

EILAR ASSOCIATES, INC.

Acoustical and Environmental Consulting

210 South Juniper Street, Suite 100, Escondido, CA 92025 Phone: 760-738-5570 or 800-439-8205 • Fax: 760-738-5227 www.eilarassociates.com • info@eilarassociates.com

May 16, 2016

Job #B50405N2

Carrier Johnson + Culture Attention: Vicki Piazza 1301 Third Avenue San Diego, California 92101

Subject: Response to Acoustical Cycle Issues for Strauss Fifth Avenue Apartments SDP, City of San Diego Project No. 451832

This letter is in response to the City of San Diego Cycle Issues letter for the residential development known as Strauss Fifth Avenue. Comments are found in the letter dated May 9, 2016, and are located in the LDR-Environmental section. These comments have been addressed in a revised version of the report, dated May 16, 2016, and this letter will reference the location of each comment response or requested changes in the revised report.

Italics are added to indicate City of San Diego staff comments.

LDR-Environmental Comments

Noise

34 EAS received "Acoustical Analysis Report for Strauss Fifth Avenue, 3534 Fifth Avenue, San Diego, California," prepared by Eilar Associates, Inc., dated January 27, 2016.

35 Project Description: Some areas of the report refer to a mixed use development, however please clarify no new mixed use development is proposed, but that the site includes an existing office building which would remain. In addition, the project now proposes 141 units instead of the 113 units as indicated in the report. Please update the project description and ensure the analysis, conclusions, and site plan addresses the currently proposed project.

RESPONSE: Section 2.1 of the report (Project Description) has been updated to state the newly proposed unit count and clarifies that no new mixed use development is proposed. This section also mentions the existing office building proposed to remain on site. All other sections of the report have been updated, as necessary, to reflect this change, and project plans in Appendix A have been replaced with current drawings. The analysis of HVAC noise impacts has also been updated in order to account for the increased number of HVAC units proposed to be located on site due to the increased unit count. Section 5.3, Figure 8, and Appendix H have been updated accordingly.

36 Page 3, Roadway Noise Sources: Please provide a space between the paragraph discussion of the Fourth and Sixth Avenues.

RESPONSE: This minor typographical error has been corrected on Page 3.

Please call if you have any questions or require additional information.

EILAR ASSOCIATES, INC.

Amy Hool, Principal Acoustical Consultant

Jonathan Brothers, Senior Acoustical Consultant

ACOUSTICAL ANALYSIS REPORT

Strauss Fifth Avenue 3534 Fifth Avenue San Diego, California

City of San Diego Project No. 451832

Prepared For

Carrier Johnson + Culture Attention: Vicki Piazza 1301 Third Avenue San Diego, California 92101 Phone: 619-687-2434

Prepared By

Eilar Associates, Inc. Acoustical & Environmental Consulting 210 South Juniper Street, Suite 100 Escondido, California 92025 www.eilarassociates.com Phone: 760-738-5570 Fax: 760-738-5227

Job #B50405N2

May 16, 2016

TABLE OF CONTENTS

<u>Page</u>

1.0	EXECUTIVE SUMMARY	1
2.0	INTRODUCTION2.1Project Description2.2Project Location2.3Applicable Noise Regulations	2
3.0	ENVIRONMENTAL SETTING3.1Existing Noise Environment3.2Future Noise Environment	3
4.0	METHODOLOGY AND EQUIPMENT4.1Methodology4.2Measurement Equipment	7
5.0	NOISE IMPACTS5.1Exterior5.2Interior5.3Project-Related Noise Impacts on Surrounding Pro	10 operty Lines
6.0	CONCLUSION	21
7.0	CERTIFICATION	22
8.0	REFERENCES	23

FIGURES

- 1. Vicinity Map
- 2. Assessor's Parcel Map
- 3. Satellite Aerial Photograph
- 4. Topographic Map
- 5. Site Plan Showing Current Traffic CNEL Contours and Noise Measurement Location
- 6. Site Plan Showing Future Traffic CNEL Contours and Noise Measurement Location
- 7. Site Plan Showing Outdoor Use Area and Building Facade Receiver Locations
- 8. Site Plan Showing HVAC Noise Source and Receiver Locations
- 9. Satellite Aerial Photograph Showing Temporary Construction Noise Source and Receiver Locations

APPENDICES

- A. Project Plans
- B. Pertinent Sections of the City of San Diego Noise Element to the General Plan and Municipal Code
- C. Traffic Noise Model (TNM) Data and Results
- D. Manufacturer Data Sheets
- E. Sound Insulation Prediction Results
- F. Exterior-to-Interior Noise Analysis
- G. Recommended Products
- H. Cadna Analysis Data and Results
- I. Temporary Construction Noise Calculations

1.0 EXECUTIVE SUMMARY

The proposed project, Strauss Fifth Avenue, consists of the construction of a new six-story, 141-unit apartment complex. First floor and below-grade garage parking will also be provided, and an existing office building will remain on site. The project site is located at 3534 Fifth Avenue, in the City of San Diego, California.

The current and future noise environment primarily consists of traffic noise from Fourth Avenue, Fifth Avenue, Sixth Avenue, and State Route 163 (SR-163). Future noise impacts at building facades will range from 49.4 CNEL at the south-facing facade of the second floor to 65.2 CNEL at the east-facing facade of the first floor.

As per City of San Diego requirements, noise levels at residential outdoor use areas of the project site should be 65 CNEL or less. Future traffic noise impacts were calculated for common outdoor use areas for residential use. Future traffic noise impacts were calculated to be lower than 65 CNEL at all common outdoor use areas. No project design features are deemed necessary for attenuating exterior noise impacts.

The City of San Diego and State of California require interior noise levels of 45 CNEL or less in residential units. Exterior noise levels at many proposed building facades are shown to exceed 60 CNEL. Due to high exterior noise levels at building facades, an exterior-to-interior analysis was performed to determine building features necessary to reduce interior noise levels in residential units to 45 CNEL or less, as required by the State of California and the City of San Diego. Calculations show that with the proposed exterior wall assemblies, all windows and glass doors of residential units should have a minimum rating of STC 28, and mechanical ventilation should be provided in residential units. With these project design features in place, interior noise levels are expected to comply with the regulations of the City of San Diego and the State of California.

The proposed common wall assemblies and floor/ceiling assemblies are expected to meet the minimum required ratings dictated by the State of California Building Code for sound transmission class (STC) and impact insulation class (IIC) ratings as currently designed. Refer to Section 5.2.2 for more details.

Calculations show that noise levels generated by anticipated HVAC units are expected to meet the applicable nighttime noise limits at surrounding property lines, without considering potential shielding that could be provided by a parapet wall. No added project design features are deemed necessary for attenuating these mechanical noise impacts.

Noise from temporary construction activities is not expected to exceed the applicable construction noise limits of the City of San Diego at any surrounding residential property line. Construction is prohibited between the hours of 7 p.m. and 7 a.m. and on Sundays or legal holidays. Standard construction noise control methods including adhering to permissible hours of operation, maintaining equipment in proper operating condition, and placing staging areas at furthest locations from noise sensitive receivers, are expected to be sufficient for reducing noise impacts to surrounding receivers.

2.0 INTRODUCTION

This acoustical analysis report is submitted to satisfy the acoustical requirements of the City of San Diego Noise Element to the General Plan. This analysis addresses noise impacts from nearby roadway traffic to determine project features necessary to achieve compliance with the City of San Diego Noise Element to the General Plan. These regulations require exterior noise levels of 65 CNEL or less at outdoor use areas, and interior noise levels of 45 CNEL or less in residential spaces. Common wall and floor/ceiling assemblies were also evaluated to determine compliance with State of California Building Code regulations for Sound Transmission Class (STC) and Impact Insulation Class (IIC) ratings. This analysis will also address the potential permanent and temporary noise impacts caused by the project at surrounding noise-sensitive receivers, and, if needed, recommend mitigation to reduce impacts to be compliant with applicable noise limits.

All noise level or sound level values presented herein are expressed in terms of decibels, with Aweighting to approximate the hearing sensitivity of humans. Time-averaged noise levels are expressed by the symbol L_{EQ} , for a specified duration. The Community Noise Equivalent Level (CNEL) is a calculated 24-hour weighted average, where sound levels during evening hours of 7 p.m. to 10 p.m. have an added 5 dB weighting, and sound levels during nighttime hours of 10 p.m. to 7 a.m. have an added 10 dB weighting. This is similar to the Day-Night sound level, L_{DN} , which is a 24hour average with an added 10 dB weighting on the same nighttime hours but no added weighting on the evening hours. Sound levels expressed in CNEL are always based on A-weighted decibels. These metrics are used to express noise levels for both measurement and municipal regulations, for land use guidelines, and for enforcement of noise ordinances. Further explanation can be provided upon request.

Sound pressure is the actual noise experienced by a human or registered by a sound level instrument. When sound pressure is used to describe a noise source it must specify the distance from the noise source to provide complete information. Sound power, on the other hand, is a specialized analytical method to provide information without the distance requirement, but it may be used to calculate the sound pressure at any desired distance.

2.1 **Project Description**

The proposed project, Strauss Fifth Avenue, consists of the construction of a new six-story, 141-unit apartment complex. First floor and below-grade parking will also be provided, and an existing office building will remain on site. No new mixed use development is proposed. Outdoor use areas for the project are provided as a common pool area and a common outdoor courtyard. For further details, please refer to the project plans, provided as Appendix A.

2.2 **Project Location**

The project site is located at 3534 Fifth Avenue, in the City of San Diego, California. The Assessor's Parcel Numbers (APN) for the property are 452-406-14-00, 452-406-15-00, 452-406-16-00, and 452-406-17-00. The project location is shown on the Vicinity Map, Figure 1, following this report. An Assessor's Parcel Map, Satellite Aerial Photograph, and Topographic Map of this area are also provided as Figures 2 through 4, respectively.

2.3 Applicable Noise Regulations

This acoustical analysis report is submitted to satisfy the acoustical requirements of the City of San Diego. The City of San Diego Noise Element to the General Plan requires that at a multi-family

residential land use, indoor noise levels are attenuated to 45 CNEL for residential space, and noise levels at residential outdoor use areas do not exceed 65 CNEL.

Noise sources on the project site must also be evaluated to determine their impact on neighboring receivers. The City of San Diego Municipal Code gives noise limits for residential properties based on density. The municipal code states that high density or mixed use properties have noise limits of 60 dBA between the hours of 7 a.m. and 7 p.m., 55 dBA between the hours of 7 p.m. and 10 p.m., and 50 dBA between the hours of 10 p.m. and 7 a.m. The subject property is considered high-density multi-family residential. Properties to the north, south, east, and west all include similar land uses to that which is proposed at the project site, and therefore, will be evaluated as such.

In addition, Section 59.5.0404 of the City of San Diego Municipal Code states that construction activity is prohibited between the hours of 7 p.m. and 7 a.m. and on Sundays or legal holidays. During permissible hours of operation, noise levels from construction activity must be limited to a twelve-hour average of no greater than 75 dBA at any property line zoned for residential use.

Please refer to Appendix B for pertinent sections of the San Diego Noise Element to the General Plan and the City of San Diego Municipal Code.

3.0 ENVIRONMENTAL SETTING

3.1 Existing Noise Environment

Exterior noise at the site will consist primarily of traffic noise from surrounding roadways. Noise levels from operations at the San Diego International Airport are expected to be less than significant at the project site, as the site is located well outside of the 60 CNEL noise contour for the airport. For this reason, aircraft noise has not been included in this analysis. No other noise sources are considered to be significant.

3.1.1 Roadway Noise Sources

Current (2008) and future (2035) traffic volumes are given based on information from the San Diego Association of Governments (SanDAG) Series 12 Transportation Forecast Information Center, located on the SanDAG website at http://tfic.sandag.org.

Fifth Avenue is a three-lane, one-way Collector running north to the east of the project site. The posted speed limit is 30 mph. According to SanDAG, Fifth Avenue currently carries an estimated traffic volume of approximately 14,000 Average Daily Trips (ADT) in the vicinity of the project site.

Fourth Avenue is a two-lane, one-way Light Collector running south to the west of the project site. The posted speed limit is 30 mph. According to SanDAG, Fourth Avenue currently carries an estimated traffic volume of approximately 6,600 ADT in the vicinity of the project site.

Sixth Avenue is a four-lane, two-way Major Arterial running north-south to the east of the project site. The posted speed limit is 30 mph. According to SanDAG, Sixth Avenue currently carries an estimated traffic volume of approximately 22,900 ADT in the vicinity of the project site.

State Route 163 (SR-163) is a four-lane, two-way Freeway running north-south to the east of the project site. The posted speed limit is 55 mph. According to SanDAG, SR-163 currently carries an

estimated traffic volume of approximately 49,800 ADT northbound, and approximately 59,200 southbound ADT in the vicinity of the project site.

No current or future truck percentages were available for any of the roadways in the vicinity of the project site other than State Route 163. However, based on neighboring and surrounding land use, roadway classification, our professional experience and on-site observations, a truck percentage mix of 2.0% medium and 1.0% heavy trucks was used for all roadways other than SR-163. According to traffic counts performed by the Caltrans Traffic Data Branch, the 2013 truck percentage mix on SR-163 in the vicinity of the project site is 2.17% medium and 0.83% heavy.

Current and future (See Section 3.2) traffic volumes and vehicle mixes for roadway sections near the project site are shown in Table 1. For more information, please refer to Appendix C: Traffic Noise Model (TNM) Data and Results.

Table 1. Overall Roadway Traffic Information							
Des harristeres	Speed	Vehicle I	Mix (%)	Current ADT	Future ADT		
Roadway Name	Limit (mph)	Medium Trucks	Heavy Trucks	(2008)	(2035)		
Fifth Avenue	30	2.0	1.0	14,000	15,000		
Fourth Avenue	30	2.0	1.0	6,600	9,300		
Sixth Avenue	30	2.0	1.0	22,900	26,000		
SR-163 Northbound	55	2.17	0.83	49,800	54,200		
SR-163-Southbound	55	2.17	0.83	59,200	65,200		

Current traffic noise contours were calculated approximately at ground level, without existing or proposed project structures, and showed that traffic noise impacts to the entire project site will range from 51.6 CNEL to 64.1 CNEL. For a graphical representation of these contours, please refer to Figure 5: Site Plan Showing Current Traffic CNEL Contours and Noise Measurement Location.

3.1.2 Measured Noise Level

An on-site inspection and traffic noise measurement was made on the morning of Tuesday, April 14, 2015. The noise measurement was made using the methodology described in Section 4.1, at approximately 30 feet west of the Fifth Avenue centerline, and 220 feet north of the Walnut Avenue centerline. Traffic volumes were recorded for automobiles, medium-size trucks, and large trucks on Fifth Avenue during the measurement period. After a continuous 10-minute sound level measurement, there was no change in the L_{EQ} and results were then recorded. The measured noise level and related weather conditions are found in Table 2.

Table 2. On-Site Noise Measurement Conditions and Results				
Date Tuesday, April 14, 2015				
Time 11:25 a.m. – 11:35 a.m.				
Conditions	Clear skies, 3-5 mph wind, temperature in the high 60s with moderate humidity			
Measured Noise Level 59.8 dBA L _{EQ}				

3.1.3 Calculated Noise Level

Noise levels were calculated for the site using the methodology described in Section 4.1 for the location, conditions, and traffic volumes counted during the noise measurements. The calculated noise levels (L_{EQ}) were compared with the measured on-site noise level to determine if adjustments or corrections (calibration) should be applied to the traffic noise prediction model. Adjustments are intended to account for site-specific differences, such as reflection and absorption, which may be greater or lesser than accounted for in the model.

The measured noise level of 59.8 dBA L_{EQ} at approximately 30 feet west of the Fifth Avenue centerline, and 220 feet north of the Walnut Avenue centerline was compared to the calculated (modeled) noise level of 61.6 dBA L_{EQ} for the same conditions and traffic flow. As the measured and the calculated noise levels only differed by 1.8 dB, no adjustment was deemed necessary to model future noise levels for this location. Please refer to Table 3 for further evaluation. Please refer to Appendix C: Traffic Noise Model (TNM) Data and Results for more information.

Table 3. Calculated versus Measured Traffic Noise Data						
Location	Calculated	Measured	Difference	Correction		
30' W of Fifth Avenue C/L and 220' N of Walnut Avenue C/L	61.6 dBA L _{EQ}	59.8 dBA L _{EQ}	1.8 dB	None Applied		

3.2 Future Noise Environment

3.2.1 Transportation Noise Sources

The future on-site noise environment will be the result of the same traffic noise sources. The future (year 2035) traffic volumes for surrounding roadways were provided by SanDAG. The traffic volume of Fifth Avenue is expected to increase to approximately 15,000 ADT by the year 2035. The traffic volume of Fourth Avenue is expected to increase to approximately 9,300 ADT by the year 2035. The traffic volume of Sixth Avenue is expected to increase to approximately 26,000 ADT by the year 2035. In the vicinity of the project site, SR-163 northbound and southbound are expected to increase to 54,200 ADT and 65,200 ADT, respectively, by the year 2035.

The same truck percentages from the current traffic volumes were used for future traffic volume modeling. The roadway alignment and roadbed grade elevations are expected to remain the same for these sections of all roadways. For further roadway details and projected future ADT traffic volumes, please refer to Appendix C: Traffic Noise Model (TNM) Data and Results.

Future traffic noise contours were calculated approximately at ground level, without existing or proposed project structures, and showed that traffic noise impacts to the entire project site will range

from 52.1 CNEL to 64.4 CNEL due to the increase in traffic volumes on surrounding roadways. For a graphical representation of these contours, please refer to Figure 6: Site Plan Showing Future Traffic CNEL Contours and Noise Measurement Location.

3.2.2 HVAC Noise Sources

The primary source of noise generated on site is expected to be HVAC operational noise. Residential units and amenity spaces on the project site are expected to be serviced by small air conditioning units. According to mechanical plans, the majority of air conditioning units will be manufactured by Carrier, and will be selected from either the 25HBC or the 25HCD product line. As the sums of octave band noise levels given for some of the Carrier units were found to be slightly less than the given sound rating, the octave band noise levels were increased accordingly such that the total sum was equal to the sound rating. The resultant estimated sound power spectra for all proposed Carrier units are shown below in Table 4. Please refer to Appendix D: Manufacturer Data Sheets for additional information.

Table 4. Sound Power Level of Carrier Air Conditioning Units								
Source	Sound Power Level at Octave Band Frequency (dBA)						Total	
Source	125	250	500	1K	2K	4K	8K	(dBA)
Carrier 25HBC518	49.5	60.0	65.0	69.0	65.5	62.0	55.0	73
Carrier 25HBC524	49.5	60.5	62.5	63.5	62.0	60.0	54.5	69
Carrier 25HBC530	53.0	60.5	63.5	67.5	64.5	62.0	55.5	71
Carrier 25HCD436	56.5	59.5	65.5	67.0	64.0	63.0	56.0	72

In addition to the Carrier units proposed to serve residential units, several smaller heat pumps are also proposed at the project site to serve amenity spaces. These pieces of equipment include the Mitsubishi PUY-A12 heat pump, anticipated to generate a noise level of 46 dBA at one meter from the equipment, as well as the Fujitsu 9RLFCD heat pump, anticipated to generate approximately 49 dBA at one meter from the equipment. Although these pieces of equipment will generate less noise than the proposed Carrier units, they have been included in the overall analysis of HVAC noise. Manufacturer information for the Mitsubishi and Fujitsu units is provided in Appendix D.

No other noise sources on site are anticipated to generate a significant amount of noise at neighboring properties.

3.2.3 Temporary Construction Equipment

Construction information was provided by Mike Remensperger of Cannon Constructors South, Inc. Mr. Remensperger provided information on typical construction equipment anticipated to operate on the site during construction activity. Noise levels are shown in Table 5.

Table 5. Typical Construction Equipment Noise Levels						
Equipment Description	Duty Cycle (%)	Noise Level at 50 feet (dBA)				
Excavator	40	74.3				
Dump Truck	40	75.3				
Drill Rig	20	73.3				
Crane	16	66.3				
Concrete Mixer Truck	40	76.3				
Concrete Pump Truck	20	74.3				

These noise levels will be incorporated into the temporary construction noise analysis for the site, provided in Section 5.3.2.

4.0 METHODOLOGY AND EQUIPMENT

4.1 Methodology

4.1.1 Field Measurement

Typically, a "one-hour" equivalent sound level measurement (L_{EQ} , A-Weighted) is recorded for at least one noise-sensitive location on the site. During the on-site noise measurement, start and end times are recorded, vehicle counts are made for cars, medium trucks (double-tires/two axles), and heavy trucks (three or more axles) for the corresponding road segment(s). Supplemental sound measurements of one hour or less in duration are often made to further describe the noise environment of the site.

For measurements of less than one hour in duration, the measurement time is long enough for a representative traffic volume to occur and the noise level (L_{EQ}) to stabilize. The vehicle counts are then converted to one-hour equivalent volumes by using the appropriate multiplier. Other field data gathered includes measuring or estimating distances, angles-of-view, slopes, elevations, roadway grades, and vehicle speeds. This data is checked against the available maps and records.

4.1.2 Roadway Noise Calculation

The Traffic Noise Model, Version 2.5 program released by the U.S. Department of Transportation is used to calculate the current future daytime average hourly noise level (HNL) contours at the project site, taking into account surrounding buildings, elevation, and additional topography. The daytime average hourly traffic volume is calculated as 0.058 times the ADT, based on the studies made by Wyle Laboratories (see reference). The HNL is equivalent to the hourly L_{EQ} , and both are converted to the CNEL by adding 2.0 decibels, as shown in the Wyle Study. Future CNEL is calculated for desired receptor locations using future road alignment, elevations, lane configurations, projected traffic volumes, estimated truck mixes, and vehicle speeds. Noise attenuation methods may be analyzed, tested, and planned with TNM, as required.

In order to determine the estimated traffic volumes of neighboring roadways (other than the section of Fifth Avenue counted) during the traffic noise measurement made on site for model calibration, the

approximate percentage of the Average Daily Trips (ADT) value for the time period in which the measurement is made is incorporated into the traffic model. These percentages have been established in a study performed by Katz-Okitsu and Associates, Traffic Engineers (see reference). For purposes of calibrating the TNM, 6.2% of the ADT values for the current environment were used in calculations (other than the section of Fifth Avenue that was manually counted) to account for traffic between the hours of 11 a.m. and 12 p.m. in the vicinity of the project site. Further explanation can be provided upon request.

4.1.3 Exterior-to-Interior Analysis

The State of California requires buildings to be designed in order to attenuate, control, and maintain average interior noise levels not greater than 45 CNEL in residential space, as formulated in the California Building Code, Section 1207.11.2 and the City of San Diego Noise Element to the General Plan. Contemporary exterior building construction is expected to achieve at least 15 decibels of exterior-to-interior noise attenuation with windows opened. As a result, exterior noise levels of more than 60 CNEL often result in interior conditions that fail to meet the 45 CNEL requirements for habitable space.

Analysis for the interior noise levels requires consideration of:

- Number of unique assemblies in the wall (doors, window/wall mount air conditioners, sliding glass doors, and windows)
- Size, number of units, and sound transmission data for each assembly type
- Length of sound impacted wall(s)
- Depth of sound impacted room
- Height of exterior wall of sound impacted room
- Exterior noise level at wall assembly or assemblies of sound impacted room

The Composite Sound Transmission data is developed for the exterior wall(s) and the calculated noise exposure is converted to octave band sound pressure levels (SPL) for a typical traffic type noise. The reduction in room noise due to absorption is calculated and subtracted from the interior octave noise levels, and the octave band noise levels are logarithmically summed to yield the overall interior room noise level. When interior noise levels exceed 45 CNEL in residential space, the noise reduction achieved by each element is reviewed to determine which changes will achieve the most cost-effective compliance. Windows are usually the first to be reviewed, followed by exterior doors, and then exterior walls.

4.1.4 Sound Transmission Class (STC) Ratings

Sound Transmission Class (STC) is a single number rating calculated in accordance with ASTM E413, using third-octave values of sound transmission loss. It provides an estimate of the sound performance of a partition, window, or door in sound insulation problems.

Modeling of exterior wall assemblies is accomplished using INSUL Version 8.0, which is a modelbased computer program, developed by Marshall Day Acoustics for predicting the sound insulation of walls, floors, ceilings and windows. It is acoustically based on theoretical models that require only minimal material information that can make reasonable estimates of the sound transmission loss (TL), STC and IIC for use in sound insulation calculations; such as the design of common party walls and multiple family floor-ceiling assemblies, etc. INSUL can be used to quickly evaluate new materials or systems or investigate the effects of changes to existing designs. It models individual materials using the simple mass law and coincidence frequency approach and can model more complex assembly partitions, as well. It has evolved over several versions into an easy to use tool and has refined the theoretical models by continued comparison with laboratory tests to provide acceptable accuracy for a wide range of constructions. INSUL model performance comparisons with laboratory test data show that the model generally predicts the performance of a given assembly within 3 STC points.

4.1.5 Cadna Noise Modeling Software

Modeling of the outdoor noise environment is accomplished using Cadna Version 4.5, which is a model-based computer program developed by DataKustik for predicting noise impacts in a wide variety of conditions. Cadna (Computer Aided Noise Abatement) assists in the calculation, presentation, assessment, and mitigation of noise exposure. It allows for the input of project information such as noise source data, barriers, structures, and topography to create a detailed CAD model and uses the most up-to-date calculation standards to predict outdoor noise impacts.

4.1.6 Acoustical Formulas and Calculations

The following acoustical formulas and calculations have also been used in the preparation of this report.

Decibel Addition

To determine the combined logarithmic noise level of two known noise source levels, the values are converted to the base values, added together, and then converted back to the final logarithmic value, using the following formula:

$$L_{c} = 10\log(10^{L1/10} + 10^{L2/10} + \dots 10^{LN/10})$$

where L_c = the combined noise level (dB), and L_N = the individual noise sources (dB).

This procedure is also valid when used successively for each added noise source beyond the first two. The reverse procedure can be used to estimate the contribution of one source when the contribution of another concurrent source is known and the combined noise level is known. These methods can be used for L_{EQ} or other metrics (such as L_{DN} or CNEL), as long as the same metric is used for all components.

Attenuation Due To Distance

Attenuation due to distance is calculated by the equation:

$$SPL_2 = SPL_1 - 20\log(\frac{D_2}{D_1})$$

where $SPL_1 = Known$ sound pressure level at known distance, $SPL_2 = Calculated$ sound pressure level at distance, $D_1 = Distance$ from source to location of known sound pressure level, and $D_2 = Distance$ from source to location of calculated sound pressure level.

This is identical to the more commonly used reference of 6 dB reduction for every doubling of distance. This equation does not take into account reduction in noise due to atmospheric absorption.

Eilar Associates, Inc.

Hourly L_{EQ} Summation

To determine the hourly average noise levels (L_{EQ}) when the noise is created for less than the full hour, convert the logarithm values to the base energy value, multiply by the percentage of the hour that the noise occurs, and then convert the sum back to a logarithmic value. This is done with the following formula:

$$L_{EO} = 10\log(P_H \times 10^{L_P/10})$$

where P_H = the percent or fraction of the hour noise is created, and L_P = the partial hour noise level (dB).

Sound Power to Sound Pressure

To convert sound power levels to sound pressure levels, the following formula is used:

$$SPL = SWL - 20\log(D) - 0.5$$

where: SPL= Calculated sound pressure level at distance, and D = Distance from source to location of calculated sound pressure level.

4.2 Measurement Equipment

Some or all of the following equipment was used at the site to measure existing noise levels:

- Larson Davis Model LxT Type 1 Integrating Sound Level Meter, Serial #4085
- Larson Davis Model CA250 Type 1 Calibrator, Serial #2106
- Tripod, and windscreen

The sound level meter was field-calibrated immediately prior to the noise measurement and checked afterward, to ensure accuracy. All sound level measurements conducted and presented in this report, in accordance with the regulations, were made with a sound level meter that conforms to the American National Standards Institute specifications for sound level meters (ANSI S1.4). All instruments are maintained with National Bureau of Standards traceable calibration, per the manufacturers' standards.

5.0 NOISE IMPACTS

5.1 Exterior

5.1.1 Noise Impacts to Outdoor Use Areas

As per the City of San Diego Noise Element to the General Plan, noise impacts at outdoor use areas of multi-family land uses should not exceed 65 CNEL. Future traffic noise impacts have been addressed for determining exterior noise levels in these locations. The common outdoor use areas for residential use consist of a second floor courtyard/barbecue area, and a second floor pool area. These areas were evaluated to determine if noise levels exceed 65 CNEL in the future noise environment. Future noise level impacts at common outdoor use areas are shown in Table 6, and receiver locations are shown in Figure 7.

Eilar Associates, Inc.

Job #B50405N2

Table 6. Future Noise Levels at Common Outdoor Use Areas					
Receiver Floor Location Exterior Noise Level (CNE					
CY-2	2	Courtyard/ BBQ Area	56.7		
Pool	2	Pool Area	47.6		

As shown above, noise levels at the proposed common outdoor use areas are not expected to exceed 65 CNEL in the future noise environment, as adequate noise shielding is provided by the proposed building structures. These noise levels meet City of San Diego noise regulations as currently designed, and therefore, no additional project design features are deemed necessary to attenuate exterior noise impacts. Receiver locations are shown in Figure 7.

5.1.2 Noise Impacts at Building Facades

Future traffic noise impacts were also calculated at building facades and showed that noise levels will range from 49.4 CNEL at the south-facing facade of the second floor to 65.2 CNEL at the east-facing facade of the first floor. Noise levels are shown in Table 7, and receiver locations are shown in Figure 7.

	Table 7. Future Noise Levels at Building Facades								
Receiver	Floor	Facade Location	Exterior Noise Level (CNEL)	Receiver	Floor	Facade Location	Exterior Noise Level (CNEL)		
F1	1	East	65.2	F29	4	West	53.2		
F2	1	East	65.2	F30	4	West	52.7		
F3	1	East	65.1	F31	4	West	52.3		
F4	1	South	59.7	F32	5	North	55.5		
F5	2	North	49.9	F33	5	North	59.9		
F6	2	North	57.8	F34	5	East	64.3		
F7	2	East	64.7	F35	5	East	64.3		
F8	2	East	64.7	F36	5	East	64.2		
F9	2	South	59.7	F37	5	South	59.2		
F10	2	South	49.4	F38	5	South	54.1		
F11	2	West	50.1	F39	5	West	54.7		
F12	2	West	49.5	F40	5	West	54.3		
F13	2	West	48.8	F41	5	West	53.8		
F14	3	North	52.6	F42	6	North	55.9		
F15	3	North	60.1	F43	6	North	59.6		
F16	3	East	64.4	F44	6	East	64.3		
F17	3	East	64.4	F45	6	East	64.4		
F18	3	South	59.3	F46	6	East	64.4		

	Table 7. Future Noise Levels at Building Facades								
Receiver	Floor	Facade Location	Exterior Noise Level (CNEL)	Receiver	Floor	Facade Location	Exterior Noise Level (CNEL)		
F19	3	South	52.2	F47	6	South	59.8		
F20	3	West	52.4	F48	6	South	55.1		
F21	3	West	51.8	F49	6	West	55.7		
F22	3	West	51.3	F50	6	West	54.7		
F23	4	North	54.0	F51	6	West	54.0		
F24	4	North	59.8	CY-2	2	Courtyard	56.7		
F25	4	East	64.2	CY-3	3	Courtyard	61.6		
F26	4	East	64.2	CY-4	4	Courtyard	61.3		
F27	4	South	59.1	CY-5	5	Courtyard	56.5		
F28	4	South	52.9	CY-6	6	Courtyard	56.8		

5.2 Interior

5.2.1 Transportation Noise Sources

The State of California and the City of San Diego require buildings to be designed in order to attenuate, control, and maintain interior noise levels not greater than 45 CNEL in habitable space, as formulated in the City of San Diego Noise Element to the General Plan and the California Building Code, Section 1207.11.2. Contemporary exterior building construction is expected to achieve at least 15 decibels of exterior-to-interior noise attenuation with windows opened. As a result, exterior noise levels of more than 60 CNEL often result in interior conditions that fail to meet the 45 CNEL requirements for habitable space.

Exterior noise levels at many of the calculated receiver points on the proposed building facades exceed 60 CNEL, as shown in Table 7. Due to the elevated exterior noise levels at these building facades, an exterior-to-interior noise analysis was conducted for each unit type. The proposed exterior wall assembly was evaluated to have an STC rating of 57, and was incorporated into the interior noise analysis as such. More information is provided in Appendix E: Sound Insulation Prediction Results.

Table 8 below shows the results of the exterior-to-interior noise analysis for worst-case units of each type, with acoustical recommendations made therein. For more information, please refer to Appendix F: Exterior-to-Interior Noise Analysis.

	Table 8. Futu	re Interior N	oise Levels in Wo	orst-Case / Repres	sentative Uni	ts
Unit	Room	Maximum Exterior Facade Impact (CNEL)	Minimum STC Rating for Windows and Glass Doors	Interior CNEL (windows open)	Interior CNEL (windows closed)	Mechanical Ventilation
Unit 101	Living/Dining	65.1	28	55.8	35.0	Required
Unit 102	Bedroom	65.1	28	56.4	31.8	Required
01111 102	Living/Dining	65.2	28	53.8	35.0	Required
Unit 103	Bedroom	65.2	28	52.9	28.4	Required
Unit 103	Living/Dining	65.2	28	54.6	34.4	Required
Unit 104	Bedroom	65.2	28	55.2	30.7	Required
01111 104	Living/Dining	65.2	28	54.5	35.6	Required
Unit 201	Bedroom	64.7	28	57.2	32.6	Required
01111 201	Living/Dining	64.7	28	55.3	36.4	Required
Unit 202	Bedroom 2	64.7	28	56.6	32.0	Required
01111 202	Living/Dining	64.7	28	55.3	36.5	Required
Unit 218	Bedroom 2	64.7	28	55.8	31.2	Required
01111 2 10	Living/Dining	64.7	28	55.2	34.7	Required
Unit 219	Bedroom	64.7	28	55.6	31.0	Required
01111 2 1 9	Living/Dining	64.7	28	55.8	36.9	Required
Unit 302	Bedroom 2	64.4	28	56.8	32.1	Required
01111 302	Living/Dining	64.4	28	55.9	36.0	Required
Unit 303	Living/Dining	64.4	28	53.7	34.8	Required
Unit 304	Master Bedroom	64.4	28	56.5	32.0	Required

Representative calculations show that the exterior windows and glass doors of every unit should have the minimum rating of STC 28. As the units evaluated above represent units with the highest noise exposure, all other units are expected to comply with interior noise level requirements with the same configuration recommended above.

Calculations show that units will not comply with the City of San Diego and State of California interior noise regulations with windows and doors open; hence, mechanical ventilation will be required in these units. In units where the noise levels are shown to comply without mechanical ventilation, it is still recommended to install a mechanical ventilation system, for tenant comfort. The mechanical ventilation system shall meet the criteria of the California Mechanical Code, including the capability to provide appropriate ventilation rates. The ventilation system shall not compromise the sound insulation capability of the exterior wall or be dependent on ventilation through windows.

Exterior door installation should include all-around weather-tight door stop seals and an improved threshold closure system. The additional hardware will improve the doors' overall sound reduction properties. The transmission loss (TL) of an exterior door without weather-tight seals is largely a factor of sound leakage, particularly at the bottom of the door if excessive clearance is allowed for air transfer. By equipping exterior doors with all-around weather-tight seals and an airtight threshold closure at the bottom, a loss of up to 10 STC points can be prevented. Manufacturers of these products include such companies as Pemko and Reese. Manufacturer sheets are provided in Appendix G: Recommended Products.

Additionally, it is imperative to seal and caulk between the rough opening and the finished door frame for all doors by applying an acoustically resilient, non-skinning butyl caulking compound. The same recommendation applies to any other penetrations, cracks, or gaps through the assembly. Sealant application should be as generous as needed to ensure effective sound barrier isolation. The OSI Green Series Draft and Acoustical Sound Sealant and the Pecora AC-20 FTR Sealant are products specifically designed for this purpose. Please see Appendix G: Recommended Products.

The proposed residential units were analyzed for future exterior noise impacts from roadway traffic. With the proposed exterior wall assemblies, window/glass door configurations specified above, and mechanical ventilation in units, all interior residential space is expected to comply with City of San Diego and California Building Code noise requirements.

5.2.2 Unit-to-Unit Noise Transmission

Another source of noise that may affect residential units in multi-family buildings is unit-to-unit noise transmission. The California State Building Code requires that the Sound Transmission Class (STC) rating of common wall assemblies separating residential units from one another, or from common space such as corridors, stairways, or other such service spaces, have a minimum laboratory rating of STC 50. The same STC requirement applies for floor/ceiling assemblies, and an added requirement dictates that the Impact Insulation Class (IIC) rating of the floor/ceiling assembly is a minimum laboratory rating of IIC 50. Detailed calculations and laboratory tests for the assemblies evaluated below are provided in Appendix E: Sound Insulation Prediction Results.

Wall Assemblies

Assembly DM-2 – Unit Demising Wall – 1 Hour Rated (Wood Stud)

On the second through sixth floors, where residential units share a common wall, the following assembly is proposed:

- Single layer of 5/8-inch thick Type X gypsum board
- Double row of 2x4 wood studs on separate plates spaced one inch apart, 16 inches o.c.
- Fiberglass insulation in both stud cavities
- Single layer of 5/8-inch thick Type X gypsum board

This assembly was tested at Riverbank Acoustical Laboratories (RAL-TL75-83) and shown to achieve an STC 57. The assembly is listed in the California Office of Noise Control Catalog of STC and IIC Ratings for Wall and Floor/Ceiling Assemblies under the section number 1.2.4.1.5.4. No changes are required to meet the standards of the California Building Code.

Assembly DX-1 – Unit Demising Wall – 1 Hour Rated (Metal Stud)

On the first floor, where residential units share a common wall, the following assembly is proposed:

- Single layer of 5/8-inch thick Type X gypsum board
- Double row of 3-5/8-inch metal studs on separate plates spaced one inch apart, 16 inches o.c.
- Fiberglass insulation in both stud cavities
- Single layer of 5/8-inch thick Type X gypsum board

This assembly is the same as Assembly DM-2, the only difference being the use of metal studs instead of wood studs. This is not expected to affect the overall rating of the assembly, as the type of studs used in double stud walls does not have as great an effect on the rating of the STC rating of the assembly as for single stud wall assemblies. Additionally, as metal studs perform better in single stud wall assembly may perform slightly better than the same assembly would with wood studs. Using INSUL, the calculated STC rating of the above assembly using either wood or metal studs is STC 58 in both cases. This compares well with the laboratory rating of STC 57 for the wood framed assembly (RAL-TL75-83). No changes are required to meet the standards of the California Building Code.

Assembly FC-1 – Corridor Wall – 1 Hour Rated (Wood Stud)

On the second through sixth floors, where residential units share a wall with an interior corridor, the following assembly is proposed:

- Single layer of 5/8-inch thick Type X gypsum board
- Plywood sheathing
- Single row of 2x4 wood studs, 16 inches o.c.
- Fiberglass insulation in cavity
- Single layer of 5/8-inch thick Type X gypsum board on resilient channels

A similar assembly was tested by the National Research Council of Canada (NRC #66) and shown to achieve an STC rating of 50. The assembly is listed in the California Office of Noise Control Catalog of STC and IIC Ratings for Wall and Floor/Ceiling Assemblies under the section number 1.2.2.5.5.2. Although the tested assembly includes two layers of gypsum board on one side, it does not include any plywood sheathing, which is expected to provide a similar acoustical performance. A calculation of the proposed assembly was performed in INSUL and shown to achieve an STC 53. No changes are required to meet the standards of the California Building Code; however, if there are areas where the layer of plywood will not be incorporated into the wall assembly, the absence of plywood should be compensated for by a layer of 5/8-inch gypsum board to maintain the STC rating.

Assembly DS-1 – Corridor Wall – 1 Hour Rated (Metal Stud)

In some locations where residential units are adjacent to a corridor on the first floor, the following assembly is proposed:

- Double layer of 5/8-inch thick Type X gypsum board
- Single row of 6-inch metal studs, 16 inches o.c.
- Fiberglass insulation in cavity
- Single layer of 5/8-inch thick Type X gypsum board on resilient channels

A similar assembly was tested by the National Research Council of Canada (NRC #TL-94-023) and shown to achieve an STC rating of 54. The tested assembly includes 1/2-inch thick gypsum board versus the 5/8-inch thick gypsum board used in the proposed assembly, which is expected to improve the acoustical performance of the assembly. The tested assembly also includes 3 5/8-inch metal studs, whereas the proposed assembly includes 6-inch metal studs, which is expected to improve the acoustical performance of the proposed assembly. A calculation of the proposed assembly was performed in INSUL and shown to achieve an STC rating of 60. No changes are required to meet the standards of the California Building Code.

Assembly FR-2 – Corridor Wall – 2 Hour Rated (Metal Stud)

In some locations where residential units are adjacent to a corridor on the first floor, the following assembly is proposed:

- Double layer of 5/8-inch thick Type X gypsum board
- Single row of 3-5/8-inch, 25 gauge metal studs, 16 inches o.c.
- Fiberglass insulation in cavity
- Double layer of 5/8-inch thick Type X gypsum board

This assembly was tested by the National Research Council of Canada (NRC #TL-93-332) and shown to achieve an STC rating of 55. No changes are required to meet the standards of the California Building Code.

Assembly FD-1 – Demising Wall – 3 Hour Rated Wall

FD-1 is a three-hour rated demising wall. No specific sound test was available for this exact configuration; however, a sound rating has been estimated based on similar assemblies found within the California Catalog of STC and IIC Ratings. Assembly OC-10FC is constructed as follows:

- Single layer of 5/8-inch thick Type X gypsum board
- Single row of 2-inch by 4-inch wood studs
- 3.5-inch thick insulation in stud cavity
- Single layer of 5/8-inch thick Type X gypsum board
- 1-inch wide air space
- Single layer of 5/8-inch thick Type X gypsum board
- Single row of 2-inch by 4-inch wood studs
- 3.5-inch thick insulation in stud cavity
- Single layer of 5/8-inch thick Type X gypsum board

This assembly was tested and shown to have an STC rating of 44. Assembly OCF W-15-77 is constructed as follows:

- Single layer of 5/8-inch thick Type X gypsum board
- Single row of 2-inch by 4-inch wood studs
- 3.5-inch thick insulation in stud cavity
- Single layer of 5/8-inch thick Type X gypsum board
- 1-inch wide air space
- Single layer of 1/4-inch thick gypsum board
- Single layer of 5/8-inch thick Type X gypsum board
- Single row of 2-inch by 4-inch wood studs
- 3.5-inch thick insulation in stud cavity

• Single layer of 5/8-inch thick Type X gypsum board

This assembly was tested and shown to have an STC rating of 45. Both of the assemblies listed above are similar to FD-1 as they consist of a "quadruple leaf" assembly, with multiple air spaces between layers of material; however, FD-1 contains a row of steel studs within the center cavity (as opposed to the air space found in the assemblies listed above). Unlike the tested assemblies, FD-1 provides a 1/4-inch air space between each row of wood studs and the center steel stud assembly. FD-1 also contains additional layers of gypsum board within the center of the assembly that have an increased thickness from those shown in the assemblies listed above. Assembly OCF W-15-77 and OC-10FC differ only in that the former incorporates an additional layer of 1/4-inch thick gypsum board within the center of the assembly, which results in a 1 point increase in the STC rating. Using this same logic, it can be assumed that the addition of a 3/4-inch layer of gypsum board would increase the overall rating by two points, due to the increased thickness. As FD-1 incorporates four layers of 3/4-inch gypsum board within the center of the cavity, as opposed to two layers of 5/8-inch thick gypsum board in OC-10FC, 4 points will be assumed to be gained from the rating shown Assembly OC-10FC. In addition, double shear paneling is required in nearly every location FD-1 is specified, which means that a layer of plywood will be incorporated on each side of the assembly. The increased mass from each layer of plywood is also likely to add 1 STC point to the assembly, resulting in a total increase of 2 points from the proposed two layers of plywood on the assembly. Although the steel studs within the center cavity eliminate the decoupling shown within the tested assemblies listed above, the air spaces between the wood stud rows and the center assembly are expected to make up for this difference, as they provide decoupling. With this reasoning, the STC rating of FD-1 is anticipated to be approximately STC 50, complying with the California State Building Code requirement.

In the event that shear paneling is not needed on both sides of the assembly, the absence of the plywood layer(s) should be compensated for by either substituting a layer of 5/8-inch gypsum board in place of the plywood, or installing the plywood anyway, regardless of the need for shear. Either of these methods should be sufficient for maintaining the STC 50 rating.

Floor/Ceiling Assemblies

UL Floor-Ceiling 1Hr

Where residential units are share a floor/ceiling assembly, the following assembly is proposed:

- Laminate Flooring
- 1 1/2-inch light weight gypsum topping
- Acoustimat II underlayment
- 3/4-inch plywood sheathing
- 11 7/8-inch wood TJI joists
- Fiberglass insulation in cavity
- Double layer of 5/8-inch thick Type X gypsum board on resilient channels

A similar assembly was tested for airborne sound transmission at Intertek Acoustical Laboratories (Repot No. 100336557CRT-001g), with 1-inch Gypcrete, 2x10 joists, a single layer of gypsum board, and no floor covering. The tested assembly achieved an STC 53. According to a study published by the National Research Council of Canada entitled *"Summary report for Consortium on Fire Resistance and Sound Insulation of Floors: Sound Transmission and Impact Insulation Data",* published in January 2005, which examined the acoustical performance of various floor/ceiling types, "No statistically significant dependence on joist type (wood, I-joist, trusses or steel C-joists) was found in the regression analysis." It is therefore concluded that the use of TJI joists as opposed to solid

wood joists will have a minimal effect on the STC or IIC rating. The additional thickness of gypsum topping is expected to have a minimal impact on the STC rating and the additional layer of gypsum board on the ceiling would result in a higher STC rating. For this reason, the STC rating of the assembly is estimated to be greater than STC 53, and therefore, no changes are required to meet the standards of the California Building Code.

A similar assembly was tested for impact sound transmission at Intertek Acoustical Laboratories (100336557CRT-001I), with 1-inch Gypcrete, a single layer of gypsum board, and floating engineered hardwood flooring. The tested assembly achieved an IIC 53. The use of laminate flooring versus the engineered hardwood flooring installed during the test is not anticipated to effect the IIC rating of the assembly, as these materials have similar characteristics, and are both installed as floating floors. The increased thickness of gypsum topping is expected to have a minimal impact on the IIC rating and the additional layer of gypsum board on the ceiling would result in a similar or higher IIC rating. For this reason, the IIC rating of the assembly is estimated to be IIC 53 or greater, and therefore, no changes are required to meet the standards of the California Building Code.

Limitations

Actual STC and IIC ratings achieved are determined by the quality of construction and attention to details in the installation of assemblies. Please be advised that this endorsement is strictly contingent upon observance of proper installation procedures. It is imperative that attention be paid to details such as the proper installation of resilient channels and/or clips and the isolation of the floor/ceiling assembly from the wall to prevent vibration through the structure.

All cracks or gaps must be sealed with an acoustical sealant, such as the OSI Green Series or Pecora sealants (see Appendix G). With these conditions met, the assemblies detailed above should meet minimum building code standards for controlling sound and impact transmission.

5.3 **Project-Related Noise Impacts on Surrounding Property Lines**

5.3.1 HVAC Noise

Anticipated HVAC noise levels have been calculated using Cadna at surrounding noise-sensitive receivers, considering noise limits detailed in Section 2.3. Calculations take into account the proposed building on which HVAC units will be roof-mounted, as well as the existing commercial building proposed to remain on site. Receivers have been placed at five feet above grade at all surrounding property lines and at 15 feet above grade at the south, east, and west property lines to account for second-story receivers in these locations. There are no noise-sensitive receivers with multi-story buildings at the north property line. Calculations assume that all HVAC units will be operational for 100 percent of the time during all hours of the day, for a worst-case analysis, although actual operation would be expected to be intermittent and less frequent during the more sensitive nighttime hours.

Results of the analysis are shown in Table 9. More information is provided in Appendix H: Cadna Analysis Data and Results, and a graphical representation of evaluated source/receiver locations is shown in Figure 8.

Table 9. Mechanical Equipment Noise Levels at Surrounding Receivers							
Receiver	Location	Noise Limit (dBA)	Equipment Noise Level (dBA)				
R-1	North Property Line	50	31.7				
R-2	South Property Line (Across Walnut)	50	24.1				
R-3	East Property Line (Across 5th)	50	30.2				
R-4	West Property Line (Across Alley)	50	32.6				
R-5	South Property, 2nd Story	50	28.6				
R-6	East Property, 2nd Story	50	31.6				
R-7	West Property, 2nd Story	50	33.3				

As shown above, noise levels from proposed HVAC equipment on site are expected to meet the applicable nighttime noise limits set by the City of San Diego without the implementation of added project design features. This evaluation is considered to be representative of actual HVAC noise generated on site, although noise levels may be further reduced due to the presence of parapet walls on the building.

5.3.2 Temporary Construction Noise

A schedule of construction activity was evaluated to determine potential temporary noise impacts to the surrounding residentially zoned receivers, per City of San Diego Municipal Code requirements. The nearest residential or mixed use properties are located to the north, east, and west of the project site. Any other potentially noise-sensitive receivers are located at a greater distance from construction activity and therefore, would be exposed to lesser noise impacts due to distance attenuation and shielding provided by intervening structures. This includes any residential or mixed use property to the south of the project site, which will be located at a greater distance from construction activity and will also receive shielding from the existing commercial building to remain in place on the project site.

The anticipated construction schedule was provided by Mike Remensperger of Cannon Constructors South, Inc. According to Mr. Remensperger, the project will be constructed over the course of a 20-month period. A summary of construction activity is shown in Table 10.

Table 10. Anticipated Construction Activity					
Scope of Work	Duration	Anticipated Large Equipment			
Site Mobilization/Demolition	1 month	Excavator, Dump Trucks			
Excavation/Shoring	3 months	Excavator, Drill Rig, Dump Trucks			
Concrete	4 months	Crane, Concrete Mixer Trucks, Concrete Pump Truck			
Framing	7 months	Crane			
Interior Finishes	5 months	None (hand tools only)			

Noise levels were calculated at the nearest receivers to the north, east, and west. Construction noise sources were placed near the center of the work area (excluding the existing commercial building) to evaluate typical impacts to the surrounding receivers as equipment moves around the property. Noise calculations consider typical duty cycles of equipment, to account for periods of activity and inactivity on the site.

Noise levels for each stage of construction are shown in Table 11. Detailed calculations can be found in Appendix I, and a graphical representation of noise source and receiver locations is provided as Figure 9.

Table 11. Temporary Construction Noise Levels at Nearest Occupied Properties							
Stage	Equipment Used	Receiver	Approximate Distance (ft)	Average Noise Level of Equipment (dBA)			
Site Mobilization/ Demolition	Excavator, Dump Trucks	North (CR1)	128	67.6			
		East (CR2)	142	66.7			
		West (CR3)	85	71.2			
Excavation/ Shoring	Excavator, Drill Rig, Dump Trucks	North (CR1)	128	68.1			
		East (CR2)	142	67.2			
		West (CR3)	85	71.6			
Concrete	Crane, Concrete Mixer Trucks, Concrete Pump Truck	North (CR1)	128	67.9			
		East (CR2)	142	67.0			
		West (CR3)	85	71.4			
Framing	Crane	North (CR1)	128	50.2			
		East (CR2)	142	49.3			
		West (CR3)	85	53.7			

It is determined that construction noise levels associated with this project will not create a significant impact at any surrounding property line with activity limited to the daytime hours of 7 a.m. to 7 p.m., as noise levels are expected to remain below 75 dBA at all surrounding noise-sensitive property lines.

Although noise levels are shown to be in compliance with the construction noise limit of 75 dBA, the following measures should still be practiced as a courtesy to residential neighbors.

Eilar Associates, Inc.

- 1. Staging areas should be placed as far from occupied receivers as possible on the project site to limit any additional unnecessary noise exposure at sensitive receivers.
- 2. Place stationary equipment in locations that will have a lesser noise impact on nearby sensitive receivers.
- 3. Turn off equipment when not in use.
- 4. Limit the use of enunciators or public address systems, except for emergency notifications.
- 5. Equipment used in construction should be maintained in proper operating condition, and all loads should be properly secured, to prevent rattling and banging.
- 6. Schedule work to avoid simultaneous construction activities that both generate high noise levels.
- 7. Use equipment with effective mufflers.
- 8. Minimize the use of backup alarms.

With work limited to daytime hours permissible by the City of San Diego and adherence to the general good practice construction noise control techniques, temporary construction noise is expected to remain in compliance with City of San Diego noise limits.

6.0 CONCLUSION

Traffic noise levels at common outdoor use areas are expected to remain below 65 CNEL in the future noise environment and are therefore anticipated to meet City of San Diego noise regulations as currently designed.

Due to high exterior noise levels at building facades, an exterior-to-interior analysis was performed to determine building features necessary to reduce interior noise levels in residential units to 45 CNEL or less, as required by the State of California and the City of San Diego. As shown above, with the proposed exterior wall assemblies, all windows and glass doors on residential units should have a minimum rating of STC 28, and mechanical ventilation should be provided in residential units. With these project design features in place, interior noise levels are expected to comply with City of San Diego noise regulations.

Additionally, the proposed common wall assemblies and floor/ceiling assemblies are expected to meet State of California Building Code requirements for acoustical isolation as designed, provided proper installation procedures are followed.

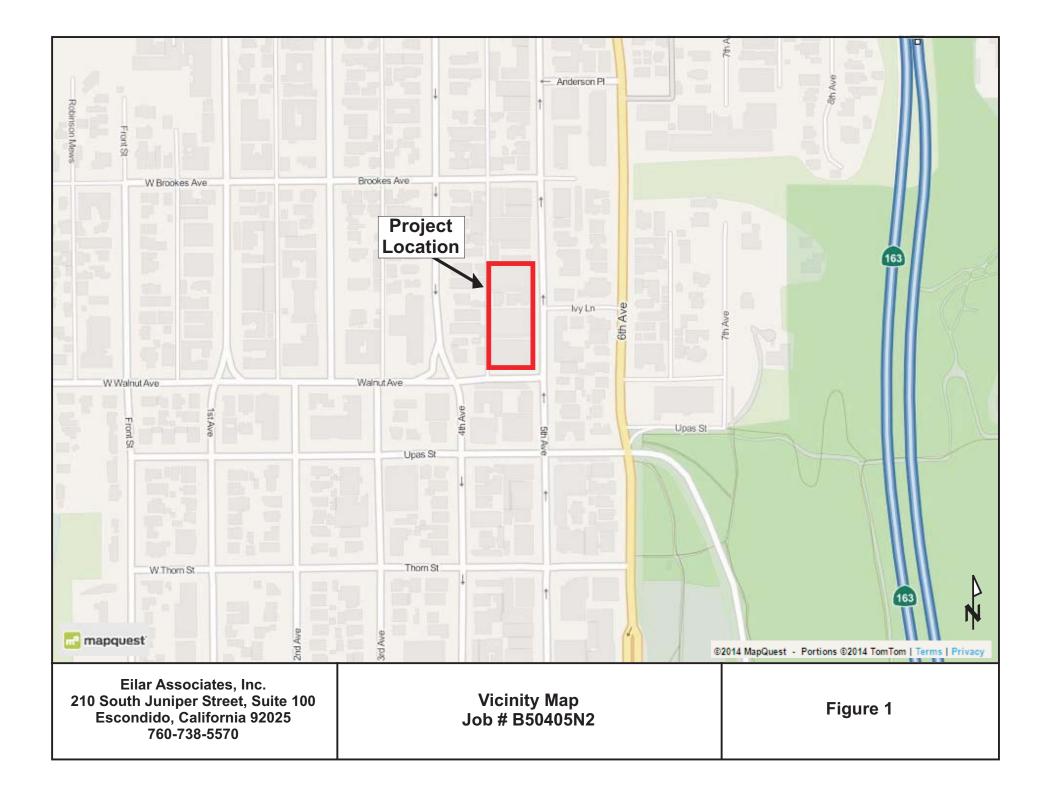
Calculations show that noise levels generated by anticipated HVAC units are expected to meet the applicable nighttime noise limits at surrounding property lines, without considering potential shielding that could be provided by a parapet wall. No added project design features are deemed necessary for attenuating these mechanical noise impacts.

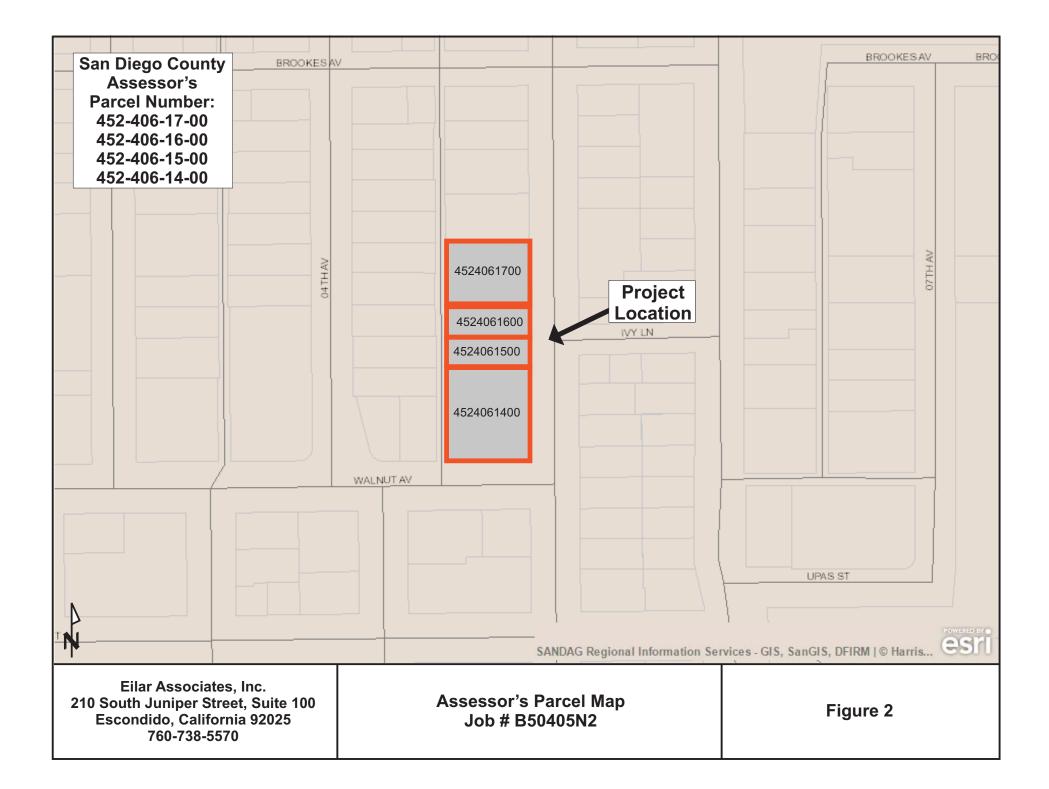
Noise from temporary construction activities is not expected to exceed the applicable construction noise limits of the City of San Diego at any surrounding residential property line. Construction is prohibited between the hours of 7 p.m. and 7 a.m. and on Sundays or legal holidays. Standard construction noise control methods including adhering to permissible hours of operation, maintaining equipment in proper operating condition, and placing staging areas at furthest locations from noise sensitive receivers, are expected to be sufficient for reducing noise impacts to surrounding receivers.

