ACOUSTICAL ANALYSIS REPORT

FOR CITY OF SAN DIEGO SUBMITTAL

Access Youth Academy 704 Euclid Avenue San Diego, California 92114

Prepared For

Access Youth Academy

Attention: Renato Paiva 7310 Miramar Road, Suite 405 San Diego, California 92126 Phone: 858-860-5688

Prepared By

Eilar Associates, Inc. Acoustical & Environmental Consulting

210 South Juniper Street, Suite 100 Escondido, California 92025 www.eilarassociates.com Phone: 760-738-5570

Fax: 760-738-5227

Job #B71104N2

April 30, 2018

TABLE OF CONTENTS

		<u>Page</u>
1.0	EXECUTIVE SUMMARY	1
2.0	INTRODUCTION	2
	2.1 Project Description2.2 Project Location2.3 Applicable Noise Regulations	
3.0	ENVIRONMENTAL SETTING	3
	3.1 Existing Noise Environment3.2 Future Noise Environment	
4.0	METHODOLOGY AND EQUIPMENT	7
	4.1 Methodology4.2 Measurement Equipment	
5.0	NOISE IMPACTS	10
	 5.1 Exterior Transportation Noise Impacts 5.2 Interior Transportation Noise Impacts 5.3 Project-Related Noise Impacts on Surrounding Property Lines 	
6.0	CONCLUSION	17
7.0	CERTIFICATION	18
8.0	REFERENCES	19

FIGURES

- 1. Vicinity Map
- 2. Assessor's Parcel Map
- 3. Satellite Aerial Photograph
- 4. Topographic Map
- 5. San Diego International Airport CNEL Contours and Project Location
- 6. Site Plan Showing Current and Future Traffic CNEL Contours and Noise Measurement Location
- 7. Site Plan Showing Worst-Case CNEL Impacts at Building Facades
- 8. Satellite Aerial Photograph Showing Rooftop Mechanical Equipment and Receiver Locations
- 9. Satellite Aerial Photograph Showing Unmitigated Construction Noise Contours Demolition
- 10. Satellite Aerial Photograph Showing Unmitigated Construction Noise Contours Grading/Earthworks
- 11. Satellite Aerial Photograph Showing Unmitigated Construction Noise Contours Pouring Foundations
- 12. Satellite Aerial Photograph Showing Unmitigated Construction Noise Contours Exterior Skin
- 13. Satellite Aerial Photograph Showing Mitigated Construction Noise Contours and Proposed Sound Barrier Location Demolition

APPENDICES

- A. Project Plans
- B. Pertinent Sections of the City of San Diego Noise Element to the General Plan, Municipal Code, and the Encanto Neighborhoods Community Plan
- C. Traffic Noise Model (TNM) Data and Results
- D. Manufacturer Data Sheets
- E. Sound Insulation Prediction Results
- F. Exterior-to-Interior Noise Analysis
- G. Recommended Products
- H. Cadna Analysis Data and Results

1.0 EXECUTIVE SUMMARY

The proposed project, Access Youth Academy, consists of the construction of a new building on a currently vacant lot. The new building will include three classrooms, a conference room, office spaces, and eight squash courts. The project site is located at 704 Euclid Avenue in the City of San Diego, California.

The primary noise sources in the vicinity of the project site are traffic noise from State Route 94, Euclid Avenue, and Guymon Street, and aircraft noise from the San Diego International Airport. Calculations show that worst-case combined noise levels at proposed building facades will range from 60.1 CNEL at the south-facing facade of the first floor to 72.9 CNEL at the east-facing facade of the second floor.

The City of San Diego requires interior noise levels of 45 CNEL or less in learning spaces and 50 CNEL or less in office spaces within the building. An interior noise analysis was performed considering the currently proposed exterior walls, roof, windows, and doors, and demonstrates that with windows closed, the current design is expected to be sufficient for reducing noise impacts to interior spaces to comply with these standards. As interior noise levels will exceed 45 CNEL or 50 CNEL with windows opened, mechanical ventilation will be required at the project site. With this project design feature in place, the project is expected to comply with the interior noise requirements of the City of San Diego Noise Element to the General Plan and the City of San Diego Encanto Neighborhoods Community Plan.

Calculations show that noise levels generated by anticipated HVAC units are expected to meet the applicable nighttime noise limits at surrounding property lines, as designed. No added project design features are deemed necessary for attenuating these mechanical noise impacts.

Due to the high noise levels associated with the demolition of the existing concrete slab on the project site, and the proximity of construction equipment to neighboring noise-sensitive receivers, a temporary noise barrier is required as mitigation to bring noise levels into compliance with applicable regulations during this construction activity. The noise barrier should be ten feet high along the northern property line of the subject property and should be six feet high along the western property line of the subject property. With these noise barriers in place during the demolition of the concrete slab, noise from temporary construction activities is expected to comply with the applicable construction noise limits of the City of San Diego at all surrounding properties during this phase of construction. During all remaining phases of construction, noise levels from construction activities are expected to remain in compliance with applicable regulations at all noisesensitive receivers, without any mitigation. Construction is prohibited between the hours of 7 p.m. and 7 a.m. and on Sundays and legal holidays. Standard construction noise control methods, including adhering to permissible hours of operation, maintaining equipment in proper operating condition, and placing staging areas at furthest locations from noise sensitive receivers, in addition to installation of the proposed barrier wall during the demolition of the existing concrete slab, are expected to be sufficient for reducing noise impacts to surrounding receivers.

2.0 INTRODUCTION

This acoustical analysis report is submitted to satisfy the noise requirements of the City of San Diego. The purpose of this report is to assess exterior noise impacts to the site, and to identify project features necessary to meet the interior noise limits set within the City of San Diego Noise Element to the General Plan and the City of San Diego Encanto Neighborhoods Community Plan.

All noise level or sound level values presented herein are expressed in terms of decibels, with A-weighting to approximate the hearing sensitivity of humans. Time-averaged noise levels are expressed by the symbol L_{EQ} , for a specified duration. The Community Noise Equivalent Level (CNEL) is a calculated 24-hour weighted average, where sound levels during evening hours of 7 p.m. to 10 p.m. have an added 5 dB weighting, and sound levels during nighttime hours of 10 p.m. to 7 a.m. have an added 10 dB weighting. This is similar to the Day-Night sound level, L_{DN} , which is a 24-hour average with an added 10 dB weighting on the same nighttime hours but no added weighting on the evening hours. Sound levels expressed in CNEL are always based on A-weighted decibels. These metrics are used to express noise levels for both measurement and municipal regulations, for land use guidelines, and for enforcement of noise ordinances. According to the California Department of Transportation's Technical Noise Supplement to the Traffic Noise Analysis Protocol (see reference), peak hour traffic noise levels are typically found to be close to predicted CNEL values. Therefore, CNEL values calculated in the traffic noise analysis for this project have been considered to be representative of peak hour noise impacts that would be experienced at onsite classrooms. Further explanation can be provided upon request.

2.1 Project Description

The proposed project, Access Youth Academy, consists of the construction of a new building on a currently vacant lot. The new building will include three classrooms, a conference room, office spaces, and eight squash courts. Storage areas, a kitchen, and locker rooms are also included in the construction. Project plans are provided as Appendix A.

2.2 Project Location

The proposed project is located at 704 Euclid Avenue in the City of San Diego, California. The Assessor's Parcel Number (APN) for the project is 548-010-13-00. The site is currently vacant. For a graphical representation of the site, please refer to the Vicinity Map, Assessor's Parcel Map, Satellite Aerial Photograph, and Topographic Map, provided as Figures 1 through 4, respectively.

2.3 Applicable Noise Regulations

The City of San Diego Noise Element to the General Plan and the City of San Diego Encanto Neighborhoods Community Plan both require that, for institutional uses, interior noise impacts from exterior sources must be controlled to be 45 CNEL or less within learning spaces and 50 CNEL or less within office spaces.

Additionally, noise sources on the project site must also be evaluated to determine their impact on neighboring receivers. The City of San Diego Municipal Code states that single family residential properties have noise limits of 50 dBA between the hours of 7 a.m. and 7 p.m., 45 dBA between the hours of 7 p.m. and 10 p.m., and 40 dBA between the hours of 10 p.m. and 7 a.m. The municipal code states that commercial properties have noise limits of 65 dBA between the hours of 7 a.m. and 7 p.m., 60 dBA between the hours of 7 p.m. and 10 p.m., and 60 dBA between the hours of 10 p.m. and 7 a.m. The subject property is considered commercial. Properties to the north, east, and west

are single family zoning and/or use. The property to the south is commercial. The City of San Diego Municipal Code states that the sound level limit at a location on a boundary between two zoning districts is the arithmetic mean of the respective limits for the two districts. Therefore, the noise level limits at a boundary between commercial and single family residential use properties have been calculated as 57.5 dBA between the hours of 7 a.m. and 7 p.m., 52.5 dBA between the hours of 7 p.m. and 10 p.m., and 50 dBA between the hours of 10 p.m. and 7 a.m.

In addition, Section 59.5.0404 of the City of San Diego Municipal Code states that construction activity is prohibited between the hours of 7 p.m. and 7 a.m. and on Sundays and legal holidays. During permissible hours of operation, noise levels from construction activity must be limited to a twelve-hour average of no greater than 75 dBA at any property line zoned for residential use.

Pertinent sections of the City of San Diego Noise Element to the General Plan, Municipal Code, and the Encanto Neighborhoods Community Plan are provided as Appendix B.

3.0 ENVIRONMENTAL SETTING

3.1 Existing Noise Environment

The primary noise sources in the vicinity of the project site include automobile and truck traffic noise from State Route 94, Euclid Avenue, and Guymon Street, as well as noise contribution from aircraft overflight from the San Diego International Airport. No other noise source is considered to be significant.

3.1.1 Aircraft Overflight Noise Sources

San Diego International Airport is located approximately 5.5 miles to the west of the proposed project site. According to the most current Airport Influence Area for San Diego International Airport, the project site lies just outside the 60-65 dB CNEL contour. Based on the location near the contour, the aircraft noise impact at the project site is estimated to be approximately 60 CNEL. Please refer to Figure 5 for a graphical representation of these contours.

3.1.2 Existing Transportation Noise

Current (2015) traffic volumes are given based on information from the Caltrans Traffic Census, the San Diego Association of Governments (SANDAG) Average Traffic Volumes for Local Jurisdictions, and the SANDAG Series 12 Transportation Forecast Information Center (see references).

State Route 94 (SR-94) is a nine-lane, two-way Freeway running generally east-west to the north of the project site. The posted speed limit is 65 mph. According to counts obtained from the 2015 Caltrans traffic census, SR-94 currently carries approximately 91,500 Average Daily Trips (ADT) in the vicinity of the project site.

Euclid Avenue is a four-lane, two-way Major Arterial running north-south along the eastern boundary of the project site. The posted speed limit is 35 mph. According to SANDAG, Euclid Avenue currently carries a traffic volume of approximately 29,300 ADT in the vicinity of the project site.

Guymon Street is a two-lane, two-way Local roadway running generally east-west along the southern boundary of the project site. The posted speed limit is 25 mph. According to the

SANDAG TFIC Series 12 Adjusted Counts (2008), Euclid Avenue currently carries a traffic volume of approximately 800 ADT in the vicinity of the project site.

No current or future truck percentages were available for any of the roadways in the vicinity of the project site, other than State Route 94. However, based on neighboring and surrounding land use, on-site observations, and professional experience, a truck percentage mix of 3.00% medium trucks and 2.00% heavy trucks was used for Euclid Avenue and a truck percentage mix of 2.00% medium trucks and 1.00% heavy trucks was used for Guymon Street. According to Caltrans traffic counts, SR-94 currently carries a truck percentage mix of 2.84% medium and 1.06% heavy trucks.

Current and future (See Section 3.2) traffic volumes and vehicle mixes for roadway sections near the project site are shown in Table 1. For more information, please refer to Appendix C: Traffic Noise Model (TNM) Data and Results.

Table 1. Overall Roadway Traffic Information							
	Speed Limit	Vehicle Mix (%) Medium Heavy Trucks Trucks		Current Traffic	Future Traffic		
Roadway Name	(mph)			(Year)	(2035)		
State Route 94	65	2.84	1.06	91,500 (2015)	94,400 / 98,900¹		
Euclid Avenue	35	3.00	2.00	29,300 (2015)	28,000		
Guymon Street	25	2.00	1.00	800 (2008)	1,000		

¹Future traffic volumes of SR-94 are shown for segments eastbound and westbound, respectively.

Current traffic noise contours were calculated at five feet above ground level, without existing or proposed project structures, and showed that traffic noise impacts to the entire project site range from 64.6 CNEL to 72.6 CNEL. For a graphical representation of these contours, please refer to Figure 6: Site Plan Showing Current and Future Traffic CNEL Contours and Noise Measurement Location.

3.1.3 Measured Noise Level

An on-site inspection and noise measurements were taken on the afternoon of Monday, November 6, 2017. A "one-hour" equivalent noise measurement was made at approximately 61 feet west of the Euclid Avenue centerline, and approximately 23 feet north of the Guymon Street centerline. The microphone was placed at approximately five feet above grade.

Traffic volumes for Euclid Avenue and Guymon Street were recorded for automobiles, medium-size trucks, and large trucks during the measurement period. After a continuous 10-minute sound level measurement, no changes in the L_{EQ} were observable and results were recorded. The primary source of noise during the measurement was traffic on Euclid Avenue and Guymon Street, with some minor noise contribution from traffic traveling on SR-94. The measured noise level and related weather conditions are found in Table 2. For more information, please refer to Appendix C: Traffic Noise Model (TNM) Data and Results. For a graphical representation of the noise measurement location, please refer to Figure 6.

Table 2. On-Site Noise Measurement Conditions and Results				
Date Monday, November 6, 2017				
Time	2:11 p.m. – 2:23 p.m.			
Conditions Partly cloudy skies, winds at 7 mph, temperature in the mid 70s with moderate humidity				
Measured Noise Level	68.5 dBA L _{EQ}			

3.1.4 Calculated Noise Level

Noise levels were calculated for the site using the methodology described in Section 4.1 for the location, conditions, and traffic volumes counted during the noise measurements. The calculated noise levels (L_{EQ}) were compared with the measured on-site noise level to determine if adjustments or corrections (calibration) should be applied to the traffic noise prediction model in the Traffic Noise Model software (TNM). Adjustments are intended to account for site-specific variances in overall reflectivity or absorption, which may not be accurately represented by the default settings in the model.

The measured noise level of 68.5 dBA L_{EQ} at approximately 61 feet west of the Euclid Avenue centerline, and approximately 23 feet north of the Guymon Street centerline was compared to the calculated (modeled) noise level of 70.0 dBA L_{EQ} for the same conditions and traffic flow. According to the Federal Highway Administration's Highway Traffic Noise: Analysis and Abatement Guide (see reference), a traffic noise model is considered validated if the measured and calculated noise impacts differ by three decibels or less. No adjustment was deemed necessary to model future noise levels for this location as the difference between the measured and calculated levels was found to be less than three decibels. This information is presented in Table 3. Please refer to Appendix C: Traffic Noise Model (TNM) Data and Results for more information.

Table 3. Calculated versus Measured Traffic Noise Data						
Calibration Receiver Position Measured Calculated Difference Correction						
61 feet west of Euclid C.L. 23 feet north of Guymon C.L.	68.5 dBA L _{EQ}	70.0 dBA L _{EQ}	1.5 dB	None applied		

3.2 Future Noise Environment

The future on-site noise environment is expected to be the result of the same noise sources, as well as permanent project-related noise generated by the proposed rooftop HVAC equipment, and temporary project-related noise generated by construction activity.

3.2.2 HVAC Noise Sources

The primary source of permanent noise generated on site is expected to be the operation of proposed rooftop mechanical (HVAC) equipment. According to mechanical plans, several pieces of rooftop mechanical equipment are proposed for the site. The sound power levels for the proposed rooftop HVAC equipment are shown in Table 4. Please refer to Appendix D: Manufacturer Data Sheets for additional information.

Table 4. Sound Power Levels of Rooftop HVAC Equipment								
0	Sound Power Level at Octave Band Frequency (dBA)							Total
Source	125	250	500	1K	2K	4K	8K	(dBA)
Carrier 48HC-11	87.9	85.6	84.4	82.8	78.5	74.9	72.5	87.3
Carrier 48HC-20	83.9	80.4	81.8	78.7	76.5	72.2	65.4	84.1
Carrier 48HC-24	87.5	84.2	84.2	81.7	77.9	73.2	66.3	86.5
Cook ACE-B 195C6B	75.0	76.0	70.0	66.0	62.0	56.0	52.0	72.0
AAON RQ-005-8-J	78.0	79.0	72.0	67.0	65.0	60.0	55.0	74.9
AAON CB-B-060-8*	89.0	87.0	85.0	84.0	78.0	75.0	69.0	88.0

^{*} No sound level information was available for the AAON CB-B-060-8 heat pump; therefore, the sound levels for a similar heat pump were used. The sound power levels shown above for AAON CB-B-060-8 were taken from a Trane WSC120A heat pump.

No other noise sources on site are anticipated to generate a significant amount of noise at neighboring properties.

3.2.3 Temporary Construction Equipment

An anticipated construction schedule was formulated using information provided by a site-specific memo from Dempsey Construction and from professional experience. Noise levels for proposed equipment are detailed in Table 5. All noise levels have been provided by the UK Department for Environment, Food, and Rural Affairs (DEFRA) Construction Noise Database, and all duty cycles have been provided by the Federal Highway Administration.

Table 5. Typical Construction Equipment Noise Levels				
Equipment Description	Duty Cycle (%)	Noise Level at 50 feet (dBA)		
Excavator with Breaker	40	86		
Dump Truck / Truck	40	75		
Front Loader	40	72		
Excavator	40	72		
Dozer	40	74		
Vibratory Roller	20	70		
Concrete Mixer Truck	40	76		
Concrete Pump Truck	20	74		
Telescopic Forklift	40	67		
150 kW Generator	50	61		
Truck (for delivery of materials to project site)	40	75		

These noise levels will be incorporated into the temporary construction noise analysis for the site, provided in Section 5.3.2.

4.0 METHODOLOGY AND EQUIPMENT

4.1 Methodology

4.1.1 Field Measurement

Typically, a "one-hour" equivalent sound level measurement (L_{EQ} , A-Weighted) is recorded for at least one noise-sensitive location on the site. During the on-site noise measurement, start and end times are recorded, vehicle counts are made for cars, medium trucks (double-tires/two axles), and heavy trucks (three or more axles) for the corresponding road segment(s). Supplemental sound measurements of one hour or less in duration are often made to further describe the noise environment of the site.

For measurements of less than one hour in duration, the measurement time is long enough for a representative traffic volume to occur and the noise level (L_{EQ}) to stabilize. The vehicle counts are then converted to one-hour equivalent volumes by applying an appropriate factor. Other field data gathered include measuring or estimating distances, angles-of-view, slopes, elevations, roadway grades, and vehicle speeds. This information is subsequently verified using available maps and records.

4.1.2 Roadway Noise Calculation

The Traffic Noise Model software, TNM Version 2.5 released in February 2004 by the U. S. Department of Transportation was used for all traffic modeling in the preparation of this report. TNM calculates the daytime average Hourly Noise Level (HNL) from traffic data including road alignment, elevation, lane configuration, projected traffic volumes, estimated truck composition percentages and vehicle speeds. The HNL is equivalent to the L_{EQ} , and may be converted to CNEL by the addition of 2.0 decibels, as suggested in the Wyle Laboratories Study (see reference). The daytime average hourly traffic volume, evaluated from Average Daily Trips (ADT) data as shown in the Wyle Study to be simply 5.8% of ADT, is then applied to models in TNM. Current and future CNEL is calculated for predetermined receiver locations.

In order to determine the estimated traffic volumes of roadways during the traffic noise measurement made on site for model calibration, the approximate percentage of the Average Daily Trips (ADT) value for the time period in which the measurement is made is incorporated into the traffic model. These percentages have been established in a study performed by Katz-Okitsu and Associates, Traffic Engineers (see reference). For purposes of calibrating the TNM, 7.4% of the ADT values for the current environment were used in calculations (for roadways that were not manually counted) to account for traffic between the hours of 2 p.m. and 3 p.m. in the vicinity of the project site. Further explanation can be supplied on request.

4.1.3 Exterior-to-Interior Noise Calculation

Analysis for the interior noise levels requires consideration of:

- Number of unique assemblies in the wall (doors, window/wall mount air conditioners, sliding glass doors, and windows)
- Size, number of units, and sound transmission data for each assembly type
- Length of sound impacted wall(s)
- Depth of sound impacted room
- Height of exterior wall of sound impacted room
- Exterior noise level at wall assembly or assemblies of sound impacted room

The Composite Sound Transmission data is developed for the exterior wall(s) and the calculated noise exposure is converted to octave band sound pressure levels (SPL) for typical traffic type noise. The reduction in room noise due to absorption is calculated and subtracted from the interior octave noise levels, and the octave band noise levels are logarithmically summed to yield the overall interior room noise level. When interior noise levels exceed the desired target for classrooms, the noise reduction achieved by each element is reviewed to determine the most cost-effective and compliant design modifications. Windows are usually the first to be reviewed, followed by the doors, and finally the walls.

4.1.4 Sound Transmission Class (STC) Ratings

Sound Transmission Class (STC) is a single number rating calculated in accordance with ASTM E413, using third-octave values of sound transmission loss. It provides an estimate of the sound performance of a partition, window, or door in sound insulation problems. Further information can be provided upon request.

Modeling of wall and floor/ceiling assemblies is accomplished using INSUL Version 9.0, which is a model-based computer program, developed by Marshall Day Acoustics for predicting the sound insulation of walls, floors, ceilings and windows. It is acoustically based on theoretical models that require only minimal material information that can make reasonable estimates of the sound transmission loss (TL), STC and IIC for use in sound insulation calculations; such as the design of common party walls and multiple family floor-ceiling assemblies, etc. INSUL can be used to quickly evaluate new materials or systems or investigate the effects of changes to existing designs. It models individual materials using the simple mass law and coincidence frequency approach and can model more complex assembly partitions, as well. It has evolved over several versions into an easy to use tool and has refined the theoretical models by continued comparison with laboratory tests to provide acceptable accuracy for a wide range of constructions. INSUL model performance comparisons with laboratory test data show that the model generally predicts the performance of a given assembly within 3 STC points. IIC predictions are generally made based on laboratory tests from a number of resources, including test data provided by product manufacturers and National Research Council of Canada tests.

4.1.5 Cadna Noise Modeling Software

Modeling of the outdoor noise environment is accomplished using Cadna Version 2018, which is a model-based computer program developed by DataKustik for predicting noise impacts in a wide variety of conditions. Cadna (Computer Aided Noise Abatement) assists in the calculation, presentation, assessment, and alleviation of noise exposure. It allows for the input of project information such as noise source data, barriers, structures, and topography to create a detailed model and uses the most up-to-date calculation standards to predict outdoor noise impacts. Noise

standards used by Cadna that are particularly relevant to this analysis include ISO 9613 (Attenuation of sound during propagation outdoors). Cadna provides results that are in line with basic acoustical calculations for distance attenuation and barrier insertion loss. Further explanation may be provided upon request.

4.1.6 Acoustical Formulas and Calculations

The following acoustical formulas and calculations have also been used in the preparation of this report.

Decibel Addition

To determine the combined logarithmic noise level of two known noise source levels, the values are converted to the base values, added together, and then converted back to the final logarithmic value, using the following formula:

$$L_C = 10\log(10^{L1/10} + 10^{L2/10} + \text{K} \cdot 10^{LN/10})$$

where L_C = the combined noise level (dB), and L_N = the individual noise sources (dB).

This procedure is also valid when used successively for each added noise source beyond the first two. The reverse procedure can be used to estimate the contribution of one source when the contribution of another concurrent source is known and the combined noise level is known. These methods can be used for L_{EQ} or other metrics (such as L_{DN} or CNEL), as long as the same metric is used for all components.

Attenuation Due To Distance

Attenuation due to distance is calculated by the equation:

$$SPL_2 = SPL_1 - 20\log(\frac{D_2}{D_1})$$

where SPL_1 = Known sound pressure level at known distance,

SPL₂ = Calculated sound pressure level at distance,

 D_1 = Distance from source to location of known sound pressure level, and

 D_2 = Distance from source to location of calculated sound pressure level.

This is identical to the more commonly used reference of 6 dB reduction for every doubling of distance. This equation does not take into account reduction in noise due to atmospheric absorption.

Hourly L_{EQ} Summation

To determine the hourly average noise levels (L_{EQ}) when the noise is created for less than the full hour, convert the logarithm values to the base energy value, multiply by the percentage of the hour that the noise occurs, and then convert the sum back to a logarithmic value. This is done with the following formula:

$$L_{EQ} = 10\log(P_H \times 10^{L_P/10})$$

where P_H = the percent or fraction of the hour noise is created, and

 L_P = the partial hour noise level (dB).

Sound Power to Sound Pressure

To convert sound power levels to sound pressure levels, the following formula is used:

$$SPL = SWL - 20\log(D) - 0.5$$

where: SPL= Calculated sound pressure level at distance, and D = Distance from source to location of calculated sound pressure level.

4.2 Measurement Equipment

Some or all of the following equipment was used at the site to measure existing noise levels:

- Larson Davis Model LxT Type 1 Integrating Sound Level Meter, Serial #4084
- Larson Davis Model CA250 Type 1 Calibrator, Serial #1081

The sound level meter was field-calibrated immediately prior to the noise measurement and checked afterward, to ensure accuracy. All sound level measurements conducted and presented in this report, in accordance with the regulations, were made with a sound level meter that conforms to the American National Standards Institute specifications for sound level meters (ANSI S1.4). All instruments are maintained with National Bureau of Standards traceable calibration, per the manufacturers' standards.

5.0 NOISE IMPACTS

5.1 Exterior Transportation Noise Impacts

As the traffic volume of Euclid Avenue is expected to decrease in the future, the current traffic volume has been used for this roadway for a worst-case analysis of traffic noise levels at the site. Worst-case combined noise impacts were calculated at building facades and showed that noise levels will range from 60.1 CNEL at the south-facing facade of the first floor to 72.9 CNEL at the east-facing facade of the second floor. Noise levels are shown in Table 6, and receiver locations are shown in Figure 7.

Table 6. Worst-Case Noise Levels at Building Facades						
Receiver	Facade Location	Floor	Exterior Noise Level (CNEL)			
Receiver	i acade Location	11001	Traffic	Aircraft	Combined	
F1	South	1	68.3	60.0	68.9	
[[South	2	68.8	60.0	69.3	
F2	West	1	53.9	60.0	61.0	
FZ		2	55.1	60.0	61.2	
F3	West	1	48.1	60.0	60.3	
FS	vvest	2	50.4	60.0	60.5	
F.4	VA/ 4	1	44.2	60.0	60.1	
F4	West	2	48.2	60.0	60.3	

Table 6. Worst-Case Noise Levels at Building Facades						
Receiver	Facade Location	Floor	Exterio	(CNEL)		
Receiver	racade Location	FIOOI	Traffic	Aircraft	Combined	
F5	South	1	43.1	60.0	60.1	
FO	South	2	45.1	60.0	60.1	
F6	West	1	47.5	60.0	60.2	
го	vvesi	2	52.4	60.0	60.7	
F7	North	1	61.6	60.0	63.9	
Г/		2	63.2	60.0	64.9	
F8	North	1	66.6	60.0	67.5	
го		2	67.3	60.0	68.0	
F9	East	1	72.0	60.0	72.3	
ГЭ		2	72.1	60.0	72.4	
F10	East	1	72.2	60.0	72.5	
FIU		2	72.3	60.0	72.5	
F11	East	1	72.0	60.0	72.3	
	East	2	72.2	60.0	72.5	
E12	Foot	1	72.6	60.0	72.8	
F12	East	2	72.7	60.0	72.9	

5.2 Interior Transportation Noise Impacts

The City of San Diego Noise Element to the General Plan and the City of San Diego Encanto Neighborhoods Community Plan require institutional uses to be designed in order to attenuate, control, and maintain interior noise levels to below 45 CNEL in educational space and 50 CNEL in office spaces. Contemporary exterior building construction is generally expected to achieve at least 15 decibels of exterior-to-interior noise attenuation, with windows opened, according to the U.S. Environmental Protection Agency (see reference). Therefore, proposed project building structures exposed to exterior noise levels greater than 60 or 65 CNEL could be subject to interior noise levels exceeding the 45 or 50 CNEL noise limits for interior space, respectively.

Exterior noise levels at many of the calculated receiver points on the proposed building facades exceed 60 CNEL, as shown in Table 4. Due to the elevated exterior noise levels at these building facades, an exterior-to-interior noise analysis was conducted for occupied spaces. The proposed exterior wall assemblies were evaluated using INSUL and were shown to have STC ratings of 47 and 54, and were incorporated into the interior noise analysis as such where they occur. The roof assembly was evaluated and determined to have a sound rating of STC 42. Glazing at the site is expected to be one-inch insulated glazing units with a rating of STC 34. More information is provided in Appendix E: Sound Insulation Prediction Results.

Table 7 below shows the results of the exterior-to-interior noise analysis for typical and worst-case spaces, considering the project as currently designed. For more information, please refer to Appendix F: Exterior-to-Interior Noise Analysis.

Table 7. Future Worst-Case Interior CNEL Noise Levels from Auto Traffic and Aircraft						
Room	Maximum Exterior Facade	Proposed STC Rating for Windows and	Interior Noise Level (CNEL)			
Room	Impact (CNEL)	Exterior Glass Doors	Windows Open	Windows Closed		
101 Lobby / 102 Reception / 103 Parents Lounge	72.3	34	42.7	40.5		
105 Classroom 1	72.0	34	64.6	38.5		
106 Classroom 2	72.6	34	65.2	39.0		
108 College Prep Room	72.6	34	64.9	39.0		
108 College Prep Room / 109 Classroom 3	72.6	34	63.2	37.6		
109 Classroom 3	68.3	34	58.5	33.4		
120 Singles Court 6 (Worst-Case Court)	66.6	N/A	N/A	26.8		
202 Gallery	72.2	34	63.1	40.5		
204 Open Office	72.7	34	62.5	39.2		
205 Office	72.7	34	65.4	44.5		
207 Conference Room	68.8	34	60.8	38.9		
208 Kitchen	60.0	34	52.7	35.0		

As shown in Table 7, with the project as currently designed, interior noise impacts are expected to be less than 45 CNEL in learning spaces and less than 50 CNEL in office spaces with windows closed. Appropriate means of air circulation and provision of fresh air must be present to allow windows to remain closed for extended intervals of time so that acceptable levels of noise can be maintained on the interior. Therefore, a mechanical ventilation system is required for the project.

The ventilation system shall meet the criteria of the California Mechanical Code, including the capability to provide appropriate ventilation rates. The ventilation system shall not compromise the sound insulation capability of the exterior wall or be dependent on ventilation through windows. A Forced Air Unit (FAU) or its equivalent meeting the criterion described must be installed in these spaces to satisfy code requirements.

Exterior door installation should include all-around weather-tight door stop seals and an improved threshold closure system. The additional hardware will improve the doors' overall sound reduction properties. The transmission loss (TL) of an exterior door without weather-tight seals is largely a factor of sound leakage, particularly at the bottom of the door if excessive clearance is allowed for air transfer. By equipping exterior doors with all-around weather-tight seals and an airtight threshold closure at the bottom, a loss of up to 10 STC points can be prevented. Manufacturers of these products include such companies as Pemko and Reese. Manufacturer sheets are provided in Appendix G: Recommended Products.

Additionally, it is imperative to seal and caulk between the rough opening and the finished door frame for all doors by applying an acoustically resilient, non-skinning butyl caulking compound. Sealant application should be as generous as needed to ensure effective sound barrier isolation. The same recommendation would apply to any other penetrations through the assembly. The OSI Green Series Draft and Acoustical Sound Sealant and the Pecora AC-20 FTR Sealant are products specifically designed for this purpose. Please see Appendix G: Recommended Products.

The proposed project was analyzed for worst-case noise impacts from roadway traffic and aircraft overflight. With the proposed exterior wall assemblies, roof assembly, glazing, and mechanical ventilation in place, all interior space is expected to comply with the City of San Diego noise requirements established in the Noise Element to the General Plan and Encanto Neighborhoods Community Plan.

5.3 Project-Related Noise Impacts on Surrounding Property Lines

5.3.1 HVAC Noise

Anticipated HVAC noise levels have been calculated using Cadna at surrounding noise-sensitive receivers, considering the noise limits detailed in Section 2.3. Calculations take into account the proposed building on which HVAC units will be roof-mounted. Receivers have been placed at five feet above grade at all surrounding property lines. Calculations assume that all HVAC units will be operational for 100 percent of the time during all hours of the day, for a worst-case analysis, although actual operation would be expected to be intermittent and less frequent during the more sensitive nighttime hours.

Results of the analysis are shown in Table 8. More information is provided in Appendix H: Cadna Analysis Data and Results, and a graphical representation of evaluated source and receiver locations is shown in Figure 8.

Table 8. Mechanical Equipment Noise Levels at Surrounding Receivers					
Receiver	Location	Nighttime Noise Limit (dBA)	Equipment Noise Level (dBA)		
M1	West Property Line	50	38.1		
M2	North Property Line	50	44.1		
М3	East Property Line (Across Euclid)	50	37.9		
M4	East Property Line (Across Euclid)	50	37.2		

As shown above, noise levels from proposed HVAC equipment on site are expected to meet the applicable nighttime noise limits set by the City of San Diego without the implementation of added project design features. This evaluation is considered to be representative of worst-case HVAC noise generated on site.

5.3.2 Temporary Construction Noise

A schedule of construction activity was evaluated to determine potential temporary noise impacts to the surrounding residentially zoned receivers, per City of San Diego Municipal Code requirements. The nearest residential properties are to the north, east, and west of the project site. Any other potentially noise-sensitive receivers are located at a greater distance from construction activity and

therefore would be exposed to lesser noise impacts due to distance attenuation and shielding provided by intervening structures.

An anticipated construction schedule was formulated using information provided by a site-specific memo from Dempsey Construction and from professional experience. A summary of construction activity is shown in Table 9.

Table 9. Anticipated Construction Activity				
Phase Anticipated Large Equipment				
1. Demolition	Excavator with Breaker, Dump Truck, Front Loader			
2. Grading / Earthworks	Dump Truck, Front Loader, Excavator, Dozer, Vibratory Roller			
3. Pouring Foundations	Concrete Mixer Truck (two trucks on site), Concrete Pump Truck			
4. Exterior Skin	Truck (for delivery of materials to project site), Telescopic Forklift, 150 kW Generator			

Noise levels were calculated at the nearest receivers to the north, east, and west using Cadna. Construction noise sources were placed near the center of the work area for each phase of construction. During the demolition phase, construction equipment was placed in the center of the existing concrete slab, as the majority of the demolition work will take place at this location. During all other phases of construction, construction equipment was placed in the center of the lot – to evaluate typical impacts to the surrounding receivers as equipment moves around the property. Noise calculations consider typical duty cycles of equipment, to account for periods of activity and inactivity on the site. Noise levels for each stage of construction are shown in Table 10. For a graphical representation of construction noise contours for each phase of construction, please refer to Figures 9 through 12.

Table 10. Unmitigated Temporary Construction Noise Levels at Surrounding Properties						
Phase	Equipment Used	Receiver	Approximate Distance (ft)	Average Noise Level of Equipment (dBA)		
		R1	128	73.3		
	Excavator with Breaker, Dump Truck, Front Loader	R2	67	79.6		
Demolition		R3	25	89.3		
		R4	147	72.0		
		R5	184	69.8		
	Dump Truck, Front Loader, Excavator, Dozer, Vibratory Roller	R1	69	72.8		
		R2	130	60.1		
Grading / Earthworks		R3	134	52.5		
		R4	182	63.5		
		R5	147	65.6		

Table 10. Unmitigated Temporary Construction Noise Levels at Surrounding Properties						
Phase	Equipment Used	Receiver	Approximate Distance (ft)	Average Noise Level of Equipment (dBA)		
Pouring Foundations	Concrete Mixer Truck (two trucks on site), Concrete Pump Truck	R1	69	73.1		
		R2	130	67.4		
		R3	134	67.0		
		R4	182	64.2		
		R5	147	66.2		
Exterior Skin	Truck (for delivery of materials to project site), Telescopic Forklift, 150 kW Generator	R1	69	69.0		
		R2	130	63.1		
		R3	134	62.7		
		R4	182	59.7		
		R5	147	61.8		

As shown above, construction noise impacts to surrounding properties are expected to comply with the applicable City of San Diego construction noise limits during all phases of construction, with the exception of the demolition phase. Due to the high noise levels associated with the demolition of the existing concrete slab on the project site and the proximity of construction equipment to neighboring noise sensitive receivers during this construction activity, a temporary noise barrier is required as mitigation along the north and west property lines of the subject property to bring noise levels into compliance with applicable regulations during the demolition phase of construction activity. Calculations were performed with a ten foot high noise barrier in place along the northern property line of the subject property and a six foot high noise barrier in place along the western property line of the subject property. Noise levels with this mitigation in place are shown in Table 11, below. For a graphical representation of the proposed orientation of the noise barrier during the demolition of the existing concrete slab and noise contours with this proposed mitigation in place, please refer to Figure 13.

Table 11. Mitigated Temporary Construction Noise Levels at Surrounding Properties						
Phase	Equipment Used	Receiver	Approximate Distance (ft)	Average Noise Level of Equipment (dBA)		
Demolition	Excavator with Breaker, Dump Truck, Front Loader	R2	67	71.4		
		R3	25	72.9		

As shown above, with the proposed sound barrier in place, noise levels during the demolition phase of construction are expected to comply with applicable noise limits at all surrounding properties.

The sound barrier should be solid and constructed of masonry, wood, plastic, fiberglass, steel, or a combination of those materials, with no cracks or gaps, through or below the wall. Any seams or

cracks must be filled or caulked. If wood is used, it should be tongue and groove and must be at least 7/8-inch thick or have a surface density of at least 3½ pounds per square foot. Any door or gate(s) must be designed with overlapping closures on the bottom and sides and meet the minimum specifications of the wall materials described above. The gate(s) may be of 3/4-inch thick or greater wood, solid-sheet metal of at least 18-gauge metal, or an exterior-grade solid-core steel door with prefabricated door jambs. An alternative option to the above criteria would be to install noise attenuation blankets, with a minimum STC rating of 28, and overlapping seams.

It has been determined that noise levels from construction activities associated with this project are expected to comply with the applicable City of San Diego construction noise limits at all surrounding property lines with activity limited to the daytime hours of 7 a.m. to 7 p.m during all phases of construction, with the exception of the demolition phase. During the demolition phase, a temporary noise barrier is required in order to mitigate noise impacts to surrounding properties located to the north and west of the subject property. The noise barrier should be ten feet high along the northern property line of the subject property and should be six feet high along the western property line of the subject property.

Although noise levels are shown to be in compliance with the construction noise limit of 75 dBA (with the installation of the proposed noise barrier during the demolition phase of construction), the following measures should still be practiced as a courtesy to surrounding properties.

- 1. Staging areas should be placed as far from occupied receivers as possible on the project site to limit any additional unnecessary noise exposure at sensitive receivers.
- 2. Place stationary equipment in locations that will have a lesser noise impact on nearby sensitive receivers.
- 3. Turn off equipment when not in use.
- 4. Limit the use of enunciators or public address systems, except for emergency notifications.
- 5. Equipment used in construction should be maintained in proper operating condition, and all loads should be properly secured, to prevent rattling and banging.
- 6. Schedule work to avoid simultaneous construction activities that both generate high noise levels.
- 7. Use equipment with effective mufflers.
- 8. Minimize the use of backup alarms.

With work limited to daytime hours permissible by the City of San Diego, the proposed noise barrier walls in place during the demolition phase, and adherence to the general good practice construction noise control techniques listed above, temporary construction noise is expected to remain in compliance with City of San Diego noise limits.

6.0 CONCLUSION

The City of San Diego requires interior noise levels of 45 CNEL or less in learning spaces and 50 CNEL or less in office spaces within the building. An interior noise analysis was performed considering the currently proposed exterior walls, roof, windows, and doors and demonstrates that the current design is expected to be sufficient for reducing noise impacts to comply with these standards with windows closed. As interior noise levels will exceed 45 CNEL or 50 CNEL with windows opened, mechanical ventilation will be required at the project site. With this project design feature in place, the project is expected to comply with the noise requirements of the City of San Diego Noise Element to the General Plan and the City of San Diego Encanto Neighborhoods Community Plan.

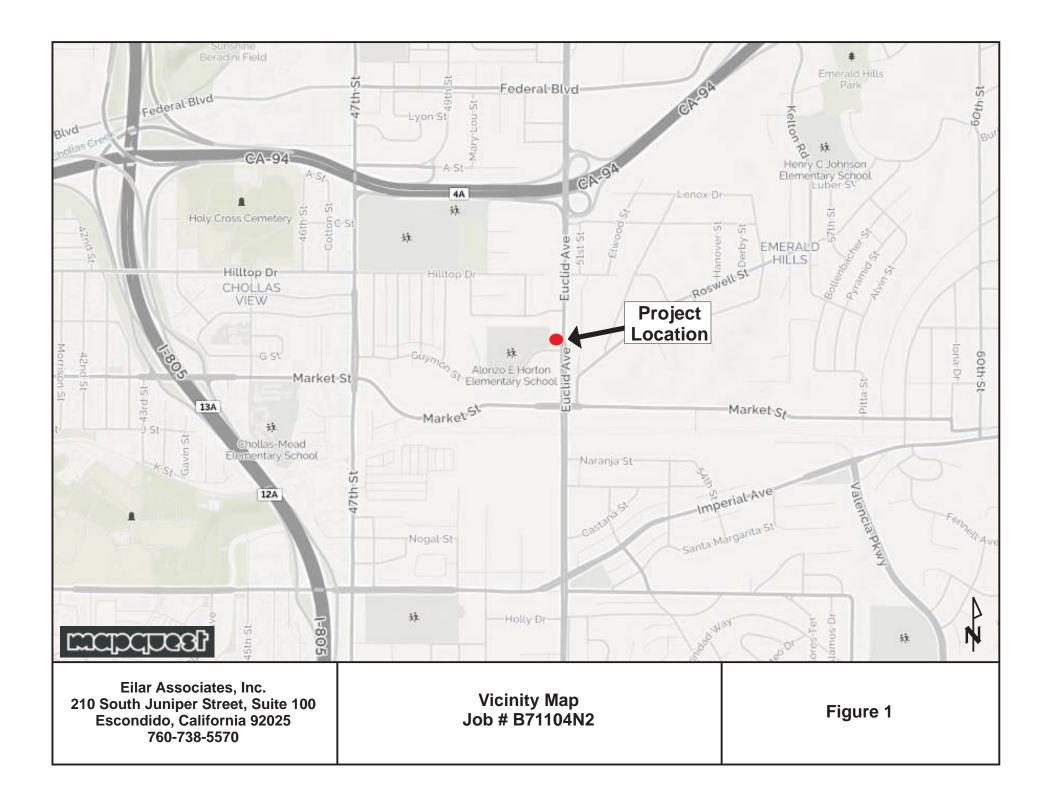
Calculations show that noise levels generated by anticipated HVAC units are expected to meet the applicable nighttime noise limits at surrounding property lines, as designed. No added project design features are deemed necessary for attenuating these mechanical noise impacts.

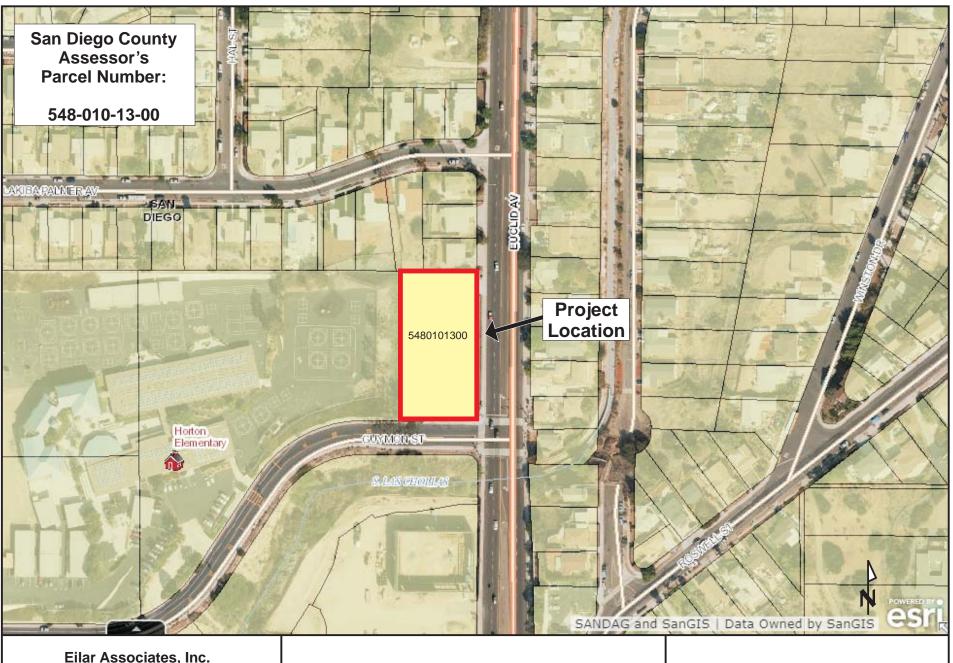
Due to the high noise levels associated with the demolition of the existing concrete slab on the project site, and the proximity of construction equipment to neighboring noise sensitive receivers, a noise barrier is required as mitigation in order to bring noise levels into compliance with applicable regulations during this construction activity. The noise barrier should be ten feet high along the northern property line of the subject property and should be six feet high along the western property line of the subject property. With these noise barrier walls in place during the demolition of the concrete slab, noise from temporary construction activities is expected to comply with the applicable construction noise limits of the City of San Diego at all surrounding property lines during this phase of construction. During all remaining phases of construction, noise levels from construction activities are expected to remain in compliance with applicable regulations at all noise-sensitive receivers, without requiring any mitigation. Construction is prohibited between the hours of 7 p.m. and 7 a.m. and on Sundays and legal holidays. Standard construction noise control methods, including adhering to permissible hours of operation, maintaining equipment in proper operating condition, and placing staging areas at the furthest possible locations from noise sensitive receivers, in addition to the installation of the proposed barrier wall during the demolition of the existing concrete slab, are expected to be sufficient for reducing noise impacts to surrounding receivers.

7.0 CERTIFICATION

All recommendations for noise control are based on the best information available at the time our consulting services are provided. However, as there are many factors involved in sound transmission, and Eilar Associates has no control over the construction, workmanship or materials, Eilar Associates is specifically not liable for final results of any recommendations or implementation of the recommendations.

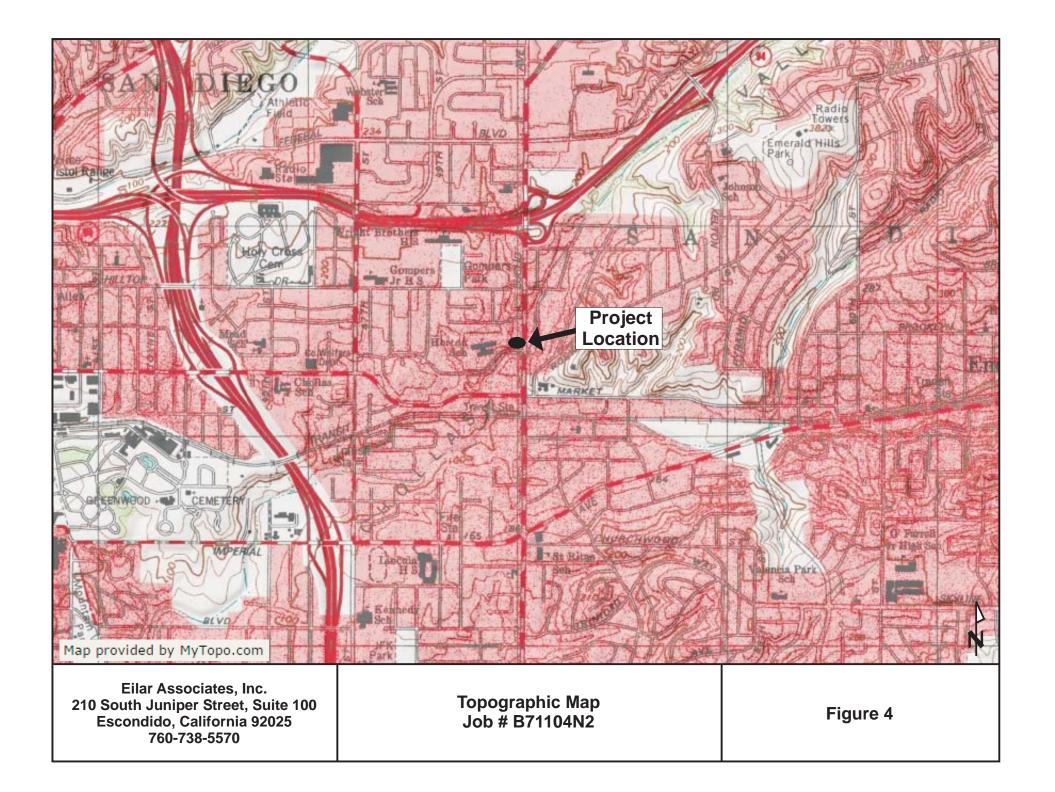
The findings and recommendations of this acoustical analysis report are based on the information available and are a true and factual analysis of the potential acoustical issues associated with the Access Youth Academy project in the City of San Diego, California. This report was prepared by Mo Ouwenga, Amy Hool, and Jonathan Brothers.


Mo Ouwenga, Acoustical Consultant I

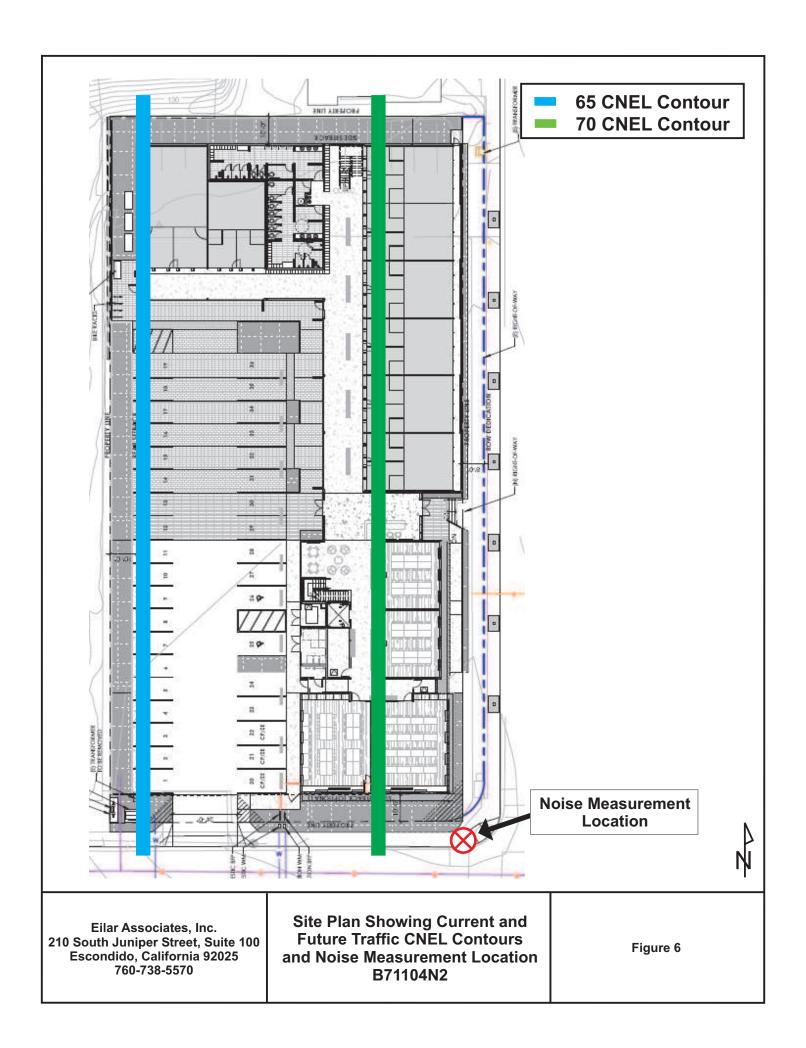

Jonathan Brothers, Principal Acoustical Consultant

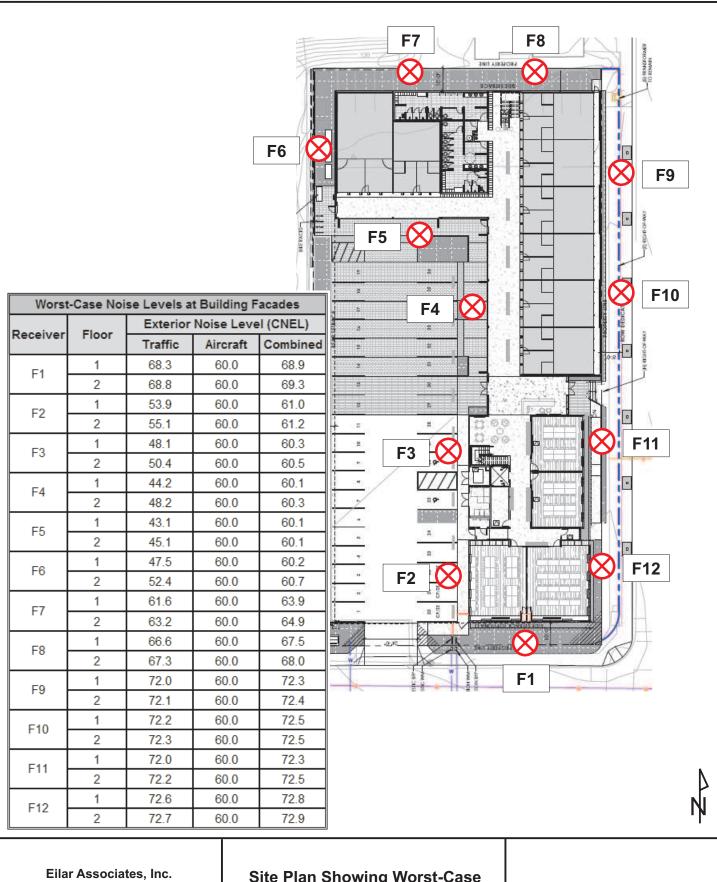
8.0 REFERENCES

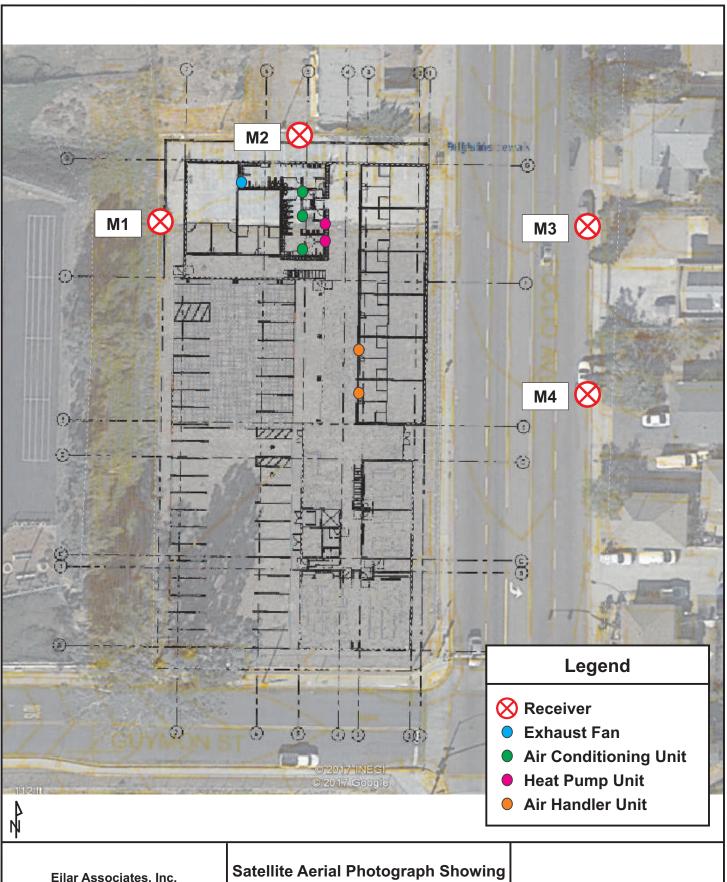
- 1. City of San Diego Noise Element to the General Plan, June 2015.
- 2. City of San Diego Municipal Code.
- 3. City of San Diego Encanto Neighborhoods Community Plan, Adopted November 16, 2015.
- 4. Caltrans Traffic Census, http://www.dot.ca.gov/trafficops/census/.
- 5. San Diego Association of Governments Average Daily Traffic Volumes for Local Jurisdictions, http://www.sandag.org/resources/demographics_and_other_data/transportation/adtv/index.asp
- 6. San Diego Association of Governments, Series 12 Transportation Forecast Information Center, http://tfic.sandag.org.
- 7. Federal Highway Administration, Traffic Noise Model Version 2.5.
- 8. Federal Highway Administration, Highway Traffic Noise: Analysis and Abatement Guide, December 2011.
- 9. Wyle Laboratories, Development of Ground Transportation Systems Noise Contours for the San Diego Region, December 1973.
- 10. Katz-Okitsu and Associates Traffic Engineers, Traffic Distribution Study, 1986.
- 11. U.S. Environmental Protection Agency Office of Noise Abatement and Control, Information on Levels of Environmental Noise Requisite to Protect Public Health and Welfare With an Adequate Margin of Safety, March 1974.
- 12. DataKustik, CadnaA (Computer Aided Noise Abatement), Version 2018.
- 13. UK Department for Environment, Food, and Rural Affairs (DEFRA) Construction Noise Database.
- 14. U.S. Department of Transportation Federal Highway Administration, Construction Noise Handbook, Construction Equipment Noise Levels and Ranges.



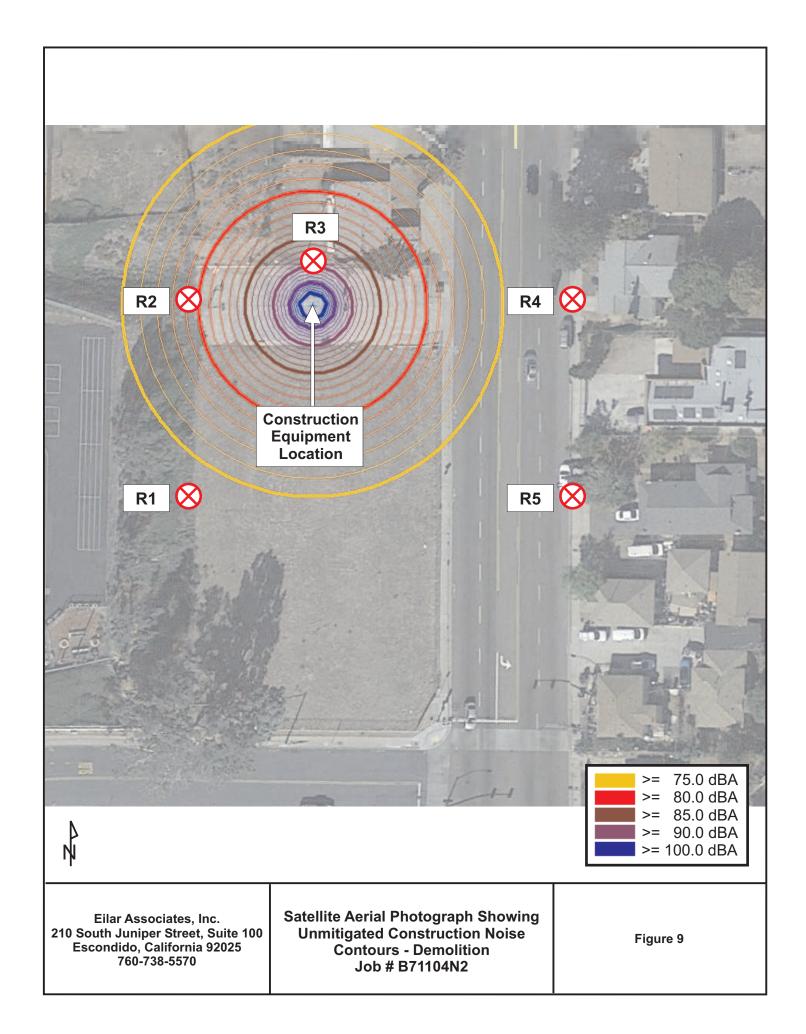
Assessor's Parcel Map Job # B71104N2

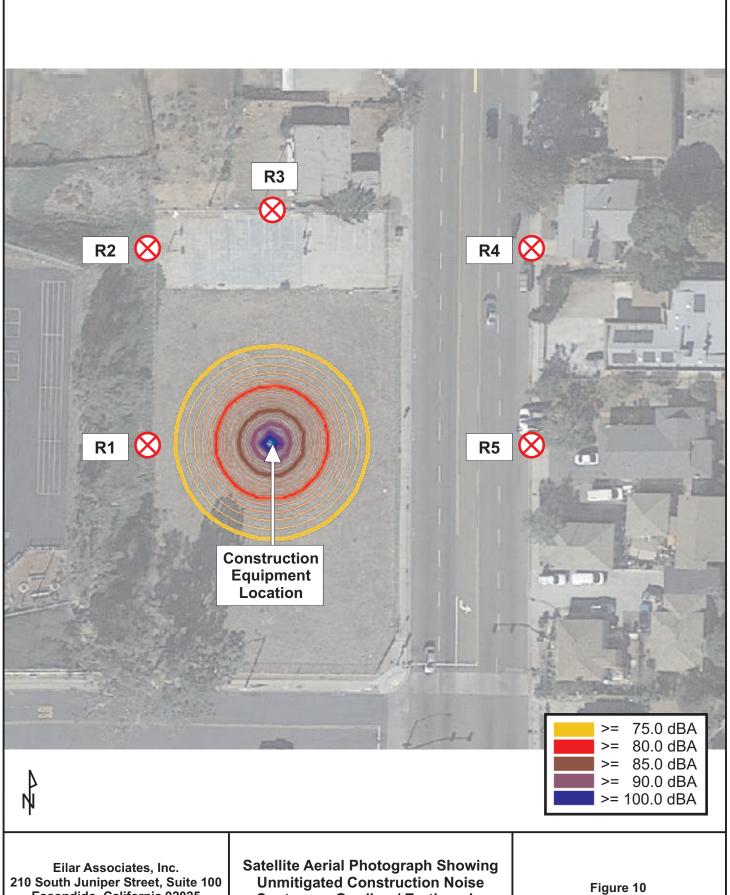



Satellite Aerial Photograph Job # B71104N2

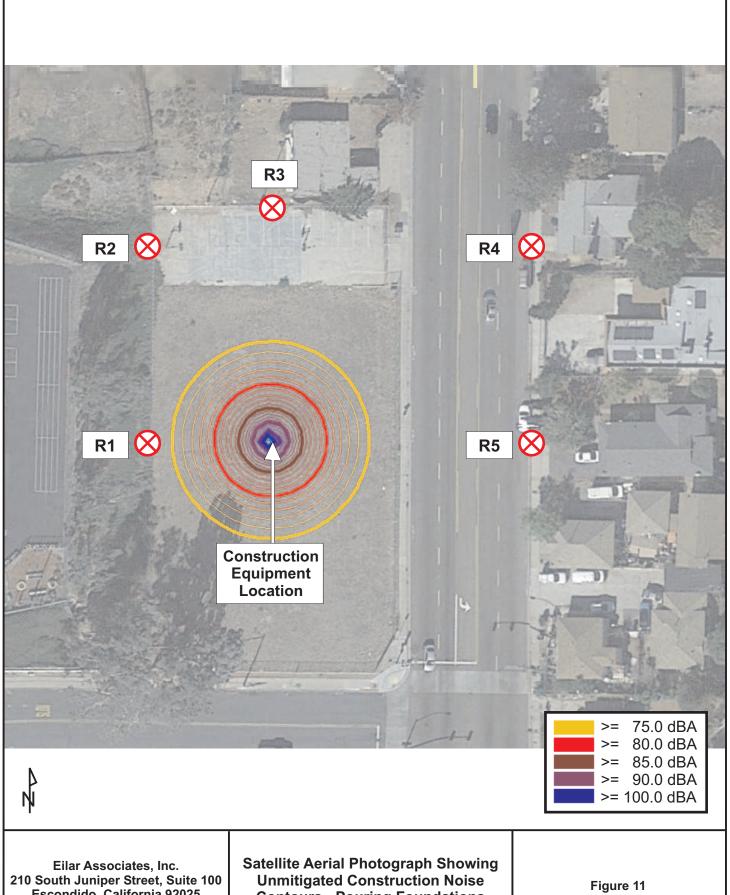


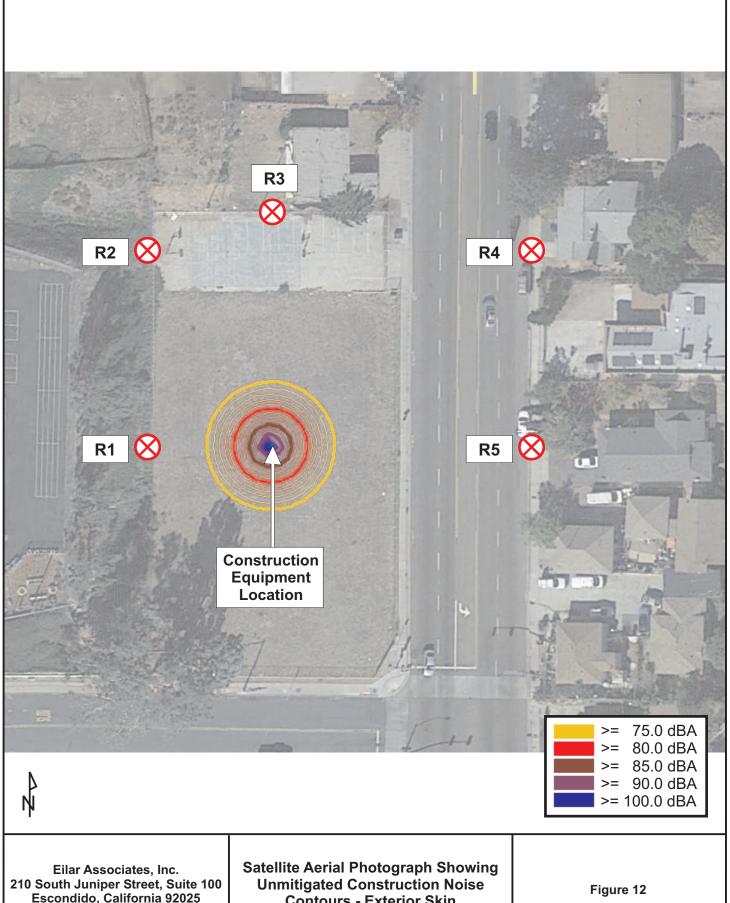
San Diego International Airport CNEL Contours and Project Location Job # B71104N2



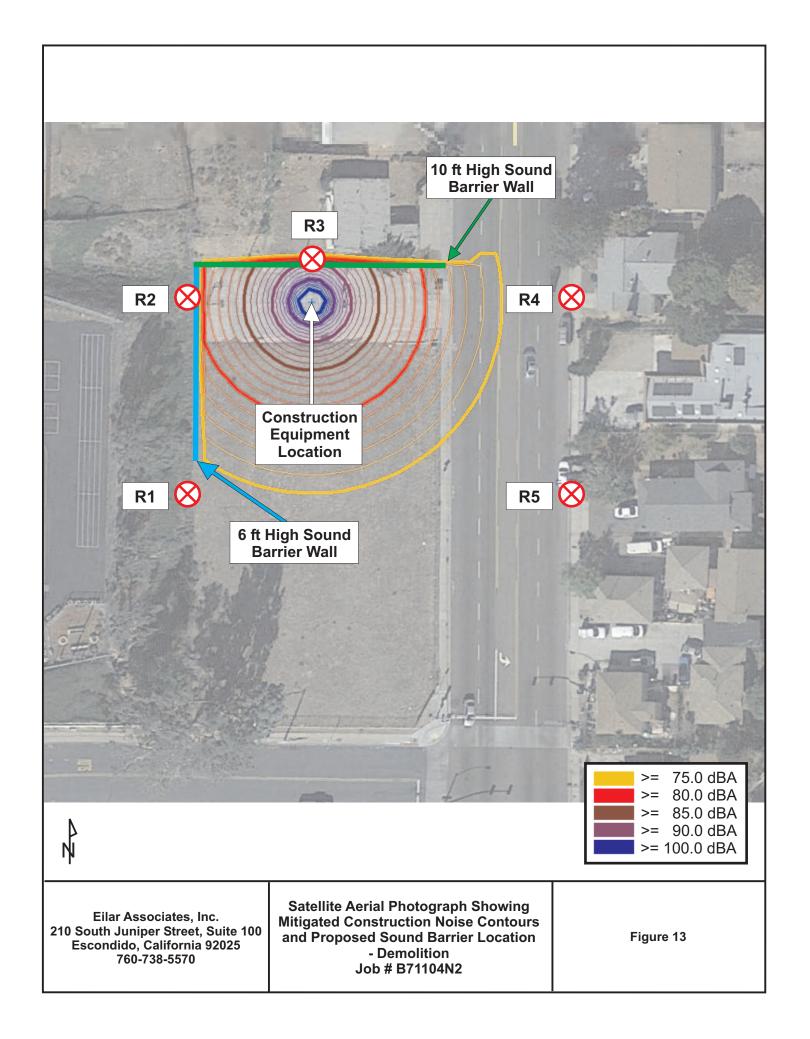


Site Plan Showing Worst-Case CNEL Impacts at Building Facades Job # B71104N2

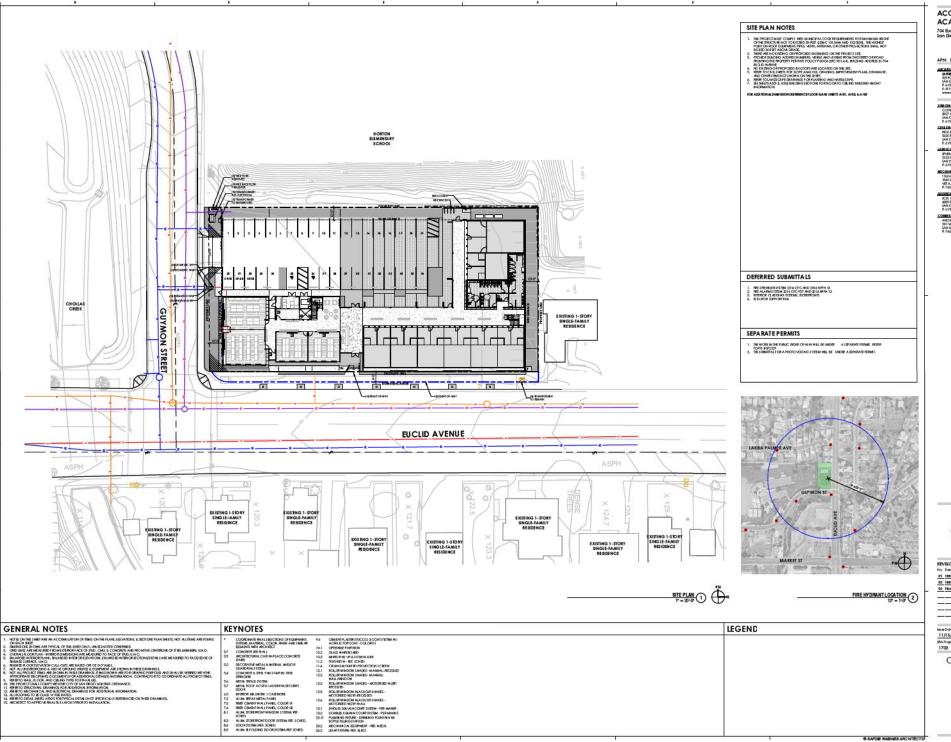

Satellite Aerial Photograph Showing Rooftop Mechanical Equipment and Receiver Locations Job # B71104N2


210 South Juniper Street, Suite 100 Escondido, California 92025 760-738-5570

Contours - Grading / Earthworks Job # B71104N2


210 South Juniper Street, Suite 100 Escondido, California 92025 760-738-5570

Contours - Pouring Foundations Job # B71104N2


210 South Juniper Street, Suite 100 Escondido, California 92025 760-738-5570

Contours - Exterior Skin Job # B71104N2

APPENDIX A

Project Plans

704 Bucild Avenue San Diego, CA 92114

APN: 548-010-13-00

ARCHERCE SAFOE BANKES ARCHECCTS 925 FORE SPOCIATION DRIVE SAN DESIGN, CA 92105 P. 619.297.6133 P. 619.297.6133 P. 619.297.6133 P. 619.297.6133

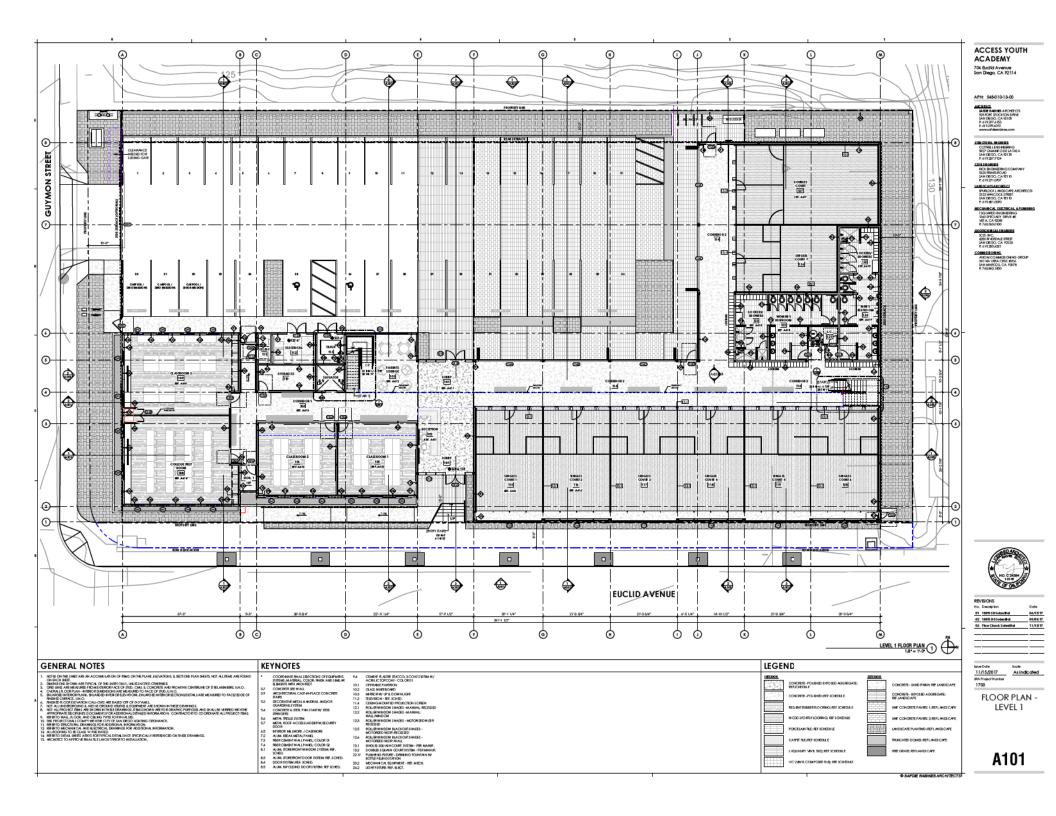
COTTRELLENGINEERING 927 CAMINE ODE LATACA SAN DEGO, CA 92120 P. 619.287.9124

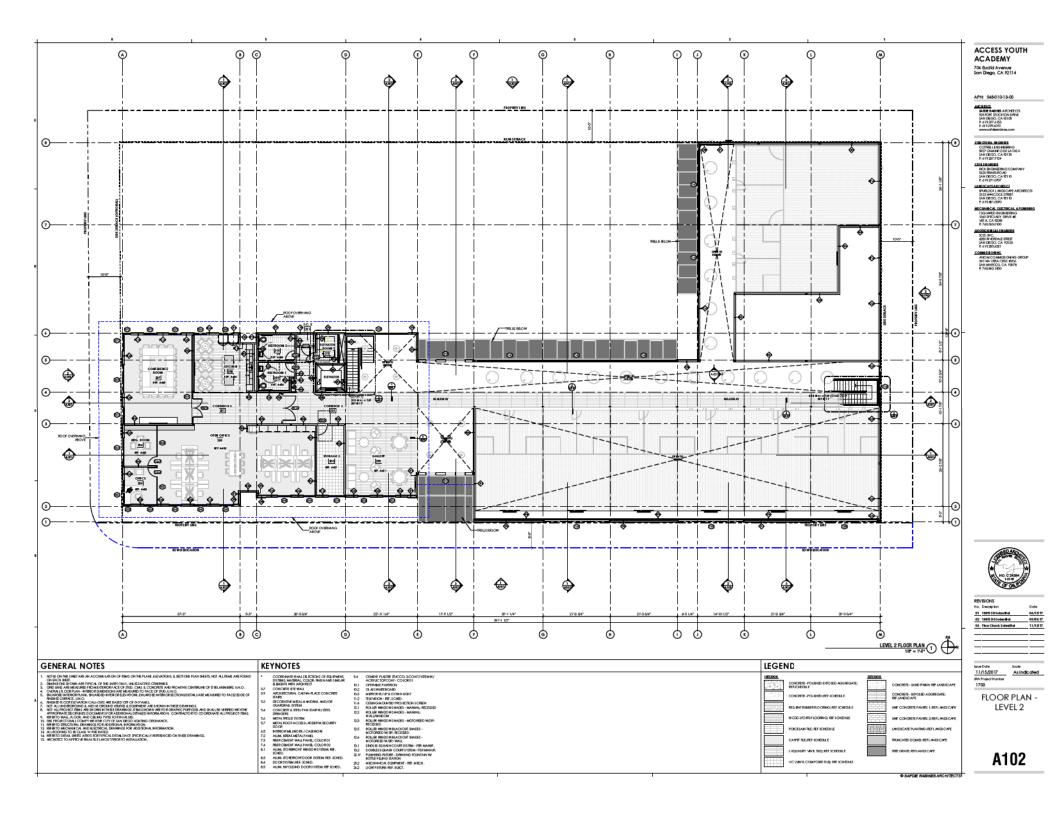
CNA FREMER PICK BIONEEPING CON \$20 PRAIS PO AD SAN DECC. CA \$21 D P. 619.291.0007

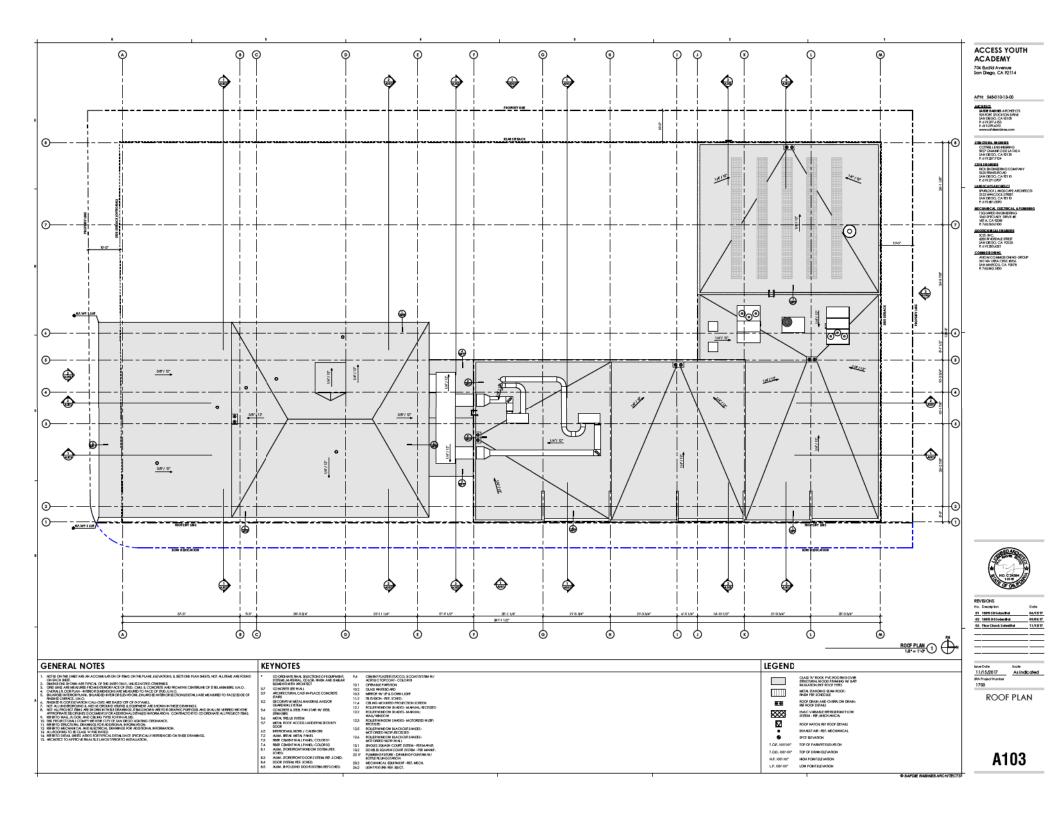
JANDSCAPEARCHECT SPURDOCK LANDSCAPE 2122 HANCOCK STREET SAN DEGO, CA 92110 P. 619 651,000

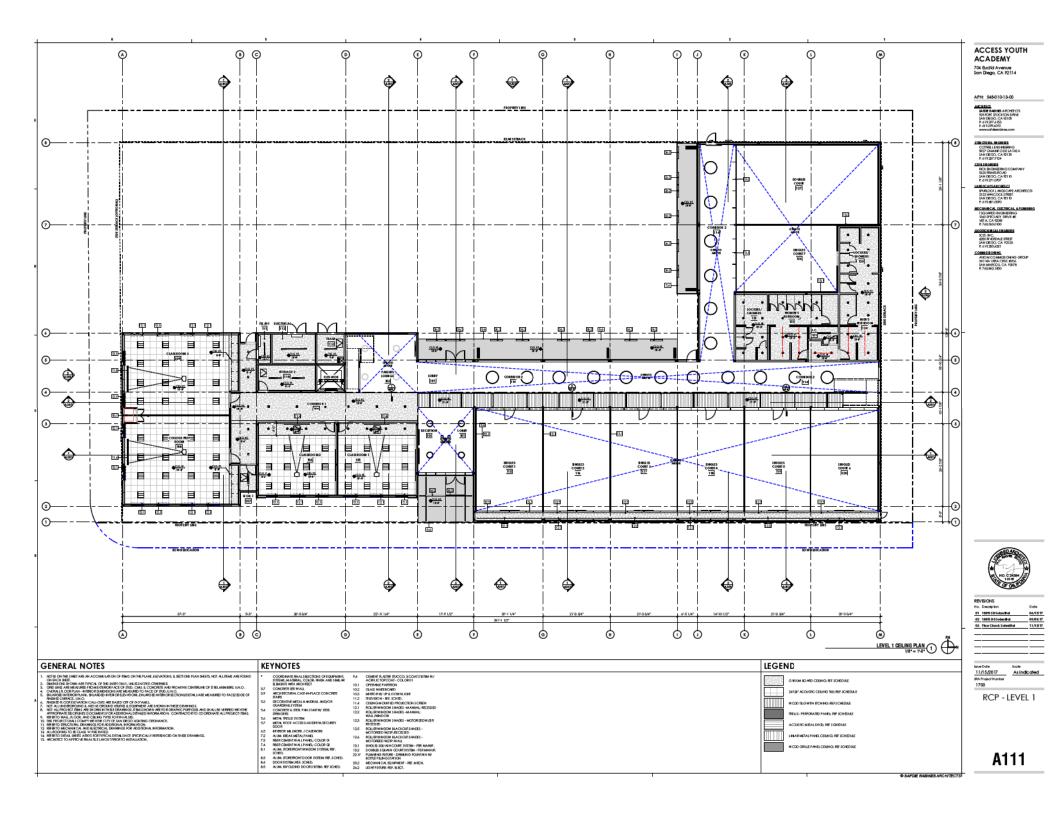
MECHANICAL ELECTRICAL AND 19QUARED BIGMERING DAIOSPECIALTY DRIVE RE VET A. CA 92051 R 740,500,0100

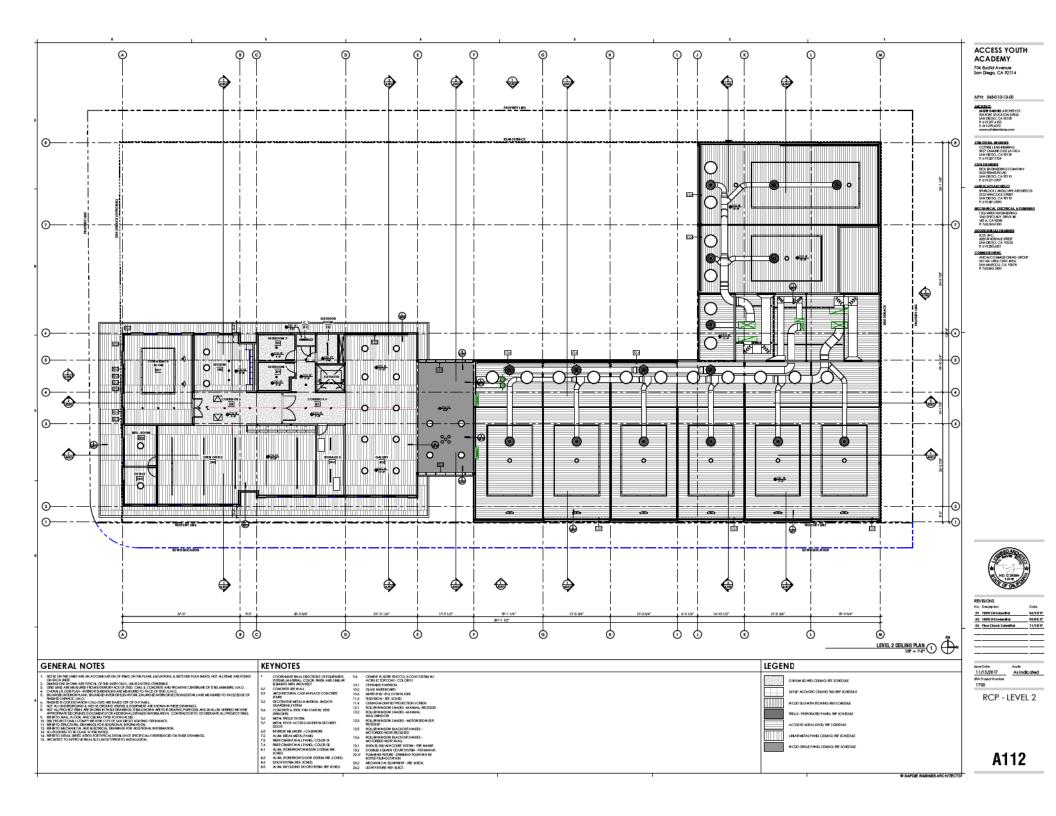
GEORGH II CAL FILOME

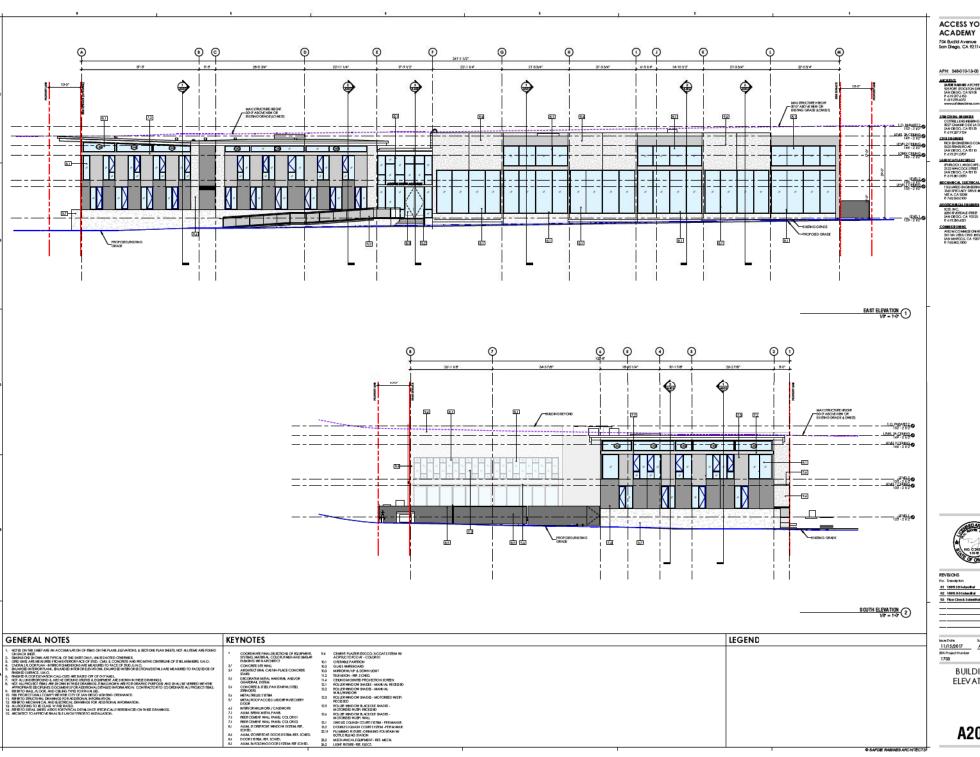



01 100% 50 Seben Rel млет 69,61/17 11/1977


11/15/2017 As indicated


OVERALL SITE


PLAN

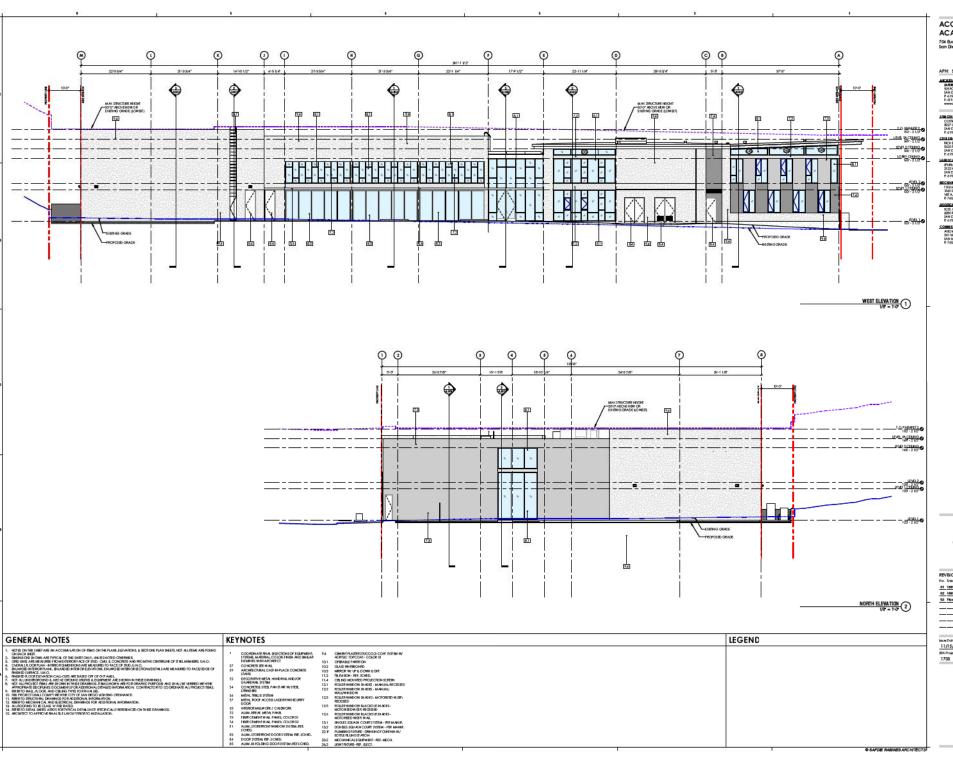


704 Bucild Avenue San Diego, CA 92114

COTTRELLENGUESENO 9/27 CAMPIN ODE LATACA SAN DEGO, CA 9/120 P. 619/257/9/24

CVA ENGINER PICK BIGNERING CO SIZO PRARS PO AD SAN DEGIC, CA 921 D P. 619.291.0007

MICHARICAL ESCRICAL A TSQUARED ATY DRIVE AC MID A CA 92561 P. 740 900 000 FORCH IS CALERO


COMMESCIONES
AND MCOMMESCIONES
AND MAYER CRUE #206
SAN MAPCOS CA 92078
P.740842.1800

٤١	/ISIONS	
o.	Description	Date
11	100% 50 Subm Brail	04/15/17
12	100% D-D Submilliol	09/01/T
	Plan Check Sebrail of	11/18/17
Т		
Т		

As indicated

BUILDING **ELEVATION**

704 Bucild Avenue San Diego, CA 92114

APN: 548-010-13-00

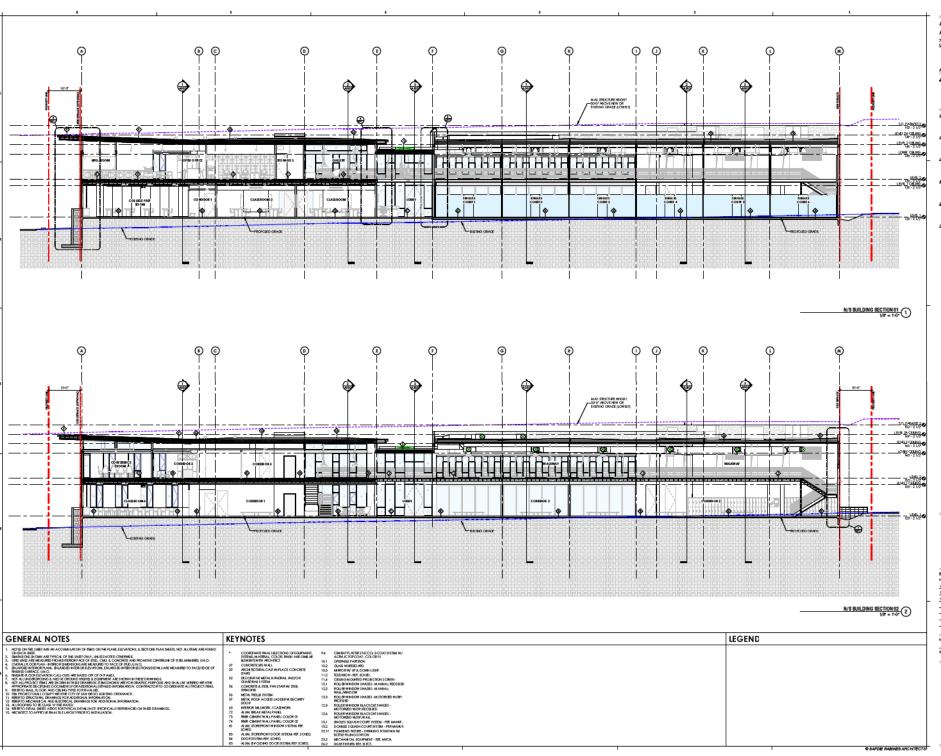
COTTRELLENG NEEDING 927 CAMPE CODE LATA A SAN DEGC, CA 92120 P. 619.207.9124

CVA ENGINER PICK BIGNERING CO SIZO PRARS PO AD SAN DEGIC, CA 921 D P. 619.291.0007

IAND SCANFARCHIECE SPURLOCK LANGE CAPE 2122 HANCOCK STREET SAN DEGO, CA 92110 P. 619 811,000

MICHARICAL ESCRICAL A TSQUARED ATV DRIVE AC MID A CA 92561 P. 740 900 000

GEORGICH IN CALL FING


COMMESCIONES
AND MCOMMESCIONES
AND MAYER CRUE #206
SAN MAPCOS CA 92078
P.740842.1800

RE	/ISIONS	
No.	Description	Diche
61	100% 50 Subm # of	04/15/
62	100% D D Submill of	09/03/
63	Plan Check Sebesit of	11/18

11/15/2017 Scale As indicated

> BUILDING **ELEVATION**

704 Bucild Avenue San Diego, CA 92114

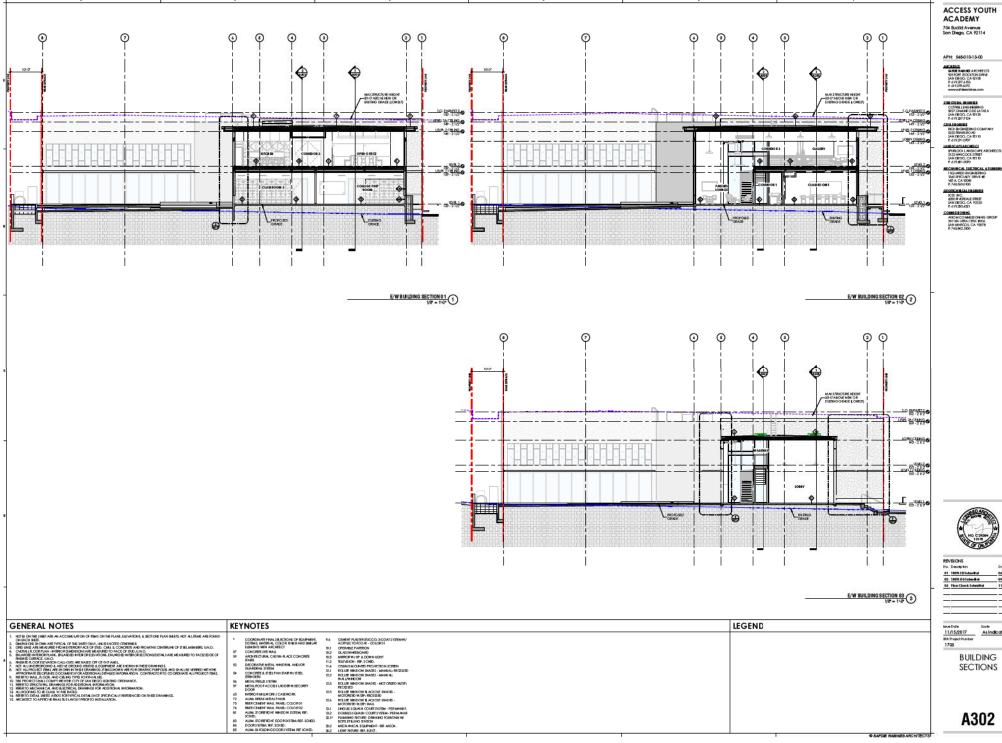
APN: 548-010-13-00

COTTRELLENGUESENO 9/27 CAMPIN ODE LATACA SAN DEGO, CA 9/120 P. 619/257/9/24

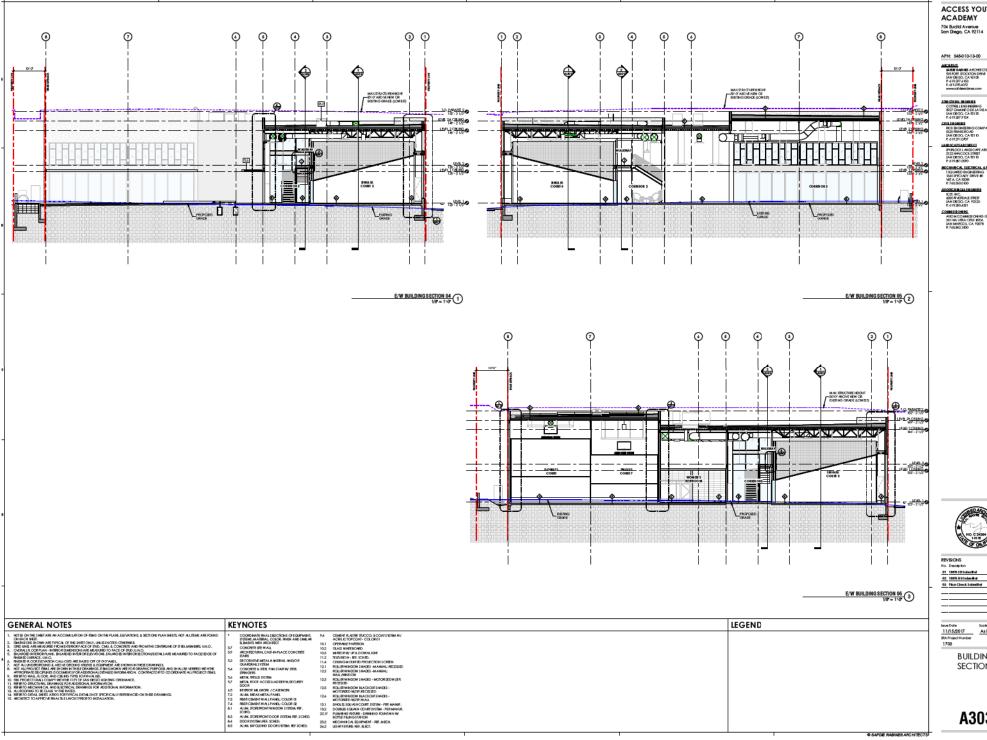
CNA ENGINER RCK BIONERNIO CO 520 RBARS RO AO SAN DEGO, CA 521 D P. 619:291.0007

IAND SCAPEARCHECT SPURCOCK LANGEC APE 2922 HANCOCK STREET SAN DEGO, CA 92110 P. 619:461.0090

MICHARICAL ELECTRICAL A: 12QUARED BIGGHERRIG DIAD PROJACTI DRIVE AC MET A CA 92061 P. 74Q 9000100 OSCORCHIMON SHOW


COMMESCIONES
AND MCOMMESCIONES
AND MAYER CRUE #206
SAN MAPCOS CA 92078
P.740842.1800

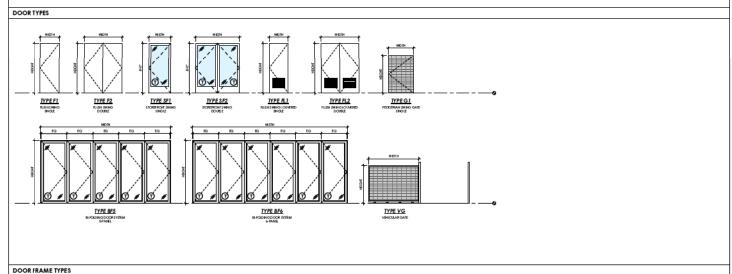
01 100% 50 Subm #rd 04/15/17 62 100% 0 0 Sebes Bol 63 Plan Check Sebes Bol 69,61/17 11/1977

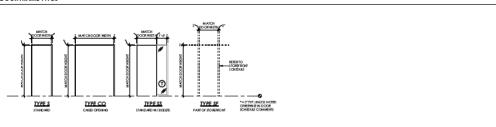

11/15/2017 As indicated 1703

> BUILDING SECTIONS

млет 69,61/17 11/1977

As indicated


ACCESS YOUTH


04/15/17 69,61/17 11/19/17

As indicated

BUILDING SECTIONS

DOOR S	CHEDULE																				
						DOOR					FRAME			GLAZING	,		DETA	JLS			
								FIRE	HARDWARE												
MARK	US E	ROOM	TYPE	WIDTH	HEIGHT	MATERIAL	FINSH	RATING	SET	TYPE	MATERIAL	FINISH	TYPE	U-VALUE	SHGC	HEAD	SILL	JAMB	MANUFACTURER	SERIES	COMMENTS
101A	Ederlor	FO88A	SF2	6-0"	10 - 0*	AL/GL	-	NR		SF	AL.	_	_	_							
1018	Briefor	FOSSA	SP2	€-0*	10 - 0*	AL/GL		NR		SF	AL.										
104A	Edelor	CORRIDOR 1	F1	3-0"	8-0"	HM	PTD			S	HM	PTD									
105A	Interior	CLASSROOM 1	F1	3 - 0,	8-0"	WD	P1D			22	WD	PTD									
106A	Interior	CLASSROOM 2	FI	3-0"	8-0.	WD	P1D			SS	WD	FTD	_	-	-						
107A	Interior	STORAGE 1	F1	3 - 0"	8 - 0.	WD	P1D			S	HM	PTD									
108A	Interior	COLLEGE PREP ROOM	FI	3 - 0,	8-0-	WD	P1D			22	WD	PTD									
1088	Interior	COLLEGE PREP ROOM	F2	4-0"	10 - 0*	WD	PTD			co	HM	PTD									
109 A	Interior	CLASS ROOM 3	FI	3 - 0"	8-0.	WD	P1D			22	WD	FTD									
110A	Interior	STORAGE 2	F1	3-0"	8-0-	WD	PTD			S	HM	PTD									
111A	Interior	TEL/IDF	R.1	3 - 0,	8 - 0.	WD	PTD			\$	HM	PTD									
112A	Edefor	ELECTRIC AL	R.2	6-0"	8-0"	HM	P1D			co	HM	PTD	-		-						
113A	Briefor	TRASH	P2	€-0"	8-0-	HM	PTD			co	HM										
114A	Interior	CORRIDOR 2	BF5	20' - 8"	10 - 0*	AL/GL					AL										
1148	Interior	CORRIDOR 2	BF5	20' - 8"	10 - 0*	AL/GL					AL										
114C	Interior	CORRIDOR 2	BF5	20'-8"	10 - 0*	AL/GL					AL										
1140	Edefor	CORRIDOR 2	FI	3-0"	9'-10"	HM	P1IO			S	HM	PTD	-	-	-						
114E	Interior	CORRIDOR 2	BF5	20' - 8"	10 - 0*	AL/GL					AL										
114F	Interior	CORRIDOR 2	BF6	24'-8"	10 - 0*	AL/GL					AL										
114G	Briefor	CORRIDOR 2	F1	3 - 0"	9'-10"	HM	PTD			S	нм	PTD									
120A	Edefor	FRONT COURT ACCESS	FI	2 - 0"	8-0-	HM	P1D			S	HM	PTD									
121A	Interior	JANITOR'S CLOSET	F1	2 - 8"	8-0"	WD	PTD			S	HM	PTD	-								
122A	Interior	WOMEN'S RESTROOM	FI	3 - 0"	8-0-	WD	P1D			S	нм	PTD									
124A	Interior	MEN'S RESTROOM	FI	3-0"	8-0"	WD	P1D			S	HM	FTD	-		-						
201 A	Interior	CORRIDOR 3	F2	8-0"	8-0-	WD	PTD			co	нм	PTD									
203A	Interior	STORAGE 3	FI	3-0"	8-0"	WD	PID			S	нм	FTD	-	-	-						
205A	Interior	OFFICE	SF1	3-0"	7' - 10"	AL/GL				SF	AL										
206A	Interior	MEETING ROOM	SF1	3 - 0"	7'-10"	AL/GL				SF	AL.										
207A	Interior	C ONFERENCE ROOM	SF2	6-0"	8'-10"	AL/GL				SF	AL	t									
209 A	Interior	RESTROOM 1	FI	3 - 0*	8-0-	WD	P1D			S	нм	PTD									
210A	Interior	RESTROOM2	FI	3-0	8-0-	WD	P1D			Š	HM	PTD	-	-	-						
211A	Interior	JANITOR'S CLOSET 2	FI	3 - 0,	8-0"	WD	PTD			5	HM	PTD	-								
212A	Interior	ELEVATOR ROOM	FI	3-0"	8-0"	WD	P1D			- 5	HM	PTD		-							
5001	Edetor	PARKING	VG	23' - 6'	6-0"			NR		•	-100	. 10	<u> </u>	<u> </u>	<u> </u>						
5002	Briefor	SOUTHSTE	G1	4-0"	6-0"			NR			 	 						I			
3002	S. STOT	SOUTH SIE	- 91	4-0	0-0			reft.													

704 Bucild Avenue San Diego, CA 92114

APN: 548-010-13-00

AACH BICE SAFE RAN HE ARCHE 925 FORE BOOKFON DE SAN DEGO, CA 92105 P. 619:297-653 P. 619:297-6072

SINGUINAL INGININE COTTRILLENGINEEPING 9/27 CAMINE OOG LATI

927 CAMPE ODE LATA: SANCEGO, CA 92120 P. 618:207.9124 CWARRENGES

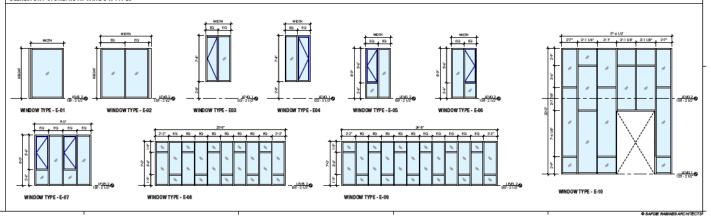
SAN DEGO, CA 921 D P. 619.291.0007 IAND SCAPSARCHECE SPUDOS LANCOCK STREET 2122.HANCOCK STREET

MICHARICA ENGINERAL AFUMENG TOQUEED INCHERING DAD FECIALLY DRIVE AE

19QUARED BIGHERRING THO FFCI ALTY DRIVE AC MET A CA 92081 R 760 800 1000

SCIF, INC. 6260 R VERDALE STREET SAN DEGO, CA 92120 P. 613 280 ASE1

MONICOMMESSIONING GRO SID MA VIRA CRIS #20% SAN MARCOS, CA 92078



REVEICHS
No. Describes
e1 1000-151-tended e4/19 V
01 7000-151-tended e4/19 V
02 7000-151-tended 11/19 V
03 7000-151-tended 11/19 V
04 7000-151-tended 11/19 V
05 7000-151-tended 11/19

DOOR SCHEDULE

STOREF	RONT WI	NDOW SCHEDULE														
NO.	TYPE	ROOM	WIDTH		FRA: MATERIAL		TYPE	U-VALUE		HEAD	SILL	ETAIS BMAL	MANUF	SERVES	SHADES	COMMENTS
101A	E-10	LOBBY	17 - 6 1/2	20' - 0'	AL.	AN	GL-1						ARCADIA INC.	T500-CPG3000		
1018	E-10 O.H.	LO88A	17 - 6 1/2	20' - 0'	AL.	AN	GL-1						ARCADIA INC.	T500-OPG3000		
103A	E-15	PARENTS LOUNGE	19' - 9"	10' - 0'	Æ								ARCADIA NC.	TC470		
1038 105A	E-16 E-03	PARENTS LOUNGE CLASSROOM 1	19'-9"	8' - 0' 7' - 4'	AL.								ARCADIA INC. ARCADIA INC.	TC470 TC470		
105A 105B	E-03	CLASSROOM 1	4-0"	7'-4'	AL.	_	_		_				ARCADIA NC.	TC470		
105C	E-03	CLASSROOM I	4-0"	7-4	- Â	_							ARCADIA NC.	TC470		
106A	E-03	CLASSROOM 2	4-0"	7 - 4	AL.								ARCADIA NC.	TC470		
1048	E-03	CLASSROOM 2	4-0"	7'-4"	AL.								ARCADIA NC.	TC470		
106C	E-03	CLASSROOM 2	4-0"	7'-4'	AL.								ARCADIA NC.	TC470		
108A	E-04	COLLEGE PREP ROOM	4-0"	7'-4"	AL.								ARCADIA NC.	TC470		
1088	E-04	COLLEGE PREP ROOM	4-0"	7' - 4"	AL.								ARCADIA NC.	TC470		
108C	E-04	COLLEGE PREP ROOM COLLEGE PREP ROOM	4-0"	7-4	AL.	_							ARCADIA NC. ARCADIA NC.	TC470 TC470		
108E	E-04	COLLEGE PREP ROOM	4-6"	7-4	AL.	_	_		_				ARCADIA NC.	TC470		
108E	E-04	COLLEGE PREP ROOM	4-6	7-4	Ã	_							ARCADIA NC.	TC470		
109 A	E-03	CLASSROOM 3	4-6	7-4	Ã								ARCADIA NC.	TC470		
1098	E-03	CLASSROOM 3	4-6	7'-4"	AL.								ARCADIA NC.	TC470		
109C	E-03	CLASSROOM 3	4-0"	7'-4'	AL.								ARCADIA NC.	TC470		
109D	E-03	CLASSROOM 3	4-0"	7' - 4"	Æ								ARCADIA NC.	TC470		
109E	E-03	CLASSROOM 3	4-0"	7'-4"	AL.								ARCADIA NC.	TC470		
109F	E-03	CLASSROOM 3	4-0"	7' - 4"	AL	_							ARCADIA NC.	TC470		MAN ARELIAN WATER
114A	E-17	CORRIDOR 2	12' - 7"	15' - 3'	AL.	_	-	_	_				ARCADIA NC.	T500-OPG 1900	-	1911 MULLION W/ STEB.
1148 114C	E-18 E-08	CORRIDOR 2 CORRIDOR 2	12' - 7" 20' - 8"	6'-7" 7'-0"	AL AL		_		_		-	-	ARCADIA NC. ARCADIA NC.	TC470 TC470	-	
114C	E-08	CORRIDOR 2	20' - 8"	7'-0"	AL.	_	\vdash		_				ARCADIA NC.	TC470		
114E	E-08	CORRIDOR 2	20' - 8"	7'-0"	- AL	_							ARCADIA NC.	TC470		
114F	E-08	CORRIDOR 2	20' - 8"	7'-0'	A.								ARCADIA NC.	TC470		
114G	E-09	CORRIDOR 2	24' - 8"	7' - 0"	AL.								ARCADIA NC.	TC470		
115A	E-13	SINGLES COURT 1	20 - 6 3/4"	13' - 10"	Æ								ARCADIA NC.	TC670		TH430 MULLION W/ STEEL
116A	E-13	SINGLES COURT 2	20 - 6 3/4	13' - 10'	AL.								ARCADIA NC.	TC670		TH-630 MULLION W/ STEEL
11.68	E-14	SINGLES COURT 2	20-63/4	6'-7"	AL.								ARCADIA INC.	TC470		
117A	E-13	SINGLES COURTS	20 - 6 3/4	13' - 10'	AL.	_							ARCADIA NC.	TC670		TH4800 MULLION W/ STEEL
118A 118B	E-13 E-14	SINGLES COURT 4 SINGLES COURT 4	20 - 63/4	13' - 10' 6' - 7"	<u> </u>								ARCADIA INC. ARCADIA INC.	TC670 TC470	_	1H-630 MULLION W/ STEEL
119A	E-14 E-13	SINGUS COURTS	20 - 6 3/4	13' - 10'	AL.	_			_				ARCADIA NC.	TC670		TH430 MULLIONW/ STEEL
120A	E-13	SINGLES COURT 6	20 - 6 3/4	13' - 10'	- 2	_							ARCADIA NC.	TC670		TH480 MULLION W/ STEEL
1208	E-14	SINGLES COURT 6	20-63/4	6'-7"	AL.								ARCADIA NC.	TC470		a rate in the state of the stat
202A	E-05	GALLERY	4-0"	8'-0"	AL.								ARCADIA INC.	TC470		
20:28	E-05	GALLERY	4-0"	8'-0"	AL.								ARCADIA NC.	TC470		
203A	E-05	STORAGE 3	8 - 4*	8' - 0"	Æ								ARCADIA NC.	TC470		
204A	E-05	OPEN OFFICE	4-0"	8,-0,	AL								ARCADIA NC.	TC470		
2048	E-05	OPEN OFFICE	4-0"	8'-0"	AL	_							ARCADIA NC.	TC470		
204C 204D	E-06	OPBN OFFICE OPBN OFFICE	4-0"	8'-0"	AL AL								ARCADIA NC. ARCADIA NC.	TC470 TC470		
204E	E-06	OPEN OFFICE	4-0"	80.	- 2	_							ARCADIA NC.	TC470		
205A	E-06	OFFICE	4-0"	8'-0"	AL								ARCADIA NC.	TC470		
2058	E-01	OFFICE	2 - 2 3/4"	8' - 0"	AL.								ARCADIA NC.	TC470		
205C	E-02	OFFICE	7 - 7 7/8*	8'-0"	AL.								ARCADIA NC.	TC470		
205D	1-03	OFFICE	11'-95/8'	8' - 0"	Æ								ARCADIA NC.			
206A	Б07 ОН.	MEETING ROOM	9-0"	8'-0"	AL.								ARCADIA NC.	TC470		
2048 207 A	I-02 E-05	METING ROOM CONFERENCE ROOM	13-03/4	80.	AL.	_	_		-				ARCADIA NC. ARCADIA NC.	TC470		
207A	E-05	C ONFERENCE ROOM	9-0"	8,-0,	- AL	_	_	_			-		ARCADIA NC.	TC470	-	
207C	E-01	C ONFERENCE ROOM	8 - 2"	8'-0"	~	_							ARCADIA NC.	TC470	_	
207D	E-01	C ONFERENCE ROOM	2 - 2 3/4*	8'-0"	AL.								ARCADIA NC.	TC470		
207E	E-G5	C ONFERENCE ROOM	4-0"	8' - 0"	AL.								ARCADIA NC.	TC470		
207F	E-05	C ONFERENCE ROOM	4-0"	8'-0"	Æ								ARCADIA INC.	TC470		
207G	1-01	CONFERENCE ROOM	10' - 0"	9'-0"	AL.								ARCADIA NC.			
208A	E-05	KITCHEN	4-0"	8'-0"	AL.								ARCADIA NC.	TC470	_	
2088	E-05	KITCHEN PARENTS LOUNGE	4-0"	8'-0"	AL	\vdash	-	_	-				ARCADIA NC.	TC470	-	
C-01A C-02A	C-01A C-02A	FARENTS LOUNGE	19" - 9" 12" - 0"	2' - 0"	AL AL	-		_					ARCADIA NC. ARCADIA NC.	TC470 TC470	-	
C-02A	C-028	CONFERENCE ROOM	11-31/2	2' - 7 19/32"	- A	_			_				ARCADIA NC.	TC470	_	
C-02C	C-02C	CONFERENCE ROOM	10 - 2 3/4		Ã.								ARCADIA NC.	TC470		
C-03A	C-03A	C ONFERENCE ROOM	9 - 3 3/4"	3-29/16	A.								ARCADIA NC.	TC470		
C-038	C-038	C ONFERENCE ROOM	13 - 1 3/4	3-29/16	AL.								ARCADIA NC.	TC470		
C-03C	C-03C	CONFERENCEROOM	5 - 1 7/8*		AL.								ARCADIA NC.	TC470		
C-03D	C-03D	MEETING ROOM	13 - 13/4		AL.								ARCADIA NC.	TC470		
C-03E	C-03E	OFFICE	11'-9 5/8"		AL.								ARCADIA NC.	TC470		
C-04A	C-04A	OFFICE	10 - 23/4		AL.	-	-						ARCADIA NC.	TC470		
C-046	C-046	OPBN OFFICE OPBN OFFICE	11 - 3 1/2	2' - 7 19/32"	А.		-						ARCADIA NC. ARCADIA NC.	TC470 TC470		
C-04C C-05A	C-04C C-05A	OPEN OFFICE	8-0"	2' - 2 17/32'	AL AL		-	_					ARCADIA NC.	TC470	-	
C-058	C-058		16-113/4		AL.	-			_			 	ARCADIA NC.	TC470	_	
C-05C	C-05C	GALLERY	19 - 7 3/4		- A								ARCADIA NC.	TC470		
											-				-	

CLERESTORY STOREFRONT WINDOW TYPES

ACCESS YOUTH ACADEMY

704 Buclid Avenue San Diego, CA 92114

APN: 548-010-13

SAME RANNE ARCHECT 925 FOR BOCKTON DRIVE SAN DEGO, CA 92108 P. 619,297,613 F. 619,297,6072

COTTRE LENG MERING 927 CAMPIC COE LA TAC

P. 619.207.9124 CWE ENGINEE ROCK BY GRIEFING COMPA

> SAN DEGG, CA 92110 P. 619.291.0007 AND SCAPSARCHECE SPURIOSE LANGE CAPE ARCHIEC

SAN DEGO, CA 12/10 P. 619.061.0090 MICHANICAL ELECTRICAL & PUMINING 1/2/LIMED BIGINEERING

12QUARED BYGINERING DAD SPECIALTY DRIVE HE WE'A CA 920R P. 74Q 50Q 70Q

P 740 900 000 FORCH II CAL FROM III B SCII. NO. 650 R VEPDALE STREET

COMMERCIAL COMMERCIAL ADDING ON A STORY OF A TOTAL OTHER APPLIES

ASOM COMMISSIONING GROUP SIOMA VIRA CRUE #206 SAN MARCOS, CA 92078 P.740.962.1800

	~		
RE	/ISIONS		
No.	Description		Date
61	100% 50 Subm # c		04/15/17
62	100% D D Suber #1		09/01/T
63	Plan Check Sebe	ital	11/12/0
=			_
			_
bous	Date	Scale	
11	/15/2017	1/4"	1-0
9RA	Project Number		

11/15/2017 1/4° = 1°-0°
PA Project Humber
1708

STOREFRONT

STOREFRONT WINDOW SCHEDULE

704 Buclid Avenue San Diego, CA 92114

APN: 548-010-13-00

SAFOR RABINES ARCH 925 FORE STOCKTON I

STREETH BALL DEGREES

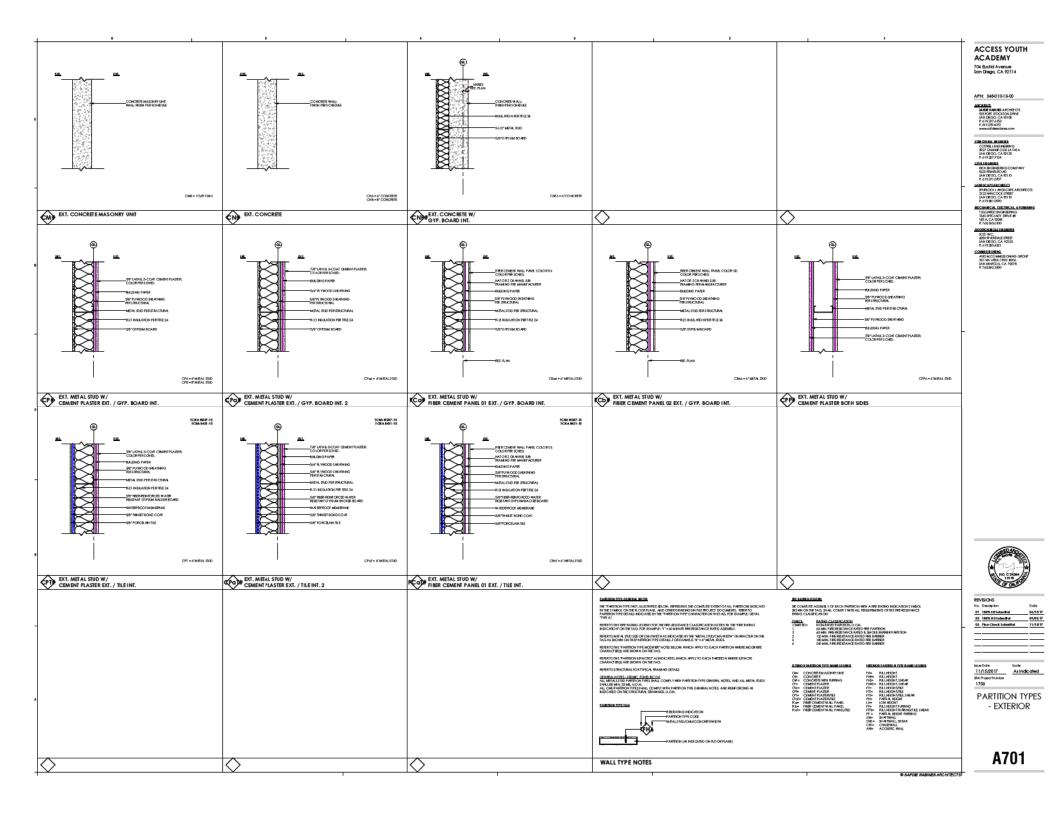
9/27 CAMPIE ODE LA TAC SAN DECIO, CA 9/120 P. 619:207-9/24 CIVE ENGINEE

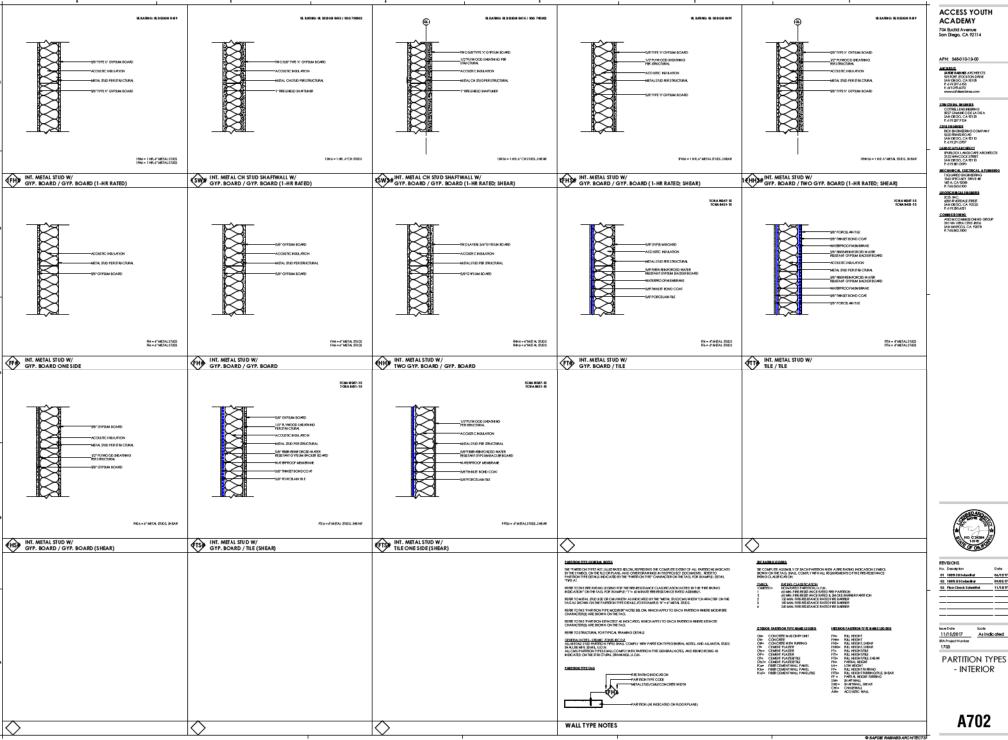
SIZO RIARS RO AO SAN DEGIC, CA 321 IO P. 613291,000 JAMESCAPFARCHIECE SPULGOS, LANGECAPE ARCHIEF

SAN DEGG, CA 921 D P. 619.861.000 MECHANICAL ELECTRICAL & PUMBR 122UARED BIGNEEPING

12QUARED BIGMERING DIAD SPECIALLY DRIVE AS WE'A CA 5008 R 74G ROUND

GEORGE IN CAL FROM HIS SCIT, INC. 650 R VERDALE SPEED SAN DIEGO, CA. 9720 P. 613-20-AZE1

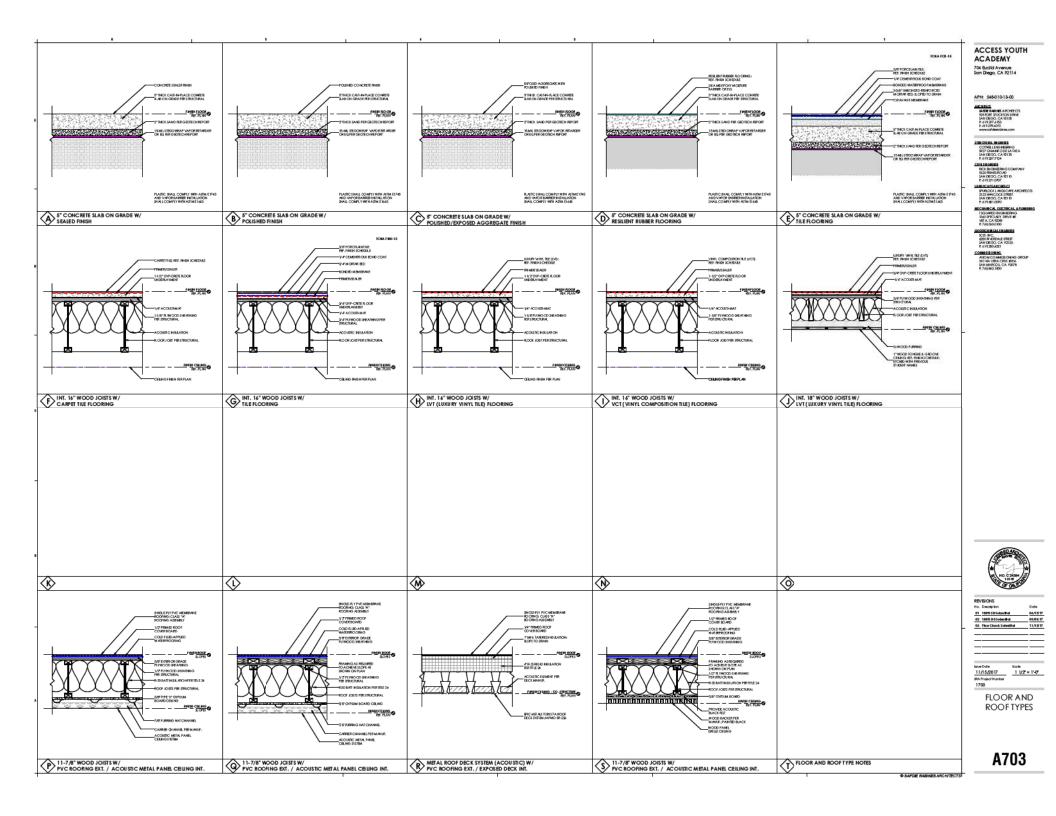

COMMESCIONES
ASOMICOMMESCIONES GROSS
SOMA VERA CRIS #206
SAN MARCOS, CA 92078



No.	Description	Date
	100% 50 Subm Bol	04/19/10
62	100% D D Suber Bol	69/61/T
63	Plan Check Sebrail of	11/191

| Scole | Scole | 11/15/2017 | 1/4" = 1'-0" | | 1703 | | 1704 | | 1705 | |

STOREFRONT WINDOW SCHEDULE



9	/ISIONS		
90.	Description		Diate
01	100% 50 Seben #10		04/19/17
62	100% D D Submille		09/01/T
63	Plan Check Sebra	ital	11/1977
	Date	Scale	
11	/15/2017	Asind	cated
RA	Project Number		
17	03		

- INTERIOR

												R	00	FT	OP (3A£	3/⊟	LE	C. A	ΝR	∞	ND	ЭПК	NIN	G U	IT SC	ΉE	DU	LΕ						
\Box	MANUFACTURED		MOMINAL CAP. ARI COND.	SEED		SUP	PLY FAN			COMP	RESSORS	COND	ENSER	ANS	POWE	R EXHA	UST FA	N	COMB.			4T POW		PLY			O NG				EATING		FILTERS	OPER.	
TAG	MANUFACTURER & MODEL NO.	SERVES	ARI COND. (TONS)	SEER (EER)	CFM	ESP (IN. W.G.)	OA OFN	NO.	FLA	NO.	RLA LRA	NO.	HP	FLA	CFM E	SP NO). H P	FLA	NO.	FLA	FLA	MCA M	IOCP I	PH	TOTAL CA (MBH)	PISENS, CAP (MBH)	DB EAT	(°F)	AMB. TEME (TF)	(WBH)		OTY.	SIZE (IN.)	WECHT (LBS.)	REMARKS
(AC)	CARRIER 48HC-20	WEST COURTS	17.5	(12.0)	7000	1.0	600	1	17.1		27.6 191 25.0 164	4	1/4	1.5	7000 0	2 2	2	12.8	1	0.52	76.2	92.6	100 20	6 3	222.5	168.2	80	67	85	220	81	6	20x25x2 16x25x1	3100	12343678990193
AC 2	CARRIER 48HC-11	LOBBY/LOUNCE/ RECEPT/M4IN CORRIDOR	10	(12.0)	4000	1.0	320	1	10.6	2	15.9 110 15.9 110	1	1	7.4	4000 0	.2 1	2	5.6	1	0.52	50.3	54.0	60 20	8 3	120.0	100.0	80	67	85	180	B1	4	20x20x2 20x24x1	1850	12343676390123
AC 3	CARRIER 48HC-24	EAST COURTS	20	(12.0)	8000	1.0	700	1	17.1		28.2 239 28.2 239		1/4	1.5	8000 0	.2 2	2	12.8	1	0.52	80.0	90.8	100 20	8 3	261.3	191.8	80	67	85	220	81	9 4	16x25x2 16x25x1	3250	1234387899193

- PROVIDE PRE-FABRICATED MBRATION ISOLATION CURB. SEE DETAIL 10/MS.1.
- PROVIDE 2-SPEED, BELT DRIVEN INDOOR FAN MOTOR.
- PROVIDE FULLY MODULATING ENTHALPY BASED ECONOMIZER.
- PROMDE CENTRIFUGAL POWER EXHAUST WITH VFD CAPABLE OF EXHAUSTING 100% SUPPLY AR, AND ALL REQUIRED ACCESSORES PER MANUFACTURER RECOMMEDIATION FOR PROPER SYSTEM OPERATION. PROVIDE SEPARATE POWER SUPPLY AND DISCONNECT SWITCH.
- (5) PROMDE WITH PROGRAMMABLE THERMOSTAT. FOR DETAIL, SEE 6/W5.1.
- 6 PROMDE UL900 (CLASS 1 OR 2), 30% EFFICIENT (MERV 8) DISPOSABLE PLEATED FLITERS.
- PROMDE WITH DUCT MOUNTED SMOKE DETECTOR IN INTERNALLY LINED SUPPLY
 HEAVILM. SEE FLOOR PLAY FOR LOCATION. SEE ELECTRICAL DWGS. FOR POWER
 HEAVILM-BLEVELYS.

 MANUFACTURER FOR A COMPLETE AND DEFENDANCIAL SYSTEM.

 MANUFACTURER FOR A COMPLETE AND DEFENDANCIAL SYSTEM.

 MANUFACTURER FOR A COMPLETE AND DEFENDANCIAL SYSTEM.
- 8 PROVIDE WITH FLUE DISCHARGE DEFLECTOR.
- PROVIDE DISCONNECT SWITCH. SEE ELECTRICAL DWGS. CONTROL PER DETAIL
 AMS. 1
- PROVIDE ALL CONTROL WINING IN CONDUIT AND ALL ACCESSORIES REQUIRED BY MANUFACTURER FOR A COMPLETE AND OPERATIONAL SYSTEM.
- (12) PROVIDE CABINET AND COLL WITH APPROVED SALT—AIR CORROSION PROTECTIVE COATING.

	EXHAUST FAN SCHEDULE														
TAG	MANUFACTURER & MODEL NO.	SERVES	стм	ESP (IN. W.G.)	DRIVE TYPE	RPM	BHP (WATTS)	HP (WATTS)	MAX. SONES	v	PH	FAN TYPE	OPER. WEIGHT (LBS.)	PONAPACS	
[-	COOK ACE-8 195068	MAIN RESTROOMS	2700	0.6	BELT	814	0.5	3/4	8.8	120	٦	ROOFTOP	200	0237090	
(FF)	AIR KING AK400	BR E4 K ROOM	380	0.25	ORECT	978	_	(118)	1.5	120	1	CELING	40	3456890	
(F) 3	AIR KING E1300H	2ND FLOOR RESTROOM	130	0.1	DIRECT	812	_	(37)	0.3	120	1	СППИС	20	3436889	
E	AIR KING E1300H	2ND FLOOR RESTROOM	130	0.1	DIRECT	812	_	(37)	0.3	120	1	CELING	20	3436890	
(EF) 5	AIR KING E1300H	1ST FLOOR TRASH	100	0.2	OIRECT	812	_	(37)	0.3	120	1	CELING	20	345000	
H	AIR KING EBODH	2ND FLOOR JANITOR	80	0.1	DIRECT	812	_	(37)	0.3	120	1	CELING	20	3036990	

- PROVIDE WITH MANUFACTURER'S LEVEL PRE-FABRICATED ROOF CURB. FOR DETAIL, SEE 11/M5.1.
- PROMOE ALL MOUNTING HAPOWARE INCLIDING SEISMIC
 PROMOE ALL MOUNTING HAPOWARE INCLIDING SEISMIC
 PROMOE WITH DISCONNECT SMITCH.
 PROMOE WITH DISCONNECT SMITCH.
- INTERLOCK WITH WALL SWITCH. FOR DETAIL, SEE 9/M5.1.
 SEE ELECTRICAL DRAWINGS FOR WALL SWITCH LOCATION.
- (a) PROVIDE THERMAL OVERLOAD PROTECTION ON FAN MOTOR.
 (b) INTERLOCK WITH WALL SWITCH. FOR DETAIL, SEE 9/M5.1.
- SEE ELECTRICAL DRAWNOS FOR WALL SWITCH LOCATION.

 3 PROMDE WITH INTEGRAL BACKDRAFT CAMPER AND CRILLE

 7 INTERLOCK WITH TIME CLOCK. FOR DETAIL SEE 9/MS.1.

 8 PROMDE ALL MOUNTING HARDWARE INCLUDING SEISMIC

 9 PROMDE ALL MOUNTING HARDWARE INCLUDING SEISMIC

	SUPPLY FAN SCHEDULE														
TAG	C MANUFACTURER SERVES OFM (N. W.G.) DRINE TYPE RPM (NATTS) (WATTS) SONES V PH FAN (LBS.)														
9F)	C00K GN1000	CLASSROOMS OUTSIDE AIR	870	0.35	8 E T	849	0.182	1/2	3.0	120	1	INUNE	175	12345678	

- 1) PROVIDE WITH BACKDRAFT DAMPER.
- 2 PROVIDE WITH FILTER BANK AND MERV-8 FILTERS.
- 3 PROMDE ALL MOUNTING HARDWARE INCLUDING SEISMIC BRACING. FOR DETAIL, SEE 12/M5.1.
- 4 PROVIDE THERMAL OVERLOAD PROTECTION ON FAN MOTOR.
- S INTERLOCK WITH TIME CLOCK, FOR DETAIL SEE 9/W5.1.

 SEE FLOOR PLANS FOR TIME CLOCK LOCATION.

 (8) FIELD VEHIFY EXACT ELECTRICAL REQUIREMENTS WITH MANUPACTURIER AND COORDINATE WITH ELECTRICAL CONTRACTOR FROBE TO START OF WORKER.
- 6 PROVIDE WITH DISCONNECT SWITCH.
- 7 PROVIDE ALL CONTROL WIRING IN CONDUIT AND ALL ACCESSORIES REQUIRED BY MANUFACTURER FOR A COMPLETE AND OPERATIONAL SYSTEM.

		AIR DEVI	CE SCHE	DULE	
TAG	MANUFACTURER & MODEL NO.	TYPE	FRAME STYLE	08) (YES/NO)	REWARKS
(4)	TITUS 300RL	DOUBLE DEFLECTION SUPPLY DIFFUSER	BORDER TYPE	Υ	120
⊕	TITUS 350RL	LOUVER FACE RETURN/EXHAUST RECISTER	BORDER TYPE 1	Υ	124
0	TITUS MCD	MODULAR CORE SUPPLY DIFFUSER	BORDER TYPE 1	Υ	1234
0	TITUS TMRA	ROUND DUCT MOUNTED SUPPLY	BORDER TYPE 1	N	123
F	πus rL−30	LINEAR SUPPLY	BORDER TYPE 1	N	(6)

(3) PROVIDE WITH NON-CFC REFRIGERANT BASED SYSTEM.

- 1 SQUARE NECK WITH ROUND 3 4-WAY DEFLECTION, U.H.D. 5 FOR DETAIL SEE 2/W5.2.
 2 STEEL CONSTRUCTION.
 4 FOR DETAIL, SEE 1/W5.2. 6 FOR DETAIL, SEE 3/W5.2.
- STEEL CONSTRUCTION.

L							HEA	T P	MU	Pυ	N	S	CH	EC	UL	E.				
Γ	TAG	MANUFACTURER	TOTAL	G NET C	1	HEATING SENS.		EER	HSPF (COP)	COND.	FAN		ELECTI ESSORI		NITS P	OWER	SUPPL	Y	OPER. WEIGHT	REVARKS
L	$\overline{}$	& MODEL NO.	(MBH)	(MBH)	AMB. ("F)	(MBH)	AVB. ('F)	(SEER)	(004)	NO.	HP	NO.	RLA	R.A	MCA.	MOCP	V	PH	(LBS.)	
<	HP A	AAON CB-B-060-B	60	48	82	60	42	16.7 (13.6)	8.7	1	.33	1	16.9	20	24	9	208	3	300	12345078
	HP)	AA0N CB-B-060-B	60	48	82	60	42	18.7 (13.6)	8.7	1	.33	1	16.9	20	24	40	208	3	300	12343678

- TO PROVIDE REPREDIENT FORMS AND INSULATION INCLUDING PULL REPREDIENT CHANGE SIZE SHALL BE AS CHANGE FOR THE COMPANY AND THE SHALL BE AS CHANGE PROVIDE ALL REPREDIENT ACCESSIVES AS FER IMPR'S RECOMMENDATION. VEHIEF SIZING WITH MPR, 'S REP, PROR TO INSTALLATION.
- 2 PROVIDE CABINET AND CONDENSER COLL WITH APPROVED SALT—AIR CORROSION COATING.
- 3 PROVIDE WITH CRANKCASE HEATER AND LIQUID LINE SOLENOID VALVE FOR LONG LINE APPLICATIONS.
- PROMEE WITH EMPORATOR FREEZE THERMOSTET,
 ISCLATION BEAV LIVE-AMBIERT CONTROL, MIT AND WINTER
 START CONTROL MIT FOR LOW-AMBIERT COOLING
 APPLICATIONS.

 MANUFACTURED:

 OR APPLICATIONS.

 OR APPLICATIONS.
- PROMUE WITH MISPATION ISOLATION THE NEOPRENE PAGE
 PROMUE WITH MISPATION ISOLATION THE NEOPRENE PAGE
 PROPHET PUMP. MIGHT ON LEVEL PLATFORM. FOR
 INCREMENTATION PRINT TO STAFF OF WORK.

 ONTRACTOR PRINT TO STAFF OF WORK.
- (8) PROVIDE WITH FUSED DISCONNECT. FOR WIRING DETAIL. SEE B/W5.1.

- AIR HANDLER UNIT SCHEDULE GTY SIZE (IN.) (LBS.) 123436 OUNCE/LOBB LOUNGE/LOBBY 5 TONS
- 1) PROVIDE WITH MFR. LEVEL PRE-FAB ROOF CURB. FOR MOUNTING DETAIL, SEE 4/M5.2.
- (2) PROVIDE CONDENSATE DRAIN. SEE PLUMB. PLANS.
- (3) PROVIDE WITH DUCT SMOKE DETECTOR. SEE DETAIL 5/M5.1.
- 4 PROVIDE WITH FUSED DISCONNECT. FOR WIFING DIAGRAM, SEE DETAIL 8/M5.1.
- (5) PROMDE ALL CONTROL WIRING IN CONDUIT AND ALL OTHER ACCESSORIES REQUIRED BY MANUFACTURER FOR A COMPLETE AND OPERATIONAL SYSTEM.

6 FELD VERIFY EXACT ELECTRICAL REQUIREMENTS WITH MANUFACTURER AND COORDINATE WITH ELECTRICAL CONTRACTOR PRIOR TO START OF WORK.

MECHANICAL SCHEDULES

M₀2

03/08/2018 As indicated
9: A Project Number

REVISIONS No. Description

ksve Date

01 100% 50 Submitted 02 100% 00 Submittel

03 Mon Check Submitted

04 Mon Check Resubmittel

09/01/17

11/15/17

ACCESS YOUTH ACADEMY 704 Euclid Avenue San Diego, CA 92114

APN: 548-010-13-00

ARCHITECT

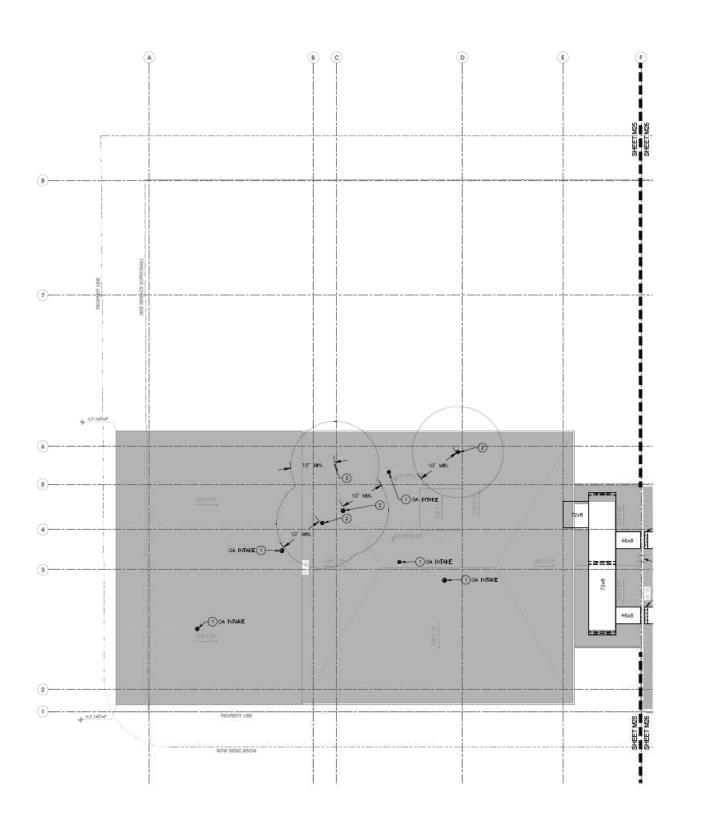
SAFDE RABINES ARCHITECTS

225 FORT STOCKTOND RIVE

SAND EGOL CA 92 103

P. 619.297.6133

P. 619.297.6072


www.schickrobines.com

STRICTURAL ENGINEER
COTTRELL ENGINEERING
5927 CAAMITO D ELATA
SAND EGO, CA92 120
P: 619.287.9124

CMIL IN GINEER
RCKENGINEER ING COV
5620 RIVAS ROAD
SAND IEGO, CA 92 110
P: 619.291.0707

MICHANICAL, BECTRO AL, & PU T SQUARED ENGINEERING 1340 SPECIALTYD RIVE #E VISTA, C A 92081 P: 760.560.0100

GEOTECHNIC AL ENGINEER SCST, INC. 6280 R MERDALE STREET SAN DIEGO, CA 92120 P: 619.280.4021

GENERAL NOTES

- B. FOR DUCT SMOKE DETECTOR, SEE DET4L 5/M51.
- C. FOR EXTERIOR DUCTWORK, SEE DETAILS 6 & 7/M52.

- KEY NOTES

 1 OA ROOF CAP. SEE DETAIL 1/M5.1.
 2 BA ROOF CAP. SEE DETAIL 1/M5.1.
 3 PLUMBING VENT SHOWN FOR REFERENCE ONLY.

ACCESS YOUTH ACADEMY

704 Euclid Avenue San Diego, CA 92114

APN: 548-010-13-00

ARCHITECT

SAFDE RABINES ARCHIECTS

925 FORT STOCKTOND RIVE

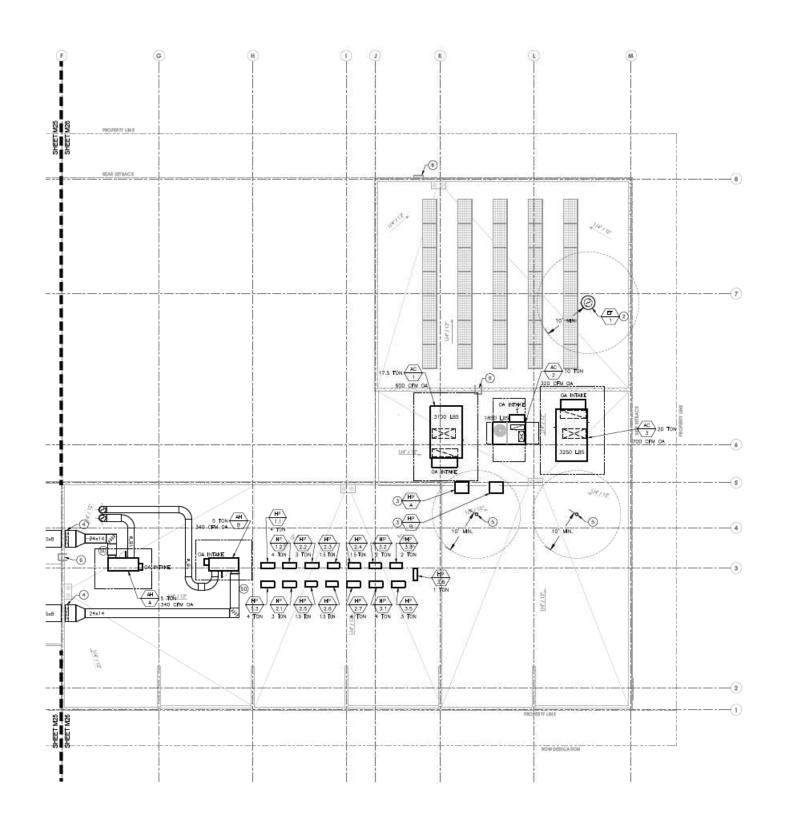
SAND BEOO, CA 92 103

P. 619.297.6133

R. 619.299.6000

www.acticlerobines.com

CMIL IN GINEER
RCKENGINEER ING C
5620 RIMS ROAD
SAND IEGO, CA 92 I'
P: 619.291.0707



REV	/ISIONS	
No.	Description	Date
01	100% SD Submitted	04/15/
02	100% 00 Submitted	09/01/
03	Mon Check Submitted	11/15/1
04	Man Check Resubmittel	04/12/

MECHANICAL ROOF PLAN

T-SQUARED CONTROL OF THE CONTRO

NOT FOR CONSTRUCTION

GENERAL NOTES

- A. CONTRACTOR SHALL COORDINATE WITH ALL OTHER TRADES. IN CAS OF DISCREPANCES OR ANY POTENTIAL CONFLICTS, INFORT THE ARCHITECT AND ENGINEER IN WITHING PRIOR TO STAFT OF WORK.
- B. FOR DUCT SMOKE DETECTOR, SEE DETAIL 5/M51.
- C. FOR EXTERIOR DUCTWORK, SEE DETAILS 6 & 7/M52.
- KEY NOTES
- (1) OA ROOF CAP. SEE DETAIL 1/M5.1.
- ROOF MOUNTED EXHAUST FAN.
- 3) CONDENSING UNIT.
- 46x8 SA DUCT DOWN THRU ROOF.
- 5 PLUMBING VENT SHOWN FOR REFERENCE ONLY.
- 6 ROOF ACCESS LADDER SHOWN FOR REFERENCE ONLY, ROOF LADDER ACCESS SHALL COMPLY WITH SECTION 304 CMC.

ACCESS YOUTH **ACADEMY**

704 Euclid Avenue San Diego, CA 92114

APN: 548-010-13-00

ARCHITECT

SAFGE RABBES ARCHITECTS
925 FORT STOCKTON DRIVE
SAN DEEDO, CA 921 03
Pc 619.297.6193
E 619.299.6072
www.addderabines.com

CMIL IN GINEER
RCKENGIN ER ING COV
5620 RIMS ROAD
SANDIEGO, CA 921 10
P: 619.291.0707

MICHANICAL, ELECTRIC AL, & PULHE ING T SQUARED ENGINEERING 1340 SPECIALTYOR IVE #E VETA, C A 92001 P: 780.5800100

GEOTECHNIC AL BI GINESS SCST, INC. 4290 R INERDALE STREET SAN DIEGO, CA 92120 P: 619.280.4021

REVISIONS No. Description 01 100% 50 Submitted 04/15/17 02 100% 00 Submitted 09/01/17
 03
 Mon Check Submitted
 11/15/17

 04
 Mon Check Resubmitted
 04/12/16

is sue Date 03/08/2018 As indicated
9:A Project Number
1703

MECHANICAL **ROOF PLAN**

NOT FOR CONSTRUCTION

T-SQUARED

MECHANICAL ROOF PLAN

M26

APPENDIX B

Pertinent Sections of the City of San Diego Noise Element to the General Plan, Municipal Code, and the Encanto Neighborhoods Community Plan

- NE-A.2. Assure the appropriateness of proposed developments relative to existing and future noise levels by consulting the guidelines for noise-compatible land use (shown on Table NE-3) to minimize the effects on noise-sensitive land uses.
- NE-A.3. Limit future residential and other noise-sensitive land uses in areas exposed to high levels of noise.
- NE-A.4. Require an acoustical study consistent with Acoustical Study Guidelines (Table NE-4) for proposed developments in areas where the existing or future noise level exceeds or would exceed the "compatible" noise level thresholds as indicated on the Land Use Noise Compatibility Guidelines (Table NE-3), so that noise mitigation measures can be included in the project design to meet the noise guidelines.
- NE-A.5. Prepare noise studies to address existing and future noise levels from noise sources that are specific to a community when updating community plans.

