SUPPLEMENTAL GEOTECHNICAL INVESTIGATION AND SLOPE STABILITY ANALYSIS

SOUTHWEST VILLAGE VTM-1 SAN DIEGO, CALIFORNIA

GEOTECHNICAL ENVIRONMENTAL MATERIALS PREPARED FOR

TRI POINTE HOMES SAN DIEGO, CALIFORNIA

JUNE 25, 2021 PROJECT NO. 06847-42-04

Project No. 06847-42-04 June 25, 2021

Tri Pointe Homes 13400 Sabre Springs Parkway, Suite 200 San Diego, California 92128

Attention: Ms. April Tornillo

Subject: SUPPLEMENTAL GEOTECHNICAL INVESTIGATION AND SLOPE STABILITY ANALYSIS SOUTHWEST VILLAGE VTM-1 SAN DIEGO, CALIFORNIA

Reference: *Preliminary Geotechnical Investigation, Southwest Village, Vesting Tentative Map, San Diego, California,* prepared by Geocon Incorporated, dated March 28, 2019 (Project No. 06847-42-03).

Dear Ms. Tornillo:

In accordance with your authorization, we have performed a supplemental geotechnical investigation and slope stability analysis for VTM-1 of the proposed Southwest Village project in the San Ysidro area of San Diego, California. The intent of the study was to further evaluate slope stability as it relates to the San Ysidro landslide that borders the southwest margin of the proposed project. The information provided herein supplements the referenced geotechnical report.

Based on previous geotechnical studies and the results of this investigation, it is our opinion that the proposed project can be developed as planned provided the recommendations presented in this report, and the referenced preliminary report are implemented during design and construction.

If you have any questions regarding this report, or if we may be of further service, please contact the undersigned at your convenience.

Very truly yours,

GEOCON INCORPORATED David B. Evans Rodney C. Mikesell GE 2533 CEG 1860 No 253 RCM:DBE:arm DAVID B EVANS Addressee (e-mail) NO. 1860 (e-mail) **Rick Engineering Company** CERTIFIED Attention: Mr. Tim Gabrielson ENGINEERING GEOLOGIST

TABLE OF CONTENTS

1.	PURPOSE AND SCOPE	1
2.	BACKGROUND	2
3.	GEOLOGIC CONDITIONS AND GEOMORPHIC FEATURES	3
4.	SLOPE STABILITY EVALUATION. 4.1 General. 4.2 Shear Strength Parameters. 4.3 Slope Stability Analysis. 4.4 Seismic Slope Stability	5 5 6 7 7 8
5.	CONCLUSIONS	0
LIM	ITATIONS AND UNIFORMITY OF CONDITIONS	
MA	PS AND ILLUSTRATIONS	

- Figure 1, Vicinity Map Figure 2 San Ysidro Landslide Complex (Oblique View) Figure 3 San Ysidro Landslide Complex (Map View) Figure 4 Anaglyphic Stereoscopic Image of the San Ysidro Landslide Complex Figure 5 VTM-1 Development Footprint; Color Terrain Map Figure 6 VTM-1 Development Footprint; Terrain Reflectance Map

- Figure 6 VTM-1 Development Footprint; Terrain Reflectance Map Figure 7 Oblique Image of Landslide A Figure 8 Anaglyphic Stereoscopic Image of Landslide A Figure 9 Boring and Cross Section Exhibit, Landslide A Figure 10 Boring and Cross Section Exhibit, VTM-1 Study Area (Color Terrain Map) Figure 11 Boring and Cross Section Exhibit, VTM-1 Study Area (Terrain Reflectance Map) Figure 12 Cross Section AA AA' Figure 13 Cross Section BB BB' Figure 14 Slope Stability Summary

- Figure 14 Slope Stability Summary

APPENDIX A

FIELD INVESTIGATION

Figures A1-A3, Generalized/Summary Geologic description of Core Samples Figures A4 – A7, Unified Soil Classification System description of Core Samples Figures A8 – A22, Photographs of the Core Samples

APPENDIX B

LABORATORY TESTING

APPENDIX C

HYDRAULIC CONDUCTIVITY TESTING

APPENDIX D

SLOPE STABILITY ANALYSIS

APPENDIX E

GROUNDWATER EVALUATION by DUDEK & ASSOCIATES

APPENDIX F

GROUNDWATER EVALUATION by RICK ENGINEERING

APPENDIX G

GEOVISION REPORT

APPENDIX H

RICK ENGINEERING VTM PLAN

LIST OF REFERENCES

SUPPLEMENTAL GEOTECHNICAL INVESTIGATION AND SLOPE STABILITY ANALYSIS

1. PURPOSE AND SCOPE

This report presents the findings of a supplemental geotechnical study for the Southwest Village Vesting Tentative Map 1 (VTM-1) project located in South Otay Mesa, San Diego, California (see Vicinity Map, Figure 1). Two other phases of the overall project which consist of the eastward extension of Beyer Boulevard into VTM-1, and a borrow/fill site south of VTM-1 will be addressed in future geotechnical studies. These phases are also shown on Figure 1.

The purpose of this study was to evaluate the soil and geologic conditions in an accessible portion of the San Ysidro landslide complex that borders the southwest margin of VTM-1 and perform a supplemental slope stability analysis of this area as it relates to the adjacent proposed development. In conjunction with this investigation, we identified the groundwater conditions within the landslide mass and beneath the mesa top, and evaluated the potential impacts to slope stability of future storm water runoff and irrigation.

Since this report is a supplement to previous studies, we did not attempt to re-present information contained in the referenced study but rather provide the salient information which focuses on the potential impact of the proposed development, if any, on the current landslide stability. In this regard, a discussion of faulting, stratigraphy and other geologic information can be found in the referenced geotechnical report.

The scope of the supplemental investigation included a review of previous geotechnical reports and published geologic literature with respect to the landslide complex (see list of references), performing exploratory borings in the landslide mass and evaluating the stability of the hillside adjacent to the VTM-1 project site. We also performed infiltration testing at several proposed storm water outfall discharge locations as well as on the mesa top. It should be noted that the boring locations were selected based on property ownership constraints.

The supplemental investigation was performed between November 30, 2020, and February 5, 2021, and included drilling four continuous core borings through the landslide mass along the southwestern flank of VTM-1 (see Figures 9 and 13). The borings ranged in depth from 218.5 feet to 397 feet below the ground surface. Boring No. 3 encountered drilling difficulty at an intermediate depth and was re-drilled (Boring No. 3A) at an adjacent location. The core logs presented on Figures A-17 through A-22, Appendix A, represent a combined sequence between Boring No. 3 and 3A. The cores were initially logged in the field and then later logged and photographed in our laboratory.

A generalized geologic description of the cores is presented as Figures A1 through A3, Appendix A. A detailed log of the cores using the Unified Soil Classification System is also presented in Appendix A on Figures A-4 through A-7. Laboratory test results from selected samples obtained from the borings are provided in Appendix B. The infiltration test results are provided in Appendix C. Slope stability figures are provided in Appendix D. Geologic cross sections, which were the basis for our slope stability analysis, are presented on Figures 12 and 13. The letter designation (AA-AA', BB-BB') was selected to differentiate the current cross sections from those presented in previous reports.

As part of this study, Dudek & Associates was retained to perform a groundwater evaluation in the landslide and surrounding area. Their study was based on a site reconnaissance, our bore-hole and infiltration data and published documents. The intent of their study was to assess the current groundwater elevations in the area and comment on the potential impacts project development may have on the regional groundwater system, specifically the landslide area. The Dudek report is contained in Appendix E.

Rick Engineering Company also performed a hydrology analysis of the Southwest Village VTM-1 project and surrounding landslide areas (Reference No. 12). They studied the pre-project and post-project conditions with respect to infiltration of storm water and irrigation. The Rick Engineering report is contained in Appendix F.

In addition to Dudek and Rick Engineering's study, the groundwater elevation in each boring was measured by Geovision Geophysical Services using bore-hole geophysical techniques. A description of the various techniques performed during the study is contained in their report presented in Appendix G. The information contained in the Geovision report, as well as direct measurements taken by Dudek & Associates in Boring No. 3A, was the basis for the existing groundwater elevations used in our slope stability analysis. In addition, a groundwater level recorded in an agricultural well located on the top of the mesa was also used for the area behind the slide.

2. BACKGROUND

The overall proposed Southwest Village development is located adjacent to the San Ysidro Landslide complex which is one of the largest landslide features in San Diego County (See Figures 1 through 6). Although studied relatively extensively by prominent geologists and geotechnical firms, to our knowledge, prior to this study, the base of the landslide has only been identified once during an investigation by Geocon Incorporated for the Intermodal Transportation Center located southwest of the mesa (see Reference No 6).

A primary focus of previous geotechnical studies performed by Geocon Incorporated was to define the headscarp of the landslide adjacent to the proposed development to establish the building setback limit along the edge of the mesa. Large-diameter borings were advanced along the proposed development limits to demonstrate that beyond the landslide headscarp, intact sedimentary bedrock units exist (i.e. stable conditions). In addition, during the previous field investigation, the headscarp was mapped in detail and surveyed to record its location. A 50-foot setback from the surveyed location of the headscarp was established. A copy of the VTM grading sheet showing this setback is contained in Appendix H. The previous studies did not have an opportunity to perform a field investigation within the limits of the landslide complex in the vicinity of the VTM-1 project site.

3. GEOLOGIC CONDITIONS AND GEOMORPHIC FEATURES

The following discussion presents general observations made during this study based on an interpretation of our boring logs, stereographic photographs (anaglyphs; Figures 4 and 8, note: color anaglyphic glasses needed for viewing), color/reflectance terrain models generated from Lidar information (Figures 5, 6, 10 and 11), geomorphic features and our experience with similar mass movements. Future studies will be required to further evaluate the geologic conditions on the portions of the mesa and surrounding landslide areas where the other two associated development phases are proposed. Specifically, the eastern extension of Beyer Boulevard into the project and development of the borrow/fill site area (VTM-2).

The results of this study indicate that the San Ysidro Landslide Complex is approximately 350 to 400feet-thick near its head scarp southwest of VTM-1. Characteristic landslide morphology of steep back-scarps and bulging, hummocky topography, as well as deflected drainages and closed surface depressions are evident within the hillsides that surround the entire mesa. Based on surface topography, we have separated the landslide complex into three components based on observed geomorphological differences between areas (Landslides A, B and C, see Figures 2, 3, 5, 6 and 9).

Landslide A, the focus of this study, appears to be the most developed feature with respect to past horizontal displacement as evidenced by its more subdued/relaxed topography, especially along its distal portion (see Figures 5 through 11). It is postulated/hypothesized that the landslide mass has moved down dip along its slip surface in "glacier-like" fashion with progressive failure occurring northeastward. The upper, steeper part of this slide appears to be comprised of detached blocks of cemented sandstone/siltstone and terrace-derived conglomerate suspended in a matrix of clay and silt. The stereoscopic image (See Figure 8) suggests that the blocks align in a northwest/southeast linear fashion along the upper hillside and have a southwestward direction of movement. The head scarp of this feature is well expressed and is curvilinear.

In contrast, Landslide B expresses robust topography and appears to be less developed with respect to horizontal displacement. Its apparent limited detachment from the mesa top suggests that portions of this slide are incipient consisting of a relatively minor block-glide type movement with less horizontal displacement as Landslide A. The maximum head scarp differential elevation of this feature is approximately 50 feet below the mesa compared to Landslide A which is approximately 100 feet below the mesa. The topography within the slide mass consists of elevated promontories and prominent lobate-shaped ridges.

With respect to geomorphic expression, it appears that the Landslide C area is intermediate between Landslide A and B. The terrain exhibits a robust profile with some similar morphologies as Landslide A suggesting that a series of detached blocks have relaxed in a progressive fashion sliding southward from the mesa top. The amount of horizontal displacement also appears to be intermediate between Landslide A and B and the westernmost feature exhibits a well expressed curvilinear head scarp (see Figures 5 and 6). Down-cutting of the natural slopes by the Spring Canyon drainage along the toe of the hillside appears to be the likely mechanism which triggered landsliding on both sides of the canyon.

With respect to the composition of the slide mass, Figures A-8 through A-22, Appendix A, present photographs of the cores obtained from Landslide A during our study. The photographs have been annotated with the approximate depth (in feet) below the existing ground surface. The numeric designation represents one-foot intervals beginning at the line above the number. The red numbers located to the left of each core box on each page is for reference as described below.

Inspection of the core samples reveal that the main body of the slide mass of Landslide A consists of a mixture of sandstone (e.g. Boring No. 3A, Photos 5 and 24), siltstone (e.g. Boring No. 1, Photos 5 and 13), claystone (e.g. Boring No. 3A, Photo 10, Boring No. 2, Photos 7 and 11) and gravel/cobble conglomerate (e.g. Boring No. 3A, Photos 1, 2, 29 and 32) derived from the Otay and San Diego Formations, and overlying Terrace Deposits. Sheared bentonitic claystone (Boring No. 1, Photos 8, 15 and 20) and sections of disturbed Otay gritstone (Boring No. 2, Photos 13 through 15) were noted in several of the borings. Abundant highly fractured and blocky textures were also observed (e.g. Boring No. 1, Photos 3 and 14).

The cores revealed that the basal shear zone consists of features ranging from sheared bentonite and remolded clay planes (Boring No. 1), to disturbed mixtures of sand, clay and gravel (Boring No. 2). The base of the slide in Boring No. 3 exhibited a thick zone of viscous deformation with a mélange of remolded clay and fine grained sand (e.g. Boring No. 3A, Photo Nos. 40 through 55). A chaotic, marbled and twisted appearance suggests that the plastic/viscous deformation may have occurred in a

saturated environment. The underlying Otay Formation consists of thinly bedded micaceous sandstone (e.g. Boring No. 3A, Photo No. 58). The bedding orientation appeared relatively low angle.

The landside geometry and basal slip surface modeled in our geologic cross sections was interpreted based on geomorphology and piercing points from our borings that penetrated the base of the slide. The surface elevation of each boring was surveyed for horizontal and vertical accuracy after drilling was completed. The dip of the basal surface after connecting the piercing points is approximately 1 degree along section. This inclination may be slightly apparent to the true dip based on the various directions of movement suggested in the stereo photographs. The source for the ground surface topography was a combination of relatively recent flown topo for the project and 1999 SANGIS. Since the slide mass is heterogeneous, we did not attempt to model separate geologic/soil materials on the cross sections and in our slope stability analysis.

4. SLOPE STABILITY EVALUATION

4.1 General

Two cross sections were analyzed to evaluate the stability of the landslide (Sections AA-AA' and BB-BB'). The locations of the cross sections are considered worst-case locations. The geology and basal slide surface were determined from the exploratory borings. Groundwater elevations used in the analysis are based on the exploratory borings, a monitoring well installed in Boring No. B-3A during the recent drilling, the groundwater elevation measured in the agricultural well located on the mesa, and information contained in the groundwater analysis performed by Dudek and Associates (Appendix E) and GeoVision (Appendix G).

The computer program SLOPE/W distributed by Geo-Slope International was utilized to perform the slope stability analyses. This program uses conventional slope stability equations and a two-dimensional limit-equilibrium method to calculate the factor of safety against deep-seated failure. For our analysis, Spencer's Method with a block failure mode was used for failure along landslide basal surface. Spencer's Method satisfies both moment and force equilibrium.

The computer program searches for the critical failure surface based on parameters inputted, including the location of the "left" and "right" sliding blocks. The output files and calculated factor of safety for the cross-sections analyzed are presented in Appendix D, Figures D-1 through D-15. The critical failure surface for each analysis is shown on computer-generated output. The factor of safety is shown on each figure directly above the failure surface.

4.2 Shear Strength Parameters

The shear strength parameters used in the analyses are based on laboratory direct shear testing performed on samples obtained from borings on the property and our experience with similar soil conditions. Where direct shear tests were not performed in a soil or geologic unit, assumed strength values were used. Table 4.2.1 summarizes the shear strength tests performed by Geocon Incorporated during this and previous geotechnical investigations on the property. Table 4.2.2 summarize residual shear strength values. The residual shear strength values were determined following the procedure presented in the *Journal of Geotechnical and Geoenvironmental Engineering, Drained Shear Strength Parameters for Analysis of Landslides (Stark, Choi, McCone, 2005)*. However, for conservatism, we used a friction angle of 8 degrees for the basal slip surface, which is less than the values determined using the Stark, Choi, McCone (2005) procedure. Shear strength values used in our analyses are shown on Table 4.2.3.

Soil/Geologic Unit	Sample No.	Angle of Shear Resistance (degrees)	Unit Cohesion (psf)
Landslide Debris	LB1-3**	31	135
	*LB3-3 [†]	32	500
	B1@215 feet	45 (peak) 39 (ultimate)	3,260 (peak) 960 (ultimate)
Otay Formation	B2@289 feet	38 (peak) 29 (ultimate)	1,720 (peak) 600 (ultimate)
	B3@394 feet	49 (peak) 37 (ultimate)	1,550 (peak) 1,000 (ultimate)
Remolded Shear Plane	LB4-9**	27	180
Basel Shear Plane (Residual)	B3 @ 328 – 330 feet	20	160

 TABLE 4.2.1

 SUMMARY OF DIRECT SHEAR STRENGTH TEST RESULTS

*Sample remolded to approximately 90 percent of maximum dry density near optimum moisture content. *From Geocon October 2004

**From Geocon May 2006

TABLE 4.2.2 RESIDUAL SHEAR STRENGTH VALUES FOR BASAL SLIDE PLANE BASED ON STARK, CHOI, MCCONE (2005)

Sample No.	Liquid Limit	Percent Clay	Angle of Internal Friction (degrees)	Cohesion (psf)
B1@161 - 164 feet	66	27	11	50
B2@263 feet	40	10	24	20
B3@324 feet	51	22	15	60
B3@328-330 feet	35	14	22	60

Soil Type	Angle of Internal Friction (degrees)	Cohesion (psf)
Qcf (Compacted Fill)	30	300
Qal (Alluvium)	28	100
Qls (Landslide Debris)	31	135
To (Otay Formation)	34	450
Basal Slide Plane	8	50

 TABLE 4.2.3

 SHEAR STRENGTH USED IN SLOPE STABILITY ANALYSES

4.3 Slope Stability Analysis

We analyzed three failure locations. The first location was along the basal slide plane and up the assumed landslide headscarp. The strength parameters used for the basal surface was also used along the landslide headscarp. The results of this analysis are shown on Figures D-1 and D-2 and indicate a factor of safety of 1.26 and 1.34 for Sections AA and BB, respectively. For the second location we allowed the computer to search for the failure surface with the lowest factor of safety assuming that a bedding plane shear with the same strength parameters as the basal shear zone extends behind the landslide headscarp and beneath the mesa. The results of this analysis are shown on Figures D-3 and D-4 and indicate a factor of safety greater than 1.5. The third failure location was set at the development limits (see Figures D-5 and D-6). The factor of safety at the development limits is greater than 1.5.

We also analyzed each section assuming a groundwater rise of 10 feet from the existing groundwater elevation. For this analysis, we allowed the computer to search for the minimum factor of safety assuming a bedding plane shear extends beneath the mesa. The results are shown on Figures D-7 and D-8 and indicate a factor of safety of 1.5 and greater.

We also analyzed each section assuming landslide movement causes the ground surface in front of the landslide headscarp to drop thereby creating a higher exposed headscarp slope. Assuming a 50-foot elevation change in front of the headscarp, a factor of safety of at least 1.5 exists at or in front of the edge of the development (see Figures D-9 and D-10).

4.4 Seismic Slope Stability

In accordance with Special Publication 117 guidelines, site-specific seismic slope stability analyses are required for sites located within mapped hazard zones. Seismic Hazard Zone maps published by CDMG, including landslide hazard zones, have not been published for San Diego County due to the relatively low seismic risk compared with other jurisdictions in Southern California. Therefore, it is our opinion that

seismic slope stability analyses are not required in San Diego County. However, we performed a seismic slope stability analysis in accordance with *Recommended Procedures for Implementation of DMG Special Publication 117A: Guidelines for Analyzing and Mitigating Landslide Hazards in California*, prepared by the Southern California Earthquake Center (SCEC), dated 2008.

The seismic slope stability analysis was performed for the headscarp slope at Section AA-AA' (critical section) using an unweighted acceleration of 0.21g, corresponding to a 10 percent probability of exceedance in 50 years. In addition, a deaggregation analysis was performed on the 0.21g value for the site. A modal magnitude and modal distance of 6.12 and 11.5 kilometers, was determined from the deaggregation analysis. A printout of the deaggregation analysis is provided in Appendix D.

Using the parameters discussed herein, an equivalent site acceleration, k_{EQ} , of 0.101g was calculated to perform the screening analysis, as shown on Figure D-11. This equivalent site acceleration resulted in a factor of safety less than 1.0 (see Figure D-12). A slope is considered acceptable by the screening analysis if the calculated factor of safety is greater than 1.0 using k_{EQ} ; therefore, the section analyzed did not pass the screening analysis for seismic slope stability. We then performed a deformation analysis utilizing procedures outlined in Special Publication 117A.

The yield acceleration used in the deformation analysis was determined by establishing the horizontal seismic coefficient necessary to achieve a factor of safety of 1.0 (see Figure D-13). Using a yield acceleration of 0.05, an estimated slope deformation of 0 centimeters is calculated for the overall landslide slope (see Figure D-14). When we use the height of the headscarp slope (approximately 80 feet), the estimated deformation is 12 cm (see Figure D-15). Using the headscarp slope height rather than the overall slope height is conservative. According to Special Publication 117A, displacements up to 15 centimeters are unlikely to correspond to serious landside movement and damage. Additionally, the 12 centimeters deformation would occur over the length of the slide area (3,000 lineal feet) resulting in negligible deformations throughout the slide area.

4.5 Summary

The results of our analyses indicate that the existing slope southwest of the property has a factor of safety of 1.5 or greater under static conditions assuming a bedding plane shear extends behind the landslide headscarp and beneath the mesa for both current groundwater conditions and an assumed 10 foot rise in the groundwater elevation. With respect to seismic slope stability, our analyses indicates that the expected deformation under seismic loading is not likely to cause serious landslide movement. Table 4.5 summarizes the results of the slope stability analyses. Based on our analysis, the existing slopes along the southwest perimeter of the project have an acceptable factor of safety and deformation with respect to both static and seismic conditions.

Condition Analyzed	Cross Section	Factor-of-Safety	Estimated Deformation Under Seismic Loading
A1 TT 1	AA-AA'	1.26	
Along Headscarp	BB-BB'	1.34	
Extended Bedding Plane	AA-AA'	1.53	
Shear	BB-BB'	1.66	
	AA-AA'	1.63	
At Edge of Development	BB-BB'	1.70	
	AA-AA'	1.50	
Groundwater Rise	BB-BB'	1.62	
	AA-AA'	1.53 (at development edge)	
Higher Exposed Headscarp	BB-BB'	1.50 (at 300 feet from development edge)	
Seismic Analysis	AA-AA'		0 to 12 cm

TABLE 4.5SUMMARY OF STABILITY ANALYSES

5. CONCLUSIONS

- 5.1 The recent geotechnical investigation penetrated the basal slip surface of Landslide A at three locations. Based on this information, two cross sections were developed for use in geologic characterization and performing a slope stability analysis (Cross Sections AA-AA', BB-BB'). The Landslide A geometry was modeled based on this information as well as a geomorphic analysis of various sources (i.e. Lidar terrain, anaglyphic stereo, etc.).
- 5.2 The results of our stability analysis indicates that the existing static factor of safety of Landslide A is 1.26 and 1.34 for sections AA and BB. The factor of safety at the development margin closest to the headscarp is 1.63 and 1.70 for Sections AA and BB, respectively, confirming the recommended setback of 50 feet. The factor of safety along the most critical surface is 1.53 and 1.66 for sections AA and BB, respectively, assuming a bedding plane shear extends beneath the mesa behind the landslide basal shear surface. The minimum factor of safety occurs approximately 235 feet and 310 feet (sections AA and BB, respectively) northeastward into the development from the landslide margin. A graphic representation of the factors of safety described above is presented on Figure 14.
- 5.3 With respect to seismic slope stability, the section analyzed (AA-AA') did not pass the screening evaluation, therefore, we performed a deformation analysis utilizing procedures in Special Publication 117A. Using the overall landslide slope height (445 feet), our analysis indicates 0 cm deformation. If we use the landslide headscarp slope height, our analysis indicates a deformation of 12 cm. According to Special Publication 117A, displacements up to 15 centimeters are unlikely to correspond to serious landside movement and damage. Using the steeper landslide headscarp slope height in the seismic analysis rather than the overall gentler landslide slope is a conservative approach. Additionally, the 12 centimeters deformation would occur over the length of the slide area (3,000 lineal feet) resulting in negligible deformations throughout the slide area.
- 5.4 The following is a list of conservative assumptions used during our slope stability analysis:
 - 1. We used a lower phi angle for the basal slide zone than the laboratory testing yielded (8 degrees versus an average of 18 degrees based on Stark, Choi, Mccone, 2005);
 - 2. We used a lower shear strength for the Otay Formation than the laboratory testing indicated (34 degrees and 450 psf versus an average ultimate value of 35 degrees and 800 psf and average peak value of 43 degrees and 2,200 psf);
 - 3. We assumed that a sheared bentonite bed projects behind the slide and beneath the mesa at the elevation of the basal shear zone;

- 4. We assumed the basal slip surface is uniformly sloping and not undulatory which is likely the actual geometry. The actual condition, if undulatory, would increase the sliding friction; and
- 5. We assumed the slide is saturated below the first occurrence of seepage. The groundwater observed is likely a perched condition rather than full saturation of the landslide mass and bedrock unit.
- 5.5 To address a "what if" scenario, we performed a hypothetical analysis along Cross Section AA-AA' to evaluate the potential impact on the proposed development assuming that a significant seismically triggered horizontal displacement of the slide mass had occurred. In this exercise we lowered the elevation of the headscarp region adjacent to the development to simulate a smaller resisting landslide mass out in front of the bedrock block that is present beneath the development. Our analysis revealed that the slide mass southwest of the development margin would have to drop at least 50 vertical feet before lowering the factor of safety within the development area below 1.5.
- 5.6 Groundwater measurements from our borings and a nearby agricultural well on the mesa was the basis for the phreatic surface used in our slope stability analysis. We retained Dudek & Associates to evaluate this information and comment on the potential for seasonal fluctuations, and any future impacts that the proposed development may have on the regional groundwater system. Specifically, they studied the existing storm water infiltration into the undeveloped mesa and surrounding area and compared it to the condition that would be present post-development considering irrigation and storm water infiltration.
- 5.7 Dudek concluded that the post-development vertical infiltration of storm water into the substrate would be less than the existing condition which is already relatively low as evidenced by our permeability testing, a review of existing soil survey maps and the presence of vernal pools on the mesa. This opinion is supported by the fact that the development will result in a net increase in impervious surface area due to the construction of structures, pavements, etc., and the collection and conveyance of storm water into the project storm drain system that would normally soak into the exposed soils on the mesa.
- 5.8 Dudek also concluded that the groundwater levels measured/assumed during our study are reasonable for use in our analysis, however, additional groundwater wells would improve characterization of the phreatic surface immediately outside and within the slide mass, and would facilitate recording of the groundwater level in response to seasonal rainfall. A supplemental groundwater monitoring program is currently planned to confirm the measurements obtained during our study. This future study includes the area in the vicinity of Landslide C.

- 5.9 Rick Engineering Company also performed a hydrology analysis of the project area and concluded that "considering both the infiltration of storm water, and the application of irrigation, the average infiltration volume has decreased in the post-project condition compared to the pre-project condition".
- 5.10 To address a "what if" scenario, we performed a hypothetical analysis along Cross Section AA-AA' to evaluate the potential impact on the existing landslide mass in the event that the regional water table were to rise. The results of our analysis indicates that groundwater would have to raise 10 feet above the existing level to lower the factor of safety below 1.5 within the development area.
- 5.11 Several storm water outfall locations were contemplated during the original project design. These features were proposed to discharge storm runoff collected from the project into pronounced drainages within the landslide complex. Although the infiltration data collected from the discharge locations supported a short-term discharge without adverse effects, the potential for scour and injection of storm water into the slide mass during extreme storm events resulted in a requirement to redesign the storm drain system to discharge outside landslide areas.

LIMITATIONS AND UNIFORMITY OF CONDITIONS

- 1. The firm that performed the geotechnical investigation for the project should be retained to provide testing and observation services during construction to provide continuity of geotechnical interpretation and to check that the recommendations presented for geotechnical aspects of site development are incorporated during site grading, construction of improvements, and excavation of foundations. If another geotechnical firm is selected to perform the testing and observation services during construction operations, that firm should prepare a letter indicating their intent to assume the responsibilities of project geotechnical engineer of record. A copy of the letter should be provided to the regulatory agency for their records. In addition, that firm should provide revised recommendations concerning the geotechnical aspects of the proposed development, or a written acknowledgement of their concurrence with the recommendations presented in our report. They should also perform additional analyses deemed necessary to assume the role of Geotechnical Engineer of Record.
- 2. The recommendations of this report pertain only to the site investigated and are based upon the assumption that the soil conditions do not deviate from those disclosed in the investigation. If any variations or undesirable conditions are encountered during construction, or if the proposed construction will differ from that anticipated herein, Geocon Incorporated should be notified so that supplemental recommendations can be given. The evaluation or identification of the potential presence of hazardous or corrosive materials was not part of the scope of services provided by Geocon Incorporated.
- 3. This report is issued with the understanding that it is the responsibility of the owner or his representative to ensure that the information and recommendations contained herein are brought to the attention of the architect and engineer for the project and incorporated into the plans, and the necessary steps are taken to see that the contractor and subcontractors carry out such recommendations in the field.
- 4. The findings of this report are valid as of the present date. However, changes in the conditions of a property can occur with the passage of time, whether they be due to natural processes or the works of man on this or adjacent properties. In addition, changes in applicable or appropriate standards may occur, whether they result from legislation or the broadening of knowledge. Accordingly, the findings of this report may be invalidated wholly or partially by changes outside our control. Therefore, this report is subject to review and should not be relied upon after a period of three years.

Plotted:06/29/2021 10:23AM | By:RUBEN AGUILAR | File Location: Y:\PROJECTS\06847-42-04 Southwest Village and Burrow Site\DETAILS\06847-42-04 VicinityMap.dwg

APPENDIX A

FIELD INVESTIGATION

Our field investigation was performed between November 30, 2020 and February 5, 2021, and consisted of a site reconnaissance and the excavation of 4 mud-rotary, continuous core borings (Boring Nos. B1 through 3A). In addition, infiltration tests were performed at several outfall locations and along the mesa top in order to provide information for Dudek's analysis. The approximate locations of the subsurface excavations are shown on Figures 9 through 13, and Figure C-1.

The 4 borings were performed by Cascade Drilling to a maximum depth of 397 feet below existing grade using a CME 85 truck-mounted drill rig equipped with a HQ coring system. The initial attempt for Boring No. 3 was unsuccessful due to drilling difficulties and the hole was abandoned and re-drilled (Boring No. 3A) in close proximity to the original boring. The log of Boring No. 3A presented herein is the second attempt to advance the boring which was successful. A generalized/summary Geologic description of Core Samples are presented on Figures A1 - A3. A Unified Soil Classification System description Core Samples are presenting on Figures A4 - A7. The upper portion of Boring No. 3A was not described to a depth of 142 feet since this sequence was covered by the log for Boring No. 3.

Figures A-8 through A-22 present photographs of the cores. The photographs have been annotated with the approximate depth (in feet) below the ground surface. The numeric designation represents one-foot intervals beginning at the line above the number. The red numbers located to the left of each core box on each page is for descriptive reference. Each core was shaved to expose the geologic features and soil attributes. The cores were examined in a dry condition and then sprayed with water to further evaluate their texture. In some instances photographs of both dry and wet versions of the cores are presented herein.

SOUTHWEST VILLAGE GENERALIZED GEOLOGIC DESCRIPTION

BORING NO. 1

Landslide debris from 0 to 175 feet;

Mixture of cemented sandstone, siltstone and claystone, highly fractured and blocky with disturbed/mottled appearance, brittle appearance, fractures generally range from horizontal to approximately 60 degrees.

- Example of conjugate fractures at 43.5 feet.
- Sheared bentonite/claystone from 54 to 56 feet.
- Sheared bentonite/claystone from 66 to 67.5 feet.
- Perched water surface based on geophysical measurement at 70 feet.
- Sheared bentonite/claystone from 76 to 85 feet; abundant high angle fracturing, marbling and contortion features.
- Sheared bentonite/claystone from 92 through 95 feet.
- Highly fractured from 112 to 122.5 feet.
- Zone of intensely sheared bentonite/claystone from 130 to 157 feet; brecciated, flow banding/webbing.

Basal Shear Zone from 157 to 165.5 feet; Zone of ramp-effected bedrock/slide debris. Multiple repetitive near horizontal fractures with up to ½-inch-thick reddish-brown remolded clay along planar surfaces, possible mechanical disturbance along naturally sheared planes, blocky, 9-foot-thick zone of disturbed bedrock to 175 feet.

• Possible water table based on geophysical measurement at 175.5 feet.

Otay Formation from 175 to 219 feet;

Dense, silty to clayey fine to coarse sandstone (gritstone), cemented/fractured.

BORING TERMINATED AT 219 FEET

Figure A-1

BORING NO. 2

Landslide debris from 0 to 264 feet;

Mixture of cemented sandstone, siltstone and claystone, highly fractured and blocky with disturbed/mottled appearance, brittle appearance, fractures generally range from horizontal to approximately 60 degrees.

- Zone of high angle fracturing in sandstone from 51 to 54 feet.
- Sheared bentonite/claystone from 53.5 to 55.5 feet.
- Highly fractured sandstone from 79 to 85.5 feet.
- Highly fractured claystone from 111 to 115 feet.
- Possible water table based on geophysical measurement at 124 feet.
- Gritstone derived slide material from 131 to 162 feet plus.
- Intermittently coarse grained with gravels beginning at 167 feet.
- Clay/sand/gravel mixtures below 204 feet.
- Coarse grained material becomes marbled with light green clay from 218 to 241 feet, disturbed appearance.

Basal Shear Zone at 264 feet; 5-inch-thick zone of multiple remolded clay planes up to ¹/₂-inch-thick, disturbed appearance with gravel sand and clay marbling from 258 through 264 feet, disturbed appearance and mottling to 264.9 feet.

Otay Formation from 264.9 to 318 feet;

Dense silty fine sandstone, cemented.

- Becomes micaceous silty sandstone at 284 feet.
- Becomes thinly bedded with low angle bedding at 309.

BORING TERMINATED AT 318 FEET

Figure A-2

BORING NO. 3A

Landslide debris from 0 to 332 feet;

Mixture of cemented sandstone, siltstone and claystone, highly fractured and blocky with disturbed/mottled appearance, brittle appearance, fractures generally range from horizontal to approximately 45 degrees.

- Zone of clayey gravel/cobble from 35.5 to 58 feet, disturbed appearance.
- Sheared bentonite/claystone from 83.9 to 87.5 feet.
- Zone of high angle fracturing in sandstone from 107 to 117 feet, contorted bentonite bed from 115 to 117 feet.
- Possible water table based on geophysical measurement at 175.3 feet.
- Gritstone derived slide material at 175 to 192 plus.
- Becomes intermittently coarse grained with some gravels at 193 feet.
- Very coarse grained between 212 and 242 feet.
- Green clay marbling at 268 feet.
- Cobbly zone from 304 to 316.5 feet.
- Becomes reddish brown and light green mottled claystone/siltstone at 316.5 feet.
- 10-inch-thick stiff clay zone at 323 feet with several well developed remolded planes, light green clay marbling appears to be twisted/sheared and truncated, stiff with a disturbed appearance below.

Basal Shear Zone from 328 to 332; 4-foot-thick zone of viscous/plastic deformation, mélange of reddish-brown slightly to moderately remolded clay and olive-grey clayey fine sand, chaotic/marbled/disturbed/twisted appearance.

Otay Formation from 332 to 397 feet;

Dense silty F-M sandstone, micaceous

• Thin horizontal to slightly dipping bedding from 355 to 396.

BORING TERMINATED AT 397 FEET

Figure A-3

DEPTH IN FEET	GROUNDWATER	SOIL CLASS (USCS)	CORE B 1 ELEV. (MSL.) 184.76' DATE COMPLETED 12-01-2020 EQUIPMENT CME 75 WITH HQ Core BY: RSA/GWC	RUN (Feet)	RECOVERY (Feet)	BOX
- 15 -			MATERIAL DESCRIPTION			
			LANDSLIDE DEBRIS			
- 17 -		CL	(Boring cased to 15 feet; not logged) Hard, damp, dark gray, Silty CLAYSTONE; brecciated with several high angle polished parting surfaces/fractures ±45°	5'	5'	
- 19 -				-		
	$\left \right $			-		
- 21 - 		- <u></u>	Hard, damp, dark gray, very fragmented, Sandy SILTSTONE with silty daystone interbeds; few fractures; massive			1
- 23 -						
				- 5'	4.8'	
- 25 -				-		
			-Few high angle parting surfaces			
				- 5'	5'	
- 29 -			-6-inch thick, loose, very fine grained sandstone bed at 28 feet	-		
	$\left \right $			-		
- 31 -				-		2
				-		
- 33 -	1			- 5'	5'	
- 35 -						
				_		
- 37 -			-becomes clayey sutstone with trace oxidation and mottling; massive; tew high angle planar fractures	-		
				- 5'	5'	
- 39 -				-	0	
				-		
- 41 -		CL	Hard, damp, gray to dark gray, Silty CLAYSTONE; brecciated zones with clay filled fractures			3
- 43 -			-Conjugate fractures at 43.5 feet	-		
				- 5'	4.5'	
- 45 -	$\left \right $			-		
		SM & CL	Medium dense to dense, damp to moist, gray to dark gray, interbedded very fine grained, Silty SANDSTONE and hard, Sandy CLAYSTONE; brecciated; fractured with few high angle (±30 feet) parting surfaces and near vertical bedding	5'	5' 6847-42-04 Co	4 reLog-B1 dwo

Figure A-4, Log of Core B 1, Page 1 of 7

LOG OT CORE B 1, Page 1 of 7 NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.

DEPTH IN FEET	GROUNDWATER	SOIL CLASS (USCS)	CORE B 1 ELEV. (MSL.) 184.76' DATE COMPLETED 12-01-2020 EQUIPMENT CME 75 WITH HQ Core BY: RSA/GWC	RUN (Feet)	RECOVERY (Feet)	BOX
47	1		MATERIAL DESCRIPTION			
- 47 -		SM & CL				
- 49 - 	-			- 5' -	5'	
- 51 -			Very stiff, dark gray, Silty CLAYSTONE with few sandy siltstone interbeds/zones; brecciated			4
 - 53 -				 5'	4.5'	
- 55 -				-		
- 57 - - 57 - - 59 -		ML/CL	Very stiff, damp to moist, dark gray, Silty CLAYSTONE/Clayey SILTSTONE; brecciated with numerous chunks of claystone set in matrix; slight oxidation and mottling	_ _ 5'	5'	
	-			-		5
- 63 - - 63 - - 65 -	-			- - - -	5'	
- 67 - - 67 - - 69 -			-Sheared bentonite/claystone from 66 to 67.5 feet	_ 5' 	4.5'	
- 71 -	÷		-i civilica gradinamatel surface at ro leet based on geophysical medsulement			6
- 73 - - 73 - - 75 -			Hard, moist, light olive, fine, Sandy CLAYSTONE/dense, Clayey SANDSTONE, intraformational clasts	- - 5'	3'	
 - 77 - 		CL/SC	-Sheared bentonite/claystone from 76 to 85 feet; abundant high angle fracturing, marbling and contortion features -High angle fractures; pinkish tint	5'	4'	7

Figure A-4, Log of Core B 1, Page 2 of 7 Y:\PROJECTS\06847-42-04 Southwest Village and Burrow Site\Core Logs\06847-42-04 CoreLog-B1.dwg

DEPTH IN FEET	GROUNDWATER	SOIL CLASS (USCS)	CORE B 1 ELEV. (MSL.) 184.76' DATE COMPLETED 12-01-2020 EQUIPMENT CME 75 WITH HQ Core BY: RSA/GWC	RUN (Feet)	RECOVERY (Feet)	BOX
70	1		MATERIAL DESCRIPTION			
- 79 - - 81 -			-High angle fractures	- 5'	4'	
 - 83 -			-Poor recovery -High angle fractures	- - 5'	1.5'	
- 85 -				-		7
- 87 - - 89 -	-	CL/SC	-Poor recovery	- 5' -	2.5'	
- 91 - - 93 - - 95 -	-		-Sheared bentonite/claystone from 92 to 95 feet	- - 5'	5'	
- 97 - - 97 - - 99 - - 101		SC/CL	Light olive, massive, Clayey, fine SANDSTONE	- - 5' -	4'	8
- 103 - - 103 - - 105 -		 ML	-Indurated layer 10-12 inches thick with high angle fractures 	- - 5' -	5'	9
- 107 - - 109 - 		sc	Light olive, massive, Clayey, fine SANDSTONE	- - - 5'	3.5'	

Figure A-4, Log of Core B 1, Page 3 of 7

Y:\PROJECTS\06847-42-04 Southwest Village and Burrow Site\Core Logs\06847-42-04 CoreLog-B1.dwg

DEPTH IN FEET	GROUNDWATER	SOIL CLASS (USCS)	CORE B 1 ELEV. (MSL.) 184.76' DATE COMPLETED 12-01-2020 EQUIPMENT CME 75 WITH HQ Core BY: RSA/GWC	RUN (Feet)	RECOVERY (Feet)	BOX
_ 111			MATERIAL DESCRIPTION			
		SC		5'	3.5'	9
- 113 -			-Highly fractured from 112 to 122.5 feet; with abundant mica present	_		
				-		
- 115 -				- 5'	1.5'	
				-		
- 117 -		- <u>-</u>				
		Sivi		-		
- 119 -				- 5'	4'	10
				-		
- 121 -				-		
	╞╴		Light olive, massive, Clayey SANDSTONE; micaceous			
- 123 -				-		
				- 5'	5'	
- 125 -				-		
- 107 -						
- 127 -			-Increasing clay with pinkish tint			
- 129 -				_		
	L.			5'	5'	
- 131 -		SC/CL & CH	Light olive Sandy CLAY/Clayey SAND; zone of intensely sheared bentonite/claystone from 130 to 157 feet; brecciated with flow banding/webbing	_		
				_		11
- 133 -				-		
				- 5'	5'	
- 135 -				-	5	
				-		
- 137 -				_		
╞╶				F		
- 139 -	1			- 5'	2.5'	
				-		12
- 141 -						
				5'	5'	

Y:\PROJECTS\06847-42-04 Southwest Village and Burrow Site\Core Logs\06847-42-04 CoreLog-B1.dwg

Figure A-4, Log of Core B 1, Page 4 of 7

4 of 7

DEPTH IN FEET	GROUNDWATER	SOIL CLASS (USCS)	CORE B 1 ELEV. (MSL.) 184.76' DATE COMPLETED 12-01-2020 EQUIPMENT CME 75 WITH HQ Core BY: RSA/GWC	RUN (Feet)	RECOVERY (Feet)	вох
- 142 -			MATERIAL DESCRIPTION			
- 143 - - 145 - 	-			_ 5' _	5'	12
 - 149 -		SC/CL		- - 5'	5'	
 - 151 -				- -	-	
- 153 - - 155 - 				- 5' -	5	13
 - 159 - 	-	SM & CL & ML	BASAL SHEAR ZONE from 157 to 165.5 feet; zone of ramp-effected bedrock/slide debris (SANDSTONE, CLAYSTONE AND SILTSTONE); multiple repetitive near horizontal fractures with up to 1/2-inch thick, reddish brown remolded clay along planar surfaces; possible mechanical disturbance along naturally sheared planes; blocky; 9-foot thick zone of disturbed bedrock to 175 feet	- 5' -	5'	
- 163 - - 165 -				- 5' -	5'	14
- 167 - - 169 - 				- - -	5'	15
- 173 -				5'	5'	

Figure A-4, Log of Core B 1, Page 5 of 7

Y:\PROJECTS\06847-42-04 Southwest Village and Burrow Site\Core Logs\06847-42-04 CoreLog-B1.dwg

DEPTH IN FEET	GROUNDWATER	SOIL CLASS (USCS)	CORE B 1 ELEV. (MSL.) 184.76' DATE COMPLETED 12-01-2020 EQUIPMENT CME 75 WITH HQ Core BY: RSA/GWC	RUN (Feet)	RECOVERY (Feet)	BOX
- 175 -			MATERIAL DESCRIPTION			
	Ţ	SM		- 5'	5'	15
- 177 -			Pense, moist, orange brown, time to coarse, Sitty SANUS FUNE; massive gritistone; cemented/iractured	_		
				-		
- 179 -			-4-inch thick cemented zones between 179 feet and 181.5 feet	- 5'	5'	
	1			-		
- 181 -				-		16
	1					
- 183 -	1			-		
- 185 -				5'	5'	
				_		
- 187 -				_		
				-		
- 189 -				- 5'	5'	
			-Becomes very coarse and gravelly in areas below 190 feet	-	-	17
- 191 -	$\left \right $			-		
	1			_		
- 193 -	1			-		
	1			- 5'	5'	18
- 195 -						
- 197 -						
				_		
- 199 -				_		
			-Some carbonate filled fractures present	- 5'	5'	
- 201 -	$\left \right $			-		
	$\left \right $					
- 203 -	$\left \right $			-		
┣ -	$\left \right $			- 5'	4.5'	
- 205 -	1			-		
	1			-		19

Figure A-4, Log of Core B 1, Page 6 of 7

Y:\PROJECTS\06847-42-04 Southwest Village and Burrow Site\Core Logs\06847-42-04 CoreLog-B1.dwg

DEPTH IN FEET	DUNDWATER	SOIL CLASS (USCS)	CORE B 1 ELEV. (MSL.) <u>184.76'</u> DATE COMPLETED <u>12-01-2020</u>	RUN (Feet)	tECOVERY (Feet)	вох
	GRC		EQUIPMENT CME 75 WITH HQ Core BY: RSA/GWC		Я	
- 207 -			MATERIAL DESCRIPTION			
				-		
– 209 ·						
				- 5'	5'	
- 211 -				-		19
		SM		_		
- 213 ·						
- 215 -				5' -	4.5'	
				-		
– 217 ·	-			_		20
				_ ^{2'}	1.8'	
- 219 ·			BORING TERMINATED AT 218.5 FEET BELOW GROUND SURFACE Backfilled 12/04/2020	-		
- 223 -				-		
	-			-		
- 225 -	-			-		
				-		
- 227 -				-		
- 229 -						
				_		
– 231 ·				-		
				-		
- 233 -				-		
				-		
- 235 ·]					
- 237 -				_		
_ ·				-		

Figure A-4, Log of Core B 1, Page 7 of 7

Y:\PROJECTS\06847-42-04 Southwest Village and Burrow Site\Core Logs\06847-42-04 CoreLog-B1.dwg

DEPTH IN FEET	GROUNDWATER	SOIL CLASS (USCS)	CORE B 2 ELEV. (MSL.) 278.81' DATE COMPLETED 12-07-2020 EQUIPMENT CME 75 WITH HQ Core BY: G. CANNON	RUN (Feet)	RECOVERY (Feet)	вох
			MATERIAL DESCRIPTION			
- 26 -		CL	LANDSLIDE DEBRIS	1'	1'	
 - 28 -			(Boring cased to 26 feet; not logged) Hard, moist, olive, Silty CLAYSTONE; blocky	-		
			-Highly cemented, vigorous reaction to HCI	- 5'	5'	
- 30 -			-Becomes very hard with intraformational clasts	-		
- 32 -						1
	1			-		
- 34 -				- 5'	5'	
				-		
- 36 -				_		
_ 30 _						
40				5'	5'	
40						
42						
42						
- 44 -		SC	Dense, moist, Clayey SANDSTONE; massive			2
				5'	2.5'	
- 46 -						
- 48 -				_		
		SC/CL	Dense, light olive, Clayey SANDSTONE/ hard, Sandy CLAYSTONE; high and low angle filled fractures, becomes pinkish gray with depth			
- 50 -				5'	5'	
				_		
- 52 -			-Zone of high angle fracturing in sandstone from 51 to 54 feet			
				_		
- 54 -	<u> </u>	CH & CL	Hard, moist, olive and pink, Silty CLAYSTONE; with sheared bentonite/claystone from 53.5 to 55.5 feet			3
Ļ .				5'	5'	
- 56 -						
L		ML	Very stiff, moist to wet, olive, fine, Sandy SILTSTONE; massive	_		
				5'	5'	

Figure A-5, Log of Core B 2, Page 1 of 10 Y:\PROJECTS\06847-42-04 Southwest Village and Burrow Site\Core Logs\06847-42-04 CoreLog-B2.dwg

DEPTH IN FEET	GROUNDWATER	SOIL CLASS (USCS)	CORE B 2 ELEV. (MSL.) 278.81' DATE COMPLETED 12-07-2020 EQUIPMENT CME 75 WITH HQ Core BY: G. CANNON	RUN (Feet)	RECOVERY (Feet)	BOX
- 58 -			MATERIAL DESCRIPTION			
		ML		_		3
- 60 -				- 5'	5'	
				-		
- 62 -		CL	Hard, moist, olive, CLAYSTONE; with trace gravel	_		
- 04 -		ML	Dense, moist, light olive, Sandy SILTSTONE with day, massive	5'	5'	4
- 66 -	┟╴╴		Hard, moist, olive CLAYSTONE	-		
				_		
- 68 -	┢	- <u></u> ML	Hard, moist, olive, Sandy SILTSTONE	-		
				- 5'	5'	
- 70 -			-Hinh andle fracture			
- 72 -				_		
			-Highly cemented SANDSTONE bed at 72.5 feet	-		
- 74 -		CL	Very stiff, moist, wet, Silty CLAY with white calcium carbonate pods	- 5'	4'	
				-		5
- 76 -				-		
- 78 -				_		
		·	Dance point Kaktaline Other fine CANDOTONE: highly freedying from 70 to 05 5 foot			
- 80 -		SIVI	Dense, moist, light dive, Silty, line SANDS FORE, highly naculed from 73 to 65.5 feet	- 5'	5'	
				-		
- 82 -				_		
- 84 -				_		
				5'	5'	
- 86 -				-		6
	$\left - \right $		Hard, moist, olive, CLAYSTONE			
- 88 -				- 5'	5'	
				-		

Figure A-5, Log of Core B 2, Page 2 of 10 Y:\PROJECTS\06847-42-04 Southwest Village and Burrow Site\Core Logs\06847-42-04 CoreLog-B2.dwg

DEPTH IN FEET	GROUNDWATER	SOIL CLASS (USCS)	CORE B 2 ELEV. (MSL.) 278.81' DATE COMPLETED 12-07-2020 EQUIPMENT CME 75 WITH HQ Core BY: G. CANNON	RUN (Feet)	RECOVERY (Feet)	BOX
- 90 -						6
				- 5'	5'	
- 92 -	1	CL	-High angle shear	_		
_ 94 _						7
				5'	5'	
- 96 -				_		
				_		
- 98 -				-		
				- 5'	5'	
- 100 -				-	-	
				-		8
- 102 -			Hard, moist, light gray, fine ,Sandy SILTSTONE	_		
	1			-		
- 104 -				- 5'	5'	
- 106 -		SM	Dense, damp, gray, Silty SANDSTONE			
				_		
- 108 -				_		
					-	
- 110 -		CL	Hard, light olive, Silty CLAYSTONE; highly fractured from 111 to 115 feet	- 5'	5'	
				-		
- 112 -				_		
				-		
- 114 -				- 5'	5'	
			-Becomes Sandy CLAYSI UNE below 115 feet	-		9
- 116 -		SC	Dense, light olive, Clayey SANDSTONE	-		
_ 110 -						
- 120 -				- 5'	5'	
				-		10
	1					10

Y:\PROJECTS\06847-42-04 Southwest Village and Burrow Site\Core Logs\06847-42-04 CoreLog-B2.dwg

