APPENDIX F-2. DRAINAGE STUDY

Preliminary Drainage Study for

ARE Science Village

PTS#: 647676 XXXXX-D

Prepared For:

Alexandria Estate Equities, Inc. San Diego, CA 92121 (858) 638-2800

Project Location:

9396 Towne Center Drive San Diego, CA 92121 APN No. 343-200-04, 343-200-05 Parcel Map No. 11786, in the City of San Diego, County of San Diego, CA

Prepared By:

INTERNATIONAL 9755 Clairemont Mesa Blvd San Diego, CA 92124 (858) 614-5000 Jay Sullivan, PE, CFM, QSD

Michael Baker JN: 181315 Prepared: July 2022

Table of Contents

SECTIO	ON 1 PROJECT INFORMATION	.1
1.1	PROJECT DATA	1
1.2	SCOPE OF REPORT	1
1.3	PROJECT DESCRIPTION	1
1.4	EXISTING CONDITIONS	2
1.5	PROPOSED CONDITIONS	2
SECTIO	ON 2 STUDY OBJECTIVES	3
SECTIO	ON 3 METHODOLOGY	3
3.1	Hydrology	3
3.2	Hydraulics	3
SECTIO	DN 4 RESULTS	4
4.1	Hydrologic Results	4
4.2	HYDRAULIC RESULTS	4
SECTIO	DN 5 CONCLUSIONS	4
SECTIO	ON 6 DECLARATION OF RESPONSIBLE CHARGE	5
SECTIO	DN 7 BIBLIOGRAPHY	6

List of Tables

able 4-1 - Hydrologic Summary	

List of Appendices

 $\begin{array}{l} \mbox{Appendix } A-\mbox{Site Information} \\ \mbox{Appendix } B-\mbox{Existing Hydrology} \\ \mbox{Appendix } C-\mbox{Proposed Hydrology} \\ \mbox{Appendix } D-\mbox{Hydraulics} \\ \mbox{Appendix } E-\mbox{Plan Sheets} \\ \end{array}$

Section 1 Project Information

1.1 Project Data

Project Owner:	ARE-SD Region No. 57, LLC		
	10996 Torreyana Rd, Suite 250		
Project Site Address:	9396 Towne Center Drive, San Diego, CA 92121		
APN Number(s):	343-200-04, 343-200-05		
Parcel Area:	3.89-acres		
Project Disturbed Area:	3.89-acres		

1.2 Scope of Report

This report includes analyses of 100-year project-site peak flow under existing and proposed conditions. This report documents the hydrologic impact of the proposed improvements, as compared to the existing condition; and includes preliminary sizing for attenuation measures required to mitigate peak flow.

This report does not address temporary Best Management Practices (BMPs) required during construction, refer to the project Storm Water Pollution Prevention Plan (SWPPP). Post Construction BMPs are addressed in the project Storm Water Quality Management Plan (SWQMP).

1.3 Project Description

Proposed improvements include demolition of an existing building and construction of a new parking structure and new office buildings. Total project-site impervious area will be slightly increased as a result of the proposed improvements; however, peak flow will not be diverted and will be mitigated to less than existing rates via a proposed detention vault.

Based on the Natural Resources Conservation Service's (NRCS) Websoil Survey, the project site is comprised of approximately 86-percent Chesterton fine sandy loam (CfB), with slopes ranging from 2 to 5 percent (hydrologic soil type D); and approximately 14-percent terrace encarpments (TeF) (hydrologic soil type D).

The Federal Emergency Management Agency (FEMA) has not mapped a Special Flood Hazard Area (SFHA) within the project site vicinity. The entire project site lies within un-shaded Zone X, which correlates with areas determined to be outside the 500-year floodplain. An exhibit is provided in Appendix A of this report.

1.4 Existing Conditions

The project site is entirely built out in the existing condition and has been hydrologically analyzed as a single drainage basin. The site drains southeasterly via a combination of surface flow and pipe flow via existing area drains. The project site does not receive run-on from the neighboring property; project site runoff is ultimately discharged from the site in the SE corner as pipe flow (18" RCP) to the public storm drain system within Executive Drive (24" RCP).

Impervious area is comprised of the concrete walkways, parking stalls, drive isles and roofing. Pervious area is comprised of landscape located within parking islands and adjacent to the existing building. Refer to Appendix B for an exhibit detailing the existing condition.

1.5 Proposed Conditions

The proposed structures will be located close to the property lines on all sides of the project site. Roof leaders, area drains, and new on-site private storm drain will direct project site runoff to a proposed storage vault, described in more detail below. The project site is entirely built out in the proposed condition and has been hydrologically analyzed as one drainage basin, similar to the existing condition analysis.

The storage vault has been designed as a "Conjunctive-Use" BMP, as defined by the City of San Diego. As such, the Design Capture Volume (with a 1.5 multiplier) has been made NOT available when analyzing 100-year peak flow mitigation (i.e. no overlap of WQ volume and 100-year Volume). Additionally, the Hydromodification volume has been ensured to draw-down within 96 hours, allowing overlap with 100-year volume when using Conjunctive-Use BMPs.

Project site runoff is collected via new on-site infrastructure and directed to a proposed subterranean vault located in the southwest corner of the site. The vault dimensions are $216'(L) \times 16'(W) \times 7'(H)$, with a weir 5.1" above the vault bottom and a 1.86" orifice.

A Modular Wetland System (MWS), or similar, is proposed downstream of the vault and provides water quality treatment. Refer to the project specific SWQMP, found under separate cover, for additional information.

Mitigated discharge from the project site will connect to the City's Municipal Separate Storm Sewer System (MS4) within Executive Drive (24" RCP), consistent with existing conditions.

Refer to Appendix C for an exhibit detailing the proposed condition.

Section 2 Study Objectives

The specific objectives of this study are as follows:

- Quantify 100-year peak flow rates under existing and proposed conditions;
- Develop measures to mitigate any increase in peak flow associated with proposed improvements;
- Demonstrate the proposed improvements will not increase the potential for erosion on the project site or downstream area.

Section 3 Methodology

3.1 Hydrology

The Rational Method has been utilized to perform the hydrologic analyses. The following formula conforms to the hydrologic methodologies outlined in the City of San Diego Drainage Design Manual (January 2017).

$$Q = C * I * A$$

Where, **Q** = Peak Discharge - (cfs)

C = Runoff Coefficient

I = Average Rainfall Intensity - (in/hr)

A = Drainage Area - (acres)

A runoff coefficient has been determined for the existing and proposed conditions per Section A.1.2 of the City of San Diego Drainage Design Manual. The tabulated impervious area chosen for the project site is 85% (commercial use) for the existing and proposed condition.