TABLE NE-3 Land Use - Noise Compatibility Guidelines

Land Use Category	Exte	Expo	xposure L)		
	60 	6:	5 7	0 7	/5
Parks and Recreational					
Parks, Active and Passive Recreation					
Outdoor Spectator Sports, Golf Courses; Water Recreational Facilities; Indoor Recreation Facilities					
Agricultural					
Crop Raising & Farming; Community Gardens, Aquaculture, Dairies; Horticulture Nurseries & Greenhouses; Animal Raising, Maintain & Keeping; Commercial Stables					
Residential					
Single Dwelling Units; Mobile Homes		45			
Multiple Dwelling Units *For uses affected by aircraft noise, refer to Policies NE-D.2. & NE-D.3.		45	45*		
Institutional					
Hospitals; Nursing Facilities; Intermediate Care Facilities; Kindergarten through Grade 12Educational Facilities; Libraries; Museums; Child Care Facilities		45			
Other Educational Facilities including Vocational/Trade Schools and Colleges and Universities		45	45		
Cemeteries					
Retail Sales					
Building Supplies/Equipment; Food, Beverages & Groceries; Pets & Pet Supplies; Sundries, Pharmaceutical, & Convenience Sales; Wearing Apparel & Accessories			50	50	

Noise Element

Land Use C	Category			Ex				osure
Zuna ose c	and going			6	0 6			5
Commercial Se	ervices							
Maintenance &	ces; Business Sup & Repair; Personal nbly); Radio & Te			50	50 50 sometime to an analysis of the fer to Section 1.			
Visitor Accom	modations				45	45	45	
Offices								
Business & Pro Corporate Hea		nment; Medical, I	Dental & Health Practitioner; Regional &			50	50	
Vehicle and Ve	ehicular Equipmer	nt Sales and Servi	ices Use					
			enance; Commercial or Personal Vehicle Sales & Rentals; Vehicle Parking					
Wholesale, Dis	stribution, Storage	Use Category						
Equipment & 1 Wholesale Dis	Materials Storage stribution	Yards; Moving &	Storage Facilities; Warehouse;					
Industrial								
	ecturing; Light Ma ning & Extractive		ine Industry; Trucking & Transportation					
Research & De	evelopment						50	
	Compatible	Indoor Uses	Standard construction methods should at acceptable indoor noise level. Refer to Se			or nois	e to an	1
	Compatible	Outdoor Uses	Activities associated with the land use m	ay be	carried	out.		
45, 50	Conditionally	Indoor Uses	Building structure must attenuate exterior indicated by the number (45 or 50) for or					
43, 30	Compatible	Outdoor Uses	Feasible noise mitigation techniques sho make the outdoor activities acceptable.				incorp	orated
	T	Indoor Uses	New construction should not be undertak	ken.				
	Incompatible	Outdoor Uses	Severe noise interference makes outdoor	activi	ties una	cceptal	ble.	

(7-2010)

Article 9.5: Noise Abatement and Control

Division 4: Limits

("Noise Level Limits, Standards and Control" added 9–18–1973 by O–11122 N.S.) (Retitled to "Limits" on 9–22–1976 by O–11916 N.S.)

§59.5.0401 Sound Level Limits

(a) It shall be unlawful for any person to cause noise by any means to the extent that the one-hour average sound level exceeds the applicable limit given in the following table, at any location in the City of San Diego on or beyond the boundaries of the property on which the noise is produced. The noise subject to these limits is that part of the total noise at the specified location that is due solely to the action of said person.

TABLE OF APPLICABLE LIMITS

Land Use	Time of Day	One-Hour Average Sound Level (decibels)
Single Family Residential	7 a.m. to 7 p.m.	50
	7 p.m. to 10 p.m.	45
	10 p.m. to 7 a.m.	40
2. Multi-Family Residential	7 a.m. to 7 p.m.	55
(Up to a maximum density	7 p.m. to 10 p.m.	50
of 1/2000)	10 p.m. to 7 a.m.	45
3. All other Residential	7 a.m. to 7 p.m.	60
	7 p.m. to 10 p.m.	55
	10 p.m. to 7 a.m.	50
4. Commercial	7 a.m. to 7 p.m.	65
	7 p.m. to 10 p.m.	60
	10 p.m. to 7 a.m.	60
5. Industrial or Agricultural	any time	75

(b) The sound level limit at a location on a boundary between two zoning districts is the arithmetic mean of the respective limits for the two districts. Permissible construction noise level limits shall be governed by Sections 59.5.0404 of this article.

(7-2010)

- (c) Fixed-location public utility distribution or transmission facilities located on or adjacent to a property line shall be subject to the noise level limits of Part A. of this section, measured at or beyond six feet from the boundary of the easement upon which the equipment is located.
- (d) This section does not apply to firework displays authorized by permit from the Fire Department.
- (e) This section does not apply to noise generated by helicopters at heliports or helistops authorized by a conditional use permit, nor to any roller coaster operated on City-owned parkland.

(Amended 9–11–1989 by O–17337 N.S.) (Amended 11-28-2005 by O-19446 N.S.; effective 2-9-2006.)

§59.5.0402 Motor Vehicles

- (a) Off-Highway
 - (1) Except as otherwise provided for in this article, it shall be unlawful to operate any motor vehicle of any type on any site, other than on a public street or highway as defined in the California Vehicle Code, in any manner so as to cause noise in excess of those noise levels permitted for on– highway motor vehicles as specified in the table for "45 mile– per–hour or less speed limits" contained in Section 23130 of the California Vehicle Code, and as corrected for distances set forth in subsection A.2. below.

(2) Corrections

The maximum noise level as the off-highway vehicle passes may be measured at a distance of other than fifty (50) feet from the center line of travel, provided the measurement is further adjusted by adding algebraically the applicable correction as follows:

Distance (Feet)	Correction (decibels)
25	-6
28	-5
32	-4
35	-3
40	-2
45	-1
50 (preferred distance)	0
56	+1
63	+2
70	+3
80	+4
90	+5
100	+6

- (3) A measured noise level thus corrected shall be deemed in violation of this section if it exceeds the applicable noise—level limit as specified above.
- (b) Nothing in this section shall apply to authorized emergency vehicles when being used in emergency situations, including the blowing of sirens and/or horns.

("Motor Vehicles" renumbered from Sec. 59.5.0403 on 9-22-1976 by O-11916 N.S.)

§59.5.0403 Watercraft

Violations for excessive noise of watercraft operating in waters under the jurisdiction of The City of San Diego shall be prosecuted under applicable provisions of the California Harbors and Navigation Code. Permits issued by The City of San Diego for the operation of watercraft not in compliance with noise criteria of the Harbors and Navigation Code shall be reviewed and approved by the Administrator prior to issuance.

("Watercraft" renumbered from Sec. 59.5.0407 and amended 9–22–1976 by O–11916 N.S.)

§59.5.0404 Construction Noise

- (a) It shall be unlawful for any person, between the hours of 7:00 p.m. of any day and 7:00 a.m. of the following day, or on legal holidays as specified in Section 21.04 of the San Diego Municipal Code, with exception of Columbus Day and Washington's Birthday, or on Sundays, to erect, construct, demolish, excavate for, alter or repair any building or structure in such a manner as to create disturbing, excessive or offensive noise unless a permit has been applied for and granted beforehand by the Noise Abatement and Control Administrator. In granting such permit, the Administrator shall consider whether the construction noise in the vicinity of the proposed work site would be less objectionable at night than during the daytime because of different population densities or different neighboring activities; whether obstruction and interference with traffic particularly on streets of major importance, would be less objectionable at night than during the daytime; whether the type of work to be performed emits noises at such a low level as to not cause significant disturbances in the vicinity of the work site; the character and nature of the neighborhood of the proposed work site; whether great economic hardship would occur if the work were spread over a longer time; whether proposed night work is in the general public interest; and he shall prescribe such conditions, working times, types of construction equipment to be used, and permissible noise levels as he deems to be required in the public interest.
- (b) Except as provided in subsection C. hereof, it shall be unlawful for any person, including The City of San Diego, to conduct any construction activity so as to cause, at or beyond the property lines of any property zoned residential, an average sound level greater than 75 decibels during the 12hour period from 7:00 a.m. to 7:00 p.m.
- (c) The provisions of subsection B. of this section shall not apply to construction equipment used in connection with emergency work, provided the Administrator is notified within 48 hours after commencement of work. (Amended 1-3-1984 by O-16100 N.S.)

§59.5.0406 Refuse Vehicles and Parking Lot Sweepers

No person shall operate or permit to be operated a refuse compacting, processing, or collection vehicle between the hours of 7:00 p.m. to 6:00 a.m. or a parking lot sweeper between the hours of 7:00 p.m. to 7:00 a.m. in any residential area unless a permit has been applied for and granted by the Administrator.

("Refuse Vehicles" added 9–18–1973 by O–11122 N.S.; amended 9–22–1976 by O-11916 N.S.)

(Amended 6-9-2010 by O-19960 N.S.; effective 7-9-2010.)

SDR 2. Based on the City of San Diego interim screening criteria for GHG emission analysis, all new projects will have greenhouse gas emissions (GHG emissions) less than 900 metric tons of CO2e measure. For projects exceeding 900 metric tons of CO2e, the greenhouse gas analysis must show how the project will reduce its GHG emissions by 20.5% compared to the business as usual scenario. The reduction measures should include, but are not limited to, onsite recycling, water use reductions, and transportation features such as increased transit accessibility, improved pedestrian networks, and improved bikeability.

- a. Prior to adoption of the City of San Diego Climate Action Plan: Projects shall submit a GHG emissions analysis accepted by the City of San Diego showing GHG emissions less than 900 metric tons of CO2e measure; OR a GHG emissions reduction of 20.5%; OR
- b. Upon the adoption of the City of San Diego Climate Action Plan: Projects shall submit a completed Climate Action Plan consistency review checklist.

SDR 3. Any habitable space located within a CNEL of greater than 60 dBA shall require an acoustical study consistent with Table NE-4 (Acoustical Study Guidelines – General Plan). The proposed building, wall, and roof-ceiling assemblies shall be designed to limit intruding noise to the allowable interior noise level with all exterior doors and windows in the closed position. Documentation of the noise attenuation measures shall include building assemblies section including, but not limited to, a wall and roof-ceiling assemblies section. Design of noise attenuation measures shall include the

following:

- a. For residential, institutional, and visitor accommodation uses: The allowable interior noise level is 45 dBA. Wall and roof-ceiling assemblies making up the building envelope shall attenuate noise to meet applicable building code requirements.
- b. For retail and office uses: The allowable interior noise level is 50 dBA. Wall and roof-ceiling assemblies making up the building envelope shall attenuate noise to meet applicable building code requirements.

For mixed-use buildings, residential, institutional, and visitor accommodation spaces must attenuate to (a) and non-residential spaces shall attenuate to (b).

Density Incentives for Transit-Oriented Development

The Community Plan is designed around a strong transit-oriented development (TOD) framework that focuses new higher density and intensity development within a village core in close proximity to major transit services. The plan enables development of complete neighborhoods that include a diverse array of residential, commercial, mixed-use, employment, and recreational opportunities. Higher density development will include urban design guidelines to foster enhancement of the public realm, pedestrian and bicycle movement, and public safety. Density incentives in the Village Districts are summarized in Table 2-6: Standards and Incentives in the Village District. The Urban Design and Recreation elements also detail streetscape and pocket park improvements.

APPENDIX C

Traffic Noise Model (TNM) Data and Results

INPUT: ROADWAYS B71104N1

Eilar Associates, Inc.					14 Novembe	or 2017						
MLO					TNM 2.5	1 2017						
INPUT: ROADWAYS							Average	pavement typ	e shall be	used unles	S	
PROJECT/CONTRACT:	B71104N	1					a State h	ighway agend	y substant	iates the u	se	
RUN:	Calibratio	n			of a different type with the approval of FHWA							
Roadway		Points										
Name	Width	Name	No.	Coordinates	(pavement)		Flow Co	ntrol		Segment		
				X	Υ	Z	Control	Speed	Percent	Pvmt	On	
							Device	Constraint	Vehicles	Type	Struct?	
									Affected			
	m		ı	m	m	m		km/h	%			
Guymon Street	10.0	point1	1	745.9	575.8	45.30	Signal	0.00	60	Average		
		point2	2	792.0	574.0		_			Average		
		point3	3	836.7	574.0	41.70				Average		
		point4	4	882.0	574.7	41.70				Average		
		point5	5	920.8	576.2	42.20				Average	-	
		point6	6	940.1	583.0	42.60				Average		
		point7	7	955.5	592.3	42.50				Average		
		point8	8	965.6	602.3	42.40				Average		
		point9	9	996.5	652.5	42.50				Average		
		point10	10	1,007.3	666.5	41.60				Average		
		point11	11	1,018.6	676.3	40.70				Average		
		point12	12	1,029.3	681.2	40.10				Average		
		point13	13	1,041.5	684.7					Average		
		point14	14	1,058.0	686.0	38.70)			Average		
		point15	15	1,113.8								
Euclid Avenue	20.0	point27	27	1,129.1	482.9					Average		
		point28	28	1,129.6						Average		
		point29	29	1,130.1	641.4					Average		
		point30	30	1,130.0								
SR-94 Eastbound	17.0	point39	39	419.8	-					Average		
		point40	40	490.7	1,289.1					Average		
		point41	41	598.1	1,283.2					Average		
		point42	42	809.8						Average		
		point43	43	1,023.1	1,281.7					Average		
I		point44	44	1,124.7	1,294.9	59.90				Average		

INPUT: ROADWAYS B71104N1

INFOI. NOADWAIS						D/ 11	04141			
		point45	45	1,194.8	1,313.8	60.00			Average	
		point46	46	1,257.8	1,339.0	61.10			Average	
		point47	47	1,324.2	1,376.8	62.10			Average	
		point48	48	1,386.4	1,426.4	62.70			Average	
		point49	49	1,603.9	1,620.4	60.00				
SR-94 Westbound	16.0	point50	50	1,581.9	1,630.0	61.50			Average	
		point51	51	1,424.8	1,487.1	62.50			Average	
		point52	52	1,341.6	1,418.3	61.70			Average	
		point53	53	1,255.1	1,362.0	60.60			Average	
		point54	54	1,187.9	1,331.7	60.10			Average	
		point55	55	1,121.5	1,315.8	59.20			Average	
		point56	56	1,076.2	1,307.4	58.60			Average	
		point57	57	1,030.0	1,305.7	57.60			Average	
		point58	58	828.3	1,303.1	59.90			Average	
		point59	59	636.8	1,304.1	63.30			Average	
		point60	60	544.2	1,306.2	61.90			Average	
		point61	61	488.6	1,310.5	60.90			Average	
		point62	62	434.6	1,321.6	58.80				
Euclid Avenue-2	20.0	point63	63	1,130.0	684.6	37.40 Signal	0.00	60	Average	
		point31	31	1,130.6	720.6	37.30			Average	
		point32	32	1,131.1	799.8	38.30			Average	
		point33	33	1,131.6	879.0	40.50			Average	
		point34	34	1,132.1	958.2	41.40			Average	
		point35	35	1,132.6	1,037.4	44.50			Average	
		point36	36	1,133.1	1,116.7	50.60			Average	
		point37	37	1,133.7	1,195.9	56.50			Average	
		point38	38	1,134.2	1,275.1	60.40				

Eilar Associates, Inc.				14 Nov	ember 2	017						
MLO				TNM 2	.5							
INPUT: TRAFFIC FOR LAeq1h Vo												
PROJECT/CONTRACT:	B71104N1											
RUN:	Calibration											
Roadway	Points											
Name	Name	No.	Segmen	t								
			Autos		MTrucks	3	HTrucks	3	Buses		Motorcy	/cles
			V	S	V	S	V	S	V	S	V	S
			veh/hr	km/h	veh/hr	km/h	veh/hr	km/h	veh/hr	km/h	veh/hr	km/h
Guymon Street	point1	1	204	40	0	0	0	0	0	0	0) (
	point2	2	204	40	0	0	0	0	0	0	C) 0
	point3	3	204	40	0	0	0	0	0	0	C) 0
	point4	4	204	40	0	0	0	0	0	0	C) 0
	point5	5	204	40	0	0	0	0	0	0	C) (
	point6	6	204	40	0	0	0	0	0	0	C	0
	point7	7	204	40	0	0	0	0	0	0	C	0
	point8	8	204	40	0	0	0	0	0	0	C	
	point9	9	204	40	0	0	0	0	0	0	C	0
	point10	10		40		0	0	0				-
	point11	11	204	40		0	0				_	1
	point12	12	204			0	0	0	0	0		
	point13	13			_	0	0				_	-
	point14	14		40	0	0	0	0	0	0	0) 0
	point15	15										
Euclid Avenue	point27	27	1770			56						
	point28	28								0	_	
	point29	29		56	24	56	18	56	0	0	C) 0
	point30	30										
SR-94 Eastbound	point39	39		105								
	point40	40		105						_		
	point41	41	6507	105		105						
	point42	42	6507	105	192	105	72	105	0	0	0	0 0

INPUT: TRAFFIC FOR LAeq1h Volun	nes					B71	104N1					
•	point43	43	6507	105	192	105	72	105	0	0	0	0
	point44	44	6507	105	192	105	72	105	0	0	0	0
	point45	45	6507	105	192	105	72	105	0	0	0	0
	point46	46	6507	105	192	105	72	105	0	0	0	0
	point47	47	6507	105	192	105	72	105	0	0	0	0
	point48	48	6507	105	192	105	72	105	0	0	0	0
	point49	49										
SR-94 Westbound	point50	50	6507	105	192	105	72	105	0	0	0	0
	point51	51	6507	105	192	105	72	105	0	0	0	0
	point52	52	6507	105	192	105	72	105	0	0	0	0
	point53	53	6507	105	192	105	72	105	0	0	0	0
	point54	54	6507	105	192	105	72	105	0	0	0	0
	point55	55	6507	105	192	105	72	105	0	0	0	0
	point56	56	6507	105	192	105	72	105	0	0	0	0
	point57	57	6507	105	192	105	72	105	0	0	0	0
	point58	58	6507	105	192	105	72	105	0	0	0	0
	point59	59	6507	105	192	105	72	105	0	0	0	0
	point60	60	6507	105	192	105	72	105	0	0	0	0
	point61	61	6507	105	192	105	72	105	0	0	0	0
	point62	62										
Euclid Avenue-2	point63	63	1770	56	24	56	18	56	0	0	0	0
	point31	31	1770	56	24	56	18	56	0	0	0	0
	point32	32	1770	56	24	56	18	56	0	0	0	0
	point33	33	1770	56	24	56	18	56	0	0	0	0
	point34	34	1770	56	24	56	18	56	0	0	0	0
	point35	35	1770	56	24	56	18	56	0	0	0	0
	point36	36	1770	56	24	56	18	56	0	0	0	0
	point37	37	1770	56	24	56	18	56	0	0	0	0

point38

38

INPUT: RECEIVERS							<u> </u>	371104N1			
Eilar Associates, Inc.						14 Novem	ber 2017				
MLO						TNM 2.5					
INPUT: RECEIVERS											
PROJECT/CONTRACT:	B711	04N1			'						
RUN:	Calib	ration									
Receiver											
Name	No.	#DUs	Coordinates	(ground)		Height	Input Sou	nd Levels	and Criteri	a	Active
			X	Y	Z	above	Existing	Impact Cr	iteria	NR	in
						Ground	LAeq1h	LAeq1h	Sub'l	Goal	Calc.
			m	m	m	m	dBA	dBA	dB	dB	
NML	,	1 1	1,112.4	691.7	37.80	1.52	2 0.00	66	10.0	8.0) Y

INPUT: BUILDING ROWS					В7	'1104N1
Eilar Associates, Inc.					14 November	2017
MLO					TNM 2.5	
INPUT: BUILDING ROWS						
PROJECT/CONTRACT:	B71104N1	'				
RUN:	Calibration					
Building Row			Points	•		
Name	Average	Building	No.	Coordinates (ground)	
	Height	Percent		X	Y	Z
	m	%		m	m	m
Building Row 2	4.00	40	23	1,576.9	913.8	71.2
			24	1,487.4	1,001.7	73.3
			25	1,504.3	1,072.1	72.4
			26	1,687.5	1,094.3	59.9
			27	1,675.8	969.9	62.7
			28	1,589.6	915.4	70.2
			29	1,595.4	846.6	69.7
			30	1,648.3	792.6	65.1
			31	1,654.6	673.0	59.2
			32	1,741.4	669.9	57.1
			33	1,726.6	795.8	58.3
			34	1,825.1	821.2	49.8
			35	1,901.3	876.3	43.2
			36	1,920.3	1,046.7	41.6
			37	1,867.4	1,335.6	43.9
			38	1,653.6	1,336.7	59.5
			39	1,489.5	1,335.6	67.0
			40	1,314.9	1,335.6	62.6
			41	1,305.4	1,246.7	63.9
			42	1,270.4	1,248.8	62.1
			43	1,222.8	1,180.0	59.8
			44	1,158.2	1,165.2	56.4
			45	1,155.1	922.8	41.1
			46	1,154.0	713.3	38.7

INPUT: BUILDING ROWS					B7	1104N1
			47	1,150.8	485.7	35.60
			48	1,272.6	483.6	38.30
			49	1,277.8	529.1	40.50
			50	1,241.9	545.0	40.80
			51	1,245.0	571.4	43.60
			52	1,290.5	616.9	49.70
			53	1,305.4	657.2	54.30
			54	1,394.3	669.9	58.70
			55	1,483.7	749.7	69.80
			56	1,584.6	836.2	70.60
Building Row 1	4.00	40	57	394.1	585.7	40.70
			58	357.1	679.8	41.70
			59	364.6	1,185.5	54.00
			60	515.9	1,183.0	61.30
			61	531.8	974.6	56.40
			62	840.1	973.0	52.80
			63	843.5	1,175.4	56.70
			64	933.4	1,175.4	53.10
			65	932.5	970.4	50.40
			66	1,047.6	969.6	45.30
			67	1,049.3	934.3	44.80
			68	1,012.3	936.8	46.50
			69	1,012.3	847.8	45.50
			70	1,064.4	872.2	43.50
			71	1,115.7	874.7	41.30
			72	1,116.5	797.4	39.30
			73	1,015.7	785.6	44.00
			74	791.4	785.6	49.80
			75	736.8	804.1	51.60
			76	709.1	802.4	52.00
			77	720.8	607.5	47.50
			78	693.1	579.0	46.40
			79	394.2	585.7	40.70

INPUT: TERRAIN LINES B71104N1

Eilar Associates, Inc.			14 Novembe	r 2017
MLO			TNM 2.5	
INPUT: TERRAIN LINES				
PROJECT/CONTRACT:	B71104			
RUN:	Calibra	ition		
Terrain Line	Points	•		
Name	No.	Coordinates	(ground)	
		X	Υ	Z
		m	m	m
Terrain Line1	1	469.4	1,251.6	62.00
	2	421.4	1,254.3	62.00
	3	418.7	1,204.9	62.00
Terrain Line2	4	469.4	1,339.6	60.00
	5	716.1	1,322.3	64.00
	6	970.8	1,323.6	56.00
	7	1,236.4	1,369.1	60.00
	8	1,559.2	1,641.1	63.00
Terrain Line3	9	1,149.2	1,274.1	61.00
	10	1,149.2	1,173.3	56.00
	11	1,147.5	980.1	41.00
	12	1,145.8	835.0	39.00
	13	1,140.8	689.5	37.00
	14	1,142.5	551.7	38.00
	15	1,142.5	491.2	36.00
Terrain Line4	16	446.9	505.7	41.00
	17	515.8	441.9	42.00
Terrain Line5	18	1,545.7	460.3	43.00
	19			
Terrain Line6	20	· '		75.00
	21	1,533.9		
	22			
Terrain Line7	23			47.00
	24			
	25			42.00
	26			43.00
	27	983.4		
	28	-		40.00
Terrain Line8	29	· ·		
	30			
	31	1,073.0		42.70
	32			42.70
	33			42.70
	34			
	35			42.70
	36			42.70
	37	1,064.1	744.7	42.70

INPUT: TERRAIN LINES B71104N1

	38	1,062.2	707.5	42.70
	39	1,046.1	703.7	42.70
Pad	40	1,117.2	773.8	37.80
	41	1,074.2	774.2	37.80
	42	1,073.2	694.1	37.80
	43	1,115.8	693.7	37.80
	44	1,117.2	773.8	37.80

Eilar Associates, Inc.								14 Novem	ber 2017				
MLO								TNM 2.5					
								Calculate	d with TNN	/I 2.5			
RESULTS: SOUND LEVELS													
PROJECT/CONTRACT:		B71104	N1										
RUN:		Calibra	tion										
BARRIER DESIGN:		INPUT	HEIGHTS						Average	pavement typ	e shall be use	d unless	
									a State hi	ighway agenc	y substantiate	s the use	
ATMOSPHERICS:		20 deg	C, 50% RH	l					of a differ	rent type with	approval of F	HWA.	
Receiver													
Name	No.	#DUs	Existing	No Barrier						With Barrier	,		
			LAeq1h	LAeq1h			Increase over	existing	Туре	Calculated	Noise Reduc	tion	
				Calculated	Crit'n		Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculated
								Sub'l Inc					minus
													Goal
			dBA	dBA	dBA		dB	dB		dBA	dB	dB	dB
NML	1	1	0.0	70.0		66	70.0	10	Snd Lvl	70.0	0.0		3 -
Dwelling Units		# DUs	Noise Re	duction									
			Min	Avg	Max								
			dB	dB	dB								
All Selected		1	0.0	0.0		0.0)						
All Impacted		1	0.0	0.0		0.0)						
All that meet NR Goal		C	0.0	0.0		0.0							

Eilar Associates, Inc.				14 Nov	ember 2	017						
MLO				TNM 2	.5	,		,				
INPUT: TRAFFIC FOR LAeq1h Vo												
PROJECT/CONTRACT:	B71104N1											
RUN:	Current				1							
Roadway	Points											
Name	Name	No.	Segmen	t								
			Autos		MTrucks	5	HTrucks	3	Buses		Motorcy	/cles
			V	S	V	S	V	S	V	S	V	S
			veh/hr	km/h	veh/hr	km/h	veh/hr	km/h	veh/hr	km/h	veh/hr	km/h
Guymon Street	point1	1	45	40	1	40	0	0	0	0	C) (
	point2	2	45	40	1	40	0	0	0	0	C	0
	point3	3	45	40	1	40	0	0	0	0	C	0
	point4	4	45	40	1	40	0	0	0	0	C	0
	point5	5	45	40	1	40	0	0	0	0	C	0
	point6	6	45	40	1	40	0	0	0	0		
	point7	7	45	40	1	40	0	0	0	0	C	0
	point8	8			1	40		0				
	point9	9			1	40		0				
	point10	10			1	40						
	point11	11	45		1	40						
	point12	12	45		1	40						
	point13	13			1	40						
	point14	14		40	1	40	0	0	0	0	C	0
	point15	15										
Euclid Avenue	point27	27	1614		51	56						
	point28	28			51	56						
	point29	29		56	51	56	34	56	0	0	C	0
	point30	30										
SR-94 Eastbound	point39	39			151							
	point40	40			151					_		_
	point41	41	5100		151	105						
	point42	42	5100	105	151	105	56	105	0	0	C) c

INPUT: TRAFFIC FOR LAeq1h Volumes	S					B71	104N1					
•	point43	43	5100	105	151	105	56	105	0	0	0	0
	point44	44	5100	105	151	105	56	105	0	0	0	0
	point45	45	5100	105	151	105	56	105	0	0	0	0
	point46	46	5100	105	151	105	56	105	0	0	0	0
	point47	47	5100	105	151	105	56	105	0	0	0	0
	point48	48	5100	105	151	105	56	105	0	0	0	0
	point49	49										
SR-94 Westbound	point50	50	5100	105	151	105	56	105	0	0	0	0
	point51	51	5100	105	151	105	56	105	0	0	0	0
	point52	52	5100	105	151	105	56	105	0	0	0	0
	point53	53	5100	105	151	105	56	105	0	0	0	0
	point54	54	5100	105	151	105	56	105	0	0	0	0
	point55	55	5100	105	151	105	56	105	0	0	0	0
	point56	56	5100	105	151	105	56	105	0	0	0	0
	point57	57	5100	105	151	105	56	105	0	0	0	0
	point58	58	5100	105	151	105	56	105	0	0	0	0
	point59	59	5100	105	151	105	56	105	0	0	0	0
	point60	60	5100	105	151	105	56	105	0	0	0	0
	point61	61	5100	105	151	105	56	105	0	0	0	0
	point62	62										
Euclid Avenue-2	point63	63	1614	56	51	56	34	56	0	0	0	0
	point31	31	1614	56	51	56	34	56	0	0	0	0
	point32	32	1614	56	51	56	34	56	0	0	0	0
	point33	33	1614	56	51	56	34	56	0	0	0	0
	point34	34	1614	56	51	56	34	56	0	0	0	0
	point35	35	1614	56	51	56	34	56	0	0	0	0
	point36	36	1614	56	51	56	34	56	0	0	0	0
	point37	37	1614	56	51	56	34	56	0	0	0	0

38

point38

INPUT: RECEIVERS									B71104N1			
Eilar Associates, Inc.							14 Novem	her 2017				
MLO							TNM 2.5	501 2017				
							114111 2.0					
INPUT: RECEIVERS												
PROJECT/CONTRACT:	B7110	04N1			1							
RUN:	Curre	nt										
Receiver												
Name	No.	#DUs	Coordinates	(ground)			Height	Input Sou	nd Levels	and Criteri	a	Active
			X	Υ	Z		above	Existing	Impact Cr	riteria	NR	in
							Ground	LAeq1h	LAeq1h	Sub'l	Goal	Calc.
			m	m	m		m	dBA	dBA	dB	dB	
1	1		,			7.80						
2	3		,			7.80						
3	4		· · ·			7.80						
4	5		,			7.80						
5	6		,			7.80						.0 Y
6	7	7 1	1,113.1	769.8	37	7.80	1.52	0.00	66	10.0	8	
7	8		-,			7.80						
8	9		,			7.80						
9	10) 1	1,091.9	762.9	37	7.80	1.52	0.00	66	10.0	8	.0 Y
10	11	1	1,099.0	763.0	37	7.80	1.52	0.00	66	10.0	8	
11	12	2 1	1,106.0	763.0	37	7.80	1.52	0.00	66	10.0	8	
12	13	3 1	1,113.0	763.0	37	7.80	1.52	0.00	66	10.0	8	
13	14	↓ 1	1,078.1	756.0	37	7.80	1.52	0.00	66	10.0	8	.0 Y
14	15	5 1	1,084.9	755.8	37	7.80	1.52	0.00	66	10.0	8	.0 Y
15	16	3 1	1,091.8	756.0	37	7.80	1.52	0.00	66	10.0	8	
16	17	1	1,099.2	755.9	37	7.80	1.52	0.00	66	10.0	8	.0 Y
17	18	3 1	1,105.9	756.1	37	7.80	1.52	0.00	66	10.0	8	.0 Y
18	19) 1	1,112.9	756.2	37	7.80	1.52	0.00	66	10.0	8	.0 Y
19	20) 1	1,077.9	749.0	37	7.80	1.52	0.00	66	10.0	8	.0 Y
20	21	1	1,084.9	749.0	37	7.80	1.52	0.00	66	10.0	8	.0 Y
21	22	2 1	1,092.0	749.0	37	7.80	1.52	0.00	66	10.0	8	.0 Y
22	23	3 1	1,098.9	749.0	37	7.80	1.52	0.00	66	10.0	8	.0 Y

23 24	24 25	1	1,105.9	740.4							
24	25		1,105.9	749.1	37.80	1.52	0.00	66	10.0	8.0	Υ
	25	1	1,112.9	749.0	37.80	1.52	0.00	66	10.0	8.0	Υ
25	26	1	1,077.9	742.1	37.80	1.52	0.00	66	10.0	8.0	Υ
26	27	1	1,084.8	741.9	37.80	1.52	0.00	66	10.0	8.0	Υ
27	28	1	1,092.0	741.9	37.80	1.52	0.00	66	10.0	8.0	Υ
28	29	1	1,098.9	742.2	37.80	1.52	0.00	66	10.0	8.0	Υ
29	30	1	1,105.9	741.9	37.80	1.52	0.00	66	10.0	8.0	Υ
30	31	1	1,112.8	742.0	37.80	1.52	0.00	66	10.0	8.0	Υ
31	32	1	1,077.9	735.0	37.80	1.52	0.00	66	10.0	8.0	Υ
32	33	1	1,084.8	735.0	37.80	1.52	0.00	66	10.0	8.0	Υ
33	34	1	1,092.1	735.1	37.80	1.52	0.00	66	10.0	8.0	Υ
34	35	1	1,098.9	734.9	37.80	1.52	0.00	66	10.0	8.0	Υ
35	36	1	1,106.1	735.1	37.80	1.52	0.00	66	10.0	8.0	Υ
36	37	1	1,113.1	735.0	37.80	1.52	0.00	66	10.0	8.0	Υ
37	38	1	1,077.8	728.1	37.80	1.52	0.00	66	10.0	8.0	Υ
38	39	1	1,084.8	727.9	37.80	1.52	0.00	66	10.0	8.0	Υ
39	40	1	1,092.0	728.0	37.80	1.52	0.00	66	10.0	8.0	Υ
40	41	1	1,098.9	728.1	37.80	1.52	0.00	66	10.0	8.0	Υ
41	42	1	1,105.9	728.0	37.80	1.52	0.00	66	10.0	8.0	Υ
42	43	1	1,113.0	728.0	37.80	1.52	0.00	66	10.0	8.0	Υ
43	44	1	1,077.9	721.0	37.80	1.52	0.00	66	10.0	8.0	Υ
44	45	1	1,084.8	721.1	37.80	1.52	0.00	66	10.0	8.0	Υ
45	46	1	1,092.0	721.2	37.80	1.52	0.00	66	10.0	8.0	Υ
46	47	1	1,098.9	721.2	37.80	1.52	0.00	66	10.0	8.0	Υ
47	48	1	1,105.9	721.0	37.80	1.52	0.00	66	10.0	8.0	Υ
48	49	1	1,112.9	721.1	37.80	1.52	0.00	66	10.0	8.0	Υ
49	50	1	1,077.8	713.8	37.80	1.52	0.00	66	10.0	8.0	Υ
50	51	1	1,085.0	713.9	37.80	1.52	0.00	66	10.0	8.0	Υ
51	52	1	1,091.9	714.0	37.80	1.52	0.00	66	10.0	8.0	Υ
52	53	1	1,098.8	713.9	37.80	1.52	0.00	66	10.0	8.0	Υ
53	54	1	1,105.8	714.0	37.80	1.52	0.00	66	10.0	8.0	Υ
54	55	1	1,113.0	714.0	37.80	1.52	0.00	66	10.0	8.0	Υ
55	56	1	1,078.0	707.0	37.80	1.52	0.00	66	10.0	8.0	Υ
56	57	1	1,085.0	706.9	37.80	1.52	0.00	66	10.0	8.0	Υ
57	58	1	1,091.9	706.9	37.80	1.52	0.00	66	10.0	8.0	Υ
58	59	1	1,099.0	707.0	37.80	1.52	0.00	66	10.0	8.0	Υ

INPUT: RECEIVERS							E	371104N1			
59	60	1	1,106.0	707.0	37.80	1.52	0.00	66	10.0	8.0	Υ
60	61	1	1,113.1	707.0	37.80	1.52	0.00	66	10.0	8.0	Υ
61	62	1	1,078.2	700.1	37.80	1.52	0.00	66	10.0	8.0	Υ
62	63	1	1,085.1	700.0	37.80	1.52	0.00	66	10.0	8.0	Y
63	64	1	1,092.0	699.9	37.80	1.52	0.00	66	10.0	8.0	Υ
64	65	1	1,098.7	700.3	37.80	1.52	0.00	66	10.0	8.0	Y
65	66	1	1,106.2	700.0	37.80	1.52	0.00	66	10.0	8.0	Y
66	67	1	1,113.1	700.1	37.80	1.52	0.00	66	10.0	8.0	Y

											1	
Eilar Associates, Inc.							14 Novem	ber 2017				
MLO							TNM 2.5					
							_	d with TNN	1 2.5			
RESULTS: SOUND LEVELS												
PROJECT/CONTRACT:		B71104	N1									
RUN:		Current										
BARRIER DESIGN:			HEIGHTS					Average i	pavement type	e shall be use	d unless	
		0.							ghway agenc			
ATMOSPHERICS:		20 dea	C, 50% RH						ent type with			
		20 009	O, 00 /0 141		-			Or a annoi	one type with	approval of r	†	
Receiver	N1 -	#DU-	Frain Aire as	Na Damian					Mith Damien			
Name	No.	#DUs	Existing	No Barrier			! . 4!	T	With Barrier	_	4!	
			LAeq1h	LAeq1h	0:41	Increase over		Туре	Calculated	Noise Reduc		Calculated
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	
							Sub'l Inc					minus
			4D V	dBA	4D V	dB	dB		dD A	dB	dB	Goal dB
			dBA	1	dBA	ļ-	-		dBA	ļ ·	-	
1	1		0.0						62.6			
2	3		0.0						63.5			_
3	4								64.7			
4	5		0.0						66.0			
5	6		0.0	_		_			67.4			
6	7		0.0						69.1			
7	8		0.0				-		62.8		_	_
8	9		0.0						63.9			
9	10		0.0						64.9			
10	11	1	0.0				10		66.1			
11	12	1	0.0	67.5					67.5			
12	13		0.0				_		69.1			_
13	14		0.0						63.1			
14	15		0.0						64.1			
15	16								65.1			
16	17		0.0						66.3			
17	18	1	0.0				-		67.6			_
18	19		0.0						69.3			_
19	20		0.0						63.3			_
20	21	1	0.0						64.2			
21	22		0.0	65.2			10		65.2	0.0		
22	23								66.4			
23	24	1	0.0	67.6	66	67.6	10	Snd Lvl	67.6	0.0	8	-8.
24	25	5 1	0.0	69.3	66	69.3	10	Snd Lvl	69.3	0.0	8	-8.

RESULTS: SOUND LEVELS						B7110	04N1					
25	26	1	0.0	63.4	66	63.4	10		63.4	0.0	8	-8.0
26	27	1	0.0	64.4	66	64.4	10		64.4	0.0	8	-8.0
27	28	1	0.0	65.4	66	65.4	10		65.4	0.0	8	-8.0
28	29	1	0.0	66.5	66	66.5	10	Snd Lvl	66.5	0.0	8	-8.0
29	30	1	0.0	67.7	66	67.7	10	Snd Lvl	67.7	0.0	8	-8.0
30	31	1	0.0	69.4	66	69.4	10	Snd Lvl	69.4	0.0	8	-8.0
31	32	1	0.0	63.5	66	63.5	10		63.5	0.0	8	-8.0
32	33	1	0.0	64.5	66	64.5	10		64.5	0.0	8	-8.0
33	34	1	0.0	65.5	66	65.5	10		65.5	0.0	8	-8.0
34	35	1	0.0	66.6	66	66.6	10	Snd Lvl	66.6	0.0	8	-8.0
35	36	1	0.0	67.9	66	67.9	10	Snd Lvl	67.9	0.0	8	-8.0
36	37	1	0.0	69.6	66	69.6	10	Snd Lvl	69.6	0.0	8	-8.0
37	38	1	0.0	63.6	66	63.6	10		63.6	0.0	8	-8.0
38	39	1	0.0	64.6	66	64.6	10		64.6	0.0	8	-8.0
39	40	1	0.0	65.6	66	65.6	10		65.6	0.0	8	-8.0
40	41	1	0.0	66.7	66	66.7	10	Snd Lvl	66.7	0.0	8	-8.0
41	42	1	0.0	68.0	66	68.0	10	Snd Lvl	68.0	0.0	8	-8.0
42	43	1	0.0	69.7	66	69.7	10	Snd Lvl	69.7	0.0	8	-8.0
43	44	1	0.0	63.7	66	63.7	10		63.7	0.0	8	-8.0
44	45	1	0.0	64.6	66	64.6	10		64.6	0.0	8	-8.0
45	46	1	0.0	65.7	66	65.7	10		65.7	0.0	8	-8.0
46	47	1	0.0	66.8	66	66.8	10	Snd Lvl	66.8	0.0	8	-8.0
47	48	1	0.0	68.2	66	68.2	10	Snd Lvl	68.2	0.0	8	-8.0
48	49	1	0.0	69.9	66	69.9	10	Snd Lvl	69.9	0.0	8	-8.0
49	50	1	0.0	63.7	66	63.7	10		63.7	0.0	8	-8.0
50	51	1	0.0	64.7	66	64.7	10		64.7	0.0	8	-8.0
51	52	1	0.0	65.7	66	65.7	10		65.7	0.0	8	-8.0
52	53	1	0.0	66.9	66	66.9	10	Snd Lvl	66.9	0.0	8	-8.0
53	54	1	0.0	68.3	66	68.3	10	Snd Lvl	68.3	0.0	8	-8.0
54	55	1	0.0	70.1	66	70.1	10	Snd Lvl	70.1	0.0	8	-8.0
55	56	1	0.0	63.8	66	63.8	10		63.8	0.0	8	-8.0
56	57	1	0.0	64.8	66	64.8	10		64.8	0.0	8	-8.0
57	58	1	0.0	65.8	66	65.8	10		65.8	0.0	8	-8.0
58	59	1	0.0	67.1	66	67.1	10	Snd Lvl	67.1	0.0	8	-8.0
59	60	1	0.0	68.5	66	68.5	10	Snd Lvl	68.5	0.0	8	-8.0
60	61	1	0.0	70.4	66	70.4	10	Snd Lvl	70.4	0.0	8	-8.0
61	62	1	0.0	63.8	66	63.8	10		63.8	0.0	8	-8.0
62	63	1	0.0	64.8	66	64.8	10		64.8	0.0	8	-8.0
63	64	1	0.0	65.8	66	65.8	10		65.8	0.0	8	-8.0
64	65	1	0.0	67.1	66	67.1	10		67.1	0.0	8	-8.0
65	66	1	0.0	68.7	66	68.7	10	Snd Lvl	68.7	0.0	8	-8.0

RESULTS: SOUND LEVELS

66	67	1	0.0	70.6	66	70.6	10	Snd Lvl	70.6	0.0	8	-8.0
Dwelling Units		# DUs	Noise Red	duction								
			Min	Avg	Max							
			dB	dB	dB							
All Selected		66	0.0	0.0	0.0							
All Impacted		33	0.0	0.0	0.0							
All that meet NR Goal		0	0.0	0.0	0.0							

Eilar Associates, Inc.				14 Nov	ember 2	017						
MLO				TNM 2	.5			,				
INPUT: TRAFFIC FOR LAeq1h Vo												
PROJECT/CONTRACT:	B71104N1											
RUN:	Future				1							
Roadway	Points											
Name	Name	No.	Segmen	t								
			Autos		MTrucks	5	HTrucks	•	Buses		Motorcy	/cles
			V	S	V	S	V	S	V	S	V	S
			veh/hr	km/h	veh/hr	km/h	veh/hr	km/h	veh/hr	km/h	veh/hr	km/h
Guymon Street	point1	1	56	40	1	40	1	40	0	0	0) (
	point2	2	56	40	1	40	1	40	0	0	C) (
	point3	3	56	40	1	40	1	40	0	0	C) (
	point4	4	56	40	1	40	1	40	0	0	C) (
	point5	5	56	40	1	40	1	40	0	0	C) (
	point6	6	56	40	1	40	1	40	0	0	C) (
	point7	7	56	40	1	40	1	40	0	0	C) (
	point8	8	56	40	1	40	1	40	0	0	C) c
	point9	9	56	40	1	40	1	40	0	0	C) (
	point10	10			1					0		1
	point11	11	56		1	40					_	1
	point12	12	56		1	40				0		
	point13	13			1	40		40			_	1
	point14	14		40	1	40	1	40	0	0	0) C
	point15	15										
Euclid Avenue	point27	27	1543		49							
	point28	28			49					0	_	
	point29	29		56	49	56	32	56	0	0	C) (
	point30	30										
SR-94 Eastbound	point39	39			155							
	point40	40			155							
	point41	41	5262	105	155							
	point42	42	5262	105	155	105	58	105	0	0	0) c

•							104N1					
	point43	43	5262	105	155	105	58	105	0	0	0	0
	point44	44	5262	105	155	105	58	105	0	0	0	0
	point45	45	5262	105	155	105	58	105	0	0	0	0
	point46	46	5262	105	155	105	58	105	0	0	0	0
	point47	47	5262	105	155	105	58	105	0	0	0	0
	point48	48	5262	105	155	105	58	105	0	0	0	0
	point49	49										
SR-94 Westbound	point50	50	5512	105	163	105	61	105	0	0	0	0
	point51	51	5512	105	163	105	61	105	0	0	0	0
	point52	52	5512	105	163	105	61	105	0	0	0	0
	point53	53	5512	105	163	105	61	105	0	0	0	0
	point54	54	5512	105	163	105	61	105	0	0	0	0
	point55	55	5512	105	163	105	61	105	0	0	0	0
	point56	56	5512	105	163	105	61	105	0	0	0	0
	point57	57	5512	105	163	105	61	105	0	0	0	0
	point58	58	5512	105	163	105	61	105	0	0	0	0
	point59	59	5512	105	163	105	61	105	0	0	0	0
	point60	60	5512	105	163	105	61	105	0	0	0	0
	point61	61	5512	105	163	105	61	105	0	0	0	0
	point62	62										
Euclid Avenue-2	point63	63	1543	56	49	56	32	56	0	0	0	0
	point31	31	1543	56	49	56	32	56	0	0	0	0
	point32	32	1543	56	49	56	32	56	0	0	0	0
	point33	33	1543	56	49	56	32	56	0	0	0	0
	point34	34	1543	56	49	56	32	56	0	0	0	0
	point35	35	1543	56	49	56	32	56	0	0	0	0
	point36	36	1543	56	49	56	32	56	0	0	0	0

point37

point38

Eilar Associates, Inc.							14 Novem	ber 2017				
MLO							TNM 2.5					
							_	d with TNN	1 2.5			
RESULTS: SOUND LEVELS												
PROJECT/CONTRACT:		B71104	N1									
RUN:		Future										
BARRIER DESIGN:		-	HEIGHTS					Average	pavement typ	e shall be use	ed unless	
								_	ghway agenc			
ATMOSPHERICS:		20 dea	C, 50% RH	l					rent type with			
Receiver			c, cc /c :		-			-	топо туро ппоп			
Name	No.	#DUs	Existing	No Barrier					With Barrier			
Name	NO.	#008		LAeq1h		Increase over	oviotina	Туре	Calculated	Noise Reduc	otion	_
			LACTII	Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculated
				vaiculated	OTIL II	Calculated	Sub'l Inc	inipact	LACTIII	Calculated	Juan	minus
							Sub i iilc					Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
			-	-	-	ļ-	1		-	ļ ·	-	
1	1		0.0						62.4			
2	3		0.0						63.3			_
3	4								64.5			
4	5		0.0						65.8			
5	6		0.0	_		_	_		67.2			1
6	7		0.0						68.9			
7	8		0.0				_		62.6		_	1
8	9		0.0						63.7			
9	10		0.0						64.7			
10	11		0.0						65.9			
11	12		0.0						67.3			
12	13		0.0				_		68.9		_	-
13	14		0.0						62.9			
14	15		0.0						63.8			
15	16								64.9			
16	17		0.0	-					66.1			
17	18		0.0						67.3			1
18	19		0.0						69.1			_
19	20		0.0				_		63.1			1
20	21	1	0.0						64.0			
21	22	1	0.0						65.0			
22	23								66.2			
23	24		0.0						67.4			
24	25	1	0.0	69.1	66	69.1	10	Snd Lvl	69.1	0.0	8	-8.

RESULTS: SOUND LEVELS						В	71104N1					
25	26	1	0.0	63.2	66	63.2	10		63.2	0.0	8	-8.0
26	27	1	0.0	64.2	66	64.2	10		64.2	0.0	8	-8.0
27	28	1	0.0	65.2	66	65.2	10		65.2	0.0	8	-8.0
28	29	1	0.0	66.3	66	66.3	10	Snd Lvl	66.3	0.0	8	-8.0
29	30	1	0.0	67.5	66	67.5	10	Snd Lvl	67.5	0.0	8	-8.0
30	31	1	0.0	69.1	66	69.1	10	Snd Lvl	69.1	0.0	8	-8.0
31	32	1	0.0	63.3	66	63.3	10		63.3	0.0	8	-8.0
32	33	1	0.0	64.3	66	64.3	10		64.3	0.0	8	-8.0
33	34	1	0.0	65.3	66	65.3	10		65.3	0.0	8	-8.0
34	35	1	0.0	66.3	66	66.3	10	Snd Lvl	66.3	0.0	8	-8.0
35	36	1	0.0	67.7	66	67.7	10	Snd Lvl	67.7	0.0	8	-8.0
36	37	1	0.0	69.4	66	69.4	10	Snd Lvl	69.4	0.0	8	-8.0
37	38	1	0.0	63.4	66	63.4	10		63.4	0.0	8	-8.0
38	39	1	0.0	64.4	66	64.4	10		64.4	0.0	8	-8.0
39	40	1	0.0	65.4	66	65.4	10		65.4	0.0	8	-8.0
40	41	1	0.0	66.5	66	66.5	10	Snd Lvl	66.5	0.0	8	-8.0
41	42	1	0.0	67.8	66	67.8	10	Snd Lvl	67.8	0.0	8	-8.0
42	43	1	0.0	69.5	66	69.5	10	Snd Lvl	69.5	0.0	8	-8.0
43	44	1	0.0	63.5	66	63.5	10		63.5	0.0	8	-8.0
44	45	1	0.0	64.4	66	64.4	10		64.4	0.0	8	-8.0
45	46	1	0.0	65.5	66	65.5	10		65.5	0.0	8	-8.0
46	47	1	0.0	66.6	66	66.6	10	Snd Lvl	66.6	0.0	8	-8.0
47	48	1	0.0	68.0	66	68.0	10	Snd Lvl	68.0	0.0	8	-8.0
48	49	1	0.0	69.7	66	69.7	10	Snd Lvl	69.7	0.0	8	-8.0
49	50	1	0.0	63.5	66	63.5	10		63.5	0.0	8	-8.0
50	51	1	0.0	64.5	66	64.5	10		64.5	0.0	8	-8.0
51	52	1	0.0	65.5	66	65.5	10		65.5	0.0	8	-8.0
52	53	1	0.0	66.7	66	66.7	10	Snd Lvl	66.7	0.0	8	-8.0
53	54	1	0.0	68.1	66	68.1	10	Snd Lvl	68.1	0.0	8	-8.0
54	55	1	0.0	69.9	66	69.9	10	Snd Lvl	69.9	0.0	8	-8.0
55	56	1	0.0	63.6	66	63.6	10		63.6	0.0	8	-8.0
56	57	1	0.0	64.5	66	64.5	10		64.5	0.0	8	-8.0
57	58	1	0.0	65.6	66	65.6	10		65.6	0.0	8	-8.0
58	59	1	0.0	66.9	66	66.9	10	Snd Lvl	66.9	0.0	8	-8.0
59	60	1	0.0	68.3	66	68.3	10	Snd Lvl	68.3	0.0	8	-8.0
60	61	1	0.0	70.2	66	70.2	10	Snd Lvl	70.2	0.0	8	-8.0
61	62	1	0.0	63.7	66	63.7	10		63.7	0.0	8	-8.0
62	63	1	0.0	64.7	66	64.7	10		64.7	0.0	8	-8.0
63	64	1	0.0	65.7	66	65.7	10		65.7	0.0	8	-8.0
64	65	1	0.0	66.8	66	66.8	10	Snd Lvl	66.8	0.0	8	-8.0
65	66	1	0.0	68.5	66	68.5	10	Snd Lvl	68.5	0.0	8	-8.0

RESULTS: SOUND LEVELS

66	67	1	0.0	70	4	66	70.4	10	Snd Lvl	70.4	0.0	8	-8.0
Dwelling Units		# DUs	Noise Red	duction									
			Min	Avg	Max								
			dB	dB	dB								
All Selected		66	0.0	0	0	0.0							
All Impacted		31	0.0	0	0	0.0							
All that meet NR Goal		0	0.0	0	0	0.0							

				-								
Eilar Associates, Inc.					ember 2	017						
MLO				TNM 2	.5			1				
INPUT: TRAFFIC FOR LAeq1h Vo												
PROJECT/CONTRACT:	B71104N1											
RUN:	Facades											
Roadway	Points											
Name	Name	No.	Segmen	t								
			Autos		MTrucks	5	HTrucks	5	Buses		Motorcy	<u> </u>
			V	S	V	S	V	S	V	S	V	S
			veh/hr	km/h	veh/hr	km/h	veh/hr	km/h	veh/hr	km/h	veh/hr	km/h
Guymon Street	point1	1	56	40	1	40	1	40	0	0	C) (
	point2	2	56	40	1	40	1	40	0	0	C) (
	point3	3	56	40	1	40	1	40	0	0	C) (
	point4	4	56	40	1	40	1	40	0	0	C) (
	point5	5	56	40	1	40	1	40	0	0	C) (
	point6	6	56	40	1	40	1	40	0	0	C) c
	point7	7	56	40	1	40	1	40	0	0	C) (
	point8	8				40					_	1
	point9	9						_		0		
	point10	10										1
	point11	11	56			40					_	1
	point12	12	56			40						
	point13	13				40		40			_	1
	point14	14		40	1	40	1	40	0	0	C	0
	point15	15										
Euclid Avenue	point27	27	1614									
	point28	28								0	_	
	point29	29		56	51	56	34	56	0	0	C) (
	point30	30										
SR-94 Eastbound	point39	39										
	point40	40										
	point41	41	5262	105								
	point42	42	5262	105	155	105	58	105	0	0	0) c

NPUT: TRAFFIC FOR LAeq1h Volumes						B71	104N1					
•	point43	43	5262	105	155	105	58	105	0	0	0	C
	point44	44	5262	105	155	105	58	105	0	0	0	C
	point45	45	5262	105	155	105	58	105	0	0	0	С
	point46	46	5262	105	155	105	58	105	0	0	0	C
	point47	47	5262	105	155	105	58	105	0	0	0	C
	point48	48	5262	105	155	105	58	105	0	0	0	C
	point49	49										
SR-94 Westbound	point50	50	5512	105	163	105	61	105	0	0	0	C
	point51	51	5512	105	163	105	61	105	0	0	0	C
	point52	52	5512	105	163	105	61	105	0	0	0	C
	point53	53	5512	105	163	105	61	105	0	0	0	C
	point54	54	5512	105	163	105	61	105	0	0	0	С
	point55	55	5512	105	163	105	61	105	0	0	0	С
	point56	56	5512	105	163	105	61	105	0	0	0	С
	point57	57	5512	105	163	105	61	105	0	0	0	C
	point58	58	5512	105	163	105	61	105	0	0	0	C
	point59	59	5512	105	163	105	61	105	0	0	0	C
	point60	60	5512	105	163	105	61	105	0	0	0	C
	point61	61	5512	105	163	105	61	105	0	0	0	C
	point62	62										
Euclid Avenue-2	point63	63	1614	56	51	56	34	56	0	0	0	C
	point31	31	1614	56	51	56	34	56	0	0	0	C
	point32	32	1614	56	51	56	34	56	0	0	0	C
	point33	33	1614	56	51	56	34	56	0	0	0	C
	point34	34	1614	56	51	56	34	56	0	0	0	C
	point35	35	1614	56	51	56	34	56	0	0	0	C
	point36	36	1614	56	51	56	34	56	0	0	0	C
	point37	37	1614	56	51	56	34	56	0	0	0	C

point38

38

INPUT: RECEIVERS						·	l	371104N1			
Eilar Associates, Inc.						14 Novem	ber 2017				
MLO						TNM 2.5					
INPUT: RECEIVERS											
PROJECT/CONTRACT:	B7110	4N1			1						
RUN:	Facad	les									
Receiver											
Name	No.	#DUs	Coordinates	(ground)		Height	Input Sou	nd Levels a	and Criteria	3	Active
			X	Y	Z	above	Existing	Impact Cr	iteria	NR	in
						Ground	_	LAeq1h	Sub'l	Goal	Calc.
							ID A	ID A	ID.	ID.	
			m	m	m	m	dBA	dBA	dB	dB	
F1-1	69		,								
F2-1	70		,								
F3-1	71	1	,								
F4-1	72		,							8.0	
F5-1	73	1	1,089.6	751.4	37.80	1.52	0.00	66	10.0	8.0) Y
F6-1	74	1	1,076.3	762.0	37.80	1.52	0.00	66	10.0	8.0) Y
F7-1	75	1	1,086.6	771.7	37.80	1.52	0.00	66	10.0	8.0) Y
F8-1	76	1	1,105.8	771.6	37.80	1.52	0.00	66	10.0	8.0) Y
F9-1	77	1	1,115.5	758.4	37.80	1.52	0.00	66	10.0	8.0) Y
F10-1	78	1	1,115.5	741.3	37.80	1.52	0.00	66	10.0	8.0) Y
F11-1	79	1	1,113.5	721.8	37.80	1.52	0.00	66	10.0	8.0) Y
F12-1	80	1	1,113.3	703.3	37.80	1.52	0.00	66	10.0	8.0) Y
F1-2	81	1	1,103.7	694.8	37.80	5.18	0.00	66	10.0	8.0) Y
F2-2	82	1	1,093.5	703.2	37.80	5.18	0.00	66	10.0	8.0) Y
F3-2	83	1	1,093.6	720.0	37.80	5.18	0.00	66	10.0	8.0) Y
F4-2	84	1	1,097.6	740.4	37.80	5.18	0.00	66	10.0	8.0) Y
F5-2	85	1	1,089.6	751.4	37.80	5.18	0.00	66	10.0	8.0) Y
F6-2	86	1	1,076.3	762.0	37.80	5.18	0.00	66	10.0	8.0) Y
F7-2	87	1	1,086.6	771.7	37.80	5.18	0.00	66	10.0	8.0) Y
F8-2	88	1	1,105.8	771.6	37.80	5.18	0.00	66	10.0	8.0) Y
F9-2	89	1	1,115.5	758.4	37.80	5.18	0.00	66	10.0	8.0) Y
F10-2	90	1	1,115.5	741.3	37.80	5.18	0.00	66	10.0	8.0) Y

INPUT: RECEIVERS B71104N1

F11-2	91	1	1,113.5	721.8	37.80	5.18	0.00	66	10.0	8.0	Y
F12-2	94	1	1,113.3	703.3	37.80	5.18	0.00	66	10.0	8.0	Y

INPUT: BARRIERS B71104N1

IN OI. BARRIERO					1		_		B/ 110	7111								
Eilar Associates, Inc.					14 Nove	ember 2	017											
MLO					TNM 2.													
INPUT: BARRIERS																		
PROJECT/CONTRACT:	B7110	04N1																
RUN:	Facad	les																
Barrier									Points									
Name	Type	Height		If Wall	If Berm			Add'tnl	Name	No.	Coordinates	(bottom)		Height	Segment			
		Min	Max	\$ per	! -	Тор	Run:Rise	\$ per			X	Υ	Z	!	Seg Ht Pe			Importar
				Unit		Width		Unit						Point	Incre- #U	#Dn	Struct?	!
				Area	Vol.			Length							ment			tions?
		m	m	\$/sq m	\$/cu m	m	m:m	\$/m			m	m	m	m	m			
Building	W	0.00	30.48	0.00				0.00	H -	26		770.3				-)	
									point27	27		769.7				0 (ס	
									point28	28		730.8				0 (ס	
									point29	29		730.8				0 ()	
									point30	30		725.4				0 ()	
									point31	31	,	725.4				0 ()	
									point32	32		696.9 696.9				0 0	2	
									point34	34	,	731.1	37.80			0 (2	
			-				1		point35	35		731.1	37.80			0 ()	
			1				1		point36	36		751.1				0 (2	
									point37	37	,	752.8				0 ()	
			+						point38	38	,	770.3			0.00	,		

					1	_						
Eilar Associates, Inc.							14 Novem	her 2017				
MLO							TNM 2.5	DC1 2017				-
							Calculated	d with TNN	125			
RESULTS: SOUND LEVELS							Guiodiato		2.0			
PROJECT/CONTRACT:		B71104	IN1									
RUN:		Facade										
BARRIER DESIGN:			HEIGHTS					Avorago	navomont typ	e shall be use	d unloce	
BARRIER BESIGN.		1141 01	TILIOTTIO							y substantiate		
ATMOSPHERICS:		20 doc	C, 50% RH							approval of F		
		ZU GEÇ	, 50 /6 Ki		+	+		oi a uiiiei	ent type with	approvar or r	11VVA.	
Receiver												
Name	No.	#DUs	Existing	No Barrier				_	With Barrier	_		
			LAeq1h	LAeq1h		Increase over		Туре	Calculated	Noise Reduc		
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculated
							Sub'l Inc					minus
											L	Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
F1-1	69	1	0.0	66.3	66	66.3	10	Snd Lvl	66.3	0.0	8	
F2-1	70	1	0.0	51.9	66	51.9	10		51.9	0.0	8	
F3-1	71	1	0.0	46.1					46.1	0.0		
F4-1	72	1	0.0	42.2	66	42.2	10		42.2	0.0	8	
F5-1	73		0.0	41.1	66	41.1	10		41.1	0.0	8	
F6-1	74		0.0	45.5			10		45.5	0.0	8	1
F7-1	75		0.0	59.6	66	59.6	10		59.6	0.0	8	-8.0
F8-1	76	1	0.0	64.6			10		64.6	0.0	8	
F9-1	77	1	0.0	70.0	66		_		70.0	0.0	8	
F10-1	78		0.0	70.2	66	70.2	10	Snd Lvl	70.2	0.0	8	
F11-1	79	1	0.0	70.0	66	70.0	10	Snd Lvl	70.0	0.0	8	
F12-1	80	1	0.0	70.6	66	70.6	10	Snd Lvl	70.6	0.0	8	
F1-2	81	1	0.0	66.8	66	66.8	10	Snd Lvl	66.8	0.0	8	
F2-2	82		0.0	53.1	66	53.1	10		53.1	0.0	8	
F3-2	83	1	0.0	48.4	66				48.4	0.0	8	1
F4-2	84	. 1	0.0	46.2	66	46.2	2 10		46.2	0.0	8	
F5-2	85		0.0	43.1			10		43.1	0.0	8	
F6-2	86		0.0	50.4	66	50.4	10		50.4	0.0	8	
F7-2	87		0.0	61.2	66	61.2	2 10		61.2	0.0	8	
F8-2	88		0.0	65.3	66	65.3	3 10		65.3	0.0	8	
F9-2	89		0.0	70.1	66	70.1	10	Snd Lvl	70.1	0.0	8	
F10-2	90	1	0.0	70.3			3 10	Snd Lvl	70.3	0.0	8	1
F11-2	91	1	0.0	70.2	66	70.2	2 10	Snd Lvl	70.2	0.0	8	1
F12-2	94	1	0.0	70.7	66	70.7	10	Snd Lvl	70.7	7 0.0	8	-8.0

RESULTS: SOUND LEVELS

Dwelling Units	# DUs	Noise Red	duction				
		Min	Avg	Max			
		dB	dB	dB			
All Selected	24	0.0	0.0	0.0			Г
All Impacted	10	0.0	0.0	0.0	,		
All that meet NR Goal	C	0.0	0.0	0.0	1		

APPENDIX D

Manufacturer Data Sheets

Product Data

WeatherMaster®
Packaged Rooftop Units
3 to 12.5 Nominal Tons

48HC Sizes 04 to 14 Packaged Rooftop Units with Gas Heat and Optional EnergyX® Energy Recovery Ventilator

© Carrier Corporation 2018 Form 48HC-4-14-06PD

Capacity ratings (cont)

SOUND RATINGS TABLE

	COOLING	OUTDOOR SOUND (dB) AT 60 HZ									
48HC UNIT	STAGES	A- WEIGHTED	63	125	250	500	1000	2000	4000	8000	
A04	1	76	78.2	78.0	74.2	73.3	70.6	66.0	62.4	56.9	
A05	1	78	84.7	83.6	77.1	74.6	72.3	68.3	64.7	60.9	
A06	1	77	87.5	82.5	76.1	73.6	71.3	67.1	64.1	60.0	
A07	1	82	90.1	82.6	81.0	79.4	77.0	73.0	70.4	66.7	
D07	2	82	90.1	82.6	81.0	79.4	77.0	73.0	70.4	66.7	
D08	2	82	90.6	84.3	80.2	79.3	77.1	72.2	67.4	63.7	
D09	2	82	88.6	85.0	81.6	79.5	77.4	74.1	71.0	66.3	
D11	2	87	85.9	87.9	85.6	84.4	82.8	78.5	74.9	72.5	
D12	2	87	85.9	87.9	85.6	84.4	82.8	78.5	74.9	72.5	
D14	2	83	89.3	86.0	82.9	80.7	78.5	73.6	69.6	64.5	

LEGEND

dΒ Decibel

NOTES:

- Outdoor sound data is measured in accordance with AHRI.
 Measurements are expressed in terms of sound power. Do not compare these values to sound pressure values because sound pressure depends on specific environmental factors which normally do not match individual applications. Sound power values are independent of the environment and therefore more accurate. are independent of the environment and therefore more accurate.
- A-weighted sound ratings filter out very high and very low frequencies, to better approximate the response of "average" human ear.
 A-weighted measurements for Carrier units are taken in accordance with AHRI.

48HC High Efficiency Gas Heat/Electric Cooling Packaged Rooftop with EnergyX® System 15 to 25 Nominal Tons

Product Data

C11481

Use of the AHRI Certified TM Mark indicates a manufacturer's participation in the program For verification of certification for individual products, go to www.ahridirectory.org.

Table 4 – SOUND PERFORMANCE TABLE

			Outdoor Sound (dB)								
MODEL SIZE	COOLING STAGES	A-Wtg.	AHRI 370 Rating	63	125	250	500	1000	2000	4000	8000
17	2	84.1	84	92.2	83.9	80.4	81.8	78.7	76.5	72.2	65.4
20	2	84.1	84	92.2	83.9	80.4	81.8	78.7	76.5	72.2	65.4
24	2	86.5	87	95.6	87.5	84.2	84.2	81.7	77.9	73.2	66.3
28	2	85.9	86	97.1	88.3	84.4	83.3	80.7	77.4	73.4	67.3

LEGEND

dB - Decibel

NOTES:

- Outdoor sound data is measure in accordance with AHRI standard 270 – 2008.
- Measurements are expressed in terms of sound power.
 Do not compare these values to sound pressure values because sound pressure depends on specific environmental factors which normally do not match individual applications. Sound power values are independent of the environment and therefore more accurate.
- A-weighted sound ratings filter out very high and very low frequencies, to better approximate the response of "average" human ear. A-weighted measurements for Carrier units are taken in accordance with AHRI standard 270-2008.

Table 5 - MINIMUM - MAXIMUM AIRFLOW RATINGS - NATURAL GAS & Propane

MODEL	HEAT	COO	LING	AL HX F	IEATING	SS HX HEATING		
SIZE	SIZE	MINIMUM	MAXIMUM	MINIMUM	MAXIMUM	MINIMUM	MAXIMUM	
	LOW			3000	8250	3000	8250	
17	MED	4500	7500	3880	7750	3880	7750	
	HIGH			4620	8570	4620	8570	
	LOW			3000	11000	2960	11000	
20	MED	5250	9000	3880	9300	3880	9300	
	HIGH			4620	10000	4620	10000	
	LOW			3000	11000	3000	11000	
24	MED	6000	10000	3880	11630	3880	11630	
	HIGH			4620	10000	4620	10000	
	LOW			3000	16500	2960	16500	
28	MED	7500	12500	3880	15500	3880	15500	
	HIGH			4620	15000	4620	15000	

Compute-A-Fan v9.8 - Fan Selections - ACE

				_			04	-29-2018	3							
Mode		olume CFM)	SP (inwc)	Powe (HP)		lotor HP)	Fan RPM	OVEL (fpm)	TSPD (fpm)	Static Effic	Wt (lbs)	Relative Cost	Budget Price	Operate Cost/Yr	Payback (Years)	
2) 10 3) 13 4) 19	50 ACEB 65 ACEB 80 ACEB 95 ACEB 10 ACEB	2700 2700 2700 2700 2700	.6 .6 .6 .6	.69 .57 .52 .44	77 .75 22 .75 16 .5	5	1490 1180 957 810 719	1832 1515 1272 1084 935	5851 5097 4509 4135 3952	37% 44% 49% 57% 58%	77 78 101 101 209	1.00 1.00 1.14 1.08 1.20	\$990 \$990 \$1,120 \$1,060 \$1,190	\$136 \$113 \$102 \$100 \$99	Immed. 3.82 1.94 5.41	
ALT(ft) = 125 TE	MPERA	TURE(°	F) = 7	0											
1) 2) 3) 4) 5)	Nom IMPLR(in) 15.0 16.5 18.0 19.5 21.0	OB1 80 78 75 72 71	OB2 83 80 75 73 72	OB3 85 83 76 72 70	OB4 78 73 70 67 65	OB5 73 70 66 63 61	OB6 72 67 62 58 56	OB7 64 60 56 53 51	OB8 59 55 52 49 48	7 6		70 66	NES 18.1 14.8 10.7 8.7 7.9			
ວ)	∠1.0	7.1	12	70	co	6.1	90	51	48	О	1	OC	7.9			

Notes:

dBA AND SONES AT 5 ft FROM FAN

Relative Cost, Weight and Budget Price (US \$) includes Fan, motor and drives ,estimated speed controls if present and does not include accessories. (3/4 hp and Operating cost (US \$) based on 12 hours/day, 250 days/year and \$.07 per kw/h.

2425 South Yukon Ave - Tulsa, Oklahoma 74107-2728 - Ph. (918) 583-2266 Fax (918) 583-6094 AAONEcat32 Ver. 4.268 (SN: 7850304-)

4 2 2 2 44 14B 5A 5B 5C 6A 6B 6C 7 8 8 8 8 11 10 10 11 13 Et 15 17 17 19 20 22 23

Tag: RTU# 1

Job Information

Job Name: Eilar Job Number: Job #75466 Site Altitude: 0 ft Refrigerant R-410A

Static Pressure

External: 0.20 in. wg. 0.24 in. wg. Evaporator: Filters Clean: 0.12 in. wg. Dirt Allowance 0.35 in. wg.

Cooling Section

Total Capacity: 59.98 58.36 MBH 41.39 MBH Sensible Capacity: 43.01 Latent Capacity: 16.97 MBH 67.00 °F WB 80.00 °F DB Mixed Air Temp: Entering Air Temp: 80.00 °F DB 67.00 °F WB Lv Air Temp (Coil): 56.78 °F DB 55.47 °F WB 57.63 °F DB 55.80 °F WB Lv Air Temp (Unit) Supply Air Fan: 1 x RQ185-ECM @ 0.54 BHP

Gross

SA Fan RPM / Width: 1247 / 3.000"

Evaporator Coil: 5.3 ft2/3 Rows/14 FPI

333.3 fpm **Evaporator Face Velocity:**

Rating Information

58.0 Cooling Capacity (MBH): Cooling SEER: 13.6 Cooling EER: 11.7

Rated in accordance with AHRI 210/240

Application EER @ Op. Conditions: 11.2

Electrical Data

Octave Bands:

Rating:

Unit FLA: 25 Maximum Overcurrent: 40 **RPM** Qty HP VAC Phase **FLA RLA** Compressor 1: 208 3 15.6 1 Condenser Fans: 0.33 208 1080 1 1 2.6 Supply Fan: 1.00 208 1 1750 7 Cabinet Sound Power Levels*

250

500

72

60

Net

63 Discharge LW(dB): 77 78 79 Return LW(dB): 74 75 70 *Sound power levels are given for informational purposes only. The sound levels are not guaranteed.

208/3/60

125

Unit Information

RQ-005-8-J-CA01-000:0000-000-PJC-000-0000000-00-00-0000000B

Approx. Op./Ship Weights: 777 / 777 lbs. (±5%) Supply CFM/ESP: 1750 / 0.2 in. wg. Final Filter FV / Qty: 315.00 fpm / 2

Outside CFM: 525

95 °F DB / 75 °F WB Ambient Temperature: Return Temperature: 75 °F DB / 62 °F WB

Economizer: 0.00 in. wg. 0.00 in. wg. Heating: Cabinet: 0.11 in. wg. Total: 1.02 in. wg.

Heating Section

Minimum Circuit Amp:

1000

67

60

PreHeat Type: Std (No Preheat)

29

4000

60

51

8000

55

44

2000

65

57

Heating Type: No Heat

Packaged Heat Pumps

Precedent[™] 3-10Tons - 60 Hz

Performance Data

Table PD-23— Static Pressure Drops Through Accessories (Inches Water Column)

	Unit		Standard	2 inch	(Economiz DA/RA Dam				Electric Accessor		
Tons	Model No.	CFM	Filters ¹	Pleated Filters	100% OA Dow	100% RA	100%OA Horizo	100%RA ntal	5-6	9-15	17-36	54
3	WSC036A	960 1200	0.04 0.06	0.06 0.09	0.05 0.07	0.01 0.02	0.05 0.07	0.00 0.01	.013 .020	.016 .025	.019 .030	
		1440 1280	0.08	0.12	0.10	0.03	0.10	0.01	.029	.036	.043	
4	WSC048A	1600 1920	0.05 0.08	0.09 0.12	0.12 0.17	0.04 0.06	0.01 0.02	0.01 0.02	.036 .052	.045 .064	.053 .077	_
5	WSC060A	1600 2000 2400	0.05 0.09	0.09 0.13	0.12 0.18	0.04 0.07	0.01 0.02 0.04	0.01 0.02 0.04	.036 .056 .081	.045 .070 .100	.053 .083	_
6	WSC072A	2000 2400	0.12 0.04 0.06	0.18 0.07 0.09	0.26 0.10 0.11	0.10 0.01 0.02	0.04 0.02 0.02	0.04 0.06 0.08	0.02	0.011 0.020	0.021 0.034	_ <u>_</u>
		2800 2400	0.09	0.12 0.09	0.13 0.11	0.04	0.04	0.10	0.04	0.033	0.052 0.034	
7½	WSC090A	3000 3600	0.10 0.14	0.13 0.18	0.14 0.21	0.05 0.07	0.05 0.08	0.12 0.25	0.05 0.08	0.042 0.077	0.063 0.102	
10	WSC120A	3200 4000 4800	0.07 0.11 0.16	0.10 0.15 0.20	0.17 0.26 0.34	0.05 0.07 0.09	0.05 0.08 0.35	0.14 0.03 0.35	0.05 0.08 0.10	0.028 0.045 0.065	0.036 0.056 0.081	0.042 0.070 0.106

Table PD-24— Electric Heater Voltage Correction Factors (Applicable to Auxiliary Heat Capacity)

Nominal Voltage	Distribution Voltage	Capacity Multiplier
	208	0.751
240	230	0.918
	240	1.000
	440	0.840
480	460	0.918
	480	1.000
	540	0.810
600	575	0.918
	600	1.000

Table PD-25 — Sound Power Level - dB (ref. 10⁻¹² Watts)

Lo countrations	a Love. u	D (101. 10	Tratto,						
Unit				Octav	e Center Fr	equency			Overall
Model No.	63.	125	250	500	1000	2000	4000	8000	dBA
WSC036A	85	82	80	79	77	73	69	68	82
WSC048,060A	95	88	84	83	80	77	74	70	85
WSC072A	92	95	91	88	84	80	75	68	90
WSC090A	91	95	91	88	84	79	75	68	90
WSC120A	94	89	87	85	84	78	75	69	88
	Unit Model No. WSC036A WSC048,060A WSC072A WSC090A	Unit Model No. 63. WSC036A 85 WSC048,060A 95 WSC072A 92 WSC090A 91	Unit Model No. 63. 125 WSC036A 85 82 WSC048,060A 95 88 WSC072A 92 95 WSC090A 91 95	Unit Model No. 63. 125 250 WSC036A 85 82 80 WSC048,060A 95 88 84 WSC072A 92 95 91 WSC090A 91 95 91	Unit Octav Model No. 63. 125 250 500 WSC036A 85 82 80 79 WSC048,060A 95 88 84 83 WSC072A 92 95 91 88 WSC090A 91 95 91 88	Unit Octave Center Fr Model No. 63. 125 250 500 1000 WSC036A 85 82 80 79 77 WSC048,060A 95 88 84 83 80 WSC072A 92 95 91 88 84 WSC090A 91 95 91 88 84	Unit Octave Center Frequency Model No. 63. 125 250 500 1000 2000 WSC036A 85 82 80 79 77 73 WSC048,060A 95 88 84 83 80 77 WSC072A 92 95 91 88 84 80 WSC090A 91 95 91 88 84 79	Unit Octave Center Frequency Model No. 63. 125 250 500 1000 2000 4000 WSC036A 85 82 80 79 77 73 69 WSC048,060A 95 88 84 83 80 77 74 WSC072A 92 95 91 88 84 80 75 WSC090A 91 95 91 88 84 79 75	Unit Octave Center Frequency Model No. 63. 125 250 500 1000 2000 4000 8000 WSC036A 85 82 80 79 77 73 69 68 WSC048,060A 95 88 84 83 80 77 74 70 WSC072A 92 95 91 88 84 80 75 68 WSC090A 91 95 91 88 84 79 75 68

Tests follow ARI270-95.

PKGP-PRC003-EN 26

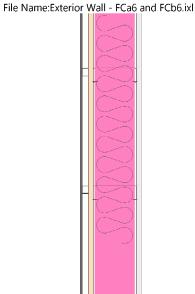
NOTES:
1. Tested with standard filters (3-5 tons 1", 6-10 tons 2"). Difference in pressure drop should be considered with utilizing optional 2" pleated filters.
2. OA = Outside Air and RA = Return Air.

APPENDIX E

Sound Insulation Prediction Results

Sound Insulation Prediction (v9.0.5)

Program copyright Marshall Day Acoustics 2017


- Key No. 1866

Job Name: Access Youth Academ

Job No.: B71104 In

Date.:11/7/2017

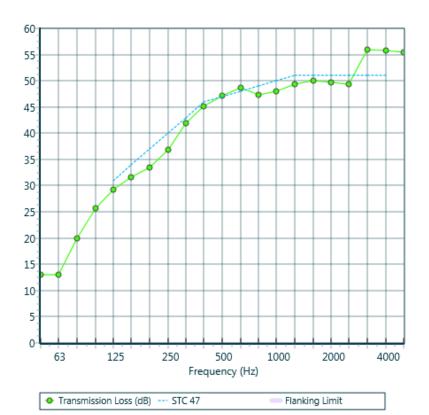
Initials:mouwenga

Frame: Steel Stud (16-20g); Cavity Width 0.9 in

Panel 2 + 1 x 0.63 in Plywood

Frame: Steel Stud (16-20g); Cavity Width 6.0 in ,Stud spacing 16 in , 1 x fiberglass (0.6 lb/ft3) Thickness 5.5 in (ρ :10 lbs/ft3, Rf:3500 Rayl/m) Panel 3 + 1 x 0.63 in Type X Gypsum Board

freq.(Hz)	TL(dB)	TL(dB)
50	13	
63	13	14
80	20	
100	26	
125	29	28
160	32	
200	33	
250	37	36
315	42	
400	45	
500	47	47
630	49	
800	47	
1000	48	48
1250	49	
1600	50	
2000	50	50
2500	49	
3150	56	
4000	56	56
5000	56	


Notes:Exterior Wall Types FCa6 and FCb6

STC 47 OITC 36

Mass-air-mass resonant frequency = =58 Hz , 224 Hz

Panel Size = 2.7 ft x 4.0 ft

Partition surface mass = 6.43 lb/ft2

Sound Insulation Prediction (v9.0.5)

Program copyright Marshall Day Acoustics 2017

- Key No. 1866

Job Name: Access Youth Academ

Job No.: B71104 Date.:11/7/2017

File Name:Exterior Wall - CP6.ixl

Initials:mouwenga

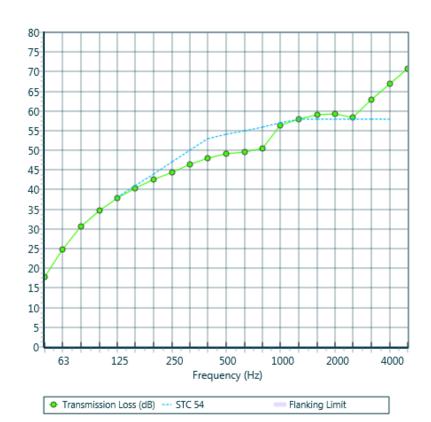
Notes:Exterior Wall Type CP6

System description

Panel 1 : 1 x 0.87 in -Coat Plaster (sand:gypsum =3:1)

STC 54 OITC 45

Mass-air-mass resonant frequency = =44 Hz


Panel Size = 2.7 ft x 4.0 ft

Partition surface mass = 14.3 lb/ft2

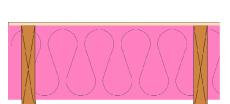
+ 1 x 0.63 in Plywood

Frame: Steel Stud (16-20g); Cavity Width 6.0 in ,Stud spacing 16 in ,1 x fiberglass (0.6 lb/ft3) Thickness 5.5 in (ρ :10 lbs/ft3, Rf:3500 Rayl/m) Panel 2 + 1 x 0.63 in Type X Gypsum Board

freq.(Hz)	TL(dB)	TL(dB)
50	18	
63	25	22
80	31	
100	35	
125	38	37
160	40	
200	42	
250	44	44
315	46	
400	48	
500	49	49
630	50	
800	51	
1000	56	54
1250	58	
1600	59	
2000	59	59
2500	58	
3150	63	
4000	67	66
5000	71	

Sound Insulation Prediction (v9.0.5)

Program copyright Marshall Day Acoustics 2017


- Key No. 1866

Job Name: Access Youth Academ

Job No.: B71104

Initials:mouwenga

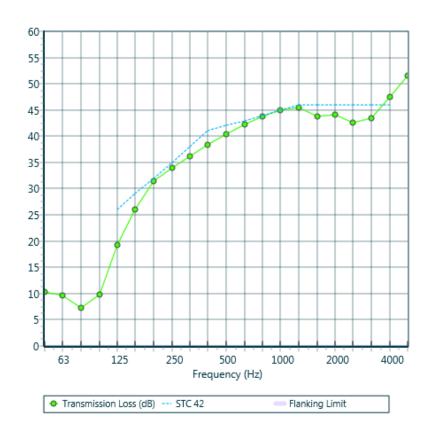
Notes:Roof Type S - Worst Case

STC 42 OITC 23

Mass-air-mass resonant frequency = =46 Hz

Panel Size = 2.7 ft x 4.0 ft

Partition surface mass = 4.24 lb/ft2


System description

Panel 1 : 1 x 0.50 in Plywood

Frame: Solid Joist; Cavity Width 11.9 in ,Stud spacing 24 in , 1 x fiberglass (0.6 lb/ft3) Thickness 10.0 in (p:10 lbs/ft3, Rf:3500 Rayl/m)

Panel 2 + 1 x 0.63 in Type X Gypsum Board

freq.(Hz)	TL(dB)	TL(dB)
50	10	
63	10	9
80	7	
100	10	
125	19	14
160	26	
200	31	
250	34	33
315	36	
400	38	
500	40	40
630	42	
800	44	
1000	45	45
1250	45	
1600	44	
2000	44	43
2500	43	
3150	44	
4000	48	46
5000	51	

Sound Insulation Prediction (v9.0.5) Program copyright Marshall Day Acoustics 2017

- Key No. 1866

Job Name: Access Youth Academ

Job No.: B1104N

Initials:mouwenga

Date::11/7/2017

File Name:1-Inch Insulated Glazing.ixl

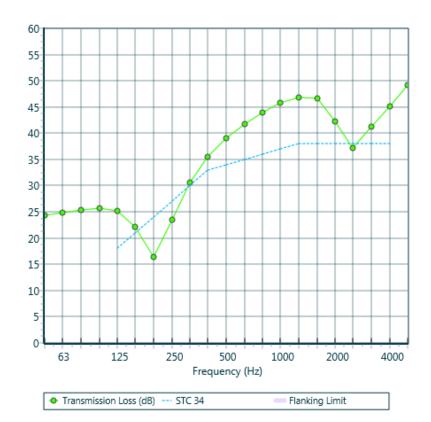
Notes:1-inch Insulated Glazing

STC 34 OITC 28

Mass-air-mass resonant frequency = =189 Hz

Panel Size = 2.0 ft x 1.5 ft

Partition surface mass = 6.44 lb/ft2


System description

Pane 1 + 1 x 0.25 in Glass

air: 0.5 in

Pane 2 + 1 x 0.25 in Glass

freq.(Hz)	TL(dB)	TL(dB)
50	24	
63	25	25
80	25	
100	26	
125	25	24
160	22	
200	16	
250	24	20
315	31	
400	35	
500	39	38
630	42	
800	44	
1000	46	45
1250	47	
1600	47	
2000	42	40
2500	37	
3150	41	
4000	45	44
5000	49	

APPENDIX F

Exterior-to-Interior Noise Analysis

Project Name: Access Youth Academy

Project #: B71104N1

Room Name: 101 Lobby / 102 Reception / 103 Parents Lounge

Wall 1 of 3

Room Type :	Room Type : Medium Hard											
	125 Hz	250 Hz	<u>500 Hz</u>	1KHz	2KHz	4KHz						
Reverberation Time (sec):	1.2	1.2	1.2	1.2	1.0	1.0	: Moderately Reflective Room					
Room Absorption (Sabins):	1019	1019	1019	1019	1274	1274						

		Noise	Level	<u>125 Hz</u>	250 Hz	500 Hz	1KHz	2KHz	4KHz	
Source 1:	Traffic	50.7	CNEL	34.0	39.5	42.0	46.0	46.0	40.0	: Traffic Spectrum
Source 2:	Aircraft	60.0	CNEL	44.7	53.2	55.7	53.7	50.7	44.7	: Aircraft Spectrum
Source 3:	<n a=""></n>	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Source 4:	<n a=""></n>	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Overall:		60.5	CNEL	45.1	53.4	55.9	54.4	52.0	46.0	: Effective Noise Spectrum

Assembly Type	<u>Open</u>	Width	<u>Height</u>	Qty	Total Area	125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz
Exterior Walls CP6 and CP8 - B71104N1	N	49	20	1	243.8	37	44	49	54	59	66
1-Inch Insulated Glass	N	20	2	1	40.0	24	20	38	45	40	44
1-Inch Insulated Glass	N	20	18	1	360.0	24	20	38	45	40	44
1-Inch Insulated Glass	N	17.5	8.7	1	152.3	24	20	38	45	40	44
1-Inch Insulated Glass	N	11	10	1	110.0	24	20	38	45	40	44
1-Inch Insulated Glass	N	6	10	1	60.0	24	20	38	45	40	44
1-Inch Insulated Glass	Υ	2	3.5	2	14.0	24	20	38	45	40	44
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0

 Room Depth:
 26
 ft
 Overall Area:
 980
 ft²

 Volume:
 25480
 ft³

Number of Impacted Walls: 3

Windows Open
Interior Noise Level: 42.7 CNEL
Windows Closed
Interior Noise Level: 40.5 CNEL

125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
45.1	53.4	55.9	54.4	52.0	46.0	: Exterior Wall Noise Exposure
19.9	18.4	21.4	21.4	21.4	21.4	: Transmission Loss
29.9	29.9	29.9	29.9	29.9	29.9	: Wall Surface Area Factor
30.1	30.1	30.1	30.1	31.1	31.1	: Absorption
25.0	34.9	34.4	32.8	29.4	23.4	: Noise Level
39.6	CNEL	WINDOWS	SOPEN			
125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
45.1	53.4	55.9	54.4	52.0	46.0	: Exterior Wall Noise Exposure
25.2	21.2	39.1	46.1	41.2	45.2	: Transmission Loss
29.9	29.9	29.9	29.9	29.9	29.9	: Wall Surface Area Factor
30.1	30.1	30.1	30.1	31.1	31.1	: Absorption
40.7	00.0	40.0	0.0	0.0	0.4	Metalogical
19.7	32.0	16.6	8.2	9.6	-0.4	: Noise Level
32.4	CNEL	WINDOWS	CLOSED			

Project Name: Access Youth Academy

Project #: B71104N1

Room Name: 101 Lobby / 102 Reception / 103 Parents Lounge

Wall 2 of 3

		Noise	Level	125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
Source 1:	Traffic	72.3	CNEL	55.6	61.1	63.6	67.6	67.6	61.6	: Traffic Spectrum
Source 2:	Aircraft	60.0	CNEL	44.7	53.2	55.7	53.7	50.7	44.7	: Aircraft Spectrum
Source 3:	<n a=""></n>	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Source 4:	<n a=""></n>	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Overall:		72.5	CNEL	55.9	61.8	64.3	67.8	67.7	61.7	: Effective Noise Spectrum

Assembly Type	<u>Open</u>	Width	Height	Qty	Total Area	125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
Exterior Walls CP6 and CP8 - B71104N1	N	17.5	20	1	0.0	37	44	49	54	59	66	
1-Inch Insulated Glass	N	6	10	1	60.0	24	20	38	45	40	44	
1-Inch Insulated Glass	N	11.5	10	1	115.0	24	20	38	45	40	44	
1-Inch Insulated Glass	N	17.5	10	1	175.0	24	20	38	45	40	44	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	

Overall Area: 350 ft

125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
55.9	61.8	64.3	67.8	67.7	61.7	: Exterior Wall Noise Exposure
24.0	20.0	38.0	45.0	40.0	44.0	: Transmission Loss
25.4	25.4	25.4	25.4	25.4	25.4	: Wall Surface Area Factor
30.1	30.1	30.1	30.1	31.1	31.1	: Absorption
27.3	37.1	21.6	18.1	22.1	12.1	: Noise Level
37.8	CNEL	WINDOWS	OPEN			
125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
55.9	61.8	64.3	67.8	67.7	61.7	: Exterior Wall Noise Exposure
24.0	20.0	38.0	45.0	40.0	44.0	: Transmission Loss
25.4	25.4	25.4	25.4	25.4	25.4	: Wall Surface Area Factor
30.1	30.1	30.1	30.1	31.1	31.1	: Absorption
27.3	37.1	21.6	18.1	22.1	12.1	: Noise Level

Project Name: Access Youth Academy
Project #: B71104N1
Room Name: 101 Lobby / 102 Reception / 103 Parents Lounge

Wall 3 of 3

		Noise	Level	<u>125 Hz</u>	250 Hz	500 Hz	1KHz	2KHz	4KHz	
Source 1:	Traffic	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	: Traffic Spectrum
Source 2:	Aircraft	60.0	CNEL	44.7	53.2	55.7	53.7	50.7	44.7	: Aircraft Spectrum
Source 3:	<n a=""></n>	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Source 4:	<n a=""></n>	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Overall:		60.0	CNEL	44.7	53.2	55.7	53.7	50.7	44.7	: Effective Noise Spectrum

Assembly Type	Open	Width	Height	Qty	Total Area	125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz
Roof - S	N	130	20	1	2600.0	14	33	40	45	43	46
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0

125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
44.7	53.2	55.7	53.7	50.7	44.7	: Exterior Wall Noise Exposure
14.0	33.0	40.0	45.0	43.0	46.0	: Transmission Loss
34.1	34.1	34.1	34.1	34.1	34.1	: Wall Surface Area Factor
30.1	30.1	30.1	30.1	31.1	31.1	: Absorption
34.8	24.3	19.8	12.8	10.8	1.8	: Noise Level
35.3	CNEL	WINDOWS	OPEN			
125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
44.7	53.2	55.7	53.7	50.7	44.7	: Exterior Wall Noise Exposure
14.0	33.0	40.0	45.0	43.0	46.0	: Transmission Loss
34.1	34.1	34.1	34.1	34.1	34.1	: Wall Surface Area Factor
30.1	30.1	30.1	30.1	31.1	31.1	: Absorption
34.8	24.3	19.8	12.8	10.8	1.8	: Noise Level
35.3						

Project Name: Access Youth Academy

Project #: B71104N1

Room Name: 105 Classroom 1

Wall 1 of 2

Ì	Room Type : Medium Hard											
		<u>125 Hz</u>	250 Hz	<u>500 Hz</u>	1KHz	2KHz	4KHz					
	Reverberation Time (sec):	1.2	1.2	1.2	1.2	1.0	1.0	: Moderately Reflective Room				
ı	Room Absorption (Sabins):	235	235	235	235	294	294					

		Noise	Level	125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
Source 1:	Traffic	72.0	CNEL	55.3	60.8	63.3	67.3	67.3	61.3	: Traffic Spectrum
Source 2:	Aircraft	60.0	CNEL	44.7	53.2	55.7	53.7	50.7	44.7	: Aircraft Spectrum
Source 3:	<n a=""></n>	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Source 4:	<n a=""></n>	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Overall:		72.3	CNEL	55.7	61.5	64.0	67.5	67.4	61.4	: Effective Noise Spectrum

Assembly Type	<u>Open</u>	Width	Height	Qty	Total Area	125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz
Exterior Walls FCa6 and FCb6 - B71104N1	N	25	10	1	162.4	28	36	47	48	50	56
1-Inch Insulated Glass	Υ	4	7.3	3	87.6	24	20	38	45	40	44
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0

Room Depth: 23.5 ft

Overall Area: 250 ft² Volume: 5875 ft³

Number of Impacted Walls: 2

Windows Open Interior Noise Level:	64.6	CNEL
Windows Closed Interior Noise Level:	38.5	CNEL

125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
55.7	61.5	64.0	67.5	67.4	61.4	: Exterior Wall Noise Exposure
7.5	7.5	7.6	7.6	7.6	7.6	: Transmission Loss
24.0	24.0	24.0	24.0	24.0	24.0	: Wall Surface Area Factor
23.7	23.7	23.7	23.7	24.7	24.7	: Absorption
48.4	54.3	56.7	60.2	59.1	53.1	: Noise Level
64.6	CNEL	WINDOWS	S OPEN			
125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
55.7	61.5	64.0	67.5	67.4	61.4	: Exterior Wall Noise Exposure
26.2	24.4	41.6	46.7	43.8	48.1	: Transmission Loss
24.0	24.0	24.0	24.0	24.0	24.0	: Wall Surface Area Factor
23.7	23.7	23.7	23.7	24.7	24.7	: Absorption
29.8	37.4	22.6	21.1	22.9	12.6	: Noise Level
38.4	CNEL	WINDOWS	CLOSED)		

Project Name: Access Youth Academy Project #: B71104N1

Room Name: 105 Classroom 1

Wall 2 of 2

		Noise	Level	125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
Source 1:	Traffic	72.0	CNEL	55.3	60.8	63.3	67.3	67.3	61.3	: Traffic Spectrum
Source 2:	Aircraft	60.0	CNEL	44.7	53.2	55.7	53.7	50.7	44.7	: Aircraft Spectrum
Source 3:	<n a=""></n>	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Source 4:	<n a=""></n>	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Overall:		72.3	CNEL	55.7	61.5	64.0	67.5	67.4	61.4	: Effective Noise Spectrum

Assembly Type	<u>Open</u>	Width	Height	Qty	Total Area	125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz
Exterior Walls CP6 and CP8 - B71104N1	N	6.5	10	1	65.0	37	44	49	54	59	66
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0

<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	1KHz	2KHz	<u>4KHz</u>	
55.7	61.5	64.0	67.5	67.4	61.4	: Exterior Wall Noise Exposure
37.0	44.0	49.0	54.0	59.0	66.0	: Transmission Loss
18.1	18.1	18.1	18.1	18.1	18.1	: Wall Surface Area Factor
23.7	23.7	23.7	23.7	24.7	24.7	: Absorption
13.1	11.9	9.4	7.9	1.9	-11.1	: Noise Level
17.2	CNEL	WINDOWS	OPEN			
125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
55.7	61.5	64.0	67.5	67.4	61.4	: Exterior Wall Noise Exposure
37.0	44.0	49.0	54.0	59.0	66.0	: Transmission Loss
18.1	18.1	18.1	18.1	18.1	18.1	: Wall Surface Area Factor
23.7	23.7	23.7	23.7	24.7	24.7	: Absorption
13.1	11.9	9.4	7.9	1.9	-11.1	: Noise Level

Project Name: Access Youth Academy

Project #: B71104N1

Room Name: 106 Classroom 2

Wall 1 of 1

Room Type: Medium Hard											
	125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz					
Reverberation Time (sec):	1.2	1.2	1.2	1.2	1.0	1.0	: Moderately Reflective Room				
Room Absorption (Sabins):	235	235	235	235	294	294					

		Noise	Level	<u>125 Hz</u>	250 Hz	500 Hz	1KHz	2KHz	4KHz	
Source 1:	Traffic	72.6	CNEL	55.9	61.4	63.9	67.9	67.9	61.9	: Traffic Spectrum
Source 2:	Aircraft	60.0	CNEL	44.7	53.2	55.7	53.7	50.7	44.7	: Aircraft Spectrum
Source 3:	<n a=""></n>	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Source 4:	<n a=""></n>	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Overall:		72.8	CNEL	56.2	62.0	64.5	68.1	68.0	62.0	: Effective Noise Spectrum

Assembly Type	<u>Open</u>	Width	Height	Qty	Total Area	125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz
Exterior Walls FCa6 and FCb6 - B71104N1	N	25	10	1	162.4	28	36	47	48	50	56
1-Inch Insulated Glass	Υ	4	7.3	3	87.6	24	20	38	45	40	44
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0

Number of Impacted Walls:

Room Depth:

23.5

Overall Area: 250 Volume: 5875 ft²

ft³

Windows Open Interior Noise Level: 65.2 CNEL Windows Closed Interior Noise Level: CNEL 39.0

125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
56.2	62.0	64.5	68.1	68.0	62.0	: Exterior Wall Noise Exposure
7.5	7.5	7.6	7.6	7.6	7.6	: Transmission Loss
24.0	24.0	24.0	24.0	24.0	24.0	: Wall Surface Area Factor
23.7	23.7	23.7	23.7	24.7	24.7	: Absorption
49.0	54.8	57.2	60.8	59.7	53.7	: Noise Level
65.2	CNEL	WINDOWS	S OPEN			
<u>125 Hz</u>	250 Hz	<u>500 Hz</u>	1KHz	2KHz	<u>4KHz</u>	
56.2	62.0	64.5	68.1	68.0	62.0	: Exterior Wall Noise Exposure
26.2	24.4	41.6	46.7	43.8	48.1	: Transmission Loss
24.0	24.0	24.0	24.0	24.0	24.0	: Wall Surface Area Factor
23.7	23.7	23.7	23.7	24.7	24.7	: Absorption
30.3	37.9	23.1	21.6	23.5	13.2	: Noise Level
39.0	CNEL	WINDOWS				

Project Name: Access Youth Academy

Project #: B71104N1

Room Name: 108 College Prep Room

Wall 1 of 2

Room Type : Medium Hard										
	<u>125 Hz</u>	250 Hz	<u>500 Hz</u>	1KHz	2KHz	4KHz				
Reverberation Time (sec):	1.2	1.2	1.2	1.2	1.0	1.0	: Moderately Reflective Room			
Room Absorption (Sabins):	408	408	408	408	510	510				

		Noise	Level	<u>125 Hz</u>	250 Hz	500 Hz	1KHz	2KHz	4KHz	
Source 1:	Traffic	72.6	CNEL	55.9	61.4	63.9	67.9	67.9	61.9	: Traffic Spectrum
Source 2:	Aircraft	60.0	CNEL	44.7	53.2	55.7	53.7	50.7	44.7	: Aircraft Spectrum
Source 3:	<n a=""></n>	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Source 4:	<n a=""></n>	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Overall:		72.8	CNEL	56.2	62.0	64.5	68.1	68.0	62.0	: Effective Noise Spectrum

Assembly Type	Open	Width	Height	Qty	Total Area	125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz
Exterior Walls FCa6 and FCb6 - B71104N1	N	40	10	1	283.2	28	36	47	48	50	56
1-Inch Insulated Glass	Υ	4	7.3	4	116.8	24	20	38	45	40	44
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0

Number of Impacted Walls: 2

Windows Open
Interior Noise Level: 64.9 CNEL
Windows Closed
Interior Noise Level: 39.0 CNEL

125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
56.2	62.0	64.5	68.1	68.0	62.0	: Exterior Wall Noise Exposure
8.3	8.3	8.4	8.4	8.4	8.4	: Transmission Loss
26.0	26.0	26.0	26.0	26.0	26.0	: Wall Surface Area Factor
26.1	26.1	26.1	26.1	27.1	27.1	: Absorption
47.8	53.6	56.1	59.6	58.6	52.6	: Noise Level
64.0	CNEL	WINDOWS	OPEN			
125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
56.2	62.0	64.5	68.1	68.0	62.0	: Exterior Wall Noise Exposure
26.4	25.1	42.2	46.9	44.4	48.7	: Transmission Loss
26.0	26.0	26.0	26.0	26.0	26.0	: Wall Surface Area Factor
26.1	26.1	26.1	26.1	27.1	27.1	: Absorption
29.7	36.8	22.2	21.1	22.5	12.2	: Noise Level
38.0	CNEL	WINDOWS	CLOSED			

Project Name: Access Youth Academy Project #: B71104N1

Room Name: 108 College Prep Room

Wall 2 of 2

		Noise	Level	125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
Source 1:	Traffic	68.3	CNEL	51.6	57.1	59.6	63.6	63.6	57.6	: Traffic Spectrum
Source 2:	Aircraft	60.0	CNEL	44.7	53.2	55.7	53.7	50.7	44.7	: Aircraft Spectrum
Source 3:	<n a=""></n>	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Source 4:	<n a=""></n>	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Overall:		68.9	CNEL	52.4	58.6	61.1	64.0	63.8	57.8	: Effective Noise Spectrum

 Assembly Type	<u>Open</u>	Width	Height	Qty	Total Area	125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
Exterior Walls FCa6 and FCb6 - B71104N1	N	28.4	10	1	218.3	28	36	47	48	50	56	
1-Inch Insulated Glass	Υ	4.5	7.3	2	65.7	24	20	38	45	40	44	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	

<u>125 Hz</u>	250 Hz	<u>500 Hz</u>	1KHz	2KHz	<u>4KHz</u>	
52.4	58.6	61.1	64.0	63.8	57.8	: Exterior Wall Noise Exposure
9.3	9.3	9.4	9.4	9.4	9.4	: Transmission Loss
24.5	24.5	24.5	24.5	24.5	24.5	: Wall Surface Area Factor
26.1	26.1	26.1	26.1	27.1	27.1	: Absorption
41.5	47.7	50.2	53.1	51.9	45.9	: Noise Level
57.6	CNEL	WINDOWS	OPEN			
125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
52.4	58.6	61.1	64.0	63.8	57.8	: Exterior Wall Noise Exposure
26.7	26.0	42.8	47.1	45.1	49.5	: Transmission Loss
24.5	24.5	24.5	24.5	24.5	24.5	: Wall Surface Area Factor
26.1	26.1	26.1	26.1	27.1	27.1	: Absorption
24.1	31.0	16.7	15.4	16.2	5.8	: Noise Level
32.2	CNEL	WINDOWS				

Project Name: Access Youth Academy

Project #: B71104N1

Room Name: 108 College Prep Room / 109 Classroom 3

Wall 1 of 3

Room Type : Medium Hard										
	125 Hz	250 Hz	<u>500 Hz</u>	1KHz	2KHz	4KHz				
Reverberation Time (sec):	1.2	1.2	1.2	1.2	1.0	1.0	: Moderately Reflective Room			
Room Absorption (Sabins) :	807	807	807	807	1008	1008				

		Noise	Level	<u>125 Hz</u>	250 Hz	500 Hz	1KHz	2KHz	4KHz	
Source 1:	Traffic	68.3	CNEL	51.6	57.1	59.6	63.6	63.6	57.6	: Traffic Spectrum
Source 2:	Aircraft	60.0	CNEL	44.7	53.2	55.7	53.7	50.7	44.7	: Aircraft Spectrum
Source 3:	<n a=""></n>	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Source 4:	<n a=""></n>	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Overall:		68.9	CNEL	52.4	58.6	61.1	64.0	63.8	57.8	: Effective Noise Spectrum

Assembly Type	<u>Open</u>	Width	Height	Qty	Total Area	125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz
Exterior Walls FCa6 and FCb6 - B71104N1	N	54.5	10	1	413.6	28	36	47	48	50	56
1-Inch Insulated Glass	Υ	4.5	7.3	4	131.4	24	20	38	45	40	44
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0

Number of Impacted Walls: 3

37

Room Depth:

Volume:

Windows Open Interior Noise Level:	63.2	CNEL
Windows Closed Interior Noise Level:	37.6	CNEL

Overall Area:

545

20165

ft³

125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
52.4	58.6	61.1	64.0	63.8	57.8	: Exterior Wall Noise Exposure
9.1	9.1	9.2	9.2	9.2	9.2	: Transmission Loss
27.4	27.4	27.4	27.4	27.4	27.4	: Wall Surface Area Factor
29.1	29.1	29.1	29.1	30.0	30.0	: Absorption
41.6	47.8	50.2	53.1	52.0	46.0	: Noise Level
57.6	CNEL	WINDOWS	OPEN			
125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
52.4	58.6	61.1	64.0	63.8	57.8	: Exterior Wall Noise Exposure
26.7	25.8	42.7	47.1	45.0	49.4	: Transmission Loss
27.4	27.4	27.4	27.4	27.4	27.4	: Wall Surface Area Factor
29.1	29.1	29.1	29.1	30.0	30.0	: Absorption
24.1	31.0	16.7	15.3	16.2	5.8	: Noise Level
32.2	CNEL	WINDOWS	010055			

Project Name: Access Youth Academy Project #: B71104N1

Room Name: 108 College Prep Room

Wall 2 of 3

		Noise	Level	125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
Source 1:	Traffic	72.6	CNEL	55.9	61.4	63.9	67.9	67.9	61.9	: Traffic Spectrum
Source 2:	Aircraft	60.0	CNEL	44.7	53.2	55.7	53.7	50.7	44.7	: Aircraft Spectrum
Source 3:	<n a=""></n>	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Source 4:	<n a=""></n>	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Overall:		72.8	CNEL	56.2	62.0	64.5	68.1	68.0	62.0	: Effective Noise Spectrum

Assembly Type	<u>Open</u>	Width	Height	Qty	Total Area	125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
Exterior Walls FCa6 and FCb6 - B71104N1	N	41	10	1	278.6	28	36	47	48	50	56	
1-Inch Insulated Glass	Υ	4.5	7.3	4	131.4	24	20	38	45	40	44	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	

125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
56.2	62.0	64.5	68.1	68.0	62.0	: Exterior Wall Noise Exposure
7.9	7.9	8.0	8.0	8.0	8.0	: Transmission Loss
26.1	26.1	26.1	26.1	26.1	26.1	: Wall Surface Area Factor
29.1	29.1	29.1	29.1	30.0	30.0	: Absorption
45.4	51.2	53.6	57.2	56.1	50.1	: Noise Level
61.6	CNEL	WINDOWS	OPEN			
125 Hz	<u>250 Hz</u>	500 Hz	1KHz	2KHz	4KHz	
125 Hz 56.2	250 Hz 62.0	500 Hz 64.5	1KHz 68.1	2KHz 68.0	4KHz 62.0	: Exterior Wall Noise Exposure
						: Exterior Wall Noise Exposure : Transmission Loss
56.2	62.0	64.5	68.1	68.0	62.0	•
56.2 26.3	62.0 24.7	64.5 41.9	68.1 46.8	68.0 44.1	62.0 48.4	: Transmission Loss
56.2 26.3 26.1	62.0 24.7 26.1	64.5 41.9 26.1	68.1 46.8 26.1	68.0 44.1 26.1	62.0 48.4 26.1	: Transmission Loss : Wall Surface Area Factor

Project Name: Access Youth Academy Project #: B71104N1 Room Name: 108 College Prep Room / 109 Classroom 3

Wall 3 of 3

		Noise	Noise Level 1		250 Hz	500 Hz	1KHz	2KHz	4KHz	
Source 1:	Traffic	54.0	CNEL	37.3	42.8	45.3	49.3	49.3	43.3	: Traffic Spectrum
Source 2:	Aircraft	60.0	CNEL	44.7	53.2	55.7	53.7	50.7	44.7	: Aircraft Spectrum
Source 3:	<n a=""></n>	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Source 4:	<n a=""></n>	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Overall:		61.0	CNEL	45.5	53.6	56.1	55.1	53.1	47.1	: Effective Noise Spectrum

Assembly Type	<u>Open</u>	Width	Height	Qty	Total Area	125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz
Exterior Walls FCa6 and FCb6 - B71104N1	N	130	10	1	1183.2	28	36	47	48	50	56
1-Inch Insulated Glass	Υ	4	7.3	4	116.8	24	20	38	45	40	44
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0

Overall Area: 1300 ft²

125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
45.5	53.6	56.1	55.1	53.1	47.1	: Exterior Wall Noise Exposure
13.3	13.4	13.5	13.5	13.5	13.5	: Transmission Loss
31.1	31.1	31.1	31.1	31.1	31.1	: Wall Surface Area Factor
29.1	29.1	29.1	29.1	30.0	30.0	: Absorption
34.2	42.3	44.7	43.7	40.7	34.7	: Noise Level
49.4	CNEL	WINDOWS	OPEN			
125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
45.5	53.6	56.1	55.1	53.1	47.1	: Exterior Wall Noise Exposure
27.4	29.5	44.9	47.6	47.4	52.3	: Transmission Loss
31.1	31.1	31.1	31.1	31.1	31.1	: Wall Surface Area Factor
29.1	29.1	29.1	29.1	30.0	30.0	: Absorption
20.1	26.2	13.3	9.5	6.8	-4.1	: Noise Level
27.4	CNEL	WINDOWS	CLOSED			

Project Name: Access Youth Academy

Project #: B71104N1

Room Name: 109 Classroom 3

Wall 1 of 2

Room Type : Medium Hard										
	125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz				
Reverberation Time (sec):	1.2	1.2	1.2	1.2	1.0	1.0	: Moderately Reflective Room			
Room Absorption (Sabins) :	385	385	385	385	481	481				

		Noise	Noise Level 1		250 Hz	500 Hz	1KHz	2KHz	4KHz	
Source 1:	Traffic	68.3	CNEL	51.6	57.1	59.6	63.6	63.6	57.6	: Traffic Spectrum
Source 2:	Aircraft	60.0	CNEL	44.7	53.2	55.7	53.7	50.7	44.7	: Aircraft Spectrum
Source 3:	<n a=""></n>	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Source 4:	<n a=""></n>	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Overall:		68.9	CNEL	52.4	58.6	61.1	64.0	63.8	57.8	: Effective Noise Spectrum

Assembly Type	<u>Open</u>	<u>Width</u>	Height	Qty	Total Area	125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz
Exterior Walls FCa6 and FCb6 - B71104N1	N	26	10	1	194.3	28	36	47	48	50	56
1-Inch Insulated Glass	Υ	4.5	7.3	2	65.7	24	20	38	45	40	44
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0

Number of Impacted Walls: 2

Windows Open
Interior Noise Level: 58.5 CNEL
Windows Closed
Interior Noise Level: 33.4 CNEL

125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
52.4	58.6	61.1	64.0	63.8	57.8	: Exterior Wall Noise Exposure
8.9	8.9	9.0	9.0	9.0	9.0	: Transmission Loss
24.1	24.1	24.1	24.1	24.1	24.1	: Wall Surface Area Factor
25.9	25.9	25.9	25.9	26.8	26.8	: Absorption
44.0	40.0	50.4	50.0	50.0	40.0	Metalogic
41.8	48.0	50.4	53.3	52.2	46.2	: Noise Level
57.9	CNEL	WINDOWS	OPEN			
125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
52.4	58.6	61.1	64.0	63.8	57.8	: Exterior Wall Noise Exposure
26.6	25.7	42.6	47.0	44.8	49.2	: Transmission Loss
24.1	24.1	24.1	24.1	24.1	24.1	: Wall Surface Area Factor
25.9	25.9	25.9	25.9	26.8	26.8	: Absorption
24.1	31.2	16.8	15.3	16.3	5.9	: Noise Level
32.3	CNEL	WINDOWS	S CLOSED)		

Project Name: Access Youth Academy Project #: B71104N1

Room Name: 109 Classroom 3

Wall 2 of 2

		Noise	Level	125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
Source 1:	Traffic	54.0	CNEL	37.3	42.8	45.3	49.3	49.3	43.3	: Traffic Spectrum
Source 2:	Aircraft	60.0	CNEL	44.7	53.2	55.7	53.7	50.7	44.7	: Aircraft Spectrum
Source 3:	<n a=""></n>	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Source 4:	<n a=""></n>	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Overall:		61.0	CNEL	45.5	53.6	56.1	55.1	53.1	47.1	: Effective Noise Spectrum

Assembly Type	<u>Open</u>	Width	Height	Qty	Total Area	125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
Exterior Walls FCa6 and FCb6 - B71104N1	N	37	10	1	311.6	28	36	47	48	50	56	
1-Inch Insulated Glass	Υ	4	7.3	2	58.4	24	20	38	45	40	44	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	

<u>125 Hz</u>	<u>250 Hz</u>	<u>500 Hz</u>	1KHz	2KHz	4KHz	
45.5	53.6	56.1	55.1	53.1	47.1	: Exterior Wall Noise Exposure
10.9	11.0	11.0	11.0	11.0	11.0	: Transmission Loss
25.7	25.7	25.7	25.7	25.7	25.7	: Wall Surface Area Factor
25.9	25.9	25.9	25.9	26.8	26.8	: Absorption
34.3	42.5	44.9	43.9	40.9	34.9	: Noise Level
49.6	CNEL	WINDOWS	OPEN			
125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
45.5	53.6	56.1	55.1	53.1	47.1	: Exterior Wall Noise Exposure
27.1	27.5	43.8	47.4	46.2	50.8	: Transmission Loss
25.7	25.7	25.7	25.7	25.7	25.7	: Wall Surface Area Factor
25.9	25.9	25.9	25.9	26.8	26.8	: Absorption
18.2	26.0	12.2	7.5	5.8	-4.8	: Noise Level
10.2	20.0	12.2			4.0	

Project Name: Access Youth Academy

Project #: B71104N1

Room Name: 120 Singles Court 6

Wall 1 of 1

Room Type : Medium Hard											
	<u>125 Hz</u>	250 Hz	500 Hz	1KHz	2KHz	4KHz					
Reverberation Time (sec):	1.2	1.2	1.2	1.2	1.0	1.0	: Moderately Reflective Room				
Room Absorption (Sabins):	511	511	511	511	638	638					

	<u>N</u>		Level	<u>125 Hz</u>	250 Hz	500 Hz	1KHz	2KHz	4KHz	
Source 1:	Traffic	66.6	CNEL	49.9	55.4	57.9	61.9	61.9	55.9	: Traffic Spectrum
Source 2:	Aircraft	60.0	CNEL	44.7	53.2	55.7	53.7	50.7	44.7	: Aircraft Spectrum
Source 3:	<n a=""></n>	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Source 4:	<n a=""></n>	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Overall:		67.5	CNEL	51.1	57.5	60.0	62.5	62.2	56.2	: Effective Noise Spectrum

Assembly Type	<u>Open</u>	Width	Height	Qty	Total Area	125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz
Exterior Walls FCa6 and FCb6 - B71104N1	N	32	19	1	608.0	28	36	47	48	50	56
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0

Number of Impacted Walls: 1

Windows Open
Interior Noise Level: 26.8 CNEL
Windows Closed
Interior Noise Level: 26.8 CNEL

125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
51.1	57.5	60.0	62.5	62.2	56.2	: Exterior Wall Noise Exposure
28.0	36.0	47.0	48.0	50.0	56.0	: Transmission Loss
27.8	27.8	27.8	27.8	27.8	27.8	: Wall Surface Area Factor
27.1	27.1	27.1	27.1	28.1	28.1	: Absorption
23.8	22.2	13.7	15.3	12.0	0.0	: Noise Level
26.8	CNEL	WINDOWS	OPEN			
125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
51.1	57.5	60.0	62.5	62.2	56.2	: Exterior Wall Noise Exposure
28.0	36.0	47.0	48.0	50.0	56.0	: Transmission Loss
27.8	27.8	27.8	27.8	27.8	27.8	: Wall Surface Area Factor
27.1	27.1	27.1	27.1	28.1	28.1	: Absorption
23.8	22.2	13.7	15.3	12.0	0.0	: Noise Level
26.8	CNEL	WINDOWS	CLOSED			

Project Name: Access Youth Academy

Project #: B71104N1 Room Name: 202 Gallery

Wall 1 of 3

Room Type : Medium Hard											
	125 Hz	250 Hz	<u>500 Hz</u>	1KHz	2KHz	4KHz					
Reverberation Time (sec):	1.2	1.2	1.2	1.2	1.0	1.0	: Moderately Reflective Room				
Room Absorption (Sabins) :	233	233	233	233	291	291					

		Noise	Noise Level		250 Hz	500 Hz	1KHz	2KHz	4KHz	
Source 1:	Traffic	72.2	CNEL	55.5	61.0	63.5	67.5	67.5	61.5	: Traffic Spectrum
Source 2:	Aircraft	60.0	CNEL	44.7	53.2	55.7	53.7	50.7	44.7	: Aircraft Spectrum
Source 3:	<n a=""></n>	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Source 4:	<n a=""></n>	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Overall:		72.5	CNEL	55.9	61.7	64.2	67.7	67.6	61.6	: Effective Noise Spectrum

Assembly Type	<u>Open</u>	Width	Height	Qty	Total Area	125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz
Exterior Walls FCa6 and FCb6 - B71104N1	N	23	11	1	154.6	28	36	47	48	50	56
1-Inch Insulated Glass	Υ	4	7.3	2	58.4	24	20	38	45	40	44
1-Inch Insulated Glass	N	20	2	1	40.0	24	20	38	45	40	44
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0

Room Depth: Volume:

Number of Impacted Walls: 3

Windows Open Interior Noise Level:	63.1	CNEL
Windows Closed Interior Noise Level:	40.5	CNEL

Overall Area:

253

5819

ft³

<u>125 Hz</u>	250 Hz	500 Hz	1KHz	2KHz	4KHz	
55.9	61.7	64.2	67.7	67.6	61.6	: Exterior Wall Noise Exposure
9.3	9.3	9.4	9.4	9.4	9.4	: Transmission Loss
24.0	24.0	24.0	24.0	24.0	24.0	: Wall Surface Area Factor
23.7	23.7	23.7	23.7	24.6	24.6	: Absorption
46.9	52.8	55.2	58.7	57.6	51.6	: Noise Level
63.1	CNEL	WINDOWS	OPEN			
125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
55.9	61.7	64.2	67.7	67.6	61.6	: Exterior Wall Noise Exposure
26.0	23.9	41.3	46.6	43.5	47.7	: Transmission Loss
24.0	24.0	24.0	24.0	24.0	24.0	: Wall Surface Area Factor
23.7	23.7	23.7	23.7	24.6	24.6	: Absorption
30.2	38.1	23.2	21.5	23.5	13.3	: Noise Level
39.1	CNEL	WINDOWS				

Project Name: Access Youth Academy Project #: B71104N1

Room Name: 202 Gallery

Wall 2 of 3

		Noise	Level	125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
Source 1:	Traffic	72.2	CNEL	55.5	61.0	63.5	67.5	67.5	61.5	: Traffic Spectrum
Source 2:	Aircraft	60.0	CNEL	44.7	53.2	55.7	53.7	50.7	44.7	: Aircraft Spectrum
Source 3:	<n a=""></n>	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Source 4:	<n a=""></n>	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Overall:		72.5	CNEL	55.9	61.7	64.2	67.7	67.6	61.6	: Effective Noise Spectrum

Assembly Type	Open	Width	Height	Qty	Total Area	125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
Exterior Walls CP6 and CP8 - B71104N1	N	7.2	11	1	79.2	37	44	49	54	59	66	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0	

Overall Area: 79.2

125 Hz	250 Hz	500 Hz	1KHz	2KHz	<u>4KHz</u>	
55.9	61.7	64.2	67.7	67.6	61.6	: Exterior Wall Noise Exposure
37.0	44.0	49.0	54.0	59.0	66.0	: Transmission Loss
19.0	19.0	19.0	19.0	19.0	19.0	: Wall Surface Area Factor
23.7	23.7	23.7	23.7	24.6	24.6	: Absorption
14.2	13.0	10.5	9.0	2.9	-10.1	: Noise Level
18.3	CNEL	WINDOWS	OPEN			
125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
55.9	61.7	64.2	67.7	67.6	61.6	: Exterior Wall Noise Exposure
37.0	44.0	40.0				
	44.0	49.0	54.0	59.0	66.0	: Transmission Loss
19.0	19.0	49.0 19.0	54.0 19.0	59.0 19.0	66.0 19.0	: Transmission Loss : Wall Surface Area Factor
19.0	19.0	19.0	19.0	19.0	19.0	: Wall Surface Area Factor

Project Name: Access Youth Academy Project #: B71104N1 Room Name: 202 Gallery

Wall 3 of 3

		Noise	Level	<u>125 Hz</u>	250 Hz	500 Hz	1KHz	2KHz	4KHz	
Source 1:	Traffic	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	: Traffic Spectrum
Source 2:	Aircraft	60.0	CNEL	44.7	53.2	55.7	53.7	50.7	44.7	: Aircraft Spectrum
Source 3:	<n a=""></n>	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Source 4:	<n a=""></n>	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Overall:		60.0	CNEL	44.7	53.2	55.7	53.7	50.7	44.7	: Effective Noise Spectrum

Assembly Type	Open	Width	Height	Qty	Total Area	125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz
Roof - S	N	23	23	1	529.0	14	33	40	45	43	46
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0

125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
44.7	53.2	55.7	53.7	50.7	44.7	: Exterior Wall Noise Exposure
14.0	33.0	40.0	45.0	43.0	46.0	: Transmission Loss
27.2	27.2	27.2	27.2	27.2	27.2	: Wall Surface Area Factor
23.7	23.7	23.7	23.7	24.6	24.6	: Absorption
34.3	23.8	19.3	12.3	10.3	1.3	: Noise Level
34.8	CNEL	WINDOWS	OPEN			
125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
44.7	53.2	55.7	53.7	50.7	44.7	: Exterior Wall Noise Exposure
14.0	33.0	40.0	45.0	43.0	46.0	: Transmission Loss
27.2	27.2	27.2	27.2	27.2	27.2	: Wall Surface Area Factor
23.7	23.7	23.7	23.7	24.6	24.6	: Absorption
34.3	23.8	19.3	12.3	10.3	1.3	: Noise Level
34.8	CNEL	WINDOWS	CLOSED			

Project Name: Access Youth Academy

Project #: B71104N1

Room Name: 204 Open Office

Wall 1 of 2

Room Type : Medium Soft												
	<u>125 Hz</u>	250 Hz	500 Hz	1KHz	2KHz	4KHz						
Reverberation Time (sec):	8.0	8.0	8.0	8.0	0.7	0.7	: Fairly Absorptive Room					
Room Absorption (Sabins):	813	813	813	813	1016	1016						

		Noise	Level	<u>125 Hz</u>	250 Hz	500 Hz	1KHz	2KHz	4KHz	
Source 1:	Traffic	72.7	CNEL	56.0	61.5	64.0	68.0	68.0	62.0	: Traffic Spectrum
Source 2:	Aircraft	60.0	CNEL	44.7	53.2	55.7	53.7	50.7	44.7	: Aircraft Spectrum
Source 3:	<n a=""></n>	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Source 4:	<n a=""></n>	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Overall:		72.9	CNEL	56.3	62.1	64.6	68.2	68.1	62.1	: Effective Noise Spectrum

Assembly Type	<u>Open</u>	Width	Height	Qty	Total Area	125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz
Exterior Walls FCa6 and FCb6 - B71104N1	N	56	11	1	378.0	28	36	47	48	50	56
1-Inch Insulated Glass	Υ	4	8	5	160.0	24	20	38	45	40	44
1-Inch Insulated Glass	N	39	2	1	78.0	24	20	38	45	40	44
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0

Number of Impacted Walls: 2

Room Depth:

22

Windows Open Interior Noise Level: 62.5 CNEL Windows Closed Interior Noise Level: CNEL 39.2

Overall Area:

Volume:

616

13552

ft³

125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
56.3	62.1	64.6	68.2	68.1	62.1	: Exterior Wall Noise Exposure
8.8	8.8	8.9	8.9	8.9	8.9	: Transmission Loss
27.9	27.9	27.9	27.9	27.9	27.9	: Wall Surface Area Factor
29.1	29.1	29.1	29.1	30.1	30.1	: Absorption
46.3	52.1	54.5	58.1	57.0	51.0	: Noise Level
62.5	CNEL	WINDOWS	OPEN			
125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
56.3	62.1	64.6	68.2	68.1	62.1	: Exterior Wall Noise Exposure
26.0	24.0	41.3	46.6	43.5	47.7	: Transmission Loss
27.9	27.9	27.9	27.9	27.9	27.9	: Wall Surface Area Factor
29.1	29.1	29.1	29.1	30.1	30.1	: Absorption
29.1	36.9	22.1	20.4	22.4	12.2	: Noise Level
37.9	CNEL	WINDOWS	CLOSED	1		

Project Name: Access Youth Academy Project #: B71104N1

Room Name: 202 Gallery

Wall 2 of 2

		Noise	Level	<u>125 Hz</u>	250 Hz	500 Hz	1KHz	2KHz	4KHz	
Source 1:	Traffic		CNEL	0.0	0.0	0.0	0.0	0.0	0.0	: Traffic Spectrum
Source 2:	Aircraft	60.0	CNEL	44.7	53.2	55.7	53.7	50.7	44.7	: Aircraft Spectrum
Source 3:	<n a=""></n>	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Source 4:	<n a=""></n>	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Overall:		60.0	CNEL	44.7	53.2	55.7	53.7	50.7	44.7	: Effective Noise Spectrum

Assembly Type	<u>Open</u>	Width	Height	Qty	Total Area	<u>125 Hz</u>	250 Hz	500 Hz	1KHz	2KHz	4KHz
Roof - S	N	56	22	1	1232.0	14	33	40	45	43	46
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0

125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
44.7	53.2	55.7	53.7	50.7	44.7	: Exterior Wall Noise Exposure
14.0	33.0	40.0	45.0	43.0	46.0	: Transmission Loss
30.9	30.9	30.9	30.9	30.9	30.9	: Wall Surface Area Factor
29.1	29.1	29.1	29.1	30.1	30.1	: Absorption
32.5	22.0	17.5	10.5	8.6	-0.4	: Noise Level
33.1	CNEL	WINDOWS	OPEN			
125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
		000 112			7/1/1/2	
44.7	53.2	55.7	53.7	50.7	44.7	: Exterior Wall Noise Exposure
44.7 14.0						: Exterior Wall Noise Exposure : Transmission Loss
	53.2	55.7	53.7	50.7	44.7	•
14.0	53.2 33.0	55.7 40.0	53.7 45.0	50.7 43.0	44.7 46.0	: Transmission Loss
14.0 30.9	53.2 33.0 30.9	55.7 40.0 30.9	53.7 45.0 30.9	50.7 43.0 30.9	44.7 46.0 30.9	: Transmission Loss : Wall Surface Area Factor

Project Name: Access Youth Academy Project #: B71104N1

Room Name: 205 Office

Wall 1 of 3

Room Type : Medium Soft												
	125 Hz	250 Hz	<u>500 Hz</u>	1KHz	2KHz	4KHz						
Reverberation Time (sec):	8.0	0.8	8.0	8.0	0.7	0.7	: Fairly Absorptive Room					
Room Absorption (Sabins):	83	83	83	83	104	104						

		Noise	Level	125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
Source 1:	Traffic	72.7	CNEL	56.0	61.5	64.0	68.0	68.0	62.0	: Traffic Spectrum
Source 2:	Aircraft	60.0	CNEL	44.7	53.2	55.7	53.7	50.7	44.7	: Aircraft Spectrum
Source 3:	<n a=""></n>	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Source 4:	<n a=""></n>	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Overall:		72.9	CNEL	56.3	62.1	64.6	68.2	68.1	62.1	: Effective Noise Spectrum

Assembly Type	Open	Width	Height	Qty	Total Area	125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz
Exterior Walls FCa6 and FCb6 - B71104N1	N	10.5	11	1	47.5	28	36	47	48	50	56
1-Inch Insulated Glass	Υ	4	8	1	32.0	24	20	38	45	40	44
1-Inch Insulated Glass	N	2	8	1	16.0	24	20	38	45	40	44
1-Inch Insulated Glass	N	10	2	1	20.0	24	20	38	45	40	44
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0

Room Depth: 12 Overall Area: 115.5 ft³ Volume: 1386

Number of Impacted Walls: 3

Windows Open Interior Noise Level:	65.4	CNEL
Windows Closed Interior Noise Level:	44.5	CNEL

125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
56.3	62.1	64.6	68.2	68.1	62.1	: Exterior Wall Noise Exposure
8.5	8.4	8.6	8.6	8.6	8.6	: Transmission Loss
20.6	20.6	20.6	20.6	20.6	20.6	: Wall Surface Area Factor
19.2	19.2	19.2	19.2	20.2	20.2	: Absorption
49.2	55.1	57.5	61.0	60.0	54.0	: Noise Level
65.4	CNEL	WINDOWS	OPEN			
125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
56.3	62.1	64.6	68.2	68.1	62.1	: Exterior Wall Noise Exposure
25.2	22.2	39.9	46.0	42.0	46.1	: Transmission Loss
20.6	20.6	20.6	20.6	20.6	20.6	: Wall Surface Area Factor
19.2	19.2	19.2	19.2	20.2	20.2	: Absorption
32.5	41.3	26.1	23.6	26.5	16.4	: Noise Level
42.2	CNEL	WINDOWS	CLOSED			

Project Name: Access Youth Academy Project #: B71104N1

Room Name: 205 Office

Wall 2 of 3

		Noise	Level	125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
Source 1:	Traffic	68.8	CNEL	52.1	57.6	60.1	64.1	64.1	58.1	: Traffic Spectrum
Source 2:	Aircraft	60.0	CNEL	44.7	53.2	55.7	53.7	50.7	44.7	: Aircraft Spectrum
Source 3:	<n a=""></n>	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Source 4:	<n a=""></n>	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Overall:		69.3	CNEL	52.8	59.0	61.5	64.5	64.3	58.3	: Effective Noise Spectrum

Assembly Type
Exterior Walls FCa6 and FCb6 - B71104N1
1-Inch Insulated Glass
1-Inch Insulated Glass
<n a=""></n>

Onen	Width	Height	Otre	Total Area	125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz
<u>Open</u>	vviatri	neigni	<u>Qty</u>	TOTAL ALEA	123 HZ	250 HZ	300 HZ	INTZ	<u> 2N 2</u>	<u>4NПZ</u>
N	12	11	1	45.0	28	36	47	48	50	56
N	8	8	1	64.0	24	20	38	45	40	44
N	11.5	2	1	23.0	24	20	38	45	40	44
N	0	0	0	0.0	0	0	0	0	0	0
N	0	0	0	0.0	0	0	0	0	0	0
N	0	0	0	0.0	0	0	0	0	0	0
N	0	0	0	0.0	0	0	0	0	0	0
N	0	0	0	0.0	0	0	0	0	0	0
N	0	0	0	0.0	0	0	0	0	0	0
N	0	0	0	0.0	0	0	0	0	0	0
N	0	0	0	0.0	0	0	0	0	0	0
N	0	0	0	0.0	0	0	0	0	0	0

12 Overall Area: 132

3

125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
52.8	59.0	61.5	64.5	64.3	58.3	: Exterior Wall Noise Exposure
25.0	21.8	39.5	45.8	41.6	45.7	: Transmission Loss
21.2	21.2	21.2	21.2	21.2	21.2	: Wall Surface Area Factor
19.2	19.2	19.2	19.2	20.2	20.2	: Absorption
29.8	39.2	23.9	20.7	23.7	13.7	: Noise Level
40.0	CNEL	WINDOWS	OPEN			
125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
52.8	59.0	61.5	64.5	64.3	58.3	: Exterior Wall Noise Exposure
25.0	21.8	39.5	45.8	41.6	45.7	: Transmission Loss
21.2	21.2	21.2	21.2	21.2	21.2	: Wall Surface Area Factor
19.2	19.2	19.2	19.2	20.2	20.2	: Absorption
20.0	20.0	22.0	20.7	22.7	40.7	. Naise Level
29.8	39.2	23.9	20.7	23.7	13.7	: Noise Level
40.0	CNEL	WINDOWS	CLOSED			

Project Name: Access Youth Academy Project #: B71104N1 Room Name: 205 Office

Wall 3 of 3

		Noise	Level	<u>125 Hz</u>	250 Hz	500 Hz	1KHz	2KHz	4KHz	
Source 1:	Traffic	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	: Traffic Spectrum
Source 2:	Aircraft	60.0	CNEL	44.7	53.2	55.7	53.7	50.7	44.7	: Aircraft Spectrum
Source 3:	<n a=""></n>	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Source 4:	<n a=""></n>	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Overall:		60.0	CNEL	44.7	53.2	55.7	53.7	50.7	44.7	: Effective Noise Spectrum

Assembly Type	Open	Width	Height	Qty	Total Area	125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz
Roof - S	N	12	10.5	1	126.0	14	33	40	45	43	46
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0

Overall Area: 126

125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
44.7	53.2	55.7	53.7	50.7	44.7	: Exterior Wall Noise Exposure
14.0	33.0	40.0	45.0	43.0	46.0	: Transmission Loss
21.0	21.0	21.0	21.0	21.0	21.0	: Wall Surface Area Factor
19.2	19.2	19.2	19.2	20.2	20.2	: Absorption
32.5	22.0	17.5	10.5	8.6	-0.4	: Noise Level
33.1	CNEL	WINDOWS	OPEN			
125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
44.7	53.2	55.7	53.7	50.7	44.7	: Exterior Wall Noise Exposure
14.0	33.0	40.0	45.0	43.0	46.0	: Transmission Loss
21.0	21.0	21.0	21.0	21.0	21.0	: Wall Surface Area Factor
19.2	19.2	19.2	19.2	20.2	20.2	: Absorption
32.5	22.0	17.5	10.5	8.6	-0.4	: Noise Level

Project Name: Access Youth Academy

Project #: B71104N1

Room Name: 207 Conference Room

Wall 1 of 3

Room Type : Medium Soft												
	<u>125 Hz</u>	250 Hz	<u>500 Hz</u>	1KHz	2KHz	4KHz						
Reverberation Time (sec):	8.0	8.0	8.0	8.0	0.7	0.7	: Fairly Absorptive Room					
Room Absorption (Sabins):	407	407	407	407	508	508						

		Noise	Level	125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
Source 1:	Traffic	68.8	CNEL	52.1	57.6	60.1	64.1	64.1	58.1	: Traffic Spectrum
Source 2:	Aircraft	60.0	CNEL	44.7	53.2	55.7	53.7	50.7	44.7	: Aircraft Spectrum
Source 3:	<n a=""></n>	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Source 4:	<n a=""></n>	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Overall:		69.3	CNEL	52.8	59.0	61.5	64.5	64.3	58.3	: Effective Noise Spectrum

ft²

ft³

Assembly Type	Open	Width	Height	Qty	Total Area	125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz
Exterior Walls FCa6 and FCb6 - B71104N1	N	28	11	1	100.0	28	36	47	48	50	56
1-Inch Insulated Glass	Υ	9	8	1	72.0	24	20	38	45	40	44
1-Inch Insulated Glass	Υ	5	8	1	40.0	24	20	38	45	40	44
1-Inch Insulated Glass	N	5	8	1	40.0	24	20	38	45	40	44
1-Inch Insulated Glass	N	28	2	1	56.0	24	20	38	45	40	44
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0

Room Depth: 22 ft Overall Area: 308 Volume: 6776

Number of Impacted Walls: 3

Windows Open
Interior Noise Level: 60.8 CNEL
Windows Closed
Interior Noise Level: 38.9 CNEL

125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
52.8	59.0	61.5	64.5	64.3	58.3	: Exterior Wall Noise Exposure
7.3	7.3	7.4	7.4	7.4	7.4	: Transmission Loss
24.9	24.9	24.9	24.9	24.9	24.9	: Wall Surface Area Factor
26.1	26.1	26.1	26.1	27.1	27.1	: Absorption
44.3	50.5	52.9	55.9	54.7	48.7	: Noise Level
60.4	CNEL	WINDOWS	OPEN			
125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
52.8	59.0	61.5	64.5	64.3	58.3	: Exterior Wall Noise Exposure
24.9	21.7	39.4	45.8	41.5	45.6	: Transmission Loss
24.9	24.9	24.9	24.9	24.9	24.9	: Wall Surface Area Factor
26.1	26.1	26.1	26.1	27.1	27.1	: Absorption
26.7	36.1	20.8	17.5	20.6	10.6	: Noise Level
36.9	CNEL	WINDOWS	CLOSED			

Project Name: Access Youth Academy Project #: B71104N1

Room Name: 207 Conference Room

Wall 2 of 3

		Noise	Level	<u>125 Hz</u>	250 Hz	500 Hz	1KHz	2KHz	4KHz	
Source 1:	Traffic	55.2	CNEL	38.5	44.0	46.5	50.5	50.5	44.5	: Traffic Spectrum
Source 2:	Aircraft	60.0	CNEL	44.7	53.2	55.7	53.7	50.7	44.7	: Aircraft Spectrum
Source 3:	<n a=""></n>	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Source 4:	<n a=""></n>	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Overall:		61.2	CNEL	45.7	53.7	56.2	55.4	53.6	47.6	: Effective Noise Spectrum

Assembly Type	<u>Open</u>	Width	Height	Qty	Total Area	125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz
Exterior Walls FCa6 and FCb6 - B71104N1	N	22	11	1	118.0	28	36	47	48	50	56
1-Inch Insulated Glass	Υ	4	8	2	64.0	24	20	38	45	40	44
1-Inch Insulated Glass	N	2	8	1	16.0	24	20	38	45	40	44
1-Inch Insulated Glass	N	22	2	1	44.0	24	20	38	45	40	44
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0

125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
45.7	53.7	56.2	55.4	53.6	47.6	: Exterior Wall Noise Exposure
8.7	8.7	8.8	8.8	8.8	8.8	: Transmission Loss
23.8	23.8	23.8	23.8	23.8	23.8	: Wall Surface Area Factor
26.1	26.1	26.1	26.1	27.1	27.1	: Absorption
34.7	42.8	45.2	44.4	41.6	35.6	: Noise Level
50.0	CNEL	WINDOWS	OPEN			
<u>125 Hz</u>	250 Hz	500 Hz	1KHz	2KHz	4KHz	
125 Hz 45.7	250 Hz 53.7	500 Hz 56.2	1KHz 55.4	2KHz 53.6	4KHz 47.6	: Exterior Wall Noise Exposure
						: Exterior Wall Noise Exposure : Transmission Loss
45.7	53.7	56.2	55.4	53.6	47.6	· ·
45.7 25.5	53.7 22.8	56.2 40.4	55.4 46.2	53.6 42.5	47.6 46.7	: Transmission Loss
45.7 25.5 23.8	53.7 22.8 23.8	56.2 40.4 23.8	55.4 46.2 23.8	53.6 42.5 23.8	47.6 46.7 23.8	: Transmission Loss : Wall Surface Area Factor

Project Name: Access Youth Academy Project #: B71104N1

Room Name: 207 Conference Room

Wall 3 of 3

		Noise	Level	125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
Source 1:	Traffic	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	: Traffic Spectrum
Source 2:	Aircraft	60.0	CNEL	44.7	53.2	55.7	53.7	50.7	44.7	: Aircraft Spectrum
Source 3:	<n a=""></n>	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Source 4:	<n a=""></n>	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Overall:		60.0	CNEL	44.7	53.2	55.7	53.7	50.7	44.7	: Effective Noise Spectrum

Assembly Type	<u>Open</u>	Width	Height	Qty	Total Area	125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz
Roof - S	N	28	22	1	616.0	14	33	40	45	43	46
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0

Overall Area: 616 ft²

125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
44.7	53.2	55.7	53.7	50.7	44.7	: Exterior Wall Noise Exposure
14.0	33.0	40.0	45.0	43.0	46.0	: Transmission Loss
27.9	27.9	27.9	27.9	27.9	27.9	: Wall Surface Area Factor
26.1	26.1	26.1	26.1	27.1	27.1	: Absorption
32.5	22.0	17.5	10.5	8.6	-0.4	: Noise Level
33.1	CNEL	WINDOWS	OPEN			
125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
44.7	53.2	55.7	53.7	50.7	44.7	: Exterior Wall Noise Exposure
14.0	33.0	40.0	45.0	43.0	46.0	: Transmission Loss
27.9	27.9	27.9	27.9	27.9	27.9	: Wall Surface Area Factor
26.1	26.1	26.1	26.1	27.1	27.1	: Absorption
32.5	22.0	17.5	10.5	8.6	-0.4	: Noise Level
33.1	CNEL	WINDOWS	CLOSED			

Project Name: Access Youth Academy

Project #: B71104N1 Room Name: 208 Kitchen

Wall 1 of 2

Room Type: Medium Soft												
	<u>125 Hz</u>	250 Hz	<u>500 Hz</u>	1KHz	2KHz	4KHz						
Reverberation Time (sec):	8.0	0.8	8.0	8.0	0.7	0.7	: Fairly Absorptive Room					
Room Absorption (Sabins):	223	223	223	223	278	278						

		Noise	Level	<u>125 Hz</u>	250 Hz	500 Hz	1KHz	2KHz	4KHz	
Source 1:	Traffic	55.2	CNEL	38.5	44.0	46.5	50.5	50.5	44.5	: Traffic Spectrum
Source 2:	Aircraft	60.0	CNEL	44.7	53.2	55.7	53.7	50.7	44.7	: Aircraft Spectrum
Source 3:	<n a=""></n>	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Source 4:	<n a=""></n>	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Overall:		61.2	CNEL	45.7	53.7	56.2	55.4	53.6	47.6	: Effective Noise Spectrum

Assembly Type	<u>Open</u>	Width	Height	Qty	Total Area	125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz
Exterior Walls FCa6 and FCb6 - B71104N1	N	22.5	11	1	159.5	28	36	47	48	50	56
1-Inch Insulated Glass	Υ	4	8	2	64.0	24	20	38	45	40	44
1-Inch Insulated Glass	N	12	2	1	24.0	24	20	38	45	40	44
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0

Number of Impacted Walls: 2

Room Depth:

15

Windows Open
Interior Noise Level: 52.7 CNEL
Windows Closed
Interior Noise Level: 35.0 CNEL

Overall Area:

Volume:

247.5

3713

ft²

ft³

125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
45.7	53.7	56.2	55.4	53.6	47.6	: Exterior Wall Noise Exposure
8.8	8.8	8.9	8.9	8.9	8.9	: Transmission Loss
23.9	23.9	23.9	23.9	23.9	23.9	: Wall Surface Area Factor
23.5	23.5	23.5	23.5	24.4	24.4	: Absorption
37.3	45.4	47.8	47.0	44.2	38.2	: Noise Level
52.6	CNEL	WINDOWS	OPEN			
125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
45.7	53.7	56.2	55.4	53.6	47.6	: Exterior Wall Noise Exposure
26.1	24.3	41.6	46.7	43.8	48.0	: Transmission Loss
23.9	23.9	23.9	23.9	23.9	23.9	: Wall Surface Area Factor
23.5	23.5	23.5	23.5	24.4	24.4	: Absorption
20.0	29.9	15.1	9.2	9.4	-0.9	: Noise Level
30.5	CNEL	WINDOWS	CLOSED			

Project Name: Access Youth Academy Project #: B71104N1

Room Name: 208 Kitchen

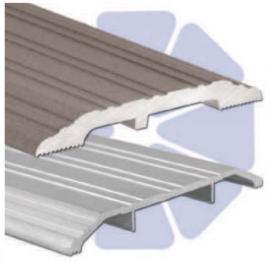
Wall 2 of 2

		Noise	Level	125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
Source 1:	Traffic	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	: Traffic Spectrum
Source 2:	Aircraft	60.0	CNEL	44.7	53.2	55.7	53.7	50.7	44.7	: Aircraft Spectrum
Source 3:	<n a=""></n>	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Source 4:	<n a=""></n>	0.0	CNEL	0.0	0.0	0.0	0.0	0.0	0.0	
Overall:		60.0	CNEL	44.7	53.2	55.7	53.7	50.7	44.7	: Effective Noise Spectrum

Assembly Type	<u>Open</u>	Width	Height	Qty	Total Area	125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz
Roof - S	N	22.5	15	1	337.5	14	33	40	45	43	46
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	Ν	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0
<n a=""></n>	N	0	0	0	0.0	0	0	0	0	0	0

Overall Area: 337.5 ft²

125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
44.7	53.2	55.7	53.7	50.7	44.7	: Exterior Wall Noise Exposure
14.0	33.0	40.0	45.0	43.0	46.0	: Transmission Loss
25.3	25.3	25.3	25.3	25.3	25.3	: Wall Surface Area Factor
23.5	23.5	23.5	23.5	24.4	24.4	: Absorption
32.5	22.0	17.5	10.5	8.6	-0.4	: Noise Level
33.1	CNEL	WINDOWS	OPEN			
125 Hz	250 Hz	500 Hz	1KHz	2KHz	4KHz	
125 Hz 44.7	250 Hz 53.2	500 Hz 55.7	1KHz 53.7	2KHz 50.7	4KHz 44.7	: Exterior Wall Noise Exposure
						: Exterior Wall Noise Exposure : Transmission Loss
44.7	53.2	55.7	53.7	50.7	44.7	•
44.7 14.0	53.2 33.0	55.7 40.0	53.7 45.0	50.7 43.0	44.7 46.0	: Transmission Loss
44.7 14.0 25.3	53.2 33.0 25.3	55.7 40.0 25.3	53.7 45.0 25.3	50.7 43.0 25.3	44.7 46.0 25.3	: Transmission Loss : Wall Surface Area Factor

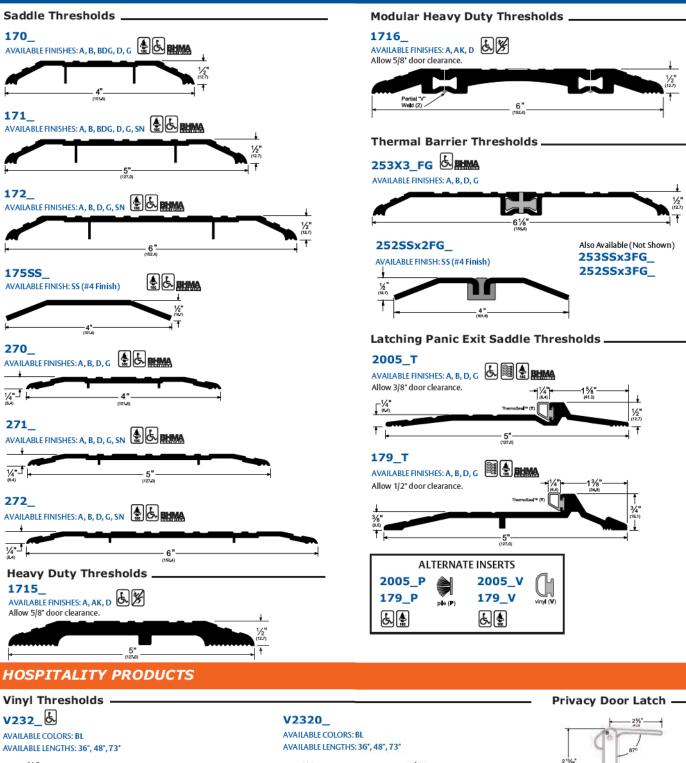

APPENDIX G

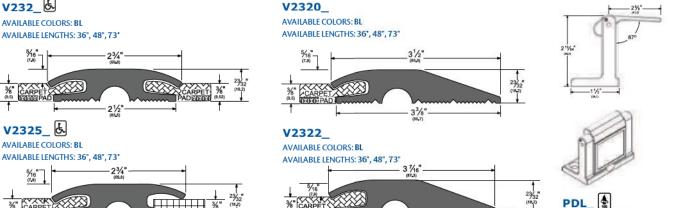
Recommended Products

THRESHOLDS AND GASKETING

VENTURA, CA (USA) P.O. Box 3780 Ventura, CA 93006 PH: 800.283.9988 FAX: 800.283.4050

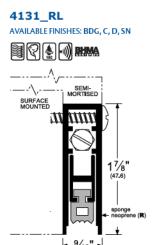
MEMPHIS, TN (USA) P.O. Box 18966 Memphis, TN 38181 PH: 800.824.3018 FAX: 800.243.3656


VANCOUVER, BC (CANADA) 103-2480 Mt. Lehman Rd. Abbotsford, BC V2T 6W3 Canada PH: 877.535.7888 FAX: 877.535.7444

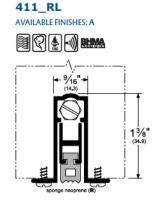

TORONTO, ON (CANADA) 160 Four Valley Rd. Concord, ON L4K 4T9 Canada PH: 866.243.9816 FAX: 866.243.9817

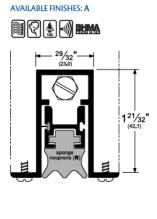
ASSA ABLOY is the global leader in door opening solutions, dedicated to satisfying end-user needs for security, safety and convenience.

COMMERCIAL THRESHOLDS

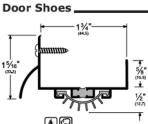

3 3/16"

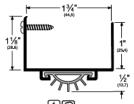
AVAILABLE FINISHES:


US3, 4, 26, 26D/15

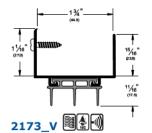

DOOR BOTTOMS

Automatic Door Bottoms

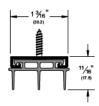




434_RL


A, B, BDG, D, G, PW, SN

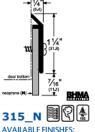
31/₃₂"_


217_V ∰ 217_PK

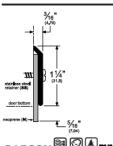
AVAILABLE FINISHES: A, BDG, D, G, PW, SN

AVAILABLE FINISHES: A, BDG, D, PW Also available unnotched:

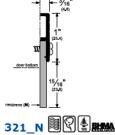
2173_V36UN 2173_V48UN



2343_V 🗟 🗐


AVAILABLE FINISHES: A, D Also available unnotched:

2343_V36UN 2343_V48UN


Door Bottom Sweeps

AVAILABLE FINISHES: B, C, D, G, SN

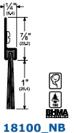
315SSN 🗐 🕅 🖟 № МА AVAILABLE FINISH: SS (#4 Finish)

AVAILABLE FINISHES: C, D, G

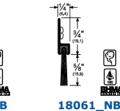
AVAILABLE FINISHES: A, BDG, D, G, PW

345_V **AVAILABLE FINISHES:** A, BDG, D, G, PW

BRUSH GASKETING

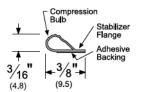

C, D, G, SN

AVAILABLE FINISHES:

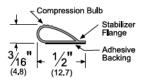

C, D, G, SN

18062 NB **AVAILABLE FINISHES:**

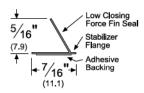
C, D, G, PW

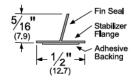


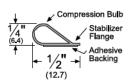
18061_NB **AVAILABLE FINISHES:** C, D, G, SN

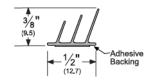


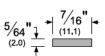
AVAILABLE FINISHES: C, D, G, SN


ADHESIVE GASKETING

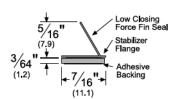

PK33_ **₽**₽₩ AVAILABLE FINISHES: BL, D, W AVAILABLE LENGTHS: 17', 18', 20', 21', 25', 510'

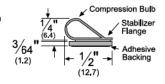

PK55_ AVAILABLE FINISHES: BL, D, W AVAILABLE LENGTHS: 17', 18', 20', 21', 25', 510'


AVAILABLE FINISHES: BL. D. W **AVAILABLE LENGTHS:** 17', 18', 20', 21', 25', 510'

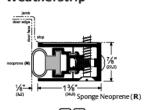

AVAILABLE FINISHES: C, D, W AVAILABLE LENGTHS: 17', 18', 20', 21', 25'

S88 AVAILABLE FINISHES: BL, C, D, GR, TAN, W AVAILABLE LENGTHS: 17', 18', 20', 21', 25', 30', 204', 510'


S773 **₩₩** AVAILABLE FINISHES: D. W AVAILABLE LENGTHS: 17', 18', 20', 21', 25'


HSS1000 **AVAILABLE FINISHES:** Graphite (no code), W AVAILABLE LENGTHS: 7', 8', 10', 18', 21', 24'

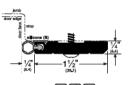
HSS2000 A RHMA AVAILABLE FINISHES: Graphite (no code), W AVAILABLE LENGTHS: 7', 8', 10', 18', 21', 24'


AVAILABLE FINISHES: BL, D, W AVAILABLE LENGTHS: 18', 20', 21', 24'

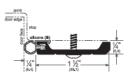
HSS2000xS88 AVAILABLE FINISHES: BL.C.D.GR.TAN.W AVAILABLE LENGTHS: 18', 20', 21', 24'

PERIMETER GASKETING

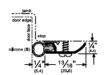
Adjustable Jamb Weatherstrip


322_SN AVAILABLE FINISHES: C, D, G

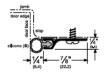
Snap Cover -Concealed Fasteners


AVAILABLE FINISHES: C, D, G ADDITIONAL INSERTS: P, PK, V

Heavy Duty-Head Section

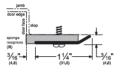

2891_S AVAILABLE FINISHES: A, D, G ADDITIONAL INSERTS: PK, V

Heavy Duty-Standard Jamb



290 S AVAILABLE FINISHES: A, D, G ADDITIONAL INSERTS: PK, V

Standard Perimeter Gasketing

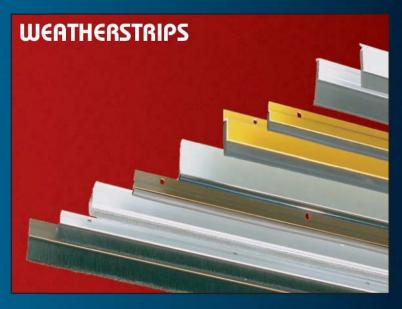

297_S 🗟 🖫 🖁 🖽 🖼 🖼 🖼 🖼 AVAILABLE FINISHES: A, BDG, D, G, PW, SN ADDITIONAL INSERTS: PK, V

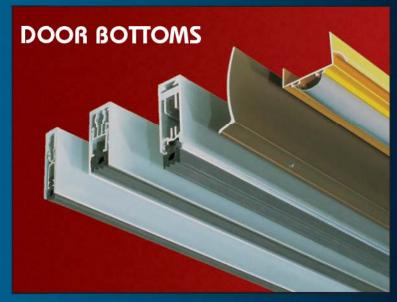
303 S 🗟 🖫 🔛 № № AVAILABLE FINISHES: A, BDG, D, G, PW, SN ADDITIONAL INSERTS: PK, V

316_S 🖳 🖳 🖺 AVAILABLE FINISHES: A, BDG, D, G ADDITIONAL INSERTS: PK, V

315SSR AVAILABLE FINISH: SS (#4 Finish)

NOTE: ALTERNATE INSERTS MAY CARRY DIFFERENT RATINGS. SEE FULL LINE CATALOG OR WEBSITE FOR MORE INFORMATION.


