

# **Attachment 1c**



# Quantifying Greenhouse Gas Mitigation Measures

A Resource for Local Government to Assess Emission Reductions from Greenhouse Gas Mitigation Measures

August, 2010



# Quantifying Greenhouse Gas Mitigation Measures

A Resource for Local Government to Assess Emission Reductions from Greenhouse Gas Mitigation Measures

August, 2010

California Air Pollution Control Officers
Association

with

Northeast States for Coordinated Air Use Management

National Association of Clean Air Agencies

**Environ** 

Fehr & Peers

|     | Section          | Category                                                                    | Page<br>#  | Measure<br>#     |
|-----|------------------|-----------------------------------------------------------------------------|------------|------------------|
| 3.0 |                  | Transportation                                                              | 155        |                  |
| 3.1 |                  | Land Use/Location                                                           | 155        |                  |
|     | 3.1.1            | Increase Density                                                            | 155        | LUT-1            |
|     | 3.1.2            | Increase Location Efficiency                                                | 159        | LUT-2            |
|     | 3.1.3            | Increase Diversity of Urban and Suburban Developments (Mixed Use)           | 162        | LUT-3            |
|     | 3.1.4            | Increase Destination Accessibility                                          | 167        | LUT-4            |
|     | 3.1.5            | Increase Transit Accessibility                                              | 171<br>176 | LUT-5            |
|     | 3.1.6            | Integrate Affordable and Below Market Rate Housing                          | 176<br>170 | LUT-6            |
|     | 3.1.7<br>3.1.8   | Orient Project Toward Non-Auto Corridor                                     | 179<br>181 | LUT-7<br>LUT-8   |
|     | 3.1.9            | Locate Project near Bike Path/Bike Lane Improve Design of Development       | 182        | LUT-9            |
| 3.2 | 3.1.3            | Neighborhood/Site Enhancements                                              | 186        | LU1-3            |
| 3.2 | 3.2.1            | Provide Pedestrian Network Improvements                                     | 186        | SDT-1            |
|     | 3.2.2            | Provide Traffic Calming Measures                                            | 190        | SDT-2            |
|     | 3.2.3            | Implement a Neighborhood Electric Vehicle (NEV) Network                     | 194        | SDT-3            |
|     | 3.2.4            | Create Urban Non-Motorized Zones                                            | 198        | SDT-4            |
|     | 3.2.5            | Incorporate Bike Lane Street Design (on-site)                               | 200        | SDT-5            |
|     | 3.2.6            | Provide Bike Parking in Non-Residential Projects                            | 202        | SDT-6            |
|     | 3.2.7            | Provide Bike Parking with Multi-Unit Residential Projects                   | 204        | SDT-7            |
|     | 3.2.8            | Provide Electric Vehicle Parking                                            | 205        | SDT-8            |
|     | 3.2.9            | Dedicate Land for Bike Trails                                               | 206        | SDT-9            |
| 3.3 |                  | Parking Policy/Pricing                                                      | 207        |                  |
|     | 3.3.1            | Limit Parking Supply                                                        | 207        | PDT-1            |
|     | 3.3.2            | Unbundle Parking Costs from Property Cost                                   | 210        | PDT-2            |
|     | 3.3.3            | Implement Market Price Public Parking (On-Street)                           | 213        | PDT-3            |
|     | 3.3.4            | Require Residential Area Parking Permits                                    | 217        | PDT-4            |
| 3.4 |                  | Commute Trip Reduction Programs                                             | 218        |                  |
|     | 3.4.1            | Implement Commute Trip Reduction Program - Voluntary                        | 218        | TRT-1            |
|     | 3.4.2            | Implement Commute Trip Reduction Program – Required                         | 223        | TRT-2            |
|     |                  | Implementation/Monitoring                                                   |            |                  |
|     | 3.4.3            | Provide Ride-Sharing Programs                                               | 227        | TRT-3            |
|     | 3.4.4            | Implement Subsidized or Discounted Transit Program                          | 230        | TRT-4            |
|     | 3.4.5            | Provide End of Trip Facilities                                              | 234        | TRT-5            |
|     | 3.4.6            | Encourage Telecommuting and Alternative Work Schedules                      | 236        | TRT-6            |
|     | 3.4.7            | Implement Commute Trip Reduction Marketing                                  | 240        | TRT-7            |
|     | 3.4.8            | Implement Preferential Parking Permit Program                               | 244        | TRT-8            |
|     | 3.4.9            | Implement Car-Sharing Program                                               | 245        | TRT-9            |
|     | 3.4.10<br>3.4.11 | Implement a School Pool Program  Provide Employer Spansored Vanneel/Shuttle | 250<br>253 | TRT-10<br>TRT-11 |
|     |                  | Provide Employer-Sponsored Vanpool/Shuttle Implement Bike-Sharing Programs  | 253<br>256 | TRT-11           |
|     | 3.4.12<br>3.4.13 | Implement School Bus Program                                                | 256<br>258 | TRT-12           |
|     | 3.4.13           | Price Workplace Parking                                                     | 258<br>261 | TRT-13           |
|     | 3.4.14           | Implement Employee Parking "Cash-Out"                                       | 266        | TRT-14<br>TRT-15 |
|     | 2.4.13           | implement imployee raiking Cash-Out                                         | 200        | 11/1-17          |
|     |                  |                                                                             |            |                  |