Intensity has been calculated per the IDF Curve in Figure A-1 of the City of San Diego Drainage Design Manual. A time of concentration of 5 minutes has been assumed for the project area under existing and proposed conditions.

3.2 Hydraulics

The Hydraflow Hydrographs Extension within AutoCAD has been used to model peak flows from the project as they are mitigated by the proposed detention vault. A hydrograph was generated using Rick Engineering Company's RatHydro software and has been routed through storage vault modeled in Hydraflow Hydrographs. The storage vault has been modeled to match the vault documented in the project specific SWQMP, designed as a conjunctive-used BMP. Refer to Appendix C for the modelling input and output. Proposed storm drains have been preliminary sized to convey 100-year peak flow using Bentley's Flow Master. This software solves for normal depth under steady state flow conditions.

Section 4 Results

4.1 Hydrologic Results

The table below summarizes the hydrologic results under existing and proposed conditions. Calculations are included in Appendices B (existing) and C (proposed).

Table 4-1	- Hydrologic	Summary
-----------	--------------	---------

Discharge Location	С	I*	A	Q 100			
Discharge Location	-	(in/hr)	(ac)	(cfs)			
	Existing Condition						
Basin 1	0.76	4.5	3.89	13.3			
	Proposed Condition (Unmitigated)						
Basin 1 0.95		4.5	3.89	16.6			
Proposed Condition (Mitigated)							
Basin 1 0.95 4.5 3.89 6.8							
*A time in concentration of 5 minutes has been assumed for the vault. Per Figure A-1 of the Drainage Design Manual this will result in a similar intensity for all basins. Refer to Appendices B and C for hydrologic calculations.							

4.2 Hydraulic Results

The table below summarizes the hydraulic performance of the proposed storage vault. Calculations are included in Appendix C.

Vault ID	Length	Wide	Height	Weir Height	Low Flow Orifice	Q100 (in)	Q100 (out)
	(ft)	(ft)	(ft)	(ft)	(in)	(cfs)	(cfs)
Vault -1	216	16	7	5.1	1.86	16.6	6.8

Section 5 Conclusions

Proposed improvements will not result in an increase to 100-year peak flow discharge from the site, as compared to the existing condition. Increases in peak flow associated with new impervious area have been mitigated below existing conditions through the use of a proposed storage vault. The vault has also been designed to provide hydromodification mitigation as a Conjunctive Use BMP, discussed in more detail within the SWQMP.

This project will not discharge, dredge, or fill material into any Water of The United States, thus the project is not required to obtain a Section 401 certification or Section 404 permit from the State or U.S. Army Corps of Engineers.

Section 6 Declaration of Responsible Charge

I, hereby declare that I am the Civil Engineer of work for this project, that I have exercised responsible charge over the design of the project as defined in Section 6703 of the Business and Professions Code, and that the design is consistent with current design.

I understand that the check of project drawings and specifications by the City of San Diego is confined to a review only and does not relieve me, as Engineer of Work, of my responsibilities for the project design.

Jay Sullivan RCE 77445

7-7-2022

Section 7 Bibliography

City of San Diego. (January 2017). Drainage Design Manual. San Diego.

City of San Diego. (January 2018). Storm Water Standards. San Diego.

FEMA. (1997). Flood Insurance Rate Map. San Diego.

Soil Survey Staff, N. R. (2018, September 24). *Web Soil Survey*. Retrieved from Web Soil Survey: https://websoilsurvey.sc.egov.usda.gov/

<u>Appendix A – Site Information</u>

Vicinity Map Rainfall Isopluvials FEMA FIRM NRCS WebSoil Survey

VICINITY MAP

NO SCALE

National Flood Hazard Layer FIRMette

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT Without Base Flood Elevation (BFE) With BFE or Depth Zone AE, AO, AH, VE, AR SPECIAL FLOOD HAZARD AREAS **Regulatory Floodway** 0.2% Annual Chance Flood Hazard, Areas of 1% annual chance flood with average depth less than one foot or with drainage areas of less than one square mile Zone X Future Conditions 1% Annual Chance Flood Hazard Zone X Area with Reduced Flood Risk due to Levee. See Notes. Zone X OTHER AREAS OF FLOOD HAZARD Effective LOMRs OTHER AREAS GENERAL - -- - Channel, Culvert, or Storm Sewer STRUCTURES IIIII Levee, Dike, or Floodwall **CITYOFSANDIEGO** 060295 AREA OF MINIMALELOOD HAZARD 17.5 Water Surface Elevation **Coastal Transect** Base Flood Elevation Line (BFE) ~ 513 ~~~~ Limit of Study 06073 C1 339 G Jurisdiction Boundary RS eff.5/16/2012 **Coastal Transect Baseline** OTHER Profile Baseline FEATURES Hydrographic Feature **Digital Data Available** No Digital Data Available MAP PANELS Unmapped an authoritative property location. This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 9/10/2019 at 11:04:31 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time. This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, USGS The National Map: Orthoimagery. Data refreshed April, 2019. legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for 32°52'26.69"N 1:6,000 Feet unmapped and unmodernized areas cannot be used for

250

500

1,500

1,000

2,000

Area with Flood Risk due to Levee Zone D NO SCREEN Area of Minimal Flood Hazard Zone X Area of Undetermined Flood Hazard Zone D 20.2 Cross Sections with 1% Annual Chance

> The pin displayed on the map is an approximate point selected by the user and does not represent

regulatory purposes.

Page 1 of 4

Natural Resources **Conservation Service**

Web Soil Survey National Cooperative Soil Survey

Hydrologic Soil Group

Map unit symbol Map unit name		Rating	Acres in AOI	Percent of AOI
CfB	Chesterton fine sandy loam, 2 to 5 percent slopes	D	3.6	85.6%
TeF	Terrace escarpments		0.6	14.4%
Totals for Area of Intere	st	4.2	100.0%	

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

USDA

<u>Appendix B – Existing Hydrology</u>

Figure A-1 from the City DDM (Jan. 2017) On-Site Hydrology Work Map Hydrology Calculations

APPENDIX A: RATIONAL METHOD AND MODIFIED RATIONAL METHOD

Tand Tim	Runoff Coefficient (C)
Land Use	Soil Type (1)
Residential:	
Single Family	0.55
Multi-Units	0.70
Mobile Homes	0.65
Rural (lots greater than 1/2 acre)	0.45
Commercial (2)	
80% Impervious	0.85
Industrial (2)	
90% Impervious	0.95

Note: (1) Type D soil to be used for all areas.

