 5+2+B>
\end{aligned}
\]} \\
\hline & Begin Week & 2 & \\
\hline Date & End Month & 11 & <C/5+2+C> \\
\hline  & End Week & 1 & <C/5+2+D> \\
\hline will be used. & Daylight & Ti & \\
\hline
\end{tabular}
\begin{tabular}{|l||c|}
\hline Time B4 Yellow & \(\mathbf{0 . 0}<\mathrm{F} / 1+\mathrm{C}+\mathrm{E}>\) \\
\hline Phase Number & \(\mathbf{0}\) \\
\(<\mathrm{F} / 1+\mathrm{C}+\mathrm{F}>\) \\
\hline
\end{tabular} Advance Warning Beacon - Sign 1
\begin{tabular}{|l||c|}
\hline Time B4 Yellow & \(\mathbf{0 . 0}\) \\
\hline < \(\mathrm{F} / 1+\mathrm{D}+\mathrm{E}>\) \\
\hline Phase Number & \(\mathbf{0}\) \\
\(<\mathrm{F} / 1+\mathrm{D}+\mathrm{F}>\) \\
\hline \multicolumn{1}{|c|}{ Advance Warning Beacon - Sign }
\end{tabular}
\begin{tabular}{|l||c|}
\hline Offset Time & \(\mathbf{0}\) \\
\hline <C/ \(/ 5+2+E>\) \\
\hline Max Cycle Time & \(\mathbf{2 0}\) \\
\hline <C \(/ 5+2+F>\) \\
\hline
\end{tabular} Yellow Yield Coordination

\section*{\begin{tabular}{|l||l|}
\hline Omit Alarm & \#NAME? \\
\hline
\end{tabular}}

Local Alarm Disable <C/5+F+0>
\begin{tabular}{|c|c|c|}
\hline IEN Status & 1 & <C/5+1+B> \\
\hline Synch Time & 0.0 & <C/5+1+C> \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline &  & 5878 & 183088 &  & 97514 &  & 5 Cumay & 7\% Frwoderex & 43F3E &  & \\
\hline Row & Clear & Time & Ped Call & Hold & Advance & Force Off & Vehicle Call & Permit Phases & Ped Omit & Output & \\
\hline 0 & & & & & & & & & & & \\
\hline & & & & & & & & & & & Notes: \\
\hline & & & & & & & & & & & \\
\hline 3 & & & & & & & & & & & \\
\hline 4 & & & & & & & & & & & \\
\hline 5 & & & & & & & & & & & \\
\hline 6 & & & & & & & & & & & \\
\hline 7 & & & & & & & & & & & \\
\hline 8 & & & & & & & & & & & \\
\hline 9 & & & & & & & & & & & \\
\hline \({ }^{4}\) & & & & & & & & & & & \\
\hline B & & & & & & & & & & & \\
\hline C & & & & & & & & & & & \\
\hline D & & & & & & . & & & & & \\
\hline E & & & & & & & & & & & <E/27+5+F> \\
\hline F & & & & & & & \multicolumn{2}{|l|}{} & & & \multirow[t]{2}{*}{Limited Service Interval} \\
\hline \multicolumn{11}{|c|}{\multirow[t]{2}{*}{Special Event Schedule -- Table \(1 \ll \mathrm{C}+0+\mathrm{E}=27>\)}} & \\
\hline & & & & & & & & & & & \multirow[b]{5}{*}{Notes:} \\
\hline & TME. 6\% & 71) \({ }^{\text {a }}\) & 818, 8 & 3-9393, 9 & A & 3 B & 3 Com \({ }^{3}\) & Q 0 &  & 30, 5 & \\
\hline Row & Clear & Time & Ped Call & Hold & Advance & Force Off & Vehicle Call & Permit Phases & Ped Omit & Output & \\
\hline 0 & & 0 & & & & & & & & & \\
\hline 4 & 1 - 6 & 20 & & 1 - 6 & 2345.78 & & \(1-6\) & 1 & 2.468 & & \\
\hline 2 & & 0 & & & & & & & & & \\
\hline 3 & & 1 & & & & 1-6 & & 2345 & & & \\
\hline 4 & & & & & & & & & & & \\
\hline 5 & & & & & & & & & & & \\
\hline 6 & & & & & & & & & & & \\
\hline 5 & & & & & & & & & & & \\
\hline 8 & & & & & & & & & & & \\
\hline \% & & & & & & & & & & & \\
\hline A & & & & & & & & & & & \\
\hline B & & & & & & & & & & & \\
\hline c & & & & & & & & & & & \\
\hline 5 & & & & & & & & & & & \\
\hline E & & & & & & & & & & & 3 <E/28+5+F> \\
\hline F & & & & & & & & & & & Limited Service Interval \\
\hline \multicolumn{11}{|c|}{Special Event Schedule -- Table 2} & \\
\hline
\end{tabular}
\begin{tabular}{|l||c|}
\hline Min Time (seconds) & 4 \\
\(<F / 1+0+8>\)
\end{tabular} Min Green Before PE Force Off
\begin{tabular}{|l||l|}
\hline Max Time (minutes) & 10
\end{tabular}\(<F / 1+0+9>\) Max Preempt Time Before Failure
\begin{tabular}{|l||l|l}
\hline Min Time (seconds) & \(\mathbf{0}\) & \(<F / 1+0+A>\)
\end{tabular} Min Time Between Same Preempts
(Does Not Apply To Railroad Preempt)
Low Pri. Channel || \#NAME? <E/125+C+8>
Disable Low Priority Channel
Low Priority
\(1=\) Channel A
\(2=\) Channel B
3 = Channel C
4 = Channel D
Row
\begin{tabular}{|c|l||c|}
\hline C & Bus Headway & \(\mathbf{0}\) \\
\hline D & Bus Delay & \(\mathbf{0}\) \\
\hline E & Max Early Grn & \(\mathbf{0}\) \\
\hline F & Max Grn Ext. & \(\mathbf{0}\) \\
\hline
\end{tabular}

Priority Parameters
<F/1 +A+Row>


Low Priority Preemption (Bus Priority)
Note: Also see "Time of Day Functions", Function E, Bit 5 (Disable Low Priority)


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|l|}{Intersection} \\
\hline Int Delay, s/veh & 1.4 & & & & & & & & & & & \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \(\uparrow\) & & & \(\uparrow\) & 「゙ & \({ }^{7}\) & \(\hat{\dagger}\) & & \({ }^{*}\) & \(\uparrow\) & \\
\hline Traffic Vol, veh/h & 0 & 0 & 0 & 7 & 0 & 16 & 1 & 116 & 21 & 17 & 110 & 0 \\
\hline Future Vol, veh/h & 0 & 0 & 0 & 7 & 0 & 16 & 1 & 116 & 21 & 17 & 110 & 0 \\
\hline Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 10 & 0 & 0 & 10 & 10 & 0 & 0 \\
\hline Sign Control Star & Stop & Stop & Stop & Stop & Stop & Stop & Free & Free & Free & Free & Free & Free \\
\hline RT Channelized & - & - & None & - & - & Stop & - & - & None & - & - & None \\
\hline Storage Length & - & - & - & - & - & 0 & 50 & - & - & 65 & - & - \\
\hline Veh in Median Storage, \# & \# & 0 & - & - & 0 & - & - & 0 & - & - & 0 & - \\
\hline Grade, \% & - & 0 & - & - & 0 & - & - & 0 & - & - & 0 & - \\
\hline Peak Hour Factor & 92 & 92 & 92 & 64 & 64 & 64 & 78 & 78 & 78 & 86 & 86 & 86 \\
\hline Heavy Vehicles, \% & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
\hline Mvmt Flow & 0 & 0 & 0 & 11 & 0 & 25 & 1 & 149 & 27 & 20 & 128 & 0 \\
\hline
\end{tabular}


LOS Engineering, Inc.

AM Existing
3：Pacific Hwy \＆Rosecrans St／Taylor St
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \({ }^{1}\) & 44 & 「 & \({ }^{7} 1\) & 4 & 「 & \({ }^{7}\) & 偯 & 「「゙ & \({ }^{7} 1\) & 本 & 「 \\
\hline Traffic Volume（veh／h） & 42 & 190 & 57 & 191 & 193 & 60 & 70 & 83 & 95 & 31 & 62 & 63 \\
\hline Future Volume（veh／h） & 42 & 190 & 57 & 191 & 193 & 60 & 70 & 83 & 95 & 31 & 62 & 63 \\
\hline Initial Q（Qb），veh & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Ped－Bike Adj（A＿pbT） & 1.00 & & 0.92 & 1.00 & & 0.97 & 1.00 & & 0.94 & 1.00 & & 0.92 \\
\hline Parking Bus，Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Work Zone On Approach & & No & & & No & & & No & & & No & \\
\hline Adj Sat Flow，veh／h／ln & 1856 & 1856 & 1856 & 1856 & 1856 & 1856 & 1856 & 1856 & 1856 & 1856 & 1856 & 1856 \\
\hline Adj Flow Rate，veh／h & 49 & 221 & 66 & 203 & 205 & 64 & 93 & 111 & 127 & 37 & 75 & 76 \\
\hline Peak Hour Factor & 0.86 & 0.86 & 0.86 & 0.94 & 0.94 & 0.94 & 0.75 & 0.75 & 0.75 & 0.83 & 0.83 & 0.83 \\
\hline Percent Heavy Veh，\％ & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
\hline Cap，veh／h & 62 & 1258 & 618 & 253 & 762 & 624 & 116 & 892 & 862 & 94 & 757 & 311 \\
\hline Arrive On Green & 0.04 & 0.36 & 0.36 & 0.07 & 0.41 & 0.41 & 0.07 & 0.25 & 0.25 & 0.03 & 0.21 & 0.21 \\
\hline Sat Flow，veh／h & 1767 & 3526 & 1443 & 3428 & 1856 & 1519 & 1767 & 3526 & 2599 & 3428 & 3526 & 1448 \\
\hline Grp Volume（v），veh／h & 49 & 221 & 66 & 203 & 205 & 64 & 93 & 111 & 127 & 37 & 75 & 76 \\
\hline Grp Sat Flow（s），veh／h／ln & 1767 & 1763 & 1443 & 1714 & 1856 & 1519 & 1767 & 1763 & 1300 & 1714 & 1763 & 1448 \\
\hline Q Serve（g＿s），s & 2.4 & 3.7 & 2.4 & 5.0 & 6.3 & 2.2 & 4.4 & 2.1 & 3.0 & 0.9 & 1.5 & 3.7 \\
\hline Cycle Q Clear（g＿c），s & 2.4 & 3.7 & 2.4 & 5.0 & 6.3 & 2.2 & 4.4 & 2.1 & 3.0 & 0.9 & 1.5 & 3.7 \\
\hline Prop In Lane & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Lane Grp Cap（c），veh／h & 62 & 1258 & 618 & 253 & 762 & 624 & 116 & 892 & 862 & 94 & 757 & 311 \\
\hline V／C Ratio（X） & 0.79 & 0.18 & 0.11 & 0.80 & 0.27 & 0.10 & 0.80 & 0.12 & 0.15 & 0.39 & 0.10 & 0.24 \\
\hline Avail Cap（c＿a），veh／h & 184 & 1708 & 802 & 253 & 871 & 713 & 116 & 1795 & 1527 & 164 & 1733 & 712 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter（l） & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Uniform Delay（d），s／veh & 40.9 & 18.9 & 14.9 & 39.0 & 16.7 & 15.5 & 39.4 & 24.6 & 20.4 & 40.9 & 26.9 & 27.8 \\
\hline Incr Delay（d2），s／veh & 19.3 & 0.1 & 0.1 & 16.9 & 0.2 & 0.1 & 32.2 & 0.1 & 0.1 & 2.7 & 0.1 & 0.4 \\
\hline Initial Q Delay（d3），s／veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \％ile BackOfQ（50\％），veh／ln & 1.3 & 1.5 & 0.7 & 2.7 & 2.6 & 0.7 & 2.9 & 0.8 & 0.8 & 0.4 & 0.6 & 1.2 \\
\hline \multicolumn{13}{|l|}{Unsig．Movement Delay，s／veh} \\
\hline LnGrp Delay（d），s／veh & 60.2 & 18.9 & 15.0 & 55.9 & 16.9 & 15.6 & 71.5 & 24.7 & 20.4 & 43.5 & 27.0 & 28.2 \\
\hline LnGrp LOS & E & B & B & E & B & B & E & C & C & D & C & C \\
\hline Approach Vol，veh／h & & 336 & & & 472 & & & 331 & & & 188 & \\
\hline Approach Delay，s／veh & & 24.2 & & & 33.5 & & & 36.2 & & & 30.7 & \\
\hline Approach LOS & & C & & & C & & & D & & & C & \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrrrr} 
Timer－Assigned Phs & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Phs Duration（G＋Y＋Rc），s & 13.0 & 36.4 & 11.0 & 25.1 & 8.4 & 41.0 & 7.7 & 28.3 \\
Change Period（Y＋Rc），s & 6.7 & 5.9 & 5.4 & 6.7 & 5.4 & 5.9 & 5.4 & 6.7 \\
Max Green Setting（Gmax），s & 6.3 & 41.4 & 5.6 & 42.0 & 8.9 & 40.1 & 4.1 & 43.5 \\
Max Q Clear Time（g＿c＋I1），s & 7.0 & 5.7 & 6.4 & 5.7 & 4.4 & 8.3 & 2.9 & 5.0 \\
Green Ext Time（p＿c），s & 0.0 & 1.8 & 0.0 & 0.7 & 0.0 & 1.4 & 0.0 & 1.2
\end{tabular}

\section*{Intersection Summary}
\begin{tabular}{lr}
\hline HCM 6th Ctrl Delay & 31.4 \\
HCM 6th LOS & C
\end{tabular}

LOS Engineering，Inc．



LOS Engineering, Inc.

PM Existing
3：Pacific Hwy \＆Rosecrans St／Taylor St
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \({ }^{7}\) & 中4 & 「 & 17 & 4 & 「 & \({ }^{7}\) & 中4 & 「「゙ & 17 & 革 & F \\
\hline Traffic Volume（veh／h） & 43 & 365 & 78 & 176 & 184 & 56 & 120 & 83 & 459 & 102 & 222 & 91 \\
\hline Future Volume（veh／h） & 43 & 365 & 78 & 176 & 184 & 56 & 120 & 83 & 459 & 102 & 222 & 91 \\
\hline Initial Q（Qb），veh & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Ped－Bike Adj（A＿pbT） & 1.00 & & 0.88 & 1.00 & & 0.98 & 1.00 & & 0.93 & 1.00 & & 0.93 \\
\hline Parking Bus，Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Work Zone On Approach & & No & & & No & & & No & & & No & \\
\hline Adj Sat Flow，veh／h／ln & 1856 & 1856 & 1856 & 1856 & 1856 & 1856 & 1856 & 1856 & 1856 & 1856 & 1856 & 1856 \\
\hline Adj Flow Rate，veh／h & 51 & 435 & 93 & 196 & 204 & 62 & 128 & 88 & 488 & 112 & 244 & 100 \\
\hline Peak Hour Factor & 0.84 & 0.84 & 0.84 & 0.90 & 0.90 & 0.90 & 0.94 & 0.94 & 0.94 & 0.91 & 0.91 & 0.91 \\
\hline Percent Heavy Veh，\％ & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
\hline Cap，veh／h & 65 & 1263 & 639 & 264 & 763 & 631 & 158 & 947 & 905 & 173 & 810 & 335 \\
\hline Arrive On Green & 0.04 & 0.36 & 0.36 & 0.08 & 0.41 & 0.41 & 0.09 & 0.27 & 0.27 & 0.05 & 0.23 & 0.23 \\
\hline Sat Flow，veh／h & 1767 & 3526 & 1391 & 3428 & 1856 & 1534 & 1767 & 3526 & 2575 & 3428 & 3526 & 1458 \\
\hline Grp Volume（v），veh／h & 51 & 435 & 93 & 196 & 204 & 62 & 128 & 88 & 488 & 112 & 244 & 100 \\
\hline Grp Sat Flow（s），veh／h／ln & 1767 & 1763 & 1391 & 1714 & 1856 & 1534 & 1767 & 1763 & 1287 & 1714 & 1763 & 1458 \\
\hline Q Serve（g＿s），s & 2.9 & 9.1 & 4.0 & 5.6 & 7.3 & 2.5 & 7.1 & 1.9 & 15.4 & 3.2 & 5.8 & 5.7 \\
\hline Cycle Q Clear（g＿c），s & 2.9 & 9.1 & 4.0 & 5.6 & 7.3 & 2.5 & 7.1 & 1.9 & 15.4 & 3.2 & 5.8 & 5.7 \\
\hline Prop In Lane & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Lane Grp Cap（c），veh／h & 65 & 1263 & 639 & 264 & 763 & 631 & 158 & 947 & 905 & 173 & 810 & 335 \\
\hline V／C Ratio（X） & 0.78 & 0.34 & 0.15 & 0.74 & 0.27 & 0.10 & 0.81 & 0.09 & 0.54 & 0.65 & 0.30 & 0.30 \\
\hline Avail Cap（c＿a），veh／h & 165 & 1417 & 699 & 344 & 783 & 647 & 225 & 1617 & 1394 & 297 & 1473 & 609 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter（I） & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Uniform Delay（d），s／veh & 48.0 & 23.6 & 16.4 & 45.4 & 19.6 & 18.2 & 44.9 & 27.6 & 26.6 & 46.8 & 32.0 & 32.0 \\
\hline Incr Delay（d2），s／veh & 17.8 & 0.2 & 0.1 & 6.1 & 0.2 & 0.1 & 13.7 & 0.0 & 0.5 & 4.0 & 0.2 & 0.5 \\
\hline Initial Q Delay（d3），s／veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \％ile BackOfQ（50\％），veh／ln & 1.6 & 3.8 & 1.2 & 2.6 & 3.2 & 0.8 & 3.6 & 0.8 & 4.5 & 1.4 & 2.4 & 2.0 \\
\hline \multicolumn{13}{|l|}{Unsig．Movement Delay，s／veh} \\
\hline LnGrp Delay（d），s／veh & 65.8 & 23.8 & 16.5 & 51.5 & 19.8 & 18.2 & 58.6 & 27.6 & 27.1 & 50.9 & 32.2 & 32.5 \\
\hline LnGrp LOS & E & C & B & D & B & B & E & C & C & D & C & C \\
\hline Approach Vol，veh／h & & 579 & & & 462 & & & 704 & & & 456 & \\
\hline Approach Delay，s／veh & & 26.3 & & & 33.0 & & & 32.9 & & & 36.9 & \\
\hline Approach LOS & & C & & & C & & & C & & & D & \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrrrr} 
Timer－Assigned Phs & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Phs Duration（G＋Y＋Rc），s & 14.4 & 41.9 & 14.4 & 29.8 & 9.1 & 47.2 & 10.5 & 33.7 \\
Change Period（Y＋Rc），s & 6.7 & 5.9 & 5.4 & 6.7 & 5.4 & 5.9 & 5.4 & 6.7 \\
Max Green Setting（Gmax），s & 10.1 & 40.4 & 12.8 & 42.0 & 9.4 & 42.4 & 8.7 & 46.1 \\
Max Q Clear Time（g＿c＋I1），s & 7.6 & 11.1 & 9.1 & 7.8 & 4.9 & 9.3 & 5.2 & 17.4 \\
Green Ext Time（p＿c），s & 0.1 & 3.5 & 0.1 & 1.8 & 0.0 & 1.4 & 0.1 & 2.7
\end{tabular}

