

Noise Analysis for the California Terraces Planning Area 61 Project San Diego, California

Prepared for Mr. Allen Kashani Director of Project Management Pardee Homes 13400 Sabre Springs Parkway, Suite 200 San Diego, CA 92128

Prepared by RECON Environmental, Inc. 1927 Fifth Avenue San Diego, CA 92101 P 619.308.9333

RECON Number 4135-1 February 26, 2019

Jessien Homine

Jessica Fleming, Environmental Analyst

TABLE OF CONTENTS

List	of Ac	ronyms and Abbreviations	iii
Exec	cutive	Summary	1
	Cons	truction Noise	1
	Vehi	cle Traffic Noise	2
	On-s	ite Generated Noise	3
1.0	Intr	oduction	4
	1.1	Project Description	4
	1.2	Fundamentals of Noise	4
2.0	App	licable Standards	8
	2.1	Otay Mesa Community Plan Update Mitigation Framework	8
	2.2	City of San Diego General Plan	10
	2.3	City of San Diego Municipal Code	12
	2.4	California Code of Regulations	13
3.0	Exis	sting Conditions	13
4.0	Ana	lysis Methodology	15
	4.1	Construction Noise Analysis	16
	4.2	Traffic Noise Analysis	17
	4.3	On-site Generated Noise Analysis	19
5.0	Fut	ure Acoustical Environment and Impacts	20
	5.1	Construction Noise	20
	5.2	Vehicle Traffic Noise	24
	5.3	On-site Generated Noise	32
6.0	Con	clusions	34
	6.1	Construction Noise	34
	6.2	Vehicle Traffic Noise	34
	6.3	On-site Generated Noise	35
7.0	Refe	erences Cited	36

TABLE OF CONTENTS (cont.)

FIGURES

1:	Regional Location	5
2:	Project Location on Aerial Photograph	6
3:	Site Plan	7
4:	Noise Measurement Locations	14
5:	Construction Noise Contours	21
6:	Commercial Lot Construction Noise Contours	23
7:	Vehicle Traffic Noise Contours	25
8:	Second-Floor Balcony Noise Levels	27
9:	Units Requiring Site Specific Interior Noise Analysis	29
10:	On-Site Generated Noise Contours	33
	City of San Diago Land Use - Noise Compatibility Guidelines	11
1:	City of San Diego Land Use - Noise Compatibility Guidelines	11
2:	Applicable Noise Level Limits	12
3:	Noise Measurements	15
4:	15-minute Traffic Counts	15
5:	Typical Construction Equipment Noise Levels	
6:	Traffic Parameters	18
7 :	Traffic Volumes	
8:	Construction Noise Levels at Off-site Receivers	22
9:	Construction Noise Levels at On-site Receivers	
10:	Future Vehicle Traffic Noise Levels	
11:	Mitigated Future Vehicle Traffic Noise Levels	
12:	Traffic Noise Levels with and without Project and Ambient Noise Increase	
13:	HVAC Noise Levels at Adjacent Property Lines	32

ATTACHMENTS

- 1: Noise Measurement Data
- 2: HVAC Specifications
- 3: SoundPLAN Data Construction Noise, Off-Site Receivers
- 4: SoundPLAN Data Construction Noise, On-site Receivers
- 5: SoundPLAN Data Vehicle Traffic Noise
- 6: SoundPLAN Data Vehicle Traffic Noise, Second-Floor Balconies
- 7: FHWA RD-77-108 Off-Site Traffic Noise
- 8: SoundPLAN Data HVAC

RECON

List of Acronyms and Abbreviations

Caltrans California Department of Transportation CEQA California Environmental Quality Act

City Of San Diego

CNEL community noise equivalent level

CPU Community Plan Update

dB decibel

dB(A) A-weighted decibel

FPEIR Final Program Environmental Impact Report

FHWA Federal Highway Administration

MSCP Multiple Species Conservation Program HVAC heating, ventilation, and air conditioning

L_{eq} one-hour equivalent noise level

 $\begin{array}{ccc} LOS & Level \ of \ Service \\ L_{pw} & sound \ power \ level \end{array}$

MHPA Multi-Habitat Planning Area

PA Planning Area

project California Terraces Planning Area 61 Project

SEL sound exposure level SR-905 State Route 905

Executive Summary

The California Terraces Planning Area (PA) 61 project (project) site is located north of State Route 905 (SR-905) and southeast of the intersection of Otay Mesa Road and Ocean View Hills Parkway/Caliente Avenue in the Otay Mesa Community Plan area, in the city of San Diego, California. The project site is currently undeveloped. The project would construct up to 267 multi-family units, a 0.19-acre park, and up to 45,000 square feet of commercial uses on an approximately 14.6-acre site. The residential development potential on the project site would be 15 to 19 dwelling units per acre, for a total of up to 267 units.

The project is located within the Otay Mesa Community Plan Update (CPU) area. Noise impacts associated with the Otay Mesa CPU were addressed in the Final Program Environmental Impact Report for the Otay Mesa CPU (FPEIR; Project Number 30330/304032, SCH No. 2004651076) approved by the City of San Diego (City) in 2013 (City of San Diego 2013). The FPEIR identified a mitigation framework that is applicable to the project, including demonstrating the exterior and interior noise levels for residential uses would not exceed the compatibility standards of the City's General Plan. This report discusses potential noise impacts from the construction and operation of the project, and implements the Otay Mesa CPU mitigation framework, as necessary. As part of this assessment, noise levels due to vehicle traffic were calculated and evaluated against City of San Diego noise and land use compatibility guidelines. In addition to compatibility, the potential for noise to impact adjacent receivers from future on-site sources and construction activity was assessed. Where impacts were identified, measures have been identified to comply with the City's noise standards. A summary of the findings is provided below.

Construction Noise

Project construction noise would be generated by diesel engine-driven construction equipment used for site preparation and grading, building construction, loading, unloading, and placing materials and paving. Construction noise would potentially result in short-term impacts to surrounding properties. The project site is bound by multi-family uses to the north, SR-905 and open space to the south, San Ysidro High School to the southwest, and open space to the east and west. Additionally, Multi-Habitat Planning Area (MHPA) habitat is located northeast of the project site. The construction noise level limit at residential uses is 75 A-weighted decibels (dB(A)) one-hour equivalent noise level (Leq). In addition, for occupied MHPA, although no formal standards have been issued by any agencies, a precedent set over many years is that noise sources associated with projects should not result in noise levels that exceed 60 dB(A) Leq or the existing ambient noise level if greater than 60 dB(A) Leq during the breeding season of federally listed threatened or endangered bird species known to occupy the MHPA lands.

As calculated in this analysis, construction noise levels are not anticipated to exceed 75 dB(A) Leq at the adjacent or on-site residential uses, or 60 dB(A) Leq at the adjacent MHPA habitat. Although the existing adjacent residences and MHPA would be exposed to construction noise

levels that could be heard above ambient conditions, the exposure would be temporary. Additionally, construction activities are not anticipated to exceed 75 dB(A)Leq. Therefore, construction activities would result in less than significant noise impacts.

Vehicle Traffic Noise

On-site Noise Compatibility

The main source of noise at the project site is vehicle traffic on SR-905, Otay Mesa Road, Caliente Avenue, and SR-905 on- and off-ramps. As required by Otay Mesa CPU FPEIR mitigation measure NOI-1, this site-specific noise analysis calculates exterior noise levels and analyzes noise reduction measures, as necessary, to demonstrate that future noise would not exceed the residential noise compatibility standards of the General Plan. Multi-family residential uses are "compatible" with exterior noise levels up to 60 community noise equivalent level (CNEL), and "conditionally compatible" with exterior noise levels up to 70 CNEL. In "conditionally compatible" areas, feasible noise mitigation techniques should be analyzed and incorporated to make the outdoor activities acceptable, and building structures must attenuate exterior noise levels to an indoor noise level of 45 CNEL. The exterior compatibility standard is applicable at the proposed exterior use areas. In the case of the proposed project, exterior use areas include the balconies.

Additionally, for the non-residential components of the project, the exterior noise level limit for park uses is 65 CNEL, and the exterior noise level limit for commercial and retail uses is 75 CNEL with an interior noise level standard of 50 CNEL (City of San Diego 2016).

As calculated in this analysis, noise levels at the proposed park would be 62 CNEL, which would be compatible with the City's standard of 65 CNEL, and noise levels at the perimeter of the commercial lot would range from 68 to 74 CNEL, which would be compatible with the City's commercial standard of 75 CNEL.

Exterior noise levels were modeled at each proposed balcony location. Balcony noise levels are projected to exceed the "conditionally compatible" noise level of 70 CNEL at 27 of the balconies facing Otay Mesa Road and SR-905. Therefore, the project includes noise attenuating design measures in the form of a solid 3.5-foot balcony wall extending the length/perimeter of the balcony on the 27 balconies. The inclusion of the noise walls would ensure that the project would be consistent with City regulations associated with exterior noise levels. With construction of a solid 3.5-foot balcony wall, balcony noise levels would be reduced to 70 CNEL or less at all balconies. The following specific design parameters would be required:

Exterior noise levels at the 27 balconies identified on Figure 8 shall be constructed with a solid 3.5-foot balcony wall extending the length/perimeter of the balcony. The sound attenuation wall must be solid and free of cracks or holes. It can be constructed of masonry, wood, plastic, fiberglass, steel, or a combination of those materials, as long as there are no cracks or gaps, through or below the wall. Any seams or cracks must be filled or caulked. If wood is used, it can be tongue and groove and must be at least one-inch total thickness or have a density of at least 3.5 pounds per square foot.

The inclusion of the noise walls would ensure that the project would be consistent with City regulations associated with exterior noise levels. The interior noise level standard for commercial uses is 50 CNEL. No site or building design is available for the commercial lot at this time. However, assuming light-frame construction, interior noise levels would be reduced to 49 CNEL. Thus, interior noise levels in the commercial buildings would be compatible with City standards.

The interior noise level standard for residential uses is 45 CNEL. A noise reduction of up to 30 decibels (dB) would be required to achieve an interior noise level of 45 CNEL or less. As required by NOI-2 of the Otay Mesa CPU FPEIR, prior to the issuance of building permits, a site-specific interior noise analysis would be prepared demonstrating that the window, door, and wall components would achieve a necessary sound transmission class rating required to reduce interior noise levels to 45 CNEL or less. With implementation of this existing mitigation framework, interior noise impacts would be less than significant.

Off-site Vehicle Traffic Noise

The project would increase traffic volumes on local roadways. However, the project would not substantially alter the vehicle classifications mix on local or regional roadways nor would the project alter the speed on an existing roadway or create a new roadway. Thus, the primary factor affecting off-site noise levels would be increased traffic volumes. A substantial noise increase is defined as an increase of 3 dB above existing conditions as stated in the City's CEQA significance standards.

As calculated in this analysis, direct off-site noise level increases due to the project would be less than 1 dB. Therefore, direct off-site noise impacts associated with the project would be less than significant. The total horizon (year 2062) with project increase over the existing condition would range from less than 1 dB to 6 dB. However, the project's contribution to the increase over ambient noise levels would be less than 1 dB. Therefore, the project would result in a less than cumulatively considerable off-site noise level increase, and cumulative traffic noise impacts associated with the project would be less than significant.

On-site Generated Noise

The noise sources on the project site after completion of construction are anticipated to be those that would be typical of any residential complex, such as vehicles arriving and leaving, children at play, and landscape maintenance machinery. None of these noise sources is anticipated to violate the City's Noise Abatement and Control Ordinance or result in a substantial permanent increase in existing noise levels. However, the project would include rooftop heating, ventilation, and air conditioning (HVAC) units that have the potential to produce noise in excess of City limits. Rooftop HVAC noise levels were modeled at the adjacent property lines. On-site generated noise levels would range from 33 to 38 dB(A) Leq at the property lines, which would be less than the most restrictive multi-family noise level limit of 45 dB(A) Leq. Noise levels would not exceed the applicable Noise Abatement and Control Ordinance limits at the property lines.

1.0 Introduction

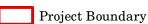
1.1 Project Description

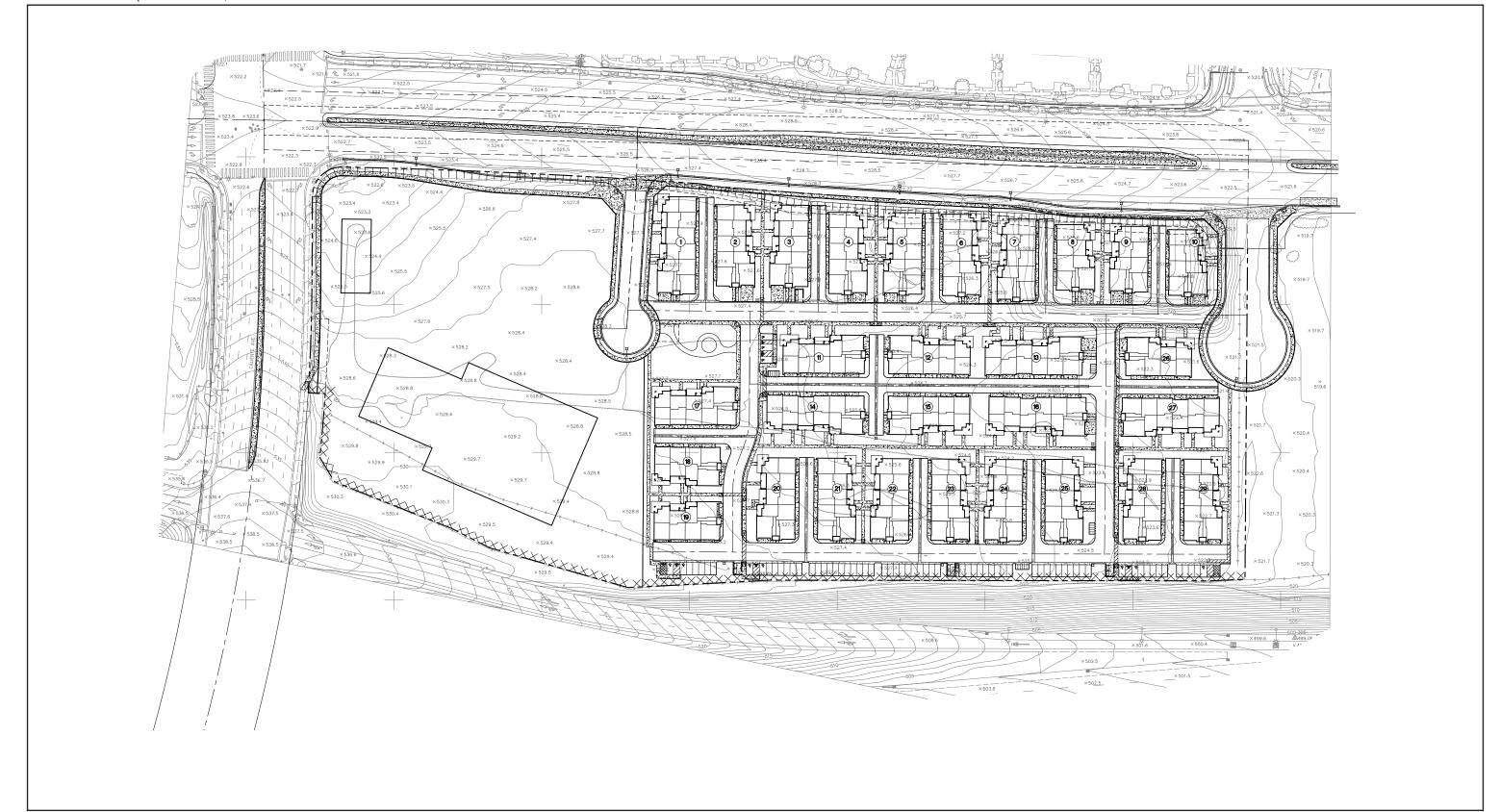
The California Terraces Planning Area (PA) 61 project (project) site is located north of State Route 905 (SR-905), southeast of the intersection of Otay Mesa Road and Ocean View Hills Parkway/Caliente Avenue in the Otay Mesa Community Plan area, in the city of San Diego, California. Figure 1 shows the regional location. An aerial photograph of the project site and vicinity is shown in Figure 2. The project site is bounded by multi-family uses to the north, SR-905 and open space to the south, San Ysidro High School to the southwest, and vacant land to the east and west. The project site is currently undeveloped. The project would construct up to 267 multi-family units, a 0.19-acre park, and up to 45,000 square feet of commercial uses on an approximately 14.6-acre site. The residential development potential on the project site would be 15 to 19 dwelling units per acre, for a total of up to 267 units. Figure 3 shows the proposed site plan.

1.2 Fundamentals of Noise

Sound levels are described in units called the decibel (dB). Decibels are measured on a logarithmic scale that quantifies sound intensity in a manner similar to the Richter scale used for earthquake magnitudes. Thus, a doubling of the energy of a noise source, such as doubling of traffic volume, would increase the noise level by 3 dB; a halving of the energy would result in a 3 dB decrease.

Additionally, in technical terms, sound levels are described as either a "sound power level" or a "sound pressure level," which while commonly confused are two distinct characteristics of sound. Both share the same unit of measure, the dB. However, sound power, expressed as L_{pw} , is the energy converted into sound by the source. The L_{pw} is used to estimate how far a noise will travel and to predict the sound levels at various distances from the source. As sound energy travels through the air, it creates a sound wave that exerts pressure on receivers such as an eardrum or microphone and is the sound pressure level. Noise measurement instruments only measure sound pressure, and noise level limits used in standards are generally sound pressure levels.


The human ear is not equally sensitive to all frequencies within the sound spectrum. To accommodate this phenomenon, the A-scale, which approximates the frequency response of the average young ear when listening to most ordinary everyday sounds, was devised. When people make relative judgments of the loudness or annoyance of a sound, their judgments correlate well with the A-scale sound levels of those sounds. Therefore, the "A-weighted" noise scale is used for measurements and standards involving the human perception of noise. Noise levels using A-weighted measurements are designated with the notation dB(A).



The impact of noise is not a function of loudness alone. The time of day when noise occurs and the duration of the noise are also important. In addition, most noise that lasts for more than a few seconds is variable in its intensity. Consequently, a variety of noise descriptors has been developed. The noise descriptors used for this study are the one-hour equivalent noise level (Leq), the community noise equivalent level (CNEL), and the sound exposure level (SEL). The CNEL is a 24-hour equivalent sound level. The CNEL calculation applies an additional 5 dB(A) penalty to noise occurring during evening hours, between 7:00 p.m. and 10:00 p.m., and an additional 10 dB(A) penalty is added to noise occurring during the night, between 10:00 p.m. and 7:00 a.m. These increases for certain times are intended to account for the added sensitivity of humans to noise during the evening and night. The SEL is a noise level over a stated period of time or event and normalized to one second.

Sound from a small, localized source (approximating a "point" source) radiates uniformly outward as it travels away from the source in a spherical pattern, known as geometric spreading. The sound level decreases or drops off at a rate of 6 dB(A) for each doubling of the distance.

Traffic noise is not a single, stationary point source of sound. The movement of vehicles makes the source of the sound appear to emanate from a line (line source) rather than a point when viewed over some time interval. The drop-off rate for a line source is 3 dB(A) for each doubling of distance.

The propagation of noise is also affected by the intervening ground, known as ground absorption. A hard site (such as parking lots or smooth bodies of water) receives no additional ground attenuation, and the changes in noise levels with distance (drop-off rate) are simply the geometric spreading of the source. A soft site (such as soft dirt, grass, or scattered bushes and trees) receives an additional ground attenuation value of 1.5 dB(A) per doubling of distance. Thus, a point source over a soft site would attenuate at 7.5 dB(A) per doubling of distance.

Human perception of noise has no simple correlation with acoustical energy. A change in noise levels is generally perceived as follows: 3 dB(A) barely perceptible, 5 dB(A) readily perceptible, and 10 dB(A) perceived as a doubling or halving of noise (Caltrans 2013).

2.0 Applicable Standards

2.1 Otay Mesa Community Plan Update Mitigation Framework

Noise impacts associated with the Otay Mesa Community Plan Update (CPU) were addressed in the Final Program Environmental Impact Report for the Otay Mesa CPU FPEIR (FPEIR; Project Number 30330/304032, SCH No. 2004651076) approved by the City of San Diego in 2013 (City of San Diego 2013).

The following mitigation framework applies to the project:

Traffic Generated Noise Impacts

NOI-1: Prior to the issuance of building permits, site-specific exterior noise analyses that demonstrate that the project would not place residential receptors in locations where the exterior existing or future noise levels would exceed the noise compatibility standards of the City's General Plan shall be required as part of the review of future residential development proposals. Noise reduction measures, including but not limited to building noise barriers, increased building setbacks, speed reductions on surrounding roadways, alternative pavement surfaces, or other relevant noise attenuation measures, may be used to achieve the noise compatibility standards. Exact noise mitigation measures and their effectiveness shall be determined by the site-specific exterior noise analyses.

NOI-2: Prior to the issuance of building permits, site-specific interior noise analyses demonstrating compliance with the interior noise compatibility standards of the City's General Plan and other applicable regulations shall be prepared for noise sensitive land uses located in areas where the exterior noise levels exceed the noise compatibility standards of the City's General Plan. Noise control measures, including but not limited to increasing roof, wall, window, and door sound attenuation ratings, placing heating, ventilation, and air conditioning (HVAC) in noise reducing enclosures, or designing buildings so that no windows face freeways or major roadways may be used to achieve the noise compatibility standards. Exact noise mitigation measures and their effectiveness shall be determined by the site-specific exterior noise analyses.

Stationary Source Noise

NOI-3: Prior to the issuance of a building permit, a site-specific acoustical/noise analysis of any on-site generated noise sources, including generators, mechanical equipment, and trucks, shall be prepared which identifies all noise-generating equipment, predicts noise levels at property lines from all identified equipment, and recommends mitigation to be implemented (e.g., enclosures, barriers, site orientation), to ensure compliance with the City's Noise Abatement and Control Ordinance. Noise reduction measures shall include building noise-attenuating walls, reducing noise at the source by requiring quieter machinery or limiting the hours of operation, or other attenuation measures. Additionally, future projects shall be required to buffer sensitive receptors from noise sources through the use of open space and other separation techniques as recommended after thorough analysis by a qualified acoustical engineer. Exact noise mitigation measures and their effectiveness shall be determined by the site-specific noise analyses.

Construction Noise

NOI-4: For projects that exceed daily construction noise thresholds established by the City of San Diego, best construction management practices shall be used to reduce construction noise levels to comply with standards established by the Municipal Code in Chapter 5, Article 9.5, Noise Abatement and Control. The project applicant shall prepare and implement a Construction Noise Management Plan. Appropriate management practices shall be determined on a project-by-project basis and are specific to the location. Control measures shall include:

- a. Minimizing simultaneous operation of multiple construction equipment units;
- b. Locating stationary equipment as far as reasonable from sensitive receptors;
- Requiring all internal combustion-engine-driven equipment to be equipped
 with mufflers that are in good operating condition and appropriate for the
 equipment; and
- d. Construction of temporary noise barriers around construction sites that block the line-of-sight to surrounding receptors.

In addition, the FPEIR indicates that impacts from noise and construction activity resulting from future development under the CPU would occur if construction occurs during the raptor or migratory bird nesting season. Mitigation Measure LU-2 requires future development to comply with Land Use Adjacency Guidelines of the Multiple Species Conservation Program (MSCP) in terms of noise. The U.S. Fish and Wildlife Service and other resource agencies, such as the U.S. Army Corps of Engineers and California Department of Fish and Wildlife, require limitation of noise levels to the habitats of threatened and endangered birds, such as the light-footed Ridgway's rail. Although no formal standards have been issued by these agencies, the precedent set over many years is that projects shall not result in noise levels that exceed 60 dB(A) Leq, or the existing ambient noise level if greater than 60 dB(A) Leq, at designated habitat or a known nesting site for a federally listed threatened or endangered bird species during the breeding season. Based on this precedent, during the breeding seasons, the City requires that noise levels generated by a project shall not exceed 60 dB(A) Leq at the edge of the occupied habitat or the existing ambient level if the ambient level is above 60 dB(A) Leq (City of San Diego 2012).

2.2 City of San Diego General Plan

The City's Noise Element of the General Plan specifies compatibility standards for different land use categories (Table 1). Multi-family residential uses are considered "compatible" with exterior noise levels up to 60 CNEL and "conditionally compatible" with exterior noise levels up to 70 CNEL. The City's interior noise level standard for all residential uses is 45 CNEL. Commercial and retail uses are considered "compatible" with exterior noise levels up to 65 CNEL and "conditionally compatible" with exterior noise levels up to 75 CNEL, with an interior noise level standard of 50 CNEL. Park uses are considered "compatible" with exterior noise levels up to 75 CNEL and "conditionally compatible" with exterior noise levels up to 75 CNEL.

C	tu of Con Diomo I	Table 1	4:1.:1:4.	· C: d -1:			
Ci	City of San Diego Land Use – Noise Compa					[JD(A) C	MEL 1
T	and Use Category		6 Ex		se Exposure 55 70	<u> </u>	NEL] 75
Parks and Recreational	and Osc Category		0	0 0	10	,	
Parks, Active and Passive Ro	ecreation						
Outdoor Spectator Sports,		r Recreational Facilities:					
Indoor Recreation Facilities	Golf Courses, Water	T Tooleanional Tallings,					
Agricultural		-					
Crop Raising and Farming;	Community Garde	ns, Aquaculture, Dairies;					
Horticulture Nurseries and							
and Keeping; Commercial St	ables	-					
Residential							
Single Dwelling Units; Mobi	le Homes			45			
Multiple Dwelling Units				45	45		
*For uses affected by aircraft	noise, refer to Polici	les NE-D.2. & NE-D.3.		40	40		
Institutional							
Hospitals; Nursing Facilities							
through Grade 12 Education	al Facilities; Librar	ies; Museums; Child Care		45			
Facilities							
Other Educational Facilities	es including Vocat	ional/Trade Schools and		45	45		
Colleges and Universities							
Cemeteries							
Retail Sales	. F J. D	1 Ci D-t1				_	
Building Supplies/Equipment Pet Supplies; Sundries, Phase					50	50	
Apparel and Accessories	rinaceuticai, and Co	iivemence Sales, wearing			90	90	
Commercial Services							
Building Services; Busines	Support: Eating	and Drinking: Financial					
Institutions; Maintenance							
Entertainment (includes p	<u>.</u>	,			50	50	
Television Studios; Golf Cou		, , , , , , , , , , , , , , , , , , ,					
Visitor Accommodations				45	45	45	
Offices							
Business and Professional;	Government; Med	ical, Dental, and Health			50	50	
Practitioner; Regional and C	orporate Headquart	ers			50	90	
Vehicle and Vehicular Equipm							
Commercial or Personal Vel							
Personal Vehicle Sales and		Equipment and Supplies					
Sales and Rentals; Vehicle P							
Wholesale, Distribution, Store		1.0					
Equipment and Materials S		ng and Storage Facilities;					
Warehouse; Wholesale Distr	ibution						
Industrial	t Manufacturing: M	Janina Industry Tousdries -					
Heavy Manufacturing; Ligh							
and Transportation Termina Research and Development	is, mining and Extr	active muustries				50	
Research and Development		Standard construction m	nathods	should at	tenuate ex		igo to on
Compatible	Indoor Uses	acceptable indoor noise lev		anoulu at	tenuate ex	rei 101, 1101	ioe w all
Compatible	Outdoor Uses	Activities associated with		use may h	ne carried or	ıt.	
		Building structure must a					oise level
Conditionally	Indoor Uses	indicated by the number for			, 00 0110		10.01
45, 50 Compatible	O-41- II	Feasible noise mitigation			be analyze	d and inc	orporated
	Outdoor Uses	to make the outdoor activi					
Incompatible	Indoor Uses	New construction should r					
	Outdoor Uses	Severe noise interference	makes o	utdoor acti	vities unacc	eptable.	
SOURCE: City of San Diego 2	015						

2.3 City of San Diego Municipal Code

2.3.1 On-site Generated Noise

Section 59.5.0401 of the City's Noise Abatement and Control Ordinance states that:

- A. It shall be unlawful for any person to cause noise by any means to the extent that the one-hour average sound level exceeds the applicable limit.
- B. The sound level limit at a location on a boundary between two zoning districts is the arithmetic mean of the respective limits for the two districts.

The applicable noise limits of the City's Noise Abatement and Control Ordinance are summarized in Table 2.

Table 2 Applicable Noise Level Limits					
	m, 4.5	One-Hour Average Sound			
Land Use	Time of Day	Level [dB(A) L _{eq}]			
	7:00 a.m. to 7:00 p.m.	50			
Single-family Residential	7:00 p.m. to 10:00 p.m.	45			
	10:00 p.m. to 7:00 a.m.	40			
Multi-family Residential (up to	7:00 a.m. to 7:00 p.m.	55			
a maximum density of	7:00 p.m. to 10:00 p.m.	50			
1 unit/2,000 square feet)	10:00 p.m. to 7:00 a.m.	45			
	7:00 a.m. to 7:00 p.m.	60			
All other Residential	7:00 p.m. to 10:00 p.m.	55			
	10:00 p.m. to 7:00 a.m.	50			
	7:00 a.m. to 7:00 p.m.	65			
Commercial	7:00 p.m. to 10:00 p.m.	60			
	10:00 p.m. to 7:00 a.m.	60			
Industrial or Agricultural	Anytime	75			

SOURCE: City of San Diego Noise Abatement and Control Ordinance Section 59.5.0401. dB(A) $L_{eq} = A$ -weighted decibels equivalent noise level

2.3.2 Construction Noise

Section 59.5.0404 of the City's Noise Abatement and Control Ordinance states that:

- A. It shall be unlawful for any person, between the hours of 7:00 p.m. of any day and 7:00 a.m. of the following day, or on legal holidays as specified in Section 21.04 of the San Diego Municipal Code, with exception of Columbus Day and Washington's Birthday, or on Sundays, to erect, construct, demolish, excavate for, alter or repair any building or structure in such a manner as to create disturbing, excessive or offensive noise. . . .
- B. ... it shall be unlawful for any person, including the City of San Diego, to conduct any construction activity so as to cause, at or beyond the property lines of any property zoned residential, an average sound level greater than 75 decibels during the 12-hour period from 7:00 a.m. to 7:00 p.m.

Construction would be restricted to between the hours of 7:00 a.m. and 7:00 p.m. and construction noise levels may not exceed a 12-hour equivalent noise level [dB(A) $L_{eq(12)}$] of 75 dB(A) $L_{eq(12)}$ as assessed at or beyond the property line of a property zoned residential. As discussed, there are residential uses located north of the project site.

2.4 California Code of Regulations

Interior noise levels for habitable rooms are regulated also by Title 24 of the California Code of Regulations California Noise Insulation Standards. Title 24, Chapter 12, Section 1207.4, of the California Building Code requires that interior noise levels attributable to exterior sources not exceed 45 CNEL in any habitable room within a residential structure. A habitable room is a room used for living, sleeping, eating, or cooking. Bathrooms, closets, hallways, utility spaces, and similar areas are not considered habitable rooms for this regulation (24 California Code of Regulations 1207 2016).

3.0 Existing Conditions

Existing noise levels at the project site were measured on January 16, 2018, using one Larson-Davis LxT Sound Expert Sound Level Meters, serial number 3827. The following parameters were used:

Filter: A-weighted

Response: Slow
Time History Period: 5 seconds

The meter was calibrated before and after each measurement. The meter was set 5 feet above the ground level for each measurement.

Noise measurements were taken to obtain typical ambient noise levels at the project site and in the vicinity. The weather was warm and sunny. Three 15-minute measurements were taken, as described below. The primary sources of on-site noise were due to traffic on SR-905, Otay Mesa Road, and Ocean View Hills Parkway/Caliente Avenue. The measurement locations are shown on Figure 4, and detailed data is contained in Attachment 1.

Measurement 1 was located at the southern property fence line, approximately 150 feet north of SR-905 and 50 feet north of the SR-905 off-ramp. The main source of noise at this location was vehicle traffic on SR-905. During the 15-minute measurement period, vehicle traffic on westbound SR-905 was counted. The average measured noise level was 75.9 dB(A) Leq.

Measurement 2 was located at the northern property line, approximately 40 feet south of Otay Mesa Road. The main source of noise at this location was vehicle traffic on Otay Mesa Road. Secondary sources of noise included vehicle traffic on SR-905 and aircraft. During the 15-minute measurement period, vehicle traffic on Otay Mesa Road was counted. The average measured noise level was 62.7 dB(A) L_{eq}.

Project Boundary
Noise Measurement

FIGURE 4

Noise Measurement Locations

Measurement 2 was located at the western property line, approximately 50 feet east of Caliente Avenue. The main source of noise at this location was vehicle traffic on Caliente Avenue. Secondary sources of noise included vehicle traffic on SR-905 and Otay Mesa Road. During the 15-minute measurement period, vehicle traffic on Caliente Avenue was counted. The average measured noise level was 61.5 dB(A) Leq.

Noise measurements are summarized in Table 3, and vehicle traffic counts are summarized in Table 4.

Table 3 Noise Measurements								
Measurement	Location	Time	Noise Sources	L_{eq}	L_{90}			
1	Southern property line, 150 feet north of SR-905	2:27 P.M. – 2:42 P.M.	Vehicle traffic on SR-905	75.9	73.2			
2	Northern property line, 40 feet south of Otay Mesa Road	2:55 P.M. – 3:10 P.M.	Vehicle traffic on Otay Mesa Road	62.7	52.3			
3	Western property line, 50 feet east of Caliente Avenue	3:30 P.M. – 3:45 P.M.	Vehicle traffic on Caliente Avenue	61.5	56.7			
Note: Noise me	asurement data is contain	ined in Attachment 1.						

Table 4 15-minute Traffic Counts								
				Medium	Heavy			
Measurement	Roadway	Direction	Autos	Trucks	Trucks	Buses	Motorcycles	
1	SR-905	Westbound	606	22	48	0	2	
2	Otay Mesa	Westbound	177	6	1	1	1	
2	Road	Eastbound	127	7	2	1	1	
9	Caliente	Northbound	184	6	3	0	1	
3	Avenue	Southbound	269	1	1	1	3	

4.0 Analysis Methodology

Noise level predictions and contour mapping were developed using noise modeling software, SoundPlan Essential, version 3.0 (Navcon Engineering 2015). SoundPLAN calculates noise propagation based on the International Organization for Standardization method (ISO 9613-2 — Acoustics, Attenuation of Sound during Propagation Outdoors). The model calculates noise levels at selected receiver locations using input parameter estimates such as total noise generated by each noise source; distances between sources, barriers, and receivers; and shielding provided by intervening terrain, barriers, and structures. The model outputs can be developed as noise level contour maps or noise levels at specific receivers. In all cases, receivers were modeled at 5 feet above ground elevation, which represents the average height of the human ear.

4.1 Construction Noise Analysis

Project construction noise would be generated by diesel engine-driven construction equipment used for site preparation and grading, building construction, loading, unloading, and placing materials and paving. Diesel engine-driven trucks also would bring materials to the site and remove the soils from excavation.

Construction equipment with a diesel engine typically generates maximum noise levels from 80 to 90 dB(A) L_{eq} at a distance of 50 feet (FHWA 2006). Table 5 summarizes typical construction equipment noise levels.

Tabl	e 5					
Typical Construction Equipment Noise Levels						
	Noise Level at 50 Feet	Typical Duty				
Equipment	[dB(A) L _{eq}]	Cycle				
Auger Drill Rig	85	20%				
Backhoe	80	40%				
Blasting	94	1%				
Chain Saw	85	20%				
Clam Shovel	93	20%				
Compactor (ground)	80	20%				
Compressor (air)	80	40%				
Concrete Mixer Truck	85	40%				
Concrete Pump	82	20%				
Concrete Saw	90	20%				
Crane (mobile or stationary)	85	20%				
Dozer	85	40%				
Dump Truck	84	40%				
Excavator	85	40%				
Front End Loader	80	40%				
Generator (25 kilovolt ampts or less)	70	50%				
Generator (more than 25 kilovolt amps)	82	50%				
Grader	85	40%				
Hydra Break Ram	90	10%				
Impact Pile Driver (diesel or drop)	95	20%				
Insitu Soil Sampling Rig	84	20%				
Jackhammer	85	20%				
Mounted Impact Hammer (hoe ram)	90	20%				
Paver	85	50%				
Pneumatic Tools	85	50%				
Pumps	77	50%				
Rock Drill	85	20%				
Roller	74	40%				
Scraper	85	40%				
Tractor	84	40%				
Vacuum Excavator (vac-truck)	85	40%				
Vibratory Concrete Mixer	80	20%				
Vibratory Pile Driver	95	20%				
SOURCE: FHWA 2006.						

During excavation, grading, and paving operations, equipment moves to different locations and goes through varying load cycles, and there are breaks for the operators and for non-equipment tasks, such as measurement. Although maximum noise levels may be 85 to 90 dB(A) at a distance of 50 feet during most construction activities, hourly average noise levels from the grading phase of construction would be 82 dB(A) L_{eq} at 50 feet from the center of construction activity when assessing the loudest pieces of equipment working simultaneously.

4.2 Traffic Noise Analysis

4.2.1 On-site Noise Compatibility

The SoundPLAN program uses the Federal Highway Administration (FHWA) Traffic Noise Model algorithms and reference levels to calculate traffic noise levels at selected receiver locations. The model uses various input parameters, such as projected hourly average traffic rates; vehicle mix, distribution, and speed; roadway lengths and gradients; distances between sources, barriers, and receivers; and shielding provided by intervening terrain, barriers, and structures. Receivers, roadways, and barriers were input into the model using three-dimensional coordinates. The locations of future buildings were obtained from project drawings.

The main source of traffic noise at the project site is vehicle traffic on SR-905, Otay Mesa Road, Caliente Avenue, and SR-905 on- and off-ramps. For the purpose of the future traffic noise compatibility analysis, the noisiest condition is represented as the maximum level of service (LOS) C traffic volume. This condition represents a condition where the maximum number of vehicles are using the roadway at the maximum speed. LOS A and B categories allow full travel speed but do not have as many vehicles, while LOS E and F have a greater number of vehicles, but due to the traffic volume travel at reduced speeds, thus generating less noise.

Freeway and roadway classifications and maximum Level of Service (LOS C) volumes were obtained from the Transportation Analysis prepared for the Otay Mesa CPU (Urban Systems Associates, Inc. 2012). Vehicle classification mixes were obtained from the California Department of Transportation (Caltrans) truck counts (Caltrans 2015). Maximum LOS C volumes for the freeway and ramps were presented as hourly volumes per lane. For Otay Mesa Road and Caliente Avenue, the peak hour volumes were calculated as 10 percent of the maximum LOS C daily volume. According to Caltrans peak hour counts for SR-905 adjacent to the project site (Caltrans 2016), this is conservative.

Table 6 summarizes the traffic parameters used in this compatibility analysis.

Table 6 Traffic Parameters									
	Total Vehicle Mix (percent) ³								
		Maximum	Peak Hour	Speed					
Roadway	Classification	LOS C Volume ¹	Volume ²	(mph)	Auto	MT	HT	Bus	MC
Otay Mesa	6-Lane	55,000 ADT	5,500	55	87.7	4.1	6.2	1.0	1.0
Road	Prime Arterial	-							
Caliente Avenue	4-Lane Major Arterial	35,000 ADT	3,500	30	87.7	4.1	6.2	1.0	1.0
SR-905	6-Lane Freeway	1,880 vehicles per hour per lane	11,280	$65/55^{4}$	87.7	4.1	6.2	1.0	1.0
SR-905 WB Off-Ramp	1-Lane Ramp	1,440 vehicles per hour per lane	1,440	30	87.7	4.1	6.2	1.0	1.0
SR-905 WB	1-Lane	1,440 vehicles per	1,440	30	87.7	4.1	6.2	1.0	1.0
On-Ramp	Ramp	hour per lane	1,440	90	01.1	7.1	0.2	1.0	1.0
SR-905 EB	1-Lane	1,440 vehicles per	1,440	30	87.7	4.1	6.2	1.0	1.0
Off-Ramp	Ramp	hour per lane	1,440	50	01.1	4.1	0.2	1.0	1.0
SR-905 EB On-Ramp	1-Lane Ramp	1,440 vehicles per hour per lane	1,440	30	87.7	4.1	6.2	1.0	1.0

LOS = level of service; ADT = average daily traffic; mph = miles per hour; SR-905 = State Route 905; WB = westbound; EB = eastbound

Freeway Auxiliary Lane Capacity = 1,800 vehicle per hour per lane

Maximum LOS Volume = 80% Capacity

4.2.2 Off-site Vehicle Traffic Noise

Off-site traffic noise was modeled using the FHWA Traffic Noise Prediction Model algorithms and reference levels. Traffic noise levels were calculated at 50 feet from the centerline of the affected roadways to determine the noise level increase associated with the project. The model uses various input parameters, such as traffic volumes, vehicle mix, distribution, and speed.

The main source of local roadway traffic noise in the vicinity of the project site would be vehicle traffic on Ocean View Hills Boulevard, Caliente Avenue, and Otay Mesa Road. Traffic noise levels were calculated based on the total average daily traffic volume on each roadway segment. For modeling purposes, "hard" ground conditions were used for the analysis of future conditions, since a majority of the project area is paved and the hard site provides the most conservative impact assessment.

Existing, near-term, and horizon (year 2062) traffic volumes with and without the project were obtained from the project traffic report (LOS Engineering, Inc. 2018). Table 7 summarizes the traffic volumes for the analyzed segments of Ocean View Hills Boulevard, Caliente Avenue, and Otay Mesa Road. Modeled noise levels do not account for shielding provided by intervening barriers and structures.

 $^{^{\}rm 1}$ Freeway Mainline Capacity = 2,350 vehicles per hour per lane

² For Otay Mesa Road and Caliente Avenue: Total Peak Hour Volume = 10% Maximum LOS C ADT

³ Auto = Automobile, MT = Medium Truck, HT = Heavy Truck, MC = Motorcycle

⁴ Freeway speed limit is 65 mph for all vehicles except trucks, Truck speed limit is 55 mph

Table 7						
		Traffic Volu				
	Existin	Existing +	Near-	Near-Term +		Horizon +
Roadway Segment	g	Project	Term	Project	Horizon	Project
Ocean View Hills Parkway						
Starfish Way to Sea Drift Way	12,963	13,765	15,647	17,352	19,900	20,702
Sea Drift Way to Del Sol Boulevard	10,919	11,768	13,878	15,641	17,800	18,649
Del Sol Boulevard to Sea Fire Point	10,048	11,651	12,380	14,673	17,800	19,403
Sea Fire Point to Hidden Trails Road	9,591	11,383	13,496	16,224	17,000	18,792
Hidden Trails Road to Otay Mesa Road	11,405	13,433	15,774	18,749	18,300	20,328
Caliente Avenue	•					
Otay Mesa Road to SR-905 Westbound Ramps	20,951	22,130	27,366	28,545	38,000	39,179
SR-905 Westbound Ramps to SR-905 Eastbound Ramps	14,288	14,995	21,646	22,353	33,200	33,907
SR-905 Eastbound Ramps to Airway Road	7,947	8,183	16,163	16,399	32,000	32,236
Otay Mesa Road						
Ocean View Hills Parkway to Driveway	16,330	21,306	25,607	30,583	39,700	44,676
Driveway to Emerald Crest Court	16,330	20,624	25,607	29,901	39,700	43,904
Emerald Crest Court to Corporate Center Drive	15,855	17,034	23,059	24,238	36,900	38,079
Corporate Center Drive to Innovative Drive	10,499	11,442	15,632	16,575	20,200	21,143
Innovative Drive to Heritage Road	11,864	12,807	16,979	17,922	22,800	23,743

4.3 On-site Generated Noise Analysis

The noise sources on the project site after completion of construction are anticipated to be those that would be typical of any residential complex, such as vehicles arriving and leaving, children at play, and landscape maintenance machinery. None of these noise sources is anticipated to violate the City's Noise Abatement and Control Ordinance or result in a substantial permanent increase in existing noise levels. However, the project would rooftop heating, ventilation, and air conditioning (HVAC) units that have the potential to produce noise in excess of City limits (see Table 2).

It is not known at this time which manufacturer, brand, or model of unit or units would be selected for use in the project. For the purposes of this analysis, to determine what general noise levels the HVAC units would generate, it was assumed that the rooftop units would be similar to a Trane split system unit with a sound power level of 72 dB(A). The unit specification sheets are included in Attachment 2.

5.0 Future Acoustical Environment and Impacts

5.1 Construction Noise

5.1.1 Off-site Receivers

Noise associated with the grading, building, and paving for the project would potentially result in short-term impacts to surrounding properties. The project site is surrounded by multi-family uses to the north, SR-905 and open space to the south, and San Ysidro High School to the southwest. Additionally, Multi-Habitat Planning Area (MHPA) habitat is located northeast of the project site. A variety of noise-generating equipment would be used during the construction phase of the project, such as excavators, backhoes, front-end loaders, and concrete saws, along with others. The exact number and pieces of construction equipment required are not known at this time. Although maximum noise levels may be 85 to 90 dB(A) at a distance of 50 feet during most construction activities, hourly average noise levels would be lower when taking into account the equipment usage factors. The loudest phase of construction would be the grading/excavation phase and would include dozers, loaders, and excavators. Construction noise levels were calculated based on all three pieces of equipment being active simultaneously.

Construction noise is considered a point source and would attenuate at approximately 6 dB(A) for every doubling of distance. Average hourly noise levels due to simultaneous activity would be 82 dB(A) L_{eq} at 50 feet. To reflect the nature of grading and construction activities, equipment was modeled as an area source distributed over the project footprint. The total sound energy of the area source was modeled with all pieces of equipment operating simultaneously. Noise levels were modeled at a series of 20 receivers located at the adjacent uses and MHPA. The results are summarized in Table 8. Modeled receiver locations and construction noise contours are shown in Figure 5. SoundPLAN data is contained in Attachment 3.

As shown, construction noise levels are not anticipated to exceed 75 dB(A) L_{eq} at the adjacent residential uses or 60 dB(A) L_{eq} at the adjacent MHPA habitat. Although the existing adjacent residences and MHPA would be exposed to construction noise levels that could be heard above ambient conditions, the exposure would be temporary. Additionally, construction activities are not anticipated to exceed 75 dB(A)L_{eq}. As construction activities associated with the project would comply with noise level limits from Noise Abatement and Control Ordinance Section 59.5.0404, temporary increases in noise levels from construction activities would be less than significant.

60 dB(A) Leq

City of San Diego MHPA Receiver

65 dB(A) Leq

70 dB(A) Leq

FIGURE 5

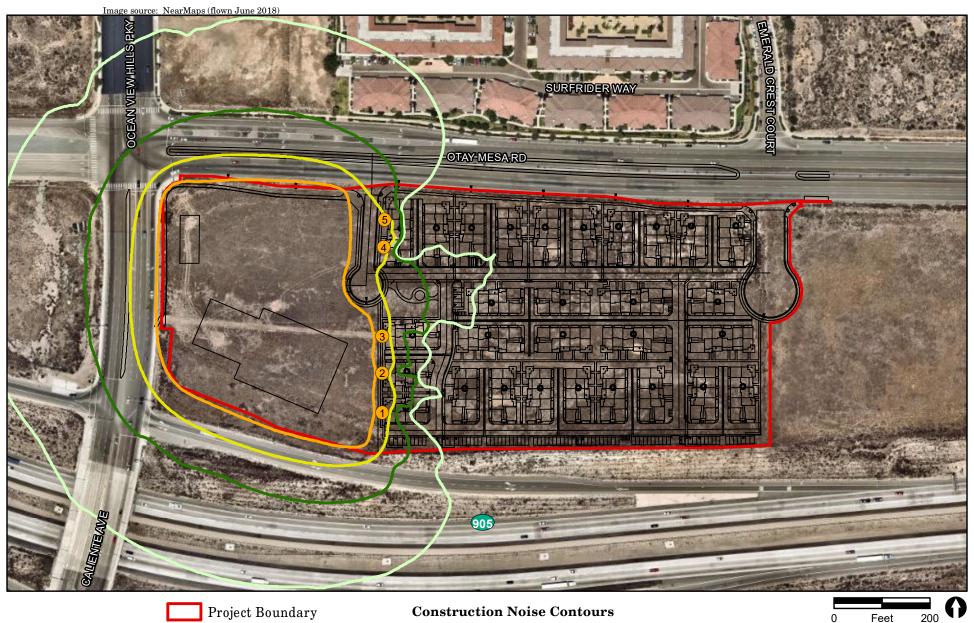

Construction Noise Contours

Table 8 Construction Noise Levels at Off-site Receivers						
Construction Noise Le						
Receiver	Land Use	$[\mathrm{dB(A)~L_{eq}}]$				
1	Residential	62				
2	Residential	62				
3	Residential	62				
4	Future Residential	53				
5	Vacant	62				
6	School	57				
7	School	49				
8	School	50				
9	Residential	50				
10	Residential	50				
11	Residential	51				
12	MHPA	51				
13	MHPA	54				
14	MHPA	54				
15	MHPA	51				
16	MHPA	48				
17	MHPA	49				
18	MHPA	52				
19	MHPA	54				
20	MHPA	59				
dB(A) L _{eq} = A-weighted decibels equivalent noise level						

dB(A) L_{eq} = A-weighted decibels equivalent noise level MHPA = multi-habitat planning area

5.1.2 On-site Receivers

If construction of the residential portion of the project is completed prior to construction of the commercial lot, future on-site residential receivers would be exposed to noise associated with construction of the commercial lot. Grading of the entire project would be completed in one stage; therefore, noise associated with construction activities at the commercial lot would likely be less than those associated with mass grading. However, as a worst-case scenario, the same average hourly noise level used to model noise levels at off-site receivers was also used to calculate construction noise levels at the on-site residential uses closest to the commercial lot. The results are summarized in Table 9. Modeled receiver locations and construction noise contours are shown in Figure 6. SoundPLAN data is contained in Attachment 4. As shown, construction noise levels are not anticipated to exceed 75 dB(A) Leq at the on-site residential uses.

----- 60 dB(A) Leq

On-Site Residential Receivers —— 65 dB(A) Leq

---- 70 dB(A) Leq

--- 75 dB(A) Leq

FIGURE 6

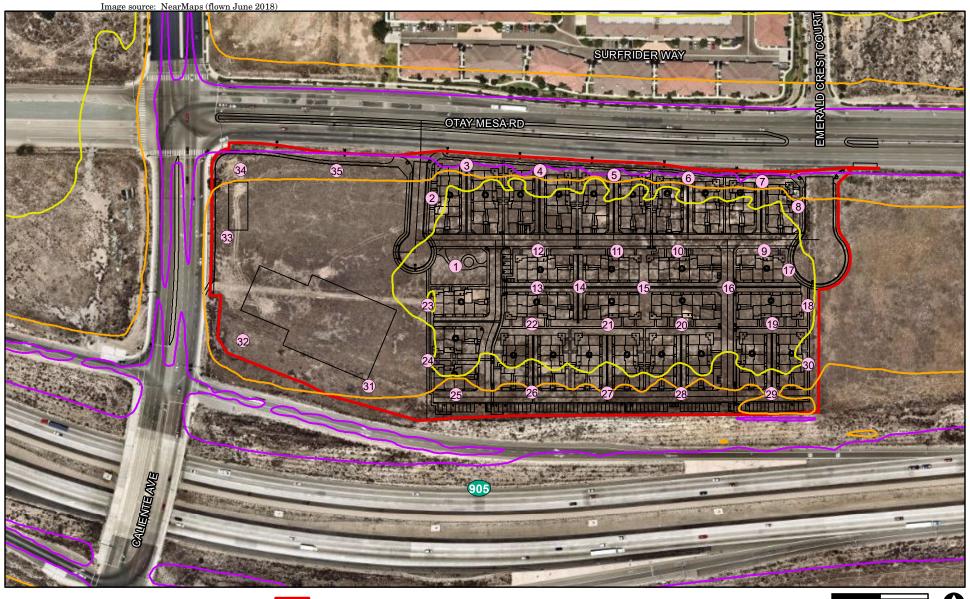
Commercial Lot Construction Noise Contours

Plan Lines

Table 9 Construction Noise Levels at On-site Receivers								
	Construction Noise Level							
Receiver	Land Use	$[\mathrm{dB}(\mathrm{A})\ \mathrm{L_{eq}}]$						
1	On-Site Residential	74						
2	On-Site Residential	74						
3	On-Site Residential	74						
4	On-Site Residential	71						
5 On-Site Residential 70								
dB(A) L _{eq} = A-weighted decibels equivalent noise level								

5.2 Vehicle Traffic Noise

5.2.1 On-site Noise Compatibility


The project site is located within the Otay Mesa CPU area. As discussed, noise impacts were addressed in the FPEIR which was approved in 2013. For the proposed project, as required by mitigation measure NOI-1, this site-specific noise analysis calculates exterior noise levels and analyzes noise reduction measures, as necessary, to demonstrate that future noise would not exceed the residential noise compatibility standards of the General Plan. Multi-family residential uses are "compatible" with exterior noise levels up to 60 CNEL, and "conditionally compatible" with exterior noise levels up to 70 CNEL. In "conditionally compatible" areas, feasible noise mitigation techniques should be analyzed and incorporated to make the outdoor activities acceptable, and building structures must attenuate exterior noise levels to an indoor noise level of 45 CNEL. The exterior compatibility standard is applicable at the proposed exterior use areas. In the case of the proposed project, exterior use areas include the balconies.

Additionally, for the non-residential components of the project, the exterior noise level limit for park uses is 65 CNEL, and the exterior noise level limit for commercial and retail uses is 75 CNEL with an interior noise level standard of 50 CNEL (City of San Diego 2016).

Exterior Noise

Vehicle traffic noise level contours across the project site were calculated using SoundPLAN. These contours take into account shielding provided by proposed buildings, topography, and proposed grading. These noise contours are shown in Figure 7. As shown, first-floor noise levels would exceed 65 CNEL across the entire project site, and would exceed 70 CNEL at the uses located within approximately 80 feet from the edge of Otay Mesa Road and within approximately 170 feet from the edge of SR-905.

To determine exterior noise levels at the commercial area, park, and building façades, noise levels were modeled at 35 specific receiver locations, as shown in Figure 7. Exterior noise levels were modeled at first-through third-floor elevations. The results are summarized in Table 10. SoundPLAN data are provided in Attachment 5.

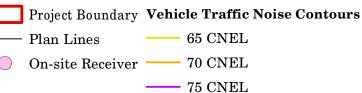


FIGURE 7

Vehicle Traffic Noise Contours

Table 10						
	Future Ve	hicle Traffic Noise	<u>Levels</u> erior Noise Level (CN	IEL)		
Receiver	Location	First Floor	Second Floor	Third Floor		
1	Park	62				
2	Residential Building Façade	68	70	71		
3	Residential Building Façade	74	75	75		
4	Residential Building Façade	73	75	75		
5	Residential Building Façade	73	74	75		
6	Residential Building Façade	73	75	75		
7	Residential Building Façade	72	74	75		
8	Residential Building Façade	69	71	72		
9	Residential Building Façade	62	65	66		
10	Residential Building Façade	57	59	61		
11	Residential Building Façade	58	60	61		
12	Residential Building Façade	59	61	62		
13	Residential Building Façade	51	53	55		
14	Residential Building Façade	57	59	60		
15	Residential Building Façade	57	59	60		
16	Residential Building Façade	58	61	63		
17	Residential Building Façade	64	68	69		
18	Residential Building Façade	64	69	70		
19	Residential Building Façade	61	64	67		
20	Residential Building Façade	60	63	64		
21	Residential Building Façade	61	63	64		
22	Residential Building Façade	61	63	64		
23	Residential Building Façade	65	68	69		
24	Residential Building Façade	66	69	70		
25	Residential Building Façade	72	74	75		
26	Residential Building Façade	70	72	73		
27	Residential Building Façade	70	73	73		
28	Residential Building Façade	71	73	74		
29	Residential Building Façade	70	74	74		
30	Residential Building Façade	67	72	72		
31	Commercial Lot	69	72	72		
32	Commercial Lot	68	71	72		
33	Commercial Lot	68	70	71		
34	Commercial Lot	71	73	74		
35	Commercial Lot	71	73	74		

As shown, noise levels at the proposed park would be 62 CNEL, which would be compatible with the City's standard of 65 CNEL. Noise levels at the perimeter of the commercial lot would range from 68 to 74 CNEL, which would be compatible with the City's commercial standard of 75 CNEL.

To refine the analysis further, exterior noise levels were modeled at each proposed second-floor balcony location. Note that there are no balconies proposed at the third floor level. Balcony receiver locations are shown in Figure 8. As shown, balcony noise levels are projected to exceed the "conditionally compatible" noise level of 70 CNEL at 27 of the balconies facing Otay Mesa Road and SR-905. Therefore, the project includes noise attenuating design measures in the form of a solid 3.5-foot balcony wall extending the length/perimeter of the balcony on the 27 balconies. In order to reduce noise levels at these receivers, the 3.5-foot balcony railing would need to be constructed as a solid barrier. Noise

levels at these balconies were modeled with construction of this 3.5-foot balcony, and the results are summarized in Table 11. SoundPLAN data is provided in Attachment 6.

Table 11 Mitigated Future Vehicle Traffic Noise Levels						
	Balcony Noise Level (CNEL)					
	Without Balcony	With Balcony				
Receiver	Barriers	Barriers				
1	74	68				
8	74	68				
14	74	68				
20	74	68				
26	74	69				
32	74	68				
38	74	68				
44	73	68				
49	74	68				
54	73	67				
114	74	70				
115	75	70				
116	74	69				
117	75	70				
122	74	69				
123	74	69				
132	74	69				
133	73	69				
134	74	69				
135	73	69				
144	74	69				
145	73	69				
146	73	69				
147	73	68				
156	73	69				
157	73	68				
159	72	68				

As shown, with construction of a solid 3.5-foot balcony wall, balcony noise levels would be reduced to 70 CNEL or less.

Interior Noise

Interior noise levels can be reduced through standard construction techniques. When windows are closed, standard construction techniques provide various exterior-to-interior noise level reductions depending on the type of structure and window. According to the FHWA's *Highway Traffic Noise Analysis and Abatement Guidance*, buildings with masonry façades and double glazed windows can be estimated to provide a noise level reduction of 35 dB, while light-frame structures with double glazed windows may provide noise level reductions of 20 to 25 dB (FHWA 2011).

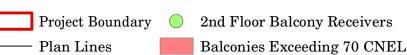
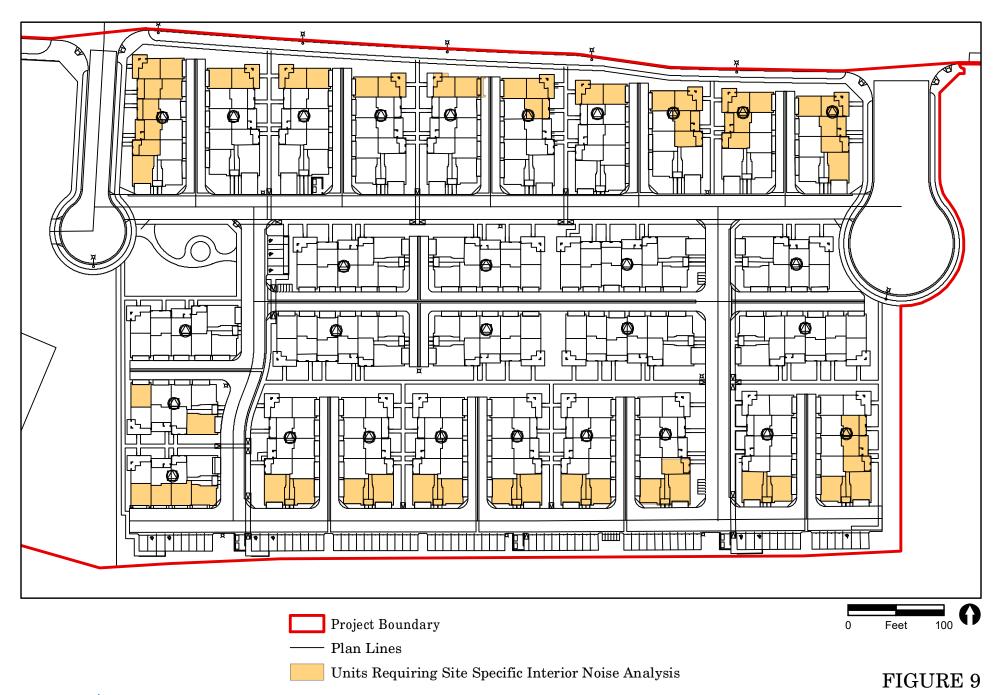


FIGURE 8

The interior noise level standard for commercial uses is 50 CNEL. As discussed, exterior noise levels at the perimeter of commercial lot would range from 68 to 74 CNEL. No site or building design is available for the commercial lot at this time. However, assuming light-frame construction, interior noise levels would be reduced to 49 CNEL. Thus, interior noise levels in the commercial buildings would be compatible with City standards.

The interior noise level standard for residential uses is 45 CNEL. As shown in Table 10, exterior noise levels at the residential building façades would be as high as 75 CNEL. A noise reduction of up to 30 dB would be required to achieve an interior noise level of 45 CNEL or less. As required by NOI-2 of the Otay Mesa CPU FPEIR (see Section 2.1), prior to the issuance of building permits, a site-specific interior noise analysis would be prepared demonstrating that the window, door, and wall components would achieve a necessary sound transmission class rating required to reduce interior noise levels to 45 CNEL or less. The units that would require the interior noise analysis are indicated in Figure 9.


5.2.2 Off-site Vehicle Traffic Noise

The project would increase traffic volumes on local roadways. However, the project would not substantially alter the vehicle classifications mix on local or regional roadways nor would the project alter the speed on an existing roadway or create a new roadway. Thus, the primary factor affecting off-site noise levels would be increased traffic volumes. While changes in noise levels would occur along any roadway where project-related traffic occurs, for noise assessment purposes, noise level increases are assumed to be greatest nearest the project site, as this location would represent the greatest concentration of project-related traffic. A substantial noise increase is defined as an increase of 3 dB above existing conditions as stated in the City's CEQA significance standards.

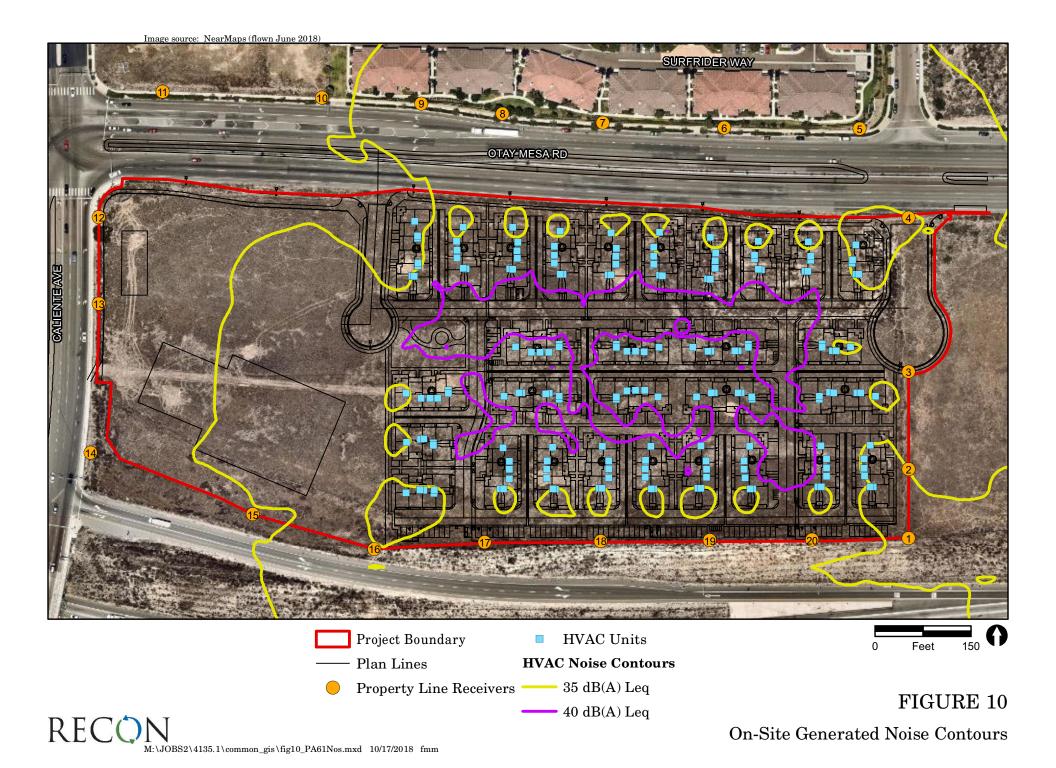
Table 12 presents a conservative assessment of traffic noise levels based on the existing, existing plus project, near-term (existing plus cumulative), near-term plus project, horizon (year 2062), and horizon plus project noise levels generated by traffic. Table 12 also summarizes the traffic noise level increases due to the project. Noise level calculations are contained in Attachment 7.

As shown in Table 12, direct off-site noise level increases due to the project would be less than 1 dB. Therefore, direct off-site noise impacts associated with the project would be less than significant.

Similar to direct traffic noise impacts, a cumulative traffic noise impact occurs when the noise level would exceed the applicable standard and a substantial noise level increase compared to existing noise occurs. As shown, the total horizon (year 2062) with project increase over the existing condition would range from less than 1 dB to 6 dB. However, the project's contribution to the increase over ambient noise levels would be less than 1 dB. Therefore, the project would result in a less than cumulatively considerable off-site noise level increase, and cumulative traffic noise impacts associated with the project would be less than significant.

Table 12 Traffic Noise Levels with and without Project and Ambient Noise Increase (CNEL)

			CNEL)							
				1	Near-Tern	1		Horizon		Total
	Existing		(Existing + Cumulative)		(Year 2062)			Increase		
	Without	With		Without	With		Without	With		Over
Roadway Segment	Project	Project	Increase	Project	Project	Increase	Project	Project	Increase	Existing
Ocean View Hills Parkway										
Starfish Way to Sea Drift Way	71	72	1	72	72	<1	73	73	<1	2
Sea Drift Way to Del Sol Boulevard	71	71	<1	72	72	<1	73	73	<1	2
Del Sol Boulevard to Sea Fire Point	70	71	1	71	72	1	73	73	<1	3
Sea Fire Point to Hidden Trails Road	70	71	1	72	72	<1	73	73	<1	3
Hidden Trails Road to Otay Mesa Road	72	72	<1	73	74	1	74	74	<1	2
Caliente Avenue										
Otay Mesa Road to SR-905 Westbound Ramps	73	73	<1	74	74	<1	75	75	<1	2
SR-905 Westbound Ramps to SR-905	72	72	<1	74	74	<1	75	76	1	4
Eastbound Ramps	12	14	\1	74	14	\1			1	4
SR-905 Eastbound Ramps to Airway Road	69	69	<1	72	72	<1	75	75	<1	6
Otay Mesa Road										
Ocean View Hills Parkway to Driveway	75	76	1	77	78	1	79	79	<1	4
Driveway to Emerald Crest Court	75	76	1	77	77	<1	79	79	<1	4
Emerald Crest Court to Corporate Center Drive	74	74	<1	76	76	<1	78	78	<1	4
Corporate Center Drive to Innovative Drive	71	72	1	73	73	<1	74	74	<1	3
Innovative Drive to Heritage Road	72	72	<1	73	74	<1	75	75	<1	3


5.3 On-site Generated Noise

The primary noise sources on-site would be rooftop HVAC equipment. Using the on-site noise source parameters discussed in Section 4.3, noise levels were modeled at a series of 20 receivers located at the property line. HVAC unit locations were obtained from the roof plan drawings. Noise generated by HVAC equipment would occur on an intermittent basis, primarily during the day and evening hours and less frequently during the nighttime hours. For a worst-case analysis, it was assumed that the HVAC units would operate continuously.

Modeled receivers and the locations of the HVAC units are shown in Figure 10. Modeled data is included in Attachment 8. Future projected noise levels are summarized in Table 13.

Table 13 HVAC Noise Levels at Adjacent Property Lines				
11 / 11 0 1 / 01 B 0 10 / 01 B 0 V	Noise Level			
Receiver	[dB(A) L _{eq}]			
1	35			
2	36			
3	37			
4	35			
5	37			
6	38			
7	38			
8	37			
9	36			
10	35			
11	33			
12	33			
13	33			
14	34			
15	35			
16	35			
17	38			
18	38			
19	38			
20	37			

As shown, on-site generated noise levels would range from 33 to 38 dB(A) L_{eq} at the property lines which would be less than the most restrictive multi-family noise level limit of 45 dB(A) L_{eq} . Noise levels would not exceed the applicable Noise Abatement and Control Ordinance limits at the property lines.

6.0 Conclusions

6.1 Construction Noise

As shown in Tables 8 and 9, construction noise levels are not anticipated to exceed 75 dB(A) L_{eq} at the adjacent or on-site residential uses, or 60 dB(A) L_{eq} at the adjacent MHPA habitat. Although the existing adjacent residences and MHPA would be exposed to construction noise levels that could be heard above ambient conditions, the exposure would be temporary. Additionally, construction activities are not anticipated to exceed 75 dB(A)L_{eq}. As construction activities associated with the project would comply with noise level limits from Noise Abatement and Control Ordinance Section 59.5.0404, temporary increases in noise levels from construction activities would be less than significant.

6.2 Vehicle Traffic Noise

6.2.1 On-site Noise Compatibility

The main source of noise at the project site is vehicle traffic on SR-905, Otay Mesa Road, Caliente Avenue, and SR-905 on- and off-ramps. Multi-family residential uses are "compatible" with exterior noise levels up to 60 CNEL, and "conditionally compatible" with exterior noise levels up to 70 CNEL. In "conditionally compatible" areas, feasible noise mitigation techniques should be analyzed and incorporated to make the outdoor activities acceptable, and building structures must attenuate exterior noise levels to an indoor noise level of 45 CNEL. The exterior compatibility standard is applicable at the proposed exterior use areas. In the case of the proposed project, exterior use areas include the balconies. Additionally, for the non-residential components of the project, the exterior noise level limit for park uses is 65 CNEL, and the exterior noise level limit for commercial and retail uses is 75 CNEL with an interior noise level standard of 50 CNEL (City of San Diego 2016).

As shown in Table 10, noise levels at the proposed park would be 62 CNEL, which would be compatible with the City's standard of 65 CNEL, and noise levels at the perimeter of the commercial lot would range from 68 to 74 CNEL, which would be compatible with the City's commercial standard of 75 CNEL.

Exterior noise levels were modeled at each proposed balcony location. Balcony noise levels are projected to exceed the "conditionally compatible" noise level of 70 CNEL at 27 of the balconies facing Otay Mesa Road and SR-905. Therefore, the project includes noise attenuating design measures in the form of a solid 3.5-foot balcony wall extending the length/perimeter of the balcony on the 27 balconies. With construction of a solid 3.5-foot balcony wall, balcony noise levels would be reduced to 70 CNEL or less at all balconies.

The interior noise level standard for commercial uses is 50 CNEL. No site or building design is available for the commercial lot at this time. However, assuming light-frame construction, interior noise levels would be reduced to 49 CNEL. Thus, interior noise levels in the commercial buildings would be compatible with City standards.

The interior noise level standard for residential uses is 45 CNEL. A noise reduction of up to 30 dB would be required to achieve an interior noise level of 45 CNEL or less. As required by NOI-2 of the Otay Mesa CPU FPEIR (see Section 2.1), prior to the issuance of building permits, a site-specific interior noise analysis would be prepared demonstrating that the window, door, and wall components would achieve a necessary sound transmission class rating required to reduce interior noise levels to 45 CNEL or less. Thus, interior noise impacts would be less than significant.

6.2.2 Off-site Vehicle Traffic Noise

The project would increase traffic volumes on local roadways. However, the project would not substantially alter the vehicle classifications mix on local or regional roadways, nor would the project alter the speed on an existing roadway or create a new roadway. Thus, the primary factor affecting off-site noise levels would be increased traffic volumes. A substantial noise increase is defined as an increase of 3 dB above existing conditions as stated in the City's CEQA significance standards.

As shown in Table 12, direct off-site noise level increases due to the project would be less than 1 dB. Therefore, direct off-site noise impacts associated with the project would be less than significant. The total horizon (year 2062) with project increase over the existing condition would range from less than 1 dB to 6 dB. However, the project's contribution to the increase over ambient noise levels would be less than 1 dB. Therefore, the project would result in a less than cumulatively considerable off-site noise level increase, and cumulative traffic noise impacts associated with the project would be less than significant.

6.3 On-site Generated Noise

The noise sources on the project site after completion of construction are anticipated to be those that would be typical of any residential complex, such as vehicles arriving and leaving and landscape maintenance machinery. None of these noise sources is anticipated to violate the City's Noise Abatement and Control Ordinance. Rooftop HVAC noise levels were modeled at the adjacent property lines. As shown in Table 13, on-site generated noise levels would range from 33 to 38 dB(A) $L_{\rm eq}$. Noise levels would not exceed the applicable limits at the property lines.

7.0 References Cited

California Code of Regulations

2016 2016 California Building Code, California Code of Regulations, Title 24, Chapter 12 Interior Environment, Section 1207, Sound Transmission, accessed at http://www.bsc.ca.gov/codes.aspx.

California Department of Transportation (Caltrans)

- 2013 Technical Noise Supplement. November.
- 2015 Annual Average Daily Truck Traffic on the California State Highway System.
- 2016 2016 Peak Hour Volumes. Print Traffic Book. Report OTM32420.

Federal Highway Administration (FHWA)

- 2006 Roadway Construction Noise Model User's Guide. FHWA-HEP-05-054, SOT-VNTSC-FHWA-05-01. Final Report. January 2006.
- 2011 Highway Traffic Noise: Analysis and Abatement Guidance. FHWA-HEP-10-025. December 2011.

LOS Engineering, Inc.

2019 Traffic Impact Analysis for the California Terraces PA-61 (Mixed-Use Project). PTS 581648. January 14, 2019.

Navcon Engineering, Inc.

2015 SoundPLAN Essential version 3.0.

San Diego, City of

- 2012 Final City of San Diego Biology Guidelines for the Environmentally Sensitive Lands Regulations (ESL), the Open Space Residential (OR-1-2) Zone, and the California Environmental Quality Act (CEQA). June.
- 2013 Final Program Environmental Impact Report for the Otay Mesa Community Plan Update. Project Number 30330/304032, SCH No. 2004651076. December 18.
- 2015 City of San Diego General Plan Amendments. Resolution Number R- 309817 Final Environmental Impact Report No. 104495 Addendum R-309818. Adopted by City Council on June 29.
- 2016 Significance Determination Thresholds for the California Environmental Quality Act (CEQA). July.

Urban Systems Associates, Inc.

2012 Transportation Analysis for the Otay Mesa CPU.

RECON	Noise Analysis
ATTACHME	ENTS

ATTACHMENT 1 Noise Measurement Data

4135.1 California Terraces PA-61 Noise Measurement Data

Summary					
Filename	LxT_Data.019				
Serial Number	3827				
Model	SoundExpert™ LxT				
Firmware Version	2.301				
User					
Location					
Job Description					
Note					
Measurement Description					
Start	2018/01/16 14:27:24				
Stop	2018/01/16 14:42:30				
Duration	0:15:06.4				
Run Time	0:15:06.4				
Pause	0:00:00.0				
Pre Calibration	2018/01/16 14:21:13				
Post Calibration	None				
Calibration Deviation					
Overall Settings					
RMS Weight	A Weighting				
Peak Weight	A Weighting				
Detector	Slow				
Preamp	PRMLxT1L				
Microphone Correction	Off				
Integration Method	Linear				
OBA Range	Normal				
OBA Bandwidth	1/1 and 1/3				
OBA Freq. Weighting	A Weighting				
OBA Max Spectrum	At Lmax				
Overload	121.7 dB				
	Α	С	Z		
Under Range Peak	78.0	75.0	80.0 dB		
Under Range Limit	26.0	25.2	32.0 dB		
Noise Floor	16.2	16.1	21.9 dB		
Results					
LAeq	75.9 dB				
LAE	105.5 dB				
EA	3.946 mPa²h				
LApeak (max)	2018/01/16 14:39:09	95.6 dB			
LASmax	2018/01/16 14:33:05	81.4 dB			
LASmin	2018/01/16 14:28:38	67.1 dB			
SEA	-99.9 dB				
LAS > 85.0 dB (Exceedence Counts / Duration)	0	0.0 s			
LAS > 115.0 dB (Exceedence Counts / Duration)	0	0.0 s			
LApeak > 135.0 dB (Exceedence Counts / Duration)	0	0.0 s			
LApeak > 137.0 dB (Exceedence Counts / Duration)	0	0.0 s			
LApeak > 140.0 dB (Exceedence Counts / Duration)	0	0.0 s			
Community Noise	Ldn LDay	07:00-22:00 LNight 22	2:00-07:00 Lden LDay 07:	00-19:00 LEvenin	g 19:00-22:00
	75.9	75.9	-99.9 75.9	75.9	-99.9
LCeq	79.9 dB				
LAeq	75.9 dB				
LCeq - LAeq	4.0 dB				
LAleq	76.6 dB				
LAeq	75.9 dB				
LAleq - LAeq	0.7 dB				
# Overloads	0				
Overload Duration	0.0 s				
# OBA Overloads	0				
OBA Overload Duration	0.0 s				
Statistics					
LAS5.00	78.3 dB				
LAS10.00	77.6 dB				
LAS33.30	76.4 dB				
LAS50.00	75.7 dB				
LAS66.60	75.0 dB				
LAS90.00	73.2 dB				

4135.1 California Terraces PA-61 Noise Measurement Data

Summary					
Filename	LxT_Data.020				
Serial Number	3827				
Model	SoundExpert™ LxT				
Firmware Version	2.301				
User Location					
Job Description					
Note					
Measurement Description					
Start	2018/01/16 14:54:52				
Stop	2018/01/16 15:10:21				
Duration	0:15:28.8				
Run Time	0:15:28.8				
Pause	0:00:00.0				
Pre Calibration	2018/01/16 14:51:09				
Post Calibration	None				
Calibration Deviation					
Overall Settings					
RMS Weight	A Weighting				
Peak Weight	A Weighting				
Detector	Slow				
Preamp Microphone Correction	PRMLxT1L Off				
Integration Method	Linear				
OBA Range	Normal				
OBA Bandwidth	1/1 and 1/3				
OBA Freq. Weighting	A Weighting				
OBA Max Spectrum	At Lmax				
Overload	121.8 dB	С	z		
Under Range Peak	A 78.1	75.1	80.1 dB		
Under Range Limit	26.1	25.2	32.1 dB		
Noise Floor	16.3	16.1	22.0 dB		
Results					
LAeq	62.7 dB				
LAE EA	92.3 dB				
LApeak (max)	190.023 μPa²h 2018/01/16 15:10:09	96.1 dB			
LASmax	2018/01/16 15:10:09	79.8 dB			
LASmin	2018/01/16 15:01:31	47.7 dB			
SEA	-99.9 dB				
LAS > 85.0 dB (Exceedence Counts / Duration)	0	0.0 s			
LAS > 115.0 dB (Exceedence Counts / Duration)	0	0.0 s			
LApeak > 135.0 dB (Exceedence Counts / Duration) LApeak > 137.0 dB (Exceedence Counts / Duration)	0 0	0.0 s 0.0 s			
LApeak > 140.0 dB (Exceedence Counts / Duration)	0	0.0 s			
,	·				
Community Noise					0-22:00 LNight 22:00-07:00
10	62.7	62.7	-99.9 62.7	62.7	-99.9
LCeq	74.2 dB				
LAeq LCeq - LAeq	62.7 dB 11.6 dB				
LAleq	64.1 dB				
LAeq	62.7 dB				
LAleq - LAeq	1.5 dB				
# Overloads	0				
Overload Duration	0.0 s				
# OBA Overloads	0				
OBA Overload Duration	0.0 s				
Statistics					
LAS5.00	67.3 dB				
LAS10.00	65.0 dB				
LAS33.30	60.3 dB				
LAS50.00	57.9 dB				
LAS66.60	56.0 dB				
LAS90.00	52.3 dB				

4135.1 California Terraces PA-61 Noise Measurement Data

Summary						
Filename	LxT_Data.021					
Serial Number	3827					
Model	SoundExpert™ LxT					
Firmware Version	2.301					
User Location						
Job Description						
Note						
Measurement Description						
Start	2018/01/16 15:29:31					
Stop	2018/01/16 15:44:38					
Duration	0:15:06.9					
Run Time Pause	0:15:06.9 0:00:00.0					
rause	0.00.00.0					
Pre Calibration	2018/01/16 15:25:49					
Post Calibration	None					
Calibration Deviation						
0						
Overall Settings RMS Weight	A Weighting					
Peak Weight	A Weighting A Weighting					
Detector	Slow					
Preamp	PRMLxT1L					
Microphone Correction	Off					
Integration Method	Linear					
OBA Range OBA Bandwidth	Normal					
OBA Bandwidth OBA Freq. Weighting	1/1 and 1/3 A Weighting					
OBA Max Spectrum	At Lmax					
Overload	121.9 dB					
	A	С	Z			
Under Range Peak	78.1	75.1	80.1 dB			
Under Range Limit	26.1	25.2	32.1 dB			
Noise Floor	16.3	16.1	22.0 dB			
Results						
LAeq	61.5 dB					
LAE	91.0 dB					
EA	141.110 μPa²h					
LApeak (max)	2018/01/16 15:37:24	92.8 dB				
LASmax LASmin	2018/01/16 15:37:24 2018/01/16 15:34:45	70.3 dB 53.0 dB				
SEA	-99.9 dB	33.0 dB				
	33.0					
LAS > 85.0 dB (Exceedence Counts / Duration)	0	0.0 s				
LAS > 115.0 dB (Exceedence Counts / Duration)	0	0.0 s				
LApeak > 135.0 dB (Exceedence Counts / Duration)	0	0.0 s				
LApeak > 137.0 dB (Exceedence Counts / Duration) LApeak > 140.0 dB (Exceedence Counts / Duration)	0	0.0 s 0.0 s				
Expeak > 140.0 dB (Exceedence Counts / Duration)	Ü	0.0 \$				
Community Noise	Ldn LDay 07	7:00-22:00 LNight 2	2:00-07:00 Lden LDay 07:	00-19:00 LEvening	19:00-22:00 LNight 22	2:00-07:00
	61.5	61.5	-99.9 61.5	61.5	-99.9	-99.9
LCeq	73.6 dB					
LAeq	61.5 dB					
LCeq - LAeq LAleq	12.2 dB 62.4 dB					
LAeq	61.5 dB					
LAleq - LAeq	0.9 dB					
# Overloads	0					
Overload Duration	0.0 s					
# OBA Overloads	0					
OBA Overload Duration	0.0 s					
Statistics						
LAS5.00	65.3 dB					
LAS10.00	64.4 dB					
LAS33.30	61.6 dB					
LAS50.00	60.2 dB					
LAS66.60 LAS90.00	59.2 dB 56.7 dB					
LACTU.UU	50.7 dB					

ATTACHMENT 2 HVAC Specifications

Product Data

Performance Series

Carrier's Air Conditioners with Puron® refrigerant provide a collection of features unmatched by any other family of equipment. The 38HDR has been designed utilizing Carrier's Puron refrigerant. The environmentally sound refrigerant allows you to make a responsible decision in the protection of the earth's ozone layer.

This product has been designed and manufactured to meet Energy Star® criteria for energy efficiency when matched with appropriate coil components. Refer to the combination ratings in the Product Data for system combinations that meet Energy Star® guidelines.

NOTE: Ratings contained in this document are subject to change at any time. Always refer to the AHRI directory (www.ahridirectory.org) for the most up-to-date ratings information.

INDUSTRY LEADING FEATURES / BENEFITS

Energy Efficiency

• 13 - 15 SEER/10.9 - 12.5 EER

Sound

Levels as low as 68 dBA

Design Features

- New aesthetics
- Small footprint, same as old model and "stackable"
- WeatherArmor[™] cabinet
 - All steel cabinet construction
 - Baked on powder paint
 - Mesh coil guard

Reliability, Quality and Toughness

- Scroll compressor
- Crankcase Heater standard on sizes 030-060
- Factory-supplied filter drier
- High pressure switch
- Low pressure switch
- Line lengths up to 250' (76.2 m)
- Low ambient operation (down to -20°F/-28.9°C) with low ambient accessories.

MODEL NUMBER NOMENCLATURE

1	2	3	4	5	6	7	8	9	10	11	12	13
N	N	Α	Α	A/N	N	N	N	A/N	A/N	A/N	N	N
3	8	Н	D	R	0	1	8	Α	0	0	3	0
Prod Ser			Horizontal I Indensing		Cod	oling Capa	acity	Variations	Open	Open	Voltage	Minor Series
38=A	C/HP	I	Major Mod	el	1,000) Btuh No	minal	A=Standard	0=Not Defined	0=Not Defined	3=208/230-1 5=208/230-3 6=460/3	0, 1, 2

Use of the AHRI Certified TM Mark indicates a manufacturer's participation in the program For verification of certification for individual products, go to www.ahridirectory.org.

This product has been designed and manufactured to meet Energy Star® criteria for energy efficiency when matched with appropriate coil components. However, proper refrigerant charge and proper air flow are critical to achieve rated capacity and efficiency. Installation of this product should follow all manufacturing refrigerant charging and air flow instructions. Failure to confirm proper charge and air flow may reduce energy efficiency and shorten equipment life.

PHYSICAL DATA

UNIT 38HDR	018	024	030	036	048	060		
NOMINAL CAPACITY (Tons)	1.5	2.0	2.50	3.0	4.0	5.0		
OPERATING WEIGHT Ib (kg)	155 (70.3)	180 (81.6)	200 (90.7)	218 (98.9)	284 (128.8)	294 (133.4)		
REFRIGERANT TYPE	` '	, ,	R-	410A	· · · · · · · · · · · · · · · · · · ·	, ,		
METERING DEVICE	TXV							
CHARGE Ib (kg)	6.3 (2.86)	6.0 (2.73)	8.7 (3.95)	8.7 (3.95)	11.5 (5.23)	12.0 (5.45)		
COMPRESSOR								
Туре			Sc	croll				
Oil Charge (POE -oz)	25.0	25.0	25.0	25.0	42.0	42.0		
Crankcase Heater (watts)	_	_	40	40	40	40		
OUTDOOR FAN								
Rpm/Cfm	840/1720	840/1720	850/3900	850/3900	850/3900	850/3900		
Diameter in. (mm)	18 (457)	18 (457)	24 (610)	24 (610)	24 (610)	24 (610)		
No. Blades	3	3	3	3	3	3		
Motor hp (w)	1/8 (93)	1/8 (93)	1/4 (187)	1/4 (187)	1/4 (187)	1/4 (187)		
OUTDOOR COIL								
Face Area (sq ft)	5.8	7.3	12.1	12.1	14.1	14.1		
No. Rows	2	2	2	2	2	2		
FPI	20	20	20	20	20	20		
HIGH PRESSURE SWITCH								
Cut-In (psig) Cutout (psig)	420 ± 25 650 ± 10	420 ± 25 650 ± 10						
LOW PRESSURE SWITCH								
Cut-In (psig) Cutout (psig)	45 ± 25 20 ± 5	45 ± 25 20 ± 5						
REFRIGERANT LINES		•	•			•		
Connection Type			Sv	veat				
Max. Liquid Line* (in.) OD	3/8	3/8	3/8	3/8	3/8	3/8		
Rated Vapor Line† (in.) OD	5/8	5/8	3/4	3/4	7/8	1-1/8**		
CONTROLS								
Control Voltage‡			24	vac				
System Voltage	208/230 v	208/230 v	208/230 v	208/230 v, Single	and 3 Phase, 460 v	, 3 Phase		
FINISH			G	ray				

^{*} See Liquid Line Sizing For Cooling Only Systems with Puron Refrigerant tables.

FPI - Fins Per Inch

POE - Polyol Ester

[†] Units are rated with 25 ft (7.6 m) of lineset length. See Vapor Line Sizing and Cooling Capacity Loss table when using other sizes and lengths of lineset.

^{‡ 24} v and a minimum of 40 va is provided in the fan coil unit.

^{**} Vapor connection size is 7/8 inch.

REFRIGERANT PIPING LENGTH LIMITATIONS

Liquid Line Sizing and Maximum Total Equivalent Lengths[†] for Cooling Only Systems with Puron® Refrigerant:

The maximum allowable length of a residential split system depends on the liquid line diameter and vertical separation between indoor and outdoor units.

See Table below for liquid line sizing and maximum lengths:

Maximum Total Equivalent Length Outdoor Unit BELOW Indoor Unit

Size Liquid Line		Liquid Line	AC with Puron Refrigerant Maximum Total Equivalent Length†: Outdoor unit BELOW Indoor Vertical Separation ft (m)								
Connection	Diam. w/ TXV	0-5 (0-1.5)	6-10 (1.8-3.0)	11-20 (3.4-6.1)	21-30 (6.4-9.1)	31-40 (9.4-12.2)	41-50 (12.5-15.2)	51-60 (15.5-18.3)	61-70 (18.6-21.3)	71-80 (21.6-24.4)	
018		1/4	150	150	125	100	100	75			
AC with	3/8	5/16	250*	250*	250*	250*	250*	250*	250*	225*	150
Puron		3/8	250*	250*	250*	250*	250*	250*	250*	250*	250*
024		1/4	75	75	75	50	50				
AC with	3/8	5/16	250*	250*	250*	250*	250*	225*	175	125	100
Puron	3/8	250*	250*	250*	250*	250*	250*	250*	250*	250*	
030 AC with 3/8	1/4	30									
	3/8	5/16	175	225*	200	175	125	100	75		
Puron		3/8	250*	250*	250*	250*	250*	250*	250*	250*	250*
036 AC with	3/8	5/16	175	150	150	100	100	100	75		
Puron	3/6	3//8	250*	250*	250*	250*	250*	250*	250*	250*	250*
048 AC with Puron	3/8	3/8	250*	250*	250*	250*	250*	250*	230	160	
060 AC with Puron	3/8	3/8	250*	250*	250*	225*	190	150	110		

^{*} Maximum actual length not to exceed 200 ft (61 m)

Maximum Total Equivalent Length Outdoor Unit ABOVE Indoor Unit

Size	Liquid Line	Liquid Line Diam.	AC with Puron Refrigerant Maximum Total Equivalent Length†: Outdoor unit ABOVE Indoor Vertical Separation ft (m)								
0.20	Connection		25 (7.6)	26-50 (7.9-15.2)	51-75 (15.5-22.9)	76-100 (23.2-30.5)	101-125 (30.8-38.1)	126-150 (38.4-45.7)	151-175 (46.0-53.3)	176-200 (53.6-61.0)	
018		1/4	175	250*	250*	250*	250*	250*	250*	250*	
AC with	3/8	5/16	250*	250*	250*	250*	250*	250*	250*	250*	
Puron		3/8	250*	250*	250*	250*	250*	250*	250*	250*	
024		1/4	100	125	175	200	225*	250*	250*	250*	
AC with	3/8	5/16	250*	250*	250*	250*	250*	250*	250*	250*	
Puron		3/8	250*	250*	250*	250*	250*	250*	250*	250*	
030		1/4	30								
AC with	3/8	5/16	250*	250*	250*	250*	250*	250*	250*	250*	
Puron		3/8	250*	250*	250*	250*	250*	250*	250*	250*	
036 AC with	3/8	5/16	225*	250*	250*	250*	250*	250*	250*	250*	
Puron	0,0	3/8	250*	250*	250*	250*	250*	250*	250*	250*	
048 AC with Puron	3/8	3/8	250*	250*	250*	250*	250*	250*	250*	250*	
060 AC with Puron	3/8	3/8	250*	250*	250*	250*	250*	250*	250*	250*	

^{*} Maximum actual length not to exceed 200 ft (61 m)

[†] Total equivalent length accounts for losses due to elbows or fitting. See the Long Line Guideline for details.

^{-- =} outside acceptable range

[†] Total equivalent length accounts for losses due to elbows or fitting. See the Long Line Guideline for details.

^{-- =} outside acceptable range

REFRIGERANT CHARGE ADJUSTMENTS

Liquid Line Size	Puron Charge oz/ft (g/m)
3/8	0.60 (17.74) (Factory charge for lineset = 9 oz / 266.16 g)
5/16	0.40 (11.83)
1/4	0.27 (7.98)

Units are factory charged for 15 ft (4.6 m) of 3/8" liquid line. The factory charge for 3/8" lineset 9 oz (266.16 g). When using other length or diameter liquid lines, charge adjustments are required per the chart above.

Charging Formula:

[(Lineset oz/ft x total length) – (factory charge for lineset)] = charge adjustment

Example 1: System has 15 ft of line set using existing 1/4" liquid line. What charge adjustment is required?

Formula: (.27 oz/ft x 15ft) - (9 oz) = (-4.95) oz.

Net result is to remove 4.95 oz of refrigerant from the system

Example 2: System has 45 ft of existing 5/16" liquid line. What is the charge adjustment?

Formula: (.40 oz/ft. x 45 ft) - (9 oz.) = 9 oz.Net result is to add 9 oz of refrigerant to the system

LONG LINE APPLICATIONS

An application is considered Long Line, when the refrigerant level in the system requires the use of accessories to maintain acceptable refrigerant management for systems reliability. See Accessory Usage Guideline table for required accessories. Defining a system as long line depends on the liquid line diameter, actual length of the tubing, and vertical separation between the indoor and outdoor units.

For Air Conditioner systems, the chart below shows when an application is considered Long Line.

AC WITH PURON® REFRIGERANT LONG LINE DESCRIPTION ft (m)

Beyond these lengths, long line accessories are required

Liquid Line Size	Units On Same Level	Outdoor Below Indoor	Outdoor Above Indoor		
1/4	No accessories needed within allowed lengths	No accessories needed within allowed lengths	175 (53.3)		
5/16	120 (36.6)	50 (15.2) vertical or 120 (36.6) total	120 (36.6)		
3/8	80 (24.4)	35 (10.7) vertical or 80 24.4) total	80 (24.4)		

Note: See Long Line Guideline for details

VAPOR LINE SIZING AND COOLING CAPACITY LOSS

Acceptable vapor line diameters provide adequate oil return to the compressor while avoiding excessive capacity loss. The suction line diameters shown in the chart below are acceptable for AC systems with Puron refrigerant:

Vapor Line Sizing and Cooling Capacity Losses — Puron® Refrigerant 1-Stage Air Conditioner Applications

Unit	Maximum Liquid Line	Vapor Line		Cooling Capacity Loss (%) Total Equivalent Line Length ft. (m)								
Nominal Size (Btuh)	Diameters (In. OD)	Diameters (In. OD)	26-50 (7.9-15.2)	51 – 80 (15.5 – 24.4)	81 – 100 (24.7 – 30.5)	101 – 125 (30.8 – 38.1)	126-150 (38.4-45.7)	151 – 175 (46.0 – 53.3)	176-200 (53.6-61.0)	201-225 (61.3-68.6)	226-250 (68.9-76.2)	
018		1/2	1	2	3	5	6	7	8	9	11	
1 Stage AC with	3/8	5/8	0	1	1	1	2	2	2	3	3	
Puron		3/4	0	0	0	0	1	1	1	1	1	
024		5/8	0	1	2	2	3	3	4	5	5	
1 Stage AC with	3/8	3/4	0	0	1	1	1	1	1	2	2	
Puron		7/8	0	0	0	0	0	1	1	1	1	
030		5/8	1	2	3	3	4	5	6	7	8	
1 Stage AC with	3/8	3/4	0	0	1	1	1	2	2	2	3	
Puron		7/8	0	0	0	0	1	1	1	1	1	
036		5/8	1	2	4	5	6	8	9	10	12	
1 Stage AC with	3/8	3/4	0	1	1	2	2	3	3	4	4	
Puron		7/8	0	0	0	1	1	1	1	2	2	
048		3/4	0	1	2	3	4	5	5	6	7	
1 Stage AC with	3/8	7/8	0	0	1	1	2	2	2	3	3	
Puron		1 1/8	0	0	0	0	0	0	0	1	1	
060		3/4	1	2	4	5	6	7	9	10	11	
1 Stage AC with	3/8	7/8	0	1	2	2	3	4	4	5	5	
Puron		1 1/8	0	0	0	1	1	1	1	1	1	

Applications in this area may be long line and may have height restrictions. See the Residential Piping and Long Line Guideline.

ACCESSORY THERMOSTATS

THERMOSTAT / SUBBASE PKG.	DESCRIPTION					
TP-PRH01-A	ogrammable Thermidistat					
TP-NRH01-A	on – programmable Thermidistat					
TP-PAC01	Performance Series Programmable AC Stat					
TP-NAC01	Performance Series Non-programmable AC Stat					
TSTATCCSEN01-B	Outdoor Air Temperature Sensor					
TSTATXXBBP01	Backplate for Builder's Thermostat					
TSTATXXNBP01	Backplate for Non-Programmable Thermostat					
TSTATXXPBP01	Backplate for Programmable Thermostat					
TSTATXXCNV10	Thermostat Conversion Kit (4 to 5 wires) - 10 Pack					

ACCESSORIES

KIT NUMBER	KIT NAME	018	024	030	036	048	060
KAACH1401AAA	Crankcase Heater	Х	Х				
Standard	Crankcase Heater			S	S	S	S
KAAFT0101AAA	Evaporator Freeze Stat	Х	Х	Х	Х	Х	Х
KAATD0101TDR	Time Delay Relay	Х	Х	Х	Х	Х	Х
KAAWS0101AAA	Winter Start Kit (for low ambient)	Х	Х	х	х	х	х
53DS-900086	Low Ambient Control (Puron)	Х	х	х	х	х	х
53DS-900070	Wind Baffle	Х					
53DS-900087	Wind Baffle		Х				
53DS-900071	Wind Baffle			Х	Х		
53DS-900088	Wind Baffle					Х	Х
53DS-900075	Stacking Kit	Х	Х				
53DS-900076	Stacking Kit			Х	Х	Х	Х
53DS-900077	Wall Mounting Kit	Х	Х				
53DS-900078	Wall Mounting Kit			Х	Х	Х	Х

X = Accessory, S = Standard

ACCESSORY USAGE GUIDELINE

ACCESSORY	REQUIRED FOR LOW-AMBIENT COOLING APPLICATIONS (Below 55°F/12.8°C)	REQUIRED FOR LONG LINE APPLICATIONS* (Over 80 ft. / 24.4 m)	REQUIRED FOR SEA COAST APPLICATIONS (Within 2 miles / 3.2 km)
Compressor Start Assist Capacitor and Relay	Yes	Yes	No
Crankcase Heater	Yes	Yes	No
Evaporator Freeze Thermostat	Yes	No	No
Hard Shutoff TXV	Yes	Yes	Yes
Liquid Line Solenoid Valve	No	See Longline Application Guideline	No
Low-ambient Control	Yes	No	No
Winter Start Control	Yes	No	No

^{*} For tubing line sets between 80 and 200 ft. (24.38 and 60.96 m) and/or 35 ft. (10.7 m) vertical differential, refer to Residential Piping and Longline Guideline.

Accessory Description and Usage (Listed Alphabetically)

1. Crankcase Heater

An electric resistance heater which mounts to the base of the compressor to keep the lubricant warm during off cycles. Improves compressor lubrication on restart and minimizes the chance of liquid slugging.

Usage Guideline:

Required in low ambient cooling applications.

Required in long line applications.

Suggested in all commercial applications.

2. Evaporator Freeze Thermostat

An SPST temperature-actuated switch that stops unit operation when evaporator reaches freeze-up conditions.

Usage Guideline:

Required when low ambient kit has been added.

3. Low-Ambient Control

A fan-speed control device activated by a temperature sensor, designed to control condenser fan motor speed in response to the saturated, condensing temperature during operation in cooling mode only. For outdoor temperatures down to $-20^{\circ}F$ ($-28.9^{\circ}C$), it maintains condensing temperature at $100^{\circ}F \pm 10^{\circ}F$ ($37.8^{\circ}C \pm 5.5^{\circ}C$).

Usage Guideline:

A Low Ambient Controller must be used when cooling operation is used at outdoor temperatures below 55°F (12.8°C).

Suggested for all commercial applications.

4. Outdoor Air Temperature Sensor

Designed for use with Carrier Thermostats listed in this publication. This device enables the thermostat to display the outdoor temperature. This device also

is required to enable special thermostat features such as auxiliary heat lock out.

Usage Guideline:

Suggested for all Carrier thermostats listed in this publication.

5. Thermostatic Expansion Valve (TXV)

A modulating flow-control valve which meters refrigerant liquid flow rate into the evaporator in response to the superheat of the refrigerant gas leaving the evaporator.

Kit includes valve, adapter tubes, and external equalizer tube. Hard shut off types are available.

NOTE: When using a hard shut off TXV with single phase reciprocating compressors, a Compressor Start Assist Capacitor and Relay is required.

Usage Guideline:

Accessory required to meet AHRI rating and system reliability, where indoor not equipped.

Hard shut off TXV or LLS required in air conditioner long line applications.

Required for use on all zoning systems.

6. Time-Delay Relay

An SPST delay relay which briefly continues operation of indoor blower motor to provide additional cooling after the compressor cycles off.

NOTE: Most indoor unit controls include this feature. For those that do not, use the guideline below.

Usage Guideline:

Accessory required to meet AHRI rating, where indoor

not equipped.

7. Winter Start Control

This control is designed to alleviate nuisance opening of the low-pressure switch by bypassing it for the first 3 minutes of operation.

ELECTRICAL DATA

38HDR		VOLTAGE	RANGE*	COMPF	ESSOR	OUTDO	OR FAN N	IOTOR	MIN	FUSE/CKT
UNIT SIZE	V-PH-Hz	Min	Max	RLA	LRA	FLA	NEC Hp	kW Out	CKT AMPS	BKR AMPS
018-31	208/230-1-60	187	253	9.0	48.0	0.8	0.125	0.09	12.1	20
024-32	208/230-1-60	187	253	13.5	58.3	0.8	0.125	0.09	17.7	25
030-31	208/230-1-60	187	253	14.1	73.0	1.5	0.250	0.19	19.1	30
	208/230-1-60	187	253	14.1	77.0	1.5	0.250	0.19	19.1	30
036-31	208/230-3-60	187	253	9.2	71.0	1.5	0.250	0.19	13.0	20
	460-3-60	414	506	5.6	38.0	0.8	0.250	0.19	7.9	10
	208/230-1-60	187	253	19.9	109.0	1.5	0.250	0.19	26.4	40
048-32	208/230-3-60	187	253	13.1	83.1	1.5	0.250	0.19	17.9	25
	460-3-60	414	506	6.1	41.0	0.8	0.250	0.19	8.4	15
	208/230-1-60	187	253	26.4	134.0	1.5	0.250	0.19	34.5	60
060-32	208/230-3-60	187	253	16.0	110.0	1.5	0.250	0.19	21.5	30
	460-3-60	414	506	7.8	52.0	0.8	0.250	0.19	10.6	15

^{*} Permissible limits of the voltage range at which the unit will operate satisfactorily

FLA - Full Load Amps

HACR – Heating, Air Conditioning, Refrigeration

LRA – Locked Rotor Amps
NEC – National Electrical Code
RLA – Rated Load Amps (compressor)

NOTE: Control circuit is 24–V on all units and requires external power source. Copper wire must be used from service disconnect to unit. All motors/compressors contain internal overload protection.

Complies with 2007 requirements of ASHRAE Standards 90.1

A-WEIGHTED SOUND POWER (dBA)

Hait Cine	Standard		Typical	Octave Band	Spectrum (dBA) (without tone	adjustment)	
Unit Size	Rating (dBA)	125	250	500	1000	2000	4000	8000
018-31	68	52.0	57.5	60.5	63.5	60.5	57.5	46.5
024-32	69	57.5	61.5	63.0	61.0	60.0	56.0	45.0
030-31	72	56.5	63.0	65.0	66.0	64.0	62.5	57.0
036-31	72	65.0	61.5	63.5	65.0	64.5	61.0	54.5
048-32	72	58.5	61.0	64.0	67.5	66.0	64.0	57.0
060-32	72	63.0	61.5	64.0	66.5	66.0	64.5	55.5

NOTE: Tested in accordance with AHRI Standard 270-08 (not listed in AHRI).

CHARGING SUBCOOLING (TXV-TYPE EXPANSION DEVICE)

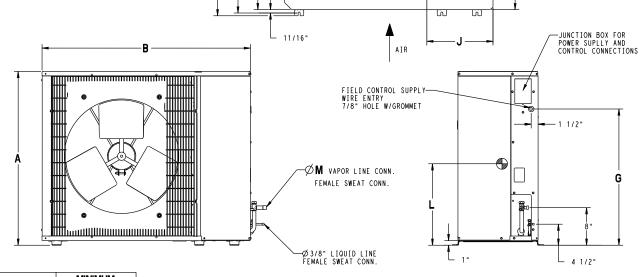
UNIT SIZE-VOLTAGE, SERIES	REQUIRED SUBCOOLING °F (°C)
018-31	12 (6.7)
024-32	12 (6.7)
030-31	12 (6.7)
036-31	12 (6.7)
048-32	12 (6.7)
060-32	12 (6.7)

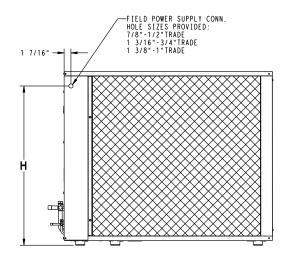
DIMENSIONS - ENGLISH

UNIT	SERIES			RICAL ERIST		A	В	С	D	E	F	G	Н	J	K	L	M	N	Р	OPERATING WEIGHT(lbs)	SHIPPING WEIGHT(lbs)	SHIPPING DIMENSIONS (L x W x H)
38HDR018	1	Х	0	0	0	25 1/8"	36 15/16"	14 9/16"	16"	23 7/16"	17 3/16"	17 1/8"	22"	13"	6 5/8"	11 1/4"	5/8"	2 15/16"	6"	155	171	42 9/10" X 18" X 28 1/10"
38HDR024	1,2	Х	0	0	0	31 1/8"	36 15/16"	14 9/16"	16"	23 7/16"	17 3/16"	23 1/8"	28"	14"	6 3/4"	11 5/8"	5/8"	2 15/16"	6"	180	198	42 9/10" X 18" X 34 1/10"
38HDR030	1	X	0	0	0	37 3/16"	44 9/16"	17 1/16"	18 7/16"	30 1/2"	19 5/8"	29 3/16"	34 1/16"	13 11/16"	8 1/8"	15 7/8"	3/4"	3 7/16"	6 1/2"	200	223	50 1/2" X 20 1/2" X 40 2/10"
38HDR036	1	Х	0	χ	χ	37 3/16"	44 9/16"	17 1/16"	18 7/16"	30 1/2"	19 5/8"	29 3/16"	34 1/16"	13 11/16"	8 1/8"	15 7/8"	3/4"	3 7/16"	6 1/2"	218	240	50 1/2" X 20 1/2" X 40 2/10"
38HDR048	1,2	X	0	Х	Χ	43 3/16"	44 9/16"	17 1/16"	18 7/16"	30 1/2"	19 5/8"	35 3/16"	40 1/16"	14 1/2"	8 1/2"	18 7/8"	7/8"	3 7/16"	6 1/2"	284	309	50 1/2" X 20 1/2" X 46 2/10"
38HDR060	1,2	Х	0	Х	χ	43 3/16"	44 9/16"	17 1/16"	18 7/16"	30 1/2"	19 5/8"	35 3/16"	40 1/16"	14 1/2"	8 1/2"	18 7/8"	7/8"	3 7/16"	6 1/2"	294	319	50 1/2" X 20 1/2" X 46 2/10"
				0																	-	

208-230-1-60 230-1-60 208/230-3-60 460-3-60

X = YES O = NO


AIR P - 2 1/2"


7 1/2"

4 3/16"

1. REQUIRED CLEARANCES: WITH COIL FACING WALL: ALLOW 6" MIN CLEARANCE ON COIL SIDE AND COIL END AND 36" MIN CLEARANCE ON COMPRESSOR END AND FAN SIDE. WITH FAN FACING WALL: ALLOW 8" MIN CLEARANCE ON FAN SIDE AND COIL END AND 36" MIN CLEARANCE ON COMPRESSOR END AND COIL SIDE. WITH MULTI UNIT APPLICATION; ARRANGE UNITS SO DISCHARGE OF ONE DOES NOT ENTER INLET OF ANOTHER.

- 2. MINIMUM OUTDOOR OPERATING AMBIENT IN COOLING MODE IS 55°F, MAX. 125°F.
- SERIES DESIGNATION IS THE 13TH POSITION OF THE UNIT MODEL NUMBER.
- 4. CENTER OF GRAVITY
- 5. ALL DIMENSIONS ARE IN "INCHES" UNLESS NOTED.

UNIT SIZE	MINIMUM MOUNTING PAD DIMENSIONS
18,24	23" X 42"
30,36,48,60	24" X 50"

00

DIMENSIONS - SI

18,24 584.2 X 1066.8 30,36,48,60 609.6 X 1270.0

UNIT	SERIES	CHARAC	TRICA		A	В	С	D	E	F	G	Н	J	K	L	М	N	Р	OPERATING WEIGHT(KG)		SHI DIMENSIONS	PPING (L x W x
38HDR018	1	X O		0	638.2	938.2	369.9	406.4	595.3	436.6	435.0	558.8	330.2	168.3	285.8	15.9	74.6	152.4	70.4	77.7		157.7 X 714.3
38HDR024		X O		0	790.6	938.2	369.9	406.4	595.3	436.6	587.4	711.2	355.6	171.5	295.3	15.9	74.6	152.4	81.8	90.0		157.7 X 866.7
38HDR030 38HDR036		X 0		0 X	944.6	1131.9	433.4 433.4	468.3 468.3	774.7 774.7	498.5 498.5	741.4	865.2 865.2	347.7	206.4	403.2	19.0	87.3 87.3	165.1	90.9	101.4		20.7 X 1020.7 20.7 X 1020.7
38HDR048		X O		X	1097.0	1131.9	433.4	468.3	774.7	498.5	893.8	1017.6	368.3	215.9	479.4	22.2	87.3	165.1	129.0	140.4		20.7 X 1020.7
38HDR060		Х О		χ	1097.0	1131.9	433.4	468.3	774.7	498.5	893.8	1017.6	368.3	215.9	479.4	22.2	87.3	165.1	133.6	145.0		20.7 X 1173.1
		208-230-1-60	208/230-3-60	460-3-60	X = YI O = N4						AIR	1	⊢- P				ON C CLEA ON C ARRA 2. MINI	OMPRESSOF RANCE ON OMPRESSOF NGE UNITS MUM OUTDO	ARANCES: WITH C COIL SIDE AND REND AND FAN S FAN SIDE AND C REND AND COIL S SO DISCHARGE OOR OPERATING A	SIDE. WITH FAN COIL END AND 9 SIDE. WITH M OF ONE DOES N	FACING WALL; 14.4 MIN CLEAR ULTI UNIT APPL OT ENTER INLET	ALLOW 203,2 M ANCE ICATION:
					l						_						MODE	IS 12.8°	C, MAX. 51.7°C			
									-		E	-	N 					ES DESIGN MODEL NU	NATION IS THE 1	3TH POSITION	OF THE	
												190.5			- 63.5				_			
																	4. CENT	ER OF GRA	VALLA 🗬			
							1 7	1							4		5. ALL	DIMENSION	IS ARE IN "MM"	${\tt UNLESS\ NOTED}.$		
														8 —1-	+							
													•	1	L 106.4							
							F D	Ċ				9 —		<u> </u>								
												Ī		Ţ								
														Ķ								
							. ↓ ↓	. <u> </u>	<u> </u>													
							1 -		 Ы		A	[6]	[2]								R SUPPLY CONN.	
								L	17.5		•								/	HOLE SIZES	PROVIDED:	
											AIR	-	-J	/	-JUNCTION	BOX FOR	}			22.22 - 12 30.16 - 19	.70 TRADE 05 TRADE	
	ŀ	•			В ——		-				ı			/	POWER SU CONTROL			36.5	- - /	34.92 - 25	.40 TRADE	
																		00.0				
	T	· I IIIIIIIIIIIII	ıımının		mmimm		•					6	Î,						TIVX	XXXXXX	XXXXXXX	XXXI
					- H	HHHH	,			IELD CONTRO	OL SUPPLY—			/.				1	→° XX	*****	****	
		•			┈ ●∰	HHHHII				IRE ENTRY 2.22 HOLE V	W / C DOMMET									****	$\times\!\!\times\!\!\times\!\!\times$	XXX
		 /	1		/ \	 	l		2	Z.ZZ HULE I	M/UNUMME I			•							>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	
			Ŋ		₩	 							-		- 38.1					$\times\!\!\times\!\!\times\!\!\times\!\!\times$	$\times\!\!\times\!\!\times\!\!\times$	
		 		11 //	J 🎹								Ĺ							$\times\!\!\times\!\!\times\!\!\times$	$\times\!\!\times\!\!\times\!\!\times$	XXX
	1	 	\wedge \nearrow		$/\!$	 	ĺ						ľ							*****	*****	
	À				∕ }}						_							H		$\times\!\!\times\!\!\times\!\!\times\!\!\times$	$\times\!\!\times\!\!\times\!\!\times$	
		 	4	#Ø	Щ	<u> </u>		/- Ø	M VAPOR	LINE CONN.		† I		\neg \Box		G		Ÿ		$\times\!\!\times\!\!\times\!\!\times$	$\times\!\!\times\!\!\times\!\!\times$	XXX
					L L	ЩЩЦ			FEMALE SW	EAT CONN.			Į.	_		١				****	****	
			1	`	$\searrow \parallel$		_							<u> </u>					_1	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	
			*		<i></i> ~_∭		₽				L	,		8					-	****	****	
					•		#	Δ.							203.	,				****	****	
	1 1	للنسىللل لا .	ЩШШ	шшшш	шттЩ	шШЦ.		1						a 1.	Î "Î"	`		1	4 TRXX	^	^XXXXXX	
											=	' -			+ +			1				
								\	59.53 LIQU	ID LINE		25	,		114.3							
			MINIMU	М				F	EMALE SWEA	T CONN.		L 25.	4		- 114.3	,						
l u	NIT SIZ		NTING																			
			VIENSIC																			
-	18 24		2 Y 10		+																	

TESTED AHRI COMBINATION RATINGS*

NOTE: Ratings contained in this document are subject to change at any time.

For AHRI ratings certificates, please refer to the AHRI directory <u>www.ahridirectory.org</u> Additional ratings and system combinations can be accessed via the Carrier database at: http://cactaxcredits.info/carrier-ratings/ac_ratings_srch.php

Equipment performance calculator can be accessed at: http://rpmob.wrightsoft.com/

Model Number	Indoor Model	Furnace Model	Capacity	EER	SEER
38HDR024-32	CNPV*2414A**+TDR		23,400	11.0	13.0
38HDR030-31	CNPV*3014A**+TDR		28,000	11.0	13.0
38HDR036-31	CNPV*4221A**+TDR		33,400	11.0	13.0
38HDR036-51	CNPV*4221A**+TDR		33,400	11.0	13.0
38HDR036-61	CNPV*4221A**+TDR		33,400	11.0	13.0
38HDR048-32	CNPV*4821A**+TDR		47,000	11.0	13.0
38HDR048-52	CNPV*4821A**+TDR		47,000	11.0	13.0
38HDR048-62	CNPV*4821A**+TDR		47,000	11.0	13.0
38HDR060-32	CNPV*6024A**+TDR		57,000	11.0	13.0
38HDR060-52	CNPV*6024A**+TDR		57,000	11.0	13.0
38HDR060-62	CNPV*6024A**+TDR		57,000	11.0	13.0

^{*} AHRI = Air Conditioning, Heating & Refrigeration Institute

EER — Energy Efficiency Ratio

SEER — Seasonal Energy Efficiency Ratio

TDR —Time—Delay Relay. In most cases, only 1 method should be used to achieve TDR function. Using more than 1 method in a system may cause degradation in performance. Use either the accessory Time—Delay Relay KAATD0101TDR or a furnace equipped with TDR. Most Carrier furnaces are equipped with TDR.

NOTES:

- 1. Ratings are net values reflecting the effects of circulating fan motor heat. Supplemental electric heat is not included.
- 2. Tested outdoor/indoor combinations have been tested in accordance with DOE test procedures for central air conditioners. Ratings for other combinations are determined under DOE computer simulation procedures.
- 3. Determine actual CFM values obtainable for your system by referring to fan performance data in fan coil or furnace coil literature.
- 4. Do not apply with capillary tube coils as performance and reliability are significantly affected.

DETAILED COOLING CAPACITIES*

EVADOD	ATOR AIR							С	ONDENSER	ENTERING A	IR TEMPERA	TURES °F (°	C)						
EVAPOR	AIOR AIR		75 (23.9)			85 (29.4)			95 (35)			105 (40.6)			115 (46.1)			125 (51.7)	
CFM	EWB	Capacity	/ MBtuh†	Total System	Capacity	/ MBtuh†	Total System	Capacity	MBtuh†	Total System	Capacity	y MBtuh†	Total	Capacity	/ MBtuh†	Total System	Capacity	/ MBtuh†	Total System
CFIVI	°F (°C)	Total	Total Sens‡ KW** Total Sens‡ KW** Total Sens	Sens‡	KW**	Total	Sens‡	System KW**	Total	Sens‡	KW**	Total	Sens‡	KW**					
							38HDR	018 Outdoor	Section With	CNPV*1814	A** Indoor S	ection							
	72 (22.2)	20.28	9.40	1.22	19.31	9.07	1.36	18.30	8.73	1.52	17.26	8.38	1.69	16.14	8.01	1.87	14.90	7.61	2.07
525	67(19.4)	18.53	11.50	1.22	17.65	11.17	1.36	16.72	10.82	1.52	15.76	10.47	1.69	14.72	10.09	1.87	13.59	9.69	2.07
323	62 (16.7)	16.93	13.58	1.23	16.13	13.24	1.37	15.29	12.89	1.52	14.43	12.52	1.69	13.57	13.57	1.87	12.71	12.71	2.07
	57 (13.9)	16.35	16.35	1.23	15.72	15.72	1.37	15.05	15.05	1.52	14.34	14.34	1.69	13.57	13.57	1.87	12.71	12.71	2.07
	72(22.2)	20.65	9.87	1.25	19.63	9.53	1.39	18.59	9.18	1.54	17.50	8.83	1.71	16.34	8.46	1.90	15.05	8.05	2.10
600	67(19.4)	18.90	12.25	1.25	17.97	11.91	1.39	17.00	11.56	1.55	16.00	11.20	1.72	14.93	10.82	1.90	13.75	10.41	2.10
000	62 (16.7)	17.33	14.61	1.25	16.51	14.26	1.39	15.67	15.61	1.55	14.91	14.91	1.72	14.08	14.08	1.90	13.16	13.16	2.10
	57 (13.9)	17.07	17.07	1.25	16.39	16.39	1.39	15.67	15.67	1.55	14.91	14.91	1.72	14.08	14.08	1.90	13.16	13.16	2.10
	72 (22.2)	20.91	10.30	1.27	19.86	9.96	1.41	18.78	9.61	1.57	17.67	9.26	1.74	16.47	8.88	1.93	15.15	8.46	2.13
675	67 (19.4)	19.16	12.97	1.27	18.20	12.62	1.42	17.20	12.27	1.57	16.18	11.90	1.74	15.07	11.52	1.93	13.87	11.09	2.13
0/3	62 (16.7)	17.70	17.52	1.28	16.94	16.94	1.42	16.17	16.17	1.57	15.37	15.37	1.74	14.49	14.49	1.93	13.52	13.52	2.13
	57(13.9)	17.67	17.67	1.28	16.94	16.94	1.42	16.17	16.17	1.57	15.37	15.37	1.74	14.49	14.49	1.93	13.52	13.52	2.13

EVADOR	RATOR AIR							(CONDENSER	R ENTERING A	IR TEMPER	ATURES °F ((°C)						
LVAFOR	IATON AIN		75 (23.9)			85 (29.4)			95 (35)			105 (40.6))		115 (46.1)			125 (51.7)	,
CFM	EWB	Capacity	y MBtuh†	Total System	Capacity	/ MBtuh†	Total System	Capacit	y MBtuh†	Total System	Capacit	y MBtuh†	Total System	Capacit	y MBtuh†	Total System	Capacit	y MBtuh†	Total System
OI IVI	°F (°C)	Total	Sens‡	KW**	Total	Sens‡	KW**	Total Sens‡	Sens‡	KW**	Total	Sens‡	KW**	Total	Sens‡	KW**	Total	Sens‡	KW**
							38HDF	R024 Outdoo	or Section W	ith CNPV*2414	A** Indoor	Section							
	72 (22.2)	28.11	13.59	1.69	26.70	13.09	1.89	25.17	12.55	2.10	23.54	11.98	2.33	21.76	11.38	2.58	19.78	10.71	2.84
700	67(19.4)	25.68	16.61	1.68	24.41	16.11	1.87	23.04	15.58	2.09	21.58	15.02	2.32	19.98	14.42	2.57	18.21	13.77	2.83
700	62 (16.7)	23.47	19.61	1.67	22.34	19.11	1.86	21.13	18.58	2.08	19.86	18.01	2.31	18.57	18.57	2.55	17.23	17.23	2.82
	57 (13.9)	22.67	22.67	1.67	21.77	21.77	1.86	20.81	20.81	2.07	19.75	19.75	2.31	18.57	18.57	2.55	17.23	17.23	2.82
	72(22.2)	28.62	14.25	1.73	27.14	13.73	1.93	25.53	13.18	2.14	23.83	12.61	2.37	21.98	11.99	2.62	19.92	11.32	2.88
800	67(19.4)	26.18	17.67	1.72	24.84	17.16	1.91	23.40	16.61	2.13	21.88	16.05	2.36	20.22	15.43	2.61	18.38	14.76	2.87
800	62 (16.7)	24.02	21.07	1.71	22.85	20.54	1.90	21.63	21.51	2.12	20.48	20.48	2.35	19.20	19.20	2.60	17.75	17.75	2.86
	57 (13.9)	23.64	23.64	1.71	22.68	22.68	1.90	21.62	21.62	2.12	20.48	20.48	2.35	19.20	19.20	2.60	17.75	17.75	2.86
	72 (22.2)	28.99	14.87	1.77	27.45	14.34	1.96	25.78	13.78	2.18	24.03	13.20	2.41	22.12	12.57	2.66	20.00	11.89	2.92
900	67 (19.4)	26.54	18.68	1.76	25.15	18.16	1.95	23.66	17.61	2.17	22.09	17.03	2.40	20.38	16.40	2.65	18.50	15.71	2.91
330	62 (16.7)	24.51	22.41	1.75	23.41	23.41	1.94	22.28	22.28	2.16	21.06	21.06	2.39	19.70	19.70	2.64	18.15	18.15	2.91
	57(13.9)	24.45	24.45	1.75	23.41	23.41	1.94	22.28	22.28	2.16	21.06	21.06	2.39	19.70	19.70	2.64	18.15	18.15	2.91

See notes on pg. 13

DETAILED COOLING CAPACITIES* (CONT.)

EVADOR	RATOR AIR							(CONDENSER	ENTERING A	IR TEMPER	ATURES °F (°C)						
EVAPOR	RAI OR AIR		75 (23.9)			85 (29.4)			95 (35)			105 (40.6)			115 (46.1)			125 (51.7)	
СЕМ	EWB	Capacit	y MBtuh†	Total	Capacit	y MBtuh†	Total	Capacit	y MBtuh†	Total	Capacit	y MBtuh†	Total	Capacit	y MBtuh†	Total	Capacit	y MBtuh†	Total System
CFIVI	°F (°C)	Total	Sens‡	System KW**	Total	Sens‡	System KW**	Total	Sens‡	System KW**	Total	Sens‡	System KW**	Total	Sens‡	System KW**	Total	Sens‡	KW**
		38HDR030 Outdoor Section With CNPV*30										Section							
	72 (22.2)	33.74	16.03	2.06	32.29	15.52	2.29	30.76	14.99	2.54	29.12	14.43	2.81	27.36	13.84	3.11	25.42	13.19	3.44
875	67(19.4)	30.65	19.58	2.06	29.32	19.06	2.29	27.90	18.51	2.54	26.39	17.94	2.81	24.76	17.34	3.11	22.97	16.69	3.43
675	62 (16.7)	28.07	23.01	2.07	26.73	22.59	2.29	25.47	22.03	2.54	24.10	21.45	2.81	22.76	22.72	3.11	21.45	21.45	3.43
	57 (13.9)	27.14	27.14	2.07	26.16	26.16	2.29	25.11	25.11	2.53	24.01	24.01	2.80	22.78	22.78	3.11	21.43	21.43	3.43
	72(22.2)	34.29	16.79	2.11	32.87	16.29	2.34	31.28	15.69	2.58	29.58	15.18	2.86	27.57	14.54	3.17	25.64	13.91	3.49
1000	67(19.4)	31.27	20.81	2.11	29.84	20.29	2.34	28.40	19.75	2.58	26.82	19.17	2.86	24.99	18.52	3.16	23.21	17.87	3.49
1000	62 (16.7)	28.72	24.92	2.11	27.38	24.26	2.34	26.11	26.11	2.58	24.94	24.94	2.85	23.54	23.54	3.16	22.22	22.22	3.48
	57 (13.9)	28.28	28.28	2.11	27.23	27.23	2.34	26.13	26.13	2.58	24.94	24.94	2.85	23.54	23.54	3.16	22.22	22.22	3.48
	72 (22.2)	34.76	17.52	2.16	33.30	17.00	2.39	31.65	16.46	2.63	29.90	15.89	2.91	28.03	15.27	3.21	25.95	14.60	3.53
1125	67 (19.4)	31.86	21.48	2.16	30.25	21.46	2.38	28.76	20.92	2.63	27.14	20.32	2.90	25.39	19.69	3.21	23.44	18.98	3.54
1125	62 (16.7)	29.27	29.04	2.16	28.12	28.12	2.38	26.98	26.98	2.63	25.71	25.71	2.90	24.35	24.35	3.20	22.84	22.84	3.53
	57(13.9)	29.23	29.23	2.16	28.13	28.13	2.38	26.99	26.99	2.63	25.71	25.71	2.90	24.23	24.23	3.21	22.85	22.85	3.53

EVAROR	RATOR AIR							-	CONDENSER	ENTERING A	IR TEMPER	ATURES °F ((°C)						
EVAPOR	AION AIN		75 (23.9)			85 (29.4)			95 (35)			105 (40.6))		115 (46.1)	1		125 (51.7)	
CFM	EWB	Capacity	y MBtuh†	Total System	Capacity	/ MBtuh†	Total System	Capacit	y MBtuh†	Total System	Capacit	y MBtuh†	Total System	Capacit	y MBtuh†	Total System	Capacit	y MBtuh†	Total System
CIM	°F (°C)	Total	Sens‡	KW**	Total	Sens‡	KW**	Total	Sens‡	KW**	Total	Sens‡	KW**	Total	Sens‡	KW**	Total	Sens‡	KW**
							38HDF	R036 Outdoo	or Section W	th CNPV*4221	A** Indoor	Section							
	72 (22.2)	39.85	18.85	2.42	38.03	18.23	2.68	36.08	17.58	2.98	33.99	16.89	3.30	31.72	16.14	3.65	29.20	15.33	4.03
1050	67(19.4)	36.33	23.19	2.42	34.67	22.57	2.68	32.91	21.91	2.98	31.02	21.23	3.30	28.99	20.49	3.65	26.73	19.69	4.04
1030	62 (16.7)	33.23	27.51	2.42	31.75	26.88	2.68	30.20	26.20	2.98	28.60	28.45	3.30	27.06	27.06	3.65	25.34	25.34	4.03
	57 (13.9)	32.46	32.46	2.42	31.26	31.26	2.68	29.98	29.98	2.98	28.59	28.59	3.30	27.06	27.06	3.65	25.34	25.34	4.03
	72(22.2)	40.51	19.77	2.48	38.61	19.14	2.74	36.57	18.47	3.04	34.40	17.77	3.36	32.04	17.01	3.71	29.42	16.18	4.09
1200	67(19.4)	36.97	24.67	2.48	35.23	24.04	2.74	33.40	23.38	3.04	31.45	22.68	3.36	29.33	21.93	3.71	27.00	21.10	4.09
1200	62 (16.7)	34.01	29.52	2.48	32.53	32.23	2.74	31.11	31.11	3.04	29.61	29.61	3.36	27.97	27.97	3.71	26.12	26.12	4.09
	57 (13.9)	33.78	33.78	2.48	32.49	32.49	2.74	31.11	31.11	3.04	29.62	29.62	3.36	27.97	27.97	3.71	26.12	26.12	4.09
	72 (22.2)	40.99	20.64	2.54	39.02	19.99	2.80	36.91	19.31	3.09	34.67	18.60	3.42	32.24	17.83	3.77	29.54	16.99	4.15
1350	67 (19.4)	37.43	26.09	2.54	35.65	25.45	2.80	33.76	24.78	3.10	31.75	24.06	3.42	29.58	23.29	3.77	27.20	22.42	4.15
1000	62 (16.7)	34.86	34.86	2.54	33.49	33.49	2.80	32.02	32.02	3.10	30.44	30.44	3.42	28.70	28.70	3.77	26.73	26.73	4.15
	57(13.9)	34.86	34.86	2.54	33.49	33.49	2.80	32.03	32.03	3.10	30.44	30.44	3.42	28.70	28.70	3.77	26.73	26.73	4.15

See notes on pg. 13

DETAILED COOLING CAPACITIES* (CONT.)

FVADO	DATOR AIR								CONDENSER	ENTERING A	IR TEMPER	ATURES °F ((°C)						
EVAPOI	RATOR AIR		75 (23.9)			85 (29.4)			95 (35)			105 (40.6))		115 (46.1)			125 (51.7)	
CFM	EWB	Capacit	y MBtuh†	Total System	Capacity	y MBtuh†	Total	Capacit	y MBtuh†	Total System	Capacit	y MBtuh†	Total System	Capacit	y MBtuh†	Total System	Capacit	y MBtuh†	Total System
CFIVI	°F (°C)	Total	Sens‡	KW**	Total	Sens‡	System KW**	Total	Sens‡	KW**	Total	Sens‡	KW**	Total	Sens‡	KW**	Total	Sens‡	KW**
							38HDI	R048 Outdoo	or Section W	th CNPV*4821	A** Indoor	Section							
	72 (22.2)	57.22	27.09	3.31	54.16	26.03	3.74	50.83	24.90	4.20	47.23	23.69	4.69	43.24	22.38	5.21	38.87	20.99	5.76
1460	67(19.4)	52.21	33.21	3.33	49.49	32.17	3.76	46.57	31.08	4.22	43.40	29.91	4.71	39.95	28.66	5.23	36.03	27.26	5.77
1400	62 (16.7)	47.74	39.31	3.35	45.37	38.29	3.78	42.88	37.19	4.23	40.25	39.91	4.72	37.64	37.64	5.23	34.63	34.63	5.78
	57 (13.9)	46.44	46.44	3.36	44.53	44.53	3.78	42.48	42.48	4.23	40.21	40.21	4.72	37.65	37.65	5.23	34.63	34.63	5.78
	72(22.2)	58.13	28.26	3.37	54.91	27.17	3.81	51.42	26.01	4.27	47.67	24.78	4.76	43.52	23.45	5.28	39.26	22.10	5.84
1650	67(19.4)	53.07	35.09	3.40	50.21	34.03	3.83	47.16	32.91	4.29	43.87	31.73	4.78	40.28	30.44	5.30	36.23	28.99	5.85
1030	62 (16.7)	48.75	41.89	3.42	46.32	40.79	3.85	43.85	43.85	4.30	41.42	41.42	4.79	38.64	38.64	5.31	35.37	35.37	5.85
	57 (13.9)	48.17	48.17	3.43	46.11	46.11	3.85	43.88	43.88	4.30	41.42	41.42	4.79	38.64	38.64	5.31	35.37	35.37	5.85
	72 (22.2)	58.83	29.41	3.45	55.48	28.31	3.88	51.86	27.12	4.35	47.97	25.87	4.84	43.73	24.52	5.36	39.89	23.26	5.92
1850	67 (19.4)	53.74	36.97	3.48	50.78	35.90	3.91	47.62	34.76	4.37	44.22	33.55	4.86	40.51	32.22	5.38	36.39	30.70	5.93
1850	62 (16.7)	49.74	44.35	3.50	47.48	47.48	3.92	45.09	45.09	4.38	42.44	42.44	4.87	39.46	39.46	5.38	35.96	35.96	5.93
	57(13.9)	49.69	49.69	3.50	47.49	47.49	3.92	45.09	45.09	4.38	42.45	42.45	4.87	39.46	39.46	5.38	35.97	35.97	5.93

EVADO	RATOR AIR							(CONDENSER	ENTERING A	IR TEMPER	ATURES °F (°C)						
EVAPOI	naion ain		75 (23.9)			85 (29.4)			95 (35)			105 (40.6)	1		115 (46.1)	1		125 (51.7)	
CFM	EWB	Capacit	y MBtuh†	Total System	Capacity	y MBtuh†	Total System	Capacit	y MBtuh†	Total System	Capacit	y MBtuh†	Total System	Capacit	y MBtuh†	Total System	Capacit	y MBtuh†	Total System
CIW	°F (°C)	Total	Sens‡	KW**	Total	Sens‡	KW**	Total	Sens‡	KW**	Total	Sens‡	KW**	Total	Sens‡	KW**	Total	Sens‡	KW**
							38HDF	R060 Outdoo	or Section Wi	th CNPV*6024	A** Indoor	Section							
	72 (22.2)	68.88	33.36	4.20	65.13	32.05	4.64	60.97	30.62	5.12	56.47	29.10	5.64	51.66	27.52	6.20	46.31	25.80	6.80
1750	67(19.4)	63.28	41.18	4.15	59.98	39.91	4.59	56.34	38.52	5.08	52.38	37.05	5.60	48.00	35.44	6.17	43.23	33.69	6.77
1750	62 (16.7)	58.24	48.95	4.11	55.37	47.69	4.55	52.27	46.30	5.04	48.91	48.85	5.57	45.63	45.63	6.15	41.69	41.69	6.76
	57 (13.9)	56.77	56.77	4.09	54.45	54.45	4.54	51.86	51.86	5.03	48.95	48.95	5.57	45.63	45.63	6.15	41.69	41.69	6.76
	72(22.2)	69.89	34.93	4.31	65.94	33.59	4.75	61.58	32.12	5.23	56.96	30.59	5.74	52.01	29.02	6.31	47.30	27.45	6.92
2000	67(19.4)	64.28	43.75	4.26	60.81	42.45	4.70	57.00	41.04	5.18	52.88	39.53	5.71	48.32	37.86	6.27	43.82	36.17	6.88
2000	62 (16.7)	59.48	52.47	4.22	56.55	51.08	4.66	53.58	53.58	5.15	50.40	50.40	5.68	46.78	46.78	6.26	42.62	42.62	6.87
	57 (13.9)	58.96	58.96	4.21	56.42	56.42	4.66	53.58	53.58	5.15	50.40	50.40	5.68	46.78	46.78	6.26	42.60	42.60	6.87
	72 (22.2)	70.60	36.41	4.42	66.50	35.04	4.86	61.97	33.55	5.33	57.25	32.02	5.85	52.14	30.44	6.41	48.41	29.01	7.04
2250	67 (19.4)	65.01	46.21	4.37	61.41	44.89	4.81	57.46	43.44	5.29	53.20	41.88	5.81	48.56	40.17	6.37	44.28	38.42	6.99
2230	62 (16.7)	60.67	60.67	4.33	58.00	58.00	4.78	54.94	54.94	5.26	51.52	51.52	5.79	47.63	47.63	6.36	43.18	43.18	6.98
	57(13.9)	60.73	60.73	4.33	58.00	58.00	4.78	54.94	54.94	5.26	51.52	51.52	5.79	47.63	47.63	6.36	43.14	43.14	6.98

NOTE: When the required data fall between the published data, interpolation may be performed. Extrapolation is not an acceptable practice.

- * Detailed cooling capacities are based on indoor and outdoor unit at the same elevation per the latest edition of AHRI standard 210/240. If additional tubing length and/or indoor unit is located above outdoor unit, a slight variation in capacity may occur.
- † Total and sensible capacities are net capacities. Blower motor heat has been subtracted.
- ‡ Sensible capacities shown are based on 80° F (27° C) entering air at the indoor coil. For sensible capacities at other than 80° F (27° C), deduct 835 Btuh (245 kW) per 1000 CFM (480 L/S) of indoor coil air per degree above 80° F (27° C), or add 835 Btuh (245 kW) per 1000 CFM (480 L/S) of indoor coil air per degree above 80° F (27° C). When the required data fall between the published data, interpolation may be performed.
- ** Total system kW is total of indoor and outdoor unit kilowatts.

CONDENSER ONLY RATINGS*

°F (°C)		55 (12.8)	65 (18.3)	75 (23.9)	R ENTERING AI 85 (29.4)	95 (35)	105 (40.6)	115 (46.1)	125 (51.7
()		22 (12.2)	22 (1212)		018-31	22 (22)	(1010)	(1211)	(
	TCG	16.20	15.30	14.30	13.40	12.40	11.40	10.30	9.20
30 (-1.6)	SDT	67.40	77.00	86.50	96.00	105.50	114.90	124.40	133.70
	KW	0.86	0.98	1.11	1.26	1.42	1.59	1.77	1.96
25 (4.7)	TCG SDT	17.90 68.50	16.90 78.00	15.90 87.50	14.80 97.00	13.80 106.40	12.70 115.80	11.60 125.20	10.40 134.50
35 (1.7)	KW	0.86	0.98	1.11	1.26	1.42	1.59	1.78	1.98
	TCG	19.70	18.60	17.50	16.40	15.20	14.10	12.90	11.60
40 (4.4)	SDT	69.70	79.10	88.60	98.00	107.40	116.80	126.10	135.30
(,	KW	0.85	0.97	1.11	1.26	1.42	1.60	1.79	1.99
	TCG	21.60	20.40	19.20	18.00	16.80	15.50	14.20	12.80
45 (7.2)	SDT	70.90	80.30	89.70	99.00	108.40	117.70	127.00	136.10
	KW	0.85	0.97	1.11	1.26	1.42	1.60	1.79	2.00
	TCG	23.60	22.30	21.10	19.70	18.40	17.00	15.60	14.10
50 (10)	SDT	72.20	81.50	90.80	100.10	109.40	118.60	127.80	136.90
	KW TCG	0.85	0.97	1.11	1.26	1.42	1.60 18.60	1.79 17.00	2.00
55 (12 8)	SDT	25.70 73.50	24.30 82.70	22.90 92.00	21.50 101.20	20.00 110.40	119.60	128.70	15.40 137.70
55 (12.8)	KW	0.85	0.97	1.10	1.25	1.42	1.60	1.79	2.00
	rvv	0.03	0.97		1.23	1.42	1.00	1.79	2.00
	TCG	22.10	20.90	19.60	18.30	16.90	15.50	14.00	12.40
30 (-1.6)	SDT	69.00	78.50	88.00	97.40	106.80	116.10	125.30	134.50
` ′	KW	1.08	1.24	1.41	1.60	1.80	2.02	2.25	2.48
	TCG	24.30	23.00	21.70	20.30	18.80	17.20	15.60	13.80
35 (1.7)	SDT	70.30	79.80	89.20	98.60	107.90	117.10	126.30	135.40
	KW	1.09	1.24	1.42	1.61	1.82	2.04	2.28	2.52
	TCG	26.80	25.30	23.90	22.30	20.70	19.00	17.20	15.30
40 (4.4)	SDT	71.70	81.10	90.50	99.80	109.10	118.20	127.30	136.30
	KW	1.10	1.26	1.43	1.62	1.83	2.06	2.30	2.55
4= (= 0)	TCG	29.40	27.80	26.20	24.50	22.70	20.90	18.90	16.70
45 (7.2)	SDT KW	73.20	82.60 1.27	91.90	101.10	110.20	119.30 2.08	128.30 2.32	137.10
	TCG	1.11 32.10	30.40	1.44 28.60	1.64 26.80	1.85 24.80	2.08	20.50	2.57 18.10
50 (10)	SDT	74.80	84.10	93.30	102.40	111.50	120.40	129.20	137.90
30 (10)	KW	1.12	1.28	1.46	1.65	1.86	2.09	2.33	2.59
	TCG	35.00	33.10	31.20	29.10	26.90	24.60	22.20	19.50
55 (12.8)	SDT	76.40	85.60	94.70	103.80	112.70	121.50	130.20	138.60
, ,	KW	1.13	1.29	1.47	1.66	1.88	2.10	2.35	2.60
	TCG	26.20	24.70	38HDR 23.20	21.70	20.10	18.40	16.80	15.30
30 (-1.6)	SDT	72.00	82.30	92.90	103.80	115.00	126.90	139.00	148.90
- 1.0)	KW	1.30	1.48	1.69	1.92	2.19	2.50	2.84	3.12
	TCG	28.80	27.30	25.70	24.10	22.40	20.60	18.90	17.40
35 (1.7)	SDT	73.10	83.50	94.00	104.80	116.10	127.70	139.50	149.30
	KW	1.30	1.49	1.69	1.93	2.21	2.52	2.86	3.15
	TCG	31.70	30.10	28.40	26.60	24.80	23.00	21.20	19.60
40 (4.4)	SDT	74.30	84.70	95.20	105.90	117.10	128.60	140.00	149.70
	KW	1.31	1.49	1.70	1.94	2.22	2.53	2.87	3.18
()	TCG	34.80	33.10	31.20	29.40	27.40	25.50	23.60	21.90
45 (7.2)	SDT	75.60	85.90	96.40	107.10	118.10	129.40	140.60	150.10
	KW TCG	1.31 38.20	1.50 36.20	1.71 34.30	1.95 32.30	2.22 30.30	2.54 28.20	2.88 26.20	3.19 24.40
50 (10)	SDT	76.90	87.20	97.60	108.20	119.20	130.30	141.10	150.50
30 (10)	KW	1.32	1.50	1.71	1.95	2.23	2.55	2.89	3.20
	TCG	41.70	39.70	37.60	35.50	33.30	31.10	29.00	27.10
55 (12.8)	SDT	78.30	88.50	98.90	109.40	120.20	131.20	141.80	150.90
(12.13)	KW	1.32	1.51	1.72	1.96	2.24	2.55	2.89	3.20
					036-31				
	TCG	30.10	28.50	26.80	25.10	23.30	21.50	19.60	17.60
30 (-1.6)	SDT	70.90	80.80	90.90	101.00	111.20	121.60	132.30	143.30
	KW TCG	1.50 33.20	1.71 31.50	1.94 29.70	2.20 27.80	2.50 25.90	2.83 24.00	3.19 21.90	3.58 19.90
35 (1.7)	SDT	72.00	82.00	92.00	102.10	112.30	122.80	133.30	143.80
-	KW	1.50	1.71	1.95	2.21	2.52	2.85	3.21	3.60
	TCG	36.50	34.60	32.70	30.70	28.70	26.60	24.40	22.30
40 (4.4)	SDT	73.30	83.20	93.20	103.20	113.40	123.60	134.10	144.50
` ′	KW	1.51	1.72	1.95	2.22	2.52	2.85	3.23	3.63
	TCG	40.10	38.10	36.00	33.80	31.70	29.40	27.10	24.80
45 (7.2)	SDT	74.60	84.40	94.40	104.50	113.80	124.50	135.20	145.30
• •	KW	1.51	1.72	1.96	2.23	2.51	2.86	3.26	3.65
	TCG	43.90	41.70	39.50	37.10	34.90	32.40	30.00	27.60
50 (10)	SDT	75.90	85.80	95.70	105.90	115.50	125.90	136.20	146.00
	KW	1.52	1.73	1.97	2.24	2.54	2.89	3.27	3.66
	TCG	48.00	45.70	43.30	40.70	38.30	35.70	33.10	30.50
55 (12.8)	SDT	77.40	87.10	97.00	107.10	116.70	126.80	137.00	146.70
	TCG SDT KW TCG SDT KW	40.10 74.60 1.51 43.90 75.90 1.52	38.10 84.40 1.72 41.70 85.80 1.73	36.00 94.40 1.96 39.50 95.70 1.97	33.80 104.50 2.23 37.10 105.90 2.24 40.70	31.70 113.80 2.51 34.90 115.50 2.54	29.40 124.50 2.86 32.40 125.90 2.89 35.70	27.10 135.20 3.26 30.00 136.20 3.27 33.10	

See notes on page 15

CONDENSER ONLY RATINGS* CONTINUED

SST				CONDENSE	R ENTERING A	IR TEMPERATU	RES °F (°C)		
°F (°C)		55 (12.8)	65 (18.3)	75 (23.9)	85 (29.4)	95 (35)	105 (40.6)	115 (46.1)	125 (51.7)
, ,		,	,		048-32	,	,	,	,
	TCG	48.40	45.50	42.50	39.50	36.20	32.90	30.60	28.10
30 (-1.6)	SDT	67.90	77.30	86.70	96.00	105.40	114.70	124.30	133.80
	KW	2.05	2.39	2.75	3.15	3.56	4.01	4.49	5.00
	TCG	53.40	50.20	46.90	43.40	39.60	35.70	34.00	25.50
35 (1.7)	SDT	69.10	78.40	87.80	97.00	106.20	115.40	125.10	133.00
	KW	2.02	2.37	2.74	3.14	3.56	4.01	4.51	4.99
	TCG	58.70	55.10	51.40	47.50	43.10	38.30	33.00	27.10
40 (4.4)	SDT	70.40	79.60	88.90	98.00	107.10	116.10	124.80	133.40
` ′	KW	1.99	2.35	2.72	3.13	3.55	4.01	4.49	4.99
	TCG	64.30	60.30	56.20	51.60	46.90	41.20	35.20	28.90
45 (7.2)	SDT	71.80	80.90	90.00	99.10	108.10	116.80	125.40	133.80
` ´	KW	1.96	2.32	2.70	3.11	3.54	4.00	4.48	4.99
	TCG	70.30	65.80	61.10	55.80	50.40	44.20	37.30	34.60
50 (10)	SDT	73.30	82.30	91.20	100.10	108.90	117.50	125.90	135.30
· ´ Í	KW	1.92	2.29	2.68	3.09	3.52	3.98	4.46	5.01
	TCG	76.50	71.40	66.00	60.30	54.00	47.00	50.70	41.10
55 (12.8)	SDT	74.80	83.60	92.50	101.20	109.80	118.20	129.40	137.00
· ´	KW	1.88	2.25	2.64	3.06	3.49	3.95	4.57	5.05
				38HDR	060-32				
	TCG	59.30	55.30	50.90	46.20	40.40	37.90	33.80	30.30
30 (-1.6)	SDT	70.10	79.30	88.40	97.40	106.20	115.80	124.90	134.20
` '	KW	2.59	2.93	3.31	3.73	4.19	4.72	5.31	5.90
	TCG	64.70	60.20	55.50	50.00	43.30	42.40	31.50	33.10
35 (1.7)	SDT	71.40	80.50	89.50	98.40	106.90	116.90	124.20	134.90
· · · · · · · · · · · · · · · · · · ·	KW	2.62	2.97	3.34	3.76	4.21	4.76	5.25	5.93
	TCG	69.90	65.30	60.10	53.80	55.90	47.40	31.70	35.60
40 (4.4)	SDT	72.70	81.70	90.60	99.30	110.10	118.10	124.20	135.50
Ī	KW	2.66	3.00	3.38	3.78	4.34	4.81	5.24	5.96
	TCG	76.00	70.80	64.80	57.40	56.00	54.60	48.50	47.70
45 (7.2)	SDT	74.10	83.00	91.80	100.20	110.00	119.90	128.60	138.80
Ţ	KW	2.71	3.04	3.40	3.80	4.32	4.89	5.43	6.08
	TCG	82.20	76.70	69.30	70.90	61.80	58.60	30.50	52.10
50 (10)	SDT	75.60	84.40	92.80	103.40	111.40	120.90	123.80	139.80
· · · · · · · · · · · · · · · · · · ·	KW	2.75	3.09	3.42	3.99	4.38	4.93	5.16	6.13
	TCG	95.20	87.70	88.40	74.60	75.40	53.90	46.10	60.30
55 (12.8)	SDT	78.80	87.10	97.50	104.30	114.70	119.50	127.70	141.70
Ţ	KW	2.85	3.13	3.74	3.95	4.56	4.78	5.33	6.25

 $[\]mbox{*}$ AHRI listing applies only to systems shown in Combination Ratings table.

KW - Outdoor Unit Kilowatts Only.

SDT - Saturated Temperature Leaving Compressor (° F)

SST - Saturated Temperature Entering Compressor (° F/° C)

TCG - Gross Cooling Capacity (1000 Btuh)

GUIDE SPECIFICATIONS GENERAL

System Description

Outdoor-mounted, air-cooled, split-system air conditioner unit suitable for ground or rooftop installation. Unit consists of a hermetic compressor, an air-cooled coil, propeller-type condenser fan, and a control box. Unit will discharge supply air horizontally as shown on contract drawings. Unit will be used in a refrigeration circuit to match up to a packaged fan coil or coil unit.

Quality Assurance

- Unit will be rated in accordance with the latest edition of AHRI Standard 210.
- Unit will be certified for capacity and efficiency, and listed in the latest AHRI directory.
- Unit construction will comply with latest edition of ANSI/ ASHRAE and with NEC.
- Unit will be constructed in accordance with UL standards and will carry the UL label of approval. Unit will have c-UL approval.
- Unit cabinet will be capable of withstanding Federal Test
 - Method Standard No. 141 (Method 6061) 500-hr salt spray test.
- Air-cooled condenser coils will be leak tested and pressure tested
- Unit constructed in ISO9001 approved facility.

Delivery, Storage, and Handling

 Unit will be shipped as single package only and is stored and handled per unit manufacturer's recommendations.

Warranty (for inclusion by specifying engineer)

U.S. and Canada only.

PRODUCTS

Equipment

 Factory assembled, single piece, air-cooled air conditioner unit. Contained within the unit enclosure is all factory wiring, piping, controls, compressor, refrigerant charge Puron® (R-410A), and special features required prior to field start-up.

Unit Cabinet

 Unit cabinet will be constructed of galvanized steel, bonderized, and coated with a powder coat paint.

Fans

 Condenser fan will be direct-drive propeller type, discharging air horizontally.

AIR-COOLED, SPLIT-SYSTEM AIR CONDITIONER 38HDR

1-1/2 TO 5 NOMINAL TONS

- Condenser fan motors will be totally enclosed, 1-phase type with class B insulation and permanently lubricated bearings. Shafts will be corrosion resistant.
- Fan blades will be statically and dynamically balanced.
- Condenser fan openings will be equipped with coated steel wire safety guards.

Compressor

- Compressor will be hermetically sealed.
- Compressor will be mounted on rubber vibration isolators

Condenser Coil

- Condenser coil will be air cooled.
- Coil will be constructed of aluminum fins mechanically bonded to copper tubes which are then cleaned, dehydrated, and sealed.

Refrigeration Components

- Refrigeration circuit components will include liquid-line front-seating shutoff valve with sweat connections, vapor-line front-seating shutoff valve with sweat connections, system charge of Puron® (R-410A) refrigerant, and compressor oil.
- Unit will be equipped with high-pressure switch, low pressure switch and filter drier for Puron refrigerant.

Operating Characteristics

_	The capacity of the unit will meet or exceed Btuh at a suction temperature of °F/°C. The power consumption at full load will not exceed kW.
_	Combination of the unit and the evaporator or fan coil unit will have a total net cooling capacity of CFM entering air temperature at the evaporator at °F/°C wet bulb and °F/°C dry bulb, and air entering the unit at °F/°C.

 The system will have a SEER of _____ Btuh/watt or greater at DOE conditions.

Electrical Requirements

	Nominal unit electrical characteristics will be	V
	single phase, 60 hz. The unit will be capable	o
	satisfactory operation within voltage limits of	v
	to v.	
_	Nominal unit electrical characteristics will be	v,
	three phase, 60 hz. The unit will be capable	of

- satisfactory operation within voltage limits of _____ to ____ v.

 Unit electrical power will be single point connection.
- Control circuit will be 24v.

Special Features

 Refer to section of this literature identifying accessories and descriptions for specific features and available enhancements.

SYSTEM DESIGN SUMMARY

- 1. Intended for outdoor installation with free air inlet and outlet. Outdoor fan external static pressure available is less than 0.01-in. wc.
- 2. Minimum outdoor operating air temperature without low-ambient operation accessory is 55°F (12.8°C).
- 3. Maximum outdoor operating air temperature is 125°F (51.7°C).
- 4. For reliable operation, unit should be level in all horizontal planes.
- 5. For interconnecting refrigerant tube lengths greater than 80 ft (23.4 m) and/or 35 ft (10.7 m) vertical differential, consult Residential Piping and Longline Guideline and Service Manual available from equipment distributor.
- 6. If any refrigerant tubing is buried, provide a 6 in. (152.4 mm) vertical rise to the valve connections at the unit. Refrigerant tubing lengths up to 36 in. (914.4 mm) may be buried without further consideration. Do not bury refrigerant lines longer than 36 in. (914.4 mm).
- 7. Use only copper wire for electric connection at unit. Aluminum and clad aluminum are not acceptable for the type of connector provided.
- 8. Do not apply capillary tube indoor coils to these units.
- 9. Factory-supplied filter drier must be installed.

ATTACHMENT 3

SoundPLAN Data – Construction Noise, Off-Site Receivers

4135.1 California Terraces PA-61 SoundPLAN Data - Construction

			Le	vel			Corrections	
Source name	Reference	Leq1	Leq2	Leq3	Lmax	Kwall	CI	CT
		dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)
Construction	Unit	117	_	_	_	_	_	_

4135.1 California Terraces PA-61 SoundPLAN Data - Construction

	Coord	dinates			Limit	Level w/o NP
eceiver nan	X	Υ	Floor	Height	Leq1	Leq1
	in n	neter		m	dB(A)	dB(A)
1	499026.09	3603448.41	1.FI	161.22	75	61.7
2	498937.19	3603453.17	1.FI	161.82	75	62.4
3	498866.54	3603459.52	1.FI	161.82	75	62.3
4	498523.64	3603467.46	1.FI	163.05	75	53.2
5	498752.24	3603466.66	1.FI	160.93	75	61.5
6	498637.94	3603469.84	1.FI	159.12	75	56.8
7	498385.53	3603201.55	1.FI	166.09	75	49.4
8	498467.29	3603103.92	1.FI	166.09	75	50.1
9	498539.52	3603013.43	1.FI	165.16	75	50.0
10	498597.46	3602976.92	1.FI	165.09	75	50.1
11	498693.51	3602932.47	1.FI	164.65	75	50.5
12	498829.24	3602895.16	1.FI	161.07	60	50.5
13	499036.65	3603051.94	1.FI	156.85	60	53.9
14	499157.13	3603114.14	1.FI	157.61	60	53.8
15	499277.81	3603109.13	1.FI	155.20	60	51.1
16	499488.68	3603344.20	1.FI	154.14	60	48.1
17	499426.91	3603442.25	1.FI	156.34	60	49.1
18	499314.22	3603443.76	1.FI	156.95	60	51.5
19	499212.60	3603445.18	1.FI	158.23	60	54.4
20	499096.07	3603451.40	1.FI	159.90	60	58.8

ATTACHMENT 4

SoundPLAN Data – Construction Noise, On-Site Receivers

4135.1 California Terraces PA-61 SoundPLAN Data - Commercial Construction

		Level	Corrections		
Source name	Reference	Leq1	Kwall	CI	CT
		dB(A)	dB(A)	dB(A)	dB(A)
Construction	Unit	117	_		

4135.1 California Terraces PA-61 SoundPLAN Data - Commercial Construction

	Coord	dinates			Limit	Level w/o NP	Level w. NP	Difference	Conflict			
No.	X	Υ	Floor	Height	Leq1	Leq1	Leq1	Leq1	Leq1	Leq2	Leq3	Lmax
	in n	neter		m	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)			
1	498828.790	3603274.670	1.FI	162.860	-	74.0	0	-74.0	-	-	-	-
2	498828.790	3603299.800	1.FI	163.450	-	74.2	0	-74.2	-	-	-	-
3	498828.640	3603323.030	1.FI	163.270	-	74.1	0	-74.1	-	-	-	-
4	498829.580	3603379.600	1.FI	162.590	-	70.9	0	-70.9	-	-	-	-
5	498830.370	3603397.300	1.FI	162.610	-	70.0	0	-70.0	-	-	-	-

ATTACHMENT 5 SoundPLAN Data – Vehicle Traffic Noise

		Traffic valu	ies				Control	Constr.	Affect.		Gradient
Stationing	ADT	Vehicles ty	/pe	Vehicle name	day	Speed	device	Speed	veh.	Road surface	Min / Max
km	Veh/24h	l:		-l: 4 :	Veh/h	km/h		km/h	%		%
SR-905 WB 0+000	135336	lirection: I Total	n entry	direction -	5639	_	none	_	_	Average (of DGAC and PCC)	-1.787878788
0+000		Automobile	es	-	4948		none	_	-	Average (of DGAC and PCC)	-1.787878788
0+000		Medium tru		-	229		none	-	-	Average (of DGAC and PCC)	-1.787878788
0+000 0+000	135336 135336	Heavy truc	ks	-	350 56		none none	-	-	Average (of DGAC and PCC)	-1.787878788 -1.787878788
0+000		Motorcycle	es.	-	56		none	-	-	Average (of DGAC and PCC) Average (of DGAC and PCC)	-1.787878788
0+000		Auxiliary V		-	-	-	none	-	-	Average (of DGAC and PCC)	-1.787878788
1+586							-	-	-	-	-
SR-905 EB 0+000	Traffic di 135336	rection: Ir	n entry	direction	5639		nono			Average (of DGAC and PCC)	0.557277040
0+000		Automobile	es	-	4948		none none	-	-	Average (of DGAC and PCC)	-0.557377049 -0.557377049
0+000		Medium tru		-	229		none	_	_	Average (of DGAC and PCC)	-0.557377049
0+000		Heavy truc	ks	-	350		none	-	-	Average (of DGAC and PCC)	-0.557377049
0+000	135336			-	56		none	-	-	Average (of DGAC and DCC)	-0.557377049
0+000 0+000		Motorcycle Auxiliary V		-	56 -	- 105	none none	_	_	Average (of DGAC and PCC) Average (of DGAC and PCC)	-0.557377049 -0.557377049
1+590	-	raxillary v	Ornolo				-	-	-	-	-
Otay Mesa R		Traffic dire	ection:	In entry directi							
0+000	66048			-	2752		none	-	-	Average (of DGAC and DCC)	-0.6
0+000 0+000		Automobile Medium tru		-	2413 112		none none	_	-	Average (of DGAC and PCC) Average (of DGAC and PCC)	-0.6 -0.6
0+000		Heavy truc		-	171		none	-	_	Average (of DGAC and PCC)	-0.6
0+000		Buses		-	28		none	-	-	Average (of DGAC and PCC)	-0.6
0+000		Motorcycle		-	28	89	none	-	-	Average (of DGAC and PCC)	-0.6
0+000	66048	Auxiliary V	ehicle	-	-	-	none	-	-	Average (of DGAC and PCC)	-0.6
0+895 Otay Mesa R	- oad FB	Traffic dire	ction:	In entry direction	n		-	-	-	-	-
0+000	66048		otion.	-	2752	-	none	_	-	Average (of DGAC and PCC)	-1.333333333
0+000	66048	Automobile	es	-	2413	89	none	-	-	Average (of DGAC and PCC)	-1.333333333
0+000		Medium tru		-	112		none	-	-	Average (of DGAC and PCC)	-1.333333333
0+000		Heavy truc	ks	-	171		none	-	-	Average (of DGAC and DCC)	-1.333333333
0+000 0+000		Buses Motorcycle	ie.	-	28 28		none none	_	-	Average (of DGAC and PCC) Average (of DGAC and PCC)	-1.333333333 -1.3333333333
0+000		Auxiliary V		-	-	-	none	-	_	Average (of DGAC and PCC)	-1.333333333
0+893	-	,					-	-	-	-	-
Caliente Aver		Traffic direc	ction:	In entry direction							
0+000	42024		20	-	1751 1535		none	-	-	Average (of DGAC and PCC) Average (of DGAC and PCC)	-2.111111111
0+000 0+000		Automobile Medium tru		-	71		none none	_	_	Average (of DGAC and PCC)	-2.111111111 -2.1111111111
0+000		Heavy truc		-	109		none	_	_	Average (of DGAC and PCC)	-2.1111111111
0+000	42024	Buses		-	18	48	none	-	-	Average (of DGAC and PCC)	-2.111111111
0+000		Motorcycle		-	18	48	none	-	-	Average (of DGAC and PCC)	-2.111111111
0+000 0+783	42024	Auxiliary V	ehicle	-	-	-	none	-	-	Average (of DGAC and PCC)	-2.111111111
Caliente Aver	- nue SB	Traffic direct	ction:	In entry directio	n		-	-	-	-	-
0+000	42024			-	1751	-	none	-	_	Average (of DGAC and PCC)	-0.565217391
0+000	42024	Automobile	es	-	1535	48	none	-	-	Average (of DGAC and PCC)	-0.565217391
0+000		Medium tru		-	71		none	-	-	Average (of DGAC and PCC)	-0.565217391
0+000 0+000		Heavy truc Buses	KS	_	109 18		none none	_	-	Average (of DGAC and PCC) Average (of DGAC and PCC)	-0.565217391 -0.565217391
0+000		Motorcycle	s	-	18		none	-	_	Average (of DGAC and PCC)	-0.565217391
0+000		Auxiliary V		-	-	-	none	-	-	Average (of DGAC and PCC)	-0.565217391
0+768	-						-	-	-	-	-
SR-905 WB (rection	: In entry direc						Average (of DCAC and DCC)	0.047640040
0+000 0+000	34536 34536	Automobile	26	_	1439 1263		none none	-	-	Average (of DGAC and PCC) Average (of DGAC and PCC)	-0.047619048 -0.047619048
0+000		Medium tru		_	59		none	_	_	Average (of DGAC and PCC)	-0.047619048
0+000		Heavy truc		-	89		none	-	-	Average (of DGAC and PCC)	-0.047619048
0+000		Buses		-	14		none	-	-	Average (of DGAC and PCC)	-0.047619048
0+000		Motorcycle		-	14	48	none	-	-	Average (of DCAC and DCC)	-0.047619048
0+000 0+638	3453b -	Auxiliary V	enicie	-	-	-	none -	-	-	Average (of DGAC and PCC)	-0.047619048 -
SR-905 WB (On-Ramp	Traffic di	rection	: In entry direc	tion						
0+000	34536			-	1439		none	-	-	Average (of DGAC and PCC)	-1.035714286
0+000		Automobile		-	1263		none	-	-	Average (of DGAC and PCC)	-1.035714286
0+000	34536	Medium tru	ucks	-	59	48	none	-	-	Average (of DGAC and PCC)	-1.035714286

0+000	34536	Heavy trucks	-	89	48 none	-	-	Average (of DGAC and PCC)	-1.035714286
0+000	34536	Buses	-	14	48 none	-	-	Average (of DGAC and PCC)	-1.035714286
0+000	34536	Motorcycles	-	14	48 none	-	-	Average (of DGAC and PCC)	-1.035714286
0+000	34536	Auxiliary Vehicle	-		none	-	-	Average (of DGAC and PCC)	-1.035714286
0+464 -					-	-	-	-	-
SR-905 EB Off-F	Ramp	Traffic direction:	In entry directi	on					
0+000	34536	Total	-	1439 -	none	-	-	Average (of DGAC and PCC)	-0.525
0+000	34536	Automobiles	-	1263	48 none	-	-	Average (of DGAC and PCC)	-0.525
0+000	34536	Medium trucks	-	59	48 none	-	-	Average (of DGAC and PCC)	-0.525
0+000	34536	Heavy trucks	-	89	48 none	-	-	Average (of DGAC and PCC)	-0.525
0+000	34536	Buses	-	14	48 none	-	-	Average (of DGAC and PCC)	-0.525
0+000	34536	Motorcycles	-	14	48 none	-	-	Average (of DGAC and PCC)	-0.525
0+000	34536	Auxiliary Vehicle	-		none	-	-	Average (of DGAC and PCC)	-0.525
0+488 -					_	-	-	-	-
SR-905 EB On-F	Ramp	Traffic direction:	In entry directi	on					
0+000	34536	Total	-	1439 -	none	-	-	Average (of DGAC and PCC)	-9
0+000	34536	Automobiles	-	1263	48 none	-	-	Average (of DGAC and PCC)	-9
0+000	34536	Medium trucks	-	59	48 none	-	-	Average (of DGAC and PCC)	-9
0+000	34536	Heavy trucks	-	89	48 none	-	-	Average (of DGAC and PCC)	-9
0+000	34536	Buses	-	14	48 none	-	-	Average (of DGAC and PCC)	-9
0+000	34536	Motorcycles	-	14	48 none	-	-	Average (of DGAC and PCC)	-9
0+000	34536	Auxiliary Vehicle	-		none	-	-	Average (of DGAC and PCC)	-9
0+575 -					-	-	-	-	-

	Coordinates			Limit	Level w/o NP	Level w. NP	Difference	Conflict
No.	X Y	Floor	Height	L(Aeq1h)	L(Aeq1h)	L(Aeq1h)	L(Aeq1h)	L(Aeq1h)
	in meter		m	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)
1	498,844.24 3,603,346.63	1.FI	162.43	-	61.7	0	-61.7	-
1	498,844.24 3,603,346.63	2.FI	165.73	-	64.4	0	-64.4	-
1	498,844.24 3,603,346.63	3.FI	169.03	-	65.6	0	-65.6	-
2	498,829.30 3,603,389.73	1.FI	162.58	-	68.1	0	-68.1	-
2	498,829.30 3,603,389.73	2.FI	165.88	-	70.4	0 0	-70.4	-
2 3	498,829.30 3,603,389.73	3.FI 1.FI	169.18	-	71.4 73.5	0	-71.4 -73.5	-
3	498,851.46 3,603,410.59 498,851.46 3,603,410.59	2.FI	162.63 165.93	-	75.5 75.2	0	-73.3 -75.2	-
3	498,851.46 3,603,410.59	3.FI	169.23	-	75.2 75.3	0	-75.2	_
4	498,898.04 3,603,407.08	1.FI	162.85	_	73.2	0	-73.2	_
4	498,898.04 3,603,407.08	2.FI	166.15	_	74.9	0	-74.9	_
4	498,898.04 3,603,407.08	3.FI	169.45	_	75.1	0	-75.1	_
5	498,944.79 3,603,404.43	1.FI	162.43	_	72.7	0	-72.7	_
5	498,944.79 3,603,404.43	2.FI	165.73	_	74.4	0	-74.4	_
5	498,944.79 3,603,404.43	3.FI	169.03	-	74.7	0	-74.7	_
6	498,992.26 3,603,402.60	1.FI	161.90	-	72.8	0	-72.8	-
6	498,992.26 3,603,402.60	2.FI	165.20	-	74.6	0	-74.6	-
6	498,992.26 3,603,402.60	3.FI	168.50	-	74.8	0	-74.8	-
7	499,039.10 3,603,400.36	1.FI	161.51	-	72.4	0	-72.4	-
7	499,039.10 3,603,400.36	2.FI	164.81	-	74.3	0	-74.3	-
7	499,039.10 3,603,400.36	3.FI	168.11	-	74.6	0	-74.6	-
8	499,061.97 3,603,384.54	1.FI	161.49	-	68.9	0	-68.9	-
8	499,061.97 3,603,384.54	2.FI	164.79	-	71.3	0	-71.3	-
8	499,061.97 3,603,384.54	3.FI	168.09	-	72.1	0	-72.1	-
9	499,040.32 3,603,356.41	1.FI	161.82	-	61.8	0	-61.8	-
9	499,040.32 3,603,356.41	2.FI	165.12	-	64.5	0	-64.5	-
9	499,040.32 3,603,356.41	3.FI	168.42	-	65.9	0	-65.9	-
10	498,985.48 3,603,356.23	1.FI	162.37	-	57.0	0	-57.0	-
10	498,985.48 3,603,356.23	2.FI	165.67	-	59.2	0	-59.2	-
10	498,985.48 3,603,356.23	3.FI	168.97	-	60.9	0 0	-60.9	-
11	498,946.76 3,603,356.23	1.FI	162.71	-	57.7		-57.7	-
11 11	498,946.76 3,603,356.23 498,946.76 3,603,356.23	2.FI 3.FI	166.01 169.31	-	59.6 61.0	0 0	-59.6 -61.0	-
12	498,896.76 3,603,356.40	1.FI	162.89	-	58.5	0	-51.5 -58.5	_
12	498,896.76 3,603,356.40	2.FI	166.19	-	60.7	0	-60.7	_
12	498,896.76 3,603,356.40	3.FI	169.49	_	61.9	0	-61.9	_
13	498,896.26 3,603,332.92	1.FI	162.89	_	51.4	0	-51.4	_
13	498,896.26 3,603,332.92	2.FI	166.19	_	52.6	0	-52.6	_
13	498,896.26 3,603,332.92	3.FI	169.49	_	54.7	0	-54.7	_
14	498,923.31 3,603,333.50	1.FI	162.81	_	56.7	0	-56.7	_
14	498,923.31 3,603,333.50	2.FI	166.11	-	58.6	0	-58.6	-
14	498,923.31 3,603,333.50	3.FI	169.41	-	59.6	0	-59.6	-
15	498,963.93 3,603,332.88	1.FI	162.67	-	56.5	0	-56.5	-
15	498,963.93 3,603,332.88	2.FI	165.97	-	58.6	0	-58.6	-
15	498,963.93 3,603,332.88	3.FI	169.27	-	60.0	0	-60.0	-
16	499,017.68 3,603,332.87	1.FI	162.01	-	58.3	0	-58.3	-
16	499,017.68 3,603,332.87	2.FI	165.31	-	61.4	0	-61.4	-
16	499,017.68 3,603,332.87	3.FI	168.61	-	62.9	0	-62.9	-
17	499,055.80 3,603,344.01	1.FI	161.76	-	64.3	0	-64.3	-
17	499,055.80 3,603,344.01	2.FI	165.06	-	67.8	0	-67.8	-
17	499,055.80 3,603,344.01	3.FI	168.36	-	69.0	0	-69.0	-
18	499,067.98 3,603,321.48	1.FI	161.73	-	63.8	0	-63.8	-
18 19	499,067.98 3,603,321.48	2.FI	165.03	-	69.1	0	-69.1	-
18 10	499,067.98 3,603,321.48	3.FI	168.33	-	70.2	0	-70.2	-
19 19	499,045.39 3,603,310.11	1.FI	161.79	-	60.6	0 0	-60.6 -64.4	-
19	499,045.39 3,603,310.11 499,045.39 3,603,310.11	2.FI 3.FI	165.09 168.39	-	64.4 66.6	0	-64.4 -66.6	-
20	498,987.81 3,603,309.44	3.FI 1.FI	162.40	<u>-</u>	60.1	0	-60.0 -60.1	-
20	498,987.81 3,603,309.44	2.FI	165.70	-	63.0	0	-63.0	-
20	498,987.81 3,603,309.44	3.FI	169.00	-	64.1	0	-64.1	_
	, 5,000,000.	· · · ·	. 55.55		· · · ·	•	~ · · · ·	

21	498,940.91	3,603,309.53	1.FI	162.64	_	60.9	0	-60.9	_
21		3,603,309.53	2.FI	165.94	_	63.1	0	-63.1	_
21		3,603,309.53	3.FI	169.24	_	64.1	0	-64.1	_
22		3,603,309.93	1.FI	162.89	_	61.4	0	-61.4	_
22		3,603,309.93	2.FI	166.19	_	63.1	0	-63.1	_
22		3,603,309.93	3.FI	169.49	_	64.1	0	-64.1	_
23		3,603,321.55	1.FI	162.84	_	64.9	0	-64.9	_
23		3,603,321.55	2.FI	166.14	_	67.9	0	-67.9	_
23		3,603,321.55	3.FI	169.44	_	68.9	0	-68.9	_
24	•	3,603,286.70	1.FI	162.79	_	66.4	0	-66.4	_
24	•	3,603,286.70	2.FI	166.09	_	68.9	0	-68.9	_
24		3,603,286.70	3.FI	169.39	_	69.8	0	-69.8	_
25		3,603,264.99	1.FI	162.86	_	71.9	0	-71.9	_
25	•	3,603,264.99	2.FI	166.16	_	73.7	0	-73.7	_
25	•	3,603,264.99	3.FI	169.46	_	74.5	0	-74.5	_
26		3,603,266.42	1.FI	162.58	_	70.4	0	-70.4	_
26		3,603,266.42	2.FI	165.88	_	72.2	0	-72.2	_
26		3,603,266.42	3.FI	169.18	_	73.0	0	-73.0	_
27		3,603,265.91	1.FI	162.40	_	70.3	0	-70.3	_
27	•	3,603,265.91	2.FI	165.70	_	72.7	0	-72.7	_
27		3,603,265.91	3.FI	169.00	_	73.4	0	-73.4	_
28		3,603,265.49	1.FI	162.36	_	70.9	0	-70.9	_
28		3,603,265.49	2.FI	165.66	_	73.3	0	-73.3	_
28	•	3,603,265.49	3.FI	168.96	_	73.9	0	-73.9	_
29	•	3,603,265.49	1.FI	162.25	_	69.7	0	-69.7	_
29	,	3,603,265.49	2.FI	165.55	_	74.0	0	-74.0	_
29		3,603,265.49	3.FI	168.85	_	74.4	0	-74.4	_
30	•	3,603,284.18	1.FI	162.36	_	67.0	0	-67.0	_
30	•	3,603,284.18	2.FI	165.66	_	71.5	0	-71.5	_
30		3,603,284.18	3.FI	168.96	_	72.1	0	-72.1	_
31		3,603,270.54	1.FI	162.61	_	69.2	0	-69.2	_
31	•	3,603,270.54	2.FI	165.91	_	71.6	0	-71.6	_
31	•	3,603,270.54	3.FI	169.21	_	72.4	0	-72.4	_
32		3,603,298.99	1.FI	162.03	_	67.9	0	-67.9	_
32		3,603,298.99	2.FI	165.33	_	70.5	0	-70.5	_
32		3,603,298.99	3.FI	168.63	_	71.5	0	-71.5	_
33	•	3,603,364.81	1.FI	161.32	_	67.6	0	-67.6	_
33	•	3,603,364.81	2.FI	164.62	_	70.0	0	-70.0	_
33		3,603,364.81	3.FI	167.92	_	70.8	0	-70.8	_
34	•	3,603,407.91	1.FI	161.22	_	71.2	0	-71.2	_
34	,	3,603,407.91	2.FI	164.52	_	73.4	0	-73.4	_
34	,	3,603,407.91	3.FI	167.82	_	73.9	0	-73.9	_
35	•	3,603,407.07	1.FI	161.48	_	71.1	0	-71.1	-
35		3,603,407.07	2.FI	164.78	_	73.3	0	-73.3	_
35		3,603,407.07	3.FI	168.08	_	73.9	0	-73.9	_
	,	,,				-			

4135.1 California Terraces PA-61 SoundPLAN Data - Vehicle Traffic

Source name	Lane	Level w/o NP L(Aeq1h) dB(A)	Level w. NP L(Aeq1h) dB(A)
1 1.FI 61.7	0.0	(/ .)	(- 1)
Caliente Avenue NB		49.6	0
Caliente Avenue SB		49.0	0
Otay Mesa Road EB		56.0	0
Otay Mesa Road WB		54.3	0
SR-905 EB		53.9	0
SR-905 EB Off-Ramp		39.8	0
SR-905 EB On-Ramp		39.1	0
SR-905 WB		54.9	0
SR-905 WB Off-Ramp		46.5	0
SR-905 WB On-Ramp		43.0	0
1 2.FI 64.4	0.0		
Caliente Avenue NB		51.2	0
Caliente Avenue SB		50.7	0
Otay Mesa Road EB		58.4	0
Otay Mesa Road WB		56.9	0
SR-905 EB		57.1	0
SR-905 EB Off-Ramp		41.3	0
SR-905 EB On-Ramp		40.7	0
SR-905 WB		58.1	0
SR-905 WB Off-Ramp		47.8	0
SR-905 WB On-Ramp		44.6	0
1 3.FI 65.6	0.0	•	•
Caliente Avenue NB	0.0	52.0	0
Caliente Avenue SB		51.5	0
Otay Mesa Road EB		59.4	0
Otay Mesa Road WB		57.9	0
SR-905 EB		58.7	0
SR-905 EB Off-Ramp		42.6	0
SR-905 EB On-Ramp		42.0	Ö
SR-905 WB		59.9	0
SR-905 WB Off-Ramp		48.7	0
SR-905 WB On-Ramp		45.5	Ö
2 1.Fl 68.1	0.0	10.0	ū
Caliente Avenue NB	0.0	52.5	0
Caliente Avenue SB		51.8	0
Otay Mesa Road EB		65.3	0
Otay Mesa Road WB		62.5	0
SR-905 EB		56.0	0
SR-905 EB Off-Ramp		41.7	0
SR-905 EB On-Ramp		41.3	0
SR-905 WB		57.1	0
SR-905 WB Off-Ramp		48.0	0
SR-905 WB On-Ramp		44.9	0
2 2.Fl 70.4	0.0	0	J
Caliente Avenue NB	- -	54.0	0
Caliente Avenue SB		53.3	0
Otay Mesa Road EB		67.4	0
Otay Mesa Road WB		64.5	Ö
SR-905 EB		59.7	0
SR-905 EB Off-Ramp		43.5	0
SR-905 EB On-Ramp		43.4	0
			-

SR-905 WB		60.4	0
SR-905 WB Off-Ramp		49.6	0
SR-905 WB On-Ramp		46.3	0
2 3.FI 71.4	0.0		
Caliente Avenue NB		54.6	0
Caliente Avenue SB		54.0	0
Otay Mesa Road EB		68.2	0
Otay Mesa Road WB		65.6	0
SR-905 EB		61.0	0
SR-905 EB Off-Ramp		44.7	0
SR-905 EB On-Ramp		44.4	0
SR-905 WB		62.0	0
SR-905 WB Off-Ramp		50.2	0
SR-905 WB On-Ramp		47.1	0
3 1.Fl 73.5	0.0		
Caliente Avenue NB		45.9	0
Caliente Avenue SB		45.4	0
Otay Mesa Road EB		72.3	0
Otay Mesa Road WB		67.0	0
SR-905 EB		40.0	0
SR-905 EB Off-Ramp		22.9	0
SR-905 EB On-Ramp		28.5	0
SR-905 WB		40.3	0
SR-905 WB Off-Ramp		29.3	0
SR-905 WB On-Ramp		24.4	0
3 2.Fl 75.2	0.0		
Caliente Avenue NB		47.6	0
Caliente Avenue SB		46.9	0
Otay Mesa Road EB		73.9	0
Otay Mesa Road WB		69.1	0
SR-905 EB		42.2	0
SR-905 EB Off-Ramp		27.1	0
SR-905 EB On-Ramp		29.1	0
SR-905 WB		42.5	0
SR-905 WB Off-Ramp		31.1	0
SR-905 WB On-Ramp		28.3	0
3 3.Fl 75.3	0.0	40.0	_
Caliente Avenue NB		48.3	0
Caliente Avenue SB		47.8	0
Otay Mesa Road EB		73.8	0
Otay Mesa Road WB		69.8	0
SR-905 EB		46.5	0
SR-905 EB Off-Ramp		32.4	0
SR-905 EB On-Ramp SR-905 WB		32.2	0
		46.8	0
SR-905 WB Off-Ramp SR-905 WB On-Ramp		34.6 33.9	0
4 1.Fl 73.2	0.0	33.8	U
Caliente Avenue NB	0.0	43.3	0
Caliente Avenue SB		42.7	0
Otay Mesa Road EB		72.0	0
Otay Mesa Road WB		66.7	0
SR-905 EB		39.8	0
SR-905 EB Off-Ramp		20.4	0
SR-905 EB On-Ramp		28.6	0
OR SOULD OF MAIN		20.0	J

SD OOF WD		40.1	0
SR-905 WB		40.1	0
SR-905 WB Off-Ramp		27.9	0
SR-905 WB On-Ramp		22.9	0
4 2.Fl 74.9	0.0		
Caliente Avenue NB	0.0	45.2	0
Caliente Avenue SB		44.6	0
Otay Mesa Road EB		73.7	0
Otay Mesa Road WB		68.9	0
SR-905 EB		41.2	0
SR-905 EB Off-Ramp		24.2	0
SR-905 EB On-Ramp		28.7	0
SR-905 WB		41.4	0
SR-905 WB Off-Ramp		29.8	0
•		25.6	0
SR-905 WB On-Ramp		25.0	U
4 3.Fl 75.1	0.0		
Caliente Avenue NB		46.2	0
Caliente Avenue SB		45.6	0
Otay Mesa Road EB		73.7	0
•			
Otay Mesa Road WB		69.7	0
SR-905 EB		45.1	0
SR-905 EB Off-Ramp		29.7	0
SR-905 EB On-Ramp		31.5	0
•			
SR-905 WB		45.4	0
SR-905 WB Off-Ramp		33.1	0
SR-905 WB On-Ramp		31.8	0
5 1.Fl 72.7	0.0		
Caliente Avenue NB	0.0	41.3	Λ
			0
Caliente Avenue SB		40.8	0
Otay Mesa Road EB		71.5	0
Otay Mesa Road WB		66.4	0
SR-905 EB		39.7	0
SR-905 EB Off-Ramp		19.7	0
•			
SR-905 EB On-Ramp		28.4	0
SR-905 WB		39.9	0
SR-905 WB Off-Ramp		27.8	0
SR-905 WB On-Ramp		20.7	0
5 2.Fl 74.4	0.0	20	Ŭ
	0.0	40.4	0
Caliente Avenue NB		43.4	0
Caliente Avenue SB		42.8	0
Otay Mesa Road EB		73.1	0
Otay Mesa Road WB		68.5	0
SR-905 EB		41.5	
			0
SR-905 EB Off-Ramp		24.5	0
SR-905 EB On-Ramp		28.5	0
SR-905 WB		41.8	0
SR-905 WB Off-Ramp		29.7	0
•			
SR-905 WB On-Ramp		25.5	0
5 3.Fl 74.7	0.0		
Caliente Avenue NB		44.5	0
Caliente Avenue SB		44.0	0
Otay Mesa Road EB		73.2	0
Otay Mesa Road WB		69.3	0
SR-905 EB		44.7	0
SR-905 EB Off-Ramp		27.0	0
SR-905 EB On-Ramp		31.5	0
		- · · · ·	-

SR-905 WB		45.0	0
SR-905 WB Off-Ramp		32.9	0
SR-905 WB On-Ramp		27.7	0
6 1.FI 72.8	0.0	2	Ū
Caliente Avenue NB	0.0	39.8	0
Caliente Avenue SB		39.6	0
Otay Mesa Road EB		71.6	0
•		66.5	
Otay Mesa Road WB			0
SR-905 EB		39.9	0
SR-905 EB Off-Ramp		17.2	0
SR-905 EB On-Ramp		28.7	0
SR-905 WB		40.2	0
SR-905 WB Off-Ramp		28.7	0
SR-905 WB On-Ramp		19.0	0
6 2.FI 74.6	0.0		
Caliente Avenue NB		42.0	0
Caliente Avenue SB		41.4	0
Otay Mesa Road EB		73.2	0
Otay Mesa Road WB		68.7	0
SR-905 EB		41.9	0
SR-905 EB Off-Ramp		21.3	0
SR-905 EB On-Ramp		29.0	0
SR-905 WB		42.4	0
SR-905 WB Off-Ramp		30.5	0
SR-905 WB On-Ramp		22.8	0
6 3.FI 74.8	0.0		
Caliente Avenue NB	0.0	43.2	0
Caliente Avenue SB		42.6	0
Otay Mesa Road EB		73.3	0
Otay Mesa Road WB		69.5	0
SR-905 EB		45.1	0
SR-905 EB Off-Ramp		25.7	0
•		31.5	0
SR-905 EB On-Ramp			
SR-905 WB Off Down		45.6	0
SR-905 WB Off-Ramp		33.5	0
SR-905 WB On-Ramp	0.0	27.3	0
7 1.Fl 72.4	0.0	20.0	0
Caliente Avenue NB		38.0	0
Caliente Avenue SB		37.8	0
Otay Mesa Road EB		71.1	0
Otay Mesa Road WB		66.5	0
SR-905 EB		40.5	0
SR-905 EB Off-Ramp		15.5	0
SR-905 EB On-Ramp		29.0	0
SR-905 WB		40.8	0
SR-905 WB Off-Ramp		29.7	0
SR-905 WB On-Ramp		17.6	0
7 2.Fl 74.3	0.0		
Caliente Avenue NB		40.8	0
Caliente Avenue SB		40.0	0
Otay Mesa Road EB		72.9	0
Otay Mesa Road WB		68.6	0
SR-905 EB		42.7	0
SR-905 EB Off-Ramp		21.2	0
SR-905 EB On-Ramp		29.6	0
•			

SR-905 WB		43.6	0
SR-905 WB Off-Ramp		31.6	0
SR-905 WB On-Ramp		22.8	0
7 3.FI 74.6	0.0	LL.O	Ū
Caliente Avenue NB	0.0	42.0	0
Caliente Avenue SB		41.2	0
Otay Mesa Road EB		73.0	0
•		69.4	
Otay Mesa Road WB			0
SR-905 EB		45.9	0
SR-905 EB Off-Ramp		24.3	0
SR-905 EB On-Ramp		32.1	0
SR-905 WB		46.4	0
SR-905 WB Off-Ramp		34.5	0
SR-905 WB On-Ramp		25.5	0
8 1.Fl 68.9	0.0		_
Caliente Avenue NB		23.6	0
Caliente Avenue SB		21.8	0
Otay Mesa Road EB		66.5	0
Otay Mesa Road WB		63.7	0
SR-905 EB		56.0	0
SR-905 EB Off-Ramp		13.0	0
SR-905 EB On-Ramp		42.3	0
SR-905 WB		57.3	0
SR-905 WB Off-Ramp		46.5	0
SR-905 WB On-Ramp		13.2	0
8 2.Fl 71.3	0.0		
Caliente Avenue NB		29.7	0
Caliente Avenue SB		28.1	0
Otay Mesa Road EB		68.8	0
Otay Mesa Road WB		65.8	0
SR-905 EB		59.3	0
SR-905 EB Off-Ramp		19.9	0
SR-905 EB On-Ramp		44.4	0
SR-905 WB		60.3	0
SR-905 WB Off-Ramp		48.1	0
SR-905 WB On-Ramp		20.0	0
8 3.FI 72.1	0.0		
Caliente Avenue NB		31.6	0
Caliente Avenue SB		30.1	0
Otay Mesa Road EB		69.2	0
Otay Mesa Road WB		66.8	0
SR-905 EB		61.1	0
SR-905 EB Off-Ramp		23.9	0
SR-905 EB On-Ramp		45.7	0
SR-905 WB		61.9	0
SR-905 WB Off-Ramp		49.4	0
SR-905 WB On-Ramp		23.8	0
9 1.FI 61.8	0.0	20.0	Ŭ
Caliente Avenue NB	0.0	34.1	0
Caliente Avenue SB		33.6	0
Otay Mesa Road EB		58.8	0
Otay Mesa Road WB		56.9	0
SR-905 EB		49.9	0
		49.9 25.9	0
SR-905 EB Off-Ramp			
SR-905 EB On-Ramp		35.5	0

SR-905 WB		51.2	0
SR-905 WB Off-Ramp		39.8	0
SR-905 WB On-Ramp		31.0	0
9 2.Fl 64.5	0.0		_
Caliente Avenue NB		35.4	0
Caliente Avenue SB		34.9	0
Otay Mesa Road EB Otay Mesa Road WB		61.4 59.5	0
SR-905 EB		53.5	0
SR-905 EB Off-Ramp		26.6	0
SR-905 EB On-Ramp		37.4	0
SR-905 WB		54.6	0
SR-905 WB Off-Ramp		42.1	0
SR-905 WB On-Ramp		32.7	0
9 3.Fl 65.9	0.0	20.0	^
Caliente Avenue NB Caliente Avenue SB		36.9 36.6	0
Otay Mesa Road EB		62.4	0
Otay Mesa Road WB		60.6	0
SR-905 EB		56.1	0
SR-905 EB Off-Ramp		28.2	0
SR-905 EB On-Ramp		40.1	0
SR-905 WB		57.1	0
SR-905 WB Off-Ramp		44.0	0
SR-905 WB On-Ramp	0.0	33.9	0
10 1.FI 57.0	0.0	27.4	0
Caliente Avenue NB Caliente Avenue SB		37.4 36.8	0
Otay Mesa Road EB		53.7	0
Otay Mesa Road WB		52.0	0
SR-905 EB		46.1	0
SR-905 EB Off-Ramp		29.9	0
SR-905 EB On-Ramp		29.7	0
SR-905 WB		47.3	0
SR-905 WB Off-Ramp		31.0	0
SR-905 WB On-Ramp 10 2.FI 59.2	0.0	34.6	0
Caliente Avenue NB	0.0	38.5	0
Caliente Avenue SB		38.0	0
Otay Mesa Road EB		55.9	0
Otay Mesa Road WB		53.9	0
SR-905 EB		48.4	0
SR-905 EB Off-Ramp		30.7	0
SR-905 EB On-Ramp		30.8	0
SR-905 WB		50.2 32.8	0
SR-905 WB Off-Ramp SR-905 WB On-Ramp		36.2	0
10 3.FI 60.9	0.0	30. <u>Z</u>	U
Caliente Avenue NB	0.0	40.3	0
Caliente Avenue SB		39.7	0
Otay Mesa Road EB		57.3	0
Otay Mesa Road WB		55.4	0
SR-905 EB		50.8	0
SR-905 EB Off-Ramp		32.2	0
SR-905 EB On-Ramp		34.1	0

SR-905 WB		52.4	0
SR-905 WB Off-Ramp		34.8	0
SR-905 WB On-Ramp		37.5	0
11 1.FI 57.7	0.0		
Caliente Avenue NB		40.1	0
Caliente Avenue SB		39.5	0
Otay Mesa Road EB		54.4	0
Otay Mesa Road WB		52.7	0
SR-905 EB		46.4	0
SR-905 EB Off-Ramp		32.5	0
SR-905 EB On-Ramp		30.3	0
SR-905 WB		47.4	0
SR-905 WB Off-Ramp		34.6	0
SR-905 WB On-Ramp		36.2	0
11 2.Fl 59.6	0.0		
Caliente Avenue NB		41.6	0
Caliente Avenue SB		41.0	0
Otay Mesa Road EB		56.1	0
Otay Mesa Road WB		54.4	0
SR-905 EB		49.0	0
SR-905 EB Off-Ramp		34.1	0
SR-905 EB On-Ramp		31.8	0
SR-905 WB		50.2	0
SR-905 WB Off-Ramp		36.5	0
SR-905 WB On-Ramp		38.0	0
11 3.Fl 61.0	0.0		_
Caliente Avenue NB		43.1	0
Caliente Avenue SB		42.4	0
Otay Mesa Road EB		57.5	0
Otay Mesa Road WB		55.7	0
SR-905 EB		50.7	0
SR-905 EB Off-Ramp		35.5	0
SR-905 EB On-Ramp SR-905 WB		32.4	0
SR-905 WB Off-Ramp		52.0 37.2	0
SR-905 WB On-Ramp		39.1	0
12 1.Fl 58.5	0.0	33.1	U
Caliente Avenue NB	0.0	44.1	0
Caliente Avenue SB		43.6	0
Otay Mesa Road EB		54.1	0
Otay Mesa Road WB		52.4	0
SR-905 EB		49.6	0
SR-905 EB Off-Ramp		36.8	0
SR-905 EB On-Ramp		30.2	0
SR-905 WB		50.7	0
SR-905 WB Off-Ramp		38.3	0
SR-905 WB On-Ramp		41.1	0
12 2.Fl 60.7	0.0		
Caliente Avenue NB		45.6	0
Caliente Avenue SB		45.2	0
Otay Mesa Road EB		55.7	0
Otay Mesa Road WB		54.2	0
SR-905 EB		52.6	0
SR-905 EB Off-Ramp		38.6	0
SR-905 EB On-Ramp		32.3	0

SR-905 WB		54.0	0
SR-905 WB Off-Ramp		40.1	0
SR-905 WB On-Ramp 12 3.FI 61.9	0.0	42.7	0
Caliente Avenue NB	0.0	46.5	0
Caliente Avenue SB		46.0	0
Otay Mesa Road EB		56.9	0
Otay Mesa Road WB SR-905 EB		55.3 54.1	0
SR-905 EB Off-Ramp		54.1 40.0	0 0
SR-905 EB On-Ramp		32.5	0
SR-905 WB		55.4	0
SR-905 WB Off-Ramp		40.6	0
SR-905 WB On-Ramp 13 1.FI 51.4	0.0	43.7	0
Caliente Avenue NB	0.0	42.4	0
Caliente Avenue SB		41.9	0
Otay Mesa Road EB		39.8	0
Otay Mesa Road WB SR-905 EB		39.2 44.2	0 0
SR-905 EB Off-Ramp		30.0	0
SR-905 EB On-Ramp		29.3	0
SR-905 WB		47.4	0
SR-905 WB Off-Ramp		31.9	0
SR-905 WB On-Ramp 13 2.FI 52.6	0.0	36.4	0
Caliente Avenue NB	0.0	43.7	0
Caliente Avenue SB		43.2	0
Otay Mesa Road EB		42.3	0
Otay Mesa Road WB SR-905 EB		42.0 45.5	0 0
SR-905 EB Off-Ramp		31.2	0
SR-905 EB On-Ramp		32.8	0
SR-905 WB		47.7	0
SR-905 WB Off-Ramp SR-905 WB On-Ramp		34.3 35.3	0
13 3.Fl 54.7	0.0	33.3	U
Caliente Avenue NB		44.6	0
Caliente Avenue SB		44.2	0
Otay Mesa Road EB		43.9	0
Otay Mesa Road WB SR-905 EB		43.8 48.7	0 0
SR-905 EB Off-Ramp		32.6	0
SR-905 EB On-Ramp		35.6	0
SR-905 WB		50.2	0
SR-905 WB Off-Ramp SR-905 WB On-Ramp		36.8 37.3	0
14 1.FI 56.7	0.0	07.0	Ū
Caliente Avenue NB		38.5	0
Caliente Avenue SB		37.9	0
Otay Mesa Road EB Otay Mesa Road WB		50.3 49.2	0
SR-905 EB		49.2 49.8	0
SR-905 EB Off-Ramp		30.9	0
SR-905 EB On-Ramp		36.9	0

SR-905 WB		51.6	0
SR-905 WB Off-Ramp		41.4	0
SR-905 WB On-Ramp		36.7	0
14 2.FI 58.6	0.0		
Caliente Avenue NB		39.5	0
Caliente Avenue SB		38.9	0
Otay Mesa Road EB		52.5	0
Otay Mesa Road WB		51.3	0
SR-905 EB		51.8	0
SR-905 EB Off-Ramp		31.7	0
SR-905 EB On-Ramp		38.3	0
SR-905 WB		53.4	0
SR-905 WB Off-Ramp		42.7	0
SR-905 WB On-Ramp		36.0	0
14 3.FI 59.6	0.0	00.0	·
Caliente Avenue NB	0.0	40.8	0
Caliente Avenue SB		40.2	0
Otay Mesa Road EB		53.4	0
Otay Mesa Road WB		52.3	0
SR-905 EB		52.9	0
SR-905 EB Off-Ramp		34.0	0
SR-905 EB On-Ramp		39.3	0
SR-905 WB		54.4	0
SR-905 WB Off-Ramp		43.2	0
SR-905 WB On-Ramp		37.5	0
15 1.FI 56.5	0.0	37.3	U
Caliente Avenue NB	0.0	35.5	0
Caliente Avenue SB		35.0	0
Otay Mesa Road EB		49.1	0
Otay Mesa Road WB		47.9	0
SR-905 EB		50.1	0
SR-905 EB Off-Ramp		29.9	0
SR-905 EB On-Ramp		37.9	0
SR-905 WB		52.5	0
SR-905 WB Off-Ramp		40.7	0
SR-905 WB On-Ramp		33.7	0
15 2.Fl 58.6	0.0	00.7	Ū
Caliente Avenue NB	0.0	36.3	0
Caliente Avenue SB		35.5	0
Otay Mesa Road EB		51.1	0
Otay Mesa Road WB		50.0	0
SR-905 EB		52.8	0
SR-905 EB Off-Ramp		31.6	0
SR-905 EB On-Ramp		39.7	0
SR-905 WB		54.3	0
SR-905 WB Off-Ramp		42.8	0
SR-905 WB On-Ramp		33.7	0
15 3.FI 60.0	0.0		-
Caliente Avenue NB	-	38.2	0
Caliente Avenue SB		37.2	0
Otay Mesa Road EB		52.1	0
Otay Mesa Road WB		51.1	0
SR-905 EB		54.3	0
SR-905 EB Off-Ramp		33.3	0
SR-905 EB On-Ramp		41.1	0
			•

CD OOF WD		<i>EE</i> 7	0
SR-905 WB		55.7	0
SR-905 WB Off-Ramp SR-905 WB On-Ramp		44.5 34.9	0
16 1.Fl 58.3	0.0	04.0	U
Caliente Avenue NB	0.0	34.1	0
Caliente Avenue SB		33.6	0
Otay Mesa Road EB		49.9	0
Otay Mesa Road WB		48.7	0
SR-905 EB		52.4	0
SR-905 EB Off-Ramp		28.5	0
SR-905 EB On-Ramp		40.8	0
SR-905 WB		54.4	0
SR-905 WB Off-Ramp		43.8	0
SR-905 WB On-Ramp 16 2.FI 61.4	0.0	34.2	0
16 2.FI 61.4 Caliente Avenue NB	0.0	33.4	0
Caliente Avenue SB		32.7	0
Otay Mesa Road EB		51.8	0
Otay Mesa Road WB		50.6	0
SR-905 EB		56.5	0
SR-905 EB Off-Ramp		27.3	0
SR-905 EB On-Ramp		43.2	0
SR-905 WB		57.9	0
SR-905 WB Off-Ramp		45.9	0
SR-905 WB On-Ramp		32.8	0
16 3.FI 62.9	0.0		
Caliente Avenue NB		34.6	0
Caliente Avenue SB		34.0	0
Otay Mesa Road EB Otay Mesa Road WB		53.3 52.1	0
SR-905 EB		58.0	0
SR-905 EB Off-Ramp		28.9	0
SR-905 EB On-Ramp		44.3	0
SR-905 WB		59.3	0
SR-905 WB Off-Ramp		47.5	0
SR-905 WB On-Ramp		32.8	0
17 1.FI 64.3	0.0		
Caliente Avenue NB		20.0	0
Caliente Avenue SB		18.6	0
Otay Mesa Road EB		61.0	0
Otay Mesa Road WB SR-905 EB		59.2 54.1	0
SR-905 EB Off-Ramp		12.4	0 0
SR-905 EB On-Ramp		37.6	0
SR-905 WB		55.3	0
SR-905 WB Off-Ramp		44.1	0
SR-905 WB On-Ramp		13.9	0
17 2.FI 67.8	0.0		
Caliente Avenue NB		25.8	0
Caliente Avenue SB		24.6	0
Otay Mesa Road EB		63.5	0
Otay Mesa Road WB		62.2	0
SR-905 EB		59.3	0
SR-905 EB Off-Ramp		18.5	0
SR-905 EB On-Ramp		40.3	0

SR-905 WB		60.7	0
SR-905 WB Off-Ramp		47.8	0
SR-905 WB On-Ramp		20.0	0
17 3.FI 69.0	0.0		
Caliente Avenue NB		30.9	0
Caliente Avenue SB		29.8	0
Otay Mesa Road EB		64.4	0
Otay Mesa Road WB		63.1	0
SR-905 EB		61.1	0
SR-905 EB Off-Ramp		24.4	0
SR-905 EB On-Ramp		42.2	0
SR-905 WB		62.2	0
SR-905 WB Off-Ramp		49.2	0
SR-905 WB On-Ramp		25.5	0
18 1.Fl 63.8	0.0		
Caliente Avenue NB		21.0	0
Caliente Avenue SB		18.9	0
Otay Mesa Road EB		56.7	0
Otay Mesa Road WB		55.4	0
SR-905 EB		57.9	0
SR-905 EB Off-Ramp		14.1	0
SR-905 EB On-Ramp		45.0	0
SR-905 WB		59.5	0
SR-905 WB Off-Ramp		49.1	0
SR-905 WB On-Ramp	0.0	14.3	0
18 2.Fl 69.1	0.0	26.0	0
Caliente Avenue NB Caliente Avenue SB		26.9 25.2	0
Otay Mesa Road EB		62.0	0
Otay Mesa Road WB		60.8	0
SR-905 EB		63.4	0
SR-905 EB Off-Ramp		20.6	0
SR-905 EB On-Ramp		47.9	0
SR-905 WB		64.4	0
SR-905 WB Off-Ramp		52.7	0
SR-905 WB On-Ramp		20.6	0
18 3.Fl 70.2	0.0		
Caliente Avenue NB		31.1	0
Caliente Avenue SB		29.7	0
Otay Mesa Road EB		62.9	0
Otay Mesa Road WB		61.7	0
SR-905 EB		64.8	0
SR-905 EB Off-Ramp		25.5	0
SR-905 EB On-Ramp		48.9	0
SR-905 WB		65.7	0
SR-905 WB Off-Ramp		53.5	0
SR-905 WB On-Ramp		25.6	0
19 1.Fl 60.6	0.0		
Caliente Avenue NB		32.7	0
Caliente Avenue SB		32.4	0
Otay Mesa Road EB		45.7	0
Otay Mesa Road WB		44.4	0
SR-905 EB		55.7	0
SR-905 EB Off-Ramp		28.7	0
SR-905 EB On-Ramp		42.0	0

SR-905 WB		58.0	0
SR-905 WB Off-Ramp		47.1	0
SR-905 WB On-Ramp		34.6	0
19 2.FI 64.4	0.0		
Caliente Avenue NB		32.8	0
Caliente Avenue SB		31.8	0
Otay Mesa Road EB		51.1	0
Otay Mesa Road WB		49.5	0
SR-905 EB		60.0	0
SR-905 EB Off-Ramp		27.1	0
SR-905 EB On-Ramp		44.8	0
SR-905 WB		61.5	0
SR-905 WB Off-Ramp		49.4	0
SR-905 WB On-Ramp		32.6	0
19 3.FI 66.6	0.0		
Caliente Avenue NB		34.0	0
Caliente Avenue SB		32.8	0
Otay Mesa Road EB		52.8	0
Otay Mesa Road WB		51.2	0
SR-905 EB		62.3	0
SR-905 EB Off-Ramp		28.3	0
SR-905 EB On-Ramp		47.0	0
SR-905 WB		63.8	0
SR-905 WB Off-Ramp		51.5	0
SR-905 WB On-Ramp	0.0	33.3	0
20 1.Fl 60.1	0.0	25.0	0
Caliente Avenue NB		35.2 34.3	0
Caliente Avenue SB Otay Mesa Road EB		34.3 36.4	0
Otay Mesa Road WB		36.3	0
SR-905 EB		55.4	0
SR-905 EB Off-Ramp		30.9	0
SR-905 EB On-Ramp		43.3	0
SR-905 WB		57.6	0
SR-905 WB Off-Ramp		47.1	0
SR-905 WB On-Ramp		34.0	0
20 2.Fl 63.0	0.0	55	
Caliente Avenue NB		35.4	0
Caliente Avenue SB		34.5	0
Otay Mesa Road EB		38.5	0
Otay Mesa Road WB		38.6	0
SR-905 EB		58.7	0
SR-905 EB Off-Ramp		29.9	0
SR-905 EB On-Ramp		45.2	0
SR-905 WB		60.4	0
SR-905 WB Off-Ramp		49.5	0
SR-905 WB On-Ramp		35.0	0
20 3.Fl 64.1	0.0		
Caliente Avenue NB		37.1	0
Caliente Avenue SB		35.9	0
Otay Mesa Road EB		41.1	0
Otay Mesa Road WB		41.3	0
SR-905 EB		59.8	0
SR-905 EB Off-Ramp		31.9	0
SR-905 EB On-Ramp		46.3	0

SR-905 WB		61.4	0
SR-905 WB Off-Ramp		50.6	0
SR-905 WB On-Ramp		35.6	0
21 1.FI 60.9	0.0		
Caliente Avenue NB		36.9	0
Caliente Avenue SB		36.3	0
Otay Mesa Road EB		36.6	0
Otay Mesa Road WB		36.4	0
SR-905 EB		56.7	0
SR-905 EB Off-Ramp		31.6	0
SR-905 EB On-Ramp		44.5	0
SR-905 WB		58.1	0
SR-905 WB Off-Ramp		48.0	0
SR-905 WB On-Ramp		36.7	0
21 2.FI 63.1	0.0		_
Caliente Avenue NB		37.2	0
Caliente Avenue SB		36.4	0
Otay Mesa Road EB		37.3	0
Otay Mesa Road WB		37.6	0
SR-905 EB		58.8	0
SR-905 EB Off-Ramp		30.6 45.8	0
SR-905 EB On-Ramp SR-905 WB		60.5	0 0
SR-905 WB Off-Ramp		50.1	0
SR-905 WB On-Ramp		36.7	0
21 3.FI 64.1	0.0	00.1	Ū
Caliente Avenue NB	0.0	39.2	0
Caliente Avenue SB		38.4	0
Otay Mesa Road EB		40.5	0
Otay Mesa Road WB		40.4	0
SR-905 EB		59.9	0
SR-905 EB Off-Ramp		33.7	0
SR-905 EB On-Ramp		46.8	0
SR-905 WB		61.5	0
SR-905 WB Off-Ramp		50.9	0
SR-905 WB On-Ramp	0.0	37.5	0
22 1.Fl 61.4	0.0	20.4	0
Caliente Avenue NB		39.1	0
Caliente Avenue SB Otay Mesa Road EB		38.6 35.2	0 0
Otay Mesa Road WB		34.9	0
SR-905 EB		56.4	0
SR-905 EB Off-Ramp		34.0	0
SR-905 EB On-Ramp		43.5	0
SR-905 WB		59.0	0
SR-905 WB Off-Ramp		50.1	0
SR-905 WB On-Ramp		39.0	0
22 2.FI 63.1	0.0		
Caliente Avenue NB		40.4	0
Caliente Avenue SB		39.8	0
Otay Mesa Road EB		37.0	0
Otay Mesa Road WB		36.9	0
SR-905 EB		58.8	0
SR-905 EB Off-Ramp		33.1	0
SR-905 EB On-Ramp		45.0	0

SR-905 WB		60.4	0
SR-905 WB Off-Ramp		50.8	0
SR-905 WB On-Ramp		40.2	0
•	0.0	40.2	U
•	0.0	40.0	0
Caliente Avenue NB		42.0	0
Caliente Avenue SB		41.3	0
Otay Mesa Road EB		39.6	0
Otay Mesa Road WB		39.9	0
SR-905 EB		59.8	0
SR-905 EB Off-Ramp		36.5	0
SR-905 EB On-Ramp		45.9	0
SR-905 WB		61.4	0
SR-905 WB Off-Ramp		51.1	Ö
SR-905 WB On-Ramp		41.2	0
•	0.0	41.2	U
23 1.Fl 64.9	0.0	50.0	0
Caliente Avenue NB		52.3	0
Caliente Avenue SB		51.4	0
Otay Mesa Road EB		56.1	0
Otay Mesa Road WB		54.6	0
SR-905 EB		58.8	0
SR-905 EB Off-Ramp		42.7	0
SR-905 EB On-Ramp		44.8	0
SR-905 WB		60.1	0
SR-905 WB Off-Ramp		52.9	0
SR-905 WB On-Ramp		45.4	0
23 2.Fl 67.9	0.0	40.4	U
Caliente Avenue NB	0.0	53.7	0
Caliente Avenue SB			0
		53.0	0
Otay Mesa Road EB		58.7	0
Otay Mesa Road WB		57.3	0
SR-905 EB		62.1	0
SR-905 EB Off-Ramp		44.5	0
SR-905 EB On-Ramp		46.5	0
SR-905 WB		63.8	0
SR-905 WB Off-Ramp		54.2	0
SR-905 WB On-Ramp		46.8	0
23 3.FI 68.9	0.0		
Caliente Avenue NB		54.4	0
Caliente Avenue SB		53.7	0
Otay Mesa Road EB		59.6	0
Otay Mesa Road WB		58.2	0
SR-905 EB		63.3	0
SR-905 EB Off-Ramp		45.7	0
SR-905 EB On-Ramp		47.3	0
SR-905 WB		64.8	0
SR-905 WB Off-Ramp		54.9	0
SR-905 WB On-Ramp		47.6	0
24 1.Fl 66.4	0.0	47.0	U
Caliente Avenue NB	0.0	50.1	0
_			0
Caliente Avenue SB		49.3	0
Otay Mesa Road EB		53.0	0
Otay Mesa Road WB		51.9	0
SR-905 EB		61.0	0
SR-905 EB Off-Ramp		40.9	0
SR-905 EB On-Ramp		47.7	0

SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 24 2.FI 68.9	0.0	63.0 56.6 43.9	0 0 0
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp	0.0	51.7 50.8 55.9 55.0 63.8 42.7 49.1	0 0 0 0 0
SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 24 3.FI 69.8	0.0	65.6 57.6 45.2	0 0 0
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB	0.0	52.4 51.6 56.7 55.9 64.8 44.0 49.8 66.6	0 0 0 0 0 0
SR-905 WB Off-Ramp SR-905 WB On-Ramp 25 1.Fl 71.9	0.0	58.0 46.1	0
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp		47.8 46.7 28.9 28.6 66.6 42.2 53.0 69.4 62.8 42.2	0 0 0 0 0 0 0
25 2.FI 73.7 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 WB SR-905 WB SR-905 WB Off-Ramp SR-905 WB Off-Ramp	0.0	49.2 48.2 33.6 33.5 68.9 43.9 54.2 71.1 63.7 43.5	0 0 0 0 0 0 0 0 0
25 3.FI 74.5 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp	0.0	49.8 49.0 37.8 37.8 69.7 45.0 54.8	0 0 0 0 0

SR-905 WB		72.0	0
SR-905 WB Off-Ramp		63.6	0
SR-905 WB On-Ramp		44.5	0
26 1.Fl 70.4	0.0	45.4	0
Caliente Avenue NB Caliente Avenue SB		45.1 44.4	0
Otay Mesa Road EB		34.0	0
Otay Mesa Road WB		34.7	0
SR-905 EB		65.3	0
SR-905 EB Off-Ramp		41.0	0
SR-905 EB On-Ramp		51.5	0
SR-905 WB		68.0	0
SR-905 WB Off-Ramp		60.6 27.7	0
SR-905 WB On-Ramp 26 2.FI 72.2	0.0	21.1	U
Caliente Avenue NB	0.0	46.6	0
Caliente Avenue SB		45.7	0
Otay Mesa Road EB		35.3	0
Otay Mesa Road WB		35.5	0
SR-905 EB		67.4	0
SR-905 EB Off-Ramp		42.4	0
SR-905 EB On-Ramp		52.7 69.8	0
SR-905 WB SR-905 WB Off-Ramp		61.5	0
SR-905 WB On-Ramp		25.7	0
26 3.FI 73.0	0.0		
Caliente Avenue NB		47.3	0
Caliente Avenue SB		46.6	0
Otay Mesa Road EB		38.8	0
Otay Mesa Road WB		39.1	0
SR-905 EB SR-905 EB Off-Ramp		68.3 43.3	0
SR-905 EB On-Ramp		53.4	0
SR-905 WB		70.7	0
SR-905 WB Off-Ramp		61.4	0
SR-905 WB On-Ramp		33.1	0
27 1.Fl 70.3	0.0	40.7	_
Caliente Avenue NB		43.7	0
Caliente Avenue SB Otay Mesa Road EB		43.3 33.8	0
Otay Mesa Road WB		34.6	0
SR-905 EB		65.1	0
SR-905 EB Off-Ramp		40.2	0
SR-905 EB On-Ramp		51.5	0
SR-905 WB		68.0	0
SR-905 WB Off-Ramp		59.9	0
SR-905 WB On-Ramp 27 2.FI 72.7	0.0	27.7	0
Caliente Avenue NB	0.0	45.1	0
Caliente Avenue SB		44.4	0
Otay Mesa Road EB		35.9	0
Otay Mesa Road WB		36.0	0
SR-905 EB		68.0	0
SR-905 EB Off-Ramp		41.3	0
SR-905 EB On-Ramp		53.4	0

SD OOF WD		70.4	Λ
SR-905 WB		70.4	0
SR-905 WB Off-Ramp		61.3	0
SR-905 WB On-Ramp		25.4	0
27 3.FI 73.4	0.0		
Caliente Avenue NB		45.9	0
Caliente Avenue SB		45.1	0
Otay Mesa Road EB		38.8	0
Otay Mesa Road WB		39.3	0
SR-905 EB		68.8	0
SR-905 EB Off-Ramp		41.9	0
•			
SR-905 EB On-Ramp		54.0	0
SR-905 WB		71.1	0
SR-905 WB Off-Ramp		61.3	0
SR-905 WB On-Ramp		30.9	0
28 1.FI 70.9	0.0	00.0	Ū
	0.0	40.0	_
Caliente Avenue NB		42.6	0
Caliente Avenue SB		42.1	0
Otay Mesa Road EB		36.4	0
Otay Mesa Road WB		36.2	0
-			
SR-905 EB		65.6	0
SR-905 EB Off-Ramp		40.0	0
SR-905 EB On-Ramp		51.9	0
SR-905 WB		68.8	0
SR-905 WB Off-Ramp		59.4	0
•			
SR-905 WB On-Ramp		26.5	0
28 2.Fl 73.3	0.0		
Caliente Avenue NB		43.9	0
Caliente Avenue SB		43.2	0
Otay Mesa Road EB		37.7	0
Otay Mesa Road WB		36.9	0
-			
SR-905 EB		68.6	0
SR-905 EB Off-Ramp		40.0	0
SR-905 EB On-Ramp		54.0	0
SR-905 WB		71.0	0
SR-905 WB Off-Ramp		61.3	0
•			
SR-905 WB On-Ramp		24.3	0
28 3.FI 73.9	0.0		
Caliente Avenue NB		44.5	0
Caliente Avenue SB		43.8	0
Otay Mesa Road EB		39.0	0
Otay Mesa Road WB		39.5	0
SR-905 EB		69.4	0
SR-905 EB Off-Ramp		40.6	0
SR-905 EB On-Ramp		54.6	0
SR-905 WB		71.6	0
SR-905 WB Off-Ramp		61.3	0
-			
SR-905 WB On-Ramp		26.9	0
29 1.Fl 69.7	0.0		
Caliente Avenue NB		42.9	0
Caliente Avenue SB		42.0	0
Otay Mesa Road EB		41.5	0
-			
Otay Mesa Road WB		41.4	0
SR-905 EB		64.5	0
SR-905 EB Off-Ramp		41.3	0
SR-905 EB On-Ramp		51.0	0
•			

SR-905 WB		67.5	0
SR-905 WB Off-Ramp		58.1	0
SR-905 WB On-Ramp		34.1	0
29 2.Fl 74.0	0.0	40.4	_
Caliente Avenue NB		42.1	0
Caliente Avenue SB Otay Mesa Road EB		41.2 38.1	0
Otay Mesa Road WB		38.0	0
SR-905 EB		69.5	0
SR-905 EB Off-Ramp		38.6	0
SR-905 EB On-Ramp		54.6	0
SR-905 WB		71.7	0
SR-905 WB Off-Ramp		61.2	0
SR-905 WB On-Ramp		30.7	0
29 3.Fl 74.4	0.0	40.0	•
Caliente Avenue NB		43.0	0
Caliente Avenue SB Otay Mesa Road EB		42.0 40.8	0
Otay Mesa Road WB		40.8	0
SR-905 EB		69.9	0
SR-905 EB Off-Ramp		39.3	0
SR-905 EB On-Ramp		55.3	0
SR-905 WB		72.1	0
SR-905 WB Off-Ramp		61.3	0
SR-905 WB On-Ramp		23.4	0
30 1.FI 67.0	0.0	00.4	•
Caliente Avenue NB		20.1	0
Caliente Avenue SB Otay Mesa Road EB		19.2 55.0	0
Otay Mesa Road WB		53.9	0
SR-905 EB		62.2	0
SR-905 EB Off-Ramp		15.9	0
SR-905 EB On-Ramp		48.8	0
SR-905 WB		64.0	0
SR-905 WB Off-Ramp		54.0	0
SR-905 WB On-Ramp	0.0	14.4	0
30 2.Fl 71.5	0.0	06.0	0
Caliente Avenue NB Caliente Avenue SB		26.3 25.5	0
Otay Mesa Road EB		59.6	0
Otay Mesa Road WB		58.7	0
SR-905 EB		66.9	0
SR-905 EB Off-Ramp		22.3	0
SR-905 EB On-Ramp		51.6	0
SR-905 WB		68.3	0
SR-905 WB Off-Ramp		56.8	0
SR-905 WB On-Ramp	0.0	21.2	0
30 3.Fl 72.1	0.0	00.0	0
Caliente Avenue NB Caliente Avenue SB		29.2 28.5	0
Otay Mesa Road EB		60.5	0
Otay Mesa Road WB		59.7	0
SR-905 EB		67.5	0
SR-905 EB Off-Ramp		25.8	0
SR-905 EB On-Ramp		52.3	0

SR-905 WB		69.0	0
SR-905 WB Off-Ramp		57.4	0
SR-905 WB On-Ramp		23.9	0
31 1.Fl 69.2	0.0	50 4	_
Caliente Avenue NB		52.4	0
Caliente Avenue SB Otay Mesa Road EB		51.2 52.4	0
Otay Mesa Road WB		52.4 51.4	0
SR-905 EB		63.3	0
SR-905 EB Off-Ramp		42.1	0
SR-905 EB On-Ramp		49.9	0
SR-905 WB		66.2	0
SR-905 WB Off-Ramp		61.1	0
SR-905 WB On-Ramp		45.5	0
31 2.FI 71.6	0.0	50 F	•
Caliente Avenue NB		53.5	0
Caliente Avenue SB Otay Mesa Road EB		52.6 55.4	0 0
Otay Mesa Road WB		54.5	0
SR-905 EB		66.2	0
SR-905 EB Off-Ramp		44.1	0
SR-905 EB On-Ramp		51.3	0
SR-905 WB		68.6	0
SR-905 WB Off-Ramp		62.5	0
SR-905 WB On-Ramp		47.0	0
31 3.FI 72.4	0.0	54.0	•
Caliente Avenue NB		54.2	0
Caliente Avenue SB Otay Mesa Road EB		53.3 56.3	0
Otay Mesa Road WB		55.5	0
SR-905 EB		67.2	0
SR-905 EB Off-Ramp		45.4	0
SR-905 EB On-Ramp		51.9	0
SR-905 WB		69.5	0
SR-905 WB Off-Ramp		62.4	0
SR-905 WB On-Ramp	0.0	48.0	0
32 1.Fl 67.9	0.0	EO 0	^
Caliente Avenue NB Caliente Avenue SB		59.0 56.7	0
Otay Mesa Road EB		54.3	0
Otay Mesa Road WB		53.5	0
SR-905 EB		60.9	0
SR-905 EB Off-Ramp		44.3	0
SR-905 EB On-Ramp		44.8	0
SR-905 WB		63.8	0
SR-905 WB Off-Ramp		58.1	0
SR-905 WB On-Ramp	0.0	51.4	0
32 2.Fl 70.5	0.0	00.7	^
Caliente Avenue NB Caliente Avenue SB		60.7 58.2	0
Otay Mesa Road EB		56.2 57.1	0
Otay Mesa Road WB		56.2	0
SR-905 EB		64.6	0
SR-905 EB Off-Ramp		45.9	0
SR-905 EB On-Ramp		48.5	0

SR-905 WB		66.3	0
SR-905 WB Off-Ramp SR-905 WB On-Ramp		60.1 51.9	0
32 3.FI 71.5 Caliente Avenue NB	0.0	61.6	0
Caliente Avenue SB		59.3	0
Otay Mesa Road EB		57.9	0
Otay Mesa Road WB SR-905 EB		57.1 65.7	0
SR-905 EB Off-Ramp		47.2	0
SR-905 EB On-Ramp		49.3	0
SR-905 WB SR-905 WB Off-Ramp		67.5 60.5	0
SR-905 WB On-Ramp		52.9	0
33 1.FI 67.6 Caliente Avenue NB	0.0	61.7	0
Caliente Avenue SB		59.2	0
Otay Mesa Road EB		60.6	0
Otay Mesa Road WB SR-905 EB		58.5 57.2	0
SR-905 EB Off-Ramp		43.2	0
SR-905 EB On-Ramp		41.6	0
SR-905 WB SR-905 WB Off-Ramp		59.2 50.4	0
SR-905 WB On-Ramp		48.6	0
33 2.Fl 70.0	0.0	00.0	0
Caliente Avenue NB Caliente Avenue SB		63.6 60.6	0
Otay Mesa Road EB		62.7	0
Otay Mesa Road WB		60.8	0
SR-905 EB SR-905 EB Off-Ramp		61.3 44.5	0
SR-905 EB On-Ramp		44.9	0
SR-905 WB SR-905 WB Off-Ramp		62.4 51.8	0
SR-905 WB On-Ramp		50.0	0
33 3.FI 70.8	0.0		_
Caliente Avenue NB Caliente Avenue SB		63.7 61.6	0
Otay Mesa Road EB		63.7	0
Otay Mesa Road WB		61.7	0
SR-905 EB SR-905 EB Off-Ramp		62.5 45.7	0
SR-905 EB On-Ramp		45.8	0
SR-905 WB		63.5	0
SR-905 WB Off-Ramp SR-905 WB On-Ramp		52.5 50.7	0
34 1.FI 71.2	0.0		
Caliente Avenue NB Caliente Avenue SB		60.4 58.2	0
Otay Mesa Road EB		68.8	0
Otay Mesa Road WB		64.5	0
SR-905 EB SR-905 EB Off-Ramp		55.7 41.5	0
SR-905 EB On-Ramp		40.6	0

SR-905 WB		56.9	0
SR-905 WB Off-Ramp		47.2	0
SR-905 WB On-Ramp		46.5	0
34 2.FI 73.4	0.0		
Caliente Avenue NB		62.0	0
Caliente Avenue SB		59.5	0
Otay Mesa Road EB		71.0	0
Otay Mesa Road WB		66.6	0
SR-905 EB		59.3	0
SR-905 EB Off-Ramp		43.4	0
SR-905 EB On-Ramp		43.5	0
SR-905 WB		60.6	0
SR-905 WB Off-Ramp		48.7	0
SR-905 WB On-Ramp		48.0	0
34 3.Fl 73.9	0.0		
Caliente Avenue NB		62.4	0
Caliente Avenue SB		60.5	0
Otay Mesa Road EB		71.1	0
Otay Mesa Road WB		67.6	0
SR-905 EB		60.8	0
SR-905 EB Off-Ramp		44.6	0
SR-905 EB On-Ramp		44.0	0
SR-905 WB		61.9	0
SR-905 WB Off-Ramp		49.4	0
SR-905 WB On-Ramp		48.7	0
35 1.FI 71.1	0.0	50.0	_
Caliente Avenue NB		53.9	0
Caliente Avenue SB		52.9	0
Otay Mesa Road EB		69.2	0
Otay Mesa Road WB		65.2	0
SR-905 EB		55.3	0
SR-905 EB Off-Ramp		40.4	0
SR-905 EB On-Ramp SR-905 WB		41.5 56.0	0
SR-905 WB Off-Ramp		47.1	0
SR-905 WB On-Ramp		45.1	0
35 2.Fl 73.3	0.0	40.1	U
Caliente Avenue NB	0.0	55.2	0
Caliente Avenue SB		54.2	0
Otay Mesa Road EB		71.3	0
Otay Mesa Road WB		67.3	0
SR-905 EB		58.5	0
SR-905 EB Off-Ramp		42.5	0
SR-905 EB On-Ramp		43.0	0
SR-905 WB		59.8	0
SR-905 WB Off-Ramp		48.7	0
SR-905 WB On-Ramp		46.6	0
35 3.FI 73.9	0.0		
Caliente Avenue NB		56.0	0
Caliente Avenue SB		54.9	0
Otay Mesa Road EB		71.6	0
Otay Mesa Road WB		68.3	0
SR-905 EB		60.3	0
SR-905 EB Off-Ramp		43.6	0
SR-905 EB On-Ramp		44.0	0

SR-905 WB	61.3	0
SR-905 WB Off-Ramp	49.4	0
SR-905 WB On-Ramp	47.5	0

RECON Noise Analysis

ATTACHMENT 6

SoundPLAN Data – Vehicle Traffic Noise, Second-Floor Balconies

		Traffic va	alues				Control	Constr.	Affect.		Gradient
Stationing	ADT	Vehicles	type	Vehicle name	day	•	device	Speed	veh.	Road surface	Min / Max
km	Veh/24h				Veh/h	km/h		km/h	%		%
SR-905 WB		direction:	In entry	direction	FC20					A (-f DCAC DCC)	4 707070700
0+000 0+000	135336	⊢i otai ⊱Automob	viloc	-	5639 4948		none none	-	-	Average (of DGAC and PCC) Average (of DGAC and PCC)	-1.787878788 -1.787878788
0+000		Medium		-	229		none	_	-	Average (of DGAC and PCC)	-1.787878788
0+000		Heavy tru		-	350		none	_	_	Average (of DGAC and PCC)	-1.787878788
0+000	135336	•		-	56		none	_	_	Average (of DGAC and PCC)	-1.787878788
0+000	135336	Motorcyc	eles	-	56	105	none	-	-	Average (of DGAC and PCC)	-1.787878788
0+000	135336	Auxiliary	Vehicle	-	-	-	none	-	-	Average (of DGAC and PCC)	-1.787878788
1+586	-						-	-	-	-	-
SR-905 EB		irection:	In entry of	direction							
0+000	135336			-	5639		none	-	-	Average (of DGAC and PCC)	-0.557377049
0+000 0+000		Automob Medium		-	4948 229		none none	-	-	Average (of DGAC and PCC) Average (of DGAC and PCC)	-0.557377049 -0.557377049
0+000		Heavy tru		-	350		none	_	_	Average (of DGAC and PCC)	-0.557377049
0+000	135336	•	aono	-	56		none	_	_	Average (of DGAC and PCC)	-0.557377049
0+000		Motorcyc	eles	-	56		none	-	-	Average (of DGAC and PCC)	-0.557377049
0+000	135336	Auxiliary	Vehicle	-	-	-	none	-	-	Average (of DGAC and PCC)	-0.557377049
1+590	-						-	-	-	-	-
Otay Mesa R		Traffic d	irection:	In entry direction							
0+000	66048			-	2752		none	-	-	Average (of DGAC and PCC)	-0.6
0+000		Automob		-	2413		none	-	-	Average (of DGAC and DCC)	-0.6
0+000 0+000		Medium Heavy tri		-	112 171		none none	-	-	Average (of DGAC and PCC) Average (of DGAC and PCC)	-0.6 -0.6
0+000		Buses	ucks	-	28		none	-	_	Average (of DGAC and PCC)	-0.6
0+000		Motorcyc	eles	_	28		none	_	_	Average (of DGAC and PCC)	-0.6
0+000		Auxiliary		-	-	-	none	-	-	Average (of DGAC and PCC)	-0.6
0+895	-	•					-	-	-	-	-
Otay Mesa R	Road EB	Traffic di	rection:	In entry direction	n						
0+000	66048			-	2752		none	-	-	Average (of DGAC and PCC)	-1.333333333
0+000		Automob		-	2413		none	-	-	Average (of DGAC and PCC)	-1.333333333
0+000		Medium		-	112 171		none none	-	-	Average (of DGAC and PCC) Average (of DGAC and PCC)	-1.333333333
0+000 0+000		Heavy tru Buses	ucks	-	28		none	_	_	Average (of DGAC and PCC)	-1.333333333 -1.3333333333
0+000		Motorcyc	eles	-	28		none	_	_	Average (of DGAC and PCC)	-1.333333333
0+000		Auxiliary		-	-	-	none	_	_	Average (of DGAC and PCC)	-1.333333333
0+893	-	,					-	-	-	-	-
Caliente Ave	nue NB	Traffic dir	ection:	In entry directio	n						
0+000	42024			-	1751		none	-	-	Average (of DGAC and PCC)	-2.111111111
0+000		Automob		-	1535		none	-	-	Average (of DGAC and PCC)	-2.1111111111
0+000		Medium		-	71		none	-	-	Average (of DGAC and PCC)	-2.1111111111
0+000 0+000		Heavy tru Buses	ucks	-	109 18		none none	-	-	Average (of DGAC and PCC) Average (of DGAC and PCC)	-2.111111111 -2.1111111111
0+000		Motorcyc	des	-	18		none	-	_	Average (of DGAC and PCC)	-2.111111111
0+000		Auxiliary		-	-	-	none	_	_	Average (of DGAC and PCC)	-2.1111111111
0+783	-	,					-	-	-	-	-
Caliente Ave	nue SB	Traffic dir	ection:	In entry directio	n						
0+000		Total		-	1751	-	none	-	-	Average (of DGAC and PCC)	-0.565217391
0+000		Automob		-	1535		none	-	-	Average (of DGAC and PCC)	-0.565217391
0+000		Medium		-	71		none	-	-	Average (of DGAC and PCC)	-0.565217391
0+000 0+000		Heavy true Buses	ucks	-	109 18		none	-	-	Average (of DGAC and PCC) Average (of DGAC and PCC)	-0.565217391
0+000		Motorcyc	عماد	-	18		none none	_	-	Average (of DGAC and PCC)	-0.565217391 -0.565217391
0+000		Auxiliary		_	0	-	none	_	_	Average (of DGAC and PCC)	-0.565217391
0+768	-	,,					-	-	_	-	-
SR-905 WB	Off-Ramp	Traffic	direction:	In entry direct	tion						
0+000	34536			-	1439	-	none	-	-	Average (of DGAC and PCC)	-0.047619048
0+000	34536	Automob	iles	-	1263	48	none	-	-	Average (of DGAC and PCC)	-0.047619048
0+000		Medium		-	59		none	-	-	Average (of DGAC and PCC)	-0.047619048
0+000		Heavy tru	ucks	-	89		none	-	-	Average (of DGAC and PCC)	-0.047619048
0+000 0+000		Buses	slee	-	14 14		none	-	-	Average (of DGAC and PCC) Average (of DGAC and PCC)	-0.047619048
0+000		Motorcyc Auxiliary		-	- 14	- 40	none none	_	_	Average (of DGAC and PCC) Average (of DGAC and PCC)	-0.047619048 -0.047619048
0+638	-	, waniiai y	V CI HOIC				-	_	_	-	-
SR-905 WB	On-Ramp	Traffic	direction:	In entry direc	tion						
0+000	•	Total		-	1439	-	none	-	-	Average (of DGAC and PCC)	-1.035714286
0+000	34536	Automob	iles	-	1263	48	none	-	-	Average (of DGAC and PCC)	-1.035714286
0+000	34536	Medium	trucks	-	59	48	none	-	-	Average (of DGAC and PCC)	-1.035714286

0+000	34536	Heavy trucks	-	89	48 none	-	-	Average (of DGAC and PCC)	-1.035714286
0+000	34536	Buses	-	14	48 none	-	-	Average (of DGAC and PCC)	-1.035714286
0+000	34536	Motorcycles	-	14	48 none	-	-	Average (of DGAC and PCC)	-1.035714286
0+000	34536	Auxiliary Vehicle	-		none	-	-	Average (of DGAC and PCC)	-1.035714286
0+464 -					-	-	-	-	-
SR-905 EB Off-F	Ramp	Traffic direction:	In entry direction	on					
0+000	34536	Total	-	1439 -	none	-	-	Average (of DGAC and PCC)	-0.525
0+000	34536	Automobiles	-	1263	48 none	-	-	Average (of DGAC and PCC)	-0.525
0+000	34536	Medium trucks	-	59	48 none	-	-	Average (of DGAC and PCC)	-0.525
0+000	34536	Heavy trucks	-	89	48 none	-	-	Average (of DGAC and PCC)	-0.525
0+000	34536	Buses	-	14	48 none	-	-	Average (of DGAC and PCC)	-0.525
0+000	34536	Motorcycles	-	14	48 none	-	-	Average (of DGAC and PCC)	-0.525
0+000	34536	Auxiliary Vehicle	-		none	-	-	Average (of DGAC and PCC)	-0.525
0+488 -					-	-	-	-	-
SR-905 EB On-F	Ramp	Traffic direction:	In entry direction	on					
0+000	34536	Total	-	1439 -	none	-	-	Average (of DGAC and PCC)	-9
0+000	34536	Automobiles	-	1263	48 none	-	-	Average (of DGAC and PCC)	-9
0+000	34536	Medium trucks	-	59	48 none	-	-	Average (of DGAC and PCC)	-9
0+000	34536	Heavy trucks	-	89	48 none	-	-	Average (of DGAC and PCC)	-9
0+000	34536	Buses	-	14	48 none	-	-	Average (of DGAC and PCC)	-9
0+000	34536	Motorcycles	-	14	48 none	-	-	Average (of DGAC and PCC)	-9
0+000	34536	Auxiliary Vehicle	-		none	-	-	Average (of DGAC and PCC)	-9
0+575 -					-	-	-	-	-

	Coordinates			Limit	Level w/o NP	Level w. NP	Difference	Conflict
No.	X Y	Floor	Height	L(Aeq1h)	L(Aeq1h)	L(Aeq1h)	L(Aeq1h)	L(Aeq1h)
	in meter		m	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)
1	498,843.10 3,603,409.36	1.FI	165.92	-	73.9	0	-73.9	-
2	498,846.94 3,603,401.40	1.FI	165.92	-	65.6	0	-65.6	-
3	498,846.34 3,603,392.95	1.FI	165.92	-	63.4	0	-63.4	-
4	498,846.74 3,603,388.59	1.FI	165.92	-	59.0	0	-59.0	-
5	498,846.34 3,603,381.03	1.FI	165.92	-	56.9	0	-56.9	-
6	498,845.18 3,603,370.91	1.FI	165.92	-	62.3	0	-62.3	-
7	498,832.49 3,603,371.03	1.FI	165.92	-	66.3	0	-66.3	-
8	498,859.51 3,603,406.84	1.FI	165.98	-	73.9	0	-73.9	-
9	498,855.83 3,603,398.60	1.FI	165.97	-	63.3	0	-63.3	-
10	498,855.87 3,603,392.08	1.FI	165.97	-	61.1	0	-61.1	-
11	498,855.95 3,603,384.56	1.FI	165.97	-	56.0	0	-56.0	-
12	498,856.99 3,603,374.87	1.FI	165.98	-	63.6	0	-63.6	-
13 14	498,869.71 3,603,374.87	1.FI	165.98	-	60.6 74.2	0	-60.6	-
15	498,889.60 3,603,406.72 498,893.20 3,603,398.39	1.FI 1.FI	166.17	-	65.1	0	-74.2 -65.1	-
16		1.FI 1.FI	166.19 166.19	-	64.1	0 0	-63.1 -64.1	-
17	498,893.28 3,603,391.87 498,892.80 3,603,384.63	1.FI	166.19	-	58.0	0	-54.1 -58.0	-
18	498,891.76 3,603,374.51	1.FI 1.FI	166.19	-	60.4	0	-60.4	-
19	498,879.20 3,603,374.59	1.FI	166.19	-	63.3	0	-63.3	-
20	498,906.01 3,603,404.04	1.FI	166.13	-	73.8	0	-03.3 -73.8	-
21	498,902.33 3,603,395.64	1.FI	166.14	-	63.0	0	-63.0	_
22	498,902.37 3,603,389.03	1.FI	166.14	-	60.9	0	-60.9	-
23	498,902.49 3,603,381.67	1.FI	166.14	-	55.5	0	-55.5	-
24	498,903.57 3,603,371.95	1.FI	166.13	-	61.1	0	-61.1	-
25	498,916.26 3,603,372.03	1.FI	166.13	_	57.7	0	-57.7	-
26	498,936.45 3,603,404.17	1.FI	165.78	_	74.3	0	-74.3	<u>-</u>
27	498,939.97 3,603,395.89	1.FI	165.80	-	63.6	0	-63.6	_
28	498,940.01 3,603,389.36	1.FI	165.80	_	61.7	0	-61.7	_
29	498,939.69 3,603,381.88	1.FI	165.80	_	56.3	0	-56.3	_
30	498,938.85 3,603,372.08	1.FI	165.80	_	57.9	Ö	-57.9	_
31	498,926.25 3,603,372.04	1.FI	165.80	_	60.2	0	-60.2	_
32	498,952.90 3,603,403.66	1.FI	165.63	_	74.2	Ö	-74.2	_
33	498,949.34 3,603,395.13	1.FI	165.75	_	63.9	0	-63.9	_
34	498,949.26 3,603,388.77	1.FI	165.75	-	62.1	0	-62.1	_
35	498,949.38 3,603,381.41	1.FI	165.75	-	56.6	0	-56.6	_
36	498,950.50 3,603,371.32	1.FI	165.74	-	58.5	0	-58.5	-
37	498,963.27 3,603,371.52	1.FI	165.73	-	58.3	0	-58.3	-
38	498,983.60 3,603,401.25	1.FI	165.22	-	73.8	0	-73.8	-
39	498,987.04 3,603,393.09	1.FI	165.25	-	64.3	0	-64.3	-
40	498,987.12 3,603,386.69	1.FI	165.25	-	62.4	0	-62.4	-
41	498,986.84 3,603,379.29	1.FI	165.25	-	56.9	0	-56.9	-
42	498,985.92 3,603,369.48	1.FI	165.25	-	57.5	0	- 57.5	-
43	498,973.19 3,603,369.48	1.FI	165.25	-	58.1	0	-58.1	-
44	499,000.17 3,603,399.63	1.FI	165.17	-	73.6	0	-73.6	-
45	498,996.41 3,603,391.11	1.FI	165.20	-	64.5	0	-64.5	-
46	498,996.61 3,603,383.63	1.FI	165.20	-	59.6	0	-59.6	-
47	498,997.69 3,603,373.62	1.FI	165.19	-	58.3	0	-58.3	-
48	499,010.41 3,603,373.70	1.FI	165.19	-	61.5	0	-61.5	-
49	499,030.31 3,603,399.22	1.FI	164.84	-	73.8	0	-73.8	-
50	499,033.75 3,603,390.82	1.FI	164.85	-	64.0	0	-64.0	-
51	499,033.47 3,603,383.42	1.FI	164.85	-	58.5	0	-58.5	-
52	499,032.55 3,603,373.69	1.FI	164.85	-	62.4	0	-62.4	-
53	499,019.82 3,603,373.29	1.FI	164.85	-	60.5	0	-60.5	-
54	499,046.66 3,603,397.81	1.FI	164.79	-	73.5	0	-73.5	-
55	499,043.02 3,603,389.25	1.FI	164.81	-	63.6	0	-63.6	-
56	499,042.94 3,603,381.81	1.FI	164.82	-	59.9	0	-59.9	-
57	499,043.90 3,603,371.96	1.FI	164.79	-	61.5	0	-61.5	-
58	499,056.83 3,603,371.96	1.FI	164.79	-	66.1	0	-66.1	-
59	499,051.75 3,603,341.78	1.FI	165.06	-	64.7	0	-64.7	-
60	499,043.39 3,603,338.06	1.FI	165.11	-	59.0	0	-59.0	-

61	499,035.82	3,603,338.42	1.FI	165.12	-	56.2	0	-56.2	-
62		3,603,339.42	1.Fl	165.12	-	61.1	0	-61.1	_
63		3,603,352.26	1.FI	165.12	_	59.3	0	-59.3	_
64		3,603,352.14	1.FI	165.67	_	61.6	0	-61.6	_
65		3,603,339.50	1.FI	165.67		60.5	0	-60.5	
					-				-
66		3,603,338.14	1.FI	165.67	-	55.2	0	-55.2	-
67	•	3,603,338.02	1.FI	165.67	-	55.3	0	-55.3	-
68	498,983.98	3,603,338.46	1.Fl	165.67	-	55.1	0	-55.1	-
69	498,975.90	3,603,338.22	1.FI	165.67	-	55.2	0	-55.2	-
70	498,967.30	3,603,341.66	1.Fl	165.67	-	55.3	0	-55.3	-
71	498,960.37	3,603,341.74	1.Fl	166.01	-	57.1	0	-57.1	-
72	498.951.97	3,603,337.70	1.Fl	166.01	-	55.0	0	-55.0	_
73		3,603,338.06	1.FI	166.01	_	54.7	0	-54.7	_
74		3,603,338.30	1.FI	166.01	_	54.4	0	-54.4	_
75		3,603,339.34	1.FI	166.01	_	58.6	0	-58.6	_
					_	59.7	0		_
76 77	•	3,603,351.94	1.FI	166.01	-			-59.7	-
77		3,603,352.14	1.FI	166.19	-	59.7	0	-59.7	-
78	•	3,603,339.38	1.FI	166.19	-	57.7	0	-57.7	-
79	498,905.92	3,603,338.34	1.Fl	166.19	-	54.3	0	-54.3	-
80	498,898.47	3,603,338.26	1.FI	166.19	-	55.3	0	-55.3	-
81	498,892.07	3,603,338.26	1.Fl	166.19	-	54.9	0	-54.9	-
82	498,883.87	3,603,341.86	1.Fl	166.19	-	59.4	0	-59.4	-
83		3,603,324.61	1.Fl	166.19	_	58.9	0	-58.9	_
84		3,603,328.33	1.FI	166.19	_	57.4	0	-57.4	_
85		3,603,327.81	1.FI	166.19	_	56.5	0	-56.5	_
					_				_
86	•	3,603,328.29	1.FI	166.19	-	54.6	0	-54.6	-
87		3,603,328.13	1.FI	166.19	-	54.6	0	-54.6	-
88	•	3,603,327.17	1.FI	166.19	-	58.4	0	-58.4	-
89		3,603,314.21	1.FI	166.19	-	62.5	0	-62.5	-
90	498,928.32	3,603,314.25	1.Fl	166.01	-	56.6	0	-56.6	-
91	498,928.16	3,603,327.33	1.FI	166.01	-	57.4	0	-57.4	-
92	498,938.21	3,603,328.09	1.Fl	166.01	-	54.9	0	-54.9	-
93	498,945.61	3,603,328.29	1.FI	166.01	-	54.7	0	-54.7	-
94		3,603,328.29	1.Fl	166.01	_	54.6	0	-54.6	_
95	•	3,603,324.53	1.FI	166.01	_	56.3	0	-56.3	_
96		3,603,324.73	1.FI	165.67	_	55.5	0	-55.5	_
97	•	3,603,328.21	1.FI	165.67	_	54.8	0	-54.8	_
98	•		1.FI		-	54.9	0	-54.9	_
		3,603,327.73		165.67	-				-
99		3,603,328.25	1.FI	165.67	-	55.0	0	-55.0	-
100		3,603,328.13	1.FI	165.67	-	55.5	0	-55.5	-
101		3,603,327.13	1.FI	165.67	-	60.4	0	-60.4	-
102		3,603,314.21	1.FI	165.67	-	65.2	0	-65.2	-
103	499,025.08	3,603,314.21	1.FI	165.12	-	65.3	0	-65.3	-
104	499,024.84	3,603,326.97	1.FI	165.12	-	58.6	0	-58.6	-
105	499,034.84	3,603,328.21	1.FI	165.12	_	56.4	0	-56.4	-
106		3,603,328.21	1.FI	165.12	_	57.0	0	-57.0	_
107		3,603,327.69	1.FI	165.06	_	60.2	0	-60.2	_
108		3,603,328.25	1.FI	165.06		61.9	0	-61.9	
100			1.FI		_	65.4		-65.4	-
		3,603,324.73		165.06	-		0		-
110		3,603,302.93	1.FI	165.76	-	62.5	0	-62.5	-
111		3,603,294.56	1.FI	165.76	-	59.6	0	-59.6	-
112		3,603,287.96	1.FI	165.76	-	62.1	0	-62.1	-
113		3,603,280.48	1.FI	165.76	-	64.0	0	-64.0	-
114	499,051.04	3,603,270.75	1.FI	165.76	-	74.5	0	-74.5	-
115	499,063.69	3,603,270.79	1.FI	165.76	-	74.9	0	-74.9	-
116	499,025.96	3,603,270.83	1.FI	165.70	-	74.1	0	-74.1	-
117		3,603,270.75	1.FI	165.70	_	74.8	0	-74.8	-
118	•	3,603,280.68	1.FI	165.70	_	63.7	0	-63.7	_
119		3,603,287.92	1.FI	165.70	_	61.1	0	-61.1	_
120		3,603,294.40	1.FI	165.70	_	58.6	0	-58.6	_
121		3,603,303.13	1.FI	165.70	_	60.4	0	-60.4	
	•				-				-
122		3,603,270.07	1.FI	165.70	-	74.4	0	-74.4	-
123	498,993.79	3,603,270.03	1.FI	165.70	-	73.9	0	-73.9	-

124	498,992.71 3,603,280.04	1.FI	165.70	-	62.7	0	-62.7	-
125	498,992.59 3,603,287.48	1.FI	165.70	-	60.3	0	-60.3	-
126	498,992.59 3,603,293.72	1.FI	165.70	-	57.6	0	-57.6	-
127	498,995.91 3,603,302.28	1.FI	165.70	-	58.1	0	-58.1	-
128	498,979.06 3,603,302.12	1.FI	165.76	-	57.4	0	-57.4	-
129	498,982.86 3,603,293.60	1.FI	165.76	-	57.8	0	-57.8	-
130	498,982.82 3,603,287.16	1.FI	165.76	-	63.1	0	-63.1	-
131	498,982.46 3,603,279.88	1.FI	165.76	-	63.6	0	-63.6	-
132	498,981.38 3,603,269.87	1.FI	165.76	-	74.2	0	-74.2	-
133	498,968.78 3,603,269.99	1.FI	165.76	-	73.6	0	-73.6	-
134	498,959.29 3,603,269.99	1.FI	165.76	-	73.9	0	-73.9	-
135	498,946.65 3,603,269.79	1.FI	165.76	-	73.5	0	-73.5	-
136	498,945.69 3,603,279.80	1.FI	165.76	-	62.0	0	-62.0	-
137	498,945.45 3,603,287.24	1.FI	165.76	-	60.4	0	-60.4	-
138	498,945.57 3,603,293.68	1.FI	165.76	-	57.7	0	-57.7	-
139	498,949.01 3,603,302.12	1.FI	165.76	-	57.2	0	-57.2	-
140	498,931.93 3,603,302.20	1.FI	165.70	-	56.3	0	-56.3	-
141	498,935.93 3,603,293.68	1.FI	165.70	-	58.3	0	-58.3	-
142	498,935.73 3,603,287.12	1.FI	165.70	-	61.7	0	-61.7	-
143	498,935.49 3,603,279.76	1.FI	165.70	-	63.0	0	-63.0	-
144	498,934.21 3,603,269.91	1.FI	165.70	-	73.8	0	-73.8	-
145	498,921.60 3,603,269.95	1.FI	165.70	-	73.2	0	-73.2	-
146	498,912.32 3,603,270.03	1.FI	165.86	-	73.5	0	-73.5	-
147	498,899.71 3,603,269.99	1.FI	165.86	-	73.1	0	-73.1	-
148	498,898.71 3,603,279.96	1.FI	165.86	-	62.2	0	-62.2	-
149	498,898.55 3,603,287.32	1.FI	165.86	-	60.1	0	-60.1	-
150	498,898.55 3,603,293.52	1.FI	165.86	-	57.4	0	-57.4	-
151	498,902.04 3,603,302.53	1.FI	165.86	-	56.8	0	-56.8	-
152	498,884.87 3,603,302.28	1.FI	165.92	-	57.9	0	-57.9	-
153	498,888.71 3,603,293.64	1.FI	165.91	-	58.3	0	-58.3	-
154	498,888.75 3,603,287.24	1.FI	165.91	-	63.0	0	-63.0	-
155	498,888.35 3,603,279.80	1.FI	165.92	-	63.4	0	-63.4	-
156	498,887.27 3,603,269.87	1.FI	165.92	-	73.3	0	-73.3	-
157	498,874.67 3,603,270.03	1.FI	165.92	-	72.8	0	-72.8	-
158	498,856.62 3,603,282.64	1.FI	166.16	-	63.4	0	-63.4	-
159	498,856.62 3,603,269.99	1.FI	166.16	-	72.6	0	-72.6	-
160	498,846.62 3,603,268.75	1.FI	166.16	-	69.7	0	-69.7	-
161	498,839.13 3,603,268.87	1.FI	166.16	-	69.7	0	-69.7	-
162	498,831.01 3,603,272.35	1.FI	166.16	-	67.2	0	-67.2	-
163	498,830.93 3,603,302.81		166.80	-	65.5	0	-65.5	-
164	498,839.17 3,603,306.77	1.FI	166.80	-	60.3	0	-60.3	-
165	498,846.58 3,603,306.61	1.FI	166.80	-	57.9	0	-57.9	-
166	498,856.70 3,603,305.37	1.FI	166.80	-	62.8	0	-62.8	-
167	498,856.58 3,603,292.44	1.FI	166.80	-	67.5	0	-67.5	-
168	498,863.06 3,603,330.41	1.FI	166.65	-	59.5	0	-59.5	-
169	498,863.30 3,603,317.49	1.FI	166.65	-	65.4	0	-65.4	-
170	498,853.30 3,603,316.37	1.FI	166.65	-	60.6	0	-60.6	-
171	498,845.70 3,603,316.41	1.FI	166.65	-	57.8	0	-57.8	-
172	498,839.25 3,603,316.33	1.FI	166.65	-	60.4	0	-60.4	-
173	498,831.01 3,603,319.81	1.FI	166.65	-	65.2	0	-65.2	-

Source name	Lane	Level w/o NP L(Aeq1h)
		dB(A)
1 1.Fl 73.9	0.0	
Caliente Avenue NB		46.0
Caliente Avenue SB		45.3
Otay Mesa Road EB		72.3
Otay Mesa Road WB		68.6
SR-905 EB		45.9
SR-905 EB Off-Ramp		32.1 31.2
SR-905 EB On-Ramp SR-905 WB		46.6
SR-905 WB Off-Ramp		34.3
SR-905 WB On-Ramp		33.9
2 1.Fl 65.6	0.0	55.9
Caliente Avenue NB	0.0	41.8
Caliente Avenue SB		41.4
Otay Mesa Road EB		63.5
Otay Mesa Road WB		60.7
SR-905 EB		49.5
SR-905 EB Off-Ramp		36.4
SR-905 EB On-Ramp		35.4
SR-905 WB		49.5
SR-905 WB Off-Ramp		37.7
SR-905 WB On-Ramp		36.1
3 1.FI 63.4	0.0	
Caliente Avenue NB		43.8
Caliente Avenue SB		41.7
Otay Mesa Road EB		60.8
Otay Mesa Road WB		58.2
SR-905 EB		51.0
SR-905 EB Off-Ramp		36.1
SR-905 EB On-Ramp		37.5
SR-905 WB SR-905 WB Off-Ramp		51.5 40.0
SR-905 WB On-Ramp		38.2
4 1.Fl 59.0	0.0	00.2
Caliente Avenue NB	0.0	43.1
Caliente Avenue SB		41.4
Otay Mesa Road EB		53.8
Otay Mesa Road WB		52.2
SR-905 EB		52.2
SR-905 EB Off-Ramp		35.7
SR-905 EB On-Ramp		38.8
SR-905 WB		52.2
SR-905 WB Off-Ramp		42.0
SR-905 WB On-Ramp		36.8
5 1.Fl 56.9	0.0	40.0
Caliente Avenue NB		42.6
Caliente Avenue SB		41.5
Otay Mesa Road EB		49.7 48.0
Otay Mesa Road WB SR-905 EB		48.9 50.9
SR-905 EB Off-Ramp		36.6
SR-905 EB On-Ramp		36.6
		· -

SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp		51.5 40.5 36.0
6 1.Fl 62.3 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB	0.0	46.1 45.1 51.3 50.5 57.4
SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp		40.0 43.4 58.6 48.7 35.8
7 1.FI 66.3 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB	0.0	53.0 52.3 55.4 52.7
SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp		61.2 44.5 45.9 62.5 52.1 46.8
SR-905 WB On-Ramp 8 1.Fl 73.9 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB	0.0	46.3 45.4 72.4 68.5
SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp		45.8 31.4 31.2 46.5 34.1
SR-905 WB On-Ramp 9 1.Fl 63.3 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB	0.0	34.1 40.5 39.7 61.2
Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB		58.3 47.9 33.3 34.0 48.6
SR-905 WB Off-Ramp SR-905 WB On-Ramp 10 1.FI 61.1 Caliente Avenue NB Caliente Avenue SB	0.0	36.7 35.0 40.3 39.7
Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp		58.6 55.8 48.2 33.3 34.4

SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 11 1.FI 56.0	0.0	48.6 37.4 35.4
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB Off-Ramp SR-905 WB On-Ramp 12 1.FI 63.6	0.0	39.7 39.0 50.1 49.2 49.2 32.7 36.1 49.9 38.7 35.3
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB	0.0	48.9 48.0 51.2 50.5 59.1 42.5 43.4 59.8
SR-905 WB Off-Ramp SR-905 WB On-Ramp 13 1.Fl 60.6 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp	0.0	49.5 41.8 44.4 43.3 51.7 51.1 55.1 35.0
SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 14 1.Fl 74.2 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB	0.0	42.8 56.4 46.6 36.1 44.6 43.9 72.8
Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 15 1.FI 65.1	0.0	68.7 45.2 29.9 31.3 46.0 33.9 32.4
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp		41.5 40.2 62.9 60.1 49.3 35.6 36.1

SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 16 1.FI 64.1	0.0	49.8 37.6 35.8
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB Off-Ramp SR-905 WB On-Ramp	0.0	41.5 39.8 61.9 59.0 49.7 35.7 36.5 50.1 37.8 36.5
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp	0.0	41.7 40.5 52.0 51.0 51.1 37.1 36.4 52.1 40.3
SR-905 WB On-Ramp 18 1.FI 60.4 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp	0.0	45.6 44.7 53.0 52.2 54.3 38.5
SR-905 EB On-Ramp SR-905 WB Off-Ramp SR-905 WB On-Ramp 19 1.FI 63.3 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB	0.0	39.7 55.3 44.5 39.9 48.9 48.4 51.8
SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 20 1.Fl 73.8	0.0	58.4 43.0 41.4 59.5 48.9 44.8
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp		44.2 43.7 72.4 68.4 46.3 30.6 32.8

SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 21 1.FI 63.0	0.0	46.8 35.0 32.6
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB Off-Ramp SR-905 WB On-Ramp 22 1.FI 60.9	0.0	38.5 37.2 60.7 58.2 47.7 31.8 35.0 48.5 37.0 33.2
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB Off-Ramp	0.0	38.7 37.4 58.5 55.6 48.1 33.2 34.9 48.6 37.1 33.2
23 1.FI 55.5 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB	0.0	37.8 36.8 50.0 49.5 48.2 32.0 35.4 48.9 37.3
SR-905 WB On-Ramp 24 1.FI 61.1 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 WB On-Ramp SR-905 WB On-Ramp	0.0	34.2 47.5 46.9 52.6 51.7 55.4 40.9 37.4 56.5 43.8
SR-905 WB On-Ramp 25 1.FI 57.7 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp	0.0	44.5 40.8 39.8 50.8 50.3 51.3 33.5 38.4

SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 26 1.Fl 74.3	0.0	52.5 40.5 34.5
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB Off-Ramp SR-905 WB On-Ramp 1.FI 63.6	0.0	42.2 41.4 72.8 68.8 46.5 30.3 33.0 47.2 35.6 31.0
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 WB SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp	0.0	41.2 40.2 61.5 58.5 49.2 33.6 36.3 49.6 37.6 35.2
28 1.FI 61.7 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB	0.0	39.0 37.7 59.3 56.5 49.1 33.6 36.2 49.7 37.6
SR-905 WB On-Ramp 29 1.FI 56.3 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 WB SR-905 WB SR-905 WB Off-Ramp	0.0	34.7 38.7 37.6 50.7 50.1 49.0 33.1 36.0 49.8 38.0
SR-905 WB On-Ramp 30 1.FI 57.9 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp	0.0	33.7 40.4 38.9 52.2 51.6 50.7 33.1 37.6

SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 31 1.FI 60.2	0.0	52.0 39.8 35.5
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB Off-Ramp SR-905 WB Off-Ramp	0.0	44.8 44.0 49.4 48.9 55.0 38.5 39.5 56.4 44.4 42.7
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp	0.0	41.4 40.8 72.7 68.7 46.7 29.3 33.0
SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 33 1.FI 63.9	0.0	47.3 35.7 30.3
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp		37.9 37.1 61.8 59.0 48.0 30.6 35.3 48.7 37.2 31.3
SR-905 WB On-Ramp 34 1.Fl 62.1 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 WB SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp	0.0	31.3 38.2 37.0 59.7 57.3 48.2 31.1 35.5 48.9 37.6 32.0
35 1.FI 56.6 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp	0.0	37.0 36.1 51.9 51.0 48.5 31.9 36.1

SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 36 1.FI 58.5	0.0	49.3 38.0 32.2
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB Off-Ramp SR-905 WB On-Ramp 37 1.FI 58.3	0.0	43.4 42.7 51.2 50.7 52.2 36.8 37.4 53.5 39.3 42.1
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB Off-Ramp	0.0	39.4 38.4 49.9 49.6 52.7 32.4 39.6 54.1 42.1 35.7
38 1.FI 73.8 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp	0.0	39.8 39.2 72.2 68.4 46.2 28.2 33.5 46.9 35.2
SR-905 WB On-Ramp 39 1.Fl 64.3 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 WB Off-Ramp SR-905 WB Off-Ramp	0.0	30.5 38.3 37.6 62.1 59.5 48.5 32.0 35.2 48.8 37.0
SR-905 WB On-Ramp 40 1.FI 62.4 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp	0.0	33.3 36.2 35.1 59.9 57.7 48.1 30.9 35.4

SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 41 1.FI 56.9	0.0	49.1 37.3 33.2
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB Off-Ramp SR-905 WB On-Ramp 42 1.FI 57.5	0.0	36.9 35.2 52.5 51.5 48.3 30.1 35.9 49.2 37.7 32.0
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 WB SR-905 WB SR-905 WB	0.0	37.9 36.4 52.9 51.9 49.0 27.6 36.3 50.5 38.7
SR-905 WB On-Ramp 43 1.FI 58.1 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp	0.0	27.1 42.1 41.6 51.5 50.7 50.7 35.1 36.2
SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 44 1.FI 73.6 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB	0.0	30.2 53.3 38.8 40.7 39.7 38.7 72.1 68.3 46.6
SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 45 1.Fl 64.5 Caliente Avenue NB	0.0	29.9 33.1 47.3 35.8 30.8
Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp		36.2 62.6 59.4 48.0 30.4 35.6

SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 46 1.FI 59.6	0.0	48.6 37.4 29.8
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp A7 1.FI 58.3	0.0	37.2 35.5 56.8 54.3 48.2 29.8 35.7 49.0 37.8 30.9
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 WB SR-905 WB SR-905 WB	0.0	37.7 36.6 53.8 52.4 50.2 29.9 37.5 51.2 39.6
SR-905 WB On-Ramp 48 1.Fl 61.5 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp	0.0	30.9 36.9 35.4 52.7 51.3 56.3 27.3
SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 49 1.Fl 73.8 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB	0.0	42.5 57.8 44.8 31.9 39.5 38.2 72.2 68.4 46.6
SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 50 1.Fl 64.0 Caliente Avenue NB	0.0	29.8 33.1 47.4 35.8 30.9
Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp		36.2 61.8 59.3 47.8 27.5 35.3

SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 51 1.FI 58.5	0.0	48.5 37.4 28.4
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB Off-Ramp SR-905 WB On-Ramp	0.0	35.9 34.4 54.9 53.4 48.9 28.1 36.3 49.4 38.3 28.4
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp	0.0	36.0 34.8 54.4 53.1 57.2 29.1 38.2 58.5 45.5
SR-905 WB On-Ramp 53 1.FI 60.5 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB	0.0	32.9 38.6 38.0 51.2 50.4 55.4 31.5 42.7 56.6
SR-905 WB Off-Ramp SR-905 WB On-Ramp 54 1.Fl 73.5 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB	0.0	45.2 34.4 38.5 37.9 71.9 68.2 46.6 29.1 32.9 47.5
SR-905 WB Off-Ramp SR-905 WB On-Ramp 55 1.FI 63.6 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp	0.0	35.8 30.4 36.8 35.5 61.2 59.0 48.3 30.3 35.0

SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 56 1.FI 59.9	0.0	49.1 37.8 30.8
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB Off-Ramp	0.0	36.3 34.8 56.6 55.1 49.0 30.2 35.2 50.0 38.3 31.5
57 1.FI 61.5 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp	0.0	38.6 38.0 53.2 52.0 56.6 32.1
SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 58 1.FI 66.1 Caliente Avenue NB	0.0	40.3 57.3 45.3 36.7
Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp		31.7 60.0 57.3 60.2 24.5 44.9
SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 59 1.FI 64.7 Caliente Avenue NB Caliente Avenue SB	0.0	61.3 49.0 24.9 30.9 29.8
Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp		59.8 58.0 57.2 25.2 38.3 58.8 45.7 26.3
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp	0.0	35.0 34.0 54.0 53.4 51.0 29.1 36.5

SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 61 1.FI 56.2	0.0	52.3 39.9 30.9
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 WB SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp SR-905 WB On-Ramp	0.0	35.2 34.4 50.8 50.0 49.0 29.7 36.1 50.0 39.1 30.8
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB	0.0	37.3 36.2 50.3 49.7 56.4 30.6 43.4 57.7
SR-905 WB Off-Ramp SR-905 WB On-Ramp 63 1.Fl 59.3 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp	0.0	46.2 31.7 39.3 38.4 53.5 52.8 52.3 33.1
SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 64 1.FI 61.6 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB	0.0	39.4 53.5 41.9 35.9 36.7 35.3 57.7 56.1
SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 65 1.FI 60.5	0.0	52.9 30.8 39.0 53.8 42.0 31.1
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp		35.3 34.6 50.7 50.0 55.6 31.7 42.6

SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 66 1.FI 55.2	0.0	56.9 45.5 32.1
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp	0.0	35.9 34.9 47.3 47.2 49.4 29.0
SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 67 1.FI 55.3	0.0	36.4 50.5 39.3 30.8
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB		36.5 35.6 46.8 46.7 49.8
SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 68 1.FI 55.1	0.0	29.9 36.9 50.9 39.8 31.5
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB	0.0	36.8 35.7 46.9 46.7 49.6
SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp		29.6 36.6 50.6 39.6 31.8
69 1.Fl 55.2 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB	0.0	36.7 35.6 46.4 46.3 49.8
SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 70 1.FI 55.3	0.0	30.7 36.8 50.9 39.9 31.9
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp		37.5 36.4 47.2 47.1 49.7 31.2
SR-905 EB On-Ramp		36.8

SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 71 1.FI 57.1	0.0	50.6 39.9 32.6
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp T2 1.FI 55.0	0.0	39.5 38.5 50.3 50.0 50.8 34.8 37.5 51.7 40.4 34.7
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp	0.0	37.5 36.3 46.3 46.2 49.6 29.6 37.0 50.7 39.6
SR-905 WB On-Ramp 73 1.Fl 54.7 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp	0.0	32.1 36.9 36.0 45.9 45.7 49.3 30.2 36.4
SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 74 1.FI 54.4 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB	0.0	50.4 39.4 32.7 37.2 36.0 46.4 46.5 48.6 29.6
SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 75 1.FI 58.6 Caliente Avenue NB	0.0	35.8 49.7 38.7 32.1 40.5
Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp		39.9 47.6 47.4 53.7 32.1 40.6

SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 76 1.FI 59.7	0.0	55.0 44.8 34.3
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 77 1.FI 59.7	0.0	43.5 42.7 54.2 53.1 52.2 36.6 37.8 53.4 42.7 37.4
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp	0.0	41.5 40.1 55.5 54.5 50.5 34.7 37.5 51.3 39.9
SR-905 WB On-Ramp 78 1.FI 57.7 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB	0.0	34.2 41.0 39.6 48.4 48.4 52.3 34.7 38.8 53.5
SR-905 WB Off-Ramp SR-905 WB On-Ramp 79 1.Fl 54.3 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB	0.0	38.5 36.9 46.0 45.9 48.7 29.9 35.6 49.6
SR-905 WB Off-Ramp SR-905 WB On-Ramp 80 1.Fl 55.3 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp	0.0	38.7 32.1 40.2 39.2 47.6 46.9 49.4 31.0 36.4

SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 81 1.FI 54.9	0.0	50.4 39.7 32.6
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB Off-Ramp SR-905 WB On-Ramp	0.0	39.6 38.4 45.9 45.7 49.4 31.3 36.6 50.4 39.8 32.6
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp	0.0	48.8 48.2 49.8 47.4 53.1 38.8 37.0 55.2 41.8
SR-905 WB On-Ramp 83 1.FI 58.9 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB	0.0	44.0 43.8 43.4 53.1 51.8 51.6 33.3 38.7 53.0 43.4
SR-905 WB On-Ramp 84 1.FI 57.4 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 WB SR-905 WB SR-905 WB SR-905 WB Off-Ramp	0.0	31.6 43.1 42.3 50.2 49.6 51.4 34.8 37.6 51.9 42.2
SR-905 WB On-Ramp 85 1.FI 56.5 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp	0.0	32.3 42.6 41.6 49.1 48.4 50.4 34.3 36.2

SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 86 1.FI 54.6	0.0	51.4 41.3 32.1
Caliente Avenue NB	0.0	41.0
Caliente Avenue SB		39.8
Otay Mesa Road EB		46.1
Otay Mesa Road WB		45.0
SR-905 EB		49.0
SR-905 EB Off-Ramp		31.3
SR-905 EB On-Ramp		36.1
SR-905 WB		49.9
SR-905 WB Off-Ramp		39.6
SR-905 WB On-Ramp		32.2
87 1.FI 54.6	0.0	20.7
Caliente Avenue NB		38.7
Caliente Avenue SB		37.7
Otay Mesa Road EB Otay Mesa Road WB		44.6 44.6
SR-905 EB		49.5
SR-905 EB Off-Ramp		31.5
SR-905 EB On-Ramp		37.3
SR-905 WB		50.4
SR-905 WB Off-Ramp		40.2
SR-905 WB On-Ramp		31.0
88 1.FI 58.4	0.0	
Caliente Avenue NB		40.9
Caliente Avenue SB		40.0
Otay Mesa Road EB		51.8
Otay Mesa Road WB		51.2
SR-905 EB		51.8
SR-905 EB Off-Ramp		35.6
SR-905 EB On-Ramp		38.8
SR-905 WB		52.9
SR-905 WB Off-Ramp		41.6
SR-905 WB On-Ramp 89 1.FI 62.5	0.0	35.9
Caliente Avenue NB	0.0	39.7
Caliente Avenue SB		38.8
Otay Mesa Road EB		44.8
Otay Mesa Road WB		45.1
SR-905 EB		58.1
SR-905 EB Off-Ramp		35.3
SR-905 EB On-Ramp		44.6
SR-905 WB		59.6
SR-905 WB Off-Ramp		49.8
SR-905 WB On-Ramp		33.2
90 1.FI 56.6	0.0	
Caliente Avenue NB		38.6
Caliente Avenue SB		37.5
Otay Mesa Road EB		45.5 45.2
Otay Mesa Road WB SR-905 EB		45.3 51.8
SR-905 EB Off-Ramp		32.3
SR-905 EB On-Ramp		38.9
S. COO ED ON Mamp		50.5

SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 91 1.FI 57.4	0.0	52.9 42.3 32.4
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp	0.0	41.7 41.0 51.5 50.9 50.2 31.9 37.5
SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 92 1.FI 54.9	0.0	51.1 40.6 32.1
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB		36.9 35.3 45.0 45.1 49.8
SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp		30.7 37.6 50.8 40.5 31.4
93 1.FI 54.7 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB	0.0	38.1 36.8 45.5 45.9 49.4
SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp		31.1 36.4 50.2 39.7 31.7
94 1.FI 54.6 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB	0.0	37.3 35.9 46.0 46.1 49.2
SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 95 1.FI 56.3	0.0	30.7 36.3 50.1 39.4 32.0
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp		38.7 37.9 46.2 46.3 51.3 33.7 38.5

SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp		52.2 41.3 33.8
96 1.FI 55.5 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp	0.0	37.7 36.4 46.0 46.1 50.3 31.5 38.0 51.2 40.8
SR-905 WB On-Ramp 97 1.FI 54.8	0.0	31.1
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB		37.1 35.7 46.3 46.5 49.3
SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB		30.7 36.4 50.3
SR-905 WB Off-Ramp SR-905 WB On-Ramp 98 1.FI 54.9	0.0	39.8 31.5
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB		37.0 35.6 46.4 46.5 49.4
SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp		31.1 36.4 50.5 39.9
SR-905 WB On-Ramp 99 1.Fl 55.0	0.0	31.5
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB		36.7 35.4 46.4 46.5
SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp		49.5 30.8 36.8 50.5 40.0
SR-905 WB On-Ramp 100 1.FI 55.5	0.0	31.5
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp	0.0	36.1 34.4 46.3 46.4 50.3 30.3
SR-905 EB On-Ramp		38.1

SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 101 1.FI 60.4	0.0	51.3 40.9 30.8
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB Off-Ramp	0.0	36.4 35.3 54.3 53.3 53.8 29.4 41.3 55.3 43.9 32.3
102 1.FI 65.2 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp	0.0	35.8 34.5 46.5 46.0 60.9 29.2
SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 103 1.FI 65.3 Caliente Avenue NB	0.0	47.8 62.6 51.3 30.3
Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp		35.7 45.5 45.3 61.1 31.3 47.9 62.7 51.4 31.0
104 1.FI 58.6 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB	0.0	36.9 36.0 52.6 51.9 51.8 31.7 39.5 52.9
SR-905 WB Off-Ramp SR-905 WB On-Ramp 105 1.Fl 56.4 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB	0.0	42.2 32.6 35.8 34.8 49.3 48.6
SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp		50.5 30.3 37.9

SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 106 1.FI 57.0	0.0	51.5 41.1 30.6
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB Off-Ramp SR-905 WB On-Ramp 107 1.FI 60.2	0.0	35.3 34.5 51.7 50.9 49.5 30.3 36.4 50.6 40.0 31.3
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB Off-Ramp SR-905 WB On-Ramp 108 1.FI 61.9	0.0	35.1 34.3 56.8 55.8 49.0 30.1 35.7 50.0 39.4 31.2
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB Off-Ramp	0.0	35.6 34.4 58.9 57.7 48.5 30.1 35.4 49.5 38.8 31.2
109 1.FI 65.6 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 WB SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp	0.0	31.0 29.9 58.9 57.5 59.6 25.4 42.7 61.0 48.5 25.9
110 1.FI 62.5 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp	0.0	35.7 34.4 54.0 52.8 58.1 29.8 44.1

SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 111 1.FI 59.6	0.0	58.0 47.3 30.7
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB		37.9 36.9 48.7 48.6 54.8
SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp		33.8 41.9 56.0 45.0 31.8
112 1.FI 62.1 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB	0.0	38.0 36.6 46.2
Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB		46.0 57.7 32.9 44.7 59.1
SR-905 WB Off-Ramp SR-905 WB On-Ramp 113 1.FI 64.0 Caliente Avenue NB	0.0	48.1 31.7 37.6
Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB		36.1 45.6 45.4 60.7
SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp		32.7 46.5 60.5 50.1 30.8
114 1.FI 74.5	0.0	
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB		43.5 42.5 43.3 42.8 69.8
SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp		39.3 55.9 72.2 61.8
SR-905 WB On-Ramp 115 1.FI 74.9	0.0	28.9
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB	-	30.3 29.9 42.0 41.5 70.6
SR-905 EB Off-Ramp SR-905 EB On-Ramp		24.4 55.9

SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 116 1.FI 74.1	0.0	72.5 61.5 24.8
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 WB SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 117 1.FI 74.8	0.0	43.6 43.1 42.0 41.8 69.2 39.9 55.4 71.8 61.7 29.7
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp	0.0	34.4 33.5 42.7 42.4 70.4 30.4 56.0 72.3 61.5
SR-905 WB On-Ramp 118 1.FI 63.7 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 WB SR-905 WB SR-905 WB Off-Ramp	0.0	29.0 35.7 33.5 44.8 44.8 59.2 28.1 45.5 61.1 50.8
SR-905 WB On-Ramp 119 1.FI 61.1 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 WB SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp	0.0	28.9 34.1 33.1 45.4 45.3 56.7 28.5 44.0 58.2 47.6 28.9
120 1.FI 58.6 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp	0.0	34.8 33.1 45.7 45.5 54.4 27.8 41.4

SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 121 1.FI 60.4	J 0.0	55.3 44.3 28.3
Caliente Avenue NB Caliente Avenue SB		37.1 35.5
Otay Mesa Road EB		47.3
Otay Mesa Road WB SR-905 EB		47.1 56.2
SR-905 EB Off-Ramp		31.4
SR-905 EB On-Ramp		42.0
SR-905 WB		57.1
SR-905 WB Off-Ramp SR-905 WB On-Ramp		46.0
122 1.Fl 74.4	0.0	31.8
Caliente Avenue NB		35.6
Caliente Avenue SB		35.3
Otay Mesa Road EB		43.4
Otay Mesa Road WB SR-905 EB		43.0 69.9
SR-905 EB Off-Ramp		33.0
SR-905 EB On-Ramp		55.4
SR-905 WB		72.0
SR-905 WB Off-Ramp SR-905 WB On-Ramp		61.5 30.6
123 1.Fl 73.9	0.0	30.0
Caliente Avenue NB		44.5
Caliente Avenue SB		43.7
Otay Mesa Road EB		42.4 42.3
Otay Mesa Road WB SR-905 EB		42.3 69.0
SR-905 EB Off-Ramp		40.3
SR-905 EB On-Ramp		55.1
SR-905 WB		71.6
SR-905 WB Off-Ramp SR-905 WB On-Ramp		62.0 29.8
124 1.FI 62.7	7 0.0	20.0
Caliente Avenue NB		36.7
Caliente Avenue SB		36.0
Otay Mesa Road EB Otay Mesa Road WB		44.3 44.4
SR-905 EB		58.2
SR-905 EB Off-Ramp		33.3
SR-905 EB On-Ramp		45.2
SR-905 WB		60.1
SR-905 WB Off-Ramp SR-905 WB On-Ramp		49.8 30.8
125 1.FI 60.3	3 0.0	20.0
Caliente Avenue NB		38.8
Caliente Avenue SB		36.8 44.6
Otay Mesa Road EB Otay Mesa Road WB		44.0
SR-905 EB		55.7
SR-905 EB Off-Ramp		33.6
SR-905 EB On-Ramp		43.4

0 !! / A :	4
Caliente Avenue NB 38. Caliente Avenue SB 37. Otay Mesa Road EB 45. Otay Mesa Road WB 45. SR-905 EB 52.	2 4
SR-905 EB Off-Ramp 33. SR-905 EB On-Ramp 40. SR-905 WB 54. SR-905 WB Off-Ramp 43. SR-905 WB On-Ramp 32.	5 2 9
127 1.FI 58.1 0.0 Caliente Avenue NB 36. Caliente Avenue SB 35. Otay Mesa Road EB 45. Otay Mesa Road WB 45.	5 4 6
SR-905 EB 53. SR-905 EB Off-Ramp 31. SR-905 EB On-Ramp 40. SR-905 WB 54. SR-905 WB Off-Ramp 44. SR-905 WB On-Ramp 31.	1 9 8 6
128 1.Fl 57.4 0.0 Caliente Avenue NB 37. Caliente Avenue SB 35. Otay Mesa Road EB 44.	8 9 9
Otay Mesa Road WB 45. SR-905 EB 52. SR-905 EB Off-Ramp 31. SR-905 EB On-Ramp 39. SR-905 WB 54.	7 8 8
SR-905 WB Off-Ramp 43. SR-905 WB On-Ramp 31. 129 1.Fl 57.8 0.0 Caliente Avenue NB 37.	2
Caliente Avenue SB 36. Otay Mesa Road EB 44. Otay Mesa Road WB 44. SR-905 EB 53. SR-905 EB Off-Ramp 33.	5 8 2
SR-905 EB On-Ramp 40. SR-905 WB 54. SR-905 WB Off-Ramp 44. SR-905 WB On-Ramp 32. 130 1.FI 63.1 0.0	.5 2
Caliente Avenue NB 37. Caliente Avenue SB 36. Otay Mesa Road EB 44. Otay Mesa Road WB 44. SR-905 EB 58. SR-905 EB Off-Ramp 32. SR-905 EB On-Ramp 45.	1 5 5 5

SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 131 1.FI 63.6	0.0	60.4 50.7 33.1
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp	0.0	38.3 36.9 43.6 43.9 59.0 31.6 45.5
SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 132 1.FI 74.2	0.0	60.9 51.4 33.0
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB		36.7 36.3 42.3 41.9 69.6
SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp		32.5 55.2 71.8 61.8
SR-905 WB On-Ramp 133 1.FI 73.6 Caliente Avenue NB Caliente Avenue SB	0.0	32.3 44.7 44.0
Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp		41.3 41.1 68.8 40.6
SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp		54.7 71.3 62.0 31.3
134 1.FI 73.9 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB	0.0	36.7 35.8 41.1 40.8 69.3
SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp		33.3 55.1 71.5 61.8 31.9
135 1.Fl 73.5 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp	0.0	45.5 44.8 42.3 42.1 68.7 41.7 54.6

SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 136 1.FI 62.0	0.0	71.1 62.0 29.9
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 WB SR-905 WB SR-905 WB Off-Ramp SR-905 WB Off-Ramp	0.0	37.9 36.2 44.0 44.0 57.4 32.6 44.1 59.3 49.6 30.6
137 1.FI 60.4 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB	0.0	38.5 37.1 44.1 44.3 55.8 32.8 42.9 57.5
SR-905 WB Off-Ramp SR-905 WB On-Ramp 138 1.FI 57.7 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB	0.0	37.3 47.7 31.4 38.1 37.1 44.4 44.7 53.0
SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 139 1.FI 57.2 Caliente Avenue NB Caliente Avenue SB	0.0	33.3 40.4 54.4 44.1 31.3 38.4 36.7
Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp		44.2 44.6 52.6 32.0 39.3 53.8 43.8 31.5
140 1.FI 56.3 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp	0.0	38.8 37.2 44.3 44.6 51.7 32.5 39.6

SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 141 1.FI 58.3	0.0	52.6 42.7 31.4
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB	0.0	38.0 36.8 44.2 44.5 53.7 34.3 41.4 55.1
SR-905 WB Off-Ramp SR-905 WB On-Ramp 142 1.FI 61.7	0.0	45.4 35.2
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB		37.8 36.7 44.0 44.3 57.2
SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp		33.8 43.8 58.9 49.2 35.1
143 1.FI 63.0 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB	0.0	40.0 38.3 43.8 43.9 58.4
SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp		33.3 45.1 60.4 51.0 34.8
144 1.FI 73.8 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp	0.0	36.9 36.2 41.6 41.4 69.1 31.6 54.9
SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 145 1.Fl 73.2	0.0	71.4 62.1 34.3
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp	3.3	46.4 45.4 41.6 41.5 68.4 42.0 54.1

SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 146 1.FI 73.5	0.0	70.7 62.1 30.5
Caliente Avenue NB Caliente Avenue SB	0.0	38.0 37.1
Otay Mesa Road EB Otay Mesa Road WB		40.9 40.7
SR-905 EB		68.8
SR-905 EB Off-Ramp		34.7
SR-905 EB On-Ramp		54.6
SR-905 WB SR-905 WB Off-Ramp		71.1 62.1
SR-905 WB On-Ramp		36.5
147 1.FI 73.1	0.0	
Caliente Avenue NB Caliente Avenue SB		46.8 46.1
Otay Mesa Road EB		40.1
Otay Mesa Road WB		40.8
SR-905 EB		68.4
SR-905 EB Off-Ramp SR-905 EB On-Ramp		42.6 54.0
SR-905 WB		70.7
SR-905 WB Off-Ramp		62.3
SR-905 WB On-Ramp		29.8
148 1.FI 62.2 Caliente Avenue NB	0.0	37.2
Caliente Avenue SB		36.1
Otay Mesa Road EB		43.1
Otay Mesa Road WB		43.3
SR-905 EB SR-905 EB Off-Ramp		57.7 32.6
SR-905 EB On-Ramp		44.3
SR-905 WB		59.5
SR-905 WB Off-Ramp		50.8
SR-905 WB On-Ramp 149 1.FI 60.1	0.0	31.9
Caliente Avenue NB	0.0	37.7
Caliente Avenue SB		36.4
Otay Mesa Road EB Otay Mesa Road WB		43.7 43.8
SR-905 EB		55.4
SR-905 EB Off-Ramp		33.6
SR-905 EB On-Ramp		42.5
SR-905 WB SR-905 WB Off-Ramp		57.3 47.8
SR-905 WB On-Ramp		32.5
150 1.FI 57.4	0.0	
Caliente Avenue NB		38.0
Caliente Avenue SB Otay Mesa Road EB		36.3 43.8
Otay Mesa Road WB		44.0
SR-905 EB		52.8
SR-905 EB Off-Ramp		32.8 40.3
SR-905 EB On-Ramp		40.3

SR-905 WB SR-905 WB Off-Ramp		54.1 44.4
SR-905 WB On-Ramp 151 1.Fl 56.8	0.0	30.4
Caliente Avenue NB		40.1
Caliente Avenue SB Otay Mesa Road EB		38.6 43.6
Otay Mesa Road WB		44.0
SR-905 EB		52.1
SR-905 EB Off-Ramp		32.2
SR-905 EB On-Ramp		39.6
SR-905 WB		53.2
SR-905 WB Off-Ramp		43.5
SR-905 WB On-Ramp	0.0	31.6
152 1.FI 57.9 Caliente Avenue NB	0.0	40.1
Caliente Avenue SB		38.2
Otay Mesa Road EB		43.9
Otay Mesa Road WB		44.1
SR-905 EB		53.3
SR-905 EB Off-Ramp		31.8
SR-905 EB On-Ramp		40.1
SR-905 WB SR-905 WB Off-Ramp		54.6 45.2
SR-905 WB On-Ramp		31.8
153 1.FI 58.3	0.0	01.0
Caliente Avenue NB		39.6
Caliente Avenue SB		38.6
Otay Mesa Road EB		44.4
Otay Mesa Road WB		44.7
SR-905 EB		53.9
SR-905 EB Off-Ramp SR-905 EB On-Ramp		37.2 40.4
SR-905 WB		54.8
SR-905 WB Off-Ramp		44.9
SR-905 WB On-Ramp		36.9
154 1.FI 63.0	0.0	
Caliente Avenue NB		39.5
Caliente Avenue SB Otay Mesa Road EB		38.5 44.0
Otay Mesa Road WB		44.5
SR-905 EB		58.4
SR-905 EB Off-Ramp		36.0
SR-905 EB On-Ramp		44.9
SR-905 WB		60.3
SR-905 WB Off-Ramp		51.3
SR-905 WB On-Ramp 155 1.FI 63.4	0.0	37.3
Caliente Avenue NB	0.0	42.4
Caliente Avenue SB		40.9
Otay Mesa Road EB		43.5
Otay Mesa Road WB		43.7
SR-905 EB		58.8
SR-905 EB Off-Ramp		35.0
SR-905 EB On-Ramp		45.4

SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 156 1.FI 73.3	0.0	60.7 51.9 37.3
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp	0.0	40.9 40.3 41.3 41.4 68.6 33.1
SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 157 1.Fl 72.8	0.0	54.4 70.9 62.4 37.0
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp		48.3 47.2 40.3 40.3 68.1 43.6
SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 158 1.Fl 63.4	0.0	53.6 70.3 62.4 31.1
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB		45.3 44.2 45.0 45.5 58.9
SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 159 1.FI 72.6	0.0	38.5 44.4 60.4 51.7 42.1
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB	0.0	40.4 39.3 42.5 42.7 67.8 33.3 53.6 70.1
SR-905 WB Off-Ramp SR-905 WB On-Ramp 160 1.FI 69.7	0.0	61.9 38.1
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp		43.7 41.8 41.9 41.7 65.0 36.3 50.9

SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 161 1.FI 69.7	0.0	67.2 59.0 33.9
Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB Off-Ramp	0.0	43.6 41.9 39.8 39.5 65.1 37.8 51.0 67.2 58.9 34.2
162 1.FI 67.2 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB	0.0	52.1 51.2 49.8 48.5 62.1
SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 163 1.FI 65.5 Caliente Avenue NB	0.0	44.3 45.6 64.1 56.9 47.0
Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp		51.6 53.2 51.9 60.4 43.7 43.2
SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 164 1.FI 60.3 Caliente Avenue NB	0.0	61.8 52.4 47.4
Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp		44.4 49.3 47.7 55.2 32.7 41.9 56.7 46.9 35.3
165 1.FI 57.9 Caliente Avenue NB Caliente Avenue SB Otay Mesa Road EB Otay Mesa Road WB SR-905 EB SR-905 EB Off-Ramp SR-905 EB On-Ramp	0.0	43.6 42.1 44.3 44.3 53.8 35.3 39.9

SR-905 WB		53.7
SR-905 WB Off-Ramp		44.4
SR-905 WB On-Ramp		34.0
166 1.FI 62.8	0.0	
Caliente Avenue NB		43.3
Caliente Avenue SB		42.4
Otay Mesa Road EB		48.1
Otay Mesa Road WB SR-905 EB		47.9 58.4
SR-905 EB Off-Ramp		39.1
SR-905 EB On-Ramp		44.4
SR-905 WB		59.6
SR-905 WB Off-Ramp		50.6
SR-905 WB On-Ramp		38.4
167 1.FI 67.5	0.0	
Caliente Avenue NB		43.9
Caliente Avenue SB		43.1
Otay Mesa Road EB		44.2
Otay Mesa Road WB SR-905 EB		44.4 63.1
SR-905 EB Off-Ramp		39.5
SR-905 EB On-Ramp		49.2
SR-905 WB		64.7
SR-905 WB Off-Ramp		55.8
SR-905 WB On-Ramp		41.5
168 1.FI 59.5	0.0	
Caliente Avenue NB		43.6
Caliente Avenue SB Otay Mesa Road EB		42.7 53.4
Otay Mesa Road WB		52.4
SR-905 EB		53.0
SR-905 EB Off-Ramp		38.1
SR-905 EB On-Ramp		39.0
SR-905 WB		53.4
SR-905 WB Off-Ramp		42.5
SR-905 WB On-Ramp		36.6
169 1.FI 65.4	0.0	44.0
Caliente Avenue NB Caliente Avenue SB		44.2 43.5
Otay Mesa Road EB		49.8
Otay Mesa Road WB		49.3
SR-905 EB		61.0
SR-905 EB Off-Ramp		39.2
SR-905 EB On-Ramp		47.1
SR-905 WB		62.4
SR-905 WB Off-Ramp		53.2
SR-905 WB On-Ramp 170 1.FI 60.6	0.0	40.8
Caliente Avenue NB	0.0	41.1
Caliente Avenue SB		39.9
Otay Mesa Road EB		45.3
Otay Mesa Road WB		45.0
SR-905 EB		56.0
SR-905 EB Off-Ramp		34.0
SR-905 EB On-Ramp		42.3

SR-905 WB SR-905 WB Off-Ramp SR-905 WB On-Ramp 171 1.FI 57.8	0.0	57.5 48.4 33.8
Caliente Avenue NB	0.0	43.7
Caliente Avenue SB		43.2
Otay Mesa Road EB		48.7
Otay Mesa Road WB		47.2
SR-905 EB		52.3
SR-905 EB Off-Ramp		35.5
SR-905 EB On-Ramp		39.0
SR-905 WB		53.3
SR-905 WB Off-Ramp		43.7
SR-905 WB On-Ramp	0.0	37.0
172 1.FI 60.4 Caliente Avenue NB	0.0	46.4
Caliente Avenue SB		45.6
Otay Mesa Road EB		50.3
Otay Mesa Road WB		49.6
SR-905 EB		55.6
SR-905 EB Off-Ramp		38.5
SR-905 EB On-Ramp		39.6
SR-905 WB		55.8
SR-905 WB Off-Ramp		46.5
SR-905 WB On-Ramp		35.7
173 1.FI 65.2	0.0	
Caliente Avenue NB		52.4
Caliente Avenue SB		51.9
Otay Mesa Road EB		55.2
Otay Mesa Road WB		53.9
SR-905 EB		59.5
SR-905 EB Off-Ramp		43.4
SR-905 EB On-Ramp		42.3
SR-905 WB		61.3
SR-905 WB Off-Ramp		50.7
SR-905 WB On-Ramp		47.3

RECON Noise Analysis

ATTACHMENT 7 FHWA RD-77-108 – Off-Site Traffic Noise

Data Input Sheet

Project Name: California Terraces PA 61 Project Number: 4135.1

Modeled Condition: Existing, Existing + Project

Surface Refelction: CNEL Assessment Metric: Hard Peak ratio to ADT: 10.00 Traffic Desc. (Peak or ADT) : ADT

				Speed	Distance							
Segment	Roadway	Segment	Traffic Vol.	(Mph)	to CL	% Autos	%MT	% HT	Day %	Eve %	Night % K-F	Factor
EXISTIN	G											
1	Ocean View Hills Parkway	Starfish Way to Sea Drift Way	12,963	40	50	88.70	5.10	6.20	80.00	10.00	10.00	
2	Ocean View Hills Parkway	Sea Drift Way to Del Sol Boulevard	10,919	40	50	88.70	5.10	6.20	80.00	10.00	10.00	
3	Ocean View Hills Parkway	Del Sol Boulevard to Sea Fire Point	10,048	40	50	88.70	5.10	6.20	80.00	10.00	10.00	
4	Ocean View Hills Parkway	Sea Fire Point to Hidden Trails Road	9,591	40	50	88.70	5.10	6.20	80.00	10.00	10.00	
5	Ocean View Hills Parkway	Hidden Trails Road to Otay Mesa Road	11,405	45	50	88.70	5.10	6.20	80.00	10.00	10.00	
6	Caliente Avenue	Otay Mesa Road to SR-905 Westbound Ramps	20,951	30	50	88.70	5.10	6.20	80.00	10.00	10.00	
7	Caliente Avenue	SR-905 Westbound Ramps to SR-905 Eastbound Ramps	14,288	40	50	88.70	5.10	6.20	80.00	10.00	10.00	
8	Caliente Avenue	SR-905 Eastbound Ramps to Airway Road	7,947	40	50	88.70	5.10	6.20	80.00	10.00	10.00	
9	Otay Mesa Road	Ocean View Hills Parkway to Driveway	16,330	55	50	88.70	5.10	6.20	80.00	10.00	10.00	
10	Otay Mesa Road	Driveway to Emerald Crest Court	16,330	55	50	88.70	5.10	6.20	80.00	10.00	10.00	
11	Otay Mesa Road	Emerald Crest Court to Corporate Center Drive	15,855	50	50	88.70	5.10	6.20	80.00	10.00	10.00	
12	Otay Mesa Road	Corporate Center Drive to Innovative Drive	10,499	45	50	88.70	5.10	6.20	80.00	10.00	10.00	
13	Otay Mesa Road	Innovative Drive to Heritage Road	11,864	45	50	88.70	5.10	6.20	80.00	10.00	10.00	
EXISTIN	G + PROJECT											
1	Ocean View Hills Parkway	Starfish Way to Sea Drift Way	13,765	40	50	88.70	5.10	6.20	80.00	10.00	10.00	
2	Ocean View Hills Parkway	Sea Drift Way to Del Sol Boulevard	11,768	40	50	88.70	5.10	6.20	80.00	10.00	10.00	
3	Ocean View Hills Parkway	Del Sol Boulevard to Sea Fire Point	11,651	40	50	88.70	5.10	6.20	80.00	10.00	10.00	
4	Ocean View Hills Parkway	Sea Fire Point to Hidden Trails Road	11,383	40	50	88.70	5.10	6.20	80.00	10.00	10.00	
5	Ocean View Hills Parkway	Hidden Trails Road to Otay Mesa Road	13,433	45	50	88.70	5.10	6.20	80.00	10.00	10.00	
6	Caliente Avenue	Otay Mesa Road to SR-905 Westbound Ramps	22,130	30	50	88.70	5.10	6.20	80.00	10.00	10.00	
7	Caliente Avenue	SR-905 Westbound Ramps to SR-905 Eastbound Ramps	14,995	40	50	88.70	5.10	6.20	80.00	10.00	10.00	
8	Caliente Avenue	SR-905 Eastbound Ramps to Airway Road	8,183	40	50	88.70	5.10	6.20	80.00	10.00	10.00	
9	Otay Mesa Road	Ocean View Hills Parkway to Driveway	21,306	55	50	88.70	5.10	6.20	80.00	10.00	10.00	
10	Otay Mesa Road	Driveway to Emerald Crest Court	20,624	55	50	88.70	5.10	6.20	80.00	10.00	10.00	
11	Otay Mesa Road	Emerald Crest Court to Corporate Center Drive	17,034	50	50	88.70	5.10	6.20	80.00	10.00	10.00	
12	Otay Mesa Road	Corporate Center Drive to Innovative Drive	11,442	45	50	88.70	5.10	6.20	80.00	10.00	10.00	
13	Otay Mesa Road	Innovative Drive to Heritage Road	12,807	45	50	88.70	5.10	6.20	80.00	10.00	10.00	
	-											

