4333-4337 Home Avenue MO Access Analysis Study

City of San Diego Project #593686

Prepared for: AVAD Investments, Inc. 4333 Home Avenue San Diego, CA 92105

Prepared by: Marc Mizuta, PE, TE, PTOE

5694 Mission Center Road, #602-121 San Diego, CA 92108

03/27/19

March 2019

1	INT	RODUCTION	3
	1.1 1.2	Project Description Study Area	3 3
2	AN	ALYSIS APPROACH AND METHODOLOGY	1
	2.1 2.2	ANALYSIS SCENARIOS METHODOLOGY 2.2.1 Intersection Delay Analysis 2.2.2 Roadway Segment Analysis	1 1 1
	2.3	SIGNIFICANCE THRESHOLD CRITERIA	3
3	EXI	STING CONDITIONS	.4
	3.1 3.2	ROADWAY NETWORK ALTERNATE MODES OF TRAVEL 3.2.1 Transit Service	4 4 4
		3.2.3 Bicycle Access	4
	3.3 3.4 3.5	TRAFFIC VOLUMES INTERSECTION ANALYSIS ROADWAY SEGMENT ANALYSIS	5 8 8
4	PRO	DJECT TRAFFIC	.9
	4.1 4.2 4.3	PROJECT TRIP GENERATION PROJECT TRIP DISTRIBUTION PROJECT TRIP ASSIGNMENT	9 9 .10
5	EXI	STING PLUS PROJECT	13
	5.1 5.2 5.3 5.4	ROADWAY NETWORK TRAFFIC VOLUMES INTERSECTION ANALYSIS ROADWAY SEGMENT ANALYSIS	13 13 13 15
6	NE	AR TERM (OPENING YEAR 2019)	16
	6.1 6.2 6.3 6.4 6.5	ROADWAY NETWORK CUMULATIVE PROJECTS TRAFFIC VOLUMES INTERSECTION ANALYSIS ROADWAY SEGMENT ANALYSIS	16 16 16 20 20
7	PAI	RKING	22
8	SUI	MMARY OF FINDINGS AND RECOMMENDATIONS	23

LIST OF FIGURES

Figure 1-1 Regional Vicinity Map	4
Figure 1-2 Project Area Map	5
Figure 1-3 Site Plan	0
Figure 3-1 Existing Intersection Geometrics	6
Figure 3-2 Existing Conditions Traffic Volumes	7
Figure 4-1 Project Trip Distribution	11
Figure 4-2 Project Trip Assignment	12
Figure 5-1 Existing Plus Project Traffic Volumes	14
Figure 6-1 3940 Home Avenue Cumulative Trip Assignment	17
Figure 6-2 Near Term (Year 2019) Baseline Traffic Volumes	18
Figure 6-3 Near Term (Year 2019) With Project Opening Day Traffic Volumes	19

LIST OF TABLES

Table 2-1 LOS Criteria for Intersections	2
Table 2-2 Roadway Classifications, Level of Service (LOS), and Average Daily Traffic (ADT)	3
Table 2-3 Significance Criteria for Intersections and Roadway Segments	3
Table 3-1 Existing Peak Hour Intersection LOS Summary	8
Table 3-2 Existing Roadway LOS Summary	8
Table 4-1 Project Trip Generation	9
Table 5-1 Existing Plus Project Peak Hour Intersection LOS Summary	13
Table 5-2 Existing Plus Project Roadway LOS Summary	15
Table 6-1 Near Term (Opening Year 2019) Peak Hour Intersection LOS Summary	20
Table 6-2 Near Term (Opening Year 2019) Roadway LOS Summary	
Table 7-1 On-Site Parking Summary	22

APPENDICES

Appendix A	Signal Timing Sheets
Appendix B	Bicycle Map Excerpts
1	

- Appendix D Appendix D Appendix E Traffic Volume Data
- Intersection LOS Worksheets
- Historical Traffic Counts

1 INTRODUCTION

This access analysis evaluates the traffic conditions associated with the proposed Marijuana Outlet (MO) project (herein referred to as "the Project") located at 4333-4337 Home Avenue in the City Heights Community within Mid-City Communities planning area in the City of San Diego. Figure 1-1 shows the location of the project within the San Diego region and Figure 1-2 shows the project area.

1.1 Project Description

The existing site (APN 541-060-19-00) is located at 4333 Home Avenue and is currently occupied by a gas station with a convenience store. The Project site's land use designation is Community Commercial/General Commercial with Light Manufacturing, which allows for the proposed Marijuana Outlet (MO) and gas station with mini mart with beer and wine sales. There are two zones on-site, which include a Commercial-Community (CC-1-3) and Industrial-Light (IL-3-1) zones. The Project requires a Neighborhood Use Permit (NUP) for the existing gas station, a Conditional Use Permit (CUP) for the existing Alcohol Beverage Outlet, and a CUP for the proposed MO. Access is being proposed through two existing driveways on Home Avenue. Both driveways will be improved to current City standards.

The Project proposes to construct a 2-story, 2,400 square-foot (sf) foot building near the eastern boundaries of the property located at 4333 Home Avenue. The Project proposes to create a new address of 4337 Home Avenue for the new building. The first floor (1,200 sf) will be used as the Marijuana Outlet and the second floor (1,200 sf) is proposed to remain vacant per the Applicant's request. The Project is estimated to be constructed by 2019. A total of 21 parking spaces are required for all the uses and 24 parking spaces will be provided on-site. Included in the parking total is one carpool/zero emission parking space and two motorcycle spaces. **Figure 1-3** illustrates the Project site plan.

1.2 Study Area

This transportation access study addresses potential operational impacts that could result from the addition of the Project traffic to the local circulation system. A scoping memo was prepared for the Project in accordance with the *City of San Diego Traffic Impact Study Manual* guidelines and with guidance from City staff on October 2, 2018. The following intersections and roadway segments, including the Project driveways, are evaluated in this report:

Intersections

- 1. Fairmount Avenue & Home Avenue
- 2. East Project Driveway & Home Avenue
- 3. West Project Driveway & Home Avenue
- 4. I-805 Northbound Ramps & Home Avenue
- 5. I-805 Southbound Ramps & Home Avenue

Roadway Segments

- 1. Home Avenue between I-805 Southbound Ramps and I-805 Northbound Ramps
- 2. Home Avenue between I-805 Northbound Ramps and Fairmount Avenue

Figure 1-2 Project Area Map Figure 1-3 Site Plan

4333-4337 Home Avenue MO Access Analysis Study

VEERING	Revision	14:			
	Revision	13:			
	Revision	12:			
	Revision	11:			
	Revision	10:			
	Revision	9:			
	Revision	8:			
	Revision	7:			
	Revision	6:	3/26/20	019	
	Revision	5:	3/7/201	19	
	Revision	4:	12/10/20	018	
	Revision	3:	10/29/20	018	
	Revision	2:	9/20/20	18	
UE	Revision	1:	7/26/20	8	
	Original	Date: _	1/8/2018	3	
	Sheet	1	_ of	8	
LAN					
	DEP#		_		

2 ANALYSIS APPROACH AND METHODOLOGY

This section summarizes the analysis approach and methodology used to evaluate the study intersections and roadway segments associated with the Project.

2.1 Analysis Scenarios

The following scenarios were evaluated in this transportation access study:

- Existing Conditions (2018): This scenario reflects the conditions on the ground at the time the traffic volume data was obtained (October 2018).
- Existing Plus Project: This scenario reflects existing conditions with the addition of Project traffic.
- Near Term (Opening Day Year 2019): This scenario reflects the conditions within the study area at the anticipated date of opening and includes traffic volumes from a general growth in the area and other identified cumulative projects.
- Near Term (Opening Day Year 2019) With Project: This scenario reflects near term conditions with the addition of Project traffic.

The traditional weekday peak-hour coinciding with the highest volume of traffic between 7:00 and 9:00 AM and between 4:00 and 6:00 PM was evaluated for each analysis scenario.

2.2 Methodology

2.2.1 Intersection Delay Analysis

Signalized and unsignalized intersection operations were analyzed with Synchro 10 software (Trafficware), using the methodologies outlined in the 2010 *Highway Capacity Manual (HCM)*. The HCM methodology calculates delay, which corresponds to a particular LOS, to describe the overall operation of an intersection. Delay is a measure of driver and/or passenger discomfort, frustration, fuel consumption and lost travel time.

Signal timing data and parameters such as cycle lengths, splits, clearance intervals, etc. were based on existing City of San Diego timing plans that are currently implemented in the field and were calibrated into the Synchro model. Appendix A contains a copy of the signal timing plans. The LOS for unsignalized intersections is determined by the computed or measured control delay and is defined for each minor movement. At a one-way or two-way stop control intersection, the delay reported represents the worst movement, which is typically the left-turns from the minor street approach. The criteria for the LOS grade designations are provided in Table 2-1.

Within the City of San Diego, the threshold for acceptable operating conditions for signalized and unsignalized intersections is LOS D or better.

	LOS Criter	ia (sec/veh)		
	Signalized	Unsignalized		
LOS	Intersections	Intersections	Description	
А	<u><</u> 10	<u><</u> 10	EXCELLENT. Operations with very low delay and most vehicles do not stop.	
В	>10 and <u><</u> 20	>10 and <u><</u> 15	VERY GOOD. Operations with good progression but with some restricted movements.	
С	>20 and <u><</u> 35	>15 and <25	GOOD. Operations where a significant number of vehicles are stopping with some backup and light congestion.	
D	>35 and <u><</u> 55	>25 and <u><</u> 35	FAIR. Operations where congestion is noticeable, longer delays occur, and many vehicles stop. The proportion of vehicles not stopping declines.	
E	>55 and <u><</u> 80	>35 and <u><</u> 50	POOR. Operations where there is significant delay, extensive queuing, and poor progression.	
F	>80	>50	FAILURE. Operations that are unacceptable to most drivers, when the arrival rates exceed the capacity of the intersection.	

Table 2-1 LOS Criteria for Intersections

Source: 2010 Highway Capacity Manual

2.2.2 Roadway Segment Analysis

Roadway segment LOS standards and thresholds provide the basis for analysis of arterial roadway segment performance. This analysis is based on the functional classification of the roadway, the maximum capacity, roadway geometrics, and the daily traffic volumes.

Table 2-2 summarizes the capacities for the various roadway classifications with the City of San Diego for each respective LOS.

	Level of Service				
Roadway Functional Classification	А	В	С	D	E
Expressway (6-lane)	< 30,000	< 42,000	< 60,000	< 70,000	< 80,000
Prime Arterial (6-lane)	< 25,000	< 35,000	< 50,000	< 55,000	< 60,000
Major Arterial (6-lane, divided)	< 20,000	< 28,000	< 40,000	< 45,000	< 50,000
Major Arterial (4-lane, divided)	< 15,000	< 21,000	< 30,000	< 35,000	< 40,000
Collector (4-lane w/center lane)	< 10,000	< 14,000	< 20,000	< 25,000	< 30,000
Collector (4-lane w/o center lane)	(5 000	(7,000	< 10,000	× 13 000	(15,000
Collector (2-lane w/ continuous left-turn lane)	× 3,000	×7,000	< 10,000	15,000	15,000
Collector (2-lane no fronting property)	< 4,000	< 5,500	<7,500	< 9,000	< 10,000
Collector (2-lane w/ commercial fronting)	(2500	(2.500	(5.000	(6500	< <u>8 000</u>
Collector (2-lane multi-family)	\$ 2,300	\$3,300	× 3,000	× 0,500	× 0,000
Sub-Collector (2-lane single-family)	-	-	< 2,200	-	-

 Table 2-2

 Roadway Classifications, Level of Service (LOS), and Average Daily Traffic (ADT)

Source: Table 2 from the City of San Diego Traffic Impact Study Manual, July 1998

2.3 Significance Threshold Criteria

To determine the Project impacts to roadway segments and intersections, the *City of San Diego California Environmental Quality Act (CEQA) Significance Determination Thresholds*, *July 2016* has developed thresholds based on allowable increases in delay at intersections and volume to capacity ratios (v/c Ratio) for roadway segments. At intersections, the measurement of effectiveness (MOE) is based on allowable increases in delay. Along roadway segments, the MOE is based on allowable increases in the volume-to-capacity (v/c) ratio. A project's impact on a transportation facility is also significant if it takes the facility from acceptable to unacceptable levels of service.

 Table 2-3 summarizes the significance impact thresholds for intersections and roadway segments.

Table 2-3	
Significance Criteria for Intersections and Roadway Segments	

	Allowable Change Due to Impact			
	Roadway Segments	Intersections		
LOS with Project	Project v/c Ratio De			
E	0.02	2.0		
F	0.01	1.0		

Source: CEQA Significance Determination Thresholds, City of San Diego Development Services Department, July 2016

3 EXISTING CONDITIONS

This section describes the existing roadway network, peak hour and daily traffic volumes, and operations at the study area intersections and roadway segments.

3.1 Roadway Network

Home Avenue is classified as a 4-lane major roadway with a raised median and generally runs in the eastwest direction adjacent to the Project site. This street is constructed to its Community Plan ultimate classification. On-street parking is provided on the south side of the roadway and restricted to 2-hours between 8 AM and 6 PM on weekdays and prohibited between 3 AM and 6 AM daily. On-street parking is prohibited on the north side of the roadway. Curb, gutters, and 5-foot contiguous sidewalks are provided on both sides of the roadway. The posted speed limit is 35 miles per hour.

Fairmount Avenue is classified as a 4-lane collector south of Home Avenue and a 2-lane collector north of Home Avenue and generally runs in the north-south direction in the study area. On-street parking is prohibited on both sides of the roadway. However, north of 44th Street, on-street parallel parking is allowed on both sides of the roadway. Curb, gutters, 5-foot contiguous sidewalks, and Class II bicycle lanes are also provided on both sides of the roadway. The posted speed limit is 35 miles per hour.

Figure 3-1 illustrates the existing geometrics at the study area intersections.

3.2 Alternate Modes of Travel

In addition to the vehicular roadway network, alternative modes of travel are provided within the study area and described in more detail below.

3.2.1 Transit Service

The San Diego Metropolitan Transit System (MTS) provides bus service in the study area with Routes 13 and 965. Route 965 primarily provides service within the City Heights community every day except for Sundays with service generally every 30 minutes between the hours of 5:00 AM and 9:00 PM. The nearest transit stop for Route 965 is located on the south side of Home Avenue approximately 550 feet east of the Project site.

Route 13 provides daily service between the 24th Street Transit Station in National City and Kaiser Hospital in Allied Gardens. Service is provided every 12 minutes on the weekdays between the hours of 4:30 AM and 12:00 AM and between 20 to 30 minutes on Saturday and Sunday between the hours of 6:00 AM and 9:00 PM. The nearest transit stop for Route 13 is located on both sides of Fairmount Avenue just south of Home Avenue and approximately 800 feet east of the Project site.

3.2.2 Pedestrian Access

Five-foot contiguous sidewalks are provided on both sides of Home Avenue. The nearest location to cross Home Avenue is located at the intersection with Fairmount Avenue, which is approximately 700 east of the Project site. Pedestrians would cross Home Avenue in the marked continental style crosswalk during the pedestrian phase of this intersection.

3.2.3 Bicycle Access

There are no bicycle facilities along Home Avenue in the immediate vicinity of the Project site. A review of the *City of San Diego Bicycle Master Plan*, *December 2013* shows a proposed Class II or III bicycle facility along Home Avenue in the study area. A Class II bicycle facility is located along both sides of Fairmount Avenue.

Appendix B contains excerpts of the City's Bicycle Master Plan and Community Plan.

3.3 Traffic Volumes

Traffic volumes at the study area intersections and along Home Avenue were measured on Wednesday, October 3, 2018 when schools were in session. Figure 3-2 illustrates the study area traffic volumes.

Appendix C contains a copy of the traffic volume data sheets.

Existing Intersection Geometrics

Existing Conditions Traffic Volumes

3.4 Intersection Analysis

Table 3-1 displays the LOS analysis results for the study area intersections under Existing Conditions. As shown in the table, all intersections operates at LOS D or better during the weekday peak-hours except for the following intersection:

• Fairmount Avenue & Home Avenue (LOS E – AM Peak, LOS F – PM Peak)

Appendix D contains the intersection LOS worksheets.

		Traffic Pea		Existing C	onditions
#	Intersection	Control	Hour	Delay ^(a)	LOS ^(b)
1	Esimount Ave & Home Ave	Signal	AM	62.7	E
1	Fairmount Ave & Home Ave	Signai	PM	86.5	F
2	East Dury & Home Ave	OWSC	AM	10.9	В
2		00050	PM	15.4	С
2	West Duy & Home Ave	OWSC	AM	10.9	В
2	west Dwy & Home Ave	00000	PM	15.0	С
4	L-805 NB Ramps for Home Ave	Signal	AM	30.9	С
4	roos tub kamps & rione Ave	Signai	PM	30.4	С
5	L 805 SR Damps for Home Ave	Signal	AM	35.2	D
	r oos ob Ramps & nome Ave		PM	36.7	D

Table 3-1 Existing Peak Hour Intersection LOS Summary

Notes:

Signal: Traffic signal, OWSC: One-Way Stop Control

(a) Delays are reported as the average control delay for the entire intersection at signalized intersections and the worst movement at unsignalized intersections.

(b) LOS calculations are based on the methodology outlined in the 2010 *Highway Capacity Manual* (HCM) and performed using Synchro 10.

3.5 Roadway Segment Analysis

Table 3-2 displays the LOS analysis for the two roadway segments along Home Avenue under Existing Conditions. As shown in the table, the Home Avenue segment between the I-805 NB Ramps and Fairmount Avenue functions at LOS E while the other segment functions at LOS C.

Table 3-2
Existing Roadway LOS Summary

Roadway Segment	Classification	Capacity (LOS E)	ADT	v/c Ratio	LOS
Home Ave					
I-805 SB Ramps to I-805 NB Ramps	4-Lane Major	40,000	27,033	0.68	С
I-805 NB Ramps to Fairmount Ave	4-Lane Major	40,000	35,318	0.88	E

Notes:

Bold values indicate roadway segments operating at LOS E or F.

4 PROJECT TRAFFIC

This section describes the estimated trip generation, trip distribution, and assignment of trips to the adjacent roadway network.

4.1 Project Trip Generation

Trip generation rates for the Project were developed utilizing rates contained in the *City of San Diego Trip Generation Manual*, May 2003 and supplemented with rates published in the *Institute of Transportation Engineers* (ITE) Trip Generation Manual, 10th Edition for marijuana dispensaries.

 Table 4-1 summarizes the weekday trip generation rates and calculations.

TRIP GENERATION RATES									
			A	M PEA	K	PM PEAK			
Land Use	Weekday Da	% ADT	In:O	ut Ratio	% ADT	In:Ou	ıt Ratio		
Marijuana Outlet ¹	250 trips /	ksf	9%	0.50	: 0.50	16%	0.50	: 0.50	
TRIP GENERATION CALCULATIONS									
			AM PEAK		K	PM PEAK			
Land Use	Amount	ADT	In	Out	Total	In	Out	Total	
Marijuana Outlet	1.200 ksf	300	14	13	27	24	24	48	
Driveway Trips		300	14	13	27	24	24	48	

Table 4-1 Project Trip Generation

Notes:

ksf: 1,000 square feet

The trip rates are based on the City of San Diego's Trip Generation Manual, May 2003 unless otherwise noted by a footnote.

1. Compilation of source rates based on the ITE Trip Generation Manual, 10th Edition for Marijuana Dispensaries provided by the City of San Diego for new marijuana outlet projects.

As shown in the table, the Project is estimated to generate 300 daily trips (ADT) with 27 trips (14 inbound, 13 outbound) during the AM peak hour and 48 trips (24 inbound, 24 outbound) in the PM peak-hour.

4.2 Project Trip Distribution

Based on existing travel patterns in the study area and on logical connections to regional facilities, the following list shows the assumed Project trip distribution for the proposed Project:

- 20 percent to/from the north
 - o 10 percent via I-805
 - o 10 percent via Fairmount Avenue
- 20 percent to/from the south
 - o 10 percent via I-805
 - o 10 percent via Fairmount Avenue
- 30 percent to/from the east via Home Avenue
- 30 percent to/from the west via Home Avenue

Figure 4-1 displays the assumed Project trip distribution through the study intersections and Project driveways.

4.3 Project Trip Assignment

Based on the Project trip generation and distribution, the Project trips were assigned to the intersections, roadway segments, and Project driveways in the study area. Figure 4-2 illustrates the weekday Project trip assignment.

5 EXISTING PLUS PROJECT

This section provides a summary of operations at the study area intersections and roadway segments under Existing Conditions with the addition of Project traffic. This scenario has been prepared pursuant to the California Environmental Quality Act (CEQA) guidelines, which require that the potential impacts of a Project be evaluated upon the circulation system as it currently exists.

5.1 Roadway Network

No changes to the existing roadway network are proposed with the construction of the Project. The Project driveways will remain unsignalized with stop-controls on the Project driveway approach and restricted to right-in/right-out movements only. As a result, the intersection geometrics will remain the same as shown in Figure 3-1.

5.2 Traffic Volumes

The Project trips were added to the existing traffic volumes. Figure 5-1 illustrates the Existing Plus Project traffic volumes in the study area.

5.3 Intersection Analysis

Table 5-1 displays the LOS analysis results for the study intersections under the Existing Plus Projectscenario.

		Traffic	Peak	Existing Conditions		Existing Plus Proj		∆in	
#	Intersection	Control	Hour	Delay ^(a)	LOS ^(b)	Delay ^(a)	LOS ^(b)	Delay	Sig?
1	Edirmount Ave & Home Ave	Signal	AM	62.7	E	63.2	E	0.5	No
1	Fairmount Ave & Home Ave	Signai	PM	86.5	F	87.0	F	0.5	No
n	East Dwy & Home Ave	OWSC	AM	10.9	В	11.1	В	0.2	No
2		00050	PM	15.4	С	15.5	С	0.1	No
2	West Dury & Home Ave	OWSC	AM	10.9	В	11.1	В	0.2	No
C	west Dwy & Home Ave	UWSC	PM	15.0	С	15.0	С	0.0	No
4	L805 NR Pamps & Home Ave	Signal	AM	30.9	С	31.0	С	0.1	No
Т	1-005 ND Rallips & Holice Ave	Signai	PM	30.4	С	30.8	С	0.4	No
5	L805 SR Damps & Home Ave	Signal	AM	35.2	D	35.3	D	0.1	No
5	1-005 SB Kamps & Home Ave	Sigilai	PM	36.7	D	36.8	D	0.1	No

Table 5-1 Existing Plus Project Peak Hour Intersection LOS Summary

Notes:

Signal: Traffic signal, OWSC: One-Way Stop Control

(a) Delays are reported as the average control delay for the entire intersection at signalized intersections and the worst movement at unsignalized intersections.

(b) LOS calculations are based on the methodology outlined in the 2010 *Highway Capacity Manual* (HCM) and performed using Synchro 10.

As shown in the table, all intersections, including the Project driveways, are expected to operate at LOS D or better with the addition of the Project traffic except for the following intersection

• Fairmount Avenue & Home Avenue (LOS E – AM Peak, LOS F – PM Peak)

Although the intersection would continue to operate at LOS E/F with the addition of the Project traffic, the increase in delay does not exceed the significance threshold. As a result, no additional intersection improvements are required and/or recommended.

Appendix D contains the intersection LOS worksheets.

5.4 Roadway Segment Analysis

Table 5-2 displays the LOS analysis for the Home Avenue segments under Existing Plus Project Conditions. As shown in the table, the Home Avenue segment between the I-805 Ramps would continue to function at LOS C with the addition of the proposed Project traffic. The Home Avenue segment between the I-805 NB Ramps and Fairmount Avenue would continue to function at LOS E. However, the increase in v/c ratio would not exceed the significance threshold. As a result, the proposed Project is not considered to have a direct significant impact along the roadway segments within the study area.

	Existing			Existi	ng Plus Pr			
		v/c			v/c		Δin	
Roadway Segment	ADT	Ratio ^(a)	LOS	ADT	Ratio ^(a)	LOS	v/c	Sig?
Home Ave								
I-805 SB Ramps to I-805 NB Ramps	27,033	0.68	С	27,153	0.68	С	0.00	NO
I-805 NB Ramps to Fairmount Ave	35,318	0.88	E	35,618	0.89	E	0.01	NO

Table 5-2 Existing Plus Project Roadway LOS Summary

Notes:

Bold values indicate roadway segments operating at LOS E or F. **Bold and shaded** values indicate a project significant impact (a) The v/c Ratio is calculated by dividing the ADT volume by each respective roadway segment's capacity.

6 NEAR TERM (OPENING YEAR 2019)

This section provides a summary of operations at the study area intersections and roadway segments under Near Term (Opening Year 2019) conditions. It is assumed that the Project will be constructed and in operation by the Year 2019.

6.1 Roadway Network

No changes to the existing roadway network are expected within the next year. As a result, all intersection and roadway segment geometrics will remain the same as Existing Conditions.

6.2 Cumulative Projects

There are several proposed Marijuana Outlets in the vicinity of the Project site. There is a proposed Marijuana Outlet at 2281 Fairmount Avenue and a proposed Marijuana Outlet / Marijuana Production Facility at 3940 Home Avenue. However, the proposed Marijuana Outlet at 2281 Fairmount Avenue is located within 1,000 feet of the Project. The City's Municipal Code precludes MO's from locating within 1,000 feet of each other (SDMC 141.0504(a)(1)); as such, it would not be possible for both the project at 2281 Fairmount Avenue and this Project to develop concurrently as cumulative projects to each other. It was therefore excluded from the cumulative analysis.

The MO/MPF Project located at 3940 Home Avenue consists of a 2,200 sf of MO and 6,480 sf of MPF. The trip generation for the entire Project is 590 ADT with 57 trips (31 inbound, 26 outbound) during the AM peak-hour and 95 trips (45 inbound, 50 outbound) during the PM peak-hour. It is estimated that approximately 40 percent of the Project trips related to the 3940 Home Avenue Project will be assigned to the study area.

Figure 6-1 illustrates the traffic volumes of the cumulative MO/MPF projects proposed to be located at 3940 Home Avenue.

6.3 Traffic Volumes

An ambient growth factor of 1.0 percent per year was applied to existing traffic volumes to account for regular growth in traffic volumes due to the development of Projects outside of the study area. The growth factor was determined from comparing counts in the Project vicinity along Home Avenue between I-805 and Fairmount Avenue. Appendix E contains a copy of the historical traffic volumes used to calculate the ambient growth factor.

Figures 6-2 and **6-3** illustrate the Near Term (2019) Baseline and Near Term (2019) With Project Opening Day traffic volumes within the study area, respectively. It should be noted that these volumes include the cumulative traffic volumes from the 3940 Home Avenue Project and the added growth estimated from the growth factor in the study area.

6.4 Intersection Analysis

Table 6-1 displays the LOS analysis results for the study intersections under the Near Term (Year 2019) scenario for the baseline analysis and with Project scenario. As shown in the table, all intersections, including the Project driveways, are expected to operate at LOS D or better with the addition of the Project traffic except for the following intersection

• Fairmount Avenue & Home Avenue (LOS E – AM Peak, LOS F – PM Peak)

Although the intersection would continue to operate at LOS E/F with the addition of the Project traffic, the increase in delay does not exceed the significance threshold. As a result, no additional intersection improvements are required and/or recommended.

Appendix D contains the intersection LOS worksheets.

		Traffic	Peak	Near Base	Term line	Near Teri Proje	m With ect	Δin	
#	Intersection	Control	Hour	Delay ^(a)	LOS ^(b)	Delay ^(a)	LOS ^(b)	Delay	Sig?
1	Egirmount Ave & Home Ave	Signal	AM	64.4	E	65.0	E	0.6	No
1	r anniount Ave & Home Ave	Signai	PM	88.9	F	89.4	F	0.5	No
2	East Dury for Home Ave	OWSC	AM	11.0	В	11.1	В	0.1	No
2	Last Dwy & Home Ave	00050	PM	15.7	С	15.7	С	0.0	No
2	West Dury & Home Ave	OWSC	AM	11.0	В	11.1	В	0.1	No
ر ا	west Dwy & Home Ave	UWSC	PM	15.1	С	15.2	С	0.1	No
4	L805 NR Pamps & Home Ave	Signal	AM	31.1	С	31.2	С	0.1	No
Ŧ	17005 NB Kallips & Hollie Ave	Signai	PM	30.7	С	30.8	С	0.1	No
5	L805 SB Pamps for Home Ave	Signal	AM	35.4	D	35.4	D	0.0	No
	1-005 3B Ramps & Home Ave	Jigilai	PM	37.4	D	37.5	D	0.1	No

Table 6-1Near Term (Opening Year 2019) Peak Hour Intersection LOS Summary

Notes:

Signal: Traffic signal, OWSC: One-Way Stop Control

(a) Delays are reported as the average control delay for the entire intersection at signalized intersections and the worst movement at unsignalized intersections.

(b) LOS calculations are based on the methodology outlined in the 2010 *Highway Capacity Manual* (HCM) and performed using Synchro 10.

6.5 Roadway Segment Analysis

Table 6-2 displays the LOS analysis for the Home Avenue segments under the Near Term (Opening Year 2019) Baseline and Near-Term (2019) With Project scenarios. As shown in the table, the Home Avenue segment between the I-805 Ramps would continue to function at LOS C with the addition of the proposed Project traffic. The Home Avenue segment between the I-805 NB Ramps and Fairmount Avenue would continue to function at LOS E. However, the increase in v/c ratio would not exceed the significance threshold. As a result, the proposed Project is not considered to have a cumulative impact along the roadway segments within the study area.

Table 6-2 Near Term (Opening Year 2019) Roadway LOS Summary

	Near Term Baseline			Near Te				
		v/c			v/c		Δin	
Roadway Segment	ADT	Ratio ^(a)	LOS	ADT	Ratio ^(a)	LOS	v/c	Sig?
Home Ave								
I-805 SB Ramps to I-805 NB Ramps	27,487	0.69	С	27,607	0.69	С	0.00	NO
I-805 NB Ramps to Fairmount Ave	35,798	0.89	E	36,098	0.90	E	0.01	NO

Notes:

Bold values indicate roadway segments operating at LOS E or F. **Bold and shaded** values indicate a project significant impact (a) The v/c Ratio is calculated by dividing the ADT volume by each respective roadway segment's capacity.

7 PARKING

All parking for the Project will be provided on-site. The minimum parking ratios for the various uses onsite was based on the parking requirements specified in the San Diego Municipal Code Section 142.0530, Nonresidential Uses – Parking Ratios. Table 7-1 summarizes the parking for the Project.

		Min Required Parking			
Use	Zoning	Rate (per 1,000 sf)	Gross Floor Area (sf)	Required Parking	Provided Parking ^{1, 2}
Existing					
Gas Station w/Conv. Store	CC-3-1	5	2,944	15	15
Proposed					
Marijuana Outlet (MO)	IL-3-1	5	1,200	6	6
Vacant (per Applicant's request)	IL-3-1	n/a	1,200	0	3
Total Parking				21	24
ADA Parking		1	1		
Van Accessible ADA	1	1			
Motorcycle Parking	2	2			
Bicycle Parking ²				3	6

Table 7-1 On-Site Parking Summary

Notes:

Values shown in table were based on the site plan provided by Latitude 33.

1. There is I ADA parking space and I Van Accessible ADA parking space within the 24 provided parking spaces.

2. Bicycle parking includes 5 short-term bicycle racks and 1 long-term bicycle locker and is not included in the "total provided parking" count. Motorcycle parking is also not included in the "total provided parking" count.

The Project will provide 24 automobile parking spaces on-site, which exceeds the minimum required parking spaces by three spaces (as long as the second floor 1,200 sf is kept vacant per the Applicant's request). One handicapped and one van-accessible space will be provided as part of the total parking spaces, which meet the City's requirements for this use. Two motorcycle spaces and six bicycle parking spaces (five short-term bicycle racks and one long-term bicycle locker) are also proposed for the premises, as shown in Figure 1-2.

8 SUMMARY OF FINDINGS AND RECOMMENDATIONS

The following list provides a summary of the key findings for the Project:

- The Project consists of constructing a 2-story, 2,400 sf building near the eastern boundaries of the property to include a 1,200 sf MO on the first floor and a 1,200 sf vacant space on the second floor.
- The Project is forecasted to generate a total of 300 daily trips with 27 trips (14 inbound, 13 outbound) during the AM peak hour and 48 trips (24 inbound, 24 outbound) in the PM peak-hour.
- All intersections along Home Avenue in the study area, including the Project driveways, are expected to operate at an acceptable LOS D or better during the peak-hours except at Fairmount Avenue, which is anticipated to operate at LOS E/F under all Existing and Near Term (Opening Year 2019) scenarios.
 - The increase in delay at the Fairmount Avenue & Home Avenue intersection would not exceed the significance threshold and no mitigations are required and/or recommended.
- The Home Avenue segment between the I-805 Northbound Ramps and Fairmount Avenue is expected to function at LOS E under all Existing and Near Term (Opening Year 2019) scenarios.
 - The increase in v/c Ratio would not exceed the significance threshold and no mitigations are required and/or recommended.
- The Project will improve the two existing two-way driveways to current City Standards.
- The Project is providing 24 automobile parking spaces on-site, which exceeds the minimum parking requirements by three spaces.

The proposed Project will not significantly impact the key intersections and roadway segments in the study area under all scenarios evaluated in this study. As a result, it is recommended that no intersection and roadway improvements are required or recommended of the proposed Project.

Appendix A

Signal Timing Sheets

	1		Group Assignment: Master Assignment:	NONE					FAIRMOUNT		Timing Sheet Bv:	Last DOC	Dalabase Change: System Ref	2 Progi
	ň						. I				Approved By:	Inc	Drawing	Number: 26065-28-1
	1	Column #>		tanti menanisiana antore bahadania ta	AND A DESCRIPTION OF THE OWNER OF THE	Pha	ase						Timing Implem	ented On: 8/20
		P/1850 #>		2 C	Section - Section (199	4	5	6-6-2-2	And States 7 Second					Versional ters
	Row					Ļ						E		Free and the second s
	0	Ped Walk		7		7		7		0 7	RR-1 Delay	1.010et/eller/seture/	Permit	12345678
	1.	Ped FDW		24019		9924	· · · · · · · · · · · · · · · · · · ·	012 18		255-24	RR-1 Clear		Red Lock	
	2	Min Green	4	10	4	7	274	10	4	· 7	EV-A Delay	0	Yellow Lock	
	3	Type 3 Limit									EV-A Clear	0	Min Presil	
	4	Add/Veh												
de la	4	Veh Extn	2.0	1.6 2.0	2.0	A-0					EV-B Delay	0	Ped Recall	
1 .	-	May Cas	2.0	4, 2.5	2.0	4.9	2.0		2.0	4.1.0.3	EV-B Clear	0	Peds (View)	_2_4_6_8
1/18			2.0	46-5.9	2.0	4.04.9	2.0	<u>ે</u> 3.4	2.0	4.1-6.3	EV-C Delay	0	Rest in Walk	
ऽ। ँ।		Min Gap	2.0	0.2	2.0	0.2	2.0	0.2	2.0	0.2	EV-C Clear	0	Red Rest	
	8	Max Limit	30	40	30	40	_ 30 ,50	50	30	40	EV-D Delay	0	Dbl Entry	··· · ···
	9	Max Limit 2									EV-D Clear	0	Max Recall	· ·
	A	Bus Adv						·•			RR-2 Delay		Soft Recall	28
	В	Call to Phs			-				· · · · ·		RR-2 Clear		Max 2	
	C	Reduce By		0.1		0.1		0.1		01	View EV Delay		Cond Son	
	D.	Every	1.0	07 0.8		0.7 .9.6		000))	0.7 0-5	View EV Clean			10045070
	E	Yellow	n & 3/0	3 9	3 43/0	571855	· ~ / 2/N	IL DAS	120	5.1 12 NO			Ped Lock	12345078
		Red Close	· <u>ə</u> . 7 9. 0	4.0	7, 0,0		٢ , <i>۴</i> , <u>۴</u> , <u>۴</u> , <u>۴</u> , <u>۴</u> , <u>۴</u> , <u>۴</u> , <u>7</u>	9.3 9.2	5,45,0	1394.3	View RR Delay		Yellow Start	6
		Red Clear	1.0	I.U Phase Timing	1.U Bank 1	1.0	1.0	1.0	1.0	1.0	View RR Clear		1st Phases	48
				F + Phase + Ro	w (mat 5 10 0 0	6			<f page=""></f>	F+E+Row	pt Timing	Phase Functi	ons <fpa F+F+Row</fpa
	ĩ							Overlap Tim	ning					
	ļ	Max Initial	0	F+0 +E			9	C C	D	0.0				
	ŀ		5.0	F+0+F	r		Green	Yellow	Red	Load-	Manual Plan		14	C+A+1
	Ľ		0.0	F+C+0		Row	Clear	Change	Clear	Switch #	Manual Offset		0	C+B+1
	Г	Statt/ Revent 1	anes 🖌		Overlap A					ļ	Manual Selectio	ń		
	-				Очелар В	B B					<u>Manual Plan</u> 0 = Automatic		Manual Offset	
	ŀ		<u> </u>	C+0+1	Overlap C	Constant Constant				·	1-9 = Plan 1-9		1 = Offset A	
	ŀ	Area Number	2	C+0+2	Overlap D	Contraction Dec. 32					14 = Free 15 = Flash		2 = Offset B 3 = Offset C	
	ľ	Area Address	128	C+0+3			<f page=""></f>			<d page=""></d>			0 0.0000	
	Ľ.	QuicNet Channel	DIGI74:	(QuicNet)			F + COLOR +			D + 0 + OVERLAP				
	I	Communicatio	n Addresses											
		C+F+O	MARKA	Row	[Downtime Fla	ish !	255	(minutes)		Disable Ports	234	1	
		Free Lag	17468		L	Downtime Befo	ore Auto Manu	al Flash			Disable Commu	nication Por	l te	
	L	121	Lag Phases	<c page=""></c>		-	F + 0 +8					D+D+9	••	
		<u></u>												

.

. . .

<u>.</u>	· · · · · · · · · · · · · · · · · · ·		Column F	
-	Function	Day of Week	Phases/Bits	T.O.D. Functions
:				1 = Red Lock
•*				2 = Yellow Lock
•				3 = Veh Min Recali
				4 = Ped Recall
:				1 5=
			·	6 = Rest in Walk
<u> </u>				7 = Reu Resi 8 = Double Entry
:				9 = Veh Max Recall
•				A = Veh Soft Recall
				B = Maximum 2
:				C = Conditional Service
:				D = Free Lag Phases
				E = Bit 1 - Local Override
				Bit 2 - Phase Bank 2
:				Bit 4 - Disable Detector
:				OFF Monitor
-				Bit 7 - Detector Count Monitor
:				Bit 8 - Real Time Split Monitor
:				F = Output Bits 1 thru 4

<D Page>

D+F+ROW

Extra 1 Flags

2 = NEMA Ext, Coord

5 = Remote Download

7 = Pretimed Operation

8 = Split Ring Operation

IC Select Flags

1 =

5≖

2 = Modern

3 = 7-Wire Stave

4 = Flash / Free

6 = Simplex Master

8 = Offset interrupter

7 = 7-Wire Master

3 = Auto Daylight Savings

1 = TBC Type 1

4 = EV Advance

6 = Special Event

	-	
Row	-	
		STATE FOR STATE
; 0: 1		
102	RR Overlap A - Phases	
2	RR Overlap B - Phases	
3	RR Overlap C - Phases	
4	RR Overlap D - Phases	
5	Ped 2P	_2
• 6	Ped 6P	6
7	Ped 4P	4
8.	Ped 8P	8
÷9	Yellow Flash Phases	
A	Overlap A - Phases	
В	Overlap B - Phases	
C	Overlap C - Phases	
D	Overlap D - Phases	
E	Restricted Phases	
F.	Assign 5 Outputs	
	Configuration	<e page=""></e>
	E + F + ROW	·

223 Program

Day of Week

t = Sunday
2 = Monday
3 = Tuesday
4 ≈ Wednesday
5 = Thursday
3 = Friday

7 = Saturday

Assign 5 Outputs 1 ≍ Right Turn Overlap

2 = TOD Outputs 3 = EV Beacon - Steady 4 = EV Beacon - Flashing 5 ≈ Special Event Outputs 6 = Phase 3 & 7 Ped

7 = Advanced Warning Sign 8=

Disable Parity

Time and Date

- 8-0 Hour, Minute, Day-of-Week 8-1 Day-of-Month, Year, Month
- 8-F Seconds

Dial-Up Telephone Communications

(If set to a non-zero value, parity will be disabled)

Program Information	Remote Download
C + C + 0 = program	C + 0 + 4 = 1 -255
C + C + F = version	w/ E + E + E bit 5 on

	_2		
Configuration			

6

8

2 5

3

1 345

1

E + E + ROW

4 7

For access, set F + 9 + E = 1

E IC Select (Interconnect)

:

7 + ROW

TOD Function

•GE 2

Ω

D+B+0

Row

0 **1**4 2 3 4 5 . 6 7 8 9 A B C D E . F∝

Row

9

С

0 Exclusive Phases

RR-1 Clear Phases

2 RR-2 Clear Phases

4 Prot / Perm Phases

A EV-A Phases

B EV-B Phases

EV-D Phases

EV-C Phases

E Extra 1 Config. Bits

3 RR-2 Limited Service

5 Overlap A - Green Omit

6 Overlap B - Green Omit 7 Overlap C - Green Omit 8 Overlap D - Green Omit

Overlap Yellow Flash

Δ.

Time

INTERSECTION: FAIRMOUNT @ HOME

		Carry-
Row	Delay	over
0		
1.		1.8
2		
_3 .		
4		
5		
6		
7		1.8
8.4		
_9°		· · · · · · · · · · · · · · · · · · ·
A		
. В.		
C		
D		
Ë		•
F.		

4

1.8

1.8

1.8

- - -

Carry-

over

 $\delta > 0$

2 2

Delay

Row

O

1

2

3

-4

5

6

7

- 8

A B

C D

E,

.

Detector Name	332 Input File	Detector Number	
	111	14	
	212U	1	
	212L	5	
	213U	21	
	213L	25	
	214	9	
	315	16	
	416U	3	
	416L	7	
	4I7U	23	
	417L	; 27	
	418	11	
	1I9U	18	
	319L	20	
	÷		

332 Input

File

5J1

6J2U

6J2L

6J3U

6J3L

6J4

7J5

8J6U

8J6L

8J7U

8J7L

5J9U

7J9L

- - -

- - -

8J8

Detector

Number

13

2

6

22

26

10

15

4

8

24

28

12

17

| 19

÷--

Detector

Name

Rear	Detector Numbers	CONTRACTOR OF
	1 2 3 4 5 6 7 8	12345678
	9 10 11 12	1234
	13 14 15 16 17 18 19 20	12345678
	21 22 23 24	5678
		1234
	- 25 26 27 28	_2345

223 Program

Active Detectors <D Page>

	0
	Detector #
System Det. # 1	
System Det. # 2	
System Det. # 3	
System Det. # 4	
System Det. # 5	
System Det. # 6	
System Det. # 7	
System Det. # 8	

System Detectors <D Page>

Max ON (min)	5 D+A+E
Max OFF (min)	60 D+A+F
Botostan Esitura Manita-	╵╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸

Detector Failure Monitor

A.T	 · ··· · · · · · · · · · · · · · · · ·	;
Time Before Yellow		F+C+3
Phase Number		F+C+1

Advance Warning Beacon - Sign 1

Phase Number	 F+D+1
Time Before Yellow	F+D+3

Advance Warning Beacon - Sign 2

Long Failure	0.5 F+0+6
Short Failure	0.5 F+0+7
Power Cycle Correction (Default = 0.5))

. . . - - -Detector Delay & Carryover <D Page>

10.0

- - -

D + X (across) + ROW

- - -

illini)

Printed on 8/20/02 10:20 AM

I-805 NB Ramps & Home Avenue

Caltrans has requested that the existing signal timing data for the I-805 Ramps & Home Avenue intersections to not be duplicated or included in the traffic report.