7.0 CERTIFICATION

All recommendations for noise control are based on the best information available at the time our consulting services are provided. However, as there are many factors involved in sound and impact transmission, and Eilar Associates has no control over the construction, workmanship or materials, Eilar Associates is specifically not liable for final results of any recommendations or implementation of the recommendations.

The findings and recommendations of this acoustical analysis report are based on the information available and are a true and factual analysis of the potential acoustical issues associated with Strauss Fifth Avenue, to be located in the City of San Diego, California. This report was prepared by Jonathan Brothers and Amy Hool.

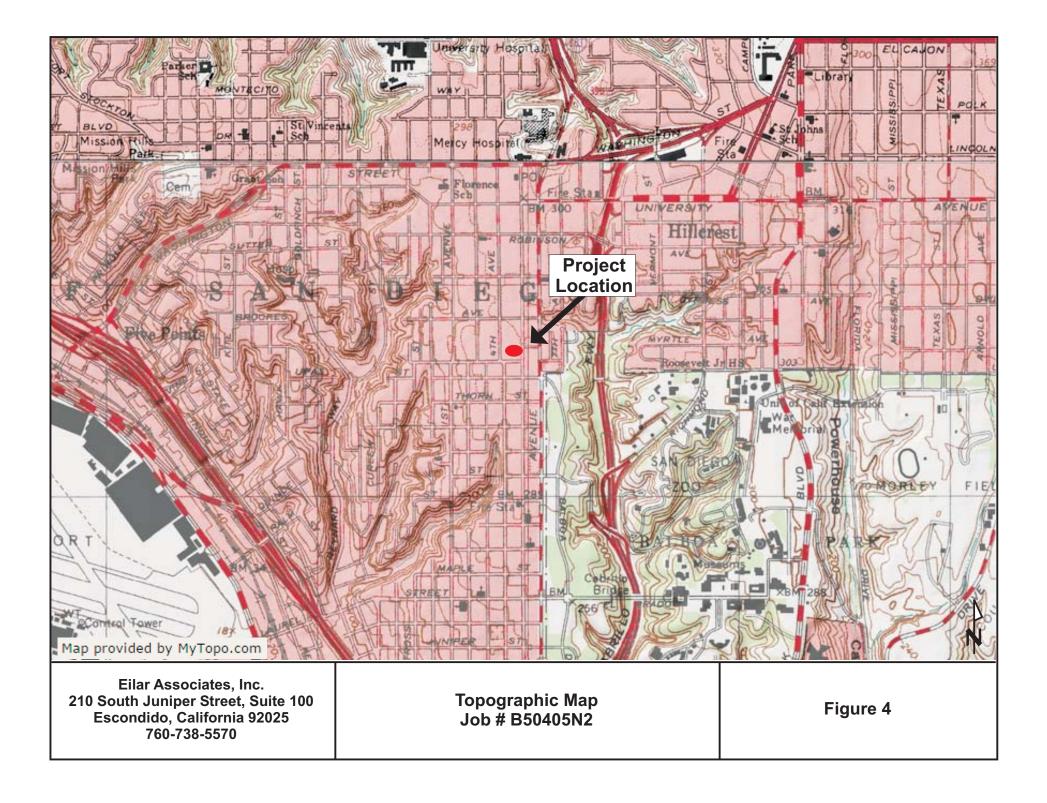

Jonathan Brothers, Senior Acoustical Consultant

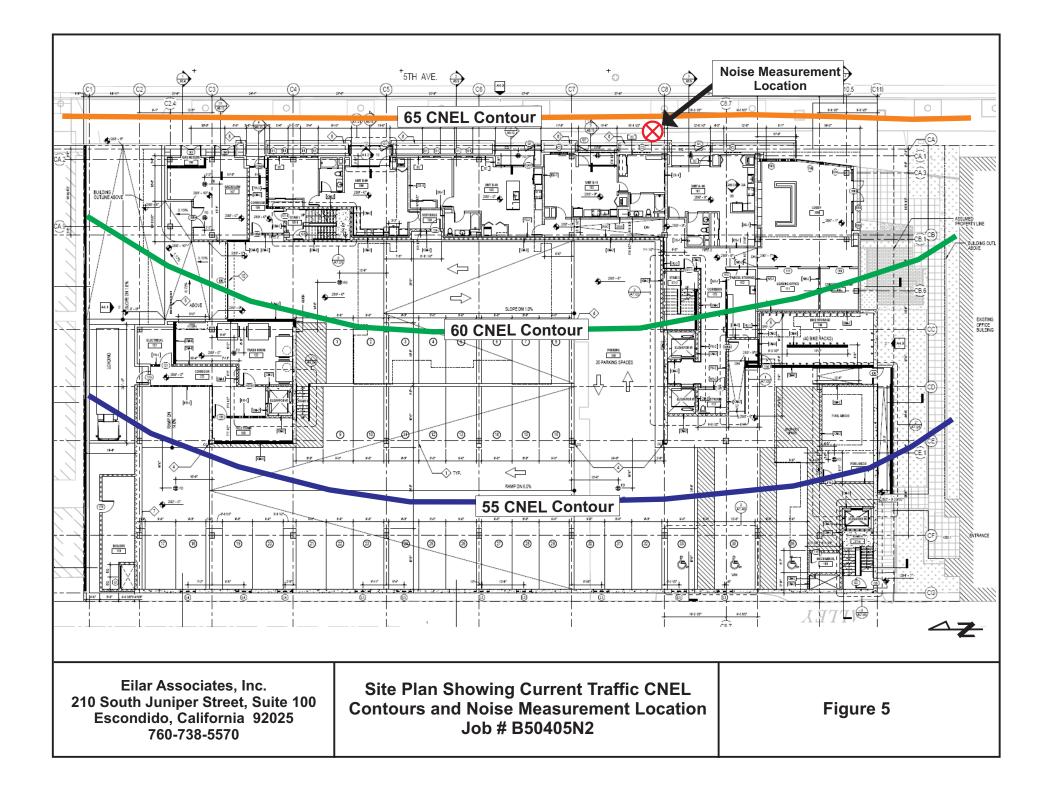

Amy Hool, Principal Acoustical Consultant

8.0 REFERENCES

- 1. California Building Code, Based on the International Building Code, Chapter 12, Section 1207 Sound Transmission Control.
- 2. California Mechanical Code, Based on the Uniform Mechanical Code, Chapter 4-Ventilation Air Supply.
- 3. Federal Highway Administration, Traffic Noise Model Version 2.5.
- 4. City of San Diego Noise Element to the General Plan, June 2015.
- 5. City of San Diego Municipal Code, Section 59.5, Effective February 9, 2006.
- 6. Harris, Cyril M., Handbook of Acoustical Measurements and Noise Control, 3rd Edition, Acoustical Society of America, 1998.
- 7. Heeden, Robert A., Compendium of Materials for Noise Control, U.S. Department of Health, Education and Welfare, National Institute for Occupational Safety and Health, November 1978.
- 8. Irvine, Leland K., Richards, Roy L., Acoustics and Noise Control Handbook for Architects and Builders, Kreiger Publishing Company, 1998.
- 9. NBS Building Sciences Series 77, Acoustical and Thermal Performance on Exterior Residential Walls, U.S. Department of Commerce/National Bureau of Standards, November 1976.
- Western Electro-Acoustic Laboratory, Inc., 1711 Sixteenth Street, Santa Monica, California 90404, 213-80-9268, Sound Transmission Loss Vs. Glazing Type, Window Size and Air Filtration, January 1985. The research described in this report was prepared for the California Association of Window Manufacturers, 823 North Harbor Boulevard, Suite E, Fullerton, California 92632, 714-525-7088.
- 11. Wyle Laboratories, Development of Ground Transportation System Contours for the San Diego Region, December 1973.
- 12. Traffic Distribution Study, by Katz-Okitsu and Associates Traffic Engineers, 1986.
- 13. UK Department for Environment, Food, and Rural Affairs (DEFRA) Construction Noise Database.

FIGURES





Eilar Associates, Inc. 210 South Juniper Street, Suite 100 Escondido, California 92025 760-738-5570

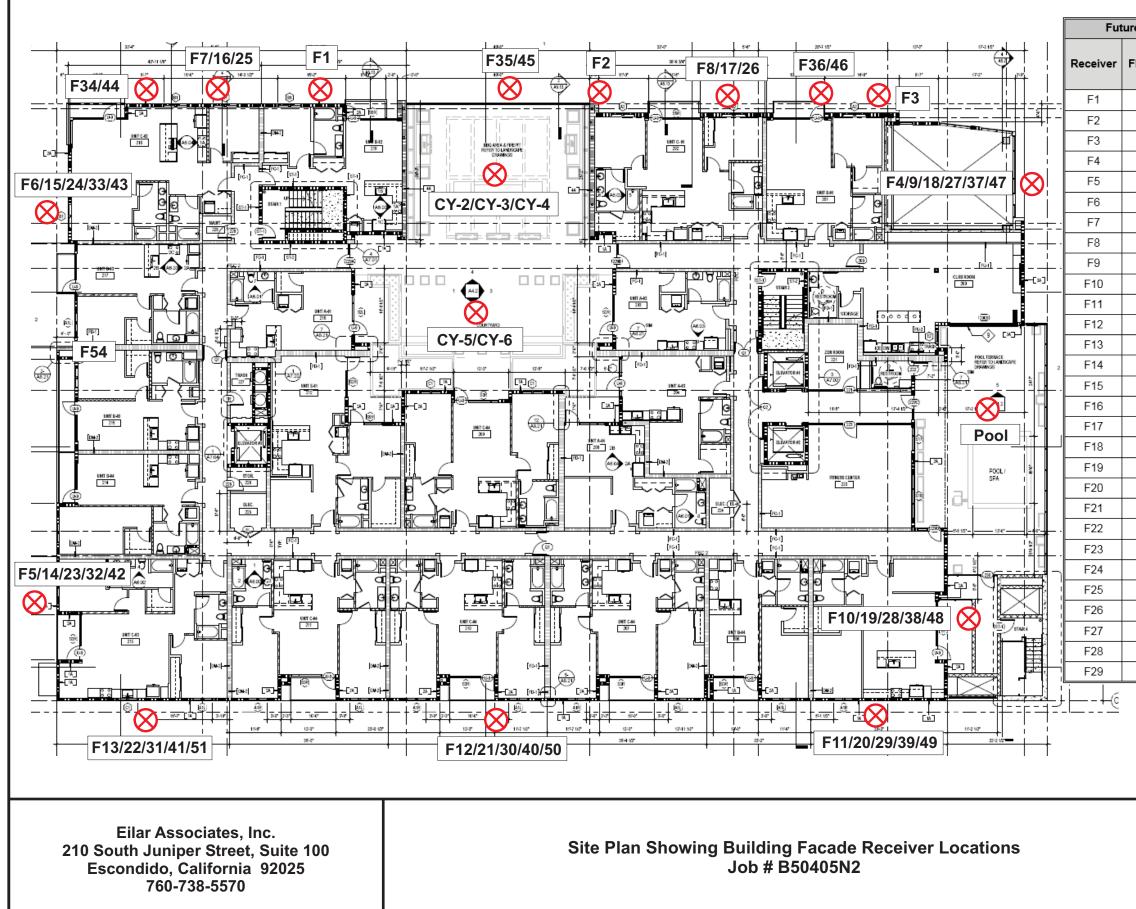
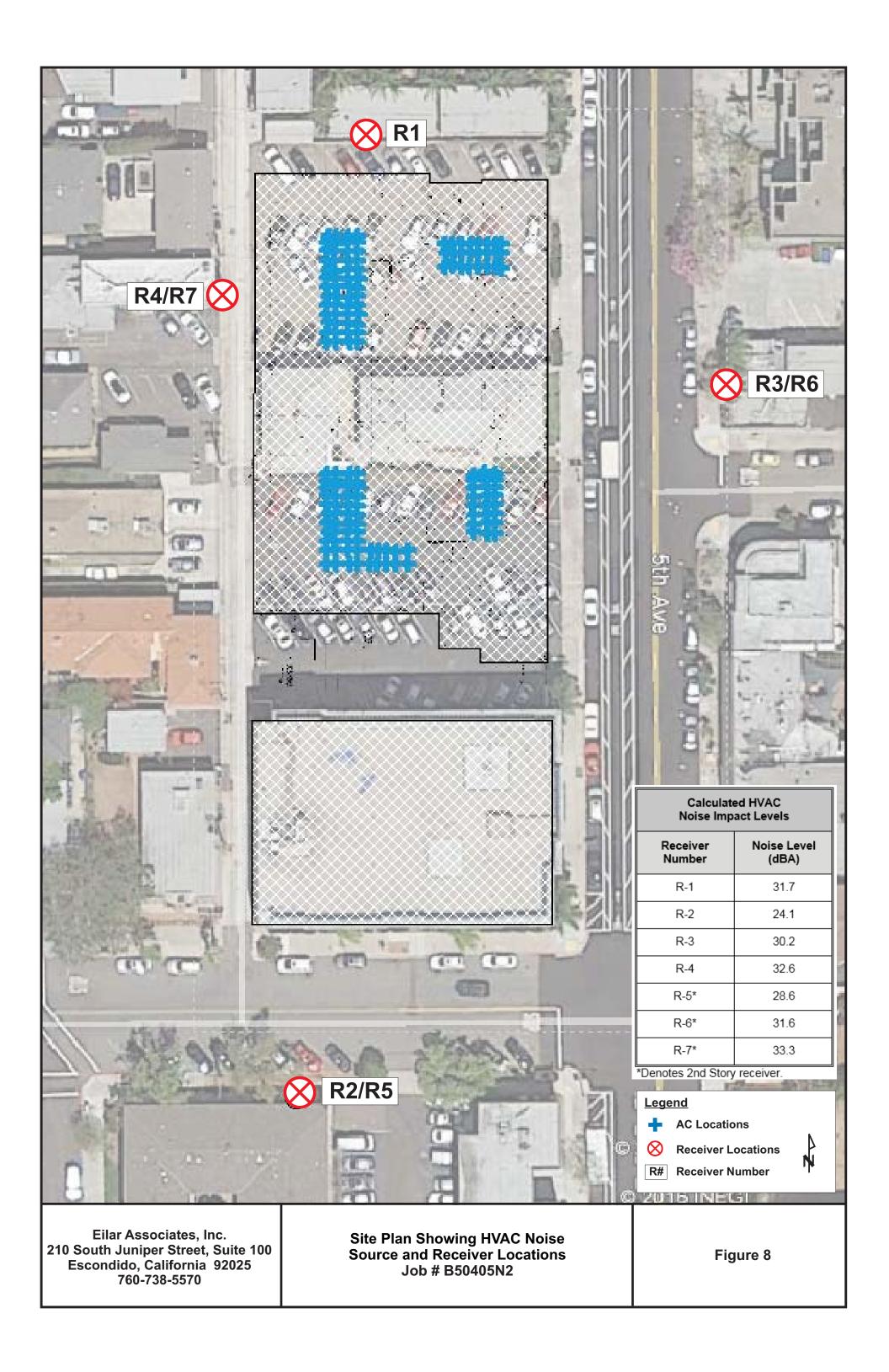
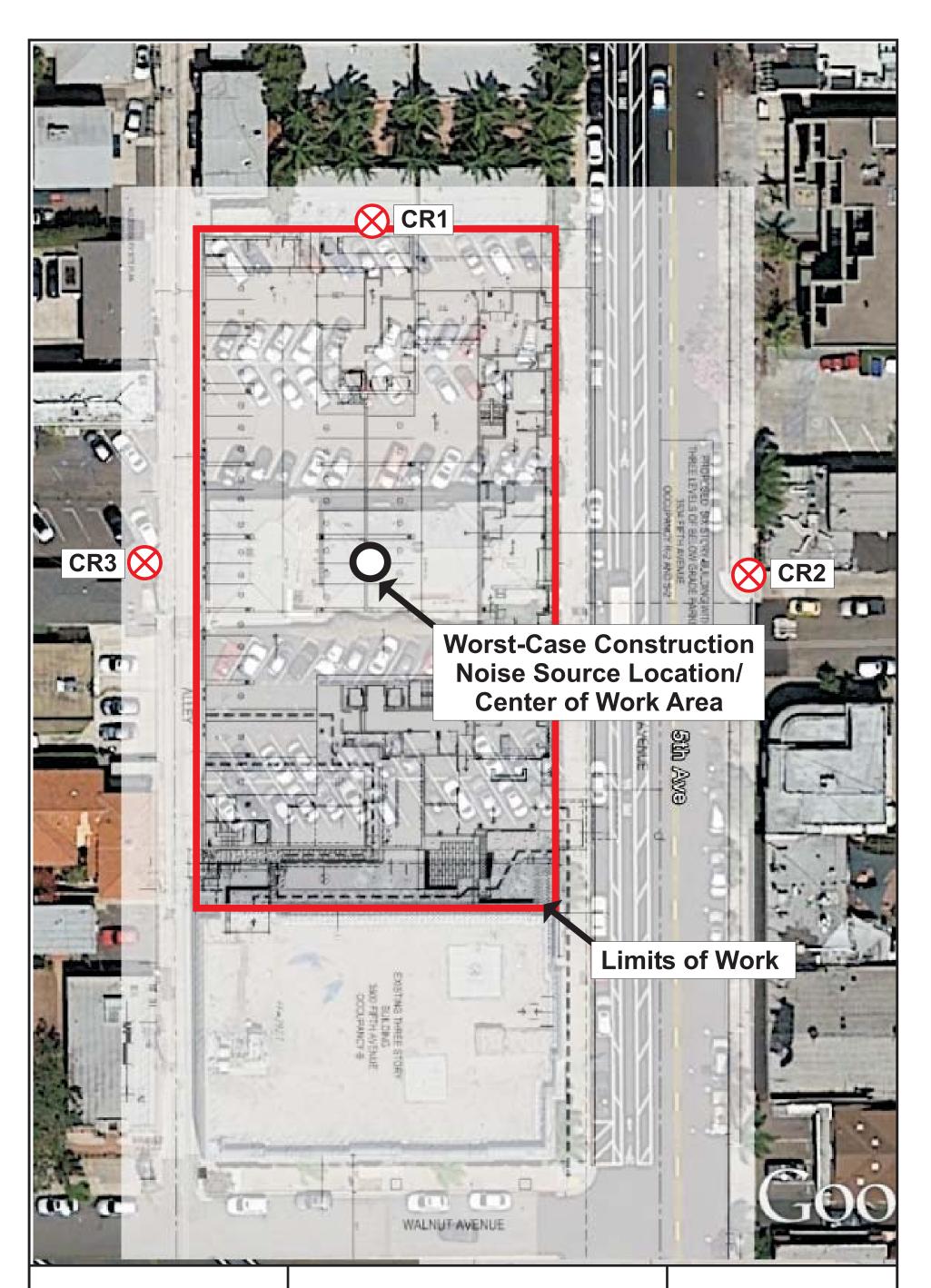

Satellite Aerial Photograph Job # B50405N2

Figure 3

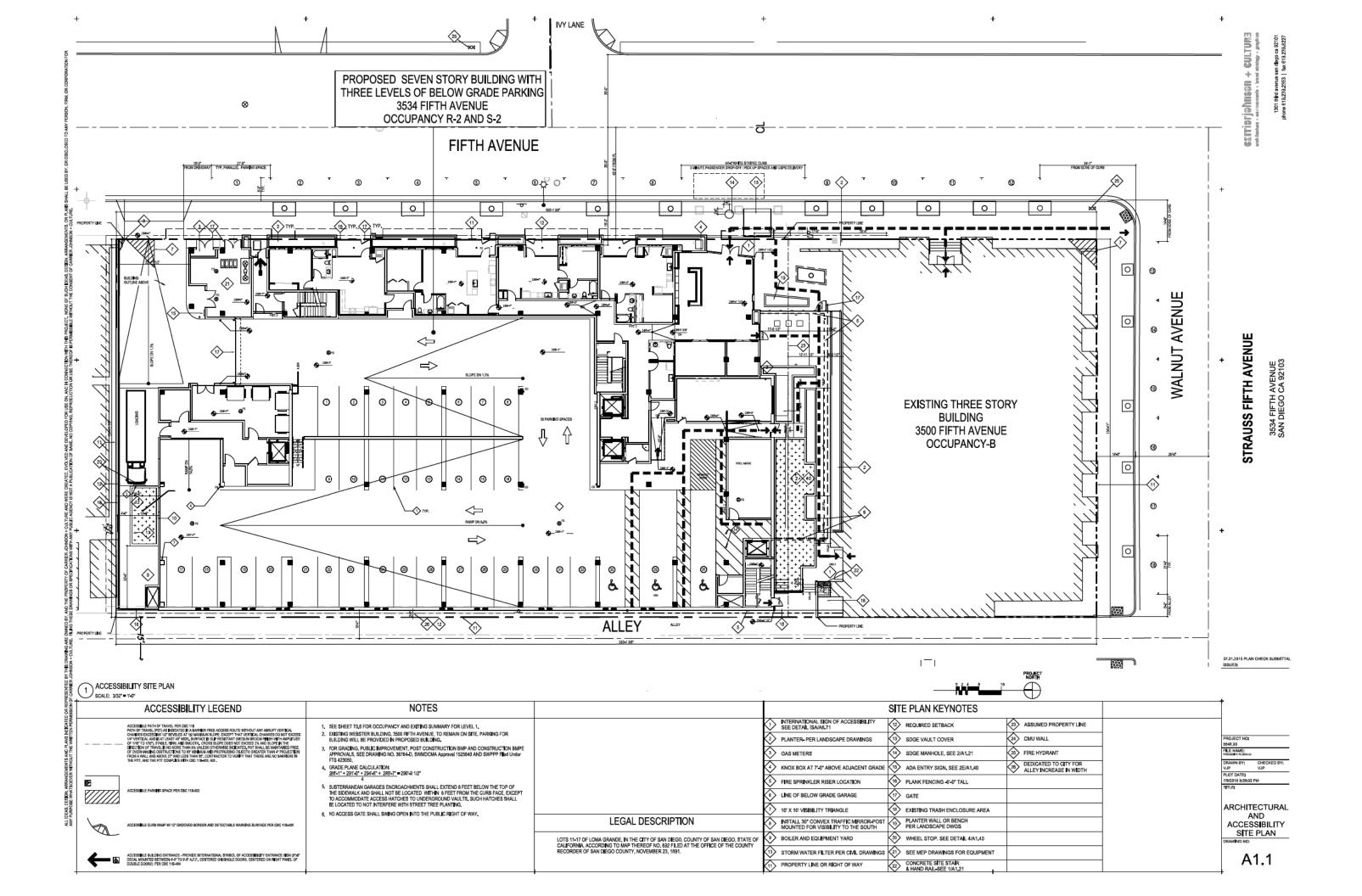


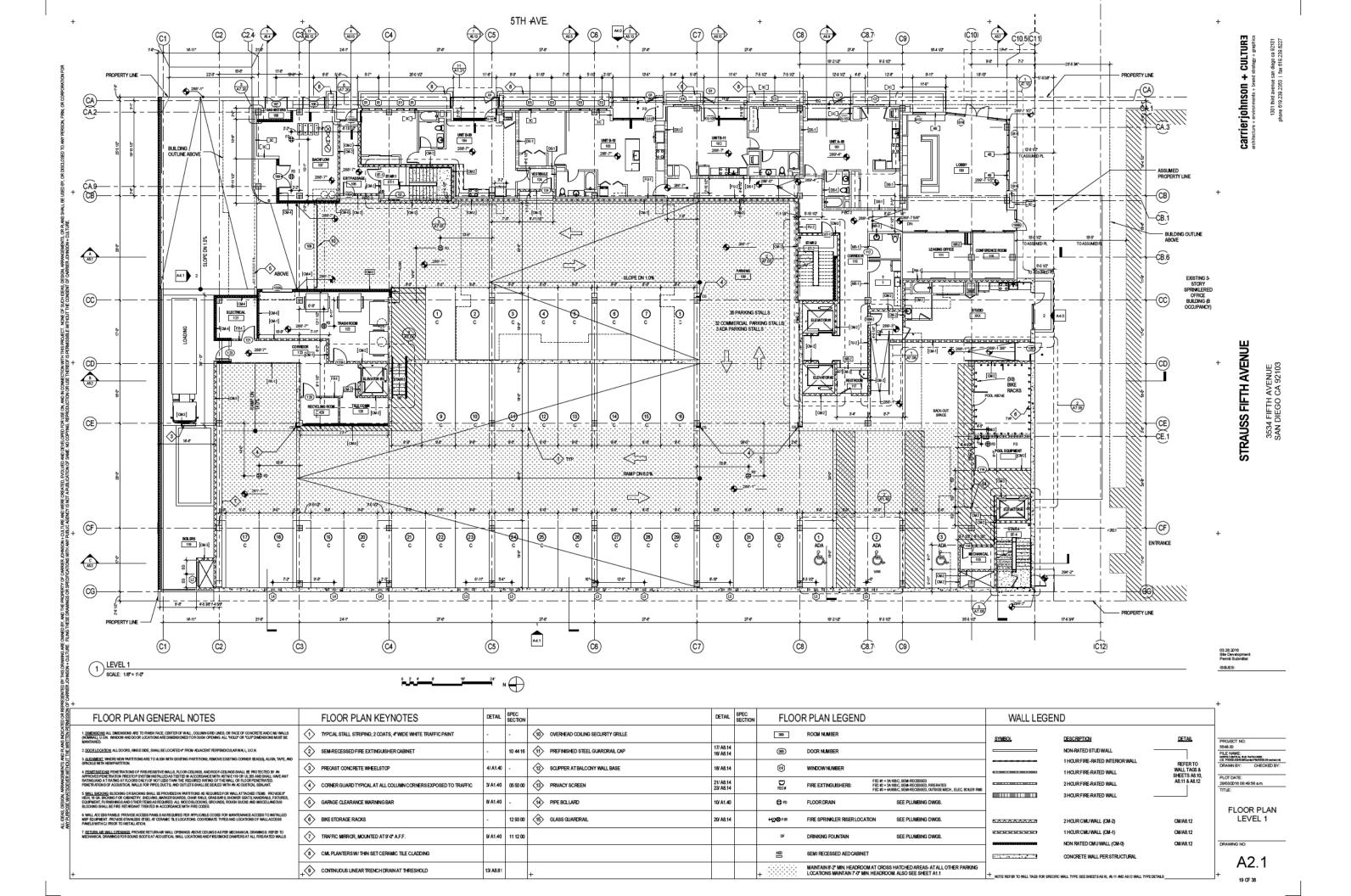


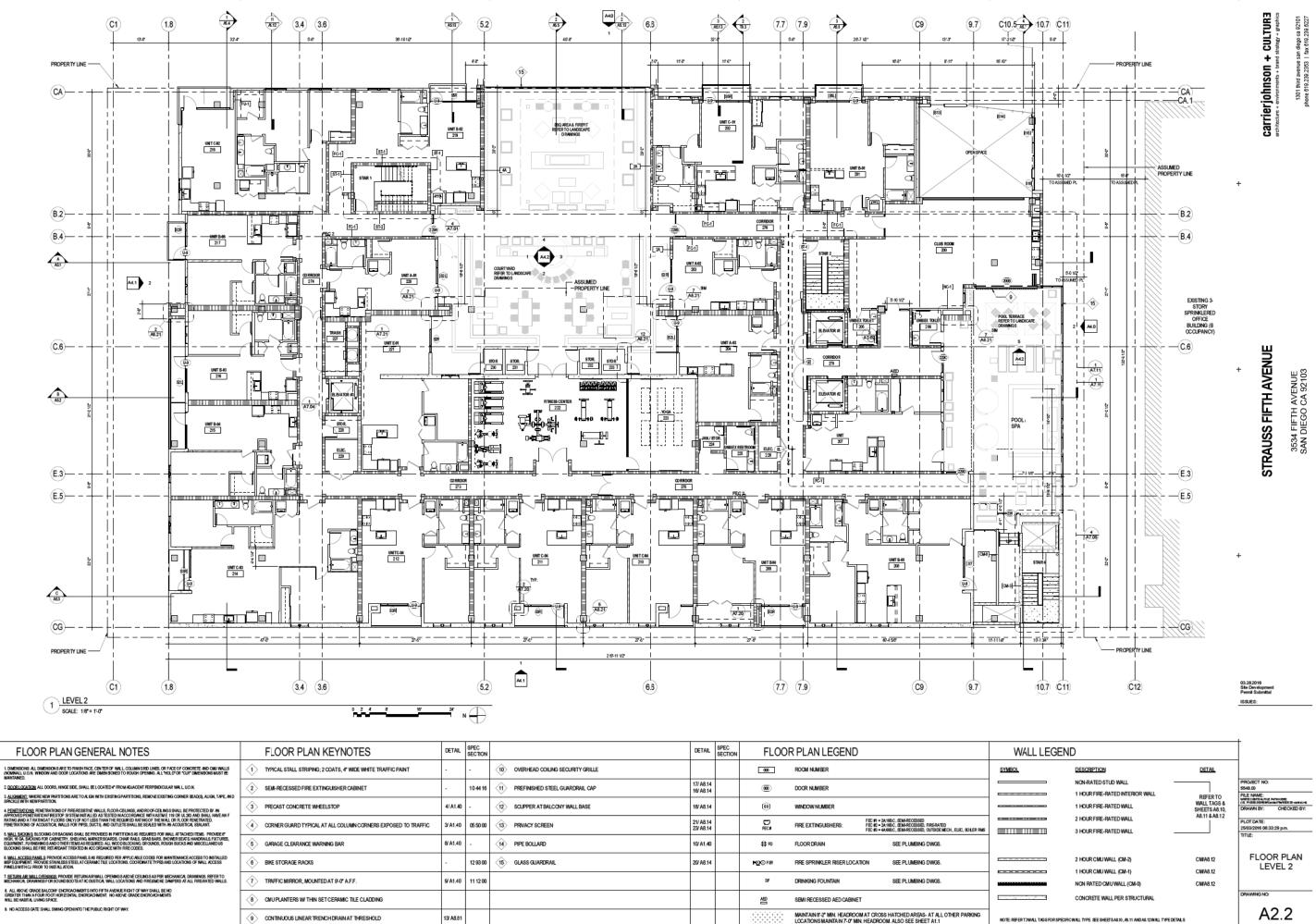
re Noi	se Levels a	-	Facades ar	nd Outd	oor Use Are			
Floor	Facade Location	Exterior Noise Level (CNEL)	Receiver	Floor	Facade Location	Exterior Noise Level (CNEL)		
1	East	65.2	F30	4	West	52.7		
1	East	65.2	F31	4	West	52.3		
1	East	65.1	F32	5	North	55.5		
1	South	59.7	F33	5	North	59.9		
2	North	49.9	F34	5	East	64.3		
2	North	57.8	F35	5	East	64.3		
2	East	64.7	F36	5	East	64.2		
2	East	64.7	F37	5	South	59.2		
2	South	59.7	F38	5	South	54.1		
2	South	49.4	F39	5	West	54.7		
2	West	50.1	F40	5	West	54.3		
2	West	49.5	F41	5	West	53.8		
2	West	48.8	F42	6	North	55.9		
3	North	52.6	F43	6	North	59.6		
3	North	60.1	F44	6	East	64.3		
3	East	64.4	F45	6	East	64.4		
3	East	64.4	F46	6	East	64.4		
3	South	59.3	F47	6	South	59.8		
3	South	52.2	F48	6	South	55.1		
3	West	52.4	F49	6	West	55.7		
3	West	51.8	F50	6	West	54.7		
3	West	51.3	F51	6	West	54.0		
4	North	54.0	CY-2	2	Courtyard	56.7		
4	North	59.8	CY-3	3	Courtyard	61.6		
4	East	64.2	CY-4	4	Courtyard	61.3		
4	East	64.2	CY-5	5	Courtyard	56.5		
4	South	59.1	CY-6	6	Courtyard	56.8		
4	South	52.9	Pool	2	Pool Area	47.6		
4	West	53.2						

Figure 7

Eilar Associates, Inc. 210 South Juniper Street, Suite 100 Escondido, California 92025 760-738-5570 Satellite Aerial Photograph Showing Temporary Construction Noise Source and Receiver Locations Job # B50405N2

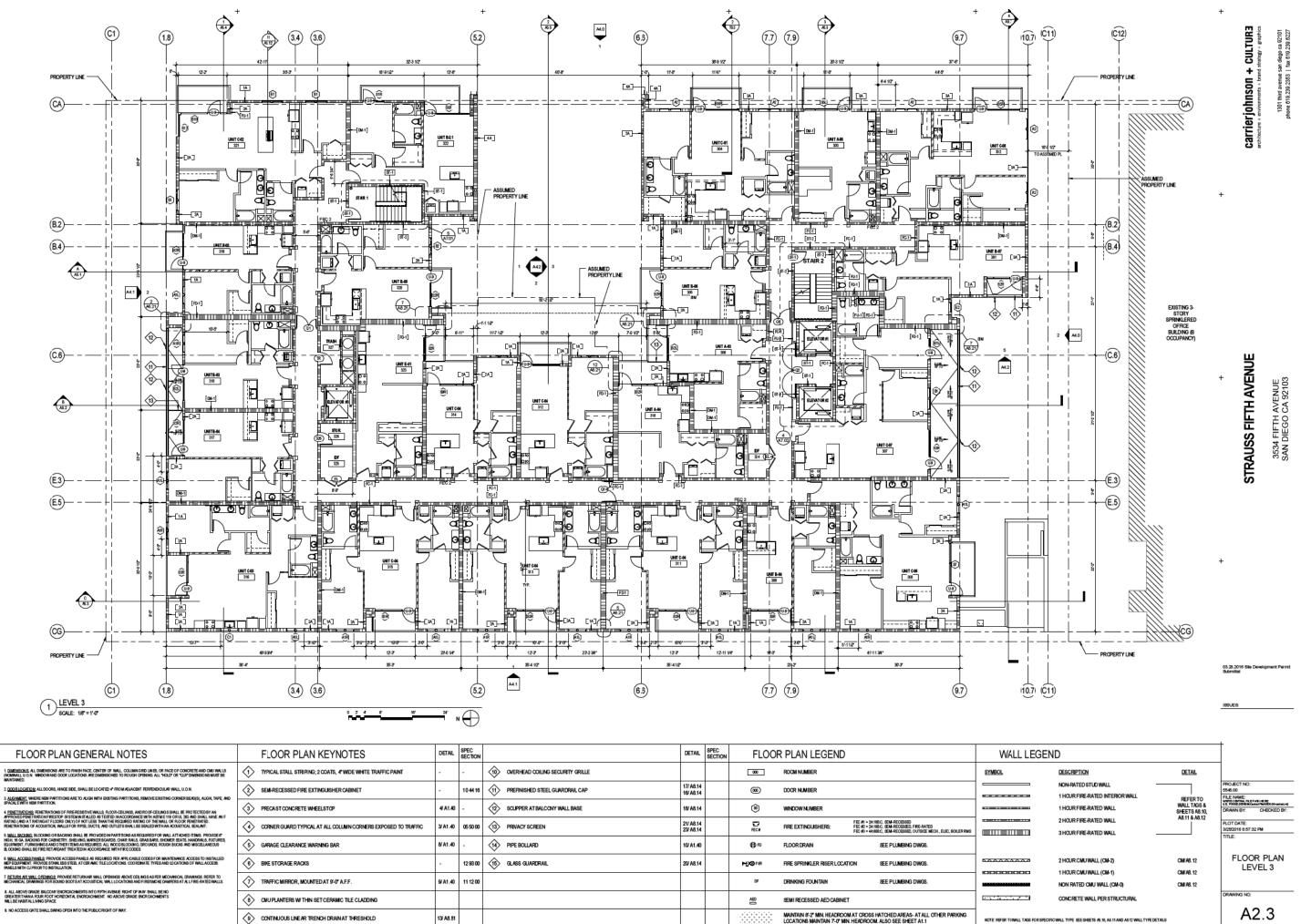

Figure 9


APPENDIX A


Project Plans

ARCHITECTURAL ABBREV	ATIONS	ARCHITECTURAL LEGEND		PROJECT TITLE	+
AB. ANCHAR ROLT FLB RLOW RLOW A.D. ADMALTCONKETEL FLB RLOW RLOW RLOW ADMALTCONKETEL FLB RLOW RLOW RLOW RLOW RLOW ADMALTCONKETEL FLB RLOW RLOW RLOW RLOW RLOW RLOW ADM ACCESS DOCK / MEXADIN FLB FLD RLOW	PL PRCPERTY LIKE/ PATE PLBC PUBLIC/OWNER PLBC PUBLIC/OWNER PLM PUBLIC/OWNER PL PUBLIC/OWNER PLC PUBLIC/OWNER RC REFUERCE/OWNER REF REFUERCE/OWNER REF REFUERCE/OWNER RECURS RECURS RECURS RECURS RECURS RECURS RECUMERDIN RECURS	EXTRICT LAVA TOP: ELEVATOR NAMER ELEVATOR NAMER SHETTWISE CRWN INTERCE LAVA TOP: ELEVATOR NAMER INTERCE LAVA TOP: ELEVATOR NAMER ELEVATOR NAMER ELEVATOR NAMER EL		TRAUSS FIFTH AVENUE A PRIVATE HOUSING PROJECT 3534 FIFTH AVENUE SAN DIEGO, CA 92103 E DEVELOPMENT PERMIT MARCH 28, 2016	
OL BUTO NUTO NUTO NUTO CI BUTO BUTO NUTO NUTO NUTO CI BUTO BUTO NUTO NUTO NUTO STAN BESTREE NUTO NUTO NUTO NUTO STAN BESTREE NUTO NUTO NUTO NUTO STAN BESTREE NUTO NUTO NUTO NUTO CI CHARE BUTO NUTO NUTO NUTO CI CHARE HIT NUTO NUTO NUTO CI CHARE HIT NUTO NUTO NUTO CI CHARE HIT NUTO NUTO NUTO CI CHARE NUTO NUTO NUTO NUTO NUTO CI CI CHARE NUTO NUTO NUTO NUTO NUTO NUTO CI CI CONTROLON NUTO NUTO NUTO NUTO <t< td=""><td>S SOUTH S.F.M. SELANDERROND FLASHINGUERRANE S.C. SCAR S.C. SCAR S.O.D. SEE ELECTING DRAWNOS SEDED. SEE ELECTING DRAWNOS SED SEE ELECTING DRAWNOS SED SEE ELECTING DRAWNOS SED SEE ELECTING DRAWNOS SED SEE ELECTING DRAWNOS SMID SEE ELECTING DRAWNOS SMD SEE</td><td>BEET WEERE DOWNN BUILDE SETTOR BUILDE SETTOR BUILDE SETTOR BUILDE SETTOR BUILDE SETTOR BUILDE SETTOR BUILDE SETTOR CONTERUNE MARE OF OF BUILDE SETTOR BUILDE FOR DENNER CONTERUNE CONTE</td><td></td><td>MARCH 28, 2016</td><td></td></t<>	S SOUTH S.F.M. SELANDERROND FLASHINGUERRANE S.C. SCAR S.C. SCAR S.O.D. SEE ELECTING DRAWNOS SEDED. SEE ELECTING DRAWNOS SED SEE ELECTING DRAWNOS SED SEE ELECTING DRAWNOS SED SEE ELECTING DRAWNOS SED SEE ELECTING DRAWNOS SMID SEE ELECTING DRAWNOS SMD SEE	BEET WEERE DOWNN BUILDE SETTOR BUILDE SETTOR BUILDE SETTOR BUILDE SETTOR BUILDE SETTOR BUILDE SETTOR BUILDE SETTOR CONTERUNE MARE OF OF BUILDE SETTOR BUILDE FOR DENNER CONTERUNE CONTE		MARCH 28, 2016	
Y 00 F.D. PLOOD DRMIN O.C. OW CONSE Y 00 F.D. PROOD DRMINSER O.D. OWERSE DUMETER Y 00 F.D. PROOD DRMINSER O.D. OWERSE DUMETER Y 00 F.D. PREDCTINAUSHER DUMATER O.F. OWERSE DUMETER Y 00 F.F. PREVET NORF O.F. OWERSE DUMETER Y 00 F.F. PREVET NORF O.F. OWERSE DUMETER Y 00 F.F. PREVET NORF OWER DUMETER Y 00 F.F. PREVET NORF OWER DUMATER Y 00 F.F.F. PREVET NORF OWER DUMATER </td <td>WIL WATERHEAR WD WITKATT WD, WATERHOOL AND WATERHOOL AND AND WATERHOOL AND AND WATER WEARD AND WATER WEAR WATERHOOL AND AND WATERHOOL AND AND WATERHOOL AND AND WATERHOOL AND AND WATERHOOL AND WATERH</td> <td>entritati (00) entritati (0) entritati (</td> <td>APPLICABLE CODES & STANDARDS</td> <td>MULTI-FAMILY HOUSING REQUIREMENTS</td> <td>PROJECT TEAM</td>	WIL WATERHEAR WD WITKATT WD, WATERHOOL AND WATERHOOL AND AND WATERHOOL AND AND WATER WEARD AND WATER WEAR WATERHOOL AND AND WATERHOOL AND AND WATERHOOL AND AND WATERHOOL AND AND WATERHOOL AND WATERH	entritati (00) entritati (0) entritati (APPLICABLE CODES & STANDARDS	MULTI-FAMILY HOUSING REQUIREMENTS	PROJECT TEAM
Переверьалето над.: Солнате рълка новексато со Submittals/Permits 1. Сереверьалето над.: Солнате рълка новексато постоя со пред Аламонски на совексато на совексато со совексато	CONTRACTOR C	LING FINISH RAME-SPREVD PATHO SHALL BE AS INDURED FER. (CBC TABLE 0019), 55 57 58 59 50 50 50 50 50 50 50 50 50 50	Proceedings of the control of t	CONFRED DWELLING UNITS INCLUDES: METHOD OF COMPLIANCE ONE BATTRECOM ALL BATRECOMS METHOD OF COMPLIANCE ONE BATTRECOM ALL BATRECOMS METHOD MARIBER	
Electronact, unselectronact, and an an an and an analysis of the second s	LE WITH THE LE WITH THE CONTROL CONTROL THE WORK THE A CODERNOUS THE WORK THE WORK THE RESULTED WORK THE WORK THE WORK THE RESULTED WORK THE WORK THE WORK THE STATUS OF NOT LISE THE STATUS TO ALL THE STATUS OF STATUS OF STATUS STATUS OF NOT LISE THE STATUS STATUS OF NOT LISE OF	OF CORRECORS SHALL NOT BE LESS THAN ALL WERE SERVING AN COCUPANT LOVO MINAARA DOCOSPANT LOVO OF LESS THAN DRIVEN THE LESS THAN DRIVEN SHALL BE UNDERSTOTED. COSES DOCOMMYSTARD DOCIMINARY BROWINGCOLFIPS AREA TO A CORRECOR ITTISS THIS AND AND THAN THAN THE AND AND AND AND AND AND AND AND AND AND AND AND AND AND AND AND AND	1 A CONTRACT OF MERCIPACIPACITY OF A CONTRACTOR OF A CONT	More than a service the least to be the thore of the least to be the term of the least the least to be th	

				-	
	DF	RAWIN	GINDEX	m a	
	C-3 (90 F 38) ALLEY MPROV C-4 (10 0 F 38) GRADING PLAI 03 - LANDS CAPE L1 (11 0 F 38) LANDSCAPED L2 (12 0 F 38) LANDSCAPED	NATION NATION EMENT VENENT FLAN MEROVEMENT FLAN NEVELOPMENT FL XEVELOPMENT FL	an Ni Ang Natiga st Reet Level Ni Podran Level	Carrierjohnson + CULTUR3 architerue + environments + band strategy + graphics	1301 third avenue san diego ca 92101 phone 619.238.2363 fax 619.239.6227
	A111 (14 G73) EXEMPS SUPERVISES A112 (16 G73) EXEMPS SUPERVISES A27 (16 G73) EXEMPS SUPERVISES A27 (16 G73) EXEMPS SUPERVISES A27 (16 G73) FLOOR RAN L A21 (16 G73) FLOOR RAN L A22 (20 G73) FLOOR RAN L A23 (20 G73) FLOOR RAN L A24 (20 G73) FLOOR RAN L A25 (20 G73) FLOOR RAN L A26 (20 G73) FLOOR RAN L A26 (20 G73) FLOOR RAN L A27 (20 G73) FLOOR RAN L A28 (20 G73) FLOOR RAN L A29 (20 G73) FLOOR RAN L A29 (20 G73) FLOOR RAN L A21 (20 G73) FLOOR RAN L A22 (20 G73) FLOOR RAN L A23 (20 G73) FLOOR RAN L A34 (20 G73) FLOOR RAN L A34 (20 G73) FLOOR RAN L A34 (20 G73) FLOOR FLOOR FLOOR RAN L A34 (20 G73) FLOOR FLOOR FLOOR RAN L A34 (20 G73) FLOOR FLOO	A ACCESSIEL WEY FINOTOGRAPHIC FAEL FAEL FAEL LAPEL 1 LAPEL 1 LAPEL 2 LAPEL 4 LAPEL 6 EVATIONS EVATIONS EVATIONS EVATIONS FITIONS TICONS TICONS TICONS	ny bite rani Surkey Lune and Transparency Dagram	-	
				STRAUSS FIFTH AVENUE	3534 FIFTH AVENUE SAN DIEGO CA 92103
	CAL INFORMATION OF A CONTRACT		ODE COMEND TANE CONFORME INSTREMEND, INC. SWATERIE COMENDATE SWATERIE COMENDATE CONTACT JAKES CHRCH LI DOWNACT JAKES CHRCH LI DOWNACT JAKES CHRCH LI DOWNACT JAKES CHRCH LI DOWNACT JAKES CHRCH LI SWATERIC CHRCH LI TE, WAR SWATE CONTACT JCE, BOOWN	N I	
	LANDOCAFE ARCHITECT: WIMMERYAARDA AND CAUGHE SKI DEOL CAUGHE SKI DEOL CAUGHE SKI DEOL CAUGHE SKI DEOL CAUGHE CONTACT: BRID HILL NER	2r	GRINIFAL CONTINUE DR CANNOR CONSTRUCTORS SOUTH E220 FORMAL CREWE, BATE 219 SAURCEG, CA 021020 E. 2004 AUX 2004 E. 2004 AUX 2004 CONTACT. TOM REMEMPERGER	÷	
	P	ROJE	CT DATA		
	PROJECT DESCRIPTION: ADDRESS / LOCATION: ASSESSOR'S PARCEL NO.: LEGAL	OVER TWO R.C CONSTRUCTIO LANDSCAPED / FUNDED PROJU PROPOSED AP/ PROPOSED BUIL BOSTING BUIL 452-408-1400, 4	CTONOF FIVE RUORS OF APARTMENTS (TYPE II-ACONSTRUCTION) ORIG OF APARTMENTS AND PARAMINAL ORDE (TYPE) II- SERTING CAPECAEULING AT GUTHERD STRET TO REMINIAND A CCT 300 (1997) (CM INOCAEULINTS WILL BE FROM DEDWITHIN THE HI FINITH ORIS DUDING STRETH AVENUE, SAN DEGOL CA 2010 MICE 3000 FTT AVENUE, SAN DEGOL CA 2010 CAMA DRAME, INTRE STR DE SAN DEGOL CA 2010 COMA DRAME IN THE CITY OF SAN DEGOL COUNTY OF SAN	03.28.2016 Site Development Permit Submittel ISSUES:	
	DESCRIPTION: HISTORICAL RESOURCE INFORMATION:	BT 9 NO. 40 6710	COM CARANCE IN THE CITY OF SAN MOTEON COUNTY OF SAN FOURDING ACCOUNT ON AP HEREOF NO. 882 PILEDAT THE COUNTY SECORER OF SAN DEGO MERET AL 1997. A PILEMANEY ROUND OT THE EDG TO COUNT CONTEDAT THE BALLONG COUNT MET FRANCISCUIT ON CONTEDAT THE BALLONG COUNT MET FRANCISCUIT ON PIEMAT.	÷	
				PROJECT NO: 5548.00 FILE NAME: WITCOBITAL REPAINING DE PRODUCTS MCHINERAL DRAWN BY: CH	ECKED BY:
	IS OR PLACED TED BY AN			PLOT DATE: 3/26/2016 9:23:51 AM TITLE:	
EET FROM LE MATER CFC CHAP	ACHER IAIS OR			TITLE SH	IEET
IDED TO T	HECTYOF HATIS BYWAYOF A IGIOR MEMAS			TORAWING NO: TO.	