Figure A-5, Log of Core B 2, Page 3 of 10

DEPTH IN FEET	GROUNDWATER	SOIL CLASS (USCS)	CORE B 2 ELEV. (MSL.) <u>278.81'</u> DATE COMPLETED <u>12-07-2020</u> EQUIPMENT <u>CME 75 WITH HQ Core</u> BY: <u>G. CANNON</u>	RUN (Feet)	RECOVERY (Feet)	BOX
100	1		MATERIAL DESCRIPTION			
- 122 -		SM	Dense, light gray, Silty, fine to very coarse SANDSTONE	_		
- 124 -	Ţ		-Possible water table at 124 feet based on geophysical measurement	_ 4'	3.5'	
- 126 -				_		10
				- 1'	1'	
- 128 -				-		
	1			- 5'	5'	
- 130 -	1		-Renames charser argined helpw 131 feet (Gritstone)			
- 132 -				_		
				-		
- 134 -	$\left \right $			- _{5'}	5'	
				-	Ũ	11
- 136 -	1			-		
- 138 -						
				_		
- 140 -	$\left \right $			- 5'	5'	
	$\left \right $			-		
- 142 -						
	1			-		
- 144 -				5'	5'	
- 146 -				-		12
				_		
- 148 -	$\left \right $			-		
► -	$\left \right $			 5'	5'	
- 150 -	1					
- 152 -						
				- 5'	5'	13

Figure A-5, Log of Core B 2, Page 4 of 10

Y:\PROJECTS\06847-42-04 Southwest Village and Burrow Site\Core Logs\06847-42-04 CoreLog-B2.dwg

DEPTH IN FEET	GROUNDWATER	SOIL CLASS (USCS)	CORE B 2 ELEV. (MSL.) 278.81' DATE COMPLETED 12-07-2020 EQUIPMENT CME 75 WITH HQ Core BY: G. CANNON	RUN (Feet)	RECOVERY (Feet)	вох
154			MATERIAL DESCRIPTION			
- 154 -		SM				13
- 156 -				5'	5'	
 - 158 -				_		
 - 160 -				5' 	5'	
 - 162 -				-		14
 - 164 -				-	_	
┠ -				- 5'	5'	
- 166 -				-		
			-Becomes intermittently coarse grained with clay and gravels below 167 feet	_		
- 100 -						
- 170 -				- -	5'	
				-		
- 172 -				_		
				-		
- 1/4 -				5'	5'	
- 176 -				-		15
- 178 -				-		
 - 180 -				5'	5'	
┣ -				-		
- 182 -						
 - 184 - 				- 5' -	5'	16

Figure A-5, Log of Core B 2, Page 5 of 10

Y:\PROJECTS\06847-42-04 Southwest Village and Burrow Site\Core Logs\06847-42-04 CoreLog-B2.dwg

DEPTH	NATER	SOIL	CORE B 2	JN set)	VERY set)	XC
IN FEET	OUND	CLASS (USCS)	ELEV. (MSL.) 278.81' DATE COMPLETED2020	RI (F€	RECO (F€	B(
	GR		EQUIPMENT CME 75 WITH HQ Core BY: G. CANNON		H	
- 186 -			MATERIAL DESCRIPTION			
		SM		5'	5'	
- 188 -				-		10
				- 5'	5'	16
- 190 -				-		
				-		
- 192 -		- <u></u>	Light brown with occasional light green mottling, fine, Sandy CLAYSTONE			17
- 194 -				_		
				- 5'	41⁄2'	
- 196 -				-		
- 198 -				_ ¹¹ /2'	1½'	
			-Numerous coarse subangular quartz grains present	-		
- 200 -				- 3'	3'	
- 202 -						
				-		
- 204 -		SC & SM	Dense, light glive, Silty to Clavey, fine to very coarse SANDSTONF with some gravels	- 5'	4'	
				-		
- 206 -				_		18
				-		
- 208 -						
- 210 -				_		
				-		
- 212 -				_	MISSING	
				-		
- 214 -				- 5'	4½'	10
				-		19
- 216 -						
			-Gravel content increases below 217 feet	3'	3'	

Figure A-5, Log of Core B 2, Page 6 of 10

Y:\PROJECTS\06847-42-04 Southwest Village and Burrow Site\Core Logs\06847-42-04 CoreLog-B2.dwg

DEPTH IN FEET	GROUNDWATER	SOIL CLASS (USCS)	CORE B 2 ELEV. (MSL.) 278.81' DATE COMPLETED 12-07-2020 EQUIPMENT CME 75 WITH HQ Core BY: G. CANNON	RUN (Feet)	RECOVERY (Feet)	вох
240			MATERIAL DESCRIPTION			
- 218 -		SC & SM	-Coarse grained material becomes marbled with light green day from 218 to 241 feet	3'	3'	
- 220 -				_		19
				- 3'	3'	
- 222 -						
				-		
- 224 -					-	
				- 5'	5	20
- 226 -				F		
- 228 -				-		
				- 5'	5'	
- 230 -				-		
				F		
- 232 -						
- 234 -				[
				5'	5'	
- 236 -				-		21
			-Cobble size rock fragments present below 236.5 feet			
- 238 -				F		
				- 4'	4'	
- 240 -				-		
				_		
- 242 -				-		
			-No return from 241 to 248 feet due to problems with drill rig	-		
- 244 -				-	MISSING	
				-		
- 246 -	1					
248 -	1					
		CL	Hard, medium brown, fine to coarse, Sandy CLAYSTONE	- 5'	41⁄2'	22

Figure A-5, Log of Core B 2, Page 7 of 10

Y:\PROJECTS\06847-42-04 Southwest Village and Burrow Site\Core Logs\06847-42-04 CoreLog-B2.dwg

DEPTH IN FEET	GROUNDWATER	SOIL CLASS (USCS)	CORE B 2 ELEV. (MSL.) 278.81' DATE COMPLETED 12-07-2020 EQUIPMENT CME 75 WITH HQ Core BY: G. CANNON	RUN (Feet)	RECOVERY (Feet)	BOX
- 250 -			MATERIAL DESCRIPTION			
- 250 -		CL		5'	4½'	
- 252 -						
- 254 -	-		-Occasional gravel present	-		22
- 256 -				5' 	5'	
- 258 -			-Becomes disturbed with sand, clay and gravel marbling from 258 to 264 feet; disturbed appearance			
 - 260 -				- 4'	2½'	
- 262 -				1'	1'	
- 264 -			BASAL SHEAR ZONE at 264 feet; 5-inch thick zone of multiple remolded day planes up to 1/2-inch thick; disturbed appearance and mottling to 264.9 feet	_		23
- 266 -		SM	OTAY FORMATION Dense, moist, Silty, fine SANDSTONE; cemented	5'	5'	
- 268 -						
- 270 -				_ 5'	5'	
- 272 -				-		
						24
				- 5'	5'	24
- 276 - 				-		
- 278 -	1					
- 280 - 				5'	5'	25

Figure A-5, Log of Core B 2, Page 8 of 10 Y:\PROJECTS\06847-42-04 Southwest Village and Burrow Site\Core Logs\06847-42-04 CoreLog-B2.dwg

DEPTH IN FEET	GROUNDWATER	SOIL CLASS (USCS)	CORE B 2 ELEV. (MSL.) 278.81' DATE COMPLETED 12-07-2020 EQUIPMENT CME 75 WITH HQ Core BY: G. CANNON	RUN (Feet)	RECOVERY (Feet)	BOX
202	1		MATERIAL DESCRIPTION			
- 282 -		SM		5'	5'	
- 284 -			-Becomes micaceous at 284 feet	-		
- 286 -				 	5'	25
- 288 -						
- 290 -				5'	5'	
- 292 - 				_		26
- 294 -				-		
- 296 - 				5' 	5'	
- 298 - 				-		
- 300 - 				5'	5'	
- 302 - 				_		27
- 304 - 				_		
- 306 - 				5'	5'	
- 308 -				-		
 - 310 -			-Becomes thinly bedded with low angle bedding at 309 feet	-		
 - 312 -				– 5'	5'	28
				5'	5'	

Figure A-5, Log of Core B 2, Page 9 of 10 Y:\PROJECTS\06847-42-04 Southwest Village and Burrow Site\Core Logs\06847-42-04 CoreLog-B2.dwg

DEPTH IN FEET	GROUNDWATER	SOIL CLASS (USCS)	CORE B 2 ELEV. (MSL.) 278.81' DATE COMPLETED 12-07-2020 EQUIPMENT CME 75 WITH HQ Core BY: G. CANNON	RUN (Feet)	RECOVERY (Feet)	BOX
- 214 -			MATERIAL DESCRIPTION			
_ 314 -		SM		-		
- 316 -				- 5'	5'	28
- 318 -						
			BORING TERMINATED AT 318 FEET	_		
- 320 -				-		
				-		
- 322 -				-		
	-			-		
- 324 -				-		
				-		
- 326 -				-		
				-		
_ 320 -						
- 330 -				_		
				-		
- 332 -				-		
				-		
- 334 -				-		
				-		
- 336 -				-		
				-		
- 338 -				-		
340						
- 342 -				-		
				_		
- 344 -				-		
	$\left \right $			-		

Figure A-5, Log of Core B 2, Page 10 of 10

Y:\PROJECTS\06847-42-04 Southwest Village and Burrow Site\Core Logs\06847-42-04 CoreLog-B2.dwg

GROUNDWATER	SOIL CLASS (USCS)	CORE B 3 ELEV. (MSL.) 359.93' DATE COMPLETED 12-18-2020 EQUIPMENT CME 75 WITH HQ Core BY: G. CANNON	RUN (Feet)	RECOVERY (Feet)	BOX
1		MATERIAL DESCRIPTION			
		LANDSLIDE DEBRIS			
	CL	Very stiff, olive, Sandy CLAYSTONE	1'	1'	
			-		
			- 5'	5'	
			-		
	00	35.5 to 58 feet	-		
			_		1
			_		
			5' -	1'	
			-		
			-		
			- 4'	3'	
			-		
			- 1'	1'	
			- 1'	1'	
			- 2'	2'	
			1'	1'	2
			2'	1 75'	
				1.70	
			MISS	SING	
			_		
			- 3'	0.5'	
┠┨	. <u> </u>	Dense, olive, Sity SANDSTONE: vigorous reaction to HCL	-		
$\left \right $			- 5'	<u>⊿'</u>	3
			-	7	5
1			-		
	GROUNDWATER	SOIL CLASS (USCS)	Big Solu CORE B 3 Solu ELEV. (MSL.) 359.93' DATE COMPLETED 12-18-2020 EQUIPMENT CME 75 WITH HQ Core BY; G, CANNON CL CANDSLIDE DEBRIS Geng cased a 30 feet, nol logged CL Very still view, Sardy CLVISTONE GC Tiping gay Obays StAREDCONELOCENEL	Bit Outpoint CORE B 3 CORE B 3 Page 2 Son, Cussos ELEV. (MSL.) 359.8 (2) DATE COMPLETED 12-18-2020 EQUIPMENT CME 75 WITH HO Core BY: G, CANNON Image: Constant of the co	Bit CLARS CORE B 3 Prof. 0 1000 ELEV. (MSL). 358.03. DATE COMPLETED 12.18-2020

Figure A-6, Log of Core B 3A, Page 1 of 4

Y:\PROJECTS\06847-42-04 Southwest Village and Burrow Site\Core Logs\06847-42-04 CoreLog-B3.dwg

DEPTH IN FEET	GROUNDWATER	SOIL CLASS (USCS)	CORE B 3 ELEV. (MSL.) 359.93' DATE COMPLETED 12-18-2020 EQUIPMENT CME 75 WITH HQ Core BY: G. CANNON	RUN (Feet)	RECOVERY (Feet)	BOX
60			MATERIAL DESCRIPTION			
- 62 -				_		
- 64 -				- 5'	1'	
- 66 -				-		
	-	CL				
- 68 -				_		3
- 70 -				5'	1.5'	
				-		
- 72 -				_		
				- 3'	3'	
- 74 -			-Becomes waxy	-		
					.	
_ /0 _				_ 2	2	
- 78 -				-		
					4171	
- 80 -				-	472	4
				-		
- 82 -		SM	Light olive, Silty, fine SANDSTONE			
- 84 -	╞╶		Sharp contact	- 41/1	A171	
		UL	Hard, olive, CLAYSTONE; sheared bentonite/claystone present from 83.9 to 87.5 feet	4 ½	472	
- 86 -				-		
				1/2'	1/2'	
- 88 -				-		
				- 5'	4'	5
- 90 -						
- 92 -						
		SM	Dense, olive, Silty, fine SANDSTONE	- 5'	5'	
			-Horizontally laminated; abundant mica			

Figure A-6, Log of Core B 3A, Page 2 of 4 Y:\PROJECTS\06847-42-04 Southwest Village and Burrow Site\Core Logs\06847-42-04 CoreLog-B3.dwg

DEPTH	ATER	SOIL	CORE B 3	N t)	′ERY t)	×
IN FEET	WDW	CLASS	ELEV. (MSL.) <u>359.93'</u> DATE COMPLETED <u>12-18-2020</u>	RUN (Fee	ECOV (Fee	BO)
	GROI	(0000)	EQUIPMENT CME 75 WITH HQ Core BY: G. CANNON		RE	
			MATERIAL DESCRIPTION			
- 94 - _		SM		_		
- 96 -			Hard, dive CLAYSTONE	5' -	5'	5
		SC	Olive, Clayey SANDSTONE			
- 90 -				_		
- 100 -				- 5'	5'	
	$\left \right $			-		
- 102 -	$\left \right $			_		6
	1			-		
- 104 -	1			5'	5'	
- 106 -						
			-Zone of high angle fracturing from 107 to 117 feet	_		
- 108 -	$\left \right $			-		
	$\left \right $				E 1	
- 110 -				- 5	5	
	1			-		
- 112 -	1					7
- 114 -				3½'	3½'	
	╞╴┥			_		
- 116 -	$\left \right $	Сп	Hard, pink, waxy CLAYSTONE; bentonitic; contorted from 115 to 117 feet	- 1½'	1½'	
	┟┥		Hard. dive. CLAYSTONE	_		
- 118 -				-		
	1			- 5'	5'	
- 120 -	┞┨	SC & SM	Olive. Silty to Clavey SANDSTONE			
- 122 -						8
				_		
- 124 -				- _{5'}	5'	
	$\left \right $		-Caliche, vigorous reaction to HCL	-		
	1		Y-\PRQ.JECTS\06847-42-04 Southwest Village and Burrow Site	Core Logs\06	847-42-04 Co	rel og-B3 dwa

Figure A-6, Log of Core B 3A, Page 3 of 4

DEPTH IN FEET	GROUNDWATER	SOIL CLASS (USCS)	CORE B 3 ELEV. (MSL.) 359.93' DATE COMPLETED 12-18-2020 EQUIPMENT CME 75 WITH HQ Core BY: G. CANNON	RUN (Feet)	RECOVERY (Feet)	BOX
			MATERIAL DESCRIPTION			
- 126 -		SC & SM		5'	5'	8
- 128 -						
_ 120 _				5'	5'	9
- 132 -	L.		-Gravels present	_		
		SM	Olive, fine SANDSTONE; micaceous	_		
- 134 -				_		
				5'	3'	
- 136 -				_		
				_		
- 138 -				-		10
			-becomes citaguer and micaceous	-		
- 140 -		CL_	Light olive, CLAYSTONE	- 5'	4½'	
				-		
- 142 -				_		
			Grav fine SANDSTONE	-		
- 144 -					5 1	
				- 3	5	
- 146 -				-		
				_		
- 148 -				-		11
			Sharo contact	- 5'	5'	
- 150 -		CL		-	-	
				-		
- 152 -	┢╴	 SM	Medium gray, fine SANDSTONE	-		
	1			F		
- 154 -	† -		Hard, light olive, Silty CLAYSTONE	- 5'	4½'	
	1			-		12
- 156 -	1			-		
	Ĺ		BORING ABANDONED AT 157 FEET	_		

Figure A-6, Log of Core B 3A, Page 4 of 4 Y:\PROJECTS\06847-42-04 Southwest Village and Burrow Site\Core Logs\06847-42-04 CoreLog-B3.dwg

DEPTH IN FEET	GROUNDWATER	SOIL CLASS (USCS)	CORE B 3A ELEV. (MSL.) 359.61' DATE COMPLETED 01-15-2021 EQUIPMENT CME 75 WITH HQ Core BY: G. CANNON	RUN (Feet)	RECOVERY (Feet)	BOX
140			MATERIAL DESCRIPTION			
- 142 -		CL	LANDSLIDE DEBRIS (Cont.)			
- 144 -		SM	Hard, light olive, CLAYSTONE	- - 5'	5'	
 - 146 -				-		
- 148 -				-		1
- 150 - 		CL	Hard, CLAYSTONE, vigorous reaction to HCI; with interbeds of sandstone		4'	
- 152 - 	-					
- 154 - 	-			-		
- 156 - 	-			- - 5'	5'	
- 158 - 				-		2
- 160 - 	-			-		
- 162 - 		SM/SC	Dense, damp, gray, Silty/Clayey SANDSTONE	_		
- 164 - 		- <u>-</u>		- 5'	5'	
- 166 - 				-		
- 168 - 				-		
- 170 -			-Becomes sandier	\vdash		
 - 172 -		SM	Dense, fine to medium SANDSTONE	5' 	5'	3
				-		

Figure A-7, Log of Core B 3B, Page 1 of 8 Y:\PROJECTS\06847-42-04 Southwest Village and Burrow Site\Core Logs\06847-42-04 CoreLog-B3A.dwg

DEPTH IN FEET	GROUNDWATER	SOIL CLASS (USCS)	CORE B 3A ELEV. (MSL.) 359.61' DATE COMPLETED 01-15-2021 EQUIPMENT CME 75 WITH HQ Core BY: G. CANNON	RUN (Feet)	RECOVERY (Feet)	BOX
474	1		MATERIAL DESCRIPTION			
- 174 - 	Þ	SM	-Becomes coarser grained below 175 feet (Gritstone) -Possible water table at 175.3 feet based on geophysical measurement -Cobble fragment	5' 	5'	
- 178 -			-Becomes fine to coarse SANDSTONE	_		4
- 180 - 				5'	5'	
- 182 -			4 footshield hard Bakturallow known Rando soome Condu OLAVETONE had at 400	_		
- 184 - - 184 - - 186 -		<u>-</u>	Very dense, Clayey, fine to coarse SANDSTONE with gravel	- 5' -	4½'	Ē
- 188 - - 190 -	-			- 5' -	5'	5
- 192 - - 194 - - 196 -			-Becomes intermittently coarse grained with some gravels at 193 feet	- - - -	5'	
- 198 - - 200 -				- ' -	'	6
- 202 - - 204 -			-6-inch thick claystone bed at 204 feet	- - 5'	4'	7

Figure A-7, Log of Core B 3B, Page 2 of 8

Y:\PROJECTS\06847-42-04 Southwest Village and Burrow Site\Core Logs\06847-42-04 CoreLog-B3A.dwg

DEPTH IN FEET	GROUNDWATER	SOIL CLASS (USCS)	CORE B 3A ELEV. (MSL.) <u>359.61'</u> DATE COMPLETED <u>01-15-2021</u> EQUIPMENT <u>CME 75 WITH HQ Core</u> BY: <u>G. CANNON</u>	RUN (Feet)	RECOVERY (Feet)	вох
000			MATERIAL DESCRIPTION			
- 206 -		SC		5'	4'	
- 208 -				_		
				- 5'	5'	7
- 210 -				-		
			-Recomes very coarse grained between 212 and 242 feet			
				_		
- 214 -				_		
				-		
- 216 -				-		
				- 5'	5'	8
- 218 -				-		
				-		
- 220 -				-		
				-		
- 222 -				_		
				-		
- 224 -					5'	
				-	0	
- 226 -				-		
						9
- 228 -			-Some gravel up to 3 inches	-		
230				5'	5'	
				_		
- 232 -				_		
			-Gravel and cobble size rock fragments up to 3-4 inches	-		
- 234 -				-		
				- ^{5'}	5'	10
- 236 -				-		
	$\left \right $			5'	3'	

Figure A-7, Log of Core B 3B, Page 3 of 8 Y:\PROJECTS\06847-42-04 Southwest Village and Burrow Site\Core Logs\06847-42-04 CoreLog-B3A.dwg

DEPTH IN FEET	GROUNDWATER	SOIL CLASS (USCS)	CORE B 3A ELEV. (MSL.) 359.61' DATE COMPLETED 01-15-2021 EQUIPMENT CME 75 WITH HQ Core BY: G. CANNON	RUN (Feet)	RECOVERY (Feet)	BOX
220	1		MATERIAL DESCRIPTION			
- 230 - - 240 - 		SC		- 5' -	3'	10
- 242 -				_		
 - 244 - 				- - 5'	4'	
- 246 -	1	CL	Very hard, CLAYSTONE	-		
- 248 - - 248 - - 250 - 		SC	Dense, Clayey, fine to coarse SANDSTONE; some gravel	- - - -	41⁄2'	11
- 254 - - 256 - - 256 -	-			- 5' -	5'	12
- 258 - - 260 - 	-			5' 	5'	
- 262 - - 264 - 				- 5' -	5'	13
- 268 - 			-Some green clay marbling at 268 feet with increase in cobble size rock fragments below	5'	5'	

Figure A-7, Log of Core B 3B, Page 4 of 8

Y:\PROJECTS\06847-42-04 Southwest Village and Burrow Site\Core Logs\06847-42-04 CoreLog-B3A.dwg

DEPTH IN FEET	GROUNDWATER	SOIL CLASS (USCS)	CORE B 3A ELEV. (MSL.) 359.61' DATE COMPLETED 01-15-2021 EQUIPMENT CME 75 WITH HQ Core BY: G. CANNON	RUN (Feet)	RECOVERY (Feet)	вох
- 270 -			MATERIAL DESCRIPTION			
		SC		- 5'	5'	13
- 272 -				_		
 - 274 -				3' 	3'	
 - 276 -	-			- 2'	2'	
 - 278 -		CL	Hard, dark brown, CLAYSTONE	-		14
 - 280 -	-				3¾'	
- 282 -						
			-Becomes fine to coarse, Sandy CLAYSTONE	-		
- 284 -				- 5'	5'	
			-No return	_		
- 288 -				-		
				5'	0'	15
				-		
- 292 -				_		
				_		
				- 5'	5'	
- 296 -				-		
				-		16
- 300 -				_ 5'	5'	
	1			-		

Figure A-7, Log of Core B 3B, Page 5 of 8

Y:\PROJECTS\06847-42-04 Southwest Village and Burrow Site\Core Logs\06847-42-04 CoreLog-B3A.dwg

DEPTH IN FEET	GROUNDWATER	SOIL CLASS (USCS)	CORE B 3A ELEV. (MSL.) 359.61' DATE COMPLETED 01-15-2021 EQUIPMENT CME 75 WITH HQ Core BY: G. CANNON	RUN (Feet)	RECOVERY (Feet)	BOX
- 202	1		MATERIAL DESCRIPTION			
- 302 -		CL				
- 304 - 		GC/GM	Reddish brown, Sandy/Clayey GRAVEL/CONGLOMERATE	5'	5'	16
- 306 -				-		
- 308 - 				2½'	21⁄2'	
- 310 - 				2'	2'	17
- 312 -				0.5'	0.5'	
				-		
- 314 - 				5'	5'	
- 316 -						
- 318 - - 320 - 	-	ML/CL	Hard, reddish brown with light green mottling, Silty CLAYSTONE/Clayey SILTSTONE	- - - -	5'	18
- 322 -			-10 inch thick zone of stiff day at 222 feet with several well developed remoted planes: light green markling appears to be builded/sheared and			
- 324 -			truncated; becomes stiff with disturbed appearance below			
				5'	5'	
- 326 -				-		
	$\left \right $			_		
- 328 - - 330 - 			-BASAL SHEAR ZONE from 328 to 332 feet; 4-foot-thick zone of viscous/plastic deformation consisting of a melange of reddish-brown slightly to moderately remolded clay and olive-gray, clayey fine sand; chaotic/marbled/disturbed/twisted appearance	_ _ 5' _	5'	19
		SM	OTAY FORMATION Dense, light brown, Silty, fine to medium SANDSTONE; micaceous	- 5'	5'	20

Y:\PROJECTS\06847-42-04 Southwest Village and Burrow Site\Core Logs\06847-42-04 CoreLog-B3A.dwg

Figure A-7, Log of Core B 3B, Page 6 of 8

T.IPTCOILCTS100047-42-04 Southwest Village and Burrow Stelecore Logs100047-42-04 CoreLog-Don.dwg

DEPTH IN FEET	GROUNDWATER	SOIL CLASS (USCS)	CORE B 3A ELEV. (MSL.) 359.61' DATE COMPLETED 01-15-2021 EQUIPMENT CME 75 WITH HQ Core BY: G. CANNON	RUN (Feet)	RECOVERY (Feet)	вох
- 334 -			MATERIAL DESCRIPTION			
 - 336 -		SM		-		
 - 338 - 			-Becomes light olive gray below	- 5' - 5'	5'	20
- 340 - 	-			-		
- 342 - - 344 -	-			- - -		
 - 346 -	-			5' 	5'	
- 348 - 				-		21
- 350 - 	-			- - - 5'	5'	
				-	5	
- 354 - 	-		-Thin horizontal to slightly dipping bedding from 355 to 396 feet	-		
- 356 - 				_		
- 358 - 				- - 5'	<u>ج</u> '	22
- 360 - 				- ´		
				- 5'	5'	23
				_		23

Figure A-7, Log of Core B 3B, Page 7 of 8 Y:\PROJECTS\06847-42-04 Southwest Village and Burrow Site\Core Logs\06847-42-04 CoreLog-B3A.dwg

DEPTH IN FEET	GROUNDWATER	SOIL CLASS (USCS)	CORE B 3A ELEV. (MSL.) 359.61' DATE COMPLETED 01-15-2021 EQUIPMENT CME 75 WITH HQ Core BY: G. CANNON	RUN (Feet)	RECOVERY (Feet)	вох
266			MATERIAL DESCRIPTION			
- 300 -		SM		5'	5'	
- 368 - 				- 3'	3'	23
- 370 - 				- 2'	2'	23
- 372 -				_		
- 374 - 				5'	5'	
- 376 - 				-		
- 378 - 				_ _ 5'	5'	24
- 380 - 				-		
- 382 - 				_		
- 384 - 				5'	5'	
- 386 - 				_		
- 388 - 				- - 5'	<u>ج</u> '	25
- 390 - 				- ° -	0	
- 392 - 						
- 394 - 				5'	5'	26
- 396 -				\vdash		
	\Box		BORING TERMINATED AT 397 FEET			

Figure A-7, Log of Core B 3B, Page 8 of 8 Y:\PROJECTS\06847-42-04 Southwest Village and Burrow Site\Core Logs\06847-42-04 CoreLog-B3A.dwg

7

B1:66-75

2

6

97

9

102

A-8

1 OF 5

SHEET

BORING 1 SEQUENTIAL PHOTOGRAPHS OF CORE SAMPLES SUITIVEST VELACE VESTING TENTATIVE MAP 1 SAN DECO, CALECINA SAN DECO, CALECINA CONTROL & INVERCINAL & ALARBING DECOMPACE AND DECOMPACIAL AND DECOMPACIAL AND DECOMPACIAL DECOMPACIAL AND DECOMPACIAL AND DECOMPACIAL DECOM A-11 SHEET 4 OF 5

2

BORING 2 SEQUENTIAL PHOTOGRAPHS OF CORE SAMPLES SOUTHWEST VELAGE VESTING TENTATIVE MAP 1 SAN DECO, CALIFORMA GEOCON INCOM 20 AP 04 AT 15 SOUTHWEST VELAGE VESTING TO BOAR SOUTHWEST VELAGE SOUTHWEST VELAGE VESTING TO BOAR SOUTHWEST VELAGE SOUTHWEST VELAG

Relation (2011) 1199 (epitemic Ave. 2011) The creation of Wild Competence of the set of the method and a finance of the grant of the Competence of the set of the set

Read REVISED 21/PM (RURDED ADULATION CONTROL CONTROL CONTROL CONTROL ON TAXABLE PROVIDED ADULATED TO CONTROL ON CONTROL CONTROL ON CONTROL ON CONTROL CO

Read (MSVID) 1 (MVR) (MVR) ADVLAY (The Leader Y MSUE COMMING OF Instrume View and Norwell Tendes Transmission Print general Tendes (MVR) ADVLAY (MVR)

Photo 1905/02/11/3/PM (N/X/DD AD/LAD (Photo access 1995) 62:00 Photos 2000 Pho

APPENDIX B

LABORATORY TESTING

We performed laboratory tests in general accordance with the test methods of the American Society for Testing and Materials (ASTM) or other suggested procedures. We tested selected samples to evaluate in-place dry density and moisture content, direct shear strength, Atterberg limits, maximum dry density and optimum moisture content, gradation, and permeability. The results of the laboratory tests are presented in the following tables and graphs.

Sample No.	Geologic Unit	Dry Density (pcf)	Moisture Content (%)	Angle of Shear Resistance (degrees)	Unit Cohesion (psf)
LB3-3 [†] *	Otay Formation	93.4	19.0	32	500
LB1-3**	Landslide Debris	101.0	25.9	31	135
LB4-9 [†] **	Remolded Shear Plane			27	180
B1@215 ft	Otay Formation	121.2	6.1	45 (peak) 39 (ultimate)	3,260 (peak) 960 (ultimate)
B2@289 ft	Otay Formation	116.4	6.4	38 (peak) 29 (ultimate)	1,720 (peak) 600 (ultimate)
B3@394 ft	Otay Formation	113.5	8.9	49 (peak) 37 (ultimate)	1,550 (peak) 1,000 (ultimate)
B3@328-330 ft	Basal Shear Zone (Remolded)	107.4	18.3	21 (peak) 20 (ultimate)	150 (peak) 160 (ultimate)

TABLE B-I SUMMARY OF DIRECT SHEAR TEST RESULTS (ASTM D 3080)

[†]Sample remolded to approximately 90 percent of relative compaction near optimum moisture content.

*From Geocon October 2004

**From Geocon May 2006

TABLE B-II SUMMARY OF LABORATORY ATTERBERG LIMITS TEST RESULTS ASTM D 4318

Sample No.	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index
B1@161-164 ft	66	27	39
B2@263 ft	40	21	19
B3@324 ft	51	23	28
B3@328-330 ft	35	18	17

TABLE B-III RESIDUAL SHEAR STRENGTH VALUES FOR BASAL SLIDE PLANE BASED ON STARK, CHOI, MCCONE (2005)

Sample No.	Liquid Limit	Percent Clay	Angle of Internal Friction (degrees)	Cohesion (psf)
B1@161 - 164 feet	66	27	11	50
B2@263 feet	40	10	24	20
B3@324 feet	51	22	15	60
B3@328-330 feet	35	14	22	60

TABLE B-IV SUMMARY OF LABORATORY MAXIMUM DRY DENSITY AND OPTIMUM MOISTURE CONTENT TEST RESULTS (ASTM D 1557)

Sample No.	Description	Maximum Dry Density (pcf)	Optimum Moisture Content (% dry wt.)
Perm - 1	Reddish brown, Silty, fine to coarse SAND with trace gravel	126.9	9.9

TABLE B-V SUMMARY OF LABORATORY REMOLDED PERMEABILITY TEST (ASTM D5084)

Sample	Moisture C	Content (%)	Dry Density	Permeability	
No.	Before Test	After Test	(pcf)	(cm/s)	
*Perm - 1	10.3	17.6	111.9	6.38 x 10 ⁻⁴	

*Sample remolded to approximately 90 percent relative compaction near optimum moisture content

Plotted:06/21/2021 8:32AM | By:ALVIN LADRILLONO | File Location:W:\1_GEOTECH\06600\06800\06847-42-04\2021-06-21\Shear Plots\06847-42-04 Shear.dwg

Plotted: 06/21/2021 8:31AM | By:ALVIN LADRILLONO | File Location:W:\1_GEOTECH/06000/06800/06847-42-04/2021-06-21\Shear Plots/06847-42-04 Shear.dwg

SAMPLE NO.: B- SAMPLE DEPTH (FT): 21	- I 5'	GEOL NATURAL/	OGIC UNIT:	Otay Fo	ormation N	
		ONDITIO	١S			
NORMAL STRESS TEST	LOAD	2 K	4 K	8 K	AVERAGE	
ACTUAL NORMAL ST	RESS (PSF):	2000	4000	8000		
WATER CON	NTENT (%):	6.1	6.5	5.7	6.1	
DRY DEN	ISITY (PCF):	121.2	119.4	123.0	121.2	
AFTER TEST CONDITIONS						
NORMAL STRESS TEST	LOAD	2 K	4 K	8 K	AVERAGE	
WATER CON	NTENT (%):	12.6	13.5	12.2	12.8	
PEAK SHEAR ST	RESS (PSF):	5236	7406	11365		
ULTE.O.T. SHEAR STRESS (PSF):		2522	4294	7412		
	RES	ULTS				
			COHESIC	DN, C (PSF)	3260	
FEAK		FRICTI	ON ANGLE	(DEGREES)	45	
		COHESION, C (PSF)			960	
OLTIMATE		FRICTI	ON ANGLE	(DEGREES)	39	

DIRECT SHEAR ASTM D 3080

SOUTHWEST VILLAGE

GEOTECHNICAL CONSULTANTS 6960 FLANDERS DRIVE - SAN DIEGO, CALIFORNIA 92121-2974 PHONE 858 558-6900 - FAX 858 558-6159

SAMPLE NO.: SAMPLE DEPTH (FT):	B-2 289'	GEOL NATURAL	OGIC UNIT: REMOLDED:	Otay Fo	rmation N	
	INITIAL C	ONDITIO	NS			
NORMAL STRESS TES	ST LOAD	2 K	4 K	8 K	AVERAGE	
ACTUAL NORMAI	L STRESS (PSF):	2000	4000	8000		
WATER (CONTENT (%):	6.2	6.4	6.5	6.4	
DRY D	DENSITY (PCF):	116.5	115.6	117.0	116.4	
AFTER TEST CONDITIONS						
NORMAL STRESS TES	ST LOAD	2 K	4 K	8 K	AVERAGE	
WATER (CONTENT (%):	13.4	13.8	13.5	13.6	
PEAK SHEAF	R STRESS (PSF):	3156	4996	7863		
ULTE.O.T. SHEAF	1811	2678	5100			
	RES	ULTS				
DEAK			COHESIC	DN, C (PSF)	1720	
FEAN		FRICTI	ON ANGLE	(DEGREES)	38	
			COHESIC	DN, C (PSF)	600	
OLIMATE		FRICTION ANGLE (DEGREES) 29				

DIRECT SHEAR ASTM D 3080

SOUTHWEST VILLAGE

GEOTECHNICAL CONSULTANTS 6960 FLANDERS DRIVE - SAN DIEGO, CALIFORNIA 92121-2974 PHONE 858 558-6900 - FAX 858 558-6159

SAMPLE NO.: B- SAMPLE DEPTH (FT): 39	SAMPLE NO.: B-3 E DEPTH (FT): 394'		GEOLOGIC UNIT: NATURAL/REMOLDED:		Otay Formation N	
	INITIAL CO	ONDITION	٩S			
NORMAL STRESS TEST	LOAD	2 K	4 K	8 K	AVERAGE	
ACTUAL NORMAL ST	TRESS (PSF):	2000	4000	8000		
WATER CON	NTENT (%):	8.0	9.7	9.1	8.9	
DRY DEN	ISITY (PCF):	113.4	113.2	113.9	113.5	
AF	TER TEST	CONDITI	ONS			
NORMAL STRESS TEST	LOAD	2 K	4 K	8 K	AVERAGE	
WATER CON	NTENT (%):	15.5	16.0	15.5	15.7	
PEAK SHEAR ST	PEAK SHEAR STRESS (PSF):			11186		
ULTE.O.T. SHEAR ST	ULTE.O.T. SHEAR STRESS (PSF):		4525	6913		
	RES	ULTS				
DEAK			COHESIC	DN, C (PSF)	1550	
PEAR		FRICTI	ON ANGLE	(DEGREES)	49	
	COHESION, C (PSF)				1000	
GETIMATE	GETIMATE			(DEGREES)	37	
		12000				
8	K	12000				
		10000				

DIRECT SHEAR ASTM D 3080

SOUTHWEST VILLAGE

GEOTECHNICAL CONSULTANTS 6960 FLANDERS DRIVE - SAN DIEGO, CALIFORNIA 92121-2974 PHONE 858 558-6900 - FAX 858 558-6159

SAMPLE NO.: B3 @ 3 SAMPLE DEPTH (FT):	GEOLOGIC UNIT: NATURAL/REMOLDED:		Shear Zone N		
	INITIAL CO	ONDITION	٩S		
NORMAL STRESS TEST	LOAD	2 K	4 K	8 K	AVERAGE
ACTUAL NORMAL ST	RESS (PSF):	2000	4000	8000	
WATER CON	NTENT (%):	18.3	18.3	18.3	18.3
DRY DEN	SITY (PCF):	107.4	107.4	107.4	107.4
AF	TER TEST	CONDITI	ONS		
NORMAL STRESS TEST	LOAD	2 K	4 K	8 K	AVERAGE
WATER CON	NTENT (%):	23.3	23.3	23.3	23.3
PEAK SHEAR ST	RESS (PSF):	884	1710	3179	
ULTE.O.T. SHEAR ST	RESS (PSF):	858	1677	3072	
	RESU	ULTS			
			COHESIC	DN, C (PSF)	150
PEAK		FRICTI	ON ANGLE	(DEGREES)	21
			COHESIC	DN, C (PSF)	160
ULTIMATE		20			

RESIDUAL SHEAR ASTM D 3080

SOUTHWEST VILLAGE

GEOTECHNICAL CONSULTANTS 6960 FLANDERS DRIVE - SAN DIEGO, CALIFORNIA 92121-2974 PHONE 858 558-6900 - FAX 858 558-6159

SIEVE ANALYSES ASTM D 135 & D 422

SOUTHWEST VILLAGE

D ₁₀ (mm)	D ₃₀ (mm)	D ₆₀ (mm)	C _c	C _u	SOIL DESCRIPTION
0.00217	0.03745	0.14714	4.4	67.8	Silty SAND

SIEVE ANALYSES ASTM D 135 & D 422

SOUTHWEST VILLAGE

IESI DATA							
D ₁₀ (mm)	D ₃₀ (mm)	D ₆₀ (mm)	C _c	Cu	SOIL DESCRIPTION		
0.00040	0.00375	0.03673	0.9	90.8	Silty CLAY with sand		

SIEVE ANALYSES ASTM D 135 & D 422

SOUTHWEST VILLAGE

D ₁₀ (mm)	D ₃₀ (mm)	D ₆₀ (mm)	C _c	Cu	SOIL DESCRIPTION
0.00077	0.01546	0.19277	1.6	250.6	Silty Clayey SAND

SIEVE ANALYSES ASTM D 135 & D 422

SOUTHWEST VILLAGE

TEST RESULTS					
SAMPLE GEOLOGIC LIQUID PLASTIC PLASTICITY NO. UNIT LIMIT LIMIT INDEX					
BI @ 161-164	Shear Zone	66	27	39	СН

SOIL TYPE DESCRIPTION				
CH High-Plasticity Clay				
CL	Low-Plasticity Clay			
ML	Low-Plasticity Silt			
CL-ML	Low-Plasticity Clay to Low-Plasticity Silt			
MH-OH High-Plasticity Silt to High-Plasticity, Organic Silt				
ML-OL	Low-Plasticity Silt to Low-Plasticity, Organic Silt			

GEOTECHNICAL CONSULTANTS 6960 FLANDERS DRIVE - SAN DIEGO, CALIFORNIA 92121-2974 PHONE 858 558-6900 - FAX 858 558-6159 PLASTICITY INDEX - ASTM D 4318

Southwest Village PROJECT NO.: 06847-42-04

TEST RESULTS						
SAMPLE GEOLOGIC LIQUID PLASTIC PLASTICITY NO. UNIT LIMIT LIMIT INDEX						
B2 @ 263	Shear Zone	40	21	19	CL	

SOIL TYPE DESCRIPTION				
CH High-Plasticity Clay				
CL	Low-Plasticity Clay			
ML	Low-Plasticity Silt			
CL-ML	Low-Plasticity Clay to Low-Plasticity Silt			
MH-OH High-Plasticity Silt to High-Plasticity, Organic Silt				
ML-OL	Low-Plasticity Silt to Low-Plasticity, Organic Silt			

GEOTECHNICAL CONSULTANTS 6960 FLANDERS DRIVE - SAN DIEGO, CALIFORNIA 92121-2974 PHONE 858 558-6900 - FAX 858 558-6159

PLASTICITY INDEX - ASTM D 4318

SOUTHWEST VILLAGE

TEST RESULTS						
SAMPLE GEOLOGIC LIQUID PLASTIC PLASTICITY NO. UNIT LIMIT LIMIT INDEX						
B3 @ 324	SHEAR ZONE	51	23	28	СН	

SOIL TYPE DESCRIPTION				
СН	High-Plasticity Clay			
CL	Low-Plasticity Clay			
ML	Low-Plasticity Silt			
CL-ML	Low-Plasticity Clay to Low-Plasticity Silt			
MH-OH	High-Plasticity Silt to High-Plasticity, Organic Silt			
ML-OL	Low-Plasticity Silt to Low-Plasticity, Organic Silt			

GEOTECHNICAL CONSULTANTS 6960 FLANDERS DRIVE - SAN DIEGO, CALIFORNIA 92121-2974 PHONE 858 558-6900 - FAX 858 558-6159 PLASTICITY INDEX - ASTM D 4318

SOUTHWEST VILLAGE

TEST RESULTS					
SAMPLE GEOLOGIC LIQUID PLASTIC PLASTICITY NO. UNIT LIMIT LIMIT INDEX					
B3 @ 328-330	Shear Zone	35	18	17	CL

SOIL TYPE DESCRIPTION				
CH High-Plasticity Clay				
CL	Low-Plasticity Clay			
ML	Low-Plasticity Silt			
CL-ML	Low-Plasticity Clay to Low-Plasticity Silt			
MH-OH High-Plasticity Silt to High-Plasticity, Organic Silt				
ML-OL	Low-Plasticity Silt to Low-Plasticity, Organic Silt			

GEOTECHNICAL CONSULTANTS 6960 FLANDERS DRIVE - SAN DIEGO, CALIFORNIA 92121-2974 PHONE 858 558-6900 - FAX 858 558-6159 PLASTICITY INDEX - ASTM D 4318

SOUTHWEST VILLAGE

D ₁₀ (mm)	D ₃₀ (mm)	D ₆₀ (mm)	C _c	C _u	SOIL DESCRIPTION
0.038	0.303	0.816	2.9	21.3	SM - Silty SAND

SIEVE ANALYSES ASTM D 135

SOUTHWEST VILLAGE

GEOTECHNICAL CONSULTANTS 6960 FLANDERS DRIVE - SAN DIEGO, CALIFORNIA 92121-2974 PHONE 858 558-6900 - FAX 858 558-6159

APPENDIX C

HYDRAULIC CONDUCTIVITY TESTING

We performed hydraulic conductivity testing on the mesa in the development area and at each of the proposed storm water outfalls. The tests were performed in 4- and 6-inch-diameter, drilled boreholes. We also performed a laboratory permeability test on a remolded sample of soil obtained from the mesa. Tables C-1 and C-2 presents the results of the testing. Figure C-1 shows the locations of the tests.

 TABLE C-1

 HYDRAULIC CONDUCTIVITY TEST RESULTS PERFORMED ON THE MESA

Location	Depth (feet)	Geologic Unit	Hydraulic Conductivity k (in/hr)
A-1	5	Topsoil/Qt	0.007
A-2	5	Qt	0.049
A-3	5	Qt	0.018
A-4	5	Qt	0.004
Lab Permeability		Remolded Sample	0.86

 TABLE C-2

 HYDRAULIC CONDUCTIVITY TEST RESULTS PERFORMED AT OUTFALLS

Location	Depth (feet)	Geologic Unit	Hydraulic Conductivity k (in/hr)
Outfall 5	5	Qls	0.011
Outfall 6	5	Qls	0.0009
Outfall 7*	3.3	Qls	0.0004
Outfall 8	4	Qls	0.008
Outfall 9	4.5	Qls	0.004

* Actual Location Slightly West of Outfall 7

Plotted:06/24/2021 3:32PM | By:RUBEN AGUILAR | File Location:Y:\PROJECTS\06847-42-04 Southwest Village and Burrow Site\SHEETS\06847-42-04 InfiltrationTestLocationMap.dwg

APPENDIX D

SLOPE STABILITY ANALYSIS

FOR

SOUTHWEST VILLAGE VTM-1 SAN DIEGO, CALIFORNIA

Southwest Village Project No. 06847-42-04 Cross Section: AA-AA'

Analysis:

- Failure Along Slip Surface and Up Backscarp
- Water at Existing Elevation

Color	Name	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Piezometric Line
	Qal	125	100	28	1
	Qal (2)				1
	Qcf	130	300	30	1
	Qls	130	300	30	1
	Qt	130	100	33	1
	Shear Zone	120	50	8	1
	То	130	450	34	1
	To (2)				1
	Tsd	130	450	34	1

Southwest Village Project No. 06847-42-04 Cross Section: BB-BB'

Analysis:

- Failure Along Slip Surface at up Backscarp
- Water at Existing Elevation

Color	Name	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Piezometric Line
	Qal	125	100	28	1
	Qal (2)				1
	Qls	130	300	30	1
	Qt	130	100	33	1
	Shear Zone	120	50	8	1
	То	130	450	34	1
	To (2)				1
	Tsd	130	450	34	1

Southwest Village Project No. 06847-42-04 Cross Section: AA-AA'

Analysis:

- Failure Along Slip Surface
- Slip Surface Extended
- Water at Existing Elevation

Color	Name	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Piezometric Line
	Qal	125	100	28	1
	Qal (2)				1
	Qcf	130	300	30	1
	Qls	130	300	30	1
	Qt	130	100	33	1
	Shear Zone	120	50	8	1
	То	130	450	34	1
	To (2)				1
	Tsd	130	450	34	1

•<u>1.53</u>

Southwest Village Project No. 06847-42-04 Cross Section: BB-BB'

Analysis:

- Failure Along Slip Surface
- Slip Surface Extended
- Water at Existing Elevation

Color	Name	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Piezometric Line
	Qal	125	100	28	1
	Qal (2)				1
	Qls	130	300	30	1
	Qt	130	100	33	1
	Shear Zone	120	50	8	1
	То	130	450	34	1
	To (2)				1
	Tsd	130	450	34	1

Figure D-4

Southwest Village Project No. 06847-42-04 Cross Section: AA-AA'

Analysis:

- -- Failure Along Slip Surface
- -- Slip Surface Extended
- -- Failure at Edge of Develoopment
- -- Water at Existing Elevation

Color	Name	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Piezometric Line
	Qal	125	100	28	1
	Qal (2)				1
	Qcf	130	300	30	1
	Qls	130	300	30	1
	Qt	130	100	33	1
	Shear Zone	120	50	8	1
	То	130	450	34	1
	To (2)				1
	Tsd	130	450	34	1

Southwest Village Project No. 06847-42-04 Cross Section: BB-BB'

Analysis:

- Failure Along Slip Surface
- Slip Surface Extended
- Failure at Edge of Development
- Water at Existing Elevation

Color	Name	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Piezometric Line
	Qal	125	100	28	1
	Qal (2)				1
	Qls	130	300	30	1
	Qt	130	100	33	1
	Shear Zone	120	50	8	1
	То	130	450	34	1
	To (2)				1
	Tsd	130	450	34	1

Southwest Village Project No. 06847-42-04 Cross Section: AA-AA'

Analysis:

- Failure Along Slip Surface
- Slip Surface Extended
- Groundwater Rise 10 feet

Color	Name	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Piezometric Line
	Qal	125	100	28	1
	Qal (2)				1
	Qcf	130	300	30	1
	Qls	130	300	30	1
	Qt	130	100	33	1
	Shear Zone	120	50	8	1
	То	130	450	34	1
	To (2)				1
	Tsd	130	450	34	1

<u>1.50</u>

File Name: AA-AA' (GW Rise 10 feet).gsz

Figure D-7

Southwest Village Project No. 06847-42-04 Cross Section: BB-BB'

Analysis:

- Failure Along Slip Surface
- Slip Surface Extended
- Groundwater Rise 10 feet

Color	Name	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Piezometric Line
	Qal	125	100	28	1
	Qal (2)				1
	Qls	130	300	30	1
	Qt	130	100	33	1
	Shear Zone	120	50	8	1
	То	130	450	34	1
	To (2)				1
	Tsd	130	450	34	1

Southwest Village Project No. 06847-42-04 Cross Section: AA-AA'

Analysis:

- 50 foot Increase in Exposed Headscarp

Color	Name	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Piezometric Line
	Qal	125	100	28	1
	Qal (2)				1
	Qcf	130	300	30	1
	Qls	130	300	30	1
	Qt	130	100	33	1
	Shear Zone	120	50	8	1
	То	130	450	34	1
	To (2)				1
	Tsd	130	450	34	1

Figure D-9

Southwest Village Project No. 06847-42-04 Cross Section: BB-BB'

Analysis:

- 50 foot Increase in Exposed Headscarp

Color	Name	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Piezometric Line
	Qal	125	100	28	1
	Qal (2)				1
	Qls	130	300	30	1
	Qt	130	100	33	1
	Shear Zone	120	50	8	1
	То	130	450	34	1
	To (2)				1
	Tsd	130	450	34	1

Figure D-10

Seismic Slope Stability Evaluation

Input Data in Shaded Areas

Project Project Number Date	Southwest Village 06847-42-04 06/18/21		Computed By
Peak Ground Acceler Modal Magnitude, M Modal Distance, r, km Site Condition, S (0 for Yield Acceleration, k, Shear Wave Velocity Max Vertical Distance	ration (Firm Rock), MHA _r , g or rock, 1 for soil) /g , V _s (ft/sec) e, H (Feet)	0.21 6.12 11.5 0 NA 1500 80	10% in 50 years < Enter Value or NA for Screening Analysis < <
Max Vertical Distance, H (Feet) Is Slide X-Area > 25,000ft ² (Y/N) Correction for horizontal incoherence Duration, $D_{5-95} _{med}$, sec Coefficient, C ₁ Coefficient, C ₂ Coefficient, C ₃ Standard Error, ε_T Mean Square Period, T _m , sec		Y 0.8 6.730 0.4110 0.0837 0.0021 0.437 0.445	< Use "N" for Buttress Fills
Initial Screening wit	h MHEA = MHA = k _{max} g		Approximation of Seismic Demand
k_{v} /MHA f_{EQ} (u=5cm) = (NRF/3) k_{EQ} = feq(MHA _r)/g Factor of Safety in SI	.477)*(1.87-log(u/((MHA _r /g)*NRF*D ₅₋₉₅))) ope Analysis Using k _{EQ}	NA 0.4811 0.101 0.77	Period of Sliding Mass, $T_s = 4H/V_s$, sec T_s/T_m MHEA/(MHA*NRF) NRF = 0.6225+0.9196EXP(-2.25*MHA,/g)
	Fails Initial Screening Ana	lysis	MHEA/g k,/MHEA = k,∕k _{max} Normalized Displacement, Normu

Estimated Displacement, u (cm) NA

FIGURE D-11

RCM

0.213 0.48 0.762 1.20 0.19 NA NA Southwest Village Project No. 06847-42-04 Cross Section: AA-AA'

Seismic Analysis

Horz Seismic Coef.: 0.101

Analysis:

- Seismic Analysis using calculated Keq

Color	Name	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Piezometric Line
	Qal	125	100	28	1
	Qal (2)				1
	Qcf	130	300	30	1
	Qls	130	300	30	1
	Qt	130	100	33	1
	Shear Zone	120	50	8	1
	То	130	450	34	1
	To (2)				1
	Tsd	130	450	34	1

Southwest Village Project No. 06847-42-04 Cross Section: AA-AA'

Analysis: —Yield Acceleration Determination

Seismic Analysis

Horz Seismic Coef.: 0.05

Color	Name	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Piezometric Line
	Qal	125	100	28	1
	Qal (2)				1
	Qcf	130	300	30	1
	Qls	130	300	30	1
	Qt	130	100	33	1
	Shear Zone	120	50	8	1
	То	130	450	34	1
	To (2)				1
	Tsd	130	450	34	1

Seismic Slope Stability Evaluation

Input Data in Shaded Areas

Project	Southwest Village		Computed By	RCM
Project Number	06847-42-04			
Date	05/24/21			
Filename	Seismic			
Peak Ground Acceler	ation (Firm Rock), MHA _r , g	0.21	10% in 50 years	
Modal Magnitude, M		0.12 11.5		
Site Condition, S (0 fo	, pr rock, 1 for soil)	0		
Yield Acceleration, k _v	/g	0.05	< Enter Value or NA for Screening Analysis	
Shear Wave Velocity	, V _s (ft/sec)	1500	<	
Max Vertical Distance	e, H (Feet)	445 V	< < Lico "NI" for Buttrocc Fills	
Correction for horizor	ntal incoherence	0.8		
Duration, D ₅₋₉₅ _{med} , se	90	6.730		
Coefficient, C ₁		0.4110		
Coefficient, C ₂		0.0837		
Standard Error		0.0021		
Mean Square Period,	T _m , sec	0.445		
	n MHEA = MHA = k _{max} g	0 02 0 1	Approximation of Seismic Demand	1 107
$f_{ro}(\mu=5cm) = (NRF/3)$	477)*(1 87-log(u/((MHA,/g)*NRF*D, oc)))	0.2301	T_{a}/T_{m}	2 67
$k_{EQ} = feq(MHA_r)/q$		0.101	MHEA/(MHA*NRF)	0.199
Factor of Safety in Sl	ope Analysis Using k _{EQ}	0.77	NRF = 0.6225+0.9196EXP(-2.25*MHA /g)	1.20
	Fails Initial Screening Ana	alysis	MHEA/g	0.05
	5	-	$k_v/MHEA = k_v/k_{max}$	1.00
			Normalized Displacement Normu	0.0

Normalized Displacement, Normu0.0Estimated Displacement, u (cm)0

FIGURE D-14

Seismic Slope Stability Evaluation

Input Data in Shaded Areas

Project Project Number Date Filename	Southwest Village 06847-42-04 05/24/21 Seismic		Computed By	RCM
Peak Ground Accelera Modal Magnitude, M Modal Distance, r, km Site Condition, S (0 fo Yield Acceleration, k _y /; Shear Wave Velocity, Max Vertical Distance, Is Slide X-Area > 25,0 Correction for horizonf Duration, D ₅₋₉₅ _{med} , set Coefficient, C ₁ Coefficient, C ₂ Coefficient, C ₃ Standard Error, ϵ_T Mean Square Period,	tion (Firm Rock), MHA _r , g r rock, 1 for soil) g V _s (ft/sec) .H (Feet) 00ft ² (Y/N) al incoherence	0.21 6.12 11.5 0 0.05 1500 80 Y 0.8 6.730 0.4110 0.0837 0.0021 0.437 0.445	10% in 50 years Enter Value or NA for Screening Analysis Use "N" for Buttress Fills	
Initial Screening with k,/MHA $f_{EQ}(u=5cm) = (NRF/3.4) K_{EQ} = feq(MHA_r)/g$ Factor of Safety in Slo	n MHEA = MHA = k _{max} g 177)*(1.87-log(u/((MHA,/g)*NRF*D ₅₋₉₅))) pe Analysis Using k _{EQ} Fails Initial Screening Ana	0.2381 0.4811 0.101 0.77 Ilysis	Approximation of Seismic Demand Period of Sliding Mass, T _s = 4H/V _s , sec T _s /T _m MHEA/(MHA*NRF) NRF = 0.6225+0.9196EXP(-2.25*MHA,/g) MHEA/g k _y /MHEA = k _y /k _{max} Normalized Displacement, Normu Estimated Displacement. u (cm)	0.213 0.48 0.762 1.20 0.19 0.26 9.2 12

FIGURE D-15

U.S. Geological Survey - Earthquake Hazards Program

Unified Hazard Tool

Please do not use this tool to obtain ground motion parameter values for the design code reference documents covered by the <u>U.S. Seismic Design Maps web tools</u> (e.g., the International Building Code and the ASCE 7 or 41 Standard). The values returned by the two applications are not identical.