\section*{Intersection Summary}

HCM 6th Ctrl Delay 32.0
HCM 6th LOS

LOS Engineering，Inc．

Intersection: 1: Pacific Hwy \& Private Dwy/Anna Ave
\begin{tabular}{lrr}
\hline Movement & WB & SB \\
\hline Directions Served & LT & L \\
Maximum Queue (ft) & 30 & 30 \\
Average Queue (ft) & 6 & 4 \\
95th Queue (ft) & 26 & 20 \\
Link Distance (ft) & 158 & \\
Upstream Blk Time (\%) & & \\
Queuing Penalty (veh) & & \\
Storage Bay Dist (ft) & 65 \\
Storage Blk Time (\%) & & \\
Queuing Penalty (veh) & &
\end{tabular}

Intersection: 2: Pacific Hwy \& Project Dwy
\begin{tabular}{l} 
Movement \\
\hline Directions Served \\
Maximum Queue (ft) \\
Average Queue (ft) \\
95th Queue (ft) \\
Link Distance (ft) \\
Upstream Blk Time (\%) \\
Queuing Penalty (veh) \\
Storage Bay Dist (ft) \\
Storage Blk Time (\%) \\
Queuing Penalty (veh)
\end{tabular}

Intersection: 3: Pacific Hwy \& Rosecrans St/Taylor St
\begin{tabular}{lrrrrrrrrrrr} 
Movement & EB & EB & EB & EB & WB & WB & WB & WB & NB & NB & NB \\
\hline NB \\
\hline Directions Served & L & T & T & R & L & L & T & R & L & T & R \\
Maximum Queue (ft) & 65 & 214 & 138 & 56 & 162 & 175 & 228 & 33 & 107 & 110 & 68 \\
Average Queue (ft) & 26 & 67 & 15 & 16 & 70 & 131 & 69 & 7 & 45 & 43 & 20 \\
\hline 19 \\
95th Queue (ft) & 56 & 138 & 58 & 38 & 176 & 184 & 157 & 21 & 89 & 94 & 49 \\
Link Distance (ft) & & 591 & 591 & & & & 393 & 393 & & 700 & \\
Upstream Blk Time (\%) & & & & & & & & & & & \\
Queuing Penalty (veh) & & & & & & & & & 135 & & 250 \\
Storage Bay Dist (ft) & 200 & & & 320 & 150 & 150 & & 250 \\
Storage Blk Time (\%) & & 0 & & & 0 & 10 & 0 & & & & \\
Queuing Penalty (veh) & & 0 & & & 1 & 20 & 0 & & & &
\end{tabular}

Intersection: 3: Pacific Hwy \& Rosecrans St/Taylor St
\begin{tabular}{lrrrrr} 
Movement & SB & SB & SB & SB & SB \\
\hline Directions Served & L & L & T & T & R \\
Maximum Queue (ft) & 68 & 105 & 88 & 44 & 66 \\
Average Queue (ft) & 5 & 21 & 27 & 6 & 29 \\
95th Queue (ft) & 27 & 56 & 62 & 25 & 59 \\
Link Distance (ft) & & & 166 & 166 & \\
Upstream Blk Time (\%) & & & & & \\
Queuing Penalty (veh) & & & & & 60 \\
Storage Bay Dist (ft) & 230 & 230 & & 0 & 1 \\
Storage Blk Time (\%) & & & & 0 & 0 \\
Queuing Penalty (veh) & & & & &
\end{tabular}

Network wide Queuing Penalty: 21

\section*{Intersection: 1: Pacific Hwy \& Private Dwy/Anna Ave}
\begin{tabular}{lrrr} 
Movement & WB & NB & SB \\
\hline Directions Served & LT & L & L \\
Maximum Queue (ft) & 53 & 30 & 31 \\
Average Queue (ft) & 7 & 3 & 3 \\
95th Queue (ft) & 30 & 18 & 18 \\
Link Distance (ft) & 158 & & \\
Upstream Blk Time (\%) & & & \\
Queuing Penalty (veh) & & 50 & 65 \\
Storage Bay Dist (ft) & & 0 & \\
Storage Blk Time (\%) & & 0 &
\end{tabular}

Intersection: 2: Pacific Hwy \& Project Dwy
\begin{tabular}{lrr} 
Movement & SB & SB \\
\hline Directions Served & T & TR \\
Maximum Queue (ft) & 53 & 29 \\
Average Queue (ft) & 5 & 2 \\
95th Queue (ft) & 25 & 14 \\
Link Distance (ft) & 50 & 50 \\
Upstream Blk Time (\%) & 0 & \\
Queuing Penalty (veh) & 0 & \\
Storage Bay Dist (ft) & & \\
Storage Blk Time (\%) & & \\
Queuing Penalty (veh)
\end{tabular}

Intersection: 3: Pacific Hwy \& Rosecrans St/Taylor St
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Movement & EB & EB & EB & EB & WB & WB & WB & WB & NB & NB & NB & NB \\
\hline Directions Served & L & T & T & R & L & L & T & R & L & T & T & R \\
\hline Maximum Queue (ft) & 67 & 257 & 178 & 78 & 162 & 173 & 184 & 45 & 151 & 89 & 336 & 275 \\
\hline Average Queue (ft) & 29 & 138 & 73 & 23 & 61 & 127 & 68 & 12 & 79 & 43 & 11 & 129 \\
\hline 95th Queue (ft) & 57 & 207 & 163 & 54 & 170 & 181 & 146 & 33 & 129 & 89 & 111 & 216 \\
\hline Link Distance (ft) & & 591 & 591 & & & & 393 & 393 & & 700 & 700 & \\
\hline \multicolumn{13}{|l|}{Upstream Blk Time (\%)} \\
\hline \multicolumn{13}{|l|}{Queuing Penalty (veh)} \\
\hline Storage Bay Dist (ft) & 200 & & & 320 & 150 & 150 & & & 135 & & & 250 \\
\hline Storage Blk Time (\%) & & 1 & & & 0 & 5 & 1 & & 1 & & & 0 \\
\hline Queuing Penalty (veh) & & 0 & & & 1 & 9 & 2 & & 0 & & & 0 \\
\hline
\end{tabular}

Intersection: 3: Pacific Hwy \& Rosecrans St/Taylor St
\begin{tabular}{lrrrrrr} 
Movement & NB & SB & SB & SB & SB & SB \\
\hline Directions Served & R & L & L & T & T & R \\
Maximum Queue (ft) & 262 & 116 & 125 & 176 & 146 & 85 \\
Average Queue (ft) & 67 & 34 & 66 & 74 & 59 & 58 \\
95th Queue (ft) & 178 & 87 & 109 & 128 & 114 & 95 \\
Link Distance (ft) & & & & 172 & 172 & \\
Upstream Blk Time (\%) & & & & 0 & & \\
Queuing Penalty (veh) & & & & 0 & & \\
Storage Bay Dist (ft) & 250 & 230 & 230 & & & 60 \\
Storage Blk Time (\%) & 0 & & & 0 & 6 & 15 \\
Queuing Penalty (veh) & 0 & & & 0 & 5 & 17 \\
& & & & & \\
Network Summary & & & & & \\
\hline
\end{tabular}