(2) Where actual conditions deviate significantly from the tabulated imperviousness values of 80% or 90%, the values given for coefficient C, may be revised by multiplying 80% or 90% by the ratio of actual imperviousness to the tabulated imperviousness. However, in case shall the final coefficient be less than 0.50. For example: Consider commercial property on D soil.

Actual imperviousness = 50% Tabulated imperviousness = 80% Revised C = (50/80) x 0.85 = 0.53

The values in Table A-1 are typical for urban areas. However, if the basin contains rural or agricultural land use, parks, golf courses, or other types of nonurban land use that are expected to be permanent, the appropriate value should be selected based upon the soil and cover and approved by the City.

A + + Deinfall Interactor

ARE Science Village On-Site Hydrologic Work Map Existing

Basin Intensity Calculations

Selected Frequency, 100 year 4.50 in/hr =

Basin Flow Calculations

Q =	13.3	cfs
C =	0.76	_
=	4.50	in/hr
A =	3.89	ac.

Job No. 181315

<u>Appendix C – Proposed Hydrology</u>

Figure A-1 from the City DDM (Jan. 2017) On-Site Hydrology Work Map Hydrology Calculations

APPENDIX A: RATIONAL METHOD AND MODIFIED RATIONAL METHOD

Tand Tim	Runoff Coefficient (C)
Land Use	Soil Type (1)
Residential:	
Single Family	0.55
Multi-Units	0.70
Mobile Homes	0.65
Rural (lots greater than 1/2 acre)	0.45
Commercial (2)	
80% Impervious	0.85
Industrial (2)	
90% Impervious	0.95

Note: (1) Type D soil to be used for all areas.

(2) Where actual conditions deviate significantly from the tabulated imperviousness values of 80% or 90%, the values given for coefficient C, may be revised by multiplying 80% or 90% by the ratio of actual imperviousness to the tabulated imperviousness. However, in case shall the final coefficient be less than 0.50. For example: Consider commercial property on D soil.

Actual imperviousness = 50% Tabulated imperviousness = 80% Revised C = (50/80) x 0.85 = 0.53

The values in Table A-1 are typical for urban areas. However, if the basin contains rural or agricultural land use, parks, golf courses, or other types of nonurban land use that are expected to be permanent, the appropriate value should be selected based upon the soil and cover and approved by the City.

A + + Deinfall Interactor

ARE Science Village						
Pro	posed Co	nditions				
Time of Concent	tration Cal	culation	S			
Natural Areas						
Land Use = (Commercia	al 🖵				
C =	0.95		$1.8(1.1-C)\sqrt{D}$			
Dist. =	673.00	ft. $ I $	$C = \frac{3\sqrt{c}}{3\sqrt{c}}$			
s lope =	4	% L	$\sqrt{2}$			
T _c =	4.43	min.				
* Minimum T _c = 5	Minutes					
V	Veighted C	Value Ca	alculation			
A	vrea (acres)				
Pervious	0.19	, 				
Impervious	3.70					
Total	3.89					
Actual Impervio	us	0.95	5			
Tabulated Imper	vious	0.85	5			
Coefecient		0.85	5			
Revised 'C'		0.95	5			
Use 'C'		0.95	5			
*C value cannot	exeed 1 o	r be less	than 0.50			
Basin Intensity	Calculatio	ns				
Selected Free	quency,	100	year			
=	4.50	in/hr				
Basin Flow Calculations						
Q = <u>16.63</u>		cfs	Q = C * I * A			
C =	0.95		~			
I = <u>4.50</u>		in/hr				
A = <u>3.89</u> ac.						
Job No. 181315						

<u>Appendix D – Hydraulics</u>

Proposed Q100 Hydrograph Hydraflow Hydrographs Input & Output Drawdown Calculations RATIONAL METHOD HYDROGRAPH PROGRAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY

RUN DATE 7/6/2022 HYDROGRAPH FILE NAME Text1 TIME OF CONCENTRATION 5 MIN. 6 HOUR RAINFALL 2.25 INCHES BASIN AREA 3.89 ACRES RUNOFF COEFFICIENT 0.95 PEAK DISCHARGE 16.6 CFS