Phone 1-800-328-0953 Fax 1-800-334-8823 www.reeseusa.com



Continuous Service and Quality

Reese Enterprises, Inc. has more than 80 years experience in manufacturing weatherstrips along with many other door & floor products. During that time, we have devoted both time and dollars to product development, research and testing. Our highest valued asset, however, is you — our customer. That's why you'll talk to a pleasant, helpful person when you call Reese. No answering machines or recorded menus. Call us and hear for yourself.

TECHNICAL DATA

DRAFT & ACOUSTICAL SOUND SEALANT

OSI® Greenseries™ Draft & Acoustical Sound Sealant is a non-flammable, latex-based sealant specially designed to reduce sound transmissions and drafts in all types of wall systems where a sound-rated assembly is required. Its primary function is to achieve and maintain the specific STC (Sound Transmission Class) value of the system designed.

The paintable sealant remains flexible and adheres firmly to wood, metal studs, concrete, gypsum board and most other building materials. The easy-to-use sealant cleans up easily with soap and water.

FEATURES

- Permanently flexible
- Easy application and cleanup
- UL Classification R9732; UL 723
- Easy water cleanup
- Low VOC, compliant formula
- Will not harden, crack or separate
- · Non-staining & non-migrating
- High degree of adhesive and cohesive strength.

USES

Greenseries™ Draft & Acoustical was developed primarily for commercial construction utilizing light weight cavity walls and floor systems. Draft & Acoustical Sealant is used successfully in office buildings, hotels, apartment complexes, and other types of commercial & residential construction.

PHYSICAL PROPERTIES

Type Synthetic Latex Rubber Color White

Solids by weight 75%

Toxicity Toxic only if swallowed. Refer to MSDS. Flammability Nonflammable

Flash Point 200°F. TCC (minimum amount of solvent present)

Tooling/Open Time 15 minutes
Tack Free Time 30 minutes
Cure Time 2-7 days
Application Temperature 40°F minimum

Service Temperature -5°F - 170°F

Freeze-Thaw Stability 3 cycles. Unaffected by freezing after curing

Shelf Life 1 year from date made at 75°F Sag or Slump Nil (ASTM D2202) VOC Level 22g/l or <1% by wt.

Shore "A" Hardness 45 +/-5 (Cured 30 days @ room temp.)

Clean-up Water and soap before curing

Accelerated Weathering No cracks, discoloration or chalking: 1000

hrs. in Xenon Arc Weatherometer

The sealant is used for exposed and unexposed applications at perimeter joints, floor and ceiling runners, cut outs in gypsum board, veneer plaster systems and other areas where a sound rated assembly is required. The sealant can also be applied or buttered around all electrical boxes and outlets, cold air returns, heating and air conditioning ducts, and other utility equipment penetrating wall surfaces for increased acoustical performance. Also works well for sealing sill and and base plates in residential construction.

SPECIFICATIONS

- UL Classified 48S9 (R9732). Tested in accordance with and conforms to UL 723: U.B.C. Standard No. 42-1 Class I.
- ASTM E84: Surface Burning Characteristics of Building Materials.
- ASTM E90-85: Laboratory Measurement of Airborne-Sound Transmission Loss of Building Materials.
- ASTM D217: Testing Standard for Consistency.

- ASTM C919-79: Standard Practice for Use of Sealants in Acoustical Applications.
- SCAQMD Rule 1168 V.O.C.; CARB; and BAAQMD compliant
- GREENGUARD Certified
- · Meets LEEDS requirements

LIMITATIONS

- Keep from freezing
- Do not use below 40°F. (5°C.).
- Not recommended for use on mirrors or underwater applications.
- Not recommended for exterior use.

PACKAGING

28 oz. cartridges – 12 per case (Item No. GS79928)

STORAGE

Store at 70°F. +/- 5° (21°C) for long shelf life and easy application. Do not store below 40°F. (5°C.).

COVERAGE

3/8" round bead size: approx. 40 lin. ft. per 28 oz. cartridge. ¼" round bead size: Approx. 89 lin. ft. / 28oz cartridge.

PERFORMANCE CHARACTERISTICS

Underwriters Laboratories
 Inc. Classified 48S9 (R9732)
 UL 723: Sealant tested for surface burning characteristics

Applied to organic Reinforced Cement Board*

Flame Spread 5 Smoke Development 5

*Tested as applied in two 1/2in. beads, 8in. on center. The sealant covered 5.6 percent of the exposed sample area.

2. ASTM E90-85: STC Value – Effect of sealing the opening on a test wall partition.

APPLICATION PROCEEDURES

All surfaces must be clean and free of dust, dirt, oil, moisture and other foreign substances which could interfere with the bond of the sealant.

DIRECTIONS

- Cut spout on tube to desired bead size (3/8" round bead recommended) and puncture seal inside spout.
- Sealant should be applied as specified in the sound-rated system being installed (either wood or metal studs)

- A. Bottom & Top Runners: Apply a continuous 3/8" round bead of sealant on runners before setting gypsum board. Gypsum board shall be set into sealant to form complete contact with adjacent materials. Fill joint on top runners to complete seal. Repeat procedure for double layer applications.
- B. Cut-Outs and Perimeter Joints. Backs of electrical boxes, pipes, duct systems and other types of utility equipment penetrating wall surfaces shall be buttered with sealant. Seal all joints at perimeter edges including abutting surfaces and corner joints.
- 3. Maximum joint size should not exceed $\frac{5}{8}$ " x $\frac{1}{2}$ ".
- 4. Clean tools and excess sealant immediately after application with soap and water.
- 5. If necessary, sealant can be painted as applicable to meet project requirements after 24 hours.

CAUTION! CONTAINS ETHYLENE GLYCOL, MINERAL SPIRITS and crystalline silica. Avoid eye contact. Do not take internally. If swallowed, may cause abdominal discomfort. Use with adequate ventilation. Refer to MSDS.

WARNING: This product contains a chemical known to the State of California to cause cancer.

Test partition consisted of metal studs 24" O.C. with double layer gypsum board, Fire code "C" and attached with screws on both sides. Inside of partition was filled with sound insulation. Partition system was erected and shimmed out 4.75 mm (0.1875in.) at top, bottom and edges.

Results: Sound Transmission Class Value

- Un-sealed partition Arrows show sound travel around or through partitions.
 - a. STC=15
- Single bead of sealant used at top and bottom runners only both sides of partition system.

a. STC=24

Metal Stud Partition Door/Window frame in a hollow partition

- 3. Single bead of sealant used at top, bottom and perimeter joints both sides of system.
 - a. STC=45
- Double bead of sealant used at top, bottom and perimeter joints both sides of system.
 - a. STC=55

KEEP OUT OF REACH OF CHILDREN

FIRST AID

Eye Contact: In case of eye contact, flush with clean water for at least 15 minutes. Skin Contact: Wash skin thoroughly with soap and water. Ingestion: DO NOT induce vomiting. Seek medical attention. If dizziness occurs, remove to fresh air.

NOTICE TO PURCHASER

Henkel Corporation warrants this product when used according to directions. If not satisfied with the product's performance when used as directed, return sales receipt and used container to Henkel Corporation, 32150 Just Imagine Drive, Avon OH, 44011 for product replacement or refund. User shall determine suitability of product for use and assumes all risk.

QUESTIONS?

For commercial use or other questions pertaining to this product, call Henkel Technical Service at 800-321-0253 M-F, 9am – 4pm. or visit our website at www.greenseries.com.

OSI® GreenSeries[™] Draft & Acoustical Sound Sealant is currently under going tested by GREENGUARD.
The GREENGUARD INDOOR AIR QUALITY CERTIFIED Mark is a registered certification mark used under license through the GREENGUARD Environmental Institute.

Henkel Consumer Adhesives
Professional Adhesives & Sealants
32150 Just Imagine Drive
Avon, OH 44011
U.S.A.

Phone: (440) 937-7000 Fax: (440) 937-7092

AC-20 FTR®

(Fire & Temperature Rated) Acoustical & Insulation Sealant

Specification Data Sheet

BASIC USES

• AC-20 FTR® fire-rated systems are suitable for applications in schools, hospitals, churches, high-rise office buildings and hotels, prisons, sports arenas, and other public-use buildings to ensure a safe and orderly evacuation in the event of a fire.

2. MANUFACTURER

Pecora Corporation 165 Wambold Road Harleysville, PA 19438

Phone: 215-723-6051

800-523-6688 Fax: 215-721-0286 Website: www.pecora.com

3. PRODUCT DESCRIPTION

AC-20 FTR® is a unique acrylic latex sealant that is UL® Classified in firestopping systems for expansion joints and through penetrations. When properly installed, these systems effectively contain fire, smoke, toxic fumes, and water within a given area surrounded by firewalls for a two, three, or four hour period, depending on the design specifications.

Other Uses: Excellent adhesive, flexibility and durability qualities make AC-20 FTR® ideal for insulating and weatherproofing around windows, doors, panels, siding, duct work, base plates, etc. It is compatible with all common building materials including specialties such as polystyrene, polyurethane, cork, vinyl, foamed and fibrous glass.

Used as an acoustical sealant, AC-20 FTR® reduces sound transmission in partition systems to achieve specific STC values by sealing spaces around cut-outs and at perimeters of partitions. The sealant cures to a tough rubber to form a long-lasting acoustical seal.

PACKAGING

- 30 fl. oz. (.887 liter) fiber cartridges
- 5-gallon (18.9 liter) pails

COLOR

 White, Beige-Gray Special colors available in 250-gallon (946 liter) batches.

4.TECHNICAL DATA

Applicable Standards: ASTM C-834-86 specification for latex sealing compounds.

Fire Rated System: Two-hour Fire and Temperature Rated wall and floor joint systems up to 7" (178mm) wide and four-hour systems up to 4" wide can be designed with AC-20 FTR® in conjunction with Ultra Block fire blocking material in fire-rated walls and floors. Reference: ANSI/UL 263, ASTM E-119, NFPA No. 251.

UNDERWRITERS
LABORATORIES INC.®

CLASSIFIED

JOINT TREATMENT MATERIALS FIRE RESISTANCE CLASSIFICATION

DESIGNS J900H (FFS 0006) &U900 "O" (WWS 0010), J900Z (FFS 2002), U900Z-009 (WWS 2008), J900Z-007 (FFS 1010), U900Z-015 (WWS 1012)

AC-20 FTR® in conjunction with Ultra Block® achieves a 2-hour fire rating when sealing around steel or copper pipe and electrical metallic tubing or steel conduit in through penetration systems. Reference: ANSI/UL 1479,ASTM E-814.

FILL, VOID OR CAVITY MATERIALS

CLASSIFIED BY

UNDERWRITERS

LABORATORIES INC.

FOR USE IN

THROUGH-PENETRATION

FIRESTOP SYSTEM NO. CAI 1093

In addition to its fire-blocking value, Ultra Block® is very efficient acoustically, having a noise reduction coefficient of .75 and sound transmission coefficient of .5 (Ultra Block® is a registered trademark of Backer Rod Mfg. and Supply Co., Denver, CO, USA.)

5. INSTALLATION

Surface Preparation: Surfaces must be free of all contamination. Sealant may be applied to damp, porous surfaces. No priming is required.

Application: Refer to Pecora Firestopping Manual 07270 and UL Fire Resistance Directory for installation details on fire-rated joint and through penetration systems. For insulating and weatherproofing purposes, fill all window, door, and panel perimeter joints using a resilient backer rod to control sealant depth to 1/2" (13mm) maximum. For best results, protect sealant from excessive low temperatures and apply above 40°F (4°C). For acoustical purposes, apply continuous

TYPICAL PHYSICAL PROPERTIES									
Test Property	Value	Procedure							
Modulus @ 100% (psi)	15-20	ASTM D412							
Ultimate Tensile (psi) Ultimate Elongation (%)	30-40 400-500	ASTM D412 ASTM D412							
Movement Capability (%)	±7 1/2	ASTM D412							
VOC Content	31 g/L								

beads of sealant to seal perimeters of all sound-rated partitions. Apply sealant in the angles formed by metal components or base-layer panels and abutting surfaces. Apply sealant around all openings formed for outlets; electrical, telephone, light fixtures, etc.

Tooling: Tool material flush with surfaces to allow for expected shrinkage and insure good contact and adhesion to the substrate.

Cleaning: Remove excess material with water or a damp cloth before it cures. Sealant may be painted within 30 minutes after application with a good grade of latex paint.

Shelf Life: AC-20 FTR® has a shelf life well in excess of one year when stored in unopened containers below 80° F (27°C).

Precautions: AC-20 FTR® is non-flammable, non-toxic, non-irritating and environmentally safe. However, do not take internally. Refer to Material Safety Data Sheet for additional information.

Ultra Block® is a non-carcinogenic processed continuous filament textile glass fiber that may cause skin, eye and respiratory irritation. When applying, wear long sleeves, gloves, cap, goggles or safety glasses and NIOSH/MSHA-approved dust respirator. After use bathe with soap and warm water. Wash clothes separately and rinse after use. Refer to Material Safety Data Sheet for additional information.

FOR PROFESSIONAL USE ONLY.
KEEP OUT OF THE REACH
OF CHILDREN.

6.AVAILABILITY AND COST

Pecora products are available from our stocking distributors in all major cities. For the name and telephone number of your nearest representative call one of our locations listed below or visit our website at www.pecora.com.

7. WARRANTY

Pecora Corporation warrants its products to be free of defects. Under this warranty, we will provide, at no charge, replacement materials for, or refund the purchase price of, any product proven to be defective when installed in accordance with our published recommendations and in applications considered by us as suitable from this product. This warranty in lieu of any and all other warranties expressed or implied, and in no case will Pecora be liable for incidental or consequential damages.

8. MAINTENANCE

If the sealant is damaged and the bond is intact, cut out the damaged area and recaulk. No primer is required. If the bond has been affected, remove the sealant, clean and prepare the joint in accordance with instructions under "Installation".

9.TECHNICAL SERVICES

Pecora representatives are available to assist you in selecting an appropriate product and to provide on-site application instructions or to conduct jobsite inspections. For further assistance call our Technical Service Department at 800-523-6688.

www.pecora.com

APPENDIX H Cadna Analysis Data and Results

	Cadna Noise Model - Sound Levels - HVAC Noise Model												
Name	ID	Type	Oktave Spectrum (dB)									Source	
Name	l l	Type	63	125	250	500	1000	2000	4000	8000	Α	lin	Source
Carrier 48HC-11	AC2	Lw	85.9	87.9	85.6	84.4	82.8	78.5	74.9	72.5	87.3	92.9	Manufacturer
Carrier 48HC-20	AC1	Lw	92.2	83.9	80.4	81.8	78.7	76.5	72.2	65.4	84.1	93.6	Manufacturer
Carrier 48HC-24	AC3	Lw	95.6	87.5	84.2	84.2	81.7	77.9	73.2	66.3	86.5	96.9	Manufacturer
Cook ACE-B 195C6B	EF1	Lw	18.5	93.5	94.5	88.5	84.5	80.5	74.5	70.5	91.0	97.9	Manufacturer
AAON RQ-005-8-J	AH	Lw	77.0	78.0	79.0	72.0	67.0	65.0	60.0	55.0	74.9	83.4	Manufacturer
Trane Heat Pump	HP	Lw	94.0	89.0	87.0	85.0	84.0	78.0	75.0	69.0	88.0	96.5	Manufacturer

			Са	dna Nois	e Model -	Sound L	evels - Co	onstructio	on Noise	Model			
Name	ID	Typo	Oktave Spectrum (dB)									Source	
Name	ID	Туре	63	125	250	500	1000	2000	4000	8000	Α	lin	Source
Excavator with Breaker	S1	Lw	119.5	119.5	117.5	120.5	114.5	114.5	111.5	107.5	121.8	126.3	DEFRA
Dump Truck	S2	Lw	116.5	105.5	109.5	104.5	104.5	105.5	98.5	94.5	110.6	118.3	DEFRA
Front Loader	S3	Lw	114.1	114.1	103.1	105.1	101.1	99.1	98.1	90.1	107.6	117.7	DEFRA
Excavator	S4	Lw	108.6	116.6	101.6	104.6	101.6	99.6	94.6	88.6	107.6	117.8	DEFRA
Dozer	S5	Lw	105.2	114.2	109.2	105.2	105.2	101.2	98.2	93.2	109.7	116.7	DEFRA
Vibratory Roller	S6	Lw	119.7	114.7	100.7	99.7	98.7	96.7	93.7	90.7	105.2	121.0	DEFRA
Concrete Mixer Truck	S7	Lw	114.2	105.2	97.2	100.2	101.2	109.2	91.2	86.2	111.2	116.1	DEFRA
Concrete Pump Truck	S8	Lw	115.5	107.5	101.5	102.5	104.5	104.5	97.5	89.5	109.3	117.0	DEFRA
Telescopic Forklift	S9	Lw	116.8	110.8	100.8	98.8	95.8	93.8	87.8	78.8	102.3	118.0	DEFRA
Generator	S10	Lw	110.8	105.8	98.8	95.8	86.8	82.8	76.8	71.8	96.9	112.3	DEFRA
Truck	S11	Lw	116.5	105.5	109.5	104.5	104.5	105.5	98.5	94.5	110.6	118.3	DEFRA

		Cadna Noi	se Model - Po	int Sources	- HVAC Noise	Model				
		Result. PWL	Lw	/ Li	Operating	Height	Coordinates			
Name	ID	Day	Tuno		Time (min)	Height	Х	Υ	Z	
		(dBA)	Туре		Time (iiiii)	(m)	(m)	(m)	(m)	
AC1		84.1	Lw	AC1		8.92	1095.54	757.33	8.92	
AC2		87.3	Lw	AC2		8.92	1095.64	761.84	8.92	
AC3		86.5	Lw	AC3		8.92	1095.69	766.00	8.92	
EF1		85.3	Lw	EF1		8.92	1086.71	767.10	8.92	
AHA		74.9	Lw	AH		8.92	1104.08	735.17	8.92	
AHB		74.9	Lw	AH		8.92	1104.16	741.98	8.92	
HP-A		74.9	Lw	AH		8.92	1099.20	758.32	8.92	
HP-B		74.9	Lw	AH		8.92	1099.20	760.70	8.92	

Cadna Noise Model - Point Sources - Construction Noise Model - Phase 1										
		Result. PWL	Lw	/ Li	Li Operating H		Coordinates			
Name	ID	ID Day Type Value Time (min)	Х	Υ	Z					
		(dBA)	Type	Value	Time (iiiii)	(m)	(m)	(m)	(m)	
Excavator with Breaker	S1	121.8	Lw	S1	24	1.52	1094.46	767.66	1.52	
Dump Truck	S2	110.6	Lw	S2	24	1.52	1094.46	767.66	1.52	
Front Loader	S3	107.6	Lw	S3	24	1.52	1094.46	767.66	1.52	

Cadna Noise Model - Point Sources - Construction Noise Model - Phase 2										
		Result. PWL	Lw	Lw / Li		Height		Coordinates		
Name	ID	Day	Tune		Operating Time (min)	neigni	Х	Υ	Z	
		(dBA) Type Value	Time (iiiii)	(m)	(m)	(m)	(m)			
Dump Truck	S2	110.6	Lw	S2	24	1.52	1094.42	734.22	1.52	
Front Loader	S3	107.6	Lw	S3	24	1.52	1094.42	734.22	1.52	
Excavator	S4	107.6	Lw	S4	24	1.52	1094.42	734.22	1.52	
Dozer	S5	109.7	Lw	S5	24	1.52	1094.42	734.22	1.52	
Vibratory Loader	S6	105.2	Lw	S6	12	1.52	1094.42	734.22	1.52	

Cadna Noise Model - Point Sources - Construction Noise Model - Phase 3									
		Result. PWL	Lw	/ Li	Operating Time (min)	Height	Coordinates		
Name	ID	Day	Type	Value			Х	Υ	Z
		(dBA)	Type	Value		(m)	(m)	(m)	(m)
Concrete Mixer Truck	S7.1	111.2	Lw	S7	24	1.52	1094.42	734.22	1.52
Concrete Mixer Truck	S7.2	111.2	Lw	S7	24	1.52	1094.42	734.22	1.52
Concrete Pump Truck	S8	109.3	Lw	S8	12	1.52	1094.42	734.22	1.52

Cadna Noise Model - Point Sources - Construction Noise Model - Phase 4										
		Result. PWL	Lw	/ Li	Onesetina	Height	Coordinates			
Name	ID	Day	Type	Value	Operating Time (min)	neigni	Х	Y	Z	
		(dBA)	Type	Value	Time (iiiii)	(m)	(m)	(m)	(m)	
Truck	S11	110.6	Lw	S11	24	1.52	1094.42	734.22	1.52	
Telescopic Forklift	S9	102.3	Lw	S9	24	1.52	1094.42	734.22	1.52	
Generator	S10	96.9	Lw	S10	30	1.52	1094.42	734.22	1.52	

	Cadna Noise	Model - Barri	iers - HVAC N	oise Model	
			Coord	linates	
Name	Absorption	Х	Υ	Z	Height
		(m)	(m)	(m)	(m)
		1078.44	770.34	0.00	7.92
		1114.53	769.67	0.00	7.92
		1114.07	730.84	0.00	7.92
		1111.16	730.78	0.00	7.92
		1110.96	725.42	0.00	7.92
Building	0.37	1112.35	725.42	0.00	7.92
Building	0.57	1112.03	696.86	0.00	7.92
		1095.39	696.91	0.00	7.92
		1095.86	731.14	0.00	7.92
		1098.75	731.09	0.00	7.92
		1098.92	752.47	0.00	7.92
		1078.00	752.76	0.00	7.92

Ca	adna Noise Mo	del - Barriers	- Constructio	n Noise Mode	el					
			Coordinates							
Name	Absorption	Х	Υ	Z	Height					
		(m)	(m)	(m)	(m)					
		1117.13	774.38	0.00	3.05					
Barrier Wall	0.37	1074.17	774.36	0.00	3.05					
barrier wali	0.37	1074.17	774.34	0.00	1.83					
		1074.06	740.33	0.00	1.83					

Cadna Noise Model - Noise Levels at Receivers - HVAC								
	Level Lr Coordinates							
Name	Day	Height	Х	Υ	Z			
	(dBA)	(m)	(m)	(m)	(m)			
M1	38.1	1.52	1074.67	761.93	1.52			
M2	44.1	1.52	1095.80	773.88	1.52			
M3	37.9	1.52	1138.85	759.97	1.52			
M4	37.2	1.52	1138.85	734.90	1.52			

Cadna Noise M	Cadna Noise Model - Noise Levels at Receivers - Construction Noise Model - Phase 1								
	Level Lr	Height		Coordinates					
Name	Day	пеідііі	Х	Υ	Z				
	(dBA)	(m)	(m)	(m)	(m)				
R1	73.3	1.52	1073.36	734.39	1.52				
R2	79.6	1.52	1073.76	767.76	1.52				
R3	89.3	1.52	1094.39	775.07	1.52				
R4	72.0	1.52	1139.11	767.70	1.52				
R5	69.8	1.52	1139.39	734.22	1.52				

Cadna Noise Model - Noise Levels at Receivers - Construction Noise Model - Phase 2							
	Level Lr	Height	Loight Coordinates				
Name	Day	neight	Х	Υ	Z		
	(dBA)	(m)	(m)	(m)	(m)		
R1	72.8	1.52	1073.36	734.39	1.52		
R2	60.1	1.52	1073.76	767.76	1.52		
R3	52.5	1.52	1094.39	775.07	1.52		
R4	63.5	1.52	1139.11	767.70	1.52		
R5	65.6	1.52	1139.39	734.22	1.52		

Cadna Noise Model - Noise Levels at Receivers - Construction Noise Model - Phase 3							
	Level Lr	Height	Coordinates				
Name	Day	neight	Х	Υ	Z		
	(dBA)	(m)	(m)	(m)	(m)		
R1	73.1	1.52	1073.36	734.39	1.52		
R2	67.4	1.52	1073.76	767.76	1.52		
R3	67.0	1.52	1094.39	775.07	1.52		
R4	64.2	1.52	1139.11	767.70	1.52		
R5	66.2	1.52	1139.39	734.22	1.52		

Cadna Noise Model - Noise Levels at Receivers - Construction Noise Model - Phase 4							
	Level Lr	Height	Coordinates				
Name	Day	пеідііі	Х	Υ	Z		
	(dBA)	(m)	(m)	(m)	(m)		
R1	69.0	1.52	1073.36	734.39	1.52		
R2	63.1	1.52	1073.76	767.76	1.52		
R3	62.7	1.52	1094.39	775.07	1.52		
R4	59.7	1.52	1139.11	767.70	1.52		
R5	61.8	1.52	1139.39	734.22	1.52		

Cadna Noise Model - Noise Levels at Receivers - Construction Noise Model - Phase 1 Mitigated							
	Level Lr	Height	Loight Coordinates				
Name	Day	neight	Х	Υ	Z		
	(dBA)	(m)	(m)	(m)	(m)		
R1	73.3	1.52	1073.36	734.39	1.52		
R2	71.4	1.52	1073.76	767.76	1.52		
R3	72.9	1.52	1094.39	775.07	1.52		
R4	72.0	1.52	1139.11	767.70	1.52		
R5	69.8	1.52	1139.39	734.22	1.52		

AIR QUALITY TECHNICAL REPORT

Access Youth Academy 704 Euclid Avenue San Diego, California 92114

Prepared For

Access Youth Academy

Attention: Renato Paiva
7310 Miramar Road, Suite 405
San Diego, California 92126
Phone: 858-860-5688

Prepared By

Dr. Valorie L. Thompson Scientific Resources Associated

On the behalf of Eilar Associates, Inc. Acoustical & Environmental Consulting

210 South Juniper Street, Suite 100 Escondido, California 92025 www.eilarassociates.com Phone: (760) 738-5570

Fax: (760) 738-5227

Job #B71104A1

April 25, 2018

Air Quality Technical Report

for the

Access Youth Academy Project San Diego, CA

Submitted To:

Eilar and Associates 210 S. Juniper St., Suite 200 Escondido, CA 92025

Prepared By:

San Diego, CA 92109 Dr. Valorie L. Thompson, Principal (858) 488-2987

April 25, 2018

Table of Contents

1.0	Introduction	1
2.0	Existing Conditions	1
2.1	Regulatory Framework	
2.	1.1 Federal Regulations	
2.	1.2 State Regulations	3
2.	1.3 Local Regulations	
2.2	Climate and Meteorology	
2.3	Background Air Quality	
3.0	Thresholds of Significance	
4.0	Impacts	
4.1	Consistency with the RAQS and SIP	
4.2	Violation of an Air Quality Standard	
4.	2.1 Construction Impacts	
4.	2.2 Operational Impacts	
4.3	Cumulatively Considerable Net Increase of Non-attainment Pollutants	21
4.4	Exposure of Sensitive Receptors to Substantial Pollutant Concentrations	22
4.5	Objectionable Odors	23
5.0	Project Design Features	
6.0	Summary and Conclusions	
7.0	References	

Glossary of Terms and Acronyms

APCD Air Pollution Control District ARB California Air Resources Board

CAA Clean Air Act (Federal)

CAAQS California Ambient Air Quality Standard

CALINE4 California Line Source Dispersion Model (Version 4)

Caltrans California Department of Transportation

CCAA California Clean Air Act CO Carbon Monoxide

EPA United States Environmental Protection Agency

H₂S Hydrogen Sulfide

 mg/m^3 Milligrams per Cubic Meter $\mu g/m^3$ Micrograms per Cubic Meter

NAAQS National Ambient Air Quality Standard

NOx Oxides of Nitrogen NO₂ Nitrogen Dioxide

 O_3 Ozone

PM_{2.5} Fine Particulate Matter (particulate matter with an aerodynamic diameter of 2.5

microns or less

PM₁₀ Respirable Particulate Matter (particulate matter with an aerodynamic diameter of

10 microns or less

ppm Parts per million

RAQS San Diego County Regional Air Quality Strategy

ROCs Reactive Organic Compounds
ROG Reactive Organic Gases

SANDAG San Diego Association of Governments

SDAB San Diego Air Basin

SDAPCD San Diego County Air Pollution Control District

SIP State Implementation Plan

SOx Oxides of Sulfur SO₂ Sulfur Dioxide

TACs Toxic Air Contaminants

T-BACT Toxics Best Available Control Technology

VOCs Volatile Organic Compounds

1.0 Introduction

This report presents an assessment of potential air quality impacts associated with the proposed Access Youth Academy Project within the City of San Diego. The project site is located at 704 Euclid Avenue at the intersection with Guymon Street within the Encanto community.

This Air Quality Technical Report includes an evaluation of existing conditions in the project vicinity, an assessment of potential impacts associated with project construction, and an evaluation of project operational impacts.

2.0 Existing Conditions

The site is currently undeveloped and is vegetated with grass and disturbed areas. The site has been used as a sports field. The project site is located next to Horton Elementary School on Guymon Street. As it currently exists, the site is not a source of air emissions.

The following section provides information about the existing air quality regulatory framework, climate, air pollutants and sources, and sensitive receptors in the project area.

2.1 Regulatory Framework

2.1.1 Federal Regulations

Air quality is defined by ambient air concentrations of specific pollutants identified by the United States Environmental Protection Agency (EPA) to be of concern with respect to health and welfare of the general public. The EPA is responsible for enforcing the Federal Clean Air Act (CAA) of 1970 and its 1977 and 1990 Amendments. The CAA required the EPA to establish National Ambient Air Quality Standards (NAAQS), which identify concentrations of pollutants in the ambient air below which no adverse effects on the public health and welfare are anticipated. In response, the EPA established both primary and secondary standards for seven pollutants (called "criteria" pollutants). The seven pollutants regulated under the NAAQS are as follows: ozone

(O₃), carbon monoxide (CO), nitrogen dioxide (NO₂), respirable particulate matter (or particulate matter with an aerodynamic diameter of 10 microns or less, PM₁₀), fine particulate matter (or particulate matter with an aerodynamic diameter of 2.5 microns or less, PM_{2.5}), sulfur dioxide (SO₂), and lead (Pb). Primary standards are designed to protect human health with an adequate margin of safety. Secondary standards are designed to protect property and the public welfare from air pollutants in the atmosphere. Areas that do not meet the NAAQS for a particular pollutant are considered to be "non-attainment areas" for that pollutant. The San Diego Air Basin (SDAB) has been designated a marginal non-attainment area for the 8-hour NAAQS for O₃.

The following specific descriptions of health effects for each of the criteria air pollutants associated with project construction and operations are based on EPA (EPA 2017) and the California Air Resources Board (ARB) (ARB 2008).

Ozone. O_3 is considered a photochemical oxidant, which is a chemical that is formed when reactive organic gases (ROG) and oxides of nitrogen (NOx), both by-products of combustion, react in the presence of ultraviolet light. O_3 is considered a respiratory irritant and prolonged exposure can reduce lung function, aggravate asthma and increase susceptibility to respiratory infections. Children and those with existing respiratory diseases are at greatest risk from exposure to O_3 .

Carbon Monoxide. CO is a product of combustion, and the main source of CO in the SDAB is from motor vehicle exhaust. CO is an odorless, colorless gas. CO affects red blood cells in the body by binding to hemoglobin and reducing the amount of oxygen that can be carried to the body's organs and tissues. CO can cause health effects to those with cardiovascular disease, and can also affect mental alertness and vision.

Nitrogen Dioxide. NO₂ is also a by-product of fuel combustion, and is formed both directly as a product of combustion and in the atmosphere through the reaction of nitrogen oxide (NO) with oxygen. NO₂ is a respiratory irritant and may affect those with existing respiratory illness, including asthma. NO₂ can also increase the risk of respiratory illness.

Respirable Particulate Matter and Fine Particulate Matter. Respirable particulate matter, or PM₁₀, refers to particulate matter with an aerodynamic diameter of 10 microns or less. Fine particulate matter, or PM_{2.5}, refers to particulate matter with an aerodynamic diameter of 2.5 microns or less. Particulate matter in this size range has been determined to have the potential to lodge in the lungs and contribute to respiratory problems. PM₁₀ and PM_{2.5} arise from a variety of sources, including road dust, diesel exhaust, combustion, tire and brake wear, construction operations and windblown dust. PM₁₀ and PM_{2.5} can increase susceptibility to respiratory infections and can aggravate existing respiratory diseases such as asthma and chronic bronchitis. PM_{2.5} is considered to have the potential to lodge deeper in the lungs.

Sulfur dioxide. SO₂ is a colorless, reactive gas that is produced from the burning of sulfur-containing fuels such as coal and oil, and by other industrial processes. Generally, the highest concentrations of SO₂ are found near large industrial sources. SO₂ is a respiratory irritant that can cause narrowing of the airways leading to wheezing and shortness of breath. Long-term exposure to SO₂ can cause respiratory illness and aggravate existing cardiovascular disease.

Lead. Pb in the atmosphere occurs as particulate matter. Pb has historically been emitted from vehicles combusting leaded gasoline, as well as from industrial sources. With the phase-out of leaded gasoline, large manufacturing facilities are the sources of the largest amounts of lead emissions. Pb has the potential to cause gastrointestinal, central nervous system, kidney and blood diseases upon prolonged exposure. Pb is also classified as a probable human carcinogen.

2.1.2 State Regulations

California Clean Air Act. The California Clean Air Act was signed into law on September 30, 1988, and became effective on January 1, 1989. The Act requires that local air districts implement regulations to reduce emissions from mobile sources through the adoption and enforcement of transportation control measures. The California Clean Air Act required the SDAB to achieve a five percent annual reduction in ozone precursor emissions from 1987 until the standards are attained. If this reduction cannot be achieved, all feasible control measures must be implemented.

Furthermore, the California Clean Air Act required local air districts to implement a Best Available Control Technology rule and to require emission offsets for non-attainment pollutants.

The ARB is the state regulatory agency with authority to enforce regulations to both achieve and maintain air quality in the state. The ARB is responsible for the development, adoption, and enforcement of the state's motor vehicle emissions program, as well as the adoption of the California Ambient Air Quality Standards (CAAQS). The ARB also reviews operations and programs of the local air districts, and requires each air district with jurisdiction over a nonattainment area to develop its own strategy for achieving the NAAQS and CAAQS. The CAA allows states to adopt ambient air quality standards and other regulations provided they are at least as stringent as federal standards. The ARB has established the more stringent CAAOS for the six criteria pollutants through the California Clean Air Act of 1988, and also has established CAAQS for additional pollutants, including sulfates, hydrogen sulfide, vinyl chloride and visibilityreducing particles. The SDAB is currently classified as a non-attainment area under the CAAQS for O₃, PM₁₀, and PM_{2.5}. It should be noted that the ARB does not differentiate between attainment of the 1-hour and 8-hour CAAQS for O₃; therefore, if an air basin records exceedances of either standard the area is considered a non-attainment area for the CAAQS for O₃. The SDAB has recorded exceedances of both the 1-hour and 8-hour CAAQS for O₃. The following specific descriptions of health effects for the additional California criteria air pollutants are based on the ARB (ARB 2001).

Sulfates. Sulfates are the fully oxidized ionic form of sulfur. In California, emissions of sulfur compounds occur primarily from the combustion of petroleum-derived fuels (e.g., gasoline and diesel fuel) that contain sulfur. This sulfur is oxidized to sulfur dioxide (SO₂) during the combustion process and subsequently converted to sulfate compounds in the atmosphere. The conversion of SO₂ to sulfates takes place comparatively rapidly and completely in urban areas of California due to regional meteorological features. The ARB's sulfates standard is designed to prevent aggravation of respiratory symptoms. Effects of sulfate exposure at levels above the standard include a decrease in ventilatory function, aggravation of asthmatic symptoms and an increased risk of cardio-pulmonary disease. Sulfates are particularly effective in degrading

visibility, and due to fact that they are usually acidic, can harm ecosystems and damage materials and property.

Hydrogen Sulfide. H₂S is a colorless gas with the odor of rotten eggs. It is formed during bacterial decomposition of sulfur-containing organic substances. Also, it can be present in sewer gas and some natural gas, and can be emitted as the result of geothermal energy exploitation. Breathing H₂S at levels above the standard would result in exposure to a very disagreeable odor. In 1984, an ARB committee concluded that the ambient standard for H₂S is adequate to protect public health and to significantly reduce odor annoyance.

Vinyl Chloride. Vinyl chloride, a chlorinated hydrocarbon, is a colorless gas with a mild, sweet odor. Most vinyl chloride is used to make polyvinyl chloride (PVC) plastic and vinyl products. Vinyl chloride has been detected near landfills, sewage plants and hazardous waste sites, due to microbial breakdown of chlorinated solvents. Short-term exposure to high levels of vinyl chloride in air causes central nervous system effects, such as dizziness, drowsiness and headaches. Long-term exposure to vinyl chloride through inhalation and oral exposure causes liver damage. Cancer is a major concern from exposure to vinyl chloride via inhalation. Vinyl chloride exposure has been shown to increase the risk of angiosarcoma, a rare form of liver cancer, in humans.

Visibility Reducing Particles. Visibility-reducing particles consist of suspended particulate matter, which is a complex mixture of tiny particles that consists of dry solid fragments, solid cores with liquid coatings, and small droplets of liquid. These particles vary greatly in shape, size and chemical composition, and can be made up of many different materials such as metals, soot, soil, dust, and salt. The CAAQS is intended to limit the frequency and severity of visibility impairment due to regional haze. A separate standard for visibility-reducing particles that is applicable only in the Lake Tahoe Air Basin is based on reduction in scenic quality.

Table 1 presents a summary of the ambient air quality standards adopted by the federal and California Clean Air Acts.

Table 1 Ambient Air Quality Standards								
	AVERAGE		NIA STANDARDS		ATIONAL STA	NDARDS		
POLLUTANT	TIME	Concentration	Method	Primary	Secondary	Method		
Ozone	1 hour	0.09 ppm (176 μg/m ³)	Ultraviolet			Ethylene		
(O ₃)	8 hour	0.070 ppm (137 μg/m ³)	Photometry	0.070 ppm (137 μg/m ³)	0.070 ppm (137 μg/m ³)	Chemiluminescence		
Carbon Monoxide	8 hours	9.0 ppm (10 mg/m ³)	Non-Dispersive Infrared	9 ppm (10 mg/m ³)		Non-Dispersive Infrared		
(CO)	1 hour	20 ppm (23 mg/m ³)	Spectroscopy (NDIR)	35 ppm (40 mg/m ³)		Spectroscopy (NDIR)		
Nitrogen Dioxide	Annual Average	0.030 ppm $(56 \mu g/m^3)$ Gas Phase $(100 \mu g/m^3)$			Gas Phase			
(NO ₂)	1 hour	0.18 ppm (338 μ g/m ³)	Chemiluminescence	0.100 ppm (188 μg/m ³)		Chemiluminescence		
	24 hours	0.04 ppm $(105 \mu g/m^3)$						
Sulfur Dioxide (SO ₂)	3 hours		Ultraviolet Fluorescence		0.5 ppm (1300 μg/m ³)	Pararosaniline		
	1 hour	0.25 ppm (655 μg/m ³)		0.075 ppm (196 μg/m ³)				
Respirable Particulate Matter	24 hours	$50~\mu g/m^3$	Gravimetric or Beta Attenuation	150 μg/m ³	150 μg/m ³	Inertial Separation and Gravimetric Analysis		
(PM ₁₀)	Annual Arithmetic Mean	20 μg/m ³						
Fine Particulate	Annual Arithmetic Mean	12 μg/m ³	Gravimetric or Beta	12 μg/m ³		Inertial Separation and		
Matter (PM _{2.5})	24 hours		Attenuation	$35 \mu g/m^3$		Gravimetric Analysis		
Sulfates	24 hours	25 μg/m ³	Ion Chromatography					
	30-day Average	$1.5~\mu g/m^3$						
Lead	Calendar Quarter		Atomic Absorption	$1.5~\mu g/m^3$	$1.5 \ \mu g/m^3$	Atomic Absorption		
	3-Month Rolling Average			$0.15 \ \mu g/m^3$	$0.15 \ \mu g/m^3$			
Hydrogen Sulfide	1 hour	0.03 ppm (42 μg/m³)	Ultraviolet Fluorescence					
Vinyl Chloride	24 hours	0.010 ppm (26 μg/m³)	Gas Chromatography					

ppm= parts per million; μg/m³ = micrograms per cubic meter; mg/m³= milligrams per cubic meter
Source: California Air Resources Board, www.arb.ca.gov, 2018, http://www.arb.ca.gov/research/aaqs/aaqs2.pdf

Toxic Air Contaminants. In 1983, the California Legislature enacted a program to identify the health effects of Toxic Air Contaminants (TACs) and to reduce exposure to these contaminants to protect the public health (AB 1807: Health and Safety Code sections 39650-39674). The Legislature established a two-step process to address the potential health effects from TACs. The first step is the risk assessment (or identification) phase. The second step is the risk management (or control) phase of the process.

The State of California has identified diesel particulate matter as a TAC. Diesel particulate matter is emitted from on- and off-road vehicles that utilize diesel as fuel. Following identification of diesel particulate matter as a TAC in 1998, the ARB has worked on developing strategies and regulations aimed at reducing the emissions and associated risk from diesel particulate matter. The overall strategy for achieving these reductions is found in the *Risk Reduction Plan to Reduce Particulate Matter from Diesel-Fueled Engines and Vehicles* (State of California 2000). A stated goal of the plan is to reduce the cancer risk statewide arising from exposure to diesel particulate matter by 75 percent by 2010 and by 85 percent by 2020. The *Risk Reduction Plan* contains the following three components:

- New regulatory standards for all new on-road, off-road and stationary diesel-fueled engines
 and vehicles to reduce diesel particulate matter emissions by about 90 percent overall from
 current levels;
- New retrofit requirements for existing on-road, off-road and stationary diesel-fueled engines and vehicles where determined to be technically feasible and cost-effective; and
- New Phase 2 diesel fuel regulations to reduce the sulfur content levels of diesel fuel to no more than 15 ppm to provide the quality of diesel fuel needed by the advanced diesel particulate matter emission controls.

As an ongoing process, the ARB reviews air contaminants and identifies those that are classified as TACs. The ARB also continues to establish new programs and regulations for the control of TACs, including diesel particulate matter, as appropriate.

The local air pollution control district (APCD) has the primary responsibility for the development and implementation of rules and regulations designed to attain the NAAQS and CAAQS, as well as the permitting of new or modified sources, development of air quality management plans, and adoption and enforcement of air pollution regulations. The San Diego APCD is the local agency responsible for the administration and enforcement of air quality regulations in San Diego County.

The APCD and the San Diego Association of Governments (SANDAG) are responsible for developing and implementing the clean air plan for attainment and maintenance of the ambient air quality standards in the SDAB. The San Diego County Regional Air Quality Strategy (RAQS) was initially adopted in 1991, and is updated on a triennial basis. The RAQS was updated in 1995, 1998, 2001, 2004, 2009, and most recently in 2016 (APCD 2016). The RAQS outlines APCD's plans and control measures designed to attain the state air quality standards for O₃. The RAQS does not address the state air quality standards for PM₁₀ or PM_{2.5}. The APCD has also developed the air basin's input to the State Implementation Plan (SIP), which is required under the Federal Clean Air Act for areas that are out of attainment of air quality standards. The SIP includes the APCD's plans and control measures for attaining the O₃ NAAQS. The SIP is also updated on a triennial basis. The latest SIP update that has been approved by EPA was in 2007. The current SIP is the APCD's Eight-Hour Ozone Attainment Plan for San Diego County (hereinafter referred to as the Attainment Plan) (APCD 2007). The Attainment Plan forms the basis for the SIP update, as it contains documentation on emission inventories and trends, the APCD's emission control strategy, and an attainment demonstration that shows that the SDAB will meet the NAAQS for O₃. Emission inventories, projections, and trends in the Attainment Plan are based on the latest O₃ SIP planning emission projections compiled and maintained by ARB. The inventories are based on data submitted by stakeholder agencies, including the San Diego Association of Governments (SANDAG), based on growth projections in municipal General Plans.

Because the ARB mobile source emission projections and SANDAG growth projections are based on population and vehicle trends and land use plans developed by the cities and by the County as part of the development of General Plans, projects that propose development that is consistent with the growth anticipated by the general plans would be consistent with the RAQS and the Attainment Plan. In the event that a project would propose development which is less dense than anticipated

within the general plan, the project would likewise be consistent with the RAQS and the Attainment Plan. If a project proposes development that is greater than that anticipated in the general plan and SANDAG's growth projections, the project might be in conflict with the RAQS and SIP, and might have a potentially significant impact on air quality.

2.1.3 Local Regulations

In San Diego County, the San Diego APCD is the regulatory agency that is responsible for maintaining air quality, including implementation and enforcement of state and federal regulations. The project site is located in the City of San Diego. The City of San Diego has adopted a General Plan that includes a Conservation Element that adopts policies to reduce air emissions and improve air quality within the City.

2.2 Climate and Meteorology

The project site is located in the SDAB. The climate of the SDAB is dominated by a semipermanent high pressure cell located over the Pacific Ocean. This cell influences the direction of prevailing winds (westerly to northwesterly) and maintains clear skies for much of the year. The high pressure cell also creates two types of temperature inversions that may act to degrade local air quality.

Subsidence inversions occur during the warmer months as descending air associated with the Pacific high pressure cell comes into contact with cool marine air. The boundary between the two layers of air creates a temperature inversion that traps pollutants. The other type of inversion, a radiation inversion, develops on winter nights when air near the ground cools by heat radiation and air aloft remains warm. The shallow inversion layer formed between these two air masses also can trap pollutants. As the pollutants become more concentrated in the atmosphere, photochemical reactions occur that produce ozone, commonly known as smog.

Figure 1 provides a graphic representation of the prevailing winds in the project vicinity, as measured in downtown San Diego, which is the closest meteorological monitoring station to the site.

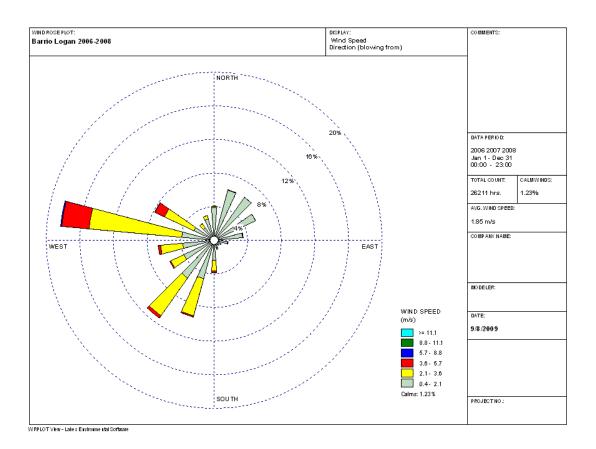


Figure 1. Wind Rose – San Diego

2.3 Background Air Quality

The APCD operates a network of ambient air monitoring stations throughout San Diego County. The purpose of the monitoring stations is to measure ambient concentrations of the pollutants and determine whether the ambient air quality meets the CAAQS and the NAAQS. The nearest ambient monitoring station to the project site is the San Diego monitoring station, which measures O₃, CO, NO₂, PM₁₀, and PM_{2.5}. Monitoring for SO₂ is no longer conducted within the SDAB as there have been no exceedances in more than 10 years. Ambient concentrations of pollutants over the last five years are presented in Table 2.

The San Diego monitoring station measured one exceedance of the 8-hour NAAQS in 2014. The annual average PM₁₀ concentration exceeded the CAAQS in 2013. While single exceedances of the 24-hour NAAQS for PM_{2.5} were measured at the San Diego monitoring station, the 98th percentile values did not exceed the NAAQS. The data from the monitoring station indicates that air quality is in attainment of all other air quality standards.

Table 2 Ambient Background Concentrations							
Air Quality Indicator	2012	2013	2014	2015	2016		
Ozone (O ₃)							
Peak 1-hour value (ppm)	0.071	0.063	0.093	0.089	0.072		
Days above state standard (0.09 ppm)	0	0	0	0	0		
Peak 8-hour value (ppm)	0.065	0.053	0.072	0.067	0.061		
Fourth high 8-hour value (ppm)	0.052	0.052	0.068	0.061	0.058		
Days above federal standard (0.070 ppm) ⁽¹⁾	0	0	1	0	0		
Days above state standard (0.070 ppm)	0	0	1	0	0		
Particulate matter less than or equal to 2.5 micron	s in diameter	(PM _{2.5})					
Peak 24-hour value (μg/m³)	39.8	37.4	36.7	33.4	34.4		
98 th percentile 24-hour value (μg/m ³)	24.1	19.6	24.8	19.6	NA		
Days above federal standard (35 μg/m ³)	1	1	1	0	0		
Annual Average value (µg/m³)	11.0	10.3	10.1	9.3	9.6		
Particulate matter less than or equal to 10 microns	s in diameter	(PM ₁₀)					
Peak 24-hour value (federal) (μg/m ³) (2)	45	90	40	53	49		
Peak 24-hour value (state) (μg/m ³) (2)	47	92	41	54	51		
Days above federal standard (150 μg/m³)	0	0	0	0	0		
Days above state standard (50 μg/m ³)	0	1	0	0	0		
Annual Average value (federal) (µg/m ³) (2)	21.8	24.9	23.3	23.0	21.9		
Annual Average value (state) (µg/m³) (2)	22.2	25.4	23.8	23.2	22.0		
Carbon Monoxide (CO)	•				•		
Peak 1-hour value (ppm)	2.6	3.0	2.7	2.6	2.2		
Days above federal and state standard (9 ppm)	0	0	0	0	0		
Peak 8-hour value (ppm)	1.9	2.1	1.9	1.9	1.7		
Days above federal standard (35 ppm)	0	0	0	0	0		
Days above state standard (20 ppm)	0	0	0	0	0		
Nitrogen Dioxide (NO ₂)							
Peak 1-hour value (ppm)	0.065	0.072	0.075	0.062	0.073		
Days above federal standard (0.100 ppm)	0	0	0	0	0		
Days above state standard (0.18 ppm)	0	0	0	0	0		
Annual Average value (ppm)	0.013	0.014	0.013	0.014	0.011		

 $ppm = parts \ per \ million; \ \mu g/m^3 = micrograms \ per \ cubic \ meter; \ NA = data \ not \ available \\ \textit{Source:} \quad ARB \quad \underline{http://www.arb.ca.gov/adam/topfour/topfourdisplay.php}; \ Five-Year \ Summary, \ \underline{http://www.sdapcd.org/info/reports/5-year-parts per million; \ \mu g/m^3 = micrograms \ per \ cubic meter; \ NA = data \ not \ available \\ \textit{Source:} \quad ARB \quad \underline{http://www.arb.ca.gov/adam/topfour/topfourdisplay.php}; \ Five-Year \ Summary, \ \underline{http://www.sdapcd.org/info/reports/5-year-parts per million; \ \mu g/m^3 = micrograms \ per \ cubic meter; \ NA = data \ not \ available \\ \textit{Source:} \quad ARB \quad \underline{http://www.arb.ca.gov/adam/topfour/topfourdisplay.php}; \ Five-Year \ Summary, \ \underline{http://www.sdapcd.org/info/reports/5-year-parts per \ not \ available$ summary.pdf.

 $^{^{\}left(1\right)}$ The federal 8-hour O_{3} standard was revised downward in 2015 to 0.070 ppm.

⁽²⁾ State and federal statistics may differ for the following reasons: (1) State statistics are based on California approved samplers, whereas national statistics are based on samplers using federal reference or equivalent methods. State and federal statistics may therefore be based on different samplers. (2) State criteria for ensuring that data are sufficiently complete for calculating valid annual averages are more stringent than the national criteria.

3.0 Thresholds of Significance

The City of San Diego has adopted its Significance Determination Thresholds (City of San Diego 2016) that are based on Appendix G of the State CEQA Guidelines. According to the Significance Determination Thresholds, a project would have a significant environmental impact if the project would result in:

- A conflict with or obstruct the implementation of the applicable air quality plan;
- A violation of any air quality standard or contribute substantially to an existing or projected air quality violation;
- Exposing sensitive receptors to substantial pollutant concentrations;
- Creating objectionable odors affecting a substantial number of people;
- Exceeding 100 pounds per day of particulate matter (PM) (dust); or
- Substantial alteration of air movement in the area of the project.

In their Significance Determination Thresholds, the City of San Diego has adopted emission thresholds based on the thresholds for an Air Quality Impact Assessment in the San Diego Air Pollution Control District's Rule 20.2. These thresholds are shown in Table 3.

Table 3							
Significance Criteria for Air Quality Impacts							
Pollutant	Emission Rate						
	Lbs/Hr	Lbs/Day	Tons/Year				
Carbon Monoxide (CO)	100	550	100				
Oxides of Nitrogen (NOx)	25	250	40				
Respirable Particulate Matter (PM ₁₀)		100	15				
Oxides of Sulfur (SOx)	25	250	40				
Lead and Lead Compounds		3.2	0.6				
Fine Particulate Matter (PM _{2.5})		55	10				
Volatile Organic Compounds (VOCs)		137	15				

In addition to impacts from criteria pollutants, project impacts may include emissions of pollutants identified by the state and federal government as toxic air contaminants (TACs) or Hazardous Air Pollutants (HAPs). If a project has the potential to result in emissions of any TAC or HAP which

may expose sensitive receptors to substantial pollutant concentrations, the project would be deemed to have a potentially significant impact. With regard to evaluating whether a project would have a significant impact on sensitive receptors, air quality regulators typically define sensitive receptors as schools (Preschool-12th Grade), hospitals, resident care facilities, or day-care centers, or other facilities that may house individuals with health conditions that would be adversely impacted by changes in air quality.

With regard to odor impacts, a project that proposes a use which would produce objectionable odors would be deemed to have a significant odor impact if it would affect a considerable number of offsite receptors.

Construction and operation emissions of the project were evaluated based on the Federal and State standards as referenced in the City's Significance Determination Thresholds.

4.0 Impacts

The Access Youth Academy Project would result in both construction and operational impacts. Construction impacts include emissions associated with the construction of the project. Operational impacts include emissions associated with the project, including traffic, at full buildout. The following sections present the analysis of air quality impacts based on the City's Significance Determination Thresholds.

4.1 Consistency with the RAQS and SIP

The Proposed Project would have a significant impact if it conflicts with or obstructs implementation of the applicable air quality plans (the RAQS and SIP).

As discussed in Section 2.1, the SIP is the document that sets forth the state's strategies for attaining and maintaining the NAAQS. The APCD is responsible for developing the San Diego portion of the SIP, and has developed an attainment plan for attaining the 8-hour NAAQS for O₃. The RAQS sets forth the plans and programs designed to meet the state air quality standards. Through the RAQS and SIP planning processes, the APCD adopts rules, regulations, and programs designed to achieve attainment of the ambient air quality standards and maintain air quality in the SDAB.

Conformance with the RAQS and SIP determines whether a Project will conflict with or obstruct implementation of the applicable air quality plans. Because the CARB mobile source emission projections and SANDAG growth projections are based on population and vehicle trends and land use plans developed by the City of San Diego as part of the development of General Plans, projects that propose development that is consistent with the growth anticipated by the general plan would be consistent with the RAQS and SIP. In the event that a project would propose development which is less dense than anticipated within the general plan, the project would likewise be consistent with the RAQS and SIP.

The RAQS and SIP address air emissions and impacts from industrial sources, area-wide sources, and mobile sources. The programs also consider transportation control measures and indirect

source review. Industrial sources are typically stationary air pollution sources that are subject to APCD rules and regulations, and over which the APCD has regulatory authority. Area-wide sources include sources such as consumer products use, small utility engines, hot water heaters, and furnaces. Both the ARB and the APCD have authority to regulate these sources and have developed plans and programs to reduce emissions from certain types of area-wide sources. Mobile sources are principally emissions from motor vehicles. The ARB establishes emission standards for motor vehicles and establishes regulations for other mobile source activities including off-road vehicles.

Both the RAQS and SIP address emissions of ozone precursors (ROG and NOx), as the SDAB is classified as a basic non-attainment area for the NAAQS and a non-attainment area for the CAAQS. The RAQS and SIP do not address particulate matter. The California CAA requires an air quality strategy to achieve a 5% average annual ozone precursor emission reduction when implemented or, if that is not achievable, an expeditious schedule for adopting every feasible emission control measure under air district purview (California Health and Safety Code (H&SC) Section 40914). The current RAQS represents an expeditious schedule for adopting feasible control measures, since neither San Diego nor any air district in the State has demonstrated sustained 5% average annual ozone precursor reductions.

Most of the control measures adopted in the RAQS apply to industrial sources and specific source categories. SDAPCD Rule 55 would apply to construction of the project, and requires control of fugitive dust during construction. Should the properties include stationary sources such as boilers or emergency generators, these sources would be subject to SDAPCD rules and would be required to obtain a permit to operate.

The City's Program Environmental Impact Report determined that the project would result in a less than significant impact to land use. The site is currently zoned as Neighborhood Mixed-Use Low. The project would not result in more intense development than the site is currently zoned for and therefore would not conflict with the RAQS or SIP. The project would therefore result in a less than significant impact.

4.2 Violation of an Air Quality Standard

The Proposed Project would have a significant impact if it violates any air quality standard or contributes substantially to an existing or projected air quality violation.

To address this significance threshold, an evaluation of emissions associated with both the construction and operational phases of the Project was conducted.

4.2.1 Construction Impacts

Emissions of pollutants such as fugitive dust and heavy equipment exhaust that are generated during construction are generally highest near the construction site. Emissions from the construction of the project were estimated using the CalEEMod Model (SCAQMD 2017), Version 2016.3.2. The CalEEMod Model provides default assumptions regarding horsepower rating, load factors for heavy equipment, and hours of operation per day. Default assumptions within the CalEEMod Model and assumptions for similar projects were used to represent operation of heavy construction equipment. Construction calculations within the CalEEMod Model utilize the number and type of construction equipment to calculate emissions from heavy construction equipment. Fugitive PM₁₀ and PM_{2.5} emissions estimates take into account compliance with Rule 55 requirements for fugitive dust suppression, which require that no visible dust be present beyond the site boundaries.

In addition to calculating emissions from heavy construction equipment, the CalEEMod Model contains calculation modules to estimate emissions of fugitive dust, based on the amount of earthmoving or surface disturbance required; emissions from heavy-duty truck trips or vendor trips during construction activities; emissions from construction worker vehicles during daily commutes; and emissions of ROG during application of architectural coatings. As part of the project design features, it was assumed that standard dust control measures (watering three times daily; reducing speeds to 15 mph on unpaved surfaces) and architectural coatings that comply with SDAPCD Rule 67.0.1 (assumed to meet a VOC content of 50 g/l for interior (flat) painting and 100 g/l for exterior (non-flat) painting) would be used during construction.

Based on information from the project applicant, construction would commence in July 2018 and would require 240 days months to complete. The project would be complete by June 2019. Construction would include foundations, building construction, and minor sitework and offsite improvements. The analysis was based on the equipment list provided by the applicant.

Table 4 provides the detailed construction emission estimates as calculated with the CalEEMod Model. Appendix A provides CalEEMod Model outputs showing the construction calculations. As shown in Table 4, emissions of criteria pollutants during construction would be below the thresholds of significance for all project construction phases for all pollutants. Project criteria pollutant emissions during construction would be temporary and are less than significant.

Table 4 Estimated Maximum Daily Construction Emissions Access Youth Academy

Emission Source	ROG	NOx	CO	SO ₂	PM ₁₀	PM _{2.5}
		Found	lations			
Fugitive Dust	-	-	-	-	2.36	1.29
Offroad Equipment	4.64	43.89	29.62	0.06	2.37	2.25
Worker Trips	0.14	0.10	1.13	0.003	0.27	0.07
Subtotal	4.78	43.99	30.75	0.06	5.00	3.61
Significance Criteria	137	250	550	250	100	55
Significant?	No	No	No	No	No	No
	$B\iota$	ilding Constr	uction - Exter	ior		
Offroad Equipment	1.99	17.82	13.97	0.02	1.17	1.11
Vendor Trips	0.01	0.26	0.07	0.001	0.02	0.01
Worker Trips	0.02	0.01	0.14	0.001	0.03	0.01
Subtotal	2.02	18.09	14.18	0.02	1.22	1.13
Significance Criteria	137	250	550	250	100	55
Significant?	No	No	No	No	No	No
	Bı	uilding Constr	uction - Interi	or		
Offroad Equipment	0.68	5.68	4.96	0.01	0.39	0.38
Vendor Trips	0.01	0.26	0.07	0.001	0.02	0.01
Worker Trips	0.02	0.01	0.14	0.0004	0.03	0.01
Subtotal	0.71	5.95	5.17	0.01	0.44	0.40
Significance Criteria	137	250	550	250	100	55
Significant?	No	No	No	No	No	No
		Site	Work			
Offroad Equipment	3.45	34.46	20.90	0.04	1.73	1.61
Worker Trips	0.12	0.09	0.96	0.003	0.23	0.06
Subtotal	3.17	34.55	21.86	0.04	1.96	1.67
Significance Criteria	137	250	550	250	100	55
Significant?	No	No	No	No	No	No
		Offsite Imp	provements			
Offroad Equipment	3.15	28.74	26.01	0.05	1.52	1.46
Worker Trips	0.13	0.09	1.02	0.003	0.27	0.07
Subtotal	3.28	28.83	27.03	0.05	1.79	1.53
Significance Criteria	137	250	550	250	100	55
Significant?	No	No	No	No	No	No
	Arc	hitectural Cod	tings Applica	tion		
Architectural Coatings	11.77	-	-	-	-	-
Offroad Equipment	0.30	2.01	1.85	0.003	0.15	0.15
Worker Trips	0.004	0.003	0.03	0.00	0.002	0.002
Subtotal	12.07	2.01	1.88	0.00	0.15	0.15
Significance Criteria	137	250	550	250	100	55
Significant?	No	No	No	No	No	No
Maximum Daily	18.37	102.50	71.95	0.14	8.61	6.81
Emissions ^a						
Significance Criteria	137	250	550	250	100	55
Significant?	No	No	No	No	No	No

^aMaximum emissions of criteria pollutants occur during simultaneous building construction, paving, and architectural coatings application.

4.2.2 Operational Impacts

Operational impacts associated with the Access Youth Academy would include impacts associated with vehicular traffic, as well as area sources and energy use.

Operational impacts associated with vehicular traffic and area sources including energy use, landscaping, and architectural coatings use for maintenance purposes were estimated using the CalEEMod Model, Version 2016.3.2. The CalEEMod Model calculates vehicle emissions based on emission factors from the EMFAC2014 model. It was assumed that the first year of full occupancy would be 2020. Based on the results of the EMFAC2014 model for subsequent years, emissions would decrease on an annual basis from 2020 onward due to phase-out of higher polluting vehicles and implementation of more stringent emission standards that are taken into account in the EMFAC2014 model. Table 5 presents the results of the emission calculations, in lbs/day, for the project.

Based on the estimated emissions associated with Project operations, the emissions of all criteria pollutants are below the significance thresholds for the project. Impacts would be less than significant.

		Tal	ole 5				
		Operationa	al Emissions				
Access Youth Academy							
	ROG	NOx	СО	SO _x	PM ₁₀	PM _{2.5}	
		Maximum D	aily Emissions				
		Summer D	ay, Lbs/day				
Area Sources	0.23	0.00	0.00	0.00	0.00	0.00	
Energy Use	0.003	0.02	0.02	0.00	0.00	0.00	
Vehicular Emissions	0.36	1.39	3.68	0.01	0.93	0.26	
TOTAL	0.60	1.42	3.70	0.01	0.93	0.26	
Significance Criteria	137	250	550	250	100	55	
Significant?	No	No	No	No	No	No	
		Winter Da	ay, Lbs/day				
Area Sources	0.23	0.00	0.00	0.00	0.00	0.00	
Energy Use	0.003	0.02	0.02	0.00	0.00	0.00	
Vehicular Emissions	0.35	1.42	3.70	0.01	0.93	0.26	
TOTAL	0.59	1.45	3.73	0.01	0.93	0.26	
Significance Criteria	137	250	550	250	100	55	
Significant?	No	No	No	No	No	No	

CO "Hot Spots"

Projects involving traffic impacts may result in the formation of locally high concentrations of CO, known as CO "hot spots." To verify that the project would not cause or contribute to a violation of the CO standard, a screening evaluation of the potential for CO "hot spots" was conducted. Project-related traffic would have the potential to result in CO "hot spots" if project-related traffic resulted in a degradation in the level of service at any intersection to LOS E or F.

According to the traffic evaluation for the project (Rick Engineering 2017), based on the estimated trip generation for the proposed facility, the single project access point along Guymon Street can accommodate the project's peak hour trips. Due to the small number of average daily trips generated, the project would not cause a degradation in the LOS and no CO "hot spots" would result.

4.3 Cumulatively Considerable Net Increase of Non-attainment Pollutants

The Proposed Project would have a significant impact if it results in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors.

As discussed in Section 2.0, the SDAB is considered a non-attainment area for the 8-hour NAAQS for O₃, and is considered a non-attainment area for the CAAQS for O₃, PM₁₀, and PM_{2.5}. An evaluation of emissions of non-attainment pollutants was conducted in Section 4.2. Based on that evaluation, emissions of non-attainment pollutants during construction would be below the significance thresholds for ozone precursors, PM₁₀, and PM_{2.5}. Emissions of all pollutants would be below the significance thresholds for operations.

The region surrounding the project is already developed; the project provides infill development. Because operational emissions for development of the project are below the significance thresholds for nonattainment pollutants, they would not result in a cumulatively considerable impact.

4.4 Exposure of Sensitive Receptors to Substantial Pollutant Concentrations

The Proposed Project would have a significant impact if it exposes sensitive receptors (including, but not limited to, schools, hospitals, resident care facilities, parks, or day-care

centers) to substantial pollutant concentrations.

Carbon Monoxide

As discussed in Section 4.2, the project would not result in exposure of sensitive receptors to

substantial concentrations of CO, as CO "hot spots" would not result from project-related traffic.

Impacts from CO would therefore be less than significant.

Toxic Air Contaminants

The threshold concerns whether the project could expose sensitive receptors to substantial

pollutant concentrations of toxic air contaminants (TACs). If a project has the potential to result

in emissions of any TAC which result in a cancer risk of greater than 10 in 1 million or substantial

non-cancer risk, the project would be deemed to have a potentially significant impact.

The project is an after-school facility with classrooms and recreational facilities. Construction

activities are minor and would not generate substantial emissions of TACs. Furthermore, the

project is not an operational source of TACs and would therefore not result in emissions of TACs.

Because emissions of all criteria pollutants are below the thresholds set forth in the City's

Significance Determination Thresholds, the project would not expose sensitive receptors to

substantial pollutant concentrations and impacts from other criteria pollutants would be less than

significant.

Air Quality Technical Report Access Youth Academy 22

04/25/18

4.5 Objectionable Odors

The Proposed Project would have a significant impact if it creates objectionable odors affecting a substantial number of people.

Project construction could result in minor amounts of odor compounds associated with diesel heavy equipment exhaust. These compounds would be emitted in various amounts and at various locations during construction. Sensitive receptors located in the vicinity of the construction site include the residences to the south of the site. Odors are highest near the source and would quickly dissipate offsite; any odors associated with construction would be temporary.

The project would not be considered a source of objectionable odors during operations. Thus the potential for odor impacts associated with the project for both construction and operations is less than significant.

5.0 Project Design Features

Standard best management practices to reduce construction emissions will be employed during construction and operation of the project. The Project is subject to the requirements of San Diego APCD Rule 55, which requires that no visible dust be present beyond the site boundaries. Standard dust control measures will be employed during construction. In addition to dust control measures, architectural coatings applied to interior and exterior surfaces will be required to meet the ROG limitations of SDAPCD Rule 67.0.1, which limits the ROG content of most coatings to 100 grams/liter. Coatings will also be applied using high volume, low pressure spray equipment to reduce overspray to the extent possible.

Operational emissions would be below the significance thresholds for all pollutants. Air quality impacts are less than significant and no mitigation measures are required.

6.0 Summary and Conclusions

In summary, the project would result in emissions of air pollutants for both the construction phase and operational phase of the project. The air quality impact analysis evaluated the potential for adverse impacts to the ambient air quality due to construction and operational emissions. Construction emissions would be minor due to the minor improvements required at the site to convert the existing office building to a school. Emissions are less than the significance thresholds for all pollutants during construction. Construction impacts are less than significant and would not be cumulatively considerable.

Operational emissions would include emissions associated with vehicles, energy use, and area sources. As discussed in Section 4.0, the impacts would be below the significance thresholds for all pollutants. Impacts from project-related traffic were evaluated to assess whether impacts would exceed the ambient air quality standards for CO, and it was demonstrated that emissions of CO would not result in a significant air quality impact or a cumulatively considerable impact.

Emissions of TACs or odors would not result in a significant impact to the project, and project emissions of TACs and odors would be less than significant.

7.0 References

- California Air Resources Board. 2008. ARB Fact Sheet: Air Pollution and Health. November 20.
- City of San Diego. 2016. Significance Determination Thresholds.
- Rick Engineering. 2017. Access Youth Academy. Traffic/Parking Generation Assessment. August 3.
- San Diego Air Pollution Control District. 2015. 2015 Air Toxics "Hot Spots" Program Report for San Diego County. January 25.
- San Diego Air Pollution Control District. 2016. 2016 Regional Air Quality Strategy Revision. April 22.
- South Coast Air Quality Management District. 1999. CEQA Air Quality Handbook. (as updated)
- South Coast Air Quality Management District. 2006. Final Methodology to Calculate Particulate Matter (PM) 2.5 and PM 2.5 Significance Thresholds. October.
- South Coast Air Quality Management District. 2013. SCAQMD Air Quality Significance Thresholds. http://www.aqmd.gov/ceqa/handbook/signthres.pdf. March.
- South Coast Air Quality Management District. 2017. CalEEMod Model, Version 2016.3.2.
- U.S. EPA. 2017. *Overview of the Clean Air Act and Air Pollution*. http://www.epa.gov/air/caa/peg/index.html.

Appendix A

CalEEMod Model Output

CalEEMod Version: CalEEMod.2016.3.2

Page 1 of 1

Date: 4/19/2018 3:17 PM

Access Youth Academy - San Diego Air Basin, Summer

Access Youth Academy San Diego Air Basin, Summer

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
High School	36.00	Student	0.11	4,775.80	0
Racquet Club	5.38	1000sqft	0.12	5,382.00	0

1.2 Other Project Characteristics

UrbanizationUrbanWind Speed (m/s)2.6Precipitation Freq (Days)40

Climate Zone 13 Operational Year 2020

Utility Company San Diego Gas & Electric

 CO2 Intensity
 720.49
 CH4 Intensity
 0.029
 N20 Intensity
 0.006

(lb/MWhr) (lb/MWhr) (lb/MWhr)

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - Based on 8 squash courts and 36-student facility

Construction Phase - Based on anticipated construction schedule

Off-road Equipment - Based on construction equipment list

Off-road Equipment - Based on construction equipment list

Off-road Equipment - Based on construction equipment list

Off-road Equipment -

Off-road Equipment - Based on construction equipment

Off-road Equipment - Based on construction equipment list

Grading - Assuming no import/export required

Architectural Coating - Rule 67.0.1 coatings

Vehicle Trips - Assuming 2 trips per student; 144 trips for squash courts based on Traffic Memo

Area Coating - Rule 67.0.1 coatings

Construction Off-road Equipment Mitigation -

Water Mitigation -

Waste Mitigation -

Table Name	Column Name	Default Value	New Value
tblArchitecturalCoating	EF_Nonresidential_Exterior	250.00	100.00
tblArchitecturalCoating	EF_Nonresidential_Interior	250.00	50.00
tblAreaCoating	Area_EF_Nonresidential_Exterior	250	100
tblAreaCoating	Area_EF_Nonresidential_Interior	250	50
tblConstDustMitigation	WaterUnpavedRoadVehicleSpeed	0	15
tblConstructionPhase	NumDays	100.00	88.00
tblConstructionPhase	NumDays	2.00	113.00
tblConstructionPhase	NumDays	5.00	159.00
tblConstructionPhase	NumDays	100.00	133.00
tblConstructionPhase	NumDays	5.00	23.00
tblConstructionPhase	PhaseEndDate	12/13/2018	3/21/2019
tblConstructionPhase	PhaseEndDate	7/26/2018	12/13/2018
tblConstructionPhase	PhaseEndDate	12/20/2018	6/4/2019
tblConstructionPhase	PhaseStartDate	7/27/2018	11/20/2018
tblConstructionPhase	PhaseStartDate	7/25/2018	7/10/2018
tblConstructionPhase	PhaseStartDate	12/14/2018	10/25/2018
tblGrading	AcresOfGrading	0.00	2.00
tblOffRoadEquipment	LoadFactor	0.40	0.40
tblOffRoadEquipment	LoadFactor	0.38	0.38
tblOffRoadEquipment	LoadFactor	0.38	0.38
tblOffRoadEquipment	LoadFactor	0.38	0.38

tblOffRoadEquipment	LoadFactor	0.38	0.38
tblOffRoadEquipment	LoadFactor	0.38	0.38
tblOffRoadEquipment	OffRoadEquipmentType		Rubber Tired Dozers
tblOffRoadEquipment	OffRoadEquipmentType		Off-Highway Trucks
tblOffRoadEquipment	OffRoadEquipmentType		Off-Highway Trucks
tblOffRoadEquipment	OffRoadEquipmentType		Excavators
tblOffRoadEquipment	OffRoadEquipmentType		Cement and Mortar Mixers
tblOffRoadEquipment	OffRoadEquipmentType		Plate Compactors
tblOffRoadEquipment	OffRoadEquipmentType		Rollers
tblOffRoadEquipment	OffRoadEquipmentType		Pumps
tblOffRoadEquipment	OffRoadEquipmentType		Generator Sets
tblOffRoadEquipment	OffRoadEquipmentType		Generator Sets
tblOffRoadEquipment	OffRoadEquipmentType		Air Compressors
tblOffRoadEquipment	OffRoadEquipmentType		Excavators
tblOffRoadEquipment	OffRoadEquipmentType		Plate Compactors
tblOffRoadEquipment	OffRoadEquipmentType		Generator Sets
tblOffRoadEquipment	OffRoadEquipmentType		Generator Sets
tblOffRoadEquipment	OffRoadEquipmentType		Rough Terrain Forklifts
tblOffRoadEquipment	OffRoadEquipmentType		Off-Highway Trucks
tblOffRoadEquipment	OffRoadEquipmentType		Excavators
tblOffRoadEquipment	OffRoadEquipmentType		Concrete/Industrial Saws
tblOffRoadEquipment	OffRoadEquipmentType		Pumps
tblOffRoadEquipment	OffRoadEquipmentType		Plate Compactors
tblOffRoadEquipment	OffRoadEquipmentType		Generator Sets
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	4.00	2.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	4.00	2.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	1.00
tblOffRoadEquipment	UsageHours	6.00	8.00
tblOffRoadEquipment	UsageHours	7.00	0.00
tblOffRoadEquipment	UsageHours	7.00	8.00

tblOffRoadEquipment	UsageHours	1.00	8.00
tblOffRoadEquipment	UsageHours	7.00	8.00
tblOffRoadEquipment	UsageHours	6.00	8.00
tblOffRoadEquipment	UsageHours	4.00	0.00
tblOffRoadEquipment	UsageHours	6.00	8.00
tblOffRoadEquipment	UsageHours	7.00	0.00
tblOffRoadEquipment	UsageHours	7.00	8.00
tblOffRoadEquipment	UsageHours	8.00	0.00
tblOffRoadEquipment	UsageHours	7.00	8.00
tblVehicleTrips	ST_TR	21.35	26.76
tblVehicleTrips	SU_TR	17.40	26.76
tblVehicleTrips	WD_TR	1.71	2.00
tblVehicleTrips	WD_TR	14.03	26.76

2.0 Emissions Summary

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/d	lay							lb/d	lay		
2018	18.3665	102.4981	71.9493	0.1350	6.6348	5.6649	12.2997	3.4704	5.3630	8.8334	0.0000	13,195.31 90	13,195.319 0	2.8755	0.0000	13,267.20 58
2019	7.2127	65.8196	53.5061	0.1053	0.5475	3.4122	3.9597	0.1455	3.2386	3.3841	0.0000	10,158.66 02	10,158.660 2	2.1925	0.0000	10,213.47 38
Maximum	18.3665	102.4981	71.9493	0.1350	6.6348	5.6649	12.2997	3.4704	5.3630	8.8334	0.0000	13,195.31 90	13,195.319 0	2.8755	0.0000	13,267.20 58

Mitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/d	day							lb/d	day		
2018	18.3665	102.4981	71.9493	0.1350	2.9498	5.6649	8.6148	1.4499	5.3630	6.8129	0.0000	13,195.31 90	13,195.319 0	2.8755	0.0000	13,267.20 58
2019	7.2127	65.8196	53.5061	0.1053	0.5475	3.4122	3.9597	0.1455	3.2386	3.3841	0.0000	10,158.66 02	10,158.660 2	2.1925	0.0000	10,213.47 37
Maximum	18.3665	102.4981	71.9493	0.1350	2.9498	5.6649	8.6148	1.4499	5.3630	6.8129	0.0000	13,195.31 90	13,195.319 0	2.8755	0.0000	13,267.20 58
	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	51.31	0.00	22.66	55.88	0.00	16.54	0.00	0.00	0.00	0.00	0.00	0.00

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day												lb/d	lay		
Area	0.2339	4.0000e- 005	4.2500e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005		9.0600e- 003	9.0600e- 003	2.0000e- 005		9.6600e- 003
Energy	2.6700e- 003	0.0243	0.0204	1.5000e- 004		1.8500e- 003	1.8500e- 003		1.8500e- 003	1.8500e- 003		29.1664	29.1664	5.6000e- 004	5.3000e- 004	29.3397
Mobile	0.3615	1.3910	3.6776	0.0115	0.9192	0.0112	0.9305	0.2457	0.0105	0.2562		1,170.686 6	1,170.6866	0.0646		1,172.301 7
Total	0.5981	1.4154	3.7023	0.0117	0.9192	0.0131	0.9323	0.2457	0.0124	0.2581		1,199.862 0	1,199.8620	0.0652	5.3000e- 004	1,201.651 0

Mitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/d	lay		
Area	0.2339	4.0000e- 005	4.2500e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005		9.0600e- 003	9.0600e- 003	2.0000e- 005		9.6600e- 003
Energy	2.6700e- 003	0.0243	0.0204	1.5000e- 004		1.8500e- 003	1.8500e- 003	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.8500e- 003	1.8500e- 003		29.1664	29.1664	5.6000e- 004	5.3000e- 004	29.3397
Mobile	0.3615	1.3910	3.6776	0.0115	0.9192	0.0112	0.9305	0.2457	0.0105	0.2562		1,170.686 6	1,170.6866	0.0646		1,172.301 7
Total	0.5981	1.4154	3.7023	0.0117	0.9192	0.0131	0.9323	0.2457	0.0124	0.2581		1,199.862 0	1,199.8620	0.0652	5.3000e- 004	1,201.651 0

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Foundations	Grading	7/10/2018	12/13/2018	5	113	
2	Building Construction Exterior	Building Construction	11/20/2018	3/21/2019	5	88	
3	Paving/Sitework	Paving	10/25/2018	6/4/2019	5	159	
4	Architectural Coating	Architectural Coating	12/21/2018	12/27/2018	5	5	
5	Building Construction Interior	Building Construction	12/13/2018	6/17/2019	5	133	
6	Paving Offsite	Paving	3/22/2019	4/23/2019	5	23	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 0

Acres of Paving: 0

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 15,237; Non-Residential Outdoor: 5,079; Striped Parking Area: 0

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Architectural Coating	Air Compressors	1	6.00	78	0.48
Paving/Sitework	Cement and Mortar Mixers	2	8.00	9	0.56
Paving Offsite	Cement and Mortar Mixers	2	8.00	9	0.56
Foundations	Concrete/Industrial Saws	1	8.00	81	0.73
Building Construction Exterior	Cranes	1	4.00	231	0.29
Paving/Sitework	Rubber Tired Dozers	1	8.00	247	0.40
Building Construction Interior	Cranes	1	0.00	231	0.29
Paving/Sitework	Pavers	1	0.00	130	0.42
Paving/Sitework	Rollers	1	8.00	80	0.38
Building Construction Interior	Forklifts	1	8.00	89	0.20
Foundations	Rubber Tired Dozers	1	8.00	247	0.40
Paving/Sitework	Off-Highway Trucks	1	8.00	402	0.38
Paving Offsite	Pavers	1	0.00	130	0.42
Foundations	Tractors/Loaders/Backhoes	2	6.00	97	0.37
Paving/Sitework	Tractors/Loaders/Backhoes	1	8.00	97	0.37
Paving Offsite	Rollers	1	8.00	80	0.38
Building Construction Interior	Tractors/Loaders/Backhoes	2	0.00	97	0.37
Paving Offsite	Tractors/Loaders/Backhoes	1	8.00	97	0.37
Foundations	Off-Highway Trucks	1	8.00	402	0.38
Foundations	Excavators	1	8.00	158	0.38
Foundations	Cement and Mortar Mixers	2	8.00	9	0.56
Foundations	Plate Compactors	2	8.00	8	0.43
Foundations	Rollers	1	8.00	80	0.38
Foundations	Pumps	1	8.00	84	0.74
Foundations	Generator Sets	1	8.00	84	0.74
Building Construction Exterior	Generator Sets	1	8.00	84	0.74
Building Construction Exterior	Air Compressors	1	8.00	78	0.48
Paving/Sitework	Excavators	1	8.00	158	0.38

Paving/Sitework	Plate Compactors	2	8.00	8	0.43
Paving/Sitework	Generator Sets	1	8.00	84	0.74
Building Construction Interior	Generator Sets	1	8.00	84	0.74
Paving Offsite	Rough Terrain Forklifts	1	8.00	100	0.40
Paving Offsite	Off-Highway Trucks	1	8.00	402	0.38
Paving Offsite	Excavators	1	8.00	158	0.38
Paving Offsite	Concrete/Industrial Saws	1	8.00	81	0.73
Paving Offsite	Pumps	1	8.00	84	0.74
Paving Offsite	Plate Compactors	2	8.00	8	0.43
Paving Offsite	Generator Sets	1	8.00	84	0.74
Building Construction Exterior	Forklifts	2	6.00	89	0.20
Building Construction Exterior	Tractors/Loaders/Backhoes	2	8.00	97	0.37

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Building Construction Interior	5	4.00	2.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Paving Offsite	13	33.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Foundations	13	33.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	7	4.00	2.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Paving/Sitework	11	28.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	1	1.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Water Exposed Area
Reduce Vehicle Speed on Unpaved Roads

3.2 Foundations - 2018 <u>Unmitigated Construction On-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	ay		
Fugitive Dust					6.0409	0.0000	6.0409	3.3123	0.0000	3.3123			0.0000			0.0000
Off-Road	4.6419	43.8865	29.6217	0.0561		2.3695	2.3695		2.2482	2.2482		5,457.082 6	5,457.0826	1.2292		5,487.811 2
Total	4.6419	43.8865	29.6217	0.0561	6.0409	2.3695	8.4104	3.3123	2.2482	5.5605		5,457.082 6	5,457.0826	1.2292		5,487.811 2

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.1405	0.1012	1.1297	2.9700e- 003	0.2711	1.9500e- 003	0.2730	0.0719	1.8000e- 003	0.0737		296.0841	296.0841	0.0101		296.3374
Total	0.1405	0.1012	1.1297	2.9700e- 003	0.2711	1.9500e- 003	0.2730	0.0719	1.8000e- 003	0.0737		296.0841	296.0841	0.0101		296.3374

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/d	ay		

Fugitive Dust					2.3559	0.0000	2.3559	1.2918	0.0000	1.2918			0.0000		0.0000
Off-Road	4.6419	43.8865	29.6217	0.0561		2.3695	2.3695		2.2482	2.2482	0.0000	5,457.082 6	5,457.0826	1.2292	5,487.811 2
Total	4.6419	43.8865	29.6217	0.0561	2.3559	2.3695	4.7254	1.2918	2.2482	3.5400	0.0000	5,457.082 6	5,457.0826	1.2292	5,487.811 2

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.1405	0.1012	1.1297	2.9700e- 003	0.2711	1.9500e- 003	0.2730	0.0719	1.8000e- 003	0.0737		296.0841	296.0841	0.0101		296.3374
Total	0.1405	0.1012	1.1297	2.9700e- 003	0.2711	1.9500e- 003	0.2730	0.0719	1.8000e- 003	0.0737		296.0841	296.0841	0.0101		296.3374

3.3 Building Construction Exterior - 2018

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	ay							lb/d	ay		
Off-Road	1.9884	17.8193	13.9707	0.0219		1.1715	1.1715		1.1148	1.1148		2,144.831 6	2,144.8316	0.4375		2,155.770 0
Total	1.9884	17.8193	13.9707	0.0219		1.1715	1.1715		1.1148	1.1148		2,144.831 6	2,144.8316	0.4375		2,155.770 0

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0103	0.2635	0.0698	5.6000e- 004	0.0135	2.0600e- 003	0.0156	3.9000e- 003	1.9700e- 003	5.8700e- 003		59.6380	59.6380	4.7300e- 003		59.7561
Worker	0.0170	0.0123	0.1369	3.6000e- 004	0.0329	2.4000e- 004	0.0331	8.7200e- 003	2.2000e- 004	8.9300e- 003		35.8890	35.8890	1.2300e- 003		35.9197
Total	0.0273	0.2758	0.2067	9.2000e- 004	0.0464	2.3000e- 003	0.0487	0.0126	2.1900e- 003	0.0148		95.5270	95.5270	5.9600e- 003		95.6758

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	ay							lb/d	ay		
Off-Road	1.9884	17.8193	13.9707	0.0219		1.1715	1.1715		1.1148	1.1148	0.0000	2,144.831 5	2,144.8315	0.4375		2,155.770 0
Total	1.9884	17.8193	13.9707	0.0219		1.1715	1.1715	-	1.1148	1.1148	0.0000	2,144.831 5	2,144.8315	0.4375		2,155.770

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive	Exhaust	PM10	Fugitive	Exhaust	PM2.5	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
					PM10	PM10	Total	PM2.5	PM2.5	Total						

Category					lb/d	day						lb/d	day	
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0103	0.2635	0.0698	5.6000e- 004	0.0135	2.0600e- 003	0.0156	3.9000e- 003	1.9700e- 003	5.8700e- 003	 59.6380	59.6380	4.7300e- 003	 59.7561
Worker	0.0170	0.0123	0.1369	3.6000e- 004	0.0329	2.4000e- 004	0.0331	8.7200e- 003	2.2000e- 004	8.9300e- 003	35.8890	35.8890	1.2300e- 003	35.9197
Total	0.0273	0.2758	0.2067	9.2000e- 004	0.0464	2.3000e- 003	0.0487	0.0126	2.1900e- 003	0.0148	95.5270	95.5270	5.9600e- 003	95.6758

3.3 Building Construction Exterior - 2019

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	ay							lb/d	ay		
Off-Road	1.7568	16.0458	13.7214	0.0219		1.0029	1.0029		0.9545	0.9545		2,125.968 3	2,125.9683	0.4280		2,136.666 9
Total	1.7568	16.0458	13.7214	0.0219		1.0029	1.0029		0.9545	0.9545		2,125.968 3	2,125.9683	0.4280		2,136.666 9

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	9.2100e- 003	0.2480	0.0640	5.5000e- 004	0.0135	1.7300e- 003	0.0153	3.9000e- 003	1.6500e- 003	5.5500e- 003		59.2033	59.2033	4.5700e- 003		59.3176
Worker	0.0157	0.0110	0.1238	3.5000e- 004	0.0329	2.3000e- 004	0.0331	8.7200e- 003	2.2000e- 004	8.9300e- 003		34.8080	34.8080	1.1100e- 003		34.8358

Total	0.0249	0.2589	0.1878	9.0000e-	0.0464	1.9600e-	0.0484	0.0126	1.8700e-	0.0145	94.0113	94.0113	5.6800e-	94.1534
				004		003			003				003	

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	ay		
Off-Road	1.7568	16.0458	13.7214	0.0219		1.0029	1.0029		0.9545	0.9545	0.0000	2,125.968 3	2,125.9683	0.4280		2,136.666 9
Total	1.7568	16.0458	13.7214	0.0219		1.0029	1.0029		0.9545	0.9545	0.0000	2,125.968 3	2,125.9683	0.4280		2,136.666 9

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	9.2100e- 003	0.2480	0.0640	5.5000e- 004	0.0135	1.7300e- 003	0.0153	3.9000e- 003	1.6500e- 003	5.5500e- 003		59.2033	59.2033	4.5700e- 003		59.3176
Worker	0.0157	0.0110	0.1238	3.5000e- 004	0.0329	2.3000e- 004	0.0331	8.7200e- 003	2.2000e- 004	8.9300e- 003		34.8080	34.8080	1.1100e- 003		34.8358
Total	0.0249	0.2589	0.1878	9.0000e- 004	0.0464	1.9600e- 003	0.0484	0.0126	1.8700e- 003	0.0145		94.0113	94.0113	5.6800e- 003		94.1534

3.4 Paving/Sitework - 2018

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	ay		
Off-Road	3.4473	34.3659	20.8969	0.0416		1.7281	1.7281		1.6147	1.6147		4,078.221 9	4,078.2219	1.0853		4,105.355 0
Paving	0.0000		Ī			0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	3.4473	34.3659	20.8969	0.0416		1.7281	1.7281		1.6147	1.6147		4,078.221 9	4,078.2219	1.0853		4,105.355 0

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.1192	0.0858	0.9585	2.5200e- 003	0.2300	1.6600e- 003	0.2317	0.0610	1.5300e- 003	0.0625		251.2229	251.2229	8.6000e- 003		251.4378
Total	0.1192	0.0858	0.9585	2.5200e- 003	0.2300	1.6600e- 003	0.2317	0.0610	1.5300e- 003	0.0625		251.2229	251.2229	8.6000e- 003		251.4378

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/d	ay		

Off-Road	3.4473	34.3659	20.8969	0.0416	1.7281	1.7281	1.6147	1.6147	0.0000	4,078.221	4,078.2219		4,105.355
										9			0
Paving	0.0000				0.0000	0.0000	0.0000	0.0000			0.0000		0.0000
Total	3.4473	34.3659	20.8969	0.0416	1.7281	1.7281	1.6147	1.6147	0.0000	4,078.221	4,078.2219	1.0853	4,105.355
										9			0

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.1192	0.0858	0.9585	2.5200e- 003	0.2300	1.6600e- 003	0.2317	0.0610	1.5300e- 003	0.0625		251.2229	251.2229	8.6000e- 003		251.4378
Total	0.1192	0.0858	0.9585	2.5200e- 003	0.2300	1.6600e- 003	0.2317	0.0610	1.5300e- 003	0.0625		251.2229	251.2229	8.6000e- 003		251.4378

3.4 Paving/Sitework - 2019

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	ay		
Off-Road	3.1978	31.4485	20.5008	0.0416		1.5521	1.5521		1.4499	1.4499		4,023.697 7	4,023.6977			4,050.679 3
Paving	0.0000					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	3.1978	31.4485	20.5008	0.0416		1.5521	1.5521		1.4499	1.4499		4,023.697 7	4,023.6977	1.0793		4,050.679 3

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.1099	0.0767	0.8664	2.4500e- 003	0.2300	1.6400e- 003	0.2317	0.0610	1.5100e- 003	0.0625		243.6559	243.6559	7.7800e- 003		243.8504
Total	0.1099	0.0767	0.8664	2.4500e- 003	0.2300	1.6400e- 003	0.2317	0.0610	1.5100e- 003	0.0625		243.6559	243.6559	7.7800e- 003		243.8504

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	ay							lb/d	ay		
Off-Road	3.1978	31.4485	20.5008	0.0416		1.5521	1.5521		1.4499	1.4499	0.0000	4,023.697 7	4,023.6977	1.0793		4,050.679 3
Paving	0.0000					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	3.1978	31.4485	20.5008	0.0416		1.5521	1.5521		1.4499	1.4499	0.0000	4,023.697 7	4,023.6977	1.0793		4,050.679 3

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive	Exhaust	PM10	Fugitive	Exhaust	PM2.5	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
					PM10	PM10	Total	PM2.5	PM2.5	Total						

Category					lb/c	lay						lb	/day	
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.00	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.00	0.0000	0.0000	0.0000
Worker	0.1099	0.0767	0.8664	2.4500e- 003	0.2300	1.6400e- 003	0.2317	0.0610	1.5100e- 003	0.0625	243.6	559 243.6559	7.7800e- 003	243.8504
Total	0.1099	0.0767	0.8664	2.4500e- 003	0.2300	1.6400e- 003	0.2317	0.0610	1.5100e- 003	0.0625	243.6	559 243.6559	7.7800e- 003	243.8504

3.5 Architectural Coating - 2018 <u>Unmitigated Construction On-Site</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/c	ay		
Archit. Coating	11.7706					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.2986	2.0058	1.8542	2.9700e- 003		0.1506	0.1506		0.1506	0.1506		281.4485	281.4485	0.0267		282.1171
Total	12.0692	2.0058	1.8542	2.9700e- 003		0.1506	0.1506		0.1506	0.1506		281.4485	281.4485	0.0267		282.1171

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/d	ay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	4.2600e- 003	3.0700e- 003	0.0342	9.0000e- 005	8.2100e- 003	6.0000e- 005	8.2700e- 003	2.1800e- 003	5.0000e- 005	2.2300e- 003		8.9723	8.9723	3.1000e- 004		8.9799

Total	4.2600e-	3.0700e-	0.0342	9.0000e-	8.2100e-	6.0000e-	8.2700e-	2.1800e-	5.0000e-	2.2300e-	8.9723	8.9723	3.1000e-	8.9799
	003	003		005	003	005	003	003	005	003			004	

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/d	ay		
Archit. Coating	11.7706					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.2986	2.0058	1.8542	2.9700e- 003		0.1506	0.1506		0.1506	0.1506	0.0000	281.4485	281.4485	0.0267		282.1171
Total	12.0692	2.0058	1.8542	2.9700e- 003		0.1506	0.1506		0.1506	0.1506	0.0000	281.4485	281.4485	0.0267		282.1171

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	4.2600e- 003	3.0700e- 003	0.0342	9.0000e- 005	8.2100e- 003	6.0000e- 005	8.2700e- 003	2.1800e- 003	5.0000e- 005	2.2300e- 003		8.9723	8.9723	3.1000e- 004		8.9799
Total	4.2600e- 003	3.0700e- 003	0.0342	9.0000e- 005	8.2100e- 003	6.0000e- 005	8.2700e- 003	2.1800e- 003	5.0000e- 005	2.2300e- 003		8.9723	8.9723	3.1000e- 004		8.9799

3.6 Building Construction Interior - 2018

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	ay		
Off-Road	0.6835	5.6879	4.9584	8.1000e- 003		0.3877	0.3877		0.3776	0.3776		776.8222	776.8222	0.0928		779.1428
Total	0.6835	5.6879	4.9584	8.1000e- 003		0.3877	0.3877		0.3776	0.3776		776.8222	776.8222	0.0928		779.1428

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0103	0.2635	0.0698	5.6000e- 004	0.0135	2.0600e- 003	0.0156	3.9000e- 003	1.9700e- 003	5.8700e- 003		59.6380	59.6380	4.7300e- 003		59.7561
Worker	0.0170	0.0123	0.1369	3.6000e- 004	0.0329	2.4000e- 004	0.0331	8.7200e- 003	2.2000e- 004	8.9300e- 003		35.8890	35.8890	1.2300e- 003		35.9197
Total	0.0273	0.2758	0.2067	9.2000e- 004	0.0464	2.3000e- 003	0.0487	0.0126	2.1900e- 003	0.0148		95.5270	95.5270	5.9600e- 003		95.6758

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	ay							lb/d	ay		

Off-Road	0.6835	5.6879	4.9584	8.1000e- 003	0.3877	0.3877	0.3776	0.3776	0.0000	776.8222	776.8222	0.0928	779.1428
Total	0.6835	5.6879	4.9584	8.1000e- 003	0.3877	0.3877	0.3776	0.3776	0.0000	776.8222	776.8222	0.0928	779.1428

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/d	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0103	0.2635	0.0698	5.6000e- 004	0.0135	2.0600e- 003	0.0156	3.9000e- 003	1.9700e- 003	5.8700e- 003		59.6380	59.6380	4.7300e- 003		59.7561
Worker	0.0170	0.0123	0.1369	3.6000e- 004	0.0329	2.4000e- 004	0.0331	8.7200e- 003	2.2000e- 004	8.9300e- 003		35.8890	35.8890	1.2300e- 003		35.9197
Total	0.0273	0.2758	0.2067	9.2000e- 004	0.0464	2.3000e- 003	0.0487	0.0126	2.1900e- 003	0.0148		95.5270	95.5270	5.9600e- 003		95.6758

3.6 Building Construction Interior - 2019

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	lay		
Off-Road	0.6040	5.2062	4.9173	8.1000e- 003		0.3365	0.3365		0.3276	0.3276		774.3550	774.3550	0.0873		776.5386
Total	0.6040	5.2062	4.9173	8.1000e- 003		0.3365	0.3365		0.3276	0.3276		774.3550	774.3550	0.0873		776.5386

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	9.2100e- 003	0.2480	0.0640	5.5000e- 004	0.0135	1.7300e- 003	0.0153	3.9000e- 003	1.6500e- 003	5.5500e- 003		59.2033	59.2033	4.5700e- 003		59.3176
Worker	0.0157	0.0110	0.1238	3.5000e- 004	0.0329	2.3000e- 004	0.0331	8.7200e- 003	2.2000e- 004	8.9300e- 003		34.8080	34.8080	1.1100e- 003		34.8358
Total	0.0249	0.2589	0.1878	9.0000e- 004	0.0464	1.9600e- 003	0.0484	0.0126	1.8700e- 003	0.0145		94.0113	94.0113	5.6800e- 003		94.1534

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	ay							lb/d	ay		
Off-Road	0.6040	5.2062	4.9173	8.1000e- 003		0.3365	0.3365		0.3276	0.3276	0.0000	774.3550	774.3550	0.0873		776.5386
Total	0.6040	5.2062	4.9173	8.1000e- 003		0.3365	0.3365		0.3276	0.3276	0.0000	774.3550	774.3550	0.0873		776.5386

Mitigated Construction Off-Site

ı	ROG	NOx	CO	SO2	Fugitive	Exhaust	PM10	Fugitive	Exhaust	PM2.5	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
	1100	NOX	00	002	PM10	PM10	Total	. 3	PM2.5		DIO 002	TVDIO CO2	10101 002	0114	1420	0020
					PIVITO	PIVITO	Total	PM2.5	PIVIZ.5	Total						
L																

Category					lb/c	lay						lb/c	lay	
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	9.2100e- 003	0.2480	0.0640	5.5000e- 004	0.0135	1.7300e- 003	0.0153	3.9000e- 003	1.6500e- 003	5.5500e- 003	 59.2033	59.2033	4.5700e- 003	59.3176
Worker	0.0157	0.0110	0.1238	3.5000e- 004	0.0329	2.3000e- 004	0.0331	8.7200e- 003	2.2000e- 004	8.9300e- 003	34.8080	34.8080	1.1100e- 003	34.8358
Total	0.0249	0.2589	0.1878	9.0000e- 004	0.0464	1.9600e- 003	0.0484	0.0126	1.8700e- 003	0.0145	94.0113	94.0113	5.6800e- 003	94.1534

3.7 Paving Offsite - 2019

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/d	ay		
Off-Road	3.1465	28.7388	26.0129	0.0494		1.5181	1.5181		1.4560	1.4560		4,735.774 5	4,735.7745			4,760.857 0
Paving	0.0000					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	3.1465	28.7388	26.0129	0.0494		1.5181	1.5181		1.4560	1.4560		4,735.774 5	4,735.7745	1.0033		4,760.857 0

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.1296	0.0904	1.0211	2.8800e- 003	0.2711	1.9300e- 003	0.2730	0.0719	1.7800e- 003	0.0737		287.1659	287.1659	9.1700e- 003		287.3951

I	Total	0.1296	0.0904	1.0211	2.8800e-	0.2711	1.9300e-	0.2730	0.0719	1.7800e-	0.0737	287.1659	287.1659	9.1700e-	287.3951
					003		003			003				003	i
															1

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	ay		
Off-Road	3.1465	28.7388	26.0129	0.0494		1.5181	1.5181		1.4560	1.4560	0.0000	4,735.774 5	4,735.7745	1.0033		4,760.856 9
Paving	0.0000					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	3.1465	28.7388	26.0129	0.0494		1.5181	1.5181		1.4560	1.4560	0.0000	4,735.774 5	4,735.7745	1.0033		4,760.856 9

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.1296	0.0904	1.0211	2.8800e- 003	0.2711	1.9300e- 003	0.2730	0.0719	1.7800e- 003	0.0737		287.1659	287.1659	9.1700e- 003		287.3951
Total	0.1296	0.0904	1.0211	2.8800e- 003	0.2711	1.9300e- 003	0.2730	0.0719	1.7800e- 003	0.0737		287.1659	287.1659	9.1700e- 003		287.3951

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	ay							lb/d	ay		
Mitigated	0.3615	1.3910	3.6776	0.0115	0.9192	0.0112	0.9305	0.2457	0.0105	0.2562		1,170.686 6	1,170.6866	0.0646		1,172.301 7
Unmitigated	0.3615	1.3910	3.6776	0.0115	0.9192	0.0112	0.9305	0.2457	0.0105	0.2562		1,170.686 6	1,170.6866	0.0646		1,172.301 7

4.2 Trip Summary Information

	Aver	age Daily Trip F	Rate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
High School	72.00	21.96	9.00	146,228	146,228
Racquet Club	144.02	144.02	144.02	244,977	244,977
Total	216.02	165.98	153.02	391,205	391,205

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
High School	9.50	7.30	7.30	77.80	17.20	5.00	75	19	6
Racquet Club	9.50	7.30	7.30	11.50	69.50	19.00	52	39	9

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
High School	0.588316	0.042913	0.184449	0.110793	0.017294	0.005558	0.015534	0.023021	0.001902	0.002024	0.006181	0.000745	0.001271
Racquet Club	0.588316	0.042913	0.184449	0.110793	0.017294	0.005558	0.015534	0.023021	0.001902	0.002024	0.006181	0.000745	0.001271

5.0 Energy Detail

5.1 Mitigation Measures Energy

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	ay		
NaturalGas Mitigated	2.6700e- 003	0.0243	0.0204	1.5000e- 004		1.8500e- 003	1.8500e- 003		1.8500e- 003	1.8500e- 003		29.1664	29.1664	5.6000e- 004	5.3000e- 004	29.3397
NaturalGas Unmitigated	2.6700e- 003	0.0243	0.0204	1.5000e- 004		1.8500e- 003	1.8500e- 003		1.8500e- 003	1.8500e- 003		29.1664	29.1664	5.6000e- 004	5.3000e- 004	29.3397

5.2 Energy by Land Use - NaturalGas Unmitigated

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/e	day							lb/d	day		
High School	77.4596	8.4000e- 004	7.5900e- 003	6.3800e- 003	5.0000e- 005		5.8000e- 004	5.8000e- 004		5.8000e- 004	5.8000e- 004		9.1129	9.1129	1.7000e- 004	1.7000e- 004	9.1670
Racquet Club	170.455	1.8400e- 003	0.0167	0.0140	1.0000e- 004		1.2700e- 003	1.2700e- 003		1.2700e- 003	1.2700e- 003		20.0535	20.0535	3.8000e- 004	3.7000e- 004	20.1727
Total		2.6800e- 003	0.0243	0.0204	1.5000e- 004		1.8500e- 003	1.8500e- 003		1.8500e- 003	1.8500e- 003		29.1664	29.1664	5.5000e- 004	5.4000e- 004	29.3397

Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/d	day		
High School	0.0774596	8.4000e- 004	7.5900e- 003	6.3800e- 003	5.0000e- 005		5.8000e- 004	5.8000e- 004		5.8000e- 004	5.8000e- 004		9.1129	9.1129	1.7000e- 004	1.7000e- 004	9.1670
Racquet Club	0.170455	1.8400e- 003	0.0167	0.0140	1.0000e- 004		1.2700e- 003	1.2700e- 003		1.2700e- 003	1.2700e- 003		20.0535	20.0535	3.8000e- 004	3.7000e- 004	20.1727
Total		2.6800e- 003	0.0243	0.0204	1.5000e- 004		1.8500e- 003	1.8500e- 003		1.8500e- 003	1.8500e- 003		29.1664	29.1664	5.5000e- 004	5.4000e- 004	29.3397

6.0 Area Detail

6.1 Mitigation Measures Area

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	ay							lb/d	lay		
Mitigated	0.2339	4.0000e- 005	4.2500e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005		9.0600e- 003	9.0600e- 003	2.0000e- 005		9.6600e- 003
Unmitigated	0.2339	4.0000e- 005	4.2500e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005		9.0600e- 003	9.0600e- 003	2.0000e- 005		9.6600e- 003

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
--	-----	-----	----	-----	------------------	-----------------	---------------	-------------------	------------------	----------------	----------	-----------	-----------	-----	-----	------

SubCategory					lb/d	ay					lb/c	lay	
Architectural Coating	0.0161					0.0000	0.0000	0.0000	0.0000		0.0000		0.0000
Consumer Products	0.2174					0.0000	0.0000	0.0000	0.0000		0.0000		0.0000
Landscaping	4.0000e- 004	4.0000e- 005	4.2500e- 003	0.0000		2.0000e- 005	2.0000e- 005	2.0000e- 005	2.0000e- 005	9.0600e- 003	9.0600e- 003	2.0000e- 005	9.6600e- 003
Total	0.2339	4.0000e- 005	4.2500e- 003	0.0000		2.0000e- 005	2.0000e- 005	2.0000e- 005	2.0000e- 005	9.0600e- 003	9.0600e- 003	2.0000e- 005	9.6600e- 003

Mitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	ay							lb/c	lay		
Architectural Coating	0.0161					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	0.2174					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	4.0000e- 004	4.0000e- 005	4.2500e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005		9.0600e- 003	9.0600e- 003	2.0000e- 005		9.6600e- 003
Total	0.2339	4.0000e- 005	4.2500e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005		9.0600e- 003	9.0600e- 003	2.0000e- 005		9.6600e- 003

7.0 Water Detail

7.1 Mitigation Measures Water

Install Low Flow Bathroom Faucet

Install Low Flow Kitchen Faucet

Install Low Flow Toilet

Install Low Flow Shower

Use Water Efficient Irrigation System

8.0 Waste Detail

8.1 Mitigation Measures Waste

Institute Recycling and Composting Services

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type

10.0 Stationary Equipment

Equipment Type

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
Roilers						

Heat Input/Year

Boiler Rating

Fuel Type

Heat Input/Day

Number

User Defined Equipment

Equipment Type	Number

11.0 Vegetation

CalEEMod Version: CalEEMod.2016.3.2

Page 1 of 1

Date: 4/19/2018 3:15 PM

Access Youth Academy - San Diego Air Basin, Winter

Access Youth Academy San Diego Air Basin, Winter

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
High School	36.00	Student	0.11	4,775.80	0
Racquet Club	5.38	1000sqft	0.12	5,382.00	0

1.2 Other Project Characteristics

Urbanization Wind Speed (m/s) Precipitation Freq (Days) Urban 2.6 40

Climate Zone 13 **Operational Year** 2020

Utility Company San Diego Gas & Electric

CO2 Intensity 720.49 **CH4 Intensity** 0.029 **N2O Intensity** 0.006 (lb/MWhr)

(lb/MWhr) (lb/MWhr)

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - Based on 8 squash courts and 36-student facility

Construction Phase - Based on anticipated construction schedule

Off-road Equipment - Based on construction equipment list

Off-road Equipment - Based on construction equipment list

Off-road Equipment - Based on construction equipment list

Off-road Equipment -

Off-road Equipment - Based on construction equipment

Off-road Equipment - Based on construction equipment list

Grading - Assuming no import/export required

Architectural Coating - Rule 67.0.1 coatings

Vehicle Trips - Assuming 2 trips per student; 144 trips for squash courts based on Traffic Memo

Area Coating - Rule 67.0.1 coatings

Construction Off-road Equipment Mitigation -

Water Mitigation -

Waste Mitigation -

Table Name	Column Name	Default Value	New Value
tblArchitecturalCoating	EF_Nonresidential_Exterior	250.00	100.00
tblArchitecturalCoating	EF_Nonresidential_Interior	250.00	50.00
tblAreaCoating	Area_EF_Nonresidential_Exterior	250	100
tblAreaCoating	Area_EF_Nonresidential_Interior	250	50
tblConstDustMitigation	WaterUnpavedRoadVehicleSpeed	0	15
tblConstructionPhase	NumDays	100.00	88.00
tblConstructionPhase	NumDays	2.00	113.00
tblConstructionPhase	NumDays	5.00	159.00
tblConstructionPhase	NumDays	100.00	133.00
tblConstructionPhase	NumDays	5.00	23.00
tblConstructionPhase	PhaseEndDate	12/13/2018	3/21/2019
tblConstructionPhase	PhaseEndDate	7/26/2018	12/13/2018
tblConstructionPhase	PhaseEndDate	12/20/2018	6/4/2019
tblConstructionPhase	PhaseStartDate	7/27/2018	11/20/2018
tblConstructionPhase	PhaseStartDate	7/25/2018	7/10/2018
tblConstructionPhase	PhaseStartDate	12/14/2018	10/25/2018
tblGrading	AcresOfGrading	0.00	2.00
tblOffRoadEquipment	LoadFactor	0.40	0.40
tblOffRoadEquipment	LoadFactor	0.38	0.38
tblOffRoadEquipment	LoadFactor	0.38	0.38
tblOffRoadEquipment	LoadFactor	0.38	0.38

tblOffRoadEquipment	LoadFactor	0.38	0.38
tblOffRoadEquipment	LoadFactor	0.38	0.38
tblOffRoadEquipment	OffRoadEquipmentType		Rubber Tired Dozers
tblOffRoadEquipment	OffRoadEquipmentType		Off-Highway Trucks
tblOffRoadEquipment	OffRoadEquipmentType	Off-Highway Trucks	
tblOffRoadEquipment	OffRoadEquipmentType	Excavators	
tblOffRoadEquipment	OffRoadEquipmentType		Cement and Mortar Mixers
tblOffRoadEquipment	OffRoadEquipmentType	Plate Compactors	
tblOffRoadEquipment	OffRoadEquipmentType	Rollers	
tblOffRoadEquipment	OffRoadEquipmentType	Pumps	
tblOffRoadEquipment	OffRoadEquipmentType		Generator Sets
tblOffRoadEquipment	OffRoadEquipmentType		Generator Sets
tblOffRoadEquipment	OffRoadEquipmentType		Air Compressors
tblOffRoadEquipment	OffRoadEquipmentType		Excavators
tblOffRoadEquipment	OffRoadEquipmentType		Plate Compactors
tblOffRoadEquipment	OffRoadEquipmentType		Generator Sets
tblOffRoadEquipment	OffRoadEquipmentType		Generator Sets
tblOffRoadEquipment	OffRoadEquipmentType		Rough Terrain Forklifts
tblOffRoadEquipment	OffRoadEquipmentType	Off-Highway Trucks	
tblOffRoadEquipment	OffRoadEquipmentType		Excavators
tblOffRoadEquipment	OffRoadEquipmentType		Concrete/Industrial Saws
tblOffRoadEquipment	OffRoadEquipmentType		Pumps
tblOffRoadEquipment	OffRoadEquipmentType		Plate Compactors
tblOffRoadEquipment	OffRoadEquipmentType		Generator Sets
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	4.00	2.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	4.00	2.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	1.00
tblOffRoadEquipment	UsageHours	6.00	8.00
tblOffRoadEquipment	UsageHours	7.00	0.00
tblOffRoadEquipment	UsageHours	7.00	8.00

tblOffRoadEquipment	UsageHours	1.00	8.00
tblOffRoadEquipment	UsageHours	7.00	8.00
tblOffRoadEquipment	UsageHours	6.00	8.00
tblOffRoadEquipment	UsageHours	4.00	0.00
tblOffRoadEquipment	UsageHours	6.00	8.00
tblOffRoadEquipment	UsageHours	7.00	0.00
tblOffRoadEquipment	UsageHours	7.00	8.00
tblOffRoadEquipment	UsageHours	8.00	0.00
tblOffRoadEquipment	UsageHours	7.00	8.00
tblVehicleTrips	ST_TR	21.35	26.76
tblVehicleTrips	SU_TR	17.40	26.76
tblVehicleTrips	WD_TR	1.71	2.00
tblVehicleTrips	WD_TR	14.03	26.76

2.0 Emissions Summary

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/d	ay							lb/c	lay		
2018	18.3878	102.5250	71.8427	0.1346	6.6348	5.6650	12.2997	3.4704	5.3631	8.8335	0.0000	13,154.44 32	13,154.443 2	2.8750	0.0000	13,226.31 90
2019	7.2465	65.8417	53.4024	0.1049	0.5475	3.4122	3.9597	0.1455	3.2386	3.3842	0.0000	10,122.52 11	10,122.521 1	2.1919	0.0000	10,177.31 87
Maximum	18.3878	102.5250	71.8427	0.1346	6.6348	5.6650	12.2997	3.4704	5.3631	8.8335	0.0000	13,154.44 32	13,154.443 2	2.8750	0.0000	13,226.31 90

Mitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	! Total CO2	CH4	N2O	CO2e
Year					lb/d	day							lb/d	day		
2018	18.3878	102.5250	71.8427	0.1346	2.9498	5.6650	8.6148	1.4499	5.3631	6.8130	0.0000	13,154.44 31	13,154.443 1	2.8750	0.0000	13,226.31 90
2019	7.2465	65.8417	53.4024	0.1049	0.5475	3.4122	3.9597	0.1455	3.2386	3.3842	0.0000	10,122.52 11	10,122.521 1	2.1919	0.0000	10,177.31 87
Maximum	18.3878	102.5250	71.8427	0.1346	2.9498	5.6650	8.6148	1.4499	5.3631	6.8130	0.0000	13,154.44 31	13,154.443 1	2.8750	0.0000	13,226.31 90
	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	51.31	0.00	22.66	55.88	0.00	16.54	0.00	0.00	0.00	0.00	0.00	0.00

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/c	lay		
Area	0.2339	4.0000e- 005	4.2500e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005		9.0600e- 003	9.0600e- 003	2.0000e- 005		9.6600e- 003
Energy	2.6700e- 003	0.0243	0.0204	1.5000e- 004		1.8500e- 003	1.8500e- 003		1.8500e- 003	1.8500e- 003		29.1664	29.1664	5.6000e- 004	5.3000e- 004	29.3397
Mobile	0.3514	1.4249	3.7004	0.0109	0.9192	0.0113	0.9306	0.2457	0.0106	0.2563		1,109.248 3	1,109.2483	0.0655		1,110.884 8
Total	0.5879	1.4493	3.7250	0.0111	0.9192	0.0132	0.9325	0.2457	0.0125	0.2582		1,138.423 8	1,138.4238	0.0660	5.3000e- 004	1,140.234 2

Mitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category							lb/c	lay								
Area	0.2339	4.0000e- 005	4.2500e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005		9.0600e- 003	9.0600e- 003	2.0000e- 005		9.6600e- 003
Energy	2.6700e- 003	0.0243	0.0204	1.5000e- 004		1.8500e- 003	1.8500e- 003		1.8500e- 003	1.8500e- 003		29.1664	29.1664	5.6000e- 004	5.3000e- 004	29.3397
Mobile	0.3514	1.4249	3.7004	0.0109	0.9192	0.0113	0.9306	0.2457	0.0106	0.2563		1,109.248 3	1,109.2483	0.0655		1,110.884 8
Total	0.5879	1.4493	3.7250	0.0111	0.9192	0.0132	0.9325	0.2457	0.0125	0.2582		1,138.423 8	1,138.4238	0.0660	5.3000e- 004	1,140.234 2

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Foundations	Grading	7/10/2018	12/13/2018	5	113	
2	Building Construction Exterior	Building Construction	11/20/2018	3/21/2019	5	88	
3	Paving/Sitework	Paving	10/25/2018	6/4/2019	5	159	
4	Architectural Coating	Architectural Coating	12/21/2018	12/27/2018	5	5	
5	Building Construction Interior	Building Construction	12/13/2018	6/17/2019	5	133	
6	Paving Offsite	Paving	3/22/2019	4/23/2019	5	23	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 0

Acres of Paving: 0

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 15,237; Non-Residential Outdoor: 5,079; Striped Parking Area: 0

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Architectural Coating	Air Compressors	1	6.00	78	0.48
Paving/Sitework	Cement and Mortar Mixers	2	8.00	9	0.56
Paving Offsite	Cement and Mortar Mixers	2	8.00	9	0.56
Foundations	Concrete/Industrial Saws	1	8.00	81	0.73
Building Construction Exterior	Cranes	1	4.00	231	0.29
Paving/Sitework	Rubber Tired Dozers	1	8.00	247	0.40
Building Construction Interior	Cranes	1	0.00	231	0.29
Paving/Sitework	Pavers	1	0.00	130	0.42
Paving/Sitework	Rollers	1	8.00	80	0.38
Building Construction Interior	Forklifts	1	8.00	89	0.20
Foundations	Rubber Tired Dozers	1	8.00	247	0.40
Paving/Sitework	Off-Highway Trucks	1	8.00	402	0.38
Paving Offsite	Pavers	1	0.00	130	0.42
Foundations	Tractors/Loaders/Backhoes	2	6.00	97	0.37
Paving/Sitework	Tractors/Loaders/Backhoes	1	8.00	97	0.37
Paving Offsite	Rollers	1	8.00	80	0.38
Building Construction Interior	Tractors/Loaders/Backhoes	2	0.00	97	0.37
Paving Offsite	Tractors/Loaders/Backhoes	1	8.00	97	0.37
Foundations	Off-Highway Trucks	1	8.00	402	0.38
Foundations	Excavators	1	8.00	158	0.38
Foundations	Cement and Mortar Mixers	2	8.00	9	0.56
Foundations	Plate Compactors	2	8.00	8	0.43
Foundations	Rollers	1	8.00	80	0.38
Foundations	Pumps	1	8.00	84	0.74
Foundations	Generator Sets	1	8.00	84	0.74
Building Construction Exterior	Generator Sets	1	8.00	84	0.74
Building Construction Exterior	Air Compressors	1	8.00	78	0.48
Paving/Sitework	Excavators	1	8.00	158	0.38

Paving/Sitework	Plate Compactors	2	8.00	8	0.43
Paving/Sitework	Generator Sets	1	8.00	84	0.74
Building Construction Interior	Generator Sets	1	8.00	84	0.74
Paving Offsite	Rough Terrain Forklifts	1	8.00	100	0.40
Paving Offsite	Off-Highway Trucks	1	8.00	402	0.38
Paving Offsite	Excavators	1	8.00	158	0.38
Paving Offsite	Concrete/Industrial Saws	1	8.00	81	0.73
Paving Offsite	Pumps	1	8.00	84	0.74
Paving Offsite	Plate Compactors	2	8.00	8	0.43
Paving Offsite	Generator Sets	1	8.00	84	0.74
Building Construction Exterior	Forklifts	2	6.00	89	0.20
Building Construction Exterior	Tractors/Loaders/Backhoes	2	8.00	97	0.37

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Building Construction Interior	5	4.00	2.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Paving Offsite	13	33.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Foundations	13	33.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	7	4.00	2.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Paving/Sitework	11	28.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	1	1.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Water Exposed Area
Reduce Vehicle Speed on Unpaved Roads

3.2 Foundations - 2018 <u>Unmitigated Construction On-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	ay		
Fugitive Dust					6.0409	0.0000	6.0409	3.3123	0.0000	3.3123			0.0000			0.0000
Off-Road	4.6419	43.8865	29.6217	0.0561		2.3695	2.3695		2.2482	2.2482		5,457.082 6	5,457.0826	1.2292		5,487.811 2
Total	4.6419	43.8865	29.6217	0.0561	6.0409	2.3695	8.4104	3.3123	2.2482	5.5605		5,457.082 6	5,457.0826	1.2292		5,487.811 2

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.1587	0.1136	1.0716	2.7900e- 003	0.2711	1.9500e- 003	0.2730	0.0719	1.8000e- 003	0.0737		277.9680	277.9680	9.6300e- 003		278.2088
Total	0.1587	0.1136	1.0716	2.7900e- 003	0.2711	1.9500e- 003	0.2730	0.0719	1.8000e- 003	0.0737		277.9680	277.9680	9.6300e- 003		278.2088

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/d	ay		

Fugitive Dust					2.3559	0.0000	2.3559	1.2918	0.0000	1.2918			0.0000		0.0000
Off-Road	4.6419	43.8865	29.6217	0.0561		2.3695	2.3695		2.2482	2.2482	0.0000	5,457.082 6	5,457.0826	1.2292	5,487.811 2
Total	4.6419	43.8865	29.6217	0.0561	2.3559	2.3695	4.7254	1.2918	2.2482	3.5400	0.0000	5,457.082 6	5,457.0826	1.2292	5,487.811 2

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.1587	0.1136	1.0716	2.7900e- 003	0.2711	1.9500e- 003	0.2730	0.0719	1.8000e- 003	0.0737		277.9680	277.9680	9.6300e- 003		278.2088
Total	0.1587	0.1136	1.0716	2.7900e- 003	0.2711	1.9500e- 003	0.2730	0.0719	1.8000e- 003	0.0737		277.9680	277.9680	9.6300e- 003		278.2088

3.3 Building Construction Exterior - 2018

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	ay							lb/d	lay		
Off-Road	1.9884	17.8193	13.9707	0.0219		1.1715	1.1715		1.1148	1.1148		2,144.831 6	2,144.8316	0.4375		2,155.770 0
Total	1.9884	17.8193	13.9707	0.0219		1.1715	1.1715		1.1148	1.1148		2,144.831 6	2,144.8316	0.4375		2,155.770 0

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0108	0.2640	0.0772	5.4000e- 004	0.0135	2.1000e- 003	0.0156	3.9000e- 003	2.0000e- 003	5.9000e- 003		58.1396	58.1396	5.0300e- 003		58.2654
Worker	0.0192	0.0138	0.1299	3.4000e- 004	0.0329	2.4000e- 004	0.0331	8.7200e- 003	2.2000e- 004	8.9300e- 003		33.6931	33.6931	1.1700e- 003		33.7223
Total	0.0300	0.2777	0.2071	8.8000e- 004	0.0464	2.3400e- 003	0.0487	0.0126	2.2200e- 003	0.0148		91.8327	91.8327	6.2000e- 003		91.9876

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	ay							lb/d	ay		
Off-Road	1.9884	17.8193	13.9707	0.0219		1.1715	1.1715		1.1148	1.1148	0.0000	2,144.831 5	2,144.8315	0.4375		2,155.770 0
Total	1.9884	17.8193	13.9707	0.0219		1.1715	1.1715	-	1.1148	1.1148	0.0000	2,144.831 5	2,144.8315	0.4375		2,155.770 0

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive	Exhaust	PM10	Fugitive	Exhaust	PM2.5	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
					PM10	PM10	Total	PM2.5	PM2.5	Total						

Category					lb/c	lay						lb/c	lay	
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0108	0.2640	0.0772	5.4000e- 004	0.0135	2.1000e- 003	0.0156	3.9000e- 003	2.0000e- 003	5.9000e- 003	58.1396	58.1396	5.0300e- 003	58.2654
Worker	0.0192	0.0138	0.1299	3.4000e- 004	0.0329	2.4000e- 004	0.0331	8.7200e- 003	2.2000e- 004	8.9300e- 003	33.6931	33.6931	1.1700e- 003	33.7223
Total	0.0300	0.2777	0.2071	8.8000e- 004	0.0464	2.3400e- 003	0.0487	0.0126	2.2200e- 003	0.0148	91.8327	91.8327	6.2000e- 003	91.9876

3.3 Building Construction Exterior - 2019

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/c	lay		
Off-Road	1.7568	16.0458	13.7214	0.0219		1.0029	1.0029		0.9545	0.9545		2,125.968 3	2,125.9683	0.4280		2,136.666 9
Total	1.7568	16.0458	13.7214	0.0219		1.0029	1.0029		0.9545	0.9545		2,125.968 3	2,125.9683	0.4280		2,136.666 9

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/c	ay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	9.6000e- 003	0.2482	0.0710	5.4000e- 004	0.0135	1.7600e- 003	0.0153	3.9000e- 003	1.6800e- 003	5.5800e- 003		57.7001	57.7001	4.8600e- 003		57.8216
Worker	0.0178	0.0123	0.1170	3.3000e- 004	0.0329	2.3000e- 004	0.0331	8.7200e- 003	2.2000e- 004	8.9300e- 003		32.6766	32.6766	1.0500e- 003		32.7029

Total	0.0274	0.2605	0.1879	8.7000e-	0.0464	1.9900e-	0.0484	0.0126	1.9000e-	0.0145	90.3766	90.3766	5.9100e-	90.5245
				004		003			003				003	

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	ay		
Off-Road	1.7568	16.0458	13.7214	0.0219		1.0029	1.0029		0.9545	0.9545	0.0000	2,125.968 3	2,125.9683	0.4280		2,136.666 9
Total	1.7568	16.0458	13.7214	0.0219		1.0029	1.0029		0.9545	0.9545	0.0000	2,125.968 3	2,125.9683	0.4280		2,136.666 9

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	9.6000e- 003	0.2482	0.0710	5.4000e- 004	0.0135	1.7600e- 003	0.0153	3.9000e- 003	1.6800e- 003	5.5800e- 003		57.7001	57.7001	4.8600e- 003		57.8216
Worker	0.0178	0.0123	0.1170	3.3000e- 004	0.0329	2.3000e- 004	0.0331	8.7200e- 003	2.2000e- 004	8.9300e- 003		32.6766	32.6766	1.0500e- 003		32.7029
Total	0.0274	0.2605	0.1879	8.7000e- 004	0.0464	1.9900e- 003	0.0484	0.0126	1.9000e- 003	0.0145		90.3766	90.3766	5.9100e- 003		90.5245

3.4 Paving/Sitework - 2018

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	ay		
Off-Road	3.4473	34.3659	20.8969	0.0416		1.7281	1.7281		1.6147	1.6147		4,078.221 9	4,078.2219	1.0853		4,105.355 0
Paving	0.0000		Ī			0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	3.4473	34.3659	20.8969	0.0416		1.7281	1.7281		1.6147	1.6147		4,078.221 9	4,078.2219	1.0853		4,105.355 0

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.1346	0.0964	0.9092	2.3700e- 003	0.2300	1.6600e- 003	0.2317	0.0610	1.5300e- 003	0.0625		235.8516	235.8516	8.1700e- 003		236.0560
Total	0.1346	0.0964	0.9092	2.3700e- 003	0.2300	1.6600e- 003	0.2317	0.0610	1.5300e- 003	0.0625		235.8516	235.8516	8.1700e- 003		236.0560

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/d	ay		

Off-Road	3.4473	34.3659	20.8969	0.0416	1.7281	1.7281	1.6147	1.6147	0.0000	4,078.221 9	4,078.2219	1.0853	4,105.355 0
Paving	0.0000				0.0000	0.0000	 0.0000	0.0000			0.0000	***************************************	 0.0000
Total	3.4473	34.3659	20.8969	0.0416	1.7281	1.7281	1.6147	1.6147	0.0000	4,078.221 9	4,078.2219	1.0853	4,105.355 0

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/d	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.1346	0.0964	0.9092	2.3700e- 003	0.2300	1.6600e- 003	0.2317	0.0610	1.5300e- 003	0.0625		235.8516	235.8516	8.1700e- 003		236.0560
Total	0.1346	0.0964	0.9092	2.3700e- 003	0.2300	1.6600e- 003	0.2317	0.0610	1.5300e- 003	0.0625		235.8516	235.8516	8.1700e- 003		236.0560

3.4 Paving/Sitework - 2019

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/d	ay		
Off-Road	3.1978	31.4485	20.5008	0.0416		1.5521	1.5521		1.4499	1.4499		4,023.697 7	4,023.6977	1.0793		4,050.679 3
Paving	0.0000					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	3.1978	31.4485	20.5008	0.0416		1.5521	1.5521		1.4499	1.4499		4,023.697 7	4,023.6977	1.0793		4,050.679 3

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.1243	0.0862	0.8187	2.3000e- 003	0.2300	1.6400e- 003	0.2317	0.0610	1.5100e- 003	0.0625		228.7359	228.7359	7.3800e- 003		228.9204
Total	0.1243	0.0862	0.8187	2.3000e- 003	0.2300	1.6400e- 003	0.2317	0.0610	1.5100e- 003	0.0625		228.7359	228.7359	7.3800e- 003		228.9204

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	ay							lb/d	ay		
Off-Road	3.1978	31.4485	20.5008	0.0416		1.5521	1.5521		1.4499	1.4499	0.0000	4,023.697 7	4,023.6977	1.0793		4,050.679 3
Paving	0.0000					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	3.1978	31.4485	20.5008	0.0416		1.5521	1.5521		1.4499	1.4499	0.0000	4,023.697 7	4,023.6977	1.0793		4,050.679 3

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive	Exhaust	PM10	Fugitive	Exhaust	PM2.5	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
					PM10	PM10	Total	PM2.5	PM2.5	Total						

Category					lb/c	lay							lb/c	lay	
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000
Worker	0.1243	0.0862	0.8187	2.3000e- 003	0.2300	1.6400e- 003	0.2317	0.0610	1.5100e- 003	0.0625	-	228.7359	228.7359	7.3800e- 003	228.9204
Total	0.1243	0.0862	0.8187	2.3000e- 003	0.2300	1.6400e- 003	0.2317	0.0610	1.5100e- 003	0.0625	;	228.7359	228.7359	7.3800e- 003	228.9204

3.5 Architectural Coating - 2018 <u>Unmitigated Construction On-Site</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/d	lay		
Archit. Coating	11.7706					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.2986	2.0058	1.8542	2.9700e- 003		0.1506	0.1506		0.1506	0.1506		281.4485	281.4485	0.0267		282.1171
Total	12.0692	2.0058	1.8542	2.9700e- 003		0.1506	0.1506		0.1506	0.1506		281.4485	281.4485	0.0267		282.1171

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	4.8100e- 003	3.4400e- 003	0.0325	8.0000e- 005	8.2100e- 003	6.0000e- 005	8.2700e- 003	2.1800e- 003	5.0000e- 005	2.2300e- 003		8.4233	8.4233	2.9000e- 004		8.4306

Total	4.8100e-	3.4400e-	0.0325	8.0000e-	8.2100e-	6.0000e-	8.2700e-	2.1800e-	5.0000e-	2.2300e-	8.4233	8.4233	2.9000e-	8.4306
	003	003		005	003	005	003	003	005	003			004	

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	ay		
Archit. Coating	11.7706					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.2986	2.0058	1.8542	2.9700e- 003		0.1506	0.1506		0.1506	0.1506	0.0000	281.4485	281.4485	0.0267		282.1171
Total	12.0692	2.0058	1.8542	2.9700e- 003		0.1506	0.1506		0.1506	0.1506	0.0000	281.4485	281.4485	0.0267		282.1171

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	4.8100e- 003	3.4400e- 003	0.0325	8.0000e- 005	8.2100e- 003	6.0000e- 005	8.2700e- 003	2.1800e- 003	5.0000e- 005	2.2300e- 003		8.4233	8.4233	2.9000e- 004		8.4306
Total	4.8100e- 003	3.4400e- 003	0.0325	8.0000e- 005	8.2100e- 003	6.0000e- 005	8.2700e- 003	2.1800e- 003	5.0000e- 005	2.2300e- 003		8.4233	8.4233	2.9000e- 004		8.4306

3.6 Building Construction Interior - 2018

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	ay		
Off-Road	0.6835	5.6879	4.9584	8.1000e- 003		0.3877	0.3877		0.3776	0.3776		776.8222	776.8222	0.0928		779.1428
Total	0.6835	5.6879	4.9584	8.1000e- 003		0.3877	0.3877		0.3776	0.3776		776.8222	776.8222	0.0928		779.1428

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0108	0.2640	0.0772	5.4000e- 004	0.0135	2.1000e- 003	0.0156	3.9000e- 003	2.0000e- 003	5.9000e- 003		58.1396	58.1396	5.0300e- 003		58.2654
Worker	0.0192	0.0138	0.1299	3.4000e- 004	0.0329	2.4000e- 004	0.0331	8.7200e- 003	2.2000e- 004	8.9300e- 003		33.6931	33.6931	1.1700e- 003		33.7223
Total	0.0300	0.2777	0.2071	8.8000e- 004	0.0464	2.3400e- 003	0.0487	0.0126	2.2200e- 003	0.0148		91.8327	91.8327	6.2000e- 003		91.9876

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/d	ay		

Off-Road	0.6835	5.6879	4.9584	8.1000e- 003	0.3877	0.3877	0.3776	0.3776	0.0000	776.8222	776.8222	0.0928	779.1428
Total	0.6835	5.6879	4.9584	8.1000e- 003	0.3877	0.3877	0.3776	0.3776	0.0000	776.8222	776.8222	0.0928	779.1428

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0108	0.2640	0.0772	5.4000e- 004	0.0135	2.1000e- 003	0.0156	3.9000e- 003	2.0000e- 003	5.9000e- 003		58.1396	58.1396	5.0300e- 003		58.2654
Worker	0.0192	0.0138	0.1299	3.4000e- 004	0.0329	2.4000e- 004	0.0331	8.7200e- 003	2.2000e- 004	8.9300e- 003		33.6931	33.6931	1.1700e- 003		33.7223
Total	0.0300	0.2777	0.2071	8.8000e- 004	0.0464	2.3400e- 003	0.0487	0.0126	2.2200e- 003	0.0148		91.8327	91.8327	6.2000e- 003		91.9876

3.6 Building Construction Interior - 2019

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	lay		
Off-Road	0.6040	5.2062	4.9173	8.1000e- 003		0.3365	0.3365		0.3276	0.3276		774.3550	774.3550	0.0873		776.5386
Total	0.6040	5.2062	4.9173	8.1000e- 003		0.3365	0.3365		0.3276	0.3276		774.3550	774.3550	0.0873		776.5386

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	9.6000e- 003	0.2482	0.0710	5.4000e- 004	0.0135	1.7600e- 003	0.0153	3.9000e- 003	1.6800e- 003	5.5800e- 003		57.7001	57.7001	4.8600e- 003		57.8216
Worker	0.0178	0.0123	0.1170	3.3000e- 004	0.0329	2.3000e- 004	0.0331	8.7200e- 003	2.2000e- 004	8.9300e- 003		32.6766	32.6766	1.0500e- 003		32.7029
Total	0.0274	0.2605	0.1879	8.7000e- 004	0.0464	1.9900e- 003	0.0484	0.0126	1.9000e- 003	0.0145		90.3766	90.3766	5.9100e- 003		90.5245

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	ay							lb/d	ay		
Off-Road	0.6040	5.2062	4.9173	8.1000e- 003		0.3365	0.3365		0.3276	0.3276	0.0000	774.3550	774.3550	0.0873		776.5386
Total	0.6040	5.2062	4.9173	8.1000e- 003		0.3365	0.3365		0.3276	0.3276	0.0000	774.3550	774.3550	0.0873		776.5386

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive	Exhaust	PM10	Fugitive	Exhaust	PM2.5	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
					PM10	PM10	Total	PM2.5	PM2.5	Total						

Category					lb/c	lay						lb/c	lay	
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	9.6000e- 003	0.2482	0.0710	5.4000e- 004	0.0135	1.7600e- 003	0.0153	3.9000e- 003	1.6800e- 003	5.5800e- 003	57.7001	57.7001	4.8600e- 003	 57.8216
Worker	0.0178	0.0123	0.1170	3.3000e- 004	0.0329	2.3000e- 004	0.0331	8.7200e- 003	2.2000e- 004	8.9300e- 003	32.6766	32.6766	1.0500e- 003	 32.7029
Total	0.0274	0.2605	0.1879	8.7000e- 004	0.0464	1.9900e- 003	0.0484	0.0126	1.9000e- 003	0.0145	90.3766	90.3766	5.9100e- 003	90.5245

3.7 Paving Offsite - 2019

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/d	ay		
Off-Road	3.1465	28.7388	26.0129	0.0494		1.5181	1.5181		1.4560	1.4560		4,735.774 5	4,735.7745			4,760.857 0
Paving	0.0000					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	3.1465	28.7388	26.0129	0.0494		1.5181	1.5181		1.4560	1.4560		4,735.774 5	4,735.7745	1.0033		4,760.857 0

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.1466	0.1016	0.9649	2.7100e- 003	0.2711	1.9300e- 003	0.2730	0.0719	1.7800e- 003	0.0737		269.5815	269.5815	8.7000e- 003		269.7990

I	Total	0.1466	0.1016	0.9649	2.7100e-	0.2711	1.9300e-	0.2730	0.0719	1.7800e-	0.0737	269.5815	269.5815	8.7000e-	269.7990
					003		003			003				003	

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	ay		
Off-Road	3.1465	28.7388	26.0129	0.0494		1.5181	1.5181		1.4560	1.4560	0.0000	4,735.774 5	4,735.7745	1.0033		4,760.856 9
Paving	0.0000					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	3.1465	28.7388	26.0129	0.0494		1.5181	1.5181		1.4560	1.4560	0.0000	4,735.774 5	4,735.7745	1.0033		4,760.856 9

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.1466	0.1016	0.9649	2.7100e- 003	0.2711	1.9300e- 003	0.2730	0.0719	1.7800e- 003	0.0737		269.5815	269.5815	8.7000e- 003		269.7990
Total	0.1466	0.1016	0.9649	2.7100e- 003	0.2711	1.9300e- 003	0.2730	0.0719	1.7800e- 003	0.0737		269.5815	269.5815	8.7000e- 003		269.7990

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	ay							lb/d	ay		
Mitigated	0.3514	1.4249	3.7004	0.0109	0.9192	0.0113	0.9306	0.2457	0.0106	0.2563		1,109.248 3	1,109.2483	0.0655		1,110.884 8
Unmitigated	0.3514	1.4249	3.7004	0.0109	0.9192	0.0113	0.9306	0.2457	0.0106	0.2563		1,109.248 3	1,109.2483	0.0655		1,110.884 8

4.2 Trip Summary Information

	Aver	age Daily Trip F	Rate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
High School	72.00	21.96	9.00	146,228	146,228
Racquet Club	144.02	144.02	144.02	244,977	244,977
Total	216.02	165.98	153.02	391,205	391,205

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
High School	9.50	7.30	7.30	77.80	17.20	5.00	75	19	6
Racquet Club	9.50	7.30	7.30	11.50	69.50	19.00	52	39	9

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
High School	0.588316	0.042913	0.184449	0.110793	0.017294	0.005558	0.015534	0.023021	0.001902	0.002024	0.006181	0.000745	0.001271
Racquet Club	0.588316	0.042913	0.184449	0.110793	0.017294	0.005558	0.015534	0.023021	0.001902	0.002024	0.006181	0.000745	0.001271

5.0 Energy Detail

5.1 Mitigation Measures Energy

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	ay		
NaturalGas Mitigated	2.6700e- 003	0.0243	0.0204	1.5000e- 004		1.8500e- 003	1.8500e- 003		1.8500e- 003	1.8500e- 003		29.1664	29.1664	5.6000e- 004	5.3000e- 004	29.3397
NaturalGas Unmitigated	2.6700e- 003	0.0243	0.0204	1.5000e- 004		1.8500e- 003	1.8500e- 003		1.8500e- 003	1.8500e- 003		29.1664	29.1664	5.6000e- 004	5.3000e- 004	29.3397

5.2 Energy by Land Use - NaturalGas Unmitigated

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/e	day							lb/d	day		
High School	77.4596	8.4000e- 004	7.5900e- 003	6.3800e- 003	5.0000e- 005		5.8000e- 004	5.8000e- 004		5.8000e- 004	5.8000e- 004		9.1129	9.1129	1.7000e- 004	1.7000e- 004	9.1670
Racquet Club	170.455	1.8400e- 003	0.0167	0.0140	1.0000e- 004		1.2700e- 003	1.2700e- 003		1.2700e- 003	1.2700e- 003		20.0535	20.0535	3.8000e- 004	3.7000e- 004	20.1727
Total		2.6800e- 003	0.0243	0.0204	1.5000e- 004		1.8500e- 003	1.8500e- 003		1.8500e- 003	1.8500e- 003		29.1664	29.1664	5.5000e- 004	5.4000e- 004	29.3397

Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/d	day		
High School	0.0774596	8.4000e- 004	7.5900e- 003	6.3800e- 003	5.0000e- 005		5.8000e- 004	5.8000e- 004		5.8000e- 004	5.8000e- 004		9.1129	9.1129	1.7000e- 004	1.7000e- 004	9.1670
Racquet Club	0.170455	1.8400e- 003	0.0167	0.0140	1.0000e- 004		1.2700e- 003	1.2700e- 003		1.2700e- 003	1.2700e- 003		20.0535	20.0535	3.8000e- 004	3.7000e- 004	20.1727
Total		2.6800e- 003	0.0243	0.0204	1.5000e- 004		1.8500e- 003	1.8500e- 003		1.8500e- 003	1.8500e- 003		29.1664	29.1664	5.5000e- 004	5.4000e- 004	29.3397

6.0 Area Detail

6.1 Mitigation Measures Area

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	ay							lb/d	lay		
Mitigated	0.2339	4.0000e- 005	4.2500e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005		9.0600e- 003	9.0600e- 003	2.0000e- 005		9.6600e- 003
Unmitigated	0.2339	4.0000e- 005	4.2500e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005		9.0600e- 003	9.0600e- 003	2.0000e- 005		9.6600e- 003

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
--	-----	-----	----	-----	------------------	-----------------	---------------	-------------------	------------------	----------------	----------	-----------	-----------	-----	-----	------

SubCategory					lb/d	ay					lb/c	lay	
Architectural Coating	0.0161					0.0000	0.0000	0.0000	0.0000		0.0000		0.0000
Consumer Products	0.2174					0.0000	0.0000	0.0000	0.0000		0.0000		0.0000
Landscaping	4.0000e- 004	4.0000e- 005	4.2500e- 003	0.0000		2.0000e- 005	2.0000e- 005	2.0000e- 005	2.0000e- 005	9.0600e- 003	9.0600e- 003	2.0000e- 005	9.6600e- 003
Total	0.2339	4.0000e- 005	4.2500e- 003	0.0000		2.0000e- 005	2.0000e- 005	2.0000e- 005	2.0000e- 005	9.0600e- 003	9.0600e- 003	2.0000e- 005	9.6600e- 003

Mitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	ay							lb/c	lay		
Architectural Coating	0.0161					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	0.2174					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	4.0000e- 004	4.0000e- 005	4.2500e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005		9.0600e- 003	9.0600e- 003	2.0000e- 005		9.6600e- 003
Total	0.2339	4.0000e- 005	4.2500e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005		9.0600e- 003	9.0600e- 003	2.0000e- 005		9.6600e- 003

7.0 Water Detail

7.1 Mitigation Measures Water

Install Low Flow Bathroom Faucet

Install Low Flow Kitchen Faucet

Install Low Flow Toilet

Install Low Flow Shower

Use Water Efficient Irrigation System

8.0 Waste Detail

8.1 Mitigation Measures Waste

Institute Recycling and Composting Services

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type

10.0 Stationary Equipment

Equipment Type

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
Roilers						

Heat Input/Year

Boiler Rating

Fuel Type

Heat Input/Day

Number

User Defined Equipment

Equipment Type	Number

11.0 Vegetation

CalEEMod Version: CalEEMod.2016.3.2

Page 1 of 1

Date: 4/19/2018 3:18 PM

Access Youth Academy - San Diego Air Basin, Annual

Access Youth Academy San Diego Air Basin, Annual

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
High School	36.00	Student	0.11	4,775.80	0
Racquet Club	5.38	1000sqft	0.12	5,382.00	0

1.2 Other Project Characteristics

Urbanization Wind Speed (m/s) Precipitation Freq (Days) Urban 2.6 40

Climate Zone 13 **Operational Year** 2020

Utility Company San Diego Gas & Electric

CO2 Intensity 720.49 **CH4 Intensity** 0.029 **N2O Intensity** 0.006 (lb/MWhr)

(lb/MWhr) (lb/MWhr)

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - Based on 8 squash courts and 36-student facility

Construction Phase - Based on anticipated construction schedule

Off-road Equipment - Based on construction equipment list

Off-road Equipment - Based on construction equipment list

Off-road Equipment - Based on construction equipment list

Off-road Equipment -

Off-road Equipment - Based on construction equipment

Off-road Equipment - Based on construction equipment list

Grading - Assuming no import/export required

Architectural Coating - Rule 67.0.1 coatings

Vehicle Trips - Assuming 2 trips per student; 144 trips for squash courts based on Traffic Memo

Area Coating - Rule 67.0.1 coatings

Construction Off-road Equipment Mitigation -

Water Mitigation -

Waste Mitigation -

Table Name	Column Name	Default Value	New Value
tblArchitecturalCoating	EF_Nonresidential_Exterior	250.00	100.00
tblArchitecturalCoating	EF_Nonresidential_Interior	250.00	50.00
tblAreaCoating	Area_EF_Nonresidential_Exterior	250	100
tblAreaCoating	Area_EF_Nonresidential_Interior	250	50
tblConstDustMitigation	WaterUnpavedRoadVehicleSpeed	0	15
tblConstructionPhase	NumDays	100.00	88.00
tblConstructionPhase	NumDays	2.00	113.00
tblConstructionPhase	NumDays	5.00	159.00
tblConstructionPhase	NumDays	100.00	133.00
tblConstructionPhase	NumDays	5.00	23.00
tblConstructionPhase	PhaseEndDate	12/13/2018	3/21/2019
tblConstructionPhase	PhaseEndDate	7/26/2018	12/13/2018
tblConstructionPhase	PhaseEndDate	12/20/2018	6/4/2019
tblConstructionPhase	PhaseStartDate	7/27/2018	11/20/2018
tblConstructionPhase	PhaseStartDate	7/25/2018	7/10/2018
tblConstructionPhase	PhaseStartDate	12/14/2018	10/25/2018
tblGrading	AcresOfGrading	0.00	2.00
tblOffRoadEquipment	LoadFactor	0.40	0.40
tblOffRoadEquipment	LoadFactor	0.38	0.38
tblOffRoadEquipment	LoadFactor	0.38	0.38
tblOffRoadEquipment	LoadFactor	0.38	0.38

tblOffRoadEquipment	LoadFactor	0.38	0.38
tblOffRoadEquipment	LoadFactor	0.38	0.38
tblOffRoadEquipment	OffRoadEquipmentType		Rubber Tired Dozers
tblOffRoadEquipment	OffRoadEquipmentType		Off-Highway Trucks
tblOffRoadEquipment	OffRoadEquipmentType		Off-Highway Trucks
tblOffRoadEquipment	OffRoadEquipmentType		Excavators
tblOffRoadEquipment	OffRoadEquipmentType		Cement and Mortar Mixers
tblOffRoadEquipment	OffRoadEquipmentType		Plate Compactors
tblOffRoadEquipment	OffRoadEquipmentType		Rollers
tblOffRoadEquipment	OffRoadEquipmentType		Pumps
tblOffRoadEquipment	OffRoadEquipmentType		Generator Sets
tblOffRoadEquipment	OffRoadEquipmentType		Generator Sets
tblOffRoadEquipment	OffRoadEquipmentType		Air Compressors
tblOffRoadEquipment	OffRoadEquipmentType		Excavators
tblOffRoadEquipment	OffRoadEquipmentType		Plate Compactors
tblOffRoadEquipment	OffRoadEquipmentType		Generator Sets
tblOffRoadEquipment	OffRoadEquipmentType		Generator Sets
tblOffRoadEquipment	OffRoadEquipmentType		Rough Terrain Forklifts
tblOffRoadEquipment	OffRoadEquipmentType		Off-Highway Trucks
tblOffRoadEquipment	OffRoadEquipmentType		Excavators
tblOffRoadEquipment	OffRoadEquipmentType		Concrete/Industrial Saws
tblOffRoadEquipment	OffRoadEquipmentType	***************************************	Pumps
tblOffRoadEquipment	OffRoadEquipmentType		Plate Compactors
tblOffRoadEquipment	OffRoadEquipmentType		Generator Sets
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	4.00	2.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	4.00	2.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	1.00
tblOffRoadEquipment	UsageHours	6.00	8.00
tblOffRoadEquipment	UsageHours	7.00	0.00
tblOffRoadEquipment	UsageHours	7.00	8.00

tblOffRoadEquipment	UsageHours	1.00	8.00
tblOffRoadEquipment	UsageHours	7.00	8.00
tblOffRoadEquipment	UsageHours	6.00	8.00
tblOffRoadEquipment	UsageHours	4.00	0.00
tblOffRoadEquipment	UsageHours	6.00	8.00
tblOffRoadEquipment	UsageHours	7.00	0.00
tblOffRoadEquipment	UsageHours	7.00	8.00
tblOffRoadEquipment	UsageHours	8.00	0.00
tblOffRoadEquipment	UsageHours	7.00	8.00
tblVehicleTrips	ST_TR	21.35	26.76
tblVehicleTrips	SU_TR	17.40	26.76
tblVehicleTrips	WD_TR	1.71	2.00
tblVehicleTrips	WD_TR	14.03	26.76

2.0 Emissions Summary

2.1 Overall Construction Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					tons	s/yr							MT	/yr		
2018	0.4209	3.6283	2.5084	4.7900e- 003	0.3626	0.1960	0.5587	0.1928	0.1855	0.3783	0.0000	424.3161	424.3161	0.0940	0.0000	426.6658
2019	0.3107	2.8829	2.2029	4.2400e- 003	0.0195	0.1532	0.1727	5.2200e- 003	0.1448	0.1500	0.0000	371.9403	371.9403	0.0818	0.0000	373.9841
Maximum	0.4209	3.6283	2.5084	4.7900e- 003	0.3626	0.1960	0.5587	0.1928	0.1855	0.3783	0.0000	424.3161	424.3161	0.0940	0.0000	426.6658

Mitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					ton	s/yr							МТ	-/yr		
2018	0.4209	3.6283	2.5084	4.7900e- 003	0.1545	0.1960	0.3505	0.0787	0.1855	0.2642	0.0000	424.3156	424.3156	0.0940	0.0000	426.6653
2019	0.3107	2.8829	2.2029	4.2400e- 003	0.0195	0.1532	0.1727	5.2200e- 003	0.1448	0.1500	0.0000	371.9399	371.9399	0.0818	0.0000	373.9837
Maximum	0.4209	3.6283	2.5084	4.7900e- 003	0.1545	0.1960	0.3505	0.0787	0.1855	0.2642	0.0000	424.3156	424.3156	0.0940	0.0000	426.6653
	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	54.47	0.00	28.47	57.64	0.00	21.60	0.00	0.00	0.00	0.00	0.00	0.00
Quarter	St	art Date	End	d Date	Maximu	ım Unmitiga	ated ROG -	+ NOX (tons	/quarter)	Maxir	num Mitigat	ed ROG + N	IOX (tons/qı	uarter)		
1	7-	10-2018	10-9	9-2018			1.6025					1.6025				
2	10-	-10-2018	1-9	-2019			2.6289					2.6289				
3	1-	10-2019	4-9	-2019			1.9930					1.9930				
4	4-	10-2019	7-9	-2019			1.0074					1.0074				
			Hig	ghest												

2.2 Overall Operational Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	:/yr							MT	/yr		
Area	0.0427	0.0000	3.8000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	7.4000e- 004	7.4000e- 004	0.0000	0.0000	7.9000e- 004
Energy	4.9000e- 004	4.4400e- 003	3.7300e- 003	3.0000e- 005		3.4000e- 004	3.4000e- 004		3.4000e- 004	3.4000e- 004	0.0000	27.6236	27.6236	1.0100e- 003	2.8000e- 004	27.7318
Mobile	0.0570	0.2377	0.6019	1.8200e- 003	0.1474	1.8600e- 003	0.1493	0.0395	1.7400e- 003	0.0412	0.0000	167.2914	167.2914	9.6800e- 003	0.0000	167.5334

Waste						0.0000	0.0000		0.0000	0.0000	7.5594	0.0000	7.5594	0.4468	0.0000	18.7281
Water						0.0000	0.0000		0.0000	0.0000	0.1513	4.2175	4.3687	0.0157	4.0000e- 004	4.8812
Total	0.1001	0.2421	0.6061	1.8500e- 003	0.1474	2.2000e- 003	0.1496	0.0395	2.0800e- 003	0.0416	7.7106	199.1332	206.8439	0.4732	6.8000e- 004	218.8752

Mitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Area	0.0427	0.0000	3.8000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	7.4000e- 004	7.4000e- 004	0.0000	0.0000	7.9000e- 004
Energy	4.9000e- 004	4.4400e- 003	3.7300e- 003	3.0000e- 005		3.4000e- 004	3.4000e- 004		3.4000e- 004	3.4000e- 004	0.0000	27.6236	27.6236	1.0100e- 003	2.8000e- 004	27.7318
Mobile	0.0570	0.2377	0.6019	1.8200e- 003	0.1474	1.8600e- 003	0.1493	0.0395	1.7400e- 003	0.0412	0.0000	167.2914	167.2914	9.6800e- 003	0.0000	167.5334
Waste						0.0000	0.0000		0.0000	0.0000	3.7797	0.0000	3.7797	0.2234	0.0000	9.3640
Water						0.0000	0.0000		0.0000	0.0000	0.1210	3.6782	3.7992	0.0126	3.2000e- 004	4.2102
Total	0.1001	0.2421	0.6061	1.8500e- 003	0.1474	2.2000e- 003	0.1496	0.0395	2.0800e- 003	0.0416	3.9007	198.5939	202.4946	0.2466	6.0000e- 004	208.8402

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	49.41	0.27	2.10	47.87	11.76	4.58

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
	Foundations	Grading	7/10/2018	12/13/2018	5	113	
				3/21/2019	5	88	

3	Paving/Sitework	Paving	10/25/2018	6/4/2019	5	159	
4	Architectural Coating	Architectural Coating	12/21/2018	12/27/2018	5	5	
5	Building Construction Interior	Building Construction	12/13/2018	6/17/2019	5	133	
6	Paving Offsite	Paving	3/22/2019	4/23/2019	5	23	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 0

Acres of Paving: 0

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 15,237; Non-Residential Outdoor: 5,079; Striped Parking Area: 0

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Architectural Coating	Air Compressors	1	6.00	78	0.48
Paving/Sitework	Cement and Mortar Mixers	2	8.00	9	0.56
Paving Offsite	Cement and Mortar Mixers	2	8.00	9	0.56
Foundations	Concrete/Industrial Saws	1	8.00	81	0.73
Building Construction Exterior	Cranes	1	4.00	231	0.29
Paving/Sitework	Rubber Tired Dozers	1	8.00	247	0.40
Building Construction Interior	Cranes	1	0.00	231	0.29
Paving/Sitework	Pavers	1	0.00	130	0.42
Paving/Sitework	Rollers	1	8.00	80	0.38
Building Construction Interior	Forklifts	1	8.00	89	0.20
Foundations	Rubber Tired Dozers	1	8.00	247	0.40
Paving/Sitework	Off-Highway Trucks	1	8.00	402	0.38
Paving Offsite	Pavers	1	0.00	130	0.42
Foundations	Tractors/Loaders/Backhoes	2	6.00	97	0.37
Paving/Sitework	Tractors/Loaders/Backhoes	1	8.00	97	0.37
Paving Offsite	Rollers	1	8.00	80	0.38
Building Construction Interior	Tractors/Loaders/Backhoes	2	0.00	97	0.37
Paving Offsite	Tractors/Loaders/Backhoes	1	8.00	97	0.37
			II		

Foundations	Off-Highway Trucks	1	8.00	402	0.38
Foundations	Excavators	1	8.00	158	0.38
Foundations	Cement and Mortar Mixers	2	8.00	9	0.56
Foundations	Plate Compactors	2	8.00	8	0.43
Foundations	Rollers	1	8.00	80	0.38
Foundations	Pumps	1	8.00	84	0.74
Foundations	Generator Sets	1	8.00	84	0.74
Building Construction Exterior	Generator Sets	1	8.00	84	0.74
Building Construction Exterior	Air Compressors	1	8.00	78	0.48
Paving/Sitework	Excavators	1	8.00	158	0.38
Paving/Sitework	Plate Compactors	2	8.00	8	0.43
Paving/Sitework	Generator Sets	1	8.00	84	0.74
Building Construction Interior	Generator Sets	1	8.00	84	0.74
Paving Offsite	Rough Terrain Forklifts	1	8.00	100	0.40
Paving Offsite	Off-Highway Trucks	1	8.00	402	0.38
Paving Offsite	Excavators	1	8.00	158	0.38
Paving Offsite	Concrete/Industrial Saws	1	8.00	81	0.73
Paving Offsite	Pumps	1	8.00	84	0.74
Paving Offsite	Plate Compactors	2	8.00	8	0.43
Paving Offsite	Generator Sets	1	8.00	84	0.74
Building Construction Exterior	Forklifts	2	6.00	89	0.20
Building Construction Exterior	Tractors/Loaders/Backhoes	2	8.00	97	0.37

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Building Construction	5	4.00	2.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Paving Offsite	13	33.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Foundations	13	33.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	7	4.00	2.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT

Paving/Sitework	11	28.00	0.00	0.00	10.80	7.30		LD_Mix	HDT_Mix	HHDT
Architectural Coating	1	1.00		0.00	10.80	7.30	20.00	LD_Mix		HHDT

3.1 Mitigation Measures Construction

Water Exposed Area

Reduce Vehicle Speed on Unpaved Roads

3.2 Foundations - 2018

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons				MT	/yr						
Fugitive Dust					0.3413	0.0000	0.3413	0.1871	0.0000	0.1871	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.2623	2.4796	1.6736	3.1700e- 003		0.1339	0.1339		0.1270	0.1270	0.0000	279.7079	279.7079	0.0630	0.0000	281.2829
Total	0.2623	2.4796	1.6736	3.1700e- 003	0.3413	0.1339	0.4752	0.1871	0.1270	0.3142	0.0000	279.7079	279.7079	0.0630	0.0000	281.2829

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons				MT	/yr						
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	7.9700e- 003	6.3100e- 003	0.0605	1.6000e- 004	0.0150	1.1000e- 004	0.0151	3.9700e- 003	1.0000e- 004	4.0700e- 003	0.0000	14.3898	14.3898	5.0000e- 004	0.0000	14.4022

Total	7.9700e-	6.3100e-	0.0605	1.6000e-	0.0150	1.1000e-	0.0151	3.9700e-	1.0000e-	4.0700e-	0.0000	14.3898	14.3898	5.0000e-	0.0000	14.4022
	003	003		004		004		003	004	003				004		

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons			MT	/yr							
Fugitive Dust					0.1331	0.0000	0.1331	0.0730	0.0000	0.0730	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.2623	2.4796	1.6736	3.1700e- 003		0.1339	0.1339		0.1270	0.1270	0.0000	279.7076	279.7076	0.0630	0.0000	281.2826
Total	0.2623	2.4796	1.6736	3.1700e- 003	0.1331	0.1339	0.2670	0.0730	0.1270	0.2000	0.0000	279.7076	279.7076	0.0630	0.0000	281.2826

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	7.9700e- 003	6.3100e- 003	0.0605	1.6000e- 004	0.0150	1.1000e- 004	0.0151	3.9700e- 003	1.0000e- 004	4.0700e- 003	0.0000	14.3898	14.3898	5.0000e- 004	0.0000	14.4022
Total	7.9700e- 003	6.3100e- 003	0.0605	1.6000e- 004	0.0150	1.1000e- 004	0.0151	3.9700e- 003	1.0000e- 004	4.0700e- 003	0.0000	14.3898	14.3898	5.0000e- 004	0.0000	14.4022

3.3 Building Construction Exterior - 2018

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	/yr							MT	/yr		
Off-Road	0.0298	0.2673	0.2096	3.3000e- 004		0.0176	0.0176		0.0167	0.0167	0.0000	29.1864	29.1864	5.9500e- 003	0.0000	29.3352
Total	0.0298	0.2673	0.2096	3.3000e- 004		0.0176	0.0176		0.0167	0.0167	0.0000	29.1864	29.1864	5.9500e- 003	0.0000	29.3352

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	1.6000e- 004	4.0000e- 003	1.1000e- 003	1.0000e- 005	2.0000e- 004	3.0000e- 005	2.3000e- 004	6.0000e- 005	3.0000e- 005	9.0000e- 005	0.0000	0.8030	0.8030	7.0000e- 005	0.0000	0.8046
Worker	2.6000e- 004	2.0000e- 004	1.9500e- 003	1.0000e- 005	4.8000e- 004	0.0000	4.8000e- 004	1.3000e- 004	0.0000	1.3000e- 004	0.0000	0.4631	0.4631	2.0000e- 005	0.0000	0.4635
Total	4.2000e- 004	4.2000e- 003	3.0500e- 003	2.0000e- 005	6.8000e- 004	3.0000e- 005	7.1000e- 004	1.9000e- 004	3.0000e- 005	2.2000e- 004	0.0000	1.2661	1.2661	9.0000e- 005	0.0000	1.2681

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr												МТ	/yr		

ľ	Off-Road	0.0298	0.2673	0.2096	3.3000e- 004	0.0176	0.0176	0.0167	0.0167	0.0000	29.1863	29.1863	5.9500e- 003		29.3352
	Total	0.0298	0.2673	0.2096	3.3000e- 004	0.0176	0.0176	0.0167	0.0167	0.0000	29.1863	29.1863	5.9500e- 003	0.0000	29.3352

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	1.6000e- 004	4.0000e- 003	1.1000e- 003	1.0000e- 005	2.0000e- 004	3.0000e- 005	2.3000e- 004	6.0000e- 005	3.0000e- 005	9.0000e- 005	0.0000	0.8030	0.8030	7.0000e- 005	0.0000	0.8046
Worker	2.6000e- 004	2.0000e- 004	1.9500e- 003	1.0000e- 005	4.8000e- 004	0.0000	4.8000e- 004	1.3000e- 004	0.0000	1.3000e- 004	0.0000	0.4631	0.4631	2.0000e- 005	0.0000	0.4635
Total	4.2000e- 004	4.2000e- 003	3.0500e- 003	2.0000e- 005	6.8000e- 004	3.0000e- 005	7.1000e- 004	1.9000e- 004	3.0000e- 005	2.2000e- 004	0.0000	1.2661	1.2661	9.0000e- 005	0.0000	1.2681

3.3 Building Construction Exterior - 2019

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Off-Road	0.0510	0.4653	0.3979	6.4000e- 004		0.0291	0.0291		0.0277	0.0277	0.0000	55.9307	55.9307	0.0113	0.0000	56.2122
Total	0.0510	0.4653	0.3979	6.4000e- 004		0.0291	0.0291		0.0277	0.0277	0.0000	55.9307	55.9307	0.0113	0.0000	56.2122

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	2.7000e- 004	7.2800e- 003	1.9600e- 003	2.0000e- 005	3.8000e- 004	5.0000e- 005	4.4000e- 004	1.1000e- 004	5.0000e- 005	1.6000e- 004	0.0000	1.5409	1.5409	1.2000e- 004	0.0000	1.5440
Worker	4.6000e- 004	3.5000e- 004	3.3900e- 003	1.0000e- 005	9.3000e- 004	1.0000e- 005	9.4000e- 004	2.5000e- 004	1.0000e- 005	2.5000e- 004	0.0000	0.8683	0.8683	3.0000e- 005	0.0000	0.8690
Total	7.3000e- 004	7.6300e- 003	5.3500e- 003	3.0000e- 005	1.3100e- 003	6.0000e- 005	1.3800e- 003	3.6000e- 004	6.0000e- 005	4.1000e- 004	0.0000	2.4092	2.4092	1.5000e- 004	0.0000	2.4130

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Off-Road	0.0510	0.4653	0.3979	6.4000e- 004		0.0291	0.0291		0.0277	0.0277	0.0000	55.9307	55.9307	0.0113	0.0000	56.2121
Total	0.0510	0.4653	0.3979	6.4000e- 004		0.0291	0.0291		0.0277	0.0277	0.0000	55.9307	55.9307	0.0113	0.0000	56.2121

Mitigated Construction Off-Site

PM10 PM10 Total PM2.5 PM2.5 Total

Category					tons	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	2.7000e- 004	7.2800e- 003	1.9600e- 003	2.0000e- 005	3.8000e- 004	5.0000e- 005	4.4000e- 004	1.1000e- 004	5.0000e- 005	1.6000e- 004	0.0000	1.5409	1.5409	1.2000e- 004	0.0000	1.5440
Worker	4.6000e- 004	3.5000e- 004	3.3900e- 003	1.0000e- 005	9.3000e- 004	1.0000e- 005	9.4000e- 004	2.5000e- 004	1.0000e- 005	2.5000e- 004	0.0000	0.8683	0.8683	3.0000e- 005	0.0000	0.8690
Total	7.3000e- 004	7.6300e- 003	5.3500e- 003	3.0000e- 005	1.3100e- 003	6.0000e- 005	1.3800e- 003	3.6000e- 004	6.0000e- 005	4.1000e- 004	0.0000	2.4092	2.4092	1.5000e- 004	0.0000	2.4130

3.4 Paving/Sitework - 2018

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Off-Road	0.0827	0.8248	0.5015	1.0000e- 003		0.0415	0.0415		0.0388	0.0388	0.0000	88.7928	88.7928	0.0236	0.0000	89.3836
Paving	0.0000					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0827	0.8248	0.5015	1.0000e- 003		0.0415	0.0415		0.0388	0.0388	0.0000	88.7928	88.7928	0.0236	0.0000	89.3836

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	2.8700e- 003	2.2700e- 003	0.0218	6.0000e- 005	5.3900e- 003	4.0000e- 005	5.4300e- 003	1.4300e- 003	4.0000e- 005	1.4700e- 003	0.0000	5.1863	5.1863	1.8000e- 004	0.0000	5.1908

Total	2.8700e-	2.2700e-	0.0218	6.0000e-	5.3900e-	4.0000e-	5.4300e-	1.4300e-	4.0000e-	1.4700e-	0.0000	5.1863	5.1863	1.8000e-	0.0000	5.1908
	003	003		005	003	005	003	003	005	003				004		1

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Off-Road	0.0827	0.8248	0.5015	1.0000e- 003		0.0415	0.0415		0.0388	0.0388	0.0000	88.7927	88.7927	0.0236	0.0000	89.3835
Paving	0.0000					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0827	0.8248	0.5015	1.0000e- 003		0.0415	0.0415		0.0388	0.0388	0.0000	88.7927	88.7927	0.0236	0.0000	89.3835

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	2.8700e- 003	2.2700e- 003	0.0218	6.0000e- 005	5.3900e- 003	4.0000e- 005	5.4300e- 003	1.4300e- 003	4.0000e- 005	1.4700e- 003	0.0000	5.1863	5.1863	1.8000e- 004	0.0000	5.1908
Total	2.8700e- 003	2.2700e- 003	0.0218	6.0000e- 005	5.3900e- 003	4.0000e- 005	5.4300e- 003	1.4300e- 003	4.0000e- 005	1.4700e- 003	0.0000	5.1863	5.1863	1.8000e- 004	0.0000	5.1908

3.4 Paving/Sitework - 2019

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Off-Road	0.1775	1.7454	1.1378	2.3100e- 003		0.0861	0.0861		0.0805	0.0805	0.0000	202.5882	202.5882	0.0543	0.0000	203.9467
Paving	0.0000					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.1775	1.7454	1.1378	2.3100e- 003		0.0861	0.0861		0.0805	0.0805	0.0000	202.5882	202.5882	0.0543	0.0000	203.9467

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	6.1300e- 003	4.7000e- 003	0.0455	1.3000e- 004	0.0125	9.0000e- 005	0.0126	3.3100e- 003	8.0000e- 005	3.4000e- 003	0.0000	11.6316	11.6316	3.7000e- 004	0.0000	11.6410
Total	6.1300e- 003	4.7000e- 003	0.0455	1.3000e- 004	0.0125	9.0000e- 005	0.0126	3.3100e- 003	8.0000e- 005	3.4000e- 003	0.0000	11.6316	11.6316	3.7000e- 004	0.0000	11.6410

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							МТ	/yr		

Off-Road	0.1775	1.7454	1.1378	2.3100e-	0.0861	0.0861	0.0805	0.0805	0.0000	202.5879	202.5879	0.0543	0.0000	203.9464
				003										
Paving	0.0000				0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.1775	1.7454	1.1378	2.3100e-	0.0861	0.0861	0.0805	0.0805	0.0000	202.5879	202.5879	0.0543	0.0000	203.9464
				003										

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	6.1300e- 003	4.7000e- 003	0.0455	1.3000e- 004	0.0125	9.0000e- 005	0.0126	3.3100e- 003	8.0000e- 005	3.4000e- 003	0.0000	11.6316	11.6316	3.7000e- 004	0.0000	11.6410
Total	6.1300e- 003	4.7000e- 003	0.0455	1.3000e- 004	0.0125	9.0000e- 005	0.0126	3.3100e- 003	8.0000e- 005	3.4000e- 003	0.0000	11.6316	11.6316	3.7000e- 004	0.0000	11.6410

3.5 Architectural Coating - 2018 <u>Unmitigated Construction On-Site</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	-/yr		
Archit. Coating	0.0294					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	7.5000e- 004	5.0100e- 003	4.6400e- 003	1.0000e- 005		3.8000e- 004	3.8000e- 004		3.8000e- 004	3.8000e- 004	0.0000	0.6383	0.6383	6.0000e- 005	0.0000	0.6398
Total	0.0302	5.0100e- 003	4.6400e- 003	1.0000e- 005		3.8000e- 004	3.8000e- 004		3.8000e- 004	3.8000e- 004	0.0000	0.6383	0.6383	6.0000e- 005	0.0000	0.6398

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	1.0000e- 005	1.0000e- 005	8.0000e- 005	0.0000	2.0000e- 005	0.0000	2.0000e- 005	1.0000e- 005	0.0000	1.0000e- 005	0.0000	0.0193	0.0193	0.0000	0.0000	0.0193
Total	1.0000e- 005	1.0000e- 005	8.0000e- 005	0.0000	2.0000e- 005	0.0000	2.0000e- 005	1.0000e- 005	0.0000	1.0000e- 005	0.0000	0.0193	0.0193	0.0000	0.0000	0.0193

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Archit. Coating	0.0294					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	7.5000e- 004	5.0100e- 003	4.6400e- 003	1.0000e- 005		3.8000e- 004	3.8000e- 004		3.8000e- 004	3.8000e- 004	0.0000	0.6383	0.6383	6.0000e- 005	0.0000	0.6398
Total	0.0302	5.0100e- 003	4.6400e- 003	1.0000e- 005		3.8000e- 004	3.8000e- 004		3.8000e- 004	3.8000e- 004	0.0000	0.6383	0.6383	6.0000e- 005	0.0000	0.6398

Mitigated Construction Off-Site

PM10 PM10 Total PM2.5 PM2.5 Total

Category					tons	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	1.0000e- 005	1.0000e- 005	8.0000e- 005	0.0000	2.0000e- 005	0.0000	2.0000e- 005	1.0000e- 005	0.0000	1.0000e- 005	0.0000	0.0193	0.0193	0.0000	0.0000	0.0193
Total	1.0000e- 005	1.0000e- 005	8.0000e- 005	0.0000	2.0000e- 005	0.0000	2.0000e- 005	1.0000e- 005	0.0000	1.0000e- 005	0.0000	0.0193	0.0193	0.0000	0.0000	0.0193

3.6 Building Construction Interior - 2018

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Off-Road	4.4400e- 003	0.0370	0.0322	5.0000e- 005		2.5200e- 003	2.5200e- 003		2.4500e- 003	2.4500e- 003	0.0000	4.5807	4.5807	5.5000e- 004	0.0000	4.5944
Total	4.4400e- 003	0.0370	0.0322	5.0000e- 005		2.5200e- 003	2.5200e- 003		2.4500e- 003	2.4500e- 003	0.0000	4.5807	4.5807	5.5000e- 004	0.0000	4.5944

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	7.0000e- 005	1.7400e- 003	4.8000e- 004	0.0000	9.0000e- 005	1.0000e- 005	1.0000e- 004	2.0000e- 005	1.0000e- 005	4.0000e- 005	0.0000	0.3480	0.3480	3.0000e- 005	0.0000	0.3487
Worker	1.1000e- 004	9.0000e- 005	8.4000e- 004	0.0000	2.1000e- 004	0.0000	2.1000e- 004	6.0000e- 005	0.0000	6.0000e- 005	0.0000	0.2007	0.2007	1.0000e- 005	0.0000	0.2008

Total	1.8000e-	1.8300e-	1.3200e-	0.0000	3.0000e-	1.0000e-	3.1000e-	8.0000e-	1.0000e-	1.0000e-	0.0000	0.5486	0.5486	4.0000e-	0.0000	0.5495
	004	003	003		004	005	004	005	005	004				005		
																i

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Off-Road	4.4400e- 003	0.0370	0.0322	5.0000e- 005		2.5200e- 003	2.5200e- 003		2.4500e- 003	2.4500e- 003	0.0000	4.5807	4.5807	5.5000e- 004	0.0000	4.5944
Total	4.4400e- 003	0.0370	0.0322	5.0000e- 005		2.5200e- 003	2.5200e- 003		2.4500e- 003	2.4500e- 003	0.0000	4.5807	4.5807	5.5000e- 004	0.0000	4.5944

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	7.0000e- 005	1.7400e- 003	4.8000e- 004	0.0000	9.0000e- 005	1.0000e- 005	1.0000e- 004	2.0000e- 005	1.0000e- 005	4.0000e- 005	0.0000	0.3480	0.3480	3.0000e- 005	0.0000	0.3487
Worker	1.1000e- 004	9.0000e- 005	8.4000e- 004	0.0000	2.1000e- 004	0.0000	2.1000e- 004	6.0000e- 005	0.0000	6.0000e- 005	0.0000	0.2007	0.2007	1.0000e- 005	0.0000	0.2008
Total	1.8000e- 004	1.8300e- 003	1.3200e- 003	0.0000	3.0000e- 004	1.0000e- 005	3.1000e- 004	8.0000e- 005	1.0000e- 005	1.0000e- 004	0.0000	0.5486	0.5486	4.0000e- 005	0.0000	0.5495

3.6 Building Construction Interior - 2019

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	/yr							MT	/yr		
Off-Road	0.0362	0.3124	0.2950	4.9000e- 004		0.0202	0.0202		0.0197	0.0197	0.0000	42.1490	42.1490	4.7500e- 003	0.0000	42.2678
Total	0.0362	0.3124	0.2950	4.9000e- 004		0.0202	0.0202		0.0197	0.0197	0.0000	42.1490	42.1490	4.7500e- 003	0.0000	42.2678

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	5.6000e- 004	0.0151	4.0500e- 003	3.0000e- 005	8.0000e- 004	1.0000e- 004	9.0000e- 004	2.3000e- 004	1.0000e- 004	3.3000e- 004	0.0000	3.1881	3.1881	2.6000e- 004	0.0000	3.1945
Worker	9.5000e- 004	7.3000e- 004	7.0200e- 003	2.0000e- 005	1.9200e- 003	1.0000e- 005	1.9400e- 003	5.1000e- 004	1.0000e- 005	5.2000e- 004	0.0000	1.7964	1.7964	6.0000e- 005	0.0000	1.7978
Total	1.5100e- 003	0.0158	0.0111	5.0000e- 005	2.7200e- 003	1.1000e- 004	2.8400e- 003	7.4000e- 004	1.1000e- 004	8.5000e- 004	0.0000	4.9845	4.9845	3.2000e- 004	0.0000	4.9924

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		

Ĭ	Off-Road	0.0362	0.3124	0.2950	4.9000e- 004	0.0202	0.0202	0.0197	0.0197	0.0000	42.1489	42.1489	4.7500e- 003	0.0000	42.2678
	Total	0.0362	0.3124	0.2950	4.9000e-	0.0202	0.0202	0.0197	0.0197	0.0000	42.1489	42.1489	4.7500e-	0.0000	42.2678
					004								003		

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	5.6000e- 004	0.0151	4.0500e- 003	3.0000e- 005	8.0000e- 004	1.0000e- 004	9.0000e- 004	2.3000e- 004	1.0000e- 004	3.3000e- 004	0.0000	3.1881	3.1881	2.6000e- 004	0.0000	3.1945
Worker	9.5000e- 004	7.3000e- 004	7.0200e- 003	2.0000e- 005	1.9200e- 003	1.0000e- 005	1.9400e- 003	5.1000e- 004	1.0000e- 005	5.2000e- 004	0.0000	1.7964	1.7964	6.0000e- 005	0.0000	1.7978
Total	1.5100e- 003	0.0158	0.0111	5.0000e- 005	2.7200e- 003	1.1000e- 004	2.8400e- 003	7.4000e- 004	1.1000e- 004	8.5000e- 004	0.0000	4.9845	4.9845	3.2000e- 004	0.0000	4.9924

3.7 Paving Offsite - 2019

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	/yr							MT	/yr		
Off-Road	0.0362	0.3305	0.2992	5.7000e- 004		0.0175	0.0175		0.0167	0.0167	0.0000	49.4066	49.4066	0.0105	0.0000	49.6682
Paving	0.0000					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0362	0.3305	0.2992	5.7000e- 004		0.0175	0.0175		0.0167	0.0167	0.0000	49.4066	49.4066	0.0105	0.0000	49.6682

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	1.5000e- 003	1.1500e- 003	0.0111	3.0000e- 005	3.0400e- 003	2.0000e- 005	3.0700e- 003	8.1000e- 004	2.0000e- 005	8.3000e- 004	0.0000	2.8405	2.8405	9.0000e- 005	0.0000	2.8428
Total	1.5000e- 003	1.1500e- 003	0.0111	3.0000e- 005	3.0400e- 003	2.0000e- 005	3.0700e- 003	8.1000e- 004	2.0000e- 005	8.3000e- 004	0.0000	2.8405	2.8405	9.0000e- 005	0.0000	2.8428

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Off-Road	0.0362	0.3305	0.2992	5.7000e- 004		0.0175	0.0175		0.0167	0.0167	0.0000	49.4065	49.4065	0.0105	0.0000	49.6682
Paving	0.0000					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0362	0.3305	0.2992	5.7000e- 004		0.0175	0.0175		0.0167	0.0167	0.0000	49.4065	49.4065	0.0105	0.0000	49.6682

Mitigated Construction Off-Site

PM10 PM10 Total PM2.5 PM2.5 Total

Category					tons	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	1.5000e- 003	1.1500e- 003	0.0111	3.0000e- 005	3.0400e- 003	2.0000e- 005	3.0700e- 003	8.1000e- 004	2.0000e- 005	8.3000e- 004	0.0000	2.8405	2.8405	9.0000e- 005	0.0000	2.8428
Total	1.5000e- 003	1.1500e- 003	0.0111	3.0000e- 005	3.0400e- 003	2.0000e- 005	3.0700e- 003	8.1000e- 004	2.0000e- 005	8.3000e- 004	0.0000	2.8405	2.8405	9.0000e- 005	0.0000	2.8428

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Mitigated	0.0570	0.2377	0.6019	1.8200e- 003	0.1474	1.8600e- 003	0.1493	0.0395	1.7400e- 003	0.0412	0.0000	167.2914	167.2914	9.6800e- 003	0.0000	167.5334
Unmitigated	0.0570	0.2377	0.6019	1.8200e- 003	0.1474	1.8600e- 003	0.1493	0.0395	1.7400e- 003	0.0412	0.0000	167.2914	167.2914	9.6800e- 003	0.0000	167.5334

4.2 Trip Summary Information

	Avera	age Daily Trip F	Rate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
High School	72.00	21.96	9.00	146,228	146,228
Racquet Club	144.02	144.02	144.02	244,977	244,977
Total	216.02	165.98	153.02	391,205	391,205

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
High School	9.50	7.30	7.30	77.80	17.20	5.00	75	19	6
Racquet Club	9.50	7.30	7.30	11.50	69.50	19.00	52	39	9

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
High School	0.588316	0.042913	0.184449	0.110793	0.017294	0.005558	0.015534	0.023021	0.001902	0.002024	0.006181	0.000745	0.001271
Racquet Club	0.588316	0.042913	0.184449	0.110793	0.017294	0.005558	0.015534	0.023021	0.001902	0.002024		0.000745	0.001271

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Electricity Mitigated						0.0000	0.0000		0.0000	0.0000	0.0000	22.7948	22.7948	9.2000e- 004	1.9000e- 004	22.8743
Electricity Unmitigated						0.0000	0.0000		0.0000	0.0000	0.0000	22.7948	22.7948	9.2000e- 004	1.9000e- 004	22.8743
NaturalGas Mitigated	4.9000e- 004	4.4400e- 003	3.7300e- 003	3.0000e- 005		3.4000e- 004	3.4000e- 004		3.4000e- 004	3.4000e- 004	0.0000	4.8288	4.8288	9.0000e- 005	9.0000e- 005	4.8575
NaturalGas Unmitigated	4.9000e- 004	4.4400e- 003	3.7300e- 003	3.0000e- 005		3.4000e- 004	3.4000e- 004		3.4000e- 004	3.4000e- 004	0.0000	4.8288	4.8288	9.0000e- 005	9.0000e- 005	4.8575

5.2 Energy by Land Use - NaturalGas

Unmitigated

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr				МТ	/yr					
High School	28272.7	1.5000e- 004	1.3900e- 003	1.1600e- 003	1.0000e- 005		1.1000e- 004	1.1000e- 004		1.1000e- 004	1.1000e- 004	0.0000	1.5087	1.5087	3.0000e- 005	3.0000e- 005	1.5177
Racquet Club	62215.9	3.4000e- 004	3.0500e- 003	2.5600e- 003	2.0000e- 005		2.3000e- 004	2.3000e- 004		2.3000e- 004	2.3000e- 004	0.0000	3.3201	3.3201	6.0000e- 005	6.0000e- 005	3.3398
Total		4.9000e- 004	4.4400e- 003	3.7200e- 003	3.0000e- 005		3.4000e- 004	3.4000e- 004		3.4000e- 004	3.4000e- 004	0.0000	4.8288	4.8288	9.0000e- 005	9.0000e- 005	4.8575

Mitigated

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					tons	s/yr							MT	-/yr		
High School	28272.7	1.5000e- 004	1.3900e- 003	1.1600e- 003	1.0000e- 005		1.1000e- 004	1.1000e- 004		1.1000e- 004	1.1000e- 004	0.0000	1.5087	1.5087	3.0000e- 005	3.0000e- 005	1.5177
Racquet Club	62215.9	3.4000e- 004	3.0500e- 003	2.5600e- 003	2.0000e- 005		2.3000e- 004	2.3000e- 004		2.3000e- 004	2.3000e- 004	0.0000	3.3201	3.3201	6.0000e- 005	6.0000e- 005	3.3398
Total		4.9000e- 004	4.4400e- 003	3.7200e- 003	3.0000e- 005		3.4000e- 004	3.4000e- 004		3.4000e- 004	3.4000e- 004	0.0000	4.8288	4.8288	9.0000e- 005	9.0000e- 005	4.8575

5.3 Energy by Land Use - Electricity <u>Unmitigated</u>

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		M	Г/уг	
High School	25025.2	8.1785	3.3000e- 004	7.0000e- 005	8.2070
Racquet Club	44724.4	14.6163	5.9000e- 004	1.2000e- 004	14.6673

Total	22.7948	9.2000e- 004	1.9000e- 004	22.8743
-------	---------	-----------------	-----------------	---------

Mitigated

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		MT	Γ/yr	
High School	25025.2	8.1785	3.3000e- 004	7.0000e- 005	8.2070
Racquet Club	44724.4	14.6163	5.9000e- 004	1.2000e- 004	14.6673
Total		22.7948	9.2000e- 004	1.9000e- 004	22.8743

6.0 Area Detail

6.1 Mitigation Measures Area

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	:/yr							MT	/yr		
Mitigated	0.0427	0.0000	3.8000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	7.4000e- 004	7.4000e- 004	0.0000	0.0000	7.9000e- 004
Unmitigated	0.0427	0.0000	3.8000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	7.4000e- 004	7.4000e- 004	0.0000	0.0000	7.9000e- 004

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					tons	s/yr							MT	/yr		
Architectural Coating	2.9400e- 003					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	0.0397					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	4.0000e- 005	0.0000	3.8000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	7.4000e- 004	7.4000e- 004	0.0000	0.0000	7.9000e- 004
Total	0.0427	0.0000	3.8000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	7.4000e- 004	7.4000e- 004	0.0000	0.0000	7.9000e- 004

Mitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					tons	s/yr							MT	/yr		
Architectural Coating	2.9400e- 003					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	0.0397					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	4.0000e- 005	0.0000	3.8000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	7.4000e- 004	7.4000e- 004	0.0000	0.0000	7.9000e- 004
Total	0.0427	0.0000	3.8000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	7.4000e- 004	7.4000e- 004	0.0000	0.0000	7.9000e- 004

7.0 Water Detail

7.1 Mitigation Measures Water

Install Low Flow Bathroom Faucet
Install Low Flow Kitchen Faucet

Install Low Flow Toilet
Install Low Flow Shower
Use Water Efficient Irrigation System

	Total CO2	CH4	N2O	CO2e
Category		MT	/yr	
Mitigated	3.7992	0.0126	3.2000e- 004	4.2102
Unmitigated	4.3687	0.0157	4.0000e- 004	4.8812

7.2 Water by Land Use <u>Unmitigated</u>

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		M	Г/уг	
High School	0.158579 / 0.407773		5.2500e- 003	1.4000e- 004	2.3787
Racquet Club	0.31819 / 0.19502		0.0105	2.6000e- 004	2.5024
Total		4.3687	0.0157	4.0000e- 004	4.8812

Mitigated

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		M	Г/уг	
High School	0.126863 / 0.382899	1.9703	4.2100e- 003	1.1000e- 004	2.1095
Racquet Club	0.254552 / 0.183124	1.8289	8.3600e- 003	2.1000e- 004	2.1007
Total		3.7992	0.0126	3.2000e- 004	4.2102

8.0 Waste Detail

8.1 Mitigation Measures Waste

Institute Recycling and Composting Services

Category/Year

	Total CO2	CH4	N2O	CO2e					
	МТ/уг								
	3.7797	0.2234	0.0000	9.3640					
Unmitigated	7.5594	0.4468	0.0000	18.7281					

8.2 Waste by Land Use <u>Unmitigated</u>

	Waste Disposed	Total CO2	CH4	N2O	CO2e

Land Use	tons		М	Γ/yr	
High School	6.57	1.3337	0.0788	0.0000	3.3041
Racquet Club	30.67	6.2257	0.3679	0.0000	15.4240
Total		7.5594	0.4468	0.0000	18.7281

Mitigated

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons		M	Г/уг	
High School	3.285	0.6668	0.0394	0.0000	1.6520
Racquet Club	15.335	3.1129	0.1840	0.0000	7.7120
Total		3.7797	0.2234	0.0000	9.3640

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type

Boilers

Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type

User Defined Equipment

Equipment Type	Number
----------------	--------

11.0 Vegetation

In December 2015, the City adopted a Climate Action Plan (CAP) that outlines the actions that City will undertake to achieve its proportional share of State greenhouse gas (GHG) emission reductions. The purpose of the Climate Action Plan Consistency Checklist (Checklist) is to, in conjunction with the CAP, provide a streamlined review process for proposed new development projects that are subject to discretionary review and trigger environmental review pursuant to the California Environmental Quality Act (CEQA).¹

Analysis of GHG emissions and potential climate change impacts from new development is required under CEQA. The CAP is a plan for the reduction of GHG emissions in accordance with CEQA Guidelines Section 15183.5. Pursuant to CEQA Guidelines Sections 15064(h)(3), 15130(d), and 15183(b), a project's incremental contribution to a cumulative GHG emissions effect may be determined not to be cumulatively considerable if it complies with the requirements of the CAP.

This Checklist is part of the CAP and contains measures that are required to be implemented on a project-by-project basis to ensure that the specified emissions targets identified in the CAP are achieved. Implementation of these measures would ensure that new development is consistent with the CAP's assumptions for relevant CAP strategies toward achieving the identified GHG reduction targets. Projects that are consistent with the CAP as determined through the use of this Checklist may rely on the CAP for the cumulative impacts analysis of GHG emissions. Projects that are not consistent with the CAP must prepare a comprehensive project-specific analysis of GHG emissions, including quantification of existing and projected GHG emissions and incorporation of the measures in this Checklist to the extent feasible. Cumulative GHG impacts would be significant for any project that is not consistent with the CAP.

The Checklist may be updated to incorporate new GHG reduction techniques or to comply with later amendments to the CAP or local, State, or federal law.

¹ Certain projects seeking ministerial approval may be required to complete the Checklist. For example, projects in a Community Plan Implementation Overlay Zone may be required to use the Checklist to qualify for ministerial level review. See Supplemental Development Regulations in the project's community plan to determine applicability.

This page intentionally left blank

- The Checklist is required only for projects subject to CEQA review.²
- If required, the Checklist must be included in the project submittal package. Application submittal procedures can be found in Chapter 11: Land Development Procedures of the City's Municipal Code.
- ❖ The requirements in the Checklist will be included in the project's conditions of approval.
- The applicant must provide an explanation of how the proposed project will implement the requirements described herein to the satisfaction of the Planning Department.

Application Information							
Contact Information							
Project No./Name: Property Address:							
Applicant Name/Co.:							
Contact Phone:	Contact Email:						
Was a consultant retained to complete this checklist? Consultant Name:	☐ Yes ☐ No If Yes, complete the following Contact Phone:						
Company Name:	Contact Email:						
Project Information							
1. What is the size of the project (acres)?							
2. Identify all applicable proposed land uses:☐ Residential (indicate # of single-family units):☐ Residential (indicate # of multi-family units):							
☐ Commercial (total square footage):							
☐ Industrial (total square footage):							
☐ Other (describe): 3. Is the project or a portion of the project located in a Transit Priority Area?	☐ Yes ☐ No						
4 Provide a brief description of the project proposed:							

² Certain projects seeking ministerial approval may be required to complete the Checklist. For example, projects in a Community Plan Implementation Overlay Zone may be required to use the Checklist to qualify for ministerial level review. See Supplemental Development Regulations in the project's community plan to determine applicability.

CAP CONSISTENCY CHECKLIST QUESTIONS

Step 1: Land Use Consistency

The first step in determining CAP consistency for discretionary development projects is to assess the project's consistency with the growth projections used in the development of the CAP. This section allows the City to determine a project's consistency with the land use assumptions used in the CAP.

Step 1: Land Use Consistency		
Checklist Item (Check the appropriate box and provide explanation and supporting documentation for your answer)	Yes	No
 A. Is the proposed project consistent with the existing General Plan and Community Plan land use and zoning designations?³ OR, B. If the proposed project is not consistent with the existing land use plan and zoning designations, and includes a land use plan and/or zoning designation amendment, would the proposed amendment result in an increased density within a Transit Priority Area (TPA)⁴ and implement CAP Strategy 3 actions, as determined in Step 3 to the satisfaction of the Development Services Department?; OR, C. If the proposed project is not consistent with the existing land use plan and zoning designations, does the project include a land use plan and/or zoning designation amendment that would result in an equivalent or less GHG-intensive project when compared to the existing designations? 		
If " Yes ," proceed to Step 2 of the Checklist. For question B above, complete Step 3. For question C above, proview emissions under both existing and proposed designation(s) for comparison. Compare the maximum buildout and the maximum buildout of the proposed designation.	of the existing of	designation
If "No," in accordance with the City's Significance Determination Thresholds, the project's GHG impact is significance nonetheless incorporate each of the measures identified in Step 2 to mitigate cumulative GHG emissions impartant maker finds that a measure is infeasible in accordance with CEQA Guidelines Section 15091. Proceed and com	acts unless the o	decision

³ This question may also be answered in the affirmative if the project is consistent with SANDAG Series 12 growth projections, which were used to determine the CAP projections, as determined by the Planning Department.

⁴ This category applies to all projects that answered in the affirmative to question 3 on the previous page: Is the project or a portion of the project located in a transit priority area.

Step 2: CAP Strategies Consistency

The second step of the CAP consistency review is to review and evaluate a project's consistency with the applicable strategies and actions of the CAP. Step 2 only applies to development projects that involve permits that would require a certificate of occupancy from the Building Official or projects comprised of one and two family dwellings or townhouses as defined in the California Residential Code and their accessory structures. All other development projects that would not require a certificate of occupancy from the Building Official shall implement Best Management Practices for construction activities as set forth in the Greenbook (for public projects).

Step 2: CAP Strategies Consistency	•		
Checklist Item (Check the appropriate box and provide explanation for your answer)	Yes	No	N/A
Strategy 1: Energy & Water Efficient Buildings			
1. Cool/Green Roofs.			
 Would the project include roofing materials with a minimum 3-year aged solar reflection and thermal emittance or solar reflection index equal to or greater than the values specified in the voluntary measures under <u>California Green Building Standards Code</u> (Attachment A)?; <u>OR</u> Would the project roof construction have a thermal mass over the roof membrane, including areas of vegetated (green) roofs, weighing at least 25 pounds per square foot as specified in the voluntary measures under <u>California</u> 			
 Green Building Standards Code?; OR Would the project include a combination of the above two options? 			
	_	_	_
Check "N/A" only if the project does not include a roof component.			

Actions that are not subject to Step 2 would include, for example: 1) discretionary map actions that do not propose specific development, 2) permits allowing wireless communication facilities, 3) special events permits, 4) use permits or other permits that do not result in the expansion or enlargement of a building (e.g., decks, garages, etc.), and 5) non-building infrastructure projects such as roads and pipelines. Because such actions would not result in new occupancy buildings from which GHG emissions reductions could be achieved, the items contained in Step 2 would not be applicable.

<u>)</u> .	Plumbing fixtures and fittings				_
	With respect to plumbing fixtures or fittings provided as part of the project, would those low-flow fixtures/appliances be consistent with each of the following:				
	Residential buildings:				
	Kitchen faucets: maximum flow rate not to exceed 1.5 gallons per minute at 60				
	psi; • Standard dishwashers: 4.25 gallons per cycle;				
	 Compact dishwashers: 3.5 gallons per cycle; and 				
	 Clothes washers: water factor of 6 gallons per cubic feet of drum capacity? 				
	Nonresidential buildings:				
	 Plumbing fixtures and fittings that do not exceed the maximum flow rate specified in <u>Table A5.303.2.3.1</u> (voluntary measures) of the <u>California Green</u> 				
	Building Standards Code (See Attachment A); and				
	 Appliances and fixtures for commercial applications that meet the provisions of Section A5.303.3 (voluntary measures) of the California Green Building Standards 	П	П	П	
	Code (See Attachment A)?		Ц		
	Check "N/A" only if the project does not include any plumbing fixtures or fittings.				

⁶ Non-portable bicycle corrals within 600 feet of project frontage can be counted towards the project's bicycle parking requirements.

If the project includes nonresidential development that would accommodate over 10 tenant occupants (employees), would the project include changing/shower facilities in accordance with the voluntary measures under the California Green Building Standards Code as shown in the table below? Number of Tenant Occupants (Employees) Shower/Changing Facilities Required Two-Tier (12" X 15" X 77") Personal Effects Lockers Required 0-10	Shower fo	acilities					
Occupants (Employees) Occupants (Incomplete Required) Incomplete Required (Incomplete Required) Occupants (Incomplete Required) Incomplete Required (Incomplete Required) Inco	tenant occup accordance	pants (employees), with the voluntary n	would the project inclune as ures under the Ca	de changing/shower f	acilities in		
11-50		Occupants		72") Personal Effects			
51-100		0-10	0	0			
101-200		11-50	1 shower stall	2			
Over 200 1 shower stall plus 1 additional shower stall for each 200 additional tenant-occupants 1 two-tier locker plus 1 two-tier locker for each 50 additional tenant-occupants Check "N/A" only if the project is a residential project, or if it does not include nonresidential development that would accommodate over 10 tenant occupants		51-100	1 shower stall	3			
Over 200 additional shower stall for each 200 additional tenant-occupants tenant-occupants tenant-occupants Check "N/A" only if the project is a residential project, or if it does not include nonresidential development that would accommodate over 10 tenant occupants		101-200	1 shower stall	4			
nonresidential development that would accommodate over 10 tenant occupants		Over 200	additional shower stall for each 200 additional	two-tier locker for each 50 additional tenant-			
	nonresider	ntial development th					

Number of Required Parking Spaces	Number of Designated Parking Spaces			
0-9	0	1		
10-25	2	1		
26-50	4	1		
51-75	6	1		
76-100	9	1		
101-150	11]		
151-200	18]		
201 and over	At least 10% of total]		
	ential project, or if it does not in	clude		
ntial use in a TPÅ.				

Transportation Demand Management Program		
If the project would accommodate over 50 tenant-occupants (employees), would it include a transportation demand management program that would be applicable to existing tenants and future tenants that includes:		
At least one of the following components:		
Parking cash out program		
 Parking management plan that includes charging employees market-rate for single-occupancy vehicle parking and providing reserved, discounted, or free spaces for registered carpools or vanpools 		
 Unbundled parking whereby parking spaces would be leased or sold separately from the rental or purchase fees for the development for the life of the development 		
And at least three of the following components:		
 Commitment to maintaining an employer network in the SANDAG iCommute program and promoting its RideMatcher service to tenants/employees 		
On-site carsharing vehicle(s) or bikesharing		
Flexible or alternative work hours		
Telework program		
Transit, carpool, and vanpool subsidies		
 Pre-tax deduction for transit or vanpool fares and bicycle commute costs 		
 Access to services that reduce the need to drive, such as cafes, commercial stores, banks, post offices, restaurants, gyms, or childcare, either onsite or within 1,320 feet (1/4 mile) of the structure/use? 		
Check "N/A" only if the project is a residential project or if it would not accommodate over 50 tenant-occupants (employees).		

Step 3: Project CAP Conformance Evaluation (if applicable)

The third step of the CAP consistency review only applies if Step 1 is answered in the affirmative under option B. The purpose of this step is to determine whether a project that is located in a TPA but that includes a land use plan and/or zoning designation amendment is nevertheless consistent with the assumptions in the CAP because it would implement CAP Strategy 3 actions. In general, a project that would result in a reduction in density inside a TPA would not be consistent with Strategy 3. The following questions must each be answered in the affirmative and fully explained.

1. Would the proposed project implement the General Plan's City of Villages strategy in an identified Transit Priority Area (TPA) that will result in an increase in the capacity for transit-supportive residential and/or employment densities?

Considerations for this question:

- Does the proposed land use and zoning designation associated with the project provide capacity for transit-supportive residential densities within the TPA?
- Is the project site suitable to accommodate mixed-use village development, as defined in the General Plan, within the TPA?
- Does the land use and zoning associated with the project increase the capacity for transit-supportive employment intensities within the TPA?

2. Would the proposed project implement the General Plan's Mobility Element in Transit Priority Areas to increase the use of transit? Considerations for this guestion:

- Does the proposed project support/incorporate identified transit routes and stops/stations?
- Does the project include transit priority measures?

3. Would the proposed project implement pedestrian improvements in Transit Priority Areas to increase walking opportunities? Considerations for this guestion:

- Does the proposed project circulation system provide multiple and direct pedestrian connections and accessibility to local activity centers (such as transit stations, schools, shopping centers, and libraries)?
- Does the proposed project urban design include features for walkability to promote a transit supportive environment?

4. Would the proposed project implement the City of San Diego's Bicycle Master Plan to increase bicycling opportunities? Considerations for this guestion:

- Does the proposed project circulation system include bicycle improvements consistent with the Bicycle Master Plan?
- Does the overall project circulation system provide a balanced, multimodal, "complete streets" approach to accommodate mobility needs of all users?

5. Would the proposed project incorporate implementation mechanisms that support Transit Oriented Development? Considerations for this question:

- Does the proposed project include new or expanded urban public spaces such as plazas, pocket parks, or urban greens in the TPA?
- Does the land use and zoning associated with the proposed project increase the potential for jobs within the TPA?
- Do the zoning/implementing regulations associated with the proposed project support the efficient use of parking through mechanisms such as: shared parking, parking districts, unbundled parking, reduced parking, paid or time-limited parking, etc.?

6. Would the proposed project implement the Urban Forest Management Plan to increase urban tree canopy coverage?

Considerations for this question:

- Does the proposed project provide at least three different species for the primary, secondary and accent trees in order to accommodate varying parkway widths?
- Does the proposed project include policies or strategies for preserving existing trees?
- Does the proposed project incorporate tree planting that will contribute to the City's 20% urban canopy tree coverage goal?

This attachment provides performance standards for applicable Climate Action Pan (CAP) Consistency Checklist measures.

Table 1 Roof Design Values for Question 1: Cool/Green Roofs supporting Strategy 1: Energy & Wa Efficient Buildings of the Climate Action Plan						
Land Use Type	Roof Slope	Minimum 3-Year Aged Solar Reflectance	Thermal Emittance	Solar Reflective Index		
Low-Rise Residential	≤2:12	0.55	0.75	64		
Low-Rise Residential	> 2:12	0.20	0.75	16		
High-Rise Residential Buildings,	≤ 2:12	0.55	0.75	64		
Hotels and Motels	> 2:12	0.20	0.75	16		
Non-Residential	≤2:12	0.55	0.75	64		
Norresidential	> 2:12	0.20	0.75	16		

Source: Adapted from the California Green Building Standards Code (CALGreen) Tier 1 residential and non-residential voluntary measures shown in Tables A4.106.5.1 and A5.106.11.2.2, respectively. Roof installation and verification shall occur in accordance with the CALGreen Code.

CALGreen does not include recommended values for low-rise residential buildings with roof slopes of ≤ 2:12 for San Diego's climate zones (7 and 10). Therefore, the values for climate zone 15 that covers Imperial County are adapted here.

Solar Reflectance Index (SRI) equal to or greater than the values specified in this table may be used as an alternative to compliance with the aged solar reflectance values and thermal emittance.

Table 2 Fixture Flow Rates for Non-Residential Buildings related to Question 2: Plumbing Fixtures an Fittings supporting Strategy 1: Energy & Water Efficient Buildings of the Climate Action Plan				
	Fixture Type	Maximum Flow Rate		
	Showerheads	1.8 gpm @ 80 psi		
Lavatory Faucets Kitchen Faucets Wash Fountains Metering Faucets Metering Faucets for Wash Fountains Gravity Tank-type Water Closets Flushometer Tank Water Closets Flushometer Valve Water Closets		0.35 gpm @60 psi		
		1.6 gpm @ 60 psi		
		1.6 [rim space(in.)/20 gpm @ 60 psi]		
		0.18 gallons/cycle		
		0.18 [rim space(in.)/20 gpm @ 60 psi]		
		1.12 gallons/flush		
		1.12 gallons/flush		
		1.12 gallons/flush		
	Electromechanical Hydraulic Water Closets	1.12 gallons/flush		
	Urinals	0.5 gallons/flush		

Source: Adapted from the California Green Building Standards Code (CALGreen) Tier 1 non-residential voluntary measures shown in Tables A5.303.2.3.1 and A5.106.11.2.2, respectively. See the California Plumbing Code for definitions of each fixture type.

Where complying faucets are unavailable, aerators rated at 0.35 gpm or other means may be used to achieve reduction.

Acronyms:

gpm = gallons per minute psi = pounds per square inch (unit of pressure)

in. = inch

Table 3 Standards for Appliances and Fixtures for Commercial Application related to Question 2: Plumbing Fixtures and Fittings supporting Strategy 1: Energy & Water Efficient Buildings of the Climate Action Plan						
Appliance/Fixture Type	Standard					
Clothes Washers	Maximum Water Factor (WF) that will reduce the use of water by 10 percent below the California Energy Commissions' WF standards for commercial clothes washers located in Title 20 of the California Code of Regulations.					
Conveyor-type Dishwashers	0.70 maximum gallons per rack (2.6 L) (High-Temperature)	0.62 maximum gallons per rack (4.4 L) (Chemical)				
Door-type Dishwashers	0.95 maximum gallons per rack (3.6 L) (High-Temperature) 1.16 maximum gallons per rack (2.6 L) (Chemical)					
Undercounter-type Dishwashers	0.90 maximum gallons per rack (3.4 L) (High-Temperature)	0.98 maximum gallons per rack (3.7 L) (Chemical)				
Combination Ovens	Consume no more than 10 gallons per hour (38 L/h) in the full operational mode. Function at equal to or less than 1.6 gallons per minute (0.10 L/s) at 60 psi (414 kPa) and Be capable of cleaning 60 plates in an average time of not more than 30 seconds per plate. Be equipped with an integral automatic shutoff. Operate at static pressure of at least 30 psi (207 kPa) when designed for a flow rate of 1.3 gallons per minute (0.08 L/s) or less.					
Commercial Pre-rinse Spray Valves (manufactured on or after January 1, 2006)						

Source: Adapted from the California Green Building Standards Code (CALGreen) Tier 1 non-residential voluntary measures shown in Section A5.303.3. See the California Plumbing Code for definitions of each appliance/fixture type.

Acronyms: L = liter

L/h = liters per hour
L/s = liters per second
psi = pounds per square inch (unit of pressure)
kPa = kilopascal (unit of pressure)

August 23, 2017

Revised: December 7, 2017 Revised: April 17, 2018

Mr. Renato Paiva Access Youth Academy 9370 Waples Street, Suite 101 San Diego, California 92121

SUBJECT: DRAINAGE STUDY FOR ACCESS YOUTH ACADEMY

PTS #572129 DWG #40306-D

(RICK ENGINEERING COMPANY JOB NUMBER 13284-FFF)

Dear Mr. Paiva:

This drainage letter report represents a revision to the December 7th, 2017 report in addition to a revision to the August 23, 2017 report pursuant to the first review cycle from the City of San Diego dated 9/22/17. Hydraulic and hydrologic calculations have been revised in accordance with the latest site layout. The project's pre- and post-project drainage exhibits have also been revised to reflect the latest site layout. The 100-year flow rate and flow velocity at the project's discharge point have been provided per the City's request. The 100-year flow velocity was calculated using the Federal Highway Administration's Hydraulic Toolbox software. The backup calculations are included in Attachment 1.

This letter has been prepared in support of the on-site drainage for Access Youth Academy (herein referred to as the "project"). The address of the project is: 704 Euclid Avenue, San Diego, CA and is located adjacent to Horton Elementary School, on the corner of Euclid Avenue and Guymon Street. The project is proposed on what is currently a previously graded lot that features a recreational sports field over the majority of the site and a small parking lot in the northern portion of the project site. The project will drain toward an existing public storm drain system and construction activity does not impact any jurisdictional waters or wetlands. As such it is anticipated that the project will not be subject to requirements under the Federal Clean Water Act (CWA) Section 401 or 404.

The following narrative addresses drainage characteristics for the project for both the pre-project site condition and the post-project site condition.

Drainage Characteristics based on the Pre-Project Site Condition:

In the pre-project condition, the project site has been divided into two (2) drainage basins, for a total area of 0.9 acres. Basin 1 consists of the western half of the project site, and is 0.6 acres in area. Runoff from Basin 1 drains in a south-easterly direction to an existing catch basin on the southeast corner of the project site. Basin 2 consists of the eastern half of the project site, and totals 0.3 acres in area. Runoff from Basin 2 also drains in a south-easterly direction towards the street gutters on Euclid Avenue, where it is then directed towards the same existing catch basin on the southeast corner of the project site.

Mr. Renato Paiva April 17, 2018 Page 2 of 4

Based on the drainage patterns and runoff coefficients, the peak flow rate for the 100-year storm event for the pre-project condition is 2.1 cubic feet per second (cfs). Hydrologic calculations for the pre-project condition have been presented in Attachment 1. See Table 1 for a comparison of the pre-and post-project 100-yr runoff rates.

Drainage Characteristics based on the Post-Project Site Condition:

The site layout for the post-project condition maintains similar drainage characteristics as compared with the pre-project condition. In the post-project condition, the project site has been divided into three (3) drainage basins for a total area of 0.9 acres. Basin 1 is 0.6 acres in area, consisting of the northern project area and also encompassing some of the western project boundary. Runoff from Basin 1 is proposed to flow in a western direction towards a proposed biofiltration basin on the western project site boundary for water quality and HMP purposes. Flows in excess of HMP will be conveyed via a grate inlet and 12" PVC pipe to an existing catch basin located at the southeast corner of the project site.

Basin 2 is 0.1 acres in size, and encompasses the southwest corner of the project site. Runoff from Basin 2 flows in an easterly direction towards proposed on-site drainage structures that will convey the runoff towards a proposed biofiltration basin near the southeastern boundary of the project site. Overflow from the proposed filtration basin will be conveyed via a grate inlet and 18" RCP towards the existing catch basin at the southeast corner of the project site.

Basin 3 is 0.2 acres in size, and encompasses the southeast corner of the project site. Runoff from Basin 3 is mostly directed in a southerly direction towards the same proposed biofiltration basin on the southeastern project boundary via proposed on-site drainage structures. Overflow from the proposed filtration basin will be conveyed via a grate inlet and 18" RCP to the existing catch basin on the south eastern project boundary.

Based on the drainage patterns and runoff coefficients, the peak flow rate for the 100-Year storm event from for the project site was calculated to be 3.5 cubic feet per second (cfs) in the post-project condition. While there is an increase in the 100-year runoff between the pre- and post-project conditions, the downstream drainage facilities are subject to inundation in a 100-year event from the nearby Chollas Creek and therefore detention has not been provided. Detaining post-project runoff to the pre-project runoff condition would not alleviate the downstream drainage facilities from inundation. Hydrologic calculations for the post-project condition have been presented in Attachment 1. See Table 1 for a comparison of the pre- and post-project runoff rates generated onsite.

Table 1: Summary of the 100-Yr Flow Rates in the Pre- and Post-Project Conditions

	Area (AC.)	Runoff Coefficient (C)	Q (cfs)
Pre-Project	0.9	0.56	2.1
Post-Project	0.9	0.86	3.4

Table 2: Summary of the 100-Yr Flow Rate and Flow Velocity at the Project Discharge Point (Post-Project Condition)

100-Yr Flow Rate & Flow Velocity at the Project Discharge Point											
POI ID	POI ID Tributary Area (AC.) Intensity (in/hr) 100-Yr Q ₁₀₀ (cfs) V										
1	0.9	4.40	3.4	5.3							

Offsite Drainage Characteristics

In addition to the analysis of pre- and post- project peak runoff rates generated onsite, an offsite drainage analysis was conducted for the total drainage area tributary to the existing inlet that Access Youth Academy is proposing to connect into. This existing catch basin then discharges through the existing 18" RCP underneath Guymon Street. The findings are as follows: there are approximately 12.2 acres tributary to the 18" pipe, (including offsite and onsite area). In the pre-project condition, the approximate peak flow rate to the inlet/pipe is 27.2 cfs, whereas in the post-project condition the peak flow rate is approximately 28.0 cfs. Therefore, the increase in peak runoff from the pre- to post-project condition is 0.8 cfs when onsite and offsite tributary areas are both considered. The existing 18-inch RCP has a capacity equal to approximately 11 cfs assuming the pipe is not inundated from the nearby creek. This increase of 0.8 cfs does not reflect incidental detention and flow attenuation that will also occur within the proposed biofiltration BMPs onsite. Based on this information, and since the inundation of the intersection will remain similar in the pre-project and post-project condition due to the larger creek system, we are not proposing any additional offsite improvements or onsite detention. Hydrologic calculations for the offsite area in the pre- and post- project conditions are included in Attachment 1.

Hydraulics

Pipe Sizing

On-site pipe sizing was completed using normal depth methods to provide an estimation of storm drain size required to convey runoff from a 100-year storm event; pipe sizing calculations have been included in Attachment 2.

Grate Inlet Sizing

Based on weir flow calculations, two Type-I grate inlets have been sized for the purpose of draining overflow from the proposed biofiltration basins. Grate Inlet sizing calculations have been included in Attachment 2.

Conclusion:

This letter report has been prepared in support of the on-site drainage configuration for Access Youth Academy. Based on the findings of this report, drainage characteristics are expected to change slightly from pre-project conditions, the expected result being an increase in runoff flows due to the addition of impervious areas in the post-project condition. As shown above, the increase is approximately 1.4 cfs when only onsite tributary area is considered or 0.8 cfs when offsite tributary area is also accounted for. The actual increase, however, will be less as a result of incidental flow attenuation that each of the biofiltration basins will provide. Therefore, the minor increase is not anticipated to result in any significant adverse impacts for the downstream drainage facilities. While there is an increase in the 100-year runoff between the pre- and post-, it is also worth noting that the adjacent intersection is subject to inundation in a 100-year event from the nearby South Las Chollas Creek. Detaining post-project runoff to the pre-project runoff condition would not alleviate the downstream drainage facilities from inundation.

Please feel free to contact Ian Cohan or myself if you have any questions and/or concerns at (619) 291-0707.

NO. 65809

Sincerely,

RICK ENGINEERING COMPANY

Brendan Hastie RCE #65809, Exp. 9/19

Associate Principal

BH:IC:vs/files/Report/.009

Enclosure

ATTACHMENT 1

Hydrology Calculations

	Rational Method for Access Youth Academy (Pre Project Condition)													
Drainage Basin ID Area (Ac) Pervious Area (Ac) Impervious Area (Ac) % Impervious Weighted Runoff Coefficient 100-Yr Q ₁₀														
1	0.6	0.5	0.1	10%	0.50	4.40	1.3							
2	0.3	0.2	0.1	37%	0.62	4.40	0.8							
Total	0.9	0.7	0.2	19%	0.56		2.1							

- 1. Weighted Runoff Coefficients were calculated based on guidance from the City of San Diego Drainage Design Manual, dated January 2017.
- 2. Intensity was calculated using the City of San Diego Drainage Design Manual, dated January 2017.
- 3. Time of Concentration (T_c) was assumed to be 5 minutes for the pre project condition.

	Rational Method for Access Youth Academy (Post Project Condition)													
Drainage Basin ID	Area (Ac)	Pervious Area (Ac)	Impervious Area (Ac)	ious Area (Ac) % Impervious Weighted Runoff Coef		Intensity (in/hr) 100-Yr	Q ₁₀₀ (cfs)							
1	0.6	0.1	0.5	80%	0.85	4.40	2.2							
2	0.1	0.02	0.1	83%	0.88	4.40	0.4							
3	0.2	0.03	0.2	85%	0.90	4.40	0.8							
Total	0.9	0.2	0.7	81%	0.86		3.4							

- 1. Weighted Runoff Coefficients were calculated based on guidance from the City of San Diego Drainage Design Manual, dated January 2017.
- 2. Intensity was calculated using the City of San Diego Drainage Design Manual, dated January 2017.
- 3. Time of Concentration (T_c) was assumed to be 5 minutes for the post project condition.

5620 Friars Road San Diego, CA 92110-2596

Date Job No. Page

Engineering Company Tel: (619) 291-0707 Fax: (619) 291-4165	Done By), C.
Rational Method for Drainge Arm Tributury to 18" RCP Culvert	Checked By	
under bryggen Street		
Onsite Tributary Area = 0.9 acres Offsite	ExtendisT	Aren=11.3 gures)
· Pre-Progent		
A= 11.3 acres (offsite) + D.9 acres (onsite) = 12.2 acres		
Assume To=10min -> Intensity = 3.48 in Mr		
Assume 60% impervious > C= 0.64		
Q=0,61(3.48:1/hr)(2.Zacres)=[27.2cfs]		
· Post-Project		
A=12.2 acres		
Assume Tc=10 min -> Intensity = 3.48 in Mr		
Dasite 1/1mpervious = 81%		
Offsite 1. Impervious assumed = 60%.		
Total 1. Impervious = 621/1 -> C=0.66 Q=0.66 (3.481, M)(17	- Tacres) -	28.0 cfs
12.20 - 1 4 (2 4 (1 A)		
(A) Q re-Project to Rost-Project = 0.8cfs		
Z.9% Increase		

ATTACHMENT 2

Hydraulic Calculations

Grate Inlet Sizing (Weir vs. Orifice)

Weir coefficient, C_w
Orifice coefficient, C_o
Available head, h (feet)

3.0
0.60
0.50

Inlet Type	Capacity based on Weir Equation ^{3, 4} , Q _{cap} (cfs ⁵)	Capacity based on Orifice Equation ^{3, 4} , Q _{cap} (cfs ⁵)	Governing Equation
1212 Series - 12"x12" Catch Basin ¹	2.26	1.90	Orifice
1218 Series - 12"x18" Catch Basin ¹	2.61	2.54	Orifice
1818 Series - 18"x18" Catch Basin ¹	2.96	3.22	Weir
2424 Series - 24"x24" Catch Basin ¹	3.83	5.39	Weir
3636 Series - 36"x36" Catch Basin ¹	5.59	11.26	Weir

Type 'I' Catch Basin ²	4.89	8.27	Weir
Type T Gaton Basin		5	

Note:

- 1. Based on Brooks Products, Inc. H 20-44 Traffic, Steel Grate, not Parkway, Cast-iron grate
- 2. Based on Drawing Number D-13 & D-15 in the City of San Diego Regional Standard Drawings, dated April 2003
- 3. A reduction factor of 50% assumed for clogging.
- 4. Weir equation, $Q = C_w L_e(h)^{3/2}$; Orifice equation, $Q = C_o A_e(2gh)^{1/2}$
- 5. "cfs" = cubic feet per second

Preliminary Storm Drain Size

The purpose of this table is to provide an estimated pipe size to convey the 100-year flow rates with a sizing factor.

Manning's n:

0.013

Sizing Factor (%):

30

	Slope at:		0.5%		0%	2.4	1%	3.0%	
Q ₁₀₀ (cfs ¹)	Q ₁₀₀ with Sizing Factor (cfs ¹)	Minimum Pipe Size ² (feet)	Recommended Pipe Size (inches)						
2.0	2.6	1.01	12"	0.89	12"	0.75	10"	0.72	10"
5.0	6.5	1.43	18"	1.25	18"	1.06	18"	1.02	18"
7.5	9.8	1.66	24"	1.46	18"	1.24	18"	1.19	18"
10.0	13.0	1.85	24"	1.62	24"	1.38	18"	1.32	18"
16.9	22.0	2.25	30"	1.98	24"	1.68	24"	1.61	24"
20.0	26.0	2.40	30"	2.11	30"	1.79	24"	1.71	24"
24.6	31.9	2.59	36"	2.27	30"	1.93	24"	1.85	24"
30.0	39.0	2.79	36"	2.45	30"	2.08	30"	1.99	24"
35.0	45.5	2.96	36"	2.60	36"	2.20	30"	2.11	30"
40.0	52.0	3.11	42"	2.73	36"	2.32	30"	2.22	30"
50.0	65.0	3.38	42"	2.97	36"	2.52	36"	2.42	30"
60.0	78.0	3.62	48"	3.18	42"	2.70	36"	2.59	36"
70.0	91.0	3.83	48"	3.37	42"	2.86	36"	2.74	36"
80.0	104.0	4.03	54"	3.54	48"	3.00	36"	2.88	36"
90.0	117.0	4.21	54"	3.70	48"	3.14	42"	3.01	42"
110.0	143.0	4.54	60"	3.99	48"	3.39	42"	3.25	42"
145.0	188.5	5.04	72"	4.42	54"	3.75	48"	3.60	48"
170.0	221.0	5.35	72"	4.70	60"	3.99	48"	3.82	48"
240.0	312.0	6.09	84"	5.35	72"	4.54	60"	4.35	54"
350.0	455.0	7.01	96"	6.16	84"	5.23	72"	5.01	72"

Note:

^{1. &}quot;cfs" = cubic feet per second.

^{2.} Minimum pipe sizes are calculated using the Manning's equation and are based on the flow rates with 30% factor.

Hydraulic Analysis Report

Project Data

Project Title: Access Youth Academy - 100-Yr Flow Velocity at Project Discharge Point

Designer:

Project Date: Tuesday, May 01, 2018 Project Units: U.S. Customary Units

Notes:

Channel Analysis: Channel Analysis

Notes:

Input Parameters

Channel Type: Circular Pipe Diameter: 1.5000 ft

Longitudinal Slope: 0.0100 ft/ft

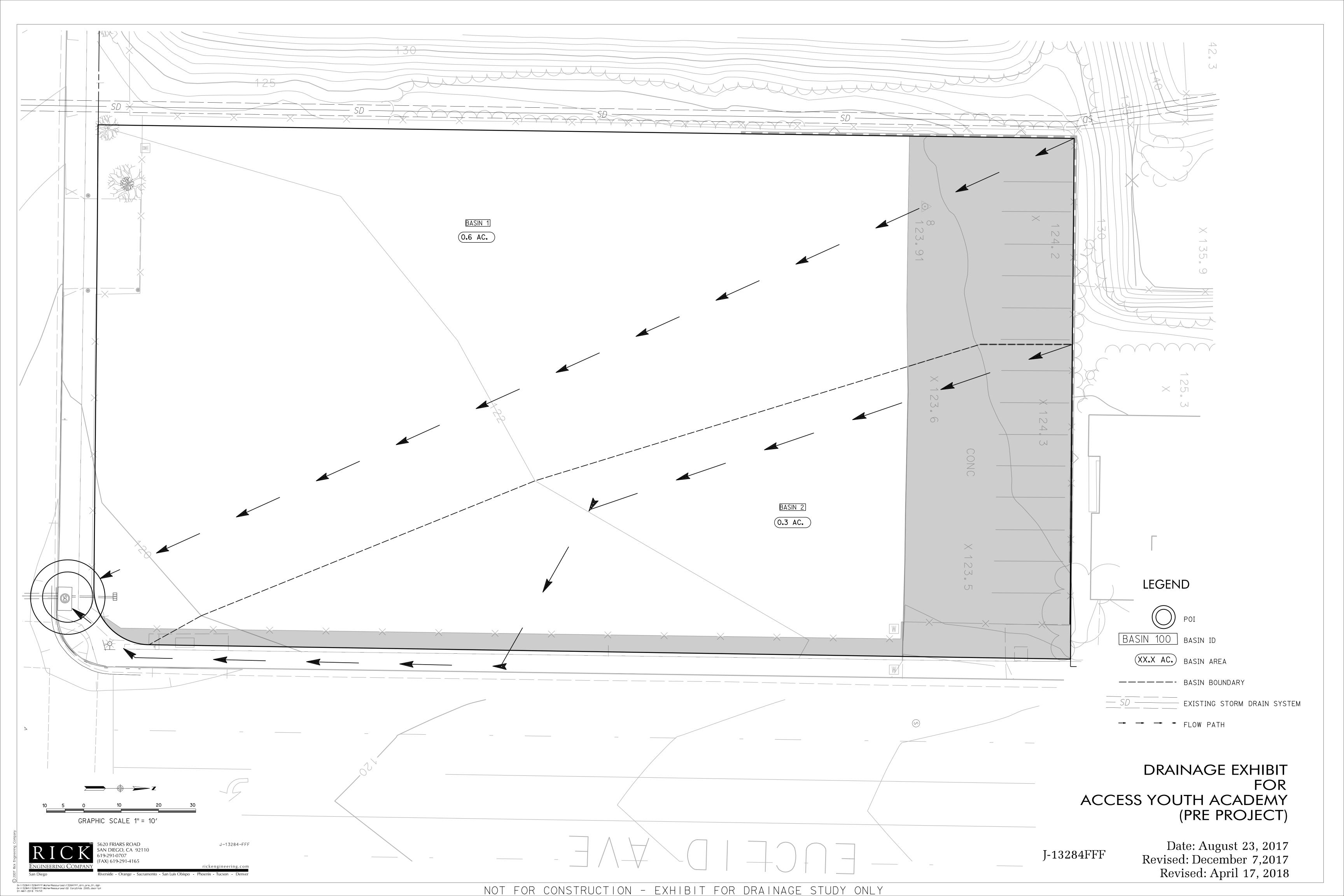
Manning's n: 0.0130

Flow: 3.4000 cfs

Result Parameters

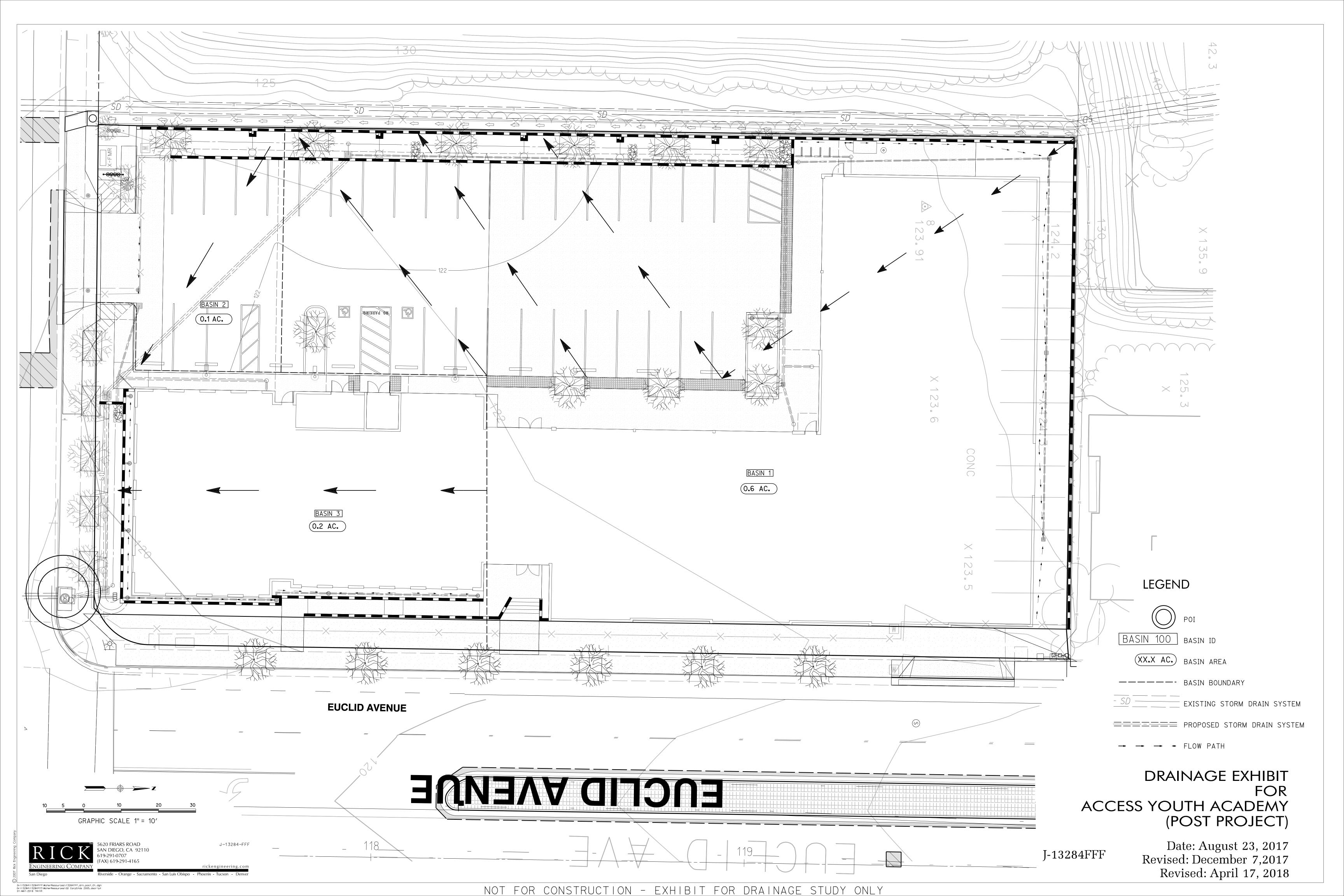
Depth: 0.5869 ft

Area of Flow: 0.6409 ft^2
Wetted Perimeter: 2.0275 ft
Hydraulic Radius: 0.3161 ft
Average Velocity: 5.3048 ft/s


Top Width: 1.4641 ft

Froude Number: 1.4129
Critical Depth: 0.7031 ft
Critical Velocity: 4.1805 ft/s
Critical Slope: 0.0052 ft/ft
Critical Top Width: 1.50 ft

Calculated Max Shear Stress: 0.3663 lb/ft^2 Calculated Avg Shear Stress: 0.1973 lb/ft^2


MAP POCKET 1

Drainage Study Exhibit For Access Youth Academy [Pre-project]

MAP POCKET 2

Drainage Study Exhibit For Access Youth Academy [Post-project]

Federal Emergency Management Agency

Washington, D.C. 20472

January 18, 2018

THE HONORABLE KEVIN FAULCONER MAYOR, CITY OF SAN DIEGO 202 C STREET, 11TH FLOOR CASE NO.: 18-09-0561C

COMMUNITY: CITY OF SAN DIEGO, SAN DIEGO

COUNTY, CALIFORNIA

COMMUNITY NO.: 060295

SAN DIEGO, CA 92101

DEAR MR. FAULCONER:

This is in reference to a request that the Federal Emergency Management Agency (FEMA) determine if the property described in the enclosed document is located within an identified Special Flood Hazard Area, the area that would be inundated by the flood having a 1-percent chance of being equaled or exceeded in any given year (base flood), on the effective National Flood Insurance Program (NFIP) map. Using the information submitted and the effective NFIP map, our determination is shown on the attached Conditional Letter of Map Revision based on Fill (CLOMR-F) Comment Document. This comment document provides additional information regarding the effective NFIP map, the legal description of the property and our comments regarding this proposed project.

Additional documents are enclosed which provide information regarding the subject property and CLOMR-Fs. Please see the List of Enclosures below to determine which documents are enclosed. attachments specific this request may be included as referenced to If you have any questions about this letter or any of the Determination/Comment document. enclosures, please contact the FEMA Map Information eXchange (FMIX) toll free at (877) 336-2627 (877-FEMA MAP) or by letter addressed to the Federal Emergency Management Agency, Engineering Library, 3601 Eisenhower Ave Ste 500, Alexandria, VA 22304-6426.

Sincerely,

Luis V. Rodriguez, P.E., Director Engineering and Modeling Division

- Contraction of the Contraction

Federal Insurance and Mitigation Administration

LIST OF ENCLOSURES:

CLOMR-F COMMENT DOCUMENT

cc: Mr. Brendan Hastie

Date: January 18, 2018

Case No.: 18-09-0561C

CLOMR-F

Federal Emergency Management Agency

Washington, D.C. 20472

CONDITIONAL LETTER OF MAP REVISION BASED ON FILL COMMENT DOCUMENT

сомми	NITY AND MAP PANEL INFORMATION	LEGAL PROPERTY DESCRIPTION
COMMUNITY	CITY OF SAN DIEGO, SAN DIEGO COUNTY, CALIFORNIA	Proposed Access Youth Academy, shown as Parcel 1, on Parcel Map No. 2407 recorded as File No. 74-052713, in the Office of the Recorder, San Diego County, California
	COMMUNITY NO.: 060295	
AFFECTED	NUMBER: 06073C1904G	
MAP PANEL	DATE: 5/16/2012	
FLOODING SO	URCE: SOUTH LAS CHOLLAS CREEK	APPROXIMATE LATITUDE & LONGITUDE OF PROPERTY:32.712830, -117.085334 SOURCE OF LAT & LONG: LOMA LOGIC DATUM: NAD 83

COMMENT TABLE REGARDING THE PROPOSED PROPERTY (PLEASE NOTE THAT THIS IS NOT A FINAL DETERMINATION. A FINAL DETERMINATION WILL BE

MADE LIPON RECEIPT OF AS-BUILT INFORMATION REGARDING THIS PROPERTY.)

WINDLO	ONTRECENT	OF THE BUILT HAT OTHER	ATION REGARDING THIS PR	01 =111 117				
LOT	BLOCK/ SECTION	SUBDIVISION	STREET	OUTCOME WHAT WOULD BE REMOVED FROM THE SFHA	FLOOD ZONE	1% ANNUAL CHANCE FLOOD ELEVATION (NAVD 88)	LOWEST ADJACENT GRADE ELEVATION (NAVD 88)	LOWEST LOT ELEVATION (NAVD 88)
Parcel 1		Parcel Map No. 2407	704 Euclid Avenue	Structure	X (shaded)	124.2 feet	124.2 feet	

Special Flood Hazard Area (SFHA) - The SFHA is an area that would be inundated by the flood having a 1-percent chance of being equaled or exceeded in any given year (base flood).

ADDITIONAL CONSIDERATIONS (Please refer to the appropriate section on Attachment 1 for the additional considerations listed below.)

PORTIONS REMAIN IN THE SFHA CONDITIONAL LOMR-F DETERMINATION REVISED BY LETTER OF MAP REVISION

This document provides the Federal Emergency Management Agency's comment regarding a request for a Conditional Letter of Map Revision based on Fill for the property described above. Using the information submitted and the effective National Flood Insurance Program (NFIP) map, we have determined that the proposed structure(s) on the property(ies) would not be located in the SFHA, an area inundated by the flood having a 1-percent chance of being equaled or exceeded in any given year (base flood) if built as proposed. Our final determination will be made upon receipt of a copy of this document, as-built elevations, and a completed Community Acknowledgement form. Proper completion of this form certifies the subject property is reasonably safe from flooding in accordance with Part 65.5(a)(4) of our regulations. Further guidance on determining if the subject property is reasonably safe from flooding may be found in FEMA Technical Bulletin 10-01. A copy of this bulletin can be obtained by calling the FEMA Map Assistance Center toll free at (877) 336-2627 (877-FEMA MAP) or from our web site at http://www.fema.gov/mit/tb1001.pdf. This document is not a final determination; it only provides our comment on the proposed project in relation to the SFHA shown on the effective NFIP map.

This comment document is based on the flood data presently available. The enclosed documents provide additional information regarding this request. If you have any questions about this document, please contact the FEMA Map Information eXchange (FMIX) toll free at (877) 336-2627 (877-FEMA MAP) or by letter addressed to the Federal Emergency Management Agency, Engineering Library, 3601 Eisenhower Ave Ste 500, Alexandria, VA 22304-6426.

> Luis V. Rodriguez, P.E., Director Engineering and Modeling Division

Federal Insurance and Mitigation Administration

Federal Emergency Management Agency

Washington, D.C. 20472

CONDITIONAL LETTER OF MAP REVISION BASED ON FILL COMMENT DOCUMENT

ATTACHMENT 1 (ADDITIONAL CONSIDERATIONS)

PORTIONS OF THE PROPERTY REMAIN IN THE SFHA (This Additional Consideration applies to the preceding 1 Property.)

Portions of this property, but not the subject of the Determination/Comment document, may remain in the Special Flood Hazard Area. Therefore, any future construction or substantial improvement on the property remains subject to Federal, State/Commonwealth, and local regulations for floodplain management.

CONDITIONAL LOMR-F DETERMINATION (This Additional Consideration applies to the preceding 1 Property.)

Comments regarding this conditional request are based on the flood data presently available. Our final determination will be made upon receipt of this Comment Document, certified as-built elevations and/or certified as-built survey. Since this request is for a Conditional Letter of Map Revision based on Fill, we will also require the applicable processing fee, and the "Community Acknowledgement" form. Please note that additional items may be required before a final as-built determination is issued.

This letter does not relieve Federal agencies of the need to comply with Executive Order 11988 on Floodplain Management in carrying out their responsibilities and providing Federally undertaken, financed, or assisted construction and improvements, or in their regulating or licensing activities.

REVISED BY LETTER OF MAP REVISION (This Additional Consideration applies to the preceding 1 Property.)

The effective National Flood Insurance Program map for the subject property, has since been revised by a Letter of Map Revision (LOMR) dated 5/17/2012. The 5/17/2012 LOMR has been used in making the determination/comment for the subject property.

This attachment provides additional information regarding this request. If you have any questions about this attachment, please contact the FEMA Map Information eXchange (FMIX) toll free at (877) 336-2627 (877-FEMA MAP) or by letter addressed to the Federal Emergency Management Agency, Engineering Library, 3601 Eisenhower Ave Ste 500, Alexandria, VA 22304-6426.

Luis V. Rodriguez, P.E., Director Engineering and Modeling Division Federal Insurance and Mitigation Administration

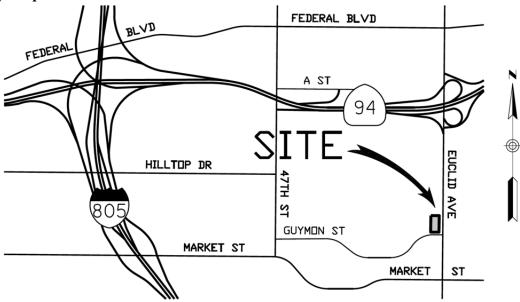
September 12, 2018

Mr. Louis Schultz Senior Civil Engineer City of San Diego – Development Services Department 1222 First Avenue, MS 301 San Diego, California 92101-4101

SUBJECT: NO-RISE CERTIFICATION FOR ACCESS YOUTH ACADEMY (RICK ENGINEERING COMPANY JOB NUMBER 13284-FFF)

Dear Mr. Schultz:

This is a No-Rise Certification for the proposed Access Youth Academy Project (project) in the City of San Diego, California; APN: 548-010-13. The project proposes construction activities within the Federal Emergency Management Agency (FEMA) defined floodplain for South Las Chollas Creek, between FEMA cross sections Y and Z, as shown on the FEMA Flood Insurance Rate Map (FIRM) map number 06073C1904G, effective May 16, 2012. FEMA has designated this portion of South Las Chollas Creek as Zone AE and Zone X. The limits of this project are within the City of San Diego, California, community number 060295. Please refer to the vicinity map on the following page. A Conditional Letter of Map Revision based on Fill (CLOMR-F) has already been processed through the City of San Diego and FEMA, a copy of the determination letter is included in Attachment 2.


The project is located at 704 Euclid Avenue at the northwest corner of the intersection of Guymon Street and Euclid Avenue. The approximately 0.8 acre site is currently a vacant lot with a parking lot along the northern property boundary. The proposed project includes the construction of the proposed Access Youth Academy building, a parking lot, and landscaped areas.

FIRM panel 06073C1904G has been revised by Letter of Map Revision (LOMR) FEMA Case No. 12-09-1287P, original LOMR Case No. 11-09-0120P, effective on May 17, 2012. An additional LOMR completed by RICK, LOMR Case No. 17-09-1780P, is now effective as of September 6, 2018. The modeling for South Las Chollas Creek completed by LOMR 17-09-1780P encompasses the reach of the creek that the Access Youth Academy project is adjacent to. Consequently, the no-rise certification completed for the project utilizes the LOMR 17-09-1780P model as the modeling basis.

A summary of the modeling completed in this study is included in the following sections. An electronic copy of the executable HEC-RAS models is included in Attachment 8. All of the modeling completed as part of this study was executed using HEC-RAS version 5.0.3 and all elevations are on the NGVD-29 vertical datum unless noted otherwise. A copy of LOMR 17-09-1780P is included in Attachment 3 and excerpts from the LOMR 17-09-1780P report are included in Attachment 4.

Mr. Louis Schultz September 12, 2018 Page 2 of 4

Vicinity Map

Plan: DE

This plan includes the HEC-RAS model for LOMR 17-09-1780P copied exactly from the HEC-RAS files for the LOMR in order to create a duplicate effective model. As shown in Table 1, following, the water surface elevations (WSELs) calculated in the duplicate effective model match exactly with the effective model confirming the correct effective model is being used for this comparison.

Plan: CE

This plan is based off of the duplicate effective model discussed above with the following revisions to create the corrected effective model:

- 1. The model was truncated to include only the reach in the vicinity of the proposed project to simplify comparisons between the models.
- 2. Updated the cross section data for cross sections 1731, 1745, and 1750 to include detailed site specific topography and updated Manning's n-values as required. The revisions were made from the cross section start to the north edge of Guymon Street for cross section 1731 and from the start to the east curb line of Euclid Avenue for cross sections 1745 and 1750.

Plan: PR

This plan is based off of the corrected effective condition model discussed above with the following revisions to create the proposed condition model:

1. The proposed grading for the project was added to the left bank of cross sections 1731 through 1750.

Table 1: 100-Year Storm Event Water Surface Elevations Comparison Table

Job Name: Access Youth Academy

Job Number: 13284-FFF

Date: 9/12/2018

All WSEL's on the NGVD-29 Vertical Datum, NAVD-88 elevations are 2.1 feet above NGVD-29 elevations. FP=Floodplain FW=Floodway

	EMA LOMR 09-1780P Data Effective		Duplicate Corrected Effective Effective		Prop	osed	Duplicate FP -	Corrected FP -	Proposed FP -	Proposed FW -					
a .:	FP	FW	a .:	FP	FW	FP	FW	FP	FW	FP	FW	Effective FP	Duplicate FP	Corrected FP	Corrected FW
Section	[1]	[2]	Section	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[5]-[3]	[7]-[5]	[9]-[7]	[10]-[8]
			1718	114.29	114.29	114.29	114.29	114.29	114.29	114.29	114.29	0.00	0.00	0.00	0.00
			1719	114.39	114.39	114.39	114.39	114.39	114.39	114.39	114.39	0.00	0.00	0.00	0.00
			1720	114.42	114.42	114.42	114.42	114.42	114.42	114.42	114.42	0.00	0.00	0.00	0.00
			1722	115.76	115.81	115.76	115.81	115.76	115.81	115.76	115.81	0.00	0.00	0.00	0.00
			1723	115.96	115.95	115.96	115.95	115.96	115.95	115.96	115.95	0.00	0.00	0.00	0.00
			1728	116.80	116.80	116.80	116.80	116.80	116.80	116.80	116.80	0.00	0.00	0.00	0.00
			1731	116.92	116.91	116.92	116.91	116.92	116.91	116.92	116.91	0.00	0.00	0.00	0.00
			1735	118.43	118.48	118.43	118.48	118.43	118.48	118.43	118.48	0.00	0.00	0.00	0.00
			1740	Cul	vert	Cul	vert	Cul	vert	Cul	vert				
			1745	120.56	121.52	120.56	121.52	120.64	121.52	120.64	121.52	0.00	0.08	0.00	0.00
Z	121.1	121.1	1750	121.05	121.10	121.05	121.10	121.33	121.10	121.33	121.10	0.00	0.28	0.00	0.00
			1762	121.89	121.68	121.89	121.68	121.89	121.68	121.89	121.68	0.00	0.00	0.00	0.00
AA	126.3	126.9	1797	126.31	126.87	126.31	126.87	126.31	126.87	126.31	126.87	0.00	0.00	0.00	0.00
			1827	130.29	130.31	130.29	130.31	130.29	130.31	130.29	130.31	0.00	0.00	0.00	0.00
			1846	132.95	133.10	132.95	133.10	132.95	133.10	132.95	133.10	0.00	0.00	0.00	0.00
		•	1856	135.51	135.74	135.51	135.74	135.51	135.74	135.51	135.74	0.00	0.00	0.00	0.00

Mr. Louis Schultz September 12, 2018 Page 4 of 4

Conclusion

As shown in Table 1, the proposed Access Youth Academy project results in no increase to the base flood elevations (100-year flood), floodway elevations, or floodway widths of South Las Chollas Creek at cross sections published in the Flood Insurance Study or unpublished cross-sections in the vicinity of the proposed development. The water surface elevation in this portion of South Las Chollas Creek appears to be driven primarily by backwater from the undersized culvert under Euclid Avenue. The proposed grading is on the fringe of the floodplain and in combination with the proposed walls adjacent to the structure providing cut to balance out conveyance pre- and post-project as well as with Manning's n-values being reduced with more concrete sidewalks and walls in the proposed condition, no increase in water surface elevations is calculated.

The No-Rise Certification for the project is included in Attachment 1. Summary output from the duplicate effective, corrected effective, and proposed models are included in Attachments 5, 6, and 7 respectively. A workmap for the corrected effective and proposed conditions models is included in Attachment 8. A reduced size copy of the proposed grading plan is included in Attachment 9 and a full size copy is included with the electronic files in Attachment 10.

Attachments

Attachment 1: No-Rise Certification

Attachment 2: CLOMR-F Determination Letter

Attachment 3: LOMR 17-09-1780P Letter

Attachment 4: Effective LOMR 17-09-1780P Report Excerpts

Attachment 5: Duplicate Effective HEC-RAS Output Attachment 6: Corrected Effective HEC-RAS Output

Attachment 7: Proposed HEC-RAS Output Attachment 8: Proposed HEC-RAS Workmap

Attachment 9: Proposed Grading Plan

Attachment 10: Electronic Files

If you have any questions or require additional information to aid in your review of the enclosed documents, please contact either David Montgomery at (916) 934-5191 or by email at dmontgomery@rickengineering.com or myself at (619) 291-0707 or by email at bhastie@rickengineering.com.

Sincerely,

RICK ENGINEERING COMPANY

Brendan Hastie

R.C.E. #65809, Exp. 9/19

Associate Principal

BH:DM:es:k/files/Report/13284-FFF.011

cc: Sean Torres

Attachment 1

No-Rise Certification

NATIONAL FLOOD INSURANCE PROGRAM ENGINEERING "NO-RISE" CERTIFICATE

Community: C	City of San Diego	County: San Diego	State: CA	Date: 09/12/2018
Applicant: Address:	Access Youth Academ 7310 Miramar Road, Suite 405 San Diego, CA 92126	Address:	5620 Friars R	ering Company Road
Telephone:	(858) 860-5688	Telephone:	(619) 291-07	CA 92110-2596 07
Site Informati Location: Site Address: Panel(s) of NF	Latitude: 32.7	1284° Longitude: -117 venue, San Diego, Califo 06073C1904G		
Type of Devel		X Grading X Exca		Minor Improvement X X Other
Project located the northwest construction a for South Las Insurance Rate acre site is cur	d at 704 Euclid Avenue corner of the intersectivities within the Fe Chollas Creek, betwee Map (FIRM) map nurrently a vacant lot wites the construction of	ue in San Diego, Califo ction of Euclid Avenu ederal Emergency Mar een FEMA cross secti nmber 06073C1904G, of th a parking lot along to	ornia; APN: 54 e and Guymo agement Age ons Y and Z, effective May the northern properties.	posed Access Youth Academy 48-010-13. The project site is at an Streets. The project proposes ncy (FEMA) defined floodplain as shown on the FEMA Flood 16, 2012. The approximately 0.8 roperty boundary. The proposed my building, a parking lot, and
Name of Floor	ling Source: South La	as Chollas Creek		
grading dated calculations sh	May 25, 2018. If the ow that there will be	ne grading is construct no cumulative increas	ed as propose e in the 100-y	ification is based on the proposed d, Rick Engineering's hydraulic ear base flood elevations in the 100-year base flood elevations.
California. I fu in the areas and year flood) abo	rther certify that the at I configurations describ ove the corrected effec-	tached engineering data bed above will not creat tive condition at publis	a supports the see any increase shed or unpubl	nsed to practice in the State of fact the proposed project grading in the base flood elevations (100-ished cross sections listed in the in the vicinity of the proposed
Brendan Ha	stie NAME			PROFESSION ORANGE
	eering Company PANY NAME		(SEAL	NO 65800
Associate P	rincinal			EXP. 7/30/19

SIGNATURE

Associate Principal

Attachment 2

CLOMR-F Determination

Date: January 18, 2018

Case No.: 18-09-0561C

CLOMR-F

Federal Emergency Management Agency

Washington, D.C. 20472

CONDITIONAL LETTER OF MAP REVISION BASED ON FILL COMMENT DOCUMENT

сомми	NITY AND MAP PANEL INFORMATION	LEGAL PROPERTY DESCRIPTION
COMMUNITY	CITY OF SAN DIEGO, SAN DIEGO COUNTY, CALIFORNIA	Proposed Access Youth Academy, shown as Parcel 1, on Parcel Map No. 2407 recorded as File No. 74-052713, in the Office of the Recorder, San Diego County, California
	COMMUNITY NO.: 060295	
AFFECTED	NUMBER: 06073C1904G	
MAP PANEL	DATE: 5/16/2012	
LOODING GOOKGE. GOOTH EAG GHOLLAG GKLLK		APPROXIMATE LATITUDE & LONGITUDE OF PROPERTY:32.712830, -117.085334 SOURCE OF LAT & LONG: LOMA LOGIC DATUM: NAD 83

COMMENT TABLE REGARDING THE PROPOSED PROPERTY (PLEASE NOTE THAT THIS IS NOT A FINAL DETERMINATION. A FINAL DETERMINATION WILL BE

MADE LIPON RECEIPT OF AS-BUILT INFORMATION REGARDING THIS PROPERTY.)

WINDLO	ONTRECENT	OF THE BUILT HAT OTHER	ATION REGARDING THIS PR	01 =111 117				
LOT	BLOCK/ SECTION	SUBDIVISION	STREET	OUTCOME WHAT WOULD BE REMOVED FROM THE SFHA	FLOOD ZONE	1% ANNUAL CHANCE FLOOD ELEVATION (NAVD 88)	LOWEST ADJACENT GRADE ELEVATION (NAVD 88)	LOWEST LOT ELEVATION (NAVD 88)
Parcel 1		Parcel Map No. 2407	704 Euclid Avenue	Structure	X (shaded)	124.2 feet	124.2 feet	

Special Flood Hazard Area (SFHA) - The SFHA is an area that would be inundated by the flood having a 1-percent chance of being equaled or exceeded in any given year (base flood).

ADDITIONAL CONSIDERATIONS (Please refer to the appropriate section on Attachment 1 for the additional considerations listed below.)

PORTIONS REMAIN IN THE SFHA CONDITIONAL LOMR-F DETERMINATION REVISED BY LETTER OF MAP REVISION

This document provides the Federal Emergency Management Agency's comment regarding a request for a Conditional Letter of Map Revision based on Fill for the property described above. Using the information submitted and the effective National Flood Insurance Program (NFIP) map, we have determined that the proposed structure(s) on the property(ies) would not be located in the SFHA, an area inundated by the flood having a 1-percent chance of being equaled or exceeded in any given year (base flood) if built as proposed. Our final determination will be made upon receipt of a copy of this document, as-built elevations, and a completed Community Acknowledgement form. Proper completion of this form certifies the subject property is reasonably safe from flooding in accordance with Part 65.5(a)(4) of our regulations. Further guidance on determining if the subject property is reasonably safe from flooding may be found in FEMA Technical Bulletin 10-01. A copy of this bulletin can be obtained by calling the FEMA Map Assistance Center toll free at (877) 336-2627 (877-FEMA MAP) or from our web site at http://www.fema.gov/mit/tb1001.pdf. This document is not a final determination; it only provides our comment on the proposed project in relation to the SFHA shown on the effective NFIP map.

This comment document is based on the flood data presently available. The enclosed documents provide additional information regarding this request. If you have any questions about this document, please contact the FEMA Map Information eXchange (FMIX) toll free at (877) 336-2627 (877-FEMA MAP) or by letter addressed to the Federal Emergency Management Agency, Engineering Library, 3601 Eisenhower Ave Ste 500, Alexandria, VA 22304-6426.

> Luis V. Rodriguez, P.E., Director Engineering and Modeling Division

Federal Insurance and Mitigation Administration

Federal Emergency Management Agency

Washington, D.C. 20472

CONDITIONAL LETTER OF MAP REVISION BASED ON FILL COMMENT DOCUMENT

ATTACHMENT 1 (ADDITIONAL CONSIDERATIONS)

PORTIONS OF THE PROPERTY REMAIN IN THE SFHA (This Additional Consideration applies to the preceding 1 Property.)

Portions of this property, but not the subject of the Determination/Comment document, may remain in the Special Flood Hazard Area. Therefore, any future construction or substantial improvement on the property remains subject to Federal, State/Commonwealth, and local regulations for floodplain management.

CONDITIONAL LOMR-F DETERMINATION (This Additional Consideration applies to the preceding 1 Property.)

Comments regarding this conditional request are based on the flood data presently available. Our final determination will be made upon receipt of this Comment Document, certified as-built elevations and/or certified as-built survey. Since this request is for a Conditional Letter of Map Revision based on Fill, we will also require the applicable processing fee, and the "Community Acknowledgement" form. Please note that additional items may be required before a final as-built determination is issued.

This letter does not relieve Federal agencies of the need to comply with Executive Order 11988 on Floodplain Management in carrying out their responsibilities and providing Federally undertaken, financed, or assisted construction and improvements, or in their regulating or licensing activities.

REVISED BY LETTER OF MAP REVISION (This Additional Consideration applies to the preceding 1 Property.)

The effective National Flood Insurance Program map for the subject property, has since been revised by a Letter of Map Revision (LOMR) dated 5/17/2012. The 5/17/2012 LOMR has been used in making the determination/comment for the subject property.

This attachment provides additional information regarding this request. If you have any questions about this attachment, please contact the FEMA Map Information eXchange (FMIX) toll free at (877) 336-2627 (877-FEMA MAP) or by letter addressed to the Federal Emergency Management Agency, Engineering Library, 3601 Eisenhower Ave Ste 500, Alexandria, VA 22304-6426.

Luis V. Rodriguez, P.E., Director Engineering and Modeling Division Federal Insurance and Mitigation Administration

Attachment 3

LOMR 17-09-1780P Letter

Page 1 of 4 | Issue Date: April 25, 2018 | Effective Date: September 6, 2018 | Case No.: 17-09-1780P | LOMR-APP

Follows Conditional Case No.: 14-09-1146R

Federal Emergency Management Agency

Washington, D.C. 20472

LETTER OF MAP REVISION DETERMINATION DOCUMENT

	COMMUNITY AND REVISION INFORMATION	PROJECT DESCRIPTION	BASIS OF REQUEST		
COMMUNITY	City of San Diego San Diego County California	CHANNELIZATION DROP STRUCTURE RETAINING WALL	FLOODWAY HYDRAULIC ANALYSIS UPDATED TOPOGRAPHIC DATA		
	COMMUNITY NO.: 060295				
IDENTIFIER	Northwest Village Creek	APPROXIMATE LATITUDE & LONGITUDE: 32.712, -117.088 SOURCE: USGS QUADRANGLE DATUM: NAD 83			
	ANNOTATED MAPPING ENCLOSURES	ANNOTATED STU	IDY ENCLOSURES		
TYPE: FIRM*	NO.: 06073C1904G DATE: May 16, 2012	DATE OF EFFECTIVE FLOOD INSURANCE STUDY: April 05, 2016 PROFILE: 455P FLOODWAY DATA TABLE: 13			

Enclosures reflect changes to flooding sources affected by this revision.

FLOODING SOURCE & REVISED REACHE

South Las Chollas Creek - from just downstream of Market Street to approximately 250 feet upstream of North Euclid Avenue

SUMMARY OF REVISIONS							
Flooding Source	Effective Flooding	Revised Flooding	Increases	Decreases			
South Las Chollas Creek	Zone AE	Zone AE	YES	YES			
	BFEs*	BFEs	YES	YES			
	Floodway	Floodway	YES	YES			

* BFEs - Base Flood Elevations

DETERMINATION

This document provides the determination from the Department of Homeland Security's Federal Emergency Management Agency (FEMA) regarding a request for a Letter of Map Revision (LOMR) for the area described above. Using the information submitted, we have determined that a revision to the flood hazards depicted in the Flood Insurance Study (FIS) report and/or National Flood Insurance Program (NFIP) map is warranted. This document revises the effective NFIP map, as indicated in the attached documentation. Please use the enclosed annotated map panels revised by this LOMR for floodplain management purposes and for all flood insurance policies and renewals in your community.

This determination is based on the flood data presently available. The enclosed documents provide additional information regarding this determination. If you have any questions about this document, please contact the FEMA Map Information eXchange toll free at 1-877-336-2627 (1-877-FEMA MAP) or by letter addressed to the LOMC Clearinghouse, 3601 Eisenhower Avenue, Suite 500, Alexandria, VA 22304-6426. Additional Information about the NFIP is available on our website at http://www.fema.gov/nfip.

Patrick "Rick" F. Sacbibit, P.E., Branch Chief Engineering Services Branch

Federal Insurance and Mitigation Administration

17-09-1780P 102-I-A-C

^{*} FIRM - Flood Insurance Rate Map

Page 2 of 4 | Issue Date: April 25, 2018 | Effective Date: September 6, 2018 | Case No.: 17-09-1780P | LOMR-APP

Federal Emergency Management Agency

Washington, D.C. 20472

LETTER OF MAP REVISION DETERMINATION DOCUMENT (CONTINUED)

COMMUNITY INFORMATION

APPLICABLE NFIP REGULATIONS/COMMUNITY OBLIGATION

We have made this determination pursuant to Section 206 of the Flood Disaster Protection Act of 1973 (P.L. 93-234) and in accordance with the National Flood Insurance Act of 1968, as amended (Title XIII of the Housing and Urban Development Act of 1968, P.L. 90-448), 42 U.S.C. 4001-4128, and 44 CFR Part 65. Pursuant to Section 1361 of the National Flood Insurance Act of 1968, as amended, communities participating in the NFIP are required to adopt and enforce floodplain management regulations that meet or exceed NFIP criteria. These criteria, including adoption of the FIS report and FIRM, and the modifications made by this LOMR, are the minimum requirements for continued NFIP participation and do not supersede more stringent State/Commonwealth or local requirements to which the regulations apply.

We provide the floodway designation to your community as a tool to regulate floodplain development. Therefore, the floodway revision we have described in this letter, while acceptable to us, must also be acceptable to your community and adopted by appropriate community action, as specified in Paragraph 60.3(d) of the NFIP regulations.

NFIP regulations Subparagraph 60.3(b)(7) requires communities to ensure that the flood-carrying capacity within the altered or relocated portion of any watercourse is maintained. This provision is incorporated into your community's existing floodplain management ordinances; therefore, responsibility for maintenance of the altered or relocated watercourse, including any related appurtenances such as bridges, culverts, and other drainage structures, rests with your community. We may request that your community submit a description and schedule of maintenance activities necessary to ensure this requirement.

COMMUNITY REMINDERS

We based this determination on the 1-percent-annual-chance flood discharges computed in the FIS for your community without considering subsequent changes in watershed characteristics that could increase flood discharges. Future development of projects upstream could cause increased flood discharges, which could cause increased flood hazards. A comprehensive restudy of your community's flood hazards would consider the cumulative effects of development on flood discharges subsequent to the publication of the FIS report for your community and could, therefore, establish greater flood hazards in this area.

Your community must regulate all proposed floodplain development and ensure that permits required by Federal and/or State/Commonwealth law have been obtained. State/Commonwealth or community officials, based on knowledge of local conditions and in the interest of safety, may set higher standards for construction or may limit development in floodplain areas. If your State/Commonwealth or community has adopted more restrictive or comprehensive floodplain management criteria, those criteria take precedence over the minimum NFIP requirements.

This determination is based on the flood data presently available. The enclosed documents provide additional information regarding this determination. If you have any questions about this document, please contact the FEMA Map Information eXchange toll free at 1-877-336-2627 (1-877-FEMA MAP) or by letter addressed to the LOMC Clearinghouse, 3601 Eisenhower Avenue, Suite 500, Alexandria, VA 22304-6426. Additional Information about the NFIP is available on our website at http://www.fema.gov/nfip.

Patrick "Rick" F. Sacbibit, P.E., Branch Chief Engineering Services Branch Federal Insurance and Mitigation Administration

17-09-1780P 102-I-A-C

Page 3 of 4 Issue Date: April 25, 2018 Effective Date: September 6, 2018 Case No.: 17-09-1780P LOMR-APP

Federal Emergency Management Agency

Washington, D.C. 20472

LETTER OF MAP REVISION DETERMINATION DOCUMENT (CONTINUED)

We will not print and distribute this LOMR to primary users, such as local insurance agents or mortgage lenders; instead, the community will serve as a repository for the new data. We encourage you to disseminate the information in this LOMR by preparing a news release for publication in your community's newspaper that describes the revision and explains how your community will provide the data and help interpret the NFIP maps. In that way, interested persons, such as property owners, insurance agents, and mortgage lenders, can benefit from the information.

We have designated a Consultation Coordination Officer (CCO) to assist your community. The CCO will be the primary liaison between your community and FEMA. For information regarding your CCO, please contact:

Ms. Juliette Hayes
Director, Mitigation Division
Federal Emergency Management Agency, Region IX
1111 Broadway Street, Suite 1200
Oakland, CA 94607-4052
(510) 627-7175

STATUS OF THE COMMUNITY NFIP MAPS

We will not physically revise and republish the FIRM and FIS report for your community to reflect the modifications made by this LOMR at this time. When changes to the previously cited FIRM panel and FIS report warrant physical revision and republication in the future, we will incorporate the modifications made by this LOMR at that time.

This determination is based on the flood data presently available. The enclosed documents provide additional information regarding this determination. If you have any questions about this document, please contact the FEMA Map Information eXchange toll free at 1-877-336-2627 (1-877-FEMA MAP) or by letter addressed to the LOMC Clearinghouse, 3601 Eisenhower Avenue, Suite 500, Alexandria, VA 22304-6426. Additional Information about the NFIP is available on our website at http://www.fema.gov/nfip.

Patrick "Rick" F. Sacbibit, P.E., Branch Chief Engineering Services Branch Federal Insurance and Mitigation Administration

17-09-1780P 102-I-A-C

Page 4 of 4 | Issue Date: April 25, 2018 | Effective Date: September 6, 2018 | Case No.: 17-09-1780P | LOMR-APP

Federal Emergency Management Agency

Washington, D.C. 20472

LETTER OF MAP REVISION DETERMINATION DOCUMENT (CONTINUED)

PUBLIC NOTIFICATION OF REVISION

A notice of changes will be published in the *Federal Register*. This information also will be published in your local newspaper on or about the dates listed below, and through FEMA's Flood Hazard Mapping website at https://www.floodmaps.fema.gov/fhm/bfe status/bfe main.asp

LOCAL NEWSPAPER Name: The San Diego Daily Transcript

Dates: May 2, 2018 and May 9, 2018

Within 90 days of the second publication in the local newspaper, any interested party may request that we reconsider this determination. Any request for reconsideration must be based on scientific or technical data. Therefore, this letter will be effective only after the 90-day appeal period has elapsed and we have resolved any appeals that we receive during this appeal period. Until this LOMR is effective, the revised flood hazard determination presented in this LOMR may be changed.

This determination is based on the flood data presently available. The enclosed documents provide additional information regarding this determination. If you have any questions about this document, please contact the FEMA Map Information eXchange toll free at 1-877-336-2627 (1-877-FEMA MAP) or by letter addressed to the LOMC Clearinghouse, 3601 Eisenhower Avenue, Suite 500, Alexandria, VA 22304-6426. Additional Information about the NFIP is available on our website at http://www.fema.gov/nfip.

Patrick "Rick" F. Sacbibit, P.E., Branch Chief Engineering Services Branch

Federal Insurance and Mitigation Administration 17-09-1780P 102-I-A-C

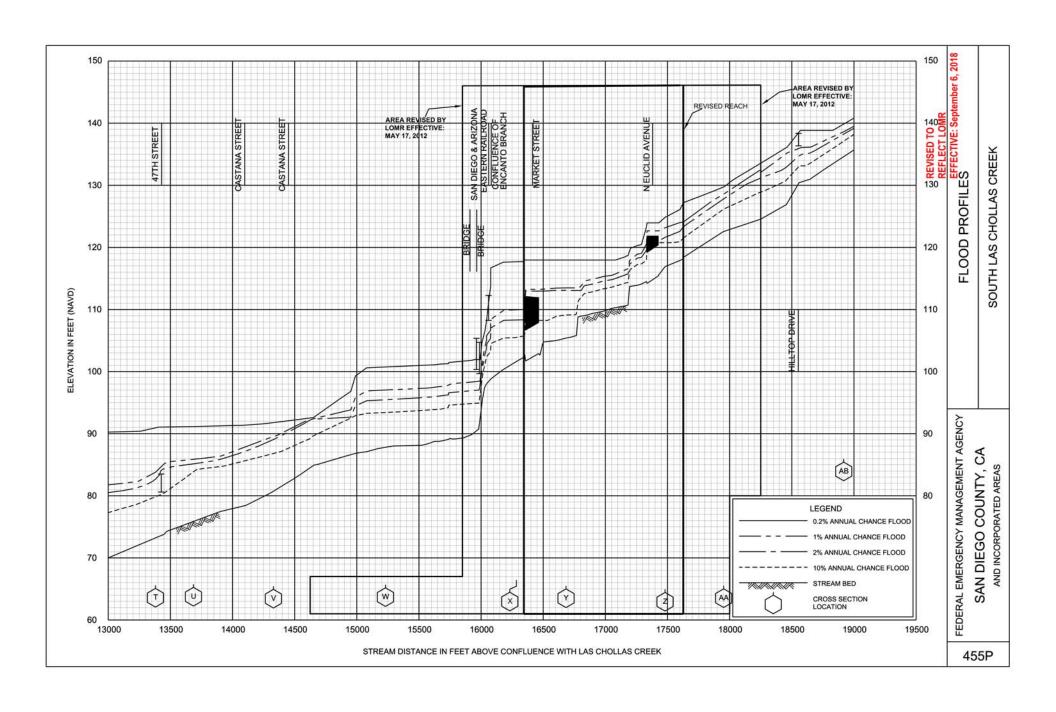
FLOODING SOURCE		FLOODWAY			1-PERCENT-ANNUAL-CHANCE FLOOD WATER-SURFACE ELEVATION (FEET NAVD)			
CROSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
South Las Chollas			·					
Creek								
A-H	2	2	2	2	2	2	2	2
1	5,410	57	468	11.3	27.6	27.6	28.6	1.0
J	6,000	45	441	12.0	31.9	31.9	32.5	0.6
K	6,950	64	762	7.0	37.9	37.9	38.9	1.0
L	7,200	86	741	7.6	37.9	37.9	38.9	1.0
M	8,200	65	420	12.6	41.2	41.2	41.3	0.1
N	9,030	90	822	6.5	51.9	51.9	51.9	0.0
0	9,280	89	751	7.1	52.3	52.3	52.3	0.0
Р	10,080	83	573	9.3	57.3	57.3	57.3	0.0
Q	10,880	164	1,273	4.2	60.2	60.2	60.2	0.0
R	11,580	101	829	6.4	71.7	71.7	71.9	0.2
S	12,330	81	611	8.7	72.6	72.6	73.1	0.5
Т	13,380	62	666	4.6	83.3	83.3	83.8	0.5
U	13,690	217	1,157	4.6	85.5	85.5	86.3	0.8
V	14,330	169	929	5.7	88.9	88.9	89.5	0.6
W	15,232	150	1,099	4.8	96.8	96.8	96.8	0.0
Χ	16,284	59	396	4.8	109.7	109.7	109.7	0.0
Υ	16,683	69	459	4.1	113.5	113.5	114.3	0.8
Z	17,480	42	169	11.3	123.2	123.2	123.2	0.0
AA	17,949	27	152	12.5	128.4	128.4	129.0	0.6
AB-AC	2	2	<u>2</u>	2	2	2	2	2
AD	19,930	36	203	9.3	155.9	155.9	156.7	8.0
AE	20,670	38	183	10.4	168.8	168.8	169.4	0.6
AF	21,350	23	122	12.3	182.2	182.2	182.9	0.7
AG	22,510	20	119	12.6	201.7	201.7	201.7	0.0
AH	23,550	61	177	8.5	218.8	218.8	219.6	0.8
Al	24,650	53	210	7.1	238.3	238.3	239.3	1.0
AJ	25,680	30	129	11.6	253.9	253.9	254.6	0.7
AK-AM	_2	2	_2	2	2	_2	_2	_2
Feet above Mouth	<u> </u>	DEVIC	ED TO REFL	ECT LOMP		ISED DATA	DEVICE	TO REFLEC

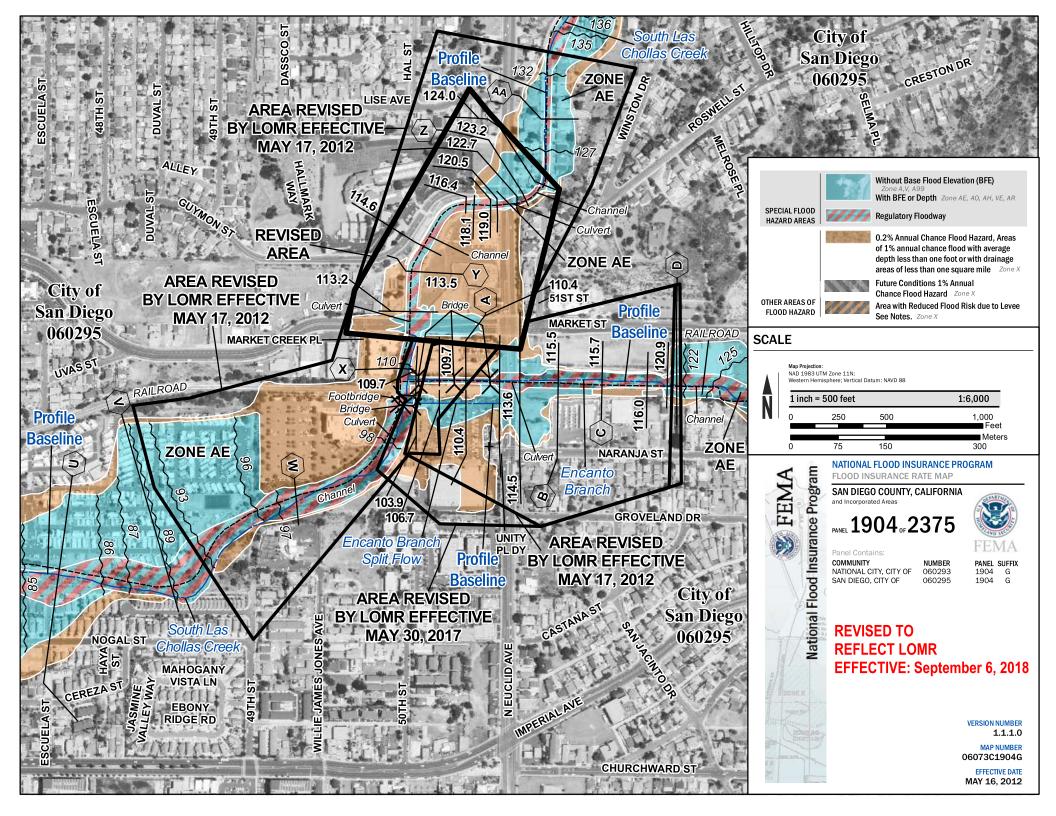
EFFECTIVE: MAY 17, 2012

FEDERAL EMERGENCY MANAGEMENT AGENCY

² Data Not Available

TABLE 13


SAN DIEGO COUNTY, CA


AND INCORPORATED AREAS

FLOODWAY DATA REVISED TO REFLECT LOMR

EFFECTIVE: MAY 17, 2012

SOUTH LAS CHOLLAS CREEK

Attachment 4

Effective LOMR 17-09-1780P Report Excerpts

REQUEST FOR A LETTER OF MAP REVISION (LOMR)
AS A FOLLOW-UP TO CLOMR FEMA CASE NO.: 14-09-1146R
FOR SOUTH LAS CHOLLAS CREEK
FOR THE NORTHWEST VILLAGE CREEK DEVELOPMENT
IN THE CITY OF SAN DIEGO, CALIFORNIA

Job Number 13284-II

March 28, 2017 Revised: September 1, 2017 **Revised: November 20, 2017**

RICK ENGINEERING COMPANY

REQUEST FOR A LETTER OF MAP REVISION AS A FOLLOW-UP TO CLOMR FEMA CASE NO.: 14-09-1146R FOR SOUTH LAS CHOLLAS CREEK FOR THE NORTHWEST VILLAGE CREEK DEVELOPEMENT IN THE CITY OF SAN DIEGO, CALIFORNIA

Job Number 13284-II

Brendan Hastie R.C.E #65809, Exp. 09/2019

Prepared for:

Northwest Village, LLC 404 N. Euclid Avenue San Diego, California 92114

Prepared By:

Rick Engineering Company Water Resources Department 5620 Friars Road San Diego, California 92110-2596 (619) 291-0707 www.rickengineering.com

March 28, 2017 Revised: September 1, 2017 Revised: November 20, 2017

TABLE OF CONTENTS

INTRODUCTION	1
TOPOGRAPHIC INFORMATION	2
HYDROLOGIC INFORMATION	2
Table 1: FEMA Effective Flow-Rates for South Las Chollas Creek	2
HYDRAULIC ANALYSIS	3
Table 2: Starting Water Surface Elevations at Cross Section 1463	3
FEMA Duplicate Effective HEC-RAS Model	3
Existing (Corrected Effective) HEC-RAS Model	4
Proposed Condition HEC-RAS Model	4
As-Built Condition HEC-RAS Model	5
Floodplain Delineation	5
HYDRAULIC RESULTS	6
As-Built Condition vs. Existing Condition	6
Cumulative Impacts to the 100-Year Floodplain	6
Table 3: 100-Year Storm Event Base Flood Elevations Comparison Table	7
Cumulative Impacts to the 100-Year Floodway	9
Floodway Delineation	9
REVISED FLOODPLAIN DATA	10

LIST OF APPENDICES

Appendix 1: FEMA MT-2 Forms for South Las Chollas Creek

Appendix 2: FEMA Payment Form

Appendix 3: Public Notification Documents

Appendix 4: Effective Flood Insurance Study Excerpts and LOMR 12-09-1287P

Appendix 5: Effective HEC-RAS Model

Appendix 6: Existing (Corrected Effective) HEC-RAS Model

(A) Multiple Profile

(B) Floodplain and Floodway

Appendix 7: Existing (Corrected Effective) Condition HEC-RAS Workmap

Appendix 8: Proposed Condition HEC-RAS Model

(A) Multiple Profile

(B) Floodplain and Floodway

Appendix 9: Proposed Condition HEC-RAS Workmap

Appendix 10: As-Built Condition HEC-RAS Model

(A) Multiple Profile

(B) Floodplain and Floodway

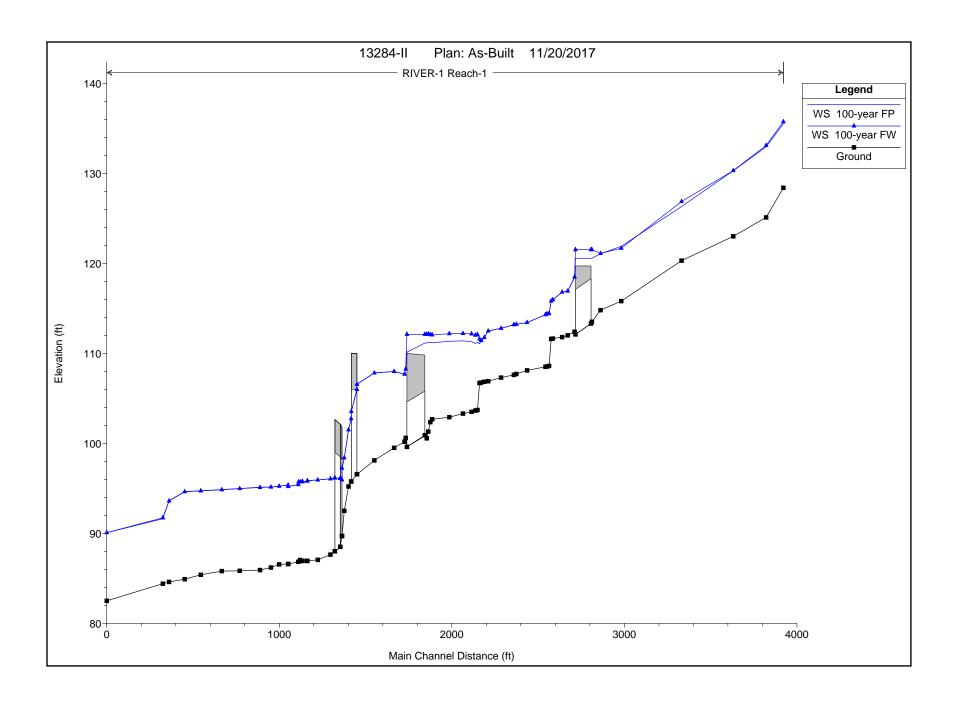
Appendix 11: As-Built Condition HEC-RAS Workmap

Appendix 12: Revised FIRMette's

Appendix 13: Proposed Grading Plan for South Las Chollas Creek

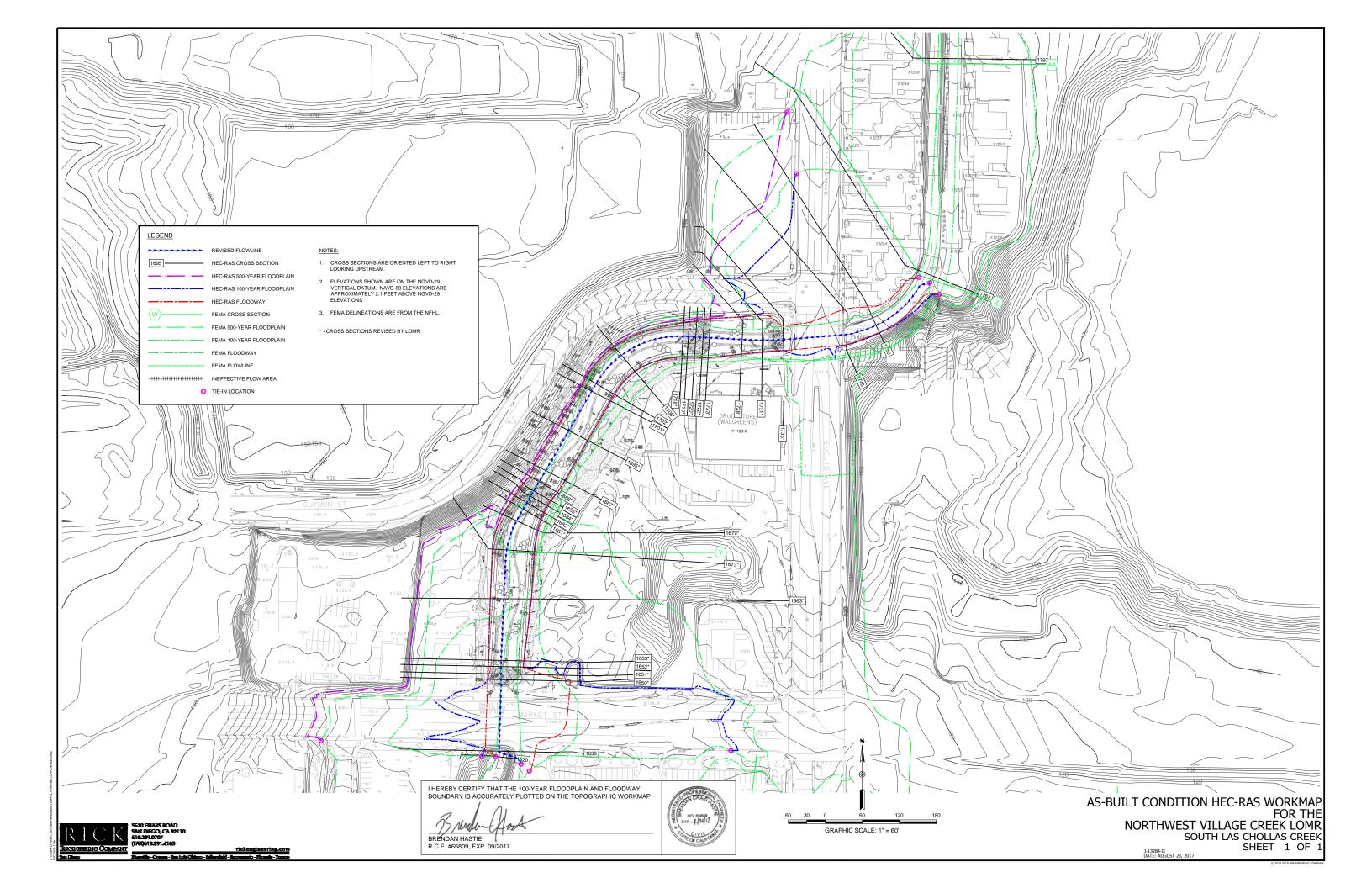
Appendix 14: As-Built Grading for South Las Chollas Creek

Appendix 15: Disk of Digital Files


APPENDIX 10

As-Built Condition HEC-RAS Model
(A) Multiple Profile
(B) Floodplain and Floodway

Begin 160			RIVER-1 Reach:											
Sept 150	Reach	River Sta	Profile											Enc Sta R (ft)
Seam 1900 Signey Fig. 1910	Reach-1	1463	100-year FP		(11)						(II)			(II)
Section 1931 Colone PR 17.72 0.11 0.40 0.60 0.60 0.00					0.00					100.01	2800.00			3007.00
Section 1931 Colone PR 17.72 0.11 0.40 0.60 0.60 0.00														
Sept														
Section Sect	Reach-1	1493	100-year FW	91.72	0.11	94.43	80.49	359.51	4471.73	468.76	43.97	58.50	104.10	124.46
Section Sect	Reach-1	1510	100-year FP	93.62		94.80	98.61	383.16	4592.20	324.64		61.80	119.10	
Search S	Reach-1	1510	100-year FW	93.59	-0.03	94.78	98.35	382.37	4593.78	323.86	42.00	61.80	119.10	140.39
Search S			ļ											
Research 151					0.00						27.76			184.04
Seach 151	Reach-1	1512	100-year FVV	94.02	-0.02	95.02	140.20	200.02	4/20.0/	293.12	31.16	63.90	159.60	104.04
Seach	Reach-1	1513	100-year FP	94.73		95.15	149.77	356.27	4471.62	472.11		65.80	154.50	
	Reach-1	1513	100-year FW	94.71	-0.02	95.13	149.56	355.82	4472.35	471.83	36.07	65.80	154.50	185.63
	Ponch 1	1514	100 year EB	04.95		05.21	145.25	204.74	4566.01	120 21		20.40	110 00	
Match 1515					-0.02						3.44			148.57
Report 155			· ·											
Reach 150														
Reach 1 1519	Reach-1	1515	100-year FW	94.96	-0.02	95.43	145.42	297.76	4650.32	351.93	3.26	29.80	121.10	148.68
Reach 1 1519	Reach-1	1516	100-year FP	95.11		95.63	142.21	374.48	4634.61	290.91		32.50	121.60	
Regard 1517					-0.02						4.19			146.19
Regard 1517														
Reach-1 1518 150-year FP 95.24 0.0 95.59 142.69 389.77 4814.05 05.29 31.00 120.00					0.02						4.02			133.80
Reach-1 1519	. NOGOTE (7017	100 year FVV	95.13	-0.02	30.15	129.78	4/0.10	4090.60	120.09	4.02	34.90	120.40	133.60
Reach-1 1519	Reach-1		100-year FP			95.85	142.89			95.29			120.60	
Reach-1 1519 100-year FW 9-50 -0-01 95.30 140.34 33.46 477.74 19.13 486 23.00 120.00	Reach-1	1518	100-year FW	95.22	-0.01	95.84	142.67	389.59	4815.76	94.64	4.05	31.60	120.60	146.72
Reach-1 1519 100-year FW 9-50 -0-01 95.30 140.34 33.46 477.74 19.13 486 23.00 120.00	Doosh 1	1510	100 year FD	05.27		0F 04	140.54	222.40	4776 20	100.22		20.20	120.00	
Reach-1 5519 1 100-year FP					-0.01						4.86			145.20
Reach-1														
Reach-1 1500		 												
Reach-1 1520 100-year FW 95.41 -0.01 99.22 142.99 401.58 401.02 227.20 6.09 28.90 120.00	Reach-1	1519.1	100-year FW	95.19	-0.02	96.01	139.79	458.05	4574.63	267.32	5.41	29.30	120.80	145.20
Reach-1 1520 100-year FW 95.41 -0.01 99.22 142.99 401.58 401.02 227.20 6.09 28.90 120.00	Reach-1	1520	100-year FP	95,42		96.23	143.73	401.39	4609.92	288.69		28.90	120.60	
Reach-1 1500-1 100-year FW 95.69 -0.01 96.24 144.64 296.77 4817.09 186.13 5.21 28.00 120.00					-0.01						6.09			151.63
Reach-1 1500-1 100-year FW 95.69 -0.01 96.24 144.64 296.77 4817.09 186.13 5.21 28.00 120.00														
Reach-1 1530					0.01						E 21			151.60
Reach-1 1500 100-year FW 96.72 0.01 99.26 146.60 359.91 4686.75 253.34 4.91 30.50 120.30 120.00 120	Reach-1	1520.1	100-year FVV	95.69	-0.01	96.24	146.48	296.77	4817.09	186.13	5.21	28.90	120.60	151.69
Reach-1 1540 100-year FP 95.75 96.29 145.33 392.42 4658.45 249.13 32.00 120.00	Reach-1	1530	100-year FP	95.73		96.27	146.80	359.83	4686.10	254.07		30.50	120.30	
Reach-1 1540 100-year FW 95.74 -0.01 96.28 145.13 392.49 4658.70 248.81 5.17 32.00 120.00	Reach-1	1530	100-year FW	95.72	-0.01	96.26	146.60	359.91	4686.75	253.34	4.91	30.50	120.30	151.51
Reach-1 1540 100-year FW 95.74 -0.01 96.28 145.13 392.49 4658.70 248.81 5.17 32.00 120.00		1510	55				445.00		1050 15	040.40			400.00	
Reach-1 1541 100-year FP 95.73 96.30 140.77 418.50 4715.50 166.93 32.00 120.00					-0.01						5 17			150.30
Reach-1 1541 100-year FW 95.72 -0.01 96.29 140.57 418.56 4715.87 105.58 5.23 32.00 120.00	rtodon i	1010	100 your 111	00	0.01	00.20	7.10.10	002.10	1000.10	210.01	0.11	02.00	120.00	100.00
Reach-1 1542 100-year FP 96.56														
Reach-1 1542 100-year FW 95.79 -0.01 96.34 135.68 419.68 4696.35 183.97 5.04 32.00 120.00	Reach-1	1541	100-year FW	95.72	-0.01	96.29	140.57	418.56	4715.87	165.58	5.23	32.00	120.00	150.30
Reach-1 1542 100-year FW 95.79 -0.01 96.34 135.68 419.68 4696.35 183.97 5.04 32.00 120.00	Reach-1	1542	100-year FP	95.80		96.35	135.88	419.63	4696 29	184 08		32.00	120.00	
Reach-1					-0.01						5.04			145.22
Reach-1														
Reach-1 1550 100-year FP 95.93 96.46 140.40 379.28 4527.66 383.06 5.07 31.70 119.00 Reach-1 1550 100-year FP 96.06 96.60 144.12 292.36 4681.38 326.27 267.0 121.80 Reach-1 1560 100-year FP 96.06 96.60 144.12 292.36 4681.38 326.27 267.0 121.80 Reach-1 1560 100-year FP 96.16 96.66 152.00 409.10 4338.84 552.06 27.00 123.00 Reach-1 1561 100-year FP 96.16 96.66 151.80 408.78 4539.63 551.60 0.10 27.00 123.00 Reach-1 1563 BR D 100-year FP 96.14 96.66 151.80 408.78 4539.63 551.60 0.10 27.00 123.00 Reach-1 1563 BR D 100-year FP 96.14 96.68 143.80 518.17 4074.89 706.94 0.10 27.00 123.00 Reach-1 1563 BR D 100-year FP 96.11 97.01 127.00 680.94 4060.80 558.27 29.00 107.00 Reach-1 1563 BR U 100-year FP 96.11 97.01 127.00 680.94 4060.80 558.27 29.00 107.00 Reach-1 1563 BR D 100-year FP 96.11 97.01 127.00 680.94 4060.80 558.27 29.00 107.00 Reach-1 1563 BR D 100-year FP 96.11 97.01 127.00 680.94 4060.80 558.27 29.00 107.00 Reach-1 1563 BR D 100-year FP 96.11 97.01 127.00 680.94 4060.80 558.27 29.00 107.00 Reach-1 1563 BR D 100-year FP 96.11 97.01 127.00 680.94 4060.80 558.27 29.00 107.00 Reach-1 1563 BR D 100-year FP 96.11 97.01 127.00 680.94 4060.80 558.27 29.00 107.00 Reach-1 1563 BR D 100-year FP 96.11 97.01 127.00 680.94 4060.80 558.27 29.00 107.00 Reach-1 1563 BR D 100-year FP 96.11 97.01 127.00 680.95 4060.76 558.28 20.01 22.00 107.00 Reach-1 1567 BR D 100-year FP 96.11 97.01 127.00 680.95 4060.75 558.29 20.01 107.00 Reach-1 1567 BR D 100-year FP 96.11 97.01 127.00 680.95 4060.75 558.29 20.01 107.00 100.00 Reach-1 1567 BR U 100-year FP 96.11 97.01 127.00 680.95 4060.75 558.29 20.01 107.00 100.00 Reach-1 1567 BR U 100-year FP 96.11 97.01 127.00 680.95 4060.75 558.29 20.01 107.00 100.00 Reach-1 1567 BR U 100-year FP 96.11 97.01 127.00 680.95 4060.75 558.29 20.01 107.00 100.00 Reach-1 1567 BR U 100-year FP 96.11 97.01 127.00 680.95 4060.75 558.29 20.01 107.00 100.00 1											4.00			
Reach-1 1550 100-year FW 95.92 -0.01 96.45 140.40 379.26 4527.66 393.06 5.07 31.70 119.00	Reach-1	1545	100-year FVV	95.04	-0.01	90.33	140.46	300.00	4004.36	300.77	4.90	32.00	120.90	145.36
Reach-1 1560 100-year FP 96.06 96.05 -0.01 96.59 143.81 291.90 4681.06 327.04 0.19 26.70 121.80 Reach-1 1560 100-year FP 96.16 96.66 152.00 409.10 4338.84 552.06 27.00 123.00 Reach-1 1561 100-year FP 96.16 96.66 151.80 406.76 4339.63 551.60 0.10 27.00 123.00 Reach-1 1563 BR D 100-year FP 96.14 96.15 -0.01 96.66 151.80 406.78 4339.63 551.60 0.10 27.00 123.00 Reach-1 1563 BR D 100-year FP 96.14 96.18 143.80 518.17 4074.89 706.94 0.10 27.00 123.00 Reach-1 1563 BR U 100-year FP 96.11 97.01 127.00 680.94 406.80 558.27 29.00 107.00 Reach-1 1563 BR U 100-year FP 96.11 97.01 127.00 680.94 406.80 558.27 29.00 107.00 Reach-1 1565 BR U 100-year FP 96.11 97.01 127.00 680.94 406.80 558.27 29.00 107.00 Reach-1 1565 BR U 100-year FP 96.11 97.01 127.00 680.94 406.80 558.27 29.00 107.00 Reach-1 1565 BR U 100-year FP 96.11 97.01 127.00 680.94 406.80 558.27 29.00 107.00 Reach-1 1565 BR U 100-year FP 96.11 97.01 127.00 680.94 406.80 558.27 29.00 107.00 Reach-1 1565 BR U 100-year FP 96.11 97.01 127.00 680.95 4060.76 558.28 29.00 107.00 Reach-1 1565 BR U 100-year FP 96.11 97.01 127.00 680.96 4060.75 558.28 29.00 107.00 Reach-1 1567 BR D 100-year FP 96.11 97.01 127.00 680.96 4060.75 558.29 29.00 107.00 Reach-1 1567 BR D 100-year FP 96.11 97.01 127.00 680.96 4060.75 558.29 29.00 107.00 Reach-1 1567 BR U 100-year FP 95.94 96.10 -0.01 97.00 126.80 688.51 4060.75 558.29 29.00 107.00 Reach-1 1567 BR U 100-year FP 95.94 97.93 117.75 1118.51 3924.53 256.96 39.00 105.00 Reach-1 1567 BR U 100-year FP 95.94 97.93 117.76 1118.51 3924.53 256.96 39.00 105.00 Reach-1 1567 BR U 100-year FP 95.94 97.24 98.23 130.00 1043.35 3833.88 423.18 39.00 105.00 Reach-1 1570 100-year FP 98.39 97.24 98.23 130.00 1043.35 3833.88 423.18 39.00 105.00 Reach-1 1570 100-year FP 98.39 97.24 98.23 130.00 1043.35 3833.88 423.18 39.00 105.00 Reach-1 1570 100-year FP 98.39 97.33 -0.01 98.22 129.90 1044.87 3835.89 422.40 0.10 42.50 104.00 Reach-1 1572 100-year FP 98.39 0.00 100.32 125.16 1112.94 3820.62 366.44 0.10 42.50 104.00 Reach-1 1577 100-year FP 98.39 0.00 100.32 125	Reach-1	1550	100-year FP	95.93		96.46	140.84	378.55	4529.13	392.32		31.70	119.00	
Reach-1 1560 100-year FW 96.05 -0.01 96.59 143.81 291.90 4681.06 327.04 0.19 26.70 121.80	Reach-1	1550	100-year FW	95.92	-0.01	96.45	140.40	379.28	4527.66	393.06	5.07	31.70	119.00	145.47
Reach-1 1560 100-year FW 96.05 -0.01 96.59 143.81 291.90 4681.06 327.04 0.19 26.70 121.80	Decel 4	4500	100 FD	00.00		00.00	44440	200.00	4004.00	200.07		00.70	404.00	
Reach-1 1561 100-year FP 96.16 96.66 152.00 408.10 4338.84 552.06 27.00 123.00 Reach-1 1561 100-year FW 96.15 -0.01 96.66 151.80 408.78 4339.63 551.60 0.10 27.00 123.00 Reach-1 1563 BR D 100-year FP 96.14 96.69 144.00 512.93 4094.12 692.95 27.00 123.00 Reach-1 1563 BR D 100-year FW 96.13 -0.01 96.68 143.80 518.17 4074.89 706.94 0.10 27.00 123.00 Reach-1 1563 BR U 100-year FP 96.11 97.01 127.00 680.94 4060.80 558.27 29.00 107.00 Reach-1 1563 BR U 100-year FW 96.10 -0.01 97.00 126.80 688.47 4053.32 558.20 0.10 29.00 107.00 Reach-1 1565 100-year FW 96.11 97.01 127.00 680.95 4060.76 558.28 29.00 107.00 Reach-1 1565 100-year FW 96.10 -0.01 97.00 126.80 688.49 4053.29 558.22 0.10 29.00 107.00 Reach-1 1567 BR D 100-year FP 96.11 97.01 127.00 680.95 4060.75 558.29 29.00 107.00 Reach-1 1567 BR D 100-year FW 96.10 -0.01 97.00 126.80 688.51 4053.27 558.23 0.10 29.00 107.00 Reach-1 1567 BR D 100-year FW 96.10 -0.01 97.00 126.80 688.51 4053.27 558.23 0.10 29.00 107.00 Reach-1 1567 BR D 100-year FW 96.10 -0.01 97.00 126.80 688.51 4053.27 558.23 0.10 29.00 107.00 Reach-1 1567 BR D 100-year FW 96.10 -0.01 97.00 126.80 688.51 4053.27 558.23 0.10 29.00 107.00 Reach-1 1567 BR D 100-year FW 96.10 -0.01 97.00 126.80 688.51 4053.27 558.23 0.10 29.00 107.00 Reach-1 1567 BR U 100-year FW 95.94 97.93 117.75 1118.51 3924.53 265.96 39.00 105.00 Reach-1 1570 100-year FP 95.94 97.23 -0.01 98.22 129.90 1041.87 3835.89 422.24 0.10 39.00 105.00 Reach-1 1570 100-year FP 97.24 98.23 130.00 1043.35 3833.48 423.18 39.00 105.00 Reach-1 1572 100-year FP 98.39 100.32 125.16 1112.42 3820.97 366.61 42.50 104.00 Reach-1 1572 100-year FP 98.39 100.32 125.16 1112.94 3820.62 366.44 0.10 42.50 104.00 Reach-1 1575 100-year FP 101.49 104.20 73.50 493.95 4498.44 607.61 26.00 75.00					-0.01						0.19			144.00
Reach-1 1561 100-year FW 96.15 -0.01 96.66 151.80 408.78 4339.63 551.60 0.10 27.00 123.00 Reach-1 1563 BR D 100-year FP 96.14 96.99 144.00 512.93 4094.12 692.95 27.00 123.00 Reach-1 1563 BR D 100-year FP 96.13 -0.01 96.88 143.80 518.17 4074.89 706.94 0.10 27.00 123.00 Reach-1 1563 BR U 100-year FP 96.11 97.01 127.00 680.94 4060.80 558.27 29.00 107.00 Reach-1 1563 BR U 100-year FP 96.11 97.01 127.00 680.94 4060.80 558.20 0.10 29.00 107.00 Reach-1 1565 100-year FP 96.11 97.01 127.00 680.95 4060.76 558.28 29.00 107.00 Reach-1 1567 BR D 100-year FP 96.11			,								50			
Reach-1 1563 BR D 100-year FP 96.14 96.69 144.00 512.93 4094.12 692.95 27.00 123.00 Reach-1 1563 BR D 100-year FW 96.13 -0.01 96.68 143.80 518.17 4074.89 706.94 0.10 27.00 123.00 Reach-1 1563 BR U 100-year FP 96.11 97.01 127.00 680.94 4060.80 558.27 29.00 107.00 Reach-1 1563 BR U 100-year FW 96.10 -0.01 97.00 126.80 688.47 4053.32 558.20 0.10 29.00 107.00 Reach-1 1565 100-year FP 96.11 97.01 127.00 680.95 4060.76 558.28 29.00 107.00 Reach-1 1565 100-year FW 96.10 -0.01 97.00 126.80 688.49 4053.29 558.22 0.10 29.00 107.00 Reach-1 1567 BR D 100-year FW														
Reach-1 1563 BR D 100-year FW 96.13 -0.01 96.68 143.80 518.17 4074.89 706.94 0.10 27.00 123.00 Reach-1 1563 BR U 100-year FP 96.11 97.01 127.00 680.94 4060.80 558.27 29.00 107.00 Reach-1 1563 BR U 100-year FW 96.10 -0.01 97.00 126.80 688.47 4053.32 558.20 0.10 29.00 107.00 Reach-1 1565 100-year FP 96.11 97.01 127.00 680.95 4060.76 558.28 29.00 107.00 Reach-1 1567 BR D 100-year FW 96.10 -0.01 97.01 127.00 680.95 4060.76 558.28 29.00 107.00 Reach-1 1567 BR D 100-year FP 96.11 97.01 127.00 680.96 4060.75 558.29 29.00 107.00 Reach-1 1567 BR D 100-year FP	Reach-1	1561	100-year FW	96.15	-0.01	96.66	151.80	408.78	4339.63	551.60	0.10	27.00	123.00	151.90
Reach-1 1563 BR D 100-year FW 96.13 -0.01 96.68 143.80 518.17 4074.89 706.94 0.10 27.00 123.00 Reach-1 1563 BR U 100-year FP 96.11 97.01 127.00 680.94 4060.80 558.27 29.00 107.00 Reach-1 1563 BR U 100-year FW 96.10 -0.01 97.00 126.80 688.47 4053.32 558.20 0.10 29.00 107.00 Reach-1 1565 100-year FP 96.11 97.01 127.00 680.95 4060.76 558.28 29.00 107.00 Reach-1 1567 BR D 100-year FW 96.10 -0.01 97.01 127.00 680.95 4060.76 558.28 29.00 107.00 Reach-1 1567 BR D 100-year FP 96.11 97.01 127.00 680.96 4060.75 558.29 29.00 107.00 Reach-1 1567 BR D 100-year FP	Reach-1	1563 BR D	100-year FP	96.14		96.69	144.00	512.93	4094.12	692.95		27.00	123.00	
Reach-1 1563 BR U 100-year FW 96.10 -0.01 97.00 126.80 688.47 4053.32 558.20 0.10 29.00 107.00 Reach-1 1565 100-year FP 96.11 97.01 127.00 680.95 4060.76 558.28 29.00 107.00 Reach-1 1565 100-year FW 96.10 -0.01 97.00 126.80 688.49 4053.29 558.22 0.10 29.00 107.00 Reach-1 1567 BR D 100-year FP 96.11 97.01 127.00 680.96 4060.75 558.29 29.00 107.00 Reach-1 1567 BR D 100-year FW 96.10 -0.01 97.01 126.80 688.51 4053.27 558.29 29.00 107.00 Reach-1 1567 BR D 100-year FP 95.94 97.93 117.75 1118.51 3924.53 256.96 39.00 105.00 Reach-1 1567 BR U 100-year FP 97.24					-0.01						0.10			151.90
Reach-1 1563 BR U 100-year FW 96.10 -0.01 97.00 126.80 688.47 4053.32 558.20 0.10 29.00 107.00 Reach-1 1565 100-year FP 96.11 97.01 127.00 680.95 4060.76 558.28 29.00 107.00 Reach-1 1565 100-year FW 96.10 -0.01 97.00 126.80 688.49 4053.29 558.22 0.10 29.00 107.00 Reach-1 1567 BR D 100-year FP 96.11 97.01 127.00 680.96 4060.75 558.29 29.00 107.00 Reach-1 1567 BR D 100-year FW 96.10 -0.01 97.01 126.80 688.51 4053.27 558.29 29.00 107.00 Reach-1 1567 BR D 100-year FP 95.94 97.93 117.75 1118.51 3924.53 256.96 39.00 105.00 Reach-1 1567 BR U 100-year FP 97.24														
Reach-1 1565 100-year FP 96.11 97.01 127.00 680.95 4060.76 558.28 29.00 107.00 Reach-1 1565 100-year FW 96.10 -0.01 97.00 126.80 688.49 4053.29 558.22 0.10 29.00 107.00 Reach-1 1567 BR D 100-year FP 96.11 97.01 127.00 680.96 4060.75 558.29 29.00 107.00 Reach-1 1567 BR D 100-year FW 96.10 -0.01 97.00 126.80 688.51 4053.27 558.23 0.10 29.00 107.00 Reach-1 1567 BR D 100-year FW 96.10 -0.01 97.00 126.80 688.51 4053.27 558.23 0.10 29.00 107.00 Reach-1 1567 BR U 100-year FW 95.94 97.93 117.75 1118.51 3924.53 256.96 39.00 105.00 Reach-1 1567 BR U 100-year FW					0.01						0.40			404.00
Reach-1 1565 100-year FW 96.10 -0.01 97.00 126.80 688.49 4053.29 558.22 0.10 29.00 107.00 Reach-1 1567 BR D 100-year FP 96.11 97.01 127.00 680.96 4060.75 558.29 29.00 107.00 Reach-1 1567 BR D 100-year FW 96.10 -0.01 97.00 126.80 688.51 4053.27 558.23 0.10 29.00 107.00 Reach-1 1567 BR D 100-year FP 95.94 97.93 117.76 118.51 3924.53 256.96 39.00 105.00 Reach-1 1567 BR U 100-year FW 95.94 0.00 97.92 117.66 1128.99 3914.60 256.42 0.10 39.00 105.00 Reach-1 1570 100-year FP 97.24 98.23 130.00 1043.35 3833.48 423.18 39.00 105.00 Reach-1 1570 100-year FW 97.23 -0.01 98.22 129.90	reach-1	1303 BK U	100-year FW	96.10	-0.01	97.00	126.80	ხ88.47	4053.32	558.20	0.10	29.00	107.00	134.90
Reach-1 1565 100-year FW 96.10 -0.01 97.00 126.80 688.49 4053.29 558.22 0.10 29.00 107.00 Reach-1 1567 BR D 100-year FP 96.11 97.01 127.00 680.96 4060.75 558.29 29.00 107.00 Reach-1 1567 BR D 100-year FW 96.10 -0.01 97.00 126.80 688.51 4053.27 558.23 0.10 29.00 107.00 Reach-1 1567 BR D 100-year FP 95.94 97.93 117.76 118.51 3924.53 256.96 39.00 105.00 Reach-1 1567 BR U 100-year FW 95.94 0.00 97.92 117.66 1128.99 3914.60 256.42 0.10 39.00 105.00 Reach-1 1570 100-year FP 97.24 98.23 130.00 1043.35 3833.48 423.18 39.00 105.00 Reach-1 1570 100-year FW 97.23 -0.01 98.22 129.90	Reach-1	1565	100-year FP	96.11		97.01	127.00	680.95	4060.76	558.28		29.00	107.00	
Reach-1 1567 BR D 100-year FW 96.10 -0.01 97.00 126.80 688.51 4053.27 558.23 0.10 29.00 107.00 Reach-1 1567 BR U 100-year FP 95.94 97.93 117.75 1118.51 3924.53 256.96 39.00 105.00 Reach-1 1567 BR U 100-year FW 95.94 0.00 97.92 117.66 1128.99 3914.60 256.42 0.10 39.00 105.00 Reach-1 1570 100-year FP 97.24 98.23 130.00 1043.35 3833.48 423.18 39.00 105.00 Reach-1 1570 100-year FW 97.23 -0.01 98.22 129.90 1041.87 3835.89 422.24 0.10 39.00 105.00 Reach-1 1572 100-year FP 98.39 100.32 125.16 1112.42 3820.97 366.61 42.50 104.00 Reach-1 1572 100-year FW 98.38 0.00 100.32 125.05		1565		96.10	-0.01	97.00	126.80	688.49	4053.29	558.22	0.10	29.00	107.00	134.90
Reach-1 1567 BR D 100-year FW 96.10 -0.01 97.00 126.80 688.51 4053.27 558.23 0.10 29.00 107.00 Reach-1 1567 BR U 100-year FP 95.94 97.93 117.75 1118.51 3924.53 256.96 39.00 105.00 Reach-1 1567 BR U 100-year FW 95.94 0.00 97.92 117.66 1128.99 3914.60 256.42 0.10 39.00 105.00 Reach-1 1570 100-year FP 97.24 98.23 130.00 1043.35 3833.48 423.18 39.00 105.00 Reach-1 1570 100-year FW 97.23 -0.01 98.22 129.90 1041.87 3835.89 422.24 0.10 39.00 105.00 Reach-1 1572 100-year FP 98.39 100.32 125.16 1112.42 3820.97 366.61 42.50 104.00 Reach-1 1572 100-year FW 98.38 0.00 100.32 125.05	Donak 4	1567 DD D	100 year ED	00.44		07.01	407.00	000.00	4000 ==	FF0.00		00.00	107.00	
Reach-1 1567 BR U 100-year FP 95.94 97.93 117.75 1118.51 3924.53 256.96 39.00 105.00 Reach-1 1567 BR U 100-year FW 95.94 0.00 97.92 117.66 1128.99 3914.60 256.42 0.10 39.00 105.00 Reach-1 1570 100-year FP 97.24 98.23 130.00 1043.35 3833.48 423.18 39.00 105.00 Reach-1 1570 100-year FW 97.23 -0.01 98.22 129.90 1041.87 3835.89 422.24 0.10 39.00 105.00 Reach-1 1572 100-year FP 98.39 100.32 125.16 1112.42 3820.97 366.61 42.50 104.00 Reach-1 1572 100-year FW 98.38 0.00 100.32 125.05 1112.94 3820.62 366.44 0.10 42.50 104.00 Reach-1 1575 100-year FP 101.49 104.20 73.50 493.95					-0.01						0.10			134.90
Reach-1 1567 BR U 100-year FW 95.94 0.00 97.92 117.66 1128.99 3914.60 256.42 0.10 39.00 105.00 Reach-1 1570 100-year FP 97.24 98.23 130.00 1043.35 3833.48 423.18 39.00 105.00 Reach-1 1570 100-year FW 97.23 -0.01 98.22 129.90 1041.87 3835.89 422.24 0.10 39.00 105.00 Reach-1 1572 100-year FP 98.39 100.32 125.16 1112.42 3820.97 366.61 42.50 104.00 Reach-1 1572 100-year FW 98.38 0.00 100.32 125.05 1112.94 3820.62 366.44 0.10 42.50 104.00 Reach-1 1575 100-year FP 101.49 104.20 73.50 493.95 4198.44 607.61 26.00 75.00		J., J., J	,	55.10	5.01	07.30	.20.00	000.01	1000.21	555.25	0.10	20.00	107.50	.000
Reach-1 1570 100-year FP 97.24 98.23 130.00 1043.35 3833.48 423.18 39.00 105.00 Reach-1 1570 100-year FW 97.23 -0.01 98.22 129.90 1041.87 3835.89 422.24 0.10 39.00 105.00 Reach-1 1572 100-year FP 98.39 100.32 125.16 1112.42 3820.97 366.61 42.50 104.00 Reach-1 1572 100-year FW 98.38 0.00 100.32 125.05 1112.94 3820.62 366.44 0.10 42.50 104.00 Reach-1 1575 100-year FP 101.49 104.20 73.50 493.95 4198.44 607.61 26.00 75.00														
Reach-1 1570 100-year FW 97.23 -0.01 98.22 129.90 1041.87 3835.89 422.24 0.10 39.00 105.00 Reach-1 1572 100-year FP 98.39 100.32 125.16 1112.42 3820.97 366.61 42.50 104.00 Reach-1 1572 100-year FW 98.38 0.00 100.32 125.05 1112.94 3820.62 366.44 0.10 42.50 104.00 Reach-1 1575 100-year FP 101.49 104.20 73.50 493.95 4198.44 607.61 26.00 75.00	Reach-1	1567 BR U	100-year FW	95.94	0.00	97.92	117.66	1128.99	3914.60	256.42	0.10	39.00	105.00	134.90
Reach-1 1570 100-year FW 97.23 -0.01 98.22 129.90 1041.87 3835.89 422.24 0.10 39.00 105.00 Reach-1 1572 100-year FP 98.39 100.32 125.16 1112.42 3820.97 366.61 42.50 104.00 Reach-1 1572 100-year FW 98.38 0.00 100.32 125.05 1112.94 3820.62 366.44 0.10 42.50 104.00 Reach-1 1575 100-year FP 101.49 104.20 73.50 493.95 4198.44 607.61 26.00 75.00	Reach-1	1570	100-year FP	07.24		08 23	130.00	1043.35	3833 40	122 10		30 00	105.00	
Reach-1 1572 100-year FP 98.39 100.32 125.16 1112.42 3820.97 366.61 42.50 104.00 Reach-1 1572 100-year FW 98.38 0.00 100.32 125.05 1112.94 3820.62 366.44 0.10 42.50 104.00 Reach-1 1575 100-year FP 101.49 104.20 73.50 493.95 4198.44 607.61 26.00 75.00					-0.01						0.10			130.00
Reach-1 1572 100-year FW 98.38 0.00 100.32 125.05 1112.94 3820.62 366.44 0.10 42.50 104.00 Reach-1 1575 100-year FP 101.49 104.20 73.50 493.95 4198.44 607.61 26.00 75.00														
Reach-1 1575 100-year FP 101.49 104.20 73.50 493.95 4198.44 607.61 26.00 75.00														
	Reach-1	1572	100-year FW	98.38	0.00	100.32	125.05	1112.94	3820.62	366.44	0.10	42.50	104.00	134.90
	Reach-1	1575	100-year FP	101.49		104.20	73.50	493.95	4198.44	607.61		26.00	75.00	
					0.00						14.00			87.50