Appendix B

Bicycle Map Excerpts

PROPOSED BICYCLE NETWORK WITH CLASSIFICATIONS (SOUTH)

Figure 29 Bikeways

Appendix C

Traffic Volume Data

Fairmount Ave & Home Ave

Peak Hour Turning Movement Count

National Data & Surveying Services Intersection Turning Movement Count

Location: Fairmount Ave & Home Ave City: San Diego Control: Signalized

Project ID: 18-04362-005 Date: 10/3/2018

								To	tal					Duto.	10/ 3/ 2010		
		E characteristic				E classica de		10			A				A		
NS/EW Streets:		Fairmou	Int Ave			Fairmou	nt Ave			Home	Ave			Home	Ave		
		NORTH	BOUND			SOUTH	BOUND			EASTB	OUND			WESTB	OUND		
AM	1	2	0	0	1	1	1	0	1	2	0	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	78	139	21	0	13	43	101	0	50	69	13	5	12	146	9	3	702
7:15 AM	55	127	26	1	16	44	133	0	73	64	23	9	17	147	35	4	774
7:30 AM	/6	131	29	0	30	36	135	0	47	/1	16	14	12	148	13	1	759
7:45 AM	62	126	34	1	22	41	122	0	56	100	18	14	11	166	12	3	788
8:00 AM	59	123	16	0	13	39	103	0	65	101	30	6	6	134	1/	2	/14
8:15 AM	45	74	22	0	16	35	92	0	49	94	31	13	11	127	11	0	656
8:30 AIVI	50	74	18	0	15	29	90	0	57	02	10	13	10	104	13	4	610
8:45 AIVI	30	82	10	0	15	40	104	U	51	81		10	10	125	10	2	244
	NI	NT	NR	NU	SI	ST	SR	SU	FI	FT	FR	FU	WI	W/T	WR	WILL	τοται
TOTAL VOLUMES	461	912	182	2	134	313	886	0	448	642	157	84	95	11/17	120	10	5602
APPROACH %'s	29.61%	58 57%	11 69%	0 13%	10.05%	23 48%	66 47%	0.00%	33.66%	48 23%	11 80%	6 31%	6.88%	83.06%	8.69%	1 38%	3002
PEAK HR :	27.0170	07:15 AM -	08:15 AM	0.1070	10.0070	20.1070	00.1770	0.0070	00.0070	10.2070	11.0070	0.0170	0.0070	00.0070	0.0770	1.0070	TOTAL
PEAK HR VOL :	252	507	105	2	81	160	493	0	241	336	87	43	46	595	77	10	3035
PEAK HR FACTOR :	0.829	0.968	0.772	0.500	0.675	0.909	0.913	0.000	0.825	0.832	0.725	0.768	0.676	0.896	0.550	0.625	
		0.9	17			0.91	13			0.87	/5			0.89	97		0.963
		NORTH	BOUND			SOUTH	BOUND			EASTB	OUND			WESTB			
PM	1																
		2	0	0	1	1	1	0	1	2	0	0	1	2	0	0	
	NL	2 NT	0 NR	0 NU	1 SL	1 ST	1 SR	0 SU	1 EL	2 ET	0 ER	0 EU	1 WL	2 WT	0 WR	0 WU	TOTAL
4:00 PM	NL 24	2 NT 48	0 NR 15	0 NU 0	1 SL 17	1 ST 96	1 SR 132	0 SU 0	1 EL 95	2 ET 146	0 ER 37	0 EU 14	1 WL 22	2 WT 127	0 WR 11	0 WU 11	TOTAL 795
4:00 PM 4:15 PM	NL 24 20	2 NT 48 39	0 NR 15 19	0 NU 0 0	1 SL 17 13	1 ST 96 99	1 SR 132 146	0 SU 0 0	1 EL 95 101	2 ET 146 146	0 ER 37 34	0 EU 14 19	1 WL 22 26	2 WT 127 119	0 WR 11 9	0 WU 11 6	TOTAL 795 796
4:00 PM 4:15 PM 4:30 PM	NL 24 20 29	2 NT 48 39 47	0 NR 15 19 15	0 NU 0 0 0	1 SL 17 13 13	1 ST 96 99 104	1 SR 132 146 131	0 SU 0 0 0	1 EL 95 101 80	2 ET 146 146 161	0 ER 37 34 27	0 EU 14 19 20	1 WL 22 26 27	2 WT 127 119 135	0 WR 11 9 8	0 WU 11 6 3	TOTAL 795 796 800
4:00 PM 4:15 PM 4:30 PM 4:45 PM	NL 24 20 29 23	2 NT 48 39 47 45	0 NR 15 19 15 14	0 NU 0 0 0	1 SL 17 13 13 17	1 ST 96 99 104 112	1 SR 132 146 131 166	0 SU 0 0 0	1 EL 95 101 80 82	2 ET 146 146 161 171	0 ER 37 34 27 36	0 EU 14 19 20 13	1 WL 22 26 27 22	2 WT 127 119 135 122	0 WR 11 9 8 10	0 WU 11 6 3 3	TOTAL 795 796 800 836
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM	NL 24 20 29 23 19	2 NT 48 39 47 45 56	0 NR 15 19 15 14 10	0 NU 0 0 0 0	1 SL 17 13 13 17 12	1 ST 96 99 104 112 96	1 SR 132 146 131 166 146	0 SU 0 0 0 0	1 EL 95 101 80 82 120	2 ET 146 146 161 171 179	0 ER 37 34 27 36 54	0 EU 14 19 20 13 16	1 WL 22 26 27 22 23 23	2 WT 127 119 135 122 151	0 WR 11 9 8 10 25	0 WU 11 6 3 3 2	TOTAL 795 796 800 836 909
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM	NL 24 20 29 23 19 17 20	2 NT 48 39 47 45 56 49	0 NR 15 19 15 14 10 19	0 NU 0 0 0 0 0 0	1 SL 17 13 13 17 12 19 21	1 ST 96 99 104 112 96 93 105	1 SR 132 146 131 166 146 136	0 SU 0 0 0 0 0	1 EL 95 101 80 82 120 108	2 ET 146 146 161 171 179 168	0 ER 37 34 27 36 54 47	0 EU 14 19 20 13 16 17 11	1 WL 22 26 27 22 23 20 20	2 WT 127 119 135 122 151 165 124	0 WR 11 9 8 10 25 23	0 WU 11 6 3 3 2 2	TOTAL 795 796 800 836 909 883 905
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:30 PM	NL 24 20 29 23 19 17 29 20	2 NT 48 39 47 45 56 49 40	0 NR 15 19 15 14 10 19 19	0 NU 0 0 0 0 0 0	1 SL 17 13 13 13 17 12 19 21	1 ST 96 99 104 112 96 93 105 100	1 SR 132 146 131 166 146 136 171 127	0 SU 0 0 0 0 0 0	1 EL 95 101 80 82 120 108 102 102	2 ET 146 146 161 171 179 168 161	0 ER 37 34 27 36 54 47 37	0 EU 14 19 20 13 16 17 11	1 WL 22 26 27 22 23 20 20 12	2 WT 127 119 135 122 151 165 124 112	0 WR 11 9 8 10 25 23 11	0 WU 11 6 3 3 2 2 4	TOTAL 795 796 800 836 909 883 855 701
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:345 PM	NL 24 20 29 23 19 17 29 29	2 NT 48 39 47 45 56 49 40 40 47	0 NR 15 19 15 14 10 19 19 8	0 NU 0 0 0 0 0 0 0 0	1 SL 17 13 13 17 12 19 21 18	1 ST 96 99 104 112 96 93 105 100	1 SR 132 146 131 166 146 136 171 136	0 SU 0 0 0 0 0 0 0 0	1 EL 95 101 80 82 120 108 102 108	2 ET 146 146 161 171 179 168 161 154	0 ER 37 34 27 36 54 47 37 36	0 EU 14 19 20 13 16 17 11 9	1 WL 22 26 27 22 23 20 20 20 12	2 WT 127 119 135 122 151 165 124 113	0 WR 11 9 8 10 25 23 11 9	0 WU 11 6 3 3 2 2 4 2 4 2	TOTAL 795 796 800 836 909 883 855 781
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM	NL 24 20 29 23 19 17 29 29	2 NT 48 39 47 45 56 49 40 47	0 NR 15 19 15 14 10 19 19 8	0 NU 0 0 0 0 0 0 0 0	1 SL 17 13 13 17 12 19 21 18	1 ST 96 99 104 112 96 93 105 100 ST	1 SR 132 146 131 166 146 136 171 136	0 SU 0 0 0 0 0 0 0 0 0	1 EL 95 101 80 82 120 108 102 108	2 ET 146 146 161 171 179 168 161 154 ET	0 ER 37 34 27 36 54 47 37 36 EP	0 EU 14 19 20 13 16 17 11 9	1 WL 22 26 27 22 23 20 20 12 WI	2 WT 127 119 135 122 151 165 124 113	0 WR 11 9 8 10 25 23 11 9	0 WU 11 6 3 3 2 2 4 2 2 4 2	TOTAL 795 796 800 836 909 883 855 781
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:345 PM	NL 24 20 29 23 19 17 29 29 NL 190	2 NT 48 39 47 45 56 49 40 47 NT 371	0 NR 15 19 15 14 10 19 19 8 NR 119	0 NU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 SL 17 13 13 17 12 19 21 18 SL 130	1 ST 96 99 104 112 96 93 105 100 ST 805	1 SR 132 146 131 166 146 136 171 136 SR 1164	0 SU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 EL 95 101 80 82 120 108 102 108 EL 796	2 ET 146 146 161 171 179 168 161 154 ET 1286	0 ER 37 34 27 36 54 47 37 36 ER 308	0 EU 14 19 20 13 16 17 11 9 EU 119	1 WL 22 26 27 22 23 20 20 12 WL 172	2 WT 127 119 135 122 151 165 124 113 WT 1056	0 WR 11 9 8 10 25 23 11 9 WR 106	0 WU 11 6 3 2 2 2 4 2 2 4 2 2 4 2 2 33	TOTAL 795 796 800 836 909 883 855 781 TOTAL 6655
4:00 PM 4:15 PM 4:30 PM 5:45 PM 5:15 PM 5:30 PM 5:32 PM 5:45 PM	NL 24 20 29 23 19 17 29 29 NL 190 27 94%	2 NT 48 39 47 45 56 49 40 47 40 47 NT 371 54 56%	0 NR 15 19 15 14 10 19 19 8 NR 119 17 50%	0 NU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 SL 17 13 13 17 12 19 21 18 SL 130 6 19%	1 ST 96 99 104 112 96 93 105 100 ST 805 38 35%	1 SR 132 146 131 166 146 136 171 136 SR 1164 55 45%	0 SU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 EL 95 101 80 82 120 108 102 108 EL 796 31 73%	2 ET 146 146 161 171 179 168 161 154 ET 1286 51 26%	0 ER 37 34 27 36 54 47 37 36 ER 308 12 28%	0 EU 14 19 20 13 16 17 11 9 EU 119 4 74%	1 WL 22 26 27 22 23 20 20 12 12 WL 172 12 58%	2 WT 127 119 135 122 151 165 124 113 WT 1056 77 25%	0 WR 11 9 8 10 25 23 11 9 WR 106 7 75%	0 WU 11 6 3 2 2 4 2 4 2 WU 33 2 41%	TOTAL 795 796 800 836 909 883 855 781 TOTAL 6655
4:00 PM 4:15 PM 4:30 PM 5:00 PM 5:15 PM 5:30 PM 5:30 PM 5:345 PM TOTAL VOLUMES : APPROACH %'s :	NL 24 20 29 23 19 17 29 29 29 NL 190 27.94%	2 NT 48 39 47 45 56 49 40 47 47 NT 371 54.56% 04-45 PM -	0 NR 15 19 15 14 10 19 19 8 8 NR 119 17.50% 05:45 PM	0 NU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 SL 17 13 13 17 12 19 21 18 SL 130 6.19%	1 ST 96 99 104 112 96 93 105 100 ST 805 38.35%	1 SR 132 146 131 166 146 136 171 136 SR 1164 55.45%	0 SU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 EL 95 101 80 82 120 108 102 108 EL 796 31.73%	2 ET 146 146 161 171 179 168 161 154 ET 1286 51.26%	0 ER 37 34 27 36 54 47 37 36 ER 308 12.28%	0 EU 14 19 20 13 16 17 11 9 EU 119 4.74%	1 WL 22 26 27 22 23 20 20 12 WL 172 12.58%	2 WT 127 119 135 122 151 165 124 113 WT 1056 77.25%	0 WR 11 9 8 10 25 23 11 9 WR 106 7.75%	0 WU 11 6 3 3 2 2 4 2 4 2 WU 33 2.41%	TOTAL 795 796 800 836 909 883 855 781 TOTAL 6655
4:00 PM 4:15 PM 4:30 PM 4:34 PM 5:00 PM 5:15 PM 5:30 PM 5:345 PM TOTAL VOLUMES : APPROACH %'s : PEAK HR Y(1)	NL 24 20 29 23 19 17 29 29 NL 190 27.94% 88	2 NT 48 39 47 45 56 49 40 47 40 47 40 47 871 54.56% 04:45 PM - 190	0 NR 19 19 15 14 10 19 19 8 8 NR 119 17.50% 05:45 PM 62	0 NU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 SL 17 13 13 17 12 19 21 18 SL 130 6.19% 69	1 ST 96 99 104 112 96 93 105 100 ST 805 38.35% 406	1 SR 132 146 131 166 146 136 171 136 SR 1164 55.45% 619	0 SU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 EL 95 101 80 82 120 108 102 108 102 108 EL 796 31.73%	2 ET 146 146 161 171 179 168 161 154 ET 1286 51.26%	0 ER 37 34 27 36 54 47 37 36 ER 308 12.28%	0 EU 14 19 20 13 16 17 11 9 EU 119 4.74%	1 WL 22 26 27 22 23 20 20 12 20 12 20 12 20 20 12 20 85	2 WT 127 119 135 122 151 165 124 113 WT 1056 77.25%	0 WR 11 9 8 10 25 23 11 9 WR 106 7.75%	0 WU 11 6 3 3 2 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 1 2 1 1 1 1	TOTAL 795 796 800 836 909 883 855 781 TOTAL 6655 TOTAL 3483
4:00 PM 4:15 PM 4:30 PM 5:00 PM 5:15 PM 5:30 PM 5:32 PM 5:45 PM TOTAL VOLUMES : APPROACH %'s : PEAK HR VOL : PEAK HR FACTOP	NL 24 20 29 23 19 17 29 29 NL 190 27.94% 88 80 0 759	2 NT 48 39 47 45 56 49 40 47 NT 371 54.56% 04:45 PM - 190 0 848	0 NR 15 19 15 14 10 19 19 8 8 NR 119 17.50% 05:45 PM 62 0.816	0 NU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 SL 17 13 13 17 12 19 21 18 SL 130 6.19% 69 0.821	1 ST 96 99 104 112 93 105 100 ST 805 38.35% 406 0.906	1 SR 132 146 131 166 146 136 171 136 SR 1164 55.45% 619 0.905	0 SU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 EL 95 101 80 82 120 108 102 108 EL 796 31.73% 412 0.858	2 ET 146 146 161 171 179 168 161 154 ET 1286 51.26%	0 ER 37 34 27 36 54 47 37 36 ER 308 12.28% 174 0.806	0 EU 14 19 20 13 16 17 11 9 EU 119 4.74%	1 WL 22 26 27 22 23 20 20 20 12 WL 172 12.58% 85 0 924	2 WT 127 119 135 122 151 165 124 113 WT 1056 77.25% 562 0.852	0 WR 11 9 8 10 25 23 11 9 WR 106 7.75%	0 WU 11 6 3 3 2 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 1 2 2 1 1 0 688	TOTAL 795 796 800 836 909 883 855 781 TOTAL 6655 TOTAL 3483
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:30 PM 5:45 PM TOTAL VOLUMES : APPROACH %'s : PEAK HR 2 PEAK HR FACTOR :	NL 24 20 29 23 19 17 29 29 29 29 NL 190 27.94% 88 0.759	2 NT 48 39 47 45 56 49 40 47 771 54.56% 04:45 PM - 190 0.848 0.9	0 NR 15 19 15 14 10 19 19 8 8 NR 119 17.50% 05:45 PM 62 0.816 66	0 NU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 SL 17 13 13 17 12 19 21 18 SL 130 6.19% 69 0.821	1 ST 96 99 104 112 96 93 105 100 ST 805 38.35% 406 0.906 0.92	1 SR 132 146 131 166 146 136 146 136 71 136 SR 1164 55.45% 619 0.905 21	0 SU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 EL 95 101 80 82 120 108 102 108 102 108 EL 796 31.73% 412 0.858	2 ET 146 146 146 161 171 179 168 161 154 ET 1286 51.26% 679 0.948 0.80	0 ER 37 34 27 36 54 47 37 36 ER 308 12.28% 174 0.806 66	0 EU 14 19 20 13 16 17 11 9 EU 119 4.74% 57 0.838	1 WL 22 26 27 22 23 20 20 12 12 WL 172 12.58% 85 0.924	2 WT 127 119 135 122 151 165 124 113 WT 1056 77.25% 562 0.852 0.862	0 WR 11 9 8 10 25 23 11 9 WR 106 7.75%	0 WU 11 6 3 3 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 1 2 0.6688	TOTAL 795 796 800 836 909 883 855 781 TOTAL 6655 TOTAL 3483 0.958

Dwy 1 & Home Ave

Peak Hour Turning Movement Count

National Data & Surveying Services Intersection Turning Movement Count

Location: Dwy 1 & Home Ave City: San Diego Control: No Control

Project ID: 18-04362-003 Date: 10/3/2018

control.								То	tal					Date.	10/3/2010		
NS/EW Streets:		Dw	y 1			Dw	ry 1	10		Home	e Ave			Home	e Ave		
		NODTL				SOUTI				EACT				WEST	POUND		
A N/I	0	1	1BOUND	0	0	50011	ABOOND	0	0	EASTE 2		0	0	VVEST	BOUND	0	
AIVI	NI	NT	NR	NU	SI SI	ST	SP	SU	FI	FT	FR	FU	WI	WT	WR	WII	τοται
7:00 AM	0	0	6	0	0	0	0	0	0	0	19	0	0	0	0	0	25
7:15 AM	ő	õ	7	0	0	õ	ő	õ	ő	õ	14	0	0	õ	Ő	õ	21
7:30 AM	ō	ō	4	0	0	ō	0	0	ō	ō	12	0	ō	ō	ō	ō	16
7:45 AM	0	0	6	0	0	0	0	0	0	0	13	0	0	0	0	0	19
8:00 AM	0	0	6	0	0	0	0	0	0	0	19	0	0	0	0	0	25
8:15 AM	0	0	5	0	0	0	0	0	0	0	7	0	0	0	0	0	12
8:30 AM	0	0	3	0	0	0	0	0	0	0	8	0	0	0	0	0	11
8:45 AM	0	0	3	0	0	0	0	0	0	0	9	0	0	0	0	0	12
	NU.	NT	ND		CI	CT.	60	<u></u>	E1	CT.	50	511	14.0	1ACT	14/0	14/11	TOTAL
TOTAL VOLUMES	NL	NI	NR 40	NU	SL	51	SR	SU	EL	EI	ER 101	EU	WL	WI	WR	WU	101AL
ADDDOACH %/c :	0.00%	0 00%	40	0 00%	0	0	U	0	0 00%	0.00%	100 00%	0 00%	0	0	0	0	141
DFAK HD	0.0078	0.00 /8	08.00 AM	0.0078					0.0078	0.0078	100.0078	0.0078					τοται
PEAK HR VOL	0	0	23	0	0	0	0	0	0	0	58	0	0	0	0	0	81
PEAK HR FACTOR :	0.000	0.000	0.821	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.763	0.000	0.000	0.000	0.000	0.000	
		0.8	321							0.7	63						0.810
		NORTH	IBOUND			SOUTH	IBOUND			EASTE	BOUND			WEST	BOUND		
PM	0	1	0	0	0	0	0	0	0	2	0	0	0	3	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
4:00 PM	0	0	7	0	0	0	0	0	0	0	18	0	0	0	0	0	25
4:15 PM	0	0	2	0	0	0	0	0	0	0	17	0	0	0	0	0	19
4:30 PIVI	0	0	4	0	0	0	0	0	0	0	10	0	0	0	0	0	19
4.43 PM	0	0	11	0	0	0	0	0	0	0	24	0	0	0	0	0	45
5:15 PM	ŏ	ő	7	ő	0	ő	ő	ő	ő	õ	22	õ	ő	ő	ő	ő	29
5:30 PM	ō	ō	7	0	0	ō	0	0	ō	ō	22	0	ō	ō	ō	ō	29
5:45 PM	0	0	5	0	0	0	0	0	0	0	21	0	0	0	0	0	26
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EÜ	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	0	0	52	0	0	0	0	0	0	0	173	0	0	0	0	0	225
APPROACH %'s :	0.00%	0.00%	100.00%	0.00%					0.00%	0.00%	100.00%	0.00%					TOTAL
PEAK HR :		04:45 PM -	- 05:45 PM														TOTAL
PEAK HR VOL :	0	0	34	0	0	0	0	0	0	0	102	0	0	0	0	0	136
PEAK HR FACTOR :	0.000	0.000	0.7/3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.750	0.000	0.000	0.000	0.000	0.000	0.756
		0.7	15							0.7	30						

Dwy 2 & Home Ave

Peak Hour Turning Movement Count

National Data & Surveying Services Intersection Turning Movement Count

Location: Dwy 2 & Home Ave City: San Diego Control: No Control

Project ID: 18-04362-004 Date: 10/3/2018

control.	NO CONTO													Date.	10/3/2010		
								То	tal								
NS/EW Streets:		Dw	y 2			Dw	ry 2			Home	e Ave			Home	e Ave		
		NORTH	BOUND			SOUTH	IBOUND			EASTE	BOUND			WEST	BOUND		
AM	0	1	0	0	0	0	0	0	0	2	0	0	0	3	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	0	0	13	0	0	0	0	0	0	0	1	0	0	0	0	0	14
7:15 AM	0	0	7	0	0	0	0	0	0	0	0	0	0	0	0	0	7
7:30 AM	0	0	6	0	0	0	0	0	0	0	0	0	0	0	0	0	6
7:45 AM	0	0	11	0	0	0	0	0	0	0	0	0	0	0	0	0	11
8:00 AM	0	0	9	0	0	0	0	0	0	0	1	0	0	0	0	0	10
8:15 AM	0	0	8	0	0	0	0	0	0	0	0	0	0	0	0	0	8
8:30 AM	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	3
8:45 AM	0	0	12	0	0	0	0	0	0	0	4	0	0	0	0	0	16
	NI	NT	ND		C1	CT.	60	<u></u>	E1	67	50	511	14.0	MAT	14/15	14/01	TOTAL
	NL	N I	NR	NU	SL	51	SR	SU	EL	EI	ER	EU	VVL	WI	WR	WU	TOTAL
TOTAL VOLUMES :	0 000%	0	69	0	0	0	0	0	0	0	0	0	0	0	0	0	/5
	0.00%	0.00 %	08.00 AM	0.00 %					0.00%	0.00 %	100.00%	0.00%					τοται
	0	0 AIVI -	27	0	0	0	0	0	0	0	1	0	0	0	0	0	20
	0,000	0 000	0 712	0.000	0 000	0 000	0 000	0 000	0 000	0 000	0.250	0 000	0 000	0 000	0 000	0 000	30
FEAK HK FACTOR .	0.000	0.000	12	0.000	0.000	0.000	0.000	0.000	0.000	0.000	50	0.000	0.000	0.000	0.000	0.000	0.679
		0.7								0.2	.00						1
		NORTH	BOUND			SOUTH	BOUND			EASTE	BOUND			WEST	BOUND		
PM	0	1	0	0	0	0	0	0	0	2	0	0	0	3	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
4:00 PM	0	0	19	0	0	0	0	0	0	0	0	0	0	0	0	0	19
4:15 PM	0	0	12	0	0	0	0	0	0	0	1	0	0	0	0	0	13
4:30 PM	0	0	15	0	0	0	0	0	0	0	0	0	0	0	0	0	15
4:45 PM	0	0	11	0	0	0	0	0	0	0	0	0	0	0	0	0	11
5:00 PM	0	0	19	0	0	0	0	0	0	0	0	0	0	0	0	0	19
5:15 PM	0	0	22	0	0	0	0	0	0	0	1	0	0	0	0	0	23
5:30 PM	0	0	20	0	0	0	0	0	0	0	1	0	0	0	0	0	21
5:45 PM	0	0	9	0	0	0	0	0	0	0	2	0	0	0	0	0	11
	NI	NT	ND	NU	CI	ст	CD.	511	EL	ст	ED	EU	14/1	W/T	WD.	\A/L1	ΤΟΤΑΙ
	NL O	0	107	NU	3L	0	0	0		0	ER	0	VVL O	0	0	0	101AL
	0.00%	0.00%	100.00%	0.00%	0	0	U	U	0.00%	0.00%	100 00%	0.00%	0	0	U	U	132
PFAK HR	0.0070	0.00 %	05:45 PM	0.0070					0.0078	0.0070	. 30.00 /0	0.0078					TOTAL
PEAK HR VOL	0	0	72	0	0	0	0	0	0	0	2	0	0	0	0	0	74
PEAK HR FACTOR :	0.000	0.000	0.818	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.500	0.000	0.000	0.000	0.000	0.000	/ -
	0.000	0.8	18	5.000	0.000	0.000	0.000	0.000	0.000	0.5	00	5.000	0.000	0.000	0.000	0.000	0.804

I-805 NB Ramps & Home Ave

Peak Hour Turning Movement Count

Location: 1-805 NB Ramps & Home Ave City: San Diego Control: Signalized

Project ID: 18-04362-002 Date: 10/3/2018

control.	Signalizeu							То	tal					Date.	10/3/2010		
r								10	lai								
NS/EW Streets:		I-805 NB	Ramps			I-805 NI	3 Ramps			Home	Ave			Home	Ave		
		NORTH	BOUND			SOUTH	IBOUND			EASTB	OUND			WESTB	OUND		
AM	0.5	0	1.5	0	0	0	0	0	0	1.5	0.5	0	0	3	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	15	0	45	0	0	0	0	0	0	95	49	0	126	199	0	15	544
7:15 AM	6	0	41	0	0	0	0	0	0	101	48	0	129	213	0	15	553
7:30 AM	6	0	35	0	0	0	0	0	0	125	48	0	132	230	0	12	588
7:45 AM	11	0	40	0	0	0	0	0	0	129	31	0	106	233	0	12	562
8:00 AM	18	0	58	0	0	0	0	0	0	137	5/	0	/9	211	0	/	567
8:15 AM	21	0	00		0	0	0	0	0	110	27	0	81	193	0	6	512
8:30 AIVI	20	0	74	0	0	0	0	0	0	70	31	1	84	222	0	12	522
8:45 AIVI	34	0	/5	0	U	U	0	U	U	98	40	- 1 - I	57	200	U	13	524
	NI	NT	NR	NU	SI	ST	SR	SU	FL	FT	FR	FU	WI	WT	WR	WU	TOTAL
TOTAL VOLUMES :	137	0	434	1	0	0	0	0	0	871	343	1	794	1701	0	90	4372
APPROACH %'s :	23.95%	0.00%	75.87%	0.17%	-	-	-	-	0.00%	71.69%	28.23%	0.08%	30.72%	65.80%	0.00%	3.48%	
PEAK HR :	(07:15 AM -	08:15 AM														TOTAL
PEAK HR VOL :	41	0	174	0	0	0	0	0	0	492	184	0	446	887	0	46	2270
PEAK HR FACTOR :	0.569	0.000	0.750	0.000	0.000	0.000	0.000	0.000	0.000	0.898	0.807	0.000	0.845	0.952	0.000	0.767	0.045
		0.7	07							0.8	/1			0.92	22		0.905
DA		NORTH	BOUND			SOUTH	IBOUND			EASTB	OUND			WESTB	OUND		
PIVI	0.5	0	1.5	0	0	0	0	0	0	1.5	0.5	0	0	3	0	0	
4.00 PM	NL	NI	NR	NU	SL	SI	SR	SU	EL	EI	ER	EU	WL	WI	WR	WU	TOTAL
4:00 PM	3/	0	128	0	0	0	0	0	0	140	27	0	69	230	0	10	648
4:15 PIVI 4:20 PM	22	0	132	1	0	0	0	0	0	101	32	0	50	211	0	18	661
4:30 PM	40	0	120		0	0	0	0	0	102	27	0	20	257	0	12	709
5:00 PM	32	0	145	0	0	0	0	0	0	165	33	0	52	255	0	32	714
5:15 PM	43	ő	146	õ	Ő	õ	õ	õ	õ	179	37	õ	57	250	õ	18	730
5:30 PM	45	ō	117	0	0	ō	0	0	ō	190	31	0	65	272	0	4	724
5:45 PM	40	0	119	0	0	0	0	0	0	160	27	0	40	245	0	13	644
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	324	0	1047	1	0	0	0	0	0	1322	259	0	434	1974	0	126	5487
APPROACH %'s :	23.62%	0.00%	76.31%	0.07%					0.00%	83.62%	16.38%	0.00%	17.13%	77.90%	0.00%	4.97%	
PEAK HR :	(04:45 PM -	05:45 PM														TOTAL
PEAK HR VOL :	160	0	542	0	0	0	0	0	0	727	138	0	213	1029	0	67	2876
PEAK HR FACTOR :	0.889	0.000	0.928	0.000	0.000	0.000	0.000	0.000	0.000	0.942	0.932	0.000	0.819	0.946	0.000	0.523	0.985
		0.9	29							0.94	10			0.96	0		

I-805 SB Ramps & Home Ave

Peak Hour Turning Movement Count

Location: 1-805 SB Ramps & Home Ave City: San Diego Control: Signalized

Project ID: 18-04362-001 Date: 10/3/2018

Control:	Signalized	1						Та	tal					Date:	10/3/2018		
								10	lai								1
NS/EW Streets:		I-805 SE	3 Ramps			I-805 SB	Ramps			Home	Ave			Home	Ave		
		NORTH	HBOUND			SOUTH	BOUND			EASTB	OUND			WESTB	OUND		
AM	0	0	0	0	1	0	1	0	1	0.5	0.5	0	0	3	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	0	0	0	0	30	0	35	0	0	117	60	0	125	90	0	0	457
7:15 AM	0	0	0	0	32	0	28	0	0	115	65	0	130	93	0	0	463
7:30 AM	0	0	0	0	36	0	24	0	0	131	57	0	133	99	0	0	480
7:45 AM	0	0	0	0	68	0	25	0	0	95	27	0	170	83	0	0	468
8:00 AM	0	0	0	0	68	0	31	0	0	134	38	0	116	110	0	0	497
8:15 AM	0	0	0	0	50	0	36	0	0	92	34	0	132	76	0	0	420
8:30 AM	0	0	0	0	29	0	17	0	0	84	44	0	116	124	0	0	414
8:45 AM	0	0	0	0	36	0	39	0	0	104	27	0	120	125	0	2	453
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	0	0	0	0	349	0	235	0	0	872	352	0	1042	800	0	2	3652
APPROACH %'s :					59.76%	0.00%	40.24%	0.00%	0.00%	/1.24%	28.76%	0.00%	56.51%	43.38%	0.00%	0.11%	TOTAL
PEAK HR :		07:15 AM	- 08:15 AM		004	•	100	0	•	475	407	0	5.40	005		0	TOTAL
PEAK HR VOL :	0	0	0	0	204	0	108	0	0	4/5	187	0	549	385	0	0	1908
PEAK HR FACTOR :	0.000	0.000	0.000	0.000	0.750	0.000	0.871	0.000	0.000	0.886	0.719	0.000	0.807	0.875	0.000	0.000	0.960
						0.78	58			0.80	50			0.92	23		
		NODTI				SOUTU				EASTR				WESTR			
DM	0	0	DOUND	0	1	0	1	0	1	0.5	0.5	0	0	2	00100	0	
FIVI	NI	NT	NR	NU	si	ST	SP	SU	FI	FT	ED.	FU	WI	WT	WR	WII	τοται
4.00 PM	0	0	0	0	51	0	45	0	0	136	57	0	157	117	0	1	564
4:15 PM	ő	ő	ŏ	ő	44	õ	34	ő	ő	134	40	ő	130	123	ŏ	2	507
4:30 PM	ő	ŏ	ŏ	ŏ	53	1	39	õ	õ	128	73	õ	147	147	ő	ō	588
4:45 PM	0	ō	ō	0	45	0	36	0	0	167	42	0	147	133	0	0	570
5:00 PM	0	0	0	0	54	0	33	0	0	161	59	0	158	141	0	0	606
5:15 PM	0	0	0	0	40	0	50	0	0	158	54	0	169	136	0	0	607
5:30 PM	0	0	0	0	59	0	45	0	0	167	42	0	157	149	0	1	620
5:45 PM	0	0	0	0	49	1	40	0	0	142	42	0	189	108	0	0	571
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	0	0	0	0	395	2	322	0	0	1193	409	0	1254	1054	0	4	4633
APPROACH %'s :					54.94%	0.28%	44.78%	0.00%	0.00%	74.47%	25.53%	0.00%	54.24%	45.59%	0.00%	0.17%	
PEAK HR :		05:00 PM	- 06:00 PM														TOTAL
PEAK HR VOL :	0	0	0	0	202	1	168	0	0	628	197	0	673	534	0	1	2404
DEAK UD FASTOR						0.050	0.010	0.000	0.000			0.000	0.000	0.001	0.000	0.050	
PEAK HR FACTOR :	0.000	0.000	0.000	0.000	0.856	0.250	0.840	0.000	0.000	0.940	0.835	0.000	0.890	0.896	0.000	0.250	0.969
PEAK HR FACTOR :	0.000	0.000	0.000	0.000	0.856	0.250	0.840 92	0.000	0.000	0.940 0.93	0.835 38	0.000	0.890	0.896 0.98	0.000 34	0.250	0.969

Prepared by NDS/ATD VOLUME Home Ave Bet. I-805 NB Ramps & Fairmount Ave

Day: Wednesday **Date:** 10/3/2018

City: San Diego Project #: CA18_4363_001

				NB		SB		EB		WB						To	otal
	DAILY IUTALS			0		0		16,933		18,385						35	,318
AM Period	NB SB	EB		WB		то	TAL	PM Period	NB		SB	EB		WB		тс	TAL
00:00		58		40		98		12:00				245		260		505	
00:15		68		36		104		12:15				270		234		504	
00:30		69		36		105		12:30				245		257		502	
00:45		47	242	31	143	78	385	12:45				263	1023	258	1009	521	2032
01:00		37		21		58		13:00				215		259		474	
01:15		43		28		71		13:15				248		237		485	
01:30		34		23	~ .	57		13:30				216		253		469	
01:45		31	145	22	94	53	239	13:45				260	939	255	1004	515	1943
02:00		43		18		01		14:00				258		276		534	
02:15		29		19		48		14:15				281		309		590	
02:30		30	140	22	73	60	213	14.30				333	1188	260	113/	602	2222
03:00		32	140	25	75	67	215	15:00				330	1100	280	1154	610	2522
03:15		22		28		50		15:15				287		304		591	
03:30		28		35		63		15:30				270		285		555	
03:45		27	109	38	136	65	245	15:45				311	1198	275	1144	586	2342
04:00		32		50		82		16:00				306		316		622	
04:15		23		71		94		16:15				306		274		580	
04:30		26		85		111		16:30				275		330		605	
04:45		36	117	95	301	131	418	16:45				329	1216	313	1233	642	2449
05:00		47		122		169		17:00				333		344		677	
05:15		47		156		203		17:15				348		328		676	
05:30		69		200		269		17:30				321		340		661	
05:45		91	254	198	676	289	930	17:45				284	1286	297	1309	581	2595
06:00		92		210		302		18:00				264		276		540	
06:15		91		269		360		18:15				294		285		579	
06:30		116	110	323	1000	439	1405	18:30				333	1205	247	1000	580	2205
06:45		117	410	207	1069	384	1485	10.45				314	1205	282	1090	590	2295
07:00		140		3/7		508		19.15				2/2		234		463	
07:30		171		382		553		19:30				242		211		403	
07:45		186	666	344	1424	530	2090	19:45				263	1024	157	823	420	1847
08:00		191		301		492		20:00				231		162		393	
08:15		190		273		463		20:15				220		159		379	
08:30		154		326		480		20:30				209		157		366	
08:45		179	714	270	1170	449	1884	20:45				229	889	155	633	384	1522
09:00		188		233		421		21:00				223		171		394	
09:15		178		245		423		21:15				211		155		366	
09:30		165		264		429		21:30				204		114		318	
09:45		163	694	227	969	390	1663	21:45				195	833	107	547	302	1380
10:00		196		209		405		22:00				197		110		307	
10:15		185		235		420		22:15				157		106		263	
10:30		199	700	229	007	428	1007	22:30				127	500	92	204	219	002
10:45		200	780	234	907	200	1687	22:45				11/	598	80	394	203	992
11.00		202		200		120		23.00				104		10		150	
11.15		202		220		430		23.15				98		40 67		160	
11:45		241	864	216	867	457	1731	23:45				73	393	48	236	121	629
TOTALS			5141		7829		12970	TOTALS					11792		10556		22348
SPLIT %			39.6%		60.4%		36.7%	SPLIT %					52.8%		47.2%		63.3%
			_														
	DAILY TOTALS			NB		SB		EB		WB						Te	otal
								16 022		10 205							And Do E of The Other

			_							L	
	DAILTION	4L3		0	0	16,933	18,385				35,318
AM Peak Hour			11:45	07:00	07:00	PM Peak Hour			16:45	16:45	16:45
AM Pk Volume			1001	1424	2090	PM Pk Volume			1331	1325	2656
Pk Hr Factor			0.927	0.932	0.945	Pk Hr Factor			0.956	0.963	0.981
7 - 9 Volume	0	0	1380	2594	3974	4 - 6 Volume	0	0	2502	2542	5044
7 - 9 Peak Hour			07:30	07:00	07:00	4 - 6 Peak Hour			16:45	16:45	16:45
7 - 9 Pk Volume			738	1424	2090	4 - 6 Pk Volume			1331	1325	2656
Pk Hr Factor	0.000	0.000	0.966	0.932	0.945	Pk Hr Factor	0.000	0.000	0.956	0.963	0.981

Prepared by NDS/ATD VOLUME Home Ave Bet. I-805 NB Ramps & I-805 SB Ramps

Day: Wednesday **Date:** 10/3/2018 City: San Diego Project #: CA18_4363_002

		TOTALS			NB		SB		EB		WB						Тс	otal
	DAILT	IUTALS			0		0		11,634		15,399						27	,033
AM Period	NB	SB	EB		WB		TC	DTAL	PM Period	NB		SB	EB		WB		то	TAL
00:00			45		35		80		12:00				176		212		388	
00:15			39		29		68		12:15				159		227		386	
00:30			42		23		65		12:30				166		214		380	
00:45			30	156	22	109	52	265	12:45				214	715	216	869	430	1584
01:00			32		22		54		13:00				158		206		364	
01:15			21		29		50		13:15				178		200		378	
01:30			17		12		29		13:30				157		198		355	
01:45			20	90	18	81	38	1/1	13:45				197	690	231	835	428	1525
02:00			24		6 1C		30		14:00				184		219		403	
02:15			19		10		35		14:15				194		251		445	
02.50			19	97	10	12	29	120	14.50				254	910	239	075	495	1924
02.43			23	07	26	45	47	130	14.45				237	049	240	975	463	1024
03.00			12		20		26		15.00				17/		219		403	
03.15			23		26		49		15:30				181		202		430	
03:45			9	65	23	89	32	154	15:45				204	803	245	975	449	1778
04:00			23	05	28	05	51	101	16:00				183	005	264	575	447	1770
04:15			15		44		59		16:15				201		262		463	
04:30			18		49		67		16:30				175		288		463	
04:45			37	93	61	182	98	275	16:45				222	781	281	1095	503	1876
05:00			30		86		116		17:00				195		293		488	
05:15			41		101		142		17:15				230		293		523	
05:30			47		144		191		17:30				216		324		540	
05:45			74	192	139	470	213	662	17:45				196	837	287	1197	483	2034
06:00			76		132		208		18:00				160		265		425	
06:15			65		166		231		18:15				226		295		521	
06:30			100		226		326		18:30				203		239		442	
06:45			122	363	183	707	305	1070	18:45				202	791	257	1056	459	1847
07:00			144		213		357		19:00				149		235		384	
07:15			155		218		373		19:15				156		220		376	
07:30			184	c . =	237		421		19:30				156	~ • •	194		350	
07:45			164	647	261	929	425	1576	19:45				153	614	153	802	306	1416
08:00			201		237		438		20:00				134		150		290	
08:15			131		223		354		20:15				142		142		301	
08:30			118	E07	247	049	305	1545	20:30				110	E 4 0	142	EUO	258	1120
08.45			147	597	100	940	300	1545	20.45				140	540	163	596	209	1150
09.15			130		199		329		21.00				173		1//		250	
09:30			116		213		329		21:30				123		118		250	
09:45			128	511	213	806	332	1317	21:45				122	510	93	518	215	1028
10:00			143	511	180	000	323	1517	22:00				131	510	108	510	239	1020
10:15			116		188		304		22:15				92		113		205	
10:30			134		194		328		22:30				84		76		160	
10:45			130	523	196	758	326	1281	22:45				67	374	79	376	146	750
11:00			146		184		330		23:00				64		71		135	
11:15			133		194		327		23:15				79		52		131	
11:30			140		198		338		23:30				54		48		102	
11:45			145	564	188	764	333	1328	23:45				45	242	46	217	91	459
TOTALS				3888		5886		9774	TOTALS					7746		9513		17259
SPLIT %				39.8%		60.2%		36.2%	SPLIT %					44.9%		55.1%		63.8%
					NR		C P		EB		\A/R						T	atal

		τλις	_	IND	30	ED	VVD				TULAI
	DAILI IU	TALJ		0	0	11,634	15,399				27,033
AM Deek Heur			07.15	07.45	07.15	DM Dook Hour			14.15	17.00	10.45
AM Pk Volume			704	968	1657	PM Pk Volume			909	1197	2054
Pk Hr Factor			0.876	0.927	0.946	Pk Hr Factor			0.931	0.924	0.951
7 - 9 Volume	0	0	1244	1877	3121	4 - 6 Volume	0	0	1618	2292	3910
7 - 9 Peak Hour			07:15	07:45	07:15	4 - 6 Peak Hour			16:45	17:00	16:45
7 - 9 Pk Volume			704	968	1657	4 - 6 Pk Volume			863	1197	2054
Pk Hr Factor	0.000	0.000	0.876	0.927	0.946	Pk Hr Factor	0.000	0.000	0.938	0.924	0.951

Appendix D

Intersection LOS Worksheets

4333-4337 Home Ave MO 1: Fairmount Ave & Home Ave

	\$	≯	→	\mathbf{F}	F	4	Ļ	*	•	Ť	1	1
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL
Lane Configurations		ă.	≜1 }			ă.	4 12		ň	4 12		۲
Traffic Volume (veh/h)	43	241	336	87	10	46	595	77	254	507	105	81
Future Volume (veh/h)	43	241	336	87	10	46	595	77	254	507	105	81
Number		5	2	12		1	6	16	3	8	18	7
Initial Q (Qb), veh		0	0	0		0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)		1.00		1.00		1.00		1.00	1.00		1.00	1.00
Parking Bus, Adj		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln		1863	1863	1900		1863	1863	1900	1863	1863	1900	1863
Adj Flow Rate, veh/h		251	350	91		48	620	80	265	528	109	84
Adj No. of Lanes		1	2	0		1	2	0	1	2	0	1
Peak Hour Factor		0.96	0.96	0.96		0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh, %		2	2	2		2	2	2	2	2	2	2
Cap, veh/h		280	999	256		62	742	96	233	1096	225	106
Arrive On Green		0.16	0.36	0.36		0.03	0.24	0.24	0.13	0.37	0.37	0.06
Sat Flow, veh/h		1774	2790	716		1774	3154	406	1774	2925	601	1774
Grp Volume(v), veh/h		251	220	221		48	347	353	265	319	318	84
Grp Sat Flow(s),veh/h/ln		1774	1770	1736		1774	1770	1791	1774	1770	1757	1774
Q Serve(q s), s		16.5	10.8	11.1		3.2	22.2	22.3	15.6	16.3	16.4	5.5
Cycle Q Clear(q c), s		16.5	10.8	11.1		3.2	22.2	22.3	15.6	16.3	16.4	5.5
Prop In Lane		1.00		0.41		1.00		0.23	1.00		0.34	1.00
Lane Grp Cap(c), veh/h		280	633	622		62	416	421	233	663	658	106
V/C Ratio(X)		0.90	0.35	0.36		0.78	0.83	0.84	1.14	0.48	0.48	0.79
Avail Cap(c_a), veh/h		412	726	712		143	452	457	233	663	658	188
HCM Platoon Ratio		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh		49.1	28.0	28.0		56.8	43.2	43.2	51.6	28.3	28.4	55.1
Incr Delay (d2), s/veh		12.4	0.6	0.6		7.6	15.9	15.9	100.8	0.8	0.8	4.9
Initial Q Delav(d3).s/veh		0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln		9.1	5.4	5.4		1.7	12.6	12.8	14.1	8.1	8.1	2.9
LnGrp Delay(d), s/veh		61.5	28.5	28.6		64.4	59.1	59.2	152.4	29.1	29.2	60.0
LnGrp LOS		E	С	С		E	E	E	F	С	С	E
Approach Vol. veh/h			692				748			902		
Approach Delay, s/yeh			40.5				59.5			65.3		
Approach LOS			D				E			E		
Timor	1	C	ſ	4	F	/	7	0				
	1	2	3	4	<u> </u>	0	/	8				
Assigned Phs		47.0	3	4	5	6	11 5	8				
Physical Duration ($G+Y+Rc$), s	8.5	47.8	20.0	42.4	23.1	33.2	11.5	50.9				
Change Period (Y+RC), s	4.4	° 5.3	4.4	6.4	4.4	5.3	4.4	* 20				
Max Green Setting (Gmax), s	9.6	49	15.6	36.0	27.6	30.3	12.6	39				
Max Q Clear Time (g_c+II), s	5.2	13.1	17.6	38.0	18.5	24.3	7.5	18.4				
Green Ext Time (p_c), s	0.0	4.8	0.0	0.0	0.2	3.7	0.0	5.7				
Intersection Summary												
HCM 2010 Ctrl Delay			62.7									
HCM 2010 LOS			E									
Notes												