∧ Input	
Edition	Spectral Period
Dynamic: Conterminous U.S. 2014 (u	Peak Ground Acceleration
Latitude	Time Horizon
Decimal degrees	Return period in years
32.5545	475
Longitude	
Decimal degrees, negative values for western longitudes	
-117.0258	
Site Class	
537 m/s (Site class C)	

Component

Total

Summary statistics for, Deaggregation: Total

Deaggregation targets	Recovered targets					
Return period: 475 yrs Exceedance rate: 0.0021052632 yr ⁻¹ PGA ground motion: 0.20861892 g	Return period: 487.51271 yrs Exceedance rate: 0.0020512286 yr ⁻¹					
Totals	Mean (over all sources)					
Binned: 100 % Residual: 0 % Trace: 0.23 %	m: 6.58 r: 22.27 km ε₀: 0.43 σ					
Mode (largest m-r bin)	Mode (largest m-r-ɛ₀ bin)					
m: 6.12 r: 11.76 km ε₀: 0.2 σ Contribution: 10.64 %	m: 6.12 r: 11.53 km ε₀: 0.2 σ Contribution: 9.11 %					
Discretization	Epsilon keys					
r: min = 0.0, max = 1000.0, Δ = 20.0 km m: min = 4.4, max = 9.4, Δ = 0.2 ɛ: min = -3.0, max = 3.0, Δ = 0.5 σ	E0: $[-\infty2.5)$ E1: $[-2.52.0)$ E2: $[-2.01.5)$ E3: $[-1.51.0)$ E4: $[-1.00.5)$ E5: $[-0.5 0.0)$ E6: $[0.0 0.5)$ E7: $[0.5 1.0)$ E8: $[1.0 1.5)$ E9: $[1.5 2.0)$ E10: $[2.0 2.5)$ E11: $[2.5 +\infty]$					

Deaggregation Contributors

Source Set 💪 Source	Туре	r	m	٤٥	lon	lat	az	%
UC33brAvg FM31	System							39.80
Rose Canvon [0]	,	11.42	6.36	0.01	117.147°W	32.551°N	267.92	18.70
Coronado Bank alt1 [13]		22.75	7.08	0.41	117.234°W	32.450°N	239.35	6.39
San Diego Trough south [1]		39.15	7.33	0.99	117.397°W	32.395°N	243.08	2.37
Rose Canyon [3]		15.45	6.50	0.33	117.161°W	32.634°N	304.97	1.34
Rose Canyon [1]		11.60	6.97	-0.41	117.148°W	32.568°N	277.27	1.21
Rose Canyon [2]		12.81	6.85	-0.19	117.150°W	32.601°N	294.08	1.01
UC33brAvg_FM32	System							38.23
Rose Canyon [0]	,	11.42	6.39	-0.02	117.147°W	32.551°N	267.92	17.62
Coronado Bank alt2 [25]		22.75	7.39	0.18	117.233°W	32.448°N	238.72	5.03
San Diego Trough south [1]		39.15	7.33	1.00	117.397°W	32.395°N	243.08	2.33
Oceanside alt2 [0]		19.58	7.39	-0.21	117.357°W	32.560°N	271.13	1.66
Rose Canyon [1]		11.60	6.91	-0.36	117.148°W	32.568°N	277.27	1.25
Rose Canyon [3]		15.45	6.58	0.27	117.161°W	32.634°N	304.97	1.10
UC33brAvg FM32 (opt)	Grid							10.89
PointSourceFinite: -117.026, 32.604		7.42	5.63	-0.12	117.026°W	32.604°N	0.00	1.15
PointSourceFinite: -117.026, 32.604		7.42	5.63	-0.12	117.026°W	32.604°N	0.00	1.13
UC33brAvg_FM31 (opt)	Grid							10.76
PointSourceFinite: -117.026, 32.604		7.43	5.63	-0.12	117.026°W	32.604°N	0.00	1.16
PointSourceFinite: -117.026, 32.604		7.43	5.63	-0.12	117.026°W	32.604°N	0.00	1.14

APPENDIX E

GROUNDWATER EVALUATION BY DUDEK & ASSOCIATES

FOR

SOUTHWEST VILLAGE VTM-1 SAN DIEGO, CALIFORNIA

PROJECT NO. 06847-42-04

June 22, 2021

David Evans Vice President/Senior Geologist Geocon Incorporated 6990 Flanders Drive San Diego, CA 92127

Subject: Initial Assessment of Groundwater Conditions at the Southwest Village Site, Otay Mesa and Surrounding Areas, San Diego County

Dear Mr. Evans:

This report is prepared at Geocon's request to address groundwater conditions that relate to slope stability calculations and evaluation of landslide topography for the purposed Southwest Village Project (Project, or VTM-1). The Project site occupies a large mesa situated east of highway 805, south of highway 905, and north of the US-Mexico border (Figure 1). The study area includes the Project site and adjacent slopes southwest, south, and southeast of the mesa. These slopes include a known complex of landslides.

Geocon has conducted, and continues geotechnical investigation including mapping, drilling, trenching, soil sampling, permeameter testing, groundwater measurements, and laboratory soils testing for the project. This includes geotechnical characterization and slope stability assessment for the landslides adjacent to the Project. Figure 1 shows Geocon's delineation of three landslide complex groups adjacent to the proposed development site. These are Landslides A, B, and C. The principal area addressed to date by Geocon's work is Landslide A. The findings of this initial groundwater assessment are summarized as follows:

- Few data points exist at present to characterize Otay Mesa groundwater conditions. The groundwater observations found for this report are summarized in Table 1. These data include a wide time span of observations from 1955 to present, and include some wells which no longer exist. An area with more groundwater level detail is Landslide A, due to Geocon's geotechnical investigations in 2001 and current work of 2020 and 2021.
- Groundwater is present under the Mesa, and as expected is present at shallow depths at the base of slope at the west edge of the Mesa, where the older rocks that form the Mesa contact more porous alluvial deposits of the Tijuana River valley which extend west to the ocean. A profile of three core borings drilled in Landslide A by Geocon documents the groundwater slope in the Otay Formation rising from approximately 40 feet below terrain (elev 52', NAVD88) near base of slope gradually to 193 feet below terrain (elev 170') west of the Landslide A headscarp. Depth to groundwater under the Mesa surface in the Project area is not clearly delineated, but may occur at approximately 300 foot depth (elev 184 ft) based on "first water" encountered when a agricultural well was drilled in the Project area in 1961. This well is presently filled with debris, and because of its 1245 foot depth may blend groundwater pressures from several depth zones.

13330

- The undisturbed sedimentary strata east and north of the landslide masses identified in Figure 1 consist of generally horizontal rocks lying beneath marine terrace deposits and associated well developed soil horizons that cap the Mesa. Beneath the terrace deposits and associated soils are San Diego formation and Otay formation (oldest). The Otay formation rocks, as encountered within Landslide A in Geocon coreholes 1, 2, and 3 are predominantly fractured sandstone, siltstone, and claystone. Where undisturbed outside of the slide complexes, it is expected that the strong horizontal layering inhibits vertical infiltration of groundwater. Such layering can cause development of pockets of groundwater perched above the regional water table.
- At present, there are insufficient monitoring points within and bordering the landslide complexes surrounding the Project to create a groundwater elevation contour map to accurately determine flow directions and groundwater slope, or to determine vertical groundwater pressure gradients which may be important to assessing landslide mass stability.
- A groundwater monitoring well (Corehole 3) which was constructed within Landslide A terminates above the basal shear zone which occurs at Elevation 29-33 (NAVD88). Because of the thickness and apparent continuity of the basal shear as found in Coreholes 1, 2, and 3, and at the Intermodal Transportation Center (Geocon, 2001) it should not be assumed that Corehole 3 is in close continuity with groundwater levels and pressures beneath and upslope of the well, which may respond somewhat differently to seasonal rain than groundwater levels within the landslide masses.
- We recommend additional groundwater monitoring wells to improve characterization and monitoring of groundwater levels within, outside, and under the slide masses adjacent to the proposed development. Determination of the groundwater level response of the landslide affected hillside areas to heavy seasonal rainfall events is recommended as part of the geotechnical assessment. The rate and magnitude of hillside groundwater level changes to seasonal rainfall is of primary importance to causation and/or re-activation of landslide movements.
- Use of the bare soil and rock gullies to conduct stormwater from outfalls 5 through 9 to the base of the slope is not recommended, especially for outfalls 5 and 7. Permeameter tests on the soil in the gully bottoms indicates infiltration through the intact soil of the gully bottoms into the subsurface during moderate storm flow events will not be sufficient to affect stability. However, elevated storm flow velocities such as may occur below outfall 7 during extreme storms within the natural channels could pose the risk of severe soil erosion and expose landslide tension cracks between landslide blocks in the channel bottoms, which could cause rapid stormwater infiltration into deeper levels of the slide masses. Outfall 5 discharges immediately into a closed depression near the headscarp created by previous landslide movements, and is not recommended for direct stormwater disposal.
- The stormwater routing design by Rick Engineering incorporates sufficient retention basin capacity to largely mitigate peak flows and velocities from the proposed Project development areas of the Mesa to preproject levels or less.
- The process of grading and construction for the Project will reduce vertical infiltration of storm and irrigation water into the subsurface from the Mesa mostly due to the creation of impervious surfaces and to some degree the compaction required to create finished the finished grade and lot pads.

Sincerely,

Steve Dickey CEG 1070, CHG 386 Senior Hydrogeologist

1 Scope of Work

Dudek has provided the following services under this project:

- 1. Review of existing geotechnical reports and documents
- 2. Assist with casing installation, well development, and monitoring of Corehole 3, which was drilled into Landslide A, along with Coreholes 2 and 3.
- 3. Review of borehole seismic data and report prepared by Geovision, Inc. in the three Geocon coreholes.
- 4. Review historic documents and air photos to provide groundwater data additional to that developed directly for geotechnical reports for the Southwest Village and Intermodal Transfer Station projects. The largest source of this data is the CA Department of Water Resources Well Driller's Completion Reports, which have recently become publicly available.
- 5. Review April 21, 2021 Rick Engineering Report, Landslide Hydrology Analysis for Southwest Village, Rick Engineering Job Number 15013-C.
- 6. Provide field staff to assist Geocon in conducting near surface permeameter measurements of soils at several proposed stormwater outfall sites located within the landslide complex area.
- 7. Assemble the historic and the recently acquired groundwater information into this assessment of groundwater conditions beneath the mesa and the landslide complexes.

2 Geologic Setting and History

The mesa top is a relatively flat, ancient marine terrace at an elevation of approximately 500 feet. Long term, uniform and continuous uplift of approximately 14-16 cm/1000 years has placed the Mesa at its present elevation (Kern and Rockwell, 1992). The Mesa surface at the Southwest Village site consists of well developed terrace clay surficial soils which overly a thick layer of terrace gravel, cobbles, and boulders. Beneath the Terrace deposits are San Diego formation which overlies Otay formation. Geocon's borings at the mesa top demonstrated erosional contacts between the terrace gravels, San Diego formation, and Otay formation. The Quaternary terrace clay soil and gravel, the San Diego formation and Otay formation rocks are involved in the Landslide A head scarp at the west and beyond to the west of the Mesa.

The appearance of the landslide slope below the Mesa indicates a complex and progressive series of deep seated downslope block movements, which include components of block rotation. A major landslide feature evident in the three deep coreholes drilled by Geocon in the landslide complex west of the mesa top are thick, apparently continuous zones of sheared and deformed bentonite, lying almost horizontal slightly at elevation 29-33 ft (NAVD88) in Corehole 3. The bentonite units occur intermittently and may be an important feature restricting vertical groundwater movement, and could locally cause "perched" conditions, affecting groundwater elevation heads above and/or below the bentonite units.

The deformed bentonite beds found in the Geocon Otay Mesa Landslide A coreholes and in the Intermodal Transportation Center geotechnical borings may be the same or similar as described by Vanderhurst, Hart, and Owen, 2011. Development of the present terrain was influenced by a different Pleistocene climate for extended time with greater precipitation on the order of 30-40 inches annual compared to present day 10 inches average annual for San Ysidro, and a Pleistocene sea level as much as 345 feet below present level starting 20,000 years BP.

The greater precipitation and lower sea levels during the Pleistocene epoch deepened incision of the ravines that are present at the Mesa, and may also have caused larger and more frequent storm flows, resulting in possible meanders of the Tijuana River which undercut the west and southwest edges of Otay Mesa. The greater Pleistocene precipitation during the Younger Dryas period also contributed to the deeply weathered, well-developed soil profiles that cap the Mesa.

Figure 2 provides a cross section constructed from the Mesa and Carvajal driller's logs, along with Geocon boring and corehole logs. The Carvajal well log indicates "pinkish gray mud" from depth 435-460 ft, at elevation slightly higher than the basal shear bentonite bed encountered on the Project side of the Mesa in Geocon Corehole 3.

Figure 3 provides an estimated sea level curve from 20,000 years BP to present, along with a summary graph of ocean core pollen analyses indicating a prolonged wet climate interval during the Pleistocene epoch from 12,000 to 20,000 years BP for the California Borderland at latitude 32.3 degrees north.

3 Groundwater Elevation Data

Plate 1 is a map summarizing the groundwater depth/elevation information that was found for the proposed project the surrounding area. The data are from CA DWR Well Drillers Completion Reports, the CA DWR groundwater information GIS system, wells constructed for groundwater regulatory cleanup investigations such as gas stations, USGS groundwater multi-port monitoring wells, and geotechnical reports generated by Geocon, Inc. This data is summarized in Table 1. The data also includes groundwater levels from three core holes drilled into Landslide A for the current Southwest Village geotechnical investigation. Figure 1 is a map showing Geocon's designation of the landslide areas at the Mesa edges as Landslides "A", "B", and "C", as well as a conceptual footprint of the initial phase of the proposed development.

Because of the scarcity of water well data available for the Mesa area, the Plate 1 includes groundwater observations date from 1955 (Carvajal agricultural well) to the present (depth to groundwater measured in Geocon Corehole 3 and in Mesa agricultural well). Because the available data is very widely spaced and taken over a 66 year time span, Plate 1 should be regarded as reconnaissance level information, especially for the Mesa itself. Several of the groundwater elevations shown in Plate 1 are previous reported levels for wells that no longer exist.

Two deep agricultural wells are located on the Mesa, constructed in 1955 and 1961, which are no longer in service; Attempts to sound the Mesa well, located immediately uphill of the Landslide A complex headscarp were not repeatable because of debris in the well. However, the logs of these wells are included because they were drilled with cable tool equipment, which allows construction of somewhat detailed drilling logs, as well as detailed observations regarding occurrence of first water or perched groundwater.

Plate 2 is a cropped portion of Plate 1, which enlarges the proposed Southwest Village development area. A cross section line through Landslide A is presented in Figure 4. The groundwater depth/elevation cross section shows depth to water and elevation from the three Geocon core holes, the Mesa irrigation well (depth to "first water" in 1960), and Boring SB-3 drilled at the Intermodal Tranportation Center in 2001. Groundwater levels for the Mesa Well and the SB-3 exploration boring have been projected northwest into the Figure 4 cross section.

As part of this investigation, Corehole 3 was equipped with a PVC casing and well screen extending to 270 foot depth, and equipped with a water level recording pressure transducer. The groundwater levels shown in Figure 4 for Coreholes 1 and 2 were measured very shortly after drilling with a borehole seismic survey conducted by Geovision, and the borings have since been abandoned. Boring SB-3 was abandoned in 2001 shortly after logging.

It should not be assumed that the groundwater conditions shown in Figure 4 and Plate 2 are static and invariant with respect to seasonal storms or unusual series of precipitation events, should they occur. Because the core borings indicate the bulk of the Otay formation slide mass is composed of claystone, siltstone, and sandstone, a conservative assumption would be that groundwater flow within Landslide A occurs primarily via fracture flow, and a much lesser degree porous media flow. Therefore groundwater level response of the slope to heavy rainfall could be greater and also more rapid than would occur in more porous, unconsolidated basin aquifer sediments such as sand.

Additional monitor wells with water level recording capability are needed to measure water level and fluctuations uphill of the Landslide A headscarp, and also within the slide mass to measure the groundwater level response to heavy rainfall events. In addition, an observation well should be constructed with a screen isolated beneath the basal shear zone bentonite bed to assess the degree it may function to restrict vertical groundwater flow, and measure the hydraulic pressure acting beneath the basal shear layer.

4 Assessment of Groundwater Conditions

4.1 Groundwater Conditions at Base of Slope, Landslides A and B

Groundwater levels in Geocon boreholes near the base of slope (Plates 1 and 2) in the Landslide A and B area indicate that there is very likely continuous saturation above and beneath the basal slide surface and that these levels are slightly above but on a downwards slope consistent with gas station monitor well groundwater elevations measured recently west of the slide area near the Tijuana River, and northwards adjacent/west of Otay Mesa and northwards to the Otay River area. The groundwater levels within the toe area of Landslides A and B were determined in 2001 by exploration borings advanced for the Intermodal Transfer project area, at the west downhill portion of Landslide A, and adjacent to Landslide B, as shown in the Figure 4 cross section. If property access allows, one or more monitor wells should be re-established at the base of slope, and equipped with a recording groundwater level transducer to determine the groundwater level response, if any of the landslide mass in this area to significant rainfall events.

4.2 Surfacing Groundwater, South Edge of Otay Mesa

Surfacing Groundwater is present in Spring Canyon, at the south edge of Otay Mesa, at the US-Mexico international border. Examination of a multi year sequence of aerial photos as early as November 1981 indicates persistent presence of riparian trees, surface water flow, and riparian vegetation that begins approximately 2800 feet east-northeast and upstream of a newly constructed concrete culvert structure at the International Border that takes the water under the border into Tijuana. The 1981 air photo pre-dates the extensive bulk grading and road construction conducted along this section of the border, which included the construction of a concrete culvert and other works to convey the Spring Canyon surface flow across the border.

Plate 1 and Plate 2 show this location, with a 2014 surface water elevation of 164 feet at the border, located at the southwest corner of Landslide C. This elevation is roughly comparable with nearby groundwater elevations measured in CH-2, CH-3, and the Mesa Well. This location is interpreted as discharging groundwater that has been exposed and released by downcutting of Spring Canyon. The source of the surface water is from older rocks assumed to be Otay Formation, with the groundwater source within the adjacent Otay Mesa hillside, and assumed to be higher than the surface flow at Elevation 164, in order to sustain the flow. A short distance upstream of this location, the canyon bottom surface water ends and the vegetation transitions from riparian to upland species, as visible in aerial mapping photos. Although the relationship of the Spring Canyon perennial surface water to the

regionally extensive bentonite bed at the base of Landslides A, B, and C is unknown, the landslide area core boring logs suggest that this water is perched above the basal shear bentonite bed .

4.3 Groundwater Beneath Top of Mesa, Project Area

The Mesa Well, shown near the west edge of the Mesa in Plates 1 and 2 provides the only data available for groundwater level beneath the Project area, outside of the landslide areas. In 1960 the driller noted "first water" at 298 feet below ground surface (DWR drillers log and completion report provided in Appendix A). The borehole was continued by casing advance to a total depth of 1245 feet. When deep perforations were cut at the completion of the well, the final water level is listed in the report as 565 feet.

While the final water level noted may not have reached equilibrium when measured, it suggests a final water level near or below sea level (ground surface elevation at the Mesa well is 482 feet). This deep level after casing perforation is interpreted to indicate a downwards hydraulic pressure gradient within the Otay Formation with depth.

Although not current or the most reliable data, we regard the "first water" notation on the Mesa Well driller's log as the best available indication of groundwater depth beneath the Project area, subject to verification. The Mesa Well driller's log is presented in the Figure 2 cross section.

5.0 Influence of Proposed Stormwater Outfalls on Groundwater

5.1 Landslide Surface

The project as proposed in includes five outfalls to manage the Project stormwater flows. Figure 5 shows the location of proposed stormwater outlet structures which are intended to convey project stormwater and excess irrigation water to existing bare earth drainages which will then convey the stormwater to the base of the slope and existing San Ysidro stormwater infrastructure. The outfalls are numbered 5, 6, 7, and 8 as indicated in Figure 4.

The existing drainage pathways that traverse from the proposed outfalls through the slide areas are shown in Figure 5 as yellow lines. The drainage pathways were digitized and are graphed as profiles in Figure 6. The cross sections for these bare earth drainages have been unfolded from their curved path routes into the flat plane of Figure 6. Thus the true drainage path lengths and slopes are retained in the figure.

The downhill drainage pathway for outfall 5 traverses downslope through Landslide A, while the pathways issuing from outfalls 6 and 7 traverse the slope of Landslide B. The drainage pathways from outfalls 8 and 9 traverse more steeply downhill over the Landslide C slope.

The Figure 6 outfall drainage profiles indicate the channel downhill from Outfall 9 is steepest at 20%, while the drainage gully from Outfall 7 has the least downhill slope at 10%. Outfalls 5, 6, and 8 drop downhill at slopes of 14, 16, and 17% respectively.

None of the current drainage profiles exhibit sharp concave nicks in their profiles indicating excessive "nick point" erosion, such as would indicate wallowing out of a structural weak spots such as tension cracks or soft sedimentary beds. The drainages flowing down from Outfalls 6 and 7 are the most deeply incised into what appears to be a soft, erodible portion the composite landslide slope.

Based on peak stormwater flows calculated by Rick Engineering, the post development flow velocities could be especially elevated in the bare earth channel of Outfall 7, which Rick proposes to substantially mitigate to preproject levels with retention of stormwater at the Mesa.

The drainage dropping out of Outfall 5 begins almost immediately in a shallow closed depression that occupies a sag immediately beneath the Landslide A headscarp, and is recommended for re-routing or modification to prevent infiltration of stormwater into the Landslide A headscarp.

Based on the stormflow durations calculated by Rick Engineering, and soil permeameter infiltration measurements at each outfall location measured by Geocon, it is calculated that infiltration through the soil bottoms of the existing channels into the slide mass during moderate rainfall events will not be excessive, as it is expected that the soil layer covering the channels will remain intact. After such events it is expected that the infiltrated stormwater will be held in the soils at shallow depth by capillary forces and will come back out as evapotranspiration. Only during extended series of multiple closely spaced rainstorms would infiltration to groundwater be expected to occur, and it would occur at very slow rates, with of the stormwater continuing downhill as surface flow. The outfall infiltration test results are displayed in Table 2 below.

TABLE 2

Location Name	Latitude	Longitude	Kfs (iph)
Outfall 5	32.55425	-117.027	1.09E-2
Outfall 6	32.55183	-117.0243	9.05E-4
Outfall 7A	32.55078	-117.0229	4.13E-4
Outfall 8	32.54762	-117.0173	8.22E-3
Outfall 9	32.548613	-117.01489	3.92E-3

Notes: Data and calculations for K values provided by Geocon.

However, it is possible that periods of sustained high flow in these drainages, such as might occur during an "atmospheric river" type series of rains could generate erosive stormflows that remove enough soil to expose landslide-generated tension cracks in the channels beneath the soil layer, leading to significant injection of stormwater directly into the subsurface through the cracks in rock, and tension fracture zones between the landslide blocks. Rapid introduction of significant volume stormwater into fractures between slide blocks could raise the water table within portions of the composite slide mass rapidly and sufficiently above the basal shear zone clay surface to affect local slide mass stability.

Analysis of aerial photos and shaded relief topographic images of the landslide complex indicates that such cracks are very likely present. Groups of native palm trees present in catchments within Landslide Component A also suggest that significant trapping of stormwater within the composite landslide surface has occurred in previous rainfall events.

Without detailed knowledge of the slide mass groundwater surface in Landslide A, B, and C, and knowledge of the response of slide mass groundwater levels to significant rain events, it is suggested that routing of stormwater from the proposed development onto the bare earth existing channels on the landslides be avoided.

Draft stormwater calculations by Rick Engineering for proposed flows to Outfalls 1 through 5 indicate that any increase in total volume of stormwater created by development of Southwest Village will be mitigated to pre-project levels by stormwater retention to reduce peak flows leaving the project area through the proposed outfalls 1 through 5. Therefore it can be said that the project, as currently proposed will not cause a change the overall landslide stability situation of the slopes surrounding it to the west, southwest, and south, due to stormwater flows. This is not the same as stating that with the present level of knowledge that Landslide A, B, and C slopes are known to be stable under all future rainfall event sequences.

5.2 Groundwater Infiltration Impact of Developing the Mesa Surface

The existing natural surface of the Mesa is characterized by relatively low infiltration of rainfall, as evidenced by presence of vernal pools. The uppermost natural terrace deposts are predominantly clay soils., classified by USDA as Huerhuero loam (HrC). Compared to the existing natural Mesa surface, the proposed development will reduce the areas open to stormwater infiltration due to the construction of impervious surfaces consisting of streets, sidewalks, roofs, and driveway pavement.

The infiltration capacity of the soil horizons capping the Mesa is limited by the presence of low vertical conductivity layers that restrict downwards water flow. The soil profile of the Mesa top is characterized by USDA as being in runoff class "Very High", and with the infiltration capacity of the limiting soil profile layers as very low to moderately low, with Ksat of 0.00 to .06 inches per hour.

Geocon conducted permeater testing of undisturbed surface soils in the proposed development area of the Mesa, with resulting vertical conductivities as follows:

TABLE 3

Location	Depth, ft	Geologic Unit	Hydraulic Conductivity
			K (in/hr)
A-1	5	Qt, Topsoil	.007
A-2	5	Qt	.049
A-3	5	Qt	.018
A-4	5	Qt	.004

GEOCON HYDRAULIC CONDUCTIVITY TEST RESULTS, DEVELOPMENT AREA, MESA SURFACE

These results are consistent with the USDA published soil map for the Mesa. Therefore, given the strong layering of horizontal strata under the Mesa surface, the low hydraulic conductivity of the site surface, and the replacement of exposed soil surface with impervious areas by the proposed development plan, we believe the net impact will be a reduction of stormwater infiltration into the Mesa surface. Therefore, the net long term impact of the proposed development of the Mesa surface will be to reduce infiltration of rainwater to groundwater, resulting in a long term, net decrease in groundwater levels beneath the development.

6.0 Conclusions

A thorough search for historic groundwater data was conducted to support this assessment, which is summarized on Table 1 and Plates 1 and 2. The data spans dates from 1955 to the present. In addition measurements of present groundwater levels within Landslide A were conducted. Conclusions are as follows:

1. There is solid evidence that the groundwater surface within the project portion of Otay Mesa rises above the surrounding areas at the flanks and base of the Mesa. The maximum groundwater elevation under the Southwest Village project area of the Mesa could not be determined with available data.

2. The driller's logs from the deep Carvajal and Mesa wells, although very old are detailed and generally meaningful for this initial assessment. They indicate that due to the persistent layering of clay and silt bearing strata, there was perched water within the sedimentary stack, above the main water table when drilled. The perched water occurrences started at approximately 300 foot depth below the Mesa surface when drilled in 1961. It is reasonable to assume that this condition may persist in general today, although exact details may differ.

3. The groundwater depths indicated by Landslide A Coreholes CH-1, CH-2, and CH-3 are considered to be generally representative of groundwater levels for the adjacent portions of the hillside, but specific groundwater depths and elevations in adjacent areas should be confirmed by drilling.

4 Geocon Coreholes 1, 2, and 3 indicate that the aquifer in the landslide area, above the basal shear zone is characterized by fracture flow in claystone, siltstone, and sandstone which probably dominants compared to porous media groundwater flow. The practical impact of this aquifer characteristic is groundwater fluctuations within the slope are likely to be greater and more sudden/abrupt than for a system dominated by porous flow, such as groundwater flow in sand.

5. Given #4 above, we recommend additional monitor wells be installed in the Southwest Village project area, and downslope landslide areas with recording transducers to determine the sensitivity of landslide mass groundwater levels in several locations to seasonal precipitation. Corehole 3 is presently equipped with such a transducer/datalogger.

6. The assumed groundwater elevation above 164 feet that sustains the surface water flow at the south edge of Otay Mesa at the International border (Landslide C area) is generally consistent with the level found in corehole CH-3 to the northwest, and is likely to be approximately representative of groundwater level in the Otay Formation beneath the Mesa north of the scarp above Landslide A. Due to the lack of sufficient wells, the exact shape and elevation contours of the groundwater surface beneath the Mesa is unknown.

7. It is our opinion that a significant cause for development of the extensive landslide apron surrounding the southwest, south, and southeast slopes of Otay Mesa was significantly wetter climate conditions in the late Pleistocene (Younger Dryas event), and also the significantly lower of sea level to minus 345 feet MSL, thus increasing the topographic relief of the Mesa.

8 We recommend the routing of stormwater from the Project outfalls over the bare earth drainages to bottom of slope be re-considered and avoided. Piping the water with storm drains across or around the slide mass is our recommendation.

References

Carter, George F., 1996. Early Man at San Diego: A Geomorphic-Archaelogical View. Proceedings of the Society for California Archealogy, Vol. 9, pgs 104-112.

Lyle, M., Heusser, L., Ravelo, C., Andreasen, D., Lyle, A., and Diffenbaugh, N., 2010. Pleistocene Water Cycle and Eastern Boundary Current Processes Along the California Continental Margin. Paleoceanography, Vol. 25, PA4211.

Reeder-Myers, L., Erlandson, J., Muhs, D., Torben, R., 2015. Sea Level, Paleogeography, and Archeology on California's Northern Channel Islands. University of Nebraska-Lincoln, Digital Commons@University of Nebraska-Lincoln.

Kern, P., Rockwell, T., 1992. Chronology and Deformationi of Quaternary Marine Shorelines, San Diego County, CA. Quaternary Coasts of the United States: Marine and Lacustrine Systems, SEPM Special Publication No. 48.

Geocon, 2001. Geotechnical Investigation, Intermodal Transportation Center, San Ysidro, California.

Geocon, 2013. Update to Geotechnical Feasibility Study, Pepitone Lot Split- Parcels A, B, and 1, South Otay Mesa Property, San Diego, California

Geocon, 2020-2021. In-Progress Work Products and Discussions With Staff, Including Core Borings, Core Photographs, Mesa Area and Landslide Component Areas A, B, and C.

Geocon, Garry Cannon, 2021. Spreadsheet With Permeameter Results, Southwest Village; SWVillage_Infiltration_GWC.xlsx

Geovision, 2021. Borehole Geophysics, San Ysidro, California, February 26, 2021.

California Department of Water Resources, 2021. Online Well Completion Report Map Application,

https://www.arcgis.com/apps/webappviewer/index.html?id=181078580a214c0986e2da28f862 3b37

Vanderhurst, W., Hart, M., and Warren, C., 2011. The Otay Mesa Lateral Spread, a Late Tertiary Mega-Landslide in Metropolitan San Diego County, CA. GSA Environmental & Engineering Geoscience Vol. XVII, No. 3, pgs 241-253.

Gregory, J., Dukes, M., Jones, P., and Miller, G., 2006. Effects of Urban Soil Compaction on Infiltration Rate. Journal of Soil and Water Conservation, Vol. 61, No. 3.

Rick Engineering Company, April 21, 2021. Landslide Hydrology Analysis for Southwest Village, Rick Engineering Job Number 15013-C.

TABLE 1 Well Data								
FEATURE	Feature, Short Name	Grd Surf Elev	GW Depth, Ft	GW Elev, Ft	Dec Latitude	Dec Longitude	SP N, US ft	SP E, US ft
				NAVD88			CA Zone 6	CA Zone 6
Corehole 1 Surveyed	CH1	184	70	114	32.5515527	-117.0307686	1781361.4	6321066.9
Corehole 2 Surveyed	CH2	279	125	154	32.5525594	-117.0291278	1781723.9	6321575.3
Corehole 3 Surveyed	СН 3	360	189.87	170	32.5534973	-117.0274925	1782061.4	6322081.7
Mesa Well, 1245', 1961	Mesa	482	385 , 298	97, 184	32.5507160	-117.0187320	1781029.4	6324773.8
Carvajal Well, 1215', 1955	Carvajal	507	347	160	32.5655240	-117.0057070	1,786,387.80	6,328,826.54
Spring Canyon Surface Flow At Border	Spr Cyn Surf			164	32.5448820	-117.0131950	1,778,894.22	6,326,464.49
Geocon SB-7, Transfer Station	SB-7	101	54.5	47	32.5444880	-117.0280300	1,778,784.66	6,321,891.64
Geocon SB-3, Transfer Station	SB-3	98	46	52	32.5460550	-117.0295270	1,779,358.24	6,321,434.56
Geocon SB-1, Transfer Station	SB-1	89	54	35	32.5454390	-117.0293270	1,779,133.65	6,321,494.52
Geocon SB-2, Transfer Station	SB-2	78	47.5	31	32.5442580	-117.0285470	1,778,702.16	6,321,731.69
Otay River Surface Water 1	OT Riv Surf1			115	32.5904380	-117.0132720	1,795,469.48	6,326,562.10
Otay Rock Quarry Pit Lake	OT Pit Lake			184	32.5925350	-116.9872470	1,796,174.77	6,334,583.63
Mon Well	Mon Well			45	32.5854460	-117.0350820	1,793,703.08	6,319,830.59
Otay River Surface Water 2	OT Riv Surf2			36	32.5886940	-117.0568320	1,794,935.97	6,313,140.01
Mon Well 314 E San Ysidro	Mon Well 314 ESY			40	32.5513010	-117.0397970	1,781,290.76	6,318,284.10
USGS Boundary Waters Mon Well	USGS Mon Well			27	32.5536320	-117.0616060	1,782,190.48	6,311,570.21
2004 Dairy Mart Road Mon Well	2004 Dairy Mart			31	32.5615550	-117.0627450	1,785,075.91	6,311,241.71
USGS Otay River Mon Well	SDOR			45	32.5912140	-117.0539560	1,795,846.00	6,314,032.95
Section 33 Ag Well Deep	33S1W33 73	512	440	72	32.5601530	-116.9880660	1,784,394.68	6,334,247.97
SD County Park Well	SD County	32	11	21	32.5567410	-117.0757790	1,783,355.95	6,307,211.85
Note: Applied Dave Evans edits to GW E	lev, Coreholes 1,2,3.							

APPENDIX A

CA DWR WELL COMPLETION REPORTS

DUFLICATE

File Original, Duplice's and Triplicate with the REGIONAL WATER POLLUTION

VATER WELL DRILLERS REI Code)

(Sections	707	6,	707	1,	7078,	Water	Co

NTO	- 1
	1

Do Not Fill In

2996

STATE OF CALIFORNIA

State Well No.

7

1T

CONTROL BOARD No STATE OF	CALIFORNIA Other Well No.
1) 0	(11) WELL LOG:
ame	Total depth 1210 ft. Depth of completed well 1210 ft.
Addres	Formation, Describe by color, character, size, of material, and structures, 2
	$- \underbrace{0}_{\text{ft. to}} \underbrace{\mathcal{L}}_{\text{ft. to}} \mathcal{L$
(2) LOCATION OF WELL:	7 . 9 . Ulay & sand
Conny	9 65 Gary & Large boulders
R. F. D. or Street No.	- 65 - 135 Sollow candy silv
<u>0.6119 (4888)</u>	- 135 - 210 - Youlow sandy clay
	-1210 - 200 - 020 y
CONFIDENTIAL - NOT	- 200 - 200 - Hard Sandstone 100ge
FOR PUBLIC PELEASE	- 255 · 280 · Gray sanay stay
	- 280 · 285 · ard sandstone reage
(3) TYPE OF WORK (cbeck):	285 * 290 "Uray sandy clay
New well 🔂 Deepening 🗌 Reconditioning 🗌 Abandon	- 205 - 200 Voltor geogerond alow
If abandonment, describe material and procedure in Item 11.	390 - 300 - Condetone Local
(4) PROPOSED USE (check): (5) EQUIPMENT	
Domestic 🗌 Industrial 🗍 Municipal 🗍 Rotary	SOE - 310 -Vollow conder olos
Irrigation Test Well Other Cable	210 - 210 - Dard condy Lodes
	Class 890 "Cours conditions & class
(6) CASING INSTALLED: If gravel packed	310 530 CTRY SCHUSCONG & CLRY
	220 B39 Waller alar & good
From (, ,) A (,) (, nile A () Way of Bore ft.	to 300 306 TELLOW CLAY & Same
040 110 210 2/4 050 "	- 332 337 THILOW BARDStone of Sand
	- 357 345 YELLOW CLEV & Hard Sand
· · · · · · · · · · · · · · · · · · ·	- 345 S47 COLE VOLLOW CLAY & WAVEF
<u> </u>	" A 350 - 355 "Grow condy clay & mater
	" 355 - 365 Crey condy clay & actor
Type and size of shoe or well ring An 0. 7 Dit in size of gravel:	- 365 · 375 · Coft middy clay
Describe joint 1/201 A cash	375 * 405 * Pine send
	A05 A20 "Creat alar & houldard
(7) PERFORATIONS:	420 " 430 "Hard cand rock & elsy
Type of perforator used	- 450 " 455 "Vellow sendy clay
Size of perforations 1/2 in., length, by 1/2	A35 " 460 "Pinkish gray mid
From ft. to ft. Perf. per row Rows per	the 460 " 490 "Yellow sendy clay
<u>"540 " 615 " 8 " " 1 " "</u>	490 " 492 "lard rocky ledge
<u>7760 240 8 1 1</u>	492 · 500 · Fine sand & clay
	<u>500 - 510 - Sandstone</u>
n n n n n n n n	- 510 - 517 - Fine gray sand & clay
	517 - 525 - Gray clay & sand
(8) CONSTRUCTION:	525 - 543 Yellow mud, some clay
Was a surface sanitary seal provided? Yes GrNo To what depth	1. 543 - 544 Black sandy silt
Were any strata sealed against pollution? 🗋 Yes 🔁 No If yes, note depth of strata	_ 544 · 547 · Brown sandy silt
From ft. to ft.	547 - 555 Black sandy silt
a v a	_ 553 · 563 · Gray sandstone
Method of Sealing	Work started 1/23/55 19 , Completed 6/2/55 19
	WELL DOULED'S STATEMENT.
(9) WATER LEVELS:	This well was drilled under my just discharge the the pert of the best of
Depth at which water was first found 34.7	fr. my knowledge and belief.
Standing level before perforating 4.75	1 NAME SER diogo Pump & Woll Drillors
ing level after perforating	ft. (Person, firm, or corporation) (Typed or printed)
· · · · · · · · · · · · · · · · · · ·	- Address A. Down & A. D. Starla Visitia, Galif.
) WELL TESTS:	
Was a pump test made? - Yes WNo If yes, by whom?	in the second
Yield: gal./min. with ft. draw down after 1	Well Driller
Temperature of water Was a chemical analysis made? 🖉 Yes 🗌 No	License No. 08485 Dated 6. 27, 1932
Was electric log made of well? 🗌 Yes 🗌 No	95689 3-54 50M QUIN (SPO DWR FORM NO. 246 (REV. 3-54)

WATER WELL DRILLERS REPORT

(Sections 7076, 7077, 7078, Water Code)

SUPPLEMENTAL SHEET

12110

Do Not Fill In

State Well No..... Other Well No..... Region

(5) Well log (continued):

Depth From Ground Surface

Give details of formations penetrated, such as silt, peat, muck, sand, gravel, clay, shale, sandstone, hardpan, rock. Include size of gravel (diameter) and sand (fine, medium, coarse), color of material, structure (loose, packed, cemented, soft, hard, brittle).

$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$		and the second statements and the second
	oft.	Construction of States Particular to the Land of the Construction of the Constructiono
11 ma 22 22	55 X 26 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	and any the data and
stills in	ท ให้สู้สำห	
Called 10 1	1) \$ J. Jaka 1)	The product of the second s
ر در اینامکنگ بر در اینامکنگ	n (2012) n	C. 20 17 19 19 19 19 10 10 10 10
13151		1996年7月2日1月1日1日1日1日1日1日1日1日1日1日1日1日1日1日1日1日1日1
1137		and the second
······································	55 STATES	್ರಾಮ್ ಸಿಸಿಕ್ಸ್ ಸ್ಟಾರ್ ಕ್ಲ್ಯಾಗ್ ತಿಂಗ್ ಸಿಸಿಕ್ಸ್ ಸಿಸಿಕ್ಸ್ ಸಿಸಿಕ್ಸ್ ಸಿಸಿಕ್ಸ್ ಸಿಸಿಕ್ಸ್ ಸಿಸಿಕ್ಸ್ ಸಿಸಿಕ್ಸ್ ಸಿಸಿಕ್ಸ್ ಸ ಸಿಸಿಕ್ಸ್ ಸಿಸಿಕ್ಸ್ ಸಿಸಿ
ي وو ⁶ ∯ ⊎. ⁴ وية	,, <u>(,,,,,,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Contraction of the contract of the second se
Listed in a	» <u>%</u> /// »»	The second data is the second back
all is a	ss (1/2 33	- Dro station to the bing
· · · · ·	·· · · · · · · ·	COLSO (7 of the chey
27.3C) ,, ,	"	The association of the state of the
7.21		The state of the second s
7.53		
	"···· ································	The second secon
))	
	»»	್ಷತೆ ಕನ್ನತ್ತೆ - ಅನೆಕ್ ಕರಿಸಿದ್ದಿತ್ತೇ - ನಿರ್ದೇಶ್ವ - ಬಾಲಾಕ್ 1,0000 - "ಕನ್ನಡ
· · · · · · · · · · · · · · · · · · ·	», <i>čiši »</i> ,	STATE COURTS TERRITO
21.R.(33 - 1		小点(1)30-11(1)3-10(1)3-
1427 ,, ,	, 759 ,	THE DOMESTIC OLINY CONCEPTIAL NEXT
760 ,, ,	"····· ····· ,	bloty and cary Contracting
71.10		FOR PURITY PERFACE
71.45		THE READER CONTRACTOR
***************************************	······································	
		the month and a second se
5 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	در ^د امین در در در	THE TAKE OF LARGE MEANING TO THE TAKE T
· . Fikit 11 1	,, <u>· /\</u> ,,, ,,	A LAND FRANKE AND AND AND AN AND AN AND AND AND AND A
و فر الم الم ا	ม เรียงม	, and the statement of $\mathcal{A}\mathcal{G}$, \mathcal{M} is a statement of the statement of $\mathcal{A}(\mathcal{B})$, \mathcal{M}
~]\ ```	n 2.82 n	AND THE DAMAGE AND
·····	·····	The second product of a second state the second
••••••••••••••••••••••••••••••••••••••		<u>ា នាក់ ក្លាប់។ នាយាក់ សុងដែលត្រោះ ។ ដែលស្អាល ។ ។ ។</u>
	······································	the second se
	11 11 11 11 11 11 11 11 11 11 11 11 11	
	ور (² ¹	ಲ್ಲಾಗಿಕೆ ಕಾರ್ಟ್ ಬರ್ಕೆಂಗ್ ಬರ್ಗೆ ಮೇಲೆ ಮಿನ್ನಿಸಿದ್ದರು. ನೈನೆ
، دو توریک در ایند. در مرکز مشیر مورون که ده محمد	······································	r strang lo Alo D
1. ss :	n (kn 2 1) i n	a sul a principal approximation and a principal approximation a
, da ji 7 (, 1 ()) 1 (, 1 (, 1 ())		MICROFIL MER
23.71.2.7		with a subset of the commentation of the second sec
	······································	Alabam lainne i dere ermis o sen alle erser erme
	327.93	
······································	<u></u>	
	""	
	······································	- marine the state of the second s
1049444 \$ \$33 3	n <u>1.3.</u>	The second se
(Jr) (K () Jr) 33 ()	», <u>£1</u> , <u>8</u> , <u>1</u> , 1	
53 3	., .,	
3,	** **	
second in the second state and a second		

If additional space is required continue on DWR Form No. 246-Supplement, and attach to respective report copies.

 $2^{2} \cdot \phi$

TELEPHONE: GArfield 2-3778

SAN DIEGO PUMP & WELL DRILLERS

STATE LICENSED DRILLING CONTRACTORS PUMP SALES AND SERVICE POST OFFICE BOX 438 CHULA VISTA, CALIFORNIA

Water test on Ray Carvajal well Otay Mesa

505'	865	PPM
597	650	11
660	1058	17
710	935	11
771	605	11
830	715	11
875	1255	1T
1014	1320	tt
1085	1640	17
1180	1380	**
1200	1010	**

MICROFILMED

.
FIELD CHECK OF WELL LOCATION

. N : ′ ⊥23

		17,
DRILLER Son Diversion	<u></u>	CHECKED BY <u>A Carrier</u> .
OWNER .	'	DATE <u>5-5</u> , 19 <u>58</u> .
PUMP: MAKE Release Jacks	7/_; SERIAL NO. 3/23/	/
MOTOR: MAKE Kyrra (1994)	NO. <u>Cobarrection</u>	HP 75
METER NO. 2.2. 2. 93/	· · · ·	
STATE WELL NO. 185/110.	<u> 32 21</u> .	
LOCATE WELL WITH REFEREN DISTANCES AND DIRECTIONS	NCE TO ROADS AND ROAD INT S TO NEARBY CITIES OF TOWN	PERSECTIONS: ALSO INDICATE
	May wesa	MICTOFILMED
2 - To <u>see fan</u>	↑ K 3 5 ° ° °	Frank Find USNI FT - 2
	W d/1	
	*15 L. 10	

.

32 32 58,322,-117 1 16,439

DUPLICATE

File Original, Duplicate and Triplicate with the **REGIONAL WATER POLLUTION**

WATER WELL DRILLERS REPORT

MVR 12/23/11

(Sections 7076, 7077, 7078, Water Code)

Do Not Fill In Nº 28842 State Well No. 195/1W-66 0015 Other Well No.

