**Transportation and Stormwater** 

## Development of a Stream Restoration and Protection Prioritization Tool

Vicki Kalkirtz (City of San Diego) Clint Boschen (Tetra Tech) and Jerry Diamond (Tetra Tech)







# Background



- Increasing focus on Biological Integrity
  - Previous reliance on chemical measures
  - Recent scientific advancements
  - Improved assessment of ecosystem health
- Regulatory drivers
  - San Diego Water Board developing numeric Biological Objectives
  - State Water Board Biostimulatory/Biointegrity project
- Ongoing challenges
  - Complexity of stream ecosystems
  - Development of appropriate objectives
  - Causal assessments
  - How to prioritize implementation?







- Many streams in southern California are in fair or poor biological condition
  - Which are highest priority for restoration?
- Some unimpaired streams may be vulnerable to future impacts
  - Which are highest priority for protection?
- City and other stakeholders are interested in identifying which streams will benefit most from restoration or protection
- Provides multiple co-benefits



### **RPP** Overview



### Goals:

- Identify high priority sites for restoration or protection
- Support decision-making and costeffective use of City resources
- Share with other agencies and stakeholders
- Support Biological Objectives implementation



## Key Considerations



#### Restoration

- Subject to stressors causing biological degradation
- Desired biological condition not met
- Often located in close proximity to human land uses
- Preference for sites that are amenable to ecological lift via BMPs or other means

#### Protection

- Vulnerable to stressors ۲
- Achieves at least minimum desired biological condition
- Generally located in areas with lower human pressures ۲
- Preference for sites that are vulnerable to land use • changes and other stressors

- More stakeholder interest in the watershed •
  - Co-benefits (e.g., ecosystem services) can be gained via management actions
  - Connectivity of aquatic life habitats up and downstream

Higher priority for management actions More reasons to restore or protect stream



Greater ecological lift over a larger catchment

Differences

# Similarities













### Highlights:

- Rapidly identify potential stressors and rule out unlikely ones
- Identify major lines of evidence for use in more detailed causal assessments
- Iterate over many sites at once
- Focus effort where it's needed

### Key Components



#### Input Data

- Stressors
  - Water chemistry
  - Physical habitat metrics and index
  - Flow ecology metrics (modeled)
- Responses
  - Benthic macroinvertebrates
  - Algae

#### **Output Data**

- Comparator Sites
  - Clustered by natural characteristics
  - Refined by expected benthic ٠ macroinvertebrate similarity

Sites 4 Clusters

- Potential stressors for evaluation at each site
- Results for each line of evidence
- Overall weight of evidence



# Lines of Evidence



- Spatial/temporal co-occurrence
- Stressor-response relationships for comparator sites
- Temporal sequence
- Stressor-response relationships from other SMC sites
- Species tolerance to fine sediment or high ionic strength (conductivity, TDS)



# CASTool Reporting



#### Weight of Evidence

#### **Overall Findings**

Summarized weight of evidence data are found in the file '902S01097\_BMI\_WoE\_ExecSumm the'Results/902S01097/BMI/WoE' folder. More detailed weight of evidence data are found in t '902S01097\_BMI\_WoE\_ScoresTable.tab' in the'Results/902S01097/BMI/WoE' folder.

Scores for each line of evidence and overall weight of evidence, weighted by numindicates that all evaluated lines of evidence for all observed stressors in the group evidence score of -1 indicates that all evaluated lines of evidence for all observed



\*Stressor samples paired with benthic macroinvertebrate samples rated not degraded

#### Comparator Site Information

Additional comparator site info, including a list of comparator sites and sam folder.