EXAM.syn

↓ √

Intersection						
Int Delay, s/veh	0.2					
-						
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	_ ≜ î≽			- 11		1
Traffic Vol, veh/h	676	1	0	1379	0	37
Future Vol, veh/h	676	1	0	1379	0	37
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage	e,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	97	97	97	97	97	97
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	697	1	0	1422	0	38
			-		-	

Major/Minor	Major1	Ma	jor2	Mir	nor1		
Conflicting Flow All	0	0	-	-	-	349	
Stage 1	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	
Critical Hdwy	-	-	-	-	-	6.94	
Critical Hdwy Stg 1	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	
Follow-up Hdwy	-	-	-	-	-	3.32	
Pot Cap-1 Maneuver	-	-	0	-	0	647	
Stage 1	-	-	0	-	0	-	
Stage 2	-	-	0	-	0	-	
Platoon blocked, %	-	-		-			
Mov Cap-1 Maneuver	r -	-	-	-	-	647	
Mov Cap-2 Maneuver	ſ -	-	-	-	-	-	
Stage 1	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	

Approach	EB	WB	NB
HCM Control Delay, s	0	0	10.9
HCM LOS			В

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBT
Capacity (veh/h)	647	-	-	-
HCM Lane V/C Ratio	0.059	-	-	-
HCM Control Delay (s)	10.9	-	-	-
HCM Lane LOS	В	-	-	-
HCM 95th %tile Q(veh)	0.2	-	-	-

Intersection						
Int Delay, s/veh	0.1					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	≜ î≽			- 11		1
Traffic Vol, veh/h	654	58	0	1379	0	23
Future Vol, veh/h	654	58	0	1379	0	23
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage	, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	97	97	97	97	97	97
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	674	60	0	1422	0	24

Major/Minor	Major1	Μ	lajor2	Min	lor1												
Conflicting Flow All	0	0	-	-	-	367											
Stage 1	-	-	-	-	-	-											
Stage 2	-	-	-	-	-	-											
Critical Hdwy	-	-	-	-	-	6.94											
Critical Hdwy Stg 1	-	-	-	-	-	-											
Critical Hdwy Stg 2	-	-	-	-	-	-											
Follow-up Hdwy	-	-	-	-	-	3.32											
Pot Cap-1 Maneuver	-	-	0	-	0	630											
Stage 1	-	-	0	-	0	-											
Stage 2	-	-	0	-	0	-											
Platoon blocked, %	-	-		-													
Mov Cap-1 Maneuve	r -	-	-	-	-	630											
Mov Cap-2 Maneuve	r -	-	-	-	-	-											
Stage 1	-	-	-	-	-	-											
Stage 2	-	-	-	-	-	-											

Approach	EB	WB	NB
HCM Control Delay, s	0	0	10.9
HCM LOS			В

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBT
Capacity (veh/h)	630	-	-	-
HCM Lane V/C Ratio	0.038	-	-	-
HCM Control Delay (s)	10.9	-	-	-
HCM Lane LOS	В	-	-	-
HCM 95th %tile Q(veh)	0.1	-	-	-

	-	\mathbf{r}	F	4	+	1	1
Movement	EBT	EBR	WBU	WBL	WBT	NBL	NBR
Lane Configurations	≜1 ⊾			3	**	¥.	1
Traffic Volume (veh/h)	492	184	46	446	887	41	174
Future Volume (veh/h)	492	184	46	446	887	41	174
Number	2	12		1	6	7	14
Initial Q (Qb), veh	0	0		0	0	0	0
Ped-Bike Adj(A_pbT)		1.00		1.00		1.00	1.00
Parking Bus, Adj	1.00	1.00		1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1900		1863	1863	1863	1863
Adj Flow Rate, veh/h	507	190		460	914	106	110
Adj No. of Lanes	2	0		1	2	1	1
Peak Hour Factor	0.97	0.97		0.97	0.97	0.97	0.97
Percent Heavy Veh, %	2	2		2	2	2	2
Cap, veh/h	1305	487		493	2942	156	139
Arrive On Green	0.17	0.17		0.28	0.83	0.09	0.09
Sat Flow, veh/h	2618	941		1774	3632	1774	1583
Grp Volume(v), veh/h	355	342		460	914	106	110
Grp Sat Flow(s),veh/h/ln	1770	1697		1774	1770	1774	1583
Q Serve(g_s), s	23.1	23.3		32.8	7.6	7.5	8.9
Cycle Q Clear(g_c), s	23.1	23.3		32.8	7.6	7.5	8.9
Prop In Lane		0.55		1.00		1.00	1.00
Lane Grp Cap(c), veh/h	915	877		493	2942	156	139
V/C Ratio(X)	0.39	0.39		0.93	0.31	0.68	0.79
Avail Cap(c_a), veh/h	915	877		673	2942	423	378
HCM Platoon Ratio	0.33	0.33		1.00	1.00	1.00	1.00
Upstream Filter(I)	0.77	0.77		1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	35.6	35.7		45.7	2.5	57.5	58.1
Incr Delay (d2), s/veh	1.0	1.0		16.4	0.3	5.1	9.5
Initial Q Delay(d3),s/veh	0.0	0.0		0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	11.6	11.2		18.4	3.8	3.9	4.2
LnGrp Delay(d),s/veh	36.6	36.7		62.1	2.8	62.6	67.6
LnGrp LOS	D	D		E	A	E	Ŀ
Approach Vol, veh/h	697				1374	216	
Approach Delay, s/veh	36.7				22.7	65.1	
Approach LOS	D				С	E	
Timer	1	2	3	4	5	6	7
Assigned Phs	1	2		4		6	
Phs Duration (G+Y+Rc), s	40.9	72.6		16.5		113.5	
Change Period (Y+Rc), s	* 4.7	5.4		5.1		5.4	
Max Green Setting (Gmax), s	* 49	34.5		31.0		88.5	
Max Q Clear Time (q_c+I1), s	34.8	25.3		10.9		9.6	
Green Ext Time (p_c), s	1.3	3.0		0.6		8.4	
Intersection Summary							
HCM 2010 Ctrl Delay			30.0				
HCM 2010 LOS							
			U				
Notes							

EXAM.syn

Movement EBL EBT EBR WBL WBT WBL NBT NBT NBT SBT SBT SBR Lane Configurations 1 <t< th=""><th></th><th>۶</th><th>+</th><th>\mathbf{F}</th><th>4</th><th>+</th><th>×</th><th>1</th><th>1</th><th>۲</th><th>1</th><th>ŧ</th><th>∢</th><th></th></t<>		۶	+	\mathbf{F}	4	+	×	1	1	۲	1	ŧ	∢	
Lane Configurations Image: Solution of the second seco	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Traffic Volume (vehh) 0 475 187 540 385 0 0 0 0 204 0 108 Tuture Volume (vehh) 0 475 187 549 385 0 0 0 0 108 Number 5 2 12 16 16 3 8 18 Initial O (0), veh 0 0 0 0 0 0 0 0 0 0 0 Pack Bike Adj(A ph) 100 112 112 112 112 114 114 120 112 120 112 <td>Lane Configurations</td> <td></td> <td>Atه</td> <td></td> <td>3</td> <td>**</td> <td></td> <td></td> <td></td> <td></td> <td>×,</td> <td></td> <td>1</td> <td></td>	Lane Configurations		At ه		3	**					×,		1	
Future Volume (veh/h) 0 475 187 549 385 0 0 0 204 0 108 Number 5 2 12 1 6 16 3 8 18 Number 5 2 12 1 6 16 3 8 18 Number 5 2 12 16 100 1.00 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 Parking Bus, Adj 1.00 <td>Traffic Volume (veh/h)</td> <td>0</td> <td>475</td> <td>187</td> <td>549</td> <td>385</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>204</td> <td>0</td> <td>108</td> <td></td>	Traffic Volume (veh/h)	0	475	187	549	385	0	0	0	0	204	0	108	
Number 5 2 12 1 6 16 3 8 18 Initial QCD), veh 0 <td>Future Volume (veh/h)</td> <td>0</td> <td>475</td> <td>187</td> <td>549</td> <td>385</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>204</td> <td>0</td> <td>108</td> <td></td>	Future Volume (veh/h)	0	475	187	549	385	0	0	0	0	204	0	108	
Initial O(b), veh 0	Number	5	2	12	1	6	16				3	8	18	
Pead-Bike Adj(A_pbT) 1.00 <td< td=""><td>Initial Q (Qb), veh</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td></td><td></td><td></td><td>0</td><td>0</td><td>0</td><td></td></td<>	Initial Q (Qb), veh	0	0	0	0	0	0				0	0	0	
Parking Bus, Ag 1.00	Ped-Bike Adj(A pbT)	1.00		1.00	1.00		1.00				1.00		1.00	
Adj Sal Flow, veh/h/n 0 1863 1863 0 1863 0 1863 Adj Na, Gi Lanes 0 2 0 112 0 112 Peak Hour Factor 0.96 <td< td=""><td>Parking Bus, Adj</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td></td><td></td><td></td><td>1.00</td><td>1.00</td><td>1.00</td><td></td></td<>	Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00				1.00	1.00	1.00	
Adj Flow Rate, veh/h 0 495 195 572 401 0 212 0 112 Adj No. of Lanes 0 2 0 1 2 0 1 0 1 Perk Hour Facto 0.9 0.96 0.97 0 174 0 1583 Grp Volume(v), veh/h 0 352 0.01 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.	Adj Sat Flow, veh/h/ln	0	1863	1900	1863	1863	0				1863	0	1863	
Adj No. of Lanes 0 2 0 1 2 0 1 0 1 Peak Hour Factor 0.96 0.97 0 220 0.00 112 0.00 112 0.00 0.00 1.00	Adj Flow Rate, veh/h	0	495	195	572	401	0				212	0	112	
Peak Hour Factor 0.96 0.96 0.96 0.96 0.96 0.96 0.96 Percent Heavy Veh, % 0 2 2 2 2 0 20 20 Cap, veh/h 0 019 39 593 271 0 0.00 0.14 0.00 0.14 0.00 0.14 0.00 0.14 0.00 0.14 0.00 0.14 0.00 0.14 0.00 0.14 0.00 0.14 0.00 0.14 0.00 0.14 0.00 0.14 0.00 0.14 0.00 0.14 0.00 0.15 0 1.00 0.0 152 0.0 8.5 Cycle Oclear(g_C), s 0.0 192 40.1 0.0 0.0 1.52 0.0 8.5 Cycle Oclear(g_C), s 0.0 1.00 0.00 1.00	Adj No. of Lanes	0	2	0	1	2	0				1	0	1	
Percent Heavy Veh, % 0 2 2 2 2 0 2 0 2 Cap, veh/h 0 1019 399 593 2761 0 247 0 220 Arrive On Green 0.00 0.41 0.41 0.41 0.56 100 0.00 0.14 0.40 0.41 Sat Flow, veh/h 0 2580 974 1774 3632 0 1774 0 1583 Grp Volume(v), veh/h 0 352 338 572 401 0 212 0 12 Grp Sat Flow(s), veh/h/ln 0 1770 1691 1774 1770 1772 0 8.5 Ocseve(g.s), s 0.0 19.0 19.2 40.1 0.0 0.0 15.2 0.0 8.5 Prop In Lane 0.00 0.58 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.	Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96				0.96	0.96	0.96	
Cap, veh/h 0 1019 399 593 2761 0 247 0 220 Arrive On Green 0.00 0.14 0.05 1.00 0.00 0.14 0.00 0.14 Sat Flow, veh/h 0 2580 974 1774 3632 0 1774 0 1583 Grp Volume(v), veh/h 0 352 338 572 401 0 212 0 112 Grp Sat Flow(s), veh/h 0 1770 1691 1774 1770 0 1774 0 1583 Q Serve(g_s), s 0.0 19.0 19.2 40.1 0.0 0.0 15.2 0.0 8.5 Prop In Lane 0.00 190 19.2 40.1 0.0 0.0 1.00 1.00 Lare Grp Cap(c), veh/h 0 725 693 696 2761 0 247 0 220 V/C Ratio(X) 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00<	Percent Heavy Veh. %	0	2	2	2	2	0				2	0	2	
Arrive On Green 0.00 0.41 0.41 0.56 1.00 0.00 0.14 0.00 0.14 Sat Flow, yeh/h 0 2580 974 1774 3632 0 1774 0 1583 Grp Volume(V), yeh/h 0 352 338 572 401 0 212 0 112 Grp Sat Flow(S), veh/h 0 1770 1771 0 1774 0 1583 Q Serve(g, s), s 0.0 19.0 19.2 40.1 0.0 0.0 15.2 0.0 8.5 Orgo In Lane 0.00 0.58 10.0 0.00 15.2 0.0 8.5 Prop In Lane 0.00 0.48 0.49 0.96 0.15 0.00 0.86 0.00 0.51 Avail Cap(c, a), veh/h 0 725 693 686 2761 0 427 0 220 V/C Ratio(X) 0.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00 Lane Cap(c), yeh/h 0 7 75 63<	Cap, veh/h	0	1019	399	593	2761	0				247	0	220	
Sat Flow, veh/h 0 2580 974 1774 3632 0 1774 0 1583 Grp Volume(v), veh/h 0 352 338 572 401 0 212 0 112 Grp Sat Flow(s), veh/h/l 0 1770 1691 1774 1770 0 1774 0 1583 O Serve(g.s), s 0.0 19.0 19.2 40.1 0.0 0.0 15.2 0.0 8.5 Cycle O Clear(g_c), s 0.0 19.2 40.1 0.0 0.0 17.0 0 17.0 0 15.2 0.0 8.5 Org In Lane 0.00 0.88 1.00 0.00 1.00 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 0 725 693 686 2761 0 427 0 220 V/C Ratio(X) 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 <t< td=""><td>Arrive On Green</td><td>0.00</td><td>0.41</td><td>0.41</td><td>0.56</td><td>1.00</td><td>0.00</td><td></td><td></td><td></td><td>0.14</td><td>0.00</td><td>0.14</td><td></td></t<>	Arrive On Green	0.00	0.41	0.41	0.56	1.00	0.00				0.14	0.00	0.14	
Grp Volume(v), veh/h 0 352 338 572 401 0 212 0 112 Grp Sal Flow(s), veh/h/ln 0 1770 1691 1774 1770 0 1774 0 1583 Q Serve(g_s), s 0.0 19.0 19.2 40.1 0.0 0.0 15.2 0.0 8.5 Cycle Q Clar(g_c), s 0.00 0.00 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 0 725 693 593 2761 0 247 0 220 V/C Ratio(X) 0.00 0.48 0.49 0.96 0.15 0.00 0.86 0.00 0.51 Avail Cap(c_a), veh/h 0 725 693 582 761 0 452 0 403 HCM Platoon Ratio 1.00	Sat Flow, veh/h	0	2580	974	1774	3632	0				1774	0	1583	
Gp Sat Flow(s), veh/h1 0 1770 1691 1774 1774 0 152 0.0 8.5 Q Serve(g_s), s 0.0 19.0 19.2 40.1 0.0 0.0 15.2 0.0 8.5 Cycle Q Clear(g_c), s 0.0 19.2 40.1 0.0 0.0 15.2 0.0 8.5 Prop In Lane 0.00 0.58 1.00 0.00 1.00 1.00 Lane Gr Cap(c), veh/h 0 725 693 593 2761 0 247 0 220 V/C Ratio(X) 0.00 0.48 0.49 0.96 0.15 0.00 0.86 0.00 0.51 Avail Cap(c_a), veh/h 0 725 693 866 2761 0 452 0 403 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 <td>Grp Volume(v) veh/h</td> <td>0</td> <td>352</td> <td>338</td> <td>572</td> <td>401</td> <td>0</td> <td></td> <td></td> <td></td> <td>212</td> <td>0</td> <td>112</td> <td></td>	Grp Volume(v) veh/h	0	352	338	572	401	0				212	0	112	
Display Hor (c)/Lemma 1 1 <td>Grn Sat Flow(s) veh/h/ln</td> <td></td> <td>1770</td> <td>1691</td> <td>1774</td> <td>1770</td> <td>0</td> <td></td> <td></td> <td></td> <td>1774</td> <td>0</td> <td>1583</td> <td></td>	Grn Sat Flow(s) veh/h/ln		1770	1691	1774	1770	0				1774	0	1583	
Construction 101 100 102 101 100 102 101 101 100 102 101 101 101 101 101 101 101 101 101	O Serve(a, s) s	0.0	19.0	19.2	40.1	0.0	0.0				15.2	0.0	85	
by or	Cycle O Clear(a, c) s	0.0	19.0	19.2	40.1	0.0	0.0				15.2	0.0	85	
Lane Grp Cap(c), veh/h 0 725 693 593 2761 0 247 0 220 V/C Ratio(X) 0.00 0.48 0.49 0.96 0.15 0.00 0.86 0.00 0.51 Avail Cap(C_a), veh/h 0 725 693 686 2761 0 452 0 403 HCM Platon Ratio 1.00	Pron In Lane	0.00	17.0	0.58	1 00	0.0	0.00				1 00	0.0	1 00	
EXIC Ratio (X) 0.00 0.48 0.49 0.96 0.15 0.00 0.46 0.00 0.51 Avail Cap(c_a), veh/h 0 725 693 686 2761 0 452 0 403 HCM Platoon Ratio 1.00 1.00 1.67 1.67 1.00	Lane Grn Can(c) veh/h	0.00	725	693	593	2761	0.00				247	0	220	
Avail Cap(C_a), veh/h 0 7.5 6.93 6.86 2761 0 452 0 403 HCM Platoon Ratio 1.00 <t< td=""><td>V/C Ratio(X)</td><td>0.00</td><td>0.48</td><td>0.49</td><td>0.96</td><td>0.15</td><td>0.00</td><td></td><td></td><td></td><td>0.86</td><td>0.00</td><td>0.51</td><td></td></t<>	V/C Ratio(X)	0.00	0.48	0.49	0.96	0.15	0.00				0.86	0.00	0.51	
Nam opposition 1.00<	Avail Can(c, a) veh/h	0.00	725	693	686	2761	0.00				452	0.00	403	
Hom Filter(I) 0.00 1.00 </td <td>HCM Platoon Ratio</td> <td>1 00</td> <td>1 00</td> <td>1 00</td> <td>1 67</td> <td>1 67</td> <td>1 00</td> <td></td> <td></td> <td></td> <td>1 00</td> <td>1 00</td> <td>1 00</td> <td></td>	HCM Platoon Ratio	1 00	1 00	1 00	1 67	1 67	1 00				1 00	1 00	1 00	
Dinform Delay (d), s/veh 0.0 28.3 28.0 0.0 0.0 54.7 0.0 51.9 Incr Delay (d), s/veh 0.0 2.3 2.5 23.4 0.1 0.0 8.5 0.0 1.8 Initial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 %ile BackOfQ(50%), veh/ln0.0 9.7 9.4 23.2 0.0 0.0 8.1 0.0 3.8 LnGrp Delay(d), s/veh 0.0 30.6 30.8 51.4 0.1 0.0 63.2 0.0 53.7 LnGrp Delay(d), s/veh 0.0 30.6 30.8 51.4 0.1 0.0 63.2 0.0 53.7 LnGrp LOS C C D A E D D Approach Vol, veh/h 690 973 324 324 324 Approach LOS C C C E E E Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 <	Linstream Filter(I)	0.00	1.00	1.00	0.95	0.95	0.00				1.00	0.00	1.00	
bink micro Delay (d2), siven 0.0 2.0.5 2.0.5 0.0.5 0.0.5 0.0.7 0.7 0.0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	Uniform Delay (d) s/veh		28.3	28.3	28.0	0.75	0.00				54 7	0.00	51.00	
Initial Q Delay(d2), siven 0.0 0.0	Incr Delay (d2) s/veh	0.0	20.3	20.5	20.0	0.0	0.0				85	0.0	1.8	
Initial 2 bit dy (dy), siven (i) 0.5 0.5 0.5 0.0 0.0 8.1 0.0 3.8 LnGrp Delay(d), siven (i) 0.3 30.6 30.8 51.4 0.1 0.0 63.2 0.0 53.7 LnGrp DOS C C D A E D Approach Vol, veh/h 690 973 324 Approach Delay, s/veh 30.7 30.3 59.9 Approach LOS C C C E D Approach LOS C C C E E D Assigned Phs 1 2 6 8 P	Initial O Delay(d3) s/veh	0.0	0.0	0.0	0.0	0.1	0.0				0.0	0.0	0.0	
LnGrp Delay(d), s/veh 0.0 30.6 30.8 51.4 0.1 0.0 63.2 0.0 53.7 LnGrp LOS C C D A E D Approach Vol, veh/h 690 973 324 Approach Delay, s/veh 30.7 30.3 59.9 Approach LOS C C C E Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 6 8 Photostion (G+Y+RC), 48.2 58.7 106.8 23.2 Change Period (Y+RC), 5 4.7 5.4 5.1 Max Green Setting (Gma%)50 31.4 86.4 33.1 Max Q Clear Time (g_c+HQ), 5 21.2 2.0 17.2 Green Ext Time (p_c), s 1.4 3.2 3.0 0.9 9 Intersection Summary 35.2 D D No.9 17.2	%ile BackOfO(50%) veh	/lm0.0	9.7	9 <u>4</u>	23.2	0.0	0.0				8.1	0.0	3.8	
LnGrp LOS C C D A E D Approach Vol, veh/h 690 973 324 Approach Delay, s/veh 30.7 30.3 59.9 Approach LOS C C C E Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 6 8 8 9 9 9 9 9 9 9 9 9 9 9 9 324 9	InGrn Delay(d) s/veh	0.0	30.6	30.8	51.4	0.0	0.0				63.2	0.0	53.7	
Approach Vol, veh/h 6 6 D N 22 D Approach Delay, s/veh 30.7 30.3 59.9 Approach LOS C C E Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 3 4 5 6 7 8 Assigned Phs 1 2 6 8 8 9 <td< td=""><td></td><td>0.0</td><td>00.0 C</td><td>00.0 C</td><td>D</td><td>Δ</td><td>0.0</td><td></td><td></td><td></td><td>00.2 F</td><td>0.0</td><td>00.7 D</td><td></td></td<>		0.0	00.0 C	00.0 C	D	Δ	0.0				00.2 F	0.0	00.7 D	
Approach Vell, Vellin 050 773 302 Approach Delay, s/veh 30.7 30.3 59.9 Approach LOS C C E Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 6 8 7 8 7 8 Assigned Phs 1 2 6 8 7 8 7 8 7 8 Change Period (Y+Rc), \$8.2 58.7 106.8 23.2 7 106.8 23.2 106.8 23.2 106.8 23.2 106.8 <td>Approach Vol. voh/h</td> <td></td> <td>600</td> <td>0</td> <td>0</td> <td>072</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>271</td> <td></td> <td></td>	Approach Vol. voh/h		600	0	0	072						271		
Approach LOS C C E Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 6 8 8 8 9	Approach Dolay, shiph		20.7			20.2						50.0		
Approach LOS C C C C C L Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 6 8 8 8 9	Approach LOS		30.7			30.3 C						09.9 E		
Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 6 8 3 1 8 8 8 3 1 8 8 4 3 1 8 8 3 1 8 8 4 3 1	Appidacii LOS		C			C						L		
Assigned Phs 1 2 6 8 Phs Duration (G+Y+Rc), 4 8.2 58.7 106.8 23.2 Change Period (Y+Rc), 5 4.7 5.4 5.1 Max Green Setting (Gmax)50 31.4 86.4 33.1 Max Q Clear Time (g_c+ HQ), 5 21.2 2.0 17.2 Green Ext Time (p_c), s 1.4 3.2 3.0 0.9 Intersection Summary 35.2 D 100.0000000000000000000000000000000000	Timer	1	2	3	4	5	6	7	8					
Phs Duration (G+Y+Rc), \$8.2 58.7 106.8 23.2 Change Period (Y+Rc), \$4.7 5.4 5.1 Max Green Setting (Gmax)5@ 31.4 86.4 33.1 Max Q Clear Time (g_c+M2), \$21.2 2.0 17.2 Green Ext Time (p_c), \$1.4 3.2 3.0 0.9 Intersection Summary 45.2 45.2 100.2 HCM 2010 Ctrl Delay 35.2 100.2 100.2 HCM 2010 LOS D 100.2 100.2	Assigned Phs	1	2				6		8					
Change Period (Y+Rc), \$ 4.7 5.4 5.1 Max Green Setting (Gmax)50 31.4 86.4 33.1 Max Q Clear Time (g_c+HQ), 1s 21.2 2.0 17.2 Green Ext Time (p_c), s 1.4 3.2 3.0 0.9 Intersection Summary 35.2 HCM 2010 Ctrl Delay 35.2 HCM 2010 LOS D D D	Phs Duration (G+Y+Rc),	, \$ 8.2	58.7				106.8		23.2					
Max Green Setting (Gmax)58 31.4 86.4 33.1 Max Q Clear Time (g_c+#Q),1s 21.2 2.0 17.2 Green Ext Time (p_c), s 1.4 3.2 3.0 0.9 Intersection Summary HCM 2010 Ctrl Delay 35.2 HCM 2010 LOS D	Change Period (Y+Rc),	\$ 4.7	5.4				5.4		5.1					
Max Q Clear Time (g_c+#Q), is 21.2 2.0 17.2 Green Ext Time (p_c), s 1.4 3.2 3.0 0.9 Intersection Summary HCM 2010 Ctrl Delay 35.2 HCM 2010 LOS D	Max Green Setting (Gma	a \$) 5 0	31.4				86.4		33.1					
Green Ext Time (p_c), s 1.4 3.2 3.0 0.9 Intersection Summary	Max Q Clear Time (g_c+	-H12),1s	21.2				2.0		17.2					
Intersection Summary HCM 2010 Ctrl Delay 35.2 HCM 2010 LOS D	Green Ext Time (p_c), s	1.4	3.2				3.0		0.9					
HCM 2010 Ctrl Delay 35.2 HCM 2010 LOS D	Intersection Summary													
HCM 2010 LOS D	HCM 2010 Ctrl Delav			35.2										
	HCM 2010 LOS			D										
Notes	Notes													

EXAM.syn

4333-4337 Home Ave MO 1: Fairmount Ave & Home Ave

	4	۶	→	\mathbf{F}	Þ	4	+	•	•	1	1	1
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL
Lane Configurations		ă	≜1 }			ă.	4 12		5	≜1 }		ሻ
Traffic Volume (veh/h)	57	412	679	174	11	85	562	69	88	190	62	69
Future Volume (veh/h)	57	412	679	174	11	85	562	69	88	190	62	69
Number		5	2	12		1	6	16	3	8	18	7
Initial Q (Qb), veh		0	0	0		0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)		1.00		1.00		1.00		1.00	1.00		1.00	1.00
Parking Bus, Adj		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln		1863	1863	1900		1863	1863	1900	1863	1863	1900	1863
Adj Flow Rate, veh/h		429	707	181		89	585	72	92	198	65	72
Adj No. of Lanes		1	2	0		1	2	0	1	2	0	1
Peak Hour Factor		0.96	0.96	0.96		0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh, %		2	2	2		2	2	2	2	2	2	2
Cap, veh/h		454	895	229		278	716	88	109	795	254	92
Arrive On Green		0.26	0.32	0.32		0.16	0.23	0.23	0.06	0.30	0.30	0.05
Sat Flow, veh/h		1774	2792	714		1774	3174	390	1774	2641	842	1774
Grp Volume(v), veh/h		429	448	440		89	326	331	92	131	132	72
Grp Sat Flow(s),veh/h/ln		1774	1770	1737		1774	1770	1794	1774	1770	1714	1774
Q Serve(q_s), s		29.3	28.5	28.5		5.5	21.6	21.7	6.3	6.9	7.2	5.0
Cycle Q Clear(q_c), s		29.3	28.5	28.5		5.5	21.6	21.7	6.3	6.9	7.2	5.0
Prop In Lane		1.00		0.41		1.00		0.22	1.00		0.49	1.00
Lane Grp Cap(c), veh/h		454	567	557		278	399	405	109	533	516	92
V/C Ratio(X)		0.95	0.79	0.79		0.32	0.82	0.82	0.84	0.25	0.26	0.78
Avail Cap(c_a), veh/h		497	746	732		278	448	454	109	533	516	166
HCM Platoon Ratio		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh		45.2	38.2	38.2		46.3	45.4	45.4	57.4	32.6	32.7	57.9
Incr Delay (d2), s/veh		25.4	5.7	5.9		0.2	14.5	14.6	40.3	0.4	0.4	5.4
Initial Q Delay(d3),s/veh		0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In		17.6	14.8	14.6		2.7	12.2	12.4	4.3	3.4	3.5	2.6
LnGrp Delay(d),s/veh		70.6	43.9	44.1		46.5	59.9	60.1	97.7	33.0	33.1	63.4
LnGrp LOS		E	D	D		D	E	E	F	С	С	E
Approach Vol, veh/h			1317				746			355		
Approach Delay, s/veh			52.7				58.4			49.8		
Approach LOS			D				E			D		
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Physical His Physical Physica	24.7	44 5	12.0	42.4	36.0	33.2	10.8	43.6				
Change Period $(Y+Rc)$ s	5.3	* 4 9	4 4	6.4	4 4	5.3	4 4	* 6 4				
Max Green Setting (Gmax) s	14.2	* 52	7.6	36.0	34.6	31.3	11.6	* 32				
Max O Clear Time (q_c+11) s	7.5	30.5	8.3	38.0	31.3	23.7	7.0	92				
Green Ext Time (p. c), s	0.0	9.1	0.0	0.0	0.3	4.2	0.0	2.2				
Intercection Summary	010	,	010	0.0	0.0		010					
			0/ 5									
HCM 2010 CIT Delay			δ0.5 Γ									
			F									
Notes												

EXPM.syn

↓ √

Movement	SBT	SBR
Lanetconfigurations	•	1
Traffic Volume (veh/h)	406	619
Future Volume (veh/h)	406	619
Number	4	14
Initial Q (Qb), veh	0	0
Ped-Bike Adj(A_pbT)		1.00
Parking Bus, Adj	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863
Adj Flow Rate, veh/h	423	645
Adj No. of Lanes	1	1
Peak Hour Factor	0.96	0.96
Percent Heavy Veh. %	2	2
Cap. veh/h	543	461
Arrive On Green	0.29	0.29
Sat Flow, veh/h	1863	1583
Grp Volume(v) veh/h	423	645
Grp Sat Flow(s) veh/h/ln	1863	1583
O Serve(a, s) s	25.7	36.0
Cycle O Clear(a, c) s	25.7	36.0
Pron In Lane	20.1	1 00
Lane Grn Can(c) veh/h	543	461
V/C Ratio(X)	0.78	1 40
Avail Can(c_a) veh/h	543	461
HCM Platoon Ratio	1 00	1 00
Linstream Filter(I)	1.00	1.00
Uniform Delay (d) s/veh	1.00	13.00
Incr Delay (d2) shuch	40.2	102.0
Initial O Delay(d3) shuch	0.0	172.2
%ile BackOfO(50%) vob/lp	11.1	10.2
In Crn Dolov(d) s/vob	14.4	40.3
LIGIP Delay(u), S/Veli	47.9	230.U E
LIIUIP LUS	U	F
Approach Vol, ven/n	1140	
Approach Delay, s/veh	155.3	
Approach LOS	F	
Timer		

Intersection						
Int Delay, s/veh	0.4					
Movement	EBT	EBR	WBL	WBI	NBL	NBR
Lane Configurations	≜ î≽			- 11		1
Traffic Vol, veh/h	1266	2	0	1309	0	72
Future Vol, veh/h	1266	2	0	1309	0	72
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage	e,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	99	99	99	99	99	99
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	1279	2	0	1322	0	73
		_	v		v	

Major/Minor	Major1	Ма	jor2	Mir	nor1		
Conflicting Flow All	0	0	-	-	-	641	
Stage 1	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	
Critical Hdwy	-	-	-	-	-	6.94	
Critical Hdwy Stg 1	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	
Follow-up Hdwy	-	-	-	-	-	3.32	
Pot Cap-1 Maneuver	-	-	0	-	0	417	
Stage 1	-	-	0	-	0	-	
Stage 2	-	-	0	-	0	-	
Platoon blocked, %	-	-		-			
Mov Cap-1 Maneuver	· -	-	-	-	-	417	
Mov Cap-2 Maneuver	· _	-	-	-	-	-	
Stage 1	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	

Approach	EB	WB	NB
HCM Control Delay, s	0	0	15.4
HCM LOS			С

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBT
Capacity (veh/h)	417	-	-	-
HCM Lane V/C Ratio	0.174	-	-	-
HCM Control Delay (s)	15.4	-	-	-
HCM Lane LOS	С	-	-	-
HCM 95th %tile Q(veh)	0.6	-	-	-

Intersection						
Int Delay, s/veh	0.2					
	FDT			WDT		
Movement	FRI	EBK	WBL	WRI	NRL	NRK
Lane Configurations	_ ≜ î≽			- 11		1
Traffic Vol, veh/h	1234	102	0	1309	0	34
Future Vol, veh/h	1234	102	0	1309	0	34
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage	,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	99	99	99	99	99	99
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	1246	103	0	1322	0	34

Major/Minor	Major1	Ma	jor2	Mir	nor1		
Conflicting Flow All	0	0	-	-	-	675	
Stage 1	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	
Critical Hdwy	-	-	-	-	-	6.94	
Critical Hdwy Stg 1	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	
Follow-up Hdwy	-	-	-	-	-	3.32	
Pot Cap-1 Maneuver	-	-	0	-	0	396	
Stage 1	-	-	0	-	0	-	
Stage 2	-	-	0	-	0	-	
Platoon blocked, %	-	-		-			
Mov Cap-1 Maneuver	r -	-	-	-	-	396	
Mov Cap-2 Maneuver	r -	-	-	-	-	-	
Stage 1	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	

Approach	EB	WB	NB
HCM Control Delay, s	0	0	15
HCM LOS			С

Vinor Lane/Major Mvmt	NBLn1	EBT	EBR	WBT
Capacity (veh/h)	396	-	-	-
HCM Lane V/C Ratio	0.087	-	-	-
HCM Control Delay (s)	15	-	-	-
HCM Lane LOS	С	-	-	-
HCM 95th %tile Q(veh)	0.3	-	-	-

	→	\mathbf{r}	F	∢	+	1	1
Movement	EBT	EBR	WBU	WBL	WBT	NBL	NBR
Lane Configurations	4 14			3	**	¥	1
Traffic Volume (veh/h)	727	138	67	213	1029	160	542
Future Volume (veh/h)	727	138	67	213	1029	160	542
Number	2	12		1	6	7	14
Initial Q (Qb), veh	0	0		0	0	0	0
Ped-Bike Adj(A_pbT)		1.00		1.00		1.00	1.00
Parking Bus, Adj	1.00	1.00		1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1900		1863	1863	1863	1863
Adj Flow Rate, veh/h	734	139		215	1039	342	354
Adj No. of Lanes	2	0		1	2	1	1
Peak Hour Factor	0.99	0.99		0.99	0.99	0.99	0.99
Percent Heavy Veh, %	2	2		2	2	2	2
Cap, veh/h	1483	281		243	2380	438	391
Arrive On Green	0.50	0.50		0.14	0.67	0.25	0.25
Sat Flow, veh/h	3064	562		1774	3632	1774	1583
Grp Volume(v), veh/h	437	436		215	1039	342	354
Grp Sat Flow(s), veh/h/ln	1770	1764		1774	1770	1774	1583
Q Serve(q_s), s	21.4	21.4		15.5	17.7	23.4	28.2
Cycle Q Clear(q c), s	21.4	21.4		15.5	17.7	23.4	28.2
Prop In Lane		0.32		1.00		1.00	1.00
Lane Grp Cap(c), veh/h	883	880		243	2380	438	391
V/C Ratio(X)	0.49	0.50		0.88	0.44	0.78	0.91
Avail Cap(c_a), veh/h	883	880		345	2380	558	498
HCM Platoon Ratio	1.00	1.00		1.00	1.00	1.00	1.00
Upstream Filter(I)	0.09	0.09		1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	21.7	21.7		55.1	9.9	45.7	47.5
Incr Delay (d2), s/veh	0.2	0.2		17.3	0.6	5.5	17.2
Initial Q Delay(d3),s/veh	0.0	0.0		0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	10.5	10.5		8.8	8.7	12.2	14.2
LnGrp Delay(d), s/veh	21.8	21.8		72.4	10.5	51.1	64.7
LnGrp LOS	С	С		E	В	D	E
Approach Vol. veh/h	873				1254	696	
Approach Delay, s/veh	21.8				21.1	58.0	
Approach LOS	С				С	E	
Timor	1	2	n	Δ	г	/	7
	1	2	3	4	5	6	1
Assigned Phs	1	2		4		6	
Pris Duration (G+Y+Rc), s	22.5	/0.3		37.2		92.8	
Change Period (Y+Rc), s	^ 4./	5.4		5.1		5.4	
Max Green Setting (Gmax), s	^ 25	48.6		40.9		/8.6	
Max Q Clear Time (g_c+11), s	17.5	23.4		30.2		19.7	
Green Ext Time (p_c), s	0.4	6.2		1.9		10.1	
Intersection Summary							
HCM 2010 Ctrl Delay			30.4				
HCM 2010 LOS			С				
Notes							

EXPM.syn

ر	•	+	\mathbf{F}	F	•	ł	*	1	1	۲	1	ŧ	∢
Movement EE	BL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		≜ t≽			3	^					5		1
Traffic Volume (veh/h)	0	628	197	1	673	534	0	0	0	0	202	0	168
Future Volume (veh/h)	0	628	197	1	673	534	0	0	0	0	202	0	168
Number	5	2	12		1	6	16				3	8	18
Initial Q (Qb), veh	0	0	0		0	0	0				0	0	0
Ped-Bike Adj(A_pbT) 1.0	00		1.00		1.00		1.00				1.00		1.00
Parking Bus, Adj 1.0	00	1.00	1.00		1.00	1.00	1.00				1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	0	1863	1900		1863	1863	0				1863	0	1863
Adj Flow Rate, veh/h	0	647	203		694	551	0				208	0	173
Adj No. of Lanes	0	2	0		1	2	0				1	0	1
Peak Hour Factor 0.9	97	0.97	0.97		0.97	0.97	0.97				0.97	0.97	0.97
Percent Heavy Veh, %	0	2	2		2	2	0				2	0	2
Cap, veh/h	0	912	286		712	2764	0				245	0	219
Arrive On Green 0.0	00	0.34	0.34		0.67	1.00	0.00				0.14	0.00	0.14
Sat Flow, veh/h	0	2747	832		1774	3632	0				1774	0	1583
Grp Volume(v), veh/h	0	431	419		694	551	0				208	0	173
Grp Sat Flow(s), veh/h/ln	0	1770	1716		1774	1770	0				1774	0	1583
O Serve (a, s) , s 0).0	27.5	27.5		48.4	0.0	0.0				14.9	0.0	13.7
Cycle O Clear(q c), s 0	0.0	27.5	27.5		48.4	0.0	0.0				14.9	0.0	13.7
Prop In Lane 0.0	00	2710	0.48		1.00	0.0	0.00				1.00	0.0	1.00
Lane Grp Cap(c), veh/h	0	608	590		712	2764	0				245	0	219
V/C Ratio(X) 0.0	00	0.71	0.71		0.98	0.20	0.00				0.85	0.00	0.79
Avail Cap(c, a), veh/h	0	608	590		796	2764	0				450	0	402
HCM Platoon Ratio 1.0	00	1.00	1.00		1.67	1.67	1.00				1.00	1.00	1.00
Upstream Filter(I) 0.0	00	1.00	1.00		0.83	0.83	0.00				1.00	0.00	1.00
Uniform Delay (d), s/veh 0).0	37.0	37.0		20.8	0.0	0.0				54.7	0.0	54.2
Incr Delay (d2), s/veh 0	0.0	6.8	7.1		22.1	0.1	0.0				8.0	0.0	6.3
Initial O Delay $(d3)$, s/veh 0).0	0.0	0.0		0.0	0.0	0.0				0.0	0.0	0.0
%ile BackOfO(50%), veh/ln	0.0	14.6	14.2		27.5	0.1	0.0				7.8	0.0	6.4
InGrp Delay(d), s/veh 0).0	43.8	44.1		43.0	0.1	0.0				62.7	0.0	60.5
LnGrp LOS		D	D		D	A	0.0				E	0.0	E
Approach Vol. veh/h		850				1245						381	
Approach Delay, s/veh		44 0				24.0						61 7	
Approach LOS		D				2 1.0 C						F	
		U				U						-	
Timer	1	2	3	4	5	6	7	8					
Assigned Phs	1	2				6		8					
Phs Duration (G+Y+Rc), 56	5.8	50.1				106.9		23.1					
Change Period (Y+Rc), \$ 4	4.7	5.4				5.4		5.1					
Max Green Setting (Gmax)	58	23.5				86.5		33.0					
Max Q Clear Time (g_c+610)),45	29.5				2.0		16.9					
Green Ext Time (p_c), s 1	1.7	0.0				4.3		1.1					
Intersection Summary													
HCM 2010 Ctrl Delay			36.7										
HCM 2010 LOS			D										
Notes													

EXPM.syn

4333-4337 Home Ave MO 1: Fairmount Ave & Home Ave

	₫	≯	-	\mathbf{F}	4	+	×	1	Ť	1	1	ŧ
Movement	EBU	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Lane Configurations		1	đβ		1	A12		۲	A12		7	†
Traffic Volume (veh/h)	50	242	340	88	46	600	77	255	507	105	81	160
Future Volume (veh/h)	50	242	340	88	46	600	77	255	507	105	81	160
Number		5	2	12	1	6	16	3	8	18	7	4
Initial Q (Qb), veh		0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)		1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Parking Bus, Adj		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln		1863	1863	1900	1863	1863	1900	1863	1863	1900	1863	1863
Adj Flow Rate, veh/h		252	354	92	48	625	80	266	528	109	84	167
Adj No. of Lanes		1	2	0	1	2	0	1	2	0	1	1
Peak Hour Factor		0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh, %		2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h		281	1002	257	62	744	95	233	1094	225	106	564
Arrive On Green		0.16	0.36	0.36	0.03	0.24	0.24	0.13	0.37	0.37	0.06	0.30
Sat Flow, veh/h		1774	2790	716	1774	3158	404	1774	2925	601	1774	1863
Grp Volume(v), veh/h		252	223	223	48	350	355	266	319	318	84	167
Grp Sat Flow(s),veh/h/ln		1774	1770	1736	1774	1770	1792	1774	1770	1757	1774	1863
Q Serve(q_s), s		16.6	11.0	11.2	3.2	22.4	22.5	15.6	16.4	16.5	5.6	8.2
Cycle Q Clear(q_c), s		16.6	11.0	11.2	3.2	22.4	22.5	15.6	16.4	16.5	5.6	8.2
Prop In Lane		1.00		0.41	1.00		0.23	1.00		0.34	1.00	
Lane Grp Cap(c), veh/h		281	635	624	62	417	422	233	662	657	106	564
V/C Ratio(X)		0.90	0.35	0.36	0.78	0.84	0.84	1.14	0.48	0.48	0.79	0.30
Avail Cap(c_a), veh/h		412	724	711	143	451	456	233	662	657	188	564
HCM Platoon Ratio		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh		49.1	28.0	28.0	57.0	43.3	43.3	51.7	28.4	28.5	55.2	31.8
Incr Delay (d2), s/veh		12.7	0.6	0.6	7.6	16.2	16.3	103.1	0.8	0.8	4.9	0.5
Initial Q Delay(d3),s/veh		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In		9.1	5.5	5.5	1.7	12.9	13.1	14.3	8.1	8.1	2.9	4.3
LnGrp Delay(d),s/veh		61.8	28.5	28.7	64.6	59.5	59.6	154.8	29.2	29.3	60.1	32.2
LnGrp LOS		E	С	С	E	E	E	F	С	С	E	С
Approach Vol. veh/h			698			753			903			766
Approach Delay, s/veh			40.6			59.9			66.2			83.6
Approach LOS			D			E			E			F
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Physical His Physical Physica	85	48.0	20.0	42.4	23.2	33.3	11 5	50.9				
Change Period $(Y+Rc)$ s	4 4	* 5 3	4 4	6.4	4 4	53	4.4	* 6.4				
Max Green Setting (Gmax) s	9.6	* <u>4</u> 9	15.6	36.0	27.6	30.3	12.6	* 30				
Max O Clear Time (q_{c+11}) s	5.2	13.2	17.6	38.0	18.6	24.5	7.6	18 5				
Green Ext Time (n_c) s	0.0	4.8	0.0	0.0	0.2	3.6	0.0	57				
Intersection Cummons	0.0	ч. 0	0.0	0.0	0.2	5.0	0.0	0.7				
			(0.0									
HCM 2010 Ctrl Delay			63.2									
HCM 2010 LOS			E									
Notes												

EXWPAM.syn

	~
Movement	
	SBK
	^
Traffic Volume (ven/h)	494
Future Volume (veh/h)	494
Number	14
Initial Q (Qb), veh	0
Ped-Bike Adj(A_pbT)	1.00
Parking Bus, Adj	1.00
Adj Sat Flow, veh/h/ln	1863
Adj Flow Rate, veh/h	515
Adj No. of Lanes	1
Peak Hour Factor	0.96
Percent Heavy Veh, %	2
Cap, veh/h	479
Arrive On Green	0.30
Sat Flow, veh/h	1583
Grp Volume(v), veh/h	515
Grp Sat Flow(s), veh/h/ln	1583
Q Serve(q_s), s	36.0
Cycle Q Clear(q c), s	36.0
Prop In Lane	1.00
Lane Grp Cap(c), veh/h	479
V/C Ratio(X)	1.07
Avail Cap(c_a), veh/h	479
HCM Platoon Ratio	1.00
Upstream Filter(I)	1.00
Uniform Delay (d) s/veh	41.5
Incr Delay (d2) s/veh	62.7
Initial \cap Delay(d3) s/veh	02.7
%ile BackOfO(50%) vob/lp	24.0
InCrn Dolay(d) s/yob	24.0
Incrn LOS	104.1 E
LIIGIP LUS	Г
Approach vol, ven/n	
Approach Delay, s/veh	
Approach LUS	