Network wide Queuing Penalty: 34
- T粗料



\begin{tabular}{|c|c|c|c|}
\hline ¢9 & is & £ & 76101 \\
\hline 0 & 0 & 0 & st：zz \\
\hline 0 & 0 & 0 & 0¢：¢z \\
\hline 0 & 0 & 0 & st：¢z \\
\hline 0 & 0 & 0 & 00：عz \\
\hline 0 & 0 & 0 & st：zz \\
\hline 0 & 0 & 0 & 08：zz \\
\hline 0 & 0 & 0 & st：zz \\
\hline 0 & 0 & 0 & 00：zz \\
\hline 0 & 0 & 0 & st：Tz \\
\hline 0 & 0 & 0 & 0¢：Tz \\
\hline 0 & 0 & 0 & st：tz \\
\hline 0 & 0 & 0 & 00：Tz \\
\hline 0 & 0 & 0 & st：oz \\
\hline 0 & 0 & 0 & 0¢：0r \\
\hline 0 & 0 & 0 & st：0r \\
\hline 0 & 0 & 0 & 00：02 \\
\hline 0 & 0 & 0 & st：61 \\
\hline 0 & 0 & 0 & 08：6I \\
\hline 0 & 0 & 0 & st：6I \\
\hline 0 & 0 & 0 & 00：6I \\
\hline 0 & 0 & 0 & st：8t \\
\hline 0 & 0 & 0 & 0¢：8T \\
\hline 0 & 0 & 0 & st：8t \\
\hline 0 & 0 & 0 & 00：81 \\
\hline 0 & 0 & 0 & st：LI \\
\hline 0 & 0 & 0 & 08：LI \\
\hline 0 & 0 & 0 & sT：LI \\
\hline 0 & 0 & 0 & 00：LI \\
\hline 0 & 0 & 0 & st：9t \\
\hline 0 & 0 & 0 & 08：9t \\
\hline 0 & 0 & 0 & st：9t \\
\hline 0 & 0 & 0 & 00：9t \\
\hline 0 & 0 & 0 & 5t：st \\
\hline 0 & 0 & 0 & 0\％：St \\
\hline 0 & 0 & 0 & st：st \\
\hline 0 & 0 & 0 & 00：st \\
\hline 0 & 0 & 0 & st：ut \\
\hline 0 & 0 & 0 & 0¢：ฟ \\
\hline 0 & 0 & 0 & st：tI \\
\hline 0 & 0 & 0 & 00：\％t \\
\hline 0 & 0 & 0 & st：\＆ı \\
\hline 0 & 0 & 0 & 0¢：¢ \\
\hline z & z & 0 & st：¢ \\
\hline \(\varepsilon\) & \(\varepsilon\) & 0 & 00：¢ \\
\hline 2 & I & \(\tau\) & st：zI \\
\hline z & z & 0 & 08：zT \\
\hline \(\varepsilon\) & z & I & st：zi \\
\hline t & \(\stackrel{\square}{\square}\) & 0 & 00：zI \\
\hline \(\dagger\) & \(\varepsilon\) & I & st：TI \\
\hline z & \(\tau\) & \(\tau\) & 08：TI \\
\hline 0 & 0 & 0 & st：It \\
\hline 2 & 2 & 0 & 00：II \\
\hline z & r & 0 & st：ot \\
\hline s & \(\dagger\) & I & 08：0т \\
\hline z & z & 0 & st：ot \\
\hline 9 & 5 & I & 00：0t \\
\hline 2 & z & 0 & st：6 \\
\hline \(\checkmark\) & \(\varepsilon\) & 1 & 0¢：6 \\
\hline 1 & 1 & 0 & st：6 \\
\hline I & I & 0 & 00：6 \\
\hline z & r & 0 & st：8 \\
\hline \(\tau\) & 0 & I & 0¢：8 \\
\hline \(\varepsilon\) & \(\varepsilon\) & 0 & st：8 \\
\hline \(\varepsilon\) & 2 & I & 00：8 \\
\hline \(\varepsilon\) & 0 & \(\varepsilon\) & st：L \\
\hline \(\varepsilon\) & 2 & I & 0¢：L \\
\hline ？ & z & 0 & st：\(/\) \\
\hline 0 & 0 & 0 & 00： 2 \\
\hline 0 & 0 & 0 & st：9 \\
\hline 0 & 0 & 0 & 0¢：9 \\
\hline 0 & 0 & 0 & st：9 \\
\hline 0 & 0 & 0 & 00：9 \\
\hline 0 & 0 & 0 & st：s \\
\hline 0 & 0 & 0 & 0¢：5 \\
\hline 0 & 0 & 0 & st：s \\
\hline 0 & 0 & 0 & 00：5 \\
\hline － & 0 & 0 & st：t \\
\hline 0 & 0 & 0 & 0¢： \\
\hline 0 & 0 & 0 & st：\％ \\
\hline 0 & 0 & 0 & 00： \\
\hline 0 & 0 & 0 & st：\(\varepsilon\) \\
\hline 0 & 0 & 0 & 0¢：\(\varepsilon\) \\
\hline 0 & 0 & 0 & st：\(\varepsilon\) \\
\hline 0 & 0 & 0 & 00：\(\varepsilon\) \\
\hline 0 & 0 & 0 & st：z \\
\hline 0 & 0 & 0 & 0¢： 2 \\
\hline & 0 & 0 & st：z \\
\hline 0 & 0 & 0 & 00：2 \\
\hline 0 & 0 & 0 & st：T \\
\hline 0 & 0 & 0 & 0¢： \\
\hline 0 & 0 & 0 & st：T \\
\hline 0 & 0 & 0 & 00： \\
\hline & 0 & 0 & st：0 \\
\hline 0 & 0 & 0 & 0¢：0 \\
\hline 0 & 0 & 0 & st：0 \\
\hline 0 & 0 & 0 & 00：0 \\
\hline \({ }^{18201}\) & 8u！\({ }^{\text {a }}\) ］ & 8บ！アข & \\
\hline & & & \\
\hline & & кемәппа & ： \(\mathrm{ad} \wedge_{\perp}^{\text {quno }}\) \\
\hline \multicolumn{4}{|l|}{\multirow[t]{3}{*}{}} \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \(6 \varepsilon\) & ฉะ & s & 78101 \\
\hline 0 & 0 & 0 & st：zz \\
\hline 0 & 0 & 0 & 0¢：¢z \\
\hline 0 & 0 & 0 & st：¢z \\
\hline 0 & 0 & 0 & 00：¢z \\
\hline 0 & 0 & 0 & st：zz \\
\hline 0 & 0 & 0 & 08：zz \\
\hline 0 & 0 & 0 & st：zz \\
\hline 0 & 0 & 0 & 00：zz \\
\hline 0 & 0 & 0 & st：Tz \\
\hline 0 & 0 & 0 & 0¢：Tz \\
\hline 0 & 0 & 0 & st：tz \\
\hline 0 & 0 & 0 & 00：Tz \\
\hline 0 & 0 & 0 & st：oz \\
\hline 0 & 0 & 0 & 0¢：0r \\
\hline 0 & 0 & 0 & st：02 \\
\hline 0 & 0 & 0 & 00：02 \\
\hline 0 & 0 & 0 & st：61 \\
\hline 0 & 0 & 0 & 08：6I \\
\hline 0 & 0 & 0 & st：6I \\
\hline 0 & 0 & 0 & 00：6I \\
\hline 0 & 0 & 0 & st：8t \\
\hline 0 & 0 & 0 & 0¢：81 \\
\hline 0 & 0 & 0 & st：8t \\
\hline 0 & 0 & 0 & 00：8T \\
\hline 0 & 0 & 0 & st：LI \\
\hline 0 & 0 & 0 & 08：LI \\
\hline 0 & 0 & 0 & st：LI \\
\hline 0 & 0 & 0 & 00：LI \\
\hline 0 & 0 & 0 & st：9t \\
\hline 0 & 0 & 0 & 08：9t \\
\hline 0 & 0 & 0 & st：9t \\
\hline 0 & 0 & 0 & 00：9t \\
\hline 0 & 0 & 0 & 5t：st \\
\hline 0 & 0 & 0 & 0：：st \\
\hline － & 0 & 0 & st：St \\
\hline 0 & 0 & 0 & 00：st \\
\hline I & I & 0 & st：ut \\
\hline \(\tau\) & \(\tau\) & 0 & 0¢：ฟ \\
\hline z & I & I & st：\％ \\
\hline z & r & 0 & 00：ヶt \\
\hline z & 1 & 1 & st：\(:\) ¢ \\
\hline 0 & 0 & 0 & 0¢：¢ \\
\hline 0 & 0 & 0 & st：¢ \\
\hline 0 & 0 & 0 & 00：8 \\
\hline I & 0 & I & st：zI \\
\hline 0 & 0 & 0 & 0¢：zI \\
\hline I & I & 0 & st：zI \\
\hline I & I & 0 & 00：zI \\
\hline 0 & 0 & 0 & st：TI \\
\hline z & r & 0 & 08：II \\
\hline 1 & 1 & 0 & st：It \\
\hline \(\dagger\) & \(\varepsilon\) & I & 00：II \\
\hline z & 2 & 0 & st：ot \\
\hline I & I & 0 & 08：0т \\
\hline 9 & 9 & 0 & st：ot \\
\hline 0 & 0 & 0 & 00：0t \\
\hline \(\tau\) & I & 0 & st：6 \\
\hline 0 & 0 & 0 & 0¢：6 \\
\hline s & \(t\) & I & st：6 \\
\hline z & 2 & 0 & 00：6 \\
\hline \(\varepsilon\) & \(\varepsilon\) & 0 & st：8 \\
\hline 0 & 0 & 0 & 0¢：8 \\
\hline \(\tau\) & I & 0 & st：8 \\
\hline 0 & 0 & 0 & 00：8 \\
\hline 0 & 0 & 0 & st：L \\
\hline 0 & 0 & 0 & 0¢：L \\
\hline 0 & 0 & 0 & st：L \\
\hline 0 & 0 & 0 & 00： 2 \\
\hline 0 & 0 & 0 & st：9 \\
\hline 0 & 0 & 0 & 0¢：9 \\
\hline 0 & 0 & 0 & st：9 \\
\hline 0 & 0 & 0 & 00：9 \\
\hline 0 & 0 & 0 & st：s \\
\hline 0 & 0 & 0 & 0¢：5 \\
\hline 0 & 0 & 0 & st： s \\
\hline 0 & 0 & 0 & 00：5 \\
\hline 0 & 0 & 0 & st：t \\
\hline 0 & 0 & 0 & 0¢： \\
\hline 0 & 0 & 0 & st：\％ \\
\hline 0 & 0 & 0 & 00： \\
\hline － & 0 & 0 & st：\(\varepsilon\) \\
\hline 0 & 0 & 0 & 0¢：\(\varepsilon\) \\
\hline 0 & 0 & 0 & st：\(\varepsilon\) \\
\hline 0 & 0 & 0 & 00：\(\varepsilon\) \\
\hline 0 & 0 & 0 & st：z \\
\hline 0 & 0 & 0 & 0¢： 2 \\
\hline 0 & 0 & 0 & st：z \\
\hline 0 & 0 & 0 & 00：2 \\
\hline 0 & 0 & 0 & st：T \\
\hline & 0 & 0 & 0¢： \\
\hline 0 & 0 & 0 & st：T \\
\hline 0 & 0 & 0 & 00： \\
\hline & 0 & 0 & st：0 \\
\hline 0 & 0 & 0 & 0¢：0 \\
\hline 0 & 0 & 0 & st：0 \\
\hline 0 & 0 & 0 & 00：0 \\
\hline \({ }^{12+101}\) & 8u！\({ }^{\text {a }}\) ］ & 8บ1アว） & \\
\hline & & & \\
\hline & & кемәппа & ：adı Junoz \(^{\text {a }}\) \\
\hline \multicolumn{3}{|l|}{} & ：21ec \\
\hline & & \(\checkmark\) & ：\＃кемәппс \\
\hline \multicolumn{3}{|r|}{o8e！c ues} &  \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 12 & \(\angle I\) & 0I & 7101 \\
\hline 0 & 0 & 0 & st：zz \\
\hline 0 & 0 & 0 & 0¢：¢z \\
\hline 0 & 0 & 0 & st：¢z \\
\hline 0 & 0 & 0 & 00：¢z \\
\hline 0 & 0 & 0 & st：zz \\
\hline 0 & 0 & 0 & 08：zz \\
\hline 0 & 0 & 0 & st：zz \\
\hline 0 & 0 & 0 & 00：zz \\
\hline 0 & 0 & 0 & st：Tz \\
\hline 0 & 0 & 0 & 0¢：Tz \\
\hline 0 & 0 & 0 & st：tz \\
\hline 0 & 0 & 0 & 00：Tz \\
\hline 0 & 0 & 0 & st：oz \\
\hline 0 & 0 & 0 & 08：02 \\
\hline 0 & 0 & 0 & st：0r \\
\hline 0 & 0 & 0 & 00：02 \\
\hline 0 & 0 & 0 & st：61 \\
\hline 0 & 0 & 0 & 08：6I \\
\hline 0 & 0 & 0 & st：6I \\
\hline 0 & 0 & 0 & 00：6I \\
\hline 0 & 0 & 0 & st：8t \\
\hline 0 & 0 & 0 & 0¢：8T \\
\hline 0 & 0 & 0 & st：8t \\
\hline 0 & 0 & 0 & 00：81 \\
\hline 0 & 0 & 0 & st：LI \\
\hline 0 & 0 & 0 & 08：LI \\
\hline 0 & 0 & 0 & sT：LI \\
\hline 0 & 0 & 0 & 00：LI \\
\hline 0 & 0 & 0 & st：9t \\
\hline 0 & 0 & 0 & 08：9t \\
\hline 0 & 0 & 0 & st：9t \\
\hline 0 & 0 & 0 & 00：9t \\
\hline 0 & 0 & 0 & st：st \\
\hline 0 & 0 & 0 & 0\％：St \\
\hline 0 & 0 & 0 & st：st \\
\hline 0 & 0 & 0 & 00：st \\
\hline 0 & 0 & 0 & st：ut \\
\hline 0 & 0 & 0 & 0¢：ฟ \\
\hline 0 & 0 & 0 & st：tI \\
\hline 0 & 0 & 0 & 00：\％t \\
\hline 0 & 0 & 0 & st：E！ \\
\hline 0 & 0 & 0 & 0¢：¢ \\
\hline 0 & 0 & 0 & st：¢ \\
\hline I & I & 0 & 00：¢ \\
\hline I & I & 0 & st：zI \\
\hline z & r & 0 & 08：zI \\
\hline 0 & 0 & 0 & st：zI \\
\hline \(\varepsilon\) & I & z & 00：zI \\
\hline \(\varepsilon\) & I & r & st：TI \\
\hline 0 & 0 & 0 & 08：TI \\
\hline 0 & 0 & 0 & st：It \\
\hline 0 & 0 & 0 & 00：II \\
\hline 0 & 0 & 0 & st：ot \\
\hline 0 & 0 & 0 & 0¢：0t \\
\hline \(\tau\) & \(\tau\) & 0 & st：ot \\
\hline z & I & I & 00：0t \\
\hline I & I & 0 & st：6 \\
\hline 0 & 0 & 0 & 0¢：6 \\
\hline 2 & 2 & 0 & st：6 \\
\hline z & I & I & 00：6 \\
\hline \(\varepsilon\) & 1 & z & st：8 \\
\hline 0 & 0 & 0 & 0¢：8 \\
\hline z & z & 0 & st：8 \\
\hline I & I & 0 & 00：8 \\
\hline 0 & 0 & 0 & st：L \\
\hline 0 & 0 & 0 & 0¢：L \\
\hline I & 0 & I & st：\(\angle\) \\
\hline 0 & 0 & 0 & 00： 2 \\
\hline 0 & 0 & 0 & st：9 \\
\hline I & 0 & I & 0¢：9 \\
\hline 0 & 0 & 0 & st：9 \\
\hline 0 & 0 & 0 & 00：9 \\
\hline I & I & 0 & st：s \\
\hline 0 & 0 & 0 & 0¢： 5 \\
\hline 0 & 0 & 0 & st： s \\
\hline 0 & 0 & 0 & 00：5 \\
\hline 0 & 0 & 0 & st：t \\
\hline 0 & 0 & 0 & 0¢： \\
\hline 0 & 0 & 0 & st：\％ \\
\hline 0 & 0 & 0 & 00： \\
\hline 0 & 0 & 0 & st：\(\varepsilon\) \\
\hline 0 & 0 & 0 & 0¢：\(\varepsilon\) \\
\hline 0 & 0 & 0 & st：\(\varepsilon\) \\
\hline 0 & 0 & 0 & 00：\(\varepsilon\) \\
\hline 0 & 0 & 0 & st：z \\
\hline 0 & 0 & 0 & 0¢： 2 \\
\hline 0 & 0 & 0 & st：z \\
\hline 0 & 0 & 0 & 00：2 \\
\hline 0 & 0 & 0 & st：T \\
\hline & 0 & 0 & 0¢： \\
\hline 0 & 0 & 0 & st：T \\
\hline 0 & 0 & 0 & 00： \\
\hline 0 & 0 & 0 & st：0 \\
\hline 0 & 0 & 0 & 0¢：0 \\
\hline 0 & 0 & 0 & st：0 \\
\hline 0 & 0 & 0 & 00：0 \\
\hline \({ }^{12+101}\) & 8u！\({ }^{\text {a }}\) ］ & 8บ！アข & \\
\hline & & & \\
\hline & & кемәппа & ： \(\mathrm{ad} \wedge_{\perp}^{\text {quno }}\) \\
\hline \multicolumn{4}{|l|}{\multirow[t]{3}{*}{}} \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 99 & to & \(z 2\) & 7101 \\
\hline 2 & \(\tau\) & \(\tau\) & 5t：zz \\
\hline 0 & 0 & 0 & 0¢：¢ \\
\hline 0 & 0 & 0 & st：\＆̌ \\
\hline 0 & 0 & 0 & 00：\＆z \\
\hline 0 & 0 & 0 & st：zz \\
\hline 0 & 0 & 0 & 0¢：zz \\
\hline 2 & r & 0 & st：zz \\
\hline 0 & 0 & 0 & 00：z2 \\
\hline 0 & 0 & 0 & st：Iz \\
\hline 0 & 0 & 0 & 0¢：Iz \\
\hline 0 & 0 & 0 & st：tz \\
\hline 0 & 0 & 0 & 00：Tz \\
\hline 0 & 0 & 0 & st：0z \\
\hline 0 & 0 & 0 & 0¢：02 \\
\hline 0 & 0 & 0 & st：0r \\
\hline 0 & 0 & 0 & 00：02 \\
\hline z & r & 0 & st：6i \\
\hline \(\tau\) & I & 0 & 08：61 \\
\hline 0 & 0 & 0 & st：6I \\
\hline 0 & 0 & 0 & 00：61 \\
\hline － & 0 & 0 & st：8t \\
\hline 0 & 0 & 0 & 0¢：8t \\
\hline 0 & 0 & 0 & st：8t \\
\hline \(\dagger\) & r & r & 00：81 \\
\hline I & 2 & 0 & st：LI \\
\hline 0 & 0 & 0 & 0¢：LI \\
\hline I & 0 & I & st：＜I \\
\hline z & r & 0 & 00：LI \\
\hline \(\varepsilon\) & 2 & 1 & st：9t \\
\hline & 0 & 0 & 0¢：9t \\
\hline I & I & 0 & st：9t \\
\hline \(t\) & \(\varepsilon\) & I & 00：9t \\
\hline \(\tau\) & \(\tau\) & 0 & st：St \\
\hline I & I & 0 & 08：5t \\
\hline I & 1 & 1 & st：st \\
\hline 0 & 0 & 0 & 00：5t \\
\hline 碞 & \(\varepsilon\) & 0 & St：TI \\
\hline \(\varepsilon\) & \(\varepsilon\) & 0 & 0¢：\％ \\
\hline z & 1 & I & st：tr \\
\hline \(\dagger\) & \(\dagger\) & 0 & 00：\％t \\
\hline 1 & 0 & I & st：\(:\) ¢ \\
\hline 0 & 0 & 0 & 0¢：¢ \\
\hline 0 & 0 & 0 & st：¢！ \\
\hline 0 & 0 & 0 & 00：ع \\
\hline 0 & 0 & 0 & st：ZI \\
\hline 0 & 0 & 0 & 0¢：zI \\
\hline I & I & 0 & st：zi \\
\hline I & I & 0 & 00：z1 \\
\hline I & I & 0 & st：TI \\
\hline 0 & 0 & 0 & 08：II \\
\hline 0 & 0 & 0 & st：TI \\
\hline \(\tau\) & I & 0 & 00：TI \\
\hline \(\tau\) & 0 & I & st：ot \\
\hline 2 & r & 0 & 0¢：0t \\
\hline 0 & 0 & 0 & st：ot \\
\hline 0 & 0 & 0 & 00：0t \\
\hline I & 0 & I & st：6 \\
\hline 0 & 0 & 0 & 08：6 \\
\hline 2 & 2 & 0 & st：6 \\
\hline 0 & 0 & 0 & 00：6 \\
\hline 0 & 0 & 0 & st：8 \\
\hline 0 & 0 & 0 & 0¢：8 \\
\hline 0 & 0 & 0 & st：8 \\
\hline 0 & 0 & 0 & 00：8 \\
\hline 0 & 0 & 0 & st：L \\
\hline & 0 & 0 & 0\％：L \\
\hline 0 & 0 & 0 & st：L \\
\hline 0 & 0 & 0 & 00：L \\
\hline I & 0 & 1 & st：9 \\
\hline z & I & I & 08：9 \\
\hline I & 0 & 1 & st：9 \\
\hline \(\tau\) & I & 0 & 00：9 \\
\hline \(\tau\) & I & 0 & st：s \\
\hline \(\varepsilon\) & 0 & \(\varepsilon\) & 0¢：5 \\
\hline 2 & 0 & 2 & st：s \\
\hline \(\tau\) & 0 & I & 00：5 \\
\hline T & 0 & \(\tau\) & st：t \\
\hline 0 & 0 & 0 & 08：\％ \\
\hline 0 & 0 & 0 & st：\％ \\
\hline 0 & 0 & 0 & 00：\％ \\
\hline 0 & 0 & 0 & st：\(\varepsilon\) \\
\hline 0 & 0 & 0 & 0¢：\(\varepsilon\) \\
\hline 0 & 0 & 0 & st：\(\varepsilon\) \\
\hline 0 & 0 & 0 & 00：\(\varepsilon\) \\
\hline 0 & 0 & 0 & st：z \\
\hline 0 & 0 & 0 & 0¢： \\
\hline 0 & 0 & 0 & st：z \\
\hline 0 & 0 & 0 & 00：2 \\
\hline 0 & 0 & 0 & st：T \\
\hline 0 & 0 & 0 & 08：工 \\
\hline 0 & 0 & 0 & st：T \\
\hline 0 & 0 & 0 & 00： \\
\hline 0 & 0 & 0 & 5t：0 \\
\hline 0 & 0 & 0 & 08：0 \\
\hline 2 & I & 1 & st：0 \\
\hline 0 & 0 & 0 & 00：0 \\
\hline \({ }^{18101}\) & 84u1］\({ }^{\text {a }}\) & ชบบアวuヨ & \\
\hline & & & \\
\hline & & Аемәпппа &  \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} & －：\＃е0 \\
\hline & & & ：\＃лемәпио \\
\hline \multicolumn{3}{|r|}{ose！\(\frac{1}{}\) पes} & כ כוּ \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline 96 & £ & \(\varepsilon \varsigma\) & 76101 \\
\hline 0 & 0 & 0 & st：\(¢\) z \\
\hline 0 & 0 & 0 & 0¢：¢ \\
\hline 0 & 0 & 0 & st：દz \\
\hline 0 & 0 & 0 & 00：をz \\
\hline 0 & 0 & 0 & st：zz \\
\hline 0 & 0 & 0 & 0¢：zz \\
\hline 0 & 0 & 0 & st：zz \\
\hline 0 & 0 & 0 & 00：zz \\
\hline 0 & 0 & 0 & st：Tz \\
\hline 0 & 0 & 0 & 08：Tz \\
\hline 0 & & 0 & st：tz \\
\hline 0 & 0 & 0 & 00：Tz \\
\hline 0 & 0 & 0 & st：02 \\
\hline 0 & 0 & 0 & 08：02 \\
\hline － & 0 & 0 & st：02 \\
\hline 0 & 0 & 0 & 00：02 \\
\hline 0 & 0 & 0 & 5p：61 \\
\hline I & 0 & I & 08：61 \\
\hline 0 & 0 & 0 & st：61 \\
\hline 0 & 0 & 0 & 00：61 \\
\hline 0 & 0 & 0 & st：8t \\
\hline 0 & 0 & 0 & 0¢：8T \\
\hline 0 & 0 & 0 & st：8t \\
\hline 0 & 0 & 0 & 00：8T \\
\hline 0 & 0 & 0 & st：LI \\
\hline 0 & 0 & 0 & 08：LI \\
\hline 0 & 0 & 0 & st：LI \\
\hline 0 & 0 & 0 & 00：LI \\
\hline 0 & 0 & 0 & 5t：9t \\
\hline 0 & 0 & 0 & 0¢：9 \\
\hline 0 & 0 & 0 & st：9t \\
\hline 0 & 0 & 0 & 00：91 \\
\hline 0 & 0 & 0 & st：st \\
\hline 0 & 0 & 0 & 0\％：SI \\
\hline I & 0 & I & st：st \\
\hline \(\tau\) & 0 & I & 00：st \\
\hline I & 0 & 1 & St：tI \\
\hline 0 & 0 & 0 & 0\％：ฟ \\
\hline 0 & 0 & 0 & st：t \\
\hline 0 & 0 & 0 & 00：\％I \\
\hline 0 & 0 & 0 & st：\(: \varepsilon\) \\