Predicted Noise Levels

Project Name: California Terraces PA 61 Project Number: 4135.1

Modeled Condition: Existing, Existing + Project

Assessment Metric: Hard

			Noise Levels, dBA Hard					Distance to Traffic Noise Level Contours, Feet					
Segment	t Roadway	Segment	Auto	MT	HT	Total	75 dB	70 dB	65 dB	60 dB	55 dB	50 dB	
EXISTING	3												
1	Ocean View Hills Parkway	Starfish Way to Sea Drift Way	66.4	62.9	68.6	71.3	21	67	213	674	2,133	6,745	
2	Ocean View Hills Parkway	Sea Drift Way to Del Sol Boulevard	65.6	62.2	67.8	70.6	18	57	182	574	1,815	5,741	
3	Ocean View Hills Parkway	Del Sol Boulevard to Sea Fire Point	65.3	61.8	67.5	70.2	17	52	166	524	1,656	5,236	
4	Ocean View Hills Parkway	Sea Fire Point to Hidden Trails Road	65.1	61.6	67.3	70.0	16	50	158	500	1,581	5,000	
5	Ocean View Hills Parkway	Hidden Trails Road to Otay Mesa Road	67.3	63.1	68.5	71.6	23	72	229	723	2,285	7,227	
6	Caliente Avenue	Otay Mesa Road to SR-905 Westbound Ramps	64.9	63.0	71.0	72.5	28	89	281	889	2,812	8,891	
7	Caliente Avenue	SR-905 Westbound Ramps to SR-905 Eastbound Ramps	66.8	63.3	69.0	71.7	23	74	234	740	2,339	7,396	
8	Caliente Avenue	SR-905 Eastbound Ramps to Airway Road	64.3	60.8	66.5	69.2	13	42	132	416	1,315	4,159	
9	Otay Mesa Road	Ocean View Hills Parkway to Driveway	71.4	66.1	70.9	74.8	48	151	477	1,510	4,775	15,100	
10	Otay Mesa Road	Driveway to Emerald Crest Court	71.4	66.1	70.9	74.8	48	151	477	1,510	4,775	15,100	
11	Otay Mesa Road	Emerald Crest Court to Corporate Center Drive	70.0	65.3	70.3	73.9	39	123	388	1,227	3,881	12,274	
12	Otay Mesa Road	Corporate Center Drive to Innovative Drive	66.9	62.8	68.1	71.3	21	67	213	674	2,133	6,745	
13	Otay Mesa Road	Innovative Drive to Heritage Road	67.5	63.3	68.7	71.8	24	76	239	757	2,393	7,568	
FXISTIN	G + PROJECT												
1	Ocean View Hills Parkway	Starfish Way to Sea Drift Way	66.6	63.2	68.8	71.6	23	72	229	723	2,285	7,227	
2	Ocean View Hills Parkway	Sea Drift Way to Del Sol Boulevard	66.0	62.5	68.2	70.9	19	62	195	615	1.945	6,151	
3	Ocean View Hills Parkway	Del Sol Boulevard to Sea Fire Point	65.9	62.4	68.1	70.8	19	60	190	601	1,901	6.011	
4	Ocean View Hills Parkway	Sea Fire Point to Hidden Trails Road	65.8	62.3	68.0	70.7	19	59	186	587	1,858	5,874	
5	Ocean View Hills Parkway	Hidden Trails Road to Otay Mesa Road	68.0	63.9	69.2	72.3	27	85	269	849	2,685	8,491	
6	Caliente Avenue	Otay Mesa Road to SR-905 Westbound Ramps	65.1	63.3	71.2	72.7	29	93	294	931	2,944	9,310	
7	Caliente Avenue	SR-905 Westbound Ramps to SR-905 Eastbound Ramps	67.0	63.5	69.2	71.9	24	77	245	774	2,449	7.744	
8	Caliente Avenue	SR-905 Eastbound Ramps to Airway Road	64.4	60.9	66.6	69.3	13	43	135	426	1,346	4,256	
9	Otay Mesa Road	Ocean View Hills Parkway to Driveway	72.5	67.2	72.0	75.9	62	195	615	1,945	6,151	19,452	
10	Otay Mesa Road	Driveway to Emerald Crest Court	72.4	67.1	71.9	75.8	60	190	601	1,901	6,011	19,009	
11	Otay Mesa Road	Emerald Crest Court to Corporate Center Drive	70.4	65.6	70.7	74.2	42	132	416	1,315	4,159	13,151	
12	Otay Mesa Road	Corporate Center Drive to Innovative Drive	67.3	63.2	68.5	71.6	23	72	229	723	2,285	7,227	
13	Otay Mesa Road	Innovative Drive to Heritage Road	67.8	63.6	69.0	72.1	26	81	256	811	2,564	8,109	
	-									7.00			

Data Input Sheet

Project Name: California Terraces PA 61 Project Number: 4135.1

Modeled Condition: Near-Term, Near-Term + Project

Surface Refelction: CNEL Assessment Metric: Hard Peak ratio to ADT: 10.00 Traffic Desc. (Peak or ADT) : ADT

				Speed	Distance						
Segment	Roadway	Segment	Traffic Vol.	(Mph)	to CL	% Autos	%MT	% HT	Day %	Eve %	Night % K-Factor
NEAR-TI	ERM (EXISTING + CUMULATIVE										
1	Ocean View Hills Parkway	Starfish Way to Sea Drift Way	15,647	40	50	88.70	5.10	6.20	80.00	10.00	10.00
2	Ocean View Hills Parkway	Sea Drift Way to Del Sol Boulevard	13,878	40	50	88.70	5.10	6.20	80.00	10.00	10.00
3	Ocean View Hills Parkway	Del Sol Boulevard to Sea Fire Point	12,380	40	50	88.70	5.10	6.20	80.00	10.00	10.00
4	Ocean View Hills Parkway	Sea Fire Point to Hidden Trails Road	13,496	40	50	88.70	5.10	6.20	80.00	10.00	10.00
5	Ocean View Hills Parkway	Hidden Trails Road to Otay Mesa Road	15,774	45	50	88.70	5.10	6.20	80.00	10.00	10.00
6	Caliente Avenue	Otay Mesa Road to SR-905 Westbound Ramps	27,366	30	50	88.70	5.10	6.20	80.00	10.00	10.00
7	Caliente Avenue	SR-905 Westbound Ramps to SR-905 Eastbound Ramps	21,646	40	50	88.70	5.10	6.20	80.00	10.00	10.00
8	Caliente Avenue	SR-905 Eastbound Ramps to Airway Road	16,163	40	50	88.70	5.10	6.20	80.00	10.00	10.00
9	Otay Mesa Road	Ocean View Hills Parkway to Driveway	25,607	55	50	88.70	5.10	6.20	80.00	10.00	10.00
10	Otay Mesa Road	Driveway to Emerald Crest Court	25,607	55	50	88.70	5.10	6.20	80.00	10.00	10.00
11	Otay Mesa Road	Emerald Crest Court to Corporate Center Drive	23,059	50	50	88.70	5.10	6.20	80.00	10.00	10.00
12	Otay Mesa Road	Corporate Center Drive to Innovative Drive	15,632	45	50	88.70	5.10	6.20	80.00	10.00	10.00
13	Otay Mesa Road	Innovative Drive to Heritage Road	16,979	45	50	88.70	5.10	6.20	80.00	10.00	10.00
NEAR-TI	ERM + PROJECT										
1	Ocean View Hills Parkway	Starfish Way to Sea Drift Way	16,449	40	50	88.70	5.10	6.20	80.00	10.00	10.00
2	Ocean View Hills Parkway	Sea Drift Way to Del Sol Boulevard	14,727	40	50	88.70	5.10	6.20	80.00	10.00	10.00
3	Ocean View Hills Parkway	Del Sol Boulevard to Sea Fire Point	13,983	40	50	88.70	5.10	6.20	80.00	10.00	10.00
4	Ocean View Hills Parkway	Sea Fire Point to Hidden Trails Road	15,288	40	50	88.70	5.10	6.20	80.00	10.00	10.00
5	Ocean View Hills Parkway	Hidden Trails Road to Otay Mesa Road	17,802	45	50	88.70	5.10	6.20	80.00	10.00	10.00
6	Caliente Avenue	Otay Mesa Road to SR-905 Westbound Ramps	28,545	30	50	88.70	5.10	6.20	80.00	10.00	10.00
7	Caliente Avenue	SR-905 Westbound Ramps to SR-905 Eastbound Ramps	22,353	40	50	88.70	5.10	6.20	80.00	10.00	10.00
8	Caliente Avenue	SR-905 Eastbound Ramps to Airway Road	16,399	40	50	88.70	5.10	6.20	80.00	10.00	10.00
9	Otay Mesa Road	Ocean View Hills Parkway to Driveway	30,583	55	50	88.70	5.10	6.20	80.00	10.00	10.00
10	Otay Mesa Road	Driveway to Emerald Crest Court	29,901	55	50	88.70	5.10	6.20	80.00	10.00	10.00
11	Otay Mesa Road	Emerald Crest Court to Corporate Center Drive	24,238	50	50	88.70	5.10	6.20	80.00	10.00	10.00
12	Otay Mesa Road	Corporate Center Drive to Innovative Drive	16,575	45	50	88.70	5.10	6.20	80.00	10.00	10.00
13	Otay Mesa Road	Innovative Drive to Heritage Road	17,922	45	50	88.70	5.10	6.20	80.00	10.00	10.00

Predicted Noise Levels

Project Name: California Terraces PA 61
Project Number: 4135.1
Modeled Condition: Near-Term, Near-Term + Project

Assessment Metric: Hard

			Noi	Noise Levels, dBA Hard					Distance to Traffic Noise Level Contours, Feet					
Segment	Roadway	Segment	Auto	MT	HT	Total	75 dB	70 dB	65 dB	60 dB	55 dB	50 dB		
NEAR-TE	ERM (EXISTING + CUMULATIV	(E)												
1	Ocean View Hills Parkway	Starfish Way to Sea Drift Way	67.2	63.7	69.4	72.1	26	81	256	811	2,564	8,109		
2	Ocean View Hills Parkway	Sea Drift Way to Del Sol Boulevard	66.7	63.2	68.9	71.6	23	72	229	723	2,285	7,227		
3	Ocean View Hills Parkway	Del Sol Boulevard to Sea Fire Point	66.2	62.7	68.4	71.1	20	64	204	644	2,037	6,441		
4	Ocean View Hills Parkway	Sea Fire Point to Hidden Trails Road	66.6	63.1	68.8	71.5	22	71	223	706	2,233	7,063		
5	Ocean View Hills Parkway	Hidden Trails Road to Otay Mesa Road	68.7	64.6	69.9	73.0	32	100	315	998	3,155	9,976		
6	Caliente Avenue	Otay Mesa Road to SR-905 Westbound Ramps	66.0	64.2	72.2	73.6	36	115	362	1,145	3,622	11,454		
7	Caliente Avenue	SR-905 Westbound Ramps to SR-905 Eastbound Ramps	68.6	65.1	70.8	73.5	35	112	354	1,119	3,540	11,194		
8	Caliente Avenue	SR-905 Eastbound Ramps to Airway Road	67.3	63.9	69.5	72.3	27	85	269	849	2,685	8,491		
9	Otay Mesa Road	Ocean View Hills Parkway to Driveway	73.3	68.0	72.8	76.7	74	234	740	2,339	7,396	23,387		
10	Otay Mesa Road	Driveway to Emerald Crest Court	73.3	68.0	72.8	76.7	74	234	740	2,339	7,396	23,387		
11	Otay Mesa Road	Emerald Crest Court to Corporate Center Drive	71.7	66.9	72.0	75.5	56	177	561	1,774	5,610	17,741		
12	Otay Mesa Road	Corporate Center Drive to Innovative Drive	68.7	64.5	69.9	73.0	32	100	315	998	3,155	9,976		
13	Otay Mesa Road	Innovative Drive to Heritage Road	69.0	64.9	70.2	73.3	34	107	338	1,069	3,380	10,690		
NEAR-TE	ERM + PROJECT	Confidence of the Confidence o	100000							202		27725		
1	Ocean View Hills Parkway	Starfish Way to Sea Drift Way	67.4	63.9	69.6	72.3	27	85	269	849	2,685	8,491		
2	Ocean View Hills Parkway	Sea Drift Way to Del Sol Boulevard	66.9	63.5	69.1	71.9	24	77	245	774	2,449	7,744		
3	Ocean View Hills Parkway	Del Sol Boulevard to Sea Fire Point	66.7	63.2	68.9	71.6	23	72	229	723	2,285	7,227		
4	Ocean View Hills Parkway	Sea Fire Point to Hidden Trails Road	67.1	63.6	69.3	72.0	25	79	251	792	2,506	7,924		
5	Ocean View Hills Parkway	Hidden Trails Road to Otay Mesa Road	69.2	65.1	70.4	73.5	35	112	354	1,119	3,540	11,194		
6	Caliente Avenue	Otay Mesa Road to SR-905 Westbound Ramps	66.2	64.4	72.4	73.8	38	120	379	1,199	3,793	11,994		
7	Caliente Avenue	SR-905 Westbound Ramps to SR-905 Eastbound Ramps	68.7	65.3	70.9	73.7	37	117	371	1,172	3,707	11,721		
8	Caliente Avenue	SR-905 Eastbound Ramps to Airway Road	67.4	63.9	69.6	72.3	27	85	269	849	2,685	8,491		
9	Otay Mesa Road	Ocean View Hills Parkway to Driveway	74.1	68.8	73.6	77.5	89	281	889	2,812	8,891	28,117		
10	Otay Mesa Road	Driveway to Emerald Crest Court	74.0	68.7	73.5	77.4	87	275	869	2,748	8,689	27,477		
11	Otay Mesa Road	Emerald Crest Court to Corporate Center Drive	71.9	67.1	72.2	75.7	59	186	587	1,858	5,874	18,577		
12	Otay Mesa Road	Corporate Center Drive to Innovative Drive	68.9	64.8	70.1	73.2	33	104	330	1,045	3,303	10,446		
13	Otay Mesa Road	Innovative Drive to Heritage Road	69.3	65.1	70.5	73.6	36	115	362	1,145	3,622	11,454		

Data Input Sheet

Project Name: California Terraces PA 61 Project Number: 4135.1

Modeled Condition: Horizon, Horizon + Project

Surface Refelction: CNEL Assessment Metric: Hard Peak ratio to ADT: 10.00 Traffic Desc. (Peak or ADT) : ADT

				Speed	Distance							
Segment	Roadway	Segment	Traffic Vol.	(Mph)	to CL	% Autos	%MT	% HT	Day %	Eve %	Night %	K-Factor
HORIZO	N YEAR (2062)											
1	Ocean View Hills Parkway	Starfish Way to Sea Drift Way	19,900	40	50	88.70	5.10	6.20	80.00	10.00	10.00	
2	Ocean View Hills Parkway	Sea Drift Way to Del Sol Boulevard	17,800	40	50	88.70	5.10	6.20	80.00	10.00	10.00	
3	Ocean View Hills Parkway	Del Sol Boulevard to Sea Fire Point	17,800	40	50	88.70	5.10	6.20	80.00	10.00	10.00	
4	Ocean View Hills Parkway	Sea Fire Point to Hidden Trails Road	17,000	40	50	88.70	5.10	6.20	80.00	10.00	10.00	
5	Ocean View Hills Parkway	Hidden Trails Road to Otay Mesa Road	18,300	45	50	88.70	5.10	6.20	80.00	10.00	10.00	
6	Caliente Avenue	Otay Mesa Road to SR-905 Westbound Ramps	38,000	30	50	88.70	5.10	6.20	80.00	10.00	10.00	
7	Caliente Avenue	SR-905 Westbound Ramps to SR-905 Eastbound Ramps	33,200	40	50	88.70	5.10	6.20	80.00	10.00	10.00	
8	Caliente Avenue	SR-905 Eastbound Ramps to Airway Road	32,000	40	50	88.70	5.10	6.20	80.00	10.00	10.00	
9	Otay Mesa Road	Ocean View Hills Parkway to Driveway	39,700	55	50	88.70	5.10	6.20	80.00	10.00	10.00	
10	Otay Mesa Road	Driveway to Emerald Crest Court	39,700	55	50	88.70	5.10	6.20	80.00	10.00	10.00	
11	Otay Mesa Road	Emerald Crest Court to Corporate Center Drive	36,900	50	50	88.70	5.10	6.20	80.00	10.00	10.00	
12	Otay Mesa Road	Corporate Center Drive to Innovative Drive	20,200	45	50	88.70	5.10	6.20	80.00	10.00	10.00	
13	Otay Mesa Road	Innovative Drive to Heritage Road	22,800	45	50	88.70	5.10	6.20	80.00	10.00	10.00	
HORIZO	N YEAR (2062) + PROJECT											
1	Ocean View Hills Parkway	Starfish Way to Sea Drift Way	20,702	40	50	88.70	5.10	6.20	80.00	10.00	10.00	
2	Ocean View Hills Parkway	Sea Drift Way to Del Sol Boulevard	18,649	40	50	88.70	5.10	6.20	80.00	10.00	10.00	
3	Ocean View Hills Parkway	Del Sol Boulevard to Sea Fire Point	19,403	40	50	88.70	5.10	6.20	80.00	10.00	10.00	
4	Ocean View Hills Parkway	Sea Fire Point to Hidden Trails Road	18,792	40	50	88.70	5.10	6.20	80.00	10.00	10.00	
5	Ocean View Hills Parkway	Hidden Trails Road to Otay Mesa Road	20,328	45	50	88.70	5.10	6.20	80.00	10.00	10.00	
6	Caliente Avenue	Otay Mesa Road to SR-905 Westbound Ramps	39,179	30	50	88.70	5.10	6.20	80.00	10.00	10.00	
7	Caliente Avenue	SR-905 Westbound Ramps to SR-905 Eastbound Ramps	33,907	40	50	88.70	5.10	6.20	80.00	10.00	10.00	
8	Caliente Avenue	SR-905 Eastbound Ramps to Airway Road	32,236	40	50	88.70	5.10	6.20	80.00	10.00	10.00	
9	Otay Mesa Road	Ocean View Hills Parkway to Driveway	44,676	55	50	88.70	5.10	6.20	80.00	10.00	10.00	
10	Otay Mesa Road	Driveway to Emerald Crest Court	43,994	55	50	88.70	5.10	6.20	80.00	10.00	10.00	
11	Otay Mesa Road	Emerald Crest Court to Corporate Center Drive	38,079	50	50	88.70	5.10	6.20	80.00	10.00	10.00	
12	Otay Mesa Road	Corporate Center Drive to Innovative Drive	21,143	45	50	88.70	5.10	6.20	80.00	10.00	10.00	
13	Otay Mesa Road	Innovative Drive to Heritage Road	23,743	45	50	88.70	5.10	6.20	80.00	10.00	10.00	

FHWA RD-77-108 **Traffic Noise Prediction Model**

Predicted Noise Levels

Project Name: California Terraces PA 61 Project Number: 4135.1 Modeled Condition: Horizon, Horizon + Project

Assessment Metric: Hard

			No	se Levels	, dBA Ha	rd		Distance	e to Traffic	Noise Le	vel Conto	ırs, Feet
Segment	Roadway	Segment	Auto	MT	HT	Total	75 dB	70 dB	65 dB	60 dB	55 dB	50 dB
HORIZO	N YEAR (2062)											
1	Ocean View Hills Parkway	Starfish Way to Sea Drift Way	68.2	64.8	70.4	73.2	33	104	330	1,045	3,303	10,446
2	Ocean View Hills Parkway	Sea Drift Way to Del Sol Boulevard	67.8	64.3	70.0	72.7	29	93	294	931	2,944	9,310
3	Ocean View Hills Parkway	Del Sol Boulevard to Sea Fire Point	67.8	64.3	70.0	72.7	29	93	294	931	2,944	9,310
4	Ocean View Hills Parkway	Sea Fire Point to Hidden Trails Road	67.6	64.1	69.8	72.5	28	89	281	889	2,812	8,891
5	Ocean View Hills Parkway	Hidden Trails Road to Otay Mesa Road	69.4	65.2	70.5	73.7	37	117	371	1,172	3,707	11,721
6	Caliente Avenue	Otay Mesa Road to SR-905 Westbound Ramps	67.5	65.6	73.6	75.1	51	162	512	1,618	5,116	16,180
7	Caliente Avenue	SR-905 Westbound Ramps to SR-905 Eastbound Ramps	70.5	67.0	72.7	75.4	55	173	548	1,734	5,482	17,337
8	Caliente Avenue	SR-905 Eastbound Ramps to Airway Road	70.3	66.8	72.5	75.2	52	166	524	1,656	5,236	16,557
9	Otay Mesa Road	Ocean View Hills Parkway to Driveway	75.2	69.9	74.7	78.6	115	362	1,145	3,622	11,454	36,222
10	Otay Mesa Road	Driveway to Emerald Crest Court	75.2	69.9	74.7	78.6	115	362	1,145	3,622	11,454	36,222
11	Otay Mesa Road	Emerald Crest Court to Corporate Center Drive	73.7	69.0	74.0	77.5	89	281	889	2,812	8,891	28,117
12	Otay Mesa Road	Corporate Center Drive to Innovative Drive	69.8	65.6	71.0	74.1	41	129	406	1,285	4,064	12,852
13	Otay Mesa Road	Innovative Drive to Heritage Road	70.3	66.2	71.5	74.6	46	144	456	1,442	4,560	14,420
HORIZO	N YEAR (2062) + PROJECT											
1	Ocean View Hills Parkway	Starfish Way to Sea Drift Way	68.4	64.9	70.6	73.3	34	107	338	1,069	3,380	10,690
2	Ocean View Hills Parkway	Sea Drift Way to Del Sol Boulevard	68.0	64.5	70.2	72.9	31	97	308	975	3,083	9,749
3	Ocean View Hills Parkway	Del Sol Boulevard to Sea Fire Point	68.1	64.7	70.3	73.1	32	102	323	1,021	3,228	10,209
4	Ocean View Hills Parkway	Sea Fire Point to Hidden Trails Road	68.0	64.5	70.2	72.9	31	97	308	975	3,083	9,749
5	Ocean View Hills Parkway	Hidden Trails Road to Otay Mesa Road	69.8	65.7	71.0	74.1	41	129	406	1,285	4,064	12,852
6	Caliente Avenue	Otay Mesa Road to SR-905 Westbound Ramps	67.6	65.8	73.7	75.2	52	166	524	1,656	5,236	16,557
7	Caliente Avenue	SR-905 Westbound Ramps to SR-905 Eastbound Ramps	70.6	67.1	72.8	75.5	56	177	561	1,774	5,610	17,741
8	Caliente Avenue	SR-905 Eastbound Ramps to Airway Road	70.3	66.9	72.5	75.3	54	169	536	1,694	5,358	16,942
9	Otay Mesa Road	Ocean View Hills Parkway to Driveway	75.7	70.4	75.2	79.1	129	406	1,285	4,064	12,852	40,642
10	Otay Mesa Road	Driveway to Emerald Crest Court	75.7	70.4	75.2	79.1	129	406	1,285	4,064	12,852	40,642
11	Otay Mesa Road	Emerald Crest Court to Corporate Center Drive	73.9	69.1	74.1	77.7	93	294	931	2,944	9,310	29,442
12	Otay Mesa Road	Corporate Center Drive to Innovative Drive	70.0	65.8	71.2	74.3	43	135	426	1,346	4,256	13,458
13	Otay Mesa Road	Innovative Drive to Heritage Road	70.5	66.3	71.7	74.8	48	151	477	1,510	4,775	15,100

RECON Noise Analysis

ATTACHMENT 8 SoundPLAN Data – HVAC

4135.1 California Terraces PA-61 SoundPLAN Data - HVAC

		Level	Corrections		
Source name	Reference	Leq1	Kwall	CI	СТ
Course Hame	11010101100	dB(A)	dB(A)	dB(A)	dB(A)
HVAC1	Unit	72	-	-	-
HVAC2	Unit	72	_	_	_
HVAC3	Unit	72	-	-	_
HVAC4	Unit	72	-	-	_
HVAC5	Unit	72	-	-	-
HVAC6	Unit	72	-	-	-
HVAC7	Unit	72	-	-	-
HVAC8	Unit	72	-	-	-
HVAC9	Unit	72	-	-	-
HVAC10	Unit	72	-	-	-
HVAC11	Unit	72	-	-	-
HVAC12	Unit	72	-	-	-
HVAC13	Unit	72	-	-	-
HVAC14	Unit	72	-	-	-
HVAC15	Unit	72	-	-	-
HVAC16	Unit	72	-	-	_
HVAC17	Unit	72	-	-	-
HVAC18	Unit	72	-	-	-
HVAC19	Unit	72	-	-	-
HVAC20	Unit	72	-	-	-
HVAC21	Unit	72	-	-	-
HVAC22	Unit	72	-	-	-
HVAC23	Unit	72	-	-	-
HVAC24	Unit	72	-	-	_
HVAC25	Unit	72	-	-	_
HVAC26	Unit	72	-	-	-
HVAC27	Unit	72	-	-	_
HVAC28	Unit	72	-	-	-
HVAC29	Unit	72	-	-	-
HVAC30	Unit	72	-	-	-
HVAC31	Unit	72	-	-	-
HVAC32	Unit	72	-	-	-
HVAC33	Unit	72	-	-	-
HVAC34	Unit	72	-	-	-
HVAC35	Unit	72	-	-	-
HVAC36	Unit	72	-	-	-
HVAC37	Unit	72	-	-	-
HVAC38	Unit	72	-	-	-
HVAC39	Unit	72	-	-	-
HVAC40	Unit	72	-	-	-
HVAC41	Unit	72	-	-	-
HVAC42	Unit	72	-	-	-
HVAC43	Unit	72	-	-	-
HVAC44	Unit	72	-	-	-
HVAC45	Unit	72	-	-	-
HVAC46	Unit	72	-	-	-
HVAC47	Unit	72	-	-	-
HVAC48	Unit	72	-	-	-
HVAC49	Unit	72	-	-	-
HVAC50	Unit	72	-	-	-
HVAC51	Unit	72	-	-	-
HVAC52	Unit	72	-	-	-

HVAC53	Unit	72	-	-	-
HVAC54	Unit	72	_	-	-
HVAC55	Unit	72	_	-	-
HVAC56	Unit	72	-	-	-
HVAC57	Unit	72	_	_	_
HVAC58	Unit	72	_	_	_
HVAC59	Unit	72	_	_	_
HVAC60	Unit	72	_	_	_
HVAC61	Unit	72	_	_	_
HVAC62	Unit	72	_	_	_
HVAC63	Unit	72	_	_	_
HVAC64	Unit	72	_	_	_
HVAC65	Unit	72	_	_	_
HVAC66	Unit	72 72	-	-	-
HVAC67	Unit	72 72	-	-	-
	Unit	72 72	-	-	-
HVAC68			-	-	-
HVAC69	Unit	72 70	-	-	-
HVAC70	Unit	72	-	-	-
HVAC71	Unit	72	-	-	-
HVAC72	Unit	72	-	-	-
HVAC73	Unit	72	-	-	-
HVAC74	Unit	72	-	-	-
HVAC75	Unit	72	-	-	-
HVAC76	Unit	72	-	-	-
HVAC77	Unit	72	-	-	-
HVAC78	Unit	72	-	-	-
HVAC79	Unit	72	-	-	-
HVAC80	Unit	72	-	-	-
HVAC81	Unit	72	-	-	-
HVAC82	Unit	72	-	-	-
HVAC83	Unit	72	-	-	-
HVAC84	Unit	72	-	-	-
HVAC85	Unit	72	-	-	-
HVAC86	Unit	72	-	-	-
HVAC87	Unit	72	-	-	-
HVAC88	Unit	72	-	-	-
HVAC89	Unit	72	-	-	-
HVAC90	Unit	72	-	-	-
HVAC91	Unit	72	-	-	-
HVAC92	Unit	72	_	-	-
HVAC93	Unit	72	_	-	-
HVAC94	Unit	72	_	_	_
HVAC95	Unit	72	_	_	_
HVAC96	Unit	72	_	_	_
HVAC97	Unit	72	_	_	_
HVAC98	Unit	72	_	_	_
HVAC99	Unit	72	_	_	_
HVAC100	Unit	72	_	_	_
HVAC100	Unit	72 72	-	-	_
HVAC101	Unit	72 72	-	_	=
HVAC102	Unit	72 72	-	-	_
HVAC104	Unit	72 72	-	_	-
HVAC104	Unit	72 72	-		-
HVAC105	Unit	72 72	-	-	-
HVAC100	Unit	72 72	-	-	-
TIVAC 107	Offic	12	-	-	-

HVAC108	Unit	72	_	_	_
HVAC109	Unit	72	_	_	_
HVAC110	Unit	72	_	_	_
HVAC111	Unit	72	_	_	_
HVAC111	Unit	72	_	_	_
HVAC112			-	-	-
	Unit	72 70	-	-	-
HVAC114	Unit	72	-	-	-
HVAC115	Unit	72	-	-	-
HVAC116	Unit	72	-	-	-
HVAC117	Unit	72	-	-	-
HVAC118	Unit	72	-	-	-
HVAC119	Unit	72	-	-	-
HVAC120	Unit	72	-	-	-
HVAC121	Unit	72	-	-	-
HVAC122	Unit	72	_	_	-
HVAC123	Unit	72	_	-	-
HVAC124	Unit	72	_	_	_
HVAC125	Unit	72	_	_	_
HVAC126	Unit	72	_	_	_
HVAC127	Unit	72	_	_	_
HVAC128	Unit	72	_	_	_
HVAC129	Unit	72	-	-	-
HVAC129	Unit	72 72	-	-	-
	_		-	-	-
HVAC131	Unit	72 70	-	-	-
HVAC132	Unit	72	-	-	-
HVAC133	Unit	72	-	-	-
HVAC134	Unit	72	-	-	-
HVAC135	Unit	72	-	-	-
HVAC136	Unit	72	-	-	-
HVAC137	Unit	72	-	-	-
HVAC138	Unit	72	-	-	-
HVAC139	Unit	72	-	-	-
HVAC140	Unit	72	-	-	-
HVAC141	Unit	72	-	-	-
HVAC142	Unit	72	-	-	-
HVAC143	Unit	72	-	-	-
HVAC144	Unit	72	_	-	-
HVAC145	Unit	72	_	_	_
HVAC146	Unit	72	_	_	_
HVAC147	Unit	72	_	_	_
HVAC148	Unit	72	_	_	_
HVAC140	Unit	72	_	_	_
HVAC149	Unit	72 72	-	-	-
			-	-	-
HVAC151	Unit	72 72	-	-	-
HVAC152	Unit	72 70	-	-	-
HVAC153	Unit	72	-	-	-
HVAC154	Unit	72	-	-	-
HVAC155	Unit	72	-	-	-
HVAC156	Unit	72	-	-	-
HVAC157	Unit	72	-	-	-
HVAC158	Unit	72	-	-	-
HVAC159	Unit	72	-	-	-
HVAC160	Unit	72	-	-	-
HVAC161	Unit	72	-	-	-
HVAC162	Unit	72	-	-	-

HVAC163	Unit	72	-	-	-
HVAC164	Unit	72	-	-	-
HVAC165	Unit	72	-	-	-
HVAC166	Unit	72	-	-	-
HVAC167	Unit	72	-	-	-
HVAC168	Unit	72	-	-	-
HVAC169	Unit	72	-	-	-
HVAC170	Unit	72	-	-	-
HVAC171	Unit	72	-	-	-
HVAC172	Unit	72	-	-	-
HVAC173	Unit	72	-	-	-

	Coore	dinates			Limit	Level w/o NP	Level w. NP	Difference	Conflict
No.	X	Υ	Floor	Height	Leq1	Leq1	Leq1	Leq1	Leq1
	in r	neter		m	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)
1	499074.90	3603253.79	1.FI	160.65	-	34.7	0	-34.7	-
2	499074.93	3603286.49	1.FI	162.04	-	35.6	0	-35.6	-
3	499074.97	3603333.00	1.FI	161.47	-	36.9	0	-36.9	-
4	499075.05	3603406.30	1.FI	160.35	-	34.8	0	-34.8	-
5	499051.71	3603448.75	1.FI	160.61	-	36.6	0	-36.6	-
6	498987.28	3603449.21	1.FI	161.42	-	38.1	0	-38.1	-
7	498929.26	3603451.69	1.FI	162.25	-	38.1	0	-38.1	-
8	498881.59	3603456.01	1.FI	162.23	-	37.4	0	-37.4	-
9	498842.85	3603460.83	1.FI	161.79	-	36.2	0	-36.2	-
10	498795.66	3603463.58	1.FI	161.27	-	34.6	0	-34.6	-
11	498719.81	3603466.46	1.FI	160.61	-	32.8	0	-32.8	-
12	498689.33	3603406.53	1.FI	161.21	-	32.6	0	-32.6	-
13	498689.37	3603365.41	1.FI	161.83	-	33.0	0	-33.0	-
14	498685.46	3603294.52	1.FI	164.57	-	33.6	0	-33.6	-
15	498762.73	3603264.97	1.FI	162.79	-	34.8	0	-34.8	-
16	498820.55	3603248.62	1.FI	162.75	-	35.2	0	-35.2	-
17	498873.13	3603251.73	1.FI	162.48	-	37.6	0	-37.6	-
18	498928.41	3603252.34	1.FI	162.14	-	38.2	0	-38.2	-
19	498980.21	3603252.61	1.FI	161.65	-	37.8	0	-37.8	-
20	499028.95	3603252.87	1.FI	161.04	-	37.4	0	-37.4	-

Source name		Level w/o NP Leq1 dB(A)	Level w. NP Leq1 dB(A)
1 1.FI	34.7	0.0	GD (71)
HVAC1	04.7	7.2	0
HVAC2		7.0	0
HVAC3		7.0	0
HVAC4		7.4	0
HVAC5		7.4 7.5	0
HVAC6		7.3 11.2	0
HVAC7		11.4	0
HVAC8		11.4	0
HVAC9		11.0	0
HVAC10		10.9	0
HVAC11		11.6	0
HVAC12		11.6	0
HVAC12		11.2	0
HVAC14		11.0	0
HVAC15		10.6	0
HVAC16		0.7	0
HVAC17		1.8	0
HVAC18		3.3	0
HVAC19			0
HVAC20		3.3	
		3.0	0
HVAC21		-1.3	0
HVAC22		-1.4	0
HVAC23		-1.7	0
HVAC24		-1.7	0
HVAC25		-1.7	0
HVAC26		13.6	0
HVAC27		13.6	0
HVAC28		11.7	0
HVAC29		11.8	0
HVAC30 HVAC31		10.5 10.1	0 0
HVAC32 HVAC33		8.9	0
HVAC34		10.4 13.9	0
HVAC35		13.8	0 0
HVAC36		12.5	0
HVAC37		9.9	0
HVAC38		9.0	0
HVAC39		8.9	0
HVAC40		12.9	0
HVAC41		12.9	0
HVAC42		11.4	0
HVAC43		10.7	0
HVAC44		10.7	0
HVAC45		10.3	0
HVAC46		12.1	0
HVAC47		12.1	0
HVAC48		12.1	0
HVAC49		8.9	0
HVAC50		16.2	0
HVAC50		16.4	0
117/1001		10.4	U

HVAC52	15.7	0
HVAC53	11.9	0
HVAC54	10.9	0
HVAC55	9.7	0
HVAC56	16.8	0
HVAC57	16.8	0
HVAC58	13.7	0
HVAC59	12.8	0
HVAC60	12.1	0
HVAC61	12.3	0
HVAC62	24.0	0
HVAC63	24.4	0
HVAC64	16.6	0
HVAC65	14.4	0
HVAC66	13.3	0
HVAC67	11.8	0
HVAC68	23.2	0
HVAC69	24.1	0
HVAC70	24.7	0
HVAC71	20.8	0
HVAC72	15.7	0
HVAC73	21.5	0
HVAC74	6.2	0
HVAC75	6.1	0
HVAC76	6.5	0
HVAC77	6.7	0
HVAC78	7.0	0
HVAC79	7.5	0
HVAC80	3.6	0
HVAC81	3.7	0
HVAC82	4.0	0
HVAC83	4.1	0
HVAC84	4.2	0
HVAC85	4.1	0
HVAC86	6.2	0
HVAC87	6.2	0
HVAC88	6.1	0
HVAC89	6.1	0
HVAC90	6.0	0
HVAC91	3.5	0
HVAC91		
	4.5	0
HVAC93	4.6	0
HVAC94	6.7	0
HVAC95	6.5	0
HVAC96	6.4	0
HVAC97	6.1	0
HVAC98	2.3	0
HVAC99	2.3	0
HVAC100	2.2	0
HVAC101	0.1	0
HVAC102	-0.1	0
HVAC103	-0.4	0
HVAC104	0.8	0
HVAC105	0.8	0
HVAC106	0.7	0
	~	Ū

HVAC107	0.5	0
HVAC108	0.3	0
HVAC109	-0.2	0
HVAC110	1.3	0
HVAC111	1.2	0
HVAC112 HVAC113	0.7 0.6	0 0
HVAC113	0.8	0
HVAC115	0.0	0
HVAC116	5.5	0
HVAC117	5.3	0
HVAC118	5.1	0
HVAC119	5.1	0
HVAC120	4.8	0
HVAC121	4.8	0
HVAC122	4.9	0
HVAC123	7.3	0
HVAC124	7.1	0
HVAC125	6.7	0
HVAC126	6.7	0
HVAC127	6.5	0
HVAC128	6.5	0
HVAC129 HVAC130	6.5 4.7	0 0
HVAC131	4.7	0
HVAC131	4.8	0
HVAC133	4.8	0
HVAC134	4.5	0
HVAC135	4.5	0
HVAC136	4.2	0
HVAC137	-3.5	0
HVAC138	-3.5	0
HVAC139	-3.5	0
HVAC140	-3.5	0
HVAC141	-3.6	0
HVAC142	-3.6	0
HVAC143	-0.7	0
HVAC144 HVAC145	1.4 1.0	0 0
HVAC145	1.3	0
HVAC140	1.8	0
HVAC148	2.6	0
HVAC149	2.8	0
HVAC150	0.3	0
HVAC151	1.1	0
HVAC152	0.8	0
HVAC153	1.4	0
HVAC154	1.4	0
HVAC155	0.9	0
HVAC156	-3.3	0
HVAC157	-0.3	0
HVAC158	-0.2	0
HVAC159 HVAC160	-2.2 0.3	0
HVAC160 HVAC161	-0.3 -2.2	0
11040101	-2.2	U

HVAC162 HVAC163 HVAC164 HVAC165 HVAC166 HVAC167 HVAC168 HVAC169 HVAC170 HVAC171 HVAC172 HVAC173	35.6	2.7 2.8 3.7 4.0 8.8 4.7 4.6 5.0 5.3 10.2 11.1 21.7	0 0 0 0 0 0 0 0
HVAC1 HVAC2 HVAC3 HVAC4 HVAC5 HVAC6 HVAC7 HVAC8 HVAC9 HVAC10 HVAC11 HVAC12 HVAC13 HVAC14 HVAC15 HVAC16 HVAC17 HVAC20 HVAC20 HVAC20 HVAC21 HVAC22 HVAC23 HVAC24 HVAC25 HVAC25 HVAC25 HVAC25 HVAC25 HVAC26 HVAC31 HVAC33 HVAC34 HVAC35 HVAC36 HVAC35 HVAC36 HVAC37 HVAC38 HVAC37 HVAC38 HVAC38 HVAC38 HVAC39 HVAC39 HVAC39 HVAC30 HVAC31 HVAC31 HVAC31 HVAC31 HVAC32 HVAC33 HVAC33 HVAC33 HVAC34 HVAC35 HVAC35 HVAC36 HVAC37 HVAC38 HVAC37 HVAC38 HVAC39 HVAC40 HVAC41		-1.9 -1.7 -1.6 -1.4 -1.4 -1.5 -1.5 -1.7 -1.7 -2.0 12.7 19.3 12.0 12.0 17.4 10.3 10.3 9.9 9.8 9.1 9.9 5.9 9.4 9.2 8.6 4.0 3.9 -0.2 -0.1 0.0 0.0 0.0 1.6 1.1 1.0 0.8 0.9 0.9 2.2 2.2 2.3 2.5	

HVAC43	2.5	0
HVAC44	2.5	0
HVAC45	2.4	0
HVAC46	3.6	0
HVAC47	3.7	0
HVAC48	3.7	0
HVAC49	3.9	0
HVAC50	5.7	0
HVAC51	5.8	0
HVAC52	6.1	0
HVAC53	6.1	0
HVAC54	6.1	0
HVAC55	5.9	0
HVAC56	8.5	0
HVAC57	8.3	0
HVAC58	8.1	0
HVAC59	8.0	0
HVAC60	8.0	0
HVAC61	8.4	0
HVAC62	20.4	0
HVAC63	18.8	0
HVAC64	19.6	0
HVAC65	22.0	0
HVAC66	17.0	0
HVAC67	14.2	0
HVAC68	24.1	0
HVAC69	23.0	0
HVAC70	23.1	0
HVAC71	23.2	0
HVAC72	24.6	0
HVAC73	27.3	0
HVAC74	2.7	0
HVAC75	2.7	0
HVAC76	3.0	0
HVAC77	3.2	0
HVAC78	3.5	0
HVAC79	4.0	0
HVAC80	2.4	0
HVAC81	2.4	0
HVAC82	2.7	0
HVAC83	3.0	0
HVAC84	3.3	0
HVAC85	3.7	0
HVAC86	0.9	0
HVAC87	0.9	0
HVAC88	0.7	0
HVAC89	0.5	0
HVAC90	0.3	0
HVAC91	0.0	0
HVAC92	-1.2	0
HVAC93	-1.2	0
HVAC94	-1.4	0
HVAC95	-1.6	0
HVAC96	-1.7	0
HVAC97	-2.0	0
	2.0	J

HVAC98	-1.4	0
HVAC99	-1.4	0
HVAC100	-1.6	0
HVAC101	-1.6	0
HVAC102	-1.6	0
HVAC103	-1.6	0
HVAC104	-0.5	0
HVAC105	-0.5	0
HVAC105		
	-0.4	0
HVAC107	-0.5	0
HVAC108	-0.5	0
HVAC109	-0.7	0
HVAC110	0.6	0
HVAC111	0.5	0
HVAC112	0.3	0
HVAC113	0.3	0
HVAC114	0.3	0
HVAC115	0.3	0
HVAC116	1.1	0
HVAC117	1.1	0
HVAC117 HVAC118	0.9	0
HVAC119	0.8	0
HVAC120	0.3	0
HVAC121	0.2	0
HVAC122	1.7	0
HVAC123	8.1	0
HVAC124	8.0	0
HVAC125	7.5	0
HVAC126	7.3	0
HVAC127	6.2	0
HVAC128	6.0	0
HVAC129	5.4	0
HVAC130	7.0	0
HVAC131	7.1	0
HVAC132	6.7	0
HVAC133	6.5	0
HVAC134	5.5	0
HVAC135	5.4	0
HVAC136	4.7	0
HVAC137		
	-6.5	0
HVAC138	-6.5	0
HVAC139	-2.2	0
HVAC140	-2.2	0
HVAC141	-2.3	0
HVAC142	-2.3	0
HVAC143	-2.4	0
HVAC144	2.5	0
HVAC145	3.5	0
HVAC146	2.3	0
HVAC147	3.0	0
HVAC148	3.0	0
HVAC149	3.5	0
HVAC150	1.3	0
HVAC151	1.8	0
HVAC152	1.7	0
117710102	1.1	J

HVAC153 HVAC154 HVAC155 HVAC156 HVAC157 HVAC158 HVAC159 HVAC160 HVAC161 HVAC162 HVAC163 HVAC164 HVAC165 HVAC166 HVAC166 HVAC167 HVAC168 HVAC169 HVAC170 HVAC171 HVAC171	36.9	1.7 1.8 1.7 3.1 1.3 1.1 1.2 1.5 1.3 14.9 15.1 15.6 15.9 19.4 9.2 9.0 9.4 10.2 22.8 22.6 24.3 0.0	
HVAC1 HVAC2 HVAC3 HVAC4 HVAC5 HVAC6 HVAC7 HVAC8 HVAC10 HVAC11 HVAC12 HVAC13 HVAC14 HVAC15 HVAC16 HVAC17 HVAC18 HVAC21 HVAC20 HVAC20 HVAC21 HVAC22 HVAC23 HVAC24 HVAC25 HVAC24 HVAC25 HVAC25 HVAC25 HVAC26 HVAC27 HVAC28 HVAC27 HVAC28 HVAC30 HVAC31 HVAC31 HVAC32 HVAC31 HVAC32 HVAC33	30.9	-1.8 -1.4 -1.4 -1.5 -1.4 -5.3 -5.1 -5.2 -5.2 -5.4 22.2 22.3 20.2 19.5 18.3 21.0 21.4 21.6 21.4 16.9 11.2 11.3 11.3 11.4 16.7 2.9 2.9 -4.6 -4.5 -4.1 -1.8 -1.3 0.0	

HVAC34 HVAC35 HVAC36 HVAC37 HVAC38 HVAC39	-3.9 -3.9 -2.1 -1.7 -0.9 0.3	0 0 0 0 0
HVAC40 HVAC41	-3.2 -3.1	0
HVAC42 HVAC43	1.8 2.1	0 0
HVAC44	-1.9	0
HVAC45 HVAC46	-1.3 2.7	0 0
HVAC47	2.8	0
HVAC48 HVAC49	3.0 -0.1	0 0
HVAC50	4.5	0
HVAC51	4.5	0
HVAC52 HVAC53	4.9 5.0	0 0
HVAC54	5.1	0
HVAC55 HVAC56	5.4	0
HVAC56 HVAC57	11.2 11.2	0 0
HVAC58	12.1	0
HVAC59 HVAC60	12.3 12.7	0 0
HVAC61	13.4	0
HVAC62	6.8	0
HVAC63 HVAC64	7.0 7.8	0 0
HVAC65	8.0	0
HVAC66 HVAC67	13.0 12.2	0 0
HVAC68	21.0	0
HVAC69	17.9	0
HVAC70 HVAC71	17.9 19.2	0 0
HVAC72	20.4	0
HVAC73 HVAC74	24.8	0
HVAC75	4.8 11.8	0 0
HVAC76	12.4	0
HVAC77 HVAC78	12.9 13.2	0 0
HVAC79	6.1	0
HVAC80	12.0	0
HVAC81 HVAC82	12.0 12.5	0 0
HVAC83	12.9	0
HVAC84 HVAC85	13.3 8.7	0 0
HVAC86	10.2	0
HVAC87	10.4	0
HVAC88	11.1	0

HVAC89	10.9	0
HVAC90	7.9	0
HVAC91	10.1	0
HVAC92	7.0	0
HVAC93	9.3	0
HVAC94	8.4	0
HVAC95	8.2	0
HVAC96	8.0	0
HVAC97	5.1	0
HVAC98	-2.5	0
HVAC99	-2.5	0
HVAC100	-2.8	0
HVAC101	-2.8	0
HVAC102 HVAC103	-2.9	0
HVAC103 HVAC104	-3.5 -1.8	0 0
HVAC104 HVAC105	-1.6 -1.6	0
HVAC105	-1.0 -1.7	0
HVAC100	2.6	0
HVAC108	2.5	0
HVAC109	2.4	0
HVAC110	-0.7	0
HVAC111	-0.7	0
HVAC112	3.5	0
HVAC113	3.5	0
HVAC114	3.3	0
HVAC115	3.4	0
HVAC116	10.7	0
HVAC117	10.9	0
HVAC118	11.5	0
HVAC119	11.5	0
HVAC120	11.0	0
HVAC121	10.9	0
HVAC122	7.8	0
HVAC123 HVAC124	16.0 16.3	0
HVAC125		0
HVAC126	13.1 13.0	0 0
HVAC127	11.5	0
HVAC128	11.5	0
HVAC129	6.4	0
HVAC130	12.2	0
HVAC131	12.8	0
HVAC132	13.5	0
HVAC133	14.2	0
HVAC134	10.8	0
HVAC135	10.7	0
HVAC136	7.6	0
HVAC137	-2.4	0
HVAC138	-2.3	0
HVAC139	-3.3	0
HVAC140	-3.9	0
HVAC141	-4.1	0
HVAC142	-4.1	0
HVAC143	-4.2	0

HVAC144 HVAC145 HVAC146 HVAC147 HVAC148 HVAC149 HVAC150 HVAC151 HVAC152 HVAC153 HVAC155 HVAC155 HVAC156 HVAC157 HVAC158 HVAC160 HVAC161 HVAC162 HVAC163 HVAC163 HVAC165 HVAC165 HVAC166 HVAC167 HVAC168 HVAC169 HVAC170		6.7 6.4 6.8 6.5 6.6 6.6 4.7 5.1 5.0 4.9 5.0 5.0 9.9 10.4 10.1 9.9 9.0 10.1 22.5 19.1 23.7 24.8 18.0 18.7 19.5 18.0	
HVAC171 HVAC172		23.1 20.3	0
HVAC173 4 1.FI	34.8	24.1 0.0	0
HVAC1 HVAC2 HVAC3 HVAC4 HVAC5 HVAC6 HVAC7 HVAC8 HVAC9 HVAC10 HVAC11 HVAC12 HVAC15 HVAC14 HVAC15 HVAC16 HVAC17 HVAC18 HVAC19 HVAC20 HVAC20 HVAC21 HVAC21 HVAC22 HVAC23 HVAC24		-1.3 -5.6 -5.6 -5.4 -5.8 -5.8 -5.9 -6.0 -6.2 23.2 23.1 23.0 22.0 23.7 14.9 16.2 17.2 17.6 19.6 11.9 11.9 12.7 14.3	

HVAC25	16.3	0
HVAC26	-1.0	0
HVAC27	-1.0	0
HVAC28	-4.8	0
HVAC29	-4.6	0
HVAC30	-2.8	0
HVAC31	-2.8	0
HVAC32	-2.7	0
HVAC33	-4.4	0
HVAC34	-3.7	0
HVAC35	-3.8	0
HVAC36	-3.9	0
HVAC37	-3.8	0
HVAC38	-3.4	0
HVAC39	-3.3	0
HVAC40	- 2.0	0
HVAC41	-2.0	0
HVAC42	-1.7	0
HVAC43	-1.6	0
HVAC44	-1.6	0
HVAC45	-2.5	0
HVAC46	-2.5 -0.6	0
HVAC47		
	-0.6	0
HVAC48	-0.6	0
HVAC49	0.8	0
HVAC50	-0.1	0
HVAC51	0.0	0
HVAC52	5.1	0
HVAC53	5.1	0
HVAC54	5.3	0
HVAC55	5.4	0
HVAC56	6.3	0
HVAC57	6.2	0
HVAC58	6.0	0
HVAC59	6.2	0
HVAC60	6.5	0
HVAC61	7.1	0
HVAC62	12.2	0
HVAC63	10.6	0
HVAC64	14.4	0
HVAC65	14.9	0
HVAC66	13.4	0
HVAC67	13.4	0
HVAC68	11.2	0
HVAC69	11.0	0
HVAC70	11.2	0
HVAC71	14.9	0
HVAC72	15.5	0
HVAC73	16.6	0
HVAC74	3.1	0
HVAC75	3.1	0
HVAC76	3.5	0
HVAC77	3.7	0
HVAC78	4.0	0
HVAC79	4.4	0

HVAC135 HVAC136 HVAC137 HVAC138 HVAC139 HVAC140 HVAC141 HVAC142 HVAC143 HVAC144 HVAC145 HVAC146 HVAC147 HVAC148 HVAC150 HVAC151 HVAC152 HVAC153 HVAC154 HVAC155 HVAC156 HVAC156 HVAC157 HVAC158 HVAC160 HVAC160 HVAC161 HVAC162 HVAC163 HVAC163 HVAC165 HVAC165 HVAC166 HVAC167 HVAC168 HVAC169 HVAC170 HVAC171		6.5 5.9 1.4 1.5 1.9 4.4 6.1 11.2 11.1 13.9 11.4 9.7 9.8 16.2 14.6 9.6 12.5 7.9 8.7 7.1 18.0 13.2 10.8 10.2 14.7 10.2 14.7 10.2 13.4 13.1 13.7 14.3 21.6 11.4 11.5 16.0 20.3	
HVAC172 HVAC173		20.9 20.1	0 0
5 1.FI HVAC1 HVAC2 HVAC3 HVAC4 HVAC5 HVAC6 HVAC7 HVAC8 HVAC9 HVAC10 HVAC11 HVAC12 HVAC13 HVAC14 HVAC15	36.6	0.0 3.9 4.1 4.2 4.1 4.1 3.3 3.2 3.1 2.7 0.7 18.7 18.8 20.8 21.3 24.0	0 0 0 0 0 0 0 0 0

LIV / A CO 4 C	00.0	0
HVAC16	20.3	0
HVAC17	20.4	0
HVAC18 HVAC19	19.8 20.4	0 0
HVAC20	22.9	0
HVAC21	20.6	0
HVAC21	20.4	0
HVAC23	21.8	0
HVAC24	21.9	0
HVAC25	21.7	0
HVAC26	3.0	0
HVAC27	3.0	0
HVAC28	4.8	0
HVAC29	4.8	0
HVAC30	4.9	0
HVAC31	4.9	0
HVAC32	2.7	0
HVAC33	2.5	0
HVAC34	2.3	0
HVAC35	2.2	0
HVAC36	2.5	0
HVAC37	2.7	0
HVAC38	2.9	0
HVAC39	3.3	0
HVAC40	3.6	0
HVAC41	3.7	0
HVAC42	3.9	0
HVAC43	4.0	0
HVAC44	4.0	0
HVAC45	3.4	0
HVAC46	3.3	0
HVAC47	3.5	0
HVAC48	5.7	0
HVAC49	5.9	0
HVAC50	3.0	0
HVAC51	3.0	0
HVAC52	3.3	0
HVAC53	3.5	0
HVAC54	3.7	0
HVAC55	6.4	0
HVAC56	9.0	0
HVAC57	8.7	0
HVAC58	8.2	0
HVAC59	8.4	0
HVAC60	8.5	0
HVAC61	9.2 7.9	0
HVAC62		0
HVAC63 HVAC64	7.9 8.1	0 0
HVAC65	8.4	0
HVAC66	8.6	0
HVAC67	9.1	0
HVAC68	8.1	0
HVAC69	8.1	0
HVAC70	8.3	0
117/10/0	0.5	U

HVAC71	8.5	0
HVAC72	8.8	0
HVAC73	9.4	0
HVAC74	9.3	0
HVAC75	9.4	0
HVAC76	9.6	0
HVAC77	9.7	0
HVAC78	11.1	0
HVAC79	11.8	0
HVAC80	11.4	0
HVAC81	11.2	0
HVAC82	11.1	0
HVAC83	11.2	0
HVAC84	11.3	0
HVAC85	11.7	0
HVAC86	7.3	0
HVAC87	7.1	0
HVAC88	6.8	0
HVAC89	6.7	0
HVAC99	6.7	0
HVAC91	7.3	0
HVAC91	7.3 5.9	0
HVAC92		
	5.7	0
HVAC94	5.6	0
HVAC95	5.6	0
HVAC96	6.0	0
HVAC97	8.8	0
HVAC98	12.0	0
HVAC99	12.0	0
HVAC100	12.0	0
HVAC101	12.2 12.7	0
HVAC102	14.1	0
HVAC103		0
HVAC104	12.7	0
HVAC105	12.8	0
HVAC106	13.3	0
HVAC107	13.9	0
HVAC108	14.1	0
HVAC109	16.3	0
HVAC110	13.2	0
HVAC111	13.2	0
HVAC112	13.7	0
HVAC113	14.3	0
HVAC114	15.3	0
HVAC115	17.6	0
HVAC116	9.0	0
HVAC117	9.3	0
HVAC118	6.6	0
HVAC119	6.5	0
HVAC120	5.8	0
HVAC121	5.7	0
HVAC122	5.3	0
HVAC123	10.4	0
HVAC124	10.4	0
HVAC125	10.4	0

HVAC126 HVAC127 HVAC128 HVAC129 HVAC130 HVAC131 HVAC132 HVAC133 HVAC134 HVAC135 HVAC136 HVAC137 HVAC138 HVAC140 HVAC141 HVAC142 HVAC144 HVAC145 HVAC145 HVAC145 HVAC150 HVAC150 HVAC150 HVAC151 HVAC155 HVAC156 HVAC156 HVAC156 HVAC157 HVAC157 HVAC166 HVAC161		10.4 5.9 5.8 15.3 14.8 12.3 14.7 14.7 14.0 10.8 10.8 11.1 11.2 11.8 12.2 12.1 16.0 17.8 16.9 16.6 16.6 18.5 16.9 16.8 17.5 16.4 16.5 17.0 20.3 17.8 19.4 19.5 19.6 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7	
HVAC172 HVAC173		12.8 13.7	0
6 1.FI HVAC1 HVAC2 HVAC3 HVAC4 HVAC5 HVAC6	38.1	0.0 3.7 8.0 8.0 8.3 8.3 1.8	0 0 0 0 0

HVAC7	1.8	0
HVAC8	0.6	0
HVAC9	0.6	0
HVAC10	1.5	0
HVAC11	17.1	0
HVAC12	17.1	0
HVAC13	20.6	0
HVAC14	20.6	0
HVAC15	20.7	0
HVAC16	21.0	0
HVAC17	20.6	0
HVAC18	20.6 19.9	0
HVAC19	20.2	0
HVAC20	22.3	0
HVAC21	19.4	0
HVAC22	19.6	0
HVAC23	21.5	0
HVAC24	21.9	0
HVAC25	23.8	0
HVAC26	3.3	0
HVAC27	2.8	0
HVAC28	1.7	0
HVAC29	1.7	0
HVAC30	1.9	0
HVAC31	2.1	0
HVAC32	2.5	0
HVAC33	2.9	0
HVAC34	3.8	0
HVAC35	3.1	0
HVAC36	2.8	0
HVAC37	5.3	0
HVAC38	5.4	0
HVAC39	7.8	0
HVAC40	5.7	0
HVAC41	5.7	0
HVAC42	6.2	0
HVAC43	6.2	0
HVAC44	6.5	0
HVAC45	6.2	0
HVAC46	3.3	0
HVAC47	3.6	0
HVAC48	3.9	0
HVAC49	4.3	0
HVAC50	3.3	0
HVAC51	3.2	0
HVAC52	3.4	0
HVAC53	8.0	0
HVAC54	8.3	0
HVAC55	8.8	0
HVAC56	11.9	0
HVAC57	11.9	0
HVAC58	12.2	0
HVAC59	12.5	0
HVAC60	12.7	0
HVAC61	13.2	0
		-

		•
HVAC62	8.0	0
HVAC63	7.9	0
HVAC64	8.8	0
HVAC65	9.0	0
HVAC66	10.3	0
HVAC67	10.7	0
HVAC68	9.6	0
HVAC69	9.6	0
HVAC70	9.9	0
HVAC71	10.1	0
HVAC72	11.1	0
HVAC73	9.0	0
HVAC74	12.0	0
HVAC75	12.1	0
HVAC76	12.5	0
HVAC77	13.2	0
HVAC78	13.7	0
HVAC79	10.7	0
HVAC80	12.3	0
HVAC81	12.3	0
HVAC82	13.7	0
HVAC83	15.9	0
HVAC84		
	16.1	0
HVAC85	17.0	0
HVAC86	11.3	0
HVAC87	11.2	0
HVAC88	10.8	0
HVAC89	10.9	0
HVAC90	10.8	0
HVAC91	11.4	0
HVAC92	9.0	0
HVAC93	8.9	0
HVAC94	8.7	0
HVAC95	4.9	0
HVAC96	4.7	0
HVAC97	5.1	0
HVAC98	13.5	0
HVAC99	13.5	0
HVAC100	14.3	0
HVAC101	14.4	0
HVAC102	15.5	0
HVAC103	18.6	0
HVAC104	15.0	0
HVAC105	15.1	0
HVAC106	15.8	0
HVAC107	16.2	0
HVAC108	18.9	0
HVAC109	18.1	0
HVAC110	15.4	0
HVAC111	15.3	0
HVAC112	16.4	0
HVAC113	18.8	0
HVAC114	18.7	0
HVAC115	21.4	0
HVAC116	9.2	0
	0.2	U

HVAC119 9.3 0 HVAC120 9.1 0 HVAC121 9.1 0 HVAC122 9.1 0 HVAC123 15.8 0 HVAC124 16.0 0 HVAC125 16.2 0 HVAC126 16.3 0 HVAC127 10.5 0 HVAC128 10.5 0 HVAC129 10.4 0 HVAC130 18.7 0 HVAC131 18.6 0 HVAC131 18.6 0 HVAC131 18.6 0 HVAC132 18.3 0 HVAC133 18.3 0 HVAC134 14.0 0 HVAC135 14.0 0 HVAC136 14.3 0 HVAC137 12.3 0 HVAC137 12.3 0 HVAC138 12.4 0 HVAC139 12.6 0 HVAC140 12.8 0 HVAC140 12.8 0 HVAC141 14.8 0 HVAC142 14.7 0 HVAC143 15.4 0 HVAC143 15.4 0 HVAC144 18.5 0 HVAC145 20.4 0 HVAC146 22.1 0 HVAC147 20.3 0 HVAC148 21.0 0 HVAC149 23.3 0 HVAC149 23.3 0 HVAC149 23.3 0 HVAC149 23.3 0 HVAC140 12.8 0 HVAC141 17.9 0 HVAC141 17.9 0 HVAC142 14.7 0 HVAC143 15.4 0 HVAC145 20.4 0 HVAC146 22.1 0 HVAC147 20.3 0 HVAC148 21.0 0 HVAC150 21.6 0 HVAC151 17.9 0 HVAC152 21.4 0 HVAC153 18.0 0 HVAC155 19.9 17.8 0 HVAC156 19.9 17.8 0 HVAC157 19.9 0 HVAC158 19.0 0 HVAC158 19.0 0 HVAC159 17.8 0 HVAC166 14.4 0	HVAC117 HVAC118	9.3 9.3	0 0
HVAC121 9.1 0 HVAC122 9.1 0 HVAC123 15.8 0 HVAC124 16.0 0 HVAC125 16.2 0 HVAC126 16.3 0 HVAC127 10.5 0 HVAC128 10.5 0 HVAC129 10.4 0 HVAC130 18.7 0 HVAC131 18.6 0 HVAC131 18.6 0 HVAC132 18.3 0 HVAC133 18.3 0 HVAC134 14.0 0 HVAC135 14.0 0 HVAC136 14.3 0 HVAC137 12.3 0 HVAC138 12.4 0 HVAC139 12.6 0 HVAC140 12.8 0 HVAC140 12.8 0 HVAC141 14.8 0 HVAC142 14.7 0 HVAC143 15.4 0 HVAC144 18.5 0 HVAC145 20.4 0 HVAC146 22.1 0 HVAC146 22.1 0 HVAC149 23.3 0 HVAC149 23.3 0 HVAC155 18.8 0 HVAC156 19.9 0 HVAC156 24.3 0 HVAC157 19.9 0 HVAC158 19.0 0 HVAC159 17.8 0 HVAC150 11.0 0 HVAC150 21.6 0 HVAC151 17.9 0 HVAC152 21.4 0 HVAC155 18.8 0 HVAC156 24.3 0 HVAC156 24.3 0 HVAC156 17.8 0 HVAC157 19.9 0 HVAC158 19.0 0 HVAC158 19.0 0 HVAC156 17.8 0 HVAC156 14.9 0 HVAC166 14.4 0 HVAC166 19.4 0 HVAC166			
HVAC122 9.1 0 HVAC123 15.8 0 HVAC124 16.0 0 HVAC125 16.2 0 HVAC126 16.3 0 HVAC127 10.5 0 HVAC128 10.5 0 HVAC129 10.4 0 HVAC130 18.7 0 HVAC131 18.6 0 HVAC132 18.3 0 HVAC132 18.3 0 HVAC133 18.3 0 HVAC134 14.0 0 HVAC135 14.0 0 HVAC136 14.3 0 HVAC137 12.3 0 HVAC138 12.4 0 HVAC139 12.6 0 HVAC140 12.8 0 HVAC140 12.8 0 HVAC141 14.8 0 HVAC142 14.7 0 HVAC143 15.4 0 HVAC144 18.5 0 HVAC145 20.4 0 HVAC146 22.1 0 HVAC146 22.1 0 HVAC147 20.3 0 HVAC148 21.0 0 HVAC150 21.6 0 HVAC150 11.0 0 HVAC150 21.6 0 HVAC150 21.1 0 HVAC160 21.1 0 HVAC160 21.1 0 HVAC160 21.1 0 HVAC160 11.7 8 0 HVAC160 11.7 8 0 HVAC160 11.7 8 0 HVAC160 11.4 0 HVAC160 12.1 0			
HVAC123			
HVAC125			
HVAC126			
HVAC127			
HVAC128			
HVAC129			
HVAC130			
HVAC131			
HVAC133	HVAC131		
HVAC134		18.3	0
HVAC135			
HVAC136 HVAC137 HVAC138 HVAC139 HVAC140 HVAC141 HVAC141 HVAC142 HVAC142 HVAC143 HVAC144 HVAC145 HVAC145 HVAC146 HVAC147 HVAC148 HVAC149 HVAC149 HVAC150 HVAC151 HVAC150 HVAC151 HVAC153 HVAC153 HVAC154 HVAC155 HVAC156 HVAC156 HVAC157 HVAC158 HVAC158 HVAC159 HVAC159 HVAC159 HVAC150 HVAC150 HVAC150 HVAC150 HVAC150 HVAC151 HVAC151 HVAC151 HVAC151 HVAC152 HVAC153 HVAC154 HVAC155 HVAC155 HVAC156 HVAC156 HVAC157 HPS HVAC156 HVAC157 HPS HVAC158 HPO HVAC159 HVAC159 HVAC159 HVAC150 HVAC150 HVAC150 HVAC150 HVAC151 HVAC151 HVAC160 HVAC161 HVAC161 HVAC161 HVAC161 HVAC162 HVAC163 HVAC163 HVAC164 HVAC165 HVAC166 HVAC166 HVAC167 HOS HVAC168 HVAC168 HVAC169 HVAC169 HVAC169 HVAC169 HVAC169 HVAC169 HVAC160 HVAC16			
HVAC137			
HVAC138			
HVAC140 12.8 0 HVAC141 14.8 0 HVAC142 14.7 0 HVAC143 15.4 0 HVAC144 18.5 0 HVAC145 20.4 0 HVAC146 22.1 0 HVAC147 20.3 0 HVAC148 21.0 0 HVAC149 23.3 0 HVAC150 21.6 0 HVAC151 17.9 0 HVAC152 21.4 0 HVAC153 18.0 0 HVAC154 19.3 0 HVAC155 18.8 0 HVAC156 24.3 0 HVAC156 24.3 0 HVAC157 19.9 0 HVAC158 19.0 0 HVAC159 17.8 0 HVAC159 17.8 0 HVAC160 21.1 0 HVAC161 17.8 0 HVAC162 12.6 0 HVAC163 12.4 0 HVAC164 15.3 0 HVAC165 14.9 0 HVAC166 14.4 0 HVAC166 14.4 0 HVAC167 10.3 0 HVAC168 10.4 0 HVAC168 10.4 0 HVAC168 10.4 0 HVAC169 12.1 0			
HVAC141 14.8 0 HVAC142 14.7 0 HVAC143 15.4 0 HVAC144 18.5 0 HVAC145 20.4 0 HVAC146 22.1 0 HVAC147 20.3 0 HVAC148 21.0 0 HVAC149 23.3 0 HVAC150 21.6 0 HVAC151 17.9 0 HVAC152 21.4 0 HVAC153 18.0 0 HVAC154 19.3 0 HVAC155 18.8 0 HVAC156 24.3 0 HVAC157 19.9 0 HVAC158 19.0 0 HVAC159 17.8 0 HVAC159 17.8 0 HVAC160 21.1 0 HVAC160 17.8 0 HVAC161 17.8 0 HVAC161 17.8 0 HVAC162 12.6 0 HVAC163 12.4 0 HVAC163 12.4 0 HVAC164 15.3 0 HVAC165 14.9 0 HVAC166 14.4 0 HVAC166 14.4 0 HVAC167 10.3 0 HVAC168 10.4 0 HVAC168 10.4 0 HVAC168 10.4 0 HVAC169 12.1 0	HVAC139	12.6	0
HVAC142 14.7 0 HVAC143 15.4 0 HVAC144 18.5 0 HVAC145 20.4 0 HVAC146 22.1 0 HVAC147 20.3 0 HVAC148 21.0 0 HVAC149 23.3 0 HVAC150 21.6 0 HVAC151 17.9 0 HVAC152 21.4 0 HVAC153 18.0 0 HVAC153 18.0 0 HVAC155 18.8 0 HVAC156 24.3 0 HVAC156 24.3 0 HVAC157 19.9 0 HVAC158 19.0 0 HVAC159 17.8 0 HVAC159 17.8 0 HVAC160 21.1 0 HVAC161 17.8 0 HVAC161 17.8 0 HVAC162 12.6 0 HVAC163 12.4 0 HVAC163 12.4 0 HVAC166 14.4 0 HVAC166 14.4 0 HVAC166 14.4 0 HVAC167 10.3 0 HVAC168 10.4 0 HVAC169 12.1 0			
HVAC143			
HVAC144 18.5 0 HVAC145 20.4 0 HVAC146 22.1 0 HVAC147 20.3 0 HVAC148 21.0 0 HVAC149 23.3 0 HVAC150 21.6 0 HVAC151 17.9 0 HVAC152 21.4 0 HVAC153 18.0 0 HVAC154 19.3 0 HVAC155 18.8 0 HVAC155 18.8 0 HVAC156 24.3 0 HVAC157 19.9 0 HVAC158 19.0 0 HVAC159 17.8 0 HVAC159 17.8 0 HVAC160 21.1 0 HVAC161 17.8 0 HVAC162 12.6 0 HVAC163 12.4 0 HVAC165 14.9 0 HVAC165 14.9 0 HVAC166 14.4 0 HVAC166 14.4 0 HVAC167 10.3 0 HVAC168 10.4 0 HVAC169 12.1 0			
HVAC145 20.4 0 HVAC146 22.1 0 HVAC147 20.3 0 HVAC148 21.0 0 HVAC149 23.3 0 HVAC150 21.6 0 HVAC151 17.9 0 HVAC152 21.4 0 HVAC153 18.0 0 HVAC154 19.3 0 HVAC155 18.8 0 HVAC155 18.8 0 HVAC156 24.3 0 HVAC157 19.9 0 HVAC158 19.0 0 HVAC159 17.8 0 HVAC160 21.1 0 HVAC160 17.8 0 HVAC161 17.8 0 HVAC162 12.6 0 HVAC163 12.4 0 HVAC164 15.3 0 HVAC165 14.9 0 HVAC166 14.4 0 HVAC166 14.4 0 HVAC167 10.3 0 HVAC168 10.4 0 HVAC169 12.1 0			
HVAC146 22.1 0 HVAC147 20.3 0 HVAC148 21.0 0 HVAC149 23.3 0 HVAC150 21.6 0 HVAC151 17.9 0 HVAC152 21.4 0 HVAC153 18.0 0 HVAC154 19.3 0 HVAC155 18.8 0 HVAC156 24.3 0 HVAC157 19.9 0 HVAC158 19.0 0 HVAC159 17.8 0 HVAC160 21.1 0 HVAC161 17.8 0 HVAC162 12.6 0 HVAC163 12.4 0 HVAC164 15.3 0 HVAC165 14.9 0 HVAC166 14.4 0 HVAC167 10.3 0 HVAC168 10.4 0 HVAC169 12.1 0 HVAC169 12.1 0			
HVAC148 21.0 0 HVAC149 23.3 0 HVAC150 21.6 0 HVAC151 17.9 0 HVAC152 21.4 0 HVAC153 18.0 0 HVAC154 19.3 0 HVAC155 18.8 0 HVAC156 24.3 0 HVAC157 19.9 0 HVAC158 19.0 0 HVAC159 17.8 0 HVAC160 21.1 0 HVAC161 17.8 0 HVAC162 12.6 0 HVAC163 12.4 0 HVAC164 15.3 0 HVAC165 14.9 0 HVAC166 14.4 0 HVAC167 10.3 0 HVAC168 10.4 0 HVAC169 12.1 0 HVAC170 12.0 0			
HVAC149 23.3 0 HVAC150 21.6 0 HVAC151 17.9 0 HVAC152 21.4 0 HVAC153 18.0 0 HVAC154 19.3 0 HVAC155 18.8 0 HVAC156 24.3 0 HVAC157 19.9 0 HVAC158 19.0 0 HVAC159 17.8 0 HVAC160 21.1 0 HVAC161 17.8 0 HVAC162 12.6 0 HVAC163 12.4 0 HVAC164 15.3 0 HVAC165 14.9 0 HVAC166 14.4 0 HVAC167 10.3 0 HVAC168 10.4 0 HVAC169 12.1 0 HVAC170 12.0 0		20.3	0
HVAC150 21.6 0 HVAC151 17.9 0 HVAC152 21.4 0 HVAC153 18.0 0 HVAC154 19.3 0 HVAC155 18.8 0 HVAC156 24.3 0 HVAC157 19.9 0 HVAC158 19.0 0 HVAC159 17.8 0 HVAC160 21.1 0 HVAC161 17.8 0 HVAC162 12.6 0 HVAC163 12.4 0 HVAC164 15.3 0 HVAC165 14.9 0 HVAC166 14.4 0 HVAC167 10.3 0 HVAC168 10.4 0 HVAC169 12.1 0 HVAC170 12.0 0			
HVAC151 17.9 0 HVAC152 21.4 0 HVAC153 18.0 0 HVAC154 19.3 0 HVAC155 18.8 0 HVAC156 24.3 0 HVAC157 19.9 0 HVAC158 19.0 0 HVAC159 17.8 0 HVAC160 21.1 0 HVAC161 17.8 0 HVAC162 12.6 0 HVAC163 12.4 0 HVAC164 15.3 0 HVAC165 14.9 0 HVAC166 14.4 0 HVAC167 10.3 0 HVAC168 10.4 0 HVAC169 12.1 0 HVAC170 12.0 0			
HVAC152 21.4 0 HVAC153 18.0 0 HVAC154 19.3 0 HVAC155 18.8 0 HVAC156 24.3 0 HVAC157 19.9 0 HVAC158 19.0 0 HVAC159 17.8 0 HVAC160 21.1 0 HVAC161 17.8 0 HVAC162 12.6 0 HVAC163 12.4 0 HVAC164 15.3 0 HVAC165 14.9 0 HVAC166 14.4 0 HVAC166 14.4 0 HVAC167 10.3 0 HVAC168 10.4 0 HVAC169 12.1 0			
HVAC153 18.0 0 HVAC154 19.3 0 HVAC155 18.8 0 HVAC156 24.3 0 HVAC157 19.9 0 HVAC158 19.0 0 HVAC159 17.8 0 HVAC160 21.1 0 HVAC161 17.8 0 HVAC162 12.6 0 HVAC163 12.4 0 HVAC164 15.3 0 HVAC165 14.9 0 HVAC166 14.4 0 HVAC167 10.3 0 HVAC168 10.4 0 HVAC169 12.1 0 HVAC170 12.0 0			
HVAC155 18.8 0 HVAC156 24.3 0 HVAC157 19.9 0 HVAC158 19.0 0 HVAC159 17.8 0 HVAC160 21.1 0 HVAC161 17.8 0 HVAC162 12.6 0 HVAC163 12.4 0 HVAC164 15.3 0 HVAC165 14.9 0 HVAC166 14.4 0 HVAC167 10.3 0 HVAC168 10.4 0 HVAC169 12.1 0 HVAC170 12.0 0			
HVAC156 24.3 0 HVAC157 19.9 0 HVAC158 19.0 0 HVAC159 17.8 0 HVAC160 21.1 0 HVAC161 17.8 0 HVAC162 12.6 0 HVAC163 12.4 0 HVAC164 15.3 0 HVAC165 14.9 0 HVAC166 14.4 0 HVAC167 10.3 0 HVAC168 10.4 0 HVAC169 12.1 0 HVAC170 12.0 0	HVAC154	19.3	0
HVAC157 19.9 0 HVAC158 19.0 0 HVAC159 17.8 0 HVAC160 21.1 0 HVAC161 17.8 0 HVAC162 12.6 0 HVAC163 12.4 0 HVAC164 15.3 0 HVAC165 14.9 0 HVAC166 14.4 0 HVAC167 10.3 0 HVAC168 10.4 0 HVAC169 12.1 0 HVAC170 12.0 0			
HVAC158 19.0 0 HVAC159 17.8 0 HVAC160 21.1 0 HVAC161 17.8 0 HVAC162 12.6 0 HVAC163 12.4 0 HVAC164 15.3 0 HVAC165 14.9 0 HVAC166 14.4 0 HVAC167 10.3 0 HVAC168 10.4 0 HVAC169 12.1 0 HVAC170 12.0 0			
HVAC159 17.8 0 HVAC160 21.1 0 HVAC161 17.8 0 HVAC162 12.6 0 HVAC163 12.4 0 HVAC164 15.3 0 HVAC165 14.9 0 HVAC166 14.4 0 HVAC167 10.3 0 HVAC168 10.4 0 HVAC169 12.1 0 HVAC170 12.0 0			
HVAC160 21.1 0 HVAC161 17.8 0 HVAC162 12.6 0 HVAC163 12.4 0 HVAC164 15.3 0 HVAC165 14.9 0 HVAC166 14.4 0 HVAC167 10.3 0 HVAC168 10.4 0 HVAC169 12.1 0 HVAC170 12.0 0			
HVAC161 17.8 0 HVAC162 12.6 0 HVAC163 12.4 0 HVAC164 15.3 0 HVAC165 14.9 0 HVAC166 14.4 0 HVAC167 10.3 0 HVAC168 10.4 0 HVAC169 12.1 0 HVAC170 12.0 0			
HVAC16312.40HVAC16415.30HVAC16514.90HVAC16614.40HVAC16710.30HVAC16810.40HVAC16912.10HVAC17012.00			
HVAC164 15.3 0 HVAC165 14.9 0 HVAC166 14.4 0 HVAC167 10.3 0 HVAC168 10.4 0 HVAC169 12.1 0 HVAC170 12.0 0	HVAC162	12.6	0
HVAC16514.90HVAC16614.40HVAC16710.30HVAC16810.40HVAC16912.10HVAC17012.00			
HVAC16614.40HVAC16710.30HVAC16810.40HVAC16912.10HVAC17012.00			
HVAC167 10.3 0 HVAC168 10.4 0 HVAC169 12.1 0 HVAC170 12.0 0			
HVAC168 10.4 0 HVAC169 12.1 0 HVAC170 12.0 0			
HVAC169 12.1 0 HVAC170 12.0 0			
HVAC171 12.8 0			
	HVAC171	12.8	0

HVAC172 HVAC173 7 1.FI	38.1	12.6 12.2 0.0	0 0
HVAC1 HVAC2 HVAC3 HVAC4	30.1	9.7 8.5 8.5 8.3	0 0 0
HVAC5		8.3	0
HVAC6		1.6	0
HVAC7		1.5	0
HVAC8		1.5	0
HVAC9		1.5	0
HVAC10		1.4	0
HVAC11		15.5	0
HVAC12		15.4	0
HVAC13		15.8	0
HVAC14		15.9	0
HVAC15		17.0	0
HVAC16		16.9	0
HVAC17		16.9	0
HVAC18		17.4	0
HVAC19		17.6	0
HVAC20		18.8	0
HVAC21		16.8	0
HVAC22		16.9	0
HVAC23		19.9	0
HVAC24		20.2	0
HVAC25		19.8	0
HVAC26		3.2	0
HVAC27 HVAC28 HVAC29		3.2 3.2 7.3 7.5	0 0 0
HVAC30		8.0	0
HVAC31		8.1	0
HVAC32		8.1	0
HVAC33		8.4	0
HVAC34		11.9	0
HVAC35		11.8	0
HVAC36		10.3	0
HVAC37		10.4	0
HVAC38		10.6	0
HVAC39		12.9	0
HVAC40		3.8	0
HVAC41		3.6	0
HVAC42		3.5	0
HVAC43		3.7	0
HVAC44		4.0	0
HVAC45		6.0	0
HVAC46		3.4	0
HVAC47		8.0	0
HVAC48		8.2	0
HVAC49		8.6	0
HVAC50		7.5	0
HVAC51 HVAC52		6.7 6.1	0

HVAC53	6.1	0
HVAC54	10.1	0
HVAC55	10.6	0
HVAC56	9.2	0
HVAC57	9.2	0
HVAC58	9.4	0
HVAC59	10.8	0
HVAC60	8.3	0
HVAC61	8.6	0
HVAC62	7.4	0
HVAC63	7.4	0
HVAC64	7.7	0
HVAC65 HVAC66	8.0 8.2	0 0
HVAC67	8.6	0
HVAC68	6.2	0
HVAC69	6.3	0
HVAC70	6.5	0
HVAC71	6.6	0
HVAC72	6.5	0
HVAC73	9.6	0
HVAC74	10.4	0
HVAC75	10.5	0
HVAC76	10.7	0
HVAC77	10.6	0
HVAC78	13.3	0
HVAC79	13.1	0
HVAC80	12.8	0
HVAC81	12.6	0
HVAC82	16.4	0
HVAC83	16.7	0
HVAC84	12.2	0
HVAC85	16.9	0
HVAC86 HVAC87	15.2 15.2	0 0
HVAC88	14.4	0
HVAC89	12.2	0
HVAC90	12.0	0
HVAC91	12.0	0
HVAC92	10.1	0
HVAC93	10.0	0
HVAC94	11.3	0
HVAC95	11.0	0
HVAC96	10.5	0
HVAC97	10.0	0
HVAC98	15.3	0
HVAC99	15.3	0
HVAC100	16.5	0
HVAC101	19.6	0
HVAC102	19.4	0
HVAC103	22.3	0
HVAC104	21.4	0
HVAC105 HVAC106	21.6 21.0	0 0
HVAC106 HVAC107	21.0 21.0	0
TIVACTO!	۷۱.0	U

HVAC147 18.2 0	HVAC148 17.7 0 HVAC149 23.3 0 HVAC150 24.3 0 HVAC151 18.7 0 HVAC152 21.4 0 HVAC153 17.7 0 HVAC154 17.5 0 HVAC155 19.9 0 HVAC156 21.7 0 HVAC157 19.7 0		18.2	0
	HVAC147 18.2 0 HVAC148 17.7 0 HVAC149 23.3 0 HVAC150 24.3 0 HVAC151 18.7 0 HVAC152 21.4 0 HVAC153 17.7 0 HVAC154 17.5 0 HVAC155 19.9 0 HVAC156 21.7 0	HVAC142 HVAC143 HVAC144	17.5 17.8 19.0 20.2	0 0 0

HVAC163 HVAC164 HVAC165 HVAC166 HVAC167 HVAC168 HVAC169 HVAC170 HVAC171 HVAC172 HVAC173 8 1.FI	37.4	12.0 11.8 11.7 11.6 7.5 7.5 11.0 10.7 10.3 10.2 10.0	0 0 0 0 0 0 0
HVAC1 HVAC2 HVAC3 HVAC4 HVAC5 HVAC6 HVAC6 HVAC7 HVAC8 HVAC10 HVAC11 HVAC12 HVAC13 HVAC15 HVAC16 HVAC16 HVAC17 HVAC21 HVAC20 HVAC20 HVAC21 HVAC22 HVAC23 HVAC24 HVAC25 HVAC25 HVAC25 HVAC26 HVAC25 HVAC26 HVAC27 HVAC30 HVAC31 HVAC32 HVAC31 HVAC34 HVAC35 HVAC36 HVAC37 HVAC38 HVAC37 HVAC38 HVAC39 HVAC40 HVAC41 HVAC42 HVAC42		9.0 9.2 9.4 11.2 11.2 4.4 4.7 4.5 4.1 2.3 13.1 13.0 13.7 13.8 15.4 14.3 14.3 14.9 15.3 15.1 15.2 15.7 17.7 16.9 7.4 7.4 7.4 7.4 7.8 8.6 7.0 7.2 7.5 7.7 8.0 6.3 6.0 5.4 5.4 5.4	000000000000000000000000000000000000000

HVAC44	5.4	0
HVAC45	6.2	0
HVAC46	7.7	0
HVAC47	7.8	0
	8.0	
HVAC48		0
HVAC49	8.2	0
HVAC50	7.2	0
HVAC51	7.2	0
HVAC52	7.4	0
HVAC53	7.6	0
HVAC54	7.8	0
HVAC55	8.2	0
HVAC56	6.0	0
HVAC57	6.0	0
HVAC58	6.2	0
HVAC59	6.2	0
HVAC60	6.2	0
HVAC61	5.9	0
HVAC62	7.6	0
HVAC63	7.5	0
HVAC64	7.7	0
HVAC65	7.8	0
HVAC66	7.9	0
HVAC67	8.3	0
HVAC68	7.3	0
HVAC69	7.3	0
HVAC70	7.5	0
HVAC71	7.7	0
HVAC72	7.8	0
HVAC73	8.1	0
HVAC74	9.9	0
HVAC75	10.0	0
HVAC76	10.1	0
HVAC77	10.0	0
HVAC78	10.0	0
HVAC79	9.8	0
	12.0	
HVAC80		0
HVAC81	11.9	0
HVAC82	11.6	0
HVAC83	11.5	0
HVAC84	11.5	0
HVAC85	14.4	0
HVAC86	11.9	0
HVAC87	11.8	0
HVAC88	11.5	0
HVAC89	15.6	0
HVAC90	17.1	0
HVAC91	12.1	0
HVAC92	13.2	0
HVAC93	13.0	0
HVAC94	11.0	0
HVAC95	10.4	0
HVAC96	10.4	0
	10.4	
HVAC97		0
HVAC98	18.4	0

		_
HVAC99	17.7	0
HVAC100	18.6	0
HVAC101	19.6	0
HVAC102	20.8	0
HVAC103	23.6	0
HVAC104	17.4	0
HVAC105	17.1	0
HVAC106	18.3	0
HVAC107	19.6	0
HVAC108	20.8	0
HVAC109	24.0	0
HVAC109	17.3	
		0
HVAC111	17.8	0
HVAC112	19.7	0
HVAC113	19.9	0
HVAC114	20.6	0
HVAC115	22.9	0
HVAC116	9.6	0
HVAC117	9.7	0
HVAC118	9.9	0
HVAC119	9.9	0
HVAC120	10.1	0
HVAC121	10.2	0
HVAC122	14.2	0
HVAC123	9.8	0
HVAC124	9.8	0
HVAC125	10.0	0
HVAC126	10.1	0
HVAC127	11.1	0
HVAC128	11.4	0
HVAC129	8.1	0
HVAC130	11.3	
		0
HVAC131	11.2	0
HVAC132	11.2	0
HVAC133	11.2	0
HVAC134	11.5	0
HVAC135	11.5	0
HVAC136	12.1	0
HVAC137	18.8	0
HVAC138	16.2	0
HVAC139	20.0	0
HVAC140	20.2	0
HVAC141	21.1	0
HVAC142	21.1	0
HVAC143	22.1	0
HVAC144	16.7	0
HVAC145	18.3	0
HVAC146	17.3	0
HVAC147	15.8	0
HVAC148	15.8	0
HVAC140	19.8	0
HVAC149	21.4	0
HVAC150 HVAC151	19.6	0
HVAC152	21.8	0
HVAC153	19.9	0

HVAC154 HVAC155 HVAC156 HVAC157 HVAC158 HVAC159 HVAC160 HVAC161 HVAC162 HVAC163 HVAC164 HVAC165 HVAC166 HVAC166 HVAC167 HVAC168 HVAC169 HVAC170 HVAC171 HVAC172 HVAC173	36.2	19.6 21.6 19.0 15.4 14.9 14.7 17.4 14.6 8.0 7.9 7.7 7.8 9.3 4.3 4.5 5.6 6.3 6.2 6.3	
HVAC1 HVAC2 HVAC3 HVAC4 HVAC5 HVAC6 HVAC7 HVAC8 HVAC9 HVAC10 HVAC11 HVAC12 HVAC13 HVAC14 HVAC15 HVAC16 HVAC17 HVAC21 HVAC20 HVAC20 HVAC20 HVAC20 HVAC21 HVAC22 HVAC23 HVAC24 HVAC25 HVAC25 HVAC25 HVAC26 HVAC27 HVAC28 HVAC27 HVAC30 HVAC31 HVAC31 HVAC31 HVAC31 HVAC32 HVAC33 HVAC34		8.7 8.6 8.6 8.5 8.4 1.7 1.8 1.9 2.2 11.7 11.6 12.6 12.8 13.5 12.5 12.4 13.5 12.1 14.0 14.0 15.3 7.8 7.9 8.2 7.8 7.6 7.7 8.0 9.1 2.6	

HVAC35	2.7	0
HVAC36	2.9	0
HVAC37	3.1	0
HVAC38	3.4	0
HVAC39	3.7	0
HVAC40	2.8	0
HVAC41	2.8	0
HVAC42	5.1	0
HVAC43	5.3	0
HVAC44	5.5	0
HVAC45	5.8	0
HVAC46	8.1	0
HVAC47	7.9	0
HVAC48	7.9	0
HVAC49	7.8	0
HVAC50	6.8	0
HVAC51	6.7	0
HVAC52	6.8	0
HVAC53	7.0	0
HVAC54	7.0 7.2	0
HVAC55	7.5	0
HVAC56	6.4	0
HVAC57	6.4	0
HVAC58	6.6	0
HVAC59	6.8	0
HVAC60	7.0	0
HVAC61	8.2	0
HVAC62	6.8	0
HVAC63	6.8	0
HVAC64	6.9	0
HVAC65	7.1	0
HVAC66	7.2	0
HVAC67	7.6	0
HVAC68	6.7	0
HVAC69	6.7	0
HVAC70	6.9	0
HVAC71	7.1	0
HVAC72	7.3	0
HVAC73	8.6	0
HVAC74	9.3	0
HVAC75	9.4	0
HVAC76	9.5	0
HVAC77	9.3	0
HVAC78	9.2	0
HVAC79	9.0	0
HVAC80	10.9	0
HVAC81	10.8	0
HVAC82	10.6	0
HVAC83	10.4	0
HVAC84	10.4	0
HVAC85	11.4	0
HVAC86	13.2	0
HVAC87	13.1	0
HVAC88	13.6	0
HVAC89	11.6	0
1147009	11.0	U

HVAC90	11.7	0
HVAC91	12.1	0
HVAC92	10.2	0
HVAC93	10.1	0
HVAC94	9.9	0
HVAC95	9.8	0
HVAC96	9.8	0
HVAC97	13.1	0
HVAC98	18.4	0
HVAC99	18.5	0
HVAC100	18.4	0
HVAC100	19.2	0
HVAC101	20.6	0
HVAC102 HVAC103	23.2	0
HVAC104	20.0	0
HVAC105	19.6	0
HVAC106	21.2	0
HVAC107	21.4	0
HVAC108	19.4	0
HVAC109	21.5	0
HVAC110	18.4	0
HVAC111	18.4	0
HVAC112	16.1	0
HVAC113	16.8	0
HVAC114	17.7	0
HVAC115	20.1	0
HVAC116	5.9	0
HVAC117	6.0	0
HVAC118	9.9	0
HVAC119	9.9	0
HVAC120	10.1	0
HVAC121	10.0	0
HVAC122	10.0	0
HVAC123	8.7	0
HVAC124	8.8	0
HVAC125	8.9	0
HVAC126	8.9	0
HVAC127	9.2	0
HVAC128	9.3	0
HVAC129	8.5	0
HVAC130	11.3	0
HVAC131	11.2	0
HVAC132	11.6	0
HVAC133	11.7	0
HVAC134	10.3	0
HVAC135	10.2	0
HVAC136	10.5	0
HVAC137	16.2	0
HVAC138	16.2	0
HVAC139	17.0	0
HVAC139 HVAC140		
	17.2	0
HVAC141	20.3	0
HVAC142	20.9	0
HVAC143	23.6	0
HVAC144	15.3	0

HVAC145 HVAC146 HVAC147 HVAC148 HVAC149 HVAC150 HVAC151 HVAC152 HVAC153 HVAC155 HVAC156 HVAC156 HVAC157 HVAC158 HVAC160 HVAC161 HVAC162 HVAC163 HVAC164 HVAC165 HVAC165 HVAC166 HVAC166 HVAC167 HVAC168 HVAC169 HVAC171 HVAC172		16.1 15.7 14.9 14.7 17.0 18.4 15.3 17.7 14.6 14.4 17.7 15.3 14.3 12.2 14.4 11.2 8.5 8.1 8.1 8.1 8.1 8.2 4.7 4.7 6.5 6.5 4.6 4.5	
HVAC173 10 1.FI HVAC1 HVAC2 HVAC3 HVAC4 HVAC5 HVAC6 HVAC7 HVAC8 HVAC10 HVAC11 HVAC12 HVAC13 HVAC14 HVAC15 HVAC16 HVAC15 HVAC16 HVAC17 HVAC18 HVAC20 HVAC21 HVAC21 HVAC21 HVAC22 HVAC23 HVAC24 HVAC25	34.6	6.2 0.0 14.4 14.1 14.1 13.9 13.8 8.9 8.9 9.4 9.8 13.0 10.1 10.0 10.3 11.0 10.9 11.0 11.1 11.9 10.3 10.4 10.9 11.5 12.8	

10/4000	4.0	•
HVAC26	1.8	0
HVAC27	1.8	0
HVAC28	4.8	0
HVAC29	4.8	0
HVAC30	4.6	0
HVAC31	4.6	0
HVAC32	4.8	0
HVAC33 HVAC34	5.1	0
HVAC35	2.9	0
	3.0	0
HVAC36	8.0	0
HVAC37	7.9	0
HVAC38	7.9	0
HVAC39	7.8	0
HVAC40	1.7	0
HVAC41	1.7	0
HVAC42	2.0	0
HVAC43	2.2	0
HVAC44	2.4	0
HVAC45	2.7	0
HVAC46	2.0	0
HVAC47	2.0	0
HVAC48	2.2	0
HVAC49	3.1	0
HVAC50	2.3	0
HVAC51	2.3	0
HVAC52	3.4	0
HVAC53	3.4	0
HVAC54	3.4	0
HVAC55	3.8	0
HVAC56	2.1	0
HVAC57	2.2	0
HVAC58	3.0	0
HVAC59	3.2	0
HVAC60	3.4	0
HVAC61	4.0	0
HVAC62	3.7	0
HVAC63	7.0	0
HVAC64	7.0	0
HVAC65	6.9	0
HVAC66	6.9	0
HVAC67	7.0	0
HVAC68	6.3	0
HVAC69	6.3	0
HVAC70	6.4	0
HVAC71	6.5	0
HVAC72	6.6	0
HVAC73	6.7	0
HVAC74	5.7	0
HVAC75	5.7	0
HVAC76	5.4	0
HVAC77	5.3	0
HVAC78	5.3	0
HVAC79	5.0	0
HVAC80	7.0	0

111/4004	0.0	0
HVAC81	6.8	0
HVAC82 HVAC83	6.8	0
HVAC84	6.9 7.2	0 0
HVAC85	10.4	0
HVAC86	10.5	0
HVAC87	10.4	0
HVAC88	10.4	0
HVAC89	10.3	0
HVAC90	10.4	0
HVAC91	10.7	0
HVAC92	13.2	0
HVAC93	13.2	0
HVAC94	13.9	0
HVAC95	15.4	0
HVAC96	15.5	0
HVAC97	16.1	0
HVAC98	16.8	0
HVAC99	18.5	0
HVAC100	17.4	0
HVAC101	17.8	0
HVAC102	18.5	0
HVAC103	20.3	0
HVAC104	15.9	0
HVAC105	15.8	0
HVAC106	16.5	0
HVAC107	17.1	0
HVAC108	18.0	0
HVAC109	18.3	0
HVAC110	14.3	0
HVAC111	14.5	0
HVAC112	14.9	0
HVAC113	15.1	0
HVAC114	15.5	0
HVAC115	16.8	0
HVAC116	8.7	0
HVAC117	8.8	0
HVAC118	9.0	0
HVAC119	9.0	0
HVAC120	9.4	0
HVAC121	9.5	0
HVAC122	10.0	0
HVAC123	5.3	0
HVAC124	5.4	0
HVAC125 HVAC126	5.5	0
HVAC127	5.6 6.4	0 0
HVAC128	6.4	0
HVAC129	4.9	0
HVAC130	9.1	0
HVAC131	8.2	0
HVAC131	7.1	0
HVAC132	7.1 7.1	0
HVAC134	6.5	0
HVAC135	6.6	0
	0.0	J

HVAC136 HVAC137 HVAC138 HVAC139 HVAC140 HVAC141 HVAC142 HVAC143 HVAC144 HVAC145 HVAC146		6.8 18.6 18.5 18.2 18.3 19.2 19.3 21.4 13.8 16.0 13.8	0 0 0 0 0 0 0 0
HVAC147 HVAC148 HVAC149 HVAC150 HVAC151 HVAC152 HVAC153 HVAC154 HVAC155 HVAC156		12.4 12.3 14.1 15.8 13.6 14.6 12.8 12.7 13.8 13.0	0 0 0 0 0 0 0
HVAC157 HVAC158 HVAC159 HVAC160 HVAC161 HVAC162 HVAC163 HVAC164 HVAC165 HVAC166 HVAC166		11.5 11.5 11.1 12.7 11.2 8.2 8.1 7.9 7.8 7.5 4.4	0 0 0 0 0 0 0 0
HVAC168 HVAC169 HVAC170 HVAC171 HVAC172 HVAC173 11 1.FI HVAC1 HVAC2 HVAC3	32.8	4.5 4.8 4.9 5.7 5.7 5.5 0.0 13.8 12.6 12.5	0 0 0 0 0 0
HVAC4 HVAC5 HVAC6 HVAC7 HVAC8 HVAC9 HVAC10 HVAC11 HVAC12 HVAC13 HVAC14 HVAC15 HVAC16		12.3 12.3 10.6 10.5 11.8 12.6 11.9 7.7 7.8 8.0 8.1 8.5 8.2	0 0 0 0 0 0 0 0 0

10/4047	0.0	0
HVAC17	8.2	0
HVAC18	8.6	0
HVAC19	8.7	0
HVAC20	9.2	0
HVAC21	8.8	0
HVAC22	8.8	0
HVAC23	9.2	0
HVAC24	9.1	0
HVAC25	9.7	0
HVAC26	5.6	0
HVAC27	5.6	0
HVAC28	8.3	0
HVAC29	8.3	0
HVAC30	9.1	0
HVAC31	9.3	0
HVAC32	9.5	0
HVAC33	9.6	0
HVAC34	8.8	0
HVAC35	8.7	0
HVAC36	9.0	0
HVAC37	9.7	0
HVAC38	9.6	0
HVAC39	10.9	0
HVAC40	9.6	0
HVAC41	9.6	0
HVAC42	6.4	0
HVAC43	6.4	0
HVAC44	6.3	0
HVAC45	6.1	0
HVAC46	5.6	0
HVAC47	5.9	0
HVAC48	5.9	0
HVAC49	5.9	0
HVAC50	5.3	0
HVAC50	5.2	0
HVAC52	5.2	0
HVAC53	5.2	0
HVAC54	5.2	0
HVAC55	5.1	0
HVAC56	4.6	0
HVAC57	4.7	0
HVAC58	4.6	0
HVAC59	4.6	0
HVAC60	4.5	0
HVAC61	4.3	0
HVAC62	3.8	0
HVAC63	3.8	0
HVAC64	3.6	0
HVAC65	4.2	0
HVAC66	4.2	0
HVAC67	4.3	0
HVAC68	3.8	0
HVAC69	3.9	0
HVAC70	3.9	0
HVAC71	3.9	0
IIVAOI I	5.5	U

HVAC72	3.9	0
HVAC73	3.8	0
HVAC74	9.3	0
HVAC75	9.3	0
HVAC76	9.2	0
HVAC77	9.1	0
HVAC78	8.9	0
HVAC79	8.7	0
HVAC80	6.8	0
HVAC81	6.8	0
HVAC82	6.6	0
HVAC83	6.5	0
HVAC84	6.4	0
HVAC85	6.1	0
HVAC86	10.8	0
HVAC87	10.8	0
HVAC88	10.9	0
HVAC89	11.1	0
HVAC90	11.3	0
HVAC91	11.9	0
HVAC92	13.0	0
HVAC93	12.9	0
HVAC94	13.2	0
HVAC95	13.2	0
HVAC96	13.3	0
HVAC97	13.6	0
HVAC98	13.8	0
HVAC99	13.9	0
HVAC100	14.2	0
HVAC101	14.4	0
HVAC102	16.5	0
HVAC103	14.9	0
HVAC104	14.4	0
HVAC105	14.3	0
HVAC106	12.7	0
HVAC107	13.0	0
HVAC108	13.4	0
HVAC109	13.8	0
HVAC110	11.4	0
HVAC111	11.5	0
HVAC112	12.2	0
HVAC113	13.8	0
HVAC114	14.2	0
HVAC115	14.4	0
HVAC116	10.4	0
HVAC117	10.4	0
HVAC118	10.7	0
HVAC119	10.7	0
HVAC120	11.2	0
HVAC121	11.3	0
HVAC122	12.1	0
HVAC123 HVAC124	4.5 4.5	0
HVAC124 HVAC125	4.5 4.7	0 0
HVAC125 HVAC126	4.7 4.7	0
TIVACIZO	4.1	U

HVAC127 HVAC128 HVAC129 HVAC130 HVAC131 HVAC132 HVAC133 HVAC134 HVAC135 HVAC136 HVAC137		5.0 5.1 4.4 6.4 6.3 5.5 5.5 5.4 5.4 5.4	0 0 0 0 0 0 0 0
HVAC138 HVAC139 HVAC140 HVAC141 HVAC142 HVAC143		16.6 15.6 15.7 16.1 16.1 16.6	0 0 0 0 0
HVAC144 HVAC145 HVAC146 HVAC147 HVAC148 HVAC149		10.4 11.0 10.7 10.2 10.1	0 0 0 0
HVAC150 HVAC151 HVAC152 HVAC153 HVAC154		11.8 14.0 11.0 11.5 9.6 9.7	0 0 0 0 0
HVAC155 HVAC156 HVAC157 HVAC158 HVAC159		11.2 10.8 9.4 9.4 7.8	0 0 0 0
HVAC160 HVAC161 HVAC162 HVAC163 HVAC164 HVAC165		9.7 7.9 6.1 6.1 6.0 5.9	0 0 0 0 0
HVAC166 HVAC167 HVAC168 HVAC169 HVAC170 HVAC171		5.9 3.8 3.9 4.0 4.0 4.6	0 0 0 0 0
HVAC172 HVAC173 12 1.FI HVAC1 HVAC2	32.6	4.7 4.6 0.0 13.7 13.6	0 0 0
HVAC3 HVAC4 HVAC5 HVAC6 HVAC7		13.6 13.4 13.3 12.6 12.6	0 0 0 0

HVAC8	12.9	0
HVAC9	12.8	0
HVAC10	13.1	0
HVAC11	4.5	0
HVAC12	4.5	0
HVAC13	4.5	0
HVAC14	4.5	0
HVAC15		
	4.5	0
HVAC16	4.8	0
HVAC17	4.8	0
HVAC18	4.8	0
HVAC19	4.8	0
HVAC20	4.8	0
HVAC21	5.3	0
HVAC22	5.3	0
HVAC23	5.3	0
HVAC24	5.3	0
HVAC25	5.3	0
HVAC26	7.7	0
HVAC27	7.7	0
HVAC28	9.1	0
HVAC29	9.1	0
HVAC30	8.7	0
HVAC31	8.6	0
HVAC32	8.7	0
HVAC33	9.7	0
HVAC34	7.9	0
HVAC35	8.0	0
HVAC36	8.5	0
HVAC37	8.4	0
HVAC38	8.3	0
HVAC39	9.0	0
HVAC40	7.3	0
HVAC41	7.3	0
HVAC42	7.8	0
HVAC43	8.3	0
HVAC44	8.3	0
HVAC45	8.8	0
HVAC46	7.8	0
HVAC47	8.2	0
HVAC48	8.5	0
HVAC49	9.6	0
HVAC50	7.5	0
HVAC51	7.5 7.5	0
HVAC51		
	8.3	0
HVAC53	8.6	0
HVAC54	8.8	0
HVAC55	8.9	0
HVAC56	7.9	0
HVAC57	7.9	0
HVAC58	8.1	0
HVAC59	8.1	0
HVAC60	8.2	0
HVAC61	8.2	0
HVAC62	7.2	0

HVAC63	7.2	0
HVAC64	7.2 7.1	0
HVAC65	7.1	0
HVAC66	7.2	0
HVAC67	7.4	0
HVAC68	6.6	0
HVAC69	6.6	0
HVAC70	6.7	0
HVAC71	6.7	0
HVAC71	6.8	0
HVAC73	6.8	0
HVAC74	10.3	0
HVAC75	10.4	0
	10.4	
HVAC76		0
HVAC77	10.1	0
HVAC78	9.9	0
HVAC79	9.7	0
HVAC80	10.1	0
HVAC81	10.1	0
HVAC82	9.8	0
HVAC83	9.7	0
HVAC84	9.6	0
HVAC85	9.3	0
HVAC86	12.1	0
HVAC87	11.9	0
HVAC88	11.9	0
HVAC89	12.0	0
HVAC90	12.3	0
HVAC91	12.8	0
HVAC92	14.6	0
HVAC93	13.6	0
HVAC94	13.7	0
HVAC95	13.8	0
HVAC96	14.0	0
HVAC97	14.4	0
HVAC98	13.7	0
HVAC99	13.8	0
HVAC100	14.0	0
HVAC101	14.1	0
HVAC102	14.1	0
HVAC103	13.9	0
HVAC104	12.6	0
HVAC105	12.5	0
HVAC106	12.4	0
HVAC107	12.4	0
HVAC108	12.4	0
HVAC109	12.6	0
HVAC110	11.3	0
HVAC111	11.4	0
HVAC112	11.5	0
HVAC113	11.5	0
HVAC114	11.5	0
HVAC115	11.4	0
HVAC116	11.5	0
HVAC117	11.5	0
	- 1.0	-

HVAC118	11.9	0
HVAC119	11.8	0
HVAC120	12.4	0
HVAC121	12.4	0
HVAC122	12.8	0
HVAC123	7.8	0
HVAC124	7.9	0
HVAC125 HVAC126	8.2	0
HVAC126 HVAC127	8.0 8.2	0
HVAC128		0 0
HVAC129	8.2 8.3	0
HVAC129	6.7	0
HVAC131	8.0	0
HVAC131	8.1	0
HVAC132	8.2	0
HVAC134	8.5	0
HVAC135	8.5	0
HVAC136	8.7	0
HVAC137	15.3	0
HVAC138	15.3	0
HVAC139	15.2	0
HVAC140	15.2	0
HVAC141	15.3	0
HVAC142	15.3	0
HVAC143	15.4	0
HVAC144	7.4	0
HVAC145	7.4	0
HVAC146	7.4	0
HVAC147	7.4	0
HVAC148	7.4	0
HVAC149	7.5	0
HVAC150	8.2	0
HVAC151	8.0	0
HVAC152	8.0	0
HVAC153	8.1	0
HVAC154	8.1	0
HVAC155	8.0	0
HVAC156	5.7	0
HVAC157	5.6	0
HVAC158	5.6	0
HVAC159	5.6	0
HVAC160	5.6	0
HVAC161	5.6	0
HVAC162	5.3	0
HVAC163	5.5	0
HVAC164	5.4	0
HVAC165	5.4	0
HVAC166	5.1	0
HVAC167	3.9	0
HVAC168	3.9	0
HVAC169	3.9	0
HVAC170	3.9	0
HVAC171	3.7	0
HVAC172	3.8	0

HVAC173		3.7	0
13 1.FI	33.0	0.0	
HVAC1		14.8	0
HVAC2		14.6	0
HVAC3		14.5	0
HVAC4		14.2	0
HVAC5		14.2	0
HVAC6		14.3	0
HVAC7		13.7	0
HVAC8		14.9	0
HVAC9		14.5	0
HVAC10		14.3	0
HVAC11		4.9	0
HVAC12		4.9	0
HVAC13		4.9	0
HVAC14		4.9	0
HVAC15		4.9	0
HVAC16		5.2	0
HVAC17		5.2	0
HVAC18		5.1	0
HVAC19		5.2	0
HVAC20		5.2	0
HVAC21		5.7	0
HVAC22		5.7	0
HVAC23		5.7	0
HVAC24		5.8	0
HVAC25		5.8	0
HVAC26		7.6	0
HVAC27		7.6	0
HVAC28		9.8	0
HVAC29		9.7	0
HVAC30		9.0	0
HVAC31		9.2	0
HVAC32		10.2	0
HVAC33		13.2	0
HVAC34		8.4	0
HVAC35		8.4	0
HVAC36		8.9	0
HVAC37		9.7	0
HVAC38		8.6	0
HVAC39		8.9	0
HVAC40		8.6	0
HVAC41		8.7	0
HVAC42		8.7	0
HVAC43		7.9	0
HVAC44		7.8	0
HVAC45		8.0	0
HVAC46		7.4	0
HVAC47		7.3	0
HVAC48		7.1	0
HVAC49		7.1	0
HVAC50		6.7	0
HVAC51		6.7	0
HVAC52		6.5	0
HVAC53		6.4	0

HVAC54	6.5	0
HVAC55	7.7	0
HVAC56	6.0	0
HVAC57	6.0	0
HVAC58		
	6.1	0
HVAC59	6.1	0
HVAC60	6.3	0
HVAC61	7.1	0
HVAC62	5.5	0
HVAC63	5.5	0
HVAC64	6.2	0
HVAC65	6.4	0
HVAC66	6.6	0
HVAC67	7.2	0
HVAC68	5.8	0
HVAC69	5.8	0
HVAC70	6.0	0
HVAC71	6.2	0
HVAC72	6.3	0
HVAC73	7.1	0
HVAC74	10.9	0
HVAC75	11.1	0
HVAC76	10.8	0
HVAC77	10.8	0
HVAC78	10.6	0
HVAC79	10.2	0
HVAC80	11.0	0
HVAC81	10.9	0
HVAC82	10.7	0
HVAC83	10.5	0
HVAC84	10.4	0
HVAC85	10.4	0
HVAC86	12.1	0
HVAC87	12.0	0
HVAC88	12.2	0
HVAC89	12.4	0
HVAC90	12.6	0
HVAC91	13.2	0
HVAC92	14.5	0
HVAC93	14.3	0
HVAC94	14.4	0
HVAC95	14.6	0
HVAC96	14.9	0
HVAC97	15.3	0
HVAC98	13.8	0
HVAC99	13.9	0
HVAC100	14.1	0
HVAC101	14.0	0
HVAC102	14.0	0
HVAC103	13.8	0
HVAC104	12.7	0
HVAC104	12.7	0
	12.7	
HVAC106		0
HVAC107	12.5	0
HVAC108	12.5	0

HVAC109	12.6	0
HVAC109	11.5	0
HVAC111	11.6	0
HVAC112	11.6	Ő
HVAC113	11.6	0
HVAC114	11.6	0
HVAC115	11.5	0
HVAC116	11.4	0
HVAC117	11.5	0
HVAC118	11.8	0
HVAC119	11.8	0
HVAC120	12.4	0
HVAC121	12.4	0
HVAC122	12.7	0
HVAC123	8.8	0
HVAC124	8.4	0
HVAC125	8.4	0
HVAC126	8.5	0
HVAC127	9.1	0
HVAC128	9.2	0
HVAC129	9.6	0
HVAC130	8.7	0
HVAC131	8.6	0
HVAC132	8.3	0
HVAC133	8.3	0
HVAC134	8.6	0
HVAC135	8.7	0
HVAC136	8.8	0
HVAC137	15.4	0
HVAC138 HVAC139	15.5 15.3	0 0
HVAC139 HVAC140	15.3	0
HVAC140	15.2	0
HVAC141	15.2	0
HVAC143	15.1	0
HVAC144	7.9	0
HVAC145	7.8	0
HVAC146	7.9	0
HVAC147	7.9	0
HVAC148	7.8	0
HVAC149	7.7	0
HVAC150	8.5	0
HVAC151	8.5	0
HVAC152	8.4	0
HVAC153	8.7	0
HVAC154	8.6	0
HVAC155	8.5	0
HVAC156	6.1	0
HVAC157	6.0	0
HVAC158	6.0	0
HVAC159	6.2	0
HVAC160	6.0	0
HVAC161	6.2	0
HVAC162	7.4	0
HVAC163	7.3	0

111/40464		7.4	0
HVAC164		7.1	0
HVAC165		7.0	0
HVAC166		6.9	0
HVAC167		7.2	0
HVAC168		7.1	0
HVAC169		7.0	0
HVAC170		7.0	0
HVAC171		6.7	0
HVAC172		6.6	0
HVAC173		6.5	0
	00.0		U
14 1.FI	33.6	0.0	
HVAC1		15.6	0
HVAC2		15.1	0
HVAC3		15.0	0
HVAC4		14.7	0
HVAC5		14.8	0
HVAC6		14.7	0
HVAC7		14.8	0
HVAC8		15.1	0
HVAC9		15.1	0
HVAC10		15.6	0
HVAC11		6.0	0
HVAC12		6.0	0
HVAC13		7.0	0
HVAC14		7.0	0
HVAC15		6.9	0
HVAC16		7.5	0
HVAC17		7.5	0
HVAC18		7.5	0
HVAC19		7.5	0
HVAC20			
		7.6	0
HVAC21		8.2	0
HVAC22		8.2	0
HVAC23		8.3	0
HVAC24		8.3	0
HVAC25		8.2	0
HVAC26		10.1	0
HVAC27		10.1	0
HVAC28		13.2	0
HVAC29		13.2	0
HVAC30		14.1	0
HVAC31		13.0	0
HVAC32		13.9	0
HVAC33		11.0	0
HVAC34		11.8	0
HVAC35		11.9	0
HVAC36		12.2	0
HVAC37		12.2	0
HVAC38		11.2	
			0
HVAC39		10.2	0
HVAC40		11.0	0
HVAC41		10.9	0
HVAC42		10.9	0
HVAC43		10.9	0
HVAC44		10.1	0
			J

HVAC45	9.4	0
HVAC46	10.3	0
HVAC47	10.3	0
HVAC48	9.6	0
HVAC49	8.9	0
HVAC50	9.5	0
HVAC51	9.4	0
HVAC52	9.3	0
HVAC53	9.3	0
HVAC54	8.8	0
HVAC55	8.3	0
HVAC56	8.7	0
HVAC57	8.7	0
HVAC58	8.8	0
HVAC59	8.8	0
HVAC60	8.2	0
HVAC61	7.8	0
HVAC62	7.8	0
HVAC63	7.8	0
HVAC64	7.7	0
HVAC65	7.4	0
HVAC66	7.0	0
HVAC67	7.1	0
HVAC68	7.1	0
HVAC69	7.2	0
HVAC70	7.2	0
HVAC71	7.0	0
HVAC72	6.6	0
HVAC73	6.6	0
HVAC74	11.0	0
HVAC75	10.9	0
HVAC76	10.7	0
HVAC77	10.5	0
HVAC78	10.3	0
HVAC79	10.1	0
HVAC80	9.5	0
HVAC81	9.6	0
HVAC82	9.5	0
HVAC83	9.3	0
HVAC84	9.2	0
HVAC85	9.0	0
HVAC86	11.4	0
HVAC87	11.4	0
HVAC88	11.7	0
HVAC89	11.8	0
HVAC90	13.1	0
HVAC91	12.9	0
HVAC92	14.2	0
HVAC93	14.3	0
HVAC94	14.7	0
HVAC95	16.3	0
HVAC96	16.4	0
HVAC97	15.4	0
HVAC98	15.4	0
HVAC99	15.3	0

HVAC100	14.5	0
HVAC101	14.4	0
HVAC102	12.9	0
HVAC103	12.6	0
HVAC104	12.7	0
HVAC105	12.8	0
HVAC106	11.9	0
HVAC107	11.9	0
HVAC108	11.8	0
HVAC109	11.7	0
HVAC110	11.3	0
HVAC111	11.4	0
HVAC112	12.9	0
HVAC113	11.3	0
HVAC114	11.2	0
HVAC115	10.9	0
HVAC116 HVAC117	12.1	0
HVAC117 HVAC118	11.9	0
HVAC118 HVAC119	11.9 11.9	0
HVAC120	12.4	0 0
HVAC120 HVAC121	12.4	0
HVAC121 HVAC122	13.3	0
HVAC123	7.8	0
HVAC124	7.8 7.9	0
HVAC125	7.9 8.9	0
HVAC126	8.9	0
HVAC127	9.2	0
HVAC128	9.2	0
HVAC129	9.4	0
HVAC130	7.8	0
HVAC131	7.8	0
HVAC132	7.9	0
HVAC133	8.0	0
HVAC134	8.2	0
HVAC135	8.2	0
HVAC136	8.4	0
HVAC137	14.1	0
HVAC138	14.0	0
HVAC139	13.8	0
HVAC140	13.8	0
HVAC141	15.0	0
HVAC142	15.0	0
HVAC143	13.4	0
HVAC144	9.8	0
HVAC145	9.6	0
HVAC146	9.7	0
HVAC147	10.1	0
HVAC148	10.2	0
HVAC149	9.5	0
HVAC150	10.1	0
HVAC151	10.4	0
HVAC152	10.2	0
HVAC153 HVAC154	10.7 10.8	0 0
TIVAC 104	10.0	U

HVAC155 HVAC156 HVAC157 HVAC158 HVAC159 HVAC160 HVAC161 HVAC162 HVAC163 HVAC164 HVAC165 HVAC166 HVAC166 HVAC167 HVAC169 HVAC170 HVAC171 HVAC172 HVAC173	34.8	10.3 8.7 8.9 9.0 9.0 8.8 8.9 6.9 7.0 6.9 6.7 6.9 6.9 7.0 6.8 6.6 6.5 6.3 0.0	0 0 0 0 0 0 0 0 0 0 0 0
HVAC1 HVAC2 HVAC3 HVAC4 HVAC5 HVAC6 HVAC7 HVAC8 HVAC10 HVAC11 HVAC12 HVAC13 HVAC15 HVAC16 HVAC15 HVAC21 HVAC21 HVAC20 HVAC21 HVAC22 HVAC23 HVAC22 HVAC23 HVAC24 HVAC25 HVAC25 HVAC25 HVAC25 HVAC26 HVAC27 HVAC28 HVAC27 HVAC28 HVAC30 HVAC31 HVAC31 HVAC32 HVAC31 HVAC32 HVAC33 HVAC34 HVAC35	34.0	20.9 19.4 19.0 18.6 19.0 18.7 18.8 19.8 20.2 21.8 0.1 0.1 -0.1 0.0 1.3 0.4 0.4 1.8 1.9 2.0 2.6 2.7 2.8 2.9 2.3 9.2 9.3 13.9 13.8 13.5 13.6 13.5 17.2 11.7 11.8	

HVAC36	12.0	0
HVAC37	12.0	0
HVAC38	12.0	0
HVAC39	11.8	0
HVAC40	10.5	0
HVAC41	10.5	0
HVAC42	10.0	0
HVAC43	10.1	0
HVAC44	10.1	0
HVAC45	10.3	0
HVAC46	9.2	0
HVAC47	9.2	0
HVAC48	9.2	0
HVAC49	9.1	
		0
HVAC50	8.4	0
HVAC51	8.3	0
HVAC52	8.1	0
HVAC53	8.0	0
HVAC54	8.0	0
HVAC55	8.2	0
HVAC56	7.4	0
HVAC57	7.4	0
HVAC58	7.4	0
HVAC59	7.3	0
HVAC60	7.3	0
HVAC61	7.2	0
HVAC62	6.7	0
HVAC63	6.7	0
HVAC64	6.3	0
HVAC65	6.2	0
HVAC66	6.2	0
HVAC67	6.2	0
HVAC68	5.9	0
HVAC69	6.0	0
HVAC70	5.8	0
HVAC71	5.8	0
HVAC72		0
	5.7	
HVAC73	5.6	0
HVAC74	7.9	0
HVAC75	7.7	0
HVAC76	7.2	0
HVAC77	7.3	0
HVAC78	7.3	0
HVAC79	7.8	0
HVAC80	5.6	0
HVAC81	5.5	0
HVAC82	5.0	0
HVAC83	4.8	0
HVAC84	4.7	0
	4.4	
HVAC85		0
HVAC86	7.4	0
HVAC87	7.3	0
HVAC88	7.6	0
HVAC89	13.6	0
HVAC90	13.9	0

11)/4.004	40.4	0
HVAC91	16.1	0
HVAC92 HVAC93	17.8	0
HVAC94	18.0 19.0	0 0
HVAC95	19.0	0
HVAC95	19.3	0
HVAC97	19.9	0
HVAC98	15.2	0
HVAC99	15.4	0
HVAC100	15.1	0
HVAC100	16.9	0
HVAC101	16.7	0
HVAC102 HVAC103	14.1	0
HVAC103	14.4	0
HVAC104 HVAC105	14.4	0
HVAC105	14.4	0
HVAC100 HVAC107	13.9	0
HVAC107	13.7	
HVAC108	13.6	0
		0
HVAC110	7.3	0
HVAC111	7.4	0
HVAC112	7.8	0
HVAC113	8.2	0
HVAC114	8.4	0
HVAC115 HVAC116	9.9	0
	8.7	0
HVAC117	7.5	0
HVAC118	7.3	0
HVAC119 HVAC120	7.3	0
HVAC121	8.2 8.3	0
HVAC121	ა.ა 9.1	0 0
HVAC123	7.3	0
HVAC123	7.3 7.2	0
HVAC125	7.2 7.4	0
HVAC125	7.4 7.5	0
		0
HVAC127	10.7	0
HVAC128 HVAC129	10.8 11.1	0
HVAC130	4.5	0
HVAC131	4.8	0
HVAC131	4.9	0
HVAC133	4.9	0
HVAC134	4.9 5.1	
HVAC135	5.1 5.2	0
		0
HVAC136	4.3	0
HVAC137	16.4	0
HVAC138 HVAC139	16.4 15.9	0 0
HVAC139 HVAC140	15.8	
HVAC140 HVAC141	15.8 17.4	0
HVAC141 HVAC142		0
	17.3 15.0	0
HVAC143	15.0	0
HVAC144 HVAC145	6.1 5.4	0
11VAU140	5.4	0

HVAC146 HVAC147 HVAC148 HVAC149 HVAC150 HVAC151 HVAC152 HVAC153 HVAC155 HVAC156 HVAC156 HVAC157 HVAC158 HVAC160 HVAC161 HVAC162 HVAC163 HVAC163 HVAC164 HVAC165 HVAC165 HVAC166 HVAC166 HVAC167 HVAC167 HVAC168 HVAC169 HVAC170 HVAC171		5.7 5.7 5.5 5.0 5.7 5.9 5.5 6.2 5.7 3.0 2.8 2.8 3.1 2.8 3.5 4.3 4.7 5.9 6.2 5.9 2.7 2.7 2.6 2.6 2.2	
HVAC172 HVAC173 16 1.FI HVAC1 HVAC2 HVAC3 HVAC4 HVAC5 HVAC6 HVAC7 HVAC8 HVAC10 HVAC11 HVAC12 HVAC13 HVAC15 HVAC14 HVAC15 HVAC15 HVAC16 HVAC17 HVAC16 HVAC17 HVAC20 HVAC20 HVAC21 HVAC21 HVAC22 HVAC23 HVAC25 HVAC25 HVAC26	35.2	2.2 2.1 0.0 20.2 17.1 17.0 14.9 15.1 22.3 21.6 22.0 22.1 25.6 -2.3 -2.1 -2.2 -2.4 -1.9 -1.9 -2.2 -2.3 -2.7 -2.0 -2.0 -2.1 -2.2 -2.1 14.9	

HVAC27	15.0	0
HVAC28	22.7	0
HVAC29	22.3	0
HVAC30	20.8	Ö
HVAC31	15.2	0
HVAC32	14.4	0
HVAC33	13.1	0
HVAC34	19.4	0
HVAC35	19.4	0
HVAC36	16.5	0
HVAC37	16.4	0
HVAC38	16.3	0
HVAC39	12.2	0
HVAC40	17.5	0
HVAC41	17.4	0
HVAC42	14.6	0
HVAC43	13.4	0
HVAC44	13.6	0
HVAC45	12.8	0
HVAC46	14.2	0
HVAC47	14.1	0
HVAC48	12.2	0
HVAC49	11.1	0
HVAC50	14.2	0
HVAC51	14.2	0
HVAC52	13.0	0
HVAC53	12.4	0
HVAC54	12.0	0
HVAC55	10.6	0
HVAC56	13.4	0
HVAC57	13.4	0
HVAC58	12.7	0
HVAC59	11.9	0
HVAC60	11.3	0
		0
HVAC61	10.8	
HVAC62	12.2	0
HVAC63	12.2	0
HVAC64	11.5	0
HVAC65	11.1	0
HVAC66	10.6	0
HVAC67	9.8	0
HVAC68	11.2	0
HVAC69	11.2	0
HVAC70	10.9	0
HVAC71	10.8	0
HVAC72	10.3	0
HVAC73	9.8	0
HVAC74	8.6	0
HVAC75	8.5	0
HVAC76	8.1	0
HVAC77	8.0	0
HVAC78	7.9	0
HVAC79	8.0	0
HVAC80	6.4	0
HVAC81	6.5	0

HVAC82	6.5	0
HVAC83	6.4	0
HVAC84	6.2	0
HVAC85	5.9	0
HVAC86	6.6	0
HVAC87	6.7	0
HVAC88	2.6	0
HVAC89	2.7	0
HVAC90	2.8	0
HVAC91	3.0	0
HVAC92	6.8	0
HVAC93	6.9	0
HVAC94	7.3	0
HVAC95	8.3	0
HVAC96	11.0	0
HVAC97	18.5	0
HVAC98	2.9	0
HVAC99	3.1	0
HVAC100	4.8	0
HVAC101	4.6	0
HVAC102	4.4	0
HVAC103	3.8	0
HVAC104	0.6	0
HVAC105	0.5	0
HVAC106	0.2	0
HVAC107	0.1	0
HVAC108	-0.1	0
HVAC109	-0.2	0
HVAC110	0.0	0
HVAC111	0.0	0
HVAC112	-0.1	0
HVAC113	-0.3	0
HVAC114	-0.5	0
HVAC115	-1.0	0
HVAC116	9.2	0
HVAC117	9.1	0
HVAC118	9.1	0
HVAC119	9.1	0
HVAC120	9.2	0
HVAC121	9.2	0
HVAC122	5.5	0
HVAC123	8.1	0
HVAC124	8.1	0
HVAC125	8.3	0
HVAC126	8.4	0
HVAC127	8.9	0
HVAC128	9.0	0
HVAC129	9.4	0
HVAC130	5.4	0
HVAC131	5.5	0
HVAC132	5.8	0
HVAC133	5.8	0
HVAC134	5.9	0
HVAC135	5.9	0
HVAC136	5.9	0
	0.0	J

HVAC168 2.4 0 HVAC169 2.2 0 HVAC170 2.2 0 HVAC171 2.2 0	HVAC169 2.2 0 HVAC170 2.2 0
	HVAC173 2.6 0

HVAC18 HVAC19	-0.6 -0.7	0 0
HVAC20	-0.7	0
HVAC21	0.5	0
HVAC22	0.6	0
HVAC23	0.6	0
HVAC24	0.5	0
HVAC25	0.2	0
HVAC26 HVAC27	17.9 17.0	0 0
HVAC28	22.4	0
HVAC29	22.2	0
HVAC30	25.2	0
HVAC31	24.8	0
HVAC32	23.4	0
HVAC33	22.4	0
HVAC34	22.3	0
HVAC35	22.9	0
HVAC36	25.4	0
HVAC37	17.4	0
HVAC38	15.9	0
HVAC39	14.3	0
HVAC40 HVAC41	18.5 18.5	0 0
HVAC41	16.5	0
HVAC43	15.7	0
HVAC44	15.0	0
HVAC45	14.3	0
HVAC46	16.7	0
HVAC47	14.1	0
HVAC48	13.2	0
HVAC49	12.1	0
HVAC50	17.4	0
HVAC51	17.3	0
HVAC52	14.1	0
HVAC53 HVAC54	13.3 12.7	0
HVAC54 HVAC55	11.0	0 0
HVAC56	14.7	0
HVAC57	14.8	0
HVAC58	14.1	0
HVAC59	12.9	0
HVAC60	11.9	0
HVAC61	10.7	0
HVAC62	13.7	0
HVAC63	13.4	0
HVAC64	12.2	0
HVAC65 HVAC66	11.7 11.2	0 0
HVAC67	10.1	0
HVAC68	13.0	0
HVAC69	13.0	0
HVAC70	11.9	0
HVAC71	11.2	0
HVAC72	10.6	0

HVAC73	10.0	0
HVAC74	12.4	0
HVAC75	9.4	0
HVAC76	11.7	0
HVAC77	11.2	0
HVAC78	10.7	0
HVAC79	10.1	0
HVAC80	6.9	0
HVAC81	7.0	0
HVAC82	7.1	0
HVAC83	7.0	0
HVAC84	6.9	0
HVAC85	6.6	0
HVAC86	7.3 7.5	0
HVAC87 HVAC88	7.5 7.8	0 0
HVAC89	7.8	0
HVAC99	7.8 7.9	0
HVAC90	7.9 7.9	0
HVAC92	7.9 21.1	0
HVAC93	22.5	0
HVAC94	18.5	0
HVAC95	17.2	0
HVAC96	16.8	0
HVAC97	11.2	0
HVAC98	16.7	0
HVAC99	16.7	0
HVAC100	16.3	0
HVAC101	16.0	0
HVAC102	15.7	0
HVAC103	15.1	0
HVAC104	4.7	0
HVAC105	4.6	0
HVAC106	4.3	0
HVAC107	4.1	0
HVAC108	3.9	0
HVAC109	-0.6	0
HVAC110	4.7	0
HVAC111	4.7	0
HVAC112	4.5	0
HVAC113 HVAC114	0.2 0.1	0 0
HVAC114 HVAC115	-0.8	0
HVAC116	10.2	0
HVAC117	10.0	0
HVAC118	15.6	0
HVAC119	15.8	0
HVAC120	10.2	0
HVAC121	10.3	0
HVAC122	10.7	0
HVAC123	7.6	0
HVAC124	7.5	0
HVAC125	7.6	0
HVAC126	7.6	0
HVAC127	7.9	0

HVAC128 HVAC129 HVAC130 HVAC131 HVAC132		7.9 8.3 6.1 6.2 6.5	0 0 0 0
HVAC133 HVAC134 HVAC135 HVAC136		6.6 7.4 7.5 8.1	0 0 0
HVAC137 HVAC138 HVAC139 HVAC140 HVAC141		8.1 8.1 7.8 7.8 6.9	0 0 0 0
HVAC142 HVAC143 HVAC144 HVAC145		6.7 6.4 -0.8 -1.2	0 0 0 0
HVAC146 HVAC147 HVAC148 HVAC149 HVAC150		-1.0 4.8 4.7 -1.7 -1.1	0 0 0 0
HVAC151 HVAC152 HVAC153 HVAC154		-0.3 -0.8 0.3 0.4	0 0 0 0
HVAC155 HVAC156 HVAC157 HVAC158		-0.4 -2.1 -1.4 -1.3	0 0 0
HVAC159 HVAC160 HVAC161 HVAC162 HVAC163		-0.9 -1.6 -0.9 1.2 1.3	0 0 0 0
HVAC164 HVAC165 HVAC166 HVAC167		1.3 1.3 -0.2 2.2	0 0 0
HVAC168 HVAC169 HVAC170 HVAC171 HVAC172		2.1 1.9 1.9 2.8 2.8	0 0 0 0
HVAC173 18 1.FI HVAC1 HVAC2	38.2	2.4 0.0 12.8 11.3	0 0
HVAC3 HVAC4 HVAC5 HVAC6 HVAC7 HVAC8		13.0 11.8 12.0 20.3 17.1 19.2	0 0 0 0 0
		10.2	J

LIV / A O O	40.0	0
HVAC9	18.8	0
HVAC10 HVAC11	17.5	0
HVAC12	0.6 0.5	0 0
HVAC12	-1.3	0
HVAC14	-1.3 -1.3	0
HVAC15	-1.5 -1.6	0
HVAC16	0.1	0
HVAC17	0.0	0
HVAC18	-0.1	0
HVAC19	-0.1 -0.2	0
HVAC20	2.1	0
HVAC21	4.1	0
HVAC22	4.2	0
HVAC23	4.8	0
HVAC24	4.8	0
HVAC25	4.5	0
HVAC26	24.4	0
HVAC27	24.5	0
HVAC28	23.9	0
HVAC29	24.3	0
HVAC30	18.8	0
HVAC31	17.6	0
HVAC32	15.5	0
HVAC33	14.6	0
HVAC34	24.3	0
HVAC35	24.2	0
HVAC36	20.4	0
HVAC37	19.4	0
HVAC38	19.1	0
HVAC39	18.3	0
HVAC40	22.4	0
HVAC41	22.4	0
HVAC42	24.9	0
HVAC43	26.0	0
HVAC44	25.4	0
HVAC45	24.2	0
HVAC46	24.7	0
HVAC47	23.1	0
HVAC48	22.5	0
HVAC49	21.2	0
HVAC50	18.8	0
HVAC51	18.7	0
HVAC52	16.3	0
HVAC53	15.2	0
HVAC54	14.5	0
HVAC55	14.7	0
HVAC56	18.3	0
HVAC57	18.3	0
HVAC58	15.8	0
HVAC59	14.2	0
HVAC60	13.3	0
HVAC61	11.9	0
HVAC62	15.5	0
HVAC63	15.4	0

HVAC64	14.6	0
HVAC65	12.4	0
HVAC66	11.6	0
HVAC67	10.9	0
HVAC68	15.5	0
HVAC69	15.7	0
HVAC70	13.3	0
HVAC71	12.9	0
HVAC72	11.3	0
HVAC73	9.9	0
HVAC74	10.9	0
HVAC75	10.5	0
HVAC76	10.2	0
HVAC77	15.6	0
HVAC78	15.0	0
HVAC79	13.6	0
HVAC80	7.5	0
HVAC81	7.6	0
HVAC82	7.9	0
HVAC83	7.9	0
HVAC84	7.9	0
HVAC85	7.6	0
HVAC86	7.4	0
HVAC87	7.5	0
HVAC88	7.7	0
HVAC89	12.6	0
HVAC90	9.8	0
HVAC91	9.3	0
HVAC92	11.0	0
HVAC93	11.1	0
HVAC93	11.1	
		0
HVAC95	10.9	0
HVAC96	10.8	0
HVAC97	3.3	0
HVAC98	4.0	0
HVAC99	4.0	0
HVAC100	3.6	0
HVAC101	3.6	0
HVAC102	-1.4	0
HVAC103	-1.7	0
HVAC104	-0.3	0
HVAC105	-0.2	0
HVAC106	-0.5	0
HVAC107	-0.7	0
HVAC107		0
	-0.9	
HVAC109	-1.3	0
HVAC110	4.6	0
HVAC111	4.5	0
HVAC112	-0.2	0
HVAC113	-0.4	0
HVAC114	-0.9	0
HVAC115	3.3	0
HVAC116	15.8	0
HVAC117	15.6	0
HVAC118	15.0	0
,	. 5.0	J

HVAC119	14.9	0
HVAC120	15.9	0
HVAC121	14.1	0
HVAC122	12.6	0
HVAC123	11.3	0
HVAC124	11.2	0
HVAC125	11.5	0
HVAC126	11.6	0
HVAC127	12.8	0
HVAC128	12.9	0
HVAC129	13.1	0
HVAC130	9.4	0
HVAC131	9.4	0
HVAC132	9.9	0
HVAC133	10.0	0
HVAC134	10.6	0
HVAC135	10.8	0
HVAC136	8.7	0
HVAC137	3.4	0
HVAC138	3.5	0
HVAC139	3.6	0
HVAC140	3.6	0
HVAC141	3.4	0
HVAC142	3.3	0
HVAC143	3.2	0
HVAC144	0.0	0
HVAC145	-0.4	0
HVAC146	-0.2	0
HVAC147	0.2	0
HVAC148	0.2	0
HVAC149	-0.9	0
HVAC150	-0.9	0
HVAC151 HVAC152	0.0 -0.4	0
HVAC152 HVAC153	-0.4 0.2	0 0
HVAC153	0.2	0
HVAC155	-0.3	0
HVAC156	-0.5 -1.5	0
HVAC157	-0.8	0
HVAC158	-0.6	0
HVAC159	-0.0 -0.2	0
HVAC160	-1.1	0
HVAC161	4.5	0
HVAC162	4.6	0
HVAC163	4.7	0
HVAC164	4.8	0
HVAC165	4.8	0
HVAC166	3.4	0
HVAC167	3.2	0
HVAC168	3.0	0
HVAC169	2.8	0
HVAC170	2.7	0
HVAC171	2.3	0
HVAC172	2.3	0
HVAC173	2.6	0
	2.0	J

HVAC1 9.6 0 HVAC2 9.5 0 HVAC3 9.6 0 HVAC4 9.9 0 HVAC5 10.1 0 HVAC6 15.2 0 HVAC7 14.9 0 HVAC8 14.5 0 HVAC9 14.3 0 HVAC10 14.3 0 HVAC11 4.0 0 HVAC12 3.9 0 HVAC13 1.2 0 HVAC14 0.9 0 HVAC15 0.5 0 HVAC16 3.7 0 HVAC16 3.7 0 HVAC17 2.7 0 HVAC18 3.3 0 HVAC19 3.2 0 HVAC20 3.0 0 HVAC20 3.0 0 HVAC21 11.4 0 HVAC22 11.4 0 HVAC22 11.4 0 HVAC23 3.5 0 HVAC24 3.3 0 HVAC25 10.5 0 HVAC26 24.3 0 HVAC27 24.0 0 HVAC28 15.6 0 HVAC29 15.8 0 HVAC30 14.5 0 HVAC30 14.5 0 HVAC30 14.5 0 HVAC31 13.8 0 HVAC29 15.8 0 HVAC30 14.5 0 HVAC31 13.8 0 HVAC29 15.8 0 HVAC30 14.5 0 HVAC31 13.8 0 HVAC31 13.8 0 HVAC31 13.8 0 HVAC32 12.7 0 HVAC30 14.5 0 HVAC31 13.8 0 HVAC31 13.8 0 HVAC32 12.7 0 HVAC33 12.7 0 HVAC34 18.5 0 HVAC35 18.4 0 HVAC35 18.4 0 HVAC36 16.6 0 HVAC37 16.4 0 HVAC37 16.4 0 HVAC38 14.2 0 HVAC39 11.4 0 HVAC39 11.4 0 HVAC40 20.3 0 HVAC41 20.3 0 HVAC41 20.3 0 HVAC44 14.5 0 HVAC44 14.5 0 HVAC45 12.8 0 HVAC44 14.5 0 HVAC44 14.5 0 HVAC44 14.5 0 HVAC45 12.8 0 HVAC44 14.5 0 HVAC45 12.8 0 HVAC46 20.7 0	19	1.FI	37.8	0.0	
HVAC3 9.9 0 HVAC4 9.9 0 HVAC5 10.1 0 HVAC6 15.2 0 HVAC7 14.9 0 HVAC8 14.5 0 HVAC9 14.3 0 HVAC10 14.3 0 HVAC11 4.0 0 HVAC12 3.9 0 HVAC13 1.2 0 HVAC15 0.5 0 HVAC16 3.7 0 HVAC16 3.7 0 HVAC17 2.7 0 HVAC18 3.3 0 HVAC19 3.2 0 HVAC20 3.0 0 HVAC21 11.4 0 HVAC22 11.4 0 HVAC22 11.4 0 HVAC23 3.5 0 HVAC24 3.3 0 HVAC24 3.3 0 HVAC25 10.5 0 HVAC26 24.3 0 HVAC26 24.3 0 HVAC27 24.0 0 HVAC28 15.6 0 HVAC29 15.8 0 HVAC30 14.5 0 HVAC30 14.5 0 HVAC31 13.8 0 HVAC41 12.0 0 HVAC41 12.0 0 HVAC41 12.0 0 HVAC44 14.5 0 HVAC44 14.5 0 HVAC45 12.8 0 HVAC45 12.8 0 HVAC46 12.7 0					
HVAC4 9.9 0 HVAC5 10.1 0 HVAC6 15.2 0 HVAC7 14.9 0 HVAC8 14.5 0 HVAC9 14.3 0 HVAC10 14.3 0 HVAC11 4.0 0 HVAC12 3.9 0 HVAC13 1.2 0 HVAC14 0.9 0 HVAC15 0.5 0 HVAC16 3.7 0 HVAC16 3.7 0 HVAC17 2.7 0 HVAC18 3.3 0 HVAC19 3.2 0 HVAC20 3.0 0 HVAC21 11.4 0 HVAC22 11.4 0 HVAC22 11.4 0 HVAC23 3.5 0 HVAC24 3.3 0 HVAC25 10.5 0 HVAC26 24.3 0 HVAC26 15.6 0 HVAC27 24.0 0 HVAC28 15.6 0 HVAC29 15.8 0 HVAC30 14.5 0 HVAC30 14.5 0 HVAC31 13.8 0 HVAC31 13.8 0 HVAC31 13.8 0 HVAC32 12.7 0 HVAC33 12.7 0 HVAC34 13.8 0 HVAC35 16.6 0 HVAC37 16.4 0 HVAC36 16.6 0 HVAC37 16.4 0 HVAC38 14.2 0 HVAC39 11.4 0 HVAC39 11.4 0 HVAC39 11.8 0 HVAC31 13.8 0 HVAC31 13.8 0 HVAC31 13.8 0 HVAC32 12.7 0 HVAC33 12.7 0 HVAC34 18.5 0 HVAC35 16.6 0 HVAC37 16.4 0 HVAC36 16.6 0 HVAC37 16.4 0 HVAC38 14.2 0 HVAC39 11.4 0 HVAC40 20.3 0 HVAC41 20.3 0 HVAC41 20.3 0 HVAC44 14.5 0 HVAC45 12.8 0 HVAC45 12.8 0					
HVAC5 10.1 0 HVAC6 15.2 0 HVAC7 14.9 0 HVAC8 14.5 0 HVAC9 14.3 0 HVAC10 14.3 0 HVAC11 4.0 0 HVAC12 3.9 0 HVAC13 1.2 0 HVAC15 0.5 0 HVAC16 3.7 0 HVAC16 3.7 0 HVAC17 2.7 0 HVAC18 3.3 0 HVAC19 3.2 0 HVAC20 3.0 0 HVAC20 3.0 0 HVAC21 11.4 0 HVAC22 11.4 0 HVAC22 11.4 0 HVAC23 15.6 0 HVAC24 13.3 0 HVAC25 10.5 0 HVAC26 24.3 0 HVAC27 24.0 0 HVAC27 24.0 0 HVAC28 15.6 0 HVAC29 15.8 0 HVAC30 14.5 0 HVAC30 14.5 0 HVAC31 13.8 0 HVAC31 13.8 0 HVAC31 13.8 0 HVAC29 15.8 0 HVAC29 15.8 0 HVAC29 15.8 0 HVAC30 14.5 0 HVAC30 14.5 0 HVAC31 13.8 0 HVAC31 14.5 0 HVAC31 15.6 0 HVAC31 15.6 0 HVAC31 15.6 0 HVAC31 15.8 0 HVAC31 16.6 0 HVAC31 16.9 0 HVAC41 16.9 0 HVAC42 16.9 0 HVAC44 14.5 0 HVAC44 14.5 0 HVAC45 12.8 0 HVAC45 12.8 0					
HVAC6					
HVAC7					
HVAC8 HVAC9 HVAC10 HVAC11 HVAC11 HVAC12 HVAC13 HVAC13 HVAC15 HVAC15 HVAC16 HVAC17 HVAC18 HVAC19 HVAC18 HVAC20 HVAC20 HVAC22 HVAC24 HVAC23 HVAC24 HVAC23 HVAC25 HVAC25 HVAC26 HVAC26 HVAC27 HVAC28 HVAC27 HVAC28 HVAC29 HVAC29 HVAC30 HVAC29 HVAC30 HVAC29 HVAC30 HVAC29 HVAC30 HVAC29 HVAC30 HVAC30 HVAC30 HVAC27 HVAC30 HVAC31 HVAC30 HVAC31 HVAC30 HVAC31 HVAC30 HVAC31 HVAC31 HVAC30 HVAC31 HVAC33 HVAC41 HVAC33 HVAC44 HVAC35 HVAC36 HCA HVAC36 HCA HVAC37 HCA HVAC37 HCA HVAC38 HVAC44 HVAC39 HVAC44 HVAC40 HVAC41 HVAC40 HVAC41 HVAC40 HVAC41 HVAC41 HVAC44 HVAC44 HVAC45 HVAC45 HVAC45 HVAC45 HVAC45 HVAC45 HVAC45 HVAC45 HVAC46 HVAC45 HVAC45 HVAC46 HVAC45 HVAC46 HVAC46 HVAC45 HVAC46 HVAC45 HVAC46 HVAC45 HVAC46 HVAC45 HVAC46 HV					
HVAC10 HVAC11 HVAC12 HVAC13 HVAC13 HVAC14 HVAC15 HVAC15 HVAC16 HVAC17 HVAC17 HVAC18 HVAC19 HVAC20 HVAC20 HVAC21 HVAC23 HVAC24 HVAC23 HVAC24 HVAC25 HVAC26 HVAC26 HVAC26 HVAC27 HVAC28 HVAC29 HVAC29 HVAC29 HVAC30 HVAC29 HVAC30 HVAC21 HVAC31 HVAC31 HVAC31 HVAC31 HVAC34 HVAC35 HVAC36 HVAC39 HVAC31 HXAC34 HVAC35 HVAC34 HVAC35 HVAC34 HVAC35 HVAC36 HVAC36 HVAC36 HVAC37 HVAC36 HVAC36 HVAC37 HVAC36 HVAC36 HVAC37 HCA HVAC38 HVAC39 HVAC39 HVAC39 HVAC39 HVAC31 HVAC36 HCA HVAC36 HCA HVAC37 HCA HVAC37 HCA HVAC38 HVAC39 HCA HVAC39 HCA					
HVAC11	HVAC9			14.3	0
HVAC12	HVAC10			14.3	0
HVAC13 HVAC14 HVAC15 HVAC16 HVAC16 HVAC17 HVAC17 HVAC18 HVAC19 HVAC20 HVAC21 HVAC22 HVAC22 HVAC23 HVAC24 HVAC25 HVAC25 HVAC26 HVAC27 HVAC28 HVAC29 HVAC29 HVAC29 HVAC30 HVAC30 HVAC31 HVAC30 HVAC31 HVAC30 HVAC31 HVAC30 HVAC31 HVAC30 HVAC31 HV					
HVAC14 0.9 0.5 0.5 0.5 HVAC16 3.7 0.5 0.5 1.0 HVAC17 2.7 0.0 HVAC18 3.3 0.0 HVAC19 3.2 0.0 HVAC20 3.0 0.0 HVAC21 11.4 0.0 HVAC22 11.4 0.5 1.4 0.5 1.5 0.5 1.5 0.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1					
HVAC15					
HVAC16 3.7 0 HVAC17 2.7 0 HVAC18 3.3 0 HVAC19 3.2 0 HVAC20 3.0 0 HVAC21 11.4 0 HVAC22 11.4 0 HVAC23 3.5 0 HVAC24 3.3 0 HVAC25 10.5 0 HVAC26 24.3 0 HVAC27 24.0 0 HVAC27 24.0 0 HVAC29 15.8 0 HVAC30 14.5 0 HVAC30 14.5 0 HVAC31 13.8 0 HVAC31 13.8 0 HVAC32 12.7 0 HVAC33 12.7 0 HVAC34 18.5 0 HVAC35 16.6 0 HVAC35 16.6 0 HVAC36 16.6 0 HVAC37 16.4 0 HVAC36 16.6 0 HVAC37 16.4 0 HVAC38 14.2 0 HVAC38 14.2 0 HVAC39 11.4 0 HVAC39 11.4 0 HVAC39 11.4 0 HVAC30 16.9 0 HVAC40 20.3 0 HVAC41 20.3 0 HVAC41 16.9 0 HVAC42 16.9 0 HVAC44 14.5 0 HVAC45 12.8 0 HVAC45 12.8 0					
HVAC17 2.7 0 HVAC18 3.3 0 HVAC19 3.2 0 HVAC20 3.0 0 HVAC21 11.4 0 HVAC22 11.4 0 HVAC23 3.5 0 HVAC24 3.3 0 HVAC25 10.5 0 HVAC26 24.3 0 HVAC27 24.0 0 HVAC28 15.6 0 HVAC29 15.8 0 HVAC30 14.5 0 HVAC31 13.8 0 HVAC31 13.8 0 HVAC32 12.7 0 HVAC33 12.7 0 HVAC34 18.5 0 HVAC35 18.4 0 HVAC35 18.4 0 HVAC36 16.6 0 HVAC37 16.4 0 HVAC36 16.6 0 HVAC37 16.4 0 HVAC38 14.2 0 HVAC38 14.2 0 HVAC39 11.4 0 HVAC40 10.3 0 HVAC41 10.3 0 HVAC41 10.3 0 HVAC41 10.3 0 HVAC42 16.9 0 HVAC44 14.5 0 HVAC45 12.8 0 HVAC45 12.8 0 HVAC46 0					
HVAC18 HVAC19 HVAC20 HVAC20 HVAC21 HVAC21 HVAC22 HVAC23 HVAC23 HVAC24 HVAC25 HVAC25 HVAC26 HVAC26 HVAC27 HVAC28 HVAC29 HVAC29 HVAC30 HVAC30 HVAC30 HVAC31 HVAC31 HVAC32 HVAC32 HVAC33 HVAC34 HVAC34 HVAC35 HVAC34 HVAC35 HVAC34 HVAC35 HVAC34 HVAC35 HVAC36 HVAC36 HVAC37 HVAC36 HVAC37 HVAC36 HVAC37 HVAC38 HVAC37 HVAC38 HVAC39 HVAC39 HVAC39 HVAC39 HVAC30 HVAC31 HVAC31 HVAC34 HVAC35 HVAC34 HVAC35 HVAC34 HVAC35 HVAC35 HVAC36 HVAC37 HC4 HVAC36 HVAC37 HC4 HVAC37 HC4 HVAC38 HVAC39 HVAC39 HVAC39 HVAC39 HVAC39 HVAC40 HVAC39 HVAC40 HVAC39 HVAC40 HVAC41 HVAC40 HVAC41 HC5 HVAC44 HVAC45 HVAC45 HVAC45 HVAC45 HVAC46					
HVAC19 3.2 0 HVAC20 3.0 0 HVAC21 11.4 0 HVAC22 11.4 0 HVAC23 3.5 0 HVAC24 3.3 0 HVAC25 10.5 0 HVAC26 24.3 0 HVAC26 24.3 0 HVAC27 24.0 0 HVAC28 15.6 0 HVAC29 15.8 0 HVAC30 14.5 0 HVAC31 13.8 0 HVAC31 13.8 0 HVAC32 12.7 0 HVAC33 12.7 0 HVAC34 18.5 0 HVAC35 18.4 0 HVAC35 18.4 0 HVAC36 16.6 0 HVAC36 16.6 0 HVAC37 16.4 0 HVAC36 16.6 0 HVAC37 16.4 0 HVAC38 14.2 0 HVAC38 14.2 0 HVAC39 11.4 0 HVAC39 11.4 0 HVAC40 20.3 0 HVAC40 20.3 0 HVAC41 20.3 0 HVAC41 20.3 0 HVAC42 16.9 0 HVAC42 16.9 0 HVAC43 15.9 0 HVAC44 14.5 0 HVAC45 12.8 0 HVAC45 12.8 0					
HVAC20					
HVAC22 11.4 0 HVAC23 3.5 0 HVAC24 3.3 0 HVAC25 10.5 0 HVAC26 24.3 0 HVAC27 24.0 0 HVAC28 15.6 0 HVAC29 15.8 0 HVAC30 14.5 0 HVAC31 13.8 0 HVAC32 12.7 0 HVAC33 12.7 0 HVAC34 18.5 0 HVAC35 18.4 0 HVAC35 18.4 0 HVAC36 16.6 0 HVAC37 16.4 0 HVAC38 14.2 0 HVAC38 14.2 0 HVAC39 11.4 0 HVAC40 20.3 0 HVAC41 20.3 0 HVAC41 120.3 0 HVAC41 15.9 0 HVAC42 16.9 0 HVAC43 15.9 0 HVAC44 14.5 0 HVAC45 12.8 0 HVAC45 12.8 0					
HVAC23 3.5 0 HVAC24 3.3 0 HVAC25 10.5 0 HVAC26 24.3 0 HVAC27 24.0 0 HVAC28 15.6 0 HVAC29 15.8 0 HVAC30 14.5 0 HVAC31 13.8 0 HVAC32 12.7 0 HVAC33 12.7 0 HVAC34 18.5 0 HVAC35 18.4 0 HVAC35 16.6 0 HVAC36 16.6 0 HVAC37 16.4 0 HVAC37 16.4 0 HVAC38 14.2 0 HVAC38 14.2 0 HVAC39 11.4 0 HVAC39 11.4 0 HVAC40 20.3 0 HVAC40 16.9 0 HVAC41 120.3 0 HVAC41 15.9 0 HVAC44 14.5 0 HVAC45 12.8 0 HVAC45 12.8 0	HVAC21				0
HVAC24 3.3 0 HVAC25 10.5 0 HVAC26 24.3 0 HVAC27 24.0 0 HVAC28 15.6 0 HVAC29 15.8 0 HVAC30 14.5 0 HVAC31 13.8 0 HVAC32 12.7 0 HVAC33 12.7 0 HVAC34 18.5 0 HVAC35 18.4 0 HVAC36 16.6 0 HVAC37 16.4 0 HVAC37 16.4 0 HVAC38 14.2 0 HVAC38 14.2 0 HVAC39 11.4 0 HVAC39 11.4 0 HVAC40 20.3 0 HVAC40 16.9 0 HVAC41 16.9 0 HVAC42 16.9 0 HVAC44 14.5 0 HVAC45 12.8 0 HVAC45 12.8 0					
HVAC25 10.5 0 HVAC26 24.3 0 HVAC27 24.0 0 HVAC28 15.6 0 HVAC29 15.8 0 HVAC30 14.5 0 HVAC31 13.8 0 HVAC32 12.7 0 HVAC33 12.7 0 HVAC34 18.5 0 HVAC35 18.4 0 HVAC36 16.6 0 HVAC37 16.4 0 HVAC38 14.2 0 HVAC38 14.2 0 HVAC39 11.4 0 HVAC39 11.4 0 HVAC40 20.3 0 HVAC40 20.3 0 HVAC41 120.3 0 HVAC41 15.9 0 HVAC42 16.9 0 HVAC43 15.9 0 HVAC44 14.5 0 HVAC45 12.8 0 HVAC46 20.7 0					
HVAC26					
HVAC27 24.0 0 HVAC28 15.6 0 HVAC29 15.8 0 HVAC30 14.5 0 HVAC31 13.8 0 HVAC32 12.7 0 HVAC33 12.7 0 HVAC34 18.5 0 HVAC35 18.4 0 HVAC36 16.6 0 HVAC37 16.4 0 HVAC38 14.2 0 HVAC38 14.2 0 HVAC39 11.4 0 HVAC39 11.4 0 HVAC40 20.3 0 HVAC41 20.3 0 HVAC41 20.3 0 HVAC42 16.9 0 HVAC43 15.9 0 HVAC44 14.5 0 HVAC45 12.8 0 HVAC46 20.7 0					
HVAC28 15.6 0 HVAC29 15.8 0 HVAC30 14.5 0 HVAC31 13.8 0 HVAC32 12.7 0 HVAC33 12.7 0 HVAC34 18.5 0 HVAC35 18.4 0 HVAC36 16.6 0 HVAC37 16.4 0 HVAC38 14.2 0 HVAC38 14.2 0 HVAC39 11.4 0 HVAC39 11.4 0 HVAC40 20.3 0 HVAC40 20.3 0 HVAC41 120.3 0 HVAC41 15.9 0 HVAC42 16.9 0 HVAC43 15.9 0 HVAC44 14.5 0 HVAC45 12.8 0 HVAC46 20.7 0					
HVAC29 15.8 0 HVAC30 14.5 0 HVAC31 13.8 0 HVAC32 12.7 0 HVAC33 12.7 0 HVAC34 18.5 0 HVAC35 18.4 0 HVAC36 16.6 0 HVAC37 16.4 0 HVAC38 14.2 0 HVAC38 14.2 0 HVAC39 11.4 0 HVAC40 20.3 0 HVAC40 20.3 0 HVAC41 120.3 0 HVAC41 15.9 0 HVAC42 16.9 0 HVAC43 15.9 0 HVAC44 14.5 0 HVAC45 12.8 0 HVAC46 20.7 0					
HVAC30 14.5 0 HVAC31 13.8 0 HVAC32 12.7 0 HVAC33 12.7 0 HVAC34 18.5 0 HVAC35 18.4 0 HVAC36 16.6 0 HVAC37 16.4 0 HVAC38 14.2 0 HVAC39 11.4 0 HVAC40 20.3 0 HVAC40 20.3 0 HVAC41 120.3 0 HVAC41 15.9 0 HVAC42 16.9 15.9 0 HVAC44 14.5 0 HVAC45 12.8 0 HVAC45 12.8 0 HVAC46 20.7 0					
HVAC31 13.8 0 HVAC32 12.7 0 HVAC33 12.7 0 HVAC34 18.5 0 HVAC35 18.4 0 HVAC36 16.6 0 HVAC37 16.4 0 HVAC38 14.2 0 HVAC39 11.4 0 HVAC40 20.3 0 HVAC40 20.3 0 HVAC41 20.3 0 HVAC41 120.3 0 HVAC42 16.9 0 HVAC42 16.9 0 HVAC43 15.9 0 HVAC44 14.5 0 HVAC45 12.8 0 HVAC46 20.7 0					
HVAC33 12.7 0 HVAC34 18.5 0 HVAC35 18.4 0 HVAC36 16.6 0 HVAC37 16.4 0 HVAC38 14.2 0 HVAC39 11.4 0 HVAC40 20.3 0 HVAC41 20.3 0 HVAC41 120.3 0 HVAC42 16.9 0 HVAC42 16.9 0 HVAC43 15.9 0 HVAC44 14.5 0 HVAC45 12.8 0 HVAC46 20.7 0	HVAC31			13.8	0
HVAC34 18.5 0 HVAC35 18.4 0 HVAC36 16.6 0 HVAC37 16.4 0 HVAC38 14.2 0 HVAC39 11.4 0 HVAC40 20.3 0 HVAC41 20.3 0 HVAC41 16.9 0 HVAC42 16.9 0 HVAC43 15.9 0 HVAC44 14.5 0 HVAC45 12.8 0 HVAC46 20.7 0					
HVAC35 18.4 0 HVAC36 16.6 0 HVAC37 16.4 0 HVAC38 14.2 0 HVAC39 11.4 0 HVAC40 20.3 0 HVAC41 20.3 0 HVAC41 16.9 0 HVAC42 16.9 0 HVAC43 15.9 0 HVAC44 14.5 0 HVAC45 12.8 0 HVAC46 20.7 0					
HVAC36 16.6 0 HVAC37 16.4 0 HVAC38 14.2 0 HVAC39 11.4 0 HVAC40 20.3 0 HVAC41 20.3 0 HVAC42 16.9 0 HVAC42 16.9 0 HVAC43 15.9 0 HVAC44 14.5 0 HVAC45 12.8 0 HVAC46 20.7 0					
HVAC37 16.4 0 HVAC38 14.2 0 HVAC39 11.4 0 HVAC40 20.3 0 HVAC41 20.3 0 HVAC42 16.9 0 HVAC43 15.9 0 HVAC44 14.5 0 HVAC45 12.8 0 HVAC46 20.7 0					-
HVAC3814.20HVAC3911.40HVAC4020.30HVAC4120.30HVAC4216.90HVAC4315.90HVAC4414.50HVAC4512.80HVAC4620.70					
HVAC3911.40HVAC4020.30HVAC4120.30HVAC4216.90HVAC4315.90HVAC4414.50HVAC4512.80HVAC4620.70					
HVAC4120.30HVAC4216.90HVAC4315.90HVAC4414.50HVAC4512.80HVAC4620.70					
HVAC4216.90HVAC4315.90HVAC4414.50HVAC4512.80HVAC4620.70	HVAC40				
HVAC43 15.9 0 HVAC44 14.5 0 HVAC45 12.8 0 HVAC46 20.7 0	HVAC41			20.3	0
HVAC44 14.5 0 HVAC45 12.8 0 HVAC46 20.7 0					
HVAC45 12.8 0 HVAC46 20.7 0					
HVAC46 20.7 0	_				
HVAC48 14.8 0					
HVAC49 16.7 0					
HVAC50 21.6 0					
HVAC51 21.7 0	HVAC51			21.7	0
HVAC52 19.3 0					
HVAC53 23.2 0					
HVAC54 25.6 0	HVAC54			25.6	0

HVAC55	21.5	0
HVAC56	22.3	0
HVAC57	22.4	0
HVAC58	24.9	0
HVAC59	25.1	0
HVAC60	24.7	0
HVAC61	19.5	0
HVAC62	22.3	0
HVAC63	21.7	0
HVAC64	20.6	0
HVAC65	14.2	0
HVAC66	13.4	0
HVAC67	14.8	0
HVAC68	16.4	0
HVAC69	16.4	0
HVAC70	15.9	0
HVAC71	15.8	0
HVAC72	15.7	0
HVAC73	11.2	0
HVAC74	13.0	0
HVAC75	13.0	0
HVAC76	13.1	0
HVAC77	13.3	0
HVAC78	9.1	0
HVAC79	13.9	0
HVAC80	6.3	0
HVAC81	6.5	0
HVAC82	11.0	0
HVAC83	11.4	0
HVAC84	11.6	0
HVAC85	6.9	0
HVAC86	5.8	0
HVAC87	10.6	0
HVAC88	11.3	0
HVAC89	11.7	0
HVAC90	11.5	0
HVAC91	11.0	0
HVAC92	9.4	0
HVAC93	9.5	0
HVAC94	9.6	0
HVAC95	9.5	0
HVAC96	7.0	0
HVAC97	9.1	0
HVAC98	-0.3	0
HVAC99	-0.4	0
HVAC100	-0.6	0
HVAC100	-0.8	0
HVAC102	-0.9	0
HVAC103	-3.2	0
HVAC104	2.9	0
HVAC105	2.9	0
HVAC106	2.7	0
HVAC107	2.4	0
HVAC108	2.2	0
HVAC109	1.8	0

HVAC110	3.5	0
HVAC111	3.4	0
HVAC112	3.1	0
HVAC113	6.8	0
HVAC114	6.8	0
HVAC115	6.7	0
HVAC116	12.8	0
HVAC117	12.9	0
HVAC118	12.6	0
HVAC119	12.4	0
HVAC120	10.6	0
HVAC121	10.5	0
HVAC122	9.4	0
HVAC123	17.6	0
HVAC124	17.4	0
HVAC125	21.0	0
HVAC126	21.0	0
HVAC127	9.7	0
HVAC128	9.8	0
HVAC129	10.0	0
HVAC130	15.8	0
HVAC131	16.0	0
HVAC132	7.2	0
HVAC133	7.2	0
HVAC134	7.3	0
HVAC135	7.3	0
HVAC136	7.2	0
HVAC137	2.9	0
HVAC138 HVAC139	2.9 3.0	0 0
HVAC140	-1.6	0
HVAC140	-1.0 -1.9	0
HVAC141	-1.9 -1.9	0
HVAC143	-2.0	0
HVAC144	4.4	0
HVAC145	3.2	0
HVAC146	3.6	0
HVAC147	4.6	0
HVAC148	4.5	0
HVAC149	2.8	0
HVAC150	-1.8	0
HVAC151	-0.7	0
HVAC152	-1.1	0
HVAC153	-0.6	0
HVAC154	-0.6	0
HVAC155	-0.9	0
HVAC156	-1.3	0
HVAC157	-0.6	0
HVAC158	-0.4	0
HVAC159	-0.1	0
HVAC160	-0.8	0
HVAC161	-0.1	0
HVAC162	6.7	0
HVAC163	6.7	0
HVAC164	6.5	0

HVAC1 8.5 0 HVAC2 7.9 0 HVAC3 7.9 0 HVAC4 8.2 0 HVAC5 8.4 0 HVAC6 13.0 0 HVAC7 12.6 0 HVAC8 12.5 0 HVAC9 12.4 0 HVAC10 12.6 0 HVAC11 -0.7 0 HVAC12 -0.7 0 HVAC13 -0.8 0 HVAC15 -1.3 0 HVAC16 -0.7 0 HVAC16 -0.7 0 HVAC17 -0.7 0 HVAC17 -0.7 0 HVAC18 -0.9 0 HVAC19 -1.0 0 HVAC20 -1.3 0 HVAC20 -1.3 0 HVAC20 -1.3 0 HVAC21 0.4 0 HVAC22 0.8 0 HVAC23 0.9 0 HVAC24 0.7 0 HVAC25 -0.5 0 HVAC26 17.3 0 HVAC26 17.3 0 HVAC27 17.3 0 HVAC26 17.3 0 HVAC27 17.3 0 HVAC28 13.5 0 HVAC29 13.6 0 HVAC29 13.6 0 HVAC30 12.0 0 HVAC31 11.0 0 HVAC31 11.0 0 HVAC32 10.0 0 HVAC33 11.0 0 HVAC34 15.5 0 HVAC35 15.5 0 HVAC35 15.5 0 HVAC36 14.8 0 HVAC37 12.3 0 HVAC37 12.3 0 HVAC38 11.4 0 HVAC39 9.6 0 HVAC39 9.6 0 HVAC39 15.2 0 HVAC30 15.2 0 HVAC39 15.4 0 HVAC39 9.6 0 HVAC39 15.2 0 HVAC39 15.5 0 HVAC39 9.6 0 HVAC40 15.2 0 HVAC41 15.4 0 HVAC41 15.4 0 HVAC42 13.1 0 HVAC42 13.1 0 HVAC44 12.1 0 HVAC44 12.1 0	HVAC165 HVAC166 HVAC167 HVAC168 HVAC169 HVAC170 HVAC171 HVAC172 HVAC173	37.4	6.3 5.5 6.2 6.1 5.7 5.6 7.6 7.6 7.4	0 0 0 0 0 0 0
HVAC3 7.9 0 HVAC4 8.2 0 HVAC5 8.4 0 HVAC6 13.0 0 HVAC7 12.6 0 HVAC8 12.5 0 HVAC9 12.4 0 HVAC10 12.6 0 HVAC11 -0.7 0 HVAC12 -0.7 0 HVAC13 -0.8 0 HVAC14 -0.9 0 HVAC15 -1.3 0 HVAC16 -0.7 0 HVAC16 -0.7 0 HVAC17 -0.7 0 HVAC17 -0.7 0 HVAC19 -1.0 0 HVAC20 -1.3 0 HVAC20 -1.3 0 HVAC24 0.7 0 HVAC23 0.9 0 HVAC24 0.7 0 HVAC25 -0.5 0 HVAC26 17.3 0 HVAC26 17.3 0 HVAC26 17.3 0 HVAC26 17.3 0 HVAC27 17.3 0 HVAC28 13.5 0 HVAC29 13.6 0 HVAC30 12.0 0 HVAC30 12.0 0 HVAC31 11.0 0 HVAC31 11.0 0 HVAC32 10.0 0 HVAC34 15.5 0 HVAC35 15.5 0 HVAC36 14.8 0 HVAC37 12.3 0 HVAC37 12.3 0 HVAC38 11.4 0 HVAC39 9.6 0 HVAC39 9.6 0 HVAC39 9.6 0 HVAC39 9.6 0 HVAC39 15.2 0 HVAC39 15.2 0 HVAC39 9.6 0 HVAC39 15.4 0 HVAC39 9.6 0 HVAC40 15.2 0 HVAC41 15.4 0 HVAC42 13.1 0				_
HVAC4 8.2 0 HVAC5 8.4 0 HVAC6 13.0 0 HVAC7 12.6 0 HVAC8 12.5 0 HVAC9 12.4 0 HVAC10 12.6 0 HVAC11 -0.7 0 HVAC12 -0.7 0 HVAC13 -0.8 0 HVAC14 -0.9 0 HVAC15 -1.3 0 HVAC16 -0.7 0 HVAC17 -0.7 0 HVAC18 -0.9 0 HVAC19 -1.0 0 HVAC20 -1.3 0 HVAC20 -1.3 0 HVAC24 0.7 0 HVAC23 0.9 0 HVAC25 -0.5 0 HVAC24 0.7 0 HVAC25 -0.5 0 HVAC26 17.3 0 HVAC26 17.3 0 HVAC26 17.3 0 HVAC27 17.3 0 HVAC28 13.5 0 HVAC29 13.6 0 HVAC30 12.0 0 HVAC31 11.0 0 HVAC30 12.0 0 HVAC31 11.0 0 HVAC31 11.0 0 HVAC34 15.5 0 HVAC35 15.5 0 HVAC36 14.8 0 HVAC37 12.3 0 HVAC37 12.3 0 HVAC38 11.4 0 HVAC39 9.6 0 HVAC39 9.6 0 HVAC39 9.6 0 HVAC39 9.6 0 HVAC39 15.2 0 HVAC39 9.6 0 HVAC39 15.4 0 HVAC39 9.6 0 HVAC39 15.2 0 HVAC39 9.6 0 HVAC39 15.2 0 HVAC40 15.2 0 HVAC41 15.4 0 HVAC42 13.1 0				
HVAC5				
HVAC6				
HVAC7				
HVAC8				
HVAC9				
HVAC10 HVAC11 HVAC12 HVAC13 HVAC13 HVAC14 HVAC15 HVAC16 HVAC17 HVAC18 HVAC19 HVAC20 HVAC21 HVAC22 HVAC23 HVAC24 HVAC24 HVAC25 HVAC26 HVAC26 HVAC26 HVAC27 HVAC28 HVAC29 HVAC29 HVAC30 HVAC31 HVAC30 HVAC31 HVAC30 HVAC31 HVAC30 HVAC31 HVAC30 HVAC30 HVAC30 HVAC30 HVAC31 HVAC30 HVAC31 HVAC30 HVAC30 HVAC30 HVAC30 HVAC30 HVAC30 HVAC30 HVAC30 HVAC31 HVAC30 HVAC30 HVAC30 HVAC30 HVAC31 HVAC30 HVAC31 HVAC31 HVAC31 HVAC32 HVAC33 HVAC34 HVAC35 HVAC35 HVAC36 HVAC36 HVAC37 HVAC36 HVAC37 HVAC38 HVAC37 HVAC38 HVAC39 P.6 HVAC40 HVAC39 P.6 HVAC40 HVAC41 HVAC42 HVAC41 HVAC42 HVAC43 HVAC43 HVAC43 HVAC44 HVAC43 HVAC44 H				
HVAC11				
HVAC12				
HVAC14 -0.9 0 HVAC15 -1.3 0 HVAC16 -0.7 0 HVAC17 -0.7 0 HVAC18 -0.9 0 HVAC19 -1.0 0 HVAC20 -1.3 0 HVAC21 0.4 0 HVAC22 0.8 0 HVAC23 0.9 0 HVAC23 0.9 0 HVAC24 0.7 0 HVAC25 -0.5 0 HVAC26 17.3 0 HVAC26 17.3 0 HVAC27 17.3 0 HVAC28 13.5 0 HVAC29 13.6 0 HVAC30 12.0 0 HVAC30 12.0 0 HVAC31 11.0 0 HVAC32 10.0 0 HVAC32 10.0 0 HVAC33 11.0 0 HVAC34 15.5 0 HVAC35 15.5 0 HVAC36 14.8 0 HVAC36 14.8 0 HVAC37 12.3 0 HVAC37 12.3 0 HVAC38 11.4 0 HVAC39 9.6 0 HVAC39 9.6 0 HVAC39 9.6 0 HVAC30 15.2 0 HVAC41 15.4 0 HVAC42 13.1 0				
HVAC15 -1.3 0 HVAC16 -0.7 0 HVAC17 -0.7 0 HVAC18 -0.9 0 HVAC19 -1.0 0 HVAC20 -1.3 0 HVAC21 0.4 0 HVAC22 0.8 0.9 0 HVAC23 0.9 0 HVAC24 0.7 0 HVAC25 -0.5 0 HVAC26 17.3 0 HVAC26 17.3 0 HVAC27 17.3 0 HVAC28 13.5 0 HVAC29 13.6 0 HVAC30 12.0 0 HVAC31 11.0 0 HVAC31 11.0 0 HVAC32 10.0 0 HVAC33 11.0 0 HVAC34 15.5 0 HVAC35 15.5 0 HVAC36 14.8 0 HVAC36 14.8 0 HVAC37 12.3 0 HVAC37 12.3 0 HVAC38 11.4 0 HVAC39 9.6 0 HVAC39 9.6 0 HVAC39 15.2 0 HVAC30 15.2 0 HVAC30 15.2 0 HVAC31 15.4 0 HVAC31 15.4 0 HVAC32 13.1 0	HVAC13		-0.8	0
HVAC16 HVAC17 HVAC18 HVAC19 HVAC20 HVAC20 HVAC21 HVAC22 HVAC23 HVAC23 HVAC24 HVAC25 HVAC26 HVAC26 HVAC26 HVAC26 HVAC27 HVAC28 HVAC29 HVAC29 HVAC30 HVAC30 HVAC30 HVAC30 HVAC31 HVAC31 HVAC31 HVAC30 HVAC31 HVAC30 HVAC31 HVAC30 HVAC31 HVAC31 HVAC31 HVAC33 HVAC34 HVAC34 HVAC35 HVAC35 HVAC36 HVAC36 HVAC37 HVAC36 HVAC36 HVAC37 HVAC36 HVAC37 HVAC36 HVAC37 HVAC38 HVAC37 HVAC38 HVAC39 HVAC38 HVAC39 HVAC39 HVAC39 HVAC39 HVAC39 HVAC39 HVAC30 HVAC30 HVAC30 HVAC31 HVAC31 HVAC31 HVAC31 HVAC31 HVAC31 HVAC31 HVAC31 HVAC32 HVAC33 HVAC34 HVAC34 HVAC35 HVAC35 HVAC35 HVAC36 HVAC36 HVAC37 HVAC36 HVAC37 HVAC36 HVAC37 HVAC38 HVAC37 HVAC38 HVAC39 HVAC40 HVAC40 HVAC40 HVAC40 HVAC40 HVAC40 HVAC41 HVAC41 HVAC42 HVAC41 HVAC42 HVAC43 HVAC44 HV				0
HVAC17				
HVAC18				
HVAC19 -1.0 0 HVAC20 -1.3 0 HVAC21 0.4 0 HVAC22 0.8 0 HVAC23 0.9 0 HVAC24 0.7 0 HVAC25 -0.5 0 HVAC26 17.3 0 HVAC27 17.3 0 HVAC28 13.5 0 HVAC29 13.6 0 HVAC30 12.0 0 HVAC31 11.0 0 HVAC31 11.0 0 HVAC32 10.0 0 HVAC33 11.0 0 HVAC34 15.5 0 HVAC35 15.5 0 HVAC36 14.8 0 HVAC37 12.3 0 HVAC38 11.4 0 HVAC39 9.6 0 HVAC39 9.6 0 HVAC40 15.2 0 HVAC41 15.4 0 HVAC42 13.1 0				
HVAC20 -1.3 0 HVAC21 0.4 0 HVAC22 0.8 0 HVAC23 0.9 0 HVAC24 0.7 0 HVAC25 -0.5 0 HVAC26 17.3 0 HVAC27 17.3 0 HVAC28 13.5 0 HVAC29 13.6 0 HVAC30 12.0 0 HVAC31 11.0 0 HVAC32 10.0 0 HVAC33 11.0 0 HVAC34 15.5 0 HVAC35 15.5 0 HVAC36 14.8 0 HVAC37 12.3 0 HVAC38 11.4 0 HVAC39 9.6 0 HVAC40 15.2 0 HVAC41 15.4 0 HVAC42 13.1 0 HVAC44 12.3 0 HVAC44 12.1 0				
HVAC21 0.4 0 HVAC23 0.9 0 HVAC24 0.7 0 HVAC25 -0.5 0 HVAC26 17.3 0 HVAC27 17.3 0 HVAC28 13.5 0 HVAC29 13.6 0 HVAC30 12.0 0 HVAC31 11.0 0 HVAC32 10.0 0 HVAC33 11.0 0 HVAC34 15.5 0 HVAC35 15.5 0 HVAC36 14.8 0 HVAC37 12.3 0 HVAC38 11.4 0 HVAC39 9.6 0 HVAC40 15.2 0 HVAC41 15.4 0 HVAC42 13.1 0 HVAC43 12.3 0 HVAC44 12.1 0				
HVAC22 0.8 0 HVAC23 0.9 0 HVAC24 0.7 0 HVAC25 -0.5 0 HVAC26 17.3 0 HVAC27 17.3 0 HVAC28 13.5 0 HVAC29 13.6 0 HVAC30 12.0 0 HVAC31 11.0 0 HVAC32 10.0 0 HVAC33 11.0 0 HVAC34 15.5 0 HVAC35 15.5 0 HVAC36 14.8 0 HVAC37 12.3 0 HVAC38 11.4 0 HVAC39 9.6 0 HVAC40 15.2 0 HVAC41 15.4 0 HVAC42 13.1 0 HVAC43 12.3 0 HVAC44 12.1 0				
HVAC23 0.9 0 HVAC24 0.7 0 HVAC25 -0.5 0 HVAC26 17.3 0 HVAC27 17.3 0 HVAC28 13.5 0 HVAC29 13.6 0 HVAC30 12.0 0 HVAC31 11.0 0 HVAC32 10.0 0 HVAC33 11.0 0 HVAC34 15.5 0 HVAC35 15.5 0 HVAC36 14.8 0 HVAC37 12.3 0 HVAC38 11.4 0 HVAC39 9.6 0 HVAC40 15.2 0 HVAC41 15.4 0 HVAC42 13.1 0 HVAC43 12.3 0 HVAC44 12.1 0				
HVAC24 0.7 0 HVAC25 -0.5 0 HVAC26 17.3 0 HVAC27 17.3 0 HVAC28 13.5 0 HVAC29 13.6 0 HVAC30 12.0 0 HVAC31 11.0 0 HVAC32 10.0 0 HVAC33 11.0 0 HVAC34 15.5 0 HVAC35 15.5 0 HVAC36 14.8 0 HVAC37 12.3 0 HVAC38 11.4 0 HVAC39 9.6 0 HVAC40 15.2 0 HVAC41 15.4 0 HVAC42 13.1 0 HVAC43 12.3 0 HVAC44 12.1 0				
HVAC26 17.3 0 HVAC27 17.3 0 HVAC28 13.5 0 HVAC29 13.6 0 HVAC30 12.0 0 HVAC31 11.0 0 HVAC32 10.0 0 HVAC33 11.0 0 HVAC34 15.5 0 HVAC35 15.5 0 HVAC36 14.8 0 HVAC37 12.3 0 HVAC38 11.4 0 HVAC39 9.6 0 HVAC40 15.2 0 HVAC41 15.4 0 HVAC42 13.1 0 HVAC43 12.3 0 HVAC44 12.1 0				0
HVAC27 17.3 0 HVAC28 13.5 0 HVAC29 13.6 0 HVAC30 12.0 0 HVAC31 11.0 0 HVAC32 10.0 0 HVAC33 11.0 0 HVAC34 15.5 0 HVAC35 15.5 0 HVAC36 14.8 0 HVAC37 12.3 0 HVAC38 11.4 0 HVAC39 9.6 0 HVAC40 15.2 0 HVAC41 15.4 0 HVAC42 13.1 0 HVAC43 12.3 0 HVAC44 12.1 0	HVAC25		-0.5	0
HVAC28 13.5 0 HVAC29 13.6 0 HVAC30 12.0 0 HVAC31 11.0 0 HVAC32 10.0 0 HVAC33 11.0 0 HVAC34 15.5 0 HVAC35 15.5 0 HVAC36 14.8 0 HVAC37 12.3 0 HVAC38 11.4 0 HVAC39 9.6 0 HVAC40 15.2 0 HVAC41 15.4 0 HVAC42 13.1 0 HVAC43 12.3 0 HVAC44 12.1 0				-
HVAC29 13.6 0 HVAC30 12.0 0 HVAC31 11.0 0 HVAC32 10.0 0 HVAC33 11.0 0 HVAC34 15.5 0 HVAC35 15.5 0 HVAC36 14.8 0 HVAC37 12.3 0 HVAC38 11.4 0 HVAC39 9.6 0 HVAC40 15.2 0 HVAC41 15.4 0 HVAC42 13.1 0 HVAC43 12.3 0 HVAC44 12.1 0				
HVAC30 12.0 0 HVAC31 11.0 0 HVAC32 10.0 0 HVAC33 11.0 0 HVAC34 15.5 0 HVAC35 15.5 0 HVAC36 14.8 0 HVAC37 12.3 0 HVAC38 11.4 0 HVAC39 9.6 0 HVAC40 15.2 0 HVAC41 15.4 0 HVAC42 13.1 0 HVAC43 12.3 0 HVAC44 12.1 0				
HVAC31 11.0 0 HVAC32 10.0 0 HVAC33 11.0 0 HVAC34 15.5 0 HVAC35 15.5 0 HVAC36 14.8 0 HVAC37 12.3 0 HVAC38 11.4 0 HVAC39 9.6 0 HVAC40 15.2 0 HVAC41 15.4 0 HVAC42 13.1 0 HVAC43 12.3 0 HVAC44 12.1 0				
HVAC32 10.0 0 HVAC33 11.0 0 HVAC34 15.5 0 HVAC35 15.5 0 HVAC36 14.8 0 HVAC37 12.3 0 HVAC38 11.4 0 HVAC39 9.6 0 HVAC40 15.2 0 HVAC41 15.4 0 HVAC42 13.1 0 HVAC43 12.3 0 HVAC44 12.1 0				
HVAC33 11.0 0 HVAC34 15.5 0 HVAC35 15.5 0 HVAC36 14.8 0 HVAC37 12.3 0 HVAC38 11.4 0 HVAC39 9.6 0 HVAC40 15.2 0 HVAC41 15.4 0 HVAC42 13.1 0 HVAC43 12.3 0 HVAC44 12.1 0				
HVAC3515.50HVAC3614.80HVAC3712.30HVAC3811.40HVAC399.60HVAC4015.20HVAC4115.40HVAC4213.10HVAC4312.30HVAC4412.10				
HVAC3614.80HVAC3712.30HVAC3811.40HVAC399.60HVAC4015.20HVAC4115.40HVAC4213.10HVAC4312.30HVAC4412.10	HVAC34		15.5	0
HVAC3712.30HVAC3811.40HVAC399.60HVAC4015.20HVAC4115.40HVAC4213.10HVAC4312.30HVAC4412.10				
HVAC3811.40HVAC399.60HVAC4015.20HVAC4115.40HVAC4213.10HVAC4312.30HVAC4412.10				
HVAC39 9.6 0 HVAC40 15.2 0 HVAC41 15.4 0 HVAC42 13.1 0 HVAC43 12.3 0 HVAC44 12.1 0				
HVAC4015.20HVAC4115.40HVAC4213.10HVAC4312.30HVAC4412.10				
HVAC41 15.4 0 HVAC42 13.1 0 HVAC43 12.3 0 HVAC44 12.1 0				
HVAC42 13.1 0 HVAC43 12.3 0 HVAC44 12.1 0				
HVAC43 12.3 0 HVAC44 12.1 0				
HVAC44 12.1 0				
	HVAC45		10.0	0

HVAC46	14.7	0
HVAC47	14.7	0
HVAC48	12.0	0
HVAC49	10.7	0
HVAC50	20.0	0
HVAC51	20.0	0
HVAC52	16.6	0
HVAC53	15.7	0
HVAC54	13.5	0
HVAC55	12.7	0
HVAC56	24.5	0
HVAC57	24.2	0
HVAC58	21.6	0
HVAC59	21.4	0
HVAC60	21.4	0
HVAC61	24.1	0
HVAC62	21.4	0
HVAC63	21.3	0
HVAC64	23.8	0
HVAC65	23.8	0
HVAC66	24.7	0
HVAC67	22.6	0
HVAC68	20.8	0
HVAC69	21.6	0
HVAC70	24.0	0
HVAC71	22.8	0
HVAC72	17.2	0
HVAC73	15.6	0
HVAC74	7.2	0
HVAC75	7.2 7.0	0
HVAC76	7.4	0
HVAC77	7.8	0
HVAC78	8.2	0
HVAC79	9.0	0
HVAC80	6.4	0
HVAC81	6.5	0
HVAC82	6.9	0
HVAC83	7.3	0
HVAC84	7.8	0
HVAC85	8.9	0
HVAC86	5.5	0
HVAC87	5.5	0
HVAC88	5.6	0
HVAC89	6.6	0
HVAC90	6.5	0
HVAC91	4.0	0
HVAC92	6.5	0
HVAC93	6.5	0
HVAC94	6.3	0
HVAC95	6.1	0
HVAC96	6.0	0
HVAC97	5.6	0
HVAC98	1.7	0
HVAC99	-3.1	0
HVAC100	-3.4	0
11740100	-3.4	U

HVAC101 HVAC102	-3.5 -3.3	0 0
HVAC103	-3.2	0
HVAC104	2.7	0
HVAC105	2.8	0
HVAC106	2.8	0
HVAC107	2.8	0
HVAC108	2.8	0
HVAC109 HVAC110	2.5 4.1	0 0
HVAC111	4.1	0
HVAC112	3.8	0
HVAC113	6.3	0
HVAC114	6.2	0
HVAC115	6.5	0
HVAC116	8.5	0
HVAC117	8.3	0
HVAC118	6.1	0
HVAC119	6.1	0
HVAC120 HVAC121	5.8 5.8	0 0
HVAC121	6.0	0
HVAC123	21.5	0
HVAC124	21.1	0
HVAC125	17.6	0
HVAC126	17.1	0
HVAC127	14.0	0
HVAC128	13.7	0
HVAC129	11.9	0
HVAC130	15.3	0
HVAC131 HVAC132	15.4 16.4	0
HVAC132 HVAC133	16.4	0 0
HVAC134	13.6	0
HVAC135	13.6	0
HVAC136	12.7	0
HVAC137	-3.5	0
HVAC138	-3.5	0
HVAC139	-3.7	0
HVAC140	-3.7	0
HVAC141 HVAC142	-4.1 -4.2	0 0
HVAC143	-4.2 -4.3	0
HVAC144	10.1	0
HVAC145	9.6	0
HVAC146	9.8	0
HVAC147	10.5	0
HVAC148	10.5	0
HVAC149	7.8	0
HVAC150	8.3	0
HVAC151	8.5 8.5	0
HVAC152 HVAC153	8.5 8.0	0 0
HVAC153	8.1	0
HVAC155	8.5	0
	0.0	ŭ

HVAC156	9.7	0
HVAC157	10.5	0
HVAC158	10.7	0
HVAC159	11.1	0
HVAC160	10.2	0
HVAC161	11.1	0
HVAC162	10.0	0
HVAC163	10.5	0
HVAC164	15.7	0
HVAC165	15.5	0
HVAC166	14.2	0
HVAC167	11.4	0
HVAC168	11.7	0
HVAC169	5.6	0
HVAC170	5.6	0
HVAC171	11.4	0
HVAC172	11.3	0
HVAC173	10.2	0

Priority Development Project (PDP) Storm Water Quality Management Plan (SWQMP)

California Terraces - PA61

Permit No. TBD

[Insert Drawing Number (if applicable) and Internal Order Number (if applicable)]

☐ Check if electing for offsite alternative compliance

Engineer of Work:

Wayne W. Chang, PE 46548 Provide Wet Signature and Stamp Above Line

Prepared For:

Pardee Homes
13400 Sabre Springs Parkway, Suite 200
San Diego, CA 92128
(858) 794-2500
Prepared By:

Chang Consultants
P.O. Box 9496
Rancho Santa Fe, CA 92067
(858) 692-0760
Date:
September 19, 2018

Approved by: City of San Diego Date

THIS PAGE INTE	INTIONALLY LEFT	BLANK FOR DOU	BLE-SIDED PRINTING

Table of Contents

- Acronyms
- Certification Page
- Submittal Record
- Project Vicinity Map
- FORM DS-560: Storm Water Applicability Checklist
- FORM I-1: Applicability of Permanent, Post-Construction Storm Water BMP Requirements
- HMP Exemption Exhibit (for all hydromodification management exempt projects)
- FORM I-3B: Site Information Checklist for PDPs
- FORM I-4B: Source Control BMP Checklist for PDPs
- FORM I-5B: Site Design BMP Checklist PDPs
- FORM I-6: Summary of PDP Structural BMPs
- Attachment 1: Backup for PDP Pollutant Control BMPs
 - Attachment 1a: DMA Exhibit
 - Attachment 1b: Tabular Summary of DMAs (Worksheet B-1 from Appendix B) and Design Capture Volume Calculations
 - Attachment 1c: FORM I-7: Worksheet B.3-1 Harvest and Use Feasibility Screening
 - Attachment 1d: Infiltration Feasibility Information(One or more of the following):
 - FORM I-8A: Worksheet C.4-1 Categorization of Infiltration Feasibility Condition based on Geotechnical Conditions
 - Form I-8B: Worksheet C.4-2 Categorization of Infiltration Feasibility Condition based on Groundwater and Water Balance Conditions
 - Infiltration Feasibility Condition Letter
 - Worksheet C.4-3: Infiltration and Groundwater Protection for Full Infiltration BMPs
 - FORM I-9: Worksheet D.5-1 Factor of Safety and Design Infiltration Rate
 - o Attachment 1e: Pollutant Control BMP Design Worksheets / Calculations
- Attachment 2: Backup for PDP Hydromodification Control Measures
 - o Attachment 2a: Hydromodification Management Exhibit
 - o Attachment 2b: Management of Critical Coarse Sediment Yield Areas
 - o Attachment 2c: Geomorphic Assessment of Receiving Channels
 - o Attachment 2d: Flow Control Facility Design

- Attachment 3: Structural BMP Maintenance Plan
 - o Maintenance Agreement (Form DS-3247) (when applicable)
- Attachment 4: Copy of Plan Sheets Showing Permanent Storm Water BMPs
- Attachment 5: Project's Drainage Report
- Attachment 6: Project's Geotechnical and Groundwater Investigation Report

Acronyms

APN Assessor's Parcel Number

ASBS Area of Special Biological Significance

BMP Best Management Practice

CEQA California Environmental Quality Act

CGP Construction General Permit
DCV Design Capture Volume
DMA Drainage Management Areas
ESA Environmentally Sensitive Area
GLU Geomorphic Landscape Unit

GW Ground Water

HMP Hvdromodification Management Plan

HSG Hvdrologic Soil Group HU Harvest and Use INF Infiltration

LID Low Impact Development

LUP Linear Underground/Overhead Projects
MS4 Municipal Separate Storm Sewer System

N/A Not Applicable

NPDES National Pollutant Discharge Elimination System

NRCS Natural Resources Conservation Service

PDP Priority Development Proiect

PE Professional Engineer
POC Pollutant of Concern
SC Source Control

SD Site Design

SDRWQCB San Diego Regional Water Ouality Control Board

SIC Standard Industrial Classification
SWPPP Stormwater Pollutant Protection Plan
SWOMP Storm Water Quality Management Plan

TMDL Total Maximum Daily Load

WMAA Watershed Management Area Analysis
WPCP Water Pollution Control Program
WQIP Water Quality Improvement Plan

Project Name: California Terraces - PA61

Certification Page

Project Name: California Terraces - PA61 **Permit Application**

I hereby declare that I am the Engineer in Responsible Charge of design of storm water BMPs for this project, and that I have exercised responsible charge over the design of the project as defined in Section 6703 of the Business and Professions Code, and that the design is consistent with the requirements of the Storm Water Standards, which is based on the requirements of SDRWQCB Order No. R9-2013-0001 as amended by R9-2015-0001 and R9-2015-0100 (MS4 Permit).

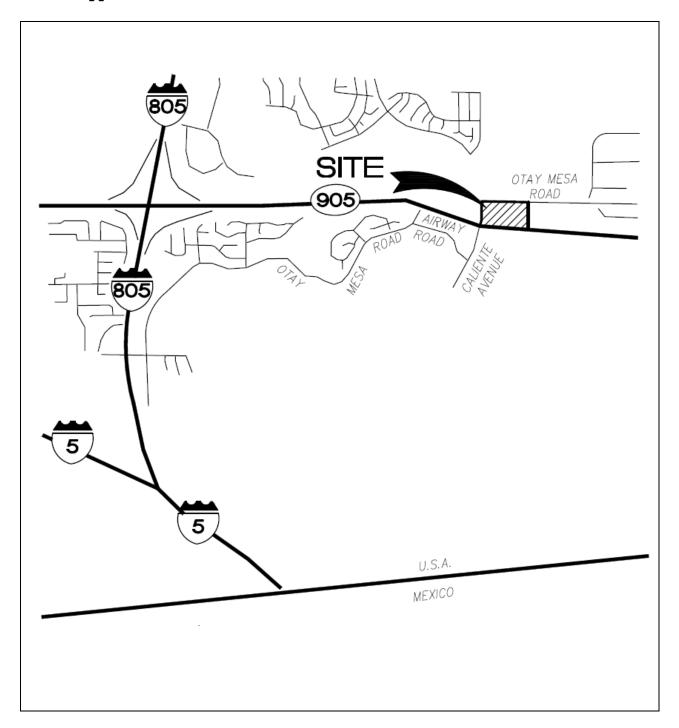
I have read and understand that the City Engineer has adopted minimum requirements for managing urban runoff, including storm water, from land development activities, as described in the Storm Water Standards. I certify that this PDP SWQMP has been completed to the best of my ability and accurately reflects the project being proposed and the applicable source control and site design BMPs proposed to minimize the potentially negative impacts of this project's land development activities on water quality. I understand and acknowledge that the plan check review of this PDP SWQMP by the City Engineer is confined to a review and does not relieve me, as the Engineer in Responsible Charge of design of storm water BMPs for this project, of my responsibilities for project design.

Will sign and stamp upon approval

Engineer of Work's Signature		
46548	6/30/2019	
PE#	Expiration Date	
Wayne W. Chang		
Print Name		
Chang Consultants		
Company		
September 19, 2018		
Date		
	Engineer's Stamp	

Project Name: California Terraces - PA61

Submittal Record


Use this Table to keep a record of submittals of this PDP SWQMP. Each time the PDP SWQMP is re-submitted, provide the date and status of the project. In last column indicate changes that have been made or indicate if response to plancheck comments is included. When applicable, insert response to plancheck comments.

Submittal Number	Date	Project Status	Changes
1	4/16/2018	Preliminary Design/Planning/CEQA	Initial Submittal
		Final Design	
2	7/10/2018	Preliminary Design/Planning/CEQA	Second Submittal
		Final Design	
3	9/19/2018	Preliminary Design/Planning/CEQA	Third Submittal
		Final Design	
4		Preliminary Design/Planning/CEQA	
		Final Design	

Project Vicinity Map

Project Name: Permit Application

City of San Diego Form DS-560 Storm Water Requirements Applicability Checklist

Attach DS-560 form.

Project Nan	ne:				
THIS PAG	E INTENTION	ALLY LEFT B	LANK FOR DOU	BLE-SIDED PRIN	TING

Storm Water Requirements Applicability Checklist

FORM

DS-560

OCTOBER 2016

Project Address:	Project Number (for City Use Only):			
SECTION 1. Construction Storm Water BMP Requirements:				
All construction sites are required to implement construction BMPs in accordance with the performance standards in the <u>Storm Water Standards Manual</u> . Some sites are additionally required to obtain coverage under the State Construction General Permit (CGP) ¹ , which is administered by the State Water Resources Control Board.				
For all projects complete PART A: If project is required to submit a SWPPP or WPCP, continue to PART B.				
PART A: Determine Construction Phase Storm Water Requirements.				
 Is the project subject to California's statewide General NPDES permit for Storr with Construction Activities, also known as the State Construction General Per land disturbance greater than or equal to 1 acre.) 	n Water Discharges Associated rmit (CGP)? (Typically projects with			
Yes; SWPPP required, skip questions 2-4 No; next question				
2. Does the project propose construction or demolition activity, including but no grubbing, excavation, or any other activity resulting in ground disturbance and	t limited to, clearing, grading, d contact with storm water runoff?			
Yes; WPCP required, skip 3-4 No; next question				
3. Does the project propose routine maintenance to maintain original line and g nal purpose of the facility? (Projects such as pipeline/utility replacement)	rade, hydraulic capacity, or origi-			
Yes; WPCP required, skip 4				
4. Does the project only include the following Permit types listed below?				
 Electrical Permit, Fire Alarm Permit, Fire Sprinkler Permit, Plumbing Permit, Spa Permit. 	Sign Permit, Mechanical Permit,			
 Individual Right of Way Permits that exclusively include only ONE of the foll sewer lateral, or utility service. 	owing activities: water service,			
 Right of Way Permits with a project footprint less than 150 linear feet that entered the following activities: curb ramp, sidewalk and driveway apron replacement, and retaining wall encroachments. 	exclusively include only ONE of ent, pot holing, curb and gutter			
Yes; no document required				
Check one of the boxes below, and continue to PART B:				
If you checked "Yes" for question 1, a SWPPP is REQUIRED. Continue to PART B				
If you checked "No" for question 1, and checked "Yes" for question a WPCP is REQUIRED. If the project proposes less than 5,000 squof ground disturbance AND has less than a 5-foot elevation change entire project area, a Minor WPCP may be required instead. Contact the contact of the contact o	n 2 or 3, uare feet ge over the tinue to PART B.			
If you checked "No" for all questions 1-3, and checked "Yes" for que PART B does not apply and no document is required. Continue	uestion 4 e to Section 2.			
1. More information on the City's construction BMP requirements as well as CGP requirements www.sandiego.gov/stormwater/regulations/index.shtml	nts can be found at:			

The pro City Sta and nifi tha	e city res ojects are y has alig ite Const d receivir icance (A at apply t	erves the right to adjust the priority of projects both before and after construction. Co assigned an inspection frequency based on if the project has a "high threat to water quality" to the risk determination appropriate the local definition of "high threat to water quality" to the risk determination appropriate the local Permit (CGP). The CGP determines risk level based on project specific song water risk. Additional inspection is required for projects within the Areas of Special (SBS) watershed. NOTE: The construction priority does NOT change construction BMP to projects; rather, it determines the frequency of inspections that will be conducted by PART B and continued to Section 2	nstruction uality." The bach of the sediment risk Biological Sig- requirements
 I.		ASBS	
•		a. Projects located in the ASBS watershed.	
2.		High Priority	
		 a. Projects 1 acre or more determined to be Risk Level 2 or Risk Level 3 per the Cons General Permit and not located in the ASBS watershed. 	struction
		 b. Projects 1 acre or more determined to be LUP Type 2 or LUP Type 3 per the Const General Permit and not located in the ASBS watershed. 	truction
i.		Medium Priority	
		a. Projects 1 acre or more but not subject to an ASBS or high priority designation.	
		 b. Projects determined to be Risk Level 1 or LUP Type 1 per the Construction General not located in the ASBS watershed. 	al Permit and
•		Low Priority	
		 a. Projects requiring a Water Pollution Control Plan but not subject to ASBS, high, or priority designation. 	medium
SE	CTION 2	2. Permanent Storm Water BMP Requirements.	
Ad	ditional i	nformation for determining the requirements is found in the <u>Storm Water Standards N</u>	<u>lanual</u> .
Pro vel	ojects tha	etermine if Not Subject to Permanent Storm Water Requirements. It are considered maintenance, or otherwise not categorized as "new development proporojects" according to the Storm Water Standards Manual are not subject to Permanent	jects" or "rede- t Storm Water
ne	nt Stori	checked for any number in Part C, proceed to Part F and check "Not Subje n Water BMP Requirements". hecked for all of the numbers in Part C continue to Part D.	ct to Perma-
•	Does the existing	ne project only include interior remodels and/or is the project entirely within an g enclosed structure and does not have the potential to contact storm water?	☐ Yes ☐ N
		ne project only include the construction of overhead or underground utilities without g new impervious surfaces?	☐ Yes ☐ N
•		ne project fall under routine maintenance? Examples include, but are not limited to: exterior structure surface replacement, resurfacing or reconfiguring surface parking	

City of San Diego • Development Services • Storm Water Requirements Applicability Checklist Page 3 of 4			
PART D: PDP Exempt Requirements.			
PDP Exempt projects are required to implement site design and source control BMPs.			
If "yes" was checked for any questions in Part D, continue to Part F and check the box labeled "PDP Exempt."			
If "no" was checked for all questions in Part D, continue to Part E.			
1. Does the project ONLY include new or retrofit sidewalks, bicycle lanes, or trails that:			
 Are designed and constructed to direct storm water runoff to adjacent vegetated areas, or other non-erodible permeable areas? Or; 			
Are designed and constructed to be hydraulically disconnected from paved streets and roads? Or; Are designed and constructed with permeable pavements or surfaces in asserdance with the			
 Are designed and constructed with permeable pavements or surfaces in accordance with the Green Streets guidance in the City's Storm Water Standards manual? 			
lacksquare Yes; PDP exempt requirements apply $lacksquare$ No; next question			
2. Does the project ONLY include retrofitting or redeveloping existing paved alleys, streets or roads designed and constructed in accordance with the Green Streets guidance in the City's Storm Water Standards Manual ?			
lacksquare Yes; PDP exempt requirements apply $lacksquare$ No; project not exempt.			
PART E: Determine if Project is a Priority Development Project (PDP). Projects that match one of the definitions below are subject to additional requirements including preparation of a Storm Water Quality Management Plan (SWQMP). If "yes" is checked for any number in PART E, continue to PART F and check the box labeled "Priority Development Project". If "no" is checked for every number in PART E, continue to PART F and check the box labeled "Standard Development Project".			
1. New Development that creates 10,000 square feet or more of impervious surfaces collectively over the project site. This includes commercial, industrial, residential, mixed-use, and public development projects on public or private land.			
2. Redevelopment project that creates and/or replaces 5,000 square feet or more of impervious surfaces on an existing site of 10,000 square feet or more of impervious surfaces. This includes commercial, industrial, residential, mixed-use, and public development projects on public or private land.			
3. New development or redevelopment of a restaurant. Facilities that sell prepared foods and drinks for consumption, including stationary lunch counters and refreshment stands selling prepared foods and drinks for immediate consumption (SIC 5812), and where the land development creates and/or replace 5,000 square feet or more of impervious surface.			
4. New development or redevelopment on a hillside. The project creates and/or replaces 5,000 square feet or more of impervious surface (collectively over the project site) and where the development will grade on any natural slope that is twenty-five percent or greater.			
5. New development or redevelopment of a parking lot that creates and/or replaces 5,000 square feet or more of impervious surface (collectively over the project site).			
6. New development or redevelopment of streets, roads, highways, freeways, and driveways. The project creates and/or replaces 5,000 square feet or more of impervious surface (collectively over the project site).			

Pag	ge 4 of 4	City of San Diego • Development Services • Storm Water Requirements Applicability Che	cklist	
	Sensitive (collective Area (ESA feet or les	velopment or redevelopment discharging directly to an Environmentally ve Area. The project creates and/or replaces 2,500 square feet of impervious surface vely over project site), and discharges directly to an Environmentally Sensitive A). "Discharging directly to" includes flow that is conveyed overland a distance of 200 ess from the project to the ESA, or conveyed in a pipe or open channel any distance plated flow from the project to the ESA (i.e. not commingled with flows from adjacent	☐ Yes	□No
	create ar	velopment or redevelopment projects of a retail gasoline outlet (RGO) that and/or replaces 5,000 square feet of impervious surface. The development meets the following criteria: (a) 5,000 square feet or more or (b) has a projected Daily Traffic (ADT) of 100 or more vehicles per day.	☐ Yes	□No
9.	projects of	velopment or redevelopment projects of an automotive repair shops that and/or replaces 5,000 square feet or more of impervious surfaces. Development categorized in any one of Standard Industrial Classification (SIC) codes 5013, 5014, 532-7534, or 7536-7539.	☐ Yes	□No
	results in post cons less than use of pe the squar vehicle us	ollutant Generating Project. The project is not covered in the categories above, in the disturbance of one or more acres of land and is expected to generate pollutants astruction, such as fertilizers and pesticides. This does not include projects creating in 5,000 sf of impervious surface and where added landscaping does not require regula esticides and fertilizers, such as slope stabilization using native plants. Calculation of are footage of impervious surface need not include linear pathways that are for infrequase, such as emergency maintenance access or bicycle pedestrian use, if they are built vious surfaces of if they sheet flow to surrounding pervious surfaces.	uent	□ No
PA	RT F: Sel	lect the appropriate category based on the outcomes of PART C through F	PART E.	
1.	The proj	eject is NOT SUBJECT TO PERMANENT STORM WATER REQUIREMENTS .		
2.	The proje BMP req	oject is a STANDARD DEVELOPMENT PROJECT . Site design and source control quirements apply. See the <u>Storm Water Standards Manual</u> for guidance.		
3.	The projection See the	oject is PDP EXEMPT . Site design and source control BMP requirements apply. Storm Water Standards Manual for guidance.		
4.	structura	ject is a PRIORITY DEVELOPMENT PROJECT . Site design, source control, and ral pollutant control BMP requirements apply. See the <u>Storm Water Standards Manual</u> lance on determining if project requires a hydromodification plan management		
Naı	me of Owi	vner or Agent <i>(Please Print)</i> Title		
Sign	nature	Date		
JIRIC	i iatui e	Date		

Project Name: California Terraces - PA61

Applicability of Dormans	nt Doct Con	struction		
Applicability of Permane	ent, Post-Cons er BMP Requi			
	dentification	ilements		
Project Name: California Terraces - PA61	deritification			
Permit Application Number: TBD		Date: September 19, 2018		
Determination	of Requireme			
The purpose of this form is to identify permanen	•			
project. This form serves as a short <u>summary</u> of applicable requirements, in some cases referencing				
separate forms that will serve as the backup for the determination of requirements.				
Answer each step below, starting with Step 1 and				
"Stop". Refer to the manual sections and/or sepa		·		
Step 1: Is the project a "development	Answer ✓ Yes	Progression Go to Step 2.		
project"? See Section 1.3 of the manual	√ i.e.	Go to Step 2.		
(Part 1 of Storm Water Standards) for	No	Stop. Permanent BMP		
guidance.		requirements do not apply. No		
		SWQMP will be required. Provide		
		discussion below.		
Step 2: Is the project a Standard Project, PDP, or PDP Exempt?	Standard	Stop. Standard Project requirements apply		
To answer this item, see Section 1.4 of the	Project			
manual in its entirety for guidance AND	✓PDP	PDP requirements apply, including PDP SWQMP. Go to Step 3 .		
complete Form DS-560, Storm Water	PDP	Stop. Standard Project		
Requirements Applicability Checklist.	Exempt	requirements apply. Provide		
		discussion and list any additional		
		requirements below.		
Discussion / justification, and additional requirer	nents for excep	otions to PDP definitions, if		
applicable:				

Form I-1	Page 2 of 2	
Step	Answer	Progression
Step 3. Is the project subject to earlier PDP requirements due to a prior lawful approval? See Section 1.10 of the manual (Part 1 of Storm Water Standards) for guidance.	□ Yes	Consult the City Engineer to determine requirements. Provide discussion and identify requirements below. Go to Step 4 .
	□ No	BMP Design Manual PDP requirements apply. Go to Step 4 .
Discussion / justification of prior lawful approval, lawful approval does not apply):	and identify re	quirements (<u>not required if prior</u>
Step 4. Do hydromodification control requirements apply? See Section 1.6 of the manual (Part 1 of Storm Water Standards) for guidance.	□ Yes	PDP structural BMPs required for pollutant control (Chapter 5) and hydromodification control (Chapter 6). Go to Step 5 .
	□ No	Stop. PDP structural BMPs required for pollutant control (Chapter 5) only. Provide brief discussion of exemption to hydromodification control below.
Discussion / justification if hydromodification con	trol requireme	ents do <u>not</u> apply:
Step 5. Does protection of critical coarse sediment yield areas apply? See Section 6.2 of the manual (Part 1 of Storm Water Standards) for guidance.	□ Yes	Management measures required for protection of critical coarse sediment yield areas (Chapter 6.2). Stop.
· •	□ No	Management measures not required for protection of critical coarse sediment yield areas. Provide brief discussion below. Stop.
Discussion / justification if protection of critical co	arse sediment	yield areas does <u>not</u> apply:

HMP Exemption Exhibit

Attach a HMP Exemption Exhibit that shows direct storm water runoff discharge from the project site to HMP exempt area. Include project area, applicable underground storm drain line and/or concrete lined channels, outfall information and exempt waterbody.

Reference applicable drawing number(s).

Exhibit must be provided on 11"x17" or larger paper.

N/A. The project is not exempt.

Project Name:				
THIS PAGE INTEN	ITIONALLY LEFT	BLANK FOR DO	UBLE-SIDED PRIN	TING

Site Information Checklist Form I-3		
	For PDPs	FUITI F3D
Project Sum	mary Information	
Project Name		
Project Address		
Assessor's Parcel Number(s) (APN(s))		
Permit Application Number		
Project Watershed	Select One: San Dieguito River Penasquitos Mission Bay San Diego River San Diego Bay Tijuana River	
Hydrologic subarea name with Numeric Identifier up to two decimal places (9XX.XX)		
Project Area (total area of Assessor's Parcel(s) associated with the project or total area of the right-of- way)	Acres (Square Feet)
Area to be disturbed by the project (Project Footprint)	Acres (Square Feet)
Project Proposed Impervious Area (subset of Project Footprint)	Acres (Square Feet)
Project Proposed Pervious Area (subset of Project Footprint)	Acres (Square Feet)
Note: Proposed Impervious Area + Proposed Pe This may be less than the Project Area.	ervious Area = Area to	be Disturbed by the Project.
The proposed increase or decrease in impervious area in the proposed condition as compared to the pre-project condition	%	

Description of Existing Site Condition and Drainage Patterns Current Status of the Site (select all that apply): Existing development Previously graded but not built out Agricultural or other non-impervious use Vacant, undeveloped/natural Description / Additional Information:
□ Existing development □ Previously graded but not built out □ Agricultural or other non-impervious use □ Vacant, undeveloped/natural Description / Additional Information:
□ Previously graded but not built out □ Agricultural or other non-impervious use □ Vacant, undeveloped/natural Description / Additional Information:
□ Agricultural or other non-impervious use □ Vacant, undeveloped/natural Description / Additional Information:
□ Vacant, undeveloped/natural Description / Additional Information:
Description / Additional Information:
Evistia e Land Cover la chada a (calasta ell that are ha)
Frietian Land Cover In all ridge (colors all that on all th
Frieting Lond Cover to all relation (as least all the step on all the
Existing Land Cover Includes (select all that apply):
□ Vegetative Cover
□ Non-Vegetated Pervious Areas
□ Impervious Areas
Description / Additional Information:
Underlying Soil belongs to Hydrologic Soil Group (select all that apply):
□ NRCS Type A
□ NRCS Type B
□ NRCS Type C
□ NRCS Type D
Approximate Depth to Groundwater:
☐ Groundwater Depth < 5 feet
□ 5 feet < Groundwater Depth < 10 feet
□ 10 feet < Groundwater Depth < 20 feet
□ Groundwater Depth > 20 feet
Existing Natural Hydrologic Features (select all that apply):
□ Watercourses
□ Seeps
□ Springs
□ Wetlands
□ None
Description / Additional Information:
·

Form I-3B Page 3 of 11

Description of Existing Site Topography and Drainage

How is storm water runoff conveyed from the site? At a minimum, this description should answer:

- Whether existing drainage conveyance is natural or urban; 1.
- 2. If runoff from offsite is conveyed through the site? If yes, quantification of all offsite drainage areas, design flows, and locations where offsite flows enter the project site and summarize how such flows are conveyed through the site;
- 3. Provide details regarding existing project site drainage conveyance network, including storm drains, concrete channels, swales, detention facilities, storm water treatment

	facilities, and natural and constructed channels;				
4.	Identify all discharge locations from the existing project along with a summary of the				
	conveyance system size and capacity for each of the discharge locations. Provide				
	summary of the pre-project drainage areas and design flows to each of the existing runoff				
	discharge locations.				
	Descriptions/Additional Information				
	·				

Project Name: California Terraces - PA61

Form I-3B Page 4 of 11

Description of Proposed Site Development and Drainage Patterns

Project Description / Proposed Land Use and/or Activities:

The project proposes up to 45,000 sf of commercial uses within Lot 1 (westerly lot). It also proposes 171 multi-family residential units including 18 affordable and a private recreation park within Lot 2 on the easterly two-thirds of the site. The residential development permits up to 270 multi-family residential units on Lot 2. For this residential development area, there are two proposed public streets off of Otay Mesa Road that provide access to the east and west ends of the project, as well as private on-site driveways, alleys, and parking.

The westerly third of the site (Lot 1) will be mass-graded and developed in the future under a separate Planned Development Permit and Site Development Permit.

List/describe proposed impervious features of the project (e.g., buildings, roadways, parking lots, courtyards, athletic courts, other impervious features):

The proposed impervious features include the condominium buildings, public streets, private driveways and alleys, parking, curb, gutter, sidewalk, trash enclosures, and hardscape.

List/describe proposed pervious features of the project (e.g., landscape areas):

The proposed pervious features include landscaping and the recreation park within the residential development as well as the westerly mass-graded pad.

Does the project include grading and changes to site topography?
☑ Yes
□No
Description / Additional Information:

The existing site is gently sloping, but grading will be required for the project. The cut and fill heights will not be large since the site does not have much relief.

Form I-3B Page 5 of 11					
Does the project include changes to site drainage (e.g., installation of new storm water conveyance systems)? ☐ Yes ☐ No					
If yes, provide details regarding the proposed project site drainage conveyance network, including storm drains, concrete channels, swales, detention facilities, storm water treatment facilities, natural and constructed channels, and the method for conveying offsite flows through or around the proposed project site. Identify all discharge locations from the proposed project site along with a summary of the conveyance system size and capacity for each of the discharge locations. Provide a summary of pre and post-project drainage areas and design flows to each of the runoff discharge locations. Reference the drainage study for detailed calculations.					
Description / Additional Information:					

Form I-3B Page 6 of 11				
Identify whether any of the following features, activities, and/or pollutant source areas will be				
present (select all that apply):				
☐ Onsite storm drain inlets				
□ Interior floor drains and elevator shaft sump pumps				
□ Interior parking garages				
□ Need for future indoor & structural pest control				
□ Landscape/outdoor pesticide use				
□ Pools, spas, ponds, decorative fountains, and other water features				
□ Food service				
□ Refuse areas				
□ Industrial processes				
□ Outdoor storage of equipment or materials				
□ Vehicle and equipment cleaning				
□ Vehicle/equipment repair and maintenance				
☐ Fuel dispensing areas				
□ Loading docks				
□ Fire sprinkler test water				
□ Miscellaneous drain or wash water				
□ Plazas, sidewalks, and parking lots				
Description/Additional Information:				

Form I-3B Page 7 of 11 **Identification and Narrative of Receiving Water** Narrative describing flow path from discharge location(s), through urban storm conveyance system, to receiving creeks, rivers, and lagoons and ultimate discharge location to Pacific Ocean (or bay, lagoon, lake or reservoir, as applicable) Provide a summary of all beneficial uses of receiving waters downstream of the project discharge locations Identify all ASBS (areas of special biological significance) receiving waters downstream of the project discharge locations Provide distance from project outfall location to impaired or sensitive receiving waters Summarize information regarding the proximity of the permanent, post-construction storm water BMPs to the City's Multi-Habitat Planning Area and environmentally sensitive lands

Form I-3B Page 8 of 11

Identification of Receiving Water Pollutants of Concern

List any 303(d) impaired water bodies within the path of storm water from the project site to the Pacific Ocean (or bay, lagoon, lake or reservoir, as applicable), identify the pollutant(s)/stressor(s) causing impairment, and identify any TMDLs and/or Highest Priority Pollutants from the WQIP for the impaired water bodies:

303(d) Impaired Water Body (Refer to Appendix K)	Pollutant(s)/Stressor(s) (Refer to Appendix K)	TMDLs/WQIP Highest Priority Pollutant (Refer to Table 1-4 in Chapter 1)

Identification of Project Site Pollutants*

Identify pollutants anticipated from the project site based on all proposed use(s) of the site (see Appendix B.6):

, , ,			
Pollutant	Not Applicable to the Project Site	Anticipated from the Project Site	Also a Receiving Water Pollutant of Concern
Sediment			
Nutrients			
Heavy Metals			
Organic Compounds			
Trash & Debris			
Oxygen Demanding Substances			
Oil & Grease			
Bacteria & Viruses			
Pesticides			

^{*}Identification of project site pollutants is only required if flow-thru treatment BMPs are implemented onsite in lieu of retention or biofiltration BMPs (note the project must also participate in an alternative compliance program unless prior lawful approval to meet earlier PDP requirements is demonstrated)

Form I-3B Page 9 of 11				
Hydromodification Management Requirements				
Do hydromodification management requirements apply (see Section 1.6)?				
☐ Yes, hydromodification management flow control structural BMPs required.				
□ No, the project will discharge runoff directly to existing underground storm drains discharging				
directly to water storage reservoirs, lakes, enclosed embayments, or the Pacific Ocean.				
□ No, the project will discharge runoff directly to conveyance channels whose bed and bank are				
concrete-lined all the way from the point of discharge to water storage reservoirs, lakes, enclosed				
embayments, or the Pacific Ocean.				
□ No, the project will discharge runoff directly to an area identified as appropriate for an exemption				
by the WMAA for the watershed in which the project resides.				
Description / Additional Information (to be provided if a 'No' answer has been selected above):				
Note: If "No" answer has been selected the SWQMP must include an exhibit that shows the storm				
water conveyance system from the project site to an exempt water body. The exhibit should include				
details about the conveyance system and the outfall to the exempt water body.				
Critical Coarse Sediment Yield Areas*				
*This Section only required if hydromodification management requirements apply				
Based on Section 6.2 and Appendix H does CCSYA exist on the project footprint or in the upstream				
area draining through the project footprint?				
□ Yes				
\square No				
Discussion / Additional Information:				

Form I-3B Page 10 of 11

Flow Control for Post-Project Runoff*
*This Section only required if hydromodification management requirements apply
List and describe point(s) of compliance (POCs) for flow control for hydromodification management (see Section 6.3.1). For each POC, provide a POC identification name or number correlating to the project's HMP Exhibit and a receiving channel identification name or number correlating to the
project's HMP Exhibit.
Has a grown which accompany have newformed for the receiving channel(e)?
Has a geomorphic assessment been performed for the receiving channel(s)? \Box No, the low flow threshold is 0.1Q ₂ (default low flow threshold)
\square Yes, the result is the low flow threshold is 0.1Q $_2$
\square Yes, the result is the low flow threshold is $0.3Q_2$
\square Yes, the result is the low flow threshold is $0.5Q_2$
If a geomorphic assessment has been performed, provide title, date, and preparer:
Discussion / Additional Information: (optional)
Discussion / Additional Information, (optional)

Project Name: California Terraces - PA61

Form I-3B Page 11 of 11

Other Site Requirements and Constraints

When applicable, list other site requirements or constraints that will influence storm water management design, such as zoning requirements including setbacks and open space, or local codes governing minimum street width, sidewalk construction, allowable pavement types, and drainage requirements.

The westerly Lot 1 will be developed with a commercial use (up to 45,000 sf) in the future. Lot 1 will remain a self-mitigating area under this current project. BMPs for the ultimate commercial use will be outlined in a future SWQMP when that project is developed.

For this current project, the self-mitigating area will meet the following requirements:

Optional Additional Information or Continuation of Previous Sections As Needed

This space provided for additional information or continuation of information from previous sections as needed.

- Vegetation in the natural or landscaped area is native and/or non-native/ non-invasive drought tolerant species that do not require regular application of fertilizers and pesticides.
- Soils are undisturbed native topsoil, or disturbed soils that have been amended and aerated to promote water retention characteristics equivalent to undisturbed native topsoil.
- The incidental impervious areas are less than 5 percent of the self-mitigating area.
- Impervious area within the self-mitigated area should not be hydraulically connected to other impervious areas unless it is a storm water conveyance system (such as brow ditches).
- The self-mitigating area is hydraulically separate from DMAs that contain permanent storm water pollutant control BMPs.

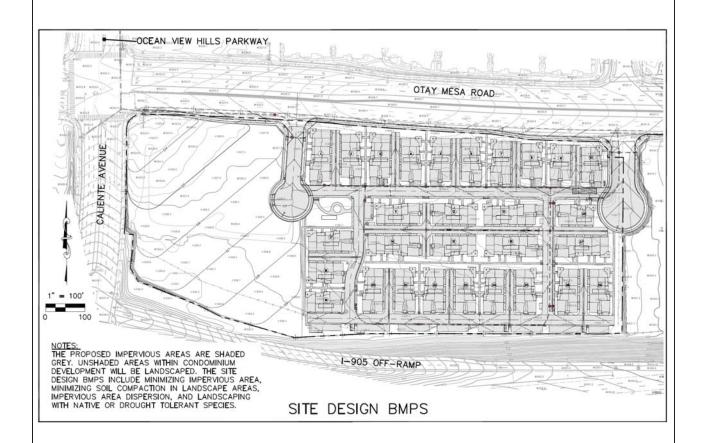
Source Control BMP Checklist for PDPs	Form I-4B			
Source Control BMPs				
All development projects must implement source control BMPs where applicable and feasible. See Chapter 4 and Appendix E of the BMP Design Manual (Part 1 of the Storm Water Standards) for information to implement source control BMPs shown in this checklist.				
 Answer each category below pursuant to the following. "Yes" means the project will implement the source control BMP as described in Chapter 4 and/or Appendix E of the BMP Design Manual. Discussion / justification is not required. "No" means the BMP is applicable to the project but it is not feasible to implement. Discussion / justification must be provided. "N/A" means the BMP is not applicable at the project site because the project does not include the feature that is addressed by the BMP (e.g., the project has no outdoor materials storage areas). Discussion / justification may be provided. 				
Source Control Requirement		Applied?	,	
4.2.1 Prevention of Illicit Discharges into the MS4	□ Yes	□ No	□ N/A	
Discussion / justification if 4.2.1 not implemented:				
4.2.2 Storm Drain Stenciling or Signage	□ Yes	□No	□ N/A	
Discussion / justification if 4.2.2 not implemented:				
4.2.3 Protect Outdoor Materials Storage Areas from Rainfall, Run- On, Runoff, and Wind Dispersal	□ Yes	□No	□ N/A	
Discussion / justification if 4.2.3 not implemented:				
4.2.4 Protect Materials Stored in Outdoor Work Areas from Rainfall, Run-On, Runoff, and Wind Dispersal	□ Yes	□No	□ N/A	
Discussion / justification if 4.2.4 not implemented:				
4.2.5 Protect Trash Storage Areas from Rainfall, Run-On, Runoff, and Wind Dispersal	□ Yes	□No	□ N/A	
Discussion / justification if 4.2.5 not implemented:				

Form I-4B Page 2 of 2				
Source Control Requirement Applied?		! ?		
4.2.6 Additional BMPs Based on Potential Sources of Runoff Pollutants (must answer for each source listed below)				
On-site storm drain inlets	□ Yes	□ No	□ N/A	
Interior floor drains and elevator shaft sump pumps	□ Yes	□ No	□ N/A	
Interior parking garages	□ Yes	□ No	□ N/A	
Need for future indoor & structural pest control	□ Yes	□ No	□ N/A	
Landscape/Outdoor Pesticide Use	□ Yes	□ No	□ N/A	
Pools, spas, ponds, decorative fountains, and other water features	□ Yes	□ No	□ N/A	
Food service	□ Yes	□ No	□ N/A	
Refuse areas	□ Yes	□ No	□ N/A	
Industrial processes	□ Yes	□ No	□ N/A	
Outdoor storage of equipment or materials	□ Yes	□ No	□ N/A	
Vehicle/Equipment Repair and Maintenance	□ Yes	□ No	□ N/A	
Fuel Dispensing Areas	□ Yes	□ No	□ N/A	
Loading Docks	□ Yes	□ No	□ N/A	
Fire Sprinkler Test Water	□ Yes	□ No	□ N/A	
Miscellaneous Drain or Wash Water	□ Yes	□ No	□ N/A	
Plazas, sidewalks, and parking lots	□ Yes	□ No	□ N/A	
SC-6A: Large Trash Generating Facilities	□ Yes	□ No	□ N/A	
SC-6B: Animal Facilities	□ Yes	□ No	□ N/A	
SC-6C: Plant Nurseries and Garden Centers	□ Yes	□ No	□ N/A	
SC-6D: Automotive Facilities	□ Yes	□ No	□ N/A	
Discussion / justification if 4.2.6 not implemented. Clearly identify which are discussed. Justification must be provided for all "No" answers show		or runon	pollutarits	

Form I-5B for PDPs Site Design BMPs All development projects must implement site design BMPs where applicable and feasible. See Chapter 4 and Appendix E of the BMP Design Manual (Part 1 of Storm Water Standards) for information to implement site design BMPs shown in this checklist. Answer each category below pursuant to the following. "Yes" means the project will implement the site design BMP as described in Chapter 4 and/or Appendix E of the BMP Design Manual. Discussion / justification is not required. "No" means the BMP is applicable to the project but it is not feasible to implement. Discussion / justification must be provided. "N/A" means the BMP is not applicable at the project site because the project does not include the feature that is addressed by the BMP (e.g., the project site has no existing natural areas to conserve). Discussion / justification may be provided. A site map with implemented site design BMPs must be included at the end of this checklist. Site Design Requirement Applied? 4.3.1 Maintain Natural Drainage Pathways and Hydrologic Features ☐ Yes □ No □ N/A Discussion / justification if 4.3.1 not implemented: Are existing natural drainage pathways and hydrologic 1-1 ☐ Yes □ No □ N/A features mapped on the site map? Are trees implemented? If yes, are they shown on the site 1-2 ☐ Yes □ No □ N/A map? Implemented trees meet the design criteria in 4.3.1 Fact ☐ Yes □ No □ N/A Sheet (e.g. soil volume, maximum credit, etc.)? 1-4 Is tree credit volume calculated using Appendix B.2.2.1 and ☐ Yes □ No □ N/A SD-1 Fact Sheet in Appendix E? 4.3.2 Have natural areas, soils and vegetation been conserved? ☐ Yes □ No □ N/A Discussion / justification if 4.3.2 not implemented:

Site Design BMP Checklist

Form I-5B Page 2 of 4				
Site Design Requirement	Applied?			
4.3.3 Minimize Impervious Area	□ Yes	□ No	□ N/A	
Discussion / justification if 4.3.3 not implemented:				
4.3.4 Minimize Soil Compaction	□ Yes	□No	□ N/A	
Discussion / justification if 4.3.4 not implemented:				
4.3.5 Impervious Area Dispersion	□ Yes	□ No	□ N/A	
Discussion / justification if 4.3.5 not implemented:				
5-1 Is the pervious area receiving runon from impervious area identified on the site map?	□ Yes	□No	□ N/A	
5-2 Does the pervious area satisfy the design criteria in 4.3.5 Fact Sheet in Appendix E (e.g. maximum slope, minimum length, etc.)	□ Yes	□No	□ N/A	
5-3 Is impervious area dispersion credit volume calculated using Appendix B.2.1.1 and 4.3.5 Fact Sheet in Appendix E?	□ Yes	□ No	□ N/A	



Form I-5B Page 3 of 4				
Site Design Requirement	Applied?			
4.3.6 Runoff Collection	□ Yes	□ No	□ N/A	
Discussion / justification if 4.3.6 not implemented:				
6a-1 Are green roofs implemented in accordance with design criteria in 4.3.6A Fact Sheet? If yes, are they shown on the site map?	□ Yes	□No	□ N/A	
6a-2 Is the green roof credit volume calculated using Appendix B.2.1.2 and 4.3.6A Fact Sheet in Appendix E?	□ Yes	□No	□ N/A	
6b-1 Are permeable pavements implemented in accordance with design criteria in 4.3.6B Fact Sheet? If yes, are they shown on the site map?	□ Yes	□No	□ N/A	
6b-2 Is the permeable pavement credit volume calculated using Appendix B.2.1.3 and 4.3.6B Fact Sheet in Appendix	□ Yes	□No	□ N/A	
4.3.7 Land caping with Native or Drought Tolerant Species	□ Yes	□ No	□ N/A	
Discussion / justification if 4.3.7 not implemented:				
4.3.8 Harvest and Use Precipitation	□ Yes	□ No	□ N/A	
Discussion / justification if 4.3.8 not implemented:				
8-1 Are rain barrels implemented in accordance with design criteria in 4.3.8 Fact Sheet? If yes, are they shown on the site map?	□ Yes	□No	□ N/A	
8-2 Is the rain barrel credit volume calculated using Appendix B.2.2.2 and 4.3.8 Fact Sheet in Appendix E?	□ Yes	□No	□ N/A	

Form I-5B Page 4 of 4

Insert Site Map with all site design BMPs identified:

Summary of PDP Structural BMPs

Form I-6

PDP Structural BMPs

All PDPs must implement structural BMPs for storm water pollutant control (see Chapter 5 of the BMP Design Manual, Part 1 of Storm Water Standards). Selection of PDP structural BMPs for storm water pollutant control must be based on the selection process described in Chapter 5. PDPs subject to hydromodification management requirements must also implement structural BMPs for flow control for hydromodification management (see Chapter 6 of the BMP Design Manual). Both storm water pollutant control and flow control for hydromodification management can be achieved within the same structural BMP(s).

PDP structural BMPs must be verified by the City at the completion of construction. This includes requiring the project owner or project owner's representative to certify construction of the structural BMPs (complete Form DS-563). PDP structural BMPs must be maintained into perpetuity (see Chapter 7 of the BMP Design Manual).

Use this form to provide narrative description of the general strategy for structural BMP implementation at the project site in the box below. Then complete the PDP structural BMP summary information sheet (page 3 of this form) for each structural BMP within the project (copy the BMP summary information page as many times as needed to provide summary information for each individual structural BMP).

Describe the general strategy for structural BMP implementation at the site. This information must describe how the steps for selecting and designing storm water pollutant control BMPs presented in Section 5.1 of the BMP Design Manual were followed, and the results (type of BMPs selected). For projects requiring hydromodification flow control BMPs, indicate whether pollutant control and flow control BMPs are integrated or separate.

(Continue on page 2 as necessary.)

Form I-6 Page 2 of	
(Continued from page 1)	

Form I-6 Page ¹ of ²	(Copy as many as needed)
Structural BMP Su	mmary Information
Structural BMP ID No. 1 through 5	
Construction Plan Sheet No. 5	
Type of Structural BMP:	
Retention by harvest and use (e.g. HU-1, cistern)	
Retention by infiltration basin (INF-1)	
Retention by bioretention (INF-2)	
Retention by permeable pavement (INF-3)	
Partial retention by biofiltration with partial rete	ntion (PR-1)
Biofiltration (BF-1)	
	proval to meet earlier PDP requirements (provide
BMP type/description in discussion section belo	•
Flow-thru treatment control included as pre-trea	
biofiltration BMP (provide BMP type/description	
biofiltration BMP it serves in discussion section l	•
Flow-thru treatment control with alternative con	npliance (provide BMP type/description in
discussion section below)	
Detention pond or vault for hydromodification n	nanagement
Other (describe in discussion section below)	
Purpose:	
Pollutant control only	
Hydromodification control only	in andral
Combined pollutant control and hydromodificat	
Pre-treatment/forebay for another structural BN Other (describe in discussion section below)	
Who will certify construction of this BMP? Provide name and contact information for the	TBD during final engineering
party responsible to sign BMP verification form	
DS-563	
	HOA for BMP 1, City Transportation and
Who will be the final owner of this BMP?	Stormwater Dept. for BMP 2 through 5.
Who will maintain this BMP into perpetuity?	HOA for BMP 1, City Transportation and
	Stormwater Dept. for BMP 2 through 5.
What is the funding mechanism for	Developer initially, then HOA after
maintenance?	development for BMP 1 or City for BMP 2-5.

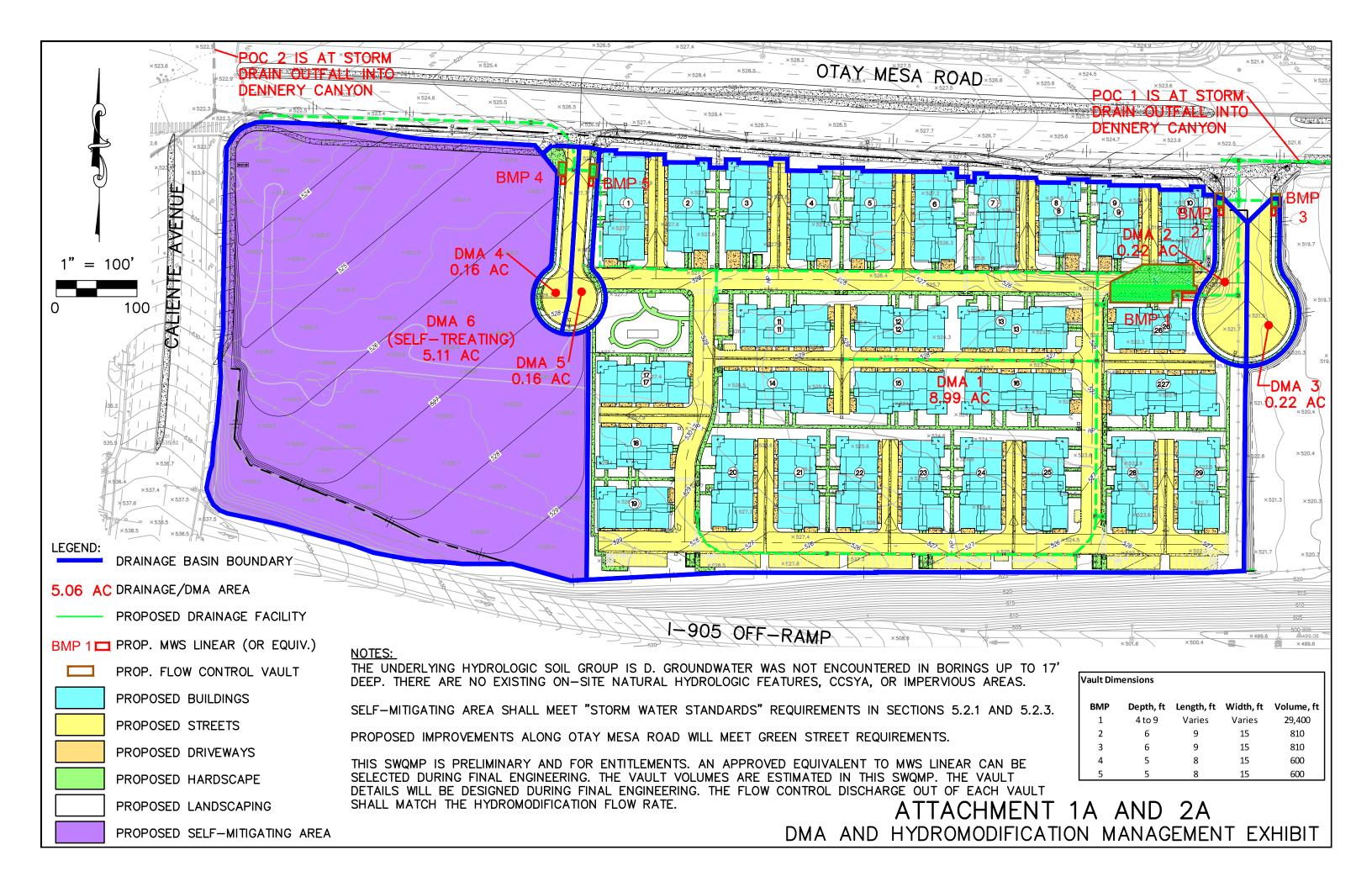
Form I-6 Page of (Copy as many as needed)
Structural BMP ID No.
Construction Plan Sheet No.
Discussion (as needed; must include worksheets showing BMP sizing calculations in the SWQMPs):

Project Name:		
ΓHIS PAGE INTENTIONALLY LEFT	' BLANK FOR DOUBLE-SIDED PRIN	ITING
THIS PAGE INTENTIONALLY LEFT	BLANK FOR DOUBLE-SIDED PRIN	TING
THIS PAGE INTENTIONALLY LEFT	BLANK FOR DOUBLE-SIDED PRIN	TING
THIS PAGE INTENTIONALLY LEFT	BLANK FOR DOUBLE-SIDED PRIN	TING
THIS PAGE INTENTIONALLY LEFT	BLANK FOR DOUBLE-SIDED PRIN	TING
THIS PAGE INTENTIONALLY LEFT	BLANK FOR DOUBLE-SIDED PRIN	TING
THIS PAGE INTENTIONALLY LEFT	BLANK FOR DOUBLE-SIDED PRIN	TING
THIS PAGE INTENTIONALLY LEFT	BLANK FOR DOUBLE-SIDED PRIN	TING
THIS PAGE INTENTIONALLY LEFT	BLANK FOR DOUBLE-SIDED PRIN	TING
THIS PAGE INTENTIONALLY LEFT	BLANK FOR DOUBLE-SIDED PRIN	TING
THIS PAGE INTENTIONALLY LEFT	BLANK FOR DOUBLE-SIDED PRIN	TING
THIS PAGE INTENTIONALLY LEFT	BLANK FOR DOUBLE-SIDED PRIN	TING
THIS PAGE INTENTIONALLY LEFT	BLANK FOR DOUBLE-SIDED PRIN	TING

Attachment 1 Backup For PDP Pollutant Control BMPs

This is the cover sheet for Attachment 1.

Project Name:			
THIS PAGE INTENTIONALLY	Y LEFT BLANK FOR	DOUBLE-SIDED PI	RINTING


Indicate which Items are Included:

Attachment Sequence	Contents	Checklist			
Attachment 1a	DMA Exhibit (Required) See	X Included			
- Intucinite iu	DMA Exhibit Checklist.				
Attachment 1b	Tabular Summary of DMAs Showing DMA ID matching DMA Exhibit, DMA Area, and DMA Type (Required)*	Included on DMA Exhibit in Attachment 1a			
	*Provide table in this Attachment OR on DMA Exhibit in Attachment 1a	Included as Attachment 1b, separate from DMA Exhibit			
	Form I-7, Harvest and Use Feasibility Screening Checklist (Required unless the entire project will use infiltration BMPs)	Included Not included because the			
Attachment 1c	Refer to Appendix B.3-1 of the BMP Design Manual to complete Form I-7.	entire project will use infiltration BMPs			
	Infiltration Feasibility Information. Contents of Attachment 1d depend on the infiltration condition:				
	 No Infiltration Condition: Infiltration Feasibility Condition Letter (Note: must be stamped and signed by licensed geotechnical engineer) Form I-8A (optional) Form I-8B (optional) 	Included			
Attachment 1d	 Partial Infiltration Condition: Infiltration Feasibility Condition Letter (Note: must be stamped and signed by licensed geotechnical engineer) Form I-8A Form I-8B 	Not included because the entire project will use harvest and use BMPs			
	 Full Infiltration Condition: Form I-8A Form I-8B Worksheet C.4-3 Form I-9 Refer to Appendices C and D of the BMP Design Manual for guidance. 				
Attachment 1e	Pollutant Control BMP Design Worksheets / Calculations (Required)	Included			
	Refer to Appendices B and E of the BMP Design Manual for structural pollutant control BMP design guidelines and site design credit calculations				

Use this checklist to ensure the required information has been included on the DMA Exhibit:

The DMA Exhibit must identify:
Underlying hydrologic soil group
Approximate depth to groundwater
Existing natural hydrologic features (watercourses, seeps, springs, wetlands)
Critical coarse sediment yield areas to be protected
Existing topography and impervious areas
Existing and proposed site drainage network and connections to drainage offsite
Proposed grading
Proposed impervious features
Proposed design features and surface treatments used to minimize
imperviousness
Drainage management area (DMA) boundaries, DMA ID numbers, and DMA
areas (square footage or acreage), and DMA type (i.e., drains to BMP, self-
retaining, or self-mitigating)
Potential pollutant source areas and corresponding required source controls
(see Chapter 4, Appendix E.1, and Form I-3B)
Structural BMPs (identify location, type of BMP, size/detail, and include cross-
section)

ATTACHMENT 1B - TABULAR SUMMARY OF DMAs

Design Capture Volume

DMA 1		DMA 2		DMA 3		DMA 4		DMA 5	
85th %, in	0.48	85th %, in	0.48	85th %, in	0.48	85th %, in	0.48	85th %, in	0.48
Area, ac	8.99	Area, ac	0.22	Area, ac	0.22	Area, ac	0.16	Area, ac	0.16
С	0.74	С	0.81	С	0.80	С	0.79	С	0.78
DCV, cf	11,587	DCV, cf	310	DCV, cf	304	DCV, cf	222	DCV, cf	217
Pervious, sf	78,644	Pervious, sf	1,029	Pervious, sf	1,194	Pervious, sf	971	Pervious, sf	1,059
Impervious, sf	313,127	Impervious, sf	8,491	Impervious, sf	8,320	Impervious, sf	6,064	Impervious, sf	5,909
Total, sf	391,771	Total, sf	9,520	Total, sf	9,514	Total, sf	7,035	Total, sf	6,968

Pervious and Impervious Areas

DMA 1		DMA 2		DMA 3		DMA 4		DMA 5	
Item	Area, sf								
Roofs	164,413	Roofs	0	Roofs	0	Roofs	0	Roofs	0
Hardscape	24,999	Hardscape	1,091	Hardscape	1,236	Hardscape	1,853	Hardscape	1,567
Streets	106,336	Streets	7,400	Streets	7,084	Streets	4,211	Streets	4,342
Driveways	17,379	Driveways	0	Driveways	0	Driveways	0	Driveways	0
Total	313,127	Total	8,491	Total	8,320	Total	6,064	Total	5,909

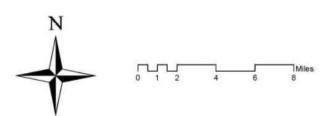
Project Name: California Terraces - PA61

	Tabular Summary of DMAs								Worksheet B-1	
DMA Unique Identifier	Area (acres)	Impervious Area (acres)	% Imp	HSG	Area Weighted Runoff Coefficient	DCV (cubic feet)	Treate	ed By (BMP ID)	Pollutant Control Type	Drains to (POC ID)
1	8.99	7.19	79.9	D	0.74	11,587	Е	BMP 1	MWS-L	East
2	0.22	0.19	89.2	D	0.81	310	В	MP 2	MWS-L	East
3	0.22	0.19	87.5	D	0.80	304	В	MP 3	MWS-L	East
4	0.16	0.14	86.2	D	0.79	222	В	MP 4	MWS-L	West
5	0.16	0.14	84.8	D	0.78	217	В	MP 5	MWS-L	West
Self-Mit.	5.11	0	0	D	0.10	878	Self-	Mitgating	N/A	West
	Curren	now of DMA	Informati	on (Marc	at wastah mus	ingt denguise	rion on d	CULOMD N	- matiral	
	Sumi	nary of DMA	Informati	ion (Mus	st match pro	ject descripi	non and	SWQMP N	arrative)	
No. of DMAs	Total DMA Area (acres)	Total Impervious Area (acres)	% Imp		Area Weighted Runoff Coefficient	Total DCV (cubic feet)		tal Area ed (acres)		No. of POCs
6	14.79	7.85	53.1		0.52	13,519	14.79			2

Where: DMA = Drainage Management Area; Imp = Imperviousness; HSG = Hydrologic Soil Group; DCV= Design Capture Volume; BMP = Best Management Practice; POC = Point of Compliance; ID = identifier; No. = Number

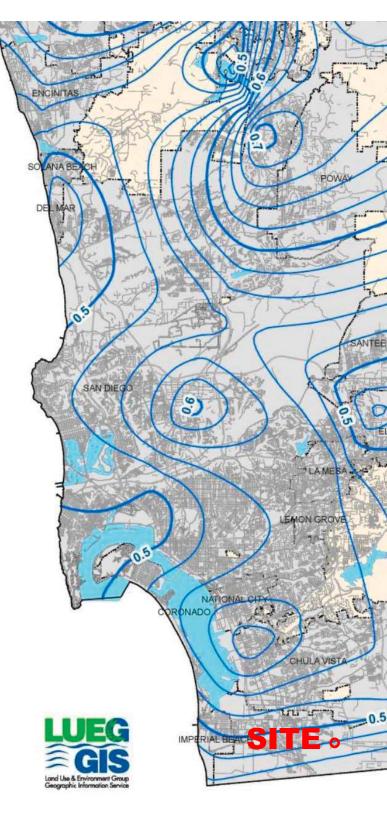
Appendix H: Guidance for Investigation Potential Critical Coarse Sediment Yield Areas **Attachment 1c**

Harvest and Use Feasil	oility Checklist	Form I-	7			
1. Is there a demand for harvested w during the wet season? ☐ Toilet and urinal flushing ☐ Landscape irrigation ☐ Other:						
2. If there is a demand; estimate the Guidance for planning level demand provided in Section B.3.2. [Provide a summary of calculations leading to the control of the contro	calculations for toilet/urin					
gallons. Items 3a to 3c below indica and use feasibility. The demand fro hours) or 14 gallons per 36 hours. have 1,689 residents (23,646/14=1	The overall DCV from Attachment 1b is 12,644 cubic feet or 94,583 gallons and 0.25DCV is 23,646 gallons. Items 3a to 3c below indicate that the 36 hour demand is compared to DCV to assess harvest and use feasibility. The demand from attached Table B.3-1 is 9.3 gallons per resident per day (24 hours) or 14 gallons per 36 hours. In order for the residential demand to exceed 0.25DCV, the site must have 1,689 residents (23,646/14=1,689). The project will have 171 dwelling units and 1,689/171 is 9.9. The project will not have 9.9 residents per dwelling units, so harvest and use is not feasible.					
3. Calculate the DCV using workshop DCV = 125,435 (cubic feet)		or DCV analysis.				
3a. Is the 36 hour demand greater than or equal to the DCV? ☐ Yes / ☒No ➡	3b. Is the 36 hour demand but less than the full DCV ☐ Yes / X N	?	3c. Is the 36 hour demand less than 0.25DCV? X Yes			
Harvest and use appears to be feasible. Conduct more detailed evaluation and sizing calculations to confirm that DCV can be used at an adequate rate to meet drawdown criteria.	Harvest and use may be fed detailed evaluation and size determine feasibility. Harvable to be used for a portionally the storage manager than 36 hours.	ing calculations to rest and use may only be on of the site, or ay need to be upsized to	(Harvest and) (use is) (considered to) (be infeasible.)			
Is harvest and use feasible based on ☐ Yes, refer to Appendix E to select		MPs.				
□ No, select alternate BMPs.						


Furthermore, per discussions with city staff, toilet and urinal flushing harvest and use is not allowed by the plumbing code.

San Diego County 85 th Percentile Isopluvials

Legend 85th PERCENTILE ISOPLUVIAL INCORPORATED CITY


NOTE:

The 85th percentile is a 24 hour rainfall total. It represetns a value such that 85% of the observed 24 hour rainfall totals will be less than that value.

THIS MAP/DATA IS PROVIDED WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Note: This product may contain information from the SANDAG Regional information system which cannot be reproduced without the written permission of SANDAG. This product may contain information reproduced with permission granted by Rand McNally & Company® to SanGIS. This map is copyrighted by Rand McNally & Company®. It is unlawful to copy or reproduce all or any part thereof, whether for personal use or resale, without the prior, written permission of Rand McNally & Company®. Copyright SanGIS 2014 - All Rights Reserved. Full text of this legal notice can be found at. http://www.sangis.org/legal_notice.htm.

EXCERPT FROM FIGURE B.1-1 (24-HOUR, 85TH PERCENTILE PRECIPITATION = 0.48")

Table B.3-1: Toilet and Urinal Water Usage per Resident or Employee

T 1T /m	Toilet User	Per Capita Day		Visitor	Water	Total Use
Land Use Type	Unit of Normalization	Toilet Flushing ^{1,2}	Urinals ³	Factor ⁴	Efficiency Factor	Resident or Employee
Residential	Resident	18.5	NA	NA	0.5	9.3
Office	Employee (non-visitor)	9.0	2.27	1.1	0.5	7 (222)
Retail	Employee (non-visitor)	9.0	2.11	1.4	0.5	7 (avg)
Schools	Employee (non-student)	6.7	3.5	6.4	0.5	33
Various Industrial Uses (excludes process water)	Employee (non-visitor)	9.0	2	1	0.5	5.5

¹Based on American Waterworks Association Research Foundation, 1999. Residential End Uses of Water. Denver, CO: AWWARF

B.3.2.2 General Requirements for Irrigation Demand Calculations

The following guidelines should be followed for computing harvested water demand from landscape irrigation:

- If reclaimed water is planned for use for landscape irrigation, then the demand for harvested storm water should be reduced by the amount of reclaimed water that is available during the wet season.
- Irrigation rates should be based on the irrigation demand exerted by the types of landscaping that are proposed for the project, with consideration for water conservation requirements.
- Irrigation rates should be estimated to reflect the average wet season rates (defined as November through April) accounting for the effect of storm events in offsetting harvested water demand. In the absence of a detailed demand study, it should be assumed that irrigation demand is not present during days with greater than 0.1 inches of rain and the subsequent 3-day period. This irrigation shutdown period is consistent with standard practice in land application of wastewater and is applicable to storm water to prevent irrigation from resulting in dry weather runoff. Based on a statistical analysis of San Diego County rainfall patterns, approximately 30 percent of wet season days would not have a demand for irrigation.

²Based on use of 3.45 gallons per flush and average number of per employee flushes per subsector, Table D-1 for MWD (Pacific Institute, 2003)

³Based on use of 1.6 gallons per flush, Table D-4 and average number of per employee flushes per subsector, Appendix D (Pacific Institute, 2003)

⁴Multiplied by the demand for toilet and urinal flushing for the project to account for visitors. Based on proportion of annual use allocated to visitors and others (includes students for schools; about 5 students per employee) for each subsector in Table D-1 and D-4 (Pacific Institute, 2003)

⁵Accounts for requirements to use ultra-low flush toilets in new development projects; assumed that requirements will reduce toilet and urinal flushing demand by half on average compared to literature estimates. Ultra low flush toilets are required in all new construction in California as of January 1, 1992. Ultra low flush toilets must use no more than 1.6 gallons per flush and Ultra low flush urinals must use no more than 1 gallon per flush. Note: If zero flush urinals are being used, adjust accordingly.

Attachment 1d

(see Attachment 6 for Infiltration Feasibility Letter)

Categoriz	cation of Infiltration Feasibility Condition based on Geotechnical Conditions	Worksheet C.4-1: Form I- 8A ¹⁰					
	Part 1 - Full Infiltration Feasibility Screening Criteria						
DMA(s) B	eing Analyzed:	Project Phase:					
Project Si	te						
Criteria 1:	Infiltration Rate Screening						
1A	Is the mapped hydrologic soil group according to the NRC Web Mapper Type A or B and corroborated by available sit □ Yes; the DMA may feasibly support full infiltration. Ar continue to Step 1B if the applicant elects to perform infil □ No; the mapped soil types are A or B but is not corrobo (continue to Step 1B). □ No; the mapped soil types are C, D, or "urban/unclass available site soil data. Answer "No" to Criteria 1 Result.	te soil data ¹¹ ? Isswer "Yes" to Criteria 1 Result or tration testing. Issued by available site soil data					
☑ No; the mapped soil types are C, D, or "urban/unclassified" but is not corrol available site soil data (continue to Step 1B).							
1B	Is the reliable infiltration rate calculated using planning phase methods from Table D.3−1? ☑ Yes; Continue to Step 1C. ☐ No; Skip to Step 1D.						
1C	Is the reliable infiltration rate calculated using planning phase methods from Table D.3-1 greater than 0.5 inches per hour? ☐ Yes; the DMA may feasibly support full infiltration. Answer "Yes" to Criteria 1 Result. ☑ No; full infiltration is not required. Answer "No" to Criteria 1 Result.						
1D	Infiltration Testing Method. Is the selected infiltration to design phase (see Appendix D.3)? Note: Alternative testing appropriate rationales and documentation. □Yes; continue to Step 1E. □No; select an appropriate infiltration testing method.	C					

¹¹ Available data includes site-specific sampling or observation of soil types or texture classes, such as obtained from borings or test pits necessary to support other design elements.

Note that it is not required to investigate each and every criterion in the worksheet, a single "no" answer in Part 1, Part 2, Part 3, or Part 4 determines a full, partial, or no infiltration condition.

¹⁰ This form must be completed each time there is a change to the site layout that would affect the infiltration feasibility condition. Previously completed forms shall be retained to document the evolution of the site storm water design.

Categorization of Infiltration Feasibility Condition based on Geotechnical Conditions Worksheet C.4-1: Form 8A ¹⁰			
1E	Number of Percolation/Infiltration Tests. Does the infiltr satisfy the minimum number of tests specified in Table D ☐ Yes; continue to Step 1F. ☐ No; conduct appropriate number of tests.		
IF	Factor of Safety. Is the suitable Factor of Safety selected for guidance in D.5; Tables D.5-1 and D.5-2; and Worksheet I ☐ Yes; continue to Step 1G. ☐ No; select appropriate factor of safety.		
1G	Full Infiltration Feasibility. Is the average measured infile of Safety greater than 0.5 inches per hour? ☐ Yes; answer "Yes" to Criteria 1 Result. ☐ No; answer "No" to Criteria 1 Result.	tration rate divided by the Factor	
Criteria 1 Result	Is the estimated reliable infiltration rate greater than 0.5 where runoff can reasonably be routed to a BMP? ☐ Yes; the DMA may feasibly support full infiltration. Con ☐ No; full infiltration is not required. Skip to Part 1 Result	ntinue to Criteria 2.	
estimates (e infiltration testing methods, testing locations, replicates, of reliable infiltration rates according to procedures outlined in project geotechnical report.		
Permeamete The unfactor	ed field-saturated, hydraulic conductivity tests, A-1 and A-2, using a er (see Geologic Map, Figure 2). The test holes were hand excavate ded test results of the saturated hydraulic conductivity testing for A-res are 0.001 and 0.034 in/hr using a factor of 2.0.	ed using 4-inch diameter hand augers.	

□No

□Yes

Expansive Soils. Identify expansive soils (soils with an expansion index greater than 20) and the extent of such soils due to proposed full

Can full infiltration BMPs be proposed within the DMA without

infiltration BMPs.

increasing expansive soil risks?

2B-2

Categoriz	cation of Infiltration Feasibility Condition based on Geotechnical Conditions	Workshee	t C.4-1: For 8A ¹⁰	m I-
2B-3	Liquefaction. If applicable, identify mapped liquefaction areas. Evaluate liquefaction hazards in accordance with Section 6.4.2 of the City of San Diego's Guidelines for Geotechnical Reports (2011 or most recent edition). Liquefaction hazard assessment shall take into account any increase in groundwater elevation or groundwater mounding that could occur as a result of proposed infiltration or percolation facilities. Can full infiltration BMPs be proposed within the DMA without increasing liquefaction risks?			□No
2B-4	Slope Stability. If applicable, perform a slope stability analysis in accordance with the ASCE and Southern California Earthquake Center (2002) Recommended Procedures for Implementation of DMG Special Publication 117, Guidelines for Analyzing and Mitigating Landslide Hazards in California to determine minimum slope setbacks for full infiltration BMPs. See the City of San Diego's Guidelines for Geotechnical Reports (2011) to determine which type of slope stability analysis is required. Can full infiltration BMPs be proposed within the DMA without increasing slope stability risks?		□Yes	□No
2B-5	Other Geotechnical Hazards. Identify site-specific and hazards not already mentioned (refer to Appendix C.2.1). Can full infiltration BMPs be proposed within the DI increasing risk of geologic or geotechnical hazards mentioned?	MA without	□Yes	□No
2B-6	Setbacks. Establish setbacks from underground utilities, and/or retaining walls. Reference applicable ASTM or other standard in the geotechnical report. Can full infiltration BMPs be proposed within the established setbacks from underground utilities, structuretaining walls?	r recognized DMA using	□ Yes	□ No

Categoriz	ation of Infiltration Feasibility Condition based on Geotechnical Conditions	Workshee	t C.4-1: Foi 8A ¹⁰	rm I-		
2C	Mitigation Measures. Propose mitigation measures for each geologic/geotechnical hazard identified in Step 2B. Provide a discussion of geologic/geotechnical hazards that would prevent full infiltration BMPs that cannot be reasonably mitigated in the geotechnical report. See Appendix C.2.1.8 for a list of typically reasonable and typically unreasonable mitigation measures. □Yes □Yes □Yes □Yes If the question in Step 2 is answered "Yes," then answer "Yes" to Criteria 2 Result. If the question in Step 2C is answered "No," then answer "No" to Criteria 2 Result.					
Criteria 2 Result	Can infiltration greater than 0.5 inches per hour be all increasing risk of geologic or geotechnical hazards the reasonably mitigated to an acceptable level?		□Yes	□No		
Summariz	e findings and basis; provide references to related reports o	or exhibits.				
Part 1 Result – Full Infiltration Geotechnical Screening 12						
If answers to both Criteria 1 and Criteria 2 are "Yes", a full infiltration design is potentially feasible based on Geotechnical conditions only.			on			
If either answer to Criteria 1 or Criteria 2 is "No", a full infiltration design is not required.			art 2			

¹² To be completed using gathered site information and best professional judgement considering the definition of MEP in the MS4 Permit. Additional testing and/or studies may be required by City Engineer to substantiate findings.

Categoriz	cation of Infiltration Feasibility Condition based on Geotechnical Conditions	Worksheet C.4-1: Form I- 8A ¹⁰			
	Part 2 – Partial vs. No Infiltration Feasibility Scr	eening Criteria			
DMA(s) B	eing Analyzed:	Project Phase:			
Project Si	te				
Criteria 3	: Infiltration Rate Screening				
	NRCS Type C, D, or "urban/unclassified": Is the mapped the NRCS Web Soil Survey or UC Davis Soil Web Mapper is "urban/unclassified" and corroborated by available site so □ Yes; the site is mapped as C soils and a reliable infiltrat size partial infiltration BMPS. Answer "Yes" to Criteria 3	Type C, D, or oil data? tion rate of 0.15 in/hr. is used to			
3A	☐ Yes; the site is mapped as D soils or "urban/unclassified" and a reliable infiltration rate of 0.05 in/hr. is used to size partial infiltration BMPS. Answer "Yes" to Criteria 3 Result.				
	☑ No; infiltration testing is conducted (refer to Table D.3	3-1), continue to Step 3B.			
	Infiltration Testing Result: Is the reliable infiltration rate infiltration rate/2) greater than 0.05 in/hr. and less than 0.05 in/hr.				
3B	☐ Yes; the site may support partial infiltration. Answer "Y ☑ No; the reliable infiltration rate (i.e. average measured partial infiltration is not required. Answer "No" to Criteri	rate/2) is less than 0.05 in/hr.,			
Criteria 3 Result	Is the estimated reliable infiltration rate (i.e., average mo than or equal to 0.05 inches/hour and less than or equal within each DMA where runoff can reasonably be routed t	to 0.5 inches/hour at any location			
Result	☐ Yes; Continue to Criteria 4.				
	☑ No: Skip to Part 2 Result.				
	Summarize infiltration testing and/or mapping results (i.e. soil maps and series description used for infiltration rate).				
We performed field-saturated, hydraulic conductivity tests, A-1 and A-2, using a Soil Moisture Corp Aardvark Permeameter (see Geologic Map, Figure 2). The test holes were hand excavated using 4-inch diameter hand augers. The unfactored test results of the saturated hydraulic conductivity testing for A-1 is 0.002 in/hr and 0.068 in/hr for A-2. Factored rates are 0.001 and 0.034 in/hr using a factor of 2.0.					
Test results indicate infiltration rates less than 0.05 in/hr and are not high enough to support infiltration.					

Categorization of Infiltration Feasibility Condition based on Worksheet C.4-1: Form I-**Geotechnical Conditions** 8A10 Criteria 4: Geologic/Geotechnical Screening If all questions in Step 4A are answered "Yes," continue to Step 2B. For any "No" answer in Step 4A answer "No" to Criteria 4 Result, and submit an "Infiltration Feasibility Condition Letter" that meets the requirements in Appendix C.1.1. The 4A geologic/geotechnical analyses listed in Appendix C.2.1 do not apply to the DMA because one of the following setbacks cannot be avoided and therefore result in the DMA being in a no infiltration condition. The setbacks must be the closest horizontal radial distance from the surface edge (at the overflow elevation) of the BMP. Can the proposed partial infiltration BMP(s) avoid areas with existing □Yes 4A-1 □No fill materials greater than 5 feet thick? Can the proposed partial infiltration BMP(s) avoid placement within 10 feet of existing underground utilities, structures, or retaining 4A-2 □No □Yes walls? Can the proposed partial infiltration BMP(s) avoid placement within 50 feet of a natural slope (>25%) or within a distance of 1.5H from fill 4A-3 □Yes □No slopes where H is the height of the fill slope? When full infiltration is determined to be feasible, a geotechnical investigation report must be prepared that considers the relevant factors identified in Appendix C.2.1 **4**B If all questions in Step 4B are answered "Yes," then answer "Yes" to Criteria 4 Result. If there are any "No" answers continue to Step 4C. **Hydroconsolidation.** Analyze hydroconsolidation potential per approved ASTM standard due to a proposed full infiltration BMP. **ΔB-1** □Yes □No Can partial infiltration BMPs be proposed within the DMA without increasing hydroconsolidation risks? **Expansive Soils.** Identify expansive soils (soils with an expansion index greater than 20) and the extent of such soils due to proposed full infiltration BMPs. 4B-2 □Yes □No Can partial infiltration BMPs be proposed within the DMA without increasing expansive soil risks?

Categoriz	Categorization of Infiltration Feasibility Condition based on Geotechnical Conditions Workshe			
4B-3	Liquefaction . If applicable, identify mapped liquefact Evaluate liquefaction hazards in accordance with Section City of San Diego's Guidelines for Geotechnical Report Liquefaction hazard assessment shall take into account an in groundwater elevation or groundwater mounding that as a result of proposed infiltration or percolation facilities Can partial infiltration BMPs be proposed within the DM increasing liquefaction risks?	□Yes	□No	
4B-4	Slope Stability. If applicable, perform a slope stability accordance with the ASCE and Southern California Earthqu (2002) Recommended Procedures for Implementation of D Publication 117, Guidelines for Analyzing and Mitigating Hazards in California to determine minimum slope setba infiltration BMPs. See the City of San Diego's Guid Geotechnical Reports (2011) to determine which type of slo analysis is required. Can partial infiltration BMPs be proposed within the DM increasing slope stability risks?	□Yes	□No	
4B-5	Other Geotechnical Hazards. Identify site-specific go hazards not already mentioned (refer to Appendix C.2.1). Can partial infiltration BMPs be proposed within the DM increasing risk of geologic or geotechnical hazards mentioned?	□Yes	□No	
4B-6	Setbacks. Establish setbacks from underground utilities, structures, and/or retaining walls. Reference applicable ASTM or other recognized standard in the geotechnical report. Can partial infiltration BMPs be proposed within the DMA using recommended setbacks from underground utilities, structures, and/or retaining walls?		□Yes	□No
4C	Mitigation Measures. Propose mitigation measures geologic/geotechnical hazard identified in Step 4B. discussion on geologic/geotechnical hazards that wou partial infiltration BMPs that cannot be reasonably mitig geotechnical report. See Appendix C.2.1.8 for a list of reasonable and typically unreasonable mitigation measures Can mitigation measures be proposed to allow for partial if BMPs? If the question in Step 4C is answered "Yes," then "Yes" to Criteria 4 Result. If the question in Step 4C is answered "No," then answ Criteria 4 Result.	Provide a ld prevent rated in the of typically es. infiltration answer	□Yes	□No

Categoriz	ation of Infiltration Feasibility Condition based on Geotechnical Conditions	Worksh	eet C.4-1: For 8A ¹⁰	m I-
Criteria 4 Result	Can infiltration of greater than or equal to 0.05 inches/hou than or equal to 0.5 inches/hour be allowed without increrisk of geologic or geotechnical hazards that cannot be mitigated to an acceptable level?	easing the	□Yes	□No
Summarize	e findings and basis; provide references to related reports or	exhibits.		
Part 2 – Pa	artial Infiltration Geotechnical Screening Result ¹³		Result	
design is p	to both Criteria 3 and Criteria 4 are "Yes", a partial infiltrat otentially feasible based on geotechnical conditions only. to either Criteria 3 or Criteria 4 is "No", then infiltration considered to be infeasible within the site.		□ Partial Infilt Condition ☑ No Infiltration Condition	

¹³ To be completed using gathered site information and best professional judgement considering the definition of MEP in the MS4 Permit. Additional testing and/or studies may be required by City Engineer to substantiate findings.

ATTACHMENT 1e POLLUTANT CONTROL BMP DESIGN

Pollutant control BMPs were selected to treat the project's pollutants of concern identified on Form I-3B. Five Bio Clean Environmental Services, Inc. Modular Wetland System Linear (see the Attachment 1A and 1B, DMA and Hydromodification Management Exhibit) were used because these have a high pollutant removal efficiency for the project's pollutants of concern. MWS-Linear are TAPE-certified and recently approved by the City of San Diego on similar multi-family residential projects. Furthermore, infiltration and partial infiltration are not feasible according to Geocon, Inc. (see Attachment 1d and 6). MWS-Linear have been selected in this entitlement-level SWQMP to demonstrate feasibility of using compact biofiltration BMPs at the site. Equivalent acceptable compact biofiltration BMPs can be selected during final engineering.

MWS Linear uses flow-based sizing. The *BMP Design Manual*, outlines the flow-based sizing procedure. The rational method is used to determine the treatment control flow rate and has the following form:

 $Q_{BMP} = CIA$ where, $Q_{BMP} = flow$ -based design flow rate, cfs C = composite runoff factor for the drainage management areas I = rainfall intensity = 0.2 inches per hour A = area tributary to the BMP, acres

The impervious and pervious areas tributary to each MWS Linear are shown and tabulated in Attachment 1a and 1b.

Table 1 summarizes the rational method results for each MWS Linear and preliminary sizing. The Q_{BMP} value is multiplied by 1.5 to compute the design flow rate. The attached MWS Linear sizing table from the Bio Clean brochure shows that BMP 2 through 5 can be treated by a single unit. BMP 1 exceeds the maximum capacity of the MWS Linear units. However, communication with Bio Clean revealed that a single unit can be used if the tributary runoff first enters a vault for flow control so that the flow into the unit is reduced. This will be done for BMP 1 as well as the other BMPs, as needed, and sizing will be provided during final engineering.

MWS	C	Intensity,	Area,	Q _{BMP} ,	Qdesign ¹ ,	MWS-Linear
Linear		in/hr	acres	cfs	cfs	Model
BMP 1	0.74	0.2	8.99	1.330	1.995	MWS-L-8-16 ²
BMP 2	0.81	0.2	0.22	0.036	0.053	MWS-L-4-6
BMP 3	0.80	0.2	0.22	0.035	0.052	MWS-L-4-4
BMP 4	0.79	0.2	0.16	0.026	0.038	MWS-L-4-4
BMP 5	0.78	0.2	0.16	0.025	0.037	MWS-L-4-4

¹Q_{DESIGN} is 1.5 times Q_{BMP}. Q_{DESIGN} is used for the flow-based sizing.

Table 1. Rational Method Results

Green street criteria will be used for the Otay Mesa Road improvements (see Attachment 2d).

²Sizing based on conceptual customized sizing by Bio Clean assuming vault is upstream of MWS-Linear (see attached)

Flow Based Sizing

The MWS Linear can be used in stand alone applications to meet treatment flow requirements. Since the MWS Linear is the only biofiltration system that can accept inflow pipes several feet below the surface it can be used not only in decentralized design applications but also as a large central end-of-the-line application for maximum feasibility.

Treatment Flow Sizing Table

Model #	Dimensions	WetlandMedia Surface Area	Treatment Flow Rate (cfs)
MWS-L-4-4	4' x 4'	23 ft ²	0.052
MWS-L-4-6	4' x 6'	32 ft ²	0.073
MWS-L-4-8	4' x 8'	50 ft ²	0.115
MWS-L-4-13	4' x 13'	63 ft ²	0.144
MWS-L-4-15	4' x 15'	76 ft ²	0.175
MWS-L-4-17	4' x 17'	90 ft ²	0.206
MWS-L-4-19	4' x 19'	103 ft ²	0.237
MWS-L-4-21	4' x 21'	117 ft ²	0.268
MWS-L-8-8	8' x 8'	100 ft ²	0.230
MWS-L-8-12	8' x 12'	151 ft ²	0.346
MWS-L-8-16	8' x 16'	201 ft ²	0.462

Volume Based Sizing

Many states require treatment of a water quality volume and do not offer the option of flow based design. The MWS Linear and its unique horizontal flow makes it the only biofilter that can be used in volume based design installed downstream of ponds, detention basins, and underground storage systems.

Treatment Volume Sizing Table

Model #	Treatment Capacity (cu. ft.) @ 24-Hour Drain Down	Treatment Capacity (cu. ft.) @ 48-Hour Drain Down
MWS-L-4-4	1140	2280
MWS-L-4-6	1600	3200
MWS-L-4-8	2518	5036
MWS-L-4-13	3131	6261
MWS-L-4-15	3811	7623
MWS-L-4-17	4492	8984
MWS-L-4-19	5172	10345
MWS-L-4-21	5853	11706
MWS-L-8-8	5036	10072
MWS-L-8-12	7554	15109
MWS-L-8-16	10073	20145

Date: 09/12/18

To Whom It May Concern,

The MWS Linear will be sized in accordance with the TAPE GULD approval for the Modular Wetland System. The system is sized at a loading rate of (less than or equal to) 1.0 gpm/ sq ft, where the pre-filter cartridges are sized at a loading rate of less than 2.1 gpm/ sq ft. Design, sizing, and loading have been reviewed and approved by a Modular Wetland Representative and is ready for final approval. Shown below are the calculations for this Project:

MWS-L-8-16-V:

- Biofiltration Wetland Media Surface Area = 59.2 sq ft
- Operating HGL = 2.8 ft
- Biofiltration Wetland Media Loading Rate = 26 in/hr (0.26 gpm/sq ft)
- Drain Down Time = 36 hrs
- Average Discharge Rate = 43.10 gpm
- Water Quality Volume Treated = 12,449 cu ft

If you have any questions please feel free to contact us at your convenience.

Sincerely,

Anthony J. Spolar, E.I.T.

Stormwater Engineer

Modular Wetland System, Inc.

Outhory of System

<u>VOLUME – BASED SIZING</u>

Given:
$$Q = vA \& V = Qt$$

Rewritting, V = vAt

$$A_{SURFACE} = \frac{V}{vt}$$

MWS-L-8-16-V:

Given:
$$V = 12,449 \text{ ft}^3$$
, $v = 26 \frac{in}{hr}$, $t = 36 \text{ hr}$, $Media \text{ perimeter} = 59.2 \text{ ft}^2$

Convert 26 in/hr to gpm:

$$v = 26 in/hr \left[\frac{448.8}{(12)(60)(60)} \right] = 0.26 gpm$$

Solve for the required media surface area:

$$A_{SURFACE} = \frac{12449}{0.26(36)} \left[\frac{448.8}{(60)(60)} \right] hr = 165.80 ft^2$$

$$A_{SURFACE} = (perimeter)(height) \Rightarrow h = \frac{A_{SURFACE}}{P}$$

$$h = \frac{165.80}{59.2} = 2.8 \, ft$$

The HGL within the MWS unit needs to be 2.8 ft in order to treat 12449 ft^3 over a 36 hour period.

MWS ORIFICE SIZING

Given that: Q = VA; $Q = treatment\ flow\ rate, V = c_d \sqrt{2gh}$, $A = \frac{\pi D^2}{4}$

 c_d is the discharge coefficent & h is the treatment HGL

Rewrite to solve for the diameter of the orifice.

$$\left[A = \frac{Q}{V}\right] \xrightarrow{rewrite} \frac{\pi D^2}{4} = \frac{Q}{c_d \sqrt{2gh}}$$

$$D = \sqrt{\frac{4Q}{\pi c_d \sqrt{2gh}}}; c_d = c_v c_c = 0.98 * 0.62 = 0.6076$$

MWS-L-8-16-V:

Given: $V = 12449 ft^3$, t = 36 hr

$$Q = \left[\frac{12449}{(36)(60)(60)} \right] = 0.096 \, cfs$$

$$D = \sqrt{\frac{4(0.096)}{\pi (0.6076)\sqrt{2(32.12)(2.8)}}} = 0.122' = \boxed{1.47''}$$

The diameter of the orifices needs to be 1.47" in order to produce a head of 2.8' in the MWS unit.

Compact (high rate) Biofiltration BMP Checklist

Form I-10

Compact (high rate) biofiltration BMPs have a media filtration rate greater than 5 in/hr. and a media surface area smaller than 3% of contributing area times adjusted runoff factor. Compact biofiltration BMPs are typically proprietary BMPs that may qualify as biofiltration.

A compact biofiltration BMP may satisfy the pollutant control requirements for a DMA onsite in some cases. This depends on the characteristics of the DMA <u>and</u> the performance certification/data of the BMP. If the pollutant control requirements for a DMA are met onsite, then the DMA is not required to participate in an offsite storm water alternative compliance program to meet its pollutant control obligations.

An applicant using a compact biofiltration BMP to meet the pollutant control requirements onsite must complete Section 1 of this form and include it in the PDP SWQMP. A separate form must be completed for each DMA. In instances where the City Engineer does not agree with the applicant's determination, Section 2 of this form will be completed by the City and returned to the applicant.

Section 1: Biofiltration Criteria Checklist (Appendix F)

Refer to Part 1 of the Storm Water Standards to complete this section. When separate forms/worksheets are referenced below, the applicant must also complete these separate forms/worksheets (as applicable) and include in the PDP SWQMP. The criteria numbers below correspond to the criteria numbers in Appendix F.

Criteria	Answer	Progression
Criteria 1 and 3: What is the infiltration condition of	O Full Infiltration Condition	Stop . Compact biofiltration BMP is not allowed.
the DMA? Refer to Section 5.4.2 and Appendix C of the BMP Design Manual (Part 1 of Storm Water Standards) for guidance.	Partial Infiltration Condition	Compact biofiltration BMP is only allowed, if the target volume retention is met onsite (Refer to Table B.5-1 in Appendix B.5). Use Worksheet B.5-2 in Appendix B.5 to estimate the target volume retention (Note: retention in this context means reduction).
Applicant must complete and include the following in the PDP SWQMP submittal to support the feasibility determination:		If the required volume reduction is achieved proceed to Criteria 2. If the required volume reduction is not achieved, compact biofiltration BMP is not allowed. Stop .
 Infiltration Feasibility Condition Letter; or Worksheet C.4-1: Form I-8A and Worksheet C.4-2: Form I- 8B. 		Compact biofiltration BMP is allowed if volume retention criteria in Table B.5-1 in Appendix B.5 for the no infiltration condition is met. Compliance with this criterion must be documented in the PDP SWQMP.
Applicant must complete and include all applicable sizing worksheets in the SWQMP submittal	No Infiltration Condition	If the criteria in Table B.5-1 is met proceed to Criteria 2 . Attached after this form . If the criteria in Table B.5-1 is not met, compact biofiltration BMP is not allowed. Stop .

Provide basis for Criteria 1 and 3:

Feasibility Analysis:

Summarize findings and include either infiltration feasibility condition letter or Worksheet C.4-1: Form I-8A and Worksheet C.4-2: Form I-8B in the PDP SWQMP submittal.

If Partial Infiltration Condition:

Provide documentation that target volume retention is met (include Worksheet B.5-2 in the PDP SWQMP submittal). Worksheet B.5-7 in Appendix B.5 can be used to estimate volume retention benefits from landscape areas.

If No Infiltration Condition:

Provide documentation that the volume retention performance standard is met (include Worksheet B.5-2 in the PDP SWQMP submittal) in the PDP SWQMP submittal. Worksheet B.5-6 in Appendix B.5 can be used to document that the performance standard is met.

Criteria	Answer	Progression
Criteria 2: Is the compact biofiltration BMP sized to meet the performance standard from the MS4 Permit? Refer to Appendix B.5 and Appendix F.2 of the BMP Design Manual (Part 1 of Storm Water Standards) for guidance.	• Meets Flow based Criteria	Use guidance from Appendix F.2.2 to size the compact biofiltration BMP to meet the flow based criteria. Include the calculations in the PDP SWQMP. Use parameters for sizing consistent with manufacturer guidelines and conditions of its third party certifications (i.e. a BMP certified at a loading rate of 1 gpm/sq. ft. cannot be designed using a loading rate of 1.5 gpm/sq. ft.) Proceed to Criteria 4.
	Meets Volume based Criteria	Provide documentation that the compact biofiltration BMP has a total static (i.e. nonrouted) storage volume, including pore-spaces and pre-filter detention volume (Refer to Appendix B.5 for a schematic) of at least 0.75 times the portion of the DCV not reliably retained onsite. Proceed to Criteria 4.
	O Does not Meet either criteria	Stop . Compact biofiltration BMP is not allowed.

Provide basis for Criteria 2:

Provide documentation that the BMP meets the numeric criteria and is designed consistent with the manufacturer guidelines and conditions of its third-party certification (i.e., loading rate, etc., as applicable).

Flow-based sizing calculations are provided at the beginning of Attachment 1e.

Criteria		Answer	Progression
Criteria 4: Does the compact biofiltration BMP meet the pollutant treatment performance standard for the	©	Yes, meets the TAPE certification.	Provide documentation that the compact BMP has an appropriate TAPE certification for the projects most significant pollutants of concern. Proceed to Criteria 5.
·		Yes, through other third-party documentation	Acceptance of third-party documentation is at the discretion of the City Engineer. The City engineer will consider, (a) the data submitted; (b) representativeness of the data submitted; and (c) consistency of the BMP performance claims with pollutant control objectives in Table F.1-2 and Table F.1-1 while making this determination. If a compact biofiltration BMP is not accepted, a written explanation/ reason will be provided in Section 2. Proceed to Criteria 5.
	0	No	Stop . Compact biofiltration BMP is not allowed.

Provide basis for Criteria 4:

Provide documentation that identifies the projects most significant pollutants of concern and TAPE certification or other third party documentation that shows that the compact biofiltration BMP meets the pollutant treatment performance standard for the projects most significant pollutants of concern.

TAPE certification is attached after this form.

Compact (high rate) Biofiltration BMP Checklist Form I-10				
Criteria	Answer	Pr	ogression	
Criteria 5: Is the compact biofiltration BMP designed to promote appropriate biological activity to support and maintain treatment process?	• Yes	biofiltration BMP sup	ion that the compact opport appropriate biological endix F for guidance. 6.	
Refer to Appendix F of the BMP Design Manual (Part 1 of Storm Water Standards) for guidance.	O No	Stop . Compact biofil	tration BMP is not allowed.	

Provide basis for Criteria 5:

Provide documentation that appropriate biological activity is supported by the compact biofiltration BMP to maintain treatment process.

MWS Linear brochure is attached after this form and show biofiltration.

Criteria	Answer	Progression
Criteria 6: Is the compact biofiltration BMP designed with a hydraulic loading rate to prevent erosion, scour and channeling within the BMP?	• Yes	Provide documentation that the compact biofiltration BMP is used in a manner consistent with manufacturer guidelines and conditions of its third-party certification. Proceed to Criteria 7.
	O No	Stop . Compact biofiltration BMP is not allowed.

Provide basis for Criteria 6:

Provide documentation that the BMP meets the numeric criteria and is designed consistent with the manufacturer guidelines and conditions of its third-party certification (i.e., maximum tributary area, maximum inflow velocities, etc., as applicable).

Flow-based sizing calculations are provided at the beginning of Attachment 1e. The units are designed to withstand erosion, scour, and channeling if sized for the design flow rate. The units are concrete, which will withstand hydraulic forces.

Compact (high rate) Biofiltration BMP			Checklist	Form I-10
Criteria	Answer		Progression	
Criteria 7: Is the compact biofiltration BMP maintenance plan consistent with manufacturer guidelines and conditions of its third-party certification (i.e., maintenance activities, frequencies)?	0	Yes, and the compact BMP is privately owned, operated and not in the public right of way.	Submit a maintenance agreement that will also include a statement that the BMP will be maintained in accordance with manufacturer guidelines and conditions of third-party certification. Stop. The compact biofiltration BMP meets the required criteria.	
	•	Yes, and the BMP is either owned or operated by the City or in the public right of way.	The city engineer requirements, cost relevant previous operation and main ability to continue to that the vending cor	
	0	No	Stop . Compact biofil	tration BMP is not allowed.

Provide basis for Criteria 7:

Include copy of manufacturer guidelines and conditions of third-party certification in the maintenance agreement. PDP SWQMP must include a statement that the compact BMP will be maintained in accordance with manufacturer guidelines and conditions of third-party certification.

The maintenance agreement will be provided in the final engineering SWMQP. The MWS Linear BMPs in Street A and B will be public. The other will be private.

Compact (high rate) Biofiltration BMP			Form I-10	
Section 2: Verification (For City Use Only)				
Is the proposed compact BMP accepted by the City	0	Yes		
Engineer for onsite pollutant control compliance for	0	No, See expl	anation below	
the DMA?				
Explanation/reason if the compact BMP is not accepted	d by t	he City for ons	ite pollutant control	
compliance:				

Appendix B: Storm Water Pollutant Control Hydrologic Calculations and Sizing Methods

Table B-5.1

Infiltration Feasibility Condition	Performance Standard
	Standard Biofiltration BMPs: BMPs must meet the criteria in Appendix B.5.1.2 Non-Standard Biofiltration BMPs: Pollutant Removal: BMP must be sized using Worksheet B.5-1 and Worksheet B.5-4; AND
No Infiltration Condition (Based on Infiltration Feasibility Condition Letter and/or Worksheet C.4-1: Form I-8A and/or Worksheet C.4-2: Form	 Volume Retention: DMA must meet the target volume retention calculated using Worksheet B.5-2 (based on Figure B.5-2). Compliance with volume retention requirements can be documented by: DMA has a combined BMP footprint and landscaped area (that meet the criteria in SD-B and SD-F factsheet) of 3% of contributing area times adjusted runoff factor or greater. The landscaped area must have an impervious area to pervious area ratio greater than 1.5:1. This can be documented using Worksheet B.5-6. [OR] Applicant has an option to use other site design BMPs that will meet the target volume retention calculated using Worksheet B.5-2. This can be documented using Worksheet B.5-6 and/or Worksheet B.5-7.
[There is no hierarchy in selecting the type of biofiltration BMP as long as the performance standard for the selected biofiltration BMP is met]	 Compact Biofiltration BMPs: Pollutant Removal: BMP must meet the criteria in Appendix F. Form I-10 must be completed and submitted with the PDP SWQMP; AND Volume Retention: DMA must meet the target volume retention calculated using Worksheet B.5-2 (based on Figure B.5-2). Compliance with volume retention requirements can be documented by: DMA has a combined BMP footprint and landscaped area (that meet the criteria in SD-B and SD-F factsheet) of 3% of contributing area times adjusted runoff factor or greater. The landscaped area must have an impervious area to pervious area ratio greater than 1.5:1. This can be documented using Worksheet B.5-6 [OR] Applicant has an option to use other site design BMPs that will meet the target volume retention calculated using Worksheet B.5-2. This can be documented using Worksheet B.5-6 and/or Worksheet B.5-7.

Worksheet B.5-2 and B.5-6 are attached.

The City of SAN DIEGO		Project Name		PA-61	
	BMP ID		BMP 1		
Sizing I	Method for Volume	Retention Criteria	Work	sheet B.5-2	
1 Area drainin	g to the BMP			391,771	sq. ft.
2 Adjusted run	off factor for drainage a	area (Refer to Appendix B.1 and E	3.2)	0.74	
3 85 th percenti	le 24-hour rainfall depth	1		0.48	inches
4 Design captu	ure volume [Line 1 x Lin	ne 2 x (Line 3/12)]		11596	cu. ft.
olume Retention I	Requirement				
5 Type C soils When in no i	enter 0.30 nfiltration condition and otechnical and/or groun	os are used enter 0.10 for NRCS the actual measured infiltration redwater hazards identified in Appe	ate is unknown enter 0.0 if	0	in/hr.
6 Factor of sat	ety			2	
7 Reliable infil	tration rate, for biofiltrat	ion BMP sizing [Line 5 / Line 6]		0	in/hr.
8 When Line 7	Average annual volume reduction target (Figure B.5-2) When Line $7 > 0.01$ in/hr. = Minimum (40, 166.9 x Line $7 + 6.62$) When Line $7 \le 0.01$ in/hr. = 3.5%			3.5	%
Fraction of D	OCV to be retained (Figu	ure B.5-3)			
9 0.0000013 x	When Line $8 > 8\% = 0.0000013 \times \text{Line } 8^3 - 0.000057 \times \text{Line } 8^2 + 0.0086 \times \text{Line } 8 - 0.014$			0.023	
When Line 8	≤ 8% = 0.023				
10 Target volun	Target volume retention [Line 9 x Line 4]				cu. ft.

The City o	of	Project Name	PA-61				
SAN	DIEGO	BMP ID	BMP 1				
	Volume Retention	n for No Infiltration Condition				Worksheet B.5-6	
1	Area draining to the biofiltra	ation BMP				391,771	sq. ft.
2	Adjusted runoff factor for d	0.74					
3	Effective impervious area d	raining to the BMP [Line 1 x Line 2]				289911	sq. ft.
4	Required area for Evapotra	nspiration [Line 3 x 0.03]				8697	sq. ft.
5	Biofiltration BMP Footprint					0	sq. ft.
ndscape A	rea (must be identified on D	OS-3247)					_
		Identification	1	2	3	4	5
6	Landscape area that meet Fact Sheet (sq. ft.)	the requirements in SD-B and SD-F	9501				
7	Impervious area draining to	the landscape area (sq. ft.)	14251				
8	Impervious to Pervious Are [Line 7/Line 6]	a ratio	1.50	0.00	0.0	0.00	0.00
9	Effective Credit Area If (Line 8 >1.5, Line 6, Line	7/1.5]	9501	0	0	0	0
10	Sum of Landscape area [su	um of Line 9 Id's 1 to 5]		-		9501	sq. ft.
11	Provided footprint for evapor	otranspiration [Line 5 + Line 10]				9501	sq. ft.
lume Rete	ntion Performance Standare	d					
12	Is Line 11 ≥ Line 4?					rmance Standard is Me	et
13	Fraction of the performance 4]	e standard met through the BMP footp	rint and/or lands	scaping [Line 11	1/Line	1.09	
14	Target Volume Retention [l	ine 10 from Worksheet B.5.2]				267	cu. ft.
15	Volume retention required to [(1-Line 13) x Line 14]	rom other site design BMPs				-24.03	cu. ft.
e Design E	BMP						
	Identification	Site Desi	ign Type			Credit	
	1						cu. ft.
	2						cu. ft.
	3						cu. ft.
16	4						cu. ft.
10	5						cu. ft.
	Line 16 Credits for Id's 1 to	enefits from other site design BMPs (e. 5] now the site design credit is calculated		, -	n of	0	cu. ft.
17	Is Line 16 ≥ Line 15?			Volume Reten	tion Perfo	rmance Standard is Me	et

The City	of	Project Name		PA-61	
	SAN DIEGO Project Name BMP ID			BMP 2	
5	Sizing Method for Volume F	Retention Criteria	Works	sheet B.5-2	
1 Area	draining to the BMP			9,520	sq. ft.
2 Adju	sted runoff factor for drainage ar	rea (Refer to Appendix B.1 and E	5.2)	0.81	
3 85 th	percentile 24-hour rainfall depth			0.48	inches
4 Desi	gn capture volume [Line 1 x Line	e 2 x (Line 3/12)]		308	cu. ft.
/olume Ret	ention Requirement				
Whe 5 Type	Measured infiltration rate in the DMA Note: When mapped hydrologic soil groups are used enter 0.10 for NRCS Type D soils and for NRCS Type C soils enter 0.30 When in no infiltration condition and the actual measured infiltration rate is unknown enter 0.0 if there are geotechnical and/or groundwater hazards identified in Appendix C or enter 0.05		0	in/hr.	
6 Fact	or of safety			2	
7 Relia	able infiltration rate, for biofiltration	on BMP sizing [Line 5 / Line 6]		0	in/hr.
8 Whe	Average annual volume reduction target (Figure B.5-2) When Line $7 > 0.01$ in/hr. = Minimum (40, 166.9 x Line $7 + 6.62$) When Line $7 \le 0.01$ in/hr. = 3.5%			3.5	%
9 0.000	Fraction of DCV to be retained (Figure B.5-3) When Line $8 > 8\% = 0.0000013 \text{ x Line } 8^3 - 0.000057 \text{ x Line } 8^2 + 0.0086 \text{ x Line } 8 - 0.014$ When Line $8 \le 8\% = 0.023$			0.023	
10 Targ	et volume retention [Line 9 x Lin	e 4]		7	cu. ft.