Timer

Intersection						
Int Delay, s/veh	0.2					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	_ ^ ↑₽			^		1
Traffic Vol, veh/h	682	8	0	1393	0	44
Future Vol, veh/h	682	8	0	1393	0	44
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage	,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	97	97	97	97	97	97
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	703	8	0	1436	0	45

Major/Minor	Major1	Ма	jor2	Min	or1		
Conflicting Flow All	0	0	-	-	-	356	
Stage 1	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	
Critical Hdwy	-	-	-	-	-	6.94	
Critical Hdwy Stg 1	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	
Follow-up Hdwy	-	-	-	-	-	3.32	
Pot Cap-1 Maneuver	-	-	0	-	0	640	
Stage 1	-	-	0	-	0	-	
Stage 2	-	-	0	-	0	-	
Platoon blocked, %	-	-		-			
Mov Cap-1 Maneuver	r -	-	-	-	-	640	
Mov Cap-2 Maneuver	r -	-	-	-	-	-	
Stage 1	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	

Approach	EB	WB	NB
HCM Control Delay, s	0	0	11.1
HCM LOS			В

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBT
Capacity (veh/h)	640	-	-	-
HCM Lane V/C Ratio	0.071	-	-	-
HCM Control Delay (s)	11.1	-	-	-
HCM Lane LOS	В	-	-	-
HCM 95th %tile Q(veh)	0.2	-	-	-

Intersection						
Int Delay, s/veh	0.1					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations				^		1
Traffic Vol, veh/h	661	65	0	1393	0	29
Future Vol, veh/h	661	65	0	1393	0	29
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage	,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	97	97	97	97	97	97
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	681	67	0	1436	0	30

Major/Minor	Major1	Ma	ajor2	Min	or1												
Conflicting Flow All	0	0	-	-	-	374											
Stage 1	-	-	-	-	-	-											
Stage 2	-	-	-	-	-	-											
Critical Hdwy	-	-	-	-	-	6.94											
Critical Hdwy Stg 1	-	-	-	-	-	-											
Critical Hdwy Stg 2	-	-	-	-	-	-											
Follow-up Hdwy	-	-	-	-	-	3.32											
Pot Cap-1 Maneuver	-	-	0	-	0	623											
Stage 1	-	-	0	-	0	-											
Stage 2	-	-	0	-	0	-											
Platoon blocked, %	-	-		-													
Mov Cap-1 Maneuve	r -	-	-	-	-	623											
Mov Cap-2 Maneuve	r -	-	-	-	-	-											
Stage 1	-	-	-	-	-	-											
Stage 2	-	-	-	-	-	-											

Approach	EB	WB	NB
HCM Control Delay, s	0	0	11.1
HCM LOS			В

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBT
Capacity (veh/h)	623	-	-	-
HCM Lane V/C Ratio	0.048	-	-	-
HCM Control Delay (s)	11.1	-	-	-
HCM Lane LOS	В	-	-	-
HCM 95th %tile Q(veh)	0.2	-	-	-

	-	\mathbf{r}	F	-	-	1	1
Movement	EBT	EBR	WBU	WBL	WBT	NBL	NBR
Lane Configurations	≜ 1⊾		-	3	44	¥	1
Traffic Volume (veh/h)	498	184	53	447	893	41	175
Future Volume (veh/h)	498	184	53	447	893	41	175
Number	2	12		1	6	7	14
Initial Q (Qb), veh	0	0		0	0	0	0
Ped-Bike Adi(A pbT)		1.00		1.00		1.00	1.00
Parking Bus, Adi	1.00	1.00		1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1900		1863	1863	1863	1863
Adj Flow Rate, veh/h	513	190		461	921	106	111
Adj No. of Lanes	2	0		1	2	1	1
Peak Hour Factor	0.97	0.97		0.97	0.97	0.97	0.97
Percent Heavy Veh, %	2	2		2	2	2	2
Cap, veh/h	1307	482		494	2940	157	140
Arrive On Green	0.17	0.17		0.28	0.83	0.09	0.09
Sat Flow, veh/h	2627	934		1774	3632	1774	1583
Grp Volume(v), veh/h	358	345		461	921	106	111
Grp Sat Flow(s) veh/h/ln	1770	1698		1774	1770	1774	1583
Q Serve(g_s), s	23.4	23.5		32.9	7.7	7.5	8.9
Cycle O Clear(q, c), s	23.4	23.5		32.9	7.7	7.5	8.9
Prop In Lane		0.55		1.00		1.00	1.00
Lane Grp Cap(c), veh/h	913	876		494	2940	157	140
V/C Ratio(X)	0.39	0.39		0.93	0.31	0.67	0.79
Avail Cap(c, a), veh/h	913	876		673	2940	423	378
HCM Platoon Ratio	0.33	0.33		1.00	1.00	1.00	1.00
Upstream Filter(I)	0.76	0.76		1 00	1.00	1.00	1.00
Uniform Delay (d), s/veh	35.8	35.9		45.7	2.5	57.4	58.1
Incr Delay (d2), s/veh	1.0	1.0		16.5	0.3	4.9	9.5
Initial O Delay(d3) s/veh	0.0	0.0		0.0	0.0	0.0	0.0
%ile BackOfO(50%).veh/ln	11.7	11.3		18.4	3.8	3.9	4.3
InGrp Delav(d) s/veh	36.8	36.9		62.2	2.8	62.4	67.6
LnGrp LOS	00.0 D	D		52.2 F	2.0 A	F	57.5 F
Approach Vol. veh/h	703	<u> </u>			1382	217	E
Approach Delay s/veh	36.8				22.6	65.0	
Approach LOS	50.0 D				22.0	53.0 F	
	U				C	L	
Timer	1	2	3	4	5	6	7
Assigned Phs	1	2		4		6	
Phs Duration (G+Y+Rc), s	40.9	72.4		16.6		113.4	
Change Period (Y+Rc), s	* 4.7	5.4		5.1		5.4	
Max Green Setting (Gmax), s	* 49	34.5		31.0		88.5	
Max Q Clear Time (g_c+I1), s	34.9	25.5		10.9		9.7	
Green Ext Time (p_c), s	1.3	3.0		0.6		8.5	
Intersection Summary							
HCM 2010 Ctrl Dolay			31 0				
HCM 2010 CIT Delay			51.0 C				
			C				
Notes							

EXWPAM.syn

ار ا	-	\mathbf{F}	4	+	×	1	Ť	۲	1	ŧ	∢	
Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	≜1 }		3	^					۴.		1	
Traffic Volume (veh/h) 0	479	187	550	389	0	0	0	0	205	0	108	
Future Volume (veh/h) 0	479	187	550	389	0	0	0	0	205	0	108	
Number 5	2	12	1	6	16				3	8	18	
Initial Q (Qb), veh 0	0	0	0	0	0				0	0	0	
Ped-Bike Adj(A_pbT) 1.00		1.00	1.00		1.00				1.00		1.00	
Parking Bus, Adj 1.00	1.00	1.00	1.00	1.00	1.00				1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln 0	1863	1900	1863	1863	0				1863	0	1863	
Adj Flow Rate, veh/h 0	499	195	573	405	0				214	0	112	
Adj No. of Lanes 0	2	0	1	2	0				1	0	1	
Peak Hour Factor 0.96	0.96	0.96	0.96	0.96	0.96				0.96	0.96	0.96	
Percent Heavy Veh, % 0	2	2	2	2	0				2	0	2	
Cap, veh/h 0	1017	395	594	2757	0				249	0	222	
Arrive On Green 0.00	0.41	0.41	0.56	1.00	0.00				0.14	0.00	0.14	
Sat Flow, veh/h 0	2586	969	1774	3632	0				1774	0	1583	
Grp Volume(v), veh/h 0	353	341	573	405	0				214	0	112	
Grp Sat Flow(s).veh/h/ln 0	1770	1692	1774	1770	0				1774	0	1583	
O Serve(q , s), s 0.0	19.2	19.4	40.2	0.0	0.0				15.3	0.0	8.5	
Cycle O Clear(q c), s 0.0	19.2	19.4	40.2	0.0	0.0				15.3	0.0	8.5	
Prop In Lane 0.00	.,.=	0.57	1.00	0.0	0.00				1.00	010	1.00	
Lane Grp Cap(c), veh/h 0	722	690	594	2757	0				249	0	222	
V/C Ratio(X) 0.00	0.49	0.49	0.96	0.15	0.00				0.86	0.00	0.50	
Avail Cap(c_a), veh/h 0	722	690	686	2757	0				452	0	403	
HCM Platoon Ratio 1.00	1.00	1.00	1.67	1.67	1.00				1.00	1.00	1.00	
Upstream Filter(I) 0.00	1.00	1.00	0.95	0.95	0.00				1.00	0.00	1.00	
Uniform Delay (d) s/veh 0.0	28.5	28.5	27.9	0.0	0.0				54 7	0.0	517	
Incr Delay (d2) s/veh 0.0	24	2.5	23.5	0.0	0.0				8.5	0.0	18	
Initial O Delay $(d3)$ s/veh 0.0	0.0	0.0	0.0	0.0	0.0				0.0	0.0	0.0	
% ile BackOfO(50%) veh/ ln 0	9.8	9.6	23.2	0.0	0.0				8.1	0.0	3.8	
InGrp Delay(d) s/veh 0.0	30.8	31.0	51.4	0.0	0.0				63.2	0.0	53.5	
LnGrp LOS	C	С	D	A	0.0				E	0.0	D	
Approach Vol. veh/h	694			978						326		
Approach Delay, s/veh	30.9			30.1						59.8		
Approach LOS	С			С						E		
Time en	2	2	4	F	/	7	0					
Infile I	2	3	4	5	0	1	8					
Assigned Phs I					0		8 22.2					
Phs Duration $(G+Y+RC)$, 48.2	58.5				106.7		23.3					
Change Period (Y+RC), S 4.7	5.4				5.4		5.I					
Max Green Setting (Gmax)bu	31.4				86.4		33.1					
Max Q Clear Time (g_c+4Q,2	5 21.4				2.0		17.3					
Green Ext Time (p_c), s 1.4	3.2				3.0		0.9					
Intersection Summary												
HCM 2010 Ctrl Delay		35.3										
HCM 2010 LOS		D										
Notes												
NOICO												

EXWPAM.syn

4333-4337 Home Ave MO 1: Fairmount Ave & Home Ave

	●	≯	-	\mathbf{F}	F	4	+	*	•	Ť	۲	1
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL
Lane Configurations		ă	A			ă.	4 12		۲.	4 12		ሻ
Traffic Volume (veh/h)	69	414	686	177	11	85	569	69	91	190	62	69
Future Volume (veh/h)	69	414	686	177	11	85	569	69	91	190	62	69
Number		5	2	12		1	6	16	3	8	18	7
Initial Q (Qb), veh		0	0	0		0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)		1.00		1.00		1.00		1.00	1.00		1.00	1.00
Parking Bus, Adj		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln		1863	1863	1900		1863	1863	1900	1863	1863	1900	1863
Adj Flow Rate, veh/h		431	715	184		89	593	72	95	198	65	72
Adj No. of Lanes		1	2	0		1	2	0	1	2	0	1
Peak Hour Factor		0.96	0.96	0.96		0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh, %		2	2	2		2	2	2	2	2	2	2
Cap, veh/h		456	901	232		273	712	86	109	796	254	92
Arrive On Green		0.26	0.32	0.32		0.15	0.22	0.22	0.06	0.30	0.30	0.05
Sat Flow, veh/h		1774	2788	717		1774	3179	385	1774	2641	842	1774
Grp Volume(v) veh/h		431	454	445		89	330	335	95	131	132	72
Grp Sat Flow(s) veh/h/ln		1774	1770	1736		1774	1770	1795	1774	1770	1714	1774
O Serve(a, s) s		29.4	28.8	28.8		5.5	21.9	22.0	6.6	69	7.2	5.0
Cycle O Clear(q, c) s		29.4	28.8	28.8		5.5	21.9	22.0	6.6	6.9	7.2	5.0
Pron In Lane		1 00	20.0	0.41		1 00	21.7	0.21	1 00	0.7	0.49	1 00
Lane Grp Cap(c) veh/h		456	572	561		273	396	402	109	533	516	92
V/C Ratio(X)		0.94	0.79	0.79		0.33	0.83	0.83	0.87	0.25	0.26	0.78
Avail Cap(c, a) veh/h		511	741	727		273	434	440	109	533	516	167
HCM Platoon Ratio		1 00	1 00	1 00		1.00	1 00	1 00	1 00	1 00	1 00	1 00
Upstream Filter(I)		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d) s/veh		45.0	38.0	38.0		46.6	45.7	45.7	57.5	32.6	32.7	57.9
Incr Delay (d2) s/veh		24.3	5.9	61		0.3	16.2	16.7	46.8	0.3	0.4	5.4
Initial O Delay(d3) s/veh		0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfO(50%) veh/ln		17.4	15.1	14.8		27	12.5	12.7	4.6	3.4	3.5	2.6
InGrp Delay(d) s/veh		69.3	44 0	44 1		46.8	61.9	62.0	104.2	32.9	33.1	63.3
InGrp LOS		F	D	D		D	F	52.0 F	F	С.	C	F
Approach Vol. veh/h		E	1330	D			754	E		358		
Approach Delay s/yeh			52.2				60.2			51 0		
Approach LOS			52.2 D				50.2 F			D		
			U				L			U		
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	24.3	44.8	12.0	42.4	36.2	33.0	10.8	43.6				
Change Period (Y+Rc), s	5.3	* 4.9	4.4	6.4	4.4	5.3	4.4	* 6.4				
Max Green Setting (Gmax), s	14.6	* 52	7.6	36.0	35.6	30.3	11.6	* 32				
Max Q Clear Time (g_c+I1), s	7.5	30.8	8.6	38.0	31.4	24.0	7.0	9.2				
Green Ext Time (p_c), s	0.0	9.1	0.0	0.0	0.3	3.6	0.0	2.2				
Intersection Summary												
HCM 2010 Ctrl Delay			87.0									
HCM 2010 LOS			F									
Notes												

EXWPPM.syn

↓ √

	· ·					
Movement	SBT	SBR				
Lanetonfigurations	1	1				
Traffic Volume (veh/h)	406	621				
Future Volume (veh/h)	406	621				
Number	4	14				
Initial Q (Qb), veh	0	0				
Ped-Bike Adj(A pbT)		1.00				
Parking Bus, Adi	1.00	1.00				
Adi Sat Flow, veh/h/ln	1863	1863				
Adi Flow Rate, veh/h	423	647				
Adi No. of Lanes	1	1				
Peak Hour Factor	0.96	0.96				
Percent Heavy Veh. %	2	2				
Cap. veh/h	543	461				
Arrive On Green	0.29	0.29				
Sat Flow, veh/h	1863	1583				
Grn Volume(v) veh/h	423	647				
Grn Sat Flow(s) veh/h/ln	1863	1583				
O Serve(a, s) s	25.7	36.0				
$C_{ycle} \cap C_{lear}(a, c) \leq c_{vcle}$	25.7	36.0				
$\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}$	ZJ.1	1 00				
Lano Grn Can(c) voh/h	5/2	1.00				
	043	1 /0				
Avail $Can(c, a)$ vob/b	5/2	1.40				
HCM Diatoon Datio	1 00	1 00				
Linstroom Eiltor(I)	1.00	1.00				
Upsitediti Filler(I)	1.00	1.00				
Unitoriti Delay (u), s/ven	40.1 7 7	43.0 102.6				
Inci Delay (uz), Siveri Initial O Dalay (d2) aluah	1.1	193.0				
	0.0	0.0 40 E				
%ILE BACKUIU(50%),Ven/In	14.4	40.5				
Lingip Delay(d),s/ven	47.8	237.3				
	U	F				
Approach Vol, veh/h	1142					
Approach Delay, s/veh	156.2					
Approach LOS	F					
Timer						
Intersection						
------------------------	-------	------	------	------	------	------
Int Delay, s/veh	0.5					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations				- 11		1
Traffic Vol, veh/h	1223	14	0	1277	0	84
Future Vol, veh/h	1223	14	0	1277	0	84
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage	, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	99	99	99	99	99	99
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	1235	14	0	1290	0	85

Major/Minor	Major1	Ma	ajor2	Min	or1		
Conflicting Flow All	0	0	-	-	-	625	
Stage 1	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	
Critical Hdwy	-	-	-	-	-	6.94	
Critical Hdwy Stg 1	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	
Follow-up Hdwy	-	-	-	-	-	3.32	
Pot Cap-1 Maneuver	-	-	0	-	0	428	
Stage 1	-	-	0	-	0	-	
Stage 2	-	-	0	-	0	-	
Platoon blocked, %	-	-		-			
Mov Cap-1 Maneuve	r -	-	-	-	-	428	
Mov Cap-2 Maneuve	r -	-	-	-	-	-	
Stage 1	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	

Approach	EB	WB	NB
HCM Control Delay, s	0	0	15.5
HCM LOS			С

Vinor Lane/Major Mvmt	NBLn1	EBT	EBR	WBT
Capacity (veh/h)	428	-	-	-
HCM Lane V/C Ratio	0.198	-	-	-
HCM Control Delay (s)	15.5	-	-	-
HCM Lane LOS	С	-	-	-
HCM 95th %tile Q(veh)	0.7	-	-	-

Intersection						
Int Delay, s/veh	0.3					
N /	FDT			WDT		
Movement	FRI	FRK	WBL	WRI	NBL	NRK
Lane Configurations	∱ î≽			- 11		1
Traffic Vol, veh/h	1189	114	0	1277	0	46
Future Vol, veh/h	1189	114	0	1277	0	46
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage	e,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	99	99	99	99	99	99
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	1201	115	0	1290	0	46

Major/Minor	Major1	N	lajor2	Mir	nor1		
Conflicting Flow All	0	0	-	-	-	658	
Stage 1	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	
Critical Hdwy	-	-	-	-	-	6.94	
Critical Hdwy Stg 1	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	
Follow-up Hdwy	-	-	-	-	-	3.32	
Pot Cap-1 Maneuver	-	-	0	-	0	407	
Stage 1	-	-	0	-	0	-	
Stage 2	-	-	0	-	0	-	
Platoon blocked, %	-	-		-			
Mov Cap-1 Maneuve	r-	-	-	-	-	407	
Mov Cap-2 Maneuve	r-	-	-	-	-	-	
Stage 1	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	

Approach	EB	WB	NB
HCM Control Delay, s	0	0	15
HCM LOS			С

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBT
Capacity (veh/h)	407	-	-	-
HCM Lane V/C Ratio	0.114	-	-	-
HCM Control Delay (s)	15	-	-	-
HCM Lane LOS	С	-	-	-
HCM 95th %tile Q(veh)	0.4	-	-	-

	-	\mathbf{r}	F	∢	-	1	1
Movement	EBT	EBR	WBU	WBL	WBT	NBL	NBR
Lane Configurations	4 1.			3	**	M	1
Traffic Volume (veh/h)	737	138	79	215	1039	160	544
Future Volume (veh/h)	737	138	79	215	1039	160	544
Number	2	12		1	6	7	14
Initial Q (Qb), veh	0	0		0	0	0	0
Ped-Bike Adi(A pbT)		1.00		1.00		1.00	1.00
Parking Bus, Adi	1.00	1.00		1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1900		1863	1863	1863	1863
Adj Flow Rate, veh/h	744	139		217	1049	343	356
Adj No. of Lanes	2	0		1	2	1	1
Peak Hour Factor	0.99	0.99		0.99	0.99	0.99	0.99
Percent Heavy Veh, %	2	2		2	2	2	2
Cap, veh/h	1479	276		245	2375	440	393
Arrive On Green	0.50	0.50		0.14	0.67	0.25	0.25
Sat Flow, veh/h	3071	556		1774	3632	1774	1583
Grp Volume(v), veh/h	442	441		217	1049	343	356
Grp Sat Flow(s).veh/h/ln	1770	1765		1774	1770	1774	1583
Q Serve(q_s), s	21.8	21.8		15.6	18.0	23.4	28.4
Cycle Q Clear(q c), s	21.8	21.8		15.6	18.0	23.4	28.4
Prop In Lane	-	0.32		1.00		1.00	1.00
Lane Grp Cap(c), veh/h	879	877		245	2375	440	393
V/C Ratio(X)	0.50	0.50		0.88	0.44	0.78	0.91
Avail Cap(c a), veh/h	879	877		345	2375	558	498
HCM Platoon Ratio	1.00	1.00		1.00	1.00	1.00	1.00
Upstream Filter(I)	0.45	0.45		1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	21.9	21.9		55.0	10.0	45.6	47.4
Incr Delay (d2), s/veh	0.9	0.9		17.6	0.6	5.4	17.4
Initial Q Delay(d3),s/veh	0.0	0.0		0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	10.8	10.8		8.9	8.9	12.2	14.3
LnGrp Delay(d), s/veh	22.9	22.9		72.6	10.6	51.0	64.8
LnGrp LOS	С	С		E	В	D	E
Approach Vol. veh/h	883				1266	699	
Approach Delay, s/veh	22.9				21.2	58.0	
Approach LOS	С				С	E	
T'	4	0	0		-	_	-
Timer	1	2	3	4	5	6	/
Assigned Phs	1	2		4		6	
Phs Duration (G+Y+Rc), s	22.7	/0.0		37.3		92.7	
Change Period (Y+Rc), s	* 4.7	5.4		5.1		5.4	
Max Green Setting (Gmax), s	* 25	48.6		40.9		/8.6	
Max Q Clear Time (g_c+l1), s	17.6	23.8		30.4		20.0	
Green Ext Time (p_c), s	0.4	6.2		1.9		10.2	
Intersection Summary							
HCM 2010 Ctrl Delav			30.8				
HCM 2010 LOS			С				
N			-				
NOTES							

EXWPPM.syn

٩	-	\mathbf{F}	F	•	+	*	٩	1	۲	1	ŧ	∢
Movement EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	≜î ≽			1	^					٦		1
Traffic Volume (veh/h) 0	635	197	1	675	541	0	0	0	0	204	0	168
Future Volume (veh/h) 0	635	197	1	675	541	0	0	0	0	204	0	168
Number 5	2	12		1	6	16				3	8	18
Initial Q (Qb), veh 0	0	0		0	0	0				0	0	0
Ped-Bike Adj(A_pbT) 1.00		1.00		1.00		1.00				1.00		1.00
Parking Bus, Adj 1.00	1.00	1.00		1.00	1.00	1.00				1.00	1.00	1.00
Adj Sat Flow, veh/h/ln 0	1863	1900		1863	1863	0				1863	0	1863
Adj Flow Rate, veh/h 0	655	203		696	558	0				210	0	173
Adj No. of Lanes 0	2	0		1	2	0				1	0	1
Peak Hour Factor 0.97	0.97	0.97		0.97	0.97	0.97				0.97	0.97	0.97
Percent Heavy Veh, % 0	2	2		2	2	0				2	0	2
Cap, veh/h 0	910	282		713	2760	0				247	0	221
Arrive On Green 0.00	0.34	0.34		0.67	1.00	0.00				0.14	0.00	0.14
Sat Flow, veh/h 0	2755	825		1774	3632	0				1774	0	1583
Grp Volume(v), veh/h 0	435	423		696	558	0				210	0	173
Grp Sat Flow(s),veh/h/ln 0	1770	1717		1774	1770	0				1774	0	1583
Q Serve(q_s), s 0.0	27.9	28.0		48.6	0.0	0.0				15.0	0.0	13.7
Cycle Q Clear(q_c), s 0.0	27.9	28.0		48.6	0.0	0.0				15.0	0.0	13.7
Prop In Lane 0.00		0.48		1.00		0.00				1.00		1.00
Lane Grp Cap(c), veh/h 0	605	587		713	2760	0				247	0	221
V/C Ratio(X) 0.00	0.72	0.72		0.98	0.20	0.00				0.85	0.00	0.78
Avail Cap(c_a), veh/h 0	605	587		796	2760	0				450	0	402
HCM Platoon Ratio 1.00	1.00	1.00		1.67	1.67	1.00				1.00	1.00	1.00
Upstream Filter(I) 0.00	1.00	1.00		0.83	0.83	0.00				1.00	0.00	1.00
Uniform Delay (d), s/veh 0.0	37.4	37.4		20.7	0.0	0.0				54.6	0.0	54.1
Incr Delay (d2), s/veh 0.0	7.2	7.5		22.2	0.1	0.0				8.0	0.0	6.0
Initial Q Delay(d3), s/veh 0.0	0.0	0.0		0.0	0.0	0.0				0.0	0.0	0.0
%ile BackOfQ(50%),veh/lr0.0	14.9	14.5		27.6	0.1	0.0				7.9	0.0	6.4
LnGrp Delay(d), s/veh 0.0	44.6	44.8		42.9	0.1	0.0				62.6	0.0	60.1
LnGrp LOS	D	D		D	А					E		E
Approach Vol, veh/h	858				1254						383	
Approach Delay, s/veh	44.7				23.9						61.5	
Approach LOS	D				С						E	
Timer 1	2	3	4	5	6	7	8					
Assigned Phs 1	2				6		8					
Phs Duration (G+Y+Rc), \$7.0	49.8				106.8		23.2					
Change Period (Y+Rc), \$ 4.7	5.4				5.4		5.1					
Max Green Setting (Gmax)58	23.5				86.5		33.0					
Max Q Clear Time (q c+60,6s	30.0				2.0		17.0					
Green Ext Time (p_c), s 1.7	0.0				4.4		1.1					
Intersection Summary												
HCM 2010 Ctrl Delav		36.8										
HCM 2010 LOS		D										
Notes												

EXWPPM.syn

4333-4337 Home Ave MO 1: Fairmount Ave & Home Ave

	₫	≯	→	$\mathbf{\hat{z}}$	F	4	+	×	•	1	۲	1
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL
Lane Configurations		1	¢β			1	≜ 1₽		۲	A12		۲
Traffic Volume (veh/h)	43	243	343	88	10	46	605	78	257	512	106	82
Future Volume (veh/h)	43	243	343	88	10	46	605	78	257	512	106	82
Number		5	2	12		1	6	16	3	8	18	7
Initial Q (Qb), veh		0	0	0		0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)		1.00		1.00		1.00		1.00	1.00		1.00	1.00
Parking Bus, Adj		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln		1863	1863	1900		1863	1863	1900	1863	1863	1900	1863
Adj Flow Rate, veh/h		253	357	92		48	630	81	268	533	110	85
Adj No. of Lanes		1	2	0		1	2	0	1	2	0	1
Peak Hour Factor		0.96	0.96	0.96		0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh, %		2	2	2		2	2	2	2	2	2	2
Cap, veh/h		282	1007	256		62	746	96	232	1089	224	107
Arrive On Green		0.16	0.36	0.36		0.03	0.24	0.24	0.13	0.37	0.37	0.06
Sat Flow, veh/h		1774	2795	711		1774	3156	405	1774	2925	601	1774
Grp Volume(v), veh/h		253	224	225		48	353	358	268	322	321	85
Grp Sat Flow(s),veh/h/ln		1774	1770	1737		1774	1770	1791	1774	1770	1757	1774
Q Serve(g_s), s		16.7	11.1	11.3		3.2	22.7	22.7	15.6	16.6	16.8	5.6
Cycle Q Clear(q_c), s		16.7	11.1	11.3		3.2	22.7	22.7	15.6	16.6	16.8	5.6
Prop In Lane		1.00		0.41		1.00		0.23	1.00		0.34	1.00
Lane Grp Cap(c), veh/h		282	638	626		62	418	424	232	659	654	107
V/C Ratio(X)		0.90	0.35	0.36		0.78	0.84	0.85	1.15	0.49	0.49	0.79
Avail Cap(c_a), veh/h		411	723	710		143	450	455	232	659	654	188
HCM Platoon Ratio		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh		49.2	27.9	28.0		57.1	43.4	43.4	51.8	28.7	28.7	55.3
Incr Delay (d2), s/veh		13.0	0.6	0.6		7.6	16.6	16.7	107.1	0.8	0.8	4.9
Initial Q Delay(d3),s/veh		0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In		9.2	5.5	5.5		1.7	13.0	13.2	14.5	8.3	8.3	2.9
LnGrp Delay(d),s/veh		62.2	28.5	28.6		64.7	60.0	60.1	158.9	29.5	29.6	60.1
LnGrp LOS		E	С	С		E	E	E	F	С	С	E
Approach Vol, veh/h			702				759			911		
Approach Delay, s/veh			40.7				60.4			67.6		
Approach LOS			D				E			E		
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	8.5	48.3	20.0	42.4	23.3	33.5	11.6	50.8				
Change Period (Y+Rc), s	4.4	* 5.3	4.4	6.4	4.4	5.3	4.4	* 6.4				
Max Green Setting (Gmax), s	9.6	* 49	15.6	36.0	27.6	30.3	12.6	* 39				
Max Q Clear Time (q_c+l1), s	5.2	13.3	17.6	38.0	18.7	24.7	7.6	18.8				
Green Ext Time (p_c), s	0.0	4.8	0.0	0.0	0.2	3.4	0.0	5.7				
Intersection Summary												
HCM 2010 Ctrl Delay			64.4									
HCM 2010 LOS			E									
Notes												

OYAM.syn

↓ √

	*	
Movement	SBT	SBR
Lane Configurations	†	1
Traffic Volume (veh/h)	162	498
Future Volume (veh/h)	162	498
Number	4	14
Initial Q (Qb), veh	0	0
Ped-Bike Adj(A_pbT)		1.00
Parking Bus, Adj	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863
Adj Flow Rate, veh/h	169	519
Adj No. of Lanes	1	1
Peak Hour Factor	0.96	0.96
Percent Heavy Veh, %	2	2
Cap, veh/h	563	478
Arrive On Green	0.30	0.30
Sat Flow, veh/h	1863	1583
Grp Volume(v), veh/h	169	519
Grp Sat Flow(s).veh/h/ln	1863	1583
Q Serve(a_s), s	8.3	36.0
Cycle Q Clear(a c), s	8.3	36.0
Prop In Lane		1.00
Lane Grp Cap(c), veh/h	563	478
V/C Ratio(X)	0.30	1.09
Avail Cap(c_a), veh/h	563	478
HCM Platoon Ratio	1.00	1.00
Upstream Filter(I)	1.00	1.00
Uniform Delay (d), s/veh	31.9	41.6
Incr Delay (d2), s/veh	0.5	66.2
Initial Q Delay(d3).s/veh	0.0	0.0
%ile BackOfQ(50%),veh/ln	4.3	24.5
LnGrp Delay(d), s/veh	32.4	107.8
LnGrp LOS	С	F
Approach Vol. veh/h	773	
Approach Delay, s/veh	86.1	
Approach LOS	F	
limor		

Interception						
Intersection						
Int Delay, s/veh	0.2					
	FDT			WDT		
Movement	FRI	EBK	WBL	WRI	NRL	NRK
Lane Configurations	_ † ₽			- 11		1
Traffic Vol, veh/h	687	1	0	1397	0	37
Future Vol, veh/h	687	1	0	1397	0	37
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage	,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	97	97	97	97	97	97
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	708	1	0	1440	0	38

Major/Minor	Major1	Ν	Najor2	Mir	nor1		
Conflicting Flow All	0	0	-	-	-	355	
Stage 1	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	
Critical Hdwy	-	-	-	-	-	6.94	
Critical Hdwy Stg 1	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	
Follow-up Hdwy	-	-	-	-	-	3.32	
Pot Cap-1 Maneuver	-	-	0	-	0	641	
Stage 1	-	-	0	-	0	-	
Stage 2	-	-	0	-	0	-	
Platoon blocked, %	-	-		-			
Mov Cap-1 Maneuve	r -	-	-	-	-	641	
Mov Cap-2 Maneuve	r-	-	-	-	-	-	
Stage 1	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	

Approach	EB	WB	NB
HCM Control Delay, s	0	0	11
HCM LOS			В

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBT
Capacity (veh/h)	641	-	-	-
HCM Lane V/C Ratio	0.06	-	-	-
HCM Control Delay (s)	11	-	-	-
HCM Lane LOS	В	-	-	-
HCM 95th %tile Q(veh)	0.2	-	-	-

Intersection						
Int Delay, s/veh	0.1					
-						
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	_ † 1≽			- 11		1
Traffic Vol, veh/h	665	59	0	1397	0	23
Future Vol, veh/h	665	59	0	1397	0	23
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage	e,# 0	-	-	0	0	-
Grade, %	. 0	-	-	0	0	-
Peak Hour Factor	97	97	97	97	97	97
Heavy Vehicles %	2	2	2	2	2	2
Mymt Flow	686	61	0	1//0	0	2/
	000	01	0	1440	0	27

Major/Minor	Major1	Μ	lajor2	Mir	nor1		
Conflicting Flow All	0	0	-	-	-	374	
Stage 1	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	
Critical Hdwy	-	-	-	-	-	6.94	
Critical Hdwy Stg 1	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	
Follow-up Hdwy	-	-	-	-	-	3.32	
Pot Cap-1 Maneuver	-	-	0	-	0	623	
Stage 1	-	-	0	-	0	-	
Stage 2	-	-	0	-	0	-	
Platoon blocked, %	-	-		-			
Mov Cap-1 Maneuve	r-	-	-	-	-	623	
Mov Cap-2 Maneuve	r -	-	-	-	-	-	
Stage 1	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	

Approach	EB	WB	NB
HCM Control Delay, s	0	0	11
HCM LOS			В

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBT
Capacity (veh/h)	623	-	-	-
HCM Lane V/C Ratio	0.038	-	-	-
HCM Control Delay (s)	11	-	-	-
HCM Lane LOS	В	-	-	-
HCM 95th %tile Q(veh)	0.1	-	-	-

Movement EBT EBR WBU WBL WBT NBL NBR Lane Configurations 1
Lane Configurations 1 1 1 1 1 Traffic Volume (veh/h) 501 189 46 450 900 44 176 Future Volume (veh/h) 501 189 46 450 900 44 176 Number 2 12 1 6 7 14 Initial Q (Qb), veh 0 0 0 0 0 0 Ped-Bike Adj(A_pbT) 1.00 1.00 1.00 1.00 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 Adj Sat Flow, veh/h/ln 1863 1900 1863 1863 1863 1863 Adj No. of Lanes 2 0 1 2 1 1 Peak Hour Factor 0.97 0.97 0.97 0.97 0.97 0.97 Percent Heavy Veh, % 2 2 2 2 2 2 2 2 2 2
Traffic Volume (veh/h) 501 189 46 450 900 44 176 Future Volume (veh/h) 501 189 46 450 900 44 176 Number 2 12 1 6 7 14 Initial Q (Qb), veh 0 0 0 0 0 0 Ped-Bike Adj(A_pbT) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Adj Sat Flow, veh/h/In 1863 195 464 928 108 113 Adj No. of Lanes 2 0 1 2 1 1 Peak Hour Factor 0.97 0.97 0.97 0.97 0.97 0.97 Percent Heavy Veh, % 2 <
Future Volume (veh/h)5011894645090044176Number21216714Initial Q (Qb), veh000000Ped-Bike Adj(A_pbT)1.001.001.001.001.00Parking Bus, Adj1.001.001.001.001.00Adj Sat Flow, veh/h/in18631900186318631863Adj Flow Rate, veh/h516195464928108Adj No. of Lanes201211Peak Hour Factor0.970.970.970.970.97Percent Heavy Veh, %222222Cap, veh/h12914864972935160143Arrive On Green0.170.170.280.830.090.09Sat Flow, veh/h26119471774363217741583Grp Volume(v), veh/h362349464928108113Grp Sat Flow(s), veh/h/ln177016961774177017741583Q Serve(g_s), s23.723.933.17.97.79.1Prop In Lane0.561.001.001.001.00Lane Grp Cap(c), veh/h9078694972935160143
Number 2 12 1 6 7 14 Initial Q (Qb), veh 0 </td
Initial Q (Qb), veh 0 <th0< th=""> 0</th0<>
Ped-Bike Adj(A_pbT)1.001.001.001.001.00Parking Bus, Adj1.001.001.001.001.001.00Adj Sat Flow, veh/h/ln186319001863186318631863Adj Flow Rate, veh/h516195464928108113Adj No. of Lanes201211Peak Hour Factor0.970.970.970.970.97Percent Heavy Veh, %22222Cap, veh/h12914864972935160143Arrive On Green0.170.170.280.830.090.09Sat Flow, veh/h26119471774363217741583Grp Volume(v), veh/h362349464928108113Grp Sat Flow(s), veh/h/ln177016961774177017741583Q Serve(g_s), s23.723.933.17.97.79.1Cycle Q Clear(g_c), s23.723.933.17.97.79.1Prop In Lane0.561.001.001.001.00Lane Grp Cap(c), veh/h9078694972935160143
Parking Bus, Adj1.001.001.001.001.001.00Adj Sat Flow, veh/h/In186319001863186318631863Adj Flow Rate, veh/h516195464928108113Adj No. of Lanes201211Peak Hour Factor0.970.970.970.970.97Percent Heavy Veh, %22222Cap, veh/h12914864972935160143Arrive On Green0.170.170.280.830.090.09Sat Flow, veh/h26119471774363217741583Grp Volume(v), veh/h362349464928108113Grp Sat Flow(s), veh/h/In177016961774177017741583Q Serve(g_s), s23.723.933.17.97.79.1Cycle Q Clear(g_c), s23.723.933.17.97.79.1Prop In Lane0.561.001.001.001.00Lane Grp Cap(c), veh/h9078694972935160143
Adj Sat Flow, veh/h/ln186319001863186318631863Adj Flow Rate, veh/h516195464928108113Adj No. of Lanes201211Peak Hour Factor0.970.970.970.970.970.97Percent Heavy Veh, %222222Cap, veh/h12914864972935160143Arrive On Green0.170.170.280.830.090.09Sat Flow, veh/h26119471774363217741583Grp Volume(v), veh/h362349464928108113Grp Sat Flow(s), veh/h/ln177016961774177017741583Q Serve(g_s), s23.723.933.17.97.79.1Cycle Q Clear(g_c), s23.723.933.17.97.79.1Prop In Lane0.561.001.001.001.00Lane Grp Cap(c), veh/h9078694972935160143
Adj Flow Rate, veh/h516195464928108113Adj No. of Lanes201211Peak Hour Factor 0.97 0.97 0.97 0.97 0.97 0.97 Percent Heavy Veh, %222222Cap, veh/h12914864972935160143Arrive On Green 0.17 0.17 0.28 0.83 0.09 0.09 Sat Flow, veh/h26119471774363217741583Grp Volume(v), veh/h362349464928108113Grp Sat Flow(s), veh/h/ln177016961774177017741583Q Serve(g_s), s23.723.933.17.97.79.1Cycle Q Clear(g_c), s23.723.933.17.97.79.1Prop In Lane0.561.001.001.001.00Lane Grp Cap(c), veh/h9078694972935160143
Adj No. of Lanes201211Peak Hour Factor0.970.970.970.970.970.97Percent Heavy Veh, %222222Cap, veh/h12914864972935160143Arrive On Green0.170.170.280.830.090.09Sat Flow, veh/h26119471774363217741583Grp Volume(v), veh/h362349464928108113Grp Sat Flow(s), veh/h/ln177016961774177017741583Q Serve(g_s), s23.723.933.17.97.79.1Cycle Q Clear(g_c), s23.723.933.17.97.79.1Prop In Lane0.561.001.001.001.00Lane Grp Cap(c), veh/h9078694972935160143
Peak Hour Factor 0.97
Percent Heavy Veh, % 2 3
Cap, veh/h12914864972935160143Arrive On Green0.170.170.280.830.090.09Sat Flow, veh/h26119471774363217741583Grp Volume(v), veh/h362349464928108113Grp Sat Flow(s), veh/h/ln177016961774177017741583Q Serve(g_s), s23.723.933.17.97.79.1Cycle Q Clear(g_c), s23.723.933.17.97.79.1Prop In Lane0.561.001.001.00Lane Grp Cap(c), veh/h9078694972935160143
Arrive On Green0.170.170.280.830.090.09Sat Flow, veh/h26119471774363217741583Grp Volume(v), veh/h362349464928108113Grp Sat Flow(s), veh/h/ln177016961774177017741583Q Serve(g_s), s23.723.933.17.97.79.1Cycle Q Clear(g_c), s23.723.933.17.97.79.1Prop In Lane0.561.001.001.001.00Lane Grp Cap(c), veh/h9078694972935160143V/C Patio(X)0.400.400.920.220.690.79
Sat Flow, veh/h 2611 947 1774 3632 1774 1583 Grp Volume(v), veh/h 362 349 464 928 108 113 Grp Sat Flow(s), veh/h/ln 1770 1696 1774 1770 1774 1583 Q Serve(g_s), s 23.7 23.9 33.1 7.9 7.7 9.1 Cycle Q Clear(g_c), s 23.7 23.9 33.1 7.9 7.7 9.1 Prop In Lane 0.56 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 907 869 497 2935 160 143
Grp Volume(v), veh/h362349464928108113Grp Sat Flow(s),veh/h/ln177016961774177017741583Q Serve(g_s), s23.723.933.17.97.79.1Cycle Q Clear(g_c), s23.723.933.17.97.79.1Prop In Lane0.561.001.001.00Lane Grp Cap(c), veh/h9078694972935160143W(C Patip(X))0.400.400.920.220.680.70
Grp Sat Flow(s),veh/h/ln 1770 1696 1774 1770 1774 1583 Q Serve(g_s), s 23.7 23.9 33.1 7.9 7.7 9.1 Cycle Q Clear(g_c), s 23.7 23.9 33.1 7.9 7.7 9.1 Prop In Lane 0.56 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 907 869 497 2935 160 143 W(C Patio(X)) 0.40 0.40 0.92 0.22 0.68 0.70
Q Serve(g_s), s 23.7 23.9 33.1 7.9 7.7 9.1 Cycle Q Clear(g_c), s 23.7 23.9 33.1 7.9 7.7 9.1 Prop In Lane 0.56 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 907 869 497 2935 160 143
Cycle Q Clear(g_c), s 23.7 23.9 33.1 7.9 7.7 9.1 Prop In Lane 0.56 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 907 869 497 2935 160 143 V(C Patia(X)) 0.40 0.40 0.92 0.52 0.68 0.79
Prop In Lane 0.56 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 907 869 497 2935 160 143 V(C Patio(X)) 0.40 0.40 0.92 0.52 0.68 0.79
Lane Grp Cap(c), veh/h 907 869 497 2935 160 143
V/C Datio(V) 0.40 0.40 0.02 0.22 0.69 0.70
V/C Kall0(X) 0.40 0.40 0.75 0.52 0.06 0.79
Avail Cap(c_a), veh/h 907 869 673 2935 423 378
HCM Platoon Ratio 0.33 0.33 1.00 1.00 1.00 1.00
Upstream Filter(I) 0.75 0.75 1.00 1.00 1.00 1.00
Uniform Delay (d), s/veh 36.2 36.2 45.6 2.6 57.3 58.0
Incr Delay (d2), s/veh 1.0 1.0 16.6 0.3 4.9 9.5
Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0
%ile BackOfQ(50%),veh/ln 11.9 11.5 18.5 3.9 4.0 4.4
LnGrp Delay(d),s/veh 37.1 37.3 62.2 2.9 62.2 67.4
LNGrp LOS D D E A E E
Approach Vol, veh/h 711 1392 221
Approach Delay, s/veh 37.2 22.6 64.9
Approach LOS D C E
Timer 1 2 3 4 5 6 7
Assigned Phs 1 2 4 6
Phs Duration (G+Y+Rc), s 41.2 72.0 16.8 113.2
Change Period (Y+Rc), s * 4.7 5.4 5.1 5.4
Max Green Setting (Gmax), s * 49 34.5 31.0 88.5
Max Q Clear Time (g c+l1), s 35.1 25.9 11.1 9.9
Green Ext Time (p_c), s 1.3 2.9 0.6 8.6
Intersection Summary
HCM 2010 Ctrl Delay 31.1
HCM 2010 LOS C