TIME (MIN) = 0	DISCHARGE (CFS) = 0
TIME(MIN) = 5	DISCHARGE (CFS) = 0.5
TIME (MIN) = 10	DISCHARGE (CFS) = 0.5
IIME (MIN) = 15 TIME (MIN) = 20	DISCHARGE (CFS) = 0.5
TIME (MIN) = 20 TIME (MIN) = 25	DISCHARGE (CFS) = 0.5
TIME (MIN) = 30	DISCHARGE (CFS) = 0.5
TIME (MIN) = 35	DISCHARGE (CFS) = 0.5
TIME (MIN) = 40	DISCHARGE (CFS) = 0.5
TIME(MIN) = 45	DISCHARGE (CFS) = 0.6
TIME (MIN) = 50	DISCHARGE (CFS) = 0.6
IIME (MIN) = 55	DISCHARGE (CFS) = 0.6
TIME (MIN) = 60 TIME (MIN) = 65	DISCHARGE (CFS) = 0.6
TIME (MIN) = 70	DISCHARGE (CFS) = 0.6
TIME (MIN) = 75	DISCHARGE (CFS) = 0.6
TIME (MIN) = 80	DISCHARGE (CFS) = 0.6
TIME (MIN) = 85	DISCHARGE (CFS) = 0.6
TIME (MIN) = 90	DISCHARGE (CFS) = 0.7
IIME (MIN) = 95 TIME (MIN) = 100	DISCHARGE (CFS) = 0.7
TIME (MIN) = 100 TIME (MIN) = 105	DISCHARGE (CFS) = 0.7
TIME (MIN) = 110	DISCHARGE (CFS) = 0.7
TIME $(MIN) = 115$	DISCHARGE (CFS) = 0.7
TIME(MIN) = 120	DISCHARGE (CFS) = 0.8
TIME (MIN) = 125	DISCHARGE (CFS) = 0.8
IIME (MIN) = 130	DISCHARGE (CFS) = 0.8
TIME (MIN) = 135 TIME (MIN) = 140	DISCHARGE (CFS) = 0.8
TIME (MIN) = 145	DISCHARGE (CFS) = 0.9
TIME (MIN) = 150	DISCHARGE (CFS) = 0.9
TIME (MIN) = 155	DISCHARGE (CFS) = 0.9
TIME(MIN) = 160	DISCHARGE (CFS) = 1
TIME (MIN) = 165	DISCHARGE (CFS) = 1
TIME (MIN) = 170 TIME (MIN) = 175	DISCHARGE (CFS) = 1
TIME (MIN) = 180	DISCHARGE (CFS) = 1.1
TIME (MIN) = 185	DISCHARGE (CFS) = 1.2
TIME (MIN) = 190	DISCHARGE (CFS) = 1.3
TIME (MIN) = 195	DISCHARGE (CFS) = 1.4
IIME (MIN) = 200 TIME (MIN) = 205	DISCHARGE (CFS) = 1.5
TIME (MIN) = 200 TIME (MIN) = 210	DISCHARGE (CFS) = 1.0
TIME (MIN) = 215	DISCHARGE (CFS) = 2
TIME (MIN) = 220	DISCHARGE (CFS) = 2.1
TIME (MIN) = 225	DISCHARGE (CFS) = 2.6
IIME (MIN) = 230	DISCHARGE (CFS) = 3
IIME (MIN) = 235 TIME (MIN) = 240	DISCHARGE (CFS) = 4.3
TIME (MIN) = 240 TIME (MIN) = 245	DISCHARGE (CFS) = 16.6
TIME (MIN) = 250	DISCHARGE (CFS) = 3.5
TIME (MIN) = 255	DISCHARGE (CFS) = 2.3
TIME (MIN) = 260	DISCHARGE (CFS) = 1.8
TIME (MIN) = 265	DISCHARGE (CFS) = 1.5
IIME (MIN) = 270 TIME (MIN) = 275	DISCHARGE (CFS) = 1.3
TIME (MIN) = 273 TIME (MIN) = 280	DISCHARGE (CFS) = 1.2
TIME (MIN) = 285	DISCHARGE (CFS) = 1
TIME (MIN) = 290	DISCHARGE (CFS) = 0.9
TIME (MIN) = 295	DISCHARGE (CFS) = 0.9
IIME (MIN) = 300	DISCHARGE (CFS) = 0.8
IIVIE (IVIIN) = 305 $TIME (MIN) = 210$	DISCHARGE (CFS) = 0.8
TIME (MIN) = 315	DISCHARGE (CFS) = 0.7
TIME (MIN) = 320	DISCHARGE (CFS) = 0.7
TIME (MIN) = 325	DISCHARGE (CFS) = 0.6
TIME (MIN) = 330	DISCHARGE (CFS) = 0.6
IIME (MIN) = 335	DISCHARGE (CFS) = 0.6
1101 = (10110) = 340 $TIME (MIN) = 345$	DISCHARGE (CFS) = 0.6
TIME (WIN) = 340	DISCHARGE (CFS) = 0.6
TIME (MIN) = 355	DISCHARGE (CFS) = 0.5
TIME (MIN) = 360	DISCHARGE (CFS) = 0.5
TIME (MIN) = 365	DISCHARGE (CFS) = 0

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	Manual	16.60	5	245	29,970				Inflow
2	Reservoir	4.586	5	250	29,600	1	106.12	21,140	Actual Vault
3	Reservoir	6.838	5	250	22,016	1	104.42	15,260	Vault w/o WQ
4	Reservoir	1.226	5	275	5,089	1	107.35	25,404	Vault (Emer. Weir)
181	315 - Hydraflo	Miti Flov Con guid	gated 1 v Disch junctive lelines.	00-year P arge per e-Use BM	'eak IP .g ßw turn P	eriod: 100	Year	Thursday, 0	7 / 7 / 2022

Hydrograph Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 1

Inflow

Hydrograph type	= Manual	Peak discharge	= 16.60 cfs
Storm frequency	= 100 yrs	Time to peak	= 245 min
Time interval	= 5 min	Hyd. volume	= 29,970 cuft

3

Hydrograph Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 2

Actual Vault

Hydrograph type	= Reservoir	Peak discharge	= 4.586 cfs
Storm frequency	= 100 yrs	Time to peak	= 250 min
Time interval	= 5 min	Hyd. volume	= 29,600 cuft
Inflow hyd. No.	= 1 - Inflow	Max. Elevation	= 106.12 ft
Reservoir name	= Actual Vault	Max. Storage	= 21,140 cuft

Storage Indication method used.

4

Pond Report

ft	cuft	ft	cfs	cfs	cfs	cfs	cfs	cfs	cfs	cfs	cfs	cfs	cfs
0.00	0	100.00	0.00	0.00	0.00								0.000
0.10	346	100.10	0.00	0.00	0.00								0.000
0.20	691	100.20	0.01 ic	0.01 ic	0.00								0.014
0.30	1,037	100.30	0.03 ic	0.03 ic	0.00								0.032
0.40	1,382	100.40	0.04 ic	0.04 ic	0.00								0.043
0.50	1,728	100.50	0.05 ic	0.05 ic	0.00								0.052
0.60	2,073	100.60	0.06 ic	0.06 ic	0.00								0.059
0.70	2,419	100.70	0.07 ic	0.07 ic	0.00								0.066
0.80	2,765	100.80	0.07 ic	0.07 ic	0.00								0.072
0.90	3,110	100.90	0.08 ic	0.08 ic	0.00								0.077
1.00	3,456	101.00	0.08 ic	0.08 ic	0.00								0.082
1.10	3,801	101.10	0.09 ic	0.09 ic	0.00								0.087
1.20	4,147	101.20	0.09 ic	0.09 ic	0.00								0.092
1.30	4,492	101.30	0.10 ic	0.10 ic	0.00								0.096
1.40	4,838	101.40	0.11 ic	0.10 ic	0.00								0.100
1.50	5,183	101.50	0.11 ic	0.10 ic	0.00								0.104
1.60	5,529	101.60	0.11 ic	0.11 ic	0.00								0.108
1.70	5,875	101.70	0.11 ic	0.11 ic	0.00								0.112
1.80	6,220	101.80	0.12 ic	0.12 ic	0.00								0.116
1.90	6,566	101.90	0.12 ic	0.12 ic	0.00								0.119
2.00	6,911	102.00	0.12 ic	0.12 ic	0.00								0.123
2.10	7,257	102.10	0.13 ic	0.13 ic	0.00								0.126
2.20	7,602	102.20	0.13 ic	0.13 ic	0.00								0.129
2.30	7,948	102.30	0.14 ic	0.13 ic	0.00	DOV	0.04						0.132
2.40	8,294	102.40	0.14 ic	0.14 ic	0.00		= 6,31						0.135
2.50	8,639	102.50	0.14 ic	0.14 ic	0.00	DCV	X 1.5 =	= 9.475	5 CF				0.138
2.60	8,985	102.60	0.15 ic	0.14 ic	0.00			•,•	•				0.141
2.70	9,330	102.70	0.15 ic	0.14 ic	0.00								0.144
2.80	9.676	102.80	0.15 ic	<u>0.15 ic</u>	0.00	Stade	e that c	orrelate	es to DO	CV is 2	.8 ft.		0.147
2.90	10,021	102.90	0.15 ic	0.15 ic	0.00	Drow	down	42.60	houro				0.150
3.00	10,367	103.00	0.16 ic	0.15 ic	0.00	Diaw	-down	= 43.05	nours				0.152
3.10	10,713	103.10	0.16 ic	0.16 ic	0.00								0.155
3.20	11,058	103.20	0.16 ic	0.16 ic	0.00								0.158
3.30	11,404	103.30	0.17 ic	0.16 ic	0.00								0.160
3.40	11,749	103.40	0.17 ic	0.16 ic	0.00								0.163
											Continu	les on ne	xt page