\hline 0 & 0 & 0 & 0¢：¢ \\
\hline ？ & 0 & 2 & st：¢ \\
\hline I & I & 0 & 00：¢ \\
\hline \(\varepsilon\) & r & I & st：zT \\
\hline t & \(\dagger\) & 0 & 08：てT \\
\hline \(t\) & ， & 0 & st：zI \\
\hline 9 & & \(\varepsilon\) & 00：zI \\
\hline I & I & 0 & st：It \\
\hline & 2 & \(\dagger\) & 08：II \\
\hline z & I & 1 & st：It \\
\hline 6 & 5 & \(t\) & 00：II \\
\hline s & \(t\) & I & st：ot \\
\hline \(\varepsilon\) & 2 & I & 0\％：0t \\
\hline z & 0 & r & st：0t \\
\hline 9 & \(\dagger\) & 2 & 00：02 \\
\hline \(\dagger\) & T & \(\varepsilon\) & st：6 \\
\hline \(\varepsilon\) & 0 & \(\varepsilon\) & 0¢：6 \\
\hline I & I & 0 & st：6 \\
\hline \(\varepsilon\) & I & r & 00：6 \\
\hline 6 & \％ & 9 & st：8 \\
\hline 2 & \(\tau\) & I & 0¢：8 \\
\hline \(\varepsilon\) & I & 2 & st：8 \\
\hline I & 0 & 1 & 00：8 \\
\hline 5 & 2 & \(\varepsilon\) & st：L \\
\hline z & 0 & 2 & 0¢：L \\
\hline I & 0 & I & st：L \\
\hline \(\varepsilon\) & 0 & \(\varepsilon\) & 00： 4 \\
\hline I & 0 & 1 & st：9 \\
\hline 0 & 0 & 0 & 0¢：9 \\
\hline 0 & 0 & 0 & st：9 \\
\hline 0 & 0 & 0 & 00：9 \\
\hline 0 & 0 & 0 & st：s \\
\hline － & 0 & 0 & 0¢：5 \\
\hline 0 & 0 & 0 & st： S \\
\hline 0 & 0 & 0 & 00：5 \\
\hline 0 & 0 & 0 & st：t \\
\hline 0 & 0 & 0 & 0¢： \\
\hline 0 & 0 & 0 & st：t \\
\hline 0 & 0 & 0 & 00： \\
\hline 0 & 0 & 0 & st：\(\varepsilon\) \\
\hline 0 & 0 & 0 & 0¢：\(\varepsilon\) \\
\hline 0 & 0 & 0 & st：\(\varepsilon\) \\
\hline 0 & 0 & 0 & 00：\(\varepsilon\) \\
\hline 0 & 0 & 0 & st：z \\
\hline 0 & 0 & 0 & 0¢： \\
\hline 0 & 0 & 0 & st：z \\
\hline & 0 & 0 & 00：2 \\
\hline & 0 & 0 & st：T \\
\hline 0 & 0 & 0 & 0¢： \\
\hline 0 & 0 & 0 & st：T \\
\hline 0 & 0 & 0 & 00： \\
\hline 0 & 0 & 0 & st：0 \\
\hline 0 & 0 & 0 & 0¢：0 \\
\hline & － & 0 & st：0 \\
\hline 0 & 0 & 0 & 00：0 \\
\hline \({ }^{12101}\) & 8u！\({ }^{\text {a }}\) ］ &  & \\
\hline & & & \\
\hline & & кемәппо &  \\
\hline \multicolumn{3}{|l|}{} & ：27e0 \\
\hline & & 8 & ：\＃Аемәпиа \\
\hline \multicolumn{3}{|r|}{osean ues} & כַנוּא： \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline ont & 65 & & \\
\hline 0 & 0 & 0 & st：\(¢\) z \\
\hline 0 & 0 & 0 & 0¢：¢z \\
\hline 0 & 0 & 0 & st：\(: \varepsilon\) \\
\hline 0 & 0 & 0 & 00：عz \\
\hline 0 & 0 & 0 & st：zz \\
\hline 0 & 0 & 0 & 0¢：zz \\
\hline 0 & 0 & 0 & st：zz \\
\hline 0 & 0 & 0 & 00：zz \\
\hline 0 & 0 & 0 & st：Tz \\
\hline 0 & 0 & 0 & 0¢：Iz \\
\hline 0 & 0 & 0 & st：tz \\
\hline 0 & 0 & 0 & 00：Iz \\
\hline 0 & 0 & 0 & st：02 \\
\hline 0 & 0 & 0 & 08：02 \\
\hline 0 & 0 & 0 & st：02 \\
\hline 0 & 0 & 0 & 00：02 \\
\hline 0 & 0 & 0 & st：6ı \\
\hline 0 & 0 & 0 & 08：61 \\
\hline 0 & 0 & 0 & st：61 \\
\hline 0 & 0 & 0 & 00：61 \\
\hline 0 & 0 & 0 & st：8t \\
\hline 0 & 0 & 0 & 0¢：8T \\
\hline 0 & 0 & 0 & st：8t \\
\hline 0 & 0 & 0 & 00：8t \\
\hline 0 & 0 & 0 & st：LI \\
\hline 0 & 0 & 0 & 08：LI \\
\hline 0 & 0 & 0 & st：LI \\
\hline 0 & 0 & 0 & 00：LI \\
\hline 0 & 0 & 0 & st：9t \\
\hline 0 & 0 & 0 & 08：91 \\
\hline 0 & 0 & 0 & 51：9t \\
\hline 0 & 0 & 0 & 00：9t \\
\hline 0 & 0 & 0 & st：St \\
\hline 0 & 0 & 0 & 0\％：ST \\
\hline 0 & 0 & 0 & st：st \\
\hline 0 & 0 & 0 & 00：St \\
\hline 0 & 0 & 0 & st：Tt \\
\hline 0 & 0 & 0 & 0¢：ฟ \\
\hline 0 & 0 & 0 & st：tI \\
\hline 0 & 0 & 0 & 00：tr \\
\hline 0 & 0 & 0 & st：\(: \varepsilon\) \\
\hline 0 & 0 & 0 & 08：¢ \\
\hline 5 & s & 0 & st：\(: \varepsilon\) \\
\hline 5 & \(\varepsilon\) & z & 00：\＆ı \\
\hline I & I & 0 & st：zI \\
\hline I & 0 & I & 0¢：حI \\
\hline 9 & 5 & I & st：zI \\
\hline I & 0 & I & 00：zI \\
\hline \(\varepsilon\) & 2 & \(\tau\) & st：It \\
\hline \(\tau\) & r & 0 & 08：TI \\
\hline 9 & \(t\) & z & st：It \\
\hline 8 & 8 & 0 & 00：II \\
\hline \(\dagger\) & 1 & \(\varepsilon\) & st：0t \\
\hline 8 & z & 9 & 08：0т \\
\hline \(\varepsilon\) & 1 & 2 & st：0t \\
\hline 6 & s & t & 00：0t \\
\hline 5 & 0 & s & st：6 \\
\hline 5 & 2 & \(\varepsilon\) & 0¢：6 \\
\hline \(\varepsilon\) & \(\tau\) & 2 & st：6 \\
\hline 5 & \(t\) & I & 00：6 \\
\hline \(\dagger\) & \(\tau\) & \(\varepsilon\) & st：8 \\
\hline \(L\) & z & s & 0¢：8 \\
\hline II & \(\dagger\) & \(L\) & st：8 \\
\hline 8 & 2 & 9 & 00：8 \\
\hline 2 & 0 & 2 & st：L \\
\hline 9 & I & 5 & 0¢：L \\
\hline 8 & I & \(L\) & st：L \\
\hline \(\dagger\) & \(\tau\) & \(\varepsilon\) & 00： 1 \\
\hline \(\dagger\) & 0 & \(t\) & st：9 \\
\hline \(\varepsilon\) & I & 2 & 0¢：9 \\
\hline I & 0 & I & st：9 \\
\hline I & 0 & I & 00：9 \\
\hline 0 & 0 & 0 & st：s \\
\hline I & 0 & I & 0¢：5 \\
\hline 0 & 0 & 0 & st：s \\
\hline 0 & 0 & 0 & 00：5 \\
\hline 0 & 0 & 0 & st：t \\
\hline 0 & & 0 & 0¢： \\
\hline 0 & 0 & 0 & st：t \\
\hline 0 & 0 & 0 & 00： \\
\hline 0 & 0 & 0 & st：\(\varepsilon\) \\
\hline 0 & 0 & 0 & 0¢：\(\varepsilon\) \\
\hline 0 & 0 & 0 & st：\(\varepsilon\) \\
\hline 0 & 0 & 0 & 00：\(\varepsilon\) \\
\hline 0 & O & 0 & st：z \\
\hline 0 & 0 & 0 & 0¢： \\
\hline 0 & 0 & 0 & st：z \\
\hline 0 & 0 & 0 & 00： \\
\hline 0 & 0 & 0 & st：T \\
\hline 0 & 0 & 0 & 0¢： \\
\hline 0 & 0 & 0 & st：T \\
\hline 0 & 0 & 0 & 00： \\
\hline 0 & 0 & 0 & st：0 \\
\hline 0 & 0 & 0 & 0¢：0 \\
\hline 0 & 0 & 0 & st：0 \\
\hline 0 & 0 & 0 & 00：0 \\
\hline \({ }^{1820}\) & 8u！\({ }^{\text {a }}\) ］ & รบ！วข） & \\
\hline & & & \\
\hline & & кемәп！a & ：adイı 子uno \\
\hline \multicolumn{3}{|l|}{} & ：200 \\
\hline & & \(\tau\) & ：\＃Аемәлио \\
\hline \multicolumn{3}{|r|}{08？！प ues} &  \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 6 6z & tit & szi & 78101 \\
\hline 0 & 0 & 0 & st：\(: \varepsilon\) \\
\hline 0 & 0 & 0 & 0¢：¢z \\
\hline 0 & 0 & 0 & st：¢z \\
\hline 0 & 0 & 0 & 00：¢z \\
\hline 0 & 0 & 0 & st：zz \\
\hline 0 & 0 & 0 & 08：zz \\
\hline 0 & 0 & 0 & st：zz \\
\hline 0 & 0 & 0 & 00：zz \\
\hline 0 & 0 & 0 & st：Tz \\
\hline 0 & 0 & 0 & 0¢：Tz \\
\hline 0 & 0 & 0 & st：tz \\
\hline 0 & 0 & 0 & 00：Tz \\
\hline 0 & 0 & 0 & st：oz \\
\hline 0 & 0 & 0 & 08：02 \\
\hline 0 & 0 & 0 & st：02 \\
\hline 0 & 0 & 0 & 00：02 \\
\hline 0 & 0 & 0 & st：61 \\
\hline 0 & 0 & 0 & 08：6I \\
\hline 0 & 0 & 0 & st：6I \\
\hline 0 & 0 & 0 & 00：6I \\
\hline 0 & 0 & 0 & st：8t \\
\hline 0 & 0 & 0 & 0¢：81 \\
\hline 0 & 0 & 0 & st：8t \\
\hline 0 & 0 & 0 & 00：81 \\
\hline 0 & 0 & 0 & st：LI \\
\hline 0 & 0 & 0 & 08：LI \\
\hline 0 & 0 & 0 & st：LI \\
\hline 0 & 0 & 0 & 00：LI \\
\hline 0 & 0 & 0 & st：9t \\
\hline 0 & 0 & 0 & 08：9T \\
\hline 0 & 0 & 0 & st：9t \\
\hline 0 & 0 & 0 & 00：9t \\
\hline 0 & 0 & 0 & st：st \\
\hline 0 & 0 & 0 & 0：：st \\
\hline － & 0 & 0 & st：St \\
\hline 0 & 0 & 0 & 00：st \\
\hline 0 & 0 & 0 & st：ut \\
\hline 0 & 0 & 0 & 0¢：ฟ \\
\hline 0 & 0 & 0 & st：\％ \\
\hline 0 & 0 & 0 & 00：ヶt \\
\hline 0 & 0 & 0 & st：\(: \frac{1}{\text { d }}\) \\
\hline 0 & 0 & 0 & 0\％：¢ \\
\hline z & z & 0 & st：\(: \frac{1}{}\) \\
\hline \(t\) & \(\varepsilon\) & I & 00：8 \\
\hline I & I & 0 & st：zI \\
\hline 8 & 9 & z & 0¢：zI \\
\hline 5 & I & \(t\) & st：zI \\
\hline \(\dagger\) & \(L\) & \(L\) & 00：zI \\
\hline & 5 & \(\varepsilon\) & st：TI \\
\hline t & \(t\) & 0 & 08：IT \\
\hline 8 & 9 & 2 & st：It \\
\hline st & 8 & \(L\) & 00：II \\
\hline 6 & \(L\) & 2 & st：0t \\
\hline \(\varepsilon{ }^{\text {¢ }}\) & \(L\) & 9 & 08：0т \\
\hline II & 9 & 5 & st：0t \\
\hline 6 & 9 & \(\varepsilon\) & 00：0t \\
\hline 2I & \(\varepsilon\) & 6 & st：6 \\
\hline II & 5 & 9 & 0¢：6 \\
\hline \(\angle I\) & \(0{ }^{\circ}\) & \(L\) & st：6 \\
\hline 5 & \(\varepsilon\) & 2 & 00：6 \\
\hline \(0{ }^{1}\) & \(\varepsilon\) & \(L\) & st：8 \\
\hline \(L\) & \(\varepsilon\) & t & 0¢：8 \\
\hline \(\checkmark\) & I & \(\varepsilon\) & st：8 \\
\hline 9 & 8 & 8 & 00：8 \\
\hline 8 & 0 & 8 & st：L \\
\hline II & 9 & 5 & 0¢：L \\
\hline \(\varepsilon\) & \(\varepsilon\) & 0 & st：L \\
\hline 9 & 0 & 9 & 00： 2 \\
\hline zI & 0 & z & st：9 \\
\hline I & 0 & 1 & 0¢：9 \\
\hline \(\varepsilon\) & 0 & \(\varepsilon\) & st：9 \\
\hline 0 & 0 & 0 & 00：9 \\
\hline O & 0 & 0 & st：s \\
\hline I & 0 & 2 & 08：5 \\
\hline 0 & 0 & 0 & st： s \\
\hline 0 & 0 & 0 & 00：5 \\
\hline － & 0 & 0 & st：t \\
\hline 0 & 0 & 0 & 0¢： \\
\hline 0 & 0 & 0 & st：\％ \\
\hline 0 & 0 & 0 & 00： \\
\hline 0 & 0 & 0 & st：\(\varepsilon\) \\
\hline 0 & 0 & 0 & 0¢：\(\varepsilon\) \\
\hline 0 & 0 & 0 & st：\(\varepsilon\) \\
\hline 0 & 0 & 0 & 00：\(\varepsilon\) \\
\hline 0 & 0 & 0 & st：z \\
\hline 0 & 0 & 0 & 0¢： 2 \\
\hline 0 & 0 & 0 & st：z \\
\hline 0 & 0 & 0 & 00：2 \\
\hline 0 & 0 & 0 & st：T \\
\hline & 0 & 0 & 0¢： \\
\hline 0 & 0 & 0 & st：T \\
\hline 0 & 0 & 0 & 00： \\
\hline & 0 & 0 & st：0 \\
\hline 0 & 0 & 0 & 0¢：0 \\
\hline 0 & 0 & 0 & st：0 \\
\hline 0 & 0 & 0 & 00：0 \\
\hline \({ }^{12101}\) & 8u！\(\times 3^{3}\) & ชบ！วข） & \\
\hline & & & \\
\hline & \multicolumn{2}{|r|}{Аемәпп．，} & ：adイıuno \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} & ：21ec \\
\hline & & & ：\＃еемәпио \\
\hline \multicolumn{3}{|r|}{o8e！c ues} & ：720．75 55010 ！！！ \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 89 & 95 & z & 78101 \\
\hline 0 & 0 & 0 & st：zz \\
\hline 0 & 0 & 0 & 0¢：¢z \\
\hline 0 & 0 & 0 & st：¢z \\
\hline 0 & 0 & 0 & 00：¢z \\
\hline 0 & 0 & 0 & st：zz \\
\hline 0 & 0 & 0 & 08：zz \\
\hline 0 & 0 & 0 & st：zz \\
\hline 0 & 0 & 0 & 00：zz \\
\hline 0 & 0 & 0 & st：Tz \\
\hline 0 & 0 & 0 & 0¢：Tz \\
\hline 0 & 0 & 0 & st：tz \\
\hline 0 & 0 & 0 & 00：Tz \\
\hline 0 & 0 & 0 & st：oz \\
\hline 0 & 0 & 0 & 0¢：0r \\
\hline 0 & 0 & 0 & st：02 \\
\hline 0 & 0 & 0 & 00：02 \\
\hline 0 & 0 & 0 & st：61 \\
\hline 0 & 0 & 0 & 08：6I \\
\hline 0 & 0 & 0 & st：6I \\
\hline 0 & 0 & 0 & 00：6I \\
\hline 0 & 0 & 0 & st：8t \\
\hline 0 & 0 & 0 & 0¢：81 \\
\hline 0 & 0 & 0 & st：8t \\
\hline 0 & 0 & 0 & 00：81 \\
\hline 0 & 0 & 0 & st：LI \\
\hline 0 & 0 & 0 & 08：LI \\
\hline 0 & 0 & 0 & st：LI \\
\hline 0 & 0 & 0 & 00：LI \\
\hline 0 & 0 & 0 & st：9t \\
\hline 0 & 0 & 0 & 08：9t \\
\hline & 0 & 0 & st：9t \\
\hline 0 & 0 & 0 & 00：9t \\
\hline 0 & 0 & 0 & st：st \\
\hline 0 & 0 & 0 & 0：：st \\
\hline － & 0 & 0 & st：St \\
\hline & 0 & 0 & 00：st \\
\hline 0 & 0 & 0 & st：ut \\
\hline 0 & 0 & 0 & 0¢：ฟ \\
\hline & 0 & 0 & st：\％ \\
\hline 0 & 0 & 0 & 00：\％t \\
\hline 0 & 0 & 0 & st：\(: \frac{1}{\text { d }}\) \\
\hline 0 & 0 & 0 & 0\％：¢ \\
\hline t & I & 0 & st：\(: \frac{1}{}\) \\
\hline s & 5 & 0 & 00：8 \\
\hline I & I & 0 & st：zI \\
\hline z & r & 0 & 0¢：zI \\
\hline \(\varepsilon\) & 2 & I & st：zI \\
\hline I & 0 & I & 00：2I \\
\hline I & I & 0 & st：TI \\
\hline I & \(\tau\) & 0 & 08：TI \\
\hline \(\varepsilon\) & \(\varepsilon\) & 0 & st：It \\
\hline t & \(\varepsilon\) & I & 00：II \\
\hline I & I & 0 & st：ot \\
\hline 0 & 0 & 0 & 08：0т \\
\hline \(\dagger\) & \(\varepsilon\) & \(\tau\) & st：ot \\
\hline 2 & 2 & 0 & 00：0t \\
\hline 2 & 2 & 0 & st：6 \\
\hline I & I & 0 & 0¢：6 \\
\hline s & \(t\) & I & st：6 \\
\hline 2 & 2 & 0 & 00：6 \\
\hline z & 2 & 0 & st：8 \\
\hline 9 & 5 & I & 0¢：8 \\
\hline 5 & \(\varepsilon\) & r & st：8 \\
\hline I & \(\tau\) & 0 & 00：8 \\
\hline \(\varepsilon\) & \(\varepsilon\) & 0 & st：L \\
\hline 8 & \(L\) & I & 0¢：L \\
\hline T & 1 & 0 & st：L \\
\hline \(\varepsilon\) & 0 & \(\varepsilon\) & 00： 1 \\
\hline 0 & 0 & 0 & st：9 \\
\hline 0 & 0 & 0 & 0¢：9 \\
\hline 0 & 0 & 0 & st：9 \\
\hline 0 & 0 & 0 & 00：9 \\
\hline O & 0 & 0 & st：s \\
\hline 0 & 0 & 0 & 0¢：5 \\
\hline 0 & 0 & 0 & st： s \\
\hline 0 & 0 & 0 & 00：5 \\
\hline 0 & 0 & 0 & st：t \\
\hline 0 & 0 & 0 & 0¢： \\
\hline 0 & 0 & 0 & st：\％ \\
\hline 0 & 0 & 0 & 00： \\
\hline 0 & 0 & 0 & st：\(\varepsilon\) \\
\hline 0 & 0 & 0 & 0¢：\(\varepsilon\) \\
\hline 0 & 0 & 0 & st：\(\varepsilon\) \\
\hline 0 & 0 & 0 & 00：\(\varepsilon\) \\
\hline 0 & 0 & 0 & st：z \\
\hline 0 & 0 & 0 & 0¢： 2 \\
\hline 0 & 0 & 0 & st：z \\
\hline 0 & 0 & 0 & 00：2 \\
\hline 0 & 0 & 0 & st：T \\
\hline 0 & 0 & 0 & 0¢： \\
\hline 0 & 0 & 0 & st：T \\
\hline 0 & 0 & 0 & 00： \\
\hline 0 & 0 & 0 & st：0 \\
\hline 0 & 0 & 0 & 0¢：0 \\
\hline 0 & 0 & 0 & st：0 \\
\hline 0 & 0 & 0 & 00：0 \\
\hline \({ }^{1270}\) & 8u！ & ชบ！วข） & \\
\hline & & & \\
\hline & \multicolumn{2}{|r|}{Аемәлппао} & ： 2 ¢ \(\chi_{1}\) zunoj \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} & ：әеп \\
\hline & & & ：\＃Аемәпиа \\
\hline \multicolumn{3}{|r|}{} & ：720．75 55010 ！！！ \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 29 & Lt & si & 7101 \\
\hline 0 & 0 & 0 & st：zz \\
\hline 0 & 0 & 0 & 0¢：¢z \\
\hline 0 & 0 & 0 & st：¢z \\
\hline 0 & 0 & 0 & 00：¢z \\
\hline 0 & 0 & 0 & st：zz \\
\hline 0 & 0 & 0 & 08：zz \\
\hline I & I & 0 & st：zz \\
\hline z & I & I & 00：zz \\
\hline 0 & 0 & 0 & st：Tz \\
\hline 0 & 0 & 0 & 0¢：Tz \\
\hline 0 & 0 & 0 & st：tz \\
\hline 0 & 0 & 0 & 00：Tz \\
\hline 0 & 0 & 0 & st：oz \\
\hline 0 & 0 & 0 & 0¢：0r \\
\hline 0 & 0 & 0 & st：0r \\
\hline 0 & 0 & 0 & 00：02 \\
\hline 0 & 0 & 0 & st：61 \\
\hline 0 & 0 & 0 & 08：6I \\
\hline 0 & 0 & 0 & st：6I \\
\hline 0 & 0 & 0 & 00：6I \\
\hline z & z & 0 & st：8t \\
\hline I & 0 & 1 & 0¢：81 \\
\hline 0 & 0 & 0 & st：8t \\
\hline โ & I & 0 & 00：81 \\
\hline \(\varepsilon\) & \(\varepsilon\) & 0 & st：LI \\
\hline 0 & 0 & 0 & 08：LI \\
\hline \(\varepsilon\) & ？ & I & sT：LI \\
\hline z & I & I & 00：LI \\
\hline 1 & I & 0 & st：9t \\
\hline I & I & 0 & 08：9t \\
\hline z & z & 0 & st：9t \\
\hline I & I & 0 & 00：9t \\
\hline z & z & 0 & st：st \\
\hline 0 & 0 & 0 & 0\％：St \\
\hline I & I & 0 & st：st \\
\hline 岸 & r & I & 00：st \\
\hline \(\varepsilon\) & z & I & st：ut \\
\hline 9 & \(\dagger\) & z & 0¢：ฟ \\
\hline I & I & 0 & st：t \\
\hline z & I & I & 00：\％t \\
\hline 5 & 5 & 0 & st：\(: \frac{1}{\text { d }}\) \\
\hline & s & I & 0¢：¢ \\
\hline I & I & 0 & st：¢ \\
\hline 0 & 0 & 0 & 00：¢ \\
\hline 0 & 0 & 0 & st：zI \\
\hline I & 1 & 0 & 0¢：zI \\
\hline 0 & 0 & 0 & st：zi \\
\hline 0 & 0 & 0 & 00：zI \\
\hline 0 & 0 & 0 & st：TI \\
\hline 0 & 0 & 0 & 08：TI \\
\hline 0 & 0 & 0 & st：It \\
\hline I & I & 0 & 00：II \\
\hline 0 & 0 & 0 & st：ot \\
\hline 0 & 0 & 0 & 0¢：0t \\
\hline 0 & 0 & 0 & st：ot \\
\hline I & I & 0 & 00：0t \\
\hline 0 & 0 & 0 & st：6 \\
\hline 2 & \(\tau\) & \(\tau\) & 0¢：6 \\
\hline I & I & 0 & st：6 \\
\hline 0 & 0 & 0 & 00：6 \\
\hline I & 0 & I & st：8 \\
\hline z & 0 & z & 0¢：8 \\
\hline 0 & 0 & 0 & st：8 \\
\hline 0 & 0 & 0 & 00：8 \\
\hline 0 & 0 & 0 & st：L \\
\hline I & I & 0 & 0¢：L \\
\hline 0 & 0 & 0 & st：L \\