The City	of	Project Name	PA-61					
SAN	DIEGO	BMP ID	BMP 2					
		n for No Infiltration Condition				Work	sheet B.5-6	
1	Area draining to the biofiltra						9,520	sq. ft.
2	Adjusted runoff factor for drainage area (Refer to Appendix B.1 and B.2)						0.81	·
3	Effective impervious area d	raining to the BMP [Line 1 x Line 2]					7711	sq. ft.
4	Required area for Evapotra	nspiration [Line 3 x 0.03]					231	sq. ft.
5	Biofiltration BMP Footprint						0	sq. ft.
_andscape A	Area (must be identified on D	S-3247)						•
		Identification	1	2		3	4	5
6	Landscape area that meet Fact Sheet (sq. ft.)	the requirements in SD-B and SD-F	233					
7	Impervious area draining to	the landscape area (sq. ft.)	350					
8	Impervious to Pervious Are [Line 7/Line 6]	a ratio	1.50	0.00		0.00	0.00	0.00
9	Effective Credit Area If (Line 8 >1.5, Line 6, Line	7/1.5]	233	0		0	0	0
10	Sum of Landscape area [su	ım of Line 9 Id's 1 to 5]					233	sq. ft.
11	Provided footprint for evapo	otranspiration [Line 5 + Line 10]					233	sq. ft.
/olume Rete	ention Performance Standard	1						
12	Is Line 11 ≥ Line 4?					erformano	e Standard is Me	i .
13	4]	e standard met through the BMP footpi	rint and/or lands	caping [Line 11	/Line		1.01	
14	· ·	ine 10 from Worksheet B.5.2]					7	cu. ft.
15	Volume retention required f	rom other site design BMPs					-0.07	cu. ft.
Site Design								
	Identification	Site Desi	gn Type				Credit	
	1							cu. ft.
	3							cu. ft.
	4							cu. ft.
16	5							cu. it.
	Line 16 Credits for Id's 1 to	enefits from other site design BMPs (e. 5] low the site design credit is calculated		, -	n of		0	cu. ft.
17	Is Line 16 ≥ Line 15?			Volume Reten	tion Pe	erformanc	e Standard is Me	i

The Ci	N DIEGO	Project Name	ı	PA-61			
5 A				BMP 3			
	Sizing Method for Volume F	Retention Criteria	Works	sheet B.5-2			
1 A	Area draining to the BMP			9,514	sq. ft.		
2 A	Adjusted runoff factor for drainage ar	ea (Refer to Appendix B.1 and E	5.2)	0.8			
3 8	35 th percentile 24-hour rainfall depth			0.48	inches		
4 [Design capture volume [Line 1 x Line	e 2 x (Line 3/12)]		304	cu. ft.		
olume	Retention Requirement				•		
5 T	Measured infiltration rate in the DMA Note: When mapped hydrologic soil groups are used enter 0.10 for NRCS Type D soils and for NRCS Type C soils enter 0.30 When in no infiltration condition and the actual measured infiltration rate is unknown enter 0.0 if there are geotechnical and/or groundwater hazards identified in Appendix C or enter 0.05		0	in/hr.			
6 F	Factor of safety			2			
7 F	Reliable infiltration rate, for biofiltration	on BMP sizing [Line 5 / Line 6]		0	in/hr.		
8 V	Average annual volume reduction target (Figure B.5-2) When Line $7 > 0.01$ in/hr. = Minimum (40, 166.9 x Line $7 + 6.62$) When Line $7 \le 0.01$ in/hr. = 3.5%			3.5	%		
9 V	Fraction of DCV to be retained (Figure B.5-3) When Line $8 > 8\% = 0.0000013 \text{ x Line } 8^3 - 0.000057 \text{ x Line } 8^2 + 0.0086 \text{ x Line } 8 - 0.014$ When Line $8 \le 8\% = 0.023$			0.023			
10 T	Γarget volume retention [Line 9 x Lin		7	cu. ft.			

The City	of	Project Name	PA-61					
SAN	DIEGO	BMP ID	BMP 3					
		on for No Infiltration Condition				Work	sheet B.5-6	
1	Area draining to the biofiltration BMP						sq. ft.	
2	Adjusted runoff factor for drainage area (Refer to Appendix B.1 and B.2)						0.8	
3	Effective impervious area d	raining to the BMP [Line 1 x Line 2]					7611	sq. ft.
4	Required area for Evapotra	inspiration [Line 3 x 0.03]					228	sq. ft.
5	Biofiltration BMP Footprint						0	sq. ft.
_andscape A	Area (must be identified on D	OS-3247)						_
		Identification	1	2		3	4	5
6	Landscape area that meet Fact Sheet (sq. ft.)	the requirements in SD-B and SD-F	233					
7	Impervious area draining to	the landscape area (sq. ft.)	350					
8	Impervious to Pervious Are [Line 7/Line 6]	a ratio	1.50	0.00		0.00	0.00	0.00
9	Effective Credit Area If (Line 8 >1.5, Line 6, Line	7/1.5]	233	0		0	0	0
10	Sum of Landscape area [su	um of Line 9 Id's 1 to 5]					233	sq. ft.
11	Provided footprint for evapor	otranspiration [Line 5 + Line 10]					233	sq. ft.
Volume Rete	ention Performance Standard	d						
12	Is Line 11 ≥ Line 4?					erformanc	e Standard is Me	t
13	Fraction of the performance 4]	e standard met through the BMP footpr	rint and/or lands	caping [Line 11	I/Line		1.02	
14		ine 10 from Worksheet B.5.2]					7	cu. ft.
15	Volume retention required f [(1-Line 13) x Line 14]	from other site design BMPs					-0.14	cu. ft.
Site Design I	BMP							
	Identification	Site Desi	gn Type				Credit	
	1							cu. ft.
	2							cu. ft.
	3							cu. ft.
16	4							cu. ft.
10	5							cu. ft.
	Line 16 Credits for Id's 1 to	enefits from other site design BMPs (e. 5] now the site design credit is calculated		, -	n of		0	cu. ft.
17	Is Line 16 ≥ Line 15?			Volume Reten	tion Pe	erformanc	e Standard is Me	t

The City of	NECO	Project Name		PA-61	
JAN L	he City of Project Name BMP ID				
Sizing	g Method for Volume	Retention Criteria	Work	sheet B.5-2	
1 Area drain	ing to the BMP			7,035	sq. ft.
2 Adjusted r	unoff factor for drainage	area (Refer to Appendix B.1 and I	3.2)	0.79	
3 85 th perce	ntile 24-hour rainfall dept	า		0.48	inches
4 Design ca	pture volume [Line 1 x Lir	ne 2 x (Line 3/12)]		222	cu. ft.
lume Retentio	n Requirement				
5 Type C so When in n there are o	Note: When mapped hydrologic soil groups are used enter 0.10 for NRCS Type D soils and for NRCS Type C soils enter 0.30 When in no infiltration condition and the actual measured infiltration rate is unknown enter 0.0 if there are geotechnical and/or groundwater hazards identified in Appendix C or enter 0.05		0	in/hr.	
6 Factor of s	safety			2	
7 Reliable in	filtration rate, for biofiltrat	ion BMP sizing [Line 5 / Line 6]		0	in/hr.
8 When Line	Average annual volume reduction target (Figure B.5-2) When Line 7 > 0.01 in/hr. = Minimum (40, 166.9 x Line 7 +6.62) When Line $7 \le 0.01$ in/hr. = 3.5%			3.5	%
9 0.0000013		ure B.5-3) ine 8 ² + 0.0086 x Line 8 - 0.014		0.023	
10 Target vol	Target volume retention [Line 9 x Line 4]				cu. ft.

The City o	of	Project Name	PA-61					
5AN	DIEGO	BMP ID	BMP 4					
	Volume Retention	n for No Infiltration Condition				Work	sheet B.5-6	
1	Area draining to the biofiltra	ation BMP					7,035	sq. ft.
2	Adjusted runoff factor for drainage area (Refer to Appendix B.1 and B.2)						0.79	
3	Effective impervious area d	raining to the BMP [Line 1 x Line 2]					5558	sq. ft.
4	Required area for Evapotra	nspiration [Line 3 x 0.03]					167	sq. ft.
5	Biofiltration BMP Footprint						0	sq. ft.
ndscape A	rea (must be identified on D	OS-3247)				•		
		Identification	1	2		3	4	5
6	Landscape area that meet Fact Sheet (sq. ft.)	the requirements in SD-B and SD-F	167					
7	Impervious area draining to	the landscape area (sq. ft.)	250					
8	Impervious to Pervious Are [Line 7/Line 6]	a ratio	1.50	0.00	0	00	0.00	0.00
9	Effective Credit Area If (Line 8 >1.5, Line 6, Line	7/1.5]	167	0		0	0	0
10	Sum of Landscape area [su	um of Line 9 Id's 1 to 5]					167	sq. ft.
11	Provided footprint for evapo	otranspiration [Line 5 + Line 10]					167	sq. ft.
lume Rete	ntion Performance Standard	1						
12	Is Line 11 ≥ Line 4?			Volume Reten	tion Perf	ormance	Standard is Me	t
13	Fraction of the performance 4]	e standard met through the BMP footpr	int and/or lands	scaping [Line 1	1/Line		1	
14	Target Volume Retention [l	ine 10 from Worksheet B.5.2]					5	cu. ft.
15	Volume retention required to [(1-Line 13) x Line 14]	rom other site design BMPs					0	cu. ft.
e Design E	ВМР							
	Identification	Site Desi	gn Type				Credit	
	1							cu. ft.
	2							cu. ft.
	3							cu. ft.
16	4							cu. ft.
10	5							cu. ft.
	Line 16 Credits for Id's 1 to	enefits from other site design BMPs (e. 5] now the site design credit is calculated		, -	n of		0	cu. ft.
17	Is Line 16 ≥ Line 15?			Volume Reten	tion Perf	ormance	e Standard is Me	t

The City of SAN DIEGO		Project Name		PA-61		
SAN DIE	BMP ID		BMP 5			
Sizing Metl	nod for Volume	Retention Criteria	Work	sheet B.5-2		
1 Area draining to	he BMP			6,968	sq. ft.	
2 Adjusted runoff fa	actor for drainage a	area (Refer to Appendix B.1 and E	3.2)	0.78		
3 85 th percentile 24	-hour rainfall depth	1		0.48	inches	
4 Design capture v	olume [Line 1 x Lir	ne 2 x (Line 3/12)]		217	cu. ft.	
olume Retention Requ	irement					
Note: When mapped hyogen to the second seco	er 0.30 ation condition and	os are used enter 0.10 for NRCS I the actual measured infiltration reduced the description of the description of the description in the description of the descripti	rate is unknown enter 0.0 if	0	in/hr.	
6 Factor of safety				2		
7 Reliable infiltration	n rate, for biofiltrat	ion BMP sizing [Line 5 / Line 6]		0	in/hr.	
8 When Line 7 > 0.	Average annual volume reduction target (Figure B.5-2) When Line $7 > 0.01$ in/hr. = Minimum (40, 166.9 x Line $7 + 6.62$) When Line $7 \le 0.01$ in/hr. = 3.5%				%	
Fraction of DCV	to be retained (Fig	ure B.5-3)				
9 0.0000013 x Line	When Line $8 > 8\% = 0.0000013 \times \text{Line } 8^3 - 0.000057 \times \text{Line } 8^2 + 0.0086 \times \text{Line } 8 - 0.014$					
When Line 8 ≤ 8°	% = 0.023					
10 Target volume re	tention [Line 9 x Li	ne 4]		5	cu. ft.	

The City	of	Project Name	PA-61					
SAN	N DIEGO	BMP ID	BMP 5					
	Volume Retentio	on for No Infiltration Condition				Worl	ksheet B.5-6	
1	Area draining to the biofiltration BMP 6,968						sq. ft.	
2	Adjusted runoff factor for drainage area (Refer to Appendix B.1 and B.2)						0.78	
3	Effective impervious area d	raining to the BMP [Line 1 x Line 2]					5435	sq. ft.
4	Required area for Evapotra	nspiration [Line 3 x 0.03]					163	sq. ft.
5	Biofiltration BMP Footprint						0	sq. ft.
andscape A	Area (must be identified on D	OS-3247)				•		•
		Identification	1	2		3	4	5
6	Landscape area that meet Fact Sheet (sq. ft.)	the requirements in SD-B and SD-F	167					
7	Impervious area draining to	the landscape area (sq. ft.)	250					
8	Impervious to Pervious Are [Line 7/Line 6]	a ratio	1.50	0.00		0.00	0.00	0.00
9	Effective Credit Area If (Line 8 >1.5, Line 6, Line	7/1.5]	167	0		0	0	0
10	Sum of Landscape area [su	um of Line 9 Id's 1 to 5]					167	sq. ft.
11	Provided footprint for evapo	otranspiration [Line 5 + Line 10]					167	sq. ft.
/olume Rete	ention Performance Standard	1						•
12	Is Line 11 ≥ Line 4?					erformanc	e Standard is Me	t
13	Fraction of the performance 4]	e standard met through the BMP footpr	rint and/or lands	scaping [Line 11	1/Line		1.02	
14	Target Volume Retention [L	Line 10 from Worksheet B.5.2]					5	cu. ft.
15	Volume retention required f [(1-Line 13) x Line 14]	rom other site design BMPs					-0.1	cu. ft.
ite Design	ВМР							
	Identification	Site Desi	gn Type				Credit	
	1							cu. ft.
	2							cu. ft.
	3							cu. ft.
16	4							cu. ft.
10	5							cu. ft.
	Line 16 Credits for Id's 1 to	enefits from other site design BMPs (e. 5] now the site design credit is calculated		, -	n of		0	cu. ft.
17	Is Line 16 ≥ Line 15?			Volume Reten	tion Pe	erformanc	e Standard is Me	i.

TAPE Certification

April 2014

GENERAL USE LEVEL DESIGNATION FOR BASIC, ENHANCED, AND PHOSPHORUS TREATMENT

For the

MWS-Linear Modular Wetland

Ecology's Decision:

Based on Modular Wetland Systems, Inc. application submissions, including the Technical Evaluation Report, dated April 1, 2014, Ecology hereby issues the following use level designation:

- 1. General use level designation (GULD) for the MWS-Linear Modular Wetland Stormwater Treatment System for Basic treatment
 - Sized at a hydraulic loading rate of 1 gallon per minute (gpm) per square foot (sq ft) of wetland cell surface area. For moderate pollutant loading rates (low to medium density residential basins), size the Prefilters at 3.0 gpm/sq ft of cartridge surface area. For high loading rates (commercial and industrial basins), size the Prefilters at 2.1 gpm/sq ft of cartridge surface area.
- 2. General use level designation (GULD) for the MWS-Linear Modular Wetland Stormwater Treatment System for Phosphorus treatment
 - Sized at a hydraulic loading rate of 1 gallon per minute (gpm) per square foot (sq ft) of wetland cell surface area. For moderate pollutant loading rates (low to medium density residential basins), size the Prefilters at 3.0 gpm/sq ft of cartridge surface area. For high loading rates (commercial and industrial basins), size the Prefilters at 2.1 gpm/sq ft of cartridge surface area.
- 3. General use level designation (GULD) for the MWS-Linear Modular Wetland Stormwater Treatment System for Enhanced treatment
 - Sized at a hydraulic loading rate of 1 gallon per minute (gpm) per square foot (sq ft) of wetland cell surface area. For moderate pollutant loading rates (low to medium density residential basins), size the Prefilters at 3.0 gpm/sq ft of cartridge surface area. For high loading rates (commercial and industrial basins), size the Prefilters at 2.1 gpm/sq ft of cartridge surface area.

- 4. Ecology approves the MWS Linear Modular Wetland Stormwater Treatment System units for Basic, Phosphorus, and Enhanced treatment at the hydraulic loading rate listed above. Designers shall calculate the water quality design flow rates using the following procedures:
 - Western Washington: For treatment installed upstream of detention or retention, the water quality design flow rate is the peak 15-minute flow rate as calculated using the latest version of the Western Washington Hydrology Model or other Ecology-approved continuous runoff model.
 - Eastern Washington: For treatment installed upstream of detention or retention, the water quality design flow rate is the peak 15-minute flow rate as calculated using one of the three methods described in Chapter 2.2.5 of the Stormwater Management Manual for Eastern Washington (SWMMEW) or local manual.
 - Entire State: For treatment installed downstream of detention, the water quality design flow rate is the full 2-year release rate of the detention facility.
- 5. These use level designations have no expiration date but may be revoked or amended by Ecology, and are subject to the conditions specified below.

Ecology's Conditions of Use:

Applicants shall comply with the following conditions:

- 1. Design, assemble, install, operate, and maintain the MWS Linear Modular Wetland Stormwater Treatment System units, in accordance with Modular Wetland Systems, Inc. applicable manuals and documents and the Ecology Decision.
- Each site plan must undergo Modular Wetland Systems, Inc. review and approval before
 site installation. This ensures that site grading and slope are appropriate for use of a MWS

 Linear Modular Wetland Stormwater Treatment System unit.
- 3. MWS Linear Modular Wetland Stormwater Treatment System media shall conform to the specifications submitted to, and approved by, Ecology.
- 4. Maintenance: The required maintenance interval for stormwater treatment devices is often dependent upon the degree of pollutant loading from a particular drainage basin. Therefore, Ecology does not endorse or recommend a "one size fits all" maintenance cycle for a particular model/size of manufactured filter treatment device.
 - Typically, Modular Wetland Systems, Inc. designs MWS Linear Modular Wetland systems for a target prefilter media life of 6 to 12 months.
 - Indications of the need for maintenance include effluent flow decreasing to below the design flow rate or decrease in treatment below required levels.
 - Owners/operators must inspect MWS Linear Modular Wetland systems for a minimum
 of twelve months from the start of post-construction operation to determine site-specific
 maintenance schedules and requirements. You must conduct inspections monthly during
 the wet season, and every other month during the dry season. (According to the
 SWMMWW, the wet season in western Washington is October 1 to April 30. According
 to SWMMEW, the wet season in eastern Washington is October 1 to June 30). After the

- first year of operation, owners/operators must conduct inspections based on the findings during the first year of inspections.
- Conduct inspections by qualified personnel, follow manufacturer's guidelines, and use methods capable of determining either a decrease in treated effluent flowrate and/or a decrease in pollutant removal ability.
- When inspections are performed, the following findings typically serve as maintenance triggers:
 - Standing water remains in the vault between rain events, or
 - Bypass occurs during storms smaller than the design storm.
 - If excessive floatables (trash and debris) are present (but no standing water or excessive sedimentation), perform a minor maintenance consisting of gross solids removal, not prefilter media replacement.
 - Additional data collection will be used to create a correlation between pretreatment chamber sediment depth and pre-filter clogging (see *Issues to be Addressed by the Company* section below)
- 6. Discharges from the MWS Linear Modular Wetland Stormwater Treatment System units shall not cause or contribute to water quality standards violations in receiving waters.

Applicant: Modular Wetland Systems, Inc.

Applicant's Address: PO. Box 869

Oceanside, CA 92054

Application Documents:

- Original Application for Conditional Use Level Designation, Modular Wetland System, Linear Stormwater Filtration System Modular Wetland Systems, Inc., January 2011
- *Quality Assurance Project Plan*: Modular Wetland system Linear Treatment System performance Monitoring Project, draft, January 2011.
- Revised Application for Conditional Use Level Designation, Modular Wetland System, Linear Stormwater Filtration System Modular Wetland Systems, Inc., May 2011
- Memorandum: Modular Wetland System-Linear GULD Application Supplementary Data, April 2014
- Technical Evaluation Report: Modular Wetland System Stormwater Treatment System Performance Monitoring, April 2014.

Applicant's Use Level Request:

General use level designation as a Basic, Enhanced, and Phosphorus treatment device in accordance with Ecology's Guidance for Evaluating Emerging Stormwater Treatment Technologies Technology Assessment Protocol – Ecology (TAPE) January 2011 Revision.

Applicant's Performance Claims:

- The MWS Linear Modular wetland is capable of removing a minimum of 80-percent of TSS from stormwater with influent concentrations between 100 and 200 mg/l.
- The MWS Linear Modular wetland is capable of removing a minimum of 50-percent of Total Phosphorus from stormwater with influent concentrations between 0.1 and 0.5 mg/l.
- The MWS Linear Modular wetland is capable of removing a minimum of 30-percent of dissolved Copper from stormwater with influent concentrations between 0.005 and 0.020 mg/l.
- The MWS Linear Modular wetland is capable of removing a minimum of 60-percent of dissolved Zinc from stormwater with influent concentrations between 0.02 and 0.30 mg/l.

Ecology Recommendations:

 Modular Wetland Systems, Inc. has shown Ecology, through laboratory and fieldtesting, that the MWS - Linear Modular Wetland Stormwater Treatment System filter system is capable of attaining Ecology's Basic, Total phosphorus, and Enhanced treatment goals.

Findings of Fact:

Laboratory Testing

The MWS-Linear Modular wetland has the:

- Capability to remove 99 percent of total suspended solids (using Sil-Co-Sil 106) in a quarter-scale model with influent concentrations of 270 mg/L.
- Capability to remove 91 percent of total suspended solids (using Sil-Co-Sil 106) in laboratory conditions with influent concentrations of 84.6 mg/L at a flow rate of 3.0 gpm per square foot of media.
- Capability to remove 93 percent of dissolved Copper in a quarter-scale model with influent concentrations of 0.757 mg/L.
- Capability to remove 79 percent of dissolved Copper in laboratory conditions with influent concentrations of 0.567 mg/L at a flow rate of 3.0 gpm per square foot of media.
- Capability to remove 80.5-percent of dissolved Zinc in a quarter-scale model with influent concentrations of 0.95 mg/L at a flow rate of 3.0 gpm per square foot of media.
- Capability to remove 78-percent of dissolved Zinc in laboratory conditions with influent concentrations of 0.75 mg/L at a flow rate of 3.0 gpm per square foot of media.

Field Testing

 Modular Wetland Systems, Inc. conducted monitoring of an MWS-Linear (Model # MWS-L-4-13) from April 2012 through May 2013, at a transportation maintenance facility in Portland, Oregon. The manufacturer collected flow-weighted composite samples of the system's influent and effluent during 28 separate storm events. The system treated approximately 75 percent of the runoff from 53.5 inches of rainfall during the monitoring period. The applicant sized the system at 1 gpm/sq ft. (wetland media) and 3gpm/sq ft. (prefilter).

- Influent TSS concentrations for qualifying sampled storm events ranged from 20 to 339 mg/L. Average TSS removal for influent concentrations greater than 100 mg/L (n=7) averaged 85 percent. For influent concentrations in the range of 20-100 mg/L (n=18), the upper 95 percent confidence interval about the mean effluent concentration was 12.8 mg/L.
- Total phosphorus removal for 17 events with influent TP concentrations in the range of 0.1 to 0.5 mg/L averaged 65 percent. A bootstrap estimate of the lower 95 percent confidence limit (LCL95) of the mean total phosphorus reduction was 58 percent.
- The lower 95 percent confidence limit of the mean percent removal was 60.5 percent for dissolved zinc for influent concentrations in the range of 0.02 to 0.3 mg/L (n=11). The lower 95 percent confidence limit of the mean percent removal was 32.5 percent for dissolved copper for influent concentrations in the range of 0.005 to 0.02 mg/L (n=14) at flow rates up to 28 gpm (design flow rate 41 gpm). Laboratory test data augmented the data set, showing dissolved copper removal at the design flow rate of 41 gpm (93 percent reduction in influent dissolved copper of 0.757 mg/L).

Issues to be addressed by the Company:

- 1. Modular Wetland Systems, Inc. should collect maintenance and inspection data for the first year on all installations in the Northwest in order to assess standard maintenance requirements for various land uses in the region. Modular Wetland Systems, Inc. should use these data to establish required maintenance cycles.
- 2. Modular Wetland Systems, Inc. should collect pre-treatment chamber sediment depth data for the first year of operation for all installations in the Northwest. Modular Wetland Systems, Inc. will use these data to create a correlation between sediment depth and pre-filter clogging.

Technology Description:

Download at http://www.modularwetlands.com/

Contact Information:

Applicant: Greg Kent

Modular Wetland Systems, Inc.

P.O. Box 869

Oceanside, CA 92054

gkent@biocleanenvironmental.net

Applicant website: http://www.modularwetlands.com/

Ecology web link: http://www.ecy.wa.gov/programs/wg/stormwater/newtech/index.html

Ecology: Douglas C. Howie, P.E.

Douglas C. Howie, P.E. Department of Ecology Water Quality Program

(360) 407-6444

douglas.howie@ecy.wa.gov

Revision History

Date	Revision
June 2011	Original use-level-designation document
September 2012	Revised dates for TER and expiration
January 2013	Modified Design Storm Description, added Revision Table, added maintenance discussion, modified format in accordance with Ecology standard
December 2013	Updated name of Applicant
April 2014	Approved GULD designation for Basic, Phosphorus, and Enhanced treatment

The Urban Impact

For hundreds of years natural wetlands surrounding our shores have played an integral role as nature's stormwater treatment system. But as our cities grow and develop, these natural wetlands

have perished under countless roads, rooftops, and parking lots.

Plant A Wetland

Without natural wetlands our cities are deprived of water purification, flood control, and land stability. Modular Wetlands and the MWS Linear re-establish nature's presence and rejuvenate water ways in urban areas.

MWS Linear

The Modular Wetland System Linear represents a pioneering breakthrough in stormwater technology as the only biofiltration system to utilize patented horizontal flow, allowing for a smaller footprint and higher treatment capacity. While most biofilters use little or no pretreatment, the MWS Linear incorporates an advanced pre-treatment chamber that includes separation and pre-filter cartridges. In this chamber sediment and hydrocarbons are removed from runoff before it enters the biofiltration chamber, in turn reducing maintenance costs and improving performance.

Applications

The MWS Linear has been successfully used on numerous new construction and retrofit projects. The system's superior versatility makes it beneficial for a wide range of stormwater and waste water applications - treating rooftops, streetscapes, parking lots, and industrial sites.

Industrial

Many states enforce strict regulations for discharges from industrial sites. The MWS Linear has helped various sites meet difficult EPA mandated effluent limits for dissolved metals and other pollutants.

Streets

Street applications can be challenging due to limited space. The MWS Linear is very adaptable, and offers the smallest footprint to work around the constraints of existing utilities on retrofit projects.

Commercial

Compared to bioretention systems, the MWS Linear can treat far more area in less space - meeting treatment and volume control requirements.

Residential

Low to high density developments can benefit from the versatile design of the MWS Linear. The system can be used in both decentralized LID design and cost-effective end-of-the-line configurations.

Parking Lots

Parking lots are designed to maximize space and the MWS Linear's 4 ft. standard planter width allows for easy integration into parking lot islands and other landscape medians.

Mixed Use

The MWS Linear can be installed as a raised planter to treat runoff from rooftops or patios, making it perfect for sustainable "live-work" spaces.

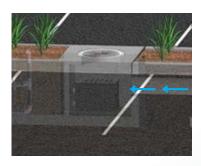
More applications are available on our website: www.ModularWetlands.com/Applications

- Agriculture
- Reuse

- Low Impact Development
- · Waste Water

Configurations

The MWS Linear is the preferred biofiltration system of Civil Engineers across the country due to its versatile design. This highly versatile system has available "pipe-in" options on most models, along with built-in curb or grated inlets for simple integration into your stormdrain design.


Curb Type

The *Curb Type* configuration accepts sheet flow through a curb opening and is commonly used along road ways and parking lots. It can be used in sump or flow by conditions. Length of curb opening varies based on model and size.

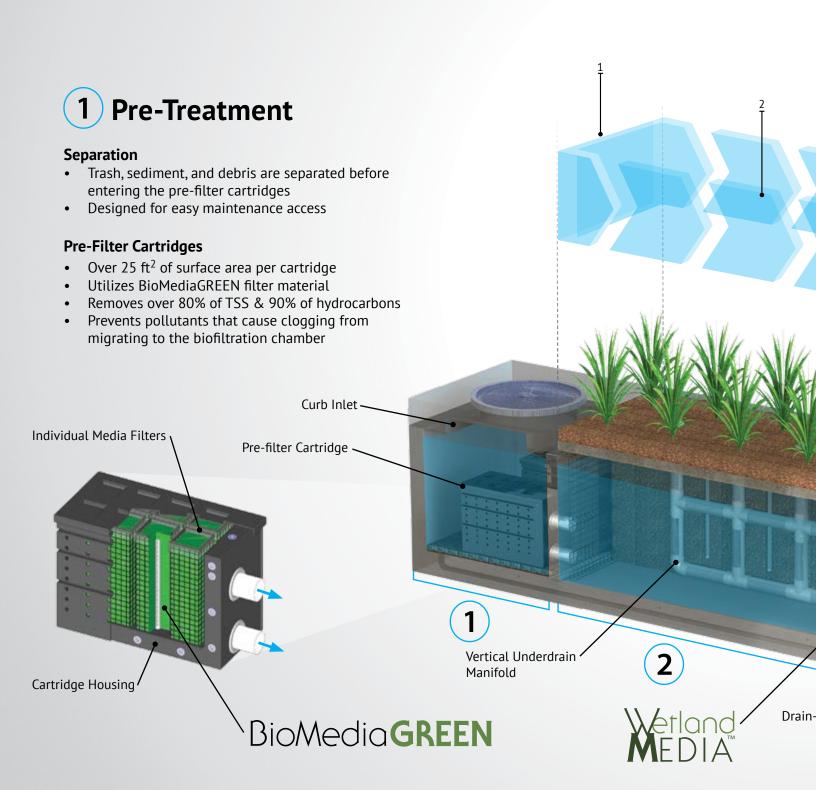
Grate Type

The *Grate Type* configuration offers the same features and benefits as the *Curb Type* but with a grated/drop inlet above the systems pre-treatment chamber. It has the added benefit of allowing for pedestrian access over the inlet. ADA compliant grates are available to assure easy and safe access. The *Grate Type* can also be used in scenarios where runoff needs to be intercepted on both sides of landscape islands.

Vault Type

The system's patented horizontal flow biofilter is able to accept inflow pipes directly into the pre-treatment chamber, meaning the MWS Linear can be used in end-of-the-line installations. This greatly improves feasibility over typical decentralized designs that are required with other biofiltration/bioretention systems. Another benefit of the "pipe in" design is the ability to install the system downstream of underground detention systems to meet water quality volume requirements.

Downspout Type


The *Downspout Type* is a variation of the *Vault Type* and is designed to accept a vertical downspout pipe from roof top and podium areas. Some models have the option of utilizing an internal bypass, simplifying the overall design. The system can be installed as a raised planter and the exterior can be stuccoed or covered with other finishes to match the look of adjacent buildings.

Advantages & Operation

The MWS Linear is the most efficient and versatile biofiltration system on the market, and the only system with horizontal flow which improves performance, reduces footprint, and minimizes maintenance. Figure-1 and Figure-2 illustrate the invaluable benefits of horizontal flow and the multiple treatment stages.

Featured Advantages

- Horizontal Flow Biofiltration
- Greater Filter Surface Area
- Pre-Treatment Chamber
- Patented Perimeter Void Area
- Flow Control
- No Depressed Planter Area

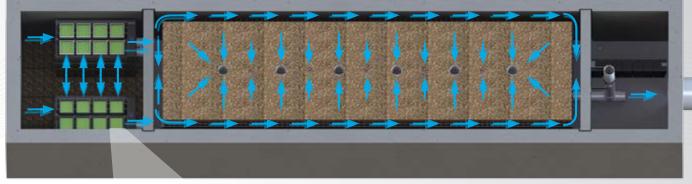


Fig. 2 - Top View

2x to 3x More Surface Area Than Traditional Downward Flow Bioretention Systems.

2 Biofiltration

Horizontal Flow

- Less clogging than downward flow biofilters
- Water flow is subsurface
- Improves biological filtration

Patented Perimeter Void Area

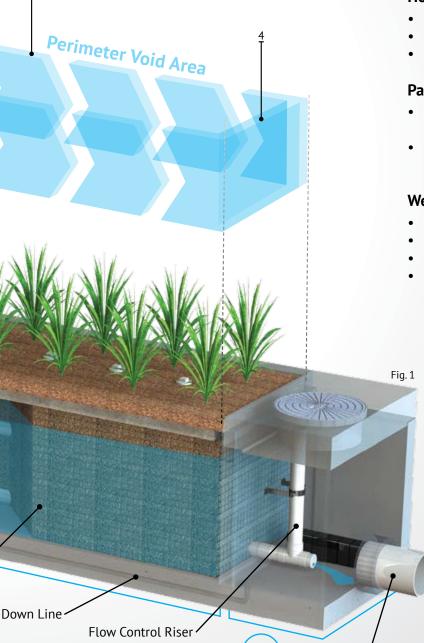
- Vertically extends void area between the walls and the WetlandMEDIA on all four sides.
- Maximizes surface area of the media for higher treatment capacity

WetlandMEDIA

Outlet Pipe

- Contains no organics and removes phosphorus
- Greater surface area and 48% void space
- Maximum evapotranspiration
- High ion exchange capacity and light weight

3


Discharge

Flow Control

- Orifice plate controls flow of water through WetlandMEDIA to a level lower than the media's capacity.
- Extends the life of the media and improves performance

Drain-Down Filter

- The Drain-Down is an optional feature that completely drains the pre-treatment chamber
- Water that drains from the pre-treatment chamber between storm events will be treated

Orientations

Side-By-Side

The *Side-By-Side* orientation places the pretreatment and discharge chamber adjacent to one another with the biofiltration chamber running parallel on either side. This minimizes the system length, providing a highly compact footprint. It has been proven useful in situations such as streets with directly adjacent sidewalks, as half of the system can be placed under that sidewalk. This orientation also offers internal bypass options as discussed below.

Bypass

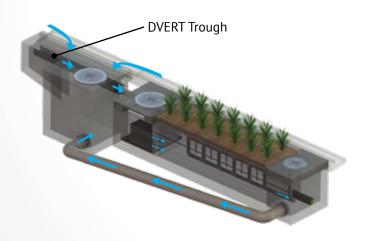
Internal Bypass Weir (Side-by-Side Only)

The *Side-By-Side* orientation places the pretreatment and discharge chambers adjacent to one another allowing for integration of internal bypass. The wall between these chambers can act as a bypass weir when flows exceed the system's treatment capacity, thus allowing bypass from the pre-treatment chamber directly to the discharge chamber.

External Diversion Weir Structure

This traditional offline diversion method can be used with the MWS Linear in scenarios where runoff is being piped to the system. These simple and effective structures are generally configured with two outflow pipes. The first is a smaller pipe on the upstream side of the diversion weir - to divert low flows over to the MWS Linear for treatment. The second is the main pipe that receives water once the system has exceeded treatment capacity and water flows over the weir.

Flow By Design


This method is one in which the system is placed just upstream of a standard curb or grate inlet to intercept the first flush. Higher flows simply pass by the MWS Linear and into the standard inlet downstream.

End-To-End

The *End-To-End* orientation places the pre-treatment and discharge chambers on opposite ends of the biofiltration chamber therefore minimizing the width of the system to 5 ft (outside dimension). This orientation is perfect for linear projects and street retrofits where existing utilities and sidewalks limit the amount of space available for installation. One limitation of this orientation is bypass must be external.

DVERT Low Flow Diversion

This simple yet innovative diversion trough can be installed in existing or new curb and grate inlets to divert the first flush to the MWS Linear via pipe. It works similar to a rain gutter and is installed just below the opening into the inlet. It captures the low flows and channels them over to a connecting pipe exiting out the wall of the inlet and leading to the MWS Linear. The DVERT is perfect for retrofit and green street applications that allows the MWS Linear to be installed anywhere space is available.

Performance

The MWS Linear continues to outperform other treatment methods with superior pollutant removal for TSS, heavy metals, nutrients, hydrocarbons and bacteria. Since 2007 the MWS Linear has been field tested on numerous sites across the country. With it's advanced pre-treatment chamber and innovative horizontal flow biofilter, the system is able to effectively remove pollutants through a combination of physical, chemical, and biological filtration processes. With the same biological processes found in natural wetlands, the MWS Linear harnesses natures ability to process, transform, and remove even the most harmful pollutants.

Approvals

The MWS Linear has successfully met years of challenging technical reviews and testing from some of the most prestigious and demanding agencies in the nation, and perhaps the world.

Washington State TAPE Approved

The MWS Linear is approved for General Use Level Designation (GULD) for Basic, Enhanced, and Phosphorus treatment at 1 gpm/ft² loading rate. The highest performing BMP on the market for all main pollutant categories.

TSS	Total Phosphorus	Ortho Phosphorus	Nitrogen	Dissolved Zinc	Dissolved Copper	Total Zinc	Total Copper	Motor Oil
85%	64%	67%	45%	66%	38%	69%	50%	95%

DEQ Assignment

The Virginia Department of Environmental Quality assigned the MWS Linear, the highest phosphorus removal rating for manufactured treatment devices to meet the new Virginia Stormwater Management Program (VSMP) Technical Criteria.

Maryland Department Of The Environment Approved

Granted ESD (Environmental Site Design) status for new construction, redevelopment and retrofitting when designed in accordance with the Design Manual.

MASTEP Evaluation

The University of Massachusetts at Amherst – Water Resources Research Center, issued a technical evaluation report noting removal rates up to 84% TSS, 70% Total Phosphorus, 68.5% Total Zinc, and more.

Rhode Island DEM Approved

Approved as an authorized BMP and noted to achieve the following minimum removal efficiencies: 85% TSS, 60% Pathogens, 30% Total Phosphorus, and 30% Total Nitrogen.

Flow Based Sizing

The MWS Linear can be used in stand alone applications to meet treatment flow requirements. Since the MWS Linear is the only biofiltration system that can accept inflow pipes several feet below the surface it can be used not only in decentralized design applications but also as a large central end-of-the-line application for maximum feasibility.

Treatment Flow Sizing Table

Model #	Dimensions	WetlandMedia Surface Area	Treatment Flow Rate (cfs)
MWS-L-4-4	4' x 4'	23 ft ²	0.052
MWS-L-4-6	4' x 6'	32 ft ²	0.073
MWS-L-4-8	4' x 8'	50 ft ²	0.115
MWS-L-4-13	4' x 13'	63 ft ²	0.144
MWS-L-4-15	4' x 15'	76 ft ²	0.175
MWS-L-4-17	4' x 17'	90 ft ²	0.206
MWS-L-4-19	4' x 19'	103 ft ²	0.237
MWS-L-4-21	4' x 21'	117 ft ²	0.268
MWS-L-8-8	8' x 8'	100 ft ²	0.230
MWS-L-8-12	8' x 12'	151 ft ²	0.346
MWS-L-8-16	8' x 16'	201 ft ²	0.462

Volume Based Sizing

Many states require treatment of a water quality volume and do not offer the option of flow based design. The MWS Linear and its unique horizontal flow makes it the only biofilter that can be used in volume based design installed downstream of ponds, detention basins, and underground storage systems.

Treatment Volume Sizing Table

Model #	Treatment Capacity (cu. ft.) @ 24-Hour Drain Down	Treatment Capacity (cu. ft.) @ 48-Hour Drain Down	
MWS-L-4-4	1140	2280	
MWS-L-4-6	1600	3200	
MWS-L-4-8	2518	5036	
MWS-L-4-13	3131	6261	
MWS-L-4-15	3811	7623	
MWS-L-4-17	4492	8984	
MWS-L-4-19	5172	10345	
MWS-L-4-21	5853	11706	
MWS-L-8-8	5036	10072	
MWS-L-8-12	7554	15109	
MWS-L-8-16	10073	20145	

Installation

The MWS Linear is simple, easy to install, and has a space efficient design that offers lower excavation and installation costs compared to traditional tree-box type systems. The structure of the system resembles precast catch basin or utility vaults and is installed in a similar fashion.

The system is delivered fully assembled for quick installation. Generally, the structure can be unloaded and set in place in 15 minutes. Our experienced team of field technicians are available to supervise installations and provide technical support.

Maintenance

Reduce your maintenance costs, man hours, and materials with the MWS Linear. Unlike other biofiltration systems that provide no pre-treatment, the MWS Linear is a self-contained treatment train which incorporates simple and effective pre-treatment.

Maintenance requirements for the biofilter itself are almost completely eliminated, as the pre-treatment chamber removes and isolates trash, sediments, and hydrocarbons. What's left is the simple maintenance of an easily accessible pre-treatment chamber that can be cleaned by hand or with a standard vac truck. Only periodic replacement of low-cost media in the pre-filter cartridges is required for long term operation and there is absolutely no need to replace expensive biofiltration media.

Plant Selection

Abundant plants, trees, and grasses bring value and an aesthetic benefit to any urban setting, but those in the MWS Linear do even more - they increase pollutant removal. What's not seen, but very important, is that below grade the stormwater runoff/flow is being subjected to nature's secret weapon: a dynamic physical, chemical, and biological process working to break down and remove non-point source pollutants. The flow rate is controlled in the MWS Linear, giving the plants more "contact time" so that pollutants are more successfully

decomposed, volatilized and incorporated into the biomass of The MWS Linear's micro/macro flora and fauna.

A wide range of plants are suitable for use in the MWS Linear, but selections vary by location and climate. View suitable plants by selecting the list relative to your project location's hardy zone.

Please visit **www.ModularWetlands.com/Plants** for more information and various plant lists.

Project Name:

Attachment 2 Backup for PDP Hydromodification Control Measures

This is the cover sheet for Attachment 2.

Mark this box if this attachment is empty because the project is exempt from PDF
hydromodification management requirements.

Project Name:				
THIS PAGE IN	TENTIONALLY	LEFT BLANK F	OR DOUBLE-SIDI	ED PRINTING

Project Name:

Indicate which Items are Included:

Attachment Sequence	Contents	Checklist	
Attachment 2a	Hydromodification Management Exhibit (Required)	Included See Hydromodification Management Exhibit Checklist.	
Attachment 2b	Management of Critical Coarse Sediment Yield Areas (WMAA Exhibit is required, additional analyses are optional) See Section 6.2 of the BMP Design Manual.	Exhibit showing project drainage boundaries marked on WMAA Critical Coarse Sediment Yield Area Map (Required) Optional analyses for Critical Coarse Sediment Yield Area Determination 6.2.1 Verification of Geomorphic Landscape Units Onsite 6.2.2 Downstream Systems Sensitivity to Coarse Sediment 6.2.3 Optional Additional Analysis of Potential Critical Coarse Sediment Yield Areas Onsite	
Attachment 2c	Geomorphic Assessment of Receiving Channels (Optional) See Section 6.3.4 of the BMP Design Manual.	Not Performed Included Submitted as separate standalone document	
Attachment 2d	Flow Control Facility Design and Structural BMP Drawdown Calculations (Required) Overflow Design Summary for each structural BMP See Chapter 6 and Appendix G of the BMP Design Manual	Included Submitted as separate stand- alone document	

Project Name:

Use this checklist to ensure the required information has been included on the Hydromodification Management Exhibit:

The Hydromodification Management Exhibit must identify:
Underlying hydrologic soil group
Approximate depth to groundwater
Existing natural hydrologic features (watercourses, seeps, springs, wetlands)
Critical coarse sediment yield areas to be protected OR provide a separate map
showing that the project site is outside of any critical coarse sediment yield areas
Existing topography
Existing and proposed site drainage network and connections to drainage offsite
Proposed grading
Proposed impervious features
Proposed design features and surface treatments used to minimize imperviousness
Point(s) of Compliance (POC) for Hydromodification Management
Existing and proposed drainage boundary and drainage area to each POC (when
necessary, create separate exhibits for pre-development and post-project
conditions)
Structural BMPs for hydromodification management (identify location, type of BMP, and
size/detail).

Attachment 2b is combined with Attachment 1a.

Attachment 2b - CCSYA's Per Google Earth kmz

ATTACHMENT 2d FLOW CONTROL FACILITY DESIGN

Per Attachment 1e, the project will use five Modular Wetland System Linear BMPs for pollutant control. The MWS-Linear BMPs are TAPE-certified and have been used for similar recent projects approved by the city of San Diego. However, this submittal is for project entitlements. It is possible for an equivalent acceptable BMP to be selected during final engineering.

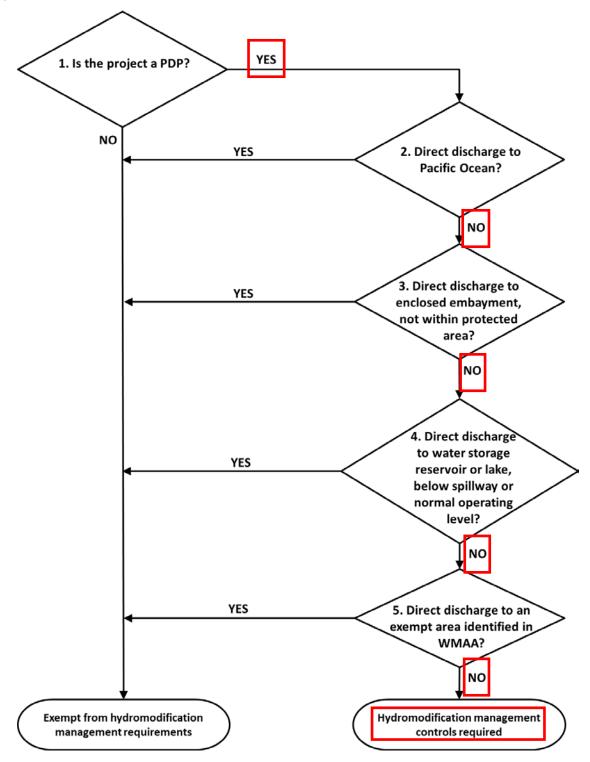
Underground vaults capture the storm runoff and provide flow control prior to the MWS Linear BMPs. For this preliminary SWQMP, the vault volume and draw down time are estimated for the project area draining to the east POC (BMP 1, BMP 2, and BMP 3) and the project area draining to the west POC (BMP 4 and BMP 5). The volume and draw down time are used to verify feasibility of a vault. The vault sizing and type will be selected during final engineering along with structural and other details.

For this preliminary SWQMP, the vault volume is estimated using the BMP Sizing Spreadsheet v3.0 (attached). The vault sizing is based on the *Storm Water Standards* Cistern sizing factors. The project contains hydrologic soil group D, has a flat slope, and is the Lindbergh gage. Furthermore, the preliminary SWQMP does not include a geomorphic assessment so $0.1Q_2$ is assumed. A geomorphic assessment could be performed during final engineering, if desired. In addition, continuous simulation modeling can be performed during final engineering to reduce the flow control volume requirement.

The attached BMP Sizing Spreadsheet results were used to determine the minimum volume as well as the maximum allowable orifice flow (the cistern depth information was not used). Civil Sense, Inc. then determined each vault's dimensions for the required volume. This data was used to determine the drawdown time for each vault. The attached contains the drawdown formula and calculations. The orifice equation is used first based on the vault height. The orifice size for each vault is selected that achieves the maximum allowable orifice outflow under the given height. The outflow and vault volume are then used to determine the drawdown. Each vault has a drawdown less than 96 hours, so meets the hydromodification criteria.

Green Streets

Otay Mesa Road is being improved (widening, curb, gutter, and sidewalk) along the project site. These public street improvements will satisfy water quality requirements by meeting the "green street" standards. In pursuing a green street approach, the project will be exempt from Priority Development Project (PDP) designation, per PDP Exemption Category 2 as stated in Appendix J of the City of San Diego's 2018 *Storm Water Standards*.


A landscape buffer will be provided between the curb and sidewalk. The project will use the following green street elements from *Storm Water Standards* Appendix J.2:

- Vegetated Swales the landscape buffers can contain vegetated swales.
- Sidewalk Planters the landscape buffers can contain sidewalk planters.
- Permeable Surfaces the landscape buffers be permeable surfaces.

These elements will be incorporated along the entire landscape buffer areas within the public right-of-way. The project's maintenance company will be responsible for ongoing maintenance of the landscape buffers. Since the project proposes multi-family development, maintenance of these areas can be readily included in the overall site maintenance. As this project is exempt from PDP requirements, green streets elements are not considered BMPs, thus tracking of greens streets elements will not be required by the SDRWQCB. However, maintenance activities are necessary to ensure BMP's are functioning as designed and will provide storm water quality control (or management) prior to discharging to the MS4. See attached form.

Chapter 1: Policies and Procedural Requirements

may require upgrading and may also disqualify the HMP exemption at the discretion of the City Engineer.

^{*}Direct discharge refers to an uninterrupted hardened conveyance system; Note to be used in conjunction with Node Descriptions.

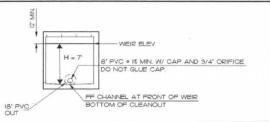
Figure 1-2. Applicability of Hydromodification Management BMP Requirements

Maintenance In.o.

Drawdown Time Calculations

Low Flow Orifice Discharge

1) $Q = C_d \times A \times (2gH)^{0.5}$


Orifice Discharge Equation

C_d = Orifice Coefficient = 0.60 (sharp, clean edge

H = Water Head above orifice

g = Gravitational Acceleration = 32.2 ft/s²

A = Area of the Orifice

MODIFIED STORM DRAIN CLEANOUT TYPE A-6 PER D-9 W/ WEIR (ONLY OUTLET BOX)

ВМР	Orifice Coefficient Cd	Orifice Diameter (inches)	Max. Orifice Area (inch²)	Gravitational Acceleration ft/s ²	H (in)	H (ft)	Orifice Discharge Q (cfs)
1	0.6	0.75	0.44	32.2	84	7	0.039
2	0.6	1.0000	0.79	32.2	84	7	0.069

Storage Volume

Drawdown Time

2) D = V / Q _{Orifice} Drawdown Time

ВМР	Surface Ponding Volume (cf)	Q _{orifice} (cfs)	Drawdown Time (hours)	Conclusion
1	3656.0	0.039	26.0	< 96 hours - No Vector Control Required
2	5618.0	0.069	22.5	< 96 hours - No Vector Control Required

DRAWDOWN

BMP	С	Orifice Dia., in	Area, sq. in.	G	H, ft	Q, cfs	Volume, cf	Drawdown, hrs
1	0.6	2.21	3.84	32.2	9	0.385	28,879	20.8
2	0.6	0.38	0.11	32.2	6	0.009	773	23.1
3	0.6	0.38	0.11	32.2	6	0.009	760	22.7
4	0.6	0.35	0.10	32.2	5	0.007	554	21.4
5	0.6	0.35	0.10	32.2	5	0.007	541	20.9

Appendix G: Guidance for Continuous Simulation and Hydromodification Sizing Factors

G.2.5 Sizing Factors for "Cistern" BMP

Table G.2-6 presents sizing factors for calculating the required volume (V) for a cistern BMP. In this context, a "cistern" is a detention facility that stores runoff and releases it at a controlled rate. A cistern can be a component of a harvest and use system, however the sizing factor method will not account for any retention occurring in the system. The sizing factors were developed assuming runoff is released from the cistern. The sizing factors presented in this section are to meet the hydromodification management performance standard only. The cistern BMP is based on the following assumptions:

- **Cistern configuration**: The cistern is modeled as a 4-foot tall vessel. However, designers could use other configurations (different cistern heights), as long as the lower outlet orifice is sized to properly restrict outflows and the minimum required volume is provided.
- Cistern upper outlet: The upper outlet from the cistern would consist of a weir or other flow control structure with the overflow invert set at an elevation of 7/8 of the water height associated with the required volume of the cistern V. For the assumed 4-foot water depth in the cistern associated with the sizing factor analysis, the overflow invert is assumed to be located at an elevation of 3.5 feet above the bottom of the cistern. The overflow weir would be sized to pass the peak design flow based on the tributary drainage area.

How to use the sizing factors:

Obtain sizing factors from Table G.2-6 based on the project's lower flow threshold fraction of Q_2 , hydrologic soil group, post-project slope, and rain gauge (rainfall basin). Multiply the area tributary to the structural BMP (A, square feet) by the area weighted runoff factor (C, unitless) (see Table G.2-1) by the sizing factors to determine the required volume (V, cubic feet). Select a low flow orifice that will discharge the lower flow threshold flow at the overflow elevation (i.e. when there is 3.5 feet of head over the lower outlet orifice or adjusted head as appropriate if the cistern overflow elevation is not 3.5 feet tall). The civil engineer shall provide the necessary volume of the BMP and the lower outlet orifice detail on the plans.

Additional steps to use this BMP as a combined pollutant control and flow control BMP:

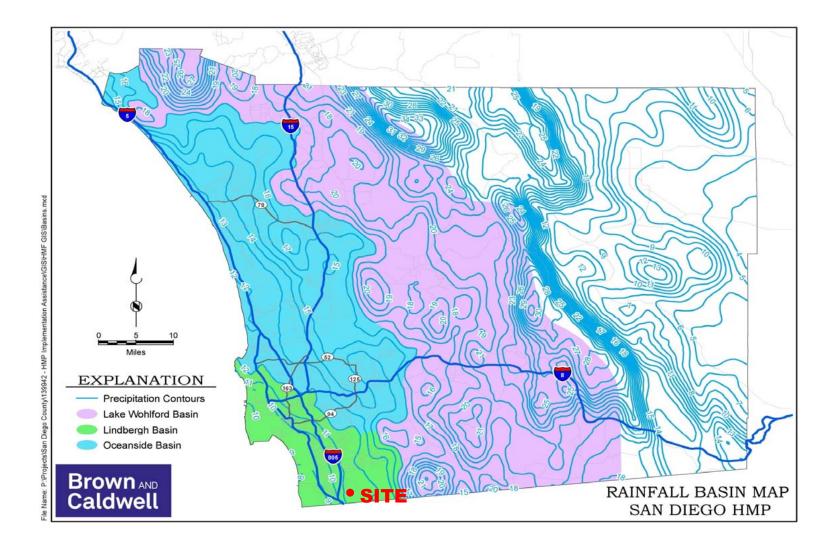
A cistern could be a component of a full retention, partial retention, or no retention BMP depending on how the outflow is disposed. However, use of the sizing factor method for design of the cistern in a combined pollutant control and flow control system is not recommended. The sizing factor method for designing a cistern does not account for any retention or storage occurring in BMPs combined with the cistern (i.e., cistern sized using sizing factors may be larger than necessary because sizing factor method does not recognize volume losses occurring in other elements of a combined system). Furthermore, when the cistern is designed using the sizing factor method, the cistern outflow must be set to the low flow threshold flow for the drainage area, which may be inconsistent with requirements for other elements of a combined system. To optimize a system in which a cistern provides temporary storage for runoff to be either used onsite (harvest and use), infiltrated, or

Appendix G: Guidance for Continuous Simulation and Hydromodification Sizing Factors

biofiltered, project-specific continuous simulation modeling is recommended. Refer to Sections 5.6 and 6.3.6.

Table G.2-6: Sizing Factors for Hydromodification Flow Control Cistern BMPs Designed Using Sizing Factor Method

Lower Flow Threshold	Soil Group	Slope	Rain Gauge	V
0.1Q ₂	A	Flat	Lindbergh	0.54
0.1Q ₂	A	Moderate	Lindbergh	0.51
0.1Q ₂	A	Steep	Lindbergh	0.49
0.1Q ₂	В	Flat	Lindbergh	0.19
0.1Q ₂	В	Moderate	Lindbergh	0.18
0.1Q ₂	В	Steep	Lindbergh	0.18
0.1Q ₂	С	Flat	Lindbergh	0.11
$0.1Q_{2}$	С	Moderate	Lindbergh	0.11
0.1Q ₂	С	Steep	Lindbergh	0.11
0.1Q ₂	D	Flat	Lindbergh	0.09
0.1Q ₂	D	Moderate	Lindbergh	0.09
0.1Q ₂	D	Steep	Lindbergh	0.09
0.1Q ₂	A	Flat	Oceanside	0.26
$0.1Q_{2}$	A	Moderate	Oceanside	0.25
0.1Q ₂	A	Steep	Oceanside	0.25
0.1Q ₂	В	Flat	Oceanside	0.16
0.1Q ₂	В	Moderate	Oceanside	0.16
0.1Q ₂	В	Steep	Oceanside	0.16
0.1Q ₂	С	Flat	Oceanside	0.14
0.1Q ₂	С	Moderate	Oceanside	0.14
0.1Q ₂	С	Steep	Oceanside	0.14
0.1Q ₂	D	Flat	Oceanside	0.12
$0.1Q_{2}$	D	Moderate	Oceanside	0.12
0.1Q ₂	D	Steep	Oceanside	0.12
0.1Q ₂	A	Flat	L Wohlford	0.53
0.1Q ₂	A	Moderate	L Wohlford	0.49
0.1Q ₂	A	Steep	L Wohlford	0.49
0.1Q ₂	В	Flat	L Wohlford	0.28
0.1Q ₂	В	Moderate	L Wohlford	0.28
$0.1Q_2$	В	Steep	L Wohlford	0.28


Appendix G: Guidance for Continuous Simulation and Hydromodification Sizing Factors

Lower Flow Threshold	Soil Group	Slope	Rain Gauge	v
$0.1Q_{2}$	С	Flat	L Wohlford	0.14
$0.1Q_{2}$	С	Moderate	L Wohlford	0.14
$0.1Q_{2}$	С	Steep	L Wohlford	0.14
$0.1Q_{2}$	D	Flat	L Wohlford	0.12
$0.1Q_{2}$	D	Moderate	L Wohlford	0.12
$0.1Q_{2}$	D	Steep	L Wohlford	0.12

 Q_2 = 2-year pre-project flow rate based upon partial duration analysis of long-term hourly rainfall records

V = Cistern volume sizing factor

BMP Sizing Spreadsheet V3.0

Project Name:	PA-61
Project Applicant:	Pardee Homes
Jurisdiction:	City of San Diego
Parcel (APN):	645-080-16
Hydrologic Unit:	Otay Valley
Rain Gauge:	Lindbergh
Total Project Area (sf):	3,419,411
Channel Susceptibility:	High

	BMP Sizing Spreadsheet V3.0						
Project Name:	PA-61	Hydrologic Unit:	Otay Valley				
Project Applicant:	Pardee Homes	Rain Gauge:	Lindbergh				
Jurisdiction:	City of San Diego	Total Project Area:	3,419,411				
Parcel (APN):	645-080-16	Low Flow Threshold:	0.1Q2				
BMP Name:	BMP 1	BMP Type:	Cistern				
BMP Native Soil Type:	D	BMP Infiltration Rate (in/hr):	NA				

		Ar	eas Draining to BMP			HMP Sizing Factors	Minimum BMP Size
DMA Name	Area (sf)	Pre Project Soil Type	Pre-Project Slope	Post Project Surface Type	Area Weighted Runoff Factor (Table G.2-1) ¹	Volume	Volume (CF)
Roofs	164,413	D	Flat	Roofs	1.0	0.09	14797
Hardscape	24,868	D	Flat	Concrete	1.0	0.09	2238
Streets	106,336	D	Flat	Concrete	1.0	0.09	9570
Driveways	17,379	D	Flat	Concrete	1.0	0.09	1564
Landscaping	78,775	D	Flat	Landscape	0.1	0.09	709
						0	0
						0	0
						0	0
						0	0
						0	0
						0	0
						0	0
						0	0
						0	0
						0	0
MP Tributary Area	391,771					Minimum BMP Size	28879
•	_					Proposed BMP Size*	28879

* Assumes standard configuration

	FTOPOSEU BIVIF SIZE	20079
Standard Cistern Depth (Overflow Elevation)	3.5	ft
Provided Cistern Depth (Overflow Elevation)	3.5	ft
Minimum Required Cistern Footprint)	8251	CF

Notes:

- I. Runoff factors which are used for hydromodification management flow control (Table G.2-1) are different from the runoff factors used for pollutant control BMP sizing (Table B.1-1). Table references are taken from the San Diego Region Model BMP Design Manu

Describe the BMP's in sufficient detail in your PDP SWQMP to demonstrate the area, volume, and other criteria can be met within the constraints of the site.

BMP's must be adapted and applied to the conditions specific to the development project such as unstable slopes or the lack of available head. Designated Staff have final review and approval authority over the project design.

This BMP Sizing Spreadsheet has been updated in conformance with the San Diego Region Model BMP Design Manual, April 2018. For questions or concerns please contact the jurisdiction in which your project is located.

	BMP Sizing Spreadsheet V3.0					
Project Name:	PA-61	Hydrologic Unit:	Otay Valley			
Project Applicant:	Pardee Homes	Rain Gauge:	Lindbergh			
Jurisdiction:	City of San Diego	Total Project Area:	3,419,411			
Parcel (APN):	645-080-16	Low Flow Threshold:	0.1Q2			
BMP Name	BMP 1	BMP Type:	Cistern			

DMA Name	Rain Gauge	Pre-devel Soil Type	oped Condition Slope	Unit Runoff Ratio (cfs/ac)	DMA Area (ac)	Orifice Flow - %Q ₂ (cfs)	Orifice Area (in²)
Roofs	Lindbergh	D	Flat	0.429	3.774	0.162	2.39
Hardscape	Lindbergh	D	Flat	0.429	0.571	0.024	0.36
Streets	Lindbergh	D	Flat	0.429	2.441	0.105	1.55
Driveways	Lindbergh	D	Flat	0.429	0.399	0.017	0.25
Landscaping	Lindbergh	D	Flat	0.429	1.808	0.078	1.14
·							·
·							

3.50	0.386	5.69	2.69
Max Orifice Head	Max Tot. Allowable	Max Tot. Allowable	Max Orifice
Max Offfice Head	Orifice Flow	Orifice Area	Diameter
(feet)	(cfs)	(in²)	(in)

Provide Hand Calc.	0.385	5.68	2.690
Average outflow during surface drawdown	Max Orifice Outflow	Actual Orifice Area	Selected Orifice Diameter
(cfs)	(cfs)	(in ²)	(in)

Drawdown (Hrs)

Provide Hand
Calculation

	BMP Sizing Spreadsheet V3.0				
Project Name:	PA-61	Hydrologic Unit:	Otay Valley		
Project Applicant:	Pardee Homes	Rain Gauge:	Lindbergh		
Jurisdiction:	City of San Diego	Total Project Area:	3,419,411		
Parcel (APN):	645-080-16	Low Flow Threshold:	0.1Q2		
BMP Name:	BMP 2	BMP Type:	Cistern		
BMP Native Soil Type:	D	BMP Infiltration Rate (in/hr):	NA		

		Are	eas Draining to BMP			HMP Sizing Factors	Minimum BMP Size
DMA Name	Area (sf)	Pre Project Soil Type	Pre-Project Slope	Post Project Surface Type	Area Weighted Runoff Factor (Table G.2-1) ¹	Volume	Volume (CF)
Roofs	0	D	Flat	Roofs	1.0	0.09	0
Hardscape	1,091	D	Flat	Concrete	1.0	0.09	98
Streets	7,400	D	Flat	Concrete	1.0	0.09	666
Driveways	0	D	Flat	Concrete	1.0	0.09	0
Landscaping	1,029	D	Flat	Landscape	0.1	0.09	9
						0	0
						0	0
						0	0
						0	0
						0	0
						0	0
						0	0
						0	0
						0	0
						0	0
BMP Tributary Area	9,520			-		Minimum BMP Size	773
						Proposed BMP Size*	773

* Assumes standard configuration

	Proposed Bivip Size	773
Standard Cistern Depth (Overflow Elevation)	3.5	ft
Provided Cistern Depth (Overflow Elevation)	3.5	ft
Minimum Required Cistern Footprint)	221	CF

Notes:

- I. Runoff factors which are used for hydromodification management flow control (Table G.2-1) are different from the runoff factors used for pollutant control BMP sizing (Table B.1-1). Table references are taken from the San Diego Region Model BMP Design Manu

Describe the BMP's in sufficient detail in your PDP SWQMP to demonstrate the area, volume, and other criteria can be met within the constraints of the site.

BMP's must be adapted and applied to the conditions specific to the development project such as unstable slopes or the lack of available head. Designated Staff have final review and approval authority over the project design.

This BMP Sizing Spreadsheet has been updated in conformance with the San Diego Region Model BMP Design Manual, April 2018. For questions or concerns please contact the jurisdiction in which your project is located.

	BMP Sizing Spreadsheet V3.0				
Project Name:	PA-61	Hydrologic Unit:	Otay Valley		
Project Applicant:	Pardee Homes	Rain Gauge:	Lindbergh		
Jurisdiction:	City of San Diego	Total Project Area:	3,419,411		
Parcel (APN):	645-080-16	Low Flow Threshold:	0.1Q2		
BMP Name	BMP 2	BMP Type:	Cistern		

DMA Name	Rain Gauge	Pre-devel Soil Type	oped Condition Slope	Unit Runoff Ratio (cfs/ac)	DMA Area (ac)	Orifice Flow - %Q ₂ (cfs)	Orifice Area (in ²)
Roofs	Lindbergh	D	Flat	0.429	0.000	0.000	0.00
Hardscape	Lindbergh	D	Flat	0.429	0.025	0.001	0.02
Streets	Lindbergh	D	Flat	0.429	0.170	0.007	0.11
Driveways	Lindbergh	D	Flat	0.429	0.000	0.000	0.00
Landscaping	Lindbergh	D	Flat	0.429	0.024	0.001	0.01
			·				·
			·				·
·							·

3.50	0.009	0.14	0.42
Max Orifice Head	Max Tot. Allowable	Max Tot. Allowable	Max Orifice
iviax Offfice Head	Orifice Flow	Orifice Area	Diameter
(feet)	(cfs)	(in²)	(in)

Provide Hand Calc.	0.009	0.14	0.420
Average outflow during surface drawdown	Max Orifice Outflow	Actual Orifice Area	Selected Orifice Diameter
(cfs)	(cfs)	(in ²)	(in)

Drawdown (Hrs)

Provide Hand
Calculation

	BMP Sizing Spreadsheet V3.0				
Project Name:	PA-61	Hydrologic Unit:	Otay Valley		
Project Applicant:	Pardee Homes	Rain Gauge:	Lindbergh		
Jurisdiction:	City of San Diego	Total Project Area:	3,419,411		
Parcel (APN):	645-080-16	Low Flow Threshold:	0.1Q2		
BMP Name:	BMP 3	BMP Type:	Cistern		
BMP Native Soil Type:	D	BMP Infiltration Rate (in/hr):	NA		

		A	Areas Draining to BMP			HMP Sizing Factors	Minimum BMP Size
DMA Name	Area (sf)	Pre Project Soil Type	Pre-Project Slope	Post Project Surface Type	Area Weighted Runoff Factor (Table G.2-1) ¹	Volume	Volume (CF)
Roofs	0	D	Flat	Roofs	1.0	0.09	0
Hardscape	1,236	D	Flat	Concrete	1.0	0.09	111
Streets	7,084	D	Flat	Concrete	1.0	0.09	638
Driveways	0	D	Flat	Concrete	1.0	0.09	0
Landscaping	1,194	D	Flat	Landscape	0.1	0.09	11
						0	0
						0	0
						0	0
						0	0
						0	0
						0	0
						0	0
						0	0
						0	0
						0	0
BMP Tributary Area	9,514		_			Minimum BMP Size	760

 Assumes standard configurat

Proposed BMP Size* 760 Standard Cistern Depth (Overflow Elevation) Provided Cistern Depth (Overflow Elevation) Minimum Required Cistern Footprint) 217 CF

Notes:

1. Runoff factors which are used for hydromodification management flow control (Table G.2-1) are different from the runoff factors used for pollutant control BMP sizing (Table B.1-1). Table references are taken from the San Diego Region Model BMP Design Manı

Describe the BMP's in sufficient detail in your PDP SWQMP to demonstrate the area, volume, and other criteria can be met within the constraints of the site.

BMP's must be adapted and applied to the conditions specific to the development project such as unstable slopes or the lack of available head. Designated Staff have final review and approval authority over the project design.

This BMP Sizing Spreadsheet has been updated in conformance with the San Diego Region Model BMP Design Manual, April 2018. For questions or concerns please contact the jurisdiction in which your project is located.

	BMP Sizing Spreadsheet V3.0					
Project Name:	PA-61	Hydrologic Unit:	Otay Valley			
Project Applicant:	Pardee Homes	Rain Gauge:	Lindbergh			
Jurisdiction:	City of San Diego	Total Project Area:	3,419,411			
Parcel (APN):	645-080-16	Low Flow Threshold:	0.1Q2			
BMP Name	BMP 3	BMP Type:	Cistern			

DMA Name	Rain Gauge	Pre-devel Soil Type	oped Condition Slope	Unit Runoff Ratio (cfs/ac)	DMA Area (ac)	Orifice Flow - %Q ₂ (cfs)	Orifice Area (in ²)
Roofs	Lindbergh	D	 Flat	0.429	0.000	0.000	0.00
Hardscape	Lindbergh	D	Flat	0.429	0.028	0.001	0.02
Streets	Lindbergh	D	Flat	0.429	0.163	0.007	0.10
Driveways	Lindbergh	D	Flat	0.429	0.000	0.000	0.00
Landscaping	Lindbergh	D	Flat	0.429	0.027	0.001	0.02
·			·				·
•							
			·				·

3.50	0.009	0.14	0.42
Max Orifice Head	Max Tot. Allowable	Max Tot. Allowable	Max Orifice
iviax Offfice Head	Orifice Flow	Orifice Area	Diameter
(feet)	(cfs)	(in²)	(in)

Provide Hand Calc.	0.009	0.14	0.420
Average outflow during surface drawdown	Max Orifice Outflow	Actual Orifice Area	Selected Orifice Diameter
(cfs)	(cfs)	(in ²)	(in)

Drawdown (Hrs)

Provide Hand
Calculation

	BMP Sizing Spreadsheet V3.0					
Project Name:	PA-61	Hydrologic Unit:	Otay Valley			
Project Applicant:	Pardee Homes	Rain Gauge:	Lindbergh			
Jurisdiction:	City of San Diego	Total Project Area:	3,419,411			
Parcel (APN):	645-080-16	Low Flow Threshold:	0.1Q2			
BMP Name:	BMP 4	BMP Type:	Cistern			
BMP Native Soil Type:	D	BMP Infiltration Rate (in/hr):	NA			

		,	Areas Draining to BMP			HMP Sizing Factors	Minimum BMP Size
DMA Name	Area (sf)	Pre Project Soil Type	Pre-Project Slope	Post Project Surface Type	Area Weighted Runoff Factor (Table G.2-1) ¹	Volume	Volume (CF)
Roofs	0	D	Flat	Roofs	1.0	0.09	0
Hardscape	1,853	D	Flat	Concrete	1.0	0.09	167
Streets	4,211	D	Flat	Concrete	1.0	0.09	379
Driveways	0	D	Flat	Concrete	1.0	0.09	0
Landscaping	971	D	Flat	Landscape	0.1	0.09	9
						0	0
						0	0
						0	0
						0	0
						0	0
						0	0
						0	0
						0	0
						0	0
						0	0
BMP Tributary Area	7,035					Minimum BMP Size	554

* Assumes standard configuration

	Proposed BMP Size*	554
Standard Cistern Depth (Overflow Elevation)	3.5	ft
Provided Cistern Depth (Overflow Elevation)	3.5	ft
Minimum Required Cistern Footprint)	158	CF

Notes:

- I. Runoff factors which are used for hydromodification management flow control (Table G.2-1) are different from the runoff factors used for pollutant control BMP sizing (Table B.1-1). Table references are taken from the San Diego Region Model BMP Design Manu

Describe the BMP's in sufficient detail in your PDP SWQMP to demonstrate the area, volume, and other criteria can be met within the constraints of the site.

BMP's must be adapted and applied to the conditions specific to the development project such as unstable slopes or the lack of available head. Designated Staff have final review and approval authority over the project design.

This BMP Sizing Spreadsheet has been updated in conformance with the San Diego Region Model BMP Design Manual, April 2018. For questions or concerns please contact the jurisdiction in which your project is located.

	BMP Sizing Spreadsheet V3.0					
Project Name:	PA-61	Hydrologic Unit:	Otay Valley			
Project Applicant:	Pardee Homes	Rain Gauge:	Lindbergh			
Jurisdiction:	City of San Diego	Total Project Area:	3,419,411			
Parcel (APN):	645-080-16	Low Flow Threshold:	0.1Q2			
BMP Name	BMP 4	BMP Type:	Cistern			

DMA Name	Rain Gauge	Pre-devel Soil Type	oped Condition Slope	Unit Runoff Ratio (cfs/ac)	DMA Area (ac)	Orifice Flow - %Q ₂ (cfs)	Orifice Area (in ²)
Roofs	Lindbergh	D	Flat	0.429	0.000	0.000	0.00
Hardscape	Lindbergh	D	Flat	0.429	0.043	0.002	0.03
Streets	Lindbergh	D	Flat	0.429	0.097	0.004	0.06
Driveways	Lindbergh	D	Flat	0.429	0.000	0.000	0.00
Landscaping	Lindbergh	D	Flat	0.429	0.022	0.001	0.01
			·				·

3.50	0.007	0.10	0.36
Max Orifice Head	Max Tot. Allowable	Max Tot. Allowable	Max Orifice
Max Offfice Head	Orifice Flow	Orifice Area	Diameter
(feet)	(cfs)	(in²)	(in)

Provide Hand Calc.	0.007	0.10	0.360
Average outflow during surface drawdown	Max Orifice Outflow	Actual Orifice Area	Selected Orifice Diameter
(cfs)	(cfs)	(in ²)	(in)

Drawdown (Hrs)

Provide Hand
Calculation

BMP Sizing Spreadsheet V3.0				
Project Name:	PA-61	Hydrologic Unit:	Otay Valley	
Project Applicant:	Pardee Homes	Rain Gauge:	Lindbergh	
Jurisdiction:	City of San Diego	Total Project Area:	3,419,411	
Parcel (APN):	645-080-16	Low Flow Threshold:	0.1Q2	
BMP Name:	BMP 5	BMP Type:	Cistern	
BMP Native Soil Type:	D	BMP Infiltration Rate (in/hr):	NA	

		Are	eas Draining to BMP			HMP Sizing Factors	Minimum BMP Size
DMA Name	Area (sf)	Pre Project Soil Type	Pre-Project Slope	Post Project Surface Type	Area Weighted Runoff Factor (Table G.2-1) ¹	Volume	Volume (CF)
Roofs	0	D	Flat	Roofs	1.0	0.09	0
Hardscape	1,567	D	Flat	Concrete	1.0	0.09	141
Streets	4,342	D	Flat	Concrete	1.0	0.09	391
Driveways	0	D	Flat	Concrete	1.0	0.09	0
Landscaping	1,059	D	Flat	Landscape	0.1	0.09	10
						0	0
						0	0
						0	0
						0	0
						0	0
						0	0
						0	0
			•			0	0
						0	0
						0	0
BMP Tributary Area	6,968			-		Minimum BMP Size	541
						Proposed BMP Size*	541

* Assumes standard configuration

	Proposed Bivip Size	541
Standard Cistern Depth (Overflow Elevation)	3.5	ft
Provided Cistern Depth (Overflow Elevation)	3.5	ft
Minimum Required Cistern Footprint)	155	CF

Notes:

- I. Runoff factors which are used for hydromodification management flow control (Table G.2-1) are different from the runoff factors used for pollutant control BMP sizing (Table B.1-1). Table references are taken from the San Diego Region Model BMP Design Manu

Describe the BMP's in sufficient detail in your PDP SWQMP to demonstrate the area, volume, and other criteria can be met within the constraints of the site.

BMP's must be adapted and applied to the conditions specific to the development project such as unstable slopes or the lack of available head. Designated Staff have final review and approval authority over the project design.

This BMP Sizing Spreadsheet has been updated in conformance with the San Diego Region Model BMP Design Manual, April 2018. For questions or concerns please contact the jurisdiction in which your project is located.

BMP Sizing Spreadsheet V3.0				
Project Name:	PA-61	Hydrologic Unit:	Otay Valley	
Project Applicant:	Pardee Homes	Rain Gauge:	Lindbergh	
Jurisdiction:	City of San Diego	Total Project Area:	3,419,411	
Parcel (APN):	645-080-16	Low Flow Threshold:	0.1Q2	
BMP Name	BMP 5	BMP Type:	Cistern	

DMA Name	Rain Gauge	Pre-devel Soil Type	oped Condition Slope	Unit Runoff Ratio (cfs/ac)	DMA Area (ac)	Orifice Flow - %Q ₂ (cfs)	Orifice Area (in²)
Roofs	Lindbergh	D	Flat	0.429	0.000	0.000	0.00
Hardscape	Lindbergh	D	Flat	0.429	0.036	0.002	0.02
Streets	Lindbergh	D	Flat	0.429	0.100	0.004	0.06
Driveways	Lindbergh	D	Flat	0.429	0.000	0.000	0.00
Landscaping	Lindbergh	D	Flat	0.429	0.024	0.001	0.02

3.50	0.007	0.10	0.36
Max Orifice Head	Max Tot. Allowable	Max Tot. Allowable	Max Orifice
Max Offfice Head	Orifice Flow	Orifice Area	Diameter
(feet)	(cfs)	(in²)	(in)

Provide Hand Calc.	0.007	0.10	0.360
Average outflow during surface drawdown	Max Orifice Outflow	Actual Orifice Area	Selected Orifice Diameter
(cfs)	(cfs)	(in ²)	(in)

Drawdown (Hrs)

Provide Hand
Calculation

Attachment 3 Structural BMP Maintenance Information

This is the cover sheet for Attachment 3.

Project Name:			
THIS PAGE INTENTIONALLY	Y LEFT BLANK FOR	DOUBLE-SIDED PI	RINTING

Indicate which Items are Included:

Attachment Sequence	Contents	Checklist
Attachment 3	Maintenance Agreement (Form	Included
Attachment 3	DS-3247) (when applicable)	Not applicable

Use this checklist to ensure the required information has been included in the Structural BMP Maintenance Information Attachment:

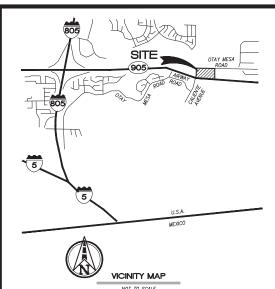
Attatii	ment 3. For private entity operation and maintenance, Attachment 3 must
include	a Storm Water Management and Discharge Control Maintenance Agreement (Form
DS-324	7). The following information must be included in the exhibits attached to the
mainte	nance agreement:
	Vicinity map
	Site design BMPs for which DCV reduction is claimed for meeting the pollutant
г	control obligations.
	BMP and HMP location and dimensions
	BMP and HMP specifications/cross section/model
	Maintenance recommendations and frequency
Ī	LID features such as (permeable paver and LS location, dim, SF).

This is a Preliminary SWQMP. Attachment 3 will be provided in the Final SWQMP.

Attachment 4 Copy of Plan Sheets Showing Permanent Storm Water BMPs

This is the cover sheet for Attachment 4.

Project Name:				
THIS PAGE IN	TENTIONALLY	LEFT BLANK F	OR DOUBLE-SID	ED PRINTING


Use this checklist to ensure the required information has been included on the plans:

The plans must identify:
Structural BMP(s) with ID numbers matching Form I-6 Summary of PDP Structural BMPs The grading and drainage design shown on the plans must be consistent with the delineation of DMAs shown on the DMA exhibit
Details and specifications for construction of structural BMP(s)
Signage indicating the location and boundary of structural BMP(s) as required by the City Engineer
How to access the structural BMP(s) to inspect and perform maintenance
Features that are provided to facilitate inspection (e.g., observation ports, cleanouts, silt posts, or other features that allow the inspector to view necessary components of the structural BMP and compare to maintenance thresholds)
Manufacturer and part number for proprietary parts of structural BMP(s) when applicable
Maintenance thresholds specific to the structural BMP(s), with a location-specific frame of reference (e.g., level of accumulated materials that triggers removal of the materials, to be identified based on viewing marks on silt posts or measured with a survey rod with respect to a fixed benchmark within the BMP) Recommended equipment to perform maintenance
When applicable, necessary special training or certification requirements for inspection and maintenance personnel such as confined space entry or hazardous waste management
Include landscaping plan sheets showing vegetation requirements for vegetated structural BMP(s)
All BMPs must be fully dimensioned on the plans
When proprietary BMPs are used, site specific cross section with outflow, inflow
and model number shall be provided. Broucher photocopies are not allowed.

This is a Preliminary WQMP. The preliminary structural BMPs and above checked items are shown on the Vesting Tentative Map. The remaining checked items will be included on the final engineering plans.

Project Name:				
THIS PAGE IN	TENTIONALLY	LEFT BLANK F	OR DOUBLE-SIDI	ED PRINTING

CALIFORNIA TERRACES - PA61

VESTING TENTATIVE MAP NO. 2152396 SITE DEVELOPMENT PERMIT NO. 2152399 MASTER PLANNED DEVELOPMENT PERMIT NO. 2192984 NEIGHBORHOOD DEVELOPMENT PERMIT NO. 2192974 COMMUNITY PLAN AMENDMENT LAND USE NO. 2152393 STREET VACATION NO. 2152395 AND REZONE NO. 2152398 CITY OF SAN DIEGO

OWNER / DEVELOPER

PARDEE HOMES 13400 SABRE SPRINGS PARKWAY, SUITE 200 SAN DIEGO, CA 92128 PHONE (858) 794-2500 FAX (858) 794-2599

CIVIL ENGINEER

CIVIL SENSE, INC. 13475 DANIELSON STREET, SUITE 150 POWAY CA 92064 PHONE (858) 843-4253

LANDSCAPE ARCHITECT

PLACEWORKS 3 MACARTHUR PLACE, SUITE 1100 SANTA ANA, CA 92707 PHONE: (714) 966-9220

LEGAL DESCRIPTION

PARCEL 1: PORTION OF THE NORTHWEST QUARTER OF THE NORTHWEST QUARTER OF ALL THAT PORTION OF THE NORTHWEST QUARTER OF THE NORTHWEST QUARTER OF SECTION 32 TOWNSHIP IS SOUTH, RANGE I WEST, SAN BEFRANGIMO BASE AND MERIDIAN IN THE OTY OF SAN DIEGO COUNTY OF SAN DIEGO, STATE OF CALFORNIA, ACCORDING TO THE OFFICIAL PLAT THEREOF, DESCRIBED AS FOLLOWS:

PUBLIC AFFAIRS

SOUTHWEST STRATEGIES, LLC 401 B STREET, SUITE 150 SAN DIEGO, CA 92101 PHONE (858) 541-7800 FAX (858) 541-7863

BEGINNING AT THE NORTHWEST CORNER OF SAID SECTION 32. THENCE ALONG THE BEGINNING AT THE NORTHWEST COMMER OF SAID SECTION 32, THENCE ALONG THE WESTERLY LINE OF SAID SECTION 32, SOUTH OFFICE'S WEST 348, SEP EET; THENCE SOUTH 721639" EAST 1107.21 FEET TO AN INTERSECTION WITH THE EASTERLY UNE. OF SAID MORTHWEST GOVERNER OF THE NORTHWEST GOVERNER OF SAID SECTION 32; THENCE ALONG SAID EASTERLY LINE MORTH ODZENI'S ABOUT SECTION 32; THENCE ALONG SAID NORTHERS OF SAID SECTION 32; THENCE ALONG SAID NORTHERS UNE MORTH 864852" WEST 1332.08 FEET TO THE POINT OF ESIGNMEN.

EXCEPTING THEREFROM ONE-HALF OF ALL CRUDE OIL, PETROLEUM, GAS, BREA, ASPHALTUM AND KINDRED SUBSTANCES AND OTHER MINERALS UNDER AND IN SAID LAND. ALSO EXCEPTING THEREFROM THOSE PORTIONS THEREO'R ACQUIRED BY THE CITY OF SAN DEGO UNDER FINAL ORGER OF COMBERNATION, SUSUED OUT OF SUPERFOR COURT CASE NO. 708562—1, RECORDED JUNE 9, 1999 AS FILE NO. 1999—0400948, OF OFFICIAL RECORDS.

ALSO EXCEPTING THEREFROM THOSE PORTIONS THEREOF ACQUIRED BY THE STATE OF CALIFORNIA UNIDER FINAL ORDER OF CONDEMNATION ISSUED OUT OF SUPERIOR COURT CASE NO. GIC 867930, RECORDED AUGUST 15, 2007 AS FILE NO. 2007–0544805 OFFICIAL RECORDS.

PARCEL 2:
THAT PORTION OF THE WEST ONE HALF OF THE NORTHWEST QUARTER OF SECTION 32,
TOWNSHIP 15 SOUTH, RANGE I WEST, SAN BERNARDINO MERIDIAN, IN THE CITY OF SAN
DIEGO, COUNTY OF SAN DIEGO, STATE OF CALIFORNIA, ACCORDING TO THE OFFICIAL PLAT
THEREOF, MORE PARTICULARLY DESCRIBED AS "FRANCEL 2" IN QUITCLAM DEED TO
RANCHO VILLA APARTMENTS NO. 2 LIC., RECORDED ON JUNE 24, 2022 AS DOC \$
2020—5552345 IN THE OFFICE OF THE COUNTY RECORDED OF SAID COUNTY, LYNNG
NORTHERLY OF THE FOLLOWING DESCRIBED LINE:

COMMENCING AT A CITY OF SAN DIEGO WELL MONUMENT WITH BRASS DISK STAMPED
"CITY ENGINEER", SHOWN AS THE NORTHHEST CORNER OF SAM SECTION 32, AND NOTED
35. TPSBGGGG 'ON RECCORD OF SURVEY MAR ON, 16894, FILED ON MARCH OZ. 2001 IN
THE OFFICE OF THE COUNTY RECORDER OF SAM DEGO COUNTY AS FILE NO.
2001—102057, SAD BRASS DISK BRASS NO.0714°E., 785.386 METERS FROM A 2 INCH
IRON PIPE WITH TAG STAMPED TRCE 9994", NOTED AS TPS94008" AND SHOWN BY SAM
PLAS THE WEST CHARTER CORNER OF SAM SECTION 32. THENE SOUTH STAMPED
111.244 METERNIO THE POINT OF BEGINNING, THENCE (1) SECTION 32. THENE SOUTHER,
111.244 METERNIO THE POINT OF BEGINNING, THENCE (1) SECTION 32. THENE SOUTHER,
111.245 METERNIO THE POINT OF BEGINNING, THENCE (1) SECTION 32. THENE SOUTHER,
111.245 METERNIO THE POINT OF BEGINNING, THENCE (1) SECTION 32. METERN
111.245 METERNIO THE POINT OF BEGINNING, THENCE (2) SECTION 32. THENCE (3)
11.245 METERNIO THE POINT OF BEGINNING, THENCE (3) SECTION 32. THENCE (3)
11.245 METERNIO THE POINT OF BEGINNING, THENCE (4) SECTION 34. METERNIO (4)
11.245 METERNIO THE SECTION 34. METERNIO (4)
11.245 METERNIO THE SECTION 34. METERNIO (5)
11.245 METERNIO THE SECTION 34. METERNIO (6)
11.245 METERNIO THE SECTION 34. METERNIO (7)
11.247 METERNIO THE SECTION 34. METERNIO THENCE (1)
11.247 METERNIO THE SECTION 34. METERNIO THENCE (1)
11.247 METERNIO THE SECTION 34. METERNIO THENCE (1)
11.247 METERNIO THE SECTION 34. METERNIO THE SECTION 35. SECTION 32.
11.350 METERNI, THENCE (4)
11.2487 METERNIO THE METERNIO THE MORTHMENT OUARTER CORNER OF SAM SECTION 32.
11.350 METERNI, THENCE (1)
11.2487 METERNIO THE METERNIO THE MORTHMENT OUARTER CORNER OF SAM SECTION 32.
11.350 METERNIO THE METERNIO THE MORTHMENT OUARTER CORNER OF SAM SECTION 32.
11.350 METERNIO THE METERNIO THE MORTHMENT OUARTER CORNER OF SAM SECTION 32.
11.350 METERNIO THE METERNIO THE MORTHMENT OF SAM SECTION 32.
11.350 METERNIO THE METERNIO THE MORTHM COMMENCING AT A CITY OF SAN DIEGO WELL MONUMENT WITH BRASS DISK STAMPED

THE BEARINGS AND DISTANCES USED IN THE ABOVE DISCRIPTION ARE BASED ON THE CALIFORNIA COORDINATE SYSTEM OF 1983, ZONE 6, HPON HEPOCH 1991.35, DISTANCES ARE IN METERS UNESS OHTERWES NOTED, MULTPY DISTANCES BY 0.9999740 TO OBTAIN GROUND LEVEL DISTANCES. TO CONVERT METERS TO US SURVEY FOOT MULTIPLY

GENERAL NOTES

1.	RESIDENTIAL LOTS: COMMERCIAL LOTS:	1 TOTAL AREA: 9.20 ACRES 1 TOTAL AREA: 4.50 ACRES	
2. 3. 4.	GAS AND ELECTRIC:	SUBDIVISION IS 14.60 ACRES GROSS SAN DIEGO GAS AND ELECTRIC ATET	

TELEPHONE: ATAT
CABLE TELEVISION: COX
SCHER AND WAITER: PRIVATE
PRIVATE
FIRE: PRIVATE
FIRE: PRIVATE
FIRE: PRIVATE
FIRE: SHOULD DISTRICT
ALL NEW UTILITIES WILL BE LOCATED UNDERGROUND
EXISTING TOPOGRAPHY CONTURE INTERVAL: 1 FEET
PROJECT DESIGN CONSULTANTS AERIAL PHOTOGRAPHY DATED: 01/17/2018

CENTERLINE CONTROL MONUMENT INTERSECTION OF OTAY MESA ROAD AND HERITATE ROAD CITY OF SAN DIEGO VERTICAL CONTROL RECORD DATED AS OF 1999, INDEX NO. 1469 17701 SO4-568 FT MSL NOTO-29 ELEVATION: DATUM:

12. ALL PROPOSED SLOPES ARE 2-1 UNLESS NOTED OTHERWISE
13. GRADING SHOWN HEREON IS PRELIMINARY AND IS SUBJECT TO MODIFICATION ON FINAL DESIGN.
14. LOT DIMENSIONS AND SETBACK DIMENSIONS SHOWN HEREON ARE PRELIMINARY AND ARE SUBJECT TO MODIFICATION ON FINAL DESIGN.
15. ALL EXISTING BUILDINGS AND STRUCTURES SHALL BE REMOVED.
16. ALL EXISTING BUILDINGS AND STRUCTURES SHALL BE REMOVED.
17. ALL PRIVILE SHALL LOCAL AND PRIVILET STREET WITH A GYADE BREAK OF 1% OR OBJECT, SHALL HAVE VERTICAL CORVES IN ACCORDANCE WITH THE COTT'S TREET WITH A GYADE BREAK OF 1% OR OBJECT, SHALL HAVE VERTICAL CORVES IN ACCORDANCE WITH THE COTT'S TREET WILL REQUIRE AND ENGOGLOMENT MAINTENANCE AND REMOVAL ACCEPTANT WILL REQUIRE AND ENGOGLOMENT MAINTENANCE AND REMOVAL ACCEPTANT OR PUBLIC EASEMENT WILL REQUIRE AND ENCOACHMENT MAINTENANCE AND REMOVAL AGREEMENT WILL REQUIRE AND ENCOACHMENT MAINTENANCE AND REMOVAL AGREEMENT WILL REQUIRE AND ENCOACHMENT MAINTENANCE AND REMOVAL AGREEMENT WILL REQUIRE AN ENCOACHMENT MAINTENANCE AND REMOVAL

PAGEMENT WILL ALGORIL AN ELGIO-DIMENT MINITED AND ASSOCIATED EASEMENTS WILL BE DESIGNED AND ASSOCIATED EASEMENTS WILL BE DESIGNED AND CONSTRUCTED IN ACCORDANCE WITH THE CITY OF SAN DIEGO WATER FACULTY DESIGN GUIDELINES AND REGULATIONS, STANDARDS ND PRACTICES PERTAINING THERETO.

ASSESSOR'S PARCEL NUMBER

LAMBERT COORDINATES

CCS83 COORDINATES

1786-6325

BENCHMARK

ELEVATION: DATUM:

DISTANCES SHOWN HEREON ARE GRID DISTANCES TO OBTAIN GROUND LEVEL DISTANCES, MULTIPLY DISTANCE BY 1/1.0000252. QOUTED BEARINGS FROM REFERENCE MAPS/DEEDS MAY OR MAY NOT BE IN TERMS OF SAID SYSTEM.

SOLAR ACCESS NOTE

THIS IS TO AFFIRM THAT THE DESIGN OF THIS DEVELOPMENT PROVIDES, TO THE EXTENT FEASIBLE, FOR FUTURE PASSIVE OR NATURAL HEATING AND COOLING OPPORTUNITIES IN ACCORDANCE WITH THE PROVISION OF SECTION 66473.1 OF THE STATE SUBDIVISION MAP

DEVELOPMENT SUMMARY

SUMMANT OF REQUESTS:

A VESTING TENTATIVE MAP NO. 2152396, SITE DEVELOPMENT PERMIT NO. 2152399,
MASTER PLANNED DEVELOPMENT FERMIT NO. 2152394, SITE
PERMIT NO. 2192394, COMMUNITY PLAN AMENDMENT LAND USE NO. 2152393, SIRE
VACATION NO. 2152395 AND REZONE NO. 2152396 FOR A 171 MULTI-FAMILY
VACATION NO. 2152395 AND REZONE NO. 2152396 FOR A 171 MULTI-FAMILY
45,000 ST OF COMMENCAL USE. THE MANIMAL NUMBER OF UNITS THAT CAN BE
CONSTRUCTED ON THIS SITE IS 267 MULTI-FAMILY RESIDENTIAL UNITS THAT CAN BE

2. STREET ADDRESS: SOUTH EAST CORNER OF CALIENTE AVENUE AND OTAY MESA ROAD 3. SITE AREA

EXISTING: CC-1-3

PROPOSED: CC-1-3 (LOT 1) AND RM-2-5 (LOT 2)

5. COMMUNITY PLANNING AREA: OTAY MESA

6. COVERAGE DATA

TOTAL LANDSCAPE / OPEN SPACE AREA:
TOTAL HARDSCAPE / PAVED AREA:
FLOOR AREA RATIO PER ZONE (FAR):
GROSS FLOOR AREA (GFA):

MAXIMUM DWELLING UNITS ALLOWED PER ZONE: 1 DU/1,500 S.F. OF LOT AREA NUMBER OF EXISTING UNITS TO REMAIN ONSITE: 0 171 DU (270 DU MAX) 8. YARD / SETBACK

REQUIRED:

7 DENSITY

MIN. FRONT SETBACK
STANDARD FRONT SETBACK
NIN. SIDE SETBACK
MIN. STREET SIDE SETBACK
MIN. FREAR SETBACK
15 FEET OR 10% OF PREMISES WIDTH
10 FEET OR 10% OF PREMISES WIDTH
15 FEET IN 10% OF PREMISES WIDTH
15 FEET IN 10% OF PREMISES WIDTH
15 FEET IN 10% OF PREMISES WIDTH
16 FEET OR 10% OF PREMISES WIDTH
17 FEET OR 10% OF PREMISES WIDTH
18 FEET OR 10% OF PREMISES WIDTH
18 FEET OR 10% OF PREMISES WIDTH
18 FEET OR 10% OF PREMISES WIDTH
19 FEET OR 10% OF PREMISES W

PROPOSED:

FRONT SETBACK SIDE SETBACK STREET SIDE SETBACK REAR SETBACK

. MAXIMUM STRUCTURE HEIGHT.

REQUESTED DEVIATIONS

MUNICIPAL CODE REGULATION	SDMC LANGUAGE	REQUIRED	PROPOSED DEVIATION	REQUESTED PERMIT
SECTION 131.0443, TABLE 131-04G	MIN. FRONT SETBACK STD. FRONT SETBACK	15 FEET 20 FEET	MIN. 10 FEET	NDP
SECTION 131.0443, TABLE 131-04G	MIN. SIDEYARD SETBACK	5 FEET OR 10% OF PREMISES WIDTH	MIN. 10 FEET	NDP
SECTION 131.0443, TABLE 131-04G	MIN. STREET SIDE SETBACK	10 FEET OR 10% OF PREMISES WIDTH	MIN. 10 FEET	NDP

SHEET INDEX

DESCRIPTION
COVER SHEET
EXISTING TOPO AND EASEMENTS
SLOPE ANALYSIS
NOTES, STREET CROSS SECTIONS AND DETAILS
GRADING AND UTLITES
STE FLAN
STE CHOSS SECTIONS
FIRE CHOSS SECTIONS
FIRE PLAN
EXHIBIT
PRIEF THAN
EXHIBIT
E

LOT 1

SR ROUTE 905

PARKING CALCULATIONS

VEHICLE PARKING

OCEAN VIEW

REQUIRED AUTOMOBILE SE	PACES (PER SDMC 142-050
PLAN 1 - 3BR	58 DU (6 AFFORDABLE)
PLAN 2 - 3BR	34 DU (3 AFFORDABLE)
PLAN 3 - 4BR	50 DU (6 AFFORDABLE)
PLAN 4 - 4BR	29 DU (3 AFFORDABLE)
TOTAL:	171 DU (18 AFFORDABL

171 DU x 2.00 = 342 REQUIRED PARKING SPACES

ACCESSIBLE PARKING SUMMARY (PER SDM-117) $342 \times 0.02 = 6.8 \sim 7$ ACCESSIBLE PARKING REQUIRED 7 / 6 = 1.17 ~ 2 VAN SPACES REQUIRED TOTAL ACCESSIBLE PARKING SPACES REQUIRED: 7 ACCESSIBLE SPACE + 2 VAN ACCESSIBLE SPACES
9 ACCESSIBLE SPACES

OWNER / DEVELOPER:

PardeeHomes 13400 SABRE SPRINGS SAN DIEGO, CA 92128 TEL. (858) 794-2500 FAX (858) 794-2599

PROVIDED PARKING SUMMARY

GRAFAGE SPACES: 342
ACCESSIBLE SPACES: 10

OPEN SPACES: 59 (INCLUDES 7 E.V. AND 6 E.V. CAPABLE)

TOTAL = 411

MOTORCYCLE PARKING.

REQUIRED MOTORCYCLE PARKING (PER SDMC 142-05C)

TOTAL REQUIRED MOTORCYCLE PARKING SPACES PROVIDED MOTORCYCLE PARKING 20 MOTORCYCLE SPACES

BICYCLE PARKING: NOT REQUIRED FOR DWELLING UNITS WITH ENCLOSED GARAGES.

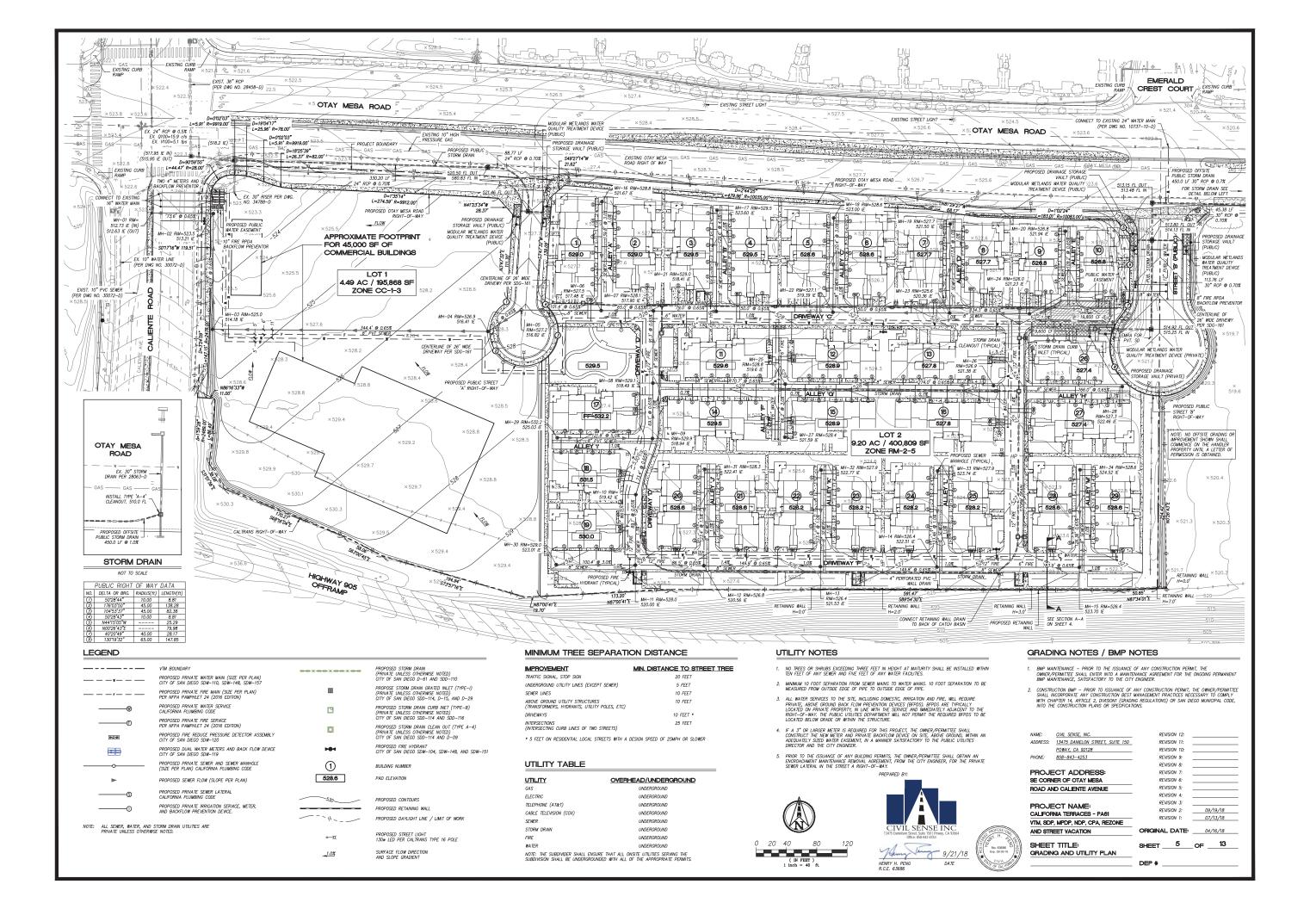
GI	RADING			
1.	TOTAL AMOUNT OF SITE TO BE	GRADED:	13.71 ACRES	
2.	PERCENTAGE OF TOTAL SITE (GRADED:	100 %	
3.	AMOUNT OF SITE WITH 25 PER	RCENT SLOPES		
	OR GREATER:		0.38 ACRES	
4.	PERCENTAGE OF THE EXISTING	SLOPES STEEPER THAN		
	25% PROPOSED TO BE GRADE	D:	100 %	
5.	PERCENTAGE OF TOTAL SITE WITH 25 PERCENT			
	SLOPES OR GREATER:		2.6 %	
6.	AMOUNT OF CUT:		15,100 CUBIC YARDS	
7.	AMOUNT OF FILL:		43,800 CUBIC YARDS	
8.	MAXIMUM HEIGHT OF FILL SLO	PE(S):	6 FEET	
	MAX. 2:1 SLOPE RATIO			
9.	MAXIMUM HEIGHT OF CUT SLO	PE(S):	6 FEET	
	MAX. 2:1 SLOPE RATIO			
10.	AMOUNT OF IMPORT SOIL:		28,700 CUBIC YARDS	
11.	RETAINING WALLS			
	QUANTITY:	1		
	MAX. LENGTH:	620 FEET		

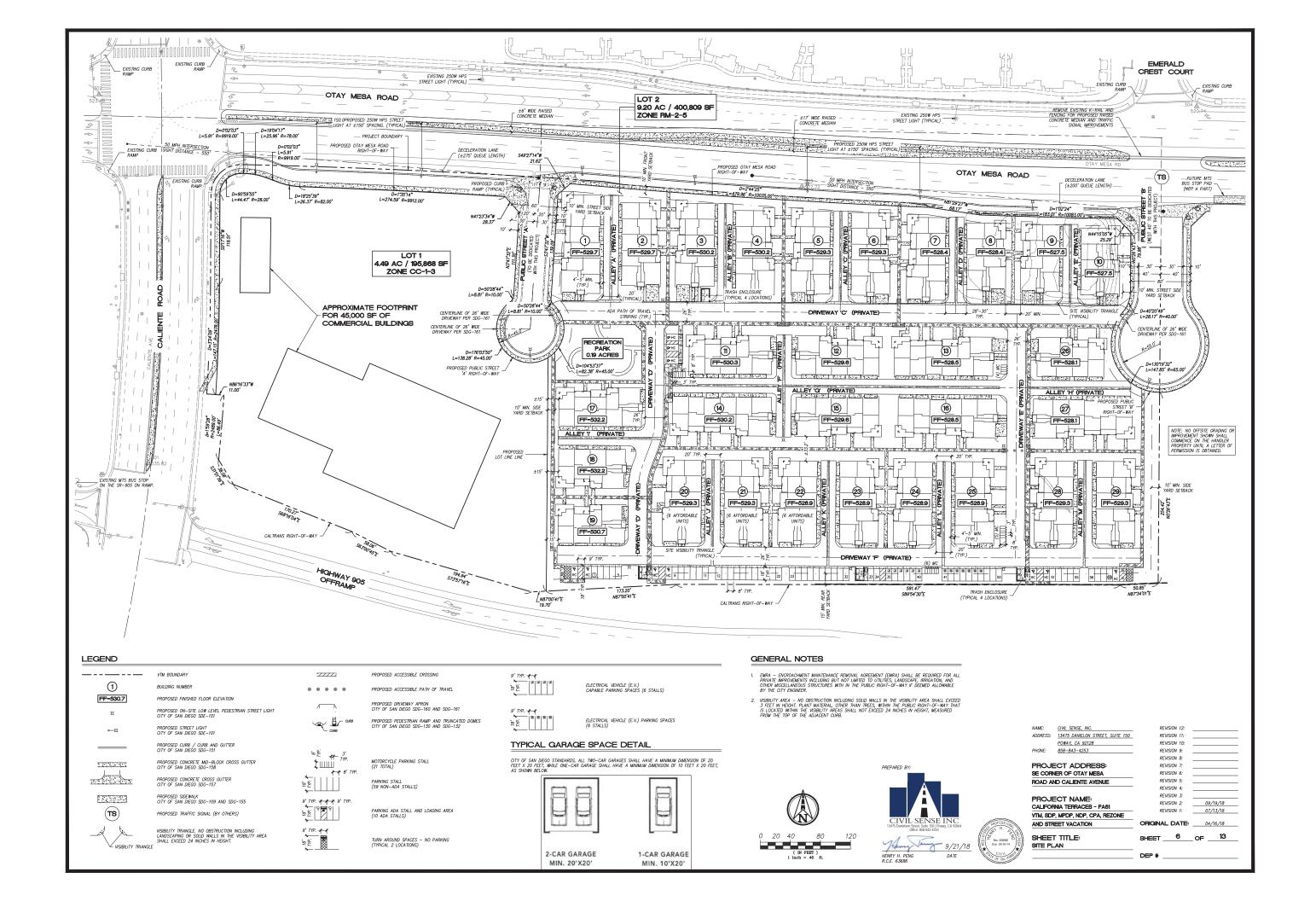
SITE PLAN

7 FEET NOTE: ADDITIONAL WALLS UNDER 3 FEET IN HEIGHT MAY BE REQUIRED IN RESIDENTIAL PAD AREAS BASED ON FINAL BUILDING PLOTTING.

AND STR	EET VACATION	ORIGINAL DATE:	04/16/18
VTM, SDF	P, MPDP, NDP, CPA, REZONE	TE VISION 1.	07/10/10
CALIFOR	INIA TERRACES - PA61	REVISION 1:	07/13/18
		REVISION 2:	09/19/18
	CT NAME:	REVISION 3:	
		REVISION 4:	
ROAD AN	ND CALIENTE AVENUE	REVISION 5:	
SE CORN	NER OF OTAY MESA	REVISION 6:	
PROJE	ECT ADDRESS:	REVISION 7:	
		REVISION 8:	
PHONE:	858-843-4253	REVISION 9:	
	POWAY, CA 92128	REVISION 10:	
ADDRESS:	13475 DANIELON STREET, SUITE 150	REVISION 11:	
NAME:	CIVIL SENSE, INC.	REVISION 12:	

OTAY MESA ROAD




SHEET TITLE: COVER SHEET

MAX. HEIGHT:

SHEET 1 OF 13

CREST CT

Attachment 5 Drainage Report

Attach project's drainage report. Refer to Drainage Design Manual to determine the reporting requirements.

PRELIMINARY DRAINAGE REPORT FOR CALIFORNIA TERRACES – PA61

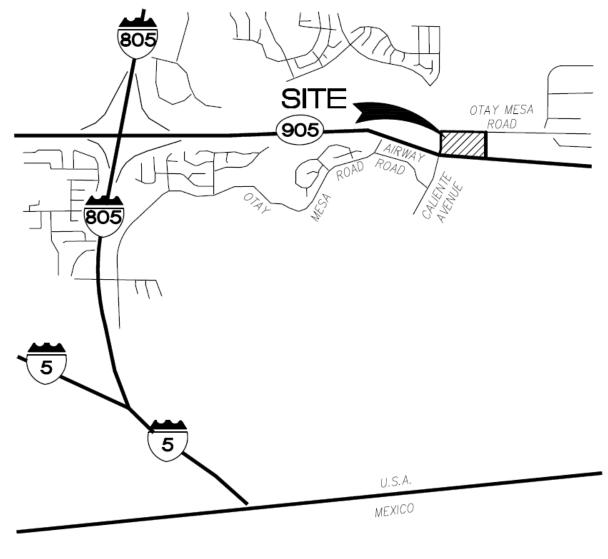
September 19, 2018

Wayne W. Chang, MS, PE 46548

Chang Good Sufface Sedimentation

P.O. Box 9496 Rancho Santa Fe, CA 92067 (858) 692-0760

-TABLE OF CONTENTS -


Introduction	1
Hydrologic Results	2
Hydraulic Results	4
Conclusion	4
1987 Notice	6

APPENDIX

- A. Rational Method Analyses and Backup Data
- B. Normal Depth Analyses

INTRODUCTION

Pardee Homes is proposing to develop a 14.50-acre site located southeast of the intersection of Otay Mesa Road and Caliente Avenue in the city of San Diego (see the Vicinity Map). The site is currently undeveloped and supports low lying vegetation consisting of brush and grasses. The project proposes 171 multi-family units including 18 affordable and a private recreation park on the easterly two-thirds of the site (Lot 2). The residential development regulations permit up to 270 multi-family residential units on Lot 2, so the proposed density is lower than allowed. For this residential development area, there are two proposed public streets off of Otay Mesa Road that provide access to the east (Street B) and west (Street A) ends of the project, as well as private on-site driveways, alleys, and parking. The westerly third of the site (Lot 1) will be massgraded and developed with up to 45,000 square feet of commercial uses in the future under a separate Planned Development Permit and Site Development Permit. The project's preliminary plans are being designed by Civil Sense, Inc.

Vicinity Map

Under existing, pre-project conditions, storm runoff from the site sheet flows over the gently sloping, natural ground surface. The majority of the sheet flow is directed to the east and onto the adjacent parcel. The on- and off-site runoff continues easterly as sheet flow towards a small watercourse approximately 1,400 feet east of the site. There is a historic pond that was graded within the northeast corner of the site that captures precipitation within its footprint. The remaining site runoff is directed towards the northwest corner of the site (towards the intersection of Otay Mesa Road and Caliente Avenue) and into an existing storm drain system. There are no other existing on-site drainage facilities and there is minimal off-site run-on.

Under proposed, post-project conditions, storm runoff will be conveyed by the private alleys and driveways to on-site storm drain systems. The majority of the runoff will be conveyed towards the northeast corner of the site where the proposed on-site storm drain will connect to an existing storm drain in Otay Mesa Road about 500 feet east of the site. The existing storm drain outlets into a natural watercourse within Dennery Canyon on the north site of Otay Mesa Road. The watercourse continues north to the Otay River, which flows into San Diego Bay. Storm runoff from the multi-family development area will be private and conveyed in private drainage facilities. Storm runoff from the easterly proposed public street and cul-de-sac will be conveyed in public drainage facilities. The private and public runoff will not commingle until leaving the site.

Post-project storm runoff from the northwest corner of project will be from the westerly proposed public street and cul-de-sac. This runoff will be conveyed by the proposed street and public storm drain system to an existing storm drain system at the intersection of Caliente Avenue and Otay Mesa Road. Storm runoff from the westerly mass-graded pad will also enter this storm drain system. The existing storm drain system crosses Otay Mesa Road and continues north along Ocean View Hills Parkway (Ocean View Hills Parkway is named Caliente Avenue south of Otay Mesa Road) before outletting into a natural watercourse within Dennery Canyon. As mentioned above, this watercourse continues to the Otay River, which flows into San Diego Bay.

This preliminary drainage report has been prepared in support of Civil Sense, Inc's entitlement plans and calculates tentative-map level runoff from the site. In addition, normal depth analyses have been prepared for the proposed public storm drains that convey storm runoff from the site.

HYDROLOGIC RESULTS

The overall site covers 16.37 acres so the City of San Diego's 2017, *Drainage Design Manual's* (Manual) rational method procedure was the basis for the existing and proposed condition hydrologic analyses. The Manual states that "the combination of storm drain system capacity and overflow" shall be able to carry the 100-year, while "the underground storm drain system shall be based upon a 50-year frequency storm." Both 50- and 100-year are provided. During final engineering when the storm drain system has been fully designed, detailed 50-year hydraulic modeling for the public storm drains will be performed. At the current entitlement stage normal depth analyses have been performed to determine preliminary storm drain sizing.

The public storm drain facilities include the curb inlets in Street A and in Street B (two in each street) and downstream facilities. The curb inlets will be integrated into Modular Wetland System Linear BMPs. The internal storm drains upstream of the curb inlets will be private.

The rational method input parameters are summarized below, and the supporting data is included in Appendix A:

- Intensity-Duration-Frequency: The City's 50- and 100-year Intensity-Duration-Frequency curve from the *Drainage Design Manual* was used.
- Drainage area: The drainage areas are shown on the Existing and Proposed Condition Rational Method Work Maps in Appendix A. The overall existing and proposed condition drainage areas were set equal to allow a comparison of results.
- Hydrologic soil groups: The soil group within the site is entirely 'D' according to the City criteria.
- Runoff coefficients: Under existing conditions, the study area is pervious except for Otay Mesa Road. The roughness coefficient (C=0.45) was based on the rural land use category. Under proposed conditions, the condominium development was assigned a multi-unit land use (C=0.70) while the mass-graded pad was assigned the rural land use.

The existing and proposed condition rational method analyses are contained in Appendix A and summarized in Table 1. The results indicate the project will increase the 100-year flow rates. The flows to the east will be conveyed in existing (PDC determined that the existing receiving storm drain crossing Otay Mesa Road has capacity for 44 cfs) and proposed storm drain facilities with capacity for the tributary flow rate. These facilities will outlet directly into the Dennery Canyon watercourse, which flows to the Otay River and then San Diego Bay. Since the easterly flows can adequately be conveyed by the receiving drainage facilities and the outflow is then conveyed to San Diego Bay by natural watercourses, detention is not required for the easterly flows. On the other hand, the easterly flows will be detained by proposed underground flow-control vaults along Street A, as needed.

Drainage	Drainage Area, ac		100-Year Flow, cfs	
Basin	Existing	Proposed	Existing	Proposed
Easterly	11.66	9.42	12	21
Westerly	3.19	5.43	4.3	8.4

Table 1. Comparison of Rational Method Results

An August 7, 1987 Notice from the City of San Diego provides drainage requirements for Otay Mesa development projects within the watershed that drains into Mexico (see attachment after this report text). The associated watershed was defined by an April 2007, *Drainage Study for the Otay Mesa Community Plan Update*, by Kimley-Horn and Associates, Inc. The 2007 study shows the site within the watershed tributary to Mexico. However, the watershed has been altered by the construction of Interstate 905 and no longer encompasses the site. The Notice

specifies that detention facilities shall be designed for the 5-, 10-, 25-, and 50-year storms. As indicated in this drainage report, all of the PA-61 project runoff flows north into Dennery Canyon, the Otay River, and then San Diego Bay. Therefore, the Notice and associated detention requirements are not applicable to the project.

HYDRAULIC RESULTS

Normal depth analyses have been prepared for preliminary sizing of the proposed public storm drain facilities that convey runoff away from the site. The westerly storm drain system consists of two public laterals between rational method nodes 20 and 22 as well as nodes 20 and 24. The 50-year flow rate at each lateral is the same and is 0.4 cfs. The normal depth results are included in Appendix B and show that an 18-inch RCP at a 1 percent slope can convey the flows at a 0.2 foot depth. The laterals connect to the storm drain serving the project site, and the combined flow is conveyed in a public storm drain system that continues east along Otay Mesa Road. The 50-year flow rate in the Otay Mesa Road storm drain is 19 cfs. Civil Sense, Inc. determined that the pipe will be at a 0.7 percent slope. The normal depth results based on this flow rate and slope shows that a 24-inch RCP can convey the 50-year flow rate at a depth of 1.65 feet. This flow rate enters an existing storm drain with capacity for 44 cfs, so the existing and proposed public storm drains serving the project have adequate capacity for the 50-year flow rate. Dennery Canyon, the Otay River, and San Diego Bay are below the storm drain systems. These natural conveyances can convey the project runoff.

The easterly storm drain system consists of two public laterals between rational method nodes 32 and 34 as well as nodes 34 and 24. The 50-year flow rate at each lateral is the same and is 0.4 cfs. The normal depth results are included in Appendix B and show that an 18-inch RCP at a 1 percent slope can convey the flows at a 0.2 foot depth. The laterals connect to a public storm drain system that continues west along Otay Mesa Road. The 50-year flow rate in the Otay Mesa Road storm drain is 0.8 cfs. Civil Sense, Inc. determined that the pipe will be at a 0.7 percent slope. The normal depth results based on this flow rate and slope shows that an 18-inch RCP can convey the 50-year flow rate at a depth of 0.31 feet. Detention will be provided so that the easterly flows do not increase. Therefore, the existing storm drain capacity will not be impacted.

CONCLUSION

The analyses in this drainage report show that the project will increase the 100-year flow rate, which is anticipated since the undeveloped site will be partially developed with condominiums. Detention is not required for the easterly flows because the existing and proposed downstream drainage facilities have adequate capacity. Detention will be designed for the westerly flows as needed, during final engineering. The detention will prevent impacts to the existing westerly drainage facilities.

Hydraulic analyses show that the proposed public storm drain pipes needed to convey the project runoff will range from 18- to 24-inch.

The project is just north of Interstate 905. Storm runoff from the site is generally directed to the north. Therefore, the project's runoff will not enter the Caltrans right-of-way and will not impact Caltrans' adjacent drainage facilities.

There are no waters of the US at or in the immediate vicinity of the site. Therefore, neither a Federal Clean Water Act Section 401 (Regional Water Quality Control Board) nor 404 permit (US Army Corps of Engineers) are required. The project will cause no negative impacts to developability of adjacent properties since the outflow will be into storm drain facilities or natural watercourses.

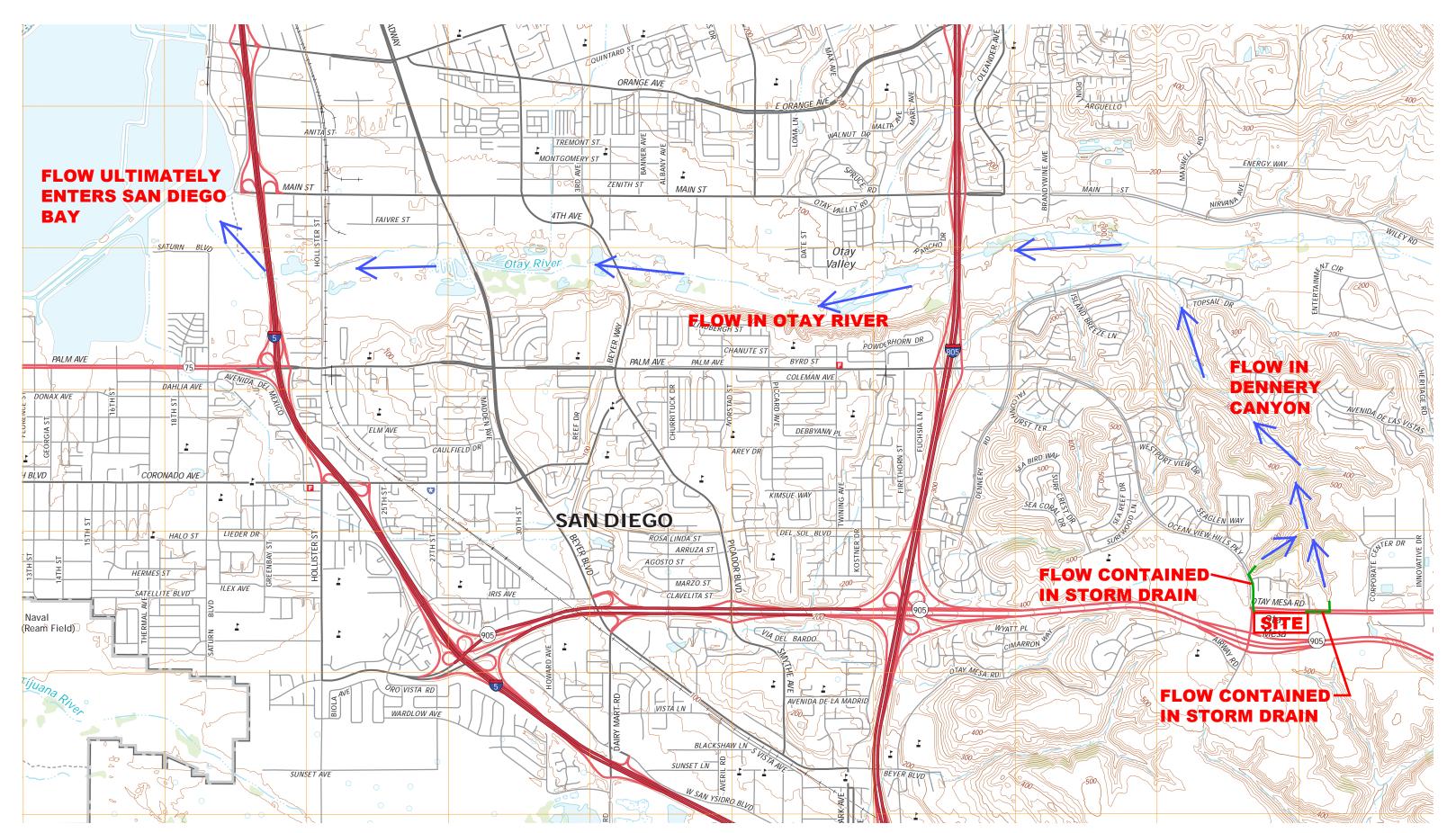
Reproduction of 1987 NOTICE from Engineering and Development Department

NOTICE

Date: August 7, 1987

To: All Private Engineers

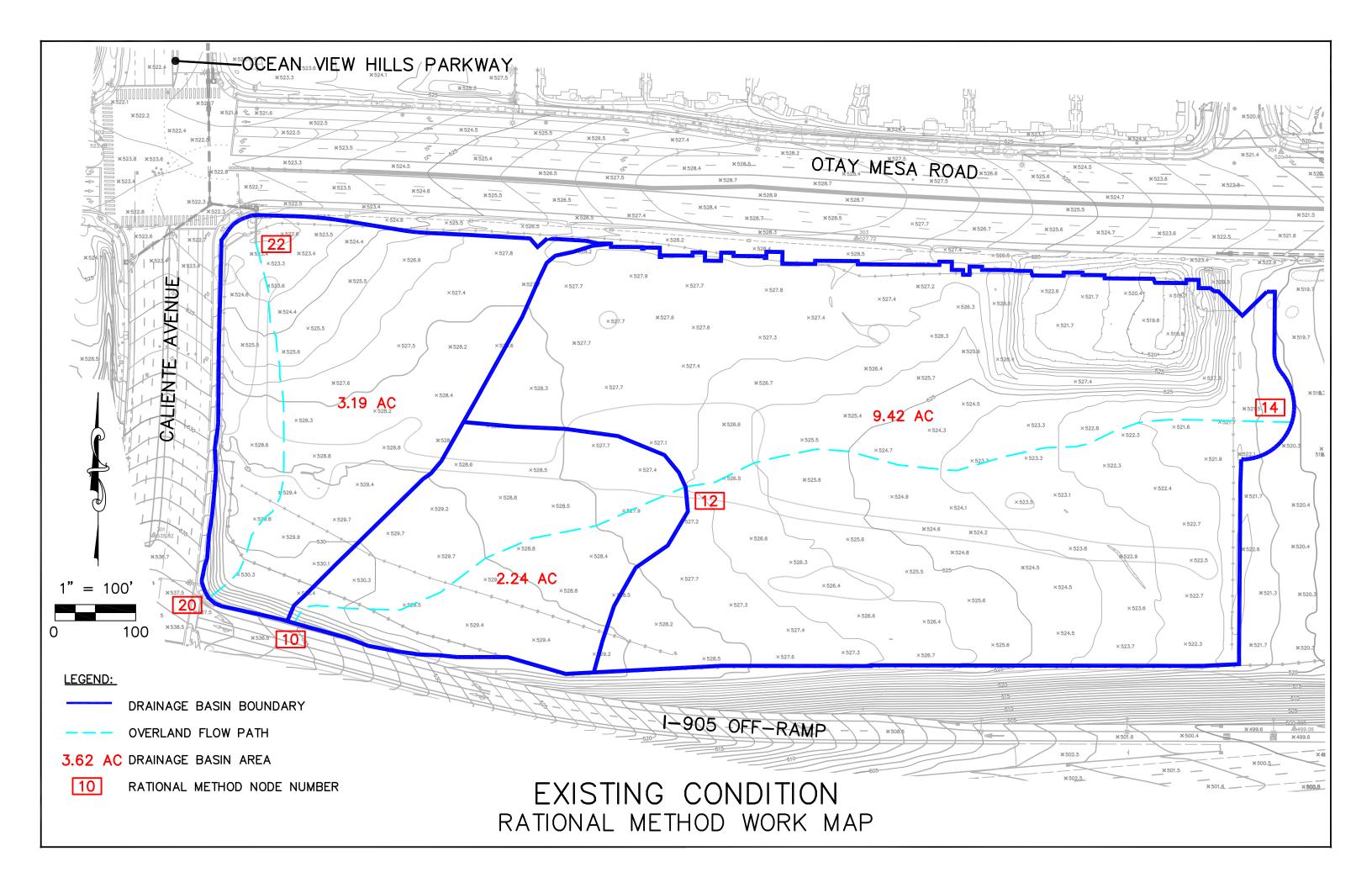
From: Subdivision Engineer


Subject: Drainage requirements for development in Otay Mesa

In order to minimize the effects of increased storm water runoff in Mexico, due to development of property in Otay Mesa, all property in Otay Mesa that is within the water shed that drains into Mexico, shall be developed with the following requirements:

Project does not drain to Mexico. It drains to San Diego Bay.

- 1. Each property owner shall provide storm water detention facilities so that there will be no increase in the rate of runoff due to development of the property.
- 2. The detention facilities shall be designed so that the rate of runoff from the property will not be greater after development than it was before development for a 5 year, 10 year, 25 year and 50 year storm.
- 3. All drainage facilities crossing four-lane major or higher classification streets shall be designed for a Q100 (existing). Other facilities, except the major channel referred to in paragraph 5, may be designed for Q50 (existing).
- 4. The Drainage Design Manual shall be used as guidelines for design of drainage facilities and computing design discharges.
- 5. The City Engineer's Office, Flood Control Section, is preparing a preliminary plan for the main north-south channel from Otay Mesa Road near La Media to the Mexican Border. The preliminary design will include the design "Q" (Q100 existing), the invert grade, and the water surface elevation at the major road crossings.


C.R. Lockhead Subdivision Engineer

FLOW PATHS FROM PA-61 TO SAN DIEGO BAY

APPENDIX A

RATIONAL METHOD ANALYSES AND BACKUP DATA

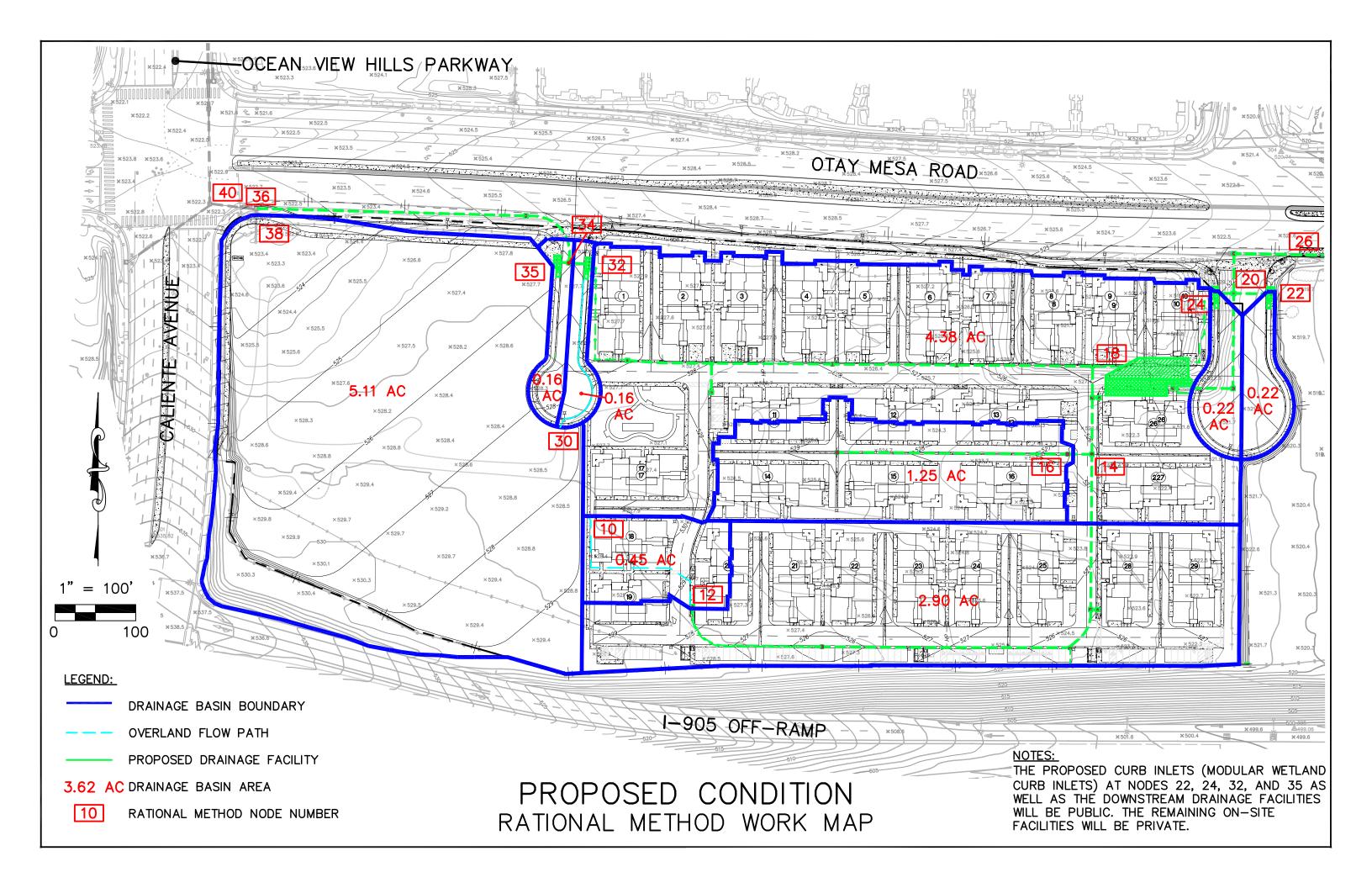


Table A-1. Runoff Coefficients for Rational Method

Land Use	Runoff Coefficient (C)	
Land Use	Soil Type (1)	
Residential:		
Single Family	0.55	
Multi-Units	0.70	
Mobile Homes	0.65	
Rural (lots greater than ½ acre)	0.45	
Commercial (2)		
80% Impervious	0.85	
Industrial (2)		
90% Impervious	0.95	

Note:

Actual imperviousness = 50% Tabulated imperviousness = 80% Revised C = (50/80) x 0.85 = 0.53

The values in Table A–1 are typical for urban areas. However, if the basin contains rural or agricultural land use, parks, golf courses, or other types of nonurban land use that are expected to be permanent, the appropriate value should be selected based upon the soil and cover and approved by the City.

A.1.3. Rainfall Intensity

The rainfall intensity (I) is the rainfall in inches per hour (in/hr.) for a duration equal to the T_{C} for a selected storm frequency. Once a particular storm frequency has been selected for design and a T_{C} calculated for the drainage area, the rainfall intensity can be determined from the Intensity-Duration-Frequency Design Chart (Figure A-1).

⁽¹⁾ Type D soil to be used for all areas.

⁽²⁾ Where actual conditions deviate significantly from the tabulated imperviousness values of 80% or 90%, the values given for coefficient C, may be revised by multiplying 80% or 90% by the ratio of actual imperviousness to the tabulated imperviousness. However, in case shall the final coefficient be less than 0.50. For example: Consider commercial property on D soil.

The City of San Diego | Drainage Design Manual | January 2017 Edition

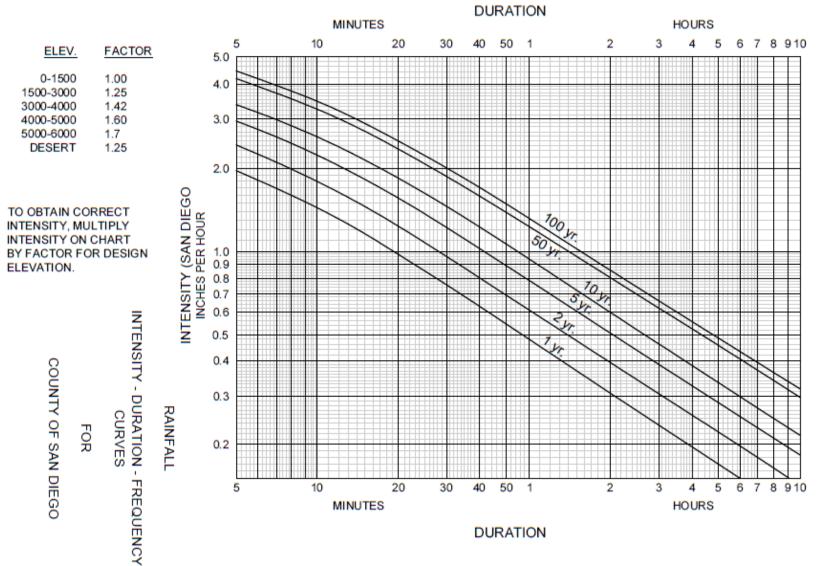


Figure A-1. Intensity-Duration-Frequency Design Chart

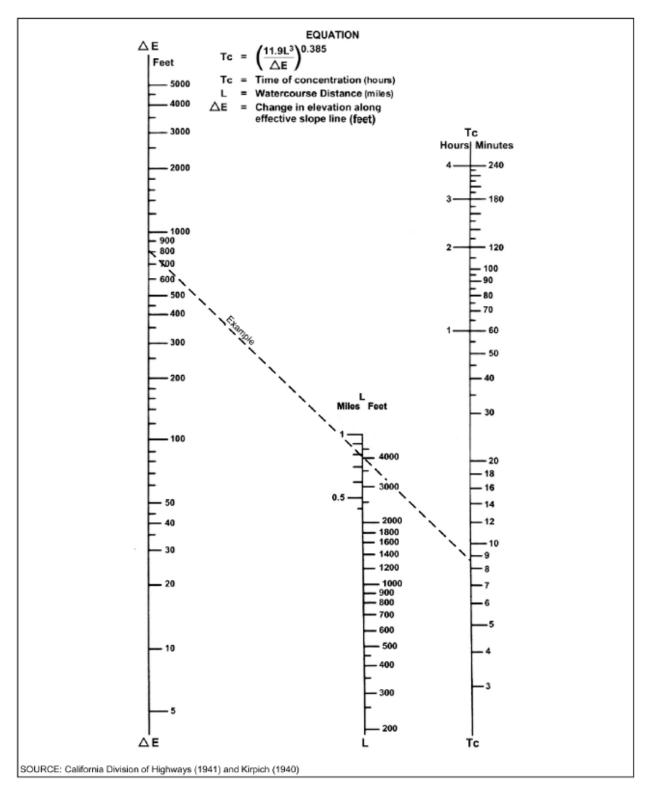


Figure A-2. Nomograph for Determination of T_c for Natural Watersheds

Note: Add ten minutes to the computed time of concentration from Figure A-2.

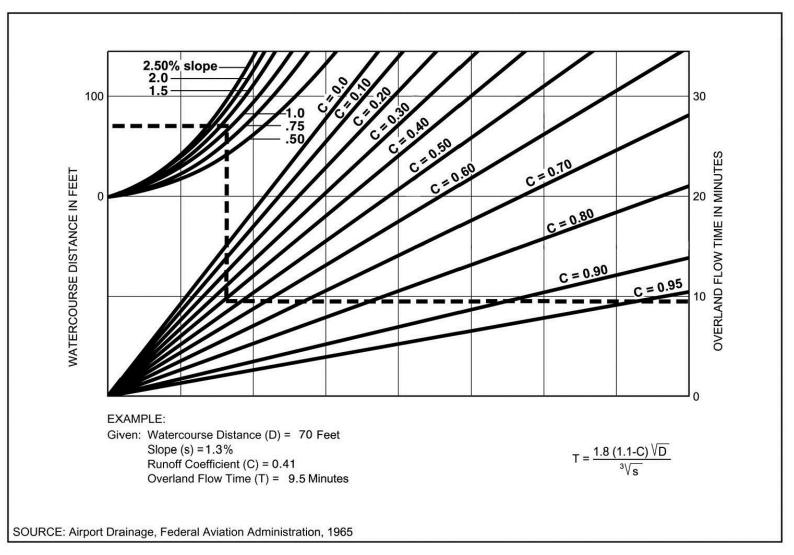


Figure A-4. Rational Formula – Overland Time of Flow Nomograph

Note: Use formula for watercourse distances in excess of 100 feet.

CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2005 Version 6.4

```
Rational method hydrology program based on
San Diego County Flood Control Division 1985 hydrology manual
Rational Hydrology Study Date: 07/12/18
California Terraces - PA61
Preliminary Hydrology
Existing Conditions
50-Year Storm Event
_____
          Hydrology Study Control Information ********
Program License Serial Number 4028
 ______
Rational hydrology study storm event year is 50.0
English (in-lb) input data Units used
English (in) rainfall data used
Standard intensity of Appendix I-B used for year and
Elevation 0 - 1500 feet
Factor (to multiply * intensity) = 1.000
Only used if inside City of San Diego
San Diego hydrology manual 'C' values used
Runoff coefficients by rational method
Process from Point/Station 10.000 to Point/Station
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[RURAL(greater than 0.5 Ac, 0.2 ha) area type]
Time of concentration computed by the
natural watersheds nomograph (App X-A)
TC = [11.9*length(Mi)^3)/(elevation change(Ft.))]^.385 *60(min/hr) + 10 min.
Initial subarea flow distance = 532.000(Ft.)
Highest elevation = 535.000(Ft.)
Lowest elevation = 527.000(Ft.)
Elevation difference = 8.000(Ft.)
TC = [(11.9*0.1008^3)/(8.00)]^3.385 = 4.94 + 10 \text{ min.} = 14.94 \text{ min.}
Rainfall intensity (I) = 2.712(In/Hr) for a 50.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.450
```

```
Subarea runoff = 2.733(CFS)
Total initial stream area = 2.240(Ac.)
Process from Point/Station
                            12.000 to Point/Station
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation = 527.000(Ft.)
Downstream point elevation = 520.200(Ft.)
Channel length thru subarea = 772.000(Ft.)
Channel base width=
                  20.000(Ft.)
Slope or 'Z' of left channel bank = 50.000
Slope or 'Z' of right channel bank = 50.000
Estimated mean flow rate at midpoint of channel = 8.481(CFS)
Manning's 'N'
             = 0.040
Maximum depth of channel = 1.000(Ft.)
Flow(q) thru subarea = 8.481(CFS)
Depth of flow = 0.242(Ft.), Average velocity = 1.093(Ft/s)
Channel flow top width = 44.175(Ft.)
Flow Velocity = 1.09(Ft/s)
Travel time = 11.77 min.
Time of concentration = 26.70 min.
Critical depth =
                   0.154(Ft.)
Adding area flow to channel
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[RURAL(greater than 0.5 Ac, 0.2 ha) area type]
Rainfall intensity = 2.061(In/Hr) for a
                                          50.0 year storm
Runoff coefficient used for sub-area, Rational method, Q=KCIA, C = 0.450
Subarea runoff =
                   8.735(CFS) for
                                   9.420(Ac.)
Total runoff = 11.468(CFS)Total area =
                                          11.66(Ac.)
Process from Point/Station
                            20.000 to Point/Station
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[RURAL(greater than 0.5 Ac, 0.2 ha) area type]
Time of concentration computed by the
natural watersheds nomograph (App X-A)
TC = [11.9*length(Mi)^3)/(elevation change(Ft.))]^.385 *60(min/hr) + 10 min.
Initial subarea flow distance = 478.000(Ft.)
Highest elevation = 537.200(Ft.)
Lowest elevation = 523.000(Ft.)
Elevation difference = 14.200(Ft.)
```

```
TC = [(11.9*0.0905^3)/(14.20)]^3.385 = 3.50 + 10 \text{ min.} = 13.50 \text{ min.} Rainfall intensity (I) = 2.828(In/Hr) for a 50.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.450 Subarea runoff = 4.059(CFS) Total initial stream area = 3.190(Ac.) End of computations, total study area = 14.850 (Ac.)
```

CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2005 Version 6.4

```
Rational method hydrology program based on
San Diego County Flood Control Division 1985 hydrology manual
Rational Hydrology Study
                         Date: 07/12/18
______
California Terraces - PA61
Preliminary Hydrology
Existing Conditions
100-Year Storm Event
______
          Hydrology Study Control Information ********
Program License Serial Number 4028
______
Rational hydrology study storm event year is 100.0
English (in-lb) input data Units used
English (in) rainfall data used
Standard intensity of Appendix I-B used for year and
Elevation 0 - 1500 feet
Factor (to multiply * intensity) = 1.000
Only used if inside City of San Diego
San Diego hydrology manual 'C' values used
Runoff coefficients by rational method
Process from Point/Station
                          10.000 to Point/Station
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[RURAL(greater than 0.5 Ac, 0.2 ha) area type]
Time of concentration computed by the
natural watersheds nomograph (App X-A)
TC = [11.9*length(Mi)^3)/(elevation change(Ft.))]^.385 *60(min/hr) + 10 min.
Initial subarea flow distance = 532.000(Ft.)
Highest elevation = 535.000(Ft.)
Lowest elevation = 527.000(Ft.)
Elevation difference = 8.000(Ft.)
TC = [(11.9*0.1008^3)/(8.00)]^3.385 = 4.94 + 10 min. = 14.94 min.
Rainfall intensity (I) = 2.910(In/Hr) for a 100.0 year storm
```

```
Effective runoff coefficient used for area (Q=KCIA) is C=0.450
Subarea runoff =
                   2.933(CFS)
                              2.240(Ac.)
Total initial stream area =
Process from Point/Station 12.000 to Point/Station
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation = 527.000(Ft.)
Downstream point elevation = 520.200(Ft.)
Channel length thru subarea = 772.000(Ft.)
Channel base width=
                   20.000(Ft.)
Slope or 'Z' of left channel bank = 50.000
Slope or 'Z' of right channel bank = 50.000
Estimated mean flow rate at midpoint of channel = 9.100(CFS)
Manning's 'N' = 0.040
Maximum depth of channel = 1.000(Ft.)
Flow(q) thru subarea = 9.100(CFS)
Depth of flow = 0.251(Ft.), Average velocity = 1.116(Ft/s)
Channel flow top width = 45.073(Ft.)
Flow Velocity = 1.12(Ft/s)
Travel time = 11.53 min.
Time of concentration = 26.47 min.
Critical depth = 0.162(Ft.)
Adding area flow to channel
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[RURAL(greater than 0.5 Ac, 0.2 ha) area type]
Rainfall intensity = 2.252(In/Hr) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, Q=KCIA, C = 0.450
Subarea runoff = 9.545(CFS) for 9.420(Ac.)
Total runoff = 12.479(CFS)Total area = 11.66(Ac.)
Process from Point/Station
                            20.000 to Point/Station 22.000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[RURAL(greater than 0.5 Ac, 0.2 ha) area type]
Time of concentration computed by the
natural watersheds nomograph (App X-A)
TC = [11.9*length(Mi)^3)/(elevation change(Ft.))]^.385 *60(min/hr) + 10 min.
Initial subarea flow distance = 478.000(Ft.)
Highest elevation = 537.200(Ft.)
Lowest elevation = 523.000(Ft.)
```

```
Elevation difference = 14.200(Ft.)

TC=[(11.9*0.0905^3)/(14.20)]^3.385= 3.50 + 10 min. = 13.50 min.

Rainfall intensity (I) = 3.024(In/Hr) for a 100.0 year storm

Effective runoff coefficient used for area (Q=KCIA) is C = 0.450

Subarea runoff = 4.341(CFS)

Total initial stream area = 3.190(Ac.)

End of computations, total study area = 14.850(Ac.)
```

```
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1991-2005 Version 6.4
Rational method hydrology program based on
San Diego County Flood Control Division 1985 hydrology manual
Rational Hydrology Study Date: 09/19/18
______
California Terraces - PA61
Preliminary Hydrology
Proposed Conditions
50-Year Storm Event
______
******* Hydrology Study Control Information *******
Program License Serial Number 4028
______
Rational hydrology study storm event year is 50.0
English (in-lb) input data Units used
English (in) rainfall data used
Standard intensity of Appendix I-B used for year and
Elevation 0 - 1500 feet
Factor (to multiply * intensity) = 1.000
Only used if inside City of San Diego
San Diego hydrology manual 'C' values used
Runoff coefficients by rational method
Process from Point/Station
                           10.000 to Point/Station
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[MULTI - UNITS area type
Initial subarea flow distance = 222.000(Ft.)
Highest elevation = 531.000(Ft.)
Lowest elevation = 528.500(Ft.)
Elevation difference = 2.500(Ft.)
Time of concentration calculated by the urban
areas overland flow method (App X-C) = 10.31 min.
TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)]
TC = [1.8*(1.1-0.7000)*(222.000^{.5})/(1.126^{(1/3)}] = 10.31
Rainfall intensity (I) = 3.151(In/Hr) for a 50.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.700
```

0.450(Ac.)

Subarea runoff = 0.993(CFS)
Total initial stream area =

```
Process from Point/Station
                        12.000 to Point/Station
**** SUBAREA FLOW ADDITION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[MULTI - UNITS area type
                                      1
Time of concentration =
                      10.31 min.
Rainfall intensity =
                     3.151(In/Hr) for a 50.0 year storm
Runoff coefficient used for sub-area, Rational method, Q=KCIA, C = 0.700
Subarea runoff = 6.397(CFS) for 2.900(Ac.)
Total runoff = 7.390(CFS)Total area = 3.35(Ac.)
Process from Point/Station 12.000 to Point/Station
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 528.500(Ft.)
Downstream point/station elevation = 526.300(Ft.)
Pipe length = 750.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow =
                                     7.390(CFS)
Nearest computed pipe diameter = 21.00(In.)
Calculated individual pipe flow = 7.390(CFS)
Normal flow depth in pipe = 15.02(In.)
Flow top width inside pipe = 18.95(In.)
Critical Depth = 12.08(In.)
Pipe flow velocity = 4.01(Ft/s)
Travel time through pipe = 3.11 min.
Time of concentration (TC) = 13.43 \text{ min.}
Process from Point/Station
                           16.000 to Point/Station
**** SUBAREA FLOW ADDITION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
                                      ]
[MULTI - UNITS area type
Time of concentration =
                      13.43 min.
Rainfall intensity = 2.834(In/Hr) for a 50.0 year storm
Runoff coefficient used for sub-area, Rational method, Q=KCIA, C = 0.700
Subarea runoff = 2.479(CFS) for 1.250(Ac.)
Total runoff = 9.870(CFS)Total area =
                                         4.60(Ac.)
Process from Point/Station
                           14.000 to Point/Station
```

```
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 526.300(Ft.)
Downstream point/station elevation = 524.900(Ft.)
Pipe length = 143.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 9.870(CFS)
Nearest computed pipe diameter = 18.00(In.)
Calculated individual pipe flow = 9.870(CFS)
Normal flow depth in pipe = 13.99(In.)
Flow top width inside pipe = 14.98(In.)
Critical Depth = 14.54(In.)
Pipe flow velocity = 6.69(Ft/s)
Travel time through pipe = 0.36 min.
Time of concentration (TC) = 13.78 \text{ min.}
Process from Point/Station
                        14.000 to Point/Station
**** SUBAREA FLOW ADDITION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[MULTI - UNITS area type
Time of concentration = 13.78 \text{ min.}
Rainfall intensity = 2.803(\text{In/Hr}) \text{ for a} 50.0 year storm
Runoff coefficient used for sub-area, Rational method, Q=KCIA, C = 0.700
Subarea runoff = 8.595(CFS) for 4.380(Ac.)
Total runoff = 18.465(CFS)Total area =
                                           8.98(Ac.)
Process from Point/Station 18.000 to Point/Station
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 524.900(Ft.)
Downstream point/station elevation = 521.500(Ft.)
Pipe length = 167.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 18.465(CFS)
Nearest computed pipe diameter = 21.00(In.)
Calculated individual pipe flow = 18.465(CFS)
Normal flow depth in pipe = 14.44(In.)
Flow top width inside pipe = 19.47(In.)
Critical Depth = 18.69(In.)
Pipe flow velocity = 10.48(Ft/s)
Travel time through pipe = 0.27 min.
Time of concentration (TC) = 14.05 min.
Process from Point/Station 22.000 to Point/Station
                                                       20,000
```

3

**** SUBAREA FLOW ADDITION ****

```
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[MULTI - UNITS area type
                                      1
Time of concentration =
                      14.05 min.
                     2.782(In/Hr) for a 50.0 year storm
Rainfall intensity =
Runoff coefficient used for sub-area, Rational method, Q=KCIA, C = 0.700
Subarea runoff =
                  0.428(CFS) for 0.220(Ac.)
Total runoff = 18.893(CFS)Total area = 9.20(Ac.)
Process from Point/Station
                           24.000 to Point/Station
**** SUBAREA FLOW ADDITION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[MULTI - UNITS area type
                                      1
Time of concentration =
                     14.05 min.
Rainfall intensity = 2.782(In/Hr) for a 50.0 year storm
Runoff coefficient used for sub-area, Rational method, Q=KCIA, C = 0.700
Subarea runoff = 0.428(CFS) for 0.220(Ac.)
Total runoff = 19.322(CFS)Total area = 9.42(Ac.)
Process from Point/Station 20.000 to Point/Station
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 521.500(Ft.)
Downstream point/station elevation = 518.290(Ft.)
Pipe length = 458.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 19.322(CFS)
Nearest computed pipe diameter = 24.00(In.)
Calculated individual pipe flow = 19.322(CFS)
Normal flow depth in pipe = 20.16(In.)
Flow top width inside pipe = 17.60(In.)
Critical Depth = 18.96(In.)
Pipe flow velocity = 6.86(Ft/s)
Travel time through pipe = 1.11 min.
Time of concentration (TC) = 15.16 min.
Process from Point/Station 30.000 to Point/Station 32.000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
```

```
[MULTI - UNITS area type
Initial subarea flow distance = 210.000(Ft.)
Highest elevation = 529.000(Ft.)
Lowest elevation = 524.800(Ft.)
Elevation difference =
                      4.200(Ft.)
Time of concentration calculated by the urban
areas overland flow method (App X-C) =
TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3))
TC = [1.8*(1.1-0.7000)*(210.000^{5})/(2.000^{5})] = 8.28
Rainfall intensity (I) =
                          3.442(In/Hr) for a
                                          50.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.700
Subarea runoff =
                   0.386(CFS)
Total initial stream area =
                              0.160(Ac.)
Process from Point/Station
                            32.000 to Point/Station
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 524.800(Ft.)
Downstream point/station elevation = 524.600(Ft.)
Pipe length = 18.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 0.386(CFS)
Nearest computed pipe diameter =
                                6.00(In.)
Calculated individual pipe flow = 0.386(CFS)
Normal flow depth in pipe =
                          3.53(In.)
Flow top width inside pipe =
                          5.91(In.)
Critical Depth = 3.79(In.)
Pipe flow velocity = 3.21(Ft/s)
Travel time through pipe = 0.09 min.
Time of concentration (TC) = 8.37 \text{ min.}
35.000 to Point/Station
Process from Point/Station
                                                      34.000
**** SUBAREA FLOW ADDITION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[MULTI - UNITS area type
Time of concentration =
                       8.37 min.
                     3.427(In/Hr) for a 50.0 year storm
Rainfall intensity =
Runoff coefficient used for sub-area, Rational method, Q=KCIA, C = 0.700
Subarea runoff = 0.384(CFS) for
                                  0.160(Ac.)
Total runoff =
                                          0.32(Ac.)
              0.769(CFS)Total area =
34.000 to Point/Station
Process from Point/Station
                                                      36.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 524.500(Ft.)
```

```
Downstream point/station elevation = 521.540(Ft.)
Pipe length = 423.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow =
                                        0.769(CFS)
Nearest computed pipe diameter = 9.00(In.)
Calculated individual pipe flow = 0.769(CFS)
Normal flow depth in pipe = 4.79(In.)
Flow top width inside pipe =
                            8.98(In.)
Critical Depth = 4.80(In.)
Pipe flow velocity = 3.21(Ft/s)
Travel time through pipe = 2.19 min.
Time of concentration (TC) = 10.57 \text{ min.}
38.000 to Point/Station
Process from Point/Station
                                                        36.000
**** SUBAREA FLOW ADDITION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[RURAL(greater than 0.5 Ac, 0.2 ha) area type]
Time of concentration = 10.57 min.
Rainfall intensity =
                      3.121(In/Hr) for a 50.0 year storm
Runoff coefficient used for sub-area, Rational method, Q=KCIA, C = 0.450
Subarea runoff = 7.176(CFS) for 5.110(Ac
Total runoff = 7.945(CFS)Total area =
                                   5.110(Ac.)
                                             5.43(Ac.)
Process from Point/Station
                             36.000 to Point/Station
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 522.400(Ft.)
Downstream point/station elevation = 522.100(Ft.)
Pipe length = 53.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow =
                                        7.945(CFS)
Nearest computed pipe diameter = 18.00(In.)
Calculated individual pipe flow = 7.945(CFS)
Normal flow depth in pipe = 14.84(In.)
Flow top width inside pipe = 13.70(In.)
Critical Depth = 13.11(In.)
Pipe flow velocity = 5.10(Ft/s)
Travel time through pipe = 0.17 min.
Time of concentration (TC) = 10.74 \text{ min.}
End of computations, total study area =
                                           14.850 (Ac.)
```

CIVILCADD/CIVILDESIGN Engineering Software, (c) 1991-2005 Version 6.4 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 09/19/18 ______ California Terraces - PA61 Preliminary Hydrology Proposed Conditions 100-Year Storm Event -----******* Hydrology Study Control Information ******* Program License Serial Number 4028 ______ Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used English (in) rainfall data used Standard intensity of Appendix I-B used for year and Elevation 0 - 1500 feet Factor (to multiply * intensity) = 1.000 Only used if inside City of San Diego San Diego hydrology manual 'C' values used Runoff coefficients by rational method Process from Point/Station 10.000 to Point/Station **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MULTI - UNITS area type Initial subarea flow distance = 222.000(Ft.) Highest elevation = 531.000(Ft.) Lowest elevation = 528.500(Ft.) Elevation difference = 2.500(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 10.31 min. $TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)]$ $TC = [1.8*(1.1-0.7000)*(222.000^{.5})/(1.126^{(1/3)}] = 10.31$ Rainfall intensity (I) = 3.337(In/Hr) for a 100.0 year storm

0.450(Ac.)

Effective runoff coefficient used for area (Q=KCIA) is C = 0.700

Subarea runoff = 1.051(CFS)
Total initial stream area =

```
Process from Point/Station
                        12.000 to Point/Station
**** SUBAREA FLOW ADDITION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[MULTI - UNITS area type
                                     1
Time of concentration =
                     10.31 min.
Rainfall intensity = 3.337(In/Hr) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, Q=KCIA, C = 0.700
Subarea runoff = 6.774(CFS) for 2.900(Ac.)
Total runoff = 7.825(CFS)Total area = 3.35(Ac.)
Process from Point/Station 12.000 to Point/Station
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 528.500(Ft.)
Downstream point/station elevation = 526.300(Ft.)
Pipe length = 750.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow =
                                    7.825(CFS)
Nearest computed pipe diameter = 21.00(In.)
Calculated individual pipe flow =
                              7.825(CFS)
Normal flow depth in pipe = 15.75(In.)
Flow top width inside pipe = 18.19(In.)
Critical Depth = 12.45(In.)
Pipe flow velocity = 4.04(Ft/s)
Travel time through pipe = 3.09 min.
Time of concentration (TC) = 13.40 \text{ min.}
Process from Point/Station
                          16.000 to Point/Station
**** SUBAREA FLOW ADDITION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[MULTI - UNITS area type
                                     ]
Time of concentration =
                     13.40 min.
Rainfall intensity = 3.032(In/Hr) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, Q=KCIA, C = 0.700
Subarea runoff = 2.653(CFS) for
                               1.250(Ac.)
Total runoff = 10.478(CFS)Total area =
                                         4.60(Ac.)
Process from Point/Station
                           14.000 to Point/Station
```

```
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 526.300(Ft.)
Downstream point/station elevation = 524.900(Ft.)
Pipe length = 143.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 10.478(CFS)
Nearest computed pipe diameter = 18.00(In.)
Calculated individual pipe flow = 10.478(CFS)
Normal flow depth in pipe = 14.91(In.)
Flow top width inside pipe = 13.58(In.)
Critical Depth = 14.92(In.)
Pipe flow velocity = 6.70(Ft/s)
Travel time through pipe = 0.36 min.
Time of concentration (TC) = 13.76 \text{ min.}
Process from Point/Station
                        14.000 to Point/Station
**** SUBAREA FLOW ADDITION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[MULTI - UNITS area type
Time of concentration =
                      13.76 min.
Rainfall intensity = 3.002(In/Hr) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, Q=KCIA, C = 0.700
Subarea runoff = 9.205(CFS) for 4.380(Ac.)
Total runoff = 19.683(CFS)Total area =
                                           8.98(Ac.)
Process from Point/Station 18.000 to Point/Station
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 524.900(Ft.)
Downstream point/station elevation = 521.500(Ft.)
Pipe length = 167.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 19.683(CFS)
Nearest computed pipe diameter = 21.00(In.)
Calculated individual pipe flow = 19.683(CFS
                                 19.683(CFS)
Normal flow depth in pipe = 15.16(In.)
Flow top width inside pipe = 18.81(In.)
Critical Depth = 19.08(In.)
Pipe flow velocity = 10.59(Ft/s)
Travel time through pipe = 0.26 min.
Time of concentration (TC) = 14.02 min.
Process from Point/Station 22.000 to Point/Station
                                                       20,000
```

3

**** SUBAREA FLOW ADDITION ****

```
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[MULTI - UNITS area type
                                      1
Time of concentration =
                      14.02 min.
Rainfall intensity =
                     2.981(In/Hr) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, Q=KCIA, C = 0.700
Subarea runoff =
                  0.459(CFS) for 0.220(Ac.)
Total runoff = 20.142(CFS)Total area = 9.20(Ac.)
Process from Point/Station
                           24.000 to Point/Station
**** SUBAREA FLOW ADDITION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[MULTI - UNITS area type
                                      1
Time of concentration =
                      14.02 min.
Rainfall intensity = 2.981(In/Hr) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, Q=KCIA, C = 0.700
Subarea runoff = 0.459(CFS) for 0.220(Ac.)
Total runoff = 20.601(CFS)Total area = 9.42(Ac.)
Process from Point/Station 20.000 to Point/Station
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 521.500(Ft.)
Downstream point/station elevation = 518.290(Ft.)
Pipe length = 458.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 20.601(CFS)
Nearest computed pipe diameter = 27.00(In.)
Calculated individual pipe flow = 20.601(CFS)
Normal flow depth in pipe = 18.19(In.)
Flow top width inside pipe = 25.32(In.)
Critical Depth = 19.05(In.)
Pipe flow velocity = 7.24(Ft/s)
Travel time through pipe = 1.05 min.
Time of concentration (TC) = 15.08 min.
Process from Point/Station 30.000 to Point/Station
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
```

```
[MULTI - UNITS area type
Initial subarea flow distance = 210.000(Ft.)
Highest elevation = 529.000(Ft.)
Lowest elevation = 524.800(Ft.)
Elevation difference =
                      4.200(Ft.)
Time of concentration calculated by the urban
areas overland flow method (App X-C) =
TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3))
TC = [1.8*(1.1-0.7000)*(210.000^{5})/(2.000^{5})] = 8.28
Rainfall intensity (I) =
                          3.613(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.700
Subarea runoff =
                   0.405(CFS)
Total initial stream area =
                              0.160(Ac.)
Process from Point/Station
                            32.000 to Point/Station
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 524.800(Ft.)
Downstream point/station elevation = 524.600(Ft.)
Pipe length = 18.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 0.405(CFS)
Nearest computed pipe diameter =
                                6.00(In.)
Calculated individual pipe flow = 0.405(CFS)
Normal flow depth in pipe =
                          3.64(In.)
Flow top width inside pipe =
                          5.86(In.)
Critical Depth = 3.89(In.)
Pipe flow velocity = 3.24(Ft/s)
Travel time through pipe = 0.09 min.
Time of concentration (TC) = 8.37 \text{ min.}
Process from Point/Station
                            35.000 to Point/Station
                                                      34.000
**** SUBAREA FLOW ADDITION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[MULTI - UNITS area type
Time of concentration =
                        8.37 min.
                     3.599(In/Hr) for a 100.0 year storm
Rainfall intensity =
Runoff coefficient used for sub-area, Rational method, Q=KCIA, C = 0.700
                   0.403(CFS) for
Subarea runoff =
                                  0.160(Ac.)
Total runoff =
                                           0.32(Ac.)
                 0.808(CFS)Total area =
34.000 to Point/Station
Process from Point/Station
                                                      36.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 524.500(Ft.)
```

```
Downstream point/station elevation = 521.540(Ft.)
Pipe length = 423.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow =
                                       0.808(CFS)
Nearest computed pipe diameter = 9.00(In.)
Calculated individual pipe flow = 0.808(CFS)
Normal flow depth in pipe = 4.94(In.)
Flow top width inside pipe =
                           8.96(In.)
Critical Depth = 4.93(In.)
Pipe flow velocity = 3.25(Ft/s)
Travel time through pipe = 2.17 min.
Time of concentration (TC) = 10.54 min.
38.000 to Point/Station
Process from Point/Station
**** SUBAREA FLOW ADDITION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[RURAL(greater than 0.5 Ac, 0.2 ha) area type]
Time of concentration = 10.54 min.
Rainfall intensity =
                     3.310(In/Hr) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, Q=KCIA, C = 0.450
Subarea runoff = 7.612(CFS) for
                                  5.110(Ac.)
Total runoff =
                8.420(CFS)Total area =
                                           5.43(Ac.)
Process from Point/Station
                            36.000 to Point/Station
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 522.400(Ft.)
Downstream point/station elevation = 522.100(Ft.)
Pipe length = 53.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 8.420(CFS)
Nearest computed pipe diameter = 18.00(In.)
Calculated individual pipe flow = 8.420(CFS)
Normal flow depth in pipe = 16.20(In.)
Flow top width inside pipe = 10.80(In.)
Critical Depth = 13.49(In.)
Pipe flow velocity = 5.03(Ft/s)
Travel time through pipe = 0.18 min.
Time of concentration (TC) = 10.72 min.
End of computations, total study area =
                                         14.850 (Ac.)
```

APPENDIX B

NORMAL DEPTH ANALYSES

Worksheet for Circular Pipe - Node 20 to 22

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.013	
Channel Slope	0.01000	ft/ft
Diameter	1.50	ft
Discharge	0.40	ft³/s
Results		
	0.20	ft
Normal Depth Flow Area	0.20	ft²
Wetted Perimeter	1.12	ft
Hydraulic Radius	0.12	ft
Top Width	1.02	ft
Critical Depth	0.23	ft
Percent Full	13.3	%
Critical Slope	0.00527	ft/ft
Velocity	2.86	ft/s
Velocity Head	0.13	ft
Specific Energy	0.33	ft
Froude Number	1.36	
Maximum Discharge	11.30	ft³/s
Discharge Full	10.50	ft³/s
Slope Full	0.00001	ft/ft
Flow Type	SuperCritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description	0.00	IL.
Profile Headloss	0.00	ft
	0.00	ft o/
Average End Depth Over Rise		%
Normal Depth Over Rise	13.33	%
Downstream Velocity	Infinity	ft/s

Worksheet for Circular Pipe - Node 20 to 24

	Sheet for Circuit	ai Fipe .	11046 20 10 24
Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.013	
Channel Slope		0.01000	ft/ft
Diameter		1.50	ft
Discharge		0.40	ft³/s
-		0.40	11/9
Results			
Normal Depth		0.20	ft
Flow Area		0.14	ft²
Wetted Perimeter		1.12	ft
Hydraulic Radius		0.12	ft
Top Width		1.02	ft
Critical Depth		0.23	ft
Percent Full		13.3	%
Critical Slope		0.00527	ft/ft
Velocity		2.86	ft/s
Velocity Head		0.13	ft
Specific Energy		0.33	ft
Froude Number		1.36	
Maximum Discharge		11.30	ft³/s
Discharge Full		10.50	ft³/s
Slope Full		0.00001	ft/ft
Flow Type	SuperCritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description		-	
Profile Headloss		0.00	ft
Average End Depth Over Rise		0.00	%
Normal Depth Over Rise		13.33	%
Downstream Velocity		Infinity	ft/s
•			

Worksheet for Circular Pipe - Node 20 to 26

Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.013	
Channel Slope		0.00700	ft/ft
Diameter		2.00	ft
Discharge		19.00	ft³/s
Results			
		4.05	6
Normal Depth		1.65	ft
Flow Area		2.77	ft²
Wetted Perimeter		4.55	ft
Hydraulic Radius		0.61	ft
Top Width		1.53	ft
Critical Depth		1.57	ft
Percent Full		82.3	%
Critical Slope		0.00769	ft/ft
Velocity		6.87	ft/s
Velocity Head		0.73	ft
Specific Energy		2.38	ft
Froude Number		0.90	
Maximum Discharge		20.36	ft³/s
Discharge Full		18.93	ft³/s
Slope Full		0.00705	ft/ft
Flow Type	SubCritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Average End Depth Over Rise		0.00	%
Normal Depth Over Rise		82.32	%
Downstream Velocity		Infinity	ft/s

Worksheet for Circular Pipe - Node 32 to 34

TOIKS	neet for Officular Fipe	11000 02 10 04
Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Solve 1 Gi	Homai Bopui	
Input Data		
Roughness Coefficient	0.013	3
Channel Slope	0.01000) ft/ft
Diameter	1.50) ft
Discharge	0.40	O ft³/s
Results		
Nesuits		
Normal Depth	0.20) ft
Flow Area	0.14	4 ft²
Wetted Perimeter	1.12	2 ft
Hydraulic Radius	0.12	2 ft
Top Width	1.02	2 ft
Critical Depth	0.23	3 ft
Percent Full	13.3	3 %
Critical Slope	0.00527	7 ft/ft
Velocity	2.86	6 ft/s
Velocity Head	0.13	3 ft
Specific Energy	0.33	3 ft
Froude Number	1.30	3
Maximum Discharge	11.30) ft³/s
Discharge Full	10.50) ft³/s
Slope Full	0.0000	l ft/ft
Flow Type	SuperCritical	
GVF Input Data		
Downstream Depth	0.00) ft
Length	0.00	
Number Of Steps	(
GVF Output Data		
Upstream Depth	0.00) ft
Profile Description		
Profile Headloss	0.00) ft
Average End Depth Over Rise	0.00	
Normal Depth Over Rise	13.33	
Downstream Velocity	Infinit	
·-····· · - · - · - · · · · · · · ·		•

Worksheet for Circular Pipe - Node 34 to 35

TIOIKS	nicet ioi Onculai i	· ·pc	11000 04 10 00
Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Colve For	Normal Bopti		
Input Data			
Roughness Coefficient		0.013	
Channel Slope		0.01000	ft/ft
Diameter		1.50	ft
Discharge		0.40	ft³/s
Results			
Results			
Normal Depth		0.20	ft
Flow Area		0.14	ft²
Wetted Perimeter		1.12	ft
Hydraulic Radius		0.12	ft
Top Width		1.02	ft
Critical Depth		0.23	ft
Percent Full		13.3	%
Critical Slope		0.00527	ft/ft
Velocity		2.86	ft/s
Velocity Head		0.13	ft
Specific Energy		0.33	ft
Froude Number		1.36	
Maximum Discharge		11.30	ft³/s
Discharge Full		10.50	ft³/s
Slope Full		0.00001	ft/ft
Flow Type	SuperCritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Average End Depth Over Rise		0.00	%
Normal Depth Over Rise		13.33	%
Downstream Velocity		Infinity	ft/s

Worksheet for Circular Pipe - Node 34 to 36

	orksheet for Officula	ipe	11040 07 10 00
Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
	,		
Input Data			
Roughness Coefficient		0.013	
Channel Slope		0.00700	ft/ft
Diameter		1.50	ft
Discharge		0.80	ft³/s
Results			
Normal Depth		0.31	ft
Flow Area		0.26	ft²
Wetted Perimeter		1.41	ft
Hydraulic Radius		0.18	ft
Top Width		1.21	ft
Critical Depth		0.33	ft
Percent Full		20.4	%
Critical Slope		0.00498	ft/ft
Velocity		3.09	ft/s
Velocity Head		0.15	ft
Specific Energy		0.45	ft
Froude Number		1.18	
Maximum Discharge		9.45	ft³/s
Discharge Full		8.79	ft³/s
Slope Full		0.00006	ft/ft
Flow Type	SuperCritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Average End Depth Over Rise	e	0.00	%
Normal Depth Over Rise		20.39	%
Downstream Velocity		Infinity	ft/s

Project Name:

Attachment 6 Geotechnical and Groundwater Investigation Report

Attach project's geotechnical and groundwater investigation report. Refer to Appendix C.4 to determine the reporting requirements.

Project Name:					
THIS PAGE IN	ITENTIONALL	Y LEFT BLANI	K FOR DOUBLE-	SIDED PRINTIN	G
ΓHIS PAGE IN	ITENTIONALL	Y LEFT BLANI	K FOR DOUBLE-	SIDED PRINTIN	G
ΓHIS PAGE IN	ITENTIONALL	Y LEFT BLANI	K FOR DOUBLE-	SIDED PRINTIN	G
ΓHIS PAGE IN	ITENTIONALL	Y LEFT BLANI	K FOR DOUBLE-	SIDED PRINTIN	G
ΓHIS PAGE IN	ITENTIONALL	Y LEFT BLANI	K FOR DOUBLE-	SIDED PRINTIN	G
ΓHIS PAGE IN	ITENTIONALL	Y LEFT BLANI	K FOR DOUBLE-	SIDED PRINTIN	G
THIS PAGE IN	ITENTIONALL	Y LEFT BLANI	K FOR DOUBLE-	SIDED PRINTIN	G
THIS PAGE IN	ITENTIONALL	Y LEFT BLANI	K FOR DOUBLE-	SIDED PRINTIN	G
THIS PAGE IN	ITENTIONALL	Y LEFT BLANI	K FOR DOUBLE-	SIDED PRINTIN	G
THIS PAGE IN	ITENTIONALL	Y LEFT BLANI	K FOR DOUBLE-	SIDED PRINTIN	G
THIS PAGE IN	ITENTIONALL	Y LEFT BLANI	K FOR DOUBLE-	SIDED PRINTIN	G

INFILTRATION FEASIBILITY CONDITION LETTER

OCEANVIEW HILLS – PA 61 SAN DIEGO, CALIFORNIA

GEOTECHNICAL ENVIRONMENTAL MATERIALS PREPARED FOR

PARDEE HOMES SAN DIEGO, CALIFORNIA

SEPTEMBER 17, 2018 PROJECT NO. 07955-42-02

GEOTECHNICAL **E** ENVIRONMENTAL **E** MATERIALS

Project No. 07955-42-02 September 17, 2018

Pardee Homes 13400 Sabre Springs Parkway, Suite 200 San Diego, California 92128

Attention:

Mr. Allen Kashani

Subject:

INFILTRATION FEASIBILITY CONDITION LETTER

OCEANVIEW HILLS – PA 61 SAN DIEGO, CALIFORNIA

References:

- 1. Update Geotechnical Investigation, Oceanview Hills PA 61, San Diego, California, prepared by Geocon Incorporated, dated March 15, 2018 (Project No. 07955-42-02).
- 2. DMA and Hydromodification Management Exhibit, prepared by Civil Sense, Inc., undated.

Dear Mr. Kashani:

In accordance with the request of Civil Sense, Inc., we have prepared this report regarding storm water management for the subject project. Previous recommendations specific to storm water management, as well as a summary of expected soil conditions, is provided in the Reference 1. We are recommending the site be classified as a "No Infiltration" condition.

SITE AND PROJECT DESCRIPTION

Planning Area 61 consists of a 13.7-acre, vacant lot, located southeast of the intersection of Caliente Avenue and Old Otay Mesa Road in San Diego, California. The property is currently covered with weeds and brush. The property is generally flat with site elevations ranging from 530 Mean Sea Elevation (MSL) near the southwest corner to 518 MSL in a desilting basin that was constructed previously at the northeast corner of the site. With the exception of the detention basin, the site appears to be in its natural condition.

We understand the site will be developed to accommodate 29, multi-family structures with associated utilities, streets and alleys, concrete hardscape walkways, a small park, and landscaping. A retaining

wall with a maximum height of 7 feet is planned at the southeast corner of the site. The western 4.6 acres of the site is currently planned for commercial use. Based on the grading plan, grading across the residential portion will result in fills of approximately 1 foot to 8 feet. Across the commercial area, cuts of approximately 1 to 4 feet will be made.

PREVIOUS GEOTECHNICAL STUDIES

We prepared a geotechnical investigation in March 2018 (see Reference 1). Recommendations for storm water management were included in Appendix C of the report. This information was provided as part of the discretionary review process. The site is underlain topsoil overlying very old paralic deposits. Scattered pockets of undocumented fill are also present on the property. The undocumented fill was found to be loose clayey sand. The topsoil is composed of sandy to silty clay. The very old paralic deposits were found to consist of very dense clayey sand and silty to sandy clay. The topsoil and clayey portion of the very old paralic deposits is highly expansive. A Geologic Map is provided on Figure 1 and shows the locations of borings, trench logs, and infiltration test locations.

HYDROLOGIC SOIL GROUP

The United States Department of Agriculture (USDA), Natural Resources Conservation Services, provides general information regarding soil conditions for areas within the United States. The USDA website also provides the Hydrologic Soil Group. Table 1 presents the descriptions of the hydrologic soil groups.

TABLE 1
HYDROLOGIC SOIL GROUP DEFINITIONS

Soil Group	Soil Group Definition
A	Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.
В	Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.
С	Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.
D	Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

The property falls within Hydraulic Soil Group D, which has a very slow infiltration rating. Table 2 presents the information from the USDA website for the property.

TABLE 2
USDA WEB SOIL SURVEY – HYDROLOGIC SOIL GROUP

Map Unit Name	Map Unit Symbol	Approximate Percentage of Property	Hydrologic Soil Group	k _{SAT} of Most Limiting Layer (inches/ hour)
Stockpen gravelly clay loam, 2 to 5 percent slopes	SuB	100	D	0.00 to 0.06

GROUNDWATER ELEVATIONS

Groundwater was not encountered in our field exploration. Ground water is expected to be at depths greater than 50 feet below the property.

INFILTRATION RATES

We performed 2 field-saturated, hydraulic conductivity tests at the site using a Soil Moisture Corp Aardvark Permeameter at the locations presented on the Geologic Map, Figure 1. The borings were excavated with a 4-inch-diameter hand auger. Table 3 presents the results of the saturated hydraulic conductivity testing.

We used the guidelines presented in the Riverside County Low Impact Development BMP Design Handbook which references the United States Bureau of Reclamation Well Permeameter Test Method (USBR 7300-89). Based on this widely accepted guideline, the saturated hydraulic conductivity (Ksat) is equal to the infiltration rate. Therefore, the Ksat value determined from the Aardvark Permeameter test is the unfactored infiltration rate. The Ksat (infiltration rate) equation provided in the Riverside County Handbook was used to compute the unfactored infiltration rate.

TABLE 3
UNFACTORED, FIELD-SATURATED, INFILTRATION TEST RESULTS
USING THE SOILMOISTURE CORP AARDVARK PERMEAMETER

Test No.	Depth (inches)	Geologic Unit	Field Infiltration Rate, I (in/hr)	Factored* Field Infiltration Rate, I (in/hr)	
A-1	45	Terrace Deposits	0.002	0.001	
A-2	48	Terrace Deposits	0.068	0.034	

^{*}Factor of Safety of 2.0 for feasibility determination.

STORM WATER DESIGN NARRATIVE

We evaluated the site for areas of potential infiltration. The site is underlain by undocumented fill, topsoil and very dense very old paralic deposits. The undocumented fill and topsoil will be removed and replaced as compacted fill during remedial grading. The very old paralic deposits will be left inplace. Based on infiltration testing and our experience in the area, the very old paralic deposits do not exhibit infiltration rates high enough to support full or partial infiltration. In addition, the upper portion of the very old paralic deposits exhibit a high expansion potential. Infiltrating into these soils will cause soil heave and potential distress to structural improvements. Also, after the completion of grading, the site will be underlain by 3 feet to 10 feet of compacted fill. Infiltrating into the compacted fill is not recommended due to the potential to cause settlement.

From a civil design perspective, the site does not allow for suitable setbacks from BMPs to structural improvements. Civil Sense Inc. has elected to use flow control values and has positioned them at the down gradient end of the DMA areas.

In our opinion, there are no areas on the site that will support full or partial infiltration considering existing soil conditions and soil conditions that will be present at the completion of grading.

DMA EXHIBIT AND GEOLOGIC MAP

We have appended to this report a copy of the DMA map, Reference 2. We have annotated it to show the expected depth of fill at each BMP location. All of the BMPs are located within or adjacent to structural improvements or utilities. We have also appended the geotechnical map. The geotechnical map shows the locations of borings, trenches, and infiltration locations, as well as the locations of utilities, proposed structures and improvements.

STORM WATER MANAGEMENT DEVICES

For flow-controlled vaults, we recommend the vaults not allow infiltration. If basins are planned, liners and subdrains are recommended. The liners should be impermeable (e.g. High-density polyethylene, HDPE, with a thickness of about 30 mil or equivalent Polyvinyl Chloride, PVC). The subdrains should be perforated within the liner area, installed at the base and above the liner, be at least 3 inches in diameter and consist of Schedule 40 PVC pipe. The subdrains outside of the liner should consist of solid pipe. The penetration of the liners at the subdrains should be properly waterproofed. The subdrains should be connected to a proper outlet. The devices should also be installed in accordance with the manufacturer's recommendations.

Project No. 07955-42-02 - 4 - September 17, 2018

CONCLUSIONS AND RECOMMENDATIONS

Our results indicate the site has very slow infiltration characteristics due to the dense nature of the Very Old Paralic Deposits. Laboratory testing indicates the upper clayey portion of the Very Old Paralic Deposits is highly expansive. Some areas of the site will be underlain by compacted fill. Because of the slow infiltration characteristics, expansive nature of the on-site soils, and the presence of compacted fill at the completion of grading, full and partial infiltration is infeasible on this site.

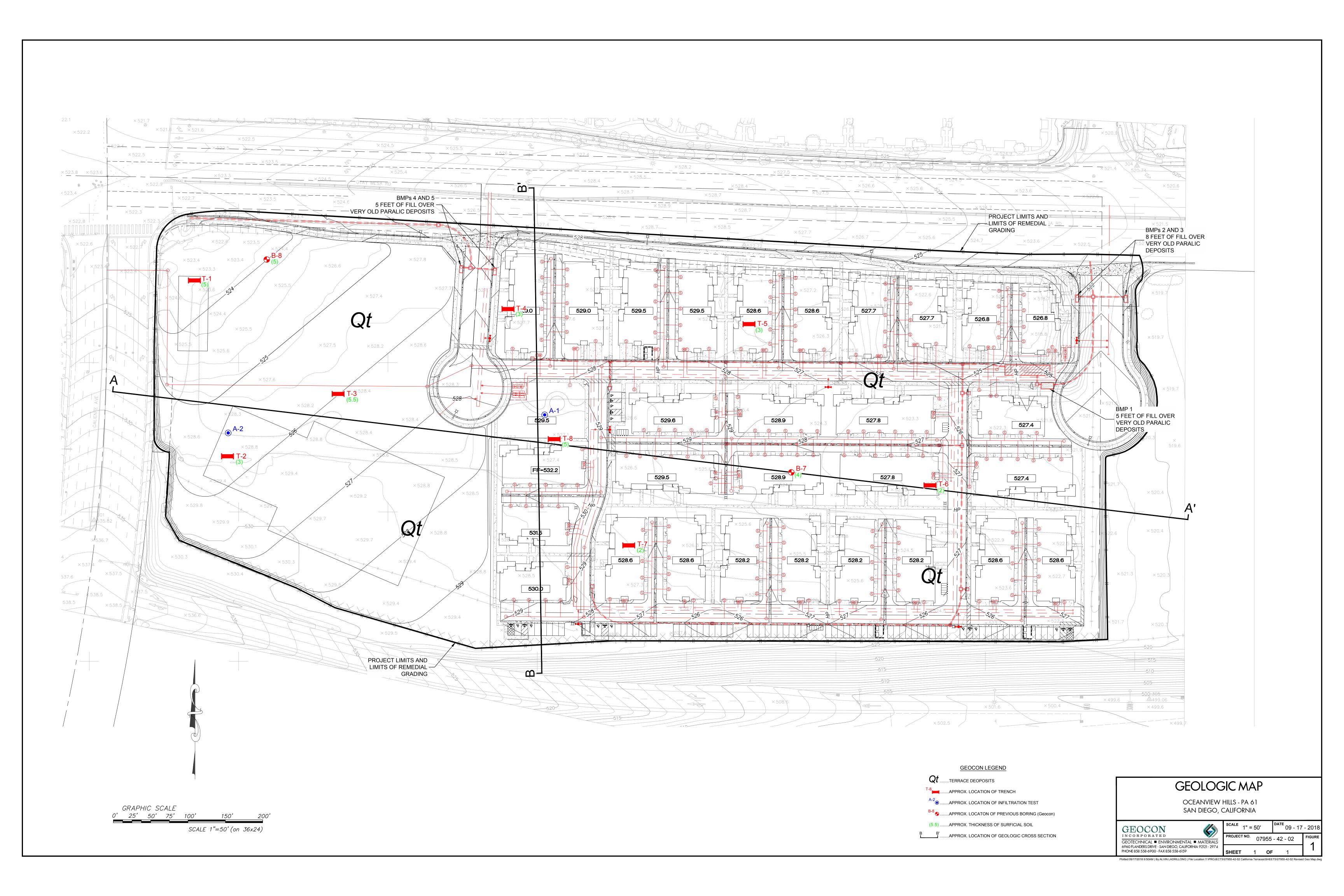
In our professional opinion and based on our site-specific investigation, there are no areas of the site where any amount of storm water infiltration is feasible. The infiltration rates are too low and/or there is an un-mitigatable risk of lateral flow to adjacent rights-of-way, utility trenches, and buildings. Additionally, the upper portion of the Very Old Paralic Deposits is highly expansive, and in some locations compacted fill in excess of 5 feet will be present at the BMP locations.

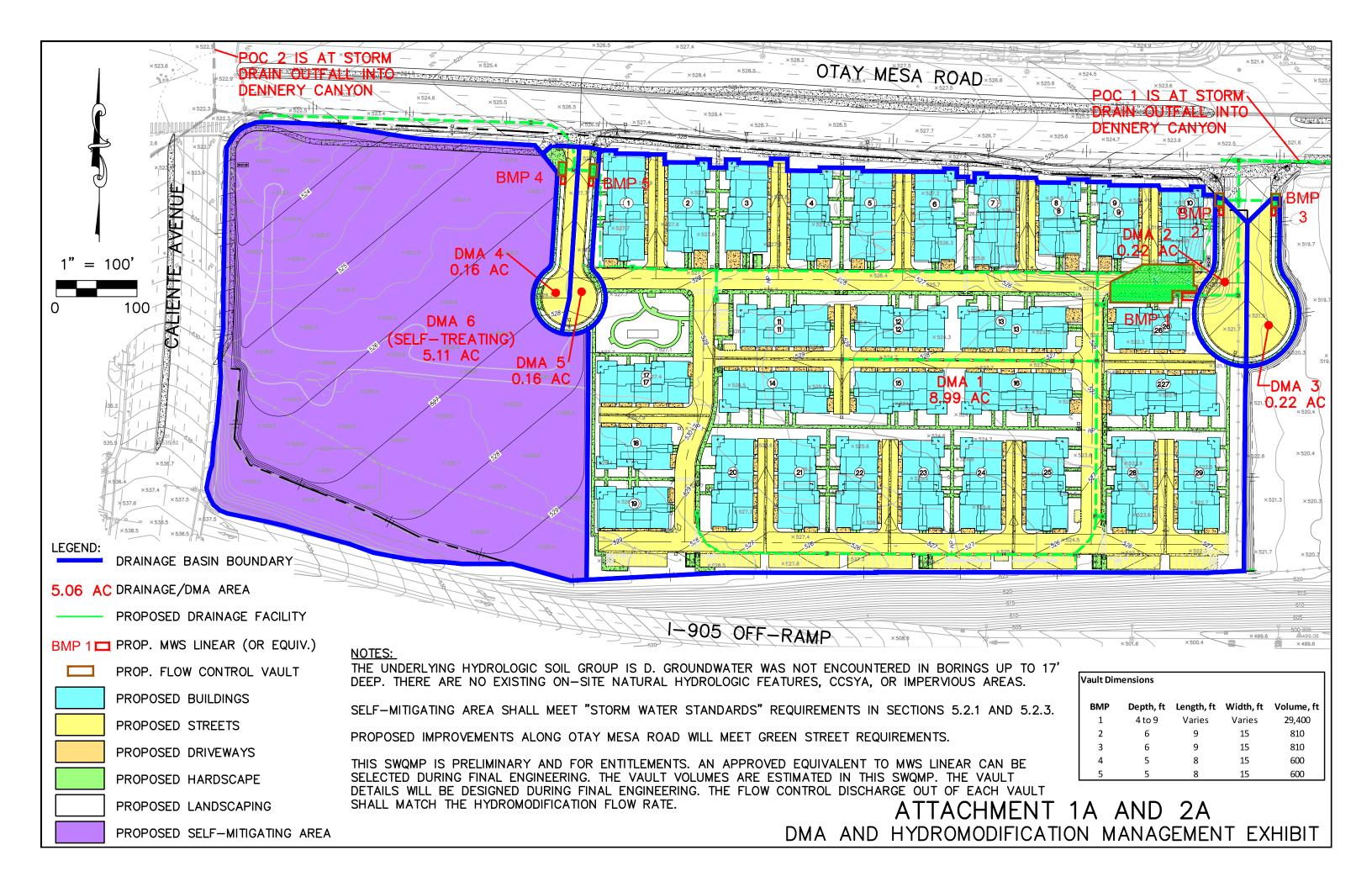
If you have any questions regarding this letter, or if we may be of further service, please contact the undersigned at your convenience.

Very truly yours,

GEOCON INCORPORATED

Rodney C. Mikesell


GE 2533


RCM:dmc

(e-mail) Addressee (2/del) Civil Sense, Inc.

Attention: Ms. Maykia Vang

Project No. 07955-42-02 - 5 - September 17, 2018

UPDATE GEOTECHNICAL INVESTIGATION

OCEANVIEW HILLS – PA 61 SAN DIEGO, CALIFORNIA

GEOTECHNICAL ENVIRONMENTAL MATERIALS PREPARED FOR

PARDEE HOMES SAN DIEGO, CALIFORNIA

MARCH 15, 2018 PROJECT NO. 07955-42-02

GEOTECHNICAL . ENVIRONMENTAL . MATERIAL

Project No. 07955-42-02 March 15, 2018

Pardee Homes 13400 Sabre Springs Parkway, Suite 200 San Diego, California 92128

Mr. Allen Kashani Attention:

Subject: UPDATE GEOTECHNICAL INVESTIGATION

> OCEANVIEW HILLS - PA 61 SAN DIEGO, CALIFORNIA

Dear Mr. Kashani:

In accordance with your request, we herein submit the results of our update geotechnical investigation for the subject project. We performed our investigation to evaluate the underlying soil and geologic conditions; potential geologic hazards; and to assist in the design of the proposed development. The accompanying report presents the results of our study with conclusions and recommendations pertaining to the geotechnical aspects of the proposed project. The site is suitable for the proposed development provided the recommendations of this report are incorporated into the design and construction of the planned project.

Should you have questions regarding this report, or if we may be of further service, please contact the undersigned at your convenience.

Very truly yours,

GEOCON INCORPORATED

Senior Staff Engineer

NGB:RCM:AS:dmc

(e-mail) Addressee

(3/del) Civil Sense, Inc.

Attention: Ms. Maykia Vang

Ali Sadr

CEG 1778

GE 2533

TABLE OF CONTENTS

1.	PURF	POSE AND SCOPE
2.	SITE	AND PROJECT DESCRIPTION
3.	SOIL 3.1 3.2 3.3	AND GEOLOGIC CONDITIONS 2 Undocumented Fill (Unmapped) 2 Topsoil (Unmapped) 3 Very Old Terrace Deposits (Qt) 3
4.	GRO	UNDWATER
5.	GEOI 5.1 5.2 5.3 5.4 5.5	LOGIC HAZARDS3Geologic Hazard Category3Faulting and Seismicity4Liquefaction Potential5Subsidence5Flooding5
6.	CONC 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11	CLUSIONS AND RECOMMENDATIONS
	PS AN Figure Figure Figure	IONS AND UNIFORMITY OF CONDITIONS ID ILLUSTRATIONS e 1, Vicinity Map e 2, Geologic Map e 3, Geologic Cross-Sections, A-A' and B-B' e 4, Wall/Column Footing Dimension Detail e 5, Typical Retaining Wall Drain Detail

APPENDIX A

FIELD INVESTIGATION

Figures A-1 – A-8, Logs of Exploratory Trenches Figures A-9 – A-10, Logs of Previous Exploratory Borings

TABLE OF CONTENTS (Concluded)

APPENDIX B

LABORATORY TESTING

Table B-I, Summary of Laboratory In-place Moisture and Density Test Results

Table B-II, Summary of Laboratory Direct Shear Test Results
Table B-III, Summary of Laboratory Expansion Index Test Results

Table B-IV, Summary of Laboratory Water-Soluble Sulfate Test Results

APPENDIX C

STORM WATER MANAGEMENT RECOMMENDATIONS

APPENDIX D

RECOMMENDED GRADING SPECIFICATIONS

LIST OF REFERENCES

UPDATE GEOTECHNICAL INVESTIGATION

1. PURPOSE AND SCOPE

This report presents the results of our geotechnical investigation for the proposed construction of several multi-family residential structures, a commercial area, private and public streets, and associated utilities on a vacant parcel of land located southeast of the intersection of Otay Mesa Road and Caliente Avenue in the Otay Mesa area of San Diego, California (see Vicinity Map, Figure 1). The purpose of this geotechnical investigation is to evaluate the surface and subsurface soil conditions, general site geology, and to identify geotechnical constraints that may impact the planned development.

To aid in the preparing of this report, we reviewed the following plans and geotechnical report:

- 1. Site Plan, Ocean View Hills (PA-61), San Diego, California, prepared by Civil Sense, undated.
- 2. Conceptual Site Plan, Ocean View Hills (PA-61), San Diego, California, prepared by Placeworks, dated January 5, 2017.
- 3. Update Geotechnical Report, South Otay Mesa Corporate Center, California Terraces Planning Area 61, San Diego, California, prepared by Geocon Incorporated, dated February 29, 2008 (Project No. 07955-42-01).

The field investigation consisted of excavating 7, exploratory trenches to evaluate the underlying geologic conditions within the area of planned development and performing 2, field-saturated hydraulic conductivity tests. Geocon Incorporated previously performed 2, small-diameter borings on May 14, 1984, which was included in the geotechnical investigation report listed as Reference 3. The locations of the exploratory trenches, previous borings, and hydraulic conductivity tests are shown on the Geologic Map, Figure 2. Civil Sense provided an AutoCAD file of the preliminary grading plan which was used as the base map to generate Figure 2. Logs of the exploratory trenches and borings and a detailed discussion of the field investigation are presented in Appendix A.

We performed laboratory tests on selected soil samples obtained during the field investigation to evaluate pertinent physical properties for engineering analyses and to assist in providing recommendations for site grading, foundation design criteria, and pavement design. Details of the laboratory testing and a summary of test results are presented in Appendix B.

The conclusions and recommendations presented herein are based on analyses of the data obtained from the field investigation, laboratory tests, and our experience with similar soil and geologic conditions.

2. SITE AND PROJECT DESCRIPTION

Planning Area 61 consists of a 13.7-acre, vacant lot, located southeast of the intersection of Caliente Avenue and Old Otay Mesa Road in San Diego, California. The property is currently covered with weeds and brush. The property is generally flat with site elevations ranging from 530 Mean Sea Elevation (MSL) near the southwest corner to 518 MSL in a desilting basin that was constructed previously at the northeast corner of the site.

We understand the site will be developed to accommodate 29, multi-family structures with associated utilities, streets and alleys, concrete hardscape walkways, a small park, and landscaping. A retaining wall with a maximum height of 7 feet is planned at the southeast corner of the site. The western 4.6 acres of the site is currently planned for commercial use.

Based on the grading plan, grading across the residential portion will result in fills of approximately 1 foot to 8 feet. The deeper fill will be in a detention basin at the northeast corner of the site. Across the commercial area, cuts of approximately 1 to 4 feet will be made. Minor fills of less than 1 foot from existing grade will be performed at the northwest corner.

The above locations, site descriptions, and proposed development are based on a site reconnaissance, review of published geologic literature, our field investigations, and discussions with you. If development plans differ from those described herein, we should be contacted to review the plans and provide revisions to this report as needed.

3. SOIL AND GEOLOGIC CONDITIONS

The site is underlain by two surficial materials, undocumented fill and topsoil and one geologic unit, Very Old Terrace Deposits. A description of these units is presented herein and also shown on the exploratory excavation logs in Appendix A. Geologic units are shown on Figure 2 and geologic cross sections are presented on Figure 3.

3.1 Undocumented Fill (Unmapped)

Scattered pockets of undocumented fills are present on the site. Undocumented fills were placed as stockpiles and berms around the perimeter of the site and also as ramps and jumps for off-road vehicles. The thickness of undocumented fills is unknown; however, we estimate that undocumented fill thickness will range between 1 to 5 feet. The lateral extent of the undocumented fill is also unknown and was not mapped due to heavy vegetation. Undocumented fill is will require removal and replacement as compacted fill.

3.2 Topsoil (Unmapped)

Topsoil blankets the entire site and are generally composed of soft to stiff, sandy to silty clay. The topsoil thickness likely varies from approximately 2 to 5 feet. Topsoils are compressible in their present condition and remedial grading will be required. Based on laboratory testing, the topsoil is highly expansive. Toposils are unsuitable for support of the project and should be removed and replaced as compacted fill. Expansive topsoil should be placed at a depth of at least 3 feet below finish pad subgrade.

3.3 Very Old Terrace Deposits (Qt)

Very Old Terrace Deposits, also known as Very Old Paralic Deposits, covers the site bellow the topsoil and undocumented fill as indicated in our exploratory borings and trenches. The Very Old Terrace Deposits in this area are generally comprised of highly expansive clay underlain by dense to very dense, silty to clayey sand with varying gravel and cobble content. The clayey portion covers almost the entire area of proposed development. Previous borings and recent exploratory trenches indicate that the clayey portion of terrace deposits transitions into topsoil with an approximate thickness of up to 5 feet. The highly expansive Terrace Deposits should be removed and replaced as compacted fill at a depth of at least 3 feet below planned finish grade.

Dense to very dense, sandy and cobbly layers underlie the clay. This portion of the terrace deposit is generally low expansive and possesses high shear strength characteristics. Based on the general geology of the area, the Very Old Paralic Deposits thickness is approximately 20 to 30 feet. These deposits unconformably rests on the Pliocene age San Diego Formation (Tsd). The sandy portion of the Terrace Deposits is suitable for support of the planned improvements.

4. GROUNDWATER

We did not encounter groundwater in our field investigation. Based on the proposed improvements, we do not expect groundwater to have an adverse impact on the project; however, it is not uncommon for groundwater or seepage conditions to develop where none previously existed. Groundwater elevations are dependent on seasonal precipitation, irrigation, land use, among other factors, and vary as a result. Proper surface drainage will be important to future performance of the project.

5. GEOLOGIC HAZARDS

5.1 Geologic Hazard Category

Based on our review of geologic literature and experience with the soil and geologic conditions in the general area, it is our opinion that known active, potentially active, or inactive faults are not located at the site. The site is not within a State of California Earthquake Fault Zone.

The City of San Diego Seismic Safety Study Geologic Hazards and Faults, Sheet 7, defines the site with a Hazard Category 53. Category 53 is defined as Level or sloping terrain, unfavorable geologic structure, low to moderate risk.

5.2 Faulting and Seismicity

According to the computer program *EZ-FRISK* (Version 7.65), six known active faults are located within a search radius of 50 miles from the property. The nearest known active fault is the Newport-Inglewood/Rose Canyon Fault Zone, located approximately 8 miles west of the site. The Newport-Inglewood/Rose Canyon Fault Zone is the dominant source of potential ground motion. Earthquakes that might occur on the Newport-Inglewood/Rose Canyon Fault Zone or other faults within the southern California and northern Baja California area are potential generators of significant ground motion at the site. The estimated deterministic maximum earthquake magnitude and peak ground acceleration for the Newport-Inglewood/Rose Canyon Fault Zone are 7.5 and 0.32g, respectively. Table 5.2.1 lists the estimated maximum earthquake magnitude and peak ground acceleration for the most dominant faults in relationship to the site location. We calculated peak ground acceleration (PGA) using Boore and Atkinson (2008), Campbell and Bozorgnia (2008), and Chiou and Youngs (2007) acceleration-attenuation relationships.

TABLE 5.2.1
DETERMINISTIC SPECTRA SITE PARAMETERS

			Peak Ground Acceleration			
Fault Name	Distance from Site (miles)	Maximum Earthquake Magnitude (Mw)	Boore- Atkinson NGA USGS 2008 (g)	Campbell- Bozorgnia NGA USGS 2008 (g)	Chiou- Youngs (2007) NGA USGS 2008 (g)	
Newport-Inglewood/Rose Canyon	8	7.5	0.29	0.24	0.32	
Rose Canyon	8	6.9	0.25	0.23	0.26	
Coronado Bank	15	7.4	0.22	0.16	0.20	
Palos Verdes Connected	15	7.7	0.24	0.17	0.22	
Elsinore	44	7.85	0.13	0.09	0.11	
Earthquake Valley	48	6.8	0.07	0.05	0.04	

We used the computer program *EZ-FRISK* to perform a probabilistic seismic hazard analysis. The computer program *EZ-FRISK* operates under the assumption that the occurrence rate of earthquakes on each mapped Quaternary fault is proportional to the fault slip rate. The program accounts for earthquake magnitude as a function of fault rupture length. Site acceleration estimates are made using the earthquake magnitude and distance from the site to the rupture zone. The program also accounts

for uncertainty in each of following: (1) earthquake magnitude, (2) rupture length for a given magnitude, (3) location of the rupture zone, (4) maximum possible magnitude of a given earthquake, and (5) acceleration at the site from a given earthquake along each fault. By calculating the expected accelerations from considered earthquake sources, the program calculates the total average annual expected number of occurrences of site acceleration greater than a specified value. We utilized acceleration-attenuation relationships suggested by Boore and Atkinson (2008), Campbell and Bozorgnia (2008), and Chiou and Youngs (2007) in the analysis. Table 5.2.2 presents the site-specific probabilistic seismic hazard parameters including acceleration-attenuation relationships and the probability of exceedence.

TABLE 5.2.2
PROBABILISTIC SEISMIC HAZARD PARAMETERS

	Peak Ground Acceleration			
Probability of Exceedence	Boore-Atkinson NGA		Chiou-Youngs (2007) NGA USGS 2008 (g)	
2% in a 50 Year Period	0.44	0.37	0.43	
5% in a 50 Year Period	0.32	0.27	0.31	
10% in a 50 Year Period	0.24	0.21	0.22	

While listing peak accelerations is useful for comparison of potential effects of fault activity in a region, other considerations are important in seismic design, including frequency and duration of motion and soil conditions underlying the site. Seismic design of the structures should be evaluated in accordance with the California Building Code (CBC).

5.3 Liquefaction Potential

The risk associated with liquefaction hazard is low due to the lack of shallow groundwater and dense nature of the underlying sediments.

5.4 Subsidence

Based on the subsurface soil conditions encountered during our field investigation, the risk associated with ground subsidence is low.

5.5 Flooding

The site is not located within a designated drainage or floodplain area (FEMA, 2012). The risk associated with flooding hazard is low.

6. CONCLUSIONS AND RECOMMENDATIONS

6.1 General

- 6.1.1 From a geotechnical engineering standpoint, it is our opinion that the site is suitable for the proposed development provided the recommendations presented herein are implemented in design and construction of the project.
- 6.1.2 The site is underlain by scattered pockets of undocumented fill and topsoil. Based on the exploratory borings and trenches, the surficial soils are underlain by the Very Old Terrace Deposits. The near surface materials are considered highly expansive (EI greater than 90). Remedial grading will be required for the onsite topsoil and clayey portions of the Terrace Deposits. The sandy portions of the old terrace deposits are suitable for the support the proposed loads or additional engineered fill.
- 6.1.3 We did not encounter groundwater during the field investigation. We expect excavations for the proposed improvements will be relatively shallow; therefore, we do not expect groundwater to have an adverse impact on the project as currently proposed.
- 6.1.4 The site is located approximately 8 miles west of the Newport-Inglewood/Rose Canyon fault zone. Based on our review of available literature, active, potentially active, or presumed inactive faults do not cross the site.
- 6.1.5 With the exception of possible strong seismic shaking, we did not observe or know of significant geologic hazards that would adversely affect the proposed development.
- 6.1.6 The risks associated with soil liquefaction and flooding hazards are low.
- 6.1.7 The proposed residential structures can be supported on a shallow foundation system founded entirely on properly compacted fill soil.
- 6.1.8 Geocon Incorporated should review the foundation and improvement plans prior to finalizing. If plans differ significantly from those described herein, Geocon should be contacted to check if additional analyses will be required.
- 6.1.9 Subdrains are not required for this project.

6.2 Excavation and Soil Characteristics

- 6.2.1 Excavation of the onsite soils should be possible with moderate to heavy effort using conventional, heavy-duty equipment during grading and trenching operations.
- 6.2.2 The soil encountered in our field investigation is considered to be both "non-expansive" (Expansion Index [EI] of 20 or less) and "expansive" (EI greater than 20) as defined by 2016 California Building Code (CBC) Section 1803.5.3. Table 6.2 presents soil classifications based on the expansion index.

TABLE 6.2
EXPANSION CLASSIFICATION BASED ON EXPANSION INDEX

Expansion Index (EI)	Expansion Classification	2016 CBC Expansion Classification	
0 – 20	Very Low	Non-Expansive	
21 – 50	Low		
51 – 90	Medium	T	
91 – 130	High	Expansive	
Greater Than 130	Very High		

- 6.2.3 We performed laboratory tests on samples of the site materials to evaluate the percentage of water-soluble sulfate content. Appendix B presents the results from the laboratory water-soluble sulfate content tests. The test results indicate that on-site materials at the locations tested possess "Not Applicable" and "S0" sulfate exposure to concrete structures, as defined by 2016 CBC Section 1904 and ACI 318-14 Chapter 19. The presence of water-soluble sulfates is not a visually discernible characteristic. Therefore, other soil samples from the site could yield different concentrations. Additionally, over time landscaping activities (i.e. addition of fertilizers and other soil nutrients) may affect the concentration.
- 6.2.4 Geocon Incorporated does not practice in the field of corrosion engineering. Therefore, if improvements that could be susceptible to corrosion are planned, further evaluation by a corrosion engineer may be needed.

6.3 Grading

6.3.1 All grading should be performed in accordance with the *Recommended Grading Specifications* contained in Appendix D. Where the recommendations of Appendix D conflict with this section of the report, the recommendations of this section take precedence.

- 6.3.2 Prior to commencing grading, a preconstruction conference should be held at the site with the owner or developer, grading contractor, civil engineer, and geotechnical engineer in attendance. Special soil handling and/or the grading plans can be discussed at that time.
- 6.3.3 Grading should be performed in conjunction with the observation and compaction testing services of Geocon Incorporated. Fill soil should be observed on a full-time basis during placement and tested to check in-place dry density and moisture content.
- 6.3.4 Site preparation should begin with removal of all deleterious material and vegetation. The depth of removal should be such that material exposed in cut areas or soil to be used for fill is relatively free of organic matter. Deleterious material generated during stripping and/or site demolition should be exported from the site.
- 6.3.5 Abandoned utilities should be removed and the subsequent depressions and/or trenches backfilled with properly compacted fill as part of the remedial grading.
- 6.3.6 Soft soils at the base of the existing detention basin should be removed to expose dense Terrace Deposits.
- 6.3.7 The undocumented fill, topsoil, and the clay portion of the Very Old Terrace Deposits are considered unsuitable to receive fill and settlement sensitive structures and should be completely removed to expose the underlying competent sandy Terrace Deposits. The depth of remedial grading is estimated to be 3 to 6 feet below existing grades. The estimated depth of the surficial soils that will require remedial grading is shown on the Geologic Map, Figure 2. The actual depth should be determined in the field during grading.
- 6.3.8 Selective grading should be performed so that expansive soils (EI greater than 90) are placed at least 3 feet below finish subgrade elevation. Alternatively, expansive soils can be mixed with low expansive, granular soil, and used as fill material in the upper 3 feet of pad grade provided the mixed soil has an expansion index (EI) less than 90. The contractor should expect to perform significant mixing to enable a uniform compacted fill that meets the required expansion index. As pad grades for the commercial portion are not yet known, consideration should be given to keeping expansive soils to a depth of at least 5 feet below planned sheet grade elevations in the commercial area to account for future pad regrading.
- 6.3.9 Because of the limited fill depths, mining of the underlying sandy cobble terrace will likely be needed to generate sufficient soil for either capping building pads or generating soil for mixing with the on-site clays.

- 6.3.10 Prior to placing fill, the upper 12 inches at the base of removals should be scarified, moisture conditioned as necessary and recompacted. Soils derived from onsite excavations are suitable for reuse as fill if free from vegetation, debris and other deleterious material. Fill lifts should be no thicker than will allow for adequate bonding and compaction. Fill, backfill, and scarified ground surfaces, should be compacted to a dry density of at least 90 percent of maximum dry density at or slightly above optimum moisture content, as determined in accordance with ASTM D 1557. Grading should be performed so that the upper 3 feet of soil below finish pad subgrade consist of soil with a *low* to *medium* expansive potential (EI of 90 or less).
- 6.3.11. Oversize rock greater than 12 inches should be placed at least 5 feet below finish pad grade or 3 feet below the deepest utility, whichever is greater. Rock greater than 6 inches should not be placed in the upper 3 feet below building pad grade. Oversize rock that cannot be placed as recommended should be exported off site.
- 6.3.12 Imported fill should consist of granular soil with a *low* expansion potential (EI of 50 or less) that is free of deleterious material or stones larger than 3 inches and should be compacted as recommended above. Geocon Incorporated should be notified of the import soil source and should perform laboratory testing prior to its arrival at the site to evaluate its suitability as fill material.

6.4 Slopes

- 6.4.1 A 2:1 (horizontal:vertical) or flatter fill slope with a maximum height of approximately 7 feet is planned along the eastern boundary of Street B. The outer 15 feet (or a distance equal to the height of the slope, whichever is less) should consist of properly compacted granular soil fill to reduce the potential for surface sloughing. All fill slopes should be track-walked upon completion such that the fill soils are uniformly compacted to at least 90 percent relative compaction to the face of the finish slope.
- 6.4.2 Fill slopes constructed with granular materials as recommended above will have a factor of safety of at least 1.5 under static conditions with respect to both deep-seated and surficial instability for the slope heights proposed.
- 6.4.3 All slopes should be planted, drained, and maintained to reduce erosion.

6.5 Seismic Design Criteria

6.5.1 We used USGS (2017) to determine seismic design criteria. Table 6.5.1 summarizes sitespecific design criteria obtained from the 2016 California Building Code (CBC; Based on the 2015 International Building Code [IBC] and ASCE 7-10), Chapter 16 Structural Design, Section 1613 Earthquake Loads. The short spectral response uses a period of 0.2 second. The building structure and improvements should be designed using a Site Class D. We evaluated the Site Class in accordance with Section 1613.3.2 of the 2016 CBC and Table 20.3-1 of ASCE 7-10 based on our experience with the site subsurface soils and exploratory boring information. The values presented in Table 6.5.1 are for the risk-targeted maximum considered earthquake (MCE $_{\rm R}$).

TABLE 6.5.1
2016 CBC SEISMIC DESIGN PARAMETERS

Parameter	Value	2016 CBC Reference	
Site Class	D	Table 1613.3.2	
MCE _R Ground Motion Spectral Response Acceleration – Class B (short), S _S	0.865g	Figure 16133.1(1)	
MCE _R Ground Motion Spectral Response Acceleration – Class B (1 sec), S ₁	0.328g	Figure 1613.3.1(2)	
Site Coefficient, FA	1.154	Table 1613.3.3(1)	
Site Coefficient, F _V	1.743	Table 1613.3.3(2)	
Site Class Modified MCE_R Spectral Response Acceleration (short), S_{MS}	0.999g	Section 1613.3.3 (Eqn 16-37)	
Site Class Modified MCE_R Spectral Response Acceleration – (1 sec), S_{M1}	0.572g	Section 1613.3.3 (Eqn 16-38)	
5% Damped Design Spectral Response Acceleration (short), S _{DS}	0.666g	Section 1613.3.4 (Eqn 16-39)	
5% Damped Design Spectral Response Acceleration (1 sec), S _{D1}	0.382g	Section 1613.3.4 (Eqn 16-40)	

6.5.2 Table 6.5.2 presents additional seismic design parameters for projects located in Seismic Design Categories of D through F in accordance with ASCE 7-10 for the mapped maximum considered geometric mean (MCE_G).

TABLE 6.5.2
2016 CBC SITE ACCELERATION DESIGN PARAMETERS

Parameter	Value	ASCE 7-10 Reference	
Mapped MCE _G Peak Ground Acceleration, PGA	0.348g	Figure 22-7	
Site Coefficient, F _{PGA}	1.152	Table 11.8-1	
Site Class Modified MCE _G Peak Ground Acceleration, PGA _M	0.401g	Section 11.8.3 (Eqn 11.8-1)	

6.5.3 Conformance to the criteria in Tables 6.5.1 and 6.5.2 for seismic design does not constitute any kind of guarantee or assurance that significant structural damage or ground failure will not occur if a maximum level earthquake occurs. The primary goal of seismic design is to protect life and not to avoid all damage, since such design may be economically prohibitive.

6.6 Foundation and Concrete Slabs-On-Grade Recommendations

6.6.1 The foundation recommendations herein are for proposed one- to three-story residential structures. The foundation recommendations have been separated into three categories based on either the maximum and differential fill thickness or Expansion Index. The foundation category criteria are presented in Table 6.6.1.

TABLE 6.6.1 FOUNDATION CATEGORY CRITERIA

Foundation Category	Maximum Fill Thickness, T (feet)	Differential Fill Thickness, D (feet)	Expansion Index (EI)
I	T<20		EI <u><</u> 50
II	20 <u><</u> T<50	10 <u><</u> D<20	50 <ei<u><90</ei<u>
III	T≥50	D <u>></u> 20	90 <ei<130< td=""></ei<130<>

- 6.6.2 We will provide final foundation categories for each building or lot after finish pad grades have been achieved and we perform laboratory testing of the subgrade soil.
- 6.6.3 Table 6.6.2 presents minimum foundation and interior concrete slab design criteria for conventional foundation systems.

TABLE 6.6.2 CONVENTIONAL FOUNDATION RECOMMENDATIONS BY CATEGORY

Foundation Category	Minimum Footing Embedment Depth (inches)	Continuous Footing Reinforcement	Interior Slab Reinforcement
I	12	Two No. 4 bars, one top and one bottom	6 x 6 - 10/10 welded wire mesh at slab mid-point
II	18	Four No. 4 bars, two top and two bottom	No. 3 bars at 24 inches on center, both directions
III	24	Four No. 5 bars, two top and two bottom	No. 3 bars at 18 inches on center, both directions

- 6.6.4 The embedment depths presented in Table 6.6.2 should be measured from the lowest adjacent pad grade for both interior and exterior footings. The conventional foundations should have a minimum width of 12 inches and 24 inches for continuous and isolated footings, respectively. A typical footing dimension detail is provided on Figure 4.
- 6.6.5 The concrete slab-on-grade should be a minimum of 4 inches thick for Foundation Categories I and II and 5 inches thick for Foundation Category III.
- Slabs that may receive moisture-sensitive floor coverings or may be used to store moisture-sensitive materials should be underlain by a vapor retarder. The vapor retarder design should be consistent with the guidelines presented in the American Concrete Institute's (ACI) *Guide for Concrete Slabs that Receive Moisture-Sensitive Flooring Materials* (ACI 302.2R-06). The vapor retarder used should be specified by the project architect or developer based on the type of floor covering that will be installed and if the structure will possess a humidity-controlled environment.
- 6.6.7 The bedding sand thickness should be determined by the project foundation engineer, architect, and/or developer. However, we should be contacted to provide recommendations if the bedding sand is thicker than 6 inches. It is common to see 3 inches and 4 inches of sand below the concrete slab-on-grade for 5-inch and 4-inch thick slabs, respectively, in the southern California area.
- 6.6.8 The foundation design engineer should provide appropriate concrete mix design criteria and curing measures to assure proper curing of the slab by reducing the potential for rapid moisture loss and subsequent cracking and/or slab curl. We suggest that the foundation design engineer present the concrete mix design and proper curing methods on the foundation plans. It is critical that the foundation contractor understands and follows the recommendations presented on the foundation plans.
- As an alternative to the conventional foundation recommendations, consideration should be given to the use of post-tensioned concrete slab and foundation systems for the support of the proposed structures. The post-tensioned systems should be designed by a structural engineer experienced in post-tensioned slab design and design criteria of the Post-Tensioning Institute (PTI) DC 10.5-12 Standard Requirements for Design and Analysis of Shallow Post-Tensioned Concrete Foundations on Expansive Soils or WRI/CRSI Design of Slab-on-Ground Foundations, as required by the 2016 California Building Code (CBC Section 1808.6.2). Although this procedure was developed for expansive soil conditions, it can also be used to reduce the potential for foundation distress due to differential fill settlement. The post-tensioned design should incorporate the geotechnical parameters presented in Table 6.6.3 for

the particular Foundation Category designated. The parameters presented in Table 6.6.3 are based on the guidelines presented in the PTI DC 10.5 design manual.

TABLE 6.6.3
POST-TENSIONED FOUNDATION SYSTEM DESIGN PARAMETERS

Post-Tensioning Institute (PTI),	Foundation Category		
Third Edition Design Parameters	I	II	III
Thornthwaite Index	-20	-20	-20
Equilibrium Suction	3.9	3.9	3.9
Edge Lift Moisture Variation Distance, e _M (feet)	5.3	5.1	4.9
Edge Lift, y _M (inches)	0.61	1.10	1.58
Center Lift Moisture Variation Distance, e _M (feet)	9.0	9.0	9.0
Center Lift, y _M (inches)	0.30	0.47	0.66

- 6.6.10 The foundations for the post-tensioned slabs should be embedded in accordance with the recommendations of the structural engineer. If a post-tensioned mat foundation system is planned, the slab should possess a thickened edge with a minimum width of 12 inches and extend below the clean sand or crushed rock layer.
- 6.6.11 If the structural engineer proposes a post-tensioned foundation design method other than PTI DC 10.5:
 - The deflection criteria presented in Table 6.6.3 are still applicable.
 - Interior stiffener beams should be used for Foundation Categories II and III.
 - The width of the perimeter foundations should be at least 12 inches.
 - The perimeter footing embedment depths should be at least 12 inches, 18 inches and 24 inches for foundation categories I, II, and III, respectively. The embedment depths should be measured from the lowest adjacent pad grade.
- 6.6.12 Our experience indicates post-tensioned slabs may be susceptible to excessive edge lift, regardless of the underlying soil conditions. Placing reinforcing steel at the bottom of the perimeter footings and the interior stiffener beams may mitigate this potential. The structural engineer should design the foundation system to reduce the potential of edge lift occurring for the proposed structures.
- 6.6.13 During the construction of the post-tension foundation system, the concrete should be placed monolithically. Under no circumstances should cold joints form between the

footings/grade beams and the slab during the construction of the post-tension foundation system unless designed by the structural engineer.

- 6.6.14 Category I, II, or III foundations may be designed for an allowable soil bearing pressure of 2,000 pounds per square foot (psf) (dead plus live load). This bearing pressure may be increased by one-third for transient loads due to wind or seismic forces. The estimated maximum total and differential settlement for the planned structures due to foundation loads is 1 inch and ½ inch, respectively.
- Isolated footings outside of the slab area, if present, should have the minimum embedment depth and width recommended for conventional foundations for a particular Foundation Category. The use of isolated footings, which are located beyond the perimeter of the building and support structural elements connected to the building, are not recommended for Category III. Where this condition cannot be avoided, the isolated footings should be connected to the building foundation system with grade beams. In addition, consideration should be given to connecting patio slabs, which exceed 5 feet in width, to the building foundation to reduce the potential for future separation to occur.
- 6.6.16 Interior stiffening beams should be incorporated into the design of the foundation system in accordance with the PTI design procedures.
- 6.6.17 Special subgrade presaturation is not deemed necessary prior to placing concrete; however, the exposed foundation and slab subgrade soil should be moisture conditioned, as necessary, to maintain a moist condition as would be expected in any such concrete placement.
- 6.6.18 Where buildings or other improvements are planned near the top of a slope 3:1 (horizontal:vertical) or steeper, special foundation and/or design considerations are recommended due to the tendency for lateral soil movement to occur.
 - For fill slopes less than 20 feet high or cut slopes regardless of height, footings should be deepened such that the bottom outside edge of the footing is at least 7 feet horizontally from the face of the slope.
 - When located next to a descending 3:1 (horizontal:vertical) fill slope or steeper, the foundations should be extended to a depth where the minimum horizontal distance is equal to H/3 (where H equals the vertical distance from the top of the fill slope to the base of the fill soil) with a minimum of 7 feet but need not exceed 40 feet. The horizontal distance is measured from the outer, deepest edge of the footing to the face of the slope. A post-tensioned slab and foundation system or mat foundation system can be used to reduce the potential for distress in the structures

- associated with strain softening and lateral fill extension. Specific design parameters or recommendations for either of these alternatives can be provided once the building location and fill slope geometry have been determined.
- If swimming pools are planned, Geocon Incorporated should be contacted for a review of specific site conditions.
- Swimming pools located within 7 feet of the top of cut or fill slopes are not recommended. Where such a condition cannot be avoided, the portion of the swimming pool wall within 7 feet of the slope face be designed assuming that the adjacent soil provides no lateral support. This recommendation applies to fill slopes up to 30 feet in height, and cut slopes regardless of height. For swimming pools located near the top of fill slopes greater than 30 feet in height, additional recommendations may be required and Geocon Incorporated should be contacted for a review of specific site conditions.
- Although other improvements, which are relatively rigid or brittle, such as concrete flatwork or masonry walls, may experience some distress if located near the top of a slope, it is generally not economical to mitigate this potential. It may be possible, however, to incorporate design measures which would permit some lateral soil movement without causing extensive distress. Geocon Incorporated should be consulted for specific recommendations.
- 6.6.19 The recommendations of this report are intended to reduce the potential for cracking of slabs and foundations due to expansive soil (if present), differential settlement of fill soil with varying thicknesses. However, even with the incorporation of the recommendations presented herein, foundations, stucco walls, and slabs-on-grade placed on such conditions may still exhibit some cracking due to soil movement and/or shrinkage. The occurrence of concrete shrinkage cracks is independent of the supporting soil characteristics. Their occurrence may be reduced by limiting the slump of the concrete, proper concrete placement and curing, and by the placement of crack control joints at periodic intervals, in particular, where re-entrant slab corners occur.
- 6.6.20 Concrete slabs should be provided with adequate crack-control joints, construction joints and/or expansion joints to reduce unsightly shrinkage cracking. The design of joints should consider criteria of the American Concrete Institute (ACI) when establishing crack-control spacing. Additional steel reinforcing, concrete admixtures and/or closer crack control joint spacing should be considered where concrete-exposed finished floors are planned.
- 6.6.21 Geocon Incorporated should be consulted to provide additional design parameters as required by the structural engineer.

6.7 Retaining Walls

- 6.7.1 Retaining walls that are allowed to rotate more than 0.001H (where H equals the height of the retaining portion of the wall) and having a level backfill surface should be designed for an active soil pressure equivalent to the pressure exerted by a fluid density of 35 pounds per cubic foot (pcf). Where the backfill will be inclined at 2:1 (horizontal to vertical), an active soil pressure of 50 pcf is recommended. Soil with an expansion index (EI) of greater than 50 should not be used as backfill material behind retaining walls.
- 6.7.2 Where walls are restrained from movement at the top, an additional uniform pressure of 7H psf should be added to the active soil pressure for walls 10 feet high or less. The active pressure should be increased to 14H for the portion of the walls higher than 12 feet. For retaining walls subject to vehicular loads within a horizontal distance equal to two-thirds the wall height, a surcharge equivalent to 2 feet of fill soil should be added. Loads from the adjacent structures should be incorporated into the design of the retaining walls, if applicable.
- 6.7.3 The use of drainage openings through the base of the wall (weep holes) is not recommended where the seepage could be a nuisance or otherwise adversely affect the property adjacent to the base of the wall. The recommendations herein assume a properly compacted granular (EI of 50 or less) free-draining backfill material with no hydrostatic forces or imposed surcharge load. Figure 5 presents a typical retaining wall drain detail. If conditions different than those described are expected, or if specific drainage details are desired, Geocon Incorporated should be contacted for additional recommendations.
- 6.7.4 The structural engineer should determine the seismic design category for the project in accordance with Section 1613 of the 2016 CBC. If the project possesses a seismic design category of D, E, or F, retaining walls that support more than 6 feet of backfill should be designed with seismic lateral pressure in accordance with Section 18.3.5.12 of the 2016 CBC. The seismic load is dependent on the retained height where H is the height of the wall, in feet, and the calculated loads result in pounds per square foot (psf) exerted at the base of the wall and zero at the top of the wall. A seismic load of 20H should be used for design. We used the peak ground acceleration adjusted for Site Class effects, PGA_M, of 0.401g calculated from ASCE 7-10 Section 11.8.3 and applied a pseudo-static coefficient of 0.33.
- 6.7.5 The recommendations presented herein are generally applicable to the design of rigid concrete or masonry retaining walls having a maximum height of 15 feet. In the event that walls higher than 15 feet or other types of walls (such as crib-type walls) are planned, Geocon Incorporated should be consulted for additional recommendations.

6.7.6 Unrestrained walls will move laterally when backfilled and loading is applied. The amount of lateral deflection is dependent on the wall height, the type of soil used for backfill, and loads acting on the wall. The retaining walls and improvements above the retaining walls should be designed to incorporate an appropriate amount of lateral deflection as determined by the structural engineer.

6.8 Lateral Loading

- 6.8.1 For resistance to lateral loads, an allowable passive earth pressure equivalent to a fluid density of 300 pcf is recommended for footings or shear keys poured neat against properly compacted granular fill soils or undisturbed formation materials. The allowable passive pressure assumes a horizontal surface extending away from the base of the wall at least 5 feet or three times the surface generating the passive pressure, whichever is greater. The upper 12 inches of material not protected by floor slabs or pavement should not be included in the design for lateral resistance. Where walls are planned adjacent to and/or on descending slopes, a passive pressure of 150 pcf should be used in design.
- 6.8.2 If friction is to be used to resist lateral loads, an allowable coefficient of friction between soil and concrete of 0.4 should be used for design.

6.9 Storm Water Management

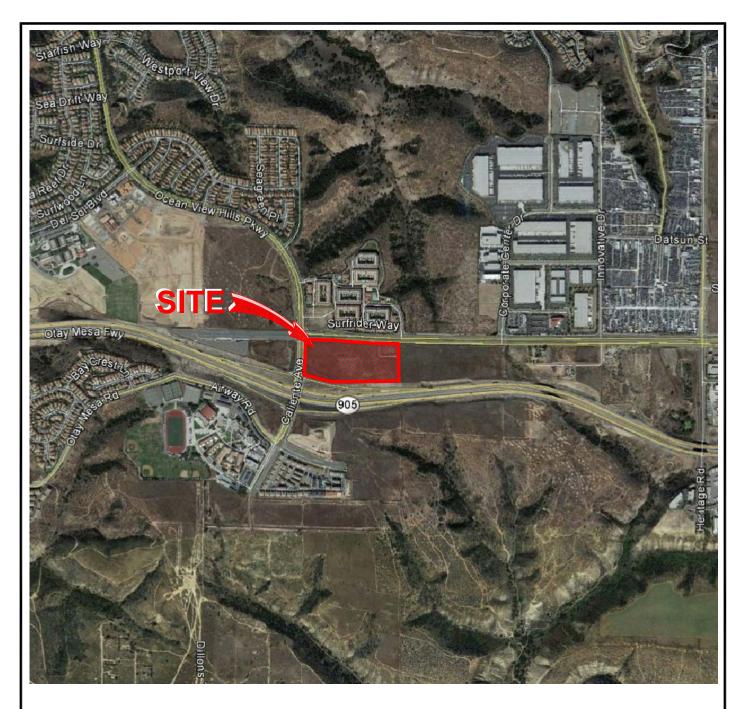
- 6.9.1 If storm water management devices are not properly designed and constructed, there is a risk for distress to improvements and properties located hydrologically down gradient or adjacent to these devices. Factors such as the amount of water being detained, its residence time, and soil permeability have an important effect on seepage transmission and the potential adverse impacts that may occur if the storm water management features are not properly designed and constructed. We have not performed a hydrogeological study at the site. If infiltration of storm water runoff into the subsurface occurs, downstream improvements may be subjected to seeps, springs, slope instability, raised groundwater, movement of foundations and slabs, or other undesirable impacts as a result of water infiltration.
- 6.9.2 We performed an infiltration study on the property. A summary of our study and storm water management recommendations are provided in Appendix C. Based on the results of our study, infiltration is considered infeasible due to low infiltration rates.

6.10 Site Drainage and Moisture Protection

6.10.1 Adequate site drainage is critical to reduce the potential for differential soil movement, erosion and subsurface seepage. Under no circumstances should water be allowed to pond

adjacent to footings. The site should be graded and maintained such that surface drainage is directed away from structures in accordance with 2016 CBC 1804.4 or other applicable standards. In addition, surface drainage should be directed away from the top of slopes into swales or other controlled drainage devices. Roof and pavement drainage should be directed into conduits that carry runoff away from the proposed or existing structures.

- 6.10.2 In the case of basement walls or building walls retaining landscaping areas, a water-proofing system should be used on the wall and joints, and a Miradrain drainage panel (or similar) should be placed over the waterproofing. The project architect or civil engineer should provide detailed specifications on the plans for all waterproofing and drainage.
- 6.10.3 Underground utilities should be leak free. Utility and irrigation lines should be checked periodically for leaks, and detected leaks should be repaired promptly. Detrimental soil movement could occur if water is allowed to infiltrate the soil for prolonged periods of time.
- 6.10.4 Landscaping planters adjacent to paved areas are not recommended due to the potential for surface or irrigation water to infiltrate the pavement's subgrade and base course. Area drains to collect excess irrigation water and transmit it to drainage structures or impervious above-grade planter boxes can be used. In addition, where landscaping is planned adjacent to the pavement, construction of a cutoff wall along the edge of the pavement that extends at least 6 inches below the bottom of the base material should be considered.


6.11 Grading and Foundation Plan Review

6.11.1 Geocon Incorporated should review the grading and foundation plans for the project prior to final design submittal to determine if additional analysis and/or recommendations are required.

LIMITATIONS AND UNIFORMITY OF CONDITIONS

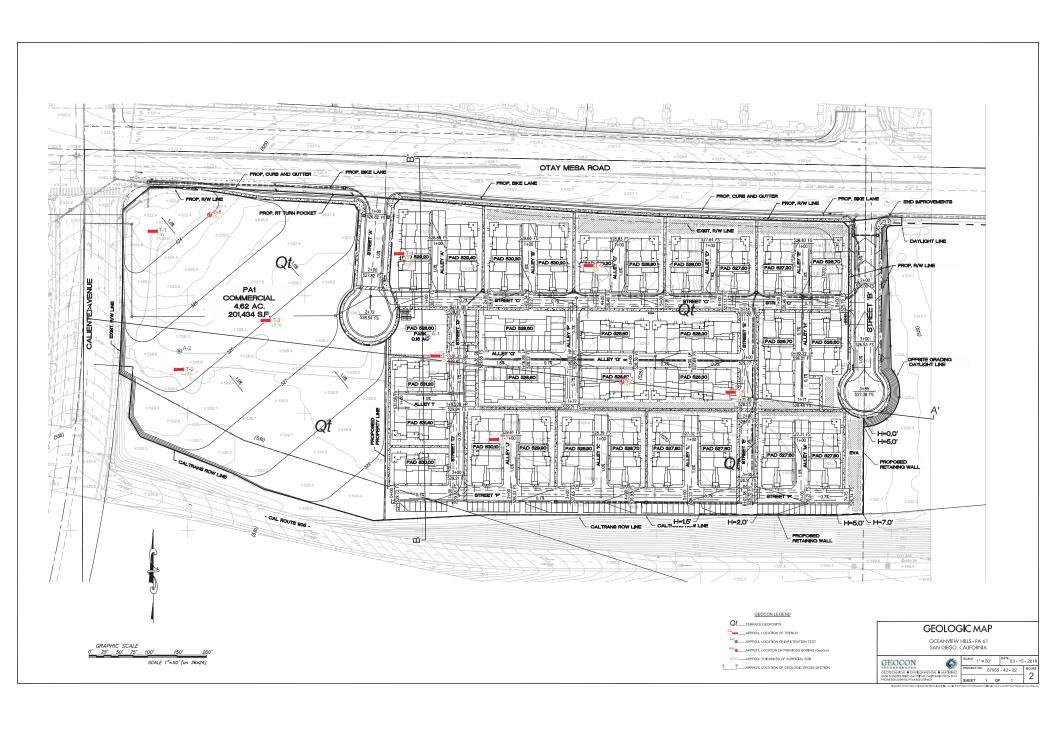
- 1. The firm that performed the geotechnical investigation for the project should be retained to provide testing and observation services during construction to provide continuity of geotechnical interpretation and to check that the recommendations presented for geotechnical aspects of site development are incorporated during site grading, construction of improvements, and excavation of foundations. If another geotechnical firm is selected to perform the testing and observation services during construction operations, that firm should prepare a letter indicating their intent to assume the responsibilities of project geotechnical engineer of record. A copy of the letter should be provided to the regulatory agency for their records. In addition, that firm should provide revised recommendations concerning the geotechnical aspects of the proposed development, or a written acknowledgement of their concurrence with the recommendations presented in our report. They should also perform additional analyses deemed necessary to assume the role of Geotechnical Engineer of Record.
- 2. The recommendations of this report pertain only to the site investigated and are based upon the assumption that the soil conditions do not deviate from those disclosed in the investigation. If any variations or undesirable conditions are encountered during construction, or if the proposed construction will differ from that anticipated herein, Geocon Incorporated should be notified so that supplemental recommendations can be given. The evaluation or identification of the potential presence of hazardous or corrosive materials was not part of the scope of services provided by Geocon Incorporated.
- 3. This report is issued with the understanding that it is the responsibility of the owner or his representative to ensure that the information and recommendations contained herein are brought to the attention of the architect and engineer for the project and incorporated into the plans, and the necessary steps are taken to see that the contractor and subcontractors carry out such recommendations in the field.
- 4. The findings of this report are valid as of the present date. However, changes in the conditions of a property can occur with the passage of time, whether they be due to natural processes or the works of man on this or adjacent properties. In addition, changes in applicable or appropriate standards may occur, whether they result from legislation or the broadening of knowledge. Accordingly, the findings of this report may be invalidated wholly or partially by changes outside our control. Therefore, this report is subject to review and should not be relied upon after a period of three years.

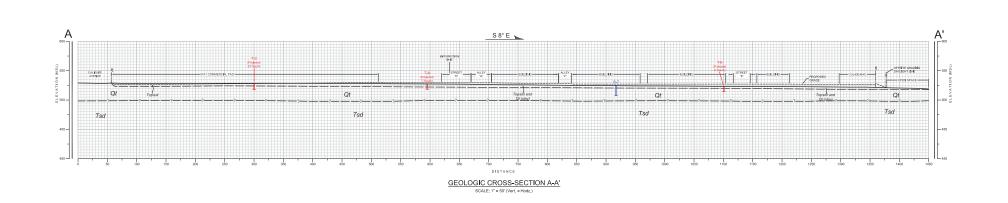
Project No. 07955-42-02 March 15, 2018

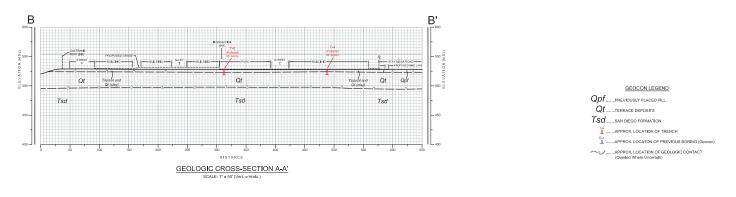
THE GEOGRAPHICAL INFORMATION MADE AVAILABLE FOR DISPLAY WAS PROVIDED BY GOOGLE EARTH, SUBJECT TO A LICENSING AGREEMENT. THE INFORMATION IS FOR ILLUSTRATIVE PURPOSES ONLY; IT IS NOT INTENDED FOR CLIENT'S USE OR RELIANCE AND SHALL NOT BE REPRODUCED BY CLIENT. CLIENT SHALL INDEMNIFY, DEFEND AND HOLD HARMLESS GEOCON FROM ANY LIABILITY INCURRED AS A RESULT OF SUCH USE OR RELIANCE BY CLIENT.

VICINITY MAP

GEOTECHNICAL ■ ENVIRONMENTAL ■ MATERIALS 6960 FLANDERS DRIVE - SAN DIEGO, CALIFORNIA 92121 - 2974 PHONE 858 558-6900 - FAX 858 558-6159

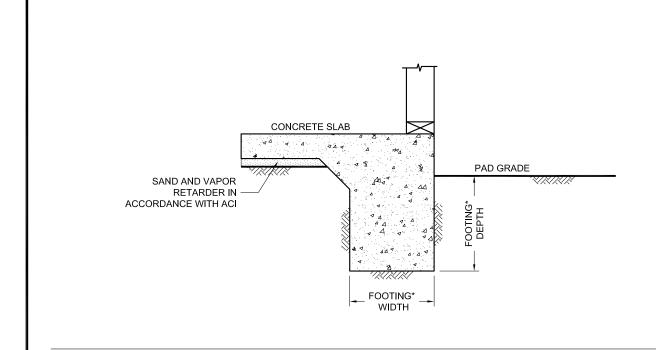

NB / RA DSK/GTYPD

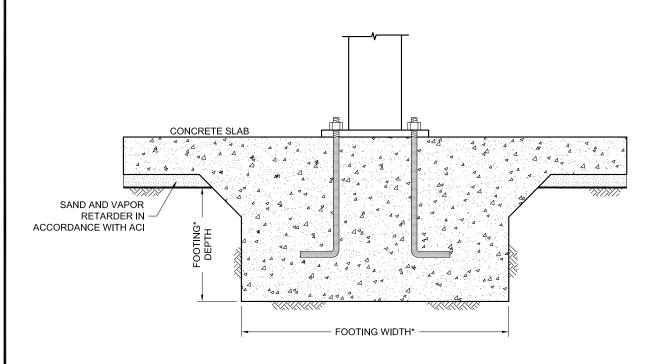

OCEANVIEW HILLS - PA 61 SAN DIEGO, CALIFORNIA


DATE 03 - 15 - 2018

PROJECT NO. 07955 - 42 - 02

FIG. 1





GEOLOGIC CROSS SECTION

OCEANVIEW HILLS - PA 61 SAN DIEGO, CALIFORNIA

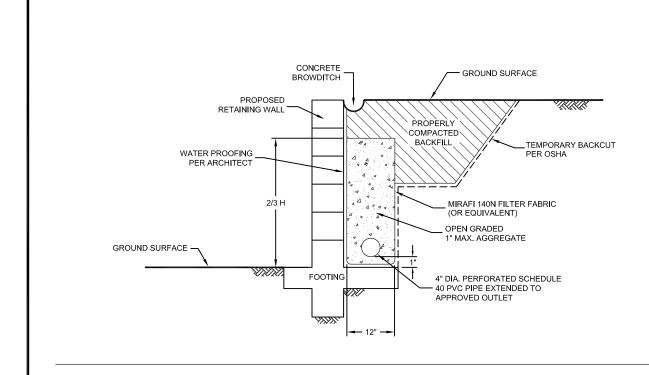
 *SEE REPORT FOR FOUNDATION WIDTH AND DEPTH RECOMMENDATION

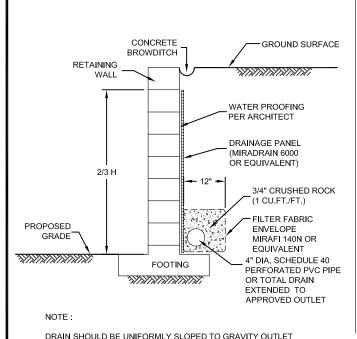
NO SCALE

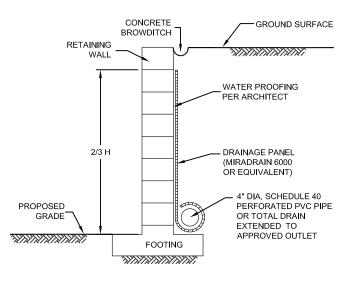
WALL / COLUMN FOOTING DIMENSION DETAIL

GEOTECHNICAL ■ ENVIRONMENTAL ■ MATERIALS 6960 FLANDERS DRIVE - SAN DIEGO, CALIFORNIA 92121 - 2974 PHONE 858 558-6900 - FAX 858 558-6159

NB / RA


DSK/GTYPD


OCEANVIEW HILLS - PA 61 SAN DIEGO, CALIFORNIA


DATE 03 - 15 - 2018

PROJECT NO. 07955 - 42 - 02

FIG. 4

NO SCALE

TYPICAL RETAINING WALL DRAIN DETAIL

GEOTECHNICAL ■ ENVIRONMENTAL ■ MATERIALS 6960 FLANDERS DRIVE - SAN DIEGO, CALIFORNIA 92121 - 2974 PHONE 858 558-6900 - FAX 858 558-6159

OR TO A SUMP WHERE WATER CAN BE REMOVED BY PUMPING

NB / RA DSK/GTYPD

OCEANVIEW HILLS - PA 61 SAN DIEGO, CALIFORNIA

DATE 03 - 15 - 2018

PROJECT NO. 07955 - 42 - 02

FIG. 5

APPENDIX A

APPENDIX A

FIELD INVESTIGATION

Fieldwork for our geotechnical investigation included a site visit, subsurface exploration, and soil sampling. The approximate locations of the exploratory trenches and borings are shown on the Geologic Map, Figure 2. The logs of trenches and borings are presented as figures following the text in this appendix. In addition, we performed 2, preliminary field-saturated infiltration tests.

We performed our exploratory trenching on December 22, 2017, and included excavating a with a John Deere rubber tire backhoe. We collected bulk samples of select soils and returned to the laboratory for testing. Borings were performed in 1984 for a previous investigation.

The soil conditions encountered in the borings were visually examined, classified and logged. Figures A-1 through A-8 present the logs of the exploratory trenches. The boring logs from our previous investigation are provided on Figures A-9 and A-10. The logs depict the various soil types encountered. The elevations shown on the logs are approximate elevations.

	CT NO. 07933-42-02							
DEPTH IN FEET	SAMPLE NO.	LITHOLOGY	GROUNDWATER	SOIL CLASS (USCS)	TRENCH T 1 ELEV. (MSL.) 523' DATE COMPLETED 12-22-2017 EQUIPMENT JD 410 BACKHOE BY: N. BORJA	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
			П		MATERIAL DESCRIPTION			
- 0 -	T1-1		2	SC	TOPSOIL Loose, dry, dark brown, Clayey, fine to medium SAND; trace gravel	_		
- 2 -				CL/CH	VERY OLD TERRACE DEPOSITS (Qt)			
	T1-2				Soft, damp, dark brown, Sandy to Silty ČLÁY; some white specs	_		
- 4 -	T40 🛭				Dance du mattled light harry and alive harry City fine to seed up.	<u>-</u> 		
- 6 - - 6 -	T1-3			SM	Dense, dry, mottled light brown and olive brown, Silty, fine to medium SANDSTONE	_		
- 8 -								
					TRENCH TERMINATED AT 8 FEET No groundwater encountered			

Figure A-1, Log of Trench T 1, Page 1 of 1

07955-42-02.GPJ

SAMPLE SYMBOLS	SAMPLING UNSUCCESSFUL	STANDARD PENETRATION TEST	DRIVE SAMPLE (UNDISTURBED)
SAIVII EL STIVIDOLO	DISTURBED OR BAG SAMPLE	CHUNK SAMPLE	▼ WATER TABLE OR SEEPAGE

	01 110. 0750							
DEPTH IN FEET	SAMPLE NO.	ПТНОГОСУ	GROUNDWATER	SOIL CLASS (USCS)	TRENCH T 2 ELEV. (MSL.) 529' DATE COMPLETED 12-22-2017 EQUIPMENT JD 410 BACKHOE BY: N. BORJA	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
					MATERIAL DESCRIPTION			
- 0 -			X	CL	TOPSOIL Soft, moist, dark brown, Sandy CLAY	_		
- 2	-					_		
- 4			X X X	SM/SC	VERY OLD TERRACE DEPOSITS (Qt) Medium dense to dense, damp, mottled light brown and olive brown, Silty to Clayey, fine to medium SAND	_		
- - 6	-			<u>s</u> M	Very dense, damp, olive brown, Silty, fine to medium SANDSTONE	_ 		
- - 8	-					_		
	_				TRENCH TERMINATED AT 9.5 FEET	_		
					No groundwater encountered			

Figure A-2, Log of Trench T 2, Page 1 of 1

07955-42-02.GPJ

SAMPLE SYMBOLS	SAMPLING UNSUCCESSFUL	STANDARD PENETRATION TEST	DRIVE SAMPLE (UNDISTURBED)
SAMI LE STIMBOLS	DISTURBED OR BAG SAMPLE	CHUNK SAMPLE	▼ WATER TABLE OR SEEPAGE

			_					
DEPTH IN FEET	SAMPLE NO.	LITHOLOGY	SROUNDWATER	SOIL CLASS (USCS)	TRENCH T 3 ELEV. (MSL.) 528' DATE COMPLETED 12-22-2017	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
			GF		EQUIPMENT JD 410 BACKHOE BY: N. BORJA		1	
- 0 -					MATERIAL DESCRIPTION			
				CL	TOPSOIL Soft, moist, dark brown, Sandy CLAY	_		
- 2 -				СН	VERY OLD TERRACE DEPOSITS (Qt)			
				G	Firm to stiff, moist, dark brown, Silty to Sandy CLAY; some white specs	_		
- 4 -			-	CL	Firm, damp, light brown and white, Sandy CLAY; porous	-		
- 6 -				SM	Dense, damp, light brown to olive brown, Silty, fine to medium SANDSTONE	-		
- 8 -						_		
-					TOPNOU TERMINATER AT A FEFT	-		
					TRENCH TERMINATED AT 9.5 FEET No groundwater encountered			

Figure A-3, Log of Trench T 3, Page 1 of 1

179	55-	42-0	12 (GP.

SAMPLE SYMBOLS	SAMPLING UNSUCCESSFUL	STANDARD PENETRATION TEST	DRIVE SAMPLE (UNDISTURBED)
SAIVII LE STIVIDOLS	DISTURBED OR BAG SAMPLE	CHUNK SAMPLE	▼ WATER TABLE OR SEEPAGE

TROOLO	ROJECT NO. 07955-42-02							
DEPTH IN FEET	SAMPLE NO.	LITHOLOGY	GROUNDWATER	SOIL CLASS (USCS)	TRENCH T 4 ELEV. (MSL.) 527' DATE COMPLETED 12-22-2017 EQUIPMENT JD 410 BACKHOE BY: N. BORJA	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
					MATERIAL DESCRIPTION			
- 0 -				CL	TOPSOIL Firm, damp, dark brown, Sandy CLAY; some white specs	_		
- 2 -						_		
- 4 -	T4-1			SM	VERY OLD TERRACE DEPOSITS (Qt) Dense to very dense, damp, light brown to olive brown, Silty, fine to medium SANDSTONE	_		
- 6 -						_		
					TRENCH TERMINATED AT 7 FEET No groundwater encountered			

Figure A-4, Log of Trench T 4, Page 1 of 1

07955-42-02.GPJ

SAMPLE SYMBOLS	SAMPLING UNSUCCESSFUL	STANDARD PENETRATION TEST	DRIVE SAMPLE (UNDISTURBED)
SAMI LE STIMBOLS	DISTURBED OR BAG SAMPLE	CHUNK SAMPLE	▼ WATER TABLE OR SEEPAGE

TROOLO	CT NO. 07955-42-02							
DEPTH IN FEET	ON BILLITHOLOGY GROUNDWATER		SOIL CLASS (USCS)	TRENCH T 5 ELEV. (MSL.) 527' DATE COMPLETED 12-22-2017 EQUIPMENT JD 410 BACKHOE BY: N. BORJA	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)	
			П		MATERIAL DESCRIPTION			
- 0 -				SC/CL	TOPSOIL Loose, damp to moist, dark brown, fine to medium SAND to Sandy CLAY; little white specs	_		
- 2 -	T5-1 🎇			CL	VERY OLD TERRACE DEPOSITS (Qt)	_		
- 4 -				01	Medium dense, dry, mottled tan brown, light brown and white, Sandy CLAY	_		
						_		
- 6 -				SM	Dense, dry to damp, light brown and olive brown, Silty, fine to medium SANDSTONE	_		
					TRENCH TERMINATED AT 7 FEET No groundwater encountered			

Figure A-5, Log of Trench T 5, Page 1 of 1

07 0	55-	12	ഹാ	GP	

SAMPLE SYMBOLS

... SAMPLING UNSUCCESSFUL

... STANDARD PENETRATION TEST

... DRIVE SAMPLE (UNDISTURBED)

... UNDISTURBED OR BAG SAMPLE

... WATER TABLE OR SEEPAGE

- 11002	51 NO. 0795	JJ-42-0.						
DEPTH IN FEET	SAMPLE NO.	LITHOLOGY	GROUNDWATER	SOIL CLASS (USCS)	TRENCH T 6 ELEV. (MSL.) <u>523'</u> DATE COMPLETED <u>12-22-2017</u> EQUIPMENT <u>JD 410 BACKHOE</u> BY: N. BORJA	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
			П		MATERIAL DESCRIPTION			
- 0 -	_			CL	TOPSOIL Firm, dry, dark brown, Sandy CLAY; little rootlets	_		
- 2				SM	VERY OLD TERRACE DEPOSITS (Qt)			
_	-				Dense, dry, yellowish brown, Silty, fine to medium SANDSTONE	_		
- 4 -	-				-Becomes gravelly with cobble up to 8" diameter below 4 feet	_		
- 6 -					TRENCH TERMINATED AT 7 FEET	_		
					No groundwater encountered			

Figure A-6, Log of Trench T 6, Page 1 of 1

07955-42-02.GPJ

SAMPLE SYMBOLS	SAMPLING UNSUCCESSFUL	STANDARD PENETRATION TEST	DRIVE SAMPLE (UNDISTURBED)	
	DISTURBED OR BAG SAMPLE	CHUNK SAMPLE	▼ WATER TABLE OR SEEPAGE	

	140. 07.00	·- ·-						
DEPTH IN FEET	SAMPLE NO.	LITHOLOGY	GROUNDWATER	SOIL CLASS (USCS)	TRENCH T 7 ELEV. (MSL.) 524' DATE COMPLETED 12-22-2017 EQUIPMENT JD 410 BACKHOE BY: N. BORJA	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
			П		MATERIAL DESCRIPTION			
- 0 -				CL	TOPSOIL Soft, damp, dark brown, Sandy CLAY; some white specs	_		
- 2 - 				SM	VERY OLD TERRACE DEPOSITS (Qt) Dense, damp, olive brown to brown, Silty, fine to medium SANDSTONE	_		
- 4 -					-Becomes tan brown	_		
- 6 -					-Becomes light yellowish brown to light gray	_		
					TRENCH TERMINATED AT 7 FEET No groundwater encountered			

Figure A-7, Log of Trench T 7, Page 1 of 1

07955-42-02.GPJ

SAMPLE SYMBOLS	SAMPLING UNSUCCESSFUL	STANDARD PENETRATION TEST	DRIVE SAMPLE (UNDISTURBED)
	DISTURBED OR BAG SAMPLE	CHUNK SAMPLE	▼ WATER TABLE OR SEEPAGE

_		1 110. 07 50							
	DEPTH IN FEET	SAMPLE NO.	LITHOLOGY	GROUNDWATER	SOIL CLASS (USCS)	TRENCH T 8 ELEV. (MSL.) 527' DATE COMPLETED 12-22-2017 EQUIPMENT JD 410 BACKHOE BY: N. BORJA	PENETRATION RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)
r				П		MATERIAL DESCRIPTION			
	0 -			X	CL	TOPSOIL Soft to firm, moist, dark brown, Sandy CLAY	_		
ŀ	2 -				СН	VERY OLD TERRACE DEPOSITS (Qt) Soft, damp, dark brown, CLAY			
	4 -						_		
	_					Dense, damp, brown to olive brown, Silty, fine to medium SANDSTONE			
	6 -						_		
-	8 -				SM/SP-SM	Medium dense to dense, moist, mottled reddish brown to brown, fine to coarse SAND; some silt			
	-					TRENCH TERMINATED AT 9 FEET No groundwater encountered			

Figure A-8, Log of Trench T 8, Page 1 of 1

٦70	155-	42-	02	GP.

SAMPLE SYMBOLS	SAMPLING UNSUCCESSFUL	STANDARD PENETRATION TEST	DRIVE SAMPLE (UNDISTURBED)
	DISTURBED OR BAG SAMPLE	CHUNK SAMPLE	▼ WATER TABLE OR SEEPAGE

File No. D-3117-J01 May 14, 1984

				/N-F	LACE	
OEPTH IN FEET	SAMPLE NUMBER	LOG A LOCATION OF SAMPLE	Penetration Resistance Blows/II	DESCRIPTION		MOISTURE CONTENT % dry wi
0.				BORING 7	7 4 21	
2.	7-1		3	TOPSOIL Stiff, very moist, dark gray-brown, Sandy CLAY with occasional cobbles		
4- 6-	7-2 7-3	X	13	TERRACE DEPOSITS Medium dense, moist, light yellow-brown/ orange mottled, slightly Clayey, very fine to fine SAND/SILT		
8-						
10-		0		Medium dense, moist, yellow-brown, slightly Clayey Sandy GRAVEL to 12" diameter		
14-		0 0.0 0.0		difficult drilling		
18-				BORING TERMINATED AT 17.0 FEET		

Figure A-9, Log of Test Boring 7

File No. D-3117-J01 May 14, 1984

	SAMPLE LOG & Paneirotion DESCRIPTION		IN-P	LACE		
DEPTH IN FEET	SAMPLE NUMBER	LOG A LOCATION OF SAMPLE	, ,	DESCRIPTION	DRY DENSITY RC.f	MOISTURE CONTENT % dry wi
0.				BORING 8		
2-		/ /		TOPSOIL Stiff, very moist, dark red-brown, Sandy CLAY with minor caliche		
4_		0°/		TERRACE DEPOSITS Medium dense, humid, light brown, slightly Clayey, very fine to fine SAND/ SILT with caliche nodules to 2" dia.		
6-		000		SIZI WICH CAIRCING HOUSESS GO S CALL		
8- -		1000		Medium loose, moist, light yellow-brown, Silty Sandy GRAVEL to 6" diameter,		
10		; - - -		very friable becomes light brown, humid		
14-) () () () ()		hole caving		
16-				BORING TERMINATED AT 15.0 FEET SEVERE CAVING		
-						
-						
-						

Figure A-10, Log of Test Boring 8

APPENDIX B

APPENDIX B

LABORATORY TESTING

We performed laboratory tests in accordance with generally accepted test methods of the American Society for Testing and Materials (ASTM) or other suggested procedures. We tested selected samples for maximum dry density and optimum moisture content, direct shear, expansion, water-soluble sulfate characteristics, and gradation. The results of our laboratory tests are presented on the following tables and graph.

TABLE B-I SUMMARY OF LABORATORY MAXIMUM DRY DENSITY AND OPTIMUM MOISTURE CONTENT TEST RESULTS ASTM D 1557

Proctor Curve No.	Source and Description	Maximum Dry Density (pcf)	Optimum Moisture Content (%)
T1-2	Dark brown, silty CLAY	115.6	15.1
T4-1	Light brown, Clayey, fine to coarse SAND; trace gravel	118.4	13.8

TABLE B-II SUMMARY OF LABORATORY DIRECT SHEAR TEST RESULTS ASTM D 3080

Sample	Dry Density	Ory Density Moisture Content (%)		Unit Cohesion	Angle of Shear	
No.	(pcf)	Initial	Final	(psf)	Resistance (degrees)	
*T4-1	106.8	13.4	21.3	450	28	

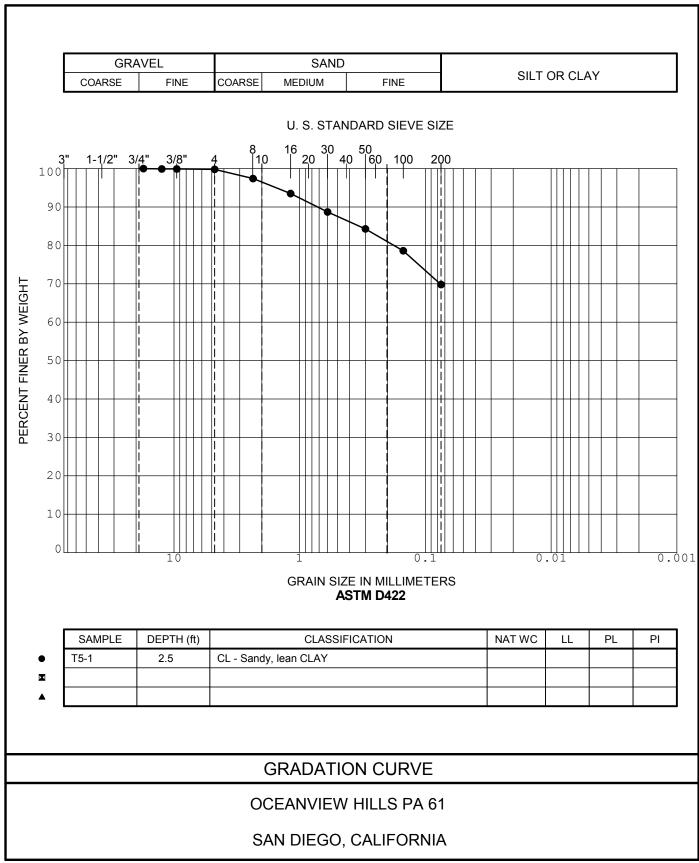

^{*}Sample remolded to 90% of the maximum dry density and optimum moisture content.

TABLE B-III SUMMARY OF LABORATORY EXPANSION INDEX TEST RESULTS ASTM D 4829

G I N	Moisture C	Content (%)	Dry	Expansion	Expansion	
Sample No.	Before Test	After Test	Density (pcf)	Index	Classification	
T1-2	13.7	34.1	95.5	99	High	
T4-1	10.6	23.3	107.7	52	Medium	
T5-1	16.5	27.5	89.7	7	Very Low	

TABLE B-IV SUMMARY OF LABORATORY WATER-SOLUBLE SULFATE TEST RESULTS CALIFORNIA TEST NO. 417

Sample No.	Water-Soluble Sulfate (%)	Classification
T1-2	0.040	Not Applicable (S0)
T4-1	0.058	Not Applicable (S0)
T5-1	0.079	Not Applicable (S0)

07955-42-02.GPJ

APPENDIX C

APPENDIX C

STORM WATER MANAGEMENT INVESTIGATION

We expect storm water management devices will be utilized on the project in accordance with the 2017 City of San Diego Storm Water Standards (SWS). If not properly constructed, there is a potential for distress to improvements and properties located hydrologically down gradient or adjacent to these devices. Factors such as the amount of water to be detained, its residence time, and soil permeability have an important effect on seepage transmission and the potential adverse impacts that may occur if the storm water management features are not properly designed and constructed. We have not performed a hydrogeological study at the site. If infiltration of storm water runoff occurs, downstream properties may be subjected to seeps, springs, slope instability, raised groundwater, movement of foundations and slabs, or other undesirable impacts as a result of water infiltration.

Hydrologic Soil Group

The United States Department of Agriculture (USDA), Natural Resources Conservation Services, possesses general information regarding the existing soil conditions for areas within the United States. The USDA website also provides the Hydrologic Soil Group. Table C-1 presents the descriptions of the hydrologic soil groups.

TABLE C-1
HYDROLOGIC SOIL GROUP DEFINITIONS

Soil Group	Soil Group Definition
A	Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.
В	Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.
С	Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.
D	Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high-water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

The property is classified as Soil Group D. Table C-2 presents the information from the USDA website for the subject property.

TABLE C-2
USDA WEB SOIL SURVEY – HYDROLOGIC SOIL GROUP

Map Unit Name	Map Unit Symbol	Approximate Percentage of Property	Hydrologic Soil Group	k _{SAT} of Most Limiting Layer (inches/ hour)
Stockpen gravelly clay loam, 2 to 5 percent slopes	SuB	100	D	0.00 to 0.06

In-Situ Testing

We performed 2 field-saturated, hydraulic conductivity tests at the site using a Soil Moisture Corp Aardvark Permeameter at the locations presented on the Geologic Map, Figure 2. The borings were excavated with a 4-inch-diameter hand auger. Table C-3 presents the results of the saturated hydraulic conductivity testing. Test data is presented on the attached figures in this Appendix.

We used the guidelines presented in the Riverside County Low Impact Development BMP Design Handbook which references the United States Bureau of Reclamation Well Permeameter Test Method (USBR 7300-89). Based on this widely accepted guideline, the saturated hydraulic conductivity (Ksat) is equal to the infiltration rate. Therefore, the Ksat value determined from the Aardvark Permeameter test is the unfactored infiltration rate. The Ksat (infiltration rate) equation provided in the Riverside County Handbook was used to compute the unfactored infiltration rate.

TABLE C-3
UNFACTORED, FIELD-SATURATED, INFILTRATION TEST RESULTS
USING THE SOILMOISTURE CORP AARDVARK PERMEAMETER

Test No.	Depth (inches)	Geologic Unit	Field Infiltration Rate, I (in/hr)	Factored* Field Infiltration Rate, I (in/hr)
A-1	45	Terrace Deposits	0.002	0.001
A-2	48	Terrace Deposits	0.068	0.034

^{*}Factor of Safety of 2.0 for feasibility determination.

Soil permeability values from in-situ tests can vary significantly from one location to another due to the non-homogeneous characteristics inherent to most soil. However, if a sufficient amount of field and laboratory test data is obtained, a general trend of soil permeability can usually be evaluated. For this project and for storm water purposes, the test results presented herein should be considered approximate values.

Infiltration categories include full infiltration, partial infiltration and no infiltration. Table C-4 presents the commonly accepted definitions of the potential infiltration categories based on the infiltration rates.

TABLE C-4 INFILTRATION CATEGORIES

Infiltration Category	Field Infiltration Rate, I (inches/hour)	Factored Infiltration Rate*, I (inches/hour)
Full Infiltration	I > 1.0	I > 0.5
Partial Infiltration	$0.10 < I \le 1.0$	$0.05 < I \le 0.5$
No Infiltration (Infeasible)	I < 0.10	I < 0.05

^{*}Using a Factor of Safety of 2.

STORM WATER MANAGEMENT CONCLUSIONS

Soil Types

Very Old Terrace Deposits (Qt) – Very Old Terrace Deposits underlies the topsoils. The Terrace Deposits consist of an upper clay layer and a lower sandy cobbly layer. Infiltration tests within this unit typically exhibit very slow infiltration characteristics due to its dense condition. Therefore, full and partial infiltration should be considered infeasible.

Groundwater Elevations

We did not encounter groundwater during our field exploration. The site is at an elevation of about 520 to 530 feet MSL. We expect groundwater to be at elevations greater than 50 feet below the existing ground surface

Soil or Groundwater Contamination

We are unaware of contaminated soil or groundwater contamination on the property. Therefore, infiltration associated with this risk is considered feasible.

New or Existing Utilities

Utilities are located adjacent to the property within the existing streets. However, we don't expect infiltration will impact existing utilities based on the location of the proposed basins. The location of BMPs to proposed new utilities is unknown.

Existing and Planned Structures

Water should not be allowed to infiltrate in areas where it could affect the neighboring properties and existing adjacent structures, improvements and roadway. Mitigation for existing structures consists of not allowing water infiltration within a lateral distance of at least 15 feet from the new or existing foundations.

Storm Water Conclusions

The planned development will consist of the construction a multi-family apartment buildings and commercial buildings and improvements. The property is underlain by dense very old Terrace Deposits. We expect 2 to 7 feet of fill will be placed across the site. In addition, remedial removals of 2 to 6 feet are expected. At the completion of grading, we expect the site will be underlain by approximately 5 to 10 feet of compacted fill overlying Very Old Terrace Deposits.

Due to the very slow infiltration characteristics of the Very Old Terrace Deposits and the presence of compacted fill, infiltration is considered infeasible.

Storm Water Management Devices

Liners and subdrains should be incorporated into the design and construction of the planned storm water devices. The liners should be impermeable (e.g. High-density polyethylene, HDPE, with a thickness of about 30 mil or equivalent Polyvinyl Chloride, PVC) to prevent water migration. The subdrains should be perforated within the liner area, installed at the base and above the liner, be at least 3 inches in diameter and consist of Schedule 40 PVC pipe. The subdrains outside of the liner should consist of solid pipe. The penetration of the liners at the subdrains should be properly waterproofed. The subdrains should be connected to a proper outlet. The devices should also be installed in accordance with the manufacturer's recommendations.

Storm Water Standard Worksheets

The SWS requests the geotechnical engineer complete the *Categorization of Infiltration Feasibility Condition* (Worksheet C.4-1 or I-8) worksheet information to help evaluate the potential for infiltration on the property. The attached Worksheet C.4-1 presents the completed information for the submittal process.

The regional storm water standards also have a worksheet (Worksheet D.5-1 or Form I-9) that helps the project civil engineer estimate the factor of safety based on several factors. Table C-5 describes the suitability assessment input parameters related to the geotechnical engineering aspects for the factor of safety determination.

TABLE C-5
SUITABILITY ASSESSMENT RELATED CONSIDERATIONS FOR INFILTRATION FACILITY SAFETY
FACTORS

Consideration	High Concern – 3 Points	Medium Concern – 2 Points	Low Concern – 1 Point
Assessment Methods	Use of soil survey maps or simple texture analysis to estimate short-term infiltration rates. Use of well permeameter or borehole methods without accompanying continuous boring log. Relatively sparse testing with direct infiltration methods	Use of well permeameter or borehole methods with accompanying continuous boring log. Direct measurement of infiltration area with localized infiltration measurement methods (e.g., infiltrometer). Moderate spatial resolution	Direct measurement with localized (i.e. small-scale) infiltration testing methods at relatively high resolution or use of extensive test pit infiltration measurement methods.
Predominant Soil Texture	Silty and clayey soils with significant fines	Loamy soils	Granular to slightly loamy soils
Site Soil Variability	Highly variable soils indicated from site assessment or unknown variability	Soil boring/test pits indicate moderately homogenous soils	Soil boring/test pits indicate relatively homogenous soils
Depth to Groundwater/ Impervious Layer	<5 feet below facility bottom	5-15 feet below facility bottom	>15 feet below facility bottom

Based on our geotechnical investigation and the previous table, Table C-6 presents the estimated factor values for the evaluation of the factor of safety. This table only presents the suitability assessment safety factor (Part A) of the worksheet. The project civil engineer should evaluate the safety factor for design (Part B) and use the combined safety factor for the design infiltration rate.

TABLE C-6
FACTOR OF SAFETY WORKSHEET DESIGN VALUES – PART A¹

Suitability Assessment Factor Category	Assigned Weight (w)	Factor Value (v)	Product (p = w x v)
Assessment Methods	0.25	2	0.50
Predominant Soil Texture	0.25	3	0.75
Site Soil Variability	0.25	2	0.50
Depth to Groundwater/ Impervious Layer	0.25	1	0.25
Suitability Assessment Safety Factor, $S_A = \Box p$			2.00

¹The project civil engineer should complete Worksheet D.5-1 or Form I-9 using the data on this table. Additional information is required to evaluate the design factor of safety.

Categoriz	cation of Infiltration Feasibility Condition based on Geotechnical Conditions	Worksheet C.4-1: Form I- 8A ¹⁰		
Part 1 - Full Infiltration Feasibility Screening Criteria				
DMA(s) Being Analyzed: Project Phase:				
Criteria 1:	Infiltration Rate Screening			
	Is the mapped hydrologic soil group according to the NRC Web Mapper Type A or B and corroborated by available sit			
1A	☐Yes; the DMA may feasibly support full infiltration. Answer "Yes" to Criteria 1 Result or continue to Step 1B if the applicant elects to perform infiltration testing.			
	\square No; the mapped soil types are A or B but is not corroborated by available site soil data (continue to Step 1B).			
	\square No; the mapped soil types are C, D, or "urban/unclassified" and is corroborated by available site soil data. Answer "No" to Criteria 1 Result.			
☐ No; the mapped soil types are C, D, or "urban/unclassified" but is not corroborate available site soil data (continue to Step 1B).				
4D	Is the reliable infiltration rate calculated using planning phase methods from Table D.3−1? □ Yes; Continue to Step 1C.			
1B	□No; Skip to Step 1D.			
	Is the reliable infiltration rate calculated using planning p greater than 0.5 inches per hour?	phase methods from Table D.3-1		
1C	☐Yes; the DMA may feasibly support full infiltration. Answer "Yes" to Criteria 1 Result.			
☐ No; full infiltration is not required. Answer "No" to Criteria 1 Result.				
	Infiltration Testing Method. Is the selected infiltration to design phase (see Appendix D.3)? Note: Alternative testing	Č Č		
1D	appropriate rationales and documentation. ☐ Yes; continue to Step 1E.			
	☐ No; select an appropriate infiltration testing method.			

¹¹ Available data includes site-specific sampling or observation of soil types or texture classes, such as obtained from borings or test pits necessary to support other design elements.

Note that it is not required to investigate each and every criterion in the worksheet, a single "no" answer in Part 1, Part 2, Part 3, or Part 4 determines a full, partial, or no infiltration condition.

¹⁰ This form must be completed each time there is a change to the site layout that would affect the infiltration feasibility condition. Previously completed forms shall be retained to document the evolution of the site storm water design.

Number of Percolation/Infiltration Tests. Does the infiltration testing method p satisfy the minimum number of tests specified in Table D.3-2? Yes; continue to Step 1F. No; conduct appropriate number of tests. Factor of Safety. Is the suitable Factor of Safety selected for full infiltration design guidance in D.5; Tables D.5-1 and D.5-2; and Worksheet D.5-1 (Form I-9). Yes; continue to Step 1G.	ign? See
guidance in D.5; Tables D.5-1 and D.5-2; and Worksheet D.5-1 (Form I-9).	
□ No; select appropriate factor of safety.	the Factor
Full Infiltration Feasibility. Is the average measured infiltration rate divided by to of Safety greater than 0.5 inches per hour? □Yes; answer "Yes" to Criteria 1 Result. □No; answer "No" to Criteria 1 Result.	
Criteria 1 Result Is the estimated reliable infiltration rate greater than 0.5 inches per hour within where runoff can reasonably be routed to a BMP? □ Yes; the DMA may feasibly support full infiltration. Continue to Criteria 2. □ No; full infiltration is not required. Skip to Part 1 Result.	n the DMA
Summarize infiltration testing methods, testing locations, replicates, and results and summarize infiltration rates according to procedures outlined in D.5. Documentation be included in project geotechnical report.	

Can full infiltration BMPs be proposed within the DMA without increasing hydroconsolidation risks?	□Yes	□No
Expansive Soils. Identify expansive soils (soils with an expansion index greater than 20) and the extent of such soils due to proposed full infiltration BMPs. Can full infiltration BMPs be proposed within the DMA without increasing expansive soil risks?	□Yes	□No

2B-2

Categorization of Infiltration Feasibility Condition based on Geotechnical Conditions Worksheet		t C.4-1: For 8A ¹⁰	m I-	
2B-3	Liquefaction . If applicable, identify mapped liquefaction ar liquefaction hazards in accordance with Section 6.4.2 of th Diego's Guidelines for Geotechnical Reports (2011 or edition). Liquefaction hazard assessment shall take into increase in groundwater elevation or groundwater moundin occur as a result of proposed infiltration or percolation factor full infiltration BMPs be proposed within the Dincreasing liquefaction risks?	ne City of San most recent account any ng that could ilities.	□Yes	□No
2B-4	Slope Stability. If applicable, perform a slope stability accordance with the ASCE and Southern California Earthd (2002) Recommended Procedures for Implementation of Publication 117, Guidelines for Analyzing and Mitigatin Hazards in California to determine minimum slope setb infiltration BMPs. See the City of San Diego's Gu Geotechnical Reports (2011) to determine which type of slanalysis is required. Can full infiltration BMPs be proposed within the D increasing slope stability risks?	quake Center DMG Special ng Landslide acks for full idelines for lope stability	□Yes	□No
2B-5	Other Geotechnical Hazards. Identify site-specific hazards not already mentioned (refer to Appendix C.2.1). Can full infiltration BMPs be proposed within the D increasing risk of geologic or geotechnical hazards mentioned?	MA without	□Yes	□No
2B-6	Setbacks. Establish setbacks from underground utilities and/or retaining walls. Reference applicable ASTM or othe standard in the geotechnical report. Can full infiltration BMPs be proposed within the established setbacks from underground utilities, structuretaining walls?	er recognized DMA using	□ Yes	□ No

Categoriz	ation of Infiltration Feasibility Condition based on Geotechnical Conditions	Workshee	t C.4-1: Foi 8A ¹⁰	rm I-
2C	Mitigation Measures. Propose mitigation measure geologic/geotechnical hazard identified in Step 2B. Provide of geologic/geotechnical hazards that would prevent for BMPs that cannot be reasonably mitigated in the geotect See Appendix C.2.1.8 for a list of typically reasonable unreasonable mitigation measures. Can mitigation measures be proposed to allow for full information measures and the question in Step 2 is answered "Yes," then a to Criteria 2 Result. If the question in Step 2C is answered "No," then answer Criteria 2 Result.	e a discussion all infiltration hnical report. and typically altration answer "Yes"	□Yes	□No
Criteria 2 Result	Can infiltration greater than 0.5 inches per hour be all increasing risk of geologic or geotechnical hazards the reasonably mitigated to an acceptable level?		□Yes	□No
Summariz	e findings and basis; provide references to related reports o	or exhibits.		
Part 1 Res	ult – Full Infiltration Geotechnical Screening 12		Result	
conditions only.		□Full infiltra □Complete P		on

¹² To be completed using gathered site information and best professional judgement considering the definition of MEP in the MS4 Permit. Additional testing and/or studies may be required by City Engineer to substantiate findings.

Categoriz	ation of Infiltration Feasibility Condition based on Geotechnical Conditions	Worksheet C.4-1: Form I- 8A ¹⁰			
Part 2 - Partial vs. No Infiltration Feasibility Screening Criteria					
DMA(s) Be	eing Analyzed:	Project Phase:			
Criteria 3	Infiltration Rate Screening				
	NRCS Type C, D, or "urban/unclassified": Is the mapped hydrologic soil group accord the NRCS Web Soil Survey or UC Davis Soil Web Mapper is Type C, D, or "urban/unclassified" and corroborated by available site soil data? Yes; the site is mapped as C soils and a reliable infiltration rate of 0.15 in/hr. is used size partial infiltration BMPS. Answer "Yes" to Criteria 3 Result.				
3A	☐ Yes; the site is mapped as D soils or "urban/unclassified" and a reliable infiltration rate of 0.05 in/hr. is used to size partial infiltration BMPS. Answer "Yes" to Criteria 3 Result.				
	\square No; infiltration testing is conducted (refer to Table D.3-1), continue to Step 3B.				
	Infiltration Testing Result: Is the reliable infiltration rate (i.e. average measured infiltration rate/2) greater than 0.05 in/hr. and less than or equal to 0.5 in/hr?				
3B	☐ Yes; the site may support partial infiltration. Answer "Yes" to Criteria 3 Result. ☐ No; the reliable infiltration rate (i.e. average measured rate/2) is less than 0.05 in/hr., partial infiltration is not required. Answer "No" to Criteria 3 Result.				
Criteria 3	Is the estimated reliable infiltration rate (i.e., average months than or equal to 0.05 inches/hour and less than or equal within each DMA where runoff can reasonably be routed to	to 0.5 inches/hour at any location			
Result	☐ Yes; Continue to Criteria 4. ☐ No: Skip to Part 2 Result.				
Summarize infiltration testing and/or mapping results (i.e. soil maps and series description used for infiltration rate).					
Result Summarize	than or equal to 0.05 inches/hour and less than or equal within each DMA where runoff can reasonably be routed t Yes; Continue to Criteria 4. No: Skip to Part 2 Result.	to 0.5 inches/hour at any location to a BMP?			

Categorization of Infiltration Feasibility Condition based on Worksheet C.4-1: Form I-**Geotechnical Conditions** 8A10 Criteria 4: Geologic/Geotechnical Screening If all questions in Step 4A are answered "Yes," continue to Step 2B. For any "No" answer in Step 4A answer "No" to Criteria 4 Result, and submit an "Infiltration Feasibility Condition Letter" that meets the requirements in Appendix C.1.1. The 4A geologic/geotechnical analyses listed in Appendix C.2.1 do not apply to the DMA because one of the following setbacks cannot be avoided and therefore result in the DMA being in a no infiltration condition. The setbacks must be the closest horizontal radial distance from the surface edge (at the overflow elevation) of the BMP. Can the proposed partial infiltration BMP(s) avoid areas with existing □Yes 4A-1 □No fill materials greater than 5 feet thick? Can the proposed partial infiltration BMP(s) avoid placement within 10 feet of existing underground utilities, structures, or retaining 4A-2 □No □Yes walls? Can the proposed partial infiltration BMP(s) avoid placement within 50 feet of a natural slope (>25%) or within a distance of 1.5H from fill 4A-3 □Yes □No slopes where H is the height of the fill slope? When full infiltration is determined to be feasible, a geotechnical investigation report must be prepared that considers the relevant factors identified in Appendix C.2.1 **4**B If all questions in Step 4B are answered "Yes," then answer "Yes" to Criteria 4 Result. If there are any "No" answers continue to Step 4C. **Hydroconsolidation.** Analyze hydroconsolidation potential per approved ASTM standard due to a proposed full infiltration BMP. ΔB-1 □Yes □No Can partial infiltration BMPs be proposed within the DMA without increasing hydroconsolidation risks? **Expansive Soils.** Identify expansive soils (soils with an expansion index greater than 20) and the extent of such soils due to proposed full infiltration BMPs. 4B-2 □Yes □No Can partial infiltration BMPs be proposed within the DMA without increasing expansive soil risks?

Categoriz	Categorization of Infiltration Feasibility Condition based on Geotechnical Conditions Workshop Workshop Geotechnical Conditions			eet C.4-1: Form I- 8A ¹⁰	
4B-3	Liquefaction . If applicable, identify mapped liquefact Evaluate liquefaction hazards in accordance with Section City of San Diego's Guidelines for Geotechnical Reportiquefaction hazard assessment shall take into account an in groundwater elevation or groundwater mounding that as a result of proposed infiltration or percolation facilities Can partial infiltration BMPs be proposed within the DM increasing liquefaction risks?	6.4.2 of the orts (2011). ny increase could occur	□Yes	□No	
4B-4	Slope Stability. If applicable, perform a slope stability accordance with the ASCE and Southern California Earthqu (2002) Recommended Procedures for Implementation of D Publication 117, Guidelines for Analyzing and Mitigating Hazards in California to determine minimum slope setba infiltration BMPs. See the City of San Diego's Guid Geotechnical Reports (2011) to determine which type of slo analysis is required. Can partial infiltration BMPs be proposed within the DM increasing slope stability risks?	nake Center MG Special g Landslide cks for full delines for the stability	□Yes	□No	
4B-5	Other Geotechnical Hazards. Identify site-specific go hazards not already mentioned (refer to Appendix C.2.1). Can partial infiltration BMPs be proposed within the DM increasing risk of geologic or geotechnical hazards mentioned?	ЛА without	□Yes	□No	
4B-6	Setbacks. Establish setbacks from underground utilities, structures, and/or retaining walls. Reference applicable ASTM or other recognized standard in the geotechnical report. Can partial infiltration BMPs be proposed within the DMA using recommended setbacks from underground utilities, structures, and/or retaining walls?		□Yes	□No	
4C	Mitigation Measures. Propose mitigation measures geologic/geotechnical hazard identified in Step 4B. discussion on geologic/geotechnical hazards that wou partial infiltration BMPs that cannot be reasonably mitig geotechnical report. See Appendix C.2.1.8 for a list of reasonable and typically unreasonable mitigation measures Can mitigation measures be proposed to allow for partial if BMPs? If the question in Step 4C is answered "Yes," then "Yes" to Criteria 4 Result. If the question in Step 4C is answered "No," then answ Criteria 4 Result.	Provide a ld prevent rated in the of typically es. infiltration answer	□Yes	□No	

Categorization of Infiltration Feasibility Condition based on Geotechnical Conditions Worksh		Worksh	neet C.4-1: Form I- 8A ¹⁰	
Criteria 4 Result	Can infiltration of greater than or equal to 0.05 inches/ho than or equal to 0.5 inches/hour be allowed without incrisk of geologic or geotechnical hazards that cannot be mitigated to an acceptable level?	reasing the	□Yes	□No
Summarize	e findings and basis; provide references to related reports o	r exhibits.		
Part 2 – Pa	artial Infiltration Geotechnical Screening Result ¹³		Result	
design is p	to both Criteria 3 and Criteria 4 are "Yes", a partial infiltra otentially feasible based on geotechnical conditions only. to either Criteria 3 or Criteria 4 is "No", then infiltraticonsidered to be infeasible within the site.		□Partial Infilt Condition □No Infiltratio Condition	

¹³ To be completed using gathered site information and best professional judgement considering the definition of MEP in the MS4 Permit. Additional testing and/or studies may be required by City Engineer to substantiate findings.

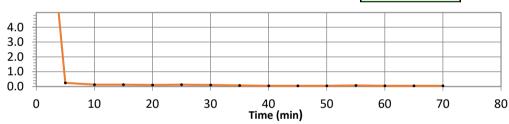
Aardvark Permeameter Data Analysis

CAL TERRACES - PA 61 Project Name: 07955-42-02 Project Number: Test Number: A-1

> Borehole Diameter, d (in.): 4.00 Borehole Depth, H (in): 45.00

Date: 12/22/2017 Ву: N. BORJA

> Ref. EL (feet, MSL): 528.5 Bottom EL (feet, MSL): 524.8


Head Height Measured, h (in.):

5.50

Reading	Time Elapsed (min)	Water Weight Consummed (lbs)	Water Volume Consummed (in ³)	Q (in³/min)
1	0.00	0.000	0.00	0.00
2	5.00	3.785	104.82	20.963
3	5.00	0.045	1.25	0.249
4	5.00	0.025	0.69	0.138
5	5.00	0.025	0.69	0.138
6	5.00	0.020	0.55	0.111
7	5.00	0.025	0.69	0.138
8	5.00	0.020	0.55	0.111
9	5.00	0.015	0.42	0.083
10	5.00	0.010	0.28	0.055
11	5.00	0.010	0.28	0.055
12	5.00	0.010	0.28	0.055
13	5.00	0.015	0.42	0.083
14	5.00	0.010	0.28	0.055
15	5.00	0.010	0.28	0.055
16	5.00	0.010	0.28	0.055
		Stoady Flor	y Pata O (in ³ /min):	0.055

Steady Flow Rate, Q (in³/min):

0.055

Field-Saturated Hydraulic Conductivity (Infiltration Rate)

in/min 3.86E-05 0.002 in/hr $K_{sat} =$

Aardvark Permeameter Data Analysis

 Project Name:
 CAL TERRACES - PA 61

 Project Number:
 07955-42-02

 Test Number:
 A-2

Date: 12/22/2017

By: N. BORJA

Ref. EL (feet, MSL):

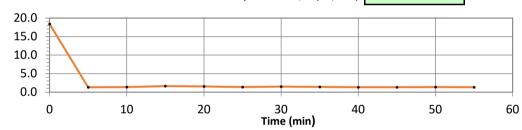
Bottom EL (feet, MSL):

529.5 525.5

Borehole Diameter, d (in.):

Borehole Depth, **H** (in):

(in.): 4.00 **H** (in): 48.00


Head Height Measured, h (in.):

3.75

Reading	Time Elapsed (min)	Water Weight Consummed (lbs)	Water Volume Consummed (in ³)	Q (in³/min)
1	0.00	0.000	0.00	0.00
2	5.00	3.320	91.94	18.388
3	5.00	0.235	6.51	1.302
4	5.00	0.245	6.78	1.357
5	5.00	0.290	8.03	1.606
6	5.00	0.275	7.62	1.523
7	5.00	0.245	6.78	1.357
8	5.00	0.270	7.48	1.495
9	5.00	0.255	7.06	1.412
10	5.00	0.240	6.65	1.329
11	5.00	0.240	6.65	1.329
12	5.00	0.245	6.78	1.356
13	5.00	0.240	6.65	1.330
		Standy Flav	" Bata O (in ³ /min):	1 220

Steady Flow Rate, Q (in³/min): 1.338

Q (in³/min)

Field-Saturated Hydraulic Conductivity (Infiltration Rate)

K_{sat} = 1.13E-03 in/min 0.068 in/hr

APPENDIX D

RECOMMENDED GRADING SPECIFICATIONS

FOR

OCEANVIEW HILLS PA-61 SAN DIEGO, CALIFORNIA

PROJECT NO. 07955-42-02

RECOMMENDED GRADING SPECIFICATIONS

1. GENERAL

- 1.1 These Recommended Grading Specifications shall be used in conjunction with the Geotechnical Report for the project prepared by Geocon. The recommendations contained in the text of the Geotechnical Report are a part of the earthwork and grading specifications and shall supersede the provisions contained hereinafter in the case of conflict.
- 1.2 Prior to the commencement of grading, a geotechnical consultant (Consultant) shall be employed for the purpose of observing earthwork procedures and testing the fills for substantial conformance with the recommendations of the Geotechnical Report and these specifications. The Consultant should provide adequate testing and observation services so that they may assess whether, in their opinion, the work was performed in substantial conformance with these specifications. It shall be the responsibility of the Contractor to assist the Consultant and keep them apprised of work schedules and changes so that personnel may be scheduled accordingly.
- 1.3 It shall be the sole responsibility of the Contractor to provide adequate equipment and methods to accomplish the work in accordance with applicable grading codes or agency ordinances, these specifications and the approved grading plans. If, in the opinion of the Consultant, unsatisfactory conditions such as questionable soil materials, poor moisture condition, inadequate compaction, and/or adverse weather result in a quality of work not in conformance with these specifications, the Consultant will be empowered to reject the work and recommend to the Owner that grading be stopped until the unacceptable conditions are corrected.

2. DEFINITIONS

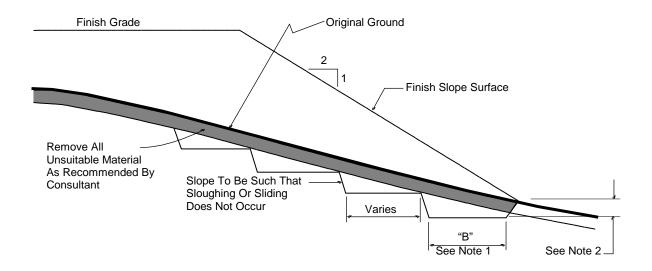
- Owner shall refer to the owner of the property or the entity on whose behalf the grading work is being performed and who has contracted with the Contractor to have grading performed.
- 2.2 **Contractor** shall refer to the Contractor performing the site grading work.
- 2.3 **Civil Engineer** or **Engineer of Work** shall refer to the California licensed Civil Engineer or consulting firm responsible for preparation of the grading plans, surveying and verifying as-graded topography.
- 2.4 **Consultant** shall refer to the soil engineering and engineering geology consulting firm retained to provide geotechnical services for the project.

- 2.5 **Soil Engineer** shall refer to a California licensed Civil Engineer retained by the Owner, who is experienced in the practice of geotechnical engineering. The Soil Engineer shall be responsible for having qualified representatives on-site to observe and test the Contractor's work for conformance with these specifications.
- 2.6 **Engineering Geologist** shall refer to a California licensed Engineering Geologist retained by the Owner to provide geologic observations and recommendations during the site grading.
- 2.7 **Geotechnical Report** shall refer to a soil report (including all addenda) which may include a geologic reconnaissance or geologic investigation that was prepared specifically for the development of the project for which these Recommended Grading Specifications are intended to apply.

3. MATERIALS

- 3.1 Materials for compacted fill shall consist of any soil excavated from the cut areas or imported to the site that, in the opinion of the Consultant, is suitable for use in construction of fills. In general, fill materials can be classified as *soil* fills, *soil-rock* fills or *rock* fills, as defined below.
 - 3.1.1 **Soil fills** are defined as fills containing no rocks or hard lumps greater than 12 inches in maximum dimension and containing at least 40 percent by weight of material smaller than 3/4 inch in size.
 - 3.1.2 **Soil-rock fills** are defined as fills containing no rocks or hard lumps larger than 4 feet in maximum dimension and containing a sufficient matrix of soil fill to allow for proper compaction of soil fill around the rock fragments or hard lumps as specified in Paragraph 6.2. **Oversize rock** is defined as material greater than 12 inches.
 - 3.1.3 **Rock fills** are defined as fills containing no rocks or hard lumps larger than 3 feet in maximum dimension and containing little or no fines. Fines are defined as material smaller than ³/₄ inch in maximum dimension. The quantity of fines shall be less than approximately 20 percent of the rock fill quantity.
- 3.2 Material of a perishable, spongy, or otherwise unsuitable nature as determined by the Consultant shall not be used in fills.
- 3.3 Materials used for fill, either imported or on-site, shall not contain hazardous materials as defined by the California Code of Regulations, Title 22, Division 4, Chapter 30, Articles 9

and 10; 40CFR; and any other applicable local, state or federal laws. The Consultant shall not be responsible for the identification or analysis of the potential presence of hazardous materials. However, if observations, odors or soil discoloration cause Consultant to suspect the presence of hazardous materials, the Consultant may request from the Owner the termination of grading operations within the affected area. Prior to resuming grading operations, the Owner shall provide a written report to the Consultant indicating that the suspected materials are not hazardous as defined by applicable laws and regulations.


- 3.4 The outer 15 feet of *soil-rock* fill slopes, measured horizontally, should be composed of properly compacted *soil* fill materials approved by the Consultant. *Rock* fill may extend to the slope face, provided that the slope is not steeper than 2:1 (horizontal:vertical) and a soil layer no thicker than 12 inches is track-walked onto the face for landscaping purposes. This procedure may be utilized provided it is acceptable to the governing agency, Owner and Consultant.
- 3.5 Samples of soil materials to be used for fill should be tested in the laboratory by the Consultant to determine the maximum density, optimum moisture content, and, where appropriate, shear strength, expansion, and gradation characteristics of the soil.
- 3.6 During grading, soil or groundwater conditions other than those identified in the Geotechnical Report may be encountered by the Contractor. The Consultant shall be notified immediately to evaluate the significance of the unanticipated condition

4. CLEARING AND PREPARING AREAS TO BE FILLED

- 4.1 Areas to be excavated and filled shall be cleared and grubbed. Clearing shall consist of complete removal above the ground surface of trees, stumps, brush, vegetation, man-made structures, and similar debris. Grubbing shall consist of removal of stumps, roots, buried logs and other unsuitable material and shall be performed in areas to be graded. Roots and other projections exceeding 1½ inches in diameter shall be removed to a depth of 3 feet below the surface of the ground. Borrow areas shall be grubbed to the extent necessary to provide suitable fill materials.
- 4.2 Asphalt pavement material removed during clearing operations should be properly disposed at an approved off-site facility or in an acceptable area of the project evaluated by Geocon and the property owner. Concrete fragments that are free of reinforcing steel may be placed in fills, provided they are placed in accordance with Section 6.2 or 6.3 of this document.

- 4.3 After clearing and grubbing of organic matter and other unsuitable material, loose or porous soils shall be removed to the depth recommended in the Geotechnical Report. The depth of removal and compaction should be observed and approved by a representative of the Consultant. The exposed surface shall then be plowed or scarified to a minimum depth of 6 inches and until the surface is free from uneven features that would tend to prevent uniform compaction by the equipment to be used.
- 4.4 Where the slope ratio of the original ground is steeper than 5:1 (horizontal:vertical), or where recommended by the Consultant, the original ground should be benched in accordance with the following illustration.

TYPICAL BENCHING DETAIL

No Scale

DETAIL NOTES:

- (1) Key width "B" should be a minimum of 10 feet, or sufficiently wide to permit complete coverage with the compaction equipment used. The base of the key should be graded horizontal, or inclined slightly into the natural slope.
- (2) The outside of the key should be below the topsoil or unsuitable surficial material and at least 2 feet into dense formational material. Where hard rock is exposed in the bottom of the key, the depth and configuration of the key may be modified as approved by the Consultant.
- 4.5 After areas to receive fill have been cleared and scarified, the surface should be moisture conditioned to achieve the proper moisture content, and compacted as recommended in Section 6 of these specifications.

5. COMPACTION EQUIPMENT

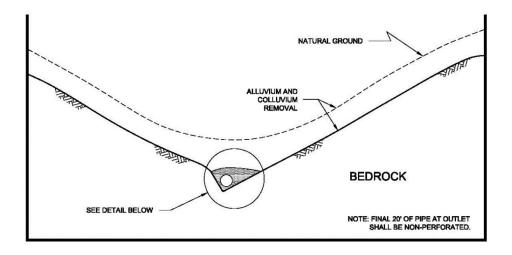
- 5.1 Compaction of *soil* or *soil-rock* fill shall be accomplished by sheepsfoot or segmented-steel wheeled rollers, vibratory rollers, multiple-wheel pneumatic-tired rollers, or other types of acceptable compaction equipment. Equipment shall be of such a design that it will be capable of compacting the *soil* or *soil-rock* fill to the specified relative compaction at the specified moisture content.
- 5.2 Compaction of *rock* fills shall be performed in accordance with Section 6.3.

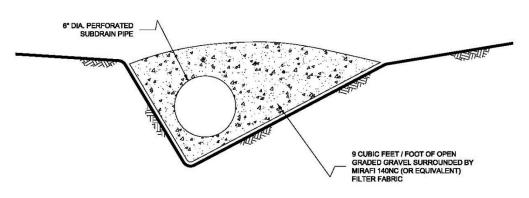
6. PLACING, SPREADING AND COMPACTION OF FILL MATERIAL

- 6.1 *Soil* fill, as defined in Paragraph 3.1.1, shall be placed by the Contractor in accordance with the following recommendations:
 - 6.1.1 Soil fill shall be placed by the Contractor in layers that, when compacted, should generally not exceed 8 inches. Each layer shall be spread evenly and shall be thoroughly mixed during spreading to obtain uniformity of material and moisture in each layer. The entire fill shall be constructed as a unit in nearly level lifts. Rock materials greater than 12 inches in maximum dimension shall be placed in accordance with Section 6.2 or 6.3 of these specifications.
 - 6.1.2 In general, the *soil* fill shall be compacted at a moisture content at or above the optimum moisture content as determined by ASTM D 1557.
 - 6.1.3 When the moisture content of *soil* fill is below that specified by the Consultant, water shall be added by the Contractor until the moisture content is in the range specified.
 - 6.1.4 When the moisture content of the *soil* fill is above the range specified by the Consultant or too wet to achieve proper compaction, the *soil* fill shall be aerated by the Contractor by blading/mixing, or other satisfactory methods until the moisture content is within the range specified.
 - 6.1.5 After each layer has been placed, mixed, and spread evenly, it shall be thoroughly compacted by the Contractor to a relative compaction of at least 90 percent. Relative compaction is defined as the ratio (expressed in percent) of the in-place dry density of the compacted fill to the maximum laboratory dry density as determined in accordance with ASTM D 1557. Compaction shall be continuous over the entire area, and compaction equipment shall make sufficient passes so that the specified minimum relative compaction has been achieved throughout the entire fill.