CONTROL BOARD No

STATE OF CALIFORNIA

Concer and a second second	OF WELL:		-	-3
County R. F. D. or Street No.	Owner's number	r, if sny		-10
SE cor 4	US NEVA	Sec 1. 7 14	stin -	25
	~~~, // <del>~</del> / ~	<u> </u>		25
			-	-29
				-29
(3) TYPE OF V	WORK (check):			- 29
(3) TYPE OF V	WORK (check):	onditioning 🗆		29 35 44
(3) TYPE OF N New well D If abandonment, describ	WORK (cbeck): eepening	onditioning 🗆 in Item 11.	Abandon []	29 35 45 17
(3) TYPE OF N New well D If abandonment, describ (4) PROPOSED	WORK (cbeck): teepening D Reco te material and procedure USE (cbeck):	onditioning in Item 11.	Abandon []	29 35 45 48
<ul> <li>(3) TYPE OF N</li> <li>New well D</li> <li>If abandonment, described</li> <li>(4) PROPOSED</li> <li>Domestic <a href="https://www.internationalism">Domestic</a> Indu</li> </ul>	WORK (check): teepening  Recc te material and procedure USE (check): astrial  Municipa	onditioning in Item 11. (5) EQ 1   Rotar	Abandon  QUIPMENT: y	29 35 45 48 49

" 0	" 12	1.5	19	1/1. "		••		
						÷.		
14.1977			(4	n				
640	.44	(99)	u.			**		
		2.40	-					
Type and	size of shoe o	or well ring			Size of gravel	l:		
Describe	joint	-						
(7) H	PERFOR	ATION	S:					
Type of p	erforator use	1 111						
Size ,	of perforation		ia.,	length, by		ìo.		
From	ft. to		ft.	Per	f. per row		Rows per ft.	

									-	 
-	-980-		124		-6-	-	11.07.5		1	 
	-002	41	200		0				-	 
**	995	ar.	000	**	é	41	.00			 **
	820		820	1.625	6			1000	2	 -

#### (8) CONSTRUCTION:

Was a surface sa	nitary seal provided?	Yes C	No T	o what depth	1
Were any strata	sealed against pollution?	🗋 Yes	No No	If yes, note depth of strata	
From	ft. to			ft.	
	**			14	

Method of Sealing

#### (9) WATER LEVELS:

Depth at which water was first found	600	fe.	
Standing level before perforating	290	ft.	
3 level after perforating	505	ft	
	202		

#### (10) WELL TESTS:

Was a pump test made?	TYes No	If yes, by whom?	
Yield:	gal./min. with	ft. draw down after	hrs.
Temperature of water		Was a chemical analysis made? 🗌 Yes 📋 No	

Was electric log made of well? [] Yes [] No

(11) W	ELL	LOG:	
Total depth	1.94	5 ft	. Depth of completed well 101.5 ft.
Formation:	Describe	y color, cherec	ter, size of material, and structure.
0	ft. to	<u>11 ft.</u>	Grey sticky clay & rocks
		32	Brown sandy clay & lg. rocks
- 32		49	Grey sandy clay & " "
- 49	**	105	Grey sticky sandy clay
105		252	Orey sands tons
272		-257	Bandstone & bentonite
205		208	Grey sandstone
208	**	257	Sand & gravel
261	**	100	Brown sandstone
1.00	**	1.59	hard or own sandstone
1.52	**	472	Drown clay & Focks
1.70	"	1.97	Brown clay
1.83	"	101 ···	Coff harm and the
101	**	Lol.	Date of own sands cons
Lot		474	Drown Sticky Clay
-567	**	701	Aren sendet me
-701		- 797	Brown shale
797		798	Recent service one
-798	"	- 810	Broon shale
810	"	825	Grav sandstona
825		830	Grev andstans 2 ansl anova
-830		880	Light gray sandstone
-880		898	Dark gray sandstone (ant)
898		1042	Dark grey sandsbone (hard)
1042		1111	Dark grey shale
1141	**	1164	Grey sandstone (hard)
1164	**	1245 -	Black shale
			All ISITOS T 22
			Davada m 32
		**	LOSMICIO FIN
	M	CRAF	
			ILMED
		CONT	DENITIAL MOT
	. (	LONE	IDENTIAL - NUT
	••	FORF	PUBLIC RELEASE
	••		
	*		
	*		
Work starte	4 5/	23/60	19 . Completed 1/95 19 67-
WELL DI	RILLER	'S STATEM	IENT:
This we	ell was a	trilled under	my jurisdiction and this report is true to the best of
my Rnowl	eage and	beiney.	
NAME	an D	in the sea	Mail Intilara
Address _	1.10	11	A 3.4 T
	410	may 101	Altes aperial Besch, Calif.
	0		1 int
[SIGNED].	As	all	Sumelou
			W TH LITHING

License No. 160313 Dated. 25682 3-54 50M QUIN (8) SPO

DWR FORM NO. 246 IR

RIGINAL ile with DWR age_1_ of _6_				WELI	STATE COM Refer 10 In	OF CALI	FORN ION 1 Pan	REPOR	r [		SEON		DO N   	OT FILL IN
Jwner's Well No Jate Work Began _ Local Permit Age Permit No	13 Jul ency Cou	y 95 inty	of	Ended 5 San Diego	N August , Dept. Date	o. 4. 95 of H	47 ea1	315 th Servi	ices		 E			
ORIENTATION (∠)	<u>X</u> vertic	EOLO	G1С _ но Г WA	LOG AI RIZONTAL AI FER (FL)	NGLE	(SPECIFY) RFACE		4.º - 64		U/ETT	A W M E	<b>b</b>		
DEPTH FROM SURFACE	100000000		D	ESCRIPTION										
Ft. to Ft.		Descri	ibe ma	uerial, grain size, c	olor, etc.		+			WELL L	UCATI	10N -		
	Sand,	fine	to	medium		-	Ad	dress	3 Ua	iry Mart	RQ			
	Doorly	r ne	tod	shall fr	acmonts		Cit	San San	Dien	<b>.</b>				<u> </u>
60 150	Sandy	arav	el.	medium t	o verv	<u> </u>		N Book 76	50 Par	, 107	Parco	6	0	1.14
150 190	Sand.	fine			- 121.			winship 19	S Ra	nge 2W	Sectio	. 2	Ċ	
190 310	Silty	sand	. V	ery fine	sand to	)	Lat	itude 32	33	13 NORTH	Longi	tude_	117	03 39 WEST
	mediun	1					L	DEG.	MIN. CATIO	SEC. N SKETCH	( ——		DEG.	MIN. SEC. CTIVITY(∠)−
310 650	Clayey	san	dw	ith very	fine to	)			NO	RTH			<b>X</b>	IEW WELL
650 670	Sandy	and				ō	1	1					MODIF	ICATION/REPAIR
670 710	Sandy	cil+		ery fine	sand to	<u>,</u>	ł						1	Deepen
0/0 /10	medium	<u>)</u>		ery rine	Sund C	, 	1-		In		Z.	~		Other (Specify)
710 770	Clavey	, sil	t.	some fine	sands				Į			2	<u> </u>	ESTROY /Describe
770 830	Sandy	clay					1						- F	rocedures and Material Inder "GEOLOGIC LOG"
830 950	Clayey	sil	t,	some very	fine t	to	31	9	2.	C,		ST	PLA	NNED USE(S)
	fine s	ands					NE.			CUGH		EA	X	(⊻) _ MONITORING
950 970	Sandy	silt					1 '	NH.	-	$\sim$	-	$\leq$	WATE	RSUPPLY
<u>970 990 </u>	Silty	sand						Š.		TOW				Domestic
990 1030	Sand V	ery	tin	e to very	coarse	)		3		2727 D	0.01	MOPT	00	Public
1050 1050	Sand	sano	fi	no cand t	o modiu	100		2		SAN DIE	60		~~.	Irrigation
1000 1400	sand	very		he sand c	<u>o meuri</u>	<u>/////////////////////////////////////</u>	1	2	200					Industrial
	24114	_					1	12	1200	Tas +			2	
Geologic lo (completed	g for w in the	rell same	1 t ho	hrough 5 le)			Illi su PI	ustrate or Descr ch as Roads, Bu .EASE BE AC	ribe Distanti fildings, Fr CURATE	UTH nce of Well fro ences, Rivers, e & COMPLET	m Lands tc. E.	marks		TION TON OTHER (Specify)
							DRI	LING Hydr	raulio	c Rotary			Bent	onite Mud
1 1								- WATER	LEVE	L & YIELD	OFC	OMP	LETE	D WELL
							DEP WA	TH OF STATIC	50.	56 (Ft.) & D	ATE ME	ASURE	D 1/	25/95
1 1							EST	IMATED YIELD	•	(GPM) &	TEST 1	YPE _		
TOTAL DEPTH OF I TOTAL DEPTH OF (	BORING	<b>430</b> WELL	_ (Fe	et) . <b>360</b> (Feet)			TES •_M	T LENGTH	esentative	of a well's lo	AWDOW	N yıeld.	()	Ft.)
DEPTH			-	C	ASING(S)	)				DEPTH		ANNU	LAR	MATERIAL
FROM SURFACE	HOLE	TYPE (	41	terren ander anderen an		0.110	F	SI OT PITE	FRO	M SURFACE		T	TY	PE
E1 12 E1	DIA. (Inches)	REEN	PIPE	MATERIAL/ GRADE	DIAMETER	OR WA	LL	IF ANY	-	10 F	MENT	BEN-	FILL	FILTER PACK
ri. 10 Pl.	i i i i i i i i i i i i i i i i i i i	a 00 0	BE	<u>.</u>	(inches)	THORNE		(mends)	- FL	IU FL	(⊻)	(1)	(∠)	(1176/3126)
0 5		X		Steel	10					0 25	X			32
1340	<b>)</b>		+	Sch 80 pv	<u>c 2</u>		in a star	0 020	2	5 225		X	v	#2
1340 1360	+	-	+	SCH SU DA	6 2			0.020	22	3 522	-	Y	^	#3 Sand
Well cons	tructio			ell 1	1	÷			53	2 613		<b>^</b>	X	#3 sand
									61	3 898		X	_	20 gunu
	IMENTS (	∠) —					(	ERTIFICA	TION	STATEME	NT		-	
ATTACH				I, the unde	rsigned, ce	rtify that	this r	eport is comp	lete and	accurate to	the bes	st of m	y know	ledge and belief.
ATTACH	Log				JOHN 1	ZBICK	I		U.:	S. GEOLO	GICA	L SU	RVEY	
ATTACH Geologic Well Cons	Log struction Diagr	am		NAME		00000471000	TIME	D OD DOMITCO						
ATTACH Geologic Well Cons K Geophysic	Log struction Diagr ical Log(s)	am		NAME (PERSO	DN. FIRM, OR C	ORPORATION	(TYPE	D OR PRINTED)				00	100	1125
ATTACH Geologic Well Cons X Geophysi Soil/Wate	Log struction Diagr ical Log(s) er Chemical Ai	am nalyses		NAME (PERSO 5735 ADDRESS	N, FIRM, OR C		A R	D OR PRINTED)	) Sa	an Diego	, CA	92	123-	1135 ZIP
ATTACH Geologic Well Cont X Geophysic Soil/Wate Other	Log struction Diagr ical Log(s) er Chemical A	am nalyses		-	N. FIRM, OR C	VILL		D OR PRINTED)	) Si	an Diego	, CA G/s	92 192	123- STATE	1135 ZIP

	DWR	188	REV	7-90
--	-----	-----	-----	------

·

IF ADDITIONAL SPACE IS NEEDED, USE NEXT CONSECUTIVELY NUMBERED FORM



WELL #1 1340 - 1360 2 1170 - 1190 3 945 - 965 4 580 - 600 . - 280 5 260

....

.

. .

•

POPULATION SAULUTES	WELL P	ERRIT	447315	APN 2	60 107	60
			1-(101)	Contro	01 M 30	485
*TYPE OF WORK (Check)		USE (Ct	neck)		EQUIPMENT (C	theck)
New Well	individual Dome	stic 🔲			Rotary	
( Repair or Modification 🔲	Agricultural		Community		Cable Tool	司
Time Extension	Industrial		Other obse	wo tion	Other,	
Destruction			0.1-0.0			
PROPOSED WELL DEPTH			PROPOSED CAS	ING		1,1-
Max. 1400 Min. 2200 (Feet)	Type PUC	Depth 140	0'Diameter	2" v	all or Gage	20
PROPOSED SEALING ZONE(S)			SEALING M	ATERIAL (Che	eck)	
From (see Attached)	Feet	Neat Cemer	nt Grout	Ber	ntonite Clay	
From to	Feet	Sand Cemer	nt Grout 🔲	Cor	ncrete	$\boxtimes$
From to	Feet	Other-Spec	sity:			<u> </u>
PROPOSED PERFORATIONS OR SCRE	EN		DAT	E OF WORK		1
From to	Feet		DATE	L OF HURL		
From to	Feet	Star	t_6/13/	95		_ }
From to	Feet	Comp	letion $-\frac{6}{2}$	2/95		_
From to	Feet			<u></u>		
THUR OF WELL OWNER		NAME OF WE	ELL DRILLER			
LOCATION OF WELL Instea, Bound. & W 2223 Devery Mart Rd 3 DISPOSITION OF APPLICATION IFOR HEALTH OFFICERS USE ON APPROVED APPROVED WITH CONDITIONS Report Reason(s) for Denial or Necessary	Conditions Here	COMPANY U.S. BUSINES 5735 LICC 0 0 0 1 herel Departs nances the St. tion, ately Departs	<u>Creologico</u> SS ADORESS <u>FROAD</u> UNBER <u>A</u> <u>A</u> <u>A</u> <u>A</u> <u>A</u> <u>A</u> <u>A</u> <u>A</u>	I Survices I Cash Depu Bond Post Fee) n <u>4/56/</u> ply with all Services the County Ia pertaining ation and do n of work Services	I regulations and with all of San Diego ng to well co bestruction. I will furni with a complete	of the of the ordi- and of nstruc- lish the ete and
HEALTH OFFICER 4-26-95 DATE		accur a	APPLIC	ANT'S SIGNA	() TURE	

.

1



• •The free	Adobe Re	ader may	/ be used to view	and complete	e this form	n. However	software n	nust be ourcha	sed to comp	ete save	and reus	se a saved l	form.	
File Orig	inal with [	OWR		and complete		S	tate of Cal	ifornia	مبریدی در در در ا	W. S. H.A.	Children Di	WR Use On	ilv - Do	Not Fill In
r no ong					V	Vell Co	mplet	ion Rep	ort	1.5	2.917	3.2.14	1 2.	3 6 00 2 5
Page 1	Man Blue		DOP #1			Refe	r to Instructio	n Pamphlet			Sta	ate Well Nu	mber/S	ite Number
Owner's	Well Nun	11/06	2008	Data	Work E	NO Not 12/1	. e008492	5			1	N		<u> </u>
Local Pe	rmit Ager	CV COL	inty of San D	liego Dena	rtment (	of Enviror	mental F	lealth		[ I	Latitude		1 1	Longitude
Permit N	umber L	MON T	106077	Permit Da	ate 10/3	31/08	niteritar i				1 1	APN/1	TRS/Ot	her
¥-2-41 .	1.1003	Sec. Co	Geolo		140.17. Sr	anter a	1. 197 - 198 - 1.	L. Marais	10	2.54 . 9.1 . 40	Wel	Owner	AN STON	·····································
Orio	entation	⊙ Ver	tical O Ho	rizontal	OAnal	e Speci	fv	7.2. (A. 7. 6)+9(5)	ener des elentrations	acted at control		i o niici	ARTENOL	a de transmonster, de etras du transmos
Drilling	Method D	irect Rota	ary		Drilling	Fluid Bent	tonite mud							
Depth	from Su	rface	Constant and the	- Des	cription	VAY ST		3						
A Feet	10 10	et .	Des Des	cribe material	, grain siz	e, color, etc	A START	C C MIDISTRA	4.6651 2 (3),2032	1.000 5.00 5.00 10	WALCH.	10 0 10 10 10		A ALCONDANCE AND INCLUDED AND INCLUDED
10	20		Sravelly sand, m-v	vc sand w/ gran	ranules.	ebbles, olive	gray (51 5/		である。	<u>能</u> 于"你们和我	Well	Location	了中国主动	and the second had been and
20	20		Fravelly sand; m	we sand w/ g	ranulos, g	It olivo brou	(2.51 5/	Address	276 Ma	ce Stree	et			Disco.
20	40		Sravelly sand: m.u	re cand w/ oran	ules: dk v	allowish hrow	m (2.51 5/4	City City	nula Vista	CA 919	911	Cou	unty 3	San Diego
40	40		Fravel: granulas	med pobbles	various	colore		2 Latitude	32 Dec	35 1 Min	28.45	_N Longitu	ide <u>1</u>	17 03. 14.06 W
40	70		Stavel, granules-	I claur cline /	various (	colors		Datum	NAD83	Decimal	Lat	A. 1997	Dec	imal Long.
70	10		layey sit; sit w	/ ciay; olive (:	51 4/3)	and and all all	IN ANY ANY ANY	APN BO	lok	Page		i.	Parc	el "
70	80	3	ilty sandy gravel; gra	nules-med pebble	es w/ vi-vc s	and and sill; oil	ve gray (5Y 4/	Townsh	in 18S	Range	02W	Long Set	Sect	ion 23G2
200	200		clayey siit, siit w	/ clay and sh	ell tragme	ents; v dk g	ray (51 3/1	idenestre:	Locat	ion Ska	teh	THE REPORT	S. COCC	Activity
200	240		layey silt; silt w/	clay and minor	shell trag	ments; v dk	gray (5Y 3/	(Sketch	must be drawn	by hand af	ter form is	printed.)	O N	lew Well
240	320		Silt; silt; dk gray (	(5Y 4/1)	1511.011			-		North			0 N	Iodification/Repair
320	550		clayey silt; silt w/	clay; v dk gra	ay (5Y 3/1	)	Youto		LI 12.77	wina De -	124	W. MI	9	Deepen
550	560	5	Sand; vf-coarse s	sand w/ shell	fragment	s; dk gray (	5Y 4/1)		LIF	1		And and	Or	Other
560	570	0	Clayey silt; silt w	/ clay; v dk gr	ay (5Y 3/	1)				A				Describe procedures and materials
570	580	S	andy clay; clay	w/ med-coars	e sand; g	reenish gra	y (10Y 5/1)	·····	he C	C.e	1 il	()	166736	Planned Heas
580	610		Clay; clay; grayis	sh brown (2.5	Y 5/2)			its		Sum Nit	is the		ALC: HIGH	Votos Supplu
610	630	C	lay; clay; grayis	sh brown (10)	YR 5/2)			Con Assess		Carro				Domestic Public
630	650	C	Clay; clay; It brow	wnish gray (2	.5Y 6/2)			-	-	一行明		0		Irrigation Industrial
650	750	0	lay; clay; grayis	h brown (2.5)	Y 5/2)				Dur C				00	Cathodic Protection
750	880	s	andy clayey silt; s	silt w/ clay & vf	-med sand	; grayish bro	wn (2.5Y 5/	2)	1.1.1		5	1	0D	ewatering
880	910	C	layey silty sand; v	f-coarse sand w	v/ sitt & cla	y; grayish bro	own (2.5Y 5/2	2)	1. K. T.		100.000	A	OH	leat Exchange
910	920	c	lay; clay; brown	(10YR 5/3)	•	1		-	List VI	CANES!			Olr	njection
920	940	G	iravelly sand; med-v	c sand w/ granu	les-sm pebb	oles; grayish b	rown (2.5Y 5/	2) Canty Li	1 04	una a A	for detail	二》/許	O N	Ionitoring
940	1,03	0 0	layey silly gravelly sa	nd; vf-vc sand w/	granules, silt	& clay; it olive	brown (2.5Y 5/	3) mani Courtan	desinaminika	-1[-lung-	-11			Remediation
1030	1,120	) s	ilty gravelly sand;	vf-vc sand w/ gr	anules & s	ilt; grayish bro	own (2.5Y 5/	2)	- 1872 (177) - 1.400 (mm			1		oparging Cost Well
1120	1,14	0 5	andy clay; clay	w/ med-vc sa	nd; It bro	wnish gray	(2.5Y 6/2)	- in the second		South			lõv	apor Extraction
1140	1,47	2 0	layey silty sand;	vf-vc sand w/	silt & clay;	grayish brow	wn (2.5Y 5/2	) Illustrate or d rivers, etc. ar	escribe distance of attach a map.	of well from ro Use additional	ads, building I paper if ner	ps, fences, cessary.	00	ther
	/			i de la	area in			Please be at	curate and com	plete.	10		1000	APAMARAN PARANTAL
			SWN's	18502	W2:	3600	25	water	_evel and	Tield	or, Com	pleted w	vell	
			Through	*	23	3600	65	Depth to Depth to	o first water		-	_	_ (Fee	et below surface)
			3		1	25.0		Water L	evel		(Fee	et) Date	Measu	ured
Total D	epth of B	oring	1472			Feet		Estimate	ed Yield *		(GP	M) Test	Туре	
Total D	enth of C	omolete	d Well 1460			Feet		Test Le	ngth		(Ho	urs) Total	Drawo	down (Feet)
Total D	epuroro	ompiete	1100		1.5	reet	-	*May no	t be repres	entative	of a we	II's long te	rm yie	ld.
La General	統領運動		$H_{H^{\infty}}^{(1,N)}(\mathcal{A}_{1}^{(1,N)}) \to H_{H^{\infty}}^{(1,N)}(\mathcal{A}_{1}^{(1,N)}) \to H_{H^{\infty}}^{(1,N)}(\mathcal{A}_{1}^{(1,N)})$	Cas	ings	计的错误化	时代研究	1. A.	中國和國	門。此時時	Call of a state	Annul	ar Ma	terial
Depti	h from	Boreho	е Туре	Mater	rial	Wall	Outside	Screen	Slot Size	Dept	h from	CII.		Description
Feet	to Feet	(Inches	•)			(Inches)	(Inches)	type	(Inches)	Feet	to Feet	C0		Description
0	60	22.00	Conductor	PVC Sch. 80	)					51	97	Filter Pac	:k	RMC #3 Sand
60	100	13.00			(a)					194	266	Filter Pac	:k	RMC #3 Sand
100	460	12.00	- untire							530	584	Filter Pac	k	RMC #3 Sand
460/1000	1000/1472	10.00/8.0	00		-	-				926	985	Filter Pac	k	RMC #3 Sand
0	1420		Blank	PVC Sch. 80	)	0.30	3.5		0.000	1399	1472	Filter Pac	k	RMC #3 Sand
1,420	1,460		Screen	PVC Sch. 80	)	0.30	3.5	Milled Slots	0.020			Bentonite		All other depths
270	1 2 - 54	Attach	ments	Ale Cart	ggeser Gebeur	and the	1. 18 1. 1	S. C. Starter	Certificati	on Stat	ement		<b>建行</b> 195	
	Geologic	Log	0.50		I, the u	ndersigned	d, certify th	at this report	t is comple	te and ac	curate t	to the best	t of my	knowledge and belief
	Well Con	struction	Diagram		Name	Person.	Firm or form	aration	echniciar	. 0.5. 6	pologi	cal Surve	şγ	
E E	Geophysi	cal Log	(S)		4165	Spruane	e Road S	Suite 200	San	Diego	10	<u> </u>	<u>A</u> 1	92101
	Other O	n file @	USGS- San	Diego	Signed		UA	N		City	02/10/	2009 F	xemot	- Federal Government
Attach add	itional inform	nation, if it	exists.			C-57 10	insed Water	Well Contractor			Date Si	gned C	-57 Lic	cense Number

. . . . . . . .

10.00

1.

----

......

E.0. ••.00

_____

IF ADDITIONAL SPACE IS NEEDED, USE NEXT CONSECUTIVELY NUMBERED FORM

0084925

*The free	Adobe Re	ader ma	y be used to view	and complet	e this form	. However,	software m	ust be purchas	ed to compl	ete, save,	and reus	e a saved fo	orm.	
File Origi	nal with [	DWR				St	ate of Cali	fornia	[	副的主要	STA DV	VR Use Only	y - Do	Not Fill.In @95.5 (and 1)
Page 2		of	5		V	lell Co	mpleti	on Repo	ort	118	5,50	0,2,W	21	360035
Owner's	Well Nun	nber S	DOR #2			No	e0084925	Pamphlet			Sta	te Well Num	nber/Si	ite Number
Date Wo	rk Began	11/06	/2008	Date	Work Er	nded <u>12/1</u>	3/2008				Latitude		L	Longitude
Local Pe	rmit Ager	ncy Co	unty of San D	iego Depa	rtment o	of Environ	mental H	ealth		L	1			her
Permit N	umber L	MON	106077	Permit D	ate 10/3	31/08		-	NATION OF A PARTY	00015-00040			Norou	Kennen betreven bester som av ter forskatter viss
Oria	Intation	OVo	dical OHo	gic Log	OAngle	Space	6. C.	1963 (1963)			Wel	Owner	这些错	的第三日的100万元为进行规则100
Drilling	Method D	irect Rot	ary	nzontai	Drilling	Fluid Bent	onite mud	11						
Depth	from Su	rface		Des	cription	\$1945 MA								
0	10		Gravelly sand: m-	cribe material	ules-sm p	ebbles: olive	grav (5Y 5/2	) (d. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Ref. Marine Friday	State Street of	Woll	ocation	- COLORER	用来来自己的 2001年1月月日日
10	20		Gravelly sand; m	-vc sand w/ g	ranules; g	rayish brow	n (2.5Y 5/2	Address	276 Ma	ce Stree	at		249.2,20723	ana kanalo nagi kangkar atarakhanan a
20	30		Gravelly sand; m	-vc sand w/ g	granules; I	t olive brow	n (2.5Y 5/4	) City Ch	ula Vista	CA 91	911	Cou	nty S	an Diego
30	40		Gravelly sand; m-v	rc sand w/ gran	nules; dk ye	allowish brow	m (10YR 4/6	) Latitude	32	35	28.45	N Longitud	de 1	17 03 4 14.06 w
40	60		Gravel; granules	med pebbles	; various c	olors		Datum	Deg.	Min.	Sec.	ST 55		Dea. Min. Sec.
60	70		Clayey silt; silt w	/ clay; olive (	5Y 4/3)				nk	Page	Lat;	2 12	Dec	ali is
70	80		Silty sandy gravel; gra	nules-med pebbl	es w/ vf-vc sa	ind and silt; oliv	ve gray (5Y 4/2	Townshi	n 18S	- Rang	02W	Sec. 1.	Secti	ion 23G3
200	200		Clayey silt: silt w/	day and mino	shell fraoi	ments: v dk gi	ay (51 3/1)		Locat	ion Ske	tch	法法的利用	AND THE	Activity
240	320		Silt; silt; dk gray	(5Y 4/1)	ununnag	normo, r un j	g/d) (01 011	(Sketch	must be drawn	by hand a	ter form is	printed.)	O N	lew Well
320	550		Clayey silt; silt w	clay; v dk gra	ay (5Y 3/1	)	1	11		North	and a second	22	OM	odification/Repair
550	560		Sand; vf-coarse	sand w/ shell	fragments	s; dk gray (5	5Y 4/1)		12	( Start	37	10	, C	O Other
560	570		Clayey silt; silt w	/ clay; v dk g	ray (5Y 3/	1)			3 /1	See. 4			OD	estroy Describe procedures and materials
570	580		Sandy clay; clay	w/ med-coars	e sand; gi	reenish gray	y (10Y 5/1)	<u></u> [_	62 S	C.			U Advertant	inder "GEOLOGIC LOG"
580	610		Clay; clay; grayis	sh brown (2.5	Y 5/2)			1938	Ver				OIA	Planned Uses
610	630		Clay; clay; grayi	sh brown (10	YR 5/2)			Renated States	<b>a</b> (	- Land				Domestic Public
650	750		Clay; clay; It brow	whish gray (2	.5Y 6/2)		the second	**************************************	-	ns.		S.		Irrigation Industrial
750	880		Sandy clavey silt:	silt w/ clav & vf	-med sand	oravish bro	wn (2.5Y 5/2		()anisan				0 c	athodic Protection
880	910		Clayey silty sand; v	f-coarse sand v	w/ silt & clay	; grayish bro	wn (2.5Y 5/2	ς	1.00	1.0	×			ewatering
910	920	K	Clay; clay; brown	(10YR 5/3)	1		171	Protection in succession	Distat	u wts7			OIn	njection
920	940		Gravelly sand; med-	c sand w/ granu	les-sm pebb	les; grayish br	rown (2.44 5/2	) Carry St. 1	1 000	1. 9 . it	- tonderbo	③ / 胜	• M	Ionitoring
940	1,030	0	Clayey silty gravelly sa	nd; vf-vc sand w/	granules, sit	& clay; It olive t	brown (2.5Y 5/3		la consulta		all		OR	emediation
1030	1,120	0	Silty gravelly sand;	vf-vc sand w/ g	ranules & si	lt; grayish bro	iwn (2.5Y 5/2	41	191037		an ann "ana Chaile		OT	est Well
1120	1,140		Sandy clay; clay	w/ med-vc sa	ind; It brow	whish gray	(2.5Y 6/2)	(i)	eccibo distanca i	South	eds building	laces	ŌV	apor Extraction
1140	1,4/2	2	Clayey silty sand;	vi-vc sand w/	silt & clay;	grayish brow	vn (2.5Y 5/2	Please be ac	d altach e map. curate and com	Use additiona plate.	I paper if nec	essery.	00	Other
		-		dia.			1	Water L	evel and	Yield o	of Com	pleted W	ellet	時心情很多能的感激的推
11/2	-					1.1		Depth to	first water				(Fee	et below surface)
				-	÷.,	20	5	- Depth to Water Le	Static		(Fee	t) Date N	leasu	ured
Total D	epth of B	oring	1472			Feet		Estimate	d Yield *		(GP	M) Test T	ype_	
Total D	epth of C	omplet	ed Well 970	· · ·	1. 20	Feet		Test Len	igth	5.42	(Hou	irs) Total [	Drawd	down (Feet)
5 M.S.	St., 174.4	15 295	T. Provide Come		in and the	that the second	214 0.1 A 84	May no	t be repres	entative	of a wel	's long ter	m yiel	IC.
Depth	from	Boreho	na officiant diff	Cas	ings	Wall	Outside	Screen	Slot Size	Dept	h from	Annula	r Ma	terial states and the
Sur	face Eest	Diame	ter Type	Mate	rial	Thickness (Inches)	Diameter (Inches)	Туре	if Any	Su	face	Fill		Description
0	60	22.00	Conductor	PVC Sch. 8	0		(incitos)		(increa)	51	97	Filter Pack		RMC #3 Sand
60	100	13.00								194	266	Filter Pack		RMC #3 Sand
100	460	12.00	-			100				530	584	Filter Pack		RMC #3 Sand
460/1000	1000/1472	10.00/8	.00	BVC Cat a		0.210	2 275			926	985	Filter Pack		RMC #3 Sand
950	970		Screen	PVC Sch 8	0	0.218	2.375	Milled Slots	0.020	1399	14/2	Bentonite		All other deaths
. w . where	5.298814	Attac	mente	and anti-	CARLES 7	71527 8 12 4	الصيدية مريشانة	23. (C. 270 2 3.5.)	ertificati	on Stat	oment	SHEW AND AN AND	Grad an	and control dopution
	Geologic	Log	interito, e la co	Electric State of the Ale	I, the ur	dersigned	, certify th	at this report	is complet	e and ad	curate t	o the best	of my	knowledge and belief
	Well Con	structio	n Diagram		Name	Anthony	Brown, H	ydrologic T	echnician	, U.S. C	Seologia	al Survey	Y	
	Geophysi	ical Log	(s)		4165	Spruance	e Røad S	uite 200	San	Diego			1 5	92101
	Soll/Wate	n file @	DUSGS-San	Diego	Signed		XIA	7		City	02/10/	Stat 2009 Ex	empt-	Zip - Federal Government
Attach add	tional inform	ation, if it	exists.		1011-001000	C-57 1	ansed Water V	Vell Contractor			Date Si	ned C-	57 Lic	ense Number

,

IF ADDITIONAL SPACE IS NEEDED, USE NEXT CONSECUTIVELY NUMBERED FORM

• •The free	Adoba Ro	ador m	w he used t	o vácu	and completion	this for	n However	coffuero m	unt he surphe	and to come	lata anu	and row		00	084925
Sile Orio	Adobe ne	ader me	ay be used a	0 view	and complete	e this ion	n. However	tate of Cal	ilist de purcha iliomia	sed to comp	lete, save	and reu	se a saveu	torm.	
Page 3		of	5			۷	Vell Co	mplet	ion Repo	ort	11	8   S	0121	V 2	3 G 09 4 5
Owner's	Well Nur	nber S	DOR #3				Refe	or to Instruction . e008492	n Pamphlet 5			St	ate Well N	umber/S	Site Number
Date Wo	rk Began	11/00	6/2008		Date	Work E	nded 12/	13/2008				Latitude		1	Longitude
Local Pe	rmit Ager	ncy Co	ounty of S	an D	iego Depa	rtment	of Environ	nmental H	lealth			1			
Permit N	lumber L	MON	T106077		Permit D	ate 10/	31/08						APN	TRS/O	ther
	Tuge D.		G	eolo	gic Log 🗠	1	and the	的確認的	a withit		記念記載	We	II Owner	激動於	<b>这些小学的思想</b> 是这个学
Ori	entation	ΟVe	ertical (	DHo	rizontal	OAngl	e Spec	ify	-11						
Drilling Depth	from Su	rface	tary Addatos	11.24	Des	Drilling	Fluid Ben	tonite mud	τ.						
Feet	to F	et.	1. 1 m	Des	cribe material	grain siz	e, color, etc	s satta						_	
0	10		Gravelly san	d; m-v	ic sand w/ gran	ules-sm p	bebbles; olive	a gray (5Y 5/	2)	1983 Y	a statistican	Well	Locatio	n,我的明	
10	20		Gravelly sa	na; m	-vc sand w/ g	ranules;	grayish brow	Wn (2.51 5/	Address	s <u>276 Ma</u>	ice Stre	et			
20	130		Gravelly sa		-vc sand w/ g	ranules;	It olive brow	WN (2.5Y 5/4	City Cl	hula Vista	, CA 91	1911	Cč	unty _	San Diego
30	40		Gravely san	0; m-v	ic sand w/ gran	iules; ak y	ellowish brow	Wh (101R 4/	Latitude	32	35	28.45	N Longit	ude 1	17 03 14.06 w
60	70		Graver, gra	nules-	med peobles	various	COIOIS		Datum	NAD83	Decima	al Lat.		Dec	cimal Long.
70	10		Clayey Sitt,	Sitt W	/ ciay, olive (:	or 4/3)	and and all: of	his amu /EV //	APN BO	ok	Pac	ie	3. J	Par	cel X
20	200		Clavov cilt:	vei, gra	l clay and ch		and and sit, of	100 gray (51 4/	Townsh	in 18S	Rand	ne 02W	Second St	Sec	tion 23G4
200	200	-	Clayey sitt,	Sht w	day and mice	choll fragm	ents, v uk g	aray (51 3/1	) Real Dear	l oca	tionSk	etch	的中国的	HEIMINE	Activity
240	320		Silt: eilt: dk	oray i	(5V A/1)	Silen Itaş	jinonis, v uk	gray (51 Sr	(Sketch	must be draw	n by hand	after form is	s printed.)	O N	New Well
320	550	-	Clavov cilt	cilt w	(Jav: v dk or	w /5¥ 3/	1)				North		1	,Õ M	Modification/Repair
550	560		Sand: vf.co	Sill W/	ciay, v ok yla	fragment	e: dk grav (	SV A/1		1.1.	W. M.O.	Fight	SIG-		O Deepen
560	570	-	Clavey eilt:	cilt w	/ clay: y dk ou	ay (5V 3	(1)	<u>514/1)</u>		L C	Sel		1-7-	0	Destroy
570	580	-	Sandy clay:	clay I	w/ med-coars	ay (JI J	reenish ors	w (10X 5/1)	131. A		Low Do the tot	2/ 1			Describe procedures and materials under "GEOLOGIC LOG"
580	610	-	Clay clay	oravis	h brown (2 5	Y 5/2)	greenish gre	19 (101 5/1)		13/	1950	7		·杜子·	Planned Uses
610	630	-	Clay, clay,	gravia	sh brown (10	(R 5/2)			Sull-1		I TO	1 3		OV	Water Supply
630	650	-	Clay, clay,	t brow	which aray (2	5Y 6/2)				1		الدرال			Domestic Public
650	750	-	Clay: clay:	navis	h brown (2 5	Y 5/2)		THE REAL	Annan A		理公律供用的 有"用	ente atales	North		Irrigation Industrial
750	880	-	Sandy clave	y silt s	silt w/ clay & vf	med san	d gravish br	wn (2 5Y 5/	2)	- Dina-		12	뵎	00	Cathodic Protection
880	910		Clavey sitty s	and v	f-coarse sand y	v/ silt & cla	v gravish br	own (2.5¥ 5/				1		0	Dewatering
910	920	-	Clay: clay: t	rown	(10YR 5/3)	age of the	., gaylor bi			-	FG #37	1.1	M	18	niection
920	940	-	Gravelly sand	med	( sand w/ granu	es-sm neh	hles oravish h	12 SY 14	Cary Same	41		a.	-s / []	i o i	Monitoring
940	1 03	0	Clavey silty one	velly sa	nd: vi-vc sand w/	oranules, sil	t & clay: It olive	brown (2.5Y 5/	3)	1		and the state	~~////	OF	Remediation
1030	1 12		Silty gravelly	sand	vf-vc sand w/ or	anulès & s	ult: gravish br	own (2 5Y 5/		Palo Ala	11	tra.	manderthe	0.5	Sparging
1120	1 14	0	Sandy clay	clay	w/ med-vc sa	nd It hro	whish drav	(2 5Y 6/2)			South			01	Fest Well
1140	1 47	2	Clavey silty	sand:	vf-vc sand w/	silt & clay	oravish bro	wn (2 5Y 5/2	litustrate or d	lescribe distance	of well from	roads, buildin	ga, fences,	0	apor Extraction
					18.4				Please be a	ccurate and con	nplete.	hai paper n ne	cessary,	00	Jther
									Water	Level and	Yield	of Com	pleted \	Nell	
							1	1	Depth to	o first wate	r			_ (Fe	et below surface)
					1			All and	Water L	evel		(Fe	et) Date	Meas	ured
Total D	epth of B	oring	1	472	15		Feet		Estimat	ed Yield *		(GF	PM) Test	Туре	
Tatal		omplei	ad Wall 5	70		8.0	Faat		Test Le	ngth	adeo to xve	(Ho	urs) Tota	I Draw	down (Feet)
Total L	epth of C	ompie	ed well <u>J</u>	10		10 A	- Feet		*May no	t be repre	sentative	e of a we	ell's long t	erm yie	əld.
部的的	1303、4364	1.2		~ tr	Cas	ings	<b>PASSATION</b>		1. Har : # 3.	行道是是这次	ARRON I		Annu	lar Ma	aterial a state of the
Dept	h from	Boreh	ole Typ	8	Mate	rial	Wall	Outside	Screen	Slot Size	Dep	th from	-		Description
Feet	to Feet	(Inche	es)		KC.		(Inches)	(inches)	iype	(Inches)	Feet	to Feet			Description
0	60	22.00	) Conduc	ctor	PVC Sch. 8	)					51	97	Filter Pa	ick	RMC #3 Sand
60	100	13.00	)								194	266	Filter Pa	ick	RMC #3 Sand
100	460	12.00	)								530	584	Filter Pa	ck	RMC #3 Sand
460/1000	1000/1472	10.00/8	3.00		DV/C 0 1 1		0.040	0.075			926	985	Filter Pa	ick	RMC #3 Sand
550	550		Blank	2	PVC Sch. 8	2	0.218	2.375	Milled Clate	0.020	1399	1472	Filter Pa	ICK	All other doothe
550	1570		Screen		PVC Sch. 8	,	0.218	2.3/5	Milled Stots	10.020			Bentoni	e	All other depths
國際的語言	The shirt ife	Attac	hments		新聞的社	<b>建設</b> 在1	化活动分析	語いの認識	"学生"和"学生"	Certificat	ion Sta	temen	t常我消息。	。1933年	BARRAN CON
	Geologic	Log				I, the u	Anthony	d, certify the	hat this report	t is comple	te and a	Geolog	to the bes	st of my	y knowledge and belief
	Geophus	structio	on Diagram	r -		tion	Person,	Firmer Corp	pration	C	0:00	DUDIOQ	our ourv		00404
	Soil/Wate	er Cher	nical Analy	ses		4165	Spruanc	Address	time 200	San	Diego	ty		tate	92101 Zip
	Other O	n file (	@ USGS-	San	Diego	Signed	-X	1 det	1		-	02/10	/2009	Exempl	t- Federal Government
Attach add	litional inform	nation, if i	t exists.				C-STV	censed Water	Well Contractor			Date S	igned (	2-57 Li	cense Number

,

IF ADDITIONAL SPACE IS NEEDED, USE NEXT CONSECUTIVELY NUMBERED FORM

*The free	Adobe Re	ader ma	ay be used to view	and complet	e this form. I	However,	software m	ust be purchas	ed to compl	lete, save,	and reus	e a saved	form.	
File Origi	inal with (	OWR				St	ate of Cali	fornia	Γ	a an		VR Use Or	ity Do	Not Fill In a Contract State
Page 4		of	5		We	ell Co	mpleti	on Repo	ort	1,8	1.5 (	5,2,0	121	360055
Owner's	Well Nun	ther S	SDOR #4			Refer	to Instruction	Pamphlet			Sta	te Well Nu	mber/S	ite Number
Date Wo	rk Beoan	11/06	6/2008	Date	Work End	ed 12/1	3/2008				Intitude	N	L	L oppitude
Local Pe	rmit Ager	cy Co	ounty of San D	iego Depa	rtment of	Environ	mental H	lealth			Ladidoe	1	1 1	
Permit N	umber L	MON	T106077	Permit D	ate 10/31	/08		0	— L			APN/	TRS/Oth	her
派走过少	的影响影响	(神王)	Geolo	gic Log	的形象是	5.6.3.4.	<b>这</b> 能的问题		The Bours	and the second	Well	Owner	742 - 1	的推动的和中国和中国
Orie	entation	⊙Ve	ertical O Ho	rizontal	OAngle	Specif	y	11						
Drilling	Method D	rect Ro	tary		Drilling Flu	uid Bente	onite mud							
Depth	from Su	rface	Des	Cribe material	cription	color etc.	是被將							
0	10		Gravelly sand; m-	c sand w/ gran	ules-sm pebl	bles; olive	gray (5Y 5/2	) Water .	1.2379.5	126 12:16	Well	ocatio	1.542	
10	20		Gravelly sand; m	-vc sand w/ g	ranules; gra	yish brow	n (2.5Y 5/2	Address	276 Ma	ce Stree	et	NS.		
20	30		Gravelly sand; m	-vc sand w/ g	ranules; It o	live brow	n (2.5Y 5/4	) City Ch	ula Vista	. CA 91	911	Co	inty S	an Diego
30	40		Gravelly sand; m-	c sand w/ gran	ules; dk yello	wish brow	m (10YR 4/6	) Latitude	32	35	28.45	N L ongitu	ide 1.	17 03 14.06 w
40	60		Gravel; granules	med pebbles	various col	ors			Deg.	Min.	Sec.	1		Dea. Min. Sec.
60	70		Clayey silt; silt w	/ clay; olive (	5Y 4/3)			Datum N	AD83	Decimal	Lat:	1 1	_ Dec	imal Long.
70	80		Silty sandy gravel; gra	nules-med pebbl	es w/ vf-vc sand	and silt; oliv	ve gray (5Y 4/2	) APN Boo	ok	_ Page		10 19- 19-0	Parc	el'. <u></u>
80	200		Clayey silt; silt w	/ clay and sh	ell fragment	s; v dk gr	ay (5Y 3/1)	Townshi	p <u>18S</u>	Rang	e 02W	ike sider	Secti	ion <u>23G53</u>
200	240		Clayey silt; silt w/	clay and mino	shell fragme	ents; v dk g	gray (5Y 3/1		· Locat	ion Ske	tch	和中国	於國歌	Activity
240	320		Silt; silt; dk gray	(5Y 4/1)				SCISKEICH	nust be drawn	North	ter torn is	printed.) & 1		lew Well Indification/Repair
320	550		Clayey silt; silt w	clay; v dk gra	ay (5Y 3/1)						The states	· ASIAN		D Deepen
550	560		Sand; vf-coarse	sand w/ shell	fragments; o	dk gray (5	Y 4/1)		1 P	571	J.			O Other
560	570		Clayey silt; silt w	/ clay; v dk g	ray (5Y 3/1)				2 1	200 V		-		Describe procedures and materials
570	580		Sandy clay; clay	w/ med-coars	e sand; gree	enish gray	(10Y 5/1)		he S	15.4	JL-JL	[]]	Coloradore	Planned Lices
580	610		Clay; clay; grayi	sh brown (2.5	Y 5/2)				a la		1 Seal		0.14	Ater Supply
610	630		Clay; clay; grayi	sh brown (10	YR 5/2)			6 SOUTHER 6 (140) A 40				1-5		Domestic Public
630	650		Clay; clay; It bro	wnish gray (2	.5Y 6/2)			Ma.m.4	-	「下毕		Sollar -		Irrigation Industrial
650	750		Clay; clay; grayis	h brown (2.5	Y 5/2)		<u> </u>		0.40 S		이렇 만들	1	00	athodic Protection
750	880		Sandy clayey sill;	silt w/ clay & vi	-med sand; g	rayish brow	wn (2.5Y 5/2	)				Π	OD	lewatering
880	910	-	Clayey silty sand; v	1-coarse sand	vi sill & clay; g	grayish bro	wn (2.5Y 5/2	1			· .		Он	leat Exchange
910	920		Clay; clay; brown	(1048 5/3)		<u>.</u>	-11		1		C.84.0	···· (M.		njection
920	940		Gravely sand; med-	/c sand w/ granu	les-sm pebbles	; grayish or	own (2.31 p/2		I cran	m fil	Reparter	··· / ///	OR	emediation
1030	1 12	<u></u>	Silbu arayolly cand	no, vi-ve sano w/	granulae & eilt	arouich hro	10wn (2 5V 5/2		Palm Aug	1.	TES	anderthed	Os	parging
1120	1 14	<u></u>	Sandy clay: clay	w/ mod.vc es	anules a sin,	ich aray (	2 57 6/21	4		South			OT	est Well
1140	1 47	5	Clavey silty sand	w/ meu-vc se	silt & clay: on	avish brow	2.51 0/2)	· Illustrate or de	scribe distance	of well from ro	ads, building:	s, fences,	0v	apor Extraction
1140	1,477	-	chayey any same,	the same in	ant a ciay, gr			Please be act	d attach a map. curate and com	Use additiona plete.	I paper if nec	essary.	00	Other
-	-						5	Water L	evel and	Yield o	of Com	pleted V	Vell	<b>运行的常常的</b> 是不是
			20.00		5	10.00	2	Depth to	first water				_(Fee	et below surface)
				1.8		A. 1.		- Depth to Water Le	Static		(Fee	t) Date	Measu	ured
Total D	epth of B	oring	1472	2		Feet		Estimate	d Yield *		(GPI	M) Test	Туре	
Total D	anth of C	omplat	ad Woll 240	3		- ·		Test Len	igth		(Hou	irs) Total	Drawo	down (Feet)
Total D	epurore	ompier			1	- reel		*May no	t be repres	sentative	of a wel	I's long te	rm yie	ld.
加強調調	美いない	語る語	語語の言語である	Cas	ings	诸济特	的机算法	あい、空間で	同時時間的	調整是		Annul	ar Ma	terial
Depth	from face	Boreh	ole Type	. Mate	rial T	Wall hickness	Outside Diameter	Screen	Slot Size	Dept	h from face	Fil	i i	Description
Feet	o Feet	(Inche	es)	1		(Inches)	(Inches)		(Inches)	Feet	to Feet			
0	60	22.00	) Conductor	PVC Sch. 8	>					51	97	Filter Pac	ck	RMC #3 Sand
60	100	13.00	)				-			194	266	Filter Pad	ck	RMC #3 Sand
460/1000	400	10.00/8	200							026	085	Filter Pad		RMC #3 Sand
0	220	10.00/0	Blank	PVC Sch. 8		218	2 375			1399	1472	Filter Par	ck.	RMC #3 Sand
220	240	-	Screen	PVC Sch. 8		.218	2.375	Milled Slots	0.020			Bentonite		All other depths
5	1. 1. 12	Attac	hments:	25.2013	AT LINY.	and and a	Server and	1 1 1 C	ertificati	on Stat	ement	13322000	1000	TY THE CAPPARTY ST
	Geologic	Log	innerita.	340 SV N -	I, the und	ersigned	, certify th	at this report	is complet	te and ac	curate to	o the bes	t of my	knowledge and belief
	Well Con	structio	on Diagram		Name A	nthony	Brown, H	vdrologic T	echnician	, U.S. C	Geologia	al Surve	ey	
	Geophysi	cal Log	g(s)	3	4165 S	pruance	Road S	uite 200	San	Diego			A	92101
	Soil/Wate	r Chen	mical Analyses	Diego	Signed	-	XIZ	AT	,	City	02/10/	2000 SI	ate	Zip Federal Covernment
Attach add	tional inform	ation, if i	t exists.	Diego	July -	C-57 Lice	nsed Water V	VelliContractor			Date Sid	aned C	-57 Lic	ense Number

.

IF ADDITIONAL SPACE IS NEEDED, USE NEXT CONSECUTIVELY NUMBERED FORM

*The free	Adobe Re	ader may	be used to view	and complete	e this form. H	lowever,	software m	ust be purchas	ed to compl	ete, save,	and reuse	e a saved for	m.	
File Original with DWR State of California Well Completion Re										中。1946年 1947年	t in DV	VR Use Only	- Do'l	Not Fill In State
Page 5		of 5			We	ell Co	mpleti	on Repo	ort	1,8	ISC	DIZIW	21	360965
Owner's	Well Nun	ber SD	OR #5			Refer No.	to Instruction e0084925	Pamphlet			Sta	te Well Numt	ber/Sit	e Number
Date Wo	rk Began	11/06/2	2008	Date	Work Ende	ed 12/1	3/2008				Latitude			Longitude
Local Pe	rmit Ager	cy Cou	ntv of San D	iego Depa	rtment of	Environ	mental H	ealth						
Permit N	umber <u>L</u>	MON T1	06077	Permit Da	ate 10/31/	/08			L			APN/TR	S/Oth	er
the analytic	Na Freist	iten ist	Geolo Geolo	gic Log	「「日本」	時にいて	相考了 [2]	建作的方法	物能活动的	is the second	Well	Owner	动的装	hardshift 是一定也不
Orie	entation	<ul> <li>Verti</li> </ul>	cal O Hor	rizontal	OAngle	Specif	y	-11						
Drilling	Method D	rect Rotar	Y 2011/2/14 14/2010/06/2014	3 11	Drilling Flu	id Bento	onite mud	-						
Feet	trom Su	rface we	Des	cribe material	grain size, o	color, etc	(Hanting	20.02						
0	10	G	ravelly sand; m-v	c sand w/ grar	ules-sm pebb	oles; olive	gray (5Y 5/2	) (275-1723)		[1] [1] [1] [1] [1] [1] [1] [1] [1] [1]	Well	ocation	HELLES	言語など運動できた運転
10	20	G	ravelly sand; m	-vc sand w/ g	ranules; gray	yish brow	n (2.5Y 5/2	Address	276 Ma	ce Stree	et	1.42		
20	30	G	ravelly sand; m	-vc sand w/ g	ranules; It o	live brown	n (2.5Y 5/4	City Ch	ula Vista,	CA 919	911	Coun	ty Sa	n Diego
30	40	G	ravelly sand; m-v	c sand w/ gran	ules; dk yello	wish brow	n (10YR 4/6	Latitude	32	35 2	28.45	N Longitud	e 11	7 03 14.06 w
40	60	G	ravel; granules-	med pebbles	various colo	ors			Deg.	Min.	Sec.		D	ea. Min. Sec.
60	70	CI	layey silt; silt w	clay; olive (	5Y 4/3)			Datum	NAD83	Decimal	Lat.	<u>, in an an</u>	Decir	mai Long.
70	80	Sil	ty sandy gravel; gra	nules-med pebbl	es w/ vf-vc sand	and silt; oliv	e gray (5Y 4/2	APN Bo	0k	Page	0014		Parce	2206
80	200	C	layey silt; silt w	/ clay and sh	ell fragments	s; v dk gr	ay (5Y 3/1)	Townshi	p <u>185</u>	Range	<u>0277</u>		Sectio	
200	240	CI	ayey silt; silt w/ o	day and minor	shell fragme	nts; v dk g	gray (5Y 3/1	) (Sketch i	Locat must be drawn	ion Ske	tch ter form is	printed.)		Activity
240	320	Si	lt; silt; dk gray (	5Y 4/1)	aconte com				(4	North		2 *	O M	odification/Repair
320	550	C	layey silt; silt w/	clay; v dk gra	ay (5Y 3/1)		YANGC	81. Jak	e i ferre	W.W.D.	21	A AM	S.O	Deepen
550	560	Si	and; vf-coarse s	and w/ shell	fragments; d	ik gray (5	Y 4/1)		LEF			Arres 1		Other
560	570	C	layey silt; silt w	clay; v dk gi	ay (5Y 3/1)			13. C. 1	- 1- Se	Nue la Clara			De	scribe procedures and materials der "GEOLOGIC LOG"
5/0	580	Sa	andy clay; clay v	w/ med-coars	e sand; gree	enish gray	(10Y-5/1)	<u></u>	he h		SL IL			Planned Uses
580	610		lay; clay; grayis	n brown (2.5	Y 5/2)	- 132	<u></u> }:∦			in the	11-4		O W	ater Supply
620	650		lay; clay; grayis	in brown (10	EV 6/2)	-	<u> </u>	Filling State			1 AUR	國		Domestic Public
650	750		lay, clay, it brow	h brown (2 E	.51 0/2)		— I	Action A		1-17-5-1	LENEL	North A		rrigation Industrial
750	1990	0	ay, clay, grayis	n brown (2.5	med cand: a	ravieh hron	ND /2 5V 5/2	na da			1.53	8	O Ca	athodic Protection
150	010	0	avey silly cand: y	Cooree cood	wheilt & day: o	rayish bro	wn (2 57 5/2						O De	ewatering
010	020		ayoy sity satu, v	(10VD 5/3)	y sin a day, g	nayisii oro		105 and 10				ALL 1		eat Exchange
910	920		ay, Clay, Drown	(IUTK 5/5)	les-em nebbles	Oravish bo	0WD /2 4	Contraction of Contraction	9 A.T.	- 543	بنغم	~ /M	O M	onitoring
940	1.03		avev silty gravelly sa	nd: vf-vc sand w/	oranules, silt & c	lay: It olive h	mwn (2.5Y-5/3	time of the section of	1	- fill		···////	O Re	emediation
1030	1.12	) si	Ity gravelly sand:	/f-vc sand w/ o	anules & silt; c	aravish bro	wn (2.5Y 5/2		14m ha	12 0	tram?	mantinttinte (	O Sp	barging
1120	1.14	) Sa	andy clay: clay	w/ med-vc sa	nd: It brown	ish grav (	2.5Y 6/2)			South			O Te	est Well
1140	1.47	2 CI	ayey silty sand;	vf-vc sand w/	silt & clay; gra	ayish brow	m (2.5Y 5/2	Rustrate or de	ascribe distance	of well from ro	ads, buildings	s, fances,		apor Extraction
				the second				Please be ac	curate and com	plete.		daan y.	00	ner
C. M. C. C. C. C. C.								Water L	evel and	Yield c	of Com	pleted We	ell) 朝 高 高	的。 这些理想是我的问题。
				0			2026	Depth to	first water	·			(Fee	t below surface)
				82.		1. A.	0	Water L	evel		(Fee	t) Date M	leasu	red
Total D	epth of B	oring	1472	- 6	a. a	Feet	10100	Estimate	d Yield *		(GPI	M) Test Ty	/pe	
Total D	epth of C	ompleted	well 90	- S.	10 05 SA	Feet		Test Ler	ngth		(Hou	urs) Total D	rawd	own (Feet)
								*May no	t be repres	sentative	of a wel	I's long tern	n yield	d.
Denti	international de la composition de la c	Barahal	Section Constraints	Cas	ings	Wall	Outcido	Saraan Saraan	Slat Size	式:Million	1844th	Annula	Mat	erial
Sur	face	Diamete	г Туре	Mate	rial TI	hickness	Diameter	Туре	if Any	Sur	face	Fili		Description
Feet	to Feet	(Inches)	Conductor	DVC Cab 8	<u> </u>	(Inches)	(Inches)		(Inches)	Feet	to Feet	Eilter Pack		PMC #3 Sand
60	100	13.00	Conductor	PVC SCII. O	·					194	266	Filter Pack		RMC #3 Sand
100	460	12.00								530	584	Filter Pack		RMC #3 Sand
460/1000	1000/1472	10.00/8.0	0							926	985	Filter Pack		RMC #3 Sand
0	70		Blank	PVC Sch. 8	0 0	.218	2.375			1399	1472	Filter Pack		RMC #3 Sand
70	90		Screen	PVC Sch. 8	0 0	.218	2.375	Milled Slots	0.020			Bentonite		All other depths
يېشېرو در به مراد کې د پېرې د د د به مراد کې	うないない	Attach	ments 🚲	a Franking	一日 10-14	出口。	San Mark	ないに、正面の	Certificati	ion Stat	ement	的同時間	物海动	調測的理論目前的計算影
	Geologic	Log			I, the und	ersigned	, certify th	at this report	is comple	te and ad	curate te	o the best o	of my	knowledge and belief
	Well Con	struction	Diagram		Name A	Person, F	irm of Corpo	ration	Connicial	. <u>0.3.</u> C	Jeologic	Jai Suivey		
	Geophys Soil/Wate	cai Log(: r Chemi	s) cal Analyses		4165 S	pruance	address 2	uite 200	San	Diego		CA	9	2101 Zip
	Other O	n file @	USGS- San	Diego	Signed	K	1 th	the		,	02/10/	2009 Exe	empt-	Federal Government
Attach add	itional inform	nation, if it e	xists.			C-5 Lite	insed Water V	Well Contractor			Date Sig	gned C-5	7 Lice	ense Number

DWR 188 REV. 1/2006

•

1

IF ADDITIONAL SPACE IS NEEDED, USE NEXT CONSECUTIVELY NUMBERED FORM





•

.



0 25 Resi	50 75 100 stivity, in ohm- meters	Sand				30	-15 Spo Pot	0 Intane tentia	15 eous II, In Its	30	0	200 Gamn	400 na Ray	600
DRILL TYPE:	HYDRAULIC MUD RO	TARY	DRILLER:	USGS W	ESTERN RE	GI	ON R	ÉSE.	ARCI	HD	RILLI	NG UN	T	
CASING TYPE:	SCHD. 80 PVC 20' SE	C (#1: 3", #2-5: 2")	SCREEN '	TYPE: SC	HD. 80 1.5">	(0.0	2" SI	OTS	5 (E)	cep	t #1:	2.0"X0.	02")	
GROUT:	PUREGOLD GROUT	@ 30% SOLIDS	SAND:		RMC #3					-				
BOREHOLE DIA:	22": 0' - 60'; 13": 60'	- 100'; 12": 100' - 460	"; 10": 460' - "	1000'; 8":	1000' - 1472'				-					
SURFACE/COND	UCTOR CASING: 15	": 0' - 60' PVC BELL-	END SDR35											



DUPLICATE File Original, Duplicate and Triplicate with the REGIONAL WATER POLLUTION	VATER WELL (Sections 7076, 7	DRILLER 077, 7078, Water	S REPO	RT	Do Not Fill In Nº 28827 State Well No. 19572-W
CONTROL BOARD No	STATE OF	CALIFOR	95 214	1-00	Other Well No
seert appropriate number)		7	1Jaw	00	· · · · · · · · · · · · · · · · · · ·
A AWAIDA		(11) W	ELL LOG:		
		Total depth		ft. Deptl	of completed well
		Formation:	Describe by color,	character, size	of material, and structure.
	10 - MATERIA (A. 2010)	-0-	. 25	. Sar	d
		- 25	. 30	Sar	d & Sand Gravel
(2) LOCATION OF WELL:		30	. 55	- Sar	dy Mud
County Son Diego Owner's number, if an	Bay Farms	- 53	67	. San	id & Gravel
R. F. D. or Street No. 1000* South on I	airy Mart Rd.	- 07	70	. OHI	a , graver & Large .
From 101 Freeway & 1000*	West	-   - 70	- 69		a & Graver
		-			
······································				- <u>-</u> CC	NEIDENTIAL NO
(1) TUDE OF WORK (-L-L).				- FO	P DUDUIC STIT
(3) TYPE OF WORK (Check):				<u> </u>	R PUBLIC RELEASE
New well Deepening LI Recondition	ming Abandon [		n		NP
If abandonment, asscribe material and proceaute in lie	(5) FOLIPMENT				······································
(+) PROPOSED USE (Check);	Rotary			MIC	ROFU
Domestic I industrial I Municipal	Cable				LMED
Irrigation L Test Well D Other	Dug Well				
(A) CASING INSTALLED.	If gravel packed		**		
(0) CASING INSTALLED:	The Brater Packet				
	Diameter from of Bore ft.	to ft.			ter and the second s
Thom It. to It. Diam. Wall	•	<del></del> 1 <u>*</u>		·····	
0 to 88' - 6" of 12" 3/4					
.D. By 1/4" Wall.	U.				· · · · · · · · · · · · · · · · · · ·
· · · · · · · ·	• •		• 3		
		<u>.</u>	°u *		
Type and size of shoe or well ring	Size of gravel:		44		
Describe joint			**		
(7) DEREORATIONS.			."		
Type of perforence used					
Size of performing in let	sth. by	in.			
From ft. to 27" X 1/4" Perf.	L28 Rows per	ft.			·······
<u></u>					
11 11 11 M	аа а <i>н</i> и и	-			
(8) CONSTRUCTION.					
Was a surface sanitary seal provided? TYes T No To wh	hat depth	ft			en en és re