∃È

NOTE: REFER TOWALL TAGS FOR SPECIFIC WALL TYPE. SEE SHEETS A&10, A&11 AND A&12 WALL TYPE DETAILS

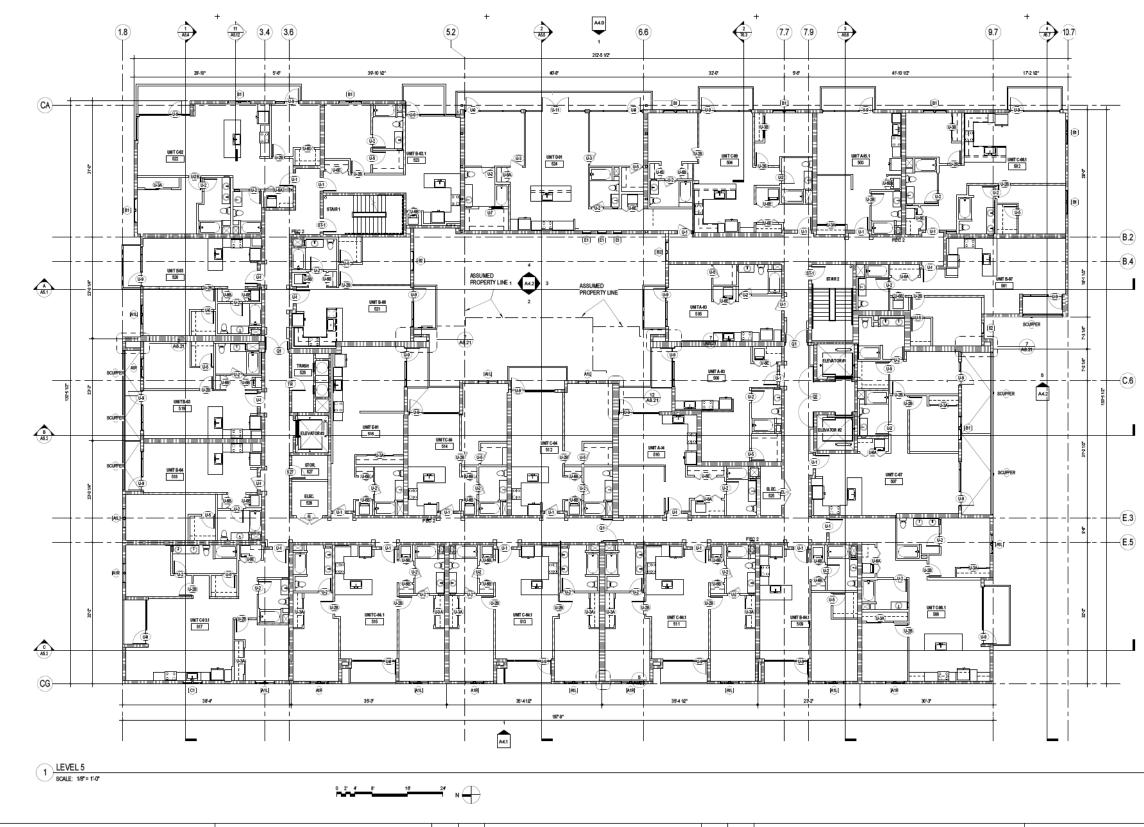
A2.2

20 OF 38

ΞÈ

(9) CONTINUOUS LINEAR TRENCH DRAIN AT THRESHOLD

13/ A8.81


21 OF 38

NOTE REFER TOWALL TAGS FOR SPECIFIC WALL TYPE SEE SHEETS AS 10, AS 11 AND AS 12 WALL TYPE DETAILS

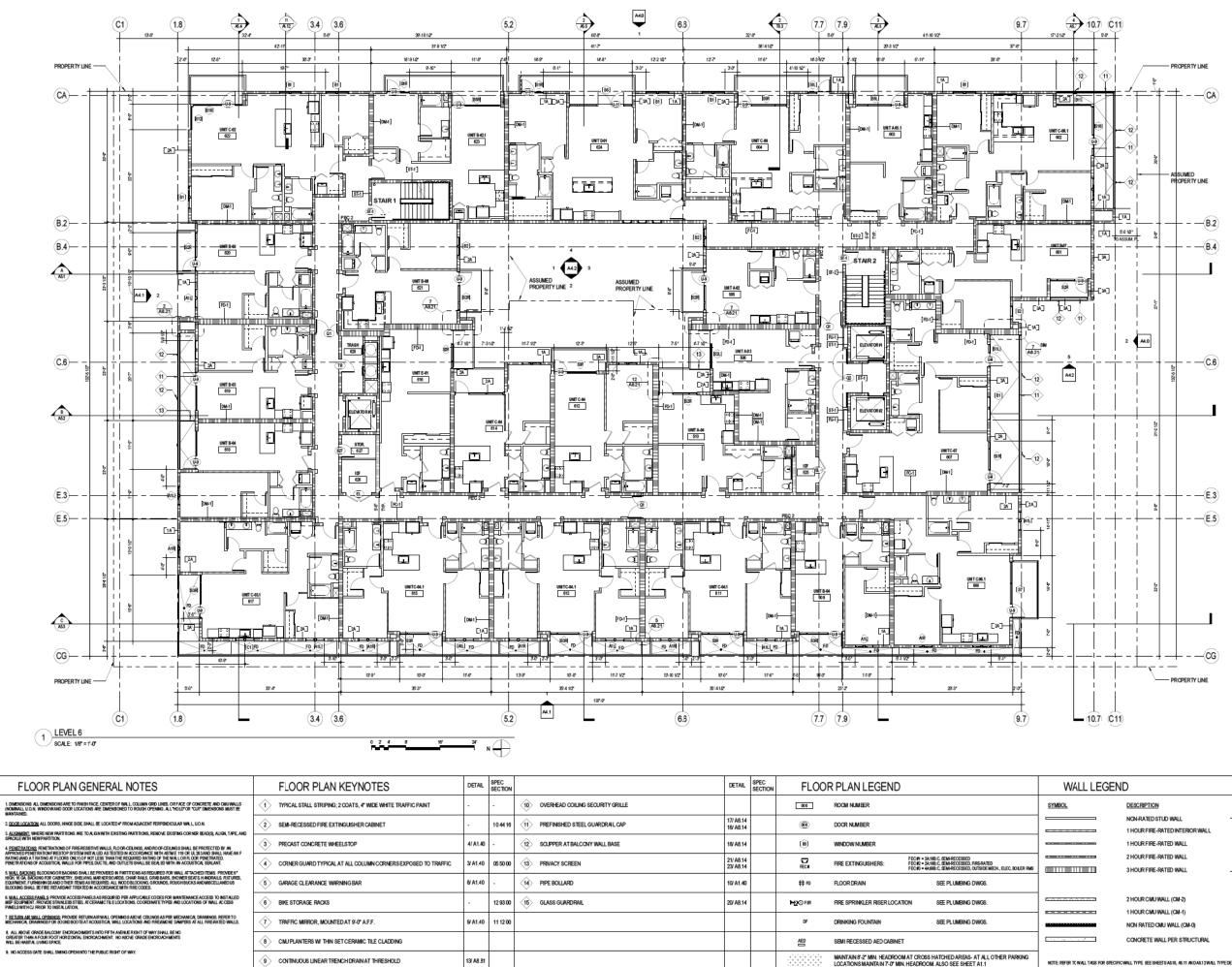
ALL IDEAS, WY PURP(

22 OF 38

PROJECT. NONE OF SUCH IDEAS ISSIBLE WITHOUT THE CONSEN

CTION WITH THIS I THEREOF IS PERN

- CULTURE AND WERE CREATED, EVOLVED PUBLIC AGENCY IS NOT A PUBLICATION OF

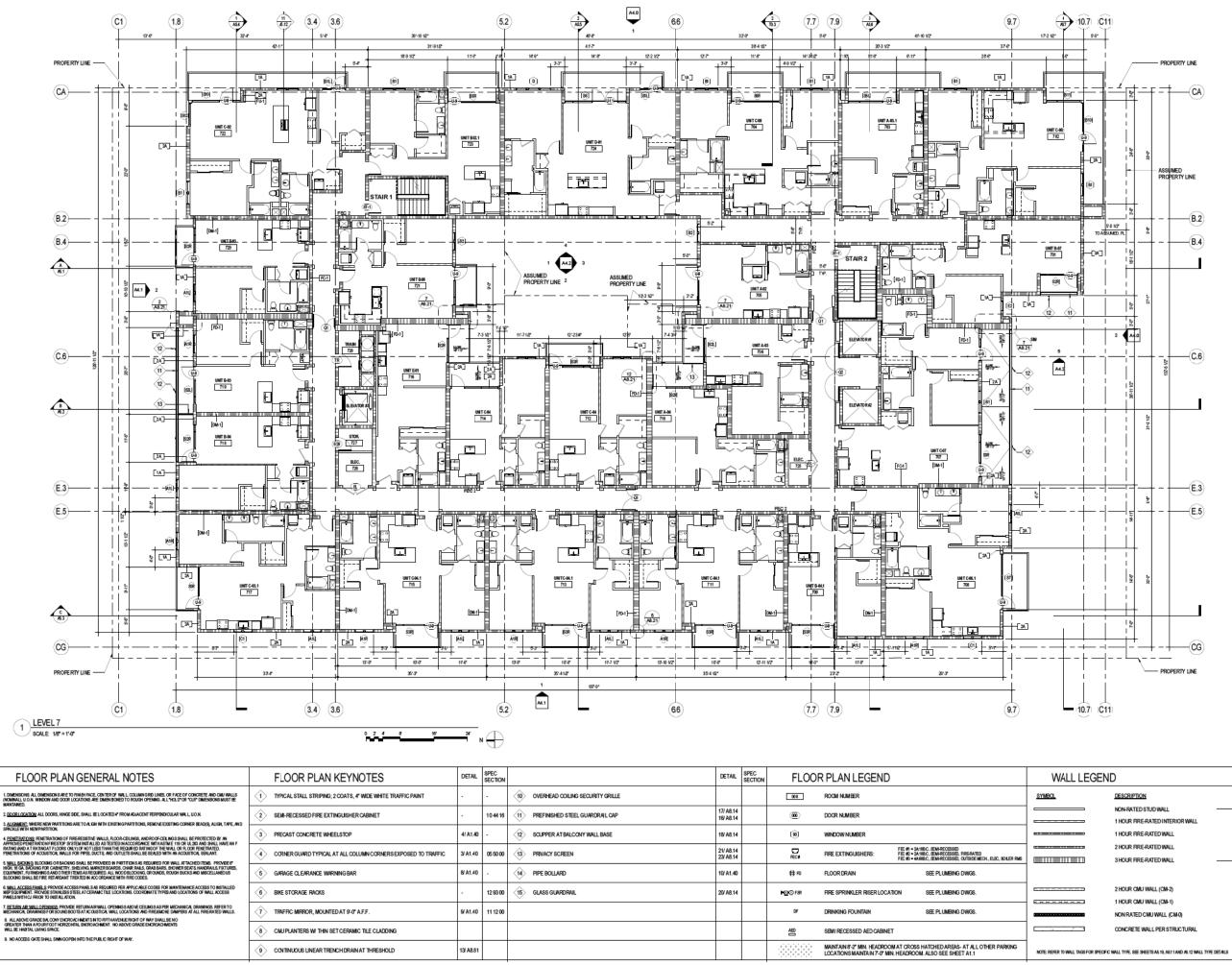

ANGEMENTS AND PLANS INDICA EVER WITHOUT THE WRITTEN PE

±						+
FLOOR PLAN GENERAL NOTES	FLOOR PLAN KEYNOTES	DETAIL SPEC SECTION	DETAIL SPEC SECTION	FLOOR PLAN LEGEND	WALL LEGEND	
1. DURENSCINS, ALL DIMENSIONS ARE TO FINGH FACE CENTER OF WALL COLUMN ORID LINES, OR FACE OF CONCRETE AND CAU WALLS WOMMAIL U.D.N. WINDOW AND DOORL OCATIONS ARE DIMENSIONED TO ROUGH OPENING, ALL YIOLD' OR "CLR" DIMENSIONS MUST BE MANT ANED.	(1) TYRCAL STALL STRIPING; 2 COATS, 4* WIDE WHITE TRAFFIC PAINT	<		000 ROOM NUMBER	SYMBOL DESCRIPTION DETAIL	
2. DOOR LOCATION: ALL DOORS, HINGE SIDE, SHALL BE LOCATED 4" FROM ADJACIENT PERFENDICULAR WALL, U.O.N.	2 SENI-RECESSED FIRE EXTINGUISHER CABINET	- 10.44 16 (1) PREFINISHED STEEL GUARDRAIL CAP	17/ A8.14 16/ A8.14	((DOOR NUMBER	NON-RATED STUD WALL	PROJECT NO: 5548.00 FILE NAME: WITECONTRAINE PATHEDR: (IF PRODUCTION INCOME IN CONTRAINED
3.4 CONJECT: WHERE NOW PRETIDONS ARE TO ALIGN WITH EXSTING PRETIDONE, REMOVE EXSTING CORRER BECAGE, ALIGN, TAPE, AND 97XXXE WHIND WRITTON 4. <u>HERETRATIONE</u> PRETIDATIONS OF FRE-BESIDTE WALLS, FLOOR-CELINGS, BAD EXD-COLLINGS SMLLL BE TO DECEMBER AN 4. <u>PROVIDE PRETIDANE</u> INSERTING FOR UNCLUSIVE DISTED IN ACCOUNTER WITH ADMIN FOR UNCLUSIVE AND PROVIDE PRETIDANE PRETIDANE SYSTEM INSTALLED INTEGED AND CONCENT MINISTRY FOR ULL SO MODELLINVE AND	3 PRECAST CONCRETE WHEELSTOP	4/A1.40 - (12) SCUPPERAT BALCONY WALL BASE	18/ A8.14	(0) WINDOW NUMBER	HOURFIRE-RATEDINTERORWALL REFER TO WALL TAGS & HOURFIRE-RATED WALL SKHETS A810. SHETS A810.	DRAWN BY: CHECKED BY:
RATING (ANDA T RATING AT FLOORS ONLY) OF NOT LESS THAN THE REDURED RATING OF THE WALL OR FLOOR PENETRATED. FENETRATIONS OF ACOUSTICAL WALLS FOR RIFES, DUCTS, AND OUTLETS SHALL BE SEALED WITH AN ACOUSTICAL SEALINIT.	CORNER GUARD TYPICAL AT ALL COLUMN CORNERS EXPOSED TO TRAFFIC	3/ A1.40 05 50 00 (13) PRIVACY SCREEN	21/ A8.14 23/ A8.14	FEC #1 = 24-106C. SEM -RECESSED FIELATED FEC # FIRE EXTINGUISHERS: FEC #2 = 24-106C. SEM -RECESSED FIELATED FEC # FIRE AVERCESSED. OUTSIDE NECH, BEC, BOILER RMS	2 HOUR FIRE-RATED WALL A8.11 & A8.12	PLOT DATE: 25/03/2016 06:52:54 pm. TITLE:
5. <u>WALL BACKING</u> , B. CONING OF RACKING SHALL, E: FROMEDIN PARTITIONS AS REQUIRED FOR WALLATTACHID ITEMS, PROMOE FOR HIGH, 150G, AS ROMOS FORC, BATTER, SHELIWIG, MARRIES BADARO, SAMP RALIS, GABABARS, SAMKER SATS, IMARGANS, FRUTBES, BUJMMENT, FARMEMINS MO, OTHER TIEMSA SEQURED, ALL WOOD BLOCKING, GRONDS, SOUGH BUCKS MO, MISCELL ARECUS BLOCHING JALL, BERNER ETHANDIT TERATEDINACOR BUCKEV MITH FRE CODES.	5 GAPAGE CLEARANCE WARNING BAR	8/ A1.40 - (14) PIPE BOLLARD	10/A1.40	# FD FLOOR DRAIN SEE PLUMBING DWGS.	3 HOUR FIRE-RATED WALL	11165.
6 WALLACCESS PARELS: PROVIDE ACCESS PARELS AS REQUIRED PER APR. ICABLE CODES FOR MANTENINCE ACCESS TO INSTALLED MEP CONTINUENT PROVIDE STANLESS STEEL AT COR AND TILE LOCATIONS. COORDINATE TYPES AND LOCATIONS OF WALLACCESS PARELSWITH CYPORT TO NORTILALIATION.	6 BIKE STORAGE RACKS	- 12 93 00 (15) GLASS GUARDRAIL	20/ A8.14	HQ© FSR FIRE SPRINKLER RISER LOCATION SEE PLUMBING DWGS.	2 HOUR CMU WALL (CM-2) CM/A8.12	LEVEL 5
7. <u>BETURN AR WAL OPENINGS</u> , FROMDE RETURN AR WALL OPENINGS ABOVE CELINGS AS FER MECHANICAL DRAWINGS REFER TO MECHANICAL DRAWINGS FOR SOUND BOTS AT ACOUSTICAL WALLLOCATIONS AND FRE/BANCKE DAMRERS AT ALL FRE-RATED WALLS.	TRAFFIC MIRROR, MOUNTED AT 9'0" A.F.F.	9VA1.40 11 12 00		DF DRINKING FOUNTAIN SEE PLUMBING DWGS.	HOUR CMU WALL (CM-1) CM/A8.12 NON RATED CMU WALL (CM-0) CM/A8.12	
8. ALL ROWE GRADE BALCOM EXCRAMENTS INTO REFLY AVENUE RIGHT OF WAY SHALL BE NO GRATER THIN A FOOR FOOT NORZONTAL BICHOCKHIGHT. NO REGVE GRADE ENCRACHMENTS WILL BE HARTAL LIVING SRICE.	8 CMU PLANTERS WI THIN SET CERAMIC TILE CLADDING			AED SEMI RECESSED AED CABINET	CONCRETE WALL PER STRUCTURAL	DRAWING NO:
B. NO ACCESS GATE SAULI SWING OPEN INTO THE PUBLIC RIGHT OF WAY.		13/ A8.81		MAINTAIN 8-2" MIN HEADROOM AT CROSS HATCHED AREAS- AT ALL OTHER PARKING LOCATIONS MAINTAIN 7-0" MIN HEADROOM. ALSO SEE SHEET A1.1	NOTE: REFER TO WALL TASS FOR SPECIFIC WALL TYPE GEESHEETS AS 10, AS 11 AND AS 12 WALL TYPE DETAILS	A2.5

+		
	Carrierjohnson + CULTUR3 architecture + environments + brand strategy + graphics	1301 third avenue san dego ca 92101 phone 819.238.238 fax 618.238.0227
т		
+		
÷	STRAUSS FIFTH AVENUE	3534 FIFTH AVENUE SAN DIEGO CA 92103
+		
03.28	2016	

03.282016 Site Development Permit Submittal

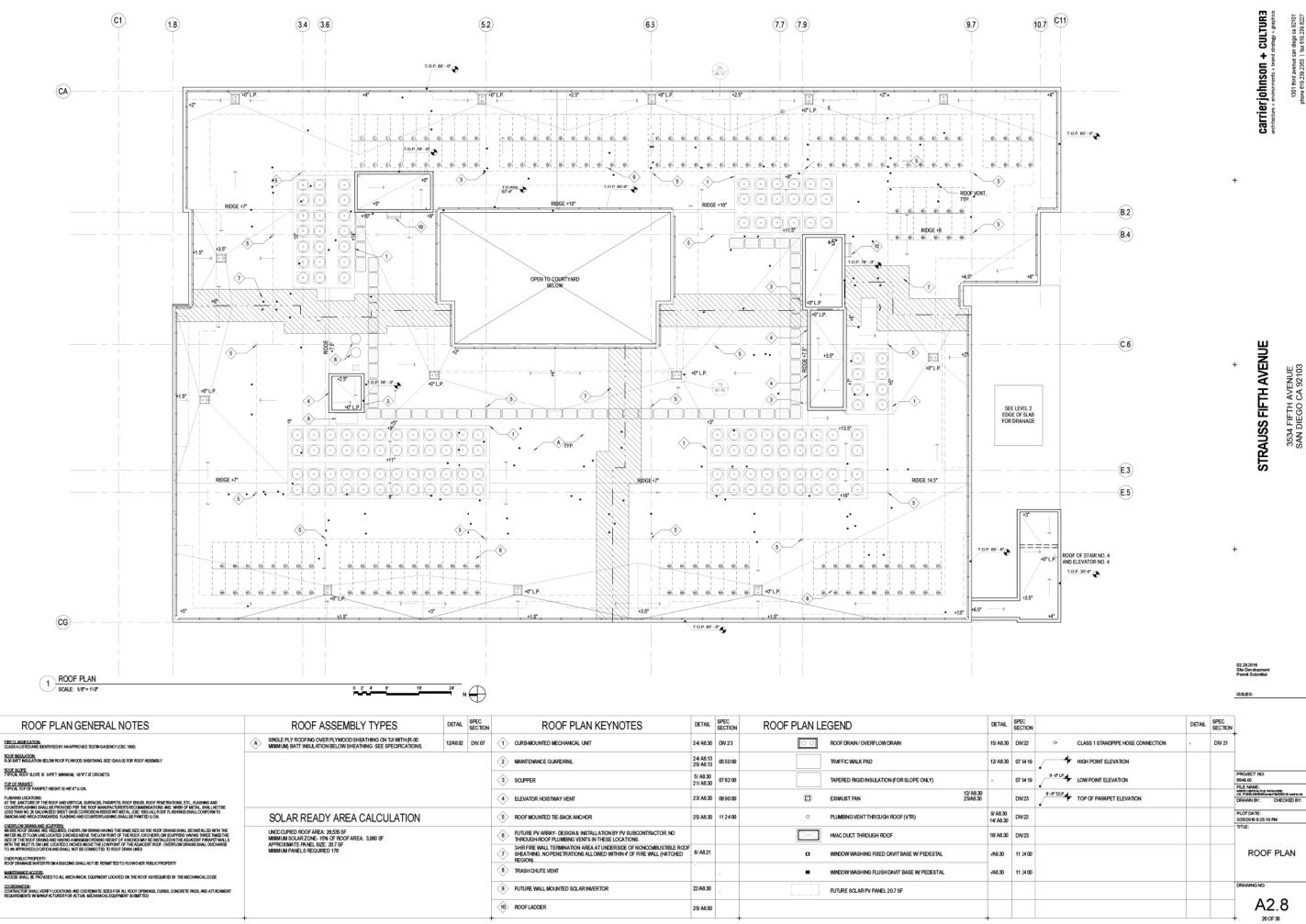
ISSUES:



ΞÈ

03.282016 Site Development Permit Submittal ISSUES:

			_
WALL LEGE	END		
SYMBOL	DESCRIPTION	DETAIL	
	NON-RATED STUD WALL		PROJECT NO:
	1 HOUR FIRE-RATED INTERIOR WALL	REFERTO	5548.00 FILE NAME:
	1 HOUR FIRE-RATED WALL	WALL TAGS&	WRITE CENTRAL FILE PATHINERE: (IE. PADED.000/REIRCentes) File/0000 (D-central rd)
		SHEETS A8.10, A8.11 & A8.12	DRAWN BY: CHECKED BY:
	2 HOUR FIRE-RATED WALL	10.11010.12	PLOT DATE:
	3 HOUR FIRE-RATED WALL		25/03/2016 06:38:46 p.m. TITLE:
	2 HOUR CMU WALL (CM-2) 1 HOUR CMU WALL (CM-1) NCN RATED CMU WALL (CM-0)	CM/A8.12 CM/A8.12 CM/A8.12	FLOOR PLAN LEVEL 6
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CONCRETE WALL PER STRUCTURAL		DRAWING NO:
Note: Refer to wall tags for SPR	ECIFIC WALL TYPE SEE SHEETS A&10, A&11 AND A&12 WALL TY	PEDETALS	A2.6



ΞÈ

+	Carrierjohnson + CULTUR3 architecture + environments + brand strategy + graphics	1301 bird avenue san diago ca 22101 phone 619,236,2363 fax 619,239,3227
+		
+	STRAUSS FIFTH AVENUE	3534 FIFTH AVENUE SAN DIEGO CA 92103
+ 03.265 344 D Penni ISSUE		

			1
WALL LEGE	ND		
SYMBOL	DESCRIPTION	DETAIL	
	NON-RATED STUD WALL		PROJECT NO: 5548.00
	1 HOUR FIRE-RATED INTERIOR WALL	REFER TO	FILE NAME: WITEGETRA FILE PATHERE
	1 HOUR FIRE-RATED WALL	WALL TAGS & SHEETS A8.10.	DRAWN BY: CHECKED BY:
	2 HOUR FIRE-RATED WALL	A8.11 & A8.12	PLOT DATE:
	3 HOUR FIRE-RATED WALL		25/03/2016 06:40:49 p.m.
			TITLE:
	2 HOUR CMU WALL (CM-2)	CM/A8.12	FLOOR PLAN
******	1 HOUR CMU WALL (CM-1)	CIMA8.12	LEVEL 7
	NON RATED CMU WALL (CNI-0)	CIMA8.12	
15 (A. 1. 1. 1. 1. 1.	CONCRETE WALL PER STRUCTURAL		DRAWING NO:
			A2.7

DETAIL	SPEC SECTION			DETAIL	SPEC SECTION	
5/ A8.30	DIV22	œ.	CLASS 1 STANDPIPE HOSE CONNECTION		DIV 21	-
2/ A8.30	07 54 19	/+	HIGH POINT ELEVATION			
	07 54 19	0-01P.	LOW POINT ELEVATION			PROJECT NO: 5548.00
		•				FILE NAME: WRITECONTRALFILE PATHHERE
	DIV23	0-0 TOP.	TOP OF PARAPET ELEVATION			DRAWN BY: CHECKED BY:
V A.8.30 4/ A.8.30	DIV22					PLOT DATE: 3/25/2016 6:25:10 PM
B/ A8.30	DIV23					TITLE:
A8.30	11 24 00					ROOF PLAN
A8.30	11 24 00					
						DRAWING NO:
						A2.8
					-	+ 26 OF 38

	T		NO-4						DULE	CAL DAT	~						1		T				1			ISING UI			
	MAKE/MODEL	AREA SERVED	COOLING	NAL CAP BTUH	ACITY HEATING		BLOWER EXT.	нь	ELECTR			SHIP.	OSA CFM	QTY.	REMARKS		MAKE	MODEL	AREA SERVED	ŀ	CAPACITIES			MPRESSOR	_	IDENSER FAN		ELECTR	
NNIT NO.		or not the factor	TOTAL	SENSIBLE	BTUH	CFM	(N.WC)	HP	VOLT	PH	FUSE	LB.	(%)			UNIL NO			SERVED		COOLING	HEATING	NO.	LRA/RLA	NO.	HP/FLA	V	PH	ΗZ
FC-1	FUJITSU 9RLFCD	UNIT TYPE A	9000	6300	9000	400	0.36	2x0.109	208	1	15	50	7.06	12	123456	HP-1	FUJITSU	9RLFCD	A-1		9000	12000	1	-	1	(1/4)/0.32	208/230	1	60
FC-2	FIRST CO. 20HXXC	UN IT S - 1A/1B/1C/1D	18000	12600	18000	600	0.10	0.20	208	1	15	90	13.5	41	123456	HP-2	CARRIER	25HBC518A30	UNITS - 1A/1B	8/1C/1D	12600	18000	1	48.0/9.0) 1	(1/12)/0.5	208/230	1	60
FC-3	FIRST CO. 26HXXC	UN IT S — 1A/1B/1C/1D	24000	16800	24000	800	0.10	0.20	208	1	15	90	13.5	17	123456	HP-3	CARRIER	25HBC524A30	UN IT S — 1A/1B	9/1C/1D	24000	24000	1	58.3/12.8	8 1	(1/12)/0.5	208/230	1	60
FC-4		UNITS - 2A/2C/2D/GYM	28200	19740	28200	1000	0.10	0.32	208	1	15	90	19.4	45	123456	HP-4	CARRIER	25HBC530A30	UNITS - 2A/2C/2D/GY	ŕM	28200	28200	1	73.0/14.	1 1	(1/12)/0.5	208/230	1	60
FC-5	FIRST CO. 37HXXC	UN IT – 2B	33600	23520	34000	1200	0.10	0.43	208	1	15	100	17.1	5	123456	HP-5	CARRIER	25HCD436A31	UNIT – 28		33600	34000	1	70.0/15.3	3 1	(1/4)/1.1	208/230	1	60
	 DISCONNECT S SEE PLUMBING UNIT SHALL BE PROVIDE MERV 	ER & ACCESS PANEL. SWITCH BY ELECTRICAL CON 3 DRAWINGS FOR CONDENS 16 CEILING MOUNTED. V 8 FILTER MINIMUM & PRI NOT EXCEED 0.1" W.C.	ATE PIPING.		ROVIDE TI	TLE 24 (COMPLIANT	PROGRA	MMABLE TH	ERMOST	AT.	1				2. TH	CONNECT S		CAL CONTRACTOR. JIRED TO OBTAIN S OBTAIN SYSTEM R		ING.	5. SEEF TIME MOD	R RATIN OF DE DELS ARE	ESIGN. PROV TE OBSOLLETI	SED ON T VIDE LATES E.	G R-410A. HE LATEST ARI ST EQUIVALENT G LINE APPLICA	100ELS IF	RATING	GS A
		F	AN C	OIL (JNIT	SCH	EDULE	-													CON	DENSI	NG	UNIT	SCHE	DULE			
MARK	MAKE/MODEL	AREA SERVED SENSIBI		TAL	BLOW	ER HP	VOLT EL				WT	REMAR	(S			MARK	MAKE	/MCDEL	AREA SERVED	COOL CAPA		COMPRESS		CONDENS	SER FAN P/FLA	V PH H2		USE (A	•
UN <u>IT</u> NO. FC-6	MITSUBISHI PKA-A12HA	ELEV 9720		UH :000			208/230	1				234	15)	-		ONTING. CU-6	MITS	SUBISHI -A12NHA	ELEV	(BTL 120	,	1 12/				208 1 60		20	
2. DISCONN		.OCK/TSTAT. ELECTRICAL CONTRACTOR. FOR CONDENSATE PIPING.			E FACTORY AS HIGH			NSATE P	UMP.							2. THER 3. TIME 4. SYSTE	INNECT SWIT WAL EXPANS DELAY RELA IM REFRIGE	AY REQUIRED TO O RANT CHARGE IS R	ED TO OBTAIN SYS BTAIN SYSTEM RATI —410A. USE LATEST EQUIV	ING. /ALENT MOD)EL	7. PRO 8. PRO INTE 9. PRO	ovide FA Ovide FA Ernal F Ovide Lo	ACTORY INS ACTORY INS PROTECTION .0W AMBIENT	TALLED FI TALLED HI T TEMPER/	IG LINE APPLIC. LTER DRIER /LOW PRESSUR ATURE KIT.		OR	
						F	AN S													AIR D	ISTRIB	UTION	SC	HEDUL	_E				
MARK		MODEL	FAN	TOTAL CFM	ESP (IN)	MAX. FRPM	НР		MCA	/ PH	OPER WT.		SERVIC	E	REMARKS	TY	PE	MAKE	MODEL CFM	RANGE	USE	SIZE (IN)		MAX PD (IN)	MAX NC		REMA	RKS	
	MAKE	MODEL	TYPE I		1.0.4					_	LD3.	+				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	S-1	TRUAIRE				8 x 6	_					n TO S	SQU
No./	PANASONIC		TYPE CT DRIVE	80/60	0.10	-	-	8.2	- 10	20 1	12		BATHR	MOO	12910	U III	\vdash			-100	SA SA			0.05	30		AND ROUN		2011
No. EF-1 EF-2	PANASONIC	FV08KVM3 DIRE	CT DRIVE	22,000	0 1.5	- 701	- 10	-	- 20	8/3	2500		ARAGE	EXHAU:	st (107	ESIDENTIAL ALL REGIST	S-2 S-3	TRUAIRE	210VO 10	1-100 11-200 11-350	SA SA SA	12 x 6	6	0.05	30 30 30	WITH 0.8.D. WITH 0.8.D.	AND ROUN	D TO S	
EF-1 EF-2 EF-3 EF-4	PANASONIC	FV08KVM3 DIRE 330CADWDI BEL 330CADWDI BEL	CT DRIVE) 1.5) 1.5	- 701 701 507	- 10 10 15			8/ 0 8/3	_) G		EXHAUS EXHAUS	ST ().47 ST ().47	RESIDENTIAL	S-2 S-3 S-4	TRUAIRE TRUAIRE TRUAIRE	210V0 10 210V0 20 210V0 35	1-200 11-350 11-500	SA SA SA	12 x 6 16 x 8 20 x 8	6 8 8	0.05 0.05 0.05	30 30 30	WITH 0.8.D. WITH 0.8.D. WITH 0.8.D.	AND ROUN AND ROUN AND ROUN	D TO S D TO S D TO S	5QU 5QU
No. EF-1 EF-2 EF-3	PANASONIC LOREN COOK LOREN COOK	FV08KVM3 DIRE 330CADWDI BEL 330CADWDI BEL 445CADWDI BEL	CT DRIVE I DRIVE I DRIVE	22,000) 1.5) 1.5	701	10 15	-	- 20 23 - 20 23	8/3 8/3 8/3	2500) G	ARAGE ARAGE ARAGE	EXHAUS EXHAUS EXHAUS	ST ().47 ST ().47	15	S-2 S-3 S-4 S-5	TRUAIRE TRUAIRE TRUAIRE TRUAIRE	210VO 10 210VO 20 210VO 35 404M 0	1-200 11-350 11-500 1-100	SA SA SA SA	12 x 6 16 x 8 20 x 8 8 x 8	6 8 8	0.05 0.05 0.05 0.05	30 30 30	WITH 0.8.D. WITH 0.8.D. WITH 0.8.D. WITH 0.8.D. WITH 0.8.D.	AND ROUN AND ROUN AND ROUN AND ROUN	D TO S D TO S D TO S D TO S	SQU SQU SQU
No. EF-1 EF-2 EF-3 EF-4 EF-5 EF-6	PANASONIC LOREN COOK LOREN COOK LOREN COOK LOREN COOK LOREN COOK	FV08KWM3 DIRE S30CADWDI BEL 330CADWDI BEL 445CADWDI BEL 900MX BEL GC740 DIRE	CT DRIVE T DRIVE T DRIVE T DRIVE T DRIVE	22,000 22,000 34,175 600 550	1.5 1.5 1.5 1.5 0.75 0.75	701 507 1818 1625	10 15 3 0.5 5 0.5	- - -	- 20 23 - 20 23 - 20 23 - 12 - 12 - 12	8/3 8/3 8/3 2011	2500 2500 3570 200 50) G) G П П	ARAGE ARAGE ARAGE	EXHAUS EXHAUS EXHAUS RMER	ST 1007 ST 0007 ST 1007 EXHAUST 1008 XHAUST 1008	ENTIAL DIFFUSER SIG	S-2 S-3 S-4	TRUAIRE TRUAIRE TRUAIRE	210V0 10 210V0 20 210V0 20 210V0 35 404M 0 404M 10	1-200 11-350 11-500	SA SA SA	12 x 6 16 x 8 20 x 8	6 8 8 3	0.05 0.05 0.05	30 30 30	WITH 0.8.D. WITH 0.8.D. WITH 0.8.D.	AND ROUNI AND ROUNI AND ROUNI AND ROUNI AND ROUNI	D TO S D TO S D TO S D TO S D TO S D TO S	SQU SQU SQU SQU
No. EF-1 EF-2 EF-3 EF-4 EF-5 EF-6 EF-7	PANASONIC LOREN COOK LOREN COOK LOREN COOK LOREN COOK LOREN COOK	FV08KWA3 DIRE FV08KWA3 DIRE 330CADWDI BEL 330CADWDI BEL 445CADWDI BEL GC740 DIRE C24XLP DIRE JMM3160FFS5 MARE	CT DRIVE F DRIVE F DRIVE F DRIVE F DRIVE CT DRIVE CT DRIVE	22,000 22,000 34,175 600 550 2,625	 1.5 1.5 1.5 0.75 0.75 0.5 	701 507 1818 1625 615	10 15 3 0.5 5 0.5	- - - - -	- 20 23 - 20 - 23 - 12 - 12 - 12 - 12	8/3 8/3 8/3 201 201	2500 2500 3570 200 50 1 210) G) G TT)	ARAGE ARAGE ARAGE RANSFO RASH R	EXHAUS EXHAUS EXHAUS RMER OOM E	ST 1007 ST 1007 ST 1007 EXHAUST 1008 XHAUST 1108 1108 1088	15	S-2 S-3 S-4 S-5 S-6	TRUAIRE TRUAIRE TRUAIRE TRUAIRE TRUAIRE	210V0 10 210V0 20 210V0 35 404M 0 404M 10 404M 20	11-200 11-350 11-500 1-100 11-200	SA SA SA SA SA	12 x 6 16 x 8 20 x 8 8 x 8 10 x 11	6 8 8 3 0 2	0.05 0.05 0.05 0.05 0.05	30 30 30 30 30	WITH 0.8.D. WITH 0.8.D. WITH 0.8.D. WITH 0.8.D. WITH 0.8.D. WITH 0.8.D.	AND ROUNI AND ROUNI AND ROUNI AND ROUNI AND ROUNI AND ROUNI	d to s d to s d to s d to s d to s d to s d to s	SQU SQU SQU SQU
No. EF-1 EF-2 EF-3 EF-4 EF-5 EF-6 EF-7	PANASONIC LOREN COOK LOREN COOK LOREN COOK LOREN COOK LOREN COOK	FV08KWA3 DIRE FV08KWA3 DIRE 330CADWDI BEL 330CADWDI BEL 445CADWDI BEL GC740 DIRE C24XLP DIRE JMM3160FFS5 MARE	CT DRIVE T DRIVE T DRIVE T DRIVE T DRIVE	22,000 22,000 34,175 600 550	 1.5 1.5 1.5 0.75 0.75 0.5 	701 507 1818 1625	10 15 3 0.5 5 0.5	- - - -	- 20 23 - 20 23 - 20 23 - 12 - 12 - 12	8/3 8/3 8/3 201 201	2500 2500 3570 200 50) G) G TT)	ARAGE ARAGE ARAGE RANSFO	EXHAUS EXHAUS EXHAUS RMER OOM E	ST 1007 ST 1007 ST 1007 EXHAUST 1008 XHAUST 1108 1108 1108	RESIDENTIAL CELUNG DIFFUSER SIT	S-2 S-3 S-4 S-5 S-6 S-7 S-8 S-9	TRUAIRE TRUAIRE TRUAIRE TRUAIRE TRUAIRE TRUAIRE TRUAIRE TRUAIRE	210v0 10 210v0 20 210v0 35 404M 0 404M 10 404M 20 404M 35 304M 0	11-200 11-350 11-500 11-200 11-200 11-350 11-450 1-100	SA SA SA SA SA SA SA	12 x 6 16 x 8 20 x 8 8 x 8 10 x 10 12 x 10 14 x 10 8 x 8	6 8 8 8 0 2 4 3	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	30 30 30 30 30 30 30 30 30	WITH 0.8.D.	AND ROUN AND ROUN AND ROUN AND ROUN AND ROUN AND ROUN AND ROUN	D TO S D TO S	SQU SQU SQU SQU SQU
No. EF-1 EF-2 EF-3 EF-4 EF-5 EF-6 EF-7	PANASONIC LOREN COOK LOREN COOK LOREN COOK LOREN COOK LOREN COOK	FV08KWA3 DIRE FV08KWA3 DIRE 330CADWDI BEL 330CADWDI BEL 445CADWDI BEL GC740 DIRE C24XLP DIRE JMM3160FFS5 MARE	CT DRIVE F DRIVE F DRIVE F DRIVE F DRIVE CT DRIVE CT DRIVE	22,000 22,000 34,175 600 550 2,625	 1.5 1.5 1.5 0.75 0.75 0.5 	701 507 1818 1625 615	10 15 3 0.5 5 0.5	- - - - -	- 20 23 - 20 - 23 - 12 - 12 - 12 - 12	8/3 8/3 8/3 201 201	2500 2500 3570 200 50 1 210) G) G TT)	ARAGE ARAGE ARAGE RANSFO RASH R	EXHAUS EXHAUS EXHAUS RMER OOM E	ST 1007 ST 1007 ST 1007 EXHAUST 1008 XHAUST 1108 1108 1088	mal Residential	S-2 S-3 S-4 S-5 S-6 S-7 S-8 S-9 S-10	TRUARE TRUARE TRUARE TRUARE TRUARE TRUARE TRUARE TRUARE TRUARE TRUARE	21000 10 21000 20 21000 35 404M 0 404M 10 404M 20 404M 35 304M 0 304M 10	11-200 11-350 11-500 11-500 11-200 11-350 11-350 11-450 11-00 11-200	SA SA SA SA SA SA SA SA	12 x 6 16 x 8 20 x 8 8 x 8 10 x 11 12 x 12 14 x 12 8 x 8 10 x 11	6 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	30 30 30 30 30 30 30 30 30 30	WITH 0.8.0.	AND ROUNI AND ROUNI AND ROUNI AND ROUNI AND ROUNI AND ROUNI AND ROUNI AND ROUNI	D TO S D TO S	5QU 5QU 5QU 5QU 5QU 5QU
No. EF-1 EF-2 EF-3 EF-4 EF-5 EF-6 EF-7 KEF-1	PANASONIC LOREN COOK LOREN COOK LOREN COOK LOREN COOK LOREN COOK	FV08KWA3 DIRE FV08KWA3 DIRE 330CADWDI BEL 330CADWDI BEL 445CADWDI BEL GC740 DIRE C24XLP DIRE JMM3160FFS5 MARE	CT DRIVE F DRIVE F DRIVE F DRIVE F DRIVE CT DRIVE CT DRIVE	22,000 22,000 34,175 600 550 2,625	 1.5 1.5 1.5 0.75 0.75 0.5 	701 507 1818 1625 615	10 15 3 0.5 5 0.5	- - - - -	- 20 23 - 20 - 23 - 12 - 12 - 12 - 12	8/3 8/3 8/3 201 201	2500 2500 3570 200 50 1 210) G) G TT)	ARAGE ARAGE ARAGE RANSFO RASH R	EXHAUS EXHAUS EXHAUS RMER OOM E	ST 1007 ST 1007 ST 1007 EXHAUST 1008 XHAUST 1108 1108 1088	SIDENTIAL RESIDENTIAL DIFFUSER SIL	S-2 S-3 S-4 S-5 S-6 S-7 S-8 S-9 S-10 S-11	TRUARE TRUARE TRUARE TRUARE TRUARE TRUARE TRUARE TRUARE TRUARE TRUARE	210V0 10 210V0 20 210V0 35 404M 0 404M 10 404M 20 404M 35 304M 0 304M 10 304M 20	11-200 11-350 11-500 11-500 11-200 11-350 11-450 11-200 11-200 11-350	SA SA SA SA SA SA SA SA SA	12 x 6 16 x 8 20 x 8 8 x 8 10 x 11 12 x 12 14 x 12 8 x 8 10 x 11 12 x 12	6 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	30 30 30 30 30 30 30 30 30 30 30	WITH 0.8.0.	AND ROUNI AND ROUNI AND ROUNI AND ROUNI AND ROUNI AND ROUNI AND ROUNI AND ROUNI	D TO S D TO S	5QU 5QU 5QU 5QU 5QU 5QU 5QU
No. EF-1 EF-2 EF-3 EF-4 EF-5 EF-6 EF-7 KEF-1 KEF-1	PANASONIC LOREN COOK LOREN COOK LOREN COOK LOREN COOK GE	FV08KW43 DIRE FV08KW43 DIRE 330CADWDI BEL 330CADWDI BEL 445CADWDI BEL 900MX BEL GC740 DIRE JVM3160RFSS BROAN 42000 BROAN 42000 DIRE	CT DRIVE T DRIVE T DRIVE T DRIVE T DRIVE T DRIVE CT DRIVE CT DRIVE CT DRIVE CT DRIVE	22,000 22,000 34,175 600 550 2,625 100/300	1.5 1.5 1.5 1.5 1.5 0.75 0.75 0.5 0.5 0.5 0.5	701 507 1818 1625 615 -	10 15 3 0.5 5 0.5 .25 -	- - - - - - 7.	- 20 233 - 20 - 23 - 12 - 12 - 12 - 12 - 12 PROVIDE 1	8/3 8/3 8/3 201 201 201 201	2500 2500 200 50 1 210 75 00 0 00NT) G) G П П П) К К С С SYS	ARAGE ARAGE ARAGE RANSFO RASH R TCHEN E	EXHAUS EXHAUS EXHAUS OOM E	ST 1007 ST 1007 ST 1007 EXHAUST 1008 XHAUST 1108 1108 1088	SIDENTIML RESIDENTIML DIFFUSER	S-2 S-3 S-4 S-5 S-6 S-7 S-8 S-9 S-10	TRUARE TRUARE TRUARE TRUARE TRUARE TRUARE TRUARE TRUARE TRUARE TRUARE	210V0 10 210V0 20 210V0 35 404M 0 404M 10 404M 20 404M 35 304M 0 304M 10 304M 20 304M 35	11-200 11-350 11-500 11-500 11-200 11-350 11-350 11-450 11-00 11-200	SA SA SA SA SA SA SA SA	12 x 6 16 x 8 20 x 8 8 x 8 10 x 11 12 x 12 14 x 1- 8 x 8 10 x 11 12 x 12 14 x 1- 12 x 12 14 x 1- 14 x 1- 1	6 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	30 30 30 30 30 30 30 30 30 30 30 30	WITH 0.8.0.	AND ROUNI AND ROUNI AND ROUNI AND ROUNI AND ROUNI AND ROUNI AND ROUNI AND ROUNI AND ROUNI	D TO S D TO S	5QU, 5QU, 5QU, 5QU 5QU, 5QU, 5QU, 5QU,
No. EF-1 EF-2 EF-2 EF-3 EF-4 EF-5 EF-6 EF-7 KEF-1 RDARKS: 1. ALL FA 2. EVERGY	PANASONIC LOREN COOK LOREN COOK LOREN COOK LOREN COOK GE	FV08KVM3 DRE FV08KVM3 DRE 330CADWDI BEL 330CADWDI BEL 445CADWDI BEL 900MX BEL GC740 DIRE JMM3160RFSS BROAN 42000 BROAN 42000 DIRE	CT DRIVE T DRIVE T DRIVE T DRIVE T DRIVE T DRIVE CT DRIVE CT DRIVE CT DRIVE CT DRIVE	22,000 22,000 34,175 600 550 2,625 100/300	1.5 1.5 1.5 1.5 1.5 0.75 0.75 0.5 0.5 0.5 0.5	701 507 1818 1625 615 -	10 15 3 0.5 5 0.5 .25 -	- - - - - - - - - - - - - - - - - - -	- 20 - 20 - 20 - 21 - 12 - 12 - 12 - 12 - 12 PROVIDE \ PROVIDE \ WHOLE H	8/ 3 8/ 3 8/ 3 0/ 3 0/ 3 0/ 1 20 1	2500 2500 200 50 1 210 75 0 0 CONTI LTAGE THE	COL SYS	ARAGE ARAGE ARAGE RANSFO RASH R TCHEN E TCHEN E TEM WIT T. ATED FOF	EXHAUS EXHAUS RMER I OOM E EXHAUST H VFD. R SOUND	ST ①④⑦ ST ①④⑦ ST ①④⑦ ST ①④⑦ EXHAUST ①④⑧ ①⑤⑧ ①⑤⑧ ①③④⑤ ①③④⑤ ○ ①③④⑤ ○ ①③④⑤	NOW-RESIDENTINL RESIDENTINL CELUNG DIFFUSER	S-2 S-3 S-4 S-5 S-6 S-7 S-8 S-9 S-10 S-11 S-12	TRUARE TRUARE TRUARE TRUARE TRUARE TRUARE TRUARE TRUARE TRUARE TRUARE TRUARE	210V0 10 210V0 20 210V0 20 210V0 35 404M 0 404M 10 404M 20 404M 35 304M 0 304M 10 304M 20 304M 35 304M 45	11-200 11-350 11-500 11-200 11-200 11-350 11-450 11-200 11-350 11-350 11-350	SA SA SA SA SA SA SA SA SA SA SA	12 x 6 16 x 8 20 x 8 8 x 8 10 x 11 12 x 12 14 x 12 8 x 8 10 x 11 12 x 12	6 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	30 30 30 30 30 30 30 30 30 30 30	WITH 0.8.0.	AND ROUNI AND ROUNI	D TO S D TO S	5QU, 5QU, 5QU, 5QU, 5QU, 5QU, 5QU, 5QU,
No. EF-1 EF-2 EF-3 EF-4 EF-5 EF-6 EF-7 KEF-1 XLL FAI 2. EDVERG's 2. EDVERG's 5. PROVING	PANASONIC PANASONIC LOREN COOK LOREN COOK LOREN COOK LOREN COOK LOREN COOK LOREN COOK GE STAR RATED DISCO STAR RATED TWO TYPE. CONFIRM DE TWO—SIPEED	FV08KVM3 DIRE FV08KVM3 DIRE 330CADWDI BEL 330CADWDI BEL 445CADWDI BEL 900MX BEL 900MX BEL 6 GC740 DIRE JMM3160RFSS BR0AN 42000 BR0AN 42000 DIRE SPEED FAN, WITH OCCUP WITH OCCUP FNNE COLOR WITH ARCHIT FAN.	CT DRIVE T DRIVE T DRIVE T DRIVE T DRIVE CT DRIVE	22,000 22,000 34,175 600 550 2,625 100/300	1.5 1.5 1.5 1.5 1.5 0.75 0.75 0.5 0.5 0.5 0.5	701 507 1818 1625 615 -	10 15 3 0.5 5 0.5 .25 -	- - - - - - - - - - - - - - - - - - -	- 20 - 20 - 20 - 21 - 12 - 12 - 12 - 12 - 12 PROVIDE \ PROVIDE \ WHOLE H	8/ 3 8/ 3 8/ 3 8/ 3 8/ 3 8/ 3 20 1 20 1	2500 2500 2500 3570 200 50 1 210 75 C0 CONTILTAGE THE NITLATOR DER SWIT	COL SYS	ARAGE ARAGE ARAGE RANSFO RASH R TCHEN E TCHEN E TEM WIT T. ATED FOF	EXHAUS EXHAUS RMER I OOM E EXHAUST H VFD. R SOUND	ST 107 ST 107 ST 107 EXHAUST 108 XHAUST 108 108 10303	SIDENTHAL NON-RESIDENTHAL RESIDENTHAL RESIDENTHAL CELLUIC DIFFUSER SIL	S-2 S-3 S-4 S-5 S-6 S-7 S-8 S-9 S-10 S-12 S-12	TRUARE TRUARE TRUARE TRUARE TRUARE TRUARE TRUARE TRUARE TRUARE TRUARE TRUARE TRUARE	210V0 10 210V0 20 210V0 20 210V0 35 404M 0 404M 10 404M 20 404M 35 304M 0 304M 10 304M 20 304M 20 304M 45 301M 0	11-200 11-350 11-500 11-200 11-350 11-350 11-450 11-350 11-450 11-450 11-450	SA SA SA SA SA SA SA SA SA SA SA SA	12 x 6 16 x 8 20 x 8 8 x 8 10 x 11 12 x 12 14 x 11 8 x 8 10 x 11 12 x 12 14 x 11 14 x 11 14 x 11 12 x 12 12 x 12 12 x 12 14 x 11 14 x 11 16 x 11 17 x 12 16 x 11 16 x 11 16 x 11 17 x 12 17 x 12 1	6 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	30 30 30 30 30 30 30 30 30 30 30 30 30 3	WITH 0.8.D. WITH 0.8.D.	AND ROUNI AND ROUNI	D TO S D TO S	500 500 500 500 500 500 500 500 500
No. EF-1 EF-2 EF-3 EF-4 EF-5 EF-6 EF-7 KEF-1 2. ENERGY 2. ENERGY 4. DUCTEC 5. PROVING	PANASONIC PANASONIC LOREN COOK LOREN COOK LOREN COOK LOREN COOK LOREN COOK LOREN COOK GE STAR RATED DISCO STAR RATED TWO TYPE. CONFIRM DE TWO—SIPEED	FV08KWM3 DIRE FV08KWM3 DIRE 330CADWDI BEL 330CADWDI BEL 330CADWDI BEL 445CADWDI BEL GC740 DIRE GC740 DIRE JVM3160RFSS BROAN 42000 BROAN 42000 DIRE ONNECT SWITCHES (BY ELE SPED FAN, WITH OCCUP GE HODD. RNSH COLOR WITH ARCHIT	CT DRIVE T DRIVE T DRIVE T DRIVE T DRIVE CT DRIVE	22,000 22,000 34,175 600 550 2,625 100/300	1.5 1.5 1.5 1.5 1.5 0.75 0.75 0.5 0.5 0.5 0.5	701 507 1818 1625 615 -	10 15 3 0.5 5 0.5 .25 -	- - - - - - - - - - - - - - - - - - -	- 20 - 20 - 20 - 21 - 12 - 12 - 12 - 12 - 12 - 12 - 12	8/ 3 8/ 3 8/ 3 8/ 3 8/ 3 8/ 3 20 1 20 1	2500 2500 2500 3570 200 50 1 210 75 C0 CONTILTAGE THE NITLATOR DER SWIT	COL SYS	ARAGE ARAGE ARAGE RANSFO RASH R TCHEN E TCHEN E TEM WIT T. ATED FOF	EXHAUS EXHAUS RMER I OOM E EXHAUST H VFD. R SOUND	ST 1.47 ST 1.47 ST 1.47 EXHAUST 1.48 XHAUST 1.48 1.68 1.345 1.345 1.345	NOW-RESIDENTINL RESIDENTINL CELUNG DIFFUSER	S-2 S-3 S-4 S-5 S-6 S-7 S-8 S-9 S-10 S-12 S-13 S-14	TRUARE	210V0 10 210V0 20 210V0 20 210V0 35 404M 0 404M 10 404M 20 404M 35 304M 0 304M 10 304M 20 304M 53 304M 45 301M 0 301M 10 301M 20	11-200 11-350 11-350 1-100 11-200 11-350 11-450 11-350 11-450 11-450 11-450 11-450 11-450 11-450 11-450	SA SA SA SA SA SA SA SA SA SA SA SA SA	12 x 6 16 x 8 20 x 8 8 x 8 10 x 11 12 x 12 14 x 11 14 x 11	6 8 8 3 3 0 0 2 2 4 4 3 3 0 0 2 2 4 4 6 6 5 5 6 6 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	30 30 30 30 30 30 30 30 30 30 30 30 30 3	WITH 0.8.D. WITH 0.8.D.	AND ROUNI AND ROUNI	D TO S D TO S	SQU, SQU, SQU, SQU, SQU, SQU, SQU, SQU,

ALL DE-4S, DESKULAREWORDENTED OF REPRESENTED PT/HS DRWING ARE OWED BY, AND THE PROFERTY OF CANEER JOHNSON + CULTURE AND WERE DEALED. FOLVED AND DEVELOPED FOR USE CM, AND M CONNECTION WITH THE PROJECT, MORE OF SUCH IDEAL DEVELOPED FOR USE OF AND AND TO THE PROVED AND DEVELOPED FOR USE OF AND AND TO THE PROVED AND DEVELOPED FOR USE OF AND AND AND TO THE PROVED AND DEVELOPED FOR USE OF AND AND TO THE OP SUCH IDEAL DEVELOPED FOR USE OF AND AND AND TO THE PROVED AND THE PROVED AND THE PROVED AND THE OP SUCH IDEAL DEVELOPED FOR USE OF AND AND TO THE OP SUCH IDEAL DEVELOPED FOR USE OF AND AND TO THE PROVED AND THE PROVED

	CONDENSING UNIT SCHEDULE														
MARK				CON	MPRESSOR	CO	NDENSER FAN		ELECT	RICAL	DATA				
CU-X UNIT NØ.	MAKE/MCDEL	AREA SERVED	COOLING CAPACITY (BTUH)	NO.	RLA/LRA	NO.	HP/FLA	v	PH	нz	MCA	FUSE (A)	SEER	OPER. WT. (LBS)	REMARKS
CU-6	MITSUBISHI PUY-A12NHA	ELEV	12000	1	12/14	1	0.05/0.35	208	1	60	13	20	15.2	90	123456789

				AIR D	ISTRIB	UTION S	CHEDU	E	
TY	PE	MAKE	MODEL	CFM RANGE	USE	SIZE (IN)	MAX PD (IN)	MAX NC	REMARKS
STER .	S-1	TRUAIRE	210VO	0-100	SA	8 × 6	0.05	30	WITH O.B.D. AND ROUND TO S
esidential All register	5-2	TRUAIRE	210VO	101-200	SA	12 x 6	0.05	30	WITH O.B.D. AND ROUND TO S
RESIDE	S-3	TRUAIRE	210VO	201-350	SA	16 x 8	0.05	30	WITH O.B.D. AND ROUND TO S
SIDE	S-4	TRUAIRE	210VO	351-500	SA	20 x 8	0.05	30	WITH O.B.D. AND ROUND TO S
SER .	S-5	TRUAIRE	404M	0-100	SA	8 x 8	0.05	30	WITH O.B.D. AND ROUND TO S
residential ung diffuser	S-6	TRUAIRE	404M	101-200	SA	10 x 10	0.05	30	WITH O.B.D. AND ROUND TO S
RESIDE CELUNG (S-7	TRUAIRE	404M	201-350	SA	12 x 12	0.05	30	WITH O.B.D. AND ROUND TO S
E E	S-8	TRUAIRE	404M	351-450	SA	14 x 14	0.05	30	WITH O.B.D. AND ROUND TO S
1.02	S-9	TRUAIRE	304M	0-100	SA	8 x 8	0.05	30	WITH O.B.D. AND ROUND TO S
NON-RESIDENTIAL CEILING DIFFUSER	S-10	TRUAIRE	304M	101-200	SA	10 x 10	0.05	30	WITH O.B.D. AND ROUND TO S
ESIDE DIFI	S-11	TRUAIRE	304M	201-350	SA	12 x 12	0.05	30	WITH O.B.D. AND ROUND TO S
EILING	S-12	TRUAIRE	304M	351-450	SA	14 x 14	0.05	30	WITH O.B.D. AND ROUND TO S
zο	S-13	TRUAIRE	304M	451-600	SA	16 x 16	0.05	30	WITH O.B.D. AND ROUND TO S
IIAL STER	S-14	TRUAIRE	301 M	0-100	SA	8 × 6	0.05	30	WITH O.B.D. AND ROUND TO S
REGIE	S-15	TRUAIRE	301 M	101-200	SA	12 x 6	0.05	30	WITH O.B.D. AND ROUND TO S
NON-RESIDENTIAL SIDEWALL RECISTER	S-16	TRUAIRE	301 M	201-350	SA	16 x 8	0.05	30	WITH O.B.D. AND ROUND TO S
SIDEV	S-17	TRUAIRE	301 M	351-500	SA	20 x 8	0.05	30	WITH O.B.D. AND ROUND TO S

	'								
50	CHE	DU	LE						
	ELECT	RICAL	DATA		SEER/ EER		OPER.		
	PH	ΗZ	MCA	FUSE (A)	EER	HSPF	WT. (LBS)	QTY.	REMARKS
D	1	60	13.4	15	21.5/14.5	12.2	100	12	123456
0	1	60	11.8	20	15.25/ 12.5	8.6	200	41	123456
0	1	60	16.5	25	15.25/ 12.5	8.7	200	17	123456
0	1	60	18.1	30	14.5/ 12.0	8.2	196	45	123456
0	1	60	20.4	35	14.0/ 11.7	8.2	189	5	123456

SQUARE ADAPTER
SQUARE ADAPTER

APPENDIX B

Pertinent Sections of the City of San Diego Noise Element to the General Plan and Municipal Code

Noise Element

- NE-A.2. Assure the appropriateness of proposed developments relative to existing and future noise levels by consulting the guidelines for noise-compatible land use (shown on Table NE-3) to minimize the effects on noise-sensitive land uses.
- NE-A.3. Limit future residential and other noise-sensitive land uses in areas exposed to high levels of noise.
- NE-A.4. Require an acoustical study consistent with Acoustical Study Guidelines (Table NE-4) for proposed developments in areas where the existing or future noise level exceeds or would exceed the "compatible" noise level thresholds as indicated on the Land Use Noise Compatibility Guidelines (Table NE-3), so that noise mitigation measures can be included in the project design to meet the noise guidelines.
- NE-A.5. Prepare noise studies to address existing and future noise levels from noise sources that are specific to a community when updating community plans.

Land Use Category	Exterior Noise Exposur (dBA CNEL)								
	6	06	5 7(07	'5 				
Parks and Recreational									
Parks, Active and Passive Recreation									
Outdoor Spectator Sports, Golf Courses; Water Recreational Facilities; Indoor Recreation Facilities									
Agricultural									
Crop Raising & Farming; Community Gardens, Aquaculture, Dairies; Horticulture Nurseries & Greenhouses; Animal Raising, Maintain & Keeping; Commercial Stables									
Residential	,								
Single Dwelling Units; Mobile Homes		45							
Multiple Dwelling Units *For uses affected by aircraft noise, refer to Policies NE-D.2. & NE-D.3.		45	45*						
Institutional									
Hospitals; Nursing Facilities; Intermediate Care Facilities; Kindergarten through Grade 12Educational Facilities; Libraries; Museums; Child Care Facilities		45							
Other Educational Facilities including Vocational/Trade Schools and Colleges and Universities		45	45						
Cemeteries									
Retail Sales	ļ								
Building Supplies/Equipment; Food, Beverages & Groceries; Pets & Pet Supplies; Sundries, Pharmaceutical, & Convenience Sales; Wearing Apparel & Accessories			50	50					

TABLE NE-3 Land Use - Noise Compatibility Guidelines

Land Use	Category			Ex	terior (dl	Expo VEL)	sur					
				6	0 6:	5 7() 75	5				
Commercial .	Services											
Maintenance	& Repair; Personal	Services; Assem	rinking; Financial Institutions; bly & Entertainment (includes public and Golf Course Support			50	50					
Visitor Acco	mmodations				45	45	45					
Offices			,									
Business & F Corporate He		nment; Medical, I	Dental & Health Practitioner; Regional &			50	50					
Vehicle and	Vehicular Equipmen	nt Sales and Servi	ices Use									
Commercial Sales & Rent	or Personal Vehicle als; Vehicle Equipt	e Repair & Mainte nent & Supplies S	enance; Commercial or Personal Vehicle Sales & Rentals; Vehicle Parking									
Wholesale, D	Distribution, Storage	e Use Category										
Equipment & Wholesale D		Yards; Moving &	z Storage Facilities; Warehouse;									
Industrial												
	facturing; Light Ma Iining & Extractive		ine Industry; Trucking & Transportation									
Research & I	Development						50					
	Compatible	Indoor Uses	Standard construction methods should att acceptable indoor noise level. Refer to Se			or nois	e to an					
	Compatible	Outdoor Uses	Activities associated with the land use ma	ay be c	arried	out.						
45 50	Conditionally	Indoor Uses	Indoor Uses Building structure must attenuate exterior noise to the indoor noise indicated by the number (45 or 50) for occupied areas. Refer to S									
45, 50	Compatible	Outdoor Uses	Feasible noise mitigation techniques show make the outdoor activities acceptable. R				incorpo	orate				
	T	Indoor Uses	New construction should not be undertak	en.								
	Incompatible	Outdoor Uses	Severe noise interference makes outdoor	activit	ies una	cceptal	ole.					

TABLE NE-4 Acoustical Study Guidelines

An acoustical study should include, but is not limited to the following analysis:

Provide noise level measurements to describe existing local conditions and the predominant noise sources.

Measure existing single event noise levels (SENEL, SEL, or Time Above) within airport influence areas.

Estimate existing and projected noise levels (CNEL) and compare them to levels on Table NE-3. For parks, may consider motor vehicle traffic noise measurements during the one-hour period where the worst-case traffic noise levels are expected to occur from dawn to dusk at a park.

Recommend appropriate mitigation measures to achieve acceptable noise levels on Table NE-3.

Estimate noise exposure levels with recommended mitigation measures.

Describe a post-project assessment to evaluate the effectiveness of the proposed mitigation measures.

B. Motor Vehicle Traffic Noise

Goal

• Minimal excessive motor vehicle traffic noise on residential and other noise-sensitive land uses.

Discussion

Motor vehicle traffic noise is a major contributor of noise within the City. Excessive noise levels along arterial roads, interstate freeways, and state highways affect much of the urban environment. Traffic noise level is dependent upon traffic volume, speed, flow, vehicle mix, pavement type and condition, the use of barriers, as well as distance to the receptor.

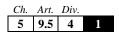
Local roadway design features and traffic management and calming techniques can minimize noise from traffic speed and frequent vehicle acceleration and deceleration, and innovative roadway paving material can further reduce traffic noise. Vehicles equipped with a properly functioning muffler system help to limit excessive exhaust noise. Future use of hybrid transit buses could help to reduce noise along mixed-use transit corridors.

At higher speeds, typically on freeways, highways and primary arterials, the noise from tire/pavement interaction can be greater than from vehicle exhaust and engine noise. The use of lower noise paving surfaces can reduce tire/pavement interaction noise. For noise-sensitive land uses adjacent to freeways and highways, these uses should be buffered from excessive noise levels by intervening, less sensitive, industrial-commercial uses or shielded by sound walls or landscaped berms. The City can, however, influence daily traffic volumes and reduce peak-hour

Article 9.5: Noise Abatement and Control

Division 4: Limits

("Noise Level Limits, Standards and Control" added 9–18–1973 by O–11122 N.S.) (Retitled to "Limits" on 9–22–1976 by O–11916 N.S.)

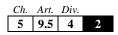

§59.5.0401 Sound Level Limits

(a) It shall be unlawful for any person to cause noise by any means to the extent that the one-hour average sound level exceeds the applicable limit given in the following table, at any location in the City of San Diego on or beyond the boundaries of the property on which the noise is produced. The noise subject to these limits is that part of the total noise at the specified location that is due solely to the action of said person.

Land Use	Time of Day	One-Hour Average Sound Level (decibels)
1. Single Family Residential	7 a.m. to 7 p.m.	50
	7 p.m. to 10 p.m.	45
	10 p.m. to 7 a.m.	40
2. Multi-Family Residential	7 a.m. to 7 p.m.	55
(Up to a maximum density	7 p.m. to 10 p.m.	50
of 1/2000)	10 p.m. to 7 a.m.	45
3. All other Residential	7 a.m. to 7 p.m.	60
	7 p.m. to 10 p.m.	55
	10 p.m. to 7 a.m.	50
4. Commercial	7 a.m. to 7 p.m.	65
	7 p.m. to 10 p.m.	60
	10 p.m. to 7 a.m.	60
5. Industrial or Agricultural	any time	75

TABLE OF APPLICABLE LIMITS

(b) The sound level limit at a location on a boundary between two zoning districts is the arithmetic mean of the respective limits for the two districts.
 Permissible construction noise level limits shall be governed by Sections 59.5.0404 of this article.