|   |     | Section | Category                                                        | Page<br>#   | Measure<br># |
|---|-----|---------|-----------------------------------------------------------------|-------------|--------------|
|   | 3.5 |         | Transit System Improvements                                     | <b>27</b> 0 |              |
|   |     | 3.5.1   | Provide a Bus Rapid Transit System                              | 270         | TST-1        |
|   |     | 3.5.2   | Implement Transit Access Improvements                           | 275         | TST-2        |
|   |     | 3.5.3   | Expand Transit Network                                          | 276         | TST-3        |
|   |     | 3.5.4   | Increase Transit Service Frequency/Speed                        | 280         | TST-4        |
|   |     | 3.5.5   | Provide Bike Parking Near Transit                               | 285         | TST-5        |
|   |     | 3.5.6   | Provide Local Shuttles                                          | 286         | TST-6        |
|   | 3.6 |         | Road Pricing/Management                                         | 287         |              |
|   |     | 3.6.1   | Implement Area or Cordon Pricing                                | 287         | RPT-1        |
|   |     | 3.6.2   | Improve Traffic Flow                                            | 291         | RPT-2        |
|   |     | 3.6.3   | Required Project Contributions to Transportation Infrastructure | 297         | RPT-3        |
|   |     |         | Improvement Projects                                            |             |              |
| _ |     | 3.6.4   | Install Park-and-Ride Lots                                      | 298         | RPT-4        |
|   | 3.7 |         | Vehicles                                                        | 300         |              |
|   |     | 3.7.1   | Electrify Loading Docks and/or Require Idling-Reduction Systems | 300         | VT-1         |
|   |     | 3.7.2   | Utilize Alternative Fueled Vehicles                             | 304         | VT-2         |
|   |     | 3.7.3   | Utilize Electric or Hybrid Vehicles                             | 309         | VT-3         |
| 4 |     |         |                                                                 |             |              |

# **Transportation**

MP# LU-1.7 & LU-2.1.1.4

PDT-1

**Parking Policy / Pricing** 

# 3.3 Parking Policy/Pricing

#### 3.3.1 Limit Parking Supply

**Range of Effectiveness:** 5 - 12.5% vehicle miles travelled (VMT) reduction and therefore 5 - 12.5% reduction in GHG emissions.

#### **Measure Description:**

The project will change parking requirements and types of supply within the project site to encourage "smart growth" development and alternative transportation choices by project residents and employees. This will be accomplished in a multi-faceted strategy:

- Elimination (or reduction) of minimum parking requirements<sup>52</sup>
- · Creation of maximum parking requirements
- Provision of shared parking

#### **Measure Applicability:**

- Urban and suburban context
- Negligible in a rural context
- Appropriate for residential, retail, office, industrial and mixed-use projects
- Reduction can be counted only if spillover parking is controlled (via residential permits and on-street market rate parking) [See PPT-5 and PPT-7]

#### **Baseline Method:**

See introduction to transportation section for a discussion of how to estimate trip rates and VMT. The CO<sub>2</sub> emissions are calculated from VMT as follows:

$$CO_2 = VMT \times EF_{running}$$

Where:

VMT = vehicle miles traveled

EF<sub>running</sub> = emission factor for running emissions

#### Inputs:

The following information needs to be provided by the Project Applicant:

- ITE parking generation rate for project site
- Actual parking provision rate for project site

<sup>&</sup>lt;sup>52</sup> This may require changes to local ordinances and regulations.