- 6.1.6 Where practical, soils having an Expansion Index greater than 50 should be placed at least 3 feet below finish pad grade and should be compacted at a moisture content generally 2 to 4 percent greater than the optimum moisture content for the material.
- 6.1.7 Properly compacted *soil* fill shall extend to the design surface of fill slopes. To achieve proper compaction, it is recommended that fill slopes be over-built by at least 3 feet and then cut to the design grade. This procedure is considered preferable to track-walking of slopes, as described in the following paragraph.
- 6.1.8 As an alternative to over-building of slopes, slope faces may be back-rolled with a heavy-duty loaded sheepsfoot or vibratory roller at maximum 4-foot fill height intervals. Upon completion, slopes should then be track-walked with a D-8 dozer or similar equipment, such that a dozer track covers all slope surfaces at least twice.
- 6.2 *Soil-rock* fill, as defined in Paragraph 3.1.2, shall be placed by the Contractor in accordance with the following recommendations:
 - 6.2.1 Rocks larger than 12 inches but less than 4 feet in maximum dimension may be incorporated into the compacted *soil* fill, but shall be limited to the area measured 15 feet minimum horizontally from the slope face and 5 feet below finish grade or 3 feet below the deepest utility, whichever is deeper.
 - 6.2.2 Rocks or rock fragments up to 4 feet in maximum dimension may either be individually placed or placed in windrows. Under certain conditions, rocks or rock fragments up to 10 feet in maximum dimension may be placed using similar methods. The acceptability of placing rock materials greater than 4 feet in maximum dimension shall be evaluated during grading as specific cases arise and shall be approved by the Consultant prior to placement.
 - 6.2.3 For individual placement, sufficient space shall be provided between rocks to allow for passage of compaction equipment.
 - 6.2.4 For windrow placement, the rocks should be placed in trenches excavated in properly compacted *soil* fill. Trenches should be approximately 5 feet wide and 4 feet deep in maximum dimension. The voids around and beneath rocks should be filled with approved granular soil having a Sand Equivalent of 30 or greater and should be compacted by flooding. Windrows may also be placed utilizing an "open-face" method in lieu of the trench procedure, however, this method should first be approved by the Consultant.

- 6.2.5 Windrows should generally be parallel to each other and may be placed either parallel to or perpendicular to the face of the slope depending on the site geometry. The minimum horizontal spacing for windrows shall be 12 feet center-to-center with a 5-foot stagger or offset from lower courses to next overlying course. The minimum vertical spacing between windrow courses shall be 2 feet from the top of a lower windrow to the bottom of the next higher windrow.
- 6.2.6 Rock placement, fill placement and flooding of approved granular soil in the windrows should be continuously observed by the Consultant.
- 6.3 *Rock* fills, as defined in Section 3.1.3, shall be placed by the Contractor in accordance with the following recommendations:
 - 6.3.1 The base of the *rock* fill shall be placed on a sloping surface (minimum slope of 2 percent). The surface shall slope toward suitable subdrainage outlet facilities. The *rock* fills shall be provided with subdrains during construction so that a hydrostatic pressure buildup does not develop. The subdrains shall be permanently connected to controlled drainage facilities to control post-construction infiltration of water.
 - 6.3.2 Rock fills shall be placed in lifts not exceeding 3 feet. Placement shall be by rock trucks traversing previously placed lifts and dumping at the edge of the currently placed lift. Spreading of the rock fill shall be by dozer to facilitate seating of the rock. The rock fill shall be watered heavily during placement. Watering shall consist of water trucks traversing in front of the current rock lift face and spraying water continuously during rock placement. Compaction equipment with compactive energy comparable to or greater than that of a 20-ton steel vibratory roller or other compaction equipment providing suitable energy to achieve the required compaction or deflection as recommended in Paragraph 6.3.3 shall be utilized. The number of passes to be made should be determined as described in Paragraph 6.3.3. Once a rock fill lift has been covered with soil fill, no additional rock fill lifts will be permitted over the soil fill.
 - 6.3.3 Plate bearing tests, in accordance with ASTM D 1196, may be performed in both the compacted *soil* fill and in the *rock* fill to aid in determining the required minimum number of passes of the compaction equipment. If performed, a minimum of three plate bearing tests should be performed in the properly compacted *soil* fill (minimum relative compaction of 90 percent). Plate bearing tests shall then be performed on areas of *rock* fill having two passes, four passes and six passes of the compaction equipment, respectively. The number of passes required for the *rock* fill shall be determined by comparing the results of the plate bearing tests for the *soil* fill and the *rock* fill and by evaluating the deflection

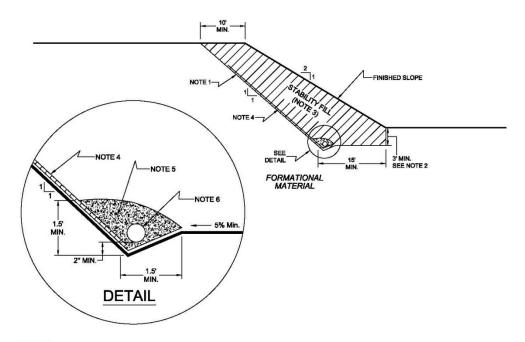

variation with number of passes. The required number of passes of the compaction equipment will be performed as necessary until the plate bearing deflections are equal to or less than that determined for the properly compacted *soil* fill. In no case will the required number of passes be less than two.


- 6.3.4 A representative of the Consultant should be present during *rock* fill operations to observe that the minimum number of "passes" have been obtained, that water is being properly applied and that specified procedures are being followed. The actual number of plate bearing tests will be determined by the Consultant during grading.
- 6.3.5 Test pits shall be excavated by the Contractor so that the Consultant can state that, in their opinion, sufficient water is present and that voids between large rocks are properly filled with smaller rock material. In-place density testing will not be required in the *rock* fills.
- 6.3.6 To reduce the potential for "piping" of fines into the *rock* fill from overlying *soil* fill material, a 2-foot layer of graded filter material shall be placed above the uppermost lift of *rock* fill. The need to place graded filter material below the *rock* should be determined by the Consultant prior to commencing grading. The gradation of the graded filter material will be determined at the time the *rock* fill is being excavated. Materials typical of the *rock* fill should be submitted to the Consultant in a timely manner, to allow design of the graded filter prior to the commencement of *rock* fill placement.
- 6.3.7 *Rock* fill placement should be continuously observed during placement by the Consultant.

7. SUBDRAINS

7.1 The geologic units on the site may have permeability characteristics and/or fracture systems that could be susceptible under certain conditions to seepage. The use of canyon subdrains may be necessary to mitigate the potential for adverse impacts associated with seepage conditions. Canyon subdrains with lengths in excess of 500 feet or extensions of existing offsite subdrains should use 8-inch-diameter pipes. Canyon subdrains less than 500 feet in length should use 6-inch-diameter pipes.

TYPICAL CANYON DRAIN DETAIL



NOTES:

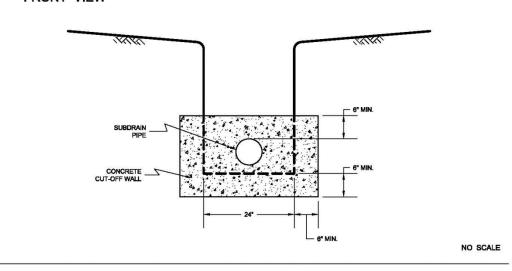
- 1.....8-INCH DIAMETER, SCHEDULE 80 PVC PERFORATED PIPE FOR FILLS IN EXCESS OF 100-FEET IN DEPTH OR A PIPE LENGTH OF LONGER THAN 500 FEET.
- 2.....6-INCH DIAMETER, SCHEDULE 40 PVC PERFORATED PIPE FOR FILLS LESS THAN 100-FEET IN DEPTH OR A PIPE LENGTH SHORTER THAN 500 FEET.

NO SCALE

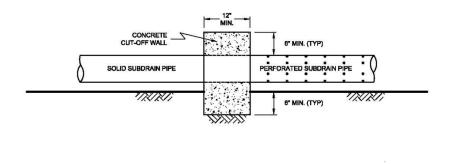
7.2 Slope drains within stability fill keyways should use 4-inch-diameter (or lager) pipes.

NOTES:

- 1.....EXCAVATE BACKCUT AT 1:1 INCLINATION (UNLESS OTHERWISE NOTED).
- 2....BASE OF STABILITY FILL TO BE 3 FEET INTO FORMATIONAL MATERIAL, SLOPING A MINIMUM 5% INTO SLOPE.
- 3.....STABILITY FILL TO BE COMPOSED OF PROPERLY COMPACTED GRANULAR SOIL.
- 4.....CHIMNEY DRAINS TO BE APPROVED PREFABRICATED CHIMNEY DRAIN PANELS (MIRADRAIN G200N OR EQUIVALENT)
 SPACED APPROXIMATELY 20 FEET CENTER TO CENTER AND 4 FEET WIDE. CLOSER SPACING MAY BE REQUIRED IF
 SEEPAGE IS ENCOUNTERED.
- 5.....FILTER MATERIAL TO BE 3/4-INCH, OPEN-GRADED CRUSHED ROCK ENCLOSED IN APPROVED FILTER FABRIC (MIRAFI 140NC).
- 6.....COLLECTOR PIPE TO BE 4-INCH MINIMUM DIAMETER, PERFORATED, THICK-WALLED PVC SCHEDULE 40 OR EQUIVALENT, AND SLOPED TO DRAIN AT 1 PERCENT MINIMUM TO APPROVED OUTLET.

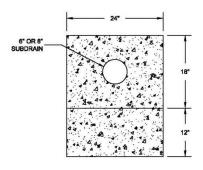

NO SCALE

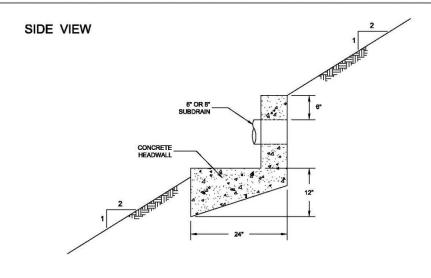
- 7.3 The actual subdrain locations will be evaluated in the field during the remedial grading operations. Additional drains may be necessary depending on the conditions observed and the requirements of the local regulatory agencies. Appropriate subdrain outlets should be evaluated prior to finalizing 40-scale grading plans.
- 7.4 *Rock* fill or *soil-rock* fill areas may require subdrains along their down-slope perimeters to mitigate the potential for buildup of water from construction or landscape irrigation. The subdrains should be at least 6-inch-diameter pipes encapsulated in gravel and filter fabric. *Rock* fill drains should be constructed using the same requirements as canyon subdrains.


7.5 Prior to outletting, the final 20-foot segment of a subdrain that will not be extended during future development should consist of non-perforated drainpipe. At the non-perforated/perforated interface, a seepage cutoff wall should be constructed on the downslope side of the pipe.

TYPICAL CUT OFF WALL DETAIL

FRONT VIEW


SIDE VIEW


7.6 Subdrains that discharge into a natural drainage course or open space area should be provided with a permanent headwall structure.

NO SCALE

FRONT VIEW

NO SCALE

NOTE: HEADWALL SHOULD OUTLET AT TOE OF FILL SLOPE OR INTO CONTROLLED SURFACE DRAINAGE

NO SCALE

7.7 The final grading plans should show the location of the proposed subdrains. After completion of remedial excavations and subdrain installation, the project civil engineer should survey the drain locations and prepare an "as-built" map showing the drain locations. The final outlet and connection locations should be determined during grading operations. Subdrains that will be extended on adjacent projects after grading can be placed on formational material and a vertical riser should be placed at the end of the subdrain. The grading contractor should consider videoing the subdrains shortly after burial to check proper installation and functionality. The contractor is responsible for the performance of the drains.

8. OBSERVATION AND TESTING

- 8.1 The Consultant shall be the Owner's representative to observe and perform tests during clearing, grubbing, filling, and compaction operations. In general, no more than 2 feet in vertical elevation of *soil* or *soil-rock* fill should be placed without at least one field density test being performed within that interval. In addition, a minimum of one field density test should be performed for every 2,000 cubic yards of *soil* or *soil-rock* fill placed and compacted.
- 8.2 The Consultant should perform a sufficient distribution of field density tests of the compacted *soil* or *soil-rock* fill to provide a basis for expressing an opinion whether the fill material is compacted as specified. Density tests shall be performed in the compacted materials below any disturbed surface. When these tests indicate that the density of any layer of fill or portion thereof is below that specified, the particular layer or areas represented by the test shall be reworked until the specified density has been achieved.
- 8.3 During placement of *rock* fill, the Consultant should observe that the minimum number of passes have been obtained per the criteria discussed in Section 6.3.3. The Consultant should request the excavation of observation pits and may perform plate bearing tests on the placed *rock* fills. The observation pits will be excavated to provide a basis for expressing an opinion as to whether the *rock* fill is properly seated and sufficient moisture has been applied to the material. When observations indicate that a layer of *rock* fill or any portion thereof is below that specified, the affected layer or area shall be reworked until the *rock* fill has been adequately seated and sufficient moisture applied.
- A settlement monitoring program designed by the Consultant may be conducted in areas of *rock* fill placement. The specific design of the monitoring program shall be as recommended in the Conclusions and Recommendations section of the project Geotechnical Report or in the final report of testing and observation services performed during grading.
- 8.5 We should observe the placement of subdrains, to check that the drainage devices have been placed and constructed in substantial conformance with project specifications.
- 8.6 Testing procedures shall conform to the following Standards as appropriate:

8.6.1 Soil and Soil-Rock Fills:

8.6.1.1 Field Density Test, ASTM D 1556, Density of Soil In-Place By the Sand-Cone Method.

- 8.6.1.2 Field Density Test, Nuclear Method, ASTM D 6938, Density of Soil and Soil-Aggregate In-Place by Nuclear Methods (Shallow Depth).
- 8.6.1.3 Laboratory Compaction Test, ASTM D 1557, Moisture-Density Relations of Soils and Soil-Aggregate Mixtures Using 10-Pound Hammer and 18-Inch Drop.
- 8.6.1.4. Expansion Index Test, ASTM D 4829, Expansion Index Test.

9. PROTECTION OF WORK

- 9.1 During construction, the Contractor shall properly grade all excavated surfaces to provide positive drainage and prevent ponding of water. Drainage of surface water shall be controlled to avoid damage to adjoining properties or to finished work on the site. The Contractor shall take remedial measures to prevent erosion of freshly graded areas until such time as permanent drainage and erosion control features have been installed. Areas subjected to erosion or sedimentation shall be properly prepared in accordance with the Specifications prior to placing additional fill or structures.
- 9.2 After completion of grading as observed and tested by the Consultant, no further excavation or filling shall be conducted except in conjunction with the services of the Consultant.

10. CERTIFICATIONS AND FINAL REPORTS

- 10.1 Upon completion of the work, Contractor shall furnish Owner a certification by the Civil Engineer stating that the lots and/or building pads are graded to within 0.1 foot vertically of elevations shown on the grading plan and that all tops and toes of slopes are within 0.5 foot horizontally of the positions shown on the grading plans. After installation of a section of subdrain, the project Civil Engineer should survey its location and prepare an *as-built* plan of the subdrain location. The project Civil Engineer should verify the proper outlet for the subdrains and the Contractor should ensure that the drain system is free of obstructions.
- The Owner is responsible for furnishing a final as-graded soil and geologic report satisfactory to the appropriate governing or accepting agencies. The as-graded report should be prepared and signed by a California licensed Civil Engineer experienced in geotechnical engineering and by a California Certified Engineering Geologist, indicating that the geotechnical aspects of the grading were performed in substantial conformance with the Specifications or approved changes to the Specifications.

LIST OF REFERENCES

- Boore, D. M., and G. M Atkinson (2006), *Boore-Atkinson NGA Ground Motion Relations for the Geometric Mean Horizontal Component of Peak and Spectral Ground Motion Parameters*, Report Number PEER 2007/01, May 2007;
- Campbell, K. W., Y. Bozorgnia, NGA Ground Motion Model for the Geometric Mean Horizontal Component of PGA, PGV, PGD and 5% Damped Linear Elastic Response Spectra for Periods Ranging from 0.01 to 10 s, Preprint of version submitted for publication in the NGA Special Volume of Earthquake Spectra, Volume 24, Issue 1, pages 139-171, February 2008;
- Chiou, Brian S. J. and Robert R. Youngs, Robert R, A NGA Model for the Average Horizontal Component of Peak Ground Motion and Response Spectra, preprint for article to be published in NGA Special Edition for Earthquake Spectra, Spring 2008;
- Geocon Incorporated, Update Geotechnical Report, South Otay Mesa Corporate Center, California Terraces Planning Area 61, San Diego, California, February 29, 2008 (Project No. 07955-42-01);
- Kennedy, M. P., and Tan, S. S., (2008), *Geologic Map of the San Diego 30' x 60' Quadrangle, California*, USGS Regional Geologic Map Series, 1:100,000 Scale, Map No. 3;
- Risk Engineering, *EZ-FRISK*, 2015;
- City of San Diego (2008), Seismic Safety Study, Geologic Hazards and Faults, Map Sheet 7;
- USGS (2016), *Quaternary Fault and Fold Database of the United States*: U.S. Geological Survey website, http://earthquakes,usgs.gov/hazards/qfaults, accessed May 2, 2017;
- USGS (2017), U.S. Seismic Design Maps; USGS Earthquake Hazards Program website, https://earthquake.usgs.gov/designmaps/us/application.php, accessed May 2, 2017;

Unpublished Geotechnical Reports and Information, Geocon Incorporated.

Project No. 07955-42-02 March 15, 2018

UPDATED GEOLOGIC MAP

OCEANVIEW HILLS – PA 61 SAN DIEGO, CALIFORNIA

GEOTECHNICAL ENVIRONMENTAL MATERIALS PREPARED FOR

PARDEE HOMES SAN DIEGO, CALIFORNIA

JULY 11, 2018 PROJECT NO. 07955-42-02

Project No. 07955-42-02 July 11, 2018

Pardee Homes 13400 Sabre Springs Parkway, Suite 200 San Diego, California 92128

Mr. Allen Kashani Attention:

Subject: UPDATED GEOLOGIC MAP

> OCEANVIEW HILLS - PA 61 SAN DIEGO, CALIFORNIA

Reference: Update Geotechnical Investigation, Oceanview Hills - PA 61, San Diego, California,

prepared by Geocon Incorporated dated March 15, 2018 (Project No. 07955-42-02).

Dear Mr. Kashani:

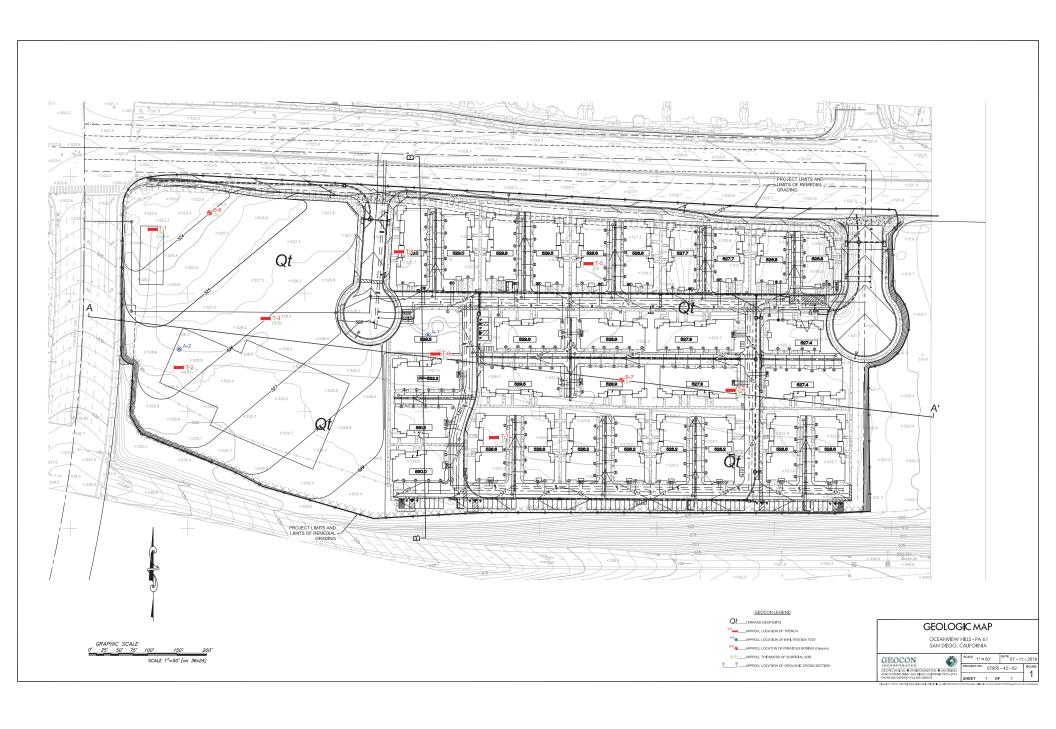
In accordance with the request of Civil Sense, Inc., we have prepared this letter to provide an updated geologic map using the latest grading plan. Civil Sense provided an AutoCAD file of the grading plan which was used as the base map to generate the Geologic Map (Figure 1) and the Cross Sections (Figure 2). Based on our review of the grading plan, the recommendations contained in the referenced geotechnical investigation remain applicable to the project.

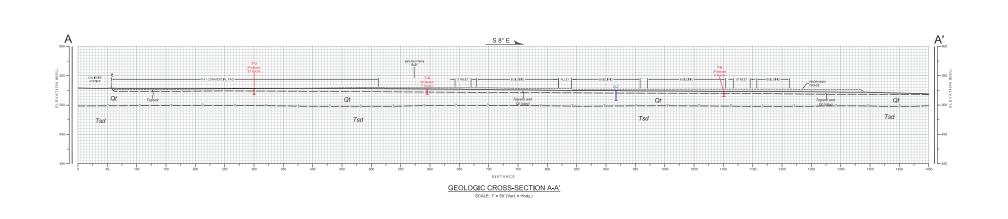
Should you have any questions regarding this letter, or if we may be of further service, please contact the undersigned at your convenience.

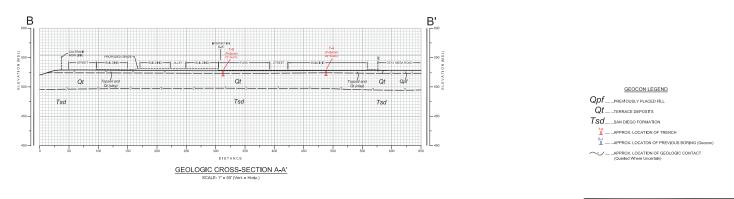
Very truly yours,

GEOCON INCORPORATED

Rodney C. Mikesell


GE 2533


RCM:dmc


Addressee (e-mail)

Civil Sense, Inc. (3/del)

Attention: Ms. Maykia Vang

GEOLOGIC CROSS SECTION

OCEANVIEW HILLS - PA 61 SAN DIEGO, CALIFORNIA

GEOCON (S)	SCALE 1"=	50'	DATE 07 - 11	- 20
GEOTECHNICAL ® ENVIRONMENTAL ® MATERIALS	PROJECT NO.	07955	- 42 - 02	ПGU
6960 FLANDERS DRIVE - SANDIEGO, CALIFORNIA 92121 - 2974 PHONE 838 558-6900 - FAX 858 558-6159	SHEET	1 OF	1	2

DEXTER WILSON ENGINEERING, INC.

WATER • WASTEWATER • RECYCLED WATER

CONSULTING ENGINEERS

SEWER SERVICE ANALYSIS
FOR THE CALIFORNIA TERRACES
PLANNING AREA 61 PROJECT
IN THE CITY OF SAN DIEGO

October 19, 2018

SEWER SERVICE ANALYSIS FOR THE CALIFORNIA TERRACES PLANNING AREA 61 PROJECT IN THE CITY OF SAN DIEGO

October 19, 2018

Prepared by:
Dexter Wilson Engineering, Inc.
2234 Faraday Avenue
Carlsbad, CA 92008
(760) 438-4422

Job No. 648-032

TABLE OF CONTENTS

		PAGE NO.
Introduction		1
Purpose of Study		3
Study Area		3
City of San Diego	Sewer Design Criteria	5
PA61 Project Sew	ver Generation	6
PA61 Offsite Sew	er System Analysis	7
Analysis o	f Existing 10-inch Sewer	7
Analysis o	f Existing 15-inch and 18-inch Sewers	8
PA61 Onsite Sew	er System Analysis	8
Conclusions and	Recommendations	10
	APPENDICES	
APPENDIX A	PA61 UTILITY SITE PLAN	
APPENDIX B	CITY OF SAN DIEGO SEWER DESIGN CRITER	IA
APPENDIX C	ONSITE SEWER ANALYSIS AND OFFSITE SE THE EXISTING 10-INCH LINE IN CALIENTE A OCEAN VIEW HILLS PARKWAY AND AS-BUIL	VENUE AND
APPENDIX D	CALIFORNIA TERRACES SEWER BASIN EXHI	BIT (APPROVED

LIST OF TABLES

	PAGE NO	<u>).</u>
TABLE 1	CITY OF SAN DIEGO PUBLIC UTILITIES DEPARTMENT SEWER SYSTEM DESIGN CRITERIA	5
TABLE 2	PA61 PROJECT SEWER GENERATION	6

LIST OF FIGURES

	PAGE NO.
FIGURE 1	LOCATION MAP2
FIGURE 2	EXISTING SEWER FACILITIES OCEAN VIEW HILLS PARKWAY4
FIGURE 3	PROPOSED ONSITE SEWER SYSTEM
	EXHIBITS
EXHIBIT A	GRAVITY SEWER MANHOLE AND PIPE DIAGRAM

DEXTER S. WILSON, P.E.
ANDREW M. OVEN, P.E.
STEPHEN M. NIELSEN, P.E.
NATALIE J. FRASCHETTI, P.E.
STEVEN J. HENDERSON, P.E.

October 19, 2018

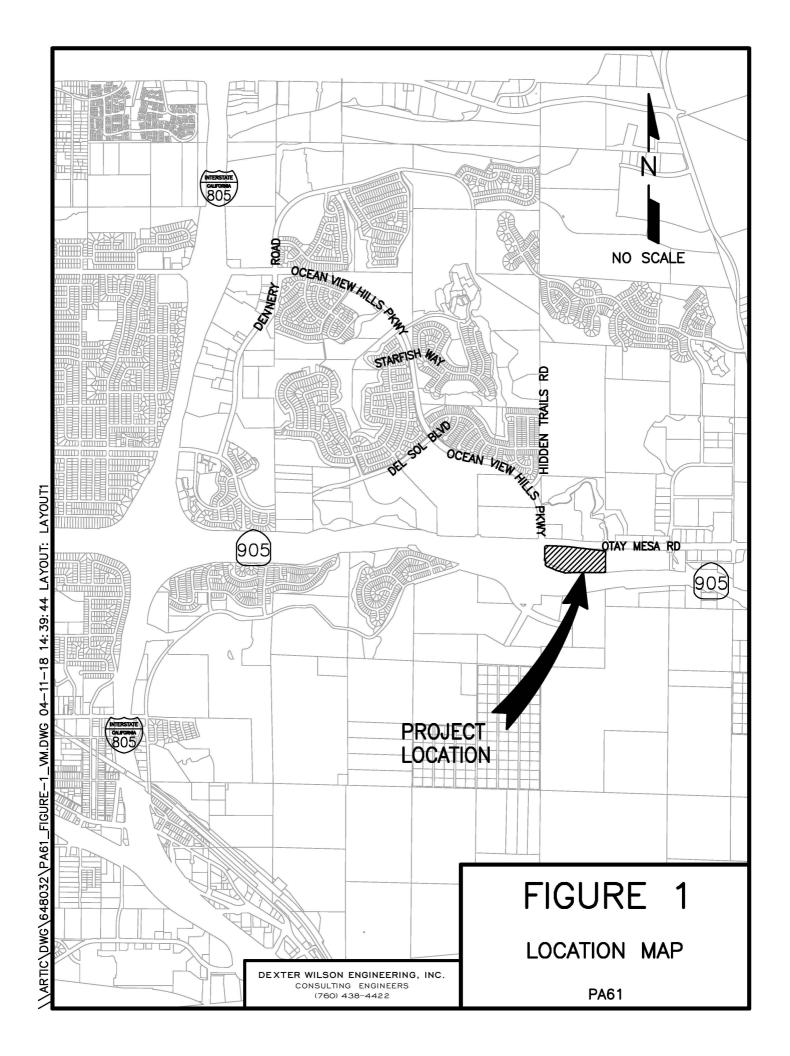
648-032

Pardee Homes 13400 Sabre Springs Parkway, Suite 200 San Diego, CA 92128

Attention:

Allen Kashani, Director of Project Management

Subject:


Sewer Service Analysis for the California Terraces Planning Area 61 Project

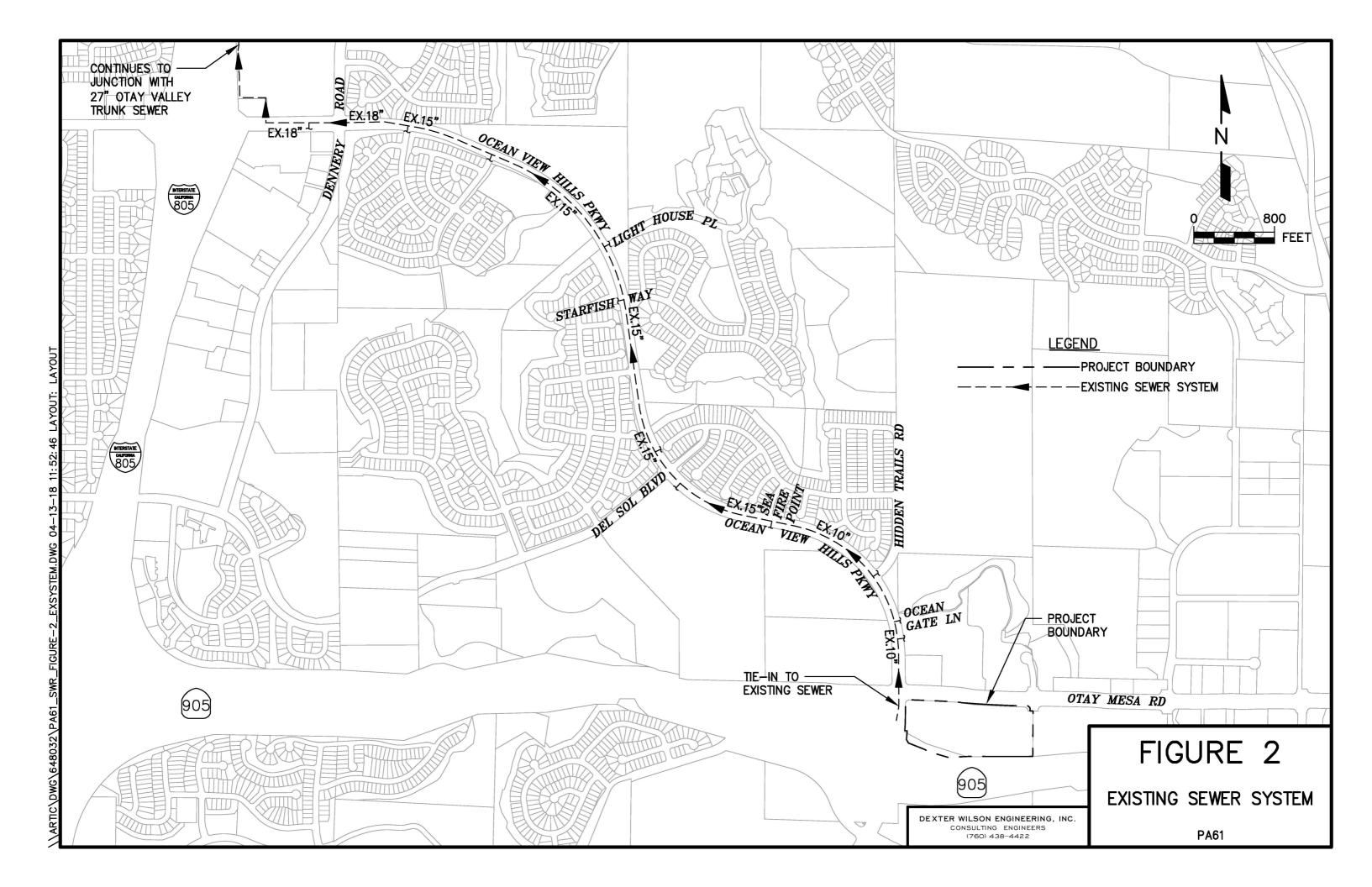
in the City of San Diego

Introduction

This report provides a sewer study for the California Terraces Planning Area 61 (PA61) project in the City of San Diego. The project proposes up to 45,000 SF of commercial uses within Lot 1 totaling 195,584 SF (4.49 AC) and multi-family residential units including affordable units and a private recreation park all within Lot 2 totaling 400,752 SF (9.20 AC). The residential development permits a density of 15 to 29 units per acre within the RM-2-5 zone and would allow Lot 2 to construct up to a maximum of 267 multi-family residential units. The 13.7 gross acres project site is located at the southeast corner of Otay Mesa Road and Caliente Ave and within the Otay Mesa Community Plan Area.

Topography of the buildable portion of the site drains from east to west. The site will be designed to connect to the existing gravity sewer line at the west end of the project in Caliente Avenue. Figure 1 provides a location map for the project and a conceptual site plan is attached as Appendix A.

Purpose of Study


The purpose of this study is to determine if the existing public gravity sewer system and proposed private gravity sewer system are both able to provide adequate capacity for the PA61 project. This report will address if any offsite (public) sewer system improvements are needed for the development of the project so that the offsite sewer system will be in conformance with the City of San Diego sewer system design standards.

The onsite sewer facilities for the PA61 project are proposed to be private. These facilities will be designed in accordance with the City's sewer system design standards as well.

Study Area

In general the study area for this sewer report is the sewer sub-basin comprising of the tributary area surrounding Ocean View Hills Parkway to the north and west of the PA61 project. This sub-basin system collects the wastewater flow from the California Terraces development in the City. The gravity sewer in Ocean View Hills Parkway (10-inch to 18-inch diameter) is a trunk sewer line that conveys wastewater to the connection with the 27-inch diameter Otay Valley Trunk Sewer near the I-805 crossing with the Otay River.

Wastewater from the PA61 project will flow through and connect to the existing 10-inch portion of the Ocean View Hills Parkway and Caliente Avenue gravity sewer line. At Sea Fire Point the gravity sewer line increases in diameter to 15-inch before increasing in diameter again at Dennery Road to 18-inch. These existing public sewer facilities can be seen on Figure 2.

City of San Diego Sewer Design Criteria

Sewer system analyses criteria are based on the Sewer Design Guide, Revised May 2015, City of San Diego Public Utilities Department. This guideline is used for analysis and sizing of new gravity sewer lines and for analysis of existing gravity sewer lines. A summary of the design criteria from the Sewer Design Guide is presented in Table 1 below.

TABLE CITY OF SAN DIEGO PUBLIC U SEWER SYSTEM DES	JTILITIES DEPARTME	NT		
Criterion	Design Requirement	Design Guide Reference		
Sewage Flow Generation	80 gallons per capita	1.3.2.2		
Dry Weather Peaking Factor	Figure 1-1 based on population	1.3.2.2		
Wet Weather Peaking Factor	Basin specific – determined by City	1.3.2.2		
Gravity Flow Hydraulic Formula	Manning's Equation	1.3.3.1		
Manning's 'n'	0.013	1.3.3.1		
Desirable Gravity Flow Velocity	3 fps to 5 fps	1.3.3.1		
Minimum Gravity Flow Velocity	2 fps	-1.3.3.1		
Where 2 fps is not achievable	Set min. slope at 1%	1.3.3.1		
Maximum Gravity Flow Velocity	10 fps	1.3.3.1		
Maximum Depth of Flow at Peak Wet Weather		is a		
For 15" Pipe and Smaller	d/D = 0.50	1.3.3.3		
For 18" and Larger	d/D = 0.75	1.3.3.3		
Minimum Acceptable Gravity Sewer Main Size				
For Residential Areas	8" diameter	1.3.3.4		
For Commercial, Industrial, and High-Rise Bldgs.	10" diameter	1.3.3.4		
Net Acreage	= 0.80 x Gross Acres	Table 1-1		

PA61 Project Sewer Generation

The sewer generation for the PA61 project was developed in accordance with the City of San Diego Design Guidelines and Standards. Per a City plan check comment, the sewer generation for the multi-family residential units will be equal to the single-family EDU sewer generation factor of 280 gpd per EDU. The PA61 project proposes up to 267 residential units over 9.20 net acres equaling 29.0 units per acre.

Table 2 presents the projected sewer generation for the PA61 project.

TABLE 2 PA61 PROJECT SEWER GENERATION										
Land Use	Quantity	Generation Factor	Average Sewer Generation, gpd							
Multi-Family Residential (29 DUs/net acre)	267 Units	280 gpd/DU	74,760							
Commercial	4.49 Acres	3,500 gpd/acre	15,715							
TOTAL			90,475 = 62.8 gpm							

From the City of San Diego's Sewer Design Guide, Figure 1-1, the peak dry weather flow to average flow ratio is approximately 2.47 based on the formula presented in the figure, resulting in an estimated peak dry weather flow of 223,473 gpd (155.2 gpm).

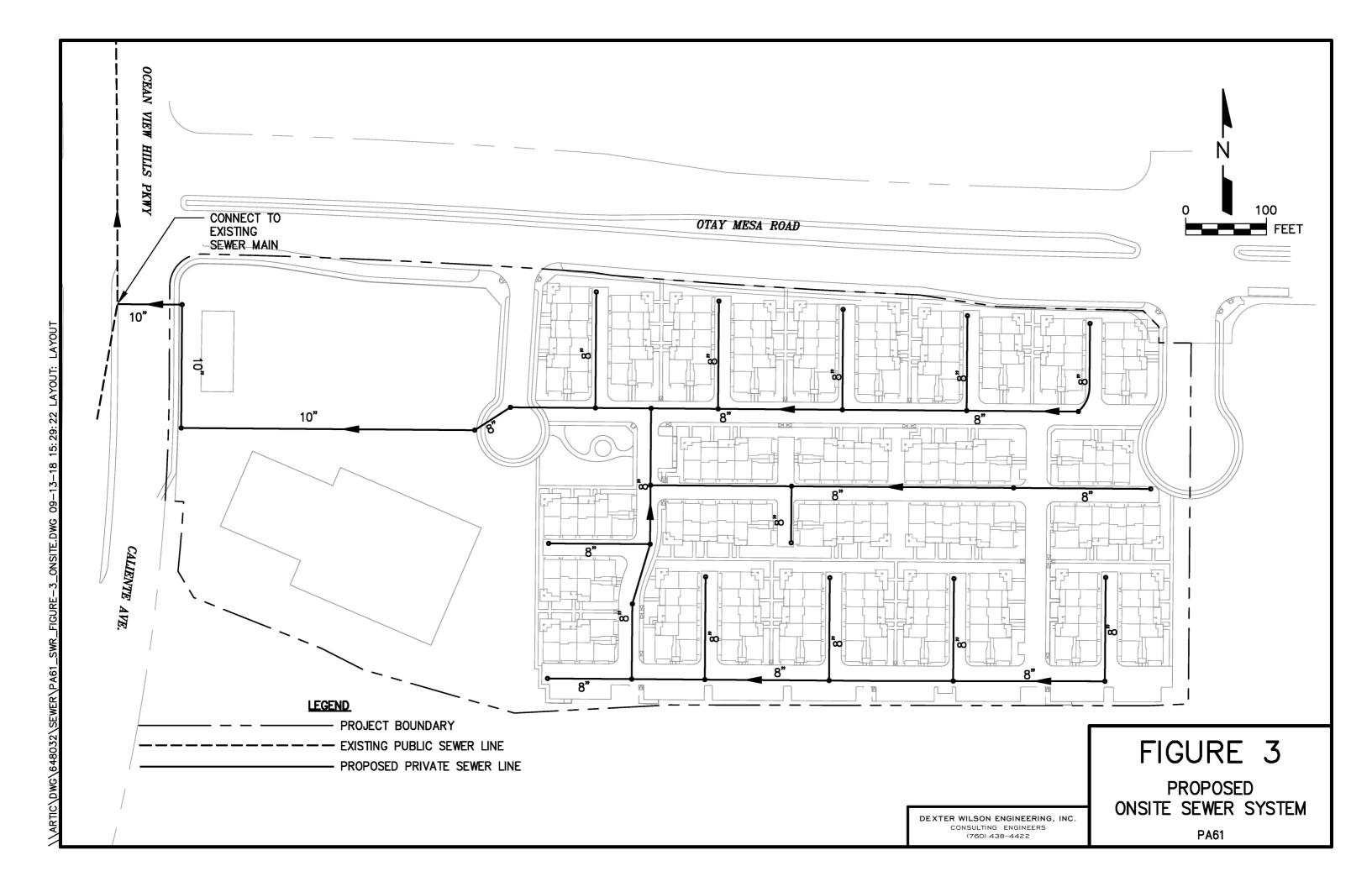
Appendix B presents the backup data for determining the peaking factors. For estimating the peak flows, average flow was based on the project's average wastewater generation presented in Table 2.

PA61 Offsite Sewer System Analysis

The offsite analysis completed for the PA61 project is to calculate the new flows through the existing gravity sewer line in Caliente Avenue and Ocean View Hills Parkway from the project connection to the junction with the 10-inch stub serving the existing wastewater flow from the Greenfield Village Apartments near Ocean Gate Lane. This offsite sewer calculation/analysis is presented in Appendix C for the 10-inch gravity sewer line.

Analysis of Existing 10-inch Sewer. The computer spreadsheet output for the offsite sewer analysis for the existing 10-inch sewer line is presented in Appendix C. The sewer line and manhole numbering is shown on the As-Built drawings and Exhibit A for this existing sewer provided in Appendix C. As shown in the spreadsheet calculation in Appendix C, the sewer flow from the PA61 project meets all City design criteria, including a minimum velocity of two feet per second (fps), in the existing 10-inch gravity sewer line with and/or without an assigned peak wet weather factor.

Currently there is no flow into this gravity sewer line. There previously was flow from the Princess Park development into this gravity sewer line via a private force main. Once the 42-inch Otay Mesa Trunk Sewer line was completed in Old Otay Mesa Road this force main was abandoned. Therefore, once completed, the PA61 project will be the only development flowing into this stretch of the 10-inch gravity sewer line. The remaining portion of the 10-inch gravity sewer line has an increased slope and flow from other existing development which is described in more detail in the sub-section below.


The maximum depth-to-diameter (d/D) ratio in this sewer line for project flows is 0.45 d/D at a velocity of 2.74 fps.

Analysis of Existing 15-inch and 18-inch Sewers. The increase in flow in the existing 15-inch and 18-inch offsite sewer segments in Ocean View Hills Parkway due to the additional PA61 flow is not significant. Appendix D presents an exhibit illustrating an approved California Terraces Sewer Basin EDU count. This exhibit allocates 199 EDUs for PA61. Although the project is estimated to generate up to 323 EDUs of wastewater, the subtraction of areas (Princess Park development, San Ysidro High School, etc.) that previously were tributary (via a sewer lift station) to Ocean View Hills Parkway gives sufficient allotment for the extra 124 EDUs in PA61.

PA61 Onsite Sewer System Analysis

In addition to the offsite analysis, an onsite sewer analysis was completed utilizing the proposed manhole inverts throughout the project. The private onsite gravity sewer system was designed according to the City's Sewer Design Guide. All segments where velocities of 2 fps could not be achieved, there is a minimum slope of one percent. The onsite analysis results are presented in Appendix C. Exhibit A presents the manhole and pipe diagram for the proposed onsite sewer system.

The sewer modeling results show the depth ratios and velocities in the proposed onsite gravity sewer lines are in compliance with City design criteria. Figure 3 illustrates the proposed onsite sewer system

Conclusions and Recommendations

The following conclusions and recommendations are summarized based on the sewer system analysis prepared for the proposed PA61 project.

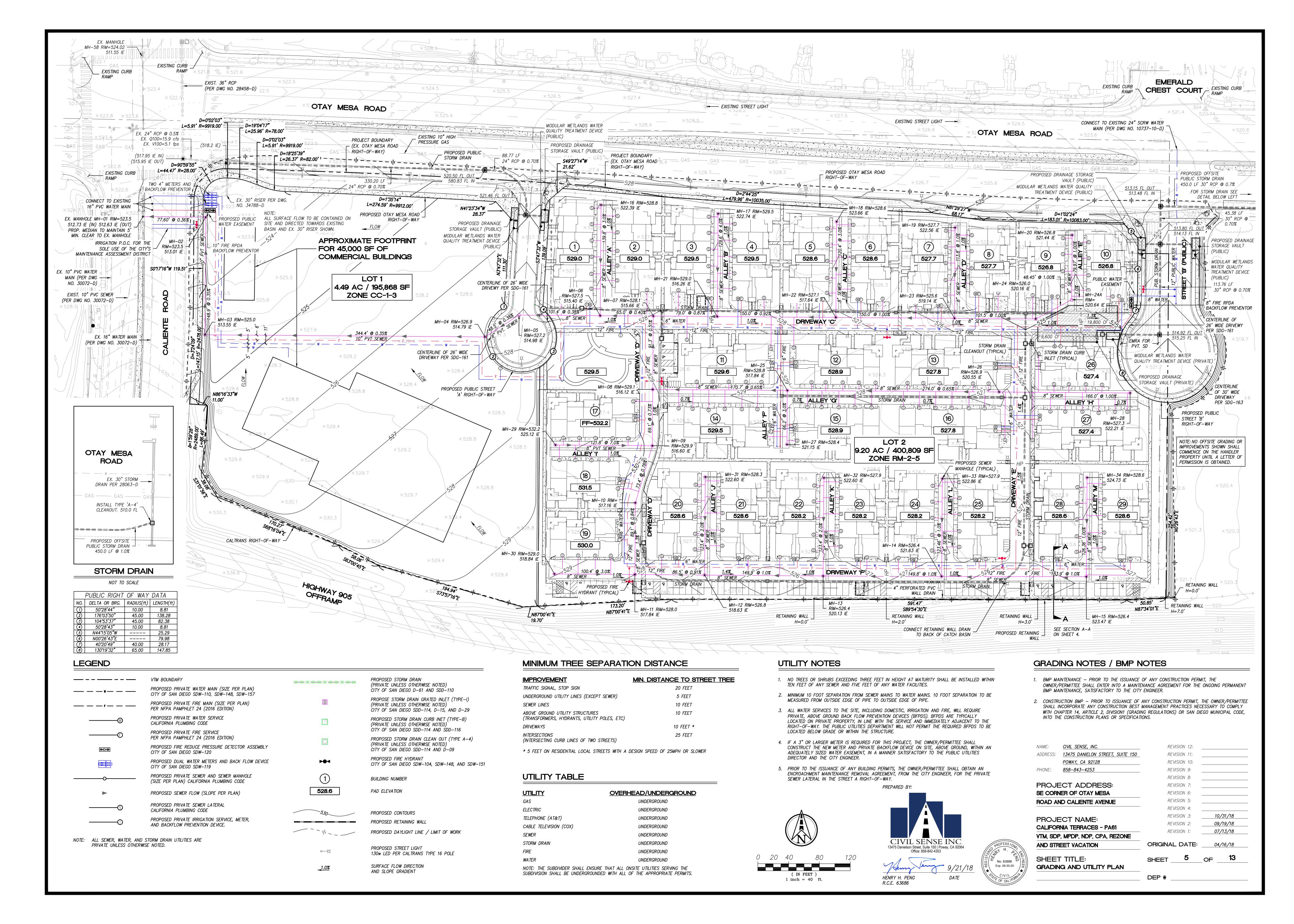
- 1. The PA61 project consisting of up to 267 multi-family dwelling units and 4.49 acres of commercial land use will gravity sewer to the existing Ocean View Hills trunk sewer system.
- 2. Finished grade elevations on the project allow it to gravity flow its wastewater to an existing 10-inch diameter gravity sewer line located in Caliente Avenue adjacent to the project.
- 3. The development of the PA61 project is projected to result in average sewage flow of 90,475 gpd.
- 4. No offsite gravity sewer improvements are needed to provide sewer service to the proposed project.
- 5. The sewer system analysis conducted indicates that the existing public gravity sewer lines downstream of the project site can accommodate the wastewater flows for the PA61 project.
- 6. The proposed private onsite gravity sewer system is designed according to City of San Diego Sewer Design Guide and complies with all design criteria (depth, velocity, minimum slope, etc.). Figure 3 illustrates the proposed onsite sewer system.

If you have any questions regarding the information or conclusions and recommendations presented in this report, please do not hesitate to contact the undersigned.

end in the first series

Dexter Wilson Engineering, Inc.

Ith Henden


Steven J. Henderson, P.E.

SH:AO:sg

Attachments

APPENDIX A

PA61 UTILITY SITE PLAN

APPENDIX B

CITY OF SAN DIEGO SEWER DESIGN CRITERIA

street alignments) and all potential points of entry of sewage from surrounding lands.

1.3.1.3 **Depth of Mains**

The planning study shall clearly identify all existing and/or proposed facilities which will exceed standard depths for sewer mains as defined in Subsection 2.2.1.5. In cases where proposed sewers will exceed 15 feet in depth, a request for design deviation (ATTACHMENT 2) must be submitted to the Water and Sewer Development Review Senior Civil Engineer with the Sewer Planning Study. A design deviation will only be approved in exceptional cases and when adequate justification is provided. Mains more than 20 feet deep shall also require approval from the Wastewater Collection Division Senior Civil Engineer.

1.3.1.4 Existing Studies

The City of San Diego maintains an extensive library of sewer planning studies which were prepared for lands throughout the City. These studies are available for review at the Water and Sewer Development Section, Public Utilities Department. All studies are catalogued by subdivision or trunk sewer name. Logs of sewer flow study analyses for recently monitored trunk sewers and a map of sewers which meet the Regional Water Quality Control Board (RWQCB) criteria for being critical or sub-critical may also be viewed. In addition, information regarding proposed CIP projects within the vicinity of a given project may be requested. In many cases, an addendum or reference to one of the existing planning studies may be acceptable in lieu of an independent study. Concurrent with the preparation of planning studies for sewers proposed to connect to existing canyon sewer mains, a study of flow redirection per Council Policy 400-13 and a cost-benefit analysis per Council Policy 400-14 shall be prepared (Refer to ATTACHMENT 1). An existing analysis of redirection of flows and a cost-benefit analysis, as required by Council Policies 400-13 and 400-14 respectively, may be available for reference for various existing canyon sewers.

1.3.2 Flow Estimation

1.3.2.1 **Land Use**

Present or future allowable land use, whichever results in higher equivalent population, shall be used to generate potential sewage flows.

1.3.2.2 Flow Determination

Flow definitions and calculation procedures are listed below. All calculations shall be tabulated for each sewer main section (manhole to manhole) in the

1-6

format shown on Figure 1-2.

<u>Equivalent Population</u>: The equivalent population shall be calculated from zoning information (Ref. Section 1.6). For major new facilities such as high rise apartment buildings, flow rates (assuming one lateral) shall be checked based on the most current, adopted edition of the Uniform Plumbing Code. The most conservative flow rate shall govern.

<u>Daily Per Capita Sewer Flow</u>: The sewer flow for the equivalent population shall be 80 gallons per capita per day (gpcd).

Average Dry Weather Flow (ADWF): Equivalent populations shall be used to calculate the average dry weather flow. The average dry weather flow for each sewer main reach (manhole to manhole) shall be determined by multiplying the total accumulated equivalent population contributing to that reach by 80 gallons per capita per day:

Average Dry Weather Flow = $(80 \text{ gpcpd}) \times (\text{Equivalent Population})$

<u>Peaking Factor for Dry Weather Flow (PFDWF):</u> The peaking factor is the ratio of peak dry weather flow to average dry weather flow. It is dependent upon the equivalent population within a tributary area. The tributary area is the area upstream of, and including, the current reach for the total flow in each reach of pipe. Figure 1-1, consisting of the table prepared by Holmes and Narver in 1960, shall be used to determine peaking factors for each tributary area. In no instance shall the dry weather flow peaking factor be less than 1.5.

<u>Peak Dry Weather Flow (PDWF)</u>: The peak dry weather flow for each sewer main reach shall be determined by multiplying the average dry weather flow by the appropriate peaking factor (Note that peak dry weather flows are not algebraically cumulative as routed through the sewer system, i.e. the peak dry weather flow at any point shall be based on the equivalent population in the basin to that point (Ref. Figure 1-2).

Peak Dry Weather Flow = (Average Dry Weather Flow) x (Dry Weather Flow Peaking Factor)

Peaking Factor for Wet Weather Flow (PFWWF): The peaking factor for wet weather flow is the ratio of peak wet weather flow to peak dry weather flow. It is basin-specific and shall be based on essential information available at the time of the planning study. Information such as historical rainfall/sewage flow data, land use, soil data, pipe/manhole age, materials and conditions, groundwater elevations (post development), inflow and infiltration (I/I) studies, size, slope and densities of the drainage basin, etc., should be utilized in the wet weather analysis to estimate the peaking factor for wet weather. Upward adjustments shall be made in areas with expected high inflow and

1-7

infiltration (i.e. high ground water or in areas with lush landscaping schemes). Flow meters are installed throughout the City's sewer system. Flow data collected from these meters are available upon request. The objective of this analysis is to quantify the magnitude of peak wet weather flow with a 10-year return period on a statistical basis.

The Senior Civil Engineer overseeing the preparation of the planning study shall coordinate with the City Sewer Modeling Group for approval of the peaking factors to be used for design.

<u>Peak Wet Weather Flow (PWWF)</u>: The peak wet weather flow (or design flow) for a gravity sewer main reach shall be determined by multiplying the peak dry weather flow (ref. Figure 1-2) by the appropriate wet weather peaking factor. The peak wet weather flow is the design flow for a gravity sewer main. It is determined at any point in the system based on the associated upstream average dry weather flow in the basis to that point times the peaking factor for wet weather.

Peak Wet Weather Flow = (Peak Dry Weather Flow) x (Wet Weather Peaking Factor)

1.3.3 **Pipe Sizing Criteria**

1.3.3.1 **Hydraulic Requirements**

Manning's formula for open-channel flows shall be used to calculate flows in gravity sewer mains. Manning's coefficient of roughness "n" shall be assumed to be 0.013 for all types of sewer pipe. Sewer grades shall be designed for velocities of 3 to 5 feet per second (fps) where possible. This is extremely important in areas where peak flow will not be achieved for many years. The minimum allowable velocity is 2 fps at calculated peak dry weather flow, excluding infiltration. Sewer mains that do not sustain 2 fps at peak flows shall be designed to have a minimum slope of 1 percent. Additional slope may be required by the Senior Civil Engineer where fill of varied depth is placed below the pipe in order to provide adequate slope after expected settlement occurs. The maximum allowable velocity shall be 10 fps and shall be avoided by adjusting slopes, by increasing the pipe diameter, or by utilizing a vertical curve transition to lower velocities per subsections 2.2.4 and 2.2.9.4. If the Senior Civil Engineer approves a velocity greater than 10 fps, the pipe shall be upgraded to SDR 18 PVC (standard dimension ratio polyvinyl chloride), concrete-encased VC (vitrified clay), or PVC sheet-lined reinforced concrete pipe.

1-8

2013

TABLE 1-1 CITY OF SAN DIEGO SEWER DESIGN GUIDE DENSITY CONVERSIONS

DENSITI CONVERSIONS											
Zone	Maximum Density (DU/Net Ac)	Population per DU	Equivalent Population (Pop/Net Ac)								
AR-1-1, RE-1-1	0.1	3.5	0.4								
RE-1-2	0.2	3.5	0.7								
AR-1-2, RE-1-3	1	3.5	3.5								
RS-1-1, RS-1-8	1	3.5	3.5								
RS-1-2, RS-1-9	2	3.5	7.0								
RS-1-3, RS-1-10	3	3.5	10.5								
RS-1-4, RS-1-11	4	3.5	14.0								
RS-1-5, RS-1-12	5	3.5	17.5								
RS-1-6, RS-1-13	7	3.5	24.5								
RS-1-7, RS-1-14	9	3.5	31.5								
RX-1-1	11	3.4	37.4								
RT-1-1	12	3.3	39.6								
RX-1-2, RT-1-2, RU-1-1	14	3.2	44.8								
RT-1-3, RM-1-2	17	3.1	52.7								
RT-1-4	20	3.0	60.0								
RM-1-3	22	3.0	66.0								
RM-2-4	25	3.0	75.0								
RM-2-5	29	3.0	87.0								
RM-2-6	35	2.8	98.0								
RM-3-7, RM-5-12	43	2.6	111.8								
RM-3-8	54	2.4	129.6								
RM-3-9	73	2.2	160.6								
RM-4-10	109	1.8	196.2								
RM-4-11	218	1.5	327.0								

TABLE 1-1
CITY OF SAN DIEGO SEWER DESIGN GUIDE
DENSITY CONVERSIONS (Continued)

Zone	Maximum Density (DU / Net Ac)	Population Per DU	Equivalent Population (Pop/Net Ac)		
Schools/Public	8.9	3.5	31.2		
Offices	10.9	3.5	38.2*		
Commercial/Hotels	12.5	3.5	43.7*		
Industrial	17.9	3.5	62.5*		
Hospital	42.9	3.5	150.0*		

Figures with asterisk (*) represent equivalent population per floor of the building.

Definitions:

 $\overline{DU = Dwelling Units}$

Ac = Acreage

Pop = Population

Net Acreage is the developable lot area excluding areas that are dedicated as public streets in acres. Gross Area is the entire area in acres of the drainage basin, including lots, streets, etc.

For undeveloped areas, assume Net Acreage = 0.8 x Gross Area in Acres

For developed areas, calculate actual Net Acreage.

Tabulated figures are for general case. <u>The tabulated figures shall not be used if more accurate figures are available.</u>

Population is based on actual equivalent dwelling units (EDU) or the maximum estimate obtained from zoning.

Conversion of Fixture Units to Equivalent Dwelling Units (EDU): The Water Meter Data Card, maintained by the Development Services Department, contains a table of plumbing fixtures that should be used for determining the equivalent dwelling units (EDU's) for the purpose of estimating the rate of wastewater generation in residential, commercial, or industrial areas. Currently, the basis for conversion is: 20 fixtures = 1 EDU and 1 EDU = 280 gallons of wastewater per day.

In high rise building areas, flow rates shall be based on the most current, adopted edition of the applicable Plumbing Code, assuming one lateral per area. The most conservative flow rate shall govern.

PUBLIC UTILITIES DEPARTMENT

PEAKING FACTOR FOR SEWER FLOWS (Dry Weather)

Ratio of Peak to Average Flow* <u>Versus Tributary Population</u>

	Ratio of Peak to		Ratio of Peak to
Population	Average Flow	Population	Average Flow
200	4.00	4,800	2.01
500	3.00	5,000	2.01 2.00
800	2.75	5,000 5,200	2.00 1.99
900	2.75 2.60	5,200 5,500	1.99 1.97
	2.50	· ·	1.95
1,000 1,100	2.50	6,000 6,200	1.94
1,100 1,200	2.47 2.45	6,400	1.94 1.93
	2.43	6,900	1.91
1,300	2.43		1.91 1.90
1,400	2.38	7,300 7,500	1.90 1.89
1,500 1,600	2.36 2.36	8,100	1.87
1,700	2.34	8,400	1.86
1,750	2.33	9,100	1.84
1,800	2.32	9,600	1.83
1,850	2.31	10,000	1.82
1,900	2.30	11,500	1.80
2,000	2.29	13,000	1.78
2,150	2.27	14,500	1.76
2,225	2.25	15,000	1.75
2,300	2.24	16,000	1.74
2,375	2.23	16,700	1.73
2,425	2.22	17,400	1.72
2,500	2.21	18,000	1.71
2,600	2.20	18,900	1.70
2,625	2.19	19,800	1.69
2,675	2.18	21,500	1.68
2,775	2.17	22,600	1.67
2,850	2.16	25,000	1.65
3,000	2.14	26,500	1.64
3,100	2.13	28,000	1.63
3,200	2.12	32,000	1.61
3,500	2.10	36,000	1.59
3,600	2.09	38,000	1.58
3,700	2.08	42,000	1.57
3,800	2.07	49,000	1.55
3,900	2.06	54,000	1.54
4,000	2.05	60,000	1.53
4,200	2.04	70,000	1.52
4,400	2.03	90,000	1.51
4,600	2.02	100,000+	1.50

*Based on formula: Peak Factor = $6.2945 \times (pop)^{-0.1342}$ (Holmes & Narver, 1960)

Remaining Cycle Issues

THE CITY OF SAN DIEGO **Development Services Department** 1222 First Avenue, San Diego, CA 92101-4154

Enclosure 1 8/17/18 9:55 am **Cycle Issues Report**

Page 21 of 28

L64A-003A-2

Page 40 of 47

Review Information

Cycle Type: 11 Submitted (Multi-Discipline) Submitted: 07/13/2018 Deemed Complete on 07/13/2018

Reviewing Discipline: PUD-Water & Sewer Dev Cycle Distributed: 07/13/2018

Assigned: 07/16/2018 Reviewer: Itkin, Irina (619) 446-5422 Started: 07/30/2018

Review Due: 08/15/2018 iitkin@sandiego.gov

Hours of Review: 8.00 **COMPLETED ON TIME** Completed: 08/08/2018

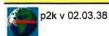
Next Review Method: Submitted (Multi-Discipline) Closed: 08/17/2018

- The review due date was changed to 08/15/2018 from 08/07/2018 per agreement with customer. The reviewer has indicated they want to review this project again. Reason chosen by the reviewer: Partial Response to Cmnts/Regs.
- We request a 2nd complete submittal for PUD-Water & Sewer Dev on this project as: Submitted (Multi-Discipline).
- The reviewer has requested more documents be submitted.
- . Your project still has 20 outstanding review issues with PUD-Water & Sewer Dev (17 of which are new issues).
- Last month PUD-Water & Sewer Dev performed 160 reviews, 93.8% were on-time, and 72.8% were on projects at less than < 3 complete submittals.

↑ 1st Review Comments: Cleared? Num The Developer is required to install all facilities, as required by the accepted water and sewer studies, necessary 10 to serve this development. (From Cycle 5) The project proposes to connect to the existing 24" SCRW water transmission main at three locations. We have sent the plans for operational review as they may have a concern about connecting to the existing 24" SCRW and have not allowed direct connections to the transmission main in the past. If Operations does not approve the connection a parallel line would be required. The existing 16" parallel line should be extended in Otay Mesa Road from the intersection of Emerald Crest and Otay Mesa Road to the 20" PVC at the intersection of Otay Mesa Road and Caliente Road. (From Cycle 5) If the intent is to provide irrigation meter for the park, please show the meter and back flow preventer for the park. (From Cycle 5) Please show a water easement for the master meter only off public Street "A". Also show a master meter, back П flow preventer and a water easement for the master meter off public Street "B". Note that the backflow preventer off public Street "B" cannot be located in the public right of way. (From Cycle 5) 2nd review Comments: Issue Cleared? Num The connections to the existing 24" SCRW transmission pipeline are not recommended due to it's poor condition reported by the Water Operation. (New Issue) Please redesign the water main to serve the proposed development. (New Issue) Connect the proposed 16" PVC water pipeline to the existing 12" PVC Water main on the east side of Ocean View Hills Pkwy to the intersection of the Caliente Avenue and Otay Mesa Road. Continue the proposed 16" water main in Otay Mesa Road south of the existing 24" SCRW transmission line to the point of connection to the existing 12" stub out from 24" SCRW transmission line. Revise the water study to comply with the above items. (New Issue) Provide the cross-sections for the proposed street to show the horizontal separation between proposed wet utilities. (New Issue) Provide EMRA for all proposed sewer mains and laterals in the public right-of-way and easement. (New Issue) sewer study comments: Issue Cleared? Num Issue Text We have reviewed the subject sewer study dated July 12, 2018. The Water and Sewer Development Review П

Section has the following comments: (New Issue)

Remaining Cycle Issues


THE CITY OF SAN DIEGO Development Services Department 1222 First Avenue, San Diego, CA 92101-4154

Enclosure 1 8/17/18 9:55 am **Cycle Issues Report** Page 41 of 47

Page 22 of 28

L64A-003A-2

Cloar	<u>lss</u> ed? Nu		Issue Text
		15 10	
		42	(New Issue) a.Show and label all existing sewer mains include size, material and drawing number. b.Show the direction of flow. c.Clearly label the proposed sewer as private or public. d.Provide the depth of the proposed manholes.
		43	(New Issue) Provide the Manhole to Manhole Calculations Table for all proposed sewer reaches. Please use peaking wet weather factor equal 1.
0			(New Issue) The proposed flow should be calculated in accordance with the Current Sewer Design Guide Section 1.8. Currently the basis conversion 1 EDU - 280gallon per day (not 240 gallon per day you use). (New Issue) All proposed sewer mains onsite should be label as private. In accordance with California Plumbing Code the minimum design slope for the sewer mains should be 1%. Please redesign sewer reaches which does not meet the above requirements.
		46	(New Issue) Clearly label the point of connection to the existing sewer main. The proposed development connects to existing 10" sewer main in Ocean View Hills Parkway. Please evaluate the existing 10" sewer main in Ocean View Hills Parkway until flow from your project is 10% of the total flow of the existing main.
			(New Issue) Include items 37 and 38 in the sewer study exhibit. (New Issue) Please provide two bound copies and PDF of the revised sewer study stamped and signed by a California registered Civil Engineer.
			(New Issue)

Existing peak wet weather sewer flows to SPS 23T are currently 800 gallons per minute (1.2 million gallons per day (mgd)), as reported by MWWD. Future flows to the pump station are based on projected development as noted in Section 1. Industrial development is likely to occur based on one of the three scenarios presented in the 2006 ERA report. The sewer generation rates for each of the scenarios were calculated and are presented in Table 4. Of the three scenarios, the Medium Scenario with high tech industrial land uses is likely to use the most water and therefore have the largest sewer generation rate. However, based on discussions with City Planning and Economic Development staff, it is most likely that the High Scenario, with low water use, warehouse type buildings similar to current development on the mesa, will occur.

Table 4
Projected City Industrial Sewer Flows through 2030

Scenario	Assumed Absorption through 2030 (Net Acres)	Recommended Average Generation Rate (gpd/net-acre)	Estimated 2030 Average Sewage Generation	Estimated 2030 Peak Sewage Generation (4)
Low	762	1,000 ⁽¹⁾	0.76 mgd	1.5 mgd
Medium	958	1,500 ⁽²⁾	1.44 mgd	2.8 mgd
High	1,269	865 ⁽³⁾	0.95 mgd	2.1 mgd

(1) Based on 65% return to sewer from average of OWD billing with outliers removed

Based on 65% return to sewer from average plus 1 std deviation of OWD billing with outliers removed

(3) Based on 75% return to sewer from average of OWD raw billing data

(4) Peaking factor = 1.9 based on City of San Diego MWWD design guidelines

Using the High Scenario, the existing and projected 2030 tributary flows to SPS 23T, including County flows, are estimated to total 5.0 mgd as shown in Table 5. The High Scenario was assumed because it has the largest number of developed acres with an average sewer generation rate similar to the generation rates seen on Otay Mesa to date.

Table 5
Estimated Peak Flows to SPS 23T in 2030

Source of Sewer Flows	Estimated Peak Wet - Weather Sewer Flow
Existing Flow to SPS 23T	1.2 mgd
East Otay Mesa (County) Peak Flows to SPS 23T (1)	1.7 mgd
Subtotal	2.9 mgd
High Scenario – Industrial Development	2.1 mgd
Total	5.0 mgd

⁽¹⁾ County sewer flows to SPS 23T are estimated to be an average of 1.8 mgd at buildout, based on the East Otay Mesa Sewer Master Plan, November 2006. Assumed 50 percent buildout of County property in 2030 and 1.9 peaking factor. (1.8 mgd x 0.5 x 1.9 = 1.7 mgd)

APPENDIX C

ONSITE SEWER ANALYSIS AND
OFFSITE SEWER ANALYSIS
IN THE EXISTING
10-INCH LINE IN CALIENTE AVENUE
AND OCEAN VIEW HILLS PARKWAY
AND AS-BUILT DRAWINGS

		FOR:	PA61 City of San Diego; Proposed Flows in Caliente Avenue and Ocean View Hills Parkway (w/ PWWF)	SHT	1	OF	1
JOB NUMBER:	648-032	BY:	Dexter Wilson Engineering	REFER TO PLAN	SHEET:	NA	

FROM	FROM TO	AVG. DRY WEATHER FLOW (gpd)	PDWF PEAKING	PDWF (gpd)	PWWF PEAKING	PWWF (gpd)	COMBINED PEAK FLOW (DESIGN FLOW)		LINE SIZE (inches)	SLOPE	DEPTH K'	dn (feet)	dn/D ⁽²⁾	C _a for Velocity ⁽³⁾	VELOCITY (f.p.s.)
			FACTOR	(954)	FACTOR*		M.G.D.	C.F.S.	(inones)	(%)				Velocity	(1.0.0.)
M.H. 1	M.H. 58	90,475	2.45	221,676	1.90	421,184	0.421	0.652	10	0.50	0.194834	0.37500	0.45	0.3428	2.74
M.H. 58	M.H. 57	90,475	2.45	221,676	1.90	421,184	0.421	0.652	10	0.50	0.194834	0.37500	0.45	0.3428	2.74
M.H. 57	M.H. 56	90,475	2.45	221,676	1.90	421,184	0.421	0.652	10	0.50	0.194834	0.37500	0.45	0.3428	2.74

FOR: PA61 City of San Diego; Proposed Flows in Caliente Avenue and Ocean View Hills Parkway (wo/ PWWF) SHT 1 OF 1

JOB NUMBER: 648-032 BY: Dexter Wilson Engineering REFER TO PLAN SHEET: NA

FROM	то	AVG. DRY WEATHER FLOW (gpd)	PDWF PEAKING FACTOR	PDWF (gpd)	PWWF PEAKING FACTOR*	PWWF (gpd)	COMBINE FLOW (DESI		LINE SIZE (inches)	DESIGN SLOPE (%)	DEPTH K'	dn (feet)	dn/D ⁽²⁾	C _a for Velocity ⁽³⁾	VELOCITY (f.p.s.)
M.H. 1	M.H. 58	90,475	2.45	221,676	1.00	221,676	0.222	0.343	10	0.50	0.102544	0.26667	0.32	0.2167	2.28
M.H. 58	M.H. 57	90,475	2.45	221,676	1.00	221,676	0.222	0.343	10	0.50	0.102544	0.26667	0.32	0.2167	2.28
M.H. 57	M.H. 56	90,475	2.45	221,676	1.00	221,676	0.222	0.343	10	0.50	0.102544	0.26667	0.32	0.2167	2.28

Min Slope 0.50 Max dn/D 0.45

*Source: Otay Mesa Trunk Sewer Master Plan (see Appendix B)

² dn/D using K' in Brater King Table 7-14

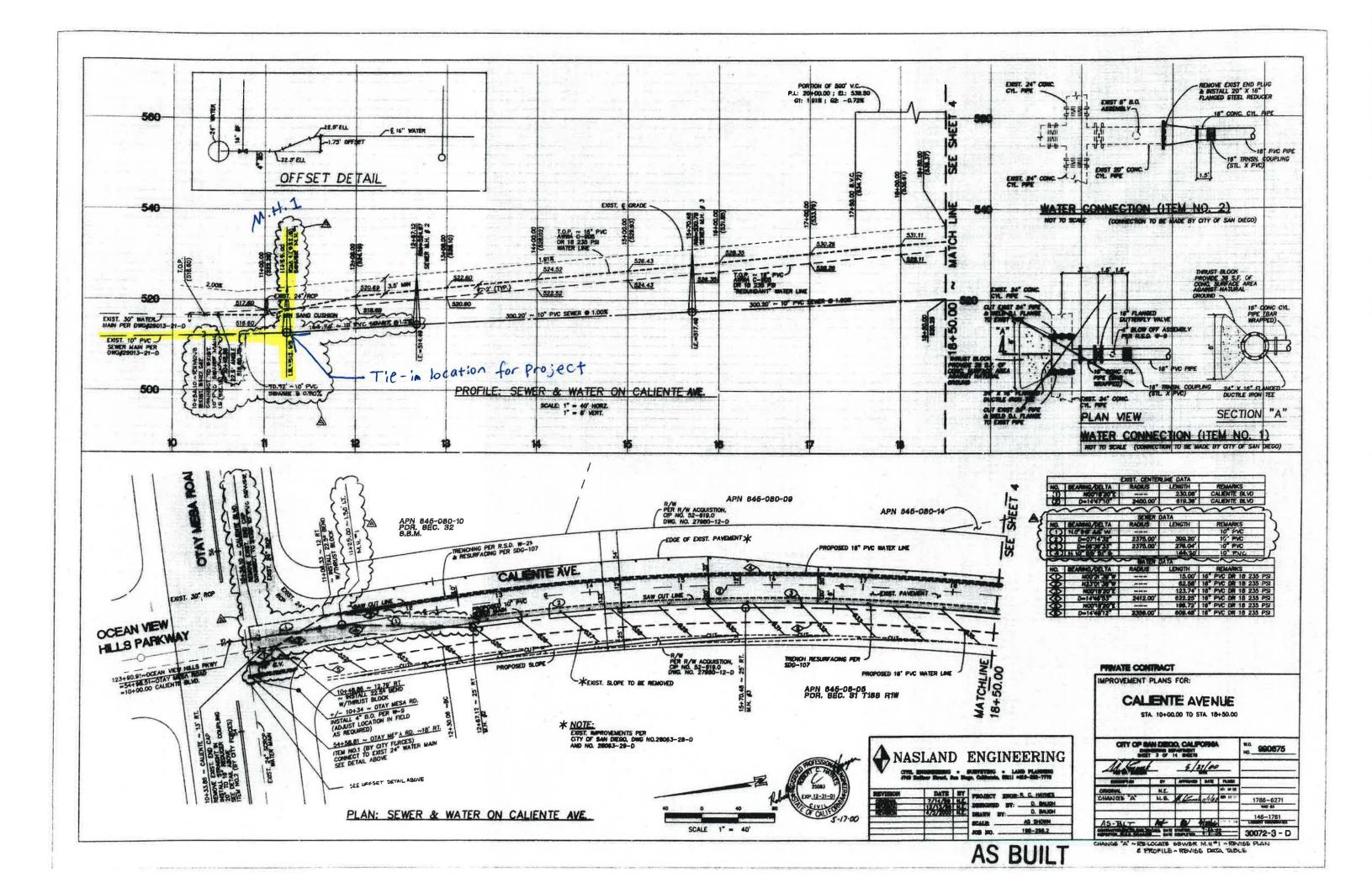
SEWER STUDY SUMMARY 10/19/2018 Page 1

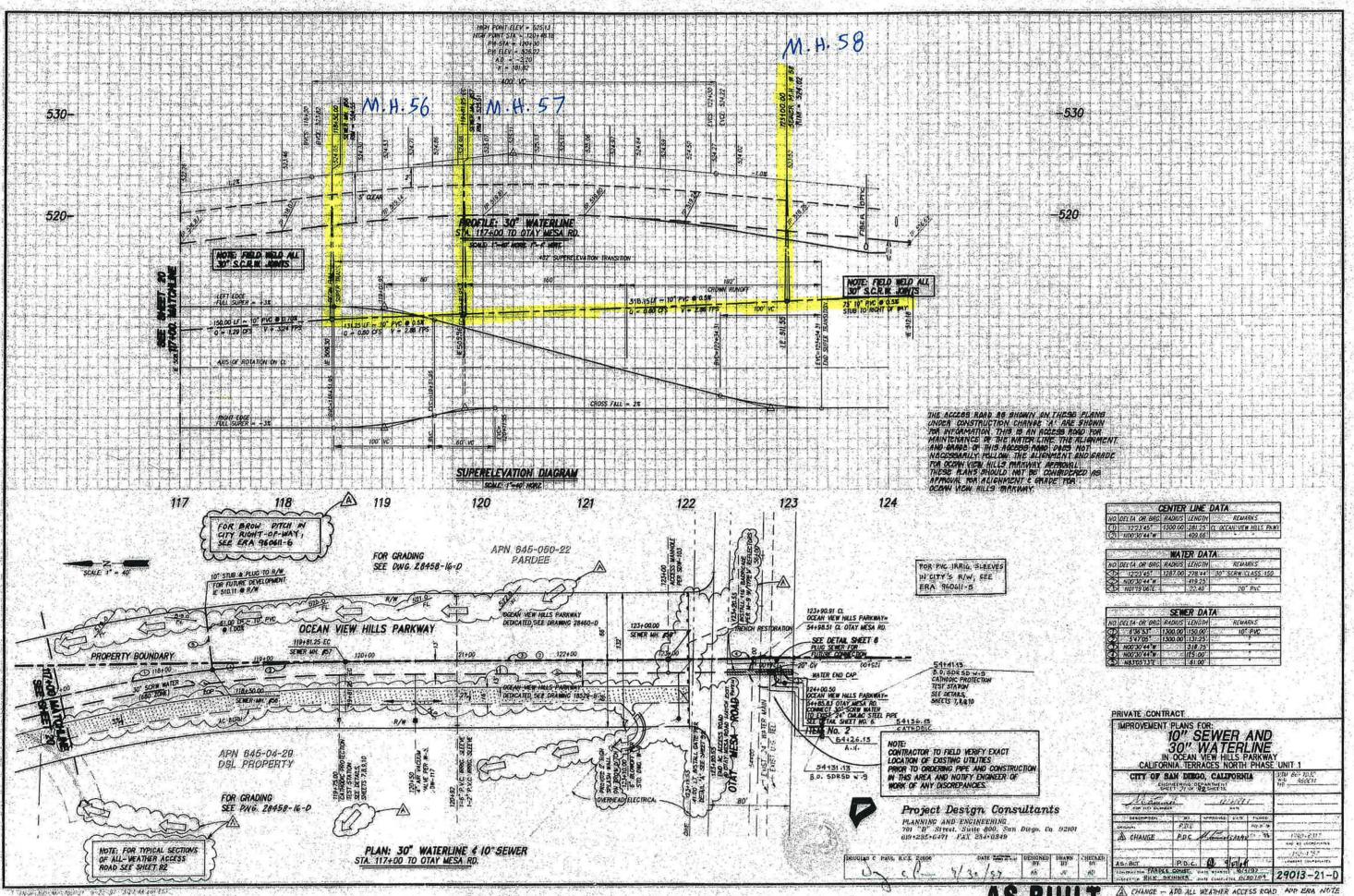
Exhibit A

PA61 Sewer Study (Proposed Flows; Onsite) FOR: REFER TO PLAN SHEET: BY: Dexter Wilson Engineering, Inc.

No.	FROM	то	IN-LINE EDUs	AVG. DRY WEATHER	PDWF PEAKING	PDWF (gpd)	PEAK FLOV	•	LINE SIZE (inches)	DESIGN SLOPE (%)	DEPTH K'	dn (feet)	dn/D ⁽²⁾	C _a for Velocity ⁽³⁾	VELOCITY (f.p.s.)
24 23 1,356 6,611 3,49 22710 0.023 0.035 8 1,00 0.013468 0.07777 0.1147 0.0514 1,54 23 22 5,156 11,667 3.23 37,630 0.038 0.058 8 1,00 0.022317 0.0999 0.149 0.0755 1,78 21 7 5,156 16,823 3.07 51,689 0.082 0.080 8 1,00 0.020377 0.11618 0.174 0.0917 1,78 21 7 5,156 1,769 2.91 1,776,648 0.177 0.273 8 0.40 0.05877 0.11638 0.201 1,616 5 1,616 0.413 0.3046 2.01 3 1,616 4,74700 2.511 1,617,623 0.188 0.291 8 0.38 0.180797 0.28924 0.434 0.3267 2.00 4 3 1,515 9.0475 2.45 221,676 0.222 0.343	MH#	MH#	LDU3	FLOW (gpd)	FACTOR	(gpu)	M.G.D.	C.F.S.	(inches)	OLO1 L (70)				velocity	(1.p.s.)
23	20		5,156	5,156	3.60	18,556	0.019	0.029	8	1.00	0.011005	0.07084	0.106	0.0447	1.44
22 21 5,156 16,323 30.7 51,669 0.052 0.080 8 1.00 0.030637 0.11618 0.174 0.0917 1.198 21 7 5,156 21,979 2.96 65,113 0.065 0.101 8 0.87 0.04101 0.13460 0.202 0.1133 2.00 7 6 47,625 69.004 2.51 179,648 0.177 0.273 8 0.40 0.16807 0.27551 0.413 0.3064 2.01 6 5 5,156 74,760 2.51 187,923 0.188 0.291 8 0.38 0.18077 0.2894 0.344 0.3267 2.00 4 3 15,715 90,475 2.45 221,676 0.222 0.343 10 0.35 0.12264 0.2928 0.351 0.22264 0.2928 0.351 0.22264 0.2928 0.351 0.2264 0.2928 0.351 0.2264 0.29293 0.351 0.2461				<u> </u>		22,710			8				0.117		
21 7 5.156 21.979 2.96 65.113 0.065 0.101 8 0.87 0.041401 0.13460 0.202 0.1133 2.00 7 6 47.625 69.804 2.54 176.648 0.177 0.273 8 0.40 0.165647 0.27551 0.413 0.3064 2.01 6 5 5.156 74.760 2.51 187.923 0.188 0.291 8 0.38 0.180797 0.28924 0.434 0.3267 2.00 5 4 0 74.760 2.51 187.923 0.188 0.291 8 0.38 0.180797 0.28924 0.434 0.3267 2.00 6 4 3 15.715 90.475 2.45 221,676 0.222 0.343 10 0.35 0.122564 0.29283 0.351 0.2461 2.01 3 2 0 90.475 2.45 221,676 0.222 0.343 10 0.35 0.122564 0.29263 0.351 0.2461 2.01 2 1 0 90.475 2.45 221,676 0.222 0.343 10 0.35 0.122564 0.29263 0.351 0.2461 2.01 2 1 1 0 90.475 2.45 221,676 0.222 0.343 10 0.35 0.122564 0.29263 0.351 0.2461 2.01 2 1 1 0 90.475 2.45 221,676 0.222 0.343 10 0.35 0.122564 0.29263 0.351 0.2461 2.01 2 1 1 0 90.475 2.45 221,676 0.222 0.343 10 0.35 0.122564 0.29263 0.351 0.2461 2.01 2 1 1 0 90.475 2.45 221,676 0.222 0.343 10 0.35 0.122564 0.29263 0.351 0.2461 2.01 2 1 1 0 90.475 2.45 221,676 0.222 0.343 10 0.35 0.122564 0.29263 0.351 0.2461 2.01 2 1 1 0 90.475 2.45 221,676 0.222 0.343 10 0.35 0.122564 0.29263 0.351 0.2461 2.01 2 1 1 0 90.475 2.45 221,676 0.222 0.343 10 0.35 0.122564 0.29263 0.351 0.2461 2.01 2 1 1 0 0.10000000000000000000000		22	5,156	11,667		37,630		0.058	8	1.00	0.022317		0.149	0.0735	1.78
7 6 47,625 69,604 2.54 176,648 0.177 0.273 8 0.040 0.165647 0.27551 0.413 0.3064 2.01 6 5 5.156 74,760 2.51 187,923 0.188 0.291 8 0.38 0.100797 0.28924 0.434 0.3267 2.00 4 3 15,715 90,475 2.45 221,676 0.222 0.343 10 0.35 0.12264 0.29624 0.434 0.3267 2.00 4 3 15,715 90,475 2.45 221,676 0.222 0.343 10 0.35 0.12264 0.2963 0.351 0.2461 2.01 2 1 0 90,475 2.45 221,676 0.222 0.343 10 0.35 0.12264 0.29263 0.351 0.2461 2.01 2 1 0 90,475 2.45 221,676 0.222 0.343 10 0.35 0.12264 0.29263 0.351 0.2461 2.01 2 1 0 90,475 2.45 221,676 0.222 0.343 10 0.35 0.12264 0.29263 0.351 0.2461 2.01 2 1 0 90,475 2.45 221,676 0.222 0.343 10 0.35 0.12264 0.29263 0.351 0.2461 2.01 2 1 0 90,475 2.45 221,676 0.222 0.343 10 0.35 0.12264 0.29263 0.351 0.2461 2.01 2 1 0 90,475 2.45 221,676 0.222 0.343 10 0.35 0.12264 0.29263 0.351 0.2461 2.01 2 1 0 90,475 2.45 221,676 0.222 0.343 10 0.35 0.12264 0.29263 0.351 0.2461 2.01 2 1 0 90,475 2.45 221,676 0.222 0.343 10 0.35 0.12264 0.29263 0.351 0.2461 2.01 2 1 1 5 5,156 3.300 18,556 0.019 0.029 8 1.00 0.011005 0.07084 0.106 0.0447 1.44 1 1 3 5,156 10,312 3.28 33,315 0.034 0.052 8 1.00 0.011005 0.07084 0.106 0.0447 1.44 1 1 3 5,156 15,468 3.11 48,036 0.048 0.052 8 1.00 0.011005 0.07084 0.106 0.0447 1.44 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									8						
6 5 5 5.156 74.760 2.51 187.923 0.188 0.291 8 0.38 0.180797 0.28924 0.434 0.3267 2.00 5 4 0 74.760 2.51 187.923 0.188 0.291 8 0.38 0.180797 0.28924 0.434 0.3267 2.00 4 3 15.715 90.475 2.45 221.676 0.222 0.343 10 0.35 0.12264 0.29263 0.351 0.2461 2.01 3 2 0 90.475 2.45 221.676 0.222 0.343 10 0.35 0.12264 0.29263 0.351 0.2461 2.01 2 1 0 90.475 2.45 221.676 0.222 0.343 10 0.35 0.12264 0.29263 0.351 0.2461 2.01 2 1 0 90.475 2.45 221.676 0.222 0.343 10 0.35 0.12264 0.29263 0.351 0.2461 2.01 2 1 0 90.475 2.45 221.676 0.222 0.343 10 0.35 0.12264 0.29263 0.351 0.2461 2.01 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	21	7	-			65,113			8						
5 4 0 74,760 2.51 187,923 0.188 0.291 8 0.389 0.180707 0.28264 0.434 10,365 2.216 2.21676 0.222 0.343 10 0.35 0.122664 0.29263 0.351 0.2461 2.01 3 2 0 90,476 2.45 221,676 0.222 0.343 10 0.35 0.122664 0.29263 0.351 0.2461 2.01 34 15 5,156 5,156 3.80 18,556 0.019 0.029 8 1.00 0.011005 0.07084 0.106 0.0447 1.44 15 14 0 5,156 3.80 18,556 0.019 0.029 8 1.00 0.011005 0.07084 0.106 0.0447 1.44 14 0 5,156 3.80 18,556 0.019 0.029 8 1.00 0.011005 0.07084 0.106 0.0447 1.44 1.44 1.14 1.3	7	6	47,625	69,604		176,648	0.177	0.273	8	0.40	0.165647		0.413		2.01
4 3 15,715 90,475 2.45 221,676 0.222 0.343 10 0.35 0.122564 0.29263 0.351 0.2461 2.01 3 2 0 90,475 2.45 221,676 0.222 0.343 10 0.35 0.122564 0.29263 0.351 0.2461 2.01 2 1 0 90,475 2.45 221,676 0.222 0.343 10 0.35 0.12564 0.29263 0.351 0.2461 2.01 34 15 5,156 5,156 3.80 18,556 0.019 0.029 8 1.00 0.011005 0.07084 0.106 0.0447 1.44 15 14 0 5,156 3.80 18,556 0.019 0.029 8 1.00 0.011005 0.07084 0.106 0.0447 1.44 14 1 5,156 1.368 3.81 1.00 0.02605 0.0994 0.0147 1.44 1.44		5	5,156						8						
3 2 0 90,475 2.45 221,676 0.222 0.343 10 0.35 0.122564 0.29263 0.351 0.2461 2.01 2 1 0 90,475 2.45 221,676 0.222 0.343 10 0.35 0.122564 0.29263 0.351 0.2461 2.01 2 1 0 90,475 2.45 221,676 0.222 0.343 10 0.35 0.122564 0.29263 0.351 0.2461 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.0	5	4	0	1	2.51	-		0.291	-				0.434		
2 1 0 99.475 2.45 221,676 0.222 0.343 10 0.35 0.122564 0.29263 0.381 0.2461 2.01 34 15 5,156 5,156 3.60 18,556 0.019 0.029 8 1.00 0.011005 0.07084 0.106 0.0447 1.44 15 14 0 5,156 3.60 18,556 0.019 0.029 8 1.00 0.01005 0.07084 0.106 0.0447 1.44 14 13 5,156 10,312 3.28 33,815 0.034 0.052 8 1.00 0.020055 0.0447 1.44 13 12 5,156 15,688 3.11 48,036 0.048 0.074 8 1.00 0.028489 0.11213 0.168 0.0827 1.92 12 11 5,156 25,024 2.99 61,623 0.062 0.095 8 0.91 0.033311 0.1295 0.194	4		15,715										0.351		
34 15 5,156 3,60 18,556 0.019 0.029 8 1.00 0.011005 0.07084 0.106 0.0447 1,44 15 14 0 5,156 3.60 18,556 0.019 0.029 8 1.00 0.011005 0.07084 0.106 0.0447 1.44 14 13 5,156 15,66 10,312 3.28 33,815 0.034 0.052 8 1.00 0.02055 0.0947 0.142 0.0681 1.73 13 12 5,156 15,468 3.11 48,036 0.048 0.074 8 1.00 0.02849 0.11213 0.0681 1.73 12 11 5,156 20,624 2.99 61,623 0.062 0.095 8 0.91 0.038311 0.12952 0.194 0.1073 2.00 11 10 2,578 28,029 74,786 0.075 0.116 8 0.78 0.05000 0.14815 0.222		2	0												
15	2	1	0	90,475	2.45	221,676	0.222	0.343	10	0.35	0.122564	0.29263	0.351	0.2461	2.01
15	34	15	5,156	5,156	3.60	18,556	0.019	0.029	8	1.00	0.011005	0.07084	0.106	0.0447	1.44
13 12 5,156 15,468 3.11 48,036 0.048 0.074 8 1.00 0.028489 0.11213 0.168 0.0872 1.92 12 11 5,156 20,624 2.99 61,623 0.062 0.095 8 0.91 0.038311 0.12552 0.194 0.1073 2.00 10 9 2,578 23,202 2.94 68,238 0.068 0.106 8 0.84 0.044156 0.13898 0.208 0.1187 10 9 2,578 25,780 2.90 74,756 0.075 0.116 8 0.78 0.050200 0.14815 0.222 0.1300 2.00 9 0 2,578 28,358 2.86 81,186 0.081 0.126 8 0.73 0.056354 0.15702 0.236 0.1411 2.00 28 26 5,156 5,156 3.60 18,556 0.019 0.029 8 1.00 0.01005 0.0704 <td>15</td> <td></td> <td></td> <td>5,156</td> <td>3.60</td> <td>18,556</td> <td>0.019</td> <td>0.029</td> <td>8</td> <td>1.00</td> <td>0.011005</td> <td>0.07084</td> <td>0.106</td> <td>0.0447</td> <td>1.44</td>	15			5,156	3.60	18,556	0.019	0.029	8	1.00	0.011005	0.07084	0.106	0.0447	1.44
12 11 5,156 20,624 2.99 61,623 0.062 0.095 8 0.91 0.038311 0.12952 0.194 0.1073 2.00 11 10 2,578 23,202 2.94 68,238 0.086 0.106 8 0.84 0.044156 0.13898 0.208 0.1187 2.00 10 9 2,578 25,780 2.90 74,756 0.075 0.116 8 0.78 0.05020 0.1411 2.00 9 0 2,578 26,358 2.86 81,186 0.081 0.126 8 0.73 0.056354 0.15702 0.236 0.1411 2.00 8 7 19,267 47,625 2.67 127,182 0.127 0.197 8 0.51 0.105620 0.21647 0.325 0.2211 2.00 28 2.6 5,156 5,156 3.60 18,556 0.019 0.029 8 1.00 0.011005 0.07044 0.106 <td>14</td> <td>13</td> <td>5,156</td> <td>10,312</td> <td>3.28</td> <td>33,815</td> <td>0.034</td> <td>0.052</td> <td>8</td> <td>1.00</td> <td>0.020055</td> <td>0.09457</td> <td>0.142</td> <td>0.0681</td> <td>1.73</td>	14	13	5,156	10,312	3.28	33,815	0.034	0.052	8	1.00	0.020055	0.09457	0.142	0.0681	1.73
11 10 2,578 23,202 2.94 68,238 0.068 0.106 8 0.84 0.044156 0.13898 0.208 0.1187 2.00 10 9 2,578 25,780 2.90 74,756 0.075 0.116 8 0.78 0.050200 0.14815 0.222 0.1300 2.00 9 0 2,578 28,358 2.86 81,186 0.081 0.126 8 0.73 0.056354 0.15702 0.236 0.1411 2.00 28 7 19,267 47,625 2.67 127,182 0.127 0.197 8 0.51 0.16620 0.2147 0.325 0.2211 2.00 28 26 5,156 5,156 3.60 18,556 0.019 0.029 8 1.00 0.01105 0.07084 0.166 0.0447 1.44 26 25 5,156 15,468 3.11 48,036 0.048 0.074 8 1.00 0.026489	13	12	5,156	15,468	3.11	48,036	0.048	0.074	8	1.00	0.028489	0.11213	0.168	0.0872	1.92
10 9 2,578 25,780 2.90 74,756 0.075 0.116 8 0.78 0.050200 0.14815 0.222 0.1300 2.00 9 0 2,578 28,358 2.86 81,186 0.081 0.126 8 0.73 0.056354 0.15702 0.236 0.1411 2.00 8 7 19,267 47,625 2.67 127,182 0.127 0.197 8 0.51 0.105620 0.2147 0.325 0.2211 2.00 28 26 5,156 5,156 3.60 18,556 0.019 0.029 8 1.00 0.011005 0.0784 0.106 0.0447 1.44 26 25 5,156 15,468 3.11 48,036 0.048 0.074 8 1.00 0.02948 0.11213 0.168 0.0872 1.92 150 110 5,156 5,156 3.60 18,556 0.019 0.029 8 5.00 0.004921	12	11	5,156	20,624	2.99	61,623	0.062	0.095	8	0.91	0.038311	0.12952	0.194	0.1073	2.00
9 0 2,578 28,358 2.86 81,186 0.081 0.126 8 0.73 0.056354 0.15702 0.236 0.1411 2.00 8 7 19,267 47,625 2.67 127,182 0.127 0.197 8 0.51 0.105620 0.21647 0.325 0.2211 2.00 28 26 5,156 5,156 3.60 18,556 0.019 0.029 8 1.00 0.011005 0.07084 0.106 0.0447 1.44 26 25 5,156 10,312 3.28 33,815 0.034 0.052 8 1.00 0.020055 0.09457 0.142 0.0681 1.73 25 8 5,156 15,468 3.11 48,036 0.048 0.074 8 1.00 0.020055 0.09457 0.142 0.0681 1.73 150 110 5,156 5,156 3.60 18,556 0.019 0.029 8 5.00 0.04921 0.04833 0.072 0.0255 2.53 152 114 5,156 5,156 3.60 18,556 0.019 0.029 8 5.00 0.004921 0.04833 0.072 0.0255 2.53 154 116 5,156 5,156 3.60 18,556 0.019 0.029 8 5.00 0.004921 0.04833 0.072 0.0255 2.53 156 118 5,156 5,156 3.60 18,556 0.019 0.029 8 5.00 0.004921 0.04833 0.072 0.0255 2.53 156 118 5,156 5,156 3.60 18,556 0.019 0.029 8 5.00 0.004921 0.04833 0.072 0.0255 2.53 156 118 5,156 5,156 3.60 18,556 0.019 0.029 8 5.00 0.004921 0.04833 0.072 0.0255 2.53 156 118 5,156 5,156 3.60 18,556 0.019 0.029 8 5.00 0.004921 0.04833 0.072 0.0255 2.53 156 118 5,156 5,156 3.60 18,556 0.019 0.029 8 5.00 0.004921 0.04833 0.072 0.0255 2.53 156 118 5,156 5,156 3.60 18,556 0.019 0.029 8 5.00 0.004921 0.04833 0.072 0.0255 2.53 160 144 5,156 5,156 3.60 18,556 0.019 0.029 8 5.00 0.004921 0.04833 0.072 0.0255 2.53 162 132 2,578 2,578 3.95 10,182 0.019 0.029 8 5.00 0.004921 0.04833 0.072 0.0255 2.53 162 132 2,578 2,578 3.95 10,182 0.019 0.029 8 5.00 0.004921 0.04833 0.072 0.0255 2.53 162 132 2,578 2,578 3.95 10,182 0.019 0.029 8 5.00 0.004921 0.04833 0.072 0.0255 2.53 162 132 2,578 2,578 3.95 10,182 0.019 0.029 8 5.00 0.004921 0.04833 0.072 0.0255 2.53 162 132 2,578 2,578 3.95 10,182 0.019 0.029 8 5.00 0.004921 0.04833 0.072 0.0255 2.53 162 132 2,578 5,156 5,156 3.60 18,556 0.019 0.029 8 5.00 0.004921 0.04833 0.072 0.0255 2.53 162 132 2,578 5,156 5,156 3.60 18,556 0.019 0.029 8 5.00 0.004921 0.04833 0.072 0.0255 2.53 162 132 2,578 5,156 5,156 3.60 18,556 0.019 0.029 8 5.00 0.007782 0.06011 0.090 0.0351 1.84	11	10	2,578	23,202	2.94	68,238	0.068	0.106	8	0.84	0.044156	0.13898	0.208	0.1187	2.00
8 7 19,267 47,625 2.67 127,182 0.127 0.197 8 0.51 0.105620 0.21647 0.325 0.2211 2.00 28 26 5,156 5,156 3.60 18,556 0.019 0.029 8 1.00 0.011005 0.07084 0.106 0.0447 1.44 26 25 5,156 10,312 3.28 33,815 0.034 0.052 8 1.00 0.02055 0.09457 0.142 0.0681 1.73 25 8 5,156 15,468 3.11 48,036 0.048 0.074 8 1.00 0.028489 0.11213 0.168 0.0872 1.92 150 110 5,156 5,156 3.60 18,556 0.019 0.029 8 5.00 0.04921 0.04833 0.072 0.0255 2.53 154 116 5,156 5,156 3.60 18,556 0.019 0.029 8 5.00 0.004921 </td <td>10</td> <td>9</td> <td>2,578</td> <td>25,780</td> <td>2.90</td> <td>74,756</td> <td>0.075</td> <td>0.116</td> <td>8</td> <td>0.78</td> <td>0.050200</td> <td>0.14815</td> <td>0.222</td> <td>0.1300</td> <td>2.00</td>	10	9	2,578	25,780	2.90	74,756	0.075	0.116	8	0.78	0.050200	0.14815	0.222	0.1300	2.00
28 26 5,156 5,156 3.60 18,556 0.019 0.029 8 1.00 0.01005 0.07084 0.106 0.0447 1.44 26 25 5,156 10,312 3.28 33,815 0.034 0.052 8 1.00 0.020055 0.09457 0.142 0.0681 1.73 25 8 5,156 15,468 3.11 48,036 0.048 0.074 8 1.00 0.028489 0.11213 0.168 0.0872 1.92 150 110 5,156 5,156 3.60 18,556 0.019 0.029 8 5.00 0.04921 0.04833 0.072 0.0255 2.53 152 114 5,156 3.60 18,556 0.019 0.029 8 5.00 0.04921 0.04833 0.072 0.0255 2.53 154 116 5,156 3.60 18,556 0.019 0.029 8 5.00 0.04921 0.04833 0.072<	9	0	2,578	28,358	2.86	81,186	0.081	0.126	8	0.73	0.056354	0.15702	0.236	0.1411	2.00
26 25 5,156 10,312 3.28 33,815 0.034 0.052 8 1.00 0.020055 0.09457 0.142 0.0681 1.73 25 8 5,156 15,468 3.11 48,036 0.048 0.074 8 1.00 0.028489 0.11213 0.168 0.0872 1.92 150 110 5,156 5,156 3.60 18,556 0.019 0.029 8 5.00 0.04833 0.072 0.0255 2.53 152 114 5,156 5,156 3.60 18,556 0.019 0.029 8 5.00 0.04921 0.04833 0.072 0.0255 2.53 154 116 5,156 5,156 3.60 18,556 0.019 0.029 8 5.00 0.004921 0.04833 0.072 0.0255 2.53 156 118 5,156 5,156 3.60 18,556 0.019 0.029 8 3.00 0.04462 0.067 </td <td>8</td> <td>7</td> <td>19,267</td> <td>47,625</td> <td>2.67</td> <td>127,182</td> <td>0.127</td> <td>0.197</td> <td>8</td> <td>0.51</td> <td>0.105620</td> <td>0.21647</td> <td>0.325</td> <td>0.2211</td> <td>2.00</td>	8	7	19,267	47,625	2.67	127,182	0.127	0.197	8	0.51	0.105620	0.21647	0.325	0.2211	2.00
26 25 5,156 10,312 3.28 33,815 0.034 0.052 8 1.00 0.020055 0.09457 0.142 0.0681 1.73 25 8 5,156 15,468 3.11 48,036 0.048 0.074 8 1.00 0.028489 0.11213 0.168 0.0872 1.92 150 110 5,156 5,156 3.60 18,556 0.019 0.029 8 5.00 0.04833 0.072 0.0255 2.53 152 114 5,156 5,156 3.60 18,556 0.019 0.029 8 5.00 0.04921 0.04833 0.072 0.0255 2.53 154 116 5,156 5,156 3.60 18,556 0.019 0.029 8 5.00 0.004921 0.04833 0.072 0.0255 2.53 156 118 5,156 5,156 3.60 18,556 0.019 0.029 8 3.00 0.04462 0.067 </td <td>28</td> <td>26</td> <td>5.156</td> <td>5,156</td> <td>3.60</td> <td>18,556</td> <td>0.019</td> <td>0.029</td> <td>8</td> <td>1.00</td> <td>0.011005</td> <td>0.07084</td> <td>0.106</td> <td>0.0447</td> <td>1.44</td>	28	26	5.156	5,156	3.60	18,556	0.019	0.029	8	1.00	0.011005	0.07084	0.106	0.0447	1.44
25 8 5,156 15,468 3.11 48,036 0.048 0.074 8 1.00 0.028489 0.11213 0.168 0.0872 1.92 150 110 5,156 3.60 18,556 0.019 0.029 8 5.00 0.004921 0.04833 0.072 0.0255 2.53 152 114 5,156 5,156 3.60 18,556 0.019 0.029 8 5.00 0.004921 0.04833 0.072 0.0255 2.53 154 116 5,156 5,156 3.60 18,556 0.019 0.029 8 5.00 0.004921 0.04833 0.072 0.0255 2.53 156 118 5,156 5,156 3.60 18,556 0.019 0.029 8 3.00 0.004921 0.04833 0.072 0.0255 2.53 156 118 5,156 5,156 3.60 18,556 0.019 0.029 8 3.00 0.004921 0		25	i -		3.28		0.034	0.052	8	1.00	0.020055	0.09457	0.142	0.0681	1.73
150 110 5,156 5,156 3.60 18,556 0.019 0.029 8 5.00 0.004921 0.04833 0.072 0.0255 2.53 152 114 5,156 5,156 3.60 18,556 0.019 0.029 8 5.00 0.004921 0.04833 0.072 0.0255 2.53 154 116 5,156 5,156 3.60 18,556 0.019 0.029 8 5.00 0.004921 0.04833 0.072 0.0255 2.53 156 118 5,156 5,156 3.60 18,556 0.019 0.029 8 5.00 0.004921 0.04833 0.072 0.0255 2.53 156 118 5,156 5,156 3.60 18,556 0.019 0.029 8 3.00 0.06354 0.05456 0.082 0.0304 2.12 158 128 5,156 5,156 3.60 18,556 0.019 0.029 8 7.00 0.0	25	8	† - ·	15,468	3.11		0.048	0.074	8	1.00	0.028489	0.11213	0.168	0.0872	1.92
152 114 5,156 5,156 3.60 18,556 0.019 0.029 8 5.00 0.004921 0.04833 0.072 0.0255 2.53 154 116 5,156 5,156 3.60 18,556 0.019 0.029 8 5.00 0.004921 0.04833 0.072 0.0255 2.53 156 118 5,156 5,156 3.60 18,556 0.019 0.029 8 3.00 0.06456 0.082 0.0304 2.12 158 128 5,156 5,156 3.60 18,556 0.019 0.029 8 7.00 0.04462 0.067 0.0227 2.85 160 144 5,156 5,156 3.60 18,556 0.019 0.029 8 5.00 0.04462 0.067 0.0227 2.85 162 132 2,578 2,578 3.95 10,182 0.010 0.016 8 1.00 0.06039 0.05333 0.080 0.0294<	150	110	5.156	5,156	3.60	18,556	0.019	0.029	8	5.00	0.004921	0.04833	0.072	0.0255	2.53
154 116 5,156 5,156 3.60 18,556 0.019 0.029 8 5.00 0.004921 0.04833 0.072 0.0255 2.53 156 118 5,156 5,156 3.60 18,556 0.019 0.029 8 3.00 0.006354 0.05456 0.082 0.0304 2.12 158 128 5,156 5,156 3.60 18,556 0.019 0.029 8 7.00 0.004159 0.04462 0.067 0.0227 2.85 160 144 5,156 5,156 3.60 18,556 0.019 0.029 8 5.00 0.004921 0.04833 0.072 0.0255 2.53 162 132 2,578 2,578 3.95 10,182 0.010 0.016 8 1.00 0.006039 0.05333 0.080 0.0294 1.21 164 134 5,156 5,156 3.60 18,556 0.019 0.029 8 2.00 0.	450	444		F 450	2.00	· · · · · · · · · · · · · · · · · · ·	0.040	0.000	0	F 00	0.004004	0.04000	0.070	0.0055	
156 118 5,156 5,156 3.60 18,556 0.019 0.029 8 3.00 0.006354 0.05456 0.082 0.0304 2.12 158 128 5,156 5,156 3.60 18,556 0.019 0.029 8 7.00 0.004159 0.04462 0.067 0.0227 2.85 160 144 5,156 5,156 3.60 18,556 0.019 0.029 8 5.00 0.004921 0.04833 0.072 0.0255 2.53 162 132 2,578 2,578 3.95 10,182 0.010 0.016 8 1.00 0.006039 0.05333 0.080 0.0294 1.21 164 134 5,156 5,156 3.60 18,556 0.019 0.029 8 2.00 0.007782 0.06011 0.090 0.0351 1.84 166 136 5,156 5,156 3.60 18,556 0.019 0.029 8 2.00 0.			5,156	·		· · · · · · · · · · · · · · · · · · ·		<u>. </u>							
158 128 5,156 5,156 3.60 18,556 0.019 0.029 8 7.00 0.04462 0.067 0.0227 2.85 160 144 5,156 5,156 3.60 18,556 0.019 0.029 8 5.00 0.004921 0.04833 0.072 0.0255 2.53 162 132 2,578 2,578 3.95 10,182 0.010 0.016 8 1.00 0.006039 0.05333 0.080 0.0294 1.21 164 134 5,156 5,156 3.60 18,556 0.019 0.029 8 2.00 0.007782 0.06011 0.090 0.0351 1.84 166 136 5,156 5,156 3.60 18,556 0.019 0.029 8 2.00 0.007782 0.06011 0.090 0.0351 1.84	154	116	5,156	5,156	3.60	18,556	0.019	0.029	8	5.00	0.004921	0.04833	0.072	0.0255	2.53
160 144 5,156 5,156 3.60 18,556 0.019 0.029 8 5.00 0.004921 0.04833 0.072 0.0255 2.53 162 132 2,578 2,578 3.95 10,182 0.010 0.016 8 1.00 0.006039 0.05333 0.080 0.0294 1.21 164 134 5,156 5,156 3.60 18,556 0.019 0.029 8 2.00 0.007782 0.06011 0.090 0.0351 1.84 166 136 5,156 5,156 3.60 18,556 0.019 0.029 8 2.00 0.007782 0.06011 0.090 0.0351 1.84	156	118	5,156	5,156	3.60	18,556	0.019	0.029	8	3.00	0.006354	0.05456	0.082	0.0304	2.12
162 132 2,578 2,578 3.95 10,182 0.010 0.016 8 1.00 0.006039 0.05333 0.080 0.0294 1.21 164 134 5,156 5,156 3.60 18,556 0.019 0.029 8 2.00 0.007782 0.06011 0.090 0.0351 1.84 166 136 5,156 5,156 3.60 18,556 0.019 0.029 8 2.00 0.007782 0.06011 0.090 0.0351 1.84	158	128	5,156	5,156	3.60	18,556	0.019	0.029	8	7.00	0.004159	0.04462	0.067	0.0227	2.85
164 134 5,156 5,156 3.60 18,556 0.019 0.029 8 2.00 0.007782 0.06011 0.090 0.0351 1.84 166 136 5,156 5,156 3.60 18,556 0.019 0.029 8 2.00 0.007782 0.06011 0.090 0.0351 1.84	160	144	5,156	5,156	3.60	18,556	0.019	0.029	8	5.00	0.004921	0.04833	0.072	0.0255	2.53
166 136 5,156 5,156 3.60 18,556 0.019 0.029 8 2.00 0.007782 0.06011 0.090 0.0351 1.84	162	132	2,578	2,578	3.95	10,182	0.010	0.016	8	1.00	0.006039	0.05333	0.080	0.0294	1.21
	164	134	5,156	5,156	3.60	18,556	0.019	0.029	8	2.00	0.007782	0.06011	0.090	0.0351	1.84
168 138 5 156 5 156 3 60 18 556 0 019 0 029 8 1 00 0 011005 0 07084 0 106 0 0447 1 44	166	136	5,156	5,156	3.60	18,556	0.019	0.029	8	2.00	0.007782	0.06011	0.090	0.0351	1.84
ווווער די אמוזער בעטווער בי טוו איזער בי אוווער בי בי אווער בי אווער בי אווער בי אמוזער בי אווער בי אייני אווער בי אווער	168	138	5,156	5,156	3.60	18,556	0.019	0.029	8	1.00	0.011005	0.07084	0.106	0.0447	1.44

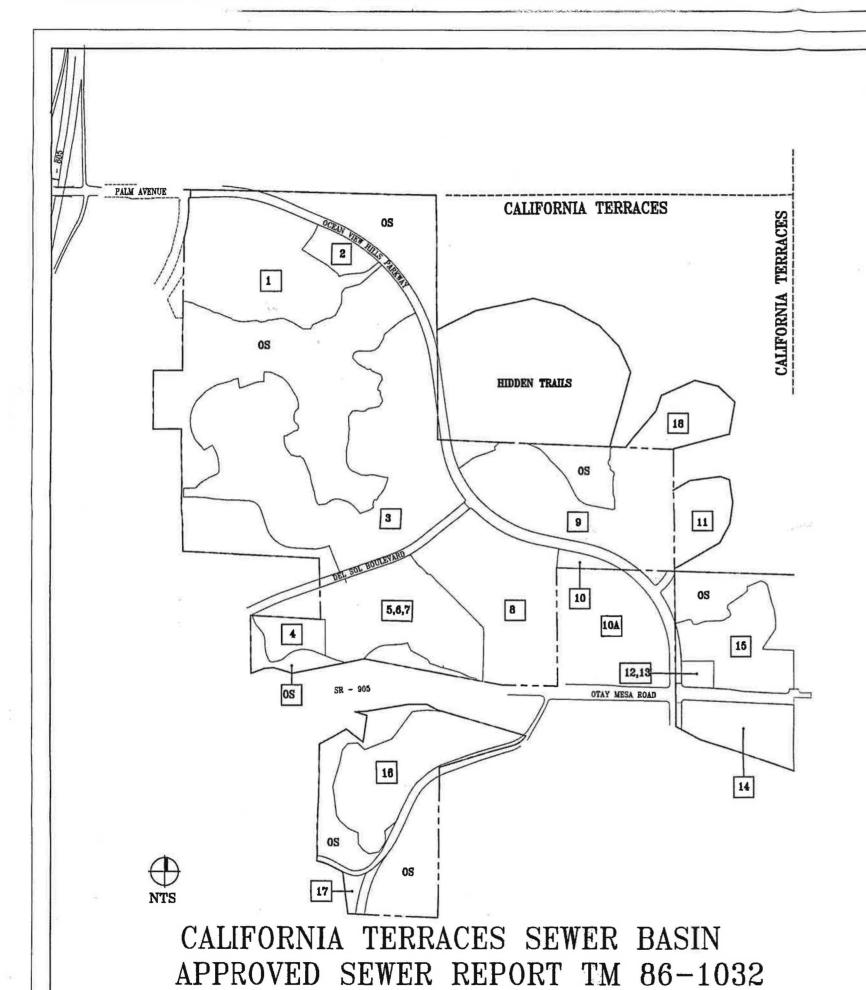
DATE:

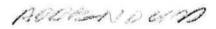

JOB NUMBER:


10/19/2018

648-032

¹ K' based on n = 0.013


² dn/D using K' in Brater King Table 7-14 3 From Brater King Table 7-4 based on dn/D


APPENDIX D

CALIFORNIA TERRACES SEWER BASIN EXHIBIT (APPROVED EDU COUNT)

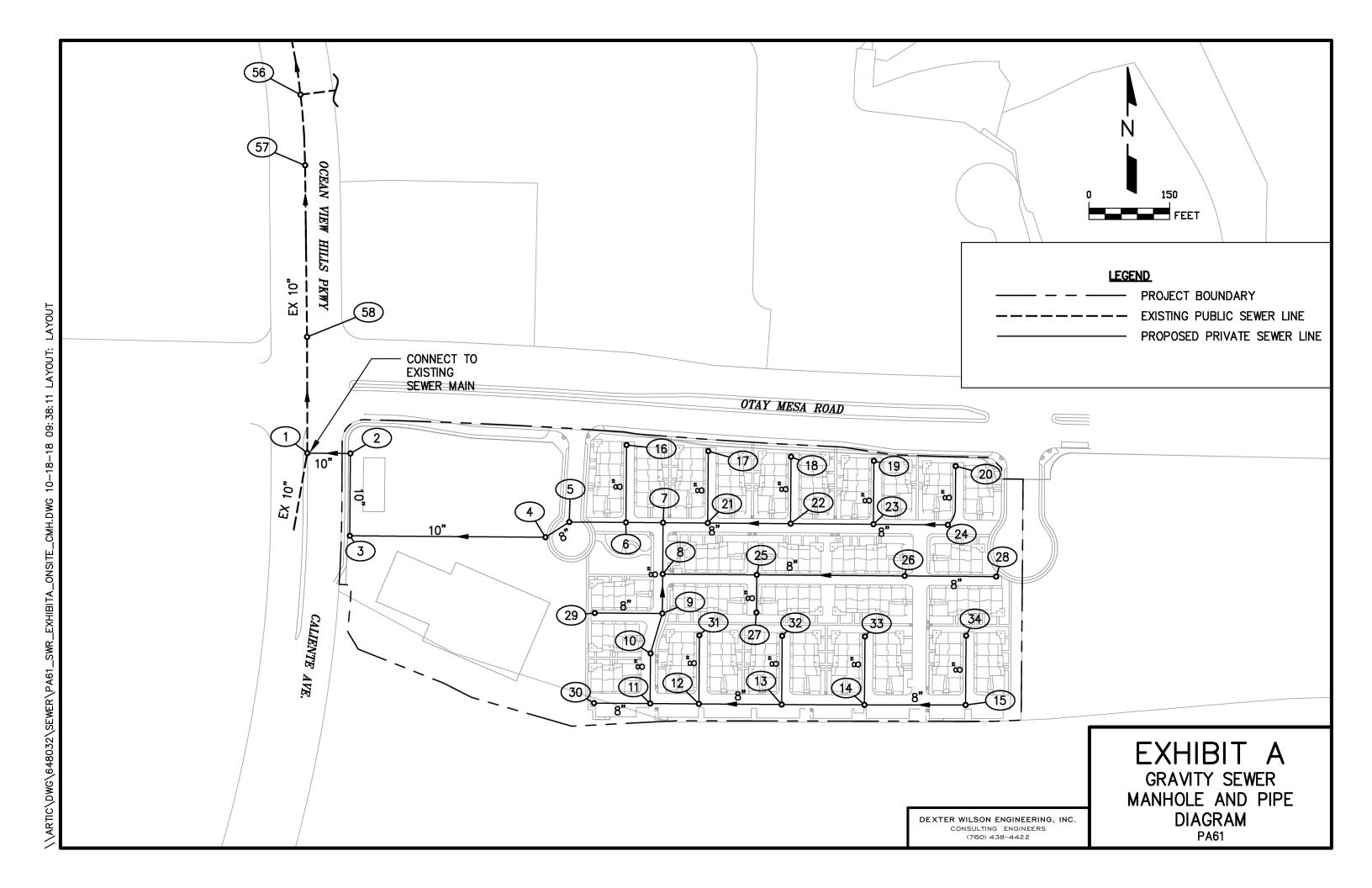
No.	EDU'S BUILT OR PLANNED	EDU'S APPROVED PER CALIFORNIA TERRACES SEWER REPORT TM 86-1032
1	235	192
2	44	89
3	452	562
4	192	192
5,6,7	129	129
8	1578	1539
9	289	279
10	26	26
10A	304	304
11	372	372
12,13	31	31
14	199	199
15	644	760
16	179*	182
17	40*	40
18	300	300
HIDDEN TRAILS	474	750
SAN YSIDRO HIGH SCHOOL	25	
TOTAL EDU'S IN SEWER BASIN	5294	5946

* AREAS 16 AND 17 CURRENTLY SEWER TO THE SOUTH AND ARE NO LONGER IN THE CALIFORNIA TERRACES SEWER BASIN. THEREFORE THEY ARE NOT INCLUDED IN THE TOTAL EDU'S BUILT OR PLANNED AND ARE JUST FOR REFERENCE.

PROJECT DESIGN CONSULTANTS

lanning | Landscape Architecture | Environmental | Engineering | Survey

701 B Street, Suite 800 San Diego, CA 92101 619.235.6471 Tel 619.234.0349 Fex


CURTIS J. TURNER, R.C.E. 59285

DATE REGISTRATION DESIGNED PM REVIEW: REVIEW:

O-Z3.08

GP

CT

California Terraces PA 61 (Mixed-Use) City of San Diego (PTS 605191) Southeast corner of Otay Mesa Rd and Caliente Ave April 12, 2018 Fifth Revision January 14, 2019

Transportation Impact Analysis

Prepared for:

Pardee Homes 13400 Sabre Springs Pkwy #200 San Diego, CA 92128

Prepared by Justin Rasas (TR 2135) a principal with:

LOS Engineering, Inc.

11622 El Camino Real, Suite 100, San Diego, CA 92130 Phone 619-890-1253

Job #1727

SENES ON 1/17/2019

Table of Contents

Exe	cutive Summary	Vi
1.0	Introduction	
2.0	Study Methodology	4
2.1	Study Area Criteria	4
2.2	Scenario Criteria	6
2.3	Traffic Analysis Criteria	6
2	.3.1 Intersections	6
2	.3.2 Street Segments	7
2	.3.3 Freeway Segments	8
2	.3.4 Metered Freeway On-Ramps	8
2.4	Significance Criteria	8
2.5	Congestion Management Program Criteria	9
3.0	Existing Conditions	10
3.1	Existing Street System	10
3.2	Multi-Modal Transportation	11
3	.2.1 Transit	11
3	.2.2 Bicycle	12
3	.2.3 Pedestrian.	12
3	.2.4 Existing Conditions Map	
3.3	Existing Traffic Volumes and LOS Analyses	14
4.0	Project Description	18
4.1	Project Site Access	18
4.2	Project Trip Generation	
4.3	Project Distribution and Assignment	20
5.0	Existing with Project Conditions	
5.1	Existing with Project Proposed Mitigation	
6.0	Near-Term Year 2020 (Opening Day) without Project Conditions	30
7.0	Near-Term Year 2020 with Project (Opening Day) Conditions	37
7.1	Near Term Year 2020 with Project Proposed Mitigation	
8.0	Horizon Year 2062 without Project Conditions	43
9.0	Horizon Year 2062 with Project Conditions	
9.1	Horizon Year 2062 with Project Proposed Mitigation	54
10.0	Project Impacts and Mitigation Summary	57
10.1	Mitigation Summary	57
11.0	Parking	60
12.0	Transportation Demand Management	
13.0	On-Site Vehicular and Pedestrian Circulation	61
14.0	Conclusions.	62

List of Figures

Figure 1: Project Location	2
Figure 2: Site Plan	3
Figure 3: Study Area	
Figure 4: Existing Conditions	13
Figure 5: Existing Volumes	
Figure 6: Project Distribution	
Figure 7: Project Assignment	
Figure 8: Existing with Project Volumes	
Figure 9: Existing with Project Conditions	
Figure 10: Existing with Project Proposed Mitigation	27
Figure 11: Cumulative Project Locations and Cumulative Project Improvements	32
Figure 12: Cumulative Project Volumes	
Figure 13: Near-Term Year 2020 (Opening Day) without Project Volumes	
Figure 14: Near-Term Year 2020 (Opening Day) with Project Volumes	38
Figure 15: Near Term Year 2020 with Project Proposed Mitigation	40
Figure 16: Horizon Year 2062 without Project Conditions	
Figure 17: Horizon Year 2062 without Project Volumes	45
Figure 18: Horizon Year 2062 with Project Conditions	50
Figure 19: Horizon Year 2062 with Project Volumes	51
Figure 20: Horizon Year 2062 with Project Proposed Intersection Mitigation	54
Figure 21: Proposed and Otay Mesa CPU FEIR Mitigation Measures	59
List of Tables Table 1: Intersection Level of Service Definitions (HCM 2010)	6
Table 2: Intersection Level of Service (HCM 2000)	
Table 3: Street Segment Daily Capacity and LOS (City of San Diego)	
Table 4: Freeway Level of Service	
Table 5: City of San Diego Traffic Impact Significance Thresholds	
Table 6: Existing Intersection Level of Service	
Table 7: Existing Segment ADT Volumes and Level of Service	
Table 8: Existing State Route Volumes and Level of Service	
Table 9: Project Trip Generation	
Table 10: Existing with Project Intersection Level of Service	
Table 11: Existing with Project Segment ADT Volumes and Level of Service	
Table 12: Existing With Project Freeway Volumes and Level of Service	
Table 13: Existing with Project Operations With Proposed Mitigation	
Table 14: Existing with Project Caliente Ave Operations	
Table 15: Cumulative Project Trip Generation	
Table 16: Near-Term Year 2020 (Opening Day) without Project Intersection Level of Se	rvice35
Table 17: Near-Term Year 2020 (Opening Day) without Project Segment ADT Volumes	
of Service	35

Table 18:	Near-Term Year 2020 (Opening Day) without Project Freeway Volumes and Level of	
	ce	
Table 19:	Near-Term Year 2020 (Opening Day) with Project Intersection Level of Service	.37
Table 20:	Near-Term Year 2020 (Opening Day) with Project Segment ADT Volumes and Level	of
	ce	.39
Table 21:	Near-Term Year 2020 (Opening Day) with Project Freeway Volumes and Level of	
Servi	ce	.39
Table 22:	Near Term 2020 with Project Operations With Proposed Mitigation	.41
	Near Term 2020 with Project Caliente Ave Operations	
Table 24:	Caliente Avenue Horizon Year 2062 Bridget Volume interpolation	.43
Table 25:	Horizon Year 2062 without Project Intersection Level of Service	.46
Table 26:	Horizon Year 2062 without Project Segment ADT Volumes and Level of Service	.47
Table 27:	Horizon Year 2062 without Project Freeway Volumes and Level of Service	.47
Table 28:	Horizon Year 2062 without Project Freeway On-Ramp Operations	.47
Table 29:	Horizon Year 2062 with Project Intersection Level of Service	.49
Table 30:	Horizon Year 2062 with Project Segment ADT Volumes and Level of Service	.52
Table 31:	Horizon Year 2062 with Project Freeway Volumes and Level of Service	.52
Table 32:	Horizon Year 2062 with Project Freeway On-Ramp Operations	.53
	Horizon Year 2062 with Project Operations With Proposed Mitigation	
	Horizon Year 2062 with Project Caliente Ave Operations	
Table 35:	Direct and Cumulative Impact Summary and Proposed Mitigation	.58
	Project Parking Summary	
Appen	dices	
Appen	dices	
		eck
Appendix	ACity of San Diego Traffic Impact Study Screen Cho	
Appendix Appendix		ties
Appendix Appendix Appendix	A	ties ites
Appendix Appendix Appendix Appendix	A	ties ites nce
Appendix Appendix Appendix Appendix Appendix Appendix	A	ties ites ince Jse iles
Appendix Appendix Appendix Appendix Appendix Appendix	A	ties ites ince Jse iles
Appendix Appendix Appendix Appendix Appendix Appendix Appendix	A	ties ates nce Jse ales lan
Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix	A	ties ites ince Jse iles ilan eets
Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix	A	ties ates nce Jse ales lan eets
Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix	A	ties nce Jse les lan eets ons
Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix	A	ties ties ties Dise tiles lan teets ons ons,
Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix	A	ties ates acceptables alles alles ans accepts
Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix	A	ties ates ance Jse alles alles ans ans, pons pons ate
Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix	A	ties ates ance Jse alles allen cets ons, ons, pons ate
Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix	A	ties ties ties nce Jse llan eets ons ons pts ate ons
Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix	A	ties ates ance Jse aleas ans ons ons ate ons ons ons ate ons
Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix	A	ties ates ance Jse aleas ans ons ons ate ons ons ons ate ons
Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix	A	ties ates once Jse alles lan eets ons, ons ate ons
Appendix Appendix	A	ties ates one ets ons, ons

Appendix T N	ear-Term Year 2020 with Project Intersection LOS Calculations with Mitigation
Appendix U	
Appendix V	
Appendix W	
Appendix X	
Appendix Y	
	with Mitigation and Concept Striping
Appendix Z	Fair Share Calculations

Executive Summary

California Terraces PA 61 Mixed-Use Project

The proposed California Terraces PA 61 is a mixed-use project with 171 to 267 multi-family units, up to 45,000 sf of commercial/retail space, and a 0.19 acre private park located on the southeast corner of Otay Mesa Road and Caliente Avenue in the Otay Mesa community of San Diego, California. The project is anticipated to open in year 2020. The site is currently vacant. The project requires a Community Plan Amendment (CPA) to re-designate the approximately 14-acre site from Community Commercial – Residential Prohibited (CC-2-3) to Community Commercial – Residential Permitted Rezone for the eastern portion of the property from CC-1-3 to RM-2-5, and to reclassify Caliente Avenue from Otay Mesa Road to SR-905 WB Ramp from a six-lane Prime to a five-lane Prime. The following discretionary approvals are required as part of the project:

- 1) Vesting Tentative Map
- 2) Site Development Permit
- 3) Master Planned Development Permit
- 4) Neighborhood Development Permit
- 5) Community Plan Amendment Land Use and Roadway Classification
- 6) Street Vacation and Rezone

The project's expected traffic generation was calculated using trip rates from the City of San Diego *Trip Generation Manual*, May 2003. Two trip generation rates were applied: a driveway rate for project access points and the intersection of Caliente Avenue/Otay Mesa Road and a cumulative rate (accounts for primary and diverted trips) that was applied for all other analyzed locations. The project driveway volumes (with 267 MF units, 45,000 sf commercial, and 0.19 acre park) were calculated at 6,816 ADT with 336 AM peak hour trips (152 inbound and 184 outbound) and 717 PM peak hour trips (387 inbound and 330 outbound). The cumulative traffic volumes were calculated at 4,716 ADT with 252 AM peak hour trips (101 inbound and 151 outbound) and 486 PM peak hour trips (271 inbound and 215 outbound).

As part of this transportation impact study, six scenarios were analyzed, which included Existing, Existing with Project, Near-term Year 2020 without Project, Near-term Year 2020 with Project (Opening Day), Horizon Year 2062 without Project, and Horizon Year 2062 with Project Conditions. Operational findings and project impacts by scenario are summarized below:

- 1) Under existing conditions, the study intersections, street segments, and state route segments were calculated to operate at LOS D or better except for the intersection of Caliente Avenue at Airway Road (LOS F AM). The Caliente Avenue/SR-905 on-ramps are not metered under this scenario.
- 2) Under existing with project conditions, the study intersections, street segments, and state route segments were calculated to operate at LOS D or better except for the intersections of:
 - i. Caliente Avenue at SR-905 WB Ramp (LOS E PM),
 - ii. Caliente Avenue at Airway Road (LOS F AM), and
 - iii. Otay Mesa Road at Emerald Crest Ct (LOS F PM).

The project is calculated to have direct impacts at all three of the above intersections. The Caliente Avenue/SR-905 on-ramps are not metered under this scenario.

The intersection of Caliente Ave/SR-905 WB Ramp is identified in the Otay Mesa Community Plan Update (CPU) Final EIR as a significant and unmitigated impact at community buildout resulting in the adoption of overriding considerations. Under Existing Plus Project Conditions, the applicant is proposing mitigation to reduce the direct impact at this intersection to below significance through restriping the southbound approach of two through and one through-right turn lane (3 total approach lanes) to one through, one through-right, and one right turn lane (3 total approach lanes). The proposed restriping is an interim improvement until the City Public Facilities Financing Plan (PFFP) OM T-11.1 is completed (currently scheduled for 2026), which will add an additional southbound right turn lane from Caliente Ave to SR-905 WB Ramp resulting in 4 total approach lanes. The interim mitigation would reduce the significant impact at this intersection to less than significant. Prior to issuance of the first building permit, owner/permittee shall restripe the southbound approach to include a through lane, a through-right turn lane, and right turn lane satisfactory to the City Engineer and Caltrans.

The intersection of Caliente Ave/Airway Rd is also identified in the Otay Mesa CPU Final EIR as a significant and unmitigated impact at community buildout resulting in the adoption of overriding considerations. The project proposes mitigation for reduction of this significant impact through the installation of signal at this intersection. It is noted that this intersection is also identified to be signalized as part of the Candlelight VTM Mitigation Monitoring and Reporting Program (MMRP) and Southview. Prior to issuance of the first building permit, owner/permittee shall install a traffic signal satisfactory to the City Engineer if said signal is not already installed and operational.

The intersection of Otay Mesa Rd/Emerald Crest Court/Street B with full turning movements allowed requires a traffic signal to reduce the direct impact to below a level of significance. Prior to issuance of the first building permit, owner/permittee shall install a traffic signal satisfactory to the City Engineer if said signal is not already installed and operational. The signal could be completed by either the adjacent Handler commercial project or by Garden Communities as outlined in the Deferred Improvement Agreement between Garden Communities and City of San Diego dated 4/24/2007 and secured by a \$162,000 bond. The signal will be installed prior to the project's first occupancy in order to mitigate this project's direct impact.

Project features include the construction of a full width raised median along the project frontage on Caliente Avenue, removal of the existing K-rail and replacement with a full width raised median along the project frontage on Otay Mesa Road, construction of two public culde-sac streets, construction of a 6-foot non-contiguous sidewalk along Otay Mesa Road, and replacement of the sidewalk along Caliente Ave with a 6-foot non-contiguous sidewalk along the project frontage.

- 3) Under Near Term 2020 (opening day) without project conditions, the study intersections, street segments, and state route segments were calculated to operate at LOS D or better except for the intersections of:
 - i. Caliente Avenue at SR-905 WB Ramp (LOS E PM), and
 - ii. Caliente Avenue at Airway Road (LOS F AM and PM).

The Caliente Avenue/SR-905 on-ramps are not metered under this scenario.

- 4) Under Near Term 2020 (opening day) with project conditions, the study intersections, street segments, and state route segments were calculated to operate at LOS D or better except for the intersections of:
 - i. Caliente Avenue at SR-905 WB Ramp (LOS E PM),
 - ii. Caliente Avenue at Airway Road (LOS F AM), and
 - iii. Otay Mesa Road at Emerald Crest Ct (LOS F PM).

The project is calculated to have direct impacts at all three of the above intersections. The Caliente Avenue/SR-905 on-ramps are not metered under this scenario.

The intersection of Caliente Ave/SR-905 WB Ramp is identified in the Otay Mesa CPU Final EIR as a significant and unmitigated impact at community buildout resulting in the adoption of overriding considerations. Under the Near Term, the applicant is proposing mitigation to reduce the direct impact at this intersection to below significance through restriping the southbound approach of two through and one through-right turn lane (3 total approach lanes) to one through, one through-right, and one right turn lane (3 total approach lanes). The proposed restriping is an interim improvement until the City Public Facilities Financing Plan (PFFP) OM T-11.1 is completed (currently scheduled for 2026), which will add an additional southbound right turn lane from Caliente Ave to SR-905 WB Ramp resulting in 4 total approach lanes. The interim mitigation would reduce the significant impact at this intersection to less than significant. Prior to issuance of the first building permit, owner/permittee shall restripe the southbound approach to include a through lane, a through-right turn lane, and right turn lane satisfactory to the City Engineer and Caltrans.

The intersection of Caliente Ave/Airway Rd is also identified in the Otay Mesa CPU Final EIR as a significant and unmitigated impact at community buildout resulting in the adoption of overriding considerations. The project proposes mitigation for reduction of this significant impact through the installation of signal at this intersection. It is noted that this intersection is also identified to be signalized as part of the Candlelight VTM Mitigation Monitoring and Reporting Program (MMRP) and Southview. Prior to issuance of the first building permit, owner/permittee shall install a traffic signal satisfactory to the City Engineer if said signal is not already installed and operational.

The intersection of Otay Mesa Rd/Emerald Crest Court/Street B with full turning movements allowed requires a traffic signal to reduce the project's direct impact to below a level of significance. Prior to issuance of the first building permit, owner/permittee shall install a traffic signal satisfactory to the City Engineer if said signal is not already installed and operational. The signal could be completed by either the adjacent Handler commercial project or by Garden Communities as outlined in the Deferred Improvement Agreement between Garden Communities and City of San Diego dated 4/24/2007 and secured by a

\$162,000 bond. The signal will be installed prior to the project's first occupancy in order to mitigate this project's direct impact.

- 5) Under Horizon Year 2062 without project conditions, the study intersections, street segments, and state route segments were calculated to operate at LOS D or better except for:
 - i. Intersection of Caliente Avenue at SR-905 WB Ramp (LOS F PM),
 - ii. Intersection of Caliente Avenue at Airway Road (LOS F AM & PM),
 - iii. Segment of Caliente Ave between Otay Mesa Rd and SR-905 WB Ramp (LOS F),
 - iv. Segment of Caliente Ave between SR-905 WB Ramp and SR-905 EB Ramp (LOS E),
 - v. Segment of Caliente Ave between SR-905 EB Ramp and Airway Rd (LOS E), and
 - vi. SR-905 between Caliente Ave and Britannia Blvd (LOS E AM EB & PM WB).

The metered freeway on-ramps were calculated to operate with significant delays (WB AM 10 minutes & WB PM 47.5 minutes, which exceeds acceptable operations. The receiving WB segment of SR-905 between I-805 and Caliente Ave is calculated to operate at acceptable LOS B AM and LOS D PM) or no delay (EB AM & PM). Please note that the reported WB on-ramp delay is excessive and the calculation may be beyond the range of reliability; however, the standard of practice calculation was used.

- 6) Under Horizon Year 2062 with project conditions, the study intersections, street segments, and state route segments were calculated to operate at LOS D or better except for:
 - i. Intersection of Otay Mesa Rd/Ocean View Hills Pkwy/Caliente Ave (LOS E PM),
 - ii. Intersection of Caliente Avenue/SR-905 WB Ramp (LOS F PM),
 - iii. Segment of Caliente Ave between Otay Mesa Rd and SR-905 WB Ramp (LOS F),
 - iv. Segment of Caliente Ave between SR-905 WB Ramp and SR-905 EB Ramp (LOS E),
 - v. Segment of Caliente Ave between SR-905 EB Ramp and Airway Rd (LOS E), and
 - vi. SR-905 between Caliente Ave and Britannia Blvd (LOS E AM EB & PM WB).

The metered freeway on-ramp at SB SR-905/Caliente Avenue WB was calculated to operate with significant delays (11.9 minutes AM and 50.2 minutes PM); however, the project did not result in a significant impact to the metered on-ramps because the downstream freeway operations are expected to be at LOS D or better. The Otay Mesa CPU EIR also documented delays in excess of 15 minutes at the Caliente Avenue WB on-ramp in conjunction with downstream freeway operations of unacceptable LOS E or F conditions based on an analysis from 2012 that used traffic counts and forecasting data in SANDAG Series 11. The reported WB on-ramp delay is excessive and may be beyond the range of reliability; however, the standard of practice calculation was used.

The project is calculated to have five cumulative (horizon year) impacts at

- 1) Intersection of Otay Mesa Rd/Ocean View Hills Pkwy/Caliente Ave (LOS E PM),
- 2) Intersection of Caliente Avenue/SR-905 WB Ramp (LOS F PM),
- 3) Intersection of Caliente Avenue at Airway Road (LOS F AM & PM),
- 4) Intersection of Otay Mesa Road at Emerald Crest Court (LOS F PM), and
- 5) Segment of Caliente Ave between Otay Mesa Rd and SR-905 WB Ramp (LOS F).

The two other segments of Caliente Avenue with unacceptable LOS (SR-905 WB Ramp to SR-905 EB Ramp and SR-905 EB Ramp to Airway Rd) do not have cumulative impacts because the project traffic does not exceed the City of San Diego traffic impact significance thresholds.

The intersection of Otay Mesa Rd/Ocean View Hills Pkwy/Caliente Ave is identified in the Otay Mesa CPU Final EIR as a significant and unmitigated impact at community buildout. This impact was found to remain significant and unmitigated and a Statement of Overriding Considerations was adopted by the City. The applicant is proposing mitigation to reduce the significant impact at this intersection to below significance through bonding for the restriping of the westbound approach from four approach lanes (left, left, through, right) to five approach lanes (left, left, left, through-right, right) satisfactory to the City Engineer. However, if not implemented in the Horizon Year, then the impact would not be mitigated consistent with the Otay Mesa CPU EIR Overriding Considerations.

The intersection of Caliente Ave/SR-905 WB Ramp is identified in the Otay Mesa CPU Final EIR as a significant and unmitigated impact at community buildout. This impact was found to remain significant and unmitigated and a Statement of Overriding Considerations was adopted by the City. The applicant is proposing mitigation to reduce the significant impact at this intersection to below significance. Prior to issuance of the first building permit, owner/permittee shall make a fair share contribution of 8.8% toward PFFP OM T-11.1 that includes the construction of an additional southbound right turn lane satisfactory to the City Engineer. However, if the PFFP is not fully funded by Horizon Year, then the impact would not be mitigated consistent with the Otay Mesa CPU EIR.

The intersection of Caliente Ave/Airway Rd is also identified in the Otay Mesa CPU Final EIR as a significant and unmitigated impact at community buildout. The project proposes mitigation for reduction of its direct and cumulative impact through the installation of signal at this intersection. This intersection is also identified to be signalized as part of the Candlelight VTM MMRP and Southview. Prior to issuance of the first building permit, owner/permittee shall install a traffic signal satisfactory to the City Engineer if said signal is not already installed and operational.

The intersection of Otay Mesa Rd/Emerald Crest Court/Street B with full turning movements allowed requires a traffic signal to reduce the project's direct and cumulative impact to below a level of significance. Prior to issuance of the first building permit, owner/permittee shall install a traffic signal satisfactory to the City Engineer if said signal is not already installed and operational. The signal could be completed by either the adjacent Handler commercial project or by Garden Communities as outlined in the Deferred Improvement Agreement between Garden Communities and City of San Diego dated 4/24/2007 and secured by a \$162,000 bond.

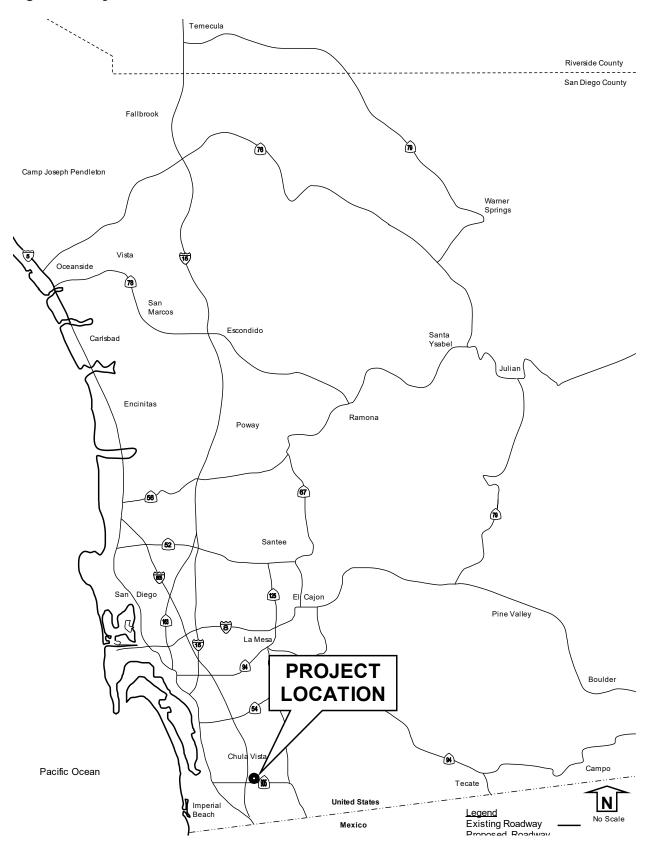
The cumulative segment impact on Caliente Avenue would be reduced to below a level of significance through the project's construction of a raised median along the project frontage. Prior to issuance of the first building permit, owner/permittee shall construct a full width raised median on Caliente Avenue from Otay Mesa Rd to SR-905 WB Ramp, satisfactory to the City Engineer.

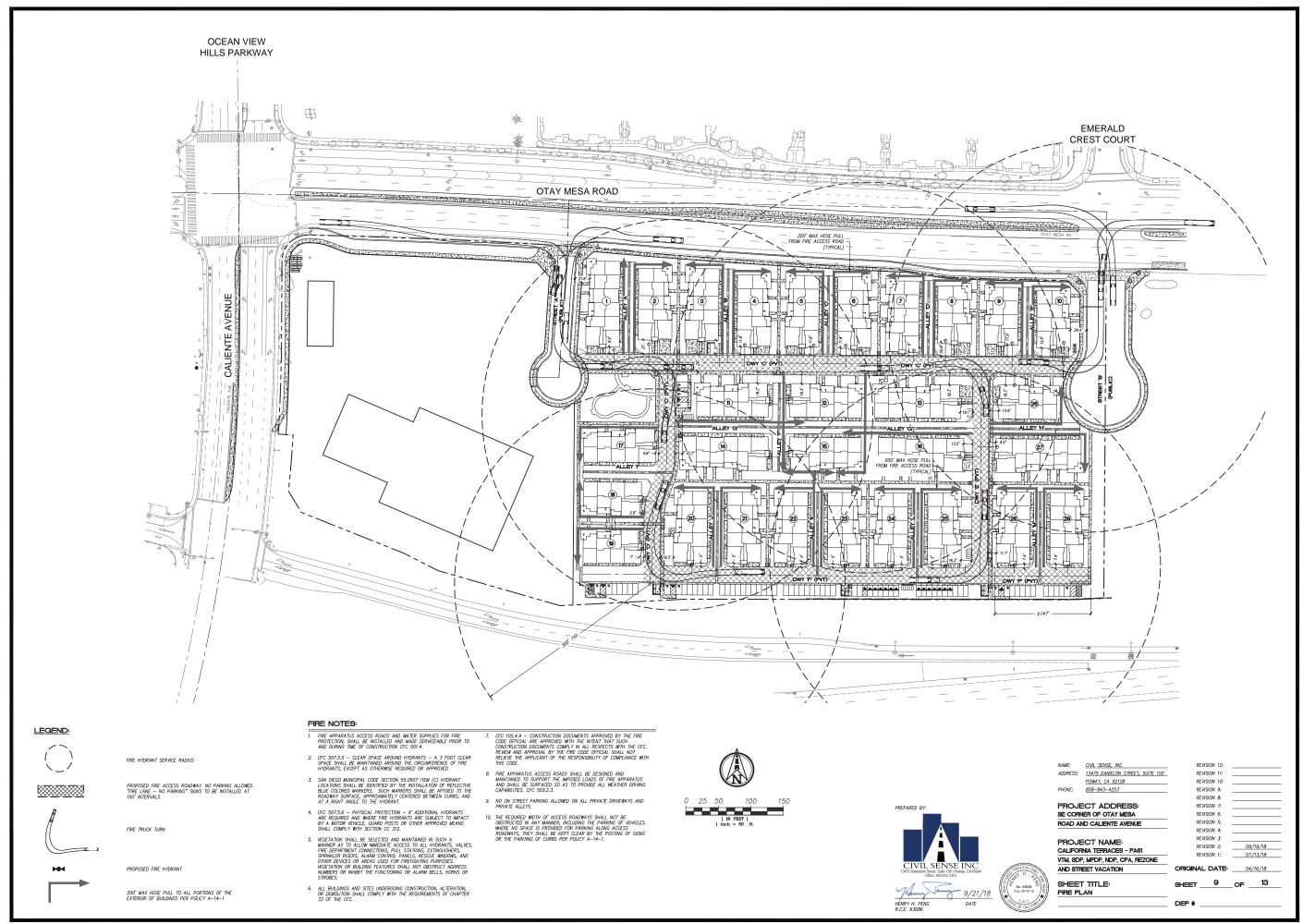
In addition to the proposed mitigation measures noted above, the applicant proposes the following project features:

- 1) Construct Street A to full width (public cul-de-sac extending south from Otay Mesa Rd) located approximately 500 feet east of Caliente Avenue (centerline to centerline) with right-in/right-out only access and a right turn deceleration lane on Otay Mesa Road (deceleration lane required to allow access from a primary arterial).
- 2) Construct Street B to full width (public cul-de-sac extending south from Otay Mesa Rd) located along the eastern project boundary that will align with Emerald Crest Court completing a fourth leg to this existing t-intersection along with a right turn deceleration lane on Otay Mesa Road. Project will remove the existing K-Rail and replace with concrete raised median along with signal installation (as mitigation identified previously).
- 3) Remove the existing K-Rail with fence on Otay Mesa Road from Caliente Avenue and Emerald Crest Ct and replace with concrete raised median.
- 4) Construct a full width raised median on Caliente Avenue from Otay Mesa Road to SR-905 WB Ramp.
- 5) Construct a 6-foot non-contiguous sidewalk along the project frontage on Otay Mesa Road. Replace the existing sidewalk along the project frontage on Caliente Ave with a 6-ft non-contiguous sidewalk that will connect with the existing sidewalk at the Caltrans' ROW.

1.0 Introduction

The proposed California Terraces PA 61 is a mixed-use project with 171 to 267 multi-family units, up to 45,000 sf of commercial/retail space, and a 0.19 acre park located on the southeast corner of Otay Mesa Road and Caliente Avenue in the Otay Mesa community of San Diego, California. The site is currently vacant, graded, and has a perimeter chain link fence. The site is bounded by Otay Mesa Road to the north, Caliente Avenue to the west, State Route-905 (SR-905) to the south, and neighboring property (Handler Commercial Property) to the east. Two points of access are proposed with the project. A right-in/right-out point of access on Otay Mesa Road toward the western end of the project and a full signalized shared access at Otay Mesa Road/Emerald Crest Court. Each of the two access points will have a south leg proposed as a public cul-de-sac as part of this project with a deceleration lane on Otay Mesa Road. The location of the project is shown in **Figure 1** with a preliminary site plan (with 171 units and 45,000 sf commercial) shown in **Figure 2**.


The project requires a Community Plan Amendment (CPA) to re-designate the approximately 14-acre site from Community Commercial – Residential Prohibited to Community Commercial – Residential Permitted Rezone of the eastern portion of the property from CC-1-3 to RM-2-5, and to reclassify Caliente Avenue from Otay Mesa Road to SR-905 WB Ramp from a six-lane Prime to a five-lane Prime. The following discretionary approvals are required as part of the project:


- 1) Vesting Tentative Map
- 2) Site Development Permit
- 3) Master Planned Development Permit
- 4) Neighborhood Development Permit
- 5) Community Plan Amendment Land Use and Roadway Classification
- 6) Street Vacation and Rezone

This report describes the existing roadway network in the vicinity of the project site and includes a review of the existing and proposed conditions for weekday peak AM and PM periods and daily traffic conditions when the project is completed. The Near-Term with Project (Opening Day) is anticipated to be 2020. A horizon year of 2062 represents the anticipated community buildout per the Otay Mesa Community Plan Update EIR. The format of this study includes the following chapters:

- 1.0 Introduction
- 2.0 Study Methodology
- 3.0 Existing Conditions
- 4.0 Project Description
- 5.0 Existing with Project Conditions
- 6.0 Near-Term Year 2020 without Project Conditions
- 7.0 Near-Term Year 2020 with Project (Opening Day) Conditions
- 8.0 Horizon Year 2062 without Project Conditions
- 9.0 Horizon Year 2062 with Project Conditions
- 10.0 Project Impacts and Mitigation Summary
- 11.0 Parking
- 12.0 Transportation Demand Management
- 13.0 On-Site Vehicular and Pedestrian Circulation
- 14.0 Conclusions

Figure 1: Project Location

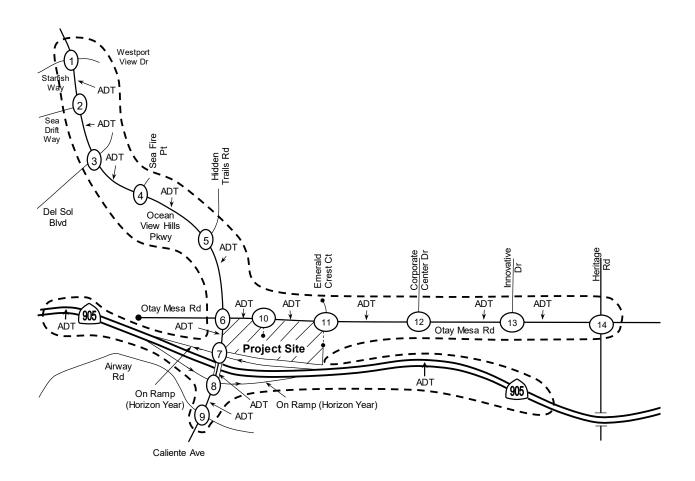
3

Figure 2

2.0 Study Methodology

The parameters by which this transportation impact analysis was prepared included the determination of what transportation facilities are to be analyzed, the scenarios to be analyzed and the methods required for analysis. The criteria for each of these parameters are included herein.

2.1 Study Area Criteria


The project study area was determined by the limits or extent of where 50 directional peak hour project trips would use streets and intersections, where 150 directional peak hour trips would use freeway segment, and where 20 directional peak hour trips would use metered freeway onramps, which are based on City of San Diego *Traffic Impact Study Manual*, July 1998. Study intersection, roadways, and freeway segments are shown on **Figure 3.** Based on the above limits of directional trips, the study area included the following intersections:

- 1) Ocean View Hills Pkwy/Starfish Way/Westport View Dr (signalized)
- 2) Ocean View Hills Pkwy/Sea Drift Way (unsignalized)
- 3) Ocean View Hills Pkwy/Del Sol Blvd/Breakers Way (signalized)
- 4) Ocean View Hills Pkwy/Sea Fire Pt (signalized)
- 5) Ocean View Hills Pkwy/Hidden Trails Rd (signalized)
- 6) Ocean View Hills Pkwy/Otay Mesa Rd/Caliente Ave (signalized)
- 7) Caliente Ave/SR-905 WB Ramp (signalized)
- 8) Caliente Ave/SR-905 EB Ramp (signalized)
- 9) Caliente Ave/Airway Rd (un-signalized)
- 10) Otay Mesa Road / Project Driveway (Does Not Exist)
- 11) Otay Mesa Rd/Emerald Crest Ct (un-signalized)
- 12) Otay Mesa Rd/Corporate Center Rd (signalized)
- 13) Otay Mesa Rd/Innovative Dr (unsignalized)
- 14) Otay Mesa Rd/Heritage Rd (signalized)

The study area included the following street segments:

- 1) Caliente Ave from Otay Mesa Rd to SR-905 WB Ramp
- 2) Caliente Ave from SR-905 WB Ramp to SR-905 EB Ramp
- 3) Caliente Ave from SR-905 EB Ramp to Airway Rd
- 4) Ocean View Hills Pkwy from Starfish Way/Westport View Dr to Sea Drift Way
- 5) Ocean View Hills Pkwy from Sea Drift Way to Del Sol Blvd/Breakers Way
- 6) Ocean View Hills Pkwy from Del Sol Blvd/Breakers Way to Sea Fire Pt
- 7) Ocean View Hills Pkwy from Sea Fire Pt to Hidden Trails Rd
- 8) Ocean View Hills Pkwy from Hidden Trails Rd to Otay Mesa Rd/Caliente Ave
- 9) Otay Mesa Rd from Ocean View Hills Pkwy/Caliente Ave to Project Driveway
- 10) Otay Mesa Road from Project Driveway to Emerald Crest Ct
- 11) Otay Mesa Rd from Emerald Crest Ct to Corporate Center Dr
- 12) Otay Mesa Rd from Corporate Center Dr to Innovative Dr
- 13) Otay Mesa Rd from Innovative Dr to Heritage Rd

Figure 3: Study Area

The study area included the following freeway segments:

- 1) SR-905 from Interstate 805 to Caliente Ave
- 2) SR-905 from Caliente Ave to Britannia Boulevard

The State Route 905 eastbound and westbound on-ramps at Caliente Avenue were analyzed in the horizon year.

2.2 Scenarios

For this project, the following scenarios were analyzed:

- 1) Existing Conditions
- 2) Existing with Project Conditions
- 3) Near-Term Year 2020 without Project Conditions
- 4) Near-Term Year 2020 with Project (Opening Day) Conditions
- 5) Horizon Year 2062 without Project Conditions
- 6) Horizon Year 2062 with Project Conditions

2.3 Traffic Analysis

The traffic analyses prepared for this study were based on the 2000 and 2010 Highway Capacity Manual (HCM) operations analysis using Level of Service (LOS) evaluation criteria. The operating conditions of the study intersections, street segments, and freeway segments were measured using the HCM LOS designations, which ranges from A through F. LOS A represents the best operating condition and LOS F denotes the worst operating condition. This traffic study was prepared using the City of San Diego criteria with a completed traffic study checklist included in **Appendix A**. Metered freeway on-ramps were evaluated using City of San Diego criteria of vehicle delay and queue length. The individual LOS criteria for each roadway component are described below.

2.3.1 Intersections

The study intersections were analyzed based on the **operational analysis** outlined in the 2010 HCM. This process defines LOS in terms of **average control delay** per vehicle, which is measured in seconds. LOS at the intersections were calculated using the computer software program Synchro 10 (Trafficware Corporation). The HCM LOS for the range of delay by seconds for un-signalized and signalized intersections is described in **Table 1**.

TABLE 1: INTERSECTION LEVEL OF SERVICE DEFINITIONS (HCM 2010)

Level of Service	Un-Signalized (TWSC and AWSC)	Signalized
	Control Delay (seconds/vehicle)	Control Delay (seconds/vehicle)
Α	0-10	<u>≤</u> 10
В	> 10-15	> 10-20
С	> 15-25	> 20-35
D	> 25-35	> 35-55
Е	> 35-50	> 55-80
F	> 50	> 80

TWSC: Two Way Stop Control. AWSC: All Way Stop Control. Source: Highway Capacity Manual 2010 (exhibit 19-1 for two way stop control, exhibit 20-2 for all way stop control, and exhibit 18-4 for signalized intersections). For unsignalized intersections, the control delay is the worst movement delay in seconds/vehicle.

Please note that the HCM 2010 computation algorithm does not support turning movement with shared and exclusive lanes, therefore, the intersections of Caliente Avenue at Airway Road and Otay Mesa Road at Corporate Center Road were analyzed using HCM 2000 LOS. The 2000 HCM LOS for un-signalized and signalized intersections is described in **Table 2**.

TABLE 2: INTERSECTION LEVEL OF SERVICE (HCM 2000)

	<u> </u>	
Level of Service	Un-Signalized	Signalized
	Average Control Delay (seconds/vehicle)	Average Control Delay (seconds/vehicle)
Α	0-10	0-10
В	> 10-15	> 10-20
С	> 15-25	> 20-35
D	> 25-35	> 35-55
E	> 35-50	> 55-80
F	> 50	> 80

Source: Highway Capacity Manual 2000. For unsignalized intersections, the control delay is the worst movement delay in seconds/vehicle.

2.3.2 Street Segments

The street segments were analyzed based on the functional classification of the roadway using the City of San Diego *Average Daily Vehicle Trips* capacity lookup table (**Appendix B**). The roadway segment capacity and LOS standards used to analyze street segments are summarized in **Table 3**.

TABLE 3: STREET SEGMENT DAILY CAPACITY AND LOS (CITY OF SAN DIEGO)

INDEL 3. STREET SECTIVILITY DATE OF ACTIO	AND LOS (CITT	OI SAN DILOU	,		
Circulation Element	LOS	LOS	LOS	LOS	LOS
Road Classification	Α	В	С	D	E
Expressway – 6 Lanes	<30,000	<42,000	<60,000	<70,000	<80,000
Prime Arterial – 6 Lanes	<25,000	<35,000	<50,000	<55,000	<60,000
Major Arterial – 6 Lanes	<20,000	<28,000	<40,000	<45,000	<50,000
Major Arterial – 5 Lanes*	<17,500	<24,500	<35,000	<40,000	<45,000
Major Arterial – 4 Lanes	<15,000	<21,000	<30,000	<35,000	<40,000
Collector – 5 Lanes**	<12,500	<17,500	<25,000	<30,000	<35,000
Collector – 4 Lanes	<10,000	<14,000	<20,000	<25,000	<30,000
Collector (no Center Ln) – 4 Lanes	<5,000	<7,000	<10,000	<13,000	<15,000
Collector (with TWLTL) – 2 Lanes					
Collector – 2 Lanes	<4,000	<5,500	<7,500	<9,000	<10,000
(no fronting property)					
Collector – 2 Lanes	<2,500	<3,500	<5,000	<6,500	<8,000
(commercial-industrial fronting)					
Collector – 2 Lanes	<2,500	<3,500	<5,000	<6,500	<8,000
(multi-family)					
Sub-Collector – 2 Lanes			<2,200		
(multi-family)					

Source: City of San Diego *Traffic Impact Study Manual* July 1998, page 8. **5 lane Collector capacity calculated as average between 4 lane Major and 4 lane Collector to be consistent with proportionality applied to other 5 lane capacities.

2.3.3 Freeway Segments

The freeway segments were analyzed based on a multilane highway LOS criteria using a Volume to Capacity (V/C) ratio as outlined in the 2000 HCM. The accepted methodology by Caltrans for the analysis of freeway sections is to use the most current edition of the HCM as noted on page 5 of Caltrans' *Guide for the Preparation of Traffic Impact Studies*, December 2002, which also documents a maximum service flow rate of 2,350 passenger cars per hour per lane. The freeway LOS operations are based on the Caltrans' 2002 Guide for the Preparation of Traffic Impact Studies (Dec 2002) V/C ratios as summarized below in **Table 4**. Excerpts from the Caltrans guide showing Freeway LOS and maximum service flow rate are included in **Appendix C**.

TABLE 4: FREEWAY LEVEL OF SERVICE

Measure of Effectiveness	LOS A	LOS B	LOS C	LOS D	LOS E
Volume/Capacity Ratio	0.30	0.50	0.71	0.89	1.00

Source: Caltrans' Guide for the Preparation of Traffic Impact Studies.

2.3.4 Metered Freeway On-Ramps

Caltrans was contacted to request on-ramp meter rates at Caliente Avenue/SR-905. Caltrans replied that they are currently not metered; therefore, an on-ramp analysis is not provided for existing and near-term conditions. For horizon year conditions, a ramp meter analysis was prepared using the horizon year rate used in the Otay Mesa Community Plan Update EIR. A significant impact occurs if the queue is greater than 15 minutes and the downstream vehicular LOS is E or F. Caltrans correspondence and CPU EIR ramp meter rate are included in **Appendix D**.

2.4 Significance Criteria

A project is considered to have caused a significant impact if the new project traffic has degraded an acceptable LOS to an unacceptable LOS (i.e. E or F) or has decreased the operations on the surrounding roadways by the City of San Diego defined thresholds as shown in **Table 5**.

TABLE 5: CITY OF SAN DIEGO TRAFFIC IMPACT SIGNIFICANCE THRESHOLDS

Level of Service	Allowable Increase Due to Project Impacts ¹									
with Project	Freeways	Roadw	ay Segments	Intersections	Ramp Metering					
	V/C	V/C	Speed (mph)	Delay (sec.)	Delay (min.)					
E ²	0.01	0.02	1.0	2.0	2.03					
F^2	0.005	0.01	0.5	1.0	1.0 ³					

Source: City of San Diego. Notes:

¹ If a proposed project's traffic impact exceeds the values shown in the table, then the impacts are deemed "significant." The project applicant shall identify "feasible mitigations" to achieve LOS D or better. ² The acceptable Level of Service (LOS) standard for roadways and intersections in San Diego is LOS D. However, for undeveloped locations, the goal is to achieve a LOS C. ³ The impact is only considered significant if the total delay exceeds 15 minutes AND freeway is operating at LOS E/F. Delay measured in seconds. V/C = Volume to Capacity Ratio (capacity at LOS E should be used). Speed = Arterial speed measured in miles per hour for CMP analyses.

If a significant impact is calculated due to the addition of project traffic, then a feasible mitigation is required to return the facility to the pre-project condition or better, else the impact may be considered significant and unmitigated.

2.5 Congestion Management Program Criteria

The San Diego Association of Governments (SANDAG) has the following statement on their website regarding the Congestion Management Program (CMP):

"In October 2009, the San Diego region elected to be exempt from the State CMP and, since this decision, SANDAG has been abiding by 23 CFR 450.320 to ensure the region's continued compliance with the federal congestion management process."

3.0 Existing Conditions

This section describes the study area street system, peak hour intersection volumes, daily roadway volumes, and existing LOS.

3.1 Existing Street System

In the vicinity of the project, the following roadways and State Route were analyzed as part of this study.

Caliente Avenue from Otay Mesa Road to Airway Road is classified as a 6-Lane Prime in the City of San Diego Otay Mesa Community Plan Update, March 2014 (excerpts included in Appendix E). Caliente Avenue from Otay Mesa Road to SR-905 WB Ramp is currently constructed as a five (5) lane undivided roadway (three southbound and two northbound lanes), with Class II bike lanes in each direction, and on-street parking prohibited on both side of the roadway. There is a transition in the directionality of the five (5) lanes on the bridge over SR-905 between the WB Ramp and EB Ramp. Caliente Avenue on the bridge has three (3) southbound lanes to which one lane becomes a trap lane for southbound left turns onto eastbound SR-905. This results in two (2) southbound lanes across the SR-905 EB Ramp intersection. In the northbound direction, the three (3) lanes on the bridge approach the SR-905 WB Ramp intersection with a designated left-turn lane and three through lanes. The northbound vehicles are received by four (4) lanes with a designated left turn lane, two through lanes, and a designated right turn lane at the intersection of Otay Mesa Road/Ocean View Hills/Caliente Avenue. Thus, there are two (2) northbound lanes between SR-905 WB Ramp and Otay Mesa Road. From SR-905 WB Ramp to Airway Road, Caliente Avenue is constructed as a five (5) lane undivided roadway with three (3) northbound lanes and two (2) southbound lanes, bike lanes in each direction, and on-street parking prohibited on both sides of the roadway. A posted speed limit was not observed on these segments. Contiguous sidewalks are present on both sides of the street.

Ocean View Hills Parkway from Starfish Way/Westport View Drive to Del Sol Boulevard/Breakers Way is classified as a 4-Lane Major in the City of San Diego Otay Mesa Community Plan Update, March 2014, constructed as a four (4) lane divided roadway, posted at 45 Miles per Hour (MPH) with Class II bike lanes on each side of the roadway, and on-street parking prohibited on both side of the roadway. From Del Sol Boulevard/Breakers Way to Otay Mesa Road, Ocean View Hills Parkway is classified as a 6-Lane Major in the City of San Diego Otay Mesa Community Plan Update, constructed as a six (6) lane divided roadway, posted at 45 MPH in the southbound direction and 40 MPH in the northbound direction with bike lanes on each side of the roadway, and on-street parking prohibited on both sides of the roadway. Non-contiguous sidewalk is present on both sides of the street.

Otay Mesa Road from Caliente Avenue to Heritage Road is classified as a 6-Lane Prime in the City of San Diego Otay Mesa Community Plan Update, March 2014. This segment of roadway is constructed as a six (6) lane divided roadway with three lanes in each direction. The posted speed limit is 50 MPH. The south side of Otay Mesa Road has a break-down/shoulder lane. The north side of Otay Mesa Road was observed to have vehicles parking in the shoulder lane. Class III bike route signs were observed on Otay Mesa Road in the project vicinity. West of Caliente Avenue,

Otay Mesa Road extends westerly for approximately 1,300 feet and then terminates in a cul-de-sac. Non-contiguous sidewalk is present on the north side of Otay Mesa Road from Oceanview Hills Parkway to approximately 650 feet east of Emerald Crest Court with contiguous sidewalk from Corporate Center Drive to Innovative Drive and non-contiguous sidewalk from Innovative Drive easterly for approximately 750 feet. There are no sidewalks between the sections described above on the north side and no sidewalks on the southside of Otay Mesa Road between Oceanview Hills Parkway and Heritage Road.

State Route 905 (SR-905) from Interstate 805 to Britannia Boulevard is classified as a *Freeway* in the City of San Diego *Otay Mesa Community Plan Update*, March 2014. SR-905 from I-805 to Caliente Avenue is currently built as an eight (8) lane divided freeway (4 lanes each direction). From Caliente Avenue to Britannia Boulevard, SR-905 is constructed as a six (6) lane divided freeway (3 lanes each direction). A posted speed limit of 65 MPH was observed on the westbound side of the freeway.

3.2 Multi-Modal Transportation

This section describes the existing multi-modal transportation elements near the project site.

3.2.1 Transit

Metropolitan Transit System (MTS) provides bus service as Route 905a and 905b along the project frontage on Otay Mesa Road and Caliente Avenue. The Route 905 bus stop on the EB off-ramp at SR-905/Caliente Ave is located approximately 2,200 feet from the center of the residential project using a path of sidewalks and crosswalks. The Route 905 bus stop on the WB off-ramp at SR-905/Caliente Ave is located approximately 1,700 feet from the center of the residential project using a path of sidewalks and crosswalks. The Route 905 bus stop on the north side of Otay Mesa Road east of Corporate Center Drive is located approximately 2,500 feet from the center of the residential project using a path of sidewalks and crosswalks.

Route 905a has Monday through Friday service starting around 5:00 AM and ending around 9:00 PM while 905b has Monday through Friday service starting around 8:00 AM and ending around 6:00 PM. Route 905b starts with approximately 20-minute headways and then alternates 20-minute headways with Route 905b during the schedule of Route 905b. Weekend service is provided for Route 905 starting around 5:00 AM with approximately 20-minute headways until approximately 3:00 PM and then 1-hour headways until approximately 7:00 PM. Route 950 is an express service that follows SR-905 and does not exit at Caliente Avenue. Route 950 has Monday through Friday service from around 4:30 AM to approximately 9:30 PM. A route map and specific service times with frequency are outlined in the bus schedule that is included in **Appendix F**. The applicant has coordinated with MTS and determined that MTS desires a future bus stop on the southeast corner of Otay Mesa Road at Street B/Emerald Crest Court. Since this future bus stop location is not along the project frontage, the applicant would not provide bus stop improvements on another parcel.

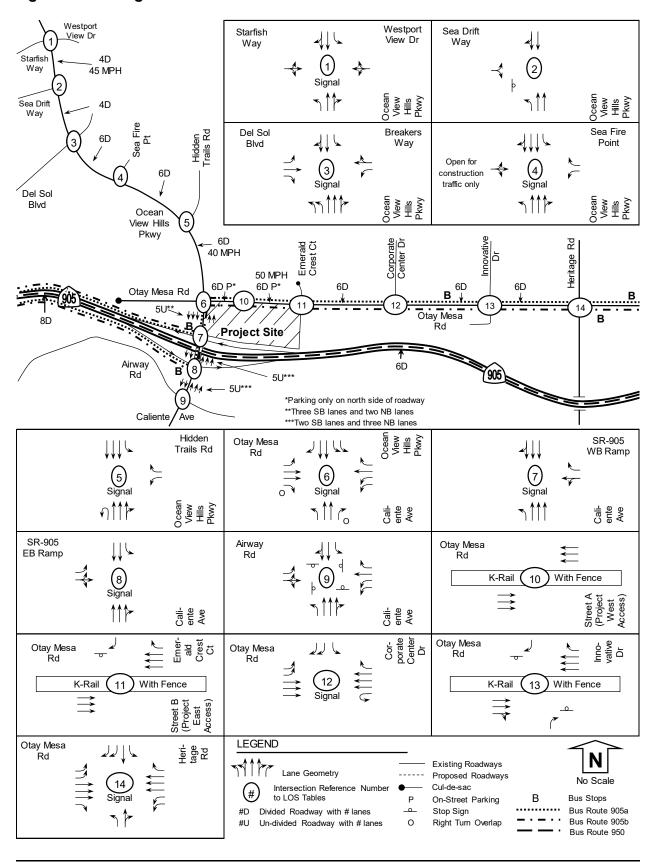
3.2.2 Bicycle

Existing Bicycle Lanes and Routes

Class II bike lanes were observed on Caliente Avenue and along Ocean View Hills Parkway in the project vicinity. Class III bike route signs were observed on Otay Mesa Road in the project vicinity (according to City staff, this bike route along Otay Mesa Road is proposed to be upgraded to Class II).

Proposed Bicycle Lanes and Routes

The City of San Diego *Bicycle Master Plan*, December 2013 shows a Class III bike route along Otay Mesa Road and Class II bike lanes along Ocean View Hills Parkway. The *Otay Mesa Community Plan Update* shows Class II bike lanes on Otay Mesa Road and Class II bike lanes along Ocean View Hills Parkway and on Caliente Avenue. The *Otay Mesa Community Plan Update* also shows near-by proposed bike lanes such as a Class I bicycle route planned along the south side of Airway Road. Excerpts from the City of San Diego *Bicycle Master Plan Update* and the *Otay Mesa Community Plan Update* are included in **Appendix G**.


3.2.3 Pedestrian

There are currently 6-foot contiguous sidewalks along both side of Caliente Avenue adjacent to the project site. There are no sidewalks along the south side of Otay Mesa Road along the project frontage. The project will construct a 6-ft non-contiguous sidewalk along the project frontage on Otay Mesa Road and a 6-ft non-contiguous sidewalk along Caliente Avenue, especially since the project will contain residential units and students will likely walk to school along the internal drives and perimeter streets.

3.2.4 Existing Conditions Map

The existing roadway conditions along with the bus route and bus stops are shown in **Figure 4**. Copies of the City of San Diego community plan roadway classification and land use excerpts are included in Appendix E.

Figure 4: Existing Conditions

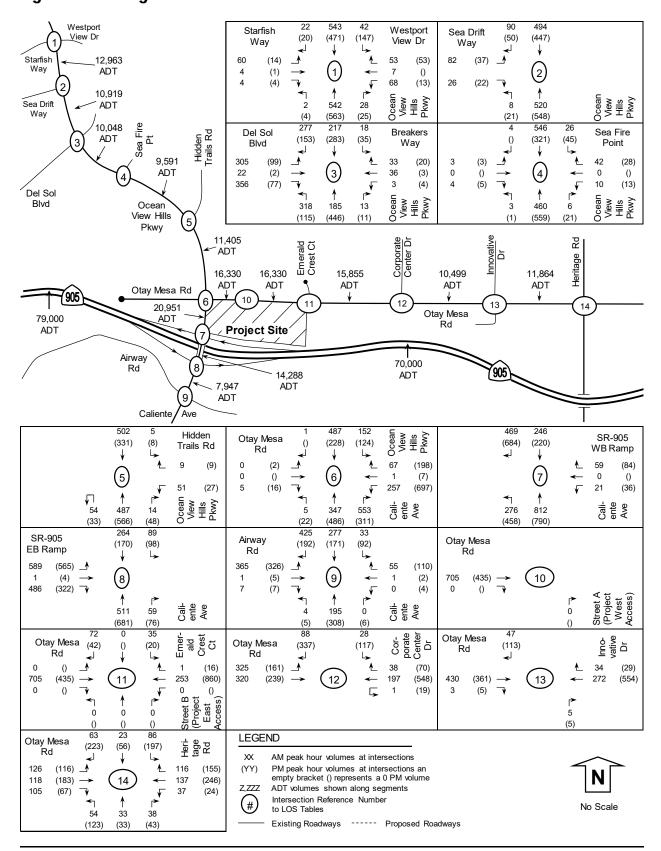
3.3 Existing Traffic Volumes and LOS Analyses

Existing counts were collected between 7:00 AM and 9:00 AM for the AM commuter period and from 4:00 PM to 6:00 PM for the PM commuter period on Wednesday, January 18, 2018 (unless noted below). Street segment counts were also taken on that day. The intersections included:

- 1) Ocean View Hills Pkwy/Starfish Way-Westport View Drive
- 2) Ocean View Hills Pkwy/Sea Drift Way
- 3) Ocean View Hills Pkwy/Del Sol Blvd-Breakers Way
- 4) Ocean View Hills Pkwy/Sea Fire Point
- 5) Ocean View Hills Pkwy/Hidden Trails Rd
- 6) Ocean View Hills Pkwy/Otay Mesa Rd
- 7) Caliente Ave/SR-905 WB Ramp
- 8) Caliente Ave/SR-905 EB Ramp
- 9) Caliente Ave/Airway Road
- 10) Otay Mesa Road/Project Driveway (DNE not analyzed under Existing Conditions)
- 11) Otay Mesa Road/Emerald Crest Ct
- 12) Otay Mesa Road/Corporate Center Dr
- 13) Otay Mesa Road/Innovative Dr (Tuesday, September 11, 2018)
- 14) Otay Mesa Road/Heritage Rd

Existing street segments daily volumes were collected on Wednesday, January 18, 2018 (unless noted below) for the following locations:

- 1) Ocean View Hills Pkwy between Starfish Way and Sea Drift Way
- 2) Ocean View Hills Pkwy between Sea Drift Way and Del Sol Blvd
- 3) Ocean View Hills Pkwy between Del Sol Blvd and Sea Fire Pt
- 4) Ocean View Hills Pkwy between Sea Fire Pt and Hidden Trails Rd
- 5) Ocean View Hills Pkwy between Hidden Trails Rd and Otay Mesa Rd
- 6) Caliente Ave between Otay Mead Rd and SR-905 WB Ramp
- 7) Caliente Ave between SR-905 WB Ramp and SR-905 EB Ramp
- 8) Caliente Ave between SR-905 EB Ramp and Airway Rd
- 9) Otay Mesa Road between Ocean View Hills Pkwy and Emerald Crest (please note there is no median break at Emerald Crest Ct)
- 10) Otay Mesa Road between Emerald Crest Ct and Corporate Center Dr (please note there is no median break at Emerald Crest Ct)
- 11) Otay Mesa Road between Corporate Center Dr and Innovative Dr
- 12) Otay Mesa Road between Innovative Dr and Heritage Rd (Tuesday, Sept 11, 2018)


Counts for the following freeway segments were obtained from Caltrans (2016 data):

- 1) SR-905 from I-8 to Caliente Avenue
- 2) SR-905 from Caliente Avenue to Heritage Road

The State Route 905 eastbound and westbound on-ramps at Caliente Avenue are currently not metered.

The existing AM, PM, and ADT volumes are shown on Figure 5, with count data included in **Appendix H**. LOS for existing conditions are shown in **Tables 6 through 8**. Existing peak hour intersection LOS calculations are included in **Appendix I**.

Figure 5: Existing Volumes

TABLE 6: EXISTING INTERSECTION LEVEL OF SERVICE

Intersection and	Movement	Study _	Exi	sting
(Analysis) ¹		Period	Delay ²	LOS ³
1) Ocean View Hills Pkwy	All	AM	15.9	В
at Starfish/Westport (S)	All	PM	16.1	В
2) Ocean View Hills Pkwy	EB LR	AM	16.6	С
at Sea Drift Wy (U)	NB L	AM	8.9	Α
. ,	EB LR	PM	14.4	В
	NB L	PM	8.8	Α
3) Ocean View Hills Pkwy	All	AM	34.6	С
at Del Sol/Breakers (S)	All	PM	17.5	С
1) Ocean View Hills Pkwy	All	AM	9.0	A
at Sea Fire Pt (S)	All	PM	9.8	Α
o) Ocean View Hills Pkwy	All	AM	4.6	Α
at Hidden Trails Rd (S)	All	PM	4.5	Α
6) Ocean View Hills Pkwy	All	AM	21.9	С
at Caliente/Otay Mesa (S)	All	PM	27.4	С
7) Caliente Ave at	All	AM	15.4	В
SR-905 WB Ramp (S)	All	PM	53.6	D
3) Caliente Ave at	All	AM	33.7	С
SR-905 EB Ramp (S)	All	PM	31.4	С
Caliente Ave at	All	AM	124.8	F
Airway Rd (U)	All	PM	27.4	D
0) Otay Mesa Rd at	NB R	AM	DNE	NA
Project West Access (U)	NB R	PM	DNE	NA
11) Otay Mesa Rd at	SB R	AM	10.4	В
Emerald Crest Ct (U)	SB R	PM	13.7	В
2) Otay Mesa Rd at	All	AM	24.5	С
Corporate Center Rd (S)	All	PM	21.6	С
3) Otay Mesa Rd at	NB R	AM	10.6	В
nnovative Dr (U)	SB R	AM	10.2	В
	NB R	PM	10.3	В
	SB R	PM	12.7	В
14) Otay Mesa Rd at	All	AM	29.6	С
Heritage Rd (S)	All	PM	33.3	С

Notes: 1) Intersection Analysis - (S) Signalized, (U) Unsignalized. 2) Delay - HCM Average Control Delay in seconds. 3) LOS: Level of Service. DNE: Does Not Exist. NA: Not Applicable. Bold indicated unacceptable LOS. Note: Intersections 11 and 13 are right-in, right-out only.

TABLE 7: EXISTING SEGMENT ADT VOLUMES AND LEVEL OF SERVICE

	Classification:			Existing	
Segment	Ultimate and	LOS E	Daily		
	(Functional)	Capacity	Volume	V/C	LOS
Caliente Avenue					
Otay Mesa Rd to SR-905 WB Ramp	6P (5C)	35,000	20,951	0.599	С
SR-905 EB Ramp to SR-905 EB Ramp	6P (5C)	35,000	14,288	0.408	В
SR-905 EB Ramp to Airway Rd	6P (5C)	35,000	7,947	0.227	Α
Ocean View Hills Parkway					
Starfish Way/Westport View to Sea Drift Way	4M (4M)	40,000	12,963	0.324	Α
Sea Drift Way to Del Sol Blvd	4M (4M)	40,000	10,919	0.273	Α
Del Sol Blvd to Sea Fire Pt	6M (6M)	50,000	10,048	0.201	Α
Sea Fire Pt to Hidden Trails Rd	6M (6M)	50,000	9,591	0.192	Α
Hidden Trails Rd to Otay Mesa Rd	6M (6M)	50,000	11,405	0.228	Α
Otay Mesa Road					
Ocean View Hills Pkwy to Proj. W. Access	6P (6P)	60,000	16,330	0.272	Α
Proj. W. Access to Emerald Crest Ct	6P (6P)	60,000	16,330	0.272	Α
Emerald Crest Ct to Corporate Center Dr	6P (6P)	60,000	15,855	0.264	Α
Corporate Center Dr to Innovative Dr	6P (6P)	60,000	10,499	0.175	Α
Innovative Dr to Heritage Rd	6P (6P)	60,000	11,864	0.198	Α

Notes: 6P=6 lane Prime, 6M = 6 lane Major, 5C=5 lane Collector, 4M=4 lane Major. Daily volume is a 24 hour volume. LOS: Level of Service. V/C: Volume to Capacity Ratio.



TABLE 8: EXISTING STATE ROUTE VOLUMES AND LEVEL OF SERVICE

State Route		SR-	905			SR-905						
Segment		I-805 to Ca	aliente Ave		Ca	Caliente Ave to Britannia Blvd						
Existing Year 2016 ADT		79,	000			70,	000					
Peak Hour	A M P M				Α	M	Р	M				
Direction	EB	WB EB W		WB	EB	WB	EB	WB				
Number of Lanes	4	4	4	4	3	3	3	3				
Capacity (1)	9,400	9,400	9,400	9,400	7,050	7,050	7,050	7,050				
K Factor (2)	0.0761	0.0761	0.0902	0.0902	0.0761	0.0761	0.0902	0.0902				
D Factor (3)	0.6624	0.3376	0.4124	0.5876	0.6624	0.3376	0.4124	0.5876				
Truck Factor (4)	0.8811	0.8811	0.8811	0.8811	0.8811	0.8811	0.8811	0.8811				
Peak Hour Volume	4,520	2,304	3,335	4,752	4,005	2,041	2,955	4,211				
Volume to Capacity	0.481	0.245	0.355	0.506	0.568	0.290	0.419	0.597				
Existing LOS	В	Α	В	С	С	Α	В	С				

Notes: (1) Capacity of 2,350 pcphpl from CALTRANS' Guide for the Preparation of Traffic Impact Studies, December 2002. (2) K factor from Caltrans, which is the percentage of AADT in both directions. (3) D factor from Caltrans, which when multiplied by K and ADT will provide peak hour volume. (4) Truck factor from Caltrans. Excel rounding may result in ±1 above.

Under existing conditions, the study intersections, street segments, and state route segments were calculated to operate at LOS D or better except for the intersection of Caliente Avenue at Airway Road (LOS F AM). The Caliente Avenue/SR-905 on-ramps are not metered under this scenario.

HCM 2010 software does not permit more than three approach lanes for analysis under all-way stop conditions; therefore, the analysis had a reduction in the number of approach lanes. The software decreases the northbound and westbound movement approach lanes from 4 approach lanes to 3 approach lanes each, although the southbound movements were failing.

4.0 Project Description

The proposed California Terraces PA 61 is a mixed-use project with 171 to 267 multi-family units, up to 45,000 sf of commercial/retail space, and a 0.19 acre private park. The site of approximately 14 acres is currently vacant. The project is anticipated to open in 2020. The City of San Diego *Otay Mesa Community Plan* identifies the site as Community Commercial (Appendix E). The project requires a CPA to redesignate the site from Community Commercial – Residential Prohibited to Community Commercial – Residential Permitted and to rezone the eastern portion of the property from CC-1-3 to RM-2-5. The following discretionary approvals are required as part of the project:

- 1) Vesting Tentative Map
- 2) Site Development Permit
- 3) Master Planned Development Permit
- 4) Neighborhood Development Permit
- 5) Community Plan Amendment Land Use and Roadway Classification
- 6) Street Vacation and Rezone

4.1 Project Site Access

Two new public cul-de-sac streets are proposed as part of the project (Street A and Street B). Project access will be from driveways on these cul-de-sac streets. A right-in/right-out only point of access is proposed on Otay Mesa Road approximately 500 feet east of Caliente Avenue (centerline to centerline, Street A) and a full signalized shared access at Otay Mesa Road/Emerald Crest Court/ Street B. The intersection of Otay Mesa Road /Emerald Crest Court will be signalized by the first applicant to obtain building permits between this project and the adjacent Handler commercial project, unless it is completed beforehand as outlined in the Deferred Improvement Agreement between Garden Communities and City of San Diego dated 4/24/2007. Additionally, Pardee and Handler have letters of permission for offsite grading/improvements from each other (included in **Appendix J**) to allow the first in line to proceed with the full construction of Street B (southerly extension of Emerald Crest Ct); however, Pardee agrees to the conditions of approval that requires the construction of Street B if Pardee precedes the adjacent Handler commercial project. Each of the two access points will have a dedicated right turn deceleration lane along Otay Mesa Road.

Street B will also serve the adjacent and easterly parcel currently being processed as the Handler Commercial improvement plans. Coordination is on-going with the Handler Commercial applicant. The California MUTCD Figure 4C-103 (Average Traffic Estimate Form) signal warrant analysis is satisfied with the addition of project traffic for a traffic signal at the intersection of Otay Mesa Road/Street B/Emerald Crest Court. The traffic signal warrant is also included in Appendix J.

4.2 **Project Trip Generation**

The trip generation for the project was calculated using trip rates from the City of San Diego *Trip Generation Manual*, May 2003 (excerpt included in **Appendix K**). Two trip generation rates were applied: a driveway rate for project access points and intersection of Otay Mesa Road/ Caliente Avenue/Ocean View Hills Parkway and a cumulative rate that was applied for all other analyzed roadways.

A Series 13, year 2050 SANDAG Select Zone Assignment for the project land uses documented an internal capture rate of 2.8% that was applied to the trip generation. The SANDAG internal capture rate is included in **Appendix L**. The residential density is greater than 20 units per acres (267 du/9.2 acres = 29.0 du/acre).

The project driveway volumes were calculated at 6,816 ADT with 336 AM peak hour trips (152 inbound and 184 outbound) and 717 PM peak hour trips (387 inbound and 330 outbound). The cumulative traffic volumes were calculated at 4,716 ADT with 252 AM peak hour trips (101 inbound and 151 outbound) and 486 PM peak hour trips (271 inbound and 215 outbound) as shown in **Table 9**.

TABLE 9: PROJECT TRIP GENERATION AS ANALYZED IN THIS TIA (HIGHEST DENSITY RESIDENTIAL WITH 267 UNITS)

Land Use	Dai	ly					Δ	M				Р	М
Land USE	Rat	te Size	& Units	ADT	%	Split	IN	OUT	%	Sp	lit	IN	OUT
Driveway Trips													
Neighborhood Shopping Center	120 /I	KSF 45,0	00 SF	5,400	4%	0.6 0.4	130	86	11%	0.5	0.5	297	297
Multi Family (over 20 du/ac)	6 /I	DU 26	7 DU	1,602	8%	0.2 0.8	26	103	9%	0.7	0.3	101	43
Developed Park	50 //	Acre 0.1	9 Acres	10	4%	0.5 0.5	0	0	8%	0.5	0.5	0	0
SANDAG Traffic M	lodel In	iternal Cap	ure 2.8%	<u>-196</u>			<u>-4</u>	<u>-5</u>				<u>-11</u>	<u>-10</u>
	Extern	nal Drivew	ay Trips:	6,816			152	184				387	330
Cumulative Trips				•									
Neighborhood Shopping Center	72 /I	KSF 45,0	00 SF	3,240	4%	0.6 0.4	78	52	11%	0.5	0.5	178	178
Multi Family (over 20 du/ac)	6 /I	DU 26	7 DU	1,602	8%	0.2 0.8	26	103	9%	0.7	0.3	101	43
Developed Park	50 //	Acre 0.1	9 Acres	10	4%	0.5 0.5	0	0	8%	0.5	0.5	0	0
SANDAG Traffic M	lodel In	iternal Cap	ure 2.8%	<u>-136</u>			<u>-3</u>	<u>-4</u>				<u>-8</u>	<u>-6</u>
E	xterna	l Cumulati	ve Trips:	4,716			101	151				271	215

Source: City of San Diego Trip Generation Manual, May 2003. SF - Square Feet; ADT-Average Daily Traffic. Totals above ±1 due to Excel rounding.

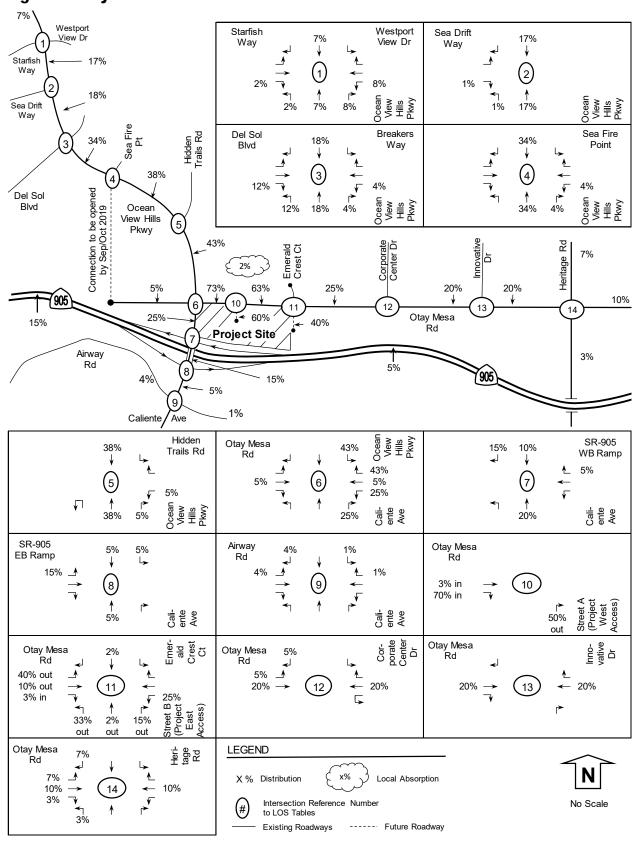
If the final project has fewer units, the trip generation will decrease until reaching 183 units at which time the density decreases to less than 20 du/acre (183 du/9.2ac = 19.9 du/acre). At 183 units, the applicable trip generation rate of 8 ADT/du results in 1,464 ADT with 117 AM peak hour trips (23 inbound and 94 outbound) and 146 PM peak hour trips (102 inbound and 44 outbound). When compared to the 183 units at the higher trip rate, 267 units at 6 ADT/du is calculated to generate 1,602 ADT (138 more ADT), 128 AM peak hour trips (11 more peak hour trips), and 144 PM peak hour trips.

If the project is completed at a lower density as shown on the site plan with only 171 dwelling units, then the project driveway volumes were calculated at 6,656 ADT with 320 AM peak hour trips (149 inbound and 171 outbound) and 718 PM peak hour trips (386 inbound and 332 outbound). The cumulative traffic volumes were calculated at 4,535 ADT with 235 AM peak hour trips (98 inbound and 137 outbound) and 484 PM peak hour trips (269 inbound and 215 outbound) as shown in **Table** 10.

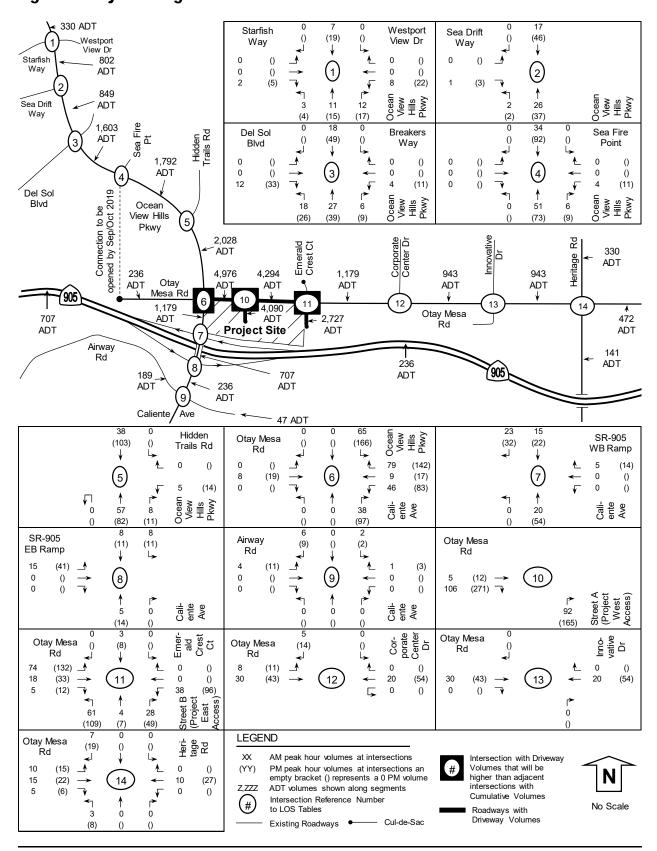
SF - Square Feet; ADT-Average Daily Traffic; Split-percent inbound and outbound.

TABLE 10: PROJECT TRIP GENERATION NOT ANALYZED (LOWEST DENSITY RESIDENTIAL WITH 171 UNITS)

Land Use								Α	M				Р	М
Land Ose	R	late	Size &	Units	ADT	%	Split	IN	OUT	%	Sp	olit	IN	OUT
Driveway Trips														
Neighborhood Shopping Center	120	/KSF	45,000	SF	5,400	4%	0.6 0.4	130	86	11%	0.5	0.5	297	297
Residential - Multi Family	8	/DU	171	DU	1,368	8%	0.2 0.8	22	88	10%	0.7	0.3	96	41
Developed Park	50	/Acre	0.19	Acres	10	4%	0.5 0.5	0	0	8%	0.5	0.5	0	0
SAN	DAG	Interna	l Captur	e 1.8%	<u>-122</u>			<u>-3</u>	<u>-3</u>				<u>-7</u>	<u>-6</u>
	Exte	ernal D	riveway	Trips:	6,656			149	171				386	332
Cumulative Trips														
Neighborhood Shopping Center	72	/KSF	45,000	SF	3,240	4%	0.6 0.4	78	52	11%	0.5	0.5	178	178
Residential - Multi Family	8	/DU	171	DU	1,368	8%	0.2 0.8	22	88	10%	0.7	0.3	96	41
Developed Park	50	/Acre	0.19	Acres	10	4%	0.5 0.5	0	0	8%	0.5	0.5	0	0
SAN	DAG	Interna	l Captur	e 1.8%	<u>-83</u>			<u>-2</u>	<u>-3</u>				<u>-5</u>	<u>-4</u>
E	xter	nal Cur	nulative	Trips:	4,535			98	137				269	215


Source: City of San Diego Trip Generation Manual, May 2003. SF - Square Feet; ADT-Average Daily Traffic. Totals above ±1 due to Excel rounding.

4.3 Project Distribution and Assignment


Project traffic was distributed to the adjacent roadway network based on coordination with City staff, a review of existing traffic patterns, surrounding land uses, existing and future network changes, and a Series 13 Year 2050 SANDAG Select Zone Assignment (Appendix L). The project distribution is shown in **Figure 6**. The project assignment is shown in **Figure 7** to which driveway trips are applied to intersections #6, #10 and #11 to comply with the City of San Diego *Traffic Impact Study Manual*, July 1998 that states on page 13 "All site access points should be evaluated using the higher driveway rates."

SF - Square Feet; ADT-Average Daily Traffic rounded to nearest 10 for total; Split-percent inbound and outbound.

Figure 6: Project Distribution

Figure 7: Project Assignment

5.0 Existing with Project Conditions

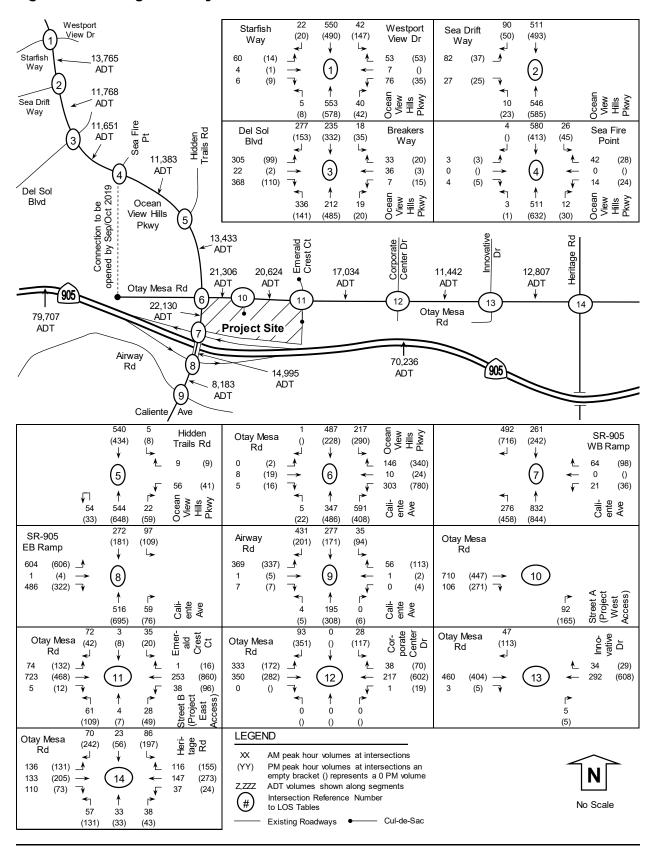

This scenario documents the addition of project traffic onto existing traffic for AM peak hour, PM peak hour, and daily conditions with volumes shown in **Figure 8**. Also shown on Figure 8 are the new south leg volumes at intersections 10 and 11. The opening year of the project is anticipated to be year 2020 in which the roadway connection on Ocean View Hills Parkway and Otay Mesa Road (shown in Figures 6 and 7) is scheduled to be opened by September or October of 2019. The existing with project roadway conditions are shown in **Figure 9**. The following analyses incorporated the aforementioned improvements by others along with project access improvements as part of the project. LOS operations for existing with project conditions are shown in **Tables 11 through 13**. LOS calculations are included in **Appendix M**.

TABLE 11: EXISTING WITH PROJECT INTERSECTION LEVEL OF SERVICE

Intersection and	Movement		Exist			Fxisting	+ Projec	
	ovomone	Period	Delay ²	LOS ³	Delay ²	LOS	Delta ⁴	Impact? ⁵
(Analysis) ¹ 1) Ocean View Hills Pkwy	All	AM	15.9	В	16.4	В	0.5	No
at Starfish/Westport (S)	All	PM	16.1	В	17.4	В	1.3	No
2) Ocean View Hills Pkwy	EB LR	AM	16.6	C	17.4	C	0.4	No
at Sea Drift Wy (U)	NB L	AM	8.9	A	9.0	A	0.4	No
at Sea Difft Wy (O)	EB LR	PM	14.4	В	15.1	Ĉ	0.7	No
	NB L	PM	8.8	A	9.0	A	0.7	No
3) Ocean View Hills Pkwy	All	AM	34.6	Ĉ	35.9	$\frac{\Delta}{D}$	1.3	No
at Del Sol/Breakers (S)	All	PM	17.5	Č	18.5	В	1.0	No
4) Ocean View Hills Pkwy	All	AM	9.0	A	9.0	A	0.0	No
at Sea Fire Pt (S)	All	PM	9.8	Ä	9.9	Ä	0.0	No
5) Ocean View Hills Pkwy	All	AM	4.6	A	4.7	A	0.1	No
at Hidden Trails Rd (S)	All	PM	4.5	A	4.8	A	0.3	No
6) Ocean View Hills Pkwy	All	AM	21.9	C	28.8	C	6.9	No
at Caliente/Otay Mesa (S)	All	PM	27.4	Č	35.8	Ď	8.4	No
7) Caliente Ave at	All	AM	15.4	<u>_</u>	17.7	В	2.3	No
SR-905 WB Ramp (S)	All	PM	53.6	Ď	61.4	Ē	7.8	Yes
8) Caliente Ave at	All	AM	33.7	C	35.5		1.8	No
SR-905 EB Ramp (S)	All	PM	31.4	Č	34.3	Č	2.9	No
9) Caliente Ave at	All	AM	124.8	F	129.4	F	4.6	Yes
Airway Rd (U)	All	PM	27.4	Ď	29.7	Ď	2.3	No
10) Otay Mesa Rd at	NB R	AM	DNE	NA	13.5	В	NA	No
Project West Access (U)	NB R	PM	DNE	NA	12.7	В	NA	No
11) Otay Mesa Rd at	SB R	AM	10.4	В	16.7	С	6.3	No
Emerald Court/Street B	SB R	PM	13.7	В	116.9	F	103.2	Yes
Project Access (U)	NB R	AM	NA	NA	33.5	D	33.5	No
, , ,	NB R	PM	NA	NA	317.4	F	317.4	Yes
12) Otay Mesa Rd at	All	AM	24.5	С	24.5	С	0.0	No
Corporate Center Rd (S)	All	PM	21.6	С	22.0	С	0.4	No
13) Otay Mesa Rd at	NB R	AM	10.6	В	10.7	В	0.1	No
Innovative Dr (U)	SB R	AM	10.2	В	10.3	В	0.1	No
` ,	NB R	PM	10.3	В	10.5	В	0.2	No
	SB R	PM	12.7	В	13.1	В	0.4	No
14) Otay Mesa Rd at	All	AM	29.6	С	29.6	С	0.0	No
Heritage Rd (S)	All	PM	33.3	С	33.7	С	0.4	No

Notes: 1) Intersection Analysis - (S) Signalized, (U) Unsignalized. 2) Delay - HCM Average Control Delay in seconds. 3) LOS: Level of Service. 4) Delta is the increase in delay from project. 5) Impact if project traffic exceeds threshold. DNE: Does not exist. NA: Not Applicable. Bold indicates unacceptable LOS and/or project impact. Note: Intersections 11 and 13 are right-in, right-out only.

Figure 8: Existing with Project Volumes

Figure 9: Existing with Project Conditions

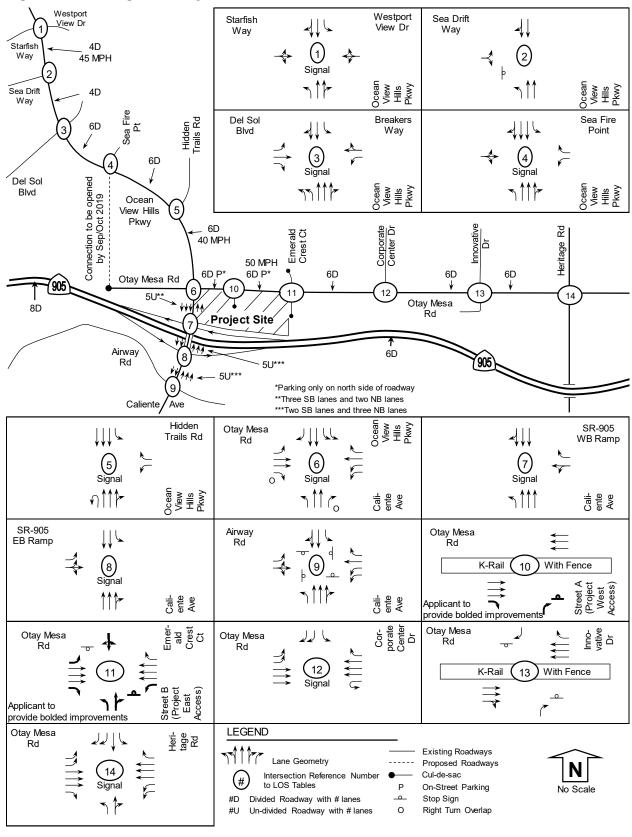


TABLE 12: EXISTING WITH PROJECT SEGMENT ADT VOLUMES AND LEVEL OF SERVICE

	Classification	Existing			Project		Existing + Project				
Segment	Ultimate and	LOS E	Daily			Daily	Daily			Change	Project
	(Functional)	Capacity	Volume	V/C	LOS	Volume	Volume	V/C	LOS	in V/C	Impact?
Caliente Avenue											
Otay Mesa Rd to SR-905 WB Ramp	6P (5C)	35,000	20,951	0.599	С	1,179	22,130	0.632	С	0.034	No
SR-905 EB Ramp to SR-905 EB Ramp	6P (5C)	35,000	14,288	0.408	В	707	14,995	0.428	В	0.020	No
SR-905 EB Ramp to Airway Rd	6P (5C)	35,000	7,947	0.227	Α	236	8,183	0.234	Α	0.007	No
Ocean View Hills Parkway											
Starfish Way/Westport View to Sea Drift Way	4M (4M)	40,000	12,963	0.324	Α	802	13,765	0.344	Α	0.020	No
Sea Drift Way to Del Sol Blvd	4M (4M)	40,000	10,919	0.273	Α	849	11,768	0.294	Α	0.021	No
Del Sol Blvd to Sea Fire Pt	6M (6M)	50,000	10,048	0.201	Α	1,603	11,651	0.233	Α	0.032	No
Sea Fire Pt to Hidden Trails Rd	6M (6M)	50,000	9,591	0.192	Α	1,792	11,383	0.228	Α	0.036	No
Hidden Trails Rd to Otay Mesa Rd	6M (6M)	50,000	11,405	0.228	Α	2,028	13,433	0.269	Α	0.041	No
Otay Mesa Road											
Ocean View Hills Pkwy to Proj. W. Access	6P (6P)	60,000	16,330	0.272	Α	4,976	21,306	0.355	Α	0.083	No
Proj. W. Access to Emerald Crest Ct	6P (6P)	60,000	16,330	0.272	Α	4,294	20,624	0.344	Α	0.072	No
Emerald Crest Ct to Corporate Center Dr	6P (6P)	60,000	15,855	0.264	Α	1,179	17,034	0.284	Α	0.020	No
Corporate Center Dr to Innovative Dr	6P (6P)	60,000	10,499	0.175	Α	943	11,442	0.191	Α	0.016	No
Innovative Dr to Heritage Rd	6P (6P)	60,000	11,864	0.198	Α	943	12,807	0.213	Α	0.016	No

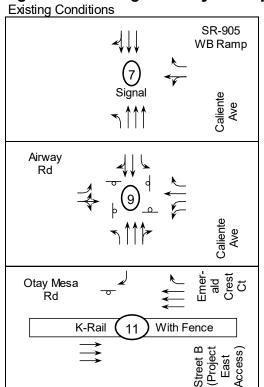
Notes: 6P=6 lane Prime, 6M = 6 lane Major, 5C=5 lane Collector, 4M=4 lane Major. Daily volume is a 24 hour volume. LOS: Level of Service. V/C: Volume to Capacity Ratio.

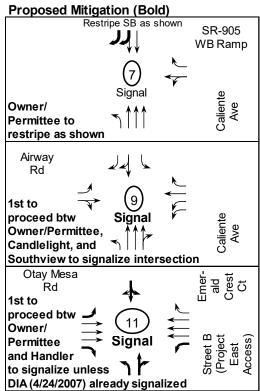
TABLE 13: EXISTING WITH PROJECT FREEWAY VOLUMES AND LEVEL OF SERVICE

TABLE 13. EXISTING WITHI ROSEGITREEWAY VOLUMES AND LEVEL OF SERVICE													
State Route		SR-	905		SR-905								
Segment		I-805 to C	aliente Ave		Caliente Ave to Britannia Blvd								
Existing Year 2016 ADT		79,	000		70,000								
Peak Hour	Α	M	Р	M	Α	M	PM						
Direction	EB	WB	EB	WB	EB	WB	EB	WB					
Number of Lanes	4	4	4	4	3	3	3	3					
Capacity (1)	9,400	9,400	9,400	9,400	7,050	7,050	7,050	7,050					
K Factor (2)	0.0761	0.0761	0.0902	0.0902	0.0761	0.0761	0.0902	0.0902					
D Factor (3)	0.6624	0.3376	0.4124	0.5876	0.6624	0.3376	0.4124	0.5876					
Truck Factor (4)	0.8811	0.8811	0.8811	0.8811	0.8811	0.8811	0.8811	0.8811					
Peak Hour Volume	4,520	2,304	3,335	4,752	4,005	2,041	2,955	4,211					
Volume to Capacity	0.481	0.245	0.355	0.506	0.568	0.290	0.419	0.597					
Existing LOS	В	Α	В	С	С	Α	В	С					
Project Pk Hr Vol	15	23	41	32	8	5	11	14					
E + P Pk Hr Vol	4,535	2,327	3,376	4,784	4,013	2,046	2,966	4,225					
Volume to Capacity	0.482	0.248	0.359	0.509	0.569	0.290	0.421	0.599					
E + P LOS	В	Α	В	С	С	Α	В	С					
Increase in V/C	0.002	0.002	0.004	0.003	0.001	0.001	0.002	0.002					
Significant Impact?	No	No	No	No	No	No	No	No					

Notes: (1) Capacity of 2,350 pcphpl from CALTRANS' Guide for the Preparation of Traffic Impact Studies, December 2002. (2) K factor from Caltrans, which is the percentage of AADT in both directions. (3) D factor from Caltrans, which when multiplied by K and ADT will provide peak hour volume. (4) Truck factor from Caltrans. E: Existing, P: Project. Excel rounding may result in ±1 above.

Under existing with project conditions, the study intersections, street segments, and state route segments were calculated to operate at LOS D or better except for the intersections of:


- 1) Caliente Avenue at SR-905 WB Ramp (LOS E PM),
- 2) Caliente Avenue at Airway Road (LOS F AM), and
- 3) Otay Mesa Road at Emerald Crest Ct (LOS F PM).


<u>The project is calculated to have direct impacts at all three of the above intersections</u>. The Caliente Avenue/SR-905 on-ramps are not metered under this scenario.

5.1 Existing with Project Proposed Mitigation

Three direct impacts are calculated to occur at the intersections of 1) Caliente Avenue/SR-905 WB Ramp, 2) Caliente Avenue/Airway Road, and 3) Otay Mesa Road/Emerald Crest Court. The applicant is proposing the mitigation measures shown in **Figure 10**.

Figure 10: Existing with Project Proposed Mitigation

The proposed mitigation measures are calculated to improve the intersection operations to below a level of significance as shown in **Table 14.** LOS calculation and concept striping for Caliente Avenue/SR-905 WB Ramp are included in **Appendix N**. Signal warrant calculations for intersection #9 (Caliente Avenue/Airway Road) are included in **Appendix O** while signal warrant calculations for Otay Mesa Road/Emerald Crest Court/Street B are included previously in Appendix J.

TABLE 14: EXISTING WITH PROJECT OPERATIONS WITH PROPOSED MITIGATION

Interpostion	Move-	Study	Existing -	+ Project	Mitigation	Existing + Project (with Mit.)						
Intersection	ment	Period	Delay ²	LOS ³	Mitigation	Delay ²	LOS ³	Delta⁴	Sig⁵			
7) Caliente Ave at	All	AM	17.7	В	Restripe	16.7	В	-1.0	No			
SR-905 WB Ramp (S)	All	PM	61.4	Ε	N. Leg	21.8	С	-39.6	No			
9) Caliente Ave at	All	AM	129.4	F	Traffic	39.3	D	-90.1	No			
Airway Rd (U)	All	PM	29.7	D	Signal	39.8	D	10.1	No			
11) Otay Mesa Rd at	SB	AM	16.7	С		AM	All move	ments				
Emerald Crest Ct (U)	SB	PM	116.9	F	Traffic	14.7	В	NA	No			
, ,	NB	AM	33.5	D	Signal	PM	All movements					
	NB	PM	317.4	F		16.4	В	NA	No			

Notes: 1) Intersection Analysis - (S) Signalized, (U) Unsignalized. 2) Delay - HCM Average Control Delay in seconds. 3) LOS: Level of Service. 4) Delta is the change from mitigation. 5) Direct Impact if project traffic exceeds threshold. Bold indicated unacceptable LOS operations. Mit. = Mitigation.

The Otay Mesa Community Plan Update (CPU) Final EIR concluded that a significant impact would result at the intersection of Caliente Ave/SR-905 WB Ramp at community buildout. This impact was found to remain significant and unmitigated and a Statement of Overriding Considerations was adopted by the City. Under Existing Plus Project conditions, the applicant is proposing mitigation to reduce the direct impact at this intersection to below significance. Specifically, a mitigation measure is restriping the southbound approach of two through and one through-right turn lane (3 total approach lanes) to one through, one through-right, and one right turn lane (3 total approach lanes). The proposed restriping is an interim improvement until the City Public Facilities Financing Plan (PFFP) OM T-11.1 is completed (currently scheduled for 2026), which will add an additional southbound right turn lane from Caliente Ave to SR-905 WB Ramp resulting in 4 total approach lanes. The interim mitigation would reduce the significant impact at this intersection to less than significant. It is noted that the interim restriping will result in a temporary reduction (until year 2026 of the scheduled PFFP T-11.1 improvement) in the functional segment capacity of Caliente Avenue from Otay Mesa Road to SR-905 WB Ramp; however, as part of the project the applicant will construct a full raised median along the project frontage on Caliente Avenue to complete street improvements that include a raised median. With or without the Caliente Avenue street improvement (full width raised median), the segment is expected to operate at acceptable LOS as shown in Table 15.

TABLE 15: EXISTING WITH PROJECT CALIENTE AVE OPERATIONS

	Classification	Existing			Project	Existing + Project					
Segment	Ultimate and	LOS E	Daily			Daily	Daily			Change	Project
	(Functional)	Capacity	Volume	V/C	LOS	Volume	Volume	V/C	LOS	in V/C	Impact?
Caliente Avenue (with reduced lane usage of a 4 lane collector)											
Otay Mesa Rd to SR-905 WB Ramp	6P (4C)	30,000	20,951	0.70	D	1,179	22,130	0.74	D	0.04	No
Caliente Avenue (with project median, the reduced lane usage is a 4 lane major)											
Otay Mesa Rd to SR-905 WB Ramp	6P (4M)	40,000	20,951	0.52	В	1,179	22,130	0.55	С	0.03	No
Notes: 6P=6 Jane Prime 4C=4 Jane College	otor 4M=4 lane M	Jaior Daily v	olume is a	24 hou	r volum	<u> </u>	vel of Serv	ice V/C	· Volum	ne to Cana	city Ratio

Notes: 6P=6 lane Prime, 4C=4 lane Collector. 4M=4 lane Major. Daily volume is a 24 hour volume. LOS: Level of Service. V/C: Volume to Capacity Ratio.

The intersection of Caliente Ave/Airway Rd is also identified in the Otay Mesa CPU Final EIR as a significant and unmitigated impact at community buildout. The project proposes mitigation for reduction of its direct significant impact through the installation of signal at this intersection. This intersection is also identified to be signalized as part of the Candlelight VTM Mitigation Monitoring and Reporting Program (MMRP) and Southview MMRP. Therefore, the first applicant to obtain

building permits between this project and Candlelight will be required to signalize the intersection of Caliente Avenue at Airway Road, thereby reducing the significant impact to less than significant.

The intersection of Otay Mesa Road/Emerald Crest Court will be signalized by the first applicant to obtain building permits between this project and the adjacent Handler commercial project, unless it is completed beforehand as outlined in the Deferred Improvement Agreement between Garden Communities and City of San Diego dated 4/24/2007. The project improvements at this location also includes the removal of the K-Rail with fence and construction of a raised median in its place along the project frontage on Otay Mesa Road from Ocean View Hills Parkway/Caliente Avenue to Emerald Crest Court. The addition of Street B will result in a fourth leg to the intersection, and the median will not be constructed across the intersection, as it is in existing conditions. intersection was analyzed as a T intersection under existing conditions, resulting in a significant direct impact. However, to mitigate the impact identified at the intersection of Otay Mesa Rd/Emerald Crest Ct/Street B, the intersection needs to be signalized. Implementation of this mitigation measure would reduce the significant impact to less than significant. A copy of the transportation section from the Otay Mesa CPU Final EIR, excerpts from the Otay Mesa PFFP, a copy of the Candlelight MMRP traffic signal requirement, Southview MMRP traffic signal requirement, and excerpts from the Otay Greenfield Developers Deferred Improvement Agreement are included in **Appendix P.**

6.0 Near-Term Year 2020 (Opening Day) without Project Conditions

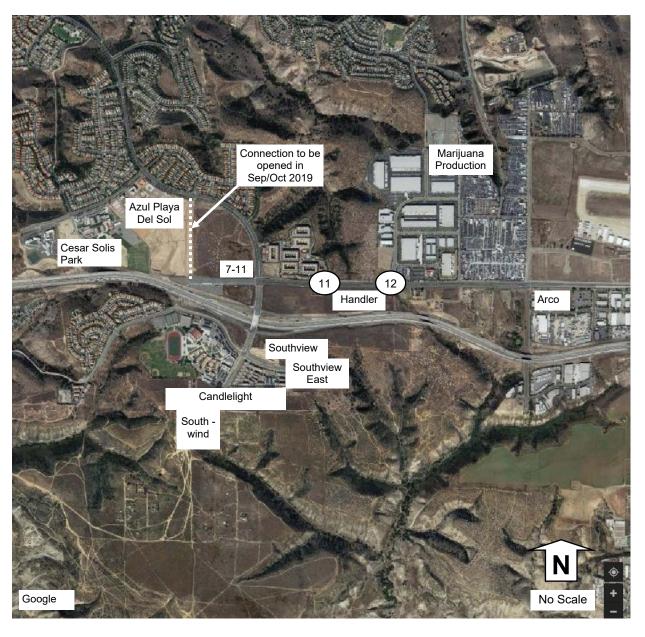
The Near-Term without project conditions describe the anticipated roadway operations during the opening year of the project anticipated to be in 2020.

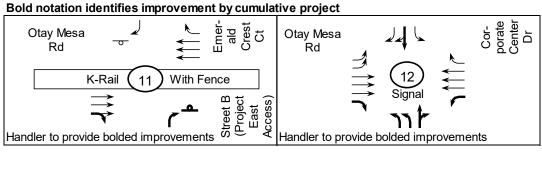
This scenario includes surrounding cumulative projects added to the existing traffic volumes. Upon review of available cumulative project information in Open DSD and discussion with City staff, the following cumulative projects were identified that are anticipated to add traffic to the study area roadways used by the project:

- 1) 7-Eleven A 2,940 sf convenience store located on the northwest corner of Ocean View Hills Parkway/Caliente Avenue and Otay Mesa Road.
- 2) Azul Playa Del Sol/Luna (California Terraces PA 6) A residential project with up to 740 multi-family units located on the south corner of Ocean View Hills Parkway and Del Sol Blvd. Approximately 150 units were occupied when counts were collected in January 2018, resulting in a near term analysis that evaluates an additional 590 units.
- 3) Cesar Solis Park A 15 acre city park generally located on the south side of Del Sol Blvd west of Ocean View Hills School.
- 4) *Candlelight* A multi-family project with 475 units located on Caliente Avenue south of Airway Road.
- 5) Southview A multi-family project with 277 units located on Airway Road east of Caliente Avenue.
- 6) Southview East A multi-family project with 136 units located on Airway Road east of Caliente Avenue.
- 7) Southwind A multi-family project with 100 units located west of Caliente Avenue and south of Airway Road.
- 8) Handler Retail Center A retail center with 24,000 sf restaurant, 6,000 sf fast food, and 189 room motel located on the south side of Otay Mesa Road between Emerald Crest Court and Corporate Center Drive.
- 9) Arco #5770 A project that will add 2 additional fuel dispensers to an existing gas station located at 1625 Heritage Road.
- 10) Marijuana Production Facility. A marijuana project facility of 86,400 sf located at 1221 1/3 Innovative Drive.

Individual cumulative project assignments that are anticipated to add traffic to the study area roadways are included in **Appendix Q**. The cumulative project trip generation is summarized below in **Table 16**.

TABLE 16: CUMULATIVE PROJECT TRIP GENERATION


Cumulative Project and Source									AM				!		M
		Rate		Size & Units		ADT	%	Split	IN	OUT	%	% Split		IN	OUT
7-11 Convenience Store with Gas Pumps: LLG	U	150	/Pump	12	Pumps	1,800	8%	0.5 0.5	72	72	8%	0.5	0.5	72	72
Azul Playa Del Sol MF(<20 du/acre): Pardee	Α	8	/DU	590	DU	4,720	8%	0.2 0.8	76	302	10%	0.7	0.3	330	142
Cesar Solis Park: Web	Α	50	/Acre	15.0	Acres	750	4%	0.5 0.5	15	15	8%	0.5	0.5	30	30
Candlelight MF (>20 du/acre): KH	Α	6	/DU	475	DU	2,850	8%	0.2 0.8	46	182	9%	0.7	0.3	180	77
Southview MF (<20 du/acre): KH	Α	8	/DU	277	DU	2,216	8%	0.2 0.8	35	142	10%	0.7	0.3	155	66
Southview East MF (<20 du/acre): KH	Α	8	/DU	136	DU	1,088	8%	0.2 0.8	17	70	10%	0.7	0.3	76	33
Southwind MF (<20 du/acre): KH	U	8	/DU	100	DU	800	8%	0.2 0.8	13	51	10%	0.7	0.3	56	24
Handler Motel: MBI	Α	9	/Room	189	Rooms	1,701	8%	0.4 0.6	54	82	9%	0.4	0.6	61	92
Handler Restaurant (sit down high turnover): MBI	Α	130	/KSF	24,000	SF	3,120	8%	0.5 0.5	125	125	8%	0.6	0.4	150	100
Handler Fast Food (with drive-through): MBI	Α	700	/KSF	6,000	SF	4,200	4%	0.6 0.4	101	67	8%	0.5	0.5	168	168
ARCO add 2 pumps: CityDSD	U	150	/Pump	2	Pumps	300	8%	0.5 0.5	12	12	8%	0.5	0.5	12	12
Innovative Dr Marijuana Production Facility: CityDSD	U	4	/KSF	86,400	SF	346	20%	0.9 0.1	62	7	20%	0.2	8.0	14	55
Cumulative Project Traffic:						23,891			628	1,127				1,304	871


Source: City of San Diego Trip Generation Manual, May 2003. Notes: AC-Acre; KSF - 1,000 Square Feet; MF - Multi-Family; Status: (U) Under Review, (A) Approved, not constructed when traffic data was collected. Source: LLG: Linscott, Law, & Greenspan, Pardee: Pardee Homes, CityDSD: City of San Diego Open Department Services Department website, KH: Kimley-Horn, MBI: Michael Baker International.

A map showing the cumulative project locations along with study area roadway changes (i.e. improvements by the Handler cumulative project or a planned roadway opening) are shown on **Figure 11**. The Handler improvements include a right-in/right-out access at Otay Mesa Road/Emerald Crest Ct (intersection #11) along with full street improvements on Street B (southern extension of Emerald Crest Dr) and the addition of a south leg and additional lanes to the existing signalized intersection of Otay Mesa Rd/Corporate Center Dr (intersection #12). The Handler improvements will be implemented when they proceed with their project, which is unknown at this time, so they are not assumed in the Near-Term baseline condition. The combined cumulative project traffic volumes are shown on **Figure 12**.

Near-term (2020) traffic volumes (existing + cumulative) without the project are shown on **Figure 13**. The LOS under near-term conditions (2020) representing (existing + cumulative) are shown in **Tables 17 through 19**. LOS calculations are included in **Appendix R**.

Figure 11: Cumulative Project Locations and Cumulative Project Improvements

Figure 12: Cumulative Project Volumes

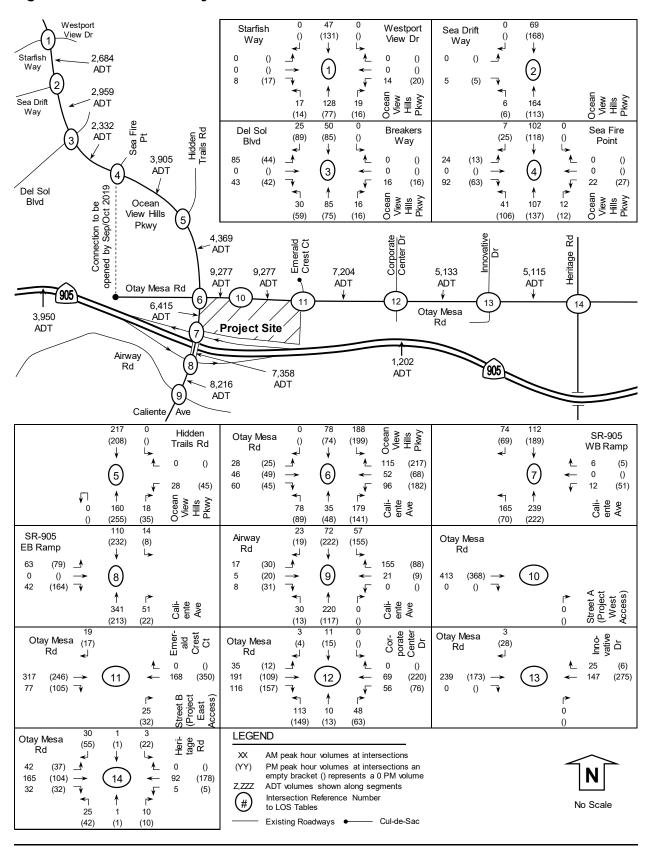


Figure 13: Near-Term Year 2020 (Opening Day) without Project Volumes

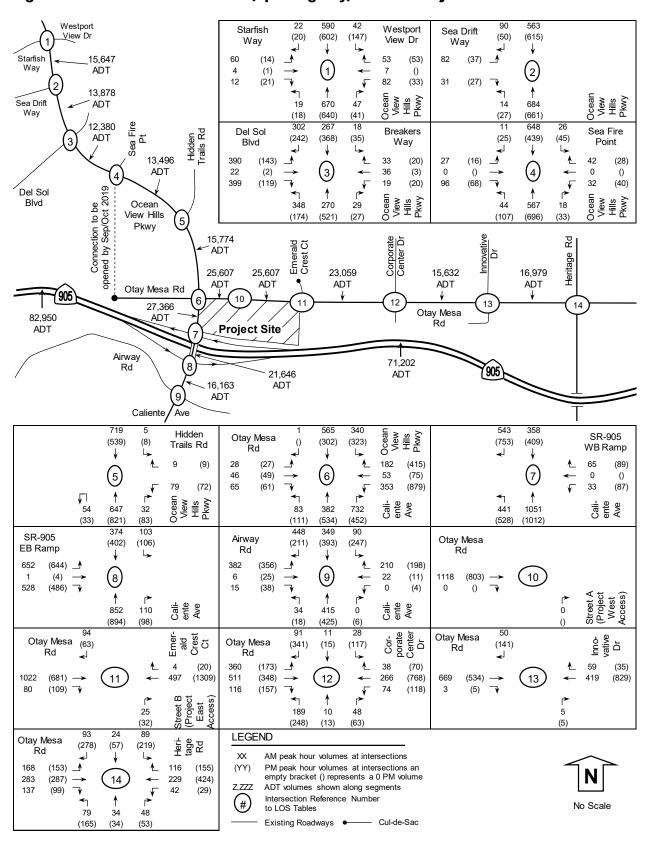


TABLE 17: NEAR-TERM YEAR 2020 (OPENING DAY) WITHOUT PROJECT INTERSECTION LEVEL OF SERVICE

Canalysis	Intersection and	Movement	Peak	Near-Ter	
1) Ocean View Hills Pkwy All AM 18.2 B At StarfishWestport (S) All PM 16.8 B 2) Ocean View Hills Pkwy EB LR AM 18.9 C at Sea Drift Wy (U) NB L AM 9.2 A EB LR PM 16.1 C NB L PM 9.3 A 3) Ocean View Hills Pkwy All AM 35.3 D At Del Sol/Breakers (S) All PM 19.2 B 4) Ocean View Hills Pkwy All AM 14.9 B At Sea Fire Pt (S) All PM 15.5 B 5) Ocean View Hills Pkwy All AM 15.1 A At Hidden Trails Rd (S) All PM 5.5 A 6) Ocean View Hills Pkwy All AM 15.1 C At Caliente/Otay Mesa (S) All PM 57.3 E 8) Ocalente Ave at All AM 15.5 B 8) Ocalen	(Analysis) ¹		Hour	Delay ²	LOS ³
at Starfish/Westport (S) All PM 16.8 B 2) Ocean View Hills Pkwy EB LR AM 18.9 C at Sea Drift Wy (U) NB L AM 9.2 A BE LR PM 16.1 C C NB L PM 9.3 A 3) Ocean View Hills Pkwy All AM 35.3 D 4) Ocean View Hills Pkwy All PM 19.2 B 4) Ocean View Hills Pkwy All AM 14.9 B at Sea Fire Pt (S) All PM 15.5 B 5) Ocean View Hills Pkwy All AM 15.5 B 5) Ocean View Hills Pkwy All AM 5.1 A 41 Hidden Trails Rd (S) All PM 5.5 A 6) Ocean View Hills Pkwy All AM 31.1 C caticaliente/Otay Mesa (S) All PM 3.5 A 6) Ocean View Hills Pkwy All AM 15.5	1) Ocean View Hills Pkwy	All	AM	18.2	В
2) Ocean View Hills Pkwy		All	PM	16.8	В
EB LR				18.9	С
EB LR	at Sea Drift Wy (U)	NB L	AM	9.2	Α
3) Ocean View Hills Pkwy All AM 35.3 D at Del Sol/Breakers (S) All PM 19.2 B B All Ocean View Hills Pkwy All AM 14.9 B All Sea Fire Pt (S) All PM 15.5 B Sea Fire Pt (S) All PM 15.5 B Sea Fire Pt (S) All PM 15.5 B Sea Fire Pt (S) All PM 5.5 A All AM 5.1 A All All AM 5.1 A All	, ,	EB LR	PM	16.1	С
at Del Sol/Breakers (S) All PM 19.2 B 4) Ocean View Hills Pkwy All AM 14.9 B at Sea Fire Pt (S) All PM 15.5 B 5) Ocean View Hills Pkwy All AM 5.1 A at Hidden Trails Rd (S) All PM 5.5 A 6) Ocean View Hills Pkwy All AM 31.1 C at Caliente/Otay Mesa (S) All PM 43.0 D 7) Caliente Ave at All AM 15.5 B SR-905 WB Ramp (S) All PM 57.3 E 8) Caliente Ave at All AM 34.2 C SR-905 EB Ramp (S) All PM 30.4 C 9) Caliente Ave at All AM 104.3 F Airway Rd (U) All PM 30.4 C 9) Caliente Ave at All AM 104.3 F Airway Rd (U) All PM 50.		NB L	PM	9.3	Α
4) Ocean View Hills Pkwy at Sea Fire Pt (S) All PM 14.9 B at Sea Fire Pt (S) All PM 15.5 B 5) Ocean View Hills Pkwy at Hills Pkwy All AM 5.1 A B A A B B B S A B B B B B B B B B B A B B	3) Ocean View Hills Pkwy	All	AM	35.3	D
at Sea Fire Pt (S) All PM 15.5 B 5) Ocean View Hills Pkwy All AM 5.1 A dt Hidden Trails Rd (S) All PM 5.5 A 6) Ocean View Hills Pkwy All AM 31.1 C at Calients Pkwa ty All AM 31.1 C at Caliente/Otay Mesa (S) All PM 43.0 D 7) Caliente Ave at All AM 15.5 B SR-905 WB Ramp (S) All PM 57.3 E 8) Caliente Ave at All AM 34.2 C SR-905 EB Ramp (S) All PM 30.4 C 9) Caliente Ave at All AM 104.3 F Airway Rd (U) All PM 50.7 F F 10) Otay Mesa Rd at NB R AM DNE NA Project West Access (U) NB R PM DNE NA 11) Otay Mesa Rd at SB R	at Del Sol/Breakers (S)	All	PM	19.2	В
5) Ocean View Hills Pkwy at Hilden Trails Rd (S) All AM 5.1 A 6) Ocean View Hills Pkwy All All PM 5.5 A 6) Ocean View Hills Pkwy All All AM 31.1 C at Caliente/Otay Mesa (S) All PM 43.0 D 7) Caliente Ave at All AM 15.5 B SR-905 WB Ramp (S) All PM 57.3 E 8) Caliente Ave at All AM 34.2 C SR-905 EB Ramp (S) All PM 30.4 C 9) Caliente Ave at All AM 104.3 F Airway Rd (U) All PM 30.4 C 9) Caliente Ave at All AM 104.3 F Airway Rd (U) All PM 50.7 F 10) Otay Mesa Rd at NB R AM DNE NA Project West Access (U) NB R AM 15.2 C Emerald Crest Ct (U) SB R	4) Ocean View Hills Pkwy	All	AM	14.9	В
at Hidden Trails Rd (S) All PM 5.5 A 6) Ocean View Hills Pkwy All AM 31.1 C at Caliente/Otay Mesa (S) All PM 43.0 D 7) Caliente Ave at All AM 15.5 B SR-905 WB Ramp (S) All PM 57.3 E 8) Caliente Ave at All AM 34.2 C SR-905 EB Ramp (S) All PM 30.4 C 9) Caliente Ave at All AM 104.3 F Airway Rd (U) All PM 50.7 F 10) Otay Mesa Rd at NB R AM DNE NA 10) Otay Mesa Rd at NB R AM DNE NA 11) Otay Mesa Rd at SB R AM 11.9 B NB R AM 11.9 B B 12) Otay Mesa Rd at All AM 39.5 D Corporate Center Rd (S) All AM 10.9 <	at Sea Fire Pt (S)	All	PM	15.5	В
6) Ocean View Hills Pkwy at All at Catchiente/Otay Mesa (S) All PM 43.0 D 7) Caliente Ave at All AM 15.5 B SR-905 WB Ramp (S) All PM 57.3 E 8) Caliente Ave at All AM 34.2 C SR-905 EB Ramp (S) All PM 30.4 C 9) Caliente Ave at All AM 104.3 F Airway Rd (U) All PM 50.7 F 10) Otay Mesa Rd at NB R AM DNE NA Project West Access (U) NB R PM DNE NA 11) Otay Mesa Rd at SB R AM 15.2 C Emerald Crest Ct (U) SB R PM 19.2 C NB R AM 11.9 B NB R PM 12.9 B 12) Otay Mesa Rd at NB R AM 39.5 D Corporate Center Rd (S) All PM 36.0 C 13) Otay Mesa Rd at NB R AM 11.7 B Innovative Dr (U) SB R PM 11.1 B C 14) Otay Mesa Rd at All AM 29.8 C Heritage Rd (S) All PM 36.1 D	5) Ocean View Hills Pkwy	All	AM	5.1	A
6) Ocean View Hills Pkwy at All at Catchiente/Otay Mesa (S) All PM 43.0 D 7) Caliente Ave at All AM 15.5 B SR-905 WB Ramp (S) All PM 57.3 E 8) Caliente Ave at All AM 34.2 C SR-905 EB Ramp (S) All PM 30.4 C 9) Caliente Ave at All AM 104.3 F Airway Rd (U) All PM 50.7 F 10) Otay Mesa Rd at NB R AM DNE NA Project West Access (U) NB R PM DNE NA 11) Otay Mesa Rd at SB R AM 15.2 C Emerald Crest Ct (U) SB R PM 19.2 C NB R AM 11.9 B NB R AM 11.9 B 12) Otay Mesa Rd at All AM 39.5 D Corporate Center Rd (S) All PM 36.0 C 13) Otay Mesa Rd at NB R AM 11.7 B Innovative Dr (U) SB R PM 11.1 B SB R PM 11.1 C 14) Otay Mesa Rd at All AM 29.8 C Heritage Rd (S) All PM 36.1 D	at Hidden Trails Rd (S)	All	PM	5.5	Α
7) Caliente Ave at SR-905 WB Ramp (S) All PM 57.3 E 8) Caliente Ave at Ave at All AM AM 34.2 C SR-905 EB Ramp (S) All PM 30.4 C 9) Caliente Ave at All AM AM 104.3 F Airway Rd (U) All PM 50.7 F 10) Otay Mesa Rd at NB R AM DNE NA 10) Otay Mesa Rd at SB R AM DNE NA 11) Otay Mesa Rd at SB R AM 15.2 C Emerald Crest Ct (U) SB R PM 19.2 C Emerald Crest Ct (U) SB R AM 11.9 B NB R AM 11.9 B B 12) Otay Mesa Rd at All AM 39.5 D Corporate Center Rd (S) All PM 36.0 C 13) Otay Mesa Rd at NB R AM 11.7 B Innovative Dr (U) SB R AM 10.9 B NB R PM 11.1 B SB R PM 16.1 C 14) Otay Mesa Rd at All AM AM 29.8 C	6) Ocean View Hills Pkwy	All	AM	31.1	С
7) Caliente Ave at SR-905 WB Ramp (S) All PM 57.3 E 8) Caliente Ave at Ave at All AM AM 34.2 C SR-905 EB Ramp (S) All PM 30.4 C 9) Caliente Ave at All AM AM 104.3 F Airway Rd (U) All PM 50.7 F 10) Otay Mesa Rd at NB R AM DNE NA 10) Otay Mesa Rd at SB R AM DNE NA 11) Otay Mesa Rd at SB R AM 15.2 C Emerald Crest Ct (U) SB R PM 19.2 C Emerald Crest Ct (U) SB R AM 11.9 B NB R AM 11.9 B B 12) Otay Mesa Rd at All AM 39.5 D Corporate Center Rd (S) All PM 36.0 C 13) Otay Mesa Rd at NB R AM 11.7 B Innovative Dr (U) SB R AM 10.9 B NB R PM 11.1 B SB R PM 16.1 C 14) Otay Mesa Rd at All AM AM 29.8 C	at Caliente/Otay Mesa (S)	All	PM		D
8) Caliente Ave at SR-905 EB Ramp (S) All AM 34.2 C 9) Caliente Ave at All AM 104.3 F Airway Rd (U) All PM 50.7 F 10) Otay Mesa Rd at NB R AM DNE NA Project West Access (U) NB R PM DNE NA 11) Otay Mesa Rd at SB R AM 15.2 C Emerald Crest Ct (U) SB R PM 19.2 C NB R AM 11.9 B NB R PM 12.9 B 12) Otay Mesa Rd at All AM 39.5 D Corporate Center Rd (S) All PM 36.0 C 13) Otay Mesa Rd at NB R AM 11.7 B Innovative Dr (U) SB R AM 10.9 B NB R PM 11.1 B SB R PM 16.1 C 14) Otay Mesa Rd at All All AM 29.8 C Heritage Rd (S) All PM 36.1 D		All	AM	15.5	В
SR-905 EB Ramp (S) All PM 30.4 C 9) Caliente Ave at All All AM 104.3 F Airway Rd (U) All PM 50.7 F 10) Otay Mesa Rd at NB R AM DNE NA Project West Access (U) NB R PM DNE NA 11) Otay Mesa Rd at SB R AM 15.2 C C Emerald Crest Ct (U) SB R PM 19.2 C C NB R AM 11.9 B B NB R PM 12.9 B 12) Otay Mesa Rd at All All AM 39.5 D D Corporate Center Rd (S) All PM 36.0 C C 13) Otay Mesa Rd at NB R AM 11.7 B B Innovative Dr (U) SB R AM 10.9 B B NB R PM 16.1 C C 14) Otay Mesa Rd at All AM 29.8 <td></td> <td>All</td> <td>PM</td> <td>57.3</td> <td>E</td>		All	PM	57.3	E
9) Caliente Ave at All AM 104.3 F Airway Rd (U) All PM 50.7 F 10) Otay Mesa Rd at NB R AM DNE NA Project West Access (U) NB R PM DNE NA 11) Otay Mesa Rd at SB R AM 15.2 C Emerald Crest Ct (U) SB R PM 19.2 C NB R AM 11.9 B NB R PM 12.9 B 12) Otay Mesa Rd at All AM 39.5 D Corporate Center Rd (S) All PM 36.0 C 13) Otay Mesa Rd at NB R AM 11.7 B Innovative Dr (U) SB R AM 10.9 B NB R PM 11.1 B SB R PM 11.1 C 14) Otay Mesa Rd at All AM 29.8 C Heritage Rd (S) All PM 36.1 D		All	AM	34.2	С
Airway Rd (U) All PM 50.7 F 10) Otay Mesa Rd at NB R AM DNE NA Project West Access (U) NB R PM DNE NA 11) Otay Mesa Rd at SB R AM 15.2 C Emerald Crest Ct (U) SB R PM 19.2 C NB R AM 11.9 B NB R AM 11.9 B NB R PM 12.9 B 12) Otay Mesa Rd at All PM 36.0 C 13) Otay Mesa Rd at NB R AM 11.7 B Innovative Dr (U) SB R AM 10.9 B NB R PM 11.1 B SB R PM 16.1 C 14) Otay Mesa Rd at All AM 29.8 C Heritage Rd (S) All PM 36.1 D	SR-905 EB Ramp (S)	All	PM	30.4	С
10) Otay Mesa Rd at Project West Access (U) NB R AM DNE NA 11) Otay Mesa Rd at Emerald Crest Ct (U) SB R AM 15.2 C Emerald Crest Ct (U) SB R PM 19.2 C NB R AM 11.9 B NB R PM 12.9 B 12) Otay Mesa Rd at All All AM AM 39.5 D Corporate Center Rd (S) All PM 36.0 C 13) Otay Mesa Rd at NB R AM 11.7 B Innovative Dr (U) SB R AM 10.9 B NB R PM 11.1 B SB R PM 16.1 C 14) Otay Mesa Rd at All All AM 29.8 C Heritage Rd (S) All PM 36.1 D	9) Caliente Ave at	All	AM	104.3	F
Project West Access (U) NB R PM DNE NA 11) Otay Mesa Rd at SB R AM 15.2 C Emerald Crest Ct (U) SB R PM 19.2 C NB R AM 11.9 B NB R PM 12.9 B 12) Otay Mesa Rd at All AM 39.5 D Corporate Center Rd (S) All PM 36.0 C 13) Otay Mesa Rd at NB R AM 11.7 B Innovative Dr (U) SB R AM 10.9 B NB R PM 11.1 B SB R PM 16.1 C 14) Otay Mesa Rd at All AM 29.8 C Heritage Rd (S) All PM 36.1 D		All	PM	50.7	
11) Otay Mesa Rd at SB R AM 15.2 C Emerald Crest Ct (U) SB R PM 19.2 C NB R AM 11.9 B NB R PM 12.9 B 12) Otay Mesa Rd at All AM 39.5 D Corporate Center Rd (S) All PM 36.0 C 13) Otay Mesa Rd at NB R AM 11.7 B Innovative Dr (U) SB R AM 10.9 B NB R PM 11.1 B SB R PM 16.1 C 14) Otay Mesa Rd at All AM 29.8 C Heritage Rd (S) All PM 36.1 D	10) Otay Mesa Rd at	NB R	AM	DNE	NA
Emerald Crest Ct (U) SB R NB R NB R PM AM 19.2 11.9 C B B B 12) Otay Mesa Rd at Corporate Center Rd (S) All All All All All All All All All All	Project West Access (U)	NB R	PM	DNE	NA
NB R	11) Otay Mesa Rd at		AM		
NB R	Emerald Crest Ct (U)	SB R	PM	19.2	
12) Otay Mesa Rd at Corporate Center Rd (S) All AM 39.5 D Corporate Center Rd (S) All PM 36.0 C 13) Otay Mesa Rd at NB R AM 11.7 B Innovative Dr (U) SB R AM 10.9 B NB R PM 11.1 B SB R PM 16.1 C 14) Otay Mesa Rd at All AM 29.8 C Heritage Rd (S) All PM 36.1 D		NB R	AM	11.9	
Corporate Center Rd (S) All PM 36.0 C 13) Otay Mesa Rd at NB R AM 11.7 B Innovative Dr (U) SB R AM 10.9 B NB R PM 11.1 B SB R PM 16.1 C 14) Otay Mesa Rd at All AM 29.8 C Heritage Rd (S) All PM 36.1 D		NB R	PM		
13) Otay Mesa Rd at Innovative Dr (U) NB R AM 10.9 B NB R PM 11.1 B SB R PM 16.1 C 14) Otay Mesa Rd at All AM 29.8 CHeritage Rd (S) All PM 36.1 D	12) Otay Mesa Rd at	All	AM		-
Innovative Dr (U)		All	PM	36.0	
NB R SB R PM PM 11.1 16.1 B 14) Otay Mesa Rd at Heritage Rd (S) All All All All All All All All All All			AM		В
SB R PM 16.1 C 14) Otay Mesa Rd at Heritage Rd (S) All All AM	Innovative Dr (U)				
14) Otay Mesa Rd at All AM 29.8 C Heritage Rd (S) All PM 36.1 D		NB R	PM	11.1	
Heritage Rd (S) All PM 36.1 D		SB R	PM	16.1	
	14) Otay Mesa Rd at	All	AM	29.8	С

Notes: 1) Intersection Analysis - (S) Signalized, (U) Unsignalized. 2) Delay - HCM Average Control Delay in seconds. 3) LOS: Level of Service. DNE: Does not exist. NA: Not Applicable. Bold indicates unacceptable LOS. Note: Intersections 11 and 13 are right-in, right-out only.

TABLE 18: NEAR-TERM YEAR 2020 (OPENING DAY) WITHOUT PROJECT SEGMENT ADT VOLUMES AND LEVEL OF SERVICE

·	Classification:		Nea	ar-Term 20	20
Daily	Ultimate and	LOS E	Daily		
	(Functional)	Capacity	Volume	V/C	LOS
Caliente Avenue					
Otay Mesa Rd to SR-905 WB Ramp	6P (5C)	35,000	27,366	0.782	D
SR-905 EB Ramp to SR-905 EB Ramp	6P (5C)	35,000	21,646	0.618	С
SR-905 EB Ramp to Airway Rd	6P (5C)	35,000	16,163	0.462	В
Ocean View Hills Parkway					
Starfish Way/Westport View to Sea Drift Way	4M (4M)	40,000	15,647	0.391	В
Sea Drift Way to Del Sol Blvd	4M (4M)	40,000	13,878	0.347	Α
Del Sol Blvd to Sea Fire Pt	6M (6M)	50,000	12,380	0.248	Α
Sea Fire Pt to Hidden Trails Rd	6M (6M)	50,000	13,496	0.270	Α
Hidden Trails Rd to Otay Mesa Rd	6M (6M)	50,000	15,774	0.315	Α
Otay Mesa Road					
Ocean View Hills Pkwy to Proj. W. Access	6P (6P)	60,000	25,607	0.427	В
Proj. W. Access to Emerald Crest Ct	6P (6P)	60,000	25,607	0.427	В
Emerald Crest Ct to Corporate Center Dr	6P (6P)	60,000	23,059	0.384	Α
Corporate Center Dr to Innovative Dr	6P (6P)	60,000	15,632	0.261	Α
Innovative Dr to Heritage Rd	6P (6P)	60,000	16,979	0.283	Α

Notes: 6P=6 lane Prime, 6M = 6 lane Major, 5C=5 lane Collector, 4M=4 lane Major. Daily volume is a 24 hour volume. LOS: Level of Service. V/C: Volume to Capacity Ratio.

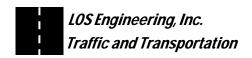


TABLE 19: NEAR-TERM YEAR 2020 (OPENING DAY) WITHOUT PROJECT FREEWAY VOLUMES AND LEVEL OF SERVICE

	_		,			-			
State Route		SR-	905			SR-905			
Segment		I-805 to Caliente Ave Caliente Ave to Britannia Blv					Blvd		
Existing Year 2016 ADT		79,	000			70,	000		
Peak Hour		A M P M			Α	M	Р	M	
Direction	EB	WB	EB	WB	EB	WB	EB	WB	
Number of Lanes	4	4	4	4	3	3	3	3	
Capacity (1)	9400	9400	9400	9400	7050	7050	7050	7050	
K Factor (2)	0.0761	0.0761	0.0902	0.0902	0.0761	0.0761	0.0902	0.0902	
D Factor (3)	0.6624	0.3376	0.4124	0.5876	0.6624	0.3376	0.4124	0.5876	
Truck Factor (4)	0.8811	0.8811	0.8811	0.8811	0.8811	0.8811	0.8811	0.8811	
Peak Hour Volume	4,520	2,304	3,335	4,752	4,005	2,041	2,955	4,211	
Volume to Capacity	0.481	0.245	0.355	0.506	0.568	0.290	0.419	0.597	
Existing LOS	В	Α	В	С	С	Α	В	С	
Cumulative Pk Hr Vol	63	74	79	69	14	6	8	5	
E + C Pk Hr Vol	4,583	2,378	3,414	4,821	4,019	2,047	2,963	4,216	
Volume to Capacity	0.488	0.253	0.363	0.513	0.570	0.290	0.420	0.598	
E+CLOS	В	Α	В	С	С	Α	В	С	

Notes: (1) Capacity of 2,350 pcphpl from CALTRANS' Guide for the Preparation of Traffic Impact Studies, December 2002. (2) K factor from Caltrans, which is the percentage of AADT in both directions. (3) D factor from Caltrans, which when multiplied by K and ADT will provide peak hour volume. (4) Truck factor from Caltrans. E: Existing, P: Project. Excel rounding may result in ±1 above.

Under Near-Term year 2020 (opening day) without project conditions, the study intersections, street segments, and state route segments were calculated to operate at LOS D or better except for the intersections of:

- 1) Caliente Avenue at SR-905 WB Ramp (LOS E PM), and
- 2) Caliente Avenue at Airway Road (LOS F AM and PM).

The Caliente Avenue/SR-905 on-ramps are not metered under this scenario.

7.0 Near-Term Year 2020 with Project (Opening Day) Conditions

This scenario documents the addition of project traffic onto Near-Term year 2020 (opening day) traffic for AM peak hour, PM peak hour, and daily conditions with volumes shown in **Figure 14**. LOS for near-term with project conditions are shown in **Tables 20 through 22**. LOS calculations are included in **Appendix S**.

TABLE 20: NEAR-TERM YEAR 2020 (OPENING DAY) WITH PROJECT INTERSECTION LEVEL OF SERVICE

Intersection and	Movement	Peak _	Near-Te		Nea	Near-Term 2020 with Project			
(Analysis) ¹		Hour	Delay ²	LOS ³	Delay ²	LOS ³	Delta⁴	Impact ⁵	
1) Ocean View Hills Pkwy	All	AM	18.2	В	18.8	В	0.6	No	
at Starfish/Westport (S)	All	PM	16.8	В	17.8	В	1.0	No	
2) Ocean View Hills Pkwy	EB LR	AM	18.9	С	19.6	С	0.7	No	
at Sea Drift Wy (U)	NB L	AM	9.2	Α	9.3	Α	0.1	No	
• , ,	EB LR	PM	16.1	С	16.9	С	8.0	No	
	NB L	PM	9.3	Α	9.5	Α	0.2	No	
3) Ocean View Hills Pkwy	All	AM	35.3	D	36.2	D	0.9	No	
at Del Sol/Breakers (S)	All	PM	19.2	В	20.2	С	1.0	No	
4) Ocean View Hills Pkwy	All	AM	14.9	В	14.9	В	0.0	No	
at Sea Fire Pt (S)	All	PM	15.5	В	15.6	В	0.1	No	
5) Ocean View Hills Pkwy	All	AM	5.1	Α	5.2	Α	0.1	No	
at Hidden Trails Rd (S)	All	PM	5.5	Α	5.7	Α	0.2	No	
6) Ocean View Hills Pkwy	All	AM	31.1	С	42.6	D	11.5	No	
at Caliente/Otay Mesa (S)	All	PM	43.0	D	49.3	D	6.3	No	
7) Caliente Ave at	All	AM	15.5	В	16.2	В	0.7	No	
ŚR-905 WB Ramp (S)	All	PM	57.3	E	66.6	E	9.3	Yes	
8) Caliente Ave at	All	AM	34.2	С	35.7	D	1.5	No	
SR-905 EB Ramp (S)	All	PM	30.4	С	32.1	С	1.7	No	
9) Caliente Ave at	All	AM	104.3	F	107.7	F	3.4	Yes	
Airway Rd (U)	All	PM	50.7	F	54.2	F	3.5	Yes	
10) Otay Mesa Rd at	NB R	AM	DNE	NA	18.1	С	NA	No	
Project West Access (U)	NB R	PM	DNE	NA	16.9	С	NA	No	
11) Otay Mesa Rd at	SB R	AM	15.2	С	50.0	F	34.8	Yes	
Emerald Court/Street B	SB R	PM	19.2	С	36.5	Ε	17.3	Yes	
Project Access (U)	NB R	AM	11.9	В	565.7	F	553.8	Yes	
	NB R	PM	12.9	В	729.9	F	717.0	Yes	
12) Otay Mesa Rd at	All	AM	39.5	D	39.8	D	0.3	No	
Corporate Center Rd (S)	All	PM	36.0	С	36.8	D	0.8	No	
13) Otay Mesa Rd at	NB R	AM	11.7	В	11.9	В	0.2	No	
Innovative Dr (U)	SB R	AM	10.9	В	11.1	В	0.2	No	
	NB R	PM	11.1	В	11.3	В	0.2	No	
	SB R	PM	16.1	С	16.9	С	0.8	No	
14) Otay Mesa Rd at	All	AM	29.8	С	29.8	С	0.0	No	
Heritage Rd (S)	All	PM	36.1	D	36.6	D	0.5	No	

Notes: 1) Intersection Analysis - (S) Signalized, (U) Unsignalized. 2) Delay - HCM Average Control Delay in seconds. 3) LOS: Level of Service. 4) Delta is the increase in delay from project. 5) Impact if project traffic exceeds threshold. DNE: Does not exist. NA: Not Applicable. Bold indicates unacceptable LOS and/or project impact. Note: Intersections 11 and 13 are right-in, right-out only.

Figure 14: Near-Term Year 2020 (Opening Day) with Project Volumes

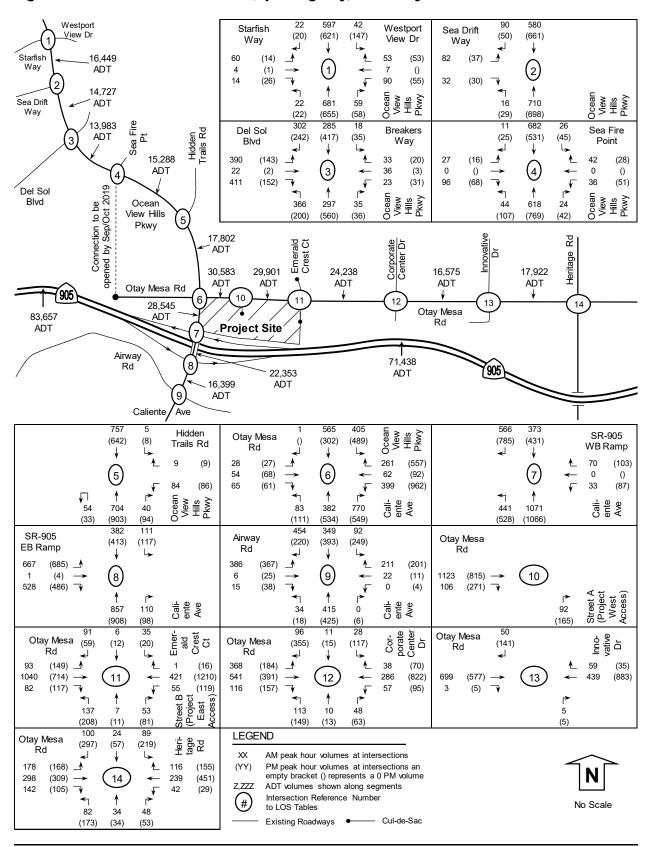


TABLE 21: NEAR-TERM YEAR 2020 (OPENING DAY) WITH PROJECT SEGMENT ADT VOLUMES AND LEVEL OF SERVICE

	Classification		Near	-Term	2020	Project	Nea	r-Term	2020	with Pro	ject
Segment	Ultimate and	LOS E	Daily			Daily	Daily			Change	Project
	(Functional)	Capacity	Volume	V/C	LOS	Volume	Volume	V/C	LOS	in V/C	Impact?
Caliente Avenue											
Otay Mesa Rd to SR-905 WB Ramp	6P (5C)	35,000	27,366	0.782	D	1,179	28,545	0.816	D	0.034	No
SR-905 EB Ramp to SR-905 EB Ramp	6P (5C)	35,000	21,646	0.618	С	707	22,353	0.639	С	0.020	No
SR-905 EB Ramp to Airway Rd	6P (5C)	35,000	16,163	0.462	В	236	16,399	0.469	В	0.007	No
Ocean View Hills Parkway											
Starfish Way/Westport View to Sea Drift Way	4M (4M)	40,000	15,647	0.391	В	802	16,449	0.411	В	0.020	No
Sea Drift Way to Del Sol Blvd	4M (4M)	40,000	13,878	0.347	Α	849	14,727	0.368	Α	0.021	No
Del Sol Blvd to Sea Fire Pt	6M (6M)	50,000	12,380	0.248	Α	1,603	13,983	0.280	Α	0.032	No
Sea Fire Pt to Hidden Trails Rd	6M (6M)	50,000	13,496	0.270	Α	1,792	15,288	0.306	Α	0.036	No
Hidden Trails Rd to Otay Mesa Rd	6M (6M)	50,000	15,774	0.315	Α	2,028	17,802	0.356	Α	0.041	No
Otay Mesa Road											
Ocean View Hills Pkwy to Proj. W. Access	6P (6P)	60,000	25,607	0.427	В	4,976	30,583	0.510	В	0.083	No
Proj. W. Access to Emerald Crest Ct	6P (6P)	60,000	25,607	0.427	В	4,294	29,901	0.498	В	0.072	No
Emerald Crest Ct to Corporate Center Dr	6P (6P)	60,000	23,059	0.384	Α	1,179	24,238	0.404	Α	0.020	No
Corporate Center Dr to Innovative Dr	6P (6P)	60,000	15,632	0.261	Α	943	16,575	0.276	Α	0.016	No
Innovative Dr to Heritage Rd	6P (6P)	60,000	16,979	0.283	Α	943	17,922	0.299	Α	0.016	No

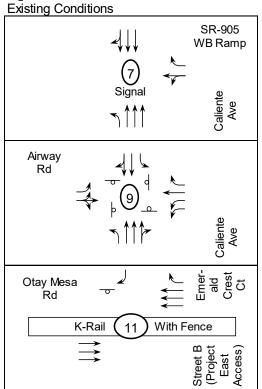
Notes: 6P=6 lane Prime, 6M = 6 lane Major, 5C=5 lane Collector, 4M=4 lane Major. Daily volume is a 24 hour volume. LOS: Level of Service. V/C: Volume to Capacity Ratio.

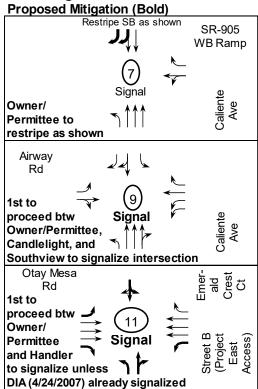
TABLE 22: NEAR-TERM YEAR 2020 (OPENING DAY) WITH PROJECT FREEWAY VOLUMES AND LEVEL OF SERVICE

State Route		SR-	905			SR-	-905	
Segment		I-805 to Ca	05 to Caliente Ave to Britannia Blvd					Blvd
Existing Year 2016 ADT		79,	000			70,	000	_
Peak Hour	A	A M	Р	M	A M		Р	M
Direction	EB	WB	EB	WB	EB	WB	EB	WB
Number of Lanes	4	4	4	4	3	3	3	3
Capacity (1)	9,400	9,400	9,400	9,400	7,050	7,050	7,050	7,050
K Factor (2)	0.0761	0.0761	0.0902	0.0902	0.0761	0.0761	0.0902	0.0902
D Factor (3)	0.6624	0.3376	0.4124	0.5876	0.6624	0.3376	0.4124	0.5876
Truck Factor (4)	0.8811	0.8811	0.8811	0.8811	0.8811	0.8811	0.8811	0.8811
Peak Hour Volume	4,520	2,304	3,335	4,752	4,005	2,041	2,955	4,211
Volume to Capacity	0.481	0.245	0.355	0.506	0.568	0.290	0.419	0.597
Existing LOS	В	Α	В	С	С	Α	В	С
E + C Pk Hr Vol	4,583	2,378	3,414	4,821	4,019	2,047	2,963	4,216
Volume to Capacity	0.4875	0.2529	0.3632	0.5129	0.5700	0.2904	0.4203	0.5980
E+C LOS	В	Α	В	С	С	Α	В	С
Project Pk Hr Vol	15	23	41	32	8	5	11	14
E+C+P Pk Hr Vol	4,598	2,401	3,455	4,853	4,027	2,052	2,974	4,230
Volume to Capacity	0.4891	0.2554	0.3676	0.5163	0.5712	0.2911	0.4219	0.6000
E + C + P LOS	В	Α	В	С	С	Α	В	С
Increase in V/C	0.002	0.002	0.004	0.003	0.001	0.001	0.002	0.002
Significant Impact?	No	No	No	No	No	No	No	No

Notes: (1) Capacity of 2,350 pcphpl from CALTRANS' Guide for the Preparation of Traffic Impact Studies, December 2002. (2) K factor from Caltrans, which is the percentage of AADT in both directions. (3) D factor from Caltrans, which when multiplied by K and ADT will provide peak hour volume. (4) Truck factor from Caltrans. E: Existing, P: Project. Excel rounding may result in ±1 above.

Under near-term year 2020 (opening day) with project conditions, all the study intersections, street segments, and state route segments were calculated to operate at LOS D or better except for the intersections of:


- 1) Caliente Avenue at SR-905 WB Ramp (LOS E PM),
- 2) Caliente Avenue at Airway Road (LOS F AM & PM), and
- 3) Otay Mesa Road at Emerald Crest Ct (LOS E & F AM & PM).


The project is calculated to have direct impacts at all three of the above intersections. The Caliente Avenue/SR-905 on-ramps are not metered under this scenario.

7.1 Near Term Year 2020 with Project Proposed Mitigation

Three direct impacts are calculated to occur at the intersections of 1) Caliente Avenue/SR-905 WB Ramp, 2) Caliente Avenue/Airway Road, and 3) Otay Mesa Road/Emerald Crest Court/Street B. The applicant is proposing the mitigation measures shown in **Figure 15**.

Figure 15: Near Term Year 2020 with Project Proposed Mitigation

The proposed mitigation measures are calculated to improve the intersection operations to below a level of significance as shown in **Table 23** (calculation included in **Appendix T**). Signal warrant calculations for intersection #9 (Caliente Avenue/Airway Road) are included in Appendix O while signal warrant calculations for Otay Mesa Road/Emerald Crest Court/Street B were included previously in Appendix J.

TABLE 23: NEAR TERM 2020 WITH PROJECT OPERATIONS WITH PROPOSED MITIGATION

Interception	Move-	Study	Near-Terr	n + Proj.	- Mitiaration	Near-T	erm + P	roject (wi	th Mit.)
Intersection	ment	Period	Delay ²	LOS ³	Mitigation	Delay ²	LOS ³	Delta⁴	Sig⁵
7) Caliente Ave at	All	AM	16.2	В	Restripe	16.3	В	0.1	No
SR-905 WB Ramp (S)	All	PM	66.6	Ε	N. Leg	23.6	С	-43.0	No
9) Caliente Ave at	All	AM	107.7	F	Traffic	50.7	D	-57.0	No
Airway Rd (U)	All	PM	54.2	F	Signal	32.7	С	-21.5	No
11) Otay Mesa Rd at	SB	AM	50.0	F		AM	All move	ments	
Emerald Crest Ct (U)	SB	PM	36.5	Ε	Traffic	17.3	В	NA	No
, ,	NB	AM	565.7	F	Signal	PM	All move	ments	
	NB	PM	729.9	F		21.7	С	NA	No

Notes: 1) Intersection Analysis - (S) Signalized, (U) Unsignalized. 2) Delay - HCM Average Control Delay in seconds. 3) LOS: Level of Service. 4) Delta is the change from mitigation. 5) Direct Impact if project traffic exceeds threshold. Bold indicated unacceptable LOS operations. Mit. = Mitigation.

The Otay Mesa CPU Final EIR concluded that a significant impact would result at the intersection of Caliente Ave/SR-905 WB Ramp at community buildout. This impact was found to remain significant and unmitigated and a Statement of Overriding Considerations was adopted by the City. The applicant is proposing mitigation to reduce the project's direct impact at this intersection to below significance by restriping the southbound approach of two through and one through-right turn lane (3 total approach lanes) to one through, one through-right, and one right turn lane (3 total approach lanes). The proposed restriping is an interim improvement until the City Public Facilities Financing Plan (PFFP) OM T-11.1 is completed (currently scheduled for 2026), which will add an additional southbound right turn lane from Caliente Ave to SR-905 WB Ramp resulting in 4 total approach lanes. The interim mitigation would reduce the significant impact at this intersection to less than significant. It is noted that the interim restriping will result in a temporary reduction in the functional segment capacity of Caliente Avenue from Otay Mesa Road to SR-905 WB Ramp; however, as part of the project the applicant will construct a raised median along the project frontage on Caliente Avenue to fulfill the code requirements to complete street improvements that include a raised median. Without the Caliente Avenue street improvement (raised median), the segment is calculated to operate at unacceptable LOS; however, with the raised median, the segment is calculated to operate at acceptable LOS as shown in Table 24.

TABLE 24: NEAR TERM 2020 WITH PROJECT CALIENTE AVE OPERATIONS

	Classification	<u></u>	No	ear-Te	rm	Project	Near-Term with Project				et
Segment	Ultimate and	LOS E	Daily			Daily	Daily			Change	Project
	(Functional)	Capacity	Volume	V/C	LOS	Volume	Volume	V/C	LOS	in V/C	Impact?
Caliente Avenue (with reduced lane usage of a 4 lane collector)											
Otay Mesa Rd to SR-905 WB Ramp	6P (4C)	30,000	27,366	0.91	Ε	1,179	28,545	0.95	Ε	0.04	Yes
Caliente Avenue (with project med	dian, the reduc	ed lane us	sage is a	4 lane	major)						
Otay Mesa Rd to SR-905 WB Ramp	6P (4M)	40,000	27,366	0.68	С	1,179	28,545	0.71	С	0.03	No
Notes: 6P=6 lane Prime, 4C=4 lane Colle	ector, 4M=4 lane l	Major. Daily	volume is a	24 hou	r volum	e. LOS: Le	vel of Servi	ce. V/C:	Volume	e to Capac	city Ratio.

Notes: 6P=6 lane Prime, 4C=4 lane Collector, 4M=4 lane Major. Daily volume is a 24 hour volume. LOS: Level of Service. V/C: Volume to Capacity Ratio. Bold indicates unaccetable LOS and/or impact.

The intersection of Caliente Ave/Airway Rd is also identified in the Otay Mesa CPU Final EIR as a significant and unmitigated impact at community buildout resulting in the adoption of overriding considerations. The project proposes mitigation for reduction of its significant impact through the installation of signal at this intersection. It is noted that this intersection is also identified to be signalized as part of the Candlelight VTM Mitigation Monitoring and Reporting Program (MMRP). Therefore, the first applicant to obtain building permits between this project and Candlelight will be

required to implement the mitigation measure and signalize the intersection of Caliente Avenue at Airway Road thereby reducing the significant impact to less than significant.

The project includes the removal of the K-Rail with fence along the project frontage on Otay Mesa Road from Caliente Avenue to Emerald Crest Court and the construction of a raised median in its place. However, to mitigate the impact identified at the intersection of Otay Mesa Rd/Emerald Crest Ct/Street B with full turning movements allowed requires a traffic signal. The intersection of Caliente Ave/Emerald Crest Court will be signalized by the first applicant to obtain building permits between this project and the adjacent Handler commercial project, unless it is completed beforehand as outlined in the Deferred Improvement Agreement between Garden Communities and City of San Diego dated 4/24/2007.. Implementation of this mitigation measure would reduce the significant impact to less than significant.

A copy of the transportation section from the Otay Mesa CPU Final EIR, excerpts from the Otay Mesa PFFP, a copy of the Candlelight MMRP traffic signal requirement, and Southview MMRP traffic signal requirement are included in Appendix P.

8.0 Horizon Year 2062 without Project Conditions

A Horizon Year of 2062 was used for consistency with the current Otay Mesa Community Plan. The Horizon Year 2062 growth forecast was based on a formula provided by City of San Diego staff to calculate future year daily traffic volumes for Otay Mesa Road, Ocean View Hills Parkway, and SR-905. A compound growth rate was calculated by segment using SANDAG Series 12 unadjusted regional travel demand model volumes as follows:

Compound growth = $(2050 \text{ unadjusted ADT} / 2020 \text{ unadjusted ADT})^{1/N} - 1$ Where N = number of years (2050 - 2020 = 30 years)

The compound growth rate was applied for a period of 44 years to existing segment counts collected in 2018 to represent year 2062 daily traffic volumes (2062 – 2018 = 44). Calculations are included in **Appendix U**. The Horizon Year 2062 volumes for Caliente Avenue were taken from the Otay Mesa CPU EIR due to the proximity of Southwest Village (details included on Figure 5.12-3a in Appendix P). The Otay Mesa CPU EIR did not include a segment volume on the Caliente Ave bridge over SR-905, therefore, the bridge volume was interpolated using the ratio of volumes in the SANDAG Series 13 to the two known CPU EIR volumes as shown in **Table 25** (shaded cell represents unknown ADT that was interpolated from known ADTs).

TABLE 25: CALIENTE AVENUE HORIZON YEAR 2062 BRIDGE VOLUME INTERPOLATION

Segment	Series 13	CPU EIR	Rounded
	2050 ADT	2062 ADT	2062 ADT
Caliente from Otay Mesa to SR-905 WB Ramp	21,615	38,000	
Caliente from SR-905 WB Ramp to EB Ramp	23,441	33,237	33,200
Caliente from SR-905 EB Ramp to Airway Rd	23,915	32,000	

Shaded represents the unknown ADT that was interpolated from known (unshaded) ADTs.

Intersection turning movement forecasts were based on the increase in daily volumes for each intersection approach (calculations included in $Appendix\ V$).

Horizon Year 2062 conditions showing the study area roadway changes (i.e. improvements by the Handler project) are shown in **Figure 16**. The Handler improvements include a right-in/right-out only access at Otay Mesa Road/Emerald Crest Ct (intersection #11) along with full street improvements on Street B (southern extension of Emerald Crest Dr) and the addition of a south leg and additional lanes to the existing signalized intersection of Otay Mesa Rd/Corporate Center Dr (intersection #12). Additionally, the SR-905/Caliente Ave on-ramp meters were analyzed using discharge rates from the Otay Mesa CPU EIR.

The Horizon Year 2062 volumes without the project are shown in **Figure 17.** LOS and ramp meter operations are shown in **Tables 26 through 29** with calculations included in **Appendix W**.

Figure 16: Horizon Year 2062 without Project Conditions

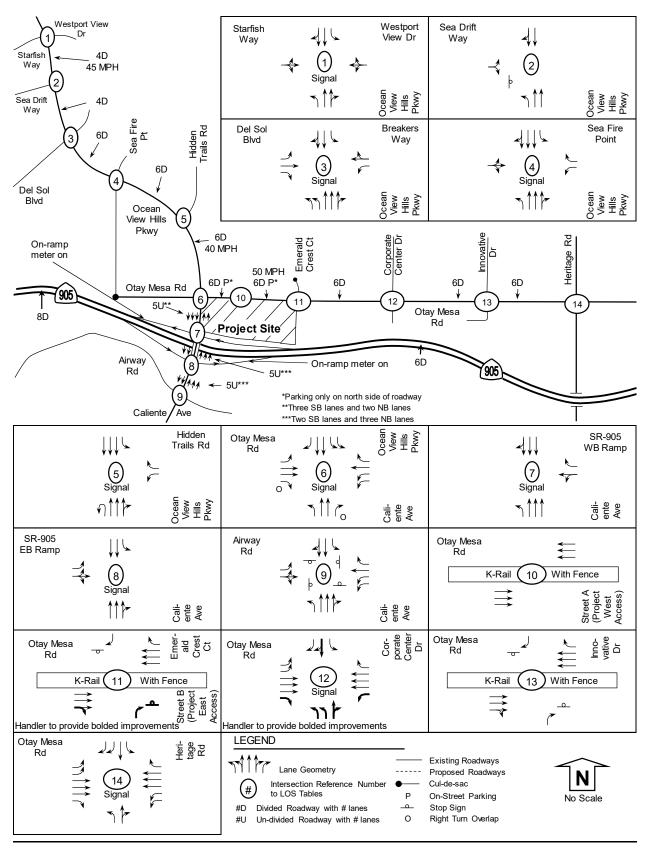


Figure 17: Horizon Year 2062 without Project Volumes

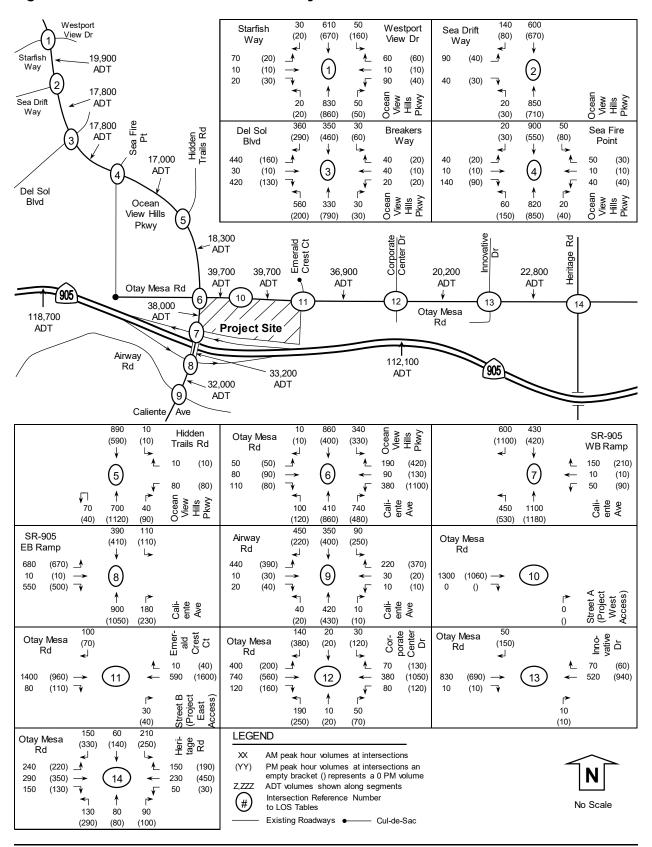


TABLE 26: HORIZON YEAR 2062 WITHOUT PROJECT INTERSECTION LEVEL OF SERVICE

Intersection and	Movement	Study _	Horizon	Year 2062
(Analysis) ¹		Period	Delay ²	LOS ³
1) Ocean View Hills Pkwy	All	AM	21.4	C
at Starfish/Westport (S)	All	PM	20.0	В
2) Ocean View Hills Pkwy	EB LR	AM	23.1	С
at Sea Drift Wy (U)	NB L	AM	9.6	Α
, ,	EB LR	PM	17.2	С
	NB L	PM	9.6	Α
3) Ocean View Hills Pkwy	All	AM	49.7	D
at Del Sol/Breakers (S)	All	PM	24.4	С
4) Ocean View Hills Pkwy	All	AM	19.2	В
at Sea Fire Pt (S)	All	PM	18.2	В
5) Ocean View Hills Pkwy	All	AM	5.1	Α
at Hidden Trails Rd (S)	All	PM	5.9	Α
6) Ocean View Hills Pkwy	All	AM	34.8	С
at Caliente/Otay Mesa (S)	All	PM	51.8	D
7) Caliente Ave at	All	AM	28.7	С
SR-905 WB Ramp (S)	All	PM	180.7	F
8) Caliente Ave at	All	AM	36.2	D
SR-905 EB Ramp (S)	All	PM	34.9	С
9) Caliente Ave at	All	AM	124.8	F
Airway Rd (U)	All	PM	90.2	F
10) Otay Mesa Rd at	NB R	AM	DNE	NA
Project West Access (U)	NB R	PM	DNE	NA
11) Otay Mesa Rd at	NB R	AM	19.6	С
Emerald Crest Ct (U)	NB R	PM	14.1	В
12) Otay Mesa Rd at	All	AM	45.3	D
Corporate Center Rd (S)	All	PM	34.9	C
13) Otay Mesa Rd at	NB R	AM	12.8	В
Innovative Dr (U)	SB R	AM	11.5	В
	NB R	PM	11.9	В
	SB R	PM	17.5	С
14) Otay Mesa Rd at	All	AM	33.6	С
Heritage Rd (S)	All	PM	37.1	D

Notes: 1) Intersection Analysis - (S) Signalized, (U) Unsignalized. 2) Delay - HCM Average Control Delay in seconds. 3) LOS: Level of Service. DNE: Does Not Exist. NA: Not Applicable. Bold indicates unacceptable LOS. Note: Intersections 11 and 13 are right-in, right-out only.

Please note that the reported LOS F intersection delay is excessive and may be beyond the range of reliability; however, the standard of practice HCM based software is being used.

TABLE 27: HORIZON YEAR 2062 WITHOUT PROJECT SEGMENT ADT VOLUMES AND LEVEL OF SERVICE

	Classification:		Hor	izon Year 20	062
Segment	Ultimate and	LOS E	Daily		
	(Functional)	Capacity	Volume	V/C	LOS
Caliente Avenue					
Otay Mesa Rd to SR-905 WB Ramp	6P (5C)	35,000	38,000	1.086	F
SR-905 EB Ramp to SR-905 EB Ramp	6P (5C)	35,000	33,200	0.949	Е
SR-905 EB Ramp to Airway Rd	6P (5C)	35,000	32,000	0.914	Е
Ocean View Hills Parkway					
Starfish Way/Westport View to Sea Drift Way	4M (4M)	40,000	19,900	0.498	В
Sea Drift Way to Del Sol Blvd	4M (4M)	40,000	17,800	0.445	В
Del Sol Blvd to Sea Fire Pt	6M (6M)	50,000	17,800	0.356	Α
Sea Fire Pt to Hidden Trails Rd	6M (6M)	50,000	17,000	0.340	Α
Hidden Trails Rd to Otay Mesa Rd	6M (6M)	50,000	18,300	0.366	Α
Otay Mesa Road					
Ocean View Hills Pkwy to Proj. W. Access	6P (6P)	60,000	39,700	0.662	С
Proj. W. Access to Emerald Crest Ct	6P (6P)	60,000	39,700	0.662	С
Emerald Crest Ct to Corporate Center Dr	6P (6P)	60,000	36,900	0.615	С
Corporate Center Dr to Innovative Dr	6P (6P)	60,000	20,200	0.337	Α
Innovative Dr to Heritage Rd	6P (6P)	60,000	22,800	0.380	Α

Notes: 6P=6 lane Prime, 6M = 6 lane Major, 5M=5 lane Major, 5C=5 lane Collector, 4M=4 lane Major. Daily volume is a 24 hour volume. LOS: Level of Service. V/C: Volume to Capacity Ratio. Bold indicates unacceptable LOS.

TABLE 28: HORIZON YEAR 2062 WITHOUT PROJECT FREEWAY VOLUMES AND LEVEL OF SERVICE

State Route		SR-	-905			SR	-905	
Segment		I-805 to C	aliente Ave		Ca	aliente Ave to	Britannia E	Blvd
Horizon Year (2062 Fore	cast)							
ADT	,	118	,700			112	,100	
Peak Hour	Δ	M	Р	PM AM PM				
Direction	EB	WB	EB	WB	EB	WB	EB	WB
Number of Lanes	4	4	4	4	3	3	3	3
Capacity (1)	9,400	9,400	9,400	9,400	7,050	7,050	7,050	7,050
K Factor (2)	0.0761	0.0761	0.0902	0.0902	0.0761	0.0761	0.0902	0.0902
D Factor (3)	0.6624	0.3376	0.4124	0.5876	0.6624	0.3376	0.4124	0.5876
Truck Factor (4)	0.8811	0.8811	0.8811	0.8811	0.8811	0.8811	0.8811	0.8811
Peak Hour Volume	6,791	3,461	5,011	7,140	6,413	3,269	4,733	6,743
Volume to Capacity	0.722	0.368	0.533	0.760	0.910	0.464	0.671	0.956
Horizon Year LOS	D	В	С	D	E	В	С	E

Notes: (1) Capacity of 2,350 pcphpl from CALTRANS' Guide for the Preparation of Traffic Impact Studies, December 2002. (2) K factor from Caltrans, which is the percentage of AADT in both directions. (3) D factor from Caltrans, which when multiplied by K and ADT will provide peak hour volume. (4) Truck factor from Caltrans. Excel rounding may result in ±1 above. Bold indicates unacceptable LOS.

TABLE 29: HORIZON YEAR 2062 WITHOUT PROJECT FREEWAY ON-RAMP OPERATIONS

SR-905 at		Vehicle	Vehicle	Most	Excess	Calculated	Calculated
Caliente Ave On Ramp & Peak Period	Scenario	Demand for Demand per 2 lanes lane (veh/hr) (veh/hr)*		Restrictive Rate per lane (1)	Demand per lane (veh/hr)	Delay per lane (minutes)	Queue in Feet per lane (2)
AM WB	Horizon Yr	1,060	530	480	50	6.3	1,250
PM WB	Horizon Yr	1,640	820	480	340	42.5	8,500
AM EB	Horizon Yr	300	150	480	0	0.0	0
PM EB	Horizon Yr	350	175	480	0	0.0	0

Notes: *Two lanes. (1) Rate from Otay Mesa Community Plan Update EIR of 960 for total ramp, thus 480 by lane. (2) Calculated queue may be different than actual queue in the horizon year because it is unknown if Caltrans may apply a different rate in year 2062.

Under Horizon Year 2062 without project conditions, the study intersections, street segments, and state route segments were calculated to operate at LOS D or better except for:

- 1) Intersection of Caliente Avenue at SR-905 WB Ramp (LOS F PM),
- 2) Intersection of Caliente Avenue at Airway Road (LOS F AM & PM),
- 3) Segment of Caliente Ave between Otay Mesa Rd and SR-905 WB Ramp (LOS F),
- 4) Segment of Caliente Ave between SR-905 WB Ramp and SR-905 EB Ramp (LOS E),
- 5) Segment of Caliente Ave between SR-905 EB Ramp and Airway Rd (LOS E), and
- 6) SR-905 between Caliente Ave and Britannia Blvd (LOS E AM EB & PM WB).

The metered freeway on-ramps were calculated to operate with significant delays (WB AM 10 minutes & WB PM 47.5 minutes, which exceeds acceptable operations. The receiving WB segment of SR-905 between I-805 and Caliente Ave is calculated to operate at acceptable LOS B AM and LOS D PM) or no delay (EB AM & PM). Please note that the reported WB on-ramp delay is excessive and may be beyond the range of reliability; however, the standard of practice calculation was used.

9.0 Horizon Year 2062 with Project Conditions

The Horizon Year 2062 with the project conditions were analyzed by adding the project traffic onto Horizon Year 2062 volumes. Horizon year 2062 with project conditions used in the LOS calculations are shown in **Figure 18**. The Horizon Year 2062 volumes with project traffic are shown in **Figure 19**. LOS and ramp meter operations are shown in **Tables 30 through 32** with calculations included in **Appendix X**.

TABLE 30: HORIZON YEAR 2062 WITH PROJECT INTERSECTION LEVEL OF SERVICE

Intersection and	Movement	Study _	Horizor	n Year	Horizon Year 2062 + Projec					
(Analysis) ¹		Period	Delay ²	LOS ³	Delay ²	LOS ³	Delta⁴	Impact?⁵		
Ocean View Hills Pkwy	All	AM	21.4	С	22.3	С	0.9	No		
at Starfish/Westport (S)	All	PM	20.0	В	21.5	С	1.5	No		
2) Ocean View Hills Pkwy	EB LR	AM	23.1	С	24.0	С	0.9	No		
at Sea Drift Wy (U)	NB L	AM	9.6	Α	9.7	Α	0.1	No		
• • •	EB LR	PM	17.2	С	17.9	С	0.7	No		
	NB L	PM	9.6	Α	9.8	Α	0.2	No		
3) Ocean View Hills Pkwy	All	AM	49.7	D	51.6	D	1.9	No		
at Del Sol/Breakers (S)	All	PM	24.4	С	25.7	С	1.3	No		
4) Ocean View Hills Pkwy	All	AM	19.2	В	19.3	В	0.1	No		
at Sea Fire Pt (S)	All	PM	18.2	В	23.2	С	5.0	No		
5) Ocean View Hills Pkwy	All	AM	5.1	Α	5.2	Α	0.1	No		
at Hidden Trails Rd (S)	All	PM	5.9	Α	6.2	Α	0.3	No		
6) Ocean View Hills Pkwy	All	AM	34.8	С	49.4	D	14.6	No		
at Caliente/Otay Mesa (S)	All	PM	51.8	D	68.4	Ε	16.6	Yes		
7) Caliente Ave at	All	AM	28.7	С	31.3	С	2.6	No		
SR-905 WB Ramp (S)	All	PM	180.7	F	195.4	F	14.7	Yes		
8) Caliente Ave at	All	AM	36.2	D	37.9	D	1.7	No		
SR-905 EB Ramp (S)	All	PM	34.9	С	38.7	D	3.8	No		
9) Caliente Ave at	All	AM	124.8	F	128.3	F	3.5	Yes		
Airway Rd (U)	All	PM	90.2	F	93.7	F	3.5	Yes		
10) Otay Mesa Rd at	NB R	AM	DNE	NA	21.1	С	NA	No		
Project West Access (U)	NB R	PM	DNE	NA	20.6	С	NA	No		
11) Otay Mesa Rd at	NB R	AM	19.6	С	22.4	С	22.4	No		
Emerald Crest Ct (U)	NB R	PM	14.1	В	>900	F	>900	Yes		
12) Otay Mesa Rd at	All	AM	45.3	D	46.4	D	1.1	No		
Corporate Center Rd (S)	All	PM	34.9	С	37.5	D	2.6	No		
13) Otay Mesa Rd at	NB R	AM	12.8	В	13.0	В	0.2	No		
Innovative Dr (U)	SB R	AM	11.5	В	11.6	В	0.1	No		
	NB R	PM	11.9	В	12.1	В	0.2	No		
	SB R	PM	17.5	С	18.3	С	8.0	No		
14) Otay Mesa Rd at	All	AM	33.6	С	33.7	С	0.1	No		
Heritage Rd (S)	All	PM	37.1	D	37.5	D	0.4	No		

Notes: 1) Intersection Analysis - (S) Signalized, (U) Unsignalized. 2) Delay - HCM Average Control Delay in seconds. 3) LOS: Level of Service. 4) Delta is the increase in delay from project. 5) Impact if project traffic exceeds threshold. DNE: Does not exist. NA: Not Applicable. Bold indicates unacceptable LOS and/or impact. Note: Intersections 11 and 13 are right-in, right-out only.

Please note that the reported LOS F intersection delay is excessive and may be beyond the range of reliability; however, the standard of practice HCM based software is being used.