- (c) Fixed-location public utility distribution or transmission facilities located on or adjacent to a property line shall be subject to the noise level limits of Part A. of this section, measured at or beyond six feet from the boundary of the easement upon which the equipment is located.
- (d) This section does not apply to firework displays authorized by permit from the Fire Department.
- (e) This section does not apply to noise generated by helicopters at heliports or helistops authorized by a conditional use permit, nor to any roller coaster operated on City–owned parkland.

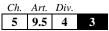
(Amended 9–11–1989 by O–17337 N.S.) (Amended 11-28-2005 by O-19446 N.S.; effective 2-9-2006.)

§59.5.0402 Motor Vehicles

- (a) Off–Highway
 - (1) Except as otherwise provided for in this article, it shall be unlawful to operate any motor vehicle of any type on any site, other than on a public street or highway as defined in the California Vehicle Code, in any manner so as to cause noise in excess of those noise levels permitted for on- highway motor vehicles as specified in the table for "45 mile- per-hour or less speed limits" contained in Section 23130 of the California Vehicle Code, and as corrected for distances set forth in subsection A.2. below.
 - (2) Corrections

The maximum noise level as the off-highway vehicle passes may be measured at a distance of other than fifty (50) feet from the center line of travel, provided the measurement is further adjusted by adding algebraically the applicable correction as follows:

Distance (Feet)	Correction (decibels)
25	-6
28	-5
32	-4
35	-3
40	-2
45	-1
50 (preferred distance)	0
56	+1
63	+2
70	+3
80	+4
90	+5
100	+6


- (3) A measured noise level thus corrected shall be deemed in violation of this section if it exceeds the applicable noise–level limit as specified above.
- (b) Nothing in this section shall apply to authorized emergency vehicles when being used in emergency situations, including the blowing of sirens and/or horns.

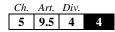
("Motor Vehicles" renumbered from Sec. 59.5.0403 on 9–22–1976 by O–11916 N.S.)

§59.5.0403 Watercraft

Violations for excessive noise of watercraft operating in waters under the jurisdiction of The City of San Diego shall be prosecuted under applicable provisions of the California Harbors and Navigation Code. Permits issued by The City of San Diego for the operation of watercraft not in compliance with noise criteria of the Harbors and Navigation Code shall be reviewed and approved by the Administrator prior to issuance.

("Watercraft" renumbered from Sec. 59.5.0407 and amended 9–22–1976 by O-11916 N.S.)

§59.5.0404 Construction Noise


- (a) It shall be unlawful for any person, between the hours of 7:00 p.m. of any day and 7:00 a.m. of the following day, or on legal holidays as specified in Section 21.04 of the San Diego Municipal Code, with exception of Columbus Day and Washington's Birthday, or on Sundays, to erect, construct, demolish, excavate for, alter or repair any building or structure in such a manner as to create disturbing, excessive or offensive noise unless a permit has been applied for and granted beforehand by the Noise Abatement and Control Administrator. In granting such permit, the Administrator shall consider whether the construction noise in the vicinity of the proposed work site would be less objectionable at night than during the daytime because of different population densities or different neighboring activities; whether obstruction and interference with traffic particularly on streets of major importance, would be less objectionable at night than during the daytime; whether the type of work to be performed emits noises at such a low level as to not cause significant disturbances in the vicinity of the work site; the character and nature of the neighborhood of the proposed work site; whether great economic hardship would occur if the work were spread over a longer time; whether proposed night work is in the general public interest; and he shall prescribe such conditions, working times, types of construction equipment to be used, and permissible noise levels as he deems to be required in the public interest.
- (b) Except as provided in subsection C. hereof, it shall be unlawful for any person, including The City of San Diego, to conduct any construction activity so as to cause, at or beyond the property lines of any property zoned residential, an average sound level greater than 75 decibels during the 12–hour period from 7:00 a.m. to 7:00 p.m.
- (c) The provisions of subsection B. of this section shall not apply to construction equipment used in connection with emergency work, provided the Administrator is notified within 48 hours after commencement of work.
 (Amended 1–3–1984 by O–16100 N.S.)

§59.5.0406 Refuse Vehicles and Parking Lot Sweepers

No person shall operate or permit to be operated a refuse compacting, processing, or collection vehicle between the hours of 7:00 p.m. to 6:00 a.m. or a parking lot sweeper between the hours of 7:00 p.m. to 7:00 a.m. in any residential area unless a permit has been applied for and granted by the Administrator. *("Refuse Vehicles" added 9–18–1973 by O–11122 N.S.; amended 9–22–1976 by*

O–11916 N.S.)

(Amended 6-9-2010 by O-19960 N.S.; effective 7-9-2010.)

APPENDIX C

Traffic Noise Model (TNM) Data and Results

INPUT: ROADWAYS					B50405N1											
Eilar Associates, Inc. JB					28 July 2015 TNM 2.5											
INPUT: ROADWAYS							Average	pavement typ	e shall be i	used unles	s					
PROJECT/CONTRACT:	B50405N	1					-	ighway agenc								
RUN:	Calibratio							rent type with	-							
Roadway		Points	-					·····								
Name	Width	Name	No.	Coordinates	(navement)		Flow Control			Segment						
Name	width	Name	NO.	X	(pavement) Y	Z	Control	Speed	Percent	Pvmt	On					
				^	•	2	Device	Constraint	Vehicles	Туре	Struct?					
							Device	Constraint	Affected	Type	Ollucti					
	ft			ft	ft	ft		mph	%							
5th Avenue		in alimited	1	124.9						A						
Sin Avenue	24.0		•	_						Average						
4th Avenue	24.0	point2 point3	2							Average						
4th Avenue	24.0	-								Average						
		point4	4	-246.8		297.00 296.00				Average						
		point5 point6	6							Average						
		pointo point7	7	-213.0		296.00				Average Average						
		point7	8							-						
		point9	9			293.00				Average						
6th Ave SB	24.0		12			293.00				Average						
our ave 3D	24.0	point12	13							Average						
6th Ave NB	24.0	point16	16							Average	+					
	24.0	point17	17							Average						
CA 163 NB	24.0	point18	18							Average						
	21.0	point19	19							Average						
		point20	20							Average						
		point20	21							Average	+					
		point21	22							Average	+					
		point23	23							Average	+					
		point24	24							Average	+					
		point25	25							Average	+					
		point26	26							Average	+					
		point27	27							Average	+					
		point28	28								+					
CA 163 SB	24.0	point29	29							Average	+					

INPUT: ROADWAYS				B50405N1										
	point30	30	1,322.3	820.7	226.00		Average							
	point31	31	1,321.0	715.2	222.00		Average							
	point32	32	1,305.1	542.2	216.00		Average							
	point33	33	1,293.6	407.6	212.00		Average							
	point34	34	1,273.2	210.9	206.00		Average							
	point35	35	1,260.5	67.8	205.00		Average							
	point36	36	1,253.2	-61.8	202.00		Average							
	point37	37	1,251.2	-292.5	198.00		Average							
	point38	38	1,259.8	-486.8	194.00		Average							
	point39	39	1,290.6	-767.9	189.00									

INPUT: TRAFFIC FOR LAeq1h Volumes		1			В	50405N1	-		-		-				
Filer Accessions Inc.				20 1.15	/ 2015										
Eilar Associates, Inc.				28 July 2015 TNM 2.5											
JB					.ə										
INPUT: TRAFFIC FOR LAeq1h Volumes															
PROJECT/CONTRACT:	B50405N1				1										
RUN:	Calibration														
Roadway	Points														
Name	Name	No.	Segmen	t	-										
			Autos		MTrucks	5	HTrucks	5	Buses	_!	Motorcy	cles			
			v	S	V	S	V	S	V	S	V	S			
			veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph			
5th Avenue	point1	1	642	30	6	30	12	30	0	0	0	0			
	point2	2													
4th Avenue	point3	3	397	30	8	30	4	30	0	0	0	0			
	point4	4	397	30	8	30	4	30	0	0 0	0	0			
	point5	5	397	30	8	30	4	30	0	0 0	0	0			
	point6	6	397	30	8	30	4	30	0	0 0	0	0			
	point7	7	397	30			4	30	0	0 0	0	0 0			
	point8	8	397	30	8	30	4	30	0	0 0	0	0 0			
	point9	9													
6th Ave SB	point12	12		30	14	30	7	30	0	0 0	0	0 0			
	point13	13													
6th Ave NB	point16	16		30	14	30	7	30	0	0 0	0	0			
	point17	17													
CA 163 NB	point18	18													
	point19	19													
	point20	20													
	point21	21	2994												
	point22	22									-				
	point23	23													
	point24	24													
	point25	25													
	point26	26													
	point27	27	2994	55	67	55	26	55	0	0 0	0	0 0			

INPUT: TRAFFIC FOR LAeq1h Volumes						B	50405N1					
	point28	28										
CA 163 SB	point29	29	3560	55	80	55	30	55	0	0	0	0
	point30	30	3560	55	80	55	30	55	0	0	0	0
	point31	31	3560	55	80	55	30	55	0	0	0	0
	point32	32	3560	55	80	55	30	55	0	0	0	0
	point33	33	3560	55	80	55	30	55	0	0	0	0
	point34	34	3560	55	80	55	30	55	0	0	0	0
	point35	35	3560	55	80	55	30	55	0	0	0	0
	point36	36	3560	55	80	55	30	55	0	0	0	0
	point37	37	3560	55	80	55	30	55	0	0	0	0
	point38	38	3560	55	80	55	30	55	0	0	0	0
	point39	39										

INPUT: RECEIVERS									B50405N1			
Eilar Associates, Inc.							28 July 20	15				
JB							TNM 2.5					
INPUT: RECEIVERS												
PROJECT/CONTRACT:	B50	405N1			I							
RUN:	Cali	bration										
Receiver												
Name	No.	#DUs	Coordinates	s (ground)			Height	Input Sou	nd Levels a	and Criteria	a	Active
			X	Y	Z		above	Existing Impact Criteria		iteria	NR	in
							Ground	LAeq1h	LAeq1h	Sub'l	Goal	Calc.
			ft	ft	ft		ft	dBA	dBA	dB	dB	
Calibration		1 1	77.0	0 45	0	291.00	5.00	0.00	66	10.0	8	8.0 Y

INPUT: BARRIERS		-		1	-		-)		B5040	5N1		1			,			
Film Associates Inc					00 1	0045												
Eilar Associates, Inc. JB					28 July TNM 2.5													
					114141 2.5	,												
INPUT: BARRIERS																		
PROJECT/CONTRACT:	B5040	05N1																
RUN:	Calibr	ration																
Barrier									Points									
Name	Туре	Height	t	If Wall	If Berm			Add'tnl	Name	No.	Coordinates	(bottom)		Height	Segme	ent		
		Min	Max	\$ per	\$ per	Тор	Run:Rise	\$ per			х	Y	Z	at		Perturb		Important
				Unit	Unit	Width		Unit						Point	Incre-	#Up #D	n Struc	? Reflec-
			-	Area	Vol.	-		Length			-	-	-		ment			tions?
		ft	ft		\$/cu yd	ft	ft:ft	\$/ft			ft	ft		ft	ft			
3580 5th	W	0.0	0 99.99	0.00)			0.00		86				20.00		0	0	
									point87	87				20.00		0	0	
									point88	88				20.00		0	0	
									point89	89				20.00		0	0	
0550 511 4		0.0	0.00.00					0.00	point90	90				20.00			0	
3558 5th -1	W	0.0	0 99.99	0.00	1			0.00	•	91				12.00		0	0	
									point92 point93	92				12.00		0	0	
									point93	93				12.00		0	0	
									point94 point95	94				12.00		0	0	
3558 5th-2	W	0.0	0 99.99	0.00	1			0.00	point96	96				12.00		0	0	
0000 011 2		0.0	0 00.00	0.00				0.00	point97	97				12.00		0	0	
									point98	98				12.00		0	0	
									point99	99				12.00		0	0	
									point100	100				12.00		-	-	
3558 5th-3	W	0.0	0 99.99	0.00)			0.00		101		236.0		12.00		0	0	
									point102	102	25.7	236.0	292.00	12.00	0.00	0	0	
									point103	103	23.2	215.6	292.00	12.00	0.00	0	0	
									point104	104	-23.5	215.2	292.00	12.00	0.00	0	0	
									point105	105	-25.1	236.0	292.00	12.00)			
3558 5th-4	W	0.0	0 99.99	0.00				0.00	point106	106		236.0		12.00		0	0	
									point107	107				12.00		0	0	
									point108	108				12.00		0	0	
									point109	109				12.00		0	0	
									point110	110				12.00			-	
3558 5th-5	W	0.0	0 99.99	0.00				0.00	•	111		272.8		12.00		0	0	
									point112	112		271.8		12.00		0	0	
									point113	113		224.5		12.00		0	0	
									point114 point115	114				12.00		0	U	
Webster Building	W	0.0	0 99.99	0.00				0.00	•	115				36.00	1	0	0	
	vv	0.0	39.98	, 0.00	1			0.00	point117	117				36.00		0	0	
				+					point118	118				36.00		0	0	-
									point119	119				36.00		0	0	
									point120	120				36.00		0	0	

INPUT: BARRIERS			B50405N	11								
			point121	121	74.1	-100.1	294.00	36.00	0.00	0	0	
			point122	122	74.4	-114.0	294.00	36.00	0.00	0	0	
			point123	123	70.2	-114.2	294.00	36.00	0.00	0	0	
			point124	124	71.0	-138.5	294.00	36.00	0.00	0	0	
			point125	125	51.7	-138.5	294.00	36.00	0.00	0	0	
			point126	126	51.7	-140.5	294.00	36.00	0.00	0	0	
			point127	127	20.6	-140.8	294.00	36.00	0.00	0	0	
			point128	128	19.8	-138.5	294.00	36.00	0.00	0	0	
			point129	129	-56.7	-140.4	294.00	36.00	0.00	0	0	
			point130	130	-58.1	-52.6	294.00	36.00				

INPUT: BUILDING ROWS B									
Eilar Associates, Inc. JB					28 July 2015 TNM 2.5				
INPUT: BUILDING ROWS PROJECT/CONTRACT: RUN:	B50405N1 Calibration								
Building Row			Points						
Name	Average Height	Building Percent	No.	Coordinates (X	ground) Y	Z			
	ft	%		ft	ft	ft			
Building1	15.00	80	1	148.6	352.1	288.0			
			2	334.0	352.9	284.0			
			3	348.3	80.0	294.0			
			4	151.8	83.2	291.0			
			5	148.6	352.0	288.0			
Building2	15.00	80	6	164.6	25.2	291.0			
			7			295.0			
			8			298.0			
			9			294.0			
			10			291.0			
Building3	15.00	80	11			294.0			
			12			292.0			
			13			296.0			
			14			296.0			
			15			297.0			
			16	-207.0	356.0	294.0			

INPUT: TERRAIN LINES

Eilar Associates, Inc.			28 July 2015							
JB			TNM 2.5							
INPUT: TERRAIN LINES										
PROJECT/CONTRACT:	B50405N1 Calibration									
RUN:										
Terrain Line	Points	5								
Name	No.	Coordinates	(ground)							
		X	Y	Z						
		ft	ft	ft						
Terrain Line1	1	1,265.7	-763.1	187.00						
	2	1,234.6	-494.2	194.00						
	3	1,227.5	-168.0	201.00						
	4	1,242.9	130.2	209.00						
	5	1,268.2	411.2	213.00						
	6	1,288.3	634.5	220.00						
	7	1,294.5	863.7	230.00						
Terrain Line2	8	1,215.6	-766.0	190.00						
	9	1,187.5	-465.7	212.00						
	10	1,180.9	-243.0	207.00						
	11	1,205.7	136.4	237.00						
	12	1,234.3	444.6	222.00						
	13	1,262.0	696.0	240.00						
	14	1,262.0	901.9	243.00						
Terrain Line3	15	768.1	-768.6	288.00						
	16	782.3	-369.5	289.00						
	17	790.9	180.7	282.00						
	18	788.0	403.0	280.00						
	19	443.1	408.7	280.00						
	20	428.9	565.5	281.00						
	21	930.6	568.3	280.00						
	22	967.6	853.4	280.00						

RESULTS: SOUND LEVELS				1			B50405N1			1	1		
Eilar Associates, Inc.							28 July 20) 015					
JB							TNM 2.5						
							Calculated with TNM 2.5						
RESULTS: SOUND LEVELS													
PROJECT/CONTRACT:		B50405	N1										
RUN:		Calibra	tion										
BARRIER DESIGN:		INPUT	HEIGHTS					Average	pavement type	shall be use	d unles	S	
								a State h	nighway agency	y substantiat	es the u	ise	
ATMOSPHERICS:		68 deg	F, 50% RH	1				of a diffe	erent type with	approval of F	HWA.		
Receiver					_								-
Name	No.	#DUs	Existing	No Barrier				With Barrier					
			LAeq1h	LAeq1h		Increase over	existing	Туре	Calculated	Noise Redu	ction		
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calcula	ated
							Sub'l Inc					minus	
												Goal	
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB	
Calibration		1 1	0.0	61.6	5	66 61.6	6 10)	61.6	0.0)	8	-8.
Dwelling Units		# DUs	Noise Re	duction									
			Min	Avg	Max								
			dB	dB	dB								
All Selected		1	0.0	0.0) ().0							
All Impacted		0	0.0	0.0) (0.0							
All that meet NR Goal		0	0.0	0.0) (0.0							

NPUT: TRAFFIC FOR LAeq1h Volumes					1	В	50405N1					
Filer Accession Inc.				20 1.1.	/ 2015							
Eilar Associates, Inc.	28 July 2015 TNM 2.5											
JB					.ວ 							
INPUT: TRAFFIC FOR LAeq1h Volumes												
PROJECT/CONTRACT:	B50405N1		1									
RUN:	Current											
Roadway	Points											
Name	Name	No.	Segmen	t								
			Autos		MTrucks	s HTrucks I			Buses		Motorcy	cles
			V	S	V	S	V	S	V	S	V	S
			veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph
5th Avenue	point1	1	788	30	16	30	8	30		0 C	C) (
	point2	2										
4th Avenue	point3	3	371	30	8	30	4	30		0 0	C) (
	point4	4	371	30	8	30	4	30		0 C	C) (
	point5	5	371	30	8	30	4	30		0 0	C) (
	point6	6	371	30	8	30	4	30		0 0	C) (
	point7	7	371	30	8	30	4	30		0 0	0 0) (
	point8	8	371	30	8	30	4	30		0 0	C) (
	point9	9										
6th Ave SB	point12	12		30	13	30	7	30		0 0	0 0) (
	point13	13										
6th Ave NB	point16	16	644	30	13	30	7	30		0 0	0 0) (
	point17	17										
CA 163 NB	point18	18		55						0 0	C) (
	point19	19		55						0 0		
	point20	20	2801	55						0 0	0 0) (
	point21	21		55						0 0		
	point22	22		55						0 0		
	point23	23		55						0 0		
	point24	24		55						0 0		
	point25	25		55						0 0		
	point26	26		55						0 0		
	point27	27	2801	55	63	55	24	55		0 0	0 0) (

INPUT: TRAFFIC FOR LAeq1h Volumes	5					B	50405N1					
	point28	28										
CA 163 SB	point29	29	3330	55	75	55	29	55	0	0	0	0
	point30	30	3330	55	75	55	29	55	0	0	0	0
	point31	31	3330	55	75	55	29	55	0	0	0	0
	point32	32	3330	55	75	55	29	55	0	0	0	0
	point33	33	3330	55	75	55	29	55	0	0	0	0
	point34	34	3330	55	75	55	29	55	0	0	0	0
	point35	35	3330	55	75	55	29	55	0	0	0	0
	point36	36	3330	55	75	55	29	55	0	0	0	0
	point37	37	3330	55	75	55	29	55	0	0	0	0
	point38	38	3330	55	75	55	29	55	0	0	0	0
	point39	39										

INPUT: RECEIVERS				(1		B50405N1	·		
Eilar Associates, Inc.						28 July 20	15				
JB						TNM 2.5					
INPUT: RECEIVERS											
PROJECT/CONTRACT:	B5040	5N1									
RUN:	Currer	nt									
Receiver											
Name	No.	#DUs	Coordinates	(ground)		Height	Input Sou	nd Levels a	and Criteria	a	Active
			X	Υ	Z	above	Existing	Impact Cr	iteria	NR	in
						Ground	LAeq1h	LAeq1h	Sub'l	Goal	Calc.
			ft	ft	ft	ft	dBA	dBA	dB	dB	
R1	1	1	75.0	210.0	291.00	5.00	0.00	66	10.0	8.0	Y
R2	3	1	75.0	195.0	291.00	5.00	0.00	66	10.0	8.0	Y
R3	4	1	75.0	180.0	291.00	5.00	0.00	66	10.0	8.0	Y
R4	5	1	75.0	165.0	291.00	5.00	0.00	66	10.0	8.0	Y
R5	6	1	75.0	150.0	291.00	5.00	0.00	66	10.0	8.0	Y
R6	7	1	75.0	135.0	291.00	5.00	0.00	66	10.0	8.0	Y
R7	8	1	75.0	120.0	291.00	5.00	0.00	66	10.0	8.0	Y
R8	9	1	75.0	105.0	291.00	5.00	0.00	66	10.0	8.0	Y
R9	10	1	75.0	90.0	291.00	5.00	0.00	66	10.0	8.0	Y
R10	11	1	75.0	75.0	291.00	5.00	0.00	66	10.0	8.0	Y
R11	12	1	75.0	60.0	291.00	5.00	0.00	66	10.0	8.0	Y
R12	13	1	75.0	45.0	291.00	5.00	0.00	66	10.0	8.0	Y
R13	14	1	75.0	30.0	291.00	5.00	0.00	66	10.0	8.0	Y
R14	15	1	75.0	15.0	291.00	5.00	0.00	66	10.0	8.0	Y
R15	16	1	75.0	0.0	291.00	5.00	0.00	66	10.0	8.0	Y
R16	17	1	75.0	-15.0	291.00	5.00	0.00	66	10.0	8.0	Y
R17	18	1	75.0	-30.0	291.00	5.00	0.00	66	10.0	8.0	Y
R18	19	1	75.0	-45.0	291.00	5.00	0.00	66	10.0	8.0	Y
R19	21	1	60.0	210.0	291.00	5.00	0.00	66	10.0	8.0	Y
R20	22	1	60.0	195.0	291.00	5.00	0.00	66	10.0	8.0	
R21	23	1	60.0	180.0	291.00	5.00	0.00	66	10.0	8.0	
R22	24	1	60.0	165.0	291.00	5.00	0.00	66	10.0	8.0	Y

INPUT: RECEIVERS							B5	0405N1			
R23	25	1	60.0	150.0	291.00	5.00	0.00	66	10.0	8.0	Y
R24	26	1	60.0	135.0	291.00	5.00	0.00	66	10.0	8.0	Y
R25	27	1	60.0	120.0	291.00	5.00	0.00	66	10.0	8.0	Y
R26	28	1	60.0	105.0	291.00	5.00	0.00	66	10.0	8.0	Y
R27	29	1	60.0	90.0	291.00	5.00	0.00	66	10.0	8.0	Y
R28	30	1	60.0	75.0	291.00	5.00	0.00	66	10.0	8.0	Y
R29	31	1	60.0	60.0	291.00	5.00	0.00	66	10.0	8.0	Y
R30	32	1	60.0	45.0	291.00	5.00	0.00	66	10.0	8.0	Y
R31	33	1	60.0	30.0	291.00	5.00	0.00	66	10.0	8.0	Y
R32	34	1	60.0	15.0	291.00	5.00	0.00	66	10.0	8.0	Y
R33	35	1	60.0	0.0	291.00	5.00	0.00	66	10.0	8.0	Y
R34	36	1	60.0	-15.0	291.00	5.00	0.00	66	10.0	8.0	Y
R35	37	1	60.0	-30.0	291.00	5.00	0.00	66	10.0	8.0	Y
R36	38	1	60.0	-45.0	291.00	5.00	0.00	66	10.0	8.0	Y
R37	39	1	45.0	210.0	292.00	5.00	0.00	66	10.0	8.0	Y
R38	40	1	45.0	195.0	292.00	5.00	0.00	66	10.0	8.0	Y
R39	41	1	45.0	180.0	292.00	5.00	0.00	66	10.0	8.0	Y
R40	42	1	45.0	165.0	292.00	5.00	0.00	66	10.0	8.0	Y
R41	43	1	45.0	150.0	292.00	5.00	0.00	66	10.0	8.0	Y
R42	44	1	45.0	135.0	292.00	5.00	0.00	66	10.0	8.0	Y
R43	45	1	45.0	120.0	292.00	5.00	0.00	66	10.0	8.0	Y
R44	46	1	45.0	105.0	292.00	5.00	0.00	66	10.0	8.0	Y
R45	47	1	45.0	90.0	292.00	5.00	0.00	66	10.0	8.0	Y
R46	48	1	45.0	75.0	292.00	5.00	0.00	66	10.0	8.0	Y
R47	49	1	45.0	60.0	292.00	5.00	0.00	66	10.0	8.0	Y
R48	50	1	45.0	45.0	292.00	5.00	0.00	66	10.0	8.0	Y
R49	51	1	45.0	30.0	292.00	5.00	0.00	66	10.0	8.0	Y
R50	52	1	45.0	15.0	292.00	5.00	0.00	66	10.0	8.0	Y
R51	53	1	45.0	0.0	292.00	5.00	0.00	66	10.0	8.0	Y
R52	54	1	45.0	-15.0	292.00	5.00	0.00	66	10.0	8.0	Y
R53	55	1	45.0	-30.0	292.00	5.00	0.00	66	10.0	8.0	Υ
R54	56	1	45.0	-45.0	292.00	5.00	0.00	66	10.0	8.0	Υ
R55	57	1	30.0	210.0	292.00	5.00	0.00	66	10.0	8.0	Y
R56	58	1	30.0	195.0	292.00	5.00	0.00	66	10.0	8.0	Y
R57	59	1	30.0	180.0	292.00	5.00	0.00	66	10.0	8.0	Y
R58	60	1	30.0	165.0	292.00	5.00	0.00	66	10.0	8.0	Y

INPUT: RECEIVERS						B50	0405N1			
R59	61 1	30.0	150.0	292.00	5.00	0.00	66	10.0	8.0	Y
R60	62 1	30.0	135.0	292.00	5.00	0.00	66	10.0	8.0	Y
R61	63 1	30.0	120.0	292.00	5.00	0.00	66	10.0	8.0	Y
R62	64 1	30.0	105.0	292.00	5.00	0.00	66	10.0	8.0	Y
R63	65 1	30.0	90.0	292.00	5.00	0.00	66	10.0	8.0	Y
R64	66 1	30.0	75.0	292.00	5.00	0.00	66	10.0	8.0	Y
R65	67 1	30.0	60.0	292.00	5.00	0.00	66	10.0	8.0	Y
R66	68 1	30.0	45.0	292.00	5.00	0.00	66	10.0	8.0	Y
R67	69 1	30.0	30.0	292.00	5.00	0.00	66	10.0	8.0	Y
R68	70 1	30.0	15.0	292.00	5.00	0.00	66	10.0	8.0	Y
R69	71 1	30.0	0.0	292.00	5.00	0.00	66	10.0	8.0	Y
R70	72 1	30.0	-15.0	292.00	5.00	0.00	66	10.0	8.0	Y
R71	73 1	30.0	-30.0	292.00	5.00	0.00	66	10.0	8.0	Y
R72	74 1	30.0	-45.0	292.00	5.00	0.00	66	10.0	8.0	Y
R73	75 1	15.0	210.0	292.00	5.00	0.00	66	10.0	8.0	Y
R74	76 1	15.0	195.0	292.00	5.00	0.00	66	10.0	8.0	Y
R75	77 1	15.0	180.0	292.00	5.00	0.00	66	10.0	8.0	Y
R76	78 1	15.0	165.0	292.00	5.00	0.00	66	10.0	8.0	Y
R77	79 1	15.0	150.0	292.00	5.00	0.00	66	10.0	8.0	Y
R78	80 1	15.0	135.0	292.00	5.00	0.00	66	10.0	8.0	Y
R79	81 1	15.0	120.0	292.00	5.00	0.00	66	10.0	8.0	Y
R80	82 1	15.0	105.0	292.00	5.00	0.00	66	10.0	8.0	Y
R81	83 1	15.0	90.0	292.00	5.00	0.00	66	10.0	8.0	Y
R82	84 1	15.0	75.0	292.00	5.00	0.00	66	10.0	8.0	Y
R83	85 1	15.0	60.0	292.00	5.00	0.00	66	10.0	8.0	Y
R84	86 1	15.0	45.0	292.00	5.00	0.00	66	10.0	8.0	Y
R85	87 1	15.0	30.0	292.00	5.00	0.00	66	10.0	8.0	Y
R86	88 1	15.0	15.0	292.00	5.00	0.00	66	10.0	8.0	Y
R87	89 1	15.0	0.0	292.00	5.00	0.00	66	10.0	8.0	Y
R88	90 1	15.0	-15.0	292.00	5.00	0.00	66	10.0	8.0	Y
R89	91 1	15.0	-30.0	292.00	5.00	0.00	66	10.0	8.0	Y
R90	92 1	15.0	-45.0	292.00	5.00	0.00	66	10.0	8.0	Y
R91	93 1	0.0	210.0	292.00	5.00	0.00	66	10.0	8.0	Y
R92	94 1	0.0	195.0	292.00	5.00	0.00	66	10.0	8.0	Y
R93	95 1	0.0	180.0	292.00	5.00	0.00	66	10.0	8.0	Y
R94	96 1	0.0	165.0	292.00	5.00	0.00	66	10.0	8.0	Y

INPUT: RECEIVERS							B5(0405N1			
R95	97	1	0.0	150.0	292.00	5.00	0.00	66	10.0	8.0	Y
R96	98	1	0.0	135.0	292.00	5.00	0.00	66	10.0	8.0	Y
R97	99	1	0.0	120.0	292.00	5.00	0.00	66	10.0	8.0	Y
R98	100	1	0.0	105.0	292.00	5.00	0.00	66	10.0	8.0	Y
R99	101	1	0.0	90.0	292.00	5.00	0.00	66	10.0	8.0	Y
R100	102	1	0.0	75.0	292.00	5.00	0.00	66	10.0	8.0	Y
R101	103	1	0.0	60.0	292.00	5.00	0.00	66	10.0	8.0	Y
R102	104	1	0.0	45.0	292.00	5.00	0.00	66	10.0	8.0	Y
R103	105	1	0.0	30.0	292.00	5.00	0.00	66	10.0	8.0	Y
R104	106	1	0.0	15.0	292.00	5.00	0.00	66	10.0	8.0	Y
R105	107	1	0.0	0.0	292.00	5.00	0.00	66	10.0	8.0	Y
R106	108	1	0.0	-15.0	292.00	5.00	0.00	66	10.0	8.0	Y
R107	109	1	0.0	-30.0	292.00	5.00	0.00	66	10.0	8.0	Y
R108	110	1	0.0	-45.0	292.00	5.00	0.00	66	10.0	8.0	Y
R109	111	1	-15.0	210.0	292.50	5.00	0.00	66	10.0	8.0	Y
R110	112	1	-15.0	195.0	292.50	5.00	0.00	66	10.0	8.0	Y
R111	113	1	-15.0	180.0	292.50	5.00	0.00	66	10.0	8.0	Y
R112	114	1	-15.0	165.0	292.50	5.00	0.00	66	10.0	8.0	Y
R113	115	1	-15.0	150.0	292.50	5.00	0.00	66	10.0	8.0	Y
R114	116	1	-15.0	135.0	292.50	5.00	0.00	66	10.0	8.0	Y
R115	117	1	-15.0	120.0	292.50	5.00	0.00	66	10.0	8.0	Y
R116	118	1	-15.0	105.0	292.50	5.00	0.00	66	10.0	8.0	Y
R117	119	1	-15.0	90.0	292.50	5.00	0.00	66	10.0	8.0	Y
R118	120	1	-15.0	75.0	292.50	5.00	0.00	66	10.0	8.0	Y
R119	121	1	-15.0	60.0	292.50	5.00	0.00	66	10.0	8.0	Y
R120	122	1	-15.0	45.0	292.50	5.00	0.00	66	10.0	8.0	Y
R121	123	1	-15.0	30.0	292.50	5.00	0.00	66	10.0	8.0	Y
R122	124	1	-15.0	15.0	292.50	5.00	0.00	66	10.0	8.0	Y
R123	125	1	-15.0	0.0	292.50	5.00	0.00	66	10.0	8.0	Y
R124	126	1	-15.0	-15.0	292.50	5.00	0.00	66	10.0	8.0	Y
R125	127	1	-15.0	-30.0	292.50	5.00	0.00	66	10.0	8.0	Y
R126	128	1	-15.0	-45.0	292.50	5.00	0.00	66	10.0	8.0	Y
R127	129	1	-30.0	210.0	292.50	5.00	0.00	66	10.0	8.0	Y
R128	130	1	-30.0	195.0	292.50	5.00	0.00	66	10.0	8.0	Y
R129	131	1	-30.0	180.0	292.50	5.00	0.00	66	10.0	8.0	Y
R130	132	1	-30.0	165.0	292.50	5.00	0.00	66	10.0	8.0	Y

INPUT: RECEIVERS							B5(0405N1			
R131	133	1	-30.0	150.0	292.50	5.00	0.00	66	10.0	8.0	Y
R132	134	1	-30.0	135.0	292.50	5.00	0.00	66	10.0	8.0	Y
R133	135	1	-30.0	120.0	292.50	5.00	0.00	66	10.0	8.0	Y
R134	136	1	-30.0	105.0	292.50	5.00	0.00	66	10.0	8.0	Y
R135	137	1	-30.0	90.0	292.50	5.00	0.00	66	10.0	8.0	Y
R136	138	1	-30.0	75.0	292.50	5.00	0.00	66	10.0	8.0	Y
R137	139	1	-30.0	60.0	292.50	5.00	0.00	66	10.0	8.0	Y
R138	140	1	-30.0	45.0	292.50	5.00	0.00	66	10.0	8.0	Y
R139	141	1	-30.0	30.0	292.50	5.00	0.00	66	10.0	8.0	Y
R140	142	1	-30.0	15.0	292.50	5.00	0.00	66	10.0	8.0	Y
R141	143	1	-30.0	0.0	292.50	5.00	0.00	66	10.0	8.0	Y
R142	144	1	-30.0	-15.0	292.50	5.00	0.00	66	10.0	8.0	Y
R143	145	1	-30.0	-30.0	292.50	5.00	0.00	66	10.0	8.0	Y
R144	146	1	-30.0	-45.0	292.50	5.00	0.00	66	10.0	8.0	Y
R145	147	1	-45.0	210.0	292.50	5.00	0.00	66	10.0	8.0	Y
R146	148	1	-45.0	195.0	292.50	5.00	0.00	66	10.0	8.0	Y
R147	149	1	-45.0	180.0	292.50	5.00	0.00	66	10.0	8.0	Y
R148	150	1	-45.0	165.0	292.50	5.00	0.00	66	10.0	8.0	Y
R149	151	1	-45.0	150.0	292.50	5.00	0.00	66	10.0	8.0	Y
R150	152	1	-45.0	135.0	292.50	5.00	0.00	66	10.0	8.0	Y
R151	153	1	-45.0	120.0	292.50	5.00	0.00	66	10.0	8.0	Y
R152	154	1	-45.0	105.0	292.50	5.00	0.00	66	10.0	8.0	Y
R153	155	1	-45.0	90.0	292.50	5.00	0.00	66	10.0	8.0	Y
R154	156	1	-45.0	75.0	292.50	5.00	0.00	66	10.0	8.0	Y
R155	157	1	-45.0	60.0	292.50	5.00	0.00	66	10.0	8.0	Y
R156	158	1	-45.0	45.0	292.50	5.00	0.00	66	10.0	8.0	Y
R157	159	1	-45.0	30.0	292.50	5.00	0.00	66	10.0	8.0	Y
R158	160	1	-45.0	15.0	292.50	5.00	0.00	66	10.0	8.0	Y
R159	161	1	-45.0	0.0	292.50	5.00	0.00	66	10.0	8.0	Y
R160	162	1	-45.0	-15.0	292.50	5.00	0.00	66	10.0	8.0	Υ
R161	163	1	-45.0	-30.0	292.50	5.00	0.00	66	10.0	8.0	Y
R162	164	1	-45.0	-45.0	292.50	5.00	0.00	66	10.0	8.0	Υ
R163	165	1	-60.0	210.0	293.00	5.00	0.00	66	10.0	8.0	Y
R164	166	1	-60.0	195.0	293.00	5.00	0.00	66	10.0	8.0	Y
R165	167	1	-60.0	180.0	293.00	5.00	0.00	66	10.0	8.0	Y
R166	168	1	-60.0	165.0	293.00	5.00	0.00	66	10.0	8.0	Y

INPUT: RECEIVERS	PUT: RECEIVERS							0405N1			
R167	169	1	-60.0	150.0	293.00	5.00	0.00	66	10.0	8.0	Y
R168	170	1	-60.0	135.0	293.00	5.00	0.00	66	10.0	8.0	Y
R169	171	1	-60.0	120.0	293.00	5.00	0.00	66	10.0	8.0	Y
R170	172	1	-60.0	105.0	293.00	5.00	0.00	66	10.0	8.0	Y
R171	173	1	-60.0	90.0	293.00	5.00	0.00	66	10.0	8.0	Y
R172	174	1	-60.0	75.0	293.00	5.00	0.00	66	10.0	8.0	Y
R173	175	1	-60.0	60.0	293.00	5.00	0.00	66	10.0	8.0	Y
R174	176	1	-60.0	45.0	293.00	5.00	0.00	66	10.0	8.0	Y
R175	177	1	-60.0	30.0	293.00	5.00	0.00	66	10.0	8.0	Y
R176	178	1	-60.0	15.0	293.00	5.00	0.00	66	10.0	8.0	Y
R177	179	1	-60.0	0.0	293.00	5.00	0.00	66	10.0	8.0	Y
R178	180	1	-60.0	-15.0	293.00	5.00	0.00	66	10.0	8.0	Y
R179	181	1	-60.0	-30.0	293.00	5.00	0.00	66	10.0	8.0	Y
R180	182	1	-60.0	-45.0	293.00	5.00	0.00	66	10.0	8.0	Y

RESULTS: SOUND LEVELS	1	-		ï	ſ			B50405N1	1	ì	1	1	
Eilar Associates, Inc.								28 July 20	15				
JB								TNM 2.5					
								Calculate	d with TNN	1 2.5			
RESULTS: SOUND LEVELS													
PROJECT/CONTRACT:		B5040	5N1										
RUN:		Currer	-										
BARRIER DESIGN:		INPUT	HEIGHTS						Average	pavement typ	e shall be use	d unless	3
											y substantiate		
ATMOSPHERICS:		68 de	g F, 50% RH								approval of F		
Receiver		 		-					-				
Name	No.	#DUs	Existing	No Barrier						With Barrier	•		
			LAeq1h	LAeq1h		Incr	ease over	existing	Туре	Calculated	Noise Reduc	tion	
				Calculated	Crit'n	1	ulated	Crit'n	Impact	LAeq1h		Goal	Calculated
								Sub'l Inc					minus
													Goal
			dBA	dBA	dBA	dB		dB		dBA	dB	dB	dB
R1	1		1 0.0	62	2.1	66	62.1	10		62.1	1 0.0		8 -8.0
R2	3	5	1 0.0	62	2.1	66	62.1	10		62.1	1 0.0		8 -8.0
R3	4	ł	1 0.0	62	2.1	66	62.1	10		62.1	1 0.0		8 -8.0
R4	5	5	1 0.0	62	2.1	66	62.1	10		62.1	1 0.0		8 -8.0
R5	6	5	1 0.0	62	2.0	66	62.0	10		62.0	0.0		8 -8.0
R6	7	·	1 0.0	62	2.0	66	62.0) 10		62.0	0.0		8 -8.0
R7	8	8	1 0.0	62	2.0	66	62.0	10		62.0	0.0		8 -8.0
R8	g)	1 0.0	62	2.0	66	62.0	10		62.0	0.0		8 -8.0
R9	10)	1 0.0	62	2.0	66	62.0	10		62.0	0.0		8 -8.0
R10	11		1 0.0	62	2.0	66	62.0	10		62.0	0.0		8 -8.0
R11	12	2	1 0.0	62	2.0	66	62.0	10		62.0	0.0		8 -8.0
R12	13	5	1 0.0	62	2.0	66	62.0	10		62.0	0.0		8 -8.0
R13	14		1 0.0		2.0	66	62.0			62.0			8 -8.0
R14	15		1 0.0	61	.9	66	61.9	10		61.9	9 0.0		8 -8.0
R15	16		1 0.0		.9	66	61.9			61.9			8 -8.0
R16	17	'	1 0.0		.9	66	61.9			61.9			8 -8.0
R17	18		1 0.0		.9	66	61.9			61.9			8 -8.0
R18	19		1 0.0		.9	66	61.9			61.9			8 -8.0
R19	21		1 0.0		3.2	66	58.2			58.2			8 -8.0
R20	22		1 0.0		0.0	66	60.0			60.0			8 -8.0
R21	23		1 0.0).4	66	60.4			60.4			8 -8.0
R22	24		1 0.0).6	66	60.6			60.6			8 -8.0
R23	25		1 0.0		0.6	66	60.6			60.6			8 -8.0
R24	26	5	1 0.0	60	0.6	66	60.6	5 10		60.6	6 0.0		8 -8.0

RESULTS: SOUND LEVELS					B50	405N1				
R25	27 1	0.0	60.6	66	60.6	10	 60.6	0.0	8	-8.0
R26	28 1	0.0	60.6	66	60.6	10	 60.6	0.0	8	-8.0
R27	29 1	0.0	60.6	66	60.6	10	 60.6	0.0	8	-8.0
R28	30 1	0.0	60.6	66	60.6	10	 60.6	0.0	8	-8.0
R29	31 1	0.0	60.6	66	60.6	10	 60.6	0.0	8	-8.0
R30	32 1	0.0	60.6	66	60.6	10	 60.6	0.0	8	-8.0
R31	33 1	0.0	60.6	66	60.6	10	 60.6	0.0	8	-8.0
R32	34 1	0.0	60.6	66	60.6	10	 60.6	0.0	8	-8.0
R33	35 1	0.0	60.5	66	60.5	10	 60.5	0.0	8	-8.0
R34	36 1	0.0	60.4	66	60.4	10	 60.4	0.0	8	-8.0
R35	37 1	0.0	60.1	66	60.1	10	 60.1	0.0	8	-8.0
R36	38 1	0.0	59.1	66	59.1	10	 59.1	0.0	8	-8.0
R37	39 1	0.0	56.9	66	56.9	10	 56.9	0.0	8	-8.0
R38	40 1	0.0	58.2	66	58.2	10	 58.2	0.0	8	-8.0
R39	41 1	0.0	58.8	66	58.8	10	 58.8	0.0	8	-8.0
R40	42 1	0.0	59.1	66	59.1	10	 59.1	0.0	8	-8.0
R41	43 1	0.0	59.3	66	59.3	10	 59.3	0.0	8	-8.0
R42	44 1	0.0	59.4	66	59.4	10	 59.4	0.0	8	-8.0
R43	45 1	0.0	59.5	66	59.5	10	 59.5	0.0	8	-8.0
R44	46 1	0.0	59.5	66	59.5	10	 59.5	0.0	8	-8.0
R45	47 1	0.0	59.5	66	59.5	10	 59.5	0.0	8	-8.0
R46	48 1	0.0	59.5	66	59.5	10	 59.5	0.0	8	-8.0
R47	49 1	0.0	59.5	66	59.5	10	 59.5	0.0	8	-8.0
R48	50 1	0.0	59.4	66	59.4	10	 59.4	0.0	8	-8.0
R49	51 1	0.0	59.4	66	59.4	10	 59.4	0.0	8	-8.0
R50	52 1	0.0	59.3	66	59.3	10	 59.3	0.0	8	-8.0
R51	53 1	0.0	59.1	66	59.1	10	 59.1	0.0	8	-8.0
R52	54 1	0.0	58.8	66	58.8	10	 58.8	0.0	8	-8.0
R53	55 1	0.0	58.4	66	58.4	10	 58.4	0.0	8	-8.0
R54	56 1	0.0	57.4	66	57.4	10	 57.4	0.0	8	-8.0
R55	57 1	0.0	56.0	66	56.0	10	 56.0	0.0	8	-8.0
R56	58 1	0.0	56.9	66	56.9	10	 56.9	0.0	8	-8.0
R57	59 1	0.0	57.5	66	57.5	10	 57.5	0.0	8	-8.0
R58	60 1	0.0	57.9	66	57.9	10	 57.9	0.0	8	-8.0
R59	61 1	0.0	58.1	66	58.1	10	 58.1	0.0	8	-8.0
R60	62 1	0.0	58.2	66	58.2	10	 58.2	0.0	8	-8.0
R61	63 1	0.0	58.3	66	58.3	10	 58.3	0.0	8	-8.0
R62	64 1	0.0	58.4	66	58.4	10	 58.4	0.0	8	-8.0
R63	65 1	0.0	58.4	66	58.4	10	 58.4	0.0	8	-8.0
R64	66 1	0.0	58.4	66	58.4	10	 58.4	0.0	8	-8.0
R65	67 1	0.0	58.4	66	58.4	10	 58.4	0.0	8	-8.0

RESULTS: SOUND LEVELS					B504	405N1				
R66	68 1	0.0	58.3	66	58.3	10	 58.3	0.0	8	-8.0
R67	69 1	0.0	58.2	66	58.2	10	 58.2	0.0	8	-8.0
R68	70 1	0.0	58.1	66	58.1	10	 58.1	0.0	8	-8.0
R69	71 1	0.0	57.9	66	57.9	10	 57.9	0.0	8	-8.0
R70	72 1	0.0	57.6	66	57.6	10	 57.6	0.0	8	-8.0
R71	73 1	0.0	57.1	66	57.1	10	 57.1	0.0	8	-8.0
R72	74 1	0.0	56.3	66	56.3	10	 56.3	0.0	8	-8.0
R73	75 1	0.0	54.7	66	54.7	10	 54.7	0.0	8	-8.0
R74	76 1	0.0	55.5	66	55.5	10	 55.5	0.0	8	-8.0
R75	77 1	0.0	56.0	66	56.0	10	 56.0	0.0	8	-8.0
R76	78 1	0.0	56.3	66	56.3	10	 56.3	0.0	8	-8.0
R77	79 1	0.0	56.6	66	56.6	10	 56.6	0.0	8	-8.0
R78	80 1	0.0	56.7	66	56.7	10	 56.7	0.0	8	-8.0
R79	81 1	0.0	56.8	66	56.8	10	 56.8	0.0	8	-8.0
R80	82 1	0.0	56.9	66	56.9	10	 56.9	0.0	8	-8.0
R81	83 1	0.0	56.9	66	56.9	10	 56.9	0.0	8	-8.0
R82	84 1	0.0	56.9	66	56.9	10	 56.9	0.0	8	-8.0
R83	85 1	0.0	56.9	66	56.9	10	 56.9	0.0	8	-8.0
R84	86 1	0.0	56.8	66	56.8	10	 56.8	0.0	8	-8.0
R85	87 1	0.0	56.7	66	56.7	10	 56.7	0.0	8	-8.0
R86	88 1	0.0	56.6	66	56.6	10	 56.6	0.0	8	-8.0
R87	89 1	0.0	56.3	66	56.3	10	 56.3	0.0	8	-8.0
R88	90 1	0.0	56.0	66	56.0	10	 56.0	0.0	8	-8.0
R89	91 1	0.0	55.5	66	55.5	10	 55.5	0.0	8	-8.0
R90	92 1	0.0	54.8	66	54.8	10	 54.8	0.0	8	-8.0
R91	93 1	0.0	53.3	66	53.3	10	 53.3	0.0	8	-8.0
R92	94 1	0.0	54.0	66	54.0	10	 54.0	0.0	8	-8.0
R93	95 1	0.0	54.5	66	54.5	10	 54.5	0.0	8	-8.0
R94	96 1	0.0	54.8	66	54.8	10	 54.8	0.0	8	-8.0
R95	97 1	0.0	55.0	66	55.0	10	 55.0	0.0	8	-8.0
R96	98 1	0.0	55.2	66	55.2	10	 55.2	0.0	8	-8.0
R97	99 1	0.0	55.3	66	55.3	10	 55.3	0.0	8	-8.0
R98	100 1	0.0	55.4	66	55.4	10	 55.4	0.0	8	-8.0
R99	101 1	0.0	55.4	66	55.4	10	 55.4	0.0	8	-8.0
R100	102 1	0.0	55.4	66	55.4	10	 55.4	0.0	8	-8.0
R101	103 1	0.0	55.4	66	55.4	10	 55.4	0.0	8	-8.0
R102	104 1	0.0	55.3	66	55.3	10	 55.3	0.0	8	-8.0
R103	105 1	0.0	55.2	66	55.2	10	 55.2	0.0	8	-8.0
R104	106 1	0.0	55.0	66	55.0	10	 55.0	0.0	8	-8.0
R105	107 1	0.0	54.7	66	54.7	10	 54.7	0.0	8	-8.0
R106	108 1	0.0	54.4	66	54.4	10	 54.4	0.0	8	-8.0

RESULTS: SOUND LEVELS					B504	405N1				
R107	109 1	0.0	53.9	66	53.9	10	 53.9	0.0	8	-8.0
R108	110 1	0.0	53.3	66	53.3	10	 53.3	0.0	8	-8.0
R109	111 1	0.0	52.1	66	52.1	10	 52.1	0.0	8	-8.0
R110	112 1	0.0	52.7	66	52.7	10	 52.7	0.0	8	-8.0
R111	113 1	0.0	53.1	66	53.1	10	 53.1	0.0	8	-8.0
R112	114 1	0.0	53.5	66	53.5	10	 53.5	0.0	8	-8.0
R113	115 1	0.0	53.7	66	53.7	10	 53.7	0.0	8	-8.0
R114	116 1	0.0	53.9	66	53.9	10	 53.9	0.0	8	-8.0
R115	117 1	0.0	54.0	66	54.0	10	 54.0	0.0	8	-8.0
R116	118 1	0.0	54.1	66	54.1	10	 54.1	0.0	8	-8.0
R117	119 1	0.0	54.1	66	54.1	10	 54.1	0.0	8	-8.0
R118	120 1	0.0	54.1	66	54.1	10	 54.1	0.0	8	-8.0
R119	121 1	0.0	54.0	66	54.0	10	 54.0	0.0	8	-8.0
R120	122 1	0.0	54.0	66	54.0	10	 54.0	0.0	8	-8.0
R121	123 1	0.0	53.8	66	53.8	10	 53.8	0.0	8	-8.0
R122	124 1	0.0	53.6	66	53.6	10	 53.6	0.0	8	-8.0
R123	125 1	0.0	53.4	66	53.4	10	 53.4	0.0	8	-8.0
R124	126 1	0.0	53.0	66	53.0	10	 53.0	0.0	8	-8.0
R125	127 1	0.0	52.6	66	52.6	10	 52.6	0.0	8	-8.0
R126	128 1	0.0	52.1	66	52.1	10	 52.1	0.0	8	-8.0
R127	129 1	0.0	51.1	66	51.1	10	 51.1	0.0	8	-8.0
R128	130 1	0.0	51.6	66	51.6	10	 51.6	0.0	8	-8.0
R129	131 1	0.0	52.0	66	52.0	10	 52.0	0.0	8	-8.0
R130	132 1	0.0	52.3	66	52.3	10	 52.3	0.0	8	-8.0
R131	133 1	0.0	52.5	66	52.5	10	 52.5	0.0	8	-8.0
R132	134 1	0.0	52.7	66	52.7	10	 52.7	0.0	8	-8.0
R133	135 1	0.0	52.8	66	52.8	10	 52.8	0.0	8	-8.0
R134	136 1	0.0	52.9	66	52.9	10	 52.9	0.0	8	-8.0
R135	137 1	0.0	52.9	66	52.9	10	 52.9	0.0	8	-8.0
R136	138 1	0.0	52.9	66	52.9	10	 52.9	0.0	8	-8.0
R137	139 1	0.0	52.9	66	52.9	10	 52.9	0.0	8	-8.0
R138	140 1	0.0	52.8	66	52.8	10	 52.8	0.0	8	-8.0
R139	141 1	0.0	52.7	66	52.7	10	 52.7	0.0	8	-8.0
R140	142 1	0.0	52.5	66	52.5	10	 52.5	0.0	8	-8.0
R141	143 1	0.0	52.2	66	52.2	10	 52.2	0.0	8	-8.0
R142	144 1	0.0	51.9	66	51.9	10	 51.9	0.0	8	-8.0
R143	145 1	0.0	51.5	66	51.5	10	 51.5	0.0	8	-8.0
R144	146 1	0.0	51.0	66	51.0	10	 51.0	0.0	8	-8.0
R145	147 1	0.0	50.3	66	50.3	10	 50.3	0.0	8	-8.0
R146	148 1	0.0	50.7	66	50.7	10	 50.7	0.0	8	-8.0
R147	149 1	0.0	51.0	66	51.0	10	 51.0	0.0	8	-8.0

RESULTS: SOUND LEVELS						B50	405N1				
R148	150	1	0.0	51.3	66	51.3	10	 51.3	0.0	8	-8.0
R149	151	1	0.0	51.5	66	51.5	10	 51.5	0.0	8	-8.0
R150	152	1	0.0	51.7	66	51.7	10	 51.7	0.0	8	-8.0
R151	153	1	0.0	51.8	66	51.8	10	 51.8	0.0	8	-8.0
R152	154	1	0.0	51.9	66	51.9	10	 51.9	0.0	8	-8.0
R153	155	1	0.0	51.9	66	51.9	10	 51.9	0.0	8	-8.0
R154	156	1	0.0	51.9	66	51.9	10	 51.9	0.0	8	-8.0
R155	157	1	0.0	51.8	66	51.8	10	 51.8	0.0	8	-8.0
R156	158	1	0.0	51.8	66	51.8	10	 51.8	0.0	8	-8.0
R157	159	1	0.0	51.7	66	51.7	10	 51.7	0.0	8	-8.0
R158	160	1	0.0	51.5	66	51.5	10	 51.5	0.0	8	-8.0
R159	161	1	0.0	51.3	66	51.3	10	 51.3	0.0	8	-8.0
R160	162	1	0.0	51.0	66	51.0	10	 51.0	0.0	8	-8.0
R161	163	1	0.0	50.6	66	50.6	10	 50.6	0.0	8	-8.0
R162	164	1	0.0	50.1	66	50.1	10	 50.1	0.0	8	-8.0
R163	165	1	0.0	49.6	66	49.6	10	 49.6	0.0	8	-8.0
R164	166	1	0.0	49.9	66	49.9	10	 49.9	0.0	8	-8.0
R165	167	1	0.0	50.2	66	50.2	10	 50.2	0.0	8	-8.0
R166	168	1	0.0	50.5	66	50.5	10	 50.5	0.0	8	-8.0
R167	169	1	0.0	50.7	66	50.7	10	 50.7	0.0	8	-8.0
R168	170	1	0.0	50.8	66	50.8	10	 50.8	0.0	8	-8.0
R169	171	1	0.0	50.9	66	50.9	10	 50.9	0.0	8	-8.0
R170	172	1	0.0	51.0	66	51.0	10	 51.0	0.0	8	-8.0
R171	173	1	0.0	51.0	66	51.0	10	 51.0	0.0	8	-8.0
R172	174	1	0.0	51.0	66	51.0	10	 51.0	0.0	8	-8.0
R173	175	1	0.0	50.9	66	50.9	10	 50.9	0.0	8	-8.0
R174	176	1	0.0	50.9	66	50.9	10	 50.9	0.0	8	-8.0
R175	177	1	0.0	50.8	66	50.8	10	 50.8	0.0	8	-8.0
R176	178	1	0.0	50.6	66	50.6	10	 50.6	0.0	8	-8.0
R177	179	1	0.0	50.4	66	50.4	10	 50.4	0.0	8	-8.0
R178	180	1	0.0	50.2	66	50.2	10	 50.2	0.0	8	-8.0
R179	181	1	0.0	49.9	66	49.9	10	 49.9	0.0	8	-8.0
R180	182	1	0.0	49.6	66	49.6	10	 49.6	0.0	8	-8.0
Dwelling Units	#	DUs Noise	Rec	duction							
		Min		Avg Max							
		dB		dB dB			Ì				
All Selected		180	0.0	0.0	0.0						
All Impacted			0.0	0.0	0.0						
All that meet NR Goal		0	0.0	0.0	0.0						

INPUT: TRAFFIC FOR LAeq1h Volumes						В	50405N1					
Eilar Associates, Inc.				28 July								
JB				TNM 2	.5							
INPUT: TRAFFIC FOR LAeq1h Volumes PROJECT/CONTRACT: RUN:	B50405N1 Future											
Roadway	Points									-		
Name	Name	No.	Segmen	t								-
			Autos		MTrucks	5	HTrucks	5	Buses	_	Motorcy	cles
			v	S	V	S	V	S	V	S	V	S
			veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph
5th Avenue	point1	1	844	30	17	30	g	30	0	0	0	0 0
	point2	2										
4th Avenue	point3	3	523	30	11	30	5	30	0	0	0	0 0
	point4	4	523	30	11	30	5	30	0	0	0	0 0
	point5	5	523	30	11	30	5	30	0	0	0	0 0
	point6	6	523	30	11	30	5	30	0	0	0	0 0
	point7	7	523	30	11	30	5	30	0	0	0	0 0
	point8	8	523	30	11	30	5	30	0	0	0	0 0
	point9	9										
6th Ave SB	point12	12		30	15	30	8	30	0	0	0	0 0
	point13	13										
6th Ave NB	point16	16		30	15	30	8	30	0	0	0	0 0
	point17	17										
CA 163 NB	point18	18			68							
	point19	19		55	68							
	point20	20			68							
	point21	21	3050	55	68							
	point22	22			68						-	
	point23	23			68							
	point24	24										
	point25	25										
	point26	26										
	point27	27	3050	55	68	55	26	55	0	0	0	0 0

INPUT: TRAFFIC FOR LAeq1h Volumes						B	50405N1					
	point28	28										
CA 163 SB	point29	29	3685	55	82	55	32	55	0	0	0	0
	point30	30	3685	55	82	55	32	55	0	0	0	0
	point31	31	3685	55	82	55	32	55	0	0	0	0
	point32	32	3685	55	82	55	32	55	0	0	0	0
	point33	33	3685	55	82	55	32	55	0	0	0	0
	point34	34	3685	55	82	55	32	55	0	0	0	0
	point35	35	3685	55	82	55	32	55	0	0	0	0
	point36	36	3685	55	82	55	32	55	0	0	0	0
	point37	37	3685	55	82	55	32	55	0	0	0	0
	point38	38	3685	55	82	55	32	55	0	0	0	0
	point39	39										

RESULTS: SOUND LEVELS				î.				B50405N1			1		
Eilar Associates, Inc.								28 July 20	15				
JB								TNM 2.5					
									d with TNN	1 2.5			
RESULTS: SOUND LEVELS													
PROJECT/CONTRACT:		B5040	5N1										
RUN:		Future	1										
BARRIER DESIGN:		INPUT	HEIGHTS						Average	pavement typ	e shall be use	d unles	S
											y substantiate		
ATMOSPHERICS:		68 de	g F, 50% RH	l					of a differ	ent type with	approval of F	HWA.	
Receiver											-		
Name	No.	#DUs	Existing	No Barrier						With Barrier			
			LAeq1h	LAeq1h		Increa	se over	existing	Туре	Calculated	Noise Reduc	tion	
				Calculated	Crit'n	Calcul		Crit'n	Impact	LAeq1h	1	Goal	Calculated
								Sub'l Inc		•			minus
													Goal
			dBA	dBA	dBA	dB		dB		dBA	dB	dB	dB
R1	1		1 0.0	62	.4	66	62.4	10		62.4	0.0		8 -8.
R2	3	1	1 0.0	62	.4	66	62.4	10		62.4	۰.0 I		8 -8.
R3	4		1 0.0	62	.4	66	62.4	10		62.4	۰.0 I		8 -8.
R4	5	i	1 0.0	62	.4	66	62.4	10		62.4	0.0		8 -8.
R5	6	;	1 0.0	62	.4	66	62.4	10		62.4	0.0		8 -8.
R6	7	•	1 0.0	62	.4	66	62.4	10		62.4	۰.0 I		8 -8.
R7	8	6	1 0.0	62	.4	66	62.4	10		62.4	۰.0 I		8 -8.
R8	9)	1 0.0	62	.4	66	62.4	10		62.4	۰.0 I		8 -8.
R9	10)	1 0.0	62	.4	66	62.4	10		62.4	0.0		8 -8.
R10	11		1 0.0			66	62.3			62.3			8 -8.
R11	12	2	1 0.0			66	62.3			62.3			8 -8.
R12	13		1 0.0			66	62.3			62.3			8 -8.
R13	14		1 0.0			66	62.3			62.3			8 -8.
R14	15		1 0.0			66	62.3			62.3			8 -8.
R15	16		1 0.0			66	62.3			62.3			8 -8.
R16	17		1 0.0			66	62.3			62.3			8 -8.
R17	18		1 0.0	-		66	62.2			62.2			8 -8.
R18	19		1 0.0			66	62.2			62.2			8 -8.
R19	21		1 0.0			66	58.5			58.5			8 -8.
R20	22		1 0.0			66	60.3			60.3			8 -8.
R21	23		1 0.0			66	60.7			60.7			8 -8.
R22	24		1 0.0			66	60.9			60.9			8 -8.
R23	25		1 0.0			66	61.0			61.0			8 -8.
R24	26	i	1 0.0	61	.0	66	61.0	10		61.0	0.0		8 -8.