HEC-RAS Pla	an: As-Built River:	RIVER-1 Reach:	Reach-1 (Contin	nued) Prof Delta WS	E.G. Elev	Top Wdth Act	Q Left	Q Channel	Q Right	Enc Sta L	Ch Sta L	Ch Sta R	Enc Sta R
Reacii	Kivei Sia	Fiolile	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft)	(ft)	(ft)	(ft)
Reach-1	1580	100-year FP	102.74	\ /	105.85	70.73	88.19		441.14		22.00	72.00	
Reach-1	1580	100-year FW	102.74	0.00	105.85	70.70	88.19	4770.79	441.02	11.50	22.00	72.00	87.50
Reach-1	1585.5 BR D	100-year FP	103.53		106.31	69.50	175.80		710.12		22.00	72.00	
Reach-1	1585.5 BR D	100-year FW	103.53	0.00	106.31	69.50	175.80	4414.08	710.12	11.50	22.00	72.00	87.50
	4505 5 BB 11	100 50	105.05		407.00		105.00	1050 50					
Reach-1	1585.5 BR U	100-year FP	105.97	0.04	107.68	69.60	495.68	4356.76	447.56	0.40	23.00	73.70	0.4.50
Reach-1	1585.5 BR U	100-year FW	105.98	0.01	107.66	69.40	524.68	4265.08	510.25	9.10	23.00	73.70	84.50
Reach-1	1590	100-year FP	106.57		107.88	75.60	347.58	4647.21	305.21		23.00	73.70	
Reach-1	1590	100-year FW	106.56	-0.01	107.87	75.40	346.16		303.27	9.10	23.00	73.70	84.50
rtodon i	1.000	100 your 111	100.00	0.01	107.07	70.10	0.10.10	1000.10	000.01	0.10	20.00	70.70	
Reach-1	1600	100-year FP	107.82		108.25	59.81	207.29	1486.82	205.89		32.70	59.90	
Reach-1	1600	100-year FW	107.82	0.00	108.25	58.84	208.86		206.83	15.55	32.70	59.90	74.39
Reach-1	1610	100-year FP	107.98		108.41	70.61	404.82	1422.80	72.38		49.30	79.80	
Reach-1	1610	100-year FW	107.98	-0.01	108.40	69.58	406.79	1420.33	72.88	19.44	49.30	79.80	89.02
Reach-1	1620	100-year FP	107.68		108.75	50.05	282.53		126.97		49.60	72.40	
Reach-1	1620	100-year FW	107.68	0.00	108.74	48.86	285.16	1486.72	128.12	33.37	49.60	72.40	82.23
	1000	100 50	100.00		100.00	00.40	0.10.00		00 70		2000 50	2010 50	
Reach-1	1638	100-year FP	108.28	0.00	108.90	82.48	613.89		96.73	0040.00	2989.50	3010.50	2000.00
Reach-1	1638	100-year FW	108.26	-0.02	108.89	75.79	619.90	1184.39	95.71	2949.00	2989.50	3010.50	3030.00
Reach-1	1643.5		Culvert					 					
. 104011-1	1.0.0.0		Guivell					 					
Reach-1	1650	100-year FP	111.15		111.49	45.60	230.21	1377.68	292.11		2988.17	3013.29	
Reach-1	1650	100-year FW	112.11	0.96	112.31	133.55	207.54		471.13	2978.10	2988.17	3013.29	3111.65
				2.30	.2.51							1 1 1 1 1 1 1	
Reach-1	1651	100-year FP	111.25		111.52	55.70	133.98	1328.14	437.88		2985.93	3019.60	
Reach-1	1651	100-year FW	112.14	0.89	112.32	93.06	133.88		500.40	2978.70	2985.93	3019.60	3071.76
Reach-1	1652	100-year FP	111.19		111.56	56.80	152.25	860.54	887.21		2988.00	3011.00	
Reach-1	1652	100-year FW	112.07	0.88	112.36	56.80	160.88	843.46	895.66	2979.50	2988.00	3011.00	3036.30
Reach-1	1653	100-year FP	111.17		111.58	57.30	93.97	882.14	923.90		2988.00	3011.00	
Reach-1	1653	100-year FW	112.05	0.88	112.38	57.30	100.86	864.24	934.90	2979.40	2988.00	3011.00	3036.70
	1000	100 50					100 51	070.04	001.00			221122	
Reach-1	1663	100-year FP	111.34		111.67	66.00	132.54		891.22		2988.00	3011.00	201120
Reach-1	1663	100-year FW	112.18	0.84	112.44	66.00	143.97	847.37	908.66	2978.00	2988.00	3011.00	3044.00
Reach-1	1673	100-year FP	111.38		111.74	69.27	120.36	906.05	873.59		2987.60	3011.60	
Reach-1	1673	100-year FW	112.21	0.83	112.48	69.24	138.85		890.57	2975.90	2987.60	3011.60	3045.14
reach i	1073	100-year 1 W	112.21	0.00	112.40	05.24	130.03	070.07	030.51	2373.30	2307.00	3011.00	3043.14
Reach-1	1679	100-year FP	111.31		111.84	61.95	84.93	1256.18	558.90		2986.17	3013.00	
Reach-1	1679	100-year FW	112.15	0.85	112.55	61.88	100.50		593.16	2974.62	2986.17	3013.00	3036.50
		, , , , ,											
Reach-1	1681	100-year FP	111.10		111.98	55.53	115.57	1619.12	165.31		2986.67	3014.52	
Reach-1	1681	100-year FW	112.01	0.91	112.65	55.45	137.99	1562.75	199.25	2975.06	2986.67	3014.52	3030.51
Reach-1	1682	100-year FP	111.21		112.02	55.55	125.20		169.16		2986.32	3015.28	
Reach-1	1682	100-year FW	112.08	0.87	112.67	55.47	149.05	1546.29	204.66	2975.01	2986.32	3015.28	3030.48
Reach-1	1684	100-year FP	111.05	0.50	112.87	52.73	58.32	1748.53	93.15		2982.44	3019.05	
Reach-1	1684	100-year FW	111.58	0.53	112.95	52.73	70.55	1713.49	115.96	2976.24	2982.44	3019.05	3028.97
Reach-1	1685	100-year FP	111.39		113.17	52.67	50.41	1318.99	530.60		2985.97	3014.00	
Reach-1	1685	100-year FW	111.41	0.02	113.17	52.67	51.08		532.55	2979.16	2985.97	3014.00	3031.83
	1.000	.oo year i vv	111.41	0.02	113.17	52.67	31.06	1310.37	332.33	2313.10	2303.97	3014.00	3031.03
Reach-1	1686	100-year FP	111.72		113.50	51.38	52.99	1155.52	691.49		2988.00	3011.00	
Reach-1	1686	100-year FW	111.75	0.03	113.50	51.38	53.91	1152.61	693.49	2982.24	2988.00	3011.00	3033.62
		,		2.00		200			222.10				
Reach-1	1687	100-year FP	112.48		113.69	54.56	70.77	1092.11	737.12		2988.00	3011.00	
Reach-1	1687	100-year FW	112.48	-0.01	113.69	54.53	70.57	1092.63	736.80	2980.83	2988.00	3011.00	3035.39
Reach-1	1695	100-year FP	112.78		114.07	53.74	68.86		720.84		2988.00	3011.00	
Reach-1	1695	100-year FW	112.78	0.00	114.07	53.72	68.74	1110.62	720.64	2981.03	2988.00	3011.00	3034.77
	1										_		
Reach-1	1701	100-year FP	113.18		114.44	53.50	72.29		710.92		2988.00	3011.00	
Reach-1	1701	100-year FW	113.18	0.00	114.44	53.49	72.25	1116.90	710.85	2980.84	2988.00	3011.00	3034.33
Dooch 4	1702	100 105- 50	440.00		444.50	F0 ^^	70.00	4400.00	700.01		2000.00	2011.00	
Reach-1 Reach-1	1702 1702	100-year FP 100-year FW	113.23 113.22	0.00	114.52 114.52	53.30 53.29	70.33 70.28		709.31 709.23	2980.99	2988.00 2988.00	3011.00 3011.00	3034.29
reauti-1	1702	100-year FVV	113.22	0.00	114.52	55.29	70.28	1120.49	109.23	2900.99	2900.00	3011.00	3034.28
Reach-1	1708	100-year FP	113.42		114.89	52.56	41.22	1149.36	709.42		2988.00	3011.00	
Reach-1	1708	100-year FW	113.42	0.00	114.89	52.56	41.22		709.42	2981.37	2988.00	3011.00	3033.93
	1	,	1.0.41	0.00		52.50	20	71.0.14	, 00.00	_001.01	_000.00	2011.00	3000.00
Reach-1	1718	100-year FP	114.29		115.43	55.27	112.45	1145.42	642.13		2987.70	3011.00	
Reach-1	1718	100-year FW	114.29	0.00	115.43	55.26	112.46		642.14	2977.55	2987.70	3011.00	3032.81
Reach-1	1719	100-year FP	114.39		115.46	56.46	133.94	1145.83	620.24		2987.41	3011.00	
Reach-1	1719	100-year FW	114.39	0.00	115.46	56.46	133.93	1145.80	620.27	2976.14	2987.41	3011.00	3032.60
Reach-1	1720	100-year FP	114.42		115.54	56.78	189.38		456.84		2986.96	3011.00	
Reach-1	1720	100-year FW	114.42	0.00	115.54	56.78	189.38	1253.77	456.85	2974.91	2986.96	3011.00	3031.69
Doooh 4	1700	100 105- 50	115		447.0-	00 =:	200 10	4070.05	200.0=		2000.00	2044.4	
Reach-1	1722 1722	100-year FP 100-year FW	115.76 115.81	0.05	117.35 117.34	62.51 62.51	296.48 298.99		332.67 335.62	2969.96	2986.00 2986.00	3014.44 3014.44	3032.47
. waoti i	1122	100 year FVV	115.61	0.05	117.34	02.31	290.99	1205.40	333.02	2303.30	2300.00	3014.44	3032.47
Reach-1	1723	100-year FP	115.96		117.48	64.03	518.43	834.76	546.81		2989.00	3011.00	
		,				500	0.0.40		3.0.01		_000.00		

HEC-RAS PI	an: As-Built River:	RIVER-1 Reach:	Reach-1 (Contin	nued)									
Reach	River Sta	Profile	W.S. Elev	Prof Delta WS	E.G. Elev	Top Wdth Act	Q Left	Q Channel	Q Right	Enc Sta L	Ch Sta L	Ch Sta R	Enc Sta R
			(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft)	(ft)	(ft)	(ft)
Reach-1	1723	100-year FW	115.95	-0.01	117.48	64.00	517.99	835.67	546.34	2968.51	2989.00	3011.00	3032.54
Reach-1	1728	100-year FP	116.80		117.88	64.15	715.18	901.79	283.03		2989.00	3011.00	
Reach-1	1728	100-year FW	116.80	-0.01	117.88	64.13	714.95	902.17	282.88	2961.15	2989.00	3011.00	3025.30
Reach-1	1731	100-year FP	116.92		118.05	64.71	796.48	980.20	123.32		2988.00	3011.50	
Reach-1	1731	100-year FW	116.91	0.00	118.05	64.69	796.20	980.59	123.21	2955.73	2988.00	3011.50	3020.44
Reach-1	1735	100-year FP	118.43		120.69	40.72	156.65	1657.57	85.78		2991.00	3013.10	
Reach-1	1735	100-year FW	118.48	0.05	120.69	40.71	158.73	1654.04	87.23	2980.47	2991.00	3013.10	3021.18
Reach-1	1740		Culvert										
Reach-1	1745	100-year FP	120.56		121.72	221.60	297.69	1601.81	0.50		2987.30	3011.50	
Reach-1	1745	100-year FW	121.52	0.96	122.90	56.90	37.33	1853.69	8.97	2965.00	2987.30	3011.50	3024.30
	1												
Reach-1	1750	100-year FP	121.05	0.05	121.95	214.25	549.96	1348.71	1.33		2987.40	3012.00	001500
Reach-1	1750	100-year FW	121.10	0.05	123.42	42.39	22.14	1876.00	1.87	2970.00	2987.40	3012.00	3015.00
Decel 4	1762	400 FD	404.00		404.00	00.44	400.00	4700.00	4.75		0007.00	2040.70	
Reach-1	1762	100-year FP 100-year FW	121.89 121.68	-0.21	124.00 124.20	69.44 38.00	108.60 43.72	1789.66 1854.63	1.75 1.65	2975.00	2987.80 2987.80	3012.70 3012.70	3013.00
Reach-1	1702	100-year FVV	121.00	-0.21	124.20	36.00	43.72	1004.00	1.05	2975.00	2907.00	3012.70	3013.00
Reach-1	1797	100-year FP	126.31		127.39	295.69	288.47	1049.06	562.47		2992.00	3008.00	
Reach-1	1797	100-year FW	126.87	0.57	129.66	27.00	23.52	1506.61	369.87	2991.00	2992.00	3008.00	3018.00
Neacii-1	11/9/	100-year i vv	120.07	0.57	129.00	27.00	23.32	1300.01	309.07	2991.00	2552.00	3008.00	3018.00
Reach-1	1827	100-year FP	130.29		131.79	134.74	259.33	1081.22	559.44		2994.00	3006.00	
Reach-1	1827	100-year FW	130.31	0.02	132.76	37.00	117.97	1271.69	510.35	2991.00	2994.00	3006.00	3028.00
	1	,	100.01	0.02	102.70	07.00		127 1.00	010.00	2301.00	200 1.00	2000.00	5020.00
Reach-1	1846	100-year FP	132.95		134.27	249.33	338.35	1266.62	295.03		2992.00	3007.00	
Reach-1	1846	100-year FW	133.10	0.15	135.59	36.00	000.00	1617.84	282.17	2992.00	2992.00	3007.00	3028.00
		, , , , , , , , , , , , , , , , , , , ,	100110										
Reach-1	1856	100-year FP	135.51		136.61	282.77	7.17	1390.80	502.03		2990.00	3010.00	
Reach-1	1856	100-year FW	135.74	0.22	137.91	76.00		1788.06	111.95	2990.00	2990.00	3010.00	3066.00

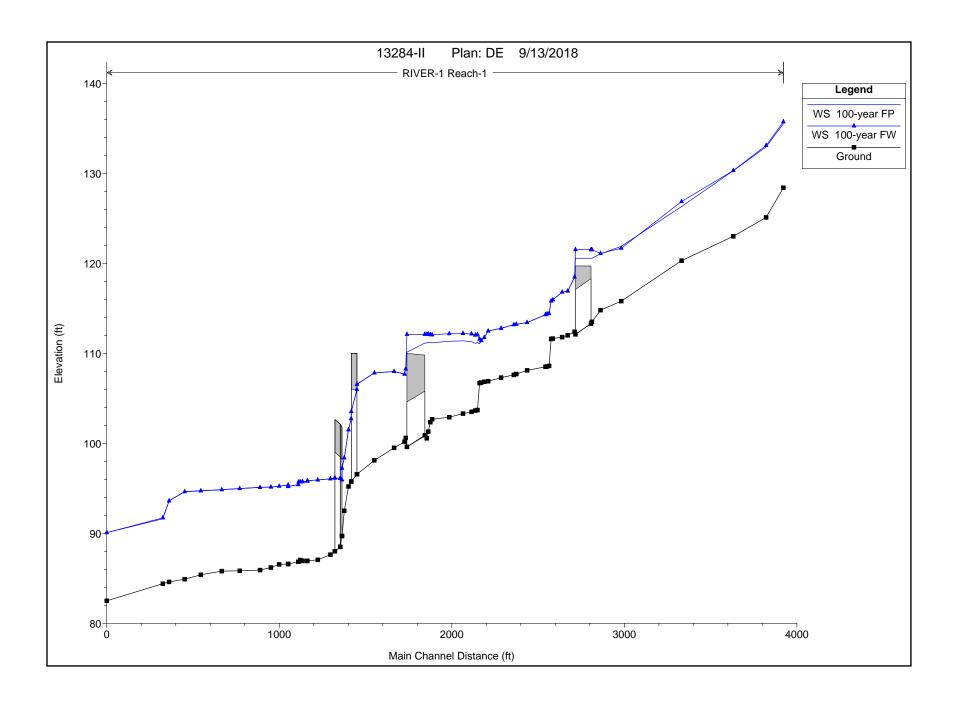
APPENDIX 11

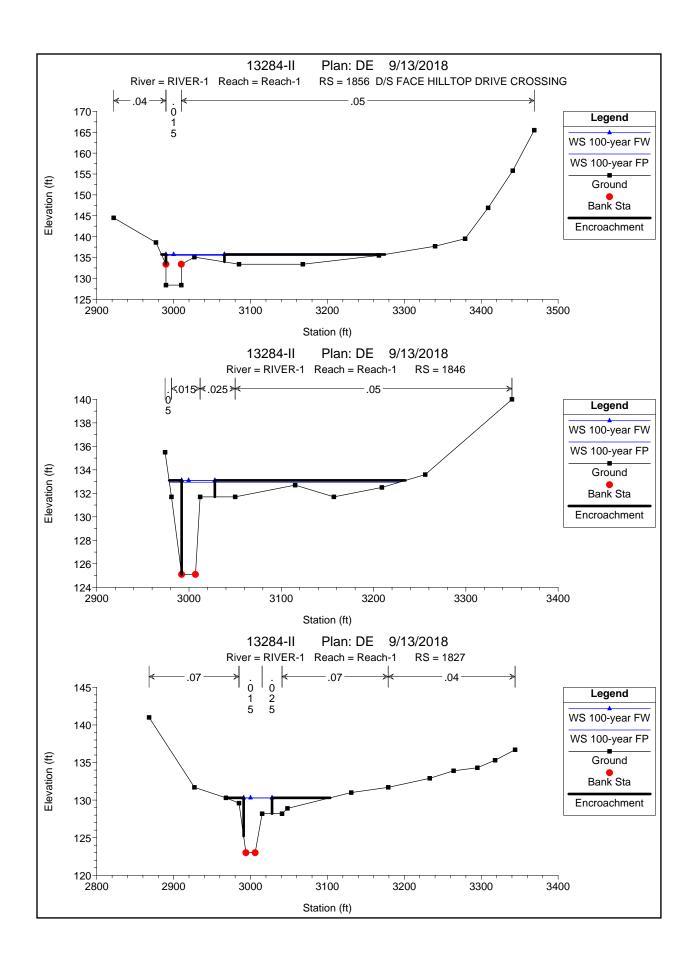
As-Built Condition HEC-RAS Workmap

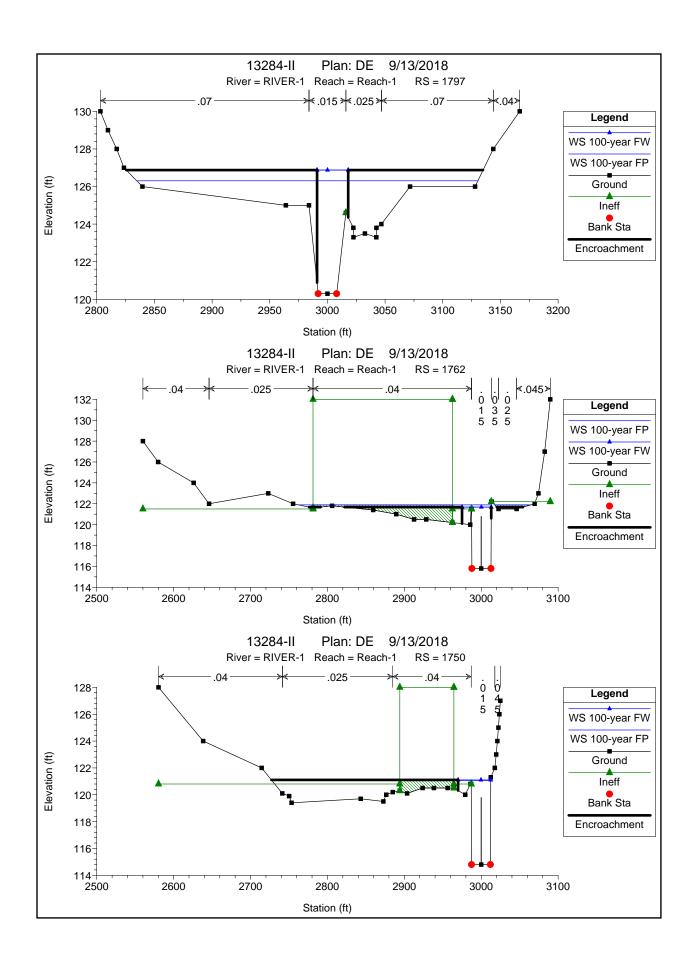
Attachment 5

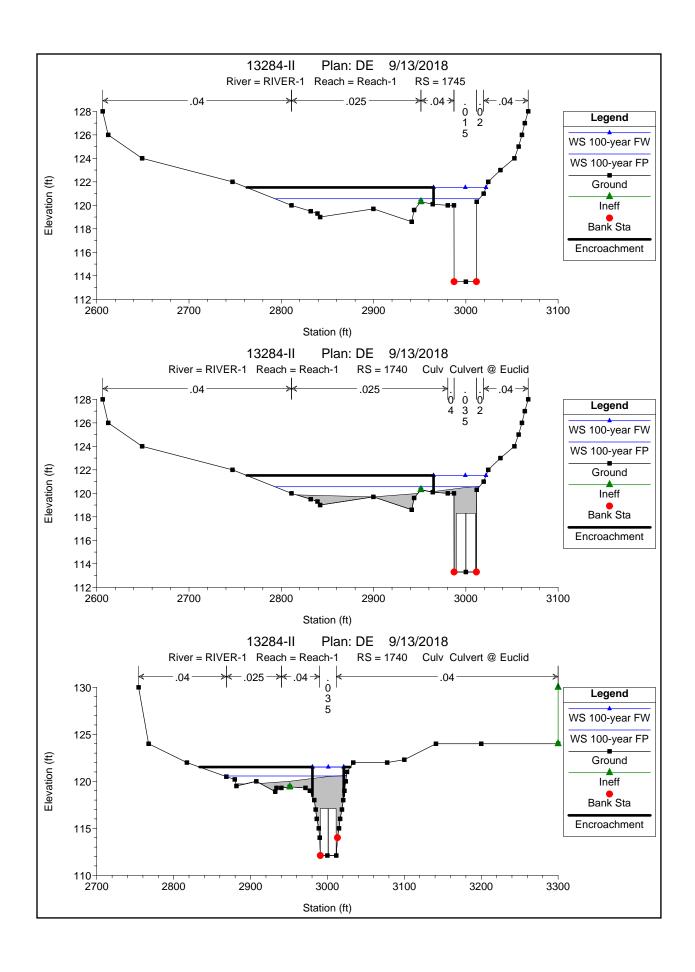
Duplicate Effective HEC-RAS Output

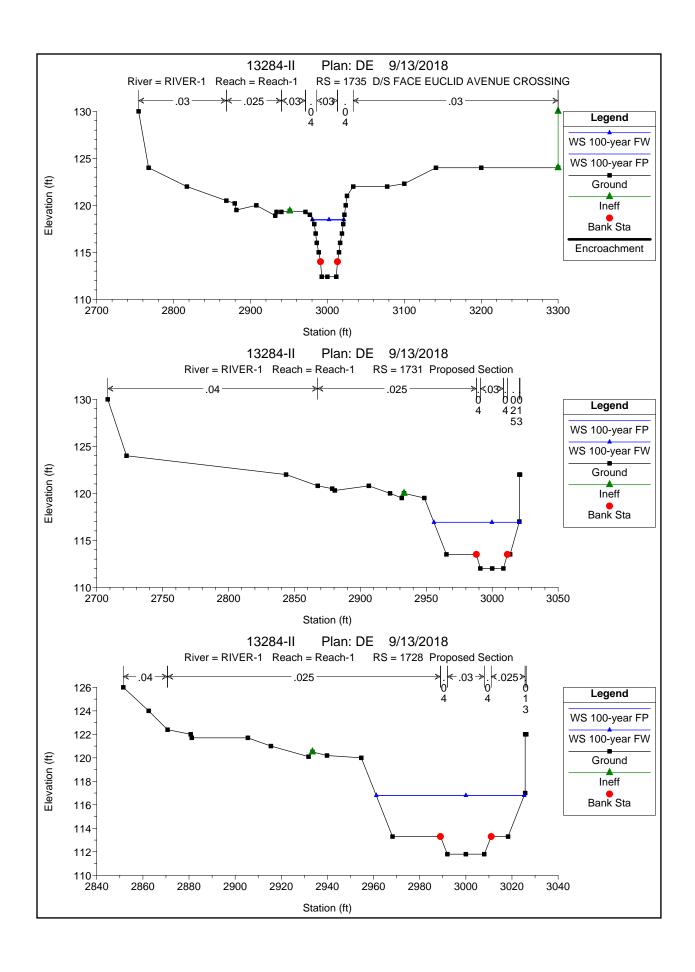
HEC-RAS Plan: DE River: RIVER-1 Reach: Reach-1

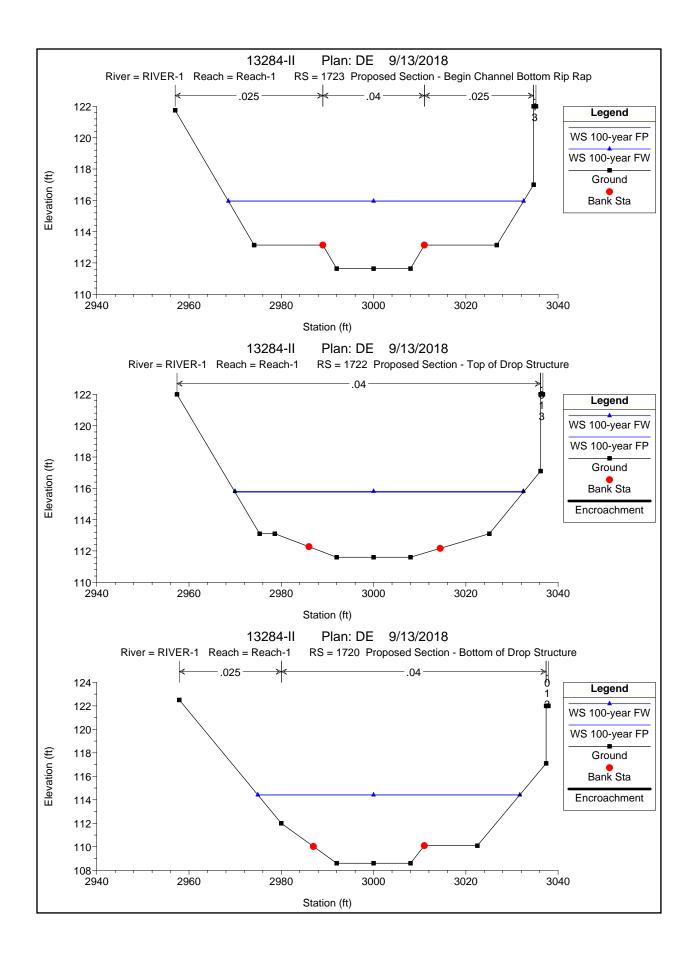

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Reach-1	1463	100-year FP	5300.00	82.50	90.07	90.00	90.14	0.000884	3.33	2811.88	909.98	0.25
Reach-1	1463	100-year FW	5300.00	82.50	90.07	90.00	90.80	0.005805	7.68	794.59	207.00	0.57
Reach-1	1493	100-year FP	5300.00	84.40	91.61	91.61	94.43	0.011479	14.35	431.39	97.29	0.97
Reach-1	1493	100-year FW	5300.00	84.40	91.72	91.72	94.43	0.010822	14.08	439.97	80.49	0.94
Reach-1	1510	100-year FP	5300.00	84.60	93.62		94.80	0.003457	9.23	665.25	111.30	0.55
Reach-1	1510	100-year FW	5300.00	84.60	93.59		94.78	0.003498	9.26	662.41	98.35	0.55
Reach-1	1512	100-year FP	5300.00	84.90	94.64		95.04	0.001071	5.35	1110.59	146.50	0.31
Reach-1	1512	100-year FW	5300.00	84.90	94.62		95.02	0.001079	5.36	1107.74	146.28	0.31
Deceb 1	1510	100 year FD	F200.00	0F 20	04.72		0F 1F	0.001167	E E2	1101.06	140.77	0.22
Reach-1	1513 1513	100-year FP 100-year FW	5300.00 5300.00	85.39 85.39	94.73 94.71		95.15	0.001167	5.53	1101.86 1099.06	149.77 149.56	0.32 0.32
Reach-1	1513	100-year FW	5300.00	65.39	94.71		95.13	0.001175	5.55	1099.06	149.56	0.32
Reach-1	1514	100-year FP	5300.00	85.80	94.85		95.31	0.001264	5.70	1059.38	145.35	0.34
Reach-1	1514	100-year FW	5300.00	85.80	94.84		95.29	0.001204	5.71	1056.81	145.13	0.34
ixeacii-1	1314	100-year r vv	3300.00	05.00	34.04		33.23	0.001272	3.71	1030.01	140.10	0.54
Reach-1	1515	100-year FP	5300.00	85.83	94.98		95.45	0.001313	5.76	1042.42	145.64	0.34
Reach-1	1515	100-year FW	5300.00	85.83	94.96		95.43	0.001322	5.77	1039.98	145.42	0.34
rtodon i	10.0	100 you 111	0000.00	00.00	0 1.00		00.10	0.00.022	0	1000.00		0.01
Reach-1	1516	100-year FP	5300.00	85.91	95.11		95.63	0.001506	6.05	992.48	142.21	0.36
Reach-1	1516	100-year FW	5300.00	85.91	95.10		95.61	0.001516	6.06	990.24	142.00	0.36
		,										2.30
Reach-1	1517	100-year FP	5300.00	86.20	95.15		95.76	0.001849	6.57	902.54	129.99	0.40
Reach-1	1517	100-year FW	5300.00	86.20	95.13		95.75	0.001861	6.59	900.55	129.78	0.40
Reach-1	1518	100-year FP	5300.00	86.54	95.24		95.85	0.001810	6.49	912.92	142.89	0.40
Reach-1	1518	100-year FW	5300.00	86.54	95.22		95.84	0.001821	6.51	910.81	142.67	0.40
Reach-1	1519	100-year FP	5300.00	86.59	95.37		95.94	0.001728	6.31	944.35	140.54	0.39
Reach-1	1519	100-year FW	5300.00	86.59	95.36		95.93	0.001739	6.32	942.16	140.34	0.39
Reach-1	1519.1	100-year FP	5300.00	86.59	95.20		96.02	0.003604	7.61	779.70	140.00	0.52
Reach-1	1519.1	100-year FW	5300.00	86.59	95.19		96.01	0.003634	7.63	777.33	139.79	0.53
Reach-1	1520	100-year FP	5300.00	86.84	95.42		96.23	0.003497	7.54	785.44	143.73	0.52
Reach-1	1520	100-year FW	5300.00	86.84	95.41		96.22	0.003521	7.56	783.60	142.98	0.52
Reach-1	1520.1	100-year FP	5300.00	86.84	95.70		96.25	0.001606	6.19	968.02	146.68	0.37
Reach-1	1520.1	100-year FW	5300.00	86.84	95.69		96.24	0.001613	6.20	966.40	146.48	0.38
Reach-1	1530	100-year FP	5300.00	87.03	95.73		96.27	0.001608	6.18	981.77	146.80	0.37
Reach-1	1530	100-year FW	5300.00	87.03	95.72		96.26	0.001615	6.19	980.18	146.60	0.38
Reach-1	1540	100-year FP	5300.00	86.93	95.75		96.29	0.001625	6.16	981.41	145.33	0.37
Reach-1	1540	100-year FW	5300.00	86.93	95.74		96.28	0.001632	6.17	979.86	145.13	0.37
Reach-1	1541	100-year FP	5300.00	86.93	95.73		96.30	0.001870	6.31	948.66	140.77	0.38
Reach-1	1541	100-year FW	5300.00	86.93	95.72		96.29	0.001878	6.32	947.15	140.57	0.38
		==										
Reach-1	1542 1542	100-year FP	5300.00 5300.00	86.93 86.93	95.80 95.79		96.35	0.001810	6.24 6.25	954.69	135.88	0.38
Reach-1	1542	100-year FW	5300.00	00.93	95.79		96.34	0.001817	6.25	953.30	135.68	0.38
Reach-1	1543	100-year FP	5300.00	86.93	95.85		96.36	0.001492	6.02	995.52	140.67	0.36
Reach-1	1543	100-year FW	5300.00	86.93	95.85		96.36	0.001492	6.02	995.52	140.67	0.36
Neacil-1	1043	100-year FVV	5300.00	00.93	95.64		90.35	0.001498	6.03	394.11	140.46	0.36
Reach-1	1550	100-year FP	5300.00	87.05	95.93		96.46	0.001627	6.18	975.05	140.84	0.38
Reach-1	1550	100-year FW	5300.00	87.05	95.93		96.46	0.001627	6.19	973.70	140.40	0.38
. (04011-1	1000	.oo year FVV	3300.00	01.00	33.32		JU.40	3.001032	0.19	313.10	1-10.40	0.36
Reach-1	1560	100-year FP	5300.00	87.63	96.06		96.60	0.002150	6.13	940.80	144.12	0.38
Reach-1	1560	100-year FW	5300.00	87.63	96.05		96.59	0.002158	6.14	939.42	143.81	0.38
	.550	. oo your i vv	5550.00	57.03	30.03		30.39	3.002100	0.14	555.42	1-10.01	0.36
Reach-1	1561	100-year FP	5300.00	88.00	96.16		96.66	0.002240	6.00	963.92	152.00	0.39
Reach-1	1561	100-year FW	5300.00	88.00	96.15		96.66	0.002250	6.01	962.31	151.80	0.39
		11,13	2000.00	33.30	55.76		00.00	2.302230	3.51	302.01		3.55
Reach-1	1563		Bridge									
	1000		Driage									
Reach-1	1565	100-year FP	5300.00	88.50	96.11	94.13	97.01	0.006221	8.07	718.27	127.00	0.49
Reach-1	1565	100-year FW	5300.00	88.50	96.10	94.13	97.00	0.006224	8.07	716.98	126.80	0.49
		,		22.20	22.70		230	. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2.31		50	5.10
Reach-1	1567		Bridge									
Reach-1	1570	100-year FP	5300.00	89.70	97.24	95.70	98.23	0.005391	8.64	693.89	130.00	0.59
Reach-1	1570	100-year FW	5300.00	89.70	97.23	95.70	98.22	0.005430	8.66	692.15	129.90	0.59

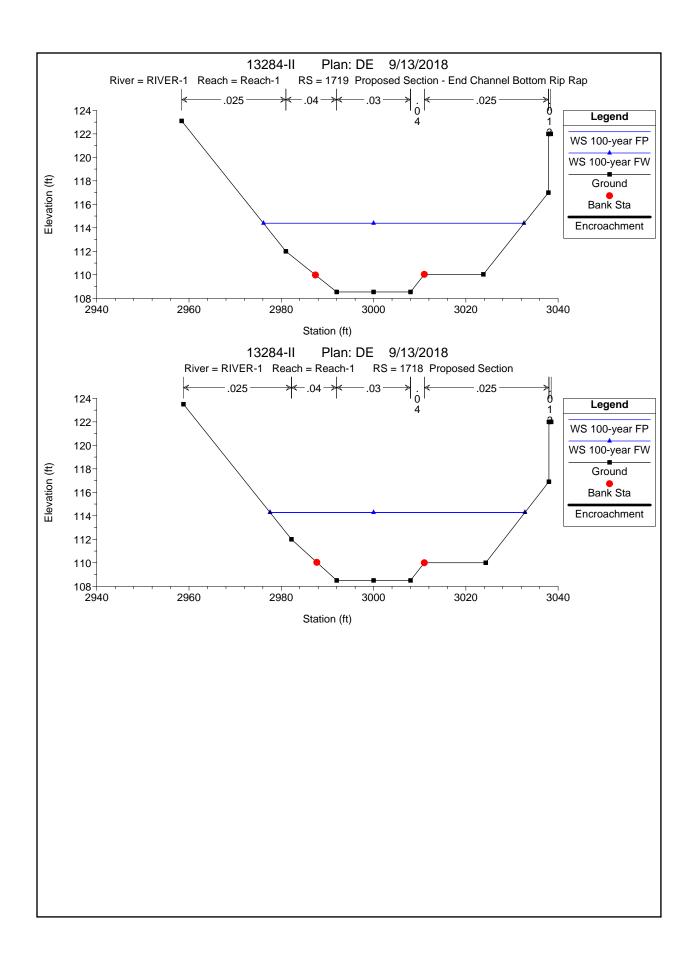

HEC-RAS Plan: DE River: RIVER-1 Reach: Reach-1 (Continued)

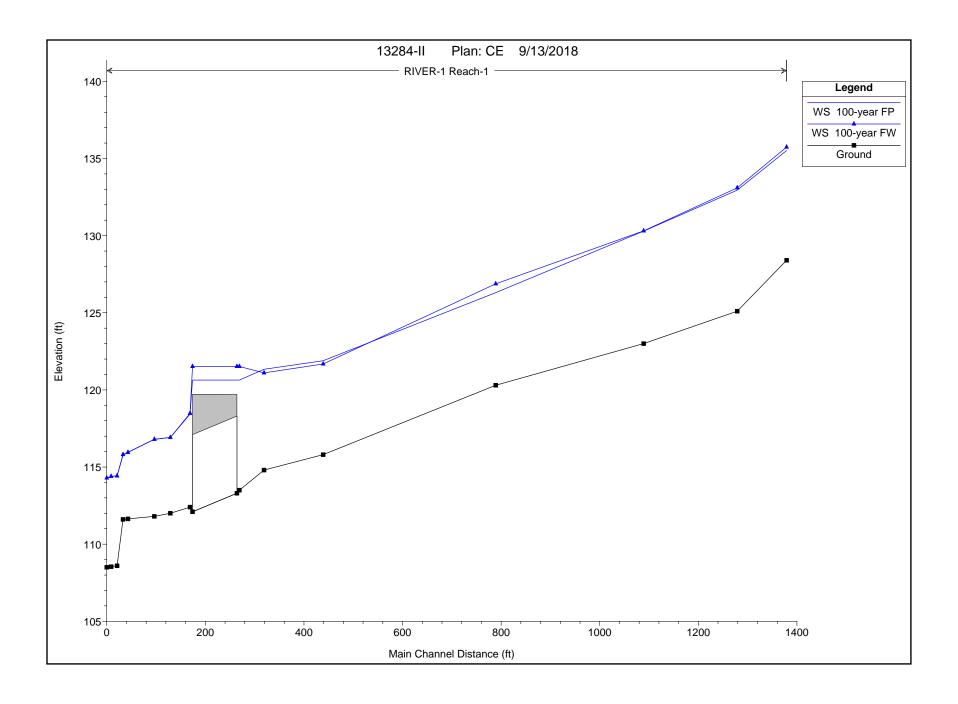

Darak			n: Reach-1 (Co		M C Flan	0-41410	F.O. Fla	F.O. 01	Val Ohal	Ela A.a.a	T \A/: - 4 -	F
Reach	River Sta	Profile	Q Total (cfs)	Min Ch El (ft)	W.S. Elev (ft)	Crit W.S.	E.G. Elev (ft)	E.G. Slope (ft/ft)	Vel Chnl (ft/s)	Flow Area (sq ft)	Top Width (ft)	Froude # Chl
Reach-1	1572	100-year FP	5300.00	92.50	98.39	98.39	100.32	0.015150	12.10	(Sq 11) 497.85	125.16	0.94
Reach-1	1572	100-year FW	5300.00	92.50	98.38	98.38	100.32	0.015161	12.10	497.64	125.10	0.94
11000111	1012	100 your 111	0000.00	02.00	00.00	00.00	100.02	0.010101	12.10	107.01	120.00	0.01
Reach-1	1575	100-year FP	5300.00	95.20	101.49	101.49	104.20	0.015350	13.80	408.31	92.20	0.98
Reach-1	1575	100-year FW	5300.00	95.20	101.49	101.49	104.30	0.016216	14.19	408.53	73.50	1.00
Reach-1	1580	100-year FP	5300.00	95.75	102.74	102.74	105.85	0.016215	14.63	389.03	70.73	1.01
Reach-1	1580	100-year FW	5300.00	95.75	102.74	102.74	105.85	0.016235	14.64	388.87	70.70	1.01
D 1.4	1505.5											
Reach-1	1585.5		Bridge									
Reach-1	1590	100-year FP	5300.00	96.56	106.57	103.67	107.88	0.004218	9.62	610.25	75.60	0.55
Reach-1	1590	100-year FW	5300.00	96.56	106.56	103.68	107.87	0.004246	9.65	608.54	75.40	0.55
		,										
Reach-1	1600	100-year FP	1900.00	98.10	107.82		108.25	0.001210	5.78	412.57	59.81	0.33
Reach-1	1600	100-year FW	1900.00	98.10	107.82		108.25	0.001208	5.77	412.14	58.84	0.33
Reach-1	1610	100-year FP	1900.00	99.50	107.98		108.41	0.001561	5.82	408.76	70.61	0.36
Reach-1	1610	100-year FW	1900.00	99.50	107.98		108.40	0.001559	5.82	408.26	69.58	0.36
Reach-1	1620	100-year FP	1900.00	100.17	107.68		108.75	0.004312	9.07	260.92	50.05	0.60
Reach-1	1620	100-year FW	1900.00	100.17	107.68		108.74	0.004296	9.05	260.59	48.86	0.59
Reach-1	1638	100-year FP	1900.00	100.60	108.28	106.94	108.90	0.002814	7.38	340.87	82.48	0.47
Reach-1	1638	100-year FW	1900.00	100.60	108.26	106.93	108.89	0.002811	7.36	334.19	75.79	0.47
	1000	, , , , , , , , , , , , , , , , , , , ,										
Reach-1	1643.5		Culvert									
Reach-1	1650	100-year FP	1900.00	100.55	111.15	105.55	111.49	0.000866	5.21	431.43	127.32	0.28
Reach-1	1650	100-year FW	1900.00	100.55	112.11	105.55	112.31	0.000508	4.23	605.56	133.55	0.22
Reach-1	1651	100-year FP	1900.00	101.30	111.25	106.22	111.52	0.000657	4.18	456.94	143.29	0.24
Reach-1	1651	100-year FW	1900.00	101.30	112.14	106.22	112.32	0.000442	3.64	552.27	93.06	0.20
Reach-1	1652	100-year FP	1900.00	102.35	111.19	107.24	111.56	0.000825	4.36	401.09	106.95	0.26
Reach-1	1652	100-year FW	1900.00	102.35	112.07	107.24	112.36	0.000572	3.88	450.96	56.80	0.20
TCGGOTT T	1002	100 year 1 11	1300.00	102.00	112.07	107.24	112.00	0.000072	0.00	400.00	00.00	0.22
Reach-1	1653	100-year FP	1900.00	102.67	111.17	107.55	111.58	0.000994	4.66	385.68	85.19	0.29
Reach-1	1653	100-year FW	1900.00	102.67	112.05	107.55	112.38	0.000679	4.12	436.37	57.30	0.24
Reach-1	1663	100-year FP	1900.00	102.90	111.34	107.63	111.67	0.000703	4.66	412.99	66.00	0.29
Reach-1	1663	100-year FW	1900.00	102.90	112.18	107.63	112.44	0.000474	4.09	468.52	66.00	0.24
Reach-1	1673	100-year FP	1900.00	103.30	111.38		111.74	0.000789	4.83	402.03	69.27	0.30
Reach-1	1673	100-year FW	1900.00	103.30	112.21		112.48	0.000521	4.19	459.38	69.24	0.25
Reach-1	1679	100-year FP	1900.00	103.50	111.31		111.84	0.001308	6.18	338.55	61.95	0.40
Reach-1	1679	100-year FW	1900.00	103.50	112.15		112.55	0.001300	5.33	390.96	61.88	0.32
	1010	, , , , , , , , , , , , , , , , , , , ,										
Reach-1	1681	100-year FP	1900.00	103.64	111.10		111.98	0.002381	8.05	281.62	55.53	0.53
Reach-1	1681	100-year FW	1900.00	103.64	112.01		112.65	0.001491	6.89	332.31	55.45	0.43
Reach-1	1682	100-year FP	1900.00	103.70	111.21		112.02	0.003175	7.68	283.72	55.55	
Reach-1	1682	100-year FW	1900.00	103.70	112.08		112.67	0.002015	6.60	332.02	55.47	0.41
Reach-1	1684 1684	100-year FP 100-year FW	1900.00 1900.00	106.70 106.70	111.05 111.58	111.05	112.87 112.95	0.013181 0.008582	11.16 9.73	183.47 211.38	52.73 52.73	0.95 0.78
Reach-1	1004	100-year FW	1900.00	106.70	111.30		112.95	0.006562	9.73	211.30	52.73	0.76
Reach-1	1685	100-year FP	1900.00	106.75	111.39	111.39	113.17	0.011200	10.51	181.93	52.67	0.88
Reach-1	1685	100-year FW	1900.00	106.75	111.41	111.39	113.17	0.011200	10.43	183.19	52.67	0.87
								2.2.0000		. 50. 10	32.01	5.57
Reach-1	1686	100-year FP	1900.00	106.84	111.72	111.72	113.50	0.008207	10.89	179.40	51.38	0.89
Reach-1	1686	100-year FW	1900.00	106.84	111.75	111.75	113.50	0.007997	10.80	180.88	51.38	0.88
Reach-1	1687	100-year FP	1900.00	106.90	112.48	111.76	113.69	0.004576	8.94	218.16	54.56	0.68
Reach-1	1687	100-year FW	1900.00	106.90	112.48	111.76	113.69	0.004603	8.95	217.73	54.53	0.69
					2.2.2.							_
Reach-1	1695	100-year FP	1900.00	107.30	112.78		114.07	0.005039	9.26	210.88	53.74	0.72
Reach-1	1695	100-year FW	1900.00	107.30	112.78		114.07	0.005057	9.27	210.62	53.72	0.72
Pooch 1	1701	100 year FD	1000.00	107.00	440.40		444.44	0.004700	0.14	242.02	E0 F0	0.70
Reach-1	1701 1701	100-year FP 100-year FW	1900.00 1900.00	107.60 107.60	113.18		114.44 114.44	0.004792	9.14 9.15	213.83	53.50	0.70 0.70
Reach-1	1701	100-year FW	1900.00	107.60	113.18		114.44	0.004798	9.15	213.73	53.49	0.70
Reach-1	1702	100-year FP	1900.00	107.70	113.23		114.52	0.004996	9.27	210.90	53.30	0.71
Reach-1	1702	100-year FW	1900.00	107.70	113.22		114.52	0.005003	9.27	210.81	53.29	
		, ,	1.230.00		· · · · · · ·		2	2.220000	5.27	0.01	30.20	01

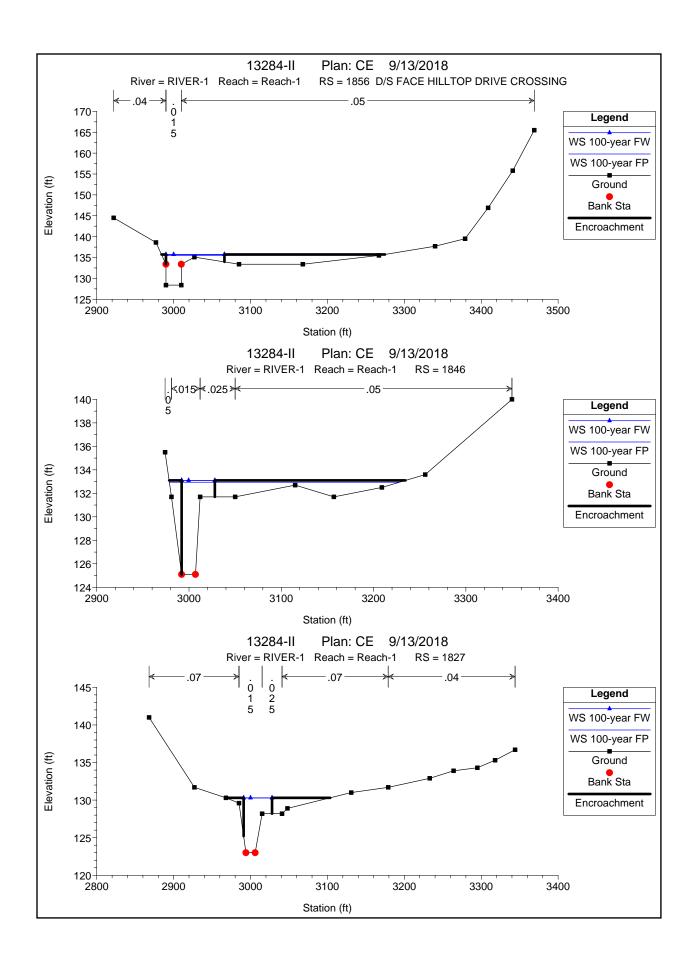

HEC-RAS Plan: DE River: RIVER-1 Reach: Reach-1 (Continued)

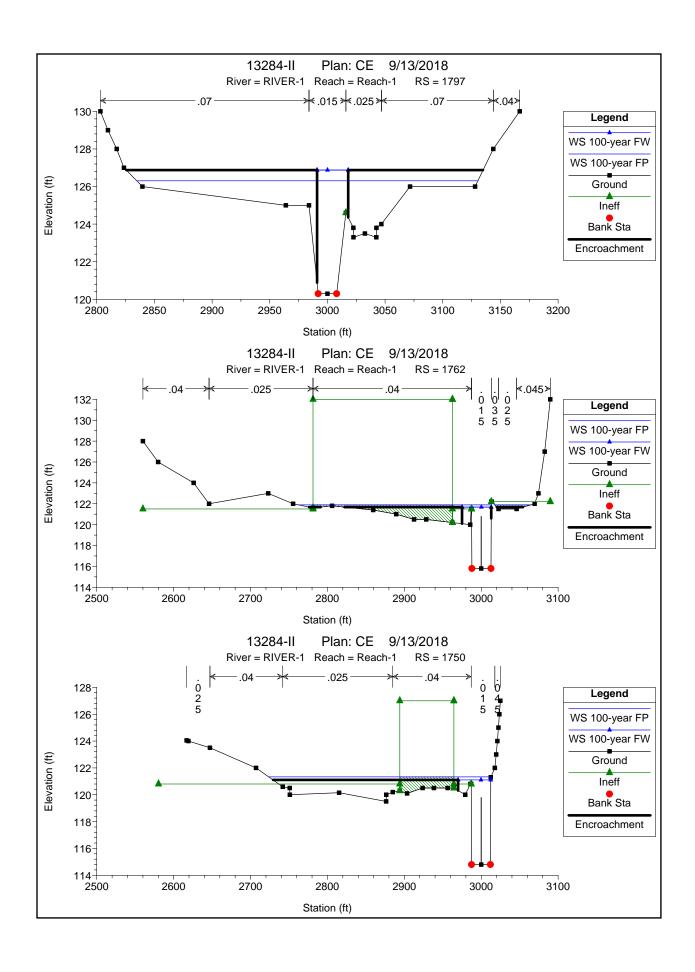

HEC-RAS F	lan: DE River	: RIVER-1 Reac										
Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Reach-1	1708	100-year FP	1900.00	108.10	113.42	113.02	114.89	0.006028	9.91	199.93	52.56	0.78
Reach-1	1708	100-year FW	1900.00	108.10	113.41	113.01	114.89	0.006033	9.91	199.87	52.56	0.78
Reach-1	1718	100-year FP	1900.00	108.50	114.29		115.43	0.004200	8.86	227.85	55.27	0.66
Reach-1	1718	100-year FW	1900.00	108.50	114.29		115.43	0.004200	8.86	227.85	55.26	0.66
Reach-1	1719	100-year FP	1900.00	108.54	114.39		115.46	0.003958	8.66	234.64	56.46	0.64
Reach-1	1719	100-year FW	1900.00	108.54	114.39		115.46	0.003958	8.66	234.64	56.46	0.64
5	4700	100 50	4000.00	400.00	444.40		445.54	0.00045	0.00	200.05	50.70	0.70
Reach-1	1720 1720	100-year FP	1900.00	108.60	114.42		115.54	0.006615	9.36 9.36	233.35 233.36	56.78	0.70 0.70
Reach-1	1720	100-year FW	1900.00	108.60	114.42		115.54	0.006614	9.30	233.30	56.78	0.70
Reach-1	1722	100-year FP	1900.00	111.60	115.76	115.76	117.35	0.014046	11.12	195.96	62.51	0.98
Reach-1	1722	100-year FW	1900.00	111.60	115.81	115.81	117.34	0.013316	10.92	199.36	62.51	0.95
D 1.4	4700	100 50	1000.00	444.04	115.00	445.00	117.10	0.000707	0.00	100 77	04.00	0.00
Reach-1	1723	100-year FP	1900.00	111.64	115.96	115.96	117.48	0.009767	9.23	192.77	64.03	0.80
Reach-1	1723	100-year FW	1900.00	111.64	115.95	115.95	117.48	0.009862	9.26	192.19	64.00	0.81
Reach-1	1728	100-year FP	1900.00	111.80	116.80	116.21	117.88	0.004679	8.55	228.46	64.15	0.69
Reach-1	1728	100-year FW	1900.00	111.80	116.80	116.21	117.88	0.004699	8.56	228.13	64.13	0.69
Reach-1	1731	100-year FP	1900.00	112.00	116.92	116.42	118.05	0.005011	8.82	223.93	64.71	0.72
Reach-1	1731	100-year FW	1900.00	112.00	116.91	116.42	118.05	0.005031	8.84	223.63	64.69	0.72
Reach-1	1735	100-year FP	1900.00	112.40	118.43	118.43	120.69	0.006635	12.69	170.28	40.72	0.92
Reach-1	1735	100-year FW	1900.00	112.40	118.48	118.48	120.69	0.006428	12.56	172.27	40.71	0.91
Reach-1	1740		Culvert									
Reach-1	1745	100-year FP	1900.00	113.50	120.56	120.56	121.72	0.000660	9.37	361.54	221.60	0.62
Reach-1	1745	100-year FW	1900.00	113.50	121.52	119.27	122.90	0.000579	9.55	236.09	56.90	0.59
rtodon i		100 year 111	1000.00	110.00	121102		122.00	0.000070	0.00	200.00	00.00	0.00
Reach-1	1750	100-year FP	1900.00	114.80	121.05	121.05	121.95	0.001131	8.91	389.13	284.55	0.63
Reach-1	1750	100-year FW	1900.00	114.80	121.10	120.59	123.42	0.002132	12.30	168.89	42.39	0.87
Reach-1	1762	100-year FP	1900.00	115.80	121.89	121.89	124.00	0.002113	11.99	197.51	297.73	0.86
Reach-1	1762	100-year FW	1900.00	115.80	121.68	121.68	124.00	0.002113	12.89	164.95	38.00	0.94
rtodon i	1102	100 year 111	1000.00	110.00	121100	121100	12 1120	0.002000	12.00	101.00	00.00	0.0 .
Reach-1	1797	100-year FP	1900.00	120.30	126.31	126.31	127.39	0.001113	10.92	415.21	295.69	0.79
Reach-1	1797	100-year FW	1900.00	120.30	126.87	126.87	129.66	0.001698	14.32	151.63	27.00	0.99
Decel 4	4007	400 FD	4000.00	400.00	400.00	400.00	404.70	0.004404	40.00	070.40	404.74	0.04
Reach-1	1827 1827	100-year FP	1900.00	123.00	130.29	130.29	131.79 132.76	0.001101	12.36	276.19	134.74	0.81
Reach-1	1021	100-year FW	1900.00	123.00	130.31	130.31	132.76	0.001512	14.50	176.03	37.00	0.95
Reach-1	1846	100-year FP	1900.00	125.10	132.95	132.95	134.27	0.000757	10.76	367.13	249.33	0.68
Reach-1	1846	100-year FW	1900.00	125.10	133.10	133.10	135.59	0.002049	13.49	165.82	36.00	0.84
Reach-1	1856	100-year FP	1900.00	128.40	135.51	135.51	136.61	0.001222	9.77	523.67	282.77	0.65
Reach-1	1856	100-year FW	1900.00	128.40	135.74	135.74	137.91	0.002015	12.19	219.04	76.00	0.79

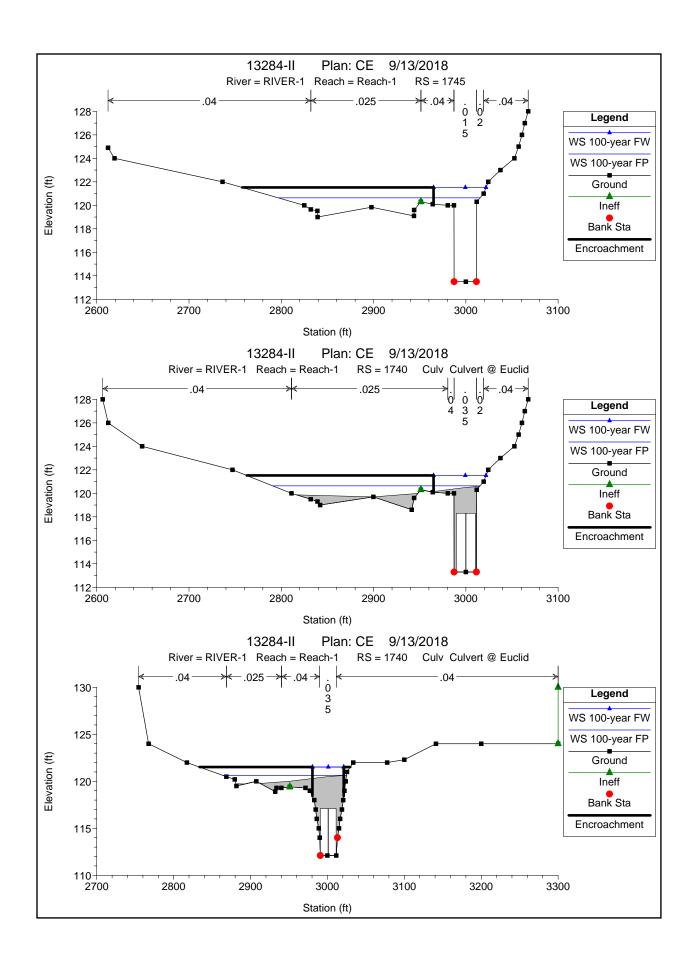


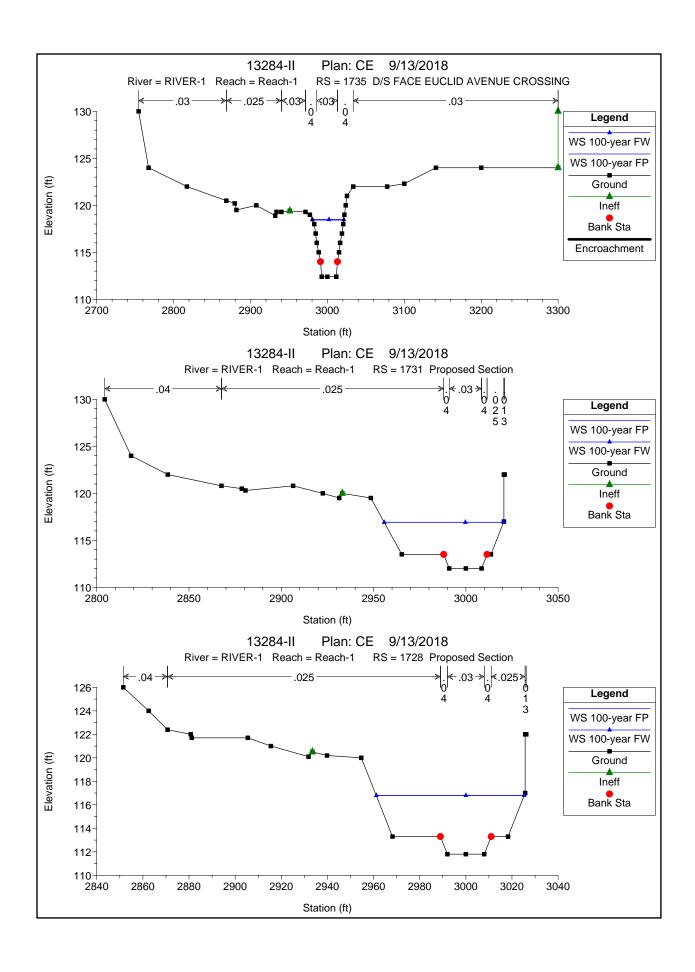


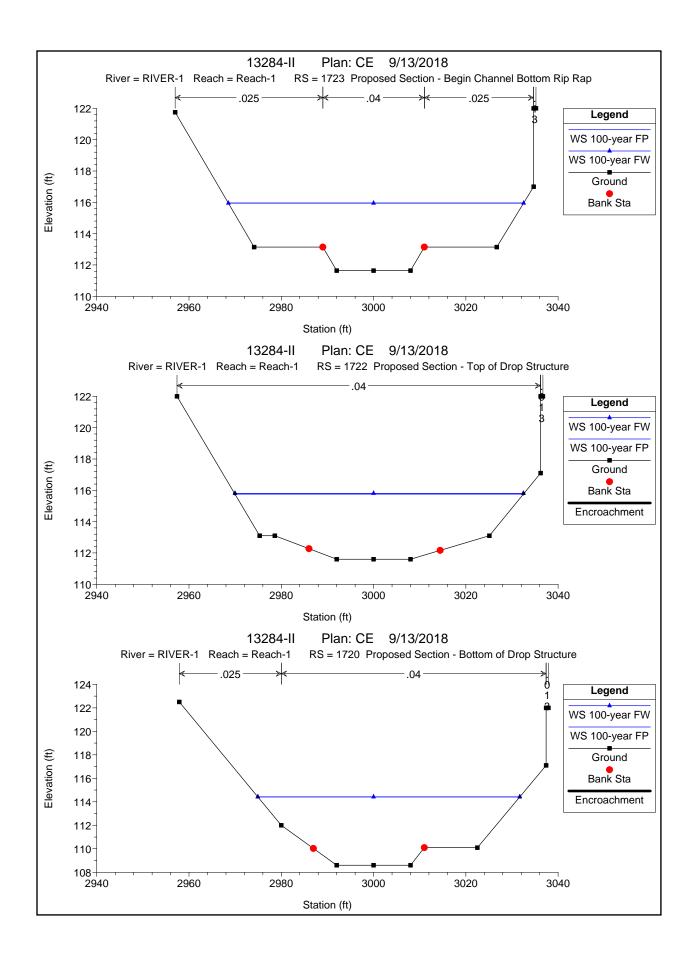


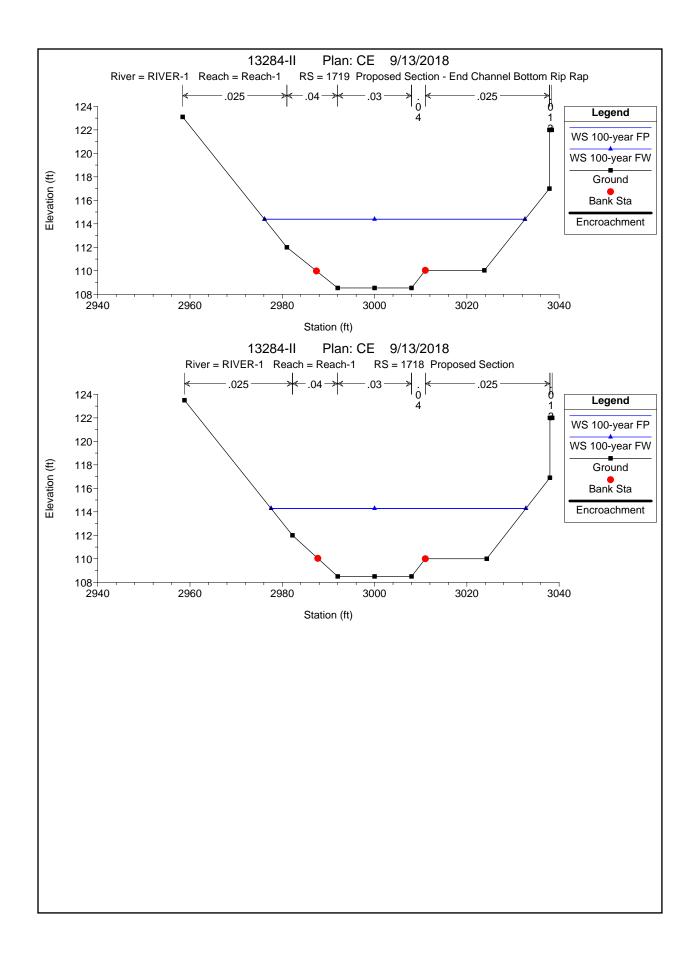

Attachment 6

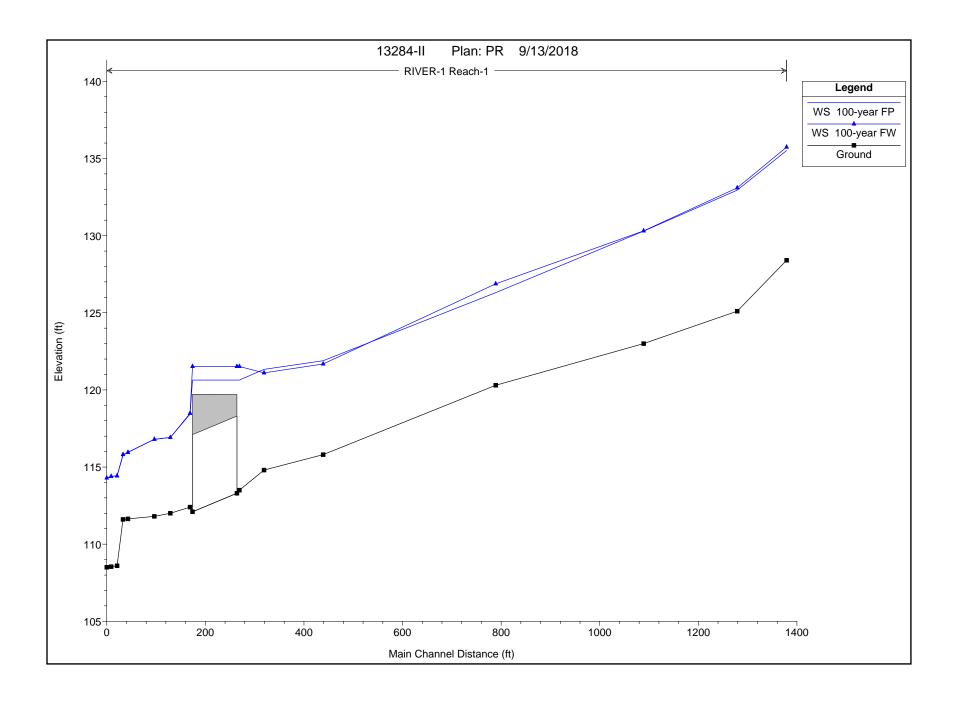

Corrected Effective HEC-RAS Output

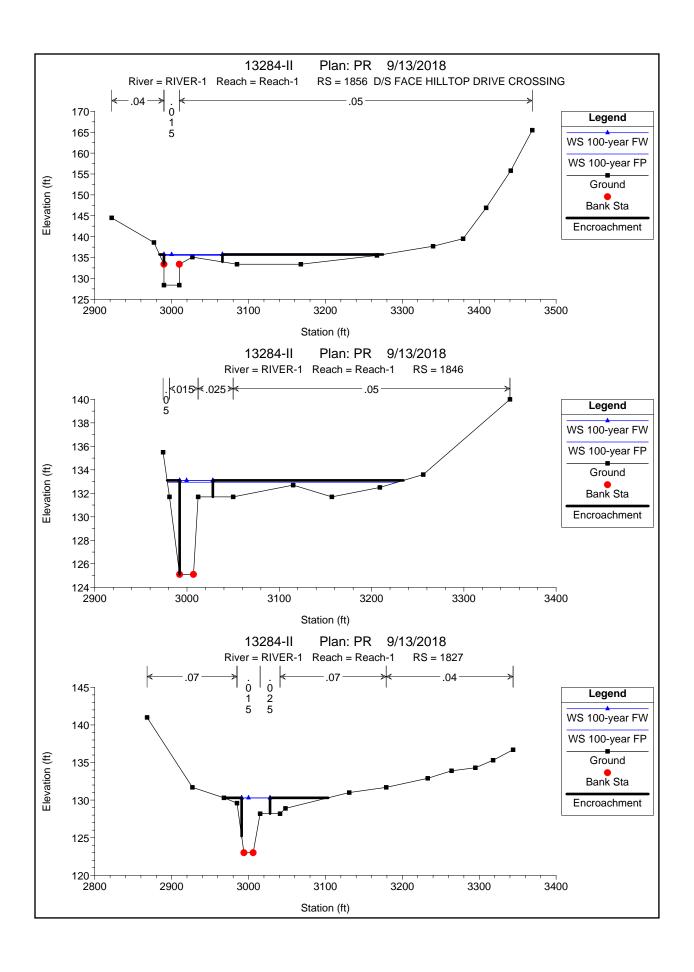

HEC-RAS Plan: CE River: RIVER-1 Reach: Reach-1

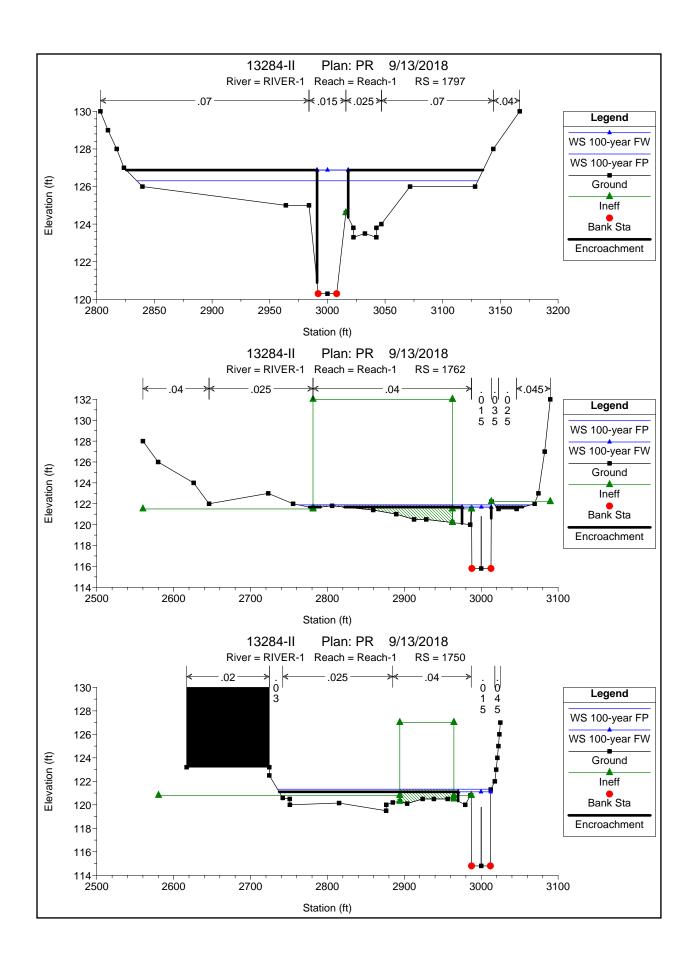

		: RIVER-1 Reacr										
Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Reach-1	1718	100-year FP	1900.00	108.50	114.29	113.43	115.43	0.004191	8.85	228.01	55.28	0.66
Reach-1	1718	100-year FW	1900.00	108.50	114.29	113.43	115.43	0.004190	8.85	228.01	55.26	0.66
Reach-1	1719	100-year FP	1900.00	108.54	114.39		115.47	0.003941	8.65	234.97	56.49	0.64
Reach-1	1719	100-year FW	1900.00	108.54	114.39		115.47	0.003941	8.65	234.97	56.46	0.64
Reach-1	1720	100-year FP	1900.00	108.60	114.42		115.54	0.006588	9.34	233.67	56.80	0.70
Reach-1	1720	100-year FW	1900.00	108.60	114.42		115.54	0.006586	9.34	233.68	56.78	0.70
Reach-1	1722	100-year FP	1900.00	111.60	115.76	115.76	117.35	0.014046	11.12	195.96	62.51	0.98
Reach-1	1722	100-year FW	1900.00	111.60	115.81	115.81	117.34	0.013316	10.92	199.36	62.51	0.95
Reach-1	1723	100-year FP	1900.00	111.64	115.96	115.96	117.48	0.009767	9.23	192.77	64.03	0.80
Reach-1	1723	100-year FW	1900.00	111.64	115.95	115.95	117.48	0.009862	9.26	192.19	64.00	0.81
Reach-1	1728	100-year FP	1900.00	111.80	116.80	116.21	117.88	0.004679	8.55	228.46	64.15	0.69
Reach-1	1728	100-year FW	1900.00	111.80	116.80	116.21	117.88	0.004699	8.56	228.13	64.13	0.69
		,										
Reach-1	1731	100-year FP	1900.00	112.00	116.92	116.42	118.05	0.005011	8.82	223.93	64.71	0.72
Reach-1	1731	100-year FW	1900.00	112.00	116.91	116.42	118.05	0.005031	8.84	223.63	64.69	0.72
		, , , ,										-
Reach-1	1735	100-year FP	1900.00	112.40	118.43	118.43	120.69	0.006635	12.69	170.28	40.72	0.92
Reach-1	1735	100-year FW	1900.00	112.40	118.48	118.48	120.69	0.006428	12.56	172.27	40.71	0.91
	1.00	100)00						0.000.00				
Reach-1	1740		Culvert									
TTOGOTT T	10		Garron									
Reach-1	1745	100-year FP	1900.00	113.50	120.64	120.64	121.86	0.000674	9.53	346.57	218.61	0.63
Reach-1	1745	100-year FW	1900.00	113.50	121.52	119.27	122.90	0.000579	9.55	236.09	56.90	0.59
rtodon i		100 your 111	1000.00	110.00	12.1.02		122.00	0.000010	0.00	200.00	00.00	0.00
Reach-1	1750	100-year FP	1900.00	114.80	121.33	121.33	122.26	0.001060	8.89	391.40	289.05	0.62
Reach-1	1750	100-year FW	1900.00	114.80	121.10	120.59	123.42	0.001000	12.30	168.89	42.39	0.87
INGAGII-1	1730	100-year i vv	1900.00	114.00	121.10	120.55	123.42	0.002132	12.50	100.03	42.55	0.07
Reach-1	1762	100-year FP	1900.00	115.80	121.89	121.89	124.00	0.002113	11.99	197.51	297.73	0.86
Reach-1	1762	100-year FW	1900.00	115.80	121.68	121.68	124.20	0.002113	12.89	164.95	38.00	0.94
INGAGII-1	1702	100-year i vv	1300.00	113.00	121.00	121.00	124.20	0.002333	12.03	104.93	30.00	0.34
Reach-1	1797	100-year FP	1900.00	120.30	126.31	126.31	127.39	0.001113	10.92	415.21	295.69	0.79
Reach-1	1797	100-year FW	1900.00	120.30	126.87	126.87	127.39	0.001113	14.32	151.63	27.00	0.79
Reach-1	1797	100-year FVV	1900.00	120.30	120.67	120.07	129.00	0.001098	14.32	151.65	27.00	0.99
Darah 4	1827	100-year FP	4000.00	400.00	400.00	400.00	404.70	0.004404	40.00	070.40	40474	0.04
Reach-1			1900.00	123.00	130.29	130.29	131.79	0.001101	12.36	276.19	134.74	0.81
Reach-1	1827	100-year FW	1900.00	123.00	130.31	130.31	132.76	0.001512	14.50	176.03	37.00	0.95
Decel 4	4040	400 FD	4000.00	405.10	400.05	400.05	404.07	0.000757	40.70	207.10	040.00	2.00
Reach-1	1846	100-year FP	1900.00	125.10	132.95	132.95	134.27	0.000757	10.76	367.13	249.33	0.68
Reach-1	1846	100-year FW	1900.00	125.10	133.10	133.10	135.59	0.002049	13.49	165.82	36.00	0.84
		==										
Reach-1	1856	100-year FP	1900.00	128.40	135.51	135.51	136.61	0.001222	9.77	523.67	282.77	0.65
Reach-1	1856	100-year FW	1900.00	128.40	135.74	135.74	137.91	0.002015	12.19	219.04	76.00	0.79

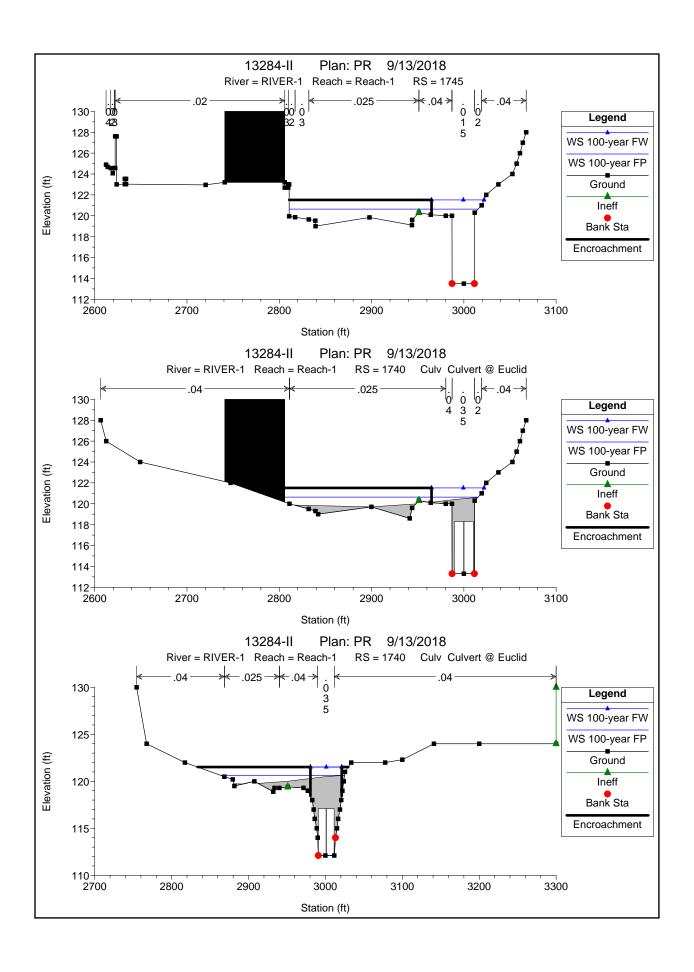


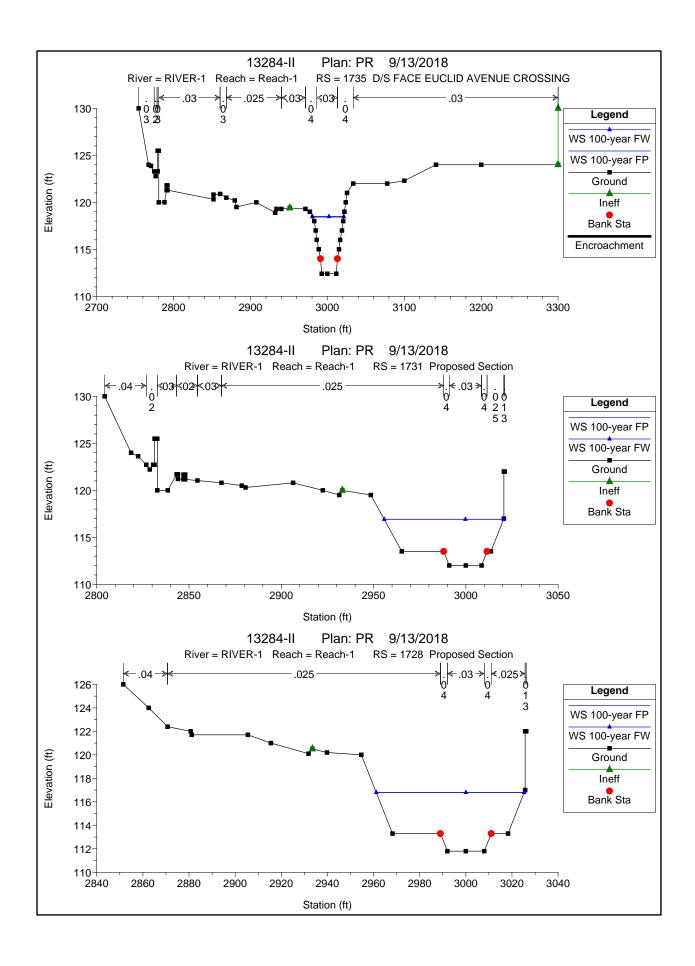


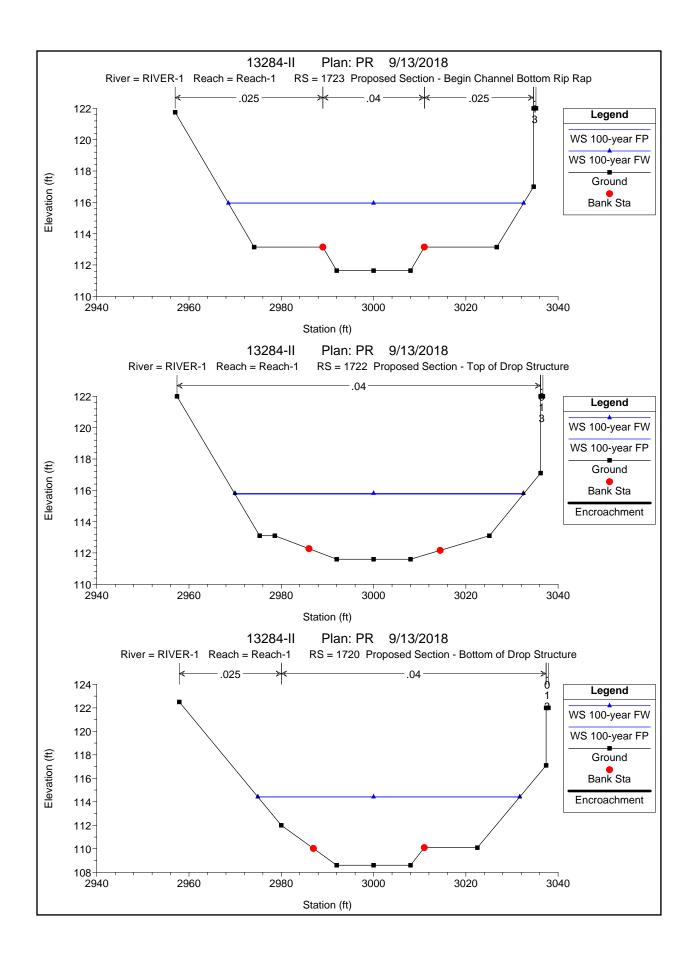


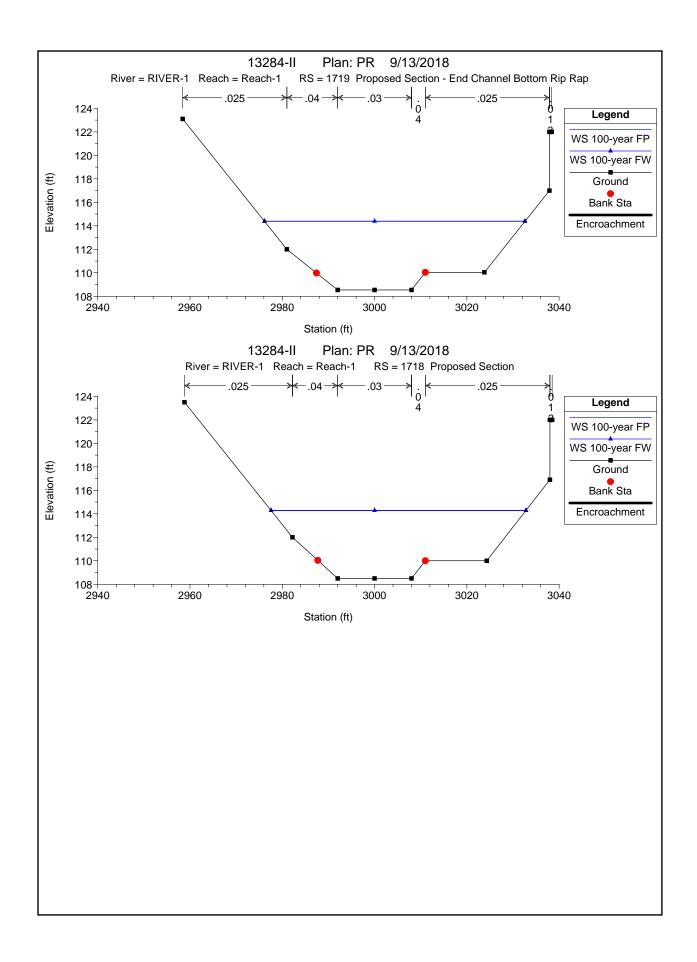

Attachment 7

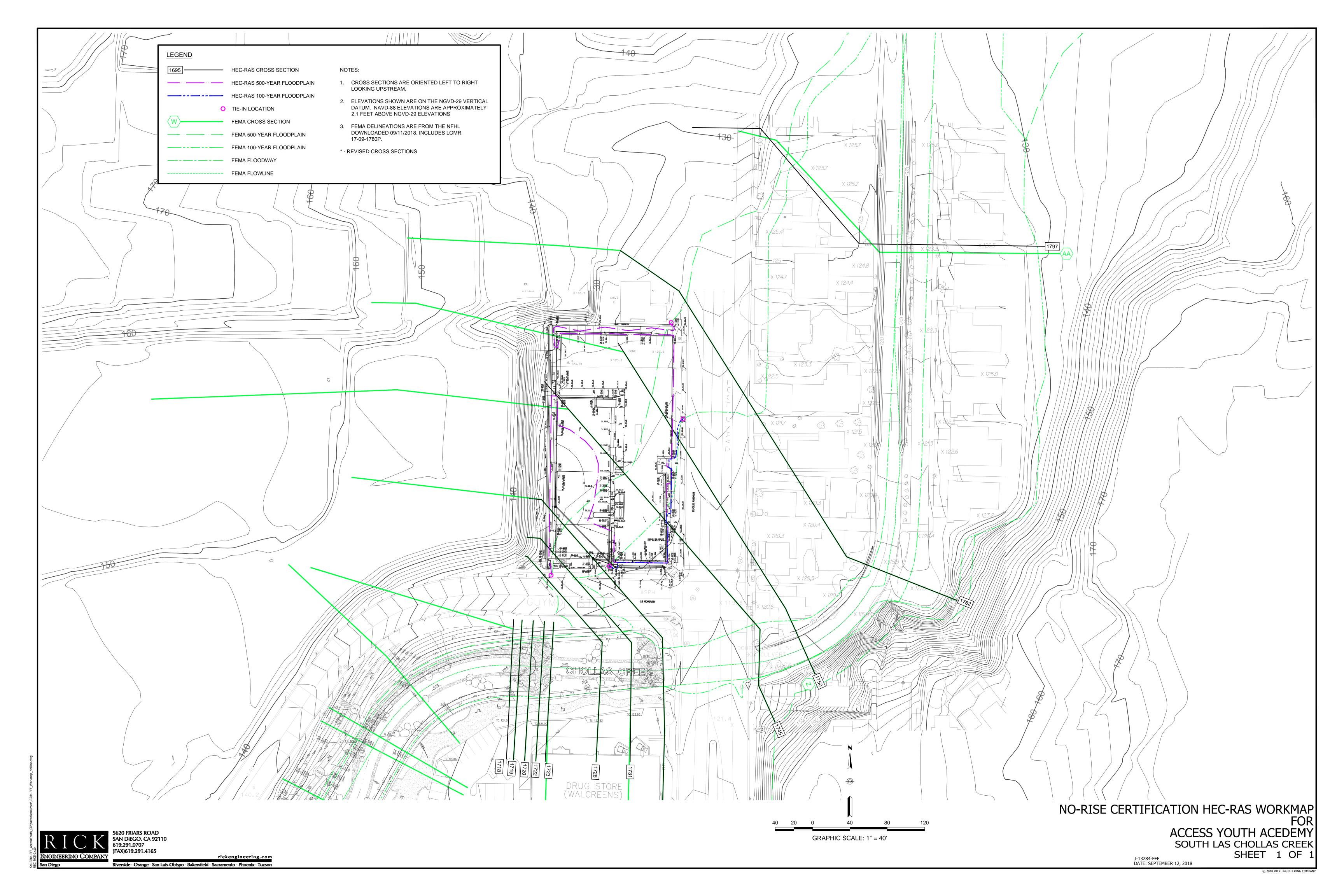

Proposed HEC-RAS Output

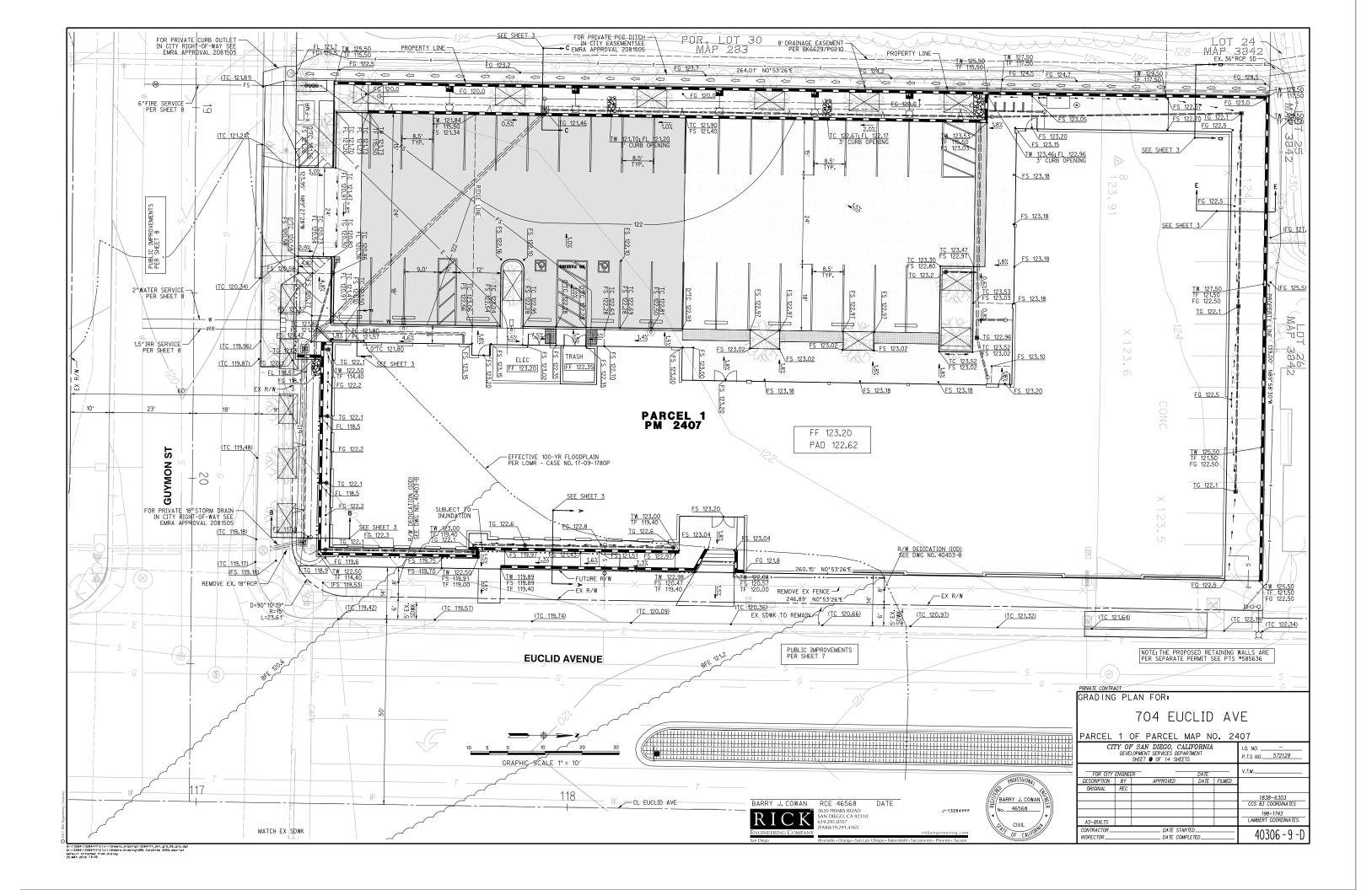

HEC-RAS Plan: PR River: RIVER-1 Reach: Reach-1


		: RIVER-1 Reacr										
Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Reach-1	1718	100-year FP	1900.00	108.50	114.29	113.43	115.43	0.004191	8.85	228.01	55.28	0.66
Reach-1	1718	100-year FW	1900.00	108.50	114.29	113.43	115.43	0.004190	8.85	228.01	55.26	0.66
Reach-1	1719	100-year FP	1900.00	108.54	114.39		115.47	0.003941	8.65	234.97	56.49	0.64
Reach-1	1719	100-year FW	1900.00	108.54	114.39		115.47	0.003941	8.65	234.97	56.46	0.64
Reach-1	1720	100-year FP	1900.00	108.60	114.42		115.54	0.006588	9.34	233.67	56.80	0.70
Reach-1	1720	100-year FW	1900.00	108.60	114.42		115.54	0.006586	9.34	233.68	56.78	0.70
Reach-1	1722	100-year FP	1900.00	111.60	115.76	115.76	117.35	0.014046	11.12	195.96	62.51	0.98
Reach-1	1722	100-year FW	1900.00	111.60	115.81	115.81	117.34	0.013316	10.92	199.36	62.51	0.95
Reach-1	1723	100-year FP	1900.00	111.64	115.96	115.96	117.48	0.009767	9.23	192.77	64.03	0.80
Reach-1	1723	100-year FW	1900.00	111.64	115.95	115.95	117.48	0.009862	9.26	192.19	64.00	0.81
Reach-1	1728	100-year FP	1900.00	111.80	116.80	116.21	117.88	0.004679	8.55	228.46	64.15	0.69
Reach-1	1728	100-year FW	1900.00	111.80	116.80	116.21	117.88	0.004699	8.56	228.13	64.13	0.69
Reach-1	1731	100-year FP	1900.00	112.00	116.92	116.42	118.05	0.005011	8.82	223.93	64.71	0.72
Reach-1	1731	100-year FW	1900.00	112.00	116.91	116.42	118.05	0.005031	8.84	223.63	64.69	0.72
		, , , ,										-
Reach-1	1735	100-year FP	1900.00	112.40	118.43	118.43	120.69	0.006635	12.69	170.28	40.72	0.92
Reach-1	1735	100-year FW	1900.00	112.40	118.48	118.48	120.69	0.006428	12.56	172.27	40.71	0.91
	1.00	100)00										
Reach-1	1740		Culvert									
T T T T T T T T T T T T T T T T T T T	10		Garron									
Reach-1	1745	100-year FP	1900.00	113.50	120.64	120.64	121.84	0.000663	9.46	349.87	204.65	0.62
Reach-1	1745	100-year FW	1900.00	113.50	121.52	119.27	122.90	0.000579	9.55	236.09	56.90	0.59
rtodon i		100 your 111	1000.00	110.00	12.1.02	110.21	122.00	0.000010	0.00	200.00	00.00	0.00
Reach-1	1750	100-year FP	1900.00	114.80	121.33	121.33	122.26	0.001066	8.91	386.56	277.49	0.62
Reach-1	1750	100-year FW	1900.00	114.80	121.10	120.59	123.42	0.001000	12.30	168.89	42.39	0.87
INGAGII-1	1730	100-year i vv	1900.00	114.00	121.10	120.55	123.42	0.002132	12.50	100.03	42.55	0.07
Reach-1	1762	100-year FP	1900.00	115.80	121.89	121.89	124.00	0.002113	11.99	197.51	297.73	0.86
Reach-1	1762	100-year FW	1900.00	115.80	121.68	121.68	124.20	0.002559	12.89	164.95	38.00	0.94
INGAGII-1	1702	100-year r vv	1900.00	113.00	121.00	121.00	124.20	0.002559	12.03	104.93	30.00	0.54
Reach-1	1797	100-year FP	1900.00	120.30	126.31	126.31	127.39	0.001113	10.92	415.21	295.69	0.79
Reach-1	1797	100-year FW	1900.00	120.30	126.87	126.87	129.66	0.001113	14.32	151.63	27.00	0.99
Reach-1	1797	100-year FVV	1900.00	120.30	120.67	120.07	129.00	0.001098	14.32	131.03	27.00	0.99
Doooh 1	1827	100-year FP	1900.00	400.00	130.29	130.29	131.79	0.001101	12.36	276.19	134.74	0.81
Reach-1				123.00								
Reach-1	1827	100-year FW	1900.00	123.00	130.31	130.31	132.76	0.001512	14.50	176.03	37.00	0.95
Decel 4	4040	400 FD	4000.00	405.10	400.05	400.05	404.07	0.000757	40.70	207.12	040.00	2.00
Reach-1	1846	100-year FP	1900.00	125.10	132.95	132.95	134.27	0.000757	10.76	367.13	249.33	0.68
Reach-1	1846	100-year FW	1900.00	125.10	133.10	133.10	135.59	0.002049	13.49	165.82	36.00	0.84
		==										
Reach-1	1856	100-year FP	1900.00	128.40	135.51	135.51	136.61	0.001222	9.77	523.67	282.77	0.65
Reach-1	1856	100-year FW	1900.00	128.40	135.74	135.74	137.91	0.002015	12.19	219.04	76.00	0.79








Attachment 8

Proposed HEC-RAS Workmap

Attachment 9

Proposed Grading Plan

Attachment 10

Electronic Files

PRIORITY DEVELOPMENT PROJECT (PDP) STORM WATER QUALITY MANAGEMENT PLAN (SWQMP) FOR

Access Youth Academy P.T.S. # 572129 D.W.G. # 40306-D

ENGINEER OF WORK:

Brendan Hastie, RCE # 65809, Exp. 9/19

PREPARED FOR:

Mr. Renato Paiva, Access Youth Academy 9370 Waples Street, Suite 101 San Diego, California 92121 (619) 533-1574

PREPARED BY:

Rick Engineering Company 5620 Friars Road San Diego, California 92110 (619) 291-0707

DATE:

August 23, 2017 Revised: December 7, 2017 Revised: April 17, 2018

Project Name:	Access Youth Academy
THE DAC	E INTENTIONALLY LEFT BLANK FOR DOUBLE-SIDED PRINTING
THIS PAGE	E INTENTIONALLI LEFT BLANK FOR DOUBLE-SIDED PRINTING

TABLE OF CONTENTS

- Acronyms
- Certification Page
- Submittal Record
- Project Vicinity Map
- FORM DS-560: Storm Water Applicability Checklist
- FORM I-1: Applicability of Permanent, Post-Construction Storm Water BMP Requirements
- FORM I-3B: Site Information Checklist for PDPs
- FORM I-4: Source Control BMP Checklist for All Development Projects
- FORM I-5: Site Design BMP Checklist for All Development Projects
- FORM I-6: Summary of PDP Structural BMPs
- FORM DS-563: Permanent BMP Construction, Self-Certification Form
- Attachment 1: Backup for PDP Pollutant Control BMPs
 - o Attachment 1a: DMA Exhibit
 - o Attachment 1b: Tabular Summary of DMAs and Design Capture Volume Calculations
 - o Attachment 1c: Harvest and Use Feasibility Screening (when applicable)
 - Attachment 1d: Categorization of Infiltration Feasibility Condition (when applicable)
 - o Attachment 1e: Pollutant Control BMP Design Worksheets / Calculations
- Attachment 2: Backup for PDP Hydromodification Control Measures
 - o Attachment 2a: Hydromodification Management Exhibit
 - o Attachment 2b: Management of Critical Coarse Sediment Yield Areas
 - o Attachment 2c: Geomorphic Assessment of Receiving Channels
 - o Attachment 2d: Flow Control Facility Design
- Attachment 3: Structural BMP Maintenance Plan
 - o Attachment 3a: Structural BMP Maintenance Thresholds and Actions
 - o Attachment 3b: Draft Maintenance Agreement (when applicable)
- Attachment 4: Copy of Plan Sheets Showing Permanent Storm Water BMPs
- Attachment 5: Project's Drainage Report
- Attachment 6: Project's Geotechnical and Groundwater Investigation Report

Project Name:	Access Youth Academy
THIS PAGE	E INTENTIONALLY LEFT BLANK FOR DOUBLE-SIDED PRINTING

ACRONYMS

	ACRONYMS
APN	Assessor's Parcel Number
ASBS	Area of Special Biological Significance
BMP	Best Management Practice
CEQA	California Environmental Quality Act
CGP	Construction General Permit
DCV	Design Capture Volume
DMA	Drainage Management Areas
ESA	Environmentally Sensitive Area
GLU	Geomorphic Landscape Unit
GW	Ground Water
HMP	Hydromodification Management Plan
HSG	Hydrologic Soil Group
HU	Harvest and Use
INF	Infiltration
LID	Low Impact Development
LUP	Linear Underground/Overhead Projects
MS4	Municipal Separate Storm Sewer System
N/A	Not Applicable
NPDES	National Pollutant Discharge Elimination System
NRCS	Natural Resources Conservation Service
PDP	Priority Development Project
PE	Professional Engineer
POC	Pollutant of Concern
SC	Source Control
SD	Site Design
SDRWQCB	San Diego Regional Water Quality Control Board
SIC	Standard Industrial Classification
SWPPP	Stormwater Pollutant Protection Plan
SWQMP	Storm Water Quality Management Plan
TMDL	Total Maximum Daily Load
WMAA	Watershed Management Area Analysis
WPCP	Water Pollution Control Program
WQIP	Water Quality Improvement Plan

PDP SWQMP FOR ACCESS YOUTH ACADEMY (FINAL ENGINEERING)

REVISION PAGE

April 17, 2018

This PDP SWQMP presents a revision to the December 7, 2017 report pursuant to comments from the City of San Diego dated January 22, 2018. The following text identifies the comments provided by the City of San Diego (Storm Water) followed by a response from Rick Engineering Company (in Bold).

1) Attachment 1a – Please clearly delineate the storm drain easement. Provide dimensions and drawing number.

Comment noted. After careful research, an easement for the storm drain in question was unable to be found.

2) Attachment 1a – Please revise the structural details per worksheet B.5-1.

Comment noted.

3) Attachment 1e – Please revise worksheet B.5-1, see redlined sheet for revisions.

Comment noted.

4) Attachment 5 – Please include the drainage study in the SWQMP.

Comment noted.

5) Please include a Site Design, Source Control and Pollutant Control BMP Operation + Maintenance Procedure Table per the Grading plan template.

PDP SWQMP FOR ACCESS YOUTH ACADEMY (FINAL ENGINEERING)

REVISION PAGE

December 7, 2017

This PDP SWQMP presents a revision to the August 23, 2017 report pursuant to comments from the City of San Diego dated September 20, 2017. The following text identifies the comments provided by the City of San Diego (Storm Water) followed by a response from Rick Engineering Company (in Bold).

1) Please use the following numbers for each type of heading, (revise the Storm Water Quality Management Plan, accordingly):

Project Tracking No.: 572129 'D' Sheet No.: 40306-D

Comment noted.

2) The Engineer of Work must provide the original wet signature, stamp and date the certification page prior to permit approval.

Comment noted.

3) Sheet 13 – Please revise, sign and provide the most updated version of the Storm Water Requirements Applicability Checklist DS-560.

Comment noted.

4) Sheet 19 Form I-3B – Please provide permit application number 572129 on all applicable sheets. Include disturbance from the ROW and revise increase in impervious area percentage.

Comment noted.

5) Sheet 36 Form I-5 page 4 – Please insert a site map with all the applicable site design BMPs identified from the form.

6) Sheet 39 Form I-6 – Please check the applicable type and purpose on both forms.

Comment noted.

7) Sheet 43 – Please fill out the top portion and provide the most updated version of the Permanent BMP Construction form DS-563.

Comment noted.

- 8) Attachment 1a DMA Exhibit. Please include the following on the exhibit.
 - -Fronting street names
 - -Storm drain easement (drawing number and dimensions)
 - -Structural details per Figure E.13-E. 13-1: Typical plan and Section view of a Biofiltration BMP
 - -Orifice structural details

Comment noted.

9) Attachment 1d – Form I-8: Prior to storm water sign off, Geology approval is required on the site infiltration category. Please note additional comments may/will follow.

Comment noted.

10) Attachment 1e – Please use the City of San Diego standard forms from the Storm Water Standards Manual, worksheet B.2-1 and worksheet B.5-1.

Worksheets B.2-1 and B.5-1 from the City of San Diego Storm Water Standards Manual (January 2016) are now included in attachment 1e along with Rick Engineering's BMP sizing spreadsheet.

11) Attachment 2a – Please provide Hydromod exhibit.

12) Attachment 2d – Please provide adequate drawdown, orifice and storage calculations. Clearly show required volume and storage sizing. 24 hours minimum required for water quality

treatment.

Comment noted. In regards to BMP-2; due to the relatively small DMA, higher low-flow threshold (0.5Q2) and basin geometry, the drawdown time is calculated to be lower than 24 hours. The November 2017 City Storm Water Standards Manual (SWSM) states in the Design Fact Sheets for Biofiltration (BF-1) that surface ponding is limited to 24 hours for plant health. Both BMPs 1 and 2 drawdown surface ponding in less than 24 hours and are therefore compliant with the most current

version of the City SWSM.

13) Attachment 3 – Please provide a copy of the original SWMDCMA.

A completed SWMDCMA is now included as attachment 3.

14) Please provide an electronic copy of the SWQMP, prior to permit issuance.

Comment noted.

15) All revisions must be reflected on all forms, exhibits and plans.

Project Name:	Access Youth Academy
THEDAC	E INTENTIONALLY LEFT BLANK FOR DOUBLE-SIDED PRINTING
11113 F 71 G	E INTENTIONALLI LEFT BLAINK FOR DOUBLE-SIDED FRINTING

CERTIFICATION PAGE

Project Name:

Access Youth Academy

Permit Application Number:

572129

I hereby declare that I am the Engineer in Responsible Charge of design of storm water BMPs for this project, and that I have exercised responsible charge over the design of the project as defined in Section 6703 of the Business and Professions Code, and that the design is consistent with the requirements of the Storm Water Standards, which is based on the requirements of SDRWQCB Order No. R9-2013-0001 as amended by R9-2015-0001 and R9-2015-0100 (MS4 Permit).

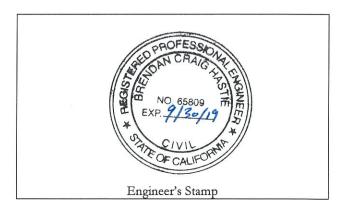
I have read and understand that the City Engineer has adopted minimum requirements for managing urban runoff, including storm water, from land development activities, as described in the Storm Water Standards. I certify that this PDP SWQMP has been completed to the best of my ability and accurately reflects the project being proposed and the applicable source control and site design BMPs proposed to minimize the potentially negative impacts of this project's land development activities on water quality. I understand and acknowledge that the plan check review of this PDP SWQMP by the City Engineer is confined to a review and does not relieve me, as the Engineer in Responsible Charge of design of storm water BMPs for this project, of my responsibilities for project design.

Engineer of Work's Signature DE Number &

R.C.E. #65809, EXP. 09/19

Engineer of Work's Signature, PE Number & Expiration Date

Brendan Hastie


Print Name

Rick Engineering Company

Company

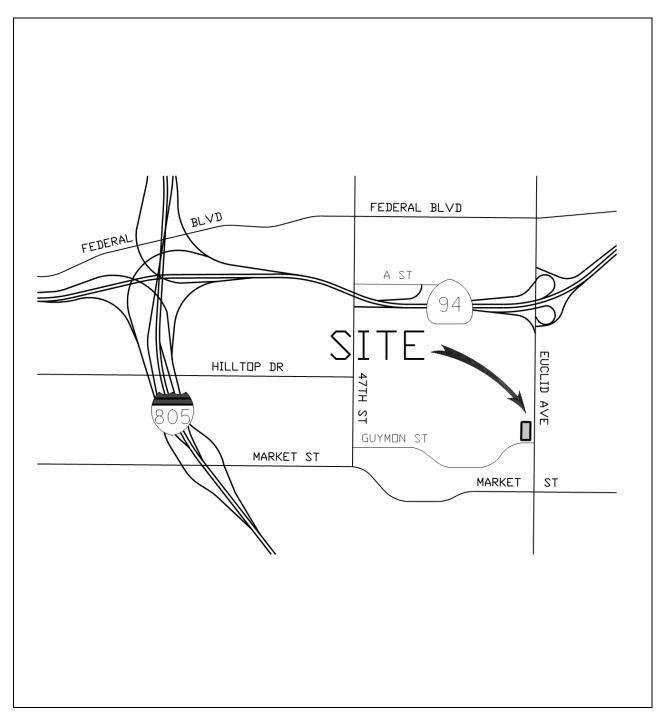
April 17, 2018

Date

Project Name:	Access Youth Academy
THEDAC	E INTENTIONALLY LEFT BLANK FOR DOUBLE-SIDED PRINTING
11113 F 71 G	E INTENTIONALLI LEFT BLAINK FOR DOUBLE-SIDED FRINTING

SUBMITTAL RECORD

Use this Table to keep a record of submittals of this PDP SWQMP. Each time the PDP SWQMP is re-submitted, provide the date and status of the project. In last column indicate changes that have been made or indicate if response to plancheck comments is included. When applicable, insert response to plancheck comments.


Submittal Number	Date	Project Status	Changes
1	[9/6/17]	☐ Preliminary Design/Planning/CEQA ☐ Final Design	Initial Submittal
2	[12/7/17]	Preliminary Design/Planning/CEQA Final Design	Second Submittal -Response to City Comments -Revisions to Forms DS-560. DS- 563 & I-6. -Revisions to Appendices
3	[4/17/18]	Preliminary Design/Planning/CEQA Final Design	[Third Submittal -Response to City Comments -Revisions to Appendices 1A, 1E, 3 and 4]
4	Enter a date.	☐ Preliminary Design/Planning/CEQA ☐ Final Design	Click here to enter text.

Project Name:	Access Youth Academy
THIS PAG	E INTENTIONALLY LEFT BLANK FOR DOUBLE-SIDED PRINTING

PROJECT VICINITY MAP

Project Name: Access Youth Academy

Permit Application Number: 572129

Project Name:	Access Youth Academy
THIS PAGI	E INTENTIONALLY LEFT BLANK FOR DOUBLE-SIDED PRINTING

Storm Water Requirements Applicability Checklist

FORM DS-560

OCTOBER **2016**

Project Address: 704 Euclid Avenue, San Diego, CA 92114

Project Number (for City Use Only):

SECTION 1. Construction Storm Water BMP Requirements:

All construction sites are required to implement construction BMPs in accordance with the performance standards in the <u>Storm Water Standards Manual</u>. Some sites are additionally required to obtain coverage under the State Construction General Permit (CGP)¹, which is administered by the State Water Resources Control Board.

For all projects complete PART A: If project is required to submit a SWPPP or WPCP, continue to PART B.

PART A: Determine Construction Phase Stor	n Water Requireme	nts.
---	-------------------	------

PART A: Determine Construction Phase Storm Water Requirements.			
. Is the project subject to California's statewide General NPDES permit for Storm Water Discharges Associated with Construction Activities, also known as the State Construction General Permit (CGP)? (Typically projects with land disturbance greater than or equal to 1 acre.)			
Yes; SWPPP required, skip questions 2-4 No; next question			
Does the project propose construction or demolition activity, including but not limited grubbing, excavation, or any other activity resulting in ground disturbance and contact	o, clearing, grading, with storm water runoff?		
X Yes; WPCP required, skip 3-4 No; next question			
3. Does the project propose routine maintenance to maintain original line and grade, hydral purpose of the facility? (Projects such as pipeline/utility replacement)	raulic capacity, or origi-		
Yes; WPCP required, skip 4 No; next question			
4. Does the project only include the following Permit types listed below?			
 Electrical Permit, Fire Alarm Permit, Fire Sprinkler Permit, Plumbing Permit, Sign Peri Spa Permit. 	nit, Mechanical Permit,		
 Individual Right of Way Permits that exclusively include only ONE of the following activities: water service, sewer lateral, or utility service. 			
 Right of Way Permits with a project footprint less than 150 linear feet that exclusively include only ONE of the following activities: curb ramp, sidewalk and driveway apron replacement, pot holing, curb and gutter replacement, and retaining wall encroachments. 			
Yes; no document required			
Check one of the boxes below, and continue to PART B:			
If you checked "Yes" for question 1, a SWPPP is REQUIRED. Continue to PART B			
If you checked "No" for question 1, and checked "Yes" for question 2 or 3, a WPCP is REQUIRED. If the project proposes less than 5,000 square feet of ground disturbance AND has less than a 5-foot elevation change over the entire project area, a Minor WPCP may be required instead. Continue to I	e PART B.		
If you checked "No" for all questions 1-3, and checked "Yes" for question 4 PART B does not apply and no document is required. Continue to Secti	on 2.		
1. More information on the City's construction BMP requirements as well as CGP requirements can be	found at:		

www.sandiego.gov/stormwater/regulations/index.shtml Printed on recycled paper. Visit our web site at www.sandiego.gov/development-services.

	Page 2 of 4 City of San Diego • Development Services • Storm Water Requirements Applicability Checklist				
T	PART B: Determine Construction Site Priority				
	This prioritization must be completed within this form, noted on the plans, and included in the SWPPP or WPCP. The city reserves the right to adjust the priority of projects both before and after construction. Construction projects are assigned an inspection frequency based on if the project has a "high threat to water quality." The City has aligned the local definition of "high threat to water quality" to the risk determination approach of the State Construction General Permit (CGP). The CGP determines risk level based on project specific sediment risk and receiving water risk. Additional inspection is required for projects within the Areas of Special Biological Significance (ASBS) watershed. NOTE: The construction priority does NOT change construction BMP requirements that apply to projects; rather, it determines the frequency of inspections that will be conducted by city staff.				
(Complete	PART B and continued to Section 2			
1	ı. 🔲	ASBS			
		a. Projects located in the ASBS watershed.			
2	2. 🗆	High Priority			
		 a. Projects 1 acre or more determined to be Risk Level 2 or Risk Level 3 per the Cons General Permit and not located in the ASBS watershed. 			
		 b. Projects 1 acre or more determined to be LUP Type 2 or LUP Type 3 per the Cons General Permit and not located in the ASBS watershed. 	truction		
3	s. 🔲	Medium Priority			
		a. Projects 1 acre or more but not subject to an ASBS or high priority designation.			
		 b. Projects determined to be Risk Level 1 or LUP Type 1 per the Construction General not located in the ASBS watershed. 	al Permit and		
4	ı. 🗵	Low Priority			
	 a. Projects requiring a Water Pollution Control Plan but not subject to ASBS, high, or medium priority designation. 				
	SECTION	2. Permanent Storm Water BMP Requirements.			
	Additional	information for determining the requirements is found in the <u>Storm Water Standards N</u>	<u>/lanual</u> .		
PART C: Determine if Not Subject to Permanent Storm Water Requirements. Projects that are considered maintenance, or otherwise not categorized as "new development projects" or "redevelopment projects" according to the Storm Water Standards Manual are not subject to Permanent Storm Water BMPs.					
If "yes" is checked for any number in Part C, proceed to Part F and check "Not Subject to Permanent Storm Water BMP Requirements". If "no" is checked for all of the numbers in Part C continue to Part D.					
1	. Does existir	the project only include interior remodels and/or is the project entirely within an ng enclosed structure and does not have the potential to contact storm water?	☐ Yes ☒ No		
2	2. Does creati	the project only include the construction of overhead or underground utilities without ng new impervious surfaces?	☐ Yes ☒ No		
(3)	roof c lots o	the project fall under routine maintenance? Examples include, but are not limited to: r exterior structure surface replacement, resurfacing or reconfiguring surface parking existing roadways without expanding the impervious footprint, and routine ement of damaged pavement (grinding, overlay, and pothole repair).	□Yes ☒No		

City of San Diego • Development Services • Storm Water Requirements Applicability Checklist Page 3 of 4			
PART D: PDP Exempt Requirements.			
PD	P Exempt projects are required to implement site design and source control BMP	s.	
	"yes" was checked for any questions in Part D, continue to Part F and check the bo DP Exempt."	ox labeled	
lf'	'no" was checked for all questions in Part D, continue to Part E.		
1.	Does the project ONLY include new or retrofit sidewalks, bicycle lanes, or trails that:		
	 Are designed and constructed to direct storm water runoff to adjacent vegetated area non-erodible permeable areas? Or; 	is, or other	
	 Are designed and constructed to be hydraulically disconnected from paved streets and Are designed and constructed with permeable pavements or surfaces in accordance we Green Streets guidance in the City's Storm Water Standards manual? 	-	
	☐ Yes; PDP exempt requirements apply ☐ No; next question		
2.	Does the project ONLY include retrofitting or redeveloping existing paved alleys, streets or road and constructed in accordance with the Green Streets guidance in the <u>City's Storm Water Stand</u>	ds designed dards Manual?	
	Yes; PDP exempt requirements apply No; project not exempt.		
PART E: Determine if Project is a Priority Development Project (PDP). Projects that match one of the definitions below are subject to additional requirements including preparation of a Storm Water Quality Management Plan (SWQMP). If "yes" is checked for any number in PART E, continue to PART F and check the box labeled "Priority Development Project". If "no" is checked for every number in PART E, continue to PART F and check the box labeled "Standard Development Project".			
1.	New Development that creates 10,000 square feet or more of impervious surfaces collectively over the project site. This includes commercial, industrial, residential, mixed-use, and public development projects on public or private land.	⊠Yes □No	
2.	Redevelopment project that creates and/or replaces 5,000 square feet or more of impervious surfaces on an existing site of 10,000 square feet or more of impervious surfaces. This includes commercial, industrial, residential, mixed-use, and public development projects on public or private land.	□Yes ☒No	
3.	New development or redevelopment of a restaurant. Facilities that sell prepared foods and drinks for consumption, including stationary lunch counters and refreshment stands sellin prepared foods and drinks for immediate consumption (SIC 5812), and where the land development creates and/or replace 5,000 square feet or more of impervious surface.	g □Yes 図No	
4.	New development or redevelopment on a hillside. The project creates and/or replaces 5,000 square feet or more of impervious surface (collectively over the project site) and where the development will grade on any natural slope that is twenty-five percent or greater.	□Yes ☒No	
5.	New development or redevelopment of a parking lot that creates and/or replaces 5,000 square feet or more of impervious surface (collectively over the project site).	XYes □No	
6.	New development or redevelopment of streets, roads, highways, freeways, and driveways. The project creates and/or replaces 5,000 square feet or more of impervious surface (collectively over the project site).	□Yes ⊠No	

Pag	ge 4 of 4 City of San Diego • Development Services • Storm Water Requirements Applicability Chec	klist
7.	New development or redevelopment discharging directly to an Environmentally Sensitive Area. The project creates and/or replaces 2,500 square feet of impervious surface (collectively over project site), and discharges directly to an Environmentally Sensitive Area (ESA). "Discharging directly to" includes flow that is conveyed overland a distance of 200 feet or less from the project to the ESA, or conveyed in a pipe or open channel any distance as an isolated flow from the project to the ESA (i.e. not commingled with flows from adjacent lands).	□Yes ☒No
8.	New development or redevelopment projects of a retail gasoline outlet (RGO) that create and/or replaces 5,000 square feet of impervious surface. The development project meets the following criteria: (a) 5,000 square feet or more or (b) has a projected Average Daily Traffic (ADT) of 100 or more vehicles per day.	Yes 🗷 No
9.	New development or redevelopment projects of an automotive repair shops that creates and/or replaces 5,000 square feet or more of impervious surfaces. Development projects categorized in any one of Standard Industrial Classification (SIC) codes 5013, 5014, 5541, 7532-7534, or 7536-7539.	Yes X No
10.	Other Pollutant Generating Project. The project is not covered in the categories above, results in the disturbance of one or more acres of land and is expected to generate pollutants post construction, such as fertilizers and pesticides. This does not include projects creating less than 5,000 sf of impervious surface and where added landscaping does not require regular use of pesticides and fertilizers, such as slope stabilization using native plants. Calculation of the square footage of impervious surface need not include linear pathways that are for infrequivehicle use, such as emergency maintenance access or bicycle pedestrian use, if they are built with pervious surfaces of if they sheet flow to surrounding pervious surfaces.	
PA	RT F: Select the appropriate category based on the outcomes of PART C through P	ART E.
1.	The project is NOT SUBJECT TO PERMANENT STORM WATER REQUIREMENTS .	
2.	The project is a STANDARD DEVELOPMENT PROJECT . Site design and source control BMP requirements apply. See the <u>Storm Water Standards Manual</u> for guidance.	
3.	The project is PDP EXEMPT . Site design and source control BMP requirements apply. See the <u>Storm Water Standards Manual</u> for guidance.	
4.	The project is a PRIORITY DEVELOPMENT PROJECT . Site design, source control, and structural pollutant control BMP requirements apply. See the <u>Storm Water Standards Manual</u> for guidance on determining if project requires a hydromodification plan management	×
	= 5%c	
	RENATO PAIVA EXECUTIVE DIRECTOR Title Title	9
Na		
<	DIET 1929/18	
Sig	nature Date	

Applicability of Permanent, Post-Construction Form I-1 Storm Water BMP Requirements (Storm Water Intake Form for all Development Permit Applications) Project Identification Project Name: Access Youth Academy Permit Application Number: 572129 Date: 10/31/17 Determination of Requirements The purpose of this form is to identify permanent, post-construction requirements that apply to the project. This form serves as a short <u>summary</u> of applicable requirements, in some cases referencing separate forms that will serve as the backup for the determination of requirements. Answer each step below, starting with Step 1 and progressing through each step until reaching "Stop". Refer to Part 1 of Storm Water Standards sections and/or separate forms referenced in each step below. Answer Progression Step 1: Is the project a "development project"? Go to Step 2. Yes See Section 1.3 of the BMP Design Manual (Part 1 of Storm Water Standards) for guidance. Permanent BMP requirements do not O No apply. No SWQMP will be required. Provide discussion below. Discussion / justification if the project is <u>not</u> a "development project" (e.g., the project includes <u>only</u> interior remodels within an existing building): Click or tap here to enter text. Step 2: Is the project a Standard Project, Priority Stop. 0 Development Project (PDP), or exception to PDP Standard Project requirements apply. Standard definitions? Project To answer this item, see Section 1.4 of the BMP PDP requirements apply, including ⊙. Design Manual (Part 1 of Storm Water Standards) PDP SWQMP. in its entirety for guidance, AND complete Storm PDP Go to Step 3. Water Requirements Applicability Checklist. Stop. 0 Standard Project requirements apply. PDP Provide discussion and list any Exempt additional requirements below. Discussion / justification, and additional requirements for exceptions to PDP definitions, if applicable: Click or tap here to enter text.

	-1 Page 2	
Step	Answer	Progression
Step 3. Is the project subject to earlier PDP requirements due to a prior lawful approval?		Consult the City Engineer to determine requirements.
See Section 1.10 of the BMP Design Manual (Part 1	O Yes	Provide discussion and identify
of Storm Water Standards) for guidance.		requirements below.
		Go to Step 4.
	_	BMP Design Manual PDP
	⊙ No	requirements apply.
Discussion / justification of prior lawful approval, and	1:1 .:6	Go to Step 4.
approval does not apply): Click or tap here to enter text.	7 1	
Step 4. Do hydromodification control requirements		PDP structural BMPs required for
apply?		pollutant control (Chapter 5) ar
See Section 1.6 of the BMP Design Manual (Part 1	Yes	hydromodification control (Chapt
of Storm Water Standards) for guidance.		6).
		Go to Step 5. Stop.
		PDP structural BMPs required for
	O No	pollutant control (Chapter 5) only. Provide brief discussion of exemptio to hydromodification control below.
Discussion / justification if hydromodification contro [Click or tap here to enter text.]	ricquirements	
Step 5. Does protection of critical coarse sediment yield areas apply? See Section 6.2 of the BMP Design Manual (Part 1 of Storm Water Standards) for guidance.	O Yes	Management measures required for protection of critical coarse sediment yield areas (Chapter 6.2). Stop.
	⊙ No	Management measures not required for protection of critical coarse sediment yield areas. Provide brief discussion below. Stop.
Discussion / justification if protection of critical coars. There are no PCCSYA areas within the project be the nearest PCCSYA relative to the project site.		

Site Information Checklist For PDPs Project Summary Information Form I-3B	
Project Sun	hmary Information
Project Name	[Access Youth Academy]
Project Address	[704 Euclid Avenue, San Diego, CA 92114]
Assessor's Parcel Number(s) (APN(s))	[548-010-13]
Permit Application Number	572129
	Select One:
	O San Dieguito River
	O Penasquitos
Project Watershed	O Mission Bay
	· ·
	O San Diego River
	O Tijuana River
Hydrologic subarea name with Numeric Identifier up to two decimal places (9XX.XX)	[908.22, Chollas]
Project Area (total area of Assessor's Parcel(s) associated with the project or total area of the right-of-way)	0.9 Acres (39,204 Square Feet)
Area to be disturbed by the project (Project Footprint)	[0.9] Acres (39,204 Square Feet)
Project Proposed Impervious Area	[0.7] Acres (30,492 Square Feet)
(subset of Project Footprint)	[0.1] refes (50,772] Square Peet)
Project Proposed Pervious Area	0.2 Acres (8,712 Square Feet)
(subset of Project Footprint)	
Note: Proposed Impervious Area + Proposed Perv This may be less than the Project Area.	nous Area = Area to be Disturbed by the Project.
The proposed increase or decrease in impervious area in the proposed condition as compared to the pre-project condition.	[+78] %

Form I-3B Page 2 of 11
Description of Existing Site Condition and Drainage Patterns
Current Status of the Site (select all that apply): Existing development Previously graded but not built out Agricultural or other non-impervious use Vacant, undeveloped/natural Description / Additional Information: The existing site has been previously mass graded.
Existing Land Cover Includes (select all that apply): Vegetative Cover
Non-Vegetated Pervious Areas
The existing land cover includes a recreational sports field and a small parking lot.
Underlying Soil belongs to Hydrologic Soil Group (select all that apply):
□ NRCS Type A □ NRCS Type B □ NRCS Type C
NRCS Type D Approximate Depth to Groundwater (GW):
O GW Depth < 5 feet
O 5 feet < GW Depth < 10 feet
O 10 feet < GW Depth < 20 feet
⊙ GW Depth > 20 feet
Existing Natural Hydrologic Features (select all that apply): □ Watercourses □ Seeps □ Springs □ Wetlands □ None Description / Additional Information:

Form I-3B Page 3 of 11

Description of Existing Site Topography and Drainage:

How is storm water runoff conveyed from the site? At a minimum, this description should answer:

- 1. Whether existing drainage conveyance is natural or urban;
- 2. If runoff from offsite is conveyed through the site? If yes, quantification of all offsite drainage areas, design flows, and locations where offsite flows enter the project site and summarize how such flows are conveyed through the site;
- 3. Provide details regarding existing project site drainage conveyance network, including storm drains, concrete channels, swales, detention facilities, storm water treatment facilities, and natural and constructed channels;
- 4. Identify all discharge locations from the existing project along with a summary of the conveyance system size and capacity for each of the discharge locations. Provide summary of the pre-project drainage areas and design flows to each of the existing runoff discharge locations.

Description / Additional Information:

The project is defined by two (2) drainage basins. One of these drainage basins is located in the western portion of the project site (Basin 1) and drains in a south-easterly direction to an existing catch basin at the southeast corner of the project site which outlets to Chollas Creek on the opposite side of Guymon Street from the project site (on the southern project boundary). The other drainage basin (Basin 2) conveys runoff southeasterly towards the street gutters on Euclid Avenue, which then conveys the runoff to the same existing catch basin on the southeast corner of the project site. The existing channel that the catch basin discharges into extends all the way to the San Diego Bay Shoreline in the vicinity of Norman Scott Road via Chollas Creek. Refer to the report titled, "Drainage Study for Access Youth Academy," dated August 23, 2017 (or any revision thereof) for more information regarding drainage patterns.

	$\mathbf{I} = \mathbf{O}(\mathbf{I})$	\mathbf{D}	- (11
HOrm	I _ から、	Page 4	OIII
Form 1	$\mathbf{L}^{-} \mathcal{J} \mathcal{D}^{-}$	1 agc T	

Description of Proposed Site Development and Drainage Patterns

Project Description / Proposed Land Use and/or Activities:

The proposed project will include a new building approximately 16,000ft² in size, a new parking lot adjacent to the building, an outdoor events area and on-site drainage system improvements. Drainage patterns will remain similar to the existing condition. For more information regarding the post-project drainage patterns, refer to the report titled, "Drainage Study for Access Youth Academy," dated August 23, 2017 (or any revision thereof).

List/describe proposed impervious features of the project (e.g., buildings, roadways, parking lots, courtyards, athletic courts, other impervious features):

Impervious features will include a building and a parking lot adjacent to the building.

List/describe proposed pervious features of the project (e.g., landscape areas):

Proposed pervious features include landscape areas.

Does the project include grading and changes to site topography?

Yes

O No

Description / Additional Information:

The project includes grading in order to make the project feasible. Drainage patterns will remain similar to pre-project conditions. Overall, the site will discharge in the same location as in the existing condition.

Form 1-3D Page 3 01 11
Does the project include changes to site drainage (e.g., installation of new storm water conveyance systems)? • Yes
O No
If yes, provide details regarding the proposed project site drainage conveyance network, including storm drains, concrete channels, swales, detention facilities, storm water treatment facilities, natural and constructed channels, and the method for conveying offsite flows through or around the proposed project site. Identify all discharge locations from the proposed project site along with a summary of the conveyance system size and capacity for each of the discharge locations. Provide a summary of pre and post-project drainage areas and design flows to each of the runoff discharge locations. Reference the drainage study for detailed calculations.
Description / Additional Information: [An on-site storm drain system is being proposed in order to convey storm water runoff from the project into one of the two (2) proposed permanent structural BMPs prior to discharging into the project's Point of Compliance (POC). The POC is a catch basin located on the south-eastern corner of the project boundary and discharges into Chollas Creek via an existing 18-inch RCP. More information regarding the proposed storm water conveyance systems is provided within the project's drainage study.]

Form I-3B Page 6 of 11
Identify whether any of the following features, activities, and/or pollutant source areas will be present (select
all that apply):
On-site storm drain inlets
☐ Interior floor drains and elevator shaft sump pumps ☐ Interior parking garages
□ Need for future indoor & structural pest control
☐ Landscape/Outdoor Pesticide Use
Pools, spas, ponds, decorative fountains, and other water features
□ Food service
Refuse areas
☐ Industrial processes
Outdoor storage of equipment or materials
□ Vehicle and Equipment Cleaning □ Vehicle (Feyning and Pageir and Maintenance)
☐ Vehicle/Equipment Repair and Maintenance ☐ Fuel Dispensing Areas
□ Loading Docks
☐ Fire Sprinkler Test Water
Miscellaneous Drain or Wash Water
☐ Plazas, sidewalks, and parking lots
☐ Large Trash Generating Facilities
Animal Facilities
Plant Nurseries and Garden Centers
☐ Automotive-related Uses
Description / Additional Information: [Click or tap here to enter text.]

Form I-3B Page 7 of 11

Identification and Narrative of Receiving Water

Narrative describing flow path from discharge location(s), through urban storm conveyance system, to receiving creeks, rivers, and lagoons and ultimate discharge location to Pacific Ocean (or bay, lagoon, lake or reservoir, as applicable)

The project has one (1) discharge point of compliance (POC): POC 1: Existing catch basin located at the southeast corner of the project site. Storm water runoff from POC 1 is discharged into an existing engineered channel via an existing 18-inch RCP. Storm water from the project is ultimately discharged into San Diego Bay via Chollas Creek.

Provide a summary of all beneficial uses of receiving waters downstream of the project discharge locations. Chollas Creek has the following beneficial uses associated with it: REC1, REC2, WARM and WILD.

Identify all ASBS (areas of special biological significance) receiving waters downstream of the project discharge locations.

No ASBS receiving waters exist downstream of the project discharge locations.

Provide distance from project outfall location to impaired or sensitive receiving waters.

The distance from the project outfall to the San Diego Bay is approximately 3 miles. San Diego Bay is classified as an Environmentally Sensitive Area.

Summarize information regarding the proximity of the permanent, post-construction storm water BMPs to the City's Multi-Habitat Planning Area and environmentally sensitive lands $\left|N/A\right|$

Form I-3B Page 8 of 11

Identification of Receiving Water Pollutants of Concern

List any 303(d) impaired water bodies within the path of storm water from the project site to the Pacific Ocean (or bay, lagoon, lake or reservoir, as applicable), identify the pollutant(s)/stressor(s) causing impairment, and identify any TMDLs and/or Highest Priority Pollutants from the WQIP for the impaired water bodies:

303(d) Impaired Water Body	Pollutant(s)/Stressor(s)	TMDLs/ WQIP Highest Priority Pollutant	
Chollas Creek	Copper, Diazinon, Indicator Bacteria, Lead, Phosphorus, Total Nitrogen, Trash, Zinc	Expected TMDL completion dates vary from 2019-2021	
	Click or tap here to enter text.	Click or tap here to enter text.	
Click or tap here to enter text.	Click or tap here to enter text.	Click or tap here to enter text.	
Click or tap here to enter text.	Click or tap here to enter text.	nter text. Click or tap here to enter text.	
Click or tap here to enter text.	Click or tap here to enter text.	Click or tap here to enter text.	
Click or tap here to enter text.	Click or tap here to enter text.	Click or tap here to enter text.	

Identification of Project Site Pollutants*

Identify pollutants anticipated from the project site based on all proposed use(s) of the site (see BMP Design Manual (Part 1 of Storm Water Standards) Appendix B.6):

Pollutant	Not Applicable to the Project Site	Anticipated from the Project Site	Also a Receiving Water Pollutant of Concern
Sediment	•	0	0
Nutrients	•	0	0
Heavy Metals	•	0	0
Organic Compounds	•	0	0
Trash & Debris	•	0	0
Oxygen Demanding Substances	•	0	0
Oil & Grease	•	0	0
Bacteria & Viruses	•	0	0
Pesticides	•	0	0

^{*}Identification of project site pollutants is only required if flow-thru treatment BMPs are implemented onsite in lieu of retention or biofiltration BMPs (note the project must also participate in an alternative compliance program unless prior lawful approval to meet earlier PDP requirements is demonstrated)

Form I-3B Page 9 of 11
Hydromodification Management Requirements
Do hydromodification management requirements apply (see Section 1.6 of the BMP Design Manual)? Yes, hydromodification management flow control structural BMPs required.
O No, the project will discharge runoff directly to existing underground storm drains discharging directly to water storage reservoirs, lakes, enclosed embayments, or the Pacific Ocean.
No, the project will discharge runoff directly to conveyance channels whose bed and bank are concrete- lined all the way from the point of discharge to water storage reservoirs, lakes, enclosed embayments, or the Pacific Ocean.
O No, the project will discharge runoff directly to an area identified as appropriate for an exemption by the WMAA for the watershed in which the project resides.
Description / Additional Information (to be provided if a 'No' answer has been selected above):
Critical Coarse Sediment Yield Areas* *This Section only required if hydromodification management requirements apply
Based on Section 6.2 and Appendix H does CCSYA exist on the project footprint or in the upstream area draining through the project footprint? Yes No, No critical coarse sediment yield areas to be protected based on WMAA maps
Discussion / Additional Information: Refer to Attachment 2 for an exhibit showing the nearest PCCSYA relative to the project.

Form I-3B Page 10 of 11

Flow Control for Post-Project Runoff*

*This Section only required if hydromodification management requirements apply
List and describe point(s) of compliance (POCs) for flow control for hydromodification management (see
Section 6.3.1). For each POC, provide a POC identification name or number correlating to the project's HMP
Exhibit and a receiving channel identification name or number correlating to the project's HMP Exhibit.
The project has one (1) discharge point of compliance (POC): POC 1: Existing catch basin located at the
southeast corner of the project site. Storm water runoff from POC 1 is discharged into an existing engineered
channel via an existing 18-inch RCP. Storm water from the project is ultimately discharged into San Diego
Bay via Chollas Creek. HMP is required for runoff discharged to POC 1.
Has a geomorphic assessment been performed for the receiving channel(s)?
No, the low flow threshold is 0.1Q2 (default low flow threshold)
Yes, the result is the low flow threshold is 0.1Q2
Yes, the result is the low flow threshold is 0.3Q2
• Yes, the result is the low flow threshold is 0.5Q2
If a geomorphic assessment has been performed, provide title, date, and preparer:
A Geomorphic Channel Assessment has been prepared and is provided as Attachment 2B.
Discussion / Additional Information: (optional)
N/A

Form I-3B Page 11 of 11
Other Site Requirements and Constraints
When applicable, list other site requirements or constraints that will influence storm water management design, such as zoning requirements including setbacks and open space, or local codes governing minimum street width, sidewalk construction, allowable pavement types, and drainage requirements. N/A
Optional Additional Information or Continuation of Previous Sections As Needed
This space provided for additional information or continuation of information from previous sections as needed. $\left N/A \right $

Project Name:	Access Youth Academy
THIS PAG	E INTENTIONALLY LEFT BLANK FOR DOUBLE-SIDED PRINTING

Source Control BMP Checklist Form I-4 for All Development Projects Source Control BMPs All development projects must implement source control BMPs SC-1 through SC-6 where applicable and feasible. See Chapter 4 and Appendix E of the BMP Design Manual (Part 1 of the Storm Water Standards) for information to implement source control BMPs shown in this checklist. Answer each category below pursuant to the following. "Yes" means the project will implement the source control BMP as described in Chapter 4 and/or Appendix E of the BMP Design Manual. Discussion / justification is not required. "No" means the BMP is applicable to the project but it is not feasible to implement. Discussion / justification must be provided. "N/A" means the BMP is not applicable at the project site because the project does not include the feature that is addressed by the BMP (e.g., the project has no outdoor materials storage areas). Discussion / justification may be provided. Source Control Requirement Applied? SC-1 Prevention of Illicit Discharges into the MS4 O Yes ● N/A O No Discussion / justification if SC-1 not implemented: Click or tap here to enter text. SC-2 Storm Drain Stenciling or Signage ONo Yes $\mathbb{O}_{N/A}$ Discussion / justification if SC-2 not implemented: Click or tap here to enter text. SC-3 Protect Outdoor Materials Storage Areas from Rainfall, Run-On, O Yes O No ● N/A Runoff, and Wind Dispersal Discussion / justification if SC-3 not implemented: Click or tap here to enter text. SC-4 Protect Materials Stored in Outdoor Work Areas from Rainfall, Run-O Yes O No ● N/A On, Runoff, and Wind Dispersal

Discussion / justification if SC-4 not implemented:

Click or tap here to enter text.

SC-5 Protect Trash Storage Areas from Rainfall, Run-On, Runoff, and Wind Dispersal

Discussion / justification if SC-5 not implemented:

Click or tap here to enter text.

Form I-4 Page 2 of 2			
Source Control Requirement		Applied	?
SC-6 Additional BMPs Based on Potential Sources of Runoff Pollutants (must answer for each source listed below)			
On-site storm drain inlets	• Yes	ONo	ON/A
Interior floor drains and elevator shaft sump pumps	O Yes	ONo	⊙ N/A
Interior parking garages	O Yes	ONo	⊙N/A
Need for future indoor & structural pest control	O Yes	ONo	⊙ N/A
Landscape/Outdoor Pesticide Use	O Yes	ONo	⊙ N/A
Pools, spas, ponds, decorative fountains, and other water features	O Yes	ONo	⊙N/A
Food service	O Yes	ONo	⊙ N/A
Refuse areas	O Yes	ONo	⊙ N/A
Industrial processes	O Yes	ONo	⊙ N/A
Outdoor storage of equipment or materials	O Yes	ONo	⊙ N/A
Vehicle/Equipment Repair and Maintenance	O Yes	ONo	⊙N/A
Fuel Dispensing Areas	O Yes	ONo	⊙ N/A
Loading Docks	O Yes	ONo	⊙N/A
Fire Sprinkler Test Water	O Yes	ONo	⊙ N/A
Miscellaneous Drain or Wash Water	O Yes	ONo	⊙ N/A
Plazas, sidewalks, and parking lots	Yes	ONo	ON/A
SC-6A: Large Trash Generating Facilities	O Yes	ONo	⊙ N/A
SC-6B: Animal Facilities	O Yes	ONo	⊙ N/A
SC-6C: Plant Nurseries and Garden Centers	O Yes	ONo	⊙N/A
SC-6D: Automotive-related Uses	O Yes	ONo	⊙ N/A
Discussion / justification if SC-6 not implemented. Clearly identify which discussed. Justification must be provided for all "No" answers shown above. Click or tap here to enter text.	sources of	runoff po	ollutants are

Site Design BMP Checklist for All Development Projects	1	Form I-5	
• /			
Site Design BMPs All development projects must implement site design BMPs SD 1 through	oh SD 8 xx	here appli	cable and
All development projects must implement site design BMPs SD-1 through SD-8 where applicable and feasible. See Chapter 4 and Appendix E of the BMP Design Manual (Part 1 of Storm Water Standards) for information to implement site design BMPs shown in this checklist.			
 Answer each category below pursuant to the following. "Yes" means the project will implement the site design BMP as described in Chapter 4 and/or Appendix E of the BMP Design Manual. Discussion / justification is not required. "No" means the BMP is applicable to the project but it is not feasible to implement. Discussion / justification must be provided. "N/A" means the BMP is not applicable at the project site because the project does not include the feature that is addressed by the BMP (e.g., the project site has no existing natural areas to conserve). Discussion / justification may be provided. 			
A site map with implemented site design BMPs must be included at the end of	f this checkl		
Site Design Requirement		Applied?	
SD-1 Maintain Natural Drainage Pathways and Hydrologic Features Discussion / justification if SD-1 not implemented:	Yes	O No	ON/A
1-1 Are existing natural drainage pathways and hydrologic features mapped on the site map?	O Yes	ONo	⊙ N/A
1-2 Are street trees implemented? If yes, are they shown on the site map?	O Yes	ONo	⊙N/A
1-3 Implemented street trees meet the design criteria in SD-1 Fact Sheet (e.g. soil volume, maximum credit, etc.)?	OYes	ONo	⊙ N/A
1-4 Is street tree credit volume calculated using Appendix B.2.2.1 and SD-1 Fact Sheet in Appendix E?	OYes	ONo	⊙ N/A
SD-2 Have natural areas, soils and vegetation been conserved?	O Yes	ONo	⊙N/A
Discussion / justification if SD-2 not implemented: Click or tap here to enter text.			

Form I-5 Page 2 of 4			
Site Design Requirement		Applied?	
SD-3 Minimize Impervious Area	O Yes	ONo	⊙N/A
Discussion / justification if SD-3 not implemented: [Click or tap here to enter text.]			
SD-4 Minimize Soil Compaction	OYes	ONo	⊙N/A
Discussion / justification if SD-4 not implemented: Click or tap here to enter text.			
SD-5 Impervious Area Dispersion	O Yes	ONo	⊙N/A
Discussion / justification if SD-5 not implemented: Click or tap here to enter text.			
5-1 Is the pervious area receiving run on from impervious area identified on the site map?	OYes	⊙ No	
5-2 Does the pervious area satisfy the design criteria in SD-5 Fact Sheet in Appendix E (e.g. maximum slope, minimum length, etc.)	OYes	⊙ No	
5-3 Is impervious area dispersion credit volume calculated using Appendix B.2.1.1 and SD-5 Fact Sheet in Appendix E?	OYes	⊙ No	

Form I-5 Page 3 of 4			
Site Design Requirement		Applied?	
SD-6 Runoff Collection	O Yes	O_{No}	⊙ N/A
Discussion / justification if SD-6 not implemented: [Click or tap here to enter text.]			
6a-1 Are green roofs implemented in accordance with design criteria in SD-6A Fact Sheet? If yes, are they shown on the site map?	OYes	ONo	⊙ N/A
6a-2 Is green roof credit volume calculated using Appendix B.2.1.2 and SD-6A Fact Sheet in Appendix E?	OYes	ONo	⊙ N/A
6b-1 Are permeable pavements implemented in accordance with design criteria in SD-6B Fact Sheet? If yes, are they shown on the site map?	O Yes	ONo	⊙ N/A
6b-2 Is permeable pavement credit volume calculated using Appendix B.2.1.3 and SD-6B Fact Sheet in Appendix E?	O Yes	ONo	⊙ N/A
SD-7 Landscaping with Native or Drought Tolerant Species	Yes	ONo	ON/A
Discussion / justification if SD-7 not implemented: [Click or tap here to enter text.]			
SD-8 Harvesting and Using Precipitation	O Yes	ONo	⊙ N/A
Discussion / justification if SD-8 not implemented: Harvest and Use is currently nor permitted per County of San Diego Heal 8-1 Are rain barrels implemented in accordance with design criteria in	th Codes.	ONo	⊙ N/A
SD-8 Fact Sheet? If yes, are they shown on the site map? 8-2 Is rain barrel credit volume calculated using Appendix B.2.2.2 and	OYes	ONo	⊙N/A
SD-8 Fact Sheet in Appendix E?	103		- 1 N / 11

Form I-5 Page 4 of 4 Insert Site Map with all site design BMPs identified: X 123.5 X 123.6 SD-1 Engineering Company Rick J-13284-FFF 12-07-17 SCALE: 1"=30' SITE MAP ACCESS YOUTH ACADEMY SITE DESIGN BMPS 2017

Summary of PDP Structural BMPs

Form I-6

PDP Structural BMPs

All PDPs must implement structural BMPs for storm water pollutant control (see Chapter 5 of the BMP Design Manual, Part 1 of Storm Water Standards). Selection of PDP structural BMPs for storm water pollutant control must be based on the selection process described in Chapter 5. PDPs subject to hydromodification management requirements must also implement structural BMPs for flow control for hydromodification management (see Chapter 6 of the BMP Design Manual). Both storm water pollutant control and flow control for hydromodification management can be achieved within the same structural BMP(s).

PDP structural BMPs must be verified by the City at the completion of construction. This includes requiring the project owner or project owner's representative to certify construction of the structural BMPs (complete Form DS-563). PDP structural BMPs must be maintained into perpetuity (see Chapter 7 of the BMP Design Manual).

Use this form to provide narrative description of the general strategy for structural BMP implementation at the project site in the box below. Then complete the PDP structural BMP summary information sheet (page 3 of this form) for each structural BMP within the project (copy the BMP summary information page as many times as needed to provide summary information for each individual structural BMP).

Describe the general strategy for structural BMP implementation at the site. This information must describe how the steps for selecting and designing storm water pollutant control BMPs presented in Section 5.1 of the BMP Design Manual were followed, and the results (type of BMPs selected). For projects requiring hydromodification flow control BMPs, indicate whether pollutant control and flow control BMPs are integrated or separate.

Two (2) biofiltration BMPs (BMP 1 and BMP 2) are being proposed as part of this project and were designed to meet water quality and HMP requirements per the City of San Diego's Storm Water Standards Manual (February 2016). As part of the design of these structural BMPs, Step 1 was to delineate drainage management Areas (DMAs) to each BMP. Step 2 was to calculate the DCV/Water Quality Flow Rate for each DMA and design the associated BMPs based on whether the BMP is using a volume-based approach or a flow-based approach. Both proposed biofiltration BMPs (BMP1 and BMP 2) were sized to be volume-based BMPs. The volume-based BMPs were designed to store 0.75xDCV, per Option 2 from Worksheet B.5-1.

Both of the two (2) proposed biofiltration BMPs will be designed to comply with hydromodification management (flow control) requirements per the City of San Diego Storm Water Standards Manual. This will be achieved through the use of a perforated sub-drain at the bottom of both basins and through a series of outlets set above the required design capture volume.

The outlet work design for BMP 1 consists of one (1) mid-flow orifice for HMP control, 3.5" in diameter, on the face of a Type "I" Catch Basin with its flowline set at the ponding depth of the Water Quality volume. The flowline of the Type "I" Catch Basin is set 2.5" above the ponding depth of the HMP volume.

The outlet work design for BMP 2 consists of one (1) 3.0" diameter mid-flow orifice, for HMP control, on the face of a Type "I" Catch Basin with its flowline set at the ponding depth of the Water Quality volume. The flowline of the Type "I" Catch Basin is set at the ponding depth of the HMP volume.

Please refer to Attachment 4 for cross-section schematics and details of each BMP.

(Continue on page 2 as necessary.)

Form I-6 Page 2 of 6
(Page reserved for continuation of description of general strategy for structural BMP implementation at the
site)
(Continued from page 1)
Click or tap here to enter text.

Form I-6 Page 3 of 6		
Structural BMP Summary Information		
Structural BMP ID No. 1		
Construction Plan Sheet No. Click or tap here to ent	er text.	
Type of structural BMP: O Retention by harvest and use (HU-1)		
O Retention by infiltration basin (INF-1)		
O Retention by bioretention (INF-2)		
• , ,		
O Retention by permeable pavement (INF-3)	(DD 1)	
O Partial retention by biofiltration with partial retentio	n (PR-1)	
• Biofiltration (BF-1)		
 Flow-thru treatment control with prior lawful approval to meet earlier PDP requirements (provide (BMP type/description in discussion section below) Flow-thru treatment control included as pre-treatment/forebay for an onsite retention or biofiltration BMP (provide BMP type/description and indicate which onsite retention or biofiltration BMP it serves in discussion section below) 		
O Flow-thru treatment control with alternative comple	iance (provide BMP type/description in discussion	
O Detention pond or vault for hydromodification ma	anagement	
O Other (describe in discussion section below)		
Purpose: O Pollutant control only		
O Hydromodification control only		
⊙ Combined pollutant control and hydromodification	n control	
O Pre-treatment/forebay for another structural BMP		
O Other (describe in discussion section below)		
Who will certify construction of this BMP? Provide name and contact information for the party responsible to sign BMP verification form DS-563	Rick Engineering Company	
Who will be the final owner of this BMP? Access Youth Academy		
Who will maintain this BMP into perpetuity? Access Youth Academy		
What is the funding mechanism for maintenance? Access Youth Academy		

Structural BMP ID No. 1 Construction Plan Sheet No. Click or tap here to enter text Discussion (as needed): BMP 1 is a proposed biofiltration basin BMP that includes HMP sizing.
Discussion (as needed):
Discussion (as needed): BMP 1 is a proposed biofiltration basin BMP that includes HMP sizing.
BMP 1 is a proposed biotiltration basin BMP that includes HMP sizing.