\hline 0 & 0 & 0 & 00： 2 \\
\hline 0 & 0 & 0 & st：9 \\
\hline I & I & 0 & 0¢：9 \\
\hline 0 & 0 & 0 & st：9 \\
\hline 0 & 0 & 0 & 00：9 \\
\hline 0 & 0 & 0 & st：s \\
\hline 0 & 0 & 0 & 08：5 \\
\hline 0 & 0 & 0 & st： s \\
\hline I & 0 & I & 00：5 \\
\hline 0 & 0 & 0 & st：t \\
\hline 0 & 0 & 0 & 0¢： \\
\hline 0 & 0 & 0 & st：\％ \\
\hline 0 & 0 & 0 & 00： \\
\hline 0 & 0 & 0 & st：\(\varepsilon\) \\
\hline 0 & 0 & 0 & 0¢：\(\varepsilon\) \\
\hline 0 & 0 & 0 & st：\(\varepsilon\) \\
\hline 0 & 0 & 0 & 00：\(\varepsilon\) \\
\hline 0 & 0 & 0 & st：z \\
\hline 0 & 0 & 0 & 0¢：て \\
\hline & 0 & 0 & st：z \\
\hline 0 & 0 & 0 & 00：2 \\
\hline 0 & 0 & 0 & st：T \\
\hline & 0 & 0 & 0¢： \\
\hline 0 & 0 & 0 & st：T \\
\hline 0 & 0 & 0 & 00： \\
\hline 0 & 0 & 0 & st：0 \\
\hline 0 & 0 & 0 & 0¢：0 \\
\hline 0 & 0 & 0 & st：0 \\
\hline 0 & 0 & 0 & 00：0 \\
\hline \({ }^{1210} 1\) & 8u！1］\({ }^{\text {a }}\) & 8บ！アข & \\
\hline & & & \\
\hline & & кемәппа & ：ad＾ı Junoう \\
\hline \multicolumn{4}{|l|}{\multirow[t]{3}{*}{}} \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 91 & zi & \(\dagger\) & 78101 \\
\hline 0 & 0 & 0 & st：\(¢\) \\
\hline 0 & 0 & 0 & 0¢：¢z \\
\hline 0 & 0 & 0 & st：¢z \\
\hline 0 & 0 & 0 & 00：¢z \\
\hline 0 & 0 & 0 & st：zz \\
\hline 0 & 0 & 0 & 08：zz \\
\hline 0 & 0 & 0 & st：zz \\
\hline 0 & 0 & 0 & 00：zz \\
\hline 0 & 0 & 0 & st：Tz \\
\hline 0 & 0 & 0 & 0¢：Tz \\
\hline 0 & 0 & 0 & st：tz \\
\hline 0 & 0 & 0 & 00：Tz \\
\hline 0 & 0 & 0 & st：oz \\
\hline 0 & 0 & 0 & 0¢：0r \\
\hline 0 & 0 & 0 & st：02 \\
\hline 0 & 0 & 0 & 00：02 \\
\hline 0 & 0 & 0 & st：61 \\
\hline 0 & 0 & 0 & 08：6I \\
\hline 0 & 0 & 0 & st：6I \\
\hline 0 & 0 & 0 & 00：6I \\
\hline 0 & 0 & 0 & st：8t \\
\hline 0 & 0 & 0 & 0¢：81 \\
\hline 0 & 0 & 0 & st：8t \\
\hline 0 & 0 & 0 & 00：8T \\
\hline 0 & 0 & 0 & st：LI \\
\hline 0 & 0 & 0 & 08：LI \\
\hline 0 & 0 & 0 & st：LI \\
\hline 0 & 0 & 0 & 00：LI \\
\hline 0 & 0 & 0 & st：9t \\
\hline 0 & 0 & 0 & 08：9t \\
\hline & 0 & 0 & st：9t \\
\hline 0 & 0 & 0 & 00：9t \\
\hline 0 & 0 & 0 & 5t：st \\
\hline 0 & 0 & 0 & 0：：st \\
\hline & 0 & 0 & st：St \\
\hline － & 0 & I & 00：st \\
\hline 0 & 0 & 0 & st：ut \\
\hline 0 & 0 & 0 & 0¢：ฟ \\
\hline 0 & 0 & 0 & st：\％ \\
\hline 0 & 0 & 0 & 00：\％t \\
\hline 1 & 1 & 0 & st：\(: \frac{1}{\text { d }}\) \\
\hline 0 & 0 & 0 & 0¢：¢ \\
\hline z & z & 0 & st：\(: \frac{1}{}\) \\
\hline z & I & I & 00：8 \\
\hline 0 & 0 & 0 & st：zI \\
\hline 0 & 0 & 0 & 0¢：zI \\
\hline 0 & 0 & 0 & st：zi \\
\hline I & 0 & 1 & 00：zI \\
\hline 0 & 0 & 0 & st：TI \\
\hline 0 & 0 & 0 & 08：IT \\
\hline I & I & 0 & st：It \\
\hline I & I & 0 & 00：II \\
\hline 0 & 0 & 0 & st：ot \\
\hline 0 & 0 & 0 & 08：0т \\
\hline 0 & 0 & 0 & st：ot \\
\hline 0 & 0 & 0 & 00：0t \\
\hline 0 & 0 & 0 & st：6 \\
\hline 0 & 0 & 0 & 0¢：6 \\
\hline ， & I & 0 & st：6 \\
\hline z & z & 0 & 00：6 \\
\hline I & 1 & 0 & st：8 \\
\hline \(\tau\) & \(\tau\) & 0 & 0¢：8 \\
\hline 0 & 0 & 0 & st：8 \\
\hline I & 0 & I & 00：8 \\
\hline 0 & 0 & 0 & st：L \\
\hline I & I & 0 & 0¢：L \\
\hline 0 & 0 & 0 & st：L \\
\hline 0 & 0 & 0 & 00： 1 \\
\hline 0 & 0 & 0 & st：9 \\
\hline 0 & 0 & 0 & 0¢：9 \\
\hline 0 & 0 & 0 & st：9 \\
\hline 0 & 0 & 0 & 00：9 \\
\hline O & 0 & 0 & st：s \\
\hline 0 & 0 & 0 & 08：5 \\
\hline 0 & 0 & 0 & st： s \\
\hline 0 & 0 & 0 & 00：5 \\
\hline 0 & 0 & 0 & st：t \\
\hline 0 & 0 & 0 & 0¢： \\
\hline 0 & 0 & 0 & st：\％ \\
\hline 0 & 0 & 0 & 00： \\
\hline － & 0 & 0 & st：\(\varepsilon\) \\
\hline 0 & 0 & 0 & 0¢：\(\varepsilon\) \\
\hline 0 & 0 & 0 & st：\(\varepsilon\) \\
\hline 0 & 0 & 0 & 00：\(\varepsilon\) \\
\hline 0 & 0 & 0 & st：z \\
\hline 0 & 0 & 0 & 0¢： 2 \\
\hline 0 & 0 & 0 & st：z \\
\hline 0 & 0 & 0 & 00：2 \\
\hline 0 & 0 & 0 & st：T \\
\hline & 0 & 0 & 0¢： \\
\hline 0 & 0 & 0 & st：T \\
\hline 0 & 0 & 0 & 00： \\
\hline & 0 & 0 & st：0 \\
\hline 0 & 0 & 0 & 0¢：0 \\
\hline － & 0 & 0 & st：0 \\
\hline 0 & 0 & 0 & 00：0 \\
\hline \({ }^{12101}\) & 8u！\(\times 3^{3}\) & ชบ！วข） & \\
\hline & & & \\
\hline & \multicolumn{2}{|r|}{Аемәпп．ао} & ：adイıunoう \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} & ：әеп \\
\hline & & & ：\＃лемәлио \\
\hline \multicolumn{3}{|r|}{} & ：720．75 55010 ！！！ \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ¢ \(\varepsilon\) & \(z 2\) & \(\varepsilon{ }^{\text {¢ }}\) & 78101 \\
\hline 0 & 0 & 0 & st：zz \\
\hline 0 & 0 & 0 & 0¢：¢z \\
\hline 0 & 0 & 0 & st：¢z \\
\hline 0 & 0 & 0 & 00：¢z \\
\hline 0 & 0 & 0 & st：zz \\
\hline 0 & 0 & 0 & 08：zz \\
\hline 0 & 0 & 0 & st：zz \\
\hline 0 & 0 & 0 & 00：zz \\
\hline 0 & 0 & 0 & st：Tz \\
\hline 0 & 0 & 0 & 0¢：Tz \\
\hline 0 & 0 & 0 & st：tz \\
\hline 0 & 0 & 0 & 00：Tz \\
\hline 0 & 0 & 0 & st：oz \\
\hline 0 & 0 & 0 & 0¢：0r \\
\hline 0 & 0 & 0 & st：02 \\
\hline 0 & 0 & 0 & 00：02 \\
\hline 0 & 0 & 0 & st：61 \\
\hline 0 & 0 & 0 & 08：6I \\
\hline 0 & 0 & 0 & st：6I \\
\hline 0 & 0 & 0 & 00：6I \\
\hline 0 & 0 & 0 & st：8t \\
\hline 0 & 0 & 0 & 0¢：81 \\
\hline 0 & 0 & 0 & st：8t \\
\hline 0 & 0 & 0 & 00：81 \\
\hline 0 & 0 & 0 & st：LI \\
\hline 0 & 0 & 0 & 08：LI \\
\hline 0 & 0 & 0 & st：LI \\
\hline 0 & 0 & 0 & 00：LI \\
\hline 0 & 0 & 0 & st：9t \\
\hline 0 & 0 & 0 & 08：9t \\
\hline & 0 & 0 & st：9t \\
\hline 0 & 0 & 0 & 00：9t \\
\hline 0 & 0 & 0 & st：st \\
\hline 0 & 0 & 0 & 0：：st \\
\hline － & 0 & 0 & st：St \\
\hline & 0 & 0 & 00：st \\
\hline 0 & 0 & 0 & st：ut \\
\hline \(\tau\) & 0 & \(\tau\) & 0¢：ฟ \\
\hline 0 & 0 & 0 & st：\％ \\
\hline 0 & 0 & 0 & 00：\％t \\
\hline 0 & 0 & 0 & st：\(: \frac{1}{\text { d }}\) \\
\hline 0 & 0 & 0 & 0\％：¢ \\
\hline & 0 & I & st：\(: \frac{1}{}\) \\
\hline I & I & 0 & 00：8 \\
\hline 0 & 0 & 0 & st：zI \\
\hline I & 1 & 0 & 0¢：zI \\
\hline 0 & 0 & 0 & st：zI \\
\hline & 0 & 0 & 00：21 \\
\hline I & I & 0 & st：It \\
\hline I & I & 0 & 08：IT \\
\hline \(\varepsilon\) & r & I & st：It \\
\hline 0 & 0 & 0 & 00：II \\
\hline I & I & 0 & st：0t \\
\hline I & I & 0 & 08：0т \\
\hline \(\varepsilon\) & \(\varepsilon\) & 0 & st：0t \\
\hline \(\varepsilon\) & 2 & I & 00：0t \\
\hline 0 & 0 & 0 & st：6 \\
\hline I & I & 0 & 0¢：6 \\
\hline T & I & 0 & st：6 \\
\hline z & z & 0 & 00：6 \\
\hline I & 1 & 0 & st：8 \\
\hline \(\tau\) & \(\tau\) & 0 & 0¢：8 \\
\hline 0 & 0 & 0 & st：8 \\
\hline 0 & 0 & 0 & 00：8 \\
\hline 0 & 0 & 0 & st：L \\
\hline 0 & 0 & 0 & 0¢：L \\
\hline T & 0 & I & st：L \\
\hline 0 & 0 & 0 & 00： 2 \\
\hline I & 0 & I & st：9 \\
\hline I & 0 & I & 0¢：9 \\
\hline 2 & 1 & 1 & st：9 \\
\hline I & I & 0 & 00：9 \\
\hline T & 0 & 1 & st：s \\
\hline T & I & 0 & 08：5 \\
\hline \(\varepsilon\) & 0 & \(\varepsilon\) & st：S \\
\hline 0 & 0 & 0 & 00：5 \\
\hline 0 & 0 & 0 & st：t \\
\hline 0 & 0 & 0 & 0¢： \\
\hline 0 & 0 & 0 & st：\％ \\
\hline 0 & 0 & 0 & 00： \\
\hline I & 0 & \(\tau\) & st：\(\varepsilon\) \\
\hline 0 & 0 & 0 & 0¢：\(\varepsilon\) \\
\hline 0 & 0 & 0 & st：\(\varepsilon\) \\
\hline 0 & 0 & 0 & 00：\(\varepsilon\) \\
\hline 0 & 0 & 0 & st：z \\
\hline 0 & 0 & 0 & 0¢： 2 \\
\hline 0 & 0 & 0 & st：z \\
\hline 0 & 0 & 0 & 00：2 \\
\hline 0 & 0 & 0 & st：T \\
\hline & 0 & 0 & 0¢： \\
\hline 0 & 0 & 0 & st：T \\
\hline 0 & 0 & 0 & 00： \\
\hline 0 & 0 & 0 & st：0 \\
\hline a & 0 & 0 & 0¢：0 \\
\hline 0 & 0 & 0 & st：0 \\
\hline 0 & 0 & 0 & 00：0 \\
\hline \({ }^{1270}\) & 8u！ & ชบ！วข） & \\
\hline & & & \\
\hline & \multicolumn{2}{|r|}{Аемәлппао} & ： 2 ¢ \(\chi_{1}\) zunoj \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} & ：ә⿺𠃑 \\
\hline & & & ：\＃Аемәпиа \\
\hline \multicolumn{3}{|r|}{} & ：720．75 55010 ！！！ \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 99 & 6 & Ls & 76101 \\
\hline 0 & 0 & 0 & st：\(¢\) z \\
\hline 0 & 0 & 0 & 0¢：¢ \\
\hline 0 & 0 & 0 & st：દz \\
\hline 0 & 0 & 0 & 00：8z \\
\hline 0 & 0 & 0 & st：zz \\
\hline 0 & 0 & 0 & 0¢：zz \\
\hline 0 & 0 & 0 & st：zz \\
\hline － & 0 & 0 & 00：zz \\
\hline 0 & 0 & 0 & st：Tz \\
\hline 0 & 0 & 0 & 08：Tz \\
\hline 0 & 0 & 0 & st：tz \\
\hline 0 & 0 & 0 & 00：Tz \\
\hline 0 & 0 & 0 & st：oz \\
\hline 0 & 0 & 0 & 08：02 \\
\hline 0 & 0 & 0 & st：02 \\
\hline 0 & 0 & 0 & 00：02 \\
\hline 0 & 0 & 0 & 5p：61 \\
\hline 0 & 0 & 0 & 08：61 \\
\hline 0 & 0 & 0 & st：6T \\
\hline 0 & 0 & 0 & 00：61 \\
\hline 0 & 0 & 0 & st：8t \\
\hline 0 & 0 & 0 & 0¢：8T \\
\hline 0 & 0 & 0 & st：8t \\
\hline 0 & 0 & 0 & 00：8T \\
\hline 0 & 0 & 0 & st：LI \\
\hline & 0 & 0 & 08：LI \\
\hline 0 & 0 & 0 & st：LI \\
\hline 0 & 0 & 0 & 00：LI \\
\hline 0 & 0 & 0 & 5t：9t \\
\hline 0 & 0 & 0 & 0¢：9 \\
\hline 0 & 0 & 0 & st：9t \\
\hline 0 & 0 & 0 & 00：91 \\
\hline 0 & 0 & 0 & st：st \\
\hline 0 & 0 & 0 & 0\％：St \\
\hline 0 & 0 & 0 & st：St \\
\hline 0 & 0 & 0 & 00：st \\
\hline 0 & 0 & 0 & St：tI \\
\hline 0 & 0 & 0 & 0\％：ฟ \\
\hline 0 & 0 & 0 & st：t \\
\hline & 0 & 0 & 00：\％I \\
\hline 0 & 0 & 0 & st：\(: \varepsilon\) \\
\hline 0 & 0 & 0 & 0\％：¢ \\
\hline I & 0 & 1 & st：¢ \\
\hline \(\varepsilon\) & 0 & \(\varepsilon\) & 00：¢ \\
\hline 0 & 0 & 0 & st：zT \\
\hline 0 & 0 & 0 & 08：てT \\
\hline 5 & I & \(t\) & st：zI \\
\hline 0 & & 0 & 00：zI \\
\hline 0 & 0 & 0 & st：TI \\
\hline 7 & \(\tau\) & \(\tau\) & 08：II \\
\hline T & 0 & I & st：It \\
\hline I & & I & 00：II \\
\hline 9 & 2 & \(\stackrel{\square}{5}\) & st：ot \\
\hline z & 0 & 2 & 0\％：0t \\
\hline \(\varepsilon\) & 0 & \(\varepsilon\) & st：0t \\
\hline s & I & \(t\) & 00：02 \\
\hline \(\varepsilon\) & 0 & \(\varepsilon\) & st：6 \\
\hline \(\varepsilon\) & 0 & \(\varepsilon\) & 0¢：6 \\
\hline \(t\) & I & \(\varepsilon\) & st：6 \\
\hline 0 & 0 & 0 & 00：6 \\
\hline 9 & 1 & 5 & st：8 \\
\hline I & 0 & I & 0¢：8 \\
\hline I & I & 0 & st：8 \\
\hline 5 & 0 & 5 & 00：8 \\
\hline \(t\) & 0 & \(t\) & st：L \\
\hline \(L\) & 0 & \(L\) & 0¢：L \\
\hline I & 0 & I & st：L \\
\hline I & 0 & 1 & 00： 4 \\
\hline I & T & 0 & st：9 \\
\hline 0 & O & 0 & 0¢：9 \\
\hline 0 & 0 & 0 & st：9 \\
\hline 0 & 0 & 0 & 00：9 \\
\hline 0 & 0 & 0 & st：s \\
\hline 0 & 0 & 0 & 0¢：5 \\
\hline 0 & 0 & 0 & st：s \\
\hline 0 & 0 & 0 & 00：5 \\
\hline 0 & 0 & 0 & st：t \\
\hline 0 & 0 & 0 & 0¢： \\
\hline 0 & 0 & 0 & st：t \\
\hline 0 & 0 & 0 & 00： \\
\hline 0 & 0 & 0 & st：\(\varepsilon\) \\
\hline 0 & 0 & 0 & 0¢：\(\varepsilon\) \\
\hline 0 & 0 & 0 & st：\(\varepsilon\) \\
\hline 0 & 0 & 0 & 00：\(\varepsilon\) \\
\hline 0 & 0 & 0 & st：z \\
\hline 0 & 0 & 0 & 0¢： \\
\hline 0 & 0 & 0 & st：z \\
\hline 0 & 0 & － & 00：2 \\
\hline & 0 & 0 & st：T \\
\hline 0 & 0 & 0 & 0¢： \\
\hline 0 & 0 & 0 & st：T \\
\hline 0 & 0 & 0 & 00： \\
\hline 0 & 0 & 0 & st：0 \\
\hline 0 & 0 & 0 & 0¢：0 \\
\hline & － & 0 & st：0 \\
\hline 0 & 0 & 0 & 00：0 \\
\hline \({ }^{1820}\) & 8u！\({ }^{\text {a }}\) ］ & 8บ1アว） & \\
\hline & & & \\
\hline & & Аемәлп．10 &  \\
\hline \multicolumn{3}{|l|}{} & ：ә⿺辶 \\
\hline & & \(\checkmark\) & ：\＃Аемәппа \\
\hline \multicolumn{3}{|r|}{osa！a ues} &  \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ยII & \％ & 69 & 7 FlOL \\
\hline 0 & 0 & 0 & ¢5t：zz \\
\hline 0 & 0 & 0 & 08：¢ \\
\hline 0 & 0 & 0 & st：\(: \varepsilon\) \\
\hline 0 & 0 & 0 & 00：हr \\
\hline 0 & 0 & 0 & st：zz \\
\hline 0 & 0 & 0 & 0¢：zz \\
\hline 0 & & 0 & st：zz \\
\hline 0 & 0 & 0 & 00：z2 \\
\hline & 0 & 0 & st：Iz \\
\hline － & & 0 & 0¢：Tz \\
\hline 0 & 0 & 0 & st：Tr \\
\hline & 0 & 0 & 00：Tz \\
\hline 0 & & 0 & st：02 \\
\hline 0 & 0 & 0 & 08：02 \\
\hline 0 & 0 & 0 & st：02 \\
\hline 0 & 0 & 0 & 00：02 \\
\hline 0 & 0 & 0 & st：61 \\
\hline 0 & 0 & 0 & 08：6I \\
\hline 0 & 0 & 0 & st：61 \\
\hline 0 & 0 & 0 & 00：61 \\
\hline & 0 & 0 & st：8t \\
\hline 0 & 0 & 0 & 0¢：8T \\
\hline 0 & 0 & 0 & st：8t \\
\hline 0 & 0 & 0 & 00：8t \\
\hline 0 & 0 & 0 & st：LI \\
\hline 0 & 0 & 0 & 08：LI \\
\hline 0 & 0 & 0 & s5：LI \\
\hline 0 & 0 & 0 & 00：LI \\
\hline 0 & 0 & 0 & st：9t \\
\hline 0 & 0 & 0 & 0¢：9t \\
\hline 0 & 0 & 0 & st：9t \\
\hline 0 & 0 & 0 & 00：91 \\
\hline 0 & 0 & 0 & st：st \\
\hline 0 & 0 & 0 & 0\％：ST \\
\hline I & 0 & 1 & st：st \\
\hline 0 & 0 & 0 & 00：st \\
\hline 0 & 0 & 0 & st：tI \\
\hline I & \(\tau\) & 0 & 0¢：ฟて \\
\hline 0 & 0 & 0 & st：t \\
\hline I & I & 0 & 00：\％T \\
\hline 0 & 0 & 0 & st：ż \\
\hline & & I & 0¢：¢ \\
\hline I & 0 & I & st：\(:\) I \\
\hline s & \(\varepsilon\) & 2 & 00：ع \\
\hline \(\varepsilon\) & 0 & \(\varepsilon\) & st：ż \\
\hline 5 & \(\varepsilon\) & z & 0¢：حI \\
\hline \(\dagger\) & I & \(\varepsilon\) & st：zt \\
\hline 9 & \(\dagger\) & z & 00：2T \\
\hline \(\dagger\) & r & z & st：It \\
\hline \(\varepsilon\) & & \(\varepsilon\) & 08：IT \\
\hline I & 0 & I & st：It \\
\hline \(\varepsilon\) & 0 & \(\varepsilon\) & 00：II \\
\hline \(t\) & \(\varepsilon\) & T & st：0t \\
\hline I & I & 0 & 08：0т \\
\hline 5 & \(t\) & I & st：0t \\
\hline t & r & z & 00：0t \\
\hline 2 & & z & st：6 \\
\hline \(L\) & \(\dagger\) & \(\varepsilon\) & 0¢：6 \\
\hline II & s & 9 & st：6 \\
\hline z & 0 & ？ & 00：6 \\
\hline \(L\) & \(\varepsilon\) & \(\dagger\) & st：8 \\
\hline † & z & z & 0¢：8 \\
\hline \(\varepsilon\) & & \(\varepsilon\) & st：8 \\
\hline \(t\) & I & \(\varepsilon\) & 00：8 \\
\hline 6 & \(t\) & 5 & st：L \\
\hline \(\varepsilon\) & 0 & \(\varepsilon\) & 0¢：L \\
\hline I & 0 & T & st：L \\
\hline s & 0 & 5 & 00： 2 \\
\hline I & 0 & \(\tau\) & st：9 \\
\hline I & 0 & 1 & 08：9 \\
\hline 0 & 0 & 0 & st：9 \\
\hline 0 & 0 & 0 & 00：9 \\
\hline 0 & 0 & 0 & st：s \\
\hline 0 & 0 & 0 & 0¢： 5 \\
\hline 0 & 0 & 0 & st：s \\
\hline 0 & 0 & 0 & 00：5 \\
\hline 0 & 0 & 0 & st：t \\
\hline 0 & 0 & 0 & 0¢： \\
\hline 0 & 0 & 0 & st：\％ \\
\hline 0 & 0 & 0 & 00：\％ \\
\hline 0 & 0 & 0 & st：\(\varepsilon\) \\
\hline 0 & 0 & 0 & 0¢：\(\varepsilon\) \\
\hline 0 & 0 & 0 & st：\(\varepsilon\) \\
\hline 0 & 0 & 0 & 00：\(\varepsilon\) \\
\hline 0 & 0 & & st：r \\
\hline 0 & 0 & 0 & 0¢： 2 \\
\hline & 0 & 0 & st：z \\
\hline 0 & 0 & 0 & 00：2 \\
\hline 0 & 0 & 0 & st：T \\
\hline 0 & 0 & 0 & 0¢： \\
\hline & 0 & 0 & st：T \\
\hline 0 & 0 & 0 & 00： \\
\hline 0 & 0 & 0 & st：0 \\
\hline 0 & 0 & 0 & 0¢：0 \\
\hline 0 & 0 & 0 & st：0 \\
\hline 0 & 0 & 0 & 00：0 \\
\hline 18901 & \％u！\(\times\) ］ & รบ！วРบ丬 & \\
\hline & & & \\
\hline & & кемәлпао & ：adイıuno \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} & ：270 \\
\hline & & & ：\＃Аемәпио \\
\hline \multicolumn{3}{|r|}{osa！a ues} & \[
\overline{\frac{1}{5}} \quad \text { כוּגו: }
\] \\
\hline
\end{tabular}