Actual Vault

Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
3.50	12,095	103.50	0.17 ic	0.17 ic	0.00								0.165
3.60	12,440	103.60	0.17 ic	0.17 ic	0.00								0.168
3.70	12,786	103.70	0.18 ic	0.17 ic	0.00								0.170
3.80	13,131	103.80	0.18 ic	0.17 ic	0.00								0.172
3.90	13,477	103.90	0.18 ic	0.17 ic	0.00								0.175
4.00	13,823	104.00	0.18 ic	0.18 ic	0.00								0.177
4.10	14,168	104.10	0.18 ic	0.18 ic	0.00								0.179
4.20	14,514	104.20	0.19 ic	0.18 ic	0.00								0.182
4.30	14,859	104.30	0.19 ic	0.18 ic	0.00								0.184
4.40	15,205	104.40	0.19 ic	0.19 ic	0.00								0.186
4.50	15,550	104.50	0.19 ic	0.19 ic	0.00								0.188
4.60	15,896	104.60	0.19 ic	0.19 ic	0.00								0.190
4.70	16.242	104.70	0.20 ic	0.19 ic	0.00								0.192
4.80	16,587	104.80	0.20 ic	0.19 ic	0.00								0.195
4.90	16,933	104.90	0.20 ic	0.20 ic	0.00								0.197
5.00	17,278	105.00	0.20 ic	0.20 ic	0.00								0.199
5.10	17.624	105.10	0.20 ic	0.20 ic	0.00	IHMF	, Volun	he achie	eved af	ter sec	ondar	v	0.201
5.20	17,969	105.20	0.26 ic	0.20 ic	0.06 ic				F 41)	47 00	Г -f	'	0.260
5.30	18,315	105.30	0.42 oc	0.20 ic	0.22 ic		ow (loc	ated at	5.1) =	17, 62	5 CI		0.421
5.40	18,661	105.40	0.69 oc	0.20 ic	0.49 ic								0.692
5.50	19,006	105.50	1.04 oc	0.20 ic	0.84 ic	Dress	متن ما م	FC 4	le ve				1.042
5.60	19,352	105.60	1.46 oc	0.20 ic	1.27 ic	Drav	v-down	= 56.1	nrs				1.462
5.70	19,697	105.70	1.97 oc	0.20 ic	1.78 ic								1.973
5.80	20,043	105.80	2.51 oc	0.20 ic	2.32 ic								2.511
5.90	20,388	105.90	3.15 oc	0.19 ic	2.96 ic								3.153
6.00	20,734	106.00	3.78 oc	0.19 ic	3.59 ic								3.777
6.10	21,079	106.10	4.47 ic	0.19 ic	4.28 ic								4.467
6.20	21,425	106.20	5.14 ic	0.18 ic	4.96 ic								5.142
6.30	21,771	106.30	5.82 ic	0.17 ic	5.65 ic								5.822
6.40	22,116	106.40	6.49 ic	0.16 ic	6.33 ic								6.491
6.50	22,462	106.50	7.06 ic	0.14 ic	6.92 ic								7.063
6.60	22,807	106.60	7.05 ic	0.15 ic	0.00								0.147
6.70	23,153	106.70	7.96 ic	0.12 ic	7.84 ic								7.964
6.80	23,498	106.80	8.40 ic	0.11 ic	8.29 ic								8.398
6.90	23.844	106.90	8.76 ic	0.09 ic	8.66 ic								8.756
7.00	24,190	107.00	8.82 ic	0.09 ic	8.73 ic								8.825

...End

Hydrograph Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 3

Vault w/o WQ

Hydrograph type	= Reservoir	Peak discharge	= 6.838 cfs
Storm frequency	= 100 yrs	Time to peak	= 250 min
Time interval	= 5 min	Hyd. volume	= 22,016 cuft
Inflow hyd. No.	= 1 - Inflow	Max. Elevation	= 104.42 ft
Reservoir name	= Vault w/o WQ	Max. Storage	= 15,260 cuft

Storage Indication method used.

Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Pond No. 2 - Vault w/o WQ

Pond Data

Pond Data					
Contours -Use	er-defined contour areas	. Conic method used for vo	lume calculation. Beginin	a Elevation = 100.00	WQ Volume (Stage 2.8') not
				9	accounted for in this model.
Stage / Stor	rage Table				Thus, secondary release is 5.1 -
Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (2.8 = 2.3' from bottom of tank
0.00	100 00	3 456	0	0	when WQ volume is ignored per
1.00	101.00	3,456	3,456	3,456	Conjunctive-Use BMP
2.00	102.00	3,456	3,456	6,911	quidalinas
3.00	103.00	3,456	3,456	10,367	guidennes.
4.00	104.00	3,456	3,456	13,823	
5.00	105.00	3,456	3,456	17,278	
6.00	106.00	3,456	3,456	20,734	
7.00	107.00	3,456	3,456	24,190	
			_		