OYAM.syn

و	•	→	7	•	+	*	▲	Ť	۲	1	Ŧ	∢	
Movement EB	3L	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4 1.		3	**					×,		1	
Traffic Volume (veh/h)	0	487	192	554	396	0	0	0	0	206	0	112	
Future Volume (veh/h)	0	487	192	554	396	0	0	0	0	206	0	112	
Number	5	2	12	1	6	16				3	8	18	
Initial Q (Qb), veh	0	0	0	0	0	0				0	0	0	
Ped-Bike Adi(A pbT) 1.0)()		1.00	1.00		1.00				1.00		1.00	
Parking Bus, Adj 1.0)()	1.00	1.00	1.00	1.00	1.00				1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln	0	1863	1900	1863	1863	0				1863	0	1863	
Adj Flow Rate, veh/h	0	507	200	577	412	0				215	0	117	
Adj No. of Lanes	0	2	0	1	2	0				1	0	1	
Peak Hour Factor 0.9	96	0.96	0.96	0.96	0.96	0.96				0.96	0.96	0.96	
Percent Heavy Veh, %	0	2	2	2	2	0				2	0	2	
Cap, veh/h	0	1007	395	598	2755	0				250	0	223	
Arrive On Green 0.0)0	0.41	0.41	0.56	1.00	0.00				0.14	0.00	0.14	
Sat Flow, veh/h	0	2578	975	1774	3632	0				1774	0	1583	
Grp Volume(v), veh/h	0	360	347	577	412	0				215	0	117	
Grp Sat Flow(s), veh/h/ln	0	1770	1691	1774	1770	0				1774	0	1583	
O Serve (a, s) , s 0.	.0	19.8	19.9	40.5	0.0	0.0				15.4	0.0	8.9	
Cycle O Clear(q c), s 0.	.0	19.8	19.9	40.5	0.0	0.0				15.4	0.0	8.9	
Prop In Lane 0.0)0	1710	0.58	1.00	010	0.00				1.00	010	1.00	
Lane Grp Cap(c), veh/h	0	717	685	598	2755	0				250	0	223	
V/C Ratio(X) 0.0)0	0.50	0.51	0.97	0.15	0.00				0.86	0.00	0.52	
Avail Cap(c_a), veh/h	0	717	685	686	2755	0				452	0	403	
HCM Platoon Ratio 1.0)0	1.00	1.00	1.67	1.67	1.00				1.00	1.00	1.00	
Upstream Filter(I) 0.0)0	1.00	1.00	0.95	0.95	0.00				1.00	0.00	1.00	
Uniform Delay (d), s/veh 0,	.0	28.9	28.9	27.7	0.0	0.0				54.6	0.0	51.8	
Incr Delay (d2), s/veh 0.	.0	2.5	2.7	23.6	0.1	0.0				8.5	0.0	1.9	
Initial Q Delay(d3), s/veh 0.	.0	0.0	0.0	0.0	0.0	0.0				0.0	0.0	0.0	
%ile BackOfQ(50%),veh/lr0.	.0	10.1	9.8	23.4	0.0	0.0				8.1	0.0	4.0	
LnGrp Delay(d), s/veh 0.	.0	31.4	31.6	51.3	0.1	0.0				63.1	0.0	53.7	
LnGrp LOS		С	С	D	А					Е		D	
Approach Vol. veh/h		707			989						332		
Approach Delay, s/veh		31.5			30.0						59.8		
Approach LOS		С			С						E		
		-	•		-	,	_	•					
Timer	1	2	3	4	5	6	/	8					
Assigned Phs	1	2				6		8					
Phs Duration (G+Y+Rc), 48.	.5	58.1				106.6		23.4					
Change Period (Y+Rc), \$ 4.	./	5.4				5.4		5.1					
Max Green Setting (Gmax)	8	31.4				86.4		33.1					
Max Q Clear Time (g_c+l412),	,55	21.9				2.0		17.4					
Green Ext Time (p_c), s 1.	.3	3.1				3.1		0.9					
Intersection Summary													
HCM 2010 Ctrl Delay			35.4										
HCM 2010 LOS			D										
Notes													

OYAM.syn

4333-4337 Home Ave MO 1: Fairmount Ave & Home Ave

	•	۶	→	\mathbf{F}	F	4	Ļ	×	•	Ť	۲	1
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL
Lane Configurations		N.	A12			N.	A1≱		۲.	A12		۲
Traffic Volume (veh/h)	58	416	695	176	11	86	577	70	89	192	63	70
Future Volume (veh/h)	58	416	695	176	11	86	577	70	89	192	63	70
Number		5	2	12		1	6	16	3	8	18	7
Initial Q (Qb), veh		0	0	0		0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)		1.00		1.00		1.00		1.00	1.00		1.00	1.00
Parking Bus, Adj		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln		1863	1863	1900		1863	1863	1900	1863	1863	1900	1863
Adj Flow Rate, veh/h		433	724	183		90	601	73	93	200	66	73
Adj No. of Lanes		1	2	0		1	2	0	1	2	0	1
Peak Hour Factor		0.96	0.96	0.96		0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh, %		2	2	2		2	2	2	2	2	2	2
Cap, veh/h		457	915	231		283	738	90	95	770	247	93
Arrive On Green		0.26	0.33	0.33		0.16	0.23	0.23	0.05	0.29	0.29	0.05
Sat Flow, veh/h		1774	2800	708		1774	3179	385	1774	2637	846	1774
Grp Volume(v), veh/h		433	458	449		90	334	340	93	132	134	73
Grp Sat Flow(s),veh/h/ln		1774	1770	1738		1774	1770	1795	1774	1770	1714	1774
Q Serve(q_s), s		29.7	29.1	29.1		5.6	22.1	22.2	6.5	7.1	7.4	5.0
Cycle Q Clear(q_c), s		29.7	29.1	29.1		5.6	22.1	22.2	6.5	7.1	7.4	5.0
Prop In Lane		1.00		0.41		1.00		0.21	1.00		0.49	1.00
Lane Grp Cap(c), veh/h		457	578	568		283	411	417	95	517	500	93
V/C Ratio(X)		0.95	0.79	0.79		0.32	0.81	0.82	0.98	0.26	0.27	0.79
Avail Cap(c_a), veh/h		496	754	740		283	462	469	95	517	500	109
HCM Platoon Ratio		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh		45.1	37.8	37.8		46.1	45.0	45.0	58.5	33.5	33.6	58.0
Incr Delay (d2), s/veh		25.8	5.8	5.9		0.2	14.0	14.0	86.5	0.4	0.4	22.8
Initial Q Delay(d3),s/veh		0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In		17.8	15.2	14.9		2.7	12.4	12.6	5.4	3.5	3.5	3.1
LnGrp Delay(d),s/veh		70.9	43.6	43.7		46.3	58.9	59.0	145.0	33.9	34.1	80.8
LnGrp LOS		E	D	D		D	E	E	F	С	С	F
Approach Vol, veh/h			1340				764			359		
Approach Delay, s/veh			52.5				57.5			62.7		
Approach LOS			D				E			E		
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	25.0	45.3	11.0	42.4	36.3	34.0	10.9	42.5				
Change Period (Y+Rc), s	5.3	* 4.9	4.4	6.4	4.4	5.3	4.4	* 6.4				
Max Green Setting (Gmax) s	14.6	* 53	6.6	36.0	34.6	32.3	7.6	* 35				
Max O Clear Time $(q, c+11)$ s	7.6	31.1	8.5	38.0	31.7	24.2	7.0	94				
Green Ext Time (p. c) s	0.0	9.4	0.0	0.0	0.2	4.5	0.0	2.3				
Intersection Summary	0.0	7.1	0.0	0.0	0.2		0.0	2.0				
			00.0									
HCM 2010 CIT Delay			88.9 5									
			F									
Notes												

OYPM.syn

↓ √

	•	
Movement	SBT	SBR
Lanetonfigurations	•	1
Traffic Volume (veh/h)	410	625
Future Volume (veh/h)	410	625
Number	4	14
Initial Q (Qb), veh	0	0
Ped-Bike Adi(A phT)	Ū	1.00
Parking Bus, Adi	1 00	1.00
Adi Sat Flow, veh/h/ln	1863	1863
Adi Flow Rate veh/h	427	651
Adj No. of Lanes	1	1
Poak Hour Factor	0.06	0.06
Porcont Hoavy Voh %	0.70	0.70
Can yoh/h	542	Z 161
Cap, ven/n Arrivo On Croon	0.20	401
Anive On Green	0.29	0.29
	1003	1003
Grp Volume(v), veh/h	427	651
Grp Sat Flow(s),veh/h/ln	1863	1583
Q Serve(g_s), s	26.1	36.0
Cycle Q Clear(g_c), s	26.1	36.0
Prop In Lane		1.00
Lane Grp Cap(c), veh/h	542	461
V/C Ratio(X)	0.79	1.41
Avail Cap(c_a), veh/h	542	461
HCM Platoon Ratio	1.00	1.00
Upstream Filter(I)	1.00	1.00
Uniform Delay (d), s/veh	40.4	43.9
Incr Delay (d2), s/veh	8.2	198.4
Initial Q Delay(d3), s/veh	0.0	0.0
%ile BackOfQ(50%).veh/ln	14.6	41.1
LnGrp Delay(d).s/veh	48.5	242.3
LnGrp LOS	D	5 F
Approach Vol. veh/h	1151	
Approach Delay s/veh	160.2	
Approach LOS	100.2 F	
Timer		

Intersection						
Int Delay, s/veh	0.4					
Movement	EBT	EBR	WBL	WBI	NBL	NBR
Lane Configurations	_ † Ъ			- 11		1
Traffic Vol, veh/h	1288	2	0	1331	0	73
Future Vol, veh/h	1288	2	0	1331	0	73
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade. %	. 0	-	-	0	0	-
Peak Hour Factor	99	99	99	99	99	99
Heavy Vehicles %	2	2	2	2	2	2
Mymt Flow	1201	2	0	12//	0	7/
	1301	Z	0	1344	0	74

Major/Minor	Major1	Ma	ajor2	Min	or1					
Conflicting Flow All	0	0	-	-	-	652				
Stage 1	-	-	-	-	-	-				
Stage 2	-	-	-	-	-	-				
Critical Hdwy	-	-	-	-	-	6.94				
Critical Hdwy Stg 1	-	-	-	-	-	-				
Critical Hdwy Stg 2	-	-	-	-	-	-				
Follow-up Hdwy	-	-	-	-	-	3.32				
Pot Cap-1 Maneuver	-	-	0	-	0	411				
Stage 1	-	-	0	-	0	-				
Stage 2	-	-	0	-	0	-				
Platoon blocked, %	-	-		-						
Mov Cap-1 Maneuve	r -	-	-	-	-	411				
Mov Cap-2 Maneuve	r -	-	-	-	-	-				
Stage 1	-	-	-	-	-	-				
Stage 2	-	-	-	-	-	-				

Approach	EB	WB	NB
HCM Control Delay, s	0	0	15.7
HCM LOS			С

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBT
Capacity (veh/h)	411	-	-	-
HCM Lane V/C Ratio	0.179	-	-	-
HCM Control Delay (s)	15.7	-	-	-
HCM Lane LOS	С	-	-	-
HCM 95th %tile Q(veh)	0.6	-	-	-

Intersection						
Int Delay, s/veh	0.2					
	ГОТ					
iviovement	FRI	FRK	WBL	WRI	NRL	NRK
Lane Configurations	_ ≜ î≽			- † †		1
Traffic Vol, veh/h	1255	103	0	1331	0	34
Future Vol, veh/h	1255	103	0	1331	0	34
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage	,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	99	99	99	99	99	99
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	1268	104	0	1344	0	34

Major/Minor	Major1	Ma	ijor2	Min	or1		
Conflicting Flow All	0	0	-	-	-	686	
Stage 1	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	
Critical Hdwy	-	-	-	-	-	6.94	
Critical Hdwy Stg 1	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	
Follow-up Hdwy	-	-	-	-	-	3.32	
Pot Cap-1 Maneuver	-	-	0	-	0	390	
Stage 1	-	-	0	-	0	-	
Stage 2	-	-	0	-	0	-	
Platoon blocked, %	-	-		-			
Mov Cap-1 Maneuve	r-	-	-	-	-	390	
Mov Cap-2 Maneuve	r -	-	-	-	-	-	
Stage 1	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	

Approach	EB	WB	NB
HCM Control Delay, s	0	0	15.1
HCM LOS			С

Vinor Lane/Major Mvmt	NBLn1	EBT	EBR	WBT
Capacity (veh/h)	390	-	-	-
HCM Lane V/C Ratio	0.088	-	-	-
HCM Control Delay (s)	15.1	-	-	-
HCM Lane LOS	С	-	-	-
HCM 95th %tile Q(veh)	0.3	-	-	-

	→	\mathbf{r}	F	1	-	1	1	
Movement	FBT	FBR	WBU	WBI	WBT	NBI	NBR	
Lane Configurations	A 12	LDIX		3	**	V	1	
Traffic Volume (veh/h)	743	144	68	215	1048	167	547	
Future Volume (veh/h)	743	144	68	215	1048	167	547	
Number	2	12		1	6	7	14	
Initial Q (Qb), veh	0	0		0	0	0	0	
Ped-Bike Adj(A_pbT)		1.00		1.00		1.00	1.00	
Parking Bus, Adj	1.00	1.00		1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln	1863	1900		1863	1863	1863	1863	
Adj Flow Rate, veh/h	751	145		217	1059	348	361	
Adj No. of Lanes	2	0		1	2	1	1	
Peak Hour Factor	0.99	0.99		0.99	0.99	0.99	0.99	
Percent Heavy Veh, %	2	2		2	2	2	2	
Cap, veh/h	1461	282		245	2365	446	398	
Arrive On Green	0.49	0.49		0.14	0.67	0.25	0.25	
Sat Flow, veh/h	3053	571		1774	3632	1774	1583	
Grp Volume(v), veh/h	449	447		217	1059	348	361	
Grp Sat Flow(s),veh/h/ln	1770	1762		1774	1770	1774	1583	
Q Serve(g_s), s	22.4	22.4		15.6	18.4	23.8	28.8	
Cycle Q Clear(g_c), s	22.4	22.4		15.6	18.4	23.8	28.8	
Prop In Lane		0.32		1.00		1.00	1.00	
Lane Grp Cap(c), veh/h	874	870		245	2365	446	398	
V/C Ratio(X)	0.51	0.51		0.88	0.45	0.78	0.91	
Avail Cap(c_a), veh/h	874	870		345	2365	558	498	
HCM Platoon Ratio	1.00	1.00		1.00	1.00	1.00	1.00	
Upstream Filter(I)	0.09	0.09		1.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	22.3	22.3		55.0	10.2	45.3	47.2	
Incr Delay (d2), s/veh	0.2	0.2		17.6	0.6	5.6	17.8	
Initial Q Delay(d3),s/veh	0.0	0.0		0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/In	10.9	10.9		8.9	9.2	12.3	14.5	
LnGrp Delay(d),s/veh	22.5	22.5		72.6	10.8	50.9	65.0	
LnGrp LOS	С	С		E	В	D	E	
Approach Vol, veh/h	896				1276	709		
Approach Delay, s/veh	22.5				21.3	58.1		
Approach LOS	С				С	E		
Timer	1	2	3	4	5	6	7	8
Assigned Phs	1	2		4		6		
Phs Duration (G+Y+Rc), s	22.7	69.6		37.7		92.3		
Change Period (Y+Rc), s	* 4.7	5.4		5.1		5.4		
Max Green Setting (Gmax), s	* 25	48.6		40.9		78.6		
Max Q Clear Time (q_c+I1), s	17.6	24.4		30.8		20.4		
Green Ext Time (p_c), s	0.4	6.3		1.9		10.4		
Intersection Summary								
HCM 2010 Ctrl Delay			30.7					
HCM 2010 LOS			C					
Notes								

OYPM.syn

الر	-	\mathbf{F}	F	•	-	*	٩.	1	1	1	Ŧ	1
Movement EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	∱1 }			2	^					۲		1
Traffic Volume (veh/h) 0	648	204	1	680	553	0	0	0	0	204	0	175
Future Volume (veh/h) 0	648	204	1	680	553	0	0	0	0	204	0	175
Number 5	2	12		1	6	16				3	8	18
Initial Q (Qb), veh 0	0	0		0	0	0				0	0	0
Ped-Bike Adi(A pbT) 1.00		1.00		1.00		1.00				1.00		1.00
Parking Bus, Adj 1.00	1.00	1.00		1.00	1.00	1.00				1.00	1.00	1.00
Adj Sat Flow, veh/h/ln 0	1863	1900		1863	1863	0				1863	0	1863
Adj Flow Rate, veh/h 0	668	210		701	570	0				210	0	180
Adj No. of Lanes 0	2	0		1	2	0				1	0	1
Peak Hour Factor 0.97	0.97	0.97		0.97	0.97	0.97				0.97	0.97	0.97
Percent Heavy Veh. % 0	2	2		2	2	0				2	0	2
Cap, veh/h 0	899	282		718	2760	0				247	0	221
Arrive On Green 0.00	0.34	0.34		0.68	1.00	0.00				0.14	0.00	0.14
Sat Flow, veh/h 0	2745	833		1774	3632	0				1774	0	1583
Grp Volume(v) veh/h 0	446	432		701	570	0				210	0	180
Grp Sat Flow(s) veh/h/ln 0	1770	1716		1774	1770	0				1774	0	1583
$O Serve(a, s) s \qquad 0.0$	28.9	29.0		48.9	0.0	0.0				15.0	0.0	14 3
$Cvcle \cap Clear(q, c) \leq 0.0$	20.7	29.0		/8.9	0.0	0.0				15.0	0.0	14.3
$\frac{1}{2} \frac{1}{2} \frac{1}$	20.7	0/19		1 00	0.0	0.0				1 00	0.0	1 00
Lane Grn Can(c) veh/h	600	581		718	2760	0.00				2/17	0	221
V/C Ratio(X) 0.00	0.74	0.7/		0.98	0.21	0 00				0.85	0.00	0.82
Avail Cap(c , a) veh/h 0.00	600	581		796	2760	0.00				/150	0.00	102
HCM Platoon Ratio 1.00	1 00	1 00		1.67	1 67	1 00				1 00	1 00	1 00
Linstream Filter(I) 0.00	1.00	1.00		0.82	0.82	0.00				1.00	0.00	1.00
Uniform Delay (d) s/veb 0.00	38.0	38.0		20.5	0.02	0.00				5/1.6	0.00	5/1 3
Incr Delay (d2) s/veh 0.0	8.1	8 /		20.3	0.0	0.0				7 9	0.0	7 2
Initial \cap Delay(d2), siven 0.0	0.1	0.4		0.0	0.1	0.0				0.0	0.0	0.0
%ile BackOfO(50%) veb/lm 0	15.5	15.0		0.0 27 8	0.0	0.0				7.0	0.0	67
$\ln Grn Delay(d) s/yeb = 0.0$	15.5	15.0		12.8	0.1	0.0				62.5	0.0	61 5
	40.1 D	40.4 D		42.0 D	0.1	0.0				02.J F	0.0	F
Approach Vol. voh/h	070	<u> </u>		0	1071						200	
Approach Dolay, shiph	0/0				1271						390 42.0	
Approach LOS	40.Z				23.7						02.0 E	
Approach LOS	U				C						E	
Timer 1	2	3	4	5	6	7	8					
Assigned Phs 1	2				6		8					
Phs Duration (G+Y+Rc), §7.3	49.5				106.8		23.2					
Change Period (Y+Rc), \$ 4.7	5.4				5.4		5.1					
Max Green Setting (Gmax)58	23.5				86.5		33.0					
Max Q Clear Time (g_c+50),9	31.0				2.0		17.0					
Green Ext Time (p_c), s 1.7	0.0				4.5		1.1					
Intersection Summary												
HCM 2010 Ctrl Delav		37.4										
HCM 2010 LOS		D										
Notes												

4333-4337 Home Ave MO 1: Fairmount Ave & Home Ave

	\$	≯	-	$\mathbf{\hat{z}}$	F	•	-	•	1	1	1	1
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL
Lane Configurations		μ.	¢β			1	≜ 1₽		۲	A12		۲
Traffic Volume (veh/h)	50	244	347	89	10	46	610	78	258	512	106	82
Future Volume (veh/h)	50	244	347	89	10	46	610	78	258	512	106	82
Number		5	2	12		1	6	16	3	8	18	7
Initial Q (Qb), veh		0	0	0		0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)		1.00		1.00		1.00		1.00	1.00		1.00	1.00
Parking Bus, Adj		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln		1863	1863	1900		1863	1863	1900	1863	1863	1900	1863
Adj Flow Rate, veh/h		254	361	93		48	635	81	269	533	110	85
Adj No. of Lanes		1	2	0		1	2	0	1	2	0	1
Peak Hour Factor		0.96	0.96	0.96		0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh, %		2	2	2		2	2	2	2	2	2	2
Cap, veh/h		282	1010	257		62	749	95	232	1087	223	107
Arrive On Green		0.16	0.36	0.36		0.03	0.24	0.24	0.13	0.37	0.37	0.06
Sat Flow, veh/h		1774	2795	711		1774	3159	402	1774	2925	601	1774
Grp Volume(v), veh/h		254	227	227		48	355	361	269	322	321	85
Grp Sat Flow(s), veh/h/ln		1774	1770	1737		1774	1770	1792	1774	1770	1757	1774
Q Serve(q s), s		16.8	11.2	11.5		3.2	22.9	23.0	15.6	16.7	16.8	5.6
Cycle Q Clear(q c), s		16.8	11.2	11.5		3.2	22.9	23.0	15.6	16.7	16.8	5.6
Prop In Lane		1.00		0.41		1.00		0.22	1.00		0.34	1.00
Lane Grp Cap(c), veh/h		282	640	628		62	419	425	232	658	653	107
V/C Ratio(X)		0.90	0.35	0.36		0.78	0.85	0.85	1.16	0.49	0.49	0.79
Avail Cap(c_a), veh/h		410	722	708		143	449	455	232	658	653	187
HCM Platoon Ratio		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh		49.3	27.9	28.0		57.2	43.5	43.5	51.9	28.8	28.9	55.4
Incr Delay (d2), s/veh		13.2	0.6	0.6		7.6	17.0	17.1	109.4	0.8	0.8	4.9
Initial Q Delay(d3), s/veh		0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In		9.3	5.6	5.6		1.7	13.1	13.3	14.6	8.3	8.3	2.9
LnGrp Delay(d),s/veh		62.5	28.5	28.6		64.8	60.5	60.6	161.3	29.6	29.7	60.2
LnGrp LOS		E	С	С		E	E	E	F	С	С	E
Approach Vol. veh/h			708				764			912		
Approach Delay, s/veh			40.7				60.8			68.5		
Approach LOS			D				E			E		
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phys Duration $(G+Y+Rc)$ s	8.6	48 5	20.0	42.4	23.4	33.6	11.6	50.8				
Change Period $(Y+Rc)$ s	4.4	* 5 3	4 4	6.4	4 4	53	4.4	* 6.4				
Max Green Setting (Gmax) s	9.6	* <u>4</u> 9	15.6	36.0	27.6	30.3	12.6	* 30				
Max O Clear Time $(q, c+11)$ s	5.2	13.5	17.6	38.0	18.8	25.0	7.6	18.8				
Green Ext Time (n_c) s	0.0	10.0 4 9	0.0	0.0	0.2	20.0	0.0	5.7				
Intersection Commonly	0.0	т.7	0.0	0.0	0.2	5.5	0.0	5.7				
Intersection Summary			15.0									
HCM 2010 Ctrl Delay			65.0									
HCM 2010 LOS			E									
Notes												

OYWPAM.syn

↓ √

	*	
Movement	SBT	SBR
Lane Configurations	•	1
Traffic Volume (veh/h)	162	499
Future Volume (veh/h)	162	499
Number	4	14
Initial Q (Qb), veh	0	0
Ped-Bike Adj(A_pbT)		1.00
Parking Bus, Adj	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863
Adj Flow Rate, veh/h	169	520
Adj No. of Lanes	1	1
Peak Hour Factor	0.96	0.96
Percent Heavy Veh, %	2	2
Cap, veh/h	562	477
Arrive On Green	0.30	0.30
Sat Flow, veh/h	1863	1583
Grp Volume(v), veh/h	169	520
Grp Sat Flow(s), veh/h/ln	1863	1583
Q Serve(q_s), s	8.3	36.0
Cycle Q Clear(q_c), s	8.3	36.0
Prop In Lane		1.00
Lane Grp Cap(c), veh/h	562	477
V/C Ratio(X)	0.30	1.09
Avail Cap(c_a), veh/h	562	477
HCM Platoon Ratio	1.00	1.00
Upstream Filter(I)	1.00	1.00
Uniform Delay (d), s/veh	32.0	41.7
Incr Delay (d2), s/veh	0.5	67.6
Initial Q Delay(d3), s/veh	0.0	0.0
%ile BackOfQ(50%),veh/In	4.3	24.7
LnGrp Delay(d), s/veh	32.5	109.3
LnGrp LOS	С	F
Approach Vol, veh/h	774	
Approach Delay, s/veh	87.1	
Approach LOS	F	
Timor		
Imer		

Interception						
Intersection						
Int Delay, s/veh	0.2					
N 4	EDT			WDT		
Movement	FRI	FRK	WBL	WRI	NBL	NRK
Lane Configurations	∱ î≽			- † †		1
Traffic Vol, veh/h	693	8	0	1411	0	44
Future Vol, veh/h	693	8	0	1411	0	44
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage	, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	97	97	97	97	97	97
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	714	8	0	1455	0	45

Major/Minor	Major1	Ma	ajor2	Min	or1													
Conflicting Flow All	0	0	-	-	-	361												
Stage 1	-	-	-	-	-	-												
Stage 2	-	-	-	-	-	-												
Critical Hdwy	-	-	-	-	-	6.94												
Critical Hdwy Stg 1	-	-	-	-	-	-												
Critical Hdwy Stg 2	-	-	-	-	-	-												
Follow-up Hdwy	-	-	-	-	-	3.32												
Pot Cap-1 Maneuver	-	-	0	-	0	636												
Stage 1	-	-	0	-	0	-												
Stage 2	-	-	0	-	0	-												
Platoon blocked, %	-	-		-														
Mov Cap-1 Maneuve	r -	-	-	-	-	636												
Mov Cap-2 Maneuve	r -	-	-	-	-	-												
Stage 1	-	-	-	-	-	-												
Stage 2	-	-	-	-	-	-												

Approach	EB	WB	NB
HCM Control Delay, s	0	0	11.1
HCM LOS			В

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBT
Capacity (veh/h)	636	-	-	-
HCM Lane V/C Ratio	0.071	-	-	-
HCM Control Delay (s)	11.1	-	-	-
HCM Lane LOS	В	-	-	-
HCM 95th %tile Q(veh)	0.2	-	-	-

Intersection						
Int Delay, s/veh	0.1					
-						
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	_ ≜ î≽			- 11		1
Traffic Vol, veh/h	672	66	0	1411	0	29
Future Vol, veh/h	672	66	0	1411	0	29
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage,	,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	97	97	97	97	97	97
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	693	68	0	1455	0	30
	- / 0		v		v	

Major/Minor	Major1	Ma	ajor2	Min	or1								
Conflicting Flow All	0	0	-	-	-	381							
Stage 1	-	-	-	-	-	-							
Stage 2	-	-	-	-	-	-							
Critical Hdwy	-	-	-	-	-	6.94							
Critical Hdwy Stg 1	-	-	-	-	-	-							
Critical Hdwy Stg 2	-	-	-	-	-	-							
Follow-up Hdwy	-	-	-	-	-	3.32							
Pot Cap-1 Maneuver	-	-	0	-	0	617							
Stage 1	-	-	0	-	0	-							
Stage 2	-	-	0	-	0	-							
Platoon blocked, %	-	-		-									
Mov Cap-1 Maneuve	r-	-	-	-	-	617							
Mov Cap-2 Maneuve	r-	-	-	-	-	-							
Stage 1	-	-	-	-	-	-							
Stage 2	-	-	-	-	-	-							

Approach	EB	WB	NB
HCM Control Delay, s	0	0	11.1
HCM LOS			В

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBT
Capacity (veh/h)	617	-	-	-
HCM Lane V/C Ratio	0.048	-	-	-
HCM Control Delay (s)	11.1	-	-	-
HCM Lane LOS	В	-	-	-
HCM 95th %tile Q(veh)	0.2	-	-	-

	-	\mathbf{i}	F	4	←	1	1		
Movement	EBT	EBR	WBU	WBL	WBT	NBL	NBR		
Lane Configurations	≜ 15			3	**	¥.	1		
Traffic Volume (veh/h)	507	189	53	451	906	44	177		
Future Volume (veh/h)	507	189	53	451	906	44	177		
Number	2	12		1	6	7	14		
Initial Q (Qb), veh	0	0		0	0	0	0		
Ped-Bike Adj(A_pbT)		1.00		1.00		1.00	1.00		
Parking Bus, Adj	1.00	1.00		1.00	1.00	1.00	1.00		
Adj Sat Flow, veh/h/ln	1863	1900		1863	1863	1863	1863		
Adj Flow Rate, veh/h	523	195		465	934	109	114		
Adj No. of Lanes	2	0		1	2	1	1		
Peak Hour Factor	0.97	0.97		0.97	0.97	0.97	0.97		
Percent Heavy Veh, %	2	2		2	2	2	2		
Cap, veh/h	1293	480		498	2932	161	144		
Arrive On Green	0.17	0.17		0.28	0.83	0.09	0.09		
Sat Flow, veh/h	2621	939		1774	3632	1774	1583		
Grp Volume(v), veh/h	365	353		465	934	109	114		
Grp Sat Flow(s), veh/h/ln	1770	1697		1774	1770	1774	1583		
Q Serve(q_s), s	23.9	24.1		33.2	8.0	7.7	9.2		
Cycle Q Clear(q c), s	23.9	24.1		33.2	8.0	7.7	9.2		
Prop In Lane		0.55		1.00		1.00	1.00		
Lane Grp Cap(c), veh/h	905	868		498	2932	161	144		
V/C Ratio(X)	0.40	0.41		0.93	0.32	0.68	0.79		
Avail Cap(c_a), veh/h	905	868		673	2932	423	378		
HCM Platoon Ratio	0.33	0.33		1.00	1.00	1.00	1.00		
Upstream Filter(I)	0.75	0.75		1.00	1.00	1.00	1.00		
Uniform Delay (d), s/veh	36.3	36.4		45.5	2.6	57.3	57.9		
Incr Delay (d2), s/veh	1.0	1.1		16.7	0.3	4.9	9.5		
Initial Q Delay(d3),s/veh	0.0	0.0		0.0	0.0	0.0	0.0		
%ile BackOfQ(50%),veh/In	12.0	11.6		18.6	3.9	4.0	4.4		
LnGrp Delay(d), s/veh	37.4	37.5		62.2	2.9	62.2	67.4		
LnGrp LOS	D	D		Е	А	E	Е		
Approach Vol. veh/h	718				1399	223			
Approach Delay, s/veh	37.4				22.6	64.8			
Approach LOS	D				С	E			
Timor	1	2	2	1	F	6	7	Q	
Assigned Dbs	1	2	5	4	5	6	1	0	
Dhe Duration (C V De)	11 2	Z 71 0		4		0 112 1			
Change Deried (V, De) e	41.Z * 17	/ I.9 E /		ТО.У Б.1		113.1 E 4			
May Groon Sotting (Cmay)	4.7 * 10	0.4 21 F		0. T 21 O		ט.4 ססק			
Max O Cloar Time $(a, c, 11)$ c	47 25.0	34.3 26.1		31.0 11.2		00.0 10.0			
Groon Ext Time (y_c+11) , S	აე.∠ 1 ე	20.1 2.0		0.4		10.0			
	1.3	2.9		U.0		ŏ./			
Intersection Summary			21.0						
HCM 2010 Ctrl Delay			31.2						
			C						
Notes									

OYWPAM.syn

ار ا	-	\mathbf{F}	•	Ļ	×	1	Ť	1	1	ŧ	∢	
Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	≜ 16		3	*					3		1	
Traffic Volume (veh/h) 0	491	192	555	400	0	0	0	0	207	0	112	
Future Volume (veh/h) 0	491	192	555	400	0	0	0	0	207	0	112	
Number 5	2	12	1	6	16				3	8	18	
Initial Q (Qb), veh 0	0	0	0	0	0				0	0	0	
Ped-Bike Adj(A_pbT) 1.00		1.00	1.00		1.00				1.00		1.00	
Parking Bus, Adj 1.00	1.00	1.00	1.00	1.00	1.00				1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln 0	1863	1900	1863	1863	0				1863	0	1863	
Adj Flow Rate, veh/h 0	511	200	578	417	0				216	0	117	
Adj No. of Lanes 0	2	0	1	2	0				1	0	1	
Peak Hour Factor 0.96	0.96	0.96	0.96	0.96	0.96				0.96	0.96	0.96	
Percent Heavy Veh, % 0	2	2	2	2	0				2	0	2	
Cap, veh/h 0	1007	392	599	2753	0				251	0	224	
Arrive On Green 0.00	0.40	0.40	0.56	1.00	0.00				0.14	0.00	0.14	
Sat Flow, veh/h 0	2584	970	1774	3632	0				1774	0	1583	
Grp Volume(v) veh/h 0	362	349	578	417	0				216	0	117	
Grp Sat Flow(s) veh/h/ln 0	1770	1692	1774	1770	0				1774	0	1583	
O Serve(a, s) s 0.0	19.9	20.1	40.5	0.0	0.0				15.5	0.0	89	
Cycle O Clear(q, c) > 0.0	19.9	20.1	40.5	0.0	0.0				15.5	0.0	8.9	
Prop In Lane 0.00	17.7	0.57	1 00	0.0	0.00				1 00	0.0	1 00	
Lane Grp Cap(c) veh/h 0	715	684	599	2753	0.00				251	0	224	
V/C Ratio(X) 0.00	0.51	0.51	0.97	0.15	0.00				0.86	0.00	0.52	
Avail Cap(c_a) veh/h 0	715	684	686	2753	0.00				452	0.00	403	
HCM Platoon Ratio 1.00	1 00	1 00	1 67	1 67	1 00				1 00	1 00	1.00	
Upstream Filter(I) 0.00	1.00	1.00	0.95	0.95	0.00				1.00	0.00	1.00	
Uniform Delay (d) s/yeb 0.0	29.0	29.1	27.6	0.0	0.0				54.6	0.0	517	
Incr Delay (d2) $s/veh = 0.0$	2.6	27	23.7	0.0	0.0				8.5	0.0	19	
Initial O Delay $(d3)$ s/yeb 0.0	0.0	0.0	0.0	0.0	0.0				0.0	0.0	0.0	
% ile BackOfO(50%) veh/ lm 0	10.3	9.9	23.5	0.0	0.0				8.2	0.0	4.0	
InGrp Delay(d) s/veh 0.0	31.6	31.8	51.3	0.0	0.0				63.0	0.0	53.6	
InGrp LOS	C	С	D	A	0.0				F	0.0	D	
Approach Vol. veh/h	711			995						333		
Approach Delay s/yeh	31.7			29.9						597		
Approach LOS	51.7 C			27.7						57.7 F		
Approach 200	U			U						L		
Timer 1	2	3	4	5	6	7	8					
Assigned Phs 1	2				6		8					
Phs Duration (G+Y+Rc), \$8.6	57.9				106.5		23.5					
Change Period (Y+Rc), \$ 4.7	5.4				5.4		5.1					
Max Green Setting (Gmax)58	31.4				86.4		33.1					
Max Q Clear Time (g_c+412),5	22.1				2.0		17.5					
Green Ext Time (p_c), s 1.3	3.1				3.1		0.9					
Intersection Summary												
HCM 2010 Ctrl Delay		35.4										
HCM 2010 LOS		D										
Notes												

OYWPAM.syn

4333-4337 Home Ave MO 1: Fairmount Ave & Home Ave

	₫	٦	-	$\mathbf{\hat{z}}$	F	∢	+	×	1	1	1	1
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL
Lane Configurations		24	≜ †}⊧			24	≜1 ≱		ľ	∱1 ,		۲
Traffic Volume (veh/h)	70	418	702	179	11	86	584	70	92	192	63	70
Future Volume (veh/h)	70	418	702	179	11	86	584	70	92	192	63	70
Number		5	2	12		1	6	16	3	8	18	7
Initial Q (Qb), veh		0	0	0		0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)		1.00		1.00		1.00		1.00	1.00		1.00	1.00
Parking Bus, Adj		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln		1863	1863	1900		1863	1863	1900	1863	1863	1900	1863
Adj Flow Rate, veh/h		435	731	186		90	608	73	96	200	66	73
Adj No. of Lanes		1	2	0		1	2	0	1	2	0	1
Peak Hour Factor		0.96	0.96	0.96		0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh, %		2	2	2		2	2	2	2	2	2	2
Cap, veh/h		460	922	234		276	733	88	95	771	247	93
Arrive On Green		0.26	0.33	0.33		0.16	0.23	0.23	0.05	0.29	0.29	0.05
Sat Flow, veh/h		1774	2796	711		1774	3183	382	1774	2637	846	1774
Grp Volume(v), veh/h		435	463	454		90	337	344	96	132	134	73
Grp Sat Flow(s),veh/h/ln		1774	1770	1737		1774	1770	1795	1774	1770	1714	1774
Q Serve(q_s), s		29.7	29.3	29.3		5.6	22.4	22.5	6.6	7.1	7.4	5.0
Cycle Q Clear(q c), s		29.7	29.3	29.3		5.6	22.4	22.5	6.6	7.1	7.4	5.0
Prop In Lane		1.00		0.41		1.00		0.21	1.00		0.49	1.00
Lane Grp Cap(c), veh/h		460	583	573		276	407	413	95	517	501	93
V/C Ratio(X)		0.95	0.79	0.79		0.33	0.83	0.83	1.01	0.26	0.27	0.79
Avail Cap(c a), veh/h		511	754	741		276	448	455	95	517	501	109
HCM Platoon Ratio		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh		44.9	37.6	37.6		46.4	45.2	45.3	58.5	33.4	33.6	57.9
Incr Delay (d2), s/veh		24.7	5.8	6.0		0.3	15.5	15.5	96.2	0.4	0.4	22.8
Initial Q Delay(d3),s/veh		0.0	0.0	0.0		0.0	0.0	0.0	0.1	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln		17.8	15.2	15.0		2.7	12.7	12.9	5.7	3.5	3.5	3.1
LnGrp Delay(d), s/veh		69.6	43.4	43.6		46.7	60.7	60.8	154.8	33.8	34.0	80.7
LnGrp LOS		Е	D	D		D	E	E	F	С	С	F
Approach Vol. veh/h			1352				771			362		
Approach Delay, s/veh			51.9				59.1			66.0		
Approach LOS			D				E			E		
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	. 7	8				
Physical His Physical Physica	24.6	15.7	11 0	4 12 1	36.4	33.8	10.9	125				
Change Period (V_+R_c) s	53	*/0	11.0	6.4	JО. 4 Л Л	53.0	10.7	* 6 /				
Max Green Setting (Gmax) s	14.6	* 53	6.6	36.0	35.6	31.3	7.6	* 35				
Max O Clear Time (q_{c+11}) s	7.6	21.2	8.6	30.0	31.0	24.5	7.0	9. <i>1</i>				
Green Ext Time (n, c) s	0.0	9 /	0.0	0.0	0.3	24.J 1 0	0.0	2.4				
	0.0	7.4	0.0	0.0	0.5	4.0	0.0	2.5				
Intersection Summary			00 1									
HCM 2010 Ctrl Delay			89.4									
HCM 2010 LOS			F									
Notes												

OYWPPM.syn

↓ √

Movement	SBT	SBR
Lanetonfigurations	•	1
Traffic Volume (veh/h)	410	627
Future Volume (veh/h)	410	627
Number	4	14
Initial Q (Qb), veh	0	0
Ped-Bike Adj(A pbT)		1.00
Parking Bus, Adj	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863
Adj Flow Rate, veh/h	427	653
Adj No. of Lanes	1	1
Peak Hour Factor	0.96	0.96
Percent Heavy Veh, %	2	2
Cap, veh/h	543	461
Arrive On Green	0.29	0.29
Sat Flow, veh/h	1863	1583
Grp Volume(v), veh/h	427	653
Grp Sat Flow(s), veh/h/ln	1863	1583
Q Serve(q_s), s	26.1	36.0
Cycle Q Clear(q_c), s	26.1	36.0
Prop In Lane		1.00
Lane Grp Cap(c), veh/h	543	461
V/C Ratio(X)	0.79	1.42
Avail Cap(c_a), veh/h	543	461
HCM Platoon Ratio	1.00	1.00
Upstream Filter(I)	1.00	1.00
Uniform Delay (d), s/veh	40.3	43.8
Incr Delay (d2), s/veh	8.1	199.7
Initial Q Delay(d3),s/veh	0.0	0.0
%ile BackOfQ(50%),veh/In	14.6	41.3
LnGrp Delay(d),s/veh	48.4	243.5
LnGrp LOS	D	F
Approach Vol, veh/h	1153	
Approach Delay, s/veh	160.9	
Approach LOS	F	
Timor		
liner		

Intersection						
Int Delay, s/veh	0.5					
Movement	EBT	EBR	WBL	WBI	NBL	NBR
Lane Configurations	_ † ₽			- † †		1
Traffic Vol, veh/h	1244	14	0	1299	0	85
Future Vol, veh/h	1244	14	0	1299	0	85
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage	,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	99	99	99	99	99	99
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	1257	14	0	1312	0	86
			v		v	

Major/Minor	Major1	Ма	jor2	Min	or1		
Conflicting Flow All	0	0	-	-	-	636	
Stage 1	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	
Critical Hdwy	-	-	-	-	-	6.94	
Critical Hdwy Stg 1	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	
Follow-up Hdwy	-	-	-	-	-	3.32	
Pot Cap-1 Maneuver	-	-	0	-	0	421	
Stage 1	-	-	0	-	0	-	
Stage 2	-	-	0	-	0	-	
Platoon blocked, %	-	-		-			
Mov Cap-1 Maneuver	r -	-	-	-	-	421	
Mov Cap-2 Maneuver	r -	-	-	-	-	-	
Stage 1	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	

Approach	EB	WB	NB
HCM Control Delay, s	0	0	15.7
HCM LOS			С

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBT
Capacity (veh/h)	421	-	-	-
HCM Lane V/C Ratio	0.204	-	-	-
HCM Control Delay (s)	15.7	-	-	-
HCM Lane LOS	С	-	-	-
HCM 95th %tile Q(veh)	0.8	-	-	-

Intersection						
Int Delay, s/veh	0.3					
-						
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	_ ≜ ‡}			- † †		1
Traffic Vol, veh/h	1210	115	0	1299	0	46
Future Vol, veh/h	1210	115	0	1299	0	46
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage	,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	99	99	99	99	99	99
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	1222	116	0	1312	0	46
			v		•	

Major/Minor	Major1	Ma	ajor2	Min	or1																																																															
Conflicting Flow All	0	0	-	-	-	669																																																														
Stage 1	-	-	-	-	-	-																																																														
Stage 2	-	-	-	-	-	-																																																														
Critical Hdwy	-	-	-	-	-	6.94																																																														
Critical Hdwy Stg 1	-	-	-	-	-	-																																																														
Critical Hdwy Stg 2	-	-	-	-	-	-																																																														
Follow-up Hdwy	-	-	-	-	-	3.32																																																														
Pot Cap-1 Maneuver	-	-	0	-	0	400																																																														
Stage 1	-	-	0	-	0	-																																																														
Stage 2	-	-	0	-	0	-																																																														
Platoon blocked, %	-	-		-																																																																
Mov Cap-1 Maneuve	r-	-	-	-	-	400																																																														
Mov Cap-2 Maneuve	r-	-	-	-	-	-																																																														
Stage 1	-	-	-	-	-	-																																																														
Stage 2	-	-	-	-	-	-																																																														

Approach	EB	WB	NB
HCM Control Delay, s	0	0	15.2
HCM LOS			С

Vinor Lane/Major Mvmt	NBLn1	EBT	EBR	WBT
Capacity (veh/h)	400	-	-	-
HCM Lane V/C Ratio	0.116	-	-	-
HCM Control Delay (s)	15.2	-	-	-
HCM Lane LOS	С	-	-	-
HCM 95th %tile Q(veh)	0.4	-	-	-

	-	\mathbf{r}	F	•	-	1	1		
Movement	EBT	EBR	WBU	WBL	WBT	NBL	NBR		
Lane Configurations	A 12			3	**	¥.	1		
Traffic Volume (veh/h)	753	144	80	217	1058	167	549		
Future Volume (veh/h)	753	144	80	217	1058	167	549		
Number	2	12		1	6	7	14		
Initial O (Ob), veh	0	0		0	0	0	0		
Ped-Bike Adi(A pbT)		1.00		1.00		1.00	1.00		
Parking Bus, Adi	1.00	1.00		1.00	1.00	1.00	1.00		
Adi Sat Flow, veh/h/ln	1863	1900		1863	1863	1863	1863		
Adj Flow Rate, veh/h	761	145		219	1069	349	362		
Adj No. of Lanes	2	0		1	2	1	1		
Peak Hour Factor	0.99	0.99		0.99	0.99	0.99	0.99		
Percent Heavy Veh, %	2	2		2	2	2	2		
Cap, veh/h	1460	278		247	2362	447	399		
Arrive On Green	0.49	0.49		0.14	0.67	0.25	0.25		
Sat Flow, veh/h	3060	565		1774	3632	1774	1583		
Grp Volume(v), veh/h	454	452		219	1069	349	362		
Grp Sat Flow(s),veh/h/ln	1770	1763		1774	1770	1774	1583		
Q Serve(q_s), s	22.8	22.8		15.8	18.7	23.8	28.8		
Cycle Q Clear(q_c), s	22.8	22.8		15.8	18.7	23.8	28.8		
Prop In Lane		0.32		1.00		1.00	1.00		
Lane Grp Cap(c), veh/h	871	867		247	2362	447	399		
V/C Ratio(X)	0.52	0.52		0.89	0.45	0.78	0.91		
Avail Cap(c_a), veh/h	871	867		345	2362	558	498		
HCM Platoon Ratio	1.00	1.00		1.00	1.00	1.00	1.00		
Upstream Filter(I)	0.09	0.09		1.00	1.00	1.00	1.00		
Uniform Delay (d), s/veh	22.6	22.6		54.9	10.3	45.3	47.2		
Incr Delay (d2), s/veh	0.2	0.2		17.9	0.6	5.6	17.8		
Initial Q Delay(d3),s/veh	0.0	0.0		0.0	0.0	0.0	0.0		
%ile BackOfQ(50%),veh/In	11.1	11.1		9.0	9.3	12.3	14.5		
LnGrp Delay(d),s/veh	22.8	22.8		72.8	10.9	50.9	65.0		
LnGrp LOS	С	С		E	В	D	E		
Approach Vol, veh/h	906				1288	711			
Approach Delay, s/veh	22.8				21.5	58.1			
Approach LOS	С				С	E			
Timer	1	2	2	4	5	6	7	8	
Assigned Phs	1	2	5	4	5	6	1	0	
Physical His Physical Physica	1 22 Q	60 /		4 37 Q		0 0 2 2			
Change Period ($V_{\perp}R_{c}$) s	∠∠.0 * <u>/</u> 7	5.4		57.0		5.1			
Max Green Setting (Gmax)	* 25	48.6		<u>4</u> 0 Q		78.6			
Max O Clear Time ($\alpha + 11$) s	17.8	24.8		30.8		20.7			
Green Ext Time (n c) s	0.4	6.4		1 9		10.5			
Intersection Summary	0.4	0.4		1.7		10.5			
			20.0						
HUM 2010 UN Delay			30.8						
HUM 2010 LUS			C						
Notes									