認



City of San Diego traffic data for Pacific Hwy and Rosecrans adjacent to the project site was reviewed.

Rosecrans ADTs show overall decrease; therefore, they were not used for determining a growth factor.
Rosecrans St West of Pacific Hwy
\begin{tabular}{|c|c|c|c|c|c|}
\hline City of SD ID street_name & limits & file_no & date_count & otal_cou & \\
\hline ROSECRANSST03070! ROSECRANS & JEFFERSON ST - PACIFIC HY & 0307-05 & 6/14/2005 & 19940 & \\
\hline ROSECRANSST03310\&ROSECRANS & JEFFERSON ST - PACIFIC HY & 0331-08 & 8/20/2008 & 22950 & 15.1\% \\
\hline ROSECRANSST03222، ROSECRANS & JEFFERSON ST - PACIFIC HY & 0322-22 & 6/29/2022 & 16220 & -18.7\% \\
\hline & & & Total Average & Growth & -1.8\% \\
\hline \multicolumn{6}{|r|}{Not used due to being a negative average growth rate.} \\
\hline
\end{tabular}

City of San Diego has daily volumes for Pacific Highway that were collected between Sea World Dr and Rosecrans St. There are no connections to the city roadway network along this section of Pac Hwy, only connections to businesses. Therefore, all of this historical data was used to determine an average growth rate.

\section*{Pacific Hwy North of Rosecrans St}
\begin{tabular}{llllrlr} 
id & street_name & limits & file_no & \multicolumn{2}{c}{ date_count total_count } \\
PACIFICHY031905 & PACIFIC HY & FRIARS RD - ANNA AV & \(0319-05\) & \(6 / 14 / 2005\) & 5240 & \\
PACIFICHY009206 & PACIFIC HY & ROSECRANS ST - FRIARS RD & \(0092-06\) & \(6 / 13 / 2006\) & 6930 & \(32.3 \%\) \\
PACIFICHY039808 & PACIFIC HY & FRIARS RD - ANNA AV & \(0398-08\) & \(8 / 19 / 2008\) & 6250 & \(-9.8 \%\) \\
PACIFICHY040309 & PACIFIC HY & ROSECRANS ST - FRIARS RD & \(0403-09\) & \(6 / 16 / 2009\) & 8310 & \(33.0 \%\) \\
PACIFICHY079911 & PACIFIC HY & FRIARS RD - ANNA AV & \(0799-11\) & \(8 / 9 / 2011\) & 7470 & \(-10.1 \%\) \\
PACIFICHY086014 & PACIFIC HY & FRIARS RD - ANNA AV & \(0860-14\) & \(8 / 27 / 2014\) & 6437 & \(-13.8 \%\) \\
PACIFICHY055815 & PACIFIC HY & ROSECRANS ST - FRIARS RD & \(0558-15\) & \(3 / 5 / 2015\) & 6160 & \(-4.3 \%\) \\
PACIFICHY018816 & PACIFIC HY & ROSECRANS ST - FRIARS RD & \(0188-16\) & \(6 / 29 / 2016\) & 7086 & \(15.0 \%\) \\
PACIFICHY052921 & PACIFIC HY & ROSECRANS ST - SEA WORLD \(0529-21\) & \(11 / 10 / 2021\) & 7510 & \(6.0 \%\) \\
PACIFICHY032622 & PACIFIC HY & FRIARS RD - ANNA AV & \(0326-22\) & \(6 / 29 / 2022\) & 7655 & \(1.9 \%\) \\
Non City Count & Pacific Hwy & Rosecrans St to Friars Rd & NA & \(2 / 9 / 2023\) & 5752 & \(-24.9 \%\) \\
& & & & Total Average Growth: & \(\mathbf{2 . 5 \%}\)
\end{tabular}
＊T粎是細 么




LOS Engineering, Inc.

3：Pacific Hwy \＆Rosecrans St／Taylor St
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \({ }^{7}\) & 44 & 「 & \(4{ }^{1}\) & 4 & 「 & \({ }^{7}\) & 44 & 「「「 & \({ }_{1} 1\) & 中4 & 「 \\
\hline Traffic Volume（veh／h） & 45 & 205 & 61 & 206 & 208 & 65 & 75 & 89 & 102 & 33 & 67 & 68 \\
\hline Future Volume（veh／h） & 45 & 205 & 61 & 206 & 208 & 65 & 75 & 89 & 102 & 33 & 67 & 68 \\
\hline Initial Q（Qb），veh & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Ped－Bike Adj（A＿pbT） & 1.00 & & 0.92 & 1.00 & & 0.97 & 1.00 & & 0.94 & 1.00 & & 0.92 \\
\hline Parking Bus，Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Work Zone On Approach & & No & & & No & & & No & & & No & \\
\hline Adj Sat Flow，veh／h／ln & 1856 & 1856 & 1856 & 1856 & 1856 & 1856 & 1856 & 1856 & 1856 & 1856 & 1856 & 1856 \\
\hline Adj Flow Rate，veh／h & 52 & 238 & 71 & 219 & 221 & 69 & 100 & 119 & 136 & 40 & 81 & 82 \\
\hline Peak Hour Factor & 0.86 & 0.86 & 0.86 & 0.94 & 0.94 & 0.94 & 0.75 & 0.75 & 0.75 & 0.83 & 0.83 & 0.83 \\
\hline Percent Heavy Veh，\％ & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
\hline Cap，veh／h & 66 & 1258 & 618 & 253 & 758 & 620 & 116 & 887 & 858 & 98 & 757 & 311 \\
\hline Arrive On Green & 0.04 & 0.36 & 0.36 & 0.07 & 0.41 & 0.41 & 0.07 & 0.25 & 0.25 & 0.03 & 0.21 & 0.21 \\
\hline Sat Flow，veh／h & 1767 & 3526 & 1443 & 3428 & 1856 & 1518 & 1767 & 3526 & 2598 & 3428 & 3526 & 1448 \\
\hline Grp Volume（v），veh／h & 52 & 238 & 71 & 219 & 221 & 69 & 100 & 119 & 136 & 40 & 81 & 82 \\
\hline Grp Sat Flow（s），veh／h／ln & 1767 & 1763 & 1443 & 1714 & 1856 & 1518 & 1767 & 1763 & 1299 & 1714 & 1763 & 1448 \\
\hline Q Serve（g＿s），s & 2.5 & 4.0 & 2.6 & 5.4 & 6.8 & 2.4 & 4.8 & 2.2 & 3.2 & 1.0 & 1.6 & 4.0 \\
\hline Cycle Q Clear（g＿c），s & 2.5 & 4.0 & 2.6 & 5.4 & 6.8 & 2.4 & 4.8 & 2.2 & 3.2 & 1.0 & 1.6 & 4.0 \\
\hline Prop In Lane & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Lane Grp Cap（c），veh／h & 66 & 1258 & 618 & 253 & 758 & 620 & 116 & 887 & 858 & 98 & 757 & 311 \\
\hline V／C Ratio（X） & 0.78 & 0.19 & 0.11 & 0.87 & 0.29 & 0.11 & 0.86 & 0.13 & 0.16 & 0.41 & 0.11 & 0.26 \\
\hline Avail Cap（c＿a），veh／h & 184 & 1708 & 802 & 253 & 871 & 713 & 116 & 1795 & 1527 & 164 & 1733 & 712 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter（l） & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Uniform Delay（d），s／veh & 40.8 & 19.0 & 15.0 & 39.2 & 17.0 & 15.7 & 39.6 & 24.8 & 20.5 & 40.8 & 27.0 & 27.9 \\
\hline Incr Delay（d2），s／veh & 18.0 & 0.1 & 0.1 & 25.6 & 0.2 & 0.1 & 44.7 & 0.1 & 0.1 & 2.7 & 0.1 & 0.4 \\
\hline Initial Q Delay（d3），s／veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \％ile BackOfQ（50\％），veh／In & 1.4 & 1.6 & 0.8 & 3.1 & 2.8 & 0.8 & 3.4 & 0.9 & 0.9 & 0.4 & 0.6 & 1.3 \\
\hline \multicolumn{13}{|l|}{Unsig．Movement Delay，s／veh} \\
\hline LnGrp Delay（d），s／veh & 58.8 & 19.0 & 15.1 & 64.8 & 17.2 & 15.7 & 84.3 & 24.8 & 20.6 & 43.5 & 27.0 & 28.4 \\
\hline LnGrp LOS & E & B & B & E & B & B & F & C & C & D & C & C \\
\hline Approach Vol，veh／h & & 361 & & & 509 & & & 355 & & & 203 & \\
\hline Approach Delay，s／veh & & 24.0 & & & 37.5 & & & 40.0 & & & 30.8 & \\
\hline Approach LOS & & C & & & D & & & D & & & C & \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrrrr} 
Timer－Assigned Phs & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Phs Duration（G＋Y＋Rc），s & 13.0 & 36.4 & 11.0 & 25.1 & 8.6 & 40.8 & 7.9 & 28.2 \\
Change Period（Y＋Rc），s & 6.7 & 5.9 & 5.4 & 6.7 & 5.4 & 5.9 & 5.4 & 6.7 \\
Max Green Setting（Gmax），s & 6.3 & 41.4 & 5.6 & 42.0 & 8.9 & 40.1 & 4.1 & 43.5 \\
Max Q Clear Time（g＿c＋I1），s & 7.4 & 6.0 & 6.8 & 6.0 & 4.5 & 8.8 & 3.0 & 5.2 \\
Green Ext Time（p＿c），s & 0.0 & 1.9 & 0.0 & 0.7 & 0.0 & 1.6 & 0.0 & 1.3
\end{tabular}

\section*{Intersection Summary}

HCM 6th Ctrl Delay 33.7
HCM 6th LOS
C

LOS Engineering，Inc．
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|l|}{Intersection} \\
\hline Int Delay, s/veh & 0.6 & & & & & & & & & & & \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & * & & & \(\uparrow\) & 「' & \({ }^{1 /}\) & \(\hat{\sigma}\) & & \({ }^{*}\) & 个 & \\
\hline Traffic Vol, veh/h & 0 & 0 & 0 & 11 & 0 & 2 & 3 & 182 & 4 & 10 & 363 & 0 \\
\hline Future Vol, veh/h & 0 & 0 & 0 & 11 & 0 & 2 & 3 & 182 & 4 & 10 & 363 & 0 \\
\hline Conflicting Peds, \#/hr & 0 & 0 & 1 & 1 & 0 & 5 & 5 & 0 & 5 & 5 & 0 & 3 \\
\hline Sign Control & Stop & Stop & Stop & Stop & Stop & Stop & Free & Free & Free & Free & Free & Free \\
\hline RT Channelized & - & - & None & - & - & Stop & - & - & None & - & - & None \\
\hline Storage Length & - & - & - & - & - & 0 & 50 & - & - & 65 & - & - \\
\hline Veh in Median Storage, \# & \# & 0 & - & - & 0 & - & - & 0 & - & - & 0 & - \\
\hline Grade, \% & - & 0 & - & - & 0 & - & - & 0 & - & - & 0 & - \\
\hline Peak Hour Factor & 92 & 92 & 92 & 60 & 60 & 60 & 82 & 82 & 82 & 97 & 97 & 97 \\
\hline Heavy Vehicles, \% & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
\hline Mvmt Flow & 0 & 0 & 0 & 18 & 0 & 3 & 4 & 222 & 5 & 10 & 374 & 0 \\
\hline
\end{tabular}


LOS Engineering, Inc.