Weir Structures

Culvert / Orifice Structures

[B] [C] [PrfRsr] [A] [B] [C] [D] [A] = 12.00 18.00 0.00 0.00 = 0.00 0.00 0.00 0.00 Rise (in) Crest Len (ft) 0.00 Span (in) = 12.00 18.00 0.00 Crest El. (ft) = 0.00 0.00 0.00 0.00 No. Barrels = 1 1 0 Weir Coeff. = 3.33 3.33 3.33 3.33 Invert El. (ft) = 100.00 102.30 0.00 0.00 Weir Type = ----____ -------Length (ft) = 10.00 10.00 0.00 0.00 Multi-Stage = No No No No Slope (%) = 1.00 1.00 1.00 n/a N-Value = .013 .013 .013 n/a = 0.60 0.60 0.60 0.60 = 0.000 (by Contour) Orifice Coeff. Exfil.(in/hr) Multi-Stage = n/a Yes No No TW Elev. (ft) = 0.00

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s). Stage / Storage / Discharge Table

- · · J ·	· · · · J ·												
Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	100.00	0.00	0.00									0.000
0.10	346	100.10	0.00	0.00									0.000
0.20	691	100.20	0.00	0.00									0.000
0.30	1,037	100.30	0.00	0.00									0.000
0.40	1,382	100.40	0.00	0.00									0.000
0.50	1,728	100.50	0.00	0.00									0.000
0.60	2,073	100.60	0.00	0.00									0.000
0.70	2,419	100.70	0.00	0.00									0.000
0.80	2,765	100.80	0.00	0.00									0.000
0.90	3,110	100.90	0.00	0.00									0.000
1.00	3,456	101.00	0.00	0.00									0.000
1.10	3,801	101.10	0.00	0.00									0.000
1.20	4,147	101.20	0.00	0.00									0.000
1.30	4,492	101.30	0.00	0.00									0.000
1.40	4,838	101.40	0.00	0.00									0.000
1.50	5,183	101.50	0.00	0.00									0.000
1.60	5,529	101.60	0.00	0.00									0.000
1.70	5,875	101.70	0.00	0.00									0.000
1.80	6,220	101.80	0.00	0.00									0.000
1.90	6,566	101.90	0.00	0.00									0.000
2.00	6,911	102.00	0.00	0.00									0.000
2.10	7,257	102.10	0.00	0.00									0.000
2.20	7,602	102.20	0.00	0.00									0.000
2.30	7,948	102.30	0.00	0.00									0.000
2.40	8,294	102.40	0.06 ic	0.06 ic									0.058
2.50	8,639	102.50	0.22 ic	0.22 ic									0.218
2.60	8,985	102.60	0.50 oc	0.49 ic									0.490
2.70	9,330	102.70	0.85 oc	0.84 ic									0.842
2.80	9,676	102.80	1.27 oc	1.27 ic									1.265
2.90	10,021	102.90	1.78 oc	1.78 ic									1.778
3.00	10,367	103.00	2.32 oc	2.32 ic									2.316
3.10	10,713	103.10	2.96 oc	2.96 ic									2.959
3.20	11,058	103.20	3.59 oc	3.59 ic									3.586
3.30	11,404	103.30	4.28 ic	4.28 ic									4.280
3.40	11,749	103.40	4.96 ic	4.96 ic									4.964

8

Continues on next page ...

Vault w/o WQ Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
3.50	12,095	103.50	5.65 ic	5.65 ic									5.654
3.60	12,440	103.60	6.00 ic	6.00 ic									5.999
3.70	12,786	103.70	6.15 ic	6.15 ic									6.151
3.80	13,131	103.80	6.14 ic	0.00									0.000
3.90	13,477	103.90	6.37 ic	6.37 ic									6.371
4.00	13,823	104.00	6.46 ic	6.46 ic									6.464
4.10	14,168	104.10	6.56 ic	6.56 ic									6.556
4.20	14,514	104.20	6.65 ic	6.65 ic									6.646
4.30	14,859	104.30	6.74 ic	6.74 ic									6.736
4.40	15,205	104.40	6.82 ic	6.82 ic									6.824
4.50	15,550	104.50	6.91 ic	6.91 ic									6.910
4.60	15,896	104.60	7.00 ic	7.00 ic									6.996
4.70	16,242	104.70	7.08 ic	7.08 ic									7.081
4.80	16,587	104.80	7.17 ic	7.16 ic									7.165
4.90	16,933	104.90	7.25 ic	7.25 ic									7.247
5.00	17,278	105.00	7.33 ic	7.33 ic									7.329
5.10	17,624	105.10	7.41 ic	7.41 ic									7.411
5.20	17,969	105.20	7.49 ic	7.49 ic									7.491
5.30	18,315	105.30	7.57 ic	7.57 ic									7.570
5.40	18,661	105.40	7.65 ic	7.65 ic									7.648
5.50	19,006	105.50	7.73 ic	7.73 ic									7.726
5.60	19,352	105.60	7.80 ic	7.80 ic									7.803
5.70	19,697	105.70	7.88 ic	7.88 ic									7.879
5.80	20,043	105.80	7.95 ic	7.95 ic									7.955
5.90	20,388	105.90	8.03 ic	8.03 ic									8.029
6.00	20,734	106.00	8.10 ic	8.10 ic									8.103
6.10	21,079	106.10	8.18 ic	8.18 ic									8.177
6.20	21,425	106.20	8.25 ic	8.25 ic									8.249
6.30	21,771	106.30	8.32 ic	8.32 ic									8.321
6.40	22,116	106.40	8.39 ic	8.39 ic									8.392
6.50	22,462	106.50	8.46 ic	8.46 ic									8.463
6.60	22.807	106.60	8.53 ic	8.53 ic									8.534
6.70	23,153	106.70	8.60 ic	8.60 ic									8.603
6.80	23,498	106.80	8.67 ic	8.67 ic									8.672
6.90	23.844	106.90	8.74 ic	8.74 ic									8.741
7.00	24,190	107.00	8.81 ic	8.81 ic									8.809

...End

Hydrograph Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 4

Vault (Emer. Weir)

Hydrograph type	= Reservoir	Peak discharge	= 1.226 cfs
Storm frequency	= 100 yrs	Time to peak	= 275 min
Time interval	= 5 min	Hyd. volume	= 5,089 cuft
Inflow hyd. No.	= 1 - Inflow	Max. Elevation	= 107.35 ft
Reservoir name	= Vault (Emer. Weir)	Max. Storage	= 25,404 cuft

Storage Indication method used.