C:\TNM25\B50405N1\Future

28 July 2015

RESULTS: SOUND LEVELS					B50	405N1				
R25	27 1	0.0	61.0	66	61.0	10	 61.0	0.0	8	-8.0
R26	28 1	0.0	61.0	66	61.0	10	 61.0	0.0	8	-8.0
R27	29 1	0.0	61.0	66	61.0	10	 61.0	0.0	8	-8.0
R28	30 1	0.0	61.0	66	61.0	10	 61.0	0.0	8	-8.0
R29	31 1	0.0	61.0	66	61.0	10	 61.0	0.0	8	-8.0
R30	32 1	0.0	61.0	66	61.0	10	 61.0	0.0	8	-8.0
R31	33 1	0.0	60.9	66	60.9	10	 60.9	0.0	8	-8.0
R32	34 1	0.0	60.9	66	60.9	10	 60.9	0.0	8	-8.0
R33	35 1	0.0	60.8	66	60.8	10	 60.8	0.0	8	-8.0
R34	36 1	0.0	60.7	66	60.7	10	 60.7	0.0	8	-8.0
R35	37 1	0.0	60.4	66	60.4	10	 60.4	0.0	8	-8.0
R36	38 1	0.0	59.5	66	59.5	10	 59.5	0.0	8	-8.0
R37	39 1	0.0	57.3	66	57.3	10	 57.3	0.0	8	-8.0
R38	40 1	0.0	58.5	66	58.5	10	 58.5	0.0	8	-8.0
R39	41 1	0.0	59.2	66	59.2	10	 59.2	0.0	8	-8.0
R40	42 1	0.0	59.5	66	59.5	10	 59.5	0.0	8	-8.0
R41	43 1	0.0	59.6	66	59.6	10	 59.6	0.0	8	-8.0
R42	44 1	0.0	59.7	66	59.7	10	 59.7	0.0	8	-8.0
R43	45 1	0.0	59.8	66	59.8	10	 59.8	0.0	8	-8.0
R44	46 1	0.0	59.8	66	59.8	10	 59.8	0.0	8	-8.0
R45	47 1	0.0	59.9	66	59.9	10	 59.9	0.0	8	-8.0
R46	48 1	0.0	59.8	66	59.8	10	 59.8	0.0	8	-8.0
R47	49 1	0.0	59.8	66	59.8	10	 59.8	0.0	8	-8.0
R48	50 1	0.0	59.8	66	59.8	10	 59.8	0.0	8	-8.0
R49	51 1	0.0	59.7	66	59.7	10	 59.7	0.0	8	-8.0
R50	52 1	0.0	59.6	66	59.6	10	 59.6	0.0	8	-8.0
R51	53 1	0.0	59.4	66	59.4	10	 59.4	0.0	8	-8.0
R52	54 1	0.0	59.2	66	59.2	10	 59.2	0.0	8	-8.0
R53	55 1	0.0	58.7	66	58.7	10	 58.7	0.0	8	-8.0
R54	56 1	0.0	57.7	66	57.7	10	 57.7	0.0	8	-8.0
R55	57 1	0.0	56.3	66	56.3	10	 56.3	0.0	8	-8.0
R56	58 1	0.0	57.3	66	57.3	10	 57.3	0.0	8	-8.0
R57	59 1	0.0	57.9	66	57.9	10	 57.9	0.0	8	-8.0
R58	60 1	0.0	58.2	66	58.2	10	 58.2	0.0	8	-8.0
R59	61 1	0.0	58.4	66	58.4	10	 58.4	0.0	8	-8.0
R60	62 1	0.0	58.6	66	58.6	10	 58.6	0.0	8	-8.0
R61	63 1	0.0	58.7	66	58.7	10	 58.7	0.0	8	-8.0
R62	64 1	0.0	58.7	66	58.7	10	 58.7	0.0	8	-8.0
R63	65 1	0.0	58.7	66	58.7	10	 58.7	0.0	8	-8.0
R64	66 1	0.0	58.7	66	58.7	10	 58.7	0.0	8	-8.0
R65	67 1	0.0	58.7	66	58.7	10	 58.7	0.0	8	-8.0

RESULTS: SOUND LEVELS					B504	405N1				
R66	68 <i>´</i>	0.0	58.7	66	58.7	10	 58.7	0.0	8	-8.0
R67	69 ²	0.0	58.6	66	58.6	10	 58.6	0.0	8	-8.0
R68	70	1 0.0	58.5	66	58.5	10	 58.5	0.0	8	-8.0
R69	71 *	1 0.0	58.3	66	58.3	10	 58.3	0.0	8	-8.0
R70	72	1 0.0	57.9	66	57.9	10	 57.9	0.0	8	-8.0
R71	73	1 0.0	57.4	66	57.4	10	 57.4	0.0	8	-8.0
R72	74	1 0.0	56.6	66	56.6	10	 56.6	0.0	8	-8.0
R73	75 1	1 0.0	55.0	66	55.0	10	 55.0	0.0	8	-8.0
R74	76 ²	1 0.0	55.8	66	55.8	10	 55.8	0.0	8	-8.0
R75	77 - 27	1 0.0	56.4	66	56.4	10	 56.4	0.0	8	-8.0
R76	78	1 0.0	56.7	66	56.7	10	 56.7	0.0	8	-8.0
R77	79 - 1	1 0.0	56.9	66	56.9	10	 56.9	0.0	8	-8.0
R78	80 -	1 0.0	57.1	66	57.1	10	 57.1	0.0	8	-8.0
R79	81 1	1 0.0	57.2	66	57.2	10	 57.2	0.0	8	-8.0
R80	82 -	1 0.0	57.3	66	57.3	10	 57.3	0.0	8	-8.0
R81	83 -	1 0.0	57.3	66	57.3	10	 57.3	0.0	8	-8.0
R82	84 -	1 0.0	57.3	66	57.3	10	 57.3	0.0	8	-8.0
R83	85 -	1 0.0	57.2	66	57.2	10	 57.2	0.0	8	-8.0
R84	86 -	1 0.0	57.2	66	57.2	10	 57.2	0.0	8	-8.0
R85	87 -	0.0	57.1	66	57.1	10	 57.1	0.0	8	-8.0
R86	88	1 0.0	56.9	66	56.9	10	 56.9	0.0	8	-8.0
R87	89 -	1 0.0	56.7	66	56.7	10	 56.7	0.0	8	-8.0
R88	90	1 0.0	56.3	66	56.3	10	 56.3	0.0	8	-8.0
R89	91 ⁴	1 0.0	55.8	66	55.8	10	 55.8	0.0	8	-8.0
R90	92	1 0.0	55.1	66	55.1	10	 55.1	0.0	8	-8.0
R91	93 -	1 0.0	53.7	66	53.7	10	 53.7	0.0	8	-8.0
R92	94 -	1 0.0	54.3	66	54.3	10	 54.3	0.0	8	-8.0
R93	95 <i>ć</i>	1 0.0	54.8	66	54.8	10	 54.8	0.0	8	-8.0
R94	96	1 0.0	55.2	66	55.2	10	 55.2	0.0	8	-8.0
R95	97 -	1 0.0	55.4	66	55.4	10	 55.4	0.0	8	-8.0
R96	98	1 0.0	55.5	66	55.5	10	 55.5	0.0	8	-8.0
R97	99 -	1 0.0	55.7	66	55.7	10	 55.7	0.0	8	-8.0
R98	100	1 0.0	55.7	66	55.7	10	 55.7	0.0	8	-8.0
R99	101 -	1 0.0	55.8	66	55.8	10	 55.8	0.0	8	-8.0
R100	102 -	1 0.0	55.8	66	55.8	10	 55.8	0.0	8	-8.0
R101	103	1 0.0	55.7	66	55.7	10	 55.7	0.0	8	-8.0
R102	104	1 0.0	55.7	66	55.7	10	 55.7	0.0	8	-8.0
R103	105 ²	1 0.0	55.5	66	55.5	10	 55.5	0.0	8	-8.0
R104	106	1 0.0	55.4	66	55.4	10	 55.4	0.0	8	-8.0
R105	107	1 0.0	55.1	66	55.1	10	 55.1	0.0	8	-8.0
R106	108	1 0.0	54.8	66	54.8	10	 54.8	0.0	8	-8.0

RESULTS: SOUND LEVELS					B504	405N1				
R107	109 1	0.0	54.3	66	54.3	10	 54.3	0.0	8	-8.0
R108	110 1	0.0	53.7	66	53.7	10	 53.7	0.0	8	-8.0
R109	111 1	0.0	52.5	66	52.5	10	 52.5	0.0	8	-8.0
R110	112 1	0.0	53.1	66	53.1	10	 53.1	0.0	8	-8.0
R111	113 1	0.0	53.5	66	53.5	10	 53.5	0.0	8	-8.0
R112	114 1	0.0	53.9	66	53.9	10	 53.9	0.0	8	-8.0
R113	115 1	0.0	54.1	66	54.1	10	 54.1	0.0	8	-8.0
R114	116 1	0.0	54.2	66	54.2	10	 54.2	0.0	8	-8.0
R115	117 1	0.0	54.4	66	54.4	10	 54.4	0.0	8	-8.0
R116	118 1	0.0	54.4	66	54.4	10	 54.4	0.0	8	-8.0
R117	119 1	0.0	54.5	66	54.5	10	 54.5	0.0	8	-8.0
R118	120 1	0.0	54.5	66	54.5	10	 54.5	0.0	8	-8.0
R119	121 1	0.0	54.4	66	54.4	10	 54.4	0.0	8	-8.0
R120	122 1	0.0	54.3	66	54.3	10	 54.3	0.0	8	-8.0
R121	123 1	0.0	54.2	66	54.2	10	 54.2	0.0	8	-8.0
R122	124 1	0.0	54.1	66	54.1	10	 54.1	0.0	8	-8.0
R123	125 1	0.0	53.8	66	53.8	10	 53.8	0.0	8	-8.0
R124	126 1	0.0	53.5	66	53.5	10	 53.5	0.0	8	-8.0
R125	127 1	0.0	53.0	66	53.0	10	 53.0	0.0	8	-8.0
R126	128 1	0.0	52.5	66	52.5	10	 52.5	0.0	8	-8.0
R127	129 1	0.0	51.5	66	51.5	10	 51.5	0.0	8	-8.0
R128	130 1	0.0	52.1	66	52.1	10	 52.1	0.0	8	-8.0
R129	131 1	0.0	52.4	66	52.4	10	 52.4	0.0	8	-8.0
R130	132 1	0.0	52.7	66	52.7	10	 52.7	0.0	8	-8.0
R131	133 1	0.0	53.0	66	53.0	10	 53.0	0.0	8	-8.0
R132	134 1	0.0	53.1	66	53.1	10	 53.1	0.0	8	-8.0
R133	135 1	0.0	53.2	66	53.2	10	 53.2	0.0	8	-8.0
R134	136 1	0.0	53.3	66	53.3	10	 53.3	0.0	8	-8.0
R135	137 1	0.0	53.3	66	53.3	10	 53.3	0.0	8	-8.0
R136	138 1	0.0	53.3	66	53.3	10	 53.3	0.0	8	-8.0
R137	139 1	0.0	53.3	66	53.3	10	 53.3	0.0	8	-8.0
R138	140 1	0.0	53.2	66	53.2	10	 53.2	0.0	8	-8.0
R139	141 1	0.0	53.1	66	53.1	10	 53.1	0.0	8	-8.0
R140	142 1	0.0	52.9	66	52.9	10	 52.9	0.0	8	-8.0
R141	143 1	0.0	52.7	66	52.7	10	 52.7	0.0	8	-8.0
R142	144 1	0.0	52.3	66	52.3	10	 52.3	0.0	8	-8.0
R143	145 1	0.0	51.9	66	51.9	10	 51.9	0.0	8	-8.0
R144	146 1	0.0	51.4	66	51.4	10	 51.4	0.0	8	-8.0
R145	147 1	0.0	50.7	66	50.7	10	 50.7	0.0	8	-8.0
R146	148 1	0.0	51.1	66	51.1	10	 51.1	0.0	8	-8.0
R147	149 1	0.0	51.5	66	51.5	10	 51.5	0.0	8	-8.0

RESULTS: SOUND LEVELS						B	50405N1				
R148	150	1 (0.0	51.8	66	51.8	10	 51.8	0.0	8	-8.0
R149	151	1 (0.0	52.0	66	52.0	10	 52.0	0.0	8	-8.0
R150	152	1 (0.0	52.1	66	52.1	10	 52.1	0.0	8	-8.0
R151	153	1 (0.0	52.2	66	52.2	10	 52.2	0.0	8	-8.0
R152	154	1 (0.0	52.3	66	52.3	10	 52.3	0.0	8	-8.0
R153	155	1 (0.0	52.3	66	52.3	10	 52.3	0.0	8	-8.0
R154	156	1 (0.0	52.3	66	52.3	10	 52.3	0.0	8	-8.0
R155	157	1 (0.0	52.3	66	52.3	10	 52.3	0.0	8	-8.0
R156	158	1 (0.0	52.2	66	52.2	10	 52.2	0.0	8	-8.0
R157	159	1 (0.0	52.1	66	52.1	10	 52.1	0.0	8	-8.0
R158	160	1 (0.0	52.0	66	52.0	10	 52.0	0.0	8	-8.0
R159	161	1 (0.0	51.7	66	51.7	10	 51.7	0.0	8	-8.0
R160	162	1 (0.0	51.5	66	51.5	10	 51.5	0.0	8	-8.0
R161	163	1 (0.0	51.1	66	51.1	10	 51.1	0.0	8	-8.0
R162	164	1 (0.0	50.5	66	50.5	10	 50.5	0.0	8	-8.0
R163	165	1 (0.0	50.1	66	50.1	10	 50.1	0.0	8	-8.0
R164	166	1 (0.0	50.4	66	50.4	10	 50.4	0.0	8	-8.0
R165	167	1 (0.0	50.7	66	50.7	10	 50.7	0.0	8	-8.0
R166	168	1 (0.0	51.0	66	51.0	10	 51.0	0.0	8	-8.0
R167	169	1 (0.0	51.2	66	51.2	10	 51.2	0.0	8	-8.0
R168	170	1 (0.0	51.3	66	51.3	10	 51.3	0.0	8	-8.0
R169	171	1 (0.0	51.4	66	51.4	10	 51.4	0.0	8	-8.0
R170	172	1 (0.0	51.5	66	51.5	10	 51.5	0.0	8	-8.0
R171	173	1 (0.0	51.5	66	51.5	10	 51.5	0.0	8	-8.0
R172	174	1 (0.0	51.5	66	51.5	10	 51.5	0.0	8	-8.0
R173	175	1 (0.0	51.4	66	51.4	10	 51.4	0.0	8	-8.0
R174	176	1 (0.0	51.4	66	51.4	10	 51.4	0.0	8	-8.0
R175	177	1 (0.0	51.3	66	51.3	10	 51.3	0.0	8	-8.0
R176	178	1 (0.0	51.1	66	51.1	10	 51.1	0.0	8	-8.0
R177	179	1 (0.0	50.9	66	50.9	10	 50.9	0.0	8	-8.0
R178	180	1 (0.0	50.7	66	50.7	10	 50.7	0.0	8	-8.0
R179	181	1 (0.0	50.5	66	50.5	10	 50.5	0.0	8	-8.0
R180	182	1 (0.0	50.2	66	50.2	10	 50.2	0.0	8	-8.0
Dwelling Units	#	DUs Noise F	Red	uction							
		Min		Avg Max							
		dB		dB dB							
All Selected		180 (0.0	0.0	0.0						
All Impacted			0.0	0.0	0.0						
All that meet NR Goal			0.0	0.0	0.0						

INPUT: RECEIVERS								B50405N1			
Filer Associates Inc						20 1.1.1. 20	AE				
Eilar Associates, Inc.						28 July 20	15				
JB						TNM 2.5					
INPUT: RECEIVERS											
PROJECT/CONTRACT:	B5040	5N1									
RUN:	Future	Facad	des								
Receiver											
Name	No.	#DUs	Coordinates	(ground)		Height	Input Sou	nd Levels a	and Criteria	a	Active
			X	Y	Z	above	Existing	Impact Cr	iteria	NR	in
						Ground	LAeq1h	LAeq1h	Sub'l	Goal	Calc.
			<i>.</i> .	<i>c.</i>		<i>e.</i>				15	
			ft		ft	ft	dBA	dBA	dB	dB	
F1	1	1		138.0							
F2	3			72.0							
F3	4		78.0	5.0		5.00	0.00				
F4	5	1	55.0	-24.0	288.50	5.00	0.00	66	10.0	8.0	
F5	7	1	-30.0	198.0	288.50	16.33	0.00	66	10.0	8.0	Y
F6	8	1	50.0	198.0	288.50	16.33	0.00	66	10.0	8.0	Y
F7	9	1	78.0	160.0	288.50	16.33	0.00	66	10.0	8.0	Y
F8	10	1	78.0	24.0	288.50	16.33	0.00	66	10.0	8.0	Y
F9	11	1	55.0	-24.0	288.50	16.33	0.00	66	10.0	8.0	Y
F10	12	1	-44.0	-5.0	288.50	16.33	0.00	66	10.0	8.0	Y
F11	13	1	-60.0	12.0	288.50	16.33	0.00	66	10.0	8.0	Y
F12	14	1	-60.0	90.0	288.50	16.33	0.00	66	10.0	8.0	Y
F13	15	1	-60.0	168.0	288.50	16.33	0.00	66	10.0	8.0	Y
F14	16	1	-30.0	198.0	288.50	26.67	0.00	66	10.0	8.0	Y
F15	17	1	50.0	198.0	288.50	26.67	0.00	66	10.0	8.0	Y
F16	18	1	78.0	160.0	288.50	26.67	0.00	66	10.0	8.0	Y
F17	19	1	78.0			26.67	0.00	66	10.0	8.0	Y
F18	20	1	55.0			26.67	0.00	66	10.0		
F19	21			-5.0							
F20	22										
F21	23										
F22	24										

INPUT: RECEIVERS						B5	0405N1			
F23	25 1	-30.0	198.0	288.50	37.00	0.00	66	10.0	8.0	Y
F24	26 1	50.0	198.0	288.50	37.00	0.00	66	10.0	8.0	Y
F25	27 1	78.0	160.0	288.50	37.00	0.00	66	10.0	8.0	Y
F26	28 1	78.0	24.0	288.50	37.00	0.00	66	10.0	8.0	Y
F27	29 1	55.0	-24.0	288.50	37.00	0.00	66	10.0	8.0	Y
F28	30 1	-44.0	-5.0	288.50	37.00	0.00	66	10.0	8.0	Y
F29	31 1	-60.0	12.0	288.50	37.00	0.00	66	10.0	8.0	Y
F30	32 1	-60.0	90.0	288.50	37.00	0.00	66	10.0	8.0	Y
F31	33 1	-60.0	168.0	288.50	37.00	0.00	66	10.0	8.0	Y
F32	34 1	-30.0	198.0	288.50	47.33	0.00	66	10.0	8.0	Y
F33	35 1	50.0	198.0	288.50	47.33	0.00	66	10.0	8.0	Y
F34	36 1	78.0	168.0	288.50	47.33	0.00	66	10.0	8.0	Y
F35	37 1	78.0	90.0	288.50	47.33	0.00	66	10.0	8.0	Y
F36	38 1	78.0	12.0	288.50	47.33	0.00	66	10.0	8.0	Y
F37	39 1	55.0	-24.0	288.50	47.33	0.00	66	10.0	8.0	Y
F38	40 1	-44.0	-5.0	288.50	47.33	0.00	66	10.0	8.0	Y
F39	41 1	-56.0	12.0	288.50	47.33	0.00	66	10.0	8.0	Y
F40	42 1	-56.0	90.0	288.50	47.33	0.00	66	10.0	8.0	Y
F41	43 1	-56.0	168.0	288.50	47.33	0.00	66	10.0	8.0	Y
F42	44 1	-30.0	198.0	288.50	57.67	0.00	66	10.0	8.0	Y
F43	45 1	50.0	198.0	288.50	57.67	0.00	66	10.0	8.0	Y
F44	46 1	78.0	168.0	288.50	57.67	0.00	66	10.0	8.0	Y
F45	47 1	78.0	90.0	288.50	57.67	0.00	66	10.0	8.0	Y
F46	48 1	78.0	12.0	288.50	57.67	0.00	66	10.0	8.0	Y
F47	49 1	55.0	-24.0	288.50	57.67	0.00	66	10.0	8.0	Y
F48	50 1	-44.0	-5.0	288.50	57.67	0.00	66	10.0	8.0	Y
F49	51 1	-56.0	12.0	288.50	57.67	0.00	66	10.0	8.0	Y
F50	52 1	-56.0	90.0	288.50	57.67	0.00	66	10.0	8.0	Y
F51	53 1	-56.0	168.0	288.50	57.67	0.00	66	10.0	8.0	Y
CY-2	54 1	60.0	98.0	288.50	16.33	0.00	66	10.0	8.0	Y
CY-3	55 1	60.0	98.0	288.50	26.67	0.00	66	10.0	8.0	Y
CY-4	56 1	60.0	98.0	288.50	37.00	0.00	66	10.0	8.0	Y
CY-5	57 1	28.0	98.0	288.50	47.33	0.00	66	10.0	8.0	Y
CY-6	58 1	28.0	98.0	288.50	57.67	0.00	66	10.0	8.0	Y
Pool	59 1	-5.0	-12.0	288.50	16.33	0.00	66	10.0	8.0	Y

28 July 2015

INPUT: BARRIERS							1		B504	405N1		·						
Eilar Associates, Inc.					28 July	2015												
JB					TNM 2.													
INPUT: BARRIERS																		
PROJECT/CONTRACT:	B5040																	
RUN:	Futur	e Facade	es															
Barrier									Points									
Name	Туре	Height		If Wall	If Berm			Add'tnl	Name	No.	Coordinates			Height	Segme			
		Min	Max	\$ per	-	Тор	Run:Rise				X	Y	Z	at		Perturb		Importan
				Unit	Unit	Width		Unit						Point	Incre-	#Up #D	n Struc	t? Reflec-
				Area	Vol.			Length							ment			tions?
		ft	ft	\$/sq ft	\$/cu yd	ft	ft:ft	\$/ft			ft	ft	ft	ft	ft			
Pool Area	W	0.00	99.99	0.00	0			0.00	point1	1	-57.3	-2.6	288.50	14.83	3 0.00	0	0	
									point2	2	-57.3	-24.9	288.50	14.83	3 0.00	0	0	
									point3	3	26.3	-24.5	288.50	14.83	3 0.00	0	0	
									point4	4	26.3	-19.6	288.50	14.83	3			
Barrier2	W	0.00	99.99	0.00)			0.00	point5	5	73.0	-19.6	288.50	63.00	0.00	0	0	
									point6	6	73.2	26.0	288.50	63.00	0.00	0	0	
									point7	7	71.2	25.9	288.50	63.00	0.00	0	0	
									point8	8	5 71.7	64.7	288.50	63.00	0.00	0	0	
									point9	9	73.2	76.9	288.50	63.00	0.00	0	0	
									point10	10	45.1	76.5	288.50	63.00	0.00	0	0	
									point11	11	45.3	71.9	288.50	63.00	0.00	0	0	
									point12	12	21.6	71.7	288.50	63.00	0.00	0	0	
									point13	13	21.6	75.3	288.50	63.00	0.00	0	0	
									point14	14	18.8	75.6	288.50	63.00	0.00	0	0	
									point15	15	5 19.1	70.1	288.50	63.00	0.00	0	0	
									point16	16	3.8	70.2	288.50	63.00	0.00	0	0	
									point17	17	3.8	83.4	288.50	63.00	0.00	0	0	
									point18	18	10.7	83.4	288.50	63.00	0.00	0	0	
									point19	19	11.0			63.00	0.00	0	0	
									point20	20	8.7	94.4		63.00	0.00	0	0	
									point21	21		107.2		63.00		0	0	
									point22	22				63.00		0	0	
									point23	23				63.00		0	0	
									point24	24		118.5		63.00		0	0	_
									point25	25				63.00		0	0	_
									point26	26				63.00		0	0	
									point27	27			288.50	63.00		0	0	
									point28	28				63.00		0	0	
									point29	29						0	0	
									point30	30						0	0	
									point31	31						0	0	
									point32	32						0	0	
									point33	33						0	0	
									point34	34						0	0	
									point35	35	71.7	131.6	288.50	63.00	0.00	0	0	

IPUT: BARRIERS								B504	05N1								
								point36	36	74.5	131.4	288.50	63.00	0.00	0	0	
								point37	37	74.8	179.7	288.50	63.00	0.00	0	0	
								point38	38	71.7	179.9	288.50	63.00	0.00	0	0	
								point39	39	71.7	193.1	288.50	63.00	0.00	0	0	
								point40	40	44.4	192.5	288.50	63.00	0.00	0	0	
								point41	41	44.2	190.7	288.50	63.00	0.00	0	0	
								point42	42	20.6	191.1	288.50	63.00	0.00	0	0	
								point43	43	20.7	195.2	288.50	63.00	0.00	0	0	
								point44	44	18.4	195.5	288.50	63.00	0.00	0	0	
								point45	45	18.8	190.7	288.50	63.00	0.00	0	0	
								point46	46	-14.7	191.1	288.50	63.00	0.00	0	0	
								point47	47	-14.6	195.2	288.50	63.00	0.00	0	0	
								point48	48	-38.3	195.1	288.50	63.00	0.00	0	0	
								point49	49	-38.1	189.8	288.50	63.00	0.00	0	0	
								point50	50	-48.9	190.0	288.50	63.00	0.00	0	0	
								point51	51	-48.8	195.0	288.50	63.00	0.00	0	0	
								point51	52	-53.8	195.0	288.50	63.00	0.00	0	0	
								point52	53	-52.5	146.3	288.50	63.00	0.00	0	0	
								point54	54	-52.5	38.8	288.50	63.00	0.00	0	0	
								point55	55	-55.0	39.0	288.50	63.00	0.00	0	0	
								•		-54.8		288.50					
								point56	56		0.3		63.00	0.00	0	0	
								point57	57	-33.8	-0.1	288.50	63.00	0.00	0	0	
								point58	58	-33.9	-2.2	288.50	63.00	0.00	0	0	
								point59	59	-19.2	-2.4	288.50	63.00	0.00	0	0	
								point60	60	-19.3	5.4	288.50	63.00	0.00	0	0	
								point61	61	17.9	5.0	288.50	63.00	0.00	0	0	
								point62	62	18.1	-2.0	288.50	63.00	0.00	0	0	
								point63	63	25.9	-2.2	288.50	63.00	0.00	0	0	
								point64	64	26.3	-19.5	288.50	63.00	0.00	0	0	
								point65	65	73.0	-19.6	288.50	63.00				
BQ Area	W	0.00	99.99	0.00			0.00	1	66	73.2	75.2	288.50	14.83	0.00	0	0	
								point67	67	75.9	75.2	288.50	14.83	0.00	0	0	
								point68	68	75.4	117.8	288.50	14.83				
arrier4	W	0.00	99.99	0.00			0.00	point69	69	-52.2	38.8	288.50	45.83	0.00	0	0	
								point70	70	-52.5	49.5	288.50	45.83	0.00	0	0	
								point71	71	-57.5	49.9	288.50	45.83	0.00	0	0	
								point72	72	-57.3	61.9	288.50	45.83	0.00	0	0	
								point73	73	-52.7	62.1	288.50	45.83	0.00	0	0	
								point74	74	-52.7	72.5	288.50	45.83	0.00	0	0	
								point75	75	-57.6	72.8	288.50	45.83	0.00	0	0	
								point76	76	-57.1	97.5	288.50	45.83	0.00	0	0	
								point77	77	-52.6	97.3	288.50	45.83	0.00	0	0	
								point78	78	-52.8	110.7	288.50	45.83		0	0	
								point79	79	-57.3	110.9	288.50	45.83		0	0	
								point80	80	-57.1	132.7	288.50	45.83		0	0	
								point81	81	-52.8	132.7	288.50	45.83		0	0	
								point82	82	-52.5	146.3	288.50	45.83		0	0	
								point83	83	-57.3	145.9	288.50	45.83		0	0	
								point84	84	-57.3	195.0	288.50	45.83		0	0	
		1	1			1	1		0	51.5	130.0	200.00	-0.00	0.00	0	9	1

INPUT: BARRIERS						B5040	05N1								
						point85	85	-53.8	195.0	288.50	45.83				
3580 5th	W	0.00	99.99	0.00	(00 point86	86	-60.6	351.4	291.00	20.00	0.00	0	0	
						point87	87	73.4	349.8	291.00	20.00	0.00	0	0	
						point88	88	74.0	289.4	291.00	20.00	0.00	0	0	
						point89	89	-58.4	289.4	291.00	20.00	0.00	0	0	
						point90	90	-60.6	351.4	291.00	20.00				
3558 5th -1	W	0.00	99.99	0.00	(00 point91	91	25.7	284.0	292.00	12.00	0.00	0	0	
						point92	92	68.3	283.3	292.00	12.00	0.00	0	0	
						point93	93	73.7	262.2	292.00	12.00	0.00	0	0	
						point94	94	23.5	260.3	292.00	12.00	0.00	0	0	
						point95	95	25.7	284.0	292.00	12.00				
3558 5th-2	W	0.00	99.99	0.00	(00 point96	96	-24.8	261.0	292.00	12.00	0.00	0	0	
						point97	97	-25.4	284.0	292.00		0.00	0	0	
						point98	98	21.3	284.0	292.00		0.00	0	0	
						point99	99	20.6	261.9	292.00		0.00	0	0	
						point100	100	-24.8	261.0	292.00	12.00				
3558 5th-3	W	0.00	99.99	0.00	(00 point101	101	-25.1	236.0	292.00		0.00	0	0	
						point102	102	25.7	236.0	292.00		0.00	0	0	
						point103	103	23.2	215.6	292.00		0.00	0	0	
						point104	104	-23.5	215.2	292.00		0.00	0	0	
						point105	105	-25.1	236.0	292.00	12.00			-	
3558 5th-4	W	0.00	99.99	0.00		00 point106	106	25.7	236.0	292.00		0.00	0	0	
0000 011 4		0.00	55.55	0.00		point107	100	74.7	234.4	292.00		0.00	0	0	
						point108	107	73.4	211.7	292.00		0.00	0	0	
						point109	109	27.7	211.7	292.00		0.00	0	0	
						point109	110	27.7	236.0	292.00	12.00		0	0	
3558 5th-5	W	0.00	99.99	0.00		00 point111	111	-58.4	272.8	292.00		0.00	0	0	
		0.00	55.55	0.00		point112	112	-33.1	272.0	292.00		0.00	0	0	
						point112	113	-34.1	224.5	292.00		0.00	0	0	
						point114	114	-59.6	224.0	292.00		0.00	0	0	
						point115	115	-58.4	272.8	292.00	12.00		•	-	
Webster Building	W	0.00	99.99	0.00		00 point116	116	-58.1	-52.6	292.00		0.00	0	0	
Webster Duilding		0.00	33.33	0.00		point117	117	72.8	-53.3	294.00		0.00	0	0	
						point118	118	73.5	-73.8	294.00		0.00	0	0	
						point119	119	76.2	-74.4	294.00		0.00	0	0	
						point119	119	70.2	-99.7	294.00		0.00	0	0	
						point120	120	74.1	-100.1	294.00		0.00	0	0	
						point121	121	74.1	-114.0	294.00		0.00	0	0	
						point122	122	74.4	-114.0	294.00		0.00	0	0	
						point123	123	70.2	-114.2	294.00		0.00	0	0	
						point124	124	51.7	-138.5	294.00		0.00	0	0	
						point125	125	51.7	-138.5	294.00		0.00	0	0	
						point120	120	20.6	-140.3	294.00		0.00	0	0	
						point127	127	19.8	-140.8	294.00		0.00	0	0	
						point129	129	-56.7	-140.4	294.00		0.00	0	0	
Dervier10	W	0.00	00.00	0.00		point130	130	-58.1	-52.6	294.00	36.00			_	
Barrier12	vv	0.00	99.99	0.00		00 point131	131	-54.7	39.0	288.50		0.00	0	0	
						point132	132	-57.0	39.2	288.50		0.00	0	0	
						point133	133	-57.3	-1.8	288.50	45.83	0.00	0	0	

INPUT: BARRIERS			B50405N	11								
			point134	134	-48.2	-1.7	288.50	45.83	0.00	0	0	
			point135	135	-48.2	0.1	288.50	45.83				

RESULTS: SOUND LEVELS	i			Ť				B50405N1		1			i
Eilar Associates, Inc.								28 July 20	15				
JB								TNM 2.5					
									d with TNN	1 2.5			
RESULTS: SOUND LEVELS													
PROJECT/CONTRACT:		B5040	5N1										
RUN:		Future	Facades										
BARRIER DESIGN:		INPU	T HEIGHTS						Average	pavement typ	e shall be use	d unles	6
											y substantiate		
ATMOSPHERICS:		68 de	g F, 50% RH	l							approval of F		
Receiver			-										
Name	No.	#DUs	Existing	No Barrie	r					With Barrie	•		
			LAeq1h	LAeq1h		Incr	ease over	existina	Туре	Calculated	Noise Reduc	tion	
				Calculate	d Crit'n	1	culated	Crit'n	Impact	LAeq1h		Goal	Calculated
								Sub'l Inc	•••••				minus
													Goal
			dBA	dBA	dBA	dB		dB		dBA	dB	dB	dB
F1	1		1 0.0	6	3.2	66	63.2	2 10		63.2	2 0.0	1	8 -8.
F2	3	3	1 0.0	6	3.2	66	63.2	2 10		63.2	2 0.0		8 -8.
F3	4	L I	1 0.0	6	3.1	66	63.1	10		63.	1 0.0		8 -8.
F4	5	5	1 0.0	5	7.7	66	57.7	10		57.	7 0.0		8 -8.
F5	7	7	1 0.0	4	7.9	66	47.9	10		47.9	9 0.0		8 -8.
F6	8	3	1 0.0	5	5.8	66	55.8	3 10		55.8	3 0.0		8 -8.
F7	ç)	1 0.0	6	2.7	66	62.7	' 10		62.7	7 0.0		8 -8.
F8	10)	1 0.0	6	2.7	66	62.7	10		62.7	7 0.0		8 -8.
F9	11		1 0.0	5	7.7	66	57.7	10		57.	7 0.0		8 -8.
F10	12		1 0.0		7.4	66	47.4			47.4	4 0.0	1	8 -8.
F11	13	3	1 0.0	4	8.1	66	48.1	10		48.1			8 -8.
F12	14		1 0.0		7.5	66	47.5			47.5			8 -8.
F13	15		1 0.0		6.8	66	46.8			46.8			8 -8.
F14	16		1 0.0		0.6	66	50.6			50.6			8 -8.
F15	17		1 0.0		8.1	66	58.1			58.1			8 -8.
F16	18		1 0.0		2.4	66	62.4			62.4			8 -8.
F17	19		1 0.0		2.4	66	62.4			62.4			8 -8.
F18	20		1 0.0		7.3	66	57.3			57.3			8 -8.
F19	21		1 0.0		0.2	66	50.2			50.2			8 -8.
F20	22		1 0.0		0.4	66	50.4			50.4			8 -8.
F21	23		1 0.0		9.8	66	49.8			49.8			8 -8.
F22	24		1 0.0		9.3	66	49.3			49.3			8 -8.
F23	25		1 0.0		2.0	66	52.0			52.0			8 -8.
F24	26	j j	1 0.0	5	7.8	66	57.8	8 10		57.8	3 0.0		8 -8.

C:\TNM25\B50405N1\Facades

RESULTS: SOUND LEVELS		B50405N1											
F25	27	1 0.	0 6	62.2	66	62.2	10		62.2	0.0	8	-8.0	
F26	28	1 0.	0 6	62.2	66	62.2	10		62.2	0.0	8	-8.0	
F27	29	1 0.	0 5	57.1	66	57.1	10		57.1	0.0	8	-8.0	
F28	30	1 0.	0 5	50.9	66	50.9	10		50.9	0.0	8	-8.0	
F29	31	1 0.	0 5	51.2	66	51.2	10		51.2	0.0	8	-8.0	
F30	32	1 0.	0 5	50.7	66	50.7	10		50.7	0.0	8	-8.0	
F31	33	1 0.	0 5	50.3	66	50.3	10		50.3	0.0	8	-8.0	
F32	34	1 0.	0 5	53.5	66	53.5	10		53.5	0.0	8	-8.0	
F33	35	1 0.	0 5	57.9	66	57.9	10		57.9	0.0	8	-8.0	
F34	36	1 0.	0 6	62.3	66	62.3	10		62.3	0.0	8	-8.0	
F35	37	1 0.	0 6	52.3	66	62.3	10		62.3	0.0	8	-8.0	
F36	38	1 0.	0 6	62.2	66	62.2	10		62.2	0.0	8	-8.0	
F37	39	1 0.	0 5	57.2	66	57.2	10		57.2	0.0	8	-8.0	
F38	40	1 0.	0 5	52.1	66	52.1	10		52.1	0.0	8	-8.0	
F39	41	1 0.	0 5	52.7	66	52.7	10		52.7	0.0	8	-8.0	
F40	42	1 0.	0 5	52.3	66	52.3	10		52.3	0.0	8	-8.0	
F41	43	1 0.	0 5	51.8	66	51.8	10		51.8	0.0	8	-8.0	
F42	44	1 0.	0 5	53.9	66	53.9	10		53.9	0.0	8	-8.0	
F43	45	1 0.	0 5	57.6	66	57.6	10		57.6	0.0	8	-8.0	
F44	46	1 0.	0 6	62.3	66	62.3	10		62.3	0.0	8	-8.0	
F45	47	1 0.	0 6	62.4	66	62.4	10		62.4	0.0	8	-8.0	
F46	48	1 0.	0 6	62.4	66	62.4	10		62.4	0.0	8	-8.0	
F47	49	1 0.	0 5	57.8	66	57.8	10		57.8	0.0	8	-8.0	
F48	50	1 0.	0 5	53.1	66	53.1	10		53.1	0.0	8	-8.0	
F49	51	1 0.	0 5	53.7	66	53.7	10		53.7	0.0	8	-8.0	
F50	52	1 0.	0 5	52.7	66	52.7	10		52.7	0.0	8	-8.0	
F51	53	1 0.	0 5	52.0	66	52.0	10		52.0	0.0	8	-8.0	
CY-2	54	1 0.	0 5	54.7	66	54.7	10		54.7	0.0	8	-8.0	
CY-3	55	1 0.	0 5	59.6	66	59.6	10		59.6	0.0	8	-8.0	
CY-4	56	1 0.	0 5	59.3	66	59.3	10		59.3	0.0	8	-8.0	
CY-5	57	1 0.	0 5	54.5	66	54.5	10		54.5	0.0	8	-8.0	
CY-6	58	1 0.	0 5	54.8	66	54.8	10		54.8	0.0	8	-8.0	
Pool	59	1 0.	0 4	45.6	66	45.6	10		45.6	0.0	8	-8.0	
Dwelling Units	#	DUs Noise R	eduction										
		Min	Avg	Max									
		dB	dB	dB									
All Selected		57 0.	0	0.0	0.0								
All Impacted		0 0.		0.0	0.0								
All that meet NR Goal		0 0.		0.0	0.0								

APPENDIX D

Manufacturer Data Sheets

25HBC5 Comfort 15 Heat Pump with Puron[®] Refrigerant 1–1/2 to 5 Nominal Tons

Product Data

Carrier heat pumps with Puron[®] refrigerant provide a collection of features unmatched by any other family of equipment. The 25HBC has been designed utilizing Carrier's Puron refrigerant. The environmentally sound refrigerant allows consumers to make a responsible decision in the protection of the earth's ozone layer.

This product has been designed and manufactured to meet Energy Star[®] criteria for energy efficiency when matched with appropriate coil components. Refer to the combination ratings in the Product Data for system combinations that meet Energy Star[®] guidelines.

NOTE: Ratings contained in this document are subject to change at any time. Always refer to the AHRI directory (www.ahridirectory.org) for the most up-to-date ratings information.

INDUSTRY LEADING FEATURES / BENEFITS

Efficiency

- 15 SEER/ 12.5 EER / 8.0 9.0 HSPF
- Microtube Technology[™] refrigeration system
- · Indoor air quality accessories available

Sound

- Sound level as low as 69 dBA
- · Sound levels as low as 68 dBA with accessory sound blanket

Comfort

System supports Edge[®] Thermidistat [™] or standard thermostat controls

Reliability

- Puron[®] refrigerant environmentally sound, won't deplete the ozone layer and low lifetime service cost.
- Scroll compressor
- Internal pressure relief valve
- Internal thermal overload
- High pressure switch
- Loss of charge switch
- Filter drier
- · Balanced refrigeration system for maximum reliability

Durability

WeatherArmor[™] protection package:

- Solid, durable sheet metal construction
- Dense wire coil guard standard
- Baked-on powder paint

Applications

- Long-line up to 250 feet (76.20 m) total equivalent length, up to 200 feet (60.96 m) condenser above evaporator, or up to 80 ft. (24.38 m) evaporator above condenser (See Longline Guide for more information.)
- Low ambient cooling (down to -20°F/-28.9°C) with accessory kit

ELECTRICAL DATA

UNIT SIZE	V/PH	OPER V	OLTS*	CON	IPR	FAN	МСА	MIN \ SIZ			LENGTH (m))‡	MAX FUSE** or BRK
		MAX	MIN	LRA	RLA	FLA		60° C	75° C	60° C	75° C	AMPS
18-30				48.0	9.0	0.5	11.8	14	14	67 (20.4)	63 (19.2)	20
24-30				58.3	12.8	0.5	16.5	14	14	48 (14.6)	45 (13.7)	25
30-30				73.0	14.1	0.5	18.1	14	14	44 (13.4)	41 (12.5)	30
36-30	208/230/1	253	197	79.0	16.7	1.2	22.1	12	12	57 (17.4)	54 (16.5)	35
42-30				109.0	21.1	1.2	27.6	10	10	72 (21.9)	69 (21.0)	40
48-30				117.0	21.8	1.2	28.5	10	10	70 (21.3)	67 (20.4)	40
60-30				134.0	26.4	1.2	34.2	8	10	91 (27.7)	56 (17.1)	50

Permissible limits of the voltage range at which the unit will operate satisfactorily

If wire is applied at ambient greater than 30°C, consult table 310-16 of the NEC (NFPA 70). The ampacity of non-metallic-sheathed cable (NM), t trade name ROMEX, shall be that of 60°C conditions, per the NEC (NFPA 70) Article 336-26. If other than uncoated (no-plated), 60 or 75°C insulation, copper wire (solid wire for 10 AWG or smaller, stranded wire for larger than 10 AWG) is used, consult applicable tables of the NEC (NFPA 70).

Length shown is as measured 1 way along wire path between unit and service panel for voltage drop not to exceed 2%. ŧ

** Time-Delay fuse.

FLA - Full Load Amps

LRA - Locked Rotor Amps

MCA – Minimum Circuit Amps RLA – Rated Load Amps

NOTE: Control circuit is 24-V on all units and requires external power source. Copper wire must be used from service disconnect to unit. All motors/compressors contain internal overload protection.

Complies with 2007 requirements of ASHRAE Standards 90.1

A-WEIGHTED SOUND POWER (dBA)

UNIT SIZE	STANDARD	TYPICAL OCTAVE BAND SPECTRUM (dBA, without tone adjustment)									
UNIT SIZE	RATING dBA	125	250	500	1000	2000	4000	8000			
18-30	73	49.5	60.0	65.0	69.0	65.5	62.0	55.0			
24-30	69	48.5	59.5	61.5	62.5	61.0	59.0	53.5			
30-30	71	51.0	58.5	61.5	65.5	62.5	60.0	53.5			
36-30	72	55.5	59.5	63.5	66.5	64.5	61.5	55.5			
42-30	74	56.5	64.0	67.0	68.5	65.0	62.0	57.5			
48-30	74	55.5	62.0	66.0	69.0	65.0	62.0	56.0			
60-30	74	59.0	62.0	65.0	68.0	65.0	62.5	62.0			

NOTE: Tested in accordance with AHRI Standard 270-08 (not listed in AHRI).

A-WEIGHTED SOUND POWER (dBA) WITH SOUND SHIELD

UNIT SIZE	STANDARD	TYPICAL OCTAVE BAND SPECTRUM (dBA, without tone adjustment)									
UNIT SIZE	RATING dBA	125	250	500	1000	2000	4000	8000			
18-30	72	50.5	60.0	65.0	67.5	64.5	61.5	53.5			
24-30	68	49.5	58.5	61.5	62.0	61.0	58.5	51.5			
30-30	69	50.5	58.5	61.5	64.0	61.5	58.5	51.5			
36-30	70	54.5	57.5	63.0	66.0	64.0	61.0	54.0			
42-30	72	56.5	64.5	66.5	66.5	64.5	61.0	54.5			
48-30	72	55.5	62.5	66.0	68.0	64.0	60.0	53.0			
60-30	73	58.5	62.5	65.0	67.0	64.0	61.0	56.5			

NOTE: Tested in accordance with AHRI Standard 270-08 (not listed in AHRI).

CHARGING SUBCOOLING (TXV-TYPE EXPANSION DEVICE)

UNIT SIZE-SERIES	REQUIRED SUBCOOLING °F (°C)
18-30	12 (6.7)
24-30	14 (7.8)
30-30	10 (5.6)
36-30	8 (4.4)
42-30	10 (5.6)
48-30	11 (6.1)
60-30	10 (5.6)

25HCD4 Comfort[™] 14 Heat Pump with Puron[®] Refrigerant 1–1/2 to 5 Nominal Tons

Advance Product Data

Comfort S E R I E S

Carrier heat pumps with Puron[®] refrigerant provide a collection of features unmatched by any other family of equipment. The 25HCD4 has been designed utilizing Carrier's Puron refrigerant. The environmentally sound refrigerant allows consumers to make a responsible decision in the protection of the earth's ozone layer.

This product has been designed and manufactured to meet Energy Star[®] criteria for energy efficiency when matched with appropriate coil components. Refer to the combination ratings in the Product Data for system combinations that meet Energy Star[®] guidelines.

NOTE: Ratings contained in this document are subject to change at any time. Always refer to the AHRI directory (www.ahridirectory.org) for the most up-to-date ratings information.

INDUSTRY LEADING FEATURES / BENEFITS

Efficiency

- 14 SEER
- Microtube Technology[™] refrigeration system
- · Indoor air quality accessories available

Sound

- Sound level as low as 69 dBA
- · Sound levels as low as 68 dBA with accessory sound blanket

Comfort

System supports Edge[®] Thermidistat [™] or standard thermostat controls

Reliability

- Puron[®] refrigerant environmentally sound, won't deplete the ozone layer and low lifetime service cost.
- Scroll compressor
- Internal pressure relief valve
- Internal thermal overload
- High pressure switch
- Loss of charge switch
- Filter drier
- · Balanced refrigeration system for maximum reliability

Durability

WeatherArmor[™] protection package:

- Solid, durable sheet metal construction
- Dense wire coil guard available
- Baked-on powder paint

Applications

- Long-line up to 250 feet (76.20 m) total equivalent length, up to 200 feet (60.96 m) condenser above evaporator, or up to 80 ft. (24.38 m) evaporator above condenser (See Longline Guide for more information.)
- Low ambient (down to -20°F/-28.9°C) with accessory kit

ELECTRICAL DATA

UNIT SIZE	V/PH	OPER	/OLTS*	CON	MPR	FAN	MCA	MIN WIRE SIZE†	MIN WIRE SIZE†	MAX LENGTH ft (m)‡	MAX LENGTH ft (m)‡	MAX FUSE** or CKT BRK
		MAX	MIN	LRA	RLA	FLA		60° C	75° C	60° C	75° C	AMPS
18				48.0	9.0	0.50	11.8	14	14	67	64	20
24				58.3	13.5	0.75	17.7	14	14	45	42	25
30				77.0	16.0	0.75	20.8	12	12	60	57	30
36	208/230/1	253	197	70.0	15.4	1.10	20.4	12	12	61	58	35
42				109.0	19.9	0.75	25.7	10	10	78	74	40
48												
60				134.0	26.3	1.20	34.1	8	10	91	56	50

Permissible limits of the voltage range at which the unit will operate satisfactorily

If wire is applied at ambient greater than 30°C, consult table 310–16 of the NEC (NFPA 70). The ampacity of non-metallic-sheathed cable (NM), trade name ROMEX, shall be that of 60°C conditions, per the NEC (NFPA 70) Article 336–26. If other than uncoated (no-plated), 60 or 75°C insulation, copper wire (solid wire for 10 AWG or smaller, stranded wire for larger than 10 AWG) is used, consult applicable tables of the NEC (NFPA 70).

t Length shown is as measured 1 way along wire path between unit and service panel for voltage drop not to exceed 2%.

** Time-Delay fuse.

FLA - Full Load Amps

LRA - Locked Rotor Amps

MCA – Minimum Circuit Amps

RLA – Rated Load Amps

NOTE: Control circuit is 24-V on all units and requires external power source. Copper wire must be used from service disconnect to unit.

All motors/compressors contain internal overload protection. Complies with 2007 requirements of ASHRAE Standards 90.1

A-WEIGHTED SOUND POWER

UNIT SIZE	STANDARD	TYPICAL OCTAVE BAND SPECTRUM (dBA, without tone adjustment)									
UNIT SIZE	RATING (dBA)	125	250	500	1000	2000	4000	8000			
18	69	45.0	48.0	56.0	62.0	54.5	52.5	47.0			
24	76	51.5	57.0	63.0	69.5	63.0	59.5	53.5			
30	78	45.0	55.0	61.5	70.5	62.0	58.5	52.5			
36	72	52.5	55.5	61.5	63.0	60.0	59.0	52.0			
42	78	61.0	67.5	72.5	73.5	71.0	67.5	62.0			
48											
60	77	55.0	63.0	67.5	71.5	68.0	64.0	60.5			

NOTE: Tested in accordance with AHRI Standard 270-08 (not listed in AHRI).

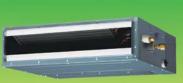
A-WEIGHTED SOUND POWER WITH SOUND HOOD

UNIT SIZE	STANDARD RATING	TYPICAL OCTAVE BAND SPECTRUM (dBA, without tone adjustment)									
UNIT SIZE	(dBA)	125	250	500	1000	2000	4000	8000			
18	68	46.5	48.0	56.0	60.5	54.5	51.5	45.5			
24	76	52.0	57.5	63.0	68.0	62.5	58.5	52.5			
30	76	45.5	54.5	61.0	68.5	60.5	57.5	52.0			
36	72	52.5	54.0	61.5	62.0	59.0	57.5	51.5			
42	78	60.5	68.0	72.5	73.0	71.0	67.5	61.5			
48											
60	74	55.0	63.5	67.0	69.0	66.5	62.0	57.0			

NOTE: Tested in accordance with AHRI Standard 270-08 (not listed in AHRI).