PM Opening Year
3：Pacific Hwy \＆Rosecrans St／Taylor St
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \({ }^{7}\) & 44 & F＇ & 7 & 4 & 「 & \({ }^{7}\) & 中4 & 「「で & ＊＊ & 中4 & 「 \\
\hline Traffic Volume（veh／h） & 46 & 393 & 84 & 190 & 198 & 60 & 129 & 89 & 494 & 110 & 239 & 98 \\
\hline Future Volume（veh／h） & 46 & 393 & 84 & 190 & 198 & 60 & 129 & 89 & 494 & 110 & 239 & 98 \\
\hline Initial Q（Qb），veh & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Ped－Bike Adj（A＿pbT） & 1.00 & & 0.88 & 1.00 & & 0.98 & 1.00 & & 0.93 & 1.00 & & 0.93 \\
\hline Parking Bus，Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Work Zone On Approach & & No & & & No & & & No & & & No & \\
\hline Adj Sat Flow，veh／h／ln & 1856 & 1856 & 1856 & 1856 & 1856 & 1856 & 1856 & 1856 & 1856 & 1856 & 1856 & 1856 \\
\hline Adj Flow Rate，veh／h & 55 & 468 & 100 & 211 & 220 & 67 & 137 & 95 & 526 & 121 & 263 & 108 \\
\hline Peak Hour Factor & 0.84 & 0.84 & 0.84 & 0.90 & 0.90 & 0.90 & 0.94 & 0.94 & 0.94 & 0.91 & 0.91 & 0.91 \\
\hline Percent Heavy Veh，\％ & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
\hline Cap，veh／h & 71 & 1243 & 638 & 277 & 753 & 622 & 167 & 969 & 931 & 182 & 823 & 341 \\
\hline Arrive On Green & 0.04 & 0.35 & 0.35 & 0.08 & 0.41 & 0.41 & 0.09 & 0.27 & 0.27 & 0.05 & 0.23 & 0.23 \\
\hline Sat Flow，veh／h & 1767 & 3526 & 1388 & 3428 & 1856 & 1534 & 1767 & 3526 & 2578 & 3428 & 3526 & 1459 \\
\hline Grp Volume（v），veh／h & 55 & 468 & 100 & 211 & 220 & 67 & 137 & 95 & 526 & 121 & 263 & 108 \\
\hline Grp Sat Flow（s），veh／h／ln & 1767 & 1763 & 1388 & 1714 & 1856 & 1534 & 1767 & 1763 & 1289 & 1714 & 1763 & 1459 \\
\hline Q Serve（g＿s），s & 3.2 & 10.2 & 4.4 & 6.2 & 8.3 & 2.8 & 7.9 & 2.1 & 17.1 & 3.6 & 6.4 & 6.3 \\
\hline Cycle Q Clear（g＿c），s & 3.2 & 10.2 & 4.4 & 6.2 & 8.3 & 2.8 & 7.9 & 2.1 & 17.1 & 3.6 & 6.4 & 6.3 \\
\hline Prop In Lane & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Lane Grp Cap（c），veh／h & 71 & 1243 & 638 & 277 & 753 & 622 & 167 & 969 & 931 & 182 & 823 & 341 \\
\hline V／C Ratio（X） & 0.78 & 0.38 & 0.16 & 0.76 & 0.29 & 0.11 & 0.82 & 0.10 & 0.56 & 0.66 & 0.32 & 0.32 \\
\hline Avail Cap（c＿a），veh／h & 161 & 1378 & 691 & 335 & 761 & 629 & 219 & 1573 & 1373 & 289 & 1433 & 593 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter（I） & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Uniform Delay（d），s／veh & 49.1 & 25.0 & 17.0 & 46.5 & 20.7 & 19.1 & 45.9 & 27.9 & 27.0 & 48.0 & 32.8 & 32.8 \\
\hline Incr Delay（d2），s／veh & 16.4 & 0.2 & 0.1 & 8.2 & 0.2 & 0.1 & 17.0 & 0.0 & 0.5 & 4.1 & 0.2 & 0.5 \\
\hline Initial Q Delay（d3），s／veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \％ile BackOfQ（50\％），veh／ln & 1.7 & 4.3 & 1.3 & 3.0 & 3.6 & 1.0 & 4.1 & 0.8 & 5.0 & 1.6 & 2.6 & 2.2 \\
\hline
\end{tabular}

Unsig．Movement Delay，s／veh
\begin{tabular}{lrrrrrrrrrrr} 
LnGrp Delay（d），s／veh & 65.6 & 25.2 & 17.2 & 54.7 & 20.9 & 19.2 & 62.9 & 28.0 & 27.5 & 52.1 & 33.0 \\
\hline EnGrp LOS & E & C & B & D & C & B & E & C & C & D & C \\
\hline Approach Vol，veh／h & & 623 & & & 498 & & & 758 & & C \\
Approach Delay，s／veh & & 27.5 & & & 35.0 & & & 34.0 & & 37.8 \\
Approach LOS & C & & & C & & & C & & D
\end{tabular}
\begin{tabular}{lrrrrrrrr} 
Timer－Assigned Phs & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Phs Duration（G＋Y＋Rc），s & 15.0 & 42.3 & 15.2 & 30.8 & 9.5 & 47.8 & 10.9 & 35.1 \\
Change Period（Y＋Rc），s & 6.7 & 5.9 & 5.4 & 6.7 & 5.4 & 5.9 & 5.4 & 6.7 \\
Max Green Setting（Gmax），s & 10.1 & 40.4 & 12.8 & 42.0 & 9.4 & 42.4 & 8.7 & 46.1 \\
Max Q Clear Time（g＿c＋I1），s & 8.2 & 12.2 & 9.9 & 8.4 & 5.2 & 10.3 & 5.6 & 19.1 \\
Green Ext Time（p＿c），s & 0.1 & 3.8 & 0.1 & 2.0 & 0.0 & 1.6 & 0.1 & 2.9
\end{tabular}

\section*{Intersection Summary}

HCM 6th Ctrl Delay 33.3
HCM 6th LOS
C

LOS Engineering，Inc．

Intersection: 1: Pacific Hwy \& Private Dwy/Anna Ave
\begin{tabular}{lrr} 
Movement & WB & SB \\
\hline Directions Served & LT & L \\
Maximum Queue (ft) & 30 & 31 \\
Average Queue (ft) & 7 & 1 \\
95th Queue (ft) & 28 & 10 \\
Link Distance (ft) & 158 & \\
Upstream Blk Time (\%) & & \\
Queuing Penalty (veh) & & 65 \\
Storage Bay Dist (ft) & & \\
Storage Blk Time (\%) & & \\
Queuing Penalty (veh) &
\end{tabular}

Intersection: 2: Pacific Hwy \& Project Dwy
\begin{tabular}{lrr} 
Movement & NB & SB \\
\hline Directions Served & T & T \\
Maximum Queue (ft) & 26 & 29 \\
Average Queue (ft) & 1 & 1 \\
95th Queue (ft) & 8 & 10 \\
Link Distance (ft) & 166 & 56 \\
Upstream Blk Time (\%) & & \\
Queuing Penalty (veh) & & \\
Storage Bay Dist (ft) & & \\
Storage Blk Time (\%) & & \\
Queuing Penalty (veh)
\end{tabular}

Intersection: 3: Pacific Hwy \& Rosecrans St/Taylor St
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Movement & EB & EB & EB & EB & WB & WB & WB & WB & NB & NB & NB & NB \\
\hline Directions Served & L & T & T & R & L & L & T & R & L & T & T & R \\
\hline Maximum Queue (ft) & 136 & 133 & 65 & 38 & 162 & 175 & 281 & 31 & 156 & 182 & 43 & 62 \\
\hline Average Queue (ft) & 30 & 74 & 23 & 15 & 100 & 143 & 99 & 7 & 73 & 45 & 1 & 22 \\
\hline 95th Queue (ft) & 77 & 128 & 52 & 31 & 195 & 196 & 201 & 18 & 143 & 110 & 14 & 50 \\
\hline Link Distance (ft) & & 591 & 591 & & & & 393 & 393 & & 700 & 700 & \\
\hline \multicolumn{13}{|l|}{Upstream Blk Time (\%)} \\
\hline \multicolumn{13}{|l|}{Queuing Penalty (veh)} \\
\hline Storage Bay Dist (ft) & 200 & & & 320 & 150 & 150 & & & 135 & & & 250 \\
\hline Storage Blk Time (\%) & & & & & 1 & 18 & 1 & & 8 & & & \\
\hline Queuing Penalty (veh) & & & & & 1 & 37 & 2 & & 3 & & & \\
\hline
\end{tabular}

Intersection: 3: Pacific Hwy \& Rosecrans St/Taylor St
\begin{tabular}{lrrrrrr} 
Movement & NB & SB & SB & SB & SB & SB \\
\hline Directions Served & R & L & L & T & T & R \\
Maximum Queue (ft) & 19 & 28 & 89 & 68 & 24 & 69 \\
Average Queue (ft) & 2 & 5 & 27 & 25 & 7 & 30 \\
95th Queue (ft) & 13 & 22 & 57 & 56 & 24 & 62 \\
Link Distance (ft) & & & & 166 & 166 & \\
Upstream Blk Time (\%) & & & & \\
Queuing Penalty (veh) & & & & 60 \\
Storage Bay Dist (ft) & 250 & 230 & 230 & & 1 \\
Storage Blk Time (\%) & & & & \\
Queuing Penalty (veh) & & \\
& &
\end{tabular}

\section*{Intersection: 1: Pacific Hwy \& Private Dwy/Anna Ave}
\begin{tabular}{lrrrrr} 
Movement & WB & NB & NB & SB & SB \\
\hline Directions Served & LT & L & TR & L & TR \\
Maximum Queue (ft) & 35 & 24 & 6 & 21 & 19 \\
Average Queue (ft) & 9 & 1 & 0 & 1 & 1 \\
95th Queue (ft) & 31 & 12 & 4 & 10 & 11 \\
Link Distance (ft) & 158 & & 2258 & & 473 \\
Upstream Blk Time (\%) & & & & & \\
Queuing Penalty (veh) & & & & & \\
Storage Bay Dist (ft) & & 50 & & 65 & 0 \\
Storage Blk Time (\%) & & 0 & & & 0
\end{tabular}

\section*{Intersection: 2: Pacific Hwy \& Project Dwy}
\begin{tabular}{lrrrr} 
Movement & NB & SB & SB & B11 \\
\hline Directions Served & T & T & TR & T \\
Maximum Queue (ft) & 37 & 59 & 28 & 2 \\
Average Queue (ft) & 2 & 4 & 2 & 0 \\
95th Queue (ft) & 19 & 28 & 13 & 2 \\
Link Distance (ft) & 172 & 50 & 50 & 2258 \\
Upstream Blk Time (\%) & & 0 & 0 & \\
Queuing Penalty (veh) & & 0 & 0 & \\
Storage Bay Dist (ft) & & & \\
Storage Blk Time (\%) & &
\end{tabular}

Intersection: 3: Pacific Hwy \& Rosecrans St/Taylor St
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Movement & EB & EB & EB & EB & WB & WB & WB & WB & NB & NB & NB & NB \\
\hline Directions Served & L & T & T & R & L & L & T & R & L & T & T & R \\
\hline Maximum Queue (ft) & 126 & 229 & 202 & 70 & 161 & 174 & 249 & 44 & 155 & 213 & 79 & 237 \\
\hline Average Queue (ft) & 41 & 135 & 81 & 22 & 74 & 131 & 89 & 8 & 96 & 61 & 5 & 123 \\
\hline 95th Queue (ft) & 89 & 209 & 177 & 49 & 182 & 193 & 195 & 25 & 160 & 154 & 50 & 206 \\
\hline Link Distance (ft) & & 591 & 591 & & & & 393 & 393 & & 700 & 700 & \\
\hline \multicolumn{13}{|l|}{Upstream Blk Time (\%)} \\
\hline \multicolumn{13}{|l|}{Queuing Penalty (veh)} \\
\hline Storage Bay Dist (ft) & 200 & & & 320 & 150 & 150 & & & 135 & & & 250 \\
\hline Storage Blk Time (\%) & & 1 & & & 0 & 11 & 1 & & 7 & 0 & & 0 \\
\hline Queuing Penalty (veh) & & 0 & & & 1 & 21 & 3 & & 3 & 0 & & 0 \\
\hline
\end{tabular}

Intersection: 3: Pacific Hwy \& Rosecrans St/Taylor St
\begin{tabular}{lrrrrrr} 
Movement & NB & SB & SB & SB & SB & SB \\
\hline Directions Served & R & L & L & T & T & R \\
Maximum Queue (ft) & 196 & 124 & 136 & 157 & 157 & 85 \\
Average Queue (ft) & 61 & 37 & 67 & 79 & 75 & 54 \\
95th Queue (ft) & 163 & 98 & 116 & 131 & 140 & 98 \\
Link Distance (ft) & & & & 172 & 172 & \\
Upstream Blk Time (\%) & & & & 0 & 0 & \\
Queuing Penalty (veh) & & & & 0 & 1 & \\
Storage Bay Dist (ft) & 250 & 230 & 230 & & & 60 \\
Storage Blk Time (\%) & 0 & & & 0 & 10 & 11 \\
Queuing Penalty (veh) & 0 & & & 0 & 10 & 13 \\
& & & & & & \\
Network Summary & & & & & &
\end{tabular}

Network wide Queuing Penalty: 52
－工米是䊾： 0

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|l|}{Intersection} \\
\hline Int Delay, s/veh & 1.4 & & & & & & & & & & & \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \(\uparrow\) & & & \(\uparrow\) & 「゙ & \({ }^{*}\) & \(\uparrow\) & & \({ }^{7}\) & \(\uparrow\) & \\
\hline Traffic Vol, veh/h & 0 & 0 & 0 & 8 & 0 & 17 & 1 & 137 & 23 & 18 & 118 & 0 \\
\hline Future Vol, veh/h & 0 & 0 & 0 & 8 & 0 & 17 & 1 & 137 & 23 & 18 & 118 & 0 \\
\hline Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 10 & 0 & 0 & 10 & 10 & 0 & 0 \\
\hline Sign Control & Stop & Stop & Stop & Stop & Stop & Stop & Free & Free & Free & Free & Free & Free \\
\hline RT Channelized & - & - & None & - & - & Stop & - & - & None & - & - & None \\
\hline Storage Length & - & - & - & - & - & 0 & 50 & - & - & 65 & - & - \\
\hline Veh in Median Storage, \# & \# & 0 & - & - & 0 & - & - & 0 & - & - & 0 & - \\
\hline Grade, \% & - & 0 & - & - & 0 & - & - & 0 & - & - & 0 & - \\
\hline Peak Hour Factor & 92 & 92 & 92 & 64 & 64 & 64 & 78 & 78 & 78 & 86 & 86 & 86 \\
\hline Heavy Vehicles, \% & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
\hline Mvmt Flow & 0 & 0 & 0 & 13 & 0 & 27 & 1 & 176 & 29 & 21 & 137 & 0 \\
\hline
\end{tabular}


LOS Engineering, Inc.
\begin{tabular}{lrrrrrr}
\hline Intersection & & & & & & \\
\hline
\end{tabular}


LOS Engineering, Inc.

AM Opening Year＋Project
3：Pacific Hwy \＆Rosecrans St／Taylor St
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \({ }^{7}\) & 中4 & 「 & \({ }^{7} 1\) & 4 & 「＇ & \({ }^{7}\) & 中4 & ずず & \({ }^{7} 1\) & 中4 & 「 \\
\hline Traffic Volume（veh／h） & 45 & 205 & 61 & 206 & 208 & 65 & 75 & 89 & 102 & 57 & 79 & 72 \\
\hline Future Volume（veh／h） & 45 & 205 & 61 & 206 & 208 & 65 & 75 & 89 & 102 & 57 & 79 & 72 \\
\hline Initial Q（Qb），veh & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Ped－Bike Adj（A＿pbT） & 1.00 & & 0.92 & 1.00 & & 0.97 & 1.00 & & 0.94 & 1.00 & & 0.92 \\
\hline Parking Bus，Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Work Zone On Approach & & No & & & No & & & No & & & No & \\
\hline Adj Sat Flow，veh／h／ln & 1856 & 1856 & 1856 & 1856 & 1856 & 1856 & 1856 & 1856 & 1856 & 1856 & 1856 & 1856 \\
\hline Adj Flow Rate，veh／h & 52 & 238 & 71 & 219 & 221 & 69 & 100 & 119 & 136 & 69 & 95 & 87 \\
\hline Peak Hour Factor & 0.86 & 0.86 & 0.86 & 0.94 & 0.94 & 0.94 & 0.75 & 0.75 & 0.75 & 0.83 & 0.83 & 0.83 \\
\hline Percent Heavy Veh，\％ & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
\hline Cap，veh／h & 66 & 1258 & 618 & 253 & 758 & 620 & 116 & 855 & 833 & 129 & 757 & 311 \\
\hline Arrive On Green & 0.04 & 0.36 & 0.36 & 0.07 & 0.41 & 0.41 & 0.07 & 0.24 & 0.24 & 0.04 & 0.21 & 0.21 \\
\hline Sat Flow，veh／h & 1767 & 3526 & 1443 & 3428 & 1856 & 1518 & 1767 & 3526 & 2594 & 3428 & 3526 & 1448 \\
\hline Grp Volume（v），veh／h & 52 & 238 & 71 & 219 & 221 & 69 & 100 & 119 & 136 & 69 & 95 & 87 \\
\hline Grp Sat Flow（s），veh／h／ln & 1767 & 1763 & 1443 & 1714 & 1856 & 1518 & 1767 & 1763 & 1297 & 1714 & 1763 & 1448 \\
\hline Q Serve（g＿s），s & 2.5 & 4.0 & 2.6 & 5.4 & 6.8 & 2.4 & 4.8 & 2.3 & 3.2 & 1.7 & 1.9 & 4.3 \\
\hline Cycle Q Clear（g＿c），s & 2.5 & 4.0 & 2.6 & 5.4 & 6.8 & 2.4 & 4.8 & 2.3 & 3.2 & 1.7 & 1.9 & 4.3 \\
\hline Prop In Lane & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Lane Grp Cap（c），veh／h & 66 & 1258 & 618 & 253 & 758 & 620 & 116 & 855 & 833 & 129 & 757 & 311 \\
\hline V／C Ratio（X） & 0.78 & 0.19 & 0.11 & 0.87 & 0.29 & 0.11 & 0.86 & 0.14 & 0.16 & 0.53 & 0.13 & 0.28 \\
\hline Avail Cap（c＿a），veh／h & 184 & 1708 & 802 & 253 & 871 & 713 & 116 & 1795 & 1525 & 164 & 1733 & 712 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter（l） & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Uniform Delay（d），s／veh & 40.8 & 19.0 & 15.0 & 39.2 & 17.0 & 15.7 & 39.6 & 25.4 & 21.1 & 40.4 & 27.1 & 28.0 \\
\hline Incr Delay（d2），s／veh & 18.0 & 0.1 & 0.1 & 25.6 & 0.2 & 0.1 & 44.7 & 0.1 & 0.1 & 3.4 & 0.1 & 0.5 \\
\hline Initial Q Delay（d3），s／veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \％ile BackOfQ（50\％），veh／ln & 1.4 & 1.6 & 0.8 & 3.1 & 2.8 & 0.8 & 3.4 & 0.9 & 0.9 & 0.7 & 0.7 & 1.4 \\
\hline
\end{tabular}

Unsig．Movement Delay，s／veh
\begin{tabular}{lrrrrrrrrrrr} 
LnGrp Delay（d），s／veh & 58.8 & 19.0 & 15.1 & 64.8 & 17.2 & 15.7 & 84.3 & 25.4 & 21.2 & 43.8 & 27.1 \\
\hline EnGrp LOS & E & B & B & E & B & B & F & C & C & D & C \\
\hline Approach Vol，veh／h & & 361 & & & 509 & & & 355 & & 251 \\
Approach Delay，s／veh & & 24.0 & & & 37.5 & & & 40.4 & & 32.2 \\
Approach LOS & C & & & D & & & D & \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrrrr} 
Timer－Assigned Phs & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Phs Duration（G＋Y＋Rc），s & 13.0 & 36.4 & 11.0 & 25.1 & 8.6 & 40.8 & 8.6 & 27.4 \\
Change Period（Y＋Rc），s & 6.7 & 5.9 & 5.4 & 6.7 & 5.4 & 5.9 & 5.4 & 6.7 \\
Max Green Setting（Gmax），s & 6.3 & 41.4 & 5.6 & 42.0 & 8.9 & 40.1 & 4.1 & 43.5 \\
Max Q Clear Time（g＿c＋I1），s & 7.4 & 6.0 & 6.8 & 6.3 & 4.5 & 8.8 & 3.7 & 5.2 \\
Green Ext Time（p＿c），s & 0.0 & 1.9 & 0.0 & 0.8 & 0.0 & 1.6 & 0.0 & 1.3
\end{tabular}

\section*{Intersection Summary}

HCM 6th Ctrl Delay 34.0
HCM 6th LOS C

LOS Engineering，Inc．
\begin{tabular}{lrrrrrrrrrrrrrr}
\hline Intersection & & & & & & & & & & & & & & \\
\hline
\end{tabular}


LOS Engineering, Inc.
\begin{tabular}{lrrrrrr}
\hline Intersection & & & & & & \\
\hline
\end{tabular}


LOS Engineering, Inc.