Figure 18: Horizon Year 2062 with Project Conditions

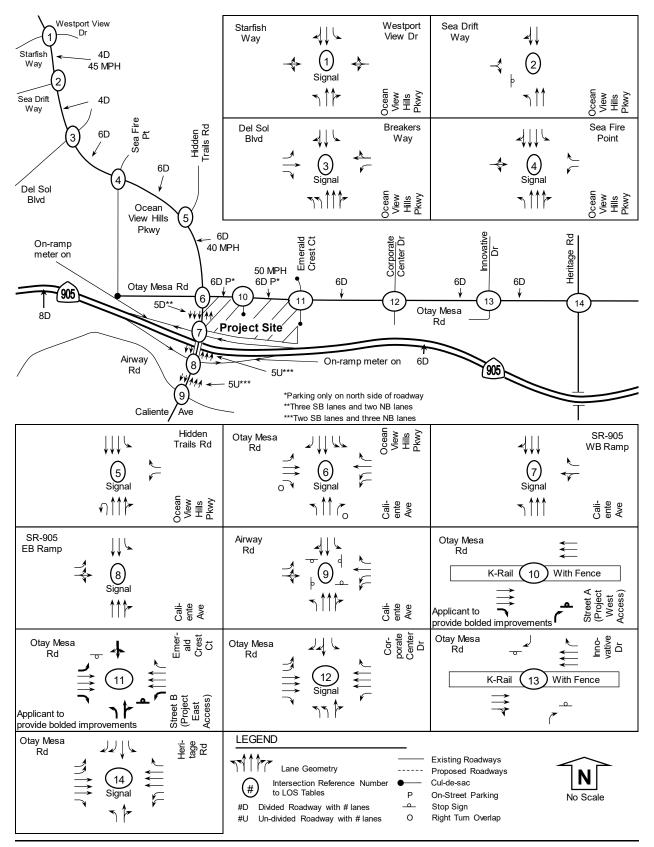


Figure 19: Horizon Year 2062 with Project Volumes

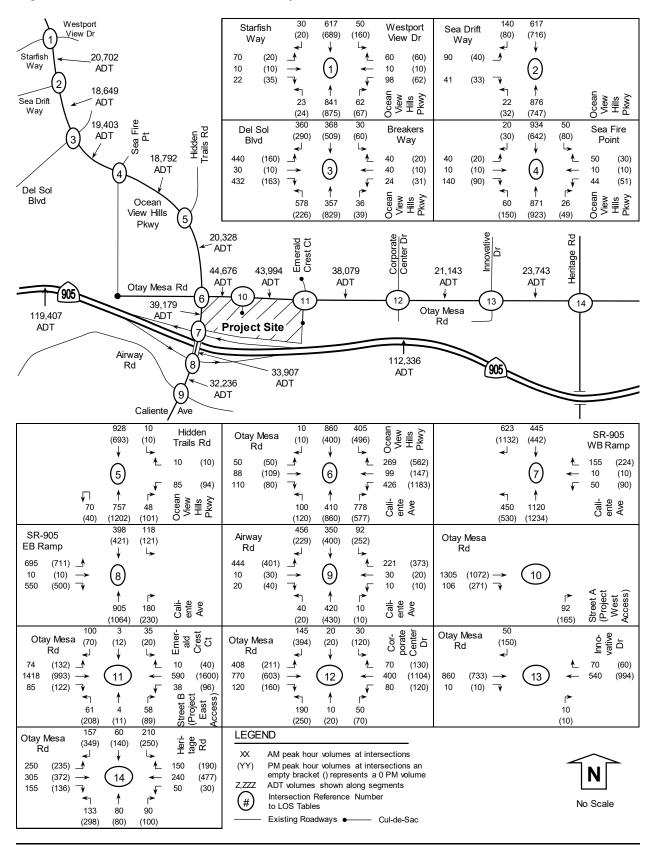


TABLE 31: HORIZON YEAR 2062 WITH PROJECT SEGMENT ADT VOLUMES AND LEVEL OF SERVICE

Classification	Horizon Voor 2062			Duningt	Harizon Vaar 2062 + Project					
			rear	2002	•		orizon			
Ultimate and	LOS E	Daily			Daily	Daily			Change	Cumulative
(Functional)	Capacity	Volume	V/C	LOS	Volume	Volume	V/C	LOS	In V/C	Impact?
6P (5C)	35,000	38,000	1.086	F	1,179	39,179	1.119	F	0.034	Yes
6P (5C)	35,000	33,200	0.949	Е	707	33,907	0.969	Е	0.020	No
6P (5C)	35,000	32,000	0.914	Е	236	32,236	0.921	Е	0.007	No
4M (4M)	40,000	19,900	0.498	В	802	20,702	0.518	В	0.020	No
4M (4M)	40,000	17,800	0.445	В	849	18,649	0.466	В	0.021	No
t 6M (6M)	50,000	17,800	0.356	Α	1,603	19,403	0.388	Α	0.032	No
6M (6M)	50,000	17,000	0.340	Α	1,792	18,792	0.376	Α	0.036	No
6M (6M)	50,000	18,300	0.366	Α	2,028	20,328	0.407	В	0.041	No
6P (6P)	60,000	39,700	0.662	С	4,976	44,676	0.745	С	0.083	No
t 6P (6P)	60,000	39,700	0.662	С	4,294	43,994	0.733	С	0.072	No
6P (6P)	60,000	36,900	0.615	С	1,179	38,079	0.635	С	0.020	No
6P (6P)	60,000	20,200	0.337	Α	943	21,143	0.352	Α	0.016	No
6P (6P)	60,000	22,800	0.380	Α	943	23,743	0.396	Α	0.016	No
	Ultimate and (Functional) 0 6P (5C) 0 6P (5C) 1 6P (5C) 1 6P (5C) 1 4M (4M) 1 4M (4M) 1 6M (6M) 1 6M (6M) 1 6M (6M) 1 6M (6M) 1 6P (6P) 1 6P (6P) 1 6P (6P)	0 6P (5C) 35,000 0 6P (5C) 35,000 1 6P (5C) 35,000 1 4M (4M) 40,000 1 4M (4M) 40,000 1 6M (6M) 50,000 1 6M (6M) 50,000 1 6M (6M) 50,000 1 6P (6P) 60,000 1 6P (6P) 60,000 1 6P (6P) 60,000 1 6P (6P) 60,000	Ultimate and LOS E Daily (Functional) Capacity Volume 0 6P (5C) 35,000 38,000 6P (5C) 35,000 32,000 32,000 4 6P (5C) 35,000 32,000 4 6P (5C) 35,000 19,900 17,800 17,800 16 6M (6M) 50,000 17,800 16 6M (6M) 50,000 17,000	Ultimate and LOS E Daily (Functional) Capacity Volume V/C 0 6P (5C) 35,000 38,000 1.086 0 6P (5C) 35,000 32,000 0.949 1 6P (5C) 35,000 32,000 0.914 1 4M (4M) 40,000 19,900 0.498 1 4M (4M) 40,000 17,800 0.445 1 6M (6M) 50,000 17,800 0.356 1 6M (6M) 50,000 17,000 0.340 1 6M (6M) 50,000 18,300 0.366 1 6P (6P) 60,000 39,700 0.662	Ultimate and LOS E Daily (Functional) Capacity Volume V/C LOS 0 6P (5C) 35,000 38,000 1.086 F 0 6P (5C) 35,000 33,200 0.949 E 1 6P (5C) 35,000 32,000 0.914 E 1 4M (4M) 40,000 19,900 0.498 B 1 4M (4M) 40,000 17,800 0.445 B 1 6M (6M) 50,000 17,800 0.356 A 1 6M (6M) 50,000 17,000 0.340 A 1 6M (6M) 50,000 18,300 0.366 A 1 6M (6M) 50,000 39,700 0.662 C 1 6P (6P) 60,000 39,700 0.662 C 1 6P (6P) 60,000 36,900 0.615 C 1 6P (6P) 60,000 20,200 0.337 A	Ultimate and LOS E Daily (Functional) Capacity Volume V/C LOS Volume 0 6P (5C) 35,000 38,000 1.086 F 1,179 0 6P (5C) 35,000 33,200 0.949 E 707 1 6P (5C) 35,000 32,000 0.914 E 236 1 4M (4M) 40,000 19,900 0.498 B 802 1 4M (4M) 40,000 17,800 0.445 B 849 1 6M (6M) 50,000 17,800 0.356 A 1,603 1 6M (6M) 50,000 17,000 0.340 A 1,792 1 6M (6M) 50,000 18,300 0.366 A 2,028 3 6P (6P) 60,000 39,700 0.662 C 4,976 1 6P (6P) 60,000 39,700 0.662 C 4,294 1 6P (6P) 60,000 36,900 0.615 C 1,179 1 6P (6P) 60,000 20,200 0.337 A 943	Ultimate and (Functional) LOS E Daily (Functional) Daily Volume V/C LOS Volume Daily Volume 0 6P (5C) 35,000 38,000 1.086 F 1,179 39,179 0 6P (5C) 35,000 33,200 0.949 E 707 33,907 1 6P (5C) 35,000 32,000 0.914 E 236 32,236 4 M (4M) 40,000 19,900 0.498 B 802 20,702 4 M (4M) 40,000 17,800 0.445 B 849 18,649 4 6M (6M) 50,000 17,800 0.356 A 1,603 19,403 4 6M (6M) 50,000 17,000 0.340 A 1,792 18,792 4 6M (6M) 50,000 18,300 0.366 A 2,028 20,328 5 6P (6P) 60,000 39,700 0.662 C 4,976 44,676 6 6P (6P) 60,000 39,700 0.662 C 4,294 43,994 6 6P (6P) 60,000 36,900 0.615 C 1,179 38,079 6 6P (6P) </td <td>Ultimate and (Functional) LOS E Daily (Functional) Daily Volume Daily Volume Daily Volume Daily Volume V/C 0 6P (5C) 35,000 38,000 1.086 F 1,179 39,179 1.119 0 6P (5C) 35,000 33,200 0.949 E 707 33,907 0.969 1 6P (5C) 35,000 32,000 0.914 E 236 32,236 0.921 4 M (4M) 40,000 19,900 0.498 B 802 20,702 0.518 4 M (4M) 40,000 17,800 0.445 B 849 18,649 0.466 5 6M (6M) 50,000 17,800 0.356 A 1,603 19,403 0.388 6 6M (6M) 50,000 17,000 0.340 A 1,792 18,792 0.376 6 6M (6M) 50,000 18,300 0.366 A 2,028 20,328 0.407 6 6P (6P) 60,000 39,700 0.662 C 4,976 44,676 0.745 6 6P (6P) 60,000 39,700 0.662</td> <td>Ultimate and (Functional) LOS E Daily (Functional) Daily (Functi</td> <td>Ultimate and (Functional) LOS E Daily (Functional) Daily Volume Daily Volume Daily Volume Daily Volume Daily Volume Change Volume 0 6P (5C) 35,000 38,000 1.086 F 1,179 39,179 1.119 F 0.034 0 6P (5C) 35,000 33,200 0.949 E 707 33,907 0.969 E 0.020 1 6P (5C) 35,000 32,000 0.914 E 236 32,236 0.921 E 0.007 4 M (4M) 40,000 19,900 0.498 B 802 20,702 0.518 B 0.020 4 M (4M) 40,000 17,800 0.445 B 849 18,649 0.466 B 0.021 t 6M (6M) 50,000 17,800 0.340 A 1,792 18,792 0.376 A 0.036 d 6M (6M) 50,000 18,300 0.366 A 2,028 20,328 0.407 B</td>	Ultimate and (Functional) LOS E Daily (Functional) Daily Volume Daily Volume Daily Volume Daily Volume V/C 0 6P (5C) 35,000 38,000 1.086 F 1,179 39,179 1.119 0 6P (5C) 35,000 33,200 0.949 E 707 33,907 0.969 1 6P (5C) 35,000 32,000 0.914 E 236 32,236 0.921 4 M (4M) 40,000 19,900 0.498 B 802 20,702 0.518 4 M (4M) 40,000 17,800 0.445 B 849 18,649 0.466 5 6M (6M) 50,000 17,800 0.356 A 1,603 19,403 0.388 6 6M (6M) 50,000 17,000 0.340 A 1,792 18,792 0.376 6 6M (6M) 50,000 18,300 0.366 A 2,028 20,328 0.407 6 6P (6P) 60,000 39,700 0.662 C 4,976 44,676 0.745 6 6P (6P) 60,000 39,700 0.662	Ultimate and (Functional) LOS E Daily (Functional) Daily (Functi	Ultimate and (Functional) LOS E Daily (Functional) Daily Volume Daily Volume Daily Volume Daily Volume Daily Volume Change Volume 0 6P (5C) 35,000 38,000 1.086 F 1,179 39,179 1.119 F 0.034 0 6P (5C) 35,000 33,200 0.949 E 707 33,907 0.969 E 0.020 1 6P (5C) 35,000 32,000 0.914 E 236 32,236 0.921 E 0.007 4 M (4M) 40,000 19,900 0.498 B 802 20,702 0.518 B 0.020 4 M (4M) 40,000 17,800 0.445 B 849 18,649 0.466 B 0.021 t 6M (6M) 50,000 17,800 0.340 A 1,792 18,792 0.376 A 0.036 d 6M (6M) 50,000 18,300 0.366 A 2,028 20,328 0.407 B

Notes: 6P=6 lane Prime, 6M = 6 lane Major, 5M=5 lane Major, 5C=5 lane Collector, 4M=4 lane Major. Daily volume is a 24 hour volume. LOS: Level of Service. V/C: Volume to Capacity Ratio. Bold indicates unacceptable LOS and/or impact.

TABLE 32: HORIZON YEAR 2062 WITH PROJECT FREEWAY VOLUMES AND LEVEL OF SERVICE

State Route		SR-	905		SR-905						
Segment		I-805 to C	aliente Ave		Ca	liente Ave to	Britannia E	Blvd			
Horizon Year (2062 Fore	cast)										
ADT		118	,700			112	,100				
Peak Hour	P	A M	Р	M	Α	M	Р	M			
Direction	EB	WB	EB	WB	EB	WB	EB	WB			
Number of Lanes	4	4	4	4	3	3	3	3			
Capacity (1)	9,400	9,400	9,400	9,400	7,050	7,050	7,050	7,050			
K Factor (2)	0.0761	0.0761	0.0902	0.0902	0.0761	0.0761	0.0902	0.0902			
D Factor (3)	0.6624	0.3376	0.4124	0.5876	0.6624	0.3376	0.4124	0.5876			
Truck Factor (4)	0.8811	0.8811	0.8811	0.8811	0.8811	0.8811	0.8811	0.8811			
Peak Hour Volume	6,791	3,461	5,011	7,140	6,413	3,269	4,733	6,743			
Volume to Capacity	0.722	0.368	0.533	0.760	0.910	0.464	0.671	0.956			
Horizon Year LOS	D	В	С	D	E	В	С	E			
Project Pk Hr Vol	15	23	41	32	8	5	11	14			
SANDAG (Horizon Year -	+ Project)										
Peak Hour Volume	6,806	3,484	5,052	7,172	6,421	3,274	4,744	6,757			
Volume to Capacity	0.724	0.371	0.537	0.763	0.911	0.464	0.673	0.958			
LOS	D	В	С	D	E	В	С	E			
Increase in V/C	0.002	0.002	0.004	0.003	0.001	0.001	0.002	0.002			
Project Impact?	No	No	No	No	No	No	No	No			

Notes: (1) Capacity of 2,350 pcphpl from CALTRANS' Guide for the Preparation of Traffic Impact Studies, December 2002. (2) K factor from Caltrans, which is the percentage of AADT in both directions. (3) D factor from Caltrans, which when multiplied by K and ADT will provide peak hour volume. (4) Truck factor from Caltrans. Excel rounding may result in ±1 above. Bold indicates unacceptable LOS.

TABLE 33: HORIZON YEAR 2062 WITH PROJECT FREEWAY ON-RAMP OPERATIONS

SR-905 at		Vehicle	Vehicle	Most	Excess	Calculated	Calculated	Cumula-
Caliente Ave	Scenario	Demand	Demand per	Restrictive	Demand	Delay per	Queue in	tive
On Ramp &	Scenario	(veh/hr)	lane	Rate per	per lane	lane	Feet per	Impact?
Peak Period		(veii/iii)	(veh/hr)*	lane (1)	(veh/hr)	(minutes)	lane (2)	(3)
AM WB	Horizon Yr	1,060	530	480	50	6.3	1,250	
On-Ramp	Horizon Yr + P	1,083	542	480	62	<u>7.7</u>	<u>1,538</u>	
		Increas	se in delay due	to project traff	fic per lane:	1.4	288	No
PM WB	Horizon Yr	1,640	820	480	340	42.5	8,500	
On-Ramp	Horizon Yr + P	1,672	836	480	356	<u>44.5</u>	<u>8,900</u>	
		Increas	se in delay due	to project traff	fic per lane:	2.0	400	No
AM EB	Horizon Yr	300	150	480	0	0.0	0	
On-Ramp	Horizon Yr + P	308	154	480	0	<u>0.0</u>	<u>0</u> 0	
		Increas	se in delay due	to project traff	fic per lane:	0.0	0	No
PM EB	Horizon Yr	350	175	480	0	0.0	0	
On-Ramp	Horizon Yr + P	361	181	480	0	<u>0.0</u>	<u>0</u> 0	
		Increas	se in delay due	0.0	0	No		

Notes: *Two lanes. (1) Rate from Otay Mesa Community Plan Update EIR of 960 for total ramp, thus 480 by lane. (2) Calculated queue may be different than actual queue in the horizon year because it is unknown if Caltrans may apply a different rate in year 2062. (3) Not considered a cumulative impact because downstream freeway operations are at LOS D or better.

Under horizon year 2062 with project conditions, the study intersections, street segments, and state route segments were calculated to operate at LOS D or better except for:

- 1) Intersection of Otay Mesa Rd/Ocean View Hills Pkwy/Caliente Ave (LOS E PM),
- 2) Intersection of Caliente Avenue/SR-905 WB Ramp (LOS F PM),
- 3) Intersection of Caliente Avenue at Airway Road (LOS F AM & PM),
- 4) Intersection of Otay Mesa Road at Emerald Crest Court (LOS F PM),
- 5) Segment of Caliente Ave between Otay Mesa Rd and SR-905 WB Ramp (LOS F),
- 6) Segment of Caliente Ave between SR-905 WB Ramp and SR-905 EB Ramp (LOS E),
- 7) Segment of Caliente Ave between SR-905 EB Ramp and Airway Rd (LOS E), and
- 8) SR-905 between Caliente Ave and Britannia Blvd (LOS E AM EB & PM WB).

The project is calculated to have five cumulative (horizon year) impacts at

- 1) Intersection of Otay Mesa Rd/Ocean View Hills Pkwy/Caliente Ave (LOS E PM),
- 2) Intersection of Caliente Avenue/SR-905 WB Ramp (LOS F PM),
- 3) Intersection of Caliente Avenue at Airway Road (LOS F AM & PM),
- 4) Intersection of Otay Mesa Road at Emerald Crest Court (LOS F PM), and
- 5) Segment of Caliente Ave between Otay Mesa Rd and SR-905 WB Ramp (LOS F).

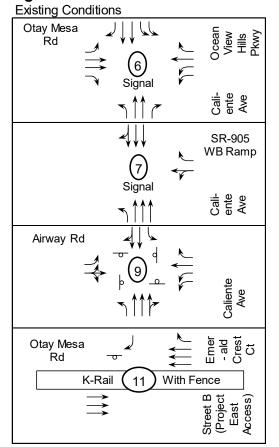
The two other segments of Caliente Avenue with unacceptable LOS (SR-905 WB Ramp to SR-905 EB Ramp and SR-905 EB Ramp to Airway Rd) do not have cumulative impacts because the project traffic does not exceed the City of San Diego traffic impact significance thresholds.

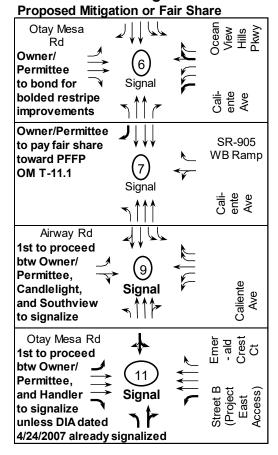
The following metered freeway on-ramps were calculated to operate with significant delays:

- 1) WB SR-905 On-Ramp AM (7.7 minutes per lane)
- 2) WB SR-905 On-Ramp PM (44.5 minutes per lane)

The above on-ramp meter delay exceeds acceptable operations; however, the project does not result

in a significant impact to the metered on-ramps because the downstream freeway operations are expected to be at LOS D or better. The Otay Mesa CPU EIR also documented delays in excess of 15 minutes at the Caliente Avenue WB on-ramp in conjunction with downstream freeway operations of unacceptable LOS E or F conditions (Appendix P). Please note that the reported WB on-ramp delay is excessive and may be beyond the range of reliability; however, the standard of practice calculation was used.


9.1 Horizon Year 2062 with Project Proposed Mitigation


The project is calculated to have five (5) cumulative impacts at the following locations.

- 1) Intersection of Otay Mesa Rd/Ocean View Hills Pkwy/Caliente Ave (LOS E PM),
- 2) Intersection of Caliente Avenue/SR-905 WB Ramp (LOS F PM),
- 3) Intersection of Caliente Avenue/Airway Road (LOS F AM & PM),
- 4) Intersection of Otay Mesa Road/Emerald Crest Court (LOS F PM), and
- 5) Segment of Caliente Ave between Otay Mesa Rd and SR-905 WB Ramp (LOS F).

The applicant is proposing the following intersection mitigation measures as shown in **Figure 20**.

Figure 20: Horizon Year 2062 with Project Proposed Intersection Mitigation

The proposed mitigation measures are calculated to improve the intersection operations to below a level of significance as shown in **Table 34.** LOS calculation and a concept striping plan for the intersection of Caliente Ave/Otay Mesa Rd/Ocean View Hills Pkwy are included in **Appendix Y**.

TABLE 34: HORIZON YEAR 2062 WITH PROJECT OPERATIONS WITH PROPOSED MITIGATION

Intersection &	Move-	Study	Horizo	n Year	Horiz	on Ye	ar + Pro	oject	Hor. Yr	+ Pro	oj (with	MIT)	
(Analysis) ¹	ment	Period	Delay ²	LOS ³	Delay ²	LOS ³	Delta ⁴	Sig⁵	Delay ²	LOS ³	Delta ⁶	Sig⁵	
6) Ocean View Hills Pkwy	All	AM	34.8	С	49.4	D	14.6	No	39.6	D	4.8	No	
at Caliente/Otay Mesa (S)	All	PM	51.8	D	68.4	Ε	16.6	Yes	47.8	D	-4.0	No	
							Mitig	ation:	Restr	ipe to	add la	nes	
7) Caliente Ave at	All	AM	28.7	С	31.3	С	2.6	No	28.5	С	-0.2	No	
SR-905 WB Ramp (S)	All	PM	180.7	F	195.4	F	14.7	Yes	178.5	F	-2.2	No	
							Mitia	ation:	8.8% fa	air sha	are to F	PFFP	
							iviiug	auon.	T-11.	1 (SB	RT La	ne)	
9) Caliente Ave at	All	AM	124.8	F	128.3	F	3.5	Yes	25.0	С	-99.8	No	
Airway Rd (U)	All	PM	90.2	F	93.7	F	3.5	Yes	26.6	С	-63.6	No	
									1st to proceed between				
							Mitia	ation:	Owner/Permittee,				
							wiiug	auon.	C	andleli	ight, &		
									South	view t	o signa	alize	
11) Otay Mesa Rd at	NB	AM	19.6	С	22.4	С	22.4	No	15.0	С	-4.6	No	
Emerald Crest Ct (U)	NB	PM	14.1	В	>900	F	>900	Yes	22.6	С	8.5	No	
									1st to	proce	ed betv	ween	
					N A:4:4:			Ow	ner/Pe	ermitte	е,		
					Mitigation:		Hand	dler, a	nd DIA	to			
									signalize				

Notes: 1) Intersection Analysis - (S) Signalized, (U) Unsignalized. 2) Delay - HCM Average Control Delay in seconds. 3) LOS: Level of Service. 4) Delta is the increase in delay from project. 5) Direct Impact if project traffic exceeds threshold. 6) Delta is between Horizon Year (no project, no mitigation) and Horizon Year with project with mitigation.

The intersection of Otay Mesa Rd/Ocean View Hills Pkwy/Caliente Ave is identified in the Otay Mesa CPU Final EIR as a significant and unmitigated impact at community buildout resulting in the adoption of overriding considerations. The applicant is proposing mitigation to reduce the significant direct and cumulative impact at this intersection to below significant through a restriping of the westbound approach from four approach lanes (left, left, through, right) to five approach lanes (left, left, through-right, right) satisfactory to the City Engineer (as shown previously in Figure 20). However, if the restripe is determined to be infeasible, then the impact at would not be fully mitigated and a Statement of Overriding Considerations would be required, which is consistent with the Otay Mesa CPU EIR.

The intersection of Caliente Ave/SR-905 WB Ramp is identified in the Otay Mesa CPU Final EIR as a significant and unmitigated impact at community buildout. Prior to issuance of the first building permit, owner/permittee shall make a fair share contribution of 8.8% toward PFFP OM T-11.1 that includes the construction of an additional southbound right turn lane satisfactory to the City Engineer. However, if the PFFP is not fully funded by Horizon Year, then the impact would not be mitigated consistent with the Otay Mesa CPU EIR.. Fair share calculations of 6.5% AM and 8.8% PM are included in **Appendix Z**. The intersection of Caliente Ave/Airway Rd is also identified in the Otay Mesa CPU Final EIR as a significant and unmitigated impact at

community buildout. The project proposes mitigation for reduction of its direct and cumulative impact through the installation of signal at this intersection. This intersection is also identified to be signalized as part of the Candlelight VTM MMRP and Southview. Prior to issuance of the first building permit, owner/permittee shall install a traffic signal satisfactory to the City Engineer if said signal is not already installed and operational.

The intersection of Otay Mesa Rd/Emerald Crest Court/Street B with full turning movements allowed requires a traffic signal to reduce the Project's direct impact to below a level of significance. Prior to issuance of the first building permit, owner/permittee shall install a traffic signal satisfactory to the City Engineer if said signal is not already installed and operational. The signal could be completed by either the adjacent Handler commercial project or by Garden Communities as outlined in the Deferred Improvement Agreement between Garden Communities and City of San Diego dated 4/24/2007 and secured by a bond of \$162,000.

The cumulative segment impact on Caliente Avenue would be reduced to below a level of significance through the project's construction of a full width raised median along the project frontage. Prior to issuance of the first building permit, owner/permittee shall construct a full width raised median on Caliente Avenue from Otay Mesa Rd to SR-905 WB Ramp. The LOS with the raised median is shown in **Table 35**.

TABLE 35: HORIZON YEAR 2062 WITH PROJECT CALIENTE AVE OPERATIONS

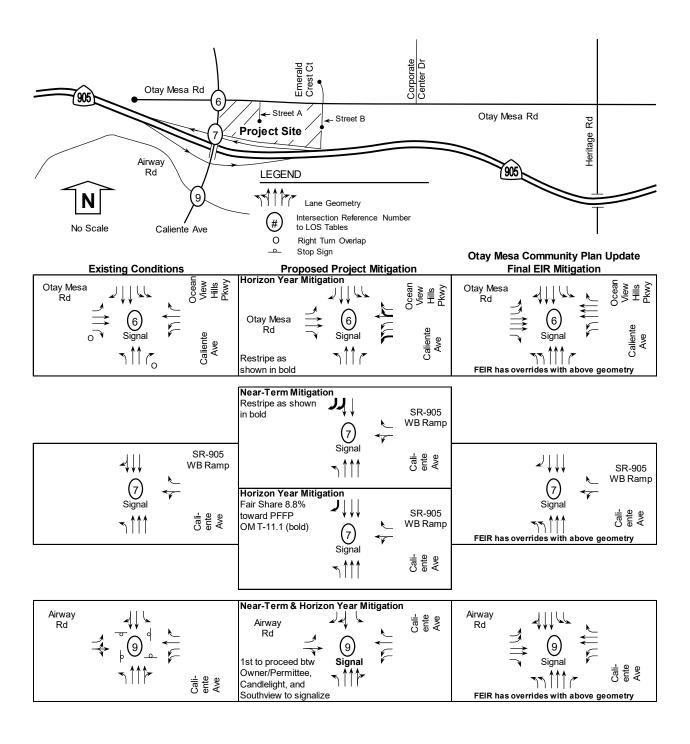
	Classification		Horizon	Year	2062	Project	Horizon Year 2062 + Project					
Segment	Ultimate and	LOS E	Daily			Daily	Daily			Change	Cumulative	
	(Functional)	Capacity	Volume	V/C	LOS	Volume	Volume	V/C	LOS	In V/C	Impact?	
Caliente Avenue (with reduced lane	usage of a 5	ane colle	ctor)									
Otay Mesa Rd to SR-905 WB Ramp	6P (5C)	35,000	38,000	1.09	F	1,179	39,179	1.12	F	0.03	Yes	
Caliente Avenue (with project median, the reduced lane usage is a 5 lane major)												
Otay Mesa Rd to SR-905 WB Ramp	6P (5M)	45,000	38,000	0.84	D	1,179	39,179	0.87	D	0.03	No	
Notes: 6P=6 Jane Prime 6M = 6 Jane Major	5C=5 Jane Colle	ector 4M=4	Llane Maio	r Dailv	volum	e is a 24 h	nur volume	LOS.	Levelo	of Service	V/C: Volume	

Notes: 6P=6 lane Prime, 6M = 6 lane Major, 5C=5 lane Collector, 4M=4 lane Major. Daily volume is a 24 hour volume. LOS: Level of Service. V/C: Volume to Capacity Ratio. Bold indicated unacceptable LOS and/or impact.

10.0 Project Impacts and Mitigation Summary

The project is calculated to have three direct significant impacts (intersections of Caliente Ave/SR-905 WB Ramp, Caliente Avenue/Airway Road, Otay Mesa Rd/Emerald Crest Ct/Street B) and five horizon year cumulative impacts (intersections of Otay Mesa Rd/Ocean View Hills Pkwy/Caliente Ave, Caliente Ave/SR-905 WB Ramp, Caliente Ave/Airway Rd, Otay Mesa Road/Emerald Crest Court, and the segment of Caliente Ave between Otay Mesa Rd and SR-905 WB Ramp). In addition to the proposed mitigation measures previously outlined, the applicant proposes the following project features:

- 1) Construct Street A to full width (public cul-de-sac extending south from Otay Mesa Rd) located approximately 500 feet east of Caliente Avenue (centerline to centerline) with right-in/right-out only access and a right turn deceleration lane on Otay Mesa Road (deceleration lane required to allow access from a primary arterial).
- 2) Construct Street B to full width (public cul-de-sac extending south from Otay Mesa Rd) located along the eastern project boundary that will align with Emerald Crest Court completing a fourth leg to this existing t-intersection along with a right turn deceleration lane on Otay Mesa Road.
- 3) Remove the existing K-Rail with fence along the project's frontage on Otay Mesa Road and replace with concrete raised median, along with signal installation at Otay Mesa Road / Emerald Crest Court/Street B. The intersection of Caliente Ave/Emerald Crest Court will be signalized by the first applicant to obtain building permits between this project and the adjacent Handler commercial project, unless it is completed beforehand as outlined in the Deferred Improvement Agreement between Garden Communities and City of San Diego dated 4/24/2007. Traffic signal warrant Figure 4C-103 based on estimated ADT is satisfied with calculations included in Appendix I.
- 4) Construct a full width raised median on Caliente Avenue from Otay Mesa Road to SR-905 WB Ramp, and
- 5) Construct a 6-foot non-contiguous sidewalk along the project frontage on Otay Mesa Road. Replace the existing sidewalk along the project frontage on Caliente Ave with a 6-ft non-contiguous sidewalk that will connect with the existing sidewalk at the Caltrans ROW.


10.1 Mitigation Summary

Significant project impacts are anticipated at the intersections of Ocean View Hills Pkwy/Caliente Road/Otay Mesa Rd and Caliente Ave/SR-905 WB Ramp. These intersections are also identified in the Otay Mesa Community Plan Update (CPU) Final EIR as being expected to operate at unacceptable levels of service in the Horizon Year plus Community Plan Update FEIR. with improvements beyond the mitigation measures proposed by the project applicant, as shown in **Figure 21** (excerpts from the FEIR are included in Appendix N). The mitigation summary is shown in **Table 36.**

TABLE 36: DIRECT AND CUMULATIVE IMPACT SUMMARY AND PROPOSED MITIGATION

Roadway Facility	Existing AND Near Term Year 2020 + Project Direct Impacts	Mitigation
Intersections	1) Caliente Ave/SR-905 WB Ramp	Prior to issuance of the first building permit, owner/permittee shall restripe the southbound approach to include a through lane, a through-right turn lane, and right turn lane satisfactory to the City Engineer and Caltrans.
	2) Caliente Ave/Airway Rd	Prior to issuance of the first building permit, owner/permittee shall install a traffic signal satisfactory to the City Engineer if said signal is not already installed and operational.
	 Otay Mesa Rd/Emerald Crest Ct 	Prior to issuance of the first building permit, owner/permittee shall install a traffic signal satisfactory to the City Engineer if said signal is not already installed and operational.
Segments	None	None
Freeways	None	None
On-Ramps	Not Metered	Not Applicable
Roadway Facility	Horizon Year 2062 + Project Cumulative Impacts	Mitigation
Intersections	1) Otay Mesa Rd/Ocean View Hills/Caliente Ave	Prior to issuance of the first building permit, owner/permittee shall bond for the restriping of the westbound approach to three left turn lanes, a through-right turn lane, and an exclusive right turn lane satisfactory to the City Engineer. However, if not implemented by Horizon Year, then the impact would not be mitigated consistent with the Otay Mesa CPU EIR.
	2) Caliente Ave/SR-905 WB Ramp	Prior to issuance of the first building permit, owner/permittee shall make a fair share contribution of 8.8% toward PFFP OM T-11.1 that includes the construction of an additional southbound right turn lane satisfactory to the City Engineer. However, if the PFFP not fully funded by Horizon Year, then the impact would not be mitigated consistent with the Otay Mesa CPU EIR.
	Caliente Ave/Airway Rd	Prior to issuance of the first building permit, owner/permittee shall install a traffic signal satisfactory to the City Engineer if said signal is not already installed and operational.
	4) Otay Mesa Rd/Emerald Crest Ct	Prior to issuance of the first building permit, owner/permittee shall install a traffic signal satisfactory to the City Engineer if said signal is not already installed and operational.
Segments	1)Caliente Ave from Otay Mesa to SR- 905 WB Ramp	Prior to issuance of the first building permit, owner/permittee shall construct a full width raised median on Caliente Avenue from Otay Mesa Rd to SR-905 WB Ramp.
		A 1
Freeways On-Ramps	None None	None None

Figure 21: Proposed and Otay Mesa CPU FEIR Mitigation Measures

11.0 Parking

The project of 171 dwelling units requires a minimum of 545 automobile spaces while 605 automobile spaces would be provided based on 45,000 sf Commercial and 171 dwelling units. The number of bedrooms by unit for the 267 unit scenario is not available, thus the parking requirement cannot be calculated; however, when submitted as part of the Substantial Conformance Review, the parking details will be provided. There are no Land Development Code deviations anticipated with the 267 unit scenario. The parking summary in **Table 37** would be updated when the project dwelling unit count is refined.

TABLE 37: PROJECT PARKING SUMMARY

Project Component	Minimum Required Parking by Code	Provided Parking
Commercial (45,000 sf)	194 Automobile Spaces	194 Automobile Spaces
(Munipal Code Table	4 Motorcycle Spaces	4 Motorcycle Spaces
142.05E, 4.3 spaces per	10 Short Term Bicycle Spaces	12 Short Term Bicycle Spaces
1,000 sf in Transit Priority	10 Long Term Bicycle Spaces	12 Long Term Bicycle Spaces
Area)		
Residential (171 units)	342 Automobile Spaces	401 Automobile Spaces
92 three-bedroom units	9 Accessible Spaces	(Including 59 Open Spaces)
79 four-bedroom units	18 Motorcycle Spaces	10 Accessible Spaces
(Municipal Code Table 142-	Bicycle spaces not required for	20 Motorcycle Spaces
05C, 2 spaces per unit in	dwelling units with enclosed	0 Bicycle Spaces
transit area)	garages	
Total Automobile Spaces	545	605

12.0 Transportation Demand Management

A Transportation Demand Management (TDM) plan will provide the means to disseminate information to help tenants and employees learn about and use alternative forms of transportation other than single occupancy vehicles. The following TDM elements (to be implemented by the property owner/manager) will be provided for this mixed-use project that will be incorporated into the project conditions of approval.

- 1) Provide information about the SANDAG's iCommute program (www.icommutesd.com),
- 2) Provide showers and lockers for employees of the commercial uses,
- 3) Encourage carpooling for employees of the retail through incentives such as through providing carpool spaces at premium locations in the parking area,
- 4) Encourage bike and transit usage for employees of the commercial project owner through incentives of partial subsidization of transit passes,

- 5) Display maps, routes, and schedules for public transit near the retail buildings in a kiosk, and
- 6) Provide more than the minimum required short term bicycle parking.

13.0 On-Site Vehicular and Pedestrian Circulation

The project has two distinct parts, a commercial center on the western side of the overall site and a residential area on the eastern side. There is a driveway across the residential portion that provides vehicular access between Street A and Street B.

The applicant will construct a 6-foot non-contiguous sidewalk along the project frontage on Otay Mesa Road, remove and replace the sidewalk along the project frontage on Caliente Avenue with a 6-foot non-contiguous sidewalk to connect with the contiguous sidewalk at Caltrans' ROW, and construct 6-foot non-contiguous sidewalks throughout cul-de-sac Street A and Street B. Several connections will be provided between the sidewalk and the residential side while the future commercial side will also incorporate connections between the commercial site and the sidewalk. The residential side has sidewalks and crosswalks for pedestrians to reach the on-site park and commercial site.

The project will connect with existing sidewalk on the east side of Caliente Avenue that extends in a southerly direction across SR-905. Pedestrians will have the choice of using existing sidewalks on the east or west side of Caliente Avenue to reach San Ysidro High School located on the southwest corner of Caliente Avenue and Airway Road.

14.0 Conclusions

The proposed California Terraces PA 61 is a mixed-use project with 171 to 267 multi-family units, up to 45,000 sf of commercial/retail space, and a 0.19 acre private park located on the southeast corner of Otay Mesa Road and Caliente Avenue in the Otay Mesa community of San Diego, California. The project is anticipated to open in year 2020. The site is currently vacant. The project requires a Community Plan Amendment (CPA) to re-designate the approximately 14-acre site from Community Commercial – Residential Prohibited (CC-2-3) to Community Commercial – Residential Permitted Rezone for the eastern portion of the property from CC-1-3 to RM-2-5, and to reclassify Caliente Avenue from Otay Mesa Road to SR-905 WB Ramp from a six-lane Prime to a five-lane Prime. The following discretionary approvals are required as part of the project:

- 1) Vesting Tentative Map
- 2) Site Development Permit
- 3) Master Planned Development Permit
- 4) Neighborhood Development Permit
- 5) Community Plan Amendment Land Use and Roadway Classification
- 6) Street Vacation and Rezone

The project's expected traffic generation was calculated using trip rates from the City of San Diego *Trip Generation Manual*, May 2003. Two trip generation rates were applied: a driveway rate for project access points and the intersection of Caliente Avenue/Otay Mesa Road and a cumulative rate (accounts for primary and diverted trips) that was applied for all other analyzed locations. The project driveway volumes (with 267 MF units, 45,000 sf commercial, and 0.19 acre park) were calculated at 6,816 ADT with 336 AM peak hour trips (152 inbound and 184 outbound) and 717 PM peak hour trips (387 inbound and 330 outbound). The cumulative traffic volumes were calculated at 4,716 ADT with 252 AM peak hour trips (101 inbound and 151 outbound) and 486 PM peak hour trips (271 inbound and 215 outbound).

As part of this transportation impact study, six scenarios were analyzed, which included Existing, Existing with Project, Near-term Year 2020 without Project, Near-term Year 2020 with Project (Opening Day), Horizon Year 2062 without Project, and Horizon Year 2062 with Project Conditions. Operational findings and project impacts by scenario are summarized below:

- 1) Under existing conditions, the study intersections, street segments, and state route segments were calculated to operate at LOS D or better except for the intersection of Caliente Avenue at Airway Road (LOS F AM). The Caliente Avenue/SR-905 on-ramps are not metered under this scenario.
- 2) Under existing with project conditions, the study intersections, street segments, and state route segments were calculated to operate at LOS D or better except for the intersections of:
 - i. Caliente Avenue at SR-905 WB Ramp (LOS E PM),
 - ii. Caliente Avenue at Airway Road (LOS F AM), and
 - iii. Otay Mesa Road at Emerald Crest Ct (LOS F PM).

The project is calculated to have direct impacts at all three of the above intersections. The Caliente Avenue/SR-905 on-ramps are not metered under this scenario.

The intersection of Caliente Ave/SR-905 WB Ramp is identified in the Otay Mesa Community Plan Update (CPU) Final EIR as a significant and unmitigated impact at community buildout resulting in the adoption of overriding considerations. Under Existing Plus Project Conditions, the applicant is proposing mitigation to reduce the direct impact at this intersection to below significance through restriping the southbound approach of two through and one through-right turn lane (3 total approach lanes) to one through, one through-right, and one right turn lane (3 total approach lanes). The proposed restriping is an interim improvement until the City Public Facilities Financing Plan (PFFP) OM T-11.1 is completed (currently scheduled for 2026), which will add an additional southbound right turn lane from Caliente Ave to SR-905 WB Ramp resulting in 4 total approach lanes. The interim mitigation would reduce the significant impact at this intersection to less than significant. Prior to issuance of the first building permit, owner/permittee shall restripe the southbound approach to include a through lane, a through-right turn lane, and right turn lane satisfactory to the City Engineer and Caltrans.

The intersection of Caliente Ave/Airway Rd is also identified in the Otay Mesa CPU Final EIR as a significant and unmitigated impact at community buildout resulting in the adoption of overriding considerations. The project proposes mitigation for reduction of this significant impact through the installation of signal at this intersection. It is noted that this intersection is also identified to be signalized as part of the Candlelight VTM Mitigation Monitoring and Reporting Program (MMRP). Prior to issuance of the first building permit, owner/permittee shall install a traffic signal satisfactory to the City Engineer if said signal is not already installed and operational.

The intersection of Otay Mesa Rd/Emerald Crest Court/Street B with full turning movements allowed requires a traffic signal to reduce the direct impact to below a level of significance. Prior to issuance of the first building permit, owner/permittee shall install a traffic signal satisfactory to the City Engineer if said signal is not already installed and operational. The signal could be completed by either the adjacent Handler commercial project or by others as outlined in the Deferred Improvement Agreement between Garden Communities and City of San Diego dated 4/24/2007 and secured by a \$162,000 bond. The signal will be installed prior to the project's first occupancy in order to mitigate this project's direct impact.

Other project features include the construction of a full width raised median along the project frontage on Caliente Avenue, removal of the existing K-rail and replacement with a full width raised median along the project frontage on Otay Mesa Road, construction of two public culde-sac streets, construction of a 6-foot non-contiguous sidewalk along Otay Mesa Road, and replacement of the sidewalk along Caliente Ave with a 6-foot non-contiguous sidewalk along the project frontage.

- 3) Under Near Term 2020 (opening day) without project conditions, the study intersections, street segments, and state route segments were calculated to operate at LOS D or better except for the intersections of:
 - i. Caliente Avenue at SR-905 WB Ramp (LOS E PM), and
 - ii. Caliente Avenue at Airway Road (LOS F AM and PM).

The Caliente Avenue/SR-905 on-ramps are not metered under this scenario.

- 4) Under Near Term 2020 (opening day) with project conditions, the study intersections, street segments, and state route segments were calculated to operate at LOS D or better except for the intersections of:
 - i. Caliente Avenue at SR-905 WB Ramp (LOS E PM),
 - ii. Caliente Avenue at Airway Road (LOS F AM), and
 - iii. Otay Mesa Road at Emerald Crest Ct (LOS F PM).

The project is calculated to have direct impacts at all three of the above intersections. The Caliente Avenue/SR-905 on-ramps are not metered under this scenario.

The intersection of Caliente Ave/SR-905 WB Ramp is identified in the Otay Mesa CPU Final EIR as a significant and unmitigated impact at community buildout resulting in the adoption of overriding considerations. Under the Near Term, the applicant is proposing mitigation to reduce the direct impact at this intersection to below significance through restriping the southbound approach of two through and one through-right turn lane (3 total approach lanes) to one through, one through-right, and one right turn lane (3 total approach lanes). The proposed restriping is an interim improvement until the City Public Facilities Financing Plan (PFFP) OM T-11.1 is completed (currently scheduled for 2026), which will add an additional southbound right turn lane from Caliente Ave to SR-905 WB Ramp resulting in 4 total approach lanes. The interim mitigation would reduce the significant impact at this intersection to less than significant. Prior to issuance of the first building permit, owner/permittee shall restripe the southbound approach to include a through lane, a through-right turn lane, and right turn lane satisfactory to the City Engineer and Caltrans.

The intersection of Caliente Ave/Airway Rd is also identified in the Otay Mesa CPU Final EIR as a significant and unmitigated impact at community buildout resulting in the adoption of overriding considerations. The project proposes mitigation for reduction of this significant impact through the installation of signal at this intersection. It is noted that this intersection is also identified to be signalized as part of the Candlelight VTM Mitigation Monitoring and Reporting Program (MMRP). Prior to issuance of the first building permit, owner/permittee shall install a traffic signal satisfactory to the City Engineer if said signal is not already installed and operational.

The intersection of Otay Mesa Rd/Emerald Crest Court/Street B with full turning movements allowed requires a traffic signal to reduce the project's direct impact to below a level of significance. Prior to issuance of the first building permit, owner/permittee shall install a traffic signal satisfactory to the City Engineer if said signal is not already installed and operational. The signal could be completed by either the adjacent Handler commercial project or by others as outlined in the Deferred Improvement Agreement between Garden Communities and City of San Diego dated 4/24/2007 and secured by a \$162,000 bond. The signal will be installed prior to the project's first occupancy in order to mitigate this project's direct impact.

- 5) Under Horizon Year 2062 without project conditions, the study intersections, street segments, and state route segments were calculated to operate at LOS D or better except for:
 - i. Intersection of Caliente Avenue at SR-905 WB Ramp (LOS F PM).

- ii. Intersection of Caliente Avenue at Airway Road (LOS F AM & PM),
- iii. Segment of Caliente Ave between Otay Mesa Rd and SR-905 WB Ramp (LOS F),
- iv. Segment of Caliente Ave between SR-905 WB Ramp and SR-905 EB Ramp (LOS E),
- v. Segment of Caliente Ave between SR-905 EB Ramp and Airway Rd (LOS E), and
- vi. SR-905 between Caliente Ave and Britannia Blvd (LOS E AM EB & PM WB).

The metered freeway on-ramps were calculated to operate with significant delays (WB AM 10 minutes & WB PM 47.5 minutes, which exceeds acceptable operations. The receiving WB segment of SR-905 between I-805 and Caliente Ave is calculated to operate at acceptable LOS B AM and LOS D PM) or no delay (EB AM & PM). Please note that the reported WB on-ramp delay is excessive and the calculation may be beyond the range of reliability; however, the standard of practice calculation was used.

- 6) Under Horizon Year 2062 with project conditions, the study intersections, street segments, and state route segments were calculated to operate at LOS D or better except for:
 - i. Intersection of Otay Mesa Rd/Ocean View Hills Pkwy/Caliente Ave (LOS E PM),
 - ii. Intersection of Caliente Avenue/SR-905 WB Ramp (LOS F PM),
 - iii. Segment of Caliente Ave between Otay Mesa Rd and SR-905 WB Ramp (LOS F),
 - iv. Segment of Caliente Ave between SR-905 WB Ramp and SR-905 EB Ramp (LOS E),
 - v. Segment of Caliente Ave between SR-905 EB Ramp and Airway Rd (LOS E), and
 - vi. SR-905 between Caliente Ave and Britannia Blvd (LOS E AM EB & PM WB).

The metered freeway on-ramp at SB SR-905/Caliente Avenue WB was calculated to operate with significant delays (11.9 minutes AM and 50.2 minutes PM); however, the project did not result in a significant impact to the metered on-ramps because the downstream freeway operations are expected to be at LOS D or better. The Otay Mesa CPU EIR also documented delays in excess of 15 minutes at the Caliente Avenue WB on-ramp in conjunction with downstream freeway operations of unacceptable LOS E or F conditions based on an analysis from 2012 that used older data. The reported WB on-ramp delay is excessive and may be beyond the range of reliability; however, the standard of practice calculation was used.

The project is calculated to have five cumulative (horizon year) impacts at

- 1) Intersection of Otay Mesa Rd/Ocean View Hills Pkwy/Caliente Ave (LOS E PM),
- 2) Intersection of Caliente Avenue/SR-905 WB Ramp (LOS F PM),
- 3) Intersection of Caliente Avenue at Airway Road (LOS F AM & PM),
- 4) Intersection of Otay Mesa Road at Emerald Crest Court (LOS F PM), and
- 5) Segment of Caliente Ave between Otay Mesa Rd and SR-905 WB Ramp (LOS F).

The two other segments of Caliente Avenue with unacceptable LOS (SR-905 WB Ramp to SR-905 EB Ramp and SR-905 EB Ramp to Airway Rd) do not have cumulative impacts because the project traffic does not exceed the City of San Diego traffic impact significance thresholds.

The intersection of Otay Mesa Rd/Ocean View Hills Pkwy/Caliente Ave is identified in the Otay Mesa CPU Final EIR as a significant and unmitigated impact at community buildout. This impact was found to remain significant and unmitigated and a Statement of Overriding Considerations was adopted by the City. Notwithstanding the overriding considerations, the applicant is proposing mitigation to reduce the significant impact at this intersection to below significance through bonding for the restriping of the westbound approach from four approach lanes (left, left, through, right) to five approach lanes (left, left, through-right, right)

satisfactory to the City Engineer. However, if not implemented in the Horizon Year, then the impact would not be mitigated consistent with the Otay Mesa CPU EIR Overriding Considerations.

The intersection of Caliente Ave/SR-905 WB Ramp is identified in the Otay Mesa CPU Final EIR as a significant and unmitigated impact at community buildout. This impact was found to remain significant and unmitigated and a Statement of Overriding Considerations was adopted by the City. Notwithstanding the overriding considerations, the applicant is proposing mitigation to reduce the significant impact at this intersection to below significance. Prior to issuance of the first building permit, owner/permittee shall make a fair share contribution of 8.8% toward PFFP OM T-11.1 that includes the construction of an additional southbound right turn lane satisfactory to the City Engineer. However, if not fully funded by Horizon Year, then the impact would not be mitigated consistent with the Otay Mesa CPU EIR.

The intersection of Caliente Ave/Airway Rd is also identified in the Otay Mesa CPU Final EIR as a significant and unmitigated impact at community buildout. The project proposes mitigation for reduction of its cumulative impact through the installation of signal at this intersection. This intersection is also identified to be signalized as part of the Candlelight VTM MMRP. Prior to issuance of the first building permit, owner/permittee shall install a traffic signal satisfactory to the City Engineer if said signal is not already installed and operational.

The intersection of Otay Mesa Rd/Emerald Crest Court/Street B with full turning movements allowed requires a traffic signal to reduce the project's direct impact to below a level of significance. Prior to issuance of the first building permit, owner/permittee shall install a traffic signal satisfactory to the City Engineer if said signal is not already installed and operational. The signal could be completed by either the adjacent Handler commercial project or by others as outlined in the Deferred Improvement Agreement between Garden Communities and City of San Diego dated 4/24/2007 and secured by a \$162,000 bond.

The cumulative segment impact on Caliente Avenue would be reduced to below a level of significance through the project's construction of a raised median along the project frontage. Prior to issuance of the first building permit, owner/permittee shall construct a full width raised median on Caliente Avenue from Otay Mesa Rd to SR-905 WB Ramp.

In addition to the proposed mitigation measures noted above, the applicant proposes the following project features:

- 1) Construct Street A to full width (public cul-de-sac extending south from Otay Mesa Rd) located approximately 500 feet east of Caliente Avenue (centerline to centerline) with right-in/right-out only access and a right turn deceleration lane on Otay Mesa Road (deceleration lane required to allow access from a primary arterial).
- 2) Construct Street B to full width (public cul-de-sac extending south from Otay Mesa Rd) located along the eastern project boundary that will align with Emerald Crest Court completing a fourth leg to this existing t-intersection along with a right turn deceleration lane on Otay Mesa Road. Project will remove the existing K-Rail and replace with concrete raised median along with signal installation (as mitigation identified previously).

- 3) Remove the existing K-Rail with fence on Otay Mesa Road from Caliente Avenue and Emerald Crest Ct and replace with concrete raised median.
- 4) Construct a full width raised median on Caliente Avenue from Otay Mesa Road to SR-905 WB Ramp.
- 5) Construct a 6-foot non-contiguous sidewalk along the project frontage on Otay Mesa Road. Replace the existing sidewalk along the project frontage on Caliente Ave with a 6-ft non-contiguous sidewalk that will connect with the existing sidewalk at the Caltrans' ROW.

###

Appendix A

City of San Diego Traffic Impact Study Screen Check

CITY OF SAN DIEGO TRANSPORTATION DEVELOPMENT SECTION TRAFFIC IMPACT STUDY SCREEN CHECK

To be completed by City Staff:
Date Received
Reviewer
Date Screen Check

To be com	nple raf	rted by consultant (including page #): fic Study			
Consultan Date Subr		LÓS ENGINERLING, INC.	Cating		,
Date Cap.	,,,,,		Satisf	actory	
Indicate P	age	# in report:	YES	NO	NOT REQUIRED
		Table of contents, list of figures and list of tables. Executive summary.	0		
pg. <u>2</u>	3.	Map of the proposed project location			
9	4.	General project description and background information:			
pg. <u>/5</u> pg. <u>/5</u> pg. <u>/5</u> pg. <u>7</u>		 a. Proposed project description (acres, dwelling units) b. Total trip generation of proposed project. c. Community plan assumption for the proposed site. d. Discuss how project affects the Congestion Management program. 			
pg. 9	5.	Parking, transit and on-site circulation discussions are included.			
pg. <u>//2</u>	6.	Map of the Transportation Impact Study Area and specific intersections studied in the traffic report.			
pg. <u>/</u> 0	7.	Existing Transportation Conditions:			
12		 a. Figure identifying roadway conditions including raised medians, median openings, separate left and right turn lanes, roadway and intersection dimensions, bike lanes, parking, number of travel lanes, posted speed, intersection controls, turn restrictions and intersection lane configurations. b. Figure indicating the daily (ADT) and peak hour volumes. c. Figure or table showing level of service (LOS) for intersections during peak hours and roadway sections within the study area (analysis sheets included in the appendix). 		0	
	8.	Project Trip Generation:			
pg. <u>15</u>		Table showing the calculated project generated daily (ADT) and the peak hour volumes.			
pg. <u>17</u>	9.	Project Trip Distribution using the current TRANPLAN Computer Traffic Model (provide a computer plot) or manual assignment if previously approved. (Identify which method was used.)			
1	0.	Project Traffic Assignment:			
pg. <u>18</u> pg. <u>18</u>		a. Figure indicating the daily (ADT) and peak hour volumes.b. Figure showing pass-by-trip adjustments, if cumulative trip rates are used.	_ _		
1	1.	Existing + Other Pending Projects:			
pg. <u>25</u> pg. <u>24</u> pg. <u>15</u>		 a. Figure indicating the daily (ADT) and peak hour volumes. b. Figure or table showing the projected LOS for intersections during peak hours and roadway sections within the study area (analysis sheets included in the appendix). c. Traffic signal warrant analysis for appropriate locations (signal warrants included in the appendix). 	_ _ _		

	12.	Exis	ting + Othe	r Pending Pro	ojects + Proje	ect (short	term cumu	lative):					
pg.	29,30		a. Figure	or table showi	ing the project	cted LOS	for interse	ctions during	g peak hours e appendix).	and			
pg.	25,30		b. Figure :	ure or table showing the projected LOS for intersections during peak hours and dway sections with the project (analysis sheets included in the appendix). ure showing other projects that were included in the study, and the assignment heir site traffic. ffic signal warrant analysis for appropriate locations (signal warrants in the									
	15	,	of their c. Traffic append	signal warrant	t analysis for	r appropri	iate location	ns (signal w	arrants in the	•			
	13.	Build	d-out Trans	portation Con	ditions (if pr	oject conf	forms to the	communi	y plan):				
	NA	b.	Build-out ADT and street classification that reflect the community plan. Figure or table showing the build-out LOS for intersections during peak hours and roadway sections with the project (analysis sheets included in the appendix).									-	
pg.	NA	C.	Traffic sign appendix).	ffic signal warrant analysis at appropriate locations (signal warrants included in the									
	14.	Buil	d-out Trans	portation Cor	nditions (if pr	roject doe	s not confo	rm to the c	ommunity pla	an).			
pg. pg.	33 <u>3</u> 4 37	b.	Build-out A	DT and street DT and street and use assum	t classification	on for two	scenarios:	ommunity p with the pr	olan. oposed proje	ct and			
pg.	36-38	C.	Figure or ta	able showing	the build-out	t LOS for with the p	intersection proposed pr	Ojcot and v	itti tiio ittia t	d ise			
pg.	15	ч	assumed in	the commur nal warrant an unity plan (sig	nity plan (ana Ialysis at app	alysis she oropriate l	ets included locations wi	d in the app th the land	enuix).				
	22 20	Evid	cting + Othe	ole showing the er Pending Pr etersections d	miects + Pro	nosea PR	sting, Existir oject, and E	ng + Other Buildout, LC	Pending Proj S on roadwa	ects, ly			
	,			Mitigation Me									
pg.	41	a.	Table iden	tifying the mi	tigations req	uired that	t are the res	sponsibility proposed i	of the develo	per			
pg.	39,40	b.	Figure sho lane width	wing all proposes, raised med by, offset, etc.	osed mitigati Iians, mediar	ions that i	include: inte	ersection ia	ne comigura	tions, sions,			
pg.	UPON 1	. The	11-10.0.1	dy is signed b		ia Registe	ered Traffic	Engineer.					
pg.	<u>5</u> 18	. The	e Highway (propriate lo	Capacity Man	ual Operation the study ar	onal Methorea.	od or other	approved r	nethod is use	ed at			
pg	19	. An	alysis comp	lies with Con	gestion Man	agement	requiremen	nts.					
pg	. <u>6</u> 20). Ap	propriate fr	eeway analys	is is included	d.							
pg	. <u>6</u> 21	. Ap	propriate fr	eeway ramp r	metering ana	alysis is in	ncluded.						
	TH			UDY SCREE Approved					IS:				
				Not approved	d because th	e followin	y items are	; mosnig.					

Appendix B

City of San Diego Segment Capacities

TRAFFIC IMPACT STUDY MANUAL

JULY 1998

TABLE 2 ROADWAY CLASSIFICATIONS, LEVELS OF SERVICE (LOS) AND AVERAGE DAILY TRIPS (ADT)

			LEVEL OF SERVICE					
STREET CLASSIFICATION			А	В	С	D	E	
Freeway	8 lanes		60,000	84,000	120,000	140,000	150,000	
Freeway	6 lanes		45,000	63,000	90,000	110,000	120,000	
Freeway	4 lanes		30,000	42,000	60,000	70,000	80,000	
Expressway	6 lanes	102/122	30,000	42,000	60,000	70,000	80,000	
Prime Arterial	6 lanes	102/122	25,000	35,000	50,000	55,000	60,000	
Major Arterial	6 lanes	102/122	20,000	28,000	40,000	45,000	50,000	
Major Arterial	4 lanes	78/98	15,000	21,000	30,000	35,000	40,000	
Collector	4 lanes	72/92	10,000	14,000	20,000	25,000	30,000	
Collector (no Center lane) (continuous left- turn lane)	4 lanes 2 lanes	64/84 50/70	5,000	7,000	10,000	13,000	15,000	
Collector (no fronting property)	2 lanes	40/60	4,000	5,500	7,500	9,000	10,000	
Collector (commercial- industrial fronting	2 lanes	50/70	2,500	3,500	5,000	6,500	8,000	
Collector (multi-family)	2 lanes	40/60	2,500	3,500	5,000	6,500	8,000	
Sub-Collector (multi-family)	2 lanes	36/56	_	_	2,200		_	

LEGEND

XXX/XXX = Curb to curb width (feet)/right of way width (feet): based on City of San Diego Street Design Manual

XX/XXX = Approximate recommended ADT based on the City of San Diego Street Design Manual.

NOTES:

- 1. The volumes and the average daily level of service listed above are only intended as a general planning guideline.
- 2. Levels of service are not applied to residential streets since their primary purpose is to serve abutting lots, not carry through traffic. Levels of service normally apply to roads carrying through traffic between major trip generators and attractors.

BALBOA AVENUE STATION AREA SPECIFIC PLAN

Transportation Impact Study

DECEMBER 2017

Prepared By:

ROADWAY SEGMENT CAPACITY LEVEL OF SERVICE ANALYSIS

In order to determine the operations along the Specific Plan area roadway segments, capacity thresholds and associated LOS have been developed by the City of San Diego and is used as a reference. **Table 3-10** presents this information. The segment traffic volumes under LOS E as shown in this table are considered to be the capacity of the roadway. It should be noted that the values listed in the table are planning-level estimates only. The actual operations of a roadway segment would be affected by the type and frequency of traffic control, driveway density, on street parking, grade, lane width, percent of heavy vehicles, and other factors.

Table 3-10 City of San Diego Roadway Segment Capacity and LOS Summary

Road Class	Lanes	Cross Section ¹	Α	В	С	D	E
Freeway	8		60,000	84,000	120,000	140,000	150,000
Freeway	6		45,000	63,000	90,000	110,000	120,000
Freeway	4		30,000	42,000	60,000	70,000	80,000
Expressway	6	102/122	30,000	42,000	60,0000	70,000	80,000
Prime Arterial	8		35,000	50,000	70,000	75,000	80,000
Prime Arterial	7		30,000	42,500	60,000	65,000	70,000
Prime Arterial	6	102/122	25,000	35,000	50,000	55,000	60,000
Prime Arterial	5		22,500	31,500	45,000	50,000	55,000
Prime Arterial	4		20,000	28,000	40,000	45,000	50,000
Major Arterial	8		25,000	35,000	50,000	55,000	60,000
Major Arterial	7		22,500	31,500	45,000	50,000	55,000
Major Arterial	6	102/122	20,000	28,000	40,000	45,000	50,000
Major Arterial	5		17,500	24,500	35,000	40,000	45,000
Major Arterial	4	78/98	15,000	21,000	30,000	35,000	40,000
Major Arterial	3		11,000	15,500	22,500	26,000	30,000
Collector (w/ two-way left turn lane)	4	72/92	10,000	14,000	20,000	25,000	30,000
Collector (w/o two-way left turn lane)	4	64/84	5,000	7,000	10,000	13,000	15,000
Collector (w/ two-way left turn lane)	3		7,500	10,500	15,000	18,750	22,500
Collector (w/ two-way left turn lane)	2	50/70	5,000	7,000	10,000	13,000	15,000
Collector (No fronting property)	2	40/60	4,000	5,500	7,500	9,000	10,000
Collector (w/o two-way left turn lane)	2	40/60	2,500	3,500	5,000	6,500	8,000
Sub-Collector (single-family)	2	36/56			2,200		

Notes:

The volumes and the average daily level of service listed above are only intended as a general planning guideline. Levels of service are not applied to residential streets since their primary purpose is to serve abutting lots, not carry through traffic. Levels of service normally apply to roads carrying through traffic between major trip generators and attractors.

¹Cross Section: Curb to Curb width (feet)/Right-of-way width (feet)

Sources:

City of San Diego Traffic Impact Study Manual, Table 2, Page 8, July 1998.

City of San Diego Planning Department Mobility Staff Input

Appendix C

CALTRANS Freeway Flow Rates

GUIDE FOR THE PREPARATION

OF

TRAFFIC IMPACT STUDIES

STATE OF CALIFORNIA DEPARTMENT OF TRANSPORTATION

December 2002

Transition between LOS "C" and LOS "D" Criteria

(Reference Highway Capacity Manual)

BASIC FREEWAY SEGMENTS @ 65 mi/hr

LOS	Maximum Density (pc/mi/ln)	Minimum Speed (mph)	Maximum v/c	Maximum Service Flow Rate (pc/hr/ln)
A	11	65.0	0.30	710
В	18	65.0	0.50	1170
C	26	64.6	0.71	1680
 D	35	59.7	0.89	2090
E	45	52.2	1.00	2350

SIGNALIZED INTERSECTIONS and RAMP TERMINALS

LOS	Control Delay per Vehicle	
	(sec/veh)	
A	≤ 10	
В	> 10 - 20	
 C	> 20 - 35	l
D	> 35 - 55	
E	> 55 - 80	
F	> 80	

MULTI-LANE HIGHWAYS @ 55 mi/hr

LOS	Maximum Density (pc/mi/ln)	Minimum Speed (mph)	Maximum v/c	Maximum Service Flow Rate (pc/hr/ln)	
A	11	55.0	0.29	600	
В	18	55.0	0.47	990	
C	26	54.9	0.68	1430	
D	35	52.9	0.88	1850	
E	41	51.2	1.00	2100	

Dotted line represents the transition between LOS "C" and LOS "D"

Appendix D

CALTRANS Ramp Meter Correspondence

Le, Christy T@DOT <christy.le@dot.ca.gov>

Thu 2/8/2018 5:28 PM

To: Justin Rasas (justin@losengineering.com)

Cc: Yazdan, Fred F@DOT (fred.yazdan@dot.ca.gov)

Hello Justin,

Caliente Ave 905 WB/EB are currently not metering.

Please let me know if you need any additional information and thank you for your patience.

Christy

Final
Program Environmental Impact
Report for the
Otay Mesa Community Plan Update,
City of San Diego
Project Number 30330/304032
SCH No. 2004651076

December 18, 2013

TABLE 5.12-8 CPU HORIZON YEAR RAMP METER OPERATIONS

Peak		Demand ¹	Meter Rate ²	Excess	Queue	Delay ³	Exceeds 15-Minute	Significant? (Exceeds 15 minutes
Hour	Location	(Veh/Hr)	(Veh/Hr)	Demand	(Feet)	(Min)	Delay?	and downstream freeway is LOS E or F)
AM	I-805/Palm Avenue NB (from WB)	1,280	960	320	8,000	20.0	Yes	No ⁴
PM	I-805/Palm Avenue NB (from WB)	1,380	960	420	10,500	26.3	Yes	No ⁴
AM	I-805/Palm Avenue NB (from EB)	655	960	None	None	None	No	No
PM	I-805/Palm Avenue NB (from EB)	540	960	None	None	None	No	No No
AM	I-805/Palm Avenue SB	455	960	None	None	None	No	No
PM	I-805/Palm Avenue SB	645	960	None	None	None	No	No
AM	SR-905/Caliente Avenue WB	1,860	960	900	22,500	56.3	Yes	Yes
PM	SR-905/Caliente Avenue WB	1,550	960	590	14,750	36.9	Yes	Yes
AM	SR-905/Caliente Avenue EB	400	960	None	None	None	No	No
PM	SR-905/Caliente Avenue EB	400	960	None	None	None	No	No
AM	SR-905/Heritage Road WB	1,135	960	175	4,375	10.9	Yes	No
PM	SR-905/Heritage Road WB	2,550	960	1,590	39,750	99.4	Yes	Yes
AM	SR-905/Heritage Road EB	360	960	None	None	None	No	No
PM	SR-905/Heritage Road EB	800	960	None	None	None	No	No
AM	SR-905/Britannia Blvd. WB	1,350	960	390	9,750	24.4	Yes	Yes
PM	SR-905/Britannia Blvd. WB	3,355	960	2,395	59,875	149.1	Yes	Yes
AM	SR-905/Britannia Blvd. EB	710	960	None	None	None	No	No
PM	SR-905/Britannia Blvd. EB	1,400	960	440	11,000	27.5	Yes	Yes
AM	SR-905/La Media Road WB	2,050	960	1,090	27,250	68.1	Yes	Yes
PM	SR-905/La Media Road WB	3,025	960	2,065	51,625	129.0	Yes	Yes
AM	SR-905/La Media Road EB	1,000	960	40	1,000	2.5	No	No
PM	SR-905/La Media Road EB	1,950	960	990	24,750	61.8	Yes	No ⁴
AM	SR-905/Siempre Viva Rd. NB	1,185	960	225	5,625	14.1	No	No
PM	SR-905/Siempre Viva Rd. NB	3,510	960	2,550	63,750	159.4	Yes	No⁴
AM	SR-905/Siempre Viva Rd. SB	750	960	None	None	None	No	No
PM	SR-905/Siempre Viva Rd. SB	1,670	960	710	17,750	44.4	Yes	No ⁴
AM	SR-125/Otay Mesa Rd. NB	1,680	960	720	24,000	45.0	Yes	No⁴
PM	SR-125/Otay Mesa Rd. NB	2,455	960	1,495	37,375	93.4	Yes	No⁴
AM	SR-125/Lone Star Rd. NB	850	960	None	None	None	No	No
PM	SR-125/Lone Star Rd. NB	3,615	960	2,655	66,375	166.0	Yes	No⁴

SOURCE: Appendix J (Urban Systems Associates, Inc. 2012). **Bold** indicates a significant impact.

¹Total hourly volume entering from both directions.

²Most restrictive meter rate used, per Caltrans. This Veh/Hr assumes 2 lanes and 2 cars per green light on a 15-second cycle. $^{3}Delay = \frac{Excess\ Demand\ (vehicles)}{Meter\ Rate\ (vehicles\ per\ hour)} x\ 60\ min.\ per\ hour$

⁴While the delay exceeds 15 minutes, the downstream freeway operates at acceptable LOS. Thus, this impact is considered less than significant.

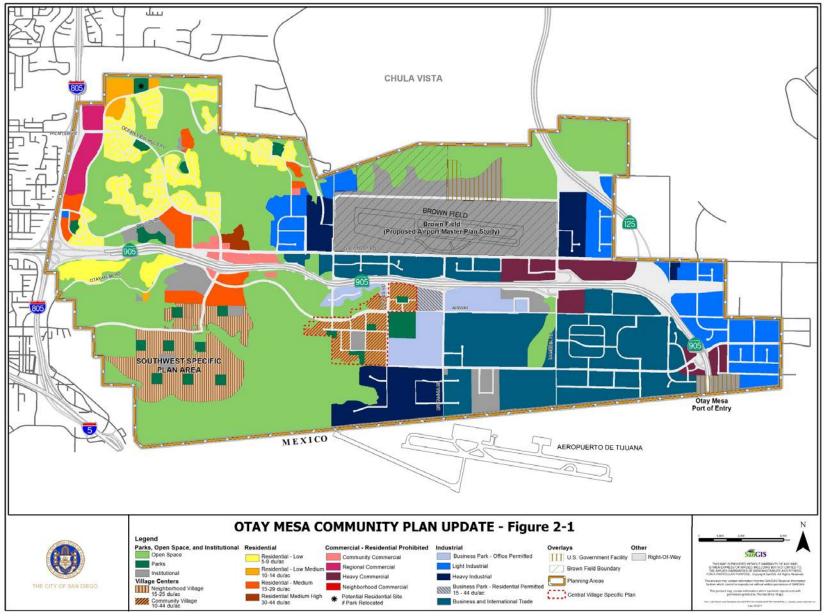
Ap	n	er	hr	ix	F
πp	יש	Ç.	IU	ın	_

City of San Diego Community Roadway Classification Maps and Land Use

Otay Mesa Community Plan Update

Planning, Neighborhoods & Economic Development Department March 11, 2014

California Terraces PA61 TIA Appendix



OTAY MESA COMMUNITY PLAN

Amendment	Date Approved by Planning Commission	Resolution Number	Date Adopted by City Council	Resolution Number
Otay Mesa Community Plan Adopted	February 13, 2014		March 11, 2014	R-308810
Corrections to address inconsistencies between the Land Use and Zoning Map. Minor map and text corrections to show land use and the removal of paper streets from map figures	April 30, 2015	R-4685	June 2, 2015	R-309773
Otay Mesa Central Village Specific Plan Adopted	February 23, 2017		April 13, 2017	R-311020

Editor's note: After the adoption of the Otay Mesa Community Plan, it was noticed that Figure 3-2 depicted the street classifications for Otay Pacific Drive, Otay Pacific Place, and Las Californias incorrectly; these streets were classified pursuant to City Council Resolution R-307235 on January 10, 2012, which the reclassification was not captured in all places in the Otay Mesa Community Update documents, including Figure 3-2; and therefore, Figure 3-2 in Document Number R-308810 is replaced with Figure 3-2.

Otay Mesa Community Plan

California Terraces PA61 TIA Appendix

LU-3

Appendix F

Transit Map and Schedules

CASH FARES / Tarifas en efectivo

Exact fare, please / Favor de pagar la cantidad ex	kacta			
Day Pass (Regional) / Pase diario (Region Compass Card required (\$2) / Se requiere un Compass Card (\$2)	\$5.00			
One-Way Fare / Tarifa de una dirección \$2.2		950 \$2.50		
Senior (60+)/Disabled/Medicare Mayores de 60 años/Discapacitados/Medicare	905 \$1.10*	950 \$1.25*		
Children 5 & under / Niños de 5 años o menos FREE / GRATIS				

MONTHLY PASSES / Pases mensual

Adult / Adulto	\$72.00
Senior (60+)/Disabled/Medicare Mayores de 60 años/Discapacitados/Medicare	\$18.00*
Youths (18 and under)	\$36.00*

*I.D. required for discount fare or pass. *Se requiere identificación para tarifas o pases de descuento.

DAY PASS (REGIONAL) / Pase diario (Regional)

All passes are sold on Compass Card, which can be reloaded and reused for up to five years. Compass Cards are available for \$2\$ at select outlets. A\$5 Day Pass requires a Compass Card. A paper Day Pass can be purchased on board buses for an additional \$2 fee.

Todos los pases se venden en el Compass Card, el cual puede ser recargado y reutilizado por hasta cinco años. Compass Cards están disponibles por \$2 en selectas sucursales. Un pase de un día por \$5 requiere un Compass Card. Un pase de un día de papel se puede obtener a bordo los autobuses por un costo adicional de \$2.

DIRECTORY / Directorio

Regional Transit Information Información de transporte público region	511 or/ó (619) 233-3004
TTY/TDD (teletype for hearing impair Teletipo para sordos	ed) (619) 234-5005 or/ó (888) 722-4889
InfoExpress (24-hour info via Touch-Tone phon Información las 24 horas (via teléfono de tec	
Customer Service / Suggestions Servicio al cliente / Sugerencias	(619) 557-4555
SafeWatch	(619) 557-4500
Lost & Found Objetos extraviados	(619) 557-4555
Transit Store 1	(619) 234-1060 2th & Imperial Transit Center M-F 8am-5pm

For MTS online trip planning sdmts.com Planificación de viajes por Internet

For more information on riding MTS services, pick up a Rider's Guide on a bus or at the Transit Store, or visit sdmts.com. Para obtener más información sobre el uso de los servicios de MTS, recoja un 'Rider's Guide' en un autobús o en la Transit Store, o visita a sdmts.com.

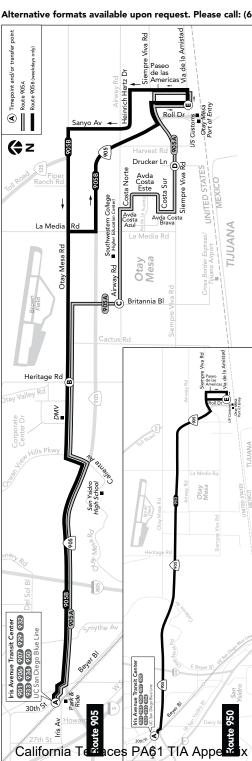
Thank you for riding MTS! ¡Gracias por viajar con MTS!

Otay Mesa – Iris Transit Center via SR-905 / Otay Mesa Rd.

Otay Mesa – Iris Transit Center **Express** via SR-905

DESTINATIONS

- Brown Field
- Otay Mesa Industrial Parks
- Otay Mesa Port of Entry
- San Ysidro High School
- Southwestern College (Higher Education Center)


Effective JANUARY 28, 2018

5 0%

Alternative formats available upon request. Please call: (619) 557-4555 / Formato alternativo disponible al preguntar. Favor de llamar: (619) 557-4555

The schedules and other information shown in this timetable are subject to change. MTS does not assume responsibility for errors in timetables nor for any inconvenience caused by delayed buses.

Los horarios e información que se indican en este itinerario están sujetos a cambios. MTS no asume responsabilidad por errores en los itinerarios, ni por ningún perjuicio que se origine por los autobuses demorados.

Ota	y Mesa Port	of Entry	➡ Iris Avenue	Transit Center		
	© Otay Mesa Port of Entry DEPART		D pre Viva Rd. & rucker Ln.	© Airway Rd. & Britannia Bl.	(B) Otay Mesa Rd. & Heritage Rd.	A Iris Avenue Transit Cente ARRIVE
950	5:15a	EXPRESS				► 5:29a
Α	5:35		5:39a	5:45a	5:50a	5:58
950	5:55	EXPRESS				6:09
950	6:16	EXPRESS			>	6:30
Α	6:31		6:35	6:41	6:47	6:56
950	6:46	EXPRESS				7:00
Α	7:26		7:30	7:36	7:42	7:51
950	7:46	EXPRESS				8:00
Α	8:26		8:30	8:36	8:42	8:51
950	8:46	EXPRESS				9:00
Α	9:26		9:30	9:36	9:42	9:51
950	9:46	EXPRESS				1 0:00
Α	10:26		10:30	10:36	10:42	10:51
950	10:46	EXPRESS				► 11:00
Α	11:26		11:30	11:36	11:42	11:51
950	11:46	EXPRESS			>	> 12:00p
Α	12:26p		12:31p	12:38p	12:44p	12:52
950	12:46	EXPRESS				1:00
Α	1:26		1:31	1:38	1:44	1:52
950	1:46	EXPRESS				2:00
Α	2:55		3:00	3:07	3:13	3:21
Α	3:55		4:00	4:07	4:13	4:21
Α	4:55		5:00	5:07	5:13	5:21
Α	5:55		5:58	6:05	6:11	6:18
Α	6:55	***************************************	6:58	7:05	7:11	7:18

Route 905 & 950 – Saturday & Sunday / sábado y domingo

	A	B	©	(D)	Œ
	Iris Avenue Transit Center DEPART	Otay Mesa Rd & Heritage Rd.	Airway Rd. & Britannia Bl.	Siempre Viva Rd. & Drucker Ln.	Otay Mesa Port of Entry ARRIVE
Α	6:15a	6:22a	6:26a	6:31a	6:36a
Α	7:15	7:22	7:26	7:32	7:38
Α	8:15	8:22	8:26	8:32	8:38
Α	9:15	9:22	9:26	9:32	9:38
Α	10:15	10:22	10:26	10:33	10:39
Α	11:15	11:22	11:26	11:33	11:39
Α	12:15p	12:22p	12:26p	12:33p	12:39p
Α	1:15	1:22	1:26	1:33	1:39
Α	2:15	2:22	2:26	2:33	2:39
950	2:35	EXPRESS -			> 2:49
Α	3:15	3:22	3:26	3:33	3:39
950	3:35	EXPRESS —			> 3:49
Α	4:15	4:22	4:26	4:33	4:39
950	4:35	EXPRESS —			4:49
Α	5:15	5:22	5:26	5:32	5:37
950	5:35	EXPRESS -			> 5:49
Α	6:15	6:22	6:26	6:32	6:37
Α	7:15	7:22	7:26	7:32	7:37

Route 950 - Adult cash fare is \$2.50 (\$5.00 Day Pass with Compass Card, or \$72 Monthly Pass).

Ruta 950 - Pasaje en efectivo para adultos es \$2.50 (\$5.00 pase de un día con Compass Card o pase mensual de \$72).

A = Route 905A. Trip serves Otay Mesa Industrial Park. / Ruta 905A. Viaje que ofrece servicio a Otay Mesa Industrial Park.

_lri	s Avenue Trans	sit Center 🗪 Otay	y Mesa Port of E	intry		Ot	ay Mesa Port	of Entry Iris Av	enue Transit Ce	nter	
	(A)	(B)	©	(D)	E		(E)	D	©	B	(A)
	Iris Avenue Transit Center DEPART	Otay Mesa Rd. & Heritage Rd.	Airway Rd. & Britannia Bl.	Siempre Viva Rd. & Drucker Ln.	Otay Mesa Port of Entry ARRIVE		Otay Mesa Port of Entry DEPART	Siempre Viva Rd. & Drucker Ln.	Airway Rd. & Britannia Bl.	Otay Mesa Rd. & Heritage Rd.	Iris Avenue Transit Center ARRIVE
Α	5:00a	5:07a	5:12a	5:17a	5:22a	Α	4:15a	4:18a	4:23a	4:28a	4:35a
Α	5:29	5:36	5:41	5:44	5:49	В	4:35	_	_	4:46	4:53
Α	5:55	6:02	6:07	6:14	6:20	Α	4:55	4:59	5:05	5:11	5:19
Α	6:15	6:22	6:27	6:34	6:40	В	5:20	_	_	5:31	5:39
Α	6:35	6:43	6:48	6:56	7:02	Α	5:40	5:44	5:50	5:56	6:04
Α	6:55	7:03	7:08	7:16	7:22	В	6:00	_	_	6:12	6:21
Α	7:15	7:23	7:28	7:36	7:42	Α	6:20	6:24	6:31	6:38	6:47
Α	7:35	7:43	7:48	7:56	8:02	В	6:40	_	_	6:52	7:01
В	7:55	8:03			8:16	Α	7:00	7:04	7:11	7:18	7:27
Α	8:20	8:28	8:33	8:41	8:47	В	7:20	_	_	7:32	7:41
В	8:44	8:52	_	_	9:05	Α	7:40	7:44	7:51	7:58	8:07
Α	9:05	9:13	9:18	9:26	9:32	В	8:00	_	_	8:12	8:22
В	9:44	9:52			10:05	Α	8:20	8:24	8:31	8:38	8:48
Α	10:05	10:13	10:18	10:26	10:32	В	8:40	_	_	8:52	9:02
В	10:44	10:52	_	_	11:05	Α	9:00	9:04	9:11	9:18	9:28
Α	11:05	11:13	11:18	11:26	11:32	В	9:30	_	_	9:42	9:52
В	11:44	11:52	_		12:05p	Α	10:00	10:04	10:11	10:18	10:28
Α	12:05p	12:13p	12:18p	12:26p	12:32	В	10:30	_	_	10:42	10:52
В	12:44	12:52	_	_	1:05	Α	11:00	11:04	11:11	11:18	11:28
Α	1:05	1:13	1:18	1:26	1:32	В	11:30	_	_	11:42	11:52
В	1:44	1:52	-	-	2:05	Α	12:00p	12:04p	12:11p	12:18p	12:28p
Α	2:05	2:13	2:18	2:26	2:32	В	12:30			12:42	12:52
В	2:44	2:52	_	_	3:05	Α	1:00	1:04	1:11	1:18	1:28
Α	3:07	3:15	3:20	3:28	3:34	В	1:30			1:42	1:52
В	3:34	3:42	—	_	3:55	Α	2:00	2:04	2:12	2:20	2:30
Α	3:54	4:02	4:07	4:15	4:21	В	2:30	_	_	2:42	2:52
В	4:15	4:23	_	_	4:36	Α	2:56	3:00	3:08	3:16	3:26
Α	4:35	4:43	4:48	4:56	5:02	В	3:22	_	_	3:35	3:45
В	5:00	5:08	-		5:21	Α	3:44	3:48	3:56	4:04	4:14
Α	5:25	5:33	5:38	5:45	5:50	В	4:04	_	_	4:17	4:27
В	5:50	5:58	_	_	6:10	Α	4:28	4:32	4:40	4:48	4:58
Α	6:20	6:28	6:33	6:40	6:45	В	4:50	_	_	5:03	5:13
Α		6:58	7:03	7:10	7:15	Α	5:12	5:16	5:24	5:32	5:42
Α	7:40	7:48	7:52	7:58	8:03	В	5:35	_	_	5:47	5:57
Α	8:05	8:13	8:17	8:23	8:28	Α	6:05	6:08	6:15	6:22	6:32
Α	8:30	8:38	8:42	8:48	8:53	Α	6:50	6:53	7:00	7:07	7:17
Α	9:00	9:08	9:12	9:18	9:23	Α	7:28	7:31	7:38	7:45	7:55
						A	8:13	8:16	8:23	8:30	8:40

A = Route 905A. Trip serves Otay Mesa Industrial Park. / Ruta 905A. Viaje que ofrece servicio a Otay Mesa Industrial Park.

B = Route 905B. Westbound trip via Sanyo Ave. Eastbound trip via La Media Rd & SR-905. / Ruta 905B. Viaje hacia el oeste via Sanyo Ave. Viaje hacia el este via La Media Rd & SR-905.

Route 950 – Monday through Friday / lunes a viernes

(A)			Œ
Iris Avenue Transit Cente DEPART	r		Otay Mesa Port of Entry ARRIVE
12:17p	EXPRESS -	\longrightarrow	12:31p
12:47	EXPRESS —	→	1:01
1:17	EXPRESS —		1:31
1:42	EXPRESS —	>	1:56
2:02	EXPRESS —		2:16
2:22	EXPRESS —		2:36
2:42	EXPRESS —		2:56
3:02	EXPRESS —	→	3:16
3:22	EXPRESS —		3:36
3:42	EXPRESS —		3:56
4:02	EXPRESS —		4:16
4:22	EXPRESS —		4:36
4:42	EXPRESS —		4:56
5:02	EXPRESS —		5:16
5:22	EXPRESS —	→	5:36
5:42	EXPRESS —	→	5:56
6:02	EXPRESS —		6:16
6:22	EXPRESS —		6:36
6:42	EXPRESS —		6:56
7:02	EXPRESS —		7:16
7:20	EXPRESS —		7:34
7:47	EXPRESS —		8:01
8:17	EXPRESS —	→	8:31
8:47	EXPRESS —	→	9:01
9:32	EXPRESS —		9:46

Œ			(A)
Otay Mesa Port of Entry DEPART			Iris Avenue Transit Center ARRIVE
4:30a	EXPRESS —	─	4:44a
4:45	EXPRESS —	>	4:59
5:00	EXPRESS —	 >	5:14
5:12	EXPRESS —		5:26
5:24	EXPRESS —		5:38
5:36	EXPRESS —	>	5:50
5:48	EXPRESS —	>	6:02
6:00	EXPRESS —		6:14
6:12	EXPRESS —		6:26
6:24	EXPRESS —		6:38
6:36	EXPRESS —		6:50
6:48	EXPRESS —	>	7:02
7:00	EXPRESS —		7:14
7:12	EXPRESS —	>	7:26
7:24	EXPRESS —	>	7:38
7:36	EXPRESS —	→	7:50
7:48	EXPRESS —	>	8:02
8:04	EXPRESS —	>	8:18
8:24	EXPRESS —	>	8:38
8:44	EXPRESS —		8:58
9:04	EXPRESS —		9:18
9:24	EXPRESS —		9:38
9:44	EXPRESS —		9:58
10:15	EXPRESS —	·····>	10:29
10:45	EXPRESS —	·····	10:59
11:15	EXPRESS —		11:29
11:45	EXPRESS —		11:59
12:15p	EXPRESS —		12:29p

EASY FARES!

COMPASS CLOUD

Free mobile ticketing app.

Day Passes; 30-day Passes
Buy for your entire group on one phone.
Your phone is your ticket.

CHANGING THE WAY
SAN DIEGO MOVES

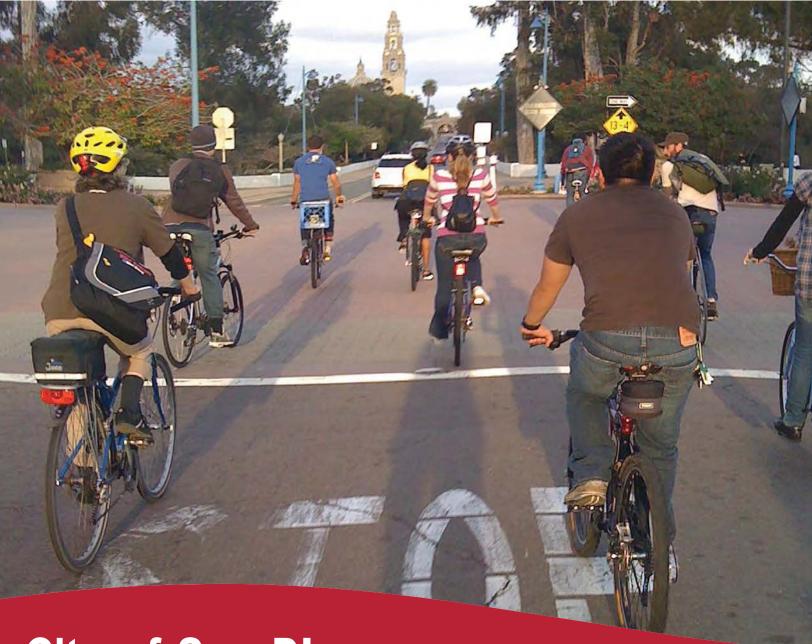
COMPASS CASH

Load money on your Compass Card

Great for One-Ways.
Follow prompts on machine to load value.
Just tap and ride!

Compass Service Center (619) 595-5636 sdmts.com

California Terraces PA61 TIA Appendix


Freebies ♥ Contests ♥ Events ♥ News ♥ Fun

We **LOVE** our riders and as part of giving back, we're starting a new program for **YOU!** Just by staying in touch with us via email you'll get exclusive sweepstakes, news, events, plus transit lifestyle tips.

Join Today!

sdmts.com/RiderInsider

ppendix G	
ccerpts from City of San Diego Bicycle Master Plan Update and Community	<i>y</i> Plan

City of San Diego Bicycle Master Plan

San Diego, California

FINAL - Deceber 2013

PREPARED BY:
Alta Planning + Design
PREPARED FOR:
The City of San Diego

City of San Diego Bicycle Master Plan, December 2013

Existing Bicycle Routes

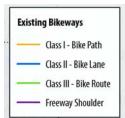
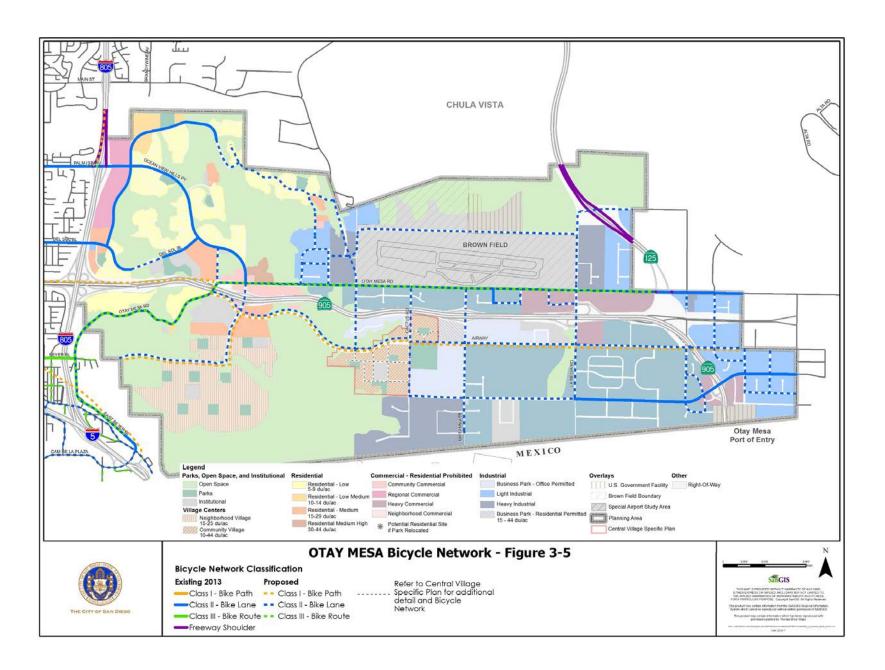


Figure 3-4: San Diego Existing Bikeways (South)

Otay Mesa Community Plan Update

Planning, Neighborhoods & Economic Development Department March 11, 2014


California Terraces PA61 TIA Appendix

OTAY MESA COMMUNITY PLAN

Amendment	Date Approved by Planning Commission	Resolution Number	Date Adopted by City Council	Resolution Number
Otay Mesa Community Plan Adopted	February 13, 2014		March 11, 2014	R-308810
Corrections to address inconsistencies between the Land Use and Zoning Map. Minor map and text corrections to show land use and the removal of paper streets from map figures	April 30, 2015	R-4685	June 2, 2015	R-309773
Otay Mesa Central Village Specific Plan Adopted	February 23, 2017		April 13, 2017	R-311020

Editor's note: After the adoption of the Otay Mesa Community Plan, it was noticed that Figure 3-2 depicted the street classifications for Otay Pacific Drive, Otay Pacific Place, and Las Californias incorrectly; these streets were classified pursuant to City Council Resolution R-307235 on January 10, 2012, which the reclassification was not captured in all places in the Otay Mesa Community Update documents, including Figure 3-2; and therefore, Figure 3-2 in Document Number R-308810 is replaced with Figure 3-2.

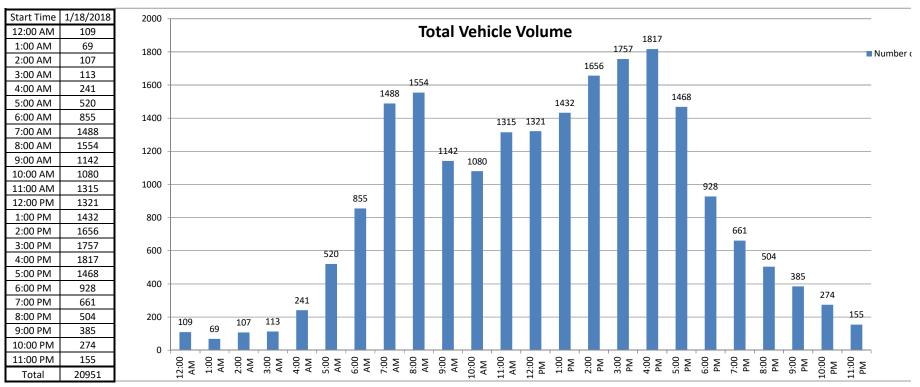
Appendix H

Count Data and Signal Timing Sheets

File Name

006

City of San Diego


City of San Diego					perent	1			File Name	006
Caliente Avenue	d 1	- 005 14/+		U	limite	4			Site Code:	143-18041
B/ Otay Mesa Road	d - Interstate				Southbound				Directional V	olume Count
Date:	45.41		bound		4= 14:				0 11	1
1/18/2018		ute Totals		ly Totals		ute Totals		/ Totals		ed Totals
Time	Morning	Afternoon	Morning	Afternoon	Morning		Morning	Afternoon	Morning	Afternoon
12:00	16	149			23	173				
12:15	15	151			13	178				
12:30	9	168		520	13	159			400	
12:45	9	162	49	630	11	181	60	691	109	1321
1:00	11	198			6	154				
1:15	12	180			2	173				
1:30	6	174			12	179				
1:45	11	212	40	764	9	162	29	668	69	1432
2:00	24	186			14	222				
2:15	12	190			8	208				
2:30	11	181	60	754	4	215	20	005	407	4656
2:45	22	194	69	751	12	260	38	905	107	1656
3:00	13	204			7	253				
3:15	8	209			23	230				
3:30	16	180		760	15	286	F.0	000	112	4757
3:45	17	176	54	769	14	219	59	988	113	1757
4:00	17	216			26	220				
4:15	23	309			34	250				
4:30	20	204	404	000	33	225	4.40	020	244	4047
4:45	41	160	101	889	47	233	140	928	241	1817
5:00	31	164			62	264				
5:15	40	140			80	212				
5:30	59	147	202	502	92	201	240	075	F20	4.460
5:45	72	142	202	593	84	198	318	875	520	1468
6:00	67	145			86	169				
6:15	94	136			92	125				
6:30	102	98	455	466	105	107	400	462	0.55	020
6:45	192	87	455	466	117	61	400	462	855	928
7:00	115	92			130	82				
7:15 7:30	175 238	82			155	86				
		84	704	240	221	71	CO4	212	1400	CC1
7:45 8:00	266	90 73	794	348	188	74	694	313	1488	661
	247				183	64				
8:15 8:30	174 185	80 57			158 195	59 66				
8:45	206	57 55	812	265	206	50	742	239	1554	504
9:00	155	84	012	203	163	41	742	239	1334	304
9:15	138	44			133	55				
9:30	132	50			141	33 37				
9:45	140	46	565	224	141	28	577	161	1142	385
10:00	128	46	303	224	150	28 50	311	101	1142	303
10:15	132	41			121	31				
10:30	150	45			139	32				
10:45	119	43 19	529	146	141	15	551	128	1080	274
11:00	143	25	323	140	161	11	551	120	1000	2/7
11:15	160	24			160	8				
11:30	166	22			178	10				
11:45	165	41	634	112	182	14	681	43	1315	155
Totals	4304	5957			4289	6401				
	.50-1				.203					
Combined Totals		10261				10690				
ADT										20951
AM Peak Hour	715	AM			730	AM				
Volume	926				750					
P.H.F.	0.870				0.848					
PM Peak Hour			PM			245	PM			
Volume		905				1029				
P.H.F.		0.732				0.899				
Percentage	41.9%	58.1%			40.1%	59.9%				

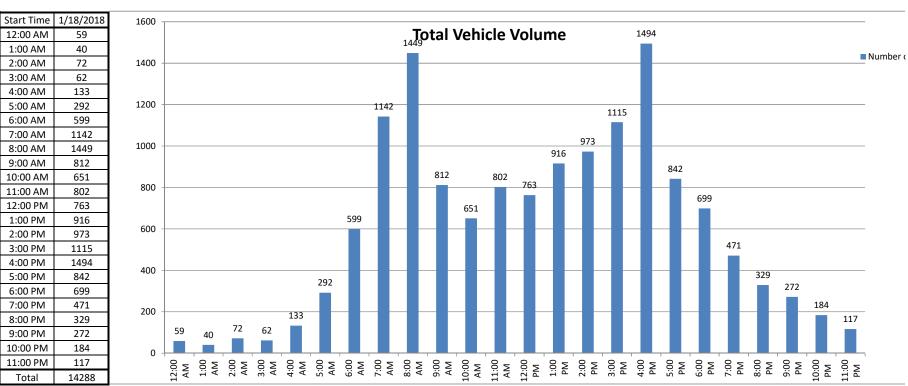
24 Hour Volume Plot

Caliente Avenue B/ Otay Mesa Road - Interstate 805 Westbound

1/18/2018

Volumes represent the combined totals for both directions

City of San Diego Caliente Avenue


File Name 007 Site Code: 143-18041 B/ Interstate 905 Westbound - Interstate 905 Eastbound 24 Hour Directional Volume Count

	vestbouna -	Interstate 90		0 1.	limited			24 Hour	Directional \	olume Count
Date:		North					bound			
1/18/2018	15 Minu	ute Totals	Hourly	/ Totals	15 Minu	ite Totals	Hourly	Totals	Combin	ed Totals
Time	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon
12:00	18	149			1	27				
12:15	12	162			5	36				
12:30	10	169			0	34				
12:45	10	148	50	628	3	38	9	135	59	763
1:00	13	209			1	26				
1:15	9	175			0	44				
1:30	9	199			0	28				
1:45	8	208	39	791	0	27	1	125	40	916
2:00	24	196	33	751	1	52	_	123	40	310
2:15	12	194			3	42				
2:30	11	181			1	36				
			cc	707			C	100	72	072
2:45	19	216	66	787	1	56	6	186	72	973
3:00	16	210			2	60				
3:15	7	220			2	71				
3:30	13	207			1	62				
3:45	18	214	54	851	3	71	8	264	62	1115
4:00	19	341			1	97				
4:15	24	418			3	57				
4:30	33	287			1	40				
4:45	48	192	124	1238	4	62	9	256	133	1494
5:00	45	175			7	41				
5:15	62	176			3	33				
5:30	63	148			8	39				
5:45	92	177	262	676	12	53	30	166	292	842
6:00	84	173			5	41				
6:15	113	178			15	33				
6:30	117	122			18	25				
6:45	216	112	530	585	31	15	69	114	599	699
7:00	156	100			17	17				
7:15	214	111			35	23				
7:30	259	88			64	19				
7:45	318	98	947	397	79	15	195	74	1142	471
8:00	293	80	347	337	58	12	155	74	1142	471
8:15	225	75			66	10				
	276	75 57								
8:30 8:45	300	65	1094	277	93	18 12	355	52	1449	329
			1094	2//	138		555	52	1449	329
9:00	248	82			40	12				
9:15	155	56			30	12				
9:30	152	52	500	224	24	13			0.10	070
9:45	144	41	699	231	19	4	113	41	812	272
10:00	128	36			21	13				
10:15	147	48			24	16				
10:30	151	42			24	7				
10:45	135	20	561	146	21	2	90	38	651	184
11:00	162	27			34	5				
11:15	154	22			36	3				
11:30	167	21			45	1				
11:45	172	34	655	104	32	4	147	13	802	117
Totals	5081	6711			1032	1464				
Combined Totals		11792				2496				
ADT										14288
AM Peak Hour	745	AM			800	AM				00
Volume	1112				355	. 1171				
P.H.F.	0.874				0.643					
PM Peak Hour	0.074	345	PM		0.043	315	PM			
			r (VI				r IVI			
Volume		1260				301				
P.H.F.	40 :	0.754				0.776				
Percentage	43.1%	56.9%			41.3%	58.7%				

24 Hour Volume Plot

Caliente Avenue B/ Interstate 905 Westbound - Interstate 905 Eastbound 1/18/2018

Volumes represent the combined totals for both directions

File Name

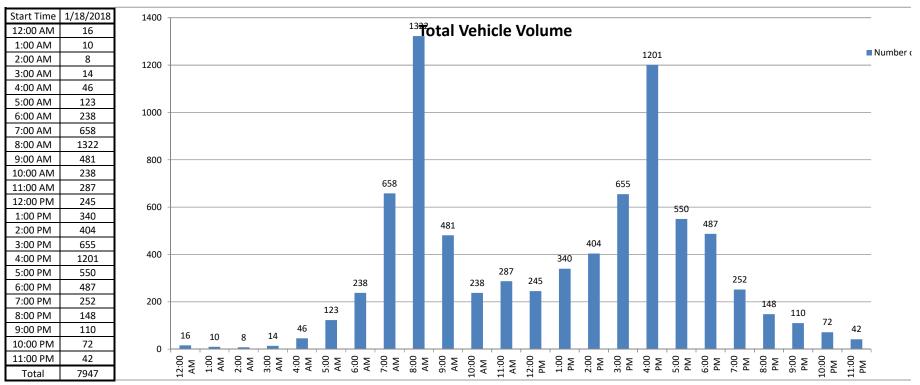
Site Code:

24 Hour Directional Volume Count

800

143-18041

City of San Diego Caliente Avenue B/ Interstate 905 Eastbound - Airway Road


Date:			bound			South	bound		Directional v	
1/18/2018	15 Min	ite Totals		Totals	15 Min	ite Totals		Totals	Combine	ed Totals
1/18/2018 Time		Afternoon	·	Afternoon		Afternoon		Afternoon		Afternoon
12:00	1	27	ivioiiiiig	AITCITIOUII	5	30	ivioiiiiig	AITCITIOUII	iviorilling	ALLEHHOUH
12:15	2	45			2	33				
12:30	1	26			2	27				
12:45	2	25	6	123	1	32	10	122	16	245
1:00	1	45	U	123	4	33	10	122	10	243
1:15	1	41			3	49				
1:30	1	46			0	33				
1:45	0	52	3	184	0	41	7	156	10	340
2:00	0	46	,	104	1	53	,	130	10	340
2:15	1	63			3	39				
2:30	2	40			1	51				
2:45	0	56	3	205	0	56	5	199	8	404
3:00	1	46	,	203	3	72	3	133	8	404
3:15	2	54			3	81				
3:30	1	62			1	101				
3:45	1	74	5	236	2	165	9	419	14	655
			5	230			9	419	14	055
4:00 4:15	4	221			0	188				
4:15 4:30	8 17	294 157			2 1	111 72				
4:30 4:45	17	82	42	754	1	72 76	4	447	46	1201
		67	42	754	4		4	447	46	1201
5:00	26 25					66				
5:15	25	55 45			4	66				
5:30	22	45	104	240	4	74	10	240	422	550
5:45	31	73	104	240	7	104	19	310	123	550
6:00	35	75 70			13	98				
6:15	31	78			11	63				
6:30	41	44	152	220	30	50	85	240	220	407
6:45	46 50	41	153	238	31	38	85	249	238	487
7:00	58	25			34	38				
7:15	73	39			37	32				
7:30	93	27	254	444	71	38	204	4.44	650	252
7:45	130	20	354	111	162	33	304	141	658	252
8:00	116	16			125	23				
8:15	109	13			128	23				
8:30	165	14	622	50	223	23	700	00	4222	4.40
8:45	232	7	622	50	224	29	700	98	1322	148
9:00	148	13			109	16				
9:15	49	7			44	27				
9:30	43	13	2=2	2-	22	21	244	70	404	4.0
9:45	30	4	270	37	36	9	211	73	481	110
10:00	34	3			18	12				
10:15	31	13			30	19				
10:30	31	5			27	12				
10:45	37	3	133	24	30	5	105	48	238	72
11:00	42	7			34	6				
11:15	32	0			34	10				
11:30	33	4			35	6				
11:45	43	0	150	11	34	9	137	31	287	42
Totals	1845	2213			1596	2293				
Combined Totals		4058				3889				
ADT										7947
AM Peak Hour	815	AM			800	AM				
Volume	654				700					
P.H.F.	0.705				0.781					
PM Peak Hour		400	PM			330	PM			
Volume		754				565				
P.H.F.		0.641				0.751				
Percentage	45.5%	54.5%			41.0%	59.0%				

24 Hour Volume Plot

Caliente Avenue B/ Interstate 905 Eastbound - Airway Road

1/18/2018

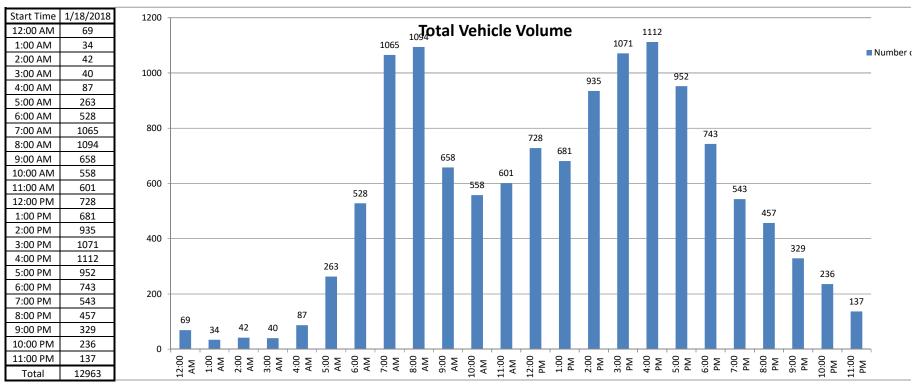
Volumes represent the combined totals for both directions

File Name

001

City of San Diego Ocean View Hills Parkway

B/ Starfish Way - Sea Drift Way


City of San Diego				1	perent	7			File Name	001
Ocean View Hills Pa	•			U	limite	á			Site Code:	143-18041
B/ Starfish Way - So	ea Drift Wa	•								/olume Count
Date:		North				South				
1/18/2018	15 Min	ute Totals		/ Totals	15 Min	ute Totals	Hourly	/ Totals	Combin	ed Totals
Time	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon
12:00	12	85			14	81				
12:15	7	95			12	95				
12:30	7	90			8	93				
12:45	5	91	31	361	4	98	38	367	69	728
1:00	1	89			7	75				
1:15	3	91			4	73				
1:30	3	78			8	90				
1:45	1	87	8	345	7	98	26	336	34	681
2:00	7	97			4	109				
2:15	4	124			4	107				
2:30	9	113			3	130				
2:45	3	133	23	467	8	122	19	468	42	935
3:00	4	254			4	97				
3:15	8	162			1	118				
3:30	8	112			6	93				
3:45	7	126	27	654	2	109	13	417	40	1071
4:00	4	116	_,		3	133		,		2072
4:15	16	188			1	133				
4:30	17	155			10	123				
4:45	28	142	65	601	8	123	22	511	87	1112
5:00	32	128	03	001	3	111	22	311	87	1112
	56									
5:15		139			12	117				
5:30	57	130	205	F26	24	94	F0	416	262	053
5:45	60	139	205	536	19	94	58	416	263	952
6:00	61	103			38	109				
6:15	84	117			33	125				
6:30	79	88		_	62	83				
6:45	90	47	314	355	81	71	214	388	528	743
7:00	98	70			96	80				
7:15	108	55			112	71				
7:30	131	52			189	74				
7:45	170	52	507	229	161	89	558	314	1065	543
8:00	138	63			180	60				
8:15	194	45			97	80				
8:30	157	51			93	63				
8:45	121	38	610	197	114	57	484	260	1094	457
9:00	132	33			88	54				
9:15	86	35			56	58				
9:30	82	32			65	48				
9:45	92	27	392	127	57	42	266	202	658	329
10:00	84	27	-		55	41		-		-
10:15	70	27			56	36				
10:30	75	21			75	20				
10:45	89	33	318	108	54	31	240	128	558	236
11:00	73	18			75	26	,			•
11:15	77	16			68	20				
11:30	98	6			49	18				
11:45	78	17	326	57	83	16	275	80	601	137
Totals	2826	4037	323	٠,	2213	3887	2,3			101
	2020	7037			2213	3307				
Combined Totals		6863				6100				
ADT										12963
AM Peak Hour	745	AM			715	AM				
Volume	659				642					
P.H.F.	0.849				0.849					
PM Peak Hour		230	PM			400	PM			
Volume		662				511				
P.H.F.		0.652				0.961				
Percentage	41.2%	58.8%			36.3%	63.7%				

24 Hour Volume Plot

Ocean View Hills Parkway B/ Starfish Way - Sea Drift Way

1/18/2018

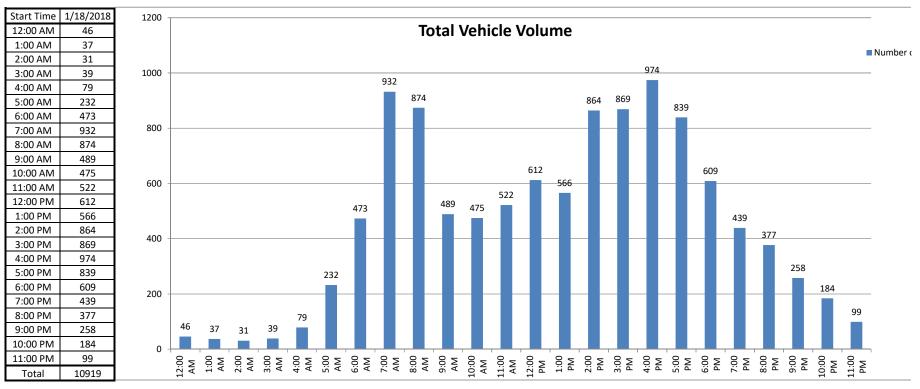
Volumes represent the combined totals for both directions

File Name

Site Code:

002

143-18041


City of San Diego Ocean View Hills Parkway B/ Sea Drift Way - Del Sol Boulevard

Ocean View Hills Pa	•			U n	limite	á			Site Code:	143-18041	
B/ Sea Drift Way - I	Dei Soi Boui		h a m d				h a a d	24 Hour	Directional v	olume Count	
Date:	1 E Mini		bound	v Totals	1E Min		bound	, Totals	Totals Combined Totals		
1/18/2018		ute Totals		y Totals		ute Totals		/ Totals			
Time	Morning	Afternoon	Morning	Afternoon	Morning		Morning	Afternoon	Morning	Afternoon	
12:00	6	74 64			13	78 70					
12:15 12:30	7 6	64			7 1	79 91					
		87 57	21	202			25	220	4.0	C12	
12:45	2	57 77	21	282	4	82	25	330	46	612	
1:00	4	77			6	62					
1:15	2	64			5	70					
1:30	1	65 65	12	274	7	86	25	205	27	566	
1:45	5	65	12	271	7	77	25	295	37	566	
2:00	5	100			0	109					
2:15	4 4	102			4	96					
2:30	3	72 173	1.0	447	3 8	114	15	417	21	964	
2:45	9	173	16	447		98 95	15	417	31	864	
3:00	4	158			4 2	95 95					
3:15		104									
3:30	6	110	20	171	5	96 100	12	205	20	000	
3:45 4:00	7 10	102	26	474	2	109	13	395	39	869	
4:00	10 11	120 165			3	132 108					
4:15	11 16	165			6 7	108					
4:30 4:45	16 21	124 109	58	518	, 5	115 101	21	156	79	974	
4:45 5:00	30	109	38	219	5 10	89	Δ1	456	79	5/4	
5:15	39	116			16	98					
5:30	40	129			20	86					
5:45	44	109	153	475	33	91	79	364	232	839	
6:00	46	103	133	4/3	35	98	73	304	232	633	
6:15	55	79			52	94					
6:30	74	49			68	64					
6:45	64	61	239	290	79	63	234	319	473	609	
7:00	66	52	233	250	103	61	254	313	473	003	
7:15	85	42			159	64					
7:30	119	42			148	77					
7:45	110	44	380	180	142	57	552	259	932	439	
8:00	118	44	555	100	126	63	332	200	332	.55	
8:15	142	43			73	64					
8:30	98	28			116	46					
8:45	96	36	454	151	105	53	420	226	874	377	
9:00	80	32			59	40		-			
9:15	71	27			47	48					
9:30	61	20			49	43					
9:45	64	23	276	102	58	25	213	156	489	258	
10:00	59	30			51	32					
10:15	57	15			57	27					
10:30	66	22			65	18					
10:45	63	18	245	85	57	22	230	99	475	184	
11:00	53	14			62	13					
11:15	74	6			53	18					
11:30	77	11			62	13					
11:45	61	12	265	43	80	12	257	56	522	99	
Totals	2145	3318			2084	3372					
Combined Totals		5463				5456					
ADT										10919	
AM Peak Hour	730	AM		_	715	AM	_		_	_	
Volume	489				575						
P.H.F.	0.861				0.904						
PM Peak Hour		245	PM			345	PM				
Volume		545				464					
P.H.F.		0.788				0.879					
Percentage	39.3%	60.7%			38.2%	61.8%					

Ocean View Hills Parkway B/ Sea Drift Way - Del Sol Boulevard

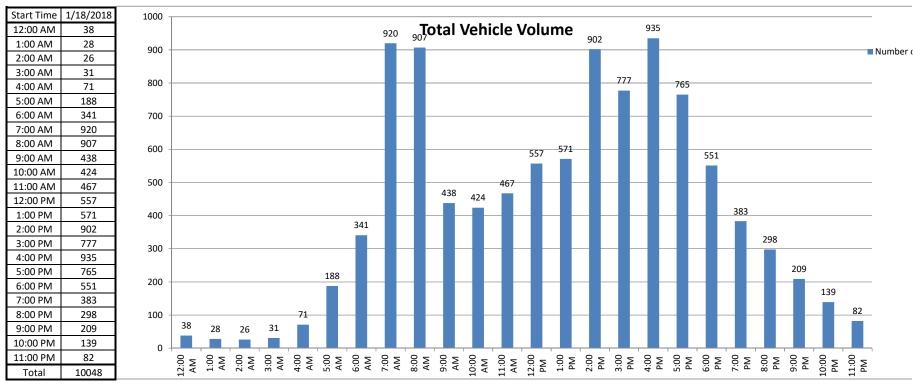
1/18/2018

File Name

Site Code:

003

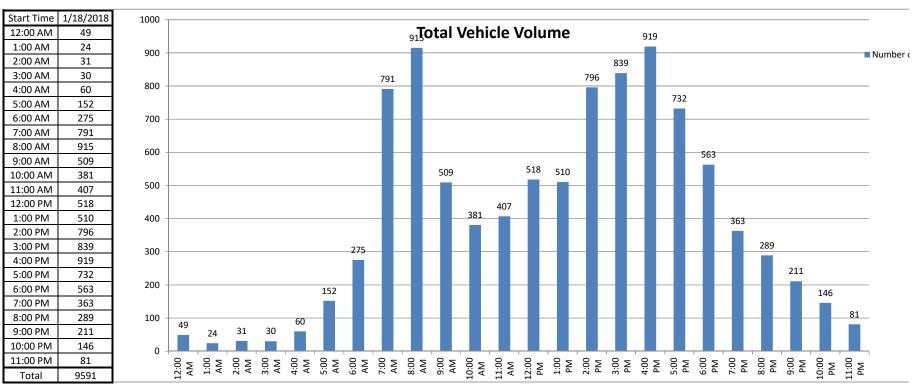
143-18041


City of San Diego Ocean View Hills Parkway B/ Del Sol Boulevard - Sea Fire Point

Ocean View Hills Pa B/ Del Sol Boulevar	-	Point		U n	limited	Í		24 Hou	Site Code: r Directional \	143-18041 Jolume Coun
Date:	d Scarne		bound			South	bound	2411001	Directionary	olariic couri
1/18/2018	15 Minı	ute Totals		y Totals	15 Min	ute Totals		y Totals	Combine	ed Totals
Time	Morning	Afternoon		<u> </u>	Morning	Afternoon	Morning	Afternoon	Morning	Afternoor
12:00	5	88			9	53	- 0			
12:15	5	71			4	58				
12:30	6	83			1	72				
12:45	4	60	20	302	4	72	18	255	38	557
1:00	4	83			5	56				
1:15	2	74			0	64				
1:30	1	81			6	50				
1:45	5	110	12	348	5	53	16	223	28	571
2:00	6	111			0	104				
2:15	3	129			3	89				
2:30	4	101			2	89				
2:45	3	114	16	455	5	165	10	447	26	902
3:00	7	102			2	122				
3:15	5	86			3	95				
3:30	2	105			4	84				
3:45	4	94	18	387	4	89	13	390	31	777
4:00	9	139			4	108				
4:15	10	192			6	88				
4:30	9	140			9	87				
4:45	12	103	40	574	12	78	31	361	71	935
5:00	17	122			12	71				
5:15	20	116			23	67				
5:30	30	125	00	466	27	75 86	00	200	100	765
5:45	31 48	103 97	98	466	28	86	90	299	188	765
6:00 6:15	48 30	97 85			29 29	80 77				
6:30	50 50	67			45	56				
6:45	51	60	179	309	59	29	162	242	341	551
7:00	61	60	1/3	303	72	44	102	242	341	331
7:15	115	44			100	51				
7:30	141	44			165	50				
7:45	131	47	448	195	135	43	472	188	920	383
8:00	154	40	110	133	134	46	172	100	320	303
8:15	65	42			132	41				
8:30	76	26			125	31				
8:45	98	34	393	142	123	38	514	156	907	298
9:00	71	28			54	25				
9:15	54	33			55	29				
9:30	51	25			45	30				
9:45	63	21	239	107	45	18	199	102	438	209
10:00	51	28			42	16				
10:15	52	15			58	15				
10:30	62	18			49	12				
10:45	68	21	233	82	42	14	191	57	424	139
11:00	64	10			50	12				
11:15	65	8			44	6				
11:30	68	10			62	6				
11:45	55	16	252	44	59	14	215	38	467	82
Totals	1948	3411			1931	2758				
Combined Totals		5359				4689				
ADT										10048
AM Peak Hour	715	AM			730	AM				
Volume	541				566					
P.H.F.	0.878				0.858					
PM Peak Hour		400	PM			230	PM			
Volume		574				471				
P.H.F.		0.747				0.714				
Percentage	36.4%	63.6%			41.2%	58.8%				

Ocean View Hills Parkway B/ Del Sol Boulevard - Sea Fire Point

1/18/2018


City of San Die В/ :

Data	Northbound			Cauthhaunad			
/ Sea Fire Point - I	Hidden Trails Road	Un	limited		24 Hou	r Directional \	/olume Count
cean View Hills Pa	arkway	U	DIVITS I I I I I I I I I I I I I I I I I I			Site Code:	143-18041
ity of San Diego		1	ALLIATI			File Name	004

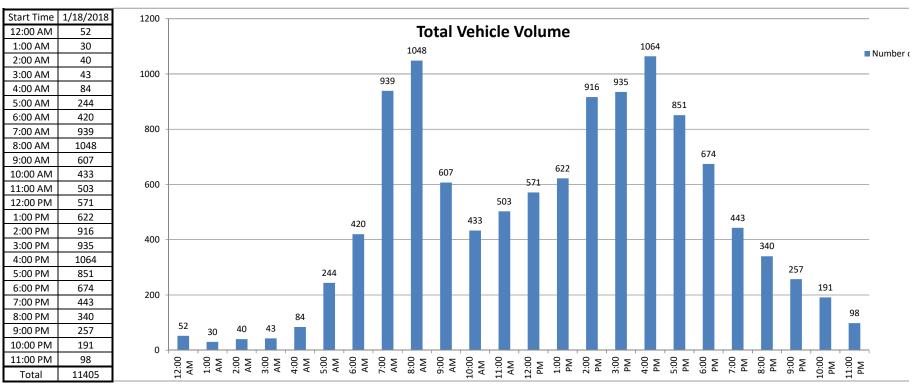
Date:		North	bound				nbound			
1/18/2018	15 Min	ute Totals	Hourl	y Totals	15 Mini	ute Totals	Hourl	y Totals	Combin	ed Totals
Time	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon
12:00	11	64		•	8	55		•		•
12:15	6	76			4	66				
12:30	6	72			6	53				
12:45	7	57	30	269	1	75	19	249	49	518
1:00	3	61			4	52				
1:15	2	73			2	57				
1:30	3	71			2	62				
1:45	1	77	9	282	7	57	15	228	24	510
2:00	7	115		202	2	57	13	220		313
2:15	3	107			1	113				
2:30	3	115			3	92				
2:45	6	113	19	450	6	84	12	346	31	796
3:00	3	104	13	430	1	170	12	340	31	750
3:15	7	97			3	111				
3:30	2	83			4	74				
	4		1.0	391		93	1.4	448	20	839
3:45		107	16	391	6		14	448	30	839
4:00	3	100			4	91 104				
4:15	9	194			1	104				
4:30	11	158	20	FC7	12	77	24	252	CO	010
4:45	6	115	29	567	14	80	31	352	60	919
5:00	9	110			8	62				
5:15	16	118			22	72				
5:30	21	112			26	61			_	
5:45	22	117	68	457	28	80	84	275	152	732
6:00	33	105			29	63				
6:15	37	86			28	76				
6:30	40	77			23	61				
6:45	39	57	149	325	46	38	126	238	275	563
7:00	57	55			63	35				
7:15	73	58			76	41				
7:30	139	53			115	37				
7:45	98	41	367	207	170	43	424	156	791	363
8:00	164	49			119	36				
8:15	96	39			143	32				
8:30	58	39			113	34				
8:45	77	33	395	160	145	27	520	129	915	289
9:00	106	29			78	28				
9:15	56	32			53	21				
9:30	62	30			52	25				
9:45	49	23	273	114	53	23	236	97	509	211
10:00	54	30			42	16				
10:15	45	21			56	24				
10:30	42	13			44	8				
10:45	66	23	207	87	32	11	174	59	381	146
11:00	57	10			46	13				
11:15	58	11			45	10				
11:30	53	7			45	5				
11:45	51	20	219	48	52	5	188	33	407	81
Totals	1781	3357		-	1843	2610		-	-	
Combined Totals		5138				4453				
ADT										9591
AM Peak Hour	730	AM			730	AM				-
Volume	497				547					
P.H.F.	0.758				0.804					
PM Peak Hour	5.750	415	PM		0.00	215	PM			
Volume		577				459				
P.H.F.		0.744				0.675				
	24 70/				/1 /0/					
Percentage	34.7%	65.3%			41.4%	58.6%				

Ocean View Hills Parkway B/ Sea Fire Point - Hidden Trails Road 1/18/2018

File Name

Site Code:

005


143-18041

City of San Diego Ocean View Hills Parkway

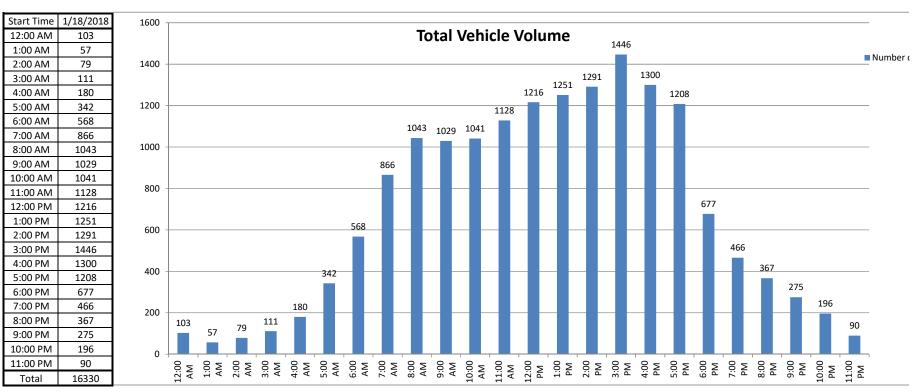
B/ Hidden Trails Ro		Лesa Road		U n	limite	4		24 Hour	Tirectional	/olume Count
Date:	,		bound			South	bound			
1/18/2018	15 Min	ute Totals	Hourl	y Totals	15 Min	ute Totals		/ Totals	Combin	ed Totals
Time	Morning		Morning		Morning			Afternoon	Morning	Afternoon
12:00	13	75			11	62	- 0			
12:15	8	85			3	76				
12:30	5	66			5	62				
12:45	6	67	32	293	1	78	20	278	52	571
1:00	6	71			5	68				
1:15	2	82			1	70				
1:30	4	90			5	82				
1:45	2	93	14	336	5	66	16	286	30	622
2:00	12	124			1	67				
2:15	2	119			2	127				
2:30	4	133			4	105				
2:45	8	135	26	511	7	106	14	405	40	916
3:00	7	108			2	182				
3:15	6	104			5	125				
3:30	1	104			4	81				225
3:45	7	125	21	441	11	106	22	494	43	935
4:00	4	135			5	116				
4:15	13	227			5	116				
4:30 4:45	12 12	167 129	41	658	14 19	86 88	43	406	84	1064
5:00	19	134	41	036	18	73	43	400	04	1004
5:15	26	134			40	73 83				
5:30	26	125			39	67				
5:45	33	138	104	528	43	100	140	323	244	851
6:00	43	119	101	320	43	80	140	323	2.11	031
6:15	47	99			48	85				
6:30	56	93			47	68				
6:45	64	77	210	388	72	53	210	286	420	674
7:00	72	76			82	44				
7:15	79	66			95	46				
7:30	160	60			135	46				
7:45	116	56	427	258	200	49	512	185	939	443
8:00	190	55			153	42				
8:15	105	47			160	37				
8:30	67	49			121	36				
8:45	88	41	450	192	164	33	598	148	1048	340
9:00	117	33			114	33				
9:15	61	39			57	26				
9:30	75	38	222	400	64	30	200	440	co=	25-
9:45	56	28	309	138	63	30	298	119	607	257
10:00	55 55	40			54 57	17 26				
10:15 10:30	55 47	31 26			57 56	26 1 <i>4</i>				
10:30 10:45	47 73	26 24	230	121	56 36	14 13	203	70	433	191
11:00	66	13	230	121	55	13	203	70	433	151
11:15	69	13			63	10				
11:30	63	9			56	6				
11:45	58	27	256	62	73	8	247	36	503	98
Totals	2120	3926		·	2323	3036	1	-		
Combined Totals		6046				5359				
ADT										11405
AM Peak Hour	730	AM			730	AM				
Volume	571				648					
P.H.F.	0.751				0.810					
PM Peak Hour		400	PM			215	PM			
Volume		658				520				
P.H.F.		0.725				0.714				
Percentage	35.1%	64.9%			43.3%	56.7%				

Ocean View Hills Parkway B/ Hidden Trails Road - Otay Mesa Road 1/18/2018

File Name

Site Code:

009


143-18041

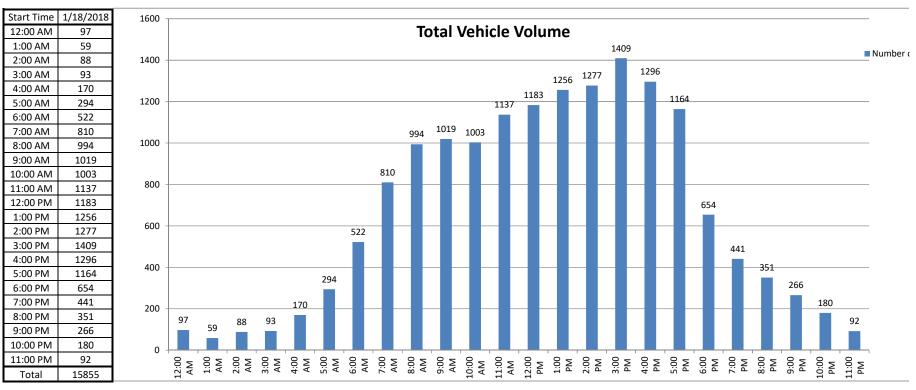
City of San Diego Otay Mesa Road B/ Ocean View Hills Parkway - Emerald Crest Court

Otay Mesa Road				U n	limite	1			Site Code:	143-18041
B/ Ocean View Hill	s Parkway -			·				24 Hour	Directional V	olume Count
Date:	45.00		ound		45.41		bound		0 11	1=
1/18/2018		ute Totals		y Totals		ute Totals		/ Totals		ed Totals
Time	Morning		Morning	Afternoon	Morning		Morning	Afternoon	Morning	Afternoon
12:00	14	135			15	185				
12:15	9	124			26	167				
12:30	10	150	24	F.C.4	13	159	60	CEE	103	1216
12:45	1	152	34	561	15	144	69	655	103	1216
1:00	7	149			4	165				
1:15	11 6	172			6	153				
1:30 1:45	8	160 124	32	605	6 9	177 151	25	646	57	1251
2:00	8	165	32	603	18	187	25	040	57	1251
2:15	13	134			12	167				
2:30	9	126			7	181				
2:45	7	144	37	569	5	187	42	722	79	1291
3:00	20	128	3,	303	12	207	12	,	,,,	1231
3:15	11	166			14	193				
3:30	6	163			13	244				
3:45	19	117	56	574	16	228	55	872	111	1446
4:00	13	126		57.	14	210		0,2		20
4:15	17	127			34	179				
4:30	21	114			24	221				
4:45	29	107	80	474	28	216	100	826	180	1300
5:00	21	87			39	265				
5:15	33	82			42	254				
5:30	37	69			55	211				
5:45	62	61	153	299	53	179	189	909	342	1208
6:00	64	67			62	136				
6:15	65	59			61	128				
6:30	75	69			63	116				
6:45	109	38	313	233	69	64	255	444	568	677
7:00	153	49			67	74				
7:15	94	36			96	85				
7:30	122	40			71	62				
7:45	176	53	545	178	87	67	321	288	866	466
8:00	210	40			79	63				
8:15	168	38			102	51				
8:30	150	38			94	57				
8:45	132	31	660	147	108	49	383	220	1043	367
9:00	136	26			98	43				
9:15	129	41			146	40				
9:30	131	25			129	36				
9:45	124	32	520	124	136	32	509	151	1029	275
10:00	124	19			134	36				
10:15	123	21			135	32				
10:30	143	24			118	25				
10:45	124	11	514	75	140	28	527	121	1041	196
11:00	110	13			131	13				
11:15	126	7			152	6				
11:30	143	16			156	6	l .			
11:45	145	15	524	51	165	14	604	39	1128	90
Totals	3468	3890			3079	5893				
Combined Totals		7358				8972				
ADT										16330
AM Peak Hour	745	AM			1100	AM				
Volume	704				604					
P.H.F.	0.838				0.915					
PM Peak Hour		1245	PM	<u> </u>		430	PM			
Volume		633				956				
P.H.F.		0.920				0.902				
Percentage	47.1%	52.9%			34.3%	65.7%				

Otay Mesa Road B/ Ocean View Hills Parkway - Emerald Crest Court 1/18/2018

File Name

Site Code:


143-18041

City of San Diego
Otay Mesa Road

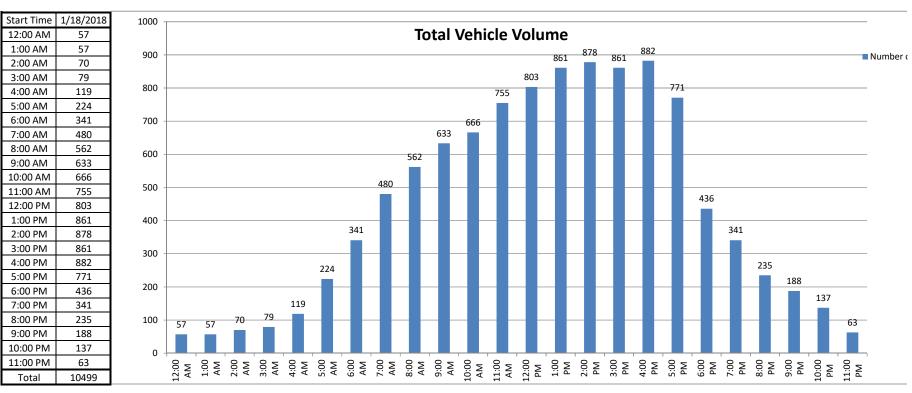
Otay Mesa Road B/ Emerald Crest Court - Corporate Center Drive

1/18/2018

File Name

Site Code:

011


143-18041

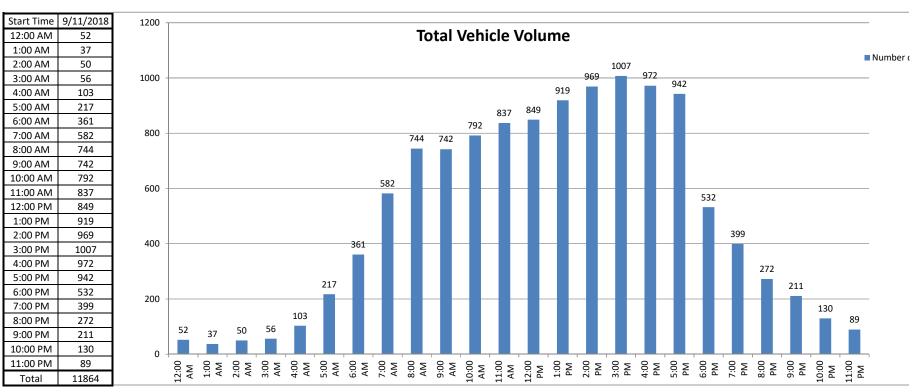
City of San Diego Otay Mesa Road B/ Corporate Center Drive - Innovative Drive

Otay Mesa Road	an Dalua III			U n	limite	a		2411	Site Code:	143-18041
B/ Corporate Cent	er Drive - Ini						ام میں ما	24 Houi	r Directional V	olume Count
Date:	1 F N 4 inc		oound	v Tatala	1 F N A i to		bound	Tatala	Camabia	ad Tatala
1/18/2018		ute Totals		y Totals		ute Totals		/ Totals		ed Totals
Time	Morning	Afternoon	Morning	Afternoon	Morning		Morning	Afternoon	Morning	Afternoon
12:00	7	72 76			7	119				
12:15	10	76			12	112				
12:30	2	92	22	250	10	106	25	452	F-7	002
12:45	3	110	22	350	6	116	35	453	57	803
1:00	9	90			3	107				
1:15	7	98			6	121				
1:30	4	107	20	205	10	132	20	476		064
1:45	8	90	28	385	10	116	29	476	57	861
2:00	8	90			14	121				
2:15	11	105			6	113				
2:30	6	85	20	274	6	118	22	504	70	070
2:45	13	94	38	374	6	152	32	504	70	878
3:00	9	93			9	131				
3:15	3	92			9	120				
3:30	14	85	20	242	12	139	40	540	70	064
3:45	13	72	39	342	10	129	40	519	79	861
4:00	10	69			17	129				
4:15	11	91			22	143				
4:30	12	85		0.17	21	151				222
4:45	15	72	48	317	11	142	71	565	119	882
5:00	15	69			24	177				
5:15	21	62			33	156				
5:30	22	50			30	119				
5:45	39	39	97	220	40	99	127	551	224	771
6:00	28	47			38	93				
6:15	40	40			32	81				
6:30	44	44			46	59				
6:45	63	27	175	158	50	45	166	278	341	436
7:00	53	39			54	65				
7:15	53	26			47	55				
7:30	60	37			63	41				
7:45	86	27	252	129	64	51	228	212	480	341
8:00	87	19			65	45				
8:15	74	33			45	35				
8:30	82	17			71	30				
8:45	72	23	315	92	66	33	247	143	562	235
9:00	87	26			91	26				
9:15	83	17			70	30				
9:30	77	25			77	26				
9:45	56	23	303	91	92	15	330	97	633	188
10:00	66	9			93	37				
10:15	87	15			86	23				
10:30	74	15	20.		86	23	262	00	666	40-
10:45	77	5	304	44	97	10	362	93	666	137
11:00	61	5			90	8				
11:15	83	6			103	3				
11:30	107	11	224	22	102	8	424	20	755	C
11:45	83	11	334	33	126	2021	421	30	755	63
Totals	1955	2535			2088	3921				
Combined Totals		4490				6009				
ADT										10499
AM Peak Hour	1100	AM			1100	AM				
Volume	334				421					
P.H.F.	0.780				0.835					
PM Peak Hour		1245	PM			430	PM			
Volume		405				626				
P.H.F.		0.920				0.884				
Percentage	43.5%	56.5%			34.7%	65.3%				

Otay Mesa Road B/ Corporate Center Drive - Innovative Drive 1/18/2018

File Name

Site Code:


001 143-18999

City of San Diego Otay Mesa Road B/ Innovative Drive - Heritage Road

Otay Mesa Road		DI		Un	limited	1		2411	Site Code:	143-18999
B/ Innovative Drive	e - Heritage		aad				ام میں ما	24 Houi	Directional V	olume Count
Date:	1 F Min.		ound	. Totala	1 F N 4 in a	ute Totals	bound	Tatala	Comphin	ad Tatala
9/11/2018		ute Totals		y Totals				/ Totals		ed Totals
Time	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon
12:00	8	112			4	102				
12:15	11	121			2	90				
12:30	9	120	24	457	7	107	40	202		0.40
12:45	6	104	34	457	5	93	18	392	52	849
1:00	6	109			4	100				
1:15	6	120			8	123				
1:30	3	151			4	103			0-	0.10
1:45	2	107	17	487	4	106	20	432	37	919
2:00	4	142			4	84				
2:15	6	129			8	114				
2:30	8	133			11	93				0.00
2:45	4	150	22	554	5	124	28	415	50	969
3:00	6	147			6	118				
3:15	6	123			6	109				
3:30	11	141			9	111				
3:45	4	150	27	561	8	108	29	446	56	1007
4:00	11	168			11	97				
4:15	18	136			12	105				
4:30	12	147			9	99				
4:45	15	130	56	581	15	90	47	391	103	972
5:00	31	216			16	92				
5:15	24	169			14	87				
5:30	30	127			27	64				
5:45	30	129	115	641	45	58	102	301	217	942
6:00	37	79			17	60				
6:15	34	90			43	44				
6:30	54	78			56	46				
6:45	53	81	178	328	67	54	183	204	361	532
7:00	65	78			61	43				
7:15	81	61			79	25				
7:30	63	55			45	45				
7:45	60	50	269	244	128	42	313	155	582	399
8:00	86	50			107	31				
8:15	93	33			98	30				
8:30	69	26			109	32				
8:45	79	48	327	157	103	22	417	115	744	272
9:00	72	27			100	33				
9:15	88	32			94	14				
9:30	77	29			94	29				
9:45	118	28	355	116	99	19	387	95	742	211
10:00	96	24			91	16				
10:15	109	17			106	20				
10:30	110	20			87	10				
10:45	106	11	421	72	87	12	371	58	792	130
11:00	96	9			106	15				
11:15	100	10			94	10				
11:30	130	14			97	11				
11:45	97	5	423	38	117	15	414	51	837	89
Totals	2244	4236			2329	3055	-			
Combined Totals		6480				5384				
ADT										11864
AM Peak Hour	945	AM			745	AM				
Volume	433				442					
P.H.F.	0.917				0.863					
PM Peak Hour	0.517	430	PM		0.000	245	PM			
Volume		662				462				
P.H.F.		0.766				0.931				
	34.6%				43.3%	56.7%				
Percentage	J4.0%	65.4%			43.3%	30.7%				

Otay Mesa Road B/ Innovative Drive - Heritage Road 9/11/2018

N/S: Ocean View Hills Parkway E/W: Starfish / Westport View

Date: 1/18/2018 Day: WEDNESDAY Project # 143-18041

TURNING MOVEMENT COUNT

Count Period: 7:00 AM to 9:00 AM
Peak Hour: 7:30AM to 8:30 AM

Vehicle Counts

	Ocean V	iew Hills	Parkway	Ocean V	iew Hills	Parkway	Starfish	/ Westp	ort View	Starfish	/ Westpo	ort View	
	N	Iorthbour	nd	S	outhbour	nd	1	Eastboun	d	V	Vestboun	ıd	
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
7:00 AM	0	96	2	11	81	1	6	0	1	7	0	19	224
7:15 AM	0	85	2	6	107	2	5	0	0	9	0	18	234
7:30 AM	1	118	4	7	168	4	7	1	2	17	2	14	345
7:45 AM	0	144	6	9	137	5	14	0	2	24	0	20	361
8:00 AM	0	112	11	10	149	9	15	0	0	20	3	7	336
8:15 AM	1	168	7	16	89	4	24	3	0	7	2	12	333
8:30 AM	0	129	5	17	78	3	12	1	2	12	0	12	271
8:45 AM	0	102	7	20	105	1	7	0	2	12	0	10	266
TOTAL VOLUMES:	2	954	44	96	914	29	90	5	9	108	7	112	2370

AM Peak Hr Begins at: 730 AM

	ET ER WL WT WR TOTAL	EL	SR	ST	SL	NR	NT	NL	
PEAK VOLUMES: 2 542 28 42 543 22 60 4 4 68 7 53 13	4 4 68 7 53 1375	60	22	543	42	28	542	2	PEAK VOLUMES:

PEAK HR FACTOR: 0.813 0.848 0.630 0.727 0.952

Bicycle Counts

	Ocean V	iew Hills	Parkway	Ocean V	iew Hills	Parkway	Starfish	/ Westpo	ort View	Starfish	/ Westpo	ort View	
	N	orthbour	nd	S	outhbour	nd		Eastboun	d	V	Vestboun	ıd	
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
7:00 AM	0	0	0	0	1	0	0	0	0	0	0	0	1
7:15 AM	0	0	0	0	1	0	0	0	0	0	0	0	1
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	1	0	0	0	0	0	0	0	0	0	0	1
8:15 AM	0	0	0	0	1	0	0	0	0	0	0	0	1
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM	0	3	0	0	0	0	0	0	0	0	0	0	3
TOTAL VOLUMES:	0	4	0	0	3	0	0	0	0	0	0	0	7

	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
PEAK VOLUMES:	0	1	0	0	1	0	0	0	0	0	0	0	2

	Ocean View Hills Parkway	Ocean View Hills Parkway	Starfish / Westport View	Starfish / Westport View	
	North Leg	South Leg	East Leg	West Leg	TOTAL
7:00 AM	0	0	0	2	2
7:15 AM	0	0	0	0	0
7:30 AM	0	1	0	1	2
7:45 AM	0	0	0	0	0
8:00 AM	0	0	1	3	4
8:15 AM	1	0	0	3	4
8:30 AM	0	2	0	0	2
8:45 AM	0	1	1	1	3
TOTAL VOLUMES:	1	4	2	10	17

	North Leg	South Leg	East Leg	West Leg	TOTAL
PEAK VOLUMES:	1	1	1	7	10

N/S: Ocean View Hills Parkway E/W: Starfish / Westport View

Date: 1/18/2018 Day: WEDNESDAY Project # 143-18041

TURNING MOVEMENT COUNT

Count Period: 4:00 PM to 6:00 PM Peak Hour: 4:15 PM to 5:15 PM

Vehicle Counts

	Ocean V	iew Hills	Parkway	Ocean V	iew Hills	Parkway	Starfish	/ Westpo	ort View	Starfish	/ Westpo	ort View	
	N	Iorthbour	nd	S	outhbour	nd	I	Eastboun	d	٧	Vestboun	ıd	
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
4:00 PM	0	103	7	27	116	5	7	0	1	3	1	5	275
4:15 PM	1	180	8	33	129	5	6	1	1	0	0	10	374
4:30 PM	0	136	5	47	119	5	2	0	1	6	0	14	335
4:45 PM	2	137	6	36	115	3	3	0	2	4	0	9	317
5:00 PM	1	110	6	31	108	7	3	0	0	3	0	20	289
5:15 PM	0	118	8	36	104	5	4	0	0	7	0	14	296
5:30 PM	0	112	9	38	89	4	8	0	0	2	1	15	278
5:45 PM	0	126	6	27	88	4	3	0	1	4	0	18	277
TOTAL VOLUMES:	4	1022	55	275	868	38	36	1	6	29	2	105	2441

PM Peak Hr Begins at: 415 PM

	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
PEAK VOLUMES:	4	563	25	147	471	20	14	1	4	13	0	53	1315
-													
PEAK HR FACTOR:		0.783			0.933			0.594			0.717		0.879

Bicycle Counts

	Ocean V	iew Hills	Parkway	Ocean V	iew Hills	Parkway	Starfish	/ Westpo	ort View	Starfish	/ Westpo	ort View	
	N	orthbour	nd	S	outhbour	nd	E	Eastbound	d	V	Vestboun	nd	
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL VOLUMES:	0	0	0	0	0	0	0	0	0	0	0	0	0

	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
PEAK VOLUMES:	0	0	0	0	0	0	0	0	0	0	0	0	0

North Leg South Leg East Leg West Leg TOTAL		Ocean View Hills Parkway	Ocean View Hills Parkway	Starfish / Westport View	Starfish / Westport View	
4:15 PM 0 0 1 2 3 4:30 PM 0 0 1 1 2 4:45 PM 0 0 2 5 7 5:00 PM 0 0 0 0 0 5:15 PM 0 1 1 2 4 5:30 PM 1 0 0 0 1 5:45 PM 0 0 0 0 0		North Leg	South Leg	East Leg	West Leg	TOTAL
4:30 PM 0 0 1 1 2 4:45 PM 0 0 2 5 7 5:00 PM 0 0 0 0 0 5:15 PM 0 1 1 2 4 5:30 PM 1 0 0 0 1 5:45 PM 0 0 0 0 0	4:00 PM	0	0	0	1	1
4:45 PM 0 0 2 5 7 5:00 PM 0 0 0 0 0 5:15 PM 0 1 1 2 4 5:30 PM 1 0 0 0 1 5:45 PM 0 0 0 0 0	4:15 PM	0	0	1	2	3
5:00 PM 0 0 0 0 5:15 PM 0 1 1 2 4 5:30 PM 1 0 0 0 1 5:45 PM 0 0 0 0 0	4:30 PM	0	0	1	1	2
5:15 PM 0 1 1 2 4 5:30 PM 1 0 0 0 1 5:45 PM 0 0 0 0 0	4:45 PM	0	0	2	5	7
5:30 PM 1 0 0 0 1 5:45 PM 0 0 0 0 0	5:00 PM	0	0	0	0	0
5:45 PM 0 0 0 0 0	5:15 PM	0	1	1	2	4
	5:30 PM	1	0	0	0	1
TOTAL VOLUMES: 1 1 1 5 11 18	5:45 PM	0	0	0	0	0
10 11 10	TOTAL VOLUMES:	1	1	5	11	18

	North Leg	South Leg	East Leg	West Leg	TOTAL
PEAK VOLUMES:	0	0	4	8	12

N/S: Ocean View Hills Parkway

E/W: Sea Drift Way

Date: 1/18/2018 Day: THURSDAY Project # 143-18041

TURNING MOVEMENT COUNT

Count Period: 7:00 AM to 9:00 AM
Peak Hour: 7:30AM to 8:30 AM

Vehicle Counts

		'iew Hills Iorthbour	,		'iew Hills outhbour	,		ea Drift W Eastboun	•		ea Drift W Vestboun	,	
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
7:00 AM	2	70	0	0	90	5	12	0	7	0	0	0	186
7:15 AM	1	75	0	0	133	8	20	0	6	0	0	0	243
7:30 AM	0	126	0	0	158	21	20	0	8	0	0	0	333
7:45 AM	3	121	0	0	145	28	16	0	3	0	0	0	316
8:00 AM	4	118	0	0	122	35	20	0	7	0	0	0	306
8:15 AM	1	155	0	0	69	6	26	0	8	0	0	0	265
8:30 AM	1	104	0	0	99	8	19	0	5	0	0	0	236
8:45 AM	2	103	0	0	113	4	12	0	11	0	0	0	245
TOTAL VOLUMES:	14	872	0	0	929	115	145	0	55	0	0	0	2130

AM Peak Hr Begins at: 730 AM

	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
PEAK VOLUMES:	8	520	0	0	494	90	82	0	26	0	0	0	1220

PEAK HR FACTOR:	0.846	0.816	0.794	0.000	0.916
-----------------	-------	-------	-------	-------	-------

Bicycle Counts

	Ocean V	iew Hills	Parkway	Ocean V	iew Hills	Parkway	Se	ea Drift W	'ay	Se	a Drift W	'ay	
	N	Iorthbour	nd	S	outhbour	nd		Eastboun	d	V	Vestboun	ıd	
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
7:00 AM	0	0	0	0	2	0	0	0	0	0	0	0	2
7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	1	0	0	0	0	0	0	0	0	0	0	1
8:15 AM	0	0	0	0	1	0	0	0	0	0	0	0	1
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM	0	2	0	0	0	0	0	0	0	0	0	0	2
TOTAL VOLUMES:	0	3	0	0	3	0	0	0	0	0	0	0	6

	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
PEAK VOLUMES:	0	1	0	0	1	0	0	0	0	0	0	0	2

	Ocean View Hills Parkway	Ocean View Hills Parkway	Sea Drift Way	Sea Drift Way	
	North Leg	South Leg	East Leg	West Leg	TOTAL
7:00 AM	0	0	0	0	0
7:15 AM	0	0	0	0	0
7:30 AM	0	0	0	2	2
7:45 AM	0	0	2	3	5
8:00 AM	0	0	1	1	2
8:15 AM	0	0	0	2	2
8:30 AM	0	0	0	0	0
8:45 AM	0	0	3	4	7
TOTAL VOLUMES:	0	0	6	12	18

	North Leg	South Leg	East Leg	West Leg	TOTAL
PEAK VOLUMES:	0	0	3	8	11

N/S: Ocean View Hills Parkway

E/W: Sea Drift Way

Date: 1/18/2018 Day: THURSDAY Project # 143-18041

TURNING MOVEMENT COUNT

Count Period: 4:00 PM to 6:00 PM Peak Hour: 4:00 PM to 5:00 PM

Vehicle Counts

		iew Hills	,			,		ea Drift W	,		a Drift W	,	
	N	Iorthbour	nd	S	outhbour	nd		Eastboun	d	V	Vestboun	ıd	
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
4:00 PM	5	112	0	0	112	12	9	0	11	0	0	0	261
4:15 PM	8	183	0	0	114	11	6	0	5	0	0	0	327
4:30 PM	6	128	0	0	117	13	10	0	4	0	0	0	278
4:45 PM	2	125	0	0	104	14	12	0	2	0	0	0	259
5:00 PM	7	115	0	0	93	12	8	0	2	0	0	0	237
5:15 PM	7	116	0	0	100	13	7	0	1	0	0	0	244
5:30 PM	9	113	0	0	79	14	8	0	1	0	0	0	224
5:45 PM	7	132	0	0	89	10	5	0	3	0	0	0	246
TOTAL VOLUMES:	51	1024	0	0	808	99	65	0	29	0	0	0	2076

PM Peak Hr Begins at: 400 PM

	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
PEAK VOLUMES:	21	548	0	0	447	50	37	0	22	0	0	0	1125
PEAK HR FACTOR:		0.745			0.956			0.738			0.000		0.860

Bicycle Counts

	Ocean V	iew Hills	Parkway	Ocean V	iew Hills	Parkway	Se	a Drift W	ay	Se	a Drift W	'ay	
	N	orthbour	nd	S	outhbour	nd		Eastbound	d	V	Vestboun	ıd	
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	1	0	0	0	0	0	0	0	0	0	0	1
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	2	0	0	0	0	0	0	0	0	0	0	2
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL VOLUMES:	0	3	0	0	0	0	0	0	0	0	0	0	3

	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
PEAK VOLUMES:	0	1	0	0	0	0	0	0	0	0	0	0	1

	Ocean View Hills Parkway	Ocean View Hills Parkway	Sea Drift Way	Sea Drift Way	
	North Leg	South Leg	East Leg	West Leg	TOTAL
4:00 PM	0	0	0	0	0
4:15 PM	0	0	1	4	5
4:30 PM	0	0	3	3	6
4:45 PM	0	0	0	1	1
5:00 PM	0	0	2	2	4
5:15 PM	0	0	0	2	2
5:30 PM	0	0	0	0	0
5:45 PM	0	0	0	0	0
TOTAL VOLUMES:	0	0	6	12	18

	North Leg	South Leg	East Leg	West Leg	TOTAL
PEAK VOLUMES:	0	0	4	8	12

N/S: Ocean View Hills Parkway
E/W: Del Sol / Breakers

Date: 1/18/18 Day: THURSDAY Project # 143-18041

TURNING MOVEMENT COUNT

Count Period: 7:00 AM to 9:00 AM
Peak Hour: 7:30AM to 8:30 AM

Vehicle Counts

	Ocoan V	iow Hills	Darkway	Ocean V	liow Hills	Darkway	Dol	Sol / Brea	korc	Dol	Sol / Brea	korc	
			,			,							
	N	orthbour	nd	S	outhbour	nd		Eastboun	d	V	Vestbour	ıd	
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
7:00 AM	27	38	0	2	38	57	27	0	26	1	0	10	226
7:15 AM	62	29	0	1	45	91	37	1	51	1	10	10	338
7:30 AM	107	43	0	5	47	109	70	7	114	2	11	11	526
7:45 AM	64	44	4	3	65	81	76	3	78	1	6	5	430
8:00 AM	119	54	7	5	56	70	67	6	77	0	14	6	481
8:15 AM	28	44	2	5	49	17	92	6	87	0	5	11	346
8:30 AM	11	64	0	5	86	19	39	2	28	1	0	9	264
8:45 AM	11	74	1	5	107	14	21	0	37	2	0	6	278
TOTAL VOLUMES:	429	390	14	31	493	458	429	25	498	8	46	68	2889

AM Peak Hr Begins at: 730 AM

	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
PEAK VOLUMES:	318	185	13	18	217	277	305	22	356	3	36	33	1783
										_			

PEAK HR FACTOR: 0.717 0.795 0.894 0.750 0.847

Bicycle Counts

	Ocean V	iew Hills	Parkway	Ocean V	iew Hills	Parkway	Del	Sol / Brea	akers	Del	Sol / Brea	kers	
	N	Iorthbour	nd	S	outhbour	nd		Eastboun	d	V	Vestboun	ıd	
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
7:00 AM	0	0	0	0	2	0	0	0	0	0	0	0	2
7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	3	0	3
8:00 AM	0	1	0	0	0	0	0	0	0	0	0	0	1
8:15 AM	0	0	0	0	0	1	0	0	2	0	0	0	3
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM	0	2	0	0	0	0	0	0	1	0	0	0	3
TOTAL VOLUMES:	0	3	0	0	2	1	0	0	3	0	3	0	12
	·	·	·		·		·				·	·	•

	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
PEAK VOLUMES:	0	1	0	0	0	1	0	0	2	0	3	0	7

	Ocean View Hills Parkway	Ocean View Hills Parkway	Del Sol / Breakers	Del Sol / Breakers	
	North Leg	South Leg	East Leg	West Leg	TOTAL
7:00 AM	0	1	0	0	1
7:15 AM	0	8	0	0	8
7:30 AM	1	8	0	1	10
7:45 AM	0	16	2	2	20
8:00 AM	0	5	0	2	7
8:15 AM	0	6	2	2	10
8:30 AM	0	3	0	2	5
8:45 AM	0	0	3	1	4
TOTAL VOLUMES:	1	47	7	10	65

	North Leg	South Leg	East Leg	West Leg	TOTAL
PEAK VOLUMES:	1	35	4	7	47

N/S: Ocean View Hills Parkway E/W: Del Sol / Breakers

Date: 1/18/18 Day: THURSDAY Project # 143-18041

TURNING MOVEMENT COUNT

Count Period: 4:00 PM to 6:00 PM Peak Hour: 4:00 PM to 5:00 PM

Vehicle Counts

		'iew Hills Iorthbour	,		iew Hills outhbour	,		Sol / Brea			Sol / Brea Vestboun		
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
4:00 PM	21	97	4	9	91	33	23	1	15	1	0	4	299
4:15 PM	45	155	4	10	66	42	32	0	25	0	1	3	383
4:30 PM	28	114	2	7	70	42	18	0	19	1	1	4	306
4:45 PM	21	80	1	9	56	36	26	1	18	2	1	9	260
5:00 PM	28	98	3	4	57	35	27	1	23	0	0	6	282
5:15 PM	25	87	4	20	47	32	24	0	13	1	0	7	260
5:30 PM	31	88	7	5	37	41	39	0	37	2	4	4	295
5:45 PM	31	71	0	7	54	31	52	5	33	0	1	2	287
TOTAL VOLUMES:	230	790	25	71	478	292	241	8	183	7	8	39	2372

PM Peak Hr Begins at: 400 PM

	NT N	K SL	51	SR	EL	ET	ER	WL	WT	WR	TOTAL
PEAK VOLUMES: 115	446 1	35	283	153	99	2	77	4	3	20	1248

PEAK HR FACTOR: 0.701	0.885	0.781	0.563	0.815
-----------------------	-------	-------	-------	-------

Bicycle Counts

	Ocean V	iew Hills	Parkway	Ocean V	iew Hills	Parkway	Del	Sol / Brea	ikers	Del	Sol / Brea	kers	
	N	Iorthbour	nd	S	outhbour	nd		Eastboun	d	V	Vestboun	ıd	
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	1	0	0	0	0	0	0	0	0	0	0	1
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	1	0	0	0	0	0	0	0	0	0	0	0	1
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	1	0	0	0	0	0	0	0	0	0	0	1
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL VOLUMES:	1	2	0	0	0	0	0	0	0	0	0	0	3

	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
PEAK VOLUMES:	0	1	0	0	0	0	0	0	0	0	0	0	1

	Ocean View Hills Parkway	Ocean View Hills Parkway	Del Sol / Breakers	Del Sol / Breakers	
	North Leg	South Leg	East Leg	West Leg	TOTAL
4:00 PM	0	2	0	2	4
4:15 PM	0	1	4	6	11
4:30 PM	0	3	5	7	15
4:45 PM	0	1	1	0	2
5:00 PM	0	0	2	0	2
5:15 PM	0	0	0	3	3
5:30 PM	0	1	0	1	2
5:45 PM	0	2	0	0	2
TOTAL VOLUMES:	0	10	12	19	41

	North Leg	South Leg	East Leg	West Leg	TOTAL
PEAK VOLUMES:	0	7	10	15	32

N/S: Ocean View Hills Parkway

E/W: Sea Fire Point

Date: 1/18/18 Day: THURSDAY Project # 143-18041

TURNING MOVEMENT COUNT

Count Period: 7:00 AM to 9:00 AM
Peak Hour: 7:30AM to 8:30 AM

Vehicle Counts

	Ocean V	iew Hills	Parkway	Ocean V	iew Hills	Parkway	Se	ea Fire Po	int	Se	a Fire Po	int	
	N	Iorthbour	nd	S	outhbour	nd	I	Eastboun	d	٧	Vestboun	ıd	
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
7:00 AM	2	53	0	3	60	5	1	0	0	0	0	10	134
7:15 AM	2	95	2	1	96	1	0	0	0	4	0	11	212
7:30 AM	1	127	0	8	148	2	1	0	1	4	0	10	302
7:45 AM	0	118	3	3	142	2	0	0	2	0	0	13	283
8:00 AM	2	152	3	5	124	0	2	0	1	3	0	14	306
8:15 AM	0	63	0	10	132	0	0	0	0	3	0	5	213
8:30 AM	2	64	2	3	109	1	1	0	1	5	0	8	196
8:45 AM	1	85	2	5	139	0	0	0	2	6	0	2	242
TOTAL VOLUMES:	10	757	12	38	950	11	5	0	7	25	0	73	1888

AM Peak Hr Begins at: 730 AM

DEAK VOLUMES: 2 400 C 26 E40 4 2 0 4 10 0 42 1104		NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
PEAK VOLUMES: 3 460 6 26 546 4 3 0 4 10 0 42 1104	PEAK VOLUMES:	3	460	6	26	546	4	3	0	4		0	42	1104

PEAK HR FACTOR: 0.747 0.911 0.583 0.765 0.902

Bicycle Counts

	Ocean V	/iew Hills	Parkway	Ocean V	iew Hills	Parkway	Se	ea Fire Po	int	Se	a Fire Po	int	
	N	Iorthbour	nd	S	outhbour	nd	1	Eastboun	d	V	Vestboun	ıd	
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
7:00 AM	0	0	0	0	2	0	0	0	0	0	0	0	2
7:15 AM	0	3	0	0	0	0	0	0	0	0	0	0	3
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	3	0	0	0	0	0	0	0	0	0	0	3
8:00 AM	0	1	0	0	0	0	0	0	0	0	0	0	1
8:15 AM	0	0	0	0	3	0	0	0	0	0	0	0	3
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM	0	2	0	0	2	0	0	0	0	0	0	0	4
TOTAL VOLUMES:	0	9	0	0	7	0	0	0	0	0	0	0	16
	·				·						·	·	•

	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
PEAK VOLUMES:	0	4	0	0	3	0	0	0	0	0	0	0	7

	Ocean View Hills Parkway	Ocean View Hills Parkway	Sea Fire Point	Sea Fire Point	
	North Leg	South Leg	East Leg	West Leg	TOTAL
7:00 AM	0	0	0	2	2
7:15 AM	0	0	4	17	21
7:30 AM	0	1	1	7	9
7:45 AM	0	1	8	4	13
8:00 AM	0	0	1	5	6
8:15 AM	0	2	7	6	15
8:30 AM	0	0	2	7	9
8:45 AM	0	0	3	3	6
TOTAL VOLUMES:	0	4	26	51	81

	North Leg	South Leg	East Leg	West Leg	TOTAL
PEAK VOLUMES:	0	4	17	22	43

N/S: Ocean View Hills Parkway

E/W: Sea Fire Point

Date: 1/18/18 Day: THURSDAY Project # 143-18041

TURNING MOVEMENT COUNT

Count Period: 4:00 PM to 6:00 PM Peak Hour: 4:00 PM to 5:00 PM

Vehicle Counts

		'iew Hills Iorthbour	,	Ocean V	iew Hills outhbour	,		ea Fire Po Eastboun			a Fire Po Vestboun	-	
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
4:00 PM	1	115	8	8	96	0	1	0	1	1	0	10	241
4:15 PM	0	203	9	10	82	0	0	0	2	7	0	5	318
4:30 PM	0	139	0	16	76	0	1	0	1	1	0	8	242
4:45 PM	0	102	4	11	67	0	1	0	1	4	0	5	195
5:00 PM	1	117	5	7	71	0	0	0	0	2	0	7	210
5:15 PM	0	104	4	6	55	0	1	0	1	1	0	10	182
5:30 PM	0	122	4	9	69	0	0	0	0	2	0	7	213
5:45 PM	0	101	0	15	68	0	0	0	0	7	0	7	198
TOTAL VOLUMES:	2	1003	34	82	584	0	4	0	6	25	0	59	1799

PM Peak Hr Begins at: 400 PM

	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
PEAK VOLUMES:	1	559	21	45	321	0	3	0	5	13	0	28	996
-													
PEAK HR FACTOR:		0.685			0.880			1.000			0.854		0.783

Bicycle Counts

	Ocean V	iew Hills	Parkway	Ocean V	iew Hills	Parkway	Se	a Fire Po	int	Se	a Fire Po	int	
	N	orthbour	nd	S	outhbour	nd	E	Eastbound	d	V	Vestboun	ıd	
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	1	0	0	0	0	0	0	0	0	0	0	1
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	1	0	0	0	0	0	0	0	0	0	0	1
5:15 PM	0	1	0	0	0	0	0	0	0	0	0	0	1
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL VOLUMES:	0	3	0	0	0	0	0	0	0	0	0	0	3

	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
PEAK VOLUMES:	0	1	0	0	0	0	0	0	0	0	0	0	1

	Ocean View Hills Parkway	Ocean View Hills Parkway	Sea Fire Point	Sea Fire Point	
	North Leg	South Leg	East Leg	West Leg	TOTAL
4:00 PM	0	0	1	5	6
4:15 PM	1	2	3	13	19
4:30 PM	0	1	6	11	18
4:45 PM	0	0	3	0	3
5:00 PM	0	0	4	3	7
5:15 PM	0	0	0	1	1
5:30 PM	0	0	0	0	0
5:45 PM	0	0	0	0	0
TOTAL VOLUMES:	1	3	17	33	54

	North Leg	South Leg	East Leg	West Leg	TOTAL
PEAK VOLUMES:	1	3	13	29	46

N/S: Ocean View Hills Parkway E/W: Hidden Trails Road

Date: 1/18/18 Day: THURSDAY Project # 143-18041

TURNING MOVEMENT COUNT

Count Period: 7:00 AM to 9:00 AM Peak Hour: 7:15 AM to 8:15 AM

Vehicle Counts

	Ocean V	iew Hills	Parkway	Ocean V	iew Hills	Parkway	Hidd	len Trails	Road	Hidd	len Trails	Road	
	N	Iorthbour	nd	S	outhbour	nd	I	Eastboun	d	٧	Vestboun	d	
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
7:00 AM	13	59	2	0	61	0	0	0	0	4	0	0	139
7:15 AM	13	95	2	1	92	0	0	0	0	17	0	4	224
7:30 AM	10	124	3	2	150	0	0	0	0	7	0	3	299
7:45 AM	17	111	2	1	145	0	0	0	0	21	0	1	298
8:00 AM	14	157	7	1	115	0	0	0	0	6	0	1	301
8:15 AM	9	58	1	0	143	0	0	0	0	6	0	0	217
8:30 AM	11	71	2	3	116	0	0	0	0	9	0	0	212
8:45 AM	11	84	6	0	145	0	0	0	0	13	0	2	261
TOTAL VOLUMES:	98	759	25	8	967	0	0	0	0	83	0	11	1951

AM Peak Hr Begins at: 715 AM

PEAK VOLUMES: 54 487 14 5 502 0 0 0 0 51 0 9 1122		NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
	PEAK VOLUMES:	54	487	14	5		0	0	0	0	51	0	9	11//

PEAK HR FACTOR: 0.779 0.834 0.000 0.682	0.932
---	-------

Bicycle Counts

	Ocean V	iew Hills	Parkway	Ocean V	iew Hills	Parkway	Hidd	len Trails	Road	Hidd	en Trails	Road	
	N	lorthbour	nd	S	outhbour	nd	I	Eastboun	d	V	Vestboun	d	
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	1	0	0	0	0	0	2	1	4
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	4	0	0	0	0	0	0	0	0	0	0	4
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM	0	0	0	0	2	0	0	0	1	0	0	0	3
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM	0	5	0	0	2	0	0	0	0	0	0	0	7
TOTAL VOLUMES:	0	9	0	0	5	0	0	0	1	0	2	1	18

	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
PEAK VOLUMES:	0	4	0	0	1	0	0	0	0	0	2	1	8

	Ocean View Hills Parkway	Ocean View Hills Parkway	Hidden Trails Road	Hidden Trails Road	
	North Leg	South Leg	East Leg	West Leg	TOTAL
7:00 AM	0	3	1	0	4
7:15 AM	0	4	4	0	8
7:30 AM	1	8	5	0	14
7:45 AM	3	1	11	0	15
8:00 AM	1	1	0	0	2
8:15 AM	3	1	0	0	4
8:30 AM	0	2	7	0	9
8:45 AM	4	0	0	0	4
TOTAL VOLUMES:	12	20	28	0	60

	North Leg	South Leg	East Leg	West Leg	TOTAL
PEAK VOLUMES:	5	14	20	0	39

N/S: Ocean View Hills Parkway E/W: Hidden Trails Road

Date: 1/18/18 Day: THURSDAY Project # 143-18041

TURNING MOVEMENT COUNT

Count Period: 4:00 PM to 6:00 PM Peak Hour: 4:00 PM to 5:00 PM

Vehicle Counts

		'iew Hills Iorthbour	,		iew Hills outhbour	,		len Trails Eastboun			en Trails Vestboun		
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
4:00 PM	14	120	9	2	89	0	0	0	0	11	0	2	247
4:15 PM	8	210	13	3	94	0	0	0	0	2	0	0	330
4:30 PM	7	137	17	1	78	0	0	0	0	4	0	1	245
4:45 PM	4	99	9	2	70	0	0	0	0	10	0	6	200
5:00 PM	9	126	11	1	73	0	0	0	0	1	0	0	221
5:15 PM	6	107	8	2	56	0	0	0	0	5	0	1	185
5:30 PM	8	115	6	1	69	0	0	0	0	5	0	3	207
5:45 PM	8	101	14	3	73	0	0	0	0	7	0	1	207
TOTAL VOLUMES:	64	1015	87	15	602	0	0	0	0	45	0	14	1842

PM Peak Hr Begins at: 400 PM

	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
PEAK VOLUMES:	33	566	48	8	331	0	0	0	0	27	0	9	1022
-													
PEAK HR FACTOR:		0.700			0.874			0.000			0.563		0.774

Bicycle Counts

	Ocean V	iew Hills	Parkway	Ocean V	iew Hills	Parkway	Hidd	en Trails	Road	Hidd	en Trails	Road	
	N	orthbour	nd	S	outhbour	nd	E	Eastbound	d	V	Vestboun	ıd	
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	1	0	0	0	0	0	0	0	0	0	0	1
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	1	0	0	0	0	0	0	0	0	0	0	1
5:15 PM	0	1	0	0	0	0	0	0	0	0	0	0	1
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL VOLUMES:	0	3	0	0	0	0	0	0	0	0	0	0	3

	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
PEAK VOLUMES:	0	1	0	0	0	0	0	0	0	0	0	0	1

	Ocean View Hills Parkway	Ocean View Hills Parkway	Hidden Trails Road	Hidden Trails Road	
	North Leg	South Leg	East Leg	West Leg	TOTAL
4:00 PM	0	2	1	0	3
4:15 PM	1	6	7	0	14
4:30 PM	0	0	1	0	1
4:45 PM	0	0	2	0	2
5:00 PM	0	0	1	0	1
5:15 PM	1	0	1	0	2
5:30 PM	0	0	0	0	0
5:45 PM	0	0	0	0	0
TOTAL VOLUMES:	2	8	13	0	23

	North Leg	South Leg	East Leg	West Leg	TOTAL
PEAK VOLUMES:	1	8	11	0	20

N/S: Ocean View Hills Parkway E/W: Otay Mesa Road

Date: 1/18/18 Day: THURSDAY Project # 143-18041

TURNING MOVEMENT COUNT

Count Period: 7:00 AM to 9:00 AM
Peak Hour: 7:30AM to 8:30 AM

Vehicle Counts

		'iew Hills Iorthbour	,	Ocean V	'iew Hills outhbour	,		ny Mesa R Eastboun			y Mesa R Vestboun		
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
7:00 AM	3	40	94	18	69	0	0	0	0	57	0	15	296
7:15 AM	0	53	92	28	88	1	1	0	0	70	0	12	345
7:30 AM	4	100	111	24	132	0	0	0	0	60	0	17	448
7:45 AM	0	73	155	39	137	0	0	0	2	64	1	16	487
8:00 AM	0	121	152	44	105	0	0	0	3	63	0	21	509
8:15 AM	1	53	135	45	113	1	0	0	0	70	0	13	431
8:30 AM	2	49	107	35	90	0	0	0	1	66	0	19	369
8:45 AM	6	64	104	31	131	0	0	1	5	79	1	21	443
TOTAL VOLUMES:	16	553	950	264	865	2	1	1	11	529	2	134	3328

AM Peak Hr Begins at: 730 AM

PEAK VOLUMES: 5 347 553 152 487 1 0 0 5 257 1 67 1875		NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
	PEAK VOLUMES:	5	347	553	157	487	1	0	0	5	15/	1		1875

PEAK HR FACTOR:	0.920	0.000	0.417	0.067	0.021
PEAK HIN FACTOR.	0.829	0.909	0.417	0.967	0.921

Bicycle Counts

	Ocean V	iew Hills	Parkway	Ocean V	iew Hills	Parkway	Ota	ıy Mesa R	oad	Ota	y Mesa R	oad	
	N	Iorthbour	nd	S	outhbour	nd	I	Eastboun	d	V	Vestboun	ıd	
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	1	0	0	0	0	0	0	0	1
7:30 AM	0	0	1	0	0	0	0	0	0	0	0	0	1
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	1	1
8:15 AM	0	0	0	0	1	0	0	0	0	0	0	0	1
8:30 AM	0	0	0	0	1	0	0	0	0	0	0	1	2
8:45 AM	0	1	0	0	1	1	0	0	0	0	0	1	4
TOTAL VOLUMES:	0	1	1	0	4	1	0	0	0	0	0	3	10

	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
PEAK VOLUMES:	0	0	1	0	1	0	0	0	0	0	0	1	3

	Ocean View Hills Parkway	Ocean View Hills Parkway	Otay Mesa Road	Otay Mesa Road	
	North Leg	South Leg	East Leg	West Leg	TOTAL
7:00 AM	0	0	0	3	3
7:15 AM	0	0	0	2	2
7:30 AM	3	0	0	6	9
7:45 AM	1	0	0	1	2
8:00 AM	0	0	0	2	2
8:15 AM	3	0	0	6	9
8:30 AM	4	0	0	17	21
8:45 AM	2	0	0	14	16
TOTAL VOLUMES:	13	0	0	51	64

	North Leg	South Leg	East Leg	West Leg	TOTAL
PEAK VOLUMES:	7	0	0	15	22

N/S: Ocean View Hills Parkway E/W: Otay Mesa Road

Date: 1/18/18 Day: THURSDAY Project # 143-18041

TURNING MOVEMENT COUNT

Count Period: 4:00 PM to 6:00 PM Peak Hour: 4:15 PM to 5:15 PM

Vehicle Counts

		'iew Hills Iorthbour	,	y Ocean View Hills Parkway Southbound				y Mesa R Eastboun			y Mesa R Vestboun		
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
4:00 PM	1	102	95	28	86	0	0	0	1	140	0	52	505
4:15 PM	13	188	89	38	64	0	2	0	5	144	1	40	584
4:30 PM	9	127	80	23	61	0	0	0	8	159	3	44	514
4:45 PM	0	79	83	30	53	0	0	0	0	177	0	55	477
5:00 PM	0	92	59	33	50	0	0	0	3	217	3	59	516
5:15 PM	2	85	61	23	43	0	0	0	4	174	2	51	445
5:30 PM	0	84	49	35	39	0	0	0	3	141	0	51	402
5:45 PM	2	94	45	20	68	0	0	0	1	133	1	35	399
TOTAL VOLUMES:	27	851	561	230	464	0	2	0	25	1285	10	387	3842

PM Peak Hr Begins at: 415 PM

	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
PEAK VOLUMES:	22	486	311	124	228	0	2	0	16	697	7	198	2091

PEAK HR FACTOR: 0.706 0.863 0.563 0.808 0.895

Bicycle Counts

			,	Ocean V		,		y Mesa R			y Mesa R		
	N	Iorthbour	nd	S	outhbour	nd	l	Eastboun	d	V	Vestboun	ıd	
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	1	0	0	0	0	0	0	0	0	0	0	1
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	1	0	0	0	0	0	0	0	0	0	0	1
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	1	0	0	0	0	0	0	0	0	0	0	1	2
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL VOLUMES:	1	2	0	0	0	0	0	0	0	0	0	1	4

	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
PEAK VOLUMES:	0	2	0	0	0	0	0	0	0	0	0	0	2

	Ocean View Hills Parkway	Ocean View Hills Parkway	Otay Mesa Road	Otay Mesa Road	
	North Leg	South Leg	East Leg	West Leg	TOTAL
4:00 PM	2	1	0	8	11
4:15 PM	22	0	0	50	72
4:30 PM	1	0	0	8	9
4:45 PM	1	0	0	0	1
5:00 PM	0	0	0	3	3
5:15 PM	0	0	0	0	0
5:30 PM	2	0	0	5	7
5:45 PM	0	0	0	0	0
TOTAL VOLUMES:	28	1	0	74	103

	North Leg	South Leg	East Leg	West Leg	TOTAL
PEAK VOLUMES:	24	0	0	61	85

Location: San Diego
N/S: Caliente Avenue
E/W: I-905 WB Ramps

Date: 1/18/18 Day: THURSDAY Project # 143-18041

TURNING MOVEMENT COUNT

Count Period: 7:00 AM to 9:00 AM
Peak Hour: 7:30AM to 8:30 AM

Vehicle Counts

		iente Ave Iorthbour			iente Ave outhbour			05 WB Ra Eastboun)5 WB Rai Vestboun		
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
7:00 AM	46	112	0	0	17	89	0	0	0	0	0	8	272
7:15 AM	40	161	0	0	25	125	0	0	0	6	0	11	368
7:30 AM	60	201	0	0	62	137	0	0	0	3	0	12	475
7:45 AM	88	212	0	0	67	122	0	0	0	7	0	19	515
8:00 AM	52	241	0	0	52	113	0	0	0	6	0	14	478
8:15 AM	76	158	0	0	65	97	0	0	0	5	0	14	415
8:30 AM	96	150	0	0	83	86	0	0	0	6	0	7	428
8:45 AM	127	178	0	0	115	98	0	0	0	18	0	9	545
TOTAL VOLUMES:	585	1413	0	0	486	867	0	0	0	51	0	94	3496

AM Peak Hr Begins at: 730 AM

	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
PEAK ACHTHAIS.	276	812	0	0	246	469	0	0	0	21	0	59	1883

PEAK HR FACTOR: 0.907	0.898	0.000	0.769	0.914
-----------------------	-------	-------	-------	-------

Bicycle Counts

		iente Ave Iorthbour			iente Ave outhbour			05 WB Ra Eastboun	•)5 WB Rai Vestboun		
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
7:00 AM	0	0	0	0	1	0	0	0	0	0	0	0	1
7:15 AM	0	1	0	0	0	0	0	0	0	0	0	0	1
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 AM	0	0	0	0	1	0	0	0	0	0	0	0	1
8:45 AM	0	1	0	0	2	0	0	0	0	0	0	0	3
TOTAL VOLUMES:	0	2	0	0	4	0	0	0	0	0	0	0	6

	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
PEAK VOLUMES:	0	0	0	0	0	0	0	0	0	0	0	0	0

	Caliente Avenue	Caliente Avenue	I-905 WB Ramps	I-905 WB Ramps	
	North Leg	South Leg	East Leg	West Leg	TOTAL
7:00 AM	0	0	0	3	3
7:15 AM	0	0	0	7	7
7:30 AM	0	0	0	14	14
7:45 AM	0	0	0	0	0
8:00 AM	0	0	0	21	21
8:15 AM	0	0	0	26	26
8:30 AM	0	0	0	32	32
8:45 AM	0	0	0	18	18
TOTAL VOLUMES:	0	0	0	121	121

	North Leg	South Leg	East Leg	West Leg	TOTAL
PEAK VOLUMES:	0	0	0	61	61

Location: San Diego
N/S: Caliente Avenue
E/W: I-905 WB Ramps

Date: 1/18/18 Day: THURSDAY Project # 143-18041

TURNING MOVEMENT COUNT

Count Period: 4:00 PM to 6:00 PM Peak Hour: 4:00 PM to 5:00 PM

Vehicle Counts

		iente Ave Iorthbour			iente Ave outhbour)5 WB Ra Eastboun			05 WB Ra Vestboun		
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
4:00 PM	124	194	0	0	79	135	0	0	0	14	1	16	563
4:15 PM	156	274	0	0	53	178	0	0	0	5	1	16	683
4:30 PM	120	184	0	0	36	189	0	0	0	8	2	28	567
4:45 PM	58	138	0	0	52	182	0	0	0	9	0	24	463
5:00 PM	54	123	0	0	38	221	0	0	0	6	1	21	464
5:15 PM	39	130	0	0	29	192	0	0	0	4	0	19	413
5:30 PM	37	118	0	0	29	159	0	0	0	9	0	18	370
5:45 PM	49	116	0	0	42	141	0	0	0	6	0	14	368
TOTAL VOLUMES:	637	1277	0	0	358	1397	0	0	0	61	5	156	3891

PM Peak Hr Begins at: 400 PM

	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
PEAK VOLUMES:	458	790	0	0	220	684	0	0	0	36	4	84	2276
PEAK HR FACTOR:		0.726			0.966			0.000			0.816		0.833

Bicycle Counts

		iente Ave Iorthbour			iente Ave outhbour)5 WB Ra Eastboun	•)5 WB Ra Vestboun		
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
4:00 PM	0	1	0	0	0	0	0	0	0	0	0	0	1
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	1	0	0	0	0	0	0	0	0	0	0	0	1
5:15 PM	0	1	0	0	0	0	0	0	0	0	0	0	1
5:30 PM	0	0	0	0	1	0	0	0	0	0	0	0	1
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL VOLUMES:	1	2	0	0	1	0	0	0	0	0	0	0	4

	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
PEAK VOLUMES:	0	1	0	0	0	0	0	0	0	0	0	0	1

	Caliente Avenue	Caliente Avenue	I-905 WB Ramps	I-905 WB Ramps	
	North Leg	South Leg	East Leg	West Leg	TOTAL
4:00 PM	0	0	1	91	92
4:15 PM	0	0	0	57	57
4:30 PM	0	0	0	6	6
4:45 PM	0	0	0	14	14
5:00 PM	0	0	0	5	5
5:15 PM	0	0	0	2	2
5:30 PM	0	0	0	9	9
5:45 PM	0	0	0	1	1
TOTAL VOLUMES:	0	0	1	185	186

	North Leg	South Leg	East Leg	West Leg	TOTAL
PEAK VOLUMES:	0	0	1	168	169

Location: San Diego
N/S: Caliente Avenue
E/W: I-905 EB Ramps

Date: 1/18/18 Day: THURSDAY Project # 143-18041

TURNING MOVEMENT COUNT

Count Period: 7:00 AM to 9:00 AM
Peak Hour: 8:00AM to 9:00 AM

Vehicle Counts

		iente Ave			ente Ave		1-90	05 EB Rar	nps	1-9	05 EB Rar	nps	
	N	Iorthbour	nd	S	outhbour	nd	E	Eastboun	d	٧	Vestboun	ıd	
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
7:00 AM	0	48	5	15	14	0	125	0	22	0	0	0	229
7:15 AM	0	55	6	16	10	0	135	0	25	0	0	0	247
7:30 AM	0	81	12	15	21	0	171	0	42	0	0	0	342
7:45 AM	0	89	13	45	48	0	179	0	98	0	0	0	472
8:00 AM	0	132	16	23	40	0	197	0	87	0	0	0	495
8:15 AM	0	83	13	33	47	0	162	1	77	0	0	0	416
8:30 AM	0	112	14	10	52	0	133	0	157	0	0	0	478
8:45 AM	0	184	16	23	125	0	97	0	165	0	0	0	610
TOTAL VOLUMES:	0	784	95	180	357	0	1199	1	673	0	0	0	3289

AM Peak Hr Begins at: 800 AM

	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
PEAK VOLUMES:	0	511	59	89	264	0	589	1	486	0	0	0	1999

PEAK HR FACTOR: 0.713	0.596	0.928	0.000	0.819
-----------------------	-------	-------	-------	-------

Bicycle Counts

		iente Ave Iorthbour			iente Ave outhbour			05 EB Rar Eastboun	•		05 EB Rar Vestboun		
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	1	0	0	0	0	0	0	0	1
7:30 AM	0	1	0	0	0	0	0	0	0	0	0	0	1
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 AM	0	0	0	0	1	0	0	0	0	0	0	0	1
8:45 AM	0	1	0	0	1	0	0	0	0	0	0	0	2
TOTAL VOLUMES:	0	2	0	0	3	0	0	0	0	0	0	0	5

	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
PEAK VOLUMES:	0	1	0	0	2	0	0	0	0	0	0	0	3

	Caliente Avenue	Caliente Avenue	I-905 EB Ramps	I-905 EB Ramps	1
	North Leg	South Leg	East Leg	West Leg	TOTAL
7:00 AM	0	0	0	7	7
7:15 AM	0	0	0	7	7
7:30 AM	0	0	0	10	10
7:45 AM	0	0	0	4	4
8:00 AM	0	0	0	15	15
8:15 AM	0	0	0	20	20
8:30 AM	0	0	0	14	14
8:45 AM	0	0	0	33	33
TOTAL VOLUMES:	0	0	0	110	110

	North Leg	South Leg	East Leg	West Leg	TOTAL
PEAK VOLUMES:	0	0	0	82	82

Location: San Diego
N/S: Caliente Avenue
E/W: I-905 EB Ramps

Date: 1/18/18 Day: THURSDAY Project # 143-18041

TURNING MOVEMENT COUNT

Count Period: 4:00 PM to 6:00 PM Peak Hour: 4:00 PM to 5:00 PM

Vehicle Counts

		iente Ave Iorthbour			iente Ave outhbour			05 EB Rar Eastboun			05 EB Rar Vestboun	•	
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
4:00 PM	0	159	11	24	67	0	148	2	126	0	0	0	537
4:15 PM	0	288	43	21	49	0	151	1	96	0	0	0	649
4:30 PM	0	155	16	23	30	0	152	1	52	0	0	0	429
4:45 PM	0	79	6	30	24	0	114	0	48	0	0	0	301
5:00 PM	0	65	3	25	25	0	130	0	45	0	0	0	293
5:15 PM	0	47	3	15	24	0	115	0	45	0	0	0	249
5:30 PM	0	47	2	13	16	0	113	0	50	0	0	0	241
5:45 PM	0	65	3	18	36	0	100	0	68	0	0	0	290
TOTAL VOLUMES:	0	905	87	169	271	0	1023	4	530	0	0	0	2989

PM Peak Hr Begins at: 400 PM

	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
PEAK VOLUMES:	0	681	76	98	170	0	565	4	322	0	0	0	1916
PEAK HR FACTOR:		0.572			0.736			0.807			0.000		0.738

Bicycle Counts

		iente Ave Iorthbour			iente Ave outhbour			05 EB Rar Eastboun	•		05 EB Rar Vestboun		
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	1	0	0	0	0	0	0	0	0	0	0	1
5:15 PM	0	1	0	0	0	0	0	0	0	0	0	0	1
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL VOLUMES:	0	2	0	0	0	0	0	0	0	0	0	0	2

	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
PEAK VOLUMES:	0	0	0	0	0	0	0	0	0	0	0	0	0

	Caliente Avenue	Caliente Avenue	I-905 EB Ramps	I-905 EB Ramps	
	North Leg	South Leg	East Leg	West Leg	TOTAL
4:00 PM	0	0	0	76	76
4:15 PM	0	0	1	93	94
4:30 PM	0	0	0	5	5
4:45 PM	0	0	0	13	13
5:00 PM	0	0	0	7	7
5:15 PM	0	0	0	0	0
5:30 PM	0	0	0	12	12
5:45 PM	0	0	0	3	3
TOTAL VOLUMES:	0	0	1	209	210

	North Leg	South Leg	East Leg	West Leg	TOTAL
PEAK VOLUMES:	0	0	1	187	188

Location: San Diego
N/S: Caliente Avenue
E/W: Airway Road

Date: 1/18/18 Day: THURSDAY Project # 143-18041

TURNING MOVEMENT COUNT

Count Period: 7:00 AM to 9:00 AM
Peak Hour: 8:00AM to 9:00 AM

Vehicle Counts

		iente Ave Iorthbour			iente Ave outhbour			irway Roa Eastboun			irway Roa Vestboun		
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
7:00 AM	0	2	0	14	5	18	38	0	1	0	0	18	96
7:15 AM	0	2	1	4	7	26	46	1	0	0	1	19	107
7:30 AM	1	10	0	6	15	46	60	0	1	0	0	23	162
7:45 AM	2	33	1	13	55	97	81	2	2	2	0	14	302
8:00 AM	1	31	0	11	42	71	68	0	1	0	0	18	243
8:15 AM	0	32	0	7	46	71	65	0	2	0	0	12	235
8:30 AM	0	41	0	5	71	140	112	0	2	0	1	13	385
8:45 AM	3	91	0	10	118	143	120	1	2	0	0	12	500
TOTAL VOLUMES:	7	242	2	70	359	612	590	4	11	2	2	129	2030

AM Peak Hr Begins at: 800 AM

DEAK VOLUMES: 4 10E 0 22 277 42E 26E 1 7 0 1 EE		NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
FEAR VOLUMES. 4 193 0 33 277 423 303 1 7 0 1 33	PEAK VOLUMES	4	195	0			425	365	1	7	0	1	55	1363

PEAK HR FACTOR: 0.529 0.678 0.758 0.778 0.682

Bicycle Counts

		iente Ave Iorthbour			ente Ave outhbour			irway Roa Eastboun			irway Roa Vestboun		
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
7:00 AM	0	0	0	0	1	0	0	0	0	0	0	0	1
7:15 AM	0	0	0	0	0	0	1	0	0	0	0	0	1
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM	0	1	0	0	1	1	0	0	0	0	0	0	3
TOTAL VOLUMES:	0	1	0	0	2	1	1	0	0	0	0	0	5

	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
PEAK VOLUMES:	0	1	0	0	1	1	0	0	0	0	0	0	3

	Caliente Avenue	Caliente Avenue	Airway Road	Airway Road	
	North Leg	South Leg	East Leg	West Leg	TOTAL
7:00 AM	0	1	0	2	3
7:15 AM	0	1	0	27	28
7:30 AM	1	2	1	8	12
7:45 AM	0	2	0	23	25
8:00 AM	0	1	0	46	47
8:15 AM	0	1	0	38	39
8:30 AM	0	1	0	29	30
8:45 AM	0	7	0	38	45
TOTAL VOLUMES:	1	16	1	211	229

	North Leg	South Leg	East Leg	West Leg	TOTAL
PEAK VOLUMES:	0	10	0	151	161

Location: San Diego
N/S: Caliente Avenue
E/W: Airway Road

Date: 1/18/18 Day: THURSDAY Project # 143-18041

TURNING MOVEMENT COUNT

Count Period: 4:00 PM to 6:00 PM Peak Hour: 4:00 PM to 5:00 PM

Vehicle Counts

		iente Ave Iorthbour			iente Ave outhbour			irway Roa Eastboun			irway Roa Vestboun		
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
4:00 PM	0	89	4	41	90	60	65	2	2	2	1	51	407
4:15 PM	3	158	2	21	55	39	115	2	3	1	1	34	434
4:30 PM	2	44	0	14	14	44	99	1	1	0	0	7	226
4:45 PM	0	17	0	16	12	49	47	0	1	1	0	18	161
5:00 PM	1	11	1	23	5	42	44	0	0	0	0	13	140
5:15 PM	2	9	0	16	7	43	39	1	1	0	0	5	123
5:30 PM	0	4	0	18	1	57	31	1	0	1	1	8	122
5:45 PM	0	6	0	25	4	76	58	0	1	0	1	10	181
TOTAL VOLUMES:	8	338	7	174	188	410	498	7	9	5	4	146	1794

PM Peak Hr Begins at: 400 PM

	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
PEAK VOLUMES:	5	308	6	92	171	192	326	5	7	4	2	110	1228
	_			_								-	-

PEAK HR FACTOR: 0.489 0.596 0.704 0.537 0.707

Bicycle Counts

		ente Ave orthbour			iente Ave outhbour			irway Roa Eastboun			irway Roa Vestbour		
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	1	0	0	0	0	0	1
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL VOLUMES:	0	0	0	0	0	0	1	0	0	0	0	0	1

	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
PEAK VOLUMES:	0	0	0	0	0	0	0	0	0	0	0	0	0

	Caliente Avenue	Caliente Avenue	Airway Road	Airway Road	
	North Leg	South Leg	East Leg	West Leg	TOTAL
4:00 PM	1	92	20	132	245
4:15 PM	1	8	1	27	37
4:30 PM	0	7	0	12	19
4:45 PM	0	1	0	5	6
5:00 PM	0	4	2	3	9
5:15 PM	0	0	0	1	1
5:30 PM	0	1	0	3	4
5:45 PM	0	0	0	0	0
TOTAL VOLUMES:	2	113	23	183	321

	North Leg	South Leg	East Leg	West Leg	TOTAL
PEAK VOLUMES:	2	108	21	176	307

Location: San Diego N/S: Emerald Crest E/W: Otay Mesa Road Date: 1/18/18 Day: THURSDAY Project # 143-18041

TURNING MOVEMENT COUNT

Count Period: 7:00 AM to 9:00 AM Peak Hour: 7:00AM to 8:00 AM

Vehicle Counts

	En	nerald Cre	est	En	nerald Cre	est	Ota	ıy Mesa R	load	Ota	ıy Mesa R	load	
	N	Iorthbour	nd	S	outhbour	nd		Eastboun	d	V	Vestboun	ıd	
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
7:00 AM	0	0	0	0	0	16	0	0	0	0	0	1	17
7:15 AM	0	0	0	0	0	19	0	0	0	0	0	0	19
7:30 AM	0	0	0	0	0	17	0	0	0	0	0	0	17
7:45 AM	0	0	0	0	0	20	0	0	0	0	0	0	20
8:00 AM	0	0	0	0	0	11	0	0	0	0	0	2	13
8:15 AM	0	0	0	0	0	8	0	0	0	0	0	0	8
8:30 AM	0	0	0	0	0	8	0	0	0	0	0	0	8
8:45 AM	0	0	0	0	0	13	0	0	0	0	0	2	15
TOTAL VOLUMES:	0	0	0	0	0	112	0	0	0	0	0	5	117

AM Peak Hr Begins at: 700 AM

PEAK VOLUMES: 0 0 0 0 0 72 0 0 0 0 0 1 7		NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
12/1K VOLOMES! 0 0 0 0 72 0 0 0 0 1	PEAK VOLUMES:	0	0	0	0	0	72	0	0	0	0	0	1	73

PEAK HR FACTOR: 0.000 0.900 0.000 0.250 0.913

Bicycle Counts

	Em	nerald Cre	est	En	nerald Cre	est	Ota	y Mesa R	oad	Ota	y Mesa R	load	
	N	Iorthbour	nd	S	outhbour	nd	I	Eastboun	d	V	Vestbour	nd	
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	1	0	0	0	0	1
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	0	0	0	0	0	0	0	0	4	0	4
TOTAL VOLUMES:	0	0	0	0	0	0	0	1	0	0	4	0	5

	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
PEAK VOLUMES:	0	0	0	0	0	0	0	1	0	0	0	0	1

	Emerald Crest	Emerald Crest	Otay Mesa Road	Otay Mesa Road	
	North Leg	South Leg	East Leg	West Leg	TOTAL
7:00 AM	0	0	0	0	0
7:15 AM	0	0	0	0	0
7:30 AM	0	0	0	0	0
7:45 AM	0	0	0	0	0
8:00 AM	0	0	0	0	0
8:15 AM	0	0	0	0	0
8:30 AM	0	0	0	0	0
8:45 AM	0	0	0	0	0
TOTAL VOLUMES:	0	0	0	0	0

	North Leg	South Leg	East Leg	West Leg	TOTAL
PEAK VOLUMES:	0	0	0	0	0

Location: San Diego N/S: Emerald Crest E/W: Otay Mesa Road Date: 1/18/18 Day: THURSDAY Project # 143-18041

TURNING MOVEMENT COUNT

Count Period: 4:00 PM to 6:00 PM Peak Hour: 4:30 PM to 5:30 PM

Vehicle Counts

		nerald Cre Iorthbour			nerald Cre outhbour			y Mesa R Eastboun			y Mesa R Vestboun		
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
4:00 PM	0	0	0	0	0	12	0	0	0	0	0	3	15
4:15 PM	0	0	0	0	0	4	0	0	0	0	0	3	7
4:30 PM	0	0	0	0	0	13	0	0	0	0	0	3	16
4:45 PM	0	0	0	0	0	13	0	0	0	0	0	2	15
5:00 PM	0	0	0	0	0	7	0	0	0	0	0	9	16
5:15 PM	0	0	0	0	0	9	0	0	0	0	0	2	11
5:30 PM	0	0	0	0	0	9	0	0	0	0	0	4	13
5:45 PM	0	0	0	0	0	9	0	0	0	0	0	4	13
TOTAL VOLUMES:	0	0	0	0	0	76	0	0	0	0	0	30	106

PM Peak Hr Begins at: 430 PM

	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
PEAK VOLUMES:	0	0	0	0	0	42	0	0	0	0	0	16	58
PEAK HR FACTOR:		0.000			0.808			0.000			0.444		0.906

Bicycle Counts

		nerald Cre orthbour			nerald Cre outhbour			y Mesa R Eastboun			y Mesa R Vestboun		
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	1	0	1
5:30 PM	0	0	0	0	0	0	0	0	0	0	1	0	1
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL VOLUMES:	0	0	0	0	0	0	0	0	0	0	2	0	2

	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
PEAK VOLUMES:	0	0	0	0	0	0	0	0	0	0	1	0	1

	Emerald Crest	Emerald Crest	Otay Mesa Road	Otay Mesa Road	
	North Leg	South Leg	East Leg	West Leg	TOTAL
4:00 PM	0	0	0	0	0
4:15 PM	0	0	0	0	0
4:30 PM	0	0	0	0	0
4:45 PM	0	0	0	0	0
5:00 PM	0	0	0	0	0
5:15 PM	0	0	0	0	0
5:30 PM	0	0	0	0	0
5:45 PM	0	0	0	0	0
TOTAL VOLUMES:	0	0	0	0	0

	North Leg	South Leg	East Leg	West Leg	TOTAL
PEAK VOLUMES:	0	0	0	0	0

N/S: Corporate Center Drive E/W: Otay Mesa Road

Date: 1/18/18 Day: THURSDAY Project # 143-18041

TURNING MOVEMENT COUNT

Count Period: 7:00 AM to 9:00 AM Peak Hour: 7:45 AM to 8:45 AM

Vehicle Counts

		ate Cente Iorthbour			ate Cente			y Mesa R Eastboun			ıy Mesa R Vestboun		
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
7:00 AM	0	0	0	4	0	13	56	55	0	0	46	5	179
7:15 AM	0	0	0	2	0	6	54	55	0	0	48	2	167
7:30 AM	0	0	0	1	0	10	71	69	0	0	54	8	213
7:45 AM	0	0	0	2	0	12	91	87	0	0	50	17	259
8:00 AM	0	0	0	7	0	22	103	87	0	0	51	11	281
8:15 AM	0	0	0	6	0	26	71	73	0	1	45	4	226
8:30 AM	0	0	0	13	0	28	60	73	0	0	51	6	231
8:45 AM	0	0	0	7	0	23	45	76	0	1	69	18	239
TOTAL VOLUMES:	0	0	0	42	0	140	551	575	0	2	414	71	1795

AM Peak Hr Begins at: 745 AM

PEAK VOLUMES: 0 0 0 28 0 88 325 320 0 1 197 38		
PEAR VOLUNES. 0 0 0 28 0 88 323 320 0 1 197 38	997	K VOLUMES:

PEAK HR FACTOR: 0.000 0.707 0.849 0.881 0.887

Bicycle Counts

	Corpor	ate Cente	er Drive	Corpor	ate Cente	er Drive	Ota	ıy Mesa R	load	Ota	y Mesa R	oad	
	N	Iorthbour	nd	S	outhbour	nd	I	Eastboun	d	V	Vestboun	ıd	
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	1	0	0	0	0	0	1
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 AM	0	0	0	0	0	1	0	0	0	0	0	0	1
8:45 AM	0	0	0	0	0	0	0	0	0	0	3	0	3
TOTAL VOLUMES:	0	0	0	0	0	1	1	0	0	0	3	0	5

	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
PEAK VOLUMES:	0	0	0	0	0	1	0	0	0	0	0	0	1

	Corporate Center Drive	Corporate Center Drive	Otay Mesa Road	Otay Mesa Road	
	North Leg	South Leg	East Leg	West Leg	TOTAL
7:00 AM	0	0	0	0	0
7:15 AM	0	0	0	0	0
7:30 AM	1	0	0	0	1
7:45 AM	0	0	0	0	0
8:00 AM	0	0	0	0	0
8:15 AM	0	0	0	0	0
8:30 AM	0	0	1	0	1
8:45 AM	1	0	0	0	1
TOTAL VOLUMES:	2	0	1	0	3

ſ		North Leg	South Leg	East Leg	West Leg	TOTAL
l	PEAK VOLUMES:	1	0	0	0	1

Location: San Diego

N/S: Corporate Center Drive E/W: Otay Mesa Road

Date: 1/18/18 Day: THURSDAY Project # 143-18041

TURNING MOVEMENT COUNT

Count Period: 4:00 PM to 6:00 PM Peak Hour: 4:15 PM to 5:15 PM

Vehicle Counts

		ate Cente Iorthbour			ate Cente outhbour			ny Mesa R Eastboun			y Mesa R Vestboun		
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
4:00 PM	0	0	0	22	0	75	52	70	0	2	120	24	365
4:15 PM	0	0	0	33	0	80	49	72	0	4	113	21	372
4:30 PM	0	0	0	31	0	70	39	71	0	5	128	22	366
4:45 PM	0	0	0	27	0	61	46	48	0	5	136	11	334
5:00 PM	0	0	0	26	0	126	27	48	0	5	171	16	419
5:15 PM	0	0	0	13	0	51	27	61	0	1	148	9	310
5:30 PM	0	0	0	15	0	56	18	46	0	0	116	3	254
5:45 PM	0	0	0	8	0	51	26	31	0	2	96	3	217
TOTAL VOLUMES:	0	0	0	175	0	570	284	447	0	24	1028	109	2637

PM Peak Hr Begins at: 415 PM

	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
PEAK VOLUMES:	0	0	0	117	0	337	161	239	0	19	548	70	1491
PEAK HR FACTOR:		0.000			0.747			0.826			0.829		0.890

Bicycle Counts

		ate Cente orthbour			ate Cente			y Mesa R Eastboun			y Mesa R Vestboun		
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	1	0	1
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL VOLUMES:	0	0	0	0	0	0	0	0	0	0	1	0	1

	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
PEAK VOLUMES:	0	0	0	0	0	0	0	0	0	0	0	0	0

	Corporate Center Drive	Corporate Center Drive	Otay Mesa Road	Otay Mesa Road	
	North Leg	South Leg	East Leg	West Leg	TOTAL
4:00 PM	0	0	0	0	0
4:15 PM	0	0	0	0	0
4:30 PM	0	0	0	0	0
4:45 PM	0	0	0	0	0
5:00 PM	0	0	0	0	0
5:15 PM	1	0	0	0	1
5:30 PM	0	0	0	0	0
5:45 PM	0	0	0	0	0
TOTAL VOLUMES:	1	0	0	0	1

	North Leg	South Leg	East Leg	West Leg	TOTAL
PEAK VOLUMES:	0	0	0	0	0

Location: San Diego N/S: Innovative Drive E/W: Otay Mesa Road Date: 9/11/18 Day: TUESDAY Project # 143-18999

TURNING MOVEMENT COUNT

Count Period: 7:00 AM to 9:00 AM
Peak Hour: 7:45 AM to 8:45 AM

Vehicle Counts

		ovative D Iorthbour			ovative D outhbour			y Mesa R Eastboun			y Mesa R Vestboun		
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
7:00 AM	0	0	0	0	0	23	0	62	1	0	49	9	144
7:15 AM	0	0	0	0	0	17	0	59	0	0	58	9	143
7:30 AM	0	0	2	0	0	17	0	55	0	0	48	4	126
7:45 AM	0	0	0	0	0	15	0	127	0	0	45	8	195
8:00 AM	0	0	0	0	0	18	0	102	1	0	72	7	200
8:15 AM	0	0	2	0	0	6	0	98	2	0	83	7	198
8:30 AM	0	0	3	0	0	8	0	103	0	0	72	12	198
8:45 AM	0	0	2	0	0	10	0	98	3	0	66	3	182
TOTAL VOLUMES:	0	0	9	0	0	114	0	704	7	0	493	59	1386

AM Peak Hr Begins at: 745 AM

	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
PEAK VOLUMES:	0	0	5	0	0	47	0	430	3	0	272	34	791

PEAK HR FACTOR: 0.417 0.653 0.852 0.850	0.989
---	-------

Bicycle Counts

		ovative D Iorthbour	-		ovative D outhbour			ny Mesa R Eastboun			y Mesa R Vestboun		
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	1	0	0	0	0	1
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	1	1
8:15 AM	0	0	0	0	0	0	0	1	0	0	0	1	2
8:30 AM	0	0	0	0	0	0	0	0	0	0	1	0	1
8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL VOLUMES:	0	0	0	0	0	0	0	2	0	0	1	2	5

	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
PEAK VOLUMES:	0	0	0	0	0	0	0	1	0	0	1	2	4

	Innovative Drive	Innovative Drive	Otay Mesa Road	Otay Mesa Road	
	North Leg	South Leg	East Leg	West Leg	TOTAL
7:00 AM	3	0	0	0	3
7:15 AM	8	0	0	0	8
7:30 AM	1	0	0	0	1
7:45 AM	2	0	0	0	2
8:00 AM	0	0	0	0	0
8:15 AM	4	0	0	0	4
8:30 AM	2	0	0	0	2
8:45 AM	3	0	0	0	3
TOTAL VOLUMES:	23	0	0	0	23

	North Leg	South Leg	East Leg	West Leg	TOTAL
PEAK VOLUMES:	8	0	0	0	8

Location: San Diego
N/S: Innovative Drive
E/W: Otay Mesa Road

Date: 9/11/18 Day: TUESDAY Project # 143-18999

TURNING MOVEMENT COUNT

Count Period: 4:00 PM to 6:00 PM Peak Hour: 4:30 PM to 5:30 PM

Vehicle Counts

		ovative D Iorthbour	-		ovative D outhbour	-		ny Mesa R Eastboun			y Mesa R Vestboun		
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
4:00 PM	0	0	2	0	0	28	0	99	1	0	142	12	284
4:15 PM	0	0	1	0	0	23	0	101	1	0	116	11	253
4:30 PM	0	0	1	0	0	23	0	95	4	0	134	7	264
4:45 PM	0	0	2	0	0	19	0	89	1	0	112	11	234
5:00 PM	0	0	1	0	0	39	0	91	0	0	151	5	287
5:15 PM	0	0	1	0	0	32	0	86	0	0	157	6	282
5:30 PM	0	0	0	0	0	19	0	63	1	0	115	1	199
5:45 PM	0	0	1	0	0	8	0	58	0	0	116	4	187
TOTAL VOLUMES:	0	0	9	0	0	191	0	682	8	0	1043	57	1990

PM Peak Hr Begins at: 430 PM

	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
PEAK VOLUMES:	0	0	5	0	0	113	0	361	5	0	554	29	1067
PEAK HR FACTOR:		0.625			0.724			0.924			0.894		0.929

Bicycle Counts

		ovative D Iorthbour	-		ovative D outhbour			ny Mesa R Eastboun			y Mesa R Vestboun		
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
4:00 PM	0	0	0	0	0	0	0	2	0	0	0	0	2
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	1	0	0	0	0	1
5:00 PM	0	0	0	0	0	0	0	0	0	0	1	0	1
5:15 PM	0	0	0	1	0	0	0	0	0	0	0	0	1
5:30 PM	0	0	0	0	0	0	0	0	0	0	2	0	2
5:45 PM	0	0	0	0	0	0	0	0	0	0	2	0	2
TOTAL VOLUMES:	0	0	0	1	0	0	0	3	0	0	5	0	9

	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
PEAK VOLUMES:	0	0	0	1	0	0	0	1	0	0	1	0	3

	Innovative Drive	Innovative Drive	Otay Mesa Road	Otay Mesa Road	
	North Leg	South Leg	East Leg	West Leg	TOTAL
4:00 PM	3	0	0	0	3
4:15 PM	0	0	0	0	0
4:30 PM	0	0	0	0	0
4:45 PM	0	0	0	0	0
5:00 PM	1	0	0	0	1
5:15 PM	2	0	0	0	2
5:30 PM	1	0	0	0	1
5:45 PM	0	0	0	0	0
TOTAL VOLUMES:	7	0	0	0	7

	North Leg	South Leg	East Leg	West Leg	TOTAL
PEAK VOLUMES:	3	0	0	0	3

Location: San Diego N/S: Heritage Road E/W: Otay Mesa Road Date: 1/18/18 Day: THURSDAY Project # 143-18041

TURNING MOVEMENT COUNT

Count Period: 7:00 AM to 9:00 AM
Peak Hour: 8:00AM to 9:00 AM

Vehicle Counts

		eritage Ro			eritage Ro			y Mesa R			ıy Mesa R		
	N	Iorthbour	nd	S	outhbour	nd	I	Eastboun	d	V	Vestboun	ıd	
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
7:00 AM	12	5	6	24	4	13	16	24	19	8	24	11	166
7:15 AM	6	4	5	12	8	13	16	21	22	9	26	16	158
7:30 AM	12	6	4	22	2	13	18	19	25	9	26	37	193
7:45 AM	16	4	4	27	6	12	29	31	38	9	38	34	248
8:00 AM	15	5	4	21	5	14	24	26	43	11	31	32	231
8:15 AM	12	11	15	22	7	10	35	34	19	9	26	21	221
8:30 AM	9	7	8	22	5	14	26	32	23	10	44	31	231
8:45 AM	18	10	11	21	6	25	41	26	20	7	36	32	253
TOTAL VOLUMES:	100	52	57	171	43	114	205	213	209	72	251	214	1701

AM Peak Hr Begins at: 800 AM

	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
PEAK VOLUMES:	54	33	38	86	23	63	126	118	105	37	137	116	936

PEAK HR FACTOR:	0.801	0.827	0.938	0.853	0.925

Bicycle Counts

		eritage Ro Iorthbour			eritage Ro outhbour			ny Mesa R Eastboun			ıy Mesa R Vestboun		
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
7:00 AM	0	0	0	0	0	1	0	0	0	0	0	1	2
7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	1	0	1	0	0	0	0	0	0	2
7:45 AM	0	2	0	0	0	0	0	0	0	0	0	0	2
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	0	0	0	0	0	0	0	0	3	0	3
TOTAL VOLUMES:	0	2	0	1	0	2	0	0	0	0	3	1	9

	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
PEAK VOLUMES:	0	0	0	0	0	0	0	0	0	0	3	0	3

	Heritage Road	Heritage Road	Otay Mesa Road	Otay Mesa Road	
	North Leg	South Leg	East Leg	West Leg	TOTAL
7:00 AM	0	0	6	0	6
7:15 AM	0	0	4	0	4
7:30 AM	0	0	2	0	2
7:45 AM	0	0	5	0	5
8:00 AM	0	0	1	0	1
8:15 AM	0	0	0	0	0
8:30 AM	0	0	4	0	4
8:45 AM	0	0	2	0	2
TOTAL VOLUMES:	0	0	24	0	24

	North Leg	South Leg	East Leg	West Leg	TOTAL
PEAK VOLUMES:	0	0	7	0	7

Location: San Diego N/S: Heritage Road E/W: Otay Mesa Road Date: 1/18/18 Day: THURSDAY Project # 143-18041

TURNING MOVEMENT COUNT

Count Period: 4:00 PM to 6:00 PM Peak Hour: 4:15 PM to 5:15 PM

Vehicle Counts

		eritage Ro orthbour			eritage Ro outhbour			ny Mesa R Eastboun			ıy Mesa R Vestboun		
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
4:00 PM	26	8	13	51	11	56	42	40	18	10	54	39	368
4:15 PM	32	6	13	40	12	44	27	51	21	8	60	49	363
4:30 PM	37	15	10	47	20	52	38	56	11	2	61	31	380
4:45 PM	20	8	9	37	10	61	26	31	13	4	53	37	309
5:00 PM	34	4	11	73	14	66	25	45	22	10	72	38	414
5:15 PM	32	13	16	49	16	70	18	28	23	5	43	28	341
5:30 PM	32	9	6	31	13	43	16	34	10	12	42	27	275
5:45 PM	24	5	10	27	7	39	12	22	13	5	30	17	211
TOTAL VOLUMES:	237	68	88	355	103	431	204	307	131	56	415	266	2661

PM Peak Hr Begins at: 415 PM

	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
PEAK VOLUMES:	123	33	43	197	56	223	116	183	67	24	246	155	1466

 PEAK HR FACTOR:
 0.802
 0.778
 0.871
 0.885
 0.885

Bicycle Counts

		eritage Ro Iorthbour			eritage Ro outhbour			iy Mesa R Eastboun			ıy Mesa R Vestboun		
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0 0 0			0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	1	0	0	0	0	0	0	0	0	1
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	1	1
5:15 PM	0	0	0	0	0	0	0	0	0	0	1	0	1
5:30 PM	0	1	0	0	0	0	0	0	0	0	0	0	1
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL VOLUMES:	0	1	0	1	0	0	0	0	0	0	1	1	4

	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
PEAK VOLUMES:	0	0	0	1	0	0	0	0	0	0	0	1	2

	Heritage Road	Heritage Road	Otay Mesa Road	Otay Mesa Road	
	North Leg	South Leg	East Leg	West Leg	TOTAL
4:00 PM	0	0	3	0	3
4:15 PM	0	0	2	0	2
4:30 PM	0	1	1	1	3
4:45 PM	0	0	3	0	3
5:00 PM	0	1	5	1	7
5:15 PM	0	0	5	0	5
5:30 PM	0	0	2	0	2
5:45 PM	0	0	1	0	1
TOTAL VOLUMES:	0	2	22	2	26

	North Leg	South Leg	East Leg	West Leg	TOTAL
PEAK VOLUMES:	0	2	11	2	15

Caltrans 2016 Data

Dis	t Route	County		Postmile	Description	Back Peak Hour	Back Peak Month	Back AADT	Ahead Peak Hour	Ahead Peak Month	Ahead AADT
11	905	SD	_	5.164	JCT. RTE. 805	6200	66000	64000	6800	83000	79000
11	905	SD	R	6.723	CALIENTE ROAD	6800	83000	79000	6200	71000	70000
11	905	SD	R	8.782	BRITANNIA BLVD	6200	71000	70000	4800	64000	58000

	CEAN VIEW THE CO. 62 S16 NOW SILVERS S		2	20	7	113000		2.0	2.0	2.0	40	`					3.9	1.0			L		Down		Overlap 3		0 0			[Downtone Flexio 256
	THE RESERVE				ed.			2.0	2.0	2.0	30						3,4	1.0				+	Clear	t				off Pages	F+ 02(084	0
	10 CON 10		-	10	10			6.4	5,4	0.2	09				0.1	0.5	, sp.	0.4.0	-2.0		Overtap Timiting	1								255 (minutes)
	T VICEWAY OF	0 4																		of Pages		1	Red Load-	COOL SANKEL F				< O Pages	D+0: AZELLO	
	1		7 (108-1 Date)		7 EVADOTOS	EVA Con	EV-6 Delay	2.0 EVB Char	2.0 Evenies	2.0 EVCCION	All evo been	EV-D Cloar	RR-2 Delley	RR-2 Clear	View EV Dalay	Vie EV Close	3.9 View RR Delay	1.0 Mew RR Clear		go F+E+Row			-	O Wanted Cyrod	Marroof Pico	On Automoti	14 × 5000		Zelo	Osatis Pous 224
	L. D. Selban Change.	III.			0	0	0	0	0	0	0	0			(ay				Prompt Tening				li)	200	Mono					Γ
			Permit	Reducch	Yellow Lock	ANSW PROCESS	Pad Recall	(Meds (Ment)	Read In Wolk	Red Rest	DN Eatry	Max Round	Soft Repet	Max 2	Cond Serv	Padlicit	Yellow Start	136 Phaseus	Phase Fore					0 1	Adjoined College	D # Authorization	1 to Colour A 2 a Constants	2 - Cassic	Tables Great by	Approved By:
1			12,455 8					2 4 6 8			A 8		2 8			12345678	2 6	MASS.	Phase FundSons of Pages	FARAROW			0.4+3	+8+1					M 10 10 10 10 10 10 10 10 10 10 10 10 10	nod Sp;

캦

· (M)

2
U
I
View
Ocean
8
m
Sol
Del
Wv /
(ers

							•																							ordro								
							2	9	1	- C								<€ Page>)			9								6		uffy will be disabled)	loeded	ì	9			
			RR Overlap A - Phases	RR Overlap B - Phases	1,600	RR Overlap D - Phases	Ped 2P	Ped 6P	Ped 4P	Ped 8P	Yellow Flash Phases	Overlap A - Phases	Overlap B - Phases	Overlap C - Phases	Overlap D - Phases	Restricted Phases	Assign 5 Outputs	Configuration	E+F+ROW		1	1 * Right Tum Overlap	3 = EV Beacon - Steady 4 = EV Reaction - Fleathful	Event Outputs	7 = Advanced Warning Sign					Disable Parity	Dial-110 Telephone Communication	(If set to a non-zero value, parity will be disabled)	(This perameter is NOT downloaded)		Muload	1-255	Ebit 5 on	
Row		0		2	20	·P	5	9	7	8	6	A	8		10 m	E	. F. F.				Accelera	1 Right	3 = EV Ber 4 = EV Ber	5 = Specia	7 = Advanc	11 20			9		y-of-Week	ear, Month			Remote Download	C+0+4=1-255	w/E+E+Ebit 5 on	
								8	3 3	INDE IK 2	lk 3 Hactor	or ount Monitor	Split Monitor						Day of Week	1 = Sunday	2 = Monday	3 = Tuesday	4 = Wednesday	S = Eriday	7 × Setterfey					Time and Date	8-0 Hour, Minute, Day-of-Week	8-1 Day-of-Month, Year, Month	8-F Seconds		Program Information	C+C+0 = program	C+C+F = version	
TOD Fundions	0 = Permitted Phases	1 = Red Lock 2 = Yellow Lock	3 = Veh Min Recall	4 ≈ Ped Recall 5 ≈	6 = Rest in Walk 7 = Red Red	8 = Double Entry	9 = Veh Max Recall A = Veh Soff Recall	B = Maximum 2 C = Conditional Sandos	D = Free Lag Phases	Bit 2 - Phase Benk 2	Bit 3 - Phase Bank 3 Bit 4 - Disable Delector	OFF Monitor Bit 7 - Delector Count Monitor	Bit 8 - Real Time Spilt Monitor F = Output Bits 1 tim 4								(0)			ugs.		-	c											
Columnif	Phases/Bits																	<d page=""></d>	D+F+ROW			Extra 1 Flegs	1 = TBC Type 1 2 = NEMA Ext. Coord	3 = Auto Dayight Savings 4 = EV Advance	5 = Remote Download 6 = Special Event	7 = Prefimed Operation	o - spin rang uparabo		393			IC Select Flegg	2 = Modern	4 = Flash / Free	6 = Simplex Master	7 = 7-Wire Master 8 = Offset Infermater		
	Day of Week														Anna Maria M					New York	E .	· 大大 · · · · · · · · · · · · · · · · ·				3 7						2.5	4 7	1 6	8	1 345	-2	ttion
	Function																		7 + ROW		-																	Configuration
1	lime			٠														TOD Function		-		Off Exclusive Phases	RR-1 Clear Phases	RR-2 Clear Phases	RR-2 Limited Service	Prot / Perm Phases	Overlap A - Green Critil	Overlap B - Green Cmit	Overlap C - Green Cmit	Overlap D - Green Cmit	Overlap Yellow Rash	EV-A Phases	EV-8 Phases	EV-C Phases	D EV-D Phases	Extra 1 Config. Bibs	IC Select (Inferconnect)	
Row	90	0		统	198	4	D. B.	1000	4.60	1.9	6	1758	45	ပ	SCA III	delas I	Co. set			- 1	Row	1365	GL3N	1ESO	ě.	4	S	Name of	1	1550	42.64	A	PAG.	O	\$300 L	Sec.	KAA.	

à
HIIC
View
Ocean
0
m
Sol
Del
WY
Kers W

																																			(*)				
		12345678	1234	12345678	2/96	1234	2345			N. S.	Detector #			0			9 0		0	0			FINAME	2000	-				0.0 1.4043			1404-70	0.0 F+0+3			0.5 F+0+6	0.5 F+0+7		
Defector Numbers	0	101413	14 15	07 81 91 11 91 61 61 61 61	47 (777)	26 27 20		Active Detectors <0 Page>					System Det #4	System Det #2	System Det #3	System Det. # 4	System Det. # 5	System Det. #6	System Det. #7	System Det. #8	System Defectors <d page=""></d>		nin)	(mln)	Detector Fallure Monttor		nber	e Yellow	Advance Warning Beacon - Sinn 1		iber	- Yellow	Advance Warning Research Class	7 Hillio - Hoygon Retting				These perameters are NOT downloaded.)	
Row		Q		∛ , -			2 C. C.				Row		*		3	7	9	A		9 5			Max ON (min)	Max OFF (mln)	Detactor F		Phase Number	Tima Before Yellow	Advance W		Phase Number	Time Before Yellow	Advance W		Long Falling	Series Pool	Donner Card	(Thesa param	9
Detector	14	-	20	21	25	6.	16	60	7	23	27	17	18	20	;	:			Detector	Mumber	13	2	9	22	56	10	15	4	80	24	28	12	17	19	6 0	1:			
332 Input File	=	ZIZU	2121	ZISU	ZI3L	214	315	416U	416L	4170	417	418	1190	3191		:			332 Input	2	2	6.2U	1279	6.13U	6J3L	6.14	7,35	8760	8.161	8.77U	BJJL	8.18	SJBU	7.39L	1	:		AAC	
Detector																			Detector	Nanio															:	:		D + X (acroés) + ROW	
Carry-		1.8	1,8												:	:		12.7	Carry			1.8	1.8					1.8							:		< D Page>	X+Q	
Dalay																:		-1.4 F	Delav												10.0				1 0 0	:	Detector Dalay & Carryover		
-	and the same of	700	OWNERS.		******							-						(initial)												-	_						-		

10/16/65 (2:50		0 <f 1+0+0=""> 0 <f 1+0+1=""> 0.0 <f 1+0+2=""> ad Phase Assignable 7-A*-E & F)</f></f></f>	F Row	12 456 8 0	4 3		4 8 8	2 6	ice	Calls
Change	se o)	Exclusive Walk 0 <f></f> Exclusive FDW 0 <f></f> All Red Clear 0.0 <f></f> Exclusive Ped Phase (Outputs specified in Assignable Outputs at E/127+A+E & F)		Permit Red Lock	Min Recall	View Set Peds Rest In Walk	Red Rest Dual Entry	Max Recall Soft Recall	Max 2 Cond. Service	
Last Data	JAL (Pha		В	000	4	0 0	0 0	1 0 0 A	lay	1-
	Redefine Detector Attributes for IAL (Phase 2) and JAL (Phase 5)	<f 1+0+e=""><f 1+0+f=""><f 1+c+0=""></f></f></f>		RR-1 Delay	EV-A Clear EV-B Delay	EV-B Clear EV-C Delay	EV-C Clear EV-D Delay	EV-D Clear RR-2 Delay	RR-2 Clear	View EV Clear
1	es for IAL		0	0.0	0.0	0.0	0.0			` \
DINT W HILLS	Attribut	Flash Start 0 00 00 00 00 00 00 00 00 00 00 00 00	O	144	000		00		7	
SEAFIRE POINT	Detector	Flash Start Red Revert All Red Start	AB	1:11	000	0 0	0 0		' '	ial
me SEA	define	REI REI	6	1.11	000		00	7	lernate Walk Alternate FDW	Alternate Initial
NS Street Name. SEAFIRE POINT E/W Street Name: OCEAN VIEW HILLS PY	Notes. Re Markal Plan 0 = Automatic 1-9 = Plan 1-9 14 = Free 15 = Flash	Manual Offset 0 = Automatic		Phase 1	Phase 2	Phase 5 Phase 6	Phase 7 Phase 8	Max Initial	Alternate Walk	Alter
		14 14 T "A	80 4	7 24	0.0	2.0	2.0	0 0	00	0.0
	Date	The selection with the selection	7	00	0 00	0.0	0.0	0 0	0 0	0.0
INTERSECTION: OCEAN VIEW HILLS & SEAFIRE POINT Group Assignment NONE Field Master Assignment NONE stem Reference Number 1076	AB BA	Manual Plan Manual Offset Manual Selv	9 : 1	1 9	200		0.2	0 0	0 0	9.0
SEAFIR	Change	Mainet) Main Main Main Main Main Main Main Main	Phase 5		4 0 0		30	00	00	0.0
HILLS &	Change Record		3 4		4 0 0	++-	2.0	00	00	0.0
t NONE 1076	Change Date IC/IL	C(0+0+0> C(0+0+1> C(0+0+1> C(0+0+3> NM34: (Quin		444	++	++-	0.0 2	0 0	0 0	0.0
INTERSECTION: OCEAN VIEW I Group Assignment NONE Field Master Assignment NONE stem Reference Number 1076	By DRH	8	-	1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	++-	0 0.2	0 0	00	0.6
Sroup As aster As	ebu	eer ser ser ser ser ser ser ser ser ser			1	++-	2.0	00	00	0.0
INTERSECTION: OCEAN VIEW Group Assignment NON Fleid Master Assignment. NON System Reference Number: 1076	Change	Drop Number 8 < C/0+(Zone Number 8 < C/0+(Area Number 7 < C/0+(Area Address 53 < C/0+(Area Address 53 < C/0+(Communication Addresses	Column Numbers>	Pe Pe	Type 3 Disconnect	T	Min Gap Max Limit	Max Limit 2 Adv. / Delay Walk	Cond Serv Check	Reduce Every
				5.0 BHO 6536	4 3 2	0 0	REAL DESIGNATION OF THE PERSON	- CONTROL OF THE PARTY OF THE P	STATE OF THE PARTY OF	TAIS

	-			
2	URE	URE	0	u
**	FAILU	FAII		
PA	LONG	SHORT	FOE	000
	FOC	FOD		

10

m	m	10	0.0	0.0	0.0	0.0
FCO	FC1	FC2	FCA	FCB .	FCC	FCD
FCO	FC1	FC2	FCA	FCB	FCC	PCD

FDO	TB SELECT	Н
FD3	PED SELECT	0
FD4	7 WIRE	0
FD5	PERMISSIVE	0
FD8	OS SEEKING	Н

3	THE OFFICE	,
FD4	7 WIRE	0
FD5	PERMISSIVE	0
FD8	OS SEEKING	н
CO5	FLASH TYPE	н
CC2	DOWNLOAD	п

9

TYPE
FLASH
8

_	—
TYPE	AD
FLASH	DOWNEC
502	CC2

PE	
TY	AD O
FLASH	DOWNEC
205	CC2

_	_
TYPE	CAC
FLASH	DOWNEC
805	CC2

8	CC
Lawrence .	lantin m
7	

ENTRIES IN THESE LOCATIONS CAN BE CHANGED IN CC1 FLASH ONLY

Page 87 of 449

	_
	7
1	1

_	^
	45.17

	$\overline{}$
(

	~
(
/	J

	~
()

/	7

- 2	_	1
1		}

	_
	1

	`
	>

_	~
	7
	,

_	_		
	- 3	1	,

_	_
	3.

	\
(>

1	1
(ľ

1	^	
		>

_	_	_	
(>

	7
(

	7.	

1	_	٦.
		J

_	~
	3

_	_	
	1	

	7.
(1

_	
	>

_	_	_	
1)	,

	_
(

1	$\overline{}$
(
/	_

		_	
	/		- 57
)		

1	^	
		>

-	$\overline{}$
()'

_		
8	٦,	

/	_	`	
()	'

7.

~
'(_

1	_	_	١,
(_	ر	1

	/	_	-
1			
- 10	1		s

		_	
	(800	
	1	_	-

1	\sim
(

(

	1	-	_
			_

1	
	(

	-

/	^
(

_	~
(
(

/	_	-	
1		>	•

1	$\hat{}$	٦,
(ſ

	~
(
/	J

_	_
(7

	_	_	e:	
(>	

,	_	_		
1			10	

1	$\overline{}$
()

	-	^	٦.
1			ľ

	_
()

	_		
1		7	,

1	^	1
()

	60	10	0.0	0.0	0.0	0.0
Children or other Designation of the last	FC1	FC2	FCA	FCB ·	FCC	FCD

10	0.0	0.0	0.0	0.0
FC2	FCA	FCB .	FCC	FCD

,		E.	3	Ħ	0	0	0	0
101		FCO	FC1	FC2	FCA	FCB .	FCC	FCD
T	2	3	4	5	9	7	8	9

FOC LC	LONG FAILUR	ORT FAILU	FOE	FOF	FCO	FC1	FC2	FCA	FCB .	FCC	FCD .	
		FOD SHO	ш					ш	ш			The Personal Property lies and
		œ	00			П	00					CONTRACTOR OF THE PERSON

FOC LONG	FOD SHORT	FOE	FOF		FCO	FC1	FC2	FCA	FCB	FCC	THE REAL PROPERTY AND ADDRESS OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN C
		0	1	2	3	4	5	9	7	8	1
	α	00					00				Γ
	7	7									ľ
	9	9			9		9				ľ
- 1		1000					\$6500p.				L

	œ	00				П	00				_
٦		0	Н	2	3	4	5	9	7	æ	6
FOC L	FOD S										
LONG FAIL	SHORT FA	FOE	FOF		FCO	FC1	FC2	FCA	FCB	FCC	FCD
II	H						1				ľ

	00	00					00					
		0	1	2	n	4	5	9	7	æ	6	
FOC	FOD						L			L		
LONG	SHORT	FOE	FOF		FCO	FC1	FC2	FCA	FCB	FCC	FCD	The real Parties and Persons a
FAIL	FAI								ŀ			

FAI	FA											
LONG F	SHORT	FOE	FOF		FCO	FC1	FC2	FCA	FCB	FCC	FCD	
FOC	FOD											
		0	T	2	3	4	5	9	7	æ	6	
	æ	00					00					
	7	7										

AL	FA											
TONG F	SHORT	FOE	FOF		FCO	FC1	FC2	FCA	FCB	FCC	FCD	
3	FOD											
				•								
		0	1	2	3	4	5	9	7	8	6	
	æ	00					00					
1	7	7					100					Name and

5	13	_	_	å.	_	_	_	_				ı
FAIL	FAI											
LONG	SHORT	FOE	FOF		FCO	FC1	FC2	FCA	FCB	FCC	FCD	
20.7	FOD											
-	_		-	_	-					_	,	
		0	Н	2	3	4	5	9	7	æ	9	1
	æ	00					00					SECTION.
- 1	-	MINISTER .	-				BRIDGE		-			胡

K	13		_							Ľ	Ľ	
FAILUR	FAII											
LONG I	SHORT	FOE	FOF		FCO	FC1	FC2	FCA	FCB	FCC	FCD	
FOC	FOD											Memberships and a second
		0	Н	2	3	4	5	9	7	æ	9	
	Ф	00					00		-			ĺ

FALLU	FAIL	Γ							•			
LONG	SHORT	FOE	FOF		FCO	FC1	FC2	FCA	FCB	FCC	FCD	
3	FOD											
		0	7	2	е	4	5	9	7	œ	o)	
	α	00					00					Contraction of the last
- 1		M					5000					Š

FOC LONG FAILUR	FOD SHORT FAILU	FOE	FOF		FCO	FC1	FC2	FCA	FCB ·	FCC	FCD	
	_		_	_				_	_			
		0	Н	2	cc	4	5	9	7	œ	9	
	00	00					00					

	15						Ľ	0	0	0	0	
	FAII	Γ										
	SHORT	FOE	FOF		FCO	FC1	FC2	FCA	FCB	FCC	FCD	
	FOD											
-		52000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		_							
		0	Н	2	3	4	5	9	7	æ	6	
	æ	00					00					

ur)		["	(4)	H	0	0	0	0	
FOF		FCO	FC1	FC2	FCA	FCB .	FCC	FCD	COLOR DESCRIPTION OF THE PERSON OF THE PERSO
	•								
7	2	3	4	5	9	7	8	6	
_	_	-							н

					"	0	0	0	0	
	FOF		FCO	FC1	FC2	FCA	FCB ·	FCC	FCD	
		ı	<u> </u>	_	_	_		_		
Charles de la constitución de la	Н	2	3	4	5	9	7	æ	9	
					Part.					

PED PRASTS

V RECALL

EVA CLR

EVB DLY EVB CLR EVC DLY

0.0

0.0

0.00.0

0.0

PASSAGE ADD/VEH

California Terraces PA61 TIA Appendix

MAX GAP MIN GAP MAX EXT

2.0|3.0|3.0|2.0|2.0|3.0|2.0|2.0 2.0 3.0 3.0 2.0 2.0 3.0 2.0 2.0

2.0|3.0|3.0|2.0|2.0|3.0|2.0|2.0

EVA DLY

P RECALL

RED LOCK YEL LOCK

RR1 CLR

42 11 0

45

39 금

디

11

11

11

MIN GREEN

DONT WALK

WALK

TYPE 3 DET

EV SEL

CLK RST

9

9

5

PERMIT FLAGS

PRE-EMPTION

PHASE TIMING

INTERVAL

CALIENTE AVE./OCEAN VIEW HILLS PARKWAY

(ত্ৰ)

RIE 905

LOCALION:

Version 3

80

CALTR F PAG.

3/3/

DATE:

)	6	10	0.0	0.0	0.0	0.0
201	FC1	FC2	FCA	FCB .	FCC	FCD
_						

3	ы	10	0.0	0.0	0.0	0.0
FCO	FC1	FC2	FCA	FCB .	FCC	FCD

)	6	12	0	0.	0.	0.	
202	FC1	FC2	FCA	FCB ·	FCC	FCD	
							•
1	4	5	9	7	8	6	A

	6	10	0.0	0.0	0.0	0.0
	FCI	FC2	FCA	FCB	FCC	FCD
L	_					Ш

:	0.		н	0	0	0
200	FCD .		TB SELECT	PED SELECT	7 WIRE	PERMISSIVE
			FDO	FD3	FD4	FD5
			o-tenante			
,	9	A	B	C	D	田

READ ONLY

MAX 2 PHASES

M

EVD CLR

K

EVD DLY

25

20

35

15

25

20

35

20

35

MAX 2 m

MAX

DBL ENTRY

RT OLB RT OLA

EVC CLR

255 LAG PHASES

RED REST

n

RR2 CLR

MO

MOG

0.0

0.00.0

0.0

0.00.0

0.0

REDUCE BY

U

EVERY

YELLOW

RED

MIN

5.2

4.83.7

4.83.7

SEC

1.5 1.5 1.5

146

132 | 158 | 113 | 146 | 131 | 161 | 136

BIKE XING FT

3.5 PED XING FT

H

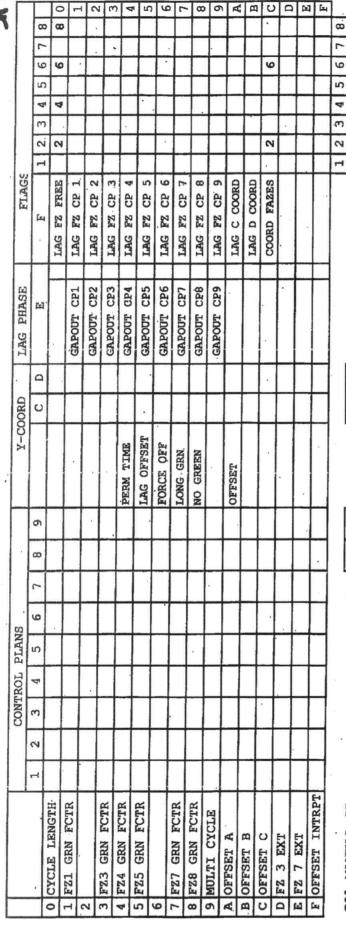
1.0 1.0 1.0 1.0 1.0 1.0 1.0

MAX EV

REST-IN-WALK MAX 3 PHASES YEL START UP FIRST PHASE

_	202	IB SI	SELECT	-
	FD3	PED 8	SELECT	Ö
	FD4	7 WIRE	RE	0
	FD5	PERM	ISSIVE	0
_	FD8	SO	SEEKING	н
	CO 2	FLASH	1 TYPE	Н

	/ WIRE	
FD5	PERMISSIVE	0
FD8 OS	OS SEEKING	Ħ
CO5	COS FLASH TYPE	1
600	DOMETORD	-


1	1	П
	TYPE	(AD
	LASH	OWNLOA
1		ă
	502	CC2

2	FLASH TYPE	7
22	DOWNLOAD	-

ч	DOWNLOAD	C2
-	FLASH TYPE	2

2012

LOCATION:

Ö OFF ě LOCATION NO OFF FEATURE

EB @ Caliente Ave

MASTER CYCLE TIMER CAO LOCAL CYCLE TIMER

CBO

MASTER OFFSET CAA LOCAL OFFSET

CBA

MANUAL OFFSET

COD

TRNSMT CP

LAST CP

C04 C02

SYSTEM MASTER:

CURRENT CP

C03

MANUAL CP MASTER CP

C02

CCE/CDE LONG GREEN TIMER

CCF/CDF NO GREEN TIMER

CCC/CDC LAG GREEN TIMER CCD/CDD FORCE OFF TIMER

CCB/CDB OFFSET TIMER

E PAGE

12/13/12

Version 3 ANS C8 LUCATION:

D PAGE

Ü

1 2 3 4 5 6 7 8 FLAGS 4 3 7 FUNCTION DICCLOS TVR C-RECALL D-RECALL 3 200 CODE CODE RCL 1 = TIME OF DAY MAX RECALL (1ST SELECT) PHASES 8 1 2 3 4 5 6 7 1234567 FLAGS FUNCTION OLAC NGS 国 7 6 5 3 4 5 6 FLAGS 2 N Н RCL 2 RCL 1 CP 2 CP 3 CP 4 CP 7 CP 8 CP 1 PED RCL CP B 6 7 8 12345678 FLAGS 3 4 5 POWER FAILURE REGISTER 1 2 CP 5 CP 2 CP 3 CP 4 CP 7 CP 8 CP 9 CP 1 D-B-E MIN D-A-E RCL ഥ 12345678 1 2 3 4 5 6 7 8 FLAGS MINUTE HOUR LAST CP 8 CP 1 CP 2 CP 4 MAX RCL G. CP CP CP CP

下 8 9 点 8 U

9

2

PHASES (2ND SELECT) = TIME OF DAY MAX RECALL (CALL ACTIVE LIGHTS) N RCL

(CALL ACTIVE LIGHTS)

= LITHIUM BATTERY CONDITION D-E-E = C8 VERSION NUMBER D-E-F

LAST FLASH TIME REGISTER

DAY

D-A-F

MINUTE

DAY

HOUR

= GOOD =84 = BAD

D-C-F

Page 89 of 449

Ø

8

S Ŀ 9 9+EVENT+HR+MIN+CP+OS+E+DOW CONTROL PLAN TIME OF DAY SMTWT S 3 2 = 600 MIN CP OS 9 PAGE H S 9 8 6 9 9+EVENT+HR+MIN+CP+OS+E+DOW DAY M 5 CONTROL PLAN TIME OF 0 or H Σ 2 H S C09 MIN CP OS RTE 905 @ CALIENTE AVE./OCEAN VIEW HILLS PAPTAN 9 PAGE HR 8 DATE: 12/13/12

8 ENERGIZE AUX OUTPUT-YELLOW

1 TYPE OF MAX TERMINATION

ACTIVITY CODE

M

- 9 TIME OF DAY MAX RECALL (1ST SELECT)
 - A TRAFFIC ACT. MAX 2 OPERATION
- B TIME OF DAY MAX RECALL (2ND SELECT)
 - YELLOW YIELD COORDINATION
- E TIME OF DAY FREE OPERATION D YELLOW YIELD COORDINATION
 - FLASHING OPERATION

B

7 ENERGIZE AUX OUTPUT-GREEN

ENERGIZE AUX OUTPUT-RED

4 COND SERV (1ST SELECT) 5 COND SERV (2ND SELECT)

3 MAX 3 MAX 2

œ 6 A B ပ

9

7+EVENT+HR+MIN+ACT+"E"+ON/OFF+DOW LTS

TIME OF DAY ACTIVITY TABLE

NS C8 Version 3

CA

7 PAGE

LOCATION:

ß

H 2

×

H 3 m m

Σ

മ

/NO

MIN ACT OFF

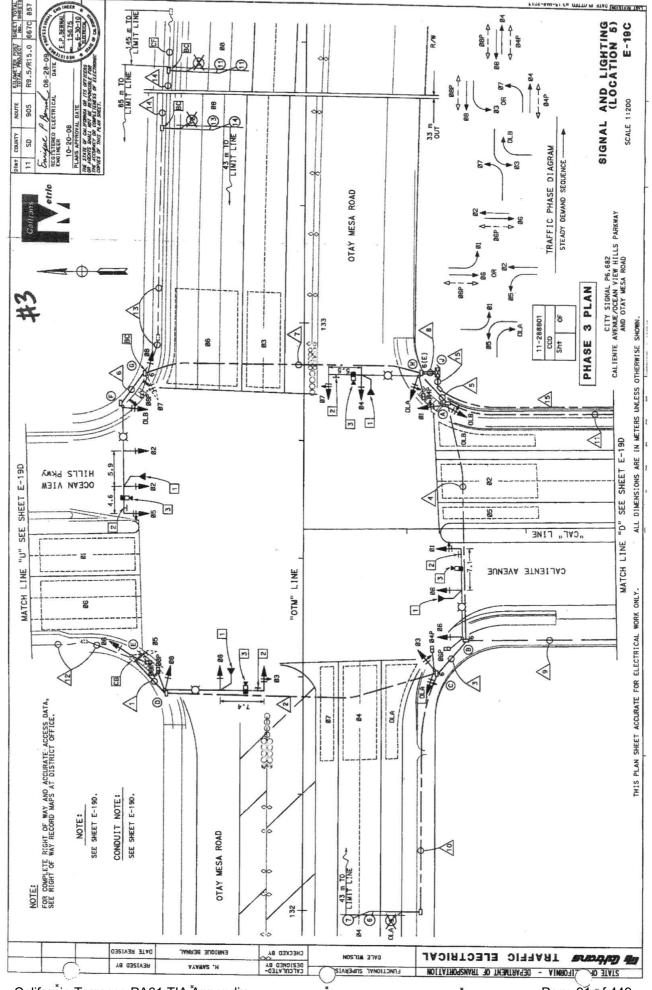
H

9

9 Ø

10 S

N N


S OFF

N N

00 30

15 17

0

As C8 Version 3 LOCP TON:

F PAGE CAL

150	,	URE		FALLUKE	30	2		6	1	2	2	9	0	0.	0		ľ		9	0	9	1	1	
	=	FOC LONG FAILURE	THE DOOR OUT	TYOUG	FOE	FOF		FCO	100	100	FCZ	FCA	FCB	PCC	FCD			- 1	FD3 PED SELECT	FD4 7 WIRE	PUS DEBMISSIVE		FDG OS SEEKTING	
	١		Г	Т	<u>ы</u>	-1	2	Im	T	1 4	ء اد	0 1	J		o	K	To	0 0	ग	Q	DE.	1 6	T	7
			α	-	0		-	H	f	1		+	+	_	_	F	+	+	+	=	F	0	0	<u>_</u>
			7					L	I			I	1					I	I			I	Ī	1
	-		5	-44	0	\dashv	_	9	H	Ÿ	-	+	4	-		ONIE	F	+	+	_	9	4	-	
		[EI	4	102	a	\dashv		H	╁	1		+	+	\dashv	-	READ	H	+	+	-	_	+	+	4 3
	1		3								Ę.	\dagger	+	1		RE		\dagger	†			t	_	7
	The same of		2	3	¥			8	L	2		Į	1	4	•		F	Ţ	Ţ		N	I	c	7
	1	-	-		1	+	_	_	H	1.0		+	+	4		-	Ļ	+	+	4	_	\downarrow	F	4
	AND THE PERSON NAMED OF PERSONS ASSESSED.		FLAGS	DEBMITTAL	A 4-6-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4	RED LOCK	YEL LOCK	V RECALL	P RECALL	PAR PERSON	RT OLA		OTTO THE		MAX 2 PHASES	LAG PHASES	RED REST	BEST-TN-WALV	THUM NT TOWN	MAX 3 PHASES	YEL START UP	FIRST PHASE		Control of the Contro
	T			6	-		0	5	0	5	Т	7	_	-	2	255	15	-	Ť	7	_	F	T	1
	DDD DATEMENT	NOT LAWS - TON	얼	KY SET		Y CF		EVA CLR	EVB DLY	EVB CLR	EVC DLY	RVC CT.R	DITO OTA	EVD DEI	EVD CLR	MAX EV	RR2 CLR							
		. '	on.	CLK RST											YR	MO	DAY	DOW	of a	WH.	MIN	SEC		
		(α	7	-	4 4	0	0	0.0	3.0	3.0	3.0	200					0.0	0		4.1	1.0		Γ
		ı	-	1	-	, ,	-1		0.	0.9	0.9	6.0	0	1	7	٦		0.00	-		3.0		Γ	T
	LNG		٥	7	a	1	1		?	3.0	3.0	3.0	S	1	1	7	-	0.	10		7.7	1.0 0.0	507	1
STATE OF THE PERSON	PHASE TIMING		n	ы	-	+	,†,	5	9					4	†	7	-	0.	0			0:	-	۲
	ASE		#	_	-	1-	1	5	9	0.92.0	0.92.0	0.92.0	6	+	†	1		0.	1.01.0	1	0.0	0.01.0	_	t
	PE	רי		-	-	-	1	1	9		.90	0 6.	0	\dagger	\dagger	+	•	00.	1.01	6	2000	0	_	H
The state of the s		c	,	_	14	1	+	;	0.00.00.00.00.00.00.00.00.00.00.00.00.0	3.00.9	3.0 0.9	3.00.9	30	t	\dagger	+	-	0.0 0.0 0.0 0.0 0.0 0.0	1.01	100	7	1.00.0	501	577
Statement or other Designation of the last			ا	-	-	┿	1	;	릵	0.93	0.93	0.93	6	t	\dagger	\dagger	1	00.	1.01	0 0	:	0.0	LCI	r.
STATE OF THE PARTY NAMED IN COLUMN STATE OF THE PAR	INTERVAL			WALK	DON'T WALK	MIN GREEN	3 054	T	1	PASSAGE 0	MAX GAP 0	MIN GAP 0	MAX EXT	MAX 2	2 400	MAX 3		REDUCE BY 0	EVERY 1	VETTOW		RED	PED XING FT	BIRE XIMG FT
4			1	- 1			1		- 1	- 1	- 1	- 1		4		. 1	5					. 1		,

ENTRIES IN THESE LOCATIONS CAN BE CHANGED IN CCI FLASH ONLY

CC2 DOWNLOAD

9
2 3 4 5 6 7 8
-
-
FEATURE
1
System Master: 2
EB @ Callente Ave 3
4
100
CAO LOCAL CYCLE TIMER
TIMER
8
Transport of the Park of the P

NOT T		7)	200	X.	30	Calie	nte	d.
TRANS	_	C8		Versi	on	n		

Name		-	T	0	7	N	m .	4 1	חע	7 0		0	1 4	G P	3 (2 6	3 6	a b	4	-									
Name	Γ	- Inner	-	I	I	I	*	X	**	& W	X	ž.	**	¥ #	X	W W	#_	I	_	_									
Name		-		+	4	+	_8	w e	##	#		% _	- 88	88	98	W (M		+											
NAK	100	31		+	+	4	_	##		¥		—	-		Ø.		₩_	+		_		-							
NAK	15	91		+	÷	+	- 2					*	-					+											
Name	G	4		+	+	+	942 W	226 AX		00 9m	### # 1999	#A #A	- 1			****	***	+	_	_									
NAX 12 3 4 5 6 7 6 MIN M	1			+	+	+	- 20	800 AR WW (*)	** ## *** ##	## ### ## ###	ic and IC com	ж Ф	-	m	2 cm 2 cm	## ## 6# 60	XX												
D FLACE E FLACE F FLACE F FLACE F FLACE	1			+	+	+	- 80	₩.W			e ew	* *	888			04 05 04 05	2	+	+	Н									
D FLACS E FLACS F FLACS E FLACS E FLACS	—	+	+	+	+	+	- 37	w w	 	***	# * * * * * * * * * * * * * * * * * * *			2 W	ä	# #	*	+	+										
D FLACS E FLACS F FLACS E FLACS E FLACS	1	18	51.	4 1	0 :	31:	1	3#		85		ĕ				3		1	1										
D FLACS E FLACS F FLACS E FLACS E FLACS	1.	.	1 .		a 6	5 8	5					ě	***	ď.	85		M	1	1.										
D FLACS E FLACS F FLACS E FLACS E FLACS	-	1 5	3 3	318	318		2 3					ž.			8			1	1										
D FLACS E FLACS F FLACS E FLACS E FLACS		15	2 0	ગ	7	5 6	5					8	× C		88	ďä	ä	1	1		02		Ø						
D FLAGS E FLAGS E FLAGS E FLAGS E FLAGS	-	+	+	+	+	+	- 23		4			4	****				0) 	+	+-	7	8	١.	S						
D FLAGS E FLAGS E FLAGS E FLAGS E FLAGS	.			+	+	+	+	+	+	+	╁	+	****		7 9W 5 888	# ## # ##	-	+-			5		3						
D FLAGS E FLAGS E FLAGS E FLAGS E FLAGS	100	-		+	+	+	+	+	+	+	╁	+		e en Present	2 m	w	-	+	_	_	ā		P				•		
Name	Ŭ			+	+	十	+	+-	+-	+	十	+				0 0	#	+											
Name	12	1		+	+	+	+	+	+	+	+-	t						+	_		H		H						
Name	12	1	+	+	十	十	+	+	+	+	T	+						+			E								
Name		- Inne		十	+	+	十	+	+	+	T	T						+			H		3						
Name		Berneue	_	+	+	+	T	T		T	T	T						1			S		8						
D FLAGS E FLAGS F FLAGS F FLAGS F FLAGS		+-	+	T	T	T	T	T	T	T	T	Т						Т	T	-4	E4		0						
D FLAGS E FLAGS F FLAGS F FLAGS F FLAGS		P	3				1			1	1		. 3				ž Ž	1			Š		- 2			-			
D FLAGS E FLAGS F FLAGS F FLAGS F FLAGS	[H]	1 5	31	ĺ					1		1		欼			¥ (##	ž.				T		3	0		S			
D FLAGS E FLAGS E FLAGS E FLAGS E FLAGS Max 12 3 4 3 6 7 8 PED 12 3 4 5 6 7 8 PED		12		1	1		1		1	1	1	1		B.	雘	.	202	1								H			
D	1	F	1	İ	ı	İ		Ĺ	L	i_	L			.		i iii	Š.	1			Ä		Ä		(*)	H			
D			C	7 -	1 0	1 0	7 4	, R	9	7	œ	0	A	B	Ü	0	12	[E			4		1			9			
D															,				_	÷	ĕ		ĕ			ğ			
D	*									$\overline{\psi}$							8				14	3	, 04	E		O		-	
D																					3	E	M	E	8	Ħ			
D																					2	Ö	3	8	₿	N			
D																					But.	H	ы	77	2	Ľ			
D	_	_			_	_					,	_	,					_		-	4	le i	A	Gall	3	5		_	
D		_		<u> </u>	L	1	_	_	_	L	_	L	L	_	_	ㅗ	_	1	60	1	н	2	н	2	Ħ	14	Q	9	
D	1			_	_	_	_	_	1	_	L	_	L	_	_	丨	_	_	10	1		-	E		S	Z	2	Ŋ	
D	83			+	4	+	4	+	+	┡	-	-	 	_	<u> </u>	+	╄	+	10	1		¥		¥	垦	5	7		
D	14			+	1	+	+	+	1	1	_	1	┡	-	┡	╀	⊢	+	l ru	1	뵞	ы	빛	7	12		11	H	
D	E			+	+	+	╀	+	+	╄	<u> </u>	-	⊢	-	⊢	╀	-	+			H	7	Ħ	7	Ø	H	2	5	
D FLAGS E FLAGS E NAX 12 3 4 5 6 7 8 MIN 1 2 3 4 5 6 7 8 PED 1 RCL	1	_	-	+	+	+-	╀	╀	┿	╀	-	-	⊢	┝	⊢	╀	╄	┿			24	g	H	3	U	-	w	W	
Day Flags E Flags E	1	-	-	+-	┿	┿	+	┿	⊢	⊢	-	⊢	╁	⊢	⊢	╁	⊢	┿	1	1				•					
D FIAGS E FLAGS MAX 12 3 4 5 6 7 8 MIN 1 2 3 4 5 6 7 8 RCL CP 1 CP 2 CP 3 CP 4 CP 5 CP 6 CP 6 CP 7 CP 9 CP 9 CP 9 CP 6 CP 9 CP 6 CP 9 CP 6 CP 9 CP 9 CP 6 CP 9 CP 6 CP 9 CP 6 CP 7 CP 9	-	-	_	+	+	+	+	+	1	·		-	-	2	-	╁	╁	+	+	ı	Н		N	3.5	M	124			
D FIAGS E FLAGS MAX 12 3 4 5 6 7 8 MIN 1 2 3 4 5 6 7 8 RCL CP 1 CP 2 CP 3 CP 4 CP 5 CP 6 CP 6 CP 7 CP 9 CP 9 CP 9 CP 6 CP 9 CP 6 CP 9 CP 6 CP 9 CP 9 CP 6 CP 9 CP 6 CP 9 CP 6 CP 7 CP 9	r	18	H					3						3		ı		1	1		П		4		58				
D FIAGS E FLAGS MAX 12 3 4 5 6 7 8 MIN 1 2 3 4 5 6 7 8 RCL CP 1 CP 2 CP 3 CP 4 CP 5 CP 6 CP 6 CP 7 CP 9 CP 9 CP 9 CP 6 CP 9 CP 6 CP 9 CP 6 CP 9 CP 9 CP 6 CP 9 CP 6 CP 9 CP 6 CP 7 CP 9	1"	A	×	18	18	10	18	18	18	18	B	Ü	ΙŞ	g	1	1	Ì	l			ŭ		\mathbf{g}		Ţ	Ţ			
D FLAGS WAX 1 2 3 4 5 6 7 8 MIN 1 2 3 4 5 6 7 RCL CP 1 CP 2 CP 2 CP 3 CP 4 CP 5 CP 6 CP 7 CP 6 CP 7 CP 7 CP 9 CP 7 CP 9 CP 7 CP 9 CP 7 CP 9 CP 6 CP 9 CP 6 CP 7 CP 6 CP 7 CP 6 CP 7 CP 6 CP 7 CP 7 CP 7 CP 7 CP 7 CP 9 CP 6 CP 7 CP 9 CP 6 CP 7 CP 9 CP 7 CP 9 CP 6 CP 6 CP 6 CP 6 CP 6 CP 7 C	-	-	_	+	+	+	+	+	+	-		-	-	1 111	\vdash	⊢	⊢	+-	-	1	14		щ		7	7			
D FLAGS E FLAGS MAX 12 3 4 5 6 7 8 MIN 12 3 4 5 6 6 7 8 MIN 12 3 4 5 6 7 8 MIN 12 3 4 5 6 6 7 8 MIN 12 3 4 5 6 6 7 8 MIN 12 3 4 5 6 7 8 MIN 12 3 4 7 8 MIN 12 3 4 7 8 MIN 12 3 4 7 8 MIN 12 3 4 7 8 MIN 12 3 4 7 8 MIN 12 3 4 7 8 MIN 12 3 4 7 8 MIN 12 3 4 7 8 MIN				+	╁	╁	+	+-	-	-	\vdash	-	-	-	-	+	-	+		1					**				
D FLAGS E	100	-		+	+	+	+	+	+	-	-	-	-		-	+	+	+	_	1									
D FLAGS E	Ö			+	t	+	+-	+	-	-	_	\vdash	-	-	-	1	H	+	2	1			15						
D FLAGS E	T	Als.		+	t	+	t	+	1					_		-		1	4										
D FLAGS E MIN RCL	1 EM	3		T	T	1	1	1	1						•		Г	1	8	H	31								
D FLAGS E MIN RCL		_	1		T	T													2	H					~				
																			н	H					Š			120	
	П		-	1	N	m	-	10	9	7	00	6						F	Г	S	p4I	rea	뛰		57	Gen	(e)	Eq.	
	回	H	ij																	K	Ţ	Ţ	Ϋ		H	I	Ţ	ڼ	
		Σ	æ	10	ū	10	l g	O	ᄗ	ບ	U	ರ								W	1	7	Á		26	7	T	Á	
		00	П	T	Г														œ	K		Д	12		K		П		
		7				T													7	F	U	11	11			11	10	11	
	S																		9	7					ě	- 41	**		
	AG	3																	5	2		M		-	H		M		
	Ы	4																	4	K	25	5			H	24	5	No.	
																			3	E	8	Ā	Z		S	8	F	Z	
	H		_				٠									•			2	Ö	西	Σ	A		Ħ	Ħ	Σ	d	
	Ш	Н			_	_	_				_	_							-	P					lad.				
		34	ы		2		4			7										H					H				
		MA	S	PH		1	19	PH	PH		원	2								A					2				
- O 1 7 6 4 5 9 7 8 8 8 0 8 8 9 10 8 8 8	\sqcup		_	۲		۲	<u></u>	_	1		긔	긔	\Box	_	_			Ш		7					ч				
			0	н	2	m	4	2	9	-	8	0	K	m	U	A	M	(Eq											
																		ш	l .										

PAGE 5 6 SMTWTF 9+EVENT+HR+MIN+CP+OS+E+DOW CONTROL PLAN TIME OF DAY 4 3 2 C09 = 2 MIN CP OS 1 9 PAGE HR B 5 6 U 9 9 TIME OF DAY MAX RECALL (1ST SELECT) B TIME OF DAY MAX RECALL (2ND SELECT) A TRAFFIC ACT. MAX 2 OPERATION 8 ENERGIZE AUX OUTPUT-YELLOW TIME OF DAY FREE OPERATION SMTWTF 9 D YELLOW YIELD COORDINATION YELLOW YIELD COORDINATION 9+EVENT+HR+MIN+CP+OS+E+DOW CONTROL PLAN TIME OF DAY 3 4 5 C09 = 0 or 1 F FLASHING OPERATION 7 MIN CP 08 1 9 PAGE 田 8 3 9 œ 9 B 7/12/12 7+EVENT+HR+MIN+ACT+"E"+ON/OFF+DOW LTS ŝ [se 9 TIME OF DAY ACTIVITY TABLE H 2 3 4 7 ENERGIZE AUX OUTPUT-GREEN

TYPE OF MAX TERMINATION

ACTIVITY CODE

ENERGIZE AUX OUTPUT-RED

COND SERV (2ND SELECT) 4 COND SERV (1ST SELECT)

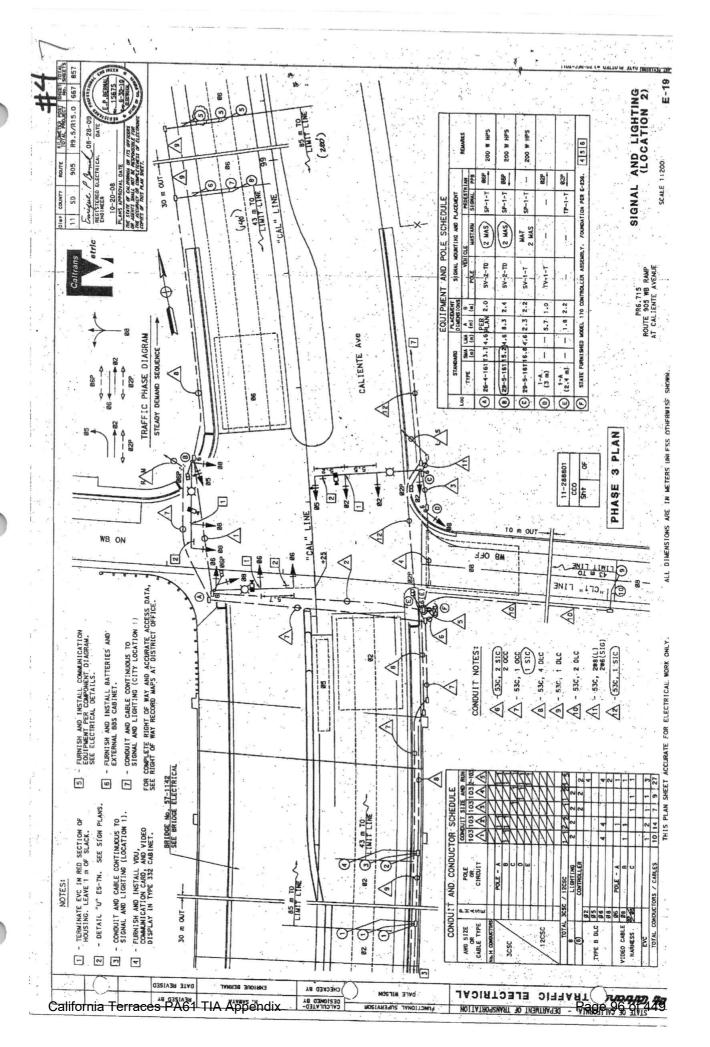
905 WB @ Caliente Ave

C. RANS C8 Version 3

7 PAGE

TION:

H


Σ

S /NO

m

MIN ACT OFF 1

H

500				
15	JRE	FAILURE	30	2
44	FAILURE			
PAGE	LONG	SHORT	FOE	FOF
	FOC	FOD		

9

YEL LOCK V RECALL

10

EVA DLY
EVA CLR
EVB DLY

0.0 0.90.9 6.0 6.0 0.9 0.9

0.0

0.0

TYPE 3 DET

DONT WALK MIN GREEN

WALK

P RECALL

0

EVB CLR

RED LOCK

13

RR1 CLR

RST

CLK

9

3

+	0	0	0	0
FC2	FCA	FCB	FCC	FCD
	FC2	FC2 FCA	FC2 FCA FCB	FCA FCB FCB

ø

FD3 PED SELECT 0 FD4 7 WIRE 0 FD5 PERMISSIVE 0 FD8 OS SEEKING 1		E C	4
FD4 7 WIRE 0 FD5 PERMISSIVE 0 FD8 OS SEEKING 1		1	0
- -			0
SO	SO	VE	0
		SNG	п
	COS FLASH TY	TYPE	H

B C OM

ONILY

READ

MAX 2 PHASES

Ŋ

DBL ENTRY

0

EVD DLY EVD CLR MAX EV RR2

0

30

30

15

7

MAX

MAX

RT OLB RT OLA

n

EVC CLR

EVC DLY

3.0

3.0 3.0

2.03.0 3.0

2.03.0

PASSAGE ADD/VEH

MAX GAP MIN GAP MAX EXT

3.0 30

0.9

0

2.0

3.0

255 LAG PHASES

RED REST

15

CLR

DAY

MOG H

0.0

0.0

0.0

0.0

REDUCE BY EVERY

O

1.01.01.0

K S

MIN

3.0 0.0

3.0

3.0

4.1

4.1 1.0

3.7

YELLOW

RED

1.000.

481 109

481 1 69

BIKE XING FT

PED XING FT

SBC

REST-IN-WALK MAX 3 PHASES START UP PHASE

	ED SELECT 0	WIRE 0	PERMISSIVE 0	S SEEKING 1	LASH TYPE 1	DOWNLOAD 1
	PED	JW L	PERM	SO	FLASH	DOWN
-	FD3	FD4	FD5	FD8	CO5	CCS

9

9

FIRST YEL

r	i	
в		ä
- 84		

ENTRIES IN THESE LOCALIONS CAN BE CHANGED IN CCL FLASH ONLY

PRE-EMPTION

TIMING

PHASE

INTERVAL

9

2

Z,

S

905 EB @ Caliente Ave

		2	
		Ξ	
-		S	
	ħ	4	
	W	~	
	r	w	

ATION: 905 EB @ Caliente Ave CALTRANS C8 Version 3 C PAGE

	T	0	1-	10	1 (1	n u) (2 5	· œ	0	R	u	C) [1 12	1 [
	8	00	L	L			\perp			L	\perp	L			\perp	\perp	_	8	1									
,	7		L	L	L		L		L			L	L	L	L	L	L	1	1			~						
•	9	9	L	L	L	L	1	1	1	1	L	L	1	9	1	\perp	\perp	9	1	CA	K'D	ME	1 2	3				
	5		L	\perp	1	\perp	1	\perp	_	1	L	┸	\perp	L	\perp	丰	1	5	12	IM	N	TT	ME					
	4	4	L	L	\perp	\perp	1	1	1	\downarrow	\downarrow	L	\perp	1	\perp	\downarrow	\perp	4	ME	7. 7		22.	7.7	1				
	3	_	L	+	\perp	1	\perp	+	\perp	\perp	╀	╀	╀	╀	\downarrow	+	+	m	OFFSET TIMER	FF	FORCE OFF TIMER	LONG GREEN TIMER	NO GREEN TIMER	i				
	2	N	\perp	\downarrow	+	\perp	ŀ	+	1	╀	╀	ŀ	╀	12	4	+	+	7	ET	S. C.	Į.	9	RE					
U,	1	L	\vdash	+	+	+	+	+	+	+	+	Ļ	+	+	+	+	+	-1	FF	AG	ORC	NC	0	,				
FLAGS	F	LAG FZ FREE	LAG FZ CP 1	8	FZ CP	a D	8	8	8			LAG C COORD	LAG D COORD	COORD FAZES					CCB/CDB O		CCD/CDD F							
PHASE	运		CP1	CP2	CP3	CP4	CP5	CP6	CP7	CP8	CP9	F		I	F		F											
LAG PE			GAPOUT	GAPOUT	GAPOUT CP3	GAPOUT CP4	GAPOUT	GAPOUT CP6	GAPOUT	GAPOUT CP8	GAPOÙT						L					-					-	_
	Ω																		NO	e.						-		-
ORD	υ				T		T	T	T								T		OFF									2
Y-COORD						PERM TIME	LAG OFFSET	FORCE OFF	GRN	KEEN		T							LOCATION	1	8	· 6	4	. 72	9	7	- 60	- 2
			·	L	L	PERM	LAG	FORCE	LONG GRN	NO GREEN		OFFSET	L	L	L		L		roor		_	_		_	_		_	_
	6			L	L			L											NO									
	80				L			·								L			OFF									
-	7								ŀ										Æ	1	8	m	4	S	9	7	φ	
2	9																		FEATURE			9						
FLAN	5																		Ĭzi		::	e Av		Sec.				
CONTROL PLANS	4																				faste	ient						
CONT	3																	,			System Master:	EB @ Caliente Ave						
	2																				Syst	EB			MER	IMER		
																								SET	E TI	LE T	ET	SET
		CYCLE LENGTH	FZ1 GRN FCTR		FZ3 GRN FCTR	FZ4 GRN FCTR	FZ5 GRN FCTR		FZ7 GRN FCTR	FZ8 GRN FCTR	MULTI CYCLE	OFFSET A	OFFSET B	C OFFSET C	FZ 3 EXT	FZ 7 EXT	OFFSET INTRPT		COI MANUAL CP	CO2 MASTER CP	CO3 CURRENT CP	4 LAST CP	7 TRNSMT CP	COD MANUAL OFFSET	CAO LOCAL CYCLE TIMER	CBO MASTER CYCLE TIMER	CAA LOCAL OFFSET	CBA MASTER OFFSET
-	-	-	H	2	3	4	5 E	9	<u> </u>	8	6	V	B	ŏ	a	되	E		S	S	00	C04	C07	CO	CAC	CBC	CA	CBY

PAGE 3

E PAGE

FLAGS

PED

MIN

7

MAX

FLAGS

FLAGS

CP 3 CP 4 CP 5 CP 5

CP 3

CP 2

CP CP CP CP 2

CP 1

CP 1

		10	1	10	m	4	l ru	10	1	8	9	M	m	O		回	[EI	l
	8	Т		Г	Π					Ø				***		7,	Г	8
	1	T	Г	Т	Т					////		***	***	***	***		Г	7
S	9	T				****		6		***		****		****				9
36	2									****			***					5
FLAGS	4				\vdash			***				****		****	***		\vdash	4
H	3	\vdash			\vdash	****			***			****					1	3
	2	\vdash	\vdash		Т	***	įν.			****		****	****	****	·			2
	-	1	_	_	\vdash		****			2000		****	 	~~		7		H
-	-	\vdash	_	—	1	1		44			_	***		~~		_		_
	FUNCTION	4	2	C-RECALL	D-RECALL	PKCILLSTVE	244					MG	á	7	2			
20	H			A	A	300		9		CISIS		Q.	0	OEC ON	NO CIE			
E4	5	CODE	CODE	M	M	10	a.		W.X.			4	0.00					
	Z	0	0	124	12	17		900	,			30.0	30.0	879	75.3			
	15	0	O	1	1	1		SAMO	******	₩##		<u> </u>	æ	SC X	(O)			
	PH4			10	"		3332		****	*****				****		1		
_	8		-			_	******		****	*****	_	*****	 					- 80
	7	_	_		_	_					_	****		30003				7
m	9	-	-	_	-	-			\vdash		_	****				_	-	9
FLAGS		-	_	_	-	-	-	-	-	-			****			_	_	
Æ١	5											****	****	₩₩	****			5
H	4														*****			4
4	3	_	_	_	_	_		-		-	_					_	\vdash	
	_		_				<u> </u>	_		_	_			*****	*****			3
- 1	2																	8
	7											***	***	₩.				Н
\neg	z									\neg							\neg	
- 1	O	1	- 1					- 1	- 1	- 1	- 1	Š			X .	- 1	- 1	
	H		- 1				1	- 1	- 1	- 1	1	×	× 1	2	ž.	- 1	- 1	
꼬	FUNCTION		- 1					- 1	.	- 1	- 1		100 80 80 80 80 80 80 80 80 80 80 80 80 8		O B NO	- 1	- 1	
- 1	ž		- 1				1	- 1	- 1	- 1	. 1	5	44	-		- 1	- 1	
- [DI	1	- 1			1	- 1	- 1	- 1	- 1	- 1	7	71	75	7	i	- 1	
	PH								.						***	- 1		
-		0	П	2	3	4	40	9	7	8	0	A	B	O		田	[ex	

RCL 2

RCL 1

CP 9

CP 8

CP 7

CP 7 CP 8 CP 9

CP 8

B

CP 7

RCL 1 = TIME OF DAY MAX RECALL (1ST SELECT) PHASES (CALL ACTIVE LIGHTS)

LAST POWER FAILURE REGISTER

D-A-E

HOUR

D-B-K

MINUTE

DAY

D-C-E

RCL 2 = TIME OF DAY MAX RECALL (2ND SELECT) PHASES

(CALL ACTIVE LIGHTS)

D-E-E = C8 Version number D-E-F = LITHIUM Baitery condition

LAST FLASH TIME REGISTER

D-B-F

MINUTE

DAY

HOUR

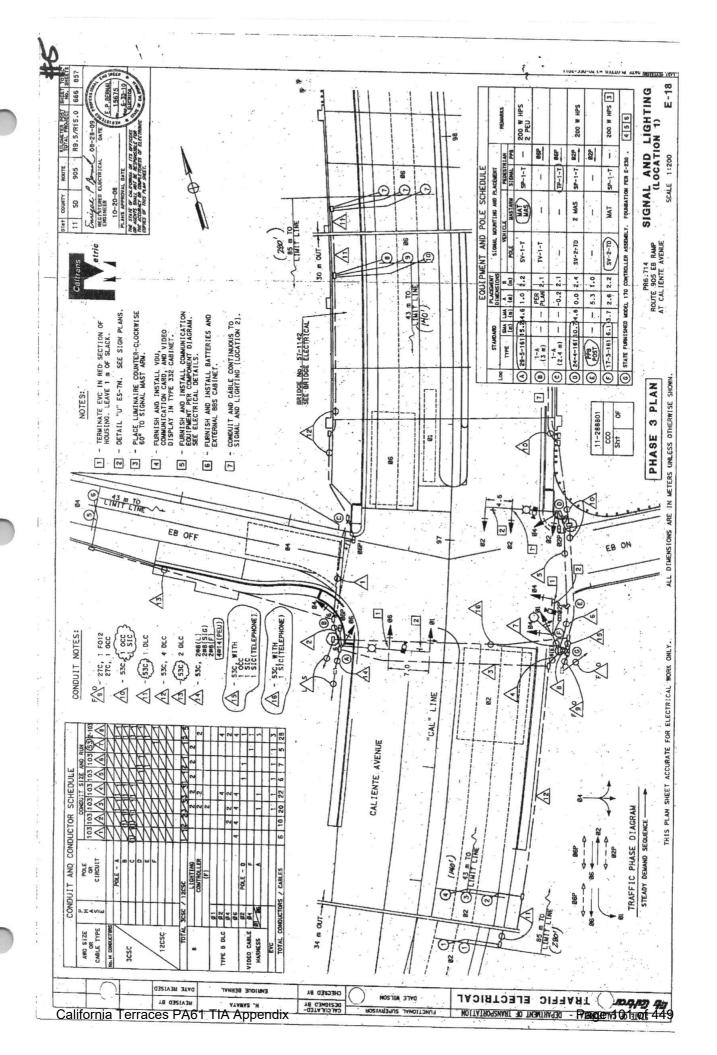
D-A-F

84 = BAD

85 = GOOD

7/18/12

D PAGE


CP 5 CP 6

CP 5

SMTWTF 9 9+EVENT+HR+MIN+CP+OS+E+DOW CONTROL PLAN TIME OF DAY 5 3 4 2 C09 = 2 MIN CP OS 9 PAGE HR ιĠ 9 6 œ 9 TIME OF DAY MAX RECALL (1ST SELECT) B TIME OF DAY MAX RECALL (2ND SELECT) A TRAFFIC ACT. MAX 2 OPERATION TIME OF DAY FREE OPERATION 8 ENERGIZE AUX OUTPUT-YELLOW SMTWTF 9 D YELLOW YIELD COORDINATION C YELLOW YIELD COORDINATION 9+EVENT+HR+MIN+CP+OS+E+DOW CONTROL PLAN TIME OF or FLASHING OPERATION 0 = 6002 MIN CP OS PAGE HR BB 3 5 4 9 8 6 2 7/18/12 7+EVENT+HR+MIN+ACT+"E"+ON/OFF+DOW LTS [su 9 TIME OF DAY ACTIVITY TABLE E 5 3 7 ENERGIZE AUX OUTPUT-GREEN ENERGIZE AUX OUTPUT-RED ACTIVITY CODE TYPE OF MAX TERMINATION H 4 COND SERV (1ST SELECT) COND SERV (2ND SELECT) TRANS C8 Version 3 Σ 2 S /NO MIN ACT OFF 3 MAX 3 2 MAX 2 7 PAGE HH

905 EB @ Caliente Ave

ATION:

	A Freid A	Field Master Assignment None	lent None					FW Street Name Corporate Center Dr	Corporate Con Olay Mesa Rd	iter Dr	Last Change Timing Sheet By	REJ	22000		
	Z Column #		Otay Mesa Rd		Cerporate Cnt	ife Cnt		Otay Mesa Rd			Approved By:	Tem 1	Taming implemented on	Dec 65, 2000	
L	Phase #>		2	3			9	3	7	8			•		
œ	Row	4	4	इ र	₹ ₹>	\$ 100 A	3	4				ä		u.	Row
•	Ped Walk				7			7			RR-1 Delay		Permit	123456	0
=1	Ped FDW				31			25			RR-1 Clear		Red Lock		1.
2	Min Green		4 10		38	7	4	10			EV-A Delay	0	Yellow Lock	I	7
•	Type 3 Limit										EV-A Clear	70	Min Recall		Į.
•	AddWeh										FV-B Delay		Dad Danie	T	
6	Veh Extn	2.0	9.0			2.0	2.0	5.5			EV-B Clear		Dod of		•
9	Max Gap	2.0	5.0			2.0	2.0	5.5			EVC Delay	0	Legs (vew)		9
2	Min Gap	2.0	0.2			2.0	2.0	0.2			EV C Ches	0	Mest in Walk		9
28	Max Limit	30	09			30	30	9			Ev-Colear	2	Red Rest		-
0	Max Limit 2						3	3			EV-U Delay		Obl Entry		
A	Bus Adv				-	+					EV-D Clear		Max Recall		a
	Call to Dhe										RR-2 Delay		Soft Recall	2 6	<
100	211					+					RR-2 Clear		Max 2		8
2 1	Reduce By	+	0.1					0.1			View EV Delay	-	Cond Serv		0
	Every		9.0					9.0			View EV Clear	:	Ped Lock	12345678	10
- Ke	Yellow	3.0	5.3	3.0		3.0	3.0	5.0			View RR Delay		Yallow Grad	0	
Rec	Red Clear	1.0	2.0		1	1.0	1.0	2.0			Whose DD Class		Tipio point	0 7-	3
		P. F.	Phase Timing - Bank 1 F + Phase + Row	ink 1						<f page=""></f>	Preem F + E + Row	Preempt Timing	Phase Functions	tions	- Page
Max Initial	nitial	7	F+0 +E					4		The second second					
Red Revert	evert	5.0 F	F+0+F				Grann	,	0	0					
All Red Start	Start		L	Row		, 0	Clear	Chance	Close	Load-	Manual Plan			14 C+A+1	
Start / !	Start / Revert Times		Total State of the	A	Overlap A	-	+		1000	OWIGH #	Manual Offset			0 0+8+1	
Drop Number	nber	+5	0+0+0	B 0	Overlap B	_	-				Manual Selection				
Zone Number	nber	5	C+0+1	0 0	Overlap C	-					0 = Automatic		* Automatic	Lo	
Area Number	ber	to	C+0+2	0 0	Overlap D						14 = Free		1 = Offset A 2 = Offset B		
Area Address	.53	• 5	C+0+3	0	Overlap Timing		<f page=""></f>			<d page=""></d>	lo=riasn		3 = Offset (
QuicNet Channel	annel		(QuicNet)			F+00	+ COLOR +			D+0+OVERLAP	d,				
nmmu	Communication Addresses			L											
C+ E+ O	-	Row	Ţ	٥	Downtime Flash	lash			(minutes)		Disable Ports		100	Γ	
Free Lag	2468	3		Do	wnfime Be	fore Aut	Downtime Before Auto Manual Flash	-lash			Disable Communications B. 4	- Indian	404	7	
												THE PERSON NAMED IN	The same of the sa		

Appendix I

Existing Level of Service Calculations

	۶	→	•	•	←	•	•	†	~	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			₩.		*	∱ ⊅		7	∱ ∱	
Traffic Volume (veh/h)	60	4	4	68	7	53	2	542	28	42	543	22
Future Volume (veh/h)	60	4	4	68	7	53	2	542	28	42	543	22
Number	3	8	18	7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		0.98	1.00		0.97
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1863	1900	1900	1863	1900	1863	1863	1900	1863	1863	1900
Adj Flow Rate, veh/h	63	4	4	72	7	56	2	571	29	44	572	23
Adj No. of Lanes	0	1	0	0	1	0	1	2	0	1	2	0
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	138	9	9	104	10	81	4	1333	68	64	1466	59
Arrive On Green	0.09	0.09	0.09	0.12	0.12	0.12	0.00	0.39	0.39	0.04	0.42	0.42
Sat Flow, veh/h	1567	100	100	902	88	702	1774	3423	174	1774	3464	139
Grp Volume(v), veh/h	71	0	0	135	0	0	2	295	305	44	292	303
Grp Sat Flow(s),veh/h/ln	1767	0	0	1692	0	0	1774	1770	1827	1774	1770	1833
Q Serve(g_s), s	2.1	0.0	0.0	4.1	0.0	0.0	0.1	6.6	6.6	1.3	6.1	6.2
Cycle Q Clear(g_c), s	2.1	0.0	0.0	4.1	0.0	0.0	0.1	6.6	6.6	1.3	6.1	6.2
Prop In Lane	0.89		0.06	0.53		0.41	1.00		0.10	1.00		0.08
Lane Grp Cap(c), veh/h	156	0	0	196	0	0	4	689	712	64	749	776
V/C Ratio(X)	0.46	0.00	0.00	0.69	0.00	0.00	0.51	0.43	0.43	0.69	0.39	0.39
Avail Cap(c_a), veh/h	888	0	0	850	0	0	135	689	712	158	749	776
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	23.4	0.0	0.0	22.9	0.0	0.0	26.9	12.1	12.1	25.7	10.7	10.7
Incr Delay (d2), s/veh	2.1	0.0	0.0	4.3	0.0	0.0	78.2	1.9	1.9	12.6	1.5	1.5
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.1	0.0	0.0	2.1	0.0	0.0	0.1	3.6	3.7	0.9	3.3	3.4
LnGrp Delay(d),s/veh	25.4	0.0	0.0	27.2	0.0	0.0	105.1	14.0	13.9	38.3	12.3	12.2
LnGrp LOS	С			С			F	В	В	D	В	В
Approach Vol, veh/h		71			135			602			639	
Approach Delay, s/veh		25.4			27.2			14.3			14.0	
Approach LOS		С			С			В			В	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	4.5	28.6		11.1	6.3	26.8		9.7				
Change Period (Y+Rc), s	4.4	* 5.8		4.9	4.4	5.8		4.9				
Max Green Setting (Gmax), s	4.1	* 22		27.1	4.8	21.0		27.1				
Max Q Clear Time (g_c+I1), s	2.1	8.2		6.1	3.3	8.6		4.1				
Green Ext Time (p_c), s	0.0	2.7		0.6	0.0	2.6		0.3				
Intersection Summary												
HCM 2010 Ctrl Delay			15.9									
HCM 2010 LOS			В									
Notes												

AM Existing 2: Ocean View Hills Pkwy & Sea Drift Way

Intersection						
Int Delay, s/veh	1.5					
		EDD	ND	Not	ODT	000
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			^	^	
Traffic Vol, veh/h	82	26	8	520	494	90
Future Vol, veh/h	82	26	8	520	494	90
Conflicting Peds, #/hr	8	8	8	0	0	8
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	225	-	-	-
Veh in Median Storage,	# 1	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	89	28	9	565	537	98
Major/Minor N	/linor2	N	/lajor1	Λ.	/lajor2	
Conflicting Flow All	903	334	643	0	-	0
Stage 1	594	-	-	-	-	-
Stage 2	309	-	-	-	-	-
Critical Hdwy	6.84	6.94	4.14	-	-	-
Critical Hdwy Stg 1	5.84	-	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-
Follow-up Hdwy	3.52	3.32	2.22	-	-	-
Pot Cap-1 Maneuver	277	662	938	-	-	-
Stage 1	514	-	-	-	-	-
Stage 2	718	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	270	653	932	-	-	-
Mov Cap-2 Maneuver	386	-	-	-	-	-
Stage 1	505	-	-	-	-	-
Stage 2	713	-	-	-	-	-
Ü						
Approach	EB		NB		SB	
HCM Control Delay, s	16.6		0.1		0	
HCM LOS	C		U. I		U	
HCIVI LU3	C					
Minor Lane/Major Mvmt	t	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		932	-	428	-	-
HCM Lane V/C Ratio		0.009	-	0.274	-	-
HCM Control Delay (s)		8.9	-	4//	-	-
HCM Lane LOS		Α	-	С	-	-
HCM 95th %tile Q(veh)		0	-	1.1	-	-
, 5 , 5 5 2 (7 011)		Ü				

3: Ocean View Hills Pkwy & Del Sol Blvd/Breakers Way

-	۶	→	•	✓	←	•	•	†	~	/	+	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†	7	ሻ	ĵ⇒		ሻሻ	ተተ _ጉ		7	∱ ∱	
Traffic Volume (veh/h)	305	22	356	3	36	33	318	185	13	18	217	277
Future Volume (veh/h)	305	22	356	3	36	33	318	185	13	18	217	277
Number	3	8	18	7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.96	0.97		0.98	1.00		0.97	1.00		0.98
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1863	1900	1863	1863	1900	1863	1863	1900
Adj Flow Rate, veh/h	359	26	419	4	42	39	374	218	15	21	255	326
Adj No. of Lanes	1	1	1	1	1	0	2	3	0	1	2	0
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	597	615	499	337	175	162	445	1931	130	32	506	444
Arrive On Green	0.18	0.33	0.33	0.04	0.20	0.20	0.13	0.40	0.40	0.02	0.29	0.29
Sat Flow, veh/h	1774	1863	1513	1774	882	819	3442	4857	328	1774	1770	1552
Grp Volume(v), veh/h	359	26	419	4	0	81	374	151	82	21	255	326
Grp Sat Flow(s), veh/h/ln	1774	1863	1513	1774	0	1702	1721	1695	1795	1774	1770	1552
Q Serve(g_s), s	14.0	0.9	23.5	0.2	0.0	3.7	9.7	2.6	2.6	1.1	11.0	17.4
Cycle Q Clear(g_c), s	14.0	0.9	23.5	0.2	0.0	3.7	9.7	2.6	2.6	1.1	11.0	17.4
Prop In Lane	1.00	0.7	1.00	1.00	0.0	0.48	1.00	2.0	0.18	1.00	11.0	1.00
Lane Grp Cap(c), veh/h	597	615	499	337	0	337	445	1348	713	32	506	444
V/C Ratio(X)	0.60	0.04	0.84	0.01	0.00	0.24	0.84	0.11	0.11	0.65	0.50	0.73
Avail Cap(c_a), veh/h	598	732	595	572	0	669	474	1348	713	107	506	444
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	21.2	20.8	28.4	26.4	0.0	30.9	38.9	17.4	17.4	44.7	27.3	29.5
Incr Delay (d2), s/veh	1.7	0.0	9.0	0.0	0.0	0.4	12.1	0.2	0.3	20.3	3.5	10.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	7.1	0.5	11.1	0.1	0.0	1.8	5.4	1.2	1.4	0.7	5.9	8.7
LnGrp Delay(d),s/veh	22.9	20.9	37.4	26.4	0.0	31.3	51.1	17.6	17.7	65.0	30.8	39.8
LnGrp LOS	C	C	D	C	0.0	С	D	В	В	E	C	D
Approach Vol, veh/h		804			85			607			602	
Approach Delay, s/veh		30.4			31.0			38.2			36.9	
Approach LOS		C			C C			D			D	
• •											Ь	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	16.3	31.8	20.5	23.1	6.1	42.0	8.4	35.1				
Change Period (Y+Rc), s	4.4	* 5.6	4.4	4.9	4.4	5.6	4.4	4.9				
Max Green Setting (Gmax), s	12.6	* 26	16.1	36.0	5.5	33.1	16.1	36.0				
Max Q Clear Time (g_c+I1), s	11.7	19.4	16.0	5.7	3.1	4.6	2.2	25.5				
Green Ext Time (p_c), s	0.1	1.9	0.0	0.4	0.0	1.3	0.0	1.3				
Intersection Summary												
HCM 2010 Ctrl Delay			34.6									
HCM 2010 LOS			34.0 C									
Notes												

9	•	→	•	•	←	•	•	†	/	/	ţ	✓
Movement EE	BL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			î,		ሻ	∱ ∱∱		ሻ	ተ ተጉ	
Traffic Volume (veh/h)	3	0	4	10	0	42	3	460	6	26	546	4
Future Volume (veh/h)	3	0	4	10	0	42	3	460	6	26	546	4
Number	3	8	18	7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT) 1.0	00		0.98	1.00		1.00	1.00		0.96	1.00		0.96
Parking Bus, Adj 1.0	00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln 190	00	1863	1900	1863	1863	1900	1863	1863	1900	1863	1863	1900
Adj Flow Rate, veh/h	3	0	4	11	0	47	3	511	7	29	607	4
Adj No. of Lanes	0	1	0	1	1	0	1	3	0	1	3	0
Peak Hour Factor 0.9	90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
	17	0	23	75	0	67	6	2832	39	46	2974	20
Arrive On Green 0.0	02	0.00	0.02	0.04	0.00	0.04	0.00	0.55	0.55	0.03	0.57	0.57
Sat Flow, veh/h 70	04	0	939	1774	0	1583	1774	5167	71	1774	5211	34
Grp Volume(v), veh/h	7	0	0	11	0	47	3	335	183	29	395	216
Grp Sat Flow(s), veh/h/ln164	43	0	0	1774	0	1583	1774	1695	1847	1774	1695	1855
).2	0.0	0.0	0.3	0.0	1.6	0.1	2.8	2.8	0.9	3.2	3.2
).2	0.0	0.0	0.3	0.0	1.6	0.1	2.8	2.8	0.9	3.2	3.2
Prop In Lane 0.4			0.57	1.00		1.00	1.00		0.04	1.00		0.02
•	40	0	0	75	0	67	6	1858	1012	46	1935	1059
V/C Ratio(X) 0.		0.00	0.00	0.15	0.00	0.70	0.52	0.18	0.18	0.63	0.20	0.20
` '	06	0	0	1013	0	904	145	1858	1012	240	1935	1059
	00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I) 1.0		0.00	0.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh 26		0.0	0.0	25.9	0.0	26.6	28.0	6.4	6.4	27.1	5.9	5.9
, , , , , , , , , , , , , , , , , , ,	2.0	0.0	0.0	0.9	0.0	12.4	57.5	0.2	0.4	13.4	0.2	0.4
Initial Q Delay(d3),s/veh 0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/lr0		0.0	0.0	0.2	0.0	0.9	0.1	1.4	1.5	0.6	1.5	1.8
LnGrp Delay(d),s/veh 28		0.0	0.0	26.8	0.0	39.0	85.4	6.6	6.8	40.5	6.1	6.3
LnGrp LOS	С			С		D	F	А	А	D	Α	А
Approach Vol, veh/h		7			58			521			640	
Approach Delay, s/veh		28.9			36.7			7.1			7.7	
Approach LOS		С			D			Α			Α	
	1		2	4		,	7					
Timer Assigned Phs	1	2	3	4	5 5	6	1	8				
	•					6						
Phs Duration (G+Y+Rc), s4		38.1		7.3	5.9	36.8		6.3				
Change Period (Y+Rc), s 4		6.0		4.9	4.4	6.0		4.9				
Max Green Setting (Gmax)		32.1		32.1	7.6	29.1		31.0				
Max Q Clear Time (g_c+l12)		5.2		3.6	2.9	4.8		2.2				
Green Ext Time (p_c), s 0	J.U	3.6		0.2	0.0	3.0		0.0				
Intersection Summary												
HCM 2010 Ctrl Delay			9.0									
HCM 2010 LOS			Α									

5: Ocean View Hills Pkwy & Hidden Trails Rd

	•	•	₽î	†	~	/	+		
Movement	WBL	WBR	NBU	NBT	NBR	SBL	SBT		
Lane Configurations	ሻ	7	1	411	HOR	<u> </u>	^		
Traffic Volume (veh/h)	51	9	54	487	14	5	502		
Future Volume (veh/h)	51	9	54	487	14	5	502		
Number	7	14	, ,	6	16	5	2		
Initial Q (Qb), veh	0	0		0	0	0	0		
Ped-Bike Adj(A_pbT)	1.00	1.00		, and the second	0.96	1.00	, and the second		
Parking Bus, Adj	1.00	1.00		1.00	1.00	1.00	1.00		
	1863	1863		1863	1900	1863	1863		
Adj Flow Rate, veh/h	55	10		524	15	5	540		
Adj No. of Lanes	1	1		3	0	1	3		
Peak Hour Factor	0.93	0.93		0.93	0.93	0.93	0.93		
Percent Heavy Veh, %	2	2		2	2	2	2		
Cap, veh/h	86	77		3202	91	10	3716		
Arrive On Green	0.05	0.05		0.63	0.63	0.01	0.73		
Sat Flow, veh/h	1774	1583		5244	145	1774	5253		
Grp Volume(v), veh/h	55	10		349	190	5	540		
Grp Sat Flow(s), veh/h/lr		1583		1695	1831	1774	1695		
Q Serve(q_s), s	1.4	0.3		2.0	2.0	0.1	1.5		
Cycle Q Clear(g_c), s	1.4	0.3		2.0	2.0	0.1	1.5		
Prop In Lane	1.4	1.00		2.0	0.08	1.00	1.0		
		77		2138	1155		3716		
Lane Grp Cap(c), veh/h	86 0.64	0.13				10 0.52			
V/C Ratio(X)				0.16	0.16		0.15		
	1156	1032		2138	1155	149	3716		
HCM Platoon Ratio	1.00	1.00		1.00	1.00	1.00	1.00		
Upstream Filter(I)	1.00	1.00		1.00	1.00	1.00	1.00		
Uniform Delay (d), s/veh		21.7		3.6	3.6	23.6	1.9		
Incr Delay (d2), s/veh	7.7	0.8		0.2	0.3	38.1	0.1		
Initial Q Delay(d3),s/veh		0.0		0.0	0.0	0.0	0.0		
%ile BackOfQ(50%),veh		0.3		1.0	1.1	0.2	0.7		
LnGrp Delay(d),s/veh	29.9	22.4		3.8	3.9	61.7	2.0		
LnGrp LOS	C	С		A	A	<u>E</u>	A		
Approach Vol, veh/h	65			539			545		
Approach Delay, s/veh				3.8			2.6		
Approach LOS	С			Α			Α		
Timer	1	2	3	4	5	6	7	8	
Assigned Phs		2		4	5	6			
Phs Duration (G+Y+Rc)	, S	40.8		6.8	4.8	36.0			
Change Period (Y+Rc),	S	6.0		4.5	4.5	6.0			
Max Green Setting (Gm	ax), s	29.2		31.0	4.0	30.0			
Max Q Clear Time (q_c-		3.5		3.4	2.1	4.0			
Green Ext Time (p_c), s		3.4		0.1	0.0	3.1			
Intersection Summary									
HCM 2010 Ctrl Delay			4.6						
HCM 2010 LOS			А						
			- '						
Notes									

		→	`	√	←	•	•	†	<u> </u>	\		√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^	7	ሻሻ	†	7	ች	^	1	ሻሻ	^	7
Traffic Volume (veh/h)	0	0	5	257	1	67	5	347	553	152	487	1
Future Volume (veh/h)	0	0	5	257	1	67	5	347	553	152	487	1
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	Ü	1.00	1.00	, i	0.98	1.00	Ŭ	0.99	1.00		0.97
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863
Adj Flow Rate, veh/h	0	0	5	279	1	73	5	377	601	165	529	1
Adj No. of Lanes	1	2	1	2	1	1	1	2	1	2	2	1
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	2	190	96	503	502	418	12	1631	720	245	1859	803
Arrive On Green	0.00	0.00	0.05	0.15	0.27	0.27	0.01	0.46	0.46	0.07	0.53	0.53
Sat Flow, veh/h	1774	3539	1583	3442	1863	1551	1774	3539	1564	3442	3539	1528
Grp Volume(v), veh/h	0	0	5	279	1	73	5	377	601	165	529	1320
		1770	1583	1721	1863	1551	5 1774	1770	1564	1721	1770	1528
Grp Sat Flow(s), veh/h/lr	0.0	0.0	0.2	5.6	0.0	2.7	0.2	4.8	25.3	3.5	6.3	0.0
Q Serve(g_s), s	0.0	0.0	0.2	5.6	0.0	2.7	0.2	4.8	25.3	3.5	6.3	0.0
Cycle Q Clear(g_c), s		0.0			0.0			4.ŏ		1.00	0.3	1.00
Prop In Lane	1.00	100	1.00	1.00	EUO	1.00	1.00	1401	1.00		1050	803
Lane Grp Cap(c), veh/h		190	96	503	502	418	12	1631	720	245	1859	
V/C Ratio(X)	0.00	0.00	0.05	0.55	0.00	0.17	0.43	0.23	0.83	0.67	0.28	0.00
Avail Cap(c_a), veh/h	260	727	336	505	502	418	118	1631	720	262	1859	803
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	0.00	0.00	1.00	1.00	1.00	1.00	0.98	0.98	0.98	1.00	1.00	1.00
Uniform Delay (d), s/veb		0.0	33.2	29.7	20.0	21.0	37.1	12.2	17.7	34.0	9.9	8.5
Incr Delay (d2), s/veh	0.0	0.0	0.2	1.3	0.0	0.2	22.5	0.3	10.8	6.1	0.4	0.0
Initial Q Delay(d3),s/veh		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),vel		0.0	0.1	2.8	0.0	1.2	0.2	2.4	12.9	1.9	3.1	0.0
LnGrp Delay(d),s/veh	0.0	0.0	33.4	31.1	20.0	21.2	59.6	12.5	28.5	40.1	10.3	8.5
LnGrp LOS			<u>C</u>	С	C	С	<u>E</u>	В	С	D	В	<u> </u>
Approach Vol, veh/h		5			353			983			695	
Approach Delay, s/veh		33.4			29.0			22.5			17.4	
Approach LOS		С			С			С			В	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc)	, \$0.0	39.7	16.2	9.1	5.2	44.5	0.0	25.3				
Change Period (Y+Rc),	\$ 4.7	5.1	* 5.2	5.1	* 4.7	5.1	* 5.2	5.1				
Max Green Setting (Gm		22.8	* 11	15.4	* 5	23.5	* 11	15.4				
Max Q Clear Time (g_c-	•	27.3	7.6	2.2	2.2	8.3	0.0	4.7				
Green Ext Time (p_c), s		0.0	0.3	0.0	0.0	2.8	0.0	0.1				
Intersection Summary												
HCM 2010 Ctrl Delay			21.9									
HCM 2010 Cur belay			21.9 C									
			C									
Notes												

7: Caliente Ave & SR-905 WB Ramp

	•	→	\searrow	•	•	•	1	†		/	ļ	✓
Movement E	BL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					ની	7	ሻ	ተተተ			የ	
Traffic Volume (veh/h)	0	0	0	21	0	59	276	812	0	0	246	469
Future Volume (veh/h)	0	0	0	21	0	59	276	812	0	0	246	469
Number				3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh				0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)				1.00		1.00	1.00		1.00	1.00		0.97
Parking Bus, Adj				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln				1900	1863	1863	1863	1863	0	0	1863	1900
Adj Flow Rate, veh/h				23	0	65	303	892	0	0	270	515
Adj No. of Lanes				0	1	1	1	3	0	0	3	0
Peak Hour Factor				0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Percent Heavy Veh, %				2	2	2	2	2	0	0.71	2	2
Cap, veh/h				103	0	92	325	4126	0	0	1925	870
Arrive On Green				0.06	0.00	0.06	0.18	0.81	0.00	0.00	0.57	0.57
Sat Flow, veh/h				1774	0.00	1583	1774	5253	0.00	0.00	3558	1532
Grp Volume(v), veh/h				23	0	65	303	892	0	0	270	515
Grp Sat Flow(s), veh/h/ln				1774	0	1583	1774	1695	0	0	1695	1532
Q Serve(g_s), s				1.0	0.0	3.1	13.1	3.1	0.0	0.0	2.9	17.1
Cycle Q Clear(g_c), s				1.0	0.0	3.1	13.1	3.1	0.0	0.0	2.9	17.1
				1.00	0.0	1.00	1.00	J. I	0.00	0.00	2.9	1.00
Prop In Lane				1.00	0	92	325	4126	0.00	0.00	1925	870
Lane Grp Cap(c), veh/h				0.22	0.00	0.71	0.93		0.00		0.14	
//C Ratio(X)								0.22		0.00	1925	0.59 870
Avail Cap(c_a), veh/h				350	1.00	313	325	4126	1.00	1.00		
HCM Platoon Ratio				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Jpstream Filter(I)				1.00	0.00	1.00	0.70	0.70	0.00	0.00	0.95	0.95
Jniform Delay (d), s/veh				35.1	0.0	36.1	31.4	1.7	0.0	0.0	7.9	11.0
ncr Delay (d2), s/veh				1.1	0.0	9.7	25.7	0.1	0.0	0.0	0.1	2.8
nitial Q Delay(d3),s/veh				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	l			0.5	0.0	1.6	8.7	1.4	0.0	0.0	1.4	7.8
_nGrp Delay(d),s/veh				36.2	0.0	45.8	57.0	1.8	0.0	0.0	8.1	13.8
nGrp LOS				D		D	<u>E</u>	A			A	В
Approach Vol, veh/h					88			1195			785	
Approach Delay, s/veh					43.3			15.8			11.8	
pproach LOS					D			В			В	
<u>Fimer</u>	1	2	3	4	5	6	7	8				
Assigned Phs		2			5	6		8				
Phs Duration (G+Y+Rc), s		68.4			19.0	49.4		9.6				
Change Period (Y+Rc), s		5.1			* 4.7	5.1		5.1				
Max Green Setting (Gmax)), s	21.9			* 14	32.9		15.4				
Max Q Clear Time (g_c+I1)	•	5.1			15.1	19.1		5.1				
Green Ext Time (p_c), s		5.2			0.0	4.3		0.1				
ntersection Summary												
 			15.4									
HCM 2010 Ctrl Delay			10.4									
HCM 2010 Ctrl Delay												
HCM 2010 Ctrl Delay HCM 2010 LOS Notes			В									

•	٠.	→	`*	•	←	•	•	†	<u> </u>	/	ļ	4
Movement EB	L	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
	ኘ	4						ተ ተጉ		ች	^	
Traffic Volume (veh/h) 58	-	1	486	0	0	0	0	511	59	89	264	0
Future Volume (veh/h) 58		1	486	0	0	0	0	511	59	89	264	0
Number	7	4	14				5	2	12	1	6	16
	0	0	0				0	0	0	0	0	0
Ped-Bike Adj(A_pbT) 1.0			1.00				1.00		0.99	1.00		1.00
Parking Bus, Adj 1.0		1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln 186		1863	1900				0	1863	1900	1863	1863	0
Adj Flow Rate, veh/h 65		88	593				0	623	72	109	322	0
Adj No. of Lanes	1	1	0				0	3	0	1	2	0
Peak Hour Factor 0.8		0.82	0.82				0.82	0.82	0.82	0.82	0.82	0.82
Percent Heavy Veh, %	2	2	2				0.02	2	2	2	2	0.02
Cap, veh/h 75		89	598				0	1378	157	138	1553	0
Arrive On Green 0.4		0.43	0.43				0.00	0.30	0.30	0.08	0.44	0.00
Sat Flow, veh/h 177		209	1406				0.00	4791	528	1774	3632	0.00
Grp Volume(v), veh/h 65		0	681				0	455	240	109	322	0
Grp Sat Flow(s), veh/h/ln177		0	1615				0	1695	1761	1774	1770	0
Q Serve(g_s), s 25.		0.0	31.4				0.0	8.2	8.3	4.5	4.2	0.0
Cycle Q Clear(g_c), s 25.		0.0	31.4				0.0	8.2	8.3	4.5	4.2	0.0
Prop In Lane 1.0		0.0	0.87				0.00	O.Z	0.30	1.00	4.2	0.00
Lane Grp Cap(c), veh/h 75		0	687				0.00	1010	525	1.00	1553	0.00
V/C Ratio(X) 0.8		0.00	0.99				0.00	0.45	0.46	0.79	0.21	0.00
		0.00	687				0.00	1010	525	149	1553	0.00
Avail Cap(c_a), veh/h 75 HCM Platoon Ratio 1.0		1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I) 1.0		0.00	1.00				0.00	1.00	1.00	0.96	0.96	0.00
Uniform Delay (d), s/veh 19.		0.0	21.4				0.00	21.3	21.4	34.0	13.0	0.00
Incr Delay (d2), s/veh 10.		0.0	32.1				0.0	1.5	21.4	21.7	0.3	0.0
Initial Q Delay(d3), s/veh 0.		0.0	0.0				0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/lin4.		0.0	19.9				0.0	4.0	4.4	3.0	2.1	0.0
LnGrp Delay(d), s/veh 30.		0.0	53.6				0.0	22.8	24.3	55.7	13.3	0.0
, ,,,	s C	0.0	55.0 D				0.0	22.0 C	24.3 C	55.7 E	13.3 B	0.0
		1337	U					695	C		431	
Approach Vol, veh/h Approach Delay, s/veh		42.2						23.3			24.0	
Approach LOS		42.2 D						23.3 C			24.0 C	
		D						C			C	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4		6						
Phs Duration (G+Y+Rc), \$0.		27.4		37.0		38.0						
Change Period (Y+Rc), \$ 4.		5.1		5.1		5.1						
Max Green Setting (Gmax),		21.9		31.9		32.9						
Max Q Clear Time (g_c+l16),		10.3		33.4		6.2						
Green Ext Time (p_c), s 0.	0	3.2		0.0		1.9						
Intersection Summary												
HCM 2010 Ctrl Delay			33.7									
HCM 2010 LOS			33.7 C									
			U									
Notes												

Intersection	-											
Intersection Delay, s/ve												
Intersection LOS	F											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		ሻ	†	7	ች	ħβ		ች	ħβ	
Traffic Vol, veh/h	365	1	7	0	1	55	4	195	0	33	277	425
Future Vol, veh/h	365	1	7	0	1	55	4	195	0	33	277	425
Peak Hour Factor	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mymt Flow	537	1	10	0	1	81	6	287	0	49	407	625
Number of Lanes	1	1	0	1	1	1	1	2	0	1	2	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	3			2			3			3		
Conflicting Approach Le				NB			EB			WB		
Conflicting Lanes Left	3			3			2			3		
Conflicting Approach R				SB			WB			EB		
Conflicting Lanes Right				35			3			2		
HCM Control Delay	29.4			15.3			16.2			210.9		
HCM LOS	29.4 D			13.3 C			10.2 C			210.9 F		
HOW LOS	U			C			C			Г		
Lane								NBLn2V				
Vol Left, %		100%	0%	0%	100%	96%	0%	0%		100%	0%	0%
Vol Thru, %		0%	100%	100%	0%	1%	100%	100%	0%		100%	18%
Vol Right, %		0%	0%	0%	0%	4%	0%	0%		0%	0%	82%
Sign Control		Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane		4	98	98	186	187	0	1	55	33	185	517
LT Vol		4	0	0	186	179	0	0	0	33	0	0
Through Vol		0	98	98	0	1	0	1	0	0	185	92
RT Vol		0	0	0	0	7	0	0	55	0	0	425
Lane Flow Rate		6	143	143	274	275	0	1	81	49	272	761
Geometry Grp		8	8	8	8	8	8	8	8	8	8	8
Degree of Util (X)		0.016	0.365	0.296	0.67	0.669	0	0.004	0.206	0.116	0.609	1.581
Departure Headway (H	d) 1	10.512	9.992	8.189	9.5	9.452	10.735	10.735	10.016	8.588	8.074	7.483
Convergence, Y/N		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Cap		343	363	442	383	385	0	335	361	418	448	487
Service Time			7.692		7.2					6.331		
HCM Lane V/C Ratio		0.017		0.324	0.715	0.714		0.003			0.607	
HCM Control Delay		13.4	18.3	14.3	29.5	29.3	13.4	13.5	15.3	12.5		290.8
HOMI		- D					- N.I					

B C B D D N B C B C F

1.6 1.2 4.7 4.7 0 0 0.8 0.4

LOS Engineering, Inc.