Form I-6 Page 5 of 6									
Structural BMP Summary Information									
Structural BMP ID No. 2									
Construction Plan Sheet No. Click or tap here to enter text.									
Type of structural BMP:									
O Retention by harvest and use (HU-1)									
O Retention by infiltration basin (INF-1)									
O Retention by bioretention (INF-2)									
O Retention by permeable pavement (INF-3)									
O Partial retention by biofiltration with partial retention (PR-1)									
⊙ Biofiltration (BF-1)									
O Flow-thru treatment control with prior lawful approval to meet earlier PDP requirements (provide (BMP type/description in discussion section below)									
Flow-thru treatment control included as pre-treatment/forebay for an onsite retention or biofiltration O BMP (provide BMP type/description and indicate which onsite retention or biofiltration BMP it serves in discussion section below)									
O Flow-thru treatment control with alternative compl	iance (provide BMP type/description in discussion								
O Detention pond or vault for hydromodification management									
O Other (describe in discussion section below)									
Purpose:									
O Pollutant control only									
O Hydromodification control only									
⊙ Combined pollutant control and hydromodification	n control								
O Pre-treatment/forebay for another structural BMP									
O Other (describe in discussion section below)									
Who will certify construction of this BMP? Provide name and contact information for the party responsible to sign BMP verification form DS-563	Rick Engineering Company								
Who will be the final owner of this BMP?	Access Youth Academy								
Who will maintain this BMP into perpetuity?	Access Youth Academy								
What is the funding mechanism for maintenance?	Access Youth Academy								

Form I-6 Page 6 of 6
Structural BMP ID No. [2]
Construction Plan Sheet No. Click or tap here to enter text.
Discussion (as needed): BMP 2 is a proposed biofiltration basin BMP that includes HMP sizing.

Permanent BMP Construction

Self Certification Form

FORM **DS-563**

December 2016

Date Prepared:	Project No./Drawing No.:
April 17, 2018	572129/40306-D
Project Applicant:	Phone:
Project Address:	
704 Euclid Avenue, San Diego, CA 92114	
Project Name:	
Access Youth Academy	
The purpose of this form is to verify that the site im structed in conformance with the approved Sto	provements for the project, identified above, have been con- orm Water Standards Manual documents and drawings.
This form must be completed by the engineer and s Completion and submittal of this form is required for City's Storm Water ordinances and applicable San Dio or release of grading or public improvement bonds of the City of San Diego.	submitted prior to final inspection of the construction permit. for Priority Development Projects in order to comply with the ego Regional MS4 Permit. Final inspection for occupancy and/ may be delayed if this form is not submitted and approved by
Certification:	
structed Low Impact Development (LID) site design BMP's required per the Storm Water Standards Manu with the approved plans and all applicable specificati	sign of the above project, I certify that I have inspected all conny, source control, hydromodification, and treatment control ual; and that said BMP's have been constructed in compliance ons, permits, ordinances and San Diego Regional MS4 Permit. Des not constitute an operation and maintenance verification.
Signature:	-
Date of Signature:	-
Printed Name: Brendan Hastie	_
Title: Associate Principal	_
Phone No. (619) 291-0707	-
	Engineer's Stamp

roject Name:	Access Youth Academy
THIS PAGI	E INTENTIONALLY LEFT BLANK FOR DOUBLE-SIDED PRINTING

ATTACHMENT 1 BACKUP FOR PDP POLLUTANT CONTROL BMPS

This is the cover sheet for Attachment 1.

Project Name:	Access Youth Academy
THIS PAGE	E INTENTIONALLY LEFT BLANK FOR DOUBLE-SIDED PRINTING
11110 11101	

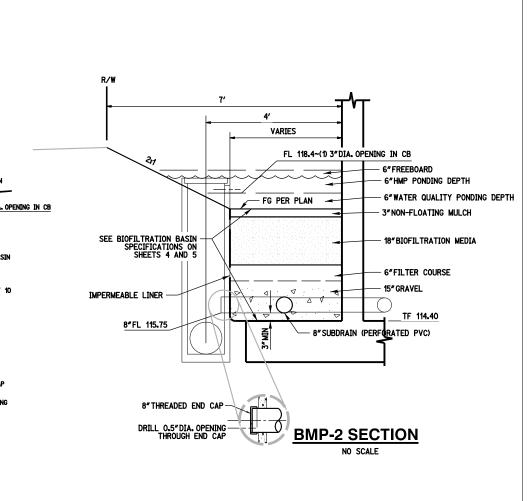
Indicate which Items are Included:

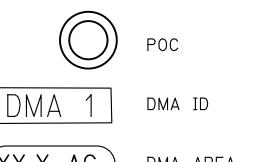
Attachment Sequence	Contents	Checklist
Attachment 1a	DMA Exhibit (Required) See DMA Exhibit Checklist.	□ Included
Attachment 1b	Tabular Summary of DMAs Showing DMA ID matching DMA Exhibit, DMA Area, and DMA Type (Required)* *Provide table in this Attachment OR on DMA Exhibit in Attachment 1a	 Included on DMA Exhibit in Attachment 1a Included as Attachment 1b, separate from DMA Exhibit
Attachment 1c	Form I-7, Harvest and Use Feasibility Screening Checklist (Required unless the entire project will use infiltration BMPs) Refer to Appendix B.3-1 of the BMP Design Manual to complete Form I-7.	 Included Not included because the entire project will use infiltration BMPs
Attachment 1d	Form I-8, Categorization of Infiltration Feasibility Condition (Required unless the project will use harvest and use BMPs) Refer to Appendices C and D of the BMP Design Manual to complete Form I-8.	• Included Not included because the entire project will use harvest and use BMPs
Attachment 1e	Pollutant Control BMP Design Worksheets / Calculations (Required) Refer to Appendices B and E of the BMP Design Manual for structural pollutant control BMP design guidelines and site design credit calculations	⊠ Included

Use this checklist to ensure the required information has been included on the DMA Exhibit:

The DMA Exhibit must identify:

- ☑ Underlying hydrologic soil group
- Approximate depth to groundwater
- ☑ Existing natural hydrologic features (watercourses, seeps, springs, wetlands)
- ☑ Critical coarse sediment yield areas to be protected
- ⊠ Existing topography and impervious areas
- Existing and proposed site drainage network and connections to drainage offsite
- □ Proposed grading
- Proposed impervious features
- Proposed design features and surface treatments used to minimize imperviousness
- Drainage management area (DMA) boundaries, DMA ID numbers, and DMA areas (square footage or acreage), and DMA type (i.e., drains to BMP, self-retaining, or self-mitigating)
- Potential pollutant source areas and corresponding required source controls (see Chapter 4, Appendix E.1, and Form I-3B)
- ☑ Structural BMPs (identify location, type of BMP, and size/detail)


DMA/BMP ID	Area (Acres)	Туре
1	0.6	Biofiltration
2	0.2	Biofiltration

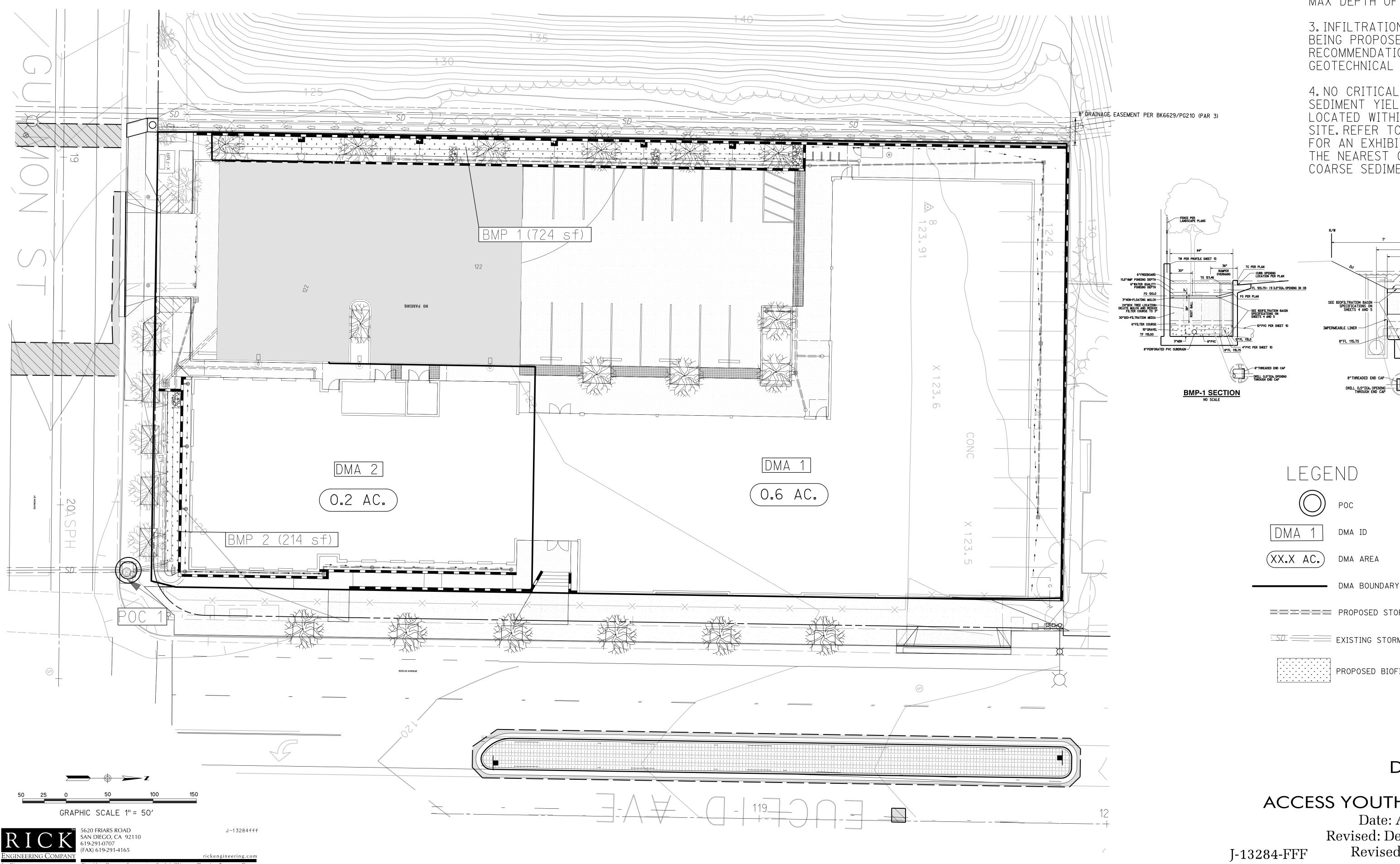

NOTES: 1. UNDERLYING HYDROLOGIC SOIL GROUP IS TYPE D.

2. PER THE PROJECT'S GEOTECHNICAL REPORT, GROUNDWATER WAS NOT ENCOUNTERED, BORINGS WERE DUG DOWN TO A MAX DEPTH OF 20 FT.

3. INFILTRATION BMPS ARE NOT BEING PROPOSED BASED ON RECOMMENDATIONS FROM THE GEOTECHNICAL ENGINEER.

4. NO CRITICAL COARSE SEDIMENT YIELD AREAS ARE LOCATED WITHIN THE PROJECT SITE. REFER TO APPENDIX 2B FOR AN EXHIBIT DISPLAYING THE NEAREST CRITICAL COARSE SEDIMENT YIELD AREA.

DMA AREA


===== PROPOSED STORM DRAIN SYSTEM

EXISTING STORM DRAIN SYSTEM

PROPOSED BIOFILTRATION BMP

DMA EXHIBIT FOR **ACCESS YOUTH ACADEMY**

Date: August 23, 2017 Revised: December 7, 2017 Revised: April 17, 2018

Worksheet B.3-1. Harvest and Use Feasibility Screening Harvest and Use Feasibility Screening Worsksheet B.3-1 1. Is there a demand for harvested water (check all that apply) at the project site that is reliably present during the wet season? Harrest and use is currently not permitted per bunty ☐ Toilet and urinal flushing of San Diego Health Codes, Therefore there is no ☐ Landscape irrigation demand for harvested water. Other: 2. If there is a demand; estimate the anticipated average wet season demand over a period of 36 hours. Guidance for planning level demand calculations for toilet/urinal flushing and landscape irrigation is provided in Section B.3.2. [Provide a summary of calculations here] N/A 3. Calculate the DCV using worksheet B-2.1. [Provide a results here] Orainage Mungement aren (total) = 34, 283 ft Adjusted Runoff Factor = 0.81 24 hr 85th Percentile Precipitation = 0.54 inches DCA= 34,583+45. (0'21/2/5). 0'81=[1520 t+3 3b. Is the 36-hour demand greater than 3a. Is the 36-hour demand greater 3c. Is the 36-hour demand than or equal to the DCV? 0.25DCV but less than the full DCV? less than 0.25DCV? Yes Yes Yes Û IJ Harvest and use appears to be Harvest and use may be feasible. Harvest and use is feasible. Conduct more detailed Conduct more detailed evaluation and considered to be infeasible. evaluation and sizing calculations sizing calculations to determine to confirm that DCV can be used feasibility. Harvest and use may only be at an adequate rate to meet able to be used for a portion of the site, drawdown criteria. or (optionally) the storage may need to be upsized to meet long term capture targets while draining in longer than 36 hours.

Worksheet C.4-1: Categorization of Infiltration Feasibility Condition

Categorization of Infiltration Feasibility Condition Worksheet C.4-1												
Would is	Full Infiltration Feasibility Screening Criteria infiltration of the full design volume be feasible from a physical perences that cannot be reasonably mitigated?	rspective withou	t any undesirable									
Criteria	Screening Question Yes No											
1	Is the estimated reliable infiltration rate below proposed facility locations greater than 0.5 inches per hour? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2 and Appendix D.											
Provide basis: The upper materials present at the site are fill soils consisting of clayey sand. The tested materials are believed to be generally representative of the materials that will be encountered below the proposed storm water BMPs. The tested infiltration rates were 0.0 inch per hour. In our opinion, the tested infiltration rates do not support a reliable infiltration rate of greater than 0.5 inch per hour.												
	ze findings of studies; provide reference to studies, calculations, maps, n of study/data source applicability.	data sources, etc	. Provide narrative									
2	Can infiltration greater than 0.5 inches per hour be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2.											
Provide l	pasis:											
Provide basis: The tested infiltration rates do not support a reliable infiltration of greater than 0.5 inch per hour. Allowing infiltration greater than 0.5 inch per hour will increase the risk of geotechnical hazards including increased surface runoff on the project site and onto adjacent properties, uncontrolled lateral and vertical migration of groundwater beneath adjacent structures and improvements, and uncontrolled lateral and vertical migration of groundwater through permeable bedding material of utilities within the public right-of-way (Euclid Avenue and Guymon Street). SCST does not recommend allowing infiltration greater than 0.5 inch per hour at the site.												
	ze findings of studies; provide reference to studies, calculations, maps, n of study/data source applicability.	data sources, etc	. Provide narrative									

	Worksheet C.4-1 Page 2 of 4								
Criteria	Screening Question	Yes	No						
3	Can infiltration greater than 0.5 inches per hour be allowed without increasing risk of groundwater contamination (shallow water table, storm water pollutants or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.	✓							
Provide ba	sis:								
	ed infiltration rates at the site indicate that the onsite soils do not nan 0.5 inch per hour.	support reliabl	e infiltration of						
	e findings of studies; provide reference to studies, calculations, maps, of study/data source applicability.	lata sources, etc	. Provide narrative						
4	Can infiltration greater than 0.5 inches per hour be allowed without causing potential water balance issues such as change of seasonality of ephemeral streams or increased discharge of contaminated groundwater to surface waters? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.								
Provide ba	sis:								
Summariz	e findings of studies; provide reference to studies, calculations, maps, o	data sources, etc	. Provide narrative						
	of study/data source applicability.	ana sources, etc	. Frovide mariative						
Part 1 Result*	If all answers to rows 1 - 4 are "Yes" a full infiltration design is potentic. The feasibility screening category is Full Infiltration If any answer from row 1-4 is "No", infiltration may be possible to sort would not generally be feasible or desirable to achieve a "full infiltration Proceed to Part 2	ne extent but							

*To be completed using gathered site information and best professional judgment considering the definition of MEP in the MS4 Permit. Additional testing and/or studies may be required by [City Engineer] to substantiate findings.

Worksheet C.4-1 Page 3 of 4 Part 2 - Partial Infiltration vs. No Infiltration Feasibility Screening Criteria Would infiltration of water in any appreciable amount be physically feasible without any negative consequences that cannot be reasonably mitigated? Criteria Screening Question Yes No Do soil and geologic conditions allow for infiltration in any appreciable rate or volume? The response to this Screening 5 Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2 and Appendix D. Provide basis: The upper materials present at the site are fill soils consisting of clayey sand. The tested materials are believed to be generally representative of the materials that will be encountered below the proposed storm water BMPs. The tested infiltration rates were 0.0 inch per hour. In our opinion, the tested infiltration rates do not support a reliable infiltration rate of any appreciable quantity. Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/data source applicability and why it was not feasible to mitigate low infiltration rates. Can Infiltration in any appreciable quantity be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot 6 be mitigated to an acceptable level? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2. Provide basis: In our opinion partial infiltration of less than 0.5 inch per hour should not be allowed without increasing the risk of geotechnical hazards. Lateral migration of subsurface water is anticipated, potentially resulting in moisture issues beneath adjacent structures and improvements and in downslope properties where excessive moisture was not present previously. Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/data source applicability and why it was not feasible to mitigate low infiltration rates.

	Worksheet C.4-1 Page 4 of 4					
Criteria	Screening Question	Yes	No			
7	Can Infiltration in any appreciable quantity be allowed without posing significant risk for groundwater related concerns (shallow water table, storm water pollutants or other factors)? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.					
	nsis: filtration of less than 0.5 inch per hour could be allowed without produced and water related concerns as long as the BMP system is designed					
	e findings of studies; provide reference to studies, calculations, maps, of study/data source applicability and why it was not feasible to mitigate Can infiltration be allowed without violating downstream water					
8	rights ? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.					
	e findings of studies; provide reference to studies, calculations, maps, of study/data source applicability and why it was not feasible to mitigate					
Part 2 Result*	If all answers from row 1-4 are yes then partial infiltration design is p. The feasibility screening category is Partial Infiltration . If any answer from row 5-8 is no, then infiltration of any volume is infeasible within the drainage area. The feasibility screening category is	No Infiltration				

*To be completed using gathered site information and best professional judgment considering the definition of MEP in the MS4 Permit. Additional testing and/or studies may be required by Agency/Jurisdictions to substantiate findings

Access Youth Academy - Pollutant Control BMP Sizing

															Simple Sizing Method for Biofiltration BMPs - Required ¹													
														Target DCV		Partial Retention						BMP Parameters						
BMP ID	ВМР Туре	Drainage Management Area (acres)	Drainage Management Area (ft²)	% Impervious	Impervious Area (ft²)	Pervious Area (ft²)	Impervious Area Type	Pervious Area Type	Runoff Factor for Impervious Area ³		Effective Impervious Area (ft²)	24-hour 85th Percentile Precipitation (inches)	DCV (ft³)	Remaining DCV after Implementing Retention BMPs (ft³) (1)	Infiltration Rate (for Partial Infiltration) ⁵ (2)	Aggragata	Depth of Runoff that can be Infiltrated (in) (4)	Aggregate Pore Space (5)	Required Depth of Gravel Below Underdrain (in) (6)	Assumed Surface area of the Biofiltration BMP (ft²) (7)	Media Retained Pore Space (in/in) (8)	Volume Retained by BMP (ft³) (9)	Remaining DCV (ft ³) (10)	Surface Ponding Depth (ft) (11)	Media Thickness (ft) (12)	Aggregate Storage Above Underdrain (ft) (13)	Media Available Pore Space (14)	Media Filtration rate to be used for sizing ⁸ (in/hr) (15)
1	Biofiltration BMP	0.6	24,136	83%	20,033	4,103	Concrete or Asphalt	Natural (D Soil)	0.9	0.3	19,261	0.54	869	869	0.00	36	0	0.40	3	724	0.1	199	670	0.50	2.75	1.00	0.20	0.8
2	Biofiltration BMP	0.2	10,147	85%	8,625	1,522	Concrete or Asphalt	Natural (D Soil)	0.9	0.3	8,219	0.54	370	370	0.00	36	0	0.40	3	214	0.1	37	332	0.50	1.75	1.00	0.20	2.4

- 1. Values shown in parenthesis (1) designate the row number equivalent to Worksheet B.5-1 "Simple Sizing Method for Biofiltration BMPs" from the 2016 City of San Diego Storm Water Standards (dated January, 2016)
- 2. The required and provided pollutant control volumes are based on the 2013 MS4 permit and the 2016 City of San Diego Storm Water Standards.
- 3. Runoff Factors for pervious and impervious areas were determined from Table B.1-1: "Runoff Factors for Surface Draining to BMPs Pollutant Control BMPs" from the 2016 City of San Diego Storm Water Standards.
- 4. Although some portions of the impervious areas within the site will be composed of Biofiltration BMPs (amended , mulched soils or landscape), Runoff Factors for pervious areas were assumed to be "Natural" (D Soil).
- Using the "Natural" surface designation for the entire pervious area provides a more conservative result.
- 5. Infiltration rate for partial infiltration was assumed to be Zero (0) for bioretention sizing calculations since an impermeable liner will be used.
- CV for Infiltration was calculated using the 2016 City of San Diego's Storm Water Standards: Worksheet B.2-1.
 Worksheet B.4-1 from the 2016 City of San Diego's Storm Water Standards was used to determine the drawdown time of each bioretention basin.
- 8. Media filtration rate to be used for sizing varies based on whether the filtration rate is controlled by the outlet (i.e., low flow orifice) or the media. Typically, 5in/hr should be used if filtration rate is not outlet controlled.
- 9. Geotechnical investigation needs to be performed (i.e. infiltration testing) in order to determine feasibility of infiltration.

Page 1 of 2 $O: \verb|\| 13284 \verb|\| 13284fff| WaterResources \verb|\| WaterQuality \verb|\| 13284fff_Biofil tration.x | Is a superior of the property of the property$

Access Youth Academy - Pollutant Control BMP Sizing

							Simple Siz	zing Method	for Biofiltrati	on BMPs - R	equired ¹															
			Baseline Calculations				Option 1 - Biofilter 1.5xDCV Option 2 - Store 0.75 of remaining DCV in Pores and Ponding				Footprint of the BMP			Provided BMP Parameters							Check: Provided Biofiltration Volume >= Required Storage					
BMP ID	ВМР Тур	Drainage Managemen Area (acres)	Allowable t Routing (hrs) (16)	Depth Filtered during Storm (in) (17)	Depth of Detention Storage (in) (18)	Total Depth Treated (in) (19)	Required Biofiltered Volume (ft³) (20)	Required Footprint (ft²) (21)	Required Storage ² (ft³) (22)	Required Footprint (ft²) (23)	Area Draining to BMP (ft²) (24)	Adjusted Runoff Factor for Drainage Area (25)	BMP Footprint Sizing Factor (26)		Required BMP Footprint (28)	Provided BMP Bottom Footprint (ft ²)	Ponding Surface Area (ft²)	Side Slope (H:V)	Surface Ponding Volume (ft ³)	Subsurface Volume (ft³)	Conveyance (ft)	Freeboard (ft)	Perforated Underdrain Diameter (in)	Total Depth (ft)	Provided Bioretention Volume ² (ft ³)	Adequacy of Provided Biofiltration Volume (ft³)
1	Biofiltration BMP	n 0.60	6	5	17	22	1005	542	502	346	24,136	0.80	0.03	579	579	724	724	0	362	688	0.25	0.25	8	4.75	1,050	ок
2	Biofiltration BMP	n 0.20	6	14	15	29	499	204	249	199	10,147	0.81	0.03	247	247	214	269	2	121	161	0.25	0.25	8	3.75	281	ОК

- 1. Values shown in parenthesis (1) designate the row number equivalent to Worksheet B.5-1 "Simple Sizing Method for Biofiltration BMPs" from the 2016 City of San Diego Storm Water Standards (dated January, 2016)
- 2. The required and provided pollutant control volumes are based on the 2013 MS4 permit and the 2016 City of San Diego Storm Water Standards.
- 3. Runoff Factors for pervious and impervious areas were determined from Table B.1-1: "Runoff Factors for Surface Draining to BMPs Pollutant Control BMPs" from the 2016 City of San Diego Storm Water Standards.
- 4. Although some portions of the impervious areas within the site will be composed of Biofiltration BMPs (amended , mulched soils or landscape), Runoff Factors for pervious areas were assumed to be "Natural" (D Soil).
- Using the "Natural" surface designation for the entire pervious area provides a more conservative result.
- 5. Infiltration rate for partial infiltration was assumed to be Zero (0) for bioretention sizing calculations since an impermeable liner will be used.
- DCV for Infiltration was calculated using the 2016 City of San Diego's Storm Water Standards: Worksheet B.2-1.
 Worksheet B.4-1 from the 2016 City of San Diego's Storm Water Standards was used to determine the drawdown time of each bioretention basin.
- 8. Media filtration rate to be used for sizing varies based on whether the filtration rate is controlled by the outlet (i.e., low flow orifice) or the media. Typically, 5in/hr should be used if filtration rate is not outlet controlled.
- 9. Geotechnical investigation needs to be performed (i.e. infiltration testing) in order to determine feasibility of infiltration.

Worksheet B.5-1: Simple Sizing Method for Biofiltration BMPs

	Simple Sizing Method for Biofiltration BMPs Workshe	et B.5-1 (P	age 1 of 2)	
1	Remaining DCV after implementing retention BMPs	869	cubic- feet	
Pa	rtial Retention			
2	Infiltration rate from Worksheet D.5-1 if partial infiltration is feasible	6.00	in/hr.	
3	Allowable drawdown time for aggregate storage below the underdrain	36	hours	
4	Depth of runoff that can be infiltrated [Line 2 x Line 3]	0	inches	
5	Aggregate pore space	0.40	in/in	
6	Required depth of gravel below the underdrain [Line 4/ Line 5]	3	inches	3" ~
7	Assumed surface area of the biofiltration BMP	724	sq-ft	
8	Media retained pore storage	0.1	in/in	
9	Volume retained by BMP [[Line 4 + (Line 12 x Line 8)]/12] x Line 7	100	cubic-	
	volume retained by bivit [[Enie 4 + (Enie 12 x Enie 6)]/ 12] x Enie 7	199	feet	
10	DCV that requires biofiltration [Line 1 – Line 9]	(7/2	cubic-	
10	Bot that requires biointration [Enter 1 - Enter 7]	670	feet	
BM	IP Parameters			
11	Surface Ponding [6 inch minimum, 12 inch maximum]	6	inches	
12	Media Thickness [18 inches minimum], also add mulch layer thickness to this line for sizing calculations	33	inches	
13	Aggregate Storage above underdrain invert (12 inches typical) – use 0 inches for sizing if the aggregate is not over the entire bottom surface area	12	inches	
14	Freely drained pore storage	0.2	in/in	
15	Media filtration rate to be used for sizing (5 in/hr. with no outlet control; if the filtration rate is controlled by the outlet use the outlet controlled rate which will be less than 5 in/hr.)	0,8	in/hr.	
Bas	eline Calculations			
16	Allowable Routing Time for sizing	6	hours	
17	Depth filtered during storm [Line 15 x Line 16]	2	inches	
18	Depth of Detention Storage [Line 11 + (Line 12 x Line 14) + (Line 13 x Line 5)]	17	inches	
19	Total Depth Treated [Line 17 + Line 18]	22	inches	

Note: Line 7 is used to estimate the amount of volume retained by the BMP. Update assumed surface area in Line 7 until its equivalent to the required biofiltration footprint (either Line 21 or Line 23)

Worksheet B.5-1: Simple Sizing Method for Biofiltration BMPs (continued)

	Simple Sizing Method for Biofiltration BMPs Worksl	neet B.5-1 (2)	Page 2 of
Op	tion 1 – Biofilter 1.5 times the DCV		
20	Required biofiltered volume [1.5 x Line 10]	1005	cubic- feet
21	Required Footprint [Line 20/ Line 19] x 12	548	sq-ft
Op	tion 2 - Store 0.75 of remaining DCV in pores and ponding	99	
22	Required Storage (surface + pores) Volume [0.75 x Line 10]	503	cubic- feet
23	Required Footprint [Line 22/ Line 18] x 12	355	sq-ft
Foo	otprint of the BMP		
24	Area draining to the BMP	24,136	sq-ft
25	Adjusted Runoff Factor for drainage area (Refer to Appendix B.1 and B.2)	0.80	
26	BMP Footprint Sizing Factor (Default 0.03 or an alternative minimum footprint sizing factor from Worksheet B.5-2, Line 11)	0.03	
27	Minimum BMP Footprint [Line 24 x Line 25 x Line 26]	579	sq-ft
28	Footprint of the BMP = Maximum(Minimum(Line 21, Line 23), Line 27)	579	sq-ft
Che	eck for Volume Reduction [Not applicable for No Infiltration Con	dition]	
29	Calculate the fraction of DCV retained in the BMP [Line 9/Line 1]	0.5	unitless
30	Minimum required fraction of DCV retained for partial infiltration condition	0.375	unitless
31	Is the retained DCV \geq 0.375? If the answer is no increase the footprint sizing factor in Line 26 until the answer is yes for this criterion.	□ Yes	□ No

Note:

- 1. Line 7 is used to estimate the amount of volume retained by the BMP. Update assumed surface area in Line 7 until its equivalent to the required biofiltration footprint (either Line 21 or Line 23)
- 2. The DCV fraction of 0.375 is based on a 40% average annual percent capture and a 36-hour drawdown time.
- 3. The increase in footprint for volume reduction can be optimized using the approach presented in Appendix B.5.2. The optimized footprint cannot be smaller than the alternative minimum footprint sizing factor from Worksheet B.5-2.
- 4. If the proposed biofiltration BMP footprint is smaller than the alternative minimum footprint sizing factor from Worksheet B.5-2, but satisfies Option 1 or Option 2 sizing, it is considered a compact biofiltration BMP and may be allowed at the discretion of the City Engineer, if it meets the requirements in Appendix F.

Worksheet B.5-1: Simple Sizing Method for Biofiltration BMPs RMP->

	Simple Sizing Method for Biofiltration BMPs Workshe	et B.5-1 (P	age 1 of 2)
1	Remaining DCV after implementing retention BMPs	370	cubic- feet
Par	rtial Retention		
2	Infiltration rate from Worksheet D.5-1 if partial infiltration is feasible	6,00	in/hr.
3	Allowable drawdown time for aggregate storage below the underdrain	36	hours
4	Depth of runoff that can be infiltrated [Line 2 x Line 3]	0	inches
5	Aggregate pore space	0.40	in/in
6	Required depth of gravel below the underdrain [Line 4/ Line 5]	3	inches
7	Assumed surface area of the biofiltration BMP	214	sq-ft
8	Media retained pore storage	0.1	in/in
9	Volume retained by BMP [[Line 4 + (Line 12 x Line 8)]/12] x Line 7	37	cubic- feet
10	DCV that requires biofiltration [Line 1 – Line 9]	333	cubic- feet
BM	IP Parameters		
11	Surface Ponding [6 inch minimum, 12 inch maximum]	б	inches
12	Media Thickness [18 inches minimum], also add mulch layer thickness to this line for sizing calculations	21	inches
13	Aggregate Storage above underdrain invert (12 inches typical) – use 0 inches for sizing if the aggregate is not over the entire bottom surface area	12	inches
14	Freely drained pore storage	0.2	in/in
15	Media filtration rate to be used for sizing (5 in/hr. with no outlet control; if the filtration rate is controlled by the outlet use the outlet controlled rate which will be less than 5 in/hr.)	2.4	in/hr.
Bas	eline Calculations		
16	Allowable Routing Time for sizing	6	hours
17	Depth filtered during storm [Line 15 x Line 16]	14	inches
18	Depth of Detention Storage [Line 11 + (Line 12 x Line 14) + (Line 13 x Line 5)]	15	inches
19	Total Depth Treated [Line 17 + Line 18]	29	inches
T .	7. 5. 1		L

Note: Line 7 is used to estimate the amount of volume retained by the BMP. Update assumed surface area in Line 7 until its equivalent to the required biofiltration footprint (either Line 21 or Line 23)

Worksheet B.5-1: Simple Sizing Method for Biofiltration BMPs (continued)

	Simple Sizing Method for Biofiltration BMPs Works	heet B.5-1 (2)	Page 2 of
Op	tion 1 – Biofilter 1.5 times the DCV		
20	Required biofiltered volume [1.5 x Line 10]	500	cubic- feet
21	Required Footprint [Line 20/ Line 19] x 12	705	sq-ft
Op	tion 2 - Store 0.75 of remaining DCV in pores and ponding		
22	Required Storage (surface + pores) Volume [0.75 x Line 10]	250	cubic- feet
23	Required Footprint [Line 22/ Line 18] x 12	200	sq-ft
Foo	otprint of the BMP		
24	Area draining to the BMP	10,147	sq-ft
25	Adjusted Runoff Factor for drainage area (Refer to Appendix B.1 and B.2)		
26	BMP Footprint Sizing Factor (Default 0.03 or an alternative minimum footprint sizing factor from Worksheet B.5-2, Line 11)	0.03	
27	Minimum BMP Footprint [Line 24 x Line 25 x Line 26]	247	sq-ft
28	Footprint of the BMP = Maximum(Minimum(Line 21, Line 23), Line 27)	247	sq-ft
Che	eck for Volume Reduction [Not applicable for No Infiltration Co	ndition]	
29	Calculate the fraction of DCV retained in the BMP [Line 9/Line 1]		unitless
30	Minimum required fraction of DCV retained for partial infiltration condition	0.375	unitless
31	Is the retained DCV \geq 0.375? If the answer is no increase the footprint sizing factor in Line 26 until the answer is yes for this criterion.	□Yes	□ No

Note:

- 1. Line 7 is used to estimate the amount of volume retained by the BMP. Update assumed surface area in Line 7 until its equivalent to the required biofiltration footprint (either Line 21 or Line 23)
- 2. The DCV fraction of 0.375 is based on a 40% average annual percent capture and a 36-hour drawdown time.
- 3. The increase in footprint for volume reduction can be optimized using the approach presented in Appendix B.5.2. The optimized footprint cannot be smaller than the alternative minimum footprint sizing factor from Worksheet B.5-2.
- 4. If the proposed biofiltration BMP footprint is smaller than the alternative minimum footprint sizing factor from Worksheet B.5-2, but satisfies Option 1 or Option 2 sizing, it is considered a compact biofiltration BMP and may be allowed at the discretion of the City Engineer, if it meets the requirements in Appendix F.

Project Name: Access Youth Academy

ATTACHMENT 2 BACKUP FOR PDP HYDROMODIFICATION CONTROL MEASURES

This is the cover sheet for Attachment 2.

$\hfill\square$ Mark this box if this	attachment is empty	because the	project is	exempt from	PDP hyo	dromodification
management requirement	ts.					

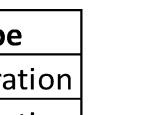
roject Name:	Access Youth Academy
THIS DAG	E INTENTIONALLY LEFT BLANK FOR DOUBLE-SIDED PRINTING
11113 1 110	E INTENTIONALLI LENI BEAUX POR DOUBLE-SIDED I RINTINO

Project Name: Access Youth Academy

Indicate which Items are Included:

Attachment Sequence	Contents	Checklist
Attachment 2a	Hydromodification Management Exhibit (Required)	See Hydromodification Management Exhibit Checklist.
Attachment 2b	Management of Critical Coarse Sediment Yield Areas (WMAA Exhibit is required, additional analyses are optional) See Section 6.2 of the BMP Design Manual.	 ☑ Exhibit showing project drainage boundaries marked on WMAA Critical Coarse Sediment Yield Area Map (Required) Optional analyses for Critical Coarse Sediment Yield Area Determination ☐ 6.2.1 Verification of Geomorphic Landscape Units Onsite ☐ 6.2.2 Downstream Systems Sensitivity to Coarse Sediment ☐ 6.2.3 Optional Additional Analysis of Potential Critical Coarse Sediment Yield Areas Onsite
Attachment 2c	Geomorphic Assessment of Receiving Channels (Optional) See Section 6.3.4 of the BMP Design Manual.	O Not Performed Included Submitted as separate stand-alone document
Attachment 2d	Flow Control Facility Design and Structural BMP Drawdown Calculations (Required) Overflow Design Summary for each structural BMP See Chapter 6 and Appendix G of the BMP Design Manual	Included Submitted as separate stand-alone document
Attachment 2e	Vector Control Plan (Required when structural BMPs will not drain in 96 hours)	 Included Not required because BMPs will drain in less than 96 hours

Project Name: Access Youth Academy


Use this checklist to ensure the required information has been included on the Hydromodification Management Exhibit:

The Hydromodification Management Exhibit must identify:

- ☑ Underlying hydrologic soil group
- Approximate depth to groundwater
- ☑ Existing natural hydrologic features (watercourses, seeps, springs, wetlands)
- ☑ Critical coarse sediment yield areas to be protected
- ⊠ Existing topography
- Existing and proposed site drainage network and connections to drainage offsite
- □ Proposed grading
- ☑ Proposed impervious features
- Proposed design features and surface treatments used to minimize imperviousness
- Point(s) of Compliance (POC) for Hydromodification Management
- Existing and proposed drainage boundary and drainage area to each POC (when necessary, create separate exhibits for pre-development and post-project conditions)
- Structural BMPs for hydromodification management (identify location, type of BMP, and size/detail)

DMA/BMP ID	Area (Acres)	Туре
1	0.6	Biofiltration
2	0.2	Biofiltration

DMA/BMP ID	Area (Acres)	Туре
1	0.6	Biofiltration
2	0.2	Biofiltration

NOTES: 1. UNDERLYING HYDROLOGIC SOIL GROUP IS TYPE D.

2. PER THE PROJECT'S GEOTECHNICAL REPORT, GROUNDWATER WAS NOT ENCOUNTERED, BORINGS WERÉ DUG DOWN TO A MAX DEPTH OF 20 FT.

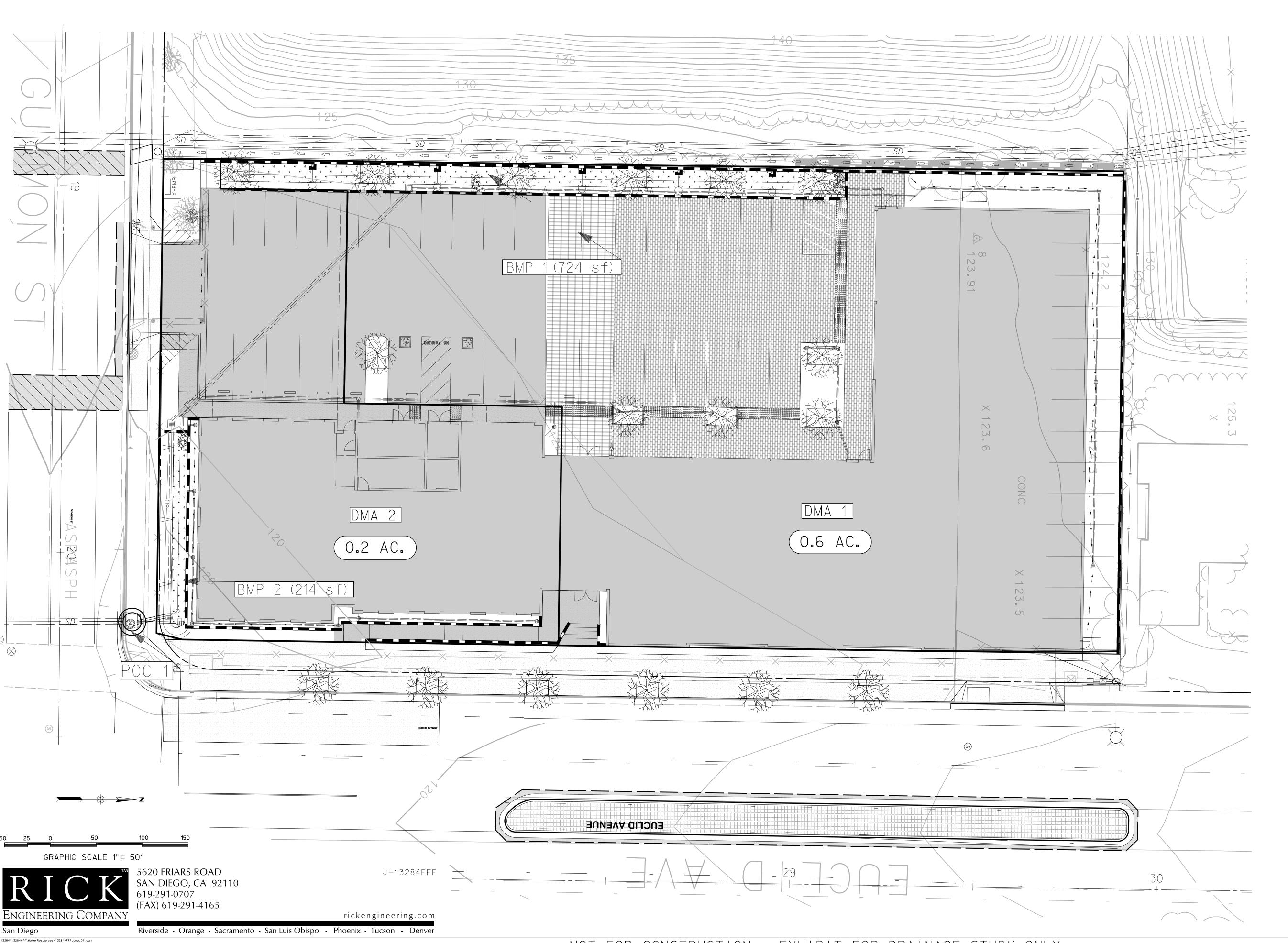
3. INFILTRATION BMPS ARE NOT BEING PROPOSED BASED ON RECOMMENDATIONS FROM THE GEOTECHNICAL ENGINEER.

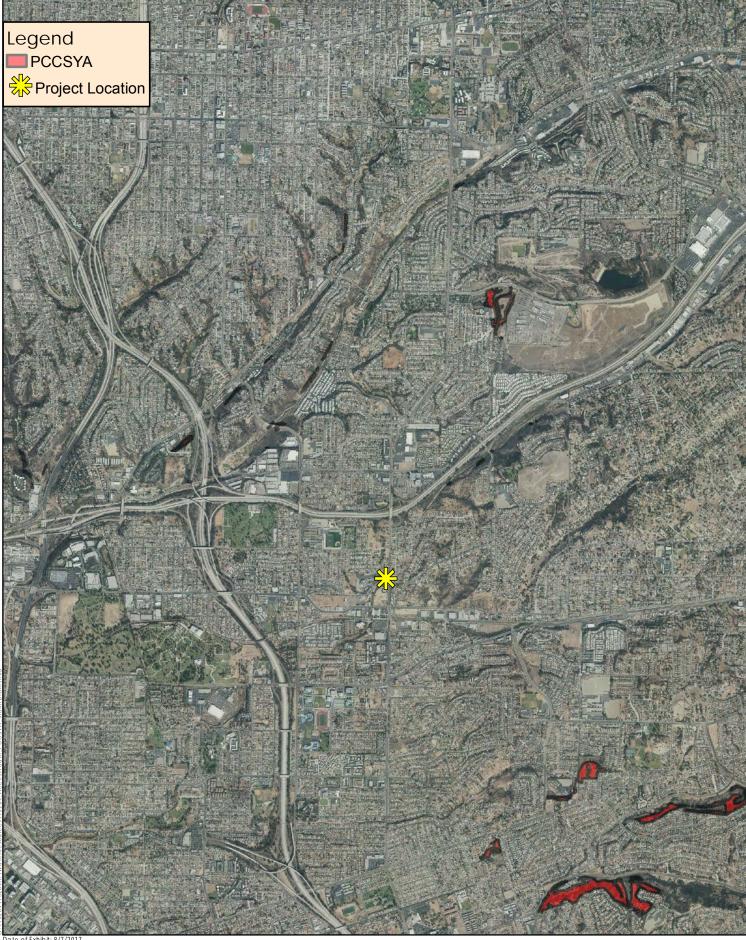
4. NO CRITICAL COARSE SEDIMENT YIELD AREAS ARE LOCATED WITHIN THE PROJECT SITE. REFER TO APPENDIX 2B FOR AN EXHIBIT DISPLAYING THE NEAREST CRITICAL COARSE SEDIMENT YIELD AREA.

DMA ID

(XX.X AC.) DMA AREA

DMA BOUNDARY


===== PROPOSED STORM DRAIN SYSTEM


EXISTING STORM DRAIN SYSTEM

PROPOSED BIOFILTRATION BMP

HYDROMOD EXHIBIT ACCESS YOUTH ACADEMY

Date: August 23, 2017 Revised: December 4, 2017 J-13284-FFF

Date of Exhibit: 8/7/2017 DigitalGlobe Aerial Image: 11.2014

Scale in Feet

650 1,300

2,600

Access Youth Academy

J-13284fff

GEOMORPHIC ASSESSMENT – ACCESS YOUTH ACADEMY

The geomorphic channel assessment (channel screening analysis) for the Access Youth Academy project (herein referred to as the "project") is summarized within the following sections:

- Point of Compliance (POC)
- Domain of Analysis (DOA)
- Initial Desktop Analysis
- Field Screening: Vertical and Lateral Susceptibility

Points of Compliance (POC)

The initial step in performing the Southern California Coastal Water Research Project (SCCWRP) channel screening analysis is to identify the points of compliance (POCs) for the project; the point at which storm water is discharged from the site into the downstream conveyance system (i.e., storm drain or open channel). Specific to the project, there is a total of one (1) POC that is tributary to Chollas Creek. There is only one (1) POC (POC 1) that discharges into a natural channel. POC 1 is located just south of Guymon Street; the natural channel downstream of POC 1 is bounded to the north by Guymon Street, to the east by Euclid Avenue and to the south by Market Street. Refer to the project's DMA exhibit for locations of POCs relative to the project.

Domain of Analysis (DOA)

The next step is to define the domain of analysis (i.e., upstream and downstream study limits). The Final HMP, dated March 2011, specifies that the downstream domain of analysis shall be based on the following criteria (whichever is reached first governs):

- At least one reach downstream of the first grade-control point
- Tidal backwater / Lentic (still water) waterbody
- Equal order tributary
- Accumulation of 50 percent drainage area for stream systems
- Accumulation of 100 percent drainage area for urban conveyance systems

Based on the evaluation of each bullet item above, the downstream limit for the DOA occurs at least one reach downstream of the first grade control point. Within the DOA reach, there are two (2) grade control structures, in the form of boulder drop structures. Photographs from the field visit are included in Section G-3 of this attachment. The upstream limit of the DOA is defined as a distance equal to 20 channel widths or to a grade control in good condition – whichever comes first. For this channel assessment, there are no upstream portions of channels; therefore, the points of discharge were established as the upstream limit of the DOA.

The Domain of Analysis was then sub-divided into reaches for individual susceptibility analyses based on the following criteria:

- 200 meters or ca. 20 bankfull widths
- Distinct or abrupt change in grade or slope due to either natural or artificial features
- Distinct or abrupt change in dominant bed material or sediment conveyance
- Distinct of abrupt change in valley setting or confinement
- Distinct or abrupt change in channel type, bed form, or planform

It was determined that two (2) reaches were required for the susceptibility analysis for each POC.

Initial Desktop Analysis

Once the domain of analysis is defined, the Final HMP requires an initial desktop analysis to be completed. The required input data in the initial desktop analysis are contributing area in square miles, mean annual precipitation in inches, valley slope, and valley width in meters. This information was obtained using the 2014 County of San Diego 2-ft topography, aerial photograph, and the Western Regional Climate Center for mean annual precipitation. For schematic purposes, the watershed area tributary to the upstream and downstream limit of the Domain of Analysis, as delineated in StreamStats, is shown on the overall geomorphic assessment exhibit provided in Section G-2 of this Appendix. The initial desktop analysis for each reach is included in Section G-1 of this Appendix.

Field Screening: Vertical and Lateral Susceptibility

After the initial desktop analysis is completed, a field visit is required to assess the vertical and lateral susceptibility of each channel reach for each DOA. Typically, as part of the field visit, measurements are conducted including observations or pebble counts to determine D50, measurements of the bank height and bank angle, and assessing bottom widths of the channel. These field observations and measurements are used throughout the channel screening to identify a vertical susceptibility rating and lateral susceptibility rating. These ratings then correlate to a low, medium, or high susceptibility for vertical and lateral susceptibility, which then results in a combined channel susceptibility for each reach.

The field screening for this project did not include pebble counts due to the channel downstream of POC 1 being an engineered stabilized cobble bed channel that is maintained. Based on observation, the channel seemed to be in good condition with no observed erosion (vertical or lateral). The channel was stable throughout and includes rip-rap from the toe of the channel up the banks along the DOA reaches. Photos of the site visit along with a photo location exhibit are included in Attachment G-3 for reference.

Results and Conclusion

The vertical and lateral susceptibility results for each reach must be used to determine the overall channel susceptibility and low flow threshold based on engineering judgement. Based on the observations of the existing channel downstream of POC 1 it was determined that the overall vertical and lateral channel susceptibility to be "low". Therefore, the project can be modeled using a low flow threshold of 0.5Q2. The results of the 0.5Q2 threshold have been used to prepare HMP analyses for the proposed BMPs to meet Final HMP criteria prior to the project discharge at each outfall location. Refer to the HMP analyses for additional detailed information regarding the modeling and design solutions implemented to meet the Final HMP criteria.

Geomorphic Assessment Attachments

The following sections of this HMP provide backup information, as follows:

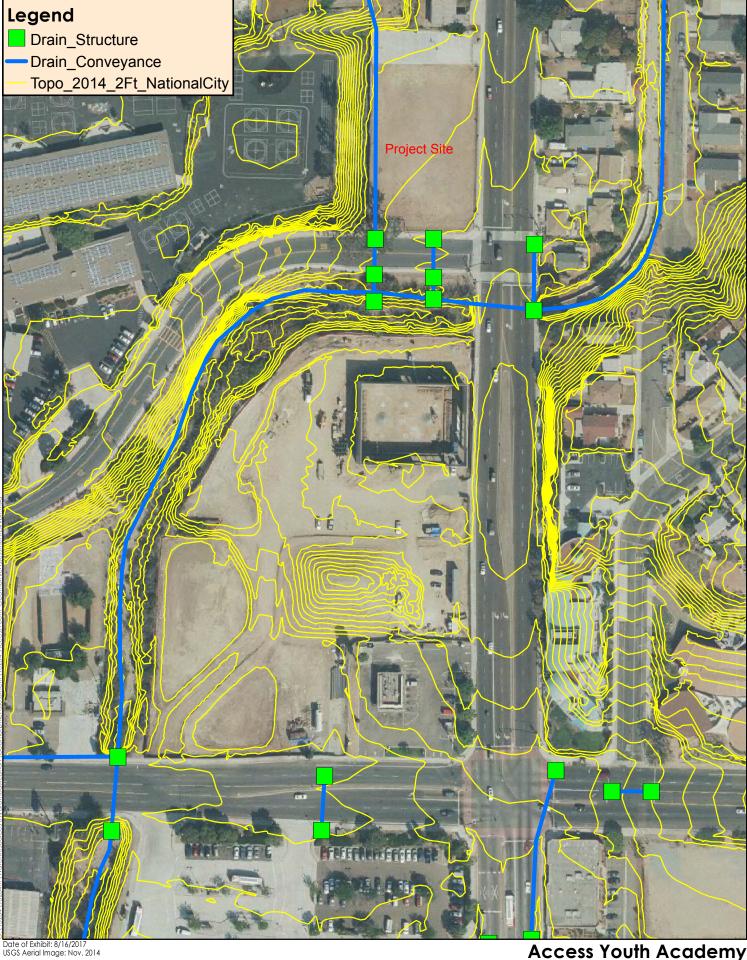
Section G-1: Geomorphic Assessment Results Section G-2: Geomorphic Assessment Exhibits

Section G-3: Field Photographs

user: IC	stream:	POC 1, for Access Youth Academy (Tributary to Chollas Creek)
latitude (decimal degrees): 32.7121		
longitude (decimal degrees): -117.0851		

FORM 1: INITIAL DESKTOP ANALYSIS

GIS metrics and screening indices (for detailed instructions/examples see 'Field Screening Companion Document')


Symbol	<u>Variable</u>	<u>units</u>	<u>Value</u>	Description & Source
А	Drainage Area	mi ²	3.1	contributing drainage area to screening location via published HUCs and/or 30-m (or better) National Elevation Data (NED), USGS seamless server
Р	Mean annual precipitation	inches	11.51	area-weighted annual precipitation via USGS delineated polygons using records from 1900 to 1960 (which was more significant in hydrologic models than polygons delineated from shorter record lengths)
S _v	Valley slope	m/m	0.013	valley slope at site via NED, measured over a relatively homogeneous valley segment as indicated by slope, hillslope coupling/confinement, valley alignment, confluences, etc., over a distance of up to ~500 meters or 10% of the main-channel length (whatever is smaller)
W _v	Valley width	meters	4.9	valley bottom width at site between natural valley walls as dictated by clear breaks in hillslope on NED raster, irrespective of potential armoring from floodplain encroachement, levees, etc. (imprecise measurements have negligible effect on rating in wide valleys where VWI >>2, as defined in lateral decision tree)
Q _{10cfs}	10-year peak flow, US units	ft ³ /s	320	Q _{10cfs} = 18.2 * A ^{0.87} * P ^{0.77} (Hawley and Bledsoe, In review)
Q ₁₀	10-year peak flow	m ³ /s	9.04	Q ₁₀ = 0.0283 * Q _{10cfs}
INDEX	10-year mobility index	m ^{1.5} /s ^{0.5}	0.039	INDEX = $S_v * Q_{10}^{0.5}$
W_{ref}	Reference width	meters	18.34	$W_{ref} = 6.99 * Q_{10}^{0.438}$
VWI	Valley width index	m/m	0.27	$VWI = W_v / W_{ref}$

user: IC	stream:	POC 1, for Access Youth Academy (Tributary to Chollas Creek)
latitude (decimal degrees): 32.7106		
longitude (decimal degrees): -117.0867		

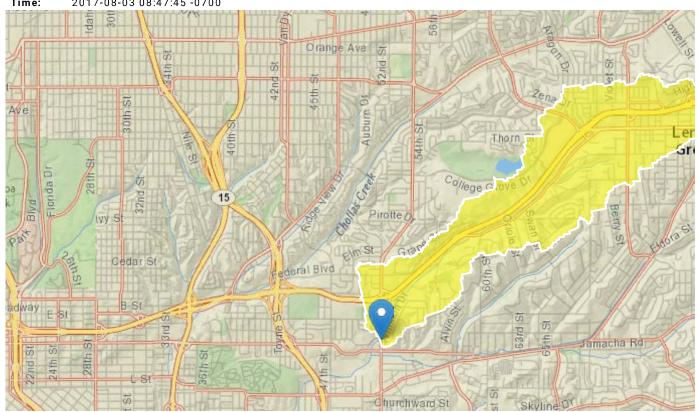
FORM 1: INITIAL DESKTOP ANALYSIS

GIS metrics and screening indices (for detailed instructions/examples see 'Field Screening Companion Document')

Symbol	<u>Variable</u>	<u>units</u>	<u>Value</u>	Description & Source
А	Drainage Area	mi ²	3.2	contributing drainage area to screening location via published HUCs and/or 30-m (or better) National Elevation Data (NED), USGS seamless server
Р	Mean annual precipitation	inches	11.51	area-weighted annual precipitation via USGS delineated polygons using records from 1900 to 1960 (which was more significant in hydrologic models than polygons delineated from shorter record lengths)
S _v	Valley slope	m/m	0.012	valley slope at site via NED, measured over a relatively homogeneous valley segment as indicated by slope, hillslope coupling/confinement, valley alignment, confluences, etc., over a distance of up to ~500 meters or 10% of the main-channel length (whatever is smaller)
W _v	Valley width	meters	6.4	valley bottom width at site between natural valley walls as dictated by clear breaks in hillslope on NED raster, irrespective of potential armoring from floodplain encroachement, levees, etc. (imprecise measurements have negligible effect on rating in wide valleys where VWI >>2, as defined in lateral decision tree)
Q _{10cfs}	10-year peak flow, US units	ft ³ /s	329	Q _{10cfs} = 18.2 * A ^{0.87} * P ^{0.77} (Hawley and Bledsoe, In review)
Q ₁₀	10-year peak flow	m ³ /s	9.30	Q ₁₀ = 0.0283 * Q _{10cfs}
INDEX	10-year mobility index	m ^{1.5} /s ^{0.5}	0.037	INDEX = $S_v * Q_{10}^{0.5}$
W_{ref}	Reference width	meters	18.56	$W_{ref} = 6.99 * Q_{10}^{0.438}$
VWI	Valley width index	m/m	0.34	$VWI = W_v / W_{ref}$

Access Youth Academy

8/3/2017 StreamStats 4.0


StreamStats Report_Reach1

Region ID: СА

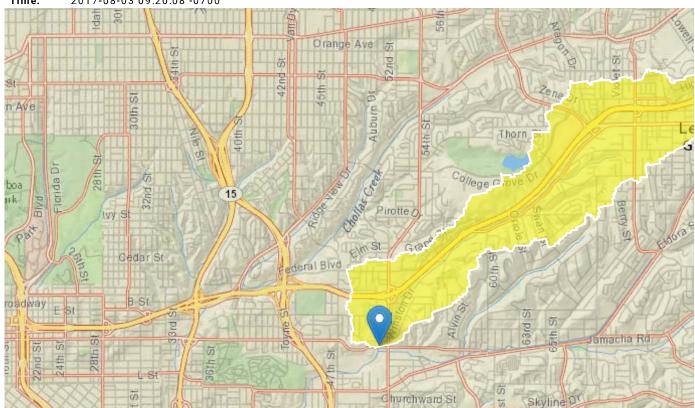
CA20170803114455696000 Workspace ID:

Clicked Point (Latitude, Longitude): 32.71207, -117.08512

2017-08-03 08:47:45 -0700 Time:

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	3.1	square miles
PRECIP	Mean Annual Precipitation	12.5	inches

8/3/2017 StreamStats 4.0


StreamStatsReport_Reach2

Region ID: CA

Workspace ID: CA20170803121821187000

Clicked Point (Latitude, Longitude): 32.71059, -117.08668

Time: 2017-08-03 09:20:08 -0700

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
PRECIP	Mean Annual Precipitation	12.4	inches
DRNAREA	Area that drains to a point on a stream	3.2	square miles

Figure 1: Looking upstream towards Reach 1 and Project Outfall

Figure 2: Looking upstream towards Reach 1, other side of channel bank

Figure 3: Channel Bank along Reach 2, looking upstream

Figure 4: Reach 2, looking downstream before turning south

Figure 5: Reach 2, looking upstream after turning south

Figure 6: Reach 2, looking further downstream towards pedestrian bridge

Figure 7: Reach 2, another view looking downstream towards the pedestrian bridge

Figure 8: Reach 2, Looking Downstream towards the end of the channel

Figure 9: Reach 2, another view looking downstream towards the end of the channel

Grate Inlet Sizing (Weir vs. Orifice)

Weir coefficient, C_w
Orifice coefficient, C_o
Available head, h (feet)

3.0
0.60
0.50

Inlet Type	Capacity based on Weir Equation ^{3, 4} , Q _{cap} (cfs ⁵)	Capacity based on Orifice Equation ^{3, 4} , Q _{cap} (cfs ⁵)	Governing Equation
1212 Series - 12"x12" Catch Basin ¹	2.26	1.90	Orifice
1218 Series - 12"x18" Catch Basin ¹	2.61	2.54	Orifice
1818 Series - 18"x18" Catch Basin ¹	2.96	3.22	Weir
2424 Series - 24"x24" Catch Basin ¹	3.83	5.39	Weir
3636 Series - 36"x36" Catch Basin ¹	5.59	11.26	Weir

Type 'I' Catch Basin ²	4.89	8.27	Weir
Type T Gaton Basin		5	

Note:

- 1. Based on Brooks Products, Inc. H 20-44 Traffic, Steel Grate, not Parkway, Cast-iron grate
- 2. Based on Drawing Number D-13 & D-15 in the City of San Diego Regional Standard Drawings, dated April 2003
- 3. A reduction factor of 50% assumed for clogging.
- 4. Weir equation, $Q = C_w L_e(h)^{3/2}$; Orifice equation, $Q = C_o A_e(2gh)^{1/2}$
- 5. "cfs" = cubic feet per second

5620 Friars Road San Diego, CA 92110-2596

Tel: (619) 291-0707 Fax: (619) 291-4165 Date | 108/2017 | 13784-FFF | 105 | 106 | 107 |

14. (012) 221-4103				Done by	1101						
Ñ.	100000 000000	787 780	S. Cr. S	F C 20					Checked By		
ACLESS	Lower	Academy:	Outlet	Works	RWb-1				Sitted by	9	
		7.									
									1981 27		
									- Grate		
									0 (11)		
	7	_									
		8.5"						1			
	1	7.0						1 1			
	1				(3,5" Milt				
	1	1			(1/	- M M LC				
		-	1			\sim	3,2 11:4+	low			
	1	1									
						-	driftce				
	1		1								
			- 1			9					
	(1						1			
		- 1									
		4 1									
	(
	1										
	-, -	, ,									
	71,5	1									
		Call	Į.								
		60''									
	{	-									
								- 1			
	1										
		4									
								ALI PROPERTY OF THE PARTY OF TH			
		(
		1									
		(
	1										
	1					2 =	" Low-Flow trictor on under End-Eng				
						0.5	LOW-TION				
						Res	trictor on				
	}					o the	1.1 0.1				
		1				1.01	were our rate)			

Orifice Equation Calculation $Q_{\text{orifice}} = C_o * A * (2 * g * (H-h))^{0.5}$

Orifice Coefficient, C _o	0.6
g (ft/s2)	32.2
Increment (ft)	0.50

CIRCULAR OPENINGS	1 x 3.5" dia.	None	None	None	None	None
# of openings	1	0	0	0	0	0
Orifice Size (inches)	3.5	0	0	0	0	0

Flowline of Orifice (ft)	0	0	0	0	0	0

Flowline (ft)	Q (cfs)	Q (cfs)	Q (cfs)	Q (cfs)	Q (cfs)	Q (cfs)	TOTAL
0.00	No Value	0.000	0.000	0.000	0.000	0.000	0.000
0.50	0.191	0.000	0.000	0.000	0.000	0.000	0.191
1.00	0.297	0.000	0.000	0.000	0.000	0.000	0.297
1.50	0.374	0.000	0.000	0.000	0.000	0.000	0.374
2.00	0.438	0.000	0.000	0.000	0.000	0.000	0.438
2.50	0.494	0.000	0.000	0.000	0.000	0.000	0.494
3.00	0.543	0.000	0.000	0.000	0.000	0.000	0.543
3.50	0.589	0.000	0.000	0.000	0.000	0.000	0.589
4.00	0.632	0.000	0.000	0.000	0.000	0.000	0.632
4.50	0.671	0.000	0.000	0.000	0.000	0.000	0.671
5.00	0.709	0.000	0.000	0.000	0.000	0.000	0.709
5.50	0.744	0.000	0.000	0.000	0.000	0.000	0.744
6.00	0.778	0.000	0.000	0.000	0.000	0.000	0.778

Drawdown Time Calculations - BMP 1

Note: Following data were obtained from TAPE 21 as resulted from HEC-1 analyses.

,			. ,			. ,				
Ordinate	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th
0	4.657	0.822	0.451	0.409	0.371	0.336	0.304	0.276	0.25	0.227
10	0.206	0.188	0.177	0.167	0.157	0.148	0.14	0.131	0.124	0.117
20	0.11	0.103	0.097	0.092	0.086	0.081	0.077	0.072	0.068	0.064
30	0.06	0.057	0.054	0.05	0.048	0.045	0.042	0.04	0.037	0.035
40	0.033	0.031	0.029	0.028	0.026	0.025	0.023	0.022	0.021	0.019
50	0.018	0.017	0.016	0.015	0.014	0.014	0.013	0.013	0.013	0.013
60	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
70 80	0.013 0.013									
90	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
100	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
110	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
120	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
130	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
140	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
150	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
160	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
170	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
180	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
190	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
200	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
210	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
220	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
230	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
240	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
250	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
260	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
270	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
280	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
290	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
300	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
310	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
320	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
330	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
340	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
350	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
360	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
370	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
380	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
390	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
400	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
410	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013 0.013	0.013
420 430	0.013	0.013 0.013	0.013 0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013 0.013
430 440	0.013 0.013	0.013	0.013	0.013 0.013	0.013 0.013	0.013 0.013	0.013 0.013	0.013 0.013	0.013	0.013
440 450	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
450 460	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
460 470	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
480	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
490	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
500	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
500	0.013	0.010	0.013	0.010	0.010	0.010	0.010	0.010	0.010	0.010

November :	9, 2017									
510	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
520	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.012	0.012	0.012
530	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.012	0.012	0.012
540	0.012	0.012	0.012	0.012	0.012	0.012	0.011	0.011	0.011	0.011
550	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011
560	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.01	0.01
570	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
580	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
590	0.01	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009
600	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009
610	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.008	0.008	0.008
620	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008
630	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008
	0.008				0.008	0.008		0.007	0.007	0.007
640		0.008	0.008	0.008			0.007			
650	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007
660	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007
670	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.006
680	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006
690	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006
700	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006
710	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.005	0.005
720	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
730	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
740	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
750	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
760	0.005	0.005	0.005	0.005	0.005	0.004	0.004	0.004	0.004	0.004
770	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004
780	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004
790	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004
800	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004
810	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004
820	0.004	0.004	0.004	0.003	0.003	0.003	0.003	0.003	0.003	0.003
830	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
840	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
850	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
860	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
870	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
880	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
890	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
900	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
920	0.003	0.003	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
						0.002				0.002
930	0.002	0.002	0.002	0.002	0.002		0.002	0.002	0.002	
940	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
950	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
960	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
970	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
980	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
990	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
1000	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
1010	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
1020	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
1030	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
1040	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
1050	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
1060	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
1070			0.001	0.001	0.001		0.001	0.001		0.001
	0.001	0.001				0.001			0.001	
1080	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
1090	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
1100	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
1110	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
1120	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
1130	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
1140	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001

Access Youth Academy JN - 13284FFF November 9, 2017

1150	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
1160	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
1170	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
1180	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
1190	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
1200	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
1210	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
1220	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
1230	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
1240	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
1250	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
1260	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
1270	0.001	0.001	0.001	0.001	0.001	0.001	0			

Drawdown Time to Basin Bottom (hours):

21.3 <96 HRs

[TITLE]

Units

None

```
;;Project Title/Notes
13284fff Access Youth Academy
[OPTIONS]
;;Option
FLOW_UNITS
INFILTRATION
                             Value
                             CFS
GREEN_AMPT
FLOW_ROUTING
                             KINWAVE
LINK_OFFSETS
MIN_SLOPE
                             DEPTH
ALLOW_PONDING
                             NO
SKIP_STEADY_STATE
                             NO
                             10/17/1948
08:00:00
START_DATE
START_DATE
START_TIME
REPORT_START_DATE
REPORT_START_TIME
END_DATE
END_TIME
SWEEP_START
SWEEP_END
DAYS
                             08:00:00
10/17/1948
08:00:00
12/31/2005
23:00:00
01/01
12/31
0
DRY_DAYS
                             0
01:00:00
00:15:00
04:00:00
0:01:00
DRY_DAYS
REPORT_STEP
WET_STEP
DRY_STEP
ROUTING_STEP
INERTIAL_DAMPING
NORMAL_FLOW_LIMITED
FORCE_MAIN_EQUATION
VARIABLE_STEP
                             PARTIAL
                             вотн
                             H-W
0.75
LENGTHENING_STEP
                             12.557
MIN_SURFAREA
MAX_TRIALS
HEAD_TOLERANCE
SYS_FLOW_TOL
LAT_FLOW_TOL
                             8
0.005
                             5 0.5
MINIMUM_STEP
THREADS
[EVAPORATION]
                       Parameters
;;Data Source
                       0.06 \quad 0.08 \quad 0.11 \quad 0.15 \quad 0.17 \quad 0.19 \quad 0.19 \quad 0.18 \quad 0.15 \quad 0.11 \quad 0.08 \quad 0.06
MONTHLY
DRY_ONLY
                       NO
[RAINGAGES]
                                   Interval SCF
                       Format
                                                              Source
;;Name
Ĺindbergh
                       INTENSITY 1:00
                                                 1.0
                                                              TIMESERIES TS-Lindbergh
[SUBCATCHMENTS]
                                              Outlet
                                                                                  %Imperv Width
                                                                                                           %Slope CurbLen SnowPack
;;Name
                       Rain Gage
                                                                      Area
DMA1
                       Lindbergh
                                               POC1
                                                                      0.6
                                                                                  0
                                                                                               132
                                                                                                           0.9
                                                                                                                       0
[SUBAREAS]
;;Subcatchment
                       N-Imperv N-Perv
                                                     S-Imperv
                                                                    S-Perv
                                                                                   PctZero
                                                                                                   RouteTo
                                                                                                                  PctRouted
                                                                     0.1
                                                                                    25
ĎMA1
                       0.012
                                      0.15
                                                      0.05
                                                                                                   OUTLET
[INFILTRATION]
 ;;Subcatchment
                       Suction
                                       Ksat
                                                      IMD
                       9
DMA1
                                      0.025
                                                      0.33
[OUTFALLS]
;;Name
                       Elevation Type
                                                      Stage Data
                                                                             Gated
                                                                                         Route To
POC1
                       0
                                       FREE
                                                                             NO
[TIMESERIES]
                                             Value
                                      Time
                       Date
;;Name
                      FILE "W:\WQ_DRN_LID_HMP-MunicipalityReferences\HMP\_SWMM\RainfallData_formatted\lhr\lindbergh.dat"
TS-Lindbergh
[REPORT]
;;Reporting Options
INPUT NO
CONTROLS NO SUBCATCHMENTS ALL
NODES ALL
LINKS ALL
[TAGS]
DIMENSIONS 0.000 0.000 10000.000 10000.000
```

13284fff_BMP1_pre.inp

[COORDINATES] ;;Node	X-Coord	Y-Coord
;; POC1	4282.103	4337.715
[VERTICES] ;;Link ;;	X-Coord	Y-Coord
[Polygons];;Subcatchment	X-Coord	Y-Coord
;;DMA1 DMA1 DMA1 DMA1 DMA1	3513.650 3483.316 5262.892 5283.114 3473.205	6804.853 6006.067 5965.622 6956.522 6966.633
[SYMBOLS] ;;Gage	X-Coord	Y-Coord
Lindbergh	2563.195	7411.527

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.010)

13284fff Access Youth Academy

************* NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

Analysis Options

Flow Units CFS Process Models: Rainfall/Runoff YES Rainfall/Runoff YES
RDII NO
Snowmelt NO
Groundwater NO
Flow Routing NO
water Quality NO
Infiltration Method GREEN_AMPT
Starting Date OCT-17-1948 08:00:00
Ending Date DEC-31-2005 23:00:00
Antecedent Dry Days 0.0
Report Time Step 01:00:00
Wet Time Step 00:15:00
Dry Time Step 04:00:00

******* Volume Depth Runoff Quantity Continuity acre-feet inches 563.840 28.192 0.941 23.206 4.435 0.000 18.823 464.121 88.703 0.000 -1.385

******	Volume	Volume
Flow Routing Continuity	acre-feet	10^6 gal
Dry Weather Inflow Wet Weather Inflow Groundwater Inflow RDII Inflow External Inflow External Outflow Flooding Loss Evaporation Loss Exfiltration Loss Initial Stored Volume	0.000 4.435 0.000 0.000 0.000 4.435 0.000 0.000 0.000	0.000 1.445 0.000 0.000 0.000 1.445 0.000 0.000 0.000
Final Stored Volume Continuity Error (%)	0.000 0.000	0.000

******* Subcatchment Runoff Summary

Total Total Total Total Runoff Peak Runoff Runoff Coeff Total Runoff Total Infil Precip Runon in in Subcatchment in 10^6 gal CFS DMA1 0.00 18.82 464.12 88.70 1.45 0.73 0.157

Analysis begun on: Wed Nov 01 11:23:08 2017 Analysis ended on: Wed Nov 01 11:23:21 2017 Total elapsed time: 00:00:13

```
[TITLE]
;;Project Title/Notes
13284fff Access Youth Academy
[OPTIONS]
                      Value
;;Option
FLOW_UNITS
                      CFS
GREEN_AMPT
INFILTRATION
FLOW_ROUTING
                       KINWAVE
LINK_OFFSETS
                       DEPTH
MIN SLOPE
                       0
ALLOW_PONDING
                       ŇO
SKIP_STEADY_STATE
START_DATE
                       10/17/1948
START_TIME
REPORT_START_DATE
REPORT_START_TIME
                      08:00:00
10/17/1948
                      08:00:00
12/31/2005
23:00:00
END_DATE
END_TIME
SWEEP_START
SWEEP_END
                       01/01
                       12/31
DRY_DAYS
REPORT_STEP
                       01:00:00
WET_STEP
DRY_STEP
                      00:15:00
04:00:00
ROUTING_STEP
                      0:01:00
INERTIAL_DAMPING
                       PARTIAL
NORMAL_FLOW_LIMITED FORCE_MAIN_EQUATION
                      BOTH
                      H-W
VARIABLE_STEP
LENGTHENING_STEP
                       0.75
                       0
MIN_SURFAREA
                       12.557
MAX_TRIALS
HEAD_TOLERANCE
SYS_FLOW_TOL
                       0.005
LAT_FLOW_TOL
MINIMUM_STEP
                       0.5
THREADS
[EVAPORATION]
;;Data Source
                  Parameters
MONTHLY
                  0.06
                        0.08 0.11 0.15 0.17 0.19 0.19 0.18 0.15 0.11 0.08 0.06
DRY_ONLY
                  NO
[RAINGAGES]
                  Format Interval SCF
;;Name
                                                Source
                                   1.0
Lindbergh
                  INTENSITY 1:00
                                                TIMESERIES TS-Lindbergh
[SUBCATCHMENTS]
                  Rain Gage
                                    Outlet
                                                       Area
                                                                 %Imperv Width
                                                                                    %Slope CurbLen SnowPack
;;Name
DMA1
                  Lindbergh
                                    BMP1
                                                       0.58338 83
                                                                                     0.9
BMP1
                  Lindbergh
                                     DIV1
                                                       0.01662 0
                                                                           6.0
                                                                                     0.01
                                                                                              n
[SUBAREAS]
;;Subcatchment
                  N-Imperv
                              N-Perv
                                          S-Imperv S-Perv
                                                                  PctZero
                                                                              RouteTo PctRouted
                                                      0.1
ĎMA1
                  0.012
                                          0.05
                                                                              OUTLET
                                                      0.1
BMP1
                  0.012
                              0.15
                                          0.05
[INFILTRATION]
;;Subcatchment
                  Suction
                              Ksat
                                          IMD
DMA1
                              0.01875
0.025
BMP1
[LID CONTROLS]
                  Type/Layer Parameters
;;Name
                  вс
ŔMP1
                              6.00
BMP1
                  SURFACE
                                                      0
                                                                  0
                              30
12
вмр1
                  SOIL
                                                                                                     1.5
                  STORAGE
RMP1
                                          0.67
BMP1
                  DRAIN
                              0.1140
[LID_USAGE]
;;Subcatchment LID Process
                                                         Width
                                                                                                         RptFile
                                   Number Area
                                                                     InitSat
                                                                                 FromImp
                                                                                             ToPerv
[OUTFALLS]
                  Elevation Type
;;Name
;;----
                                                            Gated Route To
                  ..acion
-----0
                                          Stage Data
PÓC1
                              FREE
                                                            NO
```

13284fff_BMP1_post.inp

[DIVIDERS]				132841	LLL_RWbT_b	ost.1np						
;;Name	Elevation	n Diverte	ed Link T	ype	Paramete	rs						
; ; DIV1	0	bypass	C	UTOFF	0.0131	0		0	0	0		
[STORAGE] ;;Name IMD ;;	Elev.	MaxDepth	InitDepth	Shape	Curve	Name/Pa	ırams		N/A	Fevap	Psi 	Ksa
STOR1	0	1.0	0	TABULAF	R Stora	.geCurve1	L		0	0		
[CONDUITS] ;;Name	From Node	e 1	Го Node	Lend	gth Ro	ughness	In01	ffset	OutOffset	InitFlow	MaxFlow	
;;; bypass	DIV1		STOR1	400		013	0		0	0	0	
underdrain [OUTLETS]	DIV1	F	P0C1	400	0.	013	0		0	0	0	
;;Name	From Node	e 1	Γο Node	offs	set Ty	pe		QTabl	le/Qcoeff	Qexpon	Gated	_
didflow	STOR1	F	POC1	0	TA	BULAR/DE	PTH	Ratir	ngCurve1		NO	
[XSECTIONS] ;;Link ;;	Shape	Geom1	L	Geom2	Geom3	Geo	om4	Bar	rels Cul	lvert		
ypass underdrain	DUMMY DUMMY	0		0	0	0		1 1				
[CURVES] ;;Name	Туре	X-Value	e Y-Value	!								
; RatingCurve1 RatingCurve1 RatingCurve1 RatingCurve1	Rating	0.00 0.50 0.75 1.00	0.000 0.191 0.490 4.657									
storageCurve1 storageCurve1 storageCurve1 storageCurve1 storageCurve1	Storage	0 0.25 0.5 0.75	724 724 724 724 724 724									
TIMESERIES]	Date	Time	Value									
; S-Lindbergh	 FILE "W:\	 \WO DRN L]	 [D_HMP-Munic	 :ipalitvRe	eferences\	.HMP\ SWM	M\Rai	infall	oata formatt	ted\1hr\lin	dberah.dat	t"
[REPORT] ;;Reporting Opt INPUT NO CONTROLS NO SUBCATCHMENTS AI NODES ALL LINKS ALL												
[TAGS]												
[MAP] DIMENSIONS 0.000 Units None		000.000 10	000.000									
[COORDINATES] ;;Node	X-Coord		Y-Coord									
;; POC1 DIV1	4282.103 4474.216		4337.715 5621.840									
STOR1	3634.985		5652.174									
[VERTICES] ;;Link ;;	X-Coord		Y-Coord									
[Polygons]	X-Coord		Y-Coord									
;; DMA1	3513.650		6804.853									
DMA1 DMA1	3483.316 5262.892		6006.067 5965.622									
DMA1 DMA1	5283.114 3473.205		6956.522 6966.633									
BMP1 BMP1	4858.443		5803.842									
3MP1	5606.673 5586.451		5793.731 5318.504									
BMP1 BMP1	4777.553 4767.442		5348.837 5834.176									
[SYMBOLS] ;;Gage	X-Coord		Y-Coord									
;; indbergh	2563.195											
. mubel gli	2303.195		7411.527		Page 2							

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.010)

13284fff Access Youth Academy WARNING 04: minimum elevation drop used for Conduit bypass WARNING 04: minimum elevation drop used for Conduit underdrain

******** NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

Analysis Options

*******	∨olume	Depth
Runoff Quantity Continuity	acre-feet	inches

Initial LID Storage	0.004	0.083
Total Precipitation	28.192	563.840
Evaporation Loss	6.098	121.969
Infiltration Loss	3.554	71.083
Surface Runoff	3.831	76.625
LID Drainage	14.938	298.756
Final Storage	0.010	0.199
Continuity Error (%)	-0.835	

**************************************	Volume acre-feet	Volume 10^6 gal
Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	18.769	6.116
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	0.000	0.000
External Outflow	18.765	6.115
Flooding Loss	0.000	0.000
Evaporation Loss	0.000	0.000
Exfiltration Loss	0.000	0.000
Initial Stored Volume	0.000	0.000
Final Stored Volume	0.000	0.000
Continuity Error (%)	0.019	

******** Highest Flow Instability Indexes All links are stable.

Routing Time Step Summary 60.00 sec 60.00 sec

60.00 sec 0.00 1.00 0.00

Subcatchment Runoff Summary

To	otal T	Total Tot	tal To	otal	Total	Total	Peak F	Runoff
Pro	ecip R	Runon Ev	/ap In	ıfil R	unoff F	Runoff R	unoff	Coeff
			Page 1	L				

Subcatchment	i	n	in	13284ff in	f_вмР1_рс i	n '	in	10^6 ga	.1 CFS		
DMA1 ВМР1	563.84 563.84		.00	95.91 1036.72	73.1		99.64 51.67			0.709 0.929	
**************************************	nmarv										
Subcatchment I	LID Control	I	Total nflow in	Evap Loss in	Los	s Out	face flow		Storage	Final Storage in	Continuit Erro
	 BMP1			1036.75				 10785.78	3.00	6.06	-0.0

Node	Туре	Average Depth Feet		um Maxim th H	um Time GL Occu et days	irrence	Max				
POC1 DIV1 STOR1	OUTFALL DIVIDER STORAGE	0.00 0.00 0.00	0.0 0.0 0.7	00 0.0	00 0	00:00 00:00		0.00 0.00 0.77			
**************************************	V										
Node	Туре	Maximum Lateral Inflow CFS	To: Inf	num tal Time low Occi CFS days	of Max urrence hr:min	Late Inf Vol	low	Total Inflow Volume 10^6 gal	Flow Balance Error Percent		
POC1 DIV1 STOR1	OUTFALL DIVIDER STORAGE	0.00 0.82 0.00	0	.83 6263 .82 6263 .80 6263	01:01	6	0 .12 0	6.11 6.12 1.24	0.000) 	

Surcharging occurs	when water	rises abo					it.				
Node	Туре	Hours Surcharge		Max. Heigl Above Cro Fe	wn Bel	Depth ow Rim Feet					
DIV1 STOR1	DIVIDER STORAGE	501471.0 501471.0		0.00		0.000 0.230					
**************************************	ary										
No nodes were flood	ded.										
**************************************	mary ****										
Storage Unit	Average Volume 1000 ft3	Pcnt	Evap I Pcnt Loss	Pcnt	Maximu Volum 1000 ft	ie Pci		Time of Ma Occurrenc days hr:mi	e Outflo	W	
STOR1	0.000		0	0	0.55		77	6263 00:5		_	

Outfall Node	Flow Freq Pcnt	Avg Flow CFS	Max Flow CFS	Total Volume 10^6 gal
POC1	5.80	0.01	0.83	6.115
System	5.80	0.01	0.83	6.115 Page 2

****** Link Flow Summary

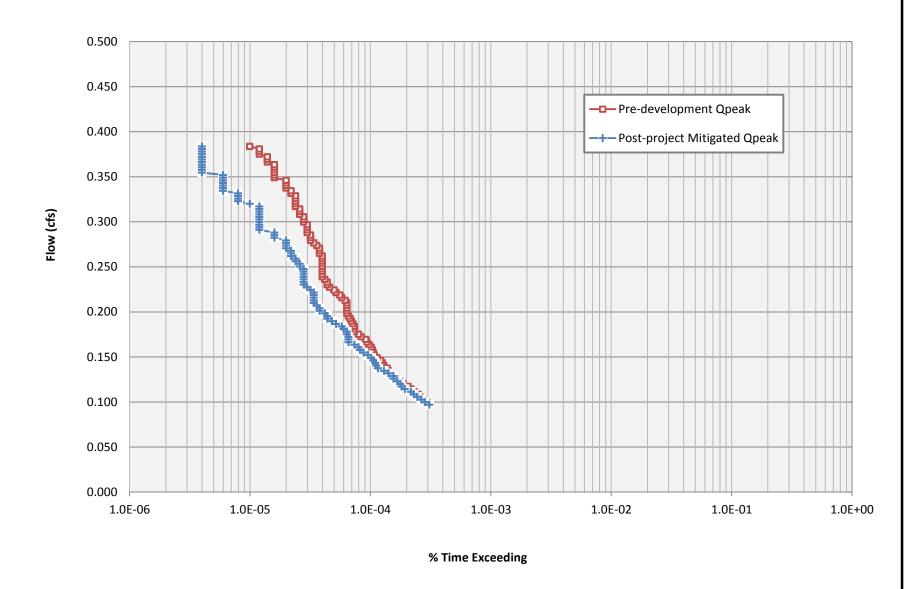
Link	Туре	Maximum Flow CFS	Time of Max Occurrence days hr:min	Maximum Veloc ft/sec	Max/ Full Flow	Max/ Full Depth
bypass underdrain Midflow	DUMMY DUMMY DUMMY	0.80 0.01 0.82	6263 01:01 0 22:32 6263 00:54			

****** Conduit Surcharge Summary

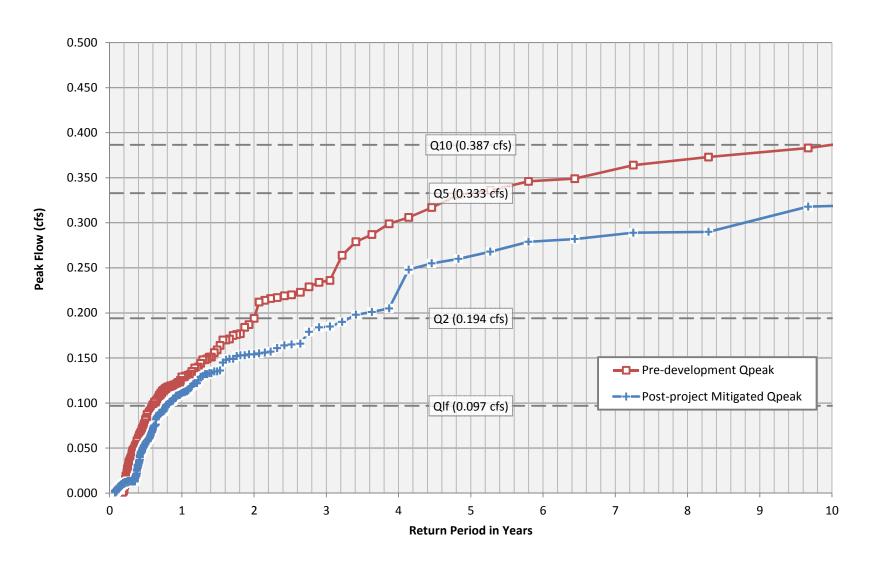
No conduits were surcharged.

Analysis begun on: Wed Nov 29 10:42:39 2017 Analysis ended on: Wed Nov 29 10:43:09 2017 Total elapsed time: 00:00:30

Low-flow Threshold: 50% 0.5xQ2 (Pre): 0.097 cfs Q10 (Pre): 0.387 cfs Ordinate #: 100 Incremental Q (Pre): 0.00290 cfs Total Hourly Data: 501471 hours


The proposed BMP:

PASSED


Beginning of Interval	Pre-develop. Flow (cfs)	Pre-develop. Hours	Pre-develop. % Time Exceeding	Post-project Hours	Post-project % Time Exceeding	Percentage	Pass/Fail
1	0.097	154	3.07E-04	155	3.09E-04	101%	Pass^
2	0.100	148	2.95E-04	142	2.83E-04	96%	Pass
3	0.103	137	2.73E-04	133	2.65E-04	97%	Pass
4	0.106	129	2.57E-04	123	2.45E-04	95%	Pass
5	0.109	125	2.49E-04	115	2.29E-04	92%	Pass
6	0.111	116	2.31E-04	109	2.17E-04	94%	Pass
7	0.114	109	2.17E-04	97	1.93E-04	89%	Pass
8	0.117	103	2.05E-04	91	1.81E-04	88%	Pass
9	0.120	94	1.87E-04	89	1.77E-04	95%	Pass
10	0.123	87	1.73E-04	84	1.68E-04	97%	Pass
11	0.126	81	1.62E-04	78	1.56E-04	96%	Pass
12	0.129	79	1.58E-04	78	1.56E-04	99%	Pass
13	0.132	73	1.46E-04	71	1.42E-04	97%	Pass
14	0.135	71	1.42E-04	65	1.30E-04	92%	Pass
15	0.138	69	1.38E-04	58	1.16E-04	84%	Pass
16	0.140	65	1.30E-04	56	1.12E-04	86%	Pass
17	0.143	63	1.26E-04	55	1.10E-04	87%	Pass
18	0.146	61	1.22E-04	53	1.06E-04	87%	Pass
19	0.149	57	1.14E-04	51	1.02E-04	89%	Pass
20	0.152	54	1.08E-04	48	9.57E-05	89%	Pass
21	0.155	53	1.06E-04	44	8.77E-05	83%	Pass
22	0.158	52	1.04E-04	41	8.18E-05	79%	Pass
23	0.161	51	1.02E-04	40	7.98E-05	78%	Pass
24	0.164	49	9.77E-05	37	7.38E-05	76%	Pass
25	0.167	47	9.37E-05	33	6.58E-05	70%	Pass
26	0.169	46	9.17E-05	33	6.58E-05	72%	Pass
27	0.172	42	8.38E-05	33	6.58E-05	79%	Pass
28	0.175	40	7.98E-05	32	6.38E-05	80%	Pass
29	0.178	37	7.38E-05	32	6.38E-05	86%	Pass
30	0.181	37	7.38E-05	30	5.98E-05	81%	Pass
31	0.184	37	7.38E-05	29	5.78E-05	78%	Pass
32	0.187	36	7.18E-05	26	5.18E-05	72%	Pass
33	0.190	35	6.98E-05	24	4.79E-05	69%	Pass
34	0.193	34	6.78E-05	22	4.39E-05	65%	Pass
35	0.195	33	6.58E-05	22	4.39E-05	67%	Pass
36	0.198	32	6.38E-05	21	4.19E-05	66%	Pass
37	0.201	32	6.38E-05	19	3.79E-05	59%	Pass
38	0.204	32	6.38E-05	19	3.79E-05	59%	Pass
39	0.207	32	6.38E-05	18	3.59E-05	56%	Pass
40	0.210	32	6.38E-05	17	3.39E-05	53%	Pass
41	0.213	31	6.18E-05	17	3.39E-05	55%	Pass
42	0.216	29	5.78E-05	17	3.39E-05	59%	Pass
43	0.219	28	5.58E-05	17	3.39E-05	61%	Pass
44	0.222	26	5.18E-05	17	3.39E-05	65%	Pass
45	0.224	25	4.99E-05	16	3.19E-05	64%	Pass
46	0.227	23	4.59E-05	15	2.99E-05	65%	Pass
47	0.230	22	4.39E-05	14	2.79E-05	64%	Pass
48	0.233	22	4.39E-05	14	2.79E-05	64%	Pass
49	0.236	21	4.19E-05	14	2.79E-05	67%	Pass
50	0.239	20	3.99E-05	14	2.79E-05	70%	Pass
51	0.242	20	3.99E-05	14	2.79E-05	70%	Pass
52	0.245	20	3.99E-05	14	2.79E-05	70%	Pass

Beginning of Interval	Pre-develop. Flow (cfs)	Pre-develop. Hours	Pre-develop. % Time Exceeding	Post-project Hours	Post-project % Time Exceeding	Percentage	Pass/Fail
53	0.248	20	3.99E-05	14	2.79E-05	70%	Pass
54	0.250	20	3.99E-05	13	2.59E-05	65%	Pass
55	0.253	20	3.99E-05	13	2.59E-05	65%	Pass
56	0.256	20	3.99E-05	12	2.39E-05	60%	Pass
57	0.259	20	3.99E-05	12	2.39E-05	60%	Pass
58	0.262	20	3.99E-05	11	2.19E-05	55%	Pass
59	0.265	19	3.79E-05	11	2.19E-05	58%	Pass
60	0.268	19	3.79E-05	11	2.19E-05	58%	Pass
61	0.271	19	3.79E-05	10	1.99E-05	53%	Pass
62	0.274	18	3.59E-05	10	1.99E-05	56%	Pass
63	0.277	17	3.39E-05	10	1.99E-05	59%	Pass
64	0.279	16	3.19E-05	10	1.99E-05	63%	Pass
65	0.282	16	3.19E-05	8	1.60E-05	50%	Pass
66	0.285	16	3.19E-05	8	1.60E-05	50%	Pass
67	0.288	15	2.99E-05	8	1.60E-05	53%	Pass
68	0.291	15	2.99E-05	6	1.20E-05	40%	Pass
69	0.294	15	2.99E-05	6	1.20E-05	40%	Pass
70	0.297	15	2.99E-05	6	1.20E-05	40%	Pass
71	0.300	14	2.79E-05	6	1.20E-05	43%	Pass
72	0.303	14	2.79E-05	6	1.20E-05	43%	Pass
73	0.306	14	2.79E-05	6	1.20E-05	43%	Pass
74	0.308	13	2.59E-05	6	1.20E-05	46%	Pass
75	0.311	13	2.59E-05	6	1.20E-05	46%	Pass
76	0.314	13	2.59E-05	6	1.20E-05	46%	Pass
77	0.317	12	2.39E-05	6	1.20E-05	50%	Pass
78	0.320	12	2.39E-05	5	9.97E-06	42%	Pass
79	0.323	12	2.39E-05	4	7.98E-06	33%	Pass
80	0.326	12	2.39E-05	4	7.98E-06	33%	Pass
81	0.329	12	2.39E-05	4	7.98E-06	33%	Pass
82	0.332	11	2.19E-05	4	7.98E-06	36%	Pass
83	0.334	11	2.19E-05	3	5.98E-06	27%	Pass
84	0.337	10	1.99E-05	3	5.98E-06	30%	Pass
85	0.340	10	1.99E-05	3	5.98E-06	30%	Pass
86	0.343	10	1.99E-05	3	5.98E-06	30%	Pass
87	0.346	10	1.99E-05	3	5.98E-06	30%	Pass
88	0.349	8	1.60E-05	3	5.98E-06	38%	Pass
89	0.352	8	1.60E-05	3	5.98E-06	38%	Pass
90	0.355	8	1.60E-05	2	3.99E-06	25%	Pass
91	0.358	8	1.60E-05	2	3.99E-06	25%	Pass
92	0.361	8	1.60E-05	2	3.99E-06	25%	Pass
93	0.363	8	1.60E-05	2	3.99E-06	25%	Pass
94	0.366	7	1.40E-05	2	3.99E-06	29%	Pass
95	0.369	7	1.40E-05	2	3.99E-06	29%	Pass
96	0.372	7	1.40E-05	2	3.99E-06	29%	Pass
97	0.375	6	1.20E-05	2	3.99E-06	33%	Pass
98	0.378	6	1.20E-05	2	3.99E-06	33%	Pass
99	0.378	6	1.20E-05	2	3.99E-06	33%	Pass
100	0.384	5	9.97E-06	2	3.99E-06	40%	Pass

5620 Friars Road San Diego, CA 92110-2596

Tel: (619) 291-0707 Fax: (619) 291-4165 Date 11/09/2017

Job No. 13784666

Page 1061

Done By Access Youth Academy; Outlet Works BMP-Z Checked By _ Grute D-3:0"
Midflow Orifice Wa Ponking Deth 54" 45"

Orifice Equation Calculation $Q_{\text{orifice}} = C_o * A * (2 * g * (H-h))^{0.5}$

Orifice Coefficient, C _o	0.6
g (ft/s2)	32.2
Increment (ft)	0.25

CIRCULAR OPENINGS	1 x 3" dia.	None	None	None	None	None
# of openings	1	0	0	0	0	0
Orifice Size (inches)	3	0	0	0	0	0

Flowline of Orifice (ft)	0	0	0	0	0	0

Flowline (ft)	Q (cfs)	Q (cfs)	Q (cfs)	Q (cfs)	Q (cfs)	Q (cfs)	TOTAL
0.00	No Value	0.000	0.000	0.000	0.000	0.000	0.000
0.25	0.084	0.000	0.000	0.000	0.000	0.000	0.084
0.50	0.145	0.000	0.000	0.000	0.000	0.000	0.145
0.75	0.187	0.000	0.000	0.000	0.000	0.000	0.187
1.00	0.221	0.000	0.000	0.000	0.000	0.000	0.221
1.25	0.251	0.000	0.000	0.000	0.000	0.000	0.251
1.50	0.277	0.000	0.000	0.000	0.000	0.000	0.277
1.75	0.301	0.000	0.000	0.000	0.000	0.000	0.301
2.00	0.324	0.000	0.000	0.000	0.000	0.000	0.324
2.25	0.345	0.000	0.000	0.000	0.000	0.000	0.345
2.50	0.364	0.000	0.000	0.000	0.000	0.000	0.364
0.29	0.097	0.000	0.000	0.000	0.000	0.000	0.097
3.00	0.401	0.000	0.000	0.000	0.000	0.000	0.401

Drawdown Time Calculations - BMP 2

Note: Following data were obtained from TAPE 21 as resulted from HEC-1 analyses.

Ordinate	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th
0	10.011	0.057	0.054	0.051	0.048	0.045	0.043	0.04	0.038	0.036
10	0.034	0.032	0.03	0.028	0.027	0.025	0.024	0.022	0.021	0.02
20	0.019	0.018	0.017	0.016	0.015	0.014	0.013	0.012	0.012	0.012
30	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012
40	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012
50	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012
60	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012
70	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012
80	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012
90	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012
100	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012
110	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012
120	0.012	0.012	0.012	0.011	0.011	0.011	0.011	0.011	0.011	0.011
130	0.011	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.009
140	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.008
150	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008
160	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007
170	0.007	0.007	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006
180	0.006	0.006	0.006	0.006	0.006	0.006	0.005	0.005	0.005	0.005
190	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
200	0.005	0.005	0.005	0.005	0.004	0.004	0.004	0.004	0.004	0.004
210	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004
220	0.004	0.004	0.004	0.004	0.004	0.003	0.003	0.003	0.003	0.003
230	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
240	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
250	0.003	0.003	0.003	0.003	0.002	0.002	0.002	0.002	0.002	0.002
260	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
270	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
280	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
290	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.001	0.001
300	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
310	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
320	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
330	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
340	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
350	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
360	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
370	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
380	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
390	0.001	0.001	0.001	0						

Drawdown Time to Basin Bottom (hours):

6.6 <96 HRs

```
[TITLE]
;;Project Title/Notes
13284fff Access Youth Academy
[OPTIONS]
                          value
;;Option
FLOW_UNITS
                          CFS
GREEN_AMPT
INFILTRATION FLOW_ROUTING
                          KINWAVE
LINK_OFFSETS
                          DEPTH
MIN SLOPE
                          0
ALLOW_PONDING
                          ŇO
SKIP_STEADY_STATE
                          NO
START_DATE
                          10/17/1948
START_TIME
REPORT_START_DATE
REPORT_START_TIME
                          08:00:00
10/17/1948
                          08:00:00
12/31/2005
23:00:00
END_DATE
END_TIME
SWEEP_START
SWEEP_END
                          01/01
                          12/31
DRY_DAYS
REPORT_STEP
                          01:00:00
WET_STEP
DRY_STEP
                          00:15:00
04:00:00
ROUTING_STEP
                          0:01:00
INERTIAL_DAMPING
                          PARTIAL
NORMAL_FLOW_LIMITED FORCE_MAIN_EQUATION
                          BOTH
                          H-W
VARIABLE_STEP
LENGTHENING_STEP
                          0.75
                          0
                          12.557
MIN_SURFAREA
MAX_TRIALS
HEAD_TOLERANCE
SYS_FLOW_TOL
                          0.005
LAT_FLOW_TOL
MINIMUM_STEP
                          ŏ.5
THREADS
[EVAPORATION]
;;Data Source
                     Parameters
MONTHLY
                            0.08
                                    0.11
                                               0.15
                                                        0.17
                                                                 0.19
                                                                          0.19
                                                                                   0.18
                                                                                           0.15 0.11
                                                                                                             0.08
                                                                                                                      0.06
DRY_ONLY
                     NO
[RAINGAGES]
                                 Interval SCF
;;Name
                     Format
                                                        Source
Lindbergh
                     INTENSITY 1:00
                                             1.0
                                                        TIMESERIES TS-Lindbergh
[SUBCATCHMENTS]
                     Rain Gage
                                          Outlet
                                                                           %Imperv Width
                                                                                                  %slope
                                                                                                             CurbLen SnowPack
;;Name
DMA2
                     Lindbergh
                                                                0.2
                                                                           0
                                                                                      123
                                                                                                  0.8
                                                                                                             0
                                          POC1
[SUBAREAS]
;;Subcatchment
                                   N-Perv
                     N-Imperv
                                                 S-Imperv
                                                              S-Perv
                                                                            PctZero
                                                                                          RouteTo
                                                                                                        PctRouted
DMA2
                     0.012
                                   0.15
                                                 0.05
                                                              0.1
                                                                             25
                                                                                          OUTLET
[INFILTRATION]
;;Subcatchment
                     Suction
                                                 IMD
                                   Ksat
                     9
                                   0.025
DMA2
                                                 0.33
[OUTFALLS]
                     Elevation Type
                                                 Stage Data
                                                                      Gated
                                                                                 Route To
;;Name
                     0
POC1
                                   FREE
                                                                      NO
;;Name
                     Date
                                   Time
                                                Value
                     \label{thm:wq_drw_drw} FILE \ "W:\WQ\_DRN\_LID\_HMP-MunicipalityReferences\HMP\LSWMM\RainfallData\_formatted\lhr\lindbergh.dat"
TS-Lindbergh
[REPORT]
;;Reporting Options
INPUT NO CONTROLS NO
SUBCATCHMENTS ALL
NODES ALL
LINKS ALL
[TAGS]
ΓΜΑΡΊ
```

DIMENSIONS 0.000 0.000 10000.000 10000.000

None

Units

13284fff_BMP2_pre.inp

[COORDINATES]			13284fff
;;Node	X-Coord	Y-Coord	
;; POC1	4282.103	4337.715	
[VERTICES] ;;Link ;;	X-Coord	Y-Coord	
[Polygons];;Subcatchment	X-Coord	Y-Coord	
;;; DMA2 DMA2 DMA2 DMA2 DMA2	3513.650 3483.316 5262.892 5283.114 3473.205	6804.853 6006.067 5965.622 6956.522 6966.633	
[SYMBOLS] ;;Gage	X-Coord	Y-Coord	
;; Lindbergh	2563.195	7411.527	

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.010)

13284fff Access Youth Academy

*************** NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

Analysis Options

*******	Volume	Depth
Runoff Quantity Continuity	acre-feet	inches
Total Precipitation	9.397	563.840
Evaporation Loss	0.303	18.180
Infiltration Loss	7.611	456.690
Surface Runoff	1.626	97.571
Final Storage	0.000	0.000
Continuity Error (%)	-1.525	

**************************************	Volume acre-feet	Volume 10^6 gal
Dry Weather Inflow Wet Weather Inflow Groundwater Inflow	0.000 1.626 0.000	0.000 0.530 0.000
RDII Inflow	0.000 0.000 1.626	0.000 0.000 0.530
Flooding Loss Evaporation Loss	0.000	0.000
Exfiltration Loss Initial Stored Volume Final Stored Volume	0.000 0.000 0.000	0.000 0.000 0.000
Continuity Error (%)	0.000	0.000

******* Subcatchment Runoff Summary

Subcatchment	Total Precip in	Total Runon in	Total Evap in	Total Infil in	Total Runoff in	Total Runoff 10^6 gal	Peak Runoff CFS	Runoff Coeff
DMA2	563.84	0.00	18.18	456.69	97.57	0.53	0.26	0.173

Analysis begun on: Thu Nov 09 07:50:29 2017 Analysis ended on: Thu Nov 09 07:50:42 2017 Total elapsed time: 00:00:13

```
[TITLE]
;;Project Title/Notes
13284fff Access Youth Academy
[OPTIONS]
                       Value
;;Option
FLOW_UNITS
                       CFS
GREEN_AMPT
INFILTRATION
FLOW_ROUTING
                       KINWAVE
LINK_OFFSETS
                       DEPTH
MIN SLOPE
                       0
ALLOW_PONDING
                       ŇO
SKIP_STEADY_STATE
START_DATE
                       10/17/1948
START_TIME
REPORT_START_DATE
REPORT_START_TIME
                       08:00:00
10/17/1948
                       08:00:00
12/31/2005
23:00:00
END_DATE
END_TIME
SWEEP_START
SWEEP_END
                       01/01
                       12/31
DRY_DAYS
REPORT_STEP
                       01:00:00
WET_STEP
DRY_STEP
                       00:15:00
04:00:00
ROUTING_STEP
                       0:01:00
INERTIAL_DAMPING
                       PARTIAL
NORMAL_FLOW_LIMITED FORCE_MAIN_EQUATION
                       BOTH
                       H-W
VARIABLE_STEP
LENGTHENING_STEP
                       0.75
                       0
MIN_SURFAREA
                       12.557
MAX_TRIALS
HEAD_TOLERANCE
SYS_FLOW_TOL
                       0.005
LAT_FLOW_TOL
MINIMUM_STEP
                       0.5
THREADS
[EVAPORATION]
;;Data Source
                  Parameters
MONTHLY
                  0.06
                        0.08 0.11 0.15 0.17 0.19 0.19 0.18 0.15 0.11 0.08 0.06
DRY_ONLY
                  NO
[RAINGAGES]
                  Format Interval SCF
;;Name
                                                 Source
                                   1.0
Lindbergh
                  INTENSITY 1:00
                                                 TIMESERIES TS-Lindbergh
[SUBCATCHMENTS]
                  Rain Gage
                                     Outlet
                                                       Area
                                                                 %Imperv Width
                                                                                     %Slope CurbLen SnowPack
;;Name
DMA2
                  Lindbergh
                                     BMP2
                                                       0.19509 85
BMP2
                  Lindbergh
                                     DIV2
                                                       0.00491 0
                                                                                     0.01
[SUBAREAS]
;;Subcatchment
                  N-Imperv
                              N-Perv
                                          S-Imperv S-Perv
                                                                  PctZero
                                                                              RouteTo
                                                                                          PctRouted
;;-----
DMA2
                  0.012
                                           0.05
                                                      0.1
                                                                               OUTLET
                                                      0.1
BMP2
                  0.012
                              0.15
                                          0.05
[INFILTRATION]
;;Subcatchment
                  Suction
                              Ksat
                                          IMD
ĎMA2
                              0.01875
0.025
BMP2
[LID CONTROLS]
                  Type/Layer Parameters
;;Name
;;---
BMP2
                  ВC
                              6.77
21
12
                                          0.0
0.4
0.67
BMP2
                  SURFACE
                                                      0.2
                                                                  0
BMP2
BMP2
                  SOIL
                                                                                                      1.5
                  STORAGE
BMP2
                  DRAIN
                              0.3858
[LID_USAGE]
;;Subcatchment LID Process
                                                         Width
                                                                                                         RptFile
                                   Number Area
                                                                     InitSat
                                                                                 FromImp
                                                                                              ToPerv
вмР2
BMP2
[OUTFALLS]
                  Elevation Type
;;Name
;;----
                                                             Gated Route To
                  ..acion
                                          Stage Data
PÓC1
                              FREE
                                                             NO
```

13284fff_BMP2_post.inp

[DIVIDERS]				13284fff	_BMP2_pc	ost.inp						
;;Name	Elevation	Diverted	l Link T	ype P	aramete	^s						
DIV2	0	bypass	C	UTOFF 0	.0118	0		0	0	0		
[STORAGE] ;;Name IMD ;;	Elev. M	MaxDepth	InitDepth	Shape	Curve	Name/Pa	arams		N/A	Fevap	Psi 	Ksa
; , STOR2	 0 1	1	0	TABULAR	Stora	geCurve2	2		0	0		
[CONDUITS]											_	
;;Name ;;	From Node		Node	Length		ughness		ffset		InitFlow	MaxFlow	
oypass underdrain	DIV2 DIV2		OR2 OC1	400 400		013 013	0		0	0	0	
[OUTLETS] ;;Name ··	From Node	То	Node	Offset	тур	ре 		QTab	le/Qcoeff	Qexpon	Gated	_
nidflow	STOR2	PO	oc1	0	TAE	BULAR/DE	PTH	Rati	ngCurve2		NO	
[XSECTIONS] ;Link	Shape	Geom1		Geom2	Geom3	Geo	om4	Ва	rrels Cul	lvert		
;; oypass underdrain	DUMMY DUMMY	0 0		0	0	0 0		1 1				
[CURVES] ;Name	Туре	X-Value	Y-Value									
;; RatingCurve2	 Rating	0.00	0.000									
RatingCurve2 RatingCurve2 RatingCurve2 RatingCurve2		0.25 0.50 0.75 1.00	0.084 0.145 3.647 10.011									
torageCurve2 torageCurve2 torageCurve2 torageCurve2	Storage	0 0.25 0.5 0.75	269 298 326 356									
StorageCurve2 [TIMESERIES]		1	385									
;;Name ;; ГS-Lindbergh	Date	Time 	Value						Data_formatt			
[REPORT] ;;Reporting Opt INPUT NO CONTROLS NO SUBCATCHMENTS AI NODES ALL LINKS ALL												
[TAGS]												
- [MAP] DIMENSIONS 0.000 Jnits None	0 0.000 1000	00.000 100	000.000									
[COORDINATES] ;;Node	X-Coord		Y-Coord									
POC1 DIV2 STOR2	4282.103 4302.326 3402.427		4337.715 5621.840 5662.285									
VERTICES] ;Link ;	X-Coord		Y-Coord									
Polygons] ;Subcatchment	X-Coord		Y-Coord									
, MA2 MA2 DMA2 DMA2 DMA2 BMA2 BMP2 BMP2 BMP2 BMP2 BMP2 BMP2 BMP2	3513.650 3483.316 5262.892 5283.114 3473.205 4777.553 5879.676 5829.120 4797.776 4777.553		6804.853 6006.067 5965.622 6956.522 6966.633 5682.508 5773.509 5328.615 5358.948 5722.952									
[SYMBOLS]	X-Coord		Y-Coord									
;;												

Lindbergh

2563.195

195 7411.527

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.010)

13284fff Access Youth Academy WARNING 04: minimum elevation drop used for Conduit bypass WARNING 04: minimum elevation drop used for Conduit underdrain NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. Analysis Options Analysis options

Flow Units CFS
Process Models:
Rainfall/Runoff YES
RDII ... NO
Snowmelt ... NO
Groundwater ... NO
Flow Routing YES
Ponding Allowed NO
Water Quality NO
Infiltration Method GREEN_AMPT
Flow Routing Method KINWAVE
Starting Date ... OCT-17-1948 08:00:00
Ending Date ... DEC-31-2005 23:00:00
Antecedent Dry Days ... 0.
Report Time Step ... 01:00:00
Wet Time Step ... 00:15:00
Dry Time Step ... 04:00:00
Routing Time Step ... 60.00 sec ******* Volume Depth Runoff Quantity Continuity acre-feet inches 0.052 563.840 115.953 62.371 52.301 Initial LID Storage
Total Precipitation 0.001 9.397 Evaporation Loss
Infiltration Loss
Surface Runoff
LID Drainage
Final Storage
Continuity Error (%) 1.933 1.040 0.872 5.651 339.088 0.002 0.141 -1.057 ******* Volume Volume 10^6 gal acre-feet 0.000 0.000 6.523 2.126 RDII Inflow External Inflow External Outflow 0.000 0.000 2.125 0.000 6.523 Flooding Loss
Evaporation Loss
Exfiltration Loss
Initial Stored Volume
Final Stored Volume
Continuity Error (%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 ******** Highest Flow Instability Indexes All links are stable. ******* Routing Time Step Summary Minimum Time Step :
Average Time Step :
Maximum Time Step :
Percent in Steady State :
Average Iterations per Step :
Percent Not Converging : 60.00 sec 60.00 sec 60.00 sec $0.00 \\ 1.00$ 0.00

Subcatchment	Runoff	Summarv
******	*****	*****

Total Precip	Total Runon	Total Evap	Total Infil	Total Runoff	Total Runoff	Peak Runoff	Runoff Coeff
		D	ane 1				

Subcatchment	in	in	13284fff_ in	BMP2_post in		10^6 gal	CFS	
DMA2	563.84	0.00	95.68	63.94	410.31	2.17	0.27	0.728
BMP2	563.84	16302.73	921.65	0.00	15942.54	2.13	0.25	0.945

LID Performance Summary

Subcatchment	LID Control	Total Inflow in	Evap Loss in	Infil Loss in	Surface Outflow in	Drain Outflow in	Initial Storage in	Final Storage in	Continuity Error %
BMP2	BMP2	16866.57	921.68	0.00	2130.48	13812.62	2.10	4.48	-0.00

Node	Туре	Average Depth Feet	Maximum Depth Feet		0cci	of Max irrence hr:min	Reported Max Depth Feet
POC1	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
DIV2	DIVIDER	0.00	0.00	0.00	0	00:00	0.00
STOR2	STORAGE	0.00	0.51	0.51	6263	00:53	0.51

Node	Туре	Maximum Lateral Inflow CFS	Maximum Total Inflow CFS	Time of Max Occurrence days hr:min	Lateral Inflow Volume 10^6 gal	Total Inflow Volume 10^6 gal	Flow Balance Error Percent
POC1	OUTFALL	0.00	0.26	6263 00:53	0	2.13	0.000
DIV2	DIVIDER	0.25	0.25	6263 01:01	2.13	2.13	0.000
STOR2	STORAGE	0.00	0.24	6263 01:01	0	0.274	0.060

Node Surcharge Summary

Surcharging occurs when water rises above the top of the highest conduit.

Node	Туре	Hours Surcharged	Max. Height Above Crown Feet	Min. Depth Below Rim Feet
DIV2	DIVIDER	501471.00	0.000	0.000
STOR2	STORAGE	501471.00	0.508	0.492

Node Flooding Summary

No nodes were flooded.

Storage Unit	Average Volume 1000 ft3		Evap Exfil Pcnt Pcnt Loss Loss	Maximum Volume 1000 ft3	Max Pcnt Full	Time of Max Occurrence days hr:min	Maximum Outflow CFS
STOR2	0.000	0	0 0	0.152	46	6263 00:56	0.25

Outfall Node	Flow Freq Pcnt	Avg Flow CFS	Max Flow CFS	Total Volume 10^6 gal
POC1	2.55	0.01	0.26	2.125
System	2.55	0.01	0.26	2.125 Page 2

****** Link Flow Summary

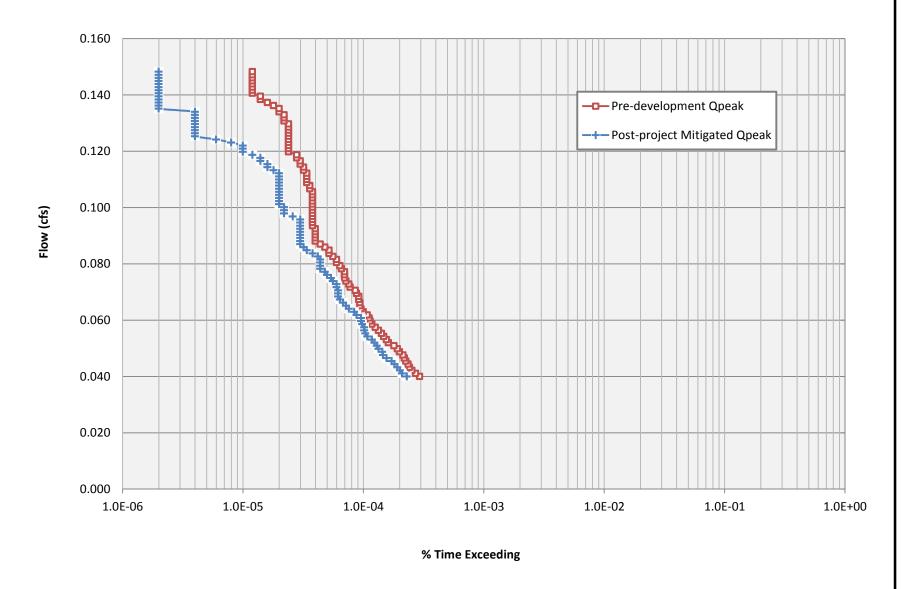
Link	Туре	Maximum Flow CFS	Time of Max Occurrence days hr:min	Veloc	Max/ Full Flow	Max/ Full Depth
bypass underdrain Midflow	DUMMY DUMMY DUMMY	0.24 0.01 0.25	6263 01:01 389 04:05 6263 00:53			

****** Conduit Surcharge Summary

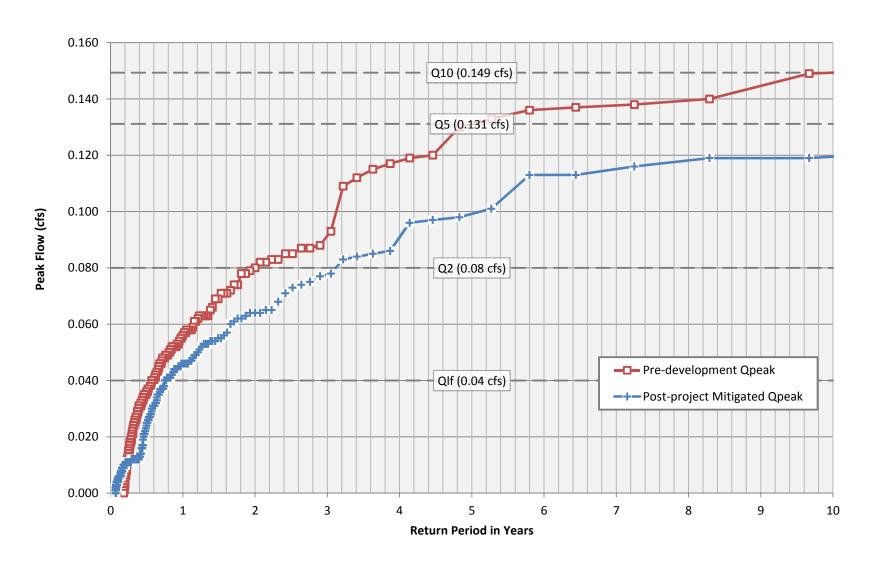
No conduits were surcharged.

Analysis begun on: Thu Nov 09 08:57:26 2017 Analysis ended on: Thu Nov 09 08:57:56 2017 Total elapsed time: 00:00:30

Low-flow Threshold: 50% 0.5xQ2 (Pre): 0.040 cfs Q10 (Pre): 0.149 cfs Ordinate #: 100 Incremental Q (Pre): 0.00109 cfs Total Hourly Data: 501471 hours


The proposed BMP:

PASSED


Beginning of Interval	Pre-develop. Flow (cfs)	Pre-develop. Hours	Pre-develop. % Time Exceeding	Post-project Hours	Post-project % Time Exceeding	Percentage	Pass/Fail
1	0.040	147	2.93E-04	115	2.29E-04	78%	Pass
2	0.041	136	2.71E-04	105	2.09E-04	77%	Pass
3	0.042	127	2.53E-04	101	2.01E-04	80%	Pass
4	0.043	121	2.41E-04	96	1.91E-04	79%	Pass
5	0.044	118	2.35E-04	91	1.81E-04	77%	Pass
6	0.045	113	2.25E-04	86	1.71E-04	76%	Pass
7	0.047	110	2.19E-04	78	1.56E-04	71%	Pass
8	0.048	107	2.13E-04	73	1.46E-04	68%	Pass
9	0.049	100	1.99E-04	72	1.44E-04	72%	Pass
10	0.050	96	1.91E-04	67	1.34E-04	70%	Pass
11	0.051	90	1.79E-04	65	1.30E-04	72%	Pass
12	0.052	81	1.62E-04	62	1.24E-04	77%	Pass
13	0.053	78	1.56E-04	59	1.18E-04	76%	Pass
14	0.054	74	1.48E-04	54	1.08E-04	73%	Pass
15	0.055	71	1.42E-04	52	1.04E-04	73%	Pass
16	0.056	67	1.34E-04	51	1.02E-04	76%	Pass
17	0.057	63	1.26E-04	51	1.02E-04	81%	Pass
18	0.059	59	1.18E-04	49	9.77E-05	83%	Pass
19	0.060	57	1.14E-04	48	9.57E-05	84%	Pass
20	0.061	56	1.12E-04	48	9.57E-05	86%	Pass
21	0.062	54	1.08E-04	44	8.77E-05	81%	Pass
22	0.063	50	9.97E-05	42	8.38E-05	84%	Pass
23	0.064	48	9.57E-05	38	7.58E-05	79%	Pass
24	0.065	47	9.37E-05	36	7.18E-05	77%	Pass
25	0.066	47	9.37E-05	34	6.78E-05	72%	Pass
26	0.067	46	9.17E-05	32	6.38E-05	70%	Pass
27	0.068	46	9.17E-05	31	6.18E-05	67%	Pass
28	0.070	44	8.77E-05	31	6.18E-05	70%	Pass
29	0.071	43	8.57E-05	31	6.18E-05	72%	Pass
30	0.072	39	7.78E-05	30	5.98E-05	77%	Pass
31	0.073	38	7.58E-05	30	5.98E-05	79%	Pass
32	0.074	36	7.18E-05	28	5.58E-05	78%	Pass
33	0.075	35	6.98E-05	27	5.38E-05	77%	Pass
34	0.076	35	6.98E-05	25	4.99E-05	71%	Pass
35	0.077	35	6.98E-05	24	4.79E-05	69%	Pass
36	0.078	33	6.58E-05	22	4.39E-05	67%	Pass
37	0.079	32	6.38E-05	22	4.39E-05	69%	Pass
38	0.080	30	5.98E-05	22	4.39E-05	73%	Pass
39	0.082	30	5.98E-05	22	4.39E-05	73%	Pass
40	0.083	28	5.58E-05	21	4.19E-05	75%	Pass
41	0.084	26	5.18E-05	19	3.79E-05	73%	Pass
42	0.085	26	5.18E-05	17	3.39E-05	65%	Pass
43	0.086	24	4.79E-05	16	3.19E-05	67%	Pass
44	0.087	22	4.39E-05	15	2.99E-05	68%	Pass
45	0.088	20	3.99E-05	15	2.99E-05	75%	Pass
46	0.089	20	3.99E-05	15	2.99E-05	75%	Pass
47	0.090	20	3.99E-05	15	2.99E-05	75%	Pass
48	0.091	20	3.99E-05	15	2.99E-05	75%	Pass
49	0.092	20	3.99E-05	15	2.99E-05	75%	Pass
50	0.094	19	3.79E-05	15	2.99E-05	79%	Pass
51	0.095	19	3.79E-05	15	2.99E-05	79%	Pass
52	0.096	19	3.79E-05	15	2.99E-05	79%	Pass

Beginning of Interval	Pre-develop. Flow (cfs)	Pre-develop. Hours	Pre-develop. % Time Exceeding	Post-project Hours	Post-project % Time Exceeding	Percentage	Pass/Fail
53	0.097	19	3.79E-05	13	2.59E-05	68%	Pass
54	0.098	19	3.79E-05	11	2.19E-05	58%	Pass
55	0.099	19	3.79E-05	11	2.19E-05	58%	Pass
56	0.100	19	3.79E-05	11	2.19E-05	58%	Pass
57	0.101	19	3.79E-05	10	1.99E-05	53%	Pass
58	0.102	19	3.79E-05	10	1.99E-05	53%	Pass
59	0.103	19	3.79E-05	10	1.99E-05	53%	Pass
60	0.105	19	3.79E-05	10	1.99E-05	53%	Pass
61	0.106	19	3.79E-05	10	1.99E-05	53%	Pass
62	0.107	18	3.59E-05	10	1.99E-05	56%	Pass
63	0.108	18	3.59E-05	10	1.99E-05	56%	Pass
64	0.109	17	3.39E-05	10	1.99E-05	59%	Pass
65	0.110	17	3.39E-05	10	1.99E-05	59%	Pass
66	0.111	17	3.39E-05	10	1.99E-05	59%	Pass
67	0.112	17	3.39E-05	10	1.99E-05	59%	Pass
68	0.113	16	3.19E-05	9	1.79E-05	56%	Pass
69	0.114	16	3.19E-05	8	1.60E-05	50%	Pass
70	0.115	15	2.99E-05	8	1.60E-05	53%	Pass
71	0.117	15	2.99E-05	7	1.40E-05	47%	Pass
72	0.118	14	2.79E-05	7	1.40E-05	50%	Pass
73	0.119	14	2.79E-05	6	1.20E-05	43%	Pass
74	0.120	12	2.39E-05	5	9.97E-06	42%	Pass
75	0.121	12	2.39E-05	5	9.97E-06	42%	Pass
76	0.122	12	2.39E-05	5	9.97E-06	42%	Pass
77	0.123	12	2.39E-05	4	7.98E-06	33%	Pass
78	0.124	12	2.39E-05	3	5.98E-06	25%	Pass
79	0.125	12	2.39E-05	2	3.99E-06	17%	Pass
80	0.126	12	2.39E-05	2	3.99E-06	17%	Pass
81	0.127	12	2.39E-05	2	3.99E-06	17%	Pass
82	0.129	12	2.39E-05	2	3.99E-06	17%	Pass
83	0.130	12	2.39E-05	2	3.99E-06	17%	Pass
84	0.131	11	2.19E-05	2	3.99E-06	18%	Pass
85	0.132	11	2.19E-05	2	3.99E-06	18%	Pass
86	0.133	11	2.19E-05	2	3.99E-06	18%	Pass
87	0.134	10	1.99E-05	2	3.99E-06	20%	Pass
88	0.135	10	1.99E-05	1	1.99E-06	10%	Pass
89	0.136	9	1.79E-05	1	1.99E-06	11%	Pass
90	0.137	8	1.60E-05	1	1.99E-06	13%	Pass
91	0.138	7	1.40E-05	1	1.99E-06	14%	Pass
92	0.140	7	1.40E-05	1	1.99E-06	14%	Pass
93	0.141	6	1.20E-05	1	1.99E-06	17%	Pass
94	0.142	6	1.20E-05	1	1.99E-06	17%	Pass
95	0.143	6	1.20E-05	1	1.99E-06	17%	Pass
96	0.144	6	1.20E-05	1	1.99E-06	17%	Pass
97	0.145	6	1.20E-05	1	1.99E-06	17%	Pass
98	0.146	6	1.20E-05	1	1.99E-06	17%	Pass
99	0.147	6	1.20E-05	1	1.99E-06	17%	Pass
100	0.148	6	1.20E-05	1	1.99E-06	17%	Pass

13284fff_POC1Combined_pre.inp

```
[TITLE]
;;Project Title/Notes
13284fff Access Youth Academy
[OPTIONS]
                          value
;;Option
FLOW_UNITS
                          CFS
GREEN_AMPT
INFILTRATION FLOW_ROUTING
                           KINWAVE
LINK_OFFSETS
                          DEPTH
MIN SLOPE
                           0
ALLOW_PONDING
                           ΝO
SKIP_STEADY_STATE
                          NO
START_DATE
                           10/17/1948
START_TIME
REPORT_START_DATE
REPORT_START_TIME
                          08:00:00
10/17/1948
                          08:00:00
12/31/2005
23:00:00
END_DATE
END_TIME
SWEEP_START
SWEEP_END
                           01/01
                           12/31
DRY_DAYS
                          01:00:00
REPORT_STEP
WET_STEP
DRY_STEP
                          00:15:00
04:00:00
ROUTING_STEP
                          0:01:00
INERTIAL_DAMPING
NORMAL_FLOW_LIMITED
FORCE_MAIN_EQUATION
                           PARTIAL
                          BOTH
                          H-W
VARIABLE_STEP
LENGTHENING_STEP
                           0.75
                           0
                          12.557
8
MIN_SURFAREA
MAX_TRIALS
HEAD_TOLERANCE
SYS_FLOW_TOL
                           0.005
LAT_FLOW_TOL
MINIMUM_STEP
                          ŏ.5
THREADS
[EVAPORATION]
;;Data Source
                     Parameters
MONTHLY
                              0.08
                                       0.11
                                                0.15
                                                         0.17
                                                                 0.19
                                                                          0.19
                                                                                   0.18
                                                                                            0.15
                                                                                                     0.11
                                                                                                              0.08
                                                                                                                       0.06
DRY_ONLY
                     NΩ
[RAINGAGES]
;;Name
                     Format
                                  Interval SCF
                                                         Source
Ĺindbergh
                     INTENSITY 1:00
                                             1.0
                                                         TIMESERIES TS-Lindbergh
[SUBCATCHMENTS]
                     Rain Gage
                                           Outlet
                                                                Area
                                                                            %Imperv Width
                                                                                                   %Slope
                                                                                                              CurbLen SnowPack
;;Name
DMA1
                     Lindbergh
                                                                0.6
                                                                            0
                                                                                       132
                                                                                                   0.9
                                                                                                              0
                                           POC1
DMA2
                     Lindbergh
                                           POC1
                                                                0.2
                                                                                       123
                                                                                                   0.8
                                                                                                              Ó
[SUBAREAS]
;;Subcatchment
                     N-Imperv
                                   N-Perv
                                                 S-Imperv
                                                               S-Perv
                                                                             PctZero
                                                                                           RouteTo
                                                                                                         PctRouted
DMA1
                     0.012
                                                 0.05
                                                               0.1
                                                                                           OUTLET
DMA2
                                                               0.1
                     0.012
                                   0.15
                                                 0.05
                                                                                           OUTLET
[INFILTRATION]
;;Subcatchment
                     Suction
                                   Ksat
                                                 IMD
DMA1
DMA2
                     9
                                   0.025
                                                 0.33
[OUTFALLS]
                     Elevation
                                   Type
                                                 Stage Data
                                                                       Gated
                                                                                  Route To
;;Name
                     0
PÓC1
                                   FRFF
                                                                       NΩ
[TIMESERIES]
;;Name
                     Date
                                   Time
                                                 Value
ÍS-Lindbergh
                     FILE "W:\WQ_DRN_LID_HMP-MunicipalityReferences\HMP\_SWMM\RainfallData_formatted\1hr\lindbergh.dat"
[REPORT]
;;Reporting Options
CONTROLS
SUBCATCHMENTS ALL
NODES ALL
LINKS ALL
[TAGS]
```

[MAP]

DIMENSIONS 0.000 0.000 10000.000 10000.000 Units None

[COORDINATES] ;;Node ;;	X-Coord 	Y-Coord
POCI	4262.103	4337.713
[VERTICES] ;;Link ;;	X-Coord	Y-Coord
[Polygons] ;;Subcatchment	X-Coord	Y-Coord
DMA1 DMA1 DMA1 DMA1 DMA1 DMA1 DMA2 DMA2 DMA2 DMA2 DMA2 DMA2 DMA2 DMA2	3513.650 3483.316 5262.892 5283.114 3473.205 5980.789 6011.122 8023.256 8043.478 5930.233	6804.853 6006.067 5965.622 6956.522 6966.633 5995.956 6885.743 6905.966 5884.732 5925.177
[SYMBOLS] ;;Gage	X-Coord	Y-Coord
Lindbergh	2563.195	7411.527

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.010)

13284fff Access Youth Academy

********** NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

***** Analysis Options

**************************************	Volume acre-feet	Depth inches
Total Precipitation Evaporation Loss Infiltration Loss Surface Runoff Final Storage Continuity Error (%)	37.589 1.248 30.812 6.061 0.000 -1.417	563.840 18.723 462.186 90.922 0.000

**************************************	Volume acre-feet	Volume 10^6 gal
**************************************	0.000 6.061 0.000 0.000 0.000 6.061 0.000 0.000	0.000 1.975 0.000 0.000 0.000 1.975 0.000 0.000
Initial Stored Volume Final Stored Volume Continuity Error (%)	0.000 0.000 0.000	0.000

******** Subcatchment Runoff Summary

Subcatchment	Total Precip in	Total Runon in	Total Evap in	Total Infil in	Total Runoff in	Total Runoff 10^6 gal	Peak Runoff CFS	Runoff Coeff
DMA1	563.84	0.00	18.82	464.12	88.70	1.45	0.73	0.157
DMA2	563.84	0.00	18.42	456.38	97.58	0.53	0.26	0.173

Analysis begun on: Thu Nov 09 09:31:17 2017 Analysis ended on: Thu Nov 09 09:31:31 2017 Total elapsed time: 00:00:14

```
[TITLE]
;;Project Title/Notes
13284fff Access Youth Academy
[OPTIONS]
                             value
;;Option
FLOW_UNITS
                             CFS
GREEN_AMPT
INFILTRATION FLOW_ROUTING
                             KINWAVE
LINK_OFFSETS
                             DEPTH
MIN SLOPE
                             0
ALLOW_PONDING
                             ΝO
SKIP_STEADY_STATE
                             NO
START_DATE
                             10/17/1948
START_TIME
REPORT_START_DATE
REPORT_START_TIME
                             08:00:00
10/17/1948
                             08:00:00
12/31/2005
23:00:00
END_DATE
END_TIME
SWEEP_START
SWEEP_END
                             01/01
                             12/31
DRY_DAYS
                             01:00:00
REPORT_STEP
WET_STEP
DRY_STEP
                             00:15:00
04:00:00
ROUTING_STEP
                             0:01:00
INERTIAL_DAMPING
NORMAL_FLOW_LIMITED
FORCE_MAIN_EQUATION
                             PARTIAL
                             BOTH
                             H-W
VARIABLE_STEP
LENGTHENING_STEP
                             0.75
                             0
MIN_SURFAREA
MAX_TRIALS
HEAD_TOLERANCE
SYS_FLOW_TOL
                             12.557
8
                             0.005
LAT_FLOW_TOL
MINIMUM_STEP
                             ŏ.5
THREADS
[EVAPORATION]
;;Data Source
                       Parameters
MONTHLY
                                 0.08
                                         0.11
                                                    0.15
                                                              0.17
                                                                       0.19
                                                                                 0.19
                                                                                           0.18
                                                                                                    0.15
                                                                                                             0.11
                                                                                                                       0.08
                                                                                                                                 0.06
DRY_ONLY
                       NΩ
[RAINGAGES]
;;Name
                       Format
                                     Interval SCF
                                                              Source
Lindbergh
                       INTENSITY 1:00
                                                 1.0
                                                              TIMESERIES TS-Lindbergh
[SUBCATCHMENTS]
;;Name
                       Rain Gage
                                               Outlet
                                                                      Area
                                                                                  %Imperv
                                                                                              Width
                                                                                                           %Slope
                                                                                                                       CurbLen SnowPack
DMA1
                       Lindbergh
                                               BMP1
                                                                      0.58338
                                                                                  83
                                                                                               79
                                                                                                           0.9
                                                                                                                       0
BMP1
DMA2
                       Lindbergh
Lindbergh
                                               DIV1
BMP2
                                                                      0.01662
0.19509
                                                                                  0
85
                                                                                               6.0
                                                                                                           0.8
                                                                                                                       0
вмР2
                       Lindbergh
                                               DIV2
                                                                      0.00491
[SUBAREAS]
;;Subcatchment
                       N-Imperv
                                       N-Perv
                                                      S-Imperv
                                                                     S-Perv
                                                                                    PctZero
                                                                                                   RouteTo
                                                                                                                  PctRouted
                       0.012
0.012
                                      0.15
0.15
0.15
0.15
                                                     0.05
                                                                    0.1
0.1
0.1
0.1
                                                                                    25
25
25
25
DMA1
                                                                                                   OUTLET
BMP1
DMA2
                                                      0.05
                       0.012
                                                                                                   OUTL FT
BMP2
                                                                                                   OUTLET
[INFILTRATION]
;;Subcatchment
                       Suction
                                       Ksat
                                                      IMD
                                       0.01875
DMA1
                       9
                                                      0.33
BMP1
DMA2
                       9
                                       0.01875
                                                      0.33
                       9
BMP2
                                       0.025
                                                      0.33
[LID_CONTROLS]
;;Name
;;----
                       Type/Layer Parameters
                       BC
BMP1
                        SURFACE
                                       6.00
                                                      0
                                                                     0
                                                                                                   5
                                                     0.4
0.67
                                                                    0.2
                                                                                    0.1
0
6
BMP1
BMP1
                                       33
12
                                                                                                                  5
                       SOIL
                                                                                                                                 1.5
                       STORAGE
BMP1
                       DRAIN
                                       0.1140
                                                                     ŏ
BMP2
                                      6.77
21
12
                                                                    0
0.2
0
0
BMP2
BMP2
                        SURFACE
                                                      0.0
                                                                                    _{0.1}^{0}
                                                     0.4
0.67
0.5
                                                                                                                  5
                                                                                                                                 1.5
                       SOTI
BMP2
                       STORAGE
                                                                                    0
                                       0.3858
BMP2
                       DRAIN
                                                                                    6
```

Page 1

_				13	284fff_p	OC1Com	bined	_post.	inp					
[LID_USAGE] ;;Subcatchment DrainTo ;;			umber						FromI	mp Tol	Perv	RptFile		
BMP1 BMP2									100 100	0				
[OUTFALLS] ;;Name ;;	Elevation	Туре	Sta	ıge Da	ta	Gated	R	oute T	0					
90C1	0	FREE				NO				_				
[DIVIDERS] ;;Name	Elevation	Diverted	d Link	Ту	rpe	Param	eters							
;; DIV1 DIV2	0	bypass bypass2		CU CU	TOFF TOFF	0.013 0.011	5 8	0	0		0	0		
[STORAGE] ;;Name IMD	Elev. M										N/A 	Fevap	Psi 	Ksat
STOR1 STOR2	_)	0 0		
[CONDUITS] ;;Name ;;	From Node	To	Node		Leng	th	Roug	hness	InOffse	t OutO	ffset	InitFlow	MaxFlow	
;;bypass 1 bypass2 2	DIV1 DIV1 DIV2 DIV2	S1 P(S1 P(FOR1 FOR2 FOR2		400 400 400 400		0.01 0.01 0.01 0.01	3 3 3 3	0 0 0 0	0 0 0 0		0 0 0 0	0 0 0 0	
[OUTLETS] ;;Name ;;	From Node	To	Node		offs	et	Туре		QT	able/Qco	eff	Qexpon	Gated	
Midflow Midflow2	STOR1 STOR2	PC	DC1 DC1				TABU	LAR/DE	PTH Ra	tingCurve tingCurve	e1 e2		NO NO	•
[XSECTIONS] ;;Link ;;	Shape	Geom1			Geom2	Geo	m3	Geoi	m4	Barrels	Cul	vert		
ypass l	DUMMY DUMMY	0			0	0		0		1 1				
bypass2 2	DUMMY DUMMY	Geomi 0 0 0 0			0 0	0		0		1 1				
[CURVES] ;;Name ;;	Туре		Y-V	alue										
,, RatingCurve1 RatingCurve1 RatingCurve1 RatingCurve1	Rating	0.00 0.50 0.75 1.00	0.0 0.1 0.4 4.6	.91 .90										
; RatingCurve2 RatingCurve2 RatingCurve2 RatingCurve2 RatingCurve2	Rating	0.00 0.25 0.50 0.75 1.00	0.0 0.0 0.1 3.6 10.	84 45										
; StorageCurve1 StorageCurve1 StorageCurve1 StorageCurve1 StorageCurve1	Storage	0 0.25 0.5 0.75	724 724 724 724 724	 - -										
; StorageCurve2 StorageCurve2 StorageCurve2 StorageCurve2 StorageCurve2	Storage	0 0.25 0.5 0.75	269 298 326 356 385											
[TIMESERIES] ;;Name	Date	Time	val	ue										
TS-Lindbergh	FILE "W:\W	/Q_DRN_LI	HMP-M	lunici	 palityRe	ferenc	es\HM	P_SWMI	M\Rainfa	11Data_fo	ormatt	ed\1hr\lind	lbergh.dat	."
[REPORT] ;;Reporting Optiv INPUT NO CONTROLS NO SUBCATCHMENTS AL NODES ALL LINKS ALL					-									
[TAGS]														

Page 2

[MAP]

[COORDINATES];;Node	X-Coord	Y-Coord
, ,	4282.103 4474.216 298.281 3634.985 1056.623	4337.715 5621.840 5005.056 5652.174 5035.389
[VERTICES] ;;Link ;;	X-Coord	Y-Coord
[Polygons];;Subcatchment	X-Coord	Y-Coord
;;Subcatchment ;;	3513.650 3483.316 5262.892 5283.114 3473.205 4858.443 5606.673 5586.451 4777.553 4767.442 1845.298 1865.521 55.612 65.723 1875.632 844.287 1076.845 1086.957	6804.853 6006.067 5965.622 6956.522 6966.633 5803.842 5793.731 5318.504 5348.837 5834.176 6875.632 5975.733 7027.300 6976.744 5702.730 6976.744 5702.730 5733.064 5288.170 5267.947 5682.508
[SYMBOLS] ;;Gage	X-Coord	Y-Coord
;; Lindbergh	2563.195	7411.527

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.010)

```
13284fff Access Youth Academy WARNING 04: minimum elevation drop used for Conduit bypass WARNING 04: minimum elevation drop used for Conduit 1 WARNING 04: minimum elevation drop used for Conduit bypass2 WARNING 04: minimum elevation drop used for Conduit 2
 NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.
  ******
  Analysis Options
#Interview of the control of the con
  ********
                                                                                                                                        Volume
                                                                                                                                                                                                    Depth
 Runoff Quantity Continuity
                                                                                                                            acre-feet
                                                                                                                                                                                                inches
0.005
                                                                                                                                                                                                    0.081
                                                                                                                                        37.589
8.079
4.594
                                                                                                                                                                                            563.840
121.184
                                                                                                                                                                                                68.905
                                                                                                                                                                                            67.760
310.903
                                                                                                                                             4.517
                                                                                                                                            0.013
                                                                                                                                                                                                    0.191
                                                                                                                                         -0.891
  ********
                                                                                                                                        Volume
                                                                                                                                                                                                Volume
 Flow Routing Continuity
                                                                                                                                                                                        10^6 gal
Dry Weather Inflow
Wet Weather Inflow
Groundwater Inflow
RDII Inflow
External Inflow
Flooding Loss
Evaporation Loss
Exfiltration Loss
Initial Stored Volume
Final Stored Volume
Continuity Error (%)
                                                                                                                                             0.000
                                                                                                                                                                                                    0.000
                                                                                                                                        25.244
                                                                                                                                                                                                   8.226
0.000
                                                                                                                                             0.000
                                                                                                                                                                                                    0.000
                                                                                                                                        0.000
25.240
0.000
                                                                                                                                                                                                   0.000
8.225
0.000
                                                                                                                                                                                                    0.000
                                                                                                                                             0.000
                                                                                                                                             0.000
                                                                                                                                                                                                    0.000
                                                                                                                                             0.000
                                                                                                                                                                                                    0.000
                                                                                                                                             0.000
                                                                                                                                                                                                    0.000
                                                                                                                                             0.016
  *******
 Highest Flow Instability Indexes
 All links are stable.
  *********
  Routing Time Step Summary
 Minimum Time Step
                                                                                                                                    60.00 sec
60.00 sec
60.00 sec
 Average Time Step
Maximum Time Step
 Percent in Steady State :
Average Iterations per Step :
                                                                                                                                        0.00
  Percent Not Converging
                                                                                                                                         0.00
 Subcatchment Runoff Summary
```

Subcatchment	Total Precip in	Total Runon in	L3284fff_POC Total Evap in	lCombined_p Total Infil in	oost.rpt Total Runoff in	Total Runoff 10^6 gal	Peak Runoff CFS	Runoff Coeff
DMA1	563.84	0.00	95.91	73.11	399.64	6.33	0.79	0.709
BMP1	563.84	14027.63	1071.34	0.00	13517.03	6.10	0.82	0.926
DMA2	563.84	0.00	95.68	63.94	410.31	2.17	0.27	0.728
BMP2	563.84	16302.73	921.65	0.00	15942.54	2.13	0.25	0.945

Subcatchment	LID Control	Total Inflow in	Evap Loss in	Infil Loss in	Surface Outflow in	Drain Outflow in	Initial Storage in	Final Storage in	Continuity Error %
BMP1	BMP1	14591.47	1071.37	0.00	2632.33	10885.15	3.30	6.36	-0.00
BMP2	BMP2	16866.57	921.68		2130.48	13812.62	2.10	4.48	-0.00

Node	Туре	Average Depth Feet	Maximum Depth Feet	Maximum HGL Feet	0ccu	of Max irrence hr:min	Reported Max Depth Feet
POC1	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
DIV1	DIVIDER	0.00	0.00	0.00	0	00:00	0.00
DIV2	DIVIDER	0.00	0.00	0.00	0	00:00	0.00
STOR1	STORAGE	0.00	0.77	0.77	6263	01:02	0.77
STOR2	STORAGE	0.00	0.51	0.51	6263	00:53	0.51

Node	Туре	Maximum Lateral Inflow CFS	Maximum Total Inflow CFS	Time of Max Occurrence days hr:min	Lateral Inflow Volume 10^6 gal	Total Inflow Volume 10^6 gal	Flow Balance Error Percent
POC1	OUTFALL	0.00	1.07	6263 01:02	0	8.22	0.000
DIV1	DIVIDER	0.82	0.82	6263 01:01	6.1	6.1	0.000
DIV2	DIVIDER	0.25	0.25	6263 01:01	2.13	2.13	0.000
STOR1	STORAGE	0.00	0.80	6263 01:01	0	1.18	0.096
STOR2	STORAGE	0.00	0.24	6263 01:01	0	0.274	0.060

Surcharging occurs when water rises above the top of the highest conduit.

Node	Туре	Hours Surcharged	Max. Height Above Crown Feet	Min. Depth Below Rim Feet
DIV1 DIV2 STOR1	DIVIDER DIVIDER STORAGE	501471.00 501471.00 501471.00	0.000 0.000 0.769	0.000 0.000 0.231
STOR1	STORAGE	501471.00	0.769	0.231

No nodes were flooded.

Storage Unit	Average Volume 1000 ft3	Avg Pcnt Full	Evap E Pcnt Loss		Maximum Volume 1000 ft3	Max Pcnt Full	Time of Max Occurrence days hr:min	Maximum Outflow CFS
STOR1 STOR2	0.000 0.000	0 0	0	0	0.557 0.152	77 46	6263 01:01 6263 00:56	0.80 0.25

******* Outfall Loading Summary

Outfall Node	Flow Freq Pcnt	Avg Flow CFS	Max Flow CFS	Total Volume 10^6 gal
POC1	5.90	0.01	1.07	8.224
System	5.90	0.01	1.07	8.224

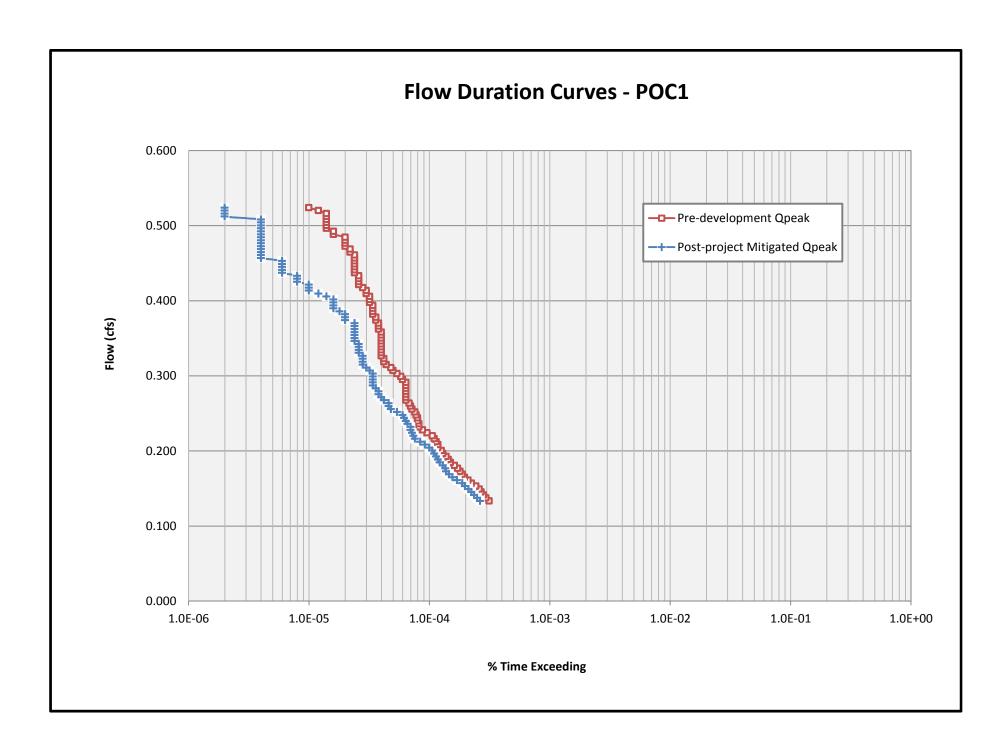
****** Link Flow Summary

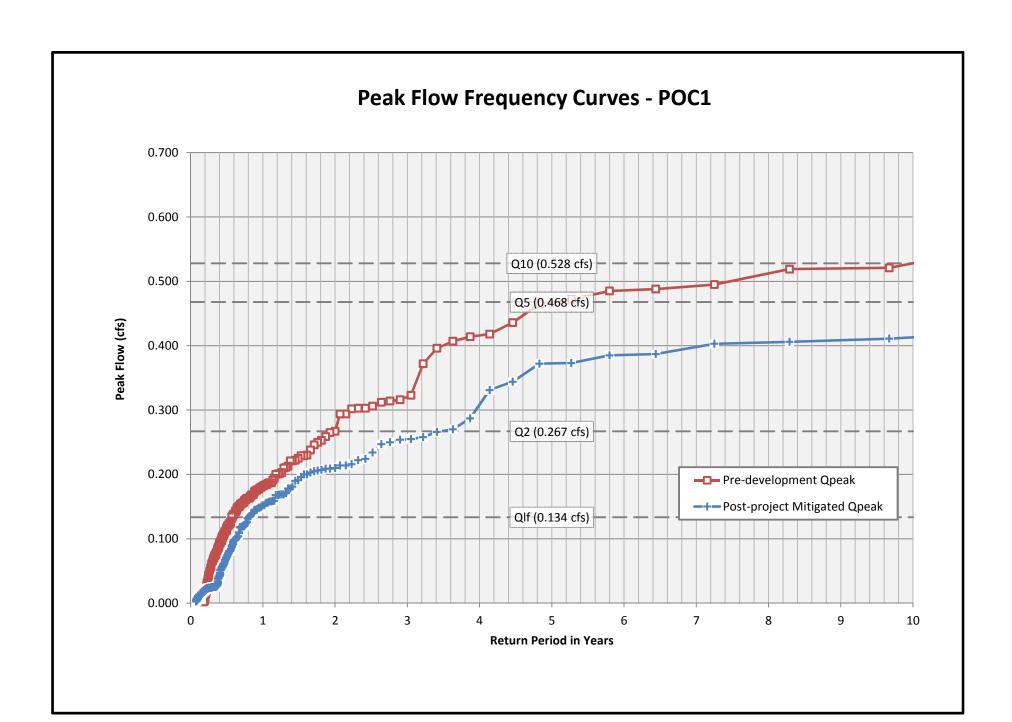
Link	Туре	Maximum Flow CFS	Time of Max Occurrence days hr:min	Maximum Veloc ft/sec	Max/ Full Flow	Max/ Full Depth
bypass 1 bypass2 2 Midflow Midflow2	DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY	0.80 0.01 0.24 0.01 0.80 0.25	6263 01:01 389 04:01 6263 01:01 389 04:05 6263 01:02 6263 00:53			

******* Conduit Surcharge Summary

No conduits were surcharged.