Number of sites by type, group, and quality.

| Group       | Quality       | Comparator Samples | ClusterSamples | AllSamples |
|-------------|---------------|--------------------|----------------|------------|
| All         | All qualities | 51                 | 113            | 1141       |
|             | Degraded      | 30                 | 51             | 550        |
|             | Not degraded  | 21                 | 62             | 591        |
| Better than | All qualities | 2                  | 12             | 197        |
|             | Degraded      | 0                  | 0              | 0          |
|             | Not degraded  | 2                  | 12             | 197        |

All 35 comparator sites have >95% expected biological similarity.





#### **BMI RESULTS**

#### **Biological Index Distributions**



#### sandiego.gov





# **RPPTool Design**



### Highlights:

- Modeled after EPA's RPS tool, but built with more specific data and analyses for the SMC region
- Considers connectivity of target reach to better quality reaches nearby for ecological lift potential
- Utilizes similar scoring methods and user-friendliness
- Interacts with the CASTool results
- R/Shiny-based to better mesh with other regional tools and user friendliness

# **RPPTool Design**



RPP Score based on similar components used in EPA's Recovery Potential Tool:

- Potential for ecological lift
- Current or future threats
- Opportunities synergies with ongoing activities or planned actions
- RPPTool built using Californiaspecific data and tools, especially for SMC region



- **Potential** Influenced by current stressor and landscape constraints
  - If fewer landscape constraints or fewer/easier to manage stressors
- Threats/Vulnerability Future developed land use; fire risk
  - If high projected population growth; high risk of fire
- **Opportunity** Elements that support restoration or protection actions
  - If more stakeholder interest; WQIPs; co-benefits

# Potential Subindex



Greater potential for ecological lift if:

- *Expected* biological condition is better than the *observed* condition at a site
- Lower stressor influence
  - More stressors or more intense stressors = lower potential
- Biological and stressor conditions in nearby reaches are better than the target reach

## Threats Subindex



- Major threats to biological condition in the SMC region:
  - Future population growth and urbanization
    - Projected change in developed land cover
  - Fire Hazard
    - Likelihood of fire over the next 30to 50-years
- Increasing development or risk of fire at a site = lower chance of successful restoration efforts





# **Opportunities Subindex**



- Protection or restoration efforts can be enhanced if associated with:
  - Available ecological co-benefits
  - Available recreational co-benefits
  - Synergies with other user objectives:
    - WQIPs
    - Socio-economic benefits
- Greater opportunities = greater chance of success with restoration or protection efforts

# Potential for Ecological Lift



- Higher score = few stressors or stressors of lower concern (lower weighted normalized value)
- Expected lift (from SCAPE/predicted biological condition and BCG)
  - Higher score = greater potential for restoration (site could be much better) or protection (site could be prevented from getting worse)

- Connectivity (Landscape context)
  - Biology
    - Higher score = better biological quality upstream or both up and downstream
  - Stressors
    - Higher score = fewer stressors or stressors of lower concern from upstream contributing to target reach (from CASTool)

### Determining Biological Condition Potential Based on SCAPE

**Cumulative Distribution Function** 95th %ile 75-Probability 50 25 5th %ile 0.5 1.0 1.5 0.0 CSCI

Predicted CSCI for 17569571 from SCAPE

HINK BLU

### Add Biological Condition Gradient (BCG)



HINKBLU

### Determining Potential for Ecological Lift





#### Biological Connectivity Example





Potential for ecological lift depends in part on the stressor and biological conditions in nearby reaches

- RPPTool compares target reach conditions to up and downstream reaches
- Better conditions nearby = higher likelihood of restoration success

### User Flexibility



- Identify data time period
- Run with/without CASTool results
- Weight the subindices differently
- Weight individual stressors based on relative importance
- Change the size of the landscape area for connectivity analyses
- Add points for headwater reaches
- Add points for reaches having high potential ecological lift







- Web browser interface to R functions
- Can be run from the web or via a local computer with R installed
  - From the web currently developing weblinks
  - Using the Shiny function to launch a web browser and run the app locally