OYWPPM.syn

الر	-	\mathbf{F}	F	•	-	*	▲	Ť	1	1	Ŧ	1
Movement EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	4 16			3	^					<u> </u>		1
Traffic Volume (veh/h) 0	655	204	1	682	560	0	0	0	0	206	0	175
Future Volume (veh/h) 0	655	204	1	682	560	0	0	0	0	206	0	175
Number 5	2	12		1	6	16				3	8	18
Initial Q (Qb), veh 0	0	0		0	0	0				0	0	0
Ped-Bike Adj(A_pbT) 1.00		1.00		1.00		1.00				1.00		1.00
Parking Bus, Adj 1.00	1.00	1.00		1.00	1.00	1.00				1.00	1.00	1.00
Adj Sat Flow, veh/h/ln 0	1863	1900		1863	1863	0				1863	0	1863
Adj Flow Rate, veh/h 0	675	210		703	577	0				212	0	180
Adj No. of Lanes 0	2	0		1	2	0				1	0	1
Peak Hour Factor 0.97	0.97	0.97		0.97	0.97	0.97				0.97	0.97	0.97
Percent Heavy Veh, % 0	2	2		2	2	0				2	0	2
Cap, veh/h 0	896	278		720	2756	0				249	0	223
Arrive On Green 0.00	0.34	0.34		0.68	1.00	0.00				0.14	0.00	0.14
Sat Flow, veh/h 0	2753	827		1774	3632	0				1774	0	1583
Grp Volume(v), veh/h 0	449	436		703	577	0				212	0	180
Grp Sat Flow(s), veh/h/ln 0	1770	1717		1774	1770	0				1774	0	1583
Q Serve(q_s), s 0.0	29.3	29.3		49.1	0.0	0.0				15.2	0.0	14.3
Cycle Q Clear(q_c), s 0.0	29.3	29.3		49.1	0.0	0.0				15.2	0.0	14.3
Prop In Lane 0.00		0.48		1.00		0.00				1.00		1.00
Lane Grp Cap(c), veh/h 0	596	578		720	2756	0				249	0	223
V/C Ratio(X) 0.00	0.75	0.75		0.98	0.21	0.00				0.85	0.00	0.81
Avail Cap(c_a), veh/h 0	596	578		796	2756	0				450	0	402
HCM Platoon Ratio 1.00	1.00	1.00		1.67	1.67	1.00				1.00	1.00	1.00
Upstream Filter(I) 0.00	1.00	1.00		0.82	0.82	0.00				1.00	0.00	1.00
Uniform Delay (d), s/veh 0.0	38.3	38.3		20.4	0.0	0.0				54.5	0.0	54.2
Incr Delay (d2), s/veh 0.0	8.6	8.8		22.4	0.1	0.0				7.9	0.0	6.8
Initial Q Delay(d3), s/veh 0.0	0.0	0.0		0.0	0.0	0.0				0.0	0.0	0.0
%ile BackOfQ(50%),veh/lr0.0	15.8	15.3		27.9	0.1	0.0				8.0	0.0	6.7
LnGrp Delay(d),s/veh 0.0	46.9	47.2		42.7	0.1	0.0				62.4	0.0	61.0
LnGrp LOS	D	D		D	А					Е		E
Approach Vol, veh/h	885				1280						392	
Approach Delay, s/veh	47.0				23.5						61.8	
Approach LOS	D				С						E	
Timer 1	2	3	4	5	6	7	8					
Assigned Phs 1	2				6		8					
Phs Duration (G+Y+Rc), 57.5	49.2				106.6		23.4					
Change Period (Y+Rc), \$ 4.7	5.4				5.4		5.1					
Max Green Setting (Gmax)58	23.5				86.5		33.0					
Max Q Clear Time (q c+61).1	31.3				2.0		17.2					
Green Ext Time (p_c), s 1.7	0.0				4.6		1.1					
Intersection Summary												
HCM 2010 Ctrl Delay		37.5										
HCM 2010 LOS		D										
Notes												

OYWPPM.syn

Appendix E

Historical Traffic Counts

id	street_name	limits	all_count northbound_cou	nt southboun	id_count	eastbound_count	westbound_count	otal_count file_no	count_date
HILLTOPDR013315	HILLTOP DR	51 ST - EUCLID AV				1485	764	2249 0133-15	4/2/2015 0:00
HILLTOPDR001105	HILLTOP DR	TOYNE ST - 44 ST				1880	1520	3400 0011-05	1/26/2005 0:00
HILLTOPDR002108	HILLTOP DR	TOYNE ST - 44 ST				1350	1290	2640 0021-08	2/20/2008 0:00
HILLTOPDR020711	HILLTOP DR	TOYNE ST - 44 ST				1525	1360	2885 0207-11	3/29/2011 0:00
HILLTOPDR056914	HILLTOP DR	TOYNE ST - 44 ST				1565	1490	3055 0569-14	6/25/2014 0:00
HILLTOPDR038617	HILLTOP DR	TOYNE ST - 44 ST				1709	1680	3389 0386-17	1/18/2018 0:00
HOLIDAYCT087710	HOLIDAY CT	VILLA LA JOLLA DR - END				705	870	1575 0877-10	9/8/2010 0:00
HOLIDAYCT052904	HOLIDAY CT	VILLA LA JOLLA DR - SAN DIEGO				2190	1800	3990 0529-04	7/27/2004 0:00
HOLLISTERST122902	HOLLISTER ST	ATHERTON AV - SUNSET AV	0					0 1229-02	12/4/2002 0:00
HOLLISTERST065208	HOLLISTER ST	ATHERTON AV - SUNSET AV		825	855			1680 0652-08	12/10/2008 0:00
HOLLISTERST112111	HOLLISTER ST	ATHERTON AV - SUNSET AV		905	870			1775 1121-11	12/1/2011 0:00
HOLLISTERST057514	HOLLISTER ST	ATHERTON AV - SUNSET AV		1078	1107			2185 0575-14	6/26/2014 0:00
HOLLISTERST062707	HOLLISTER ST			5250	5840			11090 0627-07	1/23/2008 0:00
HOLLISTERST085303	HOLLISTER ST			2810	3750			6560 0853-03	12/12/2003 0:00
HOLLISTERST056806	HOLLISTER ST			3040	3430			6470 0568-06	12/12/2005 0:00
					2400			6395 0935 00	12/2/2000 0:00
HOLLISTERSTORADIO				1903	2430			2022 0840 12	12/3/2009 0.00
HOLLISTERST064012	HOLLISTER ST			1803	2150			3933 0840-12	10/2/2012 0:00
HOLLISTERSTORIZIO	HOLLISTER ST			5987	4054			8041 0612-16	12/14/2016 0:00
HOLLISTERSTORSTORSTOR	HOLLISTER ST			5310	5550			10840 0855-05	12/10/2003 0:00
HOLLISTERSTUS6706	HOLLISTER ST	LEON AV - TOCAYO AV		5750	6360			12110 0567-06	12/12/2006 0:00
HOLLISTERST082409	HOLLISTER ST	LEON AV - TOCAYO AV		5870	5770			11640 0824-09	12/3/2009 0:00
HOLLISTERST083912	HOLLISTER ST	LEON AV - TOCAYO AV		3985	4117			8102 0839-12	10/2/2012 0:00
HOLLISTERST061116	HOLLISTER ST	LEON AV - TOCAYO AV	:	3367	3464			6831 0611-16	12/13/2016 0:00
HOLLISTERST063607	HOLLISTER ST	MAIN SB ST - MANYA ST		3110	3010			6120 0636-07	1/23/2008 0:00
HOLLISTERST013311	HOLLISTER ST	MAIN SB ST - MANYA ST	:	2905	2920			5825 0133-11	3/3/2011 0:00
HOLLISTERST057614	HOLLISTER ST	MAIN SB ST - MANYA ST		2930	2974			5904 0576-14	6/26/2014 0:00
HOLLISTERST062807	HOLLISTER ST	PALM AV - DONAX AV	:	2450	2480			4930 0628-07	1/23/2008 0:00
HOLLISTERST087810	HOLLISTER ST	SUNSET AV - MONUMENT RD		510	450			960 0878-10	9/8/2010 0:00
HOLLISTERST089113	HOLLISTER ST	SUNSET AV - MONUMENT RD		680	599			1279 0891-13	11/19/2013 0:00
HOLLYDR102910	HOLLY DR	EUCLID AV - WILLIE JAMES JONES AV				740	1000	1740 1029-10	10/28/2010 0:00
HOLLYDR106413	HOLLY DR	EUCLID AV - WILLIE JAMES JONES AV				582	768	1350 1064-13	1/28/2014 0:00
HOMEAV101015	HOME AV	46 ST - FAIRMOUNT AV	:	8507	9190			17697 1010-15	11/5/2015 0:00
HOMEAV031804	HOME AV	BEECH ST - GATEWAY DR		3030	8300			16330 0318-04	4/7/2004 0:00
HOMEAV023107	HOME AV	BEECH ST - GATEWAY DR		7596	7697			15293 0231-07	4/4/2007 0:00
HOMEAV024610	HOME AV	BEECH ST - GATEWAY DR	:	8415	8625			17040 0246-10	4/22/2010 0:00
HOMEAV033913	HOME AV	BEECH ST - GATEWAY DR		7949	7972			15921 0339-13	4/17/2013 0:00
HOMEAV014018	HOME AV	BEECH ST - GATEWAY DR		9503	8760			18263 0140-18	4/3/2018 0:00
HOMEAV032004	HOME AV	FAIRMOUNT AV - 45 ST		9160	8980			18140 0320-04	4/7/2004 0:00
HOMEAV023207	HOME AV	FAIRMOUNT AV - 45 ST		8930	9850			18780 0232-07	4/4/2007 0:00
HOMEAV024710	HOME AV	FAIRMOUNT AV - 45 ST 37248/33810	J = 1.10 [;	8605	8700			17305 0247-10	4/20/2010 0:00
HOMEAV025213	HOME AV	FAIRMOUNT AV - 45 ST 1 1 0 1 10	0/ growth over	3581	8788			17369 0252-13	3/14/2013 0:00
HOMEAV014118	HOME AV	FAIRMOUNT AV - 45 ST $ \mathbf{I} \cdot \mathbf{I} \mathbf{U} - \mathbf{I} = \mathbf{I} \mathbf{U}$	% growin over	9297	8295			17592 0141-18	4/3/2018 0:00
HOMEAV031516	HOME AV	GATEWAY DR - SPILLMAN DR 10 VOOR (10/	annual growth			8232	9110	17342 0315-16	8/10/2016 0:00
HOMEAV059011	HOME AV	SD 094 - FEDERAL AV	o annuai growin _{l 1}	1365	305			11670 0590-11	6/28/2011 0:00
HOMFAV057714	HOME AV	SD 094 - FEDERAL AV		5110	170			5280 0577-14	6/24/2014 0:00
HOMFAV035002	HOMEAV	SD 805 - FAIRMOUNT AV	1	7030	16780			33810 0350-02	3/19/2002 0:00
HOMEAV015703	HOME AV	SD 805 - FAIRMOUNT AV	1	3710	16850			35560 0157-03	1/23/2003 0:00
HOMEAV318306	HOME AV	SD 805 - FAIRMOUNT AV				16589	16753	33342 3183-06	5/4/2006 0:00
HOMEAV021506	HOMEAV	SD 805 - FAIRMOUNT AV	1	5750	16590	10505	10/00	33340 0215-06	5/4/2006 0:00
HOMEAV032409	HOME AV	SD 805 - FAIRMOUNT AV	2	0695	16600			37295 0324-09	5/27/2009 0:00
	HOMEAV			7063	20185			37248 0400-12	5/10/2012 0:00
HOMEAV042715	HOMEAV		-	1005	20105	15083	16611	32594 0427-15	6/9/2015 0:00
HOMEAV010616	HOME AV					15383	17584	34007 0106-16	5/12/2016 0:00
HOMEAV010010	HOME AV			580	11/20	10425	1/304	21000 0248-02	3/21/2010 0:00
	HOME AV			110	0220			19740 0220 05	3/21/2002 0:00
	HOME AV			8860	0000			17660 0220-03	5/20/2002 0.00
				2000	0000			17425 0400 44	5/20/2008 0:00
				00/0	8/50			1/425 0400-11	6/24/2011 0:00
				10001	8285	0054	00.40	17802 0278 40	0/24/2014 0:00
				460	200	8854	8949	1/803 02/8-18	4/20/2018 0:00
				400	360	0070	0000	820 04/9-02	4/24/2002 0:00
						8370	9030	12200 0505 07	1/0/2000 0:00
	HUTEL CIRCLE N	CAMINO REINA - FASHION VY KD				6990	6300	13290 0505-07	1/9/2008 0:00
HUTELCIKCLEN004411	HUTEL CIRCLE N	CAMINU REINA - FASHION VY RD				5105	4260	9365 0044-11	1/25/2011 0:00

GEOTECHNICAL INVESTIGATION

4333 HOME AVENUE SAN DIEGO, CALIFORNIA

GEOTECHNICAL ENVIRONMENTAL MATERIALS PREPARED FOR

AVAD INVESTMENTS, INC. SAN DIEGO, CALIFORNIA

AUGUST 30, 2018 PROJECT NO. G2306-42-01 GEOTECHNICAL E ENVIRONMENTAL E MATERIAL

Project No. G2306-42-01 August 30, 2018

AVAD Investments, Inc. 4333 Home Avenue San Diego, California 92105

Attention: Mr. Arkan Somo

Subject: GEOTECHNICAL INVESTIGATION 4333 HOME AVENUE SAN DIEGO, CALIFORNIA

Dear Mr. Somo:

In accordance with your authorization and our proposal (LG-18245, dated July 16, 2018), we herein submit our geotechnical investigation for the subject project. The accompanying report presents the findings, conclusions, and recommendations pertinent to the project. Based on the results of our study, it is our opinion that the subject site can be developed as proposed, provided the recommendations of this report are followed.

If you have any questions regarding this investigation, or if we may be of further service, please contact the undersigned at your convenience.

Very truly yours,

TABLE OF CONTENTS

1.	URPOSE AND SCOPE	1
2.	ITE AND PROJECT DESCRIPTION	1
3.	REVIOUS GRADING	2
4.	OIL AND GEOLOGIC CONDITIONS	222
5.	ROUNDWATER	3
6.	BEOLOGIC HAZARDS. .1 Geologic Hazard Category .2 Ground Rupture .3 Seismicity .4 Liquefaction and Seismically Induced Settlement .5 Landslides .6 Subsidence .7 Seiches and Tsunamis	3 3 3 5 5 5 5
7.	CONCLUSIONS AND RECOMMENDATIONS 1 General 2 Soil and Excavation Characteristics 3 Grading 4 Seismic Design Criteria 5 Slopes 16 Temporary Excavations 17 Foundation Recommendations 18 Concrete Slabs-on-Grade 19 Retaining Walls 10 Lateral Loading 11 Storm Water Management 12 Drainage and Maintenance 13 Grading and Foundation Plan Review	6 7 8 9 1 1 1 1 2 15 15 16
LIM	TATIONS AND UNIFORMITY OF CONDITIONS	

MAPS AND ILLUSTRATIONS Figure 1, Vicinity Map Figure 2, Geologic Map Figure 3, Typical Footing Detail Figure 4, Typical Retaining Wall Drainage Detail

TABLE OF CONTENTS (Concluded)

APPENDIX A FIELD INVESTIGATION Figure A-1, Log of Boring

APPENDIX B

LABORATORY TESTING Table B-I, Summary of Laboratory Maximum Dry Density and Optimum Moisture Content Test Results Table B-II, Summary of Laboratory Direct Shear Test Results Table B-III, Summary of Laboratory Expansion Index Test Results Table B-IV, Summary of Laboratory Water Soluble Sulfate Content Test Results Table B-V, Summary of Laboratory Potential of Hydrogen (pH) and Resistivity Test Results Figure B-1, Consolidation Curve

APPENDIX C

RECOMMENDED GRADING SPECIFICATIONS

LIST OF REFERENCES

GEOTECHNICAL INVESTIGATION

1. PURPOSE AND SCOPE

This report presents the results of a geotechnical investigation for the property located at 4333 and 4337 Home Avenue, San Diego, California (see *Vicinity Map*, Figure 1). The purpose of this investigation was to evaluate site geology, observe and sample the prevailing soil conditions at the site, and to provide recommendations pertinent to the geotechnical aspects of constructing the proposed improvements.

The scope of our investigation included a review of relevant published reports, a site reconnaissance, a field investigation, laboratory testing, engineering analyses, and preparation of this report. The field investigation was performed on July 30, 2018 and consisted of drilling one, small-diameter boring at the location shown on the *Site Plan*, Figure 2. The base map used to plot the boring location was taken from the plan prepared by Gary Engineering, Inc., titled *Concept Grading & Drainage Plan For: Home Avenue & 805*, dated February 26, 2018. A log of the exploratory boring and other details of the field investigation are presented in Appendix A.

Laboratory tests were performed on selected soil samples obtained from the borings to evaluate their pertinent physical and chemical properties for engineering analyses. A discussion pertaining to the laboratory testing and results is presented in Appendix B.

The recommendations presented herein are based on our analysis of the data obtained from the exploratory boring, laboratory tests and our experience with similar soil and geologic conditions.

2. SITE AND PROJECT DESCRIPTION

The project is situated on a rectangular, 1.1-acre, site currently occupied by a convenience store; fueling islands; paved parking lot; and landscape areas. A concrete-lined drainage channel is located along the southeastern boundary of the property. Grades on the property currently slope from northeast to southwest with elevations varying from approximately 145 feet Mean Sea Level (MSL) to 137 feet MSL.

Based on review of the concept grading plan, we understand the project will consist of grading a portion of the property in order to construct a new, two-story, wood-framed commercial building. The structure will be approximately 80 feet long by 15 feet wide and will be constructed along the eastern boundary of the property. Earthwork necessary to attain finish elevation is expected to consist minor cuts and fills of less than 2 feet.

3. PREVIOUS GRADING

It appears grading occurred on the property to construct the convenience store and fueling islands in 1999 based on a reference in the report titled *Grading Observations and Soil Compaction Test Results, Proposed ARCO AM/PM Facility, On-Site Pavement Areas, 4333 Home Avenue, I-805 and Home Avenue, San Diego, California*, prepared by SECOR International Incorporated, dated July 10, 2000. This report was specific to the pavement areas, but referenced an interim grading report dated November 2, 1999. The November 1999 grading report for the property was not available for our review. Based on our review of the July 2000 report, grading within parking lots and driveways consisted of overexcavating the upper 2 feet below existing grade or proposed subgrade and replacing with compacted fill. At the northeast corner of site, it appears excavations extended to depths of 4 to 9 feet.

4. SOIL AND GEOLOGIC CONDITIONS

The field investigation data indicates that site is underlain by previously placed fill and alluvial deposits overlying San Diego Formation (Kennedy and Tan, 2008). The geologic units are described below.

4.1 Previously Placed Fill (Qpf)

Previously placed fill was encountered in the exploratory boring extending to a depth of approximately 4 feet below ground surface. Where observed, the undocumented fill generally consisted of dense; moist; brown; clayey sand with gravel and cobble. The upper portion of the previously placed fill will require remedial grading for support of the proposed improvements.

4.2 Alluvial Deposits (Qal)

Alluvial deposits were encountered in the exploratory boring beneath the fill. Where observed, the alluvial deposits generally consisted of: dense; moist; light olive; silty sand with abundant gravel and cobble.

4.3 San Diego Formation (Tsd)

Tertiary age San Diego Formation was encountered beneath the alluvium at a depth of 12 feet below ground surface. Where observed the San Diego formation consisted of dense; moist; light olive; silty fine sand. The San Diego formation soils are suitable for the support of settlement-sensitive improvements.
5. GROUNDWATER

No groundwater was encountered during our investigation. Groundwater is not expected to significantly affect project development as presently proposed; however, it is not uncommon for groundwater or seepage conditions to develop where none previously existed. Proper surface drainage of irrigation and rainwater will be critical to future performance of the project.

6. GEOLOGIC HAZARDS

6.1 Geologic Hazard Category

The City of San Diego (2008) designates the site as Geologic Hazard Category 32: *Liquefaction* – *Low Potential* – *fluctuating groundwater, minor drainages*.

6.2 Ground Rupture

No evidence of faulting was observed during our investigation. The USGS (2016) and City of San Diego (2008) shows that there are no mapped Quaternary faults crossing or trending toward the property. The site is not located within a currently established Alquist-Priolo Earthquake Fault Zone. No active faults are known to exist at the site. The nearest active fault, the Newport Inglewood/Rose Canyon Fault Zone, lies approximately 3.7 miles west of the site. The risk associated with ground rupture hazard is low.

6.3 Seismicity

We performed a deterministic seismic hazard analysis using Risk Engineering (2015). Six known active faults were located within a search radius of 50 miles from the property. We used the 2008 USGS fault database, which provides several models and combinations of fault data, to evaluate the fault information. Based on this database, the Newport-Inglewood/Rose Canyon and Rose Canyon Fault Zones, located approximately 5 miles west of the site, are the nearest known active faults and are the dominant source of potential ground motion. Earthquakes that might occur on the Newport-Inglewood/Rose Canyon and Rose Canyon Fault Zones or other faults within the southern California and northern Baja California area are potential generators of significant ground motion at the site. The estimated maximum earthquake magnitude and peak ground acceleration for the Newport-Inglewood/Rose Canyon Fault are 7.5 and 0.43g, respectively. The table below lists the estimated maximum earthquake magnitude and peak ground acceleration for the most dominant faults in relation to the site. We calculated peak ground acceleration (PGA) using Boore and Atkinson (2008), Campbell and Bozorgnia (2008), and Chiou and Youngs (2008) acceleration-attenuation relationships.

	D: (Maximum		Peak Ground Acceleration			
Fault Name	from Site (miles)	Earthquake Magnitude (Mw)	Boore- Atkinson 2008 (g)	Campbell- Bozorgnia 2008 (g)	Chiou- Youngs 2008 (g)		
Newport-Inglewood/Rose Canyon	3.7	7.5	0.36	0.34	0.43		
Rose Canyon	3.7	6.9	0.32	0.33	0.38		
Coronado Bank	15.4	7.4	0.21	0.16	0.19		
Palos Verdes/Coronado Bank	15.4	7.7	0.23	0.17	0.22		
Elsinore	37.8	7.85	0.15	0.09	0.12		
Earthquake Valley	43.3	6.8	0.09	0.06	0.04		

 TABLE 5.3.1

 DETERMINISTIC SPECTRA SITE PARAMETERS

In the event of a major earthquake on the referenced faults or other significant faults in the southern California and northern Baja California area, the site could be subjected to moderate to severe ground shaking. With respect to this hazard, the site is considered comparable to others in the general vicinity.

We performed a probabilistic seismic hazard analysis for the site using Risk Engineering (2015). The computer program assumes that the occurrence rate of earthquakes on each mapped Quaternary fault is proportional to the fault slip rate. The program accounts for earthquake magnitude as a function of fault rupture length, and site acceleration estimates are made using the earthquake magnitude and distance from the site to the rupture zone. The program also accounts for uncertainty in each of following: (1) earthquake magnitude, (2) rupture length for a given magnitude, (3) location of the rupture zone, (4) maximum possible magnitude of a given earthquake, and (5) acceleration at the site from a given earthquake along each fault. By calculating the expected accelerations from considered earthquake sources, the program calculates the total average annual expected number of occurrences of site acceleration greater than a specified value. We used acceleration-attenuation relationships suggested by Boore-Atkinson (2008), Campbell-Bozorgnia (2008), and Chiou-Youngs (2008) in the analysis. Table 5.3.2 presents the site-specific probabilistic seismic hazard parameters including acceleration-attenuation relationships and the probability of exceedence.

	Peak Ground Acceleration			
Probability of Exceedence	Boore-Atkinson, 2008 (g)	Campbell-Bozorgnia, 2008 (g)	Chiou-Youngs, 2008 (g)	
2% in a 50 Year Period	0.50	0.44	0.52	
5% in a 50 Year Period	0.35	0.31	0.36	
10% in a 50 Year Period	0.26	0.23	0.24	

 TABLE 5.3.2

 PROBABILISTIC SEISMIC HAZARD PARAMETERS

While listing peak accelerations is useful for comparison of potential effects of fault activity in a region, other considerations are important in seismic design, including frequency and duration of motion and soil conditions underlying the site. Seismic design of the structures should be evaluated in accordance with the California Building Code (CBC) guidelines.

6.4 Liquefaction and Seismically Induced Settlement

Due to the dense subsurface soils and formational bedrock, and the lack of a permanent groundwater table, it is our opinion that liquefaction should not occur. The risk associated with seismically induced soil liquefaction hazard is low.

6.5 Landslides

No evidence of landsliding was encountered at the site during the geotechnical investigation or in our review of historic, stereoscopic aerial photographs (USDA, 1953).

The risk associated with ground movement hazard due to landsliding is low.

6.6 Subsidence

Based on the subsurface soil conditions encountered during our field investigation, the risk associated with ground subsidence hazard is low.

6.7 Seiches and Tsunamis

The site is not located within a tsunami inundation zone as defined by California Geological. Elevation at the site is approximately 144 feet MSL. There are no lakes or reservoirs are located near the site. The risk associated with inundation hazard due to tsunamis or seiches is low.

7. CONCLUSIONS AND RECOMMENDATIONS

7.1 General

- 7.1.1 From a geotechnical standpoint, it is our opinion that the site is suitable for the proposed development, provided the recommendations presented herein are implemented in design and construction of the project.
- 7.1.2 Subsurface conditions, as observed in our borings, are expected to be relatively consistent across the site; however, variations in subsurface conditions are possible.
- 7.1.3 Our field investigation indicates that the site is underlain by previously placed fill, alluvium, and San Diego Formation. Remedial grading is recommended in the undocumented fill to support the proposed building.
- 7.1.4 Groundwater and/or seepage-related problems are not anticipated, provided that surface drainage is directed into properly designed drainage structures and away from pavement edges, buildings and other moisture-sensitive developments.
- 7.1.5 With the exception of the possibility of strong seismic shaking, no significant geologic hazards were observed or are known to exist at the site or other locations that could adversely affect the proposed project.
- 7.1.6 Based on our research no active, potentially active, or activity unknown faults are mapped crossing the site or are trending toward the site.
- 7.1.7 The proposed project does not include appreciable changes to final grade; therefore, the proposed structural loading will be similar in magnitude to current loading. It is our opinion that the proposed development will not destabilize or result in settlement of adjacent properties including the concrete-lined drainage channel along the southeastern boundary.
- 7.1.8 The risk associated with geologic hazards due to liquefaction, ground rupture, landslides, seiches and tsunamis is low.
- 7.1.9 The planned structures can be supported on a conventional, shallow-footing system founded on properly compacted fill.

7.2 Soil and Excavation Characteristics

- 7.2.1 Excavation of the previously placed fill and alluvial deposits should be possible with moderate to heavy effort using conventional heavy-duty equipment.
- 7.2.2 We expect on-site soil to be "expansive" (expansion index [EI] greater than 20) as defined by 2016 California Building Code (CBC) Section 1803.5.3. Table 6.2 presents soil classifications based on the expansion index. The on-site soils possess a "low" expansion potential.

Expansion Index (EI)	Expansion Classification	2016 CBC Expansion Classification
0 - 20	Very Low	Non-Expansive
21 - 50	Low	
51 - 90	Medium	. .
91 – 130	High	Expansive
Greater Than 130	Very High	

 TABLE 6.2

 EXPANSION CLASSIFICATION BASED ON EXPANSION INDEX

- 7.2.3 We performed laboratory tests on samples of the site materials to evaluate the percentage of water-soluble sulfate content. Results from the laboratory water-soluble sulfate content tests are presented in Appendix B and indicate that the on-site materials at the locations tested possess "Not Applicable" and "S0" sulfate exposure to concrete structures as defined by 2016 CBC Section 1904 and ACI 318-08 Sections 4.2 and 4.3. The presence of water-soluble sulfates is not a visually discernible characteristic; therefore, other soil samples from the site could yield different concentrations. Additionally, over time landscaping activities (i.e., addition of fertilizers and other soil nutrients) may affect the concentration.
- 7.2.4 Potential of Hydrogen (pH) and resistivity tests were performed on a sample of the site materials to evaluate the corrosion potential to subsurface structures. The tests were performed in accordance with California Test Method No. 643, and indicate a "mildly to moderately corrosive" condition with respect to buried metal. The laboratory test results are presented in Appendix B.

7.2.5 Geocon Incorporated does not practice in the field of corrosion engineering. If improvements that could be susceptible to corrosion are planned, further evaluation by a corrosion engineer should be performed.

7.3 Grading

- 7.3.1 Grading should be performed in accordance with the *Recommended Grading Specifications* in Appendix C. Where the recommendations of this report conflict with Appendix C, the recommendations of this section take precedence.
- 7.3.2 A pre-construction conference with the owner, contractor, civil engineer, and soil engineer in attendance should be held at the site prior to the beginning of grading operations. Special soil handling requirements can be discussed at that time.
- 7.3.3 Earthwork should be observed and compacted fill tested by representatives of Geocon Incorporated. In addition, excavations should be observed during grading to verify the soil and geologic conditions do not differ significantly from those expected.
- 7.3.4 Site preparation should begin with the demolition of existing structures and the removal of deleterious debris and vegetation. The depth of removal should be such that materials to be used in fill are generally free of organic matter. Material generated during stripping operations and/or site demolition should be exported from the site.
- 7.3.5 Existing underground improvements that are or will be abandoned within the site should be removed and the resulting depressions properly backfilled in accordance with the procedures described herein.
- 7.3.6 Remedial grading within the building envelope should consist of removal and recompaction of existing soil to a depth of at least 3 feet below building pad grade, or 1 foot below the footing bottom, whichever is deeper. The base of the remedial removal should be observed by a representative of Geocon Incorporated to evaluate if loose or otherwise unsuitable soils is present. If loose or unsuitable soil is present, deeper removals will be necessary. Where practical the remedial grading should extend to horizontal distance of at least 5 feet beyond the building footprint.
- 7.3.7 Remedial grading within new surface improvement areas (concrete hardscape, pavement) should consist of removing the upper 12 inches of soil below finish grade and replacing the excavated soil with properly compacted fill. Where practical, remedial grading should

extend to a horizontal distance of at least 2 feet beyond the edge of the surface improvement. Additional remedial grading may be required if loose or otherwise unsuitable material is encountered at the base of the removals.

- 7.3.8 The base of remedial-grading excavations and other areas to receive structural fill soils should be scarified to a depth of at least 12 inches, moisture conditioned and compacted. Fill soils should then be placed and compacted in layers to design finish-grade elevations. The layers should be no thicker than will allow for adequate bonding and compaction. Fill should be compacted to at least 90 percent of maximum dry density (as determined by ASTM D 1557) at or slightly above optimum moisture content. Fill within the upper 12 inches of pavement subgrade should be compacted to at least 95 percent relative compaction at or slightly above optimum moisture content.
- 7.3.9 Soil generated during on-site excavations is suitable for reuse, provided it is free of vegetation, debris, and other deleterious matter.
- 7.3.10 Imported fill soil should consist of granular materials with a *very low* to *low* expansion potential (EI of 50 or less), be free of deleterious material or stones larger than 3 inches, and should be compacted as recommended herein. Geocon Incorporated should be notified of the import soil source and should be authorized to perform laboratory testing of import soil prior to its arrival at the site to evaluate its suitability as fill material.

7.4 Seismic Design Criteria

7.4.1 We used the computer program *U.S. Seismic Design Maps*, provided by the USGS. Table 7.4.1 summarize site-specific design criteria obtained from the 2016 California Building Code (CBC; Based on the 2012 International Building Code [IBC] and ASCE 7-10), Chapter 16 Structural Design, Section 1613 Earthquake Loads. The short spectral response uses a period of 0.2 second. The building structure and improvements should be designed using a Site Class D. We evaluated the Site Class based our experience for the site sub surface soils and exploratory boring information in accordance with Section 1613.3.2 of the 2016 CBC, and Table 20.3-1 of ASCE 7-10. The values presented in Table 7.4.1 are for the risk-targeted maximum considered earthquake (MCE_R).

Parameter	Value	2016 CBC Reference
Site Class	D	Table 1613.3.2
MCE _R Ground Motion Spectral Response Acceleration – Class B (short), S _S	1.015g	Figure 1613.3.1(1)
MCE _R Ground Motion Spectral Response Acceleration – Class B (1 sec), S ₁	0.386g	Figure 1613.3.1(2)
Site Coefficient, FA	1.094	Table 1613.3.3(1)
Site Coefficient, Fv	1.628	Table 1613.3.3(2)
Site Class Modified MCE _R Spectral Response Acceleration (short), S _{MS}	1.111g	Section 1613.3.3 (Eqn 16-37)
Site Class Modified MCE _R Spectral Response Acceleration $- (1 \text{ sec})$, S _{M1}	0.628g	Section 1613.3.3 (Eqn 16-38)
5% Damped Design Spectral Response Acceleration (short), S _{DS}	0.740g	Section 1613.3.4 (Eqn 16-39)
5% Damped Design Spectral Response Acceleration (1 sec), S _{D1}	0.419g	Section 1613.3.4 (Eqn 16-40)

TABLE 7.4.1 2016 CBC SEISMIC DESIGN PARAMETERS

7.4.2 Table 7.4.2 presents additional seismic design parameters for projects located in Seismic Design Categories of D through F in accordance with ASCE 7-10 for the mapped maximum considered geometric mean (MCE_G).

TABLE 7.4.22016 CBC SEISMIC DESIGN PARAMETERS

Parameter	Value	ASCE 7-10 Reference
Mapped MCE _G Peak Ground Acceleration, PGA	0.427g	Figure 22-7
Site Coefficient, FPGA	1.073	Table 11.8-1
Site Class Modified MCE _G Peak Ground Acceleration, PGA _M	0.458g	Section 11.8.3 (Eqn 11.8-1)

7.4.3 Conformance to the criteria in Table 7.4.1 and 7.4.2 does not constitute any kind of guarantee or assurance that significant structural damage or ground failure will not occur if a large earthquake occurs. The primary goal of seismic design is to protect life, not to avoid all damage, since such design may be economically prohibitive.

7.5 Slopes

7.5.1 No new slopes are planned for the project. The proposed structure will be located approximately 15 feet from the edge and 30 feet from the bottom of a trapezoidal-shaped, concrete-lined drainage channel. The bottom of the channel is approximately 7 feet lower that the proposed finish grade. In our opinion the anticipated building load is sufficiently far from the channel and will not affect the performance of the drainage channel. Likewise, the channel will not affect the performance of the proposed structure.

7.6 Temporary Excavations

7.6.1 The on-site soils can be considered Type B soil based on OSHA guidelines. Temporary slopes should be excavated no steeper than 1:1 (horizontal:vertical) to a height of 15 feet without shoring. The top of the excavation should be a minimum of 15 feet from the edge of existing improvements. Excavations steeper than those recommended or closer than 15 feet from an existing improvement should be shored in accordance with applicable OSHA codes and regulations.

7.7 Foundation Recommendations

- 7.7.1 The project as presently proposed consists of constructing a two-story building. The building can be supported on shallow foundations bearing on properly compacted fill.
- 7.7.2 Foundations for the buildings should consist of continuous strip footings and/or isolated spread footings. Continuous footings should be at least 12 inches wide and extend at least 18 inches below lowest adjacent pad grade. Isolated spread footings should have a minimum width of 24 inches and should extend at least 18 inches below lowest adjacent pad grade.
- 7.7.3 Concrete reinforcement for continuous footings should consist of at least four, No. 5 steel, reinforcing bars placed horizontally in the footings, two near the top and two near the bottom. The project structural engineer should design the reinforcement for the spread footings. A footing dimension detail showing the depth to lowest adjacent grade is presented on Figure 3.
- 7.7.4 The minimum reinforcement recommended above is based on soil characteristics only (Expansion Index of 50 or less) and is not intended to replace reinforcement required for structural considerations.

- 7.7.5 The recommended allowable bearing capacity for foundations bearing in properly compacted fill is 2,000 pounds per square foot (psf). The values presented above are for dead plus live loads and may be increased by one-third when considering transient loads due to wind or seismic forces.
- 7.7.6 Total and differential static settlement due to foundation loads is estimated to be approximately 1 inch and 1/2 inch, respectively. We estimate that differential settlement would occur over a span of 40 feet.
- 7.7.7 Foundation excavations should be observed by the geotechnical engineer (a representative of Geocon Incorporated) prior to the placement of reinforcing steel and concrete to observe that the exposed soil conditions are consistent with those anticipated. If unanticipated soil conditions are encountered, foundation modifications may be required.

7.8 Concrete Slabs-on-Grade

- 7.8.1 Concrete slabs-on-grade for the buildings should be at least 5 inches thick and reinforced with No. 3 steel reinforcing bars at 18 inches on center in both horizontal directions and positioned near the slab midpoint.
- 7.8.2 A vapor retarder should underlie slabs that may receive moisture-sensitive floor coverings or may be used to store moisture-sensitive materials. The vapor retarder design should be consistent with the guidelines presented in the American Concrete Institute's (ACI) *Guide for Concrete Slabs that Receive Moisture-Sensitive Flooring Materials* (ACI 302.2R-06). In addition, the membrane should be installed in a manner that prevents puncture in accordance with manufacturer's recommendations and ASTM requirements.
- 7.8.3 The project architect or developer should specify the vapor retarder based on the type of floor covering that will be installed and if the structure will possess a humidity controlled environment.
- 7.8.4 The project foundation engineer, architect, or developer should determine the thickness of the sand bedding sand thickness; however, we should be contacted to provide recommendations if the bedding sand is thicker than six inches.
- 7.8.5 The foundation design engineer should provide appropriate concrete mix design criteria and curing measures to assure proper curing of the slab by reducing the potential for rapid moisture loss and subsequent cracking and/or slab curl. The foundation design engineer

should specify the concrete mix design and proper curing methods on the foundation plans. It is critical that the foundation contractor understands and follows the recommendations presented on the foundation plans.

- 7.8.6 The concrete slab-on-grade recommendations are based on soil support characteristics only. The project structural engineer should evaluate the structural requirements of the concrete slabs for supporting equipment and storage loads.
- 7.8.7 All exterior concrete flatwork not subject to vehicular traffic should be 4 inches thick and constructed in accordance with the following recommendations. Slab panels in excess of 8 feet square should be reinforced with 6 x 6 W2.9/W2.9 (6 x 6 6/6) welded wire mesh to reduce the potential for cracking. In addition, all concrete flatwork should be provided with crack-control joints to reduce and/or control shrinkage cracking. Crack-control spacing should be determined by the project structural engineer based upon the slab thickness and intended usage. Criteria of the American Concrete Institute (ACI) should be taken into consideration when establishing crack-control spacing. Subgrade soils for exterior slabs not subjected to vehicle loads should be compacted in accordance with criteria presented in the grading section prior to concrete placement. Subgrade soils should be properly compacted and the moisture content of surficial soils should be verified prior to placing concrete.
- 7.8.8 The recommendations presented herein are intended to reduce the potential for cracking of slabs and foundations as a result of differential movement. However, even with the incorporation of the recommendations presented herein, foundations and slabs-on-grade will still exhibit some cracking. The occurrence of concrete shrinkage cracks is independent of the soil supporting characteristics. Their occurrence may be reduced and/or controlled by: limiting the slump of the concrete; the use of crack control joints; and proper concrete placement and curing. Crack-control joints should be spaced at intervals no greater than 12 feet. Literature provided by the Portland Concrete Association (PCA) and the American Concrete Institute (ACI) present recommendations for proper concrete mix and construction and curing practices, and should be incorporated into project construction.

7.9 Retaining Walls

7.9.1 Retaining walls that are allowed to rotate more than 0.001H (where H equals the height of the retaining portion of the wall) at the top of the wall and having a level backfill surface should be designed for an active soil pressure equivalent to the pressure exerted by a fluid

density of 35 pcf. Where the backfill will be inclined at 2:1 (horizontal:vertical), an active soil pressure of 50 pcf is recommended. Expansive soil should not be used as backfill material behind retaining walls. Soil placed for retaining wall backfill should have an Expansion Index less than 50.

- 7.9.2 Where walls are restrained from movement at the top, an additional uniform pressure of 8H psf (where H equals the height of the retaining wall portion of the wall in feet) should be added to the active soil pressure where the wall possesses a height of 8 feet or less and 12H where the wall is greater than 8 feet. For retaining walls subject to vehicular loads within a horizontal distance equal to two-thirds the wall height, a surcharge equivalent to two feet of fill soil should be added.
- 7.9.3 Soil to be used as backfill should be stockpiled and samples obtained for laboratory testing to evaluate its suitability for use as wall backfill. Modified lateral earth pressures will be required if backfill soils do not meet the required expansion index. City standard wall designs, if used, are based on a specific active lateral earth pressure and/or soil friction angle. On-site soils might not meet the design values used for City standard wall design. Geocon Incorporated should be consulted if City standard wall designs will be used to assess the suitability of on-site soil for use as wall backfill.
- 7.9.4 Unrestrained walls will move laterally when backfilled and loading is applied. The amount of lateral deflection is dependent on the wall height, the type of soil used for backfill, and loads acting on the wall. The wall designer should provide appropriate lateral deflection quantities for planned retaining walls structures, if applicable. These lateral values should be considered when planning types of improvements above retaining wall structures.
- 7.9.5 The structural engineer should determine the seismic design category for the project in accordance with Section 1613 of the CBC. If the project possesses a seismic design category of D, E, or F, retaining walls that support more than 6 feet of backfill should be designed with seismic lateral pressure in accordance with Section 18.3.5.12 of the 2016 CBC. The seismic load is dependent on the retained height where H is the height of the wall, in feet, and the calculated loads result in pounds per square foot (psf) exerted at the base of the wall and zero at the top of the wall. A seismic load of 21H should be used for design. We used the peak ground acceleration adjusted for Site Class effects, PGA_M, of 0.458g calculated from ASCE 7-10 Section 11.8.3 and applied a pseudo-static coefficient of 0.33.

7.9.6 Retaining walls should be provided with a drainage system adequate to prevent the buildup of hydrostatic forces and should be waterproofed as required by the project architect. The use of drainage openings through the base of the wall (weep holes) is not recommended where the seepage could be a nuisance or otherwise adversely affect the property adjacent to the base of the wall. The above recommendations assume a properly compacted granular (EI less than 50) free-draining backfill material with no hydrostatic forces or imposed surcharge load. Figure 4 presents a typical retaining wall drainage detail. If conditions different than those described are anticipated, or if specific drainage details are desired, Geocon Incorporated should be contacted for additional recommendations.

7.10 Lateral Loading

- 7.10.1 To resist lateral loads, a passive pressure exerted by an equivalent fluid weight of 300 pcf should be used for design of footings or shear keys poured neat against properly compacted granular fill soils or native terrace deposits. The upper 12 inches of material in areas not protected by floor slabs or pavement should not be included in design for passive resistance.
- 7.10.2 If friction is to be used to resist lateral loads, an allowable coefficient of friction between soil and concrete of 0.4 should be used for design.

7.11 Storm Water Management

7.11.1 If storm water management devices are not properly designed and constructed, there is a risk for distress to improvements and property located hydrologically down gradient or adjacent to these devices. Factors such as the amount of water being detained, its residence time, and soil permeability have an important effect on seepage transmission and the potential adverse impacts that may occur if the storm water management features are not properly designed and constructed. We have not performed a hydrogeological study at the site. If infiltration of storm water runoff into the subsurface occurs, downstream improvements may be subjected to seeps, springs, slope instability, raised groundwater, movement of foundations and slabs, or other undesirable impacts as a result of water infiltration.

7.12 Drainage and Maintenance

7.12.1 Adequate site drainage is critical to reduce the potential for differential soil movement, erosion and subsurface seepage. Under no circumstances should water be allowed to pond adjacent to footings. The site should be graded and maintained such that surface drainage

is directed away from structures in accordance with 2016 CBC 1803.3 or other applicable standards. In addition, surface drainage should be directed away from the top of slopes into swales or other controlled drainage devices. Roof and pavement drainage should be directed into storm drains and conduits that carry runoff away from the proposed structure.