Analysis begun on: Wed Nov 29 13:33:42 2017 Analysis ended on: Wed Nov 29 13:34:24 2017 Total elapsed time: 00:00:42


Low-flow Threshold: 50% 0.5xQ2 (Pre): 0.134 cfs Q10 (Pre): 0.528 cfs Ordinate #: 100 0.00395 Incremental Q (Pre): cfs Total Hourly Data: 501471 hours


The proposed BMP:

PASSED

Beginning of Interval	Pre-develop. Flow (cfs)	Pre-develop. Hours	Pre-develop. % Time Exceeding	Post-project Hours	Post-project % Time Exceeding	Percentage	Pass/Fail
1	0.134	157	3.13E-04	132	2.63E-04	84%	Pass
2	0.137	148	2.95E-04	125	2.49E-04	84%	Pass
3	0.141	141	2.81E-04	118	2.35E-04	84%	Pass
4	0.145	135	2.69E-04	112	2.23E-04	83%	Pass
5	0.149	130	2.59E-04	106	2.11E-04	82%	Pass
6	0.153	122	2.43E-04	99	1.97E-04	81%	Pass
7	0.157	112	2.23E-04	94	1.87E-04	84%	Pass
8	0.161	105	2.09E-04	85	1.70E-04	81%	Pass
9	0.165	98	1.95E-04	78	1.56E-04	80%	Pass
10	0.169	94	1.87E-04	73	1.46E-04	78%	Pass
11	0.173	90	1.79E-04	69	1.38E-04	77%	Pass
12	0.177	86	1.71E-04	68	1.36E-04	79%	Pass
13	0.181	81	1.62E-04	65	1.30E-04	80%	Pass
14	0.185	75	1.50E-04	61	1.22E-04	81%	Pass
15	0.189	72	1.44E-04	59	1.18E-04	82%	Pass
16	0.193	69	1.38E-04	57	1.14E-04	83%	Pass
17	0.197	65	1.30E-04	55	1.10E-04	85%	Pass
18	0.201	63	1.26E-04	53	1.06E-04	84%	Pass
19	0.205	59	1.18E-04	50	9.97E-05	85%	Pass
20	0.208	59	1.18E-04	46	9.17E-05	78%	Pass
21	0.212	57	1.14E-04	42	8.38E-05	74%	Pass
22	0.216	55	1.10E-04	38	7.58E-05	69%	Pass
23	0.220	53	1.06E-04	37	7.38E-05	70%	Pass
24	0.224	48	9.57E-05	36	7.18E-05	75%	Pass
25	0.228	44	8.77E-05	35	6.98E-05	80%	Pass
26	0.232	41	8.18E-05	35	6.98E-05	85%	Pass
27	0.236	41	8.18E-05	33	6.58E-05	80%	Pass
28	0.240	40	7.98E-05	32	6.38E-05	80%	Pass
29	0.244	40	7.98E-05	31	6.18E-05	78%	Pass
30	0.248	39	7.78E-05	30	5.98E-05	77%	Pass
31	0.252	38	7.58E-05	27	5.38E-05	71%	Pass
32	0.256	36	7.18E-05	24	4.79E-05	67%	Pass
33	0.260	35	6.98E-05	23	4.59E-05	66%	Pass
34	0.264	34	6.78E-05	23	4.59E-05	68%	Pass
35	0.268	32	6.38E-05	21	4.19E-05	66%	Pass
36	0.272	32	6.38E-05	20	3.99E-05	63%	Pass
37	0.276	32	6.38E-05	19	3.79E-05	59%	Pass
38	0.279	32	6.38E-05	19	3.79E-05	59%	Pass
39	0.283	32	6.38E-05	18	3.59E-05	56%	Pass
40	0.287	32	6.38E-05	17	3.39E-05	53%	Pass
41	0.291	32	6.38E-05	17	3.39E-05	53%	Pass
42	0.295	30	5.98E-05	17	3.39E-05	57%	Pass
43	0.299	29	5.78E-05	17	3.39E-05	59%	Pass
44	0.303	27	5.38E-05	17	3.39E-05	63%	Pass
45	0.307	25	4.99E-05	16	3.19E-05	64%	Pass
46	0.311	24	4.79E-05	15	2.99E-05	63%	Pass
47	0.315	22	4.39E-05	14	2.79E-05	64%	Pass
48	0.319	21	4.19E-05	14	2.79E-05	67%	Pass
49	0.323	21	4.19E-05	14	2.79E-05	67%	Pass
50	0.327	20	3.99E-05	14	2.79E-05	70%	Pass
51	0.331	20	3.99E-05	13	2.59E-05	65%	Pass
52	0.335	20	3.99E-05	13	2.59E-05	65%	Pass

Beginning of Interval	Pre-develop. Flow (cfs)	Pre-develop. Hours	Pre-develop. % Time Exceeding	Post-project Hours	Post-project % Time Exceeding	Percentage	Pass/Fail
53	0.339	20	3.99E-05	13	2.59E-05	65%	Pass
54	0.343	20	3.99E-05	13	2.59E-05	65%	Pass
55	0.347	20	3.99E-05	12	2.39E-05	60%	Pass
56	0.350	20	3.99E-05	12	2.39E-05	60%	Pass
57	0.354	20	3.99E-05	12	2.39E-05	60%	Pass
58	0.358	20	3.99E-05	12	2.39E-05	60%	Pass
59	0.362	19	3.79E-05	12	2.39E-05	63%	Pass
60	0.366	19	3.79E-05	12	2.39E-05	63%	Pass
61	0.370	19	3.79E-05	12	2.39E-05	63%	Pass
62	0.374	18	3.59E-05	10	1.99E-05	56%	Pass
63	0.378	18	3.59E-05	10	1.99E-05	56%	Pass
64	0.382	17	3.39E-05	10	1.99E-05	59%	Pass
65	0.386	17	3.39E-05	9	1.79E-05	53%	Pass
66	0.390	17	3.39E-05	8	1.60E-05	47%	Pass
67	0.394	17	3.39E-05	8	1.60E-05	47%	Pass
68	0.398	16	3.19E-05	8	1.60E-05	50%	Pass
69	0.402	16	3.19E-05	8	1.60E-05	50%	Pass
70	0.406	16	3.19E-05	7	1.40E-05	44%	Pass
71	0.410	15	2.99E-05	6	1.20E-05	40%	Pass
72	0.414	15	2.99E-05	5	9.97E-06	33%	Pass
73	0.418	14	2.79E-05	5	9.97E-06	36%	Pass
74	0.421	13	2.59E-05	5	9.97E-06	38%	Pass
75	0.425	13	2.59E-05	4	7.98E-06	31%	Pass
76	0.429	13	2.59E-05	4	7.98E-06	31%	Pass
77	0.433	13	2.59E-05	4	7.98E-06	31%	Pass
78	0.437	12	2.39E-05	3	5.98E-06	25%	Pass
79 79	0.441	12	2.39E-05	3	5.98E-06	25%	Pass
80	0.445	12	2.39E-05	3	5.98E-06	25%	Pass
81	0.449	12	2.39E-05	3	5.98E-06	25%	Pass
82	0.453	12	2.39E-05	3	5.98E-06	25%	Pass
83	0.457	12	2.39E-05	2	3.99E-06	17%	Pass
84	0.461	12	2.39E-05	2	3.99E-06	17%	Pass
85	0.465	11	2.19E-05	2	3.99E-06	18%	Pass
86	0.469	11	2.19E-05	2	3.99E-06	18%	Pass
87	0.403	10	1.99E-05	2	3.99E-06	20%	Pass
88	0.473	10	1.99E-05	2	3.99E-06	20%	Pass
89	0.477	10	1.99E-05	2	3.99E-06	20%	Pass
90	+	10	1.99E-05	2	+	20%	
90	0.485 0.489	8	1.60E-05	2	3.99E-06 3.99E-06	25%	Pass Pass
92	+	8		2		25%	
	0.493	7	1.60E-05		3.99E-06		Pass
93	0.496	7	1.40E-05	2	3.99E-06	29%	Pass
94	0.500		1.40E-05	2	3.99E-06	29%	Pass
95	0.504	7	1.40E-05	2	3.99E-06	29%	Pass
96	0.508	7	1.40E-05	2	3.99E-06	29%	Pass
97	0.512	7	1.40E-05	1	1.99E-06	14%	Pass
98	0.516	7	1.40E-05	1	1.99E-06	14%	Pass
99	0.520	6	1.20E-05	1	1.99E-06	17%	Pass

Project Name: Access Youth Academy

ATTACHMENT 3 STRUCTURAL BMP MAINTENANCE INFORMATION

This is the cover sheet for Attachment 3.

Project Name:	Access Youth Academy
THIS PAGI	E INTENTIONALLY LEFT BLANK FOR DOUBLE-SIDED PRINTING

Project Name: Access Youth Academy

Indicate which Items are Included:

Attachment Sequence	Contents	Checklist		
Attachment 3a	Structural BMP Maintenance Thresholds and Actions (Required)	See Structural BMP Maintenance Information Checklist.		
Attachment 3b	Maintenance Agreement (Form DS-3247) (when applicable)	Included Not Applicable		

Project Name: Access Youth Academy

Use this checklist to ensure the required information has been included in the Structural BMP

Maintenance Information Attachment:

Preliminary Design / Planning / CEQA level submittal:

- Attachment 3a must identify:
 - Typical maintenance indicators and actions for proposed structural BMP(s) based on Section 7.7 of the BMP Design Manual
- Attachment 3b is not required for preliminary design / planning / CEQA level submittal.

Final Design level submittal:

Attachment 3a must identify:

•
☐ Specific maintenance indicators and actions for proposed structural BMP(s). This shall be
based on Section 7.7 of the BMP Design Manual and enhanced to reflect actual proposed
components of the structural BMP(s)
☐ How to access the structural BMP(s) to inspect and perform maintenance
Features that are provided to facilitate inspection (e.g., observation ports, cleanouts, silt posts,

realures that are provided to facilitate hispection (e.g., observation ports, cleanouts, siit posts,
or other features that allow the inspector to view necessary components of the structural
BMP and compare to maintenance thresholds)
Manufacturer and part number for proprietary parts of structural BMP(s) when applicable
Maintenance thresholds specific to the structural BMP(s) with a location specific frame of

Ш	Maintenance thresholds specific to the structural BMP(s), with a location-specific frame of
	reference (e.g., level of accumulated materials that triggers removal of the materials, to be
	identified based on viewing marks on silt posts or measured with a survey rod with respect to
	a fixed benchmark within the BMP)
	When applicable, frequency of bioretention soil media replacement

L	_ 1	Recomn	nended e	quipment to	o perto:	rm maınte	nanc	ee				
	\square	When ap	plicable,	necessary	special	training of	or ce	ertification	requirements	for	inspection	anc
	ſ	naintena	ance pers	onnel such	as conf	ined spac	e ent	ry or hazaı	rdous waste m	ana	gement	

Attachment 3b: For private entity operation and maintenance, Attachment 3b must include a Storm Water Management and Discharge Control Maintenance Agreement (Form DS-3247). The following information must be included in the exhibits attached to the maintenance agreement:

X	Vicinity map
	Site design BMPs for which DCV reduction is claimed for meeting the pollutant control
	obligations.
X	BMP and HMP location and dimensions
X	BMP and HMP specifications/cross section/model
X	Maintenance recommendations and frequency
	LID features such as (permeable paver and LS location, dim, SF).

THE CITY OF SAN DIEGO

RECORDING REQUESTED BY: THE CITY OF SAN DIEGO AND WHEN RECORDED MAIL TO:

Access Youth Academy

7310 Miramar Road, Suite 405

San Diego, CA

92126

(THIS SPACE IS FOR RECORDER'S USE ONLY)

STORM WATER MANAGEMENT AND DISCHARGE CONTROL MAINTENANCE AGREEMENT							
APPROVAL NUMBER:	ASSESSORS PARCEL NUMBER:	PROJECT NUMBER:					
2021553	548-010-13	572129					
This agreement is made by and between the City of San Diego, a municipal corporation [City] and Access Youth Academy							
the owner or duly authorized repr	esentative of the owner [Property Owner] of 1	property located at					
704 Euclid Avenue, San Diego, CA	92114						
	(Property Address)	×					
and more particularly described a	s: Parcel 1 of Parcel Map No. 2407						
	(Legal Description of Property)						
in the City of San Diego, County of	of San Diego, State of California.						
Property Owner is required pursuant to the City of San Diego Municipal Code, Chapter 4, Article 3, Division 3, Chapter 14, Article 2, Division 2, and the Land Development Manual, Storm Water Standards to enter into a Storm Water Management and Discharge Control Maintenance Agreement [Maintenance Agreement] for the installation and maintenance of Permanent Storm Water Best Management Practices [Permanent Storm Water BMP's] prior to the issuance of construction permits. The Maintenance Agreement is intended to ensure the establishment and maintenance of Permanent Storm Water BMP's onsite, as described in the attached exhibit(s), the project's Water Quality Technical Report [WQTR] and Grading and/or Improvement Plan Drawing No(s), or Building Plan Project No(s): 40306-D Property Owner wishes to obtain a building or engineering permit according to the Grading and/or Improvement Plan Drawing No(s) or Building Plan Project No(s): 40306-D							
		(Continued on Page 2)					

Printed on recycled paper. Visit our web site at www.sandiego.gov/development-services.
Upon request, this information is available in alternative formats for persons with disabilities.

NOTE: ALL SIGNATURES MUST INCLUDE NOTARY ACKNOWLEDGMENTS PER CIVIL CODE SEC. 1180 ET.SEQ.

CALIFORNIA ALL-PURPOSE ACKNOWLEDGMENT

	A notary public or other officer completing this certificate verifies only the identity of the
	individual who signed the document, to which this
State of California	certificate is attached, and not the truthfulness,
	accuracy, or validity of that document.
County of San Diego	
On MAY 29 Long before me,	Ashwin Asher, Notary Public
Date	Here finsert Name and Title of the Officer
personally appeared	Name(s) of Signer(s)
	who proved to me on the basis of satisfactory evidence to
	be the person(s) whose name(s) is/are subscribed to the within instrument and acknowledged to me that
	he/she/they executed the same in his/her/their authorized
	capacity(ies), and that by his/her/their signature(s) on the
,~~~~	instrument the person(s), or the entity upon behalf of
ASHWIN ASHER	which the person(s) acted, executed the instrument.
Commission No. 2096143 S NOTARY PUBLIC - CALIFORNIA B	Locatify under DENALTY OF DED HIDV under the laws
SAN DIEGO COUNTY Commission Expires February 4, 2019	I certify under PENALTY OF PERJURY under the laws of the State of California that the foregoing paragraph is
2,019 }	true and correct.
	WITNESS my hand and official seal.
Place Notary Seal Above	SignatureSignature of Notary Public
OPT	IONAL
Though the information below is not required by law, it	may prove valuable to persons relying on the document eattachment of this form to another document.
	attachment of this form to another document.
Description of Attached Document	
Title or Type of Document:	
Document Date:	Number of Pages:
Signer(s) Other Than Named Above:	
Capacity(ies) Claimed by Signer(s)	
Capacity(les) Claimed by Signer(s)	
Signer's Name:	Signer's Name:
□ Individual	☐ Individual [≮]
☐ Corporate Officer — Title(s):	
☐ Partner — ☐ Limited ☐ General	T □ Partner ─ □ Limited □ General
Attorney in Fact OF SIGNER Top of thumb here	☐ Attorney in Fact
☐ Trustee ☐ Guardian or Conservator	☐ Trustee ☐ Guardian or Conservator
Other:	☐ Other:
Signer Is Representing:	Signer Is Representing:
) 	

	SITE DESIGN, SOURCE COM	NTROL AND POLLU	TANT CONTROL BMP OPERATION & MAINTENANCE PRO	CEDURE			
	MANAGEMENT AND DISCHARGE CONTROL						
O&M RESPONSII BMP DESCRIPTION		CADEMY (PROPERT MAINTENANCE FREQUENCY	Y OWNER) MAINTENANCE METHOD	QUANTITY			SHEET NUMBER(S)
SITE DESIGN EL	EMENTS					NO	
DESCRIPTION: LANDSCAPED AREAS	MONTHLY	AS-NEEDED	TRIMMING AND TRASH REMOVAL		х		
SOURCE CONTR	ROL ELEMENTS						
DESCRIPTION: IRRIGATION		AS-NEEDED	REPAIR SPRINKLERS & PIPES		x		
POLLUTANT COI	NTROL BMP(S)						
DESCRIPTION: BIOFILTRATION BASIN W/HMP (0.5" ORIFICE)	MONTHLY	AS-NEEDED	REMOVE TRASH & DEBRIS		х		11

BMP-1 SECTION

J-13284-FFF 04-17-18 EXHIBIT "C"

ACCESS YOUTH ACADEMY

STORM WATER MANAGEMENT AND

DISCHARGE CONTROL

MAINTENANCE AGREEMENT

2 OF 2

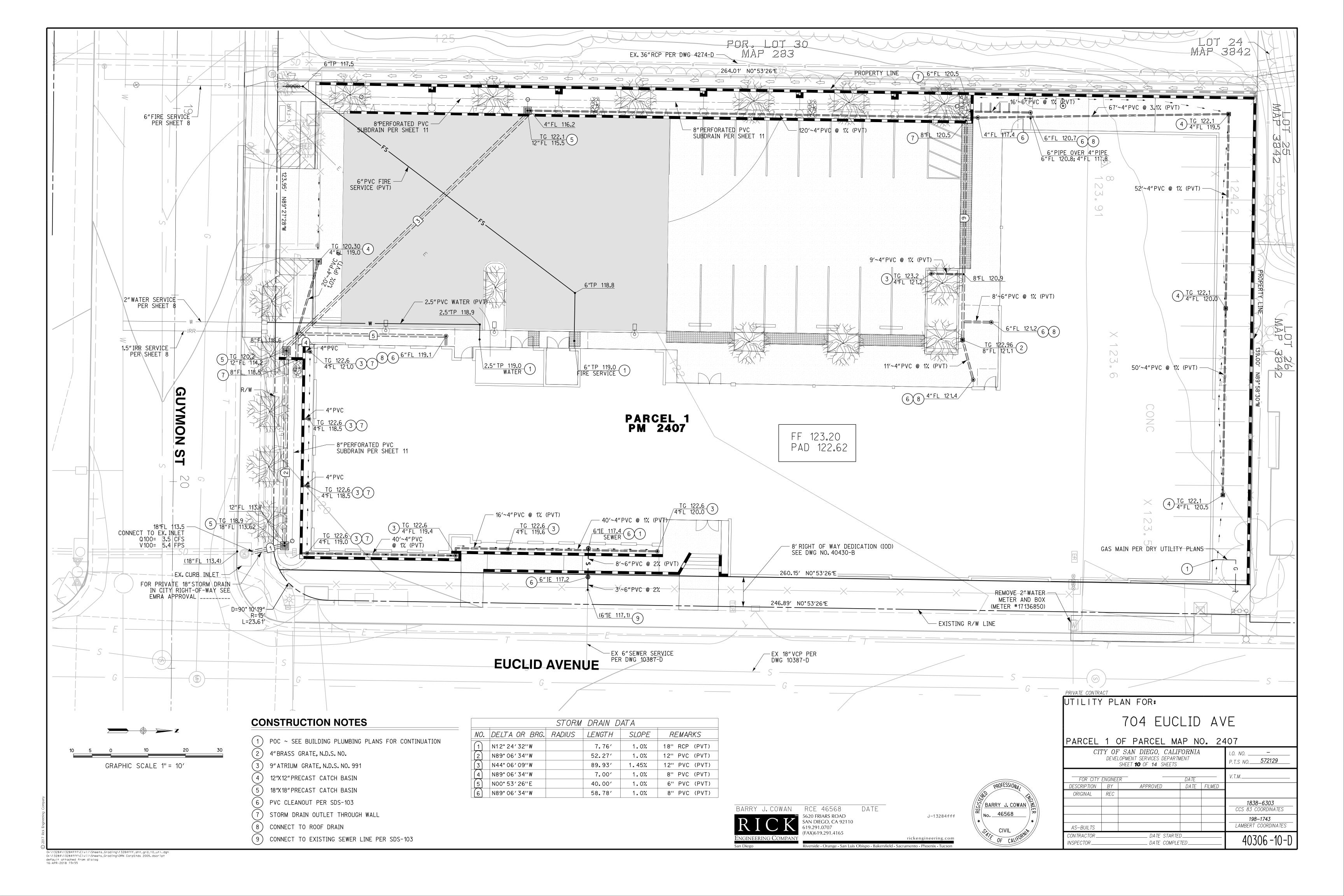
0:\13284\13284fff\WaterResources\WaterQuality\SWMDCMA\13284-FFF_SWMDCMA.dgn

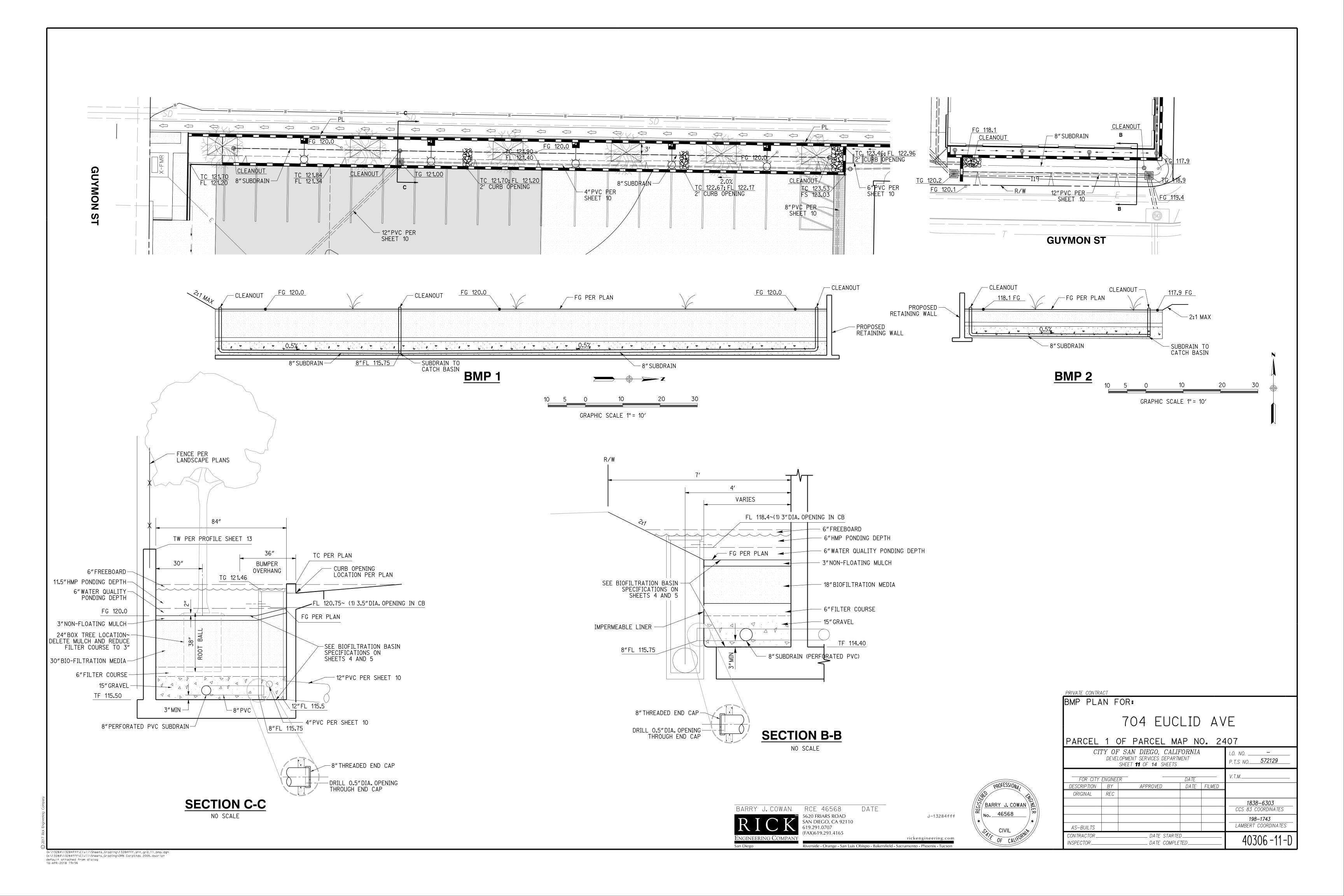
J-13284-FFF 04-17-18 EXHIBIT "D"
ACCESS YOUTH ACADEMY
STORM WATER MANAGEMENT AND
DISCHARGE CONTROL
MAINTENANCE AGREEMENT

2 OF 2

2018 Rick Engineering Company

ATTACHMENT 4 COPY OF PLAN SHEETS SHOWING PERMANENT STORM WATER BMPS


This is the cover sheet for Attachment 4.


Project Name:	Access Youth Academy
THIS PAGI	E INTENTIONALLY LEFT BLANK FOR DOUBLE-SIDED PRINTING

Use this checklist to ensure the required information has been included on the plans:

The plans must identify:
☐ Structural BMP(s) with ID numbers matching Form I-6 Summary of PDP Structural BMPs
The grading and drainage design shown on the plans must be consistent with the delineation of DMAs
shown on the DMA exhibit
Details and specifications for construction of structural BMP(s)
Signage indicating the location and boundary of structural BMP(s) as required by the City Engineer
How to access the structural BMP(s) to inspect and perform maintenance
Features that are provided to facilitate inspection (e.g., observation ports, cleanouts, silt posts, or other
features that allow the inspector to view necessary components of the structural BMP and compare to
maintenance thresholds)
Manufacturer and part number for proprietary parts of structural BMP(s) when applicable
Maintenance thresholds specific to the structural BMP(s), with a location-specific frame of reference (e.g.,
level of accumulated materials that triggers removal of the materials, to be identified based on viewing
marks on silt posts or measured with a survey rod with respect to a fixed benchmark within the BMP)
Recommended equipment to perform maintenance
When applicable, necessary special training or certification requirements for inspection and maintenance
personnel such as confined space entry or hazardous waste management
Include landscaping plan sheets showing vegetation requirements for vegetated structural BMP(s)
All BMPs must be fully dimensioned on the plans
When proprietary BMPs are used, site specific cross section with outflow, inflow and model number shall
be provided. Brochure photocopies are not allowed.

roject Name:	Access Youth Academy
THIS PAGE	E INTENTIONALLY LEFT BLANK FOR DOUBLE-SIDED PRINTING
11110 11101	

ATTACHMENT 5 DRAINAGE REPORT

Attach project's drainage report. Refer to Drainage Design Manual to determine the reporting requirements.

August 23, 2017

Revised: December 7, 2017 Revised: April 17, 2018

Mr. Renato Paiva Access Youth Academy 9370 Waples Street, Suite 101 San Diego, California 92121

SUBJECT: DRAINAGE STUDY FOR ACCESS YOUTH ACADEMY

PTS #572129 DWG #40306-D

(RICK ENGINEERING COMPANY JOB NUMBER 13284-FFF)

Dear Mr. Paiva:

This drainage letter report represents a revision to the December 7th, 2017 report in addition to a revision to the August 23, 2017 report pursuant to the first review cycle from the City of San Diego dated 9/22/17. Hydraulic and hydrologic calculations have been revised in accordance with the latest site layout. The project's pre- and post-project drainage exhibits have also been revised to reflect the latest site layout. The 100-year flow rate and flow velocity at the project's discharge point have been provided per the City's request. The 100-year flow velocity was calculated using the Federal Highway Administration's Hydraulic Toolbox software. The backup calculations are included in Attachment 1.

This letter has been prepared in support of the on-site drainage for Access Youth Academy (herein referred to as the "project"). The address of the project is: 704 Euclid Avenue, San Diego, CA and is located adjacent to Horton Elementary School, on the corner of Euclid Avenue and Guymon Street. The project is proposed on what is currently a previously graded lot that features a recreational sports field over the majority of the site and a small parking lot in the northern portion of the project site.

The following narrative addresses drainage characteristics for the project for both the pre-project site condition and the post-project site condition.

Drainage Characteristics based on the Pre-Project Site Condition:

In the pre-project condition, the project site has been divided into two (2) drainage basins, for a total area of 0.9 acres. Basin 1 consists of the western half of the project site, and is 0.6 acres in area. Runoff from Basin 1 drains in a south-easterly direction to an existing catch basin on the southeast corner of the project site.

Basin 2 consists of the eastern half of the project site, and totals 0.3 acres in area. Runoff from Basin 2 also drains in a south-easterly direction towards the street gutters on Euclid Avenue, where it is then directed towards the same existing catch basin on the southeast corner of the project site.

Based on the drainage patterns and runoff coefficients, the peak flow rate for the 100-year storm event for the pre-project condition is 2.1 cubic feet per second (cfs). Hydrologic calculations for the pre-project condition have been presented in Attachment 1. See Table 1 for a comparison of the pre-and post-project 100-yr runoff rates.

Drainage Characteristics based on the Post-Project Site Condition:

The site layout for the post-project condition maintains similar drainage characteristics as compared with the pre-project condition. In the post-project condition, the project site has been divided into three (3) drainage basins for a total area of 0.9 acres. Basin 1 is 0.6 acres in area, consisting of the northern project area and also encompassing some of the western project boundary. Runoff from Basin 1 is proposed to flow in a western direction towards a proposed biofiltration basin on the western project site boundary for water quality and HMP purposes. Flows in excess of HMP will be conveyed via a grate inlet and 12" PVC pipe to an existing catch basin located at the southeast corner of the project site.

Basin 2 is 0.1 acres in size, and encompasses the southwest corner of the project site. Runoff from Basin 2 flows in an easterly direction towards proposed on-site drainage structures that will convey the runoff towards a proposed biofiltration basin near the southeastern boundary of the project site. Overflow from the proposed filtration basin will be conveyed via a grate inlet and 18" RCP towards the existing catch basin at the southeast corner of the project site.

Basin 3 is 0.2 acres in size, and encompasses the southeast corner of the project site. Runoff from Basin 3 is mostly directed in a southerly direction towards the same proposed biofiltration basin on the southeastern project boundary via proposed on-site drainage structures. Overflow from the proposed filtration basin will be conveyed via a grate inlet and 18" RCP to the existing catch basin on the south eastern project boundary.

Based on the drainage patterns and runoff coefficients, the peak flow rate for the 100-Year storm event from for the project site was calculated to be 3.5 cubic feet per second (cfs) in the post-project condition. While there is an increase in the 100-year runoff between the pre- and post-project conditions, the downstream drainage facilities are subject to inundation in a 100-year event from the nearby Chollas Creek and therefore detention has not been provided. Detaining post-project runoff to the pre-project runoff condition would not alleviate the downstream drainage facilities from inundation. Hydrologic calculations for the post-project condition have been presented in Attachment 1. See Table 1 for a comparison of the pre- and post-project runoff rates.

Table 1: Summary of the 100-Yr Flow Rates in the Pre- and Post-Project Conditions

	Area (AC.)	Runoff Coefficient (C)	Q (cfs)	
Pre-Project	0.9	0.56	2.1	
Post-Project	0.9	0.86	3.4	

Table 2: Summary of the 100-Yr Flow Rate and Flow Velocity at the Project Discharge Point (Post-Project Condition)

	100-Yr Flow Rate & Flow	Velocity at the Projec	t Discharge Poi	nt
POI ID	Tributary Area (AC.)	Intensity (in/hr) 100-Yr	Q ₁₀₀ (cfs)	V ₁₀₀ (fps)
1	0.9	4.40	3.4	5.3

Hydraulics

Pipe Sizing

On-site pipe sizing was completed using normal depth methods to provide an estimation of storm drain size required to convey runoff from a 100-year storm event; pipe sizing calculations have been included in Attachment 2.

Grate Inlet Sizing

Based on weir flow calculations, two Type-I grate inlets have been sized for the purpose of draining overflow from the proposed biofiltration basins. Grate Inlet sizing calculations have been included in Attachment 2.

Conclusion:

This letter report has been prepared in support of the on-site drainage configuration for Access Youth Academy. Based on the findings of this report, drainage characteristics are expected to change slightly from pre-project conditions, the expected result being an increase in runoff flows due to the addition of impervious areas in the post-project condition. As shown above, the increase is approximately 1.4 cfs; however, the actual increase will be less as a result of incidental flow attenuation that each of the biofiltration basins will provide. Therefore, the minor increase is not anticipated to result in any significant adverse impacts for the downstream drainage facilities. While there is an increase in the 100-year runoff between the pre- and post-, it is also worth noting that the adjacent intersection is subject to inundation in a 100-year event from the nearby South Las Chollas Creek. Detaining post-project runoff to the pre-project runoff condition would not alleviate the downstream drainage facilities from inundation.

Please feel free to contact Ian Cohan or myself if you have any questions and/or concerns at (619) 291-0707.

Sincerely,

RICK ENGINEERING COMPANY

Brendan Hastie

RCE #65809, Exp. 9/19

Associate Principal

BH:IC:vs/files/Report/.009

Enclosure

ATTACHMENT 1

Hydrology Calculations

	Rational Method for Access Youth Academy (Pre Project Condition)								
Drainage Basin ID	Area (Ac)	Pervious Area (Ac)	Impervious Area (Ac)	% Impervious	Weighted Runoff Coefficient	Intensity (in/hr) 100-Yr	Q ₁₀₀ (cfs)		
1	0.6	0.5	0.1	10%	0.50	4.40	1.3		
2	0.3	0.2	0.1	37%	0.62	4.40	0.8		
Total	0.9	0.7	0.2	19%	0.56		2.1		

- 1. Weighted Runoff Coefficients were calculated based on guidance from the City of San Diego Drainage Design Manual, dated January 2017.
- 2. Intensity was calculated using the City of San Diego Drainage Design Manual, dated January 2017.
- 3. Time of Concentration (T_c) was assumed to be 5 minutes for the pre project condition.

	Rational Method for Access Youth Academy (Post Project Condition)									
Drainage Basin ID	Area (Ac)	Pervious Area (Ac)	Impervious Area (Ac)	% Impervious	Weighted Runoff Coefficient	Intensity (in/hr) 100-Yr	Q ₁₀₀ (cfs)			
1	0.6	0.1	0.5	80%	0.85	4.40	2.2			
2	0.1	0.02	0.1	83%	0.88	4.40	0.4			
3	0.2	0.03	0.2	85%	0.90	4.40	0.8			
Total	0.9	0.2	0.7	81%	0.86		3.4			

- 1. Weighted Runoff Coefficients were calculated based on guidance from the City of San Diego Drainage Design Manual, dated January 2017.
- 2. Intensity was calculated using the City of San Diego Drainage Design Manual, dated January 2017.
- 3. Time of Concentration (T_c) was assumed to be 5 minutes for the post project condition.

5620 Friars Road San Diego, CA 92110-2596

Date Job No. Page

Engineering Company Tel: (619) 291-0707 Fax: (619) 291-4165	Done By), C.
Rational Method for Drainge Arm Tributury to 18" RCP Culvert	Checked By	
under bryggen Street		
Onsite Tributary Area = 0.9 acres Offsite	ExtendisT	Aren=11.3 gures)
· Pre-Progent		
A= 11.3 acres (offsite) + D.9 acres (onsite) = 12.2 acres		
Assume To=10min -> Intensity = 3.48 in Mr		
Assume 60% impervious > C= 0.64		
Q=0,61(3.48:1/hr)(2.Zacres)=[27.2cfs]		
· Post-Project		
A=12.2 acres		
Assume Tc=10 min -> Intensity = 3.48 in Mr		
Dasite 1/1mpervious = 81%		
Offsite 1. Impervious assumed = 60%.		
Total 1. Impervious = 621/1 -> C=0.66 Q=0.66 (3.481, M)(17	- Tacres) -	28.0 cfs
12.20 - 1 4 (2 4 (1 A)		
(A) Q re-Project to Rost-Project = 0.8cfs		
Z.9% Increase		

ATTACHMENT 2

Hydraulic Calculations

Grate Inlet Sizing (Weir vs. Orifice)

Weir coefficient, C_w
Orifice coefficient, C_o
Available head, h (feet)

3.0
0.60
0.50

Inlet Type	Capacity based on Weir Equation ^{3, 4} , Q _{cap} (cfs ⁵)	Capacity based on Orifice Equation ^{3, 4} , Q _{cap} (cfs ⁵)	Governing Equation
1212 Series - 12"x12" Catch Basin ¹	2.26	1.90	Orifice
1218 Series - 12"x18" Catch Basin ¹	2.61	2.54	Orifice
1818 Series - 18"x18" Catch Basin ¹	2.96	3.22	Weir
2424 Series - 24"x24" Catch Basin ¹	3.83	5.39	Weir
3636 Series - 36"x36" Catch Basin ¹	5.59	11.26	Weir

Type 'I' Catch Basin ²	4.89	8.27	Weir
Type T Catch Basin		5	

Note:

- 1. Based on Brooks Products, Inc. H 20-44 Traffic, Steel Grate, not Parkway, Cast-iron grate
- 2. Based on Drawing Number D-13 & D-15 in the City of San Diego Regional Standard Drawings, dated April 2003
- 3. A reduction factor of 50% assumed for clogging.
- 4. Weir equation, $Q = C_w L_e(h)^{3/2}$; Orifice equation, $Q = C_o A_e(2gh)^{1/2}$
- 5. "cfs" = cubic feet per second

Preliminary Storm Drain Size

The purpose of this table is to provide an estimated pipe size to convey the 100-year flow rates with a sizing factor.

Manning's n:

0.013

Sizing Factor (%):

30

Slope at:		0.5%		1.0%		2.4%		3.0%	
Q ₁₀₀ (cfs ¹)	Q ₁₀₀ with Sizing Factor (cfs ¹)	Minimum Pipe Size ² (feet)	Recommended Pipe Size (inches)						
2.0	2.6	1.01	12"	0.89	12"	0.75	10"	0.72	10"
5.0	6.5	1.43	18"	1.25	18"	1.06	18"	1.02	18"
7.5	9.8	1.66	24"	1.46	18"	1.24	18"	1.19	18"
10.0	13.0	1.85	24"	1.62	24"	1.38	18"	1.32	18"
16.9	22.0	2.25	30"	1.98	24"	1.68	24"	1.61	24"
20.0	26.0	2.40	30"	2.11	30"	1.79	24"	1.71	24"
24.6	31.9	2.59	36"	2.27	30"	1.93	24"	1.85	24"
30.0	39.0	2.79	36"	2.45	30"	2.08	30"	1.99	24"
35.0	45.5	2.96	36"	2.60	36"	2.20	30"	2.11	30"
40.0	52.0	3.11	42"	2.73	36"	2.32	30"	2.22	30"
50.0	65.0	3.38	42"	2.97	36"	2.52	36"	2.42	30"
60.0	78.0	3.62	48"	3.18	42"	2.70	36"	2.59	36"
70.0	91.0	3.83	48"	3.37	42"	2.86	36"	2.74	36"
80.0	104.0	4.03	54"	3.54	48"	3.00	36"	2.88	36"
90.0	117.0	4.21	54"	3.70	48"	3.14	42"	3.01	42"
110.0	143.0	4.54	60"	3.99	48"	3.39	42"	3.25	42"
145.0	188.5	5.04	72"	4.42	54"	3.75	48"	3.60	48"
170.0	221.0	5.35	72"	4.70	60"	3.99	48"	3.82	48"
240.0	312.0	6.09	84"	5.35	72"	4.54	60"	4.35	54"
350.0	455.0	7.01	96"	6.16	84"	5.23	72"	5.01	72"

Note:

^{1. &}quot;cfs" = cubic feet per second.

^{2.} Minimum pipe sizes are calculated using the Manning's equation and are based on the flow rates with 30% factor.

Hydraulic Analysis Report

Project Data

Project Title: Access Youth Academy - 100-Yr Flow Velocity at Project Discharge Point

Designer:

Project Date: Tuesday, May 01, 2018 Project Units: U.S. Customary Units

Notes:

Channel Analysis: Channel Analysis

Notes:

Input Parameters

Channel Type: Circular Pipe Diameter: 1.5000 ft

Longitudinal Slope: 0.0100 ft/ft

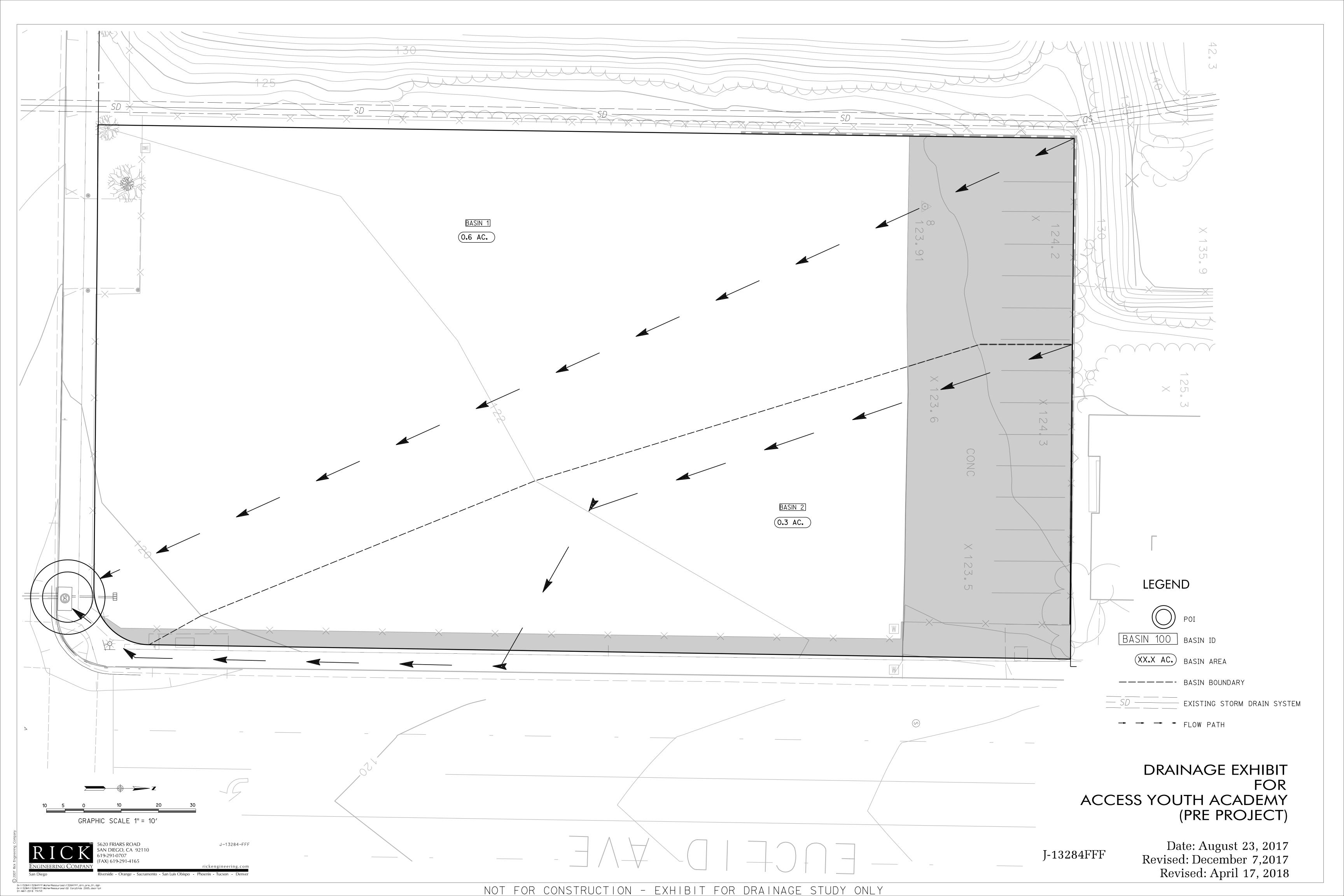
Manning's n: 0.0130

Flow: 3.4000 cfs

Result Parameters

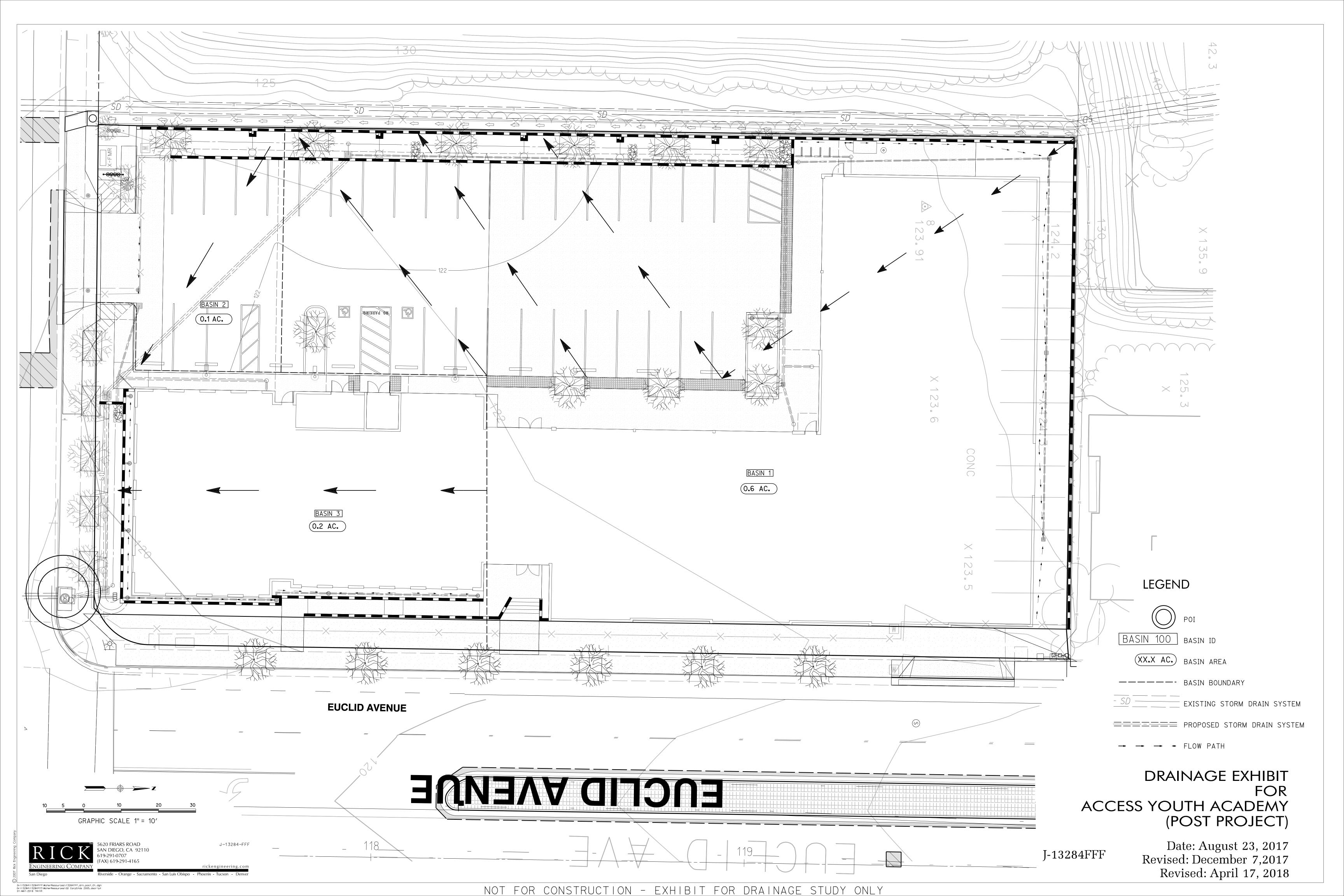
Depth: 0.5869 ft

Area of Flow: 0.6409 ft^2
Wetted Perimeter: 2.0275 ft
Hydraulic Radius: 0.3161 ft
Average Velocity: 5.3048 ft/s


Top Width: 1.4641 ft

Froude Number: 1.4129
Critical Depth: 0.7031 ft
Critical Velocity: 4.1805 ft/s
Critical Slope: 0.0052 ft/ft
Critical Top Width: 1.50 ft

Calculated Max Shear Stress: 0.3663 lb/ft^2 Calculated Avg Shear Stress: 0.1973 lb/ft^2


MAP POCKET 1

Drainage Study Exhibit For Access Youth Academy [Pre-project]

MAP POCKET 2

Drainage Study Exhibit For Access Youth Academy [Post-project]

ATTACHMENT 6 GEOTECHNICAL AND GROUNDWATER INVESTIGATION REPORT

Attach project's geotechnical and groundwater investigation report. Refer to Appendix C.4 to determine the reporting requirements.

roject Name:	Access Youth Academy	
THIS PAGI	E INTENTIONALLY LEFT BLANK FOR DOUBLE-SIDED PRINTING	

SCST, Inc.
Corporate Headquarters
6280 Riverdale Street
San Diego, CA 92120
T 877.215.4321
P 619.280.4321
F 619.280.4717

w www.scst.com

GEOTECHNICAL INVESTIGATION ACCESS YOUTH ACADEMY 704 EUCLID AVENUE SAN DIEGO, CALIFORNIA

PREPARED FOR:

RENATO PAIVA ACCESS YOUTH ACADEMY 9370 WAPLES STREET, SUITE 101 SAN DIEGO, CALIFORNIA 92121

PREPARED BY:

SCST, INC. 6280 RIVERDALE STREET SAN DIEGO, CALIFORNIA 92120

Providing Professional Engineering Services Since 1959

SCST, Inc.
Corporate Headquarters
6280 Riverdale Street
San Diego, CA 92120
T 877.215.4321
P 619.280.4321
F 619.280.4717

www.scst.com

August 11, 2017

SCST No. 170270N Report No. 1

Renato Paiva Access Youth Academy 9370 Waples Street, Suite 101 San Diego, California 92121

Subject:

GEOTECHNICAL INVESTIGATION

ACCESS YOUTH ACADEMY

704 EUCLID AVENUE SAN DIEGO, CALIFORNIA

Dear Mr. Paiva:

SCST, Inc. (SCST) is pleased to present our report describing the geotechnical investigation performed for the subject project. We conducted the geotechnical investigation in general conformance with the scope of work presented in our proposal dated May 23, 2017. Based on the results of our investigation, we consider the planned construction feasible from a geotechnical standpoint provided the recommendations of this report are followed. If you have any questions, please call us at (619) 280-4321.

Respectfully submitted,

SCST, INC.

Thomas B. Canady, Principal Engineer

Douglas A. Skinner, CEG 2472 Senior Geologist

TBC:DAS

(1) Addressee via email: renato@accessyouthacademy.org

(1) Charles Davis via email: cdavis@urbanwestdevelopment.net

(1) Richard Juarez via email: richjuarez1@icloud.com

(1) Joe Hammond via email: jhammond@rickengineering.com

TABLE OF CONTENTS

SE	SECTION PAGE				
EX	ECUTIVE SUMMARY	i			
1.	INTRODUCTION	. 1			
2.	SCOPE OF WORK	. 1			
	2.1 FIELD INVESTIGATION	. 1			
3.	SITE DESCRIPTION	. 2			
4.	PROPOSED DEVELOPMENT	. 2			
5.	GEOLOGY AND SUBSURFACE CONDITIONS	. 2			
6.	GEOLOGIC HAZARDS				
	6.1 CITY OF SAN DIEGO SEISMIC SAFETY STUDY 6.2 FAULTING AND SURFACE RUPTURE 6.3 CBC SEISMIC DESIGN PARAMETERS 6.4 LIQUEFACTION AND DYNAMIC SETTLEMENT 6.5 LANDSLIDES AND SLOPE STABILITY 6.6 TSUNAMIS, SEICHES AND FLOODING 6.7 SUBSIDENCE 6.8 HYDRO-CONSOLIDATION	3 3 4 4 4			
7.	CONCLUSIONS				
8.	RECOMMENDATIONS	. 5			
	8.1 SITE PREPARATION AND GRADING 8.1.1 Site Preparation 8.1.2 Remedial Grading. 8.1.3 Compacted Fill. 8.1.4 Expansive Soil 8.1.5 Imported Soil 8.1.6 Excavation Characteristics. 8.1.7 Oversized Material 8.1.8 Temporary Excavation 8.1.9 Temporary Shoring. 8.1.10 Temporary Dewatering 8.1.11 Slopes 8.1.12 Surface Drainage. 8.1.13 Grading Plan Review 8.2 FOUNDATIONS 8.2.1 Shallow Spread Footings 8.2.2 Settlement Characteristics 8.2.3 Foundation Plan Review 8.2.4 Foundation Excavation Observations	5 5 5 6 6 6 6 6 6 7 7 7 8 8 8 8 9 9			
	8.3 SLABS-ON-GRADE 8.3.1 Interior Slabs-on-Grade	. 9			
	8.3.2 Exterior Slabs-on-Grade	IU			

TABLE OF CONTENTS (Continued)

SEC	TION	PAGE
8	3.4 CONVENTIONAL RETAINING WALLS	_
	8.4.1 Foundations	
	8.4.2 Lateral Earth Pressures	
	8.4.3 Seismic Earth Pressure	
	8.4.4 Backfill	
	3.5 MECHANICALLY STABILIZED EARTH RETAINING WALLS	
8	3.6 PIPELINES	
	8.6.1 Thrust Blocks	
	8.6.3 Pipe Bedding	
	8.6.4 Backfill	
0	8.7 PAVEMENT SECTION RECOMMENDATIONS	
	3.8 PERVIOUS PAVEMENT SECTION RECOMMENDATIONS	
	3.9 SOIL CORROSIVITY	
8	3.10 INFILTRATION FEASIBILITY	15
9.	GEOTECHNICAL ENGINEERING DURING CONSTRUCTION	15
10.	CLOSURE	15
11.	REFERENCES	16
ATT	ACHMENTS	
FIGU	JRES	
	re 1Sit	te Vicinity Map
Figur	re 2Ged	otechnical Map
_	re 3Geologic	
Figur	re 4Regiona	l Geology Map
Figur	re 5	ety Study Map
Figur	re 6Typical Retaining Wall Bad re 7Typical MSE Retain	ing Wall Details
ı ıguı	10 7 1 ypical WoL Netalin	ing wan betai
	ENDICES	
	endix IFiel	
	endix IILabo	
	endix IIIInfiltration Ratendix IV	
ヘいいた	EHUIA IVUIIIIIIIIIIIIIIIIIIIIIIIIIIIII	

EXECUTIVE SUMMARY

This report presents the results of the geotechnical investigation SCST, Inc. (SCST) performed for the subject project. We understand the project will consist of the design and construction of a two-story building and associated pavements, hardscape, underground utilities, and storm water BMP facilities. The purpose of our work is to provide conclusions and recommendations regarding the geotechnical aspects of the project.

We explored the subsurface conditions by drilling 5 borings and 2 percolation test holes to depths between about 5 and 20 feet below the existing ground surface using a truck-mounted drill rig equipped with a hollow-stem auger. Auger refusal was encountered in one of the borings. An SCST engineer logged the borings and test holes and collected samples of the materials encountered for laboratory testing. SCST tested selected samples from the borings and test holes to evaluate pertinent soil classification and engineering properties to assist in developing geotechnical conclusions and recommendations.

The materials encountered in the borings and percolation test holes consist of fill, old alluvial flood-plain deposits, and San Diego Formation. The fill extends to depths up to about 11 feet below the existing ground surface and consists of loose to medium dense clayey sand to clayey gravel and very stiff sandy clay with cobbles and concrete debris. The old alluvial flood-plain deposits consist of dense clayey sand and hard sandy clay. The San Diego Formation consists of medium dense to very dense, weakly cemented silty sandstone. Groundwater was not observed in the borings or test holes.

We performed two borehole percolation tests. Tested infiltration rates of 0.0 inch per hour were measured at both locations. The tested infiltration rates do not support infiltration of storm water in any appreciable quantity. Onsite storm water BMP facilities should be lined with an impermeable liner and a subdrain and collection pipe system installed to reduce the potential for lateral migration of the introduced water beneath structures and improvements.

The main geotechnical consideration affecting the planned construction is the presence of potentially compressible fill. To reduce the potential for settlement, the existing fill should be excavated in its entirety below the planned structure, settlement sensitive improvement and new fills. Additionally, old alluvial flood-plain deposits or San Diego Formation within 3 feet of the deepest planned footing bottom level should be excavated. Excavations up to 11 feet below the existing ground surface should be expected. We anticipate that the excavated material free of oversized cobbles and debris can be used as compacted fill. Material with an expansion index of 50 or less should be placed from 3 feet below the deepest planned footing bottom level to finished pad grade. Hardscape should be underlain by at least 2 feet of material with an expansion index less of 50 or less. The planned building can be supported on shallow spread footings with bottoms levels on compacted fill. The recommendations presented herein may need to be updated once final plans are developed.

1. INTRODUCTION

This report presents the results of the geotechnical investigation SCST, Inc. (SCST) performed for the subject project. We understand the project will consist of the design and construction of a two-story building and associated pavements, hardscape, underground utilities, and storm water BMP facilities. The purpose of our work is to provide conclusions and recommendations regarding the geotechnical aspects of the project. Figure 1 presents a site vicinity map.

2. SCOPE OF WORK

2.1 FIELD INVESTIGATION

We explored the subsurface conditions by drilling 5 borings and 2 percolation test holes to depths between about 5 and 20 feet below the existing ground surface using a truck-mounted drill rig equipped with a hollow-stem auger. Auger refusal was encountered in one of the borings. Figure 2 shows the approximate locations of the borings and percolation tests. An SCST engineer logged the borings and percolation test holes and collected samples of the materials encountered for laboratory testing. Logs of the borings and test holes are presented in Appendix I. Soils are classified according to the Unified Soil Classification System illustrated on Figure I-1.

2.2 LABORATORY TESTING

Selected samples obtained from the borings and percolation test holes were tested to evaluate pertinent soil classification and engineering properties and enable development of geotechnical conclusions and recommendations. The laboratory tests consisted of in situ moisture and density, grain size distribution, Atterberg limits, R-value, expansion index, and corrosivity. The results of the laboratory tests and brief explanations of the test procedures are presented in Appendix II.

2.3 ANALYSIS AND REPORT

The results of the field and laboratory tests were evaluated to develop conclusions and recommendations regarding:

- Subsurface conditions beneath the site
- Potential geologic hazards
- Criteria for seismic design in accordance with the 2016 California Building Code (CBC)
- Site preparation and grading
- Foundation alternatives and geotechnical engineering criteria for design of the foundations
- Estimated foundation settlements
- Support for concrete slabs-on-grade
- Lateral pressures for the design of retaining walls
- Pavement sections
- Soil corrosivity
- Infiltration feasibility

3. SITE DESCRIPTION

The subject site is located west of Euclid Avenue and north of Guymon Street in the Chollas View community of the City of San Diego, California. Existing site improvements consist of a playfield, a basketball court, and a paved parking lot. The site is bordered on the west by an ascending slope about 20 feet in height and inclined at about 2:1 (horizontal:vertical). Site elevations range from about 124 feet at the northwest corner of the site to about 120 feet at the southeast corner.

4. PROPOSED DEVELOPMENT

We understand the project will consist of the design and construction of a two-story building and associated pavements, hardscape, underground utilities, and storm water BMP facilities. As currently planned, the building will have a finish floor elevation of 123.20 feet. Minor site grading will be needed to achieve finish site grades.

5. GEOLOGY AND SUBSURFACE CONDITIONS

The materials encountered in the borings and percolation test holes consist of fill, old alluvial flood-plain deposits, and San Diego Formation. Descriptions of the materials are presented below. Figure 2 presents the site-specific geology. Figure 3 presents a geologic cross section. Figure 4 presents the regional geology in the vicinity of the site.

<u>Fill</u>: Fill was encountered in each of the borings. The fill consists loose to medium dense clayey sand with gravel and clayey gravel with sand and very stiff sandy clay. Cobbles and concrete debris were encountered within the fill. The fill encountered in our borings extends to depths varying from about 3½ feet to 11 feet below the existing ground surface. The existing fill is considered compressible and unsuitable for support of the planned structure.

Old Alluvial Flood-Plain Deposits: Old alluvial flood-plain deposits were encountered beneath the fill in borings B-1, B-3, and B-5. The old alluvial flood-plain deposits consist of dense clayey sand and hard sandy clay.

<u>San Diego Formation</u>: San Diego Formation underlies the site. The San Diego Formation consists of medium dense to very dense, weakly cemented silty sandstone.

<u>Groundwater</u>: Groundwater was not encountered in the borings or percolation test holes. The groundwater table is expected to be below a depth that will influence planned construction. However, groundwater levels may fluctuate in the future due to rainfall, irrigation, broken pipes, or changes in site drainage. Because groundwater rise or seepage is difficult to predict, such conditions are typically mitigated if and when they occur.

6. GEOLOGIC HAZARDS

6.1 CITY OF SAN DIEGO SEISMIC SAFETY STUDY

Figure 5 shows the site location on the City of San Diego (2008) Seismic Safety Study map. The site is located in Geologic Hazard Category 52, which is defined as other level areas, gently sloping to steep terrain, favorable geologic structure, and low risk. In our opinion, the geologic risk is low.

6.2 FAULTING AND SURFACE RUPTURE

The closest known active fault is the Rose Canyon fault zone (Silver Strand fault) located about 4.3 miles (7.0 kilometers) west-southwest of the site. The site is not located in an Alquist-Priolo Earthquake Fault Zone. No active faults are known to underlie or project toward the site. Therefore, the probability of fault rupture at the site is low.

6.3 CBC SEISMIC DESIGN PARAMETERS

A geologic hazard likely to affect the project is ground shaking as a result of movement along an active fault zone in the vicinity of the subject site. The site coefficients and maximum considered earthquake (MCE_R) spectral response acceleration parameters in accordance with the 2016 CBC are presented below:

Site Coordinates: Latitude 32.71285°

Longitude -117.08541°

Site Class: D

Site Coefficients, $F_a = 1.105$

 $F_{v} = 1.648$

Mapped Spectral Response Acceleration at Short Period, $S_s = 0.989g$

Mapped Spectral Response Acceleration at 1-Second Period, $S_1 = 0.376g$

Design Spectral Acceleration at Short Period, $S_{DS} = 0.728g$

Design Spectral Acceleration at 1-Second Period, $S_{D1} = 0.413g$

Site Peak Ground Acceleration, PGA_M = 0.447g

6.4 LIQUEFACTION AND DYNAMIC SETTLEMENT

Liquefaction occurs when loose, saturated sands and silts are subjected to strong ground shaking. The soils lose shear strength and become liquid, resulting in large total and differential ground surface settlements and possible lateral spreading during an earthquake. Given the relatively dense nature of the materials beneath the site, and provided the recommended remedial grading is performed, the potential for liquefaction and dynamic settlement to occur at the site is low.

6.5 LANDSLIDES AND SLOPE STABILITY

Evidence of landslides or slope instabilities was not observed. The potential for landslides or slope instabilities to occur at the site is considered low.

6.6 TSUNAMIS, SEICHES AND FLOODING

The site is not located within a mapped area on the State of California Tsunami Inundation Maps (Cal EMA, 2009); therefore, damage due to tsunamis is considered negligible. Seiches are periodic oscillations in large bodies of water such as lakes, harbors, bays, or reservoirs. The site is not located adjacent to any lakes or confined bodies of water; therefore, the potential for a seiche to affect the site is low. However, the southeast corner of the site is located within a 0.2% annual chance flood area (FEMA, 2012) associated with Chollas Creek.

6.7 SUBSIDENCE

The site is not located in an area of known subsidence associated with fluid withdrawal (groundwater or petroleum); therefore, the potential for subsidence due to the extraction of fluids is negligible.

6.8 HYDRO-CONSOLIDATION

Hydro-consolidation can occur in recently deposited sediments (less than 10,000 years old) that were deposited in a semi-arid environment. Examples of such sediments are aeolian sands, alluvial fan deposits, and mudflow sediments deposited during flash floods. The pore spaces between the particle grains can re-adjust when inundated by groundwater causing the material to consolidate. The relatively dense materials underlying the site are not considered susceptible to hydro-consolidation.

7. CONCLUSIONS

Based on the results of our investigation, we consider the planned construction feasible from a geotechnical standpoint provided the recommendations of this report are followed. The main geotechnical consideration affecting the planned development is the presence of potentially compressible fill. Remedial grading will need to be performed to reduce the potential for distress to the planned building and improvements. Remedial grading recommendations are provided herein. The planned building can be supported on shallow spread footings with bottoms levels on compacted fill. The recommendations presented herein may need to be updated once final plans are developed.

8. RECOMMENDATIONS

8.1 SITE PREPARATION AND GRADING

8.1.1 Site Preparation

Site preparation should begin with the removal of existing improvements, topsoil, vegetation and debris. Subsurface improvements that are to be abandoned should be removed and the resulting excavations should be backfilled and compacted in accordance with the recommendations of this report. Pipeline abandonment can consist of capping or rerouting at the project perimeter and removal within the project perimeter. If appropriate, abandoned pipelines can be filled with grout or slurry as recommended by and observed by the geotechnical consultant.

8.1.2 Remedial Grading

To reduce the potential for settlement, the existing fill should be excavated in its entirety beneath the planned building, settlement sensitive improvements, and new fills. Additionally, old alluvial flood-plain deposits or San Diego Formation within 3 feet of the deepest planned footing bottom level should be excavated. Excavations up to 11 feet below the existing ground surface should be anticipated. Horizontally, the excavations should extend at least 5 feet outside the planned perimeter foundations, at least 2 feet outside the planned hardscape and pavements, or up to existing improvements or the project boundary, whichever is less. A SCST representative should observe conditions exposed in the bottom of the excavation to determine if additional excavation is required.

8.1.3 Compacted Fill

Excavated material, except for roots, debris and rocks greater than 6 inches, can be used as compacted fill. We expect that some of the existing fill will need to be screened to remove oversized rock and debris prior to being placed as compacted fill. Material with an expansion index of 50 or less determined in accordance with ASTM D4829 should be placed from 3 feet below the deepest planned footing bottom level to finished pad grade. Hardscape should be underlain by at least 2 feet of material with an expansion index of 50 or less. Based on our laboratory test results, we expect that most of the onsite soils will meet the expansion index criteria.

The material exposed in the bottom of the excavation should be scarified to a depth of 6 to 8 inches, moisture conditioned, and compacted to at least 90% relative compaction. Fill should be placed in horizontal lifts at a thickness appropriate for the equipment spreading, mixing, and compacting the material, but generally should not exceed 8 inches in loose thickness. Fill should be moisture conditioned to near optimum moisture content and

compacted to at least 90% relative compaction. The maximum dry density and optimum moisture content for evaluating relative compaction should be determined in accordance with ASTM D 1557. Utility trench backfill beneath structures, pavements and hardscape should be compacted to at least 90% relative compaction. The top 12 inches of subgrade beneath pavements should be compacted to at least 95%.

8.1.4 Expansive Soil

The onsite soils tested have a very low to low expansion potential. The foundation recommendations presented in this report reflect a low expansion potential.

8.1.5 Imported Soil

Imported soil should consist of predominately granular soil free of organic matter and rocks greater than 6 inches. Imported soil should be observed and, if appropriate, tested by SCST prior to transport to the site to determine suitability for the intended use.

8.1.6 Excavation Characteristics

It is anticipated that excavations can be achieved with conventional earthwork equipment in good working order. Cobbles and debris should be anticipated in the fill. Difficult excavation should be anticipated in cemented zones within the San Diego Formation.

8.1.7 Oversized Material

Excavations may generate oversized material. Oversized material is defined as rocks or cemented clasts greater than 6 inches in largest dimension. Oversized material should be broken down to no greater than 6 inches in largest dimension for use in fill, used as landscape material, or disposed offsite.

8.1.8 Temporary Excavation

Temporary excavations 3 feet deep or less can be made vertically. Deeper temporary excavations should be laid back no steeper than 1:1 (horizontal:vertical). The faces of temporary slopes should be inspected daily by the contractor's Competent Person before personnel are allowed to enter the excavation. Any zones of potential instability, sloughing or raveling should be brought to the attention of the Engineer and corrective action implemented before personnel begin working in the excavation. Excavated soils should not be stockpiled behind temporary excavations within a distance equal to the depth of the excavation. SCST should be notified if other surcharge loads are anticipated so that lateral load criteria can be developed for the specific situation. If temporary slopes are to be maintained during the rainy season, berms are recommended along the tops of slopes to prevent runoff water from entering the excavation and eroding the slope faces.

Slopes steeper than those described above will require shoring. Additionally, temporary excavations that extend below a plane inclined at 1½:1 (horizontal:vertical) downward from the outside bottom edge of existing structures or improvements will require shoring or underpinning. Soldier piles and lagging, internally braced shoring or trench boxes could be used. If trench boxes are used, the soil immediately adjacent to the trench box is not directly supported. Ground surface deformations immediately adjacent to the pit or trench could be greater where trench boxes are used compared to other methods of shoring.

As an alternative to shoring/underpinning, maximum 10-foot wide slots can be excavated and immediately backfilled adjacent to existing structures and improvement. Care should be taken to not undermine existing footings. Slot excavations should be filled prior to performing adjacent excavations.

8.1.9 Temporary Shoring

For design of cantilevered shoring, an active soil pressure equal to a fluid weighing 35 pcf can be used for level retained ground or 55 pcf for 2:1 (horizontal:vertical) sloping ground. The surcharge loads on shoring from traffic and construction equipment adjacent to the excavation can be modeled by assuming an additional 2 feet of soil behind the shoring. For design of soldier piles, an allowable passive pressure of 350 psf per foot of embedment over twice the pile diameter up to a maximum of 5,000 psf can be used. Soldier piles should be spaced at least three pile diameters, center to center. Continuous lagging will be required throughout. The soldier piles should be designed for the full anticipated lateral pressure; however, the pressure on the lagging will be less due to arching in the soils. For design of lagging, the earth pressure but can be limited to a maximum value of 400 psf.

8.1.10 Temporary Dewatering

Groundwater seepage may occur locally due to broken pipes, local irrigation or following heavy rain. Groundwater should be anticipated in the planned excavations. Dewatering can be accomplished by sloping the excavation bottom to a sump and pumping from the sump. A layer of gravel about 6 inches thick placed in the bottom of the excavation will facilitate groundwater flow and can be used as a working platform.

8.1.11 Slopes

All permanent slopes should be constructed no steeper than 2:1 (horizontal:vertical). Faces of fill slopes should be compacted either by rolling with a sheep-foot roller or other suitable equipment, or by overfilling and cutting back to design grade. Fills should be benched into sloping ground inclined steeper than 5:1 (horizontal:vertical). It is our opinion that cut slopes constructed no steeper than 2:1 (horizontal:vertical) will possess an

adequate factor of safety. An engineering geologist should observe all cut slopes during grading to ascertain that no unforeseen adverse geologic conditions are encountered that require revised recommendations. All slopes are susceptible to surficial slope failure and erosion. Water should not be allowed to flow over the top of slope. Additionally, slopes should be planted with vegetation that will reduce the potential for erosion.

8.1.12 Surface Drainage

Final surface grades around structures should be designed to collect and direct surface water away from the structure and toward appropriate drainage facilities. The ground around the structure should be graded so that surface water flows rapidly away from the structure without ponding. In general, we recommend that the ground adjacent to the structure slope away at a gradient of at least 2%. Densely vegetated areas where runoff can be impaired should have a minimum gradient of at least 5% within the first 5 feet from the structure. Roof gutters with downspouts that discharge directly into a closed drainage system are recommended on structures. Drainage patterns established at the time of fine grading should be maintained throughout the life of the proposed structures. Site irrigation should be limited to the minimum necessary to sustain landscape growth. Should excessive irrigation, impaired drainage, or unusually high rainfall occur, saturated zones of perched groundwater can develop.

8.1.13 Grading Plan Review

SCST should review the grading plans and earthwork specifications to ascertain whether the intent of the recommendations contained in this report have been implemented, and that no revised recommendations are needed due to changes in the development scheme.

8.2 FOUNDATIONS

8.2.1 Shallow Spread Footings

The planned building can be supported on shallow spread footings with bottoms levels on granular compacted fill. Footings should extend at least 24 inches below lowest adjacent finished grade. Continuous footings should be at least 12 inches wide. Isolated or retaining wall footings should be at least 24 inches wide. An allowable bearing capacity of 2,500 psf can be used. The bearing capacity can be increased by 500 psf for each foot of depth below the minimum and 250 psf for each foot of width beyond the minimum up to a maximum of 5,000 psf. The bearing value can be increased by ½ when considering the total of all loads, including wind or seismic forces. Footings located adjacent to or within slopes should be extended to a depth such that a minimum horizontal distance of 7 feet exists between the lower outside footing edge and the face of the slope.

Lateral loads will be resisted by friction between the bottoms of footings and passive pressure on the faces of footings and other structural elements below grade. An allowable coefficient of friction of 0.35 can be used. Passive pressure can be computed using an allowable lateral pressure of 350 psf per foot of depth below the ground surface for level ground conditions. Reductions for sloping ground should be made. The passive pressure can be increased by ½ when considering the total of all loads, including wind or seismic forces. The upper 1 foot of soil should not be relied on for passive support unless the ground is covered with pavements or slabs.

8.2.2 Settlement Characteristics

Total foundation settlements are estimated to be less than 1 inch. Differential settlements between adjacent columns and across continuous footings are estimated to be less than $\frac{3}{4}$ inch over a distance of 40 feet. Settlements should be completed shortly after structural loads are applied.

8.2.3 Foundation Plan Review

SCST should review the foundation plans to ascertain that the intent of the recommendations in this report has been implemented and that revised recommendations are not necessary as a result of changes after this report was completed.

8.2.4 Foundation Excavation Observations

A representative from SCST should observe the foundation excavations prior to forming or placing reinforcing steel.

8.3 SLABS-ON-GRADE

8.3.1 Interior Slabs-on-Grade

The project structural engineer should design the interior concrete slabs-on-grade floor. However, we recommend that building slabs be at least 5 inches thick and reinforced with at least No. 4 bars at 18 inches on center each way.

Moisture protection should be installed beneath slabs where moisture sensitive floor coverings will be used. The project architect should review the tolerable moisture transmission rate of the proposed floor covering and specify an appropriate moisture protection system. Typically, a plastic vapor barrier is used. Minimum 10-mil plastic is recommended. The plastic should comply with ASTM E1745. The vapor barrier installation should comply with ASTM E1643. Construction practice often includes placement of a 2-inch thick sand cushion between the bottom of the concrete slab and the moisture vapor retarder/barrier. This cushion can provide some protection to the vapor

retarder/barrier during construction, and may assist in reducing the potential for edge curling in the slab during curing. However, the sand layer also provides a source of moisture to the underside of the slab that can increase the time required to reduce vapor emissions to limits acceptable for the type of floor covering placed on top of the slab. The slab can be placed directly on the vapor retarder/barrier.

8.3.2 Exterior Slabs-on-Grade

Exterior slabs should be at least 4 inches thick and reinforced with at least No. 3 bars at 18 inches on center each way. Slabs should be provided with weakened plane joints. Joints should be placed in accordance with the American Concrete Institute (ACI) guidelines. The project architect should select the final joint patterns. A 1-inch maximum size aggregate mix is recommended for concrete for exterior slabs. The corrosion potential of on-site soils with respect to reinforced concrete will need to be taken into account in concrete mix design. Coarse and fine aggregate in concrete should conform to the "Greenbook" Standard Specifications for Public Works Construction.

8.4 CONVENTIONAL RETAINING WALLS

8.4.1 Foundations

The recommendations provided in the foundation section of this report are also applicable to conventional retaining walls.

8.4.2 Lateral Earth Pressures

The active earth pressure for the design of unrestrained retaining walls with level backfill can be taken as equivalent to the pressure of a fluid weighing 35 pcf. The at-rest earth pressure for the design of restrained retaining walls with level backfills can be taken as equivalent to the pressure of a fluid weighing 55 pcf. These values assume a granular and drained backfill condition. Higher lateral earth pressures would apply if walls retain expansive clay soils. An additional 20 pcf should be added to these values for walls with a 2:1 (horizontal:vertical) sloping backfill. An increase in earth pressure equivalent to an additional 2 feet of retained soil can be used to account for surcharge loads from light traffic. The above values do not include a factor of safety. Appropriate factors of safety should be incorporated into the design. If any other surcharge loads are anticipated, SCST should be contacted for the necessary increase in soil pressure.

Retaining walls should be designed to resist hydrostatic pressures or be provided with a backdrain to reduce the accumulation of hydrostatic pressures. Backdrains may consist of a 2-foot wide zone of ¾-inch crushed rock. The backdrain should be separated from the adjacent soils using a non-woven filter fabric, such as Mirafi 140N or equivalent. Weep

holes should be provided or a perforated pipe should be installed at the base of the backdrain and sloped to discharge to a suitable storm drain facility. As an alternative, a geocomposite drainage system such as Miradrain 6000 or equivalent placed behind the wall and connected to a suitable storm drain facility can be used. The project architect should provide waterproofing specifications and details. Figure 6 presents typical conventional retaining wall backdrain details.

8.4.3 Seismic Earth Pressure

If required, the seismic earth pressure can be taken as equivalent to the pressure of a fluid weighing 16 pcf. This value is for level backfill and does not include a factor of safety. Appropriate factors of safety should be incorporated into the design. This pressure is in addition to the un-factored, static active earth pressure. The passive pressure and bearing capacity can be increased by $\frac{1}{3}$ in determining the seismic stability of the wall.

8.4.4 Backfill

Wall backfill should consist of granular, free-draining material having an expansion index of 20 or less. The backfill zone is defined by a 1:1 plane projected upward from the heel of the wall. Expansive or clayey soil should not be used. We anticipate that most of the onsite soils will not be suitable for wall backfill. Additionally, backfill within 3 feet from the back of the wall should not contain rocks greater than 3 inches in dimension. Backfill should be compacted to at least 90% relative compaction. Backfill should not be placed until walls have achieved adequate structural strength. Compaction of wall backfill will be necessary to minimize settlement of the backfill and overlying settlement sensitive improvements. However, some settlement should still be anticipated. Provisions should be made for some settlement of concrete slabs and pavements supported on backfill. Additionally, any utilities supported on backfill should be designed to tolerate differential settlement.

8.5 MECHANICALLY STABILIZED EARTH RETAINING WALLS

The following soil parameters can be used for design of mechanically stabilized earth (MSE) retaining walls.

MSE Wall Design Parameters

Soil Parameter	Reinforced Soil	Retained Soil	Foundation Soil
Internal Friction Angle (degrees)	32°	32°	32°
Cohesion (psf)	0	0	0
Moist Unit Weight (pcf)	130	130	130

The reinforced soil should consist of granular, free-draining material with an expansion index of 20 or less. The bottom of MSE walls should extend to such a depth that a total of 5 feet exists between the bottom of the wall and the face of the slope. Figure 7 presents a typical MSE retaining wall backdrain detail. MSE retaining walls may experience lateral movement over time. The wall engineer should review the configuration of proposed improvements adjacent to the wall and provide measures to help reduce the potential for distress to these improvements from lateral movement.

8.6 PIPELINES

8.6.1 Thrust Blocks

For level ground conditions, a passive earth pressure of 350 psf per foot of depth below the lowest adjacent final grade can be used to compute allowable thrust block resistance. A value of 150 psf per foot should be used below groundwater level, if encountered.

8.6.2 Modulus of Soil Reaction

A modulus of soil reaction (E') of 2,000 psi can be used to evaluate the deflection of buried flexible pipelines. This value assumes that granular bedding material is placed adjacent to the pipe and is compacted to at least 90% relative compaction.

8.6.3 Pipe Bedding

Pipe bedding as specified in the "Greenbook" Standard Specifications for Public Works Construction can be used. Bedding material should consist of clean sand having a sand equivalent not less than 30 and should extend to at least 12 inches above the top of pipe. Alternative materials meeting the intent of the bedding specifications are also acceptable. Samples of materials proposed for use as bedding should be provided to the engineer for inspection and testing before the material is imported for use on the project. The onsite materials are not expected to meet "Greenbook" bedding specifications. The pipe bedding material should be placed over the full width of the trench. After placement of the pipe, the bedding should be brought up uniformly on both sides of the pipe to reduce the potential for unbalanced loads. No voids or uncompacted areas should be left beneath the pipe haunches. Ponding or jetting the pipe bedding should not be allowed.

8.6.4 Backfill

Excavated materials free of organic debris and rocks greater than 6 inches in any dimension are generally expected to be suitable for use as utility trench backfill, unless beneath structures or hardscape. Imported material should not contain rocks greater than 3 inches in any dimension or organic debris. Imported material should have an expansion index of 20 or less. SCST should observe and, if appropriate, test proposed import

materials before they are delivered to the site. Backfill should be placed in lifts 8 inches or less in loose thickness, moisture conditioned to optimum moisture content or slightly above, and compacted to at least 90% relative compaction. The top 12 inches of soil beneath pavement subgrade should be compacted to at least 95% relative compaction.

8.7 PAVEMENT SECTION RECOMMENDATIONS

The pavement support characteristics of the soils encountered during our investigation are considered medium. An R-value of 26 was assumed for design of preliminary pavement sections. The actual R-value of the subgrade soils should be determined after grading and final pavement sections be provided. Based on an R-value of 26, the following pavement structural sections are recommended for the assumed Traffic Indices.

Flexible Pavement Sections

Traffic Type	Traffic Index	Asphalt Concrete (inches)	Aggregate Base* (inches)
Parking Stalls	4.5	3	5
Drive Lanes	6.0	4	8
Fire Lanes	7.5	4	12

Portland Cement Concrete Pavement Sections

Traffic Type	Traffic Index	Full-Depth JPCP* (inches)
Parking Stalls	4.5	6
Drive Lanes	6.0	6½
Heavy Traffic Areas	7.5	7

^{*}Jointed Plain Concrete Pavement

The top 12 inches of subgrade should be scarified, moisture conditioned to near optimum moisture content and compacted to at least 95% relative compaction. All soft or yielding areas should be removed and replaced with compacted fill or aggregate base. Aggregate base and asphalt concrete should conform to the Caltrans Standard Specifications or the "Greenbook" and should be compacted to at least 95% relative compaction. Aggregate base should have an R-value of not less than 78. All materials and methods of construction should conform to good engineering practices and the minimum standards of the City of San Diego.

8.8 PERVIOUS PAVEMENT SECTION RECOMMENDATIONS

Pervious pavement section recommendations are based on Caltrans (2014) pavement structural design guidelines. The pavement sections below are based on the strength of the materials. However, the actual thickness of the sections may be controlled by the reservoir layer design, which the project civil engineer should determine.

Pervious Asphalt Pavement

Traffic Type	Category	*Asphalt Treated Permeable Base (ATPB) (inches)	Class 4 Aggregate Base (inches)		
Parking Stalls	В	5	6		

^{*11/4} inches of an open graded friction course (OGFC) should be placed on top of the ATPB.

Pervious Concrete Pavement

Traffic Type	Category	Pervious Concrete (inches)	Class 4 Aggregate Base (inches)		
Parking Stalls	В	6	6		

Permeable Interlocking Concrete Pavers (PICP)

Traffic Type	Category	PICP (inches)	Class 3 Permeable (inches)	Class 4 Aggregate Base (inches)
Parking Stalls	В	31/8	5	6

The top 12 inches of subgrade should be scarified, moisture conditioned to near optimum moisture content and compacted to at least 95% relative compaction. All soft or yielding subgrade areas should be removed and replaced with compacted fill or permeable base. All materials and methods of construction should conform to good engineering practices and the minimum local standards.

Pervious pavement sections should be lined with an impermeable geomembrane to reduce the potential for water-related distress to adjacent structures or improvements. A suitable subdrain system should be installed at the base of the pervious section.

8.9 SOIL CORROSIVITY

A representative sample of the onsite soils were tested to evaluate corrosion potential. The test results are presented in Appendix II. The project design engineer can use the sulfate results in conjunction with ACI 318 to specify the water/cement ratio, compressive strength and cementitious material types for concrete exposed to soil. A corrosion engineer should be contacted to provide specific corrosion control recommendations.

8.10 INFILTRATION FEASIBILITY

We performed two borehole percolation tests at the approximate locations shown on Figure 2 to assess storm water infiltration feasibility. Appendix III presents the field data and test results. The table below presents the tested infiltration rates.

Infiltration Rate Test Results

Test Location	Test Depth (feet)	Material Type at Test Depth (USCS Classification)	Infiltration Rate (inch/hour)
P-1	5	CLAYEY SAND with GRAVEL (SC)	0.0
P-2	5	CLAYEY SAND with GRAVEL (SC)	0.0

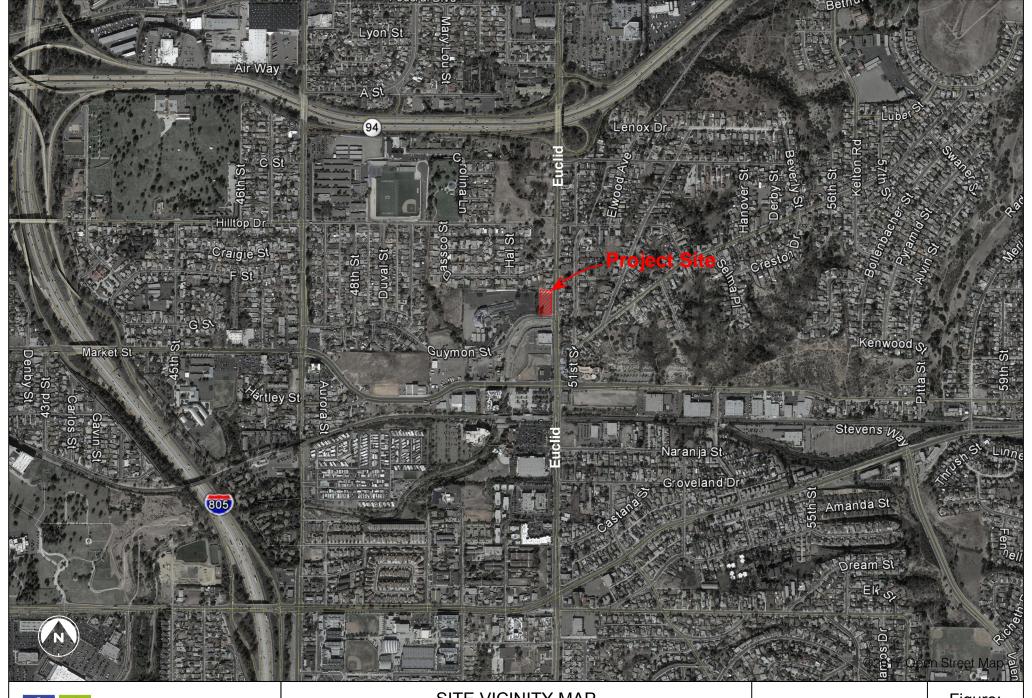
The tested infiltration rates do not support storm water infiltration in any appreciable quantity. Based on our test results, the feasibility screening category is No Infiltration. BMP facilities should be lined with an impermeable geomembrane to reduce the potential for water-related distress to adjacent structures or improvements. A subdrain system should be installed at the bottom of BMP facilities. Foundations should be set back at least 10 feet from BMP facilities, or the foundation should be deepened to a depth that extends below the bottom of the BMP.

9. GEOTECHNICAL ENGINEERING DURING CONSTRUCTION

The geotechnical engineer should review project plans and specifications prior to bidding and construction to check that the intent of the recommendations in this report has been incorporated. Observations and tests should be performed during construction. If the conditions encountered during construction differ from those anticipated based on the subsurface exploration program, the presence of the geotechnical engineer during construction will enable an evaluation of the exposed conditions and modifications of the recommendations in this report or development of additional recommendations in a timely manner.

10. CLOSURE

SCST should be advised of any changes in the project scope so that the recommendations contained in this report can be evaluated with respect to the revised plans. Changes in recommendations will be verified in writing. The findings in this report are valid as of the date of this report. Changes in the condition of the site can, however, occur with the passage of time, whether they are due to natural processes or work on this or adjacent areas. In addition, changes in the standards of practice and government regulations can occur. Thus, the findings in this report may be invalidated wholly or in part by changes beyond our control. This report should not be relied upon after a period of two years without a review by us verifying the suitability of the conclusions and recommendations to site conditions at that time.

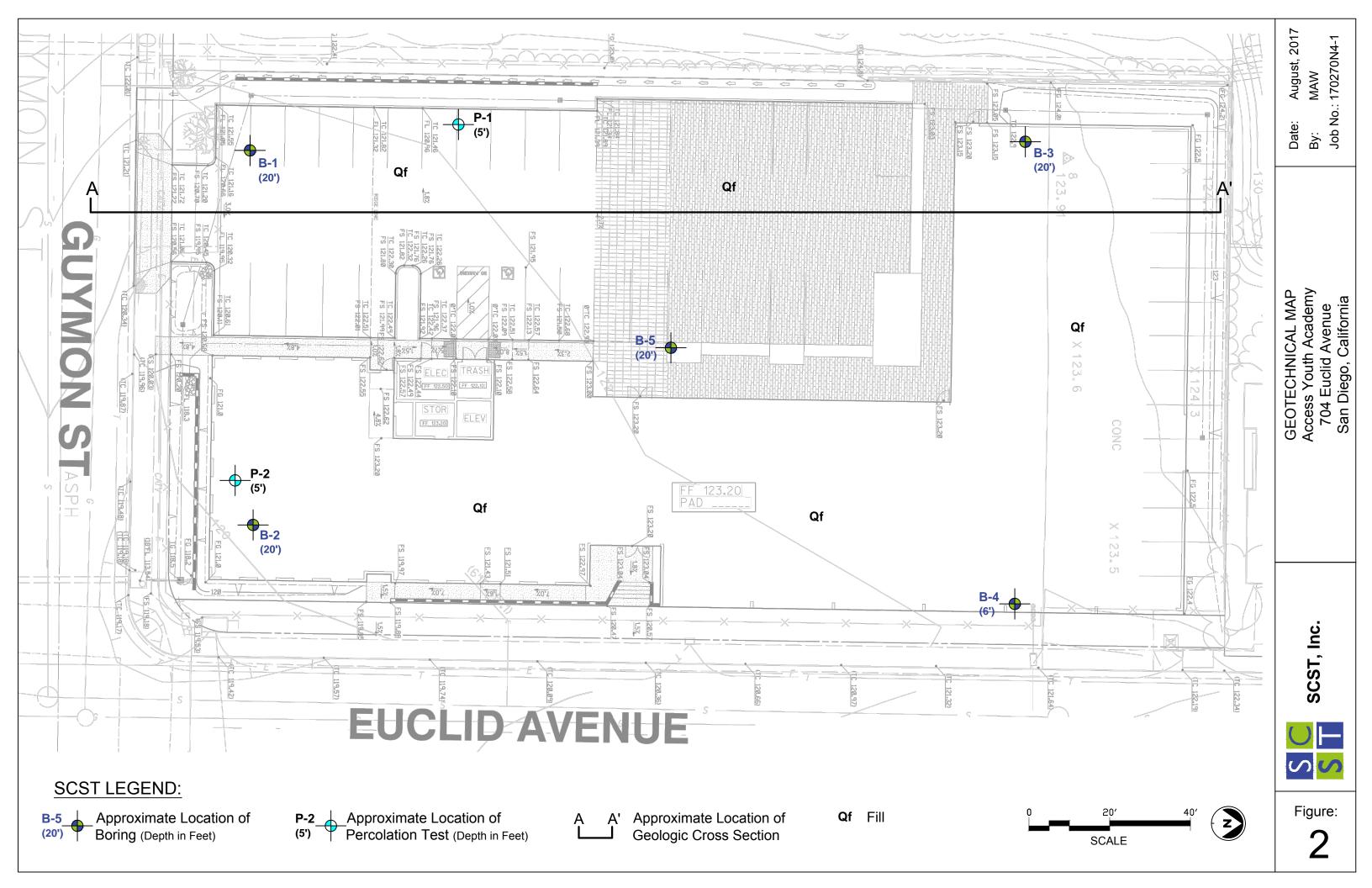


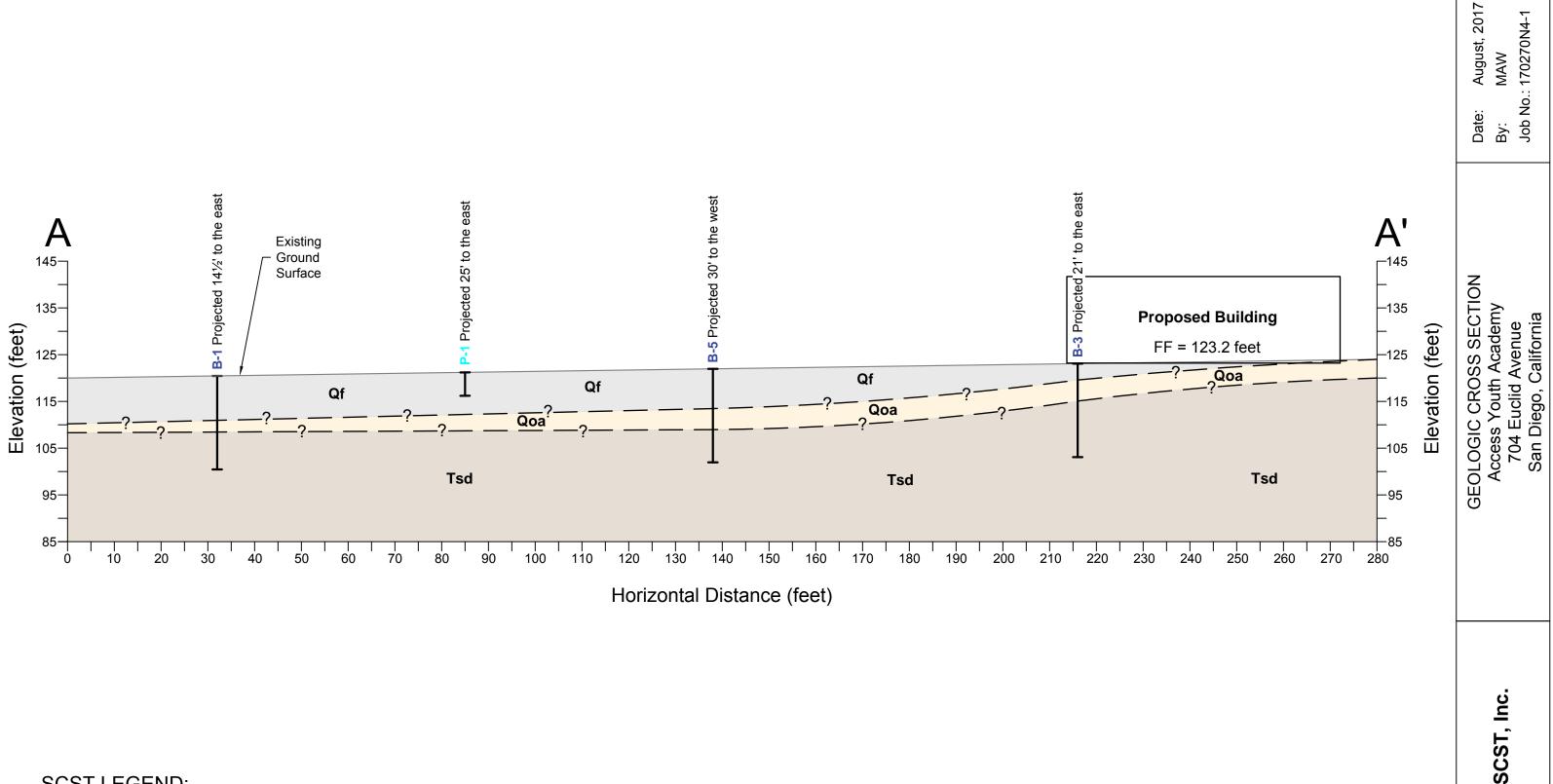
In the performance of our professional services, we comply with that level of care and skill ordinarily exercised by members of our profession currently practicing under similar conditions and in the same locality. The client recognizes that subsurface conditions may vary from those encountered at the boring location, and that our data, interpretations, and recommendations are based solely on the information obtained by us. We will be responsible for those data, interpretations, and recommendations, but shall not be responsible for interpretations by others of the information developed. Our services consist of professional consultation and observation only, and no warranty of any kind whatsoever, express or implied, is made or intended in connection with the work performed or to be performed by us, or by our proposal for consulting or other services, or by our furnishing of oral or written reports or findings.

11. REFERENCES

- American Concrete Institute (ACI) (2012), Building Code Requirements for Structural Concrete (ACI 318-11) and Commentary, August.
- California Emergency Management Agency, California Geological Survey, University of Southern California (Cal EMA) (2009), Tsunami Inundation Map for Emergency Planning, National City Quadrangle, June 1.
- Caltrans (2010), Standard Specifications.
- Caltrans (2014), Pervious Pavement Design Guidance, August
- City of San Diego (2008), Seismic Safety Study, Geologic Hazards and Faults, Grid Tiles: 17 and 18, Development Services Department, April 3.
- Federal Emergency Management Agency (2012), FIRM Flood Insurance Rate Map, San Diego County, California and Incorporated Areas, Map Number 06073C1904G, May 16.
- International Code Council (2015), 2016 California Building Code, California Code of Regulations, Title 24, Part 2, Volume 2 of 2, Based on the 2015 International Existing Building Code, Effective January 1, 2017.
- Kennedy, M.P. and Tan, S.S. (2008), Geologic Map of the San Diego 30' x 60' Quadrangle, California, California Geological Survey.
- Public Works Standards, Inc. (2015), The "Greenbook," Standard Specifications for Public Works Construction, 2015 Edition.

SITE VICINITY MAP Access Youth Academy 704 Euclid Avenue San Diego, California


Date: August, 2017


By: MAW

Job No.: 170270N4-1

Figure:

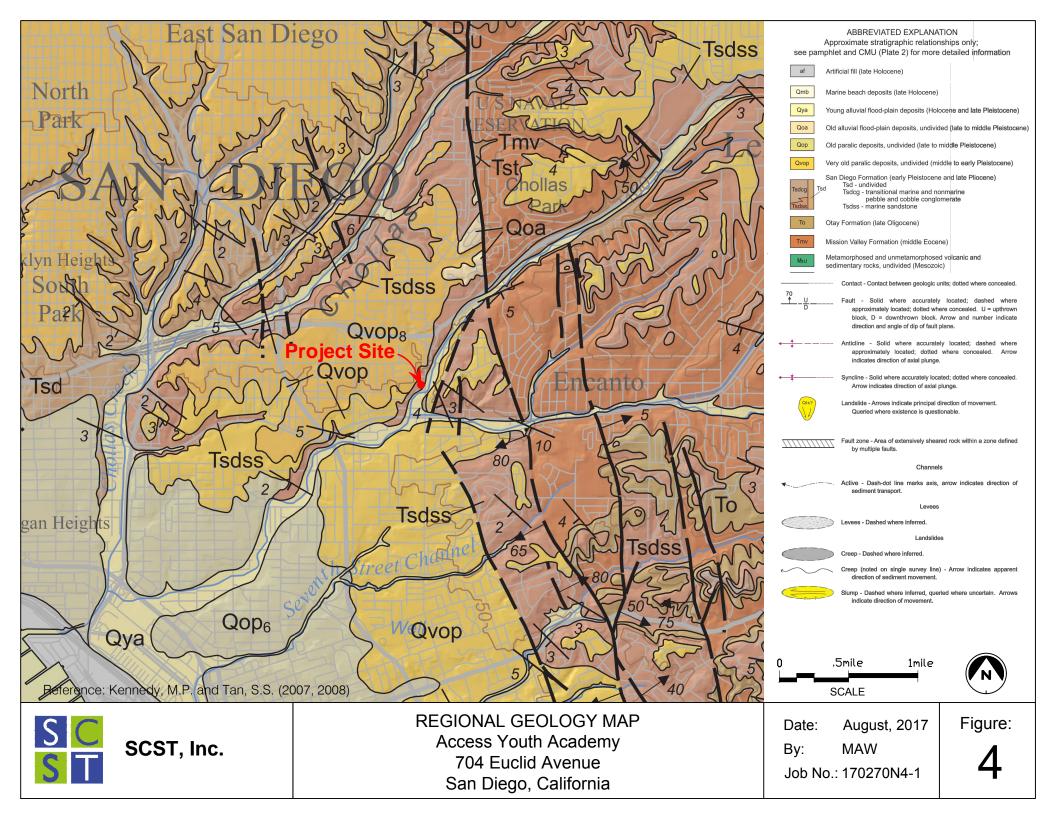
1

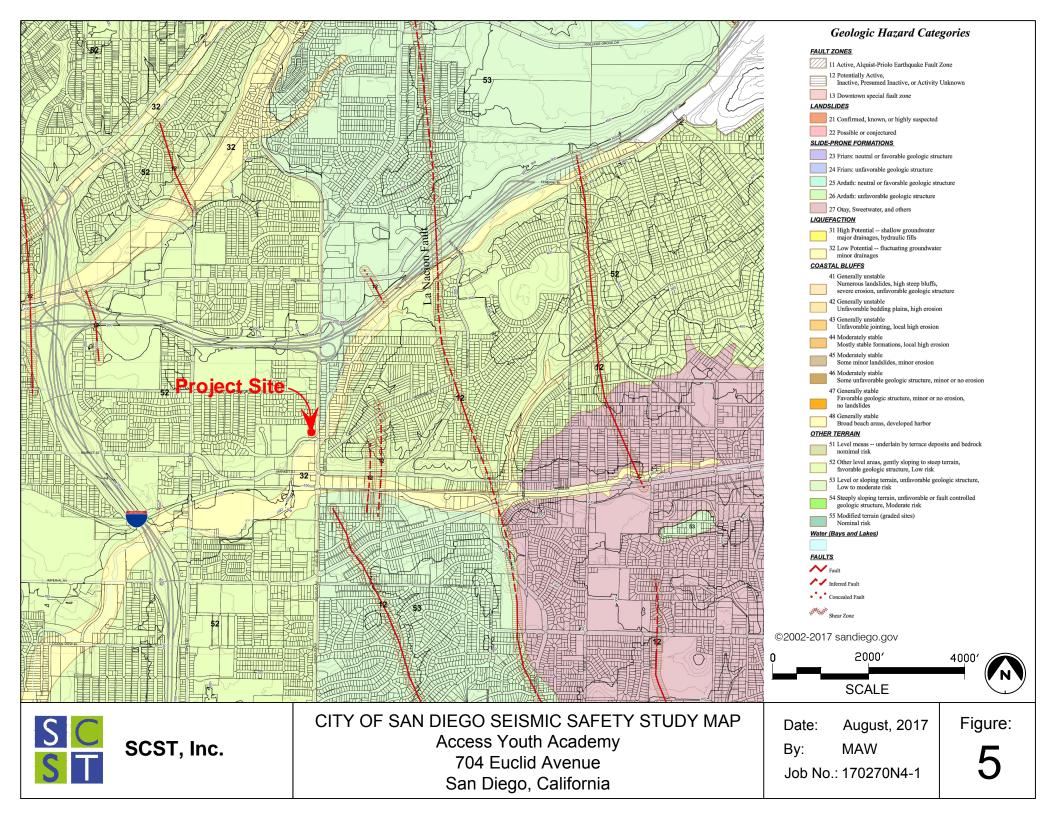
SCST LEGEND:

Approximate Location of Boring

Approximate Location of Percolation Test

Approximate Location of Geologic Contact, Queried Where Uncertain


Fill


Old alluvial flood-plain deposits

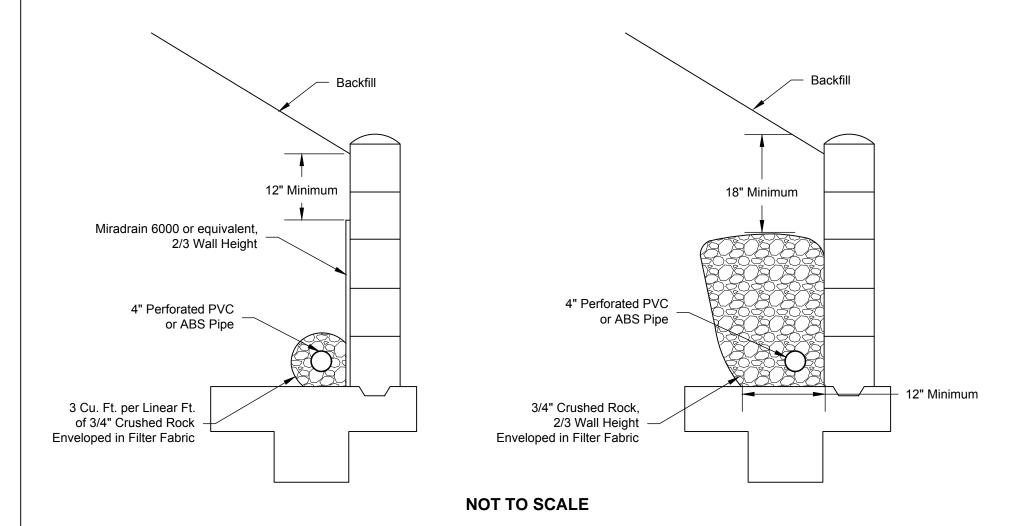

Tsd San Diego Formation

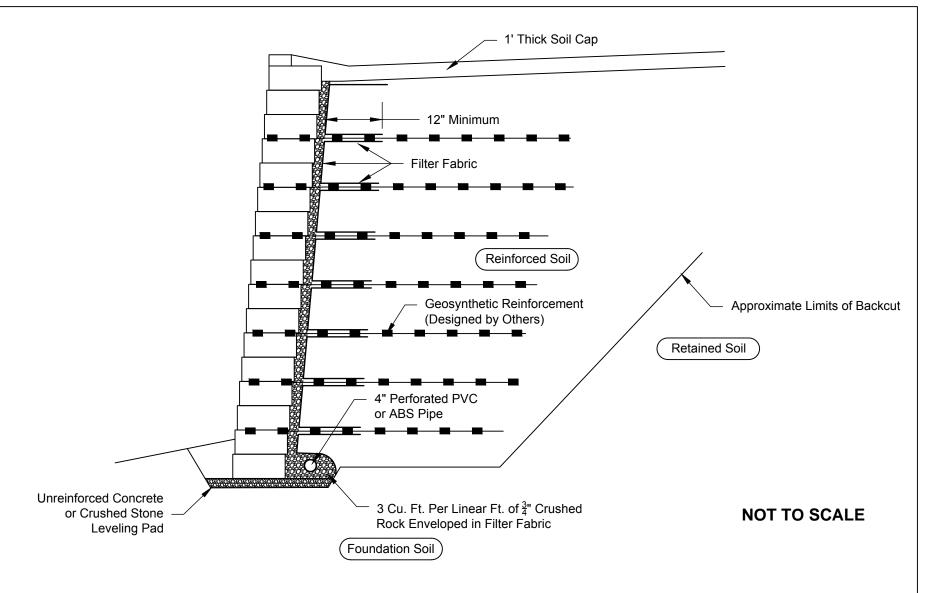
Figure:

NOTES:

- 1) Dampproof or waterproof back of wall following architect's specifications.
- 2) 4" minimum perforated pipe, SDR35 or equivalent, holes down, 1% fall to outlet. Provide solid outlet pipe at suitable locations.
- 3) Drain installation and outlet connection should be observed by the geotechnical consultant.

SCST, Inc.

TYPICAL RETAINING WALL BACKDRAIN DETAILS
Access Youth Academy
704 Euclid Avenue
San Diego, California


Date: August, 2017

By: MAW

Job No.: 170270N4-1

Figure:

6

NOTES:

- 1) Backcut as recommended by the geotechnical report or field evaluation
- 2) Additional drain at excavation backcut may be recommended base on conditions obsewrved during construction.
- 3) Filter fabric should be installed between crushed rock and soil. Filter farbric should consist of Mirafi 140N or equivalent. Filter fabric should be overlapped approximately 6 inches.
- 4) Perforated pipe should outlet through a solid pipe to an appropriate gravity outfall. Perforated pipe and outlet pipe should have a fall of at least 1%.

SCST, Inc.

TYPICAL MSE RETAINING WALL DETAIL
Access Youth Academy
704 Euclid Avenue
San Diego, California

Date: August, 2017

By: MAW

Job No.: 170270N4-1

Figure:

7

APPENDIX I FIELD INVESTIGATION

Our field investigation consisted of drilling 5 borings and 2 percolation test holes on July 10, 2017 to depths between about 5 and 20 feet below the existing ground surface using a truck-mounted drill rig equipped with a hollow-stem auger. Auger refusal was encountered in one of the borings. Figure 2 shows the approximate locations of the borings and percolation tests. The field investigation was performed under the observation of an SCST engineer who also logged the boring and test holes and obtained samples of the materials encountered.

Relatively undisturbed samples were obtained using a modified California (CAL) sampler, which is a ring-lined split tube sampler with a 3-inch outer diameter and 2½-inch inner diameter. Standard Penetration Tests (SPT) were performed using a 2-inch outer diameter and 1¾-inch inner diameter split tube sampler. The CAL and SPT samplers were driven with a 140-pound weight dropping 30 inches. The number of blows needed to drive the samplers the final 12 inches of an 18-inch drive is noted on the boring logs as "Driving Resistance (blows/ft. of drive)." SPT and CAL sampler refusal was encountered when 50 blows were applied during any one of the three 6-inch intervals, a total of 100 blows was applied, or there was no discernible sampler advancement during the application of 10 successive blows. The SPT penetration resistance was normalized to a safety hammer (cathead and rope) with a 60% energy transfer ratio in accordance with ASTM D6066. The normalized SPT penetration resistance is noted on the boring logs as "N₆₀." Disturbed bulk samples were obtained from the SPT sampler and the drill cuttings.

The soils are classified in accordance with the Unified Soil Classification System as illustrated on Figure I-1. Logs of the borings and test holes are presented on Figures I-2 through I-8.

SUBSURFACE EXPLORATION LEGEND

UNIFIED SOIL CLASSIFICATION CHART

	UNIFIED	SOIL CL	ASSIFICATION CHART
SOIL DESC	RIPTION	ROUP 'MBOL	TYPICAL NAMES
I. COARSE GRA	INED, more than 50% of	materia	l is larger than No. 200 sieve size.
GRAVELS More than half of	CLEAN GRAVELS	GW	Well graded gravels, gravel-sand mixtures, little or no fines
coarse fraction is larger than No. 4		GP	Poorly graded gravels, gravel sand mixtures, little or no fines.
sieve size but smaller than 3".	GRAVELS WITH FINES (Appreciable amount of	GM	Silty gravels, poorly graded gravel-sand-silt mixtures.
	fines)	GC	Clayey gravels, poorly graded gravel-sand, clay mixtures.
SANDS More than half of	CLEAN SANDS	SW	Well graded sand, gravelly sands, little or no fines.
coarse fraction is smaller than No.		SP	Poorly graded sands, gravelly sands, little or no fines.
4 sieve size.		SM	Silty sands, poorly graded sand and silty mixtures.
		SC	Clayey sands, poorly graded sand and clay mixtures.
II. FINE GRAINE	D, more than 50% of ma	terial is	smaller than No. 200 sieve size.
	SILTS AND CLAYS (Liquid Limit less	ML	Inorganic silts and very fine sands, rock flour, sandy silt or clayey-silt- sand mixtures with slight plasticity.
	than 50)	CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays.
		OL	Organic silts and organic silty clays or low plasticity.
	SILTS AND CLAYS (Liquid Limit	МН	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts.
	greater than 50)	СН	Inorganic clays of high plasticity, fat clays.
		ОН	Organic clays of medium to high plasticity.
III. HIGHLY ORG	ANIC SOILS	PT	Peat and other highly organic soils.
SAMPLE SY	<u>/MBOLS</u>		LABORATORY TEST SYMBOLS
- Bulk S	ample		AL - Atterberg Limits
CAL - Modifie	ed California sampler		CON - Consolidation
CK - Undist	urbed Chunk sample		COR - Corrosivity Tests
MS - Maxim	um Size of Particle		(Resistivity, pH, Chloride, Sulfate)
ST - Shelby			DS - Direct Shear
SPT - Standa	ard Penetration Test sampler		EI - Expansion Index
0001115	ATED 0\/AE0: 0		MAX - Maximum Density
GROUNDW	ATER SYMBOLS		RV - R-Value
- Water	level at time of excavation or a	s indicated	d SA - Sieve Analysis UC - Unconfined Compression
} - Water	seepage at time of excavation	or as indic	cated
			Access Youth Academy
			Can Diago CA

SCST, Inc.

Access Youth Academy								
San Diego, CA								
Ву:	BG	Date:	August, 2017					
Job Number:	170270N-1	Figure:	I-1					

	LOG OF BORING B-1									
	Date Drilled: 7/10/2017 Logged by: BG Equipment: CME-75 with 8-inch Diameter Hollow-Stem Auger Project Manager: TB									
		oment: CME-75 with 8-inch Diameter Hollow-Stem Auger on (ft): 121 De	Pr epth to G	-		-		TBC	ncount	ered
	vali	on (it). 121	pin to G		PLES					
H (ft)	S			7		SISTANCE of drive)	0	ONTENT (9	ЕІСНТ (р	RY TEST
DEPTH (ft)	nscs	SUMMARY OF SUBSURFACE CONDITIONS		DRIVEN	BULK	DRIVING RESISTANCE (blows/ft of drive)	N_{60}	MOISTURE CONTENT (%)	DRY UNIT WEIGHT (pcf)	LABORATORY TESTS
	SC	FILL (Qf): CLAYEY SAND with GRAVEL, light brown, fine to medium graine loose to medium dense.	d, moist,		\ /					
- 1		loose to medium dense.			\ /					
- 2					V					RV
- 3					Λ					
- 4				CAL	$/\setminus$	20				
- 5										
- 6										
- 7										
- 8										
- 9				CAL		78/10"		11.2	102.6	
– 10	CL	<u>OLD ALLUVIAL FLOOD-PLAIN DEPOSITS (Qoa)</u> : SANDY CLAY, dark bro to medium grained, moist, hard, white mineral precipitate deposits.	wn, fine							
_ 11										
– 12										
– 13		SAN DIEGO FORMATION (Tsd): SILTY SANDSTONE, light yellowish brown grained, moist, very dense, weakly cemented.	n, fine							
– 14				SPT		51	67			
– 15				O1 1		31	07			
– 16										
– 17										
– 18										
– 19		Dense.		SPT		32	42			
L 20				O1 1		JZ	74			
		BORING TERMINATED AT 20 FEET								

S C S T

SCST, Inc.

Access Youth Academy
San Diego, California

By: BG Date: August, 2017

Job Number: 170270N-1 Figure: I-2

LOG OF BORING B-2 Date Drilled: 7/10/2017 Logged by: BG TBC Equipment: CME-75 with 8-inch Diameter Hollow-Stem Auger Project Manager: Elevation (ft): 120 Depth to Groundwater (ft): Not Encountered SAMPLES DRY UNIT WEIGHT (pcf) MOISTURE CONTENT (%) DRIVING RESISTANCE (blows/ft of drive) LABORATORY TEST DEPTH (ft) DRIVEN BULK SUMMARY OF SUBSURFACE CONDITIONS SC FILL (Qf): CLAYEY SAND with GRAVEL, light brown, fine to medium grained, moist, loose to medium dense. 1 2 ΕI 3 Disturbed sample. CAL 78 5 6 7 8 CL SANDY CLAY, dark brown and bluish green, fine to medium grained, moist, very stiff. 9 CAL 28 11.0 111.5 10 11 SAN DIEGO FORMATION (Tsd): SILTY SANDSTONE, yellowish brown, fine to medium grained, moist, dense to very dense, weakly cemented. 12 13 14 SPT 38 50 15 16 17 18 19 SPT **BORING TERMINATED AT 20 FEET**

S C S T

SCST, Inc.

Access Youth Academy
San Diego, California

By: BG Date: August, 2017

Job Number: 170270N-1 Figure: I-3

	LOG OF BORING B-3								
		Orilled: 7/10/2017			ed by:		BG		
		· ·	-		nager:		TBC	nee	toron
EI6	vati	on (ft): 124 Depth to 0		nawa PLES				ncoun	
DEPTH (ft)	nscs	SUMMARY OF SUBSURFACE CONDITIONS	DRIVEN	BULK	DRIVING RESISTANCE (blows/ft of drive)	N_{60}	MOISTURE CONTENT (%)	DRY UNIT WEIGHT (pcf)	LABORATORY TESTS
- 1 - 2 - 3	SC	FILL (Qf): CLAYEY SAND with GRAVEL, light brown, fine to medium grained, some cobbles, low plasticity, moist, loose to medium dense.		\bigvee					SA AL EI COR
- 4 - 5		OLD ALLUVIAL FLOOD-PLAIN DEPOSITS (Qoa): SANDY CLAY, yellowish brown, fine to medium grained, moist, hard, white mineral precipitate deposits.	CAL	$/\setminus$	27		13.1	109.1	
- 6 - 7									
- 8 - 9 - 10		SAN DIEGO FORMATION (Qsd): SILTY SANDSTONE, yellowish brown, fine to medium grained, some gravel, moist, very dense, weakly cemented.	CAL		82/10"		15.8	111.6	
- 11 - 12									
- 13 - 14		Dense.	SPT		32	42			
- 15			JOF 1		3 2	42			
– 16									
– 17									
- 18 - 19		Medium dense.	SPT		18	23			
L 20									
		BORING TERMINATED AT 20 FEET							

Access Youth Academy								
San Diego, California								
By:	BG	Date:	August, 2017					
Job Number:	170270N-1	Figure:	I-4					

		LOG OF BORING B-	-4							
		Orilled: 7/10/2017	5			ed by:		BG		
	Equipment: CME-75 with 8-inch Diameter Hollow-Stem Auger Project Manager: evation (ft): Depth to Groundwater (ft):							TBC Not E	ncoun	tered
					PLES					
						DRIVING RESISTANCE (blows/ft of drive)		MOISTURE CONTENT (%)	DRY UNIT WEIGHT (pcf)	LABORATORY TESTS
H.	nscs			<u>.</u>	¥	∃SIS ⁻ of dr	N_{60}	ONT	/EIG)RY
DEРТН (ft)	SN	SUMMARY OF SUBSURFACE CONDITIONS		DRIVEN	BULK	VING RESISTAN (blows/ft of drive)	Z	RE C	N ⊥II	RATC
						RIVIN (blc		ISTU	Y UN	BOF
	00	FILL (OD) OLAVEY ODAYEL with CAND light house fire to reading against						MO	DR	7
_ 1	GC	<u>FILL (Qf)</u> : CLAYEY GRAVEL with SAND, light brown, fine to medium grained, so cobbles, moist, loose to medium dense, concrete debris.	ome	N	\					
_ 2					\bigvee					
_ 3					X					
			F		$/ \setminus$					
– 5		No sample recovery.	С	CAL	/ \	94				
- 6		AUGER REFUSAL AT 6 FEET								
8										
9										
10										
11										
– 12										
- 13										
– 14										
- 15										
– 16										
– 17										
– 18										
– 19										
L 20										

Access Youth Academy							
San Diego, California							
Ву:	BG	Date:	August, 2017				
Job Number	170270N-1	Figure:	I-5				

LOG OF BORING B-5 Date Drilled: 7/10/2017 Logged by: BG **TBC** Equipment: CME-75 with 8-inch Diameter Hollow-Stem Auger Project Manager: Elevation (ft): 122 Depth to Groundwater (ft): Not Encountered SAMPLES DRY UNIT WEIGHT (pcf) MOISTURE CONTENT (%) DRIVING RESISTANCE (blows/ft of drive) LABORATORY TEST DEPTH (ft) **USCS** DRIVEN BULK SUMMARY OF SUBSURFACE CONDITIONS SC FILL (Qf): CLAYEY SAND with GRAVEL, dark brown, fine to medium grained, some cobbles, moist, loose to medium dense. 1 SA 2 ALΕI 3 COR CAL 27 5 6 8 SC OLD ALLUVIAL FLOOD-PLAIN DEPOSITS (Qoa): CLAYEY SAND, dark brown and 9 gray, fine grained, moist, dense, white mineral precipitate deposits. 50 10 11 12 13 SAN DIEGO FORMATION (Tsd): SITLY SANDSTONE, yellowish brown, fine to medium grained, moist, medium dense, weakly cemented. 14 SPT 22 29 15 16 17 18 Dense. 19 SPT 32 41 **BORING TERMINATED AT 20 FEET**

SC

SCST, Inc.

By:	BG	Date:	August, 2017
Job Number:	170270N-1	Figure:	I-6

Date Drilled: 7/10/2017 Equipment: CME-75 with 8-inch Diameter Hollow-Stem Auger Elevation (ft): 122 Comparity of the Comp											
Equipment: CME-75 with 8-inch Diameter Hollow-Stem Auger Depth to Groundwater (ft): Not Encountered Not Encoun			LOG OF BORIN	IG P-1							
Elevation (ft): 122 Depth to Groundwater (ft): Not Encountered SAMPLES S				П			-				
SC FILL (QD: CLAYEY SAND with GRAVEL, light brown, fine to medium grained, some cobbies, moist, medium dense. SPT 20 26 SAA AL					-		-			ncoun	tered
SC FILL (Qf): CLAYEY SAND with GRAVEL, light brown, fine to medium grained, some cobbiles, moist, medium dense. SA AL					SAM	PLES	NCE e)		(%) TN	r (pcf)	ESTS
- 1	DEPTH (ft)				DRIVEN	BULK	DRIVING RESISTA (blows/ft of drive	⁰⁹ N	MOISTURE CONTEN	DRY UNIT WEIGH	LABORATORY TE
- 2		SC		rained, some		\ /					
- 3						$ \rangle /$					
- 4 SPT 20 26 - 5 BORING TERMINATED AT 5 FEET - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19						X					AL
BORING TERMINATED AT 5 FEET						$ \rangle $					
BORING TERMINATED AT 5 FEET - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19					SPT	$/\setminus$	20	26			
- 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19			BORING TERMINATED AT 5 FEET								
- 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19											
- 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19											
- 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19											
- 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19											
- 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19	10										
- 13 - 14 - 15 - 16 - 17 - 18 - 19											
- 14 - 15 - 16 - 17 - 18 - 19											
- 15 - 16 - 17 - 18 - 19	- 13										
- 16 - 17 - 18 - 19											
- 17 - 18 - 19											
- 18 - 19	– 16										
_ 19	- 17										
	- 18										
	– 19										
	L ₂₀										

Access Youth Academy
San Diego, California

By: BG Date: August, 2017

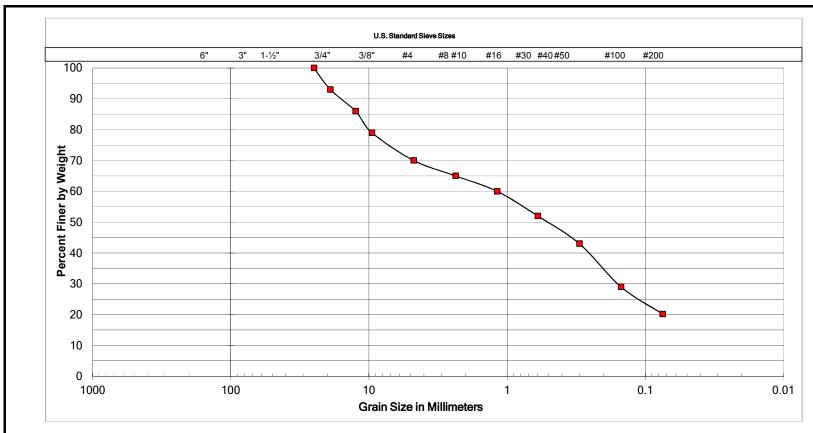
Job Number: 170270N-1 Figure: I-7

		LOG OF BORING	G P-2							
E	Equi	Drilled: 7/10/2017 pment: CME-75 with 8-inch Diameter Hollow-Stem Auger on (ft): 120	Pi Depth to 0	roject Grour	t Mai ndwa	ed by: nager: iter (ft)			ncoun	tered
DEPTH (ft)	SOSO	SUMMARY OF SUBSURFACE CONDITIONS		DRIVEN	BULK	DRIVING RESISTANCE (blows/ft of drive)	N_{60}	MOISTURE CONTENT (%)	DRY UNIT WEIGHT (pcf)	LABORATORY TESTS
 - 1	SC	FILL (Qf): CLAYEY SAND with GRAVEL, light brown, fine to medium gracobbles, moist, loose to medium dense.	nea, some		\					
_ 2					\bigvee					SA AL
– 3					Å					
- 4				SPT	$/\setminus$	33	43			
– 5		BORING TERMINATED AT 5 FEET								
– 6										
7										
- 8										
– 9										
– 10										
_ 11										
– 12										
– 13										
– 14										
– 15										
– 16										
– 17										
- 18										
– 19										
L 20										

Access Youth Academy
San Diego, California

By: BG Date: August, 2017

Job Number: 170270N-1 Figure: I-8

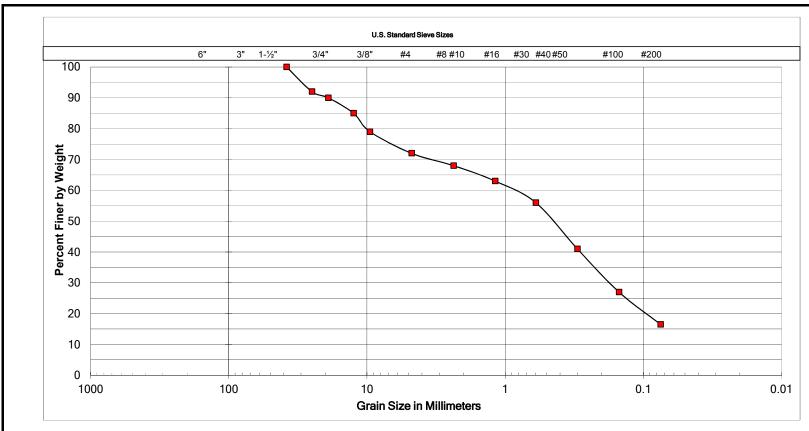

APPENDIX II LABORATORY TESTING

Laboratory tests were performed to provide geotechnical parameters for engineering analyses. The following tests were performed:

- **CLASSIFICATION:** Field classifications were verified in the laboratory by visual examination. The final soil classifications are in accordance with the Unified Soil Classification System.
- **IN SITU MOISTURE AND DENSITY:** The in situ moisture content and dry unit weight were determined on samples collected from the borings. The test results are presented on the boring logs in Appendix I.
- **GRAIN SIZE DISTRIBUTION:** The grain size distribution was determined on four samples in accordance with ASTM D422. Figures II-1 through II-4 present the test results.
- **ATTERBERG LIMITS:** The Atterberg limits were determined on four soil samples in accordance with ASTM D4318. Figures II-1 through II-4 present the test results.
- **R-VALUE**: An R-value test was performed on one soil sample in accordance with California Test Method 301. Figure II-5 presents the test result.
- **EXPANSION INDEX:** The expansion index was determined on three soil samples in accordance with ASTM D4829. Figure II-5 presents the test results.
- CORROSIVITY: Corrosivity tests were performed on two soil samples. The pH and
 minimum resistivity were determined in general accordance with California Test 643. The
 soluble sulfate content was determined in accordance with California Test 417. The total
 chloride ion content was determined in accordance with California Test 422. Figure II-5
 presents the test results.

Soil samples not tested are now stored in our laboratory for future reference and analysis, if needed. Unless notified to the contrary, all samples will be disposed of 30 days from the date of this report.

Cobbles	Gra	avel		Sand	Silt or Clay	
	Coarse	Fine	Coarse	Medium	Fine	

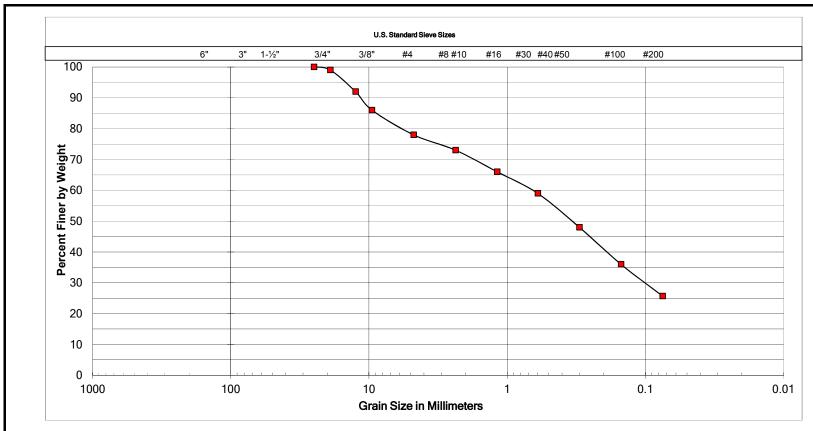

SAMPLE LOCATION
B-3 at 0 to 5 feet

UNIFIED SOIL CLASSIFICATION:	SC
DESCRIPTION	Clayey Sand with Gravel

ATTERBERG LIMITS					
LIQUID LIMIT	34				
PLASTIC LIMIT	20				
PLASTICITY INDEX	14				

Ву:	TBC	Date:	August, 2007
Job Number:	170270N-1	Figure:	II-1

Cobbles	Gra	avel		Sand	Silt or Clay	
	Coarse	Fine	Coarse	Medium	Fine	

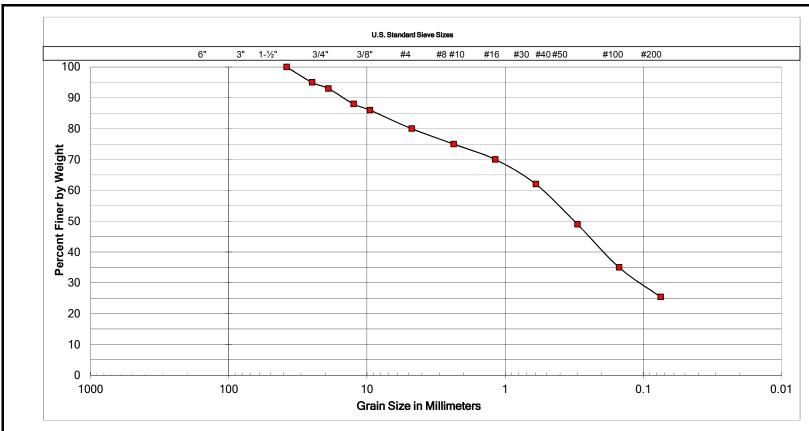

SAMPLE LOCATION
B-5 at 1 to 5 feet

UNIFIED SOIL CLASSIFICATION:	SC
DESCRIPTION	Clayey Sand with Gravel

ATTERBERG LIMITS			
LIQUID LIMIT	26		
PLASTIC LIMIT	18		
PLASTICITY INDEX	8		

Ву:	TBC	Date:	August, 2007
Job Number:	170270N-1	Figure:	II-2

Cobbles	Gravel		Sand			Silt or Clay
	Coarse	Fine	Coarse	Medium	Fine	


SAMPLE LOCATION
P-1 at 0 to 5 feet

UNIFIED SOIL CLASSIFICATION:	SC
DESCRIPTION	Clayey Sand with Gravel

ATTERBERG LIMI	TS
LIQUID LIMIT	39
PLASTIC LIMIT	23
PLASTICITY INDEX	16

Ву:	TBC	Date:	August, 2007
Job Number:	170270N-1	Figure:	II-3

Cobbles	Gravel		Sand			Silt or Clay
	Coarse	Fine	Coarse	Medium	Fine	

SAMPLE LOCATION	
P-2 at 3½ to 5 feet	

UNIFIED SOIL CLASSIFICATION:	SC
DESCRIPTION	Clayey Sand with Gravel

ATTERBERG LIMI	TS
LIQUID LIMIT	28
PLASTIC LIMIT	17
PLASTICITY INDEX	11

Ву:	TBC	Date:	August, 2007
Job Number:	170270N-1	Figure:	II-4

R-VALUE

CALIFORNIA TEST 301

SAMPLE	DESCRIPTION	R- VALUE	
B-1 at 0 to 5 feet	CLAYEY SAND with GRAVEL, light brown	26	

EXPANSION INDEX

ASTM D2489

SAMPLE	DESCRIPTION	EXPANSION INDEX
B-2 at 0 to 5 feet	CLAYEY SAND with GRAVEL, light brown	32
B-3 at 0 to 5 feet	CLAYEY SAND with GRAVEL, light brown	34
B-5 at 1 to 5 feet	CLAYEY SAND with GRAVEL, dark brown	12

CLASSIFICATION OF EXPANSIVE SOIL 1

EXPANSION INDEX	POTENTIAL EXPANSION
1 - 20	Very Low
21 - 50	Low
51 - 90	Medium
91 - 130	High
Above 130	Very High

^{1.} ASTM - D4829

RESISTIVITY, pH, SOLUBLE CHLORIDE and SOLUBLE SULFATE

SAMPLE	RESISTIVITY (Ω-cm)	рН	CHLORIDE (%)	SULFATE (%)
B-3 at 0 to 5 feet	1,110	6.58	0.006	0.009
B-5 at 1 to 5 feet	794	8.20	0.004	0.072

SULFATE EXPOSURE CLASSES²

Class	Severity	Water-Soluble Sulfate (SO ₄) in Soil, Percent by Mass	
S0	Not applicable	SO ₄ < 0.10	
S1	Moderate	0.10 ≤ SO ₄ < 0.20	
S2	Severe	$0.20 \le SO_4 \le 2.00$	
S3	Very Severe	SO ₄ > 2.00	

^{2.} ACI 318, Table 19.3.1.1

SCST, Inc.

Access Youth Academy							
	San Diego, California						
Ву:	By: TBC Date: July, 2017						
Job Number:							

APPENDIX III

APPENDIX III INFILTRATION RATE TEST RESULTS

We performed borehole percolation testing at two locations (P-1 and P-2) in general conformance with the City of San Diego BMP Design Manual. Prior to starting the testing, the test holes were presoaked with clean potable water for about 23 to 24 hours. The infiltration tests were performed after presoaking by placing clean potable water in the holes and measuring the drop in the water level. Because water remained in the holes after presoaking, the water level was adjusted and the testing performed for two readings 30 minutes apart. Figures III-1 and III-2 present the results of the testing.

Report of Borehole Percolation Testing

Storm Water Infiltration

Project Name: Access Youth Academy

Job Number: 170270N

Date Drilled: 7/10/2017

Drilling Method: 8-inch Diameter Hollow-Stem Auger

Drilled Depth (feet): 5

Test Hole Diameter (inches): 8

Gravel Pack: Yes

Pipe Diameter (inches): 4

Test Number: P-1
Tested By: MAN/BG
Date Tested: 7/11/2017
Presoak Time: 24 hours

			*Tested Infilt	ation Rate, I _t :	0	in/hr
	Corrected Percolation Rate:					min/in in/hr
Gravel Correction Factor:					1.82	
			Observed F	Percolation Rate:		min/in in/hr
		-	-	-	-	-
		-	-	-	-	-
		-	-	-	-	-
		-	-	-	-	-
		-	-	-	-	-
		-	-	-	-	-
2	8:05 8:35	0:30	1.50	1.50	0.0	0
1	7:35 8:05	0:30	1.50	1.50	0.0	0
Trial No.	Time	Interval, ΔT (min)	Height, H _o (ft)	Height, H _f (ft)	Height, ΔH (in)	Rate (min/in)
		Time	Initial Water	Final Water	Change in Water	Percolatio

^{*}Tested infiltration rate using the Porchet Method:

$$I_{t} = \frac{\Delta H(60r)}{\Delta T(r + 2H_{avg})}$$

 $\Delta H = \text{Change in water head height over the time interval [in]} \\ = 0.0 \\ r = \text{Test hole radius [in]} \\ \Delta T = \text{Time interval [min]} \\ = 30 \\ H_{avg} = \text{Average water height over time interval} \\ = 12(H_o + H_f)/2 \text{ [in]} \\ = 18.0 \\$

Access Youth Academy						
San Diego, California						
By: MAN/BG Date: August, 2017						
Job No: 170270N-1 Figure: III-1						

Report of Borehole Percolation Testing

Storm Water Infiltration

Project Name:

Job Number:

Date Drilled:

Drilling Method:

Drilled Depth (feet):

Test Hole Diameter (inches):

Gravel Pack:

Pipe Diameter (inches):

Access Youth Academy, GI

170270N

7/10/2017

8-inch Diameter Hollow-Stem Auger

5

Test Hole Diameter (inches):

8

Yes

4

Test Number: P-2
Tested By: MAN/BG
Date Tested: 7/11/2017
Presoak Time: 23 hours

Trial No.	Time	Time Interval, ΔT	Initial Water Height, H _o	Final Water Height, H _f	Change in Water Height, ΔH	Percolation Rate
		(min)	(ft)	(ft)	(in)	(min/in)
1	9:45 10:15	0:30	2.00	2.00	0.0	0
2	10:15 10:45	0:30	2.00	2.00	0.0	0
		-	-	-	-	-
		-	-	-	-	•
		-	-	-	-	-
		-	-	-	-	-
		-	-	-	-	-
	Observed Percolation Rate:					min/in in/hr
Gravel Correction Factor:					1.95	
	Corrected Percolation Rate:					min/in in/hr
*Tested Infiltation Rate, I _t : 0 in/hr					in/hr	

^{*}Tested infiltration rate using the Porchet Method:

$$I_{t} = \frac{\Delta H(60r)}{\Delta T(r + 2H_{avg})}$$

 $\Delta H = \text{Change in water head height over the time interval [in]} = 0.0$ r = Test hole radius [in] = 4 $\Delta T = \text{Time interval [min]} = 30$ $H_{avg} = \text{Average water height over time interval} = 12(H_o + H_f)/2 \text{ [in]} = 24.0$

Access Youth Academy						
San Diego, California						
By: MAN/BG Date: August, 2017						
Job No:	170270N	Figure:	III-2			

APPENDIX IV

APPENDIX IV WORKSHEET C.4-1: CATEGORIZATION OF INFILTRATION FEASIBILITY CONDITION

Worksheet C.4-1: Categorization of Infiltration Feasibility Condition

Categ	Categorization of Infiltration Feasibility Condition Worksheet C.4-1					
Part 1 - Full Infiltration Feasibility Screening Criteria Would infiltration of the full design volume be feasible from a physical perspective without any undesirable consequences that cannot be reasonably mitigated?						
Criteria	a Screening Question Yes No					
1	Is the estimated reliable infiltration rate below proposed facility locations greater than 0.5 inches per hour? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2 and Appendix D.		✓			
are beli	pasis: per materials present at the site are fill soils consisting of clayey eved to be generally representative of the materials that will be end storm water BMPs. The tested infiltration rates were 0.0 inch profiltration rates do not support a reliable infiltration rate of greate	encountered bel per hour. In our	ow the opinion, the			
	ze findings of studies; provide reference to studies, calculations, maps, n of study/data source applicability.	data sources, etc	. Provide narrative			
2	Can infiltration greater than 0.5 inches per hour be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2.		✓			
Provide l	pasis:					
The tested infiltration rates do not support a reliable infiltration of greater than 0.5 inch per hour. Allowing infiltration greater than 0.5 inch per hour will increase the risk of geotechnical hazards including increased surface runoff on the project site and onto adjacent properties, uncontrolled lateral and vertical migration of groundwater beneath adjacent structures and improvements, and uncontrolled lateral and vertical migration of groundwater through permeable bedding material of utilities within the public right-of-way (Euclid Avenue and Guymon Street). SCST does not recommend allowing infiltration greater than 0.5 inch per hour at the site.						
	Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/data source applicability.					

ı	Worksheet C.4-1 Page 2 of 4							
Criteria	Screening Question	Yes	No					
3	Can infiltration greater than 0.5 inches per hour be allowed without increasing risk of groundwater contamination (shallow water table, storm water pollutants or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.		✓					
Provide l	pasis:							
	The tested infiltration rates at the site indicate that the onsite soils do not support reliable infiltration of greater than 0.5 inch per hour.							
	ze findings of studies; provide reference to studies, calculations, maps, on of study/data source applicability. Can infiltration greater than 0.5 inches per hour be allowed	data sources, etc	c. Provide narrative					
4	without causing potential water balance issues such as change of seasonality of ephemeral streams or increased discharge of contaminated groundwater to surface waters? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.							
Provide l	pasis:							
The pro	The project design engineer is responsible for completing this criteria.							
	ze findings of studies; provide reference to studies, calculations, maps, on of study/data source applicability.	data sources, etc	c. Provide narrative					
Part 1	If all answers to rows 1 - 4 are " Yes " a full infiltration design is potenti. The feasibility screening category is Full Infiltration	·						
Result*	If any answer from row 1-4 is "No", infiltration may be possible to sor would not generally be feasible or desirable to achieve a "full infiltration Proceed to Part 2							

*To be completed using gathered site information and best professional judgment considering the definition of MEP in the MS4 Permit. Additional testing and/or studies may be required by [City Engineer] to substantiate findings.

Worksheet C.4-1 Page 3 of 4 Part 2 – Partial Infiltration vs. No Infiltration Feasibility Screening Criteria Would infiltration of water in any appreciable amount be physically feasible without any negative consequences that cannot be reasonably mitigated? Criteria Screening Question Yes No Do soil and geologic conditions allow for infiltration in any appreciable rate or volume? The response to this Screening 5 Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2 and Appendix D. Provide basis: The upper materials present at the site are fill soils consisting of clayey sand. The tested materials are believed to be generally representative of the materials that will be encountered below the proposed storm water BMPs. The tested infiltration rates were 0.0 inch per hour. In our opinion, the tested infiltration rates do not support a reliable infiltration rate of any appreciable quantity. Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/data source applicability and why it was not feasible to mitigate low infiltration rates. Can Infiltration in any appreciable quantity be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot 6 be mitigated to an acceptable level? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2. Provide basis: In our opinion partial infiltration of less than 0.5 inch per hour should not be allowed without increasing the risk of geotechnical hazards. Lateral migration of subsurface water is anticipated, potentially resulting in moisture issues beneath adjacent structures and improvements and in downslope properties where excessive moisture was not present previously. Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/data source applicability and why it was not feasible to mitigate low infiltration rates.

	Worksheet C.4-1 Page 4 of 4								
Criteria	Screening Question	Yes	No						
7	Can Infiltration in any appreciable quantity be allowed without posing significant risk for groundwater related concerns (shallow water table, storm water pollutants or other factors)? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.	✓							
Provide basis: Partial infiltration of less than 0.5 inch per hour could be allowed without posing significant risk for groundwater related concerns as long as the BMP system is designed to pretreat effluent.									
Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/data source applicability and why it was not feasible to mitigate low infiltration rates.									
8	Can infiltration be allowed without violating downstream water rights? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.								
Provide basis: The project design engineer is responsible for completing this criteria. Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/data source applicability and why it was not feasible to mitigate low infiltration rates.									
Part 2 Result* If all answers from row 1-4 are yes then partial infiltration design is potentially feasible. The feasibility screening category is Partial Infiltration. No Infiltration. If any answer from row 5-8 is no, then infiltration of any volume is considered to be infeasible within the drainage area. The feasibility screening category is No Infiltration.									

*To be completed using gathered site information and best professional judgment considering the definition of MEP in the MS4 Permit. Additional testing and/or studies may be required by Agency/Jurisdictions to substantiate findings

Storm Water Requirements Applicability Checklist

FORM

DS-560

OCTOBER 2016

Project Address: 704 Euclid Avenue, San Diego, CA 92114

Project Number (for City Use Only):

SECTION 1. Construction Storm Water BMP Re	eduirement	S:
--	------------	----

All construction sites are required to implement construction BMPs in accordance with the performance standards in the <u>Storm Water Standards Manual</u>. Some sites are additionally required to obtain coverage under the State Construction General Permit (CGP)¹, which is administered by the State Water Resources Control Board.

For all projects complete PART A: If project is required to submit a SWPPP or WPCP, continue to PART B.

PART A: Determine Construction Phase Storm Water Requirements.						
 Is the project subject to California's statewide General NPDES permit for Storm Water Discharges Associated with Construction Activities, also known as the State Construction General Permit (CGP)? (Typically projects with land disturbance greater than or equal to 1 acre.) 						
Yes; SWPPP required, skip questions 2-4 No; next question						
Does the project propose construction or demolition activity, including but not limited to, clearing, grading, grubbing, excavation, or any other activity resulting in ground disturbance and contact with storm water runoff?						
Yes; WPCP required, skip 3-4 No; next question						
 Does the project propose routine maintenance to maintain original line and grade, hydraulic capacity, or original purpose of the facility? (Projects such as pipeline/utility replacement) 						
Yes; WPCP required, skip 4 No; next question						
4. Does the project only include the following Permit types listed below?						
 Electrical Permit, Fire Alarm Permit, Fire Sprinkler Permit, Plumbing Permit, Sign Permit, Mechanical Permit, Spa Permit. 						
 Individual Right of Way Permits that exclusively include only ONE of the following activities: water service, sewer lateral, or utility service. 						
 Right of Way Permits with a project footprint less than 150 linear feet that exclusively include only ONE of the following activities: curb ramp, sidewalk and driveway apron replacement, pot holing, curb and gutter replacement, and retaining wall encroachments. 						
Yes; no document required						
Check one of the boxes below, and continue to PART B:						
If you checked "Yes" for question 1, a SWPPP is REQUIRED. Continue to PART B						
If you checked "No" for question 1, and checked "Yes" for question 2 or 3, a WPCP is REQUIRED. If the project proposes less than 5,000 square feet of ground disturbance AND has less than a 5-foot elevation change over the entire project area, a Minor WPCP may be required instead. Continue to PART B.						
If you checked "No" for all questions 1-3, and checked "Yes" for question 4 PART B does not apply and no document is required. Continue to Section 2.						
More information on the City's construction BMP requirements as well as CGP requirements can be found at:						

 More information on the City's construction BMP requirements as well as CGP requirements can be found at: www.sandiego.gov/stormwater/regulations/index.shtml

Pa	Page 2 of 4 City of San Diego • Development Services • Storm Water Requirements Applicability Checklist							
PART B: Determine Construction Site Priority								
Thi The pro City Sta and niff	This prioritization must be completed within this form, noted on the plans, and included in the SWPPP or WPCP. The city reserves the right to adjust the priority of projects both before and after construction. Construction projects are assigned an inspection frequency based on if the project has a "high threat to water quality." The City has aligned the local definition of "high threat to water quality" to the risk determination approach of the State Construction General Permit (CGP). The CGP determines risk level based on project specific sediment risk and receiving water risk. Additional inspection is required for projects within the Areas of Special Biological Significance (ASBS) watershed. NOTE: The construction priority does NOT change construction BMP requirements that apply to projects; rather, it determines the frequency of inspections that will be conducted by city staff.							
Coi	mplete P	ART B and continued to Section 2						
1.		ASBS						
		a. Projects located in the ASBS watershed.						
2.		High Priority						
		a. Projects 1 acre or more determined to be Risk Level 2 or Risk Level 3 per the Cons General Permit and not located in the ASBS watershed.	struction					
		b. Projects 1 acre or more determined to be LUP Type 2 or LUP Type 3 per the Considered Permit and not located in the ASBS watershed.	truction					
3.		Medium Priority						
		a. Projects 1 acre or more but not subject to an ASBS or high priority designation.						
		 Projects determined to be Risk Level 1 or LUP Type 1 per the Construction General not located in the ASBS watershed. 	al Permit and					
4.	×	Low Priority						
		 a. Projects requiring a Water Pollution Control Plan but not subject to ASBS, high, or priority designation. 	medium					
SE	CTION 2.	Permanent Storm Water BMP Requirements.						
Ad	ditional int	formation for determining the requirements is found in the Storm Water Standards N	Manual.					
Pro	PART C: Determine if Not Subject to Permanent Storm Water Requirements. Projects that are considered maintenance, or otherwise not categorized as "new development projects" or "redevelopment projects" according to the Storm Water Standards Manual are not subject to Permanent Storm Water BMPs.							
If "yes" is checked for any number in Part C, proceed to Part F and check "Not Subject to Permanent Storm Water BMP Requirements".								
If "no" is checked for all of the numbers in Part C continue to Part D.								
1.	Does the existing	project only include interior remodels and/or is the project entirely within an enclosed structure and does not have the potential to contact storm water?	Yes No					
2.	Does the creating	project only include the construction of overhead or underground utilities without new impervious surfaces?	☐ Yes ☒ No					
3.	roof or e	e project fall under routine maintenance? Examples include, but are not limited to: xterior structure surface replacement, resurfacing or reconfiguring surface parking xisting roadways without expanding the impervious footprint, and routine nent of damaged pavement (grinding, overlay, and pothole repair).	■Yes 🗷 No					

City of San Diego • Development Services • Storm Water Requirements Applicability Checklist Page 3 of 4								
PA	PART D: PDP Exempt Requirements.							
PD	PDP Exempt projects are required to implement site design and source control BMPs.							
If '	"yes" was checked for any questions in Part D, continue to Part F and check the b DP Exempt."	ox label	ed					
lf'	no" was checked for all questions in Part D, continue to Part E.							
1.	1. Does the project ONLY include new or retrofit sidewalks, bicycle lanes, or trails that:							
	 Are designed and constructed to direct storm water runoff to adjacent vegetated area non-erodible permeable areas? Or; 	as, or otl	ner					
	 Are designed and constructed to be hydraulically disconnected from paved streets an 	d roads?	Or;					
	 Are designed and constructed with permeable pavements or surfaces in accordance v Green Streets guidance in the City's Storm Water Standards manual? 	vith the						
	Yes; PDP exempt requirements apply No; next question							
2.	Does the project ONLY include retrofitting or redeveloping existing paved alleys, streets or roa and constructed in accordance with the Green Streets guidance in the <u>City's Storm Water Stand</u>	ds desigr dards Ma	ned inual?					
	Yes; PDP exempt requirements apply No; project not exempt.							
Pro	ART E: Determine if Project is a Priority Development Project (PDP). Dijects that match one of the definitions below are subject to additional requirements including particles to the control of the definition (SWQMP).	oreparati	on of					
If '	yes" is checked for any number in PART E, continue to PART F and check the box ity Development Project".	labeled	"Pri-					
If "	"no" is checked for every number in PART E, continue to PART F and check the box tandard Development Project".	(labele	d					
1.	New Development that creates 10,000 square feet or more of impervious surfaces collectively over the project site. This includes commercial, industrial, residential, mixed-use, and public development projects on public or private land.	¥Yes	□No					
2.	Redevelopment project that creates and/or replaces 5,000 square feet or more of impervious surfaces on an existing site of 10,000 square feet or more of impervious surfaces. This includes commercial, industrial, residential, mixed-use, and public development projects on public or private land.	Yes	⊠No					
3.	3. New development or redevelopment of a restaurant. Facilities that sell prepared foods and drinks for consumption, including stationary lunch counters and refreshment stands selling prepared foods and drinks for immediate consumption (SIC 5812), and where the land development creates and/or replace 5,000 square feet or more of impervious surface.							
4.	New development or redevelopment on a hillside. The project creates and/or replaces 5,000 square feet or more of impervious surface (collectively over the project site) and where the development will grade on any natural slope that is twenty-five percent or greater.	Yes	⊠No					
5.	New development or redevelopment of a parking lot that creates and/or replaces 5,000 square feet or more of impervious surface (collectively over the project site).	×Yes	□No					
6.	New development or redevelopment of streets, roads, highways, freeways, and driveways. The project creates and/or replaces 5,000 square feet or more of impervious surface (collectively over the project site).	Yes	⊠No					

Pag	ge 4 of 4 City of San Diego • Development Services • Storm Water Requirements Applicability Che	cklist
7.	New development or redevelopment discharging directly to an Environmentally Sensitive Area. The project creates and/or replaces 2,500 square feet of impervious surface (collectively over project site), and discharges directly to an Environmentally Sensitive Area (ESA). "Discharging directly to" includes flow that is conveyed overland a distance of 200 feet or less from the project to the ESA, or conveyed in a pipe or open channel any distance as an isolated flow from the project to the ESA (i.e. not commingled with flows from adjacent lands).	□Yes ☒No
8.	New development or redevelopment projects of a retail gasoline outlet (RGO) that create and/or replaces 5,000 square feet of impervious surface. The development project meets the following criteria: (a) 5,000 square feet or more or (b) has a projected Average Daily Traffic (ADT) of 100 or more vehicles per day.	☐Yes ☒No
9.	New development or redevelopment projects of an automotive repair shops that creates and/or replaces 5,000 square feet or more of impervious surfaces. Development projects categorized in any one of Standard Industrial Classification (SIC) codes 5013, 5014, 5541, 7532-7534, or 7536-7539.	Yes X No
10.	Other Pollutant Generating Project. The project is not covered in the categories above, results in the disturbance of one or more acres of land and is expected to generate pollutants post construction, such as fertilizers and pesticides. This does not include projects creating less than 5,000 sf of impervious surface and where added landscaping does not require regular use of pesticides and fertilizers, such as slope stabilization using native plants. Calculation of the square footage of impervious surface need not include linear pathways that are for infrequivehicle use, such as emergency maintenance access or bicycle pedestrian use, if they are built with pervious surfaces of if they sheet flow to surrounding pervious surfaces.	
PA	RT F: Select the appropriate category based on the outcomes of PART C through P	ART E.
1.	The project is NOT SUBJECT TO PERMANENT STORM WATER REQUIREMENTS .	
2.	The project is a STANDARD DEVELOPMENT PROJECT . Site design and source control BMP requirements apply. See the <u>Storm Water Standards Manual</u> for guidance.	
3.	The project is PDP EXEMPT . Site design and source control BMP requirements apply. See the <u>Storm Water Standards Manual</u> for guidance.	
4.	The project is a PRIORITY DEVELOPMENT PROJECT . Site design, source control, and structural pollutant control BMP requirements apply. See the <u>Storm Water Standards Manual</u> for guidance on determining if project requires a hydromodification plan management	×
	RENATO PAIVA EXECUTIVE DIRECTOR Title Title	
Na		
	DIET 1929/18	
Sig	nature Date	
		-

August 3, 2017

Mr. Scott Maas Safdie Rabines Architects 925 Fort Stockton Drive San Diego, California 92103

SUBJECT:

ACCESS YOUTH ACADEMY

TRAFFIC/PARKING GENERATION ASSESSMENT

(RICK ENGINEERING COMPANY JOB NUMBER 13284-FFF)

Dear Mr. Maas:

The following assessment letter was prepared to help estimate traffic and parking generation rates for the existing Access Youth Academy (AYA) facility located at 9370 Waples Street. This data is proposed to be utilized for calculating traffic generation and parking supply for a proposed AYA facility located at 704 Euclid Avenue within the Encanto community. Since the City of San Diego, SANDAG or ITE (Institute of Transportation Engineers) have no published trip generation rate and parking rate for this type of facility, an existing facility located at 9370 Waples Street was counted to help determine these rates. AYA currently leases space from San Diego Squash (Suite 101), in which AYA instructors and students utilize as classroom space and San Diego Squash courts as part of the AYA after school program. AYA and San Diego Squash each have their own door to enter/exit the building. Per coordination with City Transportation Development staff, a minimum of three days of traffic and parking data should be collected at the site, during typical site operations. Upon review of the Preuss School and after school program schedules, it was determined that the three representative data collection days would be Tuesday, June 13, 2017 through Thursday, June 15, 2017. (See Attachment A and Attachment B) The last day of student attendance for Preuss School before the summer break was June 23, 2017.

Since the existing Access Youth Academy is not standalone site, as it shares the site with other uses offices/buildings, the traffic and parking counts were also supplemented with attendance (Attachment C) data to help segregate the uses not related to the AYA and San Diego Squash facility and operations. All the traffic and parking site count data was collected by Accurate Video Counts.

EXISTING AYA AND SAN DIEGO SQUASH OPERATIONS

At the 9370 Waples Street site, AYA operates their facility with a staff of 5 and 3 volunteers with up to 3 occasional visitors. AYA staff arrives between 9:30am and 10:00am and leave the office between 5:30 pm and 6:00 pm. The program currently has a maximum of 25 students, all of which are transported to the site from the Preuss School at UCSD via 2 vans. The vans typically arrive at the site around 2:45pm and leave when the program ends at 4:55pm.

The following student attendance data was provided by AYA for the days the traffic and parking data were being collected:

AYA Attendance

Tuesday, June 13, 2017

Wednesday, June 14, 2017

Thursday, June 15, 2017

18 students
19 students
24 students

The San Diego Squash facility hours of operation are 6:30am to 9:00pm, Monday through Thursday; 6:30am to 8:00 pm on Friday and 7:30am to 2:00pm, Saturday and Sundays. The facility has a staff of 3 that help operate 4 single squash courts. There are regular club memberships and guest memberships available for this facility.