CHARGING SUBCOOLING (TXV-TYPE EXPANSION DEVICE)

UNIT SIZE-SERIES	REQUIRED SUBCOOLING ° F (° C)
18	11 (6.1)
24	11 (6.1)
30	10 (5.6)
36	10 (5.6)
42	11 (6.1)
48	
60	15 (8.3)



IVAC Advanced Products Division SUBMITTAL DATA: PLA-A12AA & PUY-A12NHA	Split-ductless A/C and He 12,000 Btu/h CEILING CASSETTE AIR-CONDITIONING S	
Job Name:	Location: Date:	
Purchaser:	Engineer:	
Submitted to:	For Reference Approval Construction	
Unit Designation:	Schedule No.:	
GENERAL FEATURES • Limited Warranty – One year on parts and defects, six years on compressor • Compact, side discharge outdoor unit • Quiet operation – indoor and outdoor units • Auto-restart following a power outage • Self-check function – onboard diagnostics • Advanced microprocessor control • Built-in drain lift mechanism for condensate removal • Zone control • Hard-wired, wall-mounted, remote controller (PAR-21MAA) • 2, 3, or 4 way air flow selection / 6" round or 4 X 14" rectangular branch duct connection	Indoor Unit: PLA-A12AA Remote Controller: PAR-21MAA	
 4" ventilation air inlet Washable filter OPTIONAL FEATURES Multi-function casement High efficiency filter element 	INDOOR UNIT 1 MCA 1 Fan motor 0.79 F.L Fan motor output 70 Airflow (Lo-M1-M2-Hi) 390-420-460-490 Dry C Sound level (Lo-M1-M2-Hi) 27-28-29-31 dB(A. W FM
Air outlet shutter plate(s)Wireless Remote Controller kit	DIMENSIONS UNIT PANEL	
M-Net adapter Wind Baffle	inches W 33-1/16 37-3/8 D 33-1/16 37-3/8	
• Air outlet guide	B 35-1/10 37-3/18 H 10-3/16 1-3/16 mm W 840 950 D 840 950	
12,000 Btu/h Minimum capacity	H 258 30 WEIGHT (unit/panel) Pounds	/ 5 5.4
Indoor - Outdoor S1-S2	OUTDOOR UNIT Compressor DC inverter/twin rota MCA	13 A.
	DIMENSIONS INCHES MM	
OPERATING RANGE	W 31-1/2 800 D 13 + 7/8 330 + 23	
Indoor intake air temp. Outdoor intake air temp. Cooling Max D.B. 95°F, W.B. 71°F D.B. 115°F Min D.B. 67°F, W.B. 57°F D.B. 0°F *	H600	
* With wind baffle installed. If not installed, the minimum temperature will be 23°FDB.	- Weight (lbs/Kg)	0A 2.7 35 30 30
	INVERT	ÆF

Compact Ducts

SYSTEMS 9RLFCD, 12RLFCD, 18RLFCD

gh Performance			9RLFCD Heat Pump	12RLFCD Heat Pump	18RLFCD Heat Pump
ating					
			energy	entra	entric
ating capacity at low	°E		LEARN MORE AT	LEADN MORE AT	LEADIN MORE AT
tdoor temperatures is 75			0.000	12,000	19.000
hieved by adopting a	When used	Nominal Cooling BTU/h	9,000 3,100~12,000	12,000	18,000 3,100~20,100
ge heat exchanger	on Single	Min~Max Cooling BTU/h	12,000	3,100~13,600 16,000	, ,
	other Zone	Nominal Heating BTU/h	3,100~18,000	3,100~19,400	21,600 3,100~25,600
d a high capacity	models	Min~Max Heating BTU/h	12.2	11.5	11.3
mpressor. Systems		HSPF	21.5	20.0	19.7
erate down to -5°F.		SEER	14.5/14.1	12.8/12.3	12.0/12.9
		EER Clg/Htg Cooling Operating Range °F(°C)			
mpoot Duot			-5~75 (-21~24)	-5~75 (-21~24)	-5~75 (-21~24)
ompact Duct		Heating Operating Range °F(°C)	1.5 (0.7)	2.7 (1.3)	4.2 (2.0)
ilt-in drain pump allows for	or	Moisture Removal <i>Pt./h(l/h)</i>	208-230/60/1	208-230/60/1	208-230/60/1
tallation of compact duct		Voltage/Frequency/Phase	15	15	200-230/00/1
		Recommended Fuse Size (A)	0 ~ 0.36	0 ~ 0.36	0 ~ 0.36
smaller spaces than tradit	lional	Static Pressure In. W. C.	353 (600)	383 (650)	554 (940)
its.		Air Circ. C.F.M. (m ³ /h) Clg/Htg: Hi	324 (550)	353 (600)	518 (880)
		Medium Low	294 (500)	324 (550)	483 (820)
ditional Com	pact Duct	Quiet	265 (450)	283 (480)	442 (750)
	ĮĮ	Noise Level dB(A) (Clg/Htg): Hi	28/28	29/29	32/32
Drain 9.4"		Medium	27/26	28/28	30/30
		Low	26/25	27/27	29/29
		Quiet	25/24	26/24	27/27
		Outdoor Fan Speed RPM Clg/Htg	590/720	870/780	870/1,000
exible Installation		Outdoor Noise Level Clg/Htg	48/49	49/50	54/55
orizontal or vertical*.		Running Current Rated (A)Clg/Htg	3.0/3.9	4.4/6.0	6.6/7.3
Inzontal of ventical .		Power Use Rated/Max (kW): Cooling	0.62/1.40	0.94/1.45	1.50/2.15
		Heating	0.85/1.80	1.30/2.00	1.67/2.60
The the		Fan Speeds Stage	4 + Auto	4 + Auto	4 + Auto
		Air Filter	Washable	Washable	Washable
		Connection Method	Flare	Flare	Flare
August Au		Combined Max. Length Ft (m)	66 (20)	66 (20)	66 (20)
		Max. Vertical Diff. Ft (m)	49 (15)	49 (15)	49 (15)
		Conn. Pipe Diameter Inch	suc 3/8 dis 1/4	suc 3/8 dis 1/4	suc 1/2 dis 1/4
A - THE		Indoor Unit Net Weight <i>lbs. (kg)</i>	41 (19)	41 (19)	50 (23)
		Outdoor Unit Net Weight Ibs. (kg)	84 (38)	84 (38)	86 (39)
	Indoc	r Unit Dimensions: Height Inch (mm)	7-25/32 (198)	7-25/32 (198)	7-25/32 (198)
		Width Inch (mm)	27-9/16 (700)	27-9/16 (700)	35-7/16 (900)
		Depth Inch (mm)	24-13/32 (620)	24-13/32 (620)	24-13/32 (620)
ernal drain pump will not rate when the unit is mounted		Supply Duct Flange Dimensions: Height Inch (mm)	5-15/16 (151)	5-15/16 (151)	5-15/16 (151)
vertical configuration.		Width Inch (mm)	25-19/32 (650)	25-19/32 (650)	33-15/32 (850)
5		Depth Inch (mm)	3/4 (19)	3/4 (19)	3/4 (19)
andard Features		Return Duct Flange	. ,	. ,	
		Dimensions: Height Inch (mm)	6-27/32 (174)	6-27/32 (174)	6-27/32 (174)
Wired Remote Control		Width Inch (mm)	22-19/32 (574)	22-19/32 (574)	30-15/32 (774)
Dry Mode			3/4 (19) (Flat)	3/4 (19) (Flat)	3/4 (19) (Flat)
	0.11	Depth Inch (mm)	. , , , ,	. , , , ,	. , , , ,
Weekly Timer	Outdoo	r Unit Dimensions: Height Inch (mm)	24-1/2 (620)	24-1/2 (620)	24-1/2 (620)
Auto Mode		Width Inch (mm)	31-3/32 (790)	31-3/32 (790)	31-3/32 (790)
Quiet Mode		Depth Inch (mm)	11-11/32 (290)	11-11/32 (290)	11-11/32 (290)

Field Supplied Filto

Refrigerant

R410A

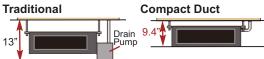
Filters are sized to keep velocities and static pressure loss low. This will insure sufficient static pressure is available for ductwork, fittings and supply and return grilles. Alternative filter sizes with equivalent face areas can be used.

CFM 353 353 547 Typical Filter Size 12 x 20 12 x 20 14 x 25 Velocity, FPM 212 212 225 Unit External SP, in. W.C. 0.36 0.36 0.36 SP Loss, in. W.C. 0.04 0.04 0.04 Available Static Pressure 0.32 0.32 0.32 SP Loss, in. W.C. 0.12 0.14 0.24 Available Static Pressure 0.24 0.22 2"MERV 8 Pleated Filter SP Loss, in. W.C. 0.07 0.08 0.29 0.29 0.28	FILLEIS	9RLF	12RLF	18RLF
Velocity, FPM 212 212 225 Unit External SP, in. W.C. 0.36 0.36 0.36 SP Loss, in. W.C. 0.04 0.04 0.04 Available Static Pressure 0.32 0.32 0.32 SP Loss, in. W.C. 0.12 0.12 0.14 Available Static Pressure 0.24 0.22 2"MERV 8 Pleated Filter SP Loss, in. W.C. 0.07 0.07 0.08	CFM	353	353	547
Unit External SP, in. W.C. 0.36 0.36 0.36 SP Loss, in. W.C. 0.04 0.04 0.04 Available Static Pressure 0.32 0.32 0.32 SP Loss, in. W.C. 0.12 0.12 0.14 Available Static Pressure 0.24 0.22 0.12 SP Loss, in. W.C. 0.07 0.07 0.08	Typical Filter Size	12 x 20	12 x 20	14 x 25
1" Fiberglass Filter SP Loss, in. W.C. 0.04 0.04 0.04 Available Static Pressure 0.32 0.32 0.32 SP Loss, in. W.C. 0.12 0.12 0.14 Available Static Pressure 0.24 0.22 2"MERV 8 Pleated Filter SP Loss, in. W.C. 0.07 0.07 0.08	Velocity, FPM	212	212	225
SP Loss, in. W.C. 0.04 0.04 0.04 Available Static Pressure 0.32 0.32 0.32 1" MERV 8 Pleated Filter 0.12 0.14 Available Static Pressure 0.24 0.24 0.22 2" MERV 8 Pleated Filter 2" MERV 8 Pleated Filter SP Loss, in. W.C. 0.07 0.07 0.08	Unit External SP, in. W.C.	0.36	0.36	0.36
Available Static Pressure0.320.320.321" MERV 8 Pleated FilterSP Loss, in. W.C.0.120.120.14Available Static Pressure0.240.240.222" MERV 8 Pleated FilterSP Loss, in. W.C.0.070.070.08		1" Fiberglass Filter		
1" MERV 8 Pleated FilterSP Loss, in. W.C.0.120.120.14Available Static Pressure0.240.240.222" MERV 8 Pleated FilterSP Loss, in. W.C.0.070.070.08	SP Loss, in. W.C.	0.04	0.04	0.04
SP Loss, in. W.C. 0.12 0.12 0.14 Available Static Pressure 0.24 0.24 0.22 2" MERV 8 Pleated Filter SP Loss, in. W.C. 0.07 0.07	Available Static Pressure	0.32	0.32	0.32
Available Static Pressure0.240.240.222" MERV 8 Pleated FilterSP Loss, in. W.C.0.070.070.08		1" MERV 8 Pleated Filter		
2" MERV 8 Pleated Filter SP Loss, in. W.C. 0.07 0.07 0.08	SP Loss, in. W.C.	0.12	0.12	0.14
SP Loss, in. W.C. 0.07 0.07 0.08	Available Static Pressure	0.24	0.24	0.22
		2" MERV 8 Pleated Filter		
Available Static Pressure 0.29 0.29 0.28	SP Loss, in. W.C.	0.07	0.07	0.08
	Available Static Pressure	0.29	0.29	0.28

R410A

ARU ARU

R410A


ARU

Hig He

Hea outo ach larg and com opei

Cor

Buil insta in sr units

Fle

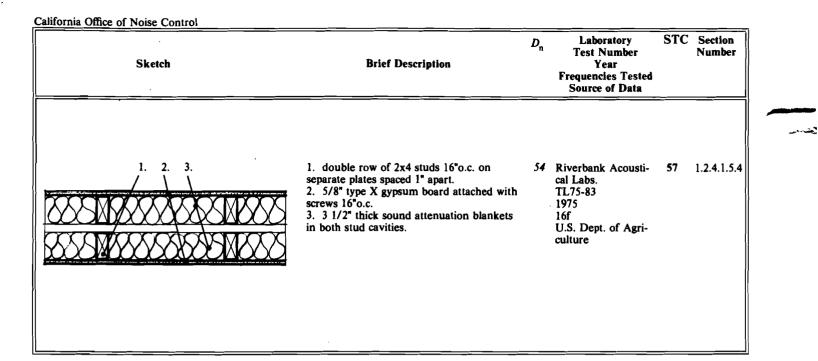
Hori

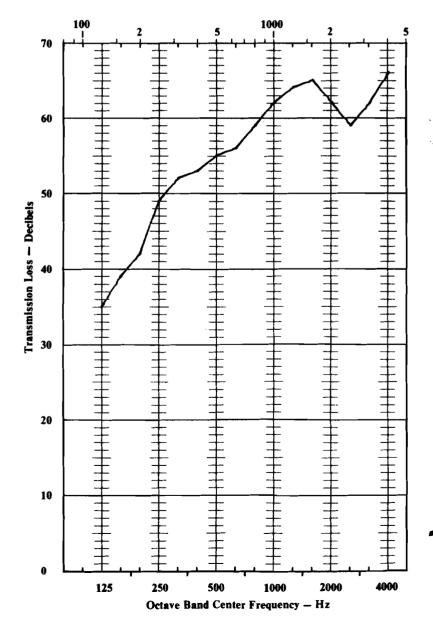
*Inter opera in a v

Sta

- [
- V •
- A
- Quiet Mode •
- Auto Restart/Reset
- Built In Condensate Pump •
- Fresh Air Intake •

Optional Accessories


- Backlit Wired Remote Control UTY-RVNUM
- Wireless Remote and • Receiver Unit UTY-LRHUM



APPENDIX E

Sound Insulation Prediction Results

125	HZ	35
168	HZ	39
266	HZ	42
25.8	HZ	49
315	HZ	52
+88	HZ	63
5.00	HZ	5.5
630	HZ	56
862 (HZ	5.9
1080	HZ	62
1368	HZ	64
1600 (HZ	65.
2222	HZ	62
25.00	HZ	5.5
3150	HZ	62
4000 H	HZ	66

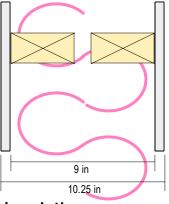
Sound Insulation Prediction (v8.0.7)

Program copyright Marshall Day Acoustics 2015

Microsoft - Key No. 1866

Margin of error is generally within STC +/- 3 dB

Page No.:


Initials: jbrothers

Job Name:Strauss 5th Avenue

Job No.:B50405N

Date: 24 Jul 15

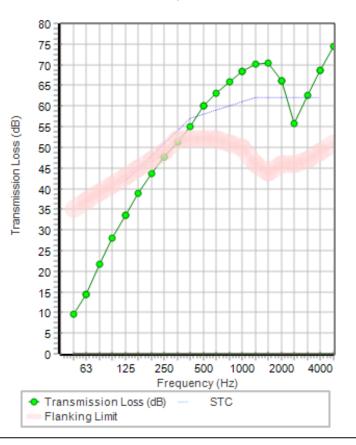
File Name: Wall Type DM-2.ixI

Notes:

Wall Type DM-2

STC 58 OITC 39

System description


Panel 1 : 1 x 0.63 in Type X Gypsum Board (p:43.08 lbs/ft3,E:0.27psi*10^6,n:0.01)

Cavity: Double timber stud: Stud spacing 16 in , Infill fiberglass (0.6 lb/ft3) Thickness 8 in (ρ :10 lbs/ft3, Rf:3500 Pa.s/m2) Panel 2 + 1 x 0.63 in Type X Gypsum Board (ρ :43.08 lbs/ft3,E:0.27psi*10^6, η :0.01)

Mass-air-mass resonant frequency =47 Hz

frequency (Hz)	TL(dB)	TL(dB)
50	10	
63	14	13
80	22	
100	28	
125	34	31
160	39	
200	44	
250	48	46
315	51	
400	55	
500	60	58
630	63	
800	66	
1000	68	68
1250	70	
1600	70	
2000	66	60
2500	56	
3150	63	
4000	69	66
5000	75	

Panel Size 8.9x 13 ft; Mass 4.9 lb/ft2

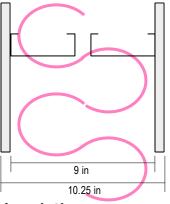
Sound Insulation Prediction (v8.0.7)

Program copyright Marshall Day Acoustics 2015

Microsoft - Key No. 1866

Margin of error is generally within STC +/- 3 dB

Page No.:


Initials: jbrothers

Job Name:Strauss 5th Avenue

Job No.:B50405N

Date: 24 Jul 15

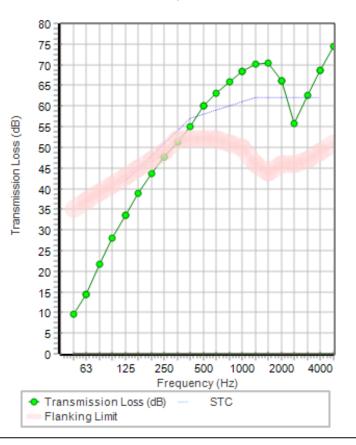
File Name: Wall Type DX-1.ixI

Notes:

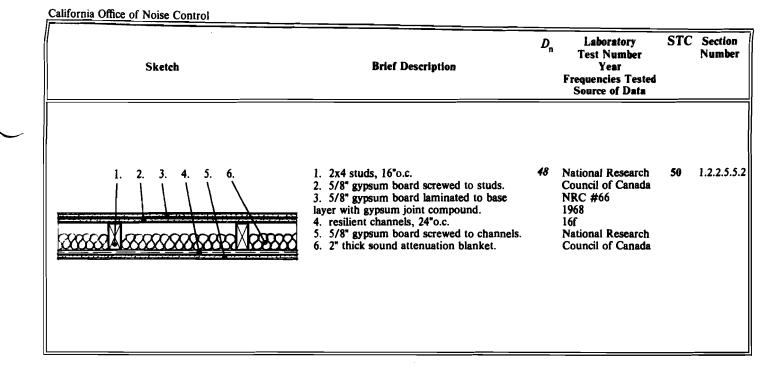
Wall Type DX-1

STC 58 OITC 39

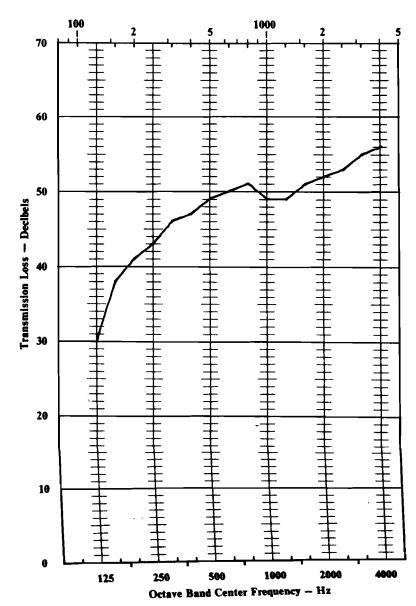
System description


Panel 1 : 1 x 0.63 in Type X Gypsum Board (p:43.08 lbs/ft3,E:0.27psi*10^6,n:0.01)

Cavity: Double steel stud: Stud spacing 16 in , Infill fiberglass (0.6 lb/ft3) Thickness 8 in (p:10 lbs/ft3, Rf:3500 Pa.s/m2) Panel 2 + 1 x 0.63 in Type X Gypsum Board (p:43.08 lbs/ft3, E:0.27 psi*10^6, n:0.01)

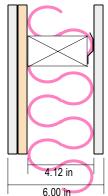

Mass-air-mass resonant frequency =47 Hz

frequency (Hz)	TL(dB)	TL(dB)
50	10	
63	14	13
80	22	
100	28	
125	34	31
160	39	
200	44	
250	48	46
315	51	
400	55	
500	60	58
630	63	
800	66	
1000	68	68
1250	70	
1600	70	
2000	66	60
2500	56	
3150	63	
4000	69	66
5000	75	


Panel Size 8.9x 13 ft; Mass 4.9 lb/ft2

Frequency — Hz

ΗZ	30
HZ	38
HZ	41
HZ	43
HZ	46
HZ	47
HZ	49
HZ	5.0
HZ	51
HZ	49
HZ	49
HZ	51
ΗZ	52
HZ	53
ΗZ	55
HZ	56


Sound Insulation Prediction (v8.0.7)

Program copyrightMarshall Day Acoustics 2015Microsoft - Key No. 1866Margin of error is generally withinJob Name:Strauss 5th AvenueJob No.:B50405NPage No.:Date:24 Jul 15Initials:jbrothers

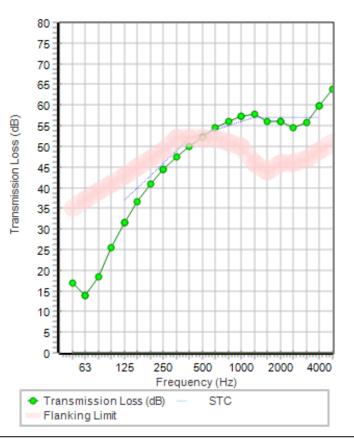
Notes:

Wall Type FC-1

File Name: Wall Type FC-1.ixl

System description

Panel 1: 1 x 0.63 in Type X Gypsum Board (p:43.08 lbs/ft3,E:0.27psi*10^6,n:0.01)


+ 1 x 0.63 in Ply wood (ρ:34.96 lbs/ft3,E:0.63psi*10^6,η:0.01)

Cavity: Timber stud + resil. rail/bar: Stud spacing 16 in , Infill fiberglass (1.4 lb/ft3) Thickness 4 in (ρ :22 lbs/ft3, Rf.8610 Pa.s/m2) Panel 2 + 1 x 0.63 in Type X Gypsum Board (ρ :43.08 lbs/ft3,E:0.27psi*10^6, η :0.01)

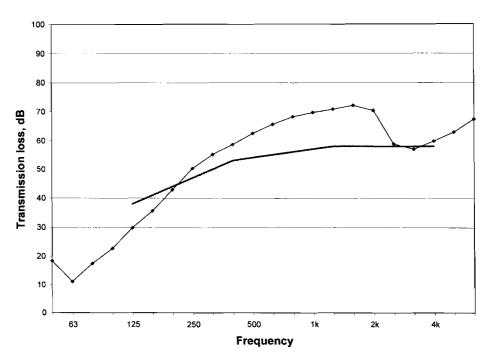
Mass-air-mass resonant frequency =60 Hz

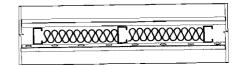
frequency (Hz)	TL(dB)	TL(dB)
50	17	
63	14	16
80	18	
100	25	
125	31	29
160	37	
200	41	
250	45	43
315	48	
400	50	
500	52	52
630	54	
800	56	
1000	57	57
1250	58	
1600	56	
2000	56	56
2500	55	
3150	56	
4000	60	59
5000	64	

Panel Size 8.9x13 ft; Mass 6.8 lb/ft2

STC 53 OITC 36

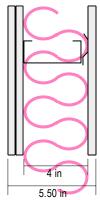
Element Description:


- 1 single layer of 13 mm type X gypsum board
- 2 single layer of 13 mm type X gypsum board
- 3 90 mm steel studs at 406 mm on centre
- 4 90 mm of mineral fibre insulation in cavity
- 5 resilient channels at 610 mm on centre
- 6 single layer of 13 mm type X gypsum board


TestID	TL-94-023
STC	54
50 Hz	18.5
63 Hz	11.2
80 Hz	17.5
100 Hz	22.6
125 Hz	29.8
160 Hz	35.7
200 Hz	42 9
250 Hz	50.3
315 Hz	55.1
400 Hz	58.6
500 Hz	62.6
630 Hz	65.6
800 Hz	68.2
1000 Hz	69.7
1250 Hz	70.9
1600 Hz	72.3
2000 Hz	70 4
2500 Hz	58.8
3150 Hz	57.0
4000 Hz	59.9
5000 Hz	62.9
6300 Hz	67.4

TL-94-023	element 1	element 2	element 3	element 4	element 5	element 6
type	gypsum board	gypsum board	stud	insulation	resilient	gypsum board
material	AX	AX	steel	M1	G.P.	AX
thickness mm	13	13	90	90	13	13
gauge			20			
spacing mm			406		610	
surface density kg/m ²	10.1	10.0		2.9		10.1
linear density kg/m			1.3			
total weight kg	75.0	74.6	36.4	21.7	4.0	75.2
fastener spacing - edge mm	305	305				305
fastener spacing - field mm	305	810				305
fastener top track pattern	а	а				
fastener base track pattern	а	а				
stud attached to top track			yes			
double header	1					
onentation	vertical	vertical			horizontal	horizontal

2G13_\$\$90(406)_MFB90_RC13(610)_G13

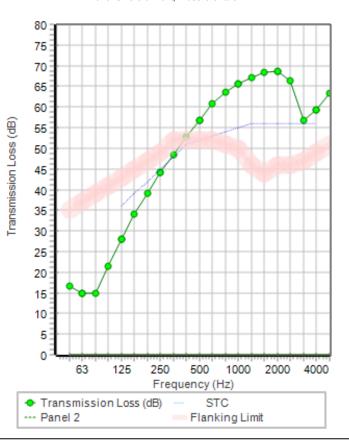


Sound Insulation Prediction (v8.0.7)

Program copyrightMarshall Day Acoustics 2015Microsoft - Key No. 1866Margin of error is generally withinJob Name:Strauss 5th AveJob No.:B50405NPage No.:Date:28 Jul 15Initials:jbrothers

File Name: Wall Type DS-1 per Canada test.ixI

System description


Panel 1 : 2 x 0.50 in Type X Gypsum Board (p:43.08 lbs/ft3,E:0.27psi*10^6,n:0.01)

 $\begin{array}{l} \mbox{Cavity: Steel stud + resil. rail: Stud spacing 16 in , Infill fiberglass (1.4 lb/ft3) Thickness 4 in (p:22 lbs/ft3, Rf:8610 Pa.s/m2) \\ \mbox{Panel 2 + 1 x 0.50 in Type X Gypsum Board (p:43.08 lbs/ft3,E:0.27psi*10^6,\eta:0.01) } \end{array}$

Mass-air-mass resonant frequency =67 Hz

frequency (Hz)	TL(dB)	TL(dB)
50	17	
63	15	15
80	15	
100	22	
125	28	25
160	34	
200	39	
250	44	42
315	49	
400	53	
500	57	56
630	61	
800	64	
1000	66	65
1250	67	
1600	68	
2000	69	68
2500	66	
3150	57	
4000	59	59
5000	63	

Panel Size 8.9x 13 ft; Mass 5.8 lb/ft2

Notes:

Wall Type DS-1 - National Research Council Tested Assembly

> STC 52 01TC 33

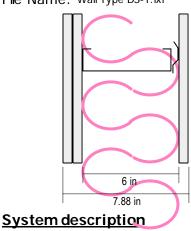
Sound Insulation Prediction (v8.0.7)

Program copyright Marshall Day Acoustics 2015

Microsoft - Key No. 1866

Margin of error is generally within STC +/- 3 dB

Page No.:


Initials: jbrothers

Job Name:Strauss 5th Ave

Job No.:B50405N

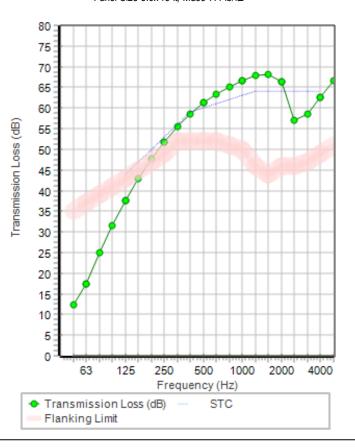
Date: 27 Jul 15

File Name: Wall Type DS-1.ixl

Notes:

Wall Type DS-1

STC 60 OITC 42


Panel 1: 2 x 0.63 in Type X Gypsum Board (p:43.08 lbs/ft3,E:0.27psi*10^6,n:0.01)

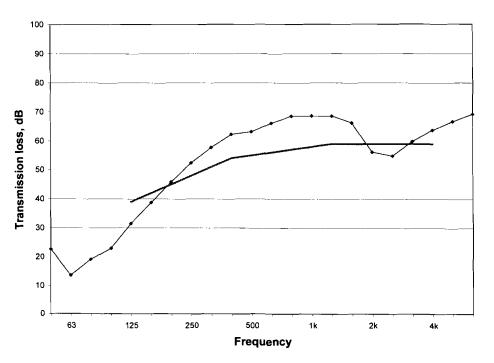
 $\begin{array}{l} \mbox{Cavity: Steel stud + resil. rail: Stud spacing 16 in , Infill fiberglass (1.4 lb/ft3) Thickness 6 in (p:22 lbs/ft3, Rf:8610 Pa.s/m2) \\ \mbox{Panel 2 + 1 x 0.63 in Type X Gypsum Board (p:43.08 lbs/ft3,E:0.27psi*10^6,\eta:0.01) } \end{array}$

Mass-air-mass resonant frequency =48 Hz

frequency (Hz)	TL(dB)	TL(dB)
50	12	
63	17	16
80	25	
100	32	
125	38	35
160	43	
200	48	
250	52	51
315	55	
400	59	
500	61	61
630	63	
800	65	
1000	67	66
1250	68	
1600	68	
2000	66	61
2500	57	
3150	59	
4000	63	61
5000	67	

Panel Size 8.9x 13 ft; Mass 7.4 lb/ft2

Element Description:


- 1 single layer of 16 mm type X gypsum board
- 2 single layer of 16 mm type X gypsum board
- 3 90 mm steel studs at 406 mm on centre
- 4 90 mm of mineral fibre insulation in cavity
- 5 single layer of 16 mm type X gypsum board
- 6 single layer of 16 mm type X gypsum board

TestiD	TL-93-332
STC	55
50 Hz	22,7
63 Hz	13.7
80 Hz	19,1
100 Hz	23.0
125 Hz	31,5
160 Hz	38.8
200 Hz	45.8
250 Hz	52.4
315 Hz	57.7
400 Hz	62.3
500 Hz	63.3
630 Hz	66.1
800 Hz	68.5
1000 Hz	68.7
1250 Hz	68.6
1600 Hz	66.3
2000 Hz	56.2
2500 Hz	54.8
3150 Hz	59.9
4000 Hz	63.8
5000 Hz	66.7
6300 Hz	69.3

TL-93-332	element 1	element 2	element 3	element 4	element 5	element 6
				_		
type	gypsum board	gypsum board	stud	insulation	gypsum board	gypsum board
material	сх	с×	steel	M1	сх	сх
thickness mm	16	16	90	90	16	16
gauge			25			
spacing mm			406			
surface density kg/m ²	11.5	11.5		3.2	11.4	11.3
linear density kg/m			0.6			
total weight kg	85.6	65.4	18.2	22.7	84.8	84.2
fastener spacing - edge mm	305	305			305	305
fastener spacing - field mm	305	610			610	305
fastener top track pattern	d	d			d	d
fastener base track pattern	а	а			a	a
stud attached to top track	l					
double header						
orientation	vertical	vertical			vertical	vertical

2G16_SS90(406)_MFB90_2G16

Page 150

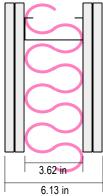
Sound Insulation Prediction (v8.0.7)

Program copyright Marshall Day Acoustics 2015

Microsoft - Key No. 1866

Margin of error is generally within STC +/- 3 dB

Job Name: Strauss 5th Ave


Job No.: B50405N

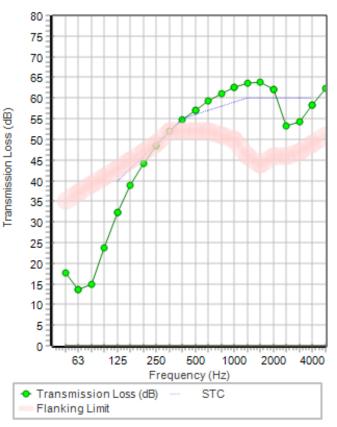
Date: 27 Jul 15

Initials: jbrothers

Page No.:

File Name: Wall Type FR-2 25 gauge.ixl

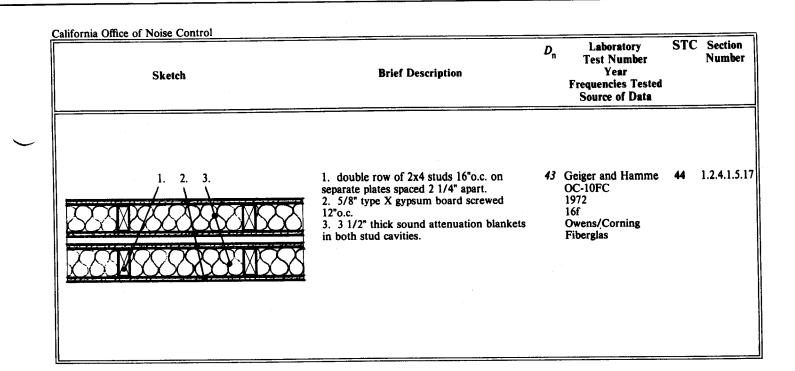
System description

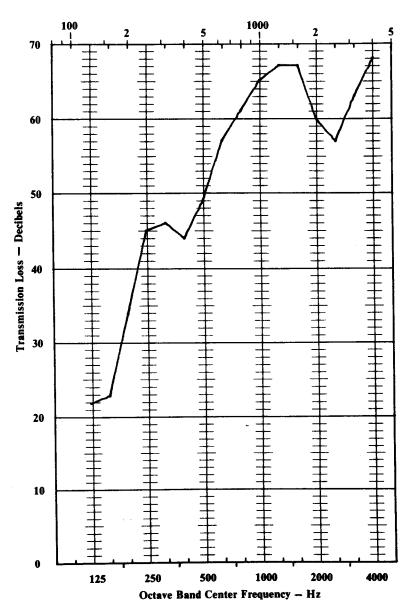

Panel 1 : 2 x 0.63 in Type X Gypsum Board (p:43.08 lbs/ft3,E:0.27psi*10^6,n:0.01)

Cavity: Steel stud (25g): Stud spacing 16 in , Infill fiberglass (1.4 lb/ft3) Thickness 4 in (p:22 lbs/ft3, Rf:8610 Pa.s/m2) Panel 2 + 2 x 0.63 in Type X Gypsum Board (p:43.08 lbs/ft3,E:0.27psi*10^6,n:0.01)

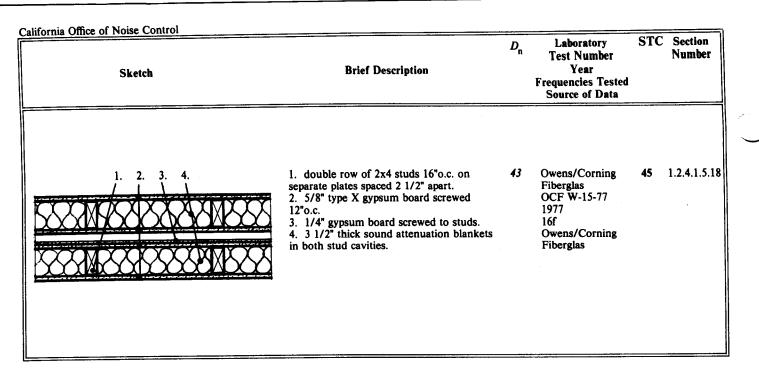
Mass-air-mass resonant frequency =51 Hz

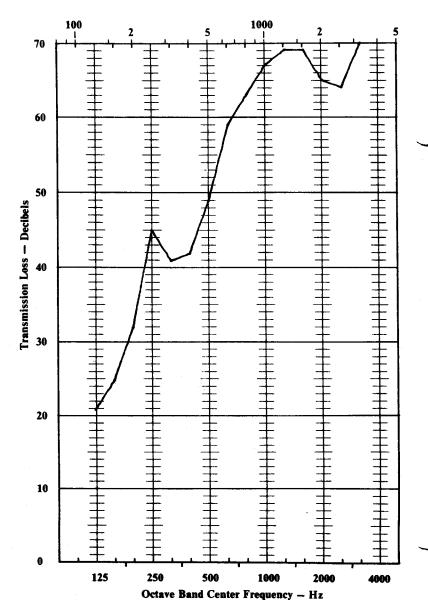
frequency (Hz)	TL(dB)	TL(dB)
50	18	
63	14	15
80	15	
100	24	
125	32	28
160	39	
200	44	
250	48	47
315	52	
400	55	
500	57	57
630	59	
800	61	
1000	62	62
1250	64	
1600	64	
2000	62	57
2500	53	
3150	54	
4000	58	57
5000	62	


Panel Size 8.9x 13 ft; Mass 9.4 lb/ft2



STC 56 OITC 33


Notes: Wall Type FR-2 - 25 gauge


Frequency - Hz

125	HZ	22
160	HZ	23
200	HZ	34
25.2	HZ	45
315	HZ	46
4回回	HZ	44
5.00	HZ	49
632	HZ	5.7
866	HZ	61
1200	HZ	65.
1768	HZ	67
1686	HZ	67
2022	HZ	62
71.00	HZ	57
3150	HZ	63
4222	HZ	68

Frequency – Hz

HZ	21
HZ	25
HZ	32
ΗZ	45.
HZ	41
HZ	42
HZ	45
HZ	5.5
ΗZ	63
HZ	67
HZ	63
HZ	69
HZ	65.
HZ	64
HZ	70
ΗZ	74

REPORT

3933 US ROUTE 11 CORTLAND, NEW YORK 13045

Order No. 100336557

Date: June 24, 2011

REPORT NO. 100336557CRT-001g

SOUND TRANSMISSION LOSS TEST AND CLASSIFICATION OF MAXXON GYPSUM UNDERLAYMENT OVER A SOUND CONTROL MAT ON A WOOD JOIST FLOOR/CEILING ASSEMBLY

MAXXON CORPORATION 920 HAMEL ROAD, P. O. BOX 253 HAMEL, MN 55340-9610

INTRODUCTION

This report gives the results of a Sound Transmission Loss Test and Classification of Maxxon Gypsum Underlayment over a Sound Control Mat on a wood joist floor/ceiling assembly. The floor/ceiling assembly was supplied and installed by Intertek. The gypsum topping and the acoustical mat underlayment were supplied and installed by a representative of Maxxon Corporation. The sample appeared to be in a new, unused condition.

AUTHORIZATION

Signed Quote No. 500285443.

TEST METHOD

The specimen was tested in general accordance with the American Society for Testing and Materials designation ASTM E90-09, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements", and classified in accordance with the American Society for Testing and Materials designation ASTM E413-04, "Classification for Rating Sound Insulation". The size of the source room for the measurements is smaller than the minimum recommended of 125m³. This leads to slightly elevated uncertainties in the measurement data at low frequencies and does not allow microphones to be placed in full accordance with section A.2.

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report and then only that the material, product, or service is or has ever been under an Intertek certification program. Measurement uncertainty budgets have been determined for applicable test methods and are available upon request.

<u>GENERAL</u>

The sound-insulating property of a partition element is expressed in terms of the sound transmission loss. The procedure for determining this quantity is to mount (and perimeter seal) the test specimen as a partition between two reverberation rooms. Sound is introduced in one of the rooms (the source room) and measurements are made of the noise reduction between source room and receiving room. The rooms are so arranged and constructed that the only significant sound transmission between them is through the test specimen.

The purpose of the Sound Transmission Class (STC) is to provide a single figure rating that can be used for comparing the sound-insulating properties of partition elements used for general building design purposes. The higher the rating (STC) the greater the sound insulating properties of the partition.

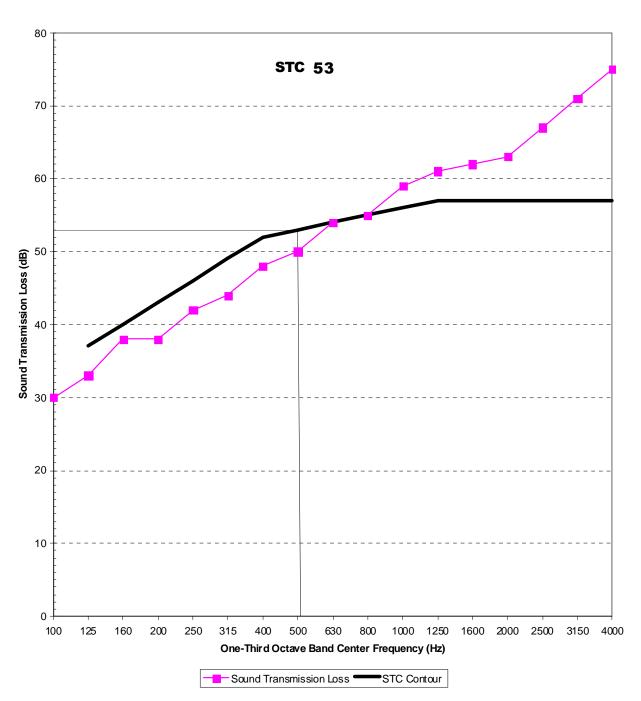
DESCRIPTION OF THE FLOOR/CEILING ASSEMBLY

The test floor is a 100 sq. ft. opening that forms the horizontal separation of the two rooms, one directly above the other. The materials used in the assembly from top to bottom are:

- Nominal 1 inch thick Maxxon Gypsum Underlayment (poured March 10, 2011)
- Acousti-Mat II Sound Control Mat
- 5/8 inch thick T & G OSB nailed 6 inches on perimeter and 12 inches in field and glued to the joists using OSI PL400 adhesive
- 10 inch high nominal 2 X 10 lumber joists spaced 16 inches on center.
- R-11 unfaced batt insulation installed in the top of the cavities
- Dietrich RC Deluxe (dog bone) resilient channels spaced 24 inches on center
- One layer of 5/8 inch thick Type "X" gypsum board fastened to the channels with 1 inch screws 12 inches on center. Joint compound was applied at screw holes and joints.

RESULTS OF MEASUREMENTS

1/3 Octave Band	
Center Frequency	
Hz	Sound Transmission Loss in dB
	<u>Test #1</u>
80	24
100	30
125	33
160	38
200	38
250	42
315	44
400	48
500	50
630	54
800	55
1000	59
1250	61
1600	62
2000	63
2500	67
3150	71
4000	75
5000	77
Sound Transmission Class	53


PRECISION

For the Intertek flooring test facility, the 95% confidence interval Δ TL, is as follows:

Range of	Transmission Loss
One-Third Octave	95% Confidence
Bands	<u>Uncertainty, dB</u>
125 and 200	<4
250 and 315	<2
400 - 4000	<1.5

<u>Test #1</u>

Sound Transmission Loss

MAXXON CORPORATION

REMARKS

- 1. Ambient Temperature: 70°F
- 2. Relative Humidity: 23%

CONCLUSION

The test method employed for this test has no pass-fail criteria, therefore, the evaluation of the test results is left to the discretion of the client.

Date of Test: March 22, 2011

Report Approved by:

Driven Cy

Brian Cyr Engineer Acoustical Testing

Report Reviewed By:

James R. Kline

James R. Kline Engineer/Quality Supervisor Acoustical Testing

Attachments: None

FOR THE SCOPE OF ACCREDITATION UNDER NVLAP LAB CODE 100402-0.

REPORT

3933 US ROUTE 11 CORTLAND, NEW YORK 13045

Order No. 100336557

June 24, 2011

REPORT NO. 100336557CRT-0011

IMPACT SOUND TRANSMISSION TEST AND CLASSIFICATION OF ENGINEERED HARDWOOD OVER MAXXON GYPSUM UNDERLAYMENT OVER A SOUND CONTROL MAT ON A WOOD JOIST FLOOR/CEILING ASSEMBLY

RENDERED TO

MAXXON CORPORATION 920 HAMEL ROAD, P. O. BOX 253 HAMEL, MN 55340-9610

INTRODUCTION

This report gives the results of an Impact Sound Transmission Loss Test and Classification of Engineered Hardwood over Maxxon Gypsum Underlayment over a Sound Control Mat on a wood joist floor/ceiling assembly. The floor/ceiling assembly was supplied and installed by Intertek. The gypsum topping and the acoustical mat underlayment were supplied and installed by a representative of Maxxon Corporation. The sample appeared to be in a new, unused condition.

AUTHORIZATION

Signed Quote No. 500285443.

TEST METHOD

The specimen was tested in accordance with the American Society for Testing and Materials designation ASTM E492-09, "Standard Test Method for Laboratory Measurement of Impact Sound Transmission through Floor-Ceiling Assemblies Using the Tapping Machine". It was classified in accordance with ASTM E989-2006, entitled, "Standard Classification for Determination of Impact Insulation Class (IIC)".

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program. Measurement uncertainty budgets have been determined for applicable test methods and are available upon request.

GENERAL

The method is designed to measure the impact sound transmission performance of a floorceiling assembly, in a controlled laboratory environment. A standard tapping machine (Bruel & Kjaer Type 3207) was placed at four positions on a test floor that forms the horizontal separation between two rooms, one directly above the other. The data obtained was normalized to a reference room absorption of 10 square meters in accordance with the test method.

The standard also prescribes a single-figure classification rating called "Impact Insulation Class, IIC" which can be used by architects, builders and code authorities for acoustical design purposes in building construction.

The IIC is obtained by matching a standard reference contour to the plotted normalized one-third octave band sound pressure levels at each test frequency. The greater the IIC rating, the lower the impact sound transmission through the floor-ceiling assembly

DESCRIPTION OF THE FLOOR/CEILING ASSEMBLY

The test floor is a 100 sq. ft. opening that forms the horizontal separation of the two rooms, one directly above the other. The materials used in the assembly from top to bottom are:

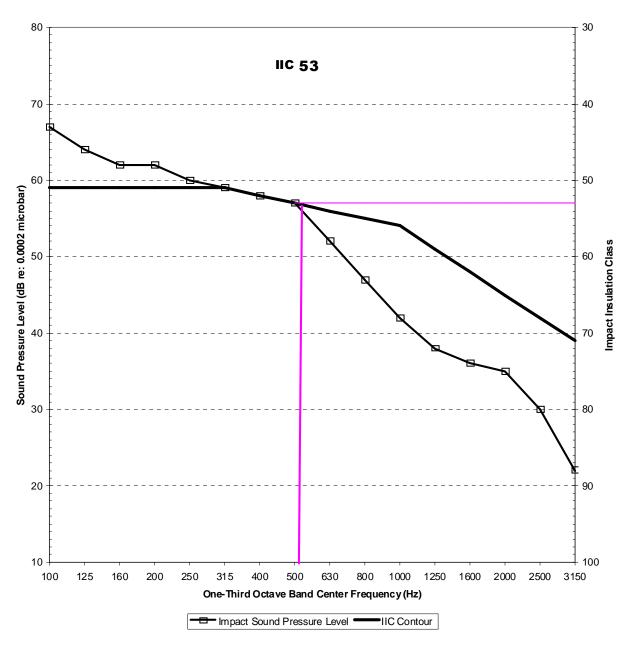
- Nominal 1 inch thick Maxxon Gypsum Underlayment (poured March 10, 2011)
- Acousti-Mat II Sound Control Mat
- 5/8 inch thick T & G OSB nailed 6 inches on perimeter and 12 inches in field and glued to the joists using OSI PL400 adhesive
- 10 inch high nominal 2 X 10 lumber joists spaced 16 inches on center.
- R-11 unfaced batt insulation installed in the top of the cavities
- Dietrich RC Deluxe (dog bone) resilient channels spaced 24 inches on center
- One layer of 5/8 inch thick Type "X" gypsum board fastened to the channels with 1 inch screws 12 inches on center. Joint compound was applied at screw holes and joints.
- <u>Test #1</u> Mannington Engineered Hardwood (1/2 inch thick, 5 inch wide random length planks) over 2 mm thick foam underlayment

RESULTS OF TEST

The data obtained in the room below the panel normalized to $A_o = 10$ square meters, is as follows:

1/3 Octave Band Center Frequency <u>Hz</u>	1/3 Octave Band Sound Pressure Level dB re 0.0002 Microbar
$ \begin{array}{r} 100 \\ 125 \\ 160 \\ 200 \\ 250 \\ 315 \\ 400 \\ 500 \\ 630 \\ 800 \\ 1000 \\ 1250 \\ 1600 \\ 2000 \\ 2500 \\ 3150 \\ \end{array} $	Test #1 67 64 62 62 60 59 58 57 52 47 42 38 36 35 30 22
Impact Insulation Class (IIC)	53

The 95% uncertainty level for each tapping machine location is less than 3 dB for the 1/3 octave bands centered in the range from 100 to 400 Hz and less than 2.5 dB for the bands centered in the range from 500 to 3150 Hz.


For the floor/ceiling construction, the 95% uncertainty limits (ΔL_n) for the normalized sound pressure levels were determined to be less than 2 dB for the 1/3 octave bands centered in the range from 100 to 3500.

<u>TEST #1</u>

Impact Insulation Class

MAXXON CORPORATION

REMARKS

- 1. Ambient Temperature: 69 F
- 2. Relative Humidity: 41%

CONCLUSION

The test method employed for this test has no pass-fail criteria, therefore, the evaluation of the test results is left to the discretion of the client.

This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

Date of Test: March 31, 2011

Report Approved by:

Driven Cy

Brian Cyr Engineer Acoustical Testing

Report Reviewed By:

James R. Kline

James R. Kline Engineer/Quality Supervisor Acoustical Testing

Attachments: None

APPENDIX F

Exterior-to-Interior Noise Analysis

Project Name: Strauss 5th Avenue Project # : B50405N1

Wall 1 of 1

Room Name: Unit 101 Living/Dining Room					Room Type :	Medium	Soft					
3					51		250 Hz	<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
			Reve	rberatio	on Time (sec) :	0.8	0.8	0.8	0.8	0.7	0.7	: Fairly Absorptive Room
			Room	Absorp	otion (Sabins) :	212	212	212	212	265	265	
				Noise	Level	<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
	Source 1:	Traffic		65.1	CNEL	48.4	53.9	56.4	60.4	60.4	54.4	: Traffic Spectrum
	Source 2:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
	Source 3:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
	Source 4:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
	Overall:			65.1	CNEL	48.4	53.9	56.4	60.4	60.4	54.4	: Effective Noise Spectrum
Assembly Type	Open	Width	<u>Height</u>	<u>Qty</u>	Total Area	<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
STC 57 Exterior Wall	N	22.5	9.25	1	77.1	32	48	53	58	62	64	
STC 28 1/2-inch Dual Insulating Window	Y	2.5	5.5	2	27.5	23	23	22	32	43	37	
STC 28 1/2-inch Dual Insulating Window	Y	3	2	1	6.0	23	23	22	32	43	37	
STC 28 1/2-inch Dual Insulating Window	N	8.5	9	1	76.5	23	23	22	32	43	37	
STC 28 French Door with seals	Y	3	7	1	21.0	23	23	22	32	43	37	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	

Room Depth:	17	ft	Overall
			Val

all Area: 208.125 ft² Volume: 3538 ft3

Number of Impacted Walls: 1

Windows Open Interior Noise Level:	55.8	CNEL
Windows Closed Interior Noise Level:	35.0	CNEL

<u>125 Hz</u>	250 Hz	<u>500 Hz</u>	1KHz	<u>2KHz</u>	<u>4KHz</u>	
48.4	53.9	56.4	60.4	60.4	54.4	: Exterior Wall Noise Exposure
8.7	8.7	8.7	8.8	8.8	8.8	: Transmission Loss
23.2	23.2	23.2	23.2	23.2	23.2	: Wall Surface Area Factor
23.3	23.3	23.3	23.3	24.2	24.2	: Absorption
39.6	45.1	47.6	51.5	50.5	44.5	: Noise Level
55.8	CNEL	WINDOWS	S OPEN			
125 Hz	<u>250 Hz</u>	<u>500 Hz</u>	1KHz	2KHz	4KHz	
48.4	53.9	56.4	60.4	60.4	54.4	: Exterior Wall Noise Exposure
24.6	24.9	24.1	34.3	44.6	39.3	: Transmission Loss
23.2	23.2	23.2	23.2	23.2	23.2	: Wall Surface Area Factor
23.3	23.3	23.3	23.3	24.2	24.2	: Absorption
23.7	28.9	32.2	26.0	14.8	14.0	: Noise Level
35.0	CNEL	WINDOWS	CLOSED			

Project Name: Strauss 5th Avenue Project # : B50405N1 Room Name

Wall 1 of 1

. 200 100111			-									
me: Unit 102 Bedroom					Room Type :							
							<u>250 Hz</u>	<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
			Reve	erberatio	on Time (sec) :	0.6	0.6	0.6	0.6	0.5	0.5	: Highly Absorptive Room
			Room	Absorp	otion (Sabins) :	96	96	96	96	115	115	
				Noise	Level	<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
	Source 1:	Traffic		65.1	CNEL	48.4	53.9	56.4	60.4	60.4	54.4	: Traffic Spectrum
	Source 2:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
	Source 3:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
	Source 4:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
	Overall:			65.1	CNEL	48.4	53.9	56.4	60.4	60.4	54.4	: Effective Noise Spectrum
Assembly Type	Open	Width	Height	<u>Qty</u>	Total Area	<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
STC 57 Exterior Wall	N	11	9.25	1	74.3	32	48	53	58	62	64	
STC 28 1/2-inch Dual Insulating Window	Y	2.5	5.5	2	27.5	23	23	22	32	43	37	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	

Room Depth:	11.5	ft	Overall Area:	101.75	ft²
			Volume:	1170	ft ³

Windows Open Interior Noise Level:	56.4	CNEL
Windows Closed Interior Noise Level:	31.8	CNEL

<u>125 Hz</u>	<u>250 Hz</u>	500 Hz	1KHz	2KHz	4KHz	
48.4	53.9	56.4	60.4	60.4	54.4	: Exterior Wall Noise Exposure
8.7	8.7	8.7	8.7	8.7	8.7	: Transmission Loss
20.1	20.1	20.1	20.1	20.1	20.1	: Wall Surface Area Factor
19.8	19.8	19.8	19.8	20.6	20.6	: Absorption
40.0	45.5	48.0	52.0	51.2	45.2	: Noise Level
56.4	CNEL	WINDOWS	6 OPEN			
125 Hz	<u>250 Hz</u>	<u>500 Hz</u>	1KHz	<u>2KHz</u>	<u>4KHz</u>	
48.4	53.9	56.4	60.4	60.4	54.4	: Exterior Wall Noise Exposure
27.3	28.5	27.8	38.0	48.1	43.0	: Transmission Loss
20.1	20.1	20.1	20.1	20.1	20.1	: Wall Surface Area Factor
19.8	19.8	19.8	19.8	20.6	20.6	: Absorption
19.8 21.4	19.8 25.7	19.8 28.9	19.8 22.7	20.6 11.7	20.6 10.9	: Absorption : Noise Level

Project Name: Strauss 5th Avenue Project # : B50405N1 Room Name: Unit 102 Living/Dining Roo