Were any strate sailed aniast valuation 2 U Van C No. 14	ves, note depth of strate				
From					
11, 10 II	•				
Method of Sealing	AND A REAL PROPERTY AND A	Work start	ed	19	, Completed 19
			5/5/	TEMENIT	59 5/30/59
(9) WATER LEVELS:		This au	vell was drilled	under mo in	risdiction and this report is true to the he
Depth at which water was first found		it. my know	ledge and belief.		
Standing level before perforating	· · · · · · · · · · · · · · · · · · ·	ft. NAME			Y37
iding level after perforating		ft. SE	II DIGGe	firk.unp	(Gen) OLL DILLORG d)
(1A) WELL TECTC.		Address	2.0.Box	946 C	ula Vista Calif.
(10) WELL IESIS:			0 7	996	<u>A</u> #
			<b>N 1</b>		1 Constitution
Was a pump test made? Yes No If yes, by whom?	fe deam dama afair	[SIGNED]	20	ind 17	This

ORIGINAL File with DWR Pageof Owner's Well NoB-20 Date Work BeganA-20 Date Work Began	STATE OF CALIFO WELL COMPLETIO Refer to Instruction I No. CO aded 11-4-03 go Courty Permit Date	DIRNIA DN REPORT D'amphlet 042.6			
ORIENTATION (∠) VERTICAL HORIZ DEPTH FROM SURFACE FI 10 FI. DESCRIPTION (∠) DESCRIPTION (	ONTALANGLE(SPECIFY) FLUID CRIPTION I, grain size, color, etc.				
SEE ATTACH	ED LOG	Address 314 E City San Dieg County San	San Vs 10 Diego	dro e	31vd
		Township 195 Latitude 32 33 DEG. MIN. LOCAT	Range ZW Se 1 8 NORTH LC SEC. ION SKETCH —	ction <u>I</u> ongitude <u>I</u>	1712 18 WEST DEG. MIN. SEC. - ACTIVITY (≤) -
		SEE AT	NORTH	,	NEW WELL MODIFICATION/REPAIR Deepen Other (Specify)
					DESTROY (Describe Procedures and Materials Under "GEOLOGIC LOG") PLANNED USES ( ) WATER SUPPLY
		WEST		EAST	- Comestic - Public - Irrigation - Industrial MONITORING - TEST WELL - CATHODIC SEPARTICIA:
					HEAT EXCHANGE DIRECT PUSH INJECTION VAPOR EXTRACTION
		Illustrate or Describe Dista Feners, Ricers, etc. and al. necessary, PLEASE BE A	SOUTH over of Well from Roads, tach a wap. Use addition CCURATE & COMPLE	Bnildings, al paper if TE.	SPARGING REMEDIATION DTHER (SPECIFY)
		WATER L DEPTH TO FIRST WATE DEPTH OF STATIC WATER LEVEL	EVEL & YIELD O	F COMPL	ETED WELL
TOTAL DEPTH OF BORING 30 (Fee TOTAL DEPTH OF COMPLETED WELL 30	) (Feet)	ESTIMATED YIELD * TEST LENGTH * Muy not be represen	(GPM) & TE (Hrs.) TOTAL DRAWD tative of a well's long	ST TYPE OWN -ternn yield.	(Ft.)
PEPTH FROM SURFACE BORE- HOLE TYPE (∠)	CASING (S)		DEPTH FROM SURFACE	ANN	ULAR MATERIAL TYPE
FL to FL (Inches)	GRADE DIAMETER OR WA (Inches) THICKN	LL IF ANY ESS (inches)	FL 10 FL		FILL FILTER PACK (⊻) (YPE/SIZE)
10 30 10 4	PVC 4 gitt	0.020	4 7 7 30		chips #3
	i, the undersigned, certify that	CERTIFICATIOn this report is complete a	I ON STATEMENT and accurate to the b	est of my i	knowledge and belief
Well Construction Diagram Geophysical Log(s)	NAME REPORT ENVI	RONMENTA (TYPED OR PRINTED) ASHAVE.	L COR	p.	24 92831
ATTACH ADDITIONAL INFORMATION, IF IT EXISTS.	ADDRESS Signed MDLLER/AUTHORIZED REPR				H 686255

ŧ

7

.

1

## NorthShore Engineering, Inc.

e010426

Logged by: Aaron Hill Location: 314 East San Ysidro Blvd. Drilling Method: Hollow Stem Auger Project No.: NS-02-1100 Date Drilled: November 4, 2003

Drilling Co.: BC2 Depth to First Saturation: 15 feet Total Depth: 30 feet

#### Well No.: B-20

Well Casing Dimension: 10-ft of 4" SCH 40 PVC Well Screen: 20-ft of 4" SCH 40 Slotted PVC Casing Boring Dimension: 10" O.D.

## PID Blow Depth (ft.) (ppm) Counts

1



Lithology Well Design Depth (ft.)



Page 1 of 1

#### Approved by Charlie Wyatt, P.E.

..

e01.0426

;



ORIGINAL File with DWR	STATE OF OF THE RESOUR DEPARTMENT OF V WATER WELL D	CALIFORNIA CES AGENCY Do not fill in VATER RESOURCES RILLERS REPORT No 336128
250220	WATER WELL D	
fice of Intent No 230338		State Well No
Local Permit No or Date #31300		Other Well No Err
		12) WELL LOG. Total depth 265 ft Completed depth 250 ft
		rom It to ft Formation (Describe by color, character, size or material)
		0 _80 MODERATE, YELLOWISH BROWN
(2) LOCATION OF WELL (See instr	uctions)	- (10YR 5/4), DRY, MEDIUM
County SAN DIEGO Own	er's Well Number	- TO COARSE SAND (SP) WITH
Well address of different from above	•	- COBBLES
Township 18S Range 2W	· Section 24	80 -85 BECOMES MOIST, FINE SILTY
Distance from cities, roads, railroads, fences, etc	APPROXIMATELY	- SAND (SM)
400 FEET BAST OF INTERS	TATE 805.	85 -110 BECOMES CLAYER SAND (SC)
· · · ·		110 -237 DARK VELLOWISH ORANGE
		- (IOYR byb), MOIST, FINE
	(3) TYPE OF WORK	- SAND (SP)
	New Well X Deepening	237 -205 GRAY, WERY MUIST, SILT (ML)
1	Reconstruction	
	Reconditioning	
SEE ATTACHED	Horizontal Well	$\wedge^{-} \vee \otimes \vee^{-}$
	Destruction (Describe	Alt (com)
	cedures in Item 12)	
	(4) PROPOSED USE	
	Domestic	$2^{-1}$
	Irrigation	
	Industrial	Star Color
	Test Well	
T	Municipal	$(1)) \xrightarrow{\sim} (C \land 0)$
	Other GROUNDWATER	
WELL LOCATION SKETCH	(Describe)	<u> </u>
Bater A Burner C	AVEL MCA	
	a for 8 TNCH	CIUIZ.
Other X Bucket	265 218	
AUGER		-
(7) CASING INSTALLED (8) PE	REORATIONS SLOPTED	
Steel D Plastic D Concrete D Type o	retornion or size of server 020	_
From To Dia Gage or Re	Tro Shot	-
ft. ft ip Wall	S dt Vsize	
0.5 250 29 22	0 250 0.020	-
	Shil n	
(9) WELL SEAL:		
Was surface sanitary seal provided? Yes X No L	If yes to depth It	
Were strata scaled against pollution? Yes L& No	L Interval ft	-
(10) WATED LEVELS		Work started <u>29 MAI 1971</u> Completed <u>26 JUNE 191</u>
(10) WATER LEVELS: Depth of first water of known	6	WELL DRILLER'S STATEMENT
Standing level after wall completion 210	It	This well was drilled under my jurisdiction and this report is true to the
		best of my knowledge and belief
(11) WELL IESIS: Was well test made? Yes (7) No K (1)	1 'T	Signed Namara Latt
pe of test Pump . Balle	Air lift	NAME A & R DRILLING, INC.
th to water at start of test ft	At end of test ft	(Person, firm, or corporation) (T) ped or printed)
Discharge gal/min after hours	Water temperature	Address LEV HADT ZZJAD DIREET, DUITE 319
I ham tool and under Var IA No. If up	by whom '	

•

.

DWR	188	REV.	12-86)
			5.000 Conceptor

4

IF ADDITIONAL SPACE IS NEEDED. USE NEXT CONSECUTIVELY NUMBERED FORM

•



					-10						336128	1.0-12.00
PROJ	JECT ▷ JACK 3014					F	ROJE	CT N	UMBER	▷ A901	924A	
LOGO	GED BY C. HILL/P.	ROBERTS		PPLI	FD	s	TART	DAT	re⊳ 2	4 May 19	91	
CHEC	CKED BY D		GEÔ	SCIE	NCE	<b>s</b> (	COMP	LETIC	ON DATI	E⊳ 26 J	une 1991	
GRO	UND SURFACE ELEVATION	DATUM (FT-MSL)	>		DR	ILLIN	G CO	PAN		AYNE/A	& R DRIL	LING
DRIL	LING EQUIPMENT D FAI	LING F-10 W/8-	INCH	HO	DLL	ow s	STEN	1 AL	GERS	CME 75	ROTARY F	lG
BORI	ING DEPTH (FT) > 265.0	WELL DEPTH (FT)	Þ 25	0	Τ	WAT	ER DI	ЕРТН	(FT)-In	itial:	Completio	n: 21
WEL	LMATERIALS & SCHED	LILE SO PVC W/	0 02 5			WEL	I. SCR	FEN	INTERV	AL (PT) D	220 TO	250
WEL	L CASING PLEVATION (PT	MET N/A	0.02			0104	JOVA	~ 1				
WEL	CASING ELEVATION (FT-	MSLID N/A					/044		N/A			-
BACH	KFILL MATERIAL $\triangleright$ #3 SA	AND, BENTONIT	E, AN		EM	ENT				r	19.22. ARM	
Ê	LITHO	LOGY	1.		TNU	Mdd)		SAME	>LE			
DEPTH <	DESCRIPT	TION	GRAPHIC	MELL	BLOW CO		RECOVERY X	TYPE	NUMBER		COMMENTS	
			<mark>┟┙┝╍┟╍┟╍┟╍┟╍┟╍┟╍┟╍┟╍┟╍┟╍┟╍┝╍┟╍┝╍┝╍┝╍┝╍┝╍</mark>									
30 T	BORING DESIGNATION	и	BOR		GL	OG			PAGE N 1 O	UMBER F 7	FIGURE N	UMBE

#### _____

			_		4.14					336123		
PROJECT D JACK 3014 PROJECT NUMBER D A901924A												
£	LITHOLOGY			NT	(Wdc		SAMP	LE				
DEPTH (F	DESCRIPTION	GRAPHIC	MELL	BLOW COU	OUM/DUA (P	RECOVERY X	TYPE	NUMBER		COMMENTS		
so <u>+</u>	*											
Ŧ		圭										
÷		$\pm$										
³⁵ +		1										
Ŧ		Ŧ										
+		+						2. 2				
" <u>+</u>		主										
Ŧ		Ŧ										
Ŧ		Ŧ										
45 —		Ŧ										
+		+										
Ŧ		主日							R.			
50 +		<u></u>										
Ŧ		<u></u>										
ŧ												
55 井		+						j.				
Ŧ		王										
Ŧ		圭										
60 <del>-</del>												
Ŧ		主										
ŧ		+										
65 <del>+</del>		王					6) 6					
Ŧ		Ŧ										
ŧ		+										
70 <u>+</u>		<u> </u>										
BOR	ING DESIGNATION	BOR	IN	GL	OG		1	PAGE NI 2 O	JMBER F 7	FIGURE NUMBE		

#### _____

•

PROJE	CT ▷ JACK 3014			PR	OJE	CT NU	MBE	R⊳ A	901924A	
£ .	LITHOLOGY		•	Ę	(Wd		SAMF	LE		
DEPTH (F	DESCRIPTION	GRAPHIC	MELL	BLOW COUN	DUM/DUA (PI	RECOVERY %	TYPE	NUMBER	c	OMMENTS
70	Soil becomes moist, more clayey, fewer cobbles									
+										
75 +										
+++++++++++++++++++++++++++++++++++++++										
80 +	Became moist, fine silty SAND (SM)	+								
Ŧ										
85 +										
Ŧ	Became clayey SAND (SC)									
÷+										
<b>*</b>										
+										
95 <del>+</del> +										
+										
.00 +										
+						8				
ŧ										
<u>+</u>		長い								
	BORING DESIGNATION	BOR	RIN	GL	OG			PAGE N	UMBER F 7	FIGURE NUMBI

PROJECT	▷ JACK 3014		PI	ROJE	CT NU	MBE	RÞ A	901924A	
(L	LITHOLOGY		Ę	Ĥd		SAMF	LE		
DEPTH (F	DESCRIPTION	GRAPHIC	BLOW COU	DUM/DUA (F	RECOVERY	TYPE	NUMBER		COMMENTS
110 Dari	k yellowish orange, moist, fine SAND (SP) ame cobbly								
115		+++++++++++++++++++++++++++++++++++++++							
120		+++++++++++++++++++++++++++++++++++++++							
150									
							6		
140						•			
		+++++++++++++++++++++++++++++++++++++++							
150	ORING DESIGNATION						PAGEN	UMBER	FIGURE NUMBER
-	MW1	BORIN	IG L	OG			40	F 7	d

.

										336128
PROJE	CT > JACK 3014			PR	OJEC	T NU	MBE	r⊳ A	901924A	
	LITHOLOGY.				£		SAMP	LE		
- î			Ļ	OUNT	(PPI			ii		
EPTH	DESCRIPTION	HIC	MEL	O MO	AUD/	VERY	Б	BER	C	OMMENTS
		GRAF		B	MOO	RECO	7	MUN		
150										
Ŧ										
Ŧ										
155 +									e.	
主										
Ŧ		+								
160 +		4								
Ŧ		1								
Ŧ		一套								
165 +		1								
主		<b>+</b>								
1		<b>‡</b> :								
170 =		<b>1</b>								
Ŧ		Ŧ								
ŧ										
175 -		1							6	
Ŧ		<b>+</b>								
Ŧ		Ŧ								8
180 ±		主								
+		4								
Ŧ		Ŧ								
‡		7								
" <u></u>	Became gravelly	Ŧ								
Ŧ										
÷								•		
190 —	BORING DESIGNATION	BOR	IN	GL	OG		T	PAGE N	UMBER F 7	FIGURE NUMBER
L	IVIVII			_	_		105			•

PROJECT I	> JACK 3014		PROJECT NUMBER > A901924A							
E .	LITHOLOGY			ţ	(Md		SAMP	LE		
DEPTH (F	DESCRIPTION	GRAPHIC	MELL	BLOW COUR	OUM/OUA (P	RECOVERY	TYPE	NUMBER		COMMENTS
		┥┥┥┥╹╎╸╎╸╎╌╎╌╎╌╎╸╎╸╎╸╎╸╎╸								
205 +		<b>╸</b> ┃ ╸								
220										
230 + B	oring designation	BORI	NG		OG			PAGE N	UMBER F 7	FIGURE NUMBE

na.	100	
50	174	
	ULD	

PROJE	CT D JACK 3014			PROJECT NUMBER > A901924A						
Ê	LITHOLOGY			ħ	(Wdc		SAMP	LE		
DEPTH (F	DESCRIPTION	GRAPHIC	. WELL	BLOW COU	OUM/OUA (F	RECOVERY X	TYPE	NUMBER	C	DMMENTS
250 + + + + + + + + + + + + + + + + + + +	Gray, very moist, SILT (ML) Boring terminated at approximately 265 feet									
	BORING DESIGNATION MW1	BOR	RIN	GL	OG			PAGE N 7 O	UMBER F 7	FIGURE NUMBER

_____

APPLIED GEOSCIENCES INC.

5505-Morehouse Drive, Suite 230 South Sorrento Plaza San Diego, CA 92121 (619) 558-0600 FAX (619) 558-7180

> 8 August 1991 A901924A

Site Assessment and Mitigation Environmental Health Services (HMMD) P.O. Box 85261 San Diego, California 92138-5261

:

Attn:

#### SUBJECT: 30 DAY REPORT CONCERNING DRILLING AND CONSTRUCTION OF WELLS AT THE NORTHEAST CORNER OF INTERSTATE 805 AND PALM AVENUE, CHULA VISTA, CALIFORNIA

Dear

Enclosed please find a copy of the Department of Water Resources Water Well Drillers Report. This information is requested as conditions of the well permit issued for the installation of one groundwater monitoring well at the site. Also enclosed are the boring log and site plot plan with the well location. A water sample has not been collected as of the date of this report. Laboratory results for the water sample will be forwarded at a later date.

If further information is needed, please feel free to contact me at (619) 558-0600.

Sincerely, APPLIED GEOSCIENCES INC.

1.01

Craig L. Carlisle Senior Project Hydrogeologist

CC: File A901924A



:

18 5/2 w/24

Engineering Geology and Hazardous Materials Consultants

le Origir age <u>1</u> wner's V ate Worl ocal Per ermit Nu	Well Num k Began mit Ager	of <u>1</u> ber <u>UR</u> 03/02/2 bcy <u>San</u> MON100	195021 S-MW07 2010 Diego Count 3922	Date Work	Well Col Refer No. Ended <u>3/3/2</u> f Environme 2/10	e01080 ental Hea	on Repo Pamphiet 70	rt _		Sta Sta Latitude	VR Use Only	Do: Not: Fill: In           Ir/Site Number           I         I           Longitude           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I
Orio	ntation	OVerti	Geolog	pic Log	ala Sassif		and the second s	Mrs. S		Well	Owner	Sector Contractor
Drilling N	Method H	ollow Sten	n Auger		gle Specing ng Fluid	y						
Depth	from Su	rface	Desc	Descriptio	on size color etc.							
)	7	Y	ellowish brow	n, Silt with fine	Sand (ML),	moist	1. S. S. S. S. S.	144	- 1.	Well	Location	1 AS-246
+	33	G	ray, fine to co	barse Sand (SV	V), moist		Address	245 Call	e Prim	era	THE REAL PROPERTY IN THE REAL PROPERTY INTO THE REAL PR	
			_			-	City Sa	n Diego		1	County	San Diego
							Latitude	Deg -	Min	Sec	N Longitude	Den Min Sec
_		-	197				Datum N	AD83	Decima	Lat. 32	.5514239 D	Decimal Long117.04
	+						APN Boo	ok	_ Pag	ei	P.	arcel 666-371-07-0
							Townshi	p	Rang	le	S	ection
	_						(Sketch r	Locati	on Ske	etch	printed )	Activity
	_				_				North		Č	Modification/Repair
	-							And Make	A.S.	and the		O Deepen
				-			SEE	ATTACH	IED SI	TE PLA	N C	) Destroy
									UCAN	UNS	1	under "GEOLOGIC LOG"
								Sec.	E.	States.		Planned Uses
_	_				,eta Sec	ile. Il		la Č	Same S	Contraction of the second		Domestic Public
							Vest	7		and the second	East	
0			с. (0.			ALCONDICA.	a little and	(the )	il an	181		Cathodic Protection
					5 9 <u>8</u>	good			di la caracteria de la			Heat Exchange
	_		*	â7	\$ X	h. Ai					C C	Injection
						SCHERKS.	- F	Sing?				Monitoring Remediation
					PER.	2 <u>1</u>					Ċ	Sparging
				AND A	A REAL PROPERTY OF		à.	-	South			Test Well
					.Ale	54) 54)	Illustrate or de rivers, etc. an	d attach a map.	of well from r Use addition	roads, building al paper if new	cessary.	Other
				A CAR	\$* <u>*</u>		Water I	evel and	Vield	of Com		- Sector Carlo
	_			an vier	1750-25" 88 - 25"	All and a second	Depth to	first water	15	01 00111	pierce trei	Feet below surface)
		(and)	翻	9801 1927 1981 4	A Maria	the St	<ul> <li>Depth to</li> <li>Water L</li> </ul>	Static		/Ee	et) Date Me	asured 03/09/2010
Total D	epth of t	Boring	33		Feet		Estimate	ed Yield *		(GP	PM) Test Typ	De
Total D	epth of (	Complete	d Well 30	1 1 1 1	Feet		Test Ler	igth		(Ho	urs) Total Dra	awdown (Fee
	N.	Indultation of	2		it .	10000 C . A . S. S.	May no	t be repres	entative	e of a we	It's long term	yield.
Dept	h from	Boreho	le Time	Casings	Wall	Outside	Screen	Slot Size	Dep	th from	Annular	Wateridi
Sur	face to Feet	Diamete (Inches	er iype	material	Thickness (Inches)	(Inches)	г Туре	if Any (Inches)	Su Feet	to Feet	Fill	Description
0	10	10	Blank	PVC Sch. 40	0.25	4.5			0	3	Cement	Concrete
10	30	10	Screen	PVC Sch. 40	0.25	4.5	Milled Slots	0.010	3	5	Bentonite	Cement/Benton
		in the second se				-			8	30	Filter Pack	#2/12 Sand
		Nie.							30	33	Fill	Native Soil
3		3	100 Be									
and the second	We want the second s	Attach	iments 🔗 🖗	Summer and	a san an a			Certificati	ion Sta	tement	. Ortes	Xana an In
	Geologi Well Co	c Log	Diagram	. I, the Nam	e undersigne ne WDUE	a, certify t	TION 9 V	VEUS	te and a	accurate	to the best of	my knowledge and be
B	Geophy	sical Log	(s)	E	Tob A	Firm or Corp	Halfult	M	ONTE	ME	CA	91763
	Soil/Wa	ter Chem	ical Analyses	Sign	ned ()	Address			Ci	W 31-	State	2227 (
Ø	Other 1	Veli LOC	ation Site Pla		X						110 -2	00010

# e0108070

#### LEGEND

- Shell-Branded Service Station Groundwater Monitoring Well
- Former ExxonMobil Service Station Groundwater Monitoring Well
- Former ExxonMobil Service Station Vapor Extraction Well
- RELLC Groundwater Monitoring Well



÷



## State of California Well Completion Report Form DWR 188 Auto-Completed 2/25/2019 WCR2018-011811

Local Permit Δαen	ber RC-18-001 Dat	e Work Began 11/27/2018 Date Work Ended 11/28/2	2018
Local i ciniit Agen	cy County of San Diego DEH/LWQD Land Wa	er and Quality Division, Monitoring Well Program	
Secondary Permit	Agency	Permit Number LMWP-003639 Permit Date 09/20/2	2018
Well Owner	(must remain confidential pursua	nt to Water Code 13752) Planned Use and A	ctivity
Name XXXXXX	xxxxxxxxxxxx	Activity Drill and Destroy	
Mailing Address	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Planned Use Destruction	
	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
City XXXXXXXX	XXXXXXXXXXXXXX St	ate XX Zip XXXXX	
		Well Location	
Address		APN 646-121-2900	
City	Zip	County San Diego Township 18 S	
Latitude 32	33 54.5219 N Longitude -1	16 57 1.6776 W Range 01 W	
Deg.		a. Min. Sec. Section 35	
Dec. Lat. 32.56	5145 Dec. Long1	Baseline Meridian San Bernardino	
Vertical Datum	Horizontal Datum	WGS84 Elevation Accuracy	
Location Accuracy	Location Determination M	lethod Elevation Determination Method	
	Borehole Information	Water Level and Yield of Completed	d Well
Orientation Ver	tical Specify	Depth to first water (Feet below surf	ace)
Drilling Method	Direct Rotary Drilling Fluid Bentonite	Water Level (Feet) Date Measured	
		Estimated Yield* (GPM) Test Type	
Total Depth of Bo	ing 120.5 Feet	Test Length (Hours) Total Drawdown	(feet)
Total Depth of Co	mpleted Well Feet	*May not be representative of a well's long term yield	
		way not be representative of a weir's long term yield.	
	Geol	ogic Log - Free Form	
Depth from	Geol	ogic Log - Free Form	
Depth from Surface Feet to Feet	Geol	ogic Log - Free Form Description	
Depth from Surface Feet to Feet	Geol SILTY SAND (SM), brown, dry, fine	ogic Log - Free Form Description	
Depth from Surface Feet to Feet01110	Geol SILTY SAND (SM), brown, dry, fine SEDIMENTARY ROCK (POORLY INDURATED hard, brown, moist, medium plasticity, PP>4.0 ts	Description OCLAYSTONE), laminated, brown, slightly weathered, soft, unfractured, LE	EAN CLAY (CL),
Depth from Surface Feet to Feet011101017.5	Geol SILTY SAND (SM), brown, dry, fine SEDIMENTARY ROCK (POORLY INDURATED hard, brown, moist, medium plasticity, PP>4.0 ts SEDIMENTARY ROCK (POORLY INDURATED dense, brown, moist, fine	Ogic Log - Free Form         Description         0 CLAYSTONE), laminated, brown, slightly weathered, soft, unfractured, LE sf         0 CLAYSTONE), fine-grained, massive, brown, soft, unfractured, SILTY SA	EAN CLAY (CL), ND (SM) very
Depth from Surface Feet to Feet           0         1           1         10           10         17.5           17.5         28.5	Geol SILTY SAND (SM), brown, dry, fine SEDIMENTARY ROCK (POORLY INDURATED hard, brown, moist, medium plasticity, PP>4.0 ts SEDIMENTARY ROCK (POORLY INDURATED dense, brown, moist, fine SEDIMENTARY ROCK (SANDSTONE), modera weathered, unfractured, CLAYSTONE: very thir	Ogic Log - Free Form         Description         0 CLAYSTONE), laminated, brown, slightly weathered, soft, unfractured, LE sf         0 CLAYSTONE), fine-grained, massive, brown, soft, unfractured, SILTY SA         ately interbedded with CLAYSTONE; SANDSTONE: fine-grained, brown, moderately weathered, moderately hard, slightly	AN CLAY (CL), ND (SM) very noderately / fractured
Depth from Surface Feet to Feet           0         1           1         10           10         17.5           17.5         28.5           28.5         40	Geol SILTY SAND (SM), brown, dry, fine SEDIMENTARY ROCK (POORLY INDURATED hard, brown, moist, medium plasticity, PP>4.0 ts SEDIMENTARY ROCK (POORLY INDURATED dense, brown, moist, fine SEDIMENTARY ROCK (SANDSTONE), modera weathered, unfractured, CLAYSTONE: very thir SEDIMENTARY ROCK (SANDSTONE), fine-gra moderate cementation, locally thickly interbedded moderately soft unfractured	Ogic Log - Free Form         Description         0 CLAYSTONE), laminated, brown, slightly weathered, soft, unfractured, LE         of         0 CLAYSTONE), laminated, brown, slightly weathered, soft, unfractured, LE         of         0 CLAYSTONE), fine-grained, massive, brown, soft, unfractured, SILTY SA         ately interbedded with CLAYSTONE; SANDSTONE: fine-grained, brown, m         ly bedded, reddish brown, moderately weathered, moderately hard, slightly         ained, thickly bedded, brown, sightly weathered, moderately hard, unfractured         ed with moderate interbeds of CLAYSTONE, laminated, reddish brown, slightly	EAN CLAY (CL), ND (SM) very noderately / fractured red, locally htly weathered,
Depth from Surface Feet to Feet           0         1           1         10           10         17.5           17.5         28.5           28.5         40           40         45	Geol SILTY SAND (SM), brown, dry, fine SEDIMENTARY ROCK (POORLY INDURATED hard, brown, moist, medium plasticity, PP>4.0 ts SEDIMENTARY ROCK (POORLY INDURATED dense, brown, moist, fine SEDIMENTARY ROCK (SANDSTONE), moder: weathered, unfractured, CLAYSTONE: very thir SEDIMENTARY ROCK (SANDSTONE), fine-gr: moderate cementation, locally thickly interbedde moderately soft, unfractured. SEDIMENTARY ROCK (CLAYSTONE), laminat	Ogic Log - Free Form         Description         0 CLAYSTONE), laminated, brown, slightly weathered, soft, unfractured, LE         of         0 CLAYSTONE), fine-grained, massive, brown, soft, unfractured, SILTY SA         ately interbedded with CLAYSTONE; SANDSTONE: fine-grained, brown, m         ly bedded, reddish brown, moderately weathered, moderately hard, slightly         ained, thickly bedded, brown, sightly weathered, moderately hard, unfractured         ed, reddish brown, slightly weathered, moderately hard, unfractured	AN CLAY (CL), ND (SM) very oderately / fractured red, locally htly weathered,
Depth from Surface Feet to Feet           0         1           1         10           10         17.5           17.5         28.5           28.5         40           40         45           45         50	Geol SILTY SAND (SM), brown, dry, fine SEDIMENTARY ROCK (POORLY INDURATED hard, brown, moist, medium plasticity, PP>4.0 ts SEDIMENTARY ROCK (POORLY INDURATED dense, brown, moist, fine SEDIMENTARY ROCK (SANDSTONE), modera weathered, unfractured, CLAYSTONE: very thir SEDIMENTARY ROCK (SANDSTONE), fine-gra moderate cementation, locally thickly interbedded moderately soft, unfractured. SEDIMENTARY ROCK (CLAYSTONE), lamination SEDIMENTARY ROCK (SILTSTONE), thickly b	Ogic Log - Free Form         Description         0 CLAYSTONE), laminated, brown, slightly weathered, soft, unfractured, LE         of         0 CLAYSTONE), laminated, brown, slightly weathered, soft, unfractured, LE         of         0 CLAYSTONE), fine-grained, massive, brown, soft, unfractured, SILTY SA         ately interbedded with CLAYSTONE; SANDSTONE: fine-grained, brown, m         ly bedded, reddish brown, moderately weathered, moderately hard, slightly         ained, thickly bedded, brown, sightly weathered, moderately hard, unfractured         ed, reddish brown, slightly weathered, moderately soft, unfractured         ed, reddish brown, slightly weathered, moderately soft, unfractured         edded, brown, slightly weathered, moderately soft, unfractured	EAN CLAY (CL), ND (SM) very noderately / fractured red, locally htly weathered,
Depth from Surface Feet to Feet           0         1           1         10           10         17.5           17.5         28.5           28.5         40           40         45           45         50           50         55	Geol SILTY SAND (SM), brown, dry, fine SEDIMENTARY ROCK (POORLY INDURATED hard, brown, moist, medium plasticity, PP>4.0 ts SEDIMENTARY ROCK (POORLY INDURATED dense, brown, moist, fine SEDIMENTARY ROCK (SANDSTONE), moder- weathered, unfractured, CLAYSTONE: very thir SEDIMENTARY ROCK (SANDSTONE), fine-gr- moderate cementation, locally thickly interbedde moderately soft, unfractured. SEDIMENTARY ROCK (CLAYSTONE), laminated SEDIMENTARY ROCK (SILTSTONE), thickly b SEDIMENTARY ROCK (SANDSTONE), thickly b	Ogic Log - Free Form         Description         0 CLAYSTONE), laminated, brown, slightly weathered, soft, unfractured, LE         of         0 CLAYSTONE), fine-grained, massive, brown, soft, unfractured, SILTY SA         ately interbedded with CLAYSTONE; SANDSTONE: fine-grained, brown, m         ly bedded, reddish brown, moderately weathered, moderately hard, slightly         ained, thickly bedded, brown, sightly weathered, moderately hard, unfractured         ed, reddish brown, slightly weathered, moderately soft, unfractured         ed, reddish brown, slightly weathered, moderately soft, unfractured         edded, brown, slightly weathered, moderately soft, unfractured	AN CLAY (CL), ND (SM) very noderately / fractured red, locally htly weathered,
Depth from Surface Feet to Feet           0         1           1         10           10         17.5           17.5         28.5           28.5         40           40         45           45         50           50         55           55         68	Geol SILTY SAND (SM), brown, dry, fine SEDIMENTARY ROCK (POORLY INDURATED hard, brown, moist, medium plasticity, PP>4.0 ts SEDIMENTARY ROCK (POORLY INDURATED dense, brown, moist, fine SEDIMENTARY ROCK (SANDSTONE), modera weathered, unfractured, CLAYSTONE: very thir SEDIMENTARY ROCK (SANDSTONE), fine-gra moderate cementation, locally thickly interbedded moderately soft, unfractured. SEDIMENTARY ROCK (CLAYSTONE), lamination SEDIMENTARY ROCK (SILTSTONE), thickly b SEDIMENTARY ROCK (SANDSTONE), fine-gra SEDIMENTARY ROCK (SANDSTONE), thickly b	Ogic Log - Free Form         Description         0 CLAYSTONE), laminated, brown, slightly weathered, soft, unfractured, LE         of         0 CLAYSTONE), laminated, brown, slightly weathered, soft, unfractured, LE         of         0 CLAYSTONE), fine-grained, massive, brown, soft, unfractured, SILTY SA         ately interbedded with CLAYSTONE; SANDSTONE: fine-grained, brown, m         ly bedded, reddish brown, moderately weathered, moderately hard, slightly         ained, thickly bedded, brown, sightly weathered, moderately hard, unfractured         ed, reddish brown, slightly weathered, moderately soft, unfractured         edded, brown, slightly weathered, moderately soft, unfractured         ained, massive, brown, soft, slightly fractured.         ed, brown, slightly weathered, moderately hard, unfractured	EAN CLAY (CL), ND (SM) very noderately / fractured red, locally htly weathered,
Depth from Surface Feet to Feet           0         1           1         10           10         17.5           17.5         28.5           28.5         40           40         45           45         50           55         68           68         74	Geol SILTY SAND (SM), brown, dry, fine SEDIMENTARY ROCK (POORLY INDURATED hard, brown, moist, medium plasticity, PP>4.0 ts SEDIMENTARY ROCK (POORLY INDURATED dense, brown, moist, fine SEDIMENTARY ROCK (SANDSTONE), moder- weathered, unfractured, CLAYSTONE: very thir SEDIMENTARY ROCK (SANDSTONE), fine-gr- moderate cementation, locally thickly interbedde moderately soft, unfractured. SEDIMENTARY ROCK (CLAYSTONE), laminati SEDIMENTARY ROCK (SILTSTONE), thickly b SEDIMENTARY ROCK (SANDSTONE), fine-gr- SEDIMENTARY ROCK (CLAYSTONE), laminati SEDIMENTARY ROCK (CLAYSTONE), laminati SEDIMENTARY ROCK (SANDSTONE), laminati	ogic Log - Free Form         Description         OCLAYSTONE), laminated, brown, slightly weathered, soft, unfractured, LEsf         OCLAYSTONE), fine-grained, massive, brown, soft, unfractured, SILTY SA         ately interbedded with CLAYSTONE; SANDSTONE: fine-grained, brown, m         ly bedded, reddish brown, moderately weathered, moderately hard, slightly         ained, thickly bedded, brown, sightly weathered, moderately hard, unfractured         ed, reddish brown, slightly weathered, moderately hard, unfractured         ed, reddish brown, slightly weathered, moderately soft, unfractured         ed, reddish brown, slightly weathered, moderately soft, unfractured         edded, brown, slightly weathered, moderately soft, unfractured         edded, brown, slightly weathered, moderately soft, unfractured         edded, brown, slightly weathered, moderately soft, unfractured         ained, massive, brown, soft, slightly fractured.         ed, brown, slightly weathered, moderately hard, unfractured         ained, very thickly bedded, reddish brown, soft, slightly fractured.	AN CLAY (CL), ND (SM) very noderately / fractured red, locally htly weathered,
Depth from Surface Feet to Feet           0         1           1         10           10         17.5           17.5         28.5           28.5         40           40         45           45         50           50         55           68         74           74         82	Geol SILTY SAND (SM), brown, dry, fine SEDIMENTARY ROCK (POORLY INDURATED hard, brown, moist, medium plasticity, PP>4.0 ts SEDIMENTARY ROCK (POORLY INDURATED dense, brown, moist, fine SEDIMENTARY ROCK (SANDSTONE), modera weathered, unfractured, CLAYSTONE: very thir SEDIMENTARY ROCK (SANDSTONE), fine-gra moderate cementation, locally thickly interbedded moderately soft, unfractured. SEDIMENTARY ROCK (CLAYSTONE), lamination SEDIMENTARY ROCK (SANDSTONE), thickly b SEDIMENTARY ROCK (SANDSTONE), thickly b SEDIMENTARY ROCK (SANDSTONE), thickly b SEDIMENTARY ROCK (CLAYSTONE), lamination SEDIMENTARY ROCK (SANDSTONE), fine-gra SEDIMENTARY ROCK (CLAYSTONE), lamination SEDIMENTARY ROCK (CLAYSTONE), lamination SEDIMENTARY ROCK (CLAYSTONE), lamination	Ogic Log - Free Form         Description         OCLAYSTONE), laminated, brown, slightly weathered, soft, unfractured, LE         of CLAYSTONE), laminated, brown, slightly weathered, soft, unfractured, LE         of CLAYSTONE), fine-grained, massive, brown, soft, unfractured, SILTY SA         ately interbedded with CLAYSTONE; SANDSTONE: fine-grained, brown, m         ly bedded, reddish brown, moderately weathered, moderately hard, slightly         ained, thickly bedded, brown, sightly weathered, moderately hard, unfractured         ed, reddish brown, slightly weathered, moderately soft, unfractured         edded, brown, slightly weathered, moderately soft, unfractured         edded, brown, slightly weathered, moderately soft, unfractured         edded, brown, slightly weathered, moderately soft, unfractured         ained, massive, brown, soft, slightly fractured.         ed, prown, slightly weathered, moderately hard, unfractured         ained, very thickly bedded, reddish brown, soft, slightly fractured.         ed, reddish brown, slightly weathered, hard, slightly fractured.	EAN CLAY (CL), ND (SM) very noderately / fractured red, locally htly weathered,

86	90	SEDIMENTARY ROCK (CLAYSTONE), laminated, brown, slightly weathered, moderately soft, unfractured
90	100	SEDIMENTARY ROCK (SANDSTONE), thickly interbedded with CLAYSTONE; SANDSTONE: fine-grained, brown, moderately weathered, unfractured, CLAYSTONE: very thinly bedded, reddish brown, moderately weathered, moderately soft, unfractured
100	106	SEDIMENTARY ROCK (CLAYSTONE), laminated, reddish brown, slightly weathered, hard, moderately fractured
106	111	SEDIMENTARY ROCK (SILTSTONE), moderately bedded, brown, slightly weathered, soft, unfractured
111	120.5	SEDIMENTARY ROCK (CLAYSTONE), laminated, reddish brown, slightly weathered, hard, slightly fractured

							Casin	gs								
Casing #	Depth fro Feet t	<b>m Surface</b> o Feet	Casi	ng Type	Material	Casings	Specificaton	Wall Thicknes (inches	ss )	Outside Diameter (inches)	Screen Type	Slot Size if any (inches)		Des	cription	
						A	nnular N	aterial								
Depth Sur Feet t	Depth from Surface         Fill         Fill Type Deta           Feet to Feet         Fill         Fill Type Deta						ls			Filter Pack	s Size		D	escriptic	n	
Destr Boring	<b>uction D</b> backfilled	etails: using 80	gallon	s of grout	using proportion	is of 6 gallo	ons of water	each #94 s	ack	of cement.						
Other	Other Observations:															
	E	Boreho	le Sp	pecific	ations					Certific	ation	Stateme	nt			
Dept	h from		Por	abolo Dir	motor (inches)		I, the undersigned, certify that this report is complete and accurate to the best of my knowledge and belief									
Feet	to Feet		BUI		ameter (menes)		Name FUGRO USA LAND INC									
0	120.5	4							RO	FT ST		HOUSTON	1	тх	77	081
								Addr	ess	1101		City		State	Z	ip
							Signed	electronic	sig	nature re	ceived	12/26/20	909719			
								C-57 Licens	sed V	Water Well C	Contractor	Date Sigi	ned	C-57 Li	cense N	umber
										DV	VR Use	e Only				
							CSG #	State W	ell I	Number		Site Code		Local V	Vell Nu	mber
											N					w
							La	titude De	g/N	/lin/Sec		Longit	ude	Deg/M	lin/Se	C
							TRS:									
							APN:									

DUPLICATE File Originan, Duplimile and Triplicate with th DIVISION OF Wind RESOURCES	STATE OF CAL	IFORNIA JELIC WORKS	Sheet 1 .
P. O, BOX 1079 SACRAMENTO 5, CALIFORNIA WATER	DIVISION OF WAIE 37-251 WELL DRILLERS RE Sections 7076, 7077, 7078, Water Code) A A	R RESOURCES	Do Not Fill In State Well No. 185 /1W 33K/ Other Well No. Region
(1) Driller: Name Sen Die 30 Address 146 Drig Chult Vi License No. 85485	ATT <u>Ourn A el. Orillors</u> bouoed St. <u>otc.</u> Calir. Classification C 37	(2) Proposed use or use Domestic Irrigation Domestic and Irrigation Irrigation	es (check): (3) Equipment used Municipal (check): Industrial Rotary Test well Cable Dug well
Ov Na Ad	16467	(4) Type of work (che New well <b>1</b> Deepening existing w	eck): Reconditioning of well

#### (5) Well log:

Total depth of well_870.....ft.

Depth From Ground Surface

....

Give details of formations penetrated, such as silt, peat, muck, sand, gravel, clay, shale, sandstone, hardpan, rock. Include size of gravel (diameter) and sand (fine, medium, coarse), color of material, structure (loose, packed, cemented, soft, hard, brittle).

							the second se
660 ft.	to 87.5	.ft	Clay.	gray			
"	33	"					
33	"	"					
11	"	**					
	33	,,					
	**	,,	CONFI	DENTIA	I NOT		
35	33	33					
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	»	FORF	UBLIC I	RELEASE	N	ICHOFILMED
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,					
		,,	<u>965</u>			c	· · · · · · · · · · · · · · · · · · ·
	••					076	
		· · · ·			5		
	" 	· " —				-	19 - 19
"	**************	· · · · · · · · · · · · · · · · · · ·		-			
	"	-"					
	"	- **					
33	33	-"					
	***	."	1012 12	- 022 - 222	241	<u></u>	
	»	»					
	»• 	"					
**	».	."					
**	"	"					
"	»						
"	"	"				14 - 14 -	
"	**	59			1	~	

If additional space is required, continue on DWR Form No. 246-Supplement, and attach to respective report copies.

(6)	Casing left in we	eli:			
	LENGTH FT.	DIAMETER	SINGLE, DOUBLE, WELDED. OTHER	LBS. PER FOOT OR GAGE OF CASING	SEATING BELOW GROUND SURFACE, FT.
	<b>l</b> ðä			18 ibs.	79 <b>7</b>
				***	***************************************
				·····	
				•	
	I ype and size of sl	hoe or well ring			
	6" x <u>o</u> ʻ	" x S/4"/	· /		
DWR	FORM NO 246	1-75-6	2		
	1011110.240	/ /			23971 3-50 40M QUIN \$PO

DI?PLICATE File Original, Duplicate and Triplicate with the D. VISION or WATER RESOURCES P. O. BOX 1079 SACRAMENTO 5. CALIFORNIA

# WATER WELL DRILLERS REPORT

(Sections 7076, 7077, 7078, Water Code) 37-25/0

Do Not Fill In
State Well No. 185/11 33K,
Other Well No.
Region

Perforation	ns: rforator used mil.	ls					3	8 - 1	2.0				
Perforated	660	ft. to	780	ft.	Hole	size.	3/8"	x 2		Io.	of 1	holes_	180
"		» »		,,	**	"			,	,,	,,	"	2.
>>		» »		,,,	,,				,	,,	**	33	
"		» » »		,,	"	,,			,	,,	"	"	
57		»» »»		,,		,,			,	,,	,,	**	
,,,		13 33		,,	,,	"	C	ON	FIDE	V'	TI.	A'I .	NOT
,,		»» »»		,,	**	"	5	no.	-DL10	" ` ·	22	"	
>>		» » <u> </u>		,,	,,	"	1	UK	FUB,	11	5	KE	LEASE
»»		,, ,,		,,	,,	,,			,	**	>>	"	
,,				,,	>>	,,			,		22	>>	

#### (8) Water levels:

#### (9) Well pumping test:

Depth at which water	Date of testBy whom
first encountered	Depth to water when test started
Depth to water	G.P.M. at beginning of test
before perforating 440 ft.	Drawdown from standing levelft.
Depth to water	G.P.M. at completion of test
after perforating 440 ft.	Drawdown at completion of test
Note any change in water level while drilling	Length of time tested
<u>no</u>	Temperature of water
	Was gas present in water? 🗌 Yes 🗋 No

#### (10) General:

Was well gravel packed? <u>no</u> Size	of rock
Were any strata sealed against pollution?  Yes X	No If yes, attach detailed description. 2
Strata sealed	
Was analysis made of water? 🗌 Yes no If ye	is, attach copy.
Was electric log made of well?  Yes X No If ye	es, attach copy.
If well abandoned, was it plugged and sealed?	
Method of plugging and sealing	

#### (11) Location:



Section No. 33 W Township. 188 Di Range 11 Base & Meridian SB W Show location of well in Section, thus (X) re Distances to section lines from well, N or S. 2650 ft. [S and for M2500 ft. Show location of nearest known well, thus (O) Distance to nearest known well. Mi. Effst, Approx.

#### (12) Time of work:

Work	started	date3.	-26-51	Com	pleted	date6-2-51
Date of	of this a	report_	July	3,	195	L

#### WELL DRILLER'S STATEMENT:

This well was drilled under my jurisdiction and this report is true to the best of my knowledge and belief.

[SIGNED San Diego	o Pump	& Mell.	Drill	ers
· · · · · · · · · · · · · · · · · · ·	Well Dril	ler		
By A.C.	1. 500	<u>ve)</u>	·····	
License No	38485_C	lassification	C 57	

Dated July 3, 1951 , 19

SHEET 2

37-2510

#### FIELD CHECK OF WELL LOCATION

$rac{1}{2}$	adamps and the	1.4	<b></b>
BRILLER		📕 🖌 🖓 🕹	CHECK

OWNER_

CHECKED BY  $\mathcal{D}$  ). Leve.

DATE____19___.

PUMP NO._____.

METER NO.____. STATE WELL NO. 185/144 .33K/

LOCATE WELL WITH REFERENCE TO ROADS AND ROAD INTERSECTIONS: ALSO INDICATE DISTANCES AND DIRECTIONS TO NEARBY CITIES OR TOWNS.

MICROFILMED


The free Adobe Reader may be	e used to view a	nd complete	e this form	h. However, s	sontware mu	st be purchas	ed to comple	ete, save, a	and reuse	e a saved f	orm.				
le Original with DWR	18301	N33	14		ate of Calif	omia	+ F		DV	VR Use On	ly - Do	Not Fill In			
age <u>1</u> of <u>1</u>	1011 <b>•</b> 12 • 1225			Refer	to Instruction	Pamphlet	"	State Well Number/Site Number							
wner's Well Number MW	1-7			No.	e020198	9									
ate Work Began 01/13/20	014	Date	Work Er	nded 1/18/	/2014			Latitude Longitude							
ermit Number LMWP 00	0820	Permit Da	ate 1/6/	14				APN/TRS/Other							
	Geolog	ic Log				<u>ا ا</u>			Woll	Owner					
Orientation OVertic	al O Horiz	ontal	OAnale	e Specify	v	it.			Wen	Owner					
Drilling Method Hollow Stem	Auger		Drilling	Fluid											
Depth from Surface		Des	cription												
Feet to Feet	ELL DESTRI	ICTION	grain size	e, color, etc		<u>ا</u> ۲			Wall	ocation					
Dr	ill out 4" well	to 31' an	d backfi	ill with cen	nent -	Addross	1902 Ca	ctus Ro	adlar	dfill					
be	entonite grout					City Ot	av Mesa		uu Lun	Col	inty S	an Diego			
						Latitude	-1			N Longitu	ide				
							Dea.	Min. S	Sec.	in Longito		Deq. Min. Sec.			
						Datum_		Dec. Lat.			Dec.	Long.			
						APN Bo	ok <u>646</u>	_ Page	100		Parce	el <u>/5-/6</u>			
		_				Townsh	ip	_ Range			Secti	on			
		_	-	_		(Sketch	must be drawn	by hand after	er form is	printed.)	ON	Activity ew Well			
								North			0M	odification/Repair			
					-	11					8	Deepen			
						11	21				OD	estroy			
						11					D	escribe procedures and mater nder "GEOLOGIC LOG"			
						11						Planned Uses			
						11					OW	ater Supply			
						st				st	H	Domestic Publi			
					_	l Š				ů	00	athodic Protection			
						11					0 D	ewatering			
					-	1 *					Ôн	eat Exchange			
		-				41					Oin	jection			
		1000				41					O R	onitoring			
						41					Ōs	parging			
						41		South			OT	est Well			
			_			filustrate or d	escribe distance o	f well from roa	ds, building	s, fences,	0v	apor Extraction			
						rivers, etc. an Please be ac	d attach a map. I curate and comp	Use additional ; plete.	paper if nec	essary.	00	ther			
					4110	Water I	_evel and	Yield of	f Com	pleted W	/ell				
						Depth to	first water				_ (Fee	t below surface)			
						Water L	evel		(Fee	t) Date	Measu	ired			
Total Depth of Boring	_	WT.		Feet		Estimate	ed Yield *		(GPI	M) Test	Туре_				
Total Depth of Completed	Well			Feet		Test Le	ngth		_ (Hou	urs) Total	Drawd	lown (Feel			
	_			_		"May no	t be repres	entative of	of a wel	I's long te	rm yiel	d.			
Depth from Borehole		Cas	ings	Wall	Outside	Screen	Slot Size	Depth	from	Annula	ar Ma	terial .			
Surface Diameter	Туре	Mate	rial	Thickness	Diameter	Туре	if Any	Sur	ace	Fill		Description			
reet to reet (inches)	T T			(incries)	(incries)		(inches)	0	31	Bentonite					
	I									-	-				
							1								
Attachm	nents		<u> </u>				Certificati	on State	ement		-				
Attachm	nents		I, the u Name	ndersigned National	, certify the	at this report	Certificati t is complet	on State	ement curate to	o the best	of my	knowledge and be			
Attachm Geologic Log Well Construction I Geophysical Log(s)	nents Diagram		I, the u Name	ndersigned National I Person, F	, certify the	at this report	Certificati t is complet	on State	curate to	o the best	of my	knowledge and be			
Attachm Geologic Log Well Construction D Geophysical Log(s) Soil/Water Chemica	nents Diagram ) al Analyses		I, the u Name <u>5566</u>	ndersigned National Person, F Arrow Hig	, certify the EWP, Inc irm or Corpor hway	( at this report ation	Certificati Lis complet	on State e and acc clair City	ement curate to	o the best	of my A <u>S</u>	knowledge and be 91763 Zip			
Attachn Geologic Log Well Construction I Geophysical Log(s) Soil/Water Chemic	nents Diagram ) al Analyses		I, the u Name <u>5566</u> Signed	ndersigned National I Person, F Arrow Hic	, certify tha EWP, Inc im or Corpor hway	at this report ation tional E	Certificati t is complet	on State e and acc clair City	2/18/1	o the best	of my A <u>S</u> 53646	knowledge and be 01763 Zip			

		1000 A A A A
A0003.	561	<b>ETAYMESA</b>

Ĺ

1



Geologic Log Well Construction Diagram Geophysical Log(s)	I, the undersigned, certify that this report is complete and accurate to the be Name <u>National EWP, Inc</u> Person, Firm or Corporation 5566 Arrow Highway Montclair	est of my knowledge and belief
Soil/Water Chemical Analyses	Signed Tar National EWP 2/18/14	State Zip 953646
Attach additional information, if it exists.	C-57 Licensed Water Well Contractor Date Signed	C-57 License Number
DWR 188 REV. 1/2006	IF ADDITIONAL SPACE IS NEEDED, USE NEXT CONSECUTIVELY NUMBERED FORM	-RECEIVED

A0003. 567 OTAYMESA

.

#### ORIGINAL

**File with DWR** 

Levermit No. or Date_

Notice of Intent No. 20018

SEP 3 0 1977

#### STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF WATER RESOURCES WATER WELL DRILLERS REPORT

Do not fill in

No. 00929

State Well No. 185/2W-33No4 Other Well No.

(1) OWNER: Name	(12) WELL LOG: Total depth 150 ft. Depth of completed well 150 ft
Address	from ft. to ft. Formation (Describe by color, character, size or material)
City	0 - 14 Cobble stone
(2) LOCATION OF WELL	14 - 19 Silt and cand
San Diego	10 - //8 Sand
San Ysidro	19 40 Danu
Well address if different from above 2011 101010	40 60 Gravel
Township 10 Range 20 Section 99	68 - 69 CODDLe stone
Distance from cities, roads, railroads, fences, etc. Dan ISLUIO, OR.	<u>69 - 80 Gravel</u>
	80 - 85 Sand
	85 - 140 Gravel
	140 - 150 Gravel and clay
(3) TYPE OF WORK:	A
New Well X Deepening	
Bermstruction	
Bounditioning	A V AKA
Reconditioning	H- CV
Horizontal Well	911 - 1141
Destruction [] (Describe	112- 111 0
procedures in Item 12	
(4) PROPOSED USE?	
Domestic	e le elle
Irrigation	0-0 020
Industrial	all de
	110 V
Lest well	All V- O
Stock	
Municipal D	
WELL LOCATION SKETCH Other	
(5) EQUIPMENT: (6) GRAVED PACK:	n - 🔍
Botary X Bevare D No X No D Sizes #4 X #7	A Kan
Cable An X Didneder of bore	ALV-
Other Bucket Bucket Packed from to	
(7) CASING INSTALLED: (8) PERFORATIONS:60 ft.	<u></u>
Steel 🕅 Plastic 🕱 Concrete 🖾 Type of perforation or size of screep	9 -