EXISTING PROJECT TRAFFIC GENERATION

Table 1 and Table 2 summarizes the trip generation data for the AYA and San Diego Squash site based on the three days of data that were collected, respectively. For the purposes of this exercise, the trip rates for the AYA facility were calculated with a trip rate per student and the trip rates for the San Diego Squash Facility were calculated as a trip rate per squash courts. It is important to note that during the three days of data collection, an average of 20 students were in attendance and all were taken to/from the site via two passenger vans and is accounted for in the calculated AYA trip rate.

Table 1
ACCESS YOUTH ACADEMY TRIP GENERATION

			RATE ADT	AM PEAK (7-9am)			PM PEAK (4-6pm)		
LAND USE	I SIZE I	CALCULATED TRIP RATE			VOLUME		% OF	VOLUME	
				% OF ADT	IN	оит	ADT	IN	OUT
Access Youth Academy	20 students	2 trips/student	40	30%	1	0	10%	1	3

Table 2
SAN DIEGO SQUASH TRIP GENERATION

		CALCULATED TRIP RATE	ADT	AM	1 PEAK (7-9am)		PM PEAK (4-6pm)		
LAND USE	SIZE			Γ % OF ADT	VOLUME		% OF	VOLUME	
					IN	OUT	ADT	IN	OUT
San Diego Squash	4 courts	18 trips/court	72	6%	1	3	17%	7	5

EXISTING PARKING GENERATION

Similarly, **Table 3 and Table 4** summarize the parking generation data for the AYA and San Diego Squash, respectively. These rates represent peak parking demand rates based on the actual site counts. The peak parking demand for AYA facility occurred at 3:00 pm when all employees and students were on-site. The peak parking demand for San Diego Squash occurred at 6:00 pm. It is important to note that these peak parking demand for these two facilities do not occur at the same time.

Table 3
ACCESS YOUTH ACADEMY PARKING GENERATION

LAND USE	SIZE	CALCULATED PARKING RATE	PEAK PARKING OCCUPANCY (3 PM)
Access Youth Academy	20 students	0.5 spaces /student	10 spaces

Table 4
SAN DIEGO SQUASH ACADEMY PARKING GENERATION

LAND USE	SIZE	CALCULATED PARKING RATE	PEAK PARKING OCCUPANCY (6 PM)
San Diego Squash	4 courts	3.5 spaces /court	14 spaces

CONCLUSIONS/RECOMMENDATIONS

Based on the site specific traffic and parking data collected for the AYA and San Diego Squash facility (9370 Waples Street), the above calculated trip rates and parking rates can be utilized to help estimate traffic generation and parking supply for the proposed AYA facility.

The proposed AYA facility located on 704 Euclid Avenue anticipates to operate similarly to the existing facility on Waples Street. The program students are still proposed to be shuttled into the new site via 2 vans. The following lists the planned components for the proposed AYA facility:

- 12 Staff/Instructors
- Up to 3 volunteers
- Up to 3 visitors
- 36 program students
- 8 squash courts (7 single courts and 1 doubles court)

Applying the above calculated site specific trip and parking rates for the proposed AYA facility, the anticipated trip generation and peak parking demand calculations are shown in **Table 5** and **Table 6**, respectively.

Table 5
PROPOSED ACCESS YOUTH ACADEMY TRIP GENERATION

				AM PEAK (7-9am)			PM PEAK (4-6pm)		
LAND USE	SIZE CALCULATED TRIP RATE	CALCULATED TRIP RATE	ADT	% OF ADT	VOLUME		% OF	VOLUME	
				% OF ADI	IN	OUT	ADT	IN	OUT
704 Euclid Avenue Access Youth Academy	36 students	2 trips/student	72	3%	2	0	10%	2	6
Non-Program (Community, Youth & Adults)	8 courts	18 trips/court	144	6%	2	<u>6</u>	17%	<u>14</u>	<u>10</u>
TOTAL:			216		4	6		16	16

Table 6
PROPOSED ACCESS YOUTH ACADEMY PEAK PARKING DEMAND

LAND USE	SIZE	CALCULATED PARKING RATE	PEAK PARKING DEMAND
704 Euclid Avenue Access Youth Academy Non-Program (Community, Youth & Adults)	36 students 8 courts	0.5 spaces/student 3.5 spaces/court	18 spaces (at 3:00 pm) 28 spaces (at 6:00 pm)

Based on the estimated trip generation for the proposed AYA facility, it is anticipated that the single project access point along Guymon Street can accommodate the site's peak hour project trips (only 36 trips during the PM peak hour).

In addition, it is recommended that the project site provide a minimum of 28 parking spaces to accommodate peak hour parking demands for both the programmed (AYA students) and non-programmed uses. With the site proposing a total of 36 total parking spaces (per the current proposed site plan shown in **Attachment D**), there should be ample parking to meet peak parking demands.

It should be noted that since the proposed site is relatively close (about 800 feet) to the existing Euclid Avenue Transit Center at the southwest corner of the Euclid Avenue/Market Street intersection, transit ridership opportunities could potentially decrease the traffic and parking generation for this facility.

Should you have any questions, please contact me at (619)291-0707.

Sincerely,

RICK ENGINEERING COMPANY

Mark Jugar, P.E., T.E., PTOE

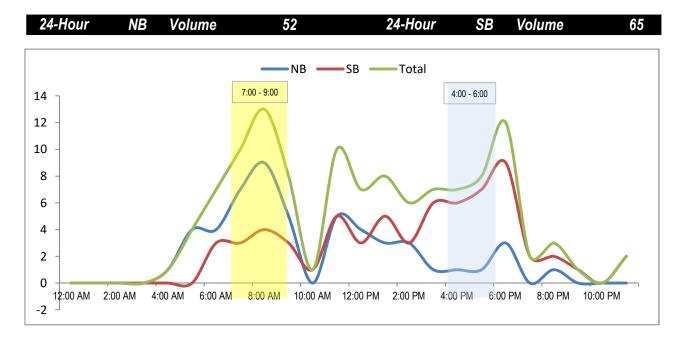
K:\Files\13284\TEXT\13284fff.003.doc

Attachments

ATTACHMENT A Existing Site Traffic Count Data

Accurate Video Counts Inc info@accuratevideocounts.com (619) 987-5136

Loc 01 Access - San Diego Squash Driveway


Orientation: North-South

Date of Count: Tuesday, June 13, 2017

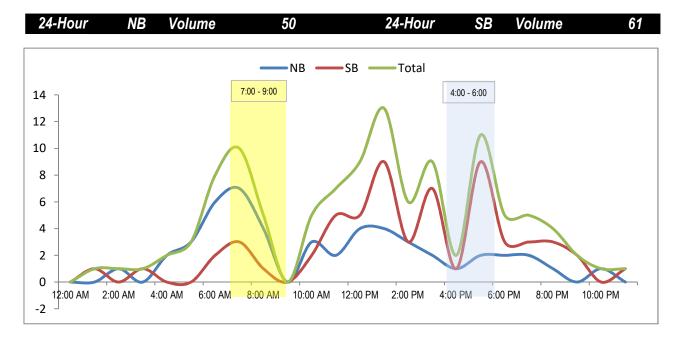
Analysts: DASH

Weather: Sunny

				24 Hour	Segmer	it Volume					1:	17
,	im	^	Но	urly Vol	ume		,	Γim	•	Но	urly Vol	ume
<u>'</u>	11111	E	NB	SB	Total			11111	E	NB	SB	Total
12:00 AM	-	1:00 AM	0	0	0		12:00 PM	-	1:00 PM	4	3	7
1:00 AM	-	2:00 AM	0	0	0		1:00 PM	-	2:00 PM	3	5	8
2:00 AM	-	3:00 AM	0	0	0		2:00 PM	-	3:00 PM	3	3	6
3:00 AM	-	4:00 AM	0	0	0		3:00 PM	-	4:00 PM	1	6	7
4:00 AM	-	5:00 AM	1	0	1		4:00 PM	-	5:00 PM	1	6	7
5:00 AM	-	6:00 AM	4	0	4		5:00 PM	-	6:00 PM	1	7	8
6:00 AM	-	7:00 AM	4	3	7		6:00 PM	-	7:00 PM	3	9	12
7:00 AM	-	8:00 AM	7	3	10		7:00 PM	-	8:00 PM	0	2	2
8:00 AM	-	9:00 AM	9	4	13		8:00 PM	-	9:00 PM	1	2	3
9:00 AM	-	10:00 AM	5	3	8		9:00 PM	-	10:00 PM	0	1	1
10:00 AM	-	11:00 AM	0	1	1		10:00 PM	-	11:00 PM	0	0	0
11:00 AM	-	12:00 PM	5	5	10		11:00 PM	-	12:00 AM	0	2	2
	Гota	I	35	19	54			Tota	I	17	46	63

Accurate Video Counts Inc info@accuratevideocounts.com (619) 987-5136

Loc 01 Access - San Diego Squash Driveway


Orientation: North-South

Date of Count: Wednesday, June 14, 2017

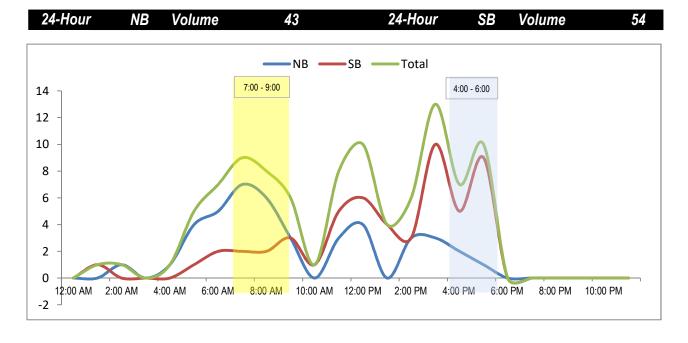
Analysts: DASH

Weather: Sunny

				24 Hour	Segmer	nt Volume					1:	11
_	im	^	Но	urly Vol	ume		-	Γim	•	Но	urly Vol	ume
'	11111	e	NB	SB	Total			11111	e	NB	SB	Total
12:00 AM	-	1:00 AM	0	0	0		12:00 PM	-	1:00 PM	4	5	9
1:00 AM	-	2:00 AM	0	1	1		1:00 PM	-	2:00 PM	4	9	13
2:00 AM	-	3:00 AM	1	0	1		2:00 PM	-	3:00 PM	3	3	6
3:00 AM	-	4:00 AM	0	1	1		3:00 PM	-	4:00 PM	2	7	9
4:00 AM	-	5:00 AM	2	0	2		4:00 PM	-	5:00 PM	1	1	2
5:00 AM	-	6:00 AM	3	0	3		5:00 PM	-	6:00 PM	2	9	11
6:00 AM	-	7:00 AM	6	2	8		6:00 PM	-	7:00 PM	2	3	5
7:00 AM	-	8:00 AM	7	3	10		7:00 PM	-	8:00 PM	2	3	5
8:00 AM	-	9:00 AM	4	1	5		8:00 PM	-	9:00 PM	1	3	4
9:00 AM	-	10:00 AM	0	0	0		9:00 PM	-	10:00 PM	0	2	2
10:00 AM	-	11:00 AM	3	2	5		10:00 PM	-	11:00 PM	1	0	1
11:00 AM	-	12:00 PM	2	5	7		11:00 PM	-	12:00 AM	0	1	1
-	Γota	I	28	15	43			Tota	I	22	46	68

Accurate Video Counts Inc info@accuratevideocounts.com (619) 987-5136

Loc 01 Access - San Diego Squash Driveway


Orientation: North-South

Date of Count: Thursday, June 15, 2017

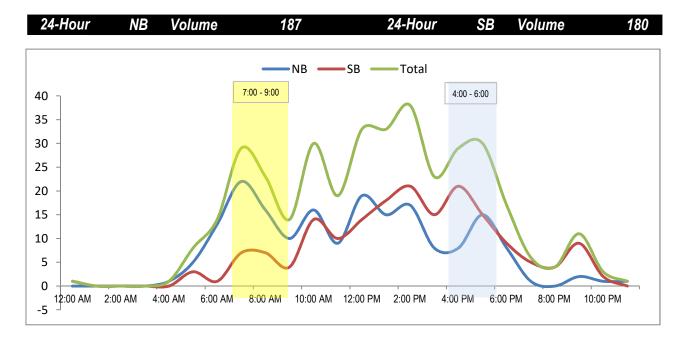
Analysts: DASH

Weather: Sunny

				24 Hour	Segmer	it Volume					9	7
,	īm	•	Но	urly Vol	ume		,	Γim	•	Но	urly Vol	ume
'		E	NB	SB	Total			11111	E	NB	SB	Total
12:00 AM	-	1:00 AM	0	0	0		12:00 PM	-	1:00 PM	4	6	10
1:00 AM	-	2:00 AM	0	1	1		1:00 PM	-	2:00 PM	0	4	4
2:00 AM	-	3:00 AM	1	0	1		2:00 PM	-	3:00 PM	3	3	6
3:00 AM	-	4:00 AM	0	0	0		3:00 PM	-	4:00 PM	3	10	13
4:00 AM	-	5:00 AM	1	0	1		4:00 PM	-	5:00 PM	2	5	7
5:00 AM	-	6:00 AM	4	1	5		5:00 PM	-	6:00 PM	1	9	10
6:00 AM	-	7:00 AM	5	2	7		6:00 PM	-	7:00 PM	0	0	0
7:00 AM	-	8:00 AM	7	2	9		7:00 PM	-	8:00 PM	0	0	0
8:00 AM	-	9:00 AM	6	2	8		8:00 PM	-	9:00 PM	0	0	0
9:00 AM	-	10:00 AM	3	3	6		9:00 PM	-	10:00 PM	0	0	0
10:00 AM	-	11:00 AM	0	1	1		10:00 PM	-	11:00 PM	0	0	0
11:00 AM	-	12:00 PM	3	5	8		11:00 PM	-	12:00 AM	0	0	0
	Γota	ıl	30	17	47		•	Tota	ı	13	37	50

Accurate Video Counts Inc info@accuratevideocounts.com (619) 987-5136

Loc 02 Access - San Diego Squash Driveway


Orientation: North-South

Date of Count: Tuesday, June 13, 2017

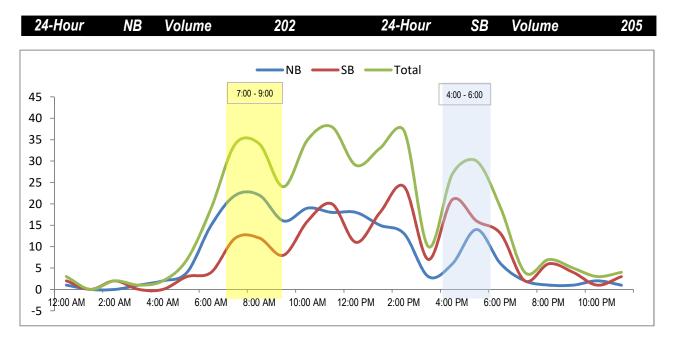
Analysts: DASH

Weather: Sunny

				24 Hour	Segmer	it Volume					36	57
7	īm	•	Но	urly Vol	ume		-	Γim	2	Но	urly Vol	ume
•		E	NB	SB	Total			11111	E	NB	SB	Total
12:00 AM	-	1:00 AM	0	1	1		12:00 PM	-	1:00 PM	19	14	33
1:00 AM	-	2:00 AM	0	0	0		1:00 PM	-	2:00 PM	15	18	33
2:00 AM	-	3:00 AM	0	0	0		2:00 PM	-	3:00 PM	17	21	38
3:00 AM	-	4:00 AM	0	0	0		3:00 PM	-	4:00 PM	8	15	23
4:00 AM	-	5:00 AM	1	0	1		4:00 PM	-	5:00 PM	8	21	29
5:00 AM	-	6:00 AM	5	3	8		5:00 PM	-	6:00 PM	15	15	30
6:00 AM	-	7:00 AM	13	1	14		6:00 PM	-	7:00 PM	8	9	17
7:00 AM	-	8:00 AM	22	7	29		7:00 PM	-	8:00 PM	1	5	6
8:00 AM	-	9:00 AM	16	7	23		8:00 PM	-	9:00 PM	0	4	4
9:00 AM	-	10:00 AM	10	4	14		9:00 PM	-	10:00 PM	2	9	11
10:00 AM	-	11:00 AM	16	14	30		10:00 PM	-	11:00 PM	1	2	3
11:00 AM	-	12:00 PM	9	10	19		11:00 PM	-	12:00 AM	1	0	1
	Γota	ıl	92	47	139			Tota	I	95	133	228

Accurate Video Counts Inc info@accuratevideocounts.com (619) 987-5136

Loc 02 Access - San Diego Squash Driveway


Orientation: North-South

Date of Count: Wednesday, June 14, 2017

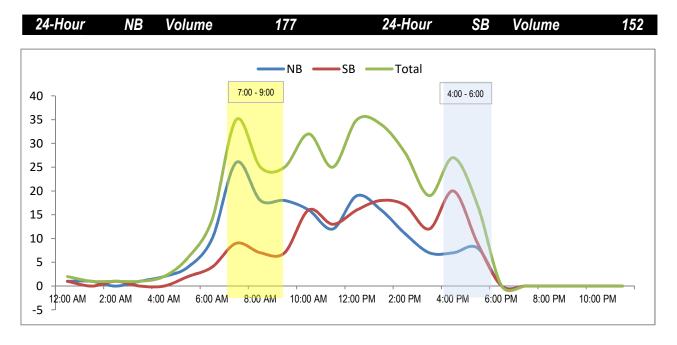
Analysts: DASH

Weather: Sunny

				24 Hour	Segmer	it Volume					4()7
т	īim	•	Но	urly Vol	ume		-	Γim	2	Но	urly Vol	ume
'		•	NB	SB	Total			11111	5	NB	SB	Total
12:00 AM	-	1:00 AM	1	2	3		12:00 PM	-	1:00 PM	18	11	29
1:00 AM	-	2:00 AM	0	0	0		1:00 PM	-	2:00 PM	15	18	33
2:00 AM	-	3:00 AM	0	2	2		2:00 PM	-	3:00 PM	13	24	37
3:00 AM	-	4:00 AM	1	0	1		3:00 PM	-	4:00 PM	3	7	10
4:00 AM	-	5:00 AM	2	0	2		4:00 PM	-	5:00 PM	6	21	27
5:00 AM	-	6:00 AM	4	3	7		5:00 PM	-	6:00 PM	14	16	30
6:00 AM	-	7:00 AM	15	4	19		6:00 PM	-	7:00 PM	6	13	19
7:00 AM	-	8:00 AM	22	12	34		7:00 PM	-	8:00 PM	2	2	4
8:00 AM	-	9:00 AM	22	12	34		8:00 PM	-	9:00 PM	1	6	7
9:00 AM	-	10:00 AM	16	8	24		9:00 PM	-	10:00 PM	1	4	5
10:00 AM	-	11:00 AM	19	16	35		10:00 PM	-	11:00 PM	2	1	3
11:00 AM	-	12:00 PM	18	20	38		11:00 PM	-	12:00 AM	1	3	4
1	Γota	ıl	120	79	199		-	Tota	I	82	126	208

Accurate Video Counts Inc info@accuratevideocounts.com (619) 987-5136

Loc 02 Access - San Diego Squash Driveway


Orientation: North-South

Date of Count: Thursday, June 15, 2017

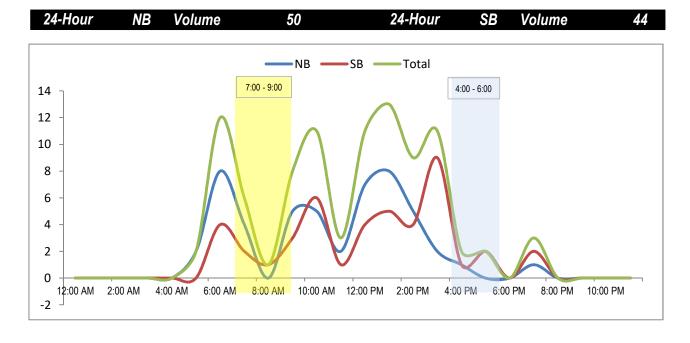
Analysts: DASH

Weather: Sunny

				24 Hour	Segmer	it Volume					32	29
١ ,	īm	•	Но	urly Vol	ume		-	Γim	2	Но	urly Vol	ume
	11111	e	NB	SB	Total				e	NB	SB	Total
12:00 AM	-	1:00 AM	1	1	2		12:00 PM	-	1:00 PM	19	16	35
1:00 AM	-	2:00 AM	1	0	1		1:00 PM	-	2:00 PM	16	18	34
2:00 AM	-	3:00 AM	0	1	1		2:00 PM	-	3:00 PM	11	17	28
3:00 AM	-	4:00 AM	1	0	1		3:00 PM	-	4:00 PM	7	12	19
4:00 AM	-	5:00 AM	2	0	2		4:00 PM	-	5:00 PM	7	20	27
5:00 AM	-	6:00 AM	4	2	6		5:00 PM	-	6:00 PM	8	9	17
6:00 AM	-	7:00 AM	10	4	14		6:00 PM	-	7:00 PM	0	0	0
7:00 AM	-	8:00 AM	26	9	35		7:00 PM	-	8:00 PM	0	0	0
8:00 AM	-	9:00 AM	18	7	25		8:00 PM	-	9:00 PM	0	0	0
9:00 AM	-	10:00 AM	18	7	25		9:00 PM	-	10:00 PM	0	0	0
10:00 AM	-	11:00 AM	16	16	32		10:00 PM	-	11:00 PM	0	0	0
11:00 AM	-	12:00 PM	12	13	25		11:00 PM	-	12:00 AM	0	0	0
7	Γota	ıl	109	60	169		-	Tota	I	68	92	160

Accurate Video Counts Inc info@accuratevideocounts.com (619) 987-5136

Loc 03 Access - San Diego Squash Driveway


Orientation: North-South

Date of Count: Tuesday, June 13, 2017

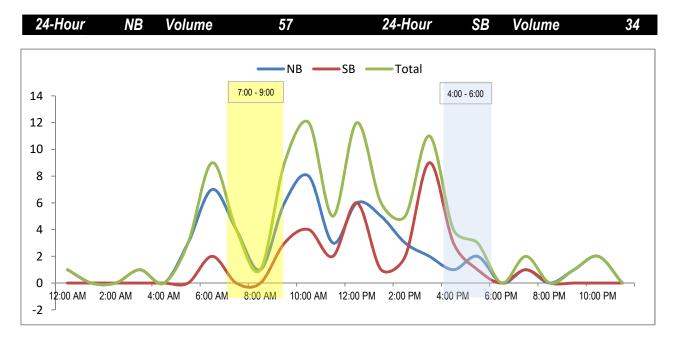
Analysts: DASH

Weather: Sunny

				24 Hour	Segmer	it Volume					9	4
١ ,	im	0	Но	urly Vol	ume		-	rim.	•	Но	urly Vol	ume
'	11111	e	NB	SB	Total		Time		NB	SB	Total	
12:00 AM	-	1:00 AM	0	0	0		12:00 PM	-	1:00 PM	7	4	11
1:00 AM	-	2:00 AM	0	0	0		1:00 PM	-	2:00 PM	8	5	13
2:00 AM	-	3:00 AM	0	0	0		2:00 PM	-	3:00 PM	5	4	9
3:00 AM	-	4:00 AM	0	0	0		3:00 PM	-	4:00 PM	2	9	11
4:00 AM	-	5:00 AM	0	0	0		4:00 PM	-	5:00 PM	1	1	2
5:00 AM	-	6:00 AM	2	0	2		5:00 PM	-	6:00 PM	0	2	2
6:00 AM	-	7:00 AM	8	4	12		6:00 PM	-	7:00 PM	0	0	0
7:00 AM	-	8:00 AM	4	2	6		7:00 PM	-	8:00 PM	1	2	3
8:00 AM	-	9:00 AM	0	1	1		8:00 PM	-	9:00 PM	0	0	0
9:00 AM	-	10:00 AM	5	3	8		9:00 PM	-	10:00 PM	0	0	0
10:00 AM	-	11:00 AM	5	6	11		10:00 PM	-	11:00 PM	0	0	0
11:00 AM	-	12:00 PM	2	1	3		11:00 PM	-	12:00 AM	0	0	0
-	Γota	ıl	26	17	43		•	Tota		24	27	51

Accurate Video Counts Inc info@accuratevideocounts.com (619) 987-5136

Loc 03 Access - San Diego Squash Driveway


Orientation: North-South

Date of Count: Wednesday, June 14, 2017

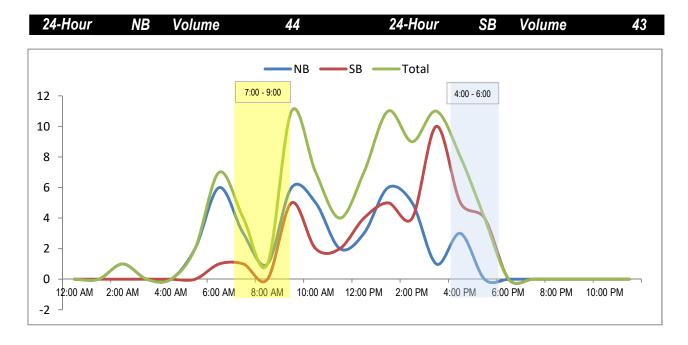
Analysts: DASH

Weather: Sunny

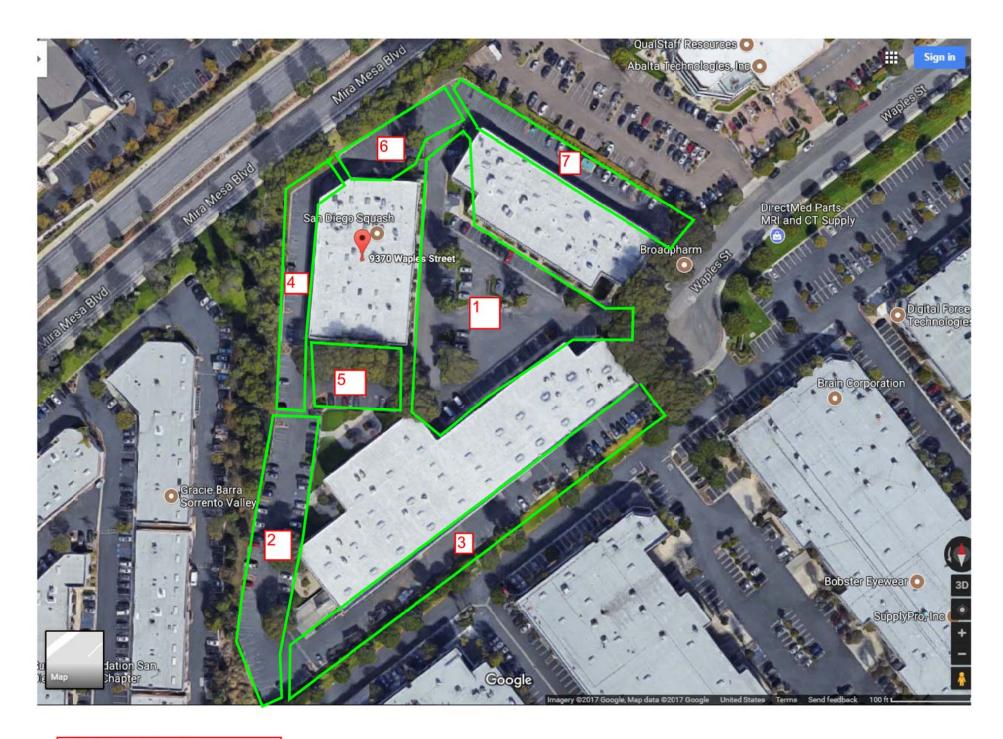
				24 Hour	Segmer	nt Volume					9	1
_	im	•	Но	urly Vol	ume		-	Γim	•	Но	urly Vol	ume
·	11111	e	NB	SB	Total			11111	e	NB	SB	Total
12:00 AM	-	1:00 AM	1	0	1		12:00 PM	-	1:00 PM	6	6	12
1:00 AM	-	2:00 AM	0	0	0		1:00 PM	-	2:00 PM	5	1	6
2:00 AM	-	3:00 AM	0	0	0		2:00 PM	-	3:00 PM	3	2	5
3:00 AM	-	4:00 AM	1	0	1		3:00 PM	-	4:00 PM	2	9	11
4:00 AM	-	5:00 AM	0	0	0		4:00 PM	-	5:00 PM	1	3	4
5:00 AM	-	6:00 AM	3	0	3		5:00 PM	-	6:00 PM	2	1	3
6:00 AM	-	7:00 AM	7	2	9		6:00 PM	-	7:00 PM	0	0	0
7:00 AM	-	8:00 AM	4	0	4		7:00 PM	-	8:00 PM	1	1	2
8:00 AM	-	9:00 AM	1	0	1		8:00 PM	-	9:00 PM	0	0	0
9:00 AM	-	10:00 AM	6	3	9		9:00 PM	-	10:00 PM	1	0	1
10:00 AM	-	11:00 AM	8	4	12		10:00 PM	-	11:00 PM	2	0	2
11:00 AM	-	12:00 PM	3	2	5		11:00 PM	-	12:00 AM	0	0	0
7	Γota	ı	34	11	45			Tota		23	23	46

Accurate Video Counts Inc info@accuratevideocounts.com (619) 987-5136

Loc 03 Access - San Diego Squash Driveway


Orientation: North-South

Date of Count: Thursday, June 15, 2017


Analysts: DASH

Weather: Sunny

				24 Hour	Segmen	it Volume					8	7
т	im	•	Но	urly Vol	ume		,	Γim	•	Но	urly Vol	ume
•		E	NB	SB	Total			11111	E	NB	SB	Total
12:00 AM	-	1:00 AM	0	0	0		12:00 PM	-	1:00 PM	3	4	7
1:00 AM	-	2:00 AM	0	0	0		1:00 PM	-	2:00 PM	6	5	11
2:00 AM	-	3:00 AM	1	0	1		2:00 PM	-	3:00 PM	5	4	9
3:00 AM	-	4:00 AM	0	0	0		3:00 PM	-	4:00 PM	1	10	11
4:00 AM	-	5:00 AM	0	0	0		4:00 PM	-	5:00 PM	3	5	8
5:00 AM	-	6:00 AM	2	0	2		5:00 PM	-	6:00 PM	0	4	4
6:00 AM	-	7:00 AM	6	1	7		6:00 PM	-	7:00 PM	0	0	0
7:00 AM	-	8:00 AM	3	1	4		7:00 PM	-	8:00 PM	0	0	0
8:00 AM	-	9:00 AM	1	0	1		8:00 PM	-	9:00 PM	0	0	0
9:00 AM	-	10:00 AM	6	5	11		9:00 PM	-	10:00 PM	0	0	0
10:00 AM	-	11:00 AM	5	2	7		10:00 PM	-	11:00 PM	0	0	0
11:00 AM	-	12:00 PM	2	2	4		11:00 PM	-	12:00 AM	0	0	0
T	ota	I	26	11	37		•	Tota	I	18	32	50

ATTACHMENT B Existing Site Parking Count Data

PARKING ZONES 9370 WAPLES STREET

Rick Engineering Company Parking Evaluation June 13, 2017 9370 Waples Street, San Diego AVC 17-0700

Supply	/4	60	70	27	22	27	36
316	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5	Zone 6	Zone 7
7:00	15	8	7	0	5	2	10
8:00		12	15	1	6	4	16
9:00		13	17	3	7	7	16
10:00	24	14	16	2	7	8	18
11:00		14	18	4	5	9	16
12:00		13	17	5	3	9	17
13:00	30	14	19	5	3	9	18
14:00		15	18	4	3	10	20
15:00		17	13	4	3	9	15
16:00		6	12	4	4	10	9
17:00		4	4	4	2	9	8
18:00		2	2	3	2	4	3
19:00		2	1	1	2	1	3
20:00		2	1	1	3	1	3
21:00	10	2	1	1	3	1	2

Rick Engineering Company Parking Evaluation June 14, 2017

		<u> </u>	, ,		-		
Supply	74	60	70	27	22	27	36
316	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5	Zone 6	Zone 7
7:00	14	10	4	1	5	1	9
8:00		10	14		9	2	16
9:00	18	12	16	4	9	8	18
10:00	24	11	17	4	8	8	18
11:00	28	12	18	5	5	8	19
12:00	31	14	15	6	5	7	19
13:00		12	15	5	6	10	21
14:00	27	14	16	4	6	9	19
15:00		13	13	4	5	10	16
16:00	16	3	10	5	5	10	5
17:00	14	3	2	4	3	8	4
18:00	13	2	2	3	3	6	1
19:00		2	1	2	3	4	3
20:00	9	2	1	2	4	2	2
21:00	3	2	1	2	3	0	2

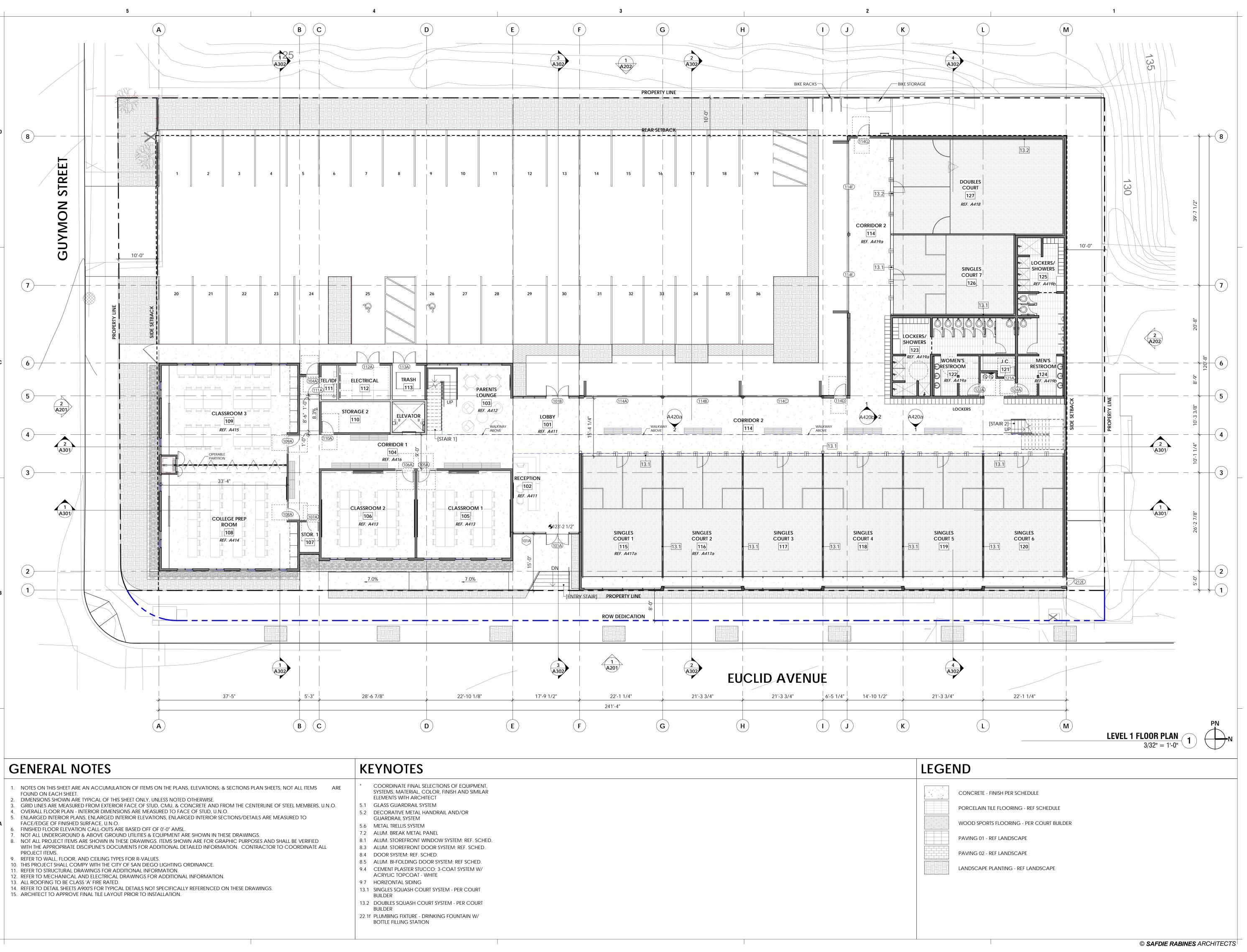
Rick Engineering Company Parking Evaluation June 15, 2017

	ien zingiliee	<u> </u>	, .				
Supply	74	60	70	27	22	27	36
316	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5	Zone 6	Zone 7
7:00		6	4	1	4	2	9
8:00			14	2	9	3	13
9:00			14	4	10	7	18
10:00		13	14	3	9	9	18
11:00			15		7	8	17
12:00	26	12	13	5	4	8	18
13:00		14	15	5	4	10	19
14:00		12	14	6	7	10	16
15:00		13	14		3	14	15
16:00		5	13	6	4	9	9
17:00		2	6	5	3	10	9
18:00		2	2	3	4	5	1
19:00		2	1	2	3	4	1
20:00		2	1	2	3	2	1
21:00	2	2	1	1	3	1	1

ATTACHMENT C

Access Youth Academy and San Diego Squash Attendance Data

	Tuesday, June 13, 2017						
Time	S D Sc	•	ACCESS				
Interval	IN	OUT	IN	OUT			
7:00	0	0	1	0			
7:15	0	0	0	0			
7:30	0	0	1	0			
7:45	0	0	0	0			
8:00	0	1	0	0			
8:15	0	1	0	0			
8:30	0	0	0	0			
8:45	1	0	1	1			
9:00							
	0	1	0	0			
9:15	0	0	0	0			
9:30	0	0	0	0			
9:45	1	0	0	0			
10:00	1	0	1	0			
10:15	0	0	1	1			
10:30	1	0	1	0			
10:45	0	0	0	0			
11:00	0	0	0	0			
11:15	0	0	1	1			
11:30		0	1	0			
	0			1			
11:45		0	0				
12:00	1	1	0	0			
12:15	1	1	1	0			
12:30	3	1	0	0			
12:45	1	0	0	0			
13:00	0	1	0	1			
13:15	0	1	0	1			
13:30	0	4	0	4			
13:45	1	2	1	2			
14:00	0	0	0	0			
14:15	0	1	0	1			
		1		1			
14:30	0		0				
14:45	0	0	0	0			
15:00	0	0	0	0			
15:15	1	1	1	1			
15:30	3	1	3	1			
15:45	2	0	2	0			
16:00	0	0	0	0			
16:15	0	0	0	0			
16:30	0	0	0	0			
16:45	1	2	1	2			
17:00	1	0	1	0			
17:15	2	0	2	0			
17:30	2	0	2	0			
17:45	2	0	2	0			
18:00	1	0	1	0			
18:15	1	0	1	0			
18:30	4	0	4	0			
18:45	2	2	2	2			
19:00	0	1	0	1			
19:15	0	1	0	1			
19:30	0	0	0	0			
19:45	0	2	0	2			
20:00	0	0	0	0			
20:15	0	1	0	1			
20:30	0	1	0	1			
20:45	0	2	0	2			


Time		RICK EN 017	IGINEERING CON			VAPLES : June 14,		- DOOR	COUNTS	Thur	rsday, Ju	ne 15, 2	2017
OUT			Time						Time				
1									-				
0	1		1										001
1	_												
0	-		-				_					_	
0	_		-				_					_	
0	_		-										
1	_			l									
1	-		-										
9:00 0 0 0 9:15 0 0 0 0 0 0 9:15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	_		-										
0 0 0 9:15 0 0 0 0 0 9:15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					_							_	
0													
0	_		-										
1													
1					_								
1	_												
10	_												
11:00	_												
1 1 1 11:15 0 0 0 0 0 1 11:15 2 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1	_			l									
1 0 0 1 1:30 1 0 1 1 1 1 1:45 1 1 0 0 0 0 1:4:45 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	-		-							-			
1	-		-						_				
12:00 2 0 1 1 1 1 1 1 1 1 1				-									
1 0 0 12:15 0 0 0 0 0 12:30 4 2 1 1 0 0 0 0 1 12:30 4 2 1 1 0 1 1 13:00 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-								_				
12:30	_		-		_								
12:45			-										
1				-									
13:15	n												
1													
1 2 13:45 0 0 1 0 13:45 0 0 1 0 0 1 0 0 1 14:00 1 3 0 2 14:00 0													
14:00	_		-										
0 1 14:15 1 2 0 0 14:15 0	_		-										
10 1 14:30 0 0 6 0 14:30 1 0 15 0 0 0 0 0 0 1 0 15:00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-												
0 0 0 14:45 1 2 16 1 14:45 4 1 11 0 <td< td=""><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	_												
0 0 0 1 0 15:00 0 <td>-</td> <td></td> <td>14:45</td> <td></td>	-		14:45										
1 1 1 15:15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td< td=""><td>0</td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td>0</td><td>0</td><td></td><td></td></td<>	0						0			0	0		
15:45	1	1			0	0	0		15:15	1	3	3	
15:45	3	1	15:30	0	0	0	0		15:30	0	2	2	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td>2</td> <td>0</td> <td></td> <td>-</td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td></td> <td>2</td> <td>0</td> <td>0</td> <td></td>	2	0		-	0	0	0			2	0	0	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td>0</td> <td>0</td> <td>16:00</td> <td>1</td> <td>0</td> <td>2</td> <td>2</td> <td></td> <td>16:00</td> <td>0</td> <td>0</td> <td>0</td> <td></td>	0	0	16:00	1	0	2	2		16:00	0	0	0	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td>0</td> <td>0</td> <td>16:15</td> <td>1</td> <td>0</td> <td>0</td> <td></td> <td></td> <td>16:15</td> <td>1</td> <td>0</td> <td>0</td> <td></td>	0	0	16:15	1	0	0			16:15	1	0	0	
1 2 16:45 2 7 0 17 16:45 4 5 1 2 1 0 17:00 0 0 0 1 17:00 3 0 0 2 0 17:15 2 0 0 0 17:15 0 0 0 2 0 17:30 4 4 1 2 17:30 0 0 0 2 0 17:45 1 1 0 1 17:45 0 0 0 2 1 0 18:00 4 1 0 0 18:00 3 0 0 0 0 18:00 3 0 0 0 0 18:00 3 0	0	0	16:30	0	0	0	0		16:30	0	0	0	
1 0 17:00 0 0 0 1 17:00 3 0 0 2 0 17:15 2 0 0 0 17:15 0 0 0 2 0 17:30 4 4 1 2 17:30 0 0 0 2 0 17:45 1 1 0 1 17:45 0 0 2 1 0 18:00 4 1 0 0 18:00 3 0 0 1 0 18:15 0 4 0 0 18:15 0 0 0 1 0 18:30 2 0 0 1 18:30 0 0 0 2 2 18:45 1 2 0 0 18:45 1 2 0 0 1 19:00 0 1 0 0 19:00 0 1 0 0 0 19:30 0 0	1	2	16:45	2	7	0	17		16:45	4	5	1	2
2 0 17:30 4 4 1 2 17:30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <		0	17:00	0	0	0	1		17:00	3	0	0	
2 0 17:30 4 4 1 2 17:30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <	2	0	17:15	2	0	0	0		17:15	0	0	0	
1 0 18:00 4 1 0 0 18:00 3 0 0 1 0 18:15 0 4 0 0 18:15 0 0 0 4 0 18:30 2 0 0 1 18:30 0 0 0 2 2 18:45 1 2 0 0 18:45 1 2 0 0 1 19:00 0 1 0 0 19:00 0 1 0 0 1 19:15 0 0 0 0 19:15 0 1 0 0 0 19:30 0 0 0 19:30 0 0 0 0 0 2 19:45 0 0 0 19:45 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0		0	17:30	4	4	1	2		17:30	0	0	0	
1 0 18:00 4 1 0 0 18:00 3 0 0 1 0 18:15 0 4 0 0 18:15 0 0 0 4 0 18:30 2 0 0 1 18:30 0 0 0 2 2 18:45 1 2 0 0 18:45 1 2 0 0 1 19:00 0 1 0 0 19:00 0 1 0 0 1 19:15 0 0 0 0 19:15 0 1 0 0 0 19:30 0 0 0 19:30 0 0 0 0 0 2 19:45 0 0 0 19:45 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0	2	0	17:45	1	1	0	1		17:45	0	0	2	
1 0 18:15 0 4 0 0 18:15 0 0 0 4 0 18:30 2 0 0 1 18:30 0 0 0 2 2 18:45 1 2 0 0 18:45 1 2 0 0 1 19:00 0 1 0 0 19:00 0 1 0 0 1 19:15 0 0 0 0 19:15 0 1 0 0 0 19:30 0 0 0 19:30 0 0 0 0 2 19:45 0 0 0 19:45 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 20:30 0 0 0 0 0 0 0 0 0 1 20:30 0 3 0 0 0 0 0 0	1	0	18:00	4	1	0	0		18:00	3	0	0	(
4 0 18:30 2 0 0 1 18:30 19:00 0 1 0 0 0 19:00 0 1 0 0 0 19:00 0 1 0 0 0 19:15 0 1 0 0 0 19:15 0 1 0 <t< td=""><td>1</td><td>0</td><td>18:15</td><td>0</td><td>4</td><td>0</td><td>0</td><td></td><td>18:15</td><td>0</td><td>0</td><td>0</td><td></td></t<>	1	0	18:15	0	4	0	0		18:15	0	0	0	
0 1 19:00 0 1 0 0 19:00 0 1 0 0 1 19:15 0 0 0 0 19:15 0 1 0 0 0 19:30 0 0 0 19:30 0 0 0 0 2 19:45 0 0 0 19:45 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 20:15 0 0 0 0 0 0 0 0 1 20:30 0 3 0 0 0 20:30 0 2 0		0	18:30	2	0	0	1		18:30	0	0	0	
0 1 19:00 0 1 0 0 19:00 0 1 0 0 1 19:15 0 0 0 0 19:15 0 1 0 0 0 19:30 0 0 0 19:30 0 0 0 0 2 19:45 0 0 0 19:45 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 20:15 0 0 0 0 0 0 0 0 1 20:30 0 3 0 0 0 20:30 0 2 0	2	2	18:45	1	2	0	0		18:45	1	2	0	
0 0 <td>0</td> <td>1</td> <td>19:00</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td></td> <td>19:00</td> <td>0</td> <td>1</td> <td>0</td> <td></td>	0	1	19:00	0	1	0	0		19:00	0	1	0	
0 0 <td>0</td> <td>1</td> <td>19:15</td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td></td> <td>19:15</td> <td>0</td> <td>1</td> <td></td> <td></td>	0	1	19:15	0	0	0			19:15	0	1		
0 2 19:45 0 0 0 0 19:45 0 1 0 0 0 0 1 0		0	19:30	0	0	0			19:30	0	0		
0 0 0 1 0 0 20:00 0 0 0 0 1 20:15 0 0 0 0 20:15 0 0 0 0 1 20:30 0 3 0 0 20:30 0 2 0		2	19:45	0	0	0	0		19:45	0	1	0	
0 1 20:30 0 3 0 0 20:30 0 2 0		0	20:00	0	1	0	0		20:00	0	0	0	
	_		20:15	0	0	0	0		20:15	0	0	0	
	_	1		-	3	0	0		20:30	0	2	0	
	0	2	20:45	0	1	0	0		20:45	0	1	0	

	Thu	2017				
Time	S D Sc	quash	ACCESS			
Interval	IN	OUT	IN	OUT		
7:00	0	0	0	0		
7:15	0	0	0	0		
7:30	0	0	0	0		
7:45	0	0	0	0		
8:00	0	1	0	0		
8:15	0	1	0	0		
8:30	0	0	0	0		
8:45	0	0	0	0		
9:00	0	0	0	0		
9:15	0	0	0	0		
9:30	0	0	0	0		
9:45	0	0	1	0		
10:00	0	0	1	0		
10:15	1	0	0	0		
10:30	4	1	1	3		
10:45	0	0	0	0		
11:00	0	0	0	0		
11:15	2		1	0		
		0				
11:30	1	0	0	0		
11:45	1	1	0	0		
12:00	3	2	0	0		
12:15	1	0	1	1		
12:30	4	2	1	1		
12:45	0	1	1	1		
13:00	0	2	0	0		
13:15	0	2	0	0		
13:30	0	3	0	1		
13:45	0	0	1	2		
14:00	0	0	0	0		
14:15	0	0	0	0		
14:30	1	0	15	1		
14:45	4	1	11	6		
15:00	0	0	0	0		
15:15	1	3	3	1		
15:30	0	2	2	0		
15:45	2	0	0	1		
16:00	0	0	0	0		
16:15	1	0	0	1		
16:30	0	0	0	0		
16:45	4	5	1	24		
17:00	3	0	0	0		
17:15	0	0	0	0		
17:30	0	0	0	0		
17:45	0	0	2	1		
18:00	3	0	0	0		
18:15	0	0	0	1		
18:30	0	0	0	0		
18:45	1	2	0	0		
19:00	0	1	0	0		
19:15	0	1	0	0		
19:30	0	0	0	0		
19:45	0	1	0	0		
20:00	0	0	0	0		
20:15	0	0	0	0		
20:30	0	2	0	0		
20:45	0	1	0	0		

TOTALS 35 30 32 28 38 44 40 35 37 35 42 45

ATTACHMENT D

Proposed Site Plan Access Youth Academy 704 Euclid Avenue

ACCESS YOUTH ACADEMY

704 Euclid Avenue San Diego, CA 92114

APN: 548-010-13-00

<u>ARCHITECT</u>

SAFDIE RABINES ARCHITECTS 925 FORT STOCKTON DRIVE SAN DIEGO, CA 92103 P: 619.297.6153 F: 619.299.6072 www.safdierabines.com

STRUCTURAL ENGINEER

COTTRELL ENGINEERING 5927 CAMINITO DE LA TAZA SAN DIEGO, CA 92120 P: 619.287.9124

CIVIL ENGINEER

RICK ENGINEERING COMPANY 5620 FRIARS ROAD SAN DIEGO, CA 92110 P: 619.291.0707

LANDSCAPE ARCHITECT SPURLOCK LANDSCAPE ARCHITECTS

2122 HANCOCK STREET

SAN DIEGO, CA 92110 P: 619.681.0090

T SQUARED ENGINEERING 1340 SPECIALTY DRIVE #E

VISTA, CA 92081

P: 760.560.0100 **GEOTECHNICAL ENGINEER** SCST, INC. 6280 RIVERDALE STREET

SAN DIEGO, CA 92120 P: 619.280.4321

COMMISSIONING AXIOM COMMISSIONING GROUP 310 VIA VERA CRUS #206 SAN MARCOS, CA 92078 P: 760.842.1800

REVISIONS No. Description 06/15/17 01 100% SD Submittal

Issue Date Scale 06/15/2017 As indicated

SRA Project Number

1703

FLOOR PLAN -

5620 Friars Road San Diego, CA 92110-2596

Tel: (619) 291-0707 Fax: (619) 291-4165 932 Nylos 57 5/7 C

Date Job No. Page Done By

Checked By

Genoul Site observations/Notes was les street 0/WH1 ALL AYA and sa virgo squaste papers use D/W # 2 only (not D/w# 1 & 0/w#2) D/W#3-AVA state park in arra 5 - 2 AVA vans parhin area 1 san piego savam pectrons park in AnEA 1 - oper office pations within the site part in AnA 5 1+5 lung normal nong hour (8+4-5pm) - AFTEN 5pm. cAND partied in ANEA 1 Ant sun piego square patrons

5620 Friars Road San Diego, CA 92110-2596

Tel: (619) 291-0707

7/7/17 Date 13284-FFF Job No.

Fax: (619) 291-4165 Done By Checked By TRIP GENERATION CALCULATIONS * conservatively asoures one person enterny the

AYA and sampet facility, represent one inbound

Vehicle trip (no carpooling), with the exception of AyA students who arrive in 2 vans wond Churte 444 MID 6/15/17 6/14/17 6/13/1 92 cntrdoor 40 enterdoor AYA 32 enterdor - 18 AYA strouts - 24 AVA strants 20 AYA struti - 19 AyA ophet 18 1200 THOS 21 in bound trips *2 36 ADT 14 insort trips X2 42 ADT 14 AOT (2 Yang 40 APT + 4 AOT (2 YANS X2 TYPS) 28 AOT +4 ADT (2 YANS × 2 TA PS) 40 APT = ZAIT 40 ADT 46 ADT 32 ADT 50 savor 35 enter door 38 enter 00.2 37 catr door 73 ADT XZ 70 ADT 76 AOT 73APT - 18MT/ 74 AOT 4 corts ston

5620 Friars Road San Diego, CA 92110-2596

Tel: (619) 291-0707 Fax: (619) 291-4165 Date

Job No.

Page

Done By

7/7/17 13284-FFF

PEAK PAPILING DEMAND CALCULATIONS 745 TVPS WAD AVG 6/14/17 0/12/17 6/14/17 AYA DEMZ PENAMO 9 10 10 vahicher 10 - 5 employeer 20 5 todots - 3 visitro or Valuatero 10 Yel = 0.5 20 straint spaces/ otraint 31.00 pm poak 14 yohila 15 13 12 6:03pal DEAK 4 courts

SCST, Inc.
Corporate Headquarters
6280 Riverdale Street
San Diego, CA 92120
T 877.215.4321
P 619.280.4321
F 619.280.4717

w www.scst.com

GEOTECHNICAL INVESTIGATION ACCESS YOUTH ACADEMY 704 EUCLID AVENUE SAN DIEGO, CALIFORNIA

PREPARED FOR:

RENATO PAIVA ACCESS YOUTH ACADEMY 9370 WAPLES STREET, SUITE 101 SAN DIEGO, CALIFORNIA 92121

PREPARED BY:

SCST, INC. 6280 RIVERDALE STREET SAN DIEGO, CALIFORNIA 92120

Providing Professional Engineering Services Since 1959

SCST, Inc.
Corporate Headquarters
6280 Riverdale Street
San Diego, CA 92120
T 877.215.4321
P 619.280.4321
F 619.280.4717

www.scst.com

August 11, 2017

SCST No. 170270N Report No. 1

Renato Paiva Access Youth Academy 9370 Waples Street, Suite 101 San Diego, California 92121

Subject:

GEOTECHNICAL INVESTIGATION

ACCESS YOUTH ACADEMY

704 EUCLID AVENUE SAN DIEGO, CALIFORNIA

Dear Mr. Paiva:

SCST, Inc. (SCST) is pleased to present our report describing the geotechnical investigation performed for the subject project. We conducted the geotechnical investigation in general conformance with the scope of work presented in our proposal dated May 23, 2017. Based on the results of our investigation, we consider the planned construction feasible from a geotechnical standpoint provided the recommendations of this report are followed. If you have any questions, please call us at (619) 280-4321.

Respectfully submitted,

SCST, INC.

Thomas B. Canady, Principal Engineer

Douglas A. Skinner, CEG 2472 Senior Geologist

TBC:DAS

(1) Addressee via email: renato@accessyouthacademy.org

(1) Charles Davis via email: cdavis@urbanwestdevelopment.net

(1) Richard Juarez via email: richjuarez1@icloud.com

(1) Joe Hammond via email: jhammond@rickengineering.com

TABLE OF CONTENTS

SE	CTION PAG	ЭE
EX	ECUTIVE SUMMARY	i
1.	INTRODUCTION	. 1
2.	SCOPE OF WORK	. 1
	2.1 FIELD INVESTIGATION	. 1
3.	SITE DESCRIPTION	. 2
4.	PROPOSED DEVELOPMENT	. 2
5.	GEOLOGY AND SUBSURFACE CONDITIONS	
6.	GEOLOGIC HAZARDS	
	6.1 CITY OF SAN DIEGO SEISMIC SAFETY STUDY 6.2 FAULTING AND SURFACE RUPTURE 6.3 CBC SEISMIC DESIGN PARAMETERS 6.4 LIQUEFACTION AND DYNAMIC SETTLEMENT 6.5 LANDSLIDES AND SLOPE STABILITY 6.6 TSUNAMIS, SEICHES AND FLOODING 6.7 SUBSIDENCE 6.8 HYDRO-CONSOLIDATION	3 3 3 4 4 4
7.	CONCLUSIONS	
8.	RECOMMENDATIONS	. 5
	8.1 SITE PREPARATION AND GRADING 8.1.1 Site Preparation 8.1.2 Remedial Grading 8.1.3 Compacted Fill 8.1.4 Expansive Soil 8.1.5 Imported Soil 8.1.6 Excavation Characteristics 8.1.7 Oversized Material 8.1.8 Temporary Excavation 8.1.9 Temporary Shoring 8.1.10 Temporary Dewatering 8.1.11 Slopes 8.1.12 Surface Drainage 8.1.13 Grading Plan Review 8.2 FOUNDATIONS 8.2.1 Shallow Spread Footings 8.2.2 Settlement Characteristics 8.2.3 Foundation Plan Review 8.2.4 Foundation Excavation Observations	5 5 5 6 6 6 6 6 6 7 7 7 8 8 8 8 9 9
	8.3 SLABS-ON-GRADE	. 9
	8.3.2 Exterior Slabs-on-Grade	ıU

TABLE OF CONTENTS (Continued)

SEC	TION	PAGE
8	3.4 CONVENTIONAL RETAINING WALLS	_
	8.4.1 Foundations	
	8.4.2 Lateral Earth Pressures	
	8.4.3 Seismic Earth Pressure	
	8.4.4 Backfill	
	3.5 MECHANICALLY STABILIZED EARTH RETAINING WALLS	
8	8.6 PIPELINES	
	8.6.1 Thrust Blocks	
	8.6.3 Pipe Bedding	
	8.6.4 Backfill	
0	8.7 PAVEMENT SECTION RECOMMENDATIONS	
	8.8 PERVIOUS PAVEMENT SECTION RECOMMENDATIONS	
	3.9 SOIL CORROSIVITY	
8	3.10 INFILTRATION FEASIBILITY	15
9.	GEOTECHNICAL ENGINEERING DURING CONSTRUCTION	15
10.	CLOSURE	15
11.	REFERENCES	16
ATT	ACHMENTS	
FIGU	JRES	
	re 1Sit	te Vicinity Map
Figur	re 2Gec	technical Map
_	re 3Geologic	
Figur	re 4Regiona	Geology Map
Figur	re 5City of San Diego Seismic Saf	ety Study Map
Figur	re 6Typical Retaining Wall Bad re 7Typical MSE Retain	ing Wall Detail
Ū	· · · · · · · · · · · · · · · · · · ·	J - 1 = 3.3
	ENDICES	
	endix IField	
	endix IILabo	
	endix IV	

EXECUTIVE SUMMARY

This report presents the results of the geotechnical investigation SCST, Inc. (SCST) performed for the subject project. We understand the project will consist of the design and construction of a two-story building and associated pavements, hardscape, underground utilities, and storm water BMP facilities. The purpose of our work is to provide conclusions and recommendations regarding the geotechnical aspects of the project.

We explored the subsurface conditions by drilling 5 borings and 2 percolation test holes to depths between about 5 and 20 feet below the existing ground surface using a truck-mounted drill rig equipped with a hollow-stem auger. Auger refusal was encountered in one of the borings. An SCST engineer logged the borings and test holes and collected samples of the materials encountered for laboratory testing. SCST tested selected samples from the borings and test holes to evaluate pertinent soil classification and engineering properties to assist in developing geotechnical conclusions and recommendations.

The materials encountered in the borings and percolation test holes consist of fill, old alluvial flood-plain deposits, and San Diego Formation. The fill extends to depths up to about 11 feet below the existing ground surface and consists of loose to medium dense clayey sand to clayey gravel and very stiff sandy clay with cobbles and concrete debris. The old alluvial flood-plain deposits consist of dense clayey sand and hard sandy clay. The San Diego Formation consists of medium dense to very dense, weakly cemented silty sandstone. Groundwater was not observed in the borings or test holes.

We performed two borehole percolation tests. Tested infiltration rates of 0.0 inch per hour were measured at both locations. The tested infiltration rates do not support infiltration of storm water in any appreciable quantity. Onsite storm water BMP facilities should be lined with an impermeable liner and a subdrain and collection pipe system installed to reduce the potential for lateral migration of the introduced water beneath structures and improvements.

The main geotechnical consideration affecting the planned construction is the presence of potentially compressible fill. To reduce the potential for settlement, the existing fill should be excavated in its entirety below the planned structure, settlement sensitive improvement and new fills. Additionally, old alluvial flood-plain deposits or San Diego Formation within 3 feet of the deepest planned footing bottom level should be excavated. Excavations up to 11 feet below the existing ground surface should be expected. We anticipate that the excavated material free of oversized cobbles and debris can be used as compacted fill. Material with an expansion index of 50 or less should be placed from 3 feet below the deepest planned footing bottom level to finished pad grade. Hardscape should be underlain by at least 2 feet of material with an expansion index less of 50 or less. The planned building can be supported on shallow spread footings with bottoms levels on compacted fill. The recommendations presented herein may need to be updated once final plans are developed.

1. INTRODUCTION

This report presents the results of the geotechnical investigation SCST, Inc. (SCST) performed for the subject project. We understand the project will consist of the design and construction of a two-story building and associated pavements, hardscape, underground utilities, and storm water BMP facilities. The purpose of our work is to provide conclusions and recommendations regarding the geotechnical aspects of the project. Figure 1 presents a site vicinity map.

2. SCOPE OF WORK

2.1 FIELD INVESTIGATION

We explored the subsurface conditions by drilling 5 borings and 2 percolation test holes to depths between about 5 and 20 feet below the existing ground surface using a truck-mounted drill rig equipped with a hollow-stem auger. Auger refusal was encountered in one of the borings. Figure 2 shows the approximate locations of the borings and percolation tests. An SCST engineer logged the borings and percolation test holes and collected samples of the materials encountered for laboratory testing. Logs of the borings and test holes are presented in Appendix I. Soils are classified according to the Unified Soil Classification System illustrated on Figure I-1.

2.2 LABORATORY TESTING

Selected samples obtained from the borings and percolation test holes were tested to evaluate pertinent soil classification and engineering properties and enable development of geotechnical conclusions and recommendations. The laboratory tests consisted of in situ moisture and density, grain size distribution, Atterberg limits, R-value, expansion index, and corrosivity. The results of the laboratory tests and brief explanations of the test procedures are presented in Appendix II.

2.3 ANALYSIS AND REPORT

The results of the field and laboratory tests were evaluated to develop conclusions and recommendations regarding:

- Subsurface conditions beneath the site
- Potential geologic hazards
- Criteria for seismic design in accordance with the 2016 California Building Code (CBC)
- Site preparation and grading
- Foundation alternatives and geotechnical engineering criteria for design of the foundations
- Estimated foundation settlements
- Support for concrete slabs-on-grade
- Lateral pressures for the design of retaining walls
- Pavement sections
- Soil corrosivity
- Infiltration feasibility

3. SITE DESCRIPTION

The subject site is located west of Euclid Avenue and north of Guymon Street in the Chollas View community of the City of San Diego, California. Existing site improvements consist of a playfield, a basketball court, and a paved parking lot. The site is bordered on the west by an ascending slope about 20 feet in height and inclined at about 2:1 (horizontal:vertical). Site elevations range from about 124 feet at the northwest corner of the site to about 120 feet at the southeast corner.

4. PROPOSED DEVELOPMENT

We understand the project will consist of the design and construction of a two-story building and associated pavements, hardscape, underground utilities, and storm water BMP facilities. As currently planned, the building will have a finish floor elevation of 123.20 feet. Minor site grading will be needed to achieve finish site grades.

5. GEOLOGY AND SUBSURFACE CONDITIONS

The materials encountered in the borings and percolation test holes consist of fill, old alluvial flood-plain deposits, and San Diego Formation. Descriptions of the materials are presented below. Figure 2 presents the site-specific geology. Figure 3 presents a geologic cross section. Figure 4 presents the regional geology in the vicinity of the site.

<u>Fill</u>: Fill was encountered in each of the borings. The fill consists loose to medium dense clayey sand with gravel and clayey gravel with sand and very stiff sandy clay. Cobbles and concrete debris were encountered within the fill. The fill encountered in our borings extends to depths varying from about 3½ feet to 11 feet below the existing ground surface. The existing fill is considered compressible and unsuitable for support of the planned structure.

Old Alluvial Flood-Plain Deposits: Old alluvial flood-plain deposits were encountered beneath the fill in borings B-1, B-3, and B-5. The old alluvial flood-plain deposits consist of dense clayey sand and hard sandy clay.

<u>San Diego Formation</u>: San Diego Formation underlies the site. The San Diego Formation consists of medium dense to very dense, weakly cemented silty sandstone.

<u>Groundwater</u>: Groundwater was not encountered in the borings or percolation test holes. The groundwater table is expected to be below a depth that will influence planned construction. However, groundwater levels may fluctuate in the future due to rainfall, irrigation, broken pipes, or changes in site drainage. Because groundwater rise or seepage is difficult to predict, such conditions are typically mitigated if and when they occur.

6. GEOLOGIC HAZARDS

6.1 CITY OF SAN DIEGO SEISMIC SAFETY STUDY

Figure 5 shows the site location on the City of San Diego (2008) Seismic Safety Study map. The site is located in Geologic Hazard Category 52, which is defined as other level areas, gently sloping to steep terrain, favorable geologic structure, and low risk. In our opinion, the geologic risk is low.

6.2 FAULTING AND SURFACE RUPTURE

The closest known active fault is the Rose Canyon fault zone (Silver Strand fault) located about 4.3 miles (7.0 kilometers) west-southwest of the site. The site is not located in an Alquist-Priolo Earthquake Fault Zone. No active faults are known to underlie or project toward the site. Therefore, the probability of fault rupture at the site is low.

6.3 CBC SEISMIC DESIGN PARAMETERS

A geologic hazard likely to affect the project is ground shaking as a result of movement along an active fault zone in the vicinity of the subject site. The site coefficients and maximum considered earthquake (MCE_R) spectral response acceleration parameters in accordance with the 2016 CBC are presented below:

Site Coordinates: Latitude 32.71285°

Longitude -117.08541°

Site Class: D

Site Coefficients, $F_a = 1.105$

 $F_{v} = 1.648$

Mapped Spectral Response Acceleration at Short Period, $S_s = 0.989g$

Mapped Spectral Response Acceleration at 1-Second Period, $S_1 = 0.376g$

Design Spectral Acceleration at Short Period, $S_{DS} = 0.728g$

Design Spectral Acceleration at 1-Second Period, $S_{D1} = 0.413g$

Site Peak Ground Acceleration, PGA_M = 0.447g

6.4 LIQUEFACTION AND DYNAMIC SETTLEMENT

Liquefaction occurs when loose, saturated sands and silts are subjected to strong ground shaking. The soils lose shear strength and become liquid, resulting in large total and differential ground surface settlements and possible lateral spreading during an earthquake. Given the relatively dense nature of the materials beneath the site, and provided the recommended remedial grading is performed, the potential for liquefaction and dynamic settlement to occur at the site is low.

6.5 LANDSLIDES AND SLOPE STABILITY

Evidence of landslides or slope instabilities was not observed. The potential for landslides or slope instabilities to occur at the site is considered low.

6.6 TSUNAMIS, SEICHES AND FLOODING

The site is not located within a mapped area on the State of California Tsunami Inundation Maps (Cal EMA, 2009); therefore, damage due to tsunamis is considered negligible. Seiches are periodic oscillations in large bodies of water such as lakes, harbors, bays, or reservoirs. The site is not located adjacent to any lakes or confined bodies of water; therefore, the potential for a seiche to affect the site is low. However, the southeast corner of the site is located within a 0.2% annual chance flood area (FEMA, 2012) associated with Chollas Creek.

6.7 SUBSIDENCE

The site is not located in an area of known subsidence associated with fluid withdrawal (groundwater or petroleum); therefore, the potential for subsidence due to the extraction of fluids is negligible.

6.8 HYDRO-CONSOLIDATION

Hydro-consolidation can occur in recently deposited sediments (less than 10,000 years old) that were deposited in a semi-arid environment. Examples of such sediments are aeolian sands, alluvial fan deposits, and mudflow sediments deposited during flash floods. The pore spaces between the particle grains can re-adjust when inundated by groundwater causing the material to consolidate. The relatively dense materials underlying the site are not considered susceptible to hydro-consolidation.

7. CONCLUSIONS

Based on the results of our investigation, we consider the planned construction feasible from a geotechnical standpoint provided the recommendations of this report are followed. The main geotechnical consideration affecting the planned development is the presence of potentially compressible fill. Remedial grading will need to be performed to reduce the potential for distress to the planned building and improvements. Remedial grading recommendations are provided herein. The planned building can be supported on shallow spread footings with bottoms levels on compacted fill. The recommendations presented herein may need to be updated once final plans are developed.

8. RECOMMENDATIONS

8.1 SITE PREPARATION AND GRADING

8.1.1 Site Preparation

Site preparation should begin with the removal of existing improvements, topsoil, vegetation and debris. Subsurface improvements that are to be abandoned should be removed and the resulting excavations should be backfilled and compacted in accordance with the recommendations of this report. Pipeline abandonment can consist of capping or rerouting at the project perimeter and removal within the project perimeter. If appropriate, abandoned pipelines can be filled with grout or slurry as recommended by and observed by the geotechnical consultant.

8.1.2 Remedial Grading

To reduce the potential for settlement, the existing fill should be excavated in its entirety beneath the planned building, settlement sensitive improvements, and new fills. Additionally, old alluvial flood-plain deposits or San Diego Formation within 3 feet of the deepest planned footing bottom level should be excavated. Excavations up to 11 feet below the existing ground surface should be anticipated. Horizontally, the excavations should extend at least 5 feet outside the planned perimeter foundations, at least 2 feet outside the planned hardscape and pavements, or up to existing improvements or the project boundary, whichever is less. A SCST representative should observe conditions exposed in the bottom of the excavation to determine if additional excavation is required.

8.1.3 Compacted Fill

Excavated material, except for roots, debris and rocks greater than 6 inches, can be used as compacted fill. We expect that some of the existing fill will need to be screened to remove oversized rock and debris prior to being placed as compacted fill. Material with an expansion index of 50 or less determined in accordance with ASTM D4829 should be placed from 3 feet below the deepest planned footing bottom level to finished pad grade. Hardscape should be underlain by at least 2 feet of material with an expansion index of 50 or less. Based on our laboratory test results, we expect that most of the onsite soils will meet the expansion index criteria.

The material exposed in the bottom of the excavation should be scarified to a depth of 6 to 8 inches, moisture conditioned, and compacted to at least 90% relative compaction. Fill should be placed in horizontal lifts at a thickness appropriate for the equipment spreading, mixing, and compacting the material, but generally should not exceed 8 inches in loose thickness. Fill should be moisture conditioned to near optimum moisture content and

compacted to at least 90% relative compaction. The maximum dry density and optimum moisture content for evaluating relative compaction should be determined in accordance with ASTM D 1557. Utility trench backfill beneath structures, pavements and hardscape should be compacted to at least 90% relative compaction. The top 12 inches of subgrade beneath pavements should be compacted to at least 95%.

8.1.4 Expansive Soil

The onsite soils tested have a very low to low expansion potential. The foundation recommendations presented in this report reflect a low expansion potential.

8.1.5 Imported Soil

Imported soil should consist of predominately granular soil free of organic matter and rocks greater than 6 inches. Imported soil should be observed and, if appropriate, tested by SCST prior to transport to the site to determine suitability for the intended use.

8.1.6 Excavation Characteristics

It is anticipated that excavations can be achieved with conventional earthwork equipment in good working order. Cobbles and debris should be anticipated in the fill. Difficult excavation should be anticipated in cemented zones within the San Diego Formation.

8.1.7 Oversized Material

Excavations may generate oversized material. Oversized material is defined as rocks or cemented clasts greater than 6 inches in largest dimension. Oversized material should be broken down to no greater than 6 inches in largest dimension for use in fill, used as landscape material, or disposed offsite.

8.1.8 Temporary Excavation

Temporary excavations 3 feet deep or less can be made vertically. Deeper temporary excavations should be laid back no steeper than 1:1 (horizontal:vertical). The faces of temporary slopes should be inspected daily by the contractor's Competent Person before personnel are allowed to enter the excavation. Any zones of potential instability, sloughing or raveling should be brought to the attention of the Engineer and corrective action implemented before personnel begin working in the excavation. Excavated soils should not be stockpiled behind temporary excavations within a distance equal to the depth of the excavation. SCST should be notified if other surcharge loads are anticipated so that lateral load criteria can be developed for the specific situation. If temporary slopes are to be maintained during the rainy season, berms are recommended along the tops of slopes to prevent runoff water from entering the excavation and eroding the slope faces.

Slopes steeper than those described above will require shoring. Additionally, temporary excavations that extend below a plane inclined at 1½:1 (horizontal:vertical) downward from the outside bottom edge of existing structures or improvements will require shoring or underpinning. Soldier piles and lagging, internally braced shoring or trench boxes could be used. If trench boxes are used, the soil immediately adjacent to the trench box is not directly supported. Ground surface deformations immediately adjacent to the pit or trench could be greater where trench boxes are used compared to other methods of shoring.

As an alternative to shoring/underpinning, maximum 10-foot wide slots can be excavated and immediately backfilled adjacent to existing structures and improvement. Care should be taken to not undermine existing footings. Slot excavations should be filled prior to performing adjacent excavations.

8.1.9 Temporary Shoring

For design of cantilevered shoring, an active soil pressure equal to a fluid weighing 35 pcf can be used for level retained ground or 55 pcf for 2:1 (horizontal:vertical) sloping ground. The surcharge loads on shoring from traffic and construction equipment adjacent to the excavation can be modeled by assuming an additional 2 feet of soil behind the shoring. For design of soldier piles, an allowable passive pressure of 350 psf per foot of embedment over twice the pile diameter up to a maximum of 5,000 psf can be used. Soldier piles should be spaced at least three pile diameters, center to center. Continuous lagging will be required throughout. The soldier piles should be designed for the full anticipated lateral pressure; however, the pressure on the lagging will be less due to arching in the soils. For design of lagging, the earth pressure but can be limited to a maximum value of 400 psf.

8.1.10 Temporary Dewatering

Groundwater seepage may occur locally due to broken pipes, local irrigation or following heavy rain. Groundwater should be anticipated in the planned excavations. Dewatering can be accomplished by sloping the excavation bottom to a sump and pumping from the sump. A layer of gravel about 6 inches thick placed in the bottom of the excavation will facilitate groundwater flow and can be used as a working platform.

8.1.11 Slopes

All permanent slopes should be constructed no steeper than 2:1 (horizontal:vertical). Faces of fill slopes should be compacted either by rolling with a sheep-foot roller or other suitable equipment, or by overfilling and cutting back to design grade. Fills should be benched into sloping ground inclined steeper than 5:1 (horizontal:vertical). It is our opinion that cut slopes constructed no steeper than 2:1 (horizontal:vertical) will possess an

adequate factor of safety. An engineering geologist should observe all cut slopes during grading to ascertain that no unforeseen adverse geologic conditions are encountered that require revised recommendations. All slopes are susceptible to surficial slope failure and erosion. Water should not be allowed to flow over the top of slope. Additionally, slopes should be planted with vegetation that will reduce the potential for erosion.

8.1.12 Surface Drainage

Final surface grades around structures should be designed to collect and direct surface water away from the structure and toward appropriate drainage facilities. The ground around the structure should be graded so that surface water flows rapidly away from the structure without ponding. In general, we recommend that the ground adjacent to the structure slope away at a gradient of at least 2%. Densely vegetated areas where runoff can be impaired should have a minimum gradient of at least 5% within the first 5 feet from the structure. Roof gutters with downspouts that discharge directly into a closed drainage system are recommended on structures. Drainage patterns established at the time of fine grading should be maintained throughout the life of the proposed structures. Site irrigation should be limited to the minimum necessary to sustain landscape growth. Should excessive irrigation, impaired drainage, or unusually high rainfall occur, saturated zones of perched groundwater can develop.

8.1.13 Grading Plan Review

SCST should review the grading plans and earthwork specifications to ascertain whether the intent of the recommendations contained in this report have been implemented, and that no revised recommendations are needed due to changes in the development scheme.

8.2 FOUNDATIONS

8.2.1 Shallow Spread Footings

The planned building can be supported on shallow spread footings with bottoms levels on granular compacted fill. Footings should extend at least 24 inches below lowest adjacent finished grade. Continuous footings should be at least 12 inches wide. Isolated or retaining wall footings should be at least 24 inches wide. An allowable bearing capacity of 2,500 psf can be used. The bearing capacity can be increased by 500 psf for each foot of depth below the minimum and 250 psf for each foot of width beyond the minimum up to a maximum of 5,000 psf. The bearing value can be increased by ½ when considering the total of all loads, including wind or seismic forces. Footings located adjacent to or within slopes should be extended to a depth such that a minimum horizontal distance of 7 feet exists between the lower outside footing edge and the face of the slope.

Lateral loads will be resisted by friction between the bottoms of footings and passive pressure on the faces of footings and other structural elements below grade. An allowable coefficient of friction of 0.35 can be used. Passive pressure can be computed using an allowable lateral pressure of 350 psf per foot of depth below the ground surface for level ground conditions. Reductions for sloping ground should be made. The passive pressure can be increased by ½ when considering the total of all loads, including wind or seismic forces. The upper 1 foot of soil should not be relied on for passive support unless the ground is covered with pavements or slabs.

8.2.2 Settlement Characteristics

Total foundation settlements are estimated to be less than 1 inch. Differential settlements between adjacent columns and across continuous footings are estimated to be less than $\frac{3}{4}$ inch over a distance of 40 feet. Settlements should be completed shortly after structural loads are applied.

8.2.3 Foundation Plan Review

SCST should review the foundation plans to ascertain that the intent of the recommendations in this report has been implemented and that revised recommendations are not necessary as a result of changes after this report was completed.

8.2.4 Foundation Excavation Observations

A representative from SCST should observe the foundation excavations prior to forming or placing reinforcing steel.

8.3 SLABS-ON-GRADE

8.3.1 Interior Slabs-on-Grade

The project structural engineer should design the interior concrete slabs-on-grade floor. However, we recommend that building slabs be at least 5 inches thick and reinforced with at least No. 4 bars at 18 inches on center each way.

Moisture protection should be installed beneath slabs where moisture sensitive floor coverings will be used. The project architect should review the tolerable moisture transmission rate of the proposed floor covering and specify an appropriate moisture protection system. Typically, a plastic vapor barrier is used. Minimum 10-mil plastic is recommended. The plastic should comply with ASTM E1745. The vapor barrier installation should comply with ASTM E1643. Construction practice often includes placement of a 2-inch thick sand cushion between the bottom of the concrete slab and the moisture vapor retarder/barrier. This cushion can provide some protection to the vapor

retarder/barrier during construction, and may assist in reducing the potential for edge curling in the slab during curing. However, the sand layer also provides a source of moisture to the underside of the slab that can increase the time required to reduce vapor emissions to limits acceptable for the type of floor covering placed on top of the slab. The slab can be placed directly on the vapor retarder/barrier.

8.3.2 Exterior Slabs-on-Grade

Exterior slabs should be at least 4 inches thick and reinforced with at least No. 3 bars at 18 inches on center each way. Slabs should be provided with weakened plane joints. Joints should be placed in accordance with the American Concrete Institute (ACI) guidelines. The project architect should select the final joint patterns. A 1-inch maximum size aggregate mix is recommended for concrete for exterior slabs. The corrosion potential of on-site soils with respect to reinforced concrete will need to be taken into account in concrete mix design. Coarse and fine aggregate in concrete should conform to the "Greenbook" Standard Specifications for Public Works Construction.

8.4 CONVENTIONAL RETAINING WALLS

8.4.1 Foundations

The recommendations provided in the foundation section of this report are also applicable to conventional retaining walls.

8.4.2 Lateral Earth Pressures

The active earth pressure for the design of unrestrained retaining walls with level backfill can be taken as equivalent to the pressure of a fluid weighing 35 pcf. The at-rest earth pressure for the design of restrained retaining walls with level backfills can be taken as equivalent to the pressure of a fluid weighing 55 pcf. These values assume a granular and drained backfill condition. Higher lateral earth pressures would apply if walls retain expansive clay soils. An additional 20 pcf should be added to these values for walls with a 2:1 (horizontal:vertical) sloping backfill. An increase in earth pressure equivalent to an additional 2 feet of retained soil can be used to account for surcharge loads from light traffic. The above values do not include a factor of safety. Appropriate factors of safety should be incorporated into the design. If any other surcharge loads are anticipated, SCST should be contacted for the necessary increase in soil pressure.

Retaining walls should be designed to resist hydrostatic pressures or be provided with a backdrain to reduce the accumulation of hydrostatic pressures. Backdrains may consist of a 2-foot wide zone of ¾-inch crushed rock. The backdrain should be separated from the adjacent soils using a non-woven filter fabric, such as Mirafi 140N or equivalent. Weep

holes should be provided or a perforated pipe should be installed at the base of the backdrain and sloped to discharge to a suitable storm drain facility. As an alternative, a geocomposite drainage system such as Miradrain 6000 or equivalent placed behind the wall and connected to a suitable storm drain facility can be used. The project architect should provide waterproofing specifications and details. Figure 6 presents typical conventional retaining wall backdrain details.

8.4.3 Seismic Earth Pressure

If required, the seismic earth pressure can be taken as equivalent to the pressure of a fluid weighing 16 pcf. This value is for level backfill and does not include a factor of safety. Appropriate factors of safety should be incorporated into the design. This pressure is in addition to the un-factored, static active earth pressure. The passive pressure and bearing capacity can be increased by $\frac{1}{3}$ in determining the seismic stability of the wall.

8.4.4 Backfill

Wall backfill should consist of granular, free-draining material having an expansion index of 20 or less. The backfill zone is defined by a 1:1 plane projected upward from the heel of the wall. Expansive or clayey soil should not be used. We anticipate that most of the onsite soils will not be suitable for wall backfill. Additionally, backfill within 3 feet from the back of the wall should not contain rocks greater than 3 inches in dimension. Backfill should be compacted to at least 90% relative compaction. Backfill should not be placed until walls have achieved adequate structural strength. Compaction of wall backfill will be necessary to minimize settlement of the backfill and overlying settlement sensitive improvements. However, some settlement should still be anticipated. Provisions should be made for some settlement of concrete slabs and pavements supported on backfill. Additionally, any utilities supported on backfill should be designed to tolerate differential settlement.

8.5 MECHANICALLY STABILIZED EARTH RETAINING WALLS

The following soil parameters can be used for design of mechanically stabilized earth (MSE) retaining walls.

MSE Wall Design Parameters

Soil Parameter	Reinforced Soil	Retained Soil	Foundation Soil
Internal Friction Angle (degrees)	32°	32°	32°
Cohesion (psf)	0	0	0
Moist Unit Weight (pcf)	130	130	130

The reinforced soil should consist of granular, free-draining material with an expansion index of 20 or less. The bottom of MSE walls should extend to such a depth that a total of 5 feet exists between the bottom of the wall and the face of the slope. Figure 7 presents a typical MSE retaining wall backdrain detail. MSE retaining walls may experience lateral movement over time. The wall engineer should review the configuration of proposed improvements adjacent to the wall and provide measures to help reduce the potential for distress to these improvements from lateral movement.

8.6 PIPELINES

8.6.1 Thrust Blocks

For level ground conditions, a passive earth pressure of 350 psf per foot of depth below the lowest adjacent final grade can be used to compute allowable thrust block resistance. A value of 150 psf per foot should be used below groundwater level, if encountered.

8.6.2 Modulus of Soil Reaction

A modulus of soil reaction (E') of 2,000 psi can be used to evaluate the deflection of buried flexible pipelines. This value assumes that granular bedding material is placed adjacent to the pipe and is compacted to at least 90% relative compaction.

8.6.3 Pipe Bedding

Pipe bedding as specified in the "Greenbook" Standard Specifications for Public Works Construction can be used. Bedding material should consist of clean sand having a sand equivalent not less than 30 and should extend to at least 12 inches above the top of pipe. Alternative materials meeting the intent of the bedding specifications are also acceptable. Samples of materials proposed for use as bedding should be provided to the engineer for inspection and testing before the material is imported for use on the project. The onsite materials are not expected to meet "Greenbook" bedding specifications. The pipe bedding material should be placed over the full width of the trench. After placement of the pipe, the bedding should be brought up uniformly on both sides of the pipe to reduce the potential for unbalanced loads. No voids or uncompacted areas should be left beneath the pipe haunches. Ponding or jetting the pipe bedding should not be allowed.

8.6.4 Backfill

Excavated materials free of organic debris and rocks greater than 6 inches in any dimension are generally expected to be suitable for use as utility trench backfill, unless beneath structures or hardscape. Imported material should not contain rocks greater than 3 inches in any dimension or organic debris. Imported material should have an expansion index of 20 or less. SCST should observe and, if appropriate, test proposed import

materials before they are delivered to the site. Backfill should be placed in lifts 8 inches or less in loose thickness, moisture conditioned to optimum moisture content or slightly above, and compacted to at least 90% relative compaction. The top 12 inches of soil beneath pavement subgrade should be compacted to at least 95% relative compaction.

8.7 PAVEMENT SECTION RECOMMENDATIONS

The pavement support characteristics of the soils encountered during our investigation are considered medium. An R-value of 26 was assumed for design of preliminary pavement sections. The actual R-value of the subgrade soils should be determined after grading and final pavement sections be provided. Based on an R-value of 26, the following pavement structural sections are recommended for the assumed Traffic Indices.

Flexible Pavement Sections

Traffic Type	Traffic Index	Asphalt Concrete (inches)	Aggregate Base* (inches)
Parking Stalls	4.5	3	5
Drive Lanes	6.0	4	8
Fire Lanes	7.5	4	12

Portland Cement Concrete Pavement Sections

Traffic Type	Traffic Index	Full-Depth JPCP* (inches)
Parking Stalls	4.5	6
Drive Lanes	6.0	6½
Heavy Traffic Areas	7.5	7

^{*}Jointed Plain Concrete Pavement

The top 12 inches of subgrade should be scarified, moisture conditioned to near optimum moisture content and compacted to at least 95% relative compaction. All soft or yielding areas should be removed and replaced with compacted fill or aggregate base. Aggregate base and asphalt concrete should conform to the Caltrans Standard Specifications or the "Greenbook" and should be compacted to at least 95% relative compaction. Aggregate base should have an R-value of not less than 78. All materials and methods of construction should conform to good engineering practices and the minimum standards of the City of San Diego.

8.8 PERVIOUS PAVEMENT SECTION RECOMMENDATIONS

Pervious pavement section recommendations are based on Caltrans (2014) pavement structural design guidelines. The pavement sections below are based on the strength of the materials. However, the actual thickness of the sections may be controlled by the reservoir layer design, which the project civil engineer should determine.

Pervious Asphalt Pavement

Traffic Type	Category	*Asphalt Treated Permeable Base (ATPB) (inches)	Class 4 Aggregate Base (inches)
Parking Stalls	В	5	6

^{*11/4} inches of an open graded friction course (OGFC) should be placed on top of the ATPB.

Pervious Concrete Pavement

Traffic Type	Category	Pervious Concrete (inches)	Class 4 Aggregate Base (inches)		
Parking Stalls	В	6	6		

Permeable Interlocking Concrete Pavers (PICP)

Traffic Type	(inches)		Class 3 Permeable (inches)	Class 4 Aggregate Base (inches)
Parking Stalls	В	31/8	5	6

The top 12 inches of subgrade should be scarified, moisture conditioned to near optimum moisture content and compacted to at least 95% relative compaction. All soft or yielding subgrade areas should be removed and replaced with compacted fill or permeable base. All materials and methods of construction should conform to good engineering practices and the minimum local standards.

Pervious pavement sections should be lined with an impermeable geomembrane to reduce the potential for water-related distress to adjacent structures or improvements. A suitable subdrain system should be installed at the base of the pervious section.

8.9 SOIL CORROSIVITY

A representative sample of the onsite soils were tested to evaluate corrosion potential. The test results are presented in Appendix II. The project design engineer can use the sulfate results in conjunction with ACI 318 to specify the water/cement ratio, compressive strength and cementitious material types for concrete exposed to soil. A corrosion engineer should be contacted to provide specific corrosion control recommendations.

8.10 INFILTRATION FEASIBILITY

We performed two borehole percolation tests at the approximate locations shown on Figure 2 to assess storm water infiltration feasibility. Appendix III presents the field data and test results. The table below presents the tested infiltration rates.

Infiltration Rate Test Results

Test Location	Test Depth (feet)	Material Type at Test Depth (USCS Classification)	Infiltration Rate (inch/hour)
P-1	5	CLAYEY SAND with GRAVEL (SC)	0.0
P-2	5	CLAYEY SAND with GRAVEL (SC)	0.0

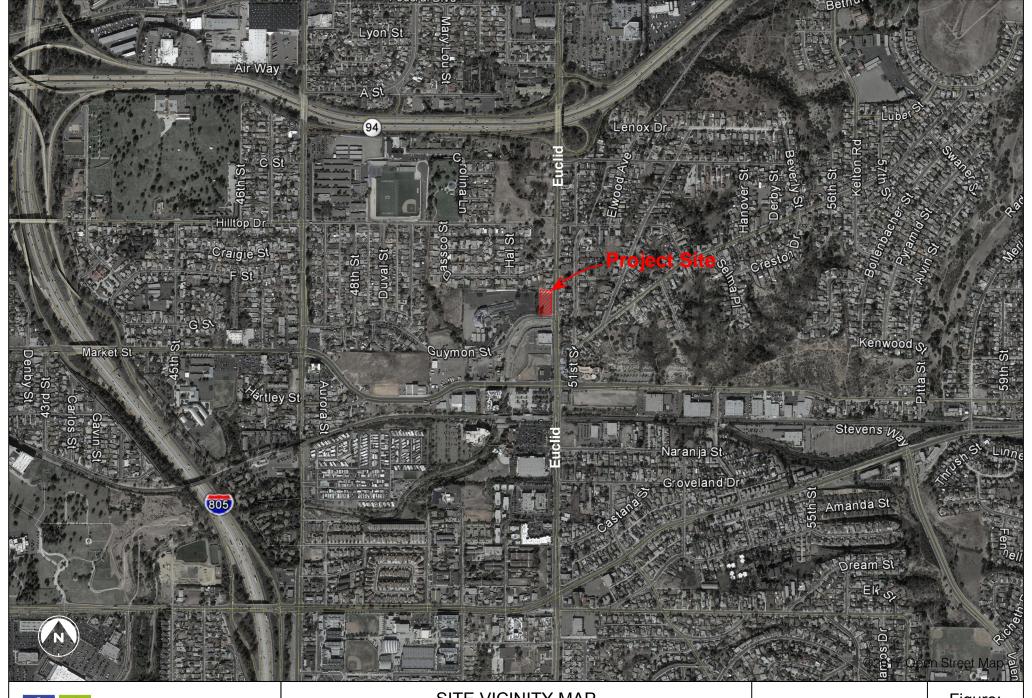
The tested infiltration rates do not support storm water infiltration in any appreciable quantity. Based on our test results, the feasibility screening category is No Infiltration. BMP facilities should be lined with an impermeable geomembrane to reduce the potential for water-related distress to adjacent structures or improvements. A subdrain system should be installed at the bottom of BMP facilities. Foundations should be set back at least 10 feet from BMP facilities, or the foundation should be deepened to a depth that extends below the bottom of the BMP.

9. GEOTECHNICAL ENGINEERING DURING CONSTRUCTION

The geotechnical engineer should review project plans and specifications prior to bidding and construction to check that the intent of the recommendations in this report has been incorporated. Observations and tests should be performed during construction. If the conditions encountered during construction differ from those anticipated based on the subsurface exploration program, the presence of the geotechnical engineer during construction will enable an evaluation of the exposed conditions and modifications of the recommendations in this report or development of additional recommendations in a timely manner.

10. CLOSURE

SCST should be advised of any changes in the project scope so that the recommendations contained in this report can be evaluated with respect to the revised plans. Changes in recommendations will be verified in writing. The findings in this report are valid as of the date of this report. Changes in the condition of the site can, however, occur with the passage of time, whether they are due to natural processes or work on this or adjacent areas. In addition, changes in the standards of practice and government regulations can occur. Thus, the findings in this report may be invalidated wholly or in part by changes beyond our control. This report should not be relied upon after a period of two years without a review by us verifying the suitability of the conclusions and recommendations to site conditions at that time.



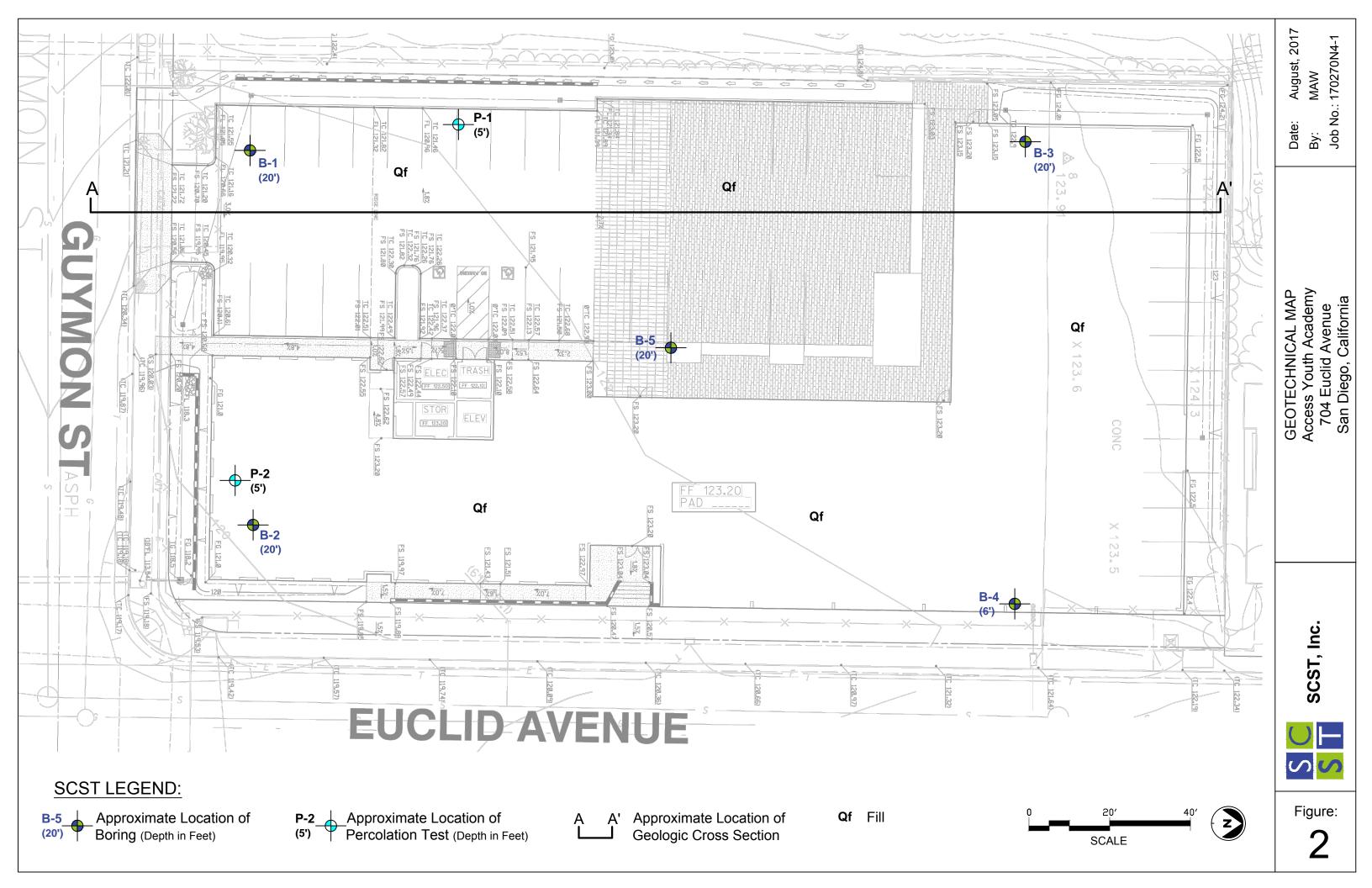
In the performance of our professional services, we comply with that level of care and skill ordinarily exercised by members of our profession currently practicing under similar conditions and in the same locality. The client recognizes that subsurface conditions may vary from those encountered at the boring location, and that our data, interpretations, and recommendations are based solely on the information obtained by us. We will be responsible for those data, interpretations, and recommendations, but shall not be responsible for interpretations by others of the information developed. Our services consist of professional consultation and observation only, and no warranty of any kind whatsoever, express or implied, is made or intended in connection with the work performed or to be performed by us, or by our proposal for consulting or other services, or by our furnishing of oral or written reports or findings.

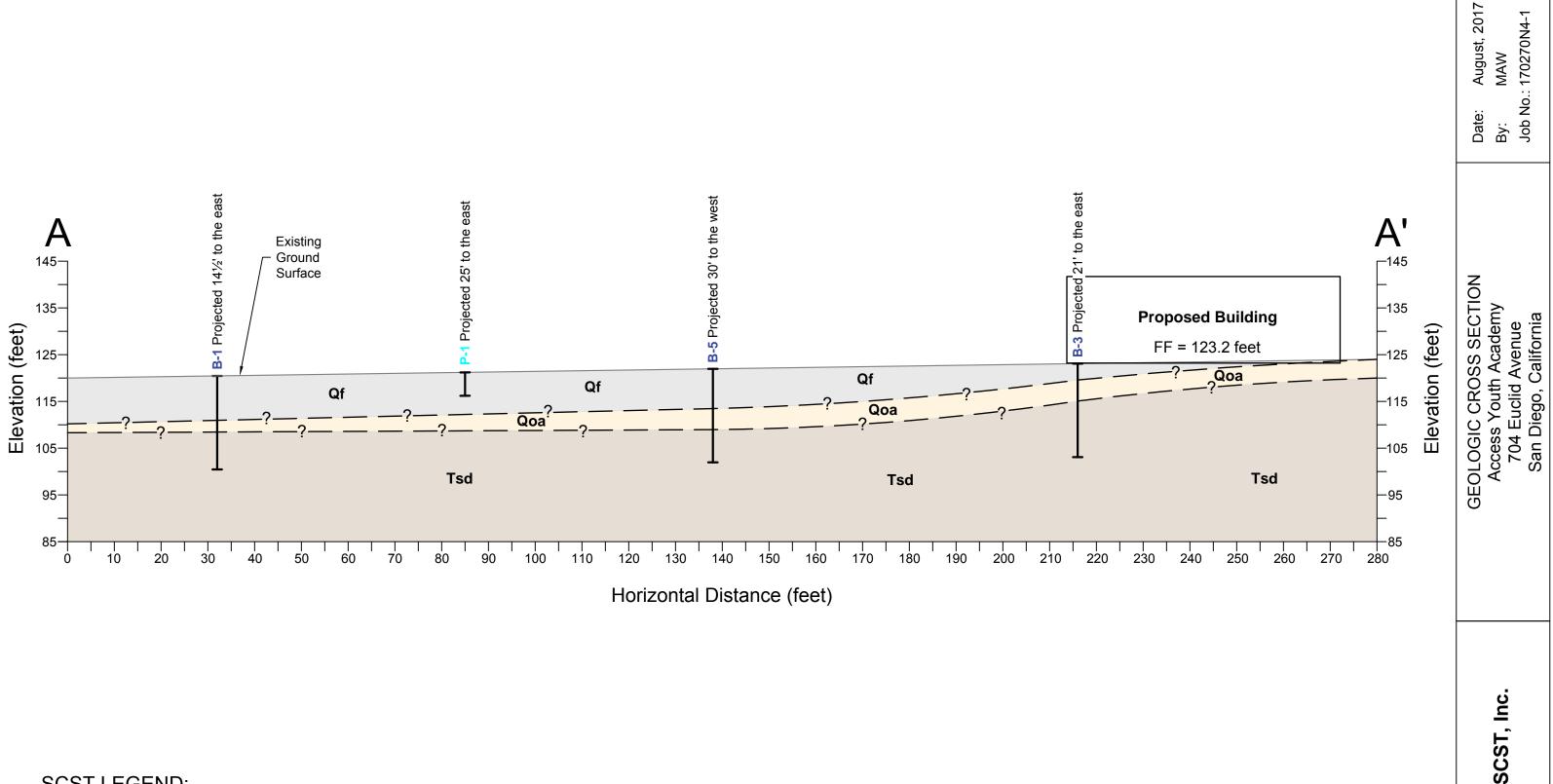
11. REFERENCES

- American Concrete Institute (ACI) (2012), Building Code Requirements for Structural Concrete (ACI 318-11) and Commentary, August.
- California Emergency Management Agency, California Geological Survey, University of Southern California (Cal EMA) (2009), Tsunami Inundation Map for Emergency Planning, National City Quadrangle, June 1.
- Caltrans (2010), Standard Specifications.
- Caltrans (2014), Pervious Pavement Design Guidance, August
- City of San Diego (2008), Seismic Safety Study, Geologic Hazards and Faults, Grid Tiles: 17 and 18, Development Services Department, April 3.
- Federal Emergency Management Agency (2012), FIRM Flood Insurance Rate Map, San Diego County, California and Incorporated Areas, Map Number 06073C1904G, May 16.
- International Code Council (2015), 2016 California Building Code, California Code of Regulations, Title 24, Part 2, Volume 2 of 2, Based on the 2015 International Existing Building Code, Effective January 1, 2017.
- Kennedy, M.P. and Tan, S.S. (2008), Geologic Map of the San Diego 30' x 60' Quadrangle, California, California Geological Survey.
- Public Works Standards, Inc. (2015), The "Greenbook," Standard Specifications for Public Works Construction, 2015 Edition.

SCST, Inc.

SITE VICINITY MAP Access Youth Academy 704 Euclid Avenue San Diego, California


Date: August, 2017


By: MAW

Job No.: 170270N4-1

Figure:

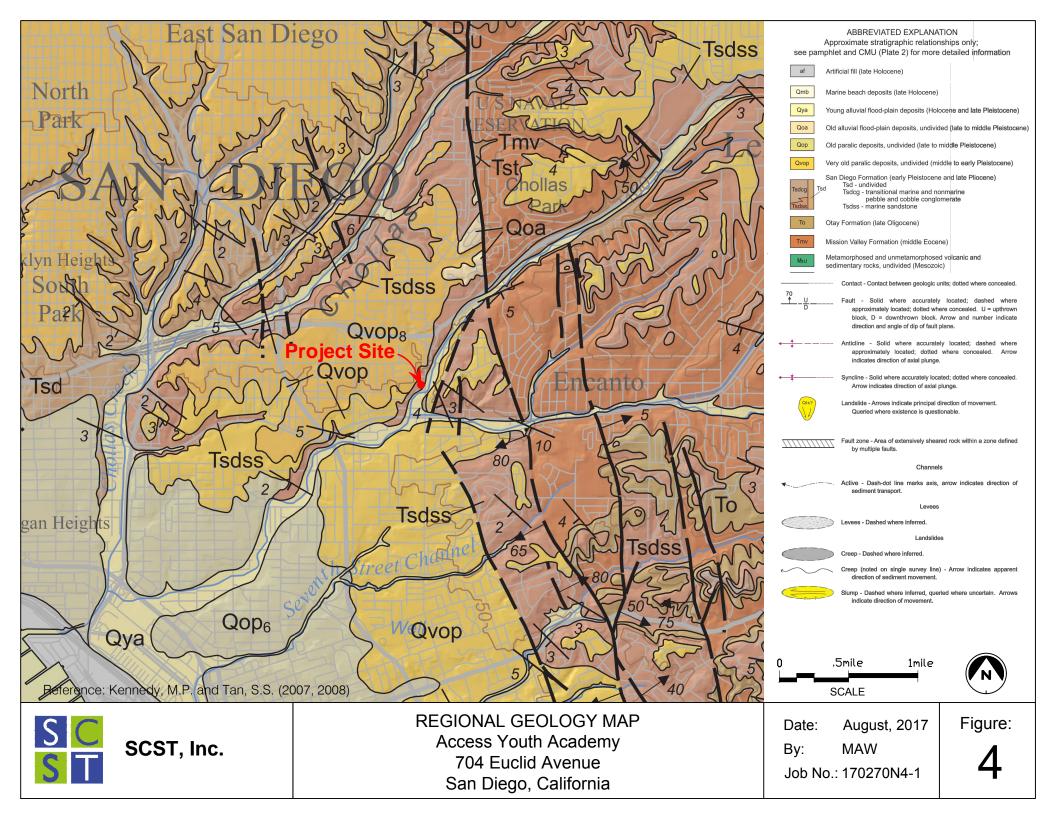
1

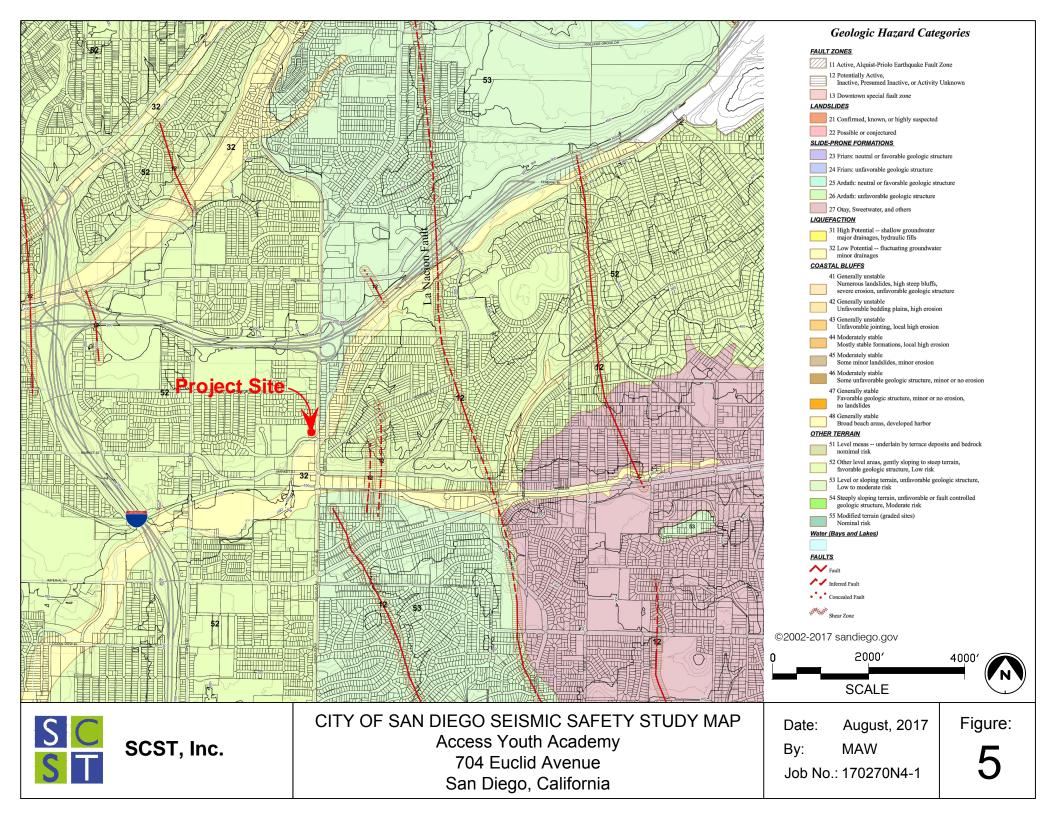
SCST LEGEND:

Approximate Location of Boring

Approximate Location of Percolation Test

Approximate Location of Geologic Contact, Queried Where Uncertain


Fill


Old alluvial flood-plain deposits

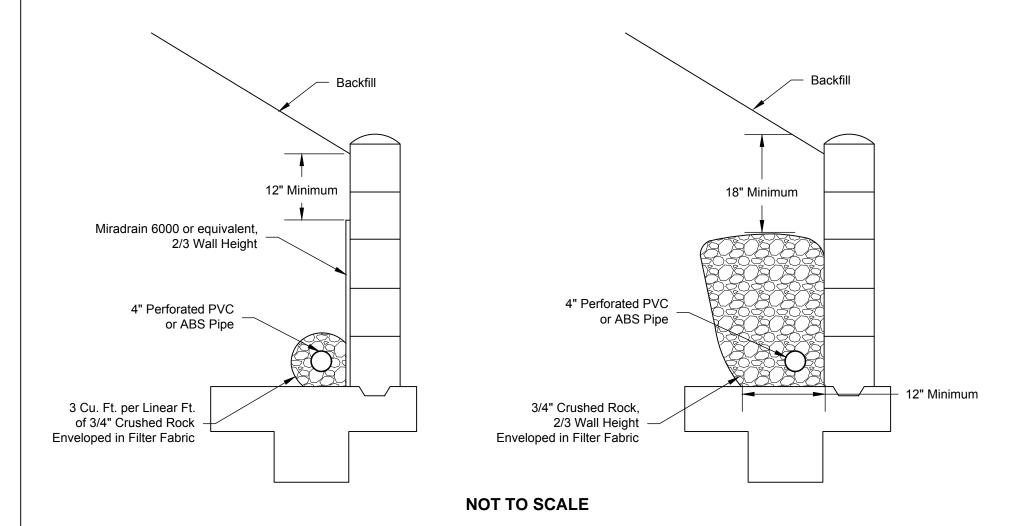

Tsd San Diego Formation

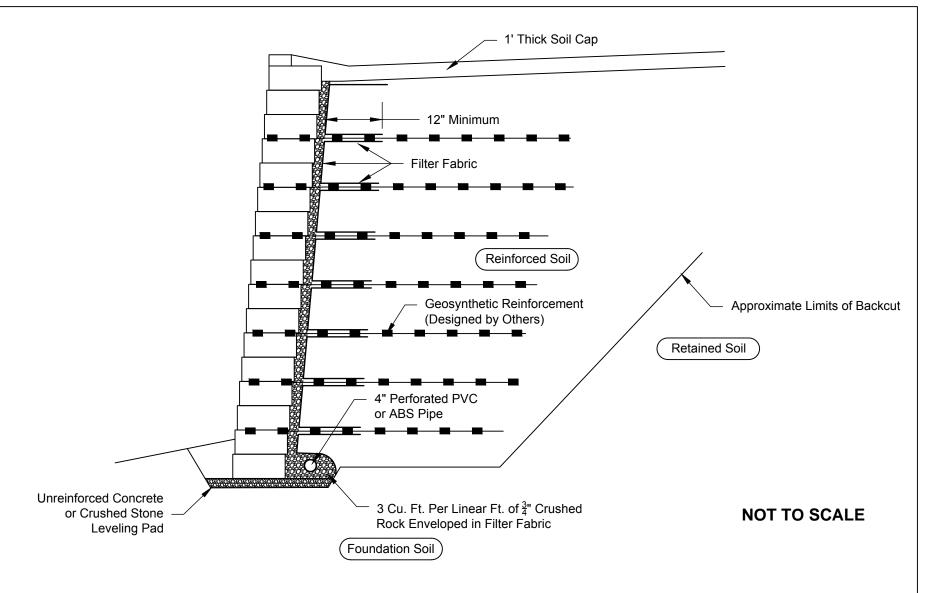
Figure:

NOTES:

- 1) Dampproof or waterproof back of wall following architect's specifications.
- 2) 4" minimum perforated pipe, SDR35 or equivalent, holes down, 1% fall to outlet. Provide solid outlet pipe at suitable locations.
- 3) Drain installation and outlet connection should be observed by the geotechnical consultant.

SCST, Inc.

TYPICAL RETAINING WALL BACKDRAIN DETAILS
Access Youth Academy
704 Euclid Avenue
San Diego, California


Date: August, 2017

By: MAW

Job No.: 170270N4-1

Figure:

6

NOTES:

- 1) Backcut as recommended by the geotechnical report or field evaluation
- 2) Additional drain at excavation backcut may be recommended base on conditions obsewrved during construction.
- 3) Filter fabric should be installed between crushed rock and soil. Filter farbric should consist of Mirafi 140N or equivalent. Filter fabric should be overlapped approximately 6 inches.
- 4) Perforated pipe should outlet through a solid pipe to an appropriate gravity outfall. Perforated pipe and outlet pipe should have a fall of at least 1%.

SCST, Inc.

TYPICAL MSE RETAINING WALL DETAIL
Access Youth Academy
704 Euclid Avenue
San Diego, California

Date: August, 2017

By: MAW

Job No.: 170270N4-1

Figure:

7

APPENDIX I FIELD INVESTIGATION

Our field investigation consisted of drilling 5 borings and 2 percolation test holes on July 10, 2017 to depths between about 5 and 20 feet below the existing ground surface using a truck-mounted drill rig equipped with a hollow-stem auger. Auger refusal was encountered in one of the borings. Figure 2 shows the approximate locations of the borings and percolation tests. The field investigation was performed under the observation of an SCST engineer who also logged the boring and test holes and obtained samples of the materials encountered.

Relatively undisturbed samples were obtained using a modified California (CAL) sampler, which is a ring-lined split tube sampler with a 3-inch outer diameter and 2½-inch inner diameter. Standard Penetration Tests (SPT) were performed using a 2-inch outer diameter and 1¾-inch inner diameter split tube sampler. The CAL and SPT samplers were driven with a 140-pound weight dropping 30 inches. The number of blows needed to drive the samplers the final 12 inches of an 18-inch drive is noted on the boring logs as "Driving Resistance (blows/ft. of drive)." SPT and CAL sampler refusal was encountered when 50 blows were applied during any one of the three 6-inch intervals, a total of 100 blows was applied, or there was no discernible sampler advancement during the application of 10 successive blows. The SPT penetration resistance was normalized to a safety hammer (cathead and rope) with a 60% energy transfer ratio in accordance with ASTM D6066. The normalized SPT penetration resistance is noted on the boring logs as "N₆₀." Disturbed bulk samples were obtained from the SPT sampler and the drill cuttings.

The soils are classified in accordance with the Unified Soil Classification System as illustrated on Figure I-1. Logs of the borings and test holes are presented on Figures I-2 through I-8.

SUBSURFACE EXPLORATION LEGEND

UNIFIED SOIL CLASSIFICATION CHART

UNIFIED SOIL CLASSIFICATION CHART						
SOIL DESC	RIPTION	ROUP 'MBOL	TYPICAL NAMES			
I. COARSE GRA	INED, more than 50% of	materia	l is larger than No. 200 sieve size.			
GRAVELS More than half of	CLEAN GRAVELS	GW	Well graded gravels, gravel-sand mixtures, little or no fines			
coarse fraction is larger than No. 4		GP	Poorly graded gravels, gravel sand mixtures, little or no fines.			
sieve size but smaller than 3".	GRAVELS WITH FINES (Appreciable amount of	GM	Silty gravels, poorly graded gravel-sand-silt mixtures.			
	fines)	GC	Clayey gravels, poorly graded gravel-sand, clay mixtures.			
SANDS More than half of	CLEAN SANDS	SW	Well graded sand, gravelly sands, little or no fines.			
coarse fraction is smaller than No.		SP	Poorly graded sands, gravelly sands, little or no fines.			
4 sieve size.		SM	Silty sands, poorly graded sand and silty mixtures.			
		SC	Clayey sands, poorly graded sand and clay mixtures.			
II. FINE GRAINE	D, more than 50% of ma	terial is	smaller than No. 200 sieve size.			
	SILTS AND CLAYS (Liquid Limit less	ML	Inorganic silts and very fine sands, rock flour, sandy silt or clayey-silt sand mixtures with slight plasticity.			
	than 50)	CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays.			
		OL	Organic silts and organic silty clays or low plasticity.			
	SILTS AND CLAYS (Liquid Limit	МН	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts.			
	greater than 50)	СН	Inorganic clays of high plasticity, fat clays.			
		ОН	Organic clays of medium to high plasticity.			
III. HIGHLY ORG	ANIC SOILS	PT	Peat and other highly organic soils.			
SAMPLE SY	<u>/MBOLS</u>		LABORATORY TEST SYMBOLS			
- Bulk S	ample		AL - Atterberg Limits			
CAL - Modifie	ed California sampler		CON - Consolidation			
CK - Undist	urbed Chunk sample		COR - Corrosivity Tests			
MS - Maxim	um Size of Particle		(Resistivity, pH, Chloride, Sulfate)			
ST - Shelby			DS - Direct Shear			
SPT - Standard Penetration Test sampler			EI - Expansion Index			
0001115	ATED 0\/AE0: 0		MAX - Maximum Density			
GROUNDW	ATER SYMBOLS		RV - R-Value			
- Water	level at time of excavation or a	s indicated	d SA - Sieve Analysis UC - Unconfined Compression			
} - Water	seepage at time of excavation	or as indic	cated			
			Access Youth Academy			
			Con Diago CA			

SCST, Inc.

Access Youth Academy							
	San Die	go, CA					
Ву:	BG	Date:	August, 2017				
Job Number:	170270N-1	Figure:	I-1				

		LOG OF BORING	B-1							
		Orilled: 7/10/2017	_			ed by:		BG		
		oment: CME-75 with 8-inch Diameter Hollow-Stem Auger on (ft): 121 De	Pr epth to G	-		nager:		TBC	ncount	ered
	vali	on (it). 121	pin to G		PLES					
H (ft)	S			7		SISTANCE of drive)	0	ONTENT (9	ЕІСНТ (р	RY TEST
DEPTH (ft)	nscs	SUMMARY OF SUBSURFACE CONDITIONS		DRIVEN	BULK	DRIVING RESISTANCE (blows/ft of drive)	N_{60}	MOISTURE CONTENT (%)	DRY UNIT WEIGHT (pcf)	LABORATORY TESTS
	SC	<u>FILL (Qf)</u> : CLAYEY SAND with GRAVEL, light brown, fine to medium graine loose to medium dense.	d, moist,		\ /					
- 1		loose to medium dense.			\ /					
- 2					V					RV
- 3					Λ					
- 4				CAL	$/\setminus$	20				
- 5										
- 6										
- 7										
- 8										
- 9				CAL		78/10"		11.2	102.6	
– 10	CL	<u>OLD ALLUVIAL FLOOD-PLAIN DEPOSITS (Qoa)</u> : SANDY CLAY, dark bro to medium grained, moist, hard, white mineral precipitate deposits.	wn, fine							
_ 11										
– 12										
– 13		SAN DIEGO FORMATION (Tsd): SILTY SANDSTONE, light yellowish brown grained, moist, very dense, weakly cemented.	n, fine							
– 14				SPT		51	67			
– 15				O1 1		31	07			
– 16										
– 17										
– 18										
– 19		Dense.		SPT		32	42			
L 20				O1 1		JZ	74			
	BORING TERMINATED AT 20 FEET									

S C S T

SCST, Inc.

Access Youth Academy
San Diego, California

By: BG Date: August, 2017

Job Number: 170270N-1 Figure: I-2

LOG OF BORING B-2 Date Drilled: 7/10/2017 Logged by: BG TBC Equipment: CME-75 with 8-inch Diameter Hollow-Stem Auger Project Manager: Elevation (ft): 120 Depth to Groundwater (ft): Not Encountered SAMPLES DRY UNIT WEIGHT (pcf) MOISTURE CONTENT (%) DRIVING RESISTANCE (blows/ft of drive) LABORATORY TEST DEPTH (ft) DRIVEN BULK SUMMARY OF SUBSURFACE CONDITIONS SC FILL (Qf): CLAYEY SAND with GRAVEL, light brown, fine to medium grained, moist, loose to medium dense. 1 2 ΕI 3 Disturbed sample. CAL 78 5 6 7 8 CL SANDY CLAY, dark brown and bluish green, fine to medium grained, moist, very stiff. 9 CAL 28 11.0 111.5 10 11 SAN DIEGO FORMATION (Tsd): SILTY SANDSTONE, yellowish brown, fine to medium grained, moist, dense to very dense, weakly cemented. 12 13 14 SPT 38 50 15 16 17 18 19 SPT **BORING TERMINATED AT 20 FEET**

S C S T

SCST, Inc.

Access Youth Academy
San Diego, California

By: BG Date: August, 2017

Job Number: 170270N-1 Figure: I-3

LOG OF BORING B-3										
	Date Drilled: 7/10/2017				ed by:		BG			
Equipment: CME-75 with 8-inch Diameter Hollow-Stem Auger Project Mana				•						
EI6	Elevation (ft): 124 Depth to Groundwater (ft): Not Encountered SAMPLES SAMPLES S G									
DEPTH (ft)	nscs	SUMMARY OF SUBSURFACE CONDITIONS	DRIVEN	BULK	DRIVING RESISTANCE (blows/ft of drive)	N_{60}	MOISTURE CONTENT (%)	DRY UNIT WEIGHT (pcf)	LABORATORY TESTS	
- 1 - 2 - 3	SC	FILL (Qf): CLAYEY SAND with GRAVEL, light brown, fine to medium grained, some cobbles, low plasticity, moist, loose to medium dense.		\bigvee					SA AL EI COR	
- 4 - 5		OLD ALLUVIAL FLOOD-PLAIN DEPOSITS (Qoa): SANDY CLAY, yellowish brown, fine to medium grained, moist, hard, white mineral precipitate deposits.	CAL	$/\setminus$	27		13.1	109.1		
- 6 - 7										
- 8 - 9 - 10		SAN DIEGO FORMATION (Qsd): SILTY SANDSTONE, yellowish brown, fine to medium grained, some gravel, moist, very dense, weakly cemented.	CAL		82/10"		15.8	111.6		
- 11 - 12										
- 13 - 14		Dense.	SPT		32	42				
– 15			JF I		32	42				
– 16										
– 17										
- 18 - 19		Medium dense.	SPT		18	23				
L 20		DODING TERMINATES AT 22 TO 1								
	BORING TERMINATED AT 20 FEET									

SCST, Inc.

Access Youth Academy							
San Diego, California							
By:	BG	Date:	August, 2017				
Job Number:	170270N-1	Figure:	I-4				

LOG OF BORING B-4										
Date Drilled: 7/10/2017			Б.	Logged by:				BG		
			-	roject Manager: Groundwater (ft):				TBC Not Encountered		
				SAMP						
						DRIVING RESISTANCE (blows/ft of drive)		MOISTURE CONTENT (%)	DRY UNIT WEIGHT (pcf)	LABORATORY TESTS
H.	nscs			z	Y	∃SIS ⁻ of dr	N_{60}	ONT	/EIG)RY
DEРТН (ft)	SN	SUMMARY OF SUBSURFACE CONDITIONS		DRIVEN	BULK	VING RESISTAN (blows/ft of drive)	Z	RE C	N TI	RATC
			'			RIVIN (blc		ISTU	Y UN	BOF
	00	FILL (OD) OLAYEY ODAYEL with CAND light house fire to reading against						MO	DR	7
_ 1	GC	<u>FILL (Qf)</u> : CLAYEY GRAVEL with SAND, light brown, fine to medium grained, so cobbles, moist, loose to medium dense, concrete debris.	ome	١	\					
_ 2					\bigvee					
_ 3					X					
			-		$/ \setminus$					
– 5		No sample recovery.	С	AL	/ \	94				
- 6		AUGER REFUSAL AT 6 FEET								
8										
9										
10										
11										
– 12										
- 13										
– 14										
- 15										
– 16										
– 17										
– 18										
– 19										
L 20										

SCST, Inc.

Access Youth Academy
San Diego, California

By: BG Date: August, 2017

Job Number: 170270N-1 Figure: I-5

LOG OF BORING B-5 Date Drilled: 7/10/2017 Logged by: BG **TBC** Equipment: CME-75 with 8-inch Diameter Hollow-Stem Auger Project Manager: Elevation (ft): 122 Depth to Groundwater (ft): Not Encountered SAMPLES DRY UNIT WEIGHT (pcf) MOISTURE CONTENT (%) DRIVING RESISTANCE (blows/ft of drive) LABORATORY TEST DEPTH (ft) **USCS** DRIVEN BULK SUMMARY OF SUBSURFACE CONDITIONS SC FILL (Qf): CLAYEY SAND with GRAVEL, dark brown, fine to medium grained, some cobbles, moist, loose to medium dense. 1 SA 2 ALΕI 3 COR CAL 27 5 6 8 SC OLD ALLUVIAL FLOOD-PLAIN DEPOSITS (Qoa): CLAYEY SAND, dark brown and 9 gray, fine grained, moist, dense, white mineral precipitate deposits. 50 10 11 12 13 SAN DIEGO FORMATION (Tsd): SITLY SANDSTONE, yellowish brown, fine to medium grained, moist, medium dense, weakly cemented. 14 SPT 22 29 15 16 17 18 Dense. 19 SPT 32 41 **BORING TERMINATED AT 20 FEET**

SC

SCST, Inc.

By:	BG	Date:	August, 2017						
Job Number:	170270N-1	Figure:	I-6						

Date Drilled: 7/10/2017 Equipment: CME-75 with 8-inch Diameter Hollow-Stem Auger Elevation (ft): 122 Comparity of the Comp											
Equipment: CME-75 with 8-inch Diameter Hollow-Stem Auger Depth to Groundwater (ft): Not Encountered Not Encoun		LOG OF BORING P-1									
Elevation (ft): 122 Depth to Groundwater (ft): Not Encountered SAMPLES S											
SC FILL (QD: CLAYEY SAND with GRAVEL, light brown, fine to medium grained, some cobbies, moist, medium dense. SPT 20 26 SAA AL									ncoun	tered	
SC FILL (Qf): CLAYEY SAND with GRAVEL, light brown, fine to medium grained, some cobbiles, moist, medium dense. SA AL					SAM	PLES	NCE e)		(%) TN	r (pcf)	ESTS
- 1	DEPTH (ft)				DRIVEN	BULK	DRIVING RESISTA (blows/ft of drive	⁰⁹ N	MOISTURE CONTEN	DRY UNIT WEIGH	LABORATORY TE
- 2		SC		rained, some		\ /					
- 3						$ \rangle /$					
- 4 SPT 20 26 - 5 BORING TERMINATED AT 5 FEET - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19						X					AL
BORING TERMINATED AT 5 FEET						$ \rangle $					
BORING TERMINATED AT 5 FEET - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19					SPT	$/\setminus$	20	26			
- 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19			BORING TERMINATED AT 5 FEET								
- 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19											
- 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19											
- 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19											
- 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19											
- 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19	10										
- 13 - 14 - 15 - 16 - 17 - 18 - 19											
- 14 - 15 - 16 - 17 - 18 - 19											
- 15 - 16 - 17 - 18 - 19	- 13										
- 16 - 17 - 18 - 19											
- 17 - 18 - 19											
- 18 - 19	– 16										
_ 19	- 17										
	- 18										
	– 19										
	L ₂₀										

Access Youth Academy
San Diego, California

By: BG Date: August, 2017

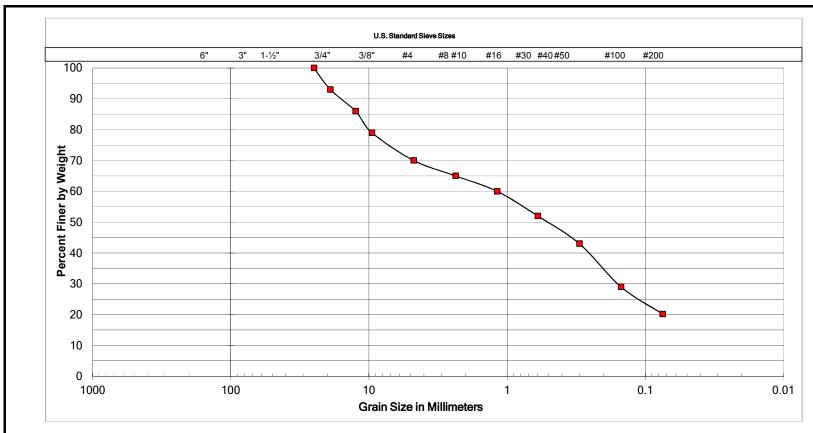
Job Number: 170270N-1 Figure: I-7

	LOG OF BORING P-2									
		Orilled: 7/10/2017	Dro			ed by:		BG		
	Equipment: CME-75 with 8-inch Diameter Hollow-Stem Auger Project Manager: Elevation (ft): 120 Depth to Groundwater (ft):						TBC Not E	ncoun	tered	
					PLES					
						DRIVING RESISTANCE (blows/ft of drive)		MOISTURE CONTENT (%)	DRY UNIT WEIGHT (pcf)	LABORATORY TESTS
DEPTH (ft)	nscs			z	×	ESIS: of dr	N_{60}	TNO	VEIG	JRY
DEP'	SN	SUMMARY OF SUBSURFACE CONDITIONS		DRIVEN	BULK	VING RESISTAN (blows/ft of drive)	Z	IRE (۸	3ATC
			'	٦		RIVIN (blo		ISTL	Y U	\BOF
	00	FILL (OD. CLAYEY CAND with CDAYEL light brown fine to gooding project				О		MC	DR	
_ 1	30	<u>FILL (Qf)</u> : CLAYEY SAND with GRAVEL, light brown, fine to medium grained, s cobbles, moist, loose to medium dense.	some	1	$\setminus /$					
_ 2					\bigvee					SA AL
 - 3					X					
_ 4					$/ \setminus$					
- 5			S	SPT	/ \	33	43			
- 6		BORING TERMINATED AT 5 FEET								
7										
8										
9										
10										
11										
12										
– 13										
– 14										
– 15										
– 16										
– 17										
– 18										
– 19										
L 20										

Access Youth Academy
San Diego, California

By: BG Date: August, 2017

Job Number: 170270N-1 Figure: I-8

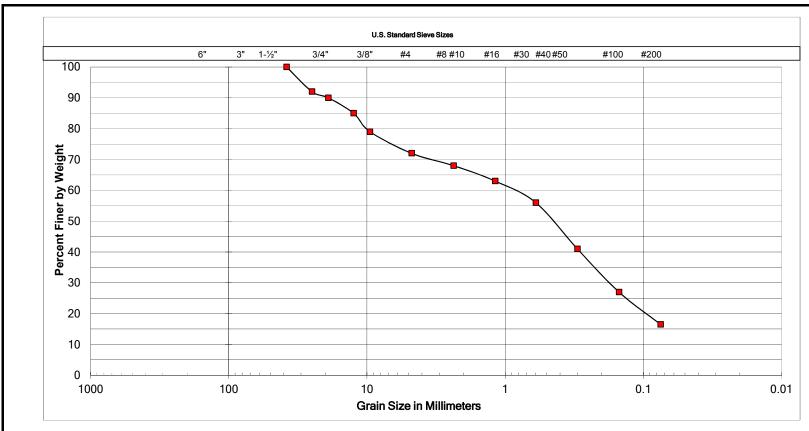

APPENDIX II LABORATORY TESTING

Laboratory tests were performed to provide geotechnical parameters for engineering analyses. The following tests were performed:

- **CLASSIFICATION:** Field classifications were verified in the laboratory by visual examination. The final soil classifications are in accordance with the Unified Soil Classification System.
- **IN SITU MOISTURE AND DENSITY:** The in situ moisture content and dry unit weight were determined on samples collected from the borings. The test results are presented on the boring logs in Appendix I.
- **GRAIN SIZE DISTRIBUTION:** The grain size distribution was determined on four samples in accordance with ASTM D422. Figures II-1 through II-4 present the test results.
- ATTERBERG LIMITS: The Atterberg limits were determined on four soil samples in accordance with ASTM D4318. Figures II-1 through II-4 present the test results.
- **R-VALUE**: An R-value test was performed on one soil sample in accordance with California Test Method 301. Figure II-5 presents the test result.
- **EXPANSION INDEX:** The expansion index was determined on three soil samples in accordance with ASTM D4829. Figure II-5 presents the test results.
- CORROSIVITY: Corrosivity tests were performed on two soil samples. The pH and
 minimum resistivity were determined in general accordance with California Test 643. The
 soluble sulfate content was determined in accordance with California Test 417. The total
 chloride ion content was determined in accordance with California Test 422. Figure II-5
 presents the test results.

Soil samples not tested are now stored in our laboratory for future reference and analysis, if needed. Unless notified to the contrary, all samples will be disposed of 30 days from the date of this report.

Cobbles	Gra	avel		Sand	Silt or Clay	
	Coarse	Fine	Coarse	Medium	Fine	

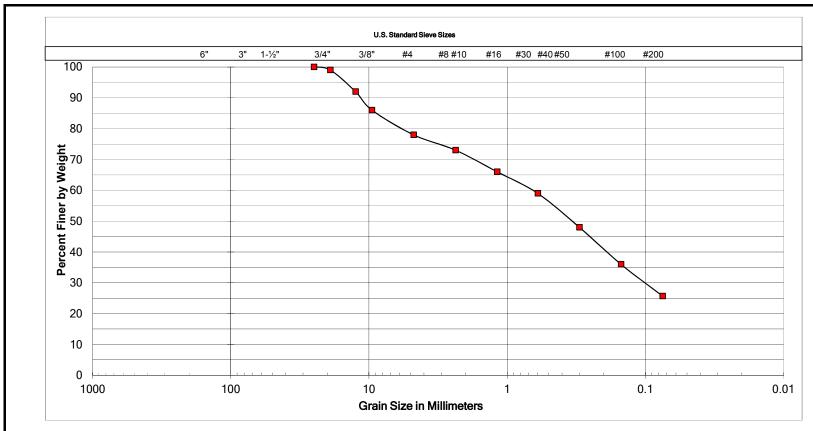

SAMPLE LOCATION
B-3 at 0 to 5 feet

UNIFIED SOIL CLASSIFICATION:	SC
DESCRIPTION	Clayey Sand with Gravel

ATTERBERG LIMITS					
LIQUID LIMIT	34				
PLASTIC LIMIT	20				
PLASTICITY INDEX	14				

Ву:	TBC	Date:	August, 2007
Job Number:	170270N-1	Figure:	II-1

Cobbles	Gra	avel		Sand	Silt or Clay	
	Coarse	Fine	Coarse	Medium	Fine	

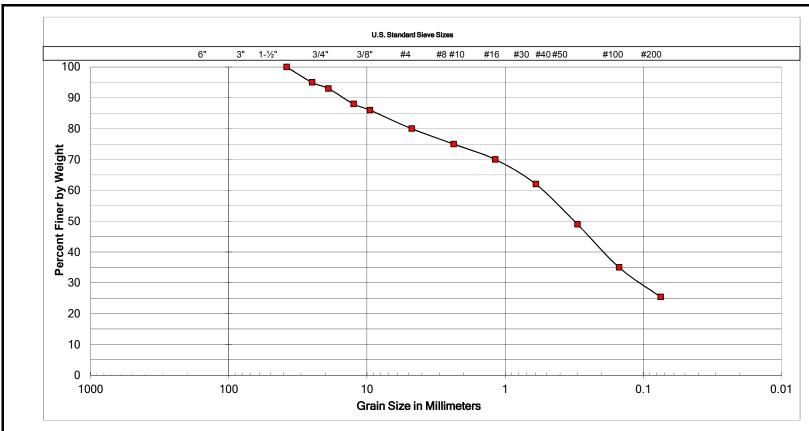

SAMPLE LOCATION
B-5 at 1 to 5 feet

UNIFIED SOIL CLASSIFICATION:	SC
DESCRIPTION	Clayey Sand with Gravel

ATTERBERG LIMI	TS
LIQUID LIMIT	26
PLASTIC LIMIT	18
PLASTICITY INDEX	8

Ву:	TBC	Date:	August, 2007
Job Number:	170270N-1	Figure:	II-2

Cobbles	Gra	avel	Sand			Silt or Clay
	Coarse	Fine	Coarse	Medium	Fine	


SAMPLE LOCATION
P-1 at 0 to 5 feet

UNIFIED SOIL CLASSIFICATION:	SC
DESCRIPTION	Clayey Sand with Gravel

ATTERBERG LIMITS			
LIQUID LIMIT	39		
PLASTIC LIMIT	23		
PLASTICITY INDEX	16		

Ву:	TBC	Date:	August, 2007
Job Number:	170270N-1	Figure:	II-3

Cobbles	Gra	avel	Sand			Silt or Clay
	Coarse	Fine	Coarse	Medium	Fine	

SAMPLE LOCATION	
P-2 at 3½ to 5 feet	

UNIFIED SOIL CLASSIFICATION:	SC
DESCRIPTION	Clayey Sand with Gravel

ATTERBERG LIMITS		
LIQUID LIMIT	28	
PLASTIC LIMIT	17	
PLASTICITY INDEX	11	

Ву:	TBC	Date:	August, 2007
Job Number:	170270N-1	Figure:	II-4

R-VALUE

CALIFORNIA TEST 301

SAMPLE	DESCRIPTION	R- VALUE
B-1 at 0 to 5 feet	CLAYEY SAND with GRAVEL, light brown	26

EXPANSION INDEX

ASTM D2489

SAMPLE	SAMPLE DESCRIPTION	
B-2 at 0 to 5 feet	CLAYEY SAND with GRAVEL, light brown	32
B-3 at 0 to 5 feet	CLAYEY SAND with GRAVEL, light brown	34
B-5 at 1 to 5 feet	CLAYEY SAND with GRAVEL, dark brown	12

CLASSIFICATION OF EXPANSIVE SOIL 1

EXPANSION INDEX	POTENTIAL EXPANSION
1 - 20	Very Low
21 - 50	Low
51 - 90	Medium
91 - 130	High
Above 130	Very High

^{1.} ASTM - D4829

RESISTIVITY, pH, SOLUBLE CHLORIDE and SOLUBLE SULFATE

SAMPLE	RESISTIVITY (Ω-cm)	рН	CHLORIDE (%)	SULFATE (%)
B-3 at 0 to 5 feet	1,110	6.58	0.006	0.009
B-5 at 1 to 5 feet	794	8.20	0.004	0.072

SULFATE EXPOSURE CLASSES²

Class	Severity	Water-Soluble Sulfate (SO₄) in Soil, Percent by Mass
S0	Not applicable	SO ₄ < 0.10
S1	Moderate	0.10 ≤ SO ₄ < 0.20
S2	Severe	$0.20 \le SO_4 \le 2.00$
S3	Very Severe	SO ₄ > 2.00

^{2.} ACI 318, Table 19.3.1.1

SCST, Inc.

Access Youth Academy						
	San Diego, California					
Ву:	TBC	Date:	July, 2017			
Job Number:	170256P4-1	Figure:	II-5			

APPENDIX III

APPENDIX III INFILTRATION RATE TEST RESULTS

We performed borehole percolation testing at two locations (P-1 and P-2) in general conformance with the City of San Diego BMP Design Manual. Prior to starting the testing, the test holes were presoaked with clean potable water for about 23 to 24 hours. The infiltration tests were performed after presoaking by placing clean potable water in the holes and measuring the drop in the water level. Because water remained in the holes after presoaking, the water level was adjusted and the testing performed for two readings 30 minutes apart. Figures III-1 and III-2 present the results of the testing.

Report of Borehole Percolation Testing

Storm Water Infiltration

Project Name: Access Youth Academy

Job Number: 170270N

Date Drilled: 7/10/2017

Drilling Method: 8-inch Diameter Hollow-Stem Auger

Drilled Depth (feet): 5

Test Hole Diameter (inches): 8

Gravel Pack: Yes

Pipe Diameter (inches): 4

Test Number: P-1
Tested By: MAN/BG
Date Tested: 7/11/2017
Presoak Time: 24 hours

*Tested Infiltation Rate, I _t : 0 in/hr				ation Rate, I _t :	in/hr	
Corrected Percolation Rate: 0 m				min/in in/hr		
Gravel Correction Factor: 1.82						
			Observed F	Percolation Rate:		min/in in/hr
		-	-	-	-	-
		-	-	-	-	-
		-	-	-	-	-
		-	-	-	-	-
		-	-	-	-	-
		-	-	-	-	-
2	8:05 8:35	0:30	1.50	1.50	0.0	0
1	7:35 8:05	0:30	1.50	1.50	0.0	0
Trial No.	Time	Interval, ΔT (min)	Height, H _o (ft)	Height, H _f (ft)	Height, ΔH (in)	Rate (min/in)
		Time	Initial Water	Final Water	Change in Water	Percolatio

^{*}Tested infiltration rate using the Porchet Method:

$$I_{t} = \frac{\Delta H(60r)}{\Delta T(r + 2H_{avg})}$$

 $\Delta H = \text{Change in water head height over the time interval [in]} \\ = 0.0 \\ r = \text{Test hole radius [in]} \\ \Delta T = \text{Time interval [min]} \\ = 30 \\ H_{avg} = \text{Average water height over time interval} \\ = 12(H_o + H_f)/2 \text{ [in]} \\ = 18.0 \\$

Access Youth Academy							
San Diego, California							
By:	MAN/BG	Date:	August, 2017				
Job No: 170270N-1 Figure: III-1							

Report of Borehole Percolation Testing

Storm Water Infiltration

Project Name:

Job Number:

Date Drilled:

Drilling Method:

Drilled Depth (feet):

Test Hole Diameter (inches):

Gravel Pack:

Pipe Diameter (inches):

Access Youth Academy, GI

170270N

7/10/2017

8-inch Diameter Hollow-Stem Auger

5

Test Hole Diameter (inches):

8

Yes

4

Test Number: P-2
Tested By: MAN/BG
Date Tested: 7/11/2017
Presoak Time: 23 hours

Trial No.	Time	Time Interval, ΔT	Initial Water Height, H _o	Final Water Height, H _f	Change in Water Height, ΔH	Percolation Rate
		(min)	(ft)	(ft)	(in)	(min/in)
1	9:45 10:15	0:30	2.00	2.00	0.0	0
2	10:15 10:45	0:30	2.00	2.00	0.0	0
		-	-	-	-	-
		-	-	-	-	•
		-	-	-	-	-
		-	-	-	-	-
		-	-	-	-	-
Observed Percolation Rate:					min/in in/hr	
Gravel Correction Factor: 1.95						
0 min/ir Corrected Percolation Rate: 0.0 in/hr						
*Tested Infiltation Rate, I _t : 0 in/hr				ation Rate, I _t :	in/hr	

^{*}Tested infiltration rate using the Porchet Method:

$$I_{t} = \frac{\Delta H(60r)}{\Delta T(r + 2H_{avg})}$$

 $\Delta H = \text{Change in water head height over the time interval [in]} = 0.0$ r = Test hole radius [in] = 4 $\Delta T = \text{Time interval [min]} = 30$ $H_{avg} = \text{Average water height over time interval} = 12(H_o + H_f)/2 \text{ [in]} = 24.0$

Access Youth Academy							
San Diego, California							
By: MAN/BG Date: August, 2017							
Job No: 170270N Figure: III-2							

APPENDIX IV

APPENDIX IV WORKSHEET C.4-1: CATEGORIZATION OF INFILTRATION FEASIBILITY CONDITION

Worksheet C.4-1: Categorization of Infiltration Feasibility Condition

Categ	orization of Infiltration Feasibility Condition	Worksho	eet C.4-1			
Would is	Full Infiltration Feasibility Screening Criteria infiltration of the full design volume be feasible from a physical perences that cannot be reasonably mitigated?	rspective withou	t any undesirable			
Criteria	Screening Question	Yes	No			
1	Is the estimated reliable infiltration rate below proposed facility locations greater than 0.5 inches per hour? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2 and Appendix D.		✓			
The uppare beli	Provide basis: The upper materials present at the site are fill soils consisting of clayey sand. The tested materials are believed to be generally representative of the materials that will be encountered below the proposed storm water BMPs. The tested infiltration rates were 0.0 inch per hour. In our opinion, the tested infiltration rates do not support a reliable infiltration rate of greater than 0.5 inch per hour.					
	ze findings of studies; provide reference to studies, calculations, maps, n of study/data source applicability.	data sources, etc	. Provide narrative			
2	Can infiltration greater than 0.5 inches per hour be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2.		✓			
Provide l	pasis:					
The tested infiltration rates do not support a reliable infiltration of greater than 0.5 inch per hour. Allowing infiltration greater than 0.5 inch per hour will increase the risk of geotechnical hazards including increased surface runoff on the project site and onto adjacent properties, uncontrolled lateral and vertical migration of groundwater beneath adjacent structures and improvements, and uncontrolled lateral and vertical migration of groundwater through permeable bedding material of utilities within the public right-of-way (Euclid Avenue and Guymon Street). SCST does not recommend allowing infiltration greater than 0.5 inch per hour at the site.						
	Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/data source applicability.					

ı	Worksheet C.4-1 Page 2 of 4				
Criteria	Screening Question	Yes	No		
3	Can infiltration greater than 0.5 inches per hour be allowed without increasing risk of groundwater contamination (shallow water table, storm water pollutants or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.		✓		
Provide l	pasis:				
	ted infiltration rates at the site indicate that the onsite soils do not than 0.5 inch per hour.	support reliab	e infiltration of		
	ze findings of studies; provide reference to studies, calculations, maps, on of study/data source applicability. Can infiltration greater than 0.5 inches per hour be allowed	data sources, etc	c. Provide narrative		
4	without causing potential water balance issues such as change of seasonality of ephemeral streams or increased discharge of contaminated groundwater to surface waters? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.				
Provide l	pasis:				
The project design engineer is responsible for completing this criteria.					
Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/data source applicability.					
Part 1	If all answers to rows 1 - 4 are " Yes " a full infiltration design is potenti. The feasibility screening category is Full Infiltration	·			
Result*	If any answer from row 1-4 is "No", infiltration may be possible to sor would not generally be feasible or desirable to achieve a "full infiltration Proceed to Part 2				

*To be completed using gathered site information and best professional judgment considering the definition of MEP in the MS4 Permit. Additional testing and/or studies may be required by [City Engineer] to substantiate findings.

Worksheet C.4-1 Page 3 of 4 Part 2 - Partial Infiltration vs. No Infiltration Feasibility Screening Criteria Would infiltration of water in any appreciable amount be physically feasible without any negative consequences that cannot be reasonably mitigated? Criteria Screening Question Yes No Do soil and geologic conditions allow for infiltration in any appreciable rate or volume? The response to this Screening 5 Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2 and Appendix D. Provide basis: The upper materials present at the site are fill soils consisting of clayey sand. The tested materials are believed to be generally representative of the materials that will be encountered below the proposed storm water BMPs. The tested infiltration rates were 0.0 inch per hour. In our opinion, the tested infiltration rates do not support a reliable infiltration rate of any appreciable quantity. Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/data source applicability and why it was not feasible to mitigate low infiltration rates. Can Infiltration in any appreciable quantity be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot 6 be mitigated to an acceptable level? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2. Provide basis: In our opinion partial infiltration of less than 0.5 inch per hour should not be allowed without increasing the risk of geotechnical hazards. Lateral migration of subsurface water is anticipated, potentially resulting in moisture issues beneath adjacent structures and improvements and in downslope properties where excessive moisture was not present previously. Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/data source applicability and why it was not feasible to mitigate low infiltration rates.

	Worksheet C.4-1 Page 4 of 4						
Criteria	Screening Question	Yes	No				
7	Can Infiltration in any appreciable quantity be allowed without posing significant risk for groundwater related concerns (shallow water table, storm water pollutants or other factors)? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.						
Partial in	Provide basis: Partial infiltration of less than 0.5 inch per hour could be allowed without posing significant risk for groundwater related concerns as long as the BMP system is designed to pretreat effluent.						
	e findings of studies; provide reference to studies, calculations, maps, of study/data source applicability and why it was not feasible to mitigate						
8	Can infiltration be allowed without violating downstream water rights? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.						
Provide basis: The project design engineer is responsible for completing this criteria. Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/data source applicability and why it was not feasible to mitigate low infiltration rates.							
Part 2 Result*							

*To be completed using gathered site information and best professional judgment considering the definition of MEP in the MS4 Permit. Additional testing and/or studies may be required by Agency/Jurisdictions to substantiate findings

SCST, Inc.
Corporate Headquarters
6280 Riverdale Street
San Diego, CA 92120

T 877.215.4321

P 619.280.4321

F 619.280.4717

www.scst.com

December 20, 2017

SCST No. 170270N Report No. 2

Renato Paiva Access Youth Academy 9370 Waples Street, Suite 101 San Diego, California 92121

Subject: UPDATE LETTER AND RESPONSES TO CITY REVIEW COMMENTS

ACCESS YOUTH ACADEMY

704 EUCLID AVENUE SAN DIEGO, CALIFORNIA

References: Rick Engineering Company (2017), Grading & Improvement Plans for: 704 Euclid

Ave, Parcel 1 of Parcel Map No. 2407, Drawing 40306-D, plotted December 19.

SCST, Inc. (2017), Geotechnical Investigation, Access Youth Academy, 704 Euclid

Avenue, San Diego, California, SCST No. 170270N-1, August 11.

Dear Mr. Paiva:

SCST, Inc. (SCST) prepared this letter to respond to review comments from Jacobe Washburn of The City of San Diego for the subject project. We responded to the geotechnical issues. The review comments and our responses are provided below.

<u>Issue No. 2</u>: Submit an addendum geotechnical report or update letter that specifically addresses the referenced grading plan set and the following:

Response: This letter serves as the update letter. The grading plan set is referenced above.

<u>Issue No. 3</u>: The project's geotechnical consultant indicates remedial grading is required at the subject site. Provide an updated geologic/geotechnical map which delineates the area(s) of recommended remedial grading.

Response: Figures 1 presents the updated geotechnical map.

<u>Issue No. 4</u>: The project's geotechnical consultant should provide a conclusion regarding if the proposed construction/grading will destabilize or result in settlement of adjacent property or the Right-of-Way.

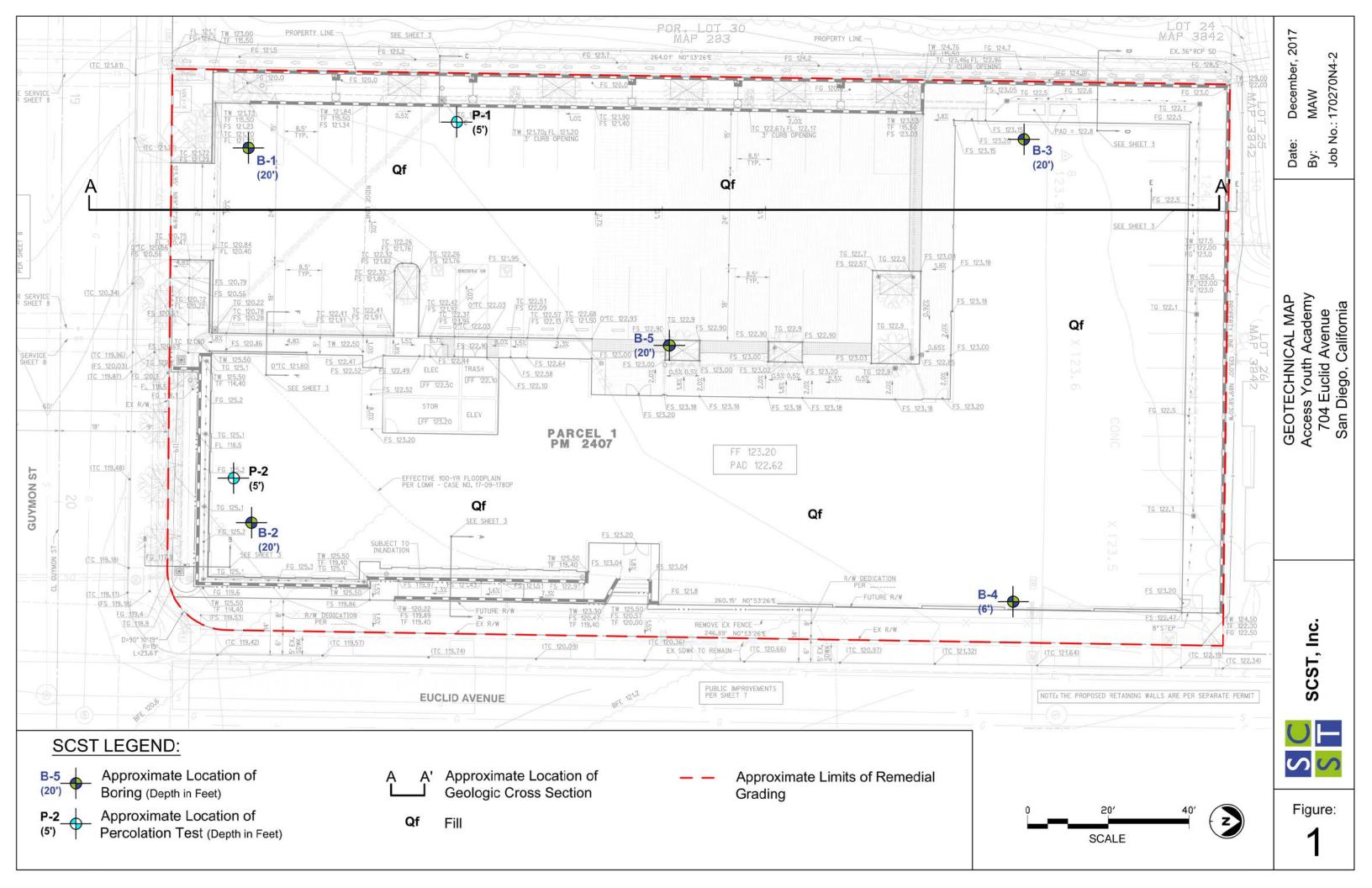
<u>Response</u>: In our opinion, the proposed construction/grading will not destabilize or result in settlement of adjacent property or the Right-of-Way provided the recommendations contained in our referenced geotechnical report are followed.

CERTIFIED ON NGINEERING

If you have questions, please call us at (619) 280-4321.

Respectfully submitted,

SCST, INC.


Thomas B. Canady, RE Principal Engineer Douglas A. Skinner, CEG 2472 Senior Geologist

TBC:DAS

Attachment: Figure 1 - Geotechnical Map

- (1) Addressee via email: renato@accessyouthacademy.org
- (1) Charles Davis via email: cdavis@urbanwestdevelopment.net
- (1) Richard Juarez via email: richjuarez1@icloud.com
- (1) Joe Hammond via email: jhammond@rickengineering.com