HCM Lane LOS

HCM 95th-tile Q

0

4 41.6

Intersection						
Int Delay, s/veh	1					
	EDI	EDT	MDT	WIDD	CDI	CDD
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	0	^	^	7	٥٦	70
Traffic Vol, veh/h	0	705	253	1	35	72
Future Vol, veh/h	0	705	253	1	35	72
Conflicting Peds, #/hr	_ 0	0	0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	-	-	-	400	-	0
Veh in Median Storage,	# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	91	91	91	91	91	91
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	775	278	1	38	79
Major/Minor Ma	ajor1	N	Major2	Λ	/linor2	
Conflicting Flow All	<u> </u>	0	- viajoi 2	0	588	139
Stage 1	_	-	-	-	278	137
Stage 2				_	310	_
Critical Hdwy	-	-		-	5.74	7.14
Critical Hdwy Stg 1		-		-	6.64	7.14
Critical Hdwy Stg 2	-	-	-	-	6.04	-
Follow-up Hdwy	-	-	-	-	3.82	3.92
			-		496	751
Pot Cap-1 Maneuver	0	-	-	-		
Stage 1	0	-	-	-	652	-
Stage 2	0	-	-	-	657	-
Platoon blocked, %		-	-	-	407	751
Mov Cap-1 Maneuver	-	-	-	-	496	751
Mov Cap-2 Maneuver	-	-	-	-	496	-
Stage 1	-	-	-	-	652	-
Stage 2	-	-	-	-	657	-
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		10.4	
HCM LOS	U		U		В	
TOW LOO					U	
Minor Lane/Major Mvmt		EBT	WBT	WBR S		
Capacity (veh/h)		-	-	-	, 0 1	
		-	-	-	0.105	
HCM Lane V/C Ratio						
HCM Control Delay (s)		-	-	-		
HCM Control Delay (s) HCM Lane LOS		-	-	-	В	
HCM Control Delay (s)		- -	- -			

12: Otay Mesa Rd & Corporate Center Dr

	۶	→	F	←	•	/	4	
Movement	EBL	EBT	WBU	WBT	WBR	SBL	SBR	
Lane Configurations	ሻሻ	ተተተ	Ð	^	7	ሻ	77	
Traffic Volume (veh/h)	325	320	1	197	38	28	88	
Future Volume (veh/h)	325	320	1	197	38	28	88	
Number	5	2		6	16	7	14	
Initial Q (Qb), veh	0	0		0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00				1.00	1.00	1.00	
Parking Bus, Adj	1.00	1.00		1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln	1863	1863		1863	1863	1863	1863	
Adj Flow Rate, veh/h	365	360		221	43	31	99	
Adj No. of Lanes	2	3		3	1	1	2	
Peak Hour Factor	0.89	0.89		0.89	0.89	0.89	0.89	
Percent Heavy Veh, %	2	2		2	2	2	2	
Cap, veh/h	488	1691		697	216	915	1438	
Arrive On Green	0.14	0.33		0.14	0.14	0.52	0.52	
Sat Flow, veh/h	3442	5253		5253	1578	1774	2787	
Grp Volume(v), veh/h	365	360		221	43	31	99	
Grp Sat Flow(s), veh/h/ln	1721	1695		1695	1578	1774	1393	
Q Serve(g_s), s	7.6	3.8		2.9	1.8	0.6	1.3	
Cycle Q Clear(g_c), s	7.6	3.8		2.9	1.8	0.6	1.3	
	1.00	3.0		2.7	1.00	1.00	1.00	
Prop In Lane	488	1691		697	216	915	1438	
Lane Grp Cap(c), veh/h								
V/C Ratio(X)	0.75	0.21		0.32	0.20	0.03	0.07	
Avail Cap(c_a), veh/h	1015	3490		2352	730	915	1438	
HCM Platoon Ratio	1.00	1.00		1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00		1.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	30.7	17.9		29.0	28.6	8.9	9.1	
Incr Delay (d2), s/veh	2.3	0.1		0.3	0.4	0.1	0.1	
Initial Q Delay(d3),s/veh	0.0	0.0		0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	3.8	1.8		1.4	0.8	0.3	1.5	
LnGrp Delay(d),s/veh	33.1	17.9		29.3	29.0	9.0	9.2	
LnGrp LOS	С	В		С	С	A	A	
Approach Vol, veh/h		725		264		130		
Approach Delay, s/veh		25.6		29.2		9.1		
Approach LOS		С		С		А		
Timer	1	2	3	4	5	6	7	
Assigned Phs		2		4	5	6		
Phs Duration (G+Y+Rc), s		32.1		42.5	14.6	17.5		
Change Period (Y+Rc), s		7.3		4.0	4.0	* 7.3		
Max Green Setting (Gmax), s		51.2		38.5	22.0	* 35		
Max Q Clear Time (g_c+l1), s		5.8		3.3	9.6	4.9		
Green Ext Time (p_c), s		2.3		0.4	1.0	1.5		
Intersection Summary								
HCM 2010 Ctrl Delay			24.5					
HCM 2010 Citr Delay			24.5 C					
Notes								

Intersection												
Int Delay, s/veh	0.7											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ተ ተኈ			ተተተ	7			7			7
Traffic Vol, veh/h	0	430	3	0	272	34	0	0	5	0	0	47
Future Vol, veh/h	0	430	3	0	272	34	0	0	5	0	0	47
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	500	-	-	0	-	-	0
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	467	3	0	296	37	0	0	5	0	0	51
Major/Minor N	Major1			Major2		N	/linor1		N	Minor2		
Conflicting Flow All	-	0	0	-	-	0	-	-	235	-	-	148
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	-	-	-	7.14	-	-	7.14
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	-	-	-	3.92	-	-	3.92
Pot Cap-1 Maneuver	0	-	-	0	-	-	0	0	653	0	0	741
Stage 1	0	-	-	0	-	-	0	0	-	0	0	-
Stage 2	0	-	-	0	-	-	0	0	-	0	0	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	-	-	-	-	-	-	-	-	653	-	-	741
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Ü												
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			0			10.6			10.2		
HCM LOS							В			В		
Minor Lane/Major Mvm	t I	NBLn1	EBT	EBR	WBT	WBR S	SBLn1					
Capacity (veh/h)		653	-	-	-	-	741					
HCM Lane V/C Ratio		0.008	_	_	_		0.069					
HCM Control Delay (s)		10.6	-	-	-	-	10.2					
HCM Lane LOS		В	-	-	_	_	В					
HCM 95th %tile Q(veh)		0	-	-	-	-	0.2					
2(1011)												

	•	→	•	•	←	•	1	†	<i>></i>	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	ተተተ	7	ሻሻ	ተተተ	7	ሻ	₽		ሻ		77
Traffic Volume (veh/h)	126	118	105	37	137	116	54	33	38	86	23	63
Future Volume (veh/h)	126	118	105	37	137	116	54	33	38	86	23	63
Number	3	8	18	7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.99	1.00		1.00	1.00		0.99	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1863	1863	1863	1863	1900	1863	1863	1863
Adj Flow Rate, veh/h	135	127	113	40	147	125	58	35	41	92	25	68
Adj No. of Lanes	2	3	1	2	3	1	1	1	0	1	1	2
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	218	778	239	106	613	191	74	348	407	118	880	1316
Arrive On Green	0.06	0.15	0.15	0.03	0.12	0.12	0.04	0.45	0.45	0.07	0.47	0.47
Sat Flow, veh/h	3442	5085	1562	3442	5085	1583	1774	777	910	1774	1863	2787
Grp Volume(v), veh/h	135	127	113	40	147	125	58	0	76	92	25	68
Grp Sat Flow(s), veh/h/ln	1721	1695	1562	1721	1695	1583	1774	0	1687	1774	1863	1393
Q Serve(g_s), s	2.7	1.5	4.7	0.8	1.8	5.3	2.3	0.0	1.8	3.6	0.5	0.9
Cycle Q Clear(g_c), s	2.7	1.5	4.7	0.8	1.8	5.3	2.3	0.0	1.8	3.6	0.5	0.9
Prop In Lane	1.00	1.0	1.00	1.00	1.0	1.00	1.00	0.0	0.54	1.00	0.5	1.00
Lane Grp Cap(c), veh/h	218	778	239	106	613	191	74	0	755	118	880	1316
V/C Ratio(X)	0.62	0.16	0.47	0.38	0.24	0.66	0.79	0.00	0.10	0.78	0.03	0.05
Avail Cap(c_a), veh/h	415	2960	909	220	2671	832	227	0.00	755	176	880	1316
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	32.2	25.9	27.2	33.5	28.1	29.6	33.4	0.0	11.3	32.4	9.9	10.1
Incr Delay (d2), s/veh	2.8	0.1	1.5	2.2	0.2	3.8	16.6	0.0	0.3	12.0	0.1	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.4	0.7	2.1	0.4	0.0	2.5	1.5	0.0	0.0	2.2	0.0	0.0
LnGrp Delay(d),s/veh	35.0	26.0	28.7	35.7	28.3	33.4	50.0	0.0	11.5	44.4	10.0	10.1
LnGrp LOS	33.0 C	20.0 C	20.7 C	33.7 D	20.3 C	33.4 C	50.0 D	0.0	11.5 B	44.4 D	В	В
			C	U		C	D	124	ь	D		
Approach Vol, veh/h		375			312			134			185	
Approach LOS		30.1			31.3			28.2			27.1	
Approach LOS		С			С			С			С	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	6.9	40.7	8.5	14.4	8.7	38.9	6.2	16.7				
Change Period (Y+Rc), s	4.0	7.4	4.0	5.9	4.0	* 7.4	4.0	5.9				
Max Green Setting (Gmax), s	9.0	29.2	8.5	37.0	7.0	* 32	4.5	41.0				
Max Q Clear Time (g_c+l1), s	4.3	2.9	4.7	7.3	5.6	3.8	2.8	6.7				
Green Ext Time (p_c), s	0.0	0.3	0.1	1.2	0.0	0.3	0.0	1.1				
Intersection Summary												
HCM 2010 Ctrl Delay			29.6									
HCM 2010 LOS			С									
Notes												

	۶	→	•	€	←	•	•	†	~	/	↓	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		7	ħβ		7	∱ ∱	
Traffic Volume (veh/h)	14	1	4	13	0	53	4	563	25	147	471	20
Future Volume (veh/h)	14	1	4	13	0	53	4	563	25	147	471	20
Number	3	8	18	7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		0.99	1.00		0.99
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1863	1900	1900	1863	1900	1863	1863	1900	1863	1863	1900
Adj Flow Rate, veh/h	16	1	5	15	0	60	5	640	28	167	535	23
Adj No. of Lanes	0	1	0	0	1	0	1	2	0	1	2	0
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	46	3	14	29	0	116	10	1248	55	211	1642	71
Arrive On Green	0.04	0.04	0.04	0.09	0.00	0.09	0.01	0.36	0.36	0.12	0.48	0.48
Sat Flow, veh/h	1258	79	393	324	0	1294	1774	3454	151	1774	3456	148
Grp Volume(v), veh/h	22	0	0	75	0	0	5	328	340	167	274	284
Grp Sat Flow(s),veh/h/ln	1730	0	0	1618	0	0	1774	1770	1835	1774	1770	1835
Q Serve(g_s), s	0.6	0.0	0.0	2.3	0.0	0.0	0.1	7.4	7.4	4.7	4.9	4.9
Cycle Q Clear(g_c), s	0.6	0.0	0.0	2.3	0.0	0.0	0.1	7.4	7.4	4.7	4.9	4.9
Prop In Lane	0.73		0.23	0.20		0.80	1.00		0.08	1.00		0.08
Lane Grp Cap(c), veh/h	64	0	0	145	0	0	10	639	663	211	841	872
V/C Ratio(X)	0.35	0.00	0.00	0.52	0.00	0.00	0.53	0.51	0.51	0.79	0.33	0.33
Avail Cap(c_a), veh/h	918	0	0	858	0	0	143	639	663	265	841	872
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	23.9	0.0	0.0	22.1	0.0	0.0	25.3	12.7	12.7	21.8	8.3	8.3
Incr Delay (d2), s/veh	3.2	0.0	0.0	2.8	0.0	0.0	38.4	2.9	2.8	12.0	1.0	1.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.4	0.0	0.0	1.1	0.0	0.0	0.2	4.1	4.2	3.0	2.6	2.7
LnGrp Delay(d),s/veh	27.1	0.0	0.0	24.9	0.0	0.0	63.6	15.7	15.6	33.8	9.3	9.3
LnGrp LOS	С			С			E	В	В	С	A	A
Approach Vol, veh/h		22			75			673			725	
Approach Delay, s/veh		27.1			24.9			16.0			14.9	
Approach LOS		С			С			В			В	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	4.7	30.0		9.5	10.5	24.2		6.8				
Change Period (Y+Rc), s	4.4	* 5.8		4.9	4.4	5.8		4.9				
Max Green Setting (Gmax), s	4.1	* 22		27.0	7.6	18.4		27.0				
Max Q Clear Time (g_c+I1), s	2.1	6.9		4.3	6.7	9.4		2.6				
Green Ext Time (p_c), s	0.0	2.6		0.3	0.0	2.5		0.1				
Intersection Summary												
HCM 2010 Ctrl Delay			16.1									
HCM 2010 LOS			В									
Notes												

Intersection						
Int Delay, s/veh	0.9					
		EDD	NDI	NDT	CDT	CDD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥	0.0		^	^	F.0
Traffic Vol, veh/h	37	22	21	548	447	50
Future Vol, veh/h	37	22	21	548	447	50
Conflicting Peds, #/hr	8	8	8	0	0	8
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	225	-	-	-
Veh in Median Storage	, # 1	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	86	86	86	86	86	86
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	43	26	24	637	520	58
Major/Minor N	/inar2		Acier1		/olor)	
	/linor2		/lajor1		/lajor2	
Conflicting Flow All	932	305	586	0	-	0
Stage 1	557	-	-	-	-	-
Stage 2	375	-	-	-	-	-
Critical Hdwy	6.84	6.94	4.14	-	-	-
Critical Hdwy Stg 1	5.84	-	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-
Follow-up Hdwy	3.52	3.32	2.22	-	-	-
Pot Cap-1 Maneuver	265	691	985	-	-	-
Stage 1	537	-	-	-	-	-
Stage 2	665	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	255	682	978	-	-	-
Mov Cap-2 Maneuver	376	-	-	-	-	-
Stage 1	520	-	-	-	-	-
Stage 2	660	_	_	_	_	_
olago z	000					
Approach	EB		NB		SB	
HCM Control Delay, s	14.4		0.3		0	
HCM LOS	В					
Minor Lane/Major Mvm	t	NBL	MRT	EBLn1	SBT	SBR
	l					JUK
Capacity (veh/h)		978	-	452	-	-
HCM Cantral Palace (2)		0.025		0.152	-	-
HCM Control Delay (s)		8.8	-		-	-
HCM Lane LOS		A	-	В	-	-
HCM 95th %tile Q(veh)		0.1	-	0.5	-	-

3: Ocean View Hills Pkwy & Del Sol Blvd/Breakers Way

	۶	→	•	•	←	•	•	†	~	/	↓	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	↑	7	7	₽		ሻሻ	↑ ↑₽		ሻ	∱ ∱	
Traffic Volume (veh/h)	99	2	77	4	3	20	115	446	11	35	283	153
Future Volume (veh/h)	99	2	77	4	3	20	115	446	11	35	283	153
Number	3	8	18	7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.99	0.99		1.00	1.00		0.97	1.00		0.99
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1863	1900	1863	1863	1900	1863	1863	1900
Adj Flow Rate, veh/h	121	2	94	5	4	24	140	544	13	43	345	187
Adj No. of Lanes	1	1	1	1	1	0	2	3	0	1	2	0
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	415	293	246	366	29	173	229	2381	57	58	964	512
Arrive On Green	0.09	0.16	0.16	0.06	0.12	0.12	0.07	0.47	0.47	0.03	0.43	0.43
Sat Flow, veh/h	1774	1863	1562	1774	231	1384	3442	5105	122	1774	2226	1183
Grp Volume(v), veh/h	121	2	94	5	0	28	140	361	196	43	273	259
Grp Sat Flow(s), veh/h/ln	1774	1863	1562	1774	0	1615	1721	1695	1837	1774	1770	1639
Q Serve(g_s), s	3.9	0.1	3.6	0.2	0.0	1.0	2.7	4.3	4.3	1.6	6.9	7.2
Cycle Q Clear(g_c), s	3.9	0.1	3.6	0.2	0.0	1.0	2.7	4.3	4.3	1.6	6.9	7.2
Prop In Lane	1.00	0	1.00	1.00	0.0	0.86	1.00		0.07	1.00	0.7	0.72
Lane Grp Cap(c), veh/h	415	293	246	366	0	202	229	1581	857	58	766	710
V/C Ratio(X)	0.29	0.01	0.38	0.01	0.00	0.14	0.61	0.23	0.23	0.74	0.36	0.37
Avail Cap(c_a), veh/h	696	1000	839	691	0	855	492	1581	857	201	766	710
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	22.3	23.9	25.4	22.6	0.0	26.2	30.5	10.7	10.7	32.2	12.8	12.8
Incr Delay (d2), s/veh	0.4	0.0	1.0	0.0	0.0	0.3	2.7	0.3	0.6	16.5	1.3	1.5
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.9	0.0	1.6	0.1	0.0	0.5	1.3	2.1	2.3	1.1	3.6	3.5
LnGrp Delay(d),s/veh	22.7	23.9	26.4	22.6	0.0	26.5	33.2	11.0	11.3	48.7	14.1	14.3
LnGrp LOS	C	C	C	C	0.0	C	C	В	В	D	В	В
Approach Vol, veh/h		217			33			697			575	
Approach Delay, s/veh		24.3			25.9			15.6			16.8	
Approach LOS		C C			C C			В			В	
• •												
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	8.9	34.7	10.4	13.3	6.6	37.0	8.2	15.5				
Change Period (Y+Rc), s	4.4	* 5.6	4.4	4.9	4.4	5.6	4.4	4.9				
Max Green Setting (Gmax), s	9.6	* 29	16.6	35.6	7.6	30.9	16.1	36.1				
Max Q Clear Time (g_c+I1), s	4.7	9.2	5.9	3.0	3.6	6.3	2.2	5.6				
Green Ext Time (p_c), s	0.2	2.9	0.2	0.1	0.0	3.2	0.0	0.3				
Intersection Summary												
HCM 2010 Ctrl Delay			17.5									
HCM 2010 Car belay			17.3 B									
Notes												

	۶	→	•	•	←	•	•	†	/	/	ļ	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		ች	f)		ሻ	↑ ↑		ሻ	ተ ተኈ	
Traffic Volume (veh/h)	3	0	5	13	0	28	1	559	21	45	321	0
Future Volume (veh/h)	3	0	5	13	0	28	1	559	21	45	321	0
Number	3	8	18	7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.99	1.00		1.00	1.00		0.97	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1863	1900	1863	1863	1900	1863	1863	1900	1863	1863	1900
Adj Flow Rate, veh/h	4	0	6	17	0	36	1	717	27	58	412	0
Adj No. of Lanes	0	1	0	1	1	0	1	3	0	1	3	0
Peak Hour Factor	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	15	0	23	78	0	70	3	2680	101	75	2922	0
Arrive On Green	0.02	0.00	0.02	0.04	0.00	0.04	0.00	0.53	0.53	0.04	0.57	0.00
Sat Flow, veh/h	656	0	985	1774	0	1577	1774	5024	189	1774	5253	0
Grp Volume(v), veh/h	10	0	0	17	0	36	1	483	261	58	412	0
Grp Sat Flow(s), veh/h/lr		0	0	1774	0	1577	1774	1695	1822	1774	1695	0
Q Serve(g_s), s	0.3	0.0	0.0	0.5	0.0	1.3	0.0	4.4	4.4	1.8	2.1	0.0
Cycle Q Clear(q_c), s	0.3	0.0	0.0	0.5	0.0	1.3	0.0	4.4	4.4	1.8	2.1	0.0
Prop In Lane	0.40	0.0	0.60	1.00	0.0	1.00	1.00	1.1	0.10	1.00	2.1	0.00
Lane Grp Cap(c), veh/h		0	0.00	78	0	70	3	1808	972	75	2922	0.00
V/C Ratio(X)	0.26	0.00	0.00	0.22	0.00	0.52	0.32	0.27	0.27	0.77	0.14	0.00
Avail Cap(c_a), veh/h	899	0.00	0.00	1007	0.00	895	132	1808	972	301	2922	0.00
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/vel		0.0	0.0	26.1	0.0	26.4	28.2	7.2	7.2	26.8	5.6	0.0
Incr Delay (d2), s/veh	3.7	0.0	0.0	1.4	0.0	5.8	49.9	0.4	0.7	15.4	0.1	0.0
Initial Q Delay(d3),s/veh		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),vel		0.0	0.0	0.3	0.0	0.7	0.1	2.1	2.4	1.2	1.0	0.0
LnGrp Delay(d),s/veh	30.8	0.0	0.0	27.5	0.0	32.3	78.1	7.5	7.9	42.2	5.7	0.0
LnGrp LOS	C	0.0	0.0	C C	0.0	C	70.1 E	Α.5	Α.,	D	Α	0.0
Approach Vol, veh/h		10			53		_	745	- ' '		470	
Approach Delay, s/veh		30.8			30.7			7.8			10.2	
Approach LOS		30.0 C			30.7 C			7.0 A			В	
											D	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc)		38.5		7.4	6.8	36.2		6.2				
Change Period (Y+Rc),		6.0		4.9	4.4	6.0		4.9				
Max Green Setting (Gm		32.5		32.1	9.6	27.1		31.0				
Max Q Clear Time (g_c		4.1		3.3	3.8	6.4		2.3				
Green Ext Time (p_c), s	0.0	2.6		0.2	0.0	4.3		0.0				
Intersection Summary												
HCM 2010 Ctrl Delay			9.8									
HCM 2010 LOS			Α									

_	•	•	₽ī	†	<u> </u>	/	ļ
Movement	WBL	WBR	NBU	NBT	NBR	SBL	SBT
Lane Configurations	ሻ	7		ተ ተኈ		ሻ	^ ^
Traffic Volume (veh/h)	27	9	33	566	48	8	331
Future Volume (veh/h)	27	9	33	566	48	8	331
Number	7	14		6	16	5	2
Initial Q (Qb), veh	0	0		0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1.00		U	0.97	1.00	U
Parking Bus, Adj	1.00	1.00		1.00	1.00	1.00	1.00
	1863	1863		1863	1900	1863	1863
,		12		735	62		430
Adj Flow Rate, veh/h	35					10	
Adj No. of Lanes	1	1		3	0	1	3
Peak Hour Factor	0.77	0.77		0.77	0.77	0.77	0.77
Percent Heavy Veh, %	2	2		2	2	2	2
Cap, veh/h	69	62		3022	253	18	3759
Arrive On Green	0.04	0.04		0.63	0.63	0.01	0.74
	1774	1583		4936	400	1774	5253
Grp Volume(v), veh/h	35	12		521	276	10	430
Grp Sat Flow(s), veh/h/lr	11774	1583		1695	1778	1774	1695
Q Serve(g_s), s	0.9	0.3		3.1	3.2	0.3	1.1
Cycle Q Clear(g_c), s	0.9	0.3		3.1	3.2	0.3	1.1
Prop In Lane	1.00	1.00			0.22	1.00	
Lane Grp Cap(c), veh/h		62		2149	1127	18	3759
V/C Ratio(X)	0.51	0.19		0.24	0.24	0.54	0.11
	1162	1037		2149	1127	150	3759
HCM Platoon Ratio	1.00	1.00		1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00		1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh		22.0		3.8	3.8	23.3	1.8
Incr Delay (d2), s/veh	5.6	1.5		0.3	0.5	22.4	0.1
Initial Q Delay(d3),s/veh		0.0		0.0	0.0	0.0	0.1
%ile BackOfQ(50%),veh		0.0		1.5	1.7	0.0	0.0
· · ·		23.5		4.0	4.3	45.7	1.8
LnGrp Delay(d),s/veh	27.9						
LnGrp LOS	<u>C</u>	С		A 707	A	D	A 440
Approach Vol, veh/h	47			797			440
Approach Delay, s/veh				4.1			2.8
Approach LOS	С			Α			А
Timer	1	2	3	4	5	6	7
Assigned Phs		2		4	5	6	
Phs Duration (G+Y+Rc)	. S	41.0		6.3	5.0	36.0	
Change Period (Y+Rc),		6.0		4.5	4.5	6.0	
Max Green Setting (Gm		29.5		31.0	4.0	30.0	
Max Q Clear Time (g_c-		3.1		2.9	2.3	5.2	
Green Ext Time (p_c), s		2.7		0.1	0.0	4.9	
•		۷.,		5.1	5.0	1.7	
Intersection Summary							
HCM 2010 Ctrl Delay			4.5				
HCM 2010 LOS			Α				
Notes							
140103							

6: Caliente Ave/Ocean View Hills Pkwy & Otay Mesa rd

	ၨ	→	•	•	←	•	•	†	/	/	ļ	✓	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	ሻ	^	7	77	†	7	ሻ	^	7	16.56	^	7	
Traffic Volume (veh/h)	2	0	16	697	7	198	22	486	311	124	228	0	
Future Volume (veh/h)	2	0	16	697	7	198	22	486	311	124	228	0	
Number	7	4	14	3	8	18	5	2	12	1	6	16	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		0.98	1.00		0.99	1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863	
Adj Flow Rate, veh/h	2	0	18	774	8	220	24	540	346	138	253	0	
Adj No. of Lanes	1	2	1	2	1	1	1	2	1	2	2	1	
,	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2	
Cap, veh/h	11	220	139	844	562	466	46	1343	981	212	1470	658	
Arrive On Green	0.01	0.00	0.06	0.25	0.30	0.30	0.03	0.38	0.38	0.06	0.42	0.00	
	1774	3539	1583	3442	1863	1546	1774	3539	1562	3442	3539	1583	
Grp Volume(v), veh/h	2	0	18	774	8	220	24	540	346	138	253	0	
Grp Sat Flow(s), veh/h/ln		1770	1583	1721	1863	1546	1774	1770	1562	1721	1770	1583	
Q Serve(g_s), s	0.1	0.0	0.8	17.5	0.2	9.3	1.1	8.9	8.5	3.1	3.6	0.0	
Cycle Q Clear(g_c), s	0.1	0.0	0.8	17.5	0.2	9.3	1.1	8.9	8.5	3.1	3.6	0.0	
Prop In Lane	1.00	0.0	1.00	1.00	0.2	1.00	1.00	0.7	1.00	1.00	3.0	1.00	
Lane Grp Cap(c), veh/h	1.00	220	139	844	562	466	46	1343	981	212	1470	658	
V/C Ratio(X)	0.19	0.00	0.13	0.92	0.01	0.47	0.52	0.40	0.35	0.65	0.17	0.00	
Avail Cap(c_a), veh/h	244	606	312	852	562	466	111	1343	981	271	1470	658	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
	1.00	0.00	1.00	1.00	1.00	1.00	0.98	0.98	0.98	1.00	1.00	0.00	
Upstream Filter(I)		0.00	33.6	29.4	19.6	22.7	38.5	18.2	7.2	36.7	14.7	0.00	
Uniform Delay (d), s/veh							8.8		1.0	3.5	0.3		
Incr Delay (d2), s/veh	8.3	0.0	0.4	14.5	0.0	0.7		0.9				0.0	
Initial Q Delay(d3),s/veh		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh		0.0	0.4	10.0	0.1	4.1 23.5	0.6	4.5	3.9 8.2	1.6	1.8 15.0	0.0	
LnGrp Delay(d),s/veh	47.9	0.0	34.1	43.9	19.6		47.3	19.1				0.0	
LnGrp LOS	D	- 00	С	D	B	С	D	D10	A	D	B		
Approach Vol, veh/h		20			1002			910			391		
Approach Delay, s/veh		35.4			39.2			15.7			23.9		
Approach LOS		D			D			В			С		
Timer	1	2	3	4	5	6	7	8					
Assigned Phs	1	2	3	4	5	6	7	8					
Phs Duration (G+Y+Rc),	s9.6	35.5	24.8	10.1	6.8	38.3	5.7	29.2					
Change Period (Y+Rc),		5.1	* 5.2	5.1	* 4.7	5.1	* 5.2	5.1					
Max Green Setting (Gma		20.1	* 20	13.7	* 5	21.4	* 11	22.5					
Max Q Clear Time (g_c+		10.9	19.5	2.8	3.1	5.6	2.1	11.3					
Green Ext Time (p_c), s		3.1	0.1	0.0	0.0	1.2	0.0	0.5					
Intersection Summary													
HCM 2010 Ctrl Delay			27.4										
HCM 2010 Cur Delay			C C										
Notes													

7: Caliente Ave & SR-905 WB Ramp

٦	→	•	•	←	•	1	†	/	/	ţ	4	
Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations				र्स	7	*	^			41		
Traffic Volume (veh/h) 0	0	0	36	0	84	458	790	0	0	220	684	
Future Volume (veh/h) 0	0	0	36	0	84	458	790	0	0	220	684	
Number			3	8	18	5	2	12	1	6	16	
Initial Q (Qb), veh			0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)			1.00		1.00	1.00		1.00	1.00		0.91	
Parking Bus, Adj			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln			1900	1863	1863	1863	1863	0	0	1863	1900	
Adj Flow Rate, veh/h			43	0	101	552	952	0	0	265	824	
Adj No. of Lanes			0	1	1	1	3	0	0	3	0	
Peak Hour Factor			0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	
Percent Heavy Veh, %			2	2	2	2	2	0	0	2	2	
Cap, veh/h			139	0	124	503	4302	0	0	1788	760	
Arrive On Green			0.08	0.00	0.08	0.28	0.85	0.00	0.00	0.53	0.53	
Sat Flow, veh/h			1774	0.00	1583	1774	5253	0.00	0.00	3558	1441	
Grp Volume(v), veh/h			43	0	101	552	952	0	0	265	824	
Grp Sat Flow(s), veh/h/ln			1774	0	1583	1774	1695	0	0	1695	1441	
2 Serve(g_s), s			3.1	0.0	8.5	38.3	4.8	0.0	0.0	5.4	71.2	
Cycle Q Clear(q_c), s			3.1	0.0	8.5	38.3	4.8	0.0	0.0	5.4	71.2	
Prop In Lane			1.00	0.0	1.00	1.00	٦.٥	0.00	0.00	5.7	1.00	
_ane Grp Cap(c), veh/h			139	0	124	503	4302	0.00	0.00	1788	760	
V/C Ratio(X)			0.31	0.00	0.81	1.10	0.22	0.00	0.00	0.15	1.08	
Avail Cap(c_a), veh/h			204	0.00	182	503	4302	0.00	0.00	1788	760	
HCM Platoon Ratio			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Jpstream Filter(I)			1.00	0.00	1.00	0.55	0.55	0.00	0.00	0.71	0.71	
Uniform Delay (d), s/veh			58.7	0.00	61.2	48.3	2.0	0.00	0.0	16.4	31.9	
ncr Delay (d2), s/veh			1.2	0.0	15.9	59.8	0.1	0.0	0.0	0.1	53.3	
nitial Q Delay(d3),s/veh			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln			1.6	0.0	4.3	27.1	2.2	0.0	0.0	2.6	39.5	
LnGrp Delay(d),s/veh			60.0	0.0	77.1	108.2	2.2	0.0	0.0	16.5	85.2	
_nGrp LOS			60.0 E	0.0	77.1 E	108.2 F	2.0 A	0.0	0.0	10.5 B	85.2 F	
				1//	<u> </u>	ľ					Г	
Approach Vol, veh/h				144			1504			1089		
Approach LOS				72.0			41.0			68.5		
Approach LOS				E			D			E		
Fimer 1	2	3	4	5	6	7	8					
Assigned Phs	2			5	6		8					
Phs Duration (G+Y+Rc), s	119.3			43.0	76.3		15.7					
Change Period (Y+Rc), s	5.1			* 4.7	5.1		5.1					
Max Green Setting (Gmax), s				* 38	66.3		15.5					
Max Q Clear Time (g_c+I1), s	6.8			40.3	73.2		10.5					
Green Ext Time (p_c), s	7.5			0.0	0.0		0.2					
Intersection Summary												
HCM 2010 Ctrl Delay		53.6										
HCM 2010 Clif Belay		D										
		D										
Notes												

8: Caliente Ave & SR-905 EB Ramp

۶	→	•	•	←	•	1	†	<u> </u>	/	ļ	4	
Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	4						ተ ተጉ		ሻ	^	-	
Traffic Volume (veh/h) 565	4	322	0	0	0	0	681	76	98	170	0	
Future Volume (veh/h) 565	4	322	0	0	0	0	681	76	98	170	0	
Number 7	4	14	Ū	Ŭ	Ü	5	2	12	1	6	16	
Initial Q (Qb), veh 0	0	0				0	0	0	0	0	0	
Ped-Bike Adj(A_pbT) 1.00	U	1.00				1.00	U	0.99	1.00	U	1.00	
Parking Bus, Adj 1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln 1863	1863	1900				0	1863	1900	1863	1863	0	
Adj Flow Rate, veh/h 602	232	435				0	920	103	132	230	0	
Adj No. of Lanes 1	1	0				0	3	0	132	230	0	
Peak Hour Factor 0.74	0.74	0.74				0.74	0.74	0.74	0.74	0.74	0.74	
	2	0.74					0.74	0.74	0.74	2		
3 .	247	463				0	1370	153	165	1583	0	
• •	0.43	0.43					0.30	0.30	0.09	0.45	0.00	
Arrive On Green 0.43						0.00						
Sat Flow, veh/h 1774	581	1089				0	4804	517	1774	3632	0	
Grp Volume(v), veh/h 602	0	667				0	672	351	132	230	0	
Grp Sat Flow(s),veh/h/ln1774	0	1670				0	1695	1763	1774	1770	0	
Q Serve(g_s), s 23.6	0.0	30.6				0.0	13.9	14.0	5.8	3.1	0.0	
Cycle Q Clear(g_c), s 23.6	0.0	30.6				0.0	13.9	14.0	5.8	3.1	0.0	
Prop In Lane 1.00		0.65				0.00		0.29	1.00		0.00	
Lane Grp Cap(c), veh/h 754	0	710				0	1002	521	165	1583	0	
V/C Ratio(X) 0.80	0.00	0.94				0.00	0.67	0.67	0.80	0.15	0.00	
Avail Cap(c_a), veh/h 774	0	729				0	1002	521	184	1583	0	
HCM Platoon Ratio 1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I) 1.00	0.00	1.00				0.00	1.00	1.00	0.79	0.79	0.00	
Uniform Delay (d), s/veh 20.0	0.0	22.0				0.0	24.8	24.8	35.6	13.1	0.0	
Incr Delay (d2), s/veh 5.8	0.0	19.7				0.0	3.6	6.8	16.4	0.2	0.0	
Initial Q Delay(d3),s/veh 0.0	0.0	0.0				0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/lh2.7	0.0	17.8				0.0	7.0	7.8	3.6	1.5	0.0	
LnGrp Delay(d),s/veh 25.8	0.0	41.7				0.0	28.3	31.6	51.9	13.2	0.0	
LnGrp LOS C		D					С	С	D	В		
Approach Vol, veh/h	1269						1023			362		
Approach Delay, s/veh	34.1						29.4			27.3		
Approach LOS	С						С			C		
		_		_		_						
Timer 1	2	3	4	5	6	/	8					
Assigned Phs 1	2		4		6							
Phs Duration (G+Y+Rc), \$2.1	28.7		39.1		40.9							
Change Period (Y+Rc), \$ 4.7	5.1		5.1		5.1							
Max Green Setting (Gmax8, 3	21.9		34.9		34.9							
Max Q Clear Time (g_c+11),&	16.0		32.6		5.1							
Green Ext Time (p_c), s 0.0	3.0		1.5		1.3							
Intersection Summary												
HCM 2010 Ctrl Delay		31.4										
HCM 2010 Clif Delay		31.4 C										
		C										
Notes												

Intersection												
Intersection Delay, s/veh2	27.4											
Intersection LOS	D											
Movement I	EBL E	ЗТ	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	4		ሻ	†	7	ሻ	ħβ		ሻ	ħβ	
	326	5	7	4	2	110	5	308	6	92	171	192
Future Vol, veh/h	326	5	7	4	2	110	5	308	6	92	171	192
Peak Hour Factor (0.71 0.	71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
	459	7	10	6	3	155	7	434	8	130	241	270
Number of Lanes	1	1	0	1	1	1	1	2	0	1	2	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	3			2			3			3		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	3			3			2			3		
Conflicting Approach Righ	nNB			SB			WB			EB		
Conflicting Lanes Right	3			3			3			2		
J	26.6			18.9			29			29		
HCM LOS	D			С			D			D		
Lane	NBL	n1N	IBLn21	NBLn3	EBLn1	EBLn2\	NBLn1\	WBLn2V	VBLn3	SBLn1	SBLn2	SBLn3
Vol Left, %	100)%	0%	0%	100%	93%	100%	0%	0%	100%	0%	0%
Vol Thru, %	()%	100%	94%	0%	3%	0%	100%	0%		100%	23%
Vol Right, %	()%	0%	6%	0%	4%	0%	0%	100%	0%	0%	77%
Sign Control	St	ор	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane		5	205	109	170	168	4	2	110	92	114	249
LT Vol		5	0	0	170	156	4	0	0	92	0	0
Through Vol		0	205	103	0	5	0	2	0	0	114	57
RT Vol		^			_					^	Λ	100
		0	0	6	0	7	0	0	110	0	0	192
Lane Flow Rate		7	0 289	153	239	7 237	0 6	3	110 155	130	161	351
Lane Flow Rate Geometry Grp		7 8	289 8	153 8	239 8	237 8	6 8	3 8	155 8	130 8	161 8	351 8
	0.0	7 8	289	153 8 0.394	239	237 8 0.619	6 8 0.017	3 8 0.008	155 8 0.416	130 8 0.339	161 8 0.397	351 8 0.813
Geometry Grp	0.0 9.8	7 8 19	289 8 0.748 9.315	153 8	239 8	237 8 0.619	6 8 0.017	3 8 0.008 10.374	155 8 0.416 9.655	130 8 0.339 9.415	161 8 0.397	351 8 0.813
Geometry Grp Degree of Util (X)	9.8 Y	7 8 19 28 es	289 8 0.748 9.315 Yes	153 8 0.394 9.275 Yes	239 8 0.627 9.455 Yes	237 8 0.619 9.391 Yes	6 8 0.017 10.887 Yes	3 8 0.008 10.374 Yes	155 8 0.416 9.655 Yes	130 8 0.339 9.415 Yes	161 8 0.397 8.902 Yes	351 8 0.813 8.348 Yes
Geometry Grp Degree of Util (X) Departure Headway (Hd)	9.8 Y	7 8 19 28 es 64	289 8 0.748 9.315 Yes 388	153 8 0.394 9.275 Yes 387	239 8 0.627 9.455 Yes 382	237 8 0.619 9.391 Yes 384	6 8 0.017 10.887 Yes 328	3 8 0.008 10.374 Yes 344	155 8 0.416 9.655 Yes 372	130 8 0.339 9.415 Yes 382	161 8 0.397 8.902 Yes 405	351 8 0.813 8.348 Yes 435
Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time	9.8 Y	7 8 19 28 es 64 98	289 8 0.748 9.315 Yes 388 7.084	153 8 0.394 9.275 Yes 387 7.045	239 8 0.627 9.455 Yes 382 7.217	237 8 0.619 9.391 Yes 384 7.152	6 8 0.017 10.887 Yes 328 8.666	3 8 0.008 10.374 Yes 344 8.152	155 8 0.416 9.655 Yes 372 7.433	130 8 0.339 9.415 Yes 382 7.177	161 8 0.397 8.902 Yes 405 6.664	351 8 0.813 8.348 Yes 435 6.11
Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap	9.8 Y 3 7.5	7 8 19 28 es 64 98	289 8 0.748 9.315 Yes 388 7.084 0.745	153 8 0.394 9.275 Yes 387 7.045 0.395	239 8 0.627 9.455 Yes 382 7.217 0.626	237 8 0.619 9.391 Yes 384 7.152 0.617	6 8 0.017 10.887 Yes 328 8.666 0.018	3 8 0.008 10.374 Yes 344 8.152 0.009	155 8 0.416 9.655 Yes 372 7.433 0.417	130 8 0.339 9.415 Yes 382 7.177 0.34	161 8 0.397 8.902 Yes 405 6.664 0.398	351 8 0.813 8.348 Yes 435 6.11 0.807
Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time	9.8 Y 3 7.5	7 8 19 28 es 64 98	289 8 0.748 9.315 Yes 388 7.084	153 8 0.394 9.275 Yes 387 7.045	239 8 0.627 9.455 Yes 382 7.217	237 8 0.619 9.391 Yes 384 7.152	6 8 0.017 10.887 Yes 328 8.666	3 8 0.008 10.374 Yes 344 8.152	155 8 0.416 9.655 Yes 372 7.433	130 8 0.339 9.415 Yes 382 7.177	161 8 0.397 8.902 Yes 405 6.664	351 8 0.813 8.348 Yes 435 6.11

4 0.1

0

2 1.5

1.9

7.5

LOS Engineering, Inc.

HCM 95th-tile Q

0.1

1.8 4.1

PM Existing 11: Otay Mesa Rd & Emerald Crest Ct

Intersection						
Int Delay, s/veh	0.6					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		ተተተ	ተተተ	7		7
Traffic Vol, veh/h	0	435	860	16	20	42
Future Vol, veh/h	0	435	860	16	20	42
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	400	-	0
Veh in Median Storage,	, # -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	91	91	91	91	91	91
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	478	945	18	22	46
Major/Minor	Noior1	N	Majora		/linor2	
	/lajor1		Major2			472
Conflicting Flow All	-	0	-	0	1136	473
Stage 1	-	-	-	-	945	-
Stage 2	-	-	-	-	191	- 711
Critical Hdwy	-	-	-	-	5.74	7.14
Critical Hdwy Stg 1	-	-	-	-	6.64	-
Critical Hdwy Stg 2	-	-	-	-	6.04	-
Follow-up Hdwy	-	-	-	-	3.82	3.92
Pot Cap-1 Maneuver	0	-	-	-	265	460
Stage 1	0	-	-	-	261	-
Stage 2	0	-	-	-	756	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	-	-	-	-	265	460
Mov Cap-2 Maneuver	-	-	-	-	265	-
Stage 1	-	-	-	-	261	-
Stage 2	-	-	-	-	756	-
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		13.7	
HCM LOS	U		U		В	
HOW EOS						
Minor Lane/Major Mvmt	t	EBT	WBT	WBR S	SBLn1	
Capacity (veh/h)		-	-	-	460	
HCM Lane V/C Ratio		-	-	-	0.1	
HCM Control Delay (s)		-	-	-	13.7	
LICIALISIS LOC		_	_	-	В	
HCM Lane LOS HCM 95th %tile Q(veh)					0.3	

	۶	→	F	←	•	/	4	
Movement	EBL	EBT	WBU	WBT	WBR	SBL	SBR	
Lane Configurations	ሻሻ	† ††	Ð	^	7	ħ	77	
Traffic Volume (veh/h)	161	239	19	548	70	117	337	
Future Volume (veh/h)	161	239	19	548	70	117	337	
Number	5	2		6	16	7	14	
Initial Q (Qb), veh	0	0		0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00				1.00	1.00	1.00	
Parking Bus, Adj	1.00	1.00		1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln	1863	1863		1863	1863	1863	1863	
Adj Flow Rate, veh/h	181	269		616	79	131	379	
Adj No. of Lanes	2	3		3	1	1	2	
Peak Hour Factor	0.89	0.89		0.89	0.89	0.89	0.89	
Percent Heavy Veh, %	2	2		2	2	2	2	
Cap, veh/h	283	1680		988	308	918	1443	
Arrive On Green	0.08	0.33		0.19	0.19	0.52	0.52	
Sat Flow, veh/h	3442	5253		5253	1583	1774	2787	
Grp Volume(v), veh/h	181	269		616	79	131	379	ĺ
Grp Sat Flow(s),veh/h/ln	1721	1695		1695	1583	1774	1393	
Q Serve(g_s), s	3.8	2.8		8.3	3.1	2.9	5.6	
Cycle Q Clear(g_c), s	3.8	2.8		8.3	3.1	2.9	5.6	
Prop In Lane	1.00				1.00	1.00	1.00	
Lane Grp Cap(c), veh/h	283	1680		988	308	918	1443	
V/C Ratio(X)	0.64	0.16		0.62	0.26	0.14	0.26	
Avail Cap(c_a), veh/h	1018	3501		2359	735	918	1443	
HCM Platoon Ratio	1.00	1.00		1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00		1.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	33.1	17.6		27.5	25.4	9.3	10.0	
Incr Delay (d2), s/veh	2.4	0.0		0.6	0.4	0.3	0.4	
Initial Q Delay(d3),s/veh	0.0	0.0		0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	1.9	1.3		3.9	1.4	1.5	5.9	
LnGrp Delay(d),s/veh	35.5	17.7		28.1	25.8	9.7	10.5	
LnGrp LOS	D	В		С	С	Α	В	
Approach Vol, veh/h		450		695		510		
Approach Delay, s/veh		24.8		27.8		10.2		
Approach LOS		С		С		В		
Timer	1	2	3	4	5	6	7	
Assigned Phs		2		4	5	6		
Phs Duration (G+Y+Rc), s		31.9		42.5	10.1	21.8		
Change Period (Y+Rc), s		7.3		4.0	4.0	* 7.3		
Max Green Setting (Gmax), s		51.2		38.5	22.0	* 35		
Max Q Clear Time (g_c+l1), s		4.8		7.6	5.8	10.3		
Green Ext Time (p_c), s		1.7		1.9	0.5	4.2		
Intersection Summary								
HCM 2010 Ctrl Delay			21.6					
HCM 2010 LOS			C					
Notes								
1.0.03								

Intersection												
Int Delay, s/veh	1.4											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		411			ተተተ	7			7			7
Traffic Vol, veh/h	0	361	5	0	554	29	0	0	5	0	0	113
Future Vol, veh/h	0	361	5	0	554	29	0	0	5	0	0	113
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	500	-	-	0	-	-	0
Veh in Median Storage,	, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	392	5	0	602	32	0	0	5	0	0	123
Major/Minor N	/lajor1		ı	Major2		N	/linor1		N	Minor2		
Conflicting Flow All	-	0	0	-	-	0	-	-	199	-	-	301
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	-	-	-	7.14	-	-	7.14
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	-	-	-	3.92	-	-	3.92
Pot Cap-1 Maneuver	0	-	-	0	-	-	0	0	688	0	0	593
Stage 1	0	-	-	0	-	-	0	0	-	0	0	-
Stage 2	0	-	-	0	-	-	0	0	-	0	0	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	-	-	-	-	-	-	-	-	688	-	-	593
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			0			10.3			12.7		
HCM LOS							В			В		
Minor Lane/Major Mvm	t	NBLn1	EBT	EBR	WBT	WBR S	SBLn1					
Capacity (veh/h)		688	-	-	-	-	593					
HCM Lane V/C Ratio		0.008	_	_	_		0.207					
HCM Control Delay (s)		10.3	_	_	_		12.7					
HCM Lane LOS		В	_	_	_	_	В					
HCM 95th %tile Q(veh)		0	-	-	-	-	0.8					
/ 0 / 0 0 2 (1011)							3.0					

Movement		ᄼ	→	•	•	←	•	1	†	<i>></i>	/	Ţ	4
Traffic Volume (veh/h)	Movement			EBR			WBR	NBL	NBT	NBR	SBL	SBT	
Future Volume (veh/h) 116 183 67 24 246 155 123 33 43 197 56 223 Number of Veh Milar of Carlo (Dal), veh 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Lane Configurations	14.54	^ ^	7	ሻሻ	ተተተ		ሻ			ሻ	↑	77
Number 3 8 18 7 4 14 14 1 6 16 16 5 2 12 10 initial Q (Qb), veh 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Traffic Volume (veh/h)		183	67	24							56	
Initial Q (Ob), weh	Future Volume (veh/h)					246		123	33		197		
Ped-Bike Adj(A_pbT)							14			16		2	
Parkling Bus, Adj 1.00			0			0			0			0	
Adj Saf Flow, vehrhin 1863 1863 1863 1863 1863 1863 1863 1863													
Adj Flow Rate, veh/h Adj Flow Rate, veh/h Adj Now Rate, veh/h Adj Now Of Lanes 2 3 1 2 2 3 1 1 1 0 0 1 1 2 Peak Hour Factor 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89													
Adj No. of Lanes 2 3 1 2 3 1 1 1 0 1 1 2													
Peak Hour Factor 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89													
Percent Heavy Veh, % 2 2 2 2 2 2 2 2 2													
Cap, veh/h Order O													
Arrive On Green													
Sat Flow, veh/h 3442 5085 1556 3442 5085 1556 1774 732 949 1774 1863 2783 Grp Volume(v), veh/h 130 206 75 27 276 174 138 0 85 221 63 251 Grp Sat Flow(s), veh/h/ln 1721 1695 1556 1721 1695 1556 1774 0 1681 1774 1863 1391 Q Serve(g. s), s 3.1 2.8 3.4 0.6 4.0 8.8 6.3 0.0 2.7 10.1 1.7 4.7 Prop In Lane 1.00 1.00 1.00 1.00 1.00 5.056 1.00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
Grp Volume(v), veh/h Grp Volume(v), veh/h 130 206 75 27 276 174 138 0 85 221 63 251 Grp Sat Flow(s), veh/h/ln 1721 1695 1556 17721 1695 1556 1774 0 1681 1774 1863 1391 OServe(g_s), s 3.1 2.8 3.4 0.6 4.0 8.8 6.3 0.0 2.7 10.1 1.7 4.7 Prop In Lane 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.56 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0													
Grp Sat Flow(s),veh/h/ln													
O Serve(g_s), s													
Cycle Q Clear(g_c), s													
Prop In Lane													
Lane Grp Cap(c), veh/h V/C Ratio(X) 0.64 0.21 0.25 0.35 0.35 0.71 0.79 0.00 0.13 0.86 0.08 0.21 Avail Cap(c_a), veh/h 354 2524 772 187 2278 697 346 0 641 258 797 1191 M/C Ratio(X) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0			2.8			4.0			0.0			1.7	
\(\begin{array}{c c c c c c c c c c c c c c c c c c c	•												
Avail Cap(c_a), veh/h 354 2524 772 187 2278 697 346 0 641 258 797 1191 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0													
HCM Platoon Ratio 1.00													
Upstream Filter(I) 1.00 1.40 1.49 1.49 1.40 1.42 1.40 1.49 1.49 1.40 1.42 1.40 1.49 1.40 1.49 1.40 1.41 1.49 1.40 1.41 1.49 1.40 1.41 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>													
Uniform Delay (d), s/veh 38.0 28.0 28.2 39.8 31.1 33.1 36.4 0.0 16.7 34.5 14.0 14.9 Incr Delay (d2), s/veh 3.3 0.1 0.4 2.7 0.3 3.9 7.8 0.0 0.4 24.1 0.2 0.4 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.													
Incr Delay (d2), s/veh													
Initial Q Delay(d3),s/veh 0.0 1.9 1.9 LnGrp Delay(d3), s/veh 41.3 28.1 28.7 42.5 31.3 36.9 44.3 0.0 17.1 58.6 14.2 15.3 Approach LOS C C C C C C C C C Timer 1 2 3													
%ile BackOfQ(50%),veh/ln 1.5 1.3 1.5 0.3 1.9 4.0 3.4 0.0 1.3 6.6 0.9 1.9 LnGrp Delay(d),s/veh 41.3 28.1 28.7 42.5 31.3 36.9 44.3 0.0 17.1 58.6 14.2 15.3 LnGrp LOS D C C D C D D B E B B Approach Vol, veh/h 411 477 223 535 535 Approach Delay, s/veh 32.4 34.0 33.9 33.0 Approach LOS C C C C C C C Timer 1 2 3 4 5 6 7 8 8 8 8 1 8 8 9 18.8 16.0 38.9 5.8 21.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 3.2 4.5 41.0 4.0 5.9 4.0 *7.4 4.													
LnGrp Delay(d),s/veh 41.3 28.1 28.7 42.5 31.3 36.9 44.3 0.0 17.1 58.6 14.2 15.3 LnGrp LOS D C C D C D D B E B A C C C <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>													
LnGrp LOS D C C D C D D B E B 33.3 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
Approach Vol, veh/h 411 477 223 535 Approach Delay, s/veh 32.4 34.0 33.9 33.0 Approach LOS C C C C C Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 3 4 5 6 7 8 Phs Duration (G+Y+Rc), s 12.1 42.8 8.9 18.8 16.0 38.9 5.8 21.9 Change Period (Y+Rc), s 4.0 7.4 4.0 5.9 4.0 *7.4 4.0 5.9 Max Green Setting (Gmax), s 16.1 27.1 8.5 37.0 12.0 *32 4.5 41.0 Max Q Clear Time (g_c+I1), s 8.3 6.7 5.1 10.8 12.1 4.7 2.6 5.4 Green Ext Time (p_c), s 0.2 1.2 0.1 2.2 0.0 0.4 0.0 1.5 Intersection Summary HCM 2010 Ctrl Delay 33.3 HCM 2010 LOS C	1 3 . ,								0.0				
Approach Delay, s/veh 32.4 34.0 33.9 33.0 Approach LOS C C C C C Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 3 4 5 6 7 8 Phs Duration (G+Y+Rc), s 12.1 42.8 8.9 18.8 16.0 38.9 5.8 21.9 Change Period (Y+Rc), s 4.0 7.4 4.0 5.9 4.0 *7.4 4.0 5.9 Max Green Setting (Gmax), s 16.1 27.1 8.5 37.0 12.0 *32 4.5 41.0 Max Q Clear Time (g_C+I1), s 8.3 6.7 5.1 10.8 12.1 4.7 2.6 5.4 Green Ext Time (p_c), s 0.2 1.2 0.1 2.2 0.0 0.4 0.0 1.5 Intersection Summary HCM 2010 Ctrl Delay 33.3 HCM 2010 LOS C		D		C	D		D	D	000	В	<u> </u>		В
Approach LOS C C C C Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 3 4 5 6 7 8 Phs Duration (G+Y+Rc), s 12.1 42.8 8.9 18.8 16.0 38.9 5.8 21.9 Change Period (Y+Rc), s 4.0 7.4 4.0 5.9 4.0 *7.4 4.0 5.9 Max Green Setting (Gmax), s 16.1 27.1 8.5 37.0 12.0 *32 4.5 41.0 Max Q Clear Time (g_c+11), s 8.3 6.7 5.1 10.8 12.1 4.7 2.6 5.4 Green Ext Time (p_c), s 0.2 1.2 0.1 2.2 0.0 0.4 0.0 1.5 Intersection Summary HCM 2010 Ctrl Delay 33.3 HCM 2010 LOS C													
Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 3 4 5 6 7 8 Phs Duration (G+Y+Rc), s 12.1 42.8 8.9 18.8 16.0 38.9 5.8 21.9 Change Period (Y+Rc), s 4.0 7.4 4.0 5.9 4.0 *7.4 4.0 5.9 Max Green Setting (Gmax), s 16.1 27.1 8.5 37.0 12.0 *32 4.5 41.0 Max Q Clear Time (g_c+I1), s 8.3 6.7 5.1 10.8 12.1 4.7 2.6 5.4 Green Ext Time (p_c), s 0.2 1.2 0.1 2.2 0.0 0.4 0.0 1.5 Intersection Summary HCM 2010 Ctrl Delay 33.3 HCM 2010 LOS C													
Assigned Phs 1 2 3 4 5 6 7 8 Phs Duration (G+Y+Rc), s 12.1 42.8 8.9 18.8 16.0 38.9 5.8 21.9 Change Period (Y+Rc), s 4.0 7.4 4.0 5.9 4.0 *7.4 4.0 5.9 Max Green Setting (Gmax), s 16.1 27.1 8.5 37.0 12.0 *32 4.5 41.0 Max Q Clear Time (g_c+I1), s 8.3 6.7 5.1 10.8 12.1 4.7 2.6 5.4 Green Ext Time (p_c), s 0.2 1.2 0.1 2.2 0.0 0.4 0.0 1.5 Intersection Summary HCM 2010 Ctrl Delay 33.3 HCM 2010 LOS C	Approach LOS		C			C			C			C	
Phs Duration (G+Y+Rc), s 12.1 42.8 8.9 18.8 16.0 38.9 5.8 21.9 Change Period (Y+Rc), s 4.0 7.4 4.0 5.9 4.0 *7.4 4.0 5.9 Max Green Setting (Gmax), s 16.1 27.1 8.5 37.0 12.0 *32 4.5 41.0 Max Q Clear Time (g_c+I1), s 8.3 6.7 5.1 10.8 12.1 4.7 2.6 5.4 Green Ext Time (p_c), s 0.2 1.2 0.1 2.2 0.0 0.4 0.0 1.5 Intersection Summary HCM 2010 Ctrl Delay 33.3 HCM 2010 LOS C	Timer	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s 12.1 42.8 8.9 18.8 16.0 38.9 5.8 21.9 Change Period (Y+Rc), s 4.0 7.4 4.0 5.9 4.0 *7.4 4.0 5.9 Max Green Setting (Gmax), s 16.1 27.1 8.5 37.0 12.0 *32 4.5 41.0 Max Q Clear Time (g_c+I1), s 8.3 6.7 5.1 10.8 12.1 4.7 2.6 5.4 Green Ext Time (p_c), s 0.2 1.2 0.1 2.2 0.0 0.4 0.0 1.5 Intersection Summary HCM 2010 Ctrl Delay 33.3 HCM 2010 LOS C	Assigned Phs	1	2	3	4	5	6	7	8				
Change Period (Y+Rc), s 4.0 7.4 4.0 5.9 4.0 *7.4 4.0 5.9 Max Green Setting (Gmax), s 16.1 27.1 8.5 37.0 12.0 *32 4.5 41.0 Max Q Clear Time (g_c+I1), s 8.3 6.7 5.1 10.8 12.1 4.7 2.6 5.4 Green Ext Time (p_c), s 0.2 1.2 0.1 2.2 0.0 0.4 0.0 1.5 Intersection Summary HCM 2010 Ctrl Delay 33.3 HCM 2010 LOS C		12.1	42.8	8.9	18.8			5.8	21.9				
Max Green Setting (Gmax), s 16.1 27.1 8.5 37.0 12.0 * 32 4.5 41.0 Max Q Clear Time (g_c+l1), s 8.3 6.7 5.1 10.8 12.1 4.7 2.6 5.4 Green Ext Time (p_c), s 0.2 1.2 0.1 2.2 0.0 0.4 0.0 1.5 Intersection Summary HCM 2010 Ctrl Delay 33.3 HCM 2010 LOS C		4.0	7.4	4.0	5.9	4.0	* 7.4	4.0	5.9				
Max Q Clear Time (g_c+I1), s 8.3 6.7 5.1 10.8 12.1 4.7 2.6 5.4 Green Ext Time (p_c), s 0.2 1.2 0.1 2.2 0.0 0.4 0.0 1.5 Intersection Summary HCM 2010 Ctrl Delay 33.3 HCM 2010 LOS C	Max Green Setting (Gmax), s	16.1		8.5		12.0	* 32	4.5	41.0				
Intersection Summary HCM 2010 Ctrl Delay 33.3 HCM 2010 LOS C		8.3	6.7	5.1	10.8	12.1	4.7	2.6	5.4				
HCM 2010 Ctrl Delay 33.3 HCM 2010 LOS C	Green Ext Time (p_c), s	0.2	1.2	0.1	2.2	0.0	0.4	0.0	1.5				
HCM 2010 Ctrl Delay 33.3 HCM 2010 LOS C	Intersection Summary												
HCM 2010 LOS C				33.3									
Notes													
NOIES	Notes												

Appendix J

Street B Letter of Permissions, Handler Conditions and Otay Mesa/Emerald Crest/Street B Signal Warrant Calculations

THE CITY OF SAN DIEGO

For:

The City of San Diego Development Services Department Land Development Review Division

1222 First Avenue, M.S. 501 San Diego, CA 92101-4155

WWW.Sandiego.Gov

LETTER OF PERMISSION FOR OFFSITE GRADING/IMPROVEMENTS 605191 24007824 P.T.S. PROJECT NUMBER: WORK ORDER NUMBER: PORTIONS OF THE NE 1/4 OF THE NW 1/4 OF SEC 32, T18S, R1W (Owner) (Legal Description/Address-Owner) PORTIONS OF THE NW 1/4 OF THE NW 1/4 OF SEC 32, T18S, R1W which is adjacent to (Applicant) (Legal Description/Address -Applicant) and have reviewed the proposed grading/improvements as shown on City of San Diego Drawing No. VTM 2152396 with the above referenced Project Tracking System (PTS) number, and do hereby grant permission for the City of San Diego to issue a permit for the grading/improvements to be performed and/or constructed by (Owner/Developer) PARDEE HOMES on property as shown thereon. The grading/improvements for which permission is granted can be more particularly described as: Grading associated with construction of a public street known as Emerald Crest Court as shown on VTM 215396. Owner: VOLER TRUSTEE Print Name Title

This information is available in alternative formats for persons with disabilities, upon request.

Printed on recycled paper.

Page 1 of 1

For:

The City of San Diego Development Services Department Building, Safety, & Construction

1222 First Avenue, M.S. 501 San Diego, CA 92101-4155

LETTER OF PERMISSION FOR OFFS	SHE GRADING/IMPROVEMENTS								
PROJECT NUMBER: 39191	INTERNAL ORDER NUMBER: 24006395								
I am the owner of A portion of NW 1/4 of the NW 1/4 in Sec. 34, T 18 S, R 1 W (Owner) (Legal Description/Address-Owner) which is adjacent to A portion of NE 1/4 of the NW 1/4 in Sec. 32 T 18 S, R 1 W/Emerald Crest Ct (Handler Commercial), City of San Diego (Applicant) (Legal Description/Address - Applicant) has reviewed the proposed grading/improvements as shown on City of San Diego Drawing No. 39191-12 & -19-D , with the above referenced project number, and do hereby grant permission for the City of San Diego to issue a permit for the grading/improvements to be performed and/or constructed by Or. Gerald Handler (Owner/Developer) on property as shown thereon.									
The grading/improvements for which permission is granted can be more particularly described as:									
Grading associated with construction of a public street known as Emerald Crest Court.									
Owner:									
, Owner.									
Print Name Jimmy Ayala Division President Title Commany Fignature Date	8								

This information is available in alternative formats for persons with disabilities, upon request.

Printed on recycled paper.

Page 1 of 1

CONDITIONS FOR VESTING TENTATIVE MAP NO. 362532

OTAY MESA EAST - PROJECT NO. 108628

ADOPTED BY RESOLUTION NO. R-30696 ON JUL 26 2011

GENERAL:

- This Vesting Tentative Map will be effective upon adoption of Rezone No. 388241.
- 2. This Vesting Tentative Map will expire three years after its approval or conditional approval, which will be _____JUL 2 6 2014 ____.
- Compliance with all of the following conditions shall be completed and/or assured, to the satisfaction of the City Engineer, prior to the recordation of the Final Map, unless otherwise noted.
- 4. Prior to the recordation of the Final Map, taxes must be paid on this property pursuant to Subdivision Map Act section 66492. To satisfy this condition, a tax certificate stating that there are no unpaid lien conditions against the subdivision must be recorded in the Office of the San Diego County Recorder.
- 5. The Final Map shall conform to the provisions of Site Development Permit No. 388242.
- The Subdivider shall defend, indemnify, and hold the City (including its agents, officers, and employees [together, "Indemnified Parties"]) harmless from any claim, action, or proceeding, against the City and/or any Indemnified Parties to attack, set aside, void, or annul City's approval of this project, which action is brought within the time period provided for in Government Code section 66499.37. City shall promptly notify Subdivider of any claim, action, or proceeding and shall cooperate fully in the defense. If City fails to promptly notify Subdivider of any claim, action, or proceeding, or if City fails to cooperate fully in the defense, Subdivider shall not thereafter be responsible to defend, indemnify, or hold City and/or any Indemnified Parties harmless. City may participate in the defense of any claim, action, or proceeding if City both bears its own attorney's fees and costs, City defends the action in good faith, and Subdivider is not required to pay or perform any settlement unless such settlement is approved by the

ENGINEERING:

- 7. At the time of the final map, the Subdivider shall grant a building restrictive easement over Lot B.
- 8. Prior to the issuance of any construction permit, the Subdivider shall incorporate any construction Best Management Practices necessary to comply with Chapter 14, Article 2, Division 1 (Grading Regulations) of the San Diego Municipal Code, into the construction plans or specifications.

ララィ^ン (R-2011-988)

RESOLUTION NUMBER R- 305960 DATE OF FINAL PASSAGE JUL 26 2011

A RESOLUTION APPROVING VESTING TENTATIVE MAP NO. 362532 FOR OTAY MESA EAST - PROJECT NO. 108628

WHEREAS, Gerald Handler, Trustee of the Handler Trust UDT, Subdivider, and RBF Consulting, Engineer, submitted an application to the City of San Diego for a Vesting Tentative Map, No. 362532, for the subdivision of a vacant approximately 21.35-acre site into commercial and open space lots, known as the Otay Mesa East Project (Project); and

WHEREAS, on September 16, 2003, the City Council of the City of San Diego approved an earlier version of the Otay Mesa East Project, Project No. 3159, for a commercial subdivision on a 45.5-acre site, including specifically Vesting Tentative Map No. 8182 (Original VTM); and

WHEREAS, on August 26, 2009, the California Department of Transportation (Caltrans) acquired approximately 24.1-acres of the 45.5-acre site through condemnation for the realignment of State Route 905 (SR 905); and

WHEREAS, the project site is located in the 6100 block of Otay Mesa Road (temporarily addressed as 6175 Otay Mesa Road) west of Heritage Road in the AR-1-1 zone, which is proposed to be rezoned to the Otay Mesa Development District-Commercial (OMDD-C) zone, within the Otay Mesa Community Plan (Rezone); and

WHEREAS, the property is legally described as Parcel A, portion of the Northeast Quarter of the Northwest Quarter of Section 32, Township 18 South, Range 1 west, San Bernardino and Meridian, in the County of San Diego, State of California, according to the Official Plan thereof, excepting therefrom the Northerly 40.00 feet ("Otay Mesa Road") as described in that certain deed to the City of San Diego, a Municipal Corporation, filed in the Office of the County Recorder of said County, May 27, 1983, as File No. 83-177720 of Official

-PAGE 1 OF 6-

COPYPage 134 of 449

Records, and all that portion thereof taken by the State of California in that certain Final Order of Condemnation issued out of Superior Court Case No. 37-2008-0008061-CU-EI-CTL, a Certified Copy of which was recorded November 9, 2009, as File No. 2009-0624504, Official Records; Parcel B, portion of the Northeast Quarter of the Northwest Quarter of Section 32, Township 18 South, Range 1 West, San Bernardino and Meridian, in the County of San Diego, State of California, according to the Official Plan thereof, excepting therefrom the northerly 40.00 feet ("Otay Mesa Road") as described in that certain deed to the City of San Diego, A Municipal Corporation, filed in the Office of the County Recorder of said County, May 27, 1983, as File No. 83-177720 of Official Records, all that portion thereof taken by the State of California in that certain Final Order of Condemnation issued out of Superior Court Case No. 37-2008-0008061-CU-EI-CTL, a certified copy of which was recorded November 9, 2009, as File No. 2009-0624504, Official Records, and all that portion thereof described, deeded to the State of California, recorded on February 2, 2010, as File No. 2010-00054943, Official Record; and

WHEREAS, the Vesting Tentative Map proposes the subdivision of a 21.35-acre site into 8 lots for commercial use and open space (5 commercial lots, one open space lot, one lot for a private underground sewer pump station, and one lot for a private driveway); and

WHEREAS, on July 21, 2006, the Owner/Permittee filed an application for an Extension of Time (EOT) for the Original VTM prior to its expiration. However, the application for the EOT was never heard by the City Council and in accordance with San Diego Municipal Code Section 125.0461 and Subdivision Map Act Section 66452.6(e), the Original VTM could not be extended beyond September 2012 and because Subdivider desires a VTM that extends beyond September 2012, a new VTM is required for the Project; and

WHEREAS, on April 7, 2011, the Planning Commission of the City of San Diego considered Vesting Tentative Map No. 388242, and pursuant to Resolution No. 4689-PC voted

COPY Page 135 of 449 to recommend City Council approval of a Vesting Tentative Map for a three-year period for the Project with the understanding that the appropriate vehicle to accomplish that recommendation would be determined prior to the Project coming before the City Council; and

WHEREAS, the project complies with the requirements of a preliminary soils and/or geological reconnaissance report pursuant to Subdivision Map Act and Sections 66490 and 66491 (b)-(f) and San Diego Municipal Code Section 144.0220; and

WHEREAS, under Charter section 280(a)(2) this resolution is not subject to veto by the Mayor because this matter requires the City Council to act as a quasi-judicial body and where a public hearing was required by law implicating due process rights of individuals affected by the decision and where the Council was required by law to consider evidence at the hearing and to make legal findings based on the evidence presented; and

WHEREAS, on ______, the City Council of the City of San Diego considered Vesting Tentative Map No. 362532, and pursuant to Section 125.0440 of the Municipal Code of the City of San Diego and Subdivision Map Act Section 66428, received for its consideration written and oral presentations, evidence having been submitted, and heard testimony from all interested parties at the public hearing, and the City Council having fully considered the matter and being fully advised concerning the same; NOW THEREFORE,

BE IT RESOLVED by the City Council of the City of San Diego, that it adopts the following findings with respect to Vesting Tentative Map No. 362532:

1. The proposed subdivision and its design or improvement are consistent with the policies, goals, and objectives of the applicable land use plan (Land Development Code Section 125.0440(a) and Subdivision Map Action Sections 66473.5, 66474(a), and 66474(b)). The proposed subdivision would provide eight (8) lots for commercial use and open space (5 commercial lots, one open space lot, one lot for a private underground sewer pump station, and one lot for a private driveway) along Otay Mesa Road for future development and an approximately 7.4-acre non-buildable portion of the site is located south of SR 905, a portion of which is required to be placed in a covenant of easement for protection of the 22 vernal pools and the area within the Multiple Habitat Planning Area (MHPA). The 21.35-acre vacant site is

located in the 6100 block of Otay Mesa Road (temporarily addressed as 6175 Otay Mesa Road) west of Heritage Road.

The proposed subdivision is zoned AR-1-1 within the Otay Mesa Development District (OMDD) and the Otay Mesa Community Plan (OMCP). The site is designated for Specialized Commercial uses within the OMCP, which defers development requirements to the standards and provisions of the OMDD. The proposed commercial subdivision on a 21.35-acre vacant site includes a rezone from AR-1-1 to OMDD-C (Rezone). The proposed subdivision to create commercial lots for future development is not requesting and does not require any deviations to the OMDD development regulations. The proposed subdivision would establish 5 commercial lots for future development and construct the infrastructure needed for the development. The future development on the individual lots would comply with the OMDD development regulations. With the adoption of the Rezone, the proposed subdivision and its design and improvements are consistent with the policies, goals, and objectives of the OMDD, OMCP, and the General Plan.

- 2. The proposed subdivision complies with the applicable zoning and development regulations of the Land Development Code (Land Development Code Section 125.0440(b)). The proposed subdivision would provide eight (8) lots for commercial use and open space (5 commercial lots, one open space lot, one lot for a private underground sewer pump station, and one lot for a private driveway) along Otay Mesa Road for future development and an approximately 7.4-acre non-buildable portion of the site located south of the SR 905, a portion of which is required to be placed in a covenant of easement for protection of the 22 vernal pools and the area within the MHPA. The proposed commercial subdivision on a 21.35-acre vacant site includes a rezone from AR-1-1 to OMDD-C. The proposed subdivision is not requesting and does not require any deviations to the development regulations in the Land Development Code. With the adoption of the Rezone, which is a condition of the VTM, the proposed commercial lots would comply with the applicable zoning and development regulations of the Land Development Code, and the OMDD.
- 3. The site is physically suitable for the type and density of development (Land Development Code Section 125.0440(c) and Subdivision Map Act Sections 66474(c) and 66474(d)). The 21.35-acre vacant site has been historically used for agricultural purposes but is currently dominated by non-native grass species. Approximately 13.95-acres of the site along Otay Mesa Road currently contains a grade differential of 15 feet and slopes gently from a 520 foot above mean sea level (AMSL) from the western property line towards the east to a 505 foot AMSL at the eastern property line. The surrounding properties to the north consist of multifamily residential development, commercial/office/retail development, and open space; to the west is a proposed multi-family residential development; to the east is open space; and to the south is the realignment of SR 905, which is currently under construction.

An approximately 7.4-acre non-buildable portion of the site is located south of SR 905, a portion of which is required be placed in a covenant of easement for protection of the 22 vernal pools and the area within the MHPA. A building restrictive easement is also required to be recorded over this lot since the condemnation for the realignment of SR 905 eliminated access to this lot. The Mitigation Monitoring and Reporting Program (MMRP) for the project, which is required to be implemented as a condition of the VTM includes protocols and measures for

COPY

protection of the onsite biological resources and a vernal pool management plan. Therefore, the site is physically suitable for the type and density of development.

- 4. The design of the subdivision or the proposed improvements is not likely to cause substantial environmental damage or substantially and avoidably injure fish or wildlife or their habitat (Land Development Code Section 125.0440(d) and Subdivision Map Act Section 66474(e)). The MMRP for the Project includes protocols and measures for protection of the onsite biological resources and a vernal pool management plan. An approximately 7.4-acre non-buildable portion of the site is located south of SR 905, a portion of which is required be placed in a covenant of easement for protection of the 22 vernal pools and the area within the MHPA. A building restrictive easement is also required to be recorded over this lot since the condemnation for the realignment of SR 905 eliminated access to this lot. Therefore, the design of the subdivision or the proposed improvements is not likely to cause substantial environmental damage or substantially and avoidably injure fish or wildlife or their habitat.
- detrimental to the public health, safety, and welfare (Land Development Code Section 125.0440(e) and Subdivison Map Act Section 66474(f)). With the adoption of the rezone, the proposed subdivision and its design and improvements are consistent with the policies, goals, and objectives of the OMDD, Otay Mesa Community Plan, the San Diego Municipal Code (SDMC), the General Plan, and consistent with the Subdivision Map Act. Project and permit conditions have been determined by the decision-maker as necessary to avoid adverse impacts upon the health, safety, and general welfare of persons residing, working and recreating in the surrounding area. The future development on the proposed subdivision will be required to comply with the development regulations of the OMDD and will be required to obtain building permits to show that project construction will comply with all applicable Building and Fire Code requirements. Therefore, the proposed commercial subdivision will not be detrimental to the public health, safety and welfare.
- with easements acquired by the public at large for access through or use of property within the proposed subdivision (Land Development Code Section 125.0440(f) and Subdivision Map Act Section 66474(g)). The design of the proposed commercial subdivision provides for two new public access roads from Otay Mesa Road, and provides for one private road through the project that connects to the two access roads and provides access for the five proposed commercial lots. On August 26, 2009, approximately 24.1-acres of the original 45.5-acres site were acquired by the California Department of Transportation (Caltrans) through condemnation for the realignment of SR 905; and no action is proposed for that area. Therefore, the design of the subdivision or the type of improvements will not conflict with easements acquired by the public at large for access through or use of property within the proposed subdivision.
- 7. The design of the proposed subdivision provides, to the extent feasible, for future passive or natural heating and cooling opportunities (Land Development Code Section 125.0440(g) and Subdivision Map Act Section 66473.1). The proposed subdivision would establish 5 commercial lots for future development and construct the infrastructure needed for the development. The future development on the individual lots would comply with the

OMDD development regulations. The proposed subdivision has been designed along the eastwest axis, to the extent feasible, thereby increasing the area for future passive or natural heating and cooling opportunities.

8. The decision maker has considered the effects of the proposed subdivision on the housing needs of the region and that those needs are balanced against the needs for public services and the available fiscal and environmental resources (Land Development Code Section 125.0440(h) and Subdivision Map Act Section 66412.3). The vacant site has been historically used for agricultural purposes but is currently dominated by non-native grass species. The surrounding properties to the north contains multi-family residential development, commercial/office/retail development, and open space; to the west is a proposed multi-family residential development; to the east is open space; and to the south is the realignment of SR 905, which is currently under construction. The proposed commercial subdivision would allow for future commercial development and job opportunities for the current and future multi-family households within the region. Therefore, the decision maker has considered the effects of the proposed subdivision on the housing needs of the region and that those needs are balanced against the needs for public services and the available fiscal and environmental resources.

The above findings are supported by the minutes, maps, and exhibits, all of which are herein incorporated by reference.

BE IT FURTHER RESOLVED, that based on the Findings hereinbefore adopted by the City Council, Vesting Tentative Map No. 362532, is hereby granted to Gerald Handler, Trustee of the Handler Trust UDT, subject to the attached conditions which are made a part of this resolution by this reference.

APPROVED: JAN I. GOLDSMITH, City Attorney

By

Heidi K. Vonblum
Deputy City Attorney

HKV:hm 07/07/2011 Or.Dept:DSD

- 9. Prior to the issuance of any construction permit, the Subdivider shall incorporate and show the type and location of all post-construction Best Management Practices (BMP's) on the final construction drawings, in accordance with the approved Water Quality Technical Report.
- 10. The Subdivider shall enter into a Maintenance Agreement for the ongoing permanent BMP maintenance, satisfactory to the City Engineer.
- 11. The drainage system proposed for this subdivision, as shown on the approved Vesting Tentative Map, is private and subject to approval by the City Engineer, and shall include detention basins and flood water storage easements satisfactory to the City Engineer.
- 12. Development of this project shall comply with all requirements of the applicable State Water Resources Control Board (SWRCB) Order and the Municipal Storm Water Permit, governing Waste Discharge Requirements for Discharges of Storm Water Runoff Associated With Construction Activity. In accordance with said permit, a Storm Water Pollution Prevention Plan (SWPPP) and a Monitoring Program Plan shall be implemented concurrently with the commencement of grading activities, and a Notice of Intent (NOI) shall be filed with the SWRCB.
- 13. A copy of the acknowledgment from the SWRCB that an NOI has been received for this project shall be filed with the City of San Diego when received; further, a copy of the completed NOI from the SWRCB showing the permit number for this project shall be filed with the City of San Diego when received. In addition, Subdivider and Subdivider's successor(s) shall comply with special provisions as set forth in the applicable SWRCB Order.
- 14. The Subdivider shall obtain a bonded grading permit from the City Engineer for the grading proposed for this project. All grading shall conform to the requirements of the City of San Diego Municipal Code in a manner satisfactory to the City Engineer.
- 15. The applicant shall construct drainage detention basins, the design, location, and size of which are subject to approval by the City Engineer. The design shall be such that the discharge from the improved area will be no more than the discharge would have been from the land in the unimproved state. The applicant shall provide for the maintenance of the drainage detention facilities within a storage easement, satisfactory to the City Engineer.
- 16. The Subdivider shall underground any new service run to any new or proposed structures within the subdivision.
- 17. The Subdivider shall ensure that all existing onsite utilities serving the subdivision shall be undergrounded with the appropriate permits. The Subdivider shall provide written confirmation from applicable utilities that the conversion has taken place, or provide other means to assure the undergrounding, satisfactory to the City Engineer.

18. Conformance with the "General Conditions for Tentative Subdivision Maps," filed in the Office of the City Clerk under Document No. 767688 on May 7, 1980, is required. Only those exceptions to the General Conditions which are shown on the Vesting Tentative Map and covered in these special conditions will be authorized. All public improvements and incidental facilities shall be designed in accordance with criteria established in the Street Design Manual, filed with the City Clerk as Document No. RR-297376.

MAPPING:

- 19. "Basis of Bearings" means the source of uniform orientation of all measured bearings shown on the map. Unless otherwise approved, this source shall be the California Coordinate System, Zone 6, North American Datum of 1983 [NAD 83].
- 20. "California Coordinate System" means the coordinate system as defined in Section 8801 through 8819 of the California Public Resources Code. The specified zone for San Diego County is "Zone 6," and the official datum is the "North American Datum of 1983."
- 21. The Final Map shall:
 - a. Use the California Coordinate System for its "Basis of Bearing" and express all measured and calculated bearing values in terms of said system. The angle of grid divergence from a true median (theta or mapping angle) and the north point of said map shall appear on each sheet thereof. Establishment of said Basis of Bearings may be by use of existing Horizontal Control stations or astronomic observations.
 - b. Show two measured ties from the boundary of the map to existing Horizontal Control stations having California Coordinate values of Third Order accuracy or better. These tie lines to the existing control shall be shown in relation to the California Coordinate System (i.e., grid bearings and grid distances). All other distances shown on the map are to be shown as ground distances. A combined factor for conversion of grid-to-ground distances shall be shown on the map.

WASTEWATER:

- 22. The Subdivider shall construct the Otay Mesa Trunk Sewer Phase II or enter into an agreement to pay their fair share cost of the trunk sewer in proportion to the ultimate zoned use of the property being developed, in accordance with the City's Sewer Design Guide.
- 23. The Subdivider shall install all sewer facilities required by the accepted sewer study for the project, necessary to serve this development. Sewer facilities as shown on the approved vesting tentative map will require modification based on the accepted sewer study.
- 24. The Subdivider shall design and construct all proposed public sewer facilities to the most current edition of the City of San Diego's sewer design guide. Proposed facilities that do not meet the current standards shall be re-designed.

COPY

- 25. The Subdivider shall design and construct all proposed private sewer facilities serving more than one lot to the most current edition of the City of San Diego's sewer design guide. Improvement drawings are required for private sewer facilities serving more than one lot.
- 26. Prior to the issuance of any building permits, the Subdivider shall process and record a Notice & Agreement for each ownership being served by a private pump station/sewer facilities which serves more than one ownership, which indemnifies the City and contains an agreement that the applicant, and successors in interest, will be responsible for the operation and maintenance of the private sewer systems.
- 27. The Subdivider shall obtain a building permit for any private pump station serving a condominium project or more than one lot.
- 28.) The Subdivider shall provide, satisfactory to the Public Utilities Department Director, CC&R's for the operation and maintenance of on-site private sewer facilities that serve more than one lot.
- 29. No structures or landscaping, including private sewer facilities and enhanced paving, shall be installed in or over any easement or street right-of-way prior to the Subdivider obtaining an Encroachment Maintenance and Removal Agreement.
- 30. Providing sewer for this development is dependent upon prior construction of certain portions of the Otay Mesa Trunk Sewer Phase II. If they have not been constructed when required for this development, then the construction of certain portions of these sewer facilities, as required by the City Engineer, shall become off-site improvements required for this development.

WATER:

- 31. The Subdivider shall design and construct a system of public 16-inch water facilities within Street "B," Street "C," and Street "A," with two points of connection to the Otay Mesa Pipeline, in a manner satisfactory to the Public Utilities Department Director and the City Engineer.
- 32. The Subdivider shall install fire hydrants at locations satisfactory to the Public Utilities Department, the Fire Department and the City Engineer.
- 33. The Subdivider shall grant adequate water easements, including vehicular access to each appurtenance (meters, blow offs, valves, fire hydrants, etc.), over the entire Street A, satisfactory to the Public Utilities Department Director.
- 34. Grants of water easements shall be of sufficient width to accommodate a minimum 24-feet wide fully paved vehicular access road with full height curbs, and 4-feet behind curb or sidewalk. Easements shall accommodate two-way traffic. Easements or lack thereof, as shown on the approved tentative map, will require modification based on standards at final engineering.

- 35. The Subdivider shall design and construct all irrigations systems to utilize reclaimed water in a manner satisfactory to the Public Utilities Department Director.
- 36. The Subdivider shall design and construct all proposed public water facilities, including services, meters, and easements, in accordance with established criteria in the most current edition of the City of San Diego Water Facility Design Guidelines and City regulations, standards, and practices pertaining thereto. Water facilities, as shown on the approved tentative map, shall be modified at final engineering to comply with standards.

GEOLOGY:

37. Prior to the issuance of a grading permit, the Subdivider shall submit a geotechnical report prepared in accordance with the City of San Diego's "Guidelines for Geotechnical Reports," satisfactory to the City Engineer.

PLANNING:

Prior to the recordation of the Final Map, the Subdivider shall execute and record a Covenant of Easement which ensures preservation of the Environmentally Sensitive Lands that are outside the allowable development area on the premises as shown on Exhibit "A" for Sensitive Biological Resources, in accordance with San Diego Municipal Code section 143.0152. The Covenant of Easement shall include a legal description and an illustration of the premises showing the development area and the Environmentally Sensitive Lands that will be preserved as shown on Exhibit "A."

LANDSCAPE:

The Final Map shall conform to the Landscape provisions of Site Development Permit
 No. 388242.

TRANSPORTATION:

- 40. Prior to the recordation of first final map, Subdivider shall relinquish access rights along project frontage on Otay Mesa Road, satisfactory to the City Engineer.
- 41. Street B is classified as a commercial local street. The Subdivider shall dedicate 84 feet of right-of-way and shall construct 64 feet of pavement, curb gutter and a five (5)-foot-wide sidewalk. The Subdivider shall also dedicate 92 feet of right-of way for a portion of Street B and shall construct, within 200 feet of the intersection with Otay Mesa Road, 72 feet of pavement (an 18-foot southbound lane, a four (4)-foot raised center median, two (2) 12-foot northbound left turn lanes, a 12-foot northbound through lane, a 14-foot northbound through lane and a 14-foot northbound right turn lane, with curb, gutter and a five (5)-foot-wide sidewalk transitioning to the aforementioned 84-foot right-of-way. Finally, the Subdivider shall construct, at the southern terminus of Street B, a 55-foot curb radius cul-de-sac within 65 feet of right-of-way, including curb, gutter and a five (5)-foot sidewalk.

- 42. Street C is classified as a commercial local street. The Subdivider shall dedicate 40 feet of right-of-way along with right-of-way for a 65-foot right-of-way radius for a cul-de-sac, and shall construct the half width of Street "C" including 30 feet of pavement, curb, gutter and a five (5)-foot sidewalk within 10-foot curb to property line distance with 55-foot curb radius cul-de-sac turnaround at the southern end, satisfactory to the City Engineer.
- 43. Prior to the recordation of the first final map, Subdivider shall assure by permit and bond, construction of Street "B" with 64 feet curb to curb within 84 feet right-of-way including curb, gutter and 5-foot sidewalk within 10-foot curb to property line distance on both sides of the street with 55-foot curb radius cul-de-sac turnaround at the southern end, satisfactory to the city Engineer.
- 44. Prior to the recordation of the first final map, Subdivider shall assure by permit and bond, construction of Street "B" within 200 feet of its intersection with Otay Mesa Road with 72 feet of curb to curb pavement (18' southbound lane, 4' raised center median, two12' northbound left turn lanes, 12' northbound thru lane, 14' northbound right turn lane) within 92 feet of right- of-way including curb, gutter and 5-foot sidewalk within 10-foot curb to property line distance on both sides of the street transitioning to a 64 feet curb to curb width within 84 feet right-of-way with 55-foot curb radius cul-de-sac turnaround at the southern end within 65 feet right-of-way, satisfactory to the City Engineer.
- Prior to the recordation of the first final map, Subdivider shall assure by permit and bond, construction of a second left turn lane on Otay Mesa Road at its intersection with Street "B", satisfactory to the City Engineer.
- 46. Prior to the recordation of the first final map, Subdivider shall assure by permit and bond, construction of a eastbound exclusive right turn lane with 500 feet of storage and proper transition on Otay Mesa Road at its intersection with Street "B", satisfactory to the City Engineer.
- 47. Prior to the recordation of the first final map, Subdivider shall assure by permit and bond, modification of the existing traffic signal at the intersection of Otay Mesa Road / Street "B" in order to accommodate the improvements by this project at this intersection, satisfactory to the City Engineer.
- Prior to the recordation of the first final map, Subdivider shall assure by permit and bond, construction of private Street "A" between Street "B" and Street "C" with 50 feet of pavement within 70 feet of private general utility easement with curb, gutter and 5-foot sidewalk on both sides of the street and raised center median at both ends of the streets within 200 feet of intersection with Street "B" and Street "C", satisfactory to the City Engineer.
- 49. Prior to the recordation of the first final map, Subdivider shall assure by permit and bond, construction of half width of Street "C" including 30 feet of pavement, curb, gutter and 5-foot sidewalk within 10-foot curb to property line distance with 55-foot curb radius culde-sac turnaround at the southern end, satisfactory to the City Engineer.

COPY

50.

11

11

- Prior to the recordation of the first final map, Subdivider shall assure by permit and bond construction of a eastbound exclusive right turn lane with 200 feet of storage and proper transition on Otay Mesa Road at its intersection with Street "C", satisfactory to the City Engineer.
- Prior to the recordation of the first final map, Subdivider shall assure by permit and bond, construction of second eastbound left turn lane and one exclusive westbound right turn lane at the intersection of Otay Mesa Road / Ocean View Hills Parkway, satisfactory to the City Engineer.
- 52. Prior to the recordation of the first final map, Subdivider shall assure by permit and bond, construction of second westbound left turn lane at the intersection of Otay Mesa Road / Ocean View Hills Parkway, satisfactory to the City Engineer. Subdivider may enter into a deferred improvement agreement with City of San Diego for this improvement.
- Prior to the recordation of the first final map, Subdivider shall assure by permit and bond, construction of the second half (western half) of Street "C" to provide 60 feet of pavement, curb, gutter and 5-foot sidewalk within 10-foot curb to property line distance on the west side, satisfactory to the City Engineer. Subdivider may enter into a deferred improvement agreement with City of San Diego for this improvement.
- Prior to the recordation of the first final map, Subdivider shall assure by permit and bond, construction of a westbound left turn lane at the intersection of Otay Mesa Road / Street "C", satisfactory to the City Engineer. Subdivider may enter into a deferred improvement agreement with City of San Diego for this improvement.
 - Prior to the recordation of the first final map, Subdivider shall assure by permit and bond, construction of a traffic signal a the intersection of Otay Mesa Road / Street "C", satisfactory to the City Engineer. Subdivider may enter into a deferred improvement agreement with City of San Diego for this improvement.
- Prior to the recordation of the first final map, Subdivider shall provide an Irrevocable Offer of Dedication (IOD) for half of the cul-de-sac on Street A at the western end of Camino Maquiladora with 55-foot curb radius turn around within 60 feet of right-of-way, satisfactory to the City Engineer.

ENVIRONMENTAL:

57. The Subdivider shall comply with the Mitigation, Monitoring and Reporting Program (MMRP) as specified in Mitigated Negative Declaration No. 99-0555, Project No. 3159, to the satisfaction of the Development Services Department and the City Engineer. Prior to issuance of any grading permits and/or building permits, mitigation measures as specifically outlined in the MMRP shall be implemented for Land Use/Biological Resources/Historical Resources (Archaeology)/Water Quality.

COPY

MSCP:

58. In accordance with authorization granted to the City of San Diego from the United States Fish and Wildlife Service (USFWS) pursuant to Section 10(a) of the ESA and by the California Department of Fish and Game (CDFG) pursuant to Fish and Game Code section 2835 as part of the Multiple Species Conservation Program (MSCP), the City of San Diego through the issuance of this Permit hereby confers upon Subdivider the status of Third Party Beneficiary as provided for in Section 17 of the City of San Diego Implementing Agreement (IA), executed on July 17, 1997 and on File in the Office of the City Clerk as Document No. 00-18394. Third Party Beneficiary status is conferred upon Permittee by the City: (1) to grant Subdivider the legal standing and legal right to utilize the take authorizations granted to the City pursuant to the MSCP within the context of those limitations imposed under this Permit and the IA, and (2) to assure Subdivider that no existing mitigation obligation imposed by the City of San Diego pursuant to this Permit shall be altered in the future by the City of San Diego, USFWS or CDFG, except in the limited circumstances described in Sections 9.6 and 9.7 of the IA.

If mitigation lands are identified but not yet dedicated or preserved in perpetuity, maintenance and continued recognition of Third Party Beneficiary status by the City is contingent upon Subdivider maintaining the biological values of any and all lands committed for mitigation pursuant to this Permit and of full satisfaction by Subdivider of mitigation obligations required by this Permit, as described in accordance with Section 17.1D of the IA.

59. The Subdivider shall comply with the Mitigation, Monitoring and Reporting Program (MMRP) as specified in the Environmental Documentation for the "Otay Mesa East Project" (Project No. 3159, SCH No. 2003051060), satisfactory to the City Manager and the City Engineer, for the following issues areas to ensure compliance with the MSCP and MHPA Land Use Adjacency Guidelines: Land Use, Biological Resources and Water Quality.

In addition, the following conditions shall apply:

Operational Noise: Prior to issuance of any building occupancy permits, the sewer pump station proposed adjacent to the existing Otay Mesa Road wildlife under crossing shall be constructed, to the satisfaction of the Development Services Department and the City Engineer, to ensure that operational noise does not impact wildlife movement, including:

1) designing the facility below-ground; 2) encasing it in concrete; 3) providing perimeter berms and native screening vegetation; and, 4) shielding/directing all necessary lighting away from the MHPA.

Edge Treatment: Prior to issuance of any building occupancy permits, the Subdivider shall construct a six-foot-high black vinyl-coated chain link fence along areas adjacent to the MHPA, including the rear of proposed Lot B, satisfactory to the Development Services Department and the City Engineer. The fencing shall be appropriately maintained at all times by the Subdivider. Any necessary future fence repairs shall be

conducted in a manner which does not result in impacts to sensitive biology resource or wildlife movement.

Drainage: Prior to recordation of the first final map and/or issuance of any grading permits, the Development Services Department and the City Engineer shall verify that on-site drainage for all lots, including proposed Lot B, is designed to avoid discharging into the on-site vernal pool watershed areas.

60. Prior to recordation of the first final map and/or issuance of any grading permits, the onsite MHPA shall be conserved and conveyed to the City's MHPA through either dedication in fee to the City, OR covenant of easement, which shall then be recorded on the property to the satisfaction of the City Attorney. All other areas of Lot B could be conveyed through any of the two above methods. Management of the on-site preserved MHPA shall be the responsibility of the Subdivider in perpetuity, unless the City accepts responsibility through dedication in fee title. *Note: Any proposed dedication of land infee to the City outside the MHPA would require approval from the Park and Recreation Department.

INFORMATION:

- The approval of this Vesting Tentative Map by the City Council of the City of San Diego does not authorize the subdivider to violate any Federal, State, or City laws, ordinances, regulations, or policies including but not limited to, the Federal Endangered Species Act of 1973 and any amendments thereto (16 USC § 1531 et seq.).
- If the Subdivider makes any request for new water and sewer facilities (including services, fire hydrants, and laterals), the Subdivider shall design and construct such facilities in accordance with established criteria in the most current editions of the City of San Diego water and sewer design guides and City regulations, standards and practices pertaining thereto. Off-site improvements may be required to provide adequate and acceptable levels of service and will be determined at final engineering.
- Subsequent applications related to this Vesting Tentative Map will be subject to fees and charges based on the rate and calculation method in effect at the time of payment.
- Any party on whom fees, dedications, reservations, or other exactions have been imposed as conditions of approval of the Vesting Tentative Map, may protest the imposition within ninety days of the approval of this Vesting Tentative Map by filing a written protest with the San Diego City Clerk pursuant to Government Code sections 66020 and/or 66021.

• Where in the course of development of private property, public facilities are damaged or removed, the Subdivider shall at no cost to the City, obtain the required permits for work in the public right-of-way, and repair or replace the public facility to the satisfaction of the City Engineer (San Diego Municipal Code § 142.0607.

Figure 4C-103 (CA). Traffic Signal Warrants Worksheet (Average Traffic Estimate Form)

11	0.	. 11			COUNT DATE		
<u> </u>	21)	NA			CALC	DATE	
DIST	CO	RTE	PM	_	CHK	DATE	
Major St: Minor St:	STRE	ET B/	ESA L EMERA	2D HD CREST	Critical Approach Speed Critical Approach Speed		
				or street traffic > 40 n	nphor	OTAY ME RURAL (R)	SAEED LIMIT
iii bu	iii up alea	UI ISUIALEC	ı commun	ity 01 < 10,000 popula		URBAN (U)	= 50 MPH

(Based on Estimated Average Daily Traffic - See Note)

URBAN RURAL		equirements .DT
Satisfied Not Satisfied	Vehicles Per Day on Major Street (Total of Both Approaches)	Vehicles Per Day on Higher-Volume Minor Street Approach (One Direction Only)
Number of lanes for moving traffic on each approach Major Street Minor Street 1	Urban Rural ✓ 8,000 5,600 9,600 6,720 9,600 6,720 ✓ 8,000 5,600	Urban Rural 2,400 1,680 2,400 1,680 3,200 2,240 × 3,200 2,240
CONDITION B - Interruption of Continuous Traffic Satisfied Not Satisfied	Vehicles Per Day on Major Street (Total of Both Approaches)	Vehicles Per Day on Higher-Volume Minor Street Approach (One Direction Only)
Number of lanes for moving traffic on each approach Major Street Minor Street 1	Urban Rural 12,000 8,400 14,400 10,080 14,400 10,080 12,000 8,400	Urban Rural 1,200 850 1,200 850 1,600 1,120 1,600 1,120
Combination of CONDITIONS A + B Satisfied Not Satisfied No one condition satisfied, but following conditions fulfilled 80% or moreA B	2 CONDITIONS 80%	2 CONDITIONS 80%

Note: To be used only for NEW INTERSECTIONS or other locations where it is not reasonable to count actual traffic volumes.

The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal. STEET B HAS 50.1. EGRESS (MINOR STAPPROACH). TG = 6.816 ADT +2 = 3,408 OUTBOUND

X 50% = 1,704 MINDE 3T DAILY APPLOACH VOL. Chapter 4C - Traffic Control Signal Needs Studies

November 7, 2014

Appendix	ιK
-----------------	----

City of San Diego Trip Generation Manual Excerpts

TABLE 1 May 2003

TRIP GENERATION RATE SUMMARY (WEEKDAY)

LAND USE	DRIVEWAY (1) (2) VEHICLE TRIP RATE	CUMULATIVE ⁽⁸⁾ VEHICLE TRIP RATE		OUR AND RATIO PM IN:OUT)
AGRICULTURE (OPEN SPACE) (3)	2 trips/acre	2 trips/acre		
AIRPORT (3)				
Commercial	100 trips/flight; 60 trips/acre	100 trips/flight; 60 trips/acre	6% (6:4)	7% (5:5)
General Aviation	2 trips/flight; 6 trips/acre	2 trips/flight; 6 trips/acre		
CEMETERY	5 trips/acre	5 trips/acre		
COMMERCIAL-RETAIL (4) (5)				
Automobile Services:				
Car Dealer	50 trips/1,000 sq. ft.; 300 trips/acre	45 trips/1,000 sq. ft.; 297 trips/acre	5% (7:3)	8% (4:6)
Carwash:				
Full service	900 trips/site; 600 trips/acre	450 trips/site; 300 trips/acre	4% (5:5)	9% (5:5)
Self service	100 trips/wash stall	50 trips/wash stall	4% (5:5)	8% (5:5)
Gasoline Stations:	130 trips/vehicle fueling space; 750 trips/station	26 trips/vehicle fueling space; 150 trips/station	7% (5:5)	11% (5:5)
With food mart	150 trips/vehicle fueling space	30 trips/vehicle fueling space	8% (5:5)	8% (5:5)
With fully automated carwash	135 trips/vehicle fueling space	27 trips/vehicle fueling space		
With food mart & fully automated carwash	155 trips/vehicle fueling space	31 trips/vehicle fueling space	8% (5:5)	9% (5:5)
Parts Sale	62 trips/1,000 sq. ft.	56 trips/1,000 sq. ft.	4% (5:5)	10% (5:5)
Repair Shop	20 trips/1,000 sq. ft.; 20 trips/service stall; 400 trips acre	18 trips/1,000 sq. ft.; 19 trips/service stall	8% (7:3)	11% (4:6)
Tire Store	25 trips/1,000 sq. ft.; 30 trips/service stall	23 trips/1,000 sq. ft.; 27 trips/service stall	7% (6:4)	11% (5:5)
Convenience Market Chain:				
Open Up to 16 Hours Per Day	500 trips/1,000 sq. ft.	250 trips/1,000 sq. ft.	8% (5:5)	8% (5:5)
Open 24 Hours	700 trips/1,000 sq. ft.	350 trips/1,000 sq. ft.	9% (5:5)	7% (5:5)
Discount Store/Discount Club	70 trips/1,000 sq. ft.	49 trips/1,000 sq. ft.	2% (6:4)	10% (5:5)
Drugstore	90 trips/1,000 sq. ft.	40 trips/1,000 sq. ft.	4% (6:4)	10% (5:5)
Furniture Store	6 trips/1,000 sq. ft.; 100 trips/acre	5.4 trips/1,000 sq. ft.	4% (7:3)	9% (5:5)
Lumber/Home Improvement Store	30 trips/1,000 sq. ft.; 150 trips/acre	27 trips/1,000 sq. ft.; 135 trips/acre	7% (6:4)	9% (5:5)
Nursery	40 trips/1,000 sq. ft.; 90 trips/acre	36 trips/1,000 sq. ft.; 81 trips/acre	3% (6:4)	10% (5:5)
Restaurant:				
Quality	100 trips/1,000 sq. ft.; 3 trips/seat; 500 trips/acre	90 trips/1,000 sq. ft.; 2.7 trips/seat; 450 trips/acre	1% (6:4)	8% (7:3)
High Turnover (sit-down)	130 trips/1,000 sq. ft.; 7 trips/seat; 1,200 trips/acre	104 trips/1,000 sq. ft.; 5.6 trips/seat; 460 trips/acre	8% (5:5)	8% (6:4)
Fast Food (with or without drive-through)	700 trips/1,000 sq. ft.; 22 trips/seat; 3,000 trips/acre	420 trips/1,000 sq. ft.; 13.2 trips/seat; 1,800 trips/acre	4% (6:4)	8% (5:5)
Shopping Center:				
Neighborhood (30,000 sq. ft. or more GLA on 4 or more acres)	120 trips/1,000 sq. ft. GLA; 1,200 trips/acre	72 trips/1,000 sq. ft.; 720 trips/acre	4% (6:4)	11% (5:5)
Community (100,000 sq. ft. or more GLA on 10 or more acres)	70 trips/1,000 sq. ft. GLA; 700 trips/acre	49 trips/1,000 sq. ft.; 490 trips/acre	3% (6:4)	10% (5:5)
Regional (300,000 sq. ft. or more GLA) (6)	Ln(T) = 0.756 Ln(x) + 5.25 *	$0.8 \left[\text{Ln} \left(\text{T} \right) = 0.756 \text{Ln} \left(\text{x} \right) + 5.25 \right] *$	2% (7:3)	9% (5:5)
Specialty Retail Center/Strip Commercial	40 trips/1,000 sq. ft.; 400 trips/acre	36 trips/1,000 sq. ft.; 360 trips/acre	3% (6:4)	9% (5:5)
Supermarket	150 trips/1,000 sq. ft.; 2,000 trips/acre	90 trips/1,000 sq. ft.; 2,000 trips/acre	4% (7:3)	10% (5:5)

^{*} See Table 2

TABLE 1 (Continued)

TRIP GENERATION RATE SUMMARY (WEEKDAY)

	(1)(2)	(8)	PEAK HO	
	DRIVEWAY (1) (2)	CUMULATIVE (8)	IN/OUT	
LAND USE	VEHICLE TRIP RATE	VEHICLE TRIP RATE	AM (IN:OUT) PI	M (IN:OUT)
EDUCATION (3)		•		
University (4 years or higher)	2.5 trips/student; 100 trips/acre	2.5 trips/student; 100 trips/acre	10% (9:1)	9% (3:7)
Community College (2 years)	1.6 trips/student; 18 trips/1,000 sq. ft.; 80 trips/acre	1.6 trips/student; 18 trips/1,000 sq. ft.; 80 trips/acre	12% (9:1)	8% (3:7)
High School	1.8 trips/student; 50 trips/acre; 11 trips/1,000 sq. ft.	1.8 trips/student; 50 trips/acre; 11 trips/1,000 sq. ft.	20% (8:2)	14% (3:7)
Junior High/Middle School	1.4 trip/student; 12 trips/1,000 sq. ft.; 40 trips/acre	1.4 trips/student; 12 trips/1,000 sq. ft.; 40 trips/acre	24% (7:3)	7% (3:7)
Elementary School	2.9 trips/student; 39 trips/1,000 sq. ft.; 136 trips/acre	2.9 trips/student; 39 trips/1,000 sq ft.; 136 trips/acre	31% (6:4)	19% (4:6)
Day Care Center	5 trips/child; 80 trips/1,000 sq. ft.	5 trips/child; 80 trips/1,000 sq. ft.	19% (5:5)	18% (5:5)
FINANCIAL INSTITUTION (Bank or Credit Union) (5)				
Excluding drive-through	150 trips/1,000 sq. ft.; 1,000 trips/acre	112.5 trips/1,000 sq. ft.; 750 trips/acre	4% (7:3)	8% (4:6)
With drive-through	200 trips/1,000 sq. ft.; 1,500 trips/acre	150 trips/1,000 sq. ft.; 1,125 trips/acre	5% (6:4)	10% (5:5)
Drive-through only	250 trips/lane	187.5 trips/lane	3% (5:5)	13% (5:5)
HOSPITAL (3)				
Convalescent/Nursing	3 trips/bed	3 trips/bed	7% (6:4)	7% (4:6)
General	20 trips/bed; 20 trips/1,000 sq. ft.; 300 trips/acre	20 trips/bed; 20 trips/1,000 sq. ft.; 300 trips/acre	9% (7:3)	10% (3:7)
HOUSE OF WORSHIP (4)				
General	15 trips/1,000 sq. ft.; quadruple rates for days of	9 trips/1,000 sq. ft.; quadruple rate for days of	4% (8:2)	8% (5:5)
Without School or Day Care	5 trips/1,000 sq. ft.; quadruple rates for days of assembly	5 trips/1,000 sq. ft.; quadruple rate for days of	4% (8:2)	8% (5:5)
INDUSTRIAL				
Industrial/Business Park (some commercial included) (3)	16 trips/1,000 sq. ft.; 200 trips/acre	16 trips/1,000 sq. ft.; 200 trips/acre	12% (8:2)	12% (2:8)
Small Industrial Park (7) *	15 trips/1,000 sq. ft.; 120 trips/acre	15 trips/1,000 sq. ft.; 120 trips/acre	11% (9:1)	12% (2:8)
Large Industrial Park *	8 trips/1,000 sq. ft.; 100 trips/acre	8 trips/1,000 sq. ft.; 100 trips/acre	11% (9:1)	12% (2:8)
Manufacturing/Assembly	4 trips/1,000 sq. ft.; 50 trips/acre	4 trips/1,000 sq. ft.; 50 trips/acre	20% (9:1)	20% (2:8)
Rental Storage	2 trips/1,000 sq. ft.; 30 trips/acre	2 trips/1,000 sq. ft.; 30 trips/acre	6% (5:5)	9% (5:5)
Scientific Research and Development	8 trips/1,000 sq. ft.; 80 trips/acre	8 trips/1,000 sq. ft.; 80 trips/acre	16% (9:1)	14% (1:9)
Truck Terminal	10 trips/1,000 sq. ft.; 7 trips/bay; 80 trips/acre	10 trips/1,000 sq. ft.; 7 trips/bay; 80 trips/acre	9% (4:6)	8% (5:5)
Warehousing	5 trips/1,000 sq. ft.; 60 trips/acre	5 trips/1,000 sq. ft.; 60 trips/acre	15% (7:3)	16% (4:6)
LIBRARY (3)	50 trips/1,000 sq. ft.; 400 trips/acre		2% (7:3)	10% (5:5)
Less than 100,000 sq. ft.	. , , , , ,	20 trips/1,000 sq. ft.	2% (7:3)	10% (5:5)
100,000 sq. ft. or more		16 trips/1,000 sq. ft.	2% (7:3)	10% (5:5)

^{*} Small amount of local serving commercial included. May have multiple shifts.

TABLE 1 (Continued)

TRIP GENERATION RATE SUMMARY (WEEKDAY)

	(1)(2)	(9)		OUR AND
	DRIVEWAY (1) (2)	CUMULATIVE (8)		RATIO
LAND USE	VEHICLE TRIP RATE	VEHICLE TRIP RATE	AM (IN:OUT)	PM (IN:OUT)
LODGING (3)				
	10 tuing/ng ann 200 tuing/g ang	10 trips/room; 300 trips/acre	6% (6:4)	8% (6:4)
Hotel (w/convention facilities/restaurant) Motel	10 trips/room; 300 trips/acre 9 trips/room; 200 trips/acre	9 trips/room; 200 trips/acre	8% (4:6)	8% (6.4) 9% (4:6)
Resort Hotel	8 trips/room; 100 trips/acre	8 trips/room; 100 trips/acre	5% (6:4)	7% (6:4)
	8 trips/100m, 100 trips/acre	8 trips/100m, 100 trips/acre	370 (0.4)	770 (0.4)
MILITARY BASE (3)	2.5 trips/employee (military or civilian)	2.5 trips/employee (military or civilian)	9% (9:1)	10% (6:4)
OFFICE				
Commercial Office (6)	Ln(T) = 0.756 Ln(x) + 3.95; 450 trips/acre	Ln(T) = 0.756 Ln(x) + 3.95; 450 trips/acre	13% (9:1)	14% (2:8)
Corporate Headquarters/Single Tenant Office	10 trips/1,000 sq. ft.	10 trips/1,000 sq. ft.	15% (9:1)	15% (1:9)
Department of Motor Vehicles	180 trips/1,000 sq. ft.; 900 trips/acre	18 trips/1,000 sq. ft.	6% (6:4)	11% (4:6)
Government Office (Civic Center):	30 trips/1,000 sq. ft.	• •	9% (9:1)	12% (3:7)
Less than 100,000 sq. ft.		20 trips/1,000 sq. ft.	9% (9:1)	12% (3:7)
100,000 sq. ft. or more		16 trips/1,000 sq. ft.	9% (9:1)	12% (3:7)
Medical Office:	50 trips/1,000 sq. ft.; 500 trips/acre		6% (8:2)	10% (3:7)
Less than 100,000 sq. ft.		20 trips/1,000 sq. ft.	6% (8:2)	10% (3:7)
100,000 sq. ft. or more		16 trips/1,000 sq. ft.	6% (8:2)	10% (3:7)
Post Office:				
Distribution (central/walk-in only)	90 trips/1,000 sq. ft.	76 trips/1,000 sq. ft.	5%	7%
Community (without mail drop lane)	200 trips/1,000 sq. ft.; 1,300 trips/acre	168 trips/1,000 sq. ft.; 1,092 trips/acre	6% (6:4)	9% (5.5)
Community (with mail drop lane)	300 trips/1,000 sq. ft.; 2,000 trips/acre		7% (5:5)	9% (3.7)
Less than 100,000 sq. ft.		168 trips/1,000 sq. ft.; 1,092 trips/acre	7% (5:5)	7% (6:4)
100,000 sq. ft. or more		252 trips/1,000 sq. ft.; 1,680 trips/acre	7% (5:5)	8% (7:3)
RECREATION				
Bowling Center	30 trips/lane; 300 trips/acre	30 trips/lane; 300 trips/acre	7% (7:3)	10% (4:6)
Golf Course	600 trips/course; 40 trips/hole; 8 trips/acre	600 trips/course; 40 trips/hole; 8 trips/acre	6% (8:2)	9% (3:7)
Marina	4 trips/berth; 20 trips/acre	4 trips/berth; 20 trips/acre	3% (3:7)	7% (6:4)
Movie Theater	80 trips/1,000 sq. ft.; 1.8 trips/seat	80 trips/1,000 sq. ft.; 1.8 trips/seat	0.3%	8% (7:3)
Park:				
Beach, Ocean or Bay	600 trips/1,000 ft. shoreline; 60 trips/acre	600 trips/1,000 ft. shoreline; 60 trips/acre		11% (4:6)
Developed	50 trips/acre	50 trips/acre	4%	8%
Undeveloped	5 trips/acre	5 trips/acre	4%	8%
Racquetball/Tennis/Health Club	40 trips/1,000 sq. ft.; 40 trips/court; 300 trips/acre	40 trips/1,000 sq. ft.; 40 trips/court; 300 trips/acre	4% (6:4)	9% (6:4)
San Diego Zoo	115 trips/acre	115 trips/acre		
Sea World	80 trips/acre	80 trips/acre		
Sport Facility:	20 /	20 /		
Indoor	30 trips/acre	30 trips/acre		
Outdoor	50 trips/acre	50 trips/acre		

DEAK HOUD AND

TRIP GENERATION RATE SUMMARY (WEEKDAY)

	DRIVEWAY (1) (2)	CUMULATIVE (8)		OUR AND RATIO
LAND USE	VEHICLE TRIP RATE	VEHICLE TRIP RATE	AM (IN:OUT)	PM (IN:OUT)
RESIDENTIAL (3)				_
Congregate Care Facility	2 trips/dwelling unit	2 trips/dwelling unit	3% (6:4)	8% (5:5)
Estate Housing	12 trips/dwelling unit	12 trips/dwelling unit		
Mobile Home	5 trips/dwelling unit; 40 trips/acre	5 trips/dwelling unit; 40 trips/acre	9% (3:7)	12% (6:4)
Multiple Dwelling Unit:				
Under 20 dwelling units/acre	8 trips/dwelling unit	8 trips/dwelling unit	8% (2:8)	10% (7:3)
Over 20 dwelling units/acre	6 trips/dwelling unit	6 trips/dwelling unit	8% (2:8)	9% (7:3)
Retirement/Senior Citizen Housing	4 trips/dwelling unit	4 trips/dwelling unit		
Single Family Detached:				
Urbanized Area (1)	9 trips/dwelling unit	9 trips/dwelling unit	8% (2:8)	10% (7:3)
Urbanizing Area (1)	10 trips/dwelling unit	10 trips/dwelling unit	8% (2:8)	10% (7:3)
TRANSPORTATION FACILITIES (3)				
Bus Depot	25 trips/1,000 sq. ft.	25 trips/1,000 sq. ft.		
Park & Ride Lots	400 trips/acre; 600 trips/paved acre	400 trips/acre; 600 trips/paved acre	14% (7:3)	15% (3:7)
Transit Station (rail)	300 trips/acre	300 trips/acre	14% (7:3)	15% (3:7)

Notes:

- (1) From the 1990 Trip Generation Manual. Driveway rates reflect trips that are generated by a site. These rates are used to calculate the total number of trips that impact the project and its immediate vicinity.
- (2) Does not include trip rates for Centre City area. See Table 5.
- (3) San Diego Association of Governments (SANDAG), "Traffic Generators," San Diego, California, December 1996, and July 1998.
- (4) City of San Diego memo, "Trip Generation Rate for Churches," December 9, 1992.
- (5) Refer to Cumulative Vehicle Trip Rate column for reduced trip rates.
- (6) Ln = Natural logarithm; fitted curve logarithmic equation is used for Commercial Office and Regional Shopping Center. For example, the trip generation of an Office Building with 100,000 sq. ft. of GLA is: Ln(T) = 0.756 Ln(100) + 3.95, or Ln(T) = 0.756 (4.60517) + 3.95, or Ln(T) = 3.481509 + 3.95, or Ln(T) = 7.431509, which is 1,688 trips. The trip generation of a Regional Shopping Center with 1,000,000 sq. ft. of GLA is: Ln(T) = 0.756 Ln(1,000) + 5.25, or Ln(T) = 0.756 (6.907755) + 5.25, or Ln(T) = 5.222263 + 5.25, or Ln(T) = 10.47226, which is 35,322 trips. See Table 2 for calculated trip generation for selected sizes of Regional Shopping Centers, and Table 3 for calculated trip generation for selected sizes of Commercial Offices. GLA = Gross Leasable Area; T = trips; x = GLA in 1,000 square feet.
- (7) Institute of Transportation Engineers, "Trip Generation," 5th and 6th Editions, Washington, District of Columbia, 1991 and 1998.
- (8) Trips made to a site are Pass-By and Cumulative trips. See Appendix A for definitions of these trips. Cumulative rates are used to determine the community-wide impact of a new project.

Λn	\mathbf{n}	\mathbf{n}	w
AII	. 16	1161	ix L
110	\sim	ш	
	_		

SANDAG Select Zone Assignment and Internal Capture Rate

SANDAG Series 13 2050rc

Otay Mesa Area Pardee South Otay

Version 13.3.2 Scenario ID 981 2050rc_c

Select Zone 1 Pardee PA61I

Functional Classifications:

Freeway

Prime

Major Collector

Local Collector

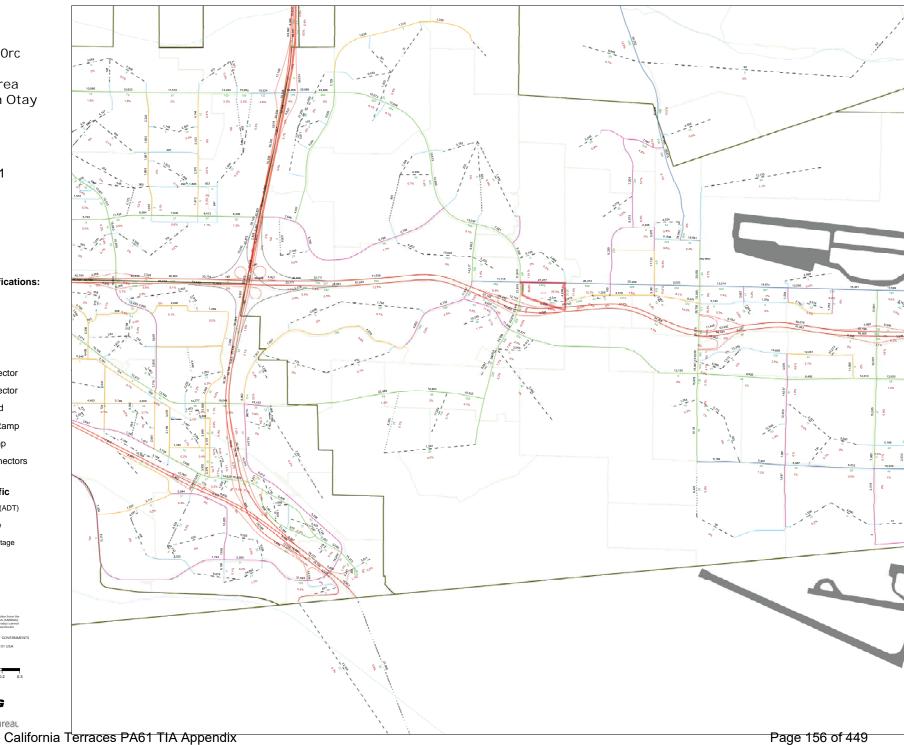
Rural Collector

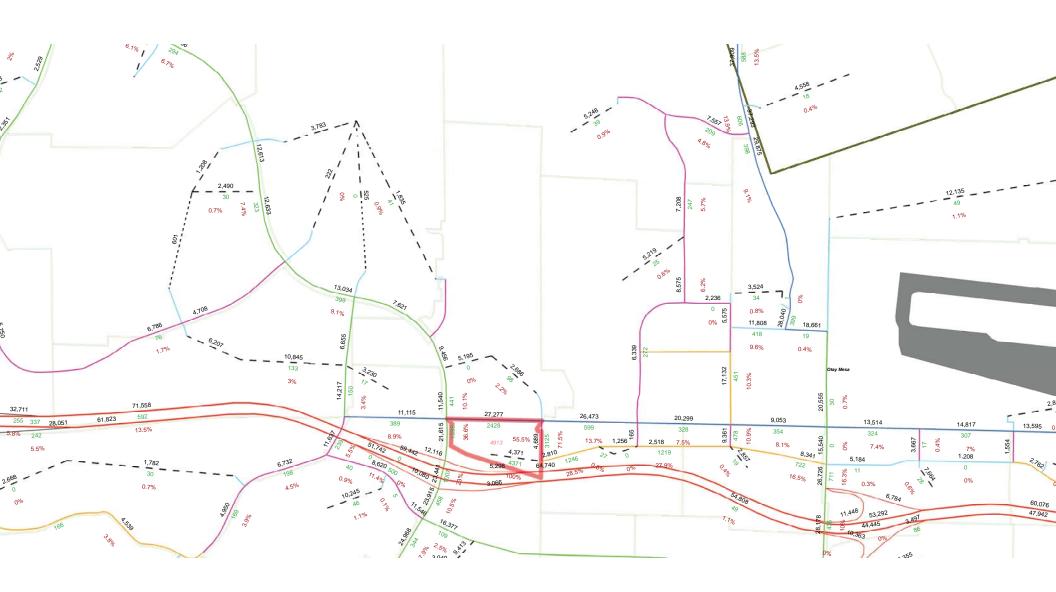
Local Road

Freeway Ramp

Local Ramp

Zone Connectors


Average Daily Traffic


24-Hour Total Flow (ADT)

Select Zone Percentage

SANDAG

servicebureau

SANDAG S13 2050rc ID 981 run date 6/25/18

scenario_id	taz	Intra	Inter	TotalTrips	IntraPercent
981	4913	167	5874	6041	2.8%

Aр	ne	nd	lix	M
nμ	РC	HU	ПΛ	IVI

Existing with Project Level of Service Calculations

1: Ocean View Hills Pkwy & Starfish Way/Westport View Dr

	۶	→	•	•	←	•	•	†	~	/	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		7	ħβ		ħ	∱ ∱	
Traffic Volume (veh/h)	60	4	6	76	7	53	5	553	40	42	550	22
Future Volume (veh/h)	60	4	6	76	7	53	5	553	40	42	550	22
Number	3	8	18	7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		0.98	1.00		0.97
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1863	1900	1900	1863	1900	1863	1863	1900	1863	1863	1900
Adj Flow Rate, veh/h	63	4	6	80	7	56	5	582	42	44	579	23
Adj No. of Lanes	0	1	0	0	1	0	1	2	0	1	2	0
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	136	9	13	112	10	78	9	1296	93	63	1449	58
Arrive On Green	0.09	0.09	0.09	0.12	0.12	0.12	0.01	0.39	0.39	0.04	0.42	0.42
Sat Flow, veh/h	1520	96	145	949	83	664	1774	3343	241	1774	3466	138
Grp Volume(v), veh/h	73	0	0	143	0	0	5	308	316	44	295	307
Grp Sat Flow(s),veh/h/ln	1761	0	0	1696	0	0	1774	1770	1814	1774	1770	1834
Q Serve(g_s), s	2.1	0.0	0.0	4.4	0.0	0.0	0.2	7.0	7.0	1.3	6.3	6.3
Cycle Q Clear(g_c), s	2.1	0.0	0.0	4.4	0.0	0.0	0.2	7.0	7.0	1.3	6.3	6.3
Prop In Lane	0.86		0.08	0.56		0.39	1.00		0.13	1.00		0.07
Lane Grp Cap(c), veh/h	157	0	0	200	0	0	9	686	703	63	740	767
V/C Ratio(X)	0.46	0.00	0.00	0.72	0.00	0.00	0.53	0.45	0.45	0.69	0.40	0.40
Avail Cap(c_a), veh/h	881	0	0	849	0	0	134	686	703	157	740	767
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	23.4	0.0	0.0	23.0	0.0	0.0	26.9	12.3	12.3	25.8	11.0	11.0
Incr Delay (d2), s/veh	2.1	0.0	0.0	4.7	0.0	0.0	38.6	2.1	2.1	12.7	1.6	1.6
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.1	0.0	0.0	2.3	0.0	0.0	0.2	3.7	3.9	0.9	3.4	3.5
LnGrp Delay(d),s/veh	25.6	0.0	0.0	27.7	0.0	0.0	65.4	14.4	14.4	38.5	12.6	12.6
LnGrp LOS	С			С			E	В	В	D	В	В
Approach Vol, veh/h		73			143			629			646	
Approach Delay, s/veh		25.6			27.7			14.8			14.4	
Approach LOS		С			С			В			В	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	4.7	28.4		11.3	6.3	26.8		9.7				
Change Period (Y+Rc), s	4.4	* 5.8		4.9	4.4	5.8		4.9				
Max Green Setting (Gmax), s	4.1	* 22		27.1	4.8	21.0		27.1				
Max Q Clear Time (g_c+l1), s	2.2	8.3		6.4	3.3	9.0		4.1				
Green Ext Time (p_c), s	0.0	2.7		0.6	0.0	2.7		0.3				
Intersection Summary												
HCM 2010 Ctrl Delay			16.4									
HCM 2010 CIT Delay			10.4 B									
Notes												

Intersection						
Int Delay, s/veh	1.6					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥	LDIX	ሻ	^	^	ODIT
Traffic Vol, veh/h	82	27	10	546	511	90
Future Vol, veh/h	82	27	10	546	511	90
Conflicting Peds, #/hr	8	8	8	0	0	8
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	_	None
Storage Length	0	-	225	-	-	-
Veh in Median Storage		_	-	0	0	-
Grade, %	0	_		0	0	_
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	89	29	11	593	555	98
N 4 - 1 /N 41 N	A! O		1-11		1-!	
	Minor2		Major1		/lajor2	
Conflicting Flow All	939	343	661	0	-	0
Stage 1	612	-	-	-	-	-
Stage 2	327	-	-	-	-	-
Critical Hdwy	6.84	6.94	4.14	-	-	-
Critical Hdwy Stg 1	5.84	-	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-
Follow-up Hdwy	3.52	3.32	2.22	-	-	-
Pot Cap-1 Maneuver	263	653	923	-	-	-
Stage 1	504	-	-	-	-	-
Stage 2	703	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	256	644	917	-	-	-
Mov Cap-2 Maneuver	374	-	-	-	-	-
Stage 1	494	-	-	-	-	-
Stage 2	698	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	17		0.2		0	
HCM LOS	C		0.2		U	
HOW EOS	U					
Minor Lane/Major Mvm	t	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		917	-		-	-
HCM Lane V/C Ratio		0.012	-	0.284	-	-
HCM Control Delay (s)		9	-	17	-	-
HCM Lane LOS		Α	-	С	-	-
HCM 95th %tile Q(veh)		0	-	1.2	-	-

	•	→	•	€	←	•	•	†	~	/	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑	7	7	₽		1,1	↑ ↑₽		7	∱ β	
Traffic Volume (veh/h)	305	22	368	7	36	33	336	212	19	18	235	277
Future Volume (veh/h)	305	22	368	7	36	33	336	212	19	18	235	277
Number	3	8	18	7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.96	0.97		0.98	1.00		0.97	1.00		0.98
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1863	1900	1863	1863	1900	1863	1863	1900
Adj Flow Rate, veh/h	359	26	433	8	42	39	395	249	22	21	276	326
Adj No. of Lanes	1	1	1	1	1	0	2	3	0	1	2	0
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	599	622	505	338	180	167	461	1892	164	32	498	437
Arrive On Green	0.17	0.33	0.33	0.04	0.20	0.20	0.13	0.40	0.40	0.02	0.28	0.28
Sat Flow, veh/h	1774	1863	1514	1774	882	819	3442	4756	411	1774	1770	1552
Grp Volume(v), veh/h	359	26	433	8	0	81	395	176	95	21	276	326
Grp Sat Flow(s),veh/h/ln	1774	1863	1514	1774	0	1702	1721	1695	1777	1774	1770	1552
Q Serve(g_s), s	14.2	0.9	24.8	0.3	0.0	3.7	10.4	3.1	3.2	1.1	12.3	17.8
Cycle Q Clear(g_c), s	14.2	0.9	24.8	0.3	0.0	3.7	10.4	3.1	3.2	1.1	12.3	17.8
Prop In Lane	1.00		1.00	1.00		0.48	1.00		0.23	1.00		1.00
Lane Grp Cap(c), veh/h	599	622	505	338	0	347	461	1348	707	32	498	437
V/C Ratio(X)	0.60	0.04	0.86	0.02	0.00	0.23	0.86	0.13	0.13	0.66	0.55	0.75
Avail Cap(c_a), veh/h	599	721	586	569	0	659	466	1348	707	105	498	437
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	21.3	20.9	28.9	26.5	0.0	31.0	39.4	17.8	17.8	45.4	28.4	30.4
Incr Delay (d2), s/veh	1.7	0.0	10.8	0.0	0.0	0.3	14.4	0.2	0.4	20.6	4.4	11.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	7.1	0.5	11.9	0.2	0.0	1.8	5.9	1.5	1.6	0.7	6.7	8.9
LnGrp Delay(d),s/veh	23.0	21.0	39.7	26.5	0.0	31.3	53.8	18.0	18.2	66.0	32.8	41.4
LnGrp LOS	С	С	D	С		С	D	В	В	E	С	D
Approach Vol, veh/h		818			89			666			623	
Approach Delay, s/veh		31.8			30.9			39.3			38.4	
Approach LOS		С			С			D			D	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	16.9	31.8	20.5	23.9	6.1	42.6	8.4	36.0				
Change Period (Y+Rc), s	4.4	* 5.6	4.4	4.9	4.4	5.6	4.4	4.9				
Max Green Setting (Gmax), s	12.6	* 26	16.1	36.0	5.5	33.1	16.1	36.0				
Max Q Clear Time (g_c+I1), s	12.4	19.8	16.2	5.7	3.1	5.2	2.3	26.8				
Green Ext Time (p_c), s	0.0	1.9	0.0	0.4	0.0	1.5	0.0	1.2				
Intersection Summary												
HCM 2010 Ctrl Delay			35.9									
HCM 2010 LOS			D									
Notes												

	ၨ	→	•	•	←	•	•	†	/	/	ţ	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			f)		ሻ	↑ ↑		ሻ	ተ ተኈ	
Traffic Volume (veh/h)	3	0	4	14	0	42	3	511	12	26	580	4
Future Volume (veh/h)	3	0	4	14	0	42	3	511	12	26	580	4
Number	3	8	18	7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.98	1.00		1.00	1.00		0.96	1.00		0.96
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1863	1900	1863	1863	1900	1863	1863	1900	1863	1863	1900
Adj Flow Rate, veh/h	3	0	4	16	0	47	3	568	13	29	644	4
Adj No. of Lanes	0	1	0	1	1	0	1	3	0	1	3	0
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	17	0	23	80	0	72	6	2714	62	46	2888	18
Arrive On Green	0.02	0.00	0.02	0.05	0.00	0.05	0.00	0.53	0.53	0.03	0.55	0.55
Sat Flow, veh/h	704	0.00	939	1774	0	1583	1774	5110	117	1774	5213	32
Grp Volume(v), veh/h	7	0	0	16	0	47	3	376	205	29	419	229
Grp Sat Flow(s), veh/h/lr		0	0	1774	0	1583	1774	1695	1837	1774	1695	1855
Q Serve(g_s), s	0.2	0.0	0.0	0.5	0.0	1.6	0.1	3.2	3.2	0.9	3.4	3.4
Cycle Q Clear(g_c), s	0.2	0.0	0.0	0.5	0.0	1.6	0.1	3.2	3.2	0.9	3.4	3.4
Prop In Lane	0.43	0.0	0.57	1.00	0.0	1.00	1.00	0.2	0.06	1.00	0.7	0.02
Lane Grp Cap(c), veh/h		0	0.07	80	0	72	6	1801	976	46	1878	1028
V/C Ratio(X)	0.17	0.00	0.00	0.20	0.00	0.66	0.52	0.21	0.21	0.63	0.22	0.22
Avail Cap(c_a), veh/h	941	0.00	0.00	1120	0.00	1000	151	1801	976	249	1878	1028
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/vel		0.00	0.00	24.9	0.0	25.4	26.9	6.7	6.7	26.1	6.1	6.1
Incr Delay (d2), s/veh	2.0	0.0	0.0	1.2	0.0	9.8	57.3	0.7	0.7	13.0	0.1	0.1
Initial Q Delay(d3),s/veh		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh		0.0	0.0	0.0	0.0	0.9	0.0	1.5	1.7	0.6	1.6	1.9
LnGrp Delay(d),s/veh	27.9	0.0	0.0	26.1	0.0	35.2	84.3	7.0	7.2	39.1	6.4	6.6
LnGrp LOS	C C	0.0	0.0	C	0.0	55.2 D	04.5 F	7.0 A	Α.2	D	Α	Α
Approach Vol, veh/h	<u> </u>	7			63	U	'	584	/\	<i>D</i>	677	/ (
Approach Delay, s/veh		27.9			32.9			7.4			7.9	
Approach LOS		21.9 C			32.9 C			7.4 A			7.9 A	
		C			C						A	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc)		36.0		7.3	5.8	34.8		6.2				
Change Period (Y+Rc),		6.0		4.9	4.4	6.0		4.9				
Max Green Setting (Gm	ax) , 6	30.0		34.2	7.6	27.0		31.0				
Max Q Clear Time (g_c-	+112),1s	5.4		3.6	2.9	5.2		2.2				
Green Ext Time (p_c), s	0.0	3.8		0.2	0.0	3.3		0.0				
Intersection Summary												
HCM 2010 Ctrl Delay			9.0									
HCM 2010 LOS			Α									

	•	•	₽I	†	<u> </u>	/	ļ
Movement	WBL	WBR	NBU	NBT	NBR	SBL	SBT
Lane Configurations		7		ተ ተኈ		ሻ	^ ^
Traffic Volume (veh/h)	56	9	54	544	22	5	540
Future Volume (veh/h)	56	9	54	544	22	5	540
Number	7	14	01	6	16	5	2
Initial Q (Qb), veh	0	0		0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1.00		U	0.96	1.00	U
Parking Bus, Adj	1.00	1.00		1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863		1863	1900	1863	1863
•	60	1003			24		581
Adj Flow Rate, veh/h				585		5	
Adj No. of Lanes	1	1		3	0	1	3
Peak Hour Factor	0.93	0.93		0.93	0.93	0.93	0.93
Percent Heavy Veh, %	2	2		2	2	2	2
Cap, veh/h	90	80		3149	128	10	3707
Arrive On Green	0.05	0.05		0.63	0.63	0.01	0.73
Sat Flow, veh/h	1774	1583		5171	204	1774	5253
Grp Volume(v), veh/h	60	10		395	214	5	581
Grp Sat Flow(s), veh/h/lr	n1774	1583		1695	1817	1774	1695
Q Serve(g_s), s	1.6	0.3		2.3	2.4	0.1	1.7
Cycle Q Clear(g_c), s	1.6	0.3		2.3	2.4	0.1	1.7
Prop In Lane	1.00	1.00			0.11	1.00	
Lane Grp Cap(c), veh/h	90	80		2133	1144	10	3707
V/C Ratio(X)	0.67	0.12		0.19	0.19	0.52	0.16
	1154	1030		2133	1144	149	3707
HCM Platoon Ratio	1.00	1.00		1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00		1.00	1.00	1.00	1.00
Uniform Delay (d), s/vel		21.6		3.7	3.7	23.6	2.0
Incr Delay (d2), s/veh	8.2	0.7		0.2	0.4	38.1	0.1
Initial Q Delay(d3),s/veh		0.0		0.0	0.0	0.0	0.0
%ile BackOfQ(50%),vel		0.3		1.1	1.2	0.0	0.8
LnGrp Delay(d),s/veh	30.4	22.3		3.9	4.1	61.8	2.1
LnGrp LOS	30.4 C	22.3 C		3.9 A	4.1 A	01.0 E	2.1 A
		C			А	<u> </u>	
Approach Vol, veh/h	70			609			586
Approach LOS				4.0			2.6
Approach LOS	С			Α			Α
Timer	1	2	3	4	5	6	7
Assigned Phs		2		4	5	6	
Phs Duration (G+Y+Rc)). S	40.8		6.9	4.8	36.0	
Change Period (Y+Rc),		6.0		4.5	4.5	6.0	
Max Green Setting (Gm		29.2		31.0	4.0	30.0	
Max Q Clear Time (g_c		3.7		3.6	2.1	4.4	
Green Ext Time (p_c), s		3.7		0.2	0.0	3.6	
ų – <i>7</i> -	,	J. I		0.2	0.0	5.0	
Intersection Summary							
HCM 2010 Ctrl Delay			4.7				
HCM 2010 LOS			Α				
Notes							

	•	→	•	•	←	•	•	†	~	\	Ţ	4
Movement E	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		^	7	ሻሻ	†	7	*	^	7	ሻሻ	^	7
Traffic Volume (veh/h)	0	8	5	303	10	146	5	347	591	217	487	1
Future Volume (veh/h)	0	8	5	303	10	146	5	347	591	217	487	1
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
` '	1.00	U	1.00	1.00	U	0.98	1.00	U	0.99	1.00	U	0.96
,	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	863	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863
Adj Flow Rate, veh/h	0	9	5	329	11	159	5	377	642	236	529	1003
,	1	2	1	329	1	109	1	2	1	230	2	1
Adj No. of Lanes			-		•	-	•		-	0.92	0.92	0.92
	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92			
Percent Heavy Veh, %	2	2	114	2	2	2	2	1572	2	2	1010	2
Cap, veh/h	2	231	114	504	524	556	12	1572	695	262	1818	785
	0.00	0.07	0.07	0.15	0.28	0.28	0.01	0.44	0.44	0.08	0.51	0.51
	774	3539	1583	3442	1863	1552	1774	3539	1564	3442	3539	1528
Grp Volume(v), veh/h	0	9	5	329	11	159	5	377	642	236	529	1
Grp Sat Flow(s), veh/h/ln1		1770	1583	1721	1863	1552	1774	1770	1564	1721	1770	1528
Q Serve(g_s), s	0.0	0.2	0.2	6.8	0.3	5.5	0.2	5.0	29.0	5.1	6.4	0.0
7 10- 7:	0.0	0.2	0.2	6.8	0.3	5.5	0.2	5.0	29.0	5.1	6.4	0.0
	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	2	231	114	504	524	556	12	1572	695	262	1818	785
V/C Ratio(X)	0.00	0.04	0.04	0.65	0.02	0.29	0.43	0.24	0.92	0.90	0.29	0.00
Avail Cap(c_a), veh/h	260	727	336	505	524	556	118	1572	695	262	1818	785
	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I) C	0.00	1.00	1.00	1.00	1.00	1.00	0.98	0.98	0.98	1.00	1.00	1.00
Uniform Delay (d), s/veh	0.0	32.9	32.4	30.2	19.5	17.3	37.1	13.0	19.7	34.4	10.4	8.9
Incr Delay (d2), s/veh	0.0	0.1	0.2	3.0	0.0	0.3	22.4	0.4	19.7	31.4	0.4	0.0
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/l		0.1	0.1	3.4	0.2	2.4	0.2	2.5	16.2	3.6	3.2	0.0
LnGrp Delay(d),s/veh	0.0	32.9	32.6	33.2	19.5	17.6	59.5	13.3	39.4	65.8	10.8	8.9
LnGrp LOS		С	С	С	В	В	Ε	В	D	Ε	В	Α
Approach Vol, veh/h		14			499			1024			766	
Approach Delay, s/veh		32.8			27.9			29.9			27.8	
Approach LOS		C			C C			C C			C C	
•											- V	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), 1		38.4	16.2	10.0	5.2	43.6	0.0	26.2				
Change Period (Y+Rc), \$		5.1	* 5.2	5.1	* 4.7	5.1	* 5.2	5.1				
Max Green Setting (Gmax)	•	22.8	* 11	15.4	* 5	23.5	* 11	15.4				
Max Q Clear Time (g_c+l		31.0	8.8	2.2	2.2	8.4	0.0	7.5				
Green Ext Time (p_c), s	0.0	0.0	0.3	0.0	0.0	2.8	0.0	0.3				
Intercection Cummers												
Intersection Summary			20.0									
HCM 2010 Ctrl Delay			28.8									
HCM 2010 LOS			С									
Notes												

-	۶	→	•	•	←	•	•	†	/	/	ţ	4	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
ane Configurations					ની	7	ሻ	ተተተ			ተተ _ጮ		
affic Volume (veh/h)	0	0	0	21	0	64	276	832	0	0	261	492	
ture Volume (veh/h)	0	0	0	21	0	64	276	832	0	0	261	492	
mber				3	8	18	5	2	12	1	6	16	
ial Q (Qb), veh				0	0	0	0	0	0	0	0	0	
d-Bike Adj(A_pbT)				1.00		1.00	1.00		1.00	1.00		0.97	
king Bus, Adj				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Sat Flow, veh/h/ln				1900	1863	1863	1863	1863	0	0	1863	1900	
Flow Rate, veh/h				23	0	70	303	914	0	0	287	541	
No. of Lanes				0	1	1	1	3	0	0	3	0	
k Hour Factor				0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	
cent Heavy Veh, %				2	2	2	2	2	0.71	0.71	2	2	
o, veh/h				109	0	98	302	4106	0	0	1955	884	
ve On Green				0.06	0.00	0.06	0.17	0.81	0.00	0.00	0.58	0.58	
Flow, veh/h				1774	0	1583	1774	5253	0	0	3558	1533	
Volume(v), veh/h				23	0	70	303	914	0	0	287	541	
Sat Flow(s), veh/h/ln				1774	0	1583	1774	1695	0	0	1695	1533	
erve(g_s), s				1.0	0.0	3.4	13.3	3.3	0.0	0.0	3.1	18.0	
e Q Clear(g_c), s				1.0	0.0	3.4	13.3	3.3	0.0	0.0	3.1	18.0	
In Lane				1.00		1.00	1.00		0.00	0.00		1.00	
e Grp Cap(c), veh/h				109	0	98	302	4106	0	0	1955	884	
Ratio(X)				0.21	0.00	0.72	1.00	0.22	0.00	0.00	0.15	0.61	
Cap(c_a), veh/h				373	0	333	302	4106	0	0	1955	884	
1 Platoon Ratio				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
ream Filter(I)				1.00	0.00	1.00	0.65	0.65	0.00	0.00	0.93	0.93	
orm Delay (d), s/veh				34.8	0.0	35.9	32.3	1.8	0.0	0.0	7.6	10.8	
Delay (d2), s/veh				0.9	0.0	9.4	42.2	0.1	0.0	0.0	0.1	2.9	
al Q Delay(d3),s/veh				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
BackOfQ(50%),veh/	ln			0.5	0.0	1.7	10.0	1.6	0.0	0.0	1.5	8.2	
p Delay(d),s/veh				35.7	0.0	45.3	74.5	1.8	0.0	0.0	7.8	13.7	
p LOS				D	0.0	D	74.5 F	A	0.0	0.0	Α.	В	
oach Vol, veh/h					93		'	1217			828		
roach Delay, s/veh					42.9			19.9			11.7		
roach LOS					42.9 D			19.9 B			В		
TOOUT LUS					U			Ъ			Ъ		
er	1	2	3	4	5	6	7	8					
gned Phs		2			5	6		8					
Duration (G+Y+Rc),	S	68.1			18.0	50.1		9.9					
inge Period (Y+Rc), s		5.1			* 4.7	5.1		5.1					
Green Setting (Gma		50.9			* 13	32.9		16.4					
Q Clear Time (g_c+l		5.3			15.3	20.0		5.4					
en Ext Time (p_c), s	7,0	7.0			0.0	4.4		0.2					
•					3.0			3.2					
rsection Summary													
M 2010 Ctrl Delay			17.7										
M 2010 LOS			В										
tes													

•	_	→	•	√	←	•	•	†	<u> </u>	\	ļ	4
Movement EB	L E	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
	ነ	4						ተ ተጉ		ኝ	^	
Traffic Volume (veh/h) 60	•	1	486	0	0	0	0	516	59	97	272	0
Future Volume (veh/h) 60		1	486	0	0	0	0	516	59	97	272	0
, ,	7	4	14	Ü		Ü	5	2	12	1	6	16
	0	0	0				0	0	0	0	0	0
Ped-Bike Adj(A_pbT) 1.0		U	1.00				1.00	0	0.99	1.00	U	1.00
Parking Bus, Adj 1.0		1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln 186		863	1900				0	1863	1900	1863	1863	0
Adj Flow Rate, veh/h 66		101	593				0	629	72	118	332	0
	1	1	0				0	3	0	1	2	0
Peak Hour Factor 0.8).82	0.82				0.82	0.82	0.82	0.82	0.82	0.82
	2	2	2				0.02	2	2	2	2	0.02
Cap, veh/h 75		100	588				0	1351	153	149	1553	0
Arrive On Green 0.4).43	0.43				0.00	0.29	0.29	0.08	0.44	0.00
Sat Flow, veh/h 177		236	1383				0.00	4796	524	1774	3632	0.00
									242			0
Grp Volume(v), veh/h 66		0	694				0	459		118	332	
Grp Sat Flow(s), veh/h/ln177		0	1619				0	1695	1762	1774	1770	0
Q Serve(g_s), s 25.		0.0	31.9				0.0	8.3	8.5	4.9	4.4	0.0
Cycle Q Clear(g_c), s 25.		0.0	31.9				0.0	8.3	8.5	4.9	4.4	0.0
Prop In Lane 1.0		0	0.85				0.00	000	0.30	1.00	1550	0.00
Lane Grp Cap(c), veh/h 75		0	688				0	990	515	149	1553	0
V/C Ratio(X) 0.8		0.00	1.01				0.00	0.46	0.47	0.79	0.21	0.00
Avail Cap(c_a), veh/h 75		0	688				0	990	515	149	1553	1.00
HCM Platoon Ratio 1.0		1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I) 1.0		0.00	1.00				0.00	1.00	1.00	0.95	0.95	0.00
Uniform Delay (d), s/veh 19.		0.0	21.6				0.0	21.7	21.8	33.7	13.0	0.0
Incr Delay (d2), s/veh 11.		0.0	36.3				0.0	1.6	3.1	23.4	0.3	0.0
Initial Q Delay(d3),s/veh 0.		0.0	0.0				0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/lir5.		0.0	21.1				0.0	4.1	4.5	3.4	2.2	0.0
LnGrp Delay(d),s/veh 31.		0.0	57.9				0.0	23.3	24.9	57.1	13.3	0.0
	3	0/2	F					C	С	E	В	
Approach Vol, veh/h		360						701			450	
Approach Delay, s/veh	4	15.1						23.8			24.8	
Approach LOS		D						С			С	
Timer	1	2	3	4	5	6	7	8				
	1	2		4		6						
Phs Duration (G+Y+Rc), \$1.	0 2	27.0		37.0		38.0						
Change Period (Y+Rc), \$ 4.		5.1		5.1		5.1						
Max Green Setting (Gmax),		21.9		31.9		32.9						
Max Q Clear Time (g_c+l16),		10.5		33.9		6.4						
Green Ext Time (p_c), s 0.		3.2		0.0		2.0						
Intersection Summary												
			2E E									
HCM 2010 Ctrl Delay			35.5									
HCM 2010 LOS			D									
Notes												

Intersection												
Intersection Delay, s/ve	ħ29.4											
Intersection LOS	F											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u> </u>	4	LDIT	ሻ	<u> </u>	7	ሻ	† ‡	TIDIT	<u> </u>	†	ODIT
Traffic Vol, veh/h	369	1	7	0	1	56	4	195	0	35	277	431
Future Vol, veh/h	369	1	7	0	1	56	4	195	0	35	277	431
Peak Hour Factor	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	543	1	10	0	1	82	6	287	0	51	407	634
Number of Lanes	1	1	0	1	1	1	1	207	0	1	2	034
	•	'	U	•	'	'	•		0	•		0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	3			2			3			3		
Conflicting Approach Le				NB			EB			WB		
Conflicting Lanes Left	3			3			2			3		
Conflicting Approach Ri				SB			WB			EB		
Conflicting Lanes Right				3			3			2		
HCM Control Delay	30.1			15.4			16.4			218.8		
HCM LOS	D			С			С			F		
Lane		NBLn1	NBLn21	VBLn3	EBLn1	EBLn2\	NBLn1\	NBLn2V	VBLn3	SBLn1	SBLn2	SBLn3
Vol Left, %		100%	0%		100%	96%	0%	0%		100%	0%	0%
Vol Thru, %		0%	100%	100%	0%	1%	100%	100%	0%	0%		18%
Vol Right, %		0%	0%	0%	0%	4%	0%	0%	100%	0%	0%	82%
Sign Control		Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane		4	98	98	188	189	0	1	56	35	185	523
LT Vol		4	0	0	188	181	0	0	0	35	0	0
Through Vol		0	98	98	0	101	0	1	0	0	185	92
RT Vol		0	0	0	0	7	0	0	56	0	0	431
Lane Flow Rate		6	143	143	277	278	0	1	82	51	272	770
Geometry Grp		8	8	8	8	8	8	8	8	8	8	8
Degree of Util (X)			0.367	0.297	0.679	0.678	0		0.21	0.123	0.611	1.606
Departure Headway (Ho	d) .	10.584						10.801			8.105	
Convergence, Y/N	ω <i>)</i>	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Cap		340	360	437	382	383	0	333	358	416	445	485
Service Time			7.764					8.501				
HCM Lane V/C Ratio			0.397					0.003				
HCM Control Delay		13.5	18.5	14.4	30.2	30	13.5	13.5	15.4	12.6		301.7
HCM Lane LOS		13.5 B	10.5	В	30.2 D	D	13.5 N	13.5 B	13.4 C	12.0 B	22.0 C	501.7
HCM 95th-tile Q			1.6	1.2	4.8	4.8	0	0	0.8	0.4	4	42.8
HOW YOUR U		0	1.0	1.2	4.8	4.8	U	U	U.8	0.4	4	4Z.ŏ

Intersection						
Int Delay, s/veh	1.4					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	^	T T	WDL	^	NUL	T T
Traffic Vol, veh/h	710	106	0	0	0	92
Future Vol, veh/h	710	106	0	0	0	92
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	_	250	_	-	_	0
Veh in Median Storage		-	-	0	0	-
Grade, %	0	_	_	0	0	_
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	772	115	0	0	0	100
IVIVIIIL I IOVV	112	113	U	U	U	100
Major/Minor N	Najor1	N	Najor2	N	/linor1	
Conflicting Flow All	0	0	-	-	-	386
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	7.14
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	3.92
Pot Cap-1 Maneuver	-	-	0	-	0	523
Stage 1	-	-	0	-	0	-
Stage 2	_	-	0	-	0	-
Platoon blocked, %	_	_		_		
Mov Cap-1 Maneuver	_	_	_	_	_	523
Mov Cap-2 Maneuver	-	_	_	_	_	-
Stage 1	_	_	_	_	_	_
Stage 2	_		_		_	_
Stage 2	_		-	-	-	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0		13.5	
HCM LOS					В	
Minor Long/Mairy M		VIDL1	EDT	EDD	MADT	
Minor Lane/Major Mvm	t I	VBLn1	EBT	EBR	WBT	
Capacity (veh/h)		523	-	-	-	
HCM Lane V/C Ratio		0.191	-	-	-	
HCM Control Delay (s)		13.5	-	-	-	
HCM Lane LOS		В	-	-	-	
HCM 95th %tile Q(veh)		0.7	-	-	-	
HCM 95th %tile O(veh)		0.7	-	-	-	

Intersection												
Int Delay, s/veh	4.7											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	ተተተ	7	ሻ	ተተተ	7	ሻ	(î			4	
Traffic Vol, veh/h	74	723	5	38	253	1	61	4	28	35	3	72
Future Vol, veh/h	74	723	5	38	253	1	61	4	28	35	3	72
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	250	-	250	250	-	400	0	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	91	91	92	92	91	91	92	92	92	91	92	91
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	81	795	5	41	278	1	66	4	30	38	3	79
Major/Minor N	1ajor1			Major2		N	Minor1		N	Minor2		
Conflicting Flow All	279	0	0	800	0	0	1152	1318	398	842	1322	139
Stage 1		-	-	-	-	-	957	957	-	360	360	-
Stage 2	_	-	_	-	_	-	195	361	-	482	962	_
Critical Hdwy	5.34	_	-	5.34	-	-	6.44	6.54	7.14	6.44	6.54	7.14
Critical Hdwy Stg 1	-	-	-	-	-	-	7.34	5.54	-	7.34	5.54	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.74	5.54	-	6.74	5.54	-
Follow-up Hdwy	3.12	-	-	3.12	-	-	3.82	4.02	3.92	3.82	4.02	3.92
Pot Cap-1 Maneuver	859	-	-	488	-	-	208	156	514	316	155	751
Stage 1	-	-	-	-	-	-	213	334	-	544	625	-
Stage 2	-	-	-	-	-	-	724	624	-	488	332	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	859	-	-	488	-	-	159	129	514	252	129	751
Mov Cap-2 Maneuver	-	-	-	-	-	-	159	129	-	252	129	-
Stage 1	-	-	-	-	-	-	193	303	-	493	573	-
Stage 2	-	-	-	-	-	-	590	572	-	410	301	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.9			1.7			33.5			16.7		
HCM LOS							D			С		
Minor Lane/Major Mvmt		NBLn1 i	VBLn2	EBL	EBT	EBR	WBL	WBT	WBR S	SBLn1		
Capacity (veh/h)		159	374	859	-	-	488	-	-	427		
HCM Lane V/C Ratio			0.093		-	-	0.085	-	-	0.283		
HCM Control Delay (s)		42.9	15.6	9.6	-	-	13.1	-	-	16.7		
HCM Lane LOS		Ε	С	Α	-	-	В	-	-	С		
HCM 95th %tile Q(veh)		1.9	0.3	0.3	-	-	0.3	-	-	1.2		

	•			←	•	<u></u>	1
Movement	EBL	EBT	WBU	WBT	WBR	SBL	SBR
						3DL Š	
Lane Configurations	777 222	^^	Ą	↑ ↑↑	7		77
Traffic Volume (veh/h)	333	350	1	217	38	28	93
Future Volume (veh/h)	333	350	1	217	38	28	93
Number	5	2		6	16	7	14
Initial Q (Qb), veh	1.00	0		0	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00	1.00		1.00	1.00	1.00	1.00
Parking Bus, Adj	1.00	1.00		1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863		1863	1863	1863	1863
Adj Flow Rate, veh/h	374	393		244	43	31	104
Adj No. of Lanes	2	3		3	1	1	2
Peak Hour Factor	0.89	0.89		0.89	0.89	0.89	0.89
Percent Heavy Veh, %	2	2		2	2	2	2
Cap, veh/h	497	1701		695	216	913	1434
Arrive On Green	0.14	0.33		0.14	0.14	0.51	0.51
Sat Flow, veh/h	3442	5253		5253	1578	1774	2787
Grp Volume(v), veh/h	374	393		244	43	31	104
Grp Sat Flow(s),veh/h/ln	1721	1695		1695	1578	1774	1393
Q Serve(g_s), s	7.8	4.2		3.3	1.8	0.6	1.4
Cycle Q Clear(g_c), s	7.8	4.2		3.3	1.8	0.6	1.4
Prop In Lane	1.00				1.00	1.00	1.00
Lane Grp Cap(c), veh/h	497	1701		695	216	913	1434
V/C Ratio(X)	0.75	0.23		0.35	0.20	0.03	0.07
Avail Cap(c_a), veh/h	1012	3479		2344	727	913	1434
HCM Platoon Ratio	1.00	1.00		1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00		1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	30.7	18.0		29.3	28.7	9.0	9.2
Incr Delay (d2), s/veh	2.3	0.1		0.3	0.4	0.1	0.1
Initial Q Delay(d3),s/veh	0.0	0.0		0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	3.8	1.9		1.5	0.8	0.3	1.6
LnGrp Delay(d),s/veh	33.1	18.0		29.6	29.1	9.0	9.3
LnGrp LOS	C	В		C C	C	Α	7.5 A
Approach Vol, veh/h		767		287	<u> </u>	135	/\
Approach Delay, s/veh		25.4		29.5		9.2	
Approach LOS		25.4 C		29.5 C		9.2 A	
Appluacii LU3		C		C		А	
Timer	1	2	3	4	5	6	7
Assigned Phs		2		4	5	6	
Phs Duration (G+Y+Rc), s		32.3		42.5	14.8	17.5	
Change Period (Y+Rc), s		7.3		4.0	4.0	* 7.3	
Max Green Setting (Gmax), s		51.2		38.5	22.0	* 35	
Max Q Clear Time (q_c+l1), s		6.2		3.4	9.8	5.3	
Green Ext Time (p_c), s		2.5		0.4	1.0	1.6	
		2.0		J.¬	1.0	1.0	
Intersection Summary							
HCM 2010 Ctrl Delay			24.5				
HCM 2010 LOS			С				
Notes							
INUIUS							

Intersection												
Int Delay, s/veh	0.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ተ ተኈ			ተተተ	7			7			7
Traffic Vol, veh/h	0	460	3	0	292	34	0	0	5	0	0	47
Future Vol, veh/h	0	460	3	0	292	34	0	0	5	0	0	47
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	500	-	-	0	-	-	0
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	500	3	0	317	37	0	0	5	0	0	51
Major/Minor N	1ajor1			Major2		N	/linor1		N	/linor2		
Conflicting Flow All	-	0	0	-	-	0	-	-	252	-	-	159
Stage 1	_	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	-	-	-	7.14	-	-	7.14
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy Stg 2	_	-	-	-	-	-	-	-	-	-	-	_
Follow-up Hdwy	-	-	-	-	-	-	-	-	3.92	-	-	3.92
Pot Cap-1 Maneuver	0	-	-	0	-	-	0	0	637	0	0	730
Stage 1	0	-	-	0	-	-	0	0	-	0	0	-
Stage 2	0	-	-	0	-	-	0	0	-	0	0	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	-	-	-	-	-	-	-	-	637	-	-	730
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			0			10.7			10.3		
HCM LOS							В			В		
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBT	WBR S	SRI n1					
Capacity (veh/h)		637		LDIX	WDT	WDK .	730					
HCM Lane V/C Ratio		0.009	-	-	-	-	0.07					
		10.7	-	-	-		10.3					
HCM Control Delay (s) HCM Lane LOS			-	-	-	-	10.3 B					
HCM 95th %tile Q(veh)		B 0	-	-	-	-	0.2					
HOW FOUT MILE Q(VEII)		U	-	-	-		U.Z					

	•	→	•	•	←	•	1	†	/	/		4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	76	ተተተ	7	ሻሻ	ተተተ	7	ሻ	₽		ሻ		77
Traffic Volume (veh/h)	136	133	110	37	147	116	57	33	38	86	23	70
Future Volume (veh/h)	136	133	110	37	147	116	57	33	38	86	23	70
Number	3	8	18	7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.99	1.00		1.00	1.00		0.99	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1863	1863	1863	1863	1900	1863	1863	1863
Adj Flow Rate, veh/h	146	143	118	40	158	125	61	35	41	92	25	75
Adj No. of Lanes	2	3	1	2	3	1	1	1	0	1	1	2
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	232	802	246	106	616	192	78	345	405	118	870	1302
Arrive On Green	0.07	0.16	0.16	0.03	0.12	0.12	0.04	0.44	0.44	0.07	0.47	0.47
Sat Flow, veh/h	3442	5085	1562	3442	5085	1583	1774	777	910	1774	1863	2787
Grp Volume(v), veh/h	146	143	118	40	158	125	61	0	76	92	25	75
Grp Sat Flow(s), veh/h/ln	1721	1695	1562	1721	1695	1583	1774	0	1687	1774	1863	1393
Q Serve(g_s), s	2.9	1.7	4.9	0.8	2.0	5.3	2.4	0.0	1.9	3.6	0.5	1.0
Cycle Q Clear(g_c), s	2.9	1.7	4.9	0.8	2.0	5.3	2.4	0.0	1.9	3.6	0.5	1.0
Prop In Lane	1.00	1.7	1.00	1.00	2.0	1.00	1.00	0.0	0.54	1.00	0.0	1.00
Lane Grp Cap(c), veh/h	232	802	246	106	616	192	78	0	750	118	870	1302
V/C Ratio(X)	0.63	0.18	0.48	0.38	0.26	0.65	0.78	0.00	0.10	0.78	0.03	0.06
Avail Cap(c_a), veh/h	427	2941	904	218	2633	820	230	0.00	750	175	870	1302
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	32.2	25.9	27.2	33.7	28.3	29.7	33.6	0.0	11.5	32.6	10.2	10.3
Incr Delay (d2), s/veh	2.8	0.1	1.4	2.2	0.2	3.7	15.6	0.0	0.3	12.2	0.1	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.5	0.8	2.2	0.4	0.9	2.5	1.5	0.0	0.0	2.2	0.0	0.4
LnGrp Delay(d),s/veh	35.0	26.0	28.6	35.9	28.5	33.4	49.1	0.0	11.7	44.8	10.3	10.4
LnGrp LOS	33.0 C	20.0 C	20.0 C	33.9 D	20.5 C	33.4 C	47.1 D	0.0	В	44.0 D	10.3 B	В
	U			U			U	107	ь	U		В
Approach Vol, veh/h		407			323			137			192	
Approach Delay, s/veh		30.0			31.3			28.4			26.9	
Approach LOS		С			С			С			С	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	7.1	40.5	8.8	14.5	8.7	38.9	6.2	17.1				
Change Period (Y+Rc), s	4.0	7.4	4.0	5.9	4.0	* 7.4	4.0	5.9				
Max Green Setting (Gmax), s	9.2	29.0	8.8	36.7	7.0	* 32	4.5	41.0				
Max Q Clear Time (g_c+l1), s	4.4	3.0	4.9	7.3	5.6	3.9	2.8	6.9				
Green Ext Time (p_c), s	0.0	0.3	0.1	1.3	0.0	0.3	0.0	1.2				
Intersection Summary												
HCM 2010 Ctrl Delay			29.6									
HCM 2010 LOS			C									
Notes												

1: Ocean View Hills Pkwy & Starfish Way/Westport View Dr

	۶	→	•	•	←	•	•	†	~	/	+	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		, A	↑ ₽		¥	∱ }	
Traffic Volume (veh/h)	14	1	9	35	0	53	8	578	42	147	490	20
Future Volume (veh/h)	14	1	9	35	0	53	8	578	42	147	490	20
Number	3	8	18	7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		0.99	1.00		0.99
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1863	1900	1900	1863	1900	1863	1863	1900	1863	1863	1900
Adj Flow Rate, veh/h	16	1	10	40	0	60	9	657	48	167	557	23
Adj No. of Lanes	0	1	0	0	1	0	1	2	0	1	2	0
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	44	3	27	68	0	102	17	1178	86	211	1599	66
Arrive On Green	0.04	0.04	0.04	0.10	0.00	0.10	0.01	0.35	0.35	0.12	0.46	0.46
Sat Flow, veh/h	1008	63	630	662	0	993	1774	3344	244	1774	3463	143
Grp Volume(v), veh/h	27	0	0	100	0	0	9	347	358	167	284	296
Grp Sat Flow(s),veh/h/ln	1701	0	0	1654	0	0	1774	1770	1818	1774	1770	1836
Q Serve(g_s), s	8.0	0.0	0.0	3.0	0.0	0.0	0.3	8.3	8.3	4.8	5.4	5.4
Cycle Q Clear(g_c), s	8.0	0.0	0.0	3.0	0.0	0.0	0.3	8.3	8.3	4.8	5.4	5.4
Prop In Lane	0.59		0.37	0.40		0.60	1.00		0.13	1.00		0.08
Lane Grp Cap(c), veh/h	74	0	0	170	0	0	17	623	640	211	817	848
V/C Ratio(X)	0.37	0.00	0.00	0.59	0.00	0.00	0.54	0.56	0.56	0.79	0.35	0.35
Avail Cap(c_a), veh/h	879	0	0	855	0	0	139	623	640	258	817	848
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	24.3	0.0	0.0	22.4	0.0	0.0	25.8	13.6	13.6	22.4	9.0	9.0
Incr Delay (d2), s/veh	3.0	0.0	0.0	3.2	0.0	0.0	24.6	3.6	3.5	12.7	1.2	1.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.4	0.0	0.0	1.5	0.0	0.0	0.2	4.6	4.7	3.1	2.9	3.0
LnGrp Delay(d),s/veh	27.3	0.0	0.0	25.6	0.0	0.0	50.4	17.2	17.1	35.1	10.2	10.2
LnGrp LOS	С			С			D	В	В	D	В	В
Approach Vol, veh/h		27			100			714			747	
Approach Delay, s/veh		27.3			25.6			17.6			15.7	
Approach LOS		С			С			В			В	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	4.9	29.9		10.3	10.6	24.2		7.2				
Change Period (Y+Rc), s	4.4	* 5.8		4.9	4.4	5.8		4.9				
Max Green Setting (Gmax), s	4.1	* 22		27.0	7.6	18.4		27.0				
Max Q Clear Time (g_c+l1), s	2.3	7.4		5.0	6.8	10.3		2.8				
Green Ext Time (p_c), s	0.0	2.7		0.4	0.0	2.5		0.1				
Intersection Summary												
			17.4									
HCM 2010 Ctrl Delay HCM 2010 LOS			17.4 B									
Notes												

Intersection						
Int Delay, s/veh	0.9					
		EDD	NDI	NDT	CDT	CDD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y	٥٦	<u>ነ</u>	^	^	Ε0
Traffic Vol, veh/h	37	25	23	585	493	50
Future Vol, veh/h	37	25	23	585	493	50
Conflicting Peds, #/hr	8	8	8	0	0	8
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	225	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	86	86	86	86	86	86
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	43	29	27	680	573	58
Major/Minor N	/linor2	N	/lajor1	Λ	/lajor2	
Conflicting Flow All	1012	332	639	0	-	0
	610		039			
Stage 1		-	-	-	-	-
Stage 2	402		111	-	-	-
Critical Hdwy	6.84	6.94	4.14	-	-	-
Critical Hdwy Stg 1	5.84	-	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-
Follow-up Hdwy	3.52	3.32	2.22	-	-	-
Pot Cap-1 Maneuver	236	664	941	-	-	-
Stage 1	505	-	-	-	-	-
Stage 2	644	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	226	655	935	-	-	-
Mov Cap-2 Maneuver	348	-	-	-	-	-
Stage 1	487	-	-	-	-	-
Stage 2	639	-	-	-	-	-
Annroach	ED		NID		CD	
Approach	EB		NB		SB	
HCM Control Delay, s	15.1		0.3		0	
HCM LOS	С					
Minor Lane/Major Mvm	t	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		935	-		-	-
HCM Lane V/C Ratio		0.029		0.168	_	_
HCM Control Delay (s)		9	-		-	-
HCM Lane LOS		A	_	C	-	-
HCM 95th %tile Q(veh)		0.1	-	0.6	-	
HOW YOUR WINE (Ven)		U. I	-	0.0	-	-

3: Ocean View Hills Pkwy & Del Sol Blvd/Breakers Way

	۶	→	•	•	←	•	1	†	/	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ		7	ሻ	₽		ሻሻ	↑ ↑₽		ሻ	∱ ∱	
Traffic Volume (veh/h)	99	2	110	15	3	20	141	485	20	35	332	153
Future Volume (veh/h)	99	2	110	15	3	20	141	485	20	35	332	153
Number	3	8	18	7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.99	0.99		1.00	1.00		0.97	1.00		0.99
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1863	1900	1863	1863	1900	1863	1863	1900
Adj Flow Rate, veh/h	121	2	134	18	4	24	172	591	24	43	405	187
Adj No. of Lanes	1	1	1	1	1	0	2	3	0	1	2	0
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	418	301	252	362	30	178	266	2348	95	58	999	455
Arrive On Green	0.09	0.16	0.16	0.06	0.13	0.13	0.08	0.47	0.47	0.03	0.42	0.42
Sat Flow, veh/h	1774	1863	1563	1774	231	1384	3442	5007	202	1774	2355	1074
Grp Volume(v), veh/h	121	2	134	18	0	28	172	399	216	43	303	289
Grp Sat Flow(s), veh/h/ln	1774	1863	1563	1774	0	1615	1721	1695	1819	1774	1770	1660
Q Serve(g_s), s	3.9	0.1	5.4	0.6	0.0	1.1	3.3	4.9	4.9	1.6	8.2	8.3
Cycle Q Clear(g_c), s	3.9	0.1	5.4	0.6	0.0	1.1	3.3	4.9	4.9	1.6	8.2	8.3
Prop In Lane	1.00	0.1	1.00	1.00	0.0	0.86	1.00	1.7	0.11	1.00	0.2	0.65
Lane Grp Cap(c), veh/h	418	301	252	362	0	208	266	1590	853	58	751	704
V/C Ratio(X)	0.29	0.01	0.53	0.05	0.00	0.13	0.65	0.25	0.25	0.74	0.40	0.41
Avail Cap(c_a), veh/h	690	980	822	679	0.00	838	482	1590	853	197	751	704
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	22.6	24.2	26.4	23.1	0.0	26.5	30.7	11.0	11.0	32.9	13.7	13.8
Incr Delay (d2), s/veh	0.4	0.0	1.7	0.1	0.0	0.3	2.6	0.4	0.7	17.0	1.6	1.8
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.0	0.0	2.4	0.3	0.0	0.5	1.7	2.4	2.6	1.1	4.3	4.1
LnGrp Delay(d),s/veh	22.9	24.2	28.1	23.1	0.0	26.8	33.4	11.3	11.7	49.9	15.3	15.5
LnGrp LOS	22.7 C	24.2 C	20.1 C	23.1 C	0.0	20.0 C	33.4 C	11.3 B	В	47.7 D	15.5 B	13.5 B
	C		C	C	1/	C			ь	D		В
Approach Vol, veh/h		257			46			787			635	
Approach Delay, s/veh		25.7			25.4			16.3			17.8	
Approach LOS		С			С			В			В	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	9.7	34.7	10.5	13.7	6.6	37.8	8.2	16.0				
Change Period (Y+Rc), s	4.4	* 5.6	4.4	4.9	4.4	5.6	4.4	4.9				
Max Green Setting (Gmax), s	9.6	* 29	16.6	35.6	7.6	30.9	16.1	36.1				
Max Q Clear Time (g_c+I1), s	5.3	10.3	5.9	3.1	3.6	6.9	2.6	7.4				
Green Ext Time (p_c), s	0.2	3.2	0.2	0.1	0.0	3.6	0.0	0.4				
Intersection Summary												
HCM 2010 Ctrl Delay			18.5									
HCM 2010 LOS			В									
Notes												

	۶	→	•	•	←	*	1	†	<u> </u>	/	 	4	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			ĵ.		ሻ	ተ ተጮ		ሻ	ተ ተጮ		
Traffic Volume (veh/h)	3	0	5	24	0	28	1	632	30	45	413	0	
Future Volume (veh/h)	3	0	5	24	0	28	1	632	30	45	413	0	
Number	3	8	18	7	4	14	1	6	16	5	2	12	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		0.99	1.00		1.00	1.00		0.97	1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln	1900	1863	1900	1863	1863	1900	1863	1863	1900	1863	1863	1900	
Adj Flow Rate, veh/h	4	0	6	31	0	36	1	810	38	58	529	0	
Adj No. of Lanes	0	1	0	1	1	0	1	3	0	1	3	0	
Peak Hour Factor	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2	
Cap, veh/h	15	0	23	91	0	80	3	2539	119	76	2810	0	
Arrive On Green	0.02	0.00	0.02	0.05	0.00	0.05	0.00	0.51	0.51	0.04	0.55	0.00	
Sat Flow, veh/h	657	0.00	985	1774	0.00	1577	1774	4970	232	1774	5253	0.00	
Grp Volume(v), veh/h	10	0	0	31	0	36	1774	552	296	58	529	0	
Grp Volume(v), ven/m Grp Sat Flow(s),veh/h/l		0	0	1774	0	1577	1774	1695	1812	1774	1695	0	
						1.2		5.2	5.2				
Q Serve(g_s), s	0.3	0.0	0.0	0.9	0.0	1.2	0.0	5.2		1.8	2.8	0.0	
Cycle Q Clear(g_c), s	0.3	0.0	0.0	0.9	0.0		0.0	5.2	5.2	1.8	2.8	0.0	
Prop In Lane	0.40	0	0.60	1.00	^	1.00	1.00	1700	0.13	1.00	2010	0.00	
Lane Grp Cap(c), veh/h		0	0	91	0	80	3	1732	926	76	2810	0	
V/C Ratio(X)	0.26	0.00	0.00	0.34	0.00	0.45	0.31	0.32	0.32	0.76	0.19	0.00	
Avail Cap(c_a), veh/h	938	0	0	1131	0	1005	137	1732	926	314	2810	0	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	
Uniform Delay (d), s/ve		0.0	0.0	24.9	0.0	25.0	27.1	7.8	7.8	25.7	6.1	0.0	
Incr Delay (d2), s/veh	3.6	0.0	0.0	2.2	0.0	3.9	45.8	0.5	0.9	14.3	0.1	0.0	
Initial Q Delay(d3),s/vel		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),ve	h/ln0.2	0.0	0.0	0.5	0.0	0.6	0.1	2.5	2.8	1.2	1.4	0.0	
LnGrp Delay(d),s/veh	29.7	0.0	0.0	27.1	0.0	28.9	72.8	8.2	8.7	40.0	6.2	0.0	
LnGrp LOS	С			С		С	Е	Α	Α	D	Α		
Approach Vol, veh/h		10			67			849			587		
Approach Delay, s/veh		29.7			28.1			8.5			9.6		
Approach LOS		С			С			Α			Α		
Timer	1	2	3	4	5	6	7	8					
Assigned Phs	1	2		4	5	6		8					
Phs Duration (G+Y+Rc	•	36.0		7.7	6.7	33.7		6.2					
Change Period (Y+Rc),		6.0		4.9	4.4	6.0		4.9					
Max Green Setting (Gm		30.0		34.6	9.6	24.6		31.0					
Max Q Clear Time (g_c		4.8		3.2	3.8	7.2		2.3					
Green Ext Time (p_c), s		3.3		0.2	0.0	4.7		0.0					
u = 7	3 0.0	ა.ა		0.2	0.0	4.7		0.0					
Intersection Summary			0.0										
HCM 2010 Ctrl Delay			9.9										
HCM 2010 LOS			Α										

	•	•	₹î	†	<u> </u>	/	ļ
Movement	WBL	WBR	NBU	NBT	NBR	SBL	SBT
Lane Configurations	*	7		ተተ _ጉ		ሻ	^ ^
Traffic Volume (veh/h)	41	9	33	648	59	8	434
Future Volume (veh/h)	41	9	33	648	59	8	434
Number	7	14		6	16	5	2
Initial Q (Qb), veh	0	0		0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1.00		U	0.97	1.00	U
Parking Bus, Adj	1.00	1.00		1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863		1863	1900	1863	1863
		12			77		564
Adj Flow Rate, veh/h	53			842		10	
Adj No. of Lanes	1	1		3	0	1	3
Peak Hour Factor	0.77	0.77		0.77	0.77	0.77	0.77
Percent Heavy Veh, %	2	2		2	2	2	2
Cap, veh/h	86	77		2969	270	18	3722
Arrive On Green	0.05	0.05		0.63	0.63	0.01	0.73
Sat Flow, veh/h	1774	1583		4899	431	1774	5253
Grp Volume(v), veh/h	53	12		602	317	10	564
Grp Sat Flow(s),veh/h/lr	า1774	1583		1695	1772	1774	1695
Q Serve(g_s), s	1.4	0.3		3.8	3.9	0.3	1.6
Cycle Q Clear(g_c), s	1.4	0.3		3.8	3.9	0.3	1.6
Prop In Lane	1.00	1.00			0.24	1.00	
Lane Grp Cap(c), veh/h		77		2127	1112	18	3722
V/C Ratio(X)	0.62	0.16		0.28	0.28	0.54	0.15
	1150	1027		2127	1112	148	3722
HCM Platoon Ratio	1.00	1.00		1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00		1.00	1.00	1.00	1.00
Uniform Delay (d), s/vel		21.8		4.0	4.0	23.5	1.9
Incr Delay (d2), s/veh	7.0	0.9		0.3	0.6	22.5	0.1
Initial Q Delay(d3),s/veh		0.9		0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh		0.0		1.9	2.0	0.0	0.0
		22.8		4.4	4.7		2.0
LnGrp Delay(d),s/veh	29.3					46.0	
LnGrp LOS	<u>C</u>	С		A 010	A	D	A
Approach Vol, veh/h	65			919			574
Approach Delay, s/veh				4.5			2.8
Approach LOS	С			Α			Α
Timer	1	2	3	4	5	6	7
Assigned Phs		2		4	5	6	
Phs Duration (G+Y+Rc)	S	41.0		6.8	5.0	36.0	
Change Period (Y+Rc),		6.0		4.5	4.5	6.0	
Max Green Setting (Gm		29.5		31.0	4.0	30.0	
Max Q Clear Time (g_c		3.6		3.4	2.3	5.9	
Green Ext Time (p_c), s		3.6		0.1	0.0	5.8	
		5.0		5.1	5.0	5.0	
Intersection Summary							
HCM 2010 Ctrl Delay			4.8				
HCM 2010 LOS			Α				
Notes							
140103							

	۶	→	•	•	←	•	•	†	/	/	 	4	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	ሻ	^	7	77	†	7	ሻ	^	7	16.56	^	7	
Traffic Volume (veh/h)	2	19	16	780	24	340	22	486	408	290	228	0	
Future Volume (veh/h)	2	19	16	780	24	340	22	486	408	290	228	0	
Number	7	4	14	3	8	18	5	2	12	1	6	16	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		0.98	1.00		0.99	1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863	
Adj Flow Rate, veh/h	2	21	18	867	27	378	24	540	453	322	253	0	
Adj No. of Lanes	1	2	1	2	1	1	1	2	1	2	2	1	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2	
Cap, veh/h	11	197	128	910	585	486	44	1247	969	359	1528	683	
Arrive On Green	0.01	0.06	0.06	0.26	0.31	0.31	0.03	0.35	0.35	0.10	0.43	0.00	
Sat Flow, veh/h	1774	3539	1583	3442	1863	1547	1774	3539	1562	3442	3539	1583	
Grp Volume(v), veh/h	2	21	18	867	27	378	24	540	453	322	253	0	
			1583		1863		24 1774		1562	1721	1770	1583	
Grp Sat Flow(s),veh/h/lr		1770		1721 22.3		1547	1.74	1770 10.5	14.1	8.3	3.9	0.0	
Q Serve(g_s), s	0.1	0.5	1.0		0.9	20.0							
Cycle Q Clear(g_c), s	0.1	0.5	1.0	22.3	0.9	20.0	1.2	10.5	14.1	8.3	3.9	0.0	
Prop In Lane	1.00	107	1.00	1.00	F0F	1.00	1.00	1047	1.00	1.00	1500	1.00	
Lane Grp Cap(c), veh/h		197	128	910	585	486	44	1247	969	359	1528	683	
V/C Ratio(X)	0.19	0.11	0.14	0.95	0.05	0.78	0.54	0.43	0.47	0.90	0.17	0.00	
Avail Cap(c_a), veh/h	217	606	311	910	585	486	108	1247	969	359	1528	683	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	0.97	0.97	0.97	1.00	1.00	0.00	
Uniform Delay (d), s/veh		40.4	38.5	32.5	21.5	28.0	43.4	22.3	9.3	39.8	15.7	0.0	
Incr Delay (d2), s/veh	8.4	0.2	0.5	19.3	0.0	7.9	9.5	1.1	1.6	23.9	0.2	0.0	
Initial Q Delay(d3),s/veh		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh		0.3	0.4	13.0	0.5	9.5	0.7	5.3	6.4	5.1	2.0	0.0	
_nGrp Delay(d),s/veh	52.9	40.6	39.0	51.9	21.5	35.9	52.9	23.4	10.9	63.7	15.9	0.0	
_nGrp LOS	D	D	D	D	С	D	D	С	В	E	В		
Approach Vol, veh/h		41			1272			1017			575		
Approach Delay, s/veh		40.5			46.5			18.5			42.7		
Approach LOS		D			D			В			D		
Γimer	1	2	3	4	5	6	7	8					
Assigned Phs	1	2	3	4	5	6	7	8					
Phs Duration (G+Y+Rc)	•	36.8	29.0	10.1	7.0	43.9	5.7	33.4					
Change Period (Y+Rc),		5.1	* 5.2	5.1	* 4.7	5.1	* 5.2	5.1					
Max Green Setting (Gm		21.3	* 24	15.4	* 5.5	25.2	* 11	28.2					
Max Q Clear Time (g_c-		16.1	24.3	3.0	3.2	5.9	2.1	22.0					
Green Ext Time (p_c), s		2.3	0.0	0.1	0.0	1.3	0.0	0.8					
Intersection Summary													
HCM 2010 Ctrl Delay			35.8										
HCM 2010 CIT Delay			35.8 D										
			D										
Notes													

•	→	`	•	←	•	1	†	<u> </u>	\	↓	4
Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				स	7	ሻ	ተተተ			ሰ ተሱ	
Traffic Volume (veh/h) 0	0	0	36	0	98	458	844	0	0	242	716
Future Volume (veh/h) 0	0	0	36	0	98	458	844	0	0	242	716
Number			3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh			0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)			1.00		1.00	1.00		1.00	1.00		0.91
Parking Bus, Adj			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln			1900	1863	1863	1863	1863	0	0	1863	1900
Adj Flow Rate, veh/h			43	0	118	552	1017	0	0	292	863
Adj No. of Lanes			0	1	1	1	3	0	0	3	0
Peak Hour Factor			0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83
Percent Heavy Veh, %			2	2	2	2	2	0.03	0.03	2	2
Cap, veh/h			158	0	141	503	4248	0	0	1752	743
Arrive On Green			0.09	0.00	0.09	0.28	0.84	0.00	0.00	0.52	0.52
Sat Flow, veh/h			1774	0.00	1583	1774	5253	0.00	0.00	3558	1438
Grp Volume(v), veh/h			43	0	118	552	1017	0	0	292	863
Grp Sat Flow(s), veh/h/ln			1774	0	1583	1774	1695	0	0	1695	1438
Q Serve(g_s), s			3.1	0.0	9.9	38.3	5.6	0.0	0.0	6.1	69.8
Cycle Q Clear(g_c), s			3.1	0.0	9.9	38.3	5.6	0.0	0.0	6.1	69.8
Prop In Lane			1.00	0.0	1.00	1.00	5.0	0.00	0.00	0.1	1.00
Lane Grp Cap(c), veh/h			1.00	0	1.00	503	4248	0.00	0.00	1752	743
V/C Ratio(X)			0.27	0.00	0.84	1.10	0.24	0.00	0.00	0.17	1.16
Avail Cap(c_a), veh/h			204	0.00	182	503	4248	0.00	0.00	1752	743
HCM Platoon Ratio			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)			1.00	0.00	1.00	0.50	0.50	0.00	0.00	0.56	0.56
Uniform Delay (d), s/veh			57.4	0.00	60.5	48.3	2.3	0.00	0.00	17.2	32.6
			0.9	0.0	22.5	48.3 58.7	0.1	0.0	0.0	0.1	81.3
Incr Delay (d2), s/veh Initial Q Delay(d3),s/veh			0.9	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln			1.5	0.0	5.2	26.9	2.6	0.0	0.0	2.9	44.4
LnGrp Delay(d),s/veh			58.3	0.0	83.0	107.0	2.6	0.0	0.0	17.4	113.9
LnGrp LOS			58.3 E	0.0	83.0 F	107.0 F	2.4 A	0.0	0.0	17.4 B	113.9 F
				161	Г	Г				1155	Г
Approach Vol, veh/h				76.4			1569 39.2			89.5	
Approach Delay, s/veh Approach LOS				76.4 E			39.2 D			89.5 F	
•				E			D			Г	
Timer 1	2	3	4	5	6	7	8				
Assigned Phs	2			5	6		8				
Phs Duration (G+Y+Rc), s	117.9			43.0	74.9		17.1				
Change Period (Y+Rc), s	5.1			* 4.7	5.1		5.1				
Max Green Setting (Gmax), s				* 38	66.3		15.5				
Max Q Clear Time (g_c+l1), s	7.6			40.3	71.8		11.9				
Green Ext Time (p_c), s	8.2			0.0	0.0		0.2				
ntersection Summary											
		/1 /									
HCM 2010 Ctrl Delay		61.4									
		61.4 E									

•	→	`	•	←	•	•	†	<u> </u>	\	ļ	4
Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations 7	4						ተ ተጉ		ሻ	^	
Traffic Volume (veh/h) 606	4	322	0	0	0	0	695	76	109	181	0
Future Volume (veh/h) 606	4	322	0	0	0	0	695	76	109	181	0
Number 7	4	14				5	2	12	1	6	16
Initial Q (Qb), veh 0	0	0				0	0	0	0	0	0
Ped-Bike Adj(A_pbT) 1.00		1.00				1.00		0.99	1.00		1.00
Parking Bus, Adj 1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln 1863	1863	1900				0	1863	1900	1863	1863	0
Adj Flow Rate, veh/h 630	270	435				0	939	103	147	245	0
Adj No. of Lanes 1	1	0				0	3	0	1	2	0
Peak Hour Factor 0.74	0.74	0.74				0.74	0.74	0.74	0.74	0.74	0.74
Percent Heavy Veh, % 2	2	2				0.71	2	2	2	2	0
Cap, veh/h 772	280	451				0	1284	140	181	1547	0
Arrive On Green 0.44	0.44	0.44				0.00	0.28	0.28	0.10	0.44	0.00
Sat Flow, veh/h 1774	643	1036				0.00	4814	508	1774	3632	0
Grp Volume(v), veh/h 630	0	705				0	684	358	147	245	0
Grp Sat Flow(s), veh/h/ln1774	0	1680				0	1695	1765	1774	1770	0
Q Serve(g_s), s 24.9	0.0	32.7				0.0	14.6	14.7	6.5	3.3	0.0
Cycle Q Clear(g_c), s 24.9	0.0	32.7				0.0	14.6	14.7	6.5	3.3	0.0
Prop In Lane 1.00	0.0	0.62				0.00	. 1.0	0.29	1.00	5.0	0.00
Lane Grp Cap(c), veh/h 772	0	731				0.00	937	488	181	1547	0.00
V/C Ratio(X) 0.82	0.00	0.96				0.00	0.73	0.73	0.81	0.16	0.00
Avail Cap(c_a), veh/h 774	0.00	733				0.00	937	488	184	1547	0.00
HCM Platoon Ratio 1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I) 1.00	0.00	1.00				0.00	1.00	1.00	0.76	0.76	0.00
Uniform Delay (d), s/veh 19.8	0.0	22.0				0.0	26.2	26.3	35.2	13.6	0.0
Incr Delay (d2), s/veh 6.8	0.0	24.6				0.0	5.0	9.4	18.3	0.2	0.0
Initial Q Delay(d3),s/veh 0.0	0.0	0.0				0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/1/3.5	0.0	20.1				0.0	7.5	8.4	4.1	1.7	0.0
LnGrp Delay(d),s/veh 26.5	0.0	46.6				0.0	31.3	35.7	53.4	13.8	0.0
LnGrp LOS C		D					С	D	D	В	
Approach Vol, veh/h	1335						1042			392	
Approach Delay, s/veh	37.1						32.8			28.7	
Approach LOS	D						C			С	
Timer 1	2	3	4	5	6	7	8				
Assigned Phs 1	2	J	4	J	6	T	0				
Phs Duration (G+Y+Rc), \$2.9	27.2		39.9		40.1						
Change Period (Y+Rc), \$ 4.7	5.1		5.1		5.1						
Max Green Setting (Gmax8, 3			34.9		34.9						
Max Q Clear Time (g_c+l18,5			34.7		5.3						
Green Ext Time (p_c), s 0.0			0.2		1.4						
	,		J								
Intersection Summary		242									
HCM 2010 Ctrl Delay		34.3									
HCM 2010 LOS		С									
Notes											

Intersection												
Intersection Delay, s/ve	h29.7											
Intersection LOS	D											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ች	4		ሻ		1	ች	ħβ		ሻ	ħβ	
Traffic Vol, veh/h	337	5	7	4	2	113	5	308	6	94	171	201
Future Vol, veh/h	337	5	7	4	2	113	5	308	6	94	171	201
Peak Hour Factor	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	475	7	10	6	3	159	7	434	8	132	241	283
Number of Lanes	1	1	0	1	1	1	1	2	0	1	2	0
Approach	EB	·		WB	•		NB	_		SB		
	WB			EB			SB			NB		
Opposing Approach	WB			2			38			3		
Opposing Lanes Conflicting Approach Le				NB			EB			WB		
Conflicting Lanes Left	3			3			2			3		
Conflicting Approach R				SB			WB			EB		
Conflicting Lanes Right				3			3			2		
HCM Control Delay	28.6			19.7			30.4			32.6		
HCM LOS	20.0 D			19.7 C			30.4 D			32.0 D		
HOW LOS	U			C			U			U		
Lane	<u> </u>						WBLn1V					
Vol Left, %		100%	0%		100%		100%	0%		100%	0%	0%
Vol Thru, %		0%	100%	94%	0%	3%	0%	100%	0%	0%		22%
Vol Right, %		0%	0%	6%	0%	4%	0%	0%		0%	0%	78%
Sign Control		Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane		5	205	109	175	174	4	2	113	94	114	258
LT Vol		5	0	0	175	162	4	0	0	94	0	0
Through Vol		0	205	103	0	5	0	2	0	0	114	57
RT Vol		0	0	6	0	7	0	0	113	0	0	201
Lane Flow Rate		7	289	153	247	245	6	3	159	132	161	363
Geometry Grp		8	8	8	8	8	8	8	8	8	8	8
Degree of Util (X)							0.017					
Departure Headway (H	d) 1	0.004					11.057					
Convergence, Y/N		Yes	Yes	Yes								Yes
Cap		357	382	380	378	379	323	339	366	376	398	429
Service Time							8.846				6.797	
HCM Lane V/C Ratio							0.019					
HCM Control Delay		13	37.1	18.5	28.9	28.2	14	13.4	20	17.4	17.8	44.6
HCM Lane LOS		В	E	С	D	D	В	В	С	С	С	E
HCM 95th-tile Q		0.1	6.2	1.9	4.5	4.3	0.1	0	2.1	1.5	1.9	8.4

Intersection						
Int Delay, s/veh	2.4					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	^	T T	VVDL	↑	NDL	NDK **
Traffic Vol, veh/h	447	271	Λ		Λ	165
			0	0	0	
Future Vol, veh/h	447	271	0	0	0	165
Conflicting Peds, #/hr	0	0	0	_ 0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	250	-	-	-	0
Veh in Median Storage	, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	486	295	0	0	0	179
IVIVIII I IOVV	400	275	U	U	U	177
Major/Minor N	Major1	N	Major2	Ν	/linor1	
Conflicting Flow All	0	0	-	-	-	243
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	_	_	-	-	_	7.14
Critical Hdwy Stg 1		_	_		_	-
Critical Hdwy Stg 2				_	-	
Follow-up Hdwy	-	-	-			3.92
	-	-	-	-	-	
Pot Cap-1 Maneuver	-	-	0	-	0	646
Stage 1	-	-	0	-	0	-
Stage 2	-	-	0	-	0	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	-	-	-	646
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	_	_	_	_	_	_
Olago 2						
Approach	EB		WB		NB	
HCM Control Delay, s	0		0		12.7	
HCM LOS					В	
Minor Long/Maior M		UDI1	EDT	EDD	MADT	
Minor Lane/Major Mvm	it f	VBLn1	EBT	EBR	WBT	
Capacity (veh/h)		646	-	-	-	
HCM Lane V/C Ratio		0.278	-	-	-	
HCM Control Delay (s)		12.7	-	-	-	
HCM Lane LOS		В	-	-	-	
HCM 95th %tile Q(veh)		1.1	-	-	-	
,						

PM Existing + Project 11: Project East Access/Emerald Crest Ct & Otay Mesa Rd

Intersection													
Int Delay, s/veh	35												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	ች	ተተተ	7	ች	ተተተ	7	ች	f			4		
Traffic Vol, veh/h	132	468	12	96	860	16	109	7	49	20	8	42	
Future Vol, veh/h	132	468	12	96	860	16	109	7	49	20	8	42	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	250	-	250	250	-	400	0	-	-	-	-	-	
Veh in Median Storage,		0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	91	91	92	92	91	91	92	92	92	91	92	91	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	145	514	13	104	945	18	118	8	53	22	9	46	
			3			0							
Major/Minor N	/lajor1			Major2		ľ	Minor1		ľ	Minor2			
Conflicting Flow All	963	0	0	527	0	0	1395	1975	257	1653	1970	473	
Stage 1	-	-	-	-	-	-	804	804	-	1153	1153	-	
Stage 2	_	_	_	_	_	_	591	1171	_	500	817	_	
Critical Hdwy	5.34	_	_	5.34	_	-	6.44	6.54	7.14	6.44	6.54	7.14	
Critical Hdwy Stg 1	-		_	- 0.01	_	_	7.34	5.54	-	7.34	5.54	-	
Critical Hdwy Stg 2	_	_	_	_	_	-	6.74	5.54	-	6.74	5.54	-	
Follow-up Hdwy	3.12	_	_	3.12	_	_	3.82	4.02	3.92	3.82	4.02	3.92	
Pot Cap-1 Maneuver	408	_	_	658	_	_	149	61	632	104	62	460	
Stage 1	-		_	-	_	_	272	394	-	156	270	-	
Stage 2	_	_	_	_	_	-	420	265	-	476	388	-	
Platoon blocked, %			_		_	_	120	200		170	000		
Mov Cap-1 Maneuver	408	_	_	658	_	-	~ 70	33	632	51	34	460	
Mov Cap 1 Maneuver	-	_	_	-	_	_	~ 70	33	- 032	51	34	-	
Stage 1	_	_		_	_	_	175	254	-	101	227	_	
Stage 2				_			306	223	_	273	250	_	
Stage 2		-		-	-	-	300	223	-	213	230	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	4			1.1		¢	317.4			116.9			
HCM LOS	4			1.1		φ	F			F			
TICIVI LOS							l I			!			
Minor Lane/Major Mvmt	h 1	NBLn1	NRI n2	EBL	EBT	EBR	WBL	WBT	WBR S	SRI n1			
Capacity (veh/h)		70	193	408	-	LDIN	658			98			
HCM Lane V/C Ratio				0.356	-	-	0.159	-	-	0.784			
HCM Control Delay (s)	¢	464.1	32	18.6		-	11.5	-		116.9			
HCM Lane LOS	Þ	404.1 F	32 D	18.0 C	-		11.5 B						
HCM 95th %tile Q(veh)		10.4	1.3	1.6	-	-	0.6	-	-	F 4.2			
ì		10.4	1.3	1.0			0.0			4.2			
Notes													
~: Volume exceeds cap	acity	\$: De	elay exc	ceeds 3	00s	+: Com	putatior	Not D	efined	*: All	major	volume i	in platoon

	•	→	F	←	•	\	4
Movement	EBL	EBT	WBU	WBT	WBR	SBL	SBR
Lane Configurations	ሻሻ	ተተተ	Ð	^	7	ች	77
Traffic Volume (veh/h)	172	282	19	602	70	117	351
Future Volume (veh/h)	172	282	19	602	70	117	351
Number	5	2		6	16	7	14
Initial Q (Qb), veh	0	0		0	0	0	0
Ped-Bike Adj(A_pbT)	1.00				1.00	1.00	1.00
Parking Bus, Adj	1.00	1.00		1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863		1863	1863	1863	1863
Adj Flow Rate, veh/h	193	317		676	79	131	394
Adj No. of Lanes	2	3		3	1	1	2
Peak Hour Factor	0.89	0.89		0.89	0.89	0.89	0.89
Percent Heavy Veh, %	2	2		2	2	2	2
Cap, veh/h	295	1760		1057	329	897	1409
Arrive On Green	0.09	0.35		0.21	0.21	0.51	0.51
Sat Flow, veh/h	3442	5253		5253	1583	1774	2787
Grp Volume(v), veh/h	193	317		676	79	131	394
Grp Sat Flow(s), veh/h/ln	1721	1695		1695	1583	1774	1393
Q Serve(g_s), s	4.1	3.3		9.2	3.2	3.0	6.2
Cycle Q Clear(g_c), s	4.1	3.3		9.2	3.2	3.0	6.2
Prop In Lane	1.00				1.00	1.00	1.00
Lane Grp Cap(c), veh/h	295	1760		1057	329	897	1409
V/C Ratio(X)	0.65	0.18		0.64	0.24	0.15	0.28
Avail Cap(c_a), veh/h	994	3418		2303	717	897	1409
HCM Platoon Ratio	1.00	1.00		1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00		1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	33.7	17.4		27.6	25.1	10.1	10.8
Incr Delay (d2), s/veh	2.5	0.0		0.6	0.4	0.3	0.5
Initial Q Delay(d3),s/veh	0.0	0.0		0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.1	1.6		4.4	1.4	1.5	6.3
LnGrp Delay(d),s/veh	36.2	17.4		28.2	25.5	10.4	11.3
LnGrp LOS	D	В		С	С	В	В
Approach Vol, veh/h		510		755		525	
Approach Delay, s/veh		24.5		27.9		11.1	
Approach LOS		С		С		В	
Timer	1	2	3	4	5	6	7
Assigned Phs		2		4	5	6	
Phs Duration (G+Y+Rc), s		33.7		42.5	10.5	23.1	
Change Period (Y+Rc), s		7.3		4.0	4.0	* 7.3	
Max Green Setting (Gmax), s		51.2		38.5	22.0	* 35	
Max Q Clear Time (g_c+l1), s		5.3		8.2	6.1	11.2	
Green Ext Time (p_c), s		2.0		1.9	0.5	4.6	
Intersection Summary							
HCM 2010 Ctrl Delay			22.0				
HCM 2010 LOS			С				
Notes							
VOIC3							

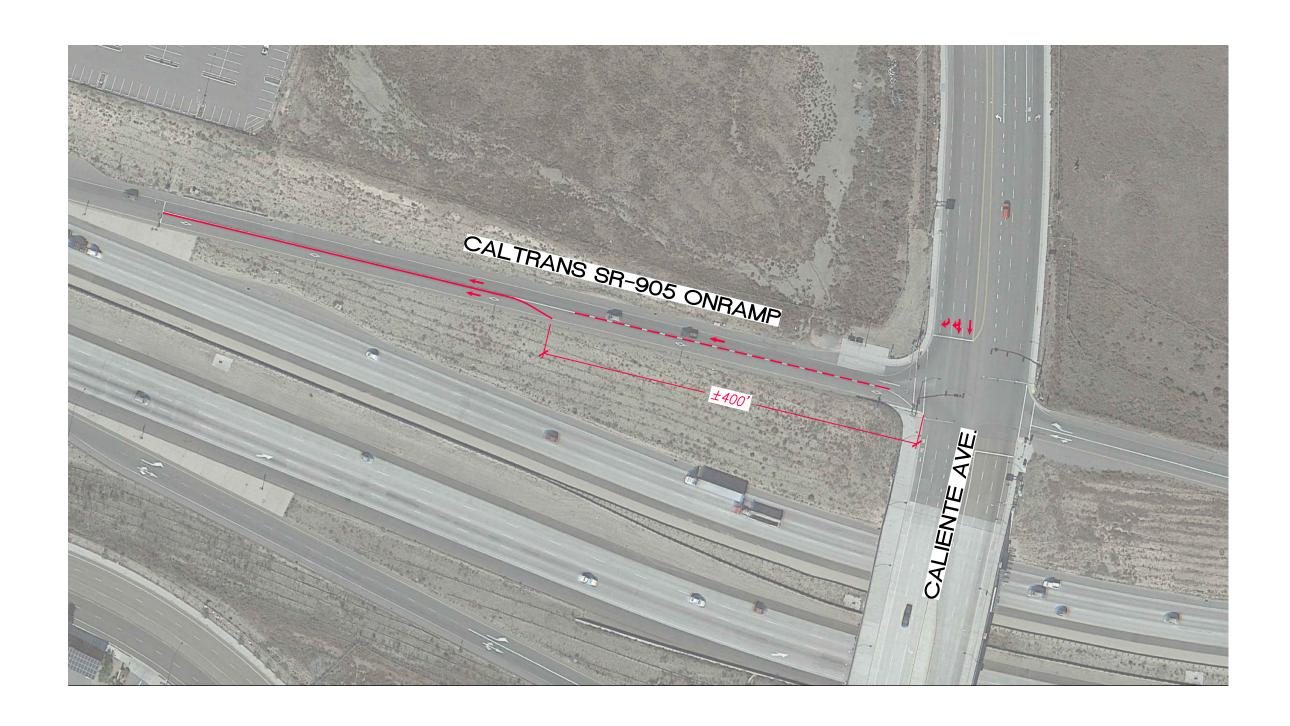
Intersection												
Int Delay, s/veh	1.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ተ ተጉ			ተተተ	7			7	002	00.	7
Traffic Vol, veh/h	0	404	5	0	608	29	0	0	5	0	0	113
Future Vol, veh/h	0	404	5	0	608	29	0	0	5	0	0	113
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	500	-	-	0	-	-	0
Veh in Median Storage,	, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	439	5	0	661	32	0	0	5	0	0	123
Major/Minor N	/lajor1		ľ	Major2		N	Minor1		N	/linor2		
Conflicting Flow All	-	0	0	-	-	0	-	-	222	-	-	331
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	-	-	-	7.14	-	-	7.14
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	-	-	-	3.92	-	-	3.92
Pot Cap-1 Maneuver	0	-	-	0	-	-	0	0	666	0	0	567
Stage 1	0	-	-	0	-	-	0	0	-	0	0	-
Stage 2	0	-	-	0	-	-	0	0	-	0	0	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	-	-	-	-	-	-	-	-	666	-	-	567
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			0			10.5			13.1		
HCM LOS							В			В		
Minor Lane/Major Mvmi	t ſ	NBLn1	EBT	EBR	WBT	WBR S	SBLn1					
Capacity (veh/h)		666	-	-	-	-						
HCM Lane V/C Ratio		0.008	-	-	-	-	0.217					
HCM Control Delay (s)		10.5	-	-	-		13.1					
HCM Lane LOS		В	-	-	-	-	В					
HCM 95th %tile Q(veh)		0	-	-	-	-	8.0					
,												

	۶	→	•	•	←	•	1	†	<i>></i>	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	ተተተ	7	ሻሻ	ተተተ	7	ሻ	₽		ነ	•	77
Traffic Volume (veh/h)	131	205	73	24	273	155	131	33	43	197	56	242
Future Volume (veh/h)	131	205	73	24	273	155	131	33	43	197	56	242
Number	3	8	18	7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.98	1.00		0.98	1.00		0.99	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1863	1863	1863	1863	1900	1863	1863	1863
Adj Flow Rate, veh/h	147	230	82	27	307	174	147	37	48	221	63	272
Adj No. of Lanes	2	3	1	2	3	1	1	1	0	1	1	2
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	224	1022	313	77	805	246	183	276	358	255	780	1165
Arrive On Green	0.06	0.20	0.20	0.02	0.16	0.16	0.10	0.38	0.38	0.14	0.42	0.42
Sat Flow, veh/h	3442	5085	1557	3442	5085	1556	1774	732	949	1774	1863	2783
Grp Volume(v), veh/h	147	230	82	27	307	174	147	0	85	221	63	272
Grp Sat Flow(s), veh/h/ln	1721	1695	1557	1721	1695	1556	1774	0	1681	1774	1863	1391
Q Serve(g_s), s	3.5	3.2	3.7	0.6	4.5	8.8	6.8	0.0	2.8	10.2	1.7	5.3
Cycle Q Clear(g_c), s	3.5	3.2	3.7	0.6	4.5	8.8	6.8	0.0	2.8	10.2	1.7	5.3
Prop In Lane	1.00	0.2	1.00	1.00		1.00	1.00	0.0	0.56	1.00		1.00
Lane Grp Cap(c), veh/h	224	1022	313	77	805	246	183	0	635	255	780	1165
V/C Ratio(X)	0.66	0.23	0.26	0.35	0.38	0.71	0.80	0.00	0.13	0.87	0.08	0.23
Avail Cap(c_a), veh/h	375	2499	765	186	2219	679	272	0	635	255	780	1165
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	38.1	27.9	28.1	40.2	31.5	33.3	36.6	0.0	17.0	34.9	14.6	15.6
Incr Delay (d2), s/veh	3.3	0.1	0.4	2.7	0.3	3.7	10.2	0.0	0.4	25.4	0.2	0.5
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.8	1.5	1.6	0.3	2.1	4.0	3.8	0.0	1.4	6.8	0.9	2.1
LnGrp Delay(d),s/veh	41.4	28.0	28.6	42.9	31.8	37.0	46.8	0.0	17.5	60.3	14.8	16.1
LnGrp LOS	D	C	C	D	C	D	D	0.0	В	E	В	В
Approach Vol, veh/h		459			508			232			556	
Approach Delay, s/veh		32.4			34.1			36.0			33.5	
Approach LOS		32.4 C			C C			30.0 D			33.5 C	
Арргоаст СОЗ		C			C			D			C	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	12.6	42.3	9.4	19.1	16.0	38.9	5.9	22.7				
Change Period (Y+Rc), s	4.0	7.4	4.0	5.9	4.0	* 7.4	4.0	5.9				
Max Green Setting (Gmax), s	12.8	30.4	9.1	36.4	12.0	* 32	4.5	41.0				
Max Q Clear Time (g_c+I1), s	8.8	7.3	5.5	10.8	12.2	4.8	2.6	5.7				
Green Ext Time (p_c), s	0.1	1.3	0.1	2.4	0.0	0.4	0.0	1.6				
Intersection Summary												
HCM 2010 Ctrl Delay			33.7									
HCM 2010 LOS			C									
Notes												
110103												

Appendix N

Existing with Project Intersection LOS Calculations with Mitigation and Concept Striping

	≯	→	*	•	←	•	1	†	/	/	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					र्स	7	ሻ	^ ^			∱ ∱	7
Traffic Volume (veh/h)	0	0	0	21	0	64	276	832	0	0	261	492
Future Volume (veh/h)	0	0	0	21	0	64	276	832	0	0	261	492
Number				3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh				0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)				1.00		1.00	1.00		1.00	1.00		0.95
Parking Bus, Adj				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln				1900	1863	1863	1863	1863	0	0	1863	1863
Adj Flow Rate, veh/h				23	0	70	303	914	0	0	287	541
Adj No. of Lanes				0	1	1	1	3	0	0	1	2
Peak Hour Factor				0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Percent Heavy Veh, %				2	2	2	2	2	0	0	2	2
Cap, veh/h				109	0	98	302	4106	0	0	1074	1730
Arrive On Green				0.06	0.00	0.06	0.17	0.81	0.00	0.00	0.58	0.58
Sat Flow, veh/h				1774	0	1583	1774	5253	0	0	1863	2999
Grp Volume(v), veh/h				23	0	70	303	914	0	0	287	541
Grp Sat Flow(s), veh/h/ln				1774	0	1583	1774	1695	0	0	1863	1500
Q Serve(g_s), s				1.0	0.0	3.4	13.3	3.3	0.0	0.0	6.0	7.3
Cycle Q Clear(g_c), s				1.0	0.0	3.4	13.3	3.3	0.0	0.0	6.0	7.3
Prop In Lane				1.00	0.0	1.00	1.00	0.0	0.00	0.00	0.0	1.00
Lane Grp Cap(c), veh/h				109	0	98	302	4106	0.00	0.00	1074	1730
V/C Ratio(X)				0.21	0.00	0.72	1.00	0.22	0.00	0.00	0.27	0.31
Avail Cap(c_a), veh/h				373	0.00	333	302	4106	0.00	0.00	1074	1730
HCM Platoon Ratio				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)				1.00	0.00	1.00	0.65	0.65	0.00	0.00	0.93	0.93
Uniform Delay (d), s/veh				34.8	0.0	35.9	32.3	1.8	0.0	0.0	8.3	8.5
Incr Delay (d2), s/veh				0.9	0.0	9.4	42.2	0.1	0.0	0.0	0.6	0.4
Initial Q Delay(d3),s/veh				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln				0.5	0.0	1.7	10.0	1.6	0.0	0.0	3.2	3.1
LnGrp Delay(d),s/veh				35.7	0.0	45.3	74.5	1.8	0.0	0.0	8.8	9.0
LnGrp LOS				55.7 D	0.0	43.3 D	74.5 F	Α	0.0	0.0	Α	7.0 A
				<u> </u>	93		<u>'</u>	1217			828	
Approach Vol, veh/h					42.9			19.9			8.9	
Approach LOS					42.9 D			19.9 B			0.9 A	
Approach LOS					U			Б			А	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2			5	6		8				
Phs Duration (G+Y+Rc), s		68.1			18.0	50.1		9.9				
Change Period (Y+Rc), s		5.1			* 4.7	5.1		5.1				
Max Green Setting (Gmax), s		50.9			* 13	32.9		16.4				
Max Q Clear Time (g_c+l1), s		5.3			15.3	9.3		5.4				
Green Ext Time (p_c), s		7.0			0.0	4.0		0.2				
Intersection Summary												
HCM 2010 Ctrl Delay			16.7									
HCM 2010 LOS			10.7 B									
			D									
Notes												


۶	→	•	•	←	•	1	†	<i>></i>	/	+	4
EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
	٦		1,4	+		ሻ				₽	7
	1	7	0	1		4		0			431
				1							431
									1	6	16
	0			0			0		0	0	0
											0.86
											1.00
											1863
											520
									•		1
											0.68
											2
											493
											0.36
											1368
											520
											1368
											25.6
	0.0			0.0			2.8			20.4	25.6
											1.00
											493
											1.06
											493
											1.00
											1.00
											22.7
											56.0
											0.0
											17.2
	0.0		0.0					0.0			78.7
C		В			В	<u> </u>			D		F
	С			В			В			D	
1	2	3	4	5	6	7	8				
1	2		4	5	6		8				
7.1	28.0		36.0	4.9	30.1		36.0				
4.5	4.5		4.5	4.5	4.5		4.5				
6.5	23.1		36.9	4.0	25.6		36.9				
4.0	4.8		30.3	2.2	27.6		4.2				
0.0	1.5		1.2	0.0	0.0		0.2				
		39.3									
		39.3 D									
	EBL 369 369 7 0 0.99 1.00 1863 543 1 0.68 2 678 0.44 1302 543 1302 28.3 28.3 1.00 678 0.80 777 1.00 1.00 18.9 5.3 0.0 11.1 24.2 C	EBL EBT 369 1 369 1 7 4 0 0 0.99 1.00 1.00 1863 1863 543 1 1 1 0.68 0.68 2 2 678 59 0.44 0.44 1302 132 543 0 1302 0 28.3 0.0 28.3 0.0 28.3 0.0 1.00 678 0 0.80 0.00 777 0 1.00 1.00 1.00 0.00 18.9 0.0 1.00 0.00 11.1 0.0 24.2 0.0 C 554 23.9 C 1 2 7.1 28.0 4.5 4.5 6.5 23.1 4.0 4.8	EBL EBT EBR 369 1 7 369 1 7 7 4 14 0 0 0 0 0.99 0.90 1.00 1.00 1.00 1863 1863 1900 543 1 10 1 1 0 0.68 0.68 0.68 2 2 2 678 59 586 0.44 0.44 0.44 1302 132 1321 543 0 11 1302 0 1453 28.3 0.0 0.3 28.3 0.0 0.3 28.3 0.0 0.3 28.3 0.0 0.3 1.00 0.91 678 0 644 0.80 0.00 0.91 678 0 644 0.80 0.00 0.02 777 0 754 1.00 1.00 1.00 1.00 0.00 1.00 0.00 1.00 0.00 11.1 0.00 1.00 0.00 11.1 C B 554 23.9 C 71 28.0 4.5 4.5 6.5 23.1 4.0 4.8	EBL EBT EBR WBL 369 1 7 0 369 1 7 0 7 4 14 3 0 0 0 0 0.99 0.90 1.00 1.00 1.00 1.00 1.00 1863 1863 1900 1863 543 1 10 0 1 1 0 2 0.68 0.68 0.68 0.68 2 2 2 2 678 59 586 203 0.44 0.44 0.44 0.00 1302 132 1321 2712 543 0 11 0 1302 0 1453 1356 28.3 0.0 0.3 0.0 28.3 0.0 0.3 0.0 100 1.00 1.00 1.00 678	EBL EBT EBR WBL WBT 369 1 7 0 1 369 1 7 0 1 7 4 14 3 8 0 0 0 0 0 0.999 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1863 1863 1900 1863 1863 543 1 10 0 1 1 1 1 0 2 1 0.68 0.68 0.68 0.68 2 3 826	EBL EBT EBR WBL WBT WBR 369 1 7 0 1 56 369 1 7 0 1 56 7 4 14 3 8 18 0 0 0 0 0 0 0.999 0.90 1.00 1.00 1.00 1.00 1863 1863 1900 1863 1863 1863 543 1 10 0 1 82 1 1 0 2 1 1 0.68 0.68 0.68 0.68 0.68 2 2 2 2 2 2 678 59 586 203 826 698 0.44 0.44 0.44 0.00 0.44 0.44 1302 0 1453 1356 1863 1573 28.3 0.0 0.3	EBL EBT EBR WBL WBT WBR NBL 369 1 7 0 1 56 4 369 1 7 0 1 56 4 7 4 14 3 8 18 5 0 0 0 0 0 0 0 0.99 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1863	FBL EBT EBR WBL WBT WBR NBL NBT	Fig. Fig.	FBL	BBL BBT BBR WBL WBT WBR NBL NBT NBR SBL SBT 1

	۶	→	•	•	←	•	1	†	~	/	↓	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ተተተ	7	ሻ	ተተተ	7	ሻ	₽			4	
Traffic Volume (veh/h)	74	723	5	38	253	1	61	4	28	35	3	72
Future Volume (veh/h)	74	723	5	38	253	1	61	4	28	35	3	72
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1863	1863	1863	1863	1900	1900	1863	1900
Adj Flow Rate, veh/h	81	795	5	41	278	1	66	4	30	38	3	79
Adj No. of Lanes	1	3	1	1	3	1	1	1	0	0	1	0
Peak Hour Factor	0.91	0.91	0.92	0.92	0.91	0.91	0.92	0.92	0.92	0.91	0.92	0.91
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	106	1365	425	65	1247	388	182	19	146	67	5	140
Arrive On Green	0.06	0.27	0.27	0.04	0.25	0.25	0.10	0.10	0.10	0.13	0.13	0.13
Sat Flow, veh/h	1774	5085	1583	1774	5085	1583	1774	190	1422	521	41	1083
Grp Volume(v), veh/h	81	795	5	41	278	1	66	0	34	120	0	0
Grp Sat Flow(s), veh/h/ln	1774	1695	1583	1774	1695	1583	1774	0	1612	1646	0	0
Q Serve(g_s), s	1.7	5.3	0.1	0.9	1.7	0.0	1.3	0.0	0.8	2.7	0.0	0.0
Cycle Q Clear(g_c), s	1.7	5.3	0.1	0.9	1.7	0.0	1.3	0.0	0.8	2.7	0.0	0.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.88	0.32		0.66
Lane Grp Cap(c), veh/h	106	1365	425	65	1247	388	182	0	166	213	0	0
V/C Ratio(X)	0.76	0.58	0.01	0.63	0.22	0.00	0.36	0.00	0.21	0.56	0.00	0.00
Avail Cap(c_a), veh/h	182	2091	651	182	2091	651	729	0	663	677	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	18.0	12.3	10.4	18.5	11.7	11.1	16.3	0.0	16.0	15.9	0.0	0.0
Incr Delay (d2), s/veh	10.6	0.4	0.0	9.5	0.1	0.0	1.2	0.0	0.6	2.3	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.2	2.5	0.0	0.6	8.0	0.0	0.7	0.0	0.4	1.3	0.0	0.0
LnGrp Delay(d),s/veh	28.6	12.7	10.5	28.0	11.8	11.1	17.5	0.0	16.6	18.2	0.0	0.0
LnGrp LOS	С	В	В	С	В	В	В		В	В		
Approach Vol, veh/h		881			320			100			120	
Approach Delay, s/veh		14.2			13.9			17.2			18.2	
Approach LOS		В			В			В			В	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s		8.5	5.9	14.9		9.5	6.8	14.0				
Change Period (Y+Rc), s		4.5	4.5	4.5		4.5	4.5	4.5				
Max Green Setting (Gmax), s		16.0	4.0	16.0		16.0	4.0	16.0				
Max Q Clear Time (q_c+l1), s		3.3	2.9	7.3		4.7	3.7	3.7				
Green Ext Time (p_c), s		0.2	0.0	3.2		0.4	0.0	1.2				
Intersection Summary												
HCM 2010 Ctrl Delay			14.7									
HCM 2010 LOS			В									
FIGIVI ZUTU LUS			D									

۶	→	•	•	←	•	1	†	<i>></i>	/	Ţ	4
EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
				4							7
				0					0		716
0	0	0		0					0		716
										6	16
				0			0			0	0
											0.79
											1.00
											1863
											863
											2
											0.83
									0		2
									0		1016
											0.40
			1774	0	1583	1774	5253	0	0	1863	2509
			43	0	118	552	1017	0	0	292	863
			1774	0	1583	1774	1695	0	0	1863	1255
			2.0	0.0	6.6	27.1	4.7	0.0	0.0	10.0	28.1
			2.0	0.0	6.6	27.1	4.7	0.0	0.0	10.0	28.1
			1.00		1.00	1.00		0.00	0.00		1.00
			171	0	152	592	4020	0	0	754	1016
			0.25	0.00	0.77	0.93	0.25	0.00	0.00	0.39	0.85
			304	0	271	676	4020	0	0	754	1016
			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
			1.00	0.00	1.00	0.50	0.50	0.00	0.00	0.51	0.51
			37.7	0.0	39.7	29.0	2.5	0.0	0.0	18.9	24.3
			8.0	0.0	8.1	11.1	0.1	0.0	0.0	8.0	4.8
			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
			1.0	0.0	3.2	15.0	2.2	0.0	0.0	5.3	10.4
			38.4	0.0	47.8	40.1	2.5	0.0	0.0	19.7	29.1
			D		D	D	Α			В	С
				161			1569			1155	
				45.3			15.8			26.7	
				D			В			С	
1	2	3	4	5	6	7	8				
	8.2			0.9	0.0		0.3				
		21.8									
		C C									
	EBL	EBL EBT 0 0 0 0 0 0 0 1 2 2 2 76.2 5.1 64.4 6.7	EBL EBT EBR 0 0 0 0 0 0 0 0 0 0 1 2 3 2 76.2 5.1 64.4 6.7 8.2	EBL EBT EBR WBL 0 0 0 0 36 0 0 0 36 0 1.00 1.00 1.00 1900 43 0 0.83 2 171 0.10 1774 43 1774 2.0 2.0 2.0 1.00 171 0.25 304 1.00 1.00 37.7 0.8 0.00 1.00 38.4 D	EBL EBT EBR WBL WBT 0 0 0 0 36 0 0 0 0 36 0 1.00 1.00 1.00 1.00 1.00 1900 1863 43 0 0 1 1771 0 0.10 0.00 1774 0 1774 0 2.0 0.0 1774 0 2.0 0.0 1774 0 2.0 0.0 1.00 1771 0 0.25 0.00 304 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.	BBL BBT BBR WBL WBT WBR	EBL EBT EBR WBL WBT WBR NBL 0 0 0 0 36 0 98 458 0 0 0 0 36 0 98 458 0 0 0 0 36 0 98 458 0 0 0 10 0 36 0 98 458 0 0 0 10 0 1.00 1.00 1.00 1.00 1.00 1.00	EBL EBT EBR WBL WBT WBR NBL NBT 0 0 0 36 0 98 458 844 0 0 0 36 0 98 458 844 0 10 0 0 36 0 98 458 844 0 10 0 0 0 36 0 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	FBL	EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL	EBL EBT EBR WBL WBT WBR NBT NBT NBR SBL SBT

	ၨ	→	•	•	←	•	1	†	<i>*</i>	>	ţ	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		₽		44	•	7	ሻ	ተተኈ		ሻ	ተ ኈ	
Traffic Volume (veh/h)	337	5	7	4	2	113	5	308	6	94	171	201
Future Volume (veh/h)	337	5	7	4	2	113	5	308	6	94	171	201
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.93	1.00		0.83	1.00		0.72	1.00		0.67
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1900	1863	1863	1863	1863	1863	1900	1863	1863	1900
Adj Flow Rate, veh/h	475	7	10	6	3	159	7	434	8	132	241	283
Adj No. of Lanes	1	1	0	2	1	1	1	3	0	1	2	0
Peak Hour Factor	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	522	320	457	21	359	254	13	1004	18	165	501	302
Arrive On Green	0.29	0.48	0.48	0.01	0.19	0.19	0.01	0.20	0.20	0.09	0.28	0.28
Sat Flow, veh/h	1774	665	950	3442	1863	1318	1774	5102	93	1774	1770	1066
Grp Volume(v), veh/h	475	0	17	6	3	159	7	287	155	132	241	283
Grp Sat Flow(s),veh/h/ln	1774	0	1614	1721	1863	1318	1774	1695	1805	1774	1770	1066
Q Serve(g_s), s	20.8	0.0	0.4	0.1	0.1	8.9	0.3	6.0	6.1	5.9	9.1	20.9
Cycle Q Clear(g_c), s	20.8	0.0	0.4	0.1	0.1	8.9	0.3	6.0	6.1	5.9	9.1	20.9
Prop In Lane	1.00		0.59	1.00		1.00	1.00		0.05	1.00		1.00
Lane Grp Cap(c), veh/h	522	0	776	21	359	254	13	667	355	165	501	302
V/C Ratio(X)	0.91	0.00	0.02	0.28	0.01	0.63	0.55	0.43	0.44	0.80	0.48	0.94
Avail Cap(c_a), veh/h	648	0	830	171	369	261	88	701	373	215	501	302
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	27.5	0.0	11.0	39.9	26.3	29.9	39.9	28.4	28.5	35.9	24.0	28.3
Incr Delay (d2), s/veh	14.9	0.0	0.0	6.9	0.0	4.5	31.9	0.4	0.8	14.6	0.7	35.9
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	12.3	0.0	0.2	0.1	0.1	3.5	0.3	2.8	3.1	3.6	4.5	9.1
LnGrp Delay(d),s/veh	42.4	0.0	11.0	46.8	26.3	34.3	71.9	28.9	29.3	50.4	24.7	64.1
LnGrp LOS	D		В	D	С	С	E	С	С	D	С	<u>E</u>
Approach Vol, veh/h		492			168			449			656	
Approach Delay, s/veh		41.3			34.6			29.7			46.9	
Approach LOS		D			С			С			D	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	12.0	20.4	5.0	43.3	5.1	27.3	28.2	20.1				
Change Period (Y+Rc), s	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5				
Max Green Setting (Gmax), s	9.8	16.7	4.0	41.5	4.0	22.5	29.5	16.0				
Max Q Clear Time (g_c+I1), s	7.9	8.1	2.1	2.4	2.3	22.9	22.8	10.9				
Green Ext Time (p_c), s	0.1	1.6	0.0	0.1	0.0	0.0	0.9	0.2				
Intersection Summary												
HCM 2010 Ctrl Delay			39.8									
HCM 2010 LOS			D									

	•	→	•	•	—	•	•	†	~	/	ţ	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	, J	ተተተ	7	ň	ተተተ	7	Ž	f)			4	
Traffic Volume (veh/h)	132	468	12	96	860	16	109	7	49	20	8	42
Future Volume (veh/h)	132	468	12	96	860	16	109	7	49	20	8	42
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		0.98	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1863	1863	1863	1863	1900	1900	1863	1900
Adj Flow Rate, veh/h	145	514	13	104	945	18	118	8	53	22	9	46
Adj No. of Lanes	1	3	1	1	3	1	1	1	0	0	1	0
Peak Hour Factor	0.91	0.91	0.92	0.92	0.91	0.91	0.92	0.92	0.92	0.91	0.92	0.91
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	186	1593	496	133	1441	439	208	25	165	44	18	93
Arrive On Green	0.10	0.31	0.31	0.07	0.28	0.28	0.12	0.12	0.12	0.09	0.09	0.09
Sat Flow, veh/h	1774	5085	1583	1774	5085	1550	1774	212	1403	475	194	994
Grp Volume(v), veh/h	145	514	13	104	945	18	118	0	61	77	0	0
Grp Sat Flow(s), veh/h/ln	1774	1695	1583	1774	1695	1550	1774	0	1615	1664	0	0
Q Serve(g_s), s	3.6	3.5	0.3	2.6	7.3	0.4	2.8	0.0	1.6	2.0	0.0	0.0
Cycle Q Clear(g_c), s	3.6	3.5	0.3	2.6	7.3	0.4	2.8	0.0	1.6	2.0	0.0	0.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.87	0.29		0.60
Lane Grp Cap(c), veh/h	186	1593	496	133	1441	439	208	0	189	155	0	0
V/C Ratio(X)	0.78	0.32	0.03	0.78	0.66	0.04	0.57	0.00	0.32	0.50	0.00	0.00
Avail Cap(c_a), veh/h	297	1916	596	281	1870	570	672	0	612	593	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	19.6	11.8	10.7	20.4	14.2	11.7	18.7	0.0	18.2	19.3	0.0	0.0
Incr Delay (d2), s/veh	6.9	0.1	0.0	9.6	0.5	0.0	2.4	0.0	1.0	2.5	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.1	1.6	0.1	1.6	3.5	0.2	1.5	0.0	0.7	1.0	0.0	0.0
LnGrp Delay(d),s/veh	26.4	11.9	10.7	29.9	14.7	11.7	21.1	0.0	19.1	21.8	0.0	0.0
LnGrp LOS	С	В	В	С	В	В	С		В	С		
Approach Vol, veh/h		672			1067			179			77	
Approach Delay, s/veh		15.0			16.1			20.5			21.8	
Approach LOS		В			В			С			С	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s		9.8	7.9	18.6		8.7	9.2	17.2				
Change Period (Y+Rc), s		4.5	4.5	4.5		4.5	4.5	4.5				
Max Green Setting (Gmax), s		17.0	7.1	16.9		16.0	7.5	16.5				
Max Q Clear Time (g_c+I1), s		4.8	4.6	5.5		4.0	5.6	9.3				
Green Ext Time (p_c), s		0.4	0.0	2.4		0.2	0.1	3.4				
Intersection Summary												
HCM 2010 Ctrl Delay	<u></u>		16.4									
HCM 2010 LOS			В									

California Terraces PA61 TIA Appendix

Appendix 0

Caliente Ave/Airway Rd Signal Warrant Calculations

California MUTCD 2014 Edition
(FHWA's MUTCD 2009 Edition, including Revisions 1 & 2, as amended for use in California)

Figure 4C-101 (CA). Traffic Signal Warrants Worksheet (Sheet 2 of 5)

WARRANT 2 - Four Hour Vehicular Volume	SATISFIED*	YES	NO 🖺
Record hourly vehicular volumes for any four hours of an average day	NOVE		
APPROACH LANES One More	/6/Hour		
Both Approaches - Major Street \sqrt{358 934 774}	351		
Higher Approach - Minor Street	176		
*All plotted points fall above the applicable curve in Figure 4C-1. (URBAN	(AREAS)	Yes 🗆	No 🎆
OR, All plotted points fall above the applicable curve in Figure 4C-2. (RUI	RAL AREAS)	Yes 🗆	No 🗃
WAINAINI J - I Can IIOUI	SATISFIED	YES 🖥	NO 🗆
(Part A or Part B must be satisfied)	0.47107170	VEO 199	NO 🗆
PART A (All parts 1, 2, and 3 below must be satisfied for the same	SATISFIED	YES 💆	NO 🗆
one hour, for any four consecutive 15-minute periods)			
 The total delay experienced by traffic on one minor street approach (one controlled by a STOP sign equals or exceeds four vehicle-hours for a or approach, or five vehicle-hours for a two-lane approach; <u>AND</u> 	e direction only) ne-lane	Yes 🗐	No 🗆
The volume on the same minor street approach (one direction only) equ 100 vph for one moving lane of traffic or 150 vph for two moving lanes;	ials or exceeds AND	Yes 🗃	No 🗆
 The total entering volume serviced during the hour equals or exceeds 8 for intersections with four or more approaches or 650 vph for intersection three approaches. 	00 vph ons with	Yes 💆	No 🗆
PART B	SATISFIED	YES 🗆	NO 🗆
APPROACH LANES One More Hour			
Both Approaches - Major Street			
Higher Approach - Minor Street			
The plotted point falls above the applicable curve in Figure 4C-3. (URBA	N AREAS)	Yes 🗆	No 🗆
OR. The plotted point falls above the applicable curve in Figure 4C-4. (R	URAL AREAS)	Yes \square	№ П

The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal.

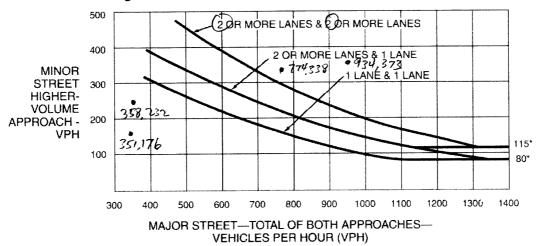


Figure 4C-1. Warrant 2, Four-Hour Vehicular Volume

*Note: 115 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 80 vph applies as the lower threshold volume for a minor-street approach with one lane.

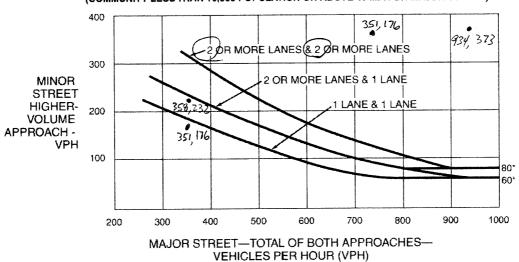


Figure 4C-2. Warrant 2, Four-Hour Vehicular Volume (70% Factor)
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

*Note: 80 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 60 vph applies as the lower threshold volume for a minor-street approach with one lane.

Warrant 3

Existing Volumes: AM and (PM)

Λ:		425	277	33		
	way	(192)	(171)	(92)		
l k	₹d	` ~ 」	Ì	Ĺ		
365	(326)		$\stackrel{\bullet}{\frown}$	▲	55	(110)
1	(5)	\rightarrow	(9)	←	1	(2)
7	(7)	→	\sim	√	0	(4)
		←	↑	→	י מ) 4)
		4	195	0	Cali	1 ×
		(5)	(308)	(6)	0) 4

Warrant 3 Part A1

AM LOS existing delay = 124.8 second/vehicle

AM vehicles one minor street apparoch =

373 Vehicles AM delay one street approach = 373 veh x 124.8 sec/veh = 46,550 Seconds of delay

AM delay one street approach (hours) = 12.9 Hours of delay

Warrant 3 Part A2

AM vehicles one minor street apparoch = 373 Vehicles

Warrant 3 Part A3

Total AM entering vehicles = 1,363 Vehicles

Intersection												
Intersection Delay, s/ve	h24.8											
Intersection LOS	F											
mioraconori 200	•											
	EDI	EDT	EDD	MDI	WDT	MADD	NDI	NDT	NDD	CDI	CDT	CDD
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	4		7	↑	7	7	↑ ⊅		1	ħβ	
Traffic Vol, veh/h	365	1	7	0	1	55	4	195	0	33	277	425
Future Vol, veh/h	365	1	7	0	1	55	4	195	0	33	277	425
Peak Hour Factor	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	537	1	10	0	1	81	6	287	0	49	407	625
Number of Lanes	1	1	0	1	1	1	1	2	0	1	2	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	3			2			3			3		
Conflicting Approach Le				NB			EB			WB		
Conflicting Lanes Left	3			3			2			3		
Conflicting Approach R	ighNB			SB			WB			EB		
Conflicting Lanes Right				3			3			2		
HCM Control Delay	29.4			15.3			16.2			210.9		
HCM LOS	D			С			С			F		
Lano	ı	\IDI n1	MDI nal	MDI n2	EDI n1	EDI nol	1/DI n1\	MDI nO\	MDI n2	CDI n1	CDI n2	CDI n2
Lane Val Loft 9/							NBLn1\					
Vol Left, %		100%	0%	0%		96%	0%	0%		100%	0%	0%
Vol Thru, %		0%	100%	100%	0%	1%	100%	100%	0%		100%	18%
Vol Right, %		0%	0%	0%	0%	4%	0%	0%		0%	0%	82%
Sign Control		Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane		4	98	98	186	187	0	1	55	33	185	517
LT Vol		4	0	0	186	179	0	0	0	33	0	0
Through Vol		0	98	98	0	1	0	1	0	0	185	92
RT Vol		0	0	0	0	7	0	0	55	0	0	425
Lane Flow Rate		6	143	143	274	275	0	1	81	49	272	761
Geometry Grp		8	8	8	8	8	8	8	8	8	8	8
Degree of Util (X)			0.365		0.67	0.669				0.116		
Departure Headway (He	d)		9.992				10.735					
Convergence, Y/N		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Cap		343	363	442	383	385	0	335	361	418	448	487
Service Time		8.212	7.692		7.2	7.152	8.435	8.435		6.331		
HCM Lane V/C Ratio		0.017	0.394		0.715	0.714	0	0.003		0.117	0.607	
HCM Control Delay		13.4	18.3	14.3	29.5	29.3	13.4	13.5	15.3	12.5	22.7	290.8

HCM Lane LOS

HCM 95th-tile Q

В

0

С

1.6

В

1.2

D

4.7

D

4.7

N B C

0 0.8

0

В

0.4

C F

4 41.6

Warrant 2 data

Location:San DiegoDate: 1/18/18N/S:Caliente AvenueDay: THURSDAYE/W:Airway RoadProject # 143-18041

TURNING MOVEMENT COUNT

Count Period: 7:00 AM to 9:00 AM
Peak Hour: 8:00AM to 9:00 AM

Vehicle Counts

	Caliente Avenue			Caliente Avenue			Airway Road			Airway Road			
	Northbound			Southbound			Eastbound			Westbound			
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
7:00 AM	0	2	0	14	5	18	38	0	1	0	0	18	96
7:15 AM	0	2	1	4	7	26	46	1	0	0	1	19	107
7:30 AM	1	10	0	6	15	46	60	0	1	0	0	23	162
7:45 AM	2	33	1	13	55	97	81	2	2	2	0	14	302
8:00 AM	1	31	0	11	42	71	68	0	1	0	0	18	243
8:15 AM	0	32	0	7	46	71	65	0	2	0	0	12	235
8:30 AM	0	41	0	5	71	140	112	0	2	0	1	13	385
8:45 AM	3	91	0	10	118	143	120	1	2	0	0	12	500
TOTAL VOLUMES:	7	242	2	70	359	612	590	4	11	2	2	129	2030

Eastbound Westbound Major St (both approaches) 7-8am 358 Minor Street 7-8am 232 77 Major St (both approaches) 8-9am 934 Minor Street 8-9am 373 56

TURNING MOVEMENT COUNT

Count Period: 4:00 PM to 6:00 PM Peak Hour: 4:00 PM to 5:00 PM

Vehicle Counts

	Caliente Avenue Northbound			Caliente Avenue Southbound			Airway Road Eastbound			Airway Road Westbound			
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
4:00 PM	0	89	4	41	90	60	65	2	2	2	1	51	407
4:15 PM	3	158	2	21	55	39	115	2	3	1	1	34	434
4:30 PM	2	44	0	14	14	44	99	1	1	0	0	7	226
4:45 PM	0	17	0	16	12	49	47	0	1	1	0	18	161
5:00 PM	1	11	1	23	5	42	44	0	0	0	0	13	140
5:15 PM	2	9	0	16	7	43	39	1	1	0	0	5	123
5:30 PM	0	4	0	18	1	57	31	1	0	1	1	8	122
5:45 PM	0	6	0	25	4	76	58	0	1	0	1	10	181
TOTAL VOLUMES:	8	338	7	174	188	410	498	7	9	5	4	146	1794

Eastbound Westbound Major St (both approaches) 4-5pm 774 Minor Street 4-5pm 338 116 Major St (both approaches) 5-6pm 351 Minor Street 5-6pm 176 39

Otay CPU FEIR, PFFP, Candlelight MMRP, Southview MMRP, and Greenfield DIA

Final
Program Environmental Impact
Report for the
Otay Mesa Community Plan Update,
City of San Diego
Project Number 30330/304032
SCH No. 2004651076

December 18, 2013

5.12 Transportation/Circulation

This section analyzes the potential transportation-related impacts associated with the adoption of the CPU. The study area boundaries for the purposes of the traffic analysis include the CPU area and extend to those areas outside the CPU area to roads that are common to other communities in the City of San Diego and other jurisdictions such as the City of Chula Vista and the County of San Diego. The analysis in this section is based on the Traffic Impact Analysis (TIA) prepared by Urban Systems Associates (USA), Inc. (June 14, 2012), which is contained in Appendix J.

Traffic analysis was conducted in support of the CPU in order to identify the recommended roadway classifications and other recommended transportation improvements to support buildout of the CPU land uses and proposed zoning, and to identify any significant traffic impacts that would remain unmitigated at the programmatic level.

Future traffic volumes were forecasted using SANDAG's Series 11 regional transportation model calibrated for the Otay Mesa area. Land uses within the CPU area were assumed to be built out within the traffic model. The CPU transportation model network included the future improvements from the Adopted Community Plan that were assumed to be completed at buildout of the CPU and included the Year 2030 Regional Transportation Plan "Reasonably Expected" projects in the region such as SR-11 and the SR-905/SR-125/SR-11 freeway interchange. Also, the model was modified to include a half-diamond interchange (instead of a full interchange) at SR-125/Lone Star Road and a portion of SR-125 was modeled as a toll facility.

Due to the undeveloped nature of much of the community, a majority of the circulation element roadways are not built, are only partially built, or are not operating near capacity. Therefore, for many facilities, an analysis of the CPU buildout traffic volumes on the existing transportation network was not possible or meaningful. So, although the existing condition is considered the baseline for identifying significant impacts, in order to identify the recommended roadway classifications and other transportation improvements, the proposed CPU land use buildout traffic volumes were initially analyzed on the CPU transportation network. Based on those level of service analysis results and other considerations, where possible, recommendations were made for the CPU roadway classifications, intersection lane configurations, and freeway and ramp improvements that would mitigate or reduce impacts by bringing the facilities to Level of Service D or better operation at buildout.

All but 24 potential roadway segment significant impacts would be mitigated at the programmatic level by incorporating the recommended roadway segment classifications (refer to Table 5.12-4 CPU Classification column) in the CPU Figure 3-2 Otay Mesa Roadway Classification Map and Public Facilities Financing Plan, and through future

development project review and implementation (ministerial and discretionary review through the CPIOZ). Further mitigation at the programmatic level is not recommended at the remaining 24 roadway segments due to various factors such as adjacency to environmentally sensitive land and/or steep slopes, existing development conflicts, and/or multi-modal and urban design context. At the project-level, partial mitigation may be possible in the form of transportation demand management (TDM) measures that encourage carpooling and alternate means of transportation. At the time future discretionary development projects are proposed, project-specific traffic analyses would contain detailed recommendations.

All but 39 intersection significant impacts would be mitigated at the programmatic level by incorporating the intersection configurations (refer to Figures 5.12-4a. – 5.12-4g.) for the 53 intersections analyzed into the projects to be funded through the Public Facilities Financing Plan and through future development projects (ministerial and discretionary through the CPIOZ). Further mitigation at the programmatic level is not recommended at the 39 intersections that would continue to be significantly impacted after mitigation due to considerations such as adjacency to environmentally sensitive land, steep slopes, routes to schools, and multi-modal and urban design context, or because additional study would be required in order to make additional recommendations. At the project-level, partial mitigation may be possible in the form of TDM measures that encourage carpooling and alternate means of transportation. At the time future discretionary development projects are proposed, project-specific traffic analyses would contain detailed recommendations.

Five freeway segments on SR- 905 would be significantly impacted by buildout of the CPU. Mitigation in the form of one HOV lane in each direction on SR- 905 would reduce impacts on all five segments, with three segments continuing to be significantly impacted. However, since funding for the HOV lanes is not programmed at this time and is not included in the PFFP, five freeway segment impacts would remain significant and unmitigated at the programmatic level. At the project- level, partial mitigation may be possible in the form of TDM measures that encourage carpooling and alternate means of transportation, or other improvements such as auxiliary lanes that would require further study. At the time future discretionary development projects are proposed, project-specific traffic analyses would contain detailed recommendations.

Five ramp meters locations on SR- 905 would be significantly impacted by the CPU. At the project- level, partial mitigation may be possible in the form of TDM measures that encourage carpooling and alternate means of transportation or other improvements such as auxiliary lanes or adding a lane to the freeway onramp, that would require further study. At the time future discretionary development projects are proposed, project-specific traffic analyses would contain detailed recommendations.

5.12.1 Existing Conditions

The following section outlines traffic conditions and regulatory framework of the existing street network, including roadway segments, key intersections, freeway segments, mass transit routes, bikeways, and pedestrian facilities within the study area.

5.12.1.1 Regulatory Framework

Traffic conditions and transportation planning in San Diego County are guided by state, regional, and local agencies and their policies. Caltrans is responsible for enhancement and maintenance of state highways and interstate freeways. Any changes to state facilities or construction within state right-of-way require an encroachment permit from Caltrans. Regional transportation planning efforts are guided by the travel forecasting models run by SANDAG. Locally, each incorporated city, including the City of San Diego, along with the County of San Diego, has developed specific goals and policies for traffic conditions and roadways within their jurisdiction. Each agency is responsible for the implementation of its goals and policies.

a. City of San Diego General Plan

The Mobility Element of the City of San Diego General Plan defines the policies regarding traffic flow and transportation facility design. The purpose of the Mobility Element is "to improve mobility through development of a balanced, multi-modal transportation network." The main goals of the Mobility Element pertain to walkable communities, transit first, street and freeway system, intelligent transportation systems, (ITS), Transportation Demand Management (TDM), bicycling, parking management, airports, passenger rail, goods movement/freight, and regional transportation coordination and financing.

b. Otay Mesa Community Plan Transportation Element

The purpose of the adopted Otay Mesa Community Plan Transportation Element is to establish goals and policies to guide future street network and design, street classification, LOS, transit facilities and service, pedestrian and bicycle accommodations, and facility improvements needed to support future travel needs within the Community Plan area. This element would be replaced by the proposed Mobility Element of the CPU if adopted.

c. Regional Transportation Plan

SANDAG's 2050 RTP, adopted in October 2011, is the long-range mobility plan for the region. It includes short-term and long-term strategies for the development of an integrated multi-modal transportation system, and is required in order to be eligible for state and federal funding. The RTP identifies and prioritizes projects, and calls out

funding sources for their implementation. The 2050 RTP is developed around five primary components: a Sustainable Communities Strategy, Social Equity and Environmental Justice, Systems Development, Systems Management, and Demand Management. It addresses improvements to transit, rail, roadways, goods movement, bicycling, and walking, as well as other topics. The RTP Sustainable Communities Strategy (SCS), consistent with Senate Bill 375, shows how integrated land use, housing, and transportation planning can lead to lower greenhouse gas emissions from autos and light trucks. The RTP is intended to support a regional smart growth plan. This vision reflects a transportation system that supports a robust economy and a healthy and safe environment with climate change protection while providing a higher quality of life for San Diego County residents. This includes better activity centers with homes and jobs enabling more people to use transit and walk and bike; efficiently transporting goods; and providing effective transportation options for all people. It should be noted that the PEIR prepared for the RTP and SCS is the subject of ongoing litigation (as of printing of this PEIR).

d. Bicycle Master Plan

The City's Bicycle Master Plan (City of San Diego 2002) seeks to foster a bicycle-friendly environment to serve commuter and recreational riders. The plan is currently undergoing an update and identifies policies, routes, programs, and facility priorities to increase bicycle transportation, safety, access, and quality of life. Similar to improved pedestrian environments and routes, improved bicycle routes can increase ridership, which provides community and regional benefits (reduced traffic congestion, energy consumption, vehicle emissions, etc.). The development, maintenance, and support of a bicycle network addressed in the Bicycle Master Plan were considered in the Mobility Element of the General Plan (City of San Diego 2008).

e. Level of Service Criteria

The Level of Service (LOS) criteria used in this analysis is based on the City of San Diego Traffic Impact Study Manual (1998). LOS provides a quantitative measure of certain traffic criteria (speed, travel time, comfort, etc.) that represent a transportation facility quality of service from a traveler's perspective. A vehicle level of service definition generally describes these conditions in terms of such factors as speed, travel time, freedom to maneuver, comfort, convenience, and safety. LOS A represents the best operating conditions from a driver's perspective (primarily free-flow operation), while LOS F represents the worst case where traffic flow is at extremely low speed. Per the City criteria, intersections and roadway segments operating at a LOS D or better are considered acceptable under both direct and cumulative conditions. LOS criteria for roadway segments, intersection, and freeways are discussed below.

Roadway Segments

The roadway level of service standards and thresholds that the City of San Diego uses provide the basis for analyzing arterial roadway segment performance. The analysis of roadway segment level of service is based on the functional classification of the roadway, the maximum desirable capacity, roadway geometrics, and existing or forecasted average daily traffic (ADT) volumes. The actual capacity of roadway facilities can vary due to a number of actual characteristics including, but not limited to, pavement width, frequency of cross streets and driveways, intersection signal timing, geometry, and on-street parking. The actual functional capacity is typically based on the ability of arterial intersections to accommodate peak hour volumes. LOS D is considered acceptable for roadway segments.

Intersections

Intersection analysis, per the Highway Capacity Manual (HCM; Transportation Research Board 2010), varies for signalized intersections and unsignalized intersections. The intersection analysis considers lane width, on-street parking, conflicting pedestrian flow, traffic composition (i.e., percent of trucks) and shared lane movements (e.g., through and right-turn movements from the same lane). LOS for signalized intersections is based on the average control delay per vehicle for the peak 15-minute period within the hour analyzed. The average control delay includes initial deceleration delay, queue move-up time, and final acceleration time in addition to the stop delay. The LOS for unsignalized intersections is determined by the computed or measured control delay and is defined for each minor movement. At an all-way stop controlled intersection, the delay reported is the average control delay of the intersection. At a one-way or two-way stop controlled intersection, the delay reported represents the worst movement, typically the left runs from the minor street approach. The threshold of LOS D, a delay of 55 seconds per vehicle is considered acceptable for signalized intersections and a delay of 35 seconds per vehicle at LOS D is considered acceptable for unsignalized intersections.

Freeway Segments

Freeway segments are analyzed using standard Caltrans methodologies. The procedures for determining freeway LOS involve calculating a peak hour volume to capacity ratio (V/C). Peak hour volumes are estimated from the application of design hour ("K"), directional ("D") and truck ("T") factors to ADT volumes. The truck factors (percent trucks) are obtained from historic Caltrans data, local truck counts, and projections of future volumes at the border crossings. The resulting V/C ratio is then compared with accepted ranges of V/C values corresponding to the various LOS. The corresponding LOS represents an approximation of existing or forecasted freeway operating conditions during the peak hour. Caltrans has developed four levels of freeway congestion within LOS F, ranging from F(0) (considered congestion) to F(3) (gridlock).

Any facility operating at LOS E (0.93 to 1.00 V/C) or F (over 1.01 V/C) is considered an unacceptable LOS.

Freeway Ramp Metering

Freeway ramp meters are considered to operate acceptably if the vehicle delay is less than 15 minutes. If the vehicle delay exceeds 15 minutes at a freeway on-ramp meter and the downstream freeway is operating at LOS E or F, the delay is considered unacceptable.

5.12.1.2 Existing Circulation System

Much of the land in the CPU area is undeveloped. Only the developed residential areas on the western side of the CPU area have consistently improved roads created through a comprehensive funding and phasing system. Roads in the rest of the CPU area have been improved incrementally as property frontages have developed. Therefore, much of the street system is unconnected and incomplete.

I-805 and SR-125 provide regional north-south access to Otay Mesa. SR-125, known as the South Bay Expressway, provides an extension of SR-125 from SR-54 in Spring Valley to SR-905. The South Bay Expressway is operated as a toll road by SANDAG.

SR-905, Otay Mesa Road, and Palm Avenue provide east-west connections from the CPU area to I-805. SR-905 provides connection from the Otay Mesa POE and CPU area surface streets with regional freeway I-805. At the time of the existing conditions analysis, a 4.5-mile portion of SR-905 was a conventional highway (Otay Mesa Road). The SR-905 freeway was recently completed within the CPU area and was opened to traffic in July 2012. The existing conditions analysis is based on data collected before the SR-905 freeway was opened to traffic from Britannia Boulevard to the international border.

a. Key Freeways and Roadways

The following are general descriptions of key roadways within the community divided into three categories: roads that provide access to and from the community, roads within residential areas, and roads within industrial areas. Also, the major truck routes utilized to transport goods are listed below.

Community Access Freeways and Roads¹

I-805 – is a north-south freeway that starts from approximately three-quarters of a mile north of the U.S.-Mexico border, extends through San Diego, Chula Vista, National City, and connects to I-5 in Sorrento Valley. This freeway is located to the west of the CPU area and contains ramps to SR-905. Near the CPU area, this freeway is four lanes at its southern origination point to eight lanes further north.

SR-905 – a six-lane freeway that extends into Otay Mesa for a mile from its interchange with I-805 and transitions into Otay Mesa Road, a six-lane Primary Arterial for approximately 4.5 miles where it connects to another one-mile freeway portion that ends at the Port of Entry.

SR-125 – is a north-south freeway located to the east of the CPU area extending from Otay Mesa Road at approximately 1.25 miles north of the U.S.-Mexico border north to SR-52. It provides a connection between Otay Mesa, Chula Vista, Spring Valley, Lemon Grove, La Mesa, San Diego, and Santee. The southern segment between Otay Mesa Road and SR-54 is a four-lane toll road called the South Bay Expressway.

Old Otay Mesa Road – a two-lane Collector (without left-turn lane) connecting Otay Mesa with San Ysidro. It extends along the rim of a canyon and intersects with SR-905/Otay Mesa Road.

Del Sol Boulevard – a four-lane Collector (with left-turn lane) as it crosses under I-805 from Otay Mesa-Nestor. It intersects Dennery Road and then continues for approximately a quarter-mile as a two-lane Collector (with left-turn lane).

Palm Avenue – crosses over I-805 from Otay Mesa-Nestor on a four-lane bridge with double left-turn-lanes at the interchange of Palm Avenue and I-805. Palm Avenue transitions to a six-lane Primary Arterial, and intersects with Dennery Road.

Otay Valley Road – a six-lane major road, Main Street, at I-805 in the City of Chula Vista. Otay Valley Road crosses the Otay River on a two-lane bridge with a center turn lane and continues as a two-lane Collector (without left-turn lane) into the City of San Diego.

Otay Mesa Road – from the terminus of SR-905, Otay Mesa Road is constructed as a six-lane Primary Arterial to Otay Center Road. It is constructed as a seven-lane Major

¹Note that this section describes the existing conditions assumed in the traffic impact analysis (Appendix J). Additional improvements may currently be in place, such as the SR-905 freeway improvements.

Arterial between Otay Center Road and La Media Road. It transitions to a four-lane Major Arterial east of La Media Road and intersects with the SR-125 southbound off-ramp and northbound on-ramp, and continues east into County of San Diego lands.

Otay Mesa Border Crossing and Port of Entry – a second border crossing between the U.S. and Mexico located at the southeast corner of Otay Mesa. This POE allows automobiles but is primarily used for truck traffic, which is predominant throughout the community of Otay Mesa.

Roads within Residential Areas

Dennery Road – is constructed as a four-lane Major Arterial between Del Sol Boulevard and Palm Avenue. North of Palm Avenue, the road transitions to a four-lane Collector (with left-turn lane) and eventually transitions to a two-lane Collector (without fronting property).

Ocean View Hills Parkway – is a four-lane Major Arterial road extending from Dennery Road to Del Sol Boulevard. South of Del Sol Boulevard this roadway is constructed as a six-lane Major Arterial and intersects with conventional highway SR-905/Otay Mesa Road.

Avenida de las Vistas – is a two-lane Collector (without fronting property) extending west of Otay Valley Road. The residential development along Avenida de las Vistas can be accessed via Otay Valley Road to the north or Otay Mesa Road from the south.

Caliente Avenue – is a partially built four-lane Major Arterial extending south from Otay Mesa Road, intersecting with Airway Road. This segment will be constructed as six lanes as part of the SR-905 interchange currently under construction at this location.

Beyer Boulevard – is a four-lane Major Arterial extending from Old Otay Mesa Road westerly into the San Ysidro Community Plan area, and provides access to the nearby Beyer Boulevard transit station.

Roads Within Industrial Areas

Airway Road – is an east-west, partially built roadway varying in width that runs parallel with Otay Mesa Road from Britannia Boulevard to the County boundary. The western segment of Airway Road is a three-lane Collector (2 lanes eastbound, 1 lane westbound) between Old Otay Mesa Road and Caliente Avenue, and provides access to San Ysidro High School.

Siempre Viva Road – is an east-west, partially built roadway varying in width between Cactus Road and La Media Road. East of La Media Road, Siempre Viva Road is a sixlane Primary Arterial with an interchange at SR-905 and then transitions to a four-lane Major Arterial from Paseo de las Americas to the County boundary.

Heritage Road – is a north-south, partially built roadway varying in width from Otay Valley Road to its terminus south of Gateway Park Drive.

Cactus Road – is a north-south, four-lane Collector (with left-turn lane) south of Otay Mesa Road, ending at the SR-905 right-of-way. South of SR-905 it is partially constructed with two lanes.

Britannia Boulevard – is a north-south, partially built Major Arterial roadway extending between Otay Mesa Road and Siempre Viva Road. The SR-905 interchange is under construction between Otay Mesa Road and Airway Road. South of Airway Road, portions are built as a four-lane Major Arterial, while some segments are only constructed to half-width.

La Media Road – is a north-south, partially built Major Arterial extending from north of Otay Mesa Road to Siempre Viva Road. The SR-905 interchange is under construction between Otay Mesa Road and Airway Road. South of Airway Road only two lanes are built, extending to a truck only road extending to the east Otay Mesa inspection facility. This road is currently the designated southbound truck route for laden (carrying cargo) trucks from conventional highway SR-905/Otay Mesa Road to the east Otay Mesa inspection facility.

Truck Routes

Truck routes within the CPU area are an important component of the circulation system. The Otay Mesa POE provides a major commercial truck transport point between the U.S. and Mexico. From the POE, trucks travel to the warehouses/distribution facilities within the CPU area and to major freeways for further distribution. Currently, the major truck routes utilized to transport goods include SR-905, SR-125, La Media Road, Siempre Viva Road, Britannia Boulevard, and Otay Mesa Road. These roads are described above. Drucker Lane is a minor roadway utilized as a truck route connection between Siempre Viva Road and La Media Road. This roadway is five lanes at the intersection of Siempre Viva Road, and four lanes from just south of that intersection to Kern Street, and is reduced down to one southbound lane between Kern Street and La Media Road. Truck traffic heading to Mexico through the Otay Mesa POE typically queue on Drucker Lane and La Media Road.

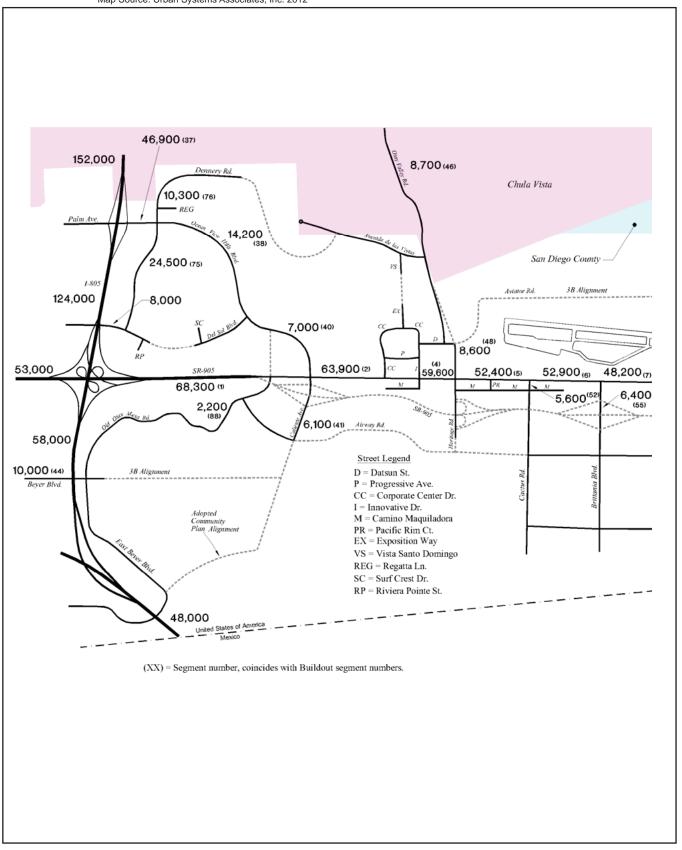
b. Key Intersections

There are 15 key intersections within the study area under the existing conditions, which are as follows:

- 1. Palm Avenue/I-805 SB Ramps
- 2. Palm Avenue/I-805 NB Ramps
- 3. Palm Avenue/Dennery Road

- 4. Otay Mesa Road/Caliente Avenue
- 5. Otay Mesa Road/Corporate Center Drive
- 6. Otay Mesa Road/Heritage Road
- 7. Otay Mesa Road/Cactus Road
- 8. Otay Mesa Road/Britannia Boulevard
- 9. Otay Mesa Road/La Media Road
- 10. Otay Mesa Road/Piper Ranch Road
- 11. Otay Mesa Road/SR-125 SB Off-ramp
- 12. Otay Mesa Road/SR-125 NB On-ramp
- 13A. Siempre Viva Road/SR-905 SB Ramps
- 13B. SR-905 SB Off-ramp to WB Siempre Viva Road (unsignalized)
- 14. Siempre Viva Road /SR-905 NB Ramps

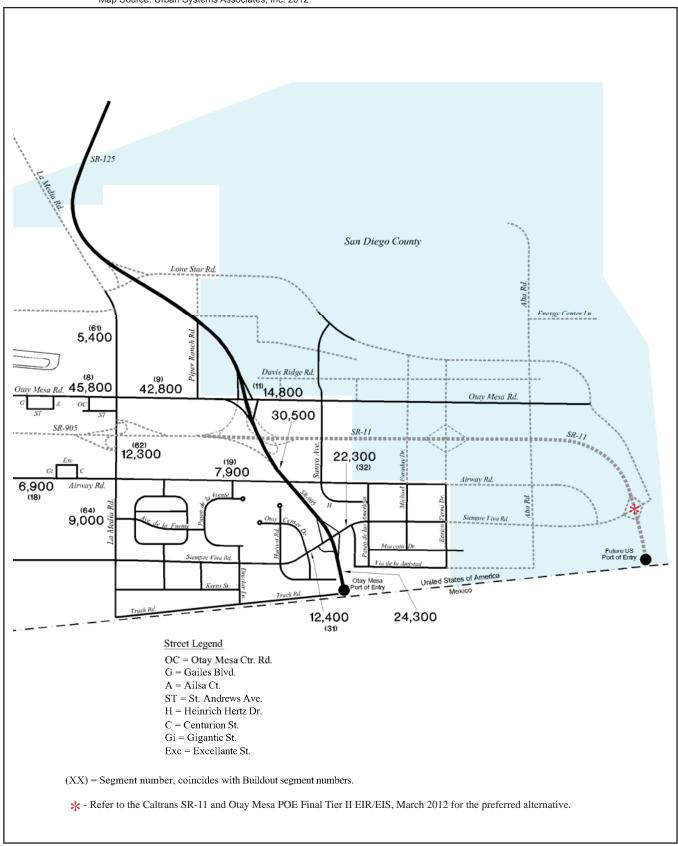
All of these intersections are currently signalized with the exception of 13B.


5.12.1.3 Existing Traffic Volumes

Existing traffic volumes are based on recent traffic counts (2005 to 2010) conducted by Caltrans, the City of San Diego, or recently counted for other project study purposes. It is noted that traffic volumes were obtained before the opening of SR-905 Phase 1-A improvements from the partial Britannia Boulevard interchange to east of the La Media Road partial interchange. Due to the high number of trucks utilizing CPU area roadways compared to typical San Diego communities, the truck percentage of vehicular traffic assumed in the analysis summarized below was increased from the typical 2 percent to 10 percent.

a. Roadway Segments

The existing ADT volumes for road segments within the CPU area are shown in Figures 5.12-1a and 5.12-1b. Table 5.12-1 shows existing street segment LOS based on the City of San Diego Traffic Impact Manual. As shown, all roadway segments except the following seven operate at an acceptable LOS D or better:


- 1. Otay Mesa Road from SR-905 to Caliente Avenue (LOS F)
- 2. Otay Mesa Road from Caliente Avenue to Corporate Center Drive (LOS F)
- 3. Otay Mesa Road from Corporate Center Drive to Heritage Road (LOS E
- 4. Otay Mesa Road from Otay Mesa Center Road to La Media Road (LOS E)
- 5. Heritage Road/Otay Valley Road from Main Street to Avenida de las Vistas (LOS F)
- 6. Heritage Road/Otay Valley Road from Avenida de las Vistas to Otay Mesa Road (LOS F)
- 7. La Media Road from Airway Road to Siempre Viva Road (LOS F)

Not to Scale

Existing Condition Roadway Segment Volumes (West)

Not to Scale

TABLE 5.12-1 EXISTING SEGMENT OPERATIONS

Street Segment
Otay Mesa Road SR-905 to Caliente Ave. 6-PA 60,000 68,300 1.14 F Caliente Ave. to Corporate Center Dr. 6-PA 60,000 63,900 1.07 F Corporate Center Dr. to Heritage Rd. 6-PA 60,000 59,600 0.99 E Heritage Rd. to Cactus Rd. 6-PA 60,000 52,400 0.87 D Cactus Rd. to Britannia Blvd. 6-PA 60,000 52,400 0.88 D Britannia Blvd. to Otay Mesa Center Rd. 6-PA 60,000 48,200 0.80 C Otay Mesa Center Rd. to La Media Rd. 7-M 55,000 45,800 0.84 E La Media Road to SR-125 SB Ramps 5-PA 55,000 42,800 0.78 C SR-125 NB Ramps to Sanyo Ave. 4-M 40,000 14,800 0.37 A Britannia Blvd. to La Media Rd. 2-CL 15,000 6,900 0.46 B La Media Rd. to Sanyo Ave. 2-CL 15,000 7,900 0.53 C Siempre Viva Road
SR-905 to Caliente Ave. 6-PA 60,000 68,300 1.14 F Caliente Ave. to Corporate Center Dr. 6-PA 60,000 63,900 1.07 F Corporate Center Dr. to Heritage Rd. 6-PA 60,000 59,600 0.99 E Heritage Rd. to Cactus Rd. 6-PA 60,000 52,400 0.87 D Cactus Rd. to Britannia Blvd. 6-PA 60,000 52,400 0.88 D Britannia Blvd. to Otay Mesa Center Rd. 6-PA 60,000 52,900 0.88 D Otay Mesa Center Rd. to La Media Rd. 7-M 55,000 48,200 0.80 C Otay Mesa Center Rd. to La Media Rd. 7-M 55,000 45,800 0.84 E La Media Road to SR-125 SB Ramps 5-PA 55,000 42,800 0.78 C SR-125 NB Ramps to Sanyo Ave. 4-M 40,000 14,800 0.37 A Britannia Blvd. to La Media Rd. 2-CL 15,000 6,900 0.46 B La Media Rd. to Sanyo Ave. 2
Caliente Ave. to Corporate Center Dr. 6-PA 60,000 63,900 1.07 F Corporate Center Dr. to Heritage Rd. 6-PA 60,000 59,600 0.99 E Heritage Rd. to Cactus Rd. 6-PA 60,000 52,400 0.87 D Cactus Rd. to Britannia Blvd. 6-PA 60,000 52,900 0.88 D Britannia Blvd. to Otay Mesa Center Rd. 6-PA 60,000 48,200 0.80 C Otay Mesa Center Rd. to La Media Rd. 7-M 55,000 45,800 0.78 C SR-125 NB Ramps to Sanyo Ave. 4-M 40,000 14,800 0.78 C SR-125 NB Ramps to Sanyo Ave. 4-M 40,000 14,800 0.37 A Airway Road Britannia Blvd. to La Media Rd. 2-CL 15,000 6,900 0.46 B La Media Rd. to Sanyo Ave. 2-CL 15,000 7,900 0.53 C Siempre Viva Road Anterest Rd. to SR-905 SB Ramps 6-PA 60,000 12,400 0.21 A
Corporate Center Dr. to Heritage Rd. 6-PA 60,000 59,600 0.99 E Heritage Rd. to Cactus Rd. 6-PA 60,000 52,400 0.87 D Cactus Rd. to Britannia Blvd. 6-PA 60,000 52,400 0.88 D Britannia Blvd. to Otay Mesa Center Rd. 6-PA 60,000 48,200 0.80 C Otay Mesa Center Rd. to La Media Rd. 7-M 55,000 45,800 0.84 E La Media Road to SR-125 SB Ramps 5-PA 55,000 42,800 0.78 C SR-125 NB Ramps to Sanyo Ave. 4-M 40,000 14,800 0.37 A Britannia Blvd. to La Media Rd. 2-CL 15,000 6,900 0.46 B La Media Rd. to Sanyo Ave. 2-CL 15,000 7,900 0.53 C Siempre Viva Road Harvest Rd. to SR-905 SB Ramps 6-PA 60,000 12,400 0.21 A SR-905 NB Ramps to Paseo de las Americas 6-PA 60,000 22,300 0.37 A
Heritage Rd. to Cactus Rd. 6-PA 60,000 52,400 0.87 D Cactus Rd. to Britannia Blvd. 6-PA 60,000 52,900 0.88 D Britannia Blvd. to Otay Mesa Center Rd. 6-PA 60,000 48,200 0.80 C Otay Mesa Center Rd. 6-PA 60,000 48,200 0.80 C Otay Mesa Center Rd. to La Media Rd. 7-M 55,000 45,800 0.84 E La Media Road to SR-125 SB Ramps 5-PA 55,000 42,800 0.78 C SR-125 NB Ramps to Sanyo Ave. 4-M 40,000 14,800 0.37 A Airway Road Britannia Blvd. to La Media Rd. 2-CL 15,000 6,900 0.46 B La Media Rd. to Sanyo Ave. 2-CL 15,000 7,900 0.53 C Siempre Viva Road Harvest Rd. to SR-905 SB Ramps 6-PA 60,000 12,400 0.21 A SR-905 NB Ramps to Paseo de las Americas 6-PA 60,000 22,300 0.37 A Palm Avenue I-805 NB Ramps to Dennery Rd. 6-PA 60,000 46,900 0.78 C Ocean View Hills Parkway Dennery Rd. to Del Sol Blvd. 4-M 40,000 14,200 0.36 A Del Sol Blvd. to Otay Mesa Rd. 6-M 50,000 7,000 0.14 A Caliente Avenue Otay Mesa Rd. 4-M 40,000 6,100 0.15 A Old Otay Mesa Road Otay Mesa Rd. to Airway Rd. 2-C 8,000 2,200 0.28 A Beyer Boulevard Smythe Ave. to Old Otay Mesa Rd. 4-M 40,000 10,000 0.24 A A A A A A A A A
Cactus Rd. to Britannia Blvd. 6-PA 60,000 52,900 0.88 D Britannia Blvd. to Otay Mesa Center Rd. 6-PA 60,000 48,200 0.80 C Otay Mesa Center Rd. to La Media Rd. 7-M 55,000 45,800 0.84 E La Media Road to SR-125 SB Ramps 5-PA 55,000 42,800 0.78 C SR-125 NB Ramps to Sanyo Ave. 4-M 40,000 14,800 0.37 A Airway Road Britannia Blvd. to La Media Rd. 2-CL 15,000 6,900 0.46 B La Media Rd. to Sanyo Ave. 2-CL 15,000 7,900 0.53 C Siempre Viva Road Harvest Rd. to SR-905 SB Ramps 6-PA 60,000 12,400 0.21 A SR-905 NB Ramps to Paseo de las Americas 6-PA 60,000 22,300 0.37 A Palm Avenue I-805 NB Ramps to Dennery Rd. 6-PA 60,000 46,900 0.78 C Ocean View Hills Parkway Dennery Rd. to Del Sol Blvd. <
Britannia Blvd. to Otay Mesa Center Rd. 6-PA 60,000 48,200 0.80 C Otay Mesa Center Rd. to La Media Rd. 7-M 55,000 45,800 0.84 E La Media Road to SR-125 SB Ramps 5-PA 55,000 42,800 0.78 C SR-125 NB Ramps to Sanyo Ave. 4-M 40,000 14,800 0.37 A Airway Road Britannia Blvd. to La Media Rd. 2-CL 15,000 6,900 0.46 B La Media Rd. to Sanyo Ave. 2-CL 15,000 7,900 0.53 C Siempre Viva Road Britannia Blvd. to SR-905 SB Ramps 6-PA 60,000 12,400 0.21 A SR-905 NB Ramps to Paseo de las Americas 6-PA 60,000 12,400 0.21 A SR-905 NB Ramps to Dennery Rd. 6-PA 60,000 22,300 0.37 A Palm Avenue I-805 NB Ramps to Dennery Rd. 6-PA 60,000 46,900 0.78 C Ocean View Hills Parkway Dennery Rd. to Del Sol Blvd. 4-M 40,000
Otay Mesa Center Rd. to La Media Rd. 7-M 55,000 45,800 0.84 E La Media Road to SR-125 SB Ramps 5-PA 55,000 42,800 0.78 C SR-125 NB Ramps to Sanyo Ave. 4-M 40,000 14,800 0.37 A Airway Road Britannia Blvd. to La Media Rd. 2-CL 15,000 6,900 0.46 B La Media Rd. to Sanyo Ave. 2-CL 15,000 7,900 0.53 C Siempre Viva Road Harvest Rd. to SR-905 SB Ramps 6-PA 60,000 12,400 0.21 A SR-905 NB Ramps to Paseo de las Americas 6-PA 60,000 22,300 0.37 A Palm Avenue I-805 NB Ramps to Dennery Rd. 6-PA 60,000 46,900 0.78 C Ocean View Hills Parkway Dennery Rd. to Del Sol Blvd. 4-M 40,000 14,200 0.36 A Del Sol Blvd. to Otay Mesa Rd. 6-M 50,000 7,000 0.14 A Old Otay Mesa Road 0tay Mesa Rd. to Airway Rd. 2-C<
La Media Road to SR-125 SB Ramps 5-PA 55,000 42,800 0.78 C SR-125 NB Ramps to Sanyo Ave. 4-M 40,000 14,800 0.37 A Airway Road Britannia Blvd. to La Media Rd. 2-CL 15,000 6,900 0.46 B La Media Rd. to Sanyo Ave. 2-CL 15,000 7,900 0.53 C Siempre Viva Road Siempre Viva Road B 4-M 60,000 12,400 0.21 A SR-905 NB Ramps to Paseo de las Americas 6-PA 60,000 12,400 0.21 A Palm Avenue I-805 NB Ramps to Dennery Rd. 6-PA 60,000 22,300 0.78 C Ocean View Hills Parkway Dennery Rd. to Del Sol Blvd. 4-M 40,000 14,200 0.36 A Del Sol Blvd. to Otay Mesa Rd. 6-M 50,000 7,000 0.14 A Caliente Avenue Otay Mesa Rd. to Airway Rd. 4-M 40,000 6,100 0.15 A Old Otay Mesa Rd. to Airway Rd. 2-C 8,000<
SR-125 NB Ramps to Sanyo Ave. 4-M 40,000 14,800 0.37 A Airway Road Britannia Blvd. to La Media Rd. 2-CL 15,000 6,900 0.46 B La Media Rd. to Sanyo Ave. 2-CL 15,000 7,900 0.53 C Siempre Viva Road Harvest Rd. to SR-905 SB Ramps 6-PA 60,000 12,400 0.21 A SR-905 NB Ramps to Paseo de las Americas 6-PA 60,000 22,300 0.37 A Palm Avenue I-805 NB Ramps to Dennery Rd. 6-PA 60,000 46,900 0.78 C Ocean View Hills Parkway Dennery Rd. to Del Sol Blvd. 4-M 40,000 14,200 0.36 A Del Sol Blvd. to Otay Mesa Rd. 6-M 50,000 7,000 0.14 A Caliente Avenue Otay Mesa Rd. to Airway Rd. 4-M 40,000 6,100 0.15 A Old Otay Mesa Rd. to Airway Rd. 2-C 8,000 2,200 0.28 A Beyer Boulevard Smythe Ave. to Old Otay Mesa Rd. 4-M 40,000 10,000 </td
Airway Road Britannia Blvd. to La Media Rd. 2-CL 15,000 6,900 0.46 B La Media Rd. to Sanyo Ave. 2-CL 15,000 7,900 0.53 C Siempre Viva Road Harvest Rd. to SR-905 SB Ramps 6-PA 60,000 12,400 0.21 A SR-905 NB Ramps to Paseo de las Americas 6-PA 60,000 22,300 0.37 A Palm Avenue I-805 NB Ramps to Dennery Rd. 6-PA 60,000 46,900 0.78 C Ocean View Hills Parkway Dennery Rd. to Del Sol Blvd. 4-M 40,000 14,200 0.36 A Del Sol Blvd. to Otay Mesa Rd. 6-M 50,000 7,000 0.14 A Caliente Avenue Otay Mesa Rd. to Airway Rd. 4-M 40,000 6,100 0.15 A Old Otay Mesa Rd. to Airway Rd. 2-C 8,000 2,200 0.28 A Beyer Boulevard Smythe Ave. to Old Otay Mesa Rd. 4-M 40,000 10,000 0.24 A
Britannia Blvd. to La Media Rd. 2-CL 15,000 6,900 0.46 B La Media Rd. to Sanyo Ave. 2-CL 15,000 7,900 0.53 C Siempre Viva Road Harvest Rd. to SR-905 SB Ramps 6-PA 60,000 12,400 0.21 A SR-905 NB Ramps to Paseo de las Americas 6-PA 60,000 22,300 0.37 A Palm Avenue I-805 NB Ramps to Dennery Rd. 6-PA 60,000 46,900 0.78 C Ocean View Hills Parkway Dennery Rd. to Del Sol Blvd. 4-M 40,000 14,200 0.36 A Del Sol Blvd. to Otay Mesa Rd. 6-M 50,000 7,000 0.14 A Caliente Avenue Otay Mesa Rd. to Airway Rd. 4-M 40,000 6,100 0.15 A Old Otay Mesa Road Otay Mesa Rd. to Airway Rd. 2-C 8,000 2,200 0.28 A Beyer Boulevard Smythe Ave. to Old Otay Mesa Rd. 4-M 40,000 10,000 0.24 A <
La Media Rd. to Sanyo Ave. 2-CL 15,000 7,900 0.53 C Siempre Viva Road Harvest Rd. to SR-905 SB Ramps 6-PA 60,000 12,400 0.21 A SR-905 NB Ramps to Paseo de las Americas 6-PA 60,000 22,300 0.37 A Palm Avenue I-805 NB Ramps to Dennery Rd. 6-PA 60,000 46,900 0.78 C Ocean View Hills Parkway Dennery Rd. to Del Sol Blvd. 4-M 40,000 14,200 0.36 A Del Sol Blvd. to Otay Mesa Rd. 6-M 50,000 7,000 0.14 A Caliente Avenue Otay Mesa Rd. to Airway Rd. 4-M 40,000 6,100 0.15 A Old Otay Mesa Road Otay Mesa Rd. to Airway Rd. 2-C 8,000 2,200 0.28 A Beyer Boulevard Smythe Ave. to Old Otay Mesa Rd. 4-M 40,000 10,000 0.24 A
Siempre Viva Road Harvest Rd. to SR-905 SB Ramps 6-PA 60,000 12,400 0.21 A SR-905 NB Ramps to Paseo de las Americas 6-PA 60,000 22,300 0.37 A Palm Avenue I-805 NB Ramps to Dennery Rd. 6-PA 60,000 46,900 0.78 C Ocean View Hills Parkway Dennery Rd. to Del Sol Blvd. 4-M 40,000 14,200 0.36 A Del Sol Blvd. to Otay Mesa Rd. 6-M 50,000 7,000 0.14 A Caliente Avenue Otay Mesa Rd. to Airway Rd. 4-M 40,000 6,100 0.15 A Old Otay Mesa Rd. to Airway Rd. 2-C 8,000 2,200 0.28 A Beyer Boulevard Smythe Ave. to Old Otay Mesa Rd. 4-M 40,000 10,000 0.24 A
Harvest Rd. to SR-905 SB Ramps 6-PA 60,000 12,400 0.21 A SR-905 NB Ramps to Paseo de las Americas 6-PA 60,000 22,300 0.37 A Palm Avenue I-805 NB Ramps to Dennery Rd. 6-PA 60,000 46,900 0.78 C Ocean View Hills Parkway Dennery Rd. to Del Sol Blvd. 4-M 40,000 14,200 0.36 A Del Sol Blvd. to Otay Mesa Rd. 6-M 50,000 7,000 0.14 A Caliente Avenue Otay Mesa Rd. to Airway Rd. 4-M 40,000 6,100 0.15 A Old Otay Mesa Rd. to Airway Rd. 2-C 8,000 2,200 0.28 A Beyer Boulevard Smythe Ave. to Old Otay Mesa Rd. 4-M 40,000 10,000 0.24 A
SR-905 NB Ramps to Paseo de las Americas 6-PA 60,000 22,300 0.37 A Palm Avenue I-805 NB Ramps to Dennery Rd. 6-PA 60,000 46,900 0.78 C Ocean View Hills Parkway Dennery Rd. to Del Sol Blvd. 4-M 40,000 14,200 0.36 A Del Sol Blvd. to Otay Mesa Rd. 6-M 50,000 7,000 0.14 A Caliente Avenue Otay Mesa Rd. to Airway Rd. 4-M 40,000 6,100 0.15 A Old Otay Mesa Road 2-C 8,000 2,200 0.28 A Beyer Boulevard Smythe Ave. to Old Otay Mesa Rd. 4-M 40,000 10,000 0.24 A
Palm Avenue I-805 NB Ramps to Dennery Rd. 6-PA 60,000 46,900 0.78 C Ocean View Hills Parkway Dennery Rd. to Del Sol Blvd. 4-M 40,000 14,200 0.36 A Del Sol Blvd. to Otay Mesa Rd. 6-M 50,000 7,000 0.14 A Caliente Avenue Otay Mesa Rd. to Airway Rd. 4-M 40,000 6,100 0.15 A Old Otay Mesa Road Otay Mesa Rd. to Airway Rd. 2-C 8,000 2,200 0.28 A Beyer Boulevard Smythe Ave. to Old Otay Mesa Rd. 4-M 40,000 10,000 0.24 A
I-805 NB Ramps to Dennery Rd. 6-PA 60,000 46,900 0.78 C Ocean View Hills Parkway Dennery Rd. to Del Sol Blvd. 4-M 40,000 14,200 0.36 A Del Sol Blvd. to Otay Mesa Rd. 6-M 50,000 7,000 0.14 A Caliente Avenue Otay Mesa Rd. to Airway Rd. 4-M 40,000 6,100 0.15 A Old Otay Mesa Road Otay Mesa Rd. to Airway Rd. 2-C 8,000 2,200 0.28 A Beyer Boulevard Smythe Ave. to Old Otay Mesa Rd. 4-M 40,000 10,000 0.24 A
Ocean View Hills Parkway 4-M 40,000 14,200 0.36 A Del Sol Blvd. to Otay Mesa Rd. 6-M 50,000 7,000 0.14 A Caliente Avenue Otay Mesa Rd. to Airway Rd. 4-M 40,000 6,100 0.15 A Old Otay Mesa Road Otay Mesa Rd. to Airway Rd. 2-C 8,000 2,200 0.28 A Beyer Boulevard Smythe Ave. to Old Otay Mesa Rd. 4-M 40,000 10,000 0.24 A
Dennery Rd. to Del Sol Blvd. 4-M 40,000 14,200 0.36 A Del Sol Blvd. to Otay Mesa Rd. 6-M 50,000 7,000 0.14 A Caliente Avenue Otay Mesa Rd. to Airway Rd. 4-M 40,000 6,100 0.15 A Old Otay Mesa Road Otay Mesa Rd. to Airway Rd. 2-C 8,000 2,200 0.28 A Beyer Boulevard Smythe Ave. to Old Otay Mesa Rd. 4-M 40,000 10,000 0.24 A
Del Sol Blvd. to Otay Mesa Rd. 6-M 50,000 7,000 0.14 A Caliente Avenue Otay Mesa Rd. to Airway Rd. 4-M 40,000 6,100 0.15 A Old Otay Mesa Rd. to Airway Rd. 2-C 8,000 2,200 0.28 A Beyer Boulevard Smythe Ave. to Old Otay Mesa Rd. 4-M 40,000 10,000 0.24 A
Caliente Avenue 4-M 40,000 6,100 0.15 A Old Otay Mesa Road 0tay Mesa Rd. to Airway Rd. 2-C 8,000 2,200 0.28 A Beyer Boulevard Smythe Ave. to Old Otay Mesa Rd. 4-M 40,000 10,000 0.24 A
Otay Mesa Rd. to Airway Rd. 4-M 40,000 6,100 0.15 A Old Otay Mesa Road Otay Mesa Rd. to Airway Rd. 2-C 8,000 2,200 0.28 A Beyer Boulevard Smythe Ave. to Old Otay Mesa Rd. 4-M 40,000 10,000 0.24 A
Old Otay Mesa Road Otay Mesa Rd. to Airway Rd. 2-C 8,000 2,200 0.28 A Beyer Boulevard Smythe Ave. to Old Otay Mesa Rd. 4-M 40,000 10,000 0.24 A
Otay Mesa Rd. to Airway Rd. 2-C 8,000 2,200 0.28 A Beyer Boulevard Smythe Ave. to Old Otay Mesa Rd. 4-M 40,000 10,000 0.24 A
Beyer Boulevard Smythe Ave. to Old Otay Mesa Rd. 4-M 40,000 10,000 0.24 A
Smythe Ave. to Old Otay Mesa Rd. 4-M 40,000 10,000 0.24 A
Haritada Roadii Itav Vallav Road
Main St. to Avenida De Las Vistas 2-C 8,000 8,700 1.09 F Avenida De Las Vistas to Otav Mesa Rd. 2-C 8,000 8,600 1.08 F
Cactus Road
Otay Mesa Rd. to SR-905 4-CL 30,000 5,600 0.19 A
Britannia Boulevard
Otay Mesa Rd. to Airway Rd.
La Media Road
North of to Otay Mesa Rd. 2-CL 15,000 5,400 0.36 B
Otay Mesa Rd. to Airway Rd. 2-CL 15,000 12,300 0.82 D
Airway Rd. to Siempre Viva Rd.
Dennery Road
Palm Ave. to Regatta Ln. 4-M 40,000 10,300 0.26 A
Palm Ave. to Walmart Dr. 4-M 40,000 24,500 0.61 C
Del Sol Boulevard
West of Dennery Rd. 4-C 15,000 8,000 0.53 C

SOURCE: Appendix J (Urban Systems Associates, Inc.)