Wall 1 of 1

ft³

				Room Type :							
					<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
		Reve	rberatio	on Time (sec) :	0.8	0.8	0.8	0.8	0.7	0.7	: Fairly Absorptive Room
		Room	Absorp	otion (Sabins) :	171	171	171	171	214	214	
			Noise	Level	<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
Source 1:	Traffic		65.2	CNEL	48.5	54.0	56.5	60.5	60.5	54.5	: Traffic Spectrum
Source 2:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Source 3:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Source 4:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Overall:			65.2	CNEL	48.5	54.0	56.5	60.5	60.5	54.5	: Effective Noise Spectrum
Open	Width	Height	Qty	Total Area	<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
Ν	22	9.25	1	100.0	32	48	53	58	62	64	
Y	3	2	1	6.0	23	23	22	32	43	37	
Ν	8.5	9	1	76.5	23	23	22	32	43	37	
Y	3	7	1	21.0	23	23	22	32	43	37	
Ν	0	0	0	0.0	0	0	0	0	0	0	
Ν	0	0	0	0.0	0	0	0	0	0	0	
Ν	0	0	0	0.0	0	0	0	0	0	0	
Ν	0	0	0	0.0	0	0	0	0	0	0	
Ν	0	0	0	0.0	0	0	0	0	0	0	
Ν	0	0	0	0.0	0	0	0	0	0	0	
Ν	0	0	0	0.0	0	0	0	0	0	0	
Ν	0	0	0	0.0	0	0	0	0	0	0	
oom Depth: 14	ft	Overa	II Area	203.5	ft²						
	Source 2: Source 3: Source 4: Overall: N N Y N N N N N N N N N N N N N N N N	Open Width N 22 Y 3 N 8.5 Y 3 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0	Communication Recommunication Source 1: Traffic Source 2: <n a=""> Source 3: <n a=""> Source 4: <n a=""> Overall: Open Width Height N 22 9.25 Y 3 2 N 8.5 9 Y 3 7 N 0 0 N 0 0 N 0 0 N 0 0 N 0 0 N 0 0 N 0 0 N 0 0 N 0 0 N 0 0 N 0 0</n></n></n>	Noise Source 1: Traffic Source 2: <n a=""> Source 3: <n a=""> Source 4: <n a=""> Overall: 65.2 Overall: 65.2 N 22 N 22 N 22 N 3 Y 3 Y 3 N 0.0 N 0.0 N 0 N 0.0 N 0.0 N 0.0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N <t< td=""><td>Noise Level Source 1: Traffic Source 2: <n a=""> Source 3: <n a=""> Source 4: <n a=""> Overall: 65.2 Overall: 0.0 N 22 9.25 1 100.0 1 Y 3 2 1 6.0 1 Y 3 7 1 21.0 0.0 N 0 N 0 0.0 0.0 N 0 0.0 0.0 N 0 0 0 0 0 0 0 0 0 0 0 <td< td=""><td>I25 Hz Reverberation Time (sec): 0.8 Room Absorption (Sabins): 171 Source 1: Traffic 65.2 CNEL 48.5 Source 2: <n a=""> 0.0 CNEL 0.0 Source 3: <n a=""> 0.0 CNEL 0.0 Source 4: <n a=""> 0.0 CNEL 0.0 Source 4: <n a=""> 0.0 CNEL 0.0 Overall: 65.2 CNEL 48.5 N 22 9.25 1 100.0 32 Y 3 2 1 6.0 23 N 8.5 9 1 76.5 23 Y 3 7 1 21.0 23 N 0 0 0 0 0 N 0 0 0 0 0 0 N 0 0 0 0 0 0 0 N 0</n></n></n></n></td></td<><td>Reverberation Time (sec): 0.8 0.8 Room Absorption (Sabins): 171 171 Source 1: Traffic 65.2 CNEL 48.5 54.0 Source 2: <n a=""> 0.0 CNEL 0.0 0.0 Source 3: <n a=""> 0.0 CNEL 0.0 0.0 Source 4: <n a=""> 0.0 CNEL 0.0 0.0 Source 4: <n a=""> 0.0 CNEL 0.0 0.0 Overall: 65.2 CNEL 48.5 54.0 Overall: 65.2 CNEL 48.5 54.0 N 22 9.25 1 100.0 32 48 Y 3 2 1 6.0 23 23 N 8.5 9 1 76.5 23 23 Y 3 7 1 21.0 23 23 N 0 0 0.0 0 0 0 0<td>Noise Level 125 Hz 250 Hz 500 Hz Reverberation Time (sec): 0.8 0.8 0.8 0.8 Room Absorption (Sabins): 171 171 171 171 Source 1: Traffic 65.2 CNEL 48.5 54.0 56.5 Source 2: <n a=""> 0.0 CNEL 0.0 0.0 0.0 Source 3: <n a=""> 0.0 CNEL 0.0 0.0 0.0 Source 4: <n a=""> 0.0 CNEL 0.0 0.0 0.0 Overall: 65.2 CNEL 48.5 54.0 56.5 Overall: 65.2 CNEL 0.0 0.0 0.0 Verall: 48.5 9 1 100.0 32 48 53 Y 3 2 1 100.0 32 23 22 N 8.5 9 1 76.5 23 23 22 Y 3 7 <</n></n></n></td><td>125 Hz 250 Hz 500 Hz 1KHz Reverberation Time (sec): 0.8 0.8 0.8 0.8 0.8 Room Absorption (Sabins): 171 171 171 171 171 Source 1: Traffic 65.2 CNEL 48.5 54.0 56.5 60.5 Source 2: <n a=""> 0.0 CNEL 0.0 0.0 0.0 0.0 Source 3: <n a=""> 0.0 CNEL 0.0 0.0 0.0 0.0 Source 4: <n a=""> 0.0 CNEL 0.0 0.0 0.0 0.0 Overall: 65.2 CNEL 48.5 54.0 56.5 60.5 Overall: 125 Hz 250 Hz 500 Hz 1KHz N 22 9.25 1 100.0 32 48 53 58 Y 3 2 1 100.0 32 28 22 32 N 0 0 0</n></n></n></td><td>125 Hz 250 Hz 500 Hz 1KHz 2KHz Reverberation Time (sec): 0.8 0.8 0.8 0.7 Room Absorption (Sabins): 171 171 171 171 214 Source 1: Traffic Koise Level 125 Hz 250 Hz 500 Hz 1KHz 2KHz Source 2: <n a=""> 65.2 CNEL 48.5 54.0 50.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.</n></td><td>N 125 Hz 250 Hz 500 Hz 1KHz 2KHz 4KHz Reverberation Time (sec): 0.8 0.8 0.8 0.8 0.8 0.7 0.7 Room Absorption (Sabins): 171 171 171 171 171 214 214 Source 1: Traffic 65.2 CNEL 48.5 54.0 56.5 60.5 60.5 54.5 Source 2: <n a=""> 0.0 CNEL 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <</n></td></n></n></n></n></td></n></n></n></td></t<></n></n></n>	Noise Level Source 1: Traffic Source 2: <n a=""> Source 3: <n a=""> Source 4: <n a=""> Overall: 65.2 Overall: 0.0 N 22 9.25 1 100.0 1 Y 3 2 1 6.0 1 Y 3 7 1 21.0 0.0 N 0 N 0 0.0 0.0 N 0 0.0 0.0 N 0 0 0 0 0 0 0 0 0 0 0 <td< td=""><td>I25 Hz Reverberation Time (sec): 0.8 Room Absorption (Sabins): 171 Source 1: Traffic 65.2 CNEL 48.5 Source 2: <n a=""> 0.0 CNEL 0.0 Source 3: <n a=""> 0.0 CNEL 0.0 Source 4: <n a=""> 0.0 CNEL 0.0 Source 4: <n a=""> 0.0 CNEL 0.0 Overall: 65.2 CNEL 48.5 N 22 9.25 1 100.0 32 Y 3 2 1 6.0 23 N 8.5 9 1 76.5 23 Y 3 7 1 21.0 23 N 0 0 0 0 0 N 0 0 0 0 0 0 N 0 0 0 0 0 0 0 N 0</n></n></n></n></td></td<><td>Reverberation Time (sec): 0.8 0.8 Room Absorption (Sabins): 171 171 Source 1: Traffic 65.2 CNEL 48.5 54.0 Source 2: <n a=""> 0.0 CNEL 0.0 0.0 Source 3: <n a=""> 0.0 CNEL 0.0 0.0 Source 4: <n a=""> 0.0 CNEL 0.0 0.0 Source 4: <n a=""> 0.0 CNEL 0.0 0.0 Overall: 65.2 CNEL 48.5 54.0 Overall: 65.2 CNEL 48.5 54.0 N 22 9.25 1 100.0 32 48 Y 3 2 1 6.0 23 23 N 8.5 9 1 76.5 23 23 Y 3 7 1 21.0 23 23 N 0 0 0.0 0 0 0 0<td>Noise Level 125 Hz 250 Hz 500 Hz Reverberation Time (sec): 0.8 0.8 0.8 0.8 Room Absorption (Sabins): 171 171 171 171 Source 1: Traffic 65.2 CNEL 48.5 54.0 56.5 Source 2: <n a=""> 0.0 CNEL 0.0 0.0 0.0 Source 3: <n a=""> 0.0 CNEL 0.0 0.0 0.0 Source 4: <n a=""> 0.0 CNEL 0.0 0.0 0.0 Overall: 65.2 CNEL 48.5 54.0 56.5 Overall: 65.2 CNEL 0.0 0.0 0.0 Verall: 48.5 9 1 100.0 32 48 53 Y 3 2 1 100.0 32 23 22 N 8.5 9 1 76.5 23 23 22 Y 3 7 <</n></n></n></td><td>125 Hz 250 Hz 500 Hz 1KHz Reverberation Time (sec): 0.8 0.8 0.8 0.8 0.8 Room Absorption (Sabins): 171 171 171 171 171 Source 1: Traffic 65.2 CNEL 48.5 54.0 56.5 60.5 Source 2: <n a=""> 0.0 CNEL 0.0 0.0 0.0 0.0 Source 3: <n a=""> 0.0 CNEL 0.0 0.0 0.0 0.0 Source 4: <n a=""> 0.0 CNEL 0.0 0.0 0.0 0.0 Overall: 65.2 CNEL 48.5 54.0 56.5 60.5 Overall: 125 Hz 250 Hz 500 Hz 1KHz N 22 9.25 1 100.0 32 48 53 58 Y 3 2 1 100.0 32 28 22 32 N 0 0 0</n></n></n></td><td>125 Hz 250 Hz 500 Hz 1KHz 2KHz Reverberation Time (sec): 0.8 0.8 0.8 0.7 Room Absorption (Sabins): 171 171 171 171 214 Source 1: Traffic Koise Level 125 Hz 250 Hz 500 Hz 1KHz 2KHz Source 2: <n a=""> 65.2 CNEL 48.5 54.0 50.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.</n></td><td>N 125 Hz 250 Hz 500 Hz 1KHz 2KHz 4KHz Reverberation Time (sec): 0.8 0.8 0.8 0.8 0.8 0.7 0.7 Room Absorption (Sabins): 171 171 171 171 171 214 214 Source 1: Traffic 65.2 CNEL 48.5 54.0 56.5 60.5 60.5 54.5 Source 2: <n a=""> 0.0 CNEL 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <</n></td></n></n></n></n></td></n></n></n>	I25 Hz Reverberation Time (sec): 0.8 Room Absorption (Sabins): 171 Source 1: Traffic 65.2 CNEL 48.5 Source 2: <n a=""> 0.0 CNEL 0.0 Source 3: <n a=""> 0.0 CNEL 0.0 Source 4: <n a=""> 0.0 CNEL 0.0 Source 4: <n a=""> 0.0 CNEL 0.0 Overall: 65.2 CNEL 48.5 N 22 9.25 1 100.0 32 Y 3 2 1 6.0 23 N 8.5 9 1 76.5 23 Y 3 7 1 21.0 23 N 0 0 0 0 0 N 0 0 0 0 0 0 N 0 0 0 0 0 0 0 N 0</n></n></n></n>	Reverberation Time (sec): 0.8 0.8 Room Absorption (Sabins): 171 171 Source 1: Traffic 65.2 CNEL 48.5 54.0 Source 2: <n a=""> 0.0 CNEL 0.0 0.0 Source 3: <n a=""> 0.0 CNEL 0.0 0.0 Source 4: <n a=""> 0.0 CNEL 0.0 0.0 Source 4: <n a=""> 0.0 CNEL 0.0 0.0 Overall: 65.2 CNEL 48.5 54.0 Overall: 65.2 CNEL 48.5 54.0 N 22 9.25 1 100.0 32 48 Y 3 2 1 6.0 23 23 N 8.5 9 1 76.5 23 23 Y 3 7 1 21.0 23 23 N 0 0 0.0 0 0 0 0<td>Noise Level 125 Hz 250 Hz 500 Hz Reverberation Time (sec): 0.8 0.8 0.8 0.8 Room Absorption (Sabins): 171 171 171 171 Source 1: Traffic 65.2 CNEL 48.5 54.0 56.5 Source 2: <n a=""> 0.0 CNEL 0.0 0.0 0.0 Source 3: <n a=""> 0.0 CNEL 0.0 0.0 0.0 Source 4: <n a=""> 0.0 CNEL 0.0 0.0 0.0 Overall: 65.2 CNEL 48.5 54.0 56.5 Overall: 65.2 CNEL 0.0 0.0 0.0 Verall: 48.5 9 1 100.0 32 48 53 Y 3 2 1 100.0 32 23 22 N 8.5 9 1 76.5 23 23 22 Y 3 7 <</n></n></n></td><td>125 Hz 250 Hz 500 Hz 1KHz Reverberation Time (sec): 0.8 0.8 0.8 0.8 0.8 Room Absorption (Sabins): 171 171 171 171 171 Source 1: Traffic 65.2 CNEL 48.5 54.0 56.5 60.5 Source 2: <n a=""> 0.0 CNEL 0.0 0.0 0.0 0.0 Source 3: <n a=""> 0.0 CNEL 0.0 0.0 0.0 0.0 Source 4: <n a=""> 0.0 CNEL 0.0 0.0 0.0 0.0 Overall: 65.2 CNEL 48.5 54.0 56.5 60.5 Overall: 125 Hz 250 Hz 500 Hz 1KHz N 22 9.25 1 100.0 32 48 53 58 Y 3 2 1 100.0 32 28 22 32 N 0 0 0</n></n></n></td><td>125 Hz 250 Hz 500 Hz 1KHz 2KHz Reverberation Time (sec): 0.8 0.8 0.8 0.7 Room Absorption (Sabins): 171 171 171 171 214 Source 1: Traffic Koise Level 125 Hz 250 Hz 500 Hz 1KHz 2KHz Source 2: <n a=""> 65.2 CNEL 48.5 54.0 50.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.</n></td><td>N 125 Hz 250 Hz 500 Hz 1KHz 2KHz 4KHz Reverberation Time (sec): 0.8 0.8 0.8 0.8 0.8 0.7 0.7 Room Absorption (Sabins): 171 171 171 171 171 214 214 Source 1: Traffic 65.2 CNEL 48.5 54.0 56.5 60.5 60.5 54.5 Source 2: <n a=""> 0.0 CNEL 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <</n></td></n></n></n></n>	Noise Level 125 Hz 250 Hz 500 Hz Reverberation Time (sec): 0.8 0.8 0.8 0.8 Room Absorption (Sabins): 171 171 171 171 Source 1: Traffic 65.2 CNEL 48.5 54.0 56.5 Source 2: <n a=""> 0.0 CNEL 0.0 0.0 0.0 Source 3: <n a=""> 0.0 CNEL 0.0 0.0 0.0 Source 4: <n a=""> 0.0 CNEL 0.0 0.0 0.0 Overall: 65.2 CNEL 48.5 54.0 56.5 Overall: 65.2 CNEL 0.0 0.0 0.0 Verall: 48.5 9 1 100.0 32 48 53 Y 3 2 1 100.0 32 23 22 N 8.5 9 1 76.5 23 23 22 Y 3 7 <</n></n></n>	125 Hz 250 Hz 500 Hz 1KHz Reverberation Time (sec): 0.8 0.8 0.8 0.8 0.8 Room Absorption (Sabins): 171 171 171 171 171 Source 1: Traffic 65.2 CNEL 48.5 54.0 56.5 60.5 Source 2: <n a=""> 0.0 CNEL 0.0 0.0 0.0 0.0 Source 3: <n a=""> 0.0 CNEL 0.0 0.0 0.0 0.0 Source 4: <n a=""> 0.0 CNEL 0.0 0.0 0.0 0.0 Overall: 65.2 CNEL 48.5 54.0 56.5 60.5 Overall: 125 Hz 250 Hz 500 Hz 1KHz N 22 9.25 1 100.0 32 48 53 58 Y 3 2 1 100.0 32 28 22 32 N 0 0 0</n></n></n>	125 Hz 250 Hz 500 Hz 1KHz 2KHz Reverberation Time (sec): 0.8 0.8 0.8 0.7 Room Absorption (Sabins): 171 171 171 171 214 Source 1: Traffic Koise Level 125 Hz 250 Hz 500 Hz 1KHz 2KHz Source 2: <n a=""> 65.2 CNEL 48.5 54.0 50.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.</n>	N 125 Hz 250 Hz 500 Hz 1KHz 2KHz 4KHz Reverberation Time (sec): 0.8 0.8 0.8 0.8 0.8 0.7 0.7 Room Absorption (Sabins): 171 171 171 171 171 214 214 Source 1: Traffic 65.2 CNEL 48.5 54.0 56.5 60.5 60.5 54.5 Source 2: <n a=""> 0.0 CNEL 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <</n>

Room Depth:	14	ft	Overall Area:	203.5
			Volume:	2849

1

Windows Open		
Interior Noise Level:	53.8	CNEL
Windows Closed		
Interior Noise Level:	35.0	CNEL

<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	1KHz	2KHz	<u>4KHz</u>	
48.5	54.0	56.5	60.5	60.5	54.5	: Exterior Wall Noise Exposure
11.6	11.6	11.6	11.8	11.8	11.8	: Transmission Loss
23.1	23.1	23.1	23.1	23.1	23.1	: Wall Surface Area Factor
22.3	22.3	22.3	22.3	23.3	23.3	: Absorption
37.6	43.1	45.7	49.5	48.5	42.5	: Noise Level
53.8	CNEL	WINDOWS	6 OPEN			
<u>125 Hz</u>	250 Hz	500 Hz	1KHz	2KHz	4KHz	
					41112	
48.5	54.0	56.5	60.5	60.5	54.5	: Exterior Wall Noise Exposure
48.5 25.3	54.0 25.8		60.5 35.3			: Exterior Wall Noise Exposure : Transmission Loss
		56.5		60.5	54.5	
25.3	25.8	56.5 25.0	35.3	60.5 45.5	54.5 40.3	: Transmission Loss
25.3 23.1	25.8 23.1	56.5 25.0 23.1	35.3 23.1	60.5 45.5 23.1	54.5 40.3 23.1	: Transmission Loss : Wall Surface Area Factor

Project Name: Strauss 5th Avenue Project # : B50405N1 Room Name: Unit 103 Bedroom

Wall 1 of 1

ft³

# : Boottonti													
Name: Unit 103 Bedroom						Room Type :	Soft						
							<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
				Reve	erberatio	on Time (sec) :	0.6	0.6	0.6	0.6	0.5	0.5	: Highly Absorptive Room
				Room	n Absorp	otion (Sabins) :	127	127	127	127	152	152	
	-												
					Noise	Level	<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
		Source 1:	Traffic		65.2	CNEL	48.5	54.0	56.5	60.5	60.5	54.5	: Traffic Spectrum
		Source 2:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
		Source 3:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
		Source 4:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
	l	Overall:			65.2	CNEL	48.5	54.0	56.5	60.5	60.5	54.5	: Effective Noise Spectrum
Assembly Type		Open	Width	Height	Qty	Total Area	<u>125 Hz</u>	<u>250 Hz</u>	500 Hz	<u>1KHz</u>	<u>2KHz</u>	4KHz	
STC 57 Exterior Wall	<u> </u>	N	12	9.25	1	95.0	32	48	53	58	62	64	
STC 28 1/2-inch Dual Insulating Window		Ŷ	2	4	2	16.0	23	23	22	32	43	37	
<n a=""></n>		Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>		Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>		Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>		Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>		Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>		Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>		Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>		Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>		Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>		Ν	0	0	0	0.0	0	0	0	0	0	0	
	Room Depth:	14	ft	Overa	all Area	: 111	ft²						
		••											

m Depth:	14	ft	Overall Area:	111
			Volume:	1554

1

Windows Open Interior Noise Level:	52.9	CNEL
Windows Closed Interior Noise Level:	28.4	CNEL

<u>125 Hz</u>	250 Hz	<u>500 Hz</u>	1KHz	2KHz	4KHz	
48.5	54.0	56.5	60.5	60.5	54.5	: Exterior Wall Noise Exposure
11.4	11.4	11.4	11.4	11.4	11.4	: Transmission Loss
20.5	20.5	20.5	20.5	20.5	20.5	: Wall Surface Area Factor
21.0	21.0	21.0	21.0	21.8	21.8	: Absorption
36.6	42.0	44.5	48.5	47.7	41.7	: Noise Level
52.9	CNEL	WINDOWS	6 OPEN			
125 11-	250 11-	500 U-	1KHz	2KHz	4KHz	
1 1 2 3 HZ	23U HZ	300 HZ				
<u>125 Hz</u> 48.5	250 Hz 54.0	500 Hz 56.5	60.5	60.5	54.5	: Exterior Wall Noise Exposure
						: Exterior Wall Noise Exposure : Transmission Loss
48.5	54.0	56.5	60.5	60.5	54.5	
48.5 28.9	54.0 31.2	56.5 30.5	60.5 40.7	60.5 50.7	54.5 45.7	: Transmission Loss
48.5 28.9 20.5	54.0 31.2 20.5	56.5 30.5 20.5	60.5 40.7 20.5	60.5 50.7 20.5	54.5 45.7 20.5	: Transmission Loss : Wall Surface Area Factor

Project Name: Strauss 5th Avenue Project # : B50405N1

Wall 1 of 1

Room Name: Unit 103 Living/Dining Room					Room Type :	Medium	Soft				-	
					Room Type .	125 Hz		500 Hz	1KHz	2KHz	4KHz	
			Reve	rberatio	on Time (sec) :	0.8	0.8	0.8	0.8	0.7	0.7	: Fairly Absorptive Room
			Room	Absorp	otion (Sabins) :	226	226	226	226	283	283	
				Noise	Level	<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
	Source 1:	Traffic		65.2	CNEL	48.5	54.0	56.5	60.5	60.5	54.5	: Traffic Spectrum
	Source 2:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
	Source 3:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
	Source 4:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
	Overall:			65.2	CNEL	48.5	54.0	56.5	60.5	60.5	54.5	: Effective Noise Spectrum
Assembly Type	Open	Width	Height	<u>Qty</u>	Total Area	<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
STC 57 Exterior Wall	N	25.5	9.25	1	116.4	32	48	53	58	62	64	
STC 28 1/2-inch Dual Insulating Window	Y	2	4	2	16.0	23	23	22	32	43	37	
STC 28 1/2-inch Dual Insulating Window	Y	3	2	1	6.0	23	23	22	32	43	37	
STC 28 1/2-inch Dual Insulating Window	Ν	8.5	9	1	76.5	23	23	22	32	43	37	
STC 28 French Door with seals	Y	3	7	1	21.0	23	23	22	32	43	37	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	

Room Depth:	16	ft	Overall Area:	23
			Volume:	3

35.875 ft² 3774

ft3

Windows Open Interior Noise Level:	54.6	CNEL
Windows Closed Interior Noise Level:	34.4	CNEL

125 Hz	250 Hz	<u>500 Hz</u>	1KHz	<u>2KHz</u>	4KHz	
48.5	54.0	56.5	60.5	60.5	54.5	: Exterior Wall Noise Exposure
10.3	10.3	10.3	10.4	10.4	10.4	: Transmission Loss
23.7	23.7	23.7	23.7	23.7	23.7	: Wall Surface Area Factor
23.5	23.5	23.5	23.5	24.5	24.5	: Absorption
38.4	43.9	46.4	50.3	49.3	43.3	: Noise Level
54.6	CNEL	WINDOWS	S OPEN			
<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	<u>1KHz</u>	2KHz	4KHz	
48.5	54.0	56.5	60.5	60.5	54.5	: Exterior Wall Noise Exposure
25.3	25.8	25.0	35.3	45.5	40.3	: Transmission Loss
23.7	23.7	23.7	23.7	23.7	23.7	: Wall Surface Area Factor
23.5	23.5	23.5	23.5	24.5	24.5	: Absorption
23.3	28.4	31.7	25.4	14.2	13.4	: Noise Level
34.4	CNEL	WINDOWS	S CLOSED			

Project Name: Strauss 5th Avenue Project # : B50405N1 Room Name: Unit 104 Bedroom

Wall 1 of 1

ne: Unit 104 Bedroom					Room Type :							
							<u>250 Hz</u>		<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
					on Time (sec) :	0.6	0.6	0.6	0.6	0.5	0.5	: Highly Absorptive Room
			Room	Absorp	tion (Sabins) :	147	147	147	147	177	177	
				Noise	Level	<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
	Source 1:	Traffic		65.2	CNEL	48.5	54.0	56.5	60.5	60.5	54.5	: Traffic Spectrum
	Source 2:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
	Source 3:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
	Source 4:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
	Overall:			65.2	CNEL	48.5	54.0	56.5	60.5	60.5	54.5	: Effective Noise Spectrum
Assembly Type	<u>Open</u>	Width	Height	Qty	Total Area	<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
STC 57 Exterior Wall	N	15	9.25	1	106.8	32	48	53	58	62	64	
STC 28 1/2-inch Dual Insulating Window	Y	2	4	4	32.0	23	23	22	32	43	37	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	

Room Depth:	13	ft	Overall Area:	138.75	ft²
			Volume:	1804	ft ³

Windows Open		
Interior Noise Level:	55.2	CNEL
Windows Closed		
Interior Noise Level:	30.7	CNEL

125 Hz	<u>250 Hz</u>	<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
48.5	54.0	56.5	60.5	60.5	54.5	: Exterior Wall Noise Exposure
9.3	9.4	9.4	9.4	9.4	9.4	: Transmission Loss
21.4	21.4	21.4	21.4	21.4	21.4	: Wall Surface Area Factor
21.7	21.7	21.7	21.7	22.5	22.5	: Absorption
38.9	44.4	46.9	50.9	50.1	44.1	: Noise Level
55.2	CNEL	WINDOWS	S OPEN			
125 Hz	<u>250 Hz</u>	<u>500 Hz</u>	1KHz	2KHz	<u>4KHz</u>	
48.5	54.0	56.5	60.5	60.5	54.5	: Exterior Wall Noise Exposure
27.8	29.2	28.4	38.7	48.8	43.7	: Transmission Loss
21.4	21.4	21.4	21.4	21.4	21.4	: Wall Surface Area Factor
21.7	21.7	21.7	21.7	22.5	22.5	: Absorption
20.5	24.5	27.8	21.6	10.6	9.8	: Noise Level
30.7	CNEL	WINDOWS				

Project Name: Strauss 5th Avenue Project # : B50405N1 Room Name: Unit 104 Living/Dining Roo

Wall 1 of 1

ft³

Room Name: Unit 104 Living/Dining Room						Room Type :	Medium	Soft					
							<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
				Reve	erberatio	on Time (sec) :	0.8	0.8	0.8	0.8	0.7	0.7	: Fairly Absorptive Room
				Room	Absorp	otion (Sabins) :	148	148	148	148	185	185	
					Noise	Level	<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
		Source 1:	Traffic		65.2	CNEL	48.5	54.0	56.5	60.5	60.5	54.5	: Traffic Spectrum
		Source 2:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
		Source 3:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
		Source 4:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
		Overall:			65.2	CNEL	48.5	54.0	56.5	60.5	60.5	54.5	: Effective Noise Spectrum
Assembly Type		Open	Width	Height	Qty	Total Area	<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
STC 57 Exterior Wall		Ν	19	9.25	1	72.3	32	48	53	58	62	64	
STC 28 1/2-inch Dual Insulating Window		Y	3	2	1	6.0	23	23	22	32	43	37	
STC 28 1/2-inch Dual Insulating Window		Ν	8.5	9	1	76.5	23	23	22	32	43	37	
STC 28 French Door with seals		Y	3	7	1	21.0	23	23	22	32	43	37	
<n a=""></n>		Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>		Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>		Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>		Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>		Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>		Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>		Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>		Ν	0	0	0	0.0	0	0	0	0	0	0	
			_	_									
	Room Depth:	14	ft	Overa	II Area	: 175.75	ft ²						

Room Depth:	14	ft	Overall Area:	175.75
			Volume:	2461

Windows Open Interior Noise Level:	54.5	CNEL
Windows Closed Interior Noise Level:	35.6	CNEL

125 Hz	<u>250 Hz</u>	<u>500 Hz</u>	<u>1KHz</u>	2KHz	<u>4KHz</u>	
48.5	54.0	56.5	60.5	60.5	54.5	: Exterior Wall Noise Exposure
11.0	11.0	11.0	11.1	11.1	11.1	: Transmission Loss
22.4	22.4	22.4	22.4	22.4	22.4	: Wall Surface Area Factor
21.7	21.7	21.7	21.7	22.7	22.7	: Absorption
38.3	43.8	46.3	50.1	49.2	43.2	: Noise Level
54.5	CNEL	WINDOWS	S OPEN			
125 Hz	<u>250 Hz</u>	<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	4KHz	
48.5	54.0	56.5	60.5	60.5	54.5	: Exterior Wall Noise Exposure
24.8	25.2	24.4	34.6	44.9	39.6	: Transmission Loss
22.4	22.4	22.4	22.4	22.4	22.4	: Wall Surface Area Factor
21.7	21.7	21.7	21.7	22.7	22.7	: Absorption
24.4	29.6	32.9	26.6	15.4	14.7	: Noise Level

Project Name: Strauss 5th Avenue Project # : B50405N1 Room Name: Unit 201 Bedroom

Wall 1 of 1

ft² ft³

550405141												
e: Unit 201 Bedroom					Room Type :							
						<u>125 Hz</u>	<u>250 Hz</u>		<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
					on Time (sec) :	0.6	0.6	0.6	0.6	0.5	0.5	: Highly Absorptive Room
			Room	Absorp	otion (Sabins) :	91	91	91	91	110	110	
					Level	<u>125 Hz</u>	<u>250 Hz</u>		<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
	Source 1:	Traffic		64.7	CNEL	48.0	53.5	56.0	60.0	60.0	54.0	: Traffic Spectrum
	Source 2:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
	Source 3:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
	Source 4:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
	Overall:			64.7	CNEL	48.0	53.5	56.0	60.0	60.0	54.0	: Effective Noise Spectrum
Assembly Type	<u>Open</u>	Width	Height	Qty	Total Area	<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
STC 57 Exterior Wall	Ν	11	9.25	1	66.8	32	48	53	58	62	64	
STC 28 1/2-inch Dual Insulating Window	Y	2.5	7	2	35.0	23	23	22	32	43	37	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	

Room Depth:	11	ft	Overall Area:	101.75
			Volume:	1119

Windows Open Interior Noise Level:	57.2	CNEL
Windows Closed		
Interior Noise Level:	32.6	CNEL

125 Hz	<u>250 Hz</u>	<u>500 Hz</u>	1KHz	2KHz	4KHz	
48.0	53.5	56.0	60.0	60.0	54.0	: Exterior Wall Noise Exposure
7.6	7.6	7.6	7.6	7.6	7.6	: Transmission Loss
20.1	20.1	20.1	20.1	20.1	20.1	: Wall Surface Area Factor
19.6	19.6	19.6	19.6	20.4	20.4	: Absorption
40.9	46.4	48.9	52.8	52.0	46.0	: Noise Level
57.2	CNEL	WINDOWS	6 OPEN			
125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
48.0	53.5	56.0	60.0	60.0	54.0	: Exterior Wall Noise Exposure
48.0 26.6	53.5 27.5	56.0 26.7	60.0 36.9	60.0 47.1	54.0 41.9	: Exterior Wall Noise Exposure : Transmission Loss
26.6	27.5	26.7	36.9	47.1	41.9	: Transmission Loss
26.6 20.1	27.5 20.1	26.7 20.1	36.9 20.1	47.1 20.1	41.9 20.1	: Transmission Loss : Wall Surface Area Factor

Project Name: Strauss 5th Avenue Project # : B50405N1 E

Wall 1 of 1

1813

ft²

ft3

								-					
Room Name: Unit 201 Living/Dining Room						Room Type :			500 11-		01/11-		
								<u>250 Hz</u>		<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
						on Time (sec) :		0.8	0.8	0.8	0.7	0.7	: Fairly Absorptive Room
				Room	Absorp	otion (Sabins) :	109	109	109	109	136	136	
		_			-	Level	<u>125 Hz</u>			<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
		Source 1:			64.7		48.0	53.5	56.0	60.0	60.0		: Traffic Spectrum
					0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
					0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
		Source 4:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
		Overall:			64.7	CNEL	48.0	53.5	56.0	60.0	60.0	54.0	: Effective Noise Spectrum
Assembly Type		<u>Open</u>	Width	<u>Height</u>	Qty	Total Area	<u>125 Hz</u>		<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
STC 57 Exterior Wall		Ν	14	9.25	1	26.0	32	48	53	58	62	64	
STC 28 1/2-inch Dual Insulating Window		Y	3	2	1	6.0	23	23	22	32	43	37	
STC 28 1/2-inch Dual Insulating Window		Ν	8.5	9	1	76.5	23	23	22	32	43	37	
STC 28 French Door with seals		Y	3	7	1	21.0	23	23	22	32	43	37	
<n a=""></n>		Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>		Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>		Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>		Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>		Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>		Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>		Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>		Ν	0	0	0	0.0	0	0	0	0	0	0	
	Room Depth:	14	ft	Overa	II Area	: 129.5	ft ²						

Room Depth:	14	ft	Overall Area:
			Volume:

1

Windows Open Interior Noise Level:	55.3	CNEL
Windows Closed Interior Noise Level:	36.4	CNEL

125 Hz	<u>250 Hz</u>	<u>500 Hz</u>	1KHz	2KHz	4KHz	
48.0	53.5	56.0	60.0	60.0	54.0	: Exterior Wall Noise Exposure
9.7	9.7	9.6	9.8	9.8	9.8	: Transmission Loss
21.1	21.1	21.1	21.1	21.1	21.1	: Wall Surface Area Factor
20.4	20.4	20.4	20.4	21.3	21.3	: Absorption
39.1	44.6	47.1	51.0	50.0	44.0	: Noise Level
55.3	CNEL	WINDOWS	S OPEN			
125 Hz	<u>250 Hz</u>	<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
48.0	53.5	56.0	60.0	60.0	54.0	: Exterior Wall Noise Exposure
23.7	23.8	23.1	33.3	43.6	38.3	: Transmission Loss
21.1	21.1	21.1	21.1	21.1	21.1	: Wall Surface Area Factor
20.4	20.4	20.4	20.4	21.3	21.3	: Absorption
25.0	30.4	33.7	27.5	16.2	15.5	: Noise Level

Project Name: Strauss 5th Avenue Project # : B50405N1 Room Name: Unit 202 Bedroom 2

Wall 1 of 1

. 200 100111												
ame: Unit 202 Bedroom 2			Room Type : Soft									
							<u>250 Hz</u>		<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
			Reve	erberatio	on Time (sec) :	0.6	0.6	0.6	0.6	0.5	0.5	: Highly Absorptive Room
			Room	h Absorp	otion (Sabins) :	104	104	104	104	125	125	
				Noise	Level	<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
	Source 1:	Traffic		64.7	CNEL	48.0	53.5	56.0	60.0	60.0	54.0	: Traffic Spectrum
	Source 2:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
	Source 3:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
	Source 4:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
	Overall:			64.7	CNEL	48.0	53.5	56.0	60.0	60.0	54.0	: Effective Noise Spectrum
Assembly Type	Open	Width	<u>Height</u>	Qty	Total Area	<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
STC 57 Exterior Wall	N	12.5	9.25	1	80.6	32	48	53	58	62	64	
STC 28 1/2-inch Dual Insulating Window	Y	2.5	7	2	35.0	23	23	22	32	43	37	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	

Room Depth:	11	ft	Overall Area:	115.625	ft²
			Volume:	1272	ft ³

Windows Open		
Interior Noise Level:	56.6	CNEL
Windows Closed		
Interior Noise Level:	32.0	CNEL

<u>125 Hz</u>	250 Hz	500 Hz	1KHz	2KHz	4KHz	
48.0	53.5	56.0	60.0	60.0	54.0	: Exterior Wall Noise Exposure
8.2	8.2	8.2	8.2	8.2	8.2	: Transmission Loss
20.6	20.6	20.6	20.6	20.6	20.6	: Wall Surface Area Factor
20.2	20.2	20.2	20.2	21.0	21.0	: Absorption
40.3	45.8	48.3	52.3	51.5	45.5	: Noise Level
56.6	CNEL	WINDOWS	6 OPEN			
<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
<u>125 Hz</u> 48.0	<u>250 Hz</u> 53.5	56.0	<u>1KHz</u> 60.0	<u>2KHz</u> 60.0	<u>4KHz</u> 54.0	: Exterior Wall Noise Exposure
						: Exterior Wall Noise Exposure : Transmission Loss
48.0	53.5	56.0	60.0	60.0	54.0	
48.0 27.0	53.5 28.0	56.0 27.3	60.0 37.5	60.0 47.7	54.0 42.5	: Transmission Loss
48.0 27.0 20.6	53.5 28.0 20.6	56.0 27.3 20.6	60.0 37.5 20.6	60.0 47.7 20.6	54.0 42.5 20.6	: Transmission Loss : Wall Surface Area Factor

Project Name: Strauss 5th Avenue Project # : B50405N1 R

Wall 1 of 1

Room Name: Unit 202 Living/Dining Room					Room Type :							
									<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
					on Time (sec) :		0.8	0.8	0.8	0.7	0.7	: Fairly Absorptive Room
			Room	Absor	otion (Sabins) :	108	108	108	108	135	135	
	r											
				-	Level	<u>125 Hz</u>			<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
	Source 1:	Traffic		64.7	CNEL	48.0	53.5	56.0	60.0	60.0	54.0	: Traffic Spectrum
	Source 2:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
	Source 3:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
	Source 4:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
	Overall:			64.7	CNEL	48.0	53.5	56.0	60.0	60.0	54.0	: Effective Noise Spectrum
Assembly Type	Open	Width	Height	<u>Qty</u>	Total Area	<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
STC 57 Exterior Wall	N	13	9.25	1	16.8	32	48	53	58	62	64	
STC 28 1/2-inch Dual Insulating Window	Y	3	2	1	6.0	23	23	22	32	43	37	
STC 28 1/2-inch Dual Insulating Window	N	8.5	9	1	76.5	23	23	22	32	43	37	
STC 28 French Door with seals	Y	3	7	1	21.0	23	23	22	32	43	37	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	

Room Depth:	15	ft	Overall Area:	120.25	ft²
			Volume:	1804	ft ³

Windows Open Interior Noise Level:	55.3	CNEL
Windows Closed Interior Noise Level:	36.5	CNEL

<u>125 Hz</u>	<u>250 Hz</u>	500 Hz	1KHz	2KHz	4KHz	
48.0	53.5	56.0	60.0	60.0	54.0	: Exterior Wall Noise Exposure
9.3	9.4	9.3	9.5	9.5	9.5	: Transmission Loss
20.8	20.8	20.8	20.8	20.8	20.8	: Wall Surface Area Factor
20.3	20.3	20.3	20.3	21.3	21.3	: Absorption
39.1	44.6	47.1	51.0	50.0	44.0	: Noise Level
55.3	CNEL	WINDOWS	S OPEN			
125 Hz	<u>250 Hz</u>	<u>500 Hz</u>	1KHz	2KHz	4KHz	
48.0	53.5	56.0	60.0	60.0	54.0	: Exterior Wall Noise Exposure
23.4	23.5	22.7	33.0	43.2	38.0	: Transmission Loss
20.8	20.8	20.8	20.8	20.8	20.8	: Wall Surface Area Factor
	20.0	20.0	20.0	20.0	20.0	. Wai banabb / i ba i abibi
20.3	20.3	20.3	20.3	21.3	21.3	: Absorption
20.3 25.0						

Project Name: Strauss 5th Avenue Project # : B50405N1 Room Name: Unit 218 Bedroom 2

Wall 1 of 1

ft² ft³

# : B00400111												
Name: Unit 218 Bedroom 2					Room Type :							
							<u>250 Hz</u>		<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
			Reve	erberatio	on Time (sec) :	0.6	0.6	0.6	0.6	0.5	0.5	: Highly Absorptive Room
			Room	n Absorp	otion (Sabins) :	100	100	100	100	120	120	
				Noise	Level	<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
	Source 1:	Traffic		64.7	CNEL	48.0	53.5	56.0	60.0	60.0	54.0	: Traffic Spectrum
	Source 2:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
	Source 3:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
	Source 4:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
	Overall:			64.7	CNEL	48.0	53.5	56.0	60.0	60.0	54.0	: Effective Noise Spectrum
	_			_								
Assembly Type	Open	Width	<u>Height</u>	<u>Qty</u>	Total Area	<u>125 Hz</u>		<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
STC 57 Exterior Wall	N	11	9.25	1	74.3	32	48	53	58	62	64	
STC 28 1/2-inch Dual Insulating Window	Y	2.5	5.5	2	27.5	23	23	22	32	43	37	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	

Room Depth:	12	ft	Overall Area:	101.75
			Volume:	1221

Windows Open Interior Noise Level:	55.8	CNEL
Windows Closed Interior Noise Level:	31.2	CNEL

<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
48.0	53.5	56.0	60.0	60.0	54.0	: Exterior Wall Noise Exposure
8.7	8.7	8.7	8.7	8.7	8.7	: Transmission Loss
20.1	20.1	20.1	20.1	20.1	20.1	: Wall Surface Area Factor
20.0	20.0	20.0	20.0	20.8	20.8	: Absorption
39.4	44.9	47.4	51.4	50.6	44.6	: Noise Level
55.8	CNEL	WINDOWS	S OPEN			
125 Hz	<u>250 Hz</u>	<u>500 Hz</u>	1KHz	2KHz	4KHz	
48.0	53.5	56.0	60.0	60.0	54.0	: Exterior Wall Noise Exposure
27.3	28.5	27.8	38.0	48.1	43.0	: Transmission Loss
20.1	20.1	20.1	20.1	20.1	20.1	: Wall Surface Area Factor
20.0	20.0	20.0	20.0	20.8	20.8	: Absorption
20.8	25.1	28.3	22.1	11.2	10.3	: Noise Level
31.2						

Project Name: Strauss 5th Avenue Project # : B50405N1 R

Wall 1 of 2

Room Name: Unit 218 Living/Dining Room						Room Type :	Medium	Soft					
6 6							<u>125 Hz</u>		<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
				Reve	rberatio	on Time (sec) :	0.8	0.8	0.8	0.8	0.7	0.7	: Fairly Absorptive Room
				Room	Absorp	tion (Sabins) :	225	225	225	225	281	281	
	_												
					Noise	Level	<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
		Source 1:	Traffic		64.7	CNEL	48.0	53.5	56.0	60.0	60.0	54.0	: Traffic Spectrum
		Source 2:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
		Source 3:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
		Source 4:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
		Overall:			64.7	CNEL	48.0	53.5	56.0	60.0	60.0	54.0	: Effective Noise Spectrum
Assembly Type	<u> </u>	<u>Open</u>	<u>Width</u>	Height	<u>Qty</u>	Total Area	<u>125 Hz</u>	<u>250 Hz</u>		<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
STC 57 Exterior Wall		N	27	9.25	1	118.8	32	48	53	58	62	64	
STC 28 1/2-inch Dual Insulating Window		Y	2.5	5.5	2	27.5	23	23	22	32	43	37	
STC 28 1/2-inch Dual Insulating Window		Y	3	2	1	6.0	23	23	22	32	43	37	
STC 28 1/2-inch Dual Insulating Window		N	8.5	9	1	76.5	23	23	22	32	43	37	
STC 28 French Door with seals		Y	3	7	1	21.0	23	23	22	32	43	37	
<n a=""></n>		Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>		Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>		Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>		Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>		Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>		Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>		Ν	0	0	0	0.0	0	0	0	0	0	0	
	Room Depth:	15	ft	Overa	II Area	249.75	ft2						

Room Depth:	15	ft	Overall Area:	2
			Volume:	:

249.75 ft² 3746

ft3

Windows Open Interior Noise Level:	55.2	CNEL
Windows Closed Interior Noise Level:	34 7	CNEL

125 Hz	250 Hz	<u>500 Hz</u>	1KHz	2KHz	4KHz	
48.0	53.5	56.0	60.0	60.0	54.0	: Exterior Wall Noise Exposure
9.5	9.5	9.5	9.6	9.6	9.6	: Transmission Loss
24.0	24.0	24.0	24.0	24.0	24.0	: Wall Surface Area Factor
23.5	23.5	23.5	23.5	24.5	24.5	: Absorption
38.9	44.4	46.9	50.9	49.9	43.9	: Noise Level
55.2	CNEL	WINDOWS	S OPEN			
125 Hz	<u>250 Hz</u>	<u>500 Hz</u>	1KHz	<u>2KHz</u>	4KHz	
48.0	53.5	56.0	60.0	60.0	54.0	: Exterior Wall Noise Exposure
25.2	25.7	24.9	35.1	45.4	40.1	: Transmission Loss
24.0	24.0	24.0	24.0	24.0	24.0	: Wall Surface Area Factor
23.5	23.5	23.5	23.5	24.5	24.5	: Absorption
23.2	28.3	31.6	25.3	14.1	13.4	: Noise Level
34.3	CNEL	WINDOWS				

Project Name: Strauss 5th Avenue Project # : B50405N1 Room Name: Unit 218 Living/Dining Room

Wall 2 of 2

				Noise	Level	<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
	Source 1:	Traffic		57.8	CNEL	41.1	46.6	49.1	53.1	53.1	47.1	: Traffic Spectrum
	Source 2:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
	Source 3:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
	Source 4:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
	Overall:			57.8	CNEL	41.1	46.6	49.1	53.1	53.1	47.1	: Effective Noise Spectrum
Assembly Type	<u>Open</u>	Width	Height	Qty	Total Area	<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
STC 57 Exterior Wall	Ν	13	9.25	1	66.3	32	48	53	58	62	64	
STC 28 1/2-inch Dual Insulating Window	Ν	6	9	1	54.0	23	23	22	32	43	37	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	

Overall Area: 120.25 ft²

<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	1KHz	<u>2KHz</u>	<u>4KHz</u>	
41.1	46.6	49.1	53.1	53.1	47.1	: Exterior Wall Noise Exposure
25.7	26.3	25.6	35.8	46.0	40.8	: Transmission Loss
20.8	20.8	20.8	20.8	20.8	20.8	: Wall Surface Area Factor
23.5	23.5	23.5	23.5	24.5	24.5	: Absorption
12.6	17.6	20.8	14.6	3.4	2.6	: Noise Level
23.6	CNEL	WINDOWS	OPEN			
125 Hz	<u>250 Hz</u>	<u>500 Hz</u>	1KHz	<u>2KHz</u>	4KHz	
41.1	46.6	49.1	53.1	53.1	47.1	: Exterior Wall Noise Exposure
25.7	26.3	25.6	35.8	46.0	40.8	: Transmission Loss
20.8	20.8	20.8	20.8	20.8	20.8	: Wall Surface Area Factor
23.5	23.5	23.5	23.5	24.5	24.5	: Absorption
12.6	17.6	20.8	14.6	3.4	2.6	: Noise Level
23.6	CNEL	WINDOWS	CLOSED			

Project Name: Strauss 5th Avenue Project # : B50405N1 Room Name: Unit 219 Bedroom

Wall 1 of 1

. 200-0011												
me: Unit 219 Bedroom					Room Type :	Soft						
						<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
			Reve	rberatio	on Time (sec) :	0.6	0.6	0.6	0.6	0.5	0.5	: Highly Absorptive Room
			Room	Absorp	otion (Sabins) :	104	104	104	104	125	125	
				Noise	Level	<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
	Source 1:	Traffic		64.7	CNEL	48.0	53.5	56.0	60.0	60.0	54.0	: Traffic Spectrum
	Source 2:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
	Source 3:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
	Source 4:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
	Overall:			64.7	CNEL	48.0	53.5	56.0	60.0	60.0	54.0	: Effective Noise Spectrum
Assembly Type	Open	Width	Height	<u>Qty</u>	Total Area	<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	1KHz	<u>2KHz</u>	<u>4KHz</u>	
STC 57 Exterior Wall	N	11	9.25	1	74.3	32	48	53	58	62	64	
STC 28 1/2-inch Dual Insulating Window	Y	2.5	5.5	2	27.5	23	23	22	32	43	37	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	

Room Depth:	12.5	ft	Overall Area:	101.75	ft²
			Volume:	1272	ft ³

Windows Open Interior Noise Level:	55.6	CNEL
Windows Closed Interior Noise Level:	31.0	CNEL

<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	1KHz	2KHz	<u>4KHz</u>	
48.0	53.5	56.0	60.0	60.0	54.0	: Exterior Wall Noise Exposure
8.7	8.7	8.7	8.7	8.7	8.7	: Transmission Loss
20.1	20.1	20.1	20.1	20.1	20.1	: Wall Surface Area Factor
20.2	20.2	20.2	20.2	21.0	21.0	: Absorption
39.3	44.7	47.3	51.2	50.4	44.4	: Noise Level
55.6	CNEL	WINDOWS	S OPEN			
<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
48.0	53.5	56.0	60.0	60.0	54.0	: Exterior Wall Noise Exposure
27.3	28.5	27.8	38.0	48.1	43.0	: Transmission Loss
20.1	20.1	20.1	20.1	20.1	20.1	: Wall Surface Area Factor
20.2	20.2	20.2	20.2	21.0	21.0	: Absorption
20.6	24.9	28.2	21.9	11.0	10.1	: Noise Level
31.0	CNEL	WINDOWS				

Project Name: Strauss 5th Avenue Project # : B50405N1 Room Name: Unit 219 Living/Dining Roo

Wall 1 of 2

Room Name: Unit 219 Living/Dining Room					Room Type :	Medium	Soft					
						<u>125 Hz</u>		<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
			Reve	rberatio	on Time (sec) :	0.8	0.8	0.8	0.8	0.7	0.7	: Fairly Absorptive Room
			Room	Absorp	otion (Sabins) :	97	97	97	97	121	121	
				Noise	Level	<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
	Source 1:	Traffic		64.7	CNEL	48.0	53.5	56.0	60.0	60.0	54.0	: Traffic Spectrum
	Source 2:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
	Source 3:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
	Source 4:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
	Overall:			64.7	CNEL	48.0	53.5	56.0	60.0	60.0	54.0	: Effective Noise Spectrum
Assembly Type	<u>Open</u>	Width	Height	<u>Qty</u>	Total Area	<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
STC 57 Exterior Wall	Ν	12.5	9.25	1	12.1	32	48	53	58	62	64	
STC 28 1/2-inch Dual Insulating Window	Y	3	2	1	6.0	23	23	22	32	43	37	
STC 28 1/2-inch Dual Insulating Window	N	8.5	9	1	76.5	23	23	22	32	43	37	
STC 28 French Door with seals	Y	3	7	1	21.0	23	23	22	32	43	37	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	

Room Depth:	14	ft	Overall Area:	115.625	ft²
			Volume:	1619	ft ³

Number of Impacted Walls: 2

Windows Open		
Interior Noise Level:	55.8	CNEL
Windows Closed		
Interior Noise Level:	36.9	CNEL

<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	1KHz	2KHz	<u>4KHz</u>	
48.0	53.5	56.0	60.0	60.0	54.0	: Exterior Wall Noise Exposure
9.2	9.2	9.2	9.3	9.3	9.3	: Transmission Loss
20.6	20.6	20.6	20.6	20.6	20.6	: Wall Surface Area Factor
19.9	19.9	19.9	19.9	20.8	20.8	: Absorption
39.6	45.1	47.6	51.5	50.5	44.5	: Noise Level
55.8	CNEL	WINDOWS	S OPEN			
<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
48.0	53.5	56.0	60.0	60.0	54.0	: Exterior Wall Noise Exposure
23.3	23.4	22.6	32.8	43.1	37.8	: Transmission Loss
20.6	20.6	20.6	20.6	20.6	20.6	: Wall Surface Area Factor
19.9	19.9	19.9	19.9	20.8	20.8	: Absorption
25.5	30.9	34.2	27.9	16.7	16.0	: Noise Level
36.9	CNEL	WINDOWS				

Project Name: Strauss 5th Avenue Project # : B50405N1 Room Name: Unit 219 Living/Dining Room

Wall 2 of 2

			Noise	Level	<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
Source 1: T	Traffic		56.7	CNEL	40.0	45.5	48.0	52.0	52.0	46.0	: Traffic Spectrum
Source 2: <	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Source 3: <	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Source 4: <	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Overall:			56.7	CNEL	40.0	45.5	48.0	52.0	52.0	46.0	: Effective Noise Spectrum
Assembly Type Open	Width	Height	<u>Qty</u>	Total Area	<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
STC 57 Exterior Wall N	14	9.25	1	129.5	32	48	53	58	62	64	
<n a=""> N</n>	0	0	0	0.0	0	0	0	0	0	0	
<n a=""> N</n>	0	0	0	0.0	0	0	0	0	0	0	
<n a=""> N</n>	0	0	0	0.0	0	0	0	0	0	0	
<n a=""> N</n>	0	0	0	0.0	0	0	0	0	0	0	
<n a=""> N</n>	0	0	0	0.0	0	0	0	0	0	0	
<n a=""> N</n>	0	0	0	0.0	0	0	0	0	0	0	
<n a=""> N</n>	0	0	0	0.0	0	0	0	0	0	0	
<n a=""> N</n>	0	0	0	0.0	0	0	0	0	0	0	
<n a=""> N</n>	0	0	0	0.0	0	0	0	0	0	0	
<n a=""> N</n>	0	0	0	0.0	0	0	0	0	0	0	
<n a=""> N</n>	0	0	0	0.0	0	0	0	0	0	0	

Overall Area: 129.5 ft²

125 Hz	<u>250 Hz</u>	500 Hz	1KHz	2KHz	<u>4KHz</u>	
40.0	45.5	48.0	52.0	52.0	46.0	: Exterior Wall Noise Exposure
32.0	48.0	53.0	58.0	62.0	64.0	: Transmission Loss
21.1	21.1	21.1	21.1	21.1	21.1	: Wall Surface Area Factor
19.9	19.9	19.9	19.9	20.8	20.8	: Absorption
9.3	-1.2	-3.7	-4.7	-9.7	-17.7	: Noise Level
10.0	CNEL	WINDOWS	6 OPEN			
125 Hz	<u>250 Hz</u>	<u>500 Hz</u>	1KHz	<u>2KHz</u>	4KHz	
40.0	45.5	48.0	52.0	52.0	46.0	: Exterior Wall Noise Exposure
32.0	48.0	53.0	58.0	62.0	64.0	: Transmission Loss
21.1	21.1	21.1	21.1	21.1	21.1	: Wall Surface Area Factor
19.9	19.9	19.9	19.9	20.8	20.8	: Absorption
9.3	-1.2	-3.7	-4.7	-9.7	-17.7	: Noise Level
10.0	CNEL	WINDOWS	CLOSED			

Project Name: Strauss 5th Avenue Project # : B50405N1 Room Name

Wall 1 of 1

me: Unit 302 Bedroom 2					Room Type :							
							<u>250 Hz</u>		<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
					on Time (sec) :		0.6	0.6	0.6	0.5	0.5	: Highly Absorptive Room
			Room	Absorp	otion (Sabins) :	94	94	94	94	113	113	
				Noise	Level	<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
	Source 1:	Traffic		64.4	CNEL	47.7	53.2	55.7	59.7	59.7	53.7	: Traffic Spectrum
	Source 2:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
	Source 3:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
	Source 4:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
	Overall:			64.4	CNEL	47.7	53.2	55.7	59.7	59.7	53.7	: Effective Noise Spectrum
Assembly Type	Open	Width	<u>Height</u>	Qty	Total Area	<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
STC 57 Exterior Wall	N	12.5	9.25	1	80.6	32	48	53	58	62	64	
STC 28 1/2-inch Dual Insulating Window	Y	2.5	7	2	35.0	23	23	22	32	43	37	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	

Room Depth:	10	ft	Overall Area:	115.625	ft²
			Volume:	1156	ft ³

Number of Impacted Walls: 1

Windows Open		
Interior Noise Level:	56.8	CNEL
Windows Closed		
Interior Noise Level:	32.1	CNEL

<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	1KHz	<u>2KHz</u>	<u>4KHz</u>	
47.7	53.2	55.7	59.7	59.7	53.7	: Exterior Wall Noise Exposure
8.2	8.2	8.2	8.2	8.2	8.2	: Transmission Loss
20.6	20.6	20.6	20.6	20.6	20.6	: Wall Surface Area Factor
19.8	19.8	19.8	19.8	20.5	20.5	: Absorption
40.4	45.9	48.4	52.4	51.6	45.6	: Noise Level
56.8	CNEL	WINDOWS	6 OPEN			
<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	1KHz	<u>2KHz</u>	4KHz	
47.7	53.2	55.7	59.7	59.7	53.7	: Exterior Wall Noise Exposure
27.0	28.0	27.3	37.5	47.7	42.5	: Transmission Loss
20.6						
20.0	20.6	20.6	20.6	20.6	20.6	: Wall Surface Area Factor
19.8	20.6 19.8	20.6 19.8	20.6 19.8	20.6 20.5	20.6 20.5	: Wall Surface Area Factor : Absorption

Project Name: Strauss 5th Avenue Project # : B50405N1 Room Name: Unit 302 Living/Dining Roo

Wall 1 of 2

ft³

Room Name: Unit 302 Living/Dining Room				Room Type : Medium Soft									
······································								250 Hz	<u>500 Hz</u>	1KHz	2KHz	4KHz	
				Reve	erberatio	on Time (sec) :	0.8	0.8	0.8	0.8	0.7	0.7	: Fairly Absorptive Room
				Room	Absorp	otion (Sabins) :	124	124	124	124	155	155	
					Noise	Level	<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
		Source 1:	Traffic		64.4	CNEL	47.7	53.2	55.7	59.7	59.7	53.7	: Traffic Spectrum
		Source 2:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
		Source 3:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
		Source 4:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
		Overall:			64.4	CNEL	47.7	53.2	55.7	59.7	59.7	53.7	: Effective Noise Spectrum
Assembly Type		<u>Open</u>	<u>Width</u>	Height	Qty	Total Area	<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
STC 57 Exterior Wall		Ν	14	9.25	1	26.0	32	48	53	58	62	64	
STC 28 1/2-inch Dual Insulating Window		Y	3	2	1	6.0	23	23	22	32	43	37	
STC 28 1/2-inch Dual Insulating Window		Ν	8.5	9	1	76.5	23	23	22	32	43	37	
STC 28 French Door with seals		Y	3	7	1	21.0	23	23	22	32	43	37	
<n a=""></n>		Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>		Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>		Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>		Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>		Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>		Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>		Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>		Ν	0	0	0	0.0	0	0	0	0	0	0	
	Room Depth:	16	ft	Overa	II Area	: 129.5	ft²						

Room Depth:	16	ft	Overall Area:	129.5
			Volume:	2072

Number of Impacted Walls: 2

Windows Open		
Interior Noise Level:	55.9	CNEL
Windows Closed		
Interior Noise Level:	36.0	CNEL

125 Hz	<u>250 Hz</u>	<u>500 Hz</u>	<u>1KHz</u>	2KHz	<u>4KHz</u>	
47.7	53.2	55.7	59.7	59.7	53.7	: Exterior Wall Noise Exposure
9.7	9.7	9.6	9.8	9.8	9.8	: Transmission Loss
21.1	21.1	21.1	21.1	21.1	21.1	: Wall Surface Area Factor
20.9	20.9	20.9	20.9	21.9	21.9	: Absorption
38.2	43.7	46.2	50.1	49.1	43.1	: Noise Level
54.4	CNEL	WINDOWS	6 OPEN			
<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	1KHz	<u>2KHz</u>	4KHz	
47.7	53.2	55.7	59.7	59.7	53.7	: Exterior Wall Noise Exposure
23.7	23.8	23.1	33.3	43.6	38.3	: Transmission Loss
21.1	21.1	21.1	21.1	21.1	21.1	: Wall Surface Area Factor
20.9	20.9	20.9	20.9	21.9	21.9	: Absorption
24.2	29.5	32.8	26.6	15.4	14.6	: Noise Level

Project Name: Strauss 5th Avenue Project # : B50405N1 Room Name: Unit 302 Living/Dining Room

Wall 2 of 2

				Noise	Level	<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	<u>1KHz</u>	2KHz	<u>4KHz</u>	
	Source 1:	Traffic		59.3	CNEL	42.6	48.1	50.6	54.6	54.6	48.6	: Traffic Spectrum
	Source 2:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
	Source 3:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
	Source 4:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
	Overall:			59.3	CNEL	42.6	48.1	50.6	54.6	54.6	48.6	: Effective Noise Spectrum
Assembly Type	Open	<u>Width</u>	<u>Height</u>	Qty	Total Area	<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
STC 57 Exterior Wall	N	16	9.25	1	113.0	32	48	53	58	62	64	
STC 28 1/2-inch Dual Insulating Window	Y	2.5	7	2	35.0	23	23	22	32	43	37	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	

Overall Area: 148

ft²

125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
42.6	48.1	50.6	54.6	54.6	48.6	: Exterior Wall Noise Exposure
9.2	9.2	9.2	9.3	9.3	9.3	: Transmission Loss
21.7	21.7	21.7	21.7	21.7	21.7	: Wall Surface Area Factor
20.9	20.9	20.9	20.9	21.9	21.9	: Absorption
34.1	39.6	42.1	46.1	45.1	39.1	: Noise Level
50.4	CNEL	WINDOWS	OPEN			
125 Hz	<u>250 Hz</u>	<u>500 Hz</u>	1KHz	<u>2KHz</u>	4KHz	
42.6	48.1	50.6	54.6	54.6	48.6	: Exterior Wall Noise Exposure
27.7	29.1	28.3	38.6	48.7	43.6	: Transmission Loss
21.7	21.7	21.7	21.7	21.7	21.7	: Wall Surface Area Factor
20.9	20.9	20.9	20.9	21.9	21.9	: Absorption
15.7	19.8	23.0	16.8	5.7	4.8	: Noise Level
25.9	CNEL	WINDOWS	CLOSED			

Project Name: Strauss 5th Avenue Project # : B50405N1 Room Name: Unit 303 Living/Dining Roo

Wall 1 of 1

175.75

2461

ft²

ft³

Room Name: Unit 303 Living/Dining Room						Room Type :	Medium	Soft					
Room Name. Onit 505 Elving/Dining Room						Room type .	125 Hz		500 Hz	1KHz	2KHz	4KHz	
				Reve	rberatio	on Time (sec) :		0.8	0.8	0.8	0.7	0.7	: Fairly Absorptive Room
						tion (Sabins) :		148	148	148	185	185	
						(-	-		-			
					Noise	Level	<u>125 Hz</u>	<u>250 Hz</u>	500 Hz	1KHz	<u>2KHz</u>	<u>4KHz</u>	
		Source 1:	Traffic		64.4	CNEL	47.7	53.2	55.7	59.7	59.7	53.7	: Traffic Spectrum
		Source 2:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
		Source 3:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
		Source 4:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
		Overall:			64.4	CNEL	47.7	53.2	55.7	59.7	59.7	53.7	: Effective Noise Spectrum
Assembly Type		<u>Open</u>	Width	<u>Height</u>	<u>Qty</u>	Total Area	<u>125 Hz</u>		<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
STC 57 Exterior Wall		Ν	19	9.25	1	72.3	32	48	53	58	62	64	
STC 28 1/2-inch Dual Insulating Window		Y	3	2	1	6.0	23	23	22	32	43	37	
STC 28 1/2-inch Dual Insulating Window		N	8.5	9	1	76.5	23	23	22	32	43	37	
STC 28 French Door with seals		Y	3	7	1	21.0	23	23	22	32	43	37	
<n a=""></n>		Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>		Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>		Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>		Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>		Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>		Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>		Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>		Ν	0	0	0	0.0	0	0	0	0	0	0	
	Room Denth:	14	ft	Overa	II Area	175 75	ft2						

Overall Area:	ft	14	Room Depth:
Volume:			

Number of Impacted Walls: 1

Windows Open Interior Noise Level:	53.7	CNEL
Windows Closed Interior Noise Level:	34.8	CNEL

125 Hz	<u>250 Hz</u>	<u>500 Hz</u>	1KHz	2KHz	<u>4KHz</u>	
47.7	53.2	55.7	59.7	59.7	53.7	: Exterior Wall Noise Exposure
11.0	11.0	11.0	11.1	11.1	11.1	: Transmission Loss
22.4	22.4	22.4	22.4	22.4	22.4	: Wall Surface Area Factor
21.7	21.7	21.7	21.7	22.7	22.7	: Absorption
37.5	43.0	45.5	49.3	48.4	42.4	: Noise Level
53.7	CNEL	WINDOWS	S OPEN			
<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	4KHz	
47.7	53.2	55.7	59.7	59.7	53.7	: Exterior Wall Noise Exposure
24.8	25.2	24.4	34.6	44.9	39.6	: Transmission Loss
22.4	22.4	22.4	22.4	22.4	22.4	: Wall Surface Area Factor
21.7	21.7	21.7	21.7	22.7	22.7	: Absorption
23.6	28.8	32.1	25.8	14.6	13.9	: Noise Level

Project Name: Strauss 5th Avenue Project # : B50405N1 Room Name: Unit 304 Master Bedroon

Wall 1 of 2

			-									
Room Name: Unit 304 Master Bedroom					Room Type :							
							<u>250 Hz</u>		<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
					on Time (sec) :	0.6	0.6	0.6	0.6	0.5	0.5	: Highly Absorptive Room
			Room	Absorp	tion (Sabins) :	100	100	100	100	120	120	
				Noise	Level	<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
	Source 1:	Traffic		64.4	CNEL	47.7	53.2	55.7	59.7	59.7	53.7	: Traffic Spectrum
	Source 2:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
	Source 3:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
	Source 4:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
	Overall:			64.4	CNEL	47.7	53.2	55.7	59.7	59.7	53.7	: Effective Noise Spectrum
	_											
Assembly Type	Open	<u>Width</u>	Height	<u>Qty</u>	Total Area	<u>125 Hz</u>		<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
STC 57 Exterior Wall	N	11.5	9.25	1	71.4	32	48	53	58	62	64	
STC 28 1/2-inch Dual Insulating Window	Y	2.5	7	2	35.0	23	23	22	32	43	37	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	

Room Depth:	11.5	ft	Overall Area:	106.375	ft²
			Volume:	1223	ft³

Number of Impacted Walls: 2

Windows Open Interior Noise Level:	56.5	CNEL
	50.5	CNLL
Windows Closed		
Interior Noise Level:	32.0	CNEL

125 Hz	250 Hz	<u>500 Hz</u>	1KHz	2KHz	<u>4KHz</u>	
47.7	53.2	55.7	59.7	59.7	53.7	: Exterior Wall Noise Exposure
7.8	7.8	7.8	7.8	7.8	7.8	: Transmission Loss
20.3	20.3	20.3	20.3	20.3	20.3	: Wall Surface Area Factor
20.0	20.0	20.0	20.0	20.8	20.8	: Absorption
40.2	45.7	48.2	52.1	51.4	45.4	: Noise Level
56.5	CNEL	WINDOWS	OPEN			
<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
<u>125 Hz</u> 47.7	<u>250 Hz</u> 53.2	<u>500 Hz</u> 55.7	<u>1KHz</u> 59.7	<u>2KHz</u> 59.7	<u>4KHz</u> 53.7	: Exterior Wall Noise Exposure
						: Exterior Wall Noise Exposure : Transmission Loss
47.7	53.2	55.7	59.7	59.7	53.7	
47.7 26.7	53.2 27.7	55.7 26.9	59.7 37.1	59.7 47.3	53.7 42.1	: Transmission Loss
47.7 26.7 20.3	53.2 27.7 20.3	55.7 26.9 20.3	59.7 37.1 20.3	59.7 47.3 20.3	53.7 42.1 20.3	: Transmission Loss : Wall Surface Area Factor

Project Name: Strauss 5th Avenue Project # : B50405N1 Room Name: Unit 304 Master Bedroom

Wall 2 of 2

				Noise	Level	<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	1KHz	<u>2KHz</u>	<u>4KHz</u>	
	Source 1:	Traffic		61.6	CNEL	44.9	50.4	52.9	56.9	56.9	50.9	: Traffic Spectrum
	Source 2:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
	Source 3:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
	Source 4:	<n a=""></n>		0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
	Overall:			61.6	CNEL	44.9	50.4	52.9	56.9	56.9	50.9	: Effective Noise Spectrum
Assembly Type	Open	Width	<u>Height</u>	Qty	Total Area	<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
STC 57 Exterior Wall	N	11.5	9.25	1	106.4	32	48	53	58	62	64	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	

Overall Area: 106.375 ft²

125 Hz	<u>250 Hz</u>	<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
44.9	50.4	52.9	56.9	56.9	50.9	: Exterior Wall Noise Exposure
32.0	48.0	53.0	58.0	62.0	64.0	: Transmission Loss
20.3	20.3	20.3	20.3	20.3	20.3	: Wall Surface Area Factor
20.0	20.0	20.0	20.0	20.8	20.8	: Absorption
13.2	2.7	0.2	-0.8	-5.6	-13.6	: Noise Level
14.0	CNEL	WINDOWS	OPEN			
<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	<u>1KHz</u>	<u>2KHz</u>	<u>4KHz</u>	
44.9	50.4	52.9	56.9	56.9	50.9	: Exterior Wall Noise Exposure
32.0	48.0	53.0	58.0	62.0	64.0	: Transmission Loss
20.3	20.3	20.3	20.3	20.3	20.3	: Wall Surface Area Factor
20.0	20.0	20.0	20.0	20.8	20.8	: Absorption
13.2	2.7	0.2	-0.8	-5.6	-13.6	: Noise Level
14.0	CNEL	WINDOWS	S CLOSED			

APPENDIX G

Recommended Products

PEMKO Acoustic Seal Sets:

Making a Sound Difference

Indoor environments like conference rooms, auditoriums and classrooms benefit from a reduction in noise infiltrating from adjacent spaces. Acoustic products such as doors, frames and gasketing reduce the amount of noise traveling between spaces and can help meet specific STC requirements.