From To Dia Gage or From To Slot	-
ft. ft in. Wall ft. ft. size	
0 20 8-5/8od 188	-
0 150 5 liner 35 55	
110 150	
(9) WELL SEAL:	7
Was surface sanitary seal provided? Yes $[X  No \square$ If yes, to depthft.	
Were strata sealed against pollution? Yes No X Intervalft.	
Method of sealing	Work started June 12, 19/7 Completed June 29,19/7
(10) WATER LEVELS:	WELL DRILLER'S STATEMENT:
Depth of first water, if knownft.	This well was drilled under my jurisdiction and this report is true to the best of my
Standing level after well completionft.	knowledge and belief. I fe log log and
(11) WELL TESTS: Rex Anderson	SIGNED / May Conductor
Was well test made? Yes Y No I If yes, by white A HIGE SOIL	DEV ANDEDCON CODD
Denth to water at start of test fit. At and of test fit.	NAME REA ANDERSON CORE.
Depth to water at start or testft. At end or testft	Address 10303 Channel Rd.
Discharge	Takeside Ca zu 92040
Chemical analysis made? Yes D No A If yes, by whom?	1000000000000000000000000000000000000
electric log made? Yes 🗌 No 🖾 If yes, attach copy to this report	License No. A JUDI Date of this report ULLY 19, 191

WR 188 (REV. 7.76) IF ADDITIONAL SPACE IS NEEDED. USE NEXT CONSECUTIVELY NUMBERED FORM 43816-950 7-76 50M QUAD ()T OSP

File Oric	inal with	DWR	19502	WOI		St	ate of Cali	fornia	Г. Г	, sare	DV	VR Use On	ily - Do	Not Fill In
2000 1	8	01	1		N	lell Co	mpleti	on Repo	ort	t	1	1 1		
Dwner's	Well Nu	mber U	IRS-MW08			Refer No.	e01317	Pamphlet			Sta	te Well Nu	mber/Si	te Number
Date Wo	ork Begar	05/11	/2011	Date	Work En	nded <u>5/11</u>	/2011				Latitude			Longitude
ocal Pe	ermit Age	ncy Sa	n Diego Cou	nty Departn	nent of E	Invironm	ental Hea	lth		1	1 1	APNO	L L	
Permit N	Number L	.MQN1	07780	Permit D	ate <u>5/3/</u>	11 .		1	R	_		Owner	into/oti	
Ori	entation	<b>⊙</b> Ve	rtical O Ho	ogic Log	OAngle	e Speci	fy				wei	Owner		
Drilling	Method I	follow St	em Auger		Drilling F	Fluid								
Depth	to F	urface	De	Des scribe material	cription	e. color. etc		11						
0	1		Asphalt								Well	Location	n	
1	4		Brown, Silty	fine SAND	(SM), mo	oist, trace	e gravel	Address	104 W.	San Ys	sidro Blv	d.		
		-	clay			1.2		City Sa	an Diego			Co	unty S	an Diego
4	11		Light olive br	own, fine to	mediun	n SAND (	(SP)	Latitude			Cas	N Longitu	ude	
			medium den	se, moist, tr	ace coa	rse sand,	, trace sill	Datum I	NAD83	Decima	sec. al Lat. 32	.552023	7 Deci	imal Long, -117.
11	15		Dark vellowie	h brown S	ILT (MI	) verv eti	ff moist	APN Bo	ok	_ Pag	je		Parc	el 666-380-28
	15		trace fine sa	nd, trace fin	e to coa	rse grave	el	Townsh	ip	Rang	ge		Secti	ion
15	20		Becomes ve	y dark gray	rish brow	vn, hard,			Locat	ion Sk	etch			Activity
			trace clay, tra	ace mica			•	(Sketch	must be drawn	North	after form is	printed.)	ON N	ew Well Indification/Page
20	21		Becomes da	rk grayish b	rown, si	It with fin	e sand,							Deepen
			very stiff, abu	indant mica				SEE	ATTACH	HED SI	TE PLA	N	0	O Other
21	24		Dark grayish	brown, Lea	IN CLAY	(CL), ve	ry stiff,	FOF	R WELL L	OCATI	IONS			Describe procedures and m inder "GEOLOGIC LOG"
24	26		Gravish brow	in fine to m	ica Iedium S		D) dance	-11						Planned Uses
24	20		moist trace	coarse sand	trace s	silt	), dense	11	Ő				0	ater Supply
26	29		Light brownis	sh gray, SA	ND (SW	), dense.	moist	81				st		Domestic Pu
			trace silt	<u> </u>				We				Eac		athodic Protection
29	31		Grayish brow	n, medium	SAND (	SP), den	se, wet,						OD	ewatering
	-		trace fine sar	nd, trace sil	t			41					Он	eat Exchange
31	38		Dark grayish	brown, Fat	CLAY (	CH), hard	d, wet,	41					Olr	njection
			trace mica, ti	ace cobble	\$	~~~		-11					OR	emediation
38	40		Dark gravish	brown Silt	v fine SA	AND (SM	), dense	-11					Os	parging
			wet, trace me	edium sand	, abunda	ant mica	//			South			OT	est Well
40	42		Light yellowis	sh brown, S	AND (S	W), dens	e, wet	Illustrate or d rivers, etc. ar	escribe distance nd attach a map.	of well from i Use addition	roads, building na! paper if neo	es, fences, cessary.	00	appr Extraction
			trace silt, trac	ce fine and	coarse g	gravel		Please be ad	ovel and com	Viold	of Com	ploted V	Voll	
								Depth to	first water	30	or com	pieteu v	(Fee	t below surface)
	-							- Depth to	Static				_ (, ;;;	
Total	)enth of l	Boring	42			Feet		- Water L	evel 26		(Fee	M) Test	Measu	ured 05/23/201
Tutt	Septi Of t	Joinig	42			- Feet		Test Lei	ngth	-	(Ho	urs) Total	Drawo	down(Fe
Iotal L	Jepth of (	omplet	ed well 39			Feet		*May no	t be repres	sentative	e of a we	Il's long te	erm yie	ld.
				Cas	ings				01			Annul	lar Ma	terial
Dept	rface	Diame	ter Type	Mate	rial	Wall	Diameter	Screen Type	if Any	Dep	urface	Fi		Descriptio
Feet	to Feet	(Inche	Blank	PVC Seb 4	n	(Inches)	(Inches)		(Inches)	Feet	to Feet	Cement	-	Concrete
19	39	10	Screen	PVC Sch. 4	0	0.25	4.5	Milled Slots	0.010	3	14	Bentonite	e	Bentonite Gro
			_							14	17	Bentonite	е	Chips
										17	42	Filter Pa	ck	#2/12 Sand
		Attac	hmonto	1					Contificati	on Sta	toment	1		
[]	Geologia	Loo	innents		I, the ur	ndersianed	d certify th	at this report	t is comple	te and a	accurate t	o the bes	t of my	knowledge and
	Well Cor	nstructio	n Diagram		Name	WDC	Explo	ortion .	· Wall	5				
	Geophys	sical Log	g(s)		55	66 AT	ROW	HWY.	M	NTCL	AIF		A	91763
	Soil/Wat	er Cher Vell Lo	nical Analyses cation Site Pl	an	Signed	IV	Address	WOC		Cit	6/17		tate 2	83326
لينه		CHI LUI				Carlo	ensed Water	Nell Contractor			Data Ci		6711	hi sha









Figure adapted from Geocon Inc Illustration Blue artwork is proposed village development And access road. FIGURE 1 Location Map Southwest Village





FIGURE 3 Pleistocene Sea Level Curve And Ocean Core Paleo Environment Analysis



**DUDEK** 

Initial Assessment of Groundwater Conditions at the Southwest Village Site, Otay Mesa and Surrounding Areas, San Diego County

Groundwater cross section through Geocon Landslide A Figure adapted from Draft Geocon cross section Groundwater elevations shown for borings are NAVD88

#### FIGURE 4

Groundwater Elevation Cross Section

USGS 2014 Lidar, 2 Foot Contours



NOTES: Blue Topo Shading Indicates Closed Contour Depression Salmon Topo Shading Indicates Closed Contour Hilltops Yellow Lines are Outfall Flowpaths FIGURE 5 Stormwater Outfalls and Outfall Flow Paths



# Slope of Gully Bottom From Outfall 9



#### NOTES:

Elevation profiles digitized from 2 foot contour map of USGS/San Diego County 2014 Lidar data downloaded from NOAA Digital Coast access server.

Gully plan view shapes meander; section data shown is calculated path length unfolded into plane. Steepest portion of each outfall gully slope identified. **FIGURE 6** 

Drainage Bottom Profiles Leaving Proposed Outfalls 5,6,7,8,9 Southwest Village

# Claystone (282' - 396' bgs)

# Sandstone (324' - 333.5' bgs)

Sandstone (382' - 392' bgs)





# APPENDIX F

## **GROUNDWATER EVALUATION BY RICK ENGINEERING**

FOR

SOUTHWEST VILLAGE VTM-1 SAN DIEGO, CALIFORNIA

PROJECT NO. 06847-42-04



April 16, 2021

City of San Diego Development Services 101 Ash Street San Diego, California 92101

## SUBJECT: LANDSLIDE HYDROLOGY ANALYSIS FOR SOUTWEST VILLAGE (RICK ENGINEERING COMPANY JOB NUMBER 15013-C)

## **1. Introduction**

This letter report presents the existing and proposed hydrology associated with the landslide area adjacent to the Otay Mesa Southwest Village project area. The Southwest Village project is a smaller portion of the overall community of Otay Mesa. Specifically, the project boundary is generally located south of State Route 905, east of Interstate 805, north of US-Mexico border, and immediately west of the northerly branch of Spring Canyon Creek. Refer to the Vicinity Map in Attachment 1 as well as the drainage study maps included in Map Pockets 1 and 2 for the limits of the area analyzed.

### 2. Drainage Characteristics

In the existing condition, Basins 400, flows in a westerly direction to a collection point east of the existing railroad. Basin 500 and 700, drain in a southwesterly direction where they confluence before flowing to a collection point along the eastern edge of the existing railroad. From these locations, runoff is conveyed in an existing storm drain system (pipes and channels) to the Tijuana River by the border line with Mexico. Runoff from Basins 800 and 900 drain to the south and confluence in Spring Canyon Creek. Runoff is conveyed south within Spring Canyon Creek towards an existing culvert at the Spring Canyon concentration point along the border with Mexico. Based upon the available information, it is assumed that the runoff is conveyed via a system of storm drain and open channels to a concrete lined reach of the Tijuana River on the Mexican side of the border.

Throughout the landslide area there are several existing sump locations where it is anticipated that storm water will collect and infiltrate into the native soil or evaporate over time. The area analyzed also includes existing shallow sump locations, notably in Basins 800 and 900, where it is anticipated that in larger storm events, storm water will weir over the edge of the low point

City of San Diego March 19, 2021 Page 2 of

and flow out to collection points along the border with Mexico by Spring Canyon Creek. Please refer to Map Pocket 1 for the existing condition drainage map.

The post-project drainage conditions will remain largely similar to those in the existing condition. However, drainage improvements are being proposed throughout the development area. Storm drain outfalls will be extended as far as practicable towards the bottom of mesa and located adjacent to established existing channels. Underground storage is proposed to detain peak flow rates back to existing conditions for the 50 and 100-year storm event. Additionally, the drainage area flowing into Mexico at the Spring Canyon concentration point and will need to comply with the US/Mexico International flood control detention requirements (i.e. -5, 10, 25, 50, & 100-year storm events). Please refer to Map Pocket 2 for the proposed condition drainage map.

#### 3. Hydrology Methodology and Results

This study considers peak flow rates in the existing and proposed project condition and a summary is provided in Table 1 below. Weighted Runoff Coefficients and Time of Concentration were calculated based on guidance from the City of San Diego Drainage Design Manual, dated January 2017. The Rational Method computer program developed by Advanced Engineering Software (AES 2014) was used for this study.

Drainage Basin #	Drainage Node # at Point of Interest	Project Condition	Tributary Area, A (acres)	Time of Concentrati on, T _c (minutes)	100-year Flow Rates, Q100 (cfs ¹ )	Change in Area (ac)	% Change in Peak Discharge (Pre to Post Detained)
	499	Pre-project	188.9	15.4	244.1		
400	499	Post-project	180.2	14.9	243.8	-8.7	-32%
	499	Post-Detained	180.2	27.8	165.1		
	799	Pre-project	176.3	22.9	184.5		
500 & 700	799	Post-project	172.4	10.9	312.4	-3.9	-1%
	799	Post-Detained	172.4	22.2 ²	181.9 ³		
	999	Pre-project	83.5	16.7	103.8		
800 & 900	999	Post-project	84.9	12.0	141.4	+1.4	-16%
	999	Post-Detained	84.9	22.9 ²	86.8 ³		

#### Table 1: Existing and Proposed Hydrology (AES)

Notes:

1. Rainfall intensities for AES Rational Method analysis were calculated using the City of San Diego's 2017 Drainage Design Manual

Detailed detention analysis for basins that are not a part of the Vesting Tentative Map (VTM) (Basin 700, 800, & 900) has yet to be completed. For the purpose of this analysis the Time of Concertation was approximated by using detention analysis done on the adjacent Basins within the VTM (Basin 400 & 500). Peak flow rate for detention was based on the pre-project peak flow rates for the 100-year event.

3. For basins not a part of the VTM ((Basin 700, 800, & 900) percent imperviousness was conservatively assumed to be 85% impervious based on the proposed land use in the Specific Plan.

A summary of the average annual volume at key locations throughout the landslide area has also been quantified. The locations analyzed are at the upstream edge of the landslide buffer, the proposed storm drain outfall locations, and at the collection point either adjacent to the railroad for Basins 400, 500, and 700 or adjacent to the border with Mexico for Basins 800 and 900. A continuous simulation model using EPA SWMM v5 for each of the basins has been completed to determine the average annual volume of precipitation, runoff, and infiltration. Due to potential issues with the Lower Otay Reservoir rain gauge, the Lindberg Field rain gauge was used for this analysis. The time series for the rain gauges dates from October 17, 1948 to December 31, 2005. Parameters used within the EPA SWMM models will be consistent with guidance provided in the October 2018 City of San Diego Storm Water Standards Manual Appendix G. Please refer to Table 2 for a summary of precipitation, runoff, and infiltration.

City of San Diego March 19, 2021 Page 4 of 7

Drainage Basin #	Drainage Node # at Point of Interest	Project Condition	Precipitation (ac-ft)	Runoff (ac-ft)	Infiltration (ac-ft)	% Change in Runoff	% Change in Infiltration
400	499	Pre-project	149.9	30.7	120.5	0.4%	-7%
400	499	Post-project	144.4	30.8	111.6		
500 &	799	Pre-project	139.9	25.6	113.7	60%	-22%
700	799	Post-project	136.9	40.9	88.4		
800 &	999	Pre-project	66.3	13.3	53.4	30%	-14%
900	999	Post-project	67.4	17.3	45.9		

#### Table 2: Existing and Proposed Average Annual Volume (SWMM)

Notes:

1. The average annual rain fall was calculated to be 9.53-inches based on annual averages calculated in EPA SWMM using the Lindberg Field rain gauge

2. The Lindberg Field rain gauge was used for this analysis. The time series for this rain gauges dates from October 17, 1948 to December 31, 2005.

Table 2 shows that in the post project condition, average annual runoff volumes have increased. This is due to the development associated with the Southwest Village project site and the addition of impervious area. The increased impervious area and compacted fill soils with reduced conductivity result in a high runoff volume. This increase in runoff volume makes sense as flows are conveyed through the landslide area and are collected at points adjacent to the railroad or next to the border with Mexico. Because of the increase in impervious area due to the development of the project site and the decrease in conductivity of the compacted fill, Table 2 also shows a decrease in the average annual infiltration. The increase in runoff and the decrease in infiltration overall results in less storm water being infiltrated into the landslide area.

#### 4. Irrigation – Estimate Total Water Use

Review was limited to the estimated landscape irrigation water use (potable water systems) as they relate to portions of irrigation to be utilized by residential and common area landscapes areas within the basin area footprint(s). Evaluation utilized a standard in the industry formula associated with this type of analysis, that being the Estimated Total Water Use (ETWU) found in the City of San Diego Landscape Standards of the Development Manual (Section 2.6) and City of San Diego Municipal code, Chapter 14, Division 4: Landscape Regulations 142.0413(d)(2). Assessment will be based on typical landscape irrigation requirements City of San Diego March 19, 2021 Page 5 of 7

associated with various plant types, Evapotranspiration (ETo), irrigation system, and component efficiency and standard irrigation scheduling practices.

Assessment of landscape area to be irrigated is based on a typical lot footprint of building architecture and layout of hardscape (driveways, patios, and walks). In the absence of typical building footprints and associated hardscape, assumptions were made as to percentage of lot coverage for non-irrigated areas.

Without a fit lot plan, architectural footprints were placed based on setback requirements. Based on this preliminary plan, a set number of each plan was determined for Basins 400 & 500. Each plan has a set area for the residence, driveway, walkway and rear patio. This area was subtracted from the overall lot area, to produce the total landscape area. Of this total landscape area, 5% was assumed to be turf. Based on the ratio of each plan found in Basin 500, a number of each plan was assumed for Basins 700, 800 & 900. Landscape areas for parks and recreational spaces were determined directly from the approved overall Conceptual Landscape Plan. For the park located in Basin 700, turf was assumed to be 85% of the landscape area.

An Estimated Total Water Use calculation was conducted for each basin footprint area and can be found below in Table 3. Turf was set at high water use, to be irrigated by rotors. Trees were to be moderate water use, irrigated by bubblers. Shrub and groundcover areas were assumed to be low water use, irrigated by drip. The results were then combined and illustrated in the summary table. Assumptions are listed below the summary.

Basin ID	Average Annual Estimated Total Water Use for Irrigation (ac-ft)	Average Annual Volume Evapotranspired (ac-ft)	Average Annual Volume Infiltrated (ac-ft)
400	4.4	4.4	0.0
500	7.9	7.9	0.0
700	6.1	6.1	0.0
800	0.8	0.8	0.0
900	2.0	2.0	0.0

|--|

Notes:

 Evaluation utilized a standard in the industry formula for Estimated Total Water Use (ETWU) found in the City of San Diego Landscape Standards of the Development Manual (Section 2.6) and City of San Diego Municipal code, Chapter 14, Division 4: Landscape Regulations 142.0413(d)(2) City of San Diego March 19, 2021 Page 6 of 7

#### **5. Infiltration Summary**

Table 4 below provides a summary of the change in storm water infiltration at the upstream edge of the land slide area. It is anticipated that the average annual water use for irrigation will be entirely used by the plants, stored in the top six to twelve inches of the soil, and evapotranspired. Resulting in no additional infiltration due to irrigation. However, considering the possibility that mismanagement of irrigation in the post-project condition could result in over application and increase infiltration, a factor of safety (FOS) was determined. Table 4 provides a factor of safety for over irrigation within the post-project drainage basins.

Basin ID	Node #	Average Annual Volume Storm Water Infiltrated Pre-Project (ac-ft)	Average Annual Volume Storm Water Infiltrated Post-Project (ac-ft)	Change in Average Annual Volume of Storm Water Infiltration (ac-ft)	Average Annual Estimated Total Water Use for Irrigation (ac-ft)	Average Annual Volume of Irrigation Infiltrated (ac-ft)	Factor of Safety for Over Irrigation
400	417	4.6	1.7	-2.9	4.4	0.0	166%
500	545	9.1	2.4	-6.7	7.9	0.0	185%
700	780	23.6	4.7	-18.9	6.1	0.0	409%
800	860	2.7	0.4	-2.3	0.8	0.0	386%
900	980	4.3	0.7	-3.7	2.0	0.0	284%

Table 4: Infiltration Summary and Factor of Safety (FOS) for Over Irrigation

#### 6. Conclusion

This letter report presents the existing and proposed hydrology and proposed irrigation associated with the landslide area adjacent to the Otay Mesa Southwest Village project area. Peak flow rates for the 100-year storm event were determined using the Rational Method computer program developed by Advanced Engineering Software (AES 2014) in conformance with the City of San Diego Drainage Design Manual, dated 2017. It is anticipated that peak flow rates will be detained back to pre-project levels as shown in Table 1. Average annual volume of precipitation, runoff, and infiltration were determined through continuous simulation modeling using EPA SWMM v5. Average annual runoff volume has increased while the average annual infiltration has decreased resulting in less storm water being infiltrated into the landslide area as shown in Table 2. The average annual Estimated Total Water Use for irrigation will be entirely used by the plants and evapotranspired based on City of San Diego Landscape Standards of the Development Manual as show in Table 3. Table 4 shows the factor of safety for over irrigation in the event that the water use for irrigation is mismanaged. Considering both the infiltration of

City of San Diego March 19, 2021 Page 7 of 7

storm water and the application of irrigation, the average annual infiltration volume has decreased in the post-project condition as compared to the pre-project condition.

Reference and supporting documents are included in the Attachments of this letter. A list discussing the Attachments and Exhibits may be found below.

Please feel free to contact Eric Hengesbaugh or myself if you have any questions and/or concerns at (619) 291-0707.

Sincerely,

#### RICK ENGINEERING COMPANY

Brendan Hastie, P.E. R.C.E. #65809, Exp. 9/21 Principal

BH:EGH:vs/files/Report/15013-C.016

#### Attachments

- 1. Vicinity Map
- 2. Landslide Hydrology Table
- 3. Preliminary Water Budget Summary for Landscape Areas

#### **Map Pockets**

- 1. Landslide Hydrology Pre-Project Exhibit
- 2. Landslide Hydrology Post-Project Exhibit

Attachments Vicinity Map





Landslide Hydrology Table

#### 15013C: Southwest Village Landslide Hydrology and Irrigation Summary Table

															9.53in = average anni	ual precip.															
			So	uthwest Village I	andslide Hydro	ology Summary (	AES)								Southwest Villag	e Landslide Volume Su	mmary (SWMM)	noff	Infilt	ration	4				So	outhwest Village Landslide	e Irrigation Volume Summ	ary			
			Pre-Project		Post-	-Project (Unmitij	gated)	Pc	ost-Project (Miti	gated)	Change in Area	% Change Peak Discharge			Pre-Project	Post-Project	Pre-Project	Post-Project	Pre-Project	Post-Project	% Change Runoff	% Change Infiltration	Change in Infiltration			Pre-Project	Post-Project	Post-Project	Post-Project	Change in Total	
Node	Description	Area (ac)	Tc (min)	Q100 (cfs)	Area (ac)	Tc (min)	Q100 (cfs)	Area (ac)	Tc (min)	Q100 (cfs)	(ac)	(Post-Project Mitigated - Pre- Project)	Node	Description	Avg. Annual Precipitation Volumes (ac-ft)	Avg. Annual Precipitation Volumes (ac-ft)	Avg. Annual Runoff Volume (ac-ft)	Volume (ac-ft)	Avg. Annual Infiltration Volume (ac-ft)	Avg. Annual Infiltration Volume (ac-ft)			Avg. Annual Volume (ac- ft)	Node	Description	ft)	Avg. Annual Volume Applied (ac-ft)	Evapotranspired (ac- ft)	Avg. Annual Volume Infiltrated (ac-ft)	Avg. Annual Volume (ac-ft)	Irrigation
					Westerly D	rainge toward R	Railroad Collectio	on Points									Westerly	Drainge toward Railr	oad Collection Points							١	Westerly Drainge toward I	Railroad Collection Poin	ts		
417	Upstream Edge of Landslide	7.4	10.2	10.8	8.8	10.3	23.0	8.8	22.1	4.5	1.4	-58%	417	Upstream Edge of Landslide	6.0	7.2	1.3	4.1	4.6	1.7	220%	-64%	-2.9	417	Upstream Edge of Landslide	-	4.4	4.4	0.0	-2.9	166%
430	Outfall	15.2	11.5	20.7	17.0	11.2	34.6	17.0	23.5	12.9	1.8	-38%	430	Outfall	12.3	13.6															
499	Downstream Collection Point near Railroad	188.9	15.4	244.1	180.2	14.9	243.8	180.2	27.8	165.1	-8.7	-32%	499	Downstream Railroad	149.9	144.4	30.7	30.8	120.5	111.6	0.4%	-7%	-8.8	499	Downstream Railroad	-					
545	Upstream Edge of Landslide	14.3	12.7	20.3	12.9	9.6	36.4	12.9	19.7	9.8	-1.4	-52%	545	Upstream Edge of Landslide	11.4	10.2	2.2	6.5	9.1	2.4	202%	-74%	-6.7	545	Upstream Edge of Landslide	-	7.9	7.9	0.0	-6.7	185%
550	Outfall	21.6	13.5	29.8	21.6	10.0	49.2	21.6	20.2	19.4	0.0	-35%	550	Outfall	17.1	17.1								550	Outfall	-					
780	Upstream Edge of Landslide	36.4	16.1	46.1	32.5	6.0	107.9	32.5	15.0	40.0	-3.9	-13%	780	Upstream Edge of Landslide	28.9	25.8	4.7	17.4	23.6	4.7	266%	-80%	-18.9	780	Upstream Edge of Landslide	-	6.1	6.1	0.0	-18.9	409%
782	Outfall	58.8	17.4	71.6	54.9	6.5	147.0	54.9	15.6	68.0	-3.9	-5%	782	Outfall	46.7	43.6															
799	Downstream Collection Point near Railroad	176.3	22.9	184.5	172.4	10.9	312.4	172.4	22.2	181.9	-3.9	-1%	799	Downstream Railroad	139.9	136.9	25.6	40.9	113.7	88.4	60%	-22%	-25.4	799	Downstream Railroad	-					
Total		365.2			352.6			352.6			-12.6				289.8	281.2	56.3	71.8	234.2	200.0	28%	-15%	-34.2				18.4	18.4	0.0	-34.2	286%
					Southerly D	rainage towards	s Spring Canyon	at Border								•	Southerly	Drainage towards Sp	ring Canyon at Border							Si	outherly Drainage toward	s Spring Canyon at Bord	er		
860	Upstream Edge of Landslide	4.3	11.5	6.4	5.3	9.6	15.7	5.3	20.0	6.0	1.0	-6%	860	Upstream Edge of Landslide	3.4	4.2	0.7	3.2	2.7	0.4	329%	-85%	-2.3	860	Upstream Edge of Landslide	-	0.8	0.8	0.0	-2.3	386%
870	Outfall	20.6	12.2	29.8	19.8	10.0	37.8	19.8	20.6	21.0	-0.8	-30%	870	Outfall	12.9	11.5	3.1	3.5	10.3	9.0				870	Outfall	-					
980	Upstream Edge of Landslide	6.9	14.1	9.3	9.1	6.9	30.9	9.1	20.0	8.0	2.2	-14%	980	Upstream Edge of Landslide	5.5	7.2	1.1	5.7	4.3	0.7	421%	-85%	-3.7	980	Upstream Edge of Landslide	-	2.0	2.0	0.0	-3.7	284%
981	Outfall	8.5	14.4	11.4	10.7	7.1	33.5	10.7	20.2	9.8	2.2	-14%	981	Outfall	6.7	8.5	1.4	5.8	5.3	1.6											
999	Downstream Collection Point near Border	83.5	16.7	103.8	84.9	12.0	141.4	84.9	22.9	86.8	1.4	-16%	999	Downstream Border	66.3	67.4	13.3	17.3	53.4	45.9	30%	-14%	-7.5	999	Downstream Border	-					
Total		83.5			84.9			84.9			1.4				66.3	67.4	13.3	17.3	53.4	45.9	30%	-14%	-7.5				2.8	2.8	0.0	-7.5	367%

Notes:
1. Rainfall intensities for AES Rational Method analysis were calculated using the City of San Diego's 2017 Drainage Design Manual
2. Detailed detention analysis for basins that are not a part of the Vesting Tentative Map (VTM) (Basin 700, 800, & 900) has yet to be completed. For the purpose of this analysis the Time of Concertation was approximated by using
detention analysis done on the adjacent Basins within the VTM (Basin 400 & 500). Peak flow rate for detention was based on the pre-project peak flow rates for the 100-year event. For basins not apart of the VTM ([Basin 700, 800, & 900) percent imperviousness was conservatively assumed to be 85% impervious based on the proposed land use in the Specific Plan.
 The average annual rain fall was calculated to be 9.53-inches based on annual averages calculated in EPA SWMM using the Lindberg Field rain gauge
 The Lindberg Field rain gauge was used for this analysis. The time series for this rain gauges dates from October 17, 1948 to December 31, 2005.
 Irrigation Assumptions:
 Residential lots have 5% turf
 Plan ratio (ice Plan I, Plan 2, Plan 3, ior Basins 700, 800 and 800 follows ratios from Basin 500
 Basin 500, huildings 74, 75, 76 & 78 have no trees
 Ome (1) tree per residential lot
 Turf will be irrigated by rotors
 Shrub and groundcover area will be irrigated by drip

Landscape Regulations 142.0413(d)(2)

Preliminary Water Budget Summary for Landscape Areas

#### SOUTHWEST VILLAGE

PRELIMINARY WATER BUDGET SUMMARY FOR LANDSCAPE AREAS 4/6/2021 - r2

		OVERALL TOTALS	
1,072,837	sf	Total Area of Site (sq. ft.):	
695,943	sf	Landscape Area (sq. ft.):	
38,971	sf	Special Landscape Area	
56,869	sf	Toal Area Landscaped in Turf (sq. ft.):	
8%	sf	Turf to Landscape Area Ratio:	
533,732	sf	Drip	
10,892	sf	Bubbler	
0	sf	Spray	
87,230	sf	Rotor	)
631,854	TOTAL	SF	
	30		
3,750,354	gpy	Drip	
202,591	gpy	Bubbler	
0	gpy	Spray	
2,942,109	gpy	Rotor	
6,895,054	TOTAL	GPY	
21.16	TOTAL	AC/FT	

Basin 400		Basin 500			Basin 700			Basin 800			Basin 900						
269,714 SF			337,049 S	-		181,001	SF			88,427	SF			196,645	SF		
137,549 SF			232,646 5	-		184,893	SF			52,944	SF			87,910	SF		
11,325 SF			27,646 5	F		0	SF			0	SF			0	SF		
16,729 SF			31,088 S			3,812	SF			1,429	SF			3,812	SF		
12% SF			13% S	÷.		2%	SF			3%	SF			4%	SF		
118,132 SF	830,077.00	GPY	206,149 S	1,448,541.71	GPY	112,221	SF	788,542.33	GPY	26,512	SF	186,291.83	GPY	70,717	SF	496,901.58	GPY
2,688 SF	49,996.80	GPY	3,164 S	58,850.40	GPY	2,688	SF	49,996.80	GPY	644	SF	11,978.40	GPY	1,708	SF	31,768.80	GPY
0 SF	0.00	GPY	0 5	0.00	GPY	0	SF	0.00	GPY	0	SF	0.00	GPY	0	SF	0.00	GPY
16,729 SF	564,222	GPY	31,496 S	1,062,290	GPY	33,765	SF	1,138,825	GPY	1,429	SF	48,206	GPY	3,812	SF	128,565	GPY
IS 137,549 SF	1,444,296.02	GPY	240,809 S	2,569,682.45	GPY	148,674	SF	1,977,363.97	GPY	28,585	SF	246,476.63	GPY	76,236	SF	657,235.38	GPY
	4.4	AC/FT		7.9	AC/FT			6.1	AC/FT			0.8	AC/FT			2.0	AC/F

Assumptions:

1. Residential lots have 5% turf

2. Plan ratio (ie Plan 1, Plan 2, Plan 3..) for Basins 700, 800 and 800 follows ratios from Basin 500

3. Basin 500, buildings 74, 75, 76 & 78 have no trees

4. (1) tree per residential lot

5. Turf will be irrigated by rotors

6. Shrub and groundcover area will be irrigated by drip

# Map Pocket 1

Landslide Hydrology Pre-Project Exhibit



	LEGEND		
	$\bigcirc$	P01	
		DRIANAGE NODE NUMBER	
Page 1	(XXX AC.)	BASIN AREA	
A AND		BASIN 400	
		BASIN 500 & 700	
		BASIN 800 & 900	
		EXISTING SUMP	
1984		AREA WITH NO ON-SITE CONTRIBUTION	
	ala and a	MAJOR BASIN BOUNDARY	
12 m		SUB BASIN BOUNDARY	
A SAME THE	~	EXISTING SHALLOW SUMP OVERFLOW DIRECTION	
		EXISTING BASIN	
		FLOW PATH	
		LANDSLIDE LIMITS	
		LANDSLIDE BUFFER	
AN AS		MULTI-HABITAT PLANNING AREA (MHPA) LIMITS	
anna le		MULTI-HABITAT PLANNING	
aller -		AREA IMPRAI BUFFER	
	LANDSLIDE DRA	AINAGE EXHIBIT	
and an a start of the start of	SOUTUWE	FOR	
D.	SOUTHWE	(PRE-PROJECT)	
	J-15013-C	Date: April 16, 2021	
	·	- //	

# Map Pocket 2

Landslide Hydrology Post-Project Exhibit



NOT FOR CONSTRUCTION - EXHIBIT FOR DRAINAGE STUDY ONLY

	al a	~ //
AT MILLIN	1 CER	$\langle \langle \rangle$
	Start .	
111255	A Cand	8 57
YIK 63 (	1 Th	192 a //
32140		AN AND AND AND AND AND AND AND AND AND A
11 ANY	Contra 1 F	
(CONV)	(COD)	SIM SE
Land Street	23 C C C	
	2 Star	
XXII	M2-32	
SAIT.		
STRIA		
SUL		
1 Destant	Mar -	ARA I
LEW AN		A
	A CARLO	
	STARY OF	AND AND AND AND
30 / V		1159/ 29/ Jan
		han Joseff
2 🧹		The father Search
		1 11/2 330 0
	LEGE	ND
	$\bigcirc$	POI
		DRIANAGE NODE NUMBER
2	(XX.X AC.)	BASIN AREA
CALLED .	0	BASIN 400
		BASIN 500 & 700
	7777	AREA TRIBUTARY TO
140		AREA WITH NO ON-SITE
		CONTRIBUTION
	~	EXISTING SHALLOW SUMP
4// .×		EXISTING BASIN
11 . 95	124	FLOW PATH
		LANDSLIDE LIMITS
5		LANDSLIDE BUFFER
SIV AN	-	MULTI-HABITAT PLANNING AREA (MHPA) LIMITS
111 9		MULTI-HABITAT PLANNING
	÷	- FAULT LINE
55	LANDSLIDE	
	SOUTH	FOR WEST VILLAGE VTM
2014	00011	(POST-PROJECT)
	J-15013-C	Date: April 16, 2021



# **APPENDIX G**

# **GEOVISION REPORT**

FOR

SOUTHWEST VILLAGE VTM-1 SAN DIEGO, CALIFORNIA

PROJECT NO. 06847-42-04



# BOREHOLE GEOPHYSICS SAN YSIDRO, CALIFORNIA

**Prepared for** 

**Geocon, Inc.** 26960 Flanders Dr. San Diego, CA 92121 858-558-6900

Prepared by

**GEO**Vision Geophysical Services

1124 Olympic Drive Corona, California 92881 (951) 549-1234

February 26, 2021 Report 20395-01 rev 0
## TABLE OF CONTENTS

TABLE OF CONTENTS	2
TABLE OF FIGURES	3
TABLE OF TABLES	4
APPENDICES	4
INTRODUCTION	5
SCOPE OF WORK	7
INSTRUMENTATION	
SUSPENSION VELOCITY DUAL INDUCTION / NATURAL GAMMA	
ELOG / NATURAL GAMMA	
MEASUREMENT PROCEDURES	
SUSPENSION VELOCITY DUAL INDUCTION / NATURAL GAMMA ELOG / NATURAL GAMMA	13 13 14
DATA ANALYSIS	
SUSPENSION VELOCITY DUAL INDUCTION / NATURAL GAMMA ELOG / NATURAL GAMMA	
RESULTS	
SUSPENSION VELOCITY	19 19
SUMMARY	
DISCUSSION OF SUSPENSION VELOCITY RESULTS	

CERTIFICATION	26
QUALITY ASSURANCE	25
DISCUSSION OF DUAL INDUCTION, ELOG, AND NATURAL GAMMA RESULTS	22
SUSPENSION VELOCITY DATA RELIABILITY	22

# **Table of Figures**

Figure 1:	Site Map	6
Figure 2:	Interpreting Conductivity and Resistivity2	23
Figure 3:	Concept illustration of P-S logging system	28
Figure 4:	Example of filtered (1400 Hz lowpass) suspension record2	29
Figure 5.	Example of unfiltered suspension record3	0
Figure 6:	Borehole B-1, Suspension R1-R2 P- and S _H -wave velocities	51
Figure 7:	Borehole B-1 Dual Induction, Elog and Natural Gamma	5
Figure 8:	Borehole B-2, Suspension R1-R2 P- and S _H -wave velocities	6
Figure 9:	Borehole B-2 Dual Induction, Elog and Natural Gamma4	-1
Figure 10	: Borehole B-3A, Suspension R1-R2 P- and S _H -wave velocities4	.2
Figure 11	: Borehole B-3A Dual Induction, Elog and Natural Gamma4	-6
Figure 12	:B-1, B-2 and B-3A Suspension R1-R2 P- and S⊦-wave Velocity Comparison4	•7

## **Table of Tables**

Table 1. Borehole Logging Dates and Locations	27
Table 2. Logging Tools, Depth Ranges and Sample Intervals	27
Table 3. Borehole B-1, Suspension R1-R2 depths and P- and $S_H$ -wave velocities	32
Table 4. Borehole B-2, Suspension R1-R2 depths and P- and S _H -wave velocities	37
Table 5. Borehole B-3A, Suspension R1-R2 depths and P- and S _H -wave velocities4	43

## **APPENDICES**

- APPENDIX A SUSPENSION VELOCITY MEASUREMENT QUALITY ASSURANCE SUSPENSION SOURCE TO RECEIVERANALYSIS RESULTS
- APPENDIX B DUAL INDUCTION, ELOG and NATURAL GAMMA LOGS
- APPENDIX C GEOPHYSICAL LOGGING SYSTEMS NIST TRACEABLE CALIBRATION RECORDS

## INTRODUCTION

Borehole geophysical measurements were acquired in three boreholes in San Ysidro, California (Figure 1). Borehole geophysical methods were employed to help determine depth to groundwater. Work was performed for Geocon, Inc. Data acquisition was performed between December 4, 2020 and February 5, 2021. The data analysis and report were reviewed by a **GEO***Vision* Professional Geophysicist or Engineer.



Figure 1: Site Map

## **SCOPE OF WORK**

This report presents the results of borehole geophysical measurements collected between December 4, 2020 and February 5, 2021, as detailed in Table 1. PS Suspension velocity, dual induction (DUIN), electric log (Elog) and natural gamma (NG) data were acquired. The purpose of these measurements was to supplement borehole data obtained during the drilling investigation and to assist with determining depth to groundwater in the complex geologic setting.

The OYO Suspension PS Logging System (Suspension System) was used to obtain in-situ horizontal shear ( $S_H$ ) and compressional (P) wave velocity measurements in two uncased boreholes at 1.6-foot intervals. Measurements followed **GEO***Vision* Procedure for PS Suspension Seismic Velocity Logging, revision 1.5. Acquired data were analyzed and a profile of velocity versus depth was produced for both  $S_H$  and P waves.

A detailed reference for the suspension PS velocity measurement techniques used in this study is: <u>Guidelines for Determining Design Basis Ground Motions</u>, Report TR-102293, Electric Power Research Institute, Palo Alto, California, November 1993, Sections 7 and 8.

A Robertson Geo (RG) DUIN probe was used to collect long and short conductivity data at 0.05foot intervals. An RG Elog probe was used to collect long and short normal resistivity, single point resistivity, and self-potential data. Both probes also acquired NG data. The probes acquire data at up to 0.05-foot sample rate.

Measurement procedures followed these ASTM standards:

- ASTM D5753-18,"Planning and Conducting Geotechnical Borehole Geophysical Logging"
- ASTM D6726-15, "Conducting Borehole Geophysical Logging Electromagnetic Induction"
- ASTM D6274-18, "Conducting Borehole Geophysical Logging Gamma"

Data were processed and compiled to generate profiles of the measured parameters versus depth.

## INSTRUMENTATION

#### **Suspension Velocity**

Suspension velocity measurements were performed using the suspension PS logging system, manufactured by OYO Corporation, and their subsidiary, RG. This system directly determines the average velocity of a 3.3-foot high segment of the soil column surrounding the boring of interest by measuring the elapsed time between arrivals of a wave propagating upward through the soil column. The receivers that detect the wave, and the source that generates the wave, are moved as a unit in the boring producing relatively constant amplitude signals at all depths.

The suspension system probe consists of a combined reversible polarity solenoid horizontal shearwave source ( $S_H$ ) and compressional-wave source (P), joined to two biaxial receivers by a flexible isolation cylinder, as shown in Figure 3. The separation of the two receivers is 3.3 feet, allowing average wave velocity in the region between the receivers to be determined by inversion of the wave travel time between the two receivers. The total length of the probe as used in these surveys is approximately 22 feet, with the center point of the receiver pair 12.5 feet above the bottom end of the probe.

The probe receives control signals from, and sends the digitized receiver signals to, instrumentation on the surface via an armored conductor cable. The cable is wound onto the drum of a winch and is used to support the probe. Cable travel is measured to provide probe depth data using a sheave of known circumference fitted with a digital rotary encoder.

The entire probe is suspended in the boring by the cable, therefore, source motion is not coupled directly to the boring walls; rather, the source motion creates a horizontally propagating impulsive pressure wave in the fluid filling the boring and surrounding the source. This pressure wave is converted to P and  $S_H$ -waves in the surrounding soil and rock as it passes through the casing and grout annulus and impinges upon the wall of the boring. These waves propagate through the soil and rock surrounding the boring, in turn causing a pressure wave to be generated in the fluid surrounding the receivers as the soil waves pass their location. Separation of the P and  $S_H$ -waves at the receivers is performed using the following steps:

- 1. Orientation of the horizontal receivers is maintained parallel to the axis of the source, maximizing the amplitude of the recorded S_H -wave signals.
- At each depth, S_H-wave signals are recorded with the source actuated in opposite directions, producing S_H-wave signals of opposite polarity, providing a characteristic S_Hwave signature distinct from the P-wave signal.
- 3. The 6.3-foot separation of source and receiver 1 permits the P-wave signal to pass and damp significantly before the slower S_H-wave signal arrives at the receiver.
- In saturated soils, the received P-wave signal is typically of much higher frequency than the received S_H-wave signal, permitting additional separation of the two signals by low pass filtering.
- 5. Direct arrival of the original pressure pulse in the fluid is not detected at the receivers because the wavelength of the pressure pulse in fluid is significantly greater than the dimension of the fluid annulus surrounding the probe (feet versus inches scale), preventing significant energy transmission through the fluid medium.

In operation, a distinct, repeatable pattern of impulses is generated at each depth as follows:

- 1. The source is fired in one direction producing dominantly horizontal shear with some vertical compression, and the signals from the horizontal receivers situated parallel to the axis of motion of the source are recorded.
- 2. The source is fired again in the opposite direction and the horizontal receiver signals are recorded.
- 3. The source is fired again, and the vertical receiver signals are recorded. The repeated source pattern facilitates the picking of the P and S_H-wave arrivals; reversal of the source changes the polarity of the S_H-wave pattern but not the P-wave pattern.

The data from each receiver during each source activation is recorded as a different channel on the recording system. The Suspension PS system has six channels (two simultaneous recording channels), each with a 1024 sample record. The recorded data are displayed as six channels with a common time scale. Data are stored on disk for further processing.

Review of the displayed data on the recorder or computer screen allows the operator to set the gains, filters, delay time, pulse length (energy), and sample rate to optimize the quality of the data before recording. Verification of the calibration of the Suspension PS digital recorder is performed every twelve months using a NIST traceable frequency source and counter, as presented in Appendix C.

#### **Dual Induction / Natural Gamma**

Formation conductivity data were collected using a DUIN probe manufactured by RG. The DUIN tool may also acquire natural gamma data, if equipped with the sensor. This tool can operate in fluid- or air-filled boreholes and works best in relatively conductive media such as sedimentary formations consisting of sands, silts and clays.

The probe receives control signals from, and sends the digitized measurement values to, an RG Micrologger II (MLII) on the surface via an armored multi-conductor cable. The cable is wound onto the drum of a winch and is used to support the probe. Cable travel is measured to provide probe depth data, using a sheave of known circumference fitted with a digital rotary encoder. The probe and depth data are transmitted by USB link from the MLII unit to a laptop computer where it is displayed and stored on hard disk.

An electromagnetic (EM) induction probe consists of transmitter and receiver coils. An alternating current is applied to the transmitter coil, causing the coil to radiate a primary EM field. This primary EM field generates eddy currents in subsurface materials, which give rise to a secondary EM field. The secondary EM field is measured as an alternating current in the receiver coils, which is proportional to formation conductivity. The probe coil spacing is optimized to achieve high vertical resolution, minimal borehole influence and large radius of investigation. The RG focused dual induction probe has effective coil spacings of 1.6 and 2.6 feet, operates at a frequency of 39 kHz, has 1 millisiemens/meter resolution, and operates over a 3 to 3000 millisiemens/meter conductivity range.

Natural gamma measurements rely upon small quantities of radioactive material contained in soil and rocks to emit gamma radiation as they decay. Trace amounts of uranium and thorium are present in a few minerals, where potassium-bearing minerals such as feldspar, mica and clays will include traces of a radioactive isotope of potassium. These isotopes have an extremely long half-life and emit gamma radiation as they decay. This radiation is detected by scintillation - the production of a tiny flash of light when gamma rays strike a crystal of sodium iodide. The light is converted into an electrical pulse by a photomultiplier tube. Pulses above a threshold value of 60 KeV are counted by the probe's microprocessor. The measurement is useful because the radioactive elements are concentrated in certain soil and rock types, e.g., clay or shale, and depleted in others, e.g., sandstone or coal.

#### Elog / Natural Gamma

Elog data were collected using an RG Elog probe. This probe measures single point resistance (SPR), short normal (16 inch) resistivity, long normal (64 inch) resistivity, self-potential (SP) and natural gamma, if equipped with the sensor. The addition of an insulated bridle cable makes the functional length of the tool 41 feet. This tool requires a fluid-filled borehole and works best in best in relatively resistive media such as dry limestone, well cemented sandstone, or igneous rock.

The probe receives control signals from, and sends the digitized measurement values to, an RG MLII on the surface via an armored cable. The cable is wound onto the drum of a winch and is used to support the probe. Cable travel is measured to provide probe depth using a sheave of known circumference fitted with a digital rotary encoder. The probe and depth data are transmitted by USB link from the MLII unit to a laptop computer where it is displayed and stored.