- 7.12.2 Underground utilities should be leak free. Utility and irrigation lines should be checked periodically for leaks, and detected leaks should be repaired promptly. Detrimental soil movement could occur if water is allowed to infiltrate the soil for prolonged periods of time.
- 7.12.3 Landscaping planters adjacent to paved areas are not recommended due to the potential for surface or irrigation water to infiltrate the pavement's subgrade and base course. We recommend that area drains to collect excess irrigation water and transmit it to drainage structures or impervious above-grade planter boxes be used. In addition, where landscaping is planned adjacent to the pavement, we recommend construction of a cutoff wall along the edge of the pavement that extends at least 6 inches below the bottom of the base material.

7.13 Grading and Foundation Plan Review

7.13.1 Geocon Incorporated should review the final grading and foundation plans for the project prior to final design submittal to evaluate if additional analysis and/or recommendations are required.

LIMITATIONS AND UNIFORMITY OF CONDITIONS

- 1. The firm that performed the geotechnical investigation for the project should be retained to provide testing and observation services during construction to provide continuity of geotechnical interpretation and to check that the recommendations presented for geotechnical aspects of site development are incorporated during site grading, construction of improvements, and excavation of foundations. If another geotechnical firm is selected to perform the testing and observation services during construction operations, that firm should prepare a letter indicating their intent to assume the responsibilities of project geotechnical engineer of record. A copy of the letter should be provided to the regulatory agency for their records. In addition, that firm should provide revised recommendations concerning the geotechnical aspects of the proposed development, or a written acknowledgement of their concurrence with the recommendations presented in our report. They should also perform additional analyses deemed necessary to assume the role of Geotechnical Engineer of Record.
- 2. The recommendations of this report pertain only to the site investigated and are based upon the assumption that the soil conditions do not deviate from those disclosed in the investigation. If any variations or undesirable conditions are encountered during construction, or if the proposed construction will differ from that anticipated herein, Geocon Incorporated should be notified so that supplemental recommendations can be given. The evaluation or identification of the potential presence of hazardous or corrosive materials was not part of the scope of services provided by Geocon Incorporated.
- 3. This report is issued with the understanding that it is the responsibility of the owner, or of his representative, to ensure that the information and recommendations contained herein are brought to the attention of the architect and engineer for the project and incorporated into the plans, and the necessary steps are taken to see that the contractor and subcontractors carry out such recommendations in the field.
- 4. The findings of this report are valid as of the present date. However, changes in the conditions of a property can occur with the passage of time, whether due to natural processes or the works of man on this or adjacent properties. In addition, changes in applicable or appropriate standards may occur, whether they result from legislation or the broadening of knowledge. Accordingly, the findings of this report may be invalidated wholly or partially by changes outside our control. Therefore, this report is subject to review and should not be relied upon after a period of three years.

Plotted:08/30/2018 2:38PM | By:ALVIN LADRILLONO | File Location:Y:VPROJECTS\G2308-42-01 (4333 Home Ave)/SHEETS\G2306-42-01 Geo Map.dwg

4333 HOME AVENUE SAN DIEGO, CALIFORNIA

GEOCON LEGEND

- **Q***pf*......PREVIOUSLY PLACED FILL
- Qudf......UNDOCUMENTED FILL
- Qal.....ALLUVIUM
- TSd......SAN DIEGO FORMATION
- Cueried Where Uncertain)
 - APPROX. LOCATION OF BORING

Plotad:08/20/2018 %18PM | By:ALVIN LADRULLONO | File Loantion: Y/PROJECTS/G2308-43-01 (4333 Home Ave)/DETAILS/Wall-Column Fonting Dimension Detail (COLFCOT2).dag

Pioted:09/29/2018 &14PM | ByALVIN LADRILLONO | File Loadion/Y/V/ROJECTS/G3208-42-01 (4333 Home Ave)/DETAILS/Typinel Retaining Weil Drainage Datail (RWD07A).deg

APPENDIX A

FIELD INVESTIGATION

The field investigation was performed on July 30, 2018, and consisted of drilling of one, smalldiameter borings at the approximate location shown on Figure 2. The boring was drilled to a maximum depth of approximately 20 feet below the existing grade using a truck-mounted drill rig. Relatively undisturbed samples were obtained by driving a 3-inch O. D., split-tube sampler 12 inches into the undisturbed soil mass with blows from a 140-pound hammer falling 30 inches. The split-tube sampler was equipped with 1-inch-high by 2³/s-inch-diameter brass sampler rings to facilitate sample removal and testing. The number of blows to drive the sampler 12 inches is reported. Bulk samples were obtained from drill cuttings. The soil conditions encountered in the boring were visually examined, classified and logged in general conformance with the American Society for Testing and Materials (ASTM) Practice for Description and Identification of Soils (Visual-Manual Procedure D2488). The log of the exploratory boring is presented on Figure A-1. The log depicts the various soil types encountered and indicate the depths at which samples were taken.

PROJECT NO. G2306-42-01

	1110: 020	00 42 0						
DEPTH IN FEET	SAMPLE NO.	ГІТНОГОСУ	GROUNDWATER	SOIL CLASS (USCS)	BORING B 1 ELEV. (MSL.) 142' DATE COMPLETED 07-30-2018 EQUIPMENT CME BY: G. CANNON	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
- 0 -	ļ			ļ				ļ
_					4" ASPHALT CONCRETE Over 6" BASE			
	B1-1			SM	PREVIOUSLY PLACED FILL Dense, moist, light olive, Silty SAND with gravel	-		
- 2 -						_		
L _		8-1 - 1 8-9 - 1 -						
		\$ q						
- 4 -	8					-		
				SM				
	B1-2	-1·		5171	Dense, moist, light brown, Silty SAND with gravel	48		
0	512					.0		
- 0 -	Ι Γ	│ │¦∤						
L _								
- 8 -	B1-3					- 35		
		. .q. ·				-		
		p. h						
- 10 -	B1-4				-Very gravelly	50/4"		
		10						
		- - - -0 - -						
- 12 -				<u></u>				
				SM	SAN DIEGO FORMATION Dansa maist light aliya Silty fina SAND			
					Dense, moisi, light onve, sinty, line sAND	-		
- 14 -		相守						
L _								
	B1-5					88/8"	106.3	16.1
- 16 -						-		
						-		
10		타네						
10								
L –						L		
	B1-6					84/10"	108.9	16.3
- 20 -	F				BORNIG TERMINATED AT 20 FEET	-		
					Groundwater not encountered			
					Backfilled with cuttings			
					-			
Lieure								
rigure	; A-1,	. P			-64		G230	0-42-01.GPJ
Log o	T Boring	д В 1	I, F	rage 1	OT 1			
SAMF	LE SYMB	OLS						
1				🔛 DISTU	IRBED OR BAG SAMPLE 📃 WATER	TABLE OR SE	EPAGE	

NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.

APPENDIX B

LABORATORY TESTING

Laboratory tests were performed in accordance with generally accepted test methods of the American Society for Testing and Materials (ASTM) or other suggested procedures. Selected soil samples were tested for in-place dry density and moisture content, shear-strength characteristics, consolidation characteristics, expansion potential, maximum dry density and optimum moisture content, pH, resistively, and sulfate content.

The results of our laboratory tests are presented on the following tables and figures. The in-place dry density and moisture content results are indicated on the exploratory boring logs.

TABLE B-I SUMMARY OF LABORATORY MAXIMUM DRY DENSITY AND OPTIMUM MOISTURE CONTENT TEST RESULTS ASTM D 1557

Sample No.	Description	Maximum Dry Density (pcf)	Optimum Moisture Content (% dry wt.)
B1-1	Silty, fine to medium SAND	134.2	8.3

TABLE B-II SUMMARY OF LABORATORY DIRECT SHEAR TEST RESULTS ASTM D3080-98

Sample No.	Dry Density (pcf)	Moisture Content (%)	Unit Cohesion (psf)	Angle of Shear Resistance (degrees)
B1-2	114.7	14.3	500	33

TABLE B-III SUMMARY OF LABORATORY EXPANSION INDEX TEST RESULTS ASTM D4829-95

Sample Moisture Content		Dry Density	Expansion	
No.	Before Test (%)	After Test (%)	(pcf)	Index
B1-1	8.5	16.4	115.9	23

TABLE B-IVSUMMARY OF LABORATORY WATER-SOLUBLE SULFATE CONTENT TEST RESULTSCALIFORNIA TEST METHOD NO. 417

Sample No.	Water Soluble Sulfate %	Sulfate Exposure
B1-1	0.037	Not Applicable (S0)

TABLE B-V SUMMARY OF LABORATORY POTENTIAL OF HYDROGEN (PH) AND RESISTIVITY TEST RESULTS CALIFORNIA TEST METHOD NO. 643

Sample No.	рН	Minimum Resistivity (ohm-centimeters)
B1-1	8.3	570

PROJECT NO. G2306-42-01

GEOCON

APPENDIX C

RECOMMENDED GRADING SPECIFICATIONS

FOR

4333 HOME AVENUE SAN DIEGO, CALIFORNIA

PROJECT NO. G2306-42-01

RECOMMENDED GRADING SPECIFICATIONS

1. GENERAL

- 1.1 These Recommended Grading Specifications shall be used in conjunction with the Geotechnical Report for the project prepared by Geocon. The recommendations contained in the text of the Geotechnical Report are a part of the earthwork and grading specifications and shall supersede the provisions contained hereinafter in the case of conflict.
- 1.2 Prior to the commencement of grading, a geotechnical consultant (Consultant) shall be employed for the purpose of observing earthwork procedures and testing the fills for substantial conformance with the recommendations of the Geotechnical Report and these specifications. The Consultant should provide adequate testing and observation services so that they may assess whether, in their opinion, the work was performed in substantial conformance with these specifications. It shall be the responsibility of the Contractor to assist the Consultant and keep them apprised of work schedules and changes so that personnel may be scheduled accordingly.
- 1.3 It shall be the sole responsibility of the Contractor to provide adequate equipment and methods to accomplish the work in accordance with applicable grading codes or agency ordinances, these specifications and the approved grading plans. If, in the opinion of the Consultant, unsatisfactory conditions such as questionable soil materials, poor moisture condition, inadequate compaction, and/or adverse weather result in a quality of work not in conformance with these specifications, the Consultant will be empowered to reject the work and recommend to the Owner that grading be stopped until the unacceptable conditions are corrected.

2. **DEFINITIONS**

- 2.1 **Owner** shall refer to the owner of the property or the entity on whose behalf the grading work is being performed and who has contracted with the Contractor to have grading performed.
- 2.2 **Contractor** shall refer to the Contractor performing the site grading work.
- 2.3 **Civil Engineer** or **Engineer of Work** shall refer to the California licensed Civil Engineer or consulting firm responsible for preparation of the grading plans, surveying and verifying as-graded topography.
- 2.4 **Consultant** shall refer to the soil engineering and engineering geology consulting firm retained to provide geotechnical services for the project.

- 2.5 **Soil Engineer** shall refer to a California licensed Civil Engineer retained by the Owner, who is experienced in the practice of geotechnical engineering. The Soil Engineer shall be responsible for having qualified representatives on-site to observe and test the Contractor's work for conformance with these specifications.
- 2.6 **Engineering Geologist** shall refer to a California licensed Engineering Geologist retained by the Owner to provide geologic observations and recommendations during the site grading.
- 2.7 **Geotechnical Report** shall refer to a soil report (including all addenda) which may include a geologic reconnaissance or geologic investigation that was prepared specifically for the development of the project for which these Recommended Grading Specifications are intended to apply.

3. MATERIALS

- 3.1 Materials for compacted fill shall consist of any soil excavated from the cut areas or imported to the site that, in the opinion of the Consultant, is suitable for use in construction of fills. In general, fill materials can be classified as *soil* fills, *soil-rock* fills or *rock* fills, as defined below.
 - 3.1.1 **Soil fills** are defined as fills containing no rocks or hard lumps greater than 12 inches in maximum dimension and containing at least 40 percent by weight of material smaller than ³/₄ inch in size.
 - 3.1.2 **Soil-rock fills** are defined as fills containing no rocks or hard lumps larger than 4 feet in maximum dimension and containing a sufficient matrix of soil fill to allow for proper compaction of soil fill around the rock fragments or hard lumps as specified in Paragraph 6.2. **Oversize rock** is defined as material greater than 12 inches.
 - 3.1.3 **Rock fills** are defined as fills containing no rocks or hard lumps larger than 3 feet in maximum dimension and containing little or no fines. Fines are defined as material smaller than ³/₄ inch in maximum dimension. The quantity of fines shall be less than approximately 20 percent of the rock fill quantity.
- 3.2 Material of a perishable, spongy, or otherwise unsuitable nature as determined by the Consultant shall not be used in fills.
- 3.3 Materials used for fill, either imported or on-site, shall not contain hazardous materials as defined by the California Code of Regulations, Title 22, Division 4, Chapter 30, Articles 9

and 10; 40CFR; and any other applicable local, state or federal laws. The Consultant shall not be responsible for the identification or analysis of the potential presence of hazardous materials. However, if observations, odors or soil discoloration cause Consultant to suspect the presence of hazardous materials, the Consultant may request from the Owner the termination of grading operations within the affected area. Prior to resuming grading operations, the Owner shall provide a written report to the Consultant indicating that the suspected materials are not hazardous as defined by applicable laws and regulations.

- 3.4 The outer 15 feet of *soil-rock* fill slopes, measured horizontally, should be composed of properly compacted *soil* fill materials approved by the Consultant. *Rock* fill may extend to the slope face, provided that the slope is not steeper than 2:1 (horizontal:vertical) and a soil layer no thicker than 12 inches is track-walked onto the face for landscaping purposes. This procedure may be utilized provided it is acceptable to the governing agency, Owner and Consultant.
- 3.5 Samples of soil materials to be used for fill should be tested in the laboratory by the Consultant to determine the maximum density, optimum moisture content, and, where appropriate, shear strength, expansion, and gradation characteristics of the soil.
- 3.6 During grading, soil or groundwater conditions other than those identified in the Geotechnical Report may be encountered by the Contractor. The Consultant shall be notified immediately to evaluate the significance of the unanticipated condition

4. CLEARING AND PREPARING AREAS TO BE FILLED

- 4.1 Areas to be excavated and filled shall be cleared and grubbed. Clearing shall consist of complete removal above the ground surface of trees, stumps, brush, vegetation, man-made structures, and similar debris. Grubbing shall consist of removal of stumps, roots, buried logs and other unsuitable material and shall be performed in areas to be graded. Roots and other projections exceeding 1½ inches in diameter shall be removed to a depth of 3 feet below the surface of the ground. Borrow areas shall be grubbed to the extent necessary to provide suitable fill materials.
- 4.2 Asphalt pavement material removed during clearing operations should be properly disposed at an approved off-site facility or in an acceptable area of the project evaluated by Geocon and the property owner. Concrete fragments that are free of reinforcing steel may be placed in fills, provided they are placed in accordance with Section 6.2 or 6.3 of this document.

- 4.3 After clearing and grubbing of organic matter and other unsuitable material, loose or porous soils shall be removed to the depth recommended in the Geotechnical Report. The depth of removal and compaction should be observed and approved by a representative of the Consultant. The exposed surface shall then be plowed or scarified to a minimum depth of 6 inches and until the surface is free from uneven features that would tend to prevent uniform compaction by the equipment to be used.
- 4.4 Where the slope ratio of the original ground is steeper than 5:1 (horizontal:vertical), or where recommended by the Consultant, the original ground should be benched in accordance with the following illustration.

TYPICAL BENCHING DETAIL

- DETAIL NOTES: (1) Key width "B" should be a minimum of 10 feet, or sufficiently wide to permit complete coverage with the compaction equipment used. The base of the key should be graded horizontal, or inclined slightly into the natural slope.
 - (2) The outside of the key should be below the topsoil or unsuitable surficial material and at least 2 feet into dense formational material. Where hard rock is exposed in the bottom of the key, the depth and configuration of the key may be modified as approved by the Consultant.
- 4.5 After areas to receive fill have been cleared and scarified, the surface should be moisture conditioned to achieve the proper moisture content, and compacted as recommended in Section 6 of these specifications.

5. COMPACTION EQUIPMENT

- 5.1 Compaction of *soil* or *soil-rock* fill shall be accomplished by sheepsfoot or segmented-steel wheeled rollers, vibratory rollers, multiple-wheel pneumatic-tired rollers, or other types of acceptable compaction equipment. Equipment shall be of such a design that it will be capable of compacting the *soil* or *soil-rock* fill to the specified relative compaction at the specified moisture content.
- 5.2 Compaction of *rock* fills shall be performed in accordance with Section 6.3.

6. PLACING, SPREADING AND COMPACTION OF FILL MATERIAL

- 6.1 *Soil* fill, as defined in Paragraph 3.1.1, shall be placed by the Contractor in accordance with the following recommendations:
 - 6.1.1 *Soil* fill shall be placed by the Contractor in layers that, when compacted, should generally not exceed 8 inches. Each layer shall be spread evenly and shall be thoroughly mixed during spreading to obtain uniformity of material and moisture in each layer. The entire fill shall be constructed as a unit in nearly level lifts. Rock materials greater than 12 inches in maximum dimension shall be placed in accordance with Section 6.2 or 6.3 of these specifications.
 - 6.1.2 In general, the *soil* fill shall be compacted at a moisture content at or above the optimum moisture content as determined by ASTM D 1557.
 - 6.1.3 When the moisture content of *soil* fill is below that specified by the Consultant, water shall be added by the Contractor until the moisture content is in the range specified.
 - 6.1.4 When the moisture content of the *soil* fill is above the range specified by the Consultant or too wet to achieve proper compaction, the *soil* fill shall be aerated by the Contractor by blading/mixing, or other satisfactory methods until the moisture content is within the range specified.
 - 6.1.5 After each layer has been placed, mixed, and spread evenly, it shall be thoroughly compacted by the Contractor to a relative compaction of at least 90 percent. Relative compaction is defined as the ratio (expressed in percent) of the in-place dry density of the compacted fill to the maximum laboratory dry density as determined in accordance with ASTM D 1557. Compaction shall be continuous over the entire area, and compaction equipment shall make sufficient passes so that the specified minimum relative compaction has been achieved throughout the entire fill.

- 6.1.6 Where practical, soils having an Expansion Index greater than 50 should be placed at least 3 feet below finish pad grade and should be compacted at a moisture content generally 2 to 4 percent greater than the optimum moisture content for the material.
- 6.1.7 Properly compacted *soil* fill shall extend to the design surface of fill slopes. To achieve proper compaction, it is recommended that fill slopes be over-built by at least 3 feet and then cut to the design grade. This procedure is considered preferable to track-walking of slopes, as described in the following paragraph.
- 6.1.8 As an alternative to over-building of slopes, slope faces may be back-rolled with a heavy-duty loaded sheepsfoot or vibratory roller at maximum 4-foot fill height intervals. Upon completion, slopes should then be track-walked with a D-8 dozer or similar equipment, such that a dozer track covers all slope surfaces at least twice.
- 6.2 *Soil-rock* fill, as defined in Paragraph 3.1.2, shall be placed by the Contractor in accordance with the following recommendations:
 - 6.2.1 Rocks larger than 12 inches but less than 4 feet in maximum dimension may be incorporated into the compacted *soil* fill, but shall be limited to the area measured 15 feet minimum horizontally from the slope face and 5 feet below finish grade or 3 feet below the deepest utility, whichever is deeper.
 - 6.2.2 Rocks or rock fragments up to 4 feet in maximum dimension may either be individually placed or placed in windrows. Under certain conditions, rocks or rock fragments up to 10 feet in maximum dimension may be placed using similar methods. The acceptability of placing rock materials greater than 4 feet in maximum dimension shall be evaluated during grading as specific cases arise and shall be approved by the Consultant prior to placement.
 - 6.2.3 For individual placement, sufficient space shall be provided between rocks to allow for passage of compaction equipment.
 - 6.2.4 For windrow placement, the rocks should be placed in trenches excavated in properly compacted *soil* fill. Trenches should be approximately 5 feet wide and 4 feet deep in maximum dimension. The voids around and beneath rocks should be filled with approved granular soil having a Sand Equivalent of 30 or greater and should be compacted by flooding. Windrows may also be placed utilizing an "open-face" method in lieu of the trench procedure, however, this method should first be approved by the Consultant.

- 6.2.5 Windrows should generally be parallel to each other and may be placed either parallel to or perpendicular to the face of the slope depending on the site geometry. The minimum horizontal spacing for windrows shall be 12 feet center-to-center with a 5-foot stagger or offset from lower courses to next overlying course. The minimum vertical spacing between windrow courses shall be 2 feet from the top of a lower windrow to the bottom of the next higher windrow.
- 6.2.6 Rock placement, fill placement and flooding of approved granular soil in the windrows should be continuously observed by the Consultant.
- 6.3 *Rock* fills, as defined in Section 3.1.3, shall be placed by the Contractor in accordance with the following recommendations:
 - 6.3.1 The base of the *rock* fill shall be placed on a sloping surface (minimum slope of 2 percent). The surface shall slope toward suitable subdrainage outlet facilities. The *rock* fills shall be provided with subdrains during construction so that a hydrostatic pressure buildup does not develop. The subdrains shall be permanently connected to controlled drainage facilities to control post-construction infiltration of water.
 - 6.3.2 *Rock* fills shall be placed in lifts not exceeding 3 feet. Placement shall be by rock trucks traversing previously placed lifts and dumping at the edge of the currently placed lift. Spreading of the *rock* fill shall be by dozer to facilitate *seating* of the rock. The *rock* fill shall be watered heavily during placement. Watering shall consist of water trucks traversing in front of the current rock lift face and spraying water continuously during rock placement. Compaction equipment with compactive energy comparable to or greater than that of a 20-ton steel vibratory roller or other compaction equipment providing suitable energy to achieve the required compaction or deflection as recommended in Paragraph 6.3.3 shall be utilized. The number of passes to be made should be determined as described in Paragraph 6.3.3. Once a *rock* fill lift has been covered with *soil* fill, no additional *rock* fill lifts will be permitted over the *soil* fill.
 - 6.3.3 Plate bearing tests, in accordance with ASTM D 1196, may be performed in both the compacted *soil* fill and in the *rock* fill to aid in determining the required minimum number of passes of the compaction equipment. If performed, a minimum of three plate bearing tests should be performed in the properly compacted *soil* fill (minimum relative compaction of 90 percent). Plate bearing tests shall then be performed on areas of *rock* fill having two passes, four passes and six passes of the compaction equipment, respectively. The number of passes required for the *rock* fill shall be determined by comparing the results of the plate bearing tests for the *soil* fill and the *rock* fill and by evaluating the deflection
variation with number of passes. The required number of passes of the compaction equipment will be performed as necessary until the plate bearing deflections are equal to or less than that determined for the properly compacted *soil* fill. In no case will the required number of passes be less than two.

- 6.3.4 A representative of the Consultant should be present during *rock* fill operations to observe that the minimum number of "passes" have been obtained, that water is being properly applied and that specified procedures are being followed. The actual number of plate bearing tests will be determined by the Consultant during grading.
- 6.3.5 Test pits shall be excavated by the Contractor so that the Consultant can state that, in their opinion, sufficient water is present and that voids between large rocks are properly filled with smaller rock material. In-place density testing will not be required in the *rock* fills.
- 6.3.6 To reduce the potential for "piping" of fines into the *rock* fill from overlying *soil* fill material, a 2-foot layer of graded filter material shall be placed above the uppermost lift of *rock* fill. The need to place graded filter material below the *rock* should be determined by the Consultant prior to commencing grading. The gradation of the graded filter material will be determined at the time the *rock* fill is being excavated. Materials typical of the *rock* fill should be submitted to the Consultant in a timely manner, to allow design of the graded filter prior to the commencement of *rock* fill placement.
- 6.3.7 *Rock* fill placement should be continuously observed during placement by the Consultant.

7. SUBDRAINS

7.1 The geologic units on the site may have permeability characteristics and/or fracture systems that could be susceptible under certain conditions to seepage. The use of canyon subdrains may be necessary to mitigate the potential for adverse impacts associated with seepage conditions. Canyon subdrains with lengths in excess of 500 feet or extensions of existing offsite subdrains should use 8-inch-diameter pipes. Canyon subdrains less than 500 feet in length should use 6-inch-diameter pipes.

NO SCALE

7.2 Slope drains within stability fill keyways should use 4-inch-diameter (or lager) pipes.

NOTES:

1.....EXCAVATE BACKCUT AT 1:1 INCLINATION (UNLESS OTHERWISE NOTED).

2.....BASE OF STABILITY FILL TO BE 3 FEET INTO FORMATIONAL MATERIAL, SLOPING A MINIMUM 5% INTO SLOPE.

3.....STABILITY FILL TO BE COMPOSED OF PROPERLY COMPACTED GRANULAR SOIL.

4.....CHIMNEY DRAINS TO BE APPROVED PREFABRICATED CHIMNEY DRAIN PANELS (MIRADRAIN G200N OR EQUIVALENT) SPACED APPROXIMATELY 20 FEET CENTER TO CENTER AND 4 FEET WIDE. CLOSER SPACING MAY BE REQUIRED IF SEEPAGE IS ENCOUNTERED.

5.....FILTER MATERIAL TO BE 3/4-INCH, OPEN-GRADED CRUSHED ROCK ENCLOSED IN APPROVED FILTER FABRIC (MIRAFI 140NC).

8.....COLLECTOR PIPE TO BE 4-INCH MINIMUM DIAMETER, PERFORATED, THICK-WALLED PVC SCHEDULE 40 OR EQUIVALENT, AND SLOPED TO DRAIN AT 1 PERCENT MINIMUM TO APPROVED OUTLET.

NO SCALE

- 7.3 The actual subdrain locations will be evaluated in the field during the remedial grading operations. Additional drains may be necessary depending on the conditions observed and the requirements of the local regulatory agencies. Appropriate subdrain outlets should be evaluated prior to finalizing 40-scale grading plans.
- *Rock* fill or *soil-rock* fill areas may require subdrains along their down-slope perimeters to mitigate the potential for buildup of water from construction or landscape irrigation. The subdrains should be at least 6-inch-diameter pipes encapsulated in gravel and filter fabric. *Rock* fill drains should be constructed using the same requirements as canyon subdrains.

7.5 Prior to outletting, the final 20-foot segment of a subdrain that will not be extended during future development should consist of non-perforated drainpipe. At the non-perforated/ perforated interface, a seepage cutoff wall should be constructed on the downslope side of the pipe.

TYPICAL CUT OFF WALL DETAIL

FRONT VIEW

SIDE VIEW

7.6 Subdrains that discharge into a natural drainage course or open space area should be provided with a permanent headwall structure.

FRONT VIEW

7.7 The final grading plans should show the location of the proposed subdrains. After completion of remedial excavations and subdrain installation, the project civil engineer should survey the drain locations and prepare an "as-built" map showing the drain locations. The final outlet and connection locations should be determined during grading operations. Subdrains that will be extended on adjacent projects after grading can be placed on formational material and a vertical riser should be placed at the end of the subdrain. The grading contractor should consider videoing the subdrains shortly after burial to check proper installation and functionality. The contractor is responsible for the performance of the drains.

8. OBSERVATION AND TESTING

- 8.1 The Consultant shall be the Owner's representative to observe and perform tests during clearing, grubbing, filling, and compaction operations. In general, no more than 2 feet in vertical elevation of *soil* or *soil-rock* fill should be placed without at least one field density test being performed within that interval. In addition, a minimum of one field density test should be performed for every 2,000 cubic yards of *soil* or *soil-rock* fill placed and compacted.
- 8.2 The Consultant should perform a sufficient distribution of field density tests of the compacted *soil* or *soil-rock* fill to provide a basis for expressing an opinion whether the fill material is compacted as specified. Density tests shall be performed in the compacted materials below any disturbed surface. When these tests indicate that the density of any layer of fill or portion thereof is below that specified, the particular layer or areas represented by the test shall be reworked until the specified density has been achieved.
- 8.3 During placement of *rock* fill, the Consultant should observe that the minimum number of passes have been obtained per the criteria discussed in Section 6.3.3. The Consultant should request the excavation of observation pits and may perform plate bearing tests on the placed *rock* fills. The observation pits will be excavated to provide a basis for expressing an opinion as to whether the *rock* fill is properly seated and sufficient moisture has been applied to the material. When observations indicate that a layer of *rock* fill or any portion thereof is below that specified, the affected layer or area shall be reworked until the *rock* fill has been adequately seated and sufficient moisture applied.
- 8.4 A settlement monitoring program designed by the Consultant may be conducted in areas of *rock* fill placement. The specific design of the monitoring program shall be as recommended in the Conclusions and Recommendations section of the project Geotechnical Report or in the final report of testing and observation services performed during grading.
- 8.5 We should observe the placement of subdrains, to check that the drainage devices have been placed and constructed in substantial conformance with project specifications.
- 8.6 Testing procedures shall conform to the following Standards as appropriate:

8.6.1 Soil and Soil-Rock Fills:

8.6.1.1 Field Density Test, ASTM D 1556, Density of Soil In-Place By the Sand-Cone Method.

- 8.6.1.2 Field Density Test, Nuclear Method, ASTM D 6938, Density of Soil and Soil-Aggregate In-Place by Nuclear Methods (Shallow Depth).
- 8.6.1.3 Laboratory Compaction Test, ASTM D 1557, Moisture-Density Relations of Soils and Soil-Aggregate Mixtures Using 10-Pound Hammer and 18-Inch Drop.
- 8.6.1.4. Expansion Index Test, ASTM D 4829, *Expansion Index Test*.

9. PROTECTION OF WORK

- 9.1 During construction, the Contractor shall properly grade all excavated surfaces to provide positive drainage and prevent ponding of water. Drainage of surface water shall be controlled to avoid damage to adjoining properties or to finished work on the site. The Contractor shall take remedial measures to prevent erosion of freshly graded areas until such time as permanent drainage and erosion control features have been installed. Areas subjected to erosion or sedimentation shall be properly prepared in accordance with the Specifications prior to placing additional fill or structures.
- 9.2 After completion of grading as observed and tested by the Consultant, no further excavation or filling shall be conducted except in conjunction with the services of the Consultant.

10. CERTIFICATIONS AND FINAL REPORTS

- 10.1 Upon completion of the work, Contractor shall furnish Owner a certification by the Civil Engineer stating that the lots and/or building pads are graded to within 0.1 foot vertically of elevations shown on the grading plan and that all tops and toes of slopes are within 0.5 foot horizontally of the positions shown on the grading plans. After installation of a section of subdrain, the project Civil Engineer should survey its location and prepare an *as-built* plan of the subdrain location. The project Civil Engineer should verify the proper outlet for the subdrains and the Contractor should ensure that the drain system is free of obstructions.
- 10.2 The Owner is responsible for furnishing a final as-graded soil and geologic report satisfactory to the appropriate governing or accepting agencies. The as-graded report should be prepared and signed by a California licensed Civil Engineer experienced in geotechnical engineering and by a California Certified Engineering Geologist, indicating that the geotechnical aspects of the grading were performed in substantial conformance with the Specifications or approved changes to the Specifications.

LIST OF REFERENCES

City of San Diego (2008), Seismic Safety Study, Geologic Hazards and Faults, Grid Tile 18;

- Kennedy, M. P., and Tan, S. S., (2008), *Geologic Map of the San Diego 30' x 60' Quadrangle, California*, USGS Regional Geologic Map Series, 1:100,000 Scale, Map No. 3;
- Risk Engineering (2011), *EZ-FRISK (version 7.62)*, software package used to perform site-specific earthquake hazard analyses. Accessed August 2, 2018;
- USDA (1953), Aerial photographs AXN 3M 94 and 95;
- USGS (2014), U.S. Seismic Design Maps Web Application (version 3.1.0), http://earthquake.usgs.gov/designmaps/us/application.php. Accessed August 2, 2018;
- USGS (2016), *Quaternary Fault and Fold Database of the United States:* U.S. Geological Survey website, http://earthquakes,usgs.gov/hazards/qfaults, accessed August 2, 2018.

4337 Home Avenue Marijuana Outlet

GHG Emissions CAP Analysis

April 3, 2019

Prepared for:

AVAD Investment, Inc.

4333 Home Avenue San Diego, CA 92105

Prepared by:

HELIX Environmental Planning, Inc.

7578 El Cajon Boulevard La Mesa, CA 91942

SD CLIMATE ACTION PLAN CONSISTENCY CHECKLIST INTRODUCTION

In December 2015, the City adopted a Climate Action Plan (CAP) that outlines the actions that City will undertake to achieve its proportional share of State greenhouse gas (GHG) emission reductions. The purpose of the Climate Action Plan Consistency Checklist (Checklist) is to, in conjunction with the CAP, provide a streamlined review process for proposed new development projects that are subject to discretionary review and trigger environmental review pursuant to the California Environmental Quality Act (CEQA).¹

Analysis of GHG emissions and potential climate change impacts from new development is required under CEQA. The CAP is a plan for the reduction of GHG emissions in accordance with CEQA Guidelines Section 15183.5. Pursuant to CEQA Guidelines Sections 15064(h)(3), 15130(d), and 15183(b), a project's incremental contribution to a cumulative GHG emissions effect may be determined not to be cumulatively considerable if it complies with the requirements of the CAP.

This Checklist is part of the CAP and contains measures that are required to be implemented on a project-by-project basis to ensure that the specified emissions targets identified in the CAP are achieved. Implementation of these measures would ensure that new development is consistent with the CAP's assumptions for relevant CAP strategies toward achieving the identified GHG reduction targets. Projects that are consistent with the CAP as determined through the use of this Checklist may rely on the CAP for the cumulative impacts analysis of GHG emissions. Projects that are not consistent with the CAP must prepare a comprehensive project-specific analysis of GHG emissions, including quantification of existing and projected GHG emissions and incorporation of the measures in this Checklist to the extent feasible. Cumulative GHG impacts would be significant for any project that is not consistent with the CAP.

The Checklist may be updated to incorporate new GHG reduction techniques or to comply with later amendments to the CAP or local, State, or federal law.

¹ Certain projects seeking ministerial approval may be required to complete the Checklist. For example, projects in a Community Plan Implementation Overlay Zone may be required to use the Checklist to qualify for ministerial level review. See Supplemental Development Regulations in the project's community plan to determine applicability.

This page intentionally left blank

SUBMITTAL APPLICATION

- The Checklist is required only for projects subject to CEQA review.²
- If required, the Checklist must be included in the project submittal package. Application submittal procedures can be found in <u>Chapter 11: Land Development Procedures</u> of the City's Municipal Code.
- The requirements in the Checklist will be included in the project's conditions of approval.
- The applicant must provide an explanation of how the proposed project will implement the requirements described herein to the satisfaction of the Planning Department.

			. •
Ann	lication	Inform	nation
	leacion		

Contact Information		
Project No./Name:		
Property Address:		
Applicant Name/Co.:		
Contact Phone:	Contact Email:	
Was a consultant retained to complete this checklist? Consultant Name:	□ Yes □ No Contact Phone:	If Yes, complete the following
Company Name:	Contact Email:	
Project Information		
1. What is the size of the project (acres)?		
 Identify all applicable proposed land uses: □ Residential (indicate # of single-family units): 		
Residential (indicate # of multi-family units):		
Commercial (total square footage):		
Industrial (total square footage):		
 Other (describe): 3. Is the project or a portion of the project located in a Transit Priority Area? 	□ Yes □ No	

4. Provide a brief description of the project proposed:

² Certain projects seeking ministerial approval may be required to complete the Checklist. For example, projects in a Community Plan Implementation Overlay Zone may be required to use the Checklist to qualify for ministerial level review. See Supplemental Development Regulations in the project's community plan to determine applicability.

Step 1: Land Use Consistency

The first step in determining CAP consistency for discretionary development projects is to assess the project's consistency with the growth projections used in the development of the CAP. This section allows the City to determine a project's consistency with the land use assumptions used in the CAP.

Step 1: Land Use Consistency				
Checklist Item (Check the appropriate box and provide explanation and supporting docu	mentation for your answer)	No		
 A. Is the proposed project consistent with the existing General Plan and zoning designations?;³ <u>OR</u>, B. If the proposed project is not consistent with the existing land use plat includes a land use plan and/or zoning designation amendment, wour result in an increased density within a Transit Priority Area (TPA)⁴ and actions, as determined in Step 3 to the satisfaction of the Developme C. If the proposed project is not consistent with the existing land use plat the project include a land use plan and/or zoning designation amend equivalent or less GHG-intensive project when compared to the exist 	Community Plan land use and In and zoning designations, and Id the proposed amendment I implement CAP Strategy 3 □ Int Services Department?; <u>OR</u> , In and zoning designations, does ment that would result in an ing designations?			

If "**Yes**," proceed to Step 2 of the Checklist. For question B above, complete Step 3. For question C above, provide estimated project emissions under both existing and proposed designation(s) for comparison. Compare the maximum buildout of the existing designation and the maximum buildout of the proposed designation.

If "**No**," in accordance with the City's Significance Determination Thresholds, the project's GHG impact is significant. The project must nonetheless incorporate each of the measures identified in Step 2 to mitigate cumulative GHG emissions impacts unless the decision maker finds that a measure is infeasible in accordance with CEQA Guidelines Section 15091. Proceed and complete Step 2 of the Checklist.

³ This question may also be answered in the affirmative if the project is consistent with SANDAG Series 12 growth projections, which were used to determine the CAP projections, as determined by the Planning Department.

⁴ This category applies to all projects that answered in the affirmative to question 3 on the previous page: Is the project or a portion of the project located in a transit priority area.

Step 2: CAP Strategies Consistency

The second step of the CAP consistency review is to review and evaluate a project's consistency with the applicable strategies and actions of the CAP. Step 2 only applies to development projects that involve permits that would require a certificate of occupancy from the Building Official or projects comprised of one and two family dwellings or townhouses as defined in the California Residential Code and their accessory structures.⁵ All other development projects that would not require a certificate of occupancy from the Building Official shall implement Best Management Practices for construction activities as set forth in the <u>Greenbook</u> (for public projects).

Step 2: CAP Strategies Consistency	/		
Checklist Item (Check the appropriate box and provide explanation for your answer)	Yes	No	N/A
Strategy 1: Energy & Water Efficient Buildings			
1. Cool/Green Roofs.			
• Would the project include roofing materials with a minimum 3-year aged solar reflection and thermal emittance or solar reflection index equal to or greater than the values specified in the voluntary measures under <u>California Green Building</u> <u>Standards Code</u> (Attachment A)?; <u>OR</u>			
 Would the project roof construction have a thermal mass over the roof membrane, including areas of vegetated (green) roofs, weighing at least 25 pounds per square foot as specified in the voluntary measures under <u>California</u> <u>Green Building Standards Code</u>?; <u>OR</u> 			
 Would the project include a combination of the above two options? 			
Check "N/A" only if the project does not include a roof component.			

⁵ Actions that are not subject to Step 2 would include, for example: 1) discretionary map actions that do not propose specific development, 2) permits allowing wireless communication facilities, 3) special events permits, 4) use permits or other permits that do not result in the expansion or enlargement of a building (e.g., decks, garages, etc.), and 5) non-building infrastructure projects such as roads and pipelines. Because such actions would not result in new occupancy buildings from which GHG emissions reductions could be achieved, the items contained in Step 2 would not be applicable.

2.	Plumbing fixtures and fittings		
	With respect to plumbing fixtures or fittings provided as part of the project, would those low-flow fixtures/appliances be consistent with each of the following:		
	 Residential buildings: Kitchen faucets: maximum flow rate not to exceed 1.5 gallons per minute at 60 psi; Standard dishwashers: 4.25 gallons per cycle; Compact dishwashers: 3.5 gallons per cycle; and Clothes washers: water factor of 6 gallons per cubic feet of drum capacity? Nonresidential buildings: Plumbing fixtures and fittings that do not exceed the maximum flow rate specified in Table A5.303.2.3.1 (voluntary measures) of the California Green Building Standards Code (See Attachment A); and Appliances and fixtures for commercial applications that meet the provisions of Section A5.303.3 (voluntary measures) of the California Green Building Standards Code (See Attachment A)? Check "N/A" only if the project does not include any plumbing fixtures or fittings. 		

Strategy 3: Bicycling, Walking, Transit & Land Use		
3. Electric Vehicle Charging		
 <u>Multiple-family projects of 17 dwelling units or less</u>: Would 3% of the total parking spaces required, or a minimum of one space, whichever is greater, be provided with a listed cabinet, box or enclosure connected to a conduit linking the parking spaces with the electrical service, in a manner approved by the building and safety official, to allow for the future installation of electric vehicle supply equipment to provide electric vehicle charging stations at such time as it is needed for use by residents? <u>Multiple-family projects of more than 17 dwelling units</u>: Of the total required listed cabinets, boxes or enclosures, would 50% have the necessary electric vehicle supply equipment installed to provide active electric vehicle charging stations ready for use by residents? <u>Non-residential projects</u>: Of the total required listed cabinets, boxes or enclosures, would 50% have the necessary electric vehicle charging stations ready for use by residents? <u>Non-residential projects</u>: Of the total required listed cabinets, boxes or enclosures, would 50% have the necessary electric vehicle supply equipment installed to provide active electric vehicle charging stations ready for use? <u>Non-residential projects</u>: Of the total required listed cabinets, boxes or enclosures, would 50% have the necessary electric vehicle supply equipment installed to provide active electric vehicle charging stations ready for use? 		
Strategy 3: Bicycling, Walking, Transit & Land Use (Complete this section if project includes non-residential or mixed uses)		
4. Bicycle Parking Spaces Would the project provide more short- and long-term bicycle parking spaces than required in the City's Municipal Code (<u>Chapter 14, Article 2, Division 5</u>)? ⁶ Check "N/A" only if the project is a residential project.		

⁶ Non-portable bicycle corrals within 600 feet of project frontage can be counted towards the project's bicycle parking requirements.

Number of Tenant Occupants (Employees)	Shower/Changing Facilities Required	Two-Tier (12" X 15" X 72") Personal Effects Lockers Required		
0-10	0	0		
11-50	1 shower stall	2		
51-100	1 shower stall	3		
101-200	1 shower stall	4		
Over 200	1 shower stall plus 1 additional shower stall for each 200 additional tenant-occupants	1 two-tier locker plus 1 two-tier locker for each 50 additional tenant- occupants		
'N/A" only if the project idential development t yees).	is a residential project, hat would accommoda	or if it does not includ te over 10 tenant occu	e pants	

	Number of Required Parking	Number of Designated Parking			
	Spaces	Spaces			
	10-25	2			
	26-50	4			
	51-75	6			
	76-100	9			
	101-150	11			
	151-200	18			
	201 and over	At least 10% of total			
be conside spaces are	red eligible for designated pa to be provided within the over it.	stickers from expired HOV lane rking spaces. The required desi erall minimum parking requiren	programs may gnated parking nent, not in		
addition to					
addition to Check "N/A nonresider	" only if the project is a reside ntial use in a TPA.	ential project, or if it does not inc	clude		

7. Transportation Demand Management Program				
If the project would accommodate over 50 tenant-occ include a transportation demand management progra existing tenants and future tenants that includes:	upants (employees), would it am that would be applicable to			
At least one of the following components:				
Parking cash out program				
 Parking management plan that includes chargin single-occupancy vehicle parking and providing spaces for registered carpools or vanpools 	g employees market-rate for reserved, discounted, or free			
 Unbundled parking whereby parking spaces wo from the rental or purchase fees for the develop development 	uld be leased or sold separately ment for the life of the			
And at least three of the following components:				
 Commitment to maintaining an employer network program and promoting its RideMatcher service 	ork in the SANDAG iCommute to tenants/employees			
On-site carsharing vehicle(s) or bikesharing				
Flexible or alternative work hours				
Telework program				
Transit, carpool, and vanpool subsidies				
• Pre-tax deduction for transit or vanpool fares ar	d bicycle commute costs	_	_	
 Access to services that reduce the need to drive, stores, banks, post offices, restaurants, gyms, or 1,320 feet (1/4 mile) of the structure/use? 	such as cafes, commercial childcare, either onsite or within			
Check "N/A" only if the project is a residential project o over 50 tenant-occupants (employees).	r if it would not accommodate			

Step 3: Project CAP Conformance Evaluation (if applicable)

The third step of the CAP consistency review only applies if Step 1 is answered in the affirmative under option B. The purpose of this step is to determine whether a project that is located in a TPA but that includes a land use plan and/or zoning designation amendment is nevertheless consistent with the assumptions in the CAP because it would implement CAP Strategy 3 actions. In general, a project that would result in a reduction in density inside a TPA would not be consistent with Strategy 3.The following questions must each be answered in the affirmative and fully explained.

1. Would the proposed project implement the General Plan's City of Villages strategy in an identified Transit Priority Area (TPA) that will result in an increase in the capacity for transit-supportive residential and/or employment densities?

Considerations for this question:

- Does the proposed land use and zoning designation associated with the project provide capacity for transit-supportive residential densities within the TPA?
- Is the project site suitable to accommodate mixed-use village development, as defined in the General Plan, within the TPA?
- Does the land use and zoning associated with the project increase the capacity for transit-supportive employment intensities within the TPA?
- 2. Would the proposed project implement the General Plan's Mobility Element in Transit Priority Areas to increase the use of transit? Considerations for this question:
 - Does the proposed project support/incorporate identified transit routes and stops/stations?
 - Does the project include transit priority measures?
- 3. Would the proposed project implement pedestrian improvements in Transit Priority Areas to increase walking opportunities? Considerations for this question:
 - Does the proposed project circulation system provide multiple and direct pedestrian connections and accessibility to local activity centers (such as transit stations, schools, shopping centers, and libraries)?
 - Does the proposed project urban design include features for walkability to promote a transit supportive environment?