PEMKO Acoustic Seal Sets help create quieter environments by sealing the space between door and frame. PEMKO's acoustic gasketing, door bottoms and thresholds make it easy to meet the STC rating required of any opening. Each set has been tested together to determine its sound reduction when used with an STC rated door, taking the guesswork out of selecting products.

In addition, PEMKO acoustic gasketing and inserts have achieved GREENGUARD Gold certification for low chemical emissions.

Features	Benefits
Lab-tested sealing solutions	Superior acoustic performance
Complete solution in a kit	Easy to select and order correct product
Meets ANSI Standard S12.60-2002	Contributes to LEED [®] credits
Use with any STC Rated Doors	Helps meet the rating requirement for the opening
PEMKO gasketing & inserts have achieved GREENGUARD Gold Certification	Low chemical emissions into indoor air

Applications

- Education
- Healthcare
- Hospitality

PEMKO makes ordering the appropriate acoustic components easier by supplying them in sets. These product combinations are lab tested and have known decibel drops when used with Sound Transmission Class (STC) doors.

To determine the appropriate Acoustic Seal Set for your opening, locate the column in the chart which includes the sealed-in-place rating of the STC rated door being used. Next review the decibel drop numbers to find the seal set(s) that will result in the desired operable STC rating.

Each PEMKO Acoustic Seal Set includes gasketing, a door bottom or threshold and a complete set of installation instructions. The instructions show the proper installation location for each component for the best acoustic performance.

Item Number	Se	aled-In-Pl	ace Door	STC rati	ng
	58 to 54	53 to 49	48 to 46	45 to 43	<42
PEMKOSTCSET-1A Alternate Kits: 1B, 1C, 1D, 1E		-2	-2	-1	0
PEMKOSTCSET-2C	-3	-2	-2	-1	0
PEMKOSTCSET-2D Alternate Kits 2A, 2B	-3	-2	-1	-1	0
PEMKOSTCSET-2E	-2	-2	-1	-1	0
PEMKOSTCSET-3A		-2	-1		0
PEMKOSTCSET-3D		-2	-1		0
PEMKOSTCSET-3E	-2		-1		-1

Note: A seal set cannot increase the sealed-in-place rating; a zero drop is the best performance any seal set can provide.

Item Number	Gasketing	Door Bottom	Threshold	Corner Pad
PEMKOSTCSET-1A	S773BL (Single Row) and S44BL (Single Row)	PDB411AE		ACP112
PEMKOSTCSET-1B	S44BL (Two Rows)	PDB411AE		ACP112
PEMKOSTCSET-1C	S442BL (Single Row) and S44BL (Single Row)	PDB411AE		ACP112
PEMKOSTCSET-1D	303AS and S44BL (Single Row)	PDB411AE		ACP112
PEMKOSTCSET-1E	312CR and S44BL (Single Row)	PDB411AE		ACP112
PEMKOSTCSET-2A	S773BL (Single Row) and S44BL (Single Row)		2008STCxQ380A	
PEMKOSTCSET-2B	S44BL (Two Rows)		2008STCxQ380A	
PEMKOSTCSET-2C	S442BL (Single Row) and S44BL (Single Row)		2008STCxQ380A	
PEMKOSTCSET-2D	303AS and S44BL (Single Row)		2008STC×Q380A	
PEMKOSTCSET-2E	312CR and S44BL (Single Row)		2008STCxQ380A	
PEMKOSTCSET-3A	S773BL (Single Row) and S44BL (Single Row)	3692APK773BL		
PEMKOSTCSET-3D	303AS and S44BL (Single Row)	3692APK773BL		
PEMKOSTCSET-3E	312CR and S44BL (Single Row)	3692APK773BL		

ASSA ABLOY is a member of the USGBC and CaGBC U.S. Green Building Council logo is a trademark owned by the U.S. Green Building Council and is used with permission.

Need STC Rated Doors?

PEMKO Acoustic Seal Sets are an important part of an overall acoustic solution. ASSA ABLOY Group brands can provide the other elements of the solution including STC Rated Doors, STC Rated Frames, and complete STC Rated Assemblies.

For more information please see: CECO DOORS: www.cecodoor.com CURRIES: www.curries.com | GRAHAM: www.grahamdoors.com MAIMAN: www.maiman.com | SMP SPECIALTY DOORS: www.secmet.com

ASSA ABLOY is the global leader in door opening solutions, dedicated to satisfying end-user needs for security, safety and convenience

Ventura, CA USA P: 800.283.9988 F: 800.283.4050 Memphis,TN USA P: 800.824.3018 F: 800.243.3656 Vancouver, BC CA P: 877.535.7888 F: 877.535.7444 **Toronto, ON CA** P: 877.535.7888 F: 877.535.7444

www.pemko.com | websales@pemko.com

Copyright © 2013 Pemko Manufacturing Company, an ASSA ABLOY Group company. All rights reserved. Reproduction in whole or in part without the express written permission of Pemko Manufacturing Company is prohibited. 80059 12/13

DRAFT & ACOUSTICAL SOUND SEALANT

OSI ® Greenseries[™] Draft & Acoustical Sound Sealant is a non-flammable, latex-based sealant specially designed to reduce sound transmissions and drafts in all types of wall systems where a soundrated assembly is required. Its primary function is to achieve and maintain the specific STC (Sound Transmission Class) value of the system designed.

The paintable sealant remains flexible and adheres firmly to wood, metal studs, concrete, gypsum board and most other building materials. The easy-to-use sealant cleans up easily with soap and water.

FEATURES

- Permanently flexible
- Easy application and cleanup
- UL Classification R9732; UL 723
- Easy water cleanup
- Low VOC, compliant formula
- Will not harden, crack or separate
- Non-staining & non-migrating
- High degree of adhesive and cohesive strength.

USES

Greenseries[™] Draft & Acoustical was developed primarily for commercial construction utilizing light weight cavity walls and floor systems. Draft & Acoustical Sealant is used successfully in office buildings, hotels, apartment complexes, and other types of commercial & residential construction.

PHYSICAL PROPERTIES

Type Color Solids by weight Toxicity Flammability Flash Point Tooling/Open Time Tack Free Time Cure Time **Application Temperature** Service Temperature Freeze-Thaw Stability Shelf Life Sag or Slump VOC Level Shore "A" Hardness Clean-up Accelerated Weathering

The sealant is used for exposed and unexposed applications at perimeter ioints, floor and ceiling runners, cut outs in gypsum board, veneer plaster systems and other areas where a sound rated assembly is required. The sealant can also be applied or buttered around all electrical boxes and outlets, cold air returns, heating and air conditioning ducts, and other utility equipment penetrating wall surfaces for increased acoustical performance. Also works well for sealing sill and and base plates in residential construction.

SPECIFICATIONS

- UL Classified 48S9 (R9732). Tested in accordance with and conforms to UL 723: U.B.C. Standard No. 42-1 Class I.
- ASTM E84: Surface Burning Characteristics of Building Materials.
- ASTM E90-85: Laboratory Measurement of Airborne-Sound Transmission Loss of Building Materials.
- ASTM D217: Testing Standard for Consistency.

Synthetic Latex Rubber White 75% Toxic only if swallowed. Refer to MSDS. Nonflammable 200°F. TCC (minimum amount of solvent present) 15 minutes 30 minutes 2-7 days 40°F minimum -5°F - 170°F 3 cycles. Unaffected by freezing after curing 1 year from date made at 75°F Nil (ASTM D2202) 22g/l or <1% by wt. 45 +/-5 (Cured 30 days @ room temp.) Water and soap before curing No cracks, discoloration or chalking: 1000 hrs. in Xenon Arc Weatherometer

- ASTM C919-79: Standard Practice for Use of Sealants in Acoustical Applications.
- SCAQMD Rule 1168 V.O.C.; CARB; and BAAQMD compliant
- GREENGUARD Certified
- Meets LEEDS requirements

LIMITATIONS

- Keep from freezing
- Do not use below 40°F. (5°C.).
- Not recommended for use on mirrors or underwater applications.
- Not recommended for exterior use.

PACKAGING

28 oz. cartridges – 12 per case (Item No. GS79928)

STORAGE

Store at 70°F. +/- 5° (21°C) for long shelf life and easy application. Do not store below 40°F. (5°C.).

COVERAGE

3/8" round bead size: approx. 40 lin. ft. per 28 oz. cartridge. 1/4" round bead size: Approx. 89 lin. ft. / 28oz cartridge.

PERFORMANCE CHARACTERISTICS

1. Underwriters Laboratories Inc. Classified 48S9 (R9732) UL 723: Sealant tested for surface burning characteristics

Applied to organic Reinforced Cement Board* Flame Spread 5

Smoke Development 5

*Tested as applied in two 1/2in. beads, 8in. on center. The sealant covered 5.6 percent of the exposed sample area.

2. ASTM E90-85: STC Value – Effect of sealing the opening on a test wall partition.

APPLICATION PROCEEDURES

All surfaces must be clean and free of dust, dirt, oil, moisture and other foreign substances which could interfere with the bond of the sealant.

DIRECTIONS

- 1. Cut spout on tube to desired bead size (3/8" round bead recommended) and puncture seal inside spout.
- Sealant should be applied as specified in the sound-rated system being installed (either wood or metal studs)

A. Bottom & Top Runners: Apply a continuous 3/8" round bead of sealant on runners before setting gypsum board. Gypsum board shall be set into sealant to form complete contact with adjacent materials. Fill joint on top runners to complete seal. Repeat procedure for double layer applications.

B. Cut-Outs and Perimeter Joints. Backs of electrical boxes, pipes, duct systems and other types of utility equipment penetrating wall surfaces shall be buttered with sealant. Seal all joints at perimeter edges including abutting surfaces and corner joints.

3. Maximum joint size should not exceed $\frac{5}{8}$ " x $\frac{1}{2}$ ".

4. Clean tools and excess sealant immediately after application with soap and water.

5. If necessary, sealant can be painted as applicable to meet project requirements after 24 hours.

CAUTION! CONTAINS ETHYLENE

GLYCOL , MINERAL SPIRITS and crystalline silica. Avoid eye contact. Do not take internally. If swallowed, may cause abdominal discomfort. Use with adequate ventilation. Refer to MSDS.

WARNING: This product contains a chemical known to the State of California to cause cancer.

Test partition consisted of metal studs 24'' O.C. with double layer gypsum board, Fire code "C" and attached with screws on both sides. Inside of partition was filled with sound insulation. Partition system was erected and shimmed out 4.75 mm (0.1875in.) at top, bottom and edges.

Results: Sound Transmission Class Value

- 1. Un-sealed partition Arrows show sound travel around or through partitions.
 - a. STC=15
- Single bead of sealant used at top and bottom runners only both sides of partition system.
 a. STC=24

Metal Stud Partition

Door/Window frame in a hollow partition

- Single bead of sealant used at top, bottom and perimeter joints both sides of system.
 a. STC=45
- 4. Double bead of sealant used at top, bottom and perimeter joints both sides of system.
 - a. STC=55

KEEP OUT OF REACH OF CHILDREN

FIRST AID

Eye Contact: In case of eye contact, flush with clean water for at least 15 minutes. Skin Contact: Wash skin thoroughly with soap and water. Ingestion: DO NOT induce vomiting. Seek medical attention. If dizziness occurs, remove to fresh air.

NOTICE TO PURCHASER

Henkel Corporation warrants this product when used according to directions. If not satisfied with the product's performance when used as directed, return sales receipt and used container to Henkel Corporation, 32150 Just Imagine Drive, Avon OH, 44011 for product replacement or refund. User shall determine suitability of product for use and assumes all risk.

QUESTIONS?

For commercial use or other questions pertaining to this product, call Henkel Technical Service at 800-321-0253 M-F, 9am – 4pm. or visit our website at <u>www.greenseries.com</u>.

OSI® GreenSeries[™] Draft & Acoustical Sound Sealant is currently under going tested by GREENGUARD. The GREENGUARD INDOOR AIR QUALITY CERTIFIED Mark is a registered certification mark used under license through the GREENGUARD Environmental Institute.

Henkel Consumer Adhesives Professional Adhesives & Sealants 32150 Just Imagine Drive Avon, OH 44011 U.S.A.

Phone: (440) 937-7000 Fax: (440) 937-7092

AC-20 FTR®

(Fire & Temperature Rated) Acoustical & Insulation Sealant

BASIC USES

• AC-20 FTR[®] fire-rated systems are suitable for applications in schools, hospitals, churches, high-rise office buildings and hotels, prisons, sports arenas, and other public-use buildings to ensure a safe and orderly evacuation in the event of a fire.

2. MANUFACTURER

Pecora Corporation 165 Wambold Road Harleysville, PA 19438 Phone: 215-723-6051 800-523-6688 Fax: 215-721-0286 Website: www.pecora.com

3. PRODUCT DESCRIPTION

AC-20 FTR[®] is a unique acrylic latex sealant that is UL® Classified in firestopping systems for expansion joints and through penetrations. When properly installed, these systems effectively contain fire, smoke, toxic fumes, and water within a given area surrounded by firewalls for a two, three, or four hour period, depending on the design specifications.

Other Uses: Excellent adhesive, flexibility and durability qualities make AC-20 FTR® ideal for insulating and weatherproofing around windows, doors, panels, siding, duct work, base plates, etc. It is compatible with all common building materials including specialties such as polystyrene, polyurethane, cork, vinyl, foamed and fibrous glass.

Used as an acoustical sealant, AC-20 FTR® reduces sound transmission in partition systems to achieve specific STC values by sealing spaces around cut-outs and at perimeters of partitions. The sealant cures to a tough rubber to form a long-lasting acoustical seal.

PACKAGING

• 30 fl. oz. (.887 liter) fiber cartridges

• 5-gallon (18.9 liter) pails

COLOR

• White, Beige-Gray Special colors available in 250-gallon (946 liter) batches.

4. TECHNICAL DATA

Applicable Standards: ASTM C-834-86 specification for latex sealing compounds.

Fire Rated System: Two-hour Fire and Temperature Rated wall and floor joint systems up to 7" (178mm) wide and four-hour systems up to 4" wide can be designed with AC-20 FTR® in conjunction with Ultra Block fire blocking material in fire-rated walls and floors. Reference: ANSI/UL 263, ASTM E-119, NFPA No. 251.

CLASSIFIED

UNDERWRITERS LABORATORIES INC.® **CLASSIFIED JOINT TREATMENT MATERIALS** FIRE RESISTANCE **CLASSIFICATION**

DESIGNS J900H (FFS 0006) &U900 "O" (WWS 0010), J900Z (FFS 2002), U900Z-009 (VVVVS 2008), [900Z-007 (FFS 1010), U900Z-015 (WWS 1012)

AC-20 FTR[®] in conjunction with Ultra Block[®] achieves a 2-hour fire rating when sealing around steel or copper pipe and electrical metallic tubing or steel conduit in through penetration systems. Reference: ANSI/UL 1479.ASTM E-814.

Specification Data Sheet

FILL, VOID OR CAVITY MATERIALS CLASSIFIED BY **UNDERWRITERS** LABORATORIES INC. FOR USE IN THROUGH-PENETRATION FIRESTOP SYSTEM NO. CAJ 1093

In addition to its fire-blocking value, Ultra Block[®] is very efficient acoustically, having a noise reduction coefficient of .75 and sound transmission coefficient of .5 (Ultra Block[®] is a registered trademark of Backer Rod Mfg. and Supply Co., Denver, CO, USA.)

5. INSTALLATION

Surface Preparation: Surfaces must be free of all contamination. Sealant may be applied to damp, porous surfaces. No priming is required.

Application: Refer to Pecora Firestopping Manual 07270 and UL Fire Resistance Directory for installation details on fire-rated joint and through penetration systems. For insulating and weatherproofing purposes, fill all window, door, and panel perimeter joints using a resilient backer rod to control sealant depth to 1/2" (13mm) maximum. For best results, protect sealant from excessive low temperatures and apply above 40°F (4°C). For acoustical purposes, apply continuous

TYPICAL PHYSICAL PROPERTIES											
Test Property	Value	Procedure									
Modulus @ 100% (psi)	15-20	ASTM D412									
Ultimate Tensile (psi)	30-40	ASTM D412									
Ultimate Elongation (%)	400-500	ASTM D412									
Movement Capability (%)	±7 1/2	ASTM D412									
VOC Content	31 g/L										

Since Pecora architectural sealants are applied to varied substrates under diverse environmental conditions and construction situations it is recommended that substrate testing be conducted prior to application.

beads of sealant to seal perimeters of all sound-rated partitions. Apply sealant in the angles formed by metal components or base-layer panels and abutting surfaces. Apply sealant around all openings formed for outlets; electrical, telephone, light fixtures, etc.

Tooling: Tool material flush with surfaces to allow for expected shrinkage and insure good contact and adhesion to the substrate.

Cleaning: Remove excess material with water or a damp cloth before it cures. Sealant may be painted within 30 minutes after application with a good grade of latex paint.

Shelf Life: AC-20 FTR[®] has a shelf life well in excess of one year when stored in unopened containers below 80° F (27°C).

Precautions: AC-20 FTR[®] is non-flammable, non-toxic, non-irritating and environmentally safe. However, do not take internally. Refer to Material Safety Data Sheet for additional information.

Ultra Block[®] is a non-carcinogenic processed continuous filament textile glass fiber that may cause skin, eye and respiratory irritation. When applying, wear long sleeves, gloves, cap, goggles or safety glasses and NIOSH/MSHA-approved dust respirator. After use bathe with soap and warm water. Wash clothes separately and rinse after use. Refer to Material Safety Data Sheet for additional information.

FOR PROFESSIONAL USE ONLY. KEEP OUT OF THE REACH OF CHILDREN.

6. AVAILABILITY AND COST

Pecora products are available from our stocking distributors in all major cities. For the name and telephone number of your nearest representative call one of our locations listed below or visit our website at www.pecora.com.

7.WARRANTY

Pecora Corporation warrants its products to be free of defects. Under this warranty, we will provide, at no charge, replacement materials for, or refund the purchase price of, any product proven to be defective when installed in accordance with our published recommendations and in applications considered by us as suitable from this product. This warranty in lieu of any and all other warranties expressed or implied, and in no case will Pecora be liable for incidental or consequential damages.

8. MAINTENANCE

If the sealant is damaged and the bond is intact, cut out the damaged area and recaulk. No primer is required. If the bond has been affected, remove the sealant, clean and prepare the joint in accordance with instructions under "Installation".

PRODUCTS

9. TECHNICAL SERVICES

Pecora representatives are available to assist you in selecting an appropriate product and to provide on-site application instructions or to conduct jobsite inspections. For further assistance call our Technical Service Department at 800-523-6688.

HARLEYSVILLE, PA 165 Wambold Road, Harleysville, PA 19438 Phone: 800-523-6688 • 215-723-6051 • FAX: 215-721-0286 PERFORMANCE

CE

www.pecora.com

DALLAS, TX 11501 Hillguard Road, Dallas, TX 75243 Phone: 800-233-9754 • 214-348-5313 • FAX: 214-348-5421

APPENDIX H

Cadna Analysis Data and Results

	Cadna Noise Model - Sound Levels													
Name	ID	Туре		Oktave Spectrum (dB)										Source
			Weight	63	125	250	500	1000	2000	4000	8000	Α	lin	
Carrier 25HBC518	L1	Lw	A		49.5	60.0	65.0	69.0	65.5	62.0	55.0	72.5	74.7	Mfr
Carrier 25HBC524	L2	Lw	A		49.5	60.5	62.5	63.5	62	60	54.5	69.1	73	Mfr
Carrier 25HBC530	L3	Lw	A		53	60.5	63.5	67.5	64.5	62	55.5	71.4	74.8	Mfr
Carrier 25HCD436	L4	Lw	A		56.5	59.5	65.5	67	64	63	56	71.7	76.1	Mfr
Mitsubishi PUY-A12	L5	Lw (c)	A				57					57	60.2	Mfr
Fujitsu 9RLFCD	L6	Lw (c)	A				60					60	63.2	Mfr

		Cadna N	loise Mo	del - Point So	ources (1 of 4)			
Name	ID	Result. PWL	L	Lw/Li	Height		Coordinates	
		Day	Туре	Value		Х	Y	Z
		(dBA)			(m)	(m)	(m)	(m)
AC 1	1	69.1	Lw	L2	19.51	149.79	132.46	19.51
AC 2	2	69.1	Lw	L2	19.51	148.70	132.41	19.51
AC 3	3	69.1	Lw	L2	19.51	147.47	132.34	19.51
AC 4	4	69.1	Lw	L2	19.51	146.38	132.37	19.51
AC 5	5	69.1	Lw	L2	19.51	149.95	131.22	19.51
AC 6	6	69.1	Lw	L2	19.51	148.66	131.22	19.51
AC 7	7	69.1	Lw	L2	19.51	147.44	131.22	19.51
AC 8	8	69.1	Lw	L2	19.51	146.38	131.15	19.51
AC 9	9	69.1	Lw	L2	19.51	145.22	131.15	19.51
AC 10	10	69.1	Lw	L2	19.51	144.03	131.12	19.51
AC 11	11	69.1	Lw	L2	19.51	142.98	131.12	19.51
AC 12	12	69.1	Lw	L2	19.51	149.79	129.33	19.51
AC 13	13	69.1	Lw	L2	19.51	148.7	129.33	19.51
AC 14	14	69.1	Lw	L2	19.51	147.44	129.33	19.51
AC 15	15	69.1	Lw	L2	19.51	146.25	129.3	19.51
AC 16	16	69.1	Lw	L2	19.51	145.26	129.33	19.51
AC 17	17	69.1	Lw	L2	19.51	143.93	129.36	19.51
AC 18	18	69.1	Lw	L2	19.51	142.81	129.23	19.51
AC 19	19	72.5	Lw	L1	19.51	130.96	132.62	19.51
AC 20	20	72.5	Lw	L1	19.51	130.88	131.37	19.51
AC 21	21	72.5	Lw	L1	19.51	130.88	130.12	19.51
AC 22	22	72.5	Lw	L1	19.51	130.84	128.83	19.51
AC 23	23	72.5	Lw	L1	19.51	131.01	127.58	19.51
AC 24	24	72.5	Lw	L1	19.51	130.88	126.25	19.51
AC 25	25	72.5	Lw	L1	19.51	130.88	125.24	19.51
AC 26	26	72.5	Lw	L1	19.51	130.88	124.04	19.51
AC 27	27	72.5	Lw	L1	19.51	131.01	122.7	19.51
AC 28	28	72.5	Lw	L1	19.51	130.88	121.33	19.51
AC 29	29	72.5	Lw	L1	19.51	130.8	120.24	19.51
AC 30	30	72.5	Lw	L1	19.51	130.96	118.95	19.51
AC 31	31	72.5	Lw	L1	19.51	129.71	132.66	19.51
AC 32	32	72.5	Lw	L1	19.51	129.67	131.25	19.51
AC 33	33	72.5	Lw	L1	19.51	129.59	130.12	19.51
AC 34	34	72.5	Lw	L1	19.51	129.67	128.91	19.51
AC 35	35	72.5	Lw	L1	19.51	129.71	127.62	19.51
AC 36	36	72.5	Lw	L1	19.51	129.88	126.41	19.51
AC 37	37	72.5	Lw	L1	19.51	129.88	125.12	19.51
AC 38	38	72.5	Lw	L1	19.51	129.67	123.83	19.51
AC 39	39	72.5	Lw	L1	19.51	129.63	122.7	19.51
AC 40	40	72.5	Lw	L1	19.51	129.63	121.45	19.51
AC 41	41	72.5	Lw	L1	19.51	129.63	120.16	19.51
AC 42	42	72.5	Lw	L1	19.51	129.76	118.95	19.51

		Cadna N	loise Mo	del - Point So	ources (2 of 4)			
Name	ID	Result. PWL	L	_w/Li	Height		Coordinates	
		Day	Туре	Value		Х	Y	Z
		(dBA)			(m)	(m)	(m)	(m)
AC 43	43	72.5	Lw	L1	19.51	127.88	132.50	19.51
AC 44	44	72.5	Lw	L1	19.51	127.75	131.41	19.51
AC 45	45	72.5	Lw	L1	19.51	127.8	130.08	19.51
AC 46	46	72.5	Lw	L1	19.51	127.8	128.62	19.51
AC 47	47	72.5	Lw	L1	19.51	127.92	127.62	19.51
AC 48	48	72.5	Lw	L1	19.51	127.88	126.41	19.51
AC 49	49	72.5	Lw	L1	19.51	128.09	125.04	19.51
AC 50	50	72.5	Lw	L1	19.51	126.75	132.58	19.51
AC 51	51	72.5	Lw	L1	19.51	126.75	131.5	19.51
AC 52	52	72.5	Lw	L1	19.51	126.71	130.12	19.51
AC 53	53	72.5	Lw	L1	19.51	126.84	128.75	19.51
AC 54	54	72.5	Lw	L1	19.51	126.71	127.79	19.51
AC 55	55	72.5	Lw	L1	19.51	126.71	126.62	19.51
AC 56	56	72.5	Lw	L1	19.51	126.88	125.2	19.51
AC 57	57	72.5	Lw	L1	19.51	126.63	123.95	19.51
AC 58	58	72.5	Lw	L1	19.51	126.75	122.66	19.51
AC 59	59	72.5	Lw	L1	19.51	126.84	121.66	19.51
AC 60	60	72.5	Lw	L1	19.51	126.71	120.2	19.51
AC 61	61	72.5	Lw	L1	19.51	126.67	119.04	19.51
AC 62	62	71.7	Lw	L4	19.51	127.88	123.99	19.51
AC 63	63	71.7	Lw	L4	19.51	127.88	122.7	19.51
AC 64	64	71.7	Lw	L4	19.51	128	121.37	19.51
AC 65	65	71.7	Lw	L4	19.51	128.05	120.24	19.51
AC 66	66	71.7	Lw	L4	19.51	128	118.95	19.51
AC 67	67	71.4	Lw	L3	19.51	126.75	99.04	19.51
AC 68	68	71.4	Lw	L3	19.51	126.78	97.85	19.51
AC 69	69	71.4	Lw	L3	19.51	126.75	96.6	19.51
AC 70	70	71.4	Lw	L3	19.51	126.88	95.37	19.51
AC 71	71	71.4	Lw	L3	19.51	126.75	94.12	19.51
AC 72	72	71.4	Lw	L3	19.51	126.81	92.99	19.51
AC 73	73	71.4	Lw	L3	19.51	126.71	91.7	19.51
AC 74	74	71.4	Lw	L3	19.51	126.78	90.41	19.51
AC 75	75	71.4	Lw	L3	19.51	126.75	88.56	19.51
AC 76	76	71.4	Lw	L3	19.51	127.91	99.11	19.51
AC 77	77	71.4	Lw	L3	19.51	127.91	97.72	19.51
AC 78	78	71.4	Lw	L3	19.51	127.97	96.53	19.51
AC 79	79	71.4	Lw	L3	19.51	127.97	95.37	19.51
AC 80	80	71.4	Lw	L3	19.51	127.91	94.05	19.51
AC 81	81	71.4	Lw	L3	19.51	127.84	92.83	19.51
AC 82	82	71.4	Lw	L3	19.51	127.81	91.67	19.51
AC 83	83	71.4	Lw	L3	19.51	127.91	90.31	19.51
AC 84	84	71.4	Lw	L3	19.51	127.91	88.53	19.51

		Cadna N	oise Moo	del - Point So	ources (3 of 4)			
Name	ID	Result. PWL		w/Li	Height		Coordinates	
		Day	Туре	Value		х	Y	Z
		(dBA)			(m)	(m)	(m)	(m)
AC 85	85	71.4	Lw	L3	19.51	129.56	99.14	19.51
AC 86	86	71.4	Lw	L3	19.51	129.69	97.99	19.51
AC 87	87	71.4	Lw	L3	19.51	129.72	96.56	19.51
AC 88	88	71.4	Lw	L3	19.51	129.72	95.37	19.51
AC 89	89	71.4	Lw	L3	19.51	129.76	94.12	19.51
AC 90	90	71.4	Lw	L3	19.51	129.72	92.89	19.51
AC 91	91	71.4	Lw	L3	19.51	129.72	91.73	19.51
AC 92	92	71.4	Lw	L3	19.51	129.63	90.34	19.51
AC 93	93	71.4	Lw	L3	19.51	129.76	88.46	19.51
AC 94	94	71.4	Lw	L3	19.51	130.95	99.04	19.51
AC 95	95	71.4	Lw	L3	19.51	130.88	97.79	19.51
AC 96	96	71.4	Lw	L3	19.51	130.88	96.46	19.51
AC 97	97	71.4	Lw	L3	19.51	130.82	95.31	19.51
AC 98	98	71.4	Lw	L3	19.51	130.82	93.98	19.51
AC 99	99	71.4	Lw	L3	19.51	130.82	92.96	19.51
AC 100	100	71.4	Lw	L3	19.51	130.82	91.57	19.51
AC 101	101	71.4	Lw	L3	19.51	130.92	90.34	19.51
AC 102	102	71.4	Lw	L3	19.51	130.88	88.43	19.51
AC 103	102	71.4	Lw	L3	19.51	132.7	90.34	19.51
AC 104	100	71.4	Lw	L3	19.51	133.79	90.28	19.51
AC 105	104	71.4	Lw	L3	19.51	134.92	90.34	19.51
AC 106	100	71.4	Lw	L3	19.51	136.17	90.25	19.51
AC 107	100	71.4	Lw	L3	19.51	132.57	88.53	19.51
AC 108	107	71.4	Lw	L3	19.51	133.66	88.53	19.51
AC 109	100	71.4	Lw	L3	19.51	134.98	88.46	19.51
AC 110	110	71.4	Lw	L3	19.51	136.21	88.46	19.51
AC 111	111	71.4	Lw	L3	19.51	148.61	96.53	19.51
AC 112	112	69.1	Lw	L2	19.51	148.68	94.12	19.51
AC 113	113	69.1	Lw	L2	19.51	149.77	94.12	19.51
AC 114	114	57.0	Lw	L5	19.51	145.23	132.4	19.51
AC 115	115	57	Lw	L5	19.51	144	132.4	19.51
AC 116	116	57	Lw	L5	19.51	142.82	132.47	19.51
AC 117	117	60	Lw	L6	19.51	149.8	99.08	19.51
AC 118	118	60	Lw	L6	19.51	149.77	97.92	19.51
AC 119	119	60	Lw	L6	19.51	149.82	96.64	19.51
AC 120	110	60	Lw	L6	19.51	149.82	95.33	19.51
AC 120	120	60	Lw	L6	19.51	148.7	99	19.51
AC 121	121	60	Lw	L6	19.51	148.72	97.87	19.51
AC 122	122	60	Lw	L6	19.51	148.7	95.25	19.51
AC 123	123	60	Lw	L6	19.51	146.91	99.05	19.51
AC 124	124	60	Lw	L6	19.51	146.96	97.69	19.51
	-			-				
AC 126	126	60	Lw	L6	19.51	146.83	96.53	19.51

Name	ID	Result. PWL		w/Li	ources (4 of 4) Height	·	Coordinates	
Name					Height	X		7
		Day	Туре	Value	(112)		Y	Z
10.107	407	(dBA)	1	1.4	(m)	(m)	(m)	(m)
AC 127	127	72.5	Lw	L1	19.51	126.72	99.75	19.5
AC 128	128	72.5	Lw	L1	19.51	127.93	99.78	19.5
AC 129	129	72.5	Lw	L1	19.51	126.75	100.96	19.5
AC 130	130	72.5	Lw	L1	19.51	127.91	100.98	19.5
AC 131	131	72.5	Lw	L1	19.51	129.75	100.94	19.5
AC 132	132	72.5	Lw	L1	19.51	130.93	100.96	19.5
AC 133	133	72.5	Lw	L1	19.51	129.66	99.67	19.5
AC 134	134	72.5	Lw	L1	19.51	130.87	99.63	19.5
AC 135	135	72.5	Lw	L1	19.51	146.88	95.27	19.5
AC 136	136	72.5	Lw	L1	19.51	146.95	93.93	19.5
AC 137	137	72.5	Lw	L1	19.51	146.85	92.87	19.5
AC 138	138	72.5	Lw	L1	19.51	148.68	92.77	19.5
AC 139	139	72.5	Lw	L1	19.51	149.89	92.77	19.5
AC 140	140	72.5	Lw	L1	19.51	137.76	90.4	19.5
AC 141	141	72.5	Lw	L1	19.51	137.76	88.52	19.5
AC 142	142	72.5	Lw	L1	19.51	146.85	99.94	19.5
AC 143	143	72.5	Lw	L1	19.51	148.64	99.94	19.5
AC 144	144	72.5	Lw	L1	19.51	149.76	99.94	19.5
AC 145	145	72.5	Lw	L1	19.51	150.71	132.32	19.5
AC 146	146	72.5	Lw	L1	19.51	150.73	131.09	19.5
AC 147	147	72.5	Lw	L1	19.51	150.7	129.07	19.5
AC 148	148	72.5	Lw	L1	19.51	126.81	133.51	19.5
AC 149	149	72.5	Lw	L1	19.51	127.86	133.48	19.5
AC 150	150	72.5	Lw	L1	19.51	129.7	133.4	19.5
AC 151	151	72.5	Lw	L1	19.51	130.88	133.43	19.5
AC 152	152	72.5	Lw	L1	19.51	146.77	100.78	19.5
AC 153	153	72.5	Lw	L1	19.51	148.4	101.04	19.5
AC 154	154	72.5	Lw	L1	19.51	149.76	100.88	19.5

	Cadna N	oise Model -	Buildings		
Name	ID	C	oordinates		Absorption
		Х	Y	Z	
		(m)	(m)	(m)	
		116.72	142.14	18.6	
		140.75	142.14	18.6	
		140.75	140.79	18.6	
		147.85	140.79	18.6	
		147.85	141.26	18.6	1
Dropopod Pldg	BL_1	156.94	141.26	18.6	0.37
Proposed Bldg		156.94	75.14	18.6	0.37
		147.73	75.14	18.6	
		147.73	76.86	18.6	1
		142.11	76.86	18.6	1
		142.11	81.82	18.6	1
		116.71	81.82	18.6	1
		116.47	67.15	10.67	
Evicting Pldg	BL_2	116.47	39.16	10.67	0.37
Existing Bldg	DL_2	157.61	39.16	10.67	0.37
		157.61	67.15	10.67]

Cadna Noise Model - Noise Levels at Receivers						
Name	ID	Level Lr	Height	Coordinates		
		Day		Х	Y	Z
		(dBA)	(m)	(m)	(m)	(m)
North	R_1	31.7	1.52	131.45	147.20	1.52
South	R_2	24.1	1.52	122.54	15.42	1.52
East	R_3	30.2	1.52	181.39	112.79	1.52
West	R_4	32.6	1.52	111.88	125.18	1.52
South-2nd	R_5	28.6	4.57	122.54	15.42	4.57
East-2nd	R_6	31.6	4.57	181.39	112.79	4.57
West-2nd	R_7	33.3	4.57	111.88	125.18	4.57

APPENDIX I

Temporary Construction Noise Calculations

Job:	Strauss 5th Ave
Job #:	B50405N2
Date:	1/27/2016
Source:	Excavator
Receiver:	North (CR1)

Noise Source]
Noise Level (dBA)	74.3	at	50	feet	
Distances					
Source Elevation	0	feet	at	5	feet above grade
Receiver Elevation:	0	feet	at	5	feet above grade
Source to Receiver Distance:	128	feet			-
Path Calculation					
Source to Receiver Direct Path	Distance:	128	feet		

Sound Pressure Level	66.1	at	128	feet
Hours of Use:	8	_		
Duty Cycle (%):	40			
Level During 8 Hour day:	62.2			
		-		

Summation	
Number of Sources:	2
Level during 8 hour day:	67.6
g •	

Job:Strauss 5th AveJob #:B50405N2Date:1/27/2016Source:Dump Truck (x 2)Receiver:North (CR1)

Noise Source]
Noise Level (dBA) _	78.3	at	50	feet	
Distances					
Source Elevation	0	feet	at	5	feet above grade
Receiver Elevation:	0	feet	at	5	feet above grade
Source to Receiver Distance:	128	feet	_		_
Path Calculation					
Source to Receiver Direct Path	Distance:	128	feet		
Sound Pressure Level	70.1	at	128	feet	1
Hours of Use:	8				
Duty Cycle (%):	40				
Level During 8 Hour day:	66.2				

Job:	Strauss 5th Ave
Job #:	B50405N2
Date:	1/27/2016
Source:	Excavator
Receiver:	East (CR2)

Noise Source]
Noise Level (dBA)	74.3	at	50	feet	
Distances					
Source Elevation	0	feet	at	5	feet above grade
Receiver Elevation:	0	feet	at	5	feet above grade
Source to Receiver Distance:	142	feet			-
Path Calculation				1	
Source to Receiver Direct Path	Distance:	142	feet		

Sound Pressure Level	65.2	at	142	feet
Hours of Use:	8	_		
Duty Cycle (%):	40	_		
Level During 8 Hour day:	61.3			
		_		

Summation	
Number of Sources:	2
	aa 7
Level during 8 hour day:	66.7
-	

Job:Strauss 5th AveJob #:B50405N2Date:1/27/2016Source:Dump Truck (x 2)Receiver:East (CR2)

Noise Source				
Noise Level (dBA) 78	. <u>3</u> at	50	feet	
Distances				
Source Elevation 0) feet	at	5	feet above grade
Receiver Elevation: 0) feet	at	5	feet above grade
Source to Receiver Distance: 14	feet			-
Path Calculation				
Source to Receiver Direct Path Dista	ance: 142	feet		
				-
Sound Pressure Level 69	.2 at	142	feet	
Hours of Use: 8	3			
Duty Cycle (%): 4	0			
Level During 8 Hour day: 65	.3			

Job:	Strauss 5th Ave
Job #:	B50405N2
Date:	1/27/2016
Source:	Excavator
Receiver:	West (CR3)

Noise Source					
Noise Level (dBA) _	74.3	at	50	feet	
Distances					-
Source Elevation	0	feet	at	5	feet above grade
Receiver Elevation:	0	feet	at	5	feet above grade
Source to Receiver Distance:	85	feet			
Path Calculation					
Source to Receiver Direct Path	Distance:	85	feet		
Sound Pressure Level	69.7	at	85	feet]

Hours of Use:	8
Duty Cycle (%):	40
Level During 8 Hour day:	65.7

Summation	
Number of Sources:	2
Level during 8 hour day:	71.2
_	

Job:Strauss 5th AveJob #:B50405N2Date:1/27/2016Source:Dump Truck (x 2)Receiver:West (CR3)

Noise Source]
Noise Level (dBA) _	78.3	at	50	feet	
Distances					
Source Elevation	0	feet	at	5	feet above grade
Receiver Elevation:	0	feet	at	5	feet above grade
Source to Receiver Distance:	85	feet	-		_
Path Calculation					
Source to Receiver Direct Path	Distance:	85	feet		
Sound Pressure Level	73.7	at	85	feet	1
Hours of Use:	8				
Duty Cycle (%):	40				
Level During 8 Hour day:	69.7				

Job:	Strauss 5th Ave
Job #:	B50405N2
Date:	1/27/2016
Source:	Excavator
Receiver:	North (CR1)

Noise Source]
Noise Leve	el (dBA)	74.3	at	50	feet	
Distances						
Source El	evation	0	feet	at	5	feet above grade
Receiver Ele	evation:	0	feet	at	5	feet above grade
Source to Receiver Di	stance:	128	feet	-		-
Path Calculation						
Source to Receiver D	irect Path	Distance:	128	feet		

66.1	at	128	feet
8			
40			
62.2	_		
	8 40	8 40	8 40

Summation	
Number of Sources:	3
Level during 8 hour day:	68.1
Level during o nour day.	00.1

Job:Strauss 5th AveJob #:B50405N2Date:1/27/2016Source:Drill RigReceiver:North (CR1)

Noise Source]
Noise Level (dBA)	73.3	at	50	feet	
Distances					
Source Elevation	0	feet	at	5	feet above grade
Receiver Elevation:	0	feet	at	5	feet above grade
Source to Receiver Distance:	128	feet	-		-
Path Calculation					
Source to Receiver Direct Path	Distance:	128	feet		
Sound Pressure Level	65.1	at	128	feet	1
Hours of Use:	8				
Duty Cycle (%):	20				
Level During 8 Hour day:	58.1				

Job:Strauss 5th AveJob #:B50405N2Date:1/27/2016Source:Dump Truck (x 2)Receiver:North (CR1)

Noise Source				Т
Noise Level (dBA) 78.3	at	50	feet	
Distances 0 Source Elevation 0 Receiver Elevation: 0 Source to Receiver Distance: 128	feet feet feet	at at	5 5	feet above grade feet above grade
Path Calculation Source to Receiver Direct Path Distance:	128	feet		
Sound Pressure Level70.1Hours of Use:8Duty Cycle (%):40Level During 8 Hour day:66.2	at	128	feet	

Job:	Strauss 5th Ave
Job #:	B50405N2
Date:	1/27/2016
Source:	Excavator
Receiver:	East (CR2)

Noise Source]
Noise Level (dBA)	74.3	at	50	feet	
Distances					
Source Elevation	0	feet	at	5	feet above grade
Receiver Elevation:	0	feet	at	5	feet above grade
Source to Receiver Distance:	142	feet			-
Path Calculation					
Path Calculation					
Source to Receiver Direct Path	Distance:	142	feet		

Sound Pressure Level	65.2	at	142	feet
Hours of Use:	8			
Duty Cycle (%):	40			
Level During 8 Hour day:	61.3			

Summation	
Number of Sources:	3
Lovel during 9 hour dovr	67.0
Level during 8 hour day:	67.2

Job:	Strauss 5th Ave
Job #:	B50405N2
Date:	1/27/2016
Source:	Drill Rig
Receiver:	East (CR2)

Noise Source]
Noise Level (dBA) <u>73</u>	<mark>.3</mark> at	50	feet	
Distances				
Source Elevation 0 Receiver Elevation: 0 Source to Receiver Distance: 14	feet	at at	5 5	feet above grade feet above grade
Path Calculation Source to Receiver Direct Path Dista	nce: 142	feet		
		_		1
Sound Pressure Level64Hours of Use:8Duty Cycle (%):20Level During 8 Hour day:57)	142	feet	

Job:Strauss 5th AveJob #:B50405N2Date:1/27/2016Source:Dump Truck (x 2)Receiver:East (CR2)

Noine Course				7
Noise Source Noise Level (dBA) 78.3	at	50	feet	
Distances Source Elevation 0 Receiver Elevation: 0 Source to Receiver Distance: 142	feet feet feet	at at	<mark>5</mark> 5	_feet above grade _feet above grade
Path Calculation Source to Receiver Direct Path Distance:	142	feet		
Sound Pressure Level69.2Hours of Use:8Duty Cycle (%):40Level During 8 Hour day:65.3	at	142	feet	

Job:	Strauss 5th Ave
Job #:	B50405N2
Date:	1/27/2016
Source:	Excavator
Receiver:	West (CR3)

Noise Source					
Noise Level (dBA)	74.3	at	50	feet	
Distances					-
Source Elevation	0	feet	at	5	feet above grade
Receiver Elevation:	0	feet	at	5	feet above grade
Source to Receiver Distance:	85	feet	_		-
Path Calculation					
Source to Receiver Direct Path	Distance:	85	feet		
Sound Pressure Level	69.7	at	85	feet	1

8

40

Hours of Use:

Duty Cycle (%):

Number of Sources: 3

Level during 8 hour day: 71.6

Level During 8 Hour day: 65.7

Summation

Job:Strauss 5th AveJob #:B50405N2Date:1/27/2016Source:Drill RigReceiver:West (CR3)

Noise Source]
Noise Level (dBA)	73.3	at	50	feet	
Distances					
Source Elevation	0	feet	at	5	feet above grade
Receiver Elevation:	0	feet	at	5	feet above grade
Source to Receiver Distance:	85	feet	-		-
Path Calculation					
Source to Receiver Direct Path	Distance:	85	feet		
Sound Pressure Level	68.7	at	85	feet]
Hours of Use:	8				
Duty Cycle (%):	20				
Level During 8 Hour day:	61.7				

Job:Strauss 5th AveJob #:B50405N2Date:1/27/2016Source:Dump Truck (x 2)Receiver:West (CR3)

Noise Source				1
Noise Level (dBA) 78.3	at	50	feet	
DistancesSource Elevation0Receiver Elevation:0Source to Receiver Distance:85	feet feet feet	at at	5 5	_feet above grade _feet above grade
Path Calculation Source to Receiver Direct Path Distance:	85	feet		
Sound Pressure Level73.7Hours of Use:8Duty Cycle (%):40Level During 8 Hour day:69.7	at	85	feet	

Job:Strauss 5th AveJob #:B50405N2Date:1/27/2016Source:Concrete Mixer Truck (x2)Receiver:North (CR1)

Noise Source					7
Noise Level (dBA)	79.3	at	50	feet	
Distances					
Source Elevation	0	feet	at	5	feet above grade
Receiver Elevation:	0	feet	at	5	feet above grade
Source to Receiver Distance:	128	feet	-		

Path Calculation

Source to Receiver Direct Path Distance: <u>128</u> feet

Sound Pressure Level	71.1	at	128	feet
Hours of Use:	8			
Duty Cycle (%):	40	_		
Level During 8 Hour day:	67.2	_		

Summation	
Number of Sources:	3
Level during 8 hour day:	67.9
Level daming o floar day.	07.0

Job:Strauss 5th AveJob #:B50405N2Date:1/27/2016Source:Concrete Pump TruckReceiver:North (CR1)

					7
Noise Source					
Noise Level (dBA)	74.3	at	50	feet	
Distances					_
Source Elevation	0	feet	at	5	feet above grade
Receiver Elevation:	0	feet	at	5	feet above grade
Source to Receiver Distance:	128	feet	-		-
Path Calculation					
Source to Receiver Direct Path D	istance:	128	feet		
Sound Pressure Level	66.1	at	128	feet	1
Hours of Use:	8				
Duty Cycle (%):	20				
Level During 8 Hour day:	59.1				

Job:Strauss 5th AveJob #:B50405N2Date:1/27/2016Source:CraneReceiver:North (CR1)

Noise Source				7
Noise Level (dBA) <u>66.3</u>	at	50	feet	
Distances				
Source Elevation 0	feet	at	5	feet above grade
Receiver Elevation: 0	feet	at	5	feet above grade
Source to Receiver Distance: 128	feet	•		-
Path Calculation				
Source to Receiver Direct Path Distance:	128	feet		
Sound Pressure Level 58.1	at	128	feet	1
Hours of Use: 8				
Duty Cycle (%): <u>16</u>				
Level During 8 Hour day:				

Job:Strauss 5th AveJob #:B50405N2Date:1/27/2016Source:Concrete Mixer Truck (x2)Receiver:East (CR2)

Noise Source					
	Noise Level (dBA)	79.3	at	50	feet
Distances					

Source Elevation	0	feet	at	5	feet above grade
Receiver Elevation:	0	feet	at	5	feet above grade
Source to Receiver Distance:	142	feet			

Path Calculation

Source to Receiver Direct Path Distance: 142 feet

Sound Pressure Level	70.2	at	142	feet
Hours of Use:	8			
Duty Cycle (%):	40	_		
Level During 8 Hour day:	66.3			
-		_		

Summation	
Number of Sources:	3
Level during 8 hour day:	67.0
	0110

Job:Strauss 5th AveJob #:B50405N2Date:1/27/2016Source:Concrete Pump TruckReceiver:East (CR2)

Noise Source				1
Noise Level (dBA) 74	<mark>l.3</mark> at	50	feet	
Distances				
Source Elevation) feet	at	5	feet above grade
Receiver Elevation:) feet	at	5	feet above grade
Source to Receiver Distance: 14	feet			
Path Calculation]	
Source to Receiver Direct Path Dista	ance: <u>142</u>	feet		
Sound Pressure Level 65	5.2 at	142	feet	1
Hours of Use:	3		_	
Duty Cycle (%): 2	0			
Level During 8 Hour day: 58	3.2			

Job:Strauss 5th AveJob #:B50405N2Date:1/27/2016Source:CraneReceiver:East (CR2)

Noise Source				7
Noise Level (dBA) <u>66.3</u>	at	50	feet	
Distances				
Source Elevation 0	feet	at	5	feet above grade
Receiver Elevation: 0	feet	at	5	feet above grade
Source to Receiver Distance: 142	feet			_
Path Calculation				
Source to Receiver Direct Path Distance:	142	feet		
Sound Pressure Level 57.2 Hours of Use: 8	at	142	feet	1
Duty Cycle (%): 16				
Level During 8 Hour day: 49.3				

Job:Strauss 5th AveJob #:B50405N2Date:1/27/2016Source:Concrete Mixer Truck (x2)Receiver:West (CR3)

Noise Source					
Noise Level (dBA)	79.3	at	50	feet	
Distances					
Source Elevation	0	feet	at	5	feet above grade
Receiver Elevation:	0	feet	at	5	feet above grade
Source to Receiver Distance:	85	feet			
Path Calculation					
Source to Receiver Direct Path	D : <i>i</i>	85	feet		

Sound Pressure Level	74.7	at	85	feet
Hours of Use:	8			
Duty Cycle (%):	40			
Level During 8 Hour day:	70.7	_		
		-		

Summation		
Number of Sources:	3	_
Level during 8 hour day:	71.4	
		-

Job:Strauss 5th AveJob #:B50405N2Date:1/27/2016Source:Concrete Pump TruckReceiver:West (CR3)

Noise Source					7
Noise Level (dBA)	74.3	at	50	feet	
Distances					
Source Elevation	0	feet	at	5	feet above grade
Receiver Elevation:	0	feet	at	5	feet above grade
Source to Receiver Distance:	85	feet	-		
Path Calculation					
Source to Receiver Direct Path I	Distance:	85	feet		
Sound Pressure Level	69.7	at	85	feet	1
Hours of Use:	8				
Duty Cycle (%):	20				
Level During 8 Hour day:	62.7				

Job:Strauss 5th AveJob #:B50405N2Date:1/27/2016Source:CraneReceiver:West (CR3)

Noise Source]
Noise Level (dBA) <u>66.3</u>	at	50	feet	
Distances				
Source Elevation 0	feet	at	5	feet above grade
Receiver Elevation: 0	feet	at	5	feet above grade
Source to Receiver Distance: 85	feet	-		_
Path Calculation				
Source to Receiver Direct Path Distance:	85	feet		
Sound Pressure Level 61.7	at	85	feet	1
Hours of Use: 8				
Duty Cycle (%): 16				
Level During 8 Hour day: 53.7				

Job:	Strauss 5th Ave
Job #:	B50405N2
Date:	1/27/2016
Source:	Crane
Receiver:	North (CR1)

Summation

Noise Source]
Noise Level (dBA)	66.3	at	50	feet	
Distances					-
Source Elevation	0	feet	at	5	feet above grade
Receiver Elevation:	0	feet	at	5	feet above grade
Source to Receiver Distance:	128	feet			_
Path Calculation					
Source to Receiver Direct Path	n Distance:	128	feet		
Cound Drooming Louis	50.4	a t	100	faat	-
Sound Pressure Level	58.1	at	128	feet	
Hours of Use:	8				

Duty Cycle (%): 16

Number of Sources: 1

Level during 8 hour day: 50.2

Level During 8 Hour day: 50.2

Job:	Strauss 5th Ave
Job #:	B50405N2
Date:	1/27/2016
Source:	Crane
Receiver:	East (CR2)

Noise Source]
Noise Level (dBA)	66.3	at	50	feet	
Distances					-
Source Elevation	0	feet	at	5	feet above grade
Receiver Elevation:	0	feet	at	5	feet above grade
Source to Receiver Distance:	142	feet	-		-
Path Calculation					
Source to Receiver Direct Path	Distance:	142	feet		
					_

Sound Pressure Level	57.2	at	142	feet
Hours of Use:	8	_		
Duty Cycle (%):	16			
Level During 8 Hour day:	49.3	_		

Summation	
Number of Sources:	1
Level during 8 hour day:	49.3

Job:	Strauss 5th Ave
Job #:	B50405N2
Date:	1/27/2016
Source:	Crane
Receiver:	West (CR3)

Noise Source					
Noise Level (dBA)	66.3	at	50	feet	
Distances					2
Source Elevation	0	feet	at	5	feet above grade
Receiver Elevation:	0	feet	at	5	feet above grade
Source to Receiver Distance:	85	feet	_		
Path Calculation					
Source to Receiver Direct Path	Distance:	85	feet		
Sound Pressure Level	61.7	at	85	feet	1
Hours of Use:	8				

Duty Cycle (%): 16

Number of Sources: 1

Level during 8 hour day: 53.7

Level During 8 Hour day: 53.7

Summation