### Mapping / Site Selection



#### Restoration and Protection Potential (RPP) Disclaimer Map, Stations Map, Reach RPP-Calc HELP + The map can take up to 10 seconds to nal Heights load. Please be patient. Use the button (or the map) to select a 58 City Heigh North Park Chollas Creek Station ID. COMID = 20331542 Select Station ID: -After choosing a Station ID click the inker's Hill stream reach to get the Reach ID 137A116 (COMID) for use with the RPP-Calc tab analysis. n Diego E Str Watersheds Streams Diedo Chula Vista Streams (mouse-over) Sites National City Tijuana Sites (mouse-over) <sup>2</sup> ¥ Sites (selected) Leaflet I @ OpenStreetMap contributors, CC-BY-SA







#### sandiego.gov

### User Input Criteria



| Console      | Input, User Criteria                       | Input, Possible Stressors |
|--------------|--------------------------------------------|---------------------------|
| User-De      | efined Input Cri<br>a are specified below. | iteria                    |
| User Input   | S                                          |                           |
| Connectivity | distance (km)                              |                           |
| 5            |                                            |                           |
| Use HW b     | onus?                                      |                           |
| Use BCG      | bonus?                                     |                           |
| Use down     | stream reaches?                            |                           |
| Maximum ye   | ar                                         |                           |
| 2020         |                                            |                           |
| Minimum yea  | ar                                         |                           |
|              |                                            |                           |

Console Input, User Criteria

Input, Possible Stressors

#### Weights for Possible Stressors

| Weights | Count        |       |  |
|---------|--------------|-------|--|
| 0       | Exclude      | 1.00  |  |
| 1       | Default      | 23.00 |  |
| 2       | Double Count | 1.00  |  |

Reset all weights to '1'

Use weights from user import.

#### Weights, Stressors

#### Evenness of flow habitat types



#### Index of physical habitat integrity



#### Riparian cover (sum of three layers)



Wet-season maximum mean monthly streamflow (m3/s)



### RPPTool Report



|                       |          |      |              |             |       |           | Biological |            |          |          |          |         |        |             |            |       |       |         |
|-----------------------|----------|------|--------------|-------------|-------|-----------|------------|------------|----------|----------|----------|---------|--------|-------------|------------|-------|-------|---------|
|                       |          |      | Predicted or |             | RPP   | Potential | Condition  | Biological |          | Stressor | Threat   | Planned | Fire   | Opportunity |            |       |       | User-   |
| SiteID                | COMID    | CSCI | Observed     | Index Type  | Index | Subindex  | Indicator  | Connect.   | Stressor | Connect. | Subindex | Develop | Hazard | Subindex    | Recreation | MSCP  | NASVI | applied |
| SMC04134<br>907SDSDR9 | 20331434 | 0.78 | Observed     | Protection  | 0.703 | 0.502     | 0.333      | 0.0123     | 0.671    | 0.99     | 1        | 0       | NA     | 0.606       | 0.919      | NA    | 0.292 | NA      |
| 907S02774             | 20333052 | 0.69 | Observed     | Restoration | 0.592 | 0.52      | 0          | 0.173      | 0.906    | 1        | 1        | 0       | NA     | 0.255       | 0.0728     | NA    | 0.437 | NA      |
| NA                    | 20333068 | 0.57 | Predicted    | Restoration | 0.419 | 0.333     | 0.333      | NA         | NA       | NA       | 0.431    | 0.147   | 0.991  | 0.494       | 0.279      | 0.263 | 0.436 | 1       |

### Potential Applications



# **City Services**



# Thank you!



#### Vicki Kalkirtz

City of San Diego VKalkirtz@sandiego.gov (858) 541-4326; (619) 727-3587



#### **Clint Boschen**

Tetra Tech Clint.Boschen@sandiego.gov (858) 609-1625; (703) 593-1803

Jerry Diamond Tetra Tech Jerry.Diamond@tetratech.com (410) 902-3145; (443) 244-0861