4. Would the proposed project implement the City of San Diego's Bicycle Master Plan to increase bicycling opportunities? Considerations for this question:

- Does the proposed project circulation system include bicycle improvements consistent with the Bicycle Master Plan?
- Does the overall project circulation system provide a balanced, multimodal, "complete streets" approach to accommodate mobility needs of all users?

5. Would the proposed project incorporate implementation mechanisms that support Transit Oriented Development? <u>Considerations for this question:</u>

- Does the proposed project include new or expanded urban public spaces such as plazas, pocket parks, or urban greens in the TPA?
- Does the land use and zoning associated with the proposed project increase the potential for jobs within the TPA?
- Do the zoning/implementing regulations associated with the proposed project support the efficient use of parking through mechanisms such as: shared parking, parking districts, unbundled parking, reduced parking, paid or time-limited parking, etc.?

6. Would the proposed project implement the Urban Forest Management Plan to increase urban tree canopy coverage?

Considerations for this question:

- Does the proposed project provide at least three different species for the primary, secondary and accent trees in order to accommodate varying parkway widths?
- Does the proposed project include policies or strategies for preserving existing trees?
- Does the proposed project incorporate tree planting that will contribute to the City's 20% urban canopy tree coverage goal?

SD CLIMATE ACTION PLAN CONSISTENCY CHECKLIST ATTACHMENT A

This attachment provides performance standards for applicable Climate Action Pan (CAP) Consistency Checklist measures.

Table 1Roof Design Values for Question 1: Cool/Green Roofs supporting Strategy 1: Energy & Water Efficient Buildings of the Climate Action Plan							
Land Us	е Туре	Roof Slope	Minimum 3-Year Aged Solar Reflectance	Thermal Emittance	Solar Reflective Index		
Low-Rise Residential		≤2:12	0.55	0.75	64		
		> 2:12	0.20	0.75	16		
High-Rise Residential Buildings, Hotels and Motels		≤2:12	0.55	0.75	64		
		> 2:12	0.20	0.75	16		
Non-Residential		<mark>≤2:12</mark>	0.55	0.75	64		
		<mark>> 2:12</mark>	0.20	0.75	16		
Source: Adapted from the <u>California Green Building Standards Code</u> (CALGreen) Tier 1 residential and non-residential voluntary measures shown in Tables A4.106.5.1 and A5.106.11.2.2, respectively. Roof installation and verification shall occur in accordance with the CALGreen Code.							

CALGreen does not include recommended values for low-rise residential buildings with roof slopes of \leq 2:12 for San Diego's climate zones (7 and 10). Therefore, the values for climate zone 15 that covers Imperial County are adapted here.

Solar Reflectance Index (SRI) equal to or greater than the values specified in this table may be used as an alternative to compliance with the aged solar reflectance values and thermal emittance.

Table 2	2 Fixture Flow Rates for Non-Residential Buildings related to Question 2: Plumbing Fixtures and Fittings supporting Strategy 1: Energy & Water Efficient Buildings of the Climate Action Plan				
	Fixture Type	Maximum Flow Rate			
	Showerheads	1.8 gpm @ 80 psi			
	Lavatory Faucets	0.35 gpm @60 psi			
	Kitchen Faucets	1.6 gpm @ 60 psi			
	Wash Fountains	1.6 [rim space(in.)/20 gpm @ 60 psi]			
	Metering Faucets	0.18 gallons/cycle			
	Metering Faucets for Wash Fountains	0.18 [rim space(in.)/20 gpm @ 60 psi]			
	Gravity Tank-type Water Closets	1.12 gallons/flush			
	Flushometer Tank Water Closets	1.12 gallons/flush			
	Flushometer Valve Water Closets	1.12 gallons/flush			
	Electromechanical Hydraulic Water Closets	1.12 gallons/flush			
	Urinals	0.5 gallons/flush			
Courses Adapted	from the California Croon Building Standards Code (CAL Croon) Tic	x 1 non-regidential valuatory measures shown in Tables AF 202.0.2.1 and			

Source: Adapted from the <u>California Green Building Standards Code</u> (CALGreen) Tier 1 non-residential voluntary measures shown in Tables A5.303.2.3.1 and A5.106.11.2.2, respectively. See the <u>California Plumbing Code</u> for definitions of each fixture type.

Where complying faucets are unavailable, aerators rated at 0.35 gpm or other means may be used to achieve reduction.

Acronyms:

gpm = gallons per minute psi = pounds per square inch (unit of pressure)

in. = inch

Table 3Standards for AppliancePlumbing Fixtures and Fthe Climate Action Plan	es and Fixtures for Commercial Application ittings supporting Strategy 1: Energy & V	on related to Question 2: Vater Efficient Buildings of		
Appliance/Fixture Type	Standard			
Clothes Washers	Maximum Water Factor (WF) that will reduce the use of water by 10 percent below the California Energy Commissions' WF standards for commercial clothes washers located in Title 20 of the California Code of Regulations.			
Conveyor-type Dishwashers	0.70 maximum gallons per rack (2.6 L) (High-Temperature)	0.62 maximum gallons per rack (4.4 L) (Chemical)		
Door-type Dishwashers	0.95 maximum gallons per rack (3.6 L) (High-Temperature)	1.16 maximum gallons per rack (2.6 L) (Chemical)		
Undercounter-type Dishwashers	0.90 maximum gallons per rack (3.4 L) (High-Temperature)	0.98 maximum gallons per rack (3.7 L) (Chemical)		
Combination Ovens	Consume no more than 10 gallons per hour (3	8 L/h) in the full operational mode.		
 Commercial Pre-rinse Spray Valves (manufactured on or after January 1, 2006) Function at equal to or less than 1.6 gallons per minute (0.10 L/s) at 60 psi (414 kPa) and Be capable of cleaning 60 plates in an average time of not more than 30 seconds per plate. Be equipped with an integral automatic shutoff. Operate at static pressure of at least 30 psi (207 kPa) when designed for a flow rate of 1.3 gallons per minute (0.08 L/s) or less. 				
Source: Adapted from the <u>California Green Building Standa</u> the <u>California Plumbing Code</u> for definitions of each applia	rids Code (CALGreen) Tier 1 non-residential voluntary meance/fixture type.	sures shown in Section A5.303.3. See		
Acronyms: L = liter L/h = liters per hour L/s = liters per second psi = pounds per square inch (unit of pressure) kPa = kilopascal (unit of pressure)				

4337 Home Avenue Marijuana Outlet GHG Emissions CAP Analysis

This greenhouse gas (GHG) emissions analysis was conducted to determine if the project would result in an equivalent or less GHG-intensive project when compared to a hypothetical land use that would have been allowed under the land use code.

Calculation Methodology

GHG emissions were calculated using California Emissions Estimator Model (CalEEMod) version 2016.3.2 (California Air Pollution Control Officers Association [CAPCOA] 2017). The CalEEMod program is a tool used to estimate air emissions resulting from land development projects based on California-specific emission factors. CalEEMod can be used to calculate emissions from energy (electricity and natural gas), mobile (on-road vehicles), area (fireplaces, landscape maintenance equipment, etc.), water and wastewater, and solid waste sources. GHG emissions are estimated in terms of total metric tons of carbon dioxide equivalents (MT CO₂e).

Analysis Methodology

Scenario 1: Hypothetical Land Use

The hypothetical scenario assumes the "Fast Food Restaurant without a Drive Thru" land use in CalEEMod, with a floor surface area of 1,200 square feet. The "Fast Food Restaurant without a Drive Thru" land use was chosen because it represents a permitted use under the Municipal Code that would be consistent with the existing General Plan and community plan land use and zoning designations. Furthermore, existing land uses in the vicinity of the proposed project include fast food restaurants and the applicant was initially considering a fast food restaurant for the site. The floor surface area is the same as the floor surface area of the proposed project. All model defaults were assumed for the hypothetical land use. Total annual emissions associated with the hypothetical land use are estimated at approximately 626 MT CO₂e per year.

Scenario 2: Proposed Project

The proposed project is seeking approval of a conditional use permit to operate a 1,200-square foot marijuana outlet on the first floor of a new 2,400-square foot building that is to be constructed. The 1,200-square foot second floor of the building is to remain vacant. For modeling purposes, the "Strip Mall" land use was chosen as the most representative available in CalEEMod for the marijuana outlet as strip malls are generally comprised of small retail shops specializing in quality apparel, hard goods and services, and small restaurants: the marijuana outlet would be a small retail shop specializing in the sale of hard goods. Total annual emissions associated with the proposed project are estimated at 163 MT CO_2e .

Area Source Emissions

The project would emit GHGs from area sources, including fuel combustion from landscape maintenance equipment. The CalEEMod default for landscape equipment use based on project size was used.

Energy Use Emissions

Projects generally use energy in the forms of electricity and natural gas. Electricity consumption results in an indirect increase in GHG emissions, as electricity is generated through the combustion of fossil fuels at off-site power plants. Natural gas consumption results in a direct increase in GHG emissions as it is burned on-site. Both electricity generation and natural gas consumption typically yield carbon dioxide (CO₂), and to a much smaller extent, methane (CH₄), and nitrous oxide (N₂O).

The marijuana outlet would use electricity for lighting and electricity and natural gas for heating, ventilation, and air conditioning (HVAC) systems. Model defaults were used to estimate electricity and natural gas use associated with the project. The project is estimated to use a total of 15,072 kilowatt hours (kWh) of electricity and 2,676 thousand British thermal units (kBTU) of natural gas per year.

Mobile Source Emissions

Employee and customer vehicle trips associated with the project would result in GHG emissions through the combustion of fossil fuels. The marijuana outlet is estimated to generate 300 average daily trips (ADT), comprised of employee and customer trips, based on a trip generation rate of 250 trips per 1,000 square feet.

Water Use Emissions

The amount of water used by a project has indirect GHG emissions associated with the energy used to supply, distribute, and treat the water. The marijuana outlet would use water for indoor purposes (i.e. restrooms) and outdoor purposes (i.e. landscaping). Model defaults were used to estimate water usage for the project. Total water usage for the project is estimated at 143,366 gallons per year.

Solid Waste Emissions

Solid waste generated by the project would contribute GHG emissions in the form of CH₄ produced during treatment and disposal. The project would generate solid waste associated with general business operations. Model defaults were used to estimate solid waste generation for the project. Total solid waste generation for the project is estimated at 1.26 tons per year.

Results and Comparison

The operational GHG emissions from the proposed project and hypothetical land use are shown in Table 1, *Operational Greenhouse Gas Emissions*. The proposed project would result in emissions of 463 MT CO₂e per year less than the hypothetical land use with the same floor area and would, therefore, be consistent with the existing General Plan land use, Community Plan land use, and zoning designation, and is therefore consistent with the land use assumption used in the CAP.

Table 1 OPERATIONAL GREENHOUSE GAS EMISSIONS

	GHG Emissions (MT CO ₂ e per Year)			
Emission Sources	Scenario 1:	Scenario 2:		
	Hypothetical Land Use	Proposed Project		
Area Sources	<0.01	<0.01		
Energy Sources	26	5		
Vehicular (Mobile) Sources	591	156		
Solid Waste Sources	7	1		
Water Sources	2	1		
Total Operational Emissions	626	163		
Differen	ce from Hypothetical Land Use	-463		

Source: CalEEMod output data

Note: Totals may not add up due to rounding.

H:\1600\1622.00 - AVAD Home Ave - CUP\Engineering\Plans\CUP\1622.00 CUP_SHEET1.dwg 4/3/19

CONDITIONAL USE PERMIT # 2117121 FOR MARIJUANA OUTLET (MO) CONDITIONAL USE PERMIT # 2225844 FOR ABC TYPE 20 LICENSE NEIGHBORHOOD USE PERMIT # 2140441 FOR AUTO SERVICE STATION

4333-4337 HOME AVENUE, SAN DIEGO, CA 92105

DEVELOPMENT SUMMARY

THE PROPOSED PROJECT IS SEEKING: -APPROVAL OF A NEIGHBORHOOD USE PERMIT (NUP) TO CONTINUE THE AUTO SERVICE STATION OPERATION W/ EXISTING MINI-MARKET. -APPROVAL OF A CONDITIONAL USE PERMIT (CUP) TO CONTINUE ABC TYPE 20 BEER AND WINE LICENSE FOR OFF-SITE CONSUMPTION ALCOHOL BEVERAGE SALE, LOCATED AT 4333 HOME AVE IN THE CC-1-3-ZONE. -APPROVAL OF A CONDITIONAL USE PERMIT (CUP) TO OPERATE A 1,200 SF MARIJUANA

PROJECT TEAM:

LATITUDE 33 PLANNING AND ENGINEERING 9968 HIBERT STREET 2ND FLOOR, SAN DIEGO, CA 92131 92121 (858) 751-0633 FAX (858) 751-0634 OWNER:

AVAD INVESTMENTS, INC. 4333 & 4337 HOME AVE SAN DIEGO, CA 92105

LEGAL DESCRIPTION:

PARCEL 1 OF PARCEL MAP NO. 17969 IN THE CITY OF SAN DIEGO, COUNTY OF SAN DIEGO, STATE OF CALIFORNIA, ACCORDING TO MAP THEREOF FILED IN THE OFFICE OF THE COUNTY RECORDER OF SAN DIEGO COUNTY ON DECEMBER 22, 1997 AS INSTRUMENT NO. 1997-0651626 OF OFFICIAL RECORDS.

ASSESSOR'S PARCEL NO. 541-060-19-00

ZONING DESIGNATION:

CC-1-3 & IL-3-1

OVERLAY ZONE DESIGNATION:

-HILLSIDE REVIEW OVERLAY ZONE EXISTING/PROPOSED USE:

-EXISTING: COMMUNITY COMMERCIAL/GENERAL COMMERCIAL WITH LIGHT MANUFACTURING: GAS STATION AND MINI MART WITH BEER & WINE SALES -PROPOSED: COMMUNITY COMMERCIAL/GENERAL COMMERCIAL, MARIJUANA OUTLET. & GAS STATION WITH MINI MART WITH BEER & WINE SALES

EASEMENTS:

(1) SEWER EASEMENT RESERVED PER DEED REC. 10-31-1980 AS F/P. 80-364441. O.R. (CITY DWG. NO. 14805-2-D).

- (2) DRAINAGE EASEMENT RESERVED PER DEED REC. 10-31-1980 AS
- F/P 80-364441. O.R.

(3) 4' WIDE SDG&E EASEMENT PER DEED REC. 2-01-1977, F/P 77–038930. O.R.

GEOLOGIC HAZARD CATEGORY:

32 - LOW POTENTIAL, FLUCTUATING GROUNDWATER MINOR DRAINAGES ENVIRONMENTALLY SENSITIVE LAND: NONE

LIMIT OF WORK:

ASSESSORS PARCEL NUMBER 541-060-19-00 TRANSIT STOPS:

TRANSIT STOPS DIRECTLY ADJACENT TO PROJECT: NONE SEE VICINITY MAP ABOVE.

PARKING REQUIREMENTS:

	PARKING REQUIREMENTS				
		PROPOSED	PATIO	MIN. REQU	
		USE/SQ.FT.	KATIO		
ZONE IL-3-1					
	GROUND FLOOR	MO/1200	5	6	
	SECOND FLOOR	VACANT/1200	N/A	0	
ZONE CC-3-1					
		GAS SERVICE	Ę	15	
	SINGLE STORT	STATION/2944	5		
т	OTAL:			21	

PROVIDED PARKING				
	MIN. REQUIRED	PROVIDED		
ADA PARKING	1	1		
VAN ACCESSIBLE ADA PARKING	1	1		
STANDARD PARKING	21	22		
TOTAL PROVIDED:		24		
		KING		
PROVIDED CARPOOL/Z		KING PROVIDED		
	ERO EMISSION PAR MIN. REQUIRED	KING PROVIDED		
PROVIDED CARPOOL/Z CARPOOL/ZERO EMISSION PARKING TOTAL PROVIDED:	ERO EMISSION PAR MIN. REQUIRED 1	KING PROVIDED 1 1		
PROVIDED CARPOOL/Z CARPOOL/ZERO EMISSION PARKING TOTAL PROVIDED:	ERO EMISSION PAR MIN. REQUIRED 1	KING PROVIDED 1 1		
PROVIDED CARPOOL/Z CARPOOL/ZERO EMISSION PARKING TOTAL PROVIDED:	ERO EMISSION PAR MIN. REQUIRED 1 MIN. REQUIRED	KING PROVIDED 1 1 PROVIDED		
PROVIDED CARPOOL/Z CARPOOL/ZERO EMISSION PARKING TOTAL PROVIDED: MOTORCYCLE PARKING	ERO EMISSION PAR MIN. REQUIRED 1 MIN. REQUIRED 2	KING PROVIDED 1 1 PROVIDED 2		

PROVIDED BICYCLE PARKING MIN. REQUIRED PROVIDED LONG TERM SHORT TERM 5

6

TOTAL PROVIDED:

VICINITY MAP:

OUTLET (MO) ON THE FIRST FLOOR OF A 2.400 SF BUILDING THAT IS TO BE CONSTRUCTED.

RED	PROVIDED
	6
	3
	15
	24

ROSS SITE AREA/FLOOR AREA:
ROSS SITE AREA: 46,952 SF (1.08 ACRES) XISTING FLOOR AREA: 2,944 SF (0.07 ACRES)
XISTING FLOOR AREA RATIO:6.3%

-PROPOSED FLOOR ARE -PROPOSED FLOOR ARE	EA: 5,344 (0.12 ACRES) EA RATIO:11.4%
LANDSCAPE ARE	A SQUARE FOOTAG
EXIST: 9,000 SF	
RIIII DING HEIGHT	
	•
(E) MINI MARKET:	24'-6'' (1 STORY)
(E) CANOPY:	19 - 1 (1 SIURY) $34^{2} 4^{2}$ (2 STOPIES)
(P) MU BUILDING	34 - 4 (2 STORIES)
<u>YEAR CONSTRUC</u>	<u>TED:</u>
(E) MINI MARKET:	1998
(É) CANOPY:	1998
(P) MO BUILDING:	PROPOSED
<u>TYPE OF CONST</u>	RUCTION:
(E) MINI MARKET:	V–B
É) CANOPY:	//—N
(P) MO BUILDING:	<i> </i>
<u>OCCUPANCY CLA</u>	ASSIFICATION:
(E) MINI MARKET:	М
(E) CANOPY:	S3
(P) MO BUILDING:	V–B
<u>NOTES:</u>	

OWNER SHALL PROVIDE BUILDING ADDRESS NUMBERS. VISIBLE AND LEGIBLE FROM THE STREET OR ROAD FRONTING THE PROPERTY PER FHPS P-00-6 (UFC 901.4.4)

- 2. NO OBSTRUCTION INCLUDING LANDSCAPING OR WALLS IN THE VISIBILITY AREA SHALL EXCEED 3 FEET IN HEIGHT. 3. EXISTING WATER AND SEWER SERVICES TO REMAIN.
- 4. PRIOR TO THE ISSUANCE OF ANY CONSTRUCTION PERMIT, THE OWNER/PERMITTEE SHALL SUBMIT A WATER POLLUTION CONTROL PLAN (WPCP). THE WPCP SHALL BE PREPARED IN ACCORDANCE WITH THE GUIDELINES IN PART 2 CONSTRUCTION BMP STANDARDS CHAPTER 4 OF THE CITY'S STORM WATER STANDARDS.
- 5. PRIOR TO THE ISSUANCE OF ANY CONSTRUCTION PERMIT, THE OWNER/PERMITTEE SHALL INCORPORATE ANY CONSTRUCTION BEST MANAGEMENT PRACTICES NECESSARY TO COMPLY WITH CHAPTER 14, ARTICLE 2, DIVISION 1 (GRADING REGULATIONS) OF THE SAN DIEGO MUNICIPAL CODE, INTO THE CONSTRUCTION PLANS OR SPECIFICATIONS.

GRADING QUANTITIES

- SITE DISTURBANCE: 15,530 SF • 10,300 SF OF PERVIOUS AREA DISTURBED
- 5,230 SF OF IMPERVIOUS AREA DISTURBED
- * IMPERVIOUS DISTURBED AREA REPLACED W/ PROPOSED IMPERVIOUS SURFACE: 3,180 SF * IMPERVIOUS DISTURBED AREA REPLACED W/ PROPOSED PERVIOUS LANDSCAPE: 2.050 SF

TOTAL EXPORT: 210 CUBIC YARDS (CUT)

• 190 CY FOR LANDSCAPING • 15 CY FOR BUILDING ADDITION FOUNDATION

- 5 CY FOR WATER AND SEWER LATERALS
- MAXIMUM EXCAVATION DEPTH FOR SITE WORK:
- 1.5' FOR PROPOSED CONCRETE PAVEMENT
- 5.5' FOR PROPOSED SEWER LATERAL • 3.5' FOR PROPOSED BUILDING ADDITION FOOTING

Prepared By:

		Revision	13:	
Address:	9968 HIBERT ST 2ND FLOOR	Revision	12:	
	SAN DIEGO, CA 92131	Revision	11:	
^{>} hone #:	(858) 751–0633	Revision	10:	
	(858) 751–0634	Revision	9:	
		Revision	8:	
Project Ado	dress:	Revision	7:	
4333 HOME AV	ENUE	Revision	6:	3/26/2019
SAN DIEGO, CA	92105	Revision	5:	3/7/2019
		Revision	4:	12/10/2018
		Revision	3:	10/29/2018

Revision 14:

Revision 2:_

Sheet __

Revision 1: <u>7/26/2018</u>

Original Date: <u>1/8/2018</u>

Project Name:	
<i>4333-4337 HOME A VENUE</i>	
CUP	•

PREPARED IN THE OFFICE OF:

Sheet Title:
COVER SHEET & SITE PLAN

593686

Project Number:

DEP#

1	of	8

9/20/2018

Appendix A

CalEEMod Model Outputs

4337 Home Ave Marijuana Retail Outlet - San Diego County, Annual

4337 Home Ave Marijuana Retail Outlet

San Diego County, Annual

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Strip Mall	1.20	1000sqft	0.03	1,200.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.6	Precipitation Freq (Days)	40
Climate Zone	13			Operational Year	2019
Utility Company	San Diego Gas & Electric				
CO2 Intensity (Ib/MWhr)	720.49	CH4 Intensity (Ib/MWhr)	0.029	N2O Intensity (Ib/MWhr)	0.006

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use -

Construction Phase - Model for operational emissions only.

Vehicle Trips - Trip rates based on Access Study.

Fleet Mix - Customer and employee vehicle fleets assumed to be made up of light-duty autos and light-duty trucks.

Page 2 of 18

4337 Home Ave Marijuana Retail Outlet - San Diego County, Annual

Table Name	Column Name	Default Value	New Value
tblConstructionPhase	NumDays	5.00	0.00
tblConstructionPhase	PhaseEndDate	12/16/2019	12/9/2019
tblFleetMix	HHD	0.02	0.00
tblFleetMix	LDA	0.58	0.71
tblFleetMix	LDT1	0.04	0.06
tblFleetMix	LDT2	0.19	0.23
tblFleetMix	LHD1	0.02	0.00
tblFleetMix	LHD2	5.6000e-003	0.00
tblFleetMix	МСҮ	6.2790e-003	0.00
tblFleetMix	MDV	0.11	0.00
tblFleetMix	МН	1.3570e-003	0.00
tblFleetMix	MHD	0.02	0.00
tblFleetMix	OBUS	1.8880e-003	0.00
tblFleetMix	SBUS	7.4200e-004	0.00
tblFleetMix	UBUS	2.0880e-003	0.00
tblVehicleTrips	ST_TR	42.04	250.00
tblVehicleTrips	SU_TR	20.43	250.00
tblVehicleTrips	WD_TR	44.32	250.00

2.0 Emissions Summary

Page 3 of 18

4337 Home Ave Marijuana Retail Outlet - San Diego County, Annual

2.1 Overall Construction

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					ton	is/yr							MT	/yr		
2019					1 1 1			1 1 1			0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Maximum											0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					ton	s/yr							МТ	/yr		
2019											0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Maximum											0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Page 4 of 18

4337 Home Ave Marijuana Retail Outlet - San Diego County, Annual

Quarter	Start Date	End Date	Maximum Unmitigated ROG + NOX (tons/quarter)	Maximum Mitigated ROG + NOX (tons/quarter)
		Highest		

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Area											0.0000	2.0000e- 005	2.0000e- 005	0.0000	0.0000	2.0000e- 005
Energy	n										0.0000	5.0685	5.0685	2.0000e- 004	4.0000e- 005	5.0865
Mobile	n										0.0000	156.0603	156.0603	5.1500e- 003	0.0000	156.1891
Waste	n										0.2558	0.0000	0.2558	0.0151	0.0000	0.6337
Water	n				1						0.0282	0.5761	0.6043	2.9200e- 003	7.0000e- 005	0.6991
Total											0.2840	161.7048	161.9888	0.0234	1.1000e- 004	162.6083

Page 5 of 18

4337 Home Ave Marijuana Retail Outlet - San Diego County, Annual

2.2 Overall Operational

Mitigated Operational

	ROG	NOx	С	0	SO2	Fugitive PM10	Exha PM1	ust 10	PM10 Total	Fugi PM	itive I2.5	Exhaust PM2.5	PM To	12.5 otal	Bio- C	O2 NBi	o- CO2	Total (CO2	CH4	N20		CO2e
Category						tc	ons/yr												MT/yr				
Area															0.00	0 2.0	0000e- 005	2.000 005	0e-	0.0000	0.00	00	2.0000e- 005
Energy	F;	,													0.00	00 5	.0685	5.06	85 2	2.0000e- 004	4.000 005	De-	5.0865
Mobile	F;														0.00	00 15	6.0603	156.0	603 5	5.1500e- 003	0.00	00	156.1891
Waste	F;														0.25	58 0	.0000	0.25	58	0.0151	0.00	00	0.6337
Water	F;	9 1 1 1 1													0.02	32 0	.5761	0.60	43 2	2.9200e- 003	7.000 005	De-	0.6991
Total															0.284	10 16	1.7048	161.9	888	0.0234	1.100 004	0e-	162.6083
	ROG		NOx	CO) S(D2 Fu F	gitive M10	Exhau PM1	ust P 10 1	M10 Fotal	Fugitiv PM2.	ve Ex .5 F	chaust PM2.5	PM2. Tota	.5 E al	Bio- CO2	NBio-	CO2 1	otal CC	02 C	H4	N20	CO2
Percent Reduction	0.00		0.00	0.00	0 0.	00	0.00	0.0	0	0.00	0.00)	0.00	0.0	0	0.00	0.0	0	0.00	0.	00	0.00	0.0

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Architectural Coating	Architectural Coating	12/10/2019	12/9/2019	5	0	

Acres of Grading (Site Preparation Phase): 0

CalEEMod Version: CalEEMod.2016.3.2

Page 6 of 18

4337 Home Ave Marijuana Retail Outlet - San Diego County, Annual

Acres of Grading (Grading Phase): 0

Acres of Paving: 0

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 1,800; Non-Residential Outdoor: 600; Striped Parking Area: 0 (Architectural Coating – sqft)

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Architectural Coating	Air Compressors	1	6.00	78	0.48

Trips and VMT

Phase Name	Offroad Equipment	Worker Trip	Vendor Trip	Hauling Trip	Worker Trip	Vendor Trip	Hauling Trip	Worker Vehicle	Vendor	Hauling
	Count	Number	Number	Number	Length	Length	Length	Class	Vehicle Class	Vehicle Class
Architectural Coating	1	0.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Page 7 of 18

4337 Home Ave Marijuana Retail Outlet - San Diego County, Annual

3.2 Architectural Coating - 2019

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Archit. Coating	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category		tons/yr											МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Page 8 of 18

4337 Home Ave Marijuana Retail Outlet - San Diego County, Annual

3.2 Architectural Coating - 2019

Mitigated Construction On-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr									MT/yr						
Archit. Coating	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction Off-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e	
Category	tons/yr										MT/yr						
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	

4.0 Operational Detail - Mobile
Page 9 of 18

4337 Home Ave Marijuana Retail Outlet - San Diego County, Annual

4.1 Mitigation Measures Mobile

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Mitigated											0.0000	156.0603	156.0603	5.1500e- 003	0.0000	156.1891
Unmitigated											0.0000	156.0603	156.0603	5.1500e- 003	0.0000	156.1891

4.2 Trip Summary Information

	Ave	age Daily Trip Ra	ite	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Strip Mall	300.00	300.00	300.00	462,010	462,010
Total	300.00	300.00	300.00	462,010	462,010

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Strip Mall	9.50	7.30	7.30	16.60	64.40	19.00	45	40	15

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Strip Mall	0.710000	0.060000	0.230000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000

Page 10 of 18

4337 Home Ave Marijuana Retail Outlet - San Diego County, Annual

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Electricity Mitigated				, , ,				, , ,			0.0000	4.9257	4.9257	2.0000e- 004	4.0000e- 005	4.9428
Electricity Unmitigated	n — — — — — — — — — — — — — — — — — — —		, , , , ,								0.0000	4.9257	4.9257	2.0000e- 004	4.0000e- 005	4.9428
NaturalGas Mitigated	n										0.0000	0.1428	0.1428	0.0000	0.0000	0.1437
NaturalGas Unmitigated	r							 , , ,			0.0000	0.1428	0.1428	0.0000	0.0000	0.1437

Page 11 of 18

4337 Home Ave Marijuana Retail Outlet - San Diego County, Annual

5.2 Energy by Land Use - NaturalGas

<u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr							MT	/yr		
Strip Mall	2676		1	1					1 1 1			0.0000	0.1428	0.1428	0.0000	0.0000	0.1437
Total												0.0000	0.1428	0.1428	0.0000	0.0000	0.1437

Mitigated

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	ıs/yr							MT	/yr		
Strip Mall	2676			1 1 1								0.0000	0.1428	0.1428	0.0000	0.0000	0.1437
Total												0.0000	0.1428	0.1428	0.0000	0.0000	0.1437

Page 12 of 18

4337 Home Ave Marijuana Retail Outlet - San Diego County, Annual

5.3 Energy by Land Use - Electricity

<u>Unmitigated</u>

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		ΜT	/yr	
Strip Mall	15072	4.9257	2.0000e- 004	4.0000e- 005	4.9428
Total		4.9257	2.0000e- 004	4.0000e- 005	4.9428

Mitigated

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		МТ	/yr	
Strip Mall	15072	4.9257	2.0000e- 004	4.0000e- 005	4.9428
Total		4.9257	2.0000e- 004	4.0000e- 005	4.9428

6.0 Area Detail

6.1 Mitigation Measures Area

Page 13 of 18

4337 Home Ave Marijuana Retail Outlet - San Diego County, Annual

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Mitigated											0.0000	2.0000e- 005	2.0000e- 005	0.0000	0.0000	2.0000e- 005
Unmitigated		 - - - -	 - - - -	 - - -			 - - -	 - - - -	 - - -		0.0000	2.0000e- 005	2.0000e- 005	0.0000	0.0000	2.0000e- 005

6.2 Area by SubCategory

<u>Unmitigated</u>

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					ton	s/yr							МТ	/yr		
Architectural Coating											0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products											0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	n										0.0000	2.0000e- 005	2.0000e- 005	0.0000	0.0000	2.0000e- 005
Total											0.0000	2.0000e- 005	2.0000e- 005	0.0000	0.0000	2.0000e- 005

Page 14 of 18

4337 Home Ave Marijuana Retail Outlet - San Diego County, Annual

6.2 Area by SubCategory

Mitigated

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					ton	s/yr							МТ	/yr		
Architectural Coating								1 1 1			0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	11 11 11 11							1 1 1			0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping											0.0000	2.0000e- 005	2.0000e- 005	0.0000	0.0000	2.0000e- 005
Total											0.0000	2.0000e- 005	2.0000e- 005	0.0000	0.0000	2.0000e- 005

7.0 Water Detail

7.1 Mitigation Measures Water

Page 15 of 18

4337 Home Ave Marijuana Retail Outlet - San Diego County, Annual

	Total CO2	CH4	N2O	CO2e
Category		MT	ī/yr	
Mitigated	0.6043	2.9200e- 003	7.0000e- 005	0.6991
Unmitigated	0.6043	2.9200e- 003	7.0000e- 005	0.6991

7.2 Water by Land Use

<u>Unmitigated</u>

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		МТ	/yr	
Strip Mall	0.088887/ 0.0544791	0.6043	2.9200e- 003	7.0000e- 005	0.6991
Total		0.6043	2.9200e- 003	7.0000e- 005	0.6991

CalEEMod Version: CalEEMod.2016.3.2

Page 16 of 18

4337 Home Ave Marijuana Retail Outlet - San Diego County, Annual

7.2 Water by Land Use

Mitigated

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		MT	/yr	
Strip Mall	0.088887 / 0.0544791	0.6043	2.9200e- 003	7.0000e- 005	0.6991
Total		0.6043	2.9200e- 003	7.0000e- 005	0.6991

8.0 Waste Detail

8.1 Mitigation Measures Waste

Category/Year

	Total CO2	CH4	N2O	CO2e
		MT	/yr	
Mitigated	0.2558	0.0151	0.0000	0.6337
Unmitigated	0.2558	0.0151	0.0000	0.6337

Page 17 of 18

4337 Home Ave Marijuana Retail Outlet - San Diego County, Annual

8.2 Waste by Land Use

<u>Unmitigated</u>

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons		МТ	/yr	
Strip Mall	1.26	0.2558	0.0151	0.0000	0.6337
Total		0.2558	0.0151	0.0000	0.6337

Mitigated

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons		МТ	7/yr	
Strip Mall	1.26	0.2558	0.0151	0.0000	0.6337
Total		0.2558	0.0151	0.0000	0.6337

9.0 Operational Offroad

Page 18 of 18

4337 Home Ave Marijuana Retail Outlet - San Diego County, Annual

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type

Boilers

Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type

User Defined Equipment

11.0 Vegetation

Page 1 of 17

4337 Home Ave Hypothetical Land Use - San Diego County, Annual

4337 Home Ave Hypothetical Land Use

San Diego County, Annual

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Fast Food Restaurant w/o Drive Thru	1.20	1000sqft	0.03	1,200.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.6	Precipitation Freq (Days)	40
Climate Zone	13			Operational Year	2019
Utility Company	San Diego Gas & Electric				
CO2 Intensity (Ib/MWhr)	720.49	CH4 Intensity (Ib/MWhr)	0.029	N2O Intensity ((Ib/MWhr)	0.006

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use -

Construction Phase - Model for operational emissions only.

Table Name	Column Name	Default Value	New Value
tblConstructionPhase	NumDays	5.00	0.00
tblConstructionPhase	PhaseEndDate	12/16/2019	12/9/2019

2.0 Emissions Summary

Page 2 of 17

4337 Home Ave Hypothetical Land Use - San Diego County, Annual

2.1 Overall Construction

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					ton	s/yr							MT	/yr		
2019					1 1 1			1 1 1	1 1 1		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Maximum											0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					ton	s/yr							МТ	/yr		
2019											0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Maximum											0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Page 3 of 17

4337 Home Ave Hypothetical Land Use - San Diego County, Annual

Quarter	Start Date	End Date	Maximum Unmitigated ROG + NOX (tons/quarter)	Maximum Mitigated ROG + NOX (tons/quarter)
		Highest		

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Area								1			0.0000	2.0000e- 005	2.0000e- 005	0.0000	0.0000	2.0000e- 005
Energy	n										0.0000	26.3437	26.3437	8.2000e- 004	3.3000e- 004	26.4630
Mobile	n										0.0000	589.9353	589.9353	0.0369	0.0000	590.8582
Waste	n										2.8053	0.0000	2.8053	0.1658	0.0000	6.9501
Water											0.1156	1.6344	1.7500	0.0119	2.9000e- 004	2.1359
Total											2.9209	617.9134	620.8343	0.2155	6.2000e- 004	626.4072

Page 4 of 17

4337 Home Ave Hypothetical Land Use - San Diego County, Annual

2.2 Overall Operational

Mitigated Operational

	ROG	NOx	С	0	SO2	Fugitive PM10	Exha PM	aust 10	PM10 Total	Fugit PM2	ive Ex 2.5 P	haust M2.5	PM2.5 T	otal E	Bio- CO2	NBio- CO2	2 Tota	I CO2	CH4	- N	120	CO2e	
Category						to	ons/yr											MT/	yr				
Area															0.0000	2.0000e- 005	2.00 0	000e- 05	0.000	0 0.0	0000	2.0000e 005	-
Energy	F;	,													0.0000	26.3437	26.	3437	8.2000 004)e- 3.3 (000e-)04	26.4630	
Mobile	F;												 , , ,		0.0000	589.9353	589	.9353	0.036	9 0.0	0000	590.8582	2
Waste	F;														2.8053	0.0000	2.8	3053	0.165	8 0.0	0000	6.9501	
Water	F;									 			 , , ,		0.1156	1.6344	1.7	7500	0.011	9 2.9	000e-)04	2.1359	
Total															2.9209	617.9134	620.	.8343	0.215	5 6.2 (000e-)04	626.4072	2
	ROG		NOx	CO) SC	D2 Fu	igitive PM10	Exhau PM1	ust PM 0 To	M10 otal	Fugitive PM2.5	Exh PN	aust 12.5	PM2.5 Total	Bio-	CO2 NBio	o-CO2	Total C	:02	CH4	N2	0 C	O2e
Percent Reduction	0.00		0.00	0.00	0 0.0	00	0.00	0.00) 0	.00	0.00	0.	.00	0.00	0.0	0 0	.00	0.00		0.00	0.0	0 0).00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Architectural Coating	Architectural Coating	12/10/2019	12/9/2019	5	0	

Acres of Grading (Site Preparation Phase): 0

CalEEMod Version: CalEEMod.2016.3.2

Page 5 of 17

4337 Home Ave Hypothetical Land Use - San Diego County, Annual

Acres of Grading (Grading Phase): 0

Acres of Paving: 0

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 1,800; Non-Residential Outdoor: 600; Striped Parking Area: 0 (Architectural Coating – sqft)

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Architectural Coating	Air Compressors	1	6.00	78	0.48

Trips and VMT

Phase Name	Offroad Equipment	Worker Trip	Vendor Trip	Hauling Trip	Worker Trip	Vendor Trip	Hauling Trip	Worker Vehicle	Vendor	Hauling
	Count	Number	Number	Number	Length	Length	Length	Class	Vehicle Class	Vehicle Class
Architectural Coating	1	0.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Page 6 of 17

4337 Home Ave Hypothetical Land Use - San Diego County, Annual

3.2 Architectural Coating - 2019

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Archit. Coating	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Page 7 of 17

4337 Home Ave Hypothetical Land Use - San Diego County, Annual

3.2 Architectural Coating - 2019

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Archit. Coating	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction Off-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

4.0 Operational Detail - Mobile

Page 8 of 17

4337 Home Ave Hypothetical Land Use - San Diego County, Annual

4.1 Mitigation Measures Mobile

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Mitigated											0.0000	589.9353	589.9353	0.0369	0.0000	590.8582
Unmitigated											0.0000	589.9353	589.9353	0.0369	0.0000	590.8582

4.2 Trip Summary Information

	Avei	rage Daily Trip Ra	ate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Fast Food Restaurant w/o Drive Thru	859.20	835.20	600.00	1,320,279	1,320,279
Total	859.20	835.20	600.00	1,320,279	1,320,279

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Fast Food Restaurant w/o Drive	9.50	7.30	7.30	1.50	79.50	19.00	51	37	12

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Fast Food Restaurant w/o Drive	0.581689	0.044135	0.186694	0.113515	0.018244	0.005600	0.015197	0.022573	0.001888	0.002088	0.006279	0.000742	0.001357
IIIIu													

Page 9 of 17

4337 Home Ave Hypothetical Land Use - San Diego County, Annual

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	ıs/yr							MT	/yr		
Electricity Mitigated											0.0000	15.1770	15.1770	6.1000e- 004	1.3000e- 004	15.2299
Electricity Unmitigated	n										0.0000	15.1770	15.1770	6.1000e- 004	1.3000e- 004	15.2299
NaturalGas Mitigated	r:	 , , , ,					,				0.0000	11.1667	11.1667	2.1000e- 004	2.0000e- 004	11.2331
NaturalGas Unmitigated	n 	 , , ,			 	 , , ,		 			0.0000	11.1667	11.1667	2.1000e- 004	2.0000e- 004	11.2331

Page 10 of 17

4337 Home Ave Hypothetical Land Use - San Diego County, Annual

5.2 Energy by Land Use - NaturalGas

<u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr							MT	/yr		
Fast Food Restaurant w/o Drive Thru	209256			1 1 1 1								0.0000	11.1667	11.1667	2.1000e- 004	2.0000e- 004	11.2331
Total												0.0000	11.1667	11.1667	2.1000e- 004	2.0000e- 004	11.2331

Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr							МТ	/yr		
Fast Food Restaurant w/o Drive Thru	209256											0.0000	11.1667	11.1667	2.1000e- 004	2.0000e- 004	11.2331
Total												0.0000	11.1667	11.1667	2.1000e- 004	2.0000e- 004	11.2331

Page 11 of 17

4337 Home Ave Hypothetical Land Use - San Diego County, Annual

5.3 Energy by Land Use - Electricity

<u>Unmitigated</u>

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		МТ	/yr	
Fast Food Restaurant w/o Drive Thru	46440	15.1770	6.1000e- 004	1.3000e- 004	15.2299
Total		15.1770	6.1000e- 004	1.3000e- 004	15.2299

Mitigated

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		Π	/yr	
Fast Food Restaurant w/o Drive Thru	46440	15.1770	6.1000e- 004	1.3000e- 004	15.2299
Total		15.1770	6.1000e- 004	1.3000e- 004	15.2299

6.0 Area Detail

6.1 Mitigation Measures Area

Page 12 of 17

4337 Home Ave Hypothetical Land Use - San Diego County, Annual

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							Π	/yr		
Mitigated											0.0000	2.0000e- 005	2.0000e- 005	0.0000	0.0000	2.0000e- 005
Unmitigated		 - - - -	 - - - -	 - - -			 - - -	 - - - -	 - - -		0.0000	2.0000e- 005	2.0000e- 005	0.0000	0.0000	2.0000e- 005

6.2 Area by SubCategory

<u>Unmitigated</u>

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					ton	s/yr							МТ	/yr		
Architectural Coating											0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products											0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	n										0.0000	2.0000e- 005	2.0000e- 005	0.0000	0.0000	2.0000e- 005
Total											0.0000	2.0000e- 005	2.0000e- 005	0.0000	0.0000	2.0000e- 005

Page 13 of 17

4337 Home Ave Hypothetical Land Use - San Diego County, Annual

6.2 Area by SubCategory

Mitigated

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					ton	s/yr							MT	/yr		
Architectural Coating											0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products											0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping											0.0000	2.0000e- 005	2.0000e- 005	0.0000	0.0000	2.0000e- 005
Total											0.0000	2.0000e- 005	2.0000e- 005	0.0000	0.0000	2.0000e- 005

7.0 Water Detail

7.1 Mitigation Measures Water

Page 14 of 17

4337 Home Ave Hypothetical Land Use - San Diego County, Annual

	Total CO2	CH4	N2O	CO2e
Category		MT	ſ/yr	
Mitigated	1.7500	0.0119	2.9000e- 004	2.1359
Unmitigated	1.7500	0.0119	2.9000e- 004	2.1359

7.2 Water by Land Use

<u>Unmitigated</u>

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e	
Land Use	Mgal	MT/yr				
Fast Food Restaurant w/o Drive Thru	0.36424 / 0.0232494	1.7500	0.0119	2.9000e- 004	2.1359	
Total		1.7500	0.0119	2.9000e- 004	2.1359	

Page 15 of 17

4337 Home Ave Hypothetical Land Use - San Diego County, Annual

7.2 Water by Land Use

Mitigated

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		MT	/yr	
Fast Food Restaurant w/o Drive Thru	0.36424 / 0.0232494	1.7500	0.0119	2.9000e- 004	2.1359
Total		1.7500	0.0119	2.9000e- 004	2.1359

8.0 Waste Detail

8.1 Mitigation Measures Waste

Category/Year

	Total CO2	CH4	N2O	CO2e			
	MT/yr						
Mitigated	2.8053	0.1658	0.0000	6.9501			
Unmitigated	2.8053	0.1658	0.0000	6.9501			

Page 16 of 17

4337 Home Ave Hypothetical Land Use - San Diego County, Annual

8.2 Waste by Land Use

<u>Unmitigated</u>

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons		МТ	/yr	
Fast Food Restaurant w/o Drive Thru	13.82	2.8053	0.1658	0.0000	6.9501
Total		2.8053	0.1658	0.0000	6.9501

Mitigated

	Waste Disposed	Total CO2	CH4	N2O	CO2e		
Land Use	tons	MT/yr					
Fast Food Restaurant w/o Drive Thru	13.82	2.8053	0.1658	0.0000	6.9501		
Total		2.8053	0.1658	0.0000	6.9501		

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type

Page 17 of 17

4337 Home Ave Hypothetical Land Use - San Diego County, Annual

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type

<u>Boilers</u>

Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type

User Defined Equipment

11.0 Vegetation