# **Transportation**

MP# LU-1.7 & LU-2.1.1.4

PDT-1

**Parking Policy / Pricing** 

# **Mitigation Method:**

% VMT Reduction = 
$$\frac{\text{Actual parkingprovision-ITE parkinggenerationrate}}{\text{ITE parkinggenerationrate}} \times 0.5$$

# **Assumptions:**

Data based upon the following references:

[1] Nelson\Nygaard, 2005. Crediting Low-Traffic Developments (p. 16) <a href="http://www.montgomeryplanning.org/transportation/documents/TripGenerationAn">http://www.montgomeryplanning.org/transportation/documents/TripGenerationAn</a> alysisUsingURBEMIS.pdf

All trips affected are assumed average trip lengths to convert from percentage vehicle trip reduction to VMT reduction (% vehicle trips = %VMT).

#### **Emission Reduction Ranges and Variables:**

| Pollutant         | Category Emissions Reductions <sup>53</sup> |
|-------------------|---------------------------------------------|
| CO <sub>2</sub> e | 5 – 12.5% of running                        |
| PM                | 5 – 12.5% of running                        |
| CO                | 5 – 12.5% of running                        |
| NOx               | 5 – 12.5% of running                        |
| $SO_2$            | 5 – 12.5% of running                        |
| ROG               | 3 – 7.5% of total                           |

#### **Discussion:**

The literature suggests that a 50% reduction in conventional parking provision rates (per ITE rates) should serve as a typical ceiling for the reduction calculation. The upper range of VMT reduction will vary based on the size of the development (total number of spaces provided). ITE rates are used as baseline conditions to measure the effectiveness of this strategy.

Though not specifically documented in the literature, the degree of effectiveness of this measure will vary based on the level of urbanization of the project and surrounding areas, level of existing transit service, level of existing pedestrian and bicycle networks and other factors which would complement the shift away from single-occupant vehicle travel.

208 PDT-1

\_

<sup>&</sup>lt;sup>53</sup> The percentage reduction reflects emission reductions from running emissions. The actual value will be less than this when starting and evaporative emissions are factored into the analysis.



# **Transportation**

MP# LU-1.7 & LU-2.1.1.4

PDT-1

**Parking Policy / Pricing** 

# Example:

If the ITE parking generation rate for the project is 100 spaces, for a low range a 5% reduction in spaces is assumed. For a high range a 25% reduction in spaces is assumed.

- Low range % VMT Reduction = [(100 95)/100] \* 0.5 = 2.5%
- High range % VMT Reduction = [(100 75)/100] \* 0.5 = 12.5%

#### **Preferred Literature:**

To develop this model, Nelson\Nygaard [1] used the Institute of Transportation Engineers' *Parking Generation* handbook as the baseline figure for parking supply. This is assumed to be unconstrained demand. Trip reduction should only be credited if measures are implemented to control for spillover parking in and around the project, such as residential parking permits, metered parking, or time-limited parking.

#### **Alternative Literature:**

- 100% increase in transit ridership
- 100% increase in transit mode share

According to *TCRP Report 95, Chapter 18* [2], the central business district of Portland, Oregon implemented a maximum parking ratio of 1 space per 1,000 square feet of new buildings and implemented surface lot restrictions which limited conditions where buildings could be razed for parking. A "before and after" study was not conducted specifically for the maximum parking requirements and data comes from various surveys and published reports. Based on rough estimates the approximate parking ratio of 3.4 per 1,000 square feet in 1973 (for entire downtown) had been reduce to 1.5 by 1990. Transit mode share increased from 20% to 40%. The increases in transit ridership and mode share are not solely from maximum parking requirements. Other companion strategies, such as market parking pricing and high fuel costs, were in place.

#### **Alternative Literature Sources:**

[1] TCRP Report 95, Chapter 18: Parking Management and Supply: Traveler Response to *Transportation System Changes*. (p. 18-6) http://onlinepubs.trb.org/onlinepubs/tcrp/tcrp/rpt 95c18.pdf

#### Other Literature Reviewed:

None