Data quality depends on good grounding at the surface. This is achieved with a metal stake driven into the ground near the borehole. The resistivity section of the probe operates by driving an alternating current into the formation from the central SPR/DRIVE electrode. The current returns via the logging cable armor. However, to ensure adequate penetration of the formation, a 10 meter (32.8 feet) insulated bridle cable is attached between the probe and cablehead, making the functional length of the probe 41 feet. The bridle is 10 meters of insulated cable with a remote, or

reference, electrode located at the top. Voltages are measured between the 16-inch and 64-inch electrodes and the remote earth connection at surface. SPR is a measure of the current flowing to the cable armor along with the voltage at the SPR electrode. The voltage divided by current gives resistance. SP is the DC bias of the 16-inch electrode with respect to the voltage return at the surface (ground stake).

## **MEASUREMENT PROCEDURES**

#### **Suspension Velocity**

Two boreholes were logged with the PS Suspension tool. Measurements followed the **GEO***Vision* Procedure for PS Suspension Seismic Velocity Logging, revision 1.5. Prior to logging, the probe was positioned with the top of the probe even with a stationary reference point, e.g., top of casing. The electronic depth counter was set to the distance between the mid-point of the receiver and the top of the probe, minus the height of the stationary reference point and recorded on the field logs. The probe was lowered to the bottom of the boring, stopping at 1.6-foot intervals to collect data, as summarized in Table 2.

At each measurement depth the measurement sequence of two opposite horizontal records and one vertical record was performed, and the gains were adjusted as required. The data from each depth were viewed on the computer display, checked, and recorded to disk before moving to the next depth.

Upon completion of the measurements, the probe zero depth indication at the depth reference point was verified prior to removal from the boring.

#### **Dual Induction / Natural Gamma**

Measurement procedures followed these ASTM standards:

- ASTM D5753-18,"Planning and Conducting Geotechnical Borehole Geophysical Logging"
- ASTM D6274-18, "Conducting Borehole Geophysical Logging Gamma"
- ASTM D6726-15, "Conducting Borehole Geophysical Logging Electromagnetic Induction"

The DUIN probe used to log B-1 and B-2 did not contain a natural gamma sensor. The DUIN probe used to log B-3A did have a natural gamma sensor. As such, we were able to acquire NG data to the surface in B-3A. Prior to logging, the probe was positioned with the top of the probe

even with a stationary reference point, e.g., top of casing, and the electronic depth counter was set to the specified length of the probe, minus the height of the reference point. Once verified with a tape measure, these calculations were recorded on a field log. Offset distances between probe tip and measurement points are adjusted by the acquisition software. The probe was lowered to the bottom of the borehole and data were acquired on ascent. The probe was returned to the surface at approximately 15 feet/minute, collecting data continuously at 0.05-foot spacing, as summarized in Table 2.

This probe was not calibrated in the field, as it is used to provide qualitative measurements, not quantitative values, and is used only to assist in picking transitions between stratigraphic units, as described in ASTM D5753-18, "Planning and Conducting Geotechnical Borehole Geophysical Logging". A functional test was performed prior to logging by placing a coil, with an effective conductivity value, over the probe, and recording the output. Results were noted on field logs.

Natural gamma was not calibrated in the field, as it is a qualitative measurement, not a quantitative value, and is used only to assist in picking transitions between stratigraphic units, as described in ASTM D6274-18, "Conducting Borehole Geophysical Logging – Gamma".

Upon completion of the measurements, the probe zero depth indication at the depth reference point was verified prior to removal from the borehole.

#### Elog / Natural Gamma

Elog and natural gamma data were acquired in three boreholes. Measurement procedures followed these ASTM standards:

- ASTM D5753-18, "Planning and Conducting Geotechnical Borehole Geophysical Logging"
- ASTM D6274-18, "Conducting Borehole Geophysical Logging Gamma"

Prior to logging, the probe was connected to the logging cable using the insulated bridle section. The probe head was insulated by wrapping all exposed metal of the cablehead and probe with selfamalgamating insulation tape. The 32.8-foot insulated bridle was checked for damage, and repaired with self-amalgamating insulation tape if needed. the probe was positioned with the top of the bridle cable even with a stationary reference point, e.g., top of casing, and the electronic depth counter was set to the specified length of the probe, 41 feet, minus the height of the reference point. Once verified with a tape measure, these calculations were recorded on a field log. Offset distances between probe tip and measurement points are adjusted by the acquisition software. The probe was lowered to the bottom of the borehole and data were acquired on ascent. The probe was returned to the surface at approximately 10 feet/minute, collecting data continuously at 0.05-foot spacing, as summarized in Table 2.

This probe was not calibrated in the field, as it is used to provide qualitative measurements, not quantitative values, and is used only to assist in picking transitions between stratigraphic units, as described in ASTM D5753-18, "Planning and Conducting Geotechnical Borehole Geophysical Logging". A functional test was performed prior to logging. This is done by applying fixed resistance values across the probe electrodes, as well as a 100 millivolt signal across the SP electrodes, and recording the resultant output. Results were noted on field logs.

Upon completion of the measurements, the probe zero depth indication at the depth reference point was verified prior to removal from the borehole.

## **DATA ANALYSIS**

#### **Suspension Velocity**

Recorded digital waveforms were analyzed to locate the most prominent first minima, first maxima, or the first break on the vertical axis records, indicating the arrival of P-wave energy. The difference in travel time between receiver 1 and receiver 2 (R1-R2) arrivals was used to calculate the P-wave velocity for that 1.0-meter segment of the soil column. When observable, P-wave arrivals on the horizontal axis records were used to verify the velocities determined from the vertical axis data. The time picks were then transferred into a template to complete the velocity calculations based on the arrival time picks made in PSLOG. The Microsoft Excel[®] analysis file accompanies this report.

P-wave velocity over the 6.3-foot interval from source to receiver 1 (S-R1) was also picked, calculated, and plotted for quality assurance of the velocity derived from the travel time between receivers. In this analysis, the depth values as recorded were increased by 4.8 feet to correspond to the mid-point of the 6.33-foot S-R1 interval. Travel times were obtained by picking the first break of the P-wave signal at receiver 1 and subtracting the calculated and experimentally verified delay, in milliseconds, from source trigger pulse (beginning of record) to source impact. This delay corresponds to the duration of the acceleration of the solenoid before the impact.

As with the P-wave records, the recorded digital waveforms were analyzed to locate clear  $S_{H}$ -wave pulses, as indicated by the presence of opposite polarity pulses on each pair of horizontal records. Ideally, the  $S_{H}$ -wave signals from the 'normal' and 'reverse' source pulses are very nearly inverted images of each other. Digital Fast Fourier Transform – Inverse Fast Fourier Transform (FFT – IFFT) lowpass filtering was used to remove the higher frequency P-wave signal from the  $S_{H}$ -wave signal. Different filter cutoffs were used to separate P- and  $S_{H}$ -waves at different depths, ranging from 600 Hz in the slowest zones to 4000 Hz in the regions of highest velocity. At each depth, the filter frequency was selected to be at least twice the fundamental frequency of the  $S_{H}$ -wave signal being filtered.

Generally, the first maxima were picked for the 'normal' signals and the first minima for the 'reverse' signals, although other points on the waveform were used if the first pulse was distorted. The absolute arrival time of the 'normal' and 'reverse' signals may vary by +/- 0.2 milliseconds, due to differences in the actuation time of the solenoid source caused by constant mechanical bias in the source, or by borehole inclination. This variation does not affect the R1-R2 velocity determinations, as the differential time is measured between arrivals of waves created by the same source actuation. The final velocity value is the average of the values obtained from the 'normal' and 'reverse' source actuation.

As with the P-wave data,  $S_{H}$ -wave velocity calculated from the travel time over the 6.33-foot interval from source to receiver 1 was calculated and plotted for verification of the velocity derived from the travel time between receivers. In this analysis, the depth values were increased by 4.8 feet to correspond to the mid-point of the 6.33-foot S-R1 interval. Travel times were obtained by picking the first break of the S_H-wave signal at the near receiver and subtracting the calculated and experimentally verified delay, in milliseconds, from the beginning of the record at the source trigger pulse to source impact.

Poisson's Ratio, v, was calculated using the following formula:

$$\mathbf{v} = \frac{\left(\frac{\mathbf{v}_{s}}{\mathbf{v}_{p}}\right)^{2} - 0.5}{\left(\frac{\mathbf{v}_{s}}{\mathbf{v}_{p}}\right)^{2} - 1.0}$$

Figure 4 shows an example of R1 - R2 measurements on a sample filtered suspension record. In Figure 4, the time difference over the 3.3-foot interval of 1.88 milliseconds for the horizontal signals is equivalent to an S_H-wave velocity of 1745 feet/second. Whenever possible, time differences were determined from several phase points on the S_H-waveform records to verify the data obtained from the first arrival of the S_H-wave pulse. Figure 5 displays the same record before filtering the S_H-waveform record with a 1400 Hz FFT - IFFT digital lowpass filter, illustrating the

presence of higher frequency P-wave energy at the beginning of the record, and distortion of the lower frequency S_H-wave by the residual P-wave signal.

Data and analyses were reviewed by a **GEO***Vision* Professional Geophysicist or Engineer as a component of the in-house data validation program.

#### **Dual Induction / Natural Gamma**

DUIN and NG data do not require analysis; however, depths to identifiable borehole log features, such as distinct natural gamma transitions, were compared with other logs to verify consistent depth readings. Long and short conductivity logs were plotted with the conductivity axis reversed to facilitate visual comparison with resistivity logs. Using WellCAD, data were exported as LAS 2.0 and logs as PDF.

#### Elog / Natural Gamma

Elog data do not require analysis; however, depths to identifiable borehole log features, such as distinct natural gamma transitions, were compared with other logs to verify consistent depth readings. Since the tool is effectively 41 ft long and requires a fluid filled borehole, data could only be acquired to approximately 41 ft below surface. Using WellCAD, Elog data were exported as LAS 2.0 and logs as PDF.

## RESULTS

#### **Suspension Velocity**

Suspension R1-R2 P- and S_H-wave velocities for boreholes B-1, B-2 and B-3A are presented in Figures 6, 8, and 10, respectively. The suspension velocity data presented in these figures are also presented in Tables 3, 4, and 5, respectively. The Microsoft Excel[®] analysis files are included in the deliverables.

P- and S_H-wave velocity data from R1-R2 analysis and quality assurance analysis of S-R1 data are plotted together in Figures A-1 through A-3. Note that R1-R2 data are an average velocity over a 3.3-foot segment of the soil column; S-R1 data are an average over 6.3 feet, creating a significant smoothing relative to the R1-R2 plots. S-R1 velocity data are also presented in Tables A-1 through A-3 and included in the Microsoft Excel[®] analysis files which also contain Poisson's Ratio calculations, tabulated data, and plots.

#### **Dual Induction, ELOG and Natural Gamma**

Combined DUIN, ELOG and NG data for boreholes B-1, B-2 and B-3A are presented as single page log plots in Figures 7, 9, and 11, respectively, and as scaled single page logs in Appendix B. Depths on all figures are referenced to ground surface. Data exported in LAS 2.0 format and log images as PDF accompany this report.

Conductivity data, measured in mS/m, were acquired with the DUIN probe. Measured conductivity values were generally in the 2 - 2,000 mS/m range and successfully acquired from maximum depth to bottom of casing in all three boreholes. Data were plotted with conductivity data reversed, i.e., high on the left, low on the right, to facilitate visual comparison with Elog resistivity data.

Elog data were acquired in all three boreholes. The Elog probe used to log B-3A had a fluid temperature sensor. For completeness, fluid temperature was added to the log plot (Figure 11). Note the slight (~1 deg C) increase in temperature with depth. In general, conductivity, resistivity,

SPR and SP logs show generally similar trends and inflections with depth, providing quality assurance validation. There are some indications of changes in lithology with depth, e.g., in B-2 slight deflections to the right in conductivity and resistivity at 220 ft, 240 ft, and 260 ft may suggest sandy interbeds. Similarly, in B-3 conductivity and resistivity deflect slightly right at 230 – 240 ft and then deflect left at about 245 ft corresponding with a rightward NG deflection. This may suggest a transition from sandy zone at 230-240 ft to a more clay-rich zone at 245 ft.

Natural Gamma data were acquired in B-1 and B-2 with the Elog probe. The DUIN probe used in these two boreholes did not have a natural gamma sensor. A different model RG DUIN probe with NG capability was used to log B-3A. As such, we were able to acquire NG data to the surface in B-3A. Overlap of NG data acquired with DUIN and Elog in B-3A indicate good general agreement, providing quality assurance validation. Depths on all figures and tables are referenced to ground surface. Data exported as LAS 2.0 format and log images as PDF accompany this report.

## SUMMARY

#### **Discussion of Suspension Velocity Results**

Suspension PS velocity data are ideally collected in an uncased, fluid filled boreholes, drilled with rotary mud (rotary wash) methods, as was the case for these boreholes. Results are summarized in the table below.

Suspension PS velocity data quality is judged based upon 5 criteria.

	Criteria	B-1	B-2	B-3A
1	Consistent data between receiver to receiver (R1 – R2) and source to receiver (S – R1) data.	Yes, good match between R1-R2 and S- R1 data for both P- and S _H -waves.	Yes, good match between R1-R2 and S- R1 data for both P- and S _H -waves.	Yes, good match between R1-R2 and S- R1 data for both P- and S _H -waves.
2	Consistency between data from adjacent depth intervals.	Yes, Data is consistent, with smooth transitions between formations.	Yes, Data is consistent, with smooth transitions between formations.	Yes, Data is consistent, with smooth transitions between formations.
3	Consistent relationship between P-wave and S _H -wave (excluding transition to saturated soils)	Yes, consistent relationship above and below water table. Depth to water 70 ft.	Yes, consistent relationship above and below water table. Depth to water 125 ft.	Yes, consistent relationship above and below water table. Perched water 156 ft. Depth to water 175 ft.
4	Clarity of P-wave and S _H -wave onset, as well as damping of later oscillations.	Generally clear P-wave and S _H -wave onsets and rapid damping of later oscillations.	Generally clear P-wave and S _H -wave onsets and rapid damping of later oscillations.	Generally clear P-wave and S _H -wave onsets and rapid damping of later oscillations.
5	Consistency of profile between adjacent borings, if available.	These three profiles provide similar velocities in similar materials, but not at similar depths or elevations, suggesting dipping formations or faulting.	These three profiles provide similar velocities in similar materials, but not at similar depths or elevations, suggesting dipping formations or faulting.	These three profiles provide similar velocities in similar materials, but not at similar depths or elevations, suggesting dipping formations or faulting.

The overall objective of PS suspension logging for this project was to identify depth to groundwater. Generally, under ideal conditions P-wave velocity can provide an indication of transition to saturated formation. In sedimentary formations, when P-wave velocity reaches and maintains 'water velocity', approximately 5, 000 ft/s, the material is fully saturated. This can be complicated when unsaturated material velocity is in this range, such as transition to soft rock, or when geology is complex, e.g., containing perched water zones. In boreholes B-2 and B-3A, S_H-wave velocities rise to approximately 2000 ft/s at the depths where P-wave velocity reaches 5000 ft/s. This makes it less certain that the 5000 ft/s P-wave velocity is due to saturation rather than the relationship between P- and S_H-wave velocity in these unsaturated materials. In borehole B-1, the P-wave rise to 5000 ft/s is not accompanied by a rise in S_H-wave velocity, so this depth to water table is unequivocal. All three borehole velocity logs are superimposed in Figure 12.

#### **Suspension Velocity Data Reliability**

P- and S_H-wave velocity measurement using the Suspension Method gives average velocities over a 3.3-foot interval of depth. This high resolution results in the scatter of values shown in the graphs. Individual measurements are reliable with estimated precision of +/- 5%. Standardized field procedures and quality assurance checks contribute to the reliability of these data.

#### **Discussion of Dual Induction, ELOG, and Natural Gamma Results**

Natural gamma and electrical properties are qualitative logs, not absolute; meaning relative changes in amplitude are more informative than the absolute values. With that in mind, we can provide general guidelines.

Generally, conductivity is higher in materials in which electric and electromagnetic fields flow preferentially. For earth materials, typically hard rock, limestone, dry sands, and similar exhibit relatively low conductivity (higher resistivity); whereas metallic ores and clays, and silts exhibit relatively high conductivity (low resistivity). For near surface materials, unconsolidated sediment is typically more conductive than consolidated sediment. Water content and salinity also contribute to increased conductivity, e.g., wet soil and sand is more conductive than dry. Below is a jpg with general ranges. Note there is overlap (from <u>http://emgeo.sdsu.edu/emrockprop.html</u> Palacky, G. J., 1988, Resistivity characteristics of geologic targets, in Investigations in Geophysics vol. 3: Electromagnetic methods in applied geophysics-theory, vol. 1, edited by M. N. Nabighian, Soc. Expl. Geophys., 53–129.)



Figure 2: Interpreting Conductivity and Resistivity

Typical near surface soils and hard rock exhibits low conductivity, usually near the low, or left, axis close to (or less than) zero mS/m. In contrast, fat clays could be in the hundreds to low thousands mS/m.

NG is higher in materials that contain uranium, thorium, or potassium (or similar) bearing minerals, or soils / rocks in which these minerals are concentrated. For example, in near surface measurements NG is higher in clays or shales and lower in sandstones and coals. Typical sands or near surface unconsolidated materials are relatively low. Clay seams may spike extremely high, the higher the value the more concentrated radioactive minerals.

Typical near surface soil would exhibit around 100CPS or less, but this can vary by location. Fat clays can cause deflections to the right to several hundred CPS.

Typically, there is an expected correlation between conductivity and natural gamma. For example, a clay seam would exhibit a relatively high NG and a corresponding conductivity high, or resistivity low. A sand would have a relatively flat NG response and a corresponding low conductivity, or high resistivity. However, relative, abrupt changes in amplitude are more indicative of formational or lithologic changes, which may assist with observations in the borehole geologic logs.

Elog data are invalid if the reference electrode at the top of the bridle cable is out of (above) borehole fluid or inside steel casing. The functional length of the Elog probe and bridle is 41 feet, thus depth to fluid or steel casing prohibited data acquisition near surface in the boreholes. Data are typically truncated approximately 41 feet below fluid level or base of steel casing, whichever is deepest. In general, Elog data are less reliable than dual induction data in conductive media. At this site, measured conductivity and resistivity values were generally within the dynamic range of the DUIN and Elog probes, respectively. As such, both logs provided quality data showing comparable inflections which may help identify lithologic interfaces.

In general, at this site, conductivity, resistivity and SPR logs show generally similar trends and inflections with depth, providing quality assurance validation. There are some indications of changes in lithology with depth, e.g., in B-2 slight deflections to the right in conductivity and resistivity at 220 ft, 240 ft, and 260 ft may suggest sandy interbeds. Similarly, in B-3 conductivity and resistivity deflect slightly right at 230 - 240 ft and then deflect left at about 245 ft corresponding with a rightward NG deflection. This may suggest a transition from sandy zone at 230-240 ft to a more clay-rich zone at 245 ft.

## **Quality Assurance**

These borehole geophysical measurements were performed using industry-standard or better methods for measurements and analyses. All work was performed under GEOVision quality assurance procedures, which include:

- Use of NIST-traceable calibrations, where applicable, for field and laboratory instrumentation
- Use of standard field data logs.
- Independent review of calculations and results by a registered professional engineer, geologist, or geophysicist.

## CERTIFICATION

All geophysical data, analysis, interpretations, conclusions, and recommendations in this document have been prepared under the supervision of and reviewed by a **GEO***Vision* California Professional Geophysicist.

Prepared by:

Robert Steller Senior Geophysicist **GEO**Vision Geophysical Services

Reviewed and approved by

Victor M Gonzalez California Professional Geophysicist, PGp 1074 **GEO**Vision Geophysical Services

PGp 1074 2/26/2021 Date

2/26/2021

Date

* This geophysical investigation was conducted under the supervision of a California Professional Geophysicist or Engineer using industry standard methods and equipment. A high degree of professionalism was maintained during all aspects of the project from the field investigation and data acquisition, through data processing, interpretation and reporting. All original field data files, field notes and observations, and other pertinent information are maintained in the project files and are available for the client to review for a period of at least one year.

A professional geophysicist's certification of interpreted geophysical conditions comprises a declaration of his/her professional judgment. It does not constitute a warranty or guarantee, expressed or implied, nor does it relieve any other party of its responsibility to abide by contract documents, applicable codes, standards, regulations or ordinances.

BOREHOLE	DATE	COORDINATES (1)						
NUMBER	LOGGED	NORTHING	EASTING	ELEVATION (FEET)				
B-1	12/4/2020	1781361.3690	6321066.9020	184.76				
B-2	12/16/2020	1781723.8880	6321575.2780	278.81				
B-3A	2/5/2021	1782049.2590	6322101.8910	359.61				

Table 1. Borehole Logging Dates and Locations
-----------------------------------------------

⁽¹⁾ Coordinates as provided by Geocon, Inc. California State Plane Zone VI (0406) US Survey Ft

Table 2. Logging Tools, Depth Rang	ges and Sample Intervals
------------------------------------	--------------------------

BOREHOLE NUMBER	TOOL AND RUN NUMBER	DEPTH RANGE (FEET)	SAMPLE INTERVAL (FEET)	
B-1	DUIN UP01	5 - 202	0.05	
B-1	ELOG NG UP01	40 - 201	0.05	
B-1	SUSPENSION DOWN01	59.1 – 186	1.6	
B-2	DUIN UP01	10 – 315	0.05	
B-2	B-2 ELOG NG UP01 40 – 314.5		0.05	
B-2	SUSPENSION DOWN01	65.6 - 303.5	1.6	
B-3A	DUIN NG UP01	2 – 272.8	0.05	
B-3A ELOG NG UP01		116 – 272	0.05	
B-3A	SUSPENSION DOWN01	116.5 – 260.8	1.6	

Note: all depths referenced to ground surface.



Figure 3: Concept illustration of P-S logging system



Figure 4: Example of filtered (1400 Hz lowpass) suspension record



Figure 5. Example of unfiltered suspension record



SAN YSIDRO BOREHOLE B-1 Receiver to Receiver Vs and Vp Analysis

Figure 6: Borehole B-1, Suspension R1-R2 P- and S_H-wave velocities

Table 3. Borehole B-1, Suspension R1-R2 depths and P- and S_H-wave velocities

American Units			Metric Units					
Depth at	Velo	ocity			Depth at	Velocity		
Midpoint					Midpoint			
Between			Poisson's		Between			Poisson's
Receivers	Vs	Vp	Ratio		Receivers	V _s	V _p	Ratio
(ft)	(ft/s)	(ft/s)			(m)	(m/s)	(m/s)	
59.1	1010	1920	0.31		18.0	310	580	0.31
60.0	890	1830	0.35		18.3	270	560	0.35
62.3	880	2980	0.45		19.0	270	910	0.45
64.0	690	4270	0.49		19.5	210	1300	0.49
65.6	1010	4170	0.47		20.0	310	1270	0.47
67.3	890	4070	0.47		20.5	270	1240	0.47
68.9	1190	4330	0.46		21.0	360	1320	0.46
70.5	1360	4900	0.46		21.5	410	1490	0.46
72.2	1190	5750	0.48		22.0	360	1750	0.48
73.8	1180	5380	0.47		22.5	360	1640	0.47
75.5	1010	5460	0.48		23.0	310	1670	0.48
77.1	1190	5460	0.48		23.5	360	1670	0.48
78.7	1630	5380	0.45		24.0	500	1640	0.45
80.4	1150	5460	0.48		24.5	350	1670	0.48
82.0	1250	5560	0.47		25.0	380	1690	0.47
83.7	890	5750	0.49		25.5	270	1750	0.49
85.3	1160	5290	0.47		26.0	350	1610	0.47
86.9	800	5650	0.49		26.5	240	1720	0.49
88.6	940	5130	0.48		27.0	290	1560	0.48
90.6	900	5210	0.48		27.6	270	1590	0.48
91.9	1150	5560	0.48		28.0	350	1690	0.48
93.5	1260	5650	0.47		28.5	380	1720	0.47
95.1	1250	5750	0.48		29.0	380	1750	0.48
96.8	1130	5290	0.48		29.5	340	1610	0.48
98.8	1160	5210	0.47		30.1	350	1590	0.47
100.1	1150	5650	0.48		30.5	350	1720	0.48
101.7	1290	5650	0.47		31.0	390	1720	0.47
103.4	1280	5650	0.47		31.5	390	1720	0.47
105.0	1290	5290	0.47		32.0	390	1610	0.47
106.6	1290	5650	0.47		32.5	390	1720	0.47
108.3	1390	5950	0.47		33.0	430	1810	0.47
109.9	1250	5560	0.47		33.5	380	1690	0.47
111.6	1220	5650	0.48		34.0	370	1720	0.48
113.5	1260	5650	0.47		34.6	380	1720	0.47
115.2	1290	5750	0.47		35.1	390	1750	0.47
115.8	1330	5950	0.47		35.3	400	1810	0.47
118.1	1300	6170	0.48		36.0	400	1880	0.48
119.8	1280	5850	0.47		36.5	390	1780	0.47

#### Summary of Compressional Wave Velocity, Shear Wave Velocity, and Poisson's Ratio Based on Receiver-to-Receiver Travel Time Data - Borehole B-1

#### Summary of Compressional Wave Velocity, Shear Wave Velocity, and Poisson's Ratio Based on Receiver-to-Receiver Travel Time Data - Borehole B-1

American Units			Metric Units						
Depth at	Velo	ocity		1 [	Depth at	Velocity			
Midpoint					Midpoint				
Between			Poisson's		Between			Poisson's	
Receivers			Ratio	╟╟	Receivers	Vs	Vp	Ratio	
(π)	(π/s)	(TT/S)	0.40	╢╟	(m)	(m/s)	(m/s)	0.40	
121.4	1220	5750	0.48	╢╟	37.0	370	1/50	0.48	
123.0	1270	5950	0.48	╢╟	37.5	390	1810	0.48	
124.7	1340	5850	0.47	╢╟	38.0	410	1780	0.47	
126.6	1400	5650	0.47	╢╟	38.0	430	1720	0.47	
128.0	1330	5650	0.47	╢╟	39.0	410	1720	0.47	
128.9	960	5650	0.49	╢╟	39.3	290	1720	0.49	
131.2	940	5850	0.49	╢╟	40.0	290	1780	0.49	
132.9	0.10	5050	0.48	╢╟	40.5	340	1720	0.48	
134.5	940	5380	0.48	╢╟	41.0	290	1640	0.48	
130.2	830	5210	0.49	╢╟	41.5	250	1090	0.49	
137.8	-	5290	-	╢╟	42.0	-	1010	-	
139.4	-	5460	-	╢╟	42.5	-	1670	-	
141.1	-	5600	-	╢╟	43.0	-	1710	-	
142.7	-	5650	-	╢╟	43.5	-	1720	-	
144.4	-	5650	-	╢╟	44.0		1720	-	
146.0	-	5650	-	╢╟	44.5	-	1720	-	
147.6	-	5560	-	╢╟	45.0	-	1690	-	
149.3	-	5420	-	╢╟	45.5	-	1650	-	
150.9	-	5130	-	╢╟	46.0	-	1560	-	
152.6	1560	5170	0.45	╢╟	46.5	480	1580	0.45	
154.2	1690	5290	0.44	╢╟	47.0	520	1610	0.44	
155.8	1710	5460	0.45	╢╟	47.5	520	1670	0.45	
157.5	1/60	6120	0.45	╢╟	48.0	540	1860	0.45	
159.1	2270	6540	0.43	╢╟	48.5	690	1990	0.43	
160.8	2060	6410	0.44	╢╟	49.0	630	1950	0.44	
162.4	1880	6350	0.45	╢╟	49.5	570	1940	0.45	
164.0	2120	0040	0.44	╢╟	50.0	050	1990	0.44	
105.7	2500	7020	0.43	╢╟	50.5	760	2140	0.43	
107.3	2530	0940	0.42	╢╟	51.0		2120	0.42	
169.0	2160	6540	0.44	╢╟	51.5	660	1990	0.44	
170.6	2290	6870	0.44	╢╟	52.0	700	2090	0.44	
172.2	2620	7090	0.42	╢╟	52.5	800	2160	0.42	
1/3.9	2/50	7500	0.42	╢╟	53.0	840	2280	0.42	
175.5	2860	1580	0.42	╢╟	53.5	8/0	2310	0.42	
177.2	2920	7040	0.42	╢╟	54.0	890	2360	0.42	
1/8.8	2620	7940	0.44	╢╟	54.5	800	2420	0.44	
180.5	2430	7250	0.44	╢╟	55.0	/40	2210	0.44	
182.1	2690	/490	0.43	╢╟	55.5	820	2280	0.43	
183.7	3020	8030	0.42	╢╟	56.0	920	2450	0.42	
185.4	3090	8130	0.42		56.5	940	2480	0.42	

#### Summary of Compressional Wave Velocity, Shear Wave Velocity, and Poisson's Ratio Based on Receiver-to-Receiver Travel Time Data - Borehole B-1

American Units						Metric Ui	nits	
Depth at	Velocity				Depth at	Velo	ocity	
Midpoint Between			Poisson's		Midpoint			Poisson's
Receivers	Vs	Vp	Ratio		Receivers	Vs	Vp	Ratio
(ft)	(ft/s)	(ft/s)			(m)	(m/s)	(m/s)	
186.0	3020	8130	0.42		56.7	920	2480	0.42

**Notes:** "-" means no data available at that depth.



Figure 7: Borehole B-1 Dual Induction, Elog and Natural Gamma



# SAN YSIDRO BOREHOLE B-2 Receiver to Receiver Vs and Vp Analysis

Figure 8: Borehole B-2, Suspension R1-R2 P- and S_H-wave velocities

Table 4. Borehole B-2, Suspension R1-R2 depths and P- and S_H-wave velocities

American Units					Metric Units				
Depth at Velocity		Depth at		Depth at	Velo				
Midpoint					Midpoint				
Between			Poisson's		Between			Poisson's	
Receivers	V _s	Vp	Ratio		Receivers	V _s	Vp	Ratio	
(ft)	(ft/s)	(ft/s)			(m)	(m/s)	(m/s)		
65.6	1840	4090	0.37		20.0	560	1250	0.37	
68.9	2330	4140	0.27		21.0	710	1260	0.27	
72.2	1630	3510	0.36		22.0	500	1070	0.36	
75.5	1810	4600	0.41		23.0	550	1400	0.41	
78.7	1940	4760	0.40		24.0	590	1450	0.40	
82.0	2380	4600	0.32		25.0	730	1400	0.32	
85.3	2010	5290	0.42		26.0	610	1610	0.42	
88.6	1930	5090	0.42		27.0	590	1550	0.42	
91.9	1900	5600	0.43		28.0	580	1710	0.43	
95.1	2300	5170	0.38		29.0	700	1580	0.38	
98.4	1730	5560	0.45		30.0	530	1690	0.45	
100.1	1620	6170	0.46		30.5	490	1880	0.46	
101.7	2070	6410	0.44		31.0	630	1950	0.44	
103.4	2300	5460	0.39		31.5	700	1670	0.39	
105.0	2530	4330	0.24		32.0	770	1320	0.24	
106.6	2670	4500	0.23		32.5	810	1370	0.23	
108.3	2750	5130	0.30		33.0	840	1560	0.30	
109.9	2080	6410	0.44		33.5	640	1950	0.44	
111.6	1940	5650	0.43		34.0	590	1720	0.43	
113.2	2400	6170	0.41		34.5	730	1880	0.41	
114.8	2730	5850	0.36		35.0	830	1780	0.36	
116.5	2800	5650	0.34		35.5	850	1720	0.34	
118.1	2750	5950	0.36		36.0	840	1810	0.36	
119.8	2600	4630	0.27		36.5	790	1410	0.27	
121.4	2160	4980	0.38		37.0	660	1520	0.38	
122.4	2040	4830	0.39		37.3	620	1470	0.39	
124.7	2380	7090	0.44		38.0	730	2160	0.44	
126.3	3550	8130	0.38		38.5	1080	2480	0.38	
128.0	3750	7940	0.36		39.0	1140	2420	0.36	
129.6	3330	8330	0.40		39.5	1020	2540	0.40	
131.2	3270	8130	0.40		40.0	1000	2480	0.40	
132.9	3400	7940	0.39		40.5	1040	2420	0.39	
134.5	3620	8330	0.38		41.0	1100	2540	0.38	
136.2	3510	8550	0.40		41.5	1070	2610	0.40	
137.8	3470	7580	0.37		42.0	1060	2310	0.37	
139.4	3510	7750	0.37		42.5	1070	2360	0.37	
141.1	3620	<u>8</u> 330	0.38		43.0	1100	<u>2</u> 540	0.38	
142.7	3750	8770	0.39		43.5	1140	2670	0.39	

#### Summary of Compressional Wave Velocity, Shear Wave Velocity, and Poisson's Ratio Based on Receiver-to-Receiver Travel Time Data - Borehole B-2
American Units				Metric Units					
Depth at	Vel	ocity			Depth at	Velo	ocity		
Midpoint					Midpoint				
Between			Poisson's		Between			Poisson's	
Receivers	V _s	Vp	Ratio	╏╟	Receivers	Vs	Vp	Ratio	
(ft)	(ft/s)	(ft/s)			(m)	(m/s)	(m/s)		
144.7	3330	7750	0.39		44.1	1020	2360	0.39	
146.0	3330	7750	0.39		44.5	1020	2360	0.39	
147.6	3700	8550	0.38		45.0	1130	2610	0.38	
149.3	3660	8330	0.38		45.5	1120	2540	0.38	
150.9	3330	8130	0.40		46.0	1020	2480	0.40	
152.6	3550	8330	0.39		46.5	1080	2540	0.39	
154.2	3830	9010	0.39		47.0	1170	2750	0.39	
155.8	3880	8770	0.38		47.5	1180	2670	0.38	
157.5	3830	9010	0.39		48.0	1170	2750	0.39	
159.1	3580	8330	0.39		48.5	1090	2540	0.39	
160.8	3420	8130	0.39		49.0	1040	2480	0.39	
162.4	3510	8550	0.40		49.5	1070	2610	0.40	
164.0	3660	8770	0.39		50.0	1120	2670	0.39	
165.7	3720	9010	0.40		50.5	1140	2750	0.40	
167.3	3270	8330	0.41		51.0	1000	2540	0.41	
169.0	2920	7580	0.41		51.5	890	2310	0.41	
170.6	3270	7940	0.40		52.0	1000	2420	0.40	
172.2	3680	8770	0.39		52.5	1120	2670	0.39	
173.9	3830	8770	0.38		53.0	1170	2670	0.38	
175.5	3750	8770	0.39		53.5	1140	2670	0.39	
177.2	3940	9260	0.39		54.0	1200	2820	0.39	
178.8	4020	9260	0.38		54.5	1220	2820	0.38	
180.5	3850	9010	0.39		55.0	1170	2750	0.39	
182.1	3920	8770	0.38		55.5	1200	2670	0.38	
183.7	4020	8770	0.37		56.0	1220	2670	0.37	
185.4	3940	8770	0.37		56.5	1200	2670	0.37	
187.0	3810	9010	0.39		57.0	1160	2750	0.39	
188.7	3790	8770	0.39		57.5	1150	2670	0.39	
190.3	3660	8770	0.39		58.0	1120	2670	0.39	
191.9	3170	7660	0.40		58.5	970	2340	0.40	
193.6	2860	7090	0.40		59.0	870	2160	0.40	
195.2	2850	7250	0.41		59.5	870	2210	0.41	
196.9	2850	7330	0.41		60.0	870	2230	0.41	
198.5	3070	7580	0.40	$\ $	60.5	940	2310	0.40	
200.1	3280	7840	0.39	$\ $	61.0	1000	2390	0.39	
201.8	3370	7840	0.39		61.5	1030	2390	0.39	
203.4	3570	8440	0.39		62.0	1090	2570	0.39	
205.1	3790	8660	0.38		62.5	1150	2640	0.38	
206.7	3400	8660	0.41		63.0	1040	2640	0.41	
208.7	3550	8440	0.39		63.6	1080	2570	0.39	

American Units				Metric Units					
Depth at	Vel	ocity			Depth at	Velo	ocity		
Midpoint		_			Midpoint		-		
Between			Poisson's		Between			Poisson's	
Receivers	Vs	Vp	Ratio		Receivers	Vs	Vp	Ratio	
(ft)	(ft/s)	(ft/s)			(m)	(m/s)	(m/s)		
210.0	3660	8660	0.39		64.0	1120	2640	0.39	
211.6	3700	8440	0.38		64.5	1130	2570	0.38	
213.3	3660	8440	0.38		65.0	1120	2570	0.38	
214.9	3550	8330	0.39		65.5	1080	2540	0.39	
216.5	3700	8770	0.39		66.0	1130	2670	0.39	
218.2	4140	9800	0.39		66.5	1260	2990	0.39	
219.8	4190	9800	0.39		67.0	1280	2990	0.39	
221.5	4220	9390	0.37		67.5	1290	2860	0.37	
223.1	3720	8330	0.38		68.0	1140	2540	0.38	
224.7	3220	7840	0.40		68.5	980	2390	0.40	
226.4	3020	7750	0.41		69.0	920	2360	0.41	
228.0	3030	7580	0.40		69.5	920	2310	0.40	
229.7	3130	8030	0.41		70.0	950	2450	0.41	
231.3	3220	8030	0.40		70.5	980	2450	0.40	
232.9	3190	7940	0.40		71.0	970	2420	0.40	
234.6	3250	8660	0.42		71.5	990	2640	0.42	
236.2	3770	9520	0.41		72.0	1150	2900	0.41	
237.9	3990	9130	0.38		72.5	1220	2780	0.38	
239.5	4440	9390	0.36		73.0	1350	2860	0.36	
241.1	5010	10420	0.35		73.5	1530	3180	0.35	
242.8	3470	8230	0.39		74.0	1060	2510	0.39	
244.4	2650	7020	0.42		74.5	810	2140	0.42	
246.1	2690	7170	0.42		75.0	820	2180	0.42	
247.7	2860	7250	0.41		75.5	870	2210	0.41	
249.3	2980	7490	0.41		76.0	910	2280	0.41	
251.0	2980	7490	0.41		76.5	910	2280	0.41	
252.6	2810	7250	0.41		77.0	860	2210	0.41	
254.3	3070	7490	0.40		77.5	940	2280	0.40	
255.9	3620	8660	0.39		78.0	1100	2640	0.39	
257.6	4220	9520	0.38		78.5	1290	2900	0.38	
259.2	3970	9260	0.39		79.0	1210	2820	0.39	
260.8	3330	8230	0.40		79.5	1020	2510	0.40	
262.5	2900	7330	0.41		80.0	880	2230	0.41	
264.1	2800	7250	0.41		80.5	850	2210	0.41	
265.8	2950	7580	0.41		81.0	900	2310	0.41	
267.4	2620	7090	0.42		81.5	800	2160	0.42	
269.0	2220	6800	0.44		82.0	680	2070	0.44	
270.7	2150	6670	0.44		82.5	660	2030	0.44	
272.3	2270	6800	0.44		83.0	690	2070	0.44	
274.0	2350	7090	0.44		83.5	<u>72</u> 0	<u>216</u> 0	0.44	

An	American Units					Metric Units				
Depth at	Velo	ocity			Depth at	Velo	ocity			
Midpoint Between	v	N	Poisson's		Midpoint Between		V	Poisson's		
Keceivers	<b>V</b> s	<b>V</b> p	Ralio		Receivers	Vs (ma (a)	Vp	Ralio		
(π)	(π/s)	(π/s)			(m)	(m/s)	(m/s)			
275.6	2580	7250	0.43		84.0	790	2210	0.43		
277.2	2980	7940	0.42		84.5	910	2420	0.42		
278.9	3140	7840	0.40		85.0	960	2390	0.40		
280.5	3400	7940	0.39		85.5	1040	2420	0.39		
282.2	3400	8130	0.39		86.0	1040	2480	0.39		
283.8	3400	8440	0.40		86.5	1040	2570	0.40		
285.4	3140	7840	0.40		87.0	960	2390	0.40		
287.1	2850	7660	0.42		87.5	870	2340	0.42		
288.7	3140	7840	0.40		88.0	960	2390	0.40		
290.4	3090	7580	0.40		88.5	940	2310	0.40		
292.0	3120	7840	0.41		89.0	950	2390	0.41		
293.6	2920	7660	0.41		89.5	890	2340	0.41		
295.3	2980	7490	0.41		90.0	910	2280	0.41		
296.9	2900	7330	0.41		90.5	880	2230	0.41		
298.6	2870	7330	0.41		91.0	880	2230	0.41		
300.2	2980	7750	0.41		91.5	910	2360	0.41		
301.8	3470	8130	0.39		92.0	1060	2480	0.39		
303.5	3620	7840	0.36		92.5	1100	2390	0.36		

Notes:

"-" means no data available at that depth.





Figure 9: Borehole B-2 Dual Induction, Elog and Natural Gamma



# SAN YSIDRO BOREHOLE B-3A Receiver to Receiver Vs and Vp Analysis

Figure 10: Borehole B-3A, Suspension R1-R2 P- and S_H-wave velocities

Table 5. Borehole B-3A, Suspension R1-R2 depths and P- and S_H-wave velocities

American Units				Metric Units					
Depth at	Velo	ocity		Depth at	Velo	ocity			
Midpoint				Midpoint					
Between			Poisson's	Between			Poisson's		
Receivers	Vs	Vp	Ratio	Receivers	V _s	Vp	Ratio		
(ft)	(ft/s)	(ft/s)		(m)	(m/s)	(m/s)			
116.5	1400	2710	0.32	35.5	430	830	0.32		
118.1	1750	3440	0.32	36.0	530	1050	0.32		
119.8	1950	3700	0.31	36.5	590	1130	0.31		
121.4	2060	3750	0.28	37.0	630	1140	0.28		
123.0	2250	3970	0.26	37.5	690	1210	0.26		
124.7	2180	4830	0.37	38.0	660	1470	0.37		
126.3	2060	4760	0.39	38.5	630	1450	0.39		
128.0	2210	4070	0.29	39.0	670	1240	0.29		
129.6	2110	3970	0.30	39.5	640	1210	0.30		
131.2	2120	4570	0.36	40.0	650	1390	0.36		
133.2	2430	5210	0.36	40.6	740	1590	0.36		
134.5	2490	4980	0.33	41.0	760	1520	0.33		
136.2	2450	4070	0.21	41.5	750	1240	0.21		
137.8	2350	3580	0.12	42.0	720	1090	0.12		
139.4	1960	3660	0.30	42.5	600	1120	0.30		
141.1	1700	4120	0.40	43.0	520	1250	0.40		
142.7	2120	4570	0.36	43.5	650	1390	0.36		
144.4	2300	4830	0.35	44.0	700	1470	0.35		
146.0	1890	4330	0.38	44.5	580	1320	0.38		
147.6	2080	4170	0.33	45.0	640	1270	0.33		
149.3	1900	5130	0.42	45.5	580	1560	0.42		
150.9	1530	3550	0.39	46.0	470	1080	0.39		
152.6	1540	4630	0.44	46.5	470	1410	0.44		
154.2	1750	3620	0.35	47.0	530	1100	0.35		
155.8	1870	6540	0.46	47.5	570	1990	0.46		
157.5	2100	6060	0.43	48.0	640	1850	0.43		
159.1	1840	7090	0.46	48.5	560	2160	0.46		
160.8	1810	6290	0.45	49.0	550	1920	0.45		
162.4	2110	4270	0.34	49.5	640	1300	0.34		
164.0	2270	4220	0.30	50.0	690	1290	0.30		
165.7	2020	4220	0.35	50.5	620	1290	0.35		
167.3	1870	6170	0.45	51.0	570	1880	0.45		
169.0	1970	5950	0.44	51.5	600	1810	0.44		
170.6	2210	5750	0.41	52.0	670	1750	0.41		
172.2	2470	5560	0.38	52.5	750	1690	0.38		
173.9	2710	5460	0.34	53.0	830	1670	0.34		
175.5	3030	5850	0.32	53.5	920	1780	0.32		
177.2	2980	7750	0.41	54.0	<u>9</u> 10	2360	0.41		

American Units				Metric Units				
Depth at	Vel	ocity			Depth at	Velo	ocity	
Midpoint					Midpoint		-	
Between			Poisson's		Between			Poisson's
Receivers	Vs	Vp	Ratio		Receivers	Vs	Vp	Ratio
(ft)	(ft/s)	(ft/s)			(m)	(m/s)	(m/s)	
178.8	3400	8770	0.41		54.5	1040	2670	0.41
180.5	3580	8330	0.39		55.0	1090	2540	0.39
182.1	3090	7940	0.41		55.5	940	2420	0.41
183.7	3030	7940	0.41		56.0	920	2420	0.41
185.4	3240	8550	0.42		56.5	990	2610	0.42
187.0	3470	8330	0.39		57.0	1060	2540	0.39
188.7	3470	9520	0.42		57.5	1060	2900	0.42
190.3	3580	9010	0.41		58.0	1090	2750	0.41
191.9	3880	8770	0.38		58.5	1180	2670	0.38
193.6	4070	8550	0.35		59.0	1240	2610	0.35
195.2	3620	8770	0.40		59.5	1100	2670	0.40
196.9	3580	8330	0.39		60.0	1090	2540	0.39
198.5	3880	8770	0.38		60.5	1180	2670	0.38
200.1	4120	9520	0.39		61.0	1250	2900	0.39
201.8	3750	8770	0.39		61.5	1140	2670	0.39
203.4	3090	7750	0.41		62.0	940	2360	0.41
205.1	3170	8330	0.42		62.5	970	2540	0.42
206.7	3550	9260	0.41		63.0	1080	2820	0.41
208.3	3920	9260	0.39		63.5	1200	2820	0.39
210.3	3750	9010	0.40		64.1	1140	2750	0.40
211.6	3330	7750	0.39		64.5	1020	2360	0.39
213.3	3510	8770	0.40		65.0	1070	2670	0.40
214.9	3790	9520	0.41		65.5	1150	2900	0.41
216.5	3920	9260	0.39		66.0	1200	2820	0.39
218.2	4020	9260	0.38		66.5	1220	2820	0.38
219.8	3920	10100	0.41		67.0	1200	3080	0.41
221.5	3700	9520	0.41		67.5	1130	2900	0.41
223.1	3470	8550	0.40		68.0	1060	2610	0.40
224.7	3880	8770	0.38		68.5	1180	2670	0.38
226.4	3970	9010	0.38		69.0	1210	2750	0.38
228.0	3830	8550	0.37		69.5	1170	2610	0.37
229.7	4170	9520	0.38		70.0	1270	2900	0.38
231.3	4500	10100	0.38		70.5	1370	3080	0.38
232.9	5210	11110	0.36		71.0	1590	3390	0.36
234.6	5130	10750	0.35		71.5	1560	3280	0.35
236.2	4630	10420	0.38		72.0	1410	3180	0.38
237.9	4980	10420	0.35		72.5	1520	3180	0.35
239.5	4900	9800	0.33		73.0	1490	2990	0.33
241.1	4020	9260	0.38		73.5	1220	2820	0.38
242.8	3830	9010	0.39		74.0	1170	2750	0.39

A	merican	Units			Metric U	nits
Depth at	Vel	ocity		Depth at	Velo	ocity
Midpoint Between Receivers	Vs	Vp	Poisson's Ratio	 Midpoint Between Receivers	Vs	v
(ft)	(ft/s)	(ft/s)		(m)	(m/s)	(m/
244.4	3700	8130	0.37	74.5	1130	248
246.1	3400	8330	0.40	75.0	1040	254
247.7	3270	8130	0.40	75.5	1000	248
249.3	3240	8130	0.41	76.0	990	248
251.0	3400	8130	0.39	76.5	1040	248
252.6	4070	9260	0.38	77.0	1240	282
254.3	4270	9010	0.35	77.5	1300	275
255.9	4170	9520	0.38	78.0	1270	290
257.6	3880	9520	0.40	78.5	1180	290
259.2	3620	8770	0.40	79.0	1100	267
260.8	4220	9260	0.37	79.5	1290	282

Notes:

"-" means no data available at that depth.

Poisson's Ratio

> 0.37 0.40

> 0.40

0.41

0.39

0.38 0.35

0.38

0.40

0.40

0.37

Vp

(m/s)

2480

2540

2480

2480

2480

2820

2750

2900

2900

2670

2820



Figure 11: Borehole B-3A Dual Induction, Elog and Natural Gamma



Figure 12: B-1, B-2 and B-3A Suspension R1-R2 P- and S_H-wave Velocity Comparison

# **APPENDIX A**

# SUSPENSION VELOCITY MEASUREMENT QUALITY ASSURANCE SUSPENSION SOURCE TO RECEIVER ANALYSIS RESULTS



SAN YSIDRO BOREHOLE B-1 Source to Receiver and Receiver to Receiver Analysis

Figure A-1: Borehole B-1, Suspension S-R1 P- and S_H-wave velocities

Table A-1. Borehole B-1, S - R1 quality assurance analysis P- and S_H-wave data

An	nerican I	Units		Metric Units					
Depth at Midpoint	Velo	ocity		Depth at Midpoint	Velo	city			
Between Source and Near Receiver	Vs	Vp	Poisson's Ratio	Between Source and Near Receiver	Vs	Vp	Poisson's Ratio		
(ft)	(ft/s)	(ft/s)		(m)	(m/s)	(m/s)			
63.9	680	2800	0.47	19.5	210	850	0.47		
64.9	740	3910	0.48	19.8	230	1190	0.48		
67.2	860	4060	0.48	20.5	260	1240	0.48		
68.8	860	4400	0.48	21.0	260	1340	0.48		
70.5	1110	5100	0.48	21.5	340	1560	0.48		
72.1	1370	5230	0.46	22.0	420	1590	0.46		
73.7	1220	5320	0.47	22.5	370	1620	0.47		
75.4	1130	5280	0.48	23.0	340	1610	0.48		
77.0	1090	5320	0.48	23.5	330	1620	0.48		
78.7	990	5460	0.48	24.0	300	1660	0.48		
80.3	1010	5230	0.48	24.5	310	1590	0.48		
81.9	900	5230	0.48	25.0	280	1590	0.48		