Shade/Bold = Unacceptable LOS; 7-M = 7-Lane Major Arterial; 6-PA = 6-Lane Primary Arterial; 6-M = 6-Lane Major; 4-M = 4-Lane Major; 5-PA = Lane Primary Arterial; 4-CL = 4-Lane Collector (With Left-Lane Turn Lane); 4-C = 4-Lane Collector (Without Left-Turn Lane); 2-CL = 2-Lane Collector (Without Left-Turn Lane); and 2-C = 2-Lane Collector (Without Left-Turn Lane, Industrial Fronting).

b. Intersections

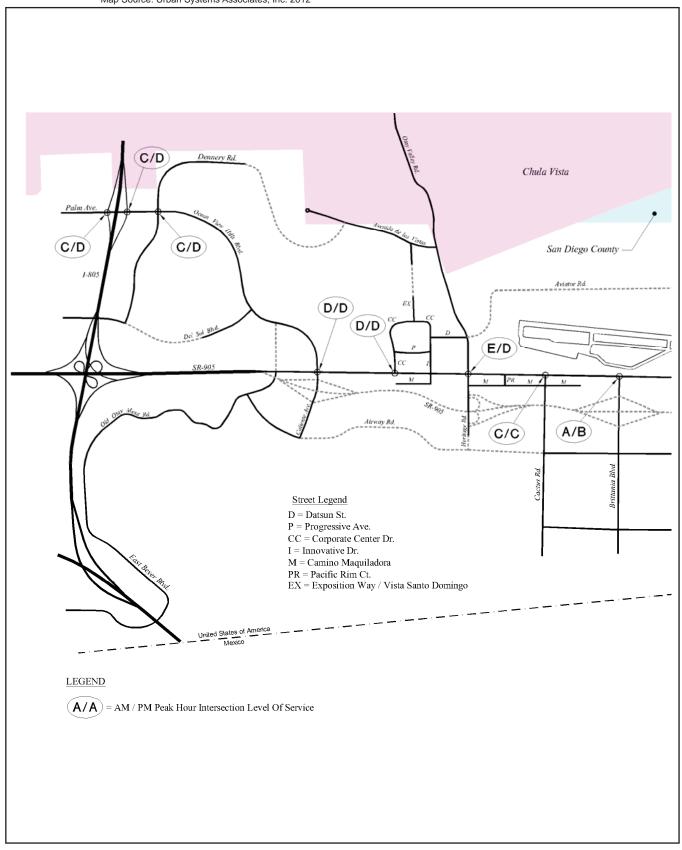
Existing intersection LOS is shown in Table 5.12-2 and Figures 5.12-2a and 5.12-2b. All intersections currently operate at LOS D or better during the AM and PM peak hour periods except at the one following location:

1. Otay Mesa Road/Heritage Road (LOS E in the AM peak hour)

TABLE 5.12-2
EXISTING INTERSECTION LEVELS OF SERVICE

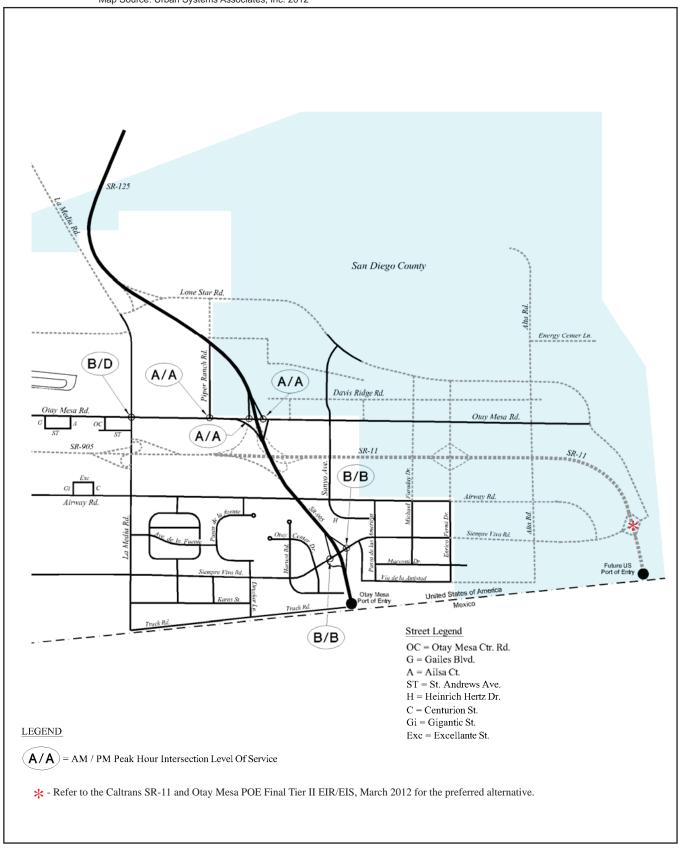
-		AM Pea	ık Hour	PM Peak Hour		
	Intersection	Delay	LOS	Delay	LOS	
1	Palm Ave./I-805 SB Ramps	27.5	С	45.4	D	
2	Palm Ave./I-805 NB Ramps	33.4	С	51.0	D	
3	Palm Ave./Dennery Rd.	34.9	С	37.9	D	
4	Otay Mesa Rd./Caliente Ave.	44.4	D	40.2	D	
5	Otay Mesa Rd./Corporate Center Dr.	35.7	D	35.0	D	
6	Otay Mesa Rd./Heritage Rd.	60.5	Е	42.6	D	
7	Otay Mesa Rd./Cactus Rd.	33.4	С	31.6	С	
8	Otay Mesa Rd./Britannia Blvd.	7.3	Α	11.4	В	
9	Otay Mesa Rd./La Media Rd.	15.8	В	43.2	D	
10	Otay Mesa Rd./Piper Ranch Rd.	8.3	Α	9.4	Α	
11	Otay Mesa Rd./SR-125 SB Off-Ramp.	7.6	Α	3.7	Α	
12	Otay Mesa Rd./SR-125 NB On-Ramp	0.8	Α	3.2	Α	
13A	Siempre Viva Rd./SR-905 SB Ramps	16.1	В	11.6	В	
13B	SR-905 SB Off Ramp to WB Siempre Viva Rd.	14.3	В	14.4	В	
14	Siempre Viva Rd./SR-905 NB Ramps	14.5	В	14.6	В	

SOURCE: Appendix J (Urban Systems Associates, Inc. 2012).


Delay = Control Delay in seconds

LOS = Level of Service

Shade/Bold = Unacceptable LOS


c. Freeway Segments

Existing ADT and LOS for freeway segments within the CPU area are shown in Table 5.12-3. As shown, all freeway segments currently operate at an acceptable LOS D or better.

Not to Scale

Not to Scale

TABLE 5.12-3
EXISTING FREEWAY SEGMENT LEVELS OF SERVICE

Freeway Segment	Lanes (1-Way)	Capacity	ADT	Peak Volume	V/C	LOS
Interstate 805						
Otay Valley Rd Palm Ave.	4+AUX	11,200	152,000	8,107	0.72	С
Palm Ave SR-905	4	9,400	124,000	6,613	0.70	С
SR-905 - San Ysidro Blvd.	4	9,400	58,000	3,093	0.33	Α
SR-905						
Picador Blvd I-805	2	4,700	53,000	2,827	0.60	В
I-805 – Caliente Ave.	2	4,700	58,300	3,109	0.66	С
Otay Mesa Rd Siempre Viva Rd.	2	4,700	30,500	1,600	0.34	Α
Siempre Viva Rd. – Border	3	4,700	24,300	1,296	0.28	Α

SOURCE: Appendix J (Urban Systems Associates, Inc. 2012).

ADT = average daily traffic; V/C = volume-to-capacity ratio; LOS = level of service

5.12.1.4 Alternative Transportation

a. Transit

Within the CPU area, transit services are provided by the MTS. The northwestern part of the CPU area is served by bus routes 933/934 (MTS 2011). The routes travel to and from Del Sol Boulevard to Dennery Road to Palm Avenue into and out of the community. These routes serve the shopping centers along Dennery Road, the medical offices on Palm Avenue and Dennery Road, and the residences within this area. The eastern portion of the community is served by bus routes 905 and 905A. Bus route 905 provides regular service through the CPU area along Otay Mesa Road and SR-905. Bus route 905A provides limited service from Otay Mesa Road to SR-905 via Britannia Boulevard, Airway Road, La Media Road, and Siempre Viva Road with stops at Airway Road and Britannia Boulevard and Siempre Viva Road and Drucker Lane.

The Blue Line Trolley, which is outside of the CPU boundary, travels along the east side of I-5 within the neighboring community of San Ysidro and terminates at the San Ysidro Transit Center located at the U.S.-Mexico International Border.

b. Bikeways

The American Association of Highway and Transportation (AASHTO) and Caltrans have developed design standards for bikeways. The Caltrans Highway Design Manual, Chapter 1000: Bikeway Planning and Design, serves as the official standard for all bicycle facilities in California. While all roadways are open to bicycle travel unless it is specifically prohibited, the California Highway Design Manual establishes three classifications of facilities specifically for bicycle traffic. Based on the Otay Mesa Existing Conditions Report (City of San Diego 2004), there are Class II bikeways along Old Otay Mesa Road, portions of SR-905, Dennery Road, Ocean View Hills Parkway, Del Sol Boulevard, portions of Siempre Viva Road, Heinrick Hertz, Paseo de las

Americas, a portion of Enrico Fermi Drive, and Roll Drive within the CPU area. Per the City Street Design Manual, a Class II bikeway should be between 5 and 6 feet in width, and may be 4 feet in width when abutting a mandatory right-turn lane, with signs and pavement markings (City of San Diego 2002). Informal trails exist throughout the CPU area and are used by recreational bicyclists as well. These informal bikeways are not designated trails and often travel through private property.

c. Pedestrian Facilities

Sidewalk requirements for the City of San Diego are established through the Street Design Manual (City of San Diego 2002). The design requirements include a minimum 5-foot sidewalk, curb ramps at intersections, and compliance with the Americans with Disabilities Act (ADA). Sidewalks are generally required on both sides of streets. Sidewalks exist within the residential developments in the western CPU area. The majority of the commercial and industrial developments completed within the last 10 years provided sidewalks along their frontage roadways. However, sidewalks do not exist on many of the streets fronted by older developments and vacant properties. Informal trails exist throughout the CPU area, which are used by pedestrians but, as mentioned above, these trails are not designated and often are on private property.

5.12.2 Significance Determination Thresholds

Based on the City's Significance Determination Thresholds, impacts related to traffic and circulation would be significant if the CPU would:

- 1. Result in an increase in projected traffic that is substantial in relation to the capacity of the circulation system;
- 2. Result in an increase in traffic hazards for motor vehicles, bicyclists, or pedestrians;
- 3. Create alterations to present circulation movements in the area including effects on existing public access points; or
- 4. Conflict with the adopted policies, plans, or programs supporting alternative transportation modes (e.g., bus turnouts, trolley extensions, bicycle lanes, bicycle racks, etc.).

For this programmatic analysis, the CPU would result in a significant impact if a roadway segment, intersection, freeway segment, or freeway ramp meter would operate unacceptably in the Horizon Year Plus CPU condition (assumed buildout year of 2062). Since much of the community is undeveloped, a majority of the Circulation Element roadways are not built, are only partially built, or are not operating near capacity. The result of this is that for many facilities, an analysis of the CPU land uses on the existing

transportation network was not possible or meaningful for purposes of identifying significant impacts or recommended mitigations. Therefore, the proposed CPU land uses were analyzed on the draft CPU transportation network. in order to provide a meaningful analysis and identify ultimate recommendations, the traffic study analyzed roadways based on the Adopted Community Plan Classifications and the CPU transportation network instead of the existing functional classifications. The TIA (see Appendix J) analysis identifies recommended CPU classifications, which were incorporated into the CPU (Mobility Element). As stated previously, roadway segments, intersections, and freeway segments are considered to operate acceptably from LOS A to LOS D, and unacceptably at LOS E or F. Metered freeway ramps are considered to operate unacceptably if the delay exceeds 15 minutes and the downstream freeway segment operates at an unacceptable LOS E or F.

5.12.3 Issue 1: Capacity

Would the CPU result in an increase in projected traffic that is substantial in relation to the capacity of the circulation system?

5.12.3.1 Impacts

a. Horizon Year plus CPU Assumptions

SANDAG's 2050 RTP indicates that substantial improvements would be made to the regional transportation system through Year 2050. Regional changes that would affect transportation/circulation include transit, managed/high-occupancy vehicle (HOV) lanes, highway, local roads, transportation demand management, land use, bicycle/pedestrian, and other related efforts. It should be noted that the RTP was updated several times during the development of the CPU. During its development, the TIS analysis was updated to reflect the current RTP. The travel forecast model used to develop future traffic volumes in the TIS was based on the Series 11 Regional Transportation Model which incorporates land use, population, and employment data then estimated for the year 2030. Land uses within the Otay Mesa Community Planning area were assumed to be built out within the traffic model using reasonable maximum development assumptions. The model network included the future transportation improvements that were assumed to be completed, and included Year 2030 Regional Transportation Plan "Reasonably Expected" projects in the region. The Otay Mesa model was modified to include a half-diamond interchange at SR-125 / Lone Star Road. Also, a portion of SR-125 was assumed as a toll facility and modeled to approximate toll conditions.

The differences in the vehicular circulation network between the existing conditions and the Horizon Year plus CPU primarily result from: (1) improvements completed or expected to be completed as a part of future subsequent development projects, consistent with the CPU Mobility Element; (2) funded and scheduled Otay Mesa Public

Facilities Financing Plan transportation projects; and (3) planned Caltrans improvements.

At the Horizon Year, the following improvements are assumed to be completed through buildout of the CPU Mobility Element roadway network (see Figure 3-6). Roadway improvements necessary to implement the CPU Mobility Element roadway network are included in the PFFP for Otay Mesa and would be implemented in conjunction with future projects, as conditions of approval or through payment of Facilities Benefit Assessment (FBA) fees.

- Otay Mesa Road as a 6-lane Primary Arterial from Caliente Avenue to the City limits.
- Airway Road as a 4-lane Collector street west of Caliente Avenue; as a 4-lane Major street from Caliente Avenue to west of Heritage Road; as a 6-lane Primary Arterial from Heritage Road to Cactus Road; as a 6-lane Major Street from Cactus Road to Britannia Boulevard; and as a 4-lane Major Street from Britannia Boulevard to Enrico Fermi Drive (City limits).
- Siempre Viva Road as a 6-lane Primary Arterial from Cactus Road to Paseo de las Americas; and as a 2-lane Collector with two-way left turn lane from Caliente to the west (not connecting to the community of San Ysidro).
- Sanyo Avenue as a four-lane Collector with two-way left turn lane, between Otay Mesa Road and Airway Road.
- Heinrich Hertz as a two-lane Collector with two-way left turn lane between Airway Road and Paseo de las Americas.
- Harvest Road as a 2-lane Collector from Otay Mesa Road to SR 905; and as a 4-lane Collector with two-way left turn lane from Airway to Siempre Viva Road.
- Otay Center Drive as a four-lane Collector with left-turn lane from Harvest Road to Siempre Viva Road.
- Piper Ranch Road as a 4-lane Collector with two-way left turn lane from Lone Star Road to Otay Mesa Road including a freeway underpass at SR 125.
- La Media Road as a 4-lane Major street from Lone Star Road to Otay Mesa Road; as a 6-lane Primary Arterial from Otay Mesa Road to Airway Road; and as a 5-lane Major Street from Airway Road to Siempre Viva Road.
- Lone Star Road as a 6-lane Primary Arterial from La Media Road to the City limits.

- Off-ramp from SR 125 Southbound to Lone Star Road and On-ramp from Lonestar Road to SR 125 Northbound.
- Britannia Boulevard as a 6-lane Primary Arterial from Otay Mesa Road to Airway Road; as a 6-lane Major street from Airway Road to Siempre Viva Road; and as a 4-lane Collector with two-way left turn lane from Siempre Viva Road to Britannia Court.
- Cactus Road as a 4-lane Major street from Otay Mesa Road to Siempre Viva Road, including a freeway overpass at SR 905.
- Heritage Road and Otay Valley Road as a 6-lane Primary Arterial from Main Street in Chula Vista to the proposed extension of Airway Road.
- Caliente Avenue as a 6-lane Primary Arterial from Otay Mesa Road to Airway Road; as a 6-lane Major street from Airway to the proposed Beyer Boulevard; and as a 4-lane Major street from Beyer Boulevard to the proposed Siempre Viva Road.
- Beyer Boulevard as a 4-lane Major Street from Enright Drive to the proposed extension of Caliente Avenue.
- Street A/Old Otay Mesa Road as a 4-lane Major Road from Ocean View Hills Drive to Airway Road including a freeway overpass at SR 905.
- Datsun Street as a 4-lane Collector with two-way left turn lane from Innovative Drive to Heritage Road.
- Aviator Road as a 4-lane Collector with two-way left turn lane from Heritage Road to La Media Road.
- Dennery Road as a 2-lane Collector from Topsail Drive to Avenida de las Vistas.
- Del Sol Boulevard as a 2-lane Collector from Riviera Pointe Street to Surf Crest Drive.
- Vista Santo Domingo/Exposition Way as a 2-lane Collector from Avenida de las Vistas to Corporate Center Drive.
- Emerald Crest Drive as a 4-lane Collector with two way left turn lane from Otay Mesa Road to SR 905.
- Corporate Center Drive as a 4-lane Collector with two way left turn lane from Otay Mesa Road to SR 905.

- Innovative Drive as a 2-lane Collector with two way left turn lane from Otay Mesa Road to SR 905.
- Continental Street as a 2-lane Collector from Otay Mesa Road to Camino Maquiladora; and as a 2-lane Collector with two-way left turn lane from Airway to the north.
- Otay Mesa Center Road as a 4-lane Collector with two-way left turn lane from Otay Mesa Road to Saint Andrews Avenue.
- Saint Andrews Avenue as a 4-lane Collector with two-way left turn lane from Otay Mesa Center Road to La Media Road.
- Paseo de las Americas as a 4-lane Collector with two-way left turn lane from Airway Road to Marconi Drive.
- Marconi Drive as a 2-lane Collector with two-way left turn lane from Paseo de las Americas to Enrico Fermi Drive.
- Avenida Costa Azul as a 4-lane Collector with two-way left turn lane from Otay Mesa Road to the south.

The SANDAG 2050 RTP includes the addition of two managed HOV lanes to the I-805 and a northbound auxiliary lane. As these projects were funded and planned by Caltrans, the analysis included these improvements. SR-905 was designed to allow for future HOV lanes as well; however, the funding for these improvements has not been secured. Therefore, the SR-905 HOV lanes are not included in the traffic analysis. The 2050 RTP also includes SR-11 which will continue east-west from SR-905 to the County to a future additional Port of Entry; a full interchange between SR-125 (toll), SR-905, and the future SR-11 (toll).

As the City of Chula Vista has recently approved a General Plan Amendment (GPA) with the elimination of the La Media Road bridge crossing the Otay River Valley, two 2050 Horizon Year scenarios were analyzed in the TIA (see Appendix J). The Horizon Year without the La Media Road Connection Scenario is utilized to determine the environmental impacts in this section of the PEIR because La Media Road is not reasonably expected to be completed.

As indicated in Section 5.12.2, in order to provide a meaningful analysis and identify ultimate recommendations, the traffic study analyzed roadways based on the Adopted Community Plan Classifications and CPU network instead of the existing functional classifications. The TIA (see Appendix J) analysis identifies recommended CPU classifications, which were incorporated into the CPU (Mobility Element). The proposed classifications incorporated into the CPU are shown in Table 5.12-4 below.

TABLE 5.12-4 PROPOSED CPU ROADWAY CLASSIFICATIONS

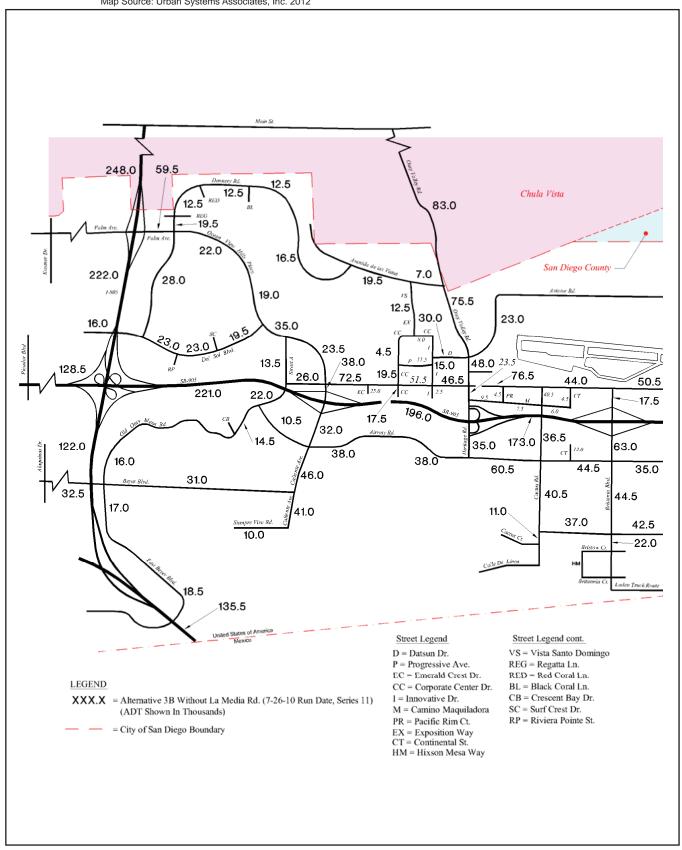
Cactus Rd. to Britannia Blvd.	Street	Segment	Existing CP Class	CPU Class
La Media Rd. to Piper Ranch Rd. Piper Ranch Rd. to SR-125 B-M G-PA SR-125 to Harvest Rd. Harvest Rd. to Sanyo Ave. SR-125 to Harvest Rd. Harvest Rd. to Sanyo Ave. SR-125 to Harvest Rd. Heritage Rd. to Cactus Rd. Cactus Rd. to Britannia Blvd. Heritage Rd. to Cactus Rd. Caliente Avenue Olay Mesa Rd. to SR-905 SR-905 to Alinway Rd. Airway Rd. to Beyer Blvd. Heritage Road/Otay Valley Road Caliente Avenue Olay Mesa Rd. to SR-905 SR-905 to Alinway Rd. Airway Rd. to Beyer Blvd. Heritage Road/Otay Valley Road Olay Mesa Rd. to SR-905 Otay Mesa Rd. Ota		Street A to Caliente Ave.	6-PA	6-M
Otay Mesa Road SR-125 to Harvest Rd. 4-P SR-125 to Harvest Rd. 4-P Sanyo Ave. to Enrico Fermi Dr. Airway Road Heritage Rd. to Sanyo Ave. Sanyo Ave. to Enrico Fermi Dr. Airway Road Heritage Rd. to Cactus Rd. Cactus Rd. to Britannia Blvd. 4-M Siempre Viva Road Calienta Avenue Otay Mesa Rd. to SR-905 SR-905 to Airway Rd. Airway Rd. to Beyer Blvd. Valley Road Valley Road Otay Mesa Rd. to SR-905 SR-905 to Airway Rd. Airway Rd. to Beyer Blvd. Valley Road Otay Mesa Rd. to SR-905 SR-905 to Airway Rd. Otay Mesa Rd. to SR-905 SR-905 to Airway Rd. Airway Rd. to SR-905 SR-905 to Airway Rd. Otay Mesa Rd. to SR-905 SR-905 to Airway Rd. Airway Rd. to SR-905 SR-905 to Airway Rd. Otay Mesa Rd. to SR-905 SR-905 to Airway Rd. Airway Rd. to Sr-905 SR-905 to Airway Rd. Airway Rd. to Sr-905 SR-905 to Airway Rd. Airway Rd. to Sr-905 SR-905 to Airway Rd. Airway Rd. to Sr-905 SR-905 to Airway Rd. Airway Rd. to SR-905 SR-905 to Airway Rd. Airway Rd. to Sr-905 SR-905 to Airway Rd. Airway Rd. to Sr-905 SR-905 to Airway Rd. Airway Rd. to Sr-905 SR-905 to Airway Rd. Airway Rd. to Sr-905 SR-905 to Airway Rd. Airway Rd. to Siempre Viva Rd. Siempre Viva Rd. to Sr-905 A-M Britannia Boulevard Discrete Rd. to Airway Rd. Airway Rd. to Siempre Viva Rd. Siempre Viva Rd. to Airway Rd. Airway Rd. to Siempre Viva Rd. Britannia Road Birch Rd. to Lone Star Rd. Lone Star Rd. to Airway Rd. Airway Rd. to Siempre Viva Rd. Airway Rd. to Siempre Viva Rd. Airway Rd. to Otay Mesa Rd. Airway Rd. to Otay Mesa Rd. Airway Rd. to Otay Center Dr. Otay Center Dr. to Siempre Viva Rd. Airway Rd. to Otay Center Dr. Otay Center Dr. to Airway Rd. Airway Rd. to Cactus Rd. Airway Rd. to Cactus Rd. Airway Rd. to Cactus Rd. Airway Rd. to Cactus Rd. Airway Rd. to Cactus Rd. Airway Rd. to Cactus Rd. Airway Rd. to Cactus Rd. Airway Rd. to Cactus Rd. Airway Rd. to Cactus Rd. Airway Rd. to Cactus Rd. Airway Rd. to Cactus Rd. Airway Rd. to Cactus Rd. Airway Rd. to Cactus Rd. Airway Rd. to Cactus Rd. Airway Rd. to Cactus Rd. Airway Rd. to Cactus Rd. Airway Rd. to Cactus Rd. Airway Rd.		Alisa Ct. to La Media Rd.	6-PA	6-PA
Otay Mesa Road SR-125 to Harvest Rd. 4-P SR-125 to Harvest Rd. 4-P Sanyo Ave. to Enrico Fermi Dr. Airway Road Heritage Rd. to Sanyo Ave. Sanyo Ave. to Enrico Fermi Dr. Airway Road Heritage Rd. to Cactus Rd. Cactus Rd. to Britannia Blvd. 4-M Siempre Viva Road Calienta Avenue Otay Mesa Rd. to SR-905 SR-905 to Airway Rd. Airway Rd. to Beyer Blvd. Valley Road Valley Road Otay Mesa Rd. to SR-905 SR-905 to Airway Rd. Airway Rd. to Beyer Blvd. Valley Road Otay Mesa Rd. to SR-905 SR-905 to Airway Rd. Otay Mesa Rd. to SR-905 SR-905 to Airway Rd. Airway Rd. to SR-905 SR-905 to Airway Rd. Otay Mesa Rd. to SR-905 SR-905 to Airway Rd. Airway Rd. to SR-905 SR-905 to Airway Rd. Otay Mesa Rd. to SR-905 SR-905 to Airway Rd. Airway Rd. to Sr-905 SR-905 to Airway Rd. Airway Rd. to Sr-905 SR-905 to Airway Rd. Airway Rd. to Sr-905 SR-905 to Airway Rd. Airway Rd. to Sr-905 SR-905 to Airway Rd. Airway Rd. to SR-905 SR-905 to Airway Rd. Airway Rd. to Sr-905 SR-905 to Airway Rd. Airway Rd. to Sr-905 SR-905 to Airway Rd. Airway Rd. to Sr-905 SR-905 to Airway Rd. Airway Rd. to Sr-905 SR-905 to Airway Rd. Airway Rd. to Siempre Viva Rd. Siempre Viva Rd. to Sr-905 A-M Britannia Boulevard Discrete Rd. to Airway Rd. Airway Rd. to Siempre Viva Rd. Siempre Viva Rd. to Airway Rd. Airway Rd. to Siempre Viva Rd. Britannia Road Birch Rd. to Lone Star Rd. Lone Star Rd. to Airway Rd. Airway Rd. to Siempre Viva Rd. Airway Rd. to Siempre Viva Rd. Airway Rd. to Otay Mesa Rd. Airway Rd. to Otay Mesa Rd. Airway Rd. to Otay Center Dr. Otay Center Dr. to Siempre Viva Rd. Airway Rd. to Otay Center Dr. Otay Center Dr. to Airway Rd. Airway Rd. to Cactus Rd. Airway Rd. to Cactus Rd. Airway Rd. to Cactus Rd. Airway Rd. to Cactus Rd. Airway Rd. to Cactus Rd. Airway Rd. to Cactus Rd. Airway Rd. to Cactus Rd. Airway Rd. to Cactus Rd. Airway Rd. to Cactus Rd. Airway Rd. to Cactus Rd. Airway Rd. to Cactus Rd. Airway Rd. to Cactus Rd. Airway Rd. to Cactus Rd. Airway Rd. to Cactus Rd. Airway Rd. to Cactus Rd. Airway Rd. to Cactus Rd. Airway Rd. to Cactus Rd. Airway Rd.		La Media Rd. to Piper Ranch Rd.	7-M	6-PA
Harrvest Rd. to Sanyo Ave. 4-M 6-PA	Otay Mesa Road		8-M	6-PA
Sanyo Ave. to Enrico Fermi Dr.	·	SR-125 to Harvest Rd.	4-P	6-PA
Airway Road		Harvest Rd. to Sanyo Ave.	4-M	6-PA
Airway Road		· · · · · · · · · · · · · · · · · · ·	4-M	6-PA
Siempre Viva Road Caliente Ave. to West Terminus 4-M 2-CL Caliente Avenue Olay Mesa Rd. to SR-905 6-M 6-PA Airway Rd. de-PA Airway Rd. to Beyer Blwd. Heritage Road/Otay Valley Road Avenida De Las Vistas to Datsun St. Datsun St. to Otay Mesa Rd. Olay Mesa Rd. to SR-905 6-M 6-PA Olay Mesa Rd. to SR-905 6-M 6-PA Olay Mesa Rd. to SR-905 6-M 6-PA Cactus Road Olay Mesa Rd. to SR-905 6-M 6-PA Olay Mesa Rd. to SR-905 6-M 6-PA Olay Mesa Rd. to SR-905 6-M 6-PA Olay Mesa Rd. to SR-905 6-M 6-PA Olay Mesa Rd. to SR-905 6-M 6-PA Olay Mesa Rd. to SR-905 6-M 6-PA Olay Mesa Rd. to SR-905 6-M 6-PA Olay Mesa Rd. to SR-905 6-M 6-PA Olay Mesa Rd. to SR-905 6-M 6-PA Olay Mesa Rd. to SR-905 6-M 6-PA Olay Mesa Rd. to SR-905 6-M 6-PA Olay Mesa Rd. to SR-905 6-M 6-PA Olay Mesa Rd. to SR-905 6-M 6-PA Airway Rd. to Siempre Viva Rd. Airway Rd. to Siempre Viva Rd. Airway Rd. to Suempre Viva Rd. Airway Rd. to Suempre Viva Rd. Cec 4-CL Cec	Airway Road		4-M	
Caliente Avenue Otay Mesa Rd. to SR-905 6-M 6-PA SR-905 to Airway Rd. 6-M 6-PA Airway Rd. to Beyer Blvd. 4-M 6-M Heritage Road/Otay Avenida De Las Vistas to Datsun St. 6-M 6-PA Valley Road Datsun St. to Otay Mesa Rd. 6-M 6-PA Cactus Road Otay Mesa Rd. to SR-905 6-M 6-PA SR-905 to Airway Rd. 4-CL 4-M Airway Rd. to Siempre Viva Rd. 4-CL 4-M Britannia Boulevard Otay Mesa Rd. to SR-905 4-M 6-PA SR-905 to Airway Rd. 4-M 6-PA Airway Rd. to Siempre Viva Rd. 4-M 6-PA Airway Rd. to Siempre Viva Rd. 4-M 6-PA Airway Rd. to Otay Ear Rd. 6-PA N/A La Media Road Birch Rd. to Lone Star Rd. 6-PA N/A La Media Road Birch Rd. to Otay Ear Rd. 6-PA N/A Airway Rd. to Otay Ear Rd. 6-PA N/A Airway Rd. to Otay Ear Rd. 4-M 2-C		Cactus Rd. to Britannia Blvd.	4-M	6-M
SR-905 to Airway Rd. G-M	Siempre Viva Road	Caliente Ave. to West Terminus	4-M	2-CL
Airway Rd. to Beyer Blvd. 4-M 6-M 6-M 4-PA	Caliente Avenue	Otay Mesa Rd. to SR-905	6-M	6-PA
Heritage Road/Otay Avenida De Las Vistas to Datsun St. 6-M 6-PA Datsun St. to Otay Mesa Rd. 6-M 6-PA Cactus Road Otay Mesa Rd. to SR-905 6-M 6-PA SR-905 to Airway Rd. 6-M 6-PA Cactus Road Otay Mesa Rd. to Airway Rd. 4-CL 4-M Airway Rd. to Siempre Viva Rd. 4-CL 4-M Britannia Boulevard Otay Mesa Rd. to SR-905 4-M 6-PA Airway Rd. to Siempre Viva Rd. 6-PA N/A Lone Star Rd. to Aviator Rd. 6-PA 4-M Airway Rd. to Otay Mesa Rd. 6-PA 4-M Airway Rd. to Otay Mesa Rd. 6-PA 4-M Airway Rd. to Siempre Viva Rd. 4-M 5-M Airway Rd. to Otay Mesa Rd. 4-M 2-CL Airway Rd. to Otay Center Dr. 4-M 4-CL Airway Rd. to Otay Center Dr. 4-M 4-CL Enrico Fermi Drive Airway Rd. to Siempre Viva Rd. 4-M 4-CL Enrico Fermi Drive Airway Rd. to Siempre Viva Rd. 4-M 4-CL Lone Star Road Senter Dr. 4-M 4-CL Siempre Viva Rd. to Via de la Amistad 4-M 4-CL Lone Star Road Heritage Rd. to La Media Rd. 4-M 6-PA Aviator Road Heritage Rd. to La Media Rd. 2-C 4-CL Corporate Center Drive Progressive Ave. to La Media Rd. 2-C 4-CL Paseo de las Americas Airway Rd. to Siempre Viva Rd. 2-C 4-CL Airway Rd. to Siempre Viva Rd. 2-C 4-CL Calles Boulevard Otay Mesa Rd. to Airway Rd. 2-C 4-CL Calles Boulevard Otay Mesa Rd. to St. Andrews Ave. 2-C 4-CL Calles Boulevard Otay Mesa Rd. to St. Andrews Ave. 2-C 4-CL Calles Boulevard Otay Mesa Rd. to St. Andrews Ave. 2-C 4-CL Centurion Street Airway Rd. to Gigantic St. 4-C 2-C Centurion Street Airway Rd. to Gigantic St. 4-C 2-C Centurio		SR-905 to Airway Rd.	6-M	6-PA
Heritage Road/Otay Avenida De Las Vistas to Datsun St. 6-M 6-PA Datsun St. to Otay Mesa Rd. 6-M 6-PA Cactus Road Otay Mesa Rd. to SR-905 6-M 6-PA SR-905 to Airway Rd. 6-M 6-PA Cactus Road Otay Mesa Rd. to Airway Rd. 4-CL 4-M Airway Rd. to Siempre Viva Rd. 4-CL 4-M Britannia Boulevard Otay Mesa Rd. to SR-905 4-M 6-PA Airway Rd. to Siempre Viva Rd. 6-PA N/A Lone Star Rd. to Lone Star Rd. 6-PA N/A Lone Star Rd. to Otay Mesa Rd. 6-PA 4-M Airway Rd. to Otay Mesa Rd. 6-PA 4-M Airway Rd. to Siempre Viva Rd. 4-M 5-M Airway Rd. to Siempre Viva Rd. 4-M 2-CL Airway Rd. to Otay Center Dr. 4-M 4-CL Cacture Formi Drive Airway Rd. to Siempre Viva Rd. 4-M 4-CL Enrico Fermi Drive Airway Rd. to Siempre Viva Rd. 4-M 4-CL Lone Star Road Senter Dr. 4-M 4-CL Lone Star Road Heritage Rd. to La Media Rd. 4-M 4-CL Aviator Road Heritage Rd. to La Media Rd. 4-M 6-PA Aviator Road Heritage Rd. to La Media Rd. 2-C 4-CL Capporate Center Drive Progressive Ave. to Innovative Dr. 2-C 2-CL Airway Rd. to Siempre Viva Rd. 2-C 4-CL Airway Rd. to Siempre Viva Rd. 2-C 4-CL Airway Rd. to Siempre Viva Rd. 2-C 4-CL Gailes Boulevard Otay Mesa Rd. to Airway Rd. 2-C 4-CL Calles Boulevard Otay Mesa Rd. to Siempre Viva Rd. 2-C 4-CL Calles Boulevard Otay Mesa Rd. to Si. Andrews Ave. 2-C 4-CL Calles Boulevard Otay Mesa Rd. to St. Andrews Ave. 2-C 4-CL Calles Boulevard Otay Mesa Rd. to St. Andrews Ave. 2-C 4-CL Calles Boulevard Otay Mesa Rd. to St. Andrews Ave. 2-C 4-CL			4-M	6-M
Valley Road Datsun St. to Otay Mesa Rd. to SR-905 6-M 6-PA Cactus Road Otay Mesa Rd. to SR-905 6-M 6-PA Cactus Road Otay Mesa Rd. to Airway Rd. 4-CL 4-M Britannia Boulevard Otay Mesa Rd. to SR-905 4-M 6-PA SR-905 to Airway Rd. 4-M 6-PA SR-905 to Airway Rd. 4-M 6-PA Airway Rd. to Siempre Viva Rd. 4-M 6-PA Siempre Viva Rd. to South End 2-C 4-CL La Media Road Birch Rd. to Lone Star Rd. 6-PA N/A Lone Star Rd. to Aviator Rd. 6-PA N/A Aviator Rd. to Otay Mesa Rd. 6-PA 4-M Airway Rd. to Siempre Viva Rd. 4-M 5-M Harvest Road South of Otay Mesa Rd. 4-M 2-CL Airway Rd. to Otay Center Dr. 4-M 4-CL Otay Center Dr. to Siempre Viva Rd. 4-M 4-CL Enrico Fermi Drive Airway Rd. to Siempre Viva Rd. 4-M 4-CL Lone Star Road SR-125 to Piper Ranch Rd. 4-M	Heritage Road/Otav		6-M	6-PA
Otay Mesa Rd. to SR-905 6-M 6-PA			6-M	6-PA
SR-905 to Airway Rd. 6-M 6-PA		Otav Mesa Rd. to SR-905	6-M	6-PA
Cactus Road Otay Mesa Rd. to Airway Rd. 4-CL 4-M Airway Rd. to Siempre Viva Rd. 4-CL 4-M 6-PA SR-905 to Airway Rd. to Siempre Viva Rd. 4-M 6-PA SR-905 to Airway Rd. 4-M 6-PA Airway Rd. to Siempre Viva Rd. 4-M 6-PA 6-PA 6-PA 6-PA 8-PA 6-PA 8-PA 8-PA 8-PA 8-PA 8-PA 8-PA 8-PA 8			6-M	6-PA
Airway Rd. to Siempre Viva Rd. 4-CL 4-M	Cactus Road		_	
Britannia Boulevard Otay Mesa Rd. to SR-905 4-M 6-PA SR-905 to Airway Rd. 4-M 6-PA Airway Rd. to Siempre Viva Rd. 4-M 6-PA La Media Road Birch Rd. to Lone Star Rd. 6-PA N/A Lone Star Rd. to Aviator Rd. 6-PA 4-M Aviator Rd. to Otay Mesa Rd. 6-PA 4-M Airway Rd. to Siempre Viva Rd. 4-M 5-M Harvest Road South of Otay Mesa Rd. 4-M 2-CL Airway Rd. to Otay Center Dr. 4-M 4-CL Otay Center Dr. to Siempre Viva Rd. 4-M 4-CL Enrico Fermi Drive Airway Rd. to Via de la Amistad 4-M 4-CL Lone Star Road SR-125 to Piper Ranch Rd. 4-M 4-CL Lone Star Road SR-125 to Piper Ranch Rd. 4-M 4-CL Lone Star Road Heritage Rd. to La Media Rd. 4-M 6-PA Aviator Road Heritage Rd. to City/County Boundary 4-M 6-PA Aviator Road Heritage Rd. to La Media Rd. 2-C 4-CL Corporate				
SR-905 to Airway Rd. Airway Rd. to Siempre Viva Rd. Siempre Viva Rd. to South End 2-C 4-CL La Media Road Birch Rd. to Lone Star Rd. Lone Star Rd. to Aviator Rd. Aviator Rd. to Cotay Mesa Rd. Airway Rd. to Siempre Viva Rd. Harvest Road South of Otay Mesa Rd. Airway Rd. to Otay Mesa Rd. Airway Rd. to Otay Center Dr. Otay Center Dr. to Siempre Viva Rd. Lone Star Road Airway Rd. to Otay Center Dr. Otay Center Dr. to Siempre Viva Rd. Enrico Fermi Drive Airway Rd. to Siempre Viva Rd. Lone Star Road SR-125 to Piper Ranch Rd. Piper Ranch Rd. to City/County Boundary Aviator Road Heritage Rd. to La Media Rd. Progressive Ave. to Innovative Dr. Paseo de las Americas Airway Rd. to Siempre Viva Rd. Cacculation Airway Rd. Airway Rd. to Siempre Viva Rd. Aviator Road Aviator Road Heritage Rd. to La Media Rd. C-C Corporate Center Drive Progressive Ave. to Innovative Dr. Cacculation Airway Rd. Airway Rd. to Siempre Viva Rd. Cacculation Airway	Britannia Boulevard			
Airway Rd. to Siempre Viva Rd. 5-C 4-CL La Media Road Birch Rd. to Lone Star Rd. 6-PA N/A Lone Star Rd. to Aviator Rd. 6-PA 4-M Aviator Rd. to Otay Mesa Rd. 6-PA 4-M Airway Rd. to Siempre Viva Rd. 4-M Airway Rd. to Otay Mesa Rd. 4-M Airway Rd. to Otay Mesa Rd. 4-M Airway Rd. to Otay Mesa Rd. 4-M Airway Rd. to Otay Center Dr. 4-M Otay Center Dr. to Siempre Viva Rd. 4-M Enrico Fermi Drive Siempre Viva Rd. 4-M Airway Rd. to Siempre Viva Rd. 4-M Enrico Fermi Drive Siempre Viva Rd. 4-M Enrico Fermi Drive Siempre Viva Rd. 4-M Enrico Fermi Drive Siempre Viva Rd. 4-M Enrico Fermi Drive Siempre Viva Rd. 4-M Enrico Fermi Drive Siempre Viva Rd. 4-M Enrico Fermi Drive Siempre Viva Rd. 4-M Enrico Fermi Drive Siempre Viva Rd. 4-M Enrico Fermi Drive Siempre Viva Rd. 4-M Enrico Fermi Drive Siempre Viva Rd. 4-M Enrico Fermi Drive Siempre Viva Rd. 4-M Enrico Fermi Drive Siempre Viva Rd. 4-M Enrico Fermi Drive Siempre Viva Rd. 4-M Enrico Fermi Drive Siempre Viva Rd. 4-M Enrico Fermi Drive Siempre Viva Rd. 4-M Enrico Fermi Drive Siempre Viva Rd. 4-M Enrico Fermi Drive Siempre Viva Rd. 2-C Enrico Fermi Drive Siempre	2			
Siempre Viva Rd. to South End Birch Rd. to Lone Star Rd. Lone Star Rd. Lone Star Rd. Lone Star Rd. Aviator Otay Mesa Rd. Aviator Rd. Aviator Por. Aviator Rd. Aviator Road Aviator				
La Media Road Birch Rd. to Lone Star Rd. Lone Star Rd. to Aviator Rd. Aviator Rd. to Otay Mesa Rd. Aviator Rd. to Siempre Viva Rd. Harvest Road South of Otay Mesa Rd. Airway Rd. to Otay Center Dr. Otay Center Dr. to Siempre Viva Rd. Lone Star Road South of Otay Mesa Rd. Airway Rd. to Otay Center Dr. Otay Center Dr. to Siempre Viva Rd. Enrico Fermi Drive Airway Rd. to Siempre Viva Rd. Siempre Viva Rd. Siempre Viva Rd. Siempre Viva Rd. A-M 4-CL Lone Star Road SR-125 to Piper Ranch Rd. Piper Ranch Rd. to City/County Boundary Aviator Road Heritage Rd. to La Media Rd. Progressive Ave. to Innovative Dr. Sanyo Avenue Otay Mesa Rd. to Airway Rd. Siempre Viva Rd. Siempre V				
Lone Star Rd. to Aviator Rd. Aviator Rd. to Otay Mesa Rd. Aviator Rd. to Otay Mesa Rd. Airway Rd. to Siempre Viva Rd. Harvest Road South of Otay Mesa Rd. Airway Rd. to Otay Center Dr. Otay Center Dr. to Siempre Viva Rd. Enrico Fermi Drive Airway Rd. to Siempre Viva Rd. Airway Rd. to Siempre Viva Rd. Aviator Road Arway Rd. to Siempre Viva Rd. Aviator Road Aviator Ro	La Media Road			
Aviator Rd. to Otay Mesa Rd. Airway Rd. to Siempre Viva Rd. Bouth of Otay Mesa Rd. Airway Rd. to Otay Center Dr. Otay Center Dr. to Siempre Viva Rd. Airway Rd. to Siempre Viva Rd. Airway Rd. to Siempre Viva Rd. A-M A-CL Airway Rd. to Siempre Viva Rd. A-M A-CL Enrico Fermi Drive Airway Rd. to Siempre Viva Rd. A-M A-CL Enrico Fermi Drive Airway Rd. to Siempre Viva Rd. A-M A-CL Enrico Fermi Drive Airway Rd. to Siempre Viva Rd. A-M A-CL Enrico Fermi Drive Airway Rd. to Siempre Viva Rd. A-M A-CL Enrico Fermi Drive Airway Rd. to Via de la Amistad A-M A-CL Enrico Fermi Drive Airway Rd. to City/County Boundary A-M A-M A-CL A-CL Enrico Fermi Drive Airway Rd. to La Media Rd. A-M A-M A-CL A-CL Corporate Center Drive Airway Rd. to Airway Rd. Airway Rd. to Airway Rd. Airway Rd. to Siempre Viva Rd. Siempre Viva Rd. Siempre Viva Rd. C-C A-CL Marconi Drive Aaseo de las Americas to Enrico Fermi Dr. A-CL A-CL St. Andrews Avenue Otay Mesa Rd. to Marconi Dr. A-CL St. Andrews Avenue Otay Mesa Rd. to Siempre Viva Rd. C-C C-C C-C C-C C-C C-C C-C C-	Ed Wedia Rodd			
Airway Rd. to Siempre Viva Rd. 4-M 5-M Harvest Road South of Otay Mesa Rd. 4-M 2-CL Airway Rd. to Otay Center Dr. 4-M 4-CL Otay Center Dr. to Siempre Viva Rd. 4-M 4-CL Enrico Fermi Drive Airway Rd. to Siempre Viva Rd. 4-M 4-CL Siempre Viva Rd. to Via de la Amistad 4-M 4-CL Lone Star Road SR-125 to Piper Ranch Rd. 4-M 6-PA Piper Ranch Rd. to City/County Boundary 4-M 6-PA Piper Ranch Rd. to La Media Rd. 2-C 4-CL Corporate Center Drive Progressive Ave. to Innovative Dr. 2-C 2-CL Sanyo Avenue Otay Mesa Rd. to Airway Rd. 2-C 4-CL Paseo de las Americas Airway Rd. to Siempre Viva Rd. 2-C 4-CL Marconi Drive Paseo de las Americas to Enrico Fermi Dr. 2-C 2-CL Otay Center Drive Harvest Rd. to Siempre Viva Rd. 2-C 4-CL St. Andrews Avenue Otay Mesa Rd. to Siempre Viva Rd. 2-C 4-CL St. Andrews Avenue Otay Mesa Rd. to Siempre Viva Rd. 2-C 4-CL St. Andrews Avenue Otay Mesa Rd. to Siempre Viva Rd. 2-C 4-CL St. Andrews Avenue Otay Mesa Rd. to St. Andrews Ave. 2-C 4-CL St. Andrews Avenue Otay Mesa Rd. to St. Andrews Ave. 2-C 4-CL Datsun Street Innovative Dr. to Heritage Rd. 2-C 4-CL Excellante Street Airway Rd. to Gigantic St. 4-C 2-C Gigantic Street Airway Rd. to Gigantic St. 4-C 2-C Centurion Street Airway Rd. to Gigantic St. 4-C 2-C Centurion Street Airway Rd. to Gigantic St. 4-C 2-C			-	
Harvest Road South of Otay Mesa Rd. Airway Rd. to Otay Center Dr. Otay Center Dr. to Siempre Viva Rd. Enrico Fermi Drive Airway Rd. to Siempre Viva Rd. Airway Rd. to Siempre Viva Rd. Airway Rd. to Siempre Viva Rd. Airway Rd. to Via de la Amistad A-M 4-CL Lone Star Road SR-125 to Piper Ranch Rd. Piper Ranch Rd. to City/County Boundary Aviator Road Airway Rd. to La Media Rd. Airway Rd. to La Media Rd. Airway Rd. to La Media Rd. Airway Rd. to Siempre Viva Rd. Airway Rd. to St. Andrews Ave. Airway Rd. to St. Andrews Ave. Airway Rd. to St. Andrews Ave. Avenida Costa Azul Avenida Costa Azul Airway Rd. to Gigantic St. Airway Rd. to Gigantic St. Airway Rd. to Gigantic St. Airway Rd. to Gigantic St. Airway Rd. to Gigantic St. Airway Rd. to Gigantic St. Airway Rd. to Gigantic St. Airway Rd. to Gigantic St. Airway Rd. to Gigantic St. Airway Rd. to Gigantic St. Airway Rd. to Gigantic St. Airway Rd. to Gigantic St.			-	
Airway Rd. to Otay Center Dr. Otay Center Dr. to Siempre Viva Rd. 4-M 4-CL Enrico Fermi Drive Airway Rd. to Siempre Viva Rd. Siempre Viva Rd. to Via de la Amistad 4-M 4-CL Lone Star Road SR-125 to Piper Ranch Rd. Piper Ranch Rd. to City/County Boundary 4-M 6-PA Aviator Road Heritage Rd. to La Media Rd. Corporate Center Drive Progressive Ave. to Innovative Dr. Siempre Viva Rd. to Airway Rd. Siempre Viva Rd. Siem	Harvest Road			
Otay Center Dr. to Siempre Viva Rd. 4-M 4-CL Enrico Fermi Drive Airway Rd. to Siempre Viva Rd. 4-M 4-CL Siempre Viva Rd. to Via de la Amistad 4-M 4-CL Lone Star Road SR-125 to Piper Ranch Rd. 4-M 6-PA Piper Ranch Rd. to City/County Boundary 4-M 6-PA Aviator Road Heritage Rd. to La Media Rd. 1 2-C 4-CL Corporate Center Drive Progressive Ave. to Innovative Dr. 2-C 2-CL Sanyo Avenue Otay Mesa Rd. to Airway Rd. 2 4-C 4-CL Paseo de las Americas Airway Rd. to Siempre Viva Rd. 2-C 4-CL Siempre Viva Rd. to Marconi Dr. 2-C 4-CL Marconi Drive Paseo de las Americas to Enrico Fermi Dr. 2-C 2-CL Otay Center Drive Harvest Rd. to Siempre Viva Rd. 2-C 4-CL St. Andrews Avenue Otay Mesa Center Rd. to La Media Rd. 2-C 4-CL Gailes Boulevard Otay Mesa Rd. to St. Andrews Ave. 2-C 4-CL Otay Mesa Center Road Otay Mesa Rd. to St. Andrews Ave. 2-C 4-CL Otay Mesa Center Road Otay Mesa Rd. to St. Andrews Ave. 2-C 4-CL Otay Mesa Center Road Otay Mesa Rd. to St. Andrews Ave. 2-C 4-CL Otay Mesa Center Road Otay Mesa Rd. to St. Andrews Ave. 2-C 4-CL Excellante Street Innovative Dr. to Heritage Rd. 1 2-C 4-CL Excellante Street Airway Rd. to Gigantic St. 4-C 2-C Gigantic Street Excellante St. to Centurion St. 4-C 2-C Centurion Street Airway Rd. to Gigantic St. 4-C 2-C	Tidi Voot Road	Airway Rd to Otay Center Dr		
Enrico Fermi Drive Airway Rd. to Siempre Viva Rd. 4-M 4-CL Siempre Viva Rd. to Via de la Amistad 4-M 4-CL Lone Star Road SR-125 to Piper Ranch Rd. 4-M 6-PA Piper Ranch Rd. to City/County Boundary 4-M 6-PA Aviator Road Heritage Rd. to La Media Rd. 2-C 4-CL Corporate Center Drive Progressive Ave. to Innovative Dr. 2-C 2-CL Sanyo Avenue Otay Mesa Rd. to Airway Rd. 2 4-C 4-CL Siempre Viva Rd. 2-C 4-CL Siempre Viva Rd. 5-C 4-CL Marconi Drive Paseo de las Americas to Enrico Fermi Dr. 2-C 4-CL Otay Center Drive Harvest Rd. to Siempre Viva Rd. 2-C 4-CL Siempre Viva Rd. 5-C 4-CL Otay Center Drive Harvest Rd. to Siempre Viva Rd. 2-C 4-CL Otay Mesa Center Rd. to La Media Rd. 2-C 4-CL Gailes Boulevard Otay Mesa Center Rd. to La Media Rd. 2-C 4-CL Otay Mesa Center Road Otay Mesa Rd. to St. Andrews Ave. 2-C 4-CL Otay Mesa Center Road Otay Mesa Rd. to St. Andrews Ave. 2-C 4-CL Otay Mesa Center Road Otay Mesa Rd. to St. Andrews Ave. 2-C 4-CL Otay Mesa Center Road Otay Mesa Rd. to St. Andrews Ave. 2-C 4-CL Otay Mesa Center Road Otay Mesa Rd. to St. Andrews Ave. 2-C 4-CL Otay Mesa Center Road Otay Mesa Rd. to St. Andrews Ave. 2-C 4-CL Otay Mesa Rd. to St. Andrews Ave. 2-C 4-CL Otay Mesa Rd. to St. Andrews Ave. 2-C 4-CL Otay Mesa Rd. to St. Andrews Ave. 2-C 4-CL 0tay Mesa Rd. to St. Andrews Ave. 2-C 4-CL 0tay Mesa Rd. to St. Andrews Ave. 2-C 4-CL 0tay Mesa Rd. to St. Andrews Ave. 2-C 4-CL 0tay Mesa Rd. to St. Andrews Ave. 2-C 4-CL 0tay Mesa Rd. to St. Andrews Ave. 2-C 4-CL 0tay Mesa Rd. to St. Andrews Ave. 2-C 4-CL 0tay Mesa Rd. to St. Andrews Ave. 2-C 4-CL 0tay Rd. The Rd. Th				_
Siempre Viva Rd. to Via de la Amistad 4-M 4-CL Lone Star Road SR-125 to Piper Ranch Rd. Piper Ranch Rd. to City/County Boundary 4-M 6-PA Aviator Road Heritage Rd. to La Media Rd. 1 Corporate Center Drive Progressive Ave. to Innovative Dr. Sanyo Avenue Otay Mesa Rd. to Airway Rd. 2 Paseo de las Americas Siempre Viva Rd. to Marconi Dr. Marconi Drive Paseo de las Americas to Enrico Fermi Dr. Otay Center Drive Harvest Rd. to Siempre Viva Rd. 2 St. Andrews Avenue Otay Mesa Center Rd. to La Media Rd. Gailes Boulevard Otay Mesa Rd. to St. Andrews Ave. Otay Mesa Rd. to St. Andrews Ave. Otay Mesa Rd. to St. Andrews Ave. Otay Mesa Rd. to St. Andrews Ave. Otay Mesa Rd. to St. Andrews Ave. Otay Mesa Rd. to St. Andrews Ave. Otay Mesa Rd. to St. Andrews Ave. Datsun Street Innovative Dr. to Heritage Rd. 1 2-C 4-CL Avenida Costa Azul Otay Mesa Rd. to St. Andrews Ave. 1 2-C Gigantic Street Excellante St. to Centurion St. 4-C Centurion Street Airway Rd. to Gigantic St. 4-C Centurion Street Airway Rd. to Gigantic St. 4-C Centurion Street Airway Rd. to Gigantic St. 4-C Centurion Street Airway Rd. to Gigantic St. 4-C Centurion Street Airway Rd. to Gigantic St. 4-C Centurion Street Airway Rd. to Gigantic St.	Enrico Fermi Drive			
Lone Star Road SR-125 to Piper Ranch Rd. Piper Ranch Rd. to City/County Boundary Aviator Road Heritage Rd. to La Media Rd. Corporate Center Drive Progressive Ave. to Innovative Dr. Sanyo Avenue Otay Mesa Rd. to Airway Rd. Airway Rd. to Siempre Viva Rd. Siempre Viva Rd. to Marconi Dr. Marconi Drive Paseo de las Americas to Enrico Fermi Dr. Cotay Center Drive Harvest Rd. to Siempre Viva Rd. St. Andrews Avenue Otay Mesa Center Rd. to La Media Rd. Cotay Mesa Center Road Otay Mesa Rd. to St. Andrews Ave. Otay Mesa Center Road Otay Mesa Rd. to St. Andrews Ave. Otay Mesa Center Road Otay Mesa Rd. to St. Andrews Ave. Datsun Street Innovative Dr. to Heritage Rd. Innovative Dr. to Heritage Rd. Cotay Resa Rd. to St. Andrews Ave. Cotay Mesa Rd. to St. Andrews Ave. Datsun Street Airway Rd. to Gigantic St. A-C Centurion Street Airway Rd. to Gigantic St.	Ziiiloo i ciiiii ziive			_
Piper Ranch Rd. to City/County Boundary Aviator Road Heritage Rd. to La Media Rd. Corporate Center Drive Progressive Ave. to Innovative Dr. Sanyo Avenue Otay Mesa Rd. to Airway Rd. Airway Rd. to Siempre Viva Rd. Siempre Viva Rd. to Marconi Dr. Marconi Drive Paseo de las Americas to Enrico Fermi Dr. Otay Mesa Center Rd. to Siempre Viva Rd. St. Andrews Avenue Otay Mesa Center Rd. to La Media Rd. Cotay Mesa Center Road Otay Mesa Rd. to St. Andrews Ave. Otay Mesa Center Road Otay Mesa Rd. to St. Andrews Ave. Otay Mesa Center Road Otay Mesa Rd. to St. Andrews Ave. Otay Mesa Center Road Otay Mesa Rd. to St. Andrews Ave. Otay Mesa Rd. to Gigantic St.	Lone Star Road			
Aviator Road Heritage Rd. to La Media Rd. 1 2-C 4-CL Corporate Center Drive Progressive Ave. to Innovative Dr. 2-C 2-CL Sanyo Avenue Otay Mesa Rd. to Airway Rd. 2 4-C 4-CL Paseo de las Americas Airway Rd. to Siempre Viva Rd. Siempre Viva Rd. to Marconi Dr. 2-C 4-CL Marconi Drive Paseo de las Americas to Enrico Fermi Dr. 2-C 2-CL Otay Center Drive Harvest Rd. to Siempre Viva Rd. 2-C 4-CL St. Andrews Avenue Otay Mesa Center Rd. to La Media Rd. 2-C 4-CL Gailes Boulevard Otay Mesa Rd. to St. Andrews Ave. 2-C 4-CL Otay Mesa Center Road Otay Mesa Rd. to St. Andrews Ave. 2-C 4-CL Datsun Street Innovative Dr. to Heritage Rd. 1 2-C 4-CL Excellante Street Airway Rd. to Gigantic St. 4-C 2-C Gigantic Street Excellante St. to Centurion St. 4-C 2-C Centurion Street Airway Rd. to Gigantic St. 4-C 2-C	Eorie otal Mode			
Corporate Center Drive Progressive Ave. to Innovative Dr. 2-C 2-CL Sanyo Avenue Otay Mesa Rd. to Airway Rd. 2 4-C 4-CL Paseo de las Americas Airway Rd. to Siempre Viva Rd. 2-C 4-CL Siempre Viva Rd. to Marconi Dr. 2-C 4-CL Marconi Drive Paseo de las Americas to Enrico Fermi Dr. 2-C 2-CL Otay Center Drive Harvest Rd. to Siempre Viva Rd. 2 4-C 4-CL St. Andrews Avenue Otay Mesa Center Rd. to La Media Rd. 2-C 4-CL Gailes Boulevard Otay Mesa Rd. to St. Andrews Ave. 2-C 4-CL Otay Mesa Center Road Otay Mesa Rd. to St. Andrews Ave. 2-C 4-CL Datsun Street Innovative Dr. to Heritage Rd. 1 2-C 4-CL Excellante Street Airway Rd. to Gigantic St. 4-C 2-C Gigantic Street Excellante St. to Centurion St. 4-C 2-C Centurion Street Airway Rd. to Gigantic St. 4-C 2-C	Aviator Road	Heritage Rd. to La Media Rd. 1		
Sanyo Avenue Otay Mesa Rd. to Airway Rd. 2 4-C 4-CL Paseo de las Americas Airway Rd. to Siempre Viva Rd. Siempre Viva Rd. to Marconi Dr. 2-C 4-CL Marconi Drive Paseo de las Americas to Enrico Fermi Dr. 2-C 2-CL Otay Center Drive Harvest Rd. to Siempre Viva Rd. 2 4-C 4-CL St. Andrews Avenue Otay Mesa Center Rd. to La Media Rd. 2-C 4-CL Gailes Boulevard Otay Mesa Rd. to St. Andrews Ave. 2-C 4-CL Otay Mesa Center Road Otay Mesa Rd. to St. Andrews Ave. 2-C 4-CL Datsun Street Innovative Dr. to Heritage Rd. 1 2-C 4-CL Excellante Street Airway Rd. to Gigantic St. 4-C 2-C Gigantic Street Excellante St. to Centurion St. 4-C 2-C Centurion Street Airway Rd. to Gigantic St. 4-C 2-C				
Paseo de las Americas Airway Rd. to Siempre Viva Rd. Siempre Viva Rd. to Marconi Dr. Marconi Drive Paseo de las Americas to Enrico Fermi Dr. Otay Center Drive Harvest Rd. to Siempre Viva Rd. Siempre Viva Rd. Carlo C				
Siempre Viva Rd. to Marconi Dr. Marconi Drive Paseo de las Americas to Enrico Fermi Dr. Otay Center Drive Harvest Rd. to Siempre Viva Rd. St. Andrews Avenue Otay Mesa Center Rd. to La Media Rd. Gailes Boulevard Otay Mesa Rd. to St. Andrews Ave. Otay Mesa Center Road Otay Mesa Rd. to St. Andrews Ave. Otay Mesa Center Road Otay Mesa Rd. to St. Andrews Ave. Otay Mesa Center Road Otay Mesa Rd. to St. Andrews Ave. Otay Mesa Center Road Otay Mesa Rd. to St. Andrews Ave. Otay Mesa Rd. to St. Andrews Ave. Otay Mesa Rd. to St. Andrews Ave. Otay Mesa Rd. to St. Andrews Ave. Otay Mesa Rd. to St. Andrews Ave. Otay Mesa Rd. to St. Andrews Ave. Otay Mesa Rd. to St. Andrews Ave. Otay Mesa Rd. to St. Andrews Ave. Otay Mesa Rd. to St. Andrews Ave. Otay Mesa Rd. to St. Andrews Ave. Otay Mesa Rd. to St. Andrews Ave. Otay Mesa Rd. to Gigantic St.		Airway Pd. to Siempre Viva Pd.		
Marconi DrivePaseo de las Americas to Enrico Fermi Dr.2-C2-CLOtay Center DriveHarvest Rd. to Siempre Viva Rd.²4-C4-CLSt. Andrews AvenueOtay Mesa Center Rd. to La Media Rd.2-C4-CLGailes BoulevardOtay Mesa Rd. to St. Andrews Ave.2-C4-COtay Mesa Center RoadOtay Mesa Rd. to St. Andrews Ave.2-C4-CLDatsun StreetInnovative Dr. to Heritage Rd.¹2-C4-CLAvenida Costa AzulOtay Mesa Rd. to St. Andrews Ave.¹2-CL4-CLExcellante StreetAirway Rd. to Gigantic St.4-C2-CGigantic StreetExcellante St. to Centurion St.4-C2-CCenturion StreetAirway Rd. to Gigantic St.4-C2-C	raseo de las Americas		_	
Otay Center Drive Harvest Rd. to Siempre Viva Rd.² 4-C 4-CL St. Andrews Avenue Otay Mesa Center Rd. to La Media Rd. 2-C 4-CL Gailes Boulevard Otay Mesa Rd. to St. Andrews Ave. 2-C 4-C Otay Mesa Center Road Otay Mesa Rd. to St. Andrews Ave. 2-C 4-CL Datsun Street Innovative Dr. to Heritage Rd.¹ 2-C 4-CL Avenida Costa Azul Otay Mesa Rd. to St. Andrews Ave.¹ 2-CL 4-CL Excellante Street Airway Rd. to Gigantic St. 4-C 2-C Gigantic Street Excellante St. to Centurion St. 4-C 2-C Centurion Street Airway Rd. to Gigantic St. 4-C 2-C	Maraani Drivo			
St. Andrews Avenue Otay Mesa Center Rd. to La Media Rd. 2-C 4-CL Gailes Boulevard Otay Mesa Rd. to St. Andrews Ave. 2-C 4-C Otay Mesa Center Road Otay Mesa Rd. to St. Andrews Ave. 2-C 4-CL Datsun Street Innovative Dr. to Heritage Rd. 1 2-C 4-CL Avenida Costa Azul Otay Mesa Rd. to St. Andrews Ave. 1 2-CL 4-CL Excellante Street Airway Rd. to Gigantic St. 4-C 2-C Gigantic Street Excellante St. to Centurion St. 4-C 2-C Centurion Street Airway Rd. to Gigantic St. 4-C 2-C				
Gailes Boulevard Otay Mesa Rd. to St. Andrews Ave. 2-C Otay Mesa Center Road Otay Mesa Rd. to St. Andrews Ave. 2-C 4-CL Datsun Street Innovative Dr. to Heritage Rd. Avenida Costa Azul Otay Mesa Rd. to St. Andrews Ave. 2-C 4-CL 2-C 4-CL Excellante Street Airway Rd. to Gigantic St. 4-C 2-C Gigantic Street Excellante St. to Centurion St. 4-C 2-C Centurion Street Airway Rd. to Gigantic St. 4-C 2-C				
Otay Mesa Center Road Otay Mesa Rd. to St. Andrews Ave. 2-C 4-CL Datsun Street Innovative Dr. to Heritage Rd. ¹ 2-C 4-CL Avenida Costa Azul Otay Mesa Rd. to St. Andrews Ave. ¹ 2-CL 4-CL Excellante Street Airway Rd. to Gigantic St. 4-C 2-C Gigantic Street Excellante St. to Centurion St. 4-C 2-C Centurion Street Airway Rd. to Gigantic St. 4-C 2-C				· *=
Datsun Street Innovative Dr. to Heritage Rd. 1 2-C 4-CL Avenida Costa Azul Otay Mesa Rd. to St. Andrews Ave. 1 2-CL 4-CL Excellante Street Airway Rd. to Gigantic St. 4-C 2-C Gigantic Street Excellante St. to Centurion St. 4-C 2-C Centurion Street Airway Rd. to Gigantic St. 4-C 2-C		Otay Mass Dd. to St. Andrews Ave.		
Avenida Costa AzulOtay Mesa Rd. to St. Andrews Ave. 12-CL4-CLExcellante StreetAirway Rd. to Gigantic St.4-C2-CGigantic StreetExcellante St. to Centurion St.4-C2-CCenturion StreetAirway Rd. to Gigantic St.4-C2-C				
Excellante StreetAirway Rd. to Gigantic St.4-C2-CGigantic StreetExcellante St. to Centurion St.4-C2-CCenturion StreetAirway Rd. to Gigantic St.4-C2-C				
Gigantic Street Excellante St. to Centurion St. 4-C 2-C Centurion Street Airway Rd. to Gigantic St. 4-C 2-C		,		
Centurion Street Airway Rd. to Gigantic St. 4-C 2-C		,	· ·	
1A new roadway added to Circulation Plan by the CPU.			4-C	2-C

¹A new roadway added to Circulation Plan by the CPU.

8-M = 8-lane Major Arterial 7-PA = 7-lane Primary Arterial 7-M = 7-lane Major Arterial 6-PA = 6-lane Primary Arterial 6-M = 6-lane Major Arterial 5-M = 5-lane Major Arterial (3SB /2NB) 4-P = 4-lane Primary Arterial

4-M = 4-lane Major Arterial
4-CL = 4-lane Collector (with continuous left-turn lane)
4-C = 4-lane Collector (without continuous left-turn lane)
2-CL = 2-lane Collector (with continuous left-turn lane)
2-CN = 2-lane Collector (no fronting property)
2-C = 2-lane Collector (without continuous left-turn lane)

²Functional classification is identified in the table, as this roadway is not currently classified.

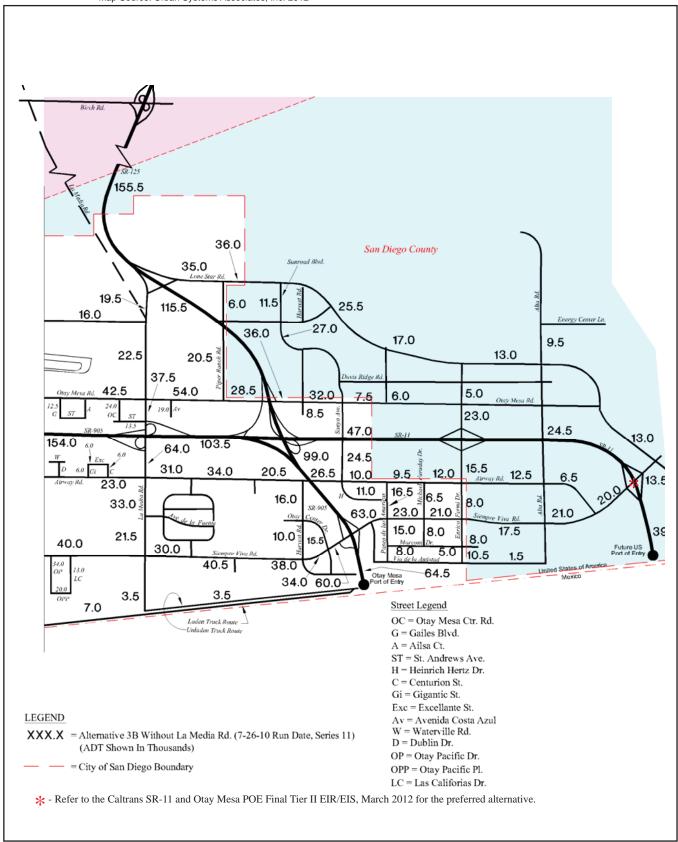

b. Horizon Year Plus CPU Condition

Roadway Segments

The volumes under the Horizon Year Plus CPU conditions are shown on Figures 5.12-3a and 5.12-3b. With the specified proposed classifications, the following roadway segments would be expected to operate at unacceptable levels of service in the Horizon Year Plus CPU condition (Table 5.12-5).

- 1. Otay Mesa Road, Caliente Ave. to Corporate Center Dr. (LOS F)
- 2. Otay Mesa Road, Heritage Rd. to Cactus Rd. (LOS F)
- 3. Airway Road, Caliente Ave. to Heritage Rd. (LOS E)
- 4. Airway Road, Heritage Rd. to Cactus Rd. (LOS F)
- 5. Siempre Viva Road, Otay Center Dr. to SR-905 (LOS E)
- 6. Siempre Viva Road, SR-905 to Paseo de las Americas (LOS F)
- 7. Caliente Avenue, Airway Rd. to Beyer Blvd. (LOS E)
- 8. Caliente Avenue, Beyer Blvd. to Siempre Viva Rd. (LOS F)
- 9. Heritage Road/ Otay Valley Road, Main St. to Avenida de Las Vistas (LOS F)
- 10. Heritage Road/ Otay Valley Road, Avenida De Las Vistas to Datsun St. (LOS F)
- 11. Cactus Road, Otay Mesa Rd. to Airway Rd. (LOS F)
- 12. Cactus Road, Airway Rd. to Siempre Viva Rd. (LOS F)
- 13. Britannia Boulevard, SR-905 to Airway Rd. (LOS F)
- 14. La Media Road, SR-905 to Airway Rd. (LOS F)
- 15. Dennery Road, Black Coral Ln. to East End (LOS F)
- 16. Avenida De Las Vistas, Vista Santo Domingo to Dennery Rd. (LOS F)
- 17. Del Sol Boulevard, Surf Crest Dr. to Riviera Pointe (LOS F)
- 18. Del Sol Boulevard, Riviera Pointe to Dennery Rd. (LOS F)
- 19. Old Otay Mesa Road, Crescent Bay Dr. to Beyer Blvd. (LOS F)
- 20. Camino Maquiladora, Heritage Rd. to Pacific Rim Ct. (LOS F)
- 21. Camino Maquiladora, Pacific Rim Ct. to Cactus Rd. (LOS E)
- 22. Progressive Avenue, Corporate Center Dr. to Innovative Dr. (LOS F)
- 23. Datsun Street, Innovative Dr. to Heritage Rd. (LOS F)
- 24. Exposition Way/Vista Santo Domingo, Avenida de las Vistas to Corporate Dr. (LOS F)

The CPU impacts to the above 24 roadway segments would be significant.



Not to Scale

FIGURE 5.12-3a

Horizon Year Plus CPU Condition Roadway Segment Volumes (West)

Not to Scale

FIGURE 5.12-3b

Horizon Year Plus CPU Condition Roadway Segment Volumes (East)

TABLE 5.12-5
CPU HORIZON YEAR ROADWAY SEGMENT LEVEL OF SERVICE

			Ho	orizon Year		Horizon	Year wit	h CPU		
			LOS E	Segment			New	New	New	1
Street	Segment	Class ¹	ADT ²	ADT	V/C	LOS	Class	V/C	LOS	Sig?
	Street A to Caliente Ave.	6-PA	60,000	26,000	0.43	В	6-M	0.52	В	N
	Caliente Ave. to Corporate Center Dr.	6-PA	60,000	72,500	1.21	F	-	-	-	Υ
	Corporate Center Dr. to Innovative Dr.	6-PA	60,000	51,500	0.86	D	-	-	-	N
	Innovative Dr. to Heritage Rd.	6-PA	60,000	46,500	0.78	С	-	-	-	N
	Heritage Rd. to Cactus Rd.	6-PA	60,000	76,500	1.28	F	-	-	-	Υ
	Cactus Rd. to Britannia Blvd.	6-PA	60,000	44,000	0.73	С	-	-	-	N
Otay Mesa Road	Britannia Blvd. to Ailsa Ct.	6-PA	60,000	50,500	0.84	D	-	-	-	N
	Alisa Ct. to La Media Rd.	7-M	55,000	42,500	0.77	С	6-PA	0.71	С	N
	La Media Rd. to Piper Ranch Rd.	8-M	70,000	54,000	0.77	С	6-PA	0.90	D	N
	Piper Ranch Rd. to SR-125	4-P	45,000	28,500	0.63	С	6-PA	0.48	В	N
	SR-125 to Harvest Rd.	4-M	40,000	36,000	0.90	E	6-PA	0.60	С	N
	Harvest Rd. to Sanyo Ave.	4-M	40,000	32,000	0.80	D	6-PA	0.53	В	N
	Sanyo Ave. to Enrico Fermi Dr.	4-M	40,000	7,500	0.19	Α	6-PA	0.13	Α	N
	Old Otay Mesa Rd. to Caliente Ave.	4-CL	30,000	10,500	0.35	Α	-	-	-	N
	Caliente Ave. to Heritage Rd.	4-M	40,000	38,000	0.95	E	-	-	-	Υ
	Heritage Rd. to Cactus Rd.	4-M	40,000	60,500	1.52	F	6-PA	1.01	F	Υ
	Cactus Rd. to Britannia Blvd.	4-M	40,000	44,500	1.11	F	6-M	0.89	D	N
	Britannia Blvd. to La Media Rd.	4-M	40,000	35,000	0.88	D	-	-	-	N
Airway Road	La Media Rd. to Harvest Rd.	4-M	40,000	34,000	0.85	D	-	-	-	N
	Harvest Rd. to Sanyo Ave.	4-M	40,000	26,500	0.66	С	-	-	-	N
	Sanyo Ave. to Paseo de las Americas	4-M	40,000	10,000	0.25	Α	-	-	-	N
	Paseo de las Americas to Michael Faraday Dr.	4-M	40,000	9,500	0.24	Α	-	-	-	N
	Michael Faraday Dr. to Enrico Fermi Dr.	4-M	40,000	12,000	0.30	Α	-	-	-	N
	Enrico Fermi Dr. to Siempre Viva Rd.*	4-M	40,000	12,500	0.31	Α	-	-	-	N
	Caliente Ave. to West Terminus	4-M	40,000	10,000	0.25	Α	2-CL	0.67	C	N
	Cactus Rd. to Britannia Blvd.	6-PA	60,000	37,000	0.62	С	-	-	-	N
	Britannia Blvd. to La Media Rd.	6-PA	60,000	42,500	0.71	С	-	-	-	N
	La Media Rd. to Harvest Rd.	6-PA	60,000	40,500	0.68	С	-	-	-	N
Ciampro Viva Dood	Harvest Rd. to Otay Center Dr.	6-PA	60,000	34,000	0.57	В	-	-	-	N
Siempre Viva Road	Otay Center Dr. to SR-905	6-PA	60,000	60,000	1.00	E	-	-	-	Υ
	SR-905 to Paseo de las Americas	6-PA	60,000	63,000	1.05	F	-	-	-	Υ
	Paseo de las Americas to Michael Faraday Dr.	4-M	40,000	23,000	0.58	С	-	-	-	N
	Michael Faraday Dr. to Enrico Fermi Dr.	4-M	40,000	21,000	0.53	В	-	-	-	N
	Enrico Fermi Dr. to SR-11*	4-M	40,000	17,500	0.44	В	-	-	-	N

TABLE 5.12-5
CPU HORIZON YEAR ROADWAY SEGMENT LEVEL OF SERVICE (continued)

			H	orizon Year			Horizon	Year wit	h CPU	
			LOS E	Segment			New	New	New	1
Street	Segment	Class ¹	ADT ²	ADT	V/C	LOS	Class	V/C	LOS	Sig?
Palm Ave.	I-805 to Dennery Rd.	7-PA	65,000	59,500	0.92	D	-	-	-	N
Ocean View Hills	Dennery Rd. to Del Sol Blvd.	4-M	40,000	22,000	0.55	С	-	-	-	N
Parkway	Del Sol Blvd. to Street "A"	6-M	50,000	35,000	0.70	С	-	-	-	N
T aikway	Street "A" to Otay Mesa Rd.	6-M	50,000	23,500	0.42	В	-	-	-	N
	Otay Mesa Rd. to SR-905	6-M	50,000	38,000	0.76	С	6-PA	0.63	С	N
Caliente Avenue	SR-905 to Airway Rd.	6-M	50,000	32,000	0.64	С	6-PA	0.53	В	N
Callettle Avertue	Airway Rd. to Beyer Blvd.	4-M	40,000	46,000	1.15	F	6-M	0.92	Ε	Υ
	Beyer Blvd. to Siempre Viva Rd.	4-M	40,000	41,000	1.03	F	-	-	•	Υ
Beyer Boulevard	Alaquinas Dr. to Old Otay Mesa Rd. Old Otay	4-M	40,000	32,500	0.81	D	-	-	-	N
Deyel Boulevalu	Mesa Rd. to Caliente Ave. 3	4-M	40,000	31,000	0.78	D	-	-	-	N
	Main St. to Avenida de Las Vistas**	6-PA	60,000	83,000	1.38	F	-	-	-	Υ
Heritage Road/ Otay	Avenida De Las Vistas to Datsun St.	6-M	50,000	75,500	1.51	F	6-PA	1.26	F	Υ
Valley Road	Datsun St. to Otay Mesa Rd.	6-M	50,000	48,000	0.96	E	6-PA	0.80	С	N
valley Noau	Otay Mesa Rd. to SR-905	6-M	50,000	23,500	0.47	В	6-PA	0.39	Α	N
	SR-905 to Airway Rd.	6-M	50,000	35,000	0.70	С	6-PA	0.58	В	N
	Otay Mesa Rd. to Airway Rd.	4-CL	30,000	40,500	1.35	F	4-M	1.01	F	Υ
Cactus Road	Airway Rd. to Siempre Viva Rd.	4-CL	30,000	40,500	1.35	F	4-M	1.01	F	Υ
	Siempre Viva Rd. to South End	2-CL	15,000	11,000	0.73	D	-	-	-	N
	Otay Mesa Rd. to SR-905	4-M	40,000	17,500	0.44	В	6-PA	0.29	Α	N
Britannia Boulevard	SR-905 to Airway Rd.	4-M	40,000	63,000	1.58	F	6-PA	1.05	F	Υ
Dillannia Doulevaru	Airway Rd. to Siempre Viva Rd.	4-M	40,000	44,500	1.11	F	6-M	0.89	D	N
	Siempre Viva Rd. to South End	2-C	8,000	22,000	2.75	F	4-CL	0.73	D	N
	Birch Rd. to Lone Star Rd.**	6-PA	60,000	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Lone Star Rd. to Aviator Rd.	6-PA	60,000	19,500	0.33	Α	4-M	0.49	В	N
La Media Road	Aviator Rd. to Otay Mesa Rd.	6-PA	60,000	22,500	0.38	Α	4-M	0.56	С	N
La Mcala Road	Otay Mesa Rd. to SR-905	6-PA	60,000	37,500	0.63	С	-	-	-	N
	SR-905 to Airway Rd.	6-PA	60,000	64,000	1.06	F	-	-	-	Υ
	Airway Rd. to Siempre Viva Rd.	4-M	40,000	33,000	0.83	D	5-M	0.73	С	N
	South of Otay Mesa Rd.	4-M	40,000	8,500	0.21	Α	2-CL	0.57	С	N
Harvest Road	Airway Rd. to Otay Center Dr.	4-M	40,000	16,000	0.40	В	4-CL	0.53	С	N
	Otay Center Dr. to Siempre Viva Rd.	4-M	40,000	10,000	0.25	Α	4-CL	0.33	Α	N
	SR-11 to Airway Rd.*	4-M	40,000	15,500	0.62	В	-	-	-	N
Enrico Fermi Drive	Airway Rd. to Siempre Viva Rd.	4-M	40,000	8,000	0.20	Α	4-CL	0.27	Α	N
	Siempre Viva Rd. to Via de la Amistad	4-M	40,000	10,500	0.26	Α	4-CL	0.35	В	N

TABLE 5.12-5
CPU HORIZON YEAR ROADWAY SEGMENT LEVEL OF SERVICE (continued)

		Horizon Year					Horizon	Year with	n CPU	T
			LOS E	Segment			New	New	New	1
Street	Segment	Class ¹	ADT ²	ADT	V/C	LOS	Class	V/C	LOS	Sig?
Lone Star Road	SR-125 to Piper Ranch Rd.	4-M	40,000	35,000	0.88	D	6-PA	0.58	В	N
Lone Star Road	Piper Ranch Rd. to City/County Boundary	4-M	40,000	36,000	0.90	Е	6-PA	0.60	С	N
Aviator Road	Heritage Rd. to La Media Rd. 3	2-C	8,000	23,000	2.88	F	4-CL	0.77	D	N
	Palm Ave. to Del Sol Blvd.	4-M	40,000	28,000	0.70	С	-	-	-	N
	Palm Ave. to Regatta Ln.	4-M	40,000	19,500	0.49	В	-	-	-	N
Dennery Road	Regatta Ln. to Red Coral Ln.	4-CL	30,000	12,500	0.42	В	-	-	-	N
	Red Coral Ln. to Black Coral Ln.	2-CL	15,000	12,500	0.83	D	-	-	-	N
	Black Coral Ln. to East End	2-CN	10,000	16,500	1.65	F	-	-	-	Υ
Avenida De Las	Otay Valley Rd. to Vista Santo Domingo	2-CN	10,000	7,000	0.70	С	-	-	-	N
Vistas	Vis ta Santo Domingo to Dennery Rd.	2-CN	10,000	19,500	1.95	F	-	-	-	Υ
	Ocean View Hills Pkwy. to Surf Crest Dr.	4-CL	30,000	19,500	0.65	С	-	-	-	N
Del Sol Boulevard	Surf Crest Dr. to Riviera Pointe	2-CN	10,000	23,000	2.30	F	-	-	-	Υ
Dei Soi Boulevalu	Riviera Pointe to Dennery Rd.	2-CL	15,000	23,000	1.53	F	-	-	-	Υ
	Dennery Rd. to I-805	4-CL	30,000	16,000	0.53	С	-	-	-	N
Street A	Ocean View Hills Pkwy. to Otay Mesa Rd.	4-M	40,000	13,500	0.34	Α	-	-	-	N
	Otay Mesa Rd. to Airway Rd.	4-CL	30,000	22,000	0.73	D	-	-	-	N
Old Otay Mesa Road	Airway Rd. to Crescent Bay Dr.	4-CL	30,000	14,500	0.48	С	-	-	-	N
	Crescent Bay Dr. to Beyer Blvd.	2-C	8,000	16,000	2.00	F	-	-	-	Υ
Emerald Crest Dr.	Otay Mesa Rd. to South End 3	4-CL	30,000	25,000	0.83	D	-	-	-	N
	South End to Otay Mesa Rd. 3	4-CL	30,000	17,500	0.58	С	-	-	-	N
Corporate Center Drive	Otay Mesa Rd. to Progressive Ave.	4-CL	30,000	19,500	0.65	С	-	-	-	N
•	Progressive Ave. to Innovative Dr.	2-C	8,000	8,000	1.00	E	2-CL	0.53	С	N
Innovative Drive	Otay Mesa Rd. to Corporate Center Dr.	4-CL	30,000	15,000	0.50	С	-	-	-	N
Piper Ranch Road	Lone Star Rd. to Otay Mesa Rd.	4-CL	30,000	20,500	0.68	D	-	-	-	N
Sanyo Avenue	Otay Mesa Rd. to Airway Rd. 4	4-C	15,000	24,500	1.63	F	4-CL	0.82	D	N
Heinrich Hertz Drive	Airway Rd. to Paseo de las Americas ⁴	2-CL	15,000	12,000	0.80	D	-	-	-	N
D d- l A	Airway Rd. to Siempre Viva Rd.	2-C	8,000	16,500	2.06	F	4-CL	0.55	С	N
Paseo de las Americas	Siempre Viva Rd. to Marconi Dr.	2-C	8,000	15,000	1.88	F	4-CL	0.50	С	N
Marconi Drive	Paseo de las Americas to Enrico Fermi Dr.	2-C	8,000	8,000	1.00	Е	2-CL	0.53	С	N
Otay Center Drive	Harvest Rd. to Siempre Viva Rd.4	4-C	15,000	15,500	1.03	F	4-CL	0.52	С	N
Michael Faraday	Airway Rd. to Siempre Viva Rd. 4	2-CL	15,000	6,500	0.43	В	-	-	-	N
Drive	Siempre Viva Rd. to Marconi Dr. 4	2-CL	15,000	8,000	0.53	С	-	-	-	N
St. Andrews Avenue	Otay Mesa Center Rd. to La Media Rd.	2-C	8,000	13,500	1.69	F	4-CL	0.45	С	N

TABLE 5.12-5 CPU HORIZON YEAR ROADWAY SEGMENT LEVEL OF SERVICE (continued)

			H	orizon Year			Horizon	Year witl	h CPU	
			LOS E	Segment			New	New	New	
Street	Segment	Class ¹	ADT ²	ADT	V/C	LOS	Class	V/C	LOS	Sig?
Gailes Boulevard	Otay Mesa Rd. to St. Andrews Ave.	2-C	8,000	12,500	1.56	F	4-C	0.83	D	N
	Heritage Rd. to Pacific Rim Ct.	2-C	8,000	9,500	1.19	F	-	-	-	Υ
Camino Maquiladora	Pacific Rim Ct. to Cactus Rd.	2-C	8,000	7,500	0.94	E	-	-	-	Υ
	Cactus Rd. to Continental St.	2-C	8,000	6,000	0.75	D	-	-	-	N
Pacific Rim Court	Otay Mesa Rd. to Camino Maquiladora	2-C	8,000	4,500	0.56	С	-	-	-	N
Progressive Avenue	Corporate Center Dr. to Innovative Dr.	2-C	8,000	11,500	1.44	F	-	-	-	Υ
Otay Mesa Center Road	Otay Mesa Rd. to St. Andrews Ave.	2-C	8,000	24,000	1.60	F	4-CL	0.80	D	N
Datsun Street	Innovative Dr. to Heritage Rd. 3	2-C	8,000	30,000	3.75	F	4-CL	1.00	Е	Υ
Avenida Costa Azul	Otay Mesa Rd. to St. Andrews Ave. 3	2-CL	15,000	19,000	1.27	F	4-CL	0.63	В	N
Excellante Street	Airway Rd. to Gigantic St.	4-C	15,000	6,000	0.40	В	2-C	0.75	D	N
Gigantic Street	Excellante St. to Centurion St.	4-C	15,000	6,000	0.40	В	2-C	0.75	D	N
Centurion Street	Airway Rd. to Gigantic St.	4-C	15,000	6,000	0.40	В	2-C	0.75	D	N
Exposition Way/	Avenida De Las Vistas to Corporate Dr. 4	2-CN	10,000	12,500	1.25	F	-	-	-	Υ
Vista Santo Domingo	·									
Continental Street	South of Otay Mesa Rd.	2-C	8,000	4,500	0.56	С	-	-	-	N
Continental Street	North of Airway Rd.	2-CL	15,000	12,000	0.80	D	-	-	-	N

NOTE:	Legend		
*Segment in County of San Diego	8-M	=	8-lane Major Arterial
**Segment in City of Chula Vista	7-PA	_	7-lane Primary Arterial
¹ Current Community Plan Classification, unless footnotes ³ or ⁴ apply.	7-M	=	7-lane Major Arterial
² Source: City of San Diego Traffic Impact Study Manual, Table 2.	6-PA	_	6-lane Primary Arterial
³ Add to Circulation Plan.	6-M	_	6-lane Major Arterial
⁴ Functional classification shown, not currently classified.	5-M	_	5-lane Major Arterial (3SB /2NB)
Sig? = Significant impact, Yes (Y) or No (N).	4-P	_	4-lane Primary Arterial
New LOS = LOS after change in classification.	4-M	=	4-lane Major Arterial
 - = No reclassification is proposed by the CPU. 	4-CL	=	4-lane Collector (with continuous left-turn lane)
N/A = Not applicable, as this analysis assumes the segment of La Media Road between	4-C	_	4-lane Collector (without continuous left-turn lane)
Birch Road and Lone Star Road is not completed since the City of Chula Vista has	2-CL	=	2-lane Collector (with continuous left-turn lane)
removed it from their facilities financing plan.	2-CN	_	2-lane Collector (no fronting property)
	2-C	_	2-lane Collector (without continuous left-turn lane)
			2 iano concetto (introduction tarritario)

Intersections

With the specified proposed classifications the following intersections would be expected to operate at unacceptable levels of service in the Horizon Year Plus CPU condition (Table 5.12-6):

- 1. Palm Ave./I-805 NB Ramps (LOS F in the AM and PM peak hours)
- 2. Palm Ave./Dennery Rd. (LOS E in the PM peak hour)
- 3. Otay Mesa Rd./Caliente Ave. (LOS F in the AM and PM peak hours)
- 4. Caliente Ave./SR-905 WB Ramps (LOS F in the AM peak hour and LOS D with excessive queues blocking the intersection in the PM peak hour)
- 5. Caliente Ave./SR-905 EB Ramps (LOS F in the AM and PM peak hours)
- 6. Caliente Ave./Airway Rd. (LOS F in the AM and PM peak hours)
- 7. Caliente Ave./Beyer Blvd. (LOS F in the AM and PM peak hours)
- 8. Otay Mesa Rd./Heritage Rd. (LOS F in the AM and PM peak hours)
- 9. Heritage Rd./SR-905 WB Ramps (LOS E in the AM peak hour and LOS F in the PM peak hour)
- 10. Heritage Rd./SR-905 EB Ramps (LOS F in the AM and PM peak hours)
- 11. Heritage Rd./Airway Rd. (LOS F in the AM and PM peak hours)
- 12. Otay Mesa Rd./Cactus Rd. (LOS F in the AM and PM peak hours)
- 13. Airway Rd./Cactus Rd. (LOS F in the AM and PM peak hours)
- 14. Siempre Viva Rd./Cactus Rd. (LOS F in the PM peak hour)
- 15. Otay Mesa Rd./Britannia Blvd. (LOS F in the AM and PM peak hours)
- 16. Britannia Blvd./SR-905 WB Ramps (LOS F in the AM and PM peak hours)
- 17. Britannia Blvd./SR-905 EB Ramps (LOS F in the AM and PM peak hours)
- 18. Britannia Blvd./Airway Rd. (LOS F in the AM and PM peak hours)
- 19. Siempre Viva Rd./Britannia Blvd. (LOS F in the AM and PM peak hours)
- 20. Otay Mesa Rd./La Media Rd. (LOS F in the AM and PM peak hours)
- 21. La Media Rd./SR-905 WB Ramps (LOS F in the AM and PM peak hours)
- 22. La Media Rd./SR-905 EB Ramps (LOS F in the AM and PM peak hours)
- 23. La Media Rd./Airway Rd. (LOS F in the AM and PM peak hours)
- 24. La Media Rd./Siempre Viva Rd. (LOS F in the AM and PM peak hours)
- 25. Lone Star Rd./SR-125 SB Off Ramp (LOS E in the AM peak hour and LOS F in the PM peak hours)
- 26. Lone Star Rd./SR-125 NB On Ramp (LOS A with excessive queues blocking the intersection in the AM peak hour and LOS F in the PM peak hour)
- 27. Lone Star Rd./Piper Ranch Rd. (LOS A with excessive queues blocking the intersection in the PM peak hour)
- 28. Otay Mesa Rd./Piper Ranch Rd. (LOS F in the AM and PM peak hours)
- 29. Otay Mesa Rd./SR-125 SB Off Ramp (LOS F in the AM peak hour and LOS B with excessive queues blocking the intersection in the PM peak hour)
- 30. Otay Mesa Rd./Harvest Rd. (LOS F in the PM peak hour)
- 31. Siempre Viva Rd./Otay Center Dr. (LOS F in the AM and PM peak hours)

- 32. Siempre Viva Rd./SR-905 SB to EB Ramp (LOS C with excessive queues blocking the intersection in the AM peak hour and LOS F in the PM peak hour)
- 33. Siempre Viva Rd./SR-905 SB to WB Ramp (LOS F in the AM and PM peak hours)
- 34. Siempre Viva Rd./SR-905 NB Ramps (LOS D with excessive queues blocking the intersection in the AM peak hour and LOS F in the PM peak hour)
- 35. Siempre Viva Rd./Paseo de las Americas (LOS F in the AM and PM peak hours)
- 36. Ocean View Hills Pkwy./Del Sol Blvd. (LOS E in the AM and PM peak hours)
- 37. Ocean View Hills Pkwy./Street A (LOS E in the PM peak hour)
- 38. Old Otay Mesa Rd./Beyer Blvd. (LOS F in the AM and PM peak hours)
- 39. Otay Mesa Rd./Corporate Center Dr. (LOS F in the AM and PM peak hours)
- 40. Otay Mesa Rd./Innovative Dr. (LOS F in the AM and PM peak hours)
- 41. Harvest Rd./Airway Rd. (LOS F in the AM peak hour)
- 42. Harvest Rd./Siempre Viva Rd. (LOS E in the AM and PM peak hours)
- 43. Otay Mesa Rd./Sanyo Ave. (LOS F in the AM and PM peak hours)
- 44. Airway Rd./Sanyo Ave. (LOS F in the AM and PM peak hours)
- 45. Paseo de las Americas/Heinrich Hertz Dr. (LOS F in the AM and PM peak hours)
- 46. Paseo de las Americas/Marconi Dr. (LOS F in the AM and PM peak hours)
- 47. Heritage Rd./Otay Valley Rd. (LOS F in the AM and PM peak hours)
- 48. Aviator Rd./La Media Rd. (LOS F in the AM peak hour)
- 49. Otay Valley Rd./Avenida de las Vistas (LOS F in the AM and PM peak hours)

The CPU impacts at these 49 intersections would be significant.

Freeway Segments

Under the Horizon Year Plus CPU conditions, the following five segments of SR-905 would be expected to operate at unacceptable levels (Table 5.12-7):

- 1. SR-905, between Picador Boulevard and I-805 (LOS F0)
- 2. SR-905, between I-805 and Caliente Avenue (LOS F2)
- 3. SR-905, between Caliente Avenue and Heritage Drive (LOS F3)
- 4. SR-905, between Heritage Drive and Britannia Boulevard (LOS F1)
- 5. SR-905, between Britannia Boulevard and La Media Road (LOS F0)

While the SR-905 has been planned to allow future HOV lanes, such a project has not been funded and, therefore, is not included in the analysis. The CPU impacts to these five SR-905 segments would be significant.

TABLE 5.12-6
CPU HORIZON YEAR INTERSECTION LEVELS OF SERVICE

				Dl OD			Hor		Plus CPU W	/ith	0: :
		AM Pea		ar Plus CP		-	AM Pea		ation PM Peak	, Harri	Significant
	Intersection	CD AIM Pea	LOS	PM Peal CD	LOS	Mitigation	CD CD	LOS	CD	LOS	After Mitigation?
1	Palm Ave./I-805 SB Ramps	48.9	D	51.3	D	Revise SB-LTR to LT; +1 SB-R*	24.8	C	35.7	D	willigation:
2	Palm Ave./I-805 NB Ramps	116.1	F	122.6	F	+1 dedicated NB-L; +1EB-T; +1EB-R; +1WB-T; +1WB-R	4.6	A	5.5	A	No
3	Palm Ave./Dennery Rd.	33.5	С	67.2	Е	-	-	-	-	-	Yes
4	Otay Mesa Rd./Caliente Ave.	263.5	F	146.0	F	+1 dedicated NB-R	205.9	F	87.2	F	Yes
5	Caliente Ave./SR-905 WB Ramps	83.1	F	43.2	D¹	+1 NB-L; +1 dedicated SB-R	34.0	C¹	34.0	C ¹	Yes
6	Caliente Ave./SR-905 EB Ramps	165.7	F	150.5	F	+1 dedicated NB-R; +1SB-L; +1 dedicated EB-R	55.0	E	70.2	E	Yes
7	Caliente Ave./Airway Rd.	228.5	F	223.0	F	+1 dedicated NB-L; +1 dedicated EB-R	143.0	F	200.5	F	Yes
8	Caliente Ave./Beyer Blvd.	252.0	F	429.8	F	+2 dedicated SB-R; +1 dedicated EB-R	212.7	F	122.4	F	Yes
9	Otay Mesa Rd./Heritage Rd.	367.5	F	257.4	F	+1 dedicated NB-R; +1 dedicated SB-R; +1WB-R	272.0	F	161.2	F	Yes
10	Heritage Rd./SR-905 WB Ramps	69.9	Е	81.1	F	+2 dedicated NB-R	15.9	B ¹	28.4	C ¹	Yes
11	Heritage Rd./SR-905 EB Ramps	113.0	F	86.4	F	+1 dedicated NB-L; +1 dedicated WB-R	39.5	D¹	25.5	C¹	Yes
12	Heritage Rd./Airway Rd.	162.7	F	402.8	F	+2 dedicated WB-R	144.5	F	88.3	F	Yes
13	Heritage Rd./Siempre Viva Rd.	N/A	N/A	N/A	N/A	-	N/A	N/A	N/A	N/A	-
14	Otay Mesa Rd./Cactus Rd.	437.9	F	290.5	F	+2 dedicated EB-R; +1 dedicated WB-R	139.6	F	199.7	F	Yes
15	Airway Rd./Cactus Rd.	361.5	F	437.7	F	+1 dedicated NB-R; +1 dedicated SB-R; +1 dedicated EB-R; +2 dedicated WB-R	188.6	F	306.2	F	Yes
16	Siempre Viva Rd./Cactus Rd.	48.7	D	127.7	F	+1 dedicated NB-R	47.6	D	117.3	F	Yes
17	Otay Mesa Rd./Britannia Blvd.	108.5	F	117.2	F	+1 dedicated EB-R; +1 dedicated WB-R	63.1	E	47.5	D	Yes
18	Britannia Blvd./SR-905 WB Ramps	240.5	F	577.4	F	Restripe 3 rd SB-T to SB-TR; +1 dedicated SB-R; Restripe WB-T to LTR	65.0	E	547.1	F	Yes
19	Britannia Blvd./SR-905 EB Ramps	353.3	F	235.1	F	+2 dedicated NB-R	305.9	F	67.1	Е	Yes
20	Britannia Blvd./Airway Rd.	618.2	F	615.8	F	+1 dedicated NB-R; +2 dedicated SB-R; +1 dedicated EB-R; +2 dedicated WB-R	184.9	F	241.1	F	Yes
21	Siempre Viva Rd./Britannia Blvd.	363.3	F	362.8	F	+1 dedicated NB-R; +2 dedicated SB-R; +1 dedicated EB-R; +2 dedicated WB-R	177.5	F	143.2	F	Yes

		Но	rizon Ye	ar Plus CPI	J		Hori		Plus CPU W gation	ith .	Significant
		AM Peal		PM Peak			AM Pea		PM Peak		After
	Intersection	CD	LOS	CD	LOS	Mitigation	CD	LOS	CD	LOS	Mitigation?
22	Otay Mesa Rd./La Media Rd.	457.1	F	443.8	F	+2 dedicated NB-R; +2 dedicated SB-R; +2 dedicated EB-R; +2 dedicated WB-R	131.9	F	126.2	F	Yes
23	La Media Rd./SR-905 WB Ramps	266.1	F	227.2	F	+1 NB-T; +1 dedicated SB-L	129.8	F	112.7	F	Yes
24	La Media Rd./SR-905 EB Ramps	234.7	F	84.7	F	+1 SB-T	162.2	F	48.5	D ¹	Yes
25	La Media Rd./Airway Rd.	496.6	F	507.9	F	+1 dedicated NB-R; +2 dedicated SB-R; +1 dedicated EB-R; +2 dedicated WB-R	182.5	F	212.5	F	Yes
26	La Media Rd./Siempre Viva Rd.	244.0	F	112.1	F	Restripe SB to 1T and 2SB-R; +2 dedicated WB-R	81.6	F	37.1	D	Yes
27	La Media Rd./Lone Star Rd.	N/A	N/A	N/A	N/A	-	N/A	N/A	N/A	N/A	•
28	Lone Star Rd./SR-125 SB Off Ramp	63.6	Е	96.8	F	-	-	-	-	-	Yes
29	Lone Star Rd./SR-125 NB On Ramp	2.1	A^1	147.8	F	-	-	-	-	-	Yes
30	Lone Star Rd./Piper Ranch Rd.	8.1	Α	9.3	A ¹	-	-	-	-	-	Yes
31	Otay Mesa Rd./Piper Ranch Rd.	129.2	F	166.2	F	+1 dedicated NB-R; +2 dedicated SB-R; +1 dedicated EB-R; +1 dedicated WB-R	44.6	D	47.5	D	No
32	Otay Mesa Rd./SR-125 SB Off Ramp	82.9	F	13.0	B¹	Restripe SB to SB-L, SB-T/L, SB-R	30.4	С	11.0	B ¹	Yes
33	Otay Mesa Rd./SR-125 NB On Ramp	4.8	А	22.0	С	-	-	-	-	-	-
34	Otay Mesa Rd./Harvest Rd.	37.9	D	133.7	F	+1 NB-L; +1 dedicated EB-R	11.8	В	38.9	D¹	Yes
35	Siempre Viva Rd./Otay Center Dr.	276.0	F	213.0	F	+1 dedicated NB-R; +1 SB-L; +1 dedicated SB-R; +1 EB-L; +1 dedicated EB-R; +1 WB-L; +1 dedicated WB-R	83.0	F	85.4	F	Yes
36	Siempre Viva Rd./SR-905 SB to EB Ramp	29.0	C¹	146.2	F	-	-	-	-	-	Yes
36A	Siempre Viva Rd./SR-905 SB to WB Ramp	2,641 ²	F¹	205.7 ²	F	Signalize; +1 SB-R	382.0	F	16.3	B¹	Yes
37	Siempre Viva Rd./SR-905 NB Ramps	47.2	D ¹	262.7	F	+1 WB-R	39.3	D ¹	250.4	F	Yes
38	Siempre Viva Rd./Paseo de las Americas	188.8	F	367.1	F	NB restriped to L, LT, R; SB restriped to L, T, 2R; +1 dedicated WB-R	78.8	E	159.5	F	Yes
39	Dennery Rd./Del Sol Blvd.	49.3	D	49.4	D	-	-	-	-	<u> </u>	-

		Но	rizon Ye	ar Plus CP	U		Hori		Plus CPU W pation	'ith	Significant
		AM Peal	k Hour	PM Peal	k Hour		AM Pea	ak Hour	PM Peak	Hour	After
	Intersection	CD	LOS	CD	LOS	Mitigation	CD	LOS	CD	LOS	Mitigation?
40	Ocean View Hills Pkwy./Del Sol Blvd.	67.8	E	67.3	E	+1 dedicated SB-R; restripe EB to L-LT-R	50.5	D	53.3	D	No
41	Ocean View Hills Pkwy./Street A	48.2	D	57.9	Е	+1 NB-L; +1 dedicated EB-R	35.5	D	34.6	С	No
42	Old Otay Mesa Rd./Beyer Blvd.	381.2	F	396.5	F	+1 dedicated NB-R; +1 dedicated SB-R	194.3	F	181.8	F	Yes
43	Otay Mesa Rd./Corporate Center Dr.	119.3	F	184.3	F	Restripe SB to 2L-TRF-R; +1 dedicated EB-R	78.6	E	140.6	F	Yes
44	Otay Mesa Rd./Innovative Dr.	114.4	F	108.9	F	Restripe SB to 2L-TRF-R	113.7	F	89.8	F	Yes
45	Harvest Rd./Airway Rd.	116.7	F	13.8	В	+1 dedicated EB-R	42.5	D	13.5	В	No
46	Harvest Rd./Siempre Viva Rd.	76.6	E	69.2	E	+1 SB-L; +1 dedicated SB-R; +1 dedicated WB-R	28.7	С	51.5	D	No
47	Otay Mesa Rd./Sanyo Ave.	263.3	F	276.6	F	+1 NB-L; +1 dedicated NB-R; +2 dedicated EB-R; +1 dedicated WB- R	106.7	F	89.0	F	Yes
48	Airway Rd./Sanyo Ave.	225.6	F	229.8	F	+1 NB-L; +1 dedicated NB-R; +1 SB-L; +2 dedicated SB-R; +2 dedicated EB-R; +1 dedicated WB- R	49.7	D	38.6	D	No
49	Paseo de las Americas/Heinrich Hertz Dr.	988.3 ³	F	244.6 ³	F	Signalize; +1 NB-L	8.9	Α	13.0	В	No
50	Paseo de las Americas/Marconi Dr.	869.6 ⁴	F	108.0 ⁴	F	Signalize; +1 SB-L	11.5	В	13.4	В	No
51	Heritage Rd./Otay Valley Rd.	516.4	F	837.9	F	+1 dedicated NB-R; +2 dedicated SB-R; +1 EB-L; +1 dedicated EB-R; +1 WB-L; +1 dedicated WB-R	178.7	F	382.7	F	Yes

		Но	orizon Ye	ar Plus CP	U		Hori		Plus CPU W pation	ith	Significant		
		AM Pea	k Hour	PM Pea	k Hour		AM Pea	k Hour	PM Peak	Hour	After		
	Intersection	CD	LOS	CD	LOS	Mitigation	CD	LOS	CD	LOS	Mitigation?		
52	Aviator Rd./La Media Rd.	105.1	F	38.0	D	+1 dedicated SB-R	27.7	С	18.3	В	No		
53	Otay Valley Rd./Avenida de las Vistas	764.4	F	298.6	F	-	-	-	-	-	Yes		

SOURCE: Appendix J (Urban Systems Associates, Inc. 2012).

NOTE: Control delay results should be considered unreliable at delay volumes higher than two times the LOS E delay of 80.0 seconds.

Bold indicates a significant impact.

Legend

CD = Control Delay

LOS = Level of Service

SB=Southbound

NB=Northbound

EB=Eastbound

WB=Westbound

L = left turn lane

T = through lane

R = right turn lane

S = shared lane

Dedicated= change from a shared lane to an exclusive dedicated lane

^{*}This is a suggested improvement and is not mitigation for a CPU impact.

¹Vehicles queues may extend through this intersection from a downstream intersection, resulting in degraded LOS from vehicles blocking this intersection.

²Unsignalized: SB to WB right turn at LOS F (AM and PM peak hours)

³Unsignalized: eastbound left turn at LOS F (AM Peak Hour); eastbound left and right turns at LOS F (PM Peak Hour).

⁴Unsignalized: westbound left turn at LOS F (AM and PM Peak Hours); westbound right turn at LOS F (PM Peak Hour).

TABLE 5.12-7
CPU HORIZON YEAR FREEWAY SEGMENT LEVELS OF SERVICE

		Lanes		Horizon Year	Peak			HÖV	ion (with lane) ¹
	Segment	(1-Way)	Capacity	ADT	Volume	V/C	LOS	V/C	LOS
	Picador Blvd. to I-805	2 + AUX	6,500	128,500	6,853	1.05	F0	0.83	D
	I-805 to Caliente Ave.	3 + CL	8,550	221,000	11,787	1.38	F2	1.13	F0
	Caliente Ave. to Heritage Rd.	3	7,050	196,000	10,453	1.48	F3	1.18	F0
SR-905	Heritage Rd. to Britannia Blvd.	3	7,050	173,000	9,227	1.31	F1	1.04	F0
3K-903	Britannia Blvd. to La Media Rd.	3	7,050	154,000	8,213	1.16	F0	0.92	D
	La Media Rd. to SR-125	3	7,050	103,500	5,520	0.78	С	-	-
	SR-125 to Siempre Viva Rd.	3	7,050	99,000	5,280	0.75	С	-	-
	Siempre Viva Rd. to Border	3	7,050	64,500	3,440	0.49	В	-	-
	Main St. to Palm Ave.	4+AUX+2HOV	14,400	248,000	13,227	0.92	D	-	-
1.005	Palm Ave. to SR-905	4+AUX+2HOV	14,400	222,000	11,840	0.82	D	-	-
I-805	SR-905 to I-5	4	9,400	122,000	6,507	0.69	С	-	-
	I-5 to Border	6	14,100	135,500	7,227	0.51	В	-	-
SR-125	Birch Rd. to Lone Star Rd.	4 (Toll)	9,400	155,500	8,293	0.88	D	-	-
SK-125	Lone Star Rd. to SR-905	4 (Toll)	9,400	115,500	6,160	0.66	С	-	-
	SR-905 to Enrico Fermi Dr.	2	4,700	47,000	2,507	0.53	В	-	-
SR-11	Enrico Fermi Dr. to Siempre Viva Rd	2	4,700	24,500	1,307	0.28	Α	-	-
	Siempre Viva Rd. to Border	2	4,700	39,500	2,107	0.45	В	-	-

SOURCE: Appendix J (Urban Systems Associates, Inc. 2012)

¹SR-905 would include one HOV lane in each direction. Note that the addition of 1 HOV lane in each direction to SR-905 is not in the RTP and is not funded. The addition of 2 HOV lanes to I-805 is in the RTP and is funded, and is included in the Horizon Year baseline conditions.

ADT = average daily traffic V/C = volume-to-capacity ratio LOS = Level of service

Bold indicates a significant impact.

Freeway Ramp Metering

As shown in Table 5.12-8, 11 of the freeway ramp metering locations would be expected to experience delays in excess of 15 minutes in the Horizon Year Plus CPU condition. Out of these locations, the following five ramp meter locations would also experience a downstream freeway operation of unacceptable LOS E or F in the Horizon Year Plus CPU condition:

- 1. SR-905/Caliente Avenue WB on-ramp (AM and PM peak hours)
- 2. SR-905/Heritage Road WB on-ramp (PM peak hour)
- 3. SR-905/Britannia Boulevard WB on-ramp (AM and PM peak hours)
- 4. SR-905/Britannia Boulevard EB on-ramp (PM peak hour)
- 5. SR-905/La Media Road WB on-ramp (AM and PM peak hours)

The CPU impacts at these five ramp meter locations would be significant.

5.12.3.2 Significance of Impacts

a. Roadway Segments

A total of 24 roadway segments under the Horizon Year Plus CPU condition would be expected to operate at unacceptable LOS. Therefore, the CPU would have a significant impact at all of these 24 roadway segment locations.

b. Intersections

A total of 49 intersections would be expected to operate at unacceptable levels under the Horizon Year Plus CPU condition. Therefore, the CPU would have a significant impact at all 49 of these intersections.

c. Freeway Segments

With the planned and funded I-805 improvements, all I-805 freeway segments would be expected to operate at an acceptable LOS in the Horizon Year Plus CPU condition and therefore impacts would be less than significant. Five SR-905 freeway segments would be expected to operate at unacceptable levels in the Horizon Year Plus CPU condition. Thus, the CPU impact at these five SR-905 freeway segments would be significant.

d. Freeway Ramp Metering

Five SR-905 freeway ramps would be expected to experience delays over 15 minutes with downstream freeway operations at unacceptable levels in the Horizon Year Plus CPU condition. The CPU impact at these five freeway ramps would be significant.

TABLE 5.12-8 CPU HORIZON YEAR RAMP METER OPERATIONS

Peak		Demand ¹	Meter Rate ²	Excess	Queue	Delay ³	Exceeds 15-Minute	Significant? (Exceeds 15 minutes and downstream
Hour	Location	(Veh/Hr)	(Veh/Hr)	Demand	(Feet)	(Min)	Delay?	freeway is LOS E or F)
AM	I-805/Palm Avenue NB (from WB)	1,280	960	320	8,000	20.0	Yes	No ⁴
PM	I-805/Palm Avenue NB (from WB)	1,380	960	420	10,500	26.3	Yes	No ⁴
AM	I-805/Palm Avenue NB (from EB)	655	960	None	None	None	No	No
PM	I-805/Palm Avenue NB (from EB)	540	960	None	None	None	No	No
AM	I-805/Palm Avenue SB	455	960	None	None	None	No	No
PM	I-805/Palm Avenue SB	645	960	None	None	None	No	No
AM	SR-905/Caliente Avenue WB	1,860	960	900	22,500	56.3	Yes	Yes
PM	SR-905/Caliente Avenue WB	1,550	960	590	14,750	36.9	Yes	Yes
AM	SR-905/Caliente Avenue EB	400	960	None	None	None	No	No
PM	SR-905/Caliente Avenue EB	400	960	None	None	None	No	No
AM	SR-905/Heritage Road WB	1,135	960	175	4,375	10.9	Yes	No
PM	SR-905/Heritage Road WB	2,550	960	1,590	39,750	99.4	Yes	Yes
AM	SR-905/Heritage Road EB	360	960	None	None	None	No	No
PM	SR-905/Heritage Road EB	800	960	None	None	None	No	No
AM	SR-905/Britannia Blvd. WB	1,350	960	390	9,750	24.4	Yes	Yes
PM	SR-905/Britannia Blvd. WB	3,355	960	2,395	59,875	149.1	Yes	Yes
AM	SR-905/Britannia Blvd. EB	710	960	None	None	None	No	No
PM	SR-905/Britannia Blvd. EB	1,400	960	440	11,000	27.5	Yes	Yes
AM	SR-905/La Media Road WB	2,050	960	1,090	27,250	68.1	Yes	Yes
PM	SR-905/La Media Road WB	3,025	960	2,065	51,625	129.0	Yes	Yes
AM	SR-905/La Media Road EB	1,000	960	40	1,000	2.5	No	No
PM	SR-905/La Media Road EB	1,950	960	990	24,750	61.8	Yes	No ⁴
AM	SR-905/Siempre Viva Rd. NB	1,185	960	225	5,625	14.1	No	No
PM	SR-905/Siempre Viva Rd. NB	3,510	960	2,550	63,750	159.4	Yes	No⁴
AM	SR-905/Siempre Viva Rd. SB	750	960	None	None	None	No	No
PM	SR-905/Siempre Viva Rd. SB	1,670	960	710	17,750	44.4	Yes	No ⁴
AM	SR-125/Otay Mesa Rd. NB	1,680	960	720	24,000	45.0	Yes	No⁴
PM	SR-125/Otay Mesa Rd. NB	2,455	960	1,495	37,375	93.4	Yes	No ⁴
AM	SR-125/Lone Star Rd. NB	850	960	None	None	None	No	No
PM	SR-125/Lone Star Rd. NB	3,615	960	2,655	66,375	166.0	Yes	No⁴

SOURCE: Appendix J (Urban Systems Associates, Inc. 2012). **Bold** indicates a significant impact.

¹Total hourly volume entering from both directions.

²Most restrictive meter rate used, per Caltrans. This Veh/Hr assumes 2 lanes and 2 cars per green light on a 15-second cycle. $^{3}Delay = \frac{Excess\ Demand\ (vehicles)}{Meter\ Rate\ (vehicles\ per\ hour)} x\ 60\ min.\ per\ hour$

⁴While the delay exceeds 15 minutes, the downstream freeway operates at acceptable LOS. Thus, this impact is considered less than significant.

5.12.3.3 Mitigation Framework

At the program-level, impacts shall be reduced through the proposed classifications of roadways and identification of necessary roadway, intersection and freeway improvements. Mitigation or construction of these improvements shall be carried out at the project-level via the Public Facilities Financing Plan and future development projects. Funding shall be through construction by individual development projects, collection of FBA fees, fair share contributions to be determined at the project-level, and potentially other sources.

The following standards apply to the area designated for commercial and industrial uses as shown in Figure 3-9 (Project Description) within OM-CPIOZ. Future commercial and industrial development applications for properties identified on Figure 3-9 that are consistent with the CPU, the based zone regulations, and these supplemental regulations will be processed ministerially (CPIOZ A) in accordance with the procedures of the CPIOZ (Municipal Code Chapter 13, Article 2, Division 14). Development that complies with all of the following shall be processed as CPIOZ A: Development that includes construction of the abutting street(s) to the street classification identified in the Mobility Element of the Otay Mesa Community Plan and intersection configurations identified in Figures 5.12-4a-g; and development projects that can provide documentation from a California Registered Traffic Engineer, confirmed and accepted by the City Engineer, stating that the proposed project's traffic volumes are based on the City's trip generation rates and are less than 1,000 ADTs.

Development proposals that do not comply with the supplemental regulations for CPIOZ Type A and the regulations of the underlying zone shall apply for a Process 3 CPIOZ Type B permit. Applications for a Process 3 CPIOZ Type B permit shall meet the purpose and intent of the regulations of the underlying zone and the supplemental regulations. Deviations from these regulations may be granted by the City Manager in accordance with the procedures of the CPIOZ (Municipal Code Section 132.1403).

a. Roadway Segments

Even with incorporation of the recommended street classifications in Table 5.12-4 in the CPU, Public Facilities Financing Plan, and future project development review and (ministerial) and discretionary review through the CPIOZthe proposed classifications, 24 roadway segments would operate unacceptably in the Horizon Year Plus CPU condition. The TIA identified additional potential improvement measures that are not recommended as part of the CPU and are not included as part of the project. The reasons for not recommending the improvements are detailed in the Findings and the Statement of Overriding Considerations include various factors such as adjacency to environmentally sensitive land and/or steep hillsides, existing development conflicts, and/or multi-modal and urdanurban design context. The impacts are considered significant and unavoidable unmitigated. At the project-level, partial mitigation may be possible in the

form of transportation demand management measures that encourage carpooling and other alternate means of transportation. At the time future subsequent development projects are proposed, project-specific traffic analyses would contain detailed recommendations. All project-specific mitigation for direct impacts shall be implemented prior to the issuance of Certificate of Occupancy in order to provide mitigation at the time of impact.

The 24 roadway segments that would operate unacceptably in the Horizon Year plus CPU Condition are listed below.

- 1. Otay Mesa Road, Caliente Ave. to Corporate Center Dr.
- 2. Otay Mesa Road, Heritage Rd. to Cactus Rd.
- 3. Airway Road, Caliente Ave. to Heritage Rd.
- 4. Airway Road, Heritage Rd. to Cactus Rd.
- 5. Siempre Viva Road, Otay Center Dr. to SR-905
- 6. Siempre Viva Road, SR-905 to Paseo de las Americas
- 7. Caliente Avenue, Airway Rd. to Beyer Blvd.
- 8. Caliente Avenue, Beyer Blvd. to Siempre Viva Rd.
- 9. Heritage Road/Otay Valley Road, Main St. to Avenida de Las Vistas
- 10. Heritage Road/Otay Valley Road, Avenida de las Vistas to Datsun St.
- 11. Cactus Road, Otay Mesa Rd. to Airway Rd.
- 12. Cactus Road, Airway Rd. to Siempre Viva Rd.
- 13. Britannia Boulevard, SR-905 to Airway Rd.
- 14. La Media Road, SR-905 to Airway Rd.
- 15. Dennery Road, Black Coral Ln. to East End
- 16. Avenida de las Vistas, Vista Santo Domingo to Dennery Rd.
- 17. Del Sol Boulevard, Surf Crest Dr. to Riviera Pointe
- 18. Del Sol Boulevard, Riviera Pointe to Dennery Rd.
- 19. Old Otay Mesa Road, Crescent Bay Dr. to Beyer Blvd.
- 20. Camino Maguiladora, Heritage Rd. to Pacific Rim Ct.
- 21. Camino Maquiladora, Pacific Rim Ct. to Cactus Rd.
- 22. Progressive Avenue, Corporate Center Dr. to Innovative Dr.
- 23. Datsun Street, Innovative Dr. to Heritage Rd.
- 24. Exposition Way/Vista Santo Domingo, Avenida de las Vistas to Corporate Center Dr.

b. Intersections

A total of 49 intersections would be significantly impacted by the CPU. <u>Even with incorporation of the recommended land configurations shown in Figure 5.12-4a-4g for the 53 intersections analyzed into the projects to be funded through the Public Facilities Financing Plan, and through future development projects (ministerial and discretionary through the CPIOZWith mitigation measures, a total of 39 intersections would continue</u>

to be significantly impacted. The TIA identified further potential improvement measures such as additional intersection turning movement lanes that are not recommended as part of the CPU and are not included as part of the project. The reasons for not recommending the improvements include considerations such as adjacency to environmentally sensitive land, steep hillsides, routes to schools, and multi-modal and urban design context, or because additional study would be required in order to make additional recommendations are detailed in the Findings and Statement of Overriding Considerations. At the project-level, partial mitigation may be possible in the form of transportation demand management measures that encourage carpooling and other alternate means of transportation. At the time future discretionary subsequent development projects are proposed, project-specific traffic analyses would contain detailed recommendations. All project-specific mitigation for direct impacts shall be implemented prior to the issuance of Certificate of Occupancy in order to provide mitigation at the time of impact.

The impacts are considered significant and <u>unavoidableunmitigated</u>. To reduce impacts the following mitigation shall be provided:

TRF-1: Intersections shall be improved per the intersection lane designations identified in Figures 5.12-4a-g.

c. Freeway Segments

While providing one HOV lane in each direction on the SR-905 would reduce impacts associated with buildout of the CPU, the additional lanes are not funded; therefore, impacts would remain significant and unavoidable unmitigated at the programmatic level. At the project-level, partial mitigation may be possible in the form of auxiliary lanes and/or transportation demand management measures that encourage carpooling and other alternate means of transportation. At the time future discretionary subsequent development projects are proposed, project-specific traffic analyses would contain detailed recommendations. All project-specific mitigation for direct impacts shall be implemented prior to the issuance of Certificate of Occupancy in order to provide mitigation at the time of impact.

d. Freeway Ramp Metering

Mitigation that would reduce freeway ramp metering impacts at the five significantly impacted SR-905 locations consists of adding a lane to the freeway on-ramp, auxiliary lanes, and/or implementation of transportation demand management (TDM) measures that encourage carpooling and other alternate means of transportation. At the time future discretionarysubsequent development projects are proposed, project-specific traffic analyses would contain detailed recommendations. All project-specific mitigation for direct impacts shall be implemented prior to the issuance of Certificate of Occupancy in order to provide mitigation at the time of impact.

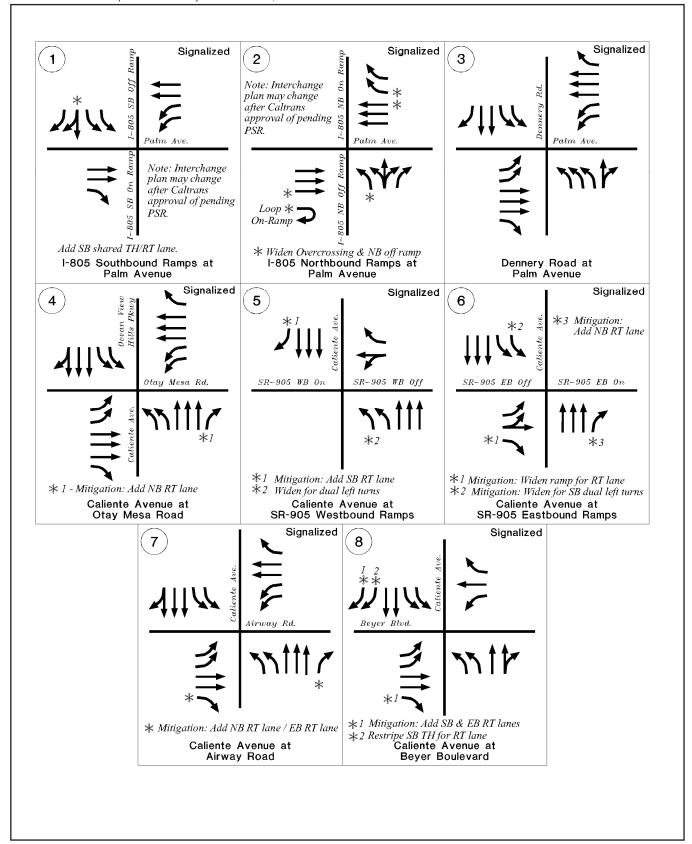


FIGURE 5.12-4a

Buildout Lane Configurations 1-8

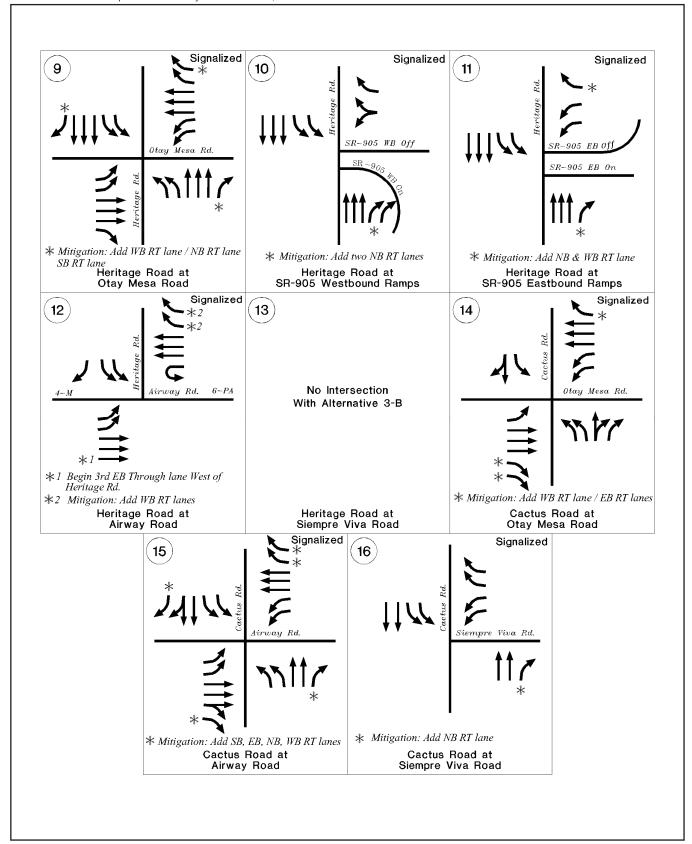


FIGURE 5.12-4b
Buildout Lane Configurations 9-16

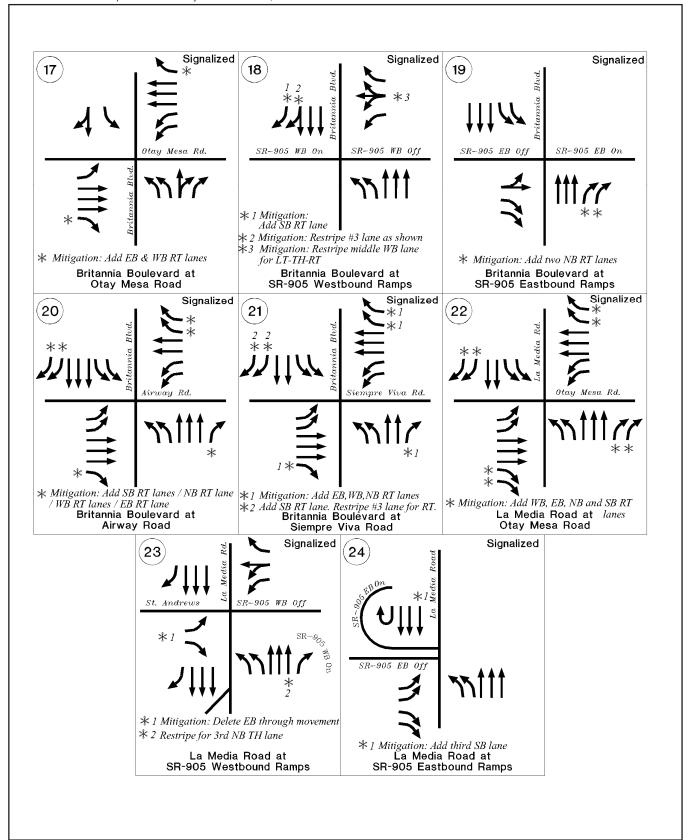


FIGURE 5.12-4c
Buildout Lane Configurations 17-24

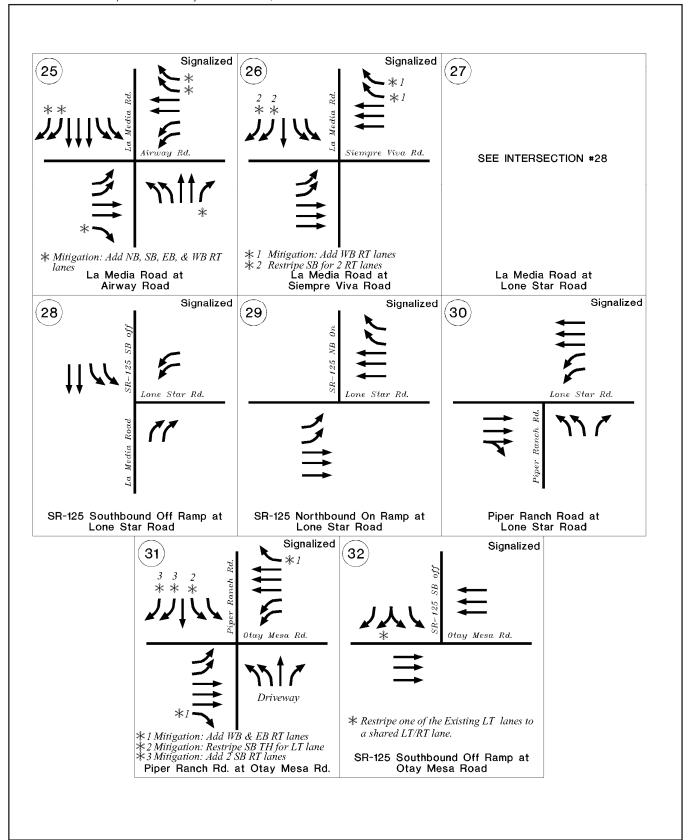


FIGURE 5.12-4d
Buildout Lane Configurations 25-32

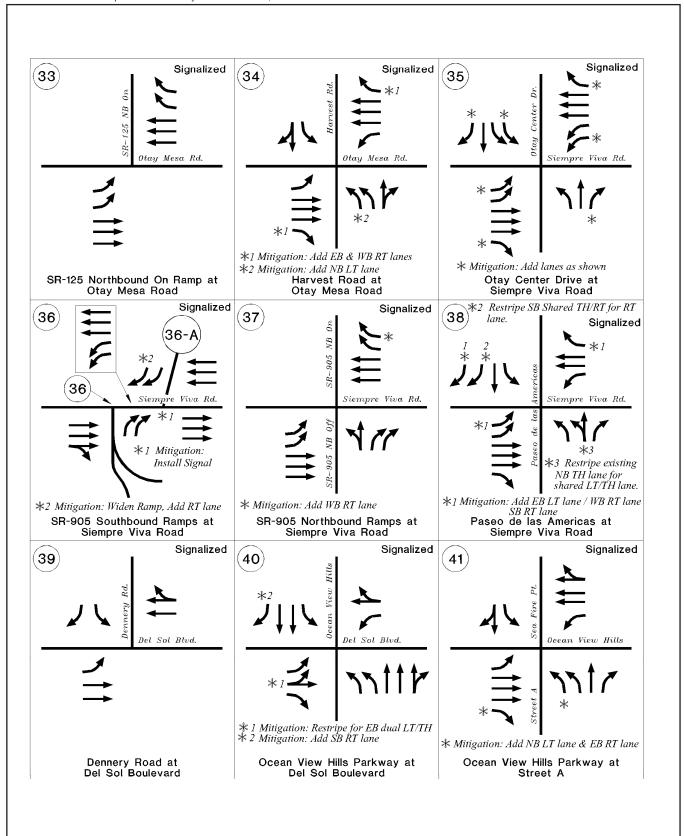


FIGURE 5.12-4e
Buildout Lane Configurations 33-41

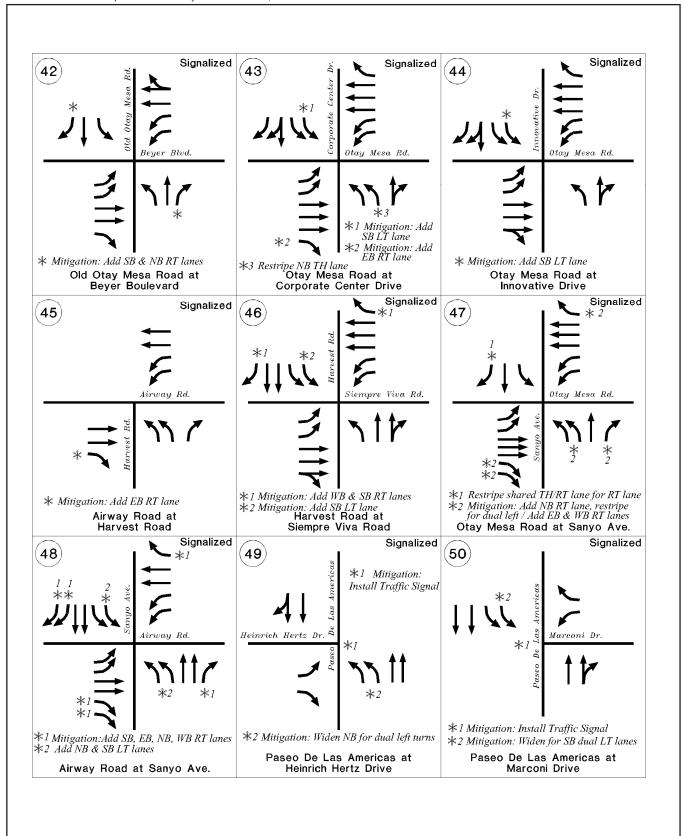


FIGURE 5.12-4f
Buildout Lane Configurations 42-50

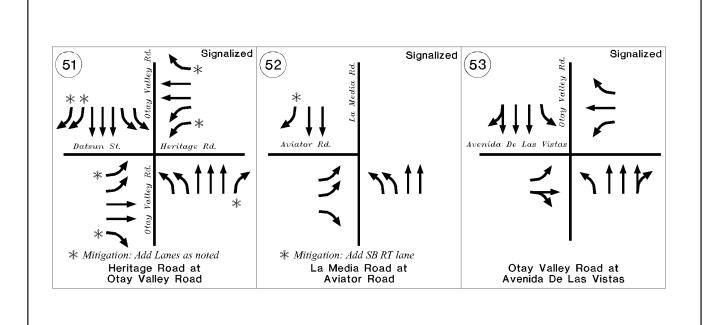


FIGURE 5.12-4g
Buildout Lane Configurations 51-53

However, due to the uncertainty associated with implementing freeway ramp improvements, and uncertainty related to implementation of TDM measures, the freeway ramp impacts associated with the CPU would remain significant and unavoidable unmitigated at the program-level.

5.12.3.4 Significance After Mitigation

a. Roadway Segments

Implementation of roadway segment improvements proposed as part of the CPU (see Section 5.12.3.1(a) above) would resolve several traffic impacts that would occur under the Horizon Year. However, 24 significant impacts as shown in Table 5.12-5 would remain unavoidable unmitigated and would operate unacceptably in the Horizon Year plus CPU Condition as shown below.:

- 1. Otay Mesa Road, Caliente Ave. to Corporate Center Dr.
- 2. Otay Mesa Road, Heritage Rd. to Cactus Rd.
- 3. Airway Road, Caliente Ave. to Heritage Rd.
- 4. Airway Road, Heritage Rd. to Cactus Rd.
- 5. Siempre Viva Road, Otay Center Dr. to SR-905
- 6. Siempre Viva Road, SR-905 to Paseo de las Americas
- 7. Caliente Avenue, Airway Rd. to Beyer Blvd.
- 8. Caliente Avenue, Beyer Blvd. to Siempre Viva Rd.
- 9. Heritage Road/Otay Valley Road, Main St. to Avenida de Las Vistas
- 10. Heritage Road/Otay Valley Road, Avenida de las Vistas to Datsun St.
- 11. Cactus Road, Otay Mesa Rd. to Airway Rd.
- 12. Cactus Road, Airway Rd. to Siempre Viva Rd.
- 13. Britannia Boulevard, SR-905 to Airway Rd.
- 14. La Media Road, SR-905 to Airway Rd.
- 15. Dennery Road, Black Coral Ln. to East End
- 16. Avenida de las Vistas, Vista Santo Domingo to Dennery Rd.
- 17. Del Sol Boulevard, Surf Crest Dr. to Riviera Pointe
- 18. Del Sol Boulevard, Riviera Pointe to Dennery Rd.
- 19. Old Otay Mesa Road, Crescent Bay Dr. to Beyer Blvd.
- 20. Camino Maguiladora, Heritage Rd. to Pacific Rim Ct.
- 21. Camino Maquiladora, Pacific Rim Ct. to Cactus Rd.
- 22. Progressive Avenue, Corporate Center Dr. to Innovative Dr.
- 23. Datsun Street, Innovative Dr. to Heritage Rd.
- 24. Exposition Way/Vista Santo Domingo, Avenida de las Vistas to Corporate Center Dr.

b. Intersections

Implementation of intersection improvements identified in TRF-1 above, would occur in conjunction with future development within the CPU area and with implementation of Public Facilities Financing transportation projects. The improvements would reduce significant impacts to below a level of significance at the following ten intersections (see Table 5.12-6):

- Palm Avenue/I-805 NB Ramps
- Otay Mesa Road/Piper Ranch Road
- Ocean View Hills Parkway/Del Sol Boulevard
- Ocean View Hills Parkway/Street A
- Harvest Road/Airway Road
- Harvest Road/Siempre Viva Road
- Airway Road/Sanyo Avenue
- Paseo de las Americas/Heinrich Hertz Drive
- Paseo de las Americas/Marconi Drive
- Aviator Road/La Media Road

The remaining 39 intersections would continue to operate at unacceptable levels with the proposed mitigation. Additional intersection mitigation measures are not desirable and not recommended as discussed in the Findings and Statement of Overriding Considerations. Additional mitigation such as TDM measures may be identified in the future at the project-level. Thus, these impacts would remain significant and not fully mitigated at the program-level.

c. Freeway Segments

The CPU would significantly impact five segments of SR-905. Caltrans has designed the SR-905 to allow for the construction of HOV lanes, which would reduce the CPU impacts to below a level of significance at two of the five impacted freeway segments identified in Table 5.12-7. However, the addition of HOV lanes to SR-905 is not a funded or planned project at this time and improvements to these facilities cannot be guaranteed to be implemented by the City. Additional mitigation such as TDM measures may be identified in the future at the project-level. Thus, at the program-level, CPU impacts to the five SR-905 freeway segments would remain significant and unmitigated.

d. Freeway Ramp Metering

As discussed above under 5.12.3.3(d), due to the uncertainty associated with implementing freeway improvements, limitations on increasing ramp capacity, and uncertainty regarding implementation of TDM measures, the freeway ramp impacts associated with the CPU identified in Table 5.12-8 would remain significant and unmitigated at the program-level.

5.12.4 Issue 2: Traffic Hazards

Would the project result in an increase in traffic hazards for motor vehicles, bicyclists, or pedestrians?

5.12.4.1 Impacts

The CPU is intended to create a balanced and safe multi-modal transportation network. As a part of this effort, the residential and industrial interfaces have been reduced and designated truck routes have been established (refer to Figure 3-7) to avoid the potential transportation conflicts caused by large haul trucks on residential and other streets where pedestrian use is expected to be heavy. Where an interface of International Business and Trade and residential designations would be allowed, policies have been established to require a gradual transition between residential and industrial uses that would reduce traffic conflicts (see Section 5.1.4.1).

All roadway improvements that would occur as part of CPU implementation would be constructed to City standards, including standards for sight distance, turning radii, speed limits, etc., and to the satisfaction of the City Engineer. Therefore, implementation of the CPU would not result in an increase in traffic hazards for motor vehicles, bicyclists or pedestrians.

5.12.4.2 Significance of Impacts

All roadway improvements would be designed and constructed in accordance with the CPU Mobility Element roadway network satisfactory to the City Engineer. Additionally, the CPU includes policies that would reduce potential conflicts between vehicle, pedestrian, and bicyclists. Conformance to City design standards and CPU policies would reduce impacts associated with traffic hazards to motor vehicles, bicyclists, or pedestrians to below a level of significance.

5.12.4.3 Mitigation Framework

Impacts would be less than significant; therefore, no mitigation is required.

5.12.4.4 Significance After Mitigation

Impacts would be less than significant.

5.12.5 Issue 3: Circulation and Access

Would the CPU create alterations to present circulation movements in the area including effects on existing public access points?

5.12.5.1 Impacts

As discussed in Section 5.12.3.1 above, the CPU proposes alterations to the existing circulation system through roadway reclassifications within the CPU area. Buildout of the CPU would result in increased circulation capacity and access for vehicles, bicycles, and pedestrians (see Figures 3-3). The existing Otay Mesa POE and Brown Field access would be maintained.

Temporary closures with detours may be required during street improvements and would be addressed through traffic control plans in accordance with City policy as construction plans for future projects are processed through the City. No existing public access points would be permanently closed as part of CPU implementation.

5.12.5.2 Significance of Impacts

The CPU would not create alterations to present circulation movements in the area including existing public access points therefore impacts would be less than significant.

5.12.5.3 Mitigation Framework

Impacts would be less than significant; therefore, no mitigation is required.

5.12.5.4 Significance after Mitigation

Impacts would be less than significant.

5.12.6 Issue 4: Alternative Transportation

Would the CPU conflict with the adopted policies, plans, or programs supporting alternative transportation modes (e.g., bus turnouts, trolley extensions, bicycle lanes, bicycle racks, etc.)?

5.12.6.1 Impacts

a. Network Configuration

The CPU includes plans for a pedestrian, transit, and bicycle transportation network (see Figures 3-2, 3-3, 3-5 and 3-6). With implementation of the CPU, Airway Road would serve as the principal community transportation and activity corridor. An east-west high frequency bus corridor is proposed to link between the South Bay bus rapid transit (BRT) and San Diego Trolley. The transit route that travels along Airway Road would link villages, employment centers, and Southwestern College within Otay Mesa. Additional right-of-way for Airway Road would provide the option for dedicated transit lanes or other transit priority measures. Additionally, a north-south BRT route is planned on SR-125 and SR-905 from the Otay Mesa POE north.

All local bus service within the CPU area would remain with implementation of the CPU. The BRT along the SR-125 and other bus routes in the CPU would continue to be operated by MTS. While the CPU takes into consideration future bus service, the future bus service to the area would be developed and provided by MTS. Changes to MTS bus service are out of the control of the Lead Agency (City).

The CPU would provide several more designated bicycle routes compared to the existing network, including a completely connected path along Airway Road; extending the Siempre Viva route; a connection from Otay View Hills Parkway through Caliente and Beyer; extension from Dennery Road through Ave de las Vistas/Exposition/Corporate Center Drive to Otay Mesa Road; a route around the airport to Lone Star Road; and extended north-south routes on Cactus Road, Britannia, and La Media. Existing pedestrian paths are connected within the residential/commercial areas in the western plan area; however, the eastern plan area pedestrian network is fragmented and inconsistent. Buildout of the CPU would improve this condition by providing a connected pedestrian sidewalk along roadways. The proposed mixed-use areas would be designed to increase walkability. In this way, the CPU would positively affect alternative transportation.

b. CPU Goals and Policies

The CPU includes several goals and policies to promote alternative transportation consistent with the General Plan (see Section 5.12.1.1 for a summary of these goals and policies). The City of San Diego General Plan promotes alternative transportation through mixed-use villages, walkability, designs to promote transit, and bicycle access and transportation. As discussed in the Mobility Element (Chapter 3), the CPU includes the following alternative transportation goals:

- A pedestrian sidewalk and trails network that allows for safe and comfortable walking throughout the community.
- An effective transit network that provides fast and reliable service to local and regional destinations.
- A complete and interconnected street system that balances the needs of drivers, bicyclists, pedestrians, and others.
- A bicycle commuter network that links residents to transit, recreational, educational, and employment opportunities within the community.
- Transportation infrastructure and operations investments that facilitate goods movement and international travel, while fostering economic prosperity and a high quality of life within the community.

 Support for public health goals to increase the potential for walking and other forms of exercise to be incorporated into everyday life.

To implement these goals, the CPU includes a series of policies. Many of these policies promote alternative transportation by ensuring that such transportation would be safe, as detailed in Section 5.12.4 above. Also, several policies promote the future availability of transit, alternative transportation convenience (including connectivity and speed), and the appeal of alternative transportation. These policies include:

- 3.1-1 Provide a sidewalk and trail system with connections to villages, activity centers, and open spaces.
- 3.1-4 Enhance street or pedestrian connections within industrial superblocks through exterior improvements such as public art, pedestrian scale windows, entrances, signs, street furniture, landscape, and plazas.
- 3.1-5 Implement the Community Plan to contribute to more walkable, tree-lined streets, using identified drought-tolerant species.
- 3.2-1 Encourage SANDAG and MTS to expand transit investments and service in Otay Mesa.
- 3.2-2 Implement transit priority measures such as queue jumpers and signal priority measures to allow transit to bypass congestion and result in faster transit travel times at critical locations.
- 3.2-4 Emphasize transit orientation in village development plans including but not limited to those identified on the Community Plan Land Use Map, Community Plan Figure 2-1. See also OMCP Urban Design Element.
- 3.4-1 Refine and implement the Bicycle Master Plan in the Otay Mesa Community Plan area.
- 3.4-2 Provide multi-use trails in a manner consistent with the MSCP, including but not limited to the following locations (see also-Recreation Element, Trails Figure 7-1). Please nNote that south of Otay Mesa Road these alignments are conceptual, with trail head areas and trail alignments being required with future specific plans.

All of these CPU policies and goals would be consistent with the City of San Diego's General Plan.

5.12.6.2 Significance of Impacts

The CPU would be consistent with existing policies supporting alternative transportation modes. There would be no conflict and, thus, there would be no impact.

5.12.6.3 Mitigation Framework

Impacts would be less than significant; therefore, no mitigation is required.

5.12.6.4 Significance After Mitigation

Impacts would be less than significant.

TITLE: CALIENTE AVENUE (Otay Mesa Road to Proposed SR 905 Overpass)

PROJECT: OM T-11.1

DEPARTMENT: PUBLIC WORKS WBS, CIP, or JO #: N/A

COUNCIL DISTRICT: COMMUNITY PLAN:

SOURCE	FUNDING:	EXPENDED	CONT APPROP	FY 2014	FY 2015	FY 2016	FY 2017	FY 2018
FBA-OM	\$390,000							
DIF-OM								
FBA-OM(w)								
FBA-OM(e)								
PDIF (w)								
PDIF (e)								
DEV/SUBD								
OTHER	\$110,000							
TOTAL	\$500,000	\$0	\$0	\$0	\$0	\$0	\$0	\$0

SOURCE	FY 2022	FY 2023	FY 2024	FY 2025	FY 2026	FY 2027	FY 2028	FY 2029
FBA-OM					\$390,000			
DIF-OM								
FBA-OM(w)								
FBA-OM(e)								
PDIF (w)								
PDIF (e)								
DEV/SUBD								
OTHER					\$110,000			
TOTAL	\$0	\$0	\$0	\$0	\$500,000	\$0	\$0	\$0

CONTACT: TRANSPORTATION & STORM WATER

TELEPHONE: (619) 533-3126

EMAIL: N/A

100

TITLE: CALIENTE AVENUE (Otay Mesa Road to Proposed SR 905 Overpass)

PROJECT: OM T-11.1

DEPARTMENT: PUBLIC WORKS
CIP or JO #: N/A

COUNCIL DISTRICT: COMMUNITY PLAN:

8 OM

DESCRIPTION:

WIDEN TO PROVIDE A SOUTHBOUND RIGHT TURN LANE FROM CALIENTE AVENUE ONTO WESTBOUND SR-905 AND WIDEN TO ADD NORTHBOUND THROUGH LANE AT CALIENTE AVENUE AND OTAY MESA ROAD. THE LENGTH OF TURN LANES IN THIS CASE WOULD BE 400 LINEAL FEET.

JUSTIFICATION:

THE OTAY MESA COMMUNITY PLAN TRANSPORTATION ELEMENT SUGGESTS THAT AN INTEGRATED TRANSPORTATION NETWORK WILL PROVIDE MOBILITY AND ACCESSIBILITY TO THE RESIDENTS AND BUSINESSES OF THE COMMUNITY. THIS PROJECT IS CONSISTENT WITH THE GOALS OF THE OTAY MESA COMMUNITY PLAN AND THE CITY'S GENERAL PLAN, AND IS NEEDED TO SERVE THE COMMUNITY AT BUILDOUT.

FUNDING ISSUES:

OTHER FUNDING SOURCES: UNIDENTIFIED: \$110,000

NOTES:

SHOULD TRAFFIC CONDITIONS AT THE INTERCHANGE OF CALIENTE AVENUE AND SR-905 BECOME DETRIMENTAL TO THE IMPLEMENTATION OF REGIONAL ECONOMIC GOALS, ADDITIONAL IMPROVEMENTS MAY BE NECESSARY AT THE SR 905 FREEWAY AND/OR AT THE FREEWAY INTERCHANGE. THESE IMPROVEMENTS MAY INCLUDE, BUT ARE NOT LIMITED TO, ADDITIONAL FREEWAY LANES, AUXILIARY LANES, ADDITIONAL ON-RAMP LANES, ADDITIONAL INTERSECTION TURN LANES, AND FREEWAY OVERCROSSING WIDENING.. SUCH IMPROVEMENTS WOULD HAVE TO BE DETERMINED WITH CLOSE COORDINATION WITH CALTRANS AND VETTED THROUGH THEIR PSR PROCESS.

SCHEDULE:

FUNDING FOR DESIGN AND CONSTRUCTION IS ANTICIPATED IN FY 2026.

CONTACT: TRANSPORTATION & STORM WATER

TELEPHONE: (619) 533-3126

EMAIL: N/A

TITLE: CALIENTE AVENUE (SR 905 Overpass)

PROJECT: OM T-11.2

DEPARTMENT: PUBLIC WORKS COUNCIL DISTRICT: WBS, CIP, or JO #: N/A COMMUNITY PLAN:

SOURCE	FUNDING:	EXPENDED	CONT APPROP	FY 2014	FY 2015	FY 2016	FY 2017	FY 2018
FBA-OM	\$39,000							
DIF-OM								
FBA-OM(w)								
FBA-OM(e)								
PDIF (w)								
PDIF (e)								
DEV/SUBD								
OTHER	\$11,000							
TOTAL	\$50,000	\$0	\$0	\$0	\$0	\$0	\$0	\$0

SOURCE	FY 2022	FY 2023	FY 2024	FY 2025	FY 2026	FY 2027	FY 2028	FY 2029
FBA-OM					\$39,000			
DIF-OM								
FBA-OM(w)								
FBA-OM(e)								
PDIF (w)								
PDIF (e)								
DEV/SUBD								
OTHER					\$11,000			
TOTAL	\$0	\$0	\$0	\$0	\$50,000	\$0	\$0	\$0

CONTACT: TRANSPORTATION & STORM WATER

TELEPHONE: (619) 533-3126

EMAIL: N/A

TITLE: CALIENTE AVENUE (SR 905 Overpass)

PROJECT: OM T-11.2

DEPARTMENT: PUBLIC WORKS
CIP or JO #: N/A

COUNCIL DISTRICT: COMMUNITY PLAN:

OM

DESCRIPTION:

WIDEN CALIENTE AVENUE OVERPASS TO PROVIDE TWO NORTHBOUND AND TWO SOUTHBOUND LEFT TURN LANES. THE LENGTH OF TURN LANES IN THIS CASE WOULD BE 300 LINEAL FEET.

JUSTIFICATION:

THE OTAY MESA COMMUNITY PLAN TRANSPORTATION ELEMENT SUGGESTS THAT AN INTEGRATED TRANSPORTATION NETWORK WILL PROVIDE MOBILITY AND ACCESSIBILITY TO THE RESIDENTS AND BUSINESSES OF THE COMMUNITY. THIS PROJECT IS CONSISTENT WITH THE GOALS OF THE OTAY MESA COMMUNITY PLAN AND THE CITY'S GENERAL PLAN, AND IS NEEDED TO SERVE THE COMMUNITY AT BUILDOUT.

FUNDING ISSUES:

OTHER FUNDING SOURCES: UNIDENTIFIED: \$11,000

NOTES:

SHOULD TRAFFIC CONDITIONS AT THE INTERCHANGE OF CALIENTE AVENUE AND SR-905 BECOME DETRIMENTAL TO THE IMPLEMENTATION OF REGIONAL ECONOMIC GOALS, ADDITIONAL IMPROVEMENTS MAY BE NECESSARY AT THE SR 905 FREEWAY AND/OR AT THE FREEWAY INTERCHANGE. THESE IMPROVEMENTS MAY INCLUDE, BUT ARE NOT LIMITED TO, ADDITIONAL FREEWAY LANES, AUXILIARY LANES, ADDITIONAL ON-RAMP LANES, ADDITIONAL INTERSECTION TURN LANES, AND FREEWAY OVERCROSSING WIDENING.. SUCH IMPROVEMENTS WOULD HAVE TO BE DETERMINED WITH CLOSE COORDINATION WITH CALTRANS AND VETTED THROUGH THEIR PSR PROCESS.

SCHEDULE:

FUNDING FOR DESIGN AND CONSTRUCTION IS ANTICIPATED IN FY 2026.

CONTACT: TRANSPORTATION & STORM WATER

TELEPHONE: (619) 533-3126

EMAIL: N/A

FW: Candlelight Traffic MMRP

Stephanie Morgan Whitmore

Thu 4/19/2018 11:44 AM

To:Justin Rasas (justin@losengineering.com) < justin@losengineering.com >;

Cc:Dawna Marshall <dmarshall@reconenvironmental.com>;

Per your request yesterday....

From: Andrew Capobianco

Sent: Thursday, April 19, 2018 11:43 AM

To: Stephanie Morgan Whitmore **Subject:** Candlelight Traffic MMRP

While we wait on the Southwind EIR, here is the Candlelight Traffic Mitigation

Candlelight Traffic MMRP

Transportation/Circulation

Near-term Conditions

- **4.3-1** Prior to issuance of the first building permit, the Owner/Permitee shall assure by permit and bond the modification of the traffic signal at the intersection of Caliente Avenue and Otay Mesa Road to remove the crosswalk on the south leg of the intersection ,stripe a new crosswalk on the west leg of the intersection and modify the signal timing to provide less green time for the eastbound through movement and more green time for the westbound left-turn movement, satisfactory to the City Engineer. This improvement shall be completed and accepted by the City Engineer prior to issuance of any occupancy permit.
- **4.3-2** Prior to issuance of the first building permit, the Owner/Permitee shall assure by permit and bond the installation of a traffic signal at the intersection of Caliente Avenue and Airway Road and stripe the northbound, southbound, and westbound approaches to their ultimate lane configuration satisfactory to the City Engineer. If the ultimate pavement width is not in place to stripe the additional lanes, the Owner/Permitee shall widen the street. This improvement shall be completed and accepted by the City Engineer prior to issuance of any occupancy permit.

Horizon Year Conditions

- **4.3-3** Prior to the issuance of the first building permit, the Owner/Permitee shall provide a 5.23-percent fair-share contribution towards providing an overlap phase for the northbound right-turn movement at the intersection of Otay Mesa Road and Caliente Avenue, satisfactory to the City Engineer
- **4.3-4** The recommended mitigation measure for the significant cumulative traffic impact at the SR-905 Westbound Ramps and the Caliente Avenue intersection is for the project applicant to pay 7.65-percent fair share contribution towards the construction of an exclusive southbound right-turn lane and striping modifications to Caliente Avenue to provide a second southbound right-turn lane and a second northbound left-turn lane. However, these impact are considered unmitigated since there are not currently planned or funded projects to expand the SR-905/Caliente Avenue interchange.
- **4.3-5** Prior to issuance of the first building permit, the Owner/Permitee, shall assure the installation of a traffic signal at the intersection of Caliente Avenue/Public Street "A", satisfactory to the City Engineer. The signal to be installed when warranted, and potentially can be assured through a bonded Deferred Improvement Agreement, to the satisfaction of the City Engineer.

Southview MMRP

Engineer. These improvements shall be completed and accepted by the City Engineer prior to the issuance of any occupancy permit.

- 36. Prior to the issuance of the first construction permit, the Owner/Permittee shall assure by permit and bond the construction of a traffic signal at Caliente Avenue and Airway Road, satisfactory to the City Engineer. These improvements shall be completed and accepted by the City Engineer prior to the issuance of any occupancy permit.
- 37. Prior to the issuance of the first construction permit, the Owner/Permittee shall assure by permit and bond the construction of a traffic signal at Caliente Avenue and Private Driveway "L", satisfactory to the City Engineer. These improvements shall be completed and accepted by the City Engineer prior to the issuance of any occupancy permit.
- 38. The Owner/Permittee shall construct: Private Driveways "A"—"G," 20 feet wide; Private Driveway "H," 21 feet wide; Private Driveways "I", "J" and "K," 28 feet wide with a 4 to 5 feet wide sidewalk; Private Driveway "L," 44 feet wide curb to curb with a 10 feet raised median and two, 5 feet wide sidewalks; and Private Driveway "J," 20 feet wide and extended to Caliente Avenue with no curb cut and bollards, all to the satisfaction of the City Engineer. These improvements shall be completed by the City Engineer prior to the issuance of any occupancy permit.
- 39. Prior to any work starting in the City of San Diego street right-of-way, the Owner/Permittee shall obtain a Public Right-of-Way Permit for Traffic Control.

PUBLIC UTILITIES DEPARTMENT REQUIREMENTS:

- 40. In lieu of designing and constructing either alone or in conjunction with other developers similarly conditioned to construct the next pending phase of the Otay Mesa Trunk Sewer (OMTS); or executing an agreement not objecting to formation of Community Facility District (CFD), prior to the issuance of any construction permits the Owner/Permittee shall design and construct one segment of the OMTS just to the south of existing Manhole No. 200 where the pipe size changes from newly constructed 42-inch diameter pipeline to an existing 10-inch diameter pipeline in a manner satisfactory to the Public Utilities Director and the City Engineer.
- 41. The proposed development is currently subject to the following sewer reimbursement fee: The Otay Mesa Sewer Surcharge fee of \$1,821.75 per living unit plus 6% simple interest from March 12, 2008 (DWG 21351-D-O).
- 42. Prior to issuance of any construction permits, the Owner/Permittee shall obtain Encroachment and Maintenance Removal Agreement (EMRA) for proposed improvements of any kind, including utilities, landscaping, enriched paving, and electrical conduits to be installed within the public-right-of-way or public easement.
- 43. Prior to the issuance of any construction permits, the Owner/Permittee shall assure by permit and bond, the design and construction of any new water and sewer service(s) outside of any driveway, and the disconnection at the water main of the existing unused water service

DEFERRED IMPROVEMENT AGREEMENT

Emerald Crest Court ("JJ") Traffic Signal Improvement California Terraces/Ocean Views Hills Planning Areas 13 and 14 Project

THIS AGREEMENT is made by the City of San Diego, a municipal corporation [City], and Otay Greenfield Developers, a California limited liability company [Developer], [Parties].

RECITALS

- 1. Developer holds the title to that certain real property [Property] located in the City of San Diego, the legal description of which is set forth as Exhibit "A" attached hereto.
- 2. On July 19, 2005, the City Council of the City of San Diego adopted Resolution No. R-300688 approving the California Terraces (a.k.a. Ocean View Hills) Planning Area 13 and 14 project, VTM Project No. 6450 for the Property subject to the conditions of approval attached to said resolution and made a part thereof. Developer is currently seeking City approval of final maps and improvement plans.
- 3. Pursuant to Condition Nos 46, Vesting Tentative Map (VTM) No. 6450 (Cor. Copy 2), Developer is required to complete the improvements for a traffic signal at the location of Otay Mesa Road and Emerald Crest Court, also known as JJ Street [Improvements] in the following manner:

The Subdivider shall assure by bond construction of a traffic signal at the intersection of Otay Mesa Road/"JJ" Street, satisfactory to the City Engineer once Otay Mesa Road is returned to the City of San Diego and full access is allowed at the intersection.

- 4. Otay Mesa Road was widened and improved by the City of San Diego from the I-805/I-905 separation to east of La Media Road. Otay Mesa Road was designed and improved to meet State of California design requirements through a Cooperative Agreement recorded December 10, 1996, per File No. RR-288209, and will be under the State of California jurisdiction until SR-905 is constructed between I-805 and SR-125. The intersection spacing for traffic signal systems per the State of California requirements is ½ mile, which differs from the ¼ mile spacing the City of San Diego allows. Since the roadway is now under the State's jurisdiction, the traffic signal system at Emerald Crest Court is not allowed due to the State's signal spacing requirements and, therefore cannot be constructed consistent with Condition No. 46 until such time as the City regains jurisdiction over Otay Mesa Road from the State.
- 5. Consistent with Condition 46 of Resolution No. R-300688, Developer desires to enter into a Deferred Improvement Agreement for this traffic signal improvement, more particularly

described in Exhibit "B", attached hereto and incorporated by reference and shown in Exhibit "C", attached hereto and incorporated by reference.

The above-listed recitals are true and correct and are hereby incorporated by reference.

DEFINITIONS

For the purposes of this Agreement, the terms below shall be defined as follows:

Acceptance: Final approval by the City Inspection Team following the Final Inspection that Improvements are complete and work required on the Punch List, if any, has been finished.

As-Builts: Project Record Documents that are the Contract plans modified from the original concept of the design to reflect the actual product built.

ARTICLE 1 - DURATION OF AGREEMENT

1.1 <u>Term of Agreement.</u> This Agreement shall be effective on the date it is executed by the last Party to sign the Agreement and shall be effective until all Improvements are completed to the satisfaction of the City Engineer and accepted by the City.

ARTICLE 2 – DESIGN AND CONSTRUCTION

- 2.1 <u>Completion Date.</u> The Improvements shall be completed within two (2) years of the City regaining jurisdiction over Otay Mesa Road from the State, as described in Paragraph 4, above, or, in the event that the City Engineer specifies an earlier date for completion of the Improvements, the Developer shall complete the Improvements by the date specified by the City Engineer.
 - 2.1.1 Written Notice. If the City Engineer requires the completion of the Improvements prior to the time set forth above, the City Engineer will provide written notice to Developer indicating the date by which the City Engineer requires the completion of the Improvements.
 - 2.1.1.1 Developer will complete Improvements within [365] Calendar Days from the date of the written notice from the City Engineer.
 - 2.1.2 No Waiver. In no event shall the failure of the City to enforce the two (2) year provision in section 2.1 act as a release of Developer's obligation to construct the Improvements.
 - 2.1.2.1 The City may, at any time, following the two (2) year period identified in section 2.1, deliver a Notice to Commence

Construction [Notice] to the Developer. In the event that the City delivers such Notice, the Developer shall commence construction of the Improvements within ninety (90) Calendar Days of delivery of the Notice, regardless of the amount of time, which has passed since the two (2) year period elapsed.

- 2.1.2.1.1 Failure to Commence Construction. The failure of the Developer to commence construction of the Improvements within ninety (90) Calendar Days of delivery of the Notice shall be a breach of this Agreement.
- 2.1.3 Extensions of Completion Date. The Completion Date may be extended with the written consent of the City provided that the Developer is in compliance with all other terms of this Agreement, including bonding, and the City Engineer is satisfied that the Improvements will not be needed within the two year timeframe initially established.
- 2.2 <u>Design.</u> Developer shall design Improvements in a manner satisfactory to the City Engineer and in accordance with Condition No. 46.
- 2.3 <u>Construction.</u> Developer shall construct Improvements in accordance with a public improvement permit and approved plans to the satisfaction of the City Engineer.
 - 2.3.1 *Permits*. Developer shall obtain a public improvement permit from the City Engineer and any other necessary permitting authority prior to commencing construction.
 - 2.3.2 As Builts. Developer shall prepare as-built plans for Improvements to the satisfaction and approval of the City Engineer.
- 2.4 <u>Standard of Care.</u> Developer agrees that the professional services provided as part of this Agreement in the design and construction of the Improvements shall be performed in accordance with the standards customarily adhered to by experienced and competent professional architectural, engineering, landscape architecture, and construction firms using the degree of care and skill ordinarily exercised by reputable professionals practicing in the same field of service in the State of California.
 - 2.4.1 Compliance with all Laws. Developer shall comply with all laws, when applicable, including but not limited to:
 - 2.4.1.1 All local, City, County, State, and Federal laws, codes and regulations, ordinances, and policies, including but not limited to, Development Services Department permits, hazardous material

permits, site safety, state and local Building Codes, stormwater regulations, etc.

- 2.4.1.2 The Americans with Disabilities Act [ADA] and Title 24 of the California Building Code. It is the sole responsibility of Developer to comply with all ADA and Title 24 regulations.
- 2.4.1.3 Developer shall complete all environmental measures required by CEQA (State requirements), NEPA (Federal requirements), and the local jurisdiction, including but not limited to, mitigation measures, and site monitoring.
- 2.4.1.4 Developer shall comply with the Clean Air Act of 1970, the Clean Water Act (33 USC 1368) Executive Order 11738, and the Stormwater Management and Discharge Control Ordinance No. 0 17988.
- 2.4.1.5 Developer shall comply with the Essential Services Building Seismic Safety Act, SB 239 & 132.
- 2.4.1.6 Developer shall comply immediately with all directives issued by City or its authorized representatives under authority of any laws, statutes, ordinances, rules, or regulations.
- 2.4.2 Compliance with Design and Construction Standards. Developer shall comply with the most current editions of Design and Construction Standards.
 - 2.4.2.1 Standard Specifications. Developer shall comply with the most current editions of the following reference specifications when designing and constructing the Project, including:
 - 2.4.2.1.1 The most recent edition of the Standard Specifications for Public Works Construction, including the Regional and City of San Diego Supplement Amendments [Greenbook].
 - 2.4.2.1.2 California Department of Transportation Manual of Traffic Controls for Construction and Maintenance Work Zones.
 - 2.4.2.2 City Standards. Developer's professional services shall be provided in conformance with the professional standards of practice established by City. This includes all amendments and revisions of these standards as adopted by City. The professional

standards of practice established by City include, but are not limited to, the following:

2.4.2.2.1	City of San Diego's Drainage Design Manual.
2.4.2.2.2	City of San Diego's Landscape Technical Manual
	produced by the Planning Department.
2.4.2.2.3	City of San Diego's Street Design Manual.
2.4.2.2.4	City of San Diego's Manual of Preparation of Land
	Development and Public Improvement Plans.
2.4.2.2.5	City of San Diego's Technical Guidelines for
	Geotechnical Reports.
2.4.2.2.6	City of San Diego Standard Drawings including all
	Regional Standard Drawings.
2.4.2.2.7	City of San Diego Data Standards for Improvement
	Plans.

- 2.4.3 Imputed Knowledge. Developer shall be responsible for all amendments or updates to standards and knowledge of all amendments or updates to standards, whether local, state, or federal, and such knowledge will be imputed to Developer to the extent allowed by law.
- 2.4.5 City Approval Not a Waiver of Obligations. Where approval by City, the City Manager, or other representatives of City is required, it is understood to be general approval only and does not relieve Developer of responsibility for complying with all applicable laws, codes, and good consulting, design, or construction practices.

ARTICLE 3 – BONDS

- 3.1 Post a Performance Bond. Prior to the execution of this Agreement, and prior to issuance of the public improvement permit for the Improvement, Developer shall post a Performance and Payment Bond [Performance Bond] in the amount of \$162,000.00, for costs identified on Exhibit "D", Cost Estimate. The Performance Bond shall guarantee the faithful performance of this Agreement, the completion of the Improvements, and assure payment to contractors, subcontractors, and to persons furnishing materials or equipment for the design, construction, and completion of the Improvements.
 - 3.1.1 Form of Bond. The Performance Bond shall be identical in form and verbiage to the attached Exhibit "E". Any changes to the form or verbiage of the Performance Bond shall require approval of the City Attorney and will cause additional delay in approval of this Agreement.

- 3.1.2 Bond Term. The Performance Bond shall remain in full force and effect for the Term of this Agreement. The Performance Bond shall be renewed annually, and the Developer shall provide proof of annual renewal to the City.
- 3.1.3 Certificate of Agency. All bonds signed by an agent must be accompanied by a certified copy of such agent's authority to act.
- 3.1.4 Licensing and Rating. The Performance Bond shall be duly executed by responsible surety companies admitted to do business in the State of California, licensed or authorized in the jurisdiction in which the project is located to issue bonds for the limits required by this agreement, secured through an authorized agent with an office in California, and have a minimum AM Best rating of "A-" to an amount not to exceed ten percent (10%) of its capital and surplus.
- 3.1.5 Insolvency or Bankruptcy. If the surety on any bond furnished by Developer is declared bankrupt or becomes insolvent or its right to do business is terminated in any state where any part of the Improvements are located, Developer shall within seven (7) Calendar Days thereafter substitute or require the substitution of another bond and surety, acceptable to the City.
- 3.1.6 Increase in Amount of Performance Bond. If, at any time, following the execution of this Agreement, the estimated costs of the Improvements exceed, or are anticipated to exceed, the amount identified in the Cost Estimate Sheet, Developer shall, within thirty (30) Calendar Days, increase the amount of the Performance Bond by the change in the estimated cost.

ARTICLE 4. - INDEMNITY & DUTY TO DEFEND

4.1 Indemnification and Hold Harmless Agreement. Except for liability for the Professional Services covered under section 4.2, Developer agree to defend, indemnify, protect, and hold harmless the City, its agents, officers and employees, from and against all claims, demands, causes of action, liability or loss asserted or established for damages or injuries to any person or property arising out of Improvements. The indemnification and hold harmless obligation contained in this section includes claims, demands, causes of action, liability or loss asserted or established by the Developer's employees, agents or officers, or judgments arising directly or indirectly out of obligations, work or services arising out of City entering into this Agreement. Claims, demand, causes of action, liability or loss that arise from, are connected with, or are caused or claimed to be caused by the acts or omission of the Developer, the Developer's agents, officers and employees are covered. Also covered are the claims, demands, causes of action, liability or loss arising from, connected with, caused by, or claimed to be caused by the active or passive negligence acts or omissions of the City, its agents, officers, or employees which may be in combination with the negligence of the Developer, its employees, agents or officers, or any third party. Also covered are any claims, demands, causes of action, liability or loss

arising from, connected with, caused by, or claimed to be caused by the diversion of waters resulting from the design, construction or maintenance of drainage systems, streets or other improvements. The Developer's duty to defend, indemnify, protect and hold harmless shall not include any claims or liabilities arising from the established sole negligence or sole willful misconduct of the City, its agents, officers or employees.

- 4.2 Indemnification for Professional Services. As to professional obligations, work, or services of an architect, engineer, or other professional related to the Improvements, the Developer shall defend, indemnify, protect, and hold harmless the City, its agents, officers and employees from and against any and all liability, claims, costs, and damages, including but not limited to, attorney fees, and losses or payments for injury to any person or property, caused directly or indirectly from the negligent acts, errors or omissions of the professional, architect, engineer, its employees, agents, or officers. The Developer shall require its Architect, Engineer, or other professional of record to defend, indemnify, protect, and hold harmless the City, its agents, officers and employees from and against any and all liability, claims, costs, and damages, including but not limited to, attorney fees, and losses or payments for injury to any person or property, caused directly or indirectly from the negligent acts, errors or omissions of the professional, architect, engineer, its employees, agents, or officers. This section in no way alters, affects or modifies the Developer's, Architect's, Engineer's, or other professional's obligations and duties under this Agreement.
- 4.3 <u>Indemnification for Liens and Stop Notices.</u> The Developer shall keep the Project and Property free of any mechanic's liens and immediately secure the release of any stop notices. The Developer shall defend, indemnify, protect, and hold harmless, the City, its agents, officers and employees from and against any and all liability, claims, costs, and damages, including but not limited to, attorney fees, arising from or attributable to a failure to pay claimants. Developer shall be responsible for payment of all persons entitled to assert liens and stop notices.
- Enforcement Costs. The Developer agrees to pay any and all costs the City incurs to enforce the indemnity and defense provisions set forth in section 4.1, 4.2, and 4.3. Developers further agree that the indemnification agreement referred to in Section 4.1, 4.2, and 4.3 and the duty to defend City require Developer to pay any costs City incurs that are associated with defending any claims arising from deferring construction of Improvements and the subsequent construction of Improvements and any other work performed under this Agreement. If City chooses, at its own election, to conduct its own defense, participate in its own defense or obtain independent legal counsel in defense on any claim related to work provided under this Agreement, Developer agrees to pay the reasonable value of attorneys' fees and all of City's reasonable costs.
- 4.5 No Assumption of Liability. Acceptance by City of the improvements shall not constitute an assumption by City of any responsibility for such damage or taking. City

- shall not be an insurer or surety for the design or construction of the Improvements pursuant to the approved improvement plans.
- 4.6 <u>Full Force and Effect.</u> This Article shall remain in full force and effect for ten (10) years following acceptance of the Improvements by the City, except that the obligation to maintain drainage systems shall terminate upon acceptance of such improvements by the City.

ARTICLE 5 - INSURANCE

- 5.1 General. During the entire life of this Agreement, Developer shall secure and maintain a policy or policies of Commercial General Liability insurance, at its sole cost and expense, as follows:
 - 5.1.1 *Policy Coverage*. Developer shall secure Commercial General Liability insurance with limits of not less than two million dollars (\$2,000,000.00) per occurrence. Coverage shall be written on an "occurrence" form.
 - 5.1.2 Deductibles. Any deductibles and/or self insured retentions must be disclosed to and approved by City at the time evidence of insurance is provided.
- 5.2 Rating Requirements. Except for State Compensation Insurance Fund, all insurance required by express provision of this Contract shall be carried only by responsible insurance companies that have been given at least an "A" or "A-" and "VI" rating by AM BEST, that are authorized by the California Insurance Commissioner to do business in the State of California, and that have been approved by the City.
 - 5.2.1 Non-Admitted Carriers. The City will accept insurance provided by non-admitted, "surplus lines" carriers only if the carrier is authorized to do business in the State of California and is included on the List of Eligible Surplus Lines Insurers [LESLI list].
- 5.3 <u>Endorsements Required.</u> Each policy required under Article XXVIII, section 28.2 of this Agreement shall expressly provide, and an endorsement shall be submitted to the City, that:
 - 5.3.1 Additional Insureds. All insurance policies will name City, its elected officials, representatives, agents, officers and employees as additional insureds and protect City against any costs, including legal fees, in the investigation and/or defense of any claim arising from performance of the obligations of this Agreement. A copy of the actual additional insured endorsement must be provided to City, along with the required Certificate of Insurance.

- 5.3.2 Primary and Non-Contributory. The policies are primary and non-contributing to any insurance or self-insurance that may be carried by the City of San Diego, its elected officials, officers, employees, agents, and representatives with respect to operations, including the completed operations if appropriate, of the Named Insured. Any insurance maintained by the City of San Diego and its elected officials, officers, employees, agents, and representatives shall be in excess of Developer's insurance and shall not contribute to it.
- 5.3.3 Project General Aggregate Limit. The CGL policy or policies must be endorsed to provide a Designated Construction Project General Aggregate Limit that will apply only to the Work performed under this Agreement. Claims payments not arising from the Work shall not reduce the Designated Construction Project General Aggregate Limit. The Designated Construction Project General Aggregate Limit shall be in addition to the aggregate limit provided for the products-completed operations hazard.
- 5.3.4 Written Notice. Except as provided for under California law, the policies cannot be canceled, non-renewed or materially changed except after thirty (30) Calendar Days prior written notice by Developer to the City by certified mail, as reflected in an endorsement which shall be submitted to the City, except for non-payment of premium, in which case ten (10) Calendar Days notice shall be provided.
- 5.3.5 The words "will endeavor" and "but failure to mail such notice shall impose no obligation or liability of any kind upon the company, its agents, or representatives" shall be deleted from all certificates.
- 5.3.6 Additional Insurance. Developer may obtain additional insurance not required by this Agreement.
- 5.3.7 Prior to Starting Work. Before performing any work, Developer shall provide the City with all Certificates of Insurance accompanied by all endorsements.
- 5.4 <u>Additional Insurance.</u> In addition to the above policy of insurance, Developer also agrees to name the City as an additional insured on any excess liability policies held by Developer over and above the two million dollars (\$2,000,000.00) required.
- 5.5 Obligation to Provide Documents. The Developer shall provide copies of documents including but not limited to certificates of insurance and endorsements, and shall furnish renewal documentation prior to expiration of insurance. Each required document shall be signed by the insurer or a person authorized by the insurer to bind coverage on its behalf. The City reserves the right to require complete, certified copies of all insurance policies required herein.

- 5.6 <u>Deductibles/Self Insured Retentions.</u> All deductibles and self-insurance retentions on any policy shall be the responsibility of Developer. Deductibles and self-insurance retentions shall be disclosed to the City at the time the evidence of insurance is provided.
- 5.7 <u>Policy Changes.</u> Developer shall not modify any policy or endorsement thereto which increases the City's exposure to loss for the duration of this Contract.
- 5.8 Reservation of Rights. The City reserves the right, from time to time, to review the Developer's insurance coverage, limits, deductible, and self-insured retentions to determine if they are acceptable to the City. The City will reimburse the Developer for the cost of the additional premium for any coverage requested by the City in excess of that required by this Agreement without overhead, profit, or any other markup.
- 5.9 Not a Limitation of Other Obligations. Insurance provisions under this section shall not be construed to limit the Developer's obligations under this Agreement, including Indemnity.
- 5.10 <u>Material Breach.</u> Failure to maintain, renew, or provide evidence of renewal during the term of this Agreement may be treated by the City as a material breach of contract.

ARTICLE 6. WARRANTIES

- 6.1 <u>Warranties Required.</u> Developer shall provide and require its agents to provide the warranties listed below. This warranty requirement is not intended to exclude, and shall not exclude, other implicit or explicit warranties or guarantees required or implied by law.
 - 6.1.1 Materials and Workmanship. Developer shall guarantee, and shall require its agents to guarantee, all work on the Improvements against defective workmanship and materials furnished by Developer for a period of two (2) years from the date of Final Completion and Acceptance. Developer shall replace or repair any such defective work in a manner satisfactory to City, after notice to do so from City, and within the time specified in the notice.
 - 6.1.2 New Materials and Equipment. Developer shall warrant and guarantee, and shall require its agents to warrant and guarantee, to City that all materials and equipment incorporated into the Improvements are new unless otherwise specified.
 - 6.1.3 Design, Construction, and Other Defects. Developer shall warrant and guarantee, and shall require its agents to warrant and guarantee to City that all work is in accordance with the Plans and Specifications and is not defective in any way in design, construction or otherwise.

- 6.1.4 Warranty Start Date. Except for items put into use with Developer's permission with date mutually agreed upon in writing, the Warranty Start Date shall be the date of Final Completion.
- 6.2 <u>Term of Warranties.</u> Unless otherwise specified or provided by law, warranties shall extend for a term of two (2) year(s) from the date of Final Completion.
 - 6.2.1 Plants, Trees, and Shrubs. Not withstanding above, all shrubs and ground cover shall have a ninety (90) Calendar Day warranty period and trees shall have a one (1) year warranty period. All plant warranties shall commence from the date of Final Completion.

ARTICLE 7 - NOTICES

- 7.1 Writing. Any demand upon or notice required or permitted to be given by one Party to the other Party shall be in writing.
- 7.2 Effective Date. Except in relation to Change Orders as provided for in section 7.4 or as otherwise provided by law, any demand upon or notice required or permitted to be given by one Party to the other Party shall be effective: (i) on personal delivery, (ii) on the second business day after mailing by certified or registered U.S. Mail, return receipt requested, (iii) on the succeeding business day after mailing by Express Mail or after deposit with a private delivery service of general use (e.g., Federal Express) postage or fee prepaid as appropriate, or (iv) upon successful transmission of facsimile.
- 7.3 Recipients. Except in relation to Change Orders, all demands or notices required or permitted to be given shall be sent to all of the following:

To the City: City of San Diego

Land Development Review Attn: Kelly Broughton 1222 First Avenue, 5th Floor San Diego, California 92101

To the Developer: Otay Greenfield Developers, LLC

Attn: Carol Matson

8530 Costa Verde Blvd-Office

San Diego, CA 92122

ARTICLE 8 - MISCELLANEOUS

- 8.1 <u>Headings.</u> All article headings are for convenience only and shall not affect the interpretation of this Agreement.
- 8.2 <u>Gender & Number.</u> Whenever the context requires, the use herein of (i) the neuter gender includes the masculine and the feminine genders and (ii) the singular number includes the plural number.
- 8.3 <u>Reference to Paragraphs.</u> Each reference in this Agreement to a section refers, unless otherwise stated, to a section this Agreement.
- 8.4 <u>Incorporation of Recitals.</u> All recitals herein are incorporated into this Agreement and are made a part hereof.
- 8.5 <u>Covenants and Conditions.</u> All provisions of this Agreement expressed as either covenants or conditions on the part of the City or the Developer, shall be deemed to be both covenants and conditions.
- 8.6 <u>Integration.</u> This Agreement and the Exhibits and references incorporated into this Agreement fully express all understandings of the Parties concerning the matters covered in this Agreement. No change, alteration, or modification of the terms or conditions of this Agreement, and no verbal understanding of the Parties, their officers, agents, or employees shall be valid unless made in the form of a written change agreed to in writing by both Parties or an amendment to this Agreement agreed to by both Parties. All prior negotiations and agreements are merged into this Agreement.
- 8.7 <u>Severability.</u> The unenforceability, invalidity, or illegality of any provision of this Agreement shall not render any other provision of this Agreement unenforceable, invalid, or illegal.
- 8.8 <u>Drafting Ambiguities.</u> The Parties agree that they are aware that they have the right to be advised by counsel with respect to the negotiations, terms and conditions of this Agreement, and the decision of whether or not to seek advice of counsel with respect to this Agreement is a decision which is the sole responsibility of each Party. This Agreement shall not be construed in favor of or against either Party by reason of the extent to which each Party participated in the drafting of the Agreement.
- 8.9 <u>Conflicts Between Terms.</u> If an apparent conflict or inconsistency exists between the main body of this Agreement and the Exhibits, the main body of this Agreement shall control. If a conflict exists between an applicable federal, state, or local law, rule, regulation, order, or code and this Agreement, the law, rule, regulation, order, or code shall control. Varying degrees of stringency among the main body of this Agreement, the Exhibits, and laws, rules, regulations, orders, or codes are not deemed conflicts, and the most stringent requirement shall control. Each Party shall notify the other immediately

- upon the identification of any apparent conflict or inconsistency concerning this Agreement.
- 8.10 <u>Prompt Performance.</u> Time is of the essence of each covenant and condition set forth in this Agreement.
- 8.11 <u>Good Faith Performance.</u> The parties shall cooperate with each other in good faith, and assist each other in the performance of the provisions of this Agreement.
- 8.12 <u>Further Assurances.</u> City and Developer each agree to execute and deliver such additional documents as may be required to effectuate the purposes of this Agreement.
- 8.13 <u>Exhibits.</u> Each of the following Exhibits is attached hereto and incorporated herein by this reference:

Exhibit A - Legal Description of Property

Exhibit B - Project Description
Exhibit C - Intersection Diagram

Exhibit D - Bond Estimate
Exhibit E - Performance Bond

- 8.14 Compliance with Controlling Law. The Developer shall comply with all laws, ordinances, regulations, and policies of the federal, state, and local governments applicable to this Agreement, including California Labor Code section 1720 as amended in 2000 relating to the payment of prevailing wages during the design and preconstruction phases of a project, including inspection and land surveying work. In addition, the Developer shall comply immediately with all directives issued by the City or its authorized representatives under authority of any laws, statutes, ordinances, rules, or regulations. The laws of the State of California shall govern and control the terms and conditions of this Agreement.
- 8.15 <u>Jurisdiction, Venue, and Attorney Fees.</u> The venue for any suit or proceeding concerning this Agreement, the interpretation or application of any of its terms, or any related disputes shall be in the County of San Diego, State of California. The prevailing Party in any such suit or proceeding shall be entitled to a reasonable award of attorney fees in addition to any other award made in such suit or proceeding.
- 8.16 <u>Municipal Powers.</u> Nothing contained in this Agreement shall be construed as a limitation upon the powers of the City as a chartered city of the State of California.
- 8.17 Third Party Relationships. Nothing in this Agreement shall create a contractual relationship between City and any third party; however, the Parties understand and agree that City, to the extent permitted by law, is an intended third party beneficiary of all Developer's contracts, purchase orders and other contracts between Developer and third

- party services. Developer shall incorporate this provision into its contracts, supply agreements and purchase orders.
- 8.18 Non-Assignment. The Developer shall not assign the obligations under this Agreement, whether by express assignment or by sale of the company, nor any monies due or to become due, without the City's prior written approval. Any assignment in violation of this paragraph shall constitute a Default and is grounds for immediate termination of this Agreement, at the sole discretion of the City. In no event shall any putative assignment create a contractual relationship between the City and any putative assignee.
- 8.19 <u>Successors in Interest.</u> This Agreement and all rights and obligations created by this Agreement shall be in force and effect whether or not any Parties to the Agreement have been succeeded by another entity, and all rights and obligations created by this Agreement shall be vested and binding on any Party's successor in interest.
- 8.20 <u>Independent Contractors.</u> The Developer, any consultants, contractors, subcontractors, and any other individuals employed by the Developer shall be independent contractors and not agents of the City. Any provisions of this Agreement that may appear to give the City any right to direct the Developer concerning the details of performing the Services under this Agreement, or to exercise any control over such performance, shall mean only that the Developer shall follow the direction of the City concerning the end results of the performance.
- 8.21 Approval. Where the consent or approval of a party is required or necessary under this Agreement, the consent or approval shall not be unreasonably withheld.
- 8.22 No Waiver. No failure of either the City or the Developer to insist upon the strict performance by the other of any covenant, term or condition of this Agreement, nor any failure to exercise any right or remedy consequent upon a breach of any covenant, term, or condition of this Agreement, shall constitute a waiver of any such breach of such covenant, term or condition. No waiver of any breach shall affect or alter this Agreement, and each and every covenant, condition, and term hereof shall continue in full force and effect to any existing or subsequent breach.
- 8.23 <u>Signing Authority.</u> The representative for each Party signing on behalf of a corporation, partnership, joint venture or governmental entity hereby declares that authority has been obtained to sign on behalf of the corporation, partnership, joint venture, or entity and agrees to hold the other Party or Parties hereto harmless if it is later determined that such authority does not exist.

IN WITNESS WHEREOF, this Agreement is executed by the City of San Diego, acting by and through the City Manager, pursuant to the San Diego Municipal Code and by Developer on this ____ day of _____, 200__. THE CITY OF SAN DIEGO a municipal corporation Kelly G. Broughton Deputy Director land Development Review Dept. OTAY GREENFIELD DEVELOPERS LLC, a California limited liability company By: National Safe Harbor Exchanges, a California corporation Its: Sole Member Vice President I HEREBY APPROVE the form and legality of the foregoing Agreement this

Deputy City Attorney

STATE OF ARIZONA)	
COUNTY OF MARICOPA) ss.	
Karin A. Church personally came before r National Safe Harbor Exchanges, a Ca Developers, LLC, an California limited liabi	a Notary Public for the aforesaid County and State certify that me this day and acknowledged that she is a Vice President of alifornia corporation, the sole member of Otay Greenfield lity company, and that by authority duly given and as the act of t was signed in its name by Karin A. Church, as the Vice call this 12th day of 150.
My commission Expires:	Notary Public
NOV. 6, 2009	
	OFFICIAL SEAL JAMES V. WOODLEY NOTARY PUBLIC - State of Arizona MARICOPA COUNTY My Comm. Expires Nov. 6, 2009

CALIFORNIA ALL-PURPOSE ACKNOWLEDGMENT

State of California	
County of San Diego	
On APRIL 27, 2007 before me, Phil	lip D. Hill, Notary Public Name and Title of Officer (e.g., "Jane Doe, Notary Public")
personally appearedKEI	
	⊋ personally known to me
	☐ (or proved to me on the basis of satisfactory evidence)
PHILLIP D. HILL: Commission if 1514078 Notary Public - Cellifornia Son Diego County My Cemm. Expires Sep 17, 2008	to be the person(s) whose name(s) is/are subscribed to the within instrument and acknowledged to me that he/she/they executed the same in his/her/their authorized capacity(ies), and that by his/her/their signature(s) on the instrument the person(s), or the entity upon behalf of which the person(s) acted, executed the instrument.
Place Notary Seal Above	WITNESS my hand and official seal. Signature of Notary Public
Though the information below is not required by law,	it may prove valuable to persons relying on the document reattachment of this form to another document.
Description of Attached Document	EMERALD CREST COURT TRAFFIC SIGNAL MENT AGREEMENT. IMPROVEMENT
Document Date:	Number of Pages:
Signer(s) Other Than Named Above:	
Capacity(ies) Claimed by Signer(s) Signer's Name: Individual Corporate Officer — Title(s): Partner — Limited General Attorney in Fact Trustee Guardian or Conservator Other: Signer Is Representing:	☐ Attorney in Fact OF SIGNER

© 2006 National Notary Association • 9350 De Soto Ave., P.O. Box 2402 • Chatsworth, CA 91313-2402 ltem No. 5907 Reorder: Call Toll-Free 1-800-876-6827

IMPROVEMENT SECURITY

Form of: Performance Bond

Agency: Corporate Insurance Agency, Inc.

Amount: \$162,000.00

W.O. No. 425735

NOTARY ACKNOWLEDGMENTS MUST BE ATTACHED - PER CIVIL CODE, SEC. 1180, et. seq.

EXHIBIT "A"

LEGAL DESCRIPTION OF PROPERTY

GREENFIELD VILLAGE CALIFORNIA TERRACES 13/14 SEE DRAWING NO. 34078-D AND 34089-D

LEGAL DESCRIPTION

BEING A SUBDIVISION OF PORTIONS OF THE SOUTHWEST QUARTER OF THE SOUTHWEST QUARTER AND SOUTHEAST QUARTER OF THE SOUTHWEST QUARTER OF SECTION 29, TOWNSHIP 18 SOUTH, RANGE 1 WEST, SAN BERNARDINO MERIDIAN, IN THE CITY OF SAN DIEGO, COUNTY OF SAN DIEGO, STATE OF CALIFORNIA, ACCORDING TO THE OFFICIAL PLAT THEREOF. EXCEPTING THEREFROM THAT PORTION IN OCEAN VIEW HILLS CORPORATE CENTER UNIT #2 ACCORDING TO MAP THEREOF NO. 14258 FILED IN THE OFFICE OF COUNTY RECORDER OF SAN DIEGO COUNTY, AUGUST 14,2001.

> GARY L. HUS, L.S. 7019 LIC. EXP. 06/30/2008

PROJECT DESIGN CONSULTANTS

ning | Landscape Architecture | Environmental | Engineering | Survey San Diego, CA 92101 701 8 Street, Suite 800 619.235.6471 Tel 619.234.0349 Fax

PAGE 1 OF 1

EXHIBIT "B"

PROJECT DESCRIPTION

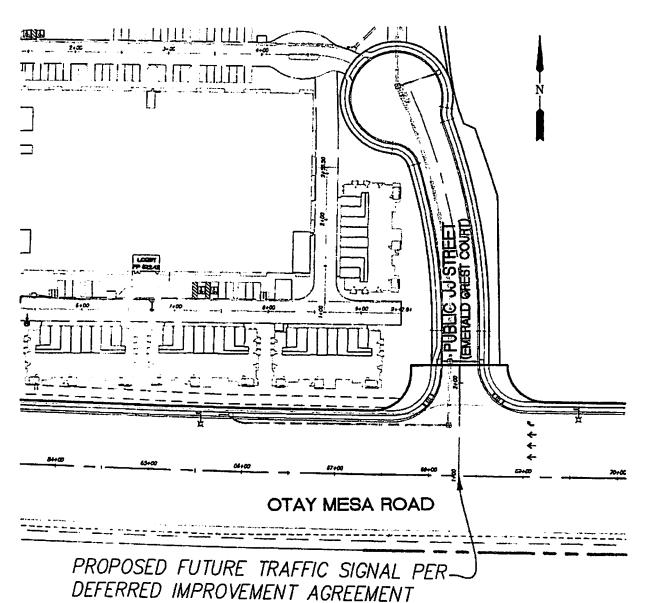

Otay Mesa Road was widened and improved by the City of San Diego from the I-805/I-905 separation to east of La Media Road. Otay Mesa Road was designed and improved to meet State of California design requirements through a Cooperative Agreement recorded December 10, 1996, per File No. RR-288209, and will be under the State of California jurisdiction until SR-905 is constructed between I-805 and SR-125. The intersection spacing for traffic signal systems per the State of California requirements is ½ mile, which differs from the ¼ mile spacing the City of San Diego allows. Since the roadway is now under the State's jurisdiction, the traffic signal system at Emerald Crest Court is not allowed due to the State's signal spacing requirements and, therefore cannot be constructed consistent with Condition No. 46 until such time as the City regains jurisdiction over Otay Mesa Road from the State.

EXHIBIT "C"

INTERSECTION DIAGRAM

EXHIBIT "D"

GREENFIELD VILLAGE CALIFORNIA TERRACES 13/14 SEE DRAWING NO. 34078-D AND 34089-D

NOT TO SCALE

CITY W.O. 425735 DWQ. NO. 34078-D AND 34089-D

PROJECT DESIGN CONSULTANTS

Planning | Landscape Architecture | Environmental | Engineering | Survey San Diego, CA 92101 619.234.0349 Fax 701 B Street, Suite 800

619.235 6471 Tel

P WING MADERIS WIND IN CA DO -20 DE deg 9/20/7006 4 11 25 PM PDI

EXHIBIT "D"

BOND ESTIMATE

JJ Street Traffic Signal Improvement DIA Bond Estimate

WORK ORDER NO: 4

425735

PROJECT DESIGN CONSULTANTS

DWG.

701 'B' STREET, SUITE 800

P.T.S. NO: 100657

SAN DIEGO, CA 92101

COMPANY JOB NO: 2255.1

(619) 235 - 6471

(619) 234 - 0349

DATE: 4/11/2006

PUBLIC IMPROVEMENT TOTALS

DRAINAGE IMPROVEMENTS	\$	-
WATER & WASTEWATER UTILITIES		-
SURFACE IMPROVEMENTS		•
TRAFFIC		135,000
MISCELLANEOUS		
SUBTOTAL - IMPROVEMENTS	S	135,000
20% Contingency		27,000
TOTAL PUBLIC IMPROVEMENT:		162,000

TOTAL BOND AMOUNT: \$ 16

162,000

A Bond in the amount of \$

162,000 will satisfy

the provisions of Article 9, Chapter XII of The Municipal Code for the improvement of JJ Street Traffic Signal

Estimated time of completion Is:

Date

Control Engineer

Engineer of Work

Date

RCE: 59285 Expiration: 6/30/07

Note: Unit prices are based on available City of San Diego Land Development Review Division, Cost Estimate Unit Price List, August 2005.

v	
E	
ULFK	
-1×1-	
135,000	

\$ 175,000	٠.	SUBTOTAL			
(431/5	-	3 25 (11)	3	- F	TREACH RESUREACING PER SIXE IOTA IN
ODETE	-	\$ 130/XX100	IS	1.5	A TABLE TO SERVICE AND A SERVI
					TRAFFIC CONTROLS
					SECTION A-PUBLIC TRAPPIC
			3		DESCRIPTION

CITY OF SAN DIEGO
CONSTRUCTION COST ESTIMATE

EXHIBIT "E"

PERFORMANCE BOND

i	Agency CORPORATE INSURANCE AGENCY, IN
1,1	Address PO BOX 5815
a.	PARSIPPANY, NJ 07054-6815
·	California Terraces PA 13 / 14 Traffic
	(Subdivision Name)
* 2	W.O. No425735 ·
	Bond No. 5017525
1	Premium \$ 2,430

PERFORMANCE BOND

Pursuant to Section 66499 of the Government Code

	as, and hereinariar without regard to gender	E: That OTAY GREENFIELD DEVELOPERS, LLC A CALIFORNIA LIMITED LIABILITY CO. 200 number, called PRINCIPAL.
	and BOND SAFEGUARD INSURANCE CO	. a corporation
	authorized to do business in the State of Calif	fornia and presently possessed of authority under
	Title 6 of the United States Code to do busines	ss under Sections 6 to 13 thereof, in the aggregate
•	amounts hereof, as SURETY, are held and	firmly bound unto THE CITY-OF SAN DIEGO, a
	municipal corporation in the County of S	an Diego, State of California, in the sum of
	ONE HUNDRED SIXTY TWO THOUSAND & O	0/100
00%	DOLLARS \$ 162,000.00	for the faithful performance of a certain contract
	hereinafter referred to; and are held and	I firmly bound unto the State of California for the
	benefit of the Unemployment Insurance Fu	nd, to the extent that the State of California is
	interested, and for the benefit of the contracto	r, subcontractor and to persons renting equipment
	or furnishing debot or materials hereinafte	r referred to, or their assigns in the sum of

۳۵	DOLLARS \$	for the payment of which sums well and truly to be made
		hereby bind themselves and all and singularly their heirs.
		and assigns, jointly and severally, firmly by these presents.
	Simod as 1 to 11	
	Signed, sealed with our seals,	and dated this 3RD day of JANUARY 20 07
•	THE CONDITION OF THIS OBLIGATI	ON for faithful performance is such that if the said
		venants, conditions and agreements contained in a
		aid Principal and THE CITY OF SAN DIEGO, and
٧	which said contract is dated 12/20/0	6 , and identified as Project 425735
•	hereby	referred to and made a part hereof, and shall furnish
'n	naterials in compliance with the specifi	cations and perform all that certain work and
ir	nprovement in said City which is more	particularly described in said contract, to which
c	ontract reference is hereby made for h	urther particulars, then the obligation with respect to
. tt	ne faithful performance of said contrac	shall be void, otherwise to remain in full force and
a	fiect	

THE CONDITION OF THIS OBLIGATION for sacuring payment to contractor, subcontractor, and to persons renting equipment or furnishing labor or materials is such that if the said Principal or its heirs, executors, administrators, successors and assigns shall fall to pay for any materials, provisions, provender, or other supplies used in, upon, for or about the performance of the work contracted to be done, or for any work or labor thereon of any kind, or for amounts due under the Unemployment Insurance Act, with respect to such work or labor,

: الرَّادِ

.

then said Surety will pay the same in or to an amount not exceeding the amount herein above specified to be for the benefit of contractor, subcontractor, and to persons renting equipment or furnishing labor or materials, and also will pay, in case suit is brought upon this bond, such reasonable attorney's fee as shall be fixed by the court, awarded and taxed as provided by law.

This bond, to the extent of the obligation hereof with respect to contractor, subcontractor, and to persons renting aquipment or turnishing labor or materials, shall insure to the benefit of any and all persons, companies and corporations entitled to file claims under Title 15 (commencing with Section 3082) of Part 4 of Division 3 of the Civil Code of the State of California, so as to give a right of action to them or their assigns to any sult brought upon this bond.

This bond, to the extent of the obligation securing payment to the contractor, subcontractor, and to persons renting equipment or furnishing labor or materials may, sixty days after the recording of Notice of Completion and Acceptance of Subdivision Improvement Agreement be reduced to an amount no less than the total of all claims on which an action has been filed and notice thereof given in writing to the governing body, and if there are no actions filed, this portion of the bond may be released in full.

The said Surety, for value received, hereby stipulates and agrees that no change, extension of time, alteration or addition to the terms of the contract or to the work to be performed thereunder or the specifications accompanying the same shall in no wise affect its obligations on this bond, and it does hereby waive notice of any such change, extension of time, alteration or addition to the terms of the contract or to the work or to the specifications.

IN WITNESS WHEREOF, the said Principal and Surety have executed this instrument the day and year first hereinabove written.

Otay Greenfield Developers, LLC, a California limited liability company (Principal)

By: National Safe Harbor Exchanges, a California corporation

Its: Sole Member

Name: Karin A. Church
Its: Vice President

BOND SAFEGUARD INSURANCE CO.

(Surety)

KEITH B. ADAMS, ATTORNEY-IN-FACT

NOTE: Notary acknowledgments (for all signatures) must be attached, per civil Code 1180 st. Seq.

APPROVED:

City Manager

Revised 6/10/05

BOND SAFEGUARD INSURANCE COMPANY FINANCIAL STATEMENTS AS OF DECEMBER 31, 2005

Total Assety		•	Other Assets	Loss Payments	Reinsurance Recoverable on	Receivable from Parent, Subsidiaries and Affiliates	Funds Held or Deposited with Reinsurante Companies	Investment Income Dus & Accrued	Agents Balances 8/or Uncollected Premiums	Cosh and Shoot-Toral Invastrants	Money Market & for Stocks	Bonds	ASSETS
156 100 223			1,002,634	34,542			. G	.542,888	2,973,394	4, 128,283	•	\$19,228,612	
Tobi Libilities and Policyholder Surplus	Total Pulicyfordder Surplus	Surplus	Capital Stock & Paid in Surplus	POLICYHOLDERSY SURPLUS	Total (Labitates	Other Liabilities	Psychia to Perent Subsidiaries and Affiliates	Coded Reinaurence Premiuma Payable Funds Held Under Reinaurance Treety Reserve for Unauthorized Reinaurance	Reserve for Current federal incame taxes	Reserve for Other Expenses	Reserve for Linearned Premiums	Reserve for Losses and Loss Expense	LIABILITIES
\$27,987,864	\$13,528,458	10,578,928	\$3,049,630	•	. \$(4,338,868	448.308	85 ₁ 132	624,961 104,968 3,339	158,327 561,323	171,217	10,220,650	\$2,080,694	

I certly that the above thandsf externants to the best of my knowledge are a true and securate reflection of the financial condition of the Company as of Decomber 31, 2004. Additionally, I coally that the above thankial externants are in agreement with the Standary Physicial Statements field with the Ulinois Department of Insurance as of the same date.

al Official, Vice President & Assistant Trectur

POWER OF ATTORNEY AO 40062

Bond Safeguard Insurance Company

KNOW ALL MEN BY THESE PRESENTS, that BOND SAFEGUARD INSURANCE COMPANY, an Illinois Corporation with its its true and lawful Attorney(s)-In-Fact to make, execute, seal and deliver for, and on its behalf as surely, any and all bonds, undertakings or other writings obligatory in nature of a bond.

This authority is made under and by the authority of a resolution which was passed by the Board of Directors of BOND SAFEGUARD INSURANCE COMPANY on the 7th day of November, 2001 as follows:

Resolved, that the President of the Company is hereby authorized to appoint and empower any representative of the Company or other person or persons as Attorney-In-Fact to execute on behalf of the Company any bonds, undertakings, policies, contracts of indemnity or other writings obligatory in nature of a bond not to exceed \$1,000,000.00, One Million Dollars, which the Company might execute through its duly elected officers, and affix the seal of the Company thereto. Any said execution of such documents by an Attorney-In-Fact shall be as binding upon the Company as if they had been duly executed and acknowledged by the regularly elected officers of the Company. Any Attorney-In-Fact, so appointed, may be removed for good cause and the authority so granted may be revoked as specified in the Power of Attorney.

Resolved, that the signature of the President and the seal of the Company may be affixed by facsimile on any power of attorney granted, and the signature of the Vice President, and the seal of the Company may be affixed by facsimile to any certificate of any such power and any such power or certificate bearing such facsimile signature and seal shall be valid and binding on the Company. Any such power so executed and sealed and certificate so executed and sealed shall, with respect to any bond or undertaking to which it is attached, continue to be valid and binding on the Company.

IN WITNESS THEREOF, BOND SAFEGUARD INSURANCE COMPANY has caused this instrument to be signed by its President, and its Corporate seal to be affixed this 7th day of November, 2001.

BOND SAFEGUARD INSURANCE COMPANY

David E. Campbell President

ACKNOWLEDGEMENT

On this 7th day of November, 2001, before me, personally came David E. Campbell to me known, who being duly sworn, did depose and say that he is the President of BOND SAFEGUARD INSURANCE COMPANY, the corporation described in and which executed the above instrument; that he executed said instrument on behalf of the corporation by authority of his office under the By-laws of said corporation.

"OFFICIAL SEAL" MICHELE KOLLER Notary Public, State of Illinois My Commission Expires 08/28/07

Michele Koller **Notary Public**

CERTIFICATE

I, the undersigned, Secretary of BOND SAFEGUARD INSURANCE COMPANY, An Illinois Insurance Company, DO HEREBY CERTIFY that the original Power of Attorney of which the foregoing is a true and correct copy, is in full force and effect and has not been revoked and the resolutions as set forth are now in force.

Signed and Sealed at Lombard, Illinois this 3 Add

PA61 TIA Appendix

_Day of 矣

Secretary 298 of 449

STATE OF ARIZONA)
COUNTY OF MARICOPA) ss.)
× 10	

I, <u>Janet Groneberg</u>, a Notary Public for the aforesaid County and State certify that Karin A. Church personally came before me this day and acknowledged that she is a Vice President of National Safe Harbor Exchanges, a California corporation, the sole member of Otay Greenfield Developers, LLC, an California limited liability company, and that by authority duly given and as the act of the corporation, the foregoing instrument was signed in its name by Karin A. Church, as the Vice President. Witness my hand and official seal this 12th day of January, 2007.

My commission Expires:

March 1, 2010

OFFICIAL SEAL
JANET GRONEBERG
NOTARY PUBLIC - State of Arizona
PINAL COUNTY
My Comm. Expires March 1, 2010

WRITTEN CONSENT OF THE MEMBER OF OTAY GREENFIELD DEVELOPERS, LLC, A CALIFORNIA LIMITED LIABILITY COMPANY

The undersigned, constituting the sole Member of OTAY GREENFIELD DEVELOPERS, LLC, a California limited liability company (the "Company"), hereby adopts, confirms and ratifies the following resolutions by its approval and execution of this Written Consent:

WHEREAS, the Company plans to acquire that certain real property located in the City of San Diego, County of San Diego, State of California known as Planning Areas 13 and 14 in the Ocean View Hills community ("Property"), and desires to construct improvements on the Property;

WHEREAS, the Company is entering into that certain Project Management Agreement between the Company and Garden Communities, a California corporation ("Garden"), whereby Garden will act as Project Manager for the construction of the improvements on the Property;

NOW, THEREFORE, BE IT RESOLVED, that Karin A. Church, as the Vice President of National Safe Harbor Exchanges, a California corporation ("NSHE"), as the sole Member of Company, is hereby authorized, empowered and directed to execute and sign on behalf of the Company all regulatory applications, maps and all documents necessary to obtain permits with the City of San Diego; negotiate, execute, and perform any contracts desirable, useful, or necessary to the conduct of the business or operations of the Company, including, but not limited to, construction agreements and all other documents that are relevant or incident to the construction of properties owned by the Company;

RESOLVED FURTHER, that Company hereby authorizes Karin A. Church, as the Vice President of NSHE, as the sole Member of Company, to execute the City of San Diego Deferred Improvement Agreement, Subdivision Improvement Agreement and to post bonds for the deferred improvement, grading and public/private improvements;

RESOLVED FURTHER, that Stuart Posnock, as Vice President of Garden, is hereby authorized, empowered and directed to take all actions necessary to fulfill Garden's obligations as Project Manager under the Project Management Agreement, including negotiating, executing (where a signature is not required by Company as the owner of the Property), and performing any contracts desirable, useful, or necessary to the construction of the improvements on the Property, including, but not

a / `a

limited to, construction agreements and all other documents that are relevant or incident to the construction of the improvements on the Property;

RESOLVED FURTHER, that all lawful acts specifically described in the immediately preceding resolution, undertaken prior to the adoption of such resolution of the Company, are hereby ratified, confirmed and adopted by the Company;

RESOLVED FURTHER, that a copy of this Written Consent shall be placed with the record of the other actions of the Company.

Dated: December 20, 2006

OTAY GREENFIELD DEVELOPERS, LLC, a California limited liability company

By: National Safe Harbor Exchanges,

a California corporation

Its: Sole Member

By:

Karih A. Church
Vice President

JJ Street Traffic Signal Improvement DIA Bond Estimate

425735 WORK ORDER NO:

PROJECT DESIGN CONSULTANTS

DWG. NO:

701 'B' STREET, SUITE 800

P.T.S. NO: 100657

SAN DIEGO, CA 92101 (619) 235 - 6471

COMPANY JOB NO: 2255.1

(619) 234 - 0349

DATE: 4/11/2006

PUBLIC IMPROVEMENT TOTALS

DRAINAGE IMPROVEMENTS...... S WATER & WASTEWATER UTILITIES..... S SURFACE IMPROVEMENTS...... \$ TRAFFIC \$ 12/2/26

MISCELLANEOUS \$ 135,000 SUBTOTAL - IMPROVEMENTS..... 5 27,000 20% Contingency..... \$

TOTAL PUBLIC IMPROVEMENT: S

TOTAL BOND AMOUNT: \$

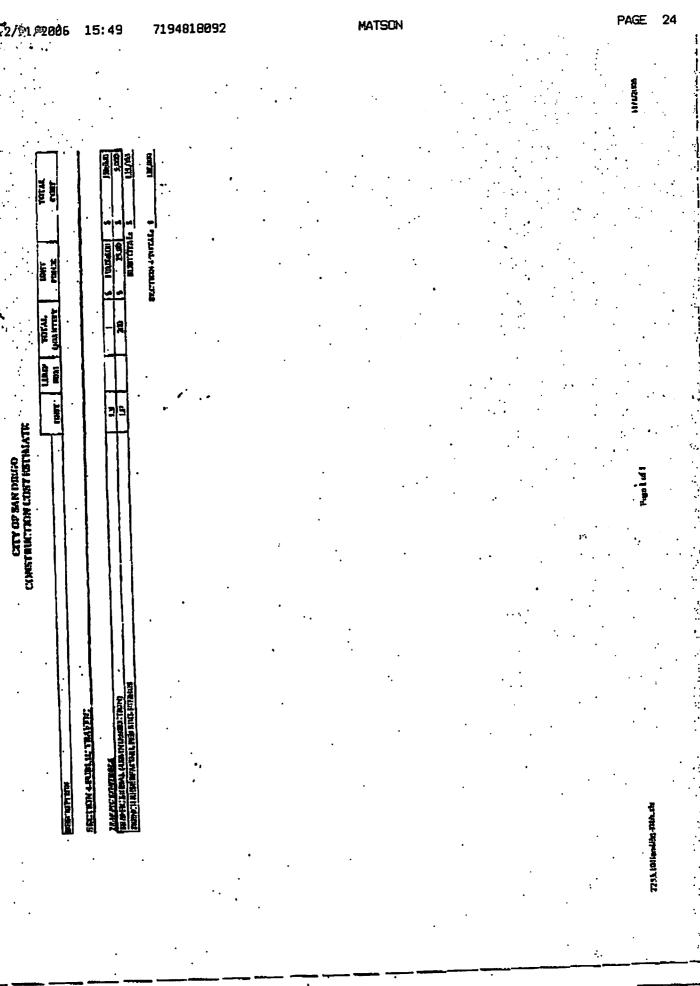
162,000

162,000

135,000

162,000 will satisfy A Bond in the amount of 5 the provisions of Article 9. Chapter XII of The Municipal Code for the improvement of JJ Street Traffic Signal

Estimated time of completion Is:


Date

Control Engineer

RCE: 59285 Expiration: 6/30/07

Note: Unit prices are based on available City of San Diego Land Development Review Division. Cost Estimate Unit Price List. August 2005.

Appendix Q

Cumulative Project Information

Cumulative Projects (C1)	NBL	NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR
1) Oceanview/Starfish AM		128	19	0	47	0	0	0	8	14	0	0
C1: 7-11 C2: Azul+park C3: SView Sview-E	2 5	1 97 10 14	2 7		1 29 2 4				2 1	2		
C4: Cndlight, S-wind C5: Handler C6: Arco+Marijuana	10	5 1	10		5 6				5	10		
C1: 7-11 C2: Azul+park C3: SView Sview-E C4: Cndlight, S-wind C5: Handler C6: Arco+Marijuana	(14) (1) (3) (10)	(77) (1) (50) (4) (6) (10) (6)	(16) (2) (4) (10)	()	(131) (1) (101) (9) (14) (5) (1)	0	0	0	(17) (2) (5) (10)	(20) (2) (8) (10)	0	0
2) Oceanview/Seadrift C1: 7-11 C2: Azul+park C3: SView Sview-E C4: Cndlight, S-wind C5: Handler C6: Arco+Marijuana	6 1	164 5 109 10 14 25 1	0	0	69 5 32 2 4 20 6	0	0	0	5	0	0	0
C1: 7-11 C2: Azul+park C3: SView Sview-E C4: Cndlight, S-wind C5: Handler C6: Arco+Marijuana	. ,	(113) (5) (57) (4) (6) (35) (6)	0	()	(168) (5) (114) (9) (14) (25) (1)	0	0	0	(5)	0	0	0
3) Oceanview/DelSol AM C1: 7-11 C2: Azul+park C3: SView Sview-E C4: Cndlight, S-wind	30 6 4	85 6 24 10 14	16 6	0	50 6 7 2 4	25 25	85 85	0	43 6 12	16 6	0	0
C5: Handler C6: Arco+Marijuana	20	30 1	10		25 6				25	10		

C1: 7-11 C2: Azul+park C3: SView Sview-E C4: Cndlight, S-wind C5: Handler C6: Arco+Marijuana	PM	(59) (6) (13) (40)	(75) (6) (13) (4) (6) (40) (6)	(16) (6) (10)	0	(85) (6) (25) (9) (14) (30) (1)	(89) (89)	(44) (44)	0	(42) (6) (6) (30)	(16) (6) (10)	0	0
4) Oceanview/SeaFire C1: 7-11 C2: Azul+park C3: SView Sview-E C4: Cndlight, S-wind C5: Handler C6: Arco+Marijuana	AM	41 21 20	107 18 4 10 14 60 1	12 2	0	102 18 12 2 4 60 6	7	24 24	0	92 72 20	22 2 20	0	0
C1: 7-11 C2: Azul+park C3: SView Sview-E C4: Cndlight, S-wind C5: Handler C6: Arco+Marijuana	PM	(106) (76) (30)	(137) (18) (13) (4) (6) (90) (6)	(12) (2) (10)	0	(118) (18) (6) (9) (14) (70) (1)	(25) (25)	(13) (13)	0	(63) (38) (25)	(27) (2) (25)	0	0
5) Oceanview/HiddenTrails C1: 7-11 C2: Azul+park C3: SView Sview-E C4: Cndlight, S-wind C5: Handler C6: Arco+Marijuana	AM	0	160 20 25 10 14 90 1	18 8	0	217 20 85 2 4 100 6	0	0	0	0	28 8	0	0
C1: 7-11 C2: Azul+park C3: SView Sview-E	PM	()	(255) (20) (89) (4)	(35) (5)	()	(208) (20) (44) (9)	()	()	()	0	(45) (5)	()	()

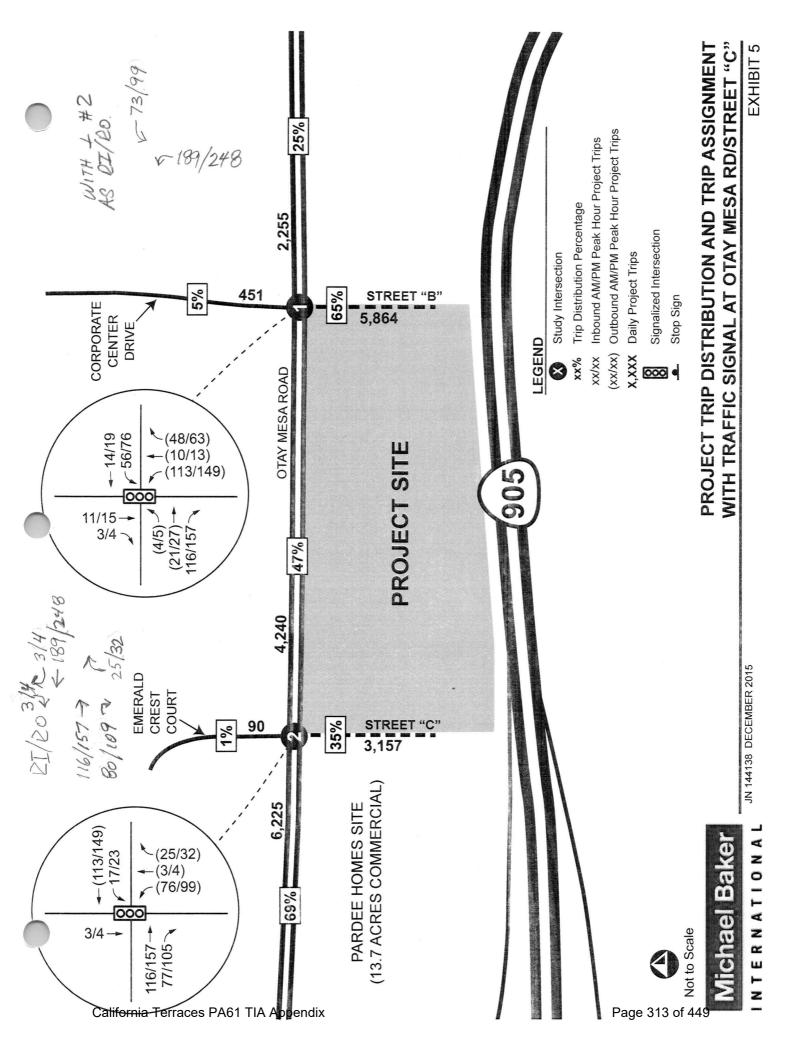
C4: Cndlight, S-wind C5: Handler C6: Arco+Marijuana		(6) (130) (6)	(30)		(14) (120) (1)					(40)		
6) OtayMesa/Caliente/Ocear AM C1: 7-11 C2: Azul+park C3: SView Sview-E C4: Cndlight, S-wind C5: Handler C6: Arco+Marijuana	78 71 7	35 11 10 14	40 61 53 25	188 14 48 120 6	78 36 36 2 4	0	28 28	46 14 12	60 36 24	96 10 15 69 2	52 28 4	115 14 100 1
C1: 7-11 C2: Azul+park C3: SView Sview-E C4: Cndlight, S-wind C5: Handler C6: Arco+Marijuana	(89) (64) (25)	(48) (38) (4) (6)	(141) (17) (26) (92) (6)	(199) (13) (25) (160) (1)	(74) (32) (19) (9) (14)	0	(25) (25)	(49) (13) (6) (30)	(45) (32) (13)	(41) (61) (58) (22)	(68) (25) (13) (30)	(217) (51) (160) (6)
7) Caliente/SR905 WB Ramr AM C1: 7-11 C2: Azul+park C3: SView Sview-E C4: Cndlight, S-wind C5: Handler C6: Arco+Marijuana	67 98	239 22 14 50 75 53 25	0 x x x x x x x x	0 x x x x x x x x	112 10 12 12 19 59	74 14 48 10 2	0 x x x x x x x x	0 x x x x x x x x	0 x x x x x x x x	12 5 7	0	6 2 4
C1: 7-11 C2: Azul+park C3: SView Sview-E C4: Cndlight, S-wind C5: Handler C6: Arco+Marijuana	(28) (42)	(222) (19) (51) (21) (33) (92) (6)	0 x x x x x x x x x	0 x x x x x x x x x	(189) (9) (6) (51) (75) (48)	(69) (12) (25) (10) (22)	0 x x x x x x x x x	0 x x x x x x x x x	0 x x x x x x x x	(20) (31)	0	(5) (2) (3)

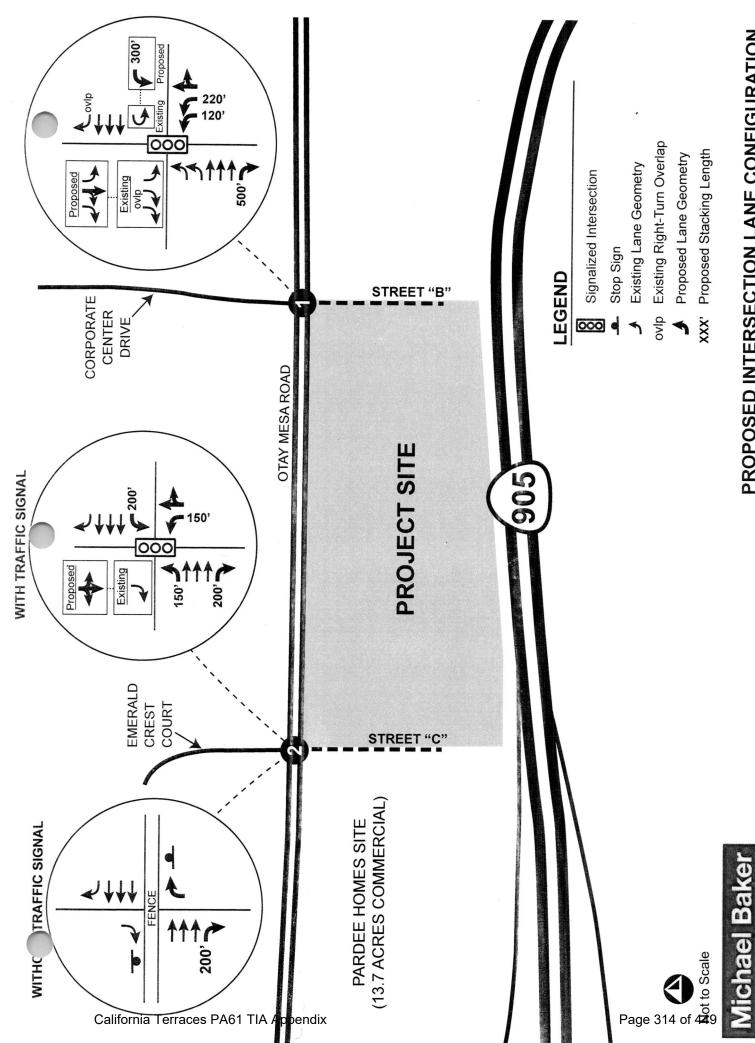
8) Caliente/SR905 EB Ramp C1: 7-11 C2: Azul+park C3: SView Sview-E C4: Cndlight, S-wind C5: Handler C6: Arco+Marijuana	AM	0 x x x x x x x x x	341 8 117 173 43	51 21 30	14 2 12	110 8 17 26 59	0 x x x x x x x x x	63 14 14 10 25	0	42 17 25	0 x x x x x x x x x	0 x x x x x x x x x	0 x x x x x x x x
C1: 7-11 C2: Azul+park C3: SView Sview-E C4: Cndlight, S-wind C5: Handler C6: Arco+Marijuana	PM	0 x x x x x x x x x	(213) (7) (49) (75) (82)	(9) (13)	(8) (2) (6)	(232) (7) (71) (106) (48)	0 x x x x x x x x	(79) (12) (51) (10) (6)	()	(65) (99)	0 x x x x x x x x x	0 x x x x x x x x	() x x x x x x x x
9) Caliente/Airway C1: 7-11 C2: Azul+park C3: SView Sview-E C4: Cndlight, S-wind C5: Handler C6: Arco+Marijuana	AM	30	220 8 203 9	0	34 23	72 8 51 13	23	17	5	8	0	21	138 17
C1: 7-11 C2: Azul+park C3: SView Sview-E C4: Cndlight, S-wind C5: Handler C6: Arco+Marijuana	PM	(13)	(117) (7) (88) (22)	0	(136) (19)	(222) (7) (205) (10)	(19) (19)	(30)	(20)	(31)	()	(9)	(88) (58) (30)
10) OtayMesa/Proj W Dwy C1: 7-11 C2: Azul+park C3: SView Sview-E C4: Cndlight, S-wind C5: Handler C6: Arco+Marijuana	AM	0	0	0	0	0	0	0	413 28 60 40 61 193 31	0	0	0	0

C1: 7-11 C2: Azul+park C3: SView Sview-E C4: Cndlight, S-wind C5: Handler C6: Arco+Marijuana	PM	0	0	0	0	0	0	0	(368) (25) (31) (17) (26) (262) (7)	0	0	0	0
11) OtayMesa/Emerald/Proj C1: 7-11 C2: Azul+park C3: SView Sview-E C4: Cndlight, S-wind C5: Handler C6: Arco+Marijuana	AM	76	3	25 25	0	3	19 19	19 19	317 9 60 40 61 116 31	77	17	9 18 10 15 113 3	0
C1: 7-11 C2: Azul+park C3: SView Sview-E C4: Cndlight, S-wind C5: Handler C6: Arco+Marijuana	PM	(99) (99)	(4) (4)	(32)	0	(4)	(17) (17)	(17) (17)	(8) (31) (17) (26)	(105)	(23)	(350) (8) (63) (41) (61) (149) (28)	()
12) OtayMesa/Corporate C1: 7-11 C2: Azul+park C3: SView Sview-E C4: Cndlight, S-wind C5: Handler C6: Arco+Marijuana	AM	113	10	48	0	11	3	35 4 31	191 9 60 40 61 21	116	56	9 18 10 15 14 3	0
C1: 7-11 C2: Azul+park C3: SView Sview-E C4: Cndlight, S-wind	PM	(149)	(13)	(63)	()	(15)	(4)	(12)	(109) (8) (31) (17) (26)	(157)	(76)	(220) (8) (63) (41) (61)	()

C5: Handler C6: Arco+Marijuana	(149)	(13)	(63)		(15)	(4)	(5) (7)	(27)	(157)	(76)	(19) (28)	
13) OtayMesa/Innovative Dr All C1: 7-11 C2: Azul+park C3: SView Sview-E C4: Cndlight, S-wind C5: Handler C6: Arco+Marijuana	<i>I</i> 0	0	0	0	0	3	0	239	0	0	147	25 25
C1: 7-11 C2: Azul+park C3: SView Sview-E C4: Cndlight, S-wind C5: Handler C6: Arco+Marijuana	()	()	0	0	0	(28)	()	173	0	()	275	(6)
14) OtayMesa/Heritage All C1: 7-11 C2: Azul+park C3: SView Sview-E C4: Cndlight, S-wind C5: Handler C6: Arco+Marijuana	25 2 3 20	1	10	3	1	30 2 5 3 20	42 2 10 10 20	165 5 50 20 61 29	32 2 10 20	5	92 5 13 4 15 30 25	0
C1: 7-11 C2: Azul+park C3: SView Sview-E C4: Cndlight, S-wind C5: Handler C6: Arco+Marijuana	(42) (2) (10) (30)	(1)	(10) (10)	(22)	(1)	(55) (2) (13) (10) (30)	(37) (2) (5) (5) (5)	(104) (5) (26) (7) (26) (40)	(32) (2) (5) (25)	(5)	(178) (5) (50) (21) (61) (35) (6)	0

Project Traffic Volumes


California Terraces PA61 TIA Appendix


J-11 STONE

Page 311 of 449

Southwind

Southwind							
1 / 3 Ocean View Hills Plawy	⊉ 3 / 15 Otay Mesa Rd	Caliente Ave		c 6 / 25	SR 905 EB Ramps	4 11 / 49 Callente Ave	Airway Rd
Callente Ave	3 /1 13 /6 2 0		21 /10 %	5/24 %	38 /18 the 7 /3 string	2/7 %	7 /3 & 44 /21 &
5 99 21 / 24 &	Public Street A			48			
33	36)———	Ocean View Hills Pkwy	208 Otay Me	esa Rd	
Old Otay	Mesa Rd	Airway Rd	04	2	256	104	
		Project Site	800	800 Publi	0	~~	
			<i>y</i>	Public Street	<u>Legend</u> X/Y = AM/PI TURNING	M PEAK HOUR VOLUMES prage Daily Traffic	NOT TO SCALE

PROPOSED INTERSECTION LANE CONFIGURATION

EXHIBIT 1

NTERNATIONAL

JN 144138 DECEMBER 2015

Appendix R	αA	pe	nd	ix	R
------------	----	----	----	----	---

Near Term Year 2020 without Project Level of Service Calculations

AM Existing + Cumulative 1: Ocean View Hills Pkwy & Starfish Way/Westport View Dr

	۶	→	•	•	←	•	4	†	~	/	↓	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		*	ħβ		ሻ	∱ ⊅	
Traffic Volume (veh/h)	60	4	12	82	7	53	19	670	47	42	590	22
Future Volume (veh/h)	60	4	12	82	7	53	19	670	47	42	590	22
Number	3	8	18	7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		0.98	1.00		0.97
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1863	1900	1900	1863	1900	1863	1863	1900	1863	1863	1900
Adj Flow Rate, veh/h	65	4	13	89	8	58	21	728	51	46	641	24
Adj No. of Lanes	0	1	0	0	1	0	1	2	0	1	2	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	128	8	26	123	11	80	35	1303	91	65	1409	53
Arrive On Green	0.09	0.09	0.09	0.13	0.13	0.13	0.02	0.39	0.39	0.04	0.41	0.41
Sat Flow, veh/h	1382	85	276	976	88	636	1774	3350	235	1774	3475	130
Grp Volume(v), veh/h	82	0	0	155	0	0	21	384	395	46	326	339
Grp Sat Flow(s), veh/h/ln	1744	0	0	1700	0	0	1774	1770	1815	1774	1770	1835
Q Serve(g_s), s	2.5	0.0	0.0	4.9	0.0	0.0	0.7	9.5	9.6	1.4	7.6	7.6
Cycle Q Clear(g_c), s	2.5	0.0	0.0	4.9	0.0	0.0	0.7	9.5	9.6	1.4	7.6	7.6
Prop In Lane	0.79		0.16	0.57		0.37	1.00		0.13	1.00		0.07
Lane Grp Cap(c), veh/h	162	0	0	215	0	0	35	688	706	65	718	744
V/C Ratio(X)	0.51	0.00	0.00	0.72	0.00	0.00	0.60	0.56	0.56	0.71	0.45	0.46
Avail Cap(c_a), veh/h	836	0	0	815	0	0	132	688	706	129	718	744
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	24.3	0.0	0.0	23.6	0.0	0.0	27.4	13.4	13.4	26.8	12.2	12.2
Incr Delay (d2), s/veh	2.4	0.0	0.0	4.5	0.0	0.0	15.0	3.3	3.2	13.4	2.1	2.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.3	0.0	0.0	2.6	0.0	0.0	0.5	5.2	5.3	0.9	4.0	4.2
LnGrp Delay(d),s/veh	26.7	0.0	0.0	28.2	0.0	0.0	42.3	16.7	16.6	40.3	14.3	14.2
LnGrp LOS	С			С			D	В	В	D	В	В
Approach Vol, veh/h		82			155			800			711	
Approach Delay, s/veh		26.7			28.2			17.3			15.9	
Approach LOS		С			С			В			В	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	<u> </u>	4	5	6	,	8				
Phs Duration (G+Y+Rc), s	5.5	28.6		12.0	6.5	27.7		10.1				
Change Period (Y+Rc), s	4.4	* 5.8		4.9	4.4	5.8		4.9				
Max Green Setting (Gmax), s	4.4	* 22		27.0	4.4	21.9		27.0				
Max Q Clear Time (g_c+l1), s	2.7	9.6		6.9	3.4	11.6		4.5				
Green Ext Time (p_c), s	0.0	3.0		0.7	0.0	3.2		0.3				
Intersection Summary												
HCM 2010 Ctrl Delay			18.2									
HCM 2010 LOS			10.2 B									
Notes												

Intersection						
Int Delay, s/veh	1.6					
		EDD.	NDI	NDT	CDT	CDD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥	04	`	^	^	00
Traffic Vol, veh/h	82	31	14	684	563	90
Future Vol, veh/h	82	31	14	684	563	90
Conflicting Peds, #/hr	8	8	8	0	0	- 8
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	225	-	-	-
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	89	34	15	743	612	98
Major/Minor N	1inor2	N	/lajor1	Λ	/lajor2	
Conflicting Flow All	1079	371	718	0	-	0
Stage 1	669		/10		-	-
	410	-	-	-	-	-
Stage 2			111	-		-
Critical Hdwy	6.84	6.94	4.14	-	-	-
Critical Hdwy Stg 1	5.84	-	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-
Follow-up Hdwy	3.52	3.32	2.22	-	-	-
Pot Cap-1 Maneuver	213	626	879	-	-	-
Stage 1	471	-	-	-	-	-
Stage 2	638	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	206	618	873	-	-	-
Mov Cap-2 Maneuver	332	-	-	-	-	-
Stage 1	460	-	-	-	-	-
Stage 2	634	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	18.9		0.2		0	
HCM LOS	С					
Minor Lane/Major Mvmt	t	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		873	-		-	-
HCM Lane V/C Ratio		0.017	_	0.323	-	-
HCM Control Delay (s)		9.2	-	18.9	-	-
HCM Lane LOS		A	_	С	_	_
HCM 95th %tile Q(veh)		0.1	-	1.4	-	-
1101VI 70111 701110 Q(VCII)		0.1		1.7		

3: Ocean View Hills Pkwy & Del Sol Blvd/Breakers Way

	۶	→	•	•	•	•	1	†	~	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑	7	ሻ	₽		ሻሻ	↑ ↑₽		ሻ	∱ ∱	
Traffic Volume (veh/h)	390	22	399	19	36	33	348	270	29	18	267	302
Future Volume (veh/h)	390	22	399	19	36	33	348	270	29	18	267	302
Number	3	8	18	7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.96	0.97		0.98	1.00		0.97	1.00		0.98
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1863	1900	1863	1863	1900	1863	1863	1900
Adj Flow Rate, veh/h	424	24	434	21	39	36	378	293	32	20	290	328
Adj No. of Lanes	1	1	1	1	1	0	2	3	0	1	2	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	623	641	521	303	157	145	460	1887	201	30	511	448
Arrive On Green	0.21	0.34	0.34	0.04	0.18	0.18	0.13	0.41	0.41	0.02	0.29	0.29
Sat Flow, veh/h	1774	1863	1515	1774	885	817	3442	4654	496	1774	1770	1552
Grp Volume(v), veh/h	424	24	434	21	0	75	378	211	114	20	290	328
Grp Sat Flow(s), veh/h/ln	1774	1863	1515	1774	0	1702	1721	1695	1760	1774	1770	1552
Q Serve(g_s), s	18.7	0.9	26.3	0.9	0.0	3.8	10.7	3.9	4.1	1.1	13.9	19.0
Cycle Q Clear(q_c), s	18.7	0.9	26.3	0.9	0.0	3.8	10.7	3.9	4.1	1.1	13.9	19.0
Prop In Lane	1.00		1.00	1.00		0.48	1.00		0.28	1.00		1.00
Lane Grp Cap(c), veh/h	623	641	521	303	0	303	460	1375	714	30	511	448
V/C Ratio(X)	0.68	0.04	0.83	0.07	0.00	0.25	0.82	0.15	0.16	0.66	0.57	0.73
Avail Cap(c_a), veh/h	623	718	584	518	0	579	641	1375	714	99	511	448
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	23.5	21.8	30.1	30.9	0.0	35.3	42.1	18.8	18.9	48.8	30.2	32.0
Incr Delay (d2), s/veh	3.0	0.0	9.1	0.1	0.0	0.4	6.0	0.2	0.5	21.9	4.5	10.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	9.6	0.4	12.2	0.5	0.0	1.8	5.5	1.9	2.1	0.7	7.4	9.4
LnGrp Delay(d),s/veh	26.6	21.8	39.2	31.0	0.0	35.7	48.0	19.1	19.3	70.7	34.7	42.2
LnGrp LOS	C	C C	D	C	0.0	D	D	В	В	70.7 E	C	D
Approach Vol, veh/h		882			96			703			638	
Approach Delay, s/veh		32.7			34.7			34.7			39.7	
Approach LOS		32.7 C			34.7 C			34.7 C			37.7 D	
Approach LO3		C			C			C			D	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	17.8	34.4	25.0	22.7	6.1	46.1	8.4	39.3				
Change Period (Y+Rc), s	4.4	* 5.6	4.4	4.9	4.4	5.6	4.4	4.9				
Max Green Setting (Gmax), s	18.6	* 28	20.6	34.0	5.6	40.5	16.1	38.5				
Max Q Clear Time (g_c+I1), s	12.7	21.0	20.7	5.8	3.1	6.1	2.9	28.3				
Green Ext Time (p_c), s	0.7	2.0	0.0	0.3	0.0	1.9	0.0	1.3				
Intersection Summary												
HCM 2010 Ctrl Delay			35.3									
HCM 2010 LOS			D									
Notes												
110103												

AM Existing + Cumulative 4: Ocean View Hills Pkwy & Sea Fire Point

and Configurations araffic Volume (veh/h) 27 0 96 32 0 42 44 567 18 26 648 11 utility Volume (veh/h) 27 0 96 32 0 42 44 567 18 26 648 11 utility Volume (veh/h) 27 0 96 32 0 42 44 567 18 26 648 11 utility Veh/hy V		۶	→	•	•	←	•	1	†	<u> </u>	/	ţ	4	
raffic Volume (vehrh) 27 0 96 32 0 42 44 567 18 26 648 11 utlutre Volume (vehrh) 27 0 96 32 0 42 44 567 18 26 648 11 utlutre Volume (vehrh) 27 0 96 32 0 42 44 567 18 26 648 11 utlutre Volume (vehrh) 27 0 96 32 0 42 44 567 18 26 648 11 utlutre Volume (vehrh) 27 0 96 32 0 42 44 567 18 26 648 11 utlutre Volume (vehrh) 27 0 96 32 0 42 44 567 18 26 648 11 utlutre Volume (vehrh) 28 100 100 100 100 100 100 100 100 100 10	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
raffic Volume (vehrh) 27 0 96 32 0 42 44 567 18 26 648 11 ulurue Volume (vehrh) 27 0 96 32 0 42 44 567 18 26 648 11 ulurue Volume (vehrh) 27 0 96 32 0 42 44 567 18 26 648 11 ulurue Volume (vehrh) 27 0 96 32 0 42 44 567 18 26 648 11 ulurue Volume (vehrh) 27 0 96 32 0 42 44 567 18 26 648 11 ulurue Volume (vehrh) 27 0 100 100 100 100 100 100 100 100 100	Lane Configurations		4		ř	ĵ,		Ť	ተ ተኈ		Ť	የ		
Jumber 3 8 18 7 4 14 1 6 16 5 2 12 uitilat Q (Ob), veh 0	Traffic Volume (veh/h)	27		96			42	44		18			11	
sitial Q (Ob), veh	Future Volume (veh/h)	27	0	96	32	0	42	44	567	18	26	648	11	
ed-Bike Adj(A_pbT) 1.00	Number	3	8	18	7	4	14	1	6	16	5	2	12	
ed-Bike Adj(A_pbT) 1.00	Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
arking Bus, Adj	` '	1.00		0.99	1.00		1.00	1.00		0.96	1.00		0.95	
dj Sat Flow, veh/h 1900			1.00			1.00			1.00			1.00		
dj Flow Rate, veh/h 29 0 104 35 0 46 48 616 20 28 704 12 dj No. of Lanes 0 1 0 1 1 0 1 3 0 1 3 0 each Hour Factor 0,92 0,92 0,92 0,92 0,92 0,92 0,92 0,92														
dj No. of Lanes 0 1 0 1 1 0 1 3 0 1 3 0 1 3 0 1 3 0 1 3 0 1 3 0 1 3 0 1 3 0 1 3 0 1 3 0 2 3														
ercent Heavy Veh, % 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2														
ercent Heavy Veh, % 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	•													
Cap, veh/h														
rrive On Green 0.12 0.00 0.12 0.05 0.00 0.05 0.04 0.48 0.48 0.02 0.47 0.47 at Flow, veh/h 351 0 1258 1774 0 1583 1774 5053 163 1774 5145 88 irg Volume(v), veh/h 133 0 0 35 0 46 48 412 224 28 463 253 irg Volume(v), veh/h 174 0 1583 1774 1695 1826 1774 1695 1842 18 18 18 18 18 18 18 18 18 18 18 18 18	,													
at Flow, veh/h 351 0 1258 1774 0 1583 1774 5053 163 1774 5145 88 irp Volume(v), veh/h 133 0 0 0 35 0 46 48 412 224 28 463 253 irp Sat Flow(s), veh/h/ln1609 0 0 1774 0 1583 1774 1695 1826 1774 1695 1842 1826 1774 1826 1826 1774 1826 1826 1774 1826 1826 1826 1774 1826 1826 1826 1826 1826 1826 1826 1826														
irp Volume(v), veh/h 133														
Trig Sat Flow(s), veh/h/In1609														
Serve(g_s), s 5.0 0.0 0.0 1.2 0.0 1.8 1.7 4.5 4.5 1.0 5.3 5.3 ycle Q Clear(g_c), s 5.0 0.0 0.0 1.2 0.0 1.8 1.7 4.5 4.5 1.0 5.3 5.3 rop In Lane 0.22 0.78 1.00 1.00 1.00 0.09 1.00 0.05 ane Grp Cap(c), veh/h 197 0 0 87 0 78 64 1641 884 44 1602 871 //C Ratio(X) 0.67 0.00 0.00 0.40 0.00 0.59 0.75 0.25 0.25 0.25 0.64 0.29 0.29 vail Cap(c_a), veh/h 789 0 0 898 0 802 213 1641 884 174 1602 871 CM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	, ,													
ycle Q Clear(g_c), s 5.0 0.0 0.0 1.2 0.0 1.8 1.7 4.5 4.5 1.0 5.3 5.3 rop In Lane 0.22 0.78 1.00 1.00 1.00 0.09 1.00 0.05 ane Grp Cap(c), velvh 197 0 0 87 0 78 64 1641 884 44 1602 871 // CR Ratio(X) 0.67 0.00 0.00 0.40 0.00 0.59 0.75 0.25 0.64 0.29 0.29 vail Cap(c_a), velvh 789 0 0 889 0 802 213 1641 884 174 1602 871 // CM Platon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0														
rop In Lane														
arie Grp Cap(c), veh/h 197 0 0 87 0 78 64 1641 884 44 1602 871 //C Ratio(X) 0.67 0.00 0.00 0.40 0.00 0.59 0.75 0.25 0.25 0.64 0.29 0.29 vail Cap(c_a), veh/h 789 0 0 898 0 802 213 1641 884 174 1602 871 ICM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	J 10_ /		0.0			0.0			4.5			5.3		
C Ratio(X)	•		^			0			1/11			1/02		
vail Cap(c_a), veh/h 789 0 0 898 0 802 213 1641 884 174 1602 871 ICM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0														
CM Platoon Ratio 1.00 1.														
pstream Filter(I) 1.00 0.00 0.00 1.00 0.00 1.00 1.00 1.0	• • • • • • • • • • • • • • • • • • • •													
iniform Delay (d), s/veh 26.5														
ncr Delay (d2), s/veh 4.0 0.0 0.0 3.0 0.0 7.0 16.0 0.4 0.7 14.7 0.5 0.8 nitial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	•													
nitial Q Delay(d3),s/veh 0.0 <td< td=""><td>J 1 7</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	J 1 7													
Sile BackOfQ(50%),veh/lr2.4														
nGrp Delay(d),s/veh 30.5 0.0 0.0 32.1 0.0 36.5 46.2 9.9 10.3 45.2 10.6 11.0 nGrp LOS C D D D A B D B B pproach Vol, veh/h 133 81 684 744 pproach Delay, s/veh 30.5 34.6 12.6 12.1 pproach LOS C C B B B B B B B B B B B B B B B B B	3													
nGrp LOS C C D D A B D B B pproach Vol, veh/h 133 81 684 744 pproach Delay, s/veh 30.5 34.6 12.6 12.1 pproach LOS C C B B B imer 1 2 3 4 5 6 7 8 ssigned Phs 1 2 4 5 6 8 hs Duration (G+Y+Rc), s6.7 35.9 8.0 6.0 36.6 12.7 thange Period (Y+Rc), s 4.4 6.0 4.9 4.4 6.0 4.9 lax Green Setting (Gmax), 6 29.2 32.0 6.2 30.6 31.0 lax Q Clear Time (g_c+l1), 75 7.3 3.8 3.0 6.5 7.0 irreen Ext Time (p_c), s 0.0 4.2 0.3 0.0 3.7 0.7 intersection Summary ICM 2010 Ctrl Delay 14.9	· · ·													
pproach Vol, veh/h 133 81 684 744 pproach Delay, s/veh 30.5 34.6 12.6 12.1 pproach LOS C C B B B imer 1 2 3 4 5 6 7 8 ssigned Phs 1 2 4 5 6 8 hs Duration (G+Y+Rc), s6.7 35.9 8.0 6.0 36.6 12.7 thange Period (Y+Rc), s 4.4 6.0 4.9 4.4 6.0 4.9 lax Green Setting (Gmax), 6 29.2 32.0 6.2 30.6 31.0 lax Q Clear Time (g_c+113, 75 7.3 3.8 3.0 6.5 7.0 Green Ext Time (p_c), s 0.0 4.2 0.3 0.0 3.7 0.7 intersection Summary ICM 2010 Ctrl Delay 14.9			0.0	0.0		0.0								
pproach Delay, s/veh 30.5 34.6 12.6 12.1 pproach LOS C C B B B B B B B B B B B B B B B B B		С			С		D	D		В	D		В	
pproach LOS	Approach Vol, veh/h													
imer 1 2 3 4 5 6 7 8 ssigned Phs 1 2 4 5 6 8 hs Duration (G+Y+Rc), s6.7 35.9 8.0 6.0 36.6 12.7 hange Period (Y+Rc), s 4.4 6.0 4.9 dax Green Setting (Gmax), 5 29.2 32.0 6.2 30.6 31.0 dax Q Clear Time (g_c+I1), 5 7.3 3.8 3.0 6.5 7.0 ireen Ext Time (p_c), s 0.0 4.2 0.3 0.0 3.7 0.7 httersection Summary ICM 2010 Ctrl Delay 14.9	Approach Delay, s/veh													
ssigned Phs 1 2 4 5 6 8 hs Duration (G+Y+Rc), s6.7 35.9 8.0 6.0 36.6 12.7 hange Period (Y+Rc), s 4.4 6.0 4.9 4.4 6.0 4.9 lax Green Setting (Gmax), 2 29.2 32.0 6.2 30.6 31.0 lax Q Clear Time (g_c+I1), 3 7.3 3.8 3.0 6.5 7.0 ireen Ext Time (p_c), s 0.0 4.2 0.3 0.0 3.7 0.7 htersection Summary ICM 2010 Ctrl Delay 14.9	Approach LOS		С			С			В			В		
ssigned Phs 1 2 4 5 6 8 hs Duration (G+Y+Rc), s6.7 35.9 8.0 6.0 36.6 12.7 hange Period (Y+Rc), s 4.4 6.0 4.9 4.4 6.0 4.9 lax Green Setting (Gmax), 2 29.2 32.0 6.2 30.6 31.0 lax Q Clear Time (g_c+I1), 3 7.3 3.8 3.0 6.5 7.0 ireen Ext Time (p_c), s 0.0 4.2 0.3 0.0 3.7 0.7 htersection Summary ICM 2010 Ctrl Delay 14.9	Timer	1	2	3	4	5	6	7	8					
hs Duration (G+Y+Rc), s6.7 35.9 8.0 6.0 36.6 12.7 thange Period (Y+Rc), s 4.4 6.0 4.9 dax Green Setting (Gmax), 5 29.2 32.0 6.2 30.6 31.0 dax Q Clear Time (g_c+l13, 7 7.3 3.8 3.0 6.5 7.0 ireen Ext Time (p_c), s 0.0 4.2 0.3 0.0 3.7 0.7 htersection Summary ICM 2010 Ctrl Delay 14.9		1			4									
change Period (Y+Rc), s 4.4 6.0 4.9 4.4 6.0 4.9 clax Green Setting (Gmax), s 29.2 32.0 6.2 30.6 31.0 clax Q Clear Time (g_c+l1), s 7.3 3.8 3.0 6.5 7.0 circen Ext Time (p_c), s 0.0 4.2 0.3 0.0 3.7 0.7 htersection Summary ICM 2010 Ctrl Delay 14.9		•												
Alax Green Setting (Gmax), 6 29.2 32.0 6.2 30.6 31.0 Alax Q Clear Time (g_c+l13), 7s 7.3 3.8 3.0 6.5 7.0 Green Ext Time (p_c), s 0.0 4.2 0.3 0.0 3.7 0.7 Intersection Summary ICM 2010 Ctrl Delay 14.9														
Alax Q Clear Time (g_c+l13),7s 7.3 3.8 3.0 6.5 7.0 Green Ext Time (p_c), s 0.0 4.2 0.3 0.0 3.7 0.7 attersection Summary ICM 2010 Ctrl Delay 14.9														
tersection Summary 14.9 14.9														
ntersection Summary ICM 2010 Ctrl Delay 14.9														
CM 2010 Ctrl Delay 14.9		J U.U	4.2		0.3	0.0	3.1		0.7					
,				4										
CM 2010 LOS B														
	HCM 2010 LOS			В										

-	•	•	₽ſ	†	<u> </u>	/	
Movement	WBL	WBR	NBU	NBT	NBR	SBL	SBT
Lane Configurations	*	7	Đ	ተ ተጉ		ሻ	ተተተ
Traffic Volume (veh/h)	79	9	54	647	32	5	719
Future Volume (veh/h)	79	9	54	647	32	5	719
Number	7	14	01	6	16	5	2
Initial Q (Qb), veh	0	0		0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1.00		U	0.96	1.00	U
Parking Bus, Adj	1.00	1.00		1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863		1863	1900	1863	1863
Adj Flow Rate, veh/h	86	1003		703	35	1803	782
				703			
Adj No. of Lanes	1	1			0	1	3
Peak Hour Factor	0.92	0.92		0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2		2	2	2	2
Cap, veh/h	120	107		3061	152	10	3641
Arrive On Green	0.07	0.07		0.62	0.62	0.01	0.72
Sat Flow, veh/h	1774	1583		5120	245	1774	5253
Grp Volume(v), veh/h	86	10		480	258	5	782
Grp Sat Flow(s), veh/h/li	n1774	1583		1695	1808	1774	1695
Q Serve(g_s), s	2.3	0.3		3.1	3.1	0.1	2.5
Cycle Q Clear(g_c), s	2.3	0.3		3.1	3.1	0.1	2.5
Prop In Lane	1.00	1.00			0.14	1.00	
Lane Grp Cap(c), veh/h		107		2095	1117	10	3641
V/C Ratio(X)	0.72	0.09		0.23	0.23	0.52	0.21
Avail Cap(c_a), veh/h	1133	1011		2095	1117	146	3641
HCM Platoon Ratio	1.00	1.00		1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00		1.00	1.00	1.00	1.00
Uniform Delay (d), s/vel		21.2		4.1	4.1	24.1	2.3
Incr Delay (d2), s/veh	7.7	0.4		0.3	0.5	38.2	0.1
Initial Q Delay(d3),s/ver		0.4		0.0	0.0	0.0	0.1
%ile BackOfQ(50%),vel		0.0		1.5	1.7	0.0	1.2
LnGrp Delay(d),s/veh	29.9	21.6		4.4	4.6	62.3	2.4
				4.4 A			
LnGrp LOS	<u>C</u>	С			A	E	A 707
Approach Vol, veh/h	96			738			787
Approach Delay, s/veh				4.5			2.8
Approach LOS	С			Α			Α
Timer	1	2	3	4	5	6	7
Assigned Phs		2		4	5	6	
Phs Duration (G+Y+Rc)). S	40.8		7.8	4.8	36.0	
Change Period (Y+Rc),		6.0		4.5	4.5	6.0	
Max Green Setting (Gm		30.0		31.0	4.0	30.0	
Max Q Clear Time (g_c		4.5		4.3	2.1	5.1	
Green Ext Time (p_c), s		5.2		0.2	0.0	4.5	
	,	J.∠		0.2	0.0	4.5	
Intersection Summary							
HCM 2010 Ctrl Delay			5.1				
HCM 2010 LOS			Α				
Notes							

	ၨ	→	•	•	←	•	•	†	/	/	 	✓	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	ች	^	7	ሻሻ	1	7	ሻ	^	7	ሻሻ	^	7	
Traffic Volume (veh/h)	28	46	65	353	53	182	83	382	732	340	565	1	
Future Volume (veh/h)	28	46	65	353	53	182	83	382	732	340	565	1	
Number	7	4	14	3	8	18	5	2	12	1	6	16	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		0.97	1.00		0.99	1.00		0.96	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863	
Adj Flow Rate, veh/h	30	50	71	384	58	198	90	415	796	370	614	1	
Adj No. of Lanes	1	2	1	2	1	1	1	2	1	2	2	1	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2	
Cap, veh/h	114	280	228	481	287	238	115	1519	892	443	1746	753	
Arrive On Green	0.06	0.08	0.08	0.14	0.15	0.15	0.06	0.43	0.43	0.13	0.49	0.49	
Sat Flow, veh/h	1774	3539	1583	3442	1863	1541	1774	3539	1564	3442	3539	1527	
Grp Volume(v), veh/h	30	50	71	384	58	198	90	415	796	370	614	1	
		1770	1583	1721	1863	1541	1774	1770	1564	1721	1770	1527	
Grp Sat Flow(s),veh/h/lr		1.70	3.6	9.7		11.2	4.5	6.8	38.6	9.4	9.6	0.0	
Q Serve(g_s), s	1.4				2.4					9.4	9.6		
Cycle Q Clear(g_c), s	1.4	1.2	3.6	9.7 1.00	2.4	11.2	4.5 1.00	6.8	38.6	1.00	9.0	0.0	
Prop In Lane		200	1.00		207			1510			17//		
Lane Grp Cap(c), veh/h		280	228	481	287	238	115	1519	892	443	1746	753	
V/C Ratio(X)	0.26	0.18	0.31	0.80	0.20	0.83	0.78	0.27	0.89	0.84	0.35	0.00	
Avail Cap(c_a), veh/h	217	606	373	757	501	414	142	1519	892	474	1746	753	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	0.97	0.97	0.97	1.00	1.00	1.00	
Uniform Delay (d), s/vel		38.7	34.5	37.5	33.2	36.9	41.5	16.6	17.0	38.3	14.0	11.6	
Incr Delay (d2), s/veh	1.2	0.3	0.8	3.3	0.3	7.4	19.6	0.4	12.8	11.6	0.6	0.0	
Initial Q Delay(d3),s/veh		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),vel		0.6	1.6	4.9	1.3	5.3	2.8	3.4	20.4	5.2	4.8	0.0	
LnGrp Delay(d),s/veh	41.3	39.0	35.3	40.7	33.6	44.4	61.1	17.0	29.9	49.9	14.5	11.6	
LnGrp LOS	D	D	D	D	С	D	<u>E</u>	В	С	D	В	В	
Approach Vol, veh/h		151			640			1301			985		
Approach Delay, s/veh		37.7			41.2			27.9			27.8		
Approach LOS		D			D			С			С		
Timer	1	2	3	4	5	6	. 7	8					
Assigned Phs	1	2	3	4	5	6	7	8					
Phs Duration (G+Y+Rc)	•	43.7	17.8	12.2	10.5	49.5	11.0	19.0					
Change Period (Y+Rc),		5.1	* 5.2	5.1	* 4.7	5.1	* 5.2	5.1					
Max Green Setting (Gm		22.3	* 20	15.4	* 7.2	27.5	* 11	24.2					
Max Q Clear Time (g_c		40.6	11.7	5.6	6.5	11.6	3.4	13.2					
Green Ext Time (p_c), s		0.0	0.9	0.3	0.0	3.4	0.0	0.7					
Intersection Summary													
HCM 2010 Ctrl Delay			31.1										
HCM 2010 LOS			С										

Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBR Lane Configurations Image: Configuration of the co
Traffic Volume (veh/h) 0 0 0 33 0 65 441 1051 0 0 358 543 Future Volume (veh/h) 0 0 0 33 0 65 441 1051 0 0 358 543
Traffic Volume (veh/h) 0 0 0 33 0 65 441 1051 0 0 358 543 Future Volume (veh/h) 0 0 0 33 0 65 441 1051 0 0 358 543
,
Number 3 8 18 5 2 12 1 6 16
nitial Q (Qb), veh 0 0 0 0 0 0 0
Ped-Bike Adj(A_pbT) 1.00 1.00 1.00 1.00 0.96
Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Adj Sat Flow, veh/h/ln 1900 1863 1863 1863 0 0 1863 1900
Adj Flow Rate, veh/h 36 0 71 479 1142 0 0 389 590
Adj No. of Lanes 0 1 1 1 3 0 0 3 0
Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92
Percent Heavy Veh, % 2 2 2 2 0 0 2 2
Cap, veh/h 115 0 103 508 4107 0 0 1568 703
Arrive On Green 0.06 0.00 0.06 0.57 1.00 0.00 0.46 0.46
Sat Flow, veh/h 1774 0 1583 1774 5253 0 0 3558 1521
Grp Volume(v), veh/h 36 0 71 479 1142 0 0 389 590
Grp Sat Flow(s), veh/h/ln 1774 0 1583 1774 1695 0 0 1695 1521
Q Serve(g_s), s 1.5 0.0 3.5 20.1 0.0 0.0 5.6 27.3
Cycle Q Clear(q_c), s 1.5 0.0 3.5 20.1 0.0 0.0 0.0 5.6 27.3
Prop In Lane 1.00 1.00 1.00 0.00 0.00 1.00
Lane Grp Cap(c), veh/h 115 0 103 508 4107 0 0 1568 703
V/C Ratio(X) 0.31 0.00 0.69 0.94 0.28 0.00 0.00 0.25 0.84
Avail Cap(c_a), veh/h 342 0 305 628 4107 0 0 1568 703
HCM Platoon Ratio 1.00 1.00 2.00 2.00 1.00 1.00 1.00 1.00
Upstream Filter(I) 1.00 0.00 1.00 0.61 0.61 0.00 0.00 0.90 0.90
Uniform Delay (d), s/veh 35.7 0.0 36.6 16.5 0.0 0.0 0.0 13.1 18.9
ncr Delay (d2), s/veh 1.5 0.0 8.1 14.4 0.1 0.0 0.0 0.3 10.5
Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
%ile BackOfQ(50%),veh/ln 0.8 0.0 1.8 11.3 0.0 0.0 0.0 2.7 13.4
LnGrp Delay(d),s/veh 37.2 0.0 44.7 30.8 0.1 0.0 0.0 13.4 29.4
LnGrp LOS D D C A B C
Approach Vol, veh/h 107 1621 979
Approach Delay, s/veh 42.2 9.2 23.0
Approach LOS D A C
Timer 1 2 3 4 5 6 7 8
Assigned Phs 2 5 6 8
Phs Duration (G+Y+Rc), s 69.7 27.6 42.1 10.3
Change Period (Y+Rc), s 5.1 * 4.7 5.1 5.1
Max Green Setting (Gmax), s 54.4 * 28 21.4 15.4
Max Q Clear Time (g_c+I1), s 2.0 22.1 29.3 5.5
Green Ext Time (p_c), s 9.6 0.9 0.0 0.2
ntersection Summary
HCM 2010 Ctrl Delay 15.5
HCM 2010 LOS B
TION ZUIU LOJ
Notes

•	_	. `*	•	←	•	•	†	<u></u>	\	ļ	4
Movement EB	_ EB	T EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations							ተ ተጉ		ች	^	
Traffic Volume (veh/h) 65		1 528	0	0	0	0	852	110	103	374	0
Future Volume (veh/h) 65		1 528	0	0	0	0	852	110	103	374	0
		4 14				5	2	12	1	6	16
		0 0				0	0	0	0	0	0
Ped-Bike Adj(A_pbT) 1.0		1.00				1.00		0.99	1.00		1.00
Parking Bus, Adj 1.0						1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln 186						0	1863	1900	1863	1863	0
Adj Flow Rate, veh/h 64						0	926	120	112	407	0
		1 0				0	3	0	1	2	0
Peak Hour Factor 0.9						0.92	0.92	0.92	0.92	0.92	0.92
		2 2				0.72	2	2	2	2	0.72
Cap, veh/h 75						0	1409	182	143	1588	0
Arrive On Green 0.4						0.00	0.31	0.31	0.03	0.15	0.00
Sat Flow, veh/h 177						0.00	4720	588	1774	3632	0.00
Grp Volume(v), veh/h 64		0 669				0	689	357	112	407	0
Grp Sat Flow(s), veh/h/ln177						0	1695	1750	1774	1770	0
						0.0	14.1	14.2	5.0	8.1	0.0
						0.0	14.1	14.2	5.0	8.1	0.0
Cycle Q Clear(g_c), s 26. Prop In Lane 1.0		0.86				0.00	14.1	0.34	1.00	Ö. I	0.00
•							1049	542	1.00	1588	
Lane Grp Cap(c), veh/h 75						0.00					0.00
V/C Ratio(X) 0.8							0.66	0.66	0.78 162	0.26	
Avail Cap(c_a), veh/h 75		0 686				1.00	1049	542		1588	1.00
HCM Platoon Ratio 1.0						1.00	1.00	1.00	0.33	0.33	1.00
Upstream Filter(I) 1.0						0.00	1.00	1.00	0.88	0.88	0.00
Uniform Delay (d), s/veh 20.						0.0	23.9	24.0	38.2	22.3	0.0
Incr Delay (d2), s/veh 9.						0.0	3.2	6.2	17.6	0.3	0.0
Initial Q Delay(d3),s/veh 0.						0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%), veh/ln4.						0.0	7.1	7.8	3.2	4.1	0.0
LnGrp Delay(d),s/veh 30.						0.0	27.1	30.2	55.9	22.6	0.0
	101	<u>D</u>					C	С	<u>E</u>	C	
Approach Vol, veh/h	131						1046			519	
Approach Delay, s/veh	40.						28.2			29.8	
Approach LOS)					С			С	
Timer		2 3	4	5	6	7	8				
3		2	4		6						
Phs Duration (G+Y+Rc), \$1.	1 29.	9	39.0		41.0						
Change Period (Y+Rc), \$ 4.	7 5.	1	5.1		5.1						
Max Green Setting (Gmax),	3 23.	9	33.9		35.9						
Max Q Clear Time (g_c+I17),		2	34.5		10.1						
Green Ext Time (p_c), s 0.			0.0		2.4						
Intersection Summary											
HCM 2010 Ctrl Delay		34.2									
HCM 2010 Clir Delay		34.2 C									
		C									
Notes											

Interception												
Intersection												
Intersection Delay, s/vell												
Intersection LOS	F											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		ሻ	†	7	ች	† }		*	ħβ	
Traffic Vol, veh/h	382	6	15	0	22	210	34	415	0	90	349	448
Future Vol, veh/h	382	6	15	0	22	210	34	415	0	90	349	448
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	415	7	16	0	24	228	37	451	0	98	379	487
Number of Lanes	1	1	0	1	1	1	1	2	0	1	2	0
	ED			WD			ND			CD		
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	3			2			3			3		
Conflicting Approach Let				NB			EB			WB		
Conflicting Lanes Left	3			3			2			3		
Conflicting Approach Rig	,			SB			WB			EB		
Conflicting Lanes Right	3			3			3			2		
HCM Control Delay	32.9			30.4			26.6			195.4		
HCM LOS	D			D			D			F		
Lane	N	BLn1 I	NBLn2	VBLn3	EBLn1	EBLn2\	VBLn1V	VBLn2V	WBLn3	SBLn1	SBLn2	SBLn3
Vol Left, %		100%	0%	0%	100%	90%	0%	0%	0%	100%	0%	0%
Vol Thru, %		0%	100%	100%	0%	3%	100%	100%	0%	0%	100%	21%
Vol Right, %		0%	0%	0%	0%	7%	0%	0%	100%	0%	0%	79%
Sign Control		Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane		34	208	208	202	201	0	22	210	90	233	564
LT Vol		34	0	0	202	180	0	0	0	90	0	0
Through Vol		0	208	208	0	6	0	22	0	0	233	116
RT Vol		0	0	0	0	15	0	0	210	0	0	448
Lane Flow Rate		37	226	226	220	218	0	24	228	98	253	613
Geometry Grp		8	8	8	8	8	8	8	8	8	8	8
Degree of Util (X)		0.111	0.648	0.539	0.653	0.64	0	0.072	0.648	0.28	0.688	1.569
Departure Headway (Hd	1	1.751	11.225	9.399	11.513	11.406	11.784	11.784	11.061	10.311	9.788	9.207
Convergence, Y/N		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Cap		307	325	386	317	318	0	306	329	348	369	399
Service Time	(8.071	7.547	6.966
		9.451	8.925	7.099		9.106	9.484	9.484	8.761			
Service Time		9.451	8.925	7.099 0.585 22.6	9.213	9.106	9.484	9.484	8.761	8.071 0.282 17.1	0.686	
Service Time HCM Lane V/C Ratio		9.451 0.121	8.925 0.695	7.099 0.585	9.213 0.694	9.106 0.686	9.484	9.484 0.078	8.761 0.693	8.071 0.282	0.686	1.536

HCM 95th-tile Q

0.4

4.2

3.1

4.3

4.1

0.2

4.3

1.1

4.9

34.3

Intersection												
Int Delay, s/veh	1.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ተ ተጉ			ተተተ	7			7			7
Traffic Vol, veh/h	19	1022	80	0	497	4	0	0	25	35	0	94
Future Vol, veh/h	19	1022	80	0	497	4	0	0	25	35	0	94
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	400	-	-	0	-	-	0
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	21	1111	87	0	540	4	0	0	27	38	0	102
Major/Minor N	1ajor1		1	Major2		ľ	Minor1		N	/linor2		
Conflicting Flow All	544	0	0	-	-	0	-	-	599	1026	-	270
Stage 1	-	-	-	-	-	-	-	-	-	540	-	-
Stage 2	-	-	-	-	-	-	-	-	-	486	-	-
Critical Hdwy	5.34	-	-	-	-	-	-	-	7.14	6.44	-	7.14
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	7.34	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	6.74	-	-
Follow-up Hdwy	3.12	-	-	-	-	-	-	-	3.92	3.82	-	3.92
Pot Cap-1 Maneuver	646	-	-	0	-	-	0	0	381	247	0	620
Stage 1	-	-	-	0	-	-	0	0	-	412	0	-
Stage 2	-	-	-	0	-	-	0	0	-	486	0	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	646	-	-	-	-	-	-	-	381	212	-	620
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	212	-	-
Stage 1	-	-	-	-	-	-	-	-	-	371	-	-
Stage 2	-	-	-	-	-	-	-	-	-	406	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.2			0			15.2			11.9		
HCM LOS							С			В		
Minor Lane/Major Mvmt		NBLn1	EBL	EBT	EBR	WBT	WBR S	SBLn1				
Capacity (veh/h)		381	646	-	-	-	-	620				
HCM Lane V/C Ratio			0.032	-	-	-	-	0.165				
HCM Control Delay (s)		15.2	10.8	-	-	-	-	11.9				
HCM Lane LOS		С	В	-	-	-	-	В				
HCM 95th %tile Q(veh)		0.2	0.1	-	-	-	-	0.6				

-	۶	→	•	•	←	•	•	†	~	/	+	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	^ ^	7	ሻ	ተተተ	7	ሻሻ	₽		7	1>	7
Traffic Volume (veh/h)	360	511	116	74	266	38	189	10	48	28	11	91
Future Volume (veh/h)	360	511	116	74	266	38	189	10	48	28	11	91
Number	5	2	12	1	6	16	3	8	18	7	4	14
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.99
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1863	1863	1863	1863	1900	1863	1863	1863
Adj Flow Rate, veh/h	391	555	126	80	289	41	205	11	52	30	0	107
Adj No. of Lanes	2	3	1	1	3	1	2	1	0	1	0	2
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	465	928	289	103	564	175	283	36	168	736	0	1416
Arrive On Green	0.14	0.18	0.18	0.06	0.11	0.11	0.08	0.13	0.13	0.42	0.00	0.45
Sat Flow, veh/h	3442	5085	1583	1774	5085	1579	3442	284	1342	1774	0	3127
Grp Volume(v), veh/h	391	555	126	80	289	41	205	0	63	30	0	107
Grp Sat Flow(s), veh/h/ln	1721	1695	1583	1774	1695	1579	1721	0	1626	1774	0	1564
Q Serve(g_s), s	10.3	9.3	6.6	4.1	5.0	2.2	5.4	0.0	3.3	0.9	0.0	1.8
Cycle Q Clear(g_c), s	10.3	9.3	6.6	4.1	5.0	2.2	5.4	0.0	3.3	0.9	0.0	1.8
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.83	1.00		1.00
Lane Grp Cap(c), veh/h	465	928	289	103	564	175	283	0	204	736	0	1416
V/C Ratio(X)	0.84	0.60	0.44	0.77	0.51	0.23	0.72	0.00	0.31	0.04	0.00	0.08
Avail Cap(c_a), veh/h	519	1820	567	230	1754	545	464	0	280	736	0	1416
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	39.1	34.8	33.7	43.1	38.9	37.6	41.5	0.0	36.9	16.1	0.0	14.4
Incr Delay (d2), s/veh	10.8	0.6	1.0	11.6	0.7	0.7	3.5	0.0	0.9	0.1	0.0	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	5.6	4.4	2.9	2.4	2.4	1.0	2.7	0.0	1.5	0.5	0.0	0.8
LnGrp Delay(d),s/veh	50.0	35.4	34.7	54.7	39.6	38.3	45.1	0.0	37.8	16.2	0.0	14.5
LnGrp LOS	D	D	С	D	D	D	D		D	В		В
Approach Vol, veh/h		1072			410			268			137	
Approach Delay, s/veh		40.6			42.4			43.3			14.9	
Approach LOS		D			D			D			В	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	9.9	24.2	12.1	46.5	16.5	17.6	42.5	16.1				
	4.5		4.5	* 4.5	4.0	* 7.3	42.3	4.5				
Change Period (Y+Rc), s Max Green Setting (Gmax), s		7.3		* 42	14.0	* 32		16.0				
J , ,	12.0	33.2	12.5 7.4		12.3	7.0	38.5 2.9	5.3				
Max Q Clear Time (g_c+I1), s Green Ext Time (p_c), s	6.1 0.1	11.3 3.7	0.3	3.8 0.4	0.3	1.8	0.1	0.1				
Intersection Summary								• • • • • • • • • • • • • • • • • • • •				
			20.5									
HCM 2010 Ctrl Delay HCM 2010 LOS			39.5 D									
Notes			D									
INUIES												

Intersection												
Int Delay, s/veh	0.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ተ ተጉ			ተተተ	7			7			7
Traffic Vol, veh/h	0	669	3	0	419	59	0	0	5	0	0	50
Future Vol, veh/h	0	669	3	0	419	59	0	0	5	0	0	50
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	500	-	-	0	-	-	0
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	727	3	0	455	64	0	0	5	0	0	54
Major/Minor N	1ajor1	Major2				N	Minor1	Minor2				
Conflicting Flow All	-	0	0	-	-	0	-	-	365	-	-	228
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	-	-	-	7.14	-	-	7.14
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	-	-	-	3.92	-	-	3.92
Pot Cap-1 Maneuver	0	-	-	0	-	-	0	0	540	0	0	660
Stage 1	0	-	-	0	-	-	0	0	-	0	0	-
Stage 2	0	-	-	0	-	-	0	0	-	0	0	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	-	-	-	-	-	-	-	-	540	-	-	660
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			0			11.7			10.9		
HCM LOS							В			В		
Minor Lane/Major Mvmt	t [VBLn1	EBT	EBR	WBT	WBR S						
Capacity (veh/h)		540	-	-	-	-	000					
HCM Lane V/C Ratio		0.01	-	-	-		0.082					
HCM Control Delay (s)		11.7	-	-	-	-	10.9					
HCM Lane LOS		В	-	-	-	-	В					
HCM 95th %tile Q(veh)		0	-	-	-	-	0.3					

-	۶	→	•	•	←	•	•	†	<i>></i>	/	+	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	^ ^	7	ሻሻ	^	7	7	ĵ.		7	†	77
Traffic Volume (veh/h)	168	283	137	42	229	116	79	34	48	89	24	93
Future Volume (veh/h)	168	283	137	42	229	116	79	34	48	89	24	93
Number	3	8	18	7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.99	1.00		1.00	1.00		0.99	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1863	1863	1863	1863	1900	1863	1863	1863
Adj Flow Rate, veh/h	183	308	149	46	249	126	86	37	52	97	26	101
Adj No. of Lanes	2	3	1	2	3	1	1	1	0	1	1	2
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	278	891	274	114	650	202	111	300	421	124	816	1220
Arrive On Green	0.08	0.18	0.18	0.03	0.13	0.13	0.06	0.43	0.43	0.07	0.44	0.44
Sat Flow, veh/h	3442	5085	1564	3442	5085	1583	1774	696	978	1774	1863	2787
Grp Volume(v), veh/h	183	308	149	46	249	126	86	0	89	97	26	101
Grp Sat Flow(s), veh/h/ln	1721	1695	1564	1721	1695	1583	1774	0	1674	1774	1863	1393
Q Serve(g_s), s	3.8	3.9	6.4	1.0	3.3	5.5	3.5	0.0	2.3	3.9	0.6	1.5
Cycle Q Clear(g_c), s	3.8	3.9	6.4	1.0	3.3	5.5	3.5	0.0	2.3	3.9	0.6	1.5
Prop In Lane	1.00	0.,	1.00	1.00	0.0	1.00	1.00	0.0	0.58	1.00	0.0	1.00
Lane Grp Cap(c), veh/h	278	891	274	114	650	202	111	0	721	124	816	1220
V/C Ratio(X)	0.66	0.35	0.54	0.40	0.38	0.62	0.77	0.00	0.12	0.78	0.03	0.08
Avail Cap(c_a), veh/h	578	2849	876	212	2307	718	230	0	721	170	816	1220
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	32.7	26.5	27.5	34.7	29.3	30.2	33.8	0.0	12.5	33.5	11.7	12.0
Incr Delay (d2), s/veh	2.7	0.2	1.7	2.3	0.4	3.1	10.8	0.0	0.4	14.7	0.1	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.9	1.8	2.9	0.5	1.6	2.6	2.1	0.0	1.1	2.4	0.3	0.6
LnGrp Delay(d),s/veh	35.3	26.7	29.2	36.9	29.6	33.4	44.6	0.0	12.9	48.2	11.8	12.1
LnGrp LOS	D	C	C	D	C	C	D	0.0	В	D	В	В
Approach Vol, veh/h		640			421			175			224	
Approach Delay, s/veh		29.8			31.6			28.5			27.7	
Approach LOS		C C			C C			20.5 C			C C	
• •											U	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	8.6	39.4	9.9	15.2	9.1	38.9	6.4	18.7				
Change Period (Y+Rc), s	4.0	7.4	4.0	5.9	4.0	* 7.4	4.0	5.9				
Max Green Setting (Gmax), s	9.5	28.7	12.3	33.2	7.0	* 32	4.5	41.0				
Max Q Clear Time (g_c+I1), s	5.5	3.5	5.8	7.5	5.9	4.3	3.0	8.4				
Green Ext Time (p_c), s	0.1	0.4	0.3	1.8	0.0	0.4	0.0	2.4				
Intersection Summary												
HCM 2010 Ctrl Delay			29.8									
HCM 2010 Cur belay			27.0 C									
Notes												

PM Existing + Cumulative 1: Ocean View Hills Pkwy & Starfish Way/Westport View Dr

	۶	→	•	€	←	•	•	†	~	/	Ţ	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		7	ħβ		7	∱ ∱	
Traffic Volume (veh/h)	14	1	21	33	0	53	18	640	41	147	602	20
Future Volume (veh/h)	14	1	21	33	0	53	18	640	41	147	602	20
Number	3	8	18	7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.99
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1863	1900	1900	1863	1900	1863	1863	1900	1863	1863	1900
Adj Flow Rate, veh/h	15	1	23	36	0	58	20	696	45	160	654	22
Adj No. of Lanes	0	1	0	0	1	0	1	2	0	1	2	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	35	2	54	57	0	92	33	1416	91	202	1799	60
Arrive On Green	0.06	0.06	0.06	0.09	0.00	0.09	0.02	0.42	0.42	0.11	0.51	0.51
Sat Flow, veh/h	638	43	978	632	0	1019	1774	3375	218	1774	3493	117
Grp Volume(v), veh/h	39	0	0	94	0	0	20	365	376	160	331	345
Grp Sat Flow(s), veh/h/ln	1658	0	0	1651	0	0	1774	1770	1823	1774	1770	1841
Q Serve(g_s), s	1.4	0.0	0.0	3.4	0.0	0.0	0.7	9.4	9.4	5.5	7.0	7.0
Cycle Q Clear(g_c), s	1.4	0.0	0.0	3.4	0.0	0.0	0.7	9.4	9.4	5.5	7.0	7.0
Prop In Lane	0.38		0.59	0.38		0.62	1.00		0.12	1.00		0.06
Lane Grp Cap(c), veh/h	91	0	0	149	0	0	33	743	765	202	911	948
V/C Ratio(X)	0.43	0.00	0.00	0.63	0.00	0.00	0.60	0.49	0.49	0.79	0.36	0.36
Avail Cap(c_a), veh/h	718	0	0	715	0	0	120	743	765	307	911	948
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	28.5	0.0	0.0	27.4	0.0	0.0	30.3	13.2	13.2	26.9	9.0	9.0
Incr Delay (d2), s/veh	3.1	0.0	0.0	4.3	0.0	0.0	16.1	2.3	2.3	7.7	1.1	1.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.7	0.0	0.0	1.7	0.0	0.0	0.5	5.0	5.2	3.1	3.7	3.8
LnGrp Delay(d),s/veh	31.6	0.0	0.0	31.7	0.0	0.0	46.4	15.5	15.5	34.6	10.1	10.1
LnGrp LOS	С			С			D	В	В	С	В	В
Approach Vol, veh/h		39			94			761			836	
Approach Delay, s/veh		31.6			31.7			16.3			14.8	
Approach LOS		С			С			В			В	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	J	4	5	6	,	8				
Phs Duration (G+Y+Rc), s	5.6	37.9		10.5	11.5	32.0		8.3				
Change Period (Y+Rc), s	4.4	* 5.8		4.9	4.4	5.8		4.9				
Max Green Setting (Gmax), s	4.4	* 32		27.0	10.8	25.2		27.0				
	2.7	9.0		5.4	7.5	11.4		3.4				
Max Q Clear Time (g_c+I1), s Green Ext Time (p_c), s	0.0	3.8		0.4	0.1	3.5		0.1				
Intersection Summary												
			16.8									
HCM 2010 Ctrl Delay HCM 2010 LOS			16.8 B									
Notes												

Intersection						
Int Delay, s/veh	0.9					
		EDD	NDI	NDT	CDT	CDD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥	07	\	^	^	Ε0
Traffic Vol, veh/h	37	27	27	661	615	50
Future Vol, veh/h	37	27	27	661	615	50
Conflicting Peds, #/hr	8	8	8	_ 0	0	8
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	225	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	40	29	29	718	668	54
Major/Minor N	/linor2	N	/lajor1	Λ	/lajor2	
Conflicting Flow All	1128	377	730	0	-	0
Stage 1	703		730		-	-
		-	-	-	-	-
Stage 2	425		111	-		-
Critical Hdwy	6.84	6.94	4.14	-	-	-
Critical Hdwy Stg 1	5.84	-	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-
Follow-up Hdwy	3.52	3.32	2.22	-	-	-
Pot Cap-1 Maneuver	198	621	870	-	-	-
Stage 1	452	-	-	-	-	-
Stage 2	627	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	189	613	864	-	-	-
Mov Cap-2 Maneuver	312	-	-	-	-	-
Stage 1	433	-	-	-	-	-
Stage 2	623	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	16.1		0.4		0	
HCM LOS	С					
Minor Lane/Major Mvm	t	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		864			_	
HCM Lane V/C Ratio		0.034		0.177	_	_
HCM Control Delay (s)		9.3	_		-	-
HCM Lane LOS		λ.5	_	C	_	_
HCM 95th %tile Q(veh)		0.1	-	0.6	-	-
110M 23H 70HE OLVEID		U. I	_	0.0	_	_

^ ^ ^ /	4 4	-	+	•	•	→	۶	
WBR NBL NBT NBR SBL SBT SBR		Т	WBT	WBL	EBR	EBT	EBL	Movement
<u>ካካ ተተ</u> ው ካ ተው	*	•	1	ች	7		7	Lane Configurations
20 174 521 27 35 368 242		3	3	20	119	2	143	Traffic Volume (veh/h)
20 174 521 27 35 368 242	20 1	3	3	20	119	2	143	Future Volume (veh/h)
14 1 6 16 5 2 12	14	4	4	7	18	8	3	Number
0 0 0 0 0 0 0	0	0	(0	0	0	0	Initial Q (Qb), veh
1.00 1.00 0.97 1.00 0.99	1.00 1.0			0.99	0.99		1.00	Ped-Bike Adj(A_pbT)
1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.0	0	1.00	1.00	1.00	1.00	1.00	Parking Bus, Adj
1900 1863 1863 1900 1863 1863 1900	1900 18	3	1863	1863	1863	1863	1863	Adj Sat Flow, veh/h/ln
22 189 566 29 38 400 263	22 1	3	3	22	129	2	155	Adj Flow Rate, veh/h
0 2 3 0 1 2 0	0	1	1	1	1	1	1	Adj No. of Lanes
0.92	0.92 0.9	2	0.92	0.92	0.92	0.92	0.92	Peak Hour Factor
2 2 2 2 2 2 2	2	2	2	2	2	2	2	Percent Heavy Veh, %
185 284 2199 112 54 804 522	185 28	5	25	373	278	331	456	Cap, veh/h
0.13	0.13 0.0	3	0.13	0.06	0.18	0.18	0.11	Arrive On Green
1416 3442 4947 252 1774 2048 1331	1416 34	3	193	1774	1565	1863	1774	Sat Flow, veh/h
25 189 387 208 38 345 318	25 1	0	(22	129	2	155	Grp Volume(v), veh/h
1609 1721 1695 1809 1774 1770 1610		0		1774	1565	1863	1774	Grp Sat Flow(s), veh/h/ln
0.9 3.6 4.8 4.8 1.4 9.8 10.0			0.0	0.7	4.9	0.1	4.8	Q Serve(g_s), s
0.9 3.6 4.8 4.8 1.4 9.8 10.0			0.0	0.7	4.9	0.1	4.8	Cycle Q Clear(g_c), s
0.88 1.00 0.14 1.00 0.83				1.00	1.00		1.00	Prop In Lane
210 284 1507 804 54 694 632		0	(373	278	331	456	Lane Grp Cap(c), veh/h
0.12 0.67 0.26 0.26 0.71 0.50 0.50			0.00	0.06	0.46	0.01	0.34	V/C Ratio(X)
868 392 1507 804 173 694 632		0		697	844	1004	697	Avail Cap(c_a), veh/h
1.00 1.00 1.00 1.00 1.00 1.00 1.00			1.00	1.00	1.00	1.00	1.00	HCM Platoon Ratio
1.00 1.00 1.00 1.00 1.00 1.00 1.00			0.00	1.00	1.00	1.00	1.00	Upstream Filter(I)
25.6 29.7 11.6 11.6 32.1 15.3 15.4			0.0	22.2	24.6	22.6	20.8	Uniform Delay (d), s/veh
0.2 2.7 0.4 0.8 15.6 2.5 2.9			0.0	0.1	1.2	0.0	0.4	Incr Delay (d2), s/veh
0.0 0.0 0.0 0.0 0.0 0.0 0.0			0.0	0.0	0.0	0.0	0.0	Initial Q Delay(d3),s/veh
0.4 1.8 2.3 2.5 0.9 5.3 4.9			0.0	0.3	2.2	0.0	2.4	%ile BackOfQ(50%),veh/ln
25.9 32.4 12.0 12.4 47.7 17.8 18.2			0.0	22.3	25.8	22.6	21.2	LnGrp Delay(d),s/veh
C C B B D B B		•	0.0	C	23.0 C	C	C	LnGrp LOS
784 701	<u> </u>	7	47			286		Approach Vol, veh/h
17.1			24.2			23.3		Approach Delay, s/veh
B B		C				23.3 C		Approach LOS
6 7 8		5		4	3	2	1	Timer
6 7 8		5		4	3	2	1	Assigned Phs
35.3 8.3 16.8			6.4	13.6	11.4	31.8	9.9	Phs Duration (G+Y+Rc), s
5.6 4.4 4.9			4.4	4.9	4.4	* 5.6	4.4	Change Period (Y+Rc), s
27.1 16.1 36.0			6.5	36.0	16.1	* 26	7.6	Max Green Setting (Gmax), s
6.8 2.7 6.9			3.4	2.9	6.8	12.0	5.6	Max Q Clear Time (g_c+I1), s
3.3 0.0 0.4	3.3	0	0.0	0.1	0.2	3.3	0.1	Green Ext Time (p_c), s
								Intersection Summary
					19 2			
					В			HCM 2010 LOS
								Notes
					19.2			Green Ext Time (p_c), s Intersection Summary HCM 2010 Ctrl Delay HCM 2010 LOS

	۶	→	•	•	←	•	1	†	<i>></i>	/	ţ	4	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			ĵ.		ሻ	ተ ተጮ		ሻ	ተ ተኈ		
Traffic Volume (veh/h)	16	0	68	40	0	28	107	696	33	45	439	25	
Future Volume (veh/h)	16	0	68	40	0	28	107	696	33	45	439	25	
Number	3	8	18	7	4	14	1	6	16	5	2	12	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		0.99	1.00		1.00	1.00		0.97	1.00		0.97	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln	1900	1863	1900	1863	1863	1900	1863	1863	1900	1863	1863	1900	
Adj Flow Rate, veh/h	17	0	74	43	0	30	116	757	36	49	477	27	
Adj No. of Lanes	0	1	0	1	1	0	1	3	0	1	3	0	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2	
Cap, veh/h	26	0	111	88	0	78	149	2527	120	65	2270	127	
Arrive On Green	0.09	0.00	0.09	0.05	0.00	0.05	0.08	0.51	0.51	0.04	0.46	0.46	
Sat Flow, veh/h	299	0.00	1302	1774	0.00	1576	1774	4967	235	1774	4918	276	
Grp Volume(v), veh/h	91	0	0	43	0	30	116	516	277	49	327	177	
Grp Sat Flow(s),veh/h/lr		0	0	1774	0	1576	1774	1695	1812	1774	1695	1804	
Q Serve(g_s), s	3.5	0.0	0.0	1.5	0.0	1.2	4.1	5.6	5.6	1.7	3.6	3.7	
Cycle Q Clear(g_c), s	3.5	0.0	0.0	1.5	0.0	1.2	4.1	5.6	5.6	1.7	3.6	3.7	
Prop In Lane	0.19		0.81	1.00		1.00	1.00		0.13	1.00		0.15	
Lane Grp Cap(c), veh/h		0	0	88	0	78	149	1725	922	65	1565	833	
V/C Ratio(X)	0.66	0.00	0.00	0.49	0.00	0.38	0.78	0.30	0.30	0.76	0.21	0.21	
Avail Cap(c_a), veh/h	785	0	0	897	0	797	213	1725	922	250	1565	833	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/veł		0.0	0.0	29.3	0.0	29.1	28.4	9.0	9.0	30.2	10.1	10.2	
Incr Delay (d2), s/veh	5.4	0.0	0.0	4.1	0.0	3.0	11.1	0.4	0.8	16.3	0.3	0.6	
Initial Q Delay(d3),s/veh		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),vel	n/ln1.7	0.0	0.0	8.0	0.0	0.6	2.4	2.7	3.0	1.1	1.7	1.9	
LnGrp Delay(d),s/veh	33.5	0.0	0.0	33.4	0.0	32.1	39.5	9.4	9.8	46.5	10.5	10.7	
LnGrp LOS	С			С		С	D	Α	Α	D	В	В	
Approach Vol, veh/h		91			73			909			553		
Approach Delay, s/veh		33.5			32.9			13.4			13.7		
Approach LOS		C			C			В			В		
Timer	1	2	3	4	5	6	7	8					
Assigned Phs	1	2	J	4	5	6		8					
Assigned Phs Phs Duration (G+Y+Rc)	•	35.2		8.1	6.7	38.2		10.3					
Change Period (Y+Rc),		6.0		4.9	4.4	6.0		4.9					
Max Green Setting (Gm		29.2		32.0	8.9	27.9		31.0					
Max Q Clear Time (g_c		5.7		3.5	3.7	7.6		5.5					
Green Ext Time (p_c), s	s U.U	2.9		0.2	0.0	4.6		0.4					
Intersection Summary													
HCM 2010 Ctrl Delay			15.5										
HCM 2010 LOS			В										

ons eh/h) reh/h) n obT)	WBL	WBR	NBU	NBT	NBR	-	*
eh/h) reh/h) n			טטאו		NIBR	SBL	SBT
eh/h) reh/h) n	- 1	-	0		אטוז		
reh/h)	72	*		↑↑३	02	<u>ች</u>	↑ ↑↑
ı 1	72	9	33	821	83	8	539
		9	33	821	83	8	539
	7	14		6	16	5	2
obl)	0	0		0	0	0	0
	1.00	1.00			0.97	1.00	
	1.00	1.00		1.00	1.00	1.00	1.00
n/h/ln	1863	1863		1863	1900	1863	1863
eh/h	78	10		892	90	9	586
	1	1		3	0	1	3
r	0.92	0.92		0.92	0.92	0.92	0.92
eh, %		2		2	2	2	2
	109	97		2901	291	17	3670
	0.06	0.06		0.62	0.62	0.01	0.72
	1774	1583		4850	471	1774	5253
eh/h	78	10		645	337	9	586
	/In1774	1583		1695	1763	1774	1695
CH/H/	2.1	0.3		4.3	4.4	0.2	1.8
c), s	2.1	0.3		4.3	4.4	0.2	1.8
.U), 3	1.00	1.00		4.3	0.27	1.00	1.0
, veh/l		97		2100	1092	1.00	3670
ven/l	0.72	0.10		0.31	0.31	0.54	0.16
eh/h	1135	1013		2100	1092	147	3670
en/n tio	1.00	1.00		1.00	1.00	1.00	1.00
	1.00	1.00					1.00
)) chic				1.00	1.00	1.00	
	eh 22.3	21.5		4.3	4.3	23.9	2.1
/veh	8.4	0.5		0.4	0.7	24.3	0.1
	eh 0.0	0.0		0.0	0.0	0.0	0.0
	eh/ln1.3	0.3		2.1	2.3	0.2	0.8
/veh	30.7	21.9		4.7	5.1	48.2	2.2
	С	С		A	A	D	A
h/h	88			982			595
s/veh				4.8			2.9
	С			Α			Α
	1	2	2	1	5	6	7
			J				1
V . D .	2) 2						
/ . D = \							
(C)							
ng (Gr							
ng (Gr e (g_c	S	3.8		0.2	0.0	6.3	
ng (Gr							
ng (Gr e (g_c [p_c),			5.5				
ng (Gr e (g_c [p_c), mary							
ng (Gr e (g_c [p_c),							
ng (Gr e (g_c [p_c), mary							
·Y+R), s max), s c+l1), s), s 6.0 max), s 30.0 c+l1), s 3.8	2 c), s 41.0), s 6.0 max), s 30.0 c+l1), s 3.8 s 3.8	2 4 c), s 41.0 7.5 l, s 6.0 4.5 max), s 30.0 31.0 c+l1), s 3.8 4.1 s 3.8 0.2	2 4 5 c), s 41.0 7.5 5.0 l, s 6.0 4.5 4.5 max), s 30.0 31.0 4.0 c+l1), s 3.8 4.1 2.2 s 3.8 0.2 0.0	2 4 5 6 c), s 41.0 7.5 5.0 36.0 d), s 6.0 4.5 4.5 6.0 max), s 30.0 31.0 4.0 30.0 c+l1), s 3.8 4.1 2.2 6.4 s 3.8 0.2 0.0 6.3