Pond Report

Pond No. 3 - Vault (Emer. Weir)

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 100.00 ft

Stage / Storage Table

0
56
11
67
23
78
34
90
45

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 12.00	Inactive	Inactive	Inactive	Crest Len (ft)	= 6.00	0.00	0.00	0.00
Span (in)	= 12.00	0.00	0.00	0.00	Crest El. (ft)	= 107.20	0.00	0.00	0.00
No. Barrels	= 1	1	1	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 100.00	0.00	0.00	0.00	Weir Type	= Rect			
Length (ft)	= 10.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 1.00	1.00	1.00	n/a	_				
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Contour)		
Multi-Stage	= n/a	Yes	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Weir Structures

Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	100.00	0.00				0.00						0.000
0.10	346	100.10	0.00				0.00						0.000
0.20	691	100.20	0.00				0.00						0.000
0.30	1,037	100.30	0.00				0.00						0.000
0.40	1,382	100.40	0.00				0.00						0.000
0.50	1,728	100.50	0.00				0.00						0.000
0.60	2,073	100.60	0.00				0.00						0.000
0.70	2,419	100.70	0.00				0.00						0.000
0.80	2,765	100.80	0.00				0.00						0.000
0.90	3,110	100.90	0.00				0.00						0.000
1.00	3,456	101.00	0.00				0.00						0.000
1.10	3,801	101.10	0.00				0.00						0.000
1.20	4,147	101.20	0.00				0.00						0.000
1.30	4,492	101.30	0.00				0.00						0.000
1.40	4,838	101.40	0.00				0.00						0.000
1.50	5,183	101.50	0.00				0.00						0.000
1.60	5,529	101.60	0.00				0.00						0.000
1.70	5,875	101.70	0.00				0.00						0.000
1.80	6,220	101.80	0.00				0.00						0.000
1.90	6,566	101.90	0.00				0.00						0.000
2.00	6,911	102.00	0.00				0.00						0.000
2.10	7,257	102.10	0.00				0.00						0.000
2.20	7,602	102.20	0.00				0.00						0.000
2.30	7,948	102.30	0.00				0.00						0.000
2.40	8,294	102.40	0.00				0.00						0.000
2.50	8,639	102.50	0.00				0.00						0.000
2.60	8,985	102.60	0.00				0.00						0.000
2.70	9,330	102.70	0.00				0.00						0.000
2.80	9,676	102.80	0.00				0.00						0.000
2.90	10,021	102.90	0.00				0.00						0.000
3.00	10,367	103.00	0.00				0.00						0.000
3.10	10,713	103.10	0.00				0.00						0.000
3.20	11,058	103.20	0.00				0.00						0.000
3.30	11,404	103.30	0.00				0.00						0.000

Continues on next page...

Vault (Emer. Weir) Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
3.40	11,749	103.40	0.00				0.00						0.000
3.50	12,095	103.50	0.00				0.00						0.000
3.60	12,440	103.60	0.00				0.00						0.000
3.70	12,786	103.70	0.00				0.00						0.000
3.80	13,131	103.80	0.00				0.00						0.000
3.90	13,477	103.90	0.00				0.00						0.000
4.00	13,823	104.00	0.00				0.00						0.000
4.10	14,168	104.10	0.00				0.00						0.000
4.20	14,514	104.20	0.00				0.00						0.000
4.30	14,859	104.30	0.00				0.00						0.000
4.40	15.205	104.40	0.00				0.00						0.000
4.50	15,550	104.50	0.00				0.00						0.000
4.60	15,896	104.60	0.00				0.00						0.000
4.70	16,242	104.70	0.00				0.00						0.000
4 80	16,587	104 80	0.00				0.00						0.000
4 90	16,933	104 90	0.00				0.00						0.000
5.00	17 278	105.00	0.00				0.00						0.000
5 10	17 624	105.00	0.00				0.00						0.000
5 20	17,969	105.20	0.00				0.00						0.000
5.30	18 315	105.20	0.00				0.00						0.000
5.40	18 661	105.00	0.00				0.00						0.000
5.50	19,001	105.40	0.00				0.00						0.000
5.60	10,000	105.60	0.00				0.00						0.000
5 70	19,692	105.00	0.00				0.00						0.000
5.80	20.043	105.70	0.00				0.00						0.000
5 90	20,043	105.00	0.00				0.00						0.000
6.00	20,000	106.00	0.00				0.00						0.000
6 10	20,734	106.00	0.00				0.00						0.000
6.20	21,075	106.10	0.00				0.00						0.000
6.20	21,423	106.20	0.00				0.00						0.000
6.40	21,771	106.30	0.00				0.00						0.000
0.40	22,110	106.40	0.00				0.00						0.000
0.50	22,402	100.50	0.00				0.00						0.000
0.00	22,007	106.00	0.00				0.00						0.000
0.70	23,153	100.70	0.00				0.00						0.000
0.80	23,498	106.80	0.00				0.00						0.000
0.90	23,844	106.90	0.00				0.00						0.000
7.00	24,190	107.00	0.00				0.00						0.000
7.10	24,535	107.10	0.00				0.00						0.000
7.20	24,881	107.20	0.00				0.00						0.000
7.30	25,226	107.30	0.65 00				0.63						0.632
7.40	25,572	107.40	1.79 oc				1.79						1.787
7.50	25,917	107.50	3.28 oc				3.28						3.283
7.60	26,263	107.60	5.05 ic				5.05						5.055
7.70	26,609	107.70	7.06 ic				7.06						7.064
7.80	26,954	107.80	9.29 ic				9.29						9.286
7.90	27,300	107.90	10.03 ic				10.03 s						10.03
8.00	27,645	108.00	10.19 ic				10.19 s						10.19

...End

			ARE Sci	ience Village		
			HMP Stor	age Drawdown		
Stage (ft)	Storage (ft3)	Discharge (cfs)	Incremental Vol. (ft3)	Avg. Discharge (cfs)	Incremental Time (sec)	Incremental Time (hr)
5.10	17,624	0.20	-	-		
4.60	15,896	0.19	1,728	0.195	8861.54	2.46
4.00	13,823	0.18	2,073	0.185	11205.41	3.11
3.00	10,021	0.16	3,802	0.17	22364.71	6.21
2.00	6,911	0.12	3,110	0.14	22214.29	6.17
1.60	5,529	0.11	1,382	0.115	12017.39	3.34
1.00	3,456	0.08	2,073	0.095	21821.05	6.06
0.80	2,765	0.07	691	0.075	9213.33	2.56
0.40	1,382	0.04	1,383	0.055	25145.45	6.98
0.00	0.00	0.00	1,382	0.02	69100.00	19.19
					Total Time =	56.10
State, Stora	ge, and Discharg	e derived from Hyd	roflow Hydrographs routi	ng analysis.		