PM Opening Year＋Project
3：Pacific Hwy \＆Rosecrans St／Taylor St
HCM 6th Signalized Intersection Summary
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \({ }^{7}\) & 44 & 「 & 7 & 4 & 「 & \({ }^{7}\) & 中4 & 「「゙ & \({ }^{71}\) & 中4 & 「 \\
\hline Traffic Volume（veh／h） & 54 & 393 & 84 & 190 & 198 & 76 & 129 & 113 & 494 & 128 & 248 & 101 \\
\hline Future Volume（veh／h） & 54 & 393 & 84 & 190 & 198 & 76 & 129 & 113 & 494 & 128 & 248 & 101 \\
\hline Initial Q（Qb），veh & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Ped－Bike Adj（A＿pbT） & 1.00 & & 0.88 & 1.00 & & 0.98 & 1.00 & & 0.93 & 1.00 & & 0.93 \\
\hline Parking Bus，Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Work Zone On Approach & & No & & & No & & & No & & & No & \\
\hline Adj Sat Flow，veh／h／ln & 1856 & 1856 & 1856 & 1856 & 1856 & 1856 & 1856 & 1856 & 1856 & 1856 & 1856 & 1856 \\
\hline Adj Flow Rate，veh／h & 64 & 468 & 100 & 211 & 220 & 84 & 137 & 120 & 526 & 141 & 273 & 111 \\
\hline Peak Hour Factor & 0.84 & 0.84 & 0.84 & 0.90 & 0.90 & 0.90 & 0.94 & 0.94 & 0.94 & 0.91 & 0.91 & 0.91 \\
\hline Percent Heavy Veh，\％ & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
\hline Cap，veh／h & 82 & 1232 & 633 & 276 & 734 & 607 & 167 & 968 & 930 & 203 & 845 & 350 \\
\hline Arrive On Green & 0.05 & 0.35 & 0.35 & 0.08 & 0.40 & 0.40 & 0.09 & 0.27 & 0.27 & 0.06 & 0.24 & 0.24 \\
\hline Sat Flow，veh／h & 1767 & 3526 & 1387 & 3428 & 1856 & 1533 & 1767 & 3526 & 2577 & 3428 & 3526 & 1461 \\
\hline Grp Volume（v），veh／h & 64 & 468 & 100 & 211 & 220 & 84 & 137 & 120 & 526 & 141 & 273 & 111 \\
\hline Grp Sat Flow（s），veh／h／ln & 1767 & 1763 & 1387 & 1714 & 1856 & 1533 & 1767 & 1763 & 1289 & 1714 & 1763 & 1461 \\
\hline Q Serve（g＿s），s & 3.7 & 10.4 & 4.5 & 6.3 & 8.5 & 3.7 & 8.0 & 2.7 & 17.3 & 4.2 & 6.7 & 6.5 \\
\hline Cycle Q Clear（g＿c），s & 3.7 & 10.4 & 4.5 & 6.3 & 8.5 & 3.7 & 8.0 & 2.7 & 17.3 & 4.2 & 6.7 & 6.5 \\
\hline Prop In Lane & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Lane Grp Cap（c），veh／h & 82 & 1232 & 633 & 276 & 734 & 607 & 167 & 968 & 930 & 203 & 845 & 350 \\
\hline V／C Ratio（X） & 0.78 & 0.38 & 0.16 & 0.77 & 0.30 & 0.14 & 0.82 & 0.12 & 0.57 & 0.69 & 0.32 & 0.32 \\
\hline Avail Cap（c＿a），veh／h & 159 & 1363 & 684 & 331 & 753 & 622 & 216 & 1555 & 1360 & 285 & 1417 & 587 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter（l） & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Uniform Delay（d），s／veh & 49.3 & 25.5 & 17.4 & 47.1 & 21.7 & 20.2 & 46.5 & 28.5 & 27.3 & 48.2 & 32.8 & 32.7 \\
\hline Incr Delay（d2），s／veh & 14.3 & 0.2 & 0.1 & 8.5 & 0.2 & 0.1 & 17.5 & 0.1 & 0.5 & 4.2 & 0.2 & 0.5 \\
\hline Initial Q Delay（d3），s／veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \％ile BackOfQ（50\％），veh／ln & 2.0 & 4.3 & 1.4 & 3.0 & 3.7 & 1.3 & 4.2 & 1.1 & 5.1 & 1.9 & 2.8 & 2.3 \\
\hline \multicolumn{13}{|l|}{Unsig．Movement Delay，s／veh} \\
\hline LnGrp Delay（d），s／veh & 63.6 & 25.7 & 17.5 & 55.6 & 21.9 & 20.3 & 64.0 & 28.5 & 27.9 & 52.4 & 33.0 & 33.2 \\
\hline LnGrp LOS & E & C & B & E & C & C & E & C & C & D & C & C \\
\hline Approach Vol，veh／h & & 632 & & & 515 & & & 783 & & & 525 & \\
\hline Approach Delay，s／veh & & 28.2 & & & 35.4 & & & 34.3 & & & 38.3 & \\
\hline Approach LOS & & C & & & D & & & C & & & D & \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrrrr} 
Timer－Assigned Phs & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Phs Duration（G＋Y＋Rc），s & 15.1 & 42.4 & 15.2 & 31.7 & 10.3 & 47.3 & 11.6 & 35.4 \\
Change Period（Y＋Rc），s & 6.7 & 5.9 & 5.4 & 6.7 & 5.4 & 5.9 & 5.4 & 6.7 \\
Max Green Setting（Gmax），s & 10.1 & 40.4 & 12.8 & 42.0 & 9.4 & 42.4 & 8.7 & 46.1 \\
Max Q Clear Time（g＿c＋I1），s & 8.3 & 12.4 & 10.0 & 8.7 & 5.7 & 10.5 & 6.2 & 19.3 \\
Green Ext Time（p＿c），s & 0.1 & 3.8 & 0.1 & 2.0 & 0.0 & 1.6 & 0.1 & 3.1
\end{tabular}

\section*{Intersection Summary}
\begin{tabular}{lr}
\hline HCM 6th Ctrl Delay & 33.8 \\
HCM 6th LOS & C
\end{tabular}

LOS Engineering，Inc．

Intersection: 1: Pacific Hwy \& Private Dwy/Anna Ave
\begin{tabular}{lrrr} 
Movement & WB & NB & SB \\
\hline Directions Served & LT & TR & L \\
Maximum Queue (ft) & 30 & 76 & 53 \\
Average Queue (ft) & 9 & 3 & 6 \\
95th Queue (ft) & 31 & 25 & 28 \\
Link Distance (ft) & 158 & 2258 & \\
Upstream Blk Time (\%) & & & \\
Queuing Penalty (veh) & & & \\
Storage Bay Dist (ft) & & 0 & 05 \\
Storage Blk Time (\%) & & 0 & 0
\end{tabular}

Intersection: 2: Pacific Hwy \& Project Dwy
\begin{tabular}{lrrrr} 
Movement & EB & NB & SB & SB \\
\hline Directions Served & R & T & T & TR \\
Maximum Queue (ft) & 89 & 96 & 74 & 29 \\
Average Queue (ft) & 39 & 3 & 7 & 2 \\
95th Queue (ft) & 68 & 31 & 34 & 14 \\
Link Distance (ft) & 153 & 166 & 56 & 56 \\
Upstream Blk Time (\%) & & & 0 & \\
Queuing Penalty (veh) & & & 0 & \\
Storage Bay Dist (ft) & & & \\
Storage Blk Time (\%) & &
\end{tabular}

Intersection: 3: Pacific Hwy \& Rosecrans St/Taylor St
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Movement & EB & EB & EB & EB & WB & WB & WB & WB & NB & NB & NB & NB \\
\hline Directions Served & L & T & T & R & L & L & T & R & L & T & R & R \\
\hline Maximum Queue (ft) & 128 & 127 & 120 & 39 & 162 & 174 & 389 & 36 & 113 & 68 & 64 & 19 \\
\hline Average Queue (ft) & 41 & 65 & 24 & 14 & 97 & 141 & 133 & 9 & 58 & 28 & 22 & 1 \\
\hline 95th Queue (ft) & 88 & 113 & 65 & 33 & 205 & 212 & 276 & 27 & 103 & 64 & 44 & 9 \\
\hline Link Distance (ft) & & 591 & 591 & & & & 393 & 393 & & 700 & & \\
\hline Upstream Blk Time (\%) & & & & & & & 0 & & & & & \\
\hline Queuing Penalty (veh) & & & & & & & 0 & & & & & \\
\hline Storage Bay Dist (ft) & 200 & & & 320 & 150 & 150 & & & 135 & & 250 & 250 \\
\hline Storage Blk Time (\%) & & & & & 1 & 15 & 3 & & & & & \\
\hline Queuing Penalty (veh) & & & & & 1 & 31 & 7 & & & & & \\
\hline
\end{tabular}

\section*{Intersection: 3: Pacific Hwy \& Rosecrans St/Taylor St}
\begin{tabular}{lrrrrr}
\hline Movement & SB & SB & SB & SB & SB \\
\hline Directions Served & L & L & T & T & R \\
Maximum Queue (ft) & 81 & 92 & 68 & 166 & 85 \\
Average Queue (ft) & 13 & 50 & 23 & 30 & 39 \\
95th Queue (ft) & 54 & 88 & 54 & 94 & 83 \\
Link Distance (ft) & & & 166 & 166 & \\
Upstream Blk Time (\%) & & & & 1 & \\
Queuing Penalty (veh) & & & & 1 & \\
Storage Bay Dist (ft) & 230 & 230 & & 0 & 60 \\
Storage Blk Time (\%) & & & & 0 & 2 \\
Queuing Penalty (veh) & & & & \\
&
\end{tabular}

Intersection: 1: Pacific Hwy \& Private Dwy/Anna Ave
\begin{tabular}{lrrr} 
Movement & WB & NB & SB \\
\hline Directions Served & LT & L & L \\
Maximum Queue (ft) & 57 & 30 & 30 \\
Average Queue (ft) & 31 & 1 & 1 \\
95th Queue (ft) & 50 & 10 & 10 \\
Link Distance (ft) & 158 & & \\
Upstream Blk Time (\%) & & & \\
Queuing Penalty (veh) & & 50 & 65 \\
Storage Bay Dist (ft) & & 0 & \\
Storage Blk Time (\%) & & 0 &
\end{tabular}

Intersection: 2: Pacific Hwy \& Project Dwy
\begin{tabular}{lrrrr} 
Movement & EB & NB & SB & SB \\
\hline Directions Served & R & T & T & TR \\
Maximum Queue (ft) & 31 & 31 & 52 & 53 \\
Average Queue (ft) & 20 & 1 & 5 & 2 \\
95th Queue (ft) & 44 & 10 & 26 & 18 \\
Link Distance (ft) & 153 & 172 & 50 & 50 \\
Upstream Blk Time (\%) & & & 0 & 0 \\
Queuing Penalty (veh) & & & 0 & 0 \\
Storage Bay Dist (ft) & & & & \\
Storage Blk Time (\%) & & &
\end{tabular}

Intersection: 3: Pacific Hwy \& Rosecrans St/Taylor St
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Movement & EB & EB & EB & EB & WB & WB & WB & WB & NB & NB & NB & NB \\
\hline Directions Served & L & T & T & R & L & L & T & R & L & T & T & R \\
\hline Maximum Queue (ft) & 224 & 239 & 172 & 66 & 161 & 173 & 229 & 32 & 159 & 189 & 56 & 264 \\
\hline Average Queue (ft) & 43 & 145 & 87 & 20 & 80 & 123 & 88 & 9 & 104 & 59 & 2 & 133 \\
\hline 95th Queue (ft) & 111 & 218 & 171 & 45 & 179 & 184 & 185 & 28 & 156 & 123 & 18 & 211 \\
\hline Link Distance (ft) & & 591 & 591 & & & & 393 & 393 & & 700 & 700 & \\
\hline \multicolumn{13}{|l|}{Upstream Blk Time (\%)} \\
\hline \multicolumn{13}{|l|}{Queuing Penalty (veh)} \\
\hline Storage Bay Dist (ft) & 200 & & & 320 & 150 & 150 & & & 135 & & & 250 \\
\hline Storage Blk Time (\%) & & 2 & & & 0 & 11 & 1 & & 7 & 0 & & 0 \\
\hline Queuing Penalty (veh) & & 1 & & & 1 & 22 & 3 & & 4 & 0 & & 0 \\
\hline
\end{tabular}

Intersection: 3: Pacific Hwy \& Rosecrans St/Taylor St
\begin{tabular}{lrrrrrr} 
Movement & NB & SB & SB & SB & SB & SB \\
\hline Directions Served & R & L & L & T & T & R \\
Maximum Queue (ft) & 220 & 128 & 171 & 179 & 172 & 85 \\
Average Queue (ft) & 59 & 31 & 72 & 94 & 92 & 58 \\
95th Queue (ft) & 165 & 87 & 125 & 163 & 164 & 107 \\
Link Distance (ft) & & & & 172 & 172 & \\
Upstream Blk Time (\%) & & & 0 & 0 & 1 & \\
Queuing Penalty (veh) & & & 0 & 0 & 3 & \\
Storage Bay Dist (ft) & 250 & 230 & 230 & & & 60 \\
Storage Blk Time (\%) & & & 0 & 0 & 14 & 18 \\
Queuing Penalty (veh) & & & 0 & 0 & 14 & 22 \\
& & & & & & \\
Network Summary & & & & & &
\end{tabular}

Network wide Queuing Penalty: 70



\section*{City of San Diego Traffic Data}
id street_name limits total_count file_no date_count

\section*{PACIFIC HWY NORTH OF ROSECRANS}
\begin{tabular}{lll} 
PACIFICHY031905 & PACIFIC HY & FRIARS RD - ANNA AV \\
PACIFICHY039808 & PACIFIC HY & FRIARS RD - ANNA AV \\
PACIFICHY079911 & PACIFIC HY & FRIARS RD - ANNA AV \\
PACIFICHY086014 & PACIFIC HY & FRIARS RD - ANNA AV \\
PACIFICHYHY03262؛PACIFIC HY HY & FRIARS RD - ANNA AV \\
PACIFICHY009206 & PACIFIC HY & ROSECRANS ST - FRIARS RD \\
PACIFICHY040309 & PACIFIC HY & ROSECRANS ST - FRIARS RD \\
PACIFICHY055815 & PACIFIC HY & ROSECRANS ST - FRIARS RD \\
PACIFICHY018816 & PACIFIC HY & ROSECRANS ST - FRIARS RD \\
PACIFICHY052921 & PACIFIC HY & ROSECRANS ST - SEA WORLD
\end{tabular}

Average

5240 0319-05
6250 0398-08
7470 0799-11
6437 0860-14
7655 0326-22
6930 0092-06
8310 0403-09
6160 0558-15
7086 0188-16
7510 0529-21
6,905
\begin{tabular}{|c|c|}
\hline 13501 0187-16 & 6/29/2016 \\
\hline 13980 0091-06 & 6/13/2006 \\
\hline 15380 0402-09 & 6/16/2009 \\
\hline 15121 0423-12 & 5/31/2012 \\
\hline 14885 0497-15 & 6/17/2015 \\
\hline
\end{tabular}

14885 0497-15
6/17/2015

\section*{ROSECRANS WEST OF PACIFIC HWY}

ROSECRANSST0307ROSECRANS ST JEFFERSON ST - PACIFIC HY

19940 0307-05 22950 0331-08 16220 0322-22
19,703

TAYLOR EAST OF PACIFIC HWY

TAYLORST031505 TAYLOR ST
TAYLORST033608 TAYLOR S
TAYLORST083111 TAYLOR ST
TAYLORST105914 TAYLOR ST
TAYLORST033322 TAYLOR ST

PACIFIC HY - CONGRESS ST
PACIFIC HY - CONGRESS ST
PACIFIC HY - CONGRESS ST PACIFIC HY HY - CONGRESS !

Average
\begin{tabular}{rr}
22010 0315-05 & \(6 / 15 / 2005\) \\
22050 0336-08 & \(8 / 20 / 2008\) \\
\(201950831-11\) & \(8 / 17 / 2011\) \\
19479 1059-14 & \(11 / 25 / 2014\) \\
19307 & \(0333-22\)
\end{tabular}\(\quad 6 / 29 / 2022\)



Existing High Visibility Crosswalks and Pedestrian Countdown Signal Heads




(丁) 相


SB Bike Lane on Pacific Hwy just north of Rosecrans Intersection.


NB Bike Lane on Pacific Hwy just south of Rosecrans Intersection (note pained over sealant outlining square detector loop detector).


SB bike loop detector noted by black sealant on bottom edge where it is not painted over.




Type E Modified Loop Detectors at Pacific Highway/Rosecrans St/Taylor St
North Leg


East Leg


South Leg


West Leg
```


[^0]: * While Mesa College is in session during fall and spring semesters, Route 44 has a 7-9am peak hour frequency of 5-10 minutes.
 ** Bus Route 84 departs the Old Town Transit Center once at 6:13am.