83.6	1150	5230	0.47	25.5	350	1590	0.47		
85.2	1190	5230	0.47	26.0	360	1590	0.47		
86.9	1200	5360	0.47	26.5	370	1640	0.47		
88.5	1230	5280	0.47	27.0	370	1610	0.47		
90.1	1240	5150	0.47	27.5	380	1570	0.47		
91.8	1170	5280	0.47	28.0	360	1610	0.47		
93.4	1170	5280	0.47	28.5	360	1610	0.47		
95.4	1260	5280	0.47	29.1	380	1610	0.47		
96.7	1220	5280	0.47	29.5	370	1610	0.47		
98.3	1080	5280	0.48	30.0	330	1610	0.48		
100.0	1090	5410	0.48	30.5	330	1650	0.48		
101.6	1110	5320	0.48	31.0	340	1620	0.48		
103.6	1150	5320	0.48	31.6	350	1620	0.48		
104.9	1160	5360	0.48	32.0	350	1640	0.48		
106.5	1170	5360	0.47	32.5	360	1640	0.47		
108.2	1200	5460	0.47	33.0	370	1660	0.47		
109.8	1230	5500	0.47	33.5	370	1680	0.47		
111.5	1230	5410	0.47	34.0	370	1650	0.47		
113.1	1190	5460	0.48	34.5	360	1660	0.48		
114.7	1190	5360	0.47	35.0	360	1640	0.47		
116.4	1190	5280	0.47	35.5	360	1610	0.47		
118.4	1190	5550	0.48	36.1	360	1690	0.48		
120.0	1200	5810	0.48	36.6	370	1770	0.48		
120.6	1210	5650	0.48	36.8	370	1720	0.48		
122.9	1250	5750	0.48	37.5	380	1750	0.48		

Arr	American Units				Metric Units				
Depth at	Vala	aitr			Donth at Midnaint	Vala	aitu		
Between Source	veic	City			Depth at Midpoint	veio			
and Near			Poisson's		Between Source			Poisson's	
Receiver	Vs	Vp	Ratio		and Near Receiver	Vs	Vp	Ratio	
(ft)	(ft/s)	(ft/s)			(m)	(m/s)	(m/s)		
124.6	1190	5750	0.48		38.0	360	1750	0.48	
126.2	1100	5650	0.48		38.5	340	1720	0.48	
127.9	970	5550	0.48		39.0	300	1690	0.48	
129.5	930	5550	0.49		39.5	280	1690	0.49	
131.5	860	5360	0.49		40.1	260	1640	0.49	
132.8	760	5360	0.49		40.5	230	1640	0.49	
133.8	730	5460	0.49		40.8	220	1660	0.49	
136.1	710	5360	0.49		41.5	220	1640	0.49	
137.7	730	5360	0.49		42.0	220	1640	0.49	
139.3	770	5410	0.49		42.5	240	1650	0.49	
141.0	900	5410	0.49		43.0	270	1650	0.49	
142.6	990	5390	0.48		43.5	300	1640	0.48	
144.3	1000	5390	0.48		44.0	310	1640	0.48	
145.9	990	5320	0.48		44.5	300	1620	0.48	
147.6	860	5190	0.49		45.0	260	1580	0.49	
149.2	830	5000	0.49		45.5	250	1530	0.49	
150.8	750	4980	0.49		46.0	230	1520	0.49	
152.5	740	5020	0.49		46.5	230	1530	0.49	
154.1	810	5480	0.49		47.0	250	1670	0.49	
155.8	1140	5920	0.48		47.5	350	1800	0.48	
157.4	1740	6300	0.46		48.0	530	1920	0.46	
159.0	1810	6390	0.46		48.5	550	1950	0.46	
160.7	2140	6530	0.44		49.0	650	1990	0.44	
162.3	2120	6390	0.44		49.5	650	1950	0.44	
164.0	2140	6660	0.44		50.0	650	2030	0.44	
165.6	2200	6590	0.44		50.5	670	2010	0.44	
167.2	2180	6490	0.44		51.0	660	1980	0.44	
168.9	2340	6660	0.43		51.5	710	2030	0.43	
170.5	2380	6880	0.43		52.0	730	2100	0.43	
172.2	2510	6880	0.42		52.5	770	2100	0.42	
173.8	2690	7280	0.42		53.0	820	2220	0.42	
175.4	2750	7280	0.42		53.5	840	2220	0.42	
177.1	2830	7670	0.42		54.0	860	2340	0.42	
178.7	2690	7720	0.43		54.5	820	2350	0.43	
180.4	2720	7720	0.43		55.0	830	2350	0.43	
182.0	2750	7720	0.43		55.5	840	2350	0.43	
183.6	2830	7630	0.42		56.0	860	2320	0.42	
185.3	2850	7910	0.43		56.5	870	2410	0.43	
186.9	2970	8060	0.42		57.0	910	2460	0.42	

American Units											
Depth at Midpoint	Velo	ocity									
Between Source and Near Receiver	Vs	Vp	Poisson's Ratio								
(ft)	(ft/s)	(ft/s)									
188.6	3040	8220	0.42								
190.2	3130	8330	0.42								
190.9	3260	8440	0.41								

Metric Units											
Depth at Midpoint	h at Midpoint Velocity										
Between Source and Near Receiver	Vs	Vp	Poisson's Ratio								
(m)	(m/s)	(m/s)									
57.5	930	2510	0.42								
58.0	960	2540	0.42								
58.2	990	2570	0.41								

Notes:

"-" means no data available at that depth.



# SAN YSIDRO BOREHOLE B-2 Source to Receiver and Receiver to Receiver Analysis

Figure A-2: Boring B-2, Suspension S-R1 P- and S_H-wave velocities

Table A-2. Borehole B-2, S - R1 quality assurance analysis P- and S_H-wave data

An	nerican	Units		Metric Units					
Depth at Midpoint	Velo	ocity		Depth at Midpoint	Velo	city			
Between Source and Near Receiver	Vs	Vp	Poisson's Ratio	Between Source and Near Receiver	Vs	Vp	Poisson's Ratio		
(ft)	(ft/s)	(ft/s)		(m)	(m/s)	(m/s)			
70.5	1510	4210	0.43	21.5	460	1280	0.43		
73.7	1690	4410	0.41	22.5	510	1340	0.41		
77.0	1910	4550	0.39	23.5	580	1390	0.39		
80.3	2190	4590	0.35	24.5	670	1400	0.35		
83.6	2210	4910	0.37	25.5	670	1500	0.37		
86.9	2020	5040	0.40	26.5	620	1540	0.40		
90.1	1920	5250	0.42	27.5	590	1600	0.42		
93.4	2050	5410	0.42	28.5	620	1650	0.42		
96.7	1890	5390	0.43	29.5	580	1640	0.43		
100.0	2080	4930	0.39	30.5	630	1500	0.39		
103.3	2340	4830	0.35	31.5	710	1470	0.35		
104.9	2540	4430	0.25	32.0	770	1350	0.25		
106.5	2670	4370	0.20	32.5	810	1330	0.20		
108.2	2430	4830	0.33	33.0	740	1470	0.33		
109.8	2440	5600	0.38	33.5	740	1710	0.38		
111.5	2320	6150	0.42	34.0	710	1870	0.42		
113.1	2320	5920	0.41	34.5	710	1800	0.41		
114.7	2560	5810	0.38	35.0	780	1770	0.38		
116.4	2810	5500	0.32	35.5	860	1680	0.32		
118.0	2600	5060	0.32	36.0	790	1540	0.32		
119.7	2430	4550	0.30	36.5	740	1390	0.30		
121.3	2440	4760	0.32	37.0	740	1450	0.32		
122.9	2560	5320	0.35	37.5	780	1620	0.35		
124.6	2670	6150	0.38	38.0	810	1870	0.38		
126.2	3280	6960	0.36	38.5	1000	2120	0.36		
127.2	3540	7630	0.36	38.8	1080	2320	0.36		
129.5	3580	7810	0.37	39.5	1090	2380	0.37		
131.1	3620	8010	0.37	40.0	1100	2440	0.37		
132.8	3580	8010	0.38	40.5	1090	2440	0.38		
134.4	3620	8120	0.38	41.0	1100	2470	0.38		
136.1	3700	8220	0.37	41.5	1130	2510	0.37		
137.7	3660	8220	0.38	42.0	1120	2510	0.38		
139.3	3750	8220	0.37	42.5	1140	2510	0.37		
141.0	3750	8220	0.37	43.0	1140	2510	0.37		
142.6	3660	8440	0.38	43.5	1120	2570	0.38		
144.3	3660	8010	0.37	44.0	1120	2440	0.37		
145.9	3750	8220	0.37	44.5	1140	2510	0.37		

An	American Units				Metric Units				
Depth at	Vala				Donth at Midnaint	Vala	aitu		
Botwoon Sourco	veic				Depth at Midpoint	velo			
and Near			Poisson's		Between Source			Poisson's	
Receiver	Vs	Vp	Ratio		and Near Receiver	Vs	Vp	Ratio	
(ft)	(ft/s)	(ft/s)			(m)	(m/s)	(m/s)		
147.6	3750	7810	0.35		45.0	1140	2380	0.35	
149.5	3880	8220	0.36		45.6	1180	2510	0.36	
150.8	3930	8440	0.36		46.0	1200	2570	0.36	
152.5	3880	8440	0.37		46.5	1180	2570	0.37	
154.1	3880	8670	0.37		47.0	1180	2640	0.37	
155.8	3880	8920	0.38		47.5	1180	2720	0.38	
157.4	3930	8920	0.38		48.0	1200	2720	0.38	
159.0	3930	8670	0.37		48.5	1200	2640	0.37	
160.7	3750	8010	0.36		49.0	1140	2440	0.36	
162.3	3750	7810	0.35		49.5	1140	2380	0.35	
164.0	3480	8120	0.39		50.0	1060	2470	0.39	
165.6	3440	8120	0.39		50.5	1050	2470	0.39	
167.2	3440	8330	0.40		51.0	1050	2540	0.40	
168.9	3400	8330	0.40		51.5	1040	2540	0.40	
170.5	3440	8440	0.40		52.0	1050	2570	0.40	
172.2	3540	8670	0.40		52.5	1080	2640	0.40	
173.8	3660	8790	0.40		53.0	1120	2680	0.40	
175.4	3980	9040	0.38		53.5	1210	2760	0.38	
177.1	4110	9310	0.38		54.0	1250	2840	0.38	
178.7	4160	9170	0.37		54.5	1270	2800	0.37	
180.4	4370	9170	0.35		55.0	1330	2800	0.35	
182.0	4110	9170	0.37		55.5	1250	2800	0.37	
183.6	4160	9170	0.37		56.0	1270	2800	0.37	
185.3	4160	9170	0.37		56.5	1270	2800	0.37	
186.9	4030	8670	0.36		57.0	1230	2640	0.36	
188.6	3770	8330	0.37		57.5	1150	2540	0.37	
190.2	3480	8330	0.39		58.0	1060	2540	0.39	
191.8	3250	8330	0.41		58.5	990	2540	0.41	
193.5	3170	8010	0.41		59.0	960	2440	0.41	
195.1	2960	/910	0.42		59.5	900	2410	0.42	
196.8	3030	/280	0.40		60.0	920	2220	0.40	
198.4	3060	//20	0.41		60.5	930	2350	0.41	
200.0	3250	8550	0.42		61.0	990	2610	0.42	
201.7	3480	8440	0.40		61.5	1060	2570	0.40	
203.3	3440	8440	0.40		62.0	1050	2570	0.40	
205.0	3580	8120	0.38		62.5	1090	2470	0.38	
200.0	3620	0100	0.39		03.0	1100	2040	0.39	
208.2	3620	8330	0.38		63.5	1100	2540	0.38	
209.9	3540	8270	0.39		64.0	1080	2520	0.39	

An	nerican	Units		Ме	tric Unit	S	
Depth at Midpoint	Vol	acity		Dopth at Midpoint	Volo	city	
Between Source	Veit	Jony			Velu		
and Near			Poisson's	Between Source			Poisson's
Receiver	Vs	Vp	Ratio	and Near Receiver	Vs	Vp	Ratio
(ft)	(ft/s)	(ft/s)		(m)	(m/s)	(m/s)	
211.5	3580	7810	0.37	64.5	1090	2380	0.37
213.5	3660	8220	0.38	65.1	1120	2510	0.38
214.8	3930	9040	0.38	65.5	1200	2760	0.38
216.4	4110	9310	0.38	66.0	1250	2840	0.38
218.1	4370	9590	0.37	66.5	1330	2920	0.37
219.7	4430	9590	0.36	67.0	1350	2920	0.36
221.4	4280	9040	0.36	67.5	1300	2760	0.36
223.0	3860	8670	0.38	68.0	1180	2640	0.38
224.7	3540	8010	0.38	68.5	1080	2440	0.38
226.3	3250	7910	0.40	69.0	990	2410	0.40
227.9	3100	7360	0.39	69.5	950	2240	0.39
229.6	3100	7720	0.40	70.0	950	2350	0.40
231.2	3130	8120	0.41	70.5	960	2470	0.41
232.9	3350	8670	0.41	71.0	1020	2640	0.41
234.5	3540	9040	0.41	71.5	1080	2760	0.41
236.1	3720	9450	0.41	72.0	1130	2880	0.41
237.8	4160	10210	0.40	72.5	1270	3110	0.40
239.4	4370	9450	0.36	73.0	1330	2880	0.36
241.1	3870	8920	0.38	73.5	1180	2720	0.38
242.7	3620	8440	0.39	74.0	1100	2570	0.39
244.3	3100	7630	0.40	74.5	950	2320	0.40
246.0	2810	7150	0.41	75.0	860	2180	0.41
247.6	2880	7360	0.41	75.5	880	2240	0.41
249.3	2880	7450	0.41	76.0	880	2270	0.41
250.9	2960	7540	0.41	76.5	900	2300	0.41
252.5	3100	7720	0.40	77.0	950	2350	0.40
254.2	3280	8330	0.41	77.5	1000	2540	0.41
255.8	3720	8330	0.38	78.0	1130	2540	0.38
257.5	4110	8790	0.36	78.5	1250	2680	0.36
259.1	3440	8790	0.41	79.0	1050	2680	0.41
260.7	3440	8220	0.39	79.5	1050	2510	0.39
262.4	3200	7630	0.39	80.0	970	2320	0.39
264.0	3030	7630	0.41	80.5	920	2320	0.41
265.7	2810	7280	0.41	81.0	860	2220	0.41
267.3	2560	7110	0.43	81.5	780	2170	0.43
268.9	2410	6960	0.43	82.0	730	2120	0.43
270.6	2270	6960	0.44	82.5	690	2120	0.44
272.2	2340	7110	0.44	83.0	710	2170	0.44
273.9	2500	7400	0.44	83.5	760	2260	0.44

Ar	nerican	Ме	tric Unit	s		
Depth at Midpoint	Velo	ocity		Depth at Midpoint	Velo	)C
Between Source and Near Receiver	Vs	Vp	Poisson's Ratio	Between Source and Near Receiver	Vs	
(ft)	(ft/s)	(ft/s)		(m)	(m/s)	
275.5	2740	7450	0.42	84.0	840	
277.1	2970	7630	0.41	84.5	910	
278.8	3240	7860	0.40	85.0	990	
280.4	3310	8060	0.40	85.5	1010	
282.1	3390	8270	0.40	86.0	1030	
283.7	3000	7860	0.41	86.5	910	
285.3	3180	7960	0.41	87.0	970	
287.0	3180	7910	0.40	87.5	970	
288.6	3060	7630	0.40	88.0	930	
290.3	2890	7630	0.42	88.5	880	
291.9	2790	7630	0.42	89.0	850	
293.5	2890	7630	0.42	89.5	880	
295.2	3060	7630	0.40	90.0	930	
296.8	3000	7630	0.41	90.5	910	
298.5	3120	7630	0.40	91.0	950	
300.1	3210	7810	0.40	91.5	980	
301.8	3350	8060	0.40	92.0	1020	
303.4	3350	7810	0.39	92.5	1020	
305.0	3250	7810	0.40	93.0	990	
306.7	3120	7630	0.40	93.5	950	
308.3	3000	7670	0.41	94.0	910	

Notes:

"-" means no data available at that depth.

Velocity

Vp

(m/s)

2270

2320

2400

2460

2520

2400

2430

2410

2320

2320

2320

2320

2320

2320

2320

2380

2460

2380

2380

2320

2340

Poisson's

Ratio

0.42

0.41

0.40

0.40

0.40

0.41

0.41

0.40

0.40

0.42

0.42

0.42

0.40

0.41

0.40

0.40

0.40

0.39

0.40

0.40

0.41



SAN YSIDRO BOREHOLE B-3A Source to Receiver and Receiver to Receiver Analysis

Figure A-3: Boring B-3A, Suspension S-R1 P- and S_H-wave velocities

Table A-3. Borehole B-3A, S - R1 quality assurance analysis P- and S_H-wave data

Ar	nerican	Units		Ме	tric Unit	s	
Depth at Midpoint	Velo	ocity		Depth at Midpoint	Velo	city	
Between Source and Near Receiver	Vs	Vp	Poisson's Ratio	Between Source and Near Receiver	Vs	Vp	Poisson's Ratio
(ft)	(ft/s)	(ft/s)		(m)	(m/s)	(m/s)	
121.3	2020	4250	0.35	37.0	610	1290	0.35
122.9	1980	4400	0.37	37.5	600	1340	0.37
124.6	1990	4430	0.37	38.0	610	1350	0.37
126.2	2020	4280	0.36	38.5	610	1300	0.36
127.9	2060	4280	0.35	39.0	630	1300	0.35
129.5	2120	4190	0.33	39.5	650	1280	0.33
131.1	2290	4310	0.30	40.0	700	1310	0.30
132.8	2360	4220	0.27	40.5	720	1290	0.27
134.4	2450	4140	0.23	41.0	750	1260	0.23
136.1	2400	3980	0.22	41.5	730	1210	0.22
138.0	2150	3980	0.29	42.1	660	1210	0.29
139.3	1990	4190	0.35	42.5	610	1280	0.35
141.0	1950	4220	0.36	43.0	600	1290	0.36
142.6	1900	4460	0.39	43.5	580	1360	0.39
144.3	1940	4340	0.37	44.0	590	1320	0.37
145.9	2080	3960	0.31	44.5	630	1210	0.31
147.6	1920	3640	0.31	45.0	580	1110	0.31
149.2	1780	3750	0.35	45.5	540	1140	0.35
150.8	1850	4140	0.37	46.0	560	1260	0.37
152.5	1730	4340	0.41	46.5	530	1320	0.41
154.1	1740	4430	0.41	47.0	530	1350	0.41
155.8	1860	4720	0.41	47.5	570	1440	0.41
157.4	1850	5600	0.44	48.0	560	1710	0.44
159.0	1840	4910	0.42	48.5	560	1500	0.42
160.7	1930	4220	0.37	49.0	590	1290	0.37
162.3	2020	4460	0.37	49.5	620	1360	0.37
164.0	1980	4400	0.37	50.0	600	1340	0.37
165.6	1950	4520	0.39	50.5	600	1380	0.39
167.2	1910	5100	0.42	51.0	580	1560	0.42
168.9	1930	5460	0.43	51.5	590	1660	0.43
170.5	2170	5500	0.41	52.0	660	1680	0.41
172.2	2400	5650	0.39	52.5	730	1720	0.39
173.8	2680	5750	0.36	53.0	820	1750	0.36
175.4	2900	6460	0.37	53.5	890	1970	0.37
177.1	3260	7450	0.38	54.0	990	2270	0.38
178.7	3200	7720	0.40	54.5	970	2350	0.40
180.4	3170	7810	0.40	55.0	960	2380	0.40

An	nerican	Units			Ме	tric Unit	S	
Depth at Midpoint	Velo	ocity			Denth at Midnoint	Velo	city	
Between Source	Ven					1010		
and Near			Poisson's		Between Source			Poisson's
Receiver	Vs	Vp	Ratio		and Near Receiver	Vs	Vp	Ratio
(ft)	(ft/s)	(ft/s)			(m)	(m/s)	(m/s)	
182.0	3200	8120	0.41		55.5	970	2470	0.41
183.6	3230	8670	0.42		56.0	980	2640	0.42
185.3	3230	8550	0.42		56.5	980	2610	0.42
186.9	3370	8440	0.41		57.0	1030	2570	0.41
188.6	3440	8550	0.40		57.5	1050	2610	0.40
190.2	3480	8790	0.41		58.0	1060	2680	0.41
191.8	3680	9040	0.40		58.5	1120	2760	0.40
193.5	3770	9310	0.40		59.0	1150	2840	0.40
195.1	3770	9590	0.41		59.5	1150	2920	0.41
196.8	3770	9590	0.41		60.0	1150	2920	0.41
198.4	3720	9310	0.40		60.5	1130	2840	0.40
200.0	3640	9040	0.40		61.0	1110	2760	0.40
201.7	3400	8670	0.41		61.5	1040	2640	0.41
203.3	3440	8670	0.41		62.0	1050	2640	0.41
205.0	3400	8550	0.41		62.5	1040	2610	0.41
206.6	3310	8920	0.42	▋┃	63.0	1010	2720	0.42
208.2	3480	8920	0.41		63.5	1060	2720	0.41
209.9	3070	8920	0.43	▋┃	64.0	940	2720	0.43
211.5	3520	9040	0.41	▋┃	64.5	1070	2760	0.41
213.2	3680	9890	0.42	▋┃	65.0	1120	3010	0.42
215.1	3770	10050	0.42	▋┃	65.6	1150	3060	0.42
216.4	3960	9740	0.40	▋┃	66.0	1210	2970	0.40
218.1	3960	9310	0.39	▋┃	66.5	1210	2840	0.39
219.7	3720	9740	0.41	▋┃	67.0	1130	2970	0.41
221.4	3560	9450	0.42	▋┃	67.5	1080	2880	0.42
223.0	3560	9450	0.42	▋┃	68.0	1080	2880	0.42
224.7	3600	9040	0.41	▋┃	68.5	1100	2760	0.41
226.3	3680	9310	0.41	▋┃	69.0	1120	2840	0.41
227.9	3810	9890	0.41	▋┃	69.5	1160	3010	0.41
229.6	4160	9740	0.39	▋▐	70.0	1270	2970	0.39
231.2	4460	9890	0.37	▋	70.5	1360	3010	0.37
232.9	4800	10210	0.36	▋┃	71.0	1460	3110	0.36
234.5	5020	10550	0.35	▋₿	71.5	1530	3220	0.35
236.1	4950	10910	0.37	╢╟	72.0	1510	3330	0.37
237.8	4590	10050	0.37	╢╟	72.5	1400	3060	0.37
239.4	4280	9890	0.38	╢╟	73.0	1300	3010	0.38
241.1	4160	9590	0.38	╢╟	73.5	1270	2920	0.38
242.7	3680	9310	0.41		74.0	1120	2840	0.41
244.3	3480	8790	0.41		74.5	1060	2680	0.41

American Units							
Depth at Midpoint	Velo	ocity					
Between Source			Deinende				
and Near Receiver	v.	V.	Ratio				
(ft)	(ft/s)	(ft/s)					
246.0	3300	8790	0.42				
247.6	3230	8550	0.42				
249.3	3330	8670	0.41				
250.9	3480	9310	0.42				
252.5	3770	9740	0.41				
254.2	3770	9590	0.41				
255.8	4060	9890	0.40				
257.5	3960	9310	0.39				
259.1	4010	9170	0.38				
260.7	4110	9590	0.39				
262.4	4060	9590	0.39				
264.0	4010	9170	0.38				
265.7	3860	9040	0.39				

Metric Units							
Depth at Midpoint	Velo	city					
Between Source and Near Receiver	Vs	Vp	Poisson's Ratio				
(m)	(m/s)	(m/s)					
75.0	1000	2680	0.42				
75.5	980	2610	0.42				
76.0	1020	2640	0.41				
76.5	1060	2840	0.42				
77.0	1150	2970	0.41				
77.5	1150	2920	0.41				
78.0	1240	3010	0.40				
78.5	1210	2840	0.39				
79.0	1220	2800	0.38				
79.5	1250	2920	0.39				
80.0	1240	2920	0.39				
80.5	1220	2800	0.38				
81.0	1180	2760	0.39				

Notes:

"-" means no data available at that depth.

# **APPENDIX B**

# **DUAL INDUCTION, ELOG and NATURAL GAMMA LOGS**









# APPENDIX C

# BORING GEOPHYSICAL LOGGING SYSTEMS - NIST TRACEABLE CALIBRATION RECORDS



# Certificate of Calibration

Cert No. 551220083842967

**Customer: GEOVISION** 1124 OLYMPIC DRIVE **CORONA CA 92881** 

Date: Sep 25, 2020

		Work Order #:	LA-90048091
		Purchase Order #:	OH-200925-01
MPC Control #:	BG9698	Serial Number:	15014
Asset ID:	15014	Department:	N/A
Gage Type:	LOGGER	Performed By:	TYLER MCKEEN
Manufacturer:	OYO	Received Condition:	IN TOLERANCE
Model Number:	03331-0000	Returned Condition:	IN TOLERANCE
Size:	N/A	Cal. Date:	September 18, 2020
Temp/RH:	26.7°C / 41.2%	Cal. Interval:	12 MONTHS
Location:	Calibration performed at MPC facility	Cal. Due Date:	September 18, 2021

### **Calibration Notes:**

See Attached Data Sheet For Calculations (1 Page)

This Certificate Supersedes Cert No. 551220083842711, Corrected Serial Number.

Calibrated IAW customer supplied data form Rev 2.1 Frequency measurement uncertainty = 0.0005 Hz Unit calibrated with Panasonic Toughbook CF-31 Ser#: 2ITYA90009

Calibrated to 4:1 accuracy ratio.

### Standards Used to Calibrate Equipment

I.D.	Description.	Model	Serial	Manufacturer	Cal. Due Date	Traceability #
DB8748	GPS TIME AND FREQUENCY RECEIVER	58503A	3625A01225	HEWLETT PACKARD	Apr 30, 2021	551220083021224
LAS0052	ARB / FUNC GENERATOR	33250A	MY40029031	AGILENT	Oct 31, 2020	551220083302616
BD7715	UNIVERSAL COUNTER	53131A	3416A05377	HEWLETT PACKARD	Apr 30, 2021	551220082934517

Calibrating Technician:

TYLER MCKEEN

QC Approval:

NIKOLAS GRØHMAN

STATEMENTS OF PASS OR FAIL CONFORMANCE: The uncertainty of measurement has been taken into account when determining compliance with specification. All measurements and test results guard banded to ensure the probability of false-accept does not exceed 2% in compliance with ANSI/NCSL Z540.3-2006 and in case without guard banded the probability of false-accept depending on test uncertainty ratio.

THE CALIBRATION REPORT STATUS: PASS Term used when compliance statement is given, and the measurement result is PASS. PASS²- Term used when compliance statement is given, and the measurement result is conditional passed or PASS². FALL Term used when compliance statement is given, and the measurement result is CAIL. FALL²- Term used when compliance statement is given, and the measurement result is conditional failed or FALS². FALL³- Term used when compliance statement is given, and the measurement result is conditional failed or FAL². REPORT OF VALUE - Term used when reported measurement is not requiring compliance statement in report. ADJUSTED. When adjustments are made to an instrument which changes the value of measurement from what was measured as found to new value as left. IMUTED. When adjustment faile collection by a field in value of measurement from what was measured as found to new value as left.

LIMITED - When an instrument fails calibration but is still functional in a limited manner

The expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%, unless otherwise stated. This The explanded understand of measurement is stated as the s

Page 1 of 2

(CERT, Rev 7)



MICRO PRECISION CALIBRATION, INC 2165 N. Glassell St., Orange, CA 92865 714-901-5659

# **Certificate of Calibration**

Date: Sep 25, 2020 **Procedures Used in this Event**  Cert No. 551220083842967

Procedure Name **GEOVISION SEISMIC Rev. 2.1** 

Description

Seismic Logger/Recorder Calibration Procedure, Rev. 2.1

Calibrating Technician:

the

TYLER MCKEEN

QC Approval:

NIKOLAS GRØHMAN

STATEMENTS OF PASS OR FAIL CONFORMANCE: The uncertainty of measurement has been taken into account when determining compliance with specification. All measurements and test results guard banded to ensure the probability of false-accept does not exceed 2% in compliance with ANSI/NCSL Z540.3-2006 and in case without guard banded the probability of false-accept depending on test uncertainty ratio.

THE CALIBRATION REPORT STATUS: PASS Term used when compliance statement is given, and the measurement result is PASS. PASS²- Term used when compliance statement is given, and the measurement result is conditional passed or PASS². FALL Term used when compliance statement is given, and the measurement result is CAIL. FALL²- Term used when compliance statement is given, and the measurement result is conditional failed or FALS². FALL³- Term used when compliance statement is given, and the measurement result is conditional failed or FAL². REPORT OF VALUE - Term used when reported measurement is not requiring compliance statement in report. ADJUSTED. When adjustments are made to an instrument which changes the value of measurement from what was measured as found to new value as left. IMUTED. When adjustment faile collection by a field in value of measurement from what was measured as found to new value as left.

LIMITED - When an instrument fails calibration but is still functional in a limited manner.

The expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%, unless otherwise stated. This The explanded understand of measurement is stated as the s

Page 2 of 2

GEOVision Report 20395-01 San Ysidro Borehole Geophysics rev 0

February 26, 2021

(CERT, Rev 7)



### SUSPENSION PS SEISMIC LOGGER/RECORDER CALIBRATION DATA FORM

INSTRUMENT DATA				
System mfg.:	OYO	Model no.:	3331	
Serial no.:	15014	Calibration date:	9/10/2020	
By:	MICROPRECISION	Due date:	9/18/2021	
Counter mfg.:	HEWLET PACKARD	Model no.:	53131A	
Serial no.:	3416 405377	Calibration date:	4/23/2020	
By:	MICROPRECISION	Due date:	4/30/2021	
Signal generator mfg.:	AGILENT	Model no.:	33250A	
Serial no.:	my 900 2903 1	Calibration date:	10/31/2019	
By:	MICROPRECISION	Due date:	10 31 2020	
Laptop controller mfg.:	PANASONIC	Model no.:	0F-31	
Serial no.:	2174A90009	Calibration date:	N/A	
SYSTEM SETTINGS:				
Gain:	01			
Filter	51	H2 Low Gut, 25	DKHZ HI CUT	
Range:	5-	200 ms		
Delay:	O	,		
Stack (1 std)	L			
System date = correct d	ate and time	8:20 Am	9/18/2020	

#### PROCEDURE:

Set sine wave frequency to target frequency with amplitude of approximately 0.25 volt peak Note actual frequency on data form.

Set sample period and record data file to disk. Note file name on data form.

Pick duration of 9 cycles using PSLOG.EXE program, note duration on data form, and save as .sps file. Calculate average frequency for each channel pair and note on data form.

Average frequency must be within +/- 1% of actual frequency at all data points.

Maximum err	or ((AVG-AC	T)/ACT*1	00)%	As found		0.13/0	e	As left	0.13/0
Target	Actual	Sample	File	Time for	Average	Time for	Average	Time for	Average
Frequency	Frequency	Period	Name	9 cycles	Frequency	9 cycles	Frequency	9 cycles	Frequency
(Hz)	(Hz)	(microS)		Hn (msec)	Hn (Hz)	Hr (msec)	Hr (Hz)	V (msec)	V (Hz)
50.00	50.00	200	001	180.0	50.00	100.0	50.00	190.0	50.00
100.0	100.0	100	002	90.00	(00.0	90.00	100.0	90.00	100.0
200.0	200.0	50	003	44.90	200.4	44.90	200.4	45.00	200.0
500.0	500.0	20	004	18.00	500.0	18.00	500.0	18,00	500.0
1000	1990	10	005	8.990	1001	9.010	998.9	B. 990	1001
2000	2000	5	006	4.500	2000	4.500	2000	4.500	2000

a

Calibrated by:	Tyler Malcan Name	9/15/20 Date	Signature
Witnessed by:	ROBERT STELLER	9/10/2020	Rt. Se
	Name	/ Date	Signature
Suspen	sion PS Seismic Recorder/Logger Calib	ration Data Form Rev 2	2.1 February 7, 2012

- 0/



MICRO PRECISION CALIBRATION, INC 2165 N. Glassell St., Orange, CA 92865 714-901-5659

# Certificate of Calibration



Cert No. 551220083929139

Date: Nov 11, 2020

**Customer: GEOVISION** 1124 OLYMPIC DRIVE **CORONA CA 92881** 

		Work Order #:	LA-90048480
		Purchase Order #:	19401-201023-01
MPC Control #:	AM6767	Serial Number:	160023
Asset ID:	160023	Department:	N/A
Gage Type:	LOGGER	Performed By:	TYLER MCKEEN
Manufacturer:	OYO	Received Condition:	IN TOLERANCE
Model Number:	3403	Returned Condition:	IN TOLERANCE
Size:	N/A	Cal. Date:	October 27, 2020
Temp/RH:	22.5°C / 42.9%	Cal. Interval:	12 MONTHS
Location:	Calibration performed at MPC facility	Cal. Due Date:	October 27, 2021

### Calibration Notes:

See attached data sheet for calculations. (1 Page)

Calibrated IAW customer supplied data form Rev 2.1

Frequency measurement uncertainty = 0.0005 Hz

Unit calibrated with Laptop Panasonic Model CF-29, s/n: 6AKSB01291 and RG Micrologger II Serial No. 5772 Calibrated To 4:1 Accuracy Ratio

Calibration performed in accordance with approved GEOVision calibration procedures included in work Instruction No. 13 Software: ML PS 4.00 Suspension Logger, GVLog.jar (2004) and pslog.exe ver 1.00 software.

### Standards Used to Calibrate Equipment

I.D.	Description.	Model	Serial	Manufacturer	Cal. Due Date	Traceability #
DB8748	GPS TIME AND FREQUENCY RECEIVER	58503A	3625A01225	HEWLETT PACKARD	Apr 30, 2021	551220083021224
BD7715	UNIVERSAL COUNTER	53131A	3416A05377	HEWLETT PACKARD	Apr 30, 2021	551220082934517
LAS0018	ARB / FUNC GENERATOR	33250A	US40001522	AGILENT	Apr 30, 2021	551220083580408

Calibrating Technician:

TYLER MCKEEN

QC Approval:

Dya Vaks

ILYA VAKS

STATEMENTS OF PASS OR FAIL CONFORMANCE: The uncertainty of measurement has been taken into account when determining compliance with specification. All measurements and test results guard banded to ensure the probability of false-accept does not exceed 2% in compliance with ANSI/NCSL Z540.3-2006 and in case without guard banded the probability of false-accept depending on test uncertainty ratio.

THE CALIBRATION REPORT STATUS

THE CALIBRATION REPORT STATUS: PASS - Term used when compliance statement is given, and the measurement result is PASS. PASS². Term used when compliance statement is given, and the measurement result is conditional passed or PASS². FAIL- Term used when compliance statement is given, and the measurement result is Conditional failed or FAIL². REPORT OF VALUE - Term used when reported measurement is not requiring compliance statement in report.

ADJUSTED. When adjustments are made to an instrument which changes the value of measurement from what was measured as found to new value as left.

LIMITED - When an instrument fails calibration but is still functional in a limited manner

The expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%, unless otherwise stated. This The explanded uncertaining of measurement is stated as the stated as the

GEOVision Report 20395-01 San Ysidro Borehole Geophysics rev 0

(CERT, Rev 7)



MICRO PRECISION CALIBRATION, INC 2165 N. Glassell St., Orange, CA 92865 714-901-5659



# **Certificate of Calibration**

Date: Nov 11, 2020 **Procedures Used in this Event** 

> Procedure Name **GEOVISION SEISMIC Rev. 2.1**

Description

Seismic Logger/Recorder Calibration Procedure, Rev. 2.1

Calibrating Technician:

the

TYLER MCKEEN

QC Approval:

Jeya Vaks

February 26, 2021

ILYA VAKS

STATEMENTS OF PASS OR FAIL CONFORMANCE: The uncertainty of measurement has been taken into account when determining compliance with specification. All measurements and test results guard banded to ensure the probability of false-accept does not exceed 2% in compliance with ANSI/NCSL Z540.3-2006 and in case without guard banded the probability of false-accept does not exceed 2% in compliance with ANSI/NCSL Z540.3-2006 and in case without guard banded the probability of false-accept does not exceed 2% in compliance with ANSI/NCSL Z540.3-2006 and in case without guard banded the probability of false-accept does not exceed 2% in compliance with ANSI/NCSL Z540.3-2006 and in case without guard banded the probability of false-accept does not exceed 2% in compliance with ANSI/NCSL Z540.3-2006 and in case without guard banded the probability of false-accept does not exceed 2% in compliance with ANSI/NCSL Z540.3-2006 and in case without guard banded the probability of false-accept does not exceed 2% in compliance with ANSI/NCSL Z540.3-2006 and in case without guard banded the probability of false-accept does not exceed 2% in compliance with ANSI/NCSL Z540.3-2006 and in case without guard banded the probability of false-accept does not exceed 2% in compliance with ANSI/NCSL Z540.3-2006 and in case without guard banded the probability of false-accept does not exceed 2% in compliance with ANSI/NCSL Z540.3-2006 and in case without guard banded the probability of false-accept does not exceed 2% in compliance with ANSI/NCSL Z540.3-2006 and in case without guard banded the probability of false-accept does not exceed 2% in compliance with ANSI/NCSL Z540.3-2006 and in case without guard banded the probability of false-accept does not exceed 2% in compliance with an exceed an

THE CALIBRATION REPORT STATUS

THE CALIBRATION REPORT STATUS: PASS - Term used when compliance statement is given, and the measurement result is PASS. PASS². Term used when compliance statement is given, and the measurement result is conditional passed or PASS². FAIL- Term used when compliance statement is given, and the measurement result is Conditional failed or FAIL². REPORT OF VALUE - Term used when reported measurement is not requiring compliance statement in report.

ADJUSTED. When adjustments are made to an instrument which changes the value of measurement from what was measured as found to new value as left.

LIMITED - When an instrument fails calibration but is still functional in a limited manner.

The expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%, unless otherwise stated. This The explanded uncertaining of measurement is stated as the stated as the

Page 2 of 2

(CERT, Rev 7)



# SUSPENSION PS SEISMIC LOGGER/RECORDER CALIBRATION DATA FORM

INSTRUMENT DATA		.1.					02		
System mfg.: 040		OYO	Model n		34		03		
Serial no.: 160023			Calibration	date:	10/27/2020				
By:	Micro	Pricis	ian	Due date:		10/2	1/2021		
Counter mfa.:	Hewl	ett pack	ard	Model no.:		5313	314		
Serial no .:	3	416 AOS	5377	Calibration	date:	04/6	23/2020		
By:	MICV	D Preci	SidA	Due date:		041	30/2021		
Signal generator mfg	Agil	1 ut		Model no		2375	TO A		
Serial no :		4000 15	22	Calibration	date:	04/0	2 /2020		
By:	NA ICH	D PVIC	ision	Due date:	duto.	04/3	30 /2021		
Lastes controlles mfg		2		Madalaa		CF	- 29		
Laptop controller mig.		anason	16	Collibration	data:		NUA		
Senarno	YAN	560121		Campration	date.		N/A		
SYSTEM SETTINGS:			0 (0	11)/1-	(+19.4)				
Gain:			0(2	allijere	west )				
Filter			10 K	Hz low	Pass				
Range:			20	o to 5	microse	C			
Delay:				Ø					
Stack (1 std)									
System date = correct	date and tim	ie	4	es					
PROCEDURE:									(2 MAGI
Set sine wave frequen	cv to target f	requency	with amplit	ude of appr	oximately 0	25 volt peak	La	otop 6AK	SP OLI
Note actual frequency	on data form	1	titut antipit	add of appr	channel of	Lo ton pour		CF-29	
Set sample period and	record data	file to dis	k Note file	name on da	ata form				05 100
Dick duration of 9 cycl	e using PSI	OGEVE	n note ne	ote duration	a on data foi	m and save	as Soft	ware MC	PS 4.00
sos file. Calculate av	arage freque	nev for es	program, n	pair and pr	te on data	form	as octa	exex. D.	2
sps life. Calculate av	age neque	ncy for ea	acti channei	pair and no	Die on uata	ioini.	PSLO	· · · · · ·	r 2004
Average frequency mu	st be within	+/- 1% of	actual frequ	iency at all	data points.		GNLO	9.52. 1	
					0 0 0/			, •/	
Maximum error ((AVG	ACT)/ACT*1	100)%	As found		0.210	-	As left	0.2%	
Target Actua	Sample	File	Time for	Average	Time for	Average	Time for	Average	
Frequency Frequer	cy Period	Name	9 cycles	Frequency	9 cycles	Frequency	9 cycles	Frequency	
(Hz) (Hz)	(microS)	Co 23	Hn (msec)	Hn (Hz)	Hr (msec)	Hr (Hz)	V (msec)	V (Hz)	
50.00 50.0	0 200	001	160	50.00	180	50.00	179.8	50.06	
100.0 00.0	100	002	90	100.0	90.)	99.89	89.9	100.1	
200.0 200.0	50	003	45.1	199.6	95.1	199.6	45.05	199.8	
500.0 500.	20	004	18	500.0	18 -3 54	a. 500.0	18	500.D	
1000 (000	10	005	8.99	1001	9.00	1000	8.99	1001.	
2000 2001	5	006	4.5	2000	4.495	2002	4.505	1998	
			1.		1 1	-		10	
Calibrated by:	14/11	- Mo	1411	1	0/27/0	$z_{0} \subset$			
	Name				Date		Signature		
White I have									
Witnessed by: Eyll, Feldman 10/27/20 MI									
Name J Date				Date	/	Signature			
						()			
Succession	DS Solemia	Pecordo	d ogger Co	libration Dr	ta Form	Pev 21 Eo	bruary 7 20	12	i i



MICRO PRECISION CALIBRATION, INC 2165 N. Glassell St., Orange, CA 92865 714-901-5659

# Certificate of Calibration



Cert No. 551220083929148

Date: Nov 11, 2020

**Customer: GEOVISION** 1124 OLYMPIC DRIVE **CORONA CA 92881** 

		Work Order #:	LA-90048480
		Purchase Order #:	19401-201023-01
MPC Control #:	AM6768	Serial Number:	160024
Asset ID:	160024	Department:	N/A
Gage Type:	LOGGER	Performed By:	TYLER MCKEEN
Manufacturer:	ΟΥΟ	Received Condition:	IN TOLERANCE
Model Number:	3403	Returned Condition:	IN TOLERANCE
Size:	N/A	Cal. Date:	October 27, 2020
Temp/RH:	26.7°C / 41.2%	Cal. Interval:	12 MONTHS
Location:	Calibration performed at MPC facility	Cal. Due Date:	October 27, 2021
	(		

#### Calibration Notes:

See attached data sheet for calculations. (1 Page)

Calibrated IAW customer supplied data form Rev 2.1

Frequency measurement uncertainty = 0.0005 Hz

Unit calibrated with Laptop Panasonic Model CF-29, s/n: 6AKSB01291 and RG Micrologger II Serial No. 5772 Calibrated To 4:1 Accuracy Ratio

Calibration performed in accordance with approved GEOVision calibration procedures included in work Instruction No. 13 Software: ML PS 4.00 Suspension Logger, GVLog.jar (2004) and pslog.exe ver 1.00 software.

### Standards Used to Calibrate Equipment

I.D.	Description.	Model	Serial	Manufacturer	Cal. Due Date	Traceability #
DB8748	GPS TIME AND FREQUENCY RECEIVER	58503A	3625A01225	HEWLETT PACKARD	Apr 30, 2021	551220083021224
BD7715	UNIVERSAL COUNTER	53131A	3416A05377	HEWLETT PACKARD	Apr 30, 2021	551220082934517
LAS0018	ARB / FUNC GENERATOR	33250A	US40001522	AGILENT	Apr 30, 2021	551220083580408

Calibrating Technician:

TYLER MCKEEN

QC Approval:

Jeya Vaks

ILYA VAKS

STATEMENTS OF PASS OR FAIL CONFORMANCE: The uncertainty of measurement has been taken into account when determining compliance with specification. All measurements and test results guard banded to ensure the probability of false-accept does not exceed 2% in compliance with ANSI/NCSL Z540.3-2006 and in case without guard banded the probability of false-accept depending on test uncertainty ratio.

THE CALIBRATION REPORT STATUS

THE CALIBRATION REPORT STATUS: PASS - Term used when compliance statement is given, and the measurement result is PASS. PASS². Term used when compliance statement is given, and the measurement result is conditional passed or PASS². FAIL- Term used when compliance statement is given, and the measurement result is Conditional failed or FAIL². REPORT OF VALUE - Term used when reported measurement is not requiring compliance statement in report.

ADJUSTED. When adjustments are made to an instrument which changes the value of measurement from what was measured as found to new value as left.

LIMITED - When an instrument fails calibration but is still functional in a limited manner

The expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%, unless otherwise stated. This The explanded uncertaining of measurement is stated as the stated as the

GEOVision Report 20395-01 San Ysidro Borehole Geophysics rev 0


MICRO PRECISION CALIBRATION, INC 2165 N. Glassell St., Orange, CA 92865 714-901-5659



## **Certificate of Calibration**

Date: Nov 11, 2020 **Procedures Used in this Event** 

> Procedure Name **GEOVISION SEISMIC Rev. 2.1**

Description

Seismic Logger/Recorder Calibration Procedure, Rev. 2.1

Calibrating Technician:

the

TYLER MCKEEN

QC Approval:

Jeya Vaks

ILYA VAKS

STATEMENTS OF PASS OR FAIL CONFORMANCE: The uncertainty of measurement has been taken into account when determining compliance with specification. All measurements and test results guard banded to ensure the probability of false-accept does not exceed 2% in compliance with ANSI/NCSL Z540.3-2006 and in case without guard banded the probability of false-accept does not exceed 2% in compliance with ANSI/NCSL Z540.3-2006 and in case without guard banded the probability of false-accept does not exceed 2% in compliance with ANSI/NCSL Z540.3-2006 and in case without guard banded the probability of false-accept does not exceed 2% in compliance with ANSI/NCSL Z540.3-2006 and in case without guard banded the probability of false-accept does not exceed 2% in compliance with ANSI/NCSL Z540.3-2006 and in case without guard banded the probability of false-accept does not exceed 2% in compliance with ANSI/NCSL Z540.3-2006 and in case without guard banded the probability of false-accept does not exceed 2% in compliance with ANSI/NCSL Z540.3-2006 and in case without guard banded the probability of false-accept does not exceed 2% in compliance with ANSI/NCSL Z540.3-2006 and in case without guard banded the probability of false-accept does not exceed 2% in compliance with ANSI/NCSL Z540.3-2006 and in case without guard banded the probability of false-accept does not exceed 2% in compliance with ANSI/NCSL Z540.3-2006 and in case without guard banded the probability of false-accept does not exceed 2% in compliance with ANSI/NCSL Z540.3-2006 and in case without guard banded the probability of false-accept does not exceed 2% in compliance with ANSI/NCSL Z540.3-2006 and in case without guard banded the probability of false-accept does not exceed 2% in compliance with an exceed an

THE CALIBRATION REPORT STATUS

THE CALIBRATION REPORT STATUS: PASS - Term used when compliance statement is given, and the measurement result is PASS. PASS². Term used when compliance statement is given, and the measurement result is conditional passed or PASS². FAIL- Term used when compliance statement is given, and the measurement result is Conditional failed or FAIL². REPORT OF VALUE - Term used when reported measurement is not requiring compliance statement in report.

ADJUSTED. When adjustments are made to an instrument which changes the value of measurement from what was measured as found to new value as left.

LIMITED - When an instrument fails calibration but is still functional in a limited manner.

The expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%, unless otherwise stated. This The explanded uncertaining of measurement is stated as the stated as the

Page 2 of 2

GEOVision Report 20395-01 San Ysidro Borehole Geophysics rev 0

February 26, 2021

(CERT, Rev 7)



## SUSPENSION PS SEISMIC LOGGER/RECORDER CALIBRATION DATA FORM

INSTRUMEN	TDATA	al la					2	423		
System mfg.:	040			Model no.:			70 7			
Serial no.:	160024			_Calibration date:14			12712820			
Ву:			Micro Prevision		Due date:		10	10 /27/2021		
Counter mfg.: Hewlett Packard			avd	Model no.:			531314			
Serial no.: 341		16+ 05377		Calibration	on date:		23/2020			
By: Micro Vielisi			elisim	Due date:		02 /30 /20 21				
Signal genera	ator mfg.:	A	gilent		Model no .:		332	SO A		
Serial no.:		0540001522			Calibration date: 6		64/07	102/2020		
By:		M	icro pre	easion	Due date:		04/1	30 /2021		
Laptop contro	ller mfg.:	Panasonic			Model no.:			CF-29		
Serial no .:	GAKSB01291			Calibration date:			N/A			
SYSTEM SET	TTINGS:					1.				
Gain:				¢	) (Zall	lowest	)			
Filter				(0	KHZ lon	Pass				
Range: 200 to 5 microsec										
Delay:					7					
Stack (1 std)										
System date :	= correct da	te and tim	e		1-1					
PROCEDURI Set sine wave Note actual fr Set sample po Pick duration	E: equency on eriod and re of 9 cycles	to target fi data form cord data using PSL	requency file to dis OG.EXE	with amplit k. Note file program, n	ude of appronunce of approximate on data	oximately 0. ta form. on data for	.25 volt peak	Soft PS L	ware ML 125 4.00 og.exe V.1.00 og.jav ver. 2004	
.sps me. Cal	Julate avera	ge liequei	icy ioi ea	ich channel	pair anu no	ile on uata i	ionn.	10 - 71 C	5	
Average frequ	iency must	be within +	+/- 1% of	actual frequ	iency at all	data points.				
Maximum error ((AVG-ACT)/ACT*100)% As found					5	0.12%		As left	0.12%	
Target	Actual	Sample	File	Time for	Average	Time for	Average	Time for	Average	
Frequency	Frequency	Period	Name	9 cycles	Frequency	9 cycles	Frequency	9 cycles	Frequency	
(Hz)	(Hz)	(microS)	C024	Hn (msec)	Hn (Hz)	Hr (msec)	Hr (Hz)	V (msec)	V (Hz)	
50.00	50.00	200	001	180.2	49.94	180	50.00	180.2	49.94	
100.0	100.0	100	002	89.9	100.1	90	100.0	89.9	100.1	
200.0	200.0	50	003	45	200.0	45.05	199.8	45	200.0	
500.0	500.0	20	004	18	500.0	18	500.0	18	500.0	
1000	1000	10	005	7	/00D	9.01	998.9	9	1000	
2000	2000	5	006	4.495	2002	4.435	2001	4.505	1998	
Calibrated by:					10/29/20 Type Myle				Mylan	
		Name				Date		Signature		
Witnessed by	:	Enily Felduar			10/27/20			AAP -		
		Name	)			Date 😹		Signature	gnature	
0										
Su	spension PS	S Seismic	Recorder	r/Logger Ca	libration Da	ta Form F	Rev 2.1 Fe	bruary 7, 201	12	





## **APPENDIX H**

## **RICK ENGINEERING VTM PLAN**

FOR

SOUTHWEST VILLAGE VTM-1 SAN DIEGO, CALIFORNIA

PROJECT NO. 06847-42-04



- 1. Abbott, P. L. and J. A. May, *Eocene Geologic History San Diego Region*, SEPM, Pacific Section, 1991.
- 2. Anderson, J. G., *Synthesis of Seismicity and Geologic Data in California*, U.S. Geologic Survey Open-File Report, 84-424, 1984, pp. 1-186.
- 3. *City of San Diego Seismic Safety Study, Geologic Hazards and Faults*, 2008 Edition.
- 4. California Geological Survey, formerly Division of Mines and Geology, *Landslide Hazards* in the Southern Part of the San Diego County Metropolitan Area, San Diego County, California, DMG Open-File Report 95-03, 1995.
- California Geological Survey, Seismic Shaking Hazards in California, Based on the USGS/CGS Probabilistic Seismic Hazards Assessment (PSHA) Model, 2002 (revised April 2003). 10% probability of being exceeded in 50 years. <u>http://redirect.conservation.ca.gov/cgs/rghm/pshamap/pshamain.html</u>
- 6. Geocon Incorporated, *Geotechnical Investigation, Intermodal Transportation Center, San Ysidro, California*, dated May 21, 2001 (Project No. 06637-32-01).
- 7. Geocon Incorporated, *Geotechnical Feasibility Study, South Otay Mesa Property, San Diego, California*, dated October 4, 2002 (Project No. 06847-42-01).
- 8. Geocon Incorporated, Update to Geotechnical Feasibility Study, Pipitone Lot Split Parcel 2, South Otay Mesa Property, San Diego, California, dated July 17, 2013 (Project No. 06847-42-02).
- 9. Jennings, C. W., *Fault Activity Map of California and Adjacent Areas*, California Geologic Survey, formerly Division of Mines and Geology, 1975 (revised 1987).
- 10. Kennedy, M. P., *Geology of the San Diego Metropolitan Area, California,* <u>Bulletin 200</u>, California Geological Survey, formerly Division of Mines and Geology, 1975.
- 11. Kennedy, M. P. and S. S. Tan, *Geologic Map of the San Diego 30'x60' Quadrangle, California*, USGS Regional Map Series Map No. 3, Scale 1:100,000, 2005.
- 12. Rick Engineering Company, Landslide Hydrology Analysis for Southwest Village, Rick Engineering Job Number 15013-C, dated April 21, 2021.
- 13. San Diego Association of Geologists, *Geology of Southwestern San Diego County, California and Northwestern Baja California*, edited by Gregory T. Ferrand, 1976.
- 14. Stark, Choi, McCone, 2005, Journal of Geotechnical and Geoenvironmental Engineering, Drained Shear Strength Parameters for Analysis of Landslides.
- 15. The Geological Society of America, *The Otay Mesa Lateral Spread, a Late Tertiary Mega Landslide in Metropolitan San Diego County, California*, by W.L. Vanderhurst, M.W. Hart and C. Warren, August, 2011.

- 16. USGS (2014), U.S. Seismic Design Maps Web Application (version 3.1.0), http://earthquake.usgs.gov/designmaps/us/application.php.
- 17. USGS (2016), *Quaternary Fault and Fold Database of the United States:* U.S. Geological Survey website, http://earthquakes,usgs.gov/hazards/qfaults.
- 18. Unpublished reports, aerial photographs, and maps on file with Geocon Incorporated.
- 19. Wesnousky, S. G., *Earthquakes, Quaternary Faults, and Seismic Hazard in California,* Journal of Geophysical Research, Vol. 91, No. B12, 1986, pp. 12, 587, 631.