			ARE Sci	ience Village		
			WQ Stora	age Drawdown		
Stage (ft)	Storage (ft3)	Discharge (cfs)	Incremental Vol. (ft3)	Avg. Discharge (cfs)	Incremental Time (sec)	Incremental Time (hr)
2.80	9,676	0.15	-	-		
2.00	6,911	0.12	2,765.00	0.135	20481.48	5.69
1.60	5,529	0.11	1,382.00	0.115	12017.39	3.34
1.40	4,838	0.11	691.00	0.11	6281.82	1.74
1.30	4,492	0.1	346.00	0.105	3295.24	0.92
1.20	4,147	0.09	345.00	0.095	3631.58	1.01
1.00	3,456	0.08	691.00	0.085	8129.41	2.26
0.80	2,765	0.07	691.00	0.075	9213.33	2.56
0.40	1,382	0.04	1,383.00	0.055	25145.45	6.98
0.00	0.00	0.00	1,382.00	0.02	69100.00	19.19
					Total Time =	43.69
State, Stora	ge, and Discharg	e derived from Hyd	roflow Hydrographs routir	ng analysis.		

<u>Appendix E – Plan Sheets</u>

Improvement Plans

BASIS OF COORDINATES

THE BASIS OF COORDINATES FOR THIS SURVEY IS THE CALIFORNIA COORDINATE SYSTEM NADB3, ZONE 6,(EPOCH 1991.35)

BENCHMARK

THE BASIS OF ELEVATIONS FOR THIS SURVEY IS THE NATIONAL GEODETIC VERTICAL DATAM OF 1929 (NGVD29) PER THE CITY OF SAN DIEGO VERTICAL CONTROL NETWORK: SEEP LOCATED AT LA JOLLA VILLAGE DRIVE & TOMME GENTER DRIVE. ELEVATION 371.617 (ft.)

SOURCE OF TOPOGRAPHY

AERIAL PHOTOGRAMMETRY PROVIDED BY AEROTECH MAPPING, INC., FLOWN FEBRUARY 5, 2014 AND SUPPLEMENTED BY FIELD CREW SURVEY BY MICHAEL BAKER INTERNATIONAL ON JULY 22, 2019

LEGEND	
RIGHT OF WAY	R/W
PROPERTY LINE	
EXIST. WATER LINE	w
EXIST. RECYCLED WATER	RW
EXIST. SEWER LINE	s
EXIST. STORM DRAIN	SD
EXIST. ELECTRIC LINE	
EXIST. TELECOMMUNICATION	- — — -T- — — — —
EXIST. GAS LINE	
EXIST. CONTOUR	(380)
EXIST. FIRE HYDRANT	D00
EXIST. FIRE MANIFOLD	-
EXIST. WATER VALVE	8
EXIST. WATER METER	8
EXIST. WATER MANHOLE	
EXIST. AIR RELEASE VALVE	٥
EXIST. CP TEST	•
EXIST. IRRIGATION PEDESTAL	8
EXIST. SEWER MANHOLE	9
EXIST. SEWER CLEAN OUT	0
EXIST. ELECTRIC PULL BOX	76
EXIST. ELECTRIC METER	2
EXIST. ELECTRIC JUNCTION BOX	
EXIST. LIGHT STANDARD	000
EXIST. POWER POLE	-0- -
EXIST. GUY WIRE	
EXIST UTILITY PULL BOX	-
EXIST. GAS VALVE	•
EXIST. TRAFFIC PULL BOX	-
EXIST, TRAFFIC SIGN	<u>_</u>
EXIST. TRAFFIC SIGNAL	→ □
EXIST. TELEPHONE MANHOLE	٥
EXIST. TELEPHONE PEDESTAL	8
EXIST. TELEPHONE	10
EXIST. STORM DRAIN MANHOLE	•
EXIST. CURB DRAIN	-
EXIST. ROOF DRAIN	۰
EXIST. POST	٩
EXIST. PALM TREE	K
EXIST. TREE	\odot

TOWNE CENTER DR. EXISTING STREET SECTION

EXECUTIVE DR. EXISTING STREET SECTION

Alexandria Science Village

SUBMITTAL PACKAGE

04/18/2022

9393 Towne Centre Drive, San Diego, California 92121

alexandria.	STAMP	Michael Baker	Alexandria Science Village	SUBMITTAL PACKAGE	REVISIONS No. Descriptio
	H 10. 15045 H 10. 15045 H 10. 531-24 H 10. 531-24 H 10. 15045 H 10	9755 Clairemont Mesa Blvd. San Diego, CA 92124 Phone: (858) 814-5000 MBAKERINTL.COM	3939 Towno Centre Drive, San Dego, Californii 97(21	04/18/2022	

The Miller Hull Partnership, L Architecture and Planning Polson Building 71 Columbia, Sixth Floor Seattle, WA 98104

Phone: 206.682.6837

PRELIMINARY GRADING AND UTILITY PLAN

		SIGHT DISTANC	E TABLE
	DESIGN SPEED (MPH)	STOPPING SIGHT DISTANCE (FT)	INTERSECTION SIGHT DISTANCE (FT) (RIGHT TURNS)
	30	200	290
	35	250	335
	37	272**	355***
	40	305	385
	45	360	430
	47	386**	450***
- 1	50	425	480

SIC	HT DISTANCE
EXEC	UTIVE DRIVE
P	STED SPEED LIMIT
8	TH PERCENTILE SPEED
S	OPPING SIGHT DISTANCE
P	ITERSECTION SIGHT DISTANCE
TOWN	E CENTER DRIVE
P	STED SPEED LIMIT
8	TH PERCENTILE SPEED
S	OPPING SIGHT DISTANCE
P	ITERSECTION SIGHT DISTANCE 450'
*	ASSUMED 85TH PERCENTILE SPEED IS 7 MPH GREATER THAN POSTED SPEED
**	INTERPOLATED FROM AASHTO STOPPING SIGHT DISTANCE TABLE EXHIBIT 3-1

Michael Bak ALEXANDRIA. The Miller Hull Partnership, L Architecture and Planning Polson Building 71 Columbia, Sixth Floor Seattle, WA 98104 INTEENATIONAL 9755 Clairemont Mesa B San Diego, CA 92124 Phone: (858) 614-500 MBAKERINTL.COM

Phone: 206.682.6837

Alexandria Science Village

SUBMITTAL SUBMITTAL PACKAGE

04/18/2022

EVISIONS No. Description Date

Drawn: CJ Checked: BO M|H Proj No.: A19.0087.00 sue Date: 04/18/2022

C311

9393 Towne Centre Drive, San Diego, California 92121