	۶	→	•	•	←	•	•	†	/	/	ļ	✓	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		^	7	1,1	↑	7	ሻ	^	7	ሻሻ	^	7	
Traffic Volume (veh/h)	27	49	61	879	75	415	111	534	452	323	302	0	
Future Volume (veh/h)	27	49	61	879	75	415	111	534	452	323	302	0	
Number	7	4	14	3	8	18	5	2	12	1	6	16	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		0.98	1.00		0.99	1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863	
Adj Flow Rate, veh/h	29	53	66	955	82	451	121	580	491	351	328	0	
Adj No. of Lanes	1	2	1	2	1	1	1	2	1	2	2	1	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2	
Cap, veh/h	101	237	238	1037	580	482	148	1218	1015	413	1348	603	
Arrive On Green	0.06	0.07	0.07	0.30	0.31	0.31	0.08	0.34	0.34	0.12	0.38	0.00	
	1774	3539	1583	3442	1863	1547	1774	3539	1562	3442	3539	1583	
Grp Volume(v), veh/h	29	53	66	955	82	451	121	580	491	351	328	0	
Grp Sat Flow(s), veh/h/lr		1770	1583	1721	1863	1547	1774	1770	1562	1721	1770	1583	
Q Serve(g_s), s	1.9	1.7	4.4	32.2	3.8	34.0	8.1	15.4	19.5	12.0	7.6	0.0	
Cycle Q Clear(q_c), s	1.9	1.7	4.4	32.2	3.8	34.0	8.1	15.4	19.5	12.0	7.6	0.0	
Prop In Lane	1.00	1.7	1.00	1.00	3.0	1.00	1.00	13.7	1.00	1.00	7.0	1.00	
Lane Grp Cap(c), veh/h		237	238	1037	580	482	148	1218	1015	413	1348	603	
V/C Ratio(X)	0.29	0.22	0.28	0.92	0.14	0.94	0.82	0.48	0.48	0.85	0.24	0.00	
Avail Cap(c_a), veh/h	163	454	335	1141	686	570	223	1218	1015	496	1348	603	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	0.97	0.97	0.97	1.00	1.00	0.00	
Uniform Delay (d), s/veh		53.0	45.2	40.5	29.7	40.1	54.1	30.9	11.0	51.7	25.3	0.00	
Incr Delay (d2), s/veh	1.6	0.5	0.6	11.3	0.1	21.2	13.1	1.3	1.6	11.4	0.4	0.0	
Initial Q Delay(d3),s/veh		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.4	0.0	
%ile BackOfQ(50%),veh		0.8	2.0	16.9	2.0	17.3	4.5	7.7	8.8	6.4	3.8	0.0	
LnGrp Delay(d),s/veh	55.8	53.5	45.9	51.9	29.9	61.3	67.2	32.2	12.6	63.2	25.8	0.0	
LnGrp LOS	55.0 E	D	43.7 D	D D	C C	61.3 E	67.2 E	52.2 C	12.0 B	03.2 E	23.0 C	0.0	
Approach Vol, veh/h		148		<i>D</i>	1488			1192	U		679		
Approach Delay, s/veh		50.5			53.5			27.7			45.1		
Approach LOS		50.5 D			55.5 D			21.1 C			43.1 D		
• •		U			U						U		
Timer	1	2	3	4	5	6	7	8					
Assigned Phs	1	2	3	4	5	6	7	8					
Phs Duration (G+Y+Rc)		46.4	41.4	13.1	14.7	50.8	12.0	42.5					
Change Period (Y+Rc),		5.1	* 5.2	5.1	* 4.7	5.1	* 5.2	5.1					
Max Green Setting (Gm		27.4	* 40	15.4	* 15	29.6	* 11	44.2					
Max Q Clear Time (g_c-		21.5	34.2	6.4	10.1	9.6	3.9	36.0					
Green Ext Time (p_c), s		2.7	2.0	0.2	0.1	1.8	0.0	1.4					
Intersection Summary													
HCM 2010 Ctrl Delay			43.0										
HCM 2010 LOS			T3.0										
Notes													

•	→	`	√	←	•	•	†	<u></u>	\	ļ	4
Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				ની	7	ሻ	ተተተ			ተ ተኈ	
Traffic Volume (veh/h) 0	0	0	87	0	89	528	1012	0	0	409	753
Future Volume (veh/h) 0		0	87	0	89	528	1012	0	0	409	753
Number			3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh			0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)			1.00	, i	1.00	1.00		1.00	1.00		0.90
Parking Bus, Adj			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln			1900	1863	1863	1863	1863	0	0	1863	1900
Adj Flow Rate, veh/h			95	0	97	574	1100	0	0	445	818
Adj No. of Lanes			0	1	1	1	3	0	0	3	0
Peak Hour Factor			0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %			2	2	2	2	2	0.72	0.72	2	2
Cap, veh/h			138	0	123	604	4290	0	0	1582	662
Arrive On Green			0.08	0.00	0.08	0.34	0.84	0.00	0.00	0.47	0.47
Sat Flow, veh/h			1774	0.00	1583	1774	5253	0.00	0.00	3558	1418
Grp Volume(v), veh/h			95	0	97	574	1100	0	0	445	818
Grp Sat Flow(s), veh/h/ln			1774	0	1583	1774	1695	0	0	1695	1418
Q Serve(g_s), s			6.8	0.0	7.8	41.0	5.6	0.0	0.0	1095	60.7
Cycle Q Clear(g_c), s			6.8	0.0	7.8	41.0	5.6	0.0	0.0	10.5	60.7
Prop In Lane			1.00	0.0	1.00	1.00	5.0	0.00	0.00	10.3	1.00
Lane Grp Cap(c), veh/h			1.00	0	1.00	604	4290	0.00	0.00	1582	662
V/C Ratio(X)			0.69	0.00	0.79	0.95	0.26	0.00	0.00	0.28	1.24
			212	0.00	189	700	4290	0.00	0.00	1582	662
Avail Cap(c_a), veh/h HCM Platoon Ratio			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)			1.00	0.00	1.00	0.56	0.56	0.00	0.00	0.66	0.66
Uniform Delay (d), s/veh			58.4	0.00	58.9	41.8	2.0	0.00	0.00	21.3	34.7
Incr Delay (d2), s/veh			5.9	0.0	11.4	14.0	0.1	0.0	0.0	0.3	115.0
Initial Q Delay(d3),s/veh			0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln			3.6	0.0	3.8	22.4	2.6	0.0	0.0	4.9	44.8
LnGrp Delay(d),s/veh			64.3	0.0	70.2	55.8	2.0	0.0	0.0	21.6	149.7
LnGrp LOS			04.3 E	0.0	70.2 E	55.8 E	2.1 A	0.0	0.0	21.6 C	149.7 F
				192	<u> </u>	<u> </u>				1263	Г
Approach Vol, veh/h				67.3			1674				
Approach LOS				67.3 E			20.5 C			104.6 F	
Approach LOS				E			C			Г	
Timer 1	2	3	4	5	6	7	8				
Assigned Phs	2			5	6		8				
Phs Duration (G+Y+Rc), s	114.8			49.0	65.8		15.2				
Change Period (Y+Rc), s	5.1			* 4.7	5.1		5.1				
Max Green Setting (Gmax), s	104.3			* 51	48.3		15.5				
Max Q Clear Time (g_c+l1), s				43.0	62.7		9.8				
Green Ext Time (p_c), s	9.2			1.3	0.0		0.3				
		F7 ^									
Intersection Summary HCM 2010 Ctrl Delay		57.3									
		57.3 E									

	•	→	`*	√	←	•	•	†	<u> </u>	/	ļ	✓
Movement Ef	BL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4						ተ ተጉ		ች	^	
	44	4	486	0	0	0	0	894	98	106	402	0
, ,	44	4	486	0	0	0	0	894	98	106	402	0
Number	7	4	14				5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0				0	0	0	0	0	0
` ,	00		1.00				1.00	Ŭ	0.99	1.00		1.00
,	00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln 18		1863	1900				0	1863	1900	1863	1863	0
,	16	122	528				0	972	107	115	437	0
Adj No. of Lanes	1	1	0				0	3	0	1	2	0
Peak Hour Factor 0.9		0.92	0.92				0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2				0.72	2	2	2	2	0.72
	76	134	579				0	1468	161	144	1591	0
Arrive On Green 0.4		0.44	0.44				0.00	0.32	0.32	0.08	0.45	0.00
Sat Flow, veh/h 17		306	1323				0.00	4812	510	1774	3632	0.00
	74 16						0	709	370	1174	437	0
		0	650									
Grp Sat Flow(s), veh/h/ln17		0	1629				0	1695	1764	1774	1770	0
Q Serve(g_s), s 26		0.0	33.6				0.0	16.3	16.3	5.7	7.0	0.0
, ,	0.9	0.0	33.6				0.0	16.3	16.3	5.7	7.0	0.0
•	00	0	0.81				0.00	1072	0.29	1.00	1501	0.00
1 1 1	76 70	0	712				0	1072	558	144	1591	0
V/C Ratio(X) 0.		0.00	0.91				0.00	0.66	0.66	0.80	0.27	0.00
1 \ — /	46	0	777				0	1072	558	152	1591	0
	00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
1 17	00	0.00	1.00				0.00	1.00	1.00	0.65	0.65	0.00
Uniform Delay (d), s/veh 21		0.0	23.7				0.0	26.6	26.6	40.6	15.6	0.0
J 1 7.	1.9	0.0	14.4				0.0	3.2	6.1	17.0	0.3	0.0
J . ,	0.0	0.0	0.0				0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln4		0.0	17.8				0.0	8.1	8.9	3.5	3.5	0.0
LnGrp Delay(d),s/veh 26		0.0	38.1				0.0	29.8	32.8	57.7	15.8	0.0
LnGrp LOS	С	10::	D					C	С	E	В	
Approach Vol, veh/h		1266						1079			552	
Approach Delay, s/veh		32.6						30.8			24.6	
Approach LOS		С						С			С	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4		6						
Phs Duration (G+Y+Rc), \$2	2.0	33.6		44.4		45.6						
Change Period (Y+Rc), \$ 4		5.1		5.1		5.1						
Max Green Setting (Gmax)		24.5		42.9		36.9						
Max Q Clear Time (g_c+l1)		18.3		35.6		9.0						
Green Ext Time (p_c), s C		3.2		3.7		2.7						
Intersection Summary												
HCM 2010 Ctrl Delay			30.4									
HCM 2010 Ctrl Delay			30.4 C									
			C									
Notes												

Intersection												
Intersection Delay, s/veh	า50.7											
Intersection LOS	F											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	4		ሻ	†	7	ሻ	∱ 1>		*	↑ ↑	
Traffic Vol, veh/h	356	25	38	4	11	198	18	425	6	247	393	211
Future Vol, veh/h	356	25	38	4	11	198	18	425	6	247	393	211
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	387	27	41	4	12	215	20	462	7	268	427	229
Number of Lanes	1	1	0	1	1	1	1	2	0	1	2	0
	EB		J		<u>'</u>	'	•		<u> </u>	•		J
Approach Opposing Approach				WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	3			2			3			3		
Conflicting Approach Left				NB			EB			WB		
Conflicting Lanes Left	3			3			2			3		
Conflicting Lance Dight	_			SB			WB			EB 2		
Conflicting Lanes Right	3			34.3			56.7			57.9		
HCM Control Delay HCM LOS	38.2 E			34.3 D			56.7 F			57.9 F		
HOW LOS	E			U			Г			Г		
Lane	1							VBLn2V				
Vol Left, %		100%	0%	0%	100%	70%	100%	0%		100%	0%	0%
Vol Thru, %		0%	100%	96%	0%	12%	0%	100%	0%	0%		38%
Vol Right, %		0%	0%	4%	0%	18%	0%	0%	100%	0%	0%	62%
Sign Control		Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane		18	283	148	210	209	4	11	198	247	262	342
LT Vol		18	0	0	210	146	4	0	0	247	0	0
Through Vol		0	283	142	0	25	0	11	0	0	262	131
RT Vol		0	0	6	0	38	0	0	198	0	0	211
Lane Flow Rate		20	308	161	228	227	4	12	215	268	285	372
Geometry Grp		8	8	8	8	8	8	8	8	8	8	8
Degree of Util (X)		0.064		0.501	0.726	0.705		0.04	0.685		0.801	1
Departure Headway (Hd	l) ´	11.784	11.266	11.236	11.445	11.167	12.702	12.186	11.462	10.648	10.13	9.682
Convergence, Y/N		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Cap		307	326	324	317	325	286	297	319	341	356	375
Service Time								9.811				
HCM Lane V/C Ratio		0.065		0.497		0.698	0.014			0.786		
HCM Control Delay		15.2	76.1	24.6	39.5	36.8	15.5	15.3	35.7	44.4	43.5	78.7
HCM Lane LOS		С	F	С	Ε	Е	С	С	Е	Е	Ε	F
HCM 95th-tile Q		0.2	10.1	2.7	5.3	5	0	0.1	4.7	6.6	6.8	11.8

PM Existing + Cumulative 11: Project East Access/Emerald Crest Ct & Otay Mesa Rd

Intersection												
Int Delay, s/veh	1.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ተተኈ			ተተተ	7			7	002	00.	7
Traffic Vol, veh/h	17	681	109	0	1309	20	0	0	32	20	0	63
Future Vol, veh/h	17	681	109	0	1309	20	0	0	32	20	0	63
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	400	-	-	0	-	-	0
Veh in Median Storage,	, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	18	740	118	0	1423	22	0	0	35	22	0	68
Major/Minor N	/lajor1		1	Major2		ľ	Minor1		ľ	Minor2		
Conflicting Flow All	1445	0	0	-	-	0	-	-	429	1755	-	712
Stage 1	-	-	-	-	-	-	-	-	-	1423	-	-
Stage 2	-	-	-	-	-	-	-	-	-	332	-	-
Critical Hdwy	5.34	-	-	-	-	-	-	-	7.14	6.44	-	7.14
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	7.34	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	6.74	-	-
Follow-up Hdwy	3.12	-	-	-	-	-	-	-	3.92	3.82	-	3.92
Pot Cap-1 Maneuver	237	-	-	0	-	-	0	0	491	90	0	322
Stage 1	-	-	-	0	-	-	0	0	-	100	0	-
Stage 2	-	-	-	0	-	-	0	0	-	601	0	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	237	-	-	-	-	-	-	-	491	74	-	322
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	74	-	-
Stage 1	-	-	-	-	-	-	-	-	-	85	-	-
Stage 2	-	-	-	-	-	-	-	-	-	475	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.5			0			12.9			19.2		
HCM LOS							В			С		
Minor Lane/Major Mvm	t I	NBLn1	EBL	EBT	EBR	WBT	WBR S	SBLn1				
Capacity (veh/h)		491	237	-	-	-	-	322				
HCM Lane V/C Ratio			0.078	-	-	-	-	0.213				
HCM Control Delay (s)		12.9	21.5	-	-	-	-					
HCM Lane LOS		В	С	-	-	-	-	С				
HCM 95th %tile Q(veh)		0.2	0.3	-	-	-	-	8.0				

-	۶	→	•	•	←	•	•	†	<i>></i>	/	+	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	^ ^	7	ሻ	^	7	ሻሻ	₽		7	₽	7
Traffic Volume (veh/h)	173	348	157	118	768	70	248	13	63	117	15	341
Future Volume (veh/h)	173	348	157	118	768	70	248	13	63	117	15	341
Number	5	2	12	1	6	16	3	8	18	7	4	14
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1863	1863	1863	1863	1900	1863	1863	1863
Adj Flow Rate, veh/h	188	378	171	128	835	76	270	14	68	127	0	382
Adj No. of Lanes	2	3	1	1	3	1	2	1	0	1	0	2
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	260	1043	325	159	1141	355	348	31	150	690	0	1247
Arrive On Green	0.08	0.21	0.21	0.09	0.22	0.22	0.10	0.11	0.11	0.39	0.00	0.39
Sat Flow, veh/h	3442	5085	1583	1774	5085	1583	3442	277	1348	1774	0	3167
Grp Volume(v), veh/h	188	378	171	128	835	76	270	0	82	127	0	382
Grp Sat Flow(s), veh/h/ln	1721	1695	1583	1774	1695	1583	1721	0	1625	1774	0	1583
Q Serve(g_s), s	5.3	6.3	9.5	7.0	15.1	3.9	7.6	0.0	4.7	4.7	0.0	8.2
Cycle Q Clear(g_c), s	5.3	6.3	9.5	7.0	15.1	3.9	7.6	0.0	4.7	4.7	0.0	8.2
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.83	1.00		1.00
Lane Grp Cap(c), veh/h	260	1043	325	159	1141	355	348	0	181	690	0	1247
V/C Ratio(X)	0.72	0.36	0.53	0.80	0.73	0.21	0.78	0.00	0.45	0.18	0.00	0.31
Avail Cap(c_a), veh/h	417	1474	459	296	1746	544	539	0	263	690	0	1247
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	44.8	33.8	35.1	44.2	35.6	31.3	43.4	0.0	41.2	19.9	0.0	20.7
Incr Delay (d2), s/veh	3.8	0.2	1.3	9.0	0.9	0.3	3.8	0.0	1.8	0.6	0.0	0.6
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.6	3.0	4.3	3.8	7.1	1.7	3.8	0.0	2.2	2.4	0.0	3.7
LnGrp Delay(d),s/veh	48.6	34.0	36.4	53.2	36.5	31.6	47.2	0.0	43.0	20.5	0.0	21.3
LnGrp LOS	D	С	D	D	D	С	D	0.0	D	C	0.0	С
Approach Vol, veh/h		737			1039			352			509	
Approach Delay, s/veh		38.3			38.2			46.2			21.1	
Approach LOS		D			D			D			C	
• •												
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	13.4	27.6	14.5	43.5	11.5	29.5	42.5	15.5				
Change Period (Y+Rc), s	4.5	7.3	4.5	* 4.5	4.0	* 7.3	4.0	4.5				
Max Green Setting (Gmax), s	16.5	28.7	15.5	* 39	12.0	* 34	38.5	16.0				
Max Q Clear Time (g_c+I1), s	9.0	11.5	9.6	10.2	7.3	17.1	6.7	6.7				
Green Ext Time (p_c), s	0.2	2.5	0.4	1.5	0.2	5.1	0.3	0.2				
Intersection Summary												
HCM 2010 Ctrl Delay			36.0									
HCM 2010 Car belay			50.0 D									
Notes												
INDIES												

Intersection												
Int Delay, s/veh	1.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ተ ተ ኈ			ተተተ	7			7			7
Traffic Vol, veh/h	0	534	5	0	829	35	0	0	5	0	0	141
Future Vol, veh/h	0	534	5	0	829	35	0	0	5	0	0	141
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	500	-	-	0	-	-	0
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	580	5	0	901	38	0	0	5	0	0	153
Major/Minor N	/lajor1		_	Major2			Minor1		N	/linor2		
Conflicting Flow All	-	0	0	-	_	0	_	_	293	-	_	451
Stage 1	_	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	_	-	-	_	-	-	_	-
Critical Hdwy	-	-	-	-	-	-	-	-	7.14	-	-	7.14
Critical Hdwy Stg 1	-	-	-	-	_	-	-	_	-	-	_	-
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	_
Follow-up Hdwy	-	-	-	-	-	-	-	-	3.92	-	-	3.92
Pot Cap-1 Maneuver	0	-	-	0	-	-	0	0	600	0	0	475
Stage 1	0	-	-	0	-	-	0	0	-	0	0	-
Stage 2	0	-	-	0	-	-	0	0	-	0	0	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	-	-	-	-	-	-	-	-	600	-	-	475
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Ü												
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			0			11.1			16.1		
HCM LOS							В			С		
Minor Lane/Major Mvm	t ſ	VBLn1	EBT	EBR	WBT	WBR S	SBLn1					
Capacity (veh/h)		600	-	-	-	-	475					
HCM Lane V/C Ratio		0.009	_	_	_		0.323					
HCM Control Delay (s)		11.1	-	-	-	-	16.1					
HCM Lane LOS		В	-	-	-	_	С					
HCM 95th %tile Q(veh)		0	-	-	-	-	1.4					
2(1011)												

-	۶	→	•	•	←	•	•	†	~	/	+	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	^ ^	7	ሻሻ	^ ^	7	7	ĵ.		7	†	77
Traffic Volume (veh/h)	153	287	99	29	424	155	165	34	53	219	57	278
Future Volume (veh/h)	153	287	99	29	424	155	165	34	53	219	57	278
Number	3	8	18	7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.98	1.00		0.98	1.00		0.99	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1863	1863	1863	1863	1900	1863	1863	1863
Adj Flow Rate, veh/h	166	312	108	32	461	168	179	37	58	238	62	302
Adj No. of Lanes	2	3	1	2	3	1	1	1	0	1	1	2
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	246	1070	328	86	833	255	218	241	378	251	728	1087
Arrive On Green	0.07	0.21	0.21	0.02	0.16	0.16	0.12	0.37	0.37	0.14	0.39	0.39
Sat Flow, veh/h	3442	5085	1558	3442	5085	1557	1774	650	1018	1774	1863	2782
Grp Volume(v), veh/h	166	312	108	32	461	168	179	0	95	238	62	302
Grp Sat Flow(s), veh/h/ln	1721	1695	1558	1721	1695	1557	1774	0	1668	1774	1863	1391
Q Serve(g_s), s	4.0	4.4	5.0	0.8	7.1	8.6	8.3	0.0	3.2	11.3	1.8	6.3
Cycle Q Clear(g_c), s	4.0	4.4	5.0	0.8	7.1	8.6	8.3	0.0	3.2	11.3	1.8	6.3
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.61	1.00		1.00
Lane Grp Cap(c), veh/h	246	1070	328	86	833	255	218	0	620	251	728	1087
V/C Ratio(X)	0.67	0.29	0.33	0.37	0.55	0.66	0.82	0.00	0.15	0.95	0.09	0.28
Avail Cap(c_a), veh/h	455	2460	754	183	2058	630	335	0	620	251	728	1087
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	38.4	28.1	28.4	40.7	32.6	33.2	36.3	0.0	17.7	36.1	16.3	17.7
Incr Delay (d2), s/veh	3.2	0.1	0.6	2.7	0.6	2.9	9.3	0.0	0.5	42.4	0.2	0.6
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.0	2.1	2.2	0.4	3.3	3.9	4.6	0.0	1.6	8.4	1.0	2.5
LnGrp Delay(d),s/veh	41.6	28.3	29.0	43.3	33.2	36.1	45.5	0.0	18.3	78.5	16.5	18.3
LnGrp LOS	D	С	С	D	С	D	D		В	Е	В	В
Approach Vol, veh/h		586			661			274			602	
Approach Delay, s/veh		32.2			34.4			36.1			41.9	
Approach LOS		С			С			D			D	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	14.4	40.5	10.1	19.8	16.0	38.9	6.1	23.7				
	4.0		4.0		4.0	* 7.4	4.0	5.9				
Change Period (Y+Rc), s		7.4		5.9								
Max Green Setting (Gmax), s	16.0	27.2	11.2	34.3	12.0	* 32	4.5	41.0				
Max Q Clear Time (g_c+I1), s Green Ext Time (p_c), s	10.3	8.3 1.4	6.0 0.2	10.6 3.3	13.3	5.2 0.4	2.8 0.0	7.0 2.3				
	0.2		0.2	0.0	0.0	0.1	0.0	2.0				
Intersection Summary			2/ 1									
HCM 2010 Ctrl Delay HCM 2010 LOS			36.1 D									
			D									
Notes												

	A	p	p	е	n	d	i)	(S
--	---	---	---	---	---	---	----	---	---

Near Term Year 2020 with Project Level of Service Calculations

1: Ocean View Hills Pkwy & Starfish Way/Westport View Dr

		•	'	- /	•	*	*
Movement EBL EBT EBR WBL WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations 💠 🗘		¥	∱ }		¥	♦ ₽	
Traffic Volume (veh/h) 60 4 14 90 7	53	22	681	59	42	597	22
Future Volume (veh/h) 60 4 14 90 7	53	22	681	59	42	597	22
Number 3 8 18 7 4	14	1	6	16	5	2	12
Initial Q (Qb), veh 0 0 0 0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT) 1.00 1.00 1.00	1.00	1.00		0.98	1.00		0.97
Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln 1900 1863 1900 1900 1863	1900	1863	1863	1900	1863	1863	1900
Adj Flow Rate, veh/h 65 4 15 98 8	58	24	740	64	46	649	24
Adj No. of Lanes 0 1 0 0 1	0	1	2	0	1	2	0
Peak Hour Factor 0.92 0.92 0.92 0.92 0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, % 2 2 2 2 2	2	2	2	2	2	2	2
Cap, veh/h 126 8 29 135 11	80	39	1268	110	64	1389	51
Arrive On Green 0.09 0.09 0.13 0.13	0.13	0.02	0.39	0.39	0.04	0.40	0.40
Sat Flow, veh/h 1346 83 311 1018 83	603	1774	3290	284	1774	3477	128
Grp Volume(v), veh/h 84 0 0 164 0	0	24	398	406	46	330	343
Grp Sat Flow(s),veh/h/ln 1740 0 0 1704 0	0	1774	1770	1805	1774	1770	1835
Q Serve(g_s), s 2.6 0.0 0.0 5.2 0.0	0.0	8.0	10.1	10.1	1.5	7.8	7.8
Cycle Q Clear(g_c), s 2.6 0.0 0.0 5.2 0.0	0.0	8.0	10.1	10.1	1.5	7.8	7.8
Prop In Lane 0.77 0.18 0.60	0.35	1.00		0.16	1.00		0.07
Lane Grp Cap(c), veh/h 163 0 0 226 0	0	39	682	695	64	707	733
V/C Ratio(X) 0.52 0.00 0.00 0.72 0.00	0.00	0.61	0.58	0.58	0.71	0.47	0.47
Avail Cap(c_a), veh/h 826 0 0 809 0	0	131	682	695	128	707	733
HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I) 1.00 0.00 0.00 1.00 0.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh 24.5 0.0 0.0 23.6 0.0	0.0	27.5	13.9	13.9	27.1	12.6	12.6
Incr Delay (d2), s/veh 2.5 0.0 0.0 4.4 0.0	0.0	14.3	3.6	3.6	13.6	2.2	2.1
Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln 1.4 0.0 0.0 2.7 0.0	0.0	0.5	5.5	5.7	0.9	4.2	4.3
LnGrp Delay(d),s/veh 27.1 0.0 0.0 28.0 0.0	0.0	41.8	17.5	17.4	40.7	14.8	14.7
LnGrp LOS C C		D	В	В	D	В	В
Approach Vol, veh/h 84 164			828			719	
Approach Delay, s/veh 27.1 28.0			18.2			16.4	
Approach LOS C C			В			В	
Timer 1 2 3 4 5	6	7	8				
Assigned Phs 1 2 4 5	6		8				
Phs Duration (G+Y+Rc), s 5.7 28.5 12.5 6.5	27.7		10.2				
Change Period (Y+Rc), s 4.4 * 5.8 4.9 4.4	5.8		4.9				
Max Green Setting (Gmax), s 4.2 * 22 27.0 4.1	21.9		27.0				
Max Q Clear Time (g_c+11) , s 2.8 9.8 7.2 3.5	12.1		4.6				
Green Ext Time (p_c), s 0.0 3.0 0.7 0.0	3.2		0.3				
Intersection Summary							
HCM 2010 Ctrl Delay 18.8							
HCM 2010 Cut Delay HCM 2010 LOS B							
Notes							

Intersection						
Int Delay, s/veh	1.6					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥	LDIK	inde in	↑ ↑	↑ ↑	OBIN
Traffic Vol, veh/h	82	32	16	710	580	90
Future Vol, veh/h	82	32	16	710	580	90
Conflicting Peds, #/hr	8	8	8	0	0	8
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	Jiop -	None	-	None	-	None
Storage Length	0	-	225	-	_	-
Veh in Median Storage			-	0	0	
Grade, %	0	-	_	0	0	_
Peak Hour Factor	92	92	92	92	92	92
	2	2	2	2	2	2
Heavy Vehicles, % Mvmt Flow	89	35	17		630	98
WWI FIOW	89	35	17	772	630	98
Major/Minor I	Minor2	N	/lajor1	Λ	/lajor2	ı
Conflicting Flow All	1115	380	736	0	-	0
Stage 1	687	-	-	-	-	-
Stage 2	428	-	-	-	-	-
Critical Hdwy	6.84	6.94	4.14	-	-	-
Critical Hdwy Stg 1	5.84	_	_	-	-	_
Critical Hdwy Stg 2	5.84	_	-	-	-	-
Follow-up Hdwy	3.52	3.32	2.22	_	_	-
Pot Cap-1 Maneuver	202	618	865	_	-	-
Stage 1	461	-	-	_	_	_
Stage 2	625	_	_	-	_	_
Platoon blocked, %	020			_	_	_
Mov Cap-1 Maneuver	195	610	859	_	_	_
Mov Cap-1 Maneuver	321	- 010	037	_	_	_
Stage 1	449	_	-	-	-	-
	621		-	-	-	-
Stage 2	021	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	19.6		0.2		0	
HCM LOS	С					
N 01 1 10 0 1 0 1		ND	Not	EDL 1	ODT	000
Minor Lane/Major Mvm	I	NBL		EBLn1	SBT	SBR
Capacity (veh/h)		859	-	0.0	-	-
HCM Lane V/C Ratio		0.02	-	0.335	-	-
HCM Control Delay (s)		9.3	-		-	-
HCM Lane LOS		Α	-	С	-	-
HCM 95th %tile Q(veh)		0.1	-	1.4	-	-

	•	→	•	•	←	•	1	†	/	/		4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			7	ሻ	1→		ሻሻ	↑ ↑₽		ሻ	∱ ∱	
Traffic Volume (veh/h)	390	22	411	23	36	33	366	297	35	18	285	302
Future Volume (veh/h)	390	22	411	23	36	33	366	297	35	18	285	302
Number	3	8	18	7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.96	0.97		0.98	1.00		0.97	1.00		0.98
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1863	1900	1863	1863	1900	1863	1863	1900
Adj Flow Rate, veh/h	424	24	447	25	39	36	398	323	38	20	310	328
Adj No. of Lanes	1	1	1	1	1	0	2	3	0	1	2	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	623	641	521	302	157	145	480	1871	215	30	501	439
Arrive On Green	0.21	0.34	0.34	0.04	0.18	0.18	0.14	0.41	0.41	0.02	0.28	0.28
Sat Flow, veh/h	1774	1863	1515	1774	885	817	3442	4614	529	1774	1770	1552
Grp Volume(v), veh/h	424	24	447	25	0	75	398	235	126	20	310	328
Grp Sat Flow(s), veh/h/ln	1774	1863	1515	1774	0	1702	1721	1695	1753	1774	1770	1552
Q Serve(g_s), s	18.7	0.9	27.4	1.1	0.0	3.8	11.2	4.4	4.6	1.1	15.2	19.2
Cycle Q Clear(g_c), s	18.7	0.9	27.4	1.1	0.0	3.8	11.2	4.4	4.6	1.1	15.2	19.2
Prop In Lane	1.00	0.7	1.00	1.00	0.0	0.48	1.00		0.30	1.00		1.00
Lane Grp Cap(c), veh/h	623	641	521	302	0	303	480	1375	711	30	501	439
V/C Ratio(X)	0.68	0.04	0.86	0.08	0.00	0.25	0.83	0.17	0.18	0.66	0.62	0.75
Avail Cap(c_a), veh/h	623	718	584	517	0	579	641	1375	711	99	501	439
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	23.5	21.8	30.5	31.0	0.0	35.3	41.8	19.0	19.0	48.8	31.1	32.5
Incr Delay (d2), s/veh	3.0	0.0	11.2	0.1	0.0	0.4	6.8	0.3	0.5	21.9	5.6	11.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	9.6	0.4	13.0	0.6	0.0	1.8	5.8	2.1	2.3	0.7	8.2	9.5
LnGrp Delay(d),s/veh	26.6	21.8	41.6	31.1	0.0	35.7	48.6	19.2	19.6	70.7	36.8	43.6
LnGrp LOS	C	C	D	С	0.0	D	D	В	В	70.7 E	D	D
Approach Vol, veh/h		895			100			759			658	
Approach Delay, s/veh		34.0			34.6			34.7			41.2	
Approach LOS		34.0 C			34.0 C			34.7 C			41.2 D	
					C			C			D	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	18.3	33.9	25.0	22.7	6.1	46.1	8.4	39.3				
Change Period (Y+Rc), s	4.4	* 5.6	4.4	4.9	4.4	5.6	4.4	4.9				
Max Green Setting (Gmax), s	18.6	* 28	20.6	34.0	5.6	40.5	16.1	38.5				
Max Q Clear Time (g_c+I1), s	13.2	21.2	20.7	5.8	3.1	6.6	3.1	29.4				
Green Ext Time (p_c), s	0.7	2.0	0.0	0.3	0.0	2.1	0.0	1.3				
Intersection Summary												
HCM 2010 Ctrl Delay			36.2									
HCM 2010 LOS			J0.2									
Notes												

	۶	→	•	•	←	•	1	†	<u> </u>	/	ļ	4	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			ĵ.		ሻ	ተ ተኈ		ሻ	ተ ተኈ		
Traffic Volume (veh/h)	27	0	96	36	0	42	44	618	24	26	682	11	
Future Volume (veh/h)	27	0	96	36	0	42	44	618	24	26	682	11	
Number	3	8	18	7	4	14	1	6	16	5	2	12	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		0.99	1.00		1.00	1.00		0.96	1.00		0.96	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln	1900	1863	1900	1863	1863	1900	1863	1863	1900	1863	1863	1900	
Adj Flow Rate, veh/h	29	0	104	39	0	46	48	672	26	28	741	12	
Adj No. of Lanes	0	1	0	1	1	0	1	3	0	1	3	0	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2	
Cap, veh/h	43	0	154	89	0	79	63	2468	95	43	2476	40	
Arrive On Green	0.12	0.00	0.12	0.05	0.00	0.05	0.04	0.49	0.49	0.02	0.48	0.48	
Sat Flow, veh/h	351	0.00	1258	1774	0.00	1583	1774	5016	193	1774	5150	83	
Grp Volume(v), veh/h	133	0	0	39	0	46	48	453	245	28	487	266	
										1774			
Grp Sat Flow(s),veh/h/l		0	0	1774	0	1583	1774	1695	1819		1695	1843	
Q Serve(g_s), s	5.1	0.0	0.0	1.4	0.0	1.8	1.7	5.1	5.1	1.0	5.7	5.7	
Cycle Q Clear(g_c), s	5.1	0.0	0.0	1.4	0.0	1.8	1.7	5.1	5.1	1.0	5.7	5.7	
Prop In Lane	0.22		0.78	1.00	•	1.00	1.00	1//0	0.11	1.00	1 (00	0.05	
Lane Grp Cap(c), veh/h		0	0	89	0	79	63	1668	895	43	1630	886	
V/C Ratio(X)	0.68	0.00	0.00	0.44	0.00	0.58	0.76	0.27	0.27	0.65	0.30	0.30	
Avail Cap(c_a), veh/h	768	0	0	875	0	781	153	1668	895	169	1630	886	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/vel		0.0	0.0	29.9	0.0	30.2	31.0	9.7	9.7	31.4	10.2	10.2	
Incr Delay (d2), s/veh	4.0	0.0	0.0	3.4	0.0	6.6	16.7	0.4	0.8	15.0	0.5	0.9	
Initial Q Delay(d3),s/vel	h 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),ve	h/ln2.5	0.0	0.0	0.8	0.0	0.9	1.1	2.4	2.7	0.7	2.7	3.1	
LnGrp Delay(d),s/veh	31.3	0.0	0.0	33.3	0.0	36.7	47.7	10.1	10.4	46.4	10.7	11.1	
LnGrp LOS	С			С		D	D	В	В	D	В	В	
Approach Vol, veh/h		133			85			746			781		
Approach Delay, s/veh		31.3			35.2			12.6			12.1		
Approach LOS		С			D			В			В		
Timer	1	2	3	4	5	6	7	8					
Assigned Phs	1	2		4	5	6		8					
Phs Duration (G+Y+Rc)	•	37.2		8.1	6.0	37.9		12.8					
Change Period (Y+Rc),		6.0		4.9	4.4	6.0		4.9					
Max Green Setting (Gm		31.2		32.0	6.2	30.6		31.0					
Max Q Clear Time (g_c		7.7		3.8	3.0	7.1		7.1					
Green Ext Time (p_c),		4.5		0.3	0.0	4.1		0.7					
	5 0.0	4.5		0.3	0.0	4.1		U. /					
Intersection Summary			14.0										
HCM 2010 Ctrl Delay			14.9										
HCM 2010 LOS			В										

	•	•	₽	†	<u> </u>	/	ļ
Movement	WBL	WBR	NBU	NBT	NBR	SBL	SBT
Lane Configurations		7		ተ ተኈ		ሻ	ተተተ
Traffic Volume (veh/h)	84	9	54	704	40	5	757
Future Volume (veh/h)	84	9	54	704	40	5	757
Number	7	14	0.	6	16	5	2
Initial Q (Qb), veh	0	0		0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1.00		J	0.96	1.00	J
Parking Bus, Adj	1.00	1.00		1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863		1863	1900	1863	1863
Adj Flow Rate, veh/h	91	1003		765	43	5	823
	91 1	10		765		5 1	823
Adj No. of Lanes					0		
Peak Hour Factor	0.92	0.92		0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2		2	2	2	2
Cap, veh/h	127	113		3025	169	10	3626
Arrive On Green	0.07	0.07		0.62	0.62	0.01	0.71
Sat Flow, veh/h	1774	1583		5084	275	1774	5253
Grp Volume(v), veh/h	91	10		526	282	5	823
Grp Sat Flow(s), veh/h/li		1583		1695	1801	1774	1695
Q Serve(g_s), s	2.4	0.3		3.4	3.5	0.1	2.7
Cycle Q Clear(g_c), s	2.4	0.3		3.4	3.5	0.1	2.7
Prop In Lane	1.00	1.00			0.15	1.00	
Lane Grp Cap(c), veh/h		113		2086	1108	10	3626
V/C Ratio(X)	0.72	0.09		0.25	0.25	0.52	0.23
Avail Cap(c_a), veh/h	1128	1007		2086	1108	146	3626
HCM Platoon Ratio	1.00	1.00		1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00		1.00	1.00	1.00	1.00
Uniform Delay (d), s/vel	h 22.1	21.1		4.3	4.3	24.2	2.4
Incr Delay (d2), s/veh	7.3	0.3		0.3	0.6	38.2	0.1
Initial Q Delay(d3),s/vel	n 0.0	0.0		0.0	0.0	0.0	0.0
%ile BackOfQ(50%),vel		0.3		1.7	1.9	0.2	1.3
LnGrp Delay(d),s/veh	29.5	21.5		4.6	4.8	62.4	2.5
LnGrp LOS	С	С		Α	Α	E	A
Approach Vol, veh/h	101			808			828
Approach Delay, s/veh				4.7			2.9
Approach LOS	C C			Α.			Α.
•						,	
Timer	1	2	3	4	5	6	7
Assigned Phs		2		4	5	6	
Phs Duration (G+Y+Rc)		40.8		8.0	4.8	36.0	
Change Period (Y+Rc),		6.0		4.5	4.5	6.0	
Max Green Setting (Gm		30.0		31.0	4.0	30.0	
Max Q Clear Time (g_c		4.7		4.4	2.1	5.5	
Green Ext Time (p_c), s		5.5		0.2	0.0	5.0	
Intersection Summany							
Intersection Summary			F 2				
HCM 2010 Ctrl Delay			5.2				
HCM 2010 LOS			Α				
Notes							
VUICS							

	•	→	•	•	←	•	1	†	/	/	ļ	4	
Movement I	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	ች	^	7	ሻሻ	↑	7	ሻ	^	7	ሻሻ	^	7	
Traffic Volume (veh/h)	28	54	65	399	62	261	83	382	770	405	565	1	
Future Volume (veh/h)	28	54	65	399	62	261	83	382	770	405	565	1	
Number	7	4	14	3	8	18	5	2	12	1	6	16	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
· '	1.00		1.00	1.00		0.98	1.00		0.99	1.00		0.96	
• • •	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
	863	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863	
Adj Flow Rate, veh/h	30	59	71	434	67	284	90	415	837	440	614	1	
Adj No. of Lanes	1	2	1	2	1	1	1	2	1	2	2	1	
	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2	
	114	418	290	531	387	322	115	1297	817	474	1556	670	
	0.06	0.12	0.12	0.15	0.21	0.21	0.06	0.37	0.37	0.14	0.44	0.44	
	774	3539	1583	3442	1863	1547	1774	3539	1563	3442	3539	1524	
Grp Volume(v), veh/h	30	59	71	434	67	284	90	415	837	440	614	1	
Grp Sat Flow(s), veh/h/ln1		1770	1583	1721	1863	1547	1774	1770	1563	1721	1770	1524	
Q Serve(g_s), s	1.4	1.3	3.5	11.0	2.7	16.0	4.5	7.6	33.0	11.4	10.6	0.0	
Cycle Q Clear(q_c), s	1.4	1.3	3.5	11.0	2.7	16.0	4.5	7.6	33.0	11.4	10.6	0.0	
,	1.00	1.0	1.00	1.00	2.1	1.00	1.00	7.0	1.00	1.00	10.0	1.00	
	114	418	290	531	387	322	115	1297	817	474	1556	670	
1 1 1	0.26	0.14	0.25	0.82	0.17	0.88	0.78	0.32	1.02	0.93	0.39	0.00	
` '	217	606	373	757	501	416	142	1297	817	474	1556	670	
• • • • • • • • • • • • • • • • • • • •	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
	1.00	1.00	1.00	1.00	1.00	1.00	0.97	0.97	0.97	1.00	1.00	1.00	
Uniform Delay (d), s/veh		35.6	31.5	36.8	29.3	34.6	41.5	20.5	21.6	38.4	17.1	14.1	
Incr Delay (d2), s/veh	1.2	0.2	0.4	4.8	0.2	16.2	19.6	0.6	37.3	24.6	0.8	0.0	
		0.2	0.4	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/l		0.7	1.5	5.6	1.4	8.3	2.8	3.8	28.5	7.0	5.3	0.0	
· '	41.3	35.7	31.9	41.6	29.5	50.8	61.1	21.1	59.0	63.0	17.9	14.2	
LnGrp LOS	41.3 D	33.7 D	31.9 C	41.0 D	29.5 C	50.6 D	61.1 E	Z1.1	59.0 F	03.0 E	17.9 B	14.2 B	
Approach Vol, veh/h	U	160	U	D	785	U		1342	<u>'</u>		1055	ט	
Approach Delay, s/veh		35.1			43.9			47.4			36.7		
Approach LOS		35. I			43.9 D			47.4 D			30.7 D		
·		U			U			U			U		
Timer	1	2	3	4	5	6	7	8					
Assigned Phs	1	2	3	4	5	6	7	8					
Phs Duration (G+Y+Rc), 1		38.1	19.1	15.7	10.5	44.7	11.0	23.8					
Change Period (Y+Rc), s*		5.1	* 5.2	5.1	* 4.7	5.1	* 5.2	5.1					
Max Green Setting (Gma		22.3	* 20	15.4	* 7.2	27.5	* 11	24.2					
Max Q Clear Time (g_c+f		35.0	13.0	5.5	6.5	12.6	3.4	18.0					
Green Ext Time (p_c), s	0.0	0.0	0.9	0.3	0.0	3.3	0.0	0.7					
Intersection Summary													
HCM 2010 Ctrl Delay			42.6										
HCM 2010 Car Belay			72.0 D										
Notes													

	•	→	`	√	←	•	•	†	<u> </u>	\	Ţ	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					4	7	ሻ	^ ^			ተ ተጉ	
Traffic Volume (veh/h)	0	0	0	33	0	70	441	1071	0	0	373	566
Future Volume (veh/h)	0	0	0	33	0	70	441	1071	0	0	373	566
Number	U	U	U	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh				0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)				1.00	U	1.00	1.00	U	1.00	1.00	U	0.96
Parking Bus, Adj				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln				1900	1863	1863	1863	1863	0	0.00	1863	1900
Adj Flow Rate, veh/h				36	0	76	479	1164	0	0	405	615
-					1	1	4/9				403	013
Adj No. of Lanes				0.92		0.92	•	3 0.92	0	0	0.92	0.92
Peak Hour Factor					0.92		0.92		0.92	0.92		
Percent Heavy Veh, %				121	2	100	2	2	0	0	2	2
Cap, veh/h				121	0	108	508	4089	0	0	1556	698
Arrive On Green				0.07	0.00	0.07	0.57	1.00	0.00	0.00	0.46	0.46
Sat Flow, veh/h				1774	0	1583	1774	5253	0	0	3558	1520
Grp Volume(v), veh/h				36	0	76	479	1164	0	0	405	615
Grp Sat Flow(s),veh/h/lr	1			1774	0	1583	1774	1695	0	0	1695	1520
Q Serve(g_s), s				1.5	0.0	3.8	20.1	0.0	0.0	0.0	5.9	29.4
Cycle Q Clear(g_c), s				1.5	0.0	3.8	20.1	0.0	0.0	0.0	5.9	29.4
Prop In Lane				1.00		1.00	1.00		0.00	0.00		1.00
Lane Grp Cap(c), veh/h				121	0	108	508	4089	0	0	1556	698
V/C Ratio(X)				0.30	0.00	0.70	0.94	0.28	0.00	0.00	0.26	0.88
Avail Cap(c_a), veh/h				342	0	305	628	4089	0	0	1556	698
HCM Platoon Ratio				1.00	1.00	1.00	2.00	2.00	1.00	1.00	1.00	1.00
Jpstream Filter(I)				1.00	0.00	1.00	0.54	0.54	0.00	0.00	0.87	0.87
Jniform Delay (d), s/veh	1			35.4	0.0	36.5	16.5	0.0	0.0	0.0	13.3	19.7
ncr Delay (d2), s/veh				1.3	0.0	8.0	13.1	0.1	0.0	0.0	0.4	13.4
Initial Q Delay(d3),s/veh)			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh				0.8	0.0	1.9	11.2	0.0	0.0	0.0	2.8	14.9
LnGrp Delay(d),s/veh				36.8	0.0	44.4	29.5	0.1	0.0	0.0	13.7	33.1
LnGrp LOS				D		D	С	Α			В	С
Approach Vol, veh/h					112			1643			1020	
Approach Delay, s/veh					42.0			8.7			25.4	
Approach LOS					D			Α			C	
• •											J	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2			5	6		8				
Phs Duration (G+Y+Rc)		69.4			27.6	41.8		10.6				
Change Period (Y+Rc),		5.1			* 4.7	5.1		5.1				
Max Green Setting (Gm		54.4			* 28	21.4		15.4				
Max Q Clear Time (g_c-		2.0			22.1	31.4		5.8				
Green Ext Time (p_c), s	5	9.8			0.9	0.0		0.2				
ntersection Summary												
			1/ 0									
HCM 2010 Ctrl Delay			16.2									
HCM 2010 LOS			В									
Notes												

	•	→	•	•	←	•	•	†	/	/	ţ	4
Movement EE	BL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	4						ተ ተጮ		ች	^	
	67	1	528	0	0	0	0	857	110	111	382	0
	67	1	528	0	0	0	0	857	110	111	382	0
Number	7	4	14				5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0				0	0	0	0	0	0
Ped-Bike Adj(A_pbT) 1.0	00		1.00				1.00		0.99	1.00		1.00
Parking Bus, Adj 1.0		1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln 186		1863	1900				0	1863	1900	1863	1863	0
	50	106	574				0	932	120	121	415	0
Adj No. of Lanes	1	1	0				0	3	0	1	2	0
Peak Hour Factor 0.9		0.92	0.92				0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2				0	2	2	2	2	0
	52	107	580				0	1383	177	153	1588	0
Arrive On Green 0.4		0.42	0.42				0.00	0.30	0.30	0.03	0.15	0.00
Sat Flow, veh/h 177		253	1369				0	4724	585	1774	3632	0
	50	0	680				0	693	359	121	415	0
Grp Sat Flow(s), veh/h/ln17		0	1621				0	1695	1751	1774	1770	0
Q Serve(g_s), s 26		0.0	33.3				0.0	14.3	14.4	5.4	8.3	0.0
Cycle Q Clear(q_c), s 26		0.0	33.3				0.0	14.3	14.4	5.4	8.3	0.0
Prop In Lane 1.0		0.0	0.84				0.00		0.33	1.00	0.0	0.00
Lane Grp Cap(c), veh/h 75		0	687				0.00	1029	531	153	1588	0.00
V/C Ratio(X) 0.8		0.00	0.99				0.00	0.67	0.68	0.79	0.26	0.00
, ,	52	0.00	687				0.00	1029	531	162	1588	0.00
HCM Platoon Ratio 1.0		1.00	1.00				1.00	1.00	1.00	0.33	0.33	1.00
Upstream Filter(I) 1.0		0.00	1.00				0.00	1.00	1.00	0.87	0.87	0.00
Uniform Delay (d), s/veh 21		0.0	22.9				0.0	24.4	24.4	38.1	22.3	0.0
Incr Delay (d2), s/veh 10		0.0	31.7				0.0	3.5	6.8	19.1	0.3	0.0
Initial Q Delay(d3),s/veh 0		0.0	0.0				0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/lh5		0.0	20.8				0.0	7.1	7.9	3.5	4.2	0.0
LnGrp Delay(d),s/veh 31		0.0	54.6				0.0	27.9	31.2	57.3	22.7	0.0
LnGrp LOS	C	0.0	D 1.0				3.0	C	C	E	C	3.0
Approach Vol, veh/h		1330						1052		_	536	
Approach Delay, s/veh		43.2						29.0			30.5	
Approach LOS		D						C C			C	
					_							
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4		6						
Phs Duration (G+Y+Rc), \$1		29.4		39.0		41.0						
Change Period (Y+Rc), \$ 4		5.1		5.1		5.1						
Max Green Setting (Gmax)		23.9		33.9		35.9						
Max Q Clear Time (g_c+l17)		16.4		35.3		10.3						
Green Ext Time (p_c), s 0	0.0	3.7		0.0		2.5						
Intersection Summary												
HCM 2010 Ctrl Delay			35.7									
HCM 2010 LOS			D									
Notes												

Intersection												
Intersection Delay, s/vell	107.7											
Intersection LOS	F											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		ሻ	†	7	ሻ	ħβ		ሻ	ħβ	
Traffic Vol, veh/h	386	6	15	0	22	211	34	415	0	92	349	454
Future Vol, veh/h	386	6	15	0	22	211	34	415	0	92	349	454
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	420	7	16	0	24	229	37	451	0	100	379	493
Number of Lanes	1	1	0	1	1	1	1	2	0	1	2	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	3			2			3			3		
Conflicting Approach Lef				NB			EB			WB		
Conflicting Lanes Left	3			3			2			3		
Conflicting Approach Rig	ghNB			SB			WB			EB		
Conflicting Lanes Right	3			3			3			2		
HCM Control Delay	33.6			30.9			26.9			201.9		
HCM LOS	D			D			D			F		
Lane	N	NBLn11	NBLn21	VBLn3	EBLn1	EBLn2\	WBLn1V	VBLn2V	VBLn3	SBLn1	SBLn2	SBLn3
Vol Left, %		100%	0%	0%	100%	90%	0%	0%	0%	100%	0%	0%
Vol Thru, %		0%	100%		0%	3%	100%	100%	0%		100%	20%
Vol Right, %		0%	0%	0%	0%	7%	0%	0%	100%	0%	0%	80%
Sign Control		Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane		34	208	208	205	202	0	22	211	92	233	570
LT Vol		34	0	0	205	181	0	0	0	92	0	0
Through Vol		0	208	208	0	6	0	22	0	0	233	116
RT Vol		0	0	0	0	15	0	0	211	0	0	454
Lane Flow Rate		37	226	226	222	220	0	24	229	100	253	620
Geometry Grp		8	8	8	8	8	8	8	8	8	8	8
Degree of Util (X)		0.112	0.651	0.541	0.661	0.648	0	0.073	0.653	0.287	0.69	1.591
Departure Headway (Hd)	11.82	11.293		11.565		11.847	11.847	11.125		9.821	9.238
Convergence, Y/N		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Cap		305	323	383	314	317	0	304	328	347	367	397
Service Time			8.993	7.166		9.158	9.547	9.547			7.586	
HCM Lane V/C Ratio		0.121	0.7	0.59	0.707			0.079	0.698	0.288	0.689	
HCM Control Delay		16	32.8	22.8	34.2	33	14.5	15.5	32.5	17.2	31.9	301
HCM Lane LOS		С	D	С	D	D	N	С	D	С	D	F

HCM 95th-tile Q

0.4 4.3

3.1 4.4

4.2

0 0.2 4.3 1.2 4.9 35.2

Intersection						
Int Delay, s/veh	1.3					
		FDD	WDI	WDT	NDI	NDD
	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	 	10/	0	†	0	7
•	1123	106	0	0	0	92
	1123	106	0	0	0	92
Conflicting Peds, #/hr	_ 0	_ 0	_ 0	0	0	0
3	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	250	-	-	-	0
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	1221	115	0	0	0	100
Major/Minor M	oior1	Λ.	//oior?	Λ.	linar1	
	ajor1		/lajor2		/linor1	/11
Conflicting Flow All	0	0	-	-	-	611
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	
Critical Hdwy	-	-	-	-	-	7.14
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	3.92
Pot Cap-1 Maneuver	-	-	0	-	0	374
Stage 1	-	-	0	-	0	-
Stage 2	-	-	0	-	0	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	-	-	-	374
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	_	-
Stage 2	_	-	_	_	_	_
5.ag5 2						
Approach	EB		WB		NB	
HCM Control Delay, s	0		0		18.1	
HCM LOS					С	
Minor Lane/Major Mvmt	N	NBLn1	EBT	EBR	WBT	
	ľ					
Capacity (veh/h)		374	-	-	-	
HCM Carabal Palar (a)		0.267	-	-	-	
HCM Control Delay (s)		18.1	-	-	-	
HCM Lane LOS		С	-	-	-	
HCM 95th %tile Q(veh)		1.1	-	-	-	

Intersection													
Int Delay, s/veh	59.4												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	LDL	↑	LDK 7		↑	WDK	NDL		NDK	SDL	3B1 ♣	SDK	
Traffic Vol, veh/h	93	1040	82	5 5	421	<u>r</u> 1	137	1 → 7	53	35	6	91	
future Vol, veh/h	93	1040	82	55	421	1	137	7	53	35	6	91	
conflicting Peds, #/hr	0	0	02	0	0	0	0	0	0	0	0	0	
ign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None	-	-	None	Jiop -	310p -	None	- -	Jiop -	None	
Storage Length	250	_	250	250	_	400	0	_	TVOTIC	_	_	-	
eh in Median Storage,		0	230	230	0	-	-	0	_	_	0	_	
Grade, %	-	0	_	_	0	_	_	0	_	_	0	_	
eak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
eavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Nymt Flow	101	1130	89	60	458	1	149	8	58	38	7	99	
WITH THOW	101	1130	07	00	730	·	17/	U	30	30	,	,,	
ajor/Minor N	/lajor1		N	Major2		N	Minor1		ı	Minor2			
onflicting Flow All	459	0	0	1219	0	0	1639	1911	565	1236	1999	229	
Stage 1	409	-	U	1219	-	U	1332	1332	505	578	578	229	
Stage 2	-	-	-	-	-	-	307	579	-	658	1421	-	
ritical Hdwy	5.34	-	-	5.34	-	-	6.44	6.54	7.14	6.44	6.54	7.14	
itical Hdwy Stg 1	5.54	-	-	0.04	-	-	7.34	5.54	7.1 4 -	7.34	5.54	7.14	
itical Hdwy Stg 2	-	-	-	-	-	-	6.74	5.54	-	6.74	5.54	-	
ollow-up Hdwy	3.12	-	-	3.12	-	-	3.82	4.02	3.92	3.82	4.02	3.92	
ot Cap-1 Maneuver	708	-	-	306		-	~ 106	4.02	401	185	59	659	
	700	-	-	300	-	-		222		388	499		
Stage 1	-	-	-	-	-	-	~ 116 621	499	-	382	201	-	
Stage 2 latoon blocked, %	-	-	-	-	-	-	021	499	-	302	201	-	
	708		-	306		-	~ 61	46	401	106	11	659	
lov Cap-1 Maneuver		-	-	300	-	-		46			41		
ov Cap-2 Maneuver	-	-	-	-	-	-	~ 61 ~ 99	190	-	106 333	41 401	-	
Stage 1	-	-	-	-	-	-	~ 99 417	401	-	269	172	-	
Stage 2	-	-	-	-	-	-	41/	4U I	-	209	1/2	-	
nnroach	EB			MD			NB			SB			
pproach				WB		φ.				50			
CM Control Delay, s	8.0			2.3		\$	565.7						
CM LOS							F			F			
							=	==					
linor Lane/Major Mvm	t í	VBLn1 I		EBL	EBT	EBR	WBL	WBT	WBR S				
apacity (veh/h)		61	211	708	-	-	306	-	-	215			
CM Lane V/C Ratio		2.441	0.309	0.143	-	-	0.195	-	-	0.667			
CM Control Delay (s)	\$	800.6	29.5	10.9	-	-	19.6	-	-	50			
CM Lane LOS		F	D	В	-	-	С	-	-	F			
CM 95th %tile Q(veh)		14.8	1.3	0.5	-	-	0.7	-	-	4.1			
otes													
Volume exceeds cap	acity	\$: De	elay exc	eeds 3	00s	+: Com	putatior	Not D	efined	*: All	major v	olume i	in platoon
	,		,										

-	۶	→	•	•	—	•	•	†	~	/	+	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	16.5%	^	7	ň	ተተተ	7	ሻሻ	4î		*	î,	7
Traffic Volume (veh/h)	368	541	116	57	286	38	113	10	48	28	11	96
Future Volume (veh/h)	368	541	116	57	286	38	113	10	48	28	11	96
Number	5	2	12	1	6	16	3	8	18	7	4	14
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.99
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1863	1863	1863	1863	1900	1863	1863	1863
Adj Flow Rate, veh/h	400	588	126	62	311	41	123	11	52	30	0	112
Adj No. of Lanes	2	3	1	1	3	1	2	1	0	1	0	2
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	471	993	309	80	554	172	189	39	184	723	0	1515
Arrive On Green	0.14	0.20	0.20	0.05	0.11	0.11	0.05	0.14	0.14	0.41	0.00	0.48
Sat Flow, veh/h	3442	5085	1583	1774	5085	1579	3442	284	1342	1774	0	3127
Grp Volume(v), veh/h	400	588	126	62	311	41	123	0	63	30	0	112
Grp Sat Flow(s), veh/h/ln	1721	1695	1583	1774	1695	1579	1721	0	1626	1774	0	1564
Q Serve(g_s), s	10.7	9.9	6.6	3.3	5.5	2.2	3.3	0.0	3.3	1.0	0.0	1.8
Cycle Q Clear(g_c), s	10.7	9.9	6.6	3.3	5.5	2.2	3.3	0.0	3.3	1.0	0.0	1.8
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.83	1.00		1.00
Lane Grp Cap(c), veh/h	471	993	309	80	554	172	189	0	223	723	0	1515
V/C Ratio(X)	0.85	0.59	0.41	0.78	0.56	0.24	0.65	0.00	0.28	0.04	0.00	0.07
Avail Cap(c_a), veh/h	510	1910	595	182	1722	535	317	0	275	723	0	1515
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	39.8	34.6	33.2	44.7	40.0	38.5	43.8	0.0	36.6	16.9	0.0	13.0
Incr Delay (d2), s/veh	12.1	0.6	0.9	14.6	0.9	0.7	3.7	0.0	0.7	0.1	0.0	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	5.9	4.7	2.9	1.9	2.6	1.0	1.7	0.0	1.5	0.5	0.0	0.8
LnGrp Delay(d),s/veh	51.9	35.2	34.1	59.3	40.9	39.2	47.5	0.0	37.3	17.0	0.0	13.1
LnGrp LOS	D	D	С	E	D	D	D		D	В		В
Approach Vol, veh/h		1114			414			186			142	
Approach Delay, s/veh		41.1			43.5			44.0			13.9	
Approach LOS		D			D			D			В	
• •	1		2	4		,	7					
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	8.8	25.8	9.7	50.3	16.9	17.6	42.5	17.5				
Change Period (Y+Rc), s	4.5	7.3	4.5	* 4.5	4.0	* 7.3	4.0	4.5				
Max Green Setting (Gmax), s	9.7	35.5	8.7	* 46	14.0	* 32	38.5	16.0				
Max Q Clear Time (g_c+l1), s	5.3	11.9	5.3	3.8	12.7	7.5	3.0	5.3				
Green Ext Time (p_c), s	0.0	4.0	0.1	0.4	0.2	2.0	0.1	0.1				
Intersection Summary												
HCM 2010 Ctrl Delay			39.8									
HCM 2010 LOS			D									
Notes												

Intersection												
Int Delay, s/veh	0.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		የ			ተተተ	7			7			7
Traffic Vol, veh/h	0	699	3	0	439	59	0	0	5	0	0	50
Future Vol, veh/h	0	699	3	0	439	59	0	0	5	0	0	50
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	500	-	-	0	-	-	0
Veh in Median Storage,	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	760	3	0	477	64	0	0	5	0	0	54
Major/Minor N	/lajor1		N	Major2		N	Minor1		N	/linor2		
Conflicting Flow All	-	0	0		-	0		_	382	_	_	239
Stage 1	-	_	-	-	-	_	-	-	-	-	-	
Stage 2	_	_	_	-		_	_	-	_		-	-
Critical Hdwy	-	_	-	-	-	_	-	-	7.14	-	-	7.14
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	_	-	-	_
Critical Hdwy Stg 2	_	-	_	-	-	-	-	_	-	-	_	-
Follow-up Hdwy	_	_	-	-		_	_	-	3.92		-	3.92
Pot Cap-1 Maneuver	0	_	_	0	-	_	0	0	526	0	0	649
Stage 1	0	-	-	0	-	-	0	0	-	0	0	_
Stage 2	0	_	_	0	-	_	0	0	-	0	0	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	-	-	-	-	-	-	-	-	526	-	-	649
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-		-	-	-
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			0			11.9			11.1		
HCM LOS	U			0			В			В		
1.0W E00							U			D		
Minor Lane/Major Mvm	1 1	NBLn1	EBT	EBR	WBT	WBR S	SBI n1					
Capacity (veh/h)	· I	526	-	LDIN -	-	-	649					
HCM Lane V/C Ratio		0.01	-	-	-		0.084					
HCM Control Delay (s)		11.9	-	-	-	-	11.1					
HCM Lane LOS		11.9 B	-	-	-	-	В					
HCM 95th %tile Q(veh)		0	_		_	_	0.3					
How four four Q(veri)		U	_			_	0.5					

	۶	→	•	•	—	•	•	†	~	/	+	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	^ ^	7	ሻሻ	ተተተ	7	ሻ	ĵ∍		ሻ	↑	77
Traffic Volume (veh/h)	178	298	142	42	239	116	82	34	48	89	24	100
Future Volume (veh/h)	178	298	142	42	239	116	82	34	48	89	24	100
Number	3	8	18	7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.99	1.00		1.00	1.00		0.99	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1863	1863	1863	1863	1900	1863	1863	1863
Adj Flow Rate, veh/h	193	324	154	46	260	126	89	37	52	97	26	109
Adj No. of Lanes	2	3	1	2	3	1	1	1	0	1	1	2
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	289	911	280	114	652	203	115	298	419	124	807	1208
Arrive On Green	0.08	0.18	0.18	0.03	0.13	0.13	0.06	0.43	0.43	0.07	0.43	0.43
Sat Flow, veh/h	3442	5085	1565	3442	5085	1583	1774	696	978	1774	1863	2787
Grp Volume(v), veh/h	193	324	154	46	260	126	89	0	89	97	26	109
Grp Sat Flow(s), veh/h/ln	1721	1695	1565	1721	1695	1583	1774	0	1674	1774	1863	1393
Q Serve(g_s), s	4.0	4.1	6.6	1.0	3.5	5.5	3.6	0.0	2.4	4.0	0.6	1.7
Cycle Q Clear(g_c), s	4.0	4.1	6.6	1.0	3.5	5.5	3.6	0.0	2.4	4.0	0.6	1.7
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.58	1.00		1.00
Lane Grp Cap(c), veh/h	289	911	280	114	652	203	115	0	717	124	807	1208
V/C Ratio(X)	0.67	0.36	0.55	0.40	0.40	0.62	0.77	0.00	0.12	0.78	0.03	0.09
Avail Cap(c_a), veh/h	594	2834	872	211	2267	706	234	0	717	169	807	1208
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	32.7	26.5	27.5	34.9	29.5	30.4	33.9	0.0	12.7	33.6	12.0	12.3
Incr Delay (d2), s/veh	2.6	0.2	1.7	2.3	0.4	3.1	10.5	0.0	0.4	14.9	0.1	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.0	1.9	3.0	0.5	1.6	2.6	2.1	0.0	1.2	2.5	0.3	0.7
LnGrp Delay(d),s/veh	35.3	26.7	29.2	37.1	29.9	33.5	44.4	0.0	13.1	48.6	12.0	12.4
LnGrp LOS	D	С	С	D	С	С	D		В	D	В	В
Approach Vol, veh/h		671			432			178			232	
Approach Delay, s/veh		29.8			31.7			28.7			27.5	
Approach LOS		C			С			С			C	
• •	1		2	4		,	7					
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	8.8	39.3	10.2	15.3	9.2	38.9	6.4	19.1				
Change Period (Y+Rc), s	4.0	7.4	4.0	5.9	4.0	* 7.4	4.0	5.9				
Max Green Setting (Gmax), s	9.7	28.5	12.7	32.8	7.0	* 32	4.5	41.0				
Max Q Clear Time (g_c+I1), s	5.6	3.7	6.0	7.5	6.0	4.4	3.0	8.6				
Green Ext Time (p_c), s	0.1	0.5	0.3	1.9	0.0	0.4	0.0	2.5				
Intersection Summary												
HCM 2010 Ctrl Delay			29.8									
HCM 2010 LOS			С									
Notes												

PM Existing + Cumulative + Project 1: Ocean View Hills Pkwy & Starfish Way/Westport View Dr

	۶	→	•	•	←	•	1	†	/	/	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ሻ	ተ ኈ		ነ	∱ ∱	
Traffic Volume (veh/h)	14	1	26	55	0	53	22	655	58	147	621	20
Future Volume (veh/h)	14	1	26	55	0	53	22	655	58	147	621	20
Number	3	8	18	7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.99
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1863	1900	1900	1863	1900	1863	1863	1900	1863	1863	1900
Adj Flow Rate, veh/h	15	1	28	60	0	58	24	712	63	160	675	22
Adj No. of Lanes	0	1	0	0	1	0	1	2	0	1	2	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	33	2	61	80	0	78	38	1442	128	201	1856	60
Arrive On Green	0.06	0.06	0.06	0.09	0.00	0.09	0.02	0.44	0.44	0.11	0.53	0.53
Sat Flow, veh/h	562	37	1050	852	0	823	1774	3289	291	1774	3497	114
Grp Volume(v), veh/h	44	0	0	118	0	0	24	383	392	160	341	356
Grp Sat Flow(s), veh/h/ln	1649	0	0	1675	0	0	1774	1770	1810	1774	1770	1842
Q Serve(g_s), s	1.7	0.0	0.0	4.6	0.0	0.0	0.9	10.5	10.5	5.9	7.6	7.6
Cycle Q Clear(g_c), s	1.7	0.0	0.0	4.6	0.0	0.0	0.9	10.5	10.5	5.9	7.6	7.6
Prop In Lane	0.34		0.64	0.51		0.49	1.00		0.16	1.00		0.06
Lane Grp Cap(c), veh/h	96	0	0	158	0	0	38	776	794	201	939	977
V/C Ratio(X)	0.46	0.00	0.00	0.75	0.00	0.00	0.63	0.49	0.49	0.79	0.36	0.36
Avail Cap(c_a), veh/h	661	0	0	671	0	0	136	776	794	315	939	977
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	30.8	0.0	0.0	29.9	0.0	0.0	32.8	13.6	13.6	29.2	9.2	9.2
Incr Delay (d2), s/veh	3.4	0.0	0.0	6.9	0.0	0.0	15.9	2.2	2.2	7.3	1.1	1.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.9	0.0	0.0	2.4	0.0	0.0	0.6	5.6	5.7	3.3	4.0	4.1
LnGrp Delay(d),s/veh	34.2	0.0	0.0	36.8	0.0	0.0	48.7	15.9	15.8	36.6	10.3	10.3
LnGrp LOS	С			D			D	В	В	D	В	В
Approach Vol, veh/h		44			118			799			857	
Approach Delay, s/veh		34.2			36.8			16.8			15.2	
Approach LOS		C			D			В			В	
	1		2	4		,	7					
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	5.9	41.7		11.3	12.1	35.5		8.8				
Change Period (Y+Rc), s	4.4	* 5.8		4.9	4.4	5.8		4.9				
Max Green Setting (Gmax), s	5.2	* 36		27.1	12.0	28.8		27.1				
Max Q Clear Time (g_c+l1), s	2.9	9.6		6.6	7.9	12.5		3.7				
Green Ext Time (p_c), s	0.0	4.0		0.5	0.1	4.0		0.1				
Intersection Summary												
HCM 2010 Ctrl Delay			17.8									
HCM 2010 LOS			В									
Notes												

Intersection						
Int Delay, s/veh	0.9					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥	LDIX	ሻ	^	^	ODIT
Traffic Vol, veh/h	37	30	29	698	661	50
Future Vol, veh/h	37	30	29	698	661	50
Conflicting Peds, #/hr	8	8	8	0	001	8
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	310p -	None	-	None	-	None
Storage Length	0	-	225	-	-	NONE
Veh in Median Storage			223	0	0	-
		-		0		
Grade, %	0	-	-		0	- 00
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	40	33	32	759	718	54
Major/Minor N	/linor2	N	/lajor1	N	/lajor2	
Conflicting Flow All	1205	402	780	0		0
Stage 1	753	-	-	-	_	-
Stage 2	452	_	_	_	_	_
Critical Hdwy	6.84	6.94	4.14	_	_	_
Critical Hdwy Stg 1	5.84	-		_	_	_
Critical Hdwy Stg 2	5.84	_	_	_		_
Follow-up Hdwy	3.52	3.32	2.22	_	_	_
Pot Cap-1 Maneuver	176	598	833	-	-	-
Stage 1	426	370	033		_	
		-	-	-	-	-
Stage 2	608	-	-	-	-	-
Platoon blocked, %	4/7	F00	007	-	-	-
Mov Cap-1 Maneuver	167	590	827	-	-	-
Mov Cap-2 Maneuver	290	-	-	-	-	-
Stage 1	406	-	-	-	-	-
Stage 2	604	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	16.9		0.4		0	
HCM LOS	C		0.4		U	
FICIVI LOS	C					
Minor Lane/Major Mvm	t	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		827	-	375	-	-
HCM Lane V/C Ratio		0.038	-	0.194	-	_
HCM Control Delay (s)		9.5	-		-	-
HCM Lane LOS		A	_	С	-	_
HCM 95th %tile Q(veh)		0.1	_	0.7	_	_
HUM 95th %ille Utvent						

	۶	→	•	•	←	•	1	†	<i>></i>	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ		7	ሻ	₽		ሻሻ	ተተኈ		ሻ	∱ ∱	
Traffic Volume (veh/h)	143	2	152	31	3	20	200	560	36	35	417	242
Future Volume (veh/h)	143	2	152	31	3	20	200	560	36	35	417	242
Number	3	8	18	7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.99	0.99		1.00	1.00		0.97	1.00		0.99
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1863	1900	1863	1863	1900	1863	1863	1900
Adj Flow Rate, veh/h	155	2	165	34	3	22	217	609	39	38	453	263
Adj No. of Lanes	1	1	1	1	1	0	2	3	0	1	2	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	455	332	279	367	25	186	312	2184	139	54	835	481
Arrive On Green	0.10	0.18	0.18	0.06	0.13	0.13	0.09	0.45	0.45	0.03	0.39	0.39
Sat Flow, veh/h	1774	1863	1565	1774	193	1416	3442	4876	310	1774	2154	1242
Grp Volume(v), veh/h	155	2	165	34	0	25	217	422	226	38	372	344
Grp Sat Flow(s), veh/h/ln	1774	1863	1565	1774	0	1609	1721	1695	1796	1774	1770	1626
Q Serve(g_s), s	4.9	0.1	6.5	1.1	0.0	0.9	4.1	5.3	5.4	1.4	11.0	11.1
Cycle Q Clear(g_c), s	4.9	0.1	6.5	1.1	0.0	0.9	4.1	5.3	5.4	1.4	11.0	11.1
Prop In Lane	1.00	0.1	1.00	1.00	0.0	0.88	1.00	0.0	0.17	1.00	11.0	0.76
Lane Grp Cap(c), veh/h	455	332	279	367	0	212	312	1518	804	54	686	630
V/C Ratio(X)	0.34	0.01	0.59	0.09	0.00	0.12	0.70	0.28	0.28	0.71	0.54	0.55
Avail Cap(c_a), veh/h	691	991	833	686	0	856	387	1518	804	170	686	630
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	21.0	22.8	25.5	22.6	0.0	25.9	29.8	11.8	11.8	32.5	16.1	16.1
Incr Delay (d2), s/veh	0.4	0.0	2.0	0.1	0.0	0.2	4.0	0.5	0.9	15.8	3.1	3.4
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.4	0.0	3.0	0.5	0.0	0.4	2.1	2.6	2.8	0.9	5.9	5.6
LnGrp Delay(d),s/veh	21.4	22.9	27.5	22.7	0.0	26.2	33.8	12.2	12.7	48.3	19.1	19.5
LnGrp LOS	C	C	C C	C	0.0	C	C	В	В	70.5 D	В	В
Approach Vol, veh/h		322			59			865	D		754	
Approach Delay, s/veh		24.5			24.2			17.8			20.8	
Approach LOS		24.5 C			24.2 C			17.0 B			20.6 C	
Арргоасті СОЗ		C			C			Ь			C	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	10.5	31.8	11.5	13.8	6.4	35.9	8.3	17.0				
Change Period (Y+Rc), s	4.4	* 5.6	4.4	4.9	4.4	5.6	4.4	4.9				
Max Green Setting (Gmax), s	7.6	* 26	16.1	36.0	6.5	27.1	16.1	36.0				
Max Q Clear Time (g_c+I1), s	6.1	13.1	6.9	2.9	3.4	7.4	3.1	8.5				
Green Ext Time (p_c), s	0.1	3.4	0.2	0.1	0.0	3.6	0.0	0.5				
Intersection Summary												
HCM 2010 Ctrl Delay			20.2									
HCM 2010 LOS			20.2 C									
Notes												
NOTES												

	ၨ	→	•	•	←	•	•	†	/	/	ţ	✓	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			f)		ሻ	∱ ∱Ъ		ች	ተ ተ ኈ		
Traffic Volume (veh/h)	16	0	68	51	0	28	107	769	42	45	531	25	
Future Volume (veh/h)	16	0	68	51	0	28	107	769	42	45	531	25	
Number	3	8	18	7	4	14	1	6	16	5	2	12	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
` '	1.00		0.99	1.00		1.00	1.00		0.97	1.00		0.97	
	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
	1900	1863	1900	1863	1863	1900	1863	1863	1900	1863	1863	1900	
Adj Flow Rate, veh/h	17	0	74	55	0	30	116	836	46	49	577	27	
Adj No. of Lanes	0	1	0	1	1	0	1	3	0	1	3	0	
	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2	
Cap, veh/h	26	0	111	97	0	86	148	2517	138	64	2306	107	
	0.09	0.00	0.09	0.05	0.00	0.05	0.08	0.51	0.51	0.04	0.46	0.46	
Sat Flow, veh/h	299	0.00	1302	1774	0	1576	1774	4924	270	1774	4972	231	
Grp Volume(v), veh/h	91	0	0	55	0	30	116	575	307	49	392	212	
Grp Sat Flow(s), veh/h/ln		0	0	1774	0	1576	1774	1695	1804	1774	1695	1813	
Q Serve(g_s), s	3.6	0.0	0.0	2.0	0.0	1.2	4.1	6.5	6.5	1.8	4.5	4.6	
Cycle Q Clear(q_c), s	3.6	0.0	0.0	2.0	0.0	1.2	4.1	6.5	6.5	1.8	4.5	4.6	
,	0.19	0.0	0.81	1.00	0.0	1.00	1.00	0.5	0.15	1.00	т.5	0.13	
Lane Grp Cap(c), veh/h		0	0.01	97	0	86	1.00	1733	922	64	1572	841	
	0.67	0.00	0.00	0.56	0.00	0.35	0.78	0.33	0.33	0.76	0.25	0.25	
Avail Cap(c_a), veh/h	768	0.00	0.00	856	0.00	760	208	1733	922	181	1572	841	
	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
	1.00	0.00	0.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh		0.00	0.00	29.8	0.00	29.5	29.1	9.3	9.3	30.9	10.5	10.5	
ncr Delay (d2), s/veh	5.4	0.0	0.0	5.1	0.0	2.4	11.8	0.5	1.0	16.8	0.4	0.7	
Initial Q Delay(d3),s/veh		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh		0.0	0.0	1.1	0.0	0.6	2.5	3.1	3.5	1.2	2.2	2.5	
· · · · · · · · · · · · · · · · · · ·	34.1	0.0	0.0	34.9	0.0	31.8	40.9	9.8	10.3	47.7	10.9	11.2	
LnGrp LOS	34.1 C	0.0	0.0	34.9 C	0.0	31.0 C	40.9 D	9.0 A	10.3 B	47.7 D	10.9 B	11.2 B	
Approach Vol, veh/h	U	91		C	85	C	D	998	D	D	653	D	
Approach Delay, s/veh		34.1			33.8			13.6			13.8		
Approach LOS		34.1 C			33.0 C			13.0 B			13.0 B		
• •		C			C			Б			ט		
Timer	1	2	3	4	5	6	7	8					
Assigned Phs	1	2		4	5	6		8					
Phs Duration (G+Y+Rc),	s9.8	36.0		8.5	6.7	39.1		10.4					
Change Period (Y+Rc), s	s 4.4	6.0		4.9	4.4	6.0		4.9					
Max Green Setting (Gma	ax) , 6	30.0		31.2	6.6	31.0		31.0					
Max Q Clear Time (g_c+		6.6		4.0	3.8	8.5		5.6					
Green Ext Time (p_c), s		3.5		0.3	0.0	5.4		0.4					
Intersection Summary													
HCM 2010 Ctrl Delay			15.6										
HCM 2010 Cur Delay			В										
Notes													

	_	•	₽n	†	<u></u>	<u> </u>	Ţ
Movement W	r /BL	WBR	NBU	NBT	NBR	SBL	SBT
Lane Configurations)	VVDIX			אטוז	JDL Š	
				^	0.4		^
\	86	9	33	903	94	8	642
, ,	86	9	33	903	94	8	642
Number	7	14		6	16	5	2
Initial Q (Qb), veh	0	1.00		0	0	1.00	0
,	.00	1.00		1.00	0.97	1.00	1.00
J . 1	.00	1.00		1.00	1.00	1.00	1.00
•	363	1863		1863	1900	1863	1863
	93	10		982	102	9	698
Adj No. of Lanes	1	1		3	0	1	3
	.92	0.92		0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2		2	2	2	2
	130	116		2854	296	17	3625
	.07	0.07		0.61	0.61	0.01	0.71
	774	1583		4835	483	1774	5253
Grp Volume(v), veh/h	93	10		713	371	9	698
Grp Sat Flow(s), veh/h/ln17	774	1583		1695	1760	1774	1695
	2.5	0.3		5.1	5.1	0.2	2.2
	2.5	0.3		5.1	5.1	0.2	2.2
, w_ ,	.00	1.00			0.27	1.00	
•	130	116		2074	1077	17	3625
	.72	0.09		0.34	0.34	0.54	0.19
	121	1001		2074	1077	145	3625
	.00	1.00		1.00	1.00	1.00	1.00
	.00	1.00		1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh 22		21.2		4.7	4.7	24.2	2.3
	7.2	0.3		0.5	0.9	24.4	0.1
Initial Q Delay(d3),s/veh		0.0		0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/lri		0.0		2.4	2.6	0.0	1.1
	9.4	21.5		5.1	5.6	48.6	2.5
LnGrp LOS	9.4 C	21.5 C		3.1 A	3.0 A	40.0 D	2.5 A
	103	C			А	U	707
				1084			
11 3.	8.7			5.3			3.0
Approach LOS	С			Α			Α
Timer	1	2	3	4	5	6	7
Assigned Phs		2		4	5	6	
Phs Duration (G+Y+Rc), s	;	41.0		8.1	5.0	36.0	
Change Period (Y+Rc), s		6.0		4.5	4.5	6.0	
Max Green Setting (Gmax)	(). S	30.0		31.0	4.0	30.0	
Max Q Clear Time (g_c+l1		4.2		4.5	2.2	7.1	
Green Ext Time (p_c), s	1/1/3	4.6		0.2	0.0	7.1	
		1.0		5.2	3.0	,	
Intersection Summary							
HCM 2010 Ctrl Delay			5.7				
HCM 2010 LOS			Α				
Notes							

	•	→	`	√	←	•	•	†	<u> </u>	\		√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		^	7	ሻሻ	↑	7	ች	^	7	ሻሻ	^	7
Traffic Volume (veh/h)	27	68	61	962	92	557	111	534	549	489	302	0
Future Volume (veh/h)	27	68	61	962	92	557	111	534	549	489	302	0
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
, ,	1.00		1.00	1.00	Ü	0.98	1.00		0.99	1.00		1.00
J\ — /	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
J . J	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863
Adj Flow Rate, veh/h	29	74	66	1046	100	605	121	580	597	532	328	0
Adj No. of Lanes	1	2	1	2	1	1	1	2	1	2	2	1
	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	101	445	331	1138	745	621	148	727	844	587	1036	464
	0.06	0.13	0.13	0.33	0.40	0.40	0.08	0.21	0.21	0.17	0.29	0.00
	1774	3539	1583	3442	1863	1555	1774	3539	1561	3442	3539	1583
Grp Volume(v), veh/h	29	74	66	1046	1003	605	121	580	597	532	328	0
Grp Sat Flow(s), veh/h/ln1		1770	1583	1721	1863	1555	1774	1770	1561	1721	328 1770	1583
Q Serve(g_s), s	1.74	2.2	4.1	35.1	4.1	45.9	8.1	18.7	24.7	18.2	8.7	0.0
Cycle Q Clear(g_c), s	1.9	2.2	4.1	35.1	4.1	45.9	8.1	18.7	24.7	18.2	8.7	0.0
	1.00	۷.۷	1.00	1.00	4.1	1.00	1.00	10.7	1.00	1.00	0.7	1.00
	101	445	331	1138	745	621	1.00	727	844	587	1036	464
	0.29	0.17	0.20	0.92	0.13	0.97	0.82	0.80	0.71	0.91	0.32	0.00
• • •	174	454	335	1276	747	623	223	727	844	611	1036	464
Avail Cap(c_a), veh/h HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	1.00	1.00	1.00	1.00	1.00	1.00	0.97	0.97	0.97	1.00	1.00	0.00
1 17		46.8	39.2	38.6	22.8	35.4	54.1	45.3	20.9	48.8	33.1	0.00
Uniform Delay (d), s/veh	1.6	0.2	0.3	10.1	0.1	29.3	13.1	8.6	4.8	16.9	0.8	0.0
Incr Delay (d2), s/veh		0.2	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Initial Q Delay(d3),s/veh		1.1	1.8	18.3	2.1	24.7	4.5	10.0	15.8	10.0	4.4	0.0
%ile BackOfQ(50%),veh/			39.5	48.7	22.9	64.7	67.2	53.9	25.7	65.8	33.9	0.0
. , , ,	55.8 E	47.0 D	39.5 D	48.7 D	22.9 C	64.7 E	67.2 E	53.9 D	25.7 C	65.8 E	33.9 C	0.0
Approach Vol. woh/h			υ	υ		E	E		U	E		
Approach Dolay shuch		169			1751			1298			860	
Approach LOS		45.6			52.7			42.2			53.6	
Approach LOS		D			D			D			D	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc),		29.8	44.9	20.2	14.7	40.2	12.0	53.1				
Change Period (Y+Rc), s		5.1	* 5.2	5.1	* 4.7	5.1	* 5.2	5.1				
Max Green Setting (Gma		18.7	* 45	15.4	* 15	24.9	* 12	48.1				
Max Q Clear Time (g_c+	210,25	26.7	37.1	6.1	10.1	10.7	3.9	47.9				
Green Ext Time (p_c), s	0.3	0.0	2.6	0.3	0.1	1.6	0.0	0.1				
Intersection Summary												
HCM 2010 Ctrl Delay			49.3									
HCM 2010 Clir Delay			47.3 D									
			U									
Notes												

٠	→	•	•	←	•	•	†	/	/	ţ	4	
ovement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
ne Configurations				ર્ન	7	ሻ	ተተተ			ተ ተጉ		
affic Volume (veh/h) 0	0	0	87	Ö	103	528	1066	0	0	431	785	
ure Volume (veh/h) 0	0	0	87	0	103	528	1066	0	0	431	785	
nber			3	8	18	5	2	12	1	6	16	
al Q (Qb), veh			0	0	0	0	0	0	0	0	0	
d-Bike Adj(A_pbT)			1.00		1.00	1.00		1.00	1.00		0.89	
king Bus, Adj			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Sat Flow, veh/h/ln			1900	1863	1863	1863	1863	0	0	1863	1900	
Flow Rate, veh/h			95	0	112	574	1159	0	0	468	853	
No. of Lanes			0	1	1	1	3	0	0	3	0	
k Hour Factor			0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
cent Heavy Veh, %			2	2	2	2	2	0	0	2	2	
p, veh/h			155	0	138	604	4243	0	0	1551	647	
ve On Green			0.09	0.00	0.09	0.34	0.83	0.00	0.00	0.46	0.46	
Flow, veh/h			1774	0	1583	1774	5253	0	0	3558	1414	
v Volume(v), veh/h			95	0	112	574	1159	0	0	468	853	
o Sat Flow(s),veh/h/ln			1774	0	1583	1774	1695	0	0	1695	1414	
Serve(g_s), s			6.7	0.0	9.0	41.0	6.4	0.0	0.0	11.3	59.5	
le Q Clear(q_c), s			6.7	0.0	9.0	41.0	6.4	0.0	0.0	11.3	59.5	
o In Lane			1.00	0.0	1.00	1.00	0.1	0.00	0.00	11.0	1.00	
e Grp Cap(c), veh/h			155	0	138	604	4243	0.00	0.00	1551	647	
Ratio(X)			0.61	0.00	0.81	0.95	0.27	0.00	0.00	0.30	1.32	
il Cap(c_a), veh/h			212	0	189	700	4243	0.00	0.00	1551	647	
M Platoon Ratio			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
stream Filter(I)			1.00	0.00	1.00	0.50	0.50	0.00	0.00	0.64	0.64	
form Delay (d), s/veh			57.2	0.0	58.3	41.8	2.3	0.0	0.0	22.2	35.3	
r Delay (d2), s/veh			3.9	0.0	17.0	12.9	0.1	0.0	0.0	0.3	150.2	
ial Q Delay(d3),s/veh			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
e BackOfQ(50%),veh/ln			3.5	0.0	4.6	22.3	2.9	0.0	0.0	5.3	50.2	
Grp Delay(d),s/veh			61.2	0.0	75.3	54.7	2.4	0.0	0.0	22.5	185.4	
Grp LOS			E	3.0	7 O.O	D	A	3.0	3.0	C	F	
proach Vol, veh/h			_	207	_		1733			1321	•	
proach Delay, s/veh				68.8			19.7			127.7		
proach LOS				E			В			F		
ner 1	2	3	4	5	6	7	8					
signed Phs	2			5	6		8					
s Duration (G+Y+Rc), s	113.6			49.0	64.6		16.4					
ange Period (Y+Rc), s	5.1			* 4.7	5.1		5.1					
x Green Setting (Gmax), s				* 51	48.3		15.5					
x Q Clear Time (g_c+l1), s				43.0	61.5		11.0					
een Ext Time (p_c), s	10.0			1.3	0.0		0.3					
ersection Summary												
CM 2010 Ctrl Delay		66.6										
CM 2010 LOS		E										
tes												

	•	→	•	•	←	•	1	†	/	/	ļ	√
Movement E	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4						ተ ተጉ		ች	^	
	685	4	486	0	0	0	0	908	98	117	413	0
	685	4	486	0	0	0	0	908	98	117	413	0
Number	7	4	14				5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0				0	0	0	0	0	0
` ′	.00		1.00				1.00		0.99	1.00		1.00
• • •	.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
	863	1863	1900				0	1863	1900	1863	1863	0
	638	153	528				0	987	107	127	449	0
Adj No. of Lanes	1	1	0				0	3	0	1	2	0
).92	0.92	0.92				0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2				0	2	2	2	2	0
	797	165	571				0	1393	151	152	1547	0
).45	0.45	0.45				0.00	0.30	0.30	0.09	0.44	0.00
	774	368	1270				0	4820	503	1774	3632	0
	638	0	681				0	719	375	127	449	0
Grp Sat Flow(s), veh/h/ln1		0	1639				0	1695	1766	1774	1770	0
	27.8	0.0	35.2				0.0	17.0	17.0	6.3	7.4	0.0
	27.8	0.0	35.2				0.0	17.0	17.0	6.3	7.4	0.0
, io_ ,	1.00	3.0	0.78				0.00		0.28	1.00	,.,	0.00
Lane Grp Cap(c), veh/h		0	736				0.00	1015	529	152	1547	0.00
).80	0.00	0.92				0.00	0.71	0.71	0.84	0.29	0.00
` '	846	0.00	781				0.00	1015	529	152	1547	0.00
	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
	.00	0.00	1.00				0.00	1.00	1.00	0.61	0.61	0.00
Uniform Delay (d), s/veh 2		0.0	23.3				0.0	28.0	28.1	40.5	16.3	0.0
3	5.3	0.0	16.2				0.0	4.2	7.9	21.4	0.3	0.0
Initial Q Delay(d3),s/veh		0.0	0.0				0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/1		0.0	19.2				0.0	8.5	9.4	4.0	3.6	0.0
` '.	26.5	0.0	39.6				0.0	32.2	35.9	61.9	16.6	0.0
LnGrp LOS	С	3.0	D				3.0	C	D	E	В	3.0
Approach Vol, veh/h		1319						1094			576	
Approach Delay, s/veh		33.3						33.5			26.6	
Approach LOS		C						C			C C	
• •	1				-	,	-					
Timer	1	2	3	4	5	6	1	8				
Assigned Phs	1	2		4		6						
Phs Duration (G+Y+Rc), 1		32.0		45.6		44.4						
Change Period (Y+Rc), \$		5.1		5.1		5.1						
Max Green Setting (Gmax		24.5		42.9		36.9						
Max Q Clear Time (g_c+l		19.0		37.2		9.4						
Green Ext Time (p_c), s	0.0	3.0		3.2		2.8						
Intersection Summary												
HCM 2010 Ctrl Delay			32.1									
HCM 2010 LOS			С									
Notes												
140103												

Movement
Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR
Lane Configurations Image: Configuration of the confi
Traffic Vol, veh/h 367 25 38 4 11 201 18 425 6 249 393 220
Traffic Vol, veh/h 367 25 38 4 11 201 18 425 6 249 393 220
Traffic Vol, veh/h 367 25 38 4 11 201 18 425 6 249 393 220 Future Vol, veh/h 367 25 38 4 11 201 18 425 6 249 393 220 Peak Hour Factor 0.92 <t< td=""></t<>
Future Vol, veh/h 367 25 38 4 11 201 18 425 6 249 393 220 Peak Hour Factor 0.92
Peak Hour Factor 0.92
Heavy Vehicles, % 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 3 0 1 2 2 3
Mvmt Flow 399 27 41 4 12 218 20 462 7 271 427 239 Number of Lanes 1 1 0 1 1 1 1 2 0 1 2 0 Approach EB WB NB SB NB Opposing Approach WB EB SB NB Opposing Lanes 3 2 3 3 Conflicting Approach Left SB NB EB WB
Number of Lanes 1 1 0 1 1 1 2 0 1 2 0 Approach EB WB NB SB NB Opposing Approach WB EB SB NB Opposing Lanes 3 2 3 3 Conflicting Approach Left SB NB EB WB
Approach EB WB NB SB Opposing Approach WB EB SB NB Opposing Lanes 3 2 3 3 Conflicting Approach Left SB NB EB WB
Opposing Approach WB EB SB NB Opposing Lanes 3 2 3 3 Conflicting Approach Left SB NB EB WB
Opposing Lanes 3 2 3 3 Conflicting Approach Left SB NB EB WB
Conflicting Approach Left SB NB EB WB
J 11
Conflicting Lanes Left 3 3 2 3
Conflicting Approach RighNB SB WB EB
Conflicting Lanes Right 3 3 3 2
HCM Control Delay 40.8 35.5 57.6 63.7
HCM LOS E E F F
Lane NBLn1 NBLn2 NBLn3 EBLn1 EBLn2WBLn1WBLn2WBLn3 SBLn1 SBLn2 SBLn3
Vol Left, % 100% 0% 0% 100% 70% 100% 0% 0% 100% 0% 0%
Vol Thru, % 0% 100% 96% 0% 12% 0% 100% 0% 0% 100% 37%
Vol Right, % 0% 0% 4% 0% 18% 0% 0% 100% 0% 0% 63%
Sign Control Stop Stop Stop Stop Stop Stop Stop Stop
Traffic Vol by Lane 18 283 148 217 213 4 11 201 249 262 351
LT Vol 18 0 0 217 150 4 0 0 249 0 0
Through Vol 0 283 142 0 25 0 11 0 0 262 131
RT Vol 0 0 6 0 38 0 0 201 0 0 220
Lane Flow Rate 20 308 161 235 232 4 12 218 271 285 382
Geometry Grp 8 8 8 8 8 8 8 8 8 8 8 8
Degree of Util (X) 0.064 0.963 0.501 0.753 0.725 0.015 0.04 0.693 0.81 0.811 1.039
Departure Headway (Hd) 12.06 11.541 11.512 11.624 11.252 12.923 12.406 11.682 10.776 10.258 9.802
Convergence, Y/N Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Convergence, Y/N Yes
Cap 299 317 315 313 320 279 290 312 338 353 374
Cap 299 317 315 313 320 279 290 312 338 353 374 Service Time 9.76 9.241 9.212 9.324 9.052 10.623 10.106 9.382 8.497 7.978 7.523 HCM Lane V/C Ratio 0.067 0.972 0.511 0.751 0.725 0.014 0.041 0.699 0.802 0.807 1.021 HCM Control Delay 15.6 77.1 25.2 42.6 39 15.8 15.6 37 46.7 45 89.6
Cap 299 317 315 313 320 279 290 312 338 353 374 Service Time 9.76 9.241 9.212 9.324 9.052 10.623 10.106 9.382 8.497 7.978 7.523 HCM Lane V/C Ratio 0.067 0.972 0.511 0.725 0.014 0.041 0.699 0.802 0.807 1.021

Intersection						
Int Delay, s/veh	2.2					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
			WDL		NDL	
Lane Configurations	↑ ↑↑	271	0	*	0	1/5
Traffic Vol, veh/h	815	271	0	0	0	165
Future Vol, veh/h	815	271	0	0	0	165
Conflicting Peds, #/hr	0	_ 0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	250	-	-	-	0
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	886	295	0	0	0	179
IVIVIII(I IOVV	000	275	U	U	U	177
Major/Minor 1	Major1	<u> </u>	/lajor2	N	/linor1	
Conflicting Flow All	0	0	-	-	-	443
Stage 1	-	-	-	-	-	-
Stage 2	-	-	_	-	-	-
Critical Hdwy	-	-	-	-	-	7.14
Critical Hdwy Stg 1	-	_		_	-	
Critical Hdwy Stg 2	_	_	_	_	-	_
Follow-up Hdwy	-	-		-	-	3.92
			0		0	481
Pot Cap-1 Maneuver	-	-		-		
Stage 1	-	-	0	-	0	-
Stage 2	-	-	0	-	0	-
Platoon blocked, %	-	-		-		101
Mov Cap-1 Maneuver	-	-	-	-	-	481
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
			1675			
Approach	EB		WB		NB	
HCM Control Delay, s	0		0		16.9	
HCM LOS					С	
Minor Lone / Maior M.		UDI1	EDT	EDD	MADT	
Minor Lane/Major Mvm	it ľ	VBLn1	EBT	EBR	WBT	
Capacity (veh/h)		481	-	-	-	
HCM Lane V/C Ratio		0.373	-	-	-	
HCM Control Delay (s)		16.9	-	-	-	
HCM Lane LOS		С	-	-	-	
HCM 95th %tile Q(veh))	1.7	-	-	-	

Intersection													
Int Delay, s/veh	2.7												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	*	ተተተ	7	ች	ተተተ	7	ሻ	ĵ.			4		
Traffic Vol, veh/h	149	714	117	119	1210	16	208	11	81	20	12	59	
Future Vol, veh/h	149	714	117	119	1210	16	208	11	81	20	12	59	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	_	None	-	_	None	_	-	None	-	_	None	
Storage Length	250	-	250	250	-	400	0	-	-	-	-	-	
eh in Median Storage		0	-	_	0	_	_	0	-	-	0	-	
Grade, %	-	0	_	_	0	_	_	0	-	_	0	_	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
leavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Ivmt Flow	162	776	127	129	1315	17	226	12	88	22	13	64	
ivint i lovv	102	770	121	127	1010	.,	220	12	00		10	01	
ajor/Minor N	/lajor1			Major2		ľ	Minor1		ľ	Minor2			
conflicting Flow All	1332	0	0	903	0	0	1891	2690	388	2213	2800	658	
Stage 1	-	-	-	-	-	-	1100	1100	-	1573	1573	-	
Stage 2	_	_	_	_	_	_	791	1590	_	640	1227	_	
ritical Hdwy	5.34	_	-	5.34	-	-	6.44	6.54	7.14	6.44	6.54	7.14	
ritical Hdwy Stg 1	- 0.01	_	_	- 0.01	_	_	7.34	5.54	-	7.34	5.54		
itical Hdwy Stg 2	_	_	-	_	_	-	6.74	5.54	-	6.74	5.54	_	
ollow-up Hdwy	3.12	_	_	3.12	_	_	3.82	4.02	3.92	3.82	4.02	3.92	
ot Cap-1 Maneuver	270	_	_	436	_	_	~ 74	21	522	47	18	349	
Stage 1	270	_	_	-30	_	_	~ 170	286	-	78	169	-	
Stage 2	_	-	_	_	-	_	317	166	-	392	249	_	
latoon blocked, %		_	_		_	_	317	100		372	27/		
ov Cap-1 Maneuver	270	-	_	436	-	_	_	~ 6	522	_	~ 5	349	
lov Cap-1 Maneuver	-	_	_		_	_	_	~ 6	-	_	~ 5	J 7 /	
Stage 1		-			-		~ 68	114	-	31	119	_	
Stage 2		-					~ 162	117	-	117	100	-	
Stage 2	-						102	117		117	100	-	
pproach	EB			WB			NB			SB			
CM Control Delay, s	5.5			1.5			.,,,,			30			
ICM LOS	0.0			1.0			_			_			
CIVI EUS													
/linor Lane/Major Mvm	† N	NBLn1 N	VBI n2	EBL	EBT	EBR	WBL	WBT	WBR S	SBI n1			
Capacity (veh/h)			46	270	-		436		-	-			
CM Lane V/C Ratio			2.174	0.6	-	-	0.297	-	-	-			
CM Control Delay (s)			729.9	36.5	-	-	16.7		-				
CM Lane LOS		-φ	F	30.5 E	-	-	C	-	-	-			
ICM 95th %tile Q(veh)			10.4	3.6	-		1.2	-	-	-			
` '			10.4	3.0			1.2						
lotes	1.	4 -			20				cı .	4		, .	
: Volume exceeds cap	acity	\$: D∈	elay exc	eeds 3	U0s	+: Com	putatior	n Not D	efined	*: All	major v	volume i	in platoon

-	۶	→	•	•	←	•	1	†	<i>></i>	/	Ţ	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	75	^ ^	7	ሻ	ተተተ	7	ሻሻ	4î		7	₽	7
Traffic Volume (veh/h)	184	391	157	95	822	70	149	13	63	117	15	355
Future Volume (veh/h)	184	391	157	95	822	70	149	13	63	117	15	355
Number	5	2	12	1	6	16	3	8	18	7	4	14
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1863	1863	1863	1863	1900	1863	1863	1863
Adj Flow Rate, veh/h	200	425	171	103	893	76	162	14	68	127	0	397
Adj No. of Lanes	2	3	1	1	3	1	2	1	0	1	0	2
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	264	1164	363	130	1171	365	228	36	173	662	0	1362
Arrive On Green	0.08	0.23	0.23	0.07	0.23	0.23	0.07	0.13	0.13	0.37	0.00	0.43
Sat Flow, veh/h	3442	5085	1583	1774	5085	1583	3442	277	1348	1774	0	3167
Grp Volume(v), veh/h	200	425	171	103	893	76	162	0	82	127	0	397
Grp Sat Flow(s), veh/h/ln	1721	1695	1583	1774	1695	1583	1721	0	1625	1774	0	1583
Q Serve(g_s), s	5.9	7.3	9.6	5.9	16.9	4.0	4.8	0.0	4.8	5.0	0.0	8.4
Cycle Q Clear(g_c), s	5.9	7.3	9.6	5.9	16.9	4.0	4.8	0.0	4.8	5.0	0.0	8.4
Prop In Lane	1.00	7.0	1.00	1.00	10.7	1.00	1.00	0.0	0.83	1.00	0.0	1.00
Lane Grp Cap(c), veh/h	264	1164	363	130	1171	365	228	0	208	662	0	1362
V/C Ratio(X)	0.76	0.37	0.47	0.79	0.76	0.21	0.71	0.00	0.39	0.19	0.00	0.29
Avail Cap(c_a), veh/h	300	1330	414	227	1576	491	337	0	252	662	0	1362
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	46.7	33.5	34.4	47.1	37.1	32.1	47.2	0.0	41.3	21.9	0.0	19.2
Incr Delay (d2), s/veh	9.3	0.2	1.0	10.3	1.6	0.3	4.1	0.0	1.2	0.6	0.0	0.5
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	3.1	3.4	4.3	3.3	8.1	1.8	2.4	0.0	2.2	2.6	0.0	3.8
LnGrp Delay(d),s/veh	56.1	33.7	35.4	57.3	38.6	32.4	51.3	0.0	42.5	22.5	0.0	19.7
LnGrp LOS	E	C	D	E	D	C	D	0.0	D	C	0.0	В
Approach Vol, veh/h		796			1072			244			524	
Approach Delay, s/veh		39.7			40.0			48.4			20.4	
Approach LOS		D			TO.0			D			C	
• •											O	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	12.1	30.9	11.3	48.9	11.9	31.1	42.5	17.7				
Change Period (Y+Rc), s	4.5	7.3	4.5	* 4.5	4.0	* 7.3	4.0	4.5				
Max Green Setting (Gmax), s	13.2	27.0	10.1	* 44	9.0	* 32	38.5	16.0				
Max Q Clear Time (g_c+I1), s	7.9	11.6	6.8	10.4	7.9	18.9	7.0	6.8				
Green Ext Time (p_c), s	0.1	2.7	0.1	1.6	0.1	4.9	0.3	0.2				
Intersection Summary												
HCM 2010 Ctrl Delay			36.8									
HCM 2010 LOS			30.0 D									
			D									
Notes												

Intersection												
Int Delay, s/veh	1.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ተ ተ ኈ			ተተተ	7			7			7
Traffic Vol, veh/h	0	577	5	0	883	35	0	0	5	0	0	141
Future Vol, veh/h	0	577	5	0	883	35	0	0	5	0	0	141
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	500	-	-	0	-	-	0
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	627	5	0	960	38	0	0	5	0	0	153
Major/Minor N	/lajor1			Major2			Minor1			Minor2		
Conflicting Flow All	-	0	0	-	-	0	-	-	316	-	-	480
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	-	-	-	7.14	-	-	7.14
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	-	-	-	3.92	-	-	3.92
Pot Cap-1 Maneuver	0	-	-	0	-	-	0	0	580	0	0	455
Stage 1	0	-	-	0	-	-	0	0	-	0	0	-
Stage 2	0	-	-	0	-	-	0	0	-	0	0	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	-	-	-	-	-	-	-	-	580	-	-	455
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			0			11.3			16.9		
HCM LOS							В			С		
Minor Lane/Major Mvmt	t ſ	NBLn1	EBT	EBR	WBT	WBR S	SBLn1					
Capacity (veh/h)		580	-	-	_	-	455					
HCM Lane V/C Ratio		0.009	-	-	-	-	0.337					
HCM Control Delay (s)		11.3	-	-	-	-	16.9					
HCM Lane LOS		В	-	-	-	-	С					
HCM 95th %tile Q(veh)		0	-	-	-	-	1.5					

-	۶	→	•	•	←	•	•	†	~	/	+	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	^ ^	7	ሻሻ	ተተተ	7	7	f)		7	↑	77
Traffic Volume (veh/h)	168	309	105	29	451	155	173	34	53	219	57	297
Future Volume (veh/h)	168	309	105	29	451	155	173	34	53	219	57	297
Number	3	8	18	7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.98	1.00		0.98	1.00		0.99	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1863	1863	1863	1863	1900	1863	1863	1863
Adj Flow Rate, veh/h	183	336	114	32	490	168	188	37	58	238	62	323
Adj No. of Lanes	2	3	1	2	3	1	1	1	0	1	1	2
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	265	1105	339	86	840	257	227	239	375	249	710	1060
Arrive On Green	0.08	0.22	0.22	0.02	0.17	0.17	0.13	0.37	0.37	0.14	0.38	0.38
Sat Flow, veh/h	3442	5085	1559	3442	5085	1557	1774	650	1018	1774	1863	2782
Grp Volume(v), veh/h	183	336	114	32	490	168	188	0	95	238	62	323
Grp Sat Flow(s), veh/h/ln	1721	1695	1559	1721	1695	1557	1774	0	1668	1774	1863	1391
Q Serve(g_s), s	4.4	4.7	5.3	0.8	7.6	8.6	8.8	0.0	3.3	11.4	1.8	7.0
Cycle Q Clear(g_c), s	4.4	4.7	5.3	0.8	7.6	8.6	8.8	0.0	3.3	11.4	1.8	7.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.61	1.00		1.00
Lane Grp Cap(c), veh/h	265	1105	339	86	840	257	227	0	614	249	710	1060
V/C Ratio(X)	0.69	0.30	0.34	0.37	0.58	0.65	0.83	0.00	0.15	0.96	0.09	0.30
Avail Cap(c_a), veh/h	471	2439	748	181	2010	615	328	0	614	249	710	1060
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	38.5	28.0	28.3	41.0	33.0	33.4	36.4	0.0	18.1	36.5	16.9	18.5
Incr Delay (d2), s/veh	3.2	0.2	0.6	2.7	0.6	2.8	11.2	0.0	0.5	44.8	0.2	0.7
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.2	2.2	2.3	0.4	3.6	3.9	5.0	0.0	1.6	8.7	1.0	2.8
LnGrp Delay(d),s/veh	41.7	28.2	28.8	43.7	33.6	36.2	47.6	0.0	18.6	81.3	17.2	19.3
LnGrp LOS	D	С	С	D	С	D	D		В	F	В	В
Approach Vol, veh/h		633			690			283			623	
Approach Delay, s/veh		32.2			34.7			37.9			42.7	
Approach LOS		С			С			D			D	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	14.9	40.0	10.6	20.0	16.0	38.9	6.1	24.5				
	4.0		4.0		4.0	* 7.4	4.0	5.9				
Change Period (Y+Rc), s		7.4		5.9								
Max Green Setting (Gmax), s	15.8	27.4	11.7	33.8	12.0	* 32	4.5	41.0				
Max Q Clear Time (g_c+I1), s Green Ext Time (p_c), s	10.8	9.0 1.5	6.4 0.2	10.6 3.5	13.4	5.3 0.4	2.8 0.0	7.3 2.4				
	0.2	1.5	0.2	0.0	0.0	0.4	0.0	۷.٦				
Intersection Summary			24.4									
HCM 2010 Ctrl Delay HCM 2010 LOS			36.6 D									
			D									
Notes												

Annondiv T
Appendix T
Near-Term Year 2020 with Project Intersection LOS Calculations with Mitigation

	<u></u>	→	•	•	+	•	1	†	/	/	\	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					र्स	7	ሻ	ተተተ			∱ β	7
Traffic Volume (veh/h)	0	0	0	33	0	70	441	1071	0	0	373	566
Future Volume (veh/h)	0	0	0	33	0	70	441	1071	0	0	373	566
Number				3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh				0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)				1.00		1.00	1.00		1.00	1.00		0.94
Parking Bus, Adj				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln				1900	1863	1863	1863	1863	0	0	1863	1863
Adj Flow Rate, veh/h				36	0	76	479	1164	0	0	405	615
Adj No. of Lanes				0	1	1	1	3	0	0	1	2
Peak Hour Factor				0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %				2	2	2	2	2	0	0	2	2
Cap, veh/h				121	0	108	472	4089	0	0	892	1421
Arrive On Green				0.07	0.00	0.07	0.53	1.00	0.00	0.00	0.48	0.48
Sat Flow, veh/h				1774	0	1583	1774	5253	0	0	1863	2965
Grp Volume(v), veh/h				36	0	76	479	1164	0	0	405	615
Grp Sat Flow(s), veh/h/ln				1774	0	1583	1774	1695	0	0	1863	1483
Q Serve(g_s), s				1.5	0.0	3.8	21.3	0.0	0.0	0.0	11.6	10.9
Cycle Q Clear(g_c), s				1.5	0.0	3.8	21.3	0.0	0.0	0.0	11.6	10.9
Prop In Lane				1.00	0.0	1.00	1.00	0.0	0.00	0.00	11.0	1.00
Lane Grp Cap(c), veh/h				121	0	108	472	4089	0.00	0.00	892	1421
V/C Ratio(X)				0.30	0.00	0.70	1.01	0.28	0.00	0.00	0.45	0.43
Avail Cap(c_a), veh/h				342	0.00	305	472	4089	0.00	0.00	892	1421
HCM Platoon Ratio				1.00	1.00	1.00	2.00	2.00	1.00	1.00	1.00	1.00
Upstream Filter(I)				1.00	0.00	1.00	0.54	0.54	0.00	0.00	0.87	0.87
Uniform Delay (d), s/veh				35.4	0.0	36.5	18.7	0.0	0.0	0.0	13.9	13.7
Incr Delay (d2), s/veh				1.3	0.0	8.0	34.0	0.0	0.0	0.0	1.5	0.8
Initial Q Delay(d3),s/veh				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln				0.8	0.0	1.9	14.4	0.0	0.0	0.0	6.3	4.6
LnGrp Delay(d),s/veh				36.8	0.0	44.4	52.7	0.0	0.0	0.0	15.3	14.5
LnGrp LOS				30.6 D	0.0	44.4 D	52.7 F	Α	0.0	0.0	15.5 B	14.5 B
				D	110	D	F					ь
Approach Vol, veh/h					112			1643			1020	
Approach LOS					42.0			15.4			14.8	
Approach LOS					D			В			В	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2			5	6		8				
Phs Duration (G+Y+Rc), s		69.4			26.0	43.4		10.6				
Change Period (Y+Rc), s		5.1			* 4.7	5.1		5.1				
Max Green Setting (Gmax), s		54.4			* 21	28.4		15.4				
Max Q Clear Time (g_c+I1), s		2.0			23.3	13.6		5.8				
Green Ext Time (p_c), s		9.8			0.0	4.5		0.2				
Intersection Summary												
HCM 2010 Ctrl Delay			16.3									
HCM 2010 LOS			В									

	۶	→	•	•	←	•	1	†	<i>></i>	/	↓	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	4		ሻሻ	•	7	ሻ	ተተኈ		ሻ	∱ β	
Traffic Volume (veh/h)	386	6	15	0	22	211	34	415	0	92	349	454
Future Volume (veh/h)	386	6	15	0	22	211	34	415	0	92	349	454
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		0.98	1.00		1.00	1.00		0.76
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1900	1863	1863	1863	1863	1863	1900	1863	1863	1900
Adj Flow Rate, veh/h	440	0	0	0	24	229	37	451	0	100	379	493
Adj No. of Lanes	2	1	0	2	1	1	1	3	0	1	2	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	724	380	0	608	329	275	51	1531	0	129	610	417
Arrive On Green	0.20	0.00	0.00	0.00	0.18	0.18	0.03	0.30	0.00	0.07	0.34	0.34
Sat Flow, veh/h	3548	1863	0	3442	1863	1556	1774	5253	0	1774	1770	1209
Grp Volume(v), veh/h	440	0	0	0	24	229	37	451	0	100	379	493
Grp Sat Flow(s), veh/h/ln	1774	1863	0	1721	1863	1556	1774	1695	0	1774	1770	1209
Q Serve(g_s), s	8.3	0.0	0.0	0.0	0.8	10.4	1.5	5.0	0.0	4.1	13.1	25.3
Cycle Q Clear(g_c), s	8.3	0.0	0.0	0.0	0.8	10.4	1.5	5.0	0.0	4.1	13.1	25.3
Prop In Lane	1.00		0.00	1.00		1.00	1.00		0.00	1.00		1.00
Lane Grp Cap(c), veh/h	724	380	0	608	329	275	51	1531	0	129	610	417
V/C Ratio(X)	0.61	0.00	0.00	0.00	0.07	0.83	0.72	0.29	0.00	0.78	0.62	1.18
Avail Cap(c_a), veh/h	779	409	0	751	406	339	111	1531	0	242	610	417
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	0.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	26.5	0.0	0.0	0.0	25.2	29.2	35.3	19.7	0.0	33.4	20.0	24.0
Incr Delay (d2), s/veh	1.2	0.0	0.0	0.0	0.1	13.5	17.3	0.1	0.0	9.5	1.9	104.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	4.2	0.0	0.0	0.0	0.4	5.5	1.0	2.4	0.0	2.3	6.6	20.4
LnGrp Delay(d),s/veh	27.7	0.0	0.0	0.0	25.3	42.7	52.7	19.8	0.0	43.0	22.0	128.0
LnGrp LOS	С				С	D	D	В		D	С	F
Approach Vol, veh/h		440			253			488			972	
Approach Delay, s/veh		27.7			41.0			22.3			77.9	
Approach LOS		С			D			С			Е	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	9.8	26.6		19.5	6.6	29.8		17.5				
Change Period (Y+Rc), s	4.5	4.5		4.5	4.5	4.5		4.5				
Max Green Setting (Gmax), s	10.0	19.9		16.1	4.6	25.3		16.0				
Max Q Clear Time (q_c+I1), s	6.1	7.0		10.3	3.5	27.3		12.4				
Green Ext Time (p_c), s	0.1	2.2		0.8	0.0	0.0		0.3				
Intersection Summary												
HCM 2010 Ctrl Delay			50.7									
HCM 2010 LOS			D									
Notes												

	۶	→	•	•	—	•	•	†	<i>></i>	/	+	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	^	7	ሻ	^	7	ሻ	₽			4	
Traffic Volume (veh/h)	93	1040	82	55	421	1	137	7	53	35	6	91
Future Volume (veh/h)	93	1040	82	55	421	1	137	7	53	35	6	91
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1863	1863	1863	1863	1900	1900	1863	1900
Adj Flow Rate, veh/h	101	1130	89	60	458	1	149	8	58	38	7	99
Adj No. of Lanes	1	3	1	1	3	1	1	1	0	0	1	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	129	1642	511	81	1503	468	233	26	186	58	11	150
Arrive On Green	0.07	0.32	0.32	0.05	0.30	0.30	0.13	0.13	0.13	0.13	0.13	0.13
Sat Flow, veh/h	1774	5085	1583	1774	5085	1583	1774	195	1417	433	80	1129
Grp Volume(v), veh/h	101	1130	89	60	458	1	149	0	66	144	0	0
Grp Sat Flow(s), veh/h/ln	1774	1695	1583	1774	1695	1583	1774	0	1613	1642	0	0
Q Serve(q_s), s	2.7	9.5	2.0	1.6	3.4	0.0	3.9	0.0	1.8	4.1	0.0	0.0
Cycle Q Clear(g_c), s	2.7	9.5	2.0	1.6	3.4	0.0	3.9	0.0	1.8	4.1	0.0	0.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.88	0.26		0.69
Lane Grp Cap(c), veh/h	129	1642	511	81	1503	468	233	0	211	219	0	0
V/C Ratio(X)	0.78	0.69	0.17	0.74	0.30	0.00	0.64	0.00	0.31	0.66	0.00	0.00
Avail Cap(c_a), veh/h	253	2024	630	163	1765	549	616	0	560	536	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	22.3	14.4	11.9	23.1	13.4	12.2	20.2	0.0	19.3	20.2	0.0	0.0
Incr Delay (d2), s/veh	9.8	0.7	0.2	12.5	0.1	0.0	2.9	0.0	0.8	3.4	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.7	4.5	0.9	1.1	1.6	0.0	2.1	0.0	0.9	2.0	0.0	0.0
LnGrp Delay(d),s/veh	32.1	15.2	12.1	35.6	13.5	12.2	23.1	0.0	20.1	23.5	0.0	0.0
LnGrp LOS	С	В	В	D	В	В	С		С	С		
Approach Vol, veh/h		1320			519			215			144	
Approach Delay, s/veh		16.3			16.0			22.2			23.5	
Approach LOS		В			В			С			С	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s		10.9	6.7	20.3		11.0	8.1	19.0				
Change Period (Y+Rc), s		4.5	4.5	4.5		4.5	4.5	4.5				
Max Green Setting (Gmax), s		17.0	4.5	19.5		16.0	7.0	17.0				
Max Q Clear Time (q_c+l1), s		5.9	3.6	11.5		6.1	4.7	5.4				
Green Ext Time (p_c), s		0.5	0.0	4.3		0.4	0.0	2.1				
Intersection Summary												
HCM 2010 Ctrl Delay			17.3									
HCM 2010 LOS			В									

	<u></u>	→	•	•	←	•	1	†	<i>></i>	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					र्स	7	ሻ	ተተተ			∱ β	7
Traffic Volume (veh/h)	0	0	0	87	0	103	528	1066	0	0	431	785
Future Volume (veh/h)	0	0	0	87	0	103	528	1066	0	0	431	785
Number				3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh				0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)				1.00		1.00	1.00		1.00	1.00		0.81
Parking Bus, Adj				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln				1900	1863	1863	1863	1863	0	0	1863	1863
Adj Flow Rate, veh/h				95	0	112	574	1159	0	0	468	853
Adj No. of Lanes				0	1	1	1	3	0	0	1	2
Peak Hour Factor				0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %				2	2	2	2	2	0	0	2	2
Cap, veh/h				169	0	151	538	4025	0	0	812	1114
Arrive On Green				0.10	0.00	0.10	0.61	1.00	0.00	0.00	0.44	0.44
Sat Flow, veh/h				1774	0	1583	1774	5253	0	0	1863	2556
Grp Volume(v), veh/h				95	0	112	574	1159	0	0	468	853
Grp Sat Flow(s), veh/h/ln				1774	0	1583	1774	1695	0	0	1863	1278
Q Serve(g_s), s				4.6	0.0	6.2	27.3	0.0	0.0	0.0	17.0	25.4
Cycle Q Clear(g_c), s				4.6	0.0	6.2	27.3	0.0	0.0	0.0	17.0	25.4
Prop In Lane				1.00	0.0	1.00	1.00	0.0	0.00	0.00	17.0	1.00
Lane Grp Cap(c), veh/h				169	0	151	538	4025	0.00	0.00	812	1114
V/C Ratio(X)				0.56	0.00	0.74	1.07	0.29	0.00	0.00	0.58	0.77
Avail Cap(c_a), veh/h				304	0.00	271	538	4025	0.00	0.00	812	1114
HCM Platoon Ratio				1.00	1.00	1.00	2.00	2.00	1.00	1.00	1.00	1.00
Upstream Filter(I)				1.00	0.00	1.00	0.50	0.50	0.00	0.00	0.57	0.57
Uniform Delay (d), s/veh				38.9	0.0	39.6	17.7	0.0	0.0	0.0	19.1	21.5
Incr Delay (d2), s/veh				2.9	0.0	7.0	47.1	0.0	0.0	0.0	1.7	21.3
Initial Q Delay(d3),s/veh				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln				2.4	0.0	3.0	19.9	0.0	0.0	0.0	9.1	9.3
LnGrp Delay(d),s/veh				41.8	0.0	46.7	64.8	0.0	0.0	0.0	20.8	24.4
LnGrp LOS				41.6 D	0.0	40.7 D	04.6 F	Α	0.0	0.0	20.6 C	24.4 C
				D	207	U	F					
Approach Vol, veh/h					207			1733			1321	
Approach LOS					44.4			21.5			23.1	
Approach LOS					D			С			С	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2			5	6		8				
Phs Duration (G+Y+Rc), s		76.3			32.0	44.3		13.7				
Change Period (Y+Rc), s		5.1			* 4.7	5.1		5.1				
Max Green Setting (Gmax), s		64.4			* 27	32.4		15.4				
Max Q Clear Time (g_c+l1), s		2.0			29.3	27.4		8.2				
Green Ext Time (p_c), s		9.9			0.0	3.0		0.4				
Intersection Summary												
HCM 2010 Ctrl Delay			23.6									
HCM 2010 LOS			C C									

	۶	→	•	•	←	•	1	†	/	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	4		14.14	↑	7	ሻ	ተተ _ጉ		*	∱ ⊅	
Traffic Volume (veh/h)	367	25	38	4	11	201	18	425	6	249	393	220
Future Volume (veh/h)	367	25	38	4	11	201	18	425	6	249	393	220
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		0.84	1.00		0.73	1.00		0.74
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1900	1863	1863	1863	1863	1863	1900	1863	1863	1900
Adj Flow Rate, veh/h	457	0	0	4	12	218	20	462	7	271	427	239
Adj No. of Lanes	2	1	0	2	1	1	1	3	0	1	2	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	676	355	0	686	371	264	32	1049	16	308	702	381
Arrive On Green	0.19	0.00	0.00	0.20	0.20	0.20	0.02	0.20	0.20	0.17	0.36	0.36
Sat Flow, veh/h	3548	1863	0	3442	1863	1326	1774	5129	77	1774	1949	1058
Grp Volume(v), veh/h	457	0	0	4	12	218	20	304	165	271	387	279
Grp Sat Flow(s),veh/h/ln	1774	1863	0	1721	1863	1326	1774	1695	1816	1774	1770	1237
Q Serve(g_s), s	9.3	0.0	0.0	0.1	0.4	12.2	0.9	6.1	6.2	11.6	13.9	14.5
Cycle Q Clear(g_c), s	9.3	0.0	0.0	0.1	0.4	12.2	0.9	6.1	6.2	11.6	13.9	14.5
Prop In Lane	1.00		0.00	1.00		1.00	1.00		0.04	1.00		0.86
Lane Grp Cap(c), veh/h	676	355	0	686	371	264	32	693	371	308	637	446
V/C Ratio(X)	0.68	0.00	0.00	0.01	0.03	0.82	0.62	0.44	0.44	0.88	0.61	0.63
Avail Cap(c_a), veh/h	731	384	0	709	384	273	94	720	386	308	637	446
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	29.2	0.0	0.0	24.9	25.0	29.8	37.9	27.0	27.0	31.3	20.3	20.5
Incr Delay (d2), s/veh	2.3	0.0	0.0	0.0	0.0	17.8	18.2	0.4	0.8	23.8	1.6	2.8
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	4.8	0.0	0.0	0.0	0.2	5.8	0.6	2.9	3.2	7.7	7.1	5.2
LnGrp Delay(d),s/veh	31.5	0.0	0.0	24.9	25.1	47.6	56.1	27.4	27.9	55.1	22.0	23.3
LnGrp LOS	С	0.0	0.0	С	С	D	E	С	С	E	C	C
Approach Vol, veh/h		457			234			489			937	
Approach Delay, s/veh		31.5			46.1			28.7			31.9	
Approach LOS		С			D			C			С	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	18.0	20.4		19.3	5.9	32.5		20.0				
Change Period (Y+Rc), s	4.5	4.5		4.5	4.5	4.5		4.5				
Max Green Setting (Gmax), s	13.5	16.5		16.0	4.1	25.9		16.0				
Max Q Clear Time (g_c+l1), s	13.6	8.2		11.3	2.9	16.5		14.2				
Green Ext Time (p_c), s	0.0	1.7		0.7	0.0	2.9		0.2				
Intersection Summary												
HCM 2010 Ctrl Delay			32.7									
HCM 2010 LOS			C									
Notes												

			₹	*	-	_	7	ı		*	+	*
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	ተተተ	7	ħ	ተተተ	7	ň	f)			4	
Traffic Volume (veh/h)	149	714	117	119	1210	16	208	11	81	20	12	59
Future Volume (veh/h)	149	714	117	119	1210	16	208	11	81	20	12	59
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		0.98	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1863	1863	1863	1863	1900	1900	1863	1900
Adj Flow Rate, veh/h	162	776	127	129	1315	17	226	12	88	22	13	64
Adj No. of Lanes	1	3	1	1	3	1	1	1	0	0	1	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	203	1767	550	165	1659	506	295	32	236	35	21	102
Arrive On Green	0.11	0.35	0.35	0.09	0.33	0.33	0.17	0.17	0.17	0.10	0.10	0.10
Sat Flow, veh/h	1774	5085	1583	1774	5085	1550	1774	193	1419	368	217	1070
Grp Volume(v), veh/h	162	776	127	129	1315	17	226	0	100	99	0	0
Grp Sat Flow(s), veh/h/ln	1774	1695	1583	1774	1695	1550	1774	0	1612	1655	0	0
Q Serve(q_s), s	5.4	7.1	3.4	4.3	14.2	0.5	7.4	0.0	3.3	3.5	0.0	0.0
Cycle Q Clear(g_c), s	5.4	7.1	3.4	4.3	14.2	0.5	7.4	0.0	3.3	3.5	0.0	0.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.88	0.22		0.65
Lane Grp Cap(c), veh/h	203	1767	550	165	1659	506	295	0	268	157	0	0
V/C Ratio(X)	0.80	0.44	0.23	0.78	0.79	0.03	0.77	0.00	0.37	0.63	0.00	0.00
Avail Cap(c_a), veh/h	235	1767	550	262	1811	552	485	0	441	439	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	26.1	15.2	14.0	26.8	18.5	13.9	24.1	0.0	22.4	26.3	0.0	0.0
Incr Delay (d2), s/veh	15.4	0.2	0.2	7.7	2.3	0.0	4.2	0.0	0.9	4.1	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	3.5	3.3	1.5	2.5	6.9	0.2	3.9	0.0	1.5	1.8	0.0	0.0
LnGrp Delay(d),s/veh	41.4	15.3	14.2	34.5	20.8	13.9	28.2	0.0	23.2	30.4	0.0	0.0
LnGrp LOS	D	В	В	С	С	В	С		С	С		
Approach Vol, veh/h		1065			1461			326			99	
Approach Delay, s/veh		19.2			21.9			26.7			30.4	
Approach LOS		В			С			С			С	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s		14.5	10.1	25.5		10.2	11.4	24.2				
Change Period (Y+Rc), s		4.5	4.5	4.5		4.5	4.5	4.5				
Max Green Setting (Gmax), s		16.5	8.9	20.6		16.0	8.0	21.5				
Max Q Clear Time (q_c+I1), s		9.4	6.3	9.1		5.5	7.4	16.2				
Green Ext Time (p_c), s		0.7	0.1	4.0		0.3	0.0	3.5				
Intersection Summary												
HCM 2010 Ctrl Delay			21.7									
HCM 2010 LOS			С									

Appendix U

Compound Growth Calculations

Segment Growth Forecast for Otay Mesa PA61 Project for the roadway segments noted below

Roadway Segment	Existing Year 2018	SANDAG S12 Yr 2020	SANDAG S12 Yr 2050	Annual Growth Rate over 30 years	Forecasted Year 2062	Adjustments
rodding ooginon	Volume	Unadj. Vol.	Unadj. Vol.	•	(2062 - 2018 = 44)	(rounded)
Ocean View Hills Parkway		-	-			
Starfish Way/Westport View to Sea Drift Way	12,963	16,300	21,800	0.97%	19,856	19,900
Sea Drift Way to Del Sol Blvd	10,919	15,400	21,500	1.12%	17,813	17,800
Del Sol Blvd to Sea Fire Pt	10,048	18,000	26,600	1.31%	17,817	17,800
Sea Fire Pt to Hidden Trails Rd	9,591	18,000	26,600	1.31%	17,007	17,000
Hidden Trails Rd to Otay Mesa Rd	11,405	17,900	21,200	0.57%	18,295	18,300
Otay Mesa Road						
Ocean View Hills Pkwy to Proj. W. Access	16,330	29,300	53,700	2.04%	39,708	39,700
Proj. W. Access to Emerald Crest Ct	16,330	29,300	53,700	2.04%	39,708	39,700
Emerald Crest Ct to Corporate Center Dr	15,855	25,800	45,900	1.94%	36,908	36,900
Corporate Center Dr to Innovative Dr	10,499	20,500	32,000	1.50%	20,174	20,200
Innovative Dr to Heritage Rd	11,864	20,500	32,000	1.50%	22,797	22,800
<u>SR 905</u>						
I-805 to Caliente Ave	79,000	125,600	165,800	0.93%	118,713	118,700
Caliente Ave to Britannia Blvd	70,000	106,800	147,200	1.08%	112,062	112,100

Notes:

Annual growth rate = ((SANDAG Series 12 unadjusted 2050 ADT / SANDAG S12 unadj. 2020 ADT) raised 1/30) - 1. Example growth rate calc for Ocean View Hills Pkwy btw Starfish and Sea Drift: (21,800/16,300) to the power of 1/30 all less 1 = 0.97%

Example forecast for Ocean View Hills Pkwy btw Starfish and Sea Drift: Power (1.097 growth %, 44 years) x 12,963 year 2018 ADT = 19,856

Appendix V

Horizon Year Turn Movements

Approach Leg		NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR
Approach ADT by year 1) Oceanview/Starfish	12963		Horizon 19900	1000		Horizon 1100	1000	1	Horizon 1100	1000	9 '	Horizon 1100
AM 2018	2	542	28	42	543	22	60	4	4	68	7	53
AM 2010 AM 2062	20	830	50	50	610	30	70	10	20	90	10	60
PM 2018	(4)	(563)	(25)	(147)	(471)	(20)	(14)	(1)	(4)	(13)	()	(53)
PM 2062	(20)	(860)	(50)	(160)	(670)	(20)	(20)	(10)	(30)	(40)	(10)	(60)
2) Oceanview/Seadrift	10919	,	17800	12963	, ,	19900	1000		1100	1000		1100
AM 2018	8	520			494	90	82		26			
AM 2062	20	850			600	140	90		40			
PM 2018	(21)	(548)			(447)	(50)	(37)		(22)			
PM 2062	(30)	(710)	17000	10010	(670)	(80)	(40)		(30)	1000		1100
3) Oceanview/DelSol AM 2018	10084 318	185	17800 13	10919 18	217	17800 277	10700 305	22	12500 356	3	36	1100 33
AM 2062	560	330	30	30	350	360	440	30	420	20	40	40
PM 2018	(115)	(446)	(11)	(35)	(283)	(153)	(99)	(2)	(77)	(4)	(3)	(20)
PM 2062	(200)	(790)	(30)	(60)	(460)	(290)	(160)	(10)	(130)	(20)	(10)	(20)
4) Oceanview/SeaFire	9591		17000	10048		17800	1000		1100	1000		1100
AM 2018	3	460	6	26	546	4	3	0	4	10	0	42
AM 2062	60	820	20	50	900	20	40	10	140	40	10	50
PM 2018 PM 2062	(1) (150)	(559) (850)	(21) (40)	(45) (80)	(321) (550)	() (30)	(3) (20)	() (10)	(5) (90)	(13) (40)	() (10)	(28) (30)
5) Oceanview/HiddenTrails	11405	(000)	14600	9591	(000)	17000	(20)	(10)	(90)	1000	(10)	1100
AM 2018	54	487	14000	5	502	1,000				51		9
AM 2062	70	700	40	10	890					80		10
PM 2018	(33)	(566)	(48)	(8)	(331)					(27)		(9)
PM 2062	(40)	(112Ó)	(90)	(10)	(590)					(80)		(10)
6) OtayMesa/Caliente/Oceanvi		0.47	36900	11405	467	14600	1000		2000	16330		39700
AM 2018	5	347	553	152	487	1	0	0	5	257	1	67
AM 2062 PM 2018	100 (22)	410 (486)	740 (311)	360 (124)	800 (228)	10 ()	50 (2)	80	100 (16)	380 (697)	90 (7)	190 (198)
PM 2062	(110)	(860)	(480)	(330)	(400)	(10)	(2) (50)	() (90)	(80)	(1100)	(110)	(440)
7) Caliente/SR905 WB Ramp	14288	(000)	15900	20951	(400)	36900	(30)	(30)	(00)	1500	(110)	3700
AM 2018	276	812			246	469				21	0	59
AM 2062	450	1100			430	600				50	10	150
PM 2018	(458)	(790)			(220)	(684)				(36)	()	(84)
PM 2062	(530)	(1180)	0.4000	4.4000	(420)	(1100)	40000		40400	(90)	(10)	(210)
8) Caliente/SR905 EB Ramp AM 2018	7947	511	24000 59	14288 89	264	15900	10300 589	1	12400 486			
AM 2010 AM 2062		900	180	110	390		680	10	550			
PM 2018		(681)	(76)	(98)	(170)		(565)	(4)	(322)			
PM 2062		(1050)	(230)	(110)	(410)		(670)	(10)	(500)			
9) Caliente/Airway	28700		40400	23700		24000	11900		14300	6800		22700
AM 2018	4	195	0	33	277	425	365	1	7	0	1	55
AM 2062	40	420	10	90	350	450	440	10	20	10	30	220
PM 2018 PM 2062	(5) (20)	(308) (430)	(6) (10)	(92) (250)	(171) (400)	(192) (220)	(326) (390)	(5) (30)	(7) (40)	(4) (10)	(2) (20)	(110) (370)
10) OtayMesa/Proj W Dwy	(20)	(430)	(10)	(200)	(400)	(220)	16330	(50)	39700	(10)	(20)	(370)
AM 2018							10000	705	0			
AM 2062								1300	0			
PM 2018								(435)	()			
PM 2062	1000		1100	1000		4/00	10000	(1060)		15055		00000
11) OtayMesa/Emerald/Proj E	1000	0	1100	1000	0	1100	16330	705	39700	15855	050	36900
AM 2018 AM 2062	0 NA	0 NA	0 30	0 NA	0 NA	72 100	0 NA	705 1400	0 80	0 NA	253 590	1 10
PM 2018	()	()	()	()	()	(42)	()	(435)	()	()	(860)	(16)
PM 2062	NA	NA	(40)	NA	NA	(4 2) (70)	NA	(960)	(110)	NA	(1600)	(40)
12) OtayMesa/Corporate	1000		1100	11000		17600	15855	/	36900	10499	, , , ,	20200
AM 2018	0	0	0	28	0	88	325	320	0	1	197	38
AM 2062	190	10	50	30	20	140	400	740	120	80	380	70
PM 2018	()	()	()	(117)	()	(337)	(161)	(239)	()	(19)	(548)	(70)
PM 2062 13) OtayMesa/Innovative Dr	(250) 100	(20)	(70) 110	(120) 1000	(20)	(380) 1100	(200) 10499	(560)	(160) 20200	(120) 11864	(1050)	(130) 22800
AM 2018	0	0	5	0	0	47	0	430	3	0	272	34
AM 2062	0	0	10	0	0	50	0	830	10	0	520	70
PM 2018	()	()	(5)	()	()	(113)	()	(361)	(5)	()	(554)	(29)
PM 2062	()	()	(10)	()	()	(150)	()	(690)	(10)	()	(940)	(60)
14) OtayMesa/Heritage	4600		10700	10300		25300	11864	4	22800	23700		29800
AM 2018	54	33	38	86	23	63	126	118	105	37	137	116
AM 2062 PM 2018	130 (123)	(33)	90 (43)	210 (197)	60 (56)	150 (223)	240 (116)	290	150 (67)	50 (24)	230	150 (155)
PM 2062	(123)	(33) (80)	(43) (100)	(197)	(56) (140)	(223) (330)	(116) (220)	(183) (350)	(67) (130)	(24) (30)	(246) (450)	(155) (190)
- W 2002	(200)	(00)	(100)	(200)	(170)	(000)	(220)	(000)	(100)	(30)	(400)	(190)

The above factoring is a starting point to which some volumes balanced to keep volumes at +/- 200 between intersection and some volumes adjusted to account for cumulative traffic. Segments with no available SANDAG data (i.e. Starfish Way) were increase by 10% (near term 1,000 and long term 1,100). NA: Not Applicable becuase cumulative traffic is the only traffic on some approach legs, thus no background to forecast.

Aр	pe	nd	İΧ	W
1	P ~.			

Horizon Year 2062 without Project Level of Service Calculations

1: Ocean View Hills Pkwy & Starfish Way/Westport View Dr

	۶	→	•	•	←	•	1	†	~	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		Ţ	ħβ		ň	∱ ∱	
Traffic Volume (veh/h)	70	10	20	90	10	60	20	830	50	50	610	30
Future Volume (veh/h)	70	10	20	90	10	60	20	830	50	50	610	30
Number	3	8	18	7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		0.98	1.00		0.97
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1863	1900	1900	1863	1900	1863	1863	1900	1863	1863	1900
Adj Flow Rate, veh/h	76	11	22	98	11	65	22	902	54	54	663	33
Adj No. of Lanes	0	1	0	0	1	0	1	2	0	1	2	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	124	18	36	134	15	89	36	1271	76	71	1352	67
Arrive On Green	0.10	0.10	0.10	0.14	0.14	0.14	0.02	0.38	0.38	0.04	0.39	0.39
Sat Flow, veh/h	1213	176	351	958	108	635	1774	3388	203	1774	3426	170
Grp Volume(v), veh/h	109	0	0	174	0	0	22	471	485	54	342	354
Grp Sat Flow(s), veh/h/ln	1739	0	0	1701	0	0	1774	1770	1822	1774	1770	1827
Q Serve(g_s), s	3.5	0.0	0.0	5.7	0.0	0.0	0.7	13.2	13.2	1.8	8.5	8.5
Cycle Q Clear(q_c), s	3.5	0.0	0.0	5.7	0.0	0.0	0.7	13.2	13.2	1.8	8.5	8.5
Prop In Lane	0.70	0.0	0.20	0.56	0.0	0.37	1.00	10.2	0.11	1.00	0.5	0.09
Lane Grp Cap(c), veh/h	178	0	0.20	238	0	0.57	36	664	683	71	698	721
V/C Ratio(X)	0.61	0.00	0.00	0.73	0.00	0.00	0.60	0.71	0.71	0.76	0.49	0.49
Avail Cap(c_a), veh/h	804	0.00	0.00	787	0.00	0.00	128	664	683	125	698	721
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	25.1	0.00	0.00	24.1	0.0	0.0	28.4	15.5	15.5	27.7	13.3	13.3
Incr Delay (d2), s/veh	3.4	0.0	0.0	4.3	0.0	0.0	15.0	6.3	6.2	15.3	2.5	2.4
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.8	0.0	0.0	2.9	0.0	0.0	0.5	7.6	7.8	1.2	4.6	4.7
LnGrp Delay(d),s/veh	28.5	0.0	0.0	28.3	0.0	0.0	43.3	21.9	21.7	43.1	15.7	15.7
LnGrp LOS	20.5 C	0.0	0.0	20.3 C	0.0	0.0	43.3 D	21.9 C	21.7 C	43.1 D	15.7 B	13.7 B
	C	100		C	171		U			D		В
Approach Vol, veh/h		109			174			978			750	
Approach Delay, s/veh		28.5			28.3			22.3			17.7	
Approach LOS		С			С			С			В	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	5.6	28.8		13.1	6.7	27.7		10.9				
Change Period (Y+Rc), s	4.4	* 5.8		4.9	4.4	5.8		4.9				
Max Green Setting (Gmax), s	4.2	* 22		27.0	4.1	21.9		27.0				
Max Q Clear Time (g_c+l1), s	2.7	10.5		7.7	3.8	15.2		5.5				
Green Ext Time (p_c), s	0.0	3.0		0.8	0.0	3.0		0.5				
Intersection Summary												
HCM 2010 Ctrl Delay			21.4									
HCM 2010 LOS			C									
Notes												

Intersection						
Int Delay, s/veh	1.8					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y	LDIX	NDL	↑ ↑	^↑	JUIC
Traffic Vol, veh/h	90	40	20	850	600	140
Future Vol, veh/h	90	40	20	850	600	140
Conflicting Peds, #/hr	8	8	8	000	000	8
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	310p -	None	-	None	-	None
Storage Length	0	None -	225	None -	-	None
			223	0	0	-
Veh in Median Storage		-				
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	98	43	22	924	652	152
Major/Minor N	Minor2	N	Major1	N	/lajor2	
Conflicting Flow All	1250	418	812	0	-	0
Stage 1	736	-	-	-	_	-
Stage 2	514	_	_	_	_	_
Critical Hdwy	6.84	6.94	4.14	_	_	_
Critical Hdwy Stg 1	5.84	0.71		_	_	_
Critical Hdwy Stg 2	5.84	_		_	_	_
Follow-up Hdwy	3.52	3.32	2.22	_	_	
Pot Cap-1 Maneuver	165	584	810	-	_	-
Stage 1	435	- 304	010	-	-	-
			-	-	-	-
Stage 2	565	-	-	-	-	-
Platoon blocked, %	150	F7/	005	-	-	-
Mov Cap-1 Maneuver	158	576	805	-	-	-
Mov Cap-2 Maneuver	286	-	-	-	-	-
Stage 1	420	-	-	-	-	-
Stage 2	561	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	23.1		0.2		0	
HCM LOS	C C		0.2		U	
TICIVI LOS	C					
Minor Lane/Major Mvm	t	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		805	-	338	-	-
HCM Lane V/C Ratio		0.027	-	0.418	-	-
HCM Control Delay (s)		9.6	-	23.1	-	-
HCM Lane LOS		Α	-	С	-	-
HCM 95th %tile Q(veh)		0.1	-	2	-	-
, ,						

	•	→	•	√	←	•	•	†	~	/	+	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†	7	7	f)		ሻሻ	ተተኈ		7	∱ ∱	
Traffic Volume (veh/h)	440	30	420	20	40	40	560	330	30	30	350	360
Future Volume (veh/h)	440	30	420	20	40	40	560	330	30	30	350	360
Number	3	8	18	7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.95	0.97		0.98	1.00		0.98	1.00		0.98
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1863	1900	1863	1863	1900	1863	1863	1900
Adj Flow Rate, veh/h	478	33	403	22	43	43	609	359	33	33	380	391
Adj No. of Lanes	1	1	1	1	1	0	2	3	0	1	2	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	532	571	462	278	142	142	649	2212	200	42	534	469
Arrive On Green	0.17	0.31	0.31	0.03	0.17	0.17	0.19	0.47	0.47	0.02	0.30	0.30
Sat Flow, veh/h	1774	1863	1509	1774	848	848	3442	4737	428	1774	1770	1552
Grp Volume(v), veh/h	478	33	403	22	0	86	609	255	137	33	380	391
Grp Sat Flow(s),veh/h/ln	1774	1863	1509	1774	0	1695	1721	1695	1774	1774	1770	1552
Q Serve(g_s), s	19.9	1.4	29.0	1.1	0.0	5.1	20.0	5.0	5.1	2.1	21.9	26.9
Cycle Q Clear(g_c), s	19.9	1.4	29.0	1.1	0.0	5.1	20.0	5.0	5.1	2.1	21.9	26.9
Prop In Lane	1.00		1.00	1.00		0.50	1.00		0.24	1.00		1.00
Lane Grp Cap(c), veh/h	532	571	462	278	0	284	649	1583	828	42	534	469
V/C Ratio(X)	0.90	0.06	0.87	0.08	0.00	0.30	0.94	0.16	0.17	0.79	0.71	0.83
Avail Cap(c_a), veh/h	532	590	478	501	0	515	649	1583	828	104	534	469
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	34.9	28.1	37.6	36.9	0.0	41.8	45.9	17.6	17.7	55.7	35.6	37.3
Incr Delay (d2), s/veh	18.2	0.0	15.7	0.1	0.0	0.6	21.6	0.2	0.4	27.8	7.8	15.9
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	14.9	0.7	14.0	0.6	0.0	2.4	11.4	2.4	2.6	1.4	11.8	13.6
LnGrp Delay(d),s/veh	53.0	28.1	53.3	37.0	0.0	42.4	67.5	17.8	18.1	83.5	43.4	53.3
LnGrp LOS	D	C	D	D	100	D	E	В	В	F	D	D
Approach Vol, veh/h		914			108			1001			804	
Approach Delay, s/veh		52.2			41.3			48.1			49.8	
Approach LOS		D			D			D			D	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	26.0	40.2	24.3	24.1	7.1	59.1	8.4	40.0				
Change Period (Y+Rc), s	4.4	* 5.6	4.4	4.9	4.4	5.6	4.4	4.9				
Max Green Setting (Gmax), s	21.6	* 35	19.9	34.8	6.7	49.3	18.4	36.3				
Max Q Clear Time (g_c+l1), s	22.0	28.9	21.9	7.1	4.1	7.1	3.1	31.0				
Green Ext Time (p_c), s	0.0	2.2	0.0	0.4	0.0	2.4	0.0	0.8				
Intersection Summary												
HCM 2010 Ctrl Delay			49.7									
HCM 2010 LOS			D									
Notes												

4: Ocean View Hills Pkwy & Sea Fire Point

Tarlic Volume (veh/h) 40 10 140 40 10 50 60 820 20 50 900 20 1 1	•	→	~	•	←	•	•	†	<u></u>	<u> </u>	Ţ	1
ciraffic Volume (veh/h) 40 10 140 40 10 50 60 820 20 50 900 20 inture Volume (veh/h) 40 10 140 40 10 50 60 820 20 50 900 20 inture Volume (veh/h) 40 10 140 40 10 50 60 820 20 50 900 20 inture Volume (veh/h) 40 10 140 40 10 50 60 820 20 50 900 20 inture Volume (veh/h) 40 10 140 40 10 50 60 820 20 50 900 20 inture Volume (veh/h) 40 10 140 10 10 10 10 10 10 10 10 10 10 10 10 10	Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
ciraffic Volume (veh/h) 40 10 140 40 10 50 60 820 20 50 900 20 inture Volume (veh/h) 40 10 140 40 10 50 60 820 20 50 900 20 inture Volume (veh/h) 40 10 140 40 10 50 60 820 20 50 900 20 inture Volume (veh/h) 40 10 140 40 10 50 60 820 20 50 900 20 inture Volume (veh/h) 40 10 140 40 10 50 60 820 20 50 900 20 inture Volume (veh/h) 40 10 140 10 10 10 10 10 10 10 10 10 10 10 10 10	Lane Configurations	€		¥	ĵ.		Ť	ተ ቀኈ		ř	ተ ተ ጉ	
Future Volume (veh/h)			140			50			20			20
State Color Colo		10	140	40	10	50	60	820	20	50	900	20
Ped-Bike Adj(A_pbT)		8	18	7	4	14	1	6	16	5	2	12
Ped-Bike Adj(A_pbT) 1.00	Initial Q (Qb), veh 0	0	0	0	0	0	0	0	0	0	0	0
Parking Bus, Adj	. ,		0.99	1.00		1.00	1.00		0.96	1.00		0.95
Adj Saf Flow, veh/h/ln 1900 1863 1900 1863 1863 1863 1863 1863 1863 1863 1863		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Flow Rate, veh/h		1863	1900	1863	1863	1900	1863	1863	1900	1863	1863	1900
Adj No. of Lanes 0 1 0 1 0 1 0 1 3 0 1 3 0 Ceak Hour Factor 0.92 0.93 1.03 0.04 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.45 1.74 1.05 1.03 1.02				43	11	54	65	891	22	54	978	22
Peak Hour Factor 0.92 0.	•											
Percent Heavy Veh, % 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	,	0.92		0.92			0.92			0.92		
Cap, veh/h 58 15 206 114 18 87 83 2234 55 68 2197 49 Arrive On Green 0.17 0.17 0.17 0.16 0.06 0.06 0.05 0.44 0.44 0.04 0.43 0.43 0.43 634 Flow, veh/h 339 87 1199 1774 275 1350 1774 5099 126 1774 5111 115 115 0.00 0.00 0.00 0.00 0.00 0												
Arrive On Green	, .											
Sat Flow, veh/h 339 87 1199 1774 275 1350 1774 5099 126 1774 5111 115 Grp Volume(v), veh/h 206 0 0 43 0 65 65 592 321 54 648 352 Grp Sat Flow(s), veh/h/ln1624 0 0 1774 0 1625 1774 1695 1836 Grp Cagne(g_s), s 8.5 0.0 0.0 1.6 0.0 2.7 2.5 8.4 8.4 2.1 9.5 9.5 Cycle Q Clear(g_c), s 8.5 0.0 0.0 1.6 0.0 2.7 2.5 8.4 8.4 2.1 9.5 9.5 Cycle Q Clear(g_c), veh/h 279 0 0 114 0 0 104 83 1485 804 68 1457 789 I//C Ratio(X) 0.74 0.00 0.00 0.38 0.00 0.62 0.78 0.40 0.40 0.79 0.44 0.45 Avail Cap(_a), veh/h 717 0 0 808 0.0 740 167 1485 804 168 1457 789 I//C Ratio(X) 0.74 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.0	• ·											
Gry Volume(v), veh/h 206 0 0 43 0 65 65 592 321 54 648 352 Gry Sat Flow(s), veh/h/In1624 0 0 1774 0 1625 1774 1695 1834 1774 1695 1836 D. Serve(g_s), s 8.5 0.0 0.0 1.6 0.0 2.7 2.5 8.4 8.4 2.1 9.5 9.5 Orpo In Lane 0.21 0.74 1.00 0.83 1.00 0.07 1.00 0.06 Arane Grp Cap(c), veh/h 279 0 0 114 0 104 83 1485 804 68 1457 789 McM Platoan Ratio 1.00 1.00 0.00 0.38 0.0 0.62 0.78 0.40 0.40 0.79 0.44 0.45 Avail Cap(c_a), veh/h 717 0 0 808 0 740 167 1485 804 167 1457 789 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>												
Grip Sat Flow(s), veh/h/ln1624 0 0 1774 0 1625 1774 1695 1834 1774 1695 1836 Q Serve(g_s), s 8.5 0.0 0.0 1.6 0.0 2.7 2.5 8.4 8.4 2.1 9.5 9.5 Cycle O Clear(g_c), s 8.5 0.0 0.0 1.6 0.0 2.7 2.5 8.4 8.4 2.1 9.5 9.5 Prop In Lane 0.21 0.74 1.00 0.83 1.00 0.07 1.00 0.06 Arane Grp Cap(c), veh/h 779 0 0.114 0 104 83 1485 804 68 1457 789 I/C Ratio(X) 0.74 0.00 0.00 0.038 0.0 0.62 0.78 0.40 0.40 0.79 0.44 0.45 Avali Cap(c_a), veh/h 717 0 0 808 0 740 167 1485 804 167 1457 789 <td>•</td> <td></td>	•											
2 Serve(g_s), s 8.5 0.0 0.0 1.6 0.0 2.7 2.5 8.4 8.4 2.1 9.5 9.5 Cycle Q Clear(g_c), s 8.5 0.0 0.0 1.6 0.0 2.7 2.5 8.4 8.4 2.1 9.5 9.5 Cycle Q Clear(g_c), s 8.5 0.0 0.0 1.6 0.0 2.7 2.5 8.4 8.4 2.1 9.5 9.5 Cycle Q Clear(g_c), s 8.5 0.0 0.0 1.6 0.0 2.7 2.5 8.4 8.4 2.1 9.5 9.5 Cycle Q Clear(g_c), s 8.5 0.0 0.0 1.6 0.0 2.7 2.5 8.4 8.4 2.1 9.5 9.5 Cycle Q Clear(g_c), s 8.5 0.0 0.0 1.6 0.0 2.7 2.5 8.4 8.4 2.1 9.5 9.5 Cycle Q Clear(g_c), s 8.5 0.0 0.0 1.0 0.83 1.00 0.07 1.00 0.06 0.06 0.00 0.00 0.00 0.00 0.00												
Cycle Q Clear(g_c), s												
Prop In Lane	10- /-											
Lane Grp Cap(c), veh/h 279 0 0 114 0 104 83 1485 804 68 1457 789 //C Ratio(X) 0.74 0.00 0.00 0.38 0.00 0.62 0.78 0.40 0.40 0.79 0.44 0.45 (vail Cap(c_a), veh/h 717 0 0 808 0 740 167 1485 804 167 1457 789 (MCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	J 10— 7:	0.0			0.0			0.1			7.0	
\(\text{Artio}(\text{X}) \) 0.74 \ 0.00 \ 0.00 \ 0.38 \ 0.00 \ 0.62 \ 0.78 \ 0.40 \ 0.40 \ 0.79 \ 0.44 \ 0.45 \ \\ \text{Avail Cap(c_a), veh/h} \ 717 \ 0 \ 0 \ 808 \ 0 \ 740 \ 167 \ 1485 \ 804 \ 167 \ 1457 \ 789 \ \\ \text{HCM Platoon Ratio} \ 1.00 \ 1.		0			0			1485			1457	
Avail Cap(c_a), veh/h 717 0 0 808 0 740 167 1485 804 167 1457 789 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0												
HCM Platoon Ratio	. ,											
## Distream Filter(I)	1 \ - /											
### Drifform Delay (d), s/veh 27.6 ### O.0												
ncr Delay (d2), s/veh 3.8 0.0 0.0 2.0 0.0 5.9 14.8 0.8 1.5 18.3 1.0 1.8 nitial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.												
nitial Q Delay(d3),s/veh 0.0 0.0	3											
6ile BackOfQ(50%), veh/Intl. 1 0.0 0.0 0.9 0.0 1.4 1.6 4.0 4.5 1.4 4.6 5.2 LnGrp Delay(d), s/veh 31.4 0.0 0.0 33.6 0.0 38.0 48.0 14.2 14.9 51.9 15.1 15.9 LnGrp LOS C C D D B B D B B Approach Vol, veh/h 206 108 978 1054 Approach Delay, s/veh 31.4 36.2 16.7 17.3 Approach LOS C D B B B Approach LOS C D B B B Assigned Phs 1 2 3 4 5 6 7 8 Assigned Phs 1 2 4 5 6 8 8 Phs Duration (G+Y+Rc), s7.7 36.2 9.4 7.1 36.8 17.0 Change Period (Y+Rc), s 4.4 6.0 4.9 4.4 6.0 4.9 Max Green Setting (Gmax), 6 30.2 32.0 </td <td>J . , ,</td> <td></td>	J . , ,											
Approach Vol, veh/h Approach LOS C C C D D B B B D B B Approach Vol, veh/h Approach LOS C D D B B B D B B Approach Vol, veh/h Approach LOS C D B B B D B B Approach Vol, veh/h Approach LOS C D B B B B D B B Assigned Phs 1 2 3 4 5 6 7 8 Assigned Phs 1 2 4 5 6 8 Assigned Phs C C C C C C C C D C C C C C C C C C C	3											
Approach Vol, veh/h 206 108 978 1054 Approach Delay, s/veh 31.4 36.2 16.7 17.3 Approach LOS C D B B B B Assigned Phs 1 2 4 5 6 8 Phs Duration (G+Y+Rc), s7.7 36.2 9.4 7.1 36.8 17.0 Change Period (Y+Rc), s 4.4 6.0 4.9 4.4 6.0 4.9 Max Green Setting (Gmax), 6 30.2 32.0 6.6 30.2 31.0 Max Q Clear Time (g_c+l1), 5 11.5 4.7 4.1 10.4 10.5 Green Ext Time (p_c), s 0.0 5.8 0.4 0.0 5.4 1.0 Intersection Summary HCM 2010 Ctrl Delay 19.2												
Approach Vol, veh/h 206 108 978 1054 Approach Delay, s/veh 31.4 36.2 16.7 17.3 Approach LOS C D B B Assigned Phs 1 2 4 5 6 8 Phs Duration (G+Y+Rc), s7.7 36.2 9.4 7.1 36.8 17.0 Change Period (Y+Rc), s 4.4 6.0 4.9 4.4 6.0 4.9 Max Green Setting (Gmax), 6 30.2 32.0 6.6 30.2 31.0 Max Q Clear Time (g_c+I1), 5s 11.5 4.7 4.1 10.4 10.5 Green Ext Time (p_c), s 0.0 5.8 0.4 0.0 5.4 1.0 Intersection Summary HCM 2010 Ctrl Delay 19.2		0.0	0.0		0.0							
Approach Delay, s/veh 31.4 36.2 16.7 17.3 Approach LOS C D B B Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 4 5 6 8 Phs Duration (G+Y+Rc), s7.7 36.2 9.4 7.1 36.8 17.0 Change Period (Y+Rc), s 4.4 6.0 4.9 4.4 6.0 4.9 Max Green Setting (Gmax), 6 30.2 32.0 6.6 30.2 31.0 Max Q Clear Time (g_c+I1), 5 11.5 4.7 4.1 10.4 10.5 Green Ext Time (p_c), s 0.0 5.8 0.4 0.0 5.4 1.0 Intersection Summary HCM 2010 Ctrl Delay 19.2		206		<u> </u>	102	<i>D</i>	U		<u> </u>	<u> </u>		U
Approach LOS C D B B Approach LOS C D B B Assigned Phs 1 2 3 4 5 6 7 8 Assigned Phs 1 2 4 5 6 8 Phs Duration (G+Y+Rc), s7.7 36.2 9.4 7.1 36.8 17.0 Change Period (Y+Rc), s 4.4 6.0 4.9 4.4 6.0 4.9 Max Green Setting (Gmax), 6 30.2 32.0 6.6 30.2 31.0 Max Q Clear Time (g_c+I1), 5 11.5 4.7 4.1 10.4 10.5 Green Ext Time (p_c), s 0.0 5.8 0.4 0.0 5.4 1.0 Intersection Summary HCM 2010 Ctrl Delay 19.2												
Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 4 5 6 8 Phs Duration (G+Y+Rc), s7.7 36.2 9.4 7.1 36.8 17.0 Change Period (Y+Rc), s 4.4 6.0 4.9 4.4 6.0 4.9 Max Green Setting (Gmax), 6 30.2 32.0 6.6 30.2 31.0 Max Q Clear Time (g_c+I1), 5 11.5 4.7 4.1 10.4 10.5 Green Ext Time (p_c), s 0.0 5.8 0.4 0.0 5.4 1.0 Intersection Summary HCM 2010 Ctrl Delay 19.2												
Assigned Phs 1 2 4 5 6 8 Phs Duration (G+Y+Rc), s7.7 36.2 9.4 7.1 36.8 17.0 Change Period (Y+Rc), s 4.4 6.0 4.9 4.4 6.0 4.9 Max Green Setting (Gmax), 6 30.2 32.0 6.6 30.2 31.0 Max Q Clear Time (g_c+l1), 5 11.5 4.7 4.1 10.4 10.5 Green Ext Time (p_c), s 0.0 5.8 0.4 0.0 5.4 1.0 Intersection Summary HCM 2010 Ctrl Delay 19.2	•				D						D	
Phs Duration (G+Y+Rc), s7.7 36.2 9.4 7.1 36.8 17.0 Change Period (Y+Rc), s 4.4 6.0 4.9 4.4 6.0 4.9 Max Green Setting (Gmax), 6 30.2 32.0 6.6 30.2 31.0 Max Q Clear Time (g_c+I1), 5 11.5 4.7 4.1 10.4 10.5 Green Ext Time (p_c), s 0.0 5.8 0.4 0.0 5.4 1.0 Intersection Summary HCM 2010 Ctrl Delay 19.2	Timer 1		3	4		6	7					
Change Period (Y+Rc), s 4.4 6.0 4.9 4.4 6.0 4.9 Max Green Setting (Gmax), 6 30.2 32.0 6.6 30.2 31.0 Max Q Clear Time (g_c+11),5 11.5 4.7 4.1 10.4 10.5 Green Ext Time (p_c), s 0.0 5.8 0.4 0.0 5.4 1.0 Intersection Summary HCM 2010 Ctrl Delay 19.2		2		4	5	6		8				
Max Green Setting (Gmax), 6 30.2 32.0 6.6 30.2 31.0 Max Q Clear Time (g_c+l1), 5 11.5 4.7 4.1 10.4 10.5 Green Ext Time (p_c), s 0.0 5.8 0.4 0.0 5.4 1.0 Intersection Summary HCM 2010 Ctrl Delay 19.2	Phs Duration (G+Y+Rc), s7.7	36.2		9.4	7.1	36.8		17.0				
Max Q Clear Time (g_c+l1),5s 11.5 4.7 4.1 10.4 10.5 Green Ext Time (p_c), s 0.0 5.8 0.4 0.0 5.4 1.0 Intersection Summary HCM 2010 Ctrl Delay 19.2	Change Period (Y+Rc), s 4.4	6.0		4.9	4.4	6.0		4.9				
Green Ext Time (p_c), s 0.0 5.8 0.4 0.0 5.4 1.0 Intersection Summary 19.2	Max Green Setting (Gmax), 6	30.2		32.0	6.6	30.2		31.0				
ntersection Summary HCM 2010 Ctrl Delay 19.2	Max Q Clear Time (g_c+I14),5s	11.5		4.7	4.1	10.4		10.5				
HCM 2010 Ctrl Delay 19.2	Green Ext Time (p_c), s 0.0	5.8		0.4	0.0	5.4		1.0				
J	Intersection Summary											
HCM 2010 LOS B	HCM 2010 Ctrl Delay											
	HCM 2010 LOS		В									

	<u> </u>	•	₽	<u></u>	<u> </u>	<u> </u>	Ţ
Movement	WBL	WBR	NBU	NBT	NBR	SBL	SBT
Lane Configurations	VVDL	VVDIX		↑ ↑	אטוי	JDL 1	^
Traffic Volume (veh/h)	80	10	41 70	700	40	10	TTT 890
Future Volume (veh/h)	80	10	70	700	40	10	890
Number	7	14	70	700	16	5	890
	0			0		0	
Initial Q (Qb), veh		1.00		U	0		0
Ped-Bike Adj(A_pbT)	1.00	1.00		1 00	0.96	1.00	1.00
J , ,	1.00	1.00		1.00	1.00	1.00	1.00
,	1863	1863		1863	1900	1863	1863
Adj Flow Rate, veh/h	87	11		761	43	11	967
Adj No. of Lanes	1	1		3	0	1	3
	0.92	0.92		0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2		2	2	2	2
Cap, veh/h	122	109		3014	170	20	3644
Arrive On Green	0.07	0.07		0.61	0.61	0.01	0.72
Sat Flow, veh/h	1774	1583		5082	276	1774	5253
Grp Volume(v), veh/h	87	11		524	280	11	967
Grp Sat Flow(s), veh/h/ln		1583		1695	1801	1774	1695
Q Serve(g_s), s	2.3	0.3		3.5	3.5	0.3	3.3
Cycle Q Clear(g_c), s	2.3	0.3		3.5	3.5	0.3	3.3
Prop In Lane	1.00	1.00		3.0	0.15	1.00	5.0
Lane Grp Cap(c), veh/h		109		2079	1104	20	3644
	0.71	0.10		0.25	0.25	0.55	0.27
	1124	1003		2079	1104	145	3644
	1.00	1.00		1.00	1.00	1.00	1.00
1	1.00	1.00		1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh		21.4		4.3	4.3	24.1	2.4
Incr Delay (d2), s/veh	7.5	0.4		0.3	0.6	21.1	0.2
Initial Q Delay(d3),s/veh		0.0		0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh		0.3		1.7	1.9	0.3	1.5
, ,,,	29.8	21.8		4.6	4.9	45.1	2.6
LnGrp LOS	С	С		Α	А	D	Α
Approach Vol, veh/h	98			804			978
Approach Delay, s/veh	28.9			4.7			3.1
Approach LOS	С			Α			Α
Timer	1	2	3	4	5	6	7
Assigned Phs		2		4	5	6	
Phs Duration (G+Y+Rc),	c	41.1		7.9	5.1	36.0	
Change Period (Y+Rc),		6.0		4.5	4.5	6.0	
Max Green Setting (Gma		29.5		31.0	4.0	30.0	
0 1					2.3		
Max Q Clear Time (g_c+		5.3 6.6		4.3 0.2	0.0	5.5 5.0	
Green Ext Time (p_c), s		0.0		U.Z	U.U	0.0	
Intersection Summary							
HCM 2010 Ctrl Delay			5.1				
HCM 2010 LOS			Α				
Notes							

ane Configurations		•	→	•	•	←	•	•	†	/	/	ļ	4	
ane Configurations	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
riaffic Volume (veh/h) 50 80 110 380 90 190 100 410 740 340 860 10 riture Volume (veh/h) 50 80 110 380 90 190 100 410 740 340 860 10 riture Volume (veh/h) 50 80 110 380 90 190 100 410 740 340 860 10 riture Volume (veh/h) 50 80 110 380 90 190 100 410 740 340 860 10 riture Volume (veh/h) 50 80 110 380 90 190 100 410 740 340 860 10 riture Volume (veh/h) 50 80 110 380 90 190 100 410 740 340 860 10 riture Volume (veh/h) 50 80 110 380 90 190 100 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0														
Future Volume (veh/h) 50 80 110 380 90 190 100 410 740 340 860 10 lumber 7 4 14 3 3 8 18 5 2 12 1 6 16 lumber 7 4 4 14 3 3 8 18 5 2 12 1 6 16 lumber 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0														
Alumber 7 4 14 14 3 8 18 18 5 2 12 1 1 6 16 initial O (Ob), veh 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0														
nitial O (Ob), veh	Number													
Ped-Bike Adj(A_pbT) 1.00														
Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	` '													
Adj Sat Flow, veh/h/ n 1863 1	• · · · ·		1.00			1.00			1.00			1.00		
Mg Flow Rate, veh/h														
No of Lanes														
Peak Hour Factor 0.92 0.														
Percent Heavy Veh, % 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2														
Cap, veh/h														
Arrive On Green 0.09 0.10 0.10 0.15 0.16 0.16 0.07 0.41 0.41 0.41 0.41 0.45 0.45 att Flow, weh/h 1774 3539 1583 3442 1863 1542 1774 3539 1563 3442 3539 1525 arg Volume(v), veh/h 54 87 120 413 98 207 109 446 804 370 935 11 370 525 20 Serve(g_s), s 2.6 2.0 6.1 10.5 4.2 11.7 5.5 7.7 36.9 9.6 17.7 0.4 20 20 20 20 20 20 20 20 20 20 20 20 20	3													
Sat Flow, veh/h 1774 3539 1583 3442 1863 1542 1774 3539 1563 3442 3539 1525 Sign Volume(v), veh/h 54 87 120 413 98 207 109 446 804 370 935 11 Sign Sat Flow(s), veh/h/h1774 1770 1583 1721 1863 1542 1774 1770 1563 1721 1770 1525 D Serve(g_s), s 2.6 2.0 6.1 10.5 4.2 11.7 5.5 7.7 36.9 9.6 17.7 0.4 Prop In Lane 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0														
Sign Volume(v), veh/h 54 87 120 413 98 207 109 446 804 370 935 11														
Sarp Sat Flow(s), veh/h/In1774														
2 Serve(g_s), s 2.6 2.0 6.1 10.5 4.2 11.7 5.5 7.7 36.9 9.6 17.7 0.4 Popular Collear(g_c), s 2.6 2.0 6.1 10.5 4.2 11.7 5.5 7.7 36.9 9.6 17.7 0.4 Popular Collear(g_c), s 2.6 2.0 6.1 10.5 4.2 11.7 5.5 7.7 36.9 9.6 17.7 0.4 Popular Collear(g_c), s 2.6 2.0 6.1 10.5 4.2 11.7 5.5 7.7 36.9 9.6 17.7 0.4 Popular Collear(g_c), s 2.6 2.0 6.1 10.5 4.2 11.7 5.5 7.7 36.9 9.6 17.7 0.4 Popular Collear(g_c), s 2.6 2.0 6.1 10.5 4.2 11.7 5.5 7.7 36.9 9.6 17.7 0.4 Popular Collear(g_c), s 2.6 2.0 6.1 10.5 4.2 11.7 5.5 7.7 36.9 9.6 17.7 0.4 Popular Collear(g_c), s 2.6 2.0 6.1 10.5 4.2 11.7 5.5 7.7 36.9 9.6 17.7 0.4 Popular Collear(g_c), s 2.6 2.0 6.1 10.5 4.2 11.7 5.5 7.7 36.9 9.6 17.7 0.4 Popular Collear(g_c), s 2.6 2.0 6.1 10.5 4.2 11.7 5.5 7.7 36.9 9.6 17.7 0.4 Popular Collear(g_c), s 2.6 2.0 6.1 10.5 4.2 11.7 5.5 7.7 36.9 9.6 17.7 0.4 Popular Collear(g_c), s 2.6 2.0 6.1 10.5 4.2 11.7 5.5 7.7 36.9 9.6 17.7 0.4 Popular Collear(g_c), s 2.6 2.0 6.1 10.5 4.2 11.7 5.5 7.7 36.9 9.6 17.7 0.4 Popular Collear(g_c), s 2.6 2.0 6.1 10.5 4.2 11.7 5.5 7.7 36.9 9.6 17.7 0.4 Popular Collear(g_c), s 2.6 2.0 1.0 1.00 1.00 1.00 1.00 1.00 1.00 1														
Cycle Q Clear(g_c), s 2.6 2.0 6.1 10.5 4.2 11.7 5.5 7.7 36.9 9.6 17.7 0.4 Prop In Lane 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0														
Prop In Lane 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0														
Arne Grp Cap(c), veh/h 161 366 278 510 300 249 128 1453 877 394 1602 690 ///C Ratio(X) 0.34 0.24 0.43 0.81 0.33 0.83 0.85 0.31 0.92 0.94 0.58 0.02 ///C Ratio(X) 0.34 0.24 0.43 0.81 0.33 0.83 0.85 0.31 0.92 0.94 0.58 0.02 ///C Ratio(X) 0.34 0.24 0.43 0.81 0.33 0.83 0.85 0.31 0.92 0.94 0.58 0.02 ///C Ratio(X) 0.34 0.24 0.43 0.81 0.33 0.83 0.85 0.31 0.92 0.94 0.58 0.02 ///C Ratio(X) 0.94 0.58 0.02 ///C Ratio(X) 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	, , ,		2.0			4.2			1.1			17.7		
//C Ratio(X)			244			200			1/52			1402		
Avail Cap(C_a), veh/h 233 606 385 761 486 403 128 1453 877 394 1602 690 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0														
HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	` '													
Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.95 0.95 1.00 1.00 1.00 1.00 1.00 Inform Delay (d), s/veh 38.4 37.1 33.1 37.1 33.4 36.6 41.3 17.9 18.0 39.5 18.3 13.6 incr Delay (d2), s/veh 1.2 0.3 1.1 4.0 0.6 7.8 37.4 0.5 15.3 30.3 1.6 0.0 initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	• • •													
## Delay (d), s/veh 38.4 37.1 33.1 37.1 33.4 36.6 41.3 17.9 18.0 39.5 18.3 13.6														
ncr Delay (d2), s/veh 1.2 0.3 1.1 4.0 0.6 7.8 37.4 0.5 15.3 30.3 1.6 0.0 nitial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	•													
Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	J 1 7													
Sile BackOfQ(50%),veh/lril.3 1.0 2.8 5.3 2.2 5.5 4.0 3.8 21.5 6.2 8.9 0.2														
Approach Vol, veh/h Approach Delay(d), s/veh Approach Vol, veh/h Approach LOS D D C D C D C D E B C E B B Approach Vol, veh/h Approach LOS D D C D C D C D C D C D E B C E B B Approach Vol, veh/h Approach LOS D D C C C C C C C C C C C														
Approach Vol, veh/h 261 718 1359 1316 Approach Delay, s/veh 36.4 41.1 32.1 33.9 Approach LOS D D D C C C Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 3 4 5 6 7 8 Phs Duration (G+Y+Rc), \$5.0 42.0 18.5 14.4 11.2 45.8 13.3 19.6 Change Period (Y+Rc), \$ 4.7 5.1 *5.2 5.1 *4.7 5.1 *5.2 5.1 Max Green Setting (Gmax) 8 24.3 *20 15.4 *6.5 28.1 *12 23.5 Max Q Clear Time (g_c+III), 6 38.9 12.5 8.1 7.5 19.7 4.6 13.7 Green Ext Time (p_c), \$ 0.0 0.0 0.9 0.4 0.0 3.8 0.0 0.8 Intersection Summary HCM 2010 Ctrl Delay 34.8 HCM 2010 Ctrl Delay 34.8 HCM 2010 LOS C	٠ ,.													
Approach Vol, veh/h 261 718 1359 1316 Approach Delay, s/veh 36.4 41.1 32.1 33.9 Approach LOS D D C C Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 3 4 5 6 7 8 Phs Duration (G+Y+Rc), \$5.0 42.0 18.5 14.4 11.2 45.8 13.3 19.6 Change Period (Y+Rc), \$4.7 5.1 *5.2 5.1 *4.7 5.1 *5.2 5.1 Max Green Setting (Gmax) 18 24.3 *20 15.4 *6.5 28.1 *12 23.5 Max Q Clear Time (g_c+III), 6 38.9 12.5 8.1 7.5 19.7 4.6 13.7 Green Ext Time (p_c), \$ 0.0 0.0 0.9 0.4 0.0 3.8 0.0 0.8 Intersection Summary HCM 2010 Ctrl Delay 34.8 HCM 2010 LOS C	• • • • • • • • • • • • • • • • • • • •													
Approach Delay, s/veh 36.4 41.1 32.1 33.9 Approach LOS D D C C Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 3 4 5 6 7 8 Phs Duration (G+Y+Rc), \$5.0 42.0 18.5 14.4 11.2 45.8 13.3 19.6 Change Period (Y+Rc), \$ 4.7 5.1 * 5.2 5.1 * 4.7 5.1 * 5.2 5.1 Max Green Setting (Gmax) 8 24.3 * 20 15.4 * 6.5 28.1 * 12 23.5 Max Q Clear Time (g_c+III), 6 38.9 12.5 8.1 7.5 19.7 4.6 13.7 Green Ext Time (p_c), \$ 0.0 0.0 0.9 0.4 0.0 3.8 0.0 0.8 Intersection Summary HCM 2010 Ctrl Delay 34.8 HCM 2010 LOS C		υ		C	υ		υ	Ł		C	Ł		R	
Approach LOS D D C C Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 3 4 5 6 7 8 Phs Duration (G+Y+Rc), \$5.0 42.0 18.5 14.4 11.2 45.8 13.3 19.6 Change Period (Y+Rc), \$4.7 5.1 *5.2 5.1 *4.7 5.1 *5.2 5.1 Max Green Setting (Gmax) 8 24.3 *20 15.4 *6.5 28.1 *12 23.5 Max Q Clear Time (g_c+III), 6 38.9 12.5 8.1 7.5 19.7 4.6 13.7 Green Ext Time (p_c), \$ 0.0 0.0 0.9 0.4 0.0 3.8 0.0 0.8 Intersection Summary HCM 2010 Ctrl Delay 34.8 HCM 2010 LOS C														
Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 3 4 5 6 7 8 Phs Duration (G+Y+Rc), \$5.0 42.0 18.5 14.4 11.2 45.8 13.3 19.6 Change Period (Y+Rc), \$4.7 5.1 *5.2 5.1 *4.7 5.1 *5.2 5.1 Max Green Setting (Gmax) 8 24.3 *20 15.4 *6.5 28.1 *12 23.5 Max Q Clear Time (g_c+III), 6 38.9 12.5 8.1 7.5 19.7 4.6 13.7 Green Ext Time (p_c), \$ 0.0 0.0 0.9 0.4 0.0 3.8 0.0 0.8 Intersection Summary HCM 2010 Ctrl Delay 34.8 HCM 2010 LOS C														
Assigned Phs 1 2 3 4 5 6 7 8 Phs Duration (G+Y+Rc), \$5.0 42.0 18.5 14.4 11.2 45.8 13.3 19.6 Change Period (Y+Rc), \$'\) 4.7 5.1 *5.2 5.1 *4.7 5.1 *5.2 5.1 Max Green Setting (Gmax)] 8 24.3 *20 15.4 *6.5 28.1 *12 23.5 Max Q Clear Time (g_c+III), 6 38.9 12.5 8.1 7.5 19.7 4.6 13.7 Green Ext Time (p_c), \$ 0.0 0.0 0.9 0.4 0.0 3.8 0.0 0.8 Intersection Summary HCM 2010 Ctrl Delay 34.8 HCM 2010 LOS C	Approach LOS		D			D			C			C		
Assigned Phs 1 2 3 4 5 6 7 8 Phs Duration (G+Y+Rc), \$5.0 42.0 18.5 14.4 11.2 45.8 13.3 19.6 Change Period (Y+Rc), \$ 4.7 5.1 * 5.2 5.1 * 4.7 5.1 * 5.2 5.1 Max Green Setting (Gmax)16 24.3 * 20 15.4 * 6.5 28.1 * 12 23.5 Max Q Clear Time (g_c+III), 6 38.9 12.5 8.1 7.5 19.7 4.6 13.7 Green Ext Time (p_c), \$ 0.0 0.0 0.9 0.4 0.0 3.8 0.0 0.8 Intersection Summary HCM 2010 Ctrl Delay 34.8 HCM 2010 LOS C	Timer	1	2	3	4	5	6	7	8					
Phs Duration (G+Y+Rc), \$5.0 42.0 18.5 14.4 11.2 45.8 13.3 19.6 Change Period (Y+Rc), \$ 4.7 5.1 * 5.2 5.1 * 4.7 5.1 * 5.2 5.1 Max Green Setting (Gmax) 6 24.3 * 20 15.4 * 6.5 28.1 * 12 23.5 Max Q Clear Time (g_c+III), 6 38.9 12.5 8.1 7.5 19.7 4.6 13.7 Green Ext Time (p_c), \$ 0.0 0.0 0.9 0.4 0.0 3.8 0.0 0.8 Intersection Summary HCM 2010 Ctrl Delay 34.8 HCM 2010 LOS C		1						7						
Change Period (Y+Rc), \$ 4.7 5.1 * 5.2 5.1 * 4.7 5.1 * 5.2 5.1 Max Green Setting (Gmax) 6 24.3 * 20 15.4 * 6.5 28.1 * 12 23.5 Max Q Clear Time (g_c+III), 6 38.9 12.5 8.1 7.5 19.7 4.6 13.7 Green Ext Time (p_c), \$ 0.0 0.0 0.9 0.4 0.0 3.8 0.0 0.8 Intersection Summary HCM 2010 Ctrl Delay 34.8 HCM 2010 LOS C		•												
Max Green Setting (Gmax)18 24.3 * 20 15.4 * 6.5 28.1 * 12 23.5 Max Q Clear Time (g_c+III),6s 38.9 12.5 8.1 7.5 19.7 4.6 13.7 Green Ext Time (p_c), s 0.0 0.0 0.9 0.4 0.0 3.8 0.0 0.8 Intersection Summary HCM 2010 Ctrl Delay 34.8 HCM 2010 LOS C	, ,													
Max Q Clear Time (g_c+lff),6s 38.9 12.5 8.1 7.5 19.7 4.6 13.7 Green Ext Time (p_c), s 0.0 0.0 0.9 0.4 0.0 3.8 0.0 0.8 Intersection Summary HCM 2010 Ctrl Delay 34.8 HCM 2010 LOS C														
Green Ext Time (p_c), s 0.0 0.0 0.9 0.4 0.0 3.8 0.0 0.8 Intersection Summary HCM 2010 Ctrl Delay 34.8 HCM 2010 LOS C														
HCM 2010 Ctrl Delay 34.8 HCM 2010 LOS C														
HCM 2010 Ctrl Delay 34.8 HCM 2010 LOS C	• •													
HCM 2010 LOS C				34.8										
Notes .	HCM 2010 LOS													
	Notes													

	•	→	\	√	←	•	•	†	<u> </u>	\	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					4	7	ሻ	ተተተ			ተ ተጉ	
Traffic Volume (veh/h)	0	0	0	50	10	150	450	1100	0	0	430	600
Future Volume (veh/h)	0	0	0	50	10	150	450	1100	0	0	430	600
Number	U	U	U	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh				0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)				1.00	U	1.00	1.00	U	1.00	1.00	U	0.96
Parking Bus, Adj				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln				1900	1863	1863	1863	1863	0	0.00	1863	1900
Adj Flow Rate, veh/h				54	11	163	489	1196	0	0	467	652
				0	1	103	409				3	002
Adj No. of Lanes				0.92		0.92		3 0.92	0	0	0.92	0.92
Peak Hour Factor					0.92		0.92		0.92	0.92		
Percent Heavy Veh, %				2	2	204	2 4E0	2	0	0	1442	2
Cap, veh/h				191	39	204	450	3782	0	0	1462	654
Arrive On Green				0.13	0.13	0.13	0.51	1.00	0.00	0.00	0.43	0.43
Sat Flow, veh/h				1486	303	1583	1774	5253	0	0	3558	1516
Grp Volume(v), veh/h				65	0	163	489	1196	0	0	467	652
Grp Sat Flow(s),veh/h/lr	1			1788	0	1583	1774	1695	0	0	1695	1516
Q Serve(g_s), s				2.6	0.0	8.0	20.3	0.0	0.0	0.0	7.3	34.3
Cycle Q Clear(g_c), s				2.6	0.0	8.0	20.3	0.0	0.0	0.0	7.3	34.3
Prop In Lane				0.83		1.00	1.00		0.00	0.00		1.00
Lane Grp Cap(c), veh/h				230	0	204	450	3782	0	0	1462	654
V/C Ratio(X)				0.28	0.00	0.80	1.09	0.32	0.00	0.00	0.32	1.00
Avail Cap(c_a), veh/h				344	0	305	450	3782	0	0	1462	654
HCM Platoon Ratio				1.00	1.00	1.00	2.00	2.00	1.00	1.00	1.00	1.00
Jpstream Filter(I)				1.00	0.00	1.00	0.45	0.45	0.00	0.00	0.75	0.75
Jniform Delay (d), s/veh	1			31.5	0.0	33.9	19.7	0.0	0.0	0.0	15.0	22.7
Incr Delay (d2), s/veh				0.7	0.0	8.7	54.9	0.1	0.0	0.0	0.4	29.7
Initial Q Delay(d3),s/veh	1			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh				1.3	0.0	4.0	16.4	0.0	0.0	0.0	3.5	19.7
LnGrp Delay(d),s/veh				32.2	0.0	42.6	74.6	0.1	0.0	0.0	15.4	52.4
_nGrp LOS				С		D	F	Α			В	D
Approach Vol, veh/h					228			1685			1119	
Approach Delay, s/veh					39.6			21.7			37.0	
Approach LOS					D			C			D	
•												
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2			5	6		8				
Phs Duration (G+Y+Rc)		64.6			25.0	39.6		15.4				
Change Period (Y+Rc),		5.1			* 4.7	5.1		5.1				
Max Green Setting (Gm		54.4			* 20	29.4		15.4				
Max Q Clear Time (g_c-	+l1), s	2.0			22.3	36.3		10.0				
Green Ext Time (p_c), s		10.2			0.0	0.0		0.4				
•												
ntersection Summary			20.7									
HCM 2010 Ctrl Delay			28.7									
HCM 2010 LOS			С									
Notes												

•	L	→	•	•	←	•	•	†	<u> </u>	\	ļ	4
Movement EE	3L	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
		4						ተ ተጉ		ች	^	
Traffic Volume (veh/h) 68	_	10	550	0	0	0	0	900	180	110	390	0
Future Volume (veh/h) 68		10	550	0	0	0	0	900	180	110	390	0
Number	7	4	14				5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0				0	0	0	0	0	0
Ped-Bike Adj(A_pbT) 1.0			1.00				1.00		0.99	1.00		1.00
Parking Bus, Adj 1.0		1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln 186		1863	1900				0	1863	1900	1863	1863	0
Adj Flow Rate, veh/h 67		102	598				0	978	196	120	424	0
Adj No. of Lanes	1	1	0				0	3	0	1	2	0
Peak Hour Factor 0.9		0.92	0.92				0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2				0.72	2	2	2	2	0.72
Cap, veh/h 75		100	586				0	1299	260	149	1588	0
Arrive On Green 0.4		0.42	0.42				0.00	0.31	0.31	0.17	0.90	0.00
Sat Flow, veh/h 177		236	1383				0.00	4410	848	1774	3632	0.00
Grp Volume(v), veh/h 67		0	700				0	781	393	120	424	0
Grp Sat Flow(s), veh/h/ln177		0	1619				0	1695	1700	1774	1770	0
Q Serve(g_s), s 28		0.0	33.9				0.0	16.6	16.7	5.2	1.3	0.0
Cycle Q Clear(g_c), s 28		0.0	33.9				0.0	16.6	16.7	5.2	1.3	0.0
Prop In Lane 1.0		0.0	0.85				0.00	10.0	0.50	1.00	1.3	0.00
Lane Grp Cap(c), veh/h 75		0	686				0.00	1038	520	1.00	1588	0.00
V/C Ratio(X) 0.9		0.00	1.02				0.00	0.75	0.76	0.81	0.27	0.00
Avail Cap(c_a), veh/h 75		0.00	686				0.00	1038	520	162	1588	0.00
HCM Platoon Ratio 1.0		1.00	1.00				1.00	1.00	1.00	2.00	2.00	1.00
Upstream Filter(I) 1.0		0.00	1.00				0.00	1.00	1.00	0.79	0.79	0.00
Uniform Delay (d), s/veh 21		0.00	23.1				0.00	25.0	25.0	32.7	2.3	0.00
Incr Delay (d2), s/veh 13		0.0	39.6				0.0	5.0	9.8	19.4	0.3	0.0
Initial Q Delay(d3),s/veh 0		0.0	0.0				0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/lr6		0.0	22.6				0.0	8.4	9.3	3.3	0.7	0.0
LnGrp Delay(d),s/veh 34		0.0	62.7				0.0	30.1	34.8	52.0	2.7	0.0
1 317	C	0.0	02.7 F				0.0	C	C C	J2.0 D	Α.	0.0
Approach Vol, veh/h	<u> </u>	1374						1174	U	U	544	
Approach Delay, s/veh		49.1						31.7			13.5	
Approach LOS		49.1 D						31.7 C			13.5 B	
											В	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4		6						
Phs Duration (G+Y+Rc), 1\$1		29.6		39.0		41.0						
Change Period (Y+Rc), \$ 4		5.1		5.1		5.1						
Max Green Setting (Gmax),		23.9		33.9		35.9						
Max Q Clear Time (g_c+11)		18.7		35.9		3.3						
Green Ext Time (p_c), s 0	0.0	3.1		0.0		2.7						
Intersection Summary												
HCM 2010 Ctrl Delay			36.2									
HCM 2010 CIT Delay			36.2 D									
			D									
Notes												

Intersection												
Intersection Delay, s/ve	h 24.8											
Intersection LOS	F											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ť	4		Ť	†	7	ሻ	ħβ		*	ħβ	
Traffic Vol, veh/h	440	10	20	10	30	220	40	420	10	90	350	450
Future Vol, veh/h	440	10	20	10	30	220	40	420	10	90	350	450
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	478	11	22	11	33	239	43	457	11	98	380	489
Number of Lanes	1	1	0	1	1	1	1	2	0	1	2	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	3			2			3			3		
Conflicting Approach Le	eft SB			NB			EB			WB		
Conflicting Lanes Left	3			3			2			3		
Conflicting Approach Ri	ghNB			SB			WB			EB		
Conflicting Lanes Right				3			3			2		
HCM Control Delay	45.3			36.8			49.8			232		
HCM LOS	Ε			Ε			Е			F		
Lane	N	IBLn1 l	VBLn2	NBLn3	EBLn1	EBLn2\	WBLn1V	VBLn2V	VBLn3	SBLn1	SBLn2	SBLn3
Vol Left, %		IBLn1 I 100%	VBLn2	NBLn3 0%	EBLn1 100%	EBLn2\ 87%	WBLn1V 100%	VBLn2V 0%	VBLn3	SBLn1 100%	SBLn2	0%
		100%										
Vol Left, %		100%	0%	0%	100%	87%	100%	0%	0%	100%	0%	0%
Vol Left, % Vol Thru, %		100% 0%	0% 100%	0% 93%	100% 0%	87% 4%	100% 0%	0% 100%	0% 0%	100% 0%	0% 100%	0% 21%
Vol Left, % Vol Thru, % Vol Right, %		100% 0% 0%	0% 100% 0%	0% 93% 7%	100% 0% 0%	87% 4% 9%	100% 0% 0%	0% 100% 0%	0% 0% 100%	100% 0% 0%	0% 100% 0%	0% 21% 79%
Vol Left, % Vol Thru, % Vol Right, % Sign Control		100% 0% 0% Stop	0% 100% 0% Stop 280 0	0% 93% 7% Stop	100% 0% 0% Stop	87% 4% 9% Stop 232 202	100% 0% 0% Stop	0% 100% 0% Stop	0% 0% 100% Stop	100% 0% 0% Stop	0% 100% 0% Stop	0% 21% 79% Stop
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane		100% 0% 0% Stop 40	0% 100% 0% Stop 280	0% 93% 7% Stop 150	100% 0% 0% Stop 238	87% 4% 9% Stop 232 202 10	100% 0% 0% Stop 10	0% 100% 0% Stop 30	0% 0% 100% Stop 220	100% 0% 0% Stop 90	0% 100% 0% Stop 233	0% 21% 79% Stop 567 0 117
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol		100% 0% 0% Stop 40 40 0	0% 100% 0% Stop 280 0	0% 93% 7% Stop 150 0	100% 0% 0% Stop 238 238	87% 4% 9% Stop 232 202	100% 0% 0% Stop 10	0% 100% 0% Stop 30 0	0% 0% 100% Stop 220 0	100% 0% 0% Stop 90 90	0% 100% 0% Stop 233 0	0% 21% 79% Stop 567 0
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol		100% 0% 0% Stop 40 40	0% 100% 0% Stop 280 0 280	0% 93% 7% Stop 150 0	100% 0% 0% Stop 238 238	87% 4% 9% Stop 232 202 10	100% 0% 0% Stop 10 10	0% 100% 0% Stop 30 0	0% 0% 100% Stop 220 0	100% 0% 0% Stop 90 90	0% 100% 0% Stop 233 0 233	0% 21% 79% Stop 567 0 117
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		100% 0% 0% Stop 40 40 0	0% 100% 0% Stop 280 0 280	0% 93% 7% Stop 150 0 140	100% 0% 0% Stop 238 238 0	87% 4% 9% Stop 232 202 10 20	100% 0% 0% Stop 10 10 0	0% 100% 0% Stop 30 0 30	0% 0% 100% Stop 220 0 0	100% 0% 0% Stop 90 90 0	0% 100% 0% Stop 233 0 233	0% 21% 79% Stop 567 0 117 450
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate		100% 0% 0% Stop 40 40 0 0 43	0% 100% 0% Stop 280 0 280 0 304	0% 93% 7% Stop 150 0 140 10	100% 0% 0% Stop 238 238 0 0	87% 4% 9% Stop 232 202 10 20 253 8	100% 0% 0% Stop 10 10 0	0% 100% 0% Stop 30 0 30 0 33 8	0% 0% 100% Stop 220 0 0 220 239	100% 0% 0% Stop 90 0 0 0 98	0% 100% 0% Stop 233 0 233 0 254	0% 21% 79% Stop 567 0 117 450 616
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		100% 0% 0% Stop 40 40 0 0 43 8 0.137	0% 100% 0% Stop 280 0 280 0 304	0% 93% 7% Stop 150 0 140 10 163 8 0.488	100% 0% 0% Stop 238 238 0 0 258 8 0.786	87% 4% 9% Stop 232 202 10 20 253 8	100% 0% 0% Stop 10 10 0 0	0% 100% 0% Stop 30 0 30 0 33 8 0.105	0% 0% 100% Stop 220 0 0 220 239 8 0.724	100% 0% 0% Stop 90 0 0 98 8 0.298	0% 100% 0% Stop 233 0 233 0 254	0% 21% 79% Stop 567 0 117 450 616 8 1.69
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		100% 0% 0% Stop 40 0 0 43 8 0.137 2.321	0% 100% 0% Stop 280 0 280 0 304 8 0.915 11.799 Yes	0% 93% 7% Stop 150 0 140 163 8 0.488 11.751 Yes	100% 0% 0% Stop 238 238 0 0 258 8 0.786 11.79 Yes	87% 4% 9% Stop 232 202 10 253 8 0.761 11.665 Yes	100% 0% 0% Stop 10 10 0 0 11 8 0.036 13.158 Yes	0% 100% 0% Stop 30 0 30 0 33 8 0.105 12.64 Yes	0% 0% 100% Stop 220 0 0 220 239 8 0.724 11.914 Yes	100% 0% 0% Stop 90 0 0 98 8 0.298 10.974 Yes	0% 100% 0% Stop 233 0 233 0 254 8 0.737 10.455 Yes	0% 21% 79% Stop 567 0 117 450 616 8 1.69 9.877 Yes
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Ho		100% 0% 0% Stop 40 0 0 43 8 0.137 2.321	0% 100% 0% Stop 280 0 280 0 304 8 0.915 11.799	0% 93% 7% Stop 150 0 140 10 163 8 0.488 11.751	100% 0% 0% Stop 238 238 0 0 258 8 0.786 11.79	87% 4% 9% Stop 232 202 10 20 253 8 0.761 11.665	100% 0% 0% Stop 10 10 0 0 11 8 0.036 13.158	0% 100% 0% Stop 30 0 30 0 33 8 0.105 12.64	0% 0% 100% Stop 220 0 0 220 239 8 0.724 11.914	100% 0% 0% Stop 90 0 0 98 8 0.298 10.974	0% 100% 0% Stop 233 0 233 0 254 8 0.737 10.455	0% 21% 79% Stop 567 0 117 450 616 8 1.69 9.877
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Ho Convergence, Y/N	d) 1	100% 0% Stop 40 0 0 43 8 0.137 2.321 Yes 293	0% 100% 0% Stop 280 0 280 0 304 8 0.915 11.799 Yes	0% 93% 7% Stop 150 0 140 10 163 8 0.488 11.751 Yes 308	100% 0% 0% Stop 238 238 0 0 258 8 0.786 11.79 Yes 310	87% 4% 9% Stop 232 202 10 20 253 8 0.761 11.665 Yes 313	100% 0% 0% Stop 10 10 0 0 11 8 0.036 13.158 Yes	0% 100% 0% Stop 30 0 33 8 0.105 12.64 Yes 285	0% 0% 100% Stop 220 0 220 239 8 0.724 11.914 Yes 306	100% 0% 0% Stop 90 0 0 98 8 0.298 10.974 Yes 328	0% 100% 0% Stop 233 0 233 0 254 8 0.737 10.455 Yes	0% 21% 79% Stop 567 0 117 450 616 8 1.69 9.877 Yes 370
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Ho Convergence, Y/N Cap	d) 1	100% 0% Stop 40 0 0 43 8 0.137 2.321 Yes 293	0% 100% 0% Stop 280 0 304 8 0.915 11.799 Yes 310	0% 93% 7% Stop 150 0 140 10 163 8 0.488 11.751 Yes 308 9.451 0.529	100% 0% 0% Stop 238 238 0 0 258 8 0.786 11.79 Yes 310 9.49 0.832	87% 4% 9% Stop 232 202 10 20 253 8 0.761 11.665 Yes 313 9.365 0.808	100% 0% 0% Stop 10 0 0 11 8 0.036 13.158 Yes 274 10.858 0.04	0% 100% 0% Stop 30 0 33 8 0.105 12.64 Yes 285 10.34	0% 0% 100% Stop 220 0 220 239 8 0.724 11.914 Yes 306 9.614 0.781	100% 0% 0% Stop 90 0 0 98 8 0.298 10.974 Yes 328 8.748 0.299	0% 100% 0% Stop 233 0 254 8 0.737 10.455 Yes 345 8.229 0.736	0% 21% 79% Stop 567 0 117 450 616 8 1.69 9.877 Yes 370 7.651 1.665
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Ho Convergence, Y/N Cap Service Time	d) 1	100% 0% Stop 40 0 0 43 8 0.137 2.321 Yes 293 0.021	0% 100% 0% Stop 280 0 280 0 304 8 0.915 11.799 Yes 310 9.499	0% 93% 7% Stop 150 0 140 10 163 8 0.488 11.751 Yes 308 9.451	100% 0% 0% Stop 238 238 0 0 258 8 0.786 11.79 Yes 310 9.49	87% 4% 9% Stop 232 202 10 20 253 8 0.761 11.665 Yes 313 9.365	100% 0% 0% Stop 10 0 0 11 8 0.036 13.158 Yes 274 10.858	0% 100% 0% Stop 30 0 33 8 0.105 12.64 Yes 285 10.34	0% 0% 100% Stop 220 0 220 239 8 0.724 11.914 Yes 306 9.614	100% 0% 0% Stop 90 0 0 98 8 0.298 10.974 Yes 328 8.748	0% 100% 0% Stop 233 0 254 8 0.737 10.455 Yes 345 8.229 0.736	0% 21% 79% Stop 567 0 117 450 616 8 1.69 9.877 Yes 370 7.651
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Ho Convergence, Y/N Cap Service Time HCM Lane V/C Ratio	d) 1	100% 0% Stop 40 0 0 43 8 0.137 2.321 Yes 293 0.021 0.147	0% 100% 0% Stop 280 0 280 0 304 8 0.915 11.799 Yes 310 9.499 0.981	0% 93% 7% Stop 150 0 140 10 163 8 0.488 11.751 Yes 308 9.451 0.529	100% 0% 0% Stop 238 238 0 0 258 8 0.786 11.79 Yes 310 9.49 0.832	87% 4% 9% Stop 232 202 10 20 253 8 0.761 11.665 Yes 313 9.365 0.808	100% 0% 0% Stop 10 0 0 11 8 0.036 13.158 Yes 274 10.858 0.04	0% 100% 0% Stop 30 0 33 8 0.105 12.64 Yes 285 10.34 0.116	0% 0% 100% Stop 220 0 220 239 8 0.724 11.914 Yes 306 9.614 0.781	100% 0% 0% Stop 90 0 0 98 8 0.298 10.974 Yes 328 8.748 0.299	0% 100% 0% Stop 233 0 254 8 0.737 10.455 Yes 345 8.229 0.736	0% 21% 79% Stop 567 0 117 450 616 8 1.69 9.877 Yes 370 7.651 1.665

2.5 6.2

5.8

0.1

0.3

5.2

1.2

5.6 37.3

LOS Engineering, Inc.

HCM 95th-tile Q

0.5

8.7

Intersection
Int Delay, s/veh 0.8
Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR
Lane Configurations ††† † †
Traffic Vol, veh/h 0 1400 80 0 590 10 0 0 30 0 0 100
Future Vol, veh/h 0 1400 80 0 590 10 0 0 30 0 0 100
Conflicting Peds, #/hr 0 0 0 0 0 0 0 0 0 0
Sign Control Free Free Free Free Free Free Stop Stop Stop Stop Stop Stop
RT Channelized None None None
Storage Length 400 0
Veh in Median Storage, # - 0 0 0 -
Grade, % - 0 0 0 -
Peak Hour Factor 92 92 92 92 92 92 92 92 92 92 92 92
Heavy Vehicles, % 2 2 2 2 2 2 2 2 2 2 2 2
Mvmt Flow 0 1522 87 0 641 11 0 0 33 0 0 109
Major/Minor Major1 Major2 Minor1 Minor2
Conflicting Flow All - 0 0 0 805 321
Stage 1
Stage 2
Critical Hdwy 7.14 7.14
Critical Hdwy Stg 1
Critical Hdwy Stg 2
Follow-up Hdwy 3.92 3.92
Pot Cap-1 Maneuver 0 0 0 0 279 0 0 576
Stage 1 0 0 0 0 - 0 0 -
Stage 2 0 0 0 0 - 0 - 0
Platoon blocked, %
Mov Cap-1 Maneuver 279 576
Mov Cap-2 Maneuver
Stage 1
Stage 2
Approach EB WB NB SB
HCM Control Delay, s 0 0 19.6 12.7
HCM LOS C B
Minor Lane/Major Mvmt NBLn1 EBT EBR WBT WBR SBLn1
Capacity (veh/h) 279 576
HCM Lane V/C Ratio 0.117 0.189
HCM Control Delay (s) 19.6 12.7
HCM Lane LOS C B
HCM 95th %tile Q(veh) 0.4 0.7

	۶	→	•	•	←	•	4	†	~	>	+	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	ተተተ	7		ተተተ	7	ሻሻ	₽			₽.	
Traffic Volume (veh/h)	400	740	120	80	380	70	190	10	50	30	20	140
Future Volume (veh/h)	400	740	120	80	380	70	190	10	50	30	20	140
Number	5	2	12	1	6	16	3	8	18	7	4	14
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	4.00	1.00	1.00	1.00	1.00	1.00	4.00	1.00	1.00	1.00	0.99
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1863	1863	1863	1863	1900	1863	1863	1863
Adj Flow Rate, veh/h	435	804	130	87	413	76	207	11	54	33	0	167
Adj No. of Lanes	2	3	1	1	3	1	2	1	0	1	0	2
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2 467	1000	2	2	2	2	2	2 42	2	2	2	1201
Cap, veh/h		1098	342	111	752	234	271		205	661	0	1381
Arrive On Green	0.14	0.22	0.22 1583	0.06	0.15 5085	0.15 1580	0.08	0.15	0.15	0.37	0.00	0.44
Sat Flow, veh/h	3442	5085		1774			3442	275	1350	1774	0	3127
Grp Volume(v), veh/h	435	804	130	87	413	76	207	0	65	33	0	167
Grp Sat Flow(s), veh/h/ln	1721	1695	1583	1774	1695	1580	1721	0	1625	1774	0	1564
Q Serve(g_s), s	12.9	15.2	7.2	5.0	7.8	4.4	6.1	0.0	3.6	1.2	0.0	3.3
Cycle Q Clear(g_c), s	12.9	15.2	7.2	5.0	7.8	4.4	6.1	0.0	3.6	1.2	0.0	3.3
Prop In Lane	1.00	1000	1.00	1.00	750	1.00	1.00	0	0.83	1.00	0	1.00
Lane Grp Cap(c), veh/h	467 0.93	1098	342	111	752	234 0.33	271 0.76	0.00	247	661	0 00	1381
V/C Ratio(X)	467	0.73 1738	0.38	0.78 170	0.55 1576	490	297		0.26 252	0.05	0.00	0.12 1381
Avail Cap(c_a), veh/h HCM Platoon Ratio	1.00	1.00	541 1.00	1.00	1.00	1.00	1.00	1.00	1.00	661 1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	44.2	37.7	34.6	47.7	40.8	39.4	46.6	0.00	38.7	20.7	0.00	17.0
Incr Delay (d2), s/veh	25.8	1.0	0.7	12.3	0.6	0.8	10.4	0.0	0.6	0.1	0.0	0.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2
%ile BackOfQ(50%),veh/ln	7.8	7.2	3.2	2.8	3.7	2.0	3.3	0.0	1.7	0.6	0.0	1.4
LnGrp Delay(d),s/veh	70.0	38.7	35.3	60.0	41.5	40.2	57.0	0.0	39.2	20.8	0.0	17.2
LnGrp LOS	70.0 E	D	D	E	T1.5	70.2 D	57.0 E	0.0	D	20.0 C	0.0	В
Approach Vol, veh/h		1369		<u> </u>	576			272			200	
Approach Delay, s/veh		48.3			44.1			52.8			17.8	
Approach LOS		40.5 D			D			J2.0 D			17.0 B	
• •											D	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	11.0	29.6	12.6	50.1	18.0	22.6	42.5	20.2				
Change Period (Y+Rc), s	4.5	7.3	4.5	* 4.5	4.0	* 7.3	4.0	4.5				
Max Green Setting (Gmax), s	9.9	35.3	8.9	* 46	14.0	* 32	38.5	16.0				
Max Q Clear Time (g_c+I1), s	7.0	17.2	8.1	5.3	14.9	9.8	3.2	5.6				
Green Ext Time (p_c), s	0.0	5.1	0.1	0.6	0.0	2.7	0.1	0.1				
Intersection Summary												
HCM 2010 Ctrl Delay			45.3									
HCM 2010 LOS			D									
Notes												

Intersection												
Int Delay, s/veh	0.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ተተ _ጉ			ተተተ	7			7			7
Traffic Vol, veh/h	0	830	10	0	520	70	0	0	10	0	0	50
Future Vol, veh/h	0	830	10	0	520	70	0	0	10	0	0	50
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	500	-	-	0	-	-	0
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	902	11	0	565	76	0	0	11	0	0	54
Major/Minor N	1ajor1			Major2			/linor1			Minor2		
Conflicting Flow All	-	0	0	-	_	0	_	_	457	-	_	283
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	_	-	-	_	-	-	_	_
Critical Hdwy	-	-	-	-	-	-	-	-	7.14	-	-	7.14
Critical Hdwy Stg 1	-	-	-	_	_	-	-	_	-	-	_	
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	-	-	-	3.92	-	-	3.92
Pot Cap-1 Maneuver	0	-	-	0	-	-	0	0	471	0	0	609
Stage 1	0	-	-	0	-	-	0	0	-	0	0	-
Stage 2	0	-	-	0	-	-	0	0	-	0	0	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	-	-	-	-	-	-	-	-	471	-	-	609
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Ŭ												
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			0			12.8			11.5		
HCM LOS							В			В		
Minor Lane/Major Mvmt	t 1	NBLn1	EBT	EBR	WBT	WBR S	SBLn1					
Capacity (veh/h)		471	-	-	-	-	609					
HCM Lane V/C Ratio		0.023	_	_	_		0.089					
HCM Control Delay (s)		12.8	-	-	-	-	11.5					
HCM Lane LOS		В	-	-	-	_	В					
HCM 95th %tile Q(veh)		0.1	-	-	-	-	0.3					
2(7011)		J.,										

	۶	→	•	•	←	•	1	†	~	/	Ţ	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	ተተተ	7	ሻሻ	ተተተ	7	ች	₽		<u>ነ</u>		77
Traffic Volume (veh/h)	240	290	150	50	230	150	130	80	90	210	60	150
Future Volume (veh/h)	240	290	150	50	230	150	130	80	90	210	60	150
Number	3	8	18	7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1.00	0.99	1.00	1.00	1.00	1.00	1.00	0.99	1.00	1.00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1863	1863	1863	1863	1900	1863	1863	1863
Adj Flow Rate, veh/h	261	315	163	54	250	163	141	87	98	228	65	163
Adj No. of Lanes	2	3	1	2	3	1	1	1	0	1	1	2
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2 350	2	2	2 115	2 723	2 225	2 177	2	2	2	2 769	2 1150
Cap, veh/h	0.10	1071 0.21	330 0.21	0.03	0.14			286 0.36	323	270 0.15		0.41
Arrive On Green		5085	1568	3442		0.14 1583	0.10	795	0.36		0.41 1863	2787
Sat Flow, veh/h	3442				5085		1774		895	1774		
Grp Volume(v), veh/h	261	315	163	54	250	163	141	0	185	228	65	163
Grp Sat Flow(s), veh/h/ln	1721 6.4	1695	1568	1721 1.3	1695 3.9	1583	1774	0	1690	1774 10.9	1863 1.9	1393 3.2
Q Serve(g_s), s	6.4	4.6	8.0 8.0	1.3	3.9	8.6 8.6	6.8 6.8	0.0	6.9 6.9	10.9	1.9	3.2
Cycle Q Clear(g_c), s	1.00	4.6		1.00	3.9	1.00	1.00	0.0	0.53	1.00	1.9	1.00
Prop In Lane	350	1071	1.00 330	1.00	723	225	1.00	0	609	270	769	1150
Lane Grp Cap(c), veh/h V/C Ratio(X)	0.74	0.29	0.49	0.47	0.35	0.72	0.80	0.00	0.30	0.85	0.08	0.14
Avail Cap(c_a), veh/h	610	2385	735	177	1745	543	365	0.00	609	446	769	1150
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	38.2	29.0	30.4	41.5	33.8	35.9	38.5	0.0	20.1	36.1	15.6	16.0
Incr Delay (d2), s/veh	3.2	0.2	1.1	3.0	0.3	4.4	7.9	0.0	1.3	7.7	0.2	0.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	3.2	2.1	3.5	0.7	1.8	4.0	3.7	0.0	3.4	5.9	1.0	1.3
LnGrp Delay(d),s/veh	41.3	29.2	31.5	44.4	34.1	40.2	46.4	0.0	21.4	43.7	15.8	16.3
LnGrp LOS	D	C	C	D	C	D	D	0.0	C	D	В	В
Approach Vol, veh/h		739			467			326			456	
Approach Delay, s/veh		34.0			37.4			32.2			29.9	
Approach LOS		С			D			C			C	
•	4		0			,	7					
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	12.7	43.5	12.9	18.3	17.3	38.9	6.9	24.3				
Change Period (Y+Rc), s	4.0	7.4	4.0	5.9	4.0	* 7.4	4.0	5.9				
Max Green Setting (Gmax), s	18.0	35.2	15.5	30.0	22.0	* 32	4.5	41.0				
Max Q Clear Time (g_c+l1), s	8.8	5.2	8.4	10.6	12.9	8.9	3.3	10.0				
Green Ext Time (p_c), s	0.2	0.9	0.5	1.8	0.4	1.0	0.0	2.4				
Intersection Summary												
HCM 2010 Ctrl Delay			33.6									
HCM 2010 LOS			С									
Notes												

1: Ocean View Hills Pkwy & Starfish Way/Westport View Dr

	۶	→	•	•	←	•	1	†	<i>></i>	/	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ሻ	∱ ∱		ሻ	∱ ∱	
Traffic Volume (veh/h)	20	10	30	40	10	60	20	860	50	160	670	20
Future Volume (veh/h)	20	10	30	40	10	60	20	860	50	160	670	20
Number	3	8	18	7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		0.98	1.00		0.97
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1863	1900	1900	1863	1900	1863	1863	1900	1863	1863	1900
Adj Flow Rate, veh/h	21	11	32	42	11	63	21	905	53	168	705	21
Adj No. of Lanes	0	1	0	0	1	0	1	2	0	1	2	0
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	40	21	61	57	15	86	34	1524	89	208	1919	57
Arrive On Green	0.07	0.07	0.07	0.09	0.09	0.09	0.02	0.45	0.45	0.12	0.55	0.55
Sat Flow, veh/h	552	289	842	604	158	907	1774	3393	199	1774	3506	104
Grp Volume(v), veh/h	64	0	0	116	0	0	21	472	486	168	356	370
Grp Sat Flow(s), veh/h/ln	1683	0	0	1669	0	0	1774	1770	1822	1774	1770	1841
Q Serve(g_s), s	2.7	0.0	0.0	5.1	0.0	0.0	0.9	15.0	15.0	6.9	8.5	8.5
Cycle Q Clear(g_c), s	2.7	0.0	0.0	5.1	0.0	0.0	0.9	15.0	15.0	6.9	8.5	8.5
Prop In Lane	0.33	0.0	0.50	0.36	0.0	0.54	1.00	10.0	0.11	1.00	0.0	0.06
Lane Grp Cap(c), veh/h	121	0	0.00	158	0	0.01	34	795	818	208	968	1007
V/C Ratio(X)	0.53	0.00	0.00	0.73	0.00	0.00	0.63	0.59	0.59	0.81	0.37	0.37
Avail Cap(c_a), veh/h	607	0	0	605	0	0	140	795	818	292	968	1007
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	33.5	0.0	0.0	33.0	0.0	0.0	36.4	15.5	15.5	32.2	9.6	9.6
Incr Delay (d2), s/veh	3.5	0.0	0.0	6.4	0.0	0.0	17.6	3.3	3.2	10.9	1.1	1.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.4	0.0	0.0	2.6	0.0	0.0	0.6	7.9	8.1	4.0	4.4	4.6
LnGrp Delay(d),s/veh	37.0	0.0	0.0	39.4	0.0	0.0	54.0	18.7	18.7	43.1	10.7	10.6
LnGrp LOS	D	0.0	0.0	D	0.0	0.0	D	В	В	D	В	В
Approach Vol, veh/h	D	64		<u> </u>	116		U	979	<u> </u>		894	
Approach Delay, s/veh		37.0			39.4			19.5			16.8	
Approach LOS		37.0 D			39.4 D			19.5 B			10.0 B	
Арргоаст СОЗ		D			D			Ь			Ь	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	5.8	46.7		12.0	13.2	39.4		10.3				
Change Period (Y+Rc), s	4.4	* 5.8		4.9	4.4	5.8		4.9				
Max Green Setting (Gmax), s	5.9	* 40		27.1	12.3	33.6		27.0				
Max Q Clear Time (g_c+I1), s	2.9	10.5		7.1	8.9	17.0		4.7				
Green Ext Time (p_c), s	0.0	4.3		0.5	0.1	5.2		0.2				
Intersection Summary												
HCM 2010 Ctrl Delay			20.0									
HCM 2010 LOS			20.0 B									
Notes												

Intersection						
Int Delay, s/veh	1					
	EDI.	EDD	NDI	NDT	CDT	CDD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y	0.0	`	^	^	0.0
Traffic Vol, veh/h	40	30	30	710	670	80
Future Vol, veh/h	40	30	30	710	670	80
Conflicting Peds, #/hr	8	8	- 8	0	0	- 8
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	225	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	42	32	32	747	705	84
Major/Minor N	/linor2	N	/lajor1	N	/lajor2	
			797		_	0
Conflicting Flow All	1201	411	191	0	-	0
Stage 1	755	-	-	-	-	-
Stage 2	446	-	111	-	-	-
Critical Hdwy	6.84	6.94	4.14	-	-	-
Critical Hdwy Stg 1	5.84	-	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-
Follow-up Hdwy	3.52	3.32	2.22	-	-	-
Pot Cap-1 Maneuver	177	590	821	-	-	-
Stage 1	425	-	-	-	-	-
Stage 2	612	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	168	582	816	-	-	-
Mov Cap-2 Maneuver	290	-	-	-	-	-
Stage 1	405	-	-	-	-	-
Stage 2	608	-	-	-	-	-
Annroach	ED		NID		CD	
Approach	EB		NB 0.4		SB	
HCM Control Delay, s	17.2		0.4		0	
HCM LOS	С					
Minor Lane/Major Mvm	t	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		816	-		-	-
HCM Lane V/C Ratio		0.039	_	0.2	_	_
HCM Control Delay (s)		9.6				
HCM Lane LOS		7.0 A		C	_	_
HCM 95th %tile Q(veh)		0.1	_	0.7	-	-
How 95th 76the Q(veh)		U. I	-	0.7	-	-

	•	→	•	•	←	•	1	†	<i>></i>	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			7	ሻ	1>		ሻሻ	↑ ↑₽		ሻ	∱ ∱	
Traffic Volume (veh/h)	160	10	130	20	10	20	200	790	30	60	460	290
Future Volume (veh/h)	160	10	130	20	10	20	200	790	30	60	460	290
Number	3	8	18	7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.95	0.96		0.98	1.00		0.97	1.00		0.98
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1863	1900	1863	1863	1900	1863	1863	1900
Adj Flow Rate, veh/h	168	11	137	21	11	21	211	832	32	63	484	305
Adj No. of Lanes	1	1	1	1	1	0	2	3	0	1	2	0
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	536	475	382	434	117	224	297	1958	75	80	724	454
Arrive On Green	0.10	0.25	0.25	0.05	0.21	0.21	0.09	0.39	0.39	0.05	0.35	0.35
Sat Flow, veh/h	1774	1863	1498	1774	567	1083	3442	5020	193	1774	2073	1301
Grp Volume(v), veh/h	168	11	137	21	0	32	211	561	303	63	413	376
Grp Sat Flow(s), veh/h/ln	1774	1863	1498	1774	0	1650	1721	1695	1823	1774	1770	1604
Q Serve(g_s), s	5.3	0.3	5.6	0.7	0.0	1.2	4.5	9.1	9.1	2.6	14.9	15.0
Cycle Q Clear(g_c), s	5.3	0.3	5.6	0.7	0.0	1.2	4.5	9.1	9.1	2.6	14.9	15.0
Prop In Lane	1.00	0.0	1.00	1.00	0.0	0.66	1.00	7.1	0.11	1.00	1 11.7	0.81
Lane Grp Cap(c), veh/h	536	475	382	434	0	341	297	1322	711	80	618	560
V/C Ratio(X)	0.31	0.02	0.36	0.05	0.00	0.09	0.71	0.42	0.43	0.78	0.67	0.67
Avail Cap(c_a), veh/h	738	893	718	721	0	791	349	1322	711	156	618	560
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	19.0	21.0	22.9	20.8	0.0	24.1	33.4	16.7	16.7	35.5	20.7	20.8
Incr Delay (d2), s/veh	0.3	0.0	0.6	0.0	0.0	0.1	5.5	1.0	1.9	15.1	5.7	6.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.6	0.2	2.4	0.3	0.0	0.5	2.4	4.4	4.9	1.6	8.2	7.6
LnGrp Delay(d),s/veh	19.3	21.0	23.5	20.9	0.0	24.2	38.8	17.7	18.6	50.6	26.4	27.1
LnGrp LOS	В	C C	23.5 C	C	0.0	C	D	В	В	D	C	C
Approach Vol, veh/h	<u> </u>	316			53		<u> </u>	1075	D		852	
Approach Delay, s/veh		21.2			22.9			22.1			28.5	
Approach LOS		21.2 C			22.9 C			22.1 C			20.5 C	
Approacti LOS		C			C			C			C	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	10.9	31.8	12.0	20.4	7.8	34.9	8.4	24.0				
Change Period (Y+Rc), s	4.4	* 5.6	4.4	4.9	4.4	5.6	4.4	4.9				
Max Green Setting (Gmax), s	7.6	* 26	16.1	36.0	6.6	27.0	16.1	36.0				
Max Q Clear Time (g_c+I1), s	6.5	17.0	7.3	3.2	4.6	11.1	2.7	7.6				
Green Ext Time (p_c), s	0.1	3.2	0.3	0.1	0.0	4.6	0.0	0.5				
Intersection Summary												
HCM 2010 Ctrl Delay			24.4									
HCM 2010 LOS			24.4 C									
Notes												

4: Ocean View Hills Pkwy & Sea Fire Point

Movement		•	→	`*	•	←	•	•	†	/	/	ţ	√
Traffic Volume (veh/h)	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (veh/h) 20 10 90 40 10 30 150 850 40 80 550 30 Future Volume (veh/h) 20 10 90 40 10 30 150 850 40 80 550 30 Number 3 8 18 7 4 14 1 1 6 16 5 2 12 Initial Q (Ob), veh 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Lane Configurations		44			1₃			ተ ቀኈ			ተ ተኈ	
Future Volume (veh/h) 20 10 90 40 10 30 150 850 40 80 550 30 Number 3 8 18 7 4 14 1 6 16 5 2 12 Initial Q (Ob), veh 0 <td>0</td> <td>20</td> <td></td> <td>90</td> <td></td> <td></td> <td>30</td> <td></td> <td></td> <td>40</td> <td></td> <td></td> <td>30</td>	0	20		90			30			40			30
Number 3	, ,		10	90	40	10	30	150	850	40	80	550	30
Initial Q (Qb), veh 0													
Ped-Bike Adj(A_pbT) 1.00													
Parking Bus, Adj	` '										1.00		
Adj Sat Flow, veh/h/In 1900 1863 1900 1863 1900 1863 1900 1863 1900 1863 1803 1900 Adj Flow Rate, veh/h 21 11 95 42 11 32 158 895 42 84 579 32 Adj No. of Lanes 0 1 0 1 0 1 3 0 1 3 0 Peak Hour Factor 0.95	, , _, ,		1.00			1.00			1.00			1.00	
Adj Flow Rate, veh/h 21 11 95 42 11 32 158 895 42 84 579 32 Adj No. of Lanes 0 1 0 1 1 0 1 3 0 1 3 0 Peak Hour Factor 0.95 0.05	,												
Adj No. of Lanes 0 1 0 1 1 0 1 3 0 1 3 0 Peak Hour Factor 0.95 0.91 241 0.91 117 0.97 0.49 0.06 0.44 0.06 0.01 0.09 0.09 0.05 0.05 0.01 0.14 0.08 1.8 0.10 0.49 0.06 0.04 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	•												
Peak Hour Factor 0.95 0.94 0.04 0.44 0.44 0.44 0.44 0.44 0.44	-												
Percent Heavy Veh, % 2	,												
Cap, veh/h 31 16 141 83 20 58 201 2419 113 109 2140 117 Arrive On Green 0.12 0.12 0.12 0.05 0.05 0.05 0.11 0.49 0.49 0.06 0.44 0.44 Sat Flow, veh/h 268 140 1212 1774 421 1225 1774 4968 233 1774 4920 270 Grp Volume(v), veh/h 127 0 0 42 0 43 158 610 327 84 398 213 Grp Sat Flow(s), veh/h/lm1621 0 0 1774 0 1647 1774 1695 1810 1774 1695 1799 Q Serve(g_s), s 5.3 0.0 0.0 1.6 0.0 1.8 6.1 7.9 7.9 3.3 5.3 5.3 Cycle Q Clear(g_c), s 5.3 0.0 0.0 1.6 0.0 1.8 6.1 7.9													
Arrive On Green 0.12 0.12 0.12 0.05 0.05 0.05 0.11 0.49 0.49 0.06 0.44 0.44 Sat Flow, veh/h 268 140 1212 1774 421 1225 1774 4968 233 1774 4920 270 Grp Volume(v), veh/h 127 0 0 42 0 43 158 610 327 84 398 213 Grp Sat Flow(s), veh/h/ln1621 0 0 1774 0 1647 1774 1695 1810 1774 1695 1799 Q Serve(g_s), s 5.3 0.0 0.0 1.6 0.0 1.8 6.1 7.9 7.9 3.3 5.3 5.3 Cycle O Clear(g_c), s s 5.3 0.0 0.0 1.6 0.0 1.8 6.1 7.9 7.9 3.3 5.3 5.3 Cycle O Clear(g_c), s s 5.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>													
Sat Flow, veh/h 268 140 1212 1774 421 1225 1774 4968 233 1774 490 270 Grp Volume(v), veh/h 127 0 0 42 0 43 158 610 327 84 398 213 Grp Sat Flow(s), veh/h/In1621 0 0 1774 0 1647 1774 1695 1810 1774 1695 1799 Q Serve(g_s), s 5.3 0.0 0.0 1.6 0.0 1.8 6.1 7.9 7.9 3.3 5.3 5.3 Cycle Q Clear(g_c), s 5.3 0.0 0.0 1.6 0.0 1.8 6.1 7.9 7.9 3.3 5.3 5.3 Cycle Q Clear(g_c), s s 5.3 0.0 0.0 1.6 0.0 1.8 6.1 7.9 7.9 3.3 5.3 5.3 Prop In Lane 0.17 0.75 1.00 0.0 1.00 0.0 0.0 1.00 1													
Grp Volume(v), veh/h 127 0 0 42 0 43 158 610 327 84 398 213 Grp Sat Flow(s), veh/h/ln1621 0 0 1774 0 1647 1774 1695 1810 1774 1695 1799 Q Serve(g_s), s 5.3 0.0 0.0 1.6 0.0 1.8 6.1 7.9 7.9 3.3 5.3 5.3 Cycle Q Clear(g_c), s 5.3 0.0 0.0 1.6 0.0 1.8 6.1 7.9 7.9 3.3 5.3 5.3 Cycle Q Clear(g_c), s													
Grp Sat Flow(s), yeh/h/ln1621 0 0 1774 0 1647 1774 1695 1810 1774 1695 1799 Q Serve(g_s), s 5.3 0.0 0.0 1.6 0.0 1.8 6.1 7.9 7.9 3.3 5.3 5.3 Cycle Q Clear(g_c), s 5.3 0.0 0.0 1.6 0.0 1.8 6.1 7.9 7.9 3.3 5.3 5.3 Prop In Lane 0.17 0.75 1.00 0.74 1.00 0.13 1.00 0.15 Lane Grp Cap(c), veh/h 188 0 0 83 0 77 201 1651 881 109 1475 783 V/C Ratio(X) 0.67 0.00 0.00 0.50 0.00 0.56 0.79 0.37 0.37 0.77 0.27 0.27 Avail Cap(c_a), veh/h 717 0 0 811 0 752 446 1651 881 322 1475 7													
Q Serve(g_s), s 5.3 0.0 0.0 1.6 0.0 1.8 6.1 7.9 7.9 3.3 5.3 5.3 Cycle Q Clear(g_c), s 5.3 0.0 0.0 1.6 0.0 1.8 6.1 7.9 7.9 3.3 5.3 5.3 Sychel Q Clear(g_c), s 5.3 0.0 0.0 1.6 0.0 1.8 6.1 7.9 7.9 3.3 5.3 5.3 Sychel Q Clear(g_c), s 5.3 0.0 0.0 1.6 0.0 1.8 6.1 7.9 7.9 3.3 5.3 5.3 Sychel Q Clear(g_c), s 5.3 0.0 0.0 1.6 0.0 1.8 6.1 7.9 7.9 3.3 5.3 5.3 Sychel Q Clear(g_c), s 5.3 0.0 0.0 1.8 6.1 7.9 7.9 3.3 5.3 5.3 Sychel Q Clear(g_c), s 5.3 0.0 0.0 0.74 1.00 0.13 1.00 0.15 Lane Grp Cap(c), veh/h 188 0 0 83 0 77 201 1651 881 109 1475 783 V/C Ratio(X) 0.67 0.00 0.00 0.50 0.00 0.56 0.79 0.37 0.37 0.77 0.27 0.27 Avail Cap(c_a), veh/h 717 0 0 0 811 0 752 446 1651 881 322 1475 783 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	1 77												
Cycle Q Clear(g_c), s 5.3 0.0 0.0 1.6 0.0 1.8 6.1 7.9 7.9 3.3 5.3 5.3 Prop In Lane 0.17 0.75 1.00 0.74 1.00 0.13 1.00 0.15 Lane Grp Cap(c), veh/h 188 0 0 83 0 77 201 1651 881 109 1475 783 V/C Ratio(X) 0.67 0.00 0.00 0.50 0.00 0.56 0.79 0.37 0.37 0.77 0.27 Avail Cap(c_a), veh/h 717 0 0 811 0 752 446 1651 881 322 1475 783 HCM Platoon Ratio 1.00 1													
Prop In Lane 0.17 0.75 1.00 0.74 1.00 0.13 1.00 0.15 Lane Grp Cap(c), veh/h 188 0 0 83 0 77 201 1651 881 109 1475 783 V/C Ratio(X) 0.67 0.00 0.00 0.56 0.79 0.37 0.37 0.77 0.27 Avail Cap(c_a), veh/h 717 0 0 811 0 752 446 1651 881 322 1475 783 HCM Platoon Ratio 1.00 1.													
Lane Grp Cap(c), veh/h 188 0 0 83 0 77 201 1651 881 109 1475 783 V/C Ratio(X) 0.67 0.00 0.00 0.50 0.00 0.56 0.79 0.37 0.37 0.77 0.27 0.27 Avail Cap(c_a), veh/h 717 0 0 811 0 752 446 1651 881 322 1475 783 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	, ,		0.0			0.0			7.9			5.3	
V/C Ratio(X) 0.67 0.00 0.00 0.50 0.00 0.56 0.79 0.37 0.37 0.77 0.27 0.27 Avail Cap(c_a), veh/h 717 0 0 811 0 752 446 1651 881 322 1475 783 HCM Platoon Ratio 1.00<	•		0			0			1/[1			1.175	
Avail Cap(c_a), veh/h 717 0 0 811 0 752 446 1651 881 322 1475 783 HCM Platoon Ratio 1.00 1.													
HCM Platoon Ratio 1.00 1.													
Upstream Filter(I) 1.00 0.00 0.00 1.00 0.00 1.00 1.00 1.0													
Uniform Delay (d), s/veh 29.7 0.0 0.0 32.6 0.0 32.7 30.2 11.2 11.3 32.4 12.7 12.7 Incr Delay (d2), s/veh 4.2 0.0 0.0 4.6 0.0 6.1 6.6 0.6 1.2 10.8 0.4 0.9 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.													
Incr Delay (d2), s/veh 4.2 0.0 0.0 4.6 0.0 6.1 6.6 0.6 1.2 10.8 0.4 0.9 Initial Q Delay(d3),s/veh 0.0													
Initial Q Delay(d3),s/veh 0.0 <t< td=""><td>3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	3												
%ile BackOfQ(50%),veh/lr2.6 0.0 0.0 0.9 0.0 0.9 3.4 3.8 4.2 1.9 2.5 2.8 LnGrp Delay(d),s/veh 33.8 0.0 0.0 37.2 0.0 38.7 36.9 11.9 12.5 43.2 13.1 13.5 LnGrp LOS C D D D B B D B B Approach Vol, veh/h 127 85 1095 695<													
LnGrp Delay(d),s/veh 33.8 0.0 0.0 37.2 0.0 38.7 36.9 11.9 12.5 43.2 13.1 13.5 LnGrp LOS C D D D B B D B B Approach Vol, veh/h 127 85 1095 695 Approach Delay, s/veh 33.8 38.0 15.7 16.9 Approach LOS C D B B Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 4 5 6 8 Phs Duration (G+Y+Rc), \$2.3 36.5 8.2 8.7 40.1 13.0													
LnGrp LOS C D D D B B D B B Approach Vol, veh/h 127 85 1095 695 Approach Delay, s/veh 33.8 38.0 15.7 16.9 Approach LOS C D B B Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 4 5 6 8 Phs Duration (G+Y+Rc), \$2.3 36.5 8.2 8.7 40.1 13.0	. , ,												
Approach Vol, veh/h 127 85 1095 695 Approach Delay, s/veh 33.8 38.0 15.7 16.9 Approach LOS C D B B Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 4 5 6 8 Phs Duration (G+Y+Rc), \$2.3 36.5 8.2 8.7 40.1 13.0	. , ,		0.0	0.0		0.0							
Approach Delay, s/veh 33.8 38.0 15.7 16.9 Approach LOS C D B B Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 4 5 6 8 Phs Duration (G+Y+Rc), \$2.3 36.5 8.2 8.7 40.1 13.0		С			D		D	D		В	D		В
Approach LOS C D B B Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 4 5 6 8 Phs Duration (G+Y+Rc), \$2.3 36.5 8.2 8.7 40.1 13.0	• •												
Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 4 5 6 8 Phs Duration (G+Y+Rc), 12.3 36.5 8.2 8.7 40.1 13.0													
Assigned Phs 1 2 4 5 6 8 Phs Duration (G+Y+Rc), \$2.3 36.5 8.2 8.7 40.1 13.0	Approach LOS		С			D			В			В	
Assigned Phs 1 2 4 5 6 8 Phs Duration (G+Y+Rc), \$2.3 36.5 8.2 8.7 40.1 13.0	Timer	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), \$2.3 36.5 8.2 8.7 40.1 13.0		1			4								
		•											
Change Follow (Fix Oil Oil Oil Oil Oil Oil Oil Oil Oil Oil													
Max Green Setting (Gmax), 6 29.2 32.0 12.7 34.1 31.0													
Max Q Clear Time (g_c+119,1s 7.3 3.8 5.3 9.9 7.3													
Green Ext Time (p_c), s 0.3 3.5 0.3 0.1 5.9 0.6													
		0.0	5.5		0.5	U. I	J.7		0.0				
Intersection Summary				40.5									
HCM 2010 Ctrl Delay 18.2													
HCM 2010 LOS B	HCM 2010 LOS			В									

	√	L	₽î	†	<u> </u>	<u> </u>	
Movement V	NBL	WBR	NBU	NBT	NBR	SBL	SBT
Lane Configurations	ሻ	7		4		7	^
Traffic Volume (veh/h)	80	10	0	1120	90	10	590
Future Volume (veh/h)	80	10	0	1120	90	10	590
Number	7	14	U	6	16	5	2
Initial Q (Qb), veh	0	0		0	0	0	0
, ,	1.00	1.00		U	0.96		U
,				1.00		1.00	1.00
J . J	1.00	1.00		1.00	1.00	1.00	1.00
	863	1863		1863	1900	1863	1863
Adj Flow Rate, veh/h	84	11		1179	95	11	621
Adj No. of Lanes	1	1		3	0	1	3
	0.95	0.95		0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2		2	2	2	2
	118	105		2940	237	20	3653
	0.07	0.07		0.61	0.61	0.01	0.72
Sat Flow, veh/h 1	774	1583		4949	385	1774	5253
Grp Volume(v), veh/h	84	11		836	438	11	621
Grp Sat Flow(s), veh/h/ln1	774	1583		1695	1777	1774	1695
Q Serve(g_s), s	2.3	0.3		6.2	6.2	0.3	1.9
Cycle Q Clear(g_c), s	2.3	0.3		6.2	6.2	0.3	1.9
	1.00	1.00			0.22	1.00	
•	118	105		2084	1092	20	3653
	0.71	0.10		0.40	0.40	0.55	0.17
	127	1006		2084	1092	145	3653
	1.00	1.00		1.00	1.00	1.00	1.00
	1.00	1.00		1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh 2		21.4		4.8	4.8	24.0	2.2
Incr Delay (d2), s/veh	7.7	0.4		0.6	1.1	21.1	0.1
Initial Q Delay(d3),s/veh		0.4		0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/		0.0		3.0	3.3	0.0	0.0
	30.0	21.8		5.4	5.9	45.1	2.3
1 3 . ,	30.0 C	21.8 C		5.4 A		45.1 D	
LnGrp LOS		U			A	U	A (22)
Approach Vol, veh/h	95			1274			632
, i	29.1			5.6			3.1
Approach LOS	С			Α			Α
Timer	1	2	3	4	5	6	7
Assigned Phs		2		4	5	6	
Phs Duration (G+Y+Rc),	S	41.1		7.7	5.1	36.0	
Change Period (Y+Rc), s		6.0		4.5	4.5	6.0	
Max Green Setting (Gma		29.5		31.0	4.0	30.0	
Max Q Clear Time (g_c+l		3.9		4.3	2.3	8.2	
Green Ext Time (p_c), s	11), 3	4.0		0.2	0.0	8.4	
		4.0		0.2	0.0	0.4	
Intersection Summary							
HCM 2010 Ctrl Delay			5.9				
HCM 2010 LOS			Α				
Notes							
เพษเธร							

6: Caliente Ave/Ocean View Hills Pkwy & Otay Mesa Rd

	•	→	`*	•	←	•	1	†	/	\	ţ	✓	
Movement E	BL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		^	7	77	†	7	ሻ	^	7	ሻሻ	^	7	
	50	90	80	1100	130	420	120	860	480	330	400	10	
, ,	50	90	80	1100	130	420	120	860	480	330	400	10	
Number	7	4	14	3	8	18	5	2	12	1	6	16	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
	.00		1.00	1.00		0.98	1.00		0.99	1.00		0.96	
	.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
	363	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863	
•	53	95	84	1158	137	442	126	905	505	347	421	11	
Adj No. of Lanes	1	2	1	2	1	1	1	2	1	2	2	1	
•	.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2	
•	116	224	233	1199	645	538	149	1196	1080	401	1311	563	
	.07	0.06	0.06	0.35	0.35	0.35	0.08	0.34	0.34	0.12	0.37	0.37	
	774	3539	1583		1863	1554	1774	3539	1563	3442	3539	1519	
				3442									
	53	95	84	1158	137	442	126	905	505	347	421	11	
Grp Sat Flow(s), veh/h/ln17		1770	1583	1721	1863	1554	1774	1770	1563	1721	1770	1519	
10- /	4.3	3.9	7.2	49.6	7.8	39.0	10.5	34.1	22.5	14.9	12.7	0.7	
,	4.3	3.9	7.2	49.6	7.8	39.0	10.5	34.1	22.5	14.9	12.7	0.7	
•	.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00	
	116	224	233	1199	645	538	149	1196	1080	401	1311	563	
` ,	.46	0.42	0.36	0.97	0.21	0.82	0.85	0.76	0.47	0.87	0.32	0.02	
Avail Cap(c_a), veh/h 1	130	363	295	1211	710	593	222	1196	1080	521	1311	563	
HCM Platoon Ratio 1.	.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I) 1.	.00	1.00	1.00	1.00	1.00	1.00	0.93	0.93	0.93	1.00	1.00	1.00	
Uniform Delay (d), s/veh 67	7.5	67.6	57.6	48.0	34.6	44.8	67.8	44.2	10.9	65.1	33.7	29.9	
Incr Delay (d2), s/veh 2	2.8	1.3	0.9	18.2	0.2	8.4	16.2	4.2	1.4	11.6	0.6	0.1	
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/lr		1.9	3.2	26.5	4.0	18.0	5.8	17.4	10.0	7.7	6.4	0.3	
• • • • • • • • • • • • • • • • • • • •	0.3	68.9	58.5	66.2	34.7	53.1	83.9	48.4	12.3	76.7	34.4	30.0	
LnGrp LOS	E	E	E	E	С	D	F	D	В	E	С	С	
Approach Vol, veh/h	_	232	_		1737			1536			779		
Approach Delay, s/veh		65.5			60.4			39.4			53.2		
Approach LOS		05.5 E			60.4 E			39.4 D			55.2 D		
Approach LOS		L			L			D			D		
Timer	1	2	3	4	5	6	7	8					
Assigned Phs	1	2	3	4	5	6	7	8					
Phs Duration (G+Y+Rc), &	2.2	55.8	57.4	14.6	17.3	60.7	15.0	57.1					
Change Period (Y+Rc), \$ 4	4.7	5.1	* 5.2	5.1	* 4.7	5.1	* 5.2	5.1					
Max Green Setting (Gmax)		39.0	* 53	15.4	* 19	42.9	* 11	57.2					
Max Q Clear Time (g_c+III		36.1	51.6	9.2	12.5	14.7	6.3	41.0					
Green Ext Time (p_c), s (2.0	0.7	0.3	0.1	2.6	0.0	2.1					
Intersection Summary													
HCM 2010 Ctrl Delay			51.8										
HCM 2010 Clif Delay			D D										
Notes													
NOGS													

		→	•	√	←	•	•	†	<u> </u>	\		4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					4	7	ች	ተተተ			ተ ተኈ	
Traffic Volume (veh/h)	0	0	0	90	10	210	530	1180	0	0	420	1100
Future Volume (veh/h)	0	0	0	90	10	210	530	1180	0	0	420	1100
Number	U	U	U	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh				0	0	0	0	0	0	0	0	0
• • •				1.00	U	1.00	1.00	U	1.00	1.00	U	0.95
Ped-Bike Adj(A_pbT)				1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00
Parking Bus, Adj				1900	1863	1863	1.00 1863	1863		0.10	1863	1900
Adj Sat Flow, veh/h/ln				95	11	221			0			
Adj Flow Rate, veh/h							558	1242	0	0	442	1158
Adj No. of Lanes				0	1	1	1	3	0	0	3	0
Peak Hour Factor				0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %				2	2	2	2	2	0	0	2	2
Cap, veh/h				256	30	254	544	3695	0	0	1246	553
Arrive On Green				0.16	0.16	0.16	0.31	0.73	0.00	0.00	0.37	0.37
Sat Flow, veh/h				1598	185	1583	1774	5253	0	0	3558	1505
Grp Volume(v), veh/h				106	0	221	558	1242	0	0	442	1158
Grp Sat Flow(s),veh/h/lr	1			1783	0	1583	1774	1695	0	0	1695	1505
Q Serve(g_s), s				4.8	0.0	12.3	27.6	8.0	0.0	0.0	8.5	33.1
Cycle Q Clear(g_c), s				4.8	0.0	12.3	27.6	8.0	0.0	0.0	8.5	33.1
Prop In Lane				0.90		1.00	1.00		0.00	0.00		1.00
Lane Grp Cap(c), veh/h				286	0	254	544	3695	0	0	1246	553
//C Ratio(X)				0.37	0.00	0.87	1.03	0.34	0.00	0.00	0.35	2.09
vail Cap(c_a), veh/h				305	0	271	544	3695	0	0	1246	553
ICM Platoon Ratio				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Jpstream Filter(I)				1.00	0.00	1.00	0.38	0.38	0.00	0.00	0.55	0.55
Jniform Delay (d), s/veł	1			33.7	0.0	36.9	31.2	4.5	0.0	0.0	20.7	28.5
ncr Delay (d2), s/veh				0.8	0.0	24.1	30.7	0.1	0.0	0.0	0.4	495.6
nitial Q Delay(d3),s/veh)			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh				2.4	0.0	7.0	18.1	3.7	0.0	0.0	4.1	89.8
LnGrp Delay(d),s/veh				34.5	0.0	61.0	61.9	4.5	0.0	0.0	21.1	524.0
LnGrp LOS				C	0.0	E	F	A	0.0	0.0	C	F
Approach Vol, veh/h					327	_	•	1800			1600	•
Approach Delay, s/veh					52.5			22.3			385.1	
Approach LOS					J2.3			ZZ.3			F	
•												
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2			5	6		8				
Phs Duration (G+Y+Rc)		70.5			32.3	38.2		19.5				
Change Period (Y+Rc),		5.1			* 4.7	5.1		5.1				
Max Green Setting (Gm	ax), s	64.4			* 28	32.1		15.4				
Max Q Clear Time (g_c-		10.0			29.6	35.1		14.3				
Green Ext Time (p_c), s		10.9			0.0	0.0		0.2				
ntersection Summary			100 7									
HCM 2010 Ctrl Delay			180.7									
HCM 2010 LOS			F									
Notes												
10100												

•	→	•	•	←	•	•	†	<u> </u>	\		4
Movement EBI	. EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations							ተ ተጉ		ሻ	^	
Traffic Volume (veh/h) 670		500	0	0	0	0	1050	230	110	410	0
Future Volume (veh/h) 670			0	0	0	0	1050	230	110	410	0
Number		14		<u> </u>		5	2	12	1	6	16
Initial Q (Qb), veh		0				0	0	0	0	0	0
Ped-Bike Adj(A_pbT) 1.00		1.00				1.00		0.99	1.00		1.00
Parking Bus, Adj 1.00		1.00				1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln 1863		1900				0	1863	1900	1863	1863	0
Adj Flow Rate, veh/h 62		526				0	1105	242	116	432	0
Adj No. of Lanes		0				0	3	0	1	2	0
Peak Hour Factor 0.95		0.95				0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %						0.73	2	2	2	2	0.73
Cap, veh/h 730		539				0	1333	292	146	1632	0
Arrive On Green 0.4		0.41				0.00	0.32	0.32	0.08	0.46	0.00
Sat Flow, veh/h 1774		1310				0.00	4334	912	1774	3632	0.00
Grp Volume(v), veh/h 62°						0	899	448	116	432	0
						0	1695	1688	1774	1770	0
Grp Sat Flow(s), veh/h/ln1774 Q Serve(q_s), s 25.4						0.0	19.6	19.6	5.1	6.0	0.0
						0.0	19.6	19.6	5.1	6.0	0.0
, , ,		0.80				0.00	17.0	0.54	1.00	0.0	0.00
•							1085	540	1.00	1632	
Lane Grp Cap(c), veh/h 730						0.00	0.83				0.00
V/C Ratio(X) 0.85 Avail Cap(c_a), veh/h 730		0.98 671					1085	0.83 540	0.79	0.26 1632	
1 \ - /:						1.00					1.00
HCM Platoon Ratio 1.00						1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I) 1.00		1.00				0.00	1.00	1.00	0.32	0.32	0.00
Uniform Delay (d), s/veh 21.3		23.2				0.0	25.2	25.2	36.0	13.2	0.0
Incr Delay (d2), s/veh 9.5		28.8				0.0	7.3	13.7	7.7	0.1	0.0
Initial Q Delay(d3),s/veh 0.0		0.0				0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln4.2						0.0	10.2	11.1	2.8	2.9	0.0
LnGrp Delay(d),s/veh 30.8		51.9				0.0	32.5	38.9	43.8	13.4	0.0
LnGrp LOS (D					C	D	D	B	
Approach Vol, veh/h	1276						1347			548	
Approach Delay, s/veh	41.6						34.6			19.8	
Approach LOS	D						С			В	
Timer	2		4	5	6	7	8				
Assigned Phs	_		4		6						
Phs Duration (G+Y+Rc), \$1.3	30.7		38.0		42.0						
Change Period (Y+Rc), \$ 4.			5.1		5.1						
Max Green Setting (Gmax),	24.9		32.9		36.9						
Max Q Clear Time (g_c+11),	s 21.6		33.6		8.0						
Green Ext Time (p_c), s 0.0			0.0		2.7						
Intersection Summary											
HCM 2010 Ctrl Delay		34.9									
HCM 2010 Cm Delay		34.9 C									
		C									
Notes											

Intersection												
Intersection Delay, s/vel	า90.2											
Intersection LOS	F											
	EDI	EDT	EDD	WDI	WDT	WDD	NDI	NDT	NDD	CDI	CDT	CDD
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	4		ች	↑	7	<u>ነ</u>	↑ ↑		7	↑ ↑	
Traffic Vol, veh/h	390	30	40	10	20	370	20	430	10	250	400	220
Future Vol, veh/h	390	30	40	10	20	370	20	430	10	250	400	220
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	411	32	42	11	21	389	21	453	11	263	421	232
Number of Lanes	1	1	0	1	1	1	1	2	0	1	2	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	3			2			3			3		
Conflicting Approach Le	ft SB			NB			EB			WB		
Conflicting Lanes Left	3			3			2			3		
Conflicting Approach Rig	ghtNB			SB			WB			EB		
Conflicting Lanes Right	3			3			3			2		
HCM Control Delay	55.9			171.8			72.3			80.3		
HCM LOS	F			F			F			F		
Lane	N	IBLn11	NBLn21	NBLn3	EBLn1	EBLn2\	VBLn1V	VBLn2V	VBLn3	SBLn1	SBLn2	SBLn3
Lane Vol Left, %		<u>IBLn1 </u>	NBLn21 0%	NBLn3	EBLn1 100%		VBLn1V 100%	VBLn2V 0%		SBLn1 100%	SBLn2 0%	SBLn3
Vol Left, %		100%	0%	0%								
		100%			100%	70%	100%	0% 100%	0%	100%	0%	0%
Vol Left, % Vol Thru, %		100% 0%	0% 100%	0% 93%	100% 0%	70% 13%	100% 0%	0% 100%	0% 0%	100% 0%	0% 100%	0% 38%
Vol Left, % Vol Thru, % Vol Right, %		100% 0% 0%	0% 100% 0%	0% 93% 7%	100% 0% 0%	70% 13% 17%	100% 0% 0%	0% 100% 0%	0% 0% 100%	100% 0% 0%	0% 100% 0%	0% 38% 62%
Vol Left, % Vol Thru, % Vol Right, % Sign Control		100% 0% 0% Stop	0% 100% 0% Stop	0% 93% 7% Stop	100% 0% 0% Stop	70% 13% 17% Stop	100% 0% 0% Stop	0% 100% 0% Stop	0% 0% 100% Stop	100% 0% 0% Stop	0% 100% 0% Stop	0% 38% 62% Stop
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane		100% 0% 0% Stop 20	0% 100% 0% Stop 287	0% 93% 7% Stop 153	100% 0% 0% Stop 230	70% 13% 17% Stop 230	100% 0% 0% Stop 10	0% 100% 0% Stop 20	0% 0% 100% Stop 370	100% 0% 0% Stop 250	0% 100% 0% Stop 267	0% 38% 62% Stop 353
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol		100% 0% 0% Stop 20 20	0% 100% 0% Stop 287 0	0% 93% 7% Stop 153 0	100% 0% 0% Stop 230 230	70% 13% 17% Stop 230 160	100% 0% 0% Stop 10 10	0% 100% 0% Stop 20 0	0% 0% 100% Stop 370 0	100% 0% 0% Stop 250 250	0% 100% 0% Stop 267 0	0% 38% 62% Stop 353 0
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol		100% 0% 0% Stop 20 20	0% 100% 0% Stop 287 0 287	0% 93% 7% Stop 153 0 143	100% 0% 0% Stop 230 230	70% 13% 17% Stop 230 160 30	100% 0% 0% Stop 10 10	0% 100% 0% Stop 20 0	0% 0% 100% Stop 370 0	100% 0% 0% Stop 250 250	0% 100% 0% Stop 267 0 267	0% 38% 62% Stop 353 0 133
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate		100% 0% 0% Stop 20 20 0	0% 100% 0% Stop 287 0 287 0	0% 93% 7% Stop 153 0 143	100% 0% 0% Stop 230 230 0	70% 13% 17% Stop 230 160 30 40	100% 0% 0% Stop 10 10 0	0% 100% 0% Stop 20 0 20	0% 0% 100% Stop 370 0 0	100% 0% 0% Stop 250 250 0	0% 100% 0% Stop 267 0 267	0% 38% 62% Stop 353 0 133 220
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		100% 0% 0% Stop 20 20 0 0	0% 100% 0% Stop 287 0 287 0 302	0% 93% 7% Stop 153 0 143 10	100% 0% 0% Stop 230 0 0	70% 13% 17% Stop 230 160 30 40 242	100% 0% 0% Stop 10 10 0 0	0% 100% 0% Stop 20 0 20 0 21	0% 0% 100% Stop 370 0 0 370 389	100% 0% 0% Stop 250 250 0 0 263	0% 100% 0% Stop 267 0 267 0 281	0% 38% 62% Stop 353 0 133 220 372
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		100% 0% 0% Stop 20 20 0 0 21 8	0% 100% 0% Stop 287 0 287 0 302 8 1.025	0% 93% 7% Stop 153 0 143 10 161 8 0.546	100% 0% 0% Stop 230 230 0 0 242	70% 13% 17% Stop 230 160 30 40 242 8 0.824	100% 0% 0% Stop 10 0 0 11 8 0.038	0% 100% 0% Stop 20 0 20 0 21 8	0% 0% 100% Stop 370 0 0 370 389 8 1.285	100% 0% 0% Stop 250 250 0 0 263 8 0.843	0% 100% 0% Stop 267 0 267 0 281 8 0.86	0% 38% 62% Stop 353 0 133 220 372 8 1.096
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		100% 0% 0% Stop 20 20 0 0 21 8	0% 100% 0% Stop 287 0 287 0 302 8 1.025	0% 93% 7% Stop 153 0 143 10 161 8 0.546	100% 0% 0% Stop 230 230 0 0 242 8 0.843	70% 13% 17% Stop 230 160 30 40 242 8 0.824	100% 0% 0% Stop 10 0 0 11 8 0.038	0% 100% 0% Stop 20 0 20 0 21 8	0% 0% 100% Stop 370 0 0 370 389 8 1.285	100% 0% 0% Stop 250 250 0 0 263 8 0.843	0% 100% 0% Stop 267 0 267 0 281 8 0.86	0% 38% 62% Stop 353 0 133 220 372 8 1.096
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hoc Convergence, Y/N		100% 0% Stop 20 20 0 21 8 0.074 3.459	0% 100% 0% Stop 287 0 287 0 302 8 1.025	0% 93% 7% Stop 153 0 143 10 161 8 0.546 12.884	100% 0% 0% Stop 230 0 0 242 8 0.843 12.663	70% 13% 17% Stop 230 160 30 40 242 8 0.824 12.389	100% 0% 0% Stop 10 10 0 0 11 8 0.038 13.375	0% 100% 0% Stop 20 0 20 0 21 8 0.074 12.857	0% 0% 100% Stop 370 0 0 370 389 8 1.285	100% 0% 0% Stop 250 0 0 263 8 0.843 12.392	0% 100% 0% Stop 267 0 267 0 281 8 0.86 11.865	0% 38% 62% Stop 353 0 133 220 372 8 1.096 11.405
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Ho	d) 1	100% 0% Stop 20 0 0 21 8 0.074 3.459 Yes 268	0% 100% 0% Stop 287 0 302 8 1.025 12.932 Yes 284	0% 93% 7% Stop 153 0 143 10 161 8 0.546 12.884 Yes 282	100% 0% 0% Stop 230 0 0 242 8 0.843 12.663 Yes	70% 13% 17% Stop 230 160 30 40 242 8 0.824 12.389 Yes 295	100% 0% Stop 10 0 0 11 8 0.038 13.375 Yes 269	0% 100% 0% Stop 20 0 20 0 21 8 0.074 12.857 Yes 280	0% 0% 100% Stop 370 0 370 389 8 1.285 12.132 Yes 304	100% 0% 0% Stop 250 0 0 263 8 0.843 12.392 Yes 295	0% 100% 0% Stop 267 0 267 0 281 8 0.86 11.865 Yes 309	0% 38% 62% Stop 353 0 133 220 372 8 1.096 11.405 Yes 320
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Ho Convergence, Y/N Cap	i) 1	100% 0% Stop 20 0 0 21 8 0.074 3.459 Yes 268 1.159	0% 100% 0% Stop 287 0 302 8 1.025 12.932 Yes 284	0% 93% 7% Stop 153 0 143 10 161 8 0.546 12.884 Yes 282 10.584	100% 0% Stop 230 230 0 0 242 8 0.843 12.663 Yes 288	70% 13% 17% Stop 230 160 30 40 242 8 0.824 12.389 Yes 295 10.089	100% 0% Stop 10 0 0 11 8 0.038 13.375 Yes 269	0% 100% 0% Stop 20 0 20 0 21 8 0.074 12.857 Yes 280	0% 0% 100% Stop 370 0 370 389 8 1.285 12.132 Yes 304 9.832	100% 0% 0% Stop 250 0 0 263 8 0.843 12.392 Yes 295	0% 100% 0% Stop 267 0 267 0 281 8 0.86 11.865 Yes 309 9.565	0% 38% 62% Stop 353 0 133 220 372 8 1.096 11.405 Yes 320 9.105
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Ho Convergence, Y/N Cap Service Time	i) 1	100% 0% Stop 20 0 0 21 8 0.074 3.459 Yes 268 1.159	0% 100% 0% Stop 287 0 287 0 302 8 1.025 12.932 Yes 284	0% 93% 7% Stop 153 0 143 10 161 8 0.546 12.884 Yes 282 10.584	100% 0% Stop 230 0 0 242 8 0.843 12.663 Yes 288 10.363	70% 13% 17% Stop 230 160 30 40 242 8 0.824 12.389 Yes 295 10.089	100% 0% Stop 10 0 0 11 8 0.038 13.375 Yes 269 11.075	0% 100% 0% Stop 20 0 21 8 0.074 12.857 Yes 280 10.557	0% 0% 100% Stop 370 0 370 389 8 1.285 12.132 Yes 304 9.832	100% 0% Stop 250 250 0 0 263 8 0.843 12.392 Yes 295 10.092	0% 100% 0% Stop 267 0 267 0 281 8 0.86 11.865 Yes 309 9.565 0.909	0% 38% 62% Stop 353 0 133 220 372 8 1.096 11.405 Yes 320 9.105
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hot Convergence, Y/N Cap Service Time HCM Lane V/C Ratio	i) 1	100% 0% Stop 20 0 0 21 8 0.074 3.459 Yes 268 1.159 0.078	0% 100% 0% Stop 287 0 287 0 302 8 1.025 12.932 Yes 284 10.632 1.063	0% 93% 7% Stop 153 0 143 10 161 8 0.546 12.884 Yes 282 10.584 0.571	100% 0% Stop 230 230 0 0 242 8 0.843 12.663 Yes 288 10.363 0.84	70% 13% 17% Stop 230 160 30 40 242 8 0.824 12.389 Yes 295 10.089 0.82	100% 0% Stop 10 0 0 11 8 0.038 13.375 Yes 269 11.075 0.041	0% 100% 0% Stop 20 0 21 8 0.074 12.857 Yes 280 10.557 0.075	0% 0% 100% Stop 370 0 370 389 8 1.285 12.132 Yes 304 9.832 1.28	100% 0% Stop 250 250 0 0 263 8 0.843 12.392 Yes 295 10.092 0.892	0% 100% 0% Stop 267 0 267 0 281 8 0.86 11.865 Yes 309 9.565 0.909	0% 38% 62% Stop 353 0 133 220 372 8 1.096 11.405 Yes 320 9.105 1.163

HCM 95th-tile Q

0.2 10.8

3

7.1

6.8

0.1

0.2 18.4

7.1

7.6 13.4

Intersection
Int Delay, s/veh 0.8
Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR
Lane Configurations 7 111 7 17 17 17 17
Traffic Vol, veh/h 0 960 110 0 1600 40 0 0 40 0 0 70
Future Vol, veh/h 0 960 110 0 1600 40 0 0 40 0 0 70
Conflicting Peds, #/hr 0 0 0 0 0 0 0 0 0 0 0
Sign Control Free Free Free Free Free Free Stop Stop Stop Stop Stop Stop
RT Channelized None None None
Storage Length 250 - 250 250 - 400 0 0
Veh in Median Storage, # - 0 0 0 -
Grade, % - 0 0 0 -
Peak Hour Factor 95 95 95 95 95 95 95 95 95 95 95
Heavy Vehicles, % 2 2 2 2 2 2 2 2 2 2 2 2
Mvmt Flow 0 1011 116 0 1684 42 0 0 42 0 0 74
Major/Minor Major1 Major2 Minor1 Minor2
Conflicting Flow All 1726 0 0 1127 0 0 506 842
Stage 1
Stage 2
Critical Hdwy 5.34 5.34 7.14 7.14
Critical Hdwy Stg 1
Critical Hdwy Stg 2
Follow-up Hdwy 3.12 3.12 3.92 3.92
Pot Cap-1 Maneuver 172 340 0 0 438 0 0 264
Stage 1 0 0 - 0 0 -
Stage 2 0 0 - 0 0 -
Platoon blocked, %
Mov Cap-1 Maneuver 172 340 438 264
Mov Cap-2 Maneuver
Stage 1
Stage 2
Approach EB WB NB SB
HCM Control Delay, s 0 0 14.1 23.8
HCM LOS B C
Minor Lane/Major Mvmt NBLn1 EBL EBT EBR WBL WBT WBR SBLn1
Capacity (veh/h) 438 172 340 264
HCM Lane V/C Ratio 0.096 0.279
HCM Control Delay (s) 14.1 0 0 23.8
HCM Lane LOS B A A C
HCM 95th %tile Q(veh) 0.3 0 0 1.1

	۶	→	•	•	←	•	1	†	/	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	ተተተ	7		ተተተ	7	ሻሻ	₽		- ሻ	₽.	- 7
Traffic Volume (veh/h)	200	560	160	120	1050	130	250	20	70	120	20	380
Future Volume (veh/h)	200	560	160	120	1050	130	250	20	70	120	20	380
Number	5	2	12	1	6	16	3	8	18	7	4	14
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.99
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1863	1863	1863	1863	1900	1863	1863	1863
Adj Flow Rate, veh/h	211	589	168	126	1105	137	263	21	74	126	0	414
Adj No. of Lanes	2	3	1	1	3	1	2	1	0	1	0	2
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	277	1967	612	257	1367	425	348	37	129	647	0	1140
Arrive On Green	0.08	0.39	0.39	0.27	0.27	0.27	0.10	0.10	0.10	0.36	0.00	0.36
Sat Flow, veh/h	3442	5085	1583	705	5085	1582	3442	362	1276	1774	0	3127
Grp Volume(v), veh/h	211	589	168	126	1105	137	263	0	95	126	0	414
Grp Sat Flow(s),veh/h/ln	1721	1695	1583	705	1695	1582	1721	0	1638	1774	0	1563
Q Serve(g_s), s	6.4	8.6	7.8	17.0	21.7	7.4	8.0	0.0	5.9	5.2	0.0	10.4
Cycle Q Clear(g_c), s	6.4	8.6	7.8	17.0	21.7	7.4	8.0	0.0	5.9	5.2	0.0	10.4
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.78	1.00		1.00
Lane Grp Cap(c), veh/h	277	1967	612	257	1367	425	348	0	165	647	0	1140
V/C Ratio(X)	0.76	0.30	0.27	0.49	0.81	0.32	0.76	0.00	0.57	0.19	0.00	0.36
Avail Cap(c_a), veh/h	386	2268	706	278	1521	473	563	0	268	647	0	1140
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	48.2	22.8	22.5	34.8	36.5	31.3	46.8	0.0	45.9	23.2	0.0	24.9
Incr Delay (d2), s/veh	5.7	0.1	0.2	1.5	3.1	0.4	3.4	0.0	3.1	0.7	0.0	0.9
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	3.3	4.1	3.4	3.4	10.5	3.3	4.0	0.0	2.8	2.7	0.0	4.6
LnGrp Delay(d),s/veh	53.8	22.8	22.7	36.3	39.6	31.7	50.2	0.0	49.0	23.9	0.0	25.8
LnGrp LOS	D	С	С	D	D	С	D		D	С		С
Approach Vol, veh/h		968			1368			358			540	
Approach Delay, s/veh		29.6			38.5			49.9			25.4	
Approach LOS		С			D			D			С	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2		4	5	6		8				
Phs Duration (G+Y+Rc), s		48.7		43.0	12.6	36.1		15.3				
Change Period (Y+Rc), s		7.3		4.0	4.0	* 7.3		4.5				
Max Green Setting (Gmax), s		47.7		39.0	12.0	* 32		17.5				
Max Q Clear Time (q_c+l1), s		10.6		12.4	8.4	23.7		10.0				
Green Ext Time (p_c), s		4.5		2.0	0.2	5.0		0.8				
Intersection Summary												
HCM 2010 Ctrl Delay			34.9									
HCM 2010 LOS			С									
Notes												

Int Delay, s/veh 1.5
Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR
Lane Configurations
Traffic Vol, veh/h 0 690 10 0 940 60 0 0 10 0 150
Future Vol, veh/h 0 690 10 0 940 60 0 0 10 0 150
Conflicting Peds, #/hr 0 0 0 0 0 0 0 0 0 0
Sign Control Free Free Free Free Free Free Stop Stop Stop Stop Stop Stop
RT Channelized None None None
Storage Length 500 0
Veh in Median Storage, # - 0 0 0 -
Grade, % - 0 0 0 -
Peak Hour Factor 95 95 95 95 95 95 95 95 95 95 95
Heavy Vehicles, % 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Mvmt Flow 0 726 11 0 989 63 0 0 11 0 0 158
Major/Minor Major1 Major2 Minor1 Minor2
Conflicting Flow All - 0 0 0 369 495
Stage 1
Stage 2
Critical Hdwy 7.14 7.14
Critical Hdwy Stg 1
Critical Hdwy Stg 2
Follow-up Hdwy 3.92 3.92
Pot Cap-1 Maneuver 0 0 0 0 536 0 0 445
Stage 1 0 0 0 0 - 0 -
Stage 2 0 0 0 0 - 0 0 -
Platoon blocked, %
Mov Cap-1 Maneuver 536 445
Mov Cap-2 Maneuver
Stage 1
Stage 2
Approach EB WB NB SB
HCM Control Delay, s 0 0 11.9 17.5
HCM LOS B C
Minor Lane/Major Mvmt NBLn1 EBT EBR WBT WBR SBLn1
Capacity (veh/h) 536 445
110 mm L one 100 to 100
HCM Lane V/C Ratio 0.02 0.355
HCM Control Delay (s) 11.9 17.5

-	۶	→	•	•	—	•	•	†	~	/		✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	16.5%	^	7	ሻሻ	^	7	Ţ	f)		7	†	77
Traffic Volume (veh/h)	220	350	130	30	450	190	290	80	100	250	140	330
Future Volume (veh/h)	220	350	130	30	450	190	290	80	100	250	140	330
Number	3	8	18	7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.99	1.00		1.00	1.00		0.99	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1863	1863	1863	1863	1900	1863	1863	1863
Adj Flow Rate, veh/h	232	368	137	32	474	200	305	84	105	263	147	347
Adj No. of Lanes	2	3	1	2	3	1	1	1	0	1	1	2
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	309	1206	372	81	869	271	347	265	332	303	615	921
Arrive On Green	0.09	0.24	0.24	0.02	0.17	0.17	0.20	0.35	0.35	0.17	0.33	0.33
Sat Flow, veh/h	3442	5085	1569	3442	5085	1583	1774	748	935	1774	1863	2787
Grp Volume(v), veh/h	232	368	137	32	474	200	305	0	189	263	147	347
Grp Sat Flow(s), veh/h/ln	1721	1695	1569	1721	1695	1583	1774	0	1682	1774	1863	1393
Q Serve(g_s), s	6.6	5.9	7.3	0.9	8.5	12.0	16.7	0.0	8.1	14.4	5.7	9.5
Cycle Q Clear(g_c), s	6.6	5.9	7.3	0.9	8.5	12.0	16.7	0.0	8.1	14.4	5.7	9.5
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.56	1.00		1.00
Lane Grp Cap(c), veh/h	309	1206	372	81	869	271	347	0	597	303	615	921
V/C Ratio(X)	0.75	0.31	0.37	0.39	0.55	0.74	0.88	0.00	0.32	0.87	0.24	0.38
Avail Cap(c_a), veh/h	552	2095	647	155	1509	470	676	0	597	587	615	921
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	44.3	31.3	31.8	48.0	37.8	39.2	39.0	0.0	23.4	40.3	24.3	25.5
Incr Delay (d2), s/veh	3.7	0.1	0.6	3.1	0.5	3.9	7.3	0.0	1.4	7.5	0.9	1.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	3.3	2.8	3.2	0.5	4.0	5.5	8.8	0.0	4.0	7.7	3.1	3.8
LnGrp Delay(d),s/veh	48.0	31.4	32.4	51.1	38.3	43.2	46.3	0.0	24.8	47.7	25.2	26.7
LnGrp LOS	D	С	С	D	D	D	D		С	D	С	С
Approach Vol, veh/h		737			706			494			757	
Approach Delay, s/veh		36.8			40.3			38.0			33.7	
Approach LOS		D			D			D			С	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	23.5	40.4	13.0	23.0	21.0	42.8	6.4	29.6				
Change Period (Y+Rc), s	4.0	7.4	4.0	5.9	4.0	* 7.4	4.0	5.9				
Max Green Setting (Gmax), s	38.0	30.1	16.0	29.6	33.0	* 35	4.5	41.1				
	18.7	11.5	8.6	14.0	16.4	10.1	2.9	9.3				
Max Q Clear Time (g_c+I1), s Green Ext Time (p_c), s	0.8	2.0	0.4	3.1	0.7	1.0	0.0	2.7				
Intersection Summary												
			37.1									
HCM 2010 Ctrl Delay HCM 2010 LOS			37.1 D									
Notes												

Appendix 2

Horizon Year 2062 with Project Intersection Level of Service Calculations

AM Horizon Year 2062 + Project 1: Ocean View Hills Pkwy & Starfish Way/Westport View Dr

	ᄼ	→	•	•	←	•	1	†	<i>></i>	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			₽		7	ħβ		7	∱ ∱	
Traffic Volume (veh/h)	70	10	22	98	10	60	23	841	62	50	617	30
Future Volume (veh/h)	70	10	22	98	10	60	23	841	62	50	617	30
Number	3	8	18	7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		0.98	1.00		0.97
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1863	1900	1900	1863	1900	1863	1863	1900	1863	1863	1900
Adj Flow Rate, veh/h	76	11	24	107	11	65	25	914	67	54	671	33
Adj No. of Lanes	0	1	0	0	1	0	1	2	0	1	2	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	122	18	38	146	15	88	40	1242	91	71	1333	66
Arrive On Green	0.10	0.10	0.10	0.15	0.15	0.15	0.02	0.37	0.37	0.04	0.39	0.39
Sat Flow, veh/h	1189	172	375	997	102	605	1774	3338	245	1774	3428	168
Grp Volume(v), veh/h	111	0	0	183	0	0	25	485	496	54	346	358
Grp Sat Flow(s), veh/h/ln	1736	0	0	1705	0	0	1774	1770	1813	1774	1770	1827
Q Serve(g_s), s	3.6	0.0	0.0	6.0	0.0	0.0	0.8	13.9	13.9	1.8	8.7	8.8
Cycle Q Clear(g_c), s	3.6	0.0	0.0	6.0	0.0	0.0	0.8	13.9	13.9	1.8	8.7	8.8
Prop In Lane	0.68		0.22	0.58		0.36	1.00		0.13	1.00		0.09
Lane Grp Cap(c), veh/h	178	0	0	249	0	0	40	658	674	71	688	711
V/C Ratio(X)	0.62	0.00	0.00	0.74	0.00	0.00	0.62	0.74	0.74	0.76	0.50	0.50
Avail Cap(c_a), veh/h	796	0	0	782	0	0	127	658	674	124	688	711
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	25.3	0.0	0.0	24.1	0.0	0.0	28.5	16.0	16.0	28.0	13.7	13.7
Incr Delay (d2), s/veh	3.5	0.0	0.0	4.2	0.0	0.0	14.4	7.2	7.0	15.5	2.6	2.5
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.9	0.0	0.0	3.1	0.0	0.0	0.6	8.0	8.2	1.2	4.7	4.9
LnGrp Delay(d),s/veh	28.9	0.0	0.0	28.2	0.0	0.0	42.9	23.2	23.0	43.5	16.3	16.2
LnGrp LOS	С			С			D	С	С	D	В	В
Approach Vol, veh/h		111			183			1006			758	
Approach Delay, s/veh		28.9			28.2			23.6			18.2	
Approach LOS		С			С			С			В	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	J	4	5	6	,	8				
Phs Duration (G+Y+Rc), s	5.7	28.7		13.5	6.7	27.7		10.9				
Change Period (Y+Rc), s	4.4	* 5.8		4.9	4.4	5.8		4.9				
Max Green Setting (Gmax), s	4.4	* 22		27.0	4.4	21.9		27.0				
	2.8			8.0	3.8	15.9		5.6				
Max Q Clear Time (g_c+l1), s Green Ext Time (p_c), s	0.0	10.8 3.0		0.8	0.0	2.8		0.5				
Intersection Summary												
HCM 2010 Ctrl Delay			22.3									
HCM 2010 LOS			C C									
Notes												

Intersection						
Int Delay, s/veh	1.9					
		EDD.	NDI	NDT	CDT	CDD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	**	44	\	^	^	4.40
Traffic Vol, veh/h	90	41	22	876	617	140
Future Vol, veh/h	90	41	22	876	617	140
Conflicting Peds, #/hr	8	8	8	_ 0	0	8
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	225	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	98	45	24	952	671	152
Major/Minor N	/linor2	N	/lajor1	Λ	/lajor2	
Conflicting Flow All	1287	428	831	0	- najoiz	0
Stage 1	755	420	031	-	-	-
Stage 2	532	-	-	-	-	-
Critical Hdwy	6.84	6.94	4.14	-		-
Critical Hdwy Stg 1	5.84	0.94	4.14	-	-	-
	5.84		-	-	-	-
Critical Hdwy Stg 2		-	2.22	-	-	-
Follow-up Hdwy	3.52	3.32		-	-	-
Pot Cap-1 Maneuver	156	575	797	-	-	-
Stage 1	425	-	-	-	-	-
Stage 2	553	-	-	-	-	-
Platoon blocked, %	4.40	F / 7	700	-	-	-
Mov Cap-1 Maneuver	149	567	792	-	-	-
Mov Cap-2 Maneuver	276	-	-	-	-	-
Stage 1	409	-	-	-	-	-
Stage 2	549	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	24		0.2		0	
HCM LOS	24 C		0.2		U	
HOW LUS	C					
Minor Lane/Major Mvm	t	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		792	-	329	-	-
HCM Lane V/C Ratio		0.03	-	0.433	-	-
HCM Control Delay (s)		9.7	-	24	-	-
HCM Lane LOS		Α	-	С	-	-
HCM 95th %tile Q(veh)		0.1	-	2.1	-	-

	۶	→	•	•	←	•	1	†	/	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ		7	ሻ	1→		ሻሻ	↑ ↑₽		ሻ	∱ ∱	
Traffic Volume (veh/h)	440	30	432	24	40	40	578	357	36	30	368	360
Future Volume (veh/h)	440	30	432	24	40	40	578	357	36	30	368	360
Number	3	8	18	7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.95	0.97		0.98	1.00		0.98	1.00		0.98
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1863	1900	1863	1863	1900	1863	1863	1900
Adj Flow Rate, veh/h	478	33	416	26	43	43	628	388	39	33	400	391
Adj No. of Lanes	1	1	1	1	1	0	2	3	0	1	2	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	532	571	462	277	142	142	649	2192	216	42	534	469
Arrive On Green	0.17	0.31	0.31	0.03	0.17	0.17	0.19	0.47	0.47	0.02	0.30	0.30
Sat Flow, veh/h	1774	1863	1509	1774	848	848	3442	4694	463	1774	1770	1552
Grp Volume(v), veh/h	478	33	416	26	0	86	628	278	149	33	400	391
Grp Sat Flow(s), veh/h/ln	1774	1863	1509	1774	0	1695	1721	1695	1767	1774	1770	1552
Q Serve(g_s), s	19.9	1.4	30.3	1.4	0.0	5.1	20.8	5.5	5.6	2.1	23.4	26.9
Cycle Q Clear(g_c), s	19.9	1.4	30.3	1.4	0.0	5.1	20.8	5.5	5.6	2.1	23.4	26.9
Prop In Lane	1.00		1.00	1.00	0.0	0.50	1.00	0.0	0.26	1.00	20	1.00
Lane Grp Cap(c), veh/h	532	571	462	277	0	284	649	1583	825	42	534	469
V/C Ratio(X)	0.90	0.06	0.90	0.09	0.00	0.30	0.97	0.18	0.18	0.79	0.75	0.83
Avail Cap(c_a), veh/h	532	590	478	500	0	515	649	1583	825	104	534	469
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	34.9	28.1	38.1	37.0	0.0	41.8	46.2	17.7	17.8	55.7	36.1	37.3
Incr Delay (d2), s/veh	18.2	0.0	19.5	0.1	0.0	0.6	27.5	0.2	0.5	27.8	9.3	15.9
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	8.1	0.7	15.0	0.7	0.0	2.4	12.3	2.6	2.8	1.4	12.8	13.6
LnGrp Delay(d),s/veh	53.0	28.1	57.5	37.1	0.0	42.4	73.7	18.0	18.3	83.5	45.4	53.3
LnGrp LOS	D	C	57.5 E	D	0.0	D	73.7 E	В	В	65.5 F	D	D
Approach Vol, veh/h	D	927		D	112	U	<u> </u>	1055	<u> </u>	<u> </u>	824	
Approach Delay, s/veh		54.2			41.2			51.2			50.6	
Approach LOS		D D			41.2 D			D D			50.0 D	
Арргоаст СОЗ		D			D			D			D	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	26.0	40.2	24.3	24.1	7.1	59.1	8.4	40.0				
Change Period (Y+Rc), s	4.4	* 5.6	4.4	4.9	4.4	5.6	4.4	4.9				
Max Green Setting (Gmax), s	21.6	* 35	19.9	34.8	6.7	49.3	18.4	36.3				
Max Q Clear Time (g_c+I1), s	22.8	28.9	21.9	7.1	4.1	7.6	3.4	32.3				
Green Ext Time (p_c), s	0.0	2.3	0.0	0.4	0.0	2.6	0.0	0.7				
Intersection Summary												
HCM 2010 Ctrl Delay			51.6									
HCM 2010 LOS			51.0 D									
Notes												

	ၨ	→	•	•	←	•	•	†	/	/	ţ	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			f)		ሻ	ተ ተጉ		ች	ተ ተኈ	
Traffic Volume (veh/h)	40	10	140	44	10	50	60	871	26	50	934	20
Future Volume (veh/h)	40	10	140	44	10	50	60	871	26	50	934	20
Number	3	8	18	7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.99	1.00		1.00	1.00		0.96	1.00		0.95
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1863	1900	1863	1863	1900	1863	1863	1900	1863	1863	1900
Adj Flow Rate, veh/h	43	11	152	48	11	54	65	947	28	54	1015	22
Adj No. of Lanes	0	1	0	1	1	0	1	3	0	1	3	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	58	15	206	116	18	88	83	2218	65	68	2196	48
Arrive On Green	0.17	0.17	0.17	0.07	0.07	0.07	0.05	0.44	0.44	0.04	0.43	0.43
Sat Flow, veh/h	339	87	1199	1774	275	1350	1774	5069	150	1774	5116	111
Grp Volume(v), veh/h	206	0	0	48	0	65	65	633	342	54	672	365
Grp Sat Flow(s), veh/h/lr		0	0	1774	0	1625	1774	1695	1829	1774	1695	1837
Q Serve(g_s), s	8.5	0.0	0.0	1.8	0.0	2.7	2.6	9.1	9.1	2.1	9.9	9.9
Cycle Q Clear(g_c), s	8.5	0.0	0.0	1.8	0.0	2.7	2.6	9.1	9.1	2.1	9.9	9.9
Prop In Lane	0.21	0.0	0.74	1.00	0.0	0.83	1.00		0.08	1.00	,,,	0.06
Lane Grp Cap(c), veh/h		0	0	116	0	106	83	1484	800	68	1455	788
V/C Ratio(X)	0.74	0.00	0.00	0.41	0.00	0.61	0.78	0.43	0.43	0.79	0.46	0.46
Avail Cap(c_a), veh/h	716	0	0	807	0	739	166	1484	800	166	1455	788
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/vel		0.0	0.0	31.6	0.0	32.0	33.2	13.7	13.7	33.6	14.3	14.3
Incr Delay (d2), s/veh	3.8	0.0	0.0	2.4	0.0	5.6	14.8	0.9	1.7	18.3	1.1	1.9
Initial Q Delay(d3),s/veh		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%), veh		0.0	0.0	1.0	0.0	1.4	1.6	4.4	4.9	1.4	4.8	5.4
LnGrp Delay(d),s/veh	31.5	0.0	0.0	33.9	0.0	37.6	48.0	14.6	15.4	51.9	15.4	16.2
LnGrp LOS	C	0.0	0.0	C	0.0	D	D	В	В	D	В	В
Approach Vol, veh/h		206			113			1040			1091	
Approach Delay, s/veh		31.5			36.1			16.9			17.5	
Approach LOS		C C			D			В			В	
					U						D	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc)		36.2		9.5	7.1	36.8		17.0				
Change Period (Y+Rc),		6.0		4.9	4.4	6.0		4.9				
Max Green Setting (Gm		30.2		32.0	6.6	30.2		31.0				
Max Q Clear Time (g_c		11.9		4.7	4.1	11.1		10.5				
Green Ext Time (p_c), s	0.0	6.0		0.4	0.0	5.7		1.0				
Intersection Summary												
HCM 2010 Ctrl Delay			19.3									
HCM 2010 LOS			В									

	•	•	₹î	†	<u> </u>	/	ļ
Movement	WBL	WBR	NBU	NBT	NBR	SBL	SBT
Lane Configurations	ሻ	7		ተ ተኈ		ሻ	ተተተ
Traffic Volume (veh/h)	85	10	70	757	48	10	928
Future Volume (veh/h)	85	10	70	757	48	10	928
Number	7	14	, ,	6	16	5	2
Initial Q (Qb), veh	0	0		0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1.00		U	0.96	1.00	U
Parking Bus, Adj	1.00	1.00		1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863		1863	1900	1863	1863
Adj Flow Rate, veh/h	92	11		823	52	11	1003
	92	1		823			
Adj No. of Lanes					0	1	3
Peak Hour Factor	0.92	0.92		0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2		2	2	2	2
Cap, veh/h	129	115		2978	187	20	3629
Arrive On Green	0.07	0.07		0.61	0.61	0.01	0.71
Sat Flow, veh/h	1774	1583		5045	307	1774	5253
Grp Volume(v), veh/h	92	11		571	304	11	1009
Grp Sat Flow(s), veh/h/lr		1583		1695	1794	1774	1695
Q Serve(g_s), s	2.5	0.3		3.9	3.9	0.3	3.5
Cycle Q Clear(g_c), s	2.5	0.3		3.9	3.9	0.3	3.5
Prop In Lane	1.00	1.00			0.17	1.00	
Lane Grp Cap(c), veh/h	129	115		2070	1096	20	3629
V/C Ratio(X)	0.71	0.10		0.28	0.28	0.55	0.28
Avail Cap(c_a), veh/h	1119	999		2070	1096	144	3629
HCM Platoon Ratio	1.00	1.00		1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00		1.00	1.00	1.00	1.00
Uniform Delay (d), s/vel		21.3		4.5	4.5	24.2	2.5
Incr Delay (d2), s/veh	7.1	0.4		0.3	0.6	21.1	0.2
Initial Q Delay(d3),s/veh		0.0		0.0	0.0	0.0	0.0
%ile BackOfQ(50%),vel		0.3		1.8	2.0	0.3	1.7
LnGrp Delay(d),s/veh	29.4	21.6		4.8	5.1	45.2	2.7
LnGrp LOS	C	C C		Α.	A	D	Α
Approach Vol, veh/h	103			875	, , ,	<u> </u>	1020
Approach Delay, s/veh				4.9			3.2
Approach LOS	28.0 C			4.9 A			3.2 A
•	C			А			A
Timer	1	2	3	4	5	6	7
Assigned Phs		2		4	5	6	
Phs Duration (G+Y+Rc)), S	41.1		8.1	5.1	36.0	
Change Period (Y+Rc),		6.0		4.5	4.5	6.0	
Max Green Setting (Gm		29.5		31.0	4.0	30.0	
Max Q Clear Time (g_c		5.5		4.5	2.3	5.9	
Green Ext Time (p_c), s		6.9		0.2	0.0	5.5	
				,			
Intersection Summary							
HCM 2010 Ctrl Delay			5.2				
HCM 2010 LOS			Α				
Notes							

		→	`	•	←	•	•	<u>†</u>	<u> </u>	\	 	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		^	7	ሻሻ	†	7	ሻ	^	7	ሻሻ	^	7
Traffic Volume (veh/h)	50	88	110	426	99	269	100	410	778	405	860	10
Future Volume (veh/h)	50	88	110	426	99	269	100	410	778	405	860	10
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	U	1.00	1.00	U	0.98	1.00	U	0.99	1.00	U	0.96
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863
Adj Flow Rate, veh/h	54	96	120	463	1003	292	1003	446	846	440	935	11
Adj No. of Lanes	1	2	120	2	100	1	107	2	1	2	2	1
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Cap, veh/h	161	500	338	559	397	330	128	1269	818	394	1418	610
Arrive On Green	0.09	0.14	0.14	0.16	0.21	0.21	0.07	0.36	0.36	0.11	0.40	0.40
Sat Flow, veh/h	1774	3539	1583			1547	1774	3539	1563	3442	3539	1521
				3442	1863							
Grp Volume(v), veh/h	54	96	120	463	108	292	109	446	846	440	935	11
Grp Sat Flow(s), veh/h/lr		1770	1583	1721	1863	1547	1774	1770	1563	1721	1770	1521
Q Serve(g_s), s	2.6	2.2	5.8	11.7	4.4	16.5	5.5	8.3	32.3	10.3	19.4	0.4
Cycle Q Clear(g_c), s	2.6	2.2	5.8	11.7	4.4	16.5	5.5	8.3	32.3	10.3	19.4	0.4
Prop In Lane	1.00	F00	1.00	1.00	207	1.00	1.00	10/0	1.00	1.00	1.110	1.00
Lane Grp Cap(c), veh/h		500	338	559	397	330	128	1269	818	394	1418	610
V/C Ratio(X)	0.34	0.19	0.36	0.83	0.27	0.89	0.85	0.35	1.03	1.12	0.66	0.02
Avail Cap(c_a), veh/h	233	606	385	761	486	404	128	1269	818	394	1418	610
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	0.94	0.94	0.94	1.00	1.00	1.00
Uniform Delay (d), s/veh		34.1	30.1	36.5	29.6	34.3	41.3	21.2	21.6	39.8	22.0	16.3
Incr Delay (d2), s/veh	1.2	0.2	0.6	5.6	0.4	17.7	37.3	0.7	39.8	81.0	2.4	0.1
Initial Q Delay(d3),s/veh		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh		1.1	2.6	6.0	2.3	8.7	4.0	4.2	29.1	9.3	10.0	0.2
LnGrp Delay(d),s/veh	39.6	34.3	30.8	42.0	29.9	52.0	78.5	21.9	61.5	120.9	24.4	16.3
LnGrp LOS	D	С	С	D	С	D	<u>E</u>	С	F	F	С	В
Approach Vol, veh/h		270			863			1401			1386	
Approach Delay, s/veh		33.8			43.9			50.2			55.0	
Approach LOS		С			D			D			D	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc)	, \$5.0	37.4	19.8	17.8	11.2	41.2	13.3	24.3				
Change Period (Y+Rc),		5.1	* 5.2	5.1	* 4.7	5.1	* 5.2	5.1				
Max Green Setting (Gm		24.3	* 20	15.4	* 6.5	28.1	* 12	23.5				
Max Q Clear Time (g_c-		34.3	13.7	7.8	7.5	21.4	4.6	18.5				
Green Ext Time (p_c), s		0.0	0.9	0.5	0.0	3.2	0.0	0.7				
Intersection Summary												
HCM 2010 Ctrl Delay			49.4									
HCM 2010 CIT Delay			49.4 D									
			D									
Notes												

٦	→	•	•	←	•	1	†	/	/	ţ	✓	
Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
ane Configurations				र्स	7	ř	ተተተ			የ		
Fraffic Volume (veh/h) 0	0	0	50	10	155	450	1120	0	0	445	623	
Future Volume (veh/h) 0	0	0	50	10	155	450	1120	0	0	445	623	
Number			3	8	18	5	2	12	1	6	16	
nitial Q (Qb), veh			0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)			1.00		1.00	1.00		1.00	1.00		0.96	
Parking Bus, Adj			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln			1900	1863	1863	1863	1863	0	0	1863	1900	
Adj Flow Rate, veh/h			54	11	168	489	1217	0	0	484	677	
Adj No. of Lanes			0	1	1	1	3	0	0	3	0	
Peak Hour Factor			0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
Percent Heavy Veh, %			2	2	2	2	2	0.72	0.72	2	2	
Cap, veh/h			196	40	209	450	3767	0	0	1452	649	
Arrive On Green			0.13	0.13	0.13	0.51	1.00	0.00	0.00	0.43	0.43	
Sat Flow, veh/h			1486	303	1583	1774	5253	0.00	0.00	3558	1516	
Grp Volume(v), veh/h			65	0	168	489	1217	0	0	484	677	
Grp Sat Flow(s), veh/h/ln			1788	0	1583	1774	1695	0	0	1695	1516	
2 Serve(g_s), s			2.6	0.0	8.2	20.3	0.0	0.0	0.0	7.6	34.3	
			2.6		8.2	20.3		0.0	0.0	7.6	34.3	
Cycle Q Clear(g_c), s				0.0			0.0			7.0		
rop In Lane			0.83	0	1.00	1.00	27/7	0.00	0.00	1450	1.00	
ane Grp Cap(c), veh/h			236	0	209	450	3767	0	0	1452	649	
//C Ratio(X)			0.28	0.00	0.81	1.09	0.32	0.00	0.00	0.33	1.04	
Avail Cap(c_a), veh/h			344	0	305	450	3767	0	0	1452	649	
ICM Platoon Ratio			1.00	1.00	1.00	2.00	2.00	1.00	1.00	1.00	1.00	
Jpstream Filter(I)			1.00	0.00	1.00	0.42	0.42	0.00	0.00	0.72	0.72	
Jniform Delay (d), s/veh			31.3	0.0	33.7	19.7	0.0	0.0	0.0	15.3	22.9	
ncr Delay (d2), s/veh			0.6	0.0	9.5	54.1	0.1	0.0	0.0	0.4	41.8	
nitial Q Delay(d3),s/veh			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln			1.3	0.0	4.1	16.3	0.0	0.0	0.0	3.7	21.8	
_nGrp Delay(d),s/veh			31.9	0.0	43.3	73.8	0.1	0.0	0.0	15.7	64.7	
_nGrp LOS			С		D	F	A			В	F	
Approach Vol, veh/h				233			1706			1161		
Approach Delay, s/veh				40.1			21.2			44.3		
pproach LOS				D			С			D		
imer 1	2	3	4	5	6	7	8					
Assigned Phs	2			5	6		8					
Phs Duration (G+Y+Rc), s	64.4			25.0	39.4		15.6					
Change Period (Y+Rc), s	5.1			* 4.7	5.1		5.1					
Max Green Setting (Gmax), s				* 20	29.4		15.4					
Max Q Clear Time (g_c+l1), s				22.3	36.3		10.2					
Green Ext Time (p_c), s	10.5			0.0	0.0		0.4					
ntersection Summary												
		21.2										
JCM 2010 Ctrl Dolov												
HCM 2010 Ctrl Delay		31.3										
HCM 2010 Ctrl Delay HCM 2010 LOS		31.3 C										

	•	→	•	•	←	•	•	†	<u></u>	\	ļ	4
Movement E	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4						ተ ተጉ		ች	^	
	695	10	550	0	0	0	0	905	180	118	398	0
, ,	695	10	550	0	0	0	0	905	180	118	398	0
Number	7	4	14				5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0				0	0	0	0	0	0
` ,	1.00		1.00				1.00		0.99	1.00		1.00
, · -ı ,	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
	863	1863	1900				0	1863	1900	1863	1863	0
	682	113	598				0	984	196	128	433	0
Adj No. of Lanes	1	1	0				0	3	0	1	2	0
	0.92	0.92	0.92				0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2				0.72	2	2	2	2	0.72
	752	109	578				0	1279	254	158	1588	0
	0.42	0.42	0.42				0.00	0.30	0.30	0.18	0.90	0.00
	774	258	1364				0.00	4415	844	1774	3632	0.00
	682	0	711				0	785	395	128	433	0
Grp Sat Flow(s), veh/h/ln1		0	1622				0	1695	1701	1774	1770	0
	28.8	0.0	33.9				0.0	16.8	16.9	5.5	1.3	0.0
	20.0 28.8	0.0	33.9				0.0	16.8	16.9	5.5	1.3	0.0
	1.00	0.0	0.84				0.00	10.0	0.50	1.00	1.3	0.00
•	752	0	687				0.00	1021	512	1.00	1588	0.00
	0.91	0.00	1.03				0.00	0.77	0.77	0.81	0.27	0.00
	752	0.00	687				0.00	1021	512	162	1588	0.00
1 1 - 7:	1.00	1.00	1.00				1.00	1.00	1.00	2.00	2.00	1.00
	1.00	0.00	1.00				0.00	1.00	1.00	0.77	0.77	0.00
Uniform Delay (d), s/veh 2		0.00	23.1				0.00	25.4	25.4	32.3	2.3	0.00
3	14.8	0.0	43.5				0.0	5.6	10.7	20.5	0.3	0.0
Initial Q Delay(d3),s/veh		0.0	0.0				0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/1		0.0	23.4				0.0	8.6	9.4	3.6	0.0	0.0
	⊪v .1 36.4	0.0	66.6				0.0	31.0	36.2	52.7	2.7	0.0
LnGrp LOS	D.4	0.0	66.6 F				0.0	31.0 C	30.2 D	52.7 D	2. <i>1</i>	0.0
	U	1393	Г					1180	U	U	561	
Approach Vol, veh/h Approach Delay, s/veh		51.8						32.7			14.1	
Approach LOS		51.8 D						32.7 C			14.1 B	
		U						C			D	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4		6						
Phs Duration (G+Y+Rc), 3		29.2		39.0		41.0						
Change Period (Y+Rc), \$		5.1		5.1		5.1						
Max Green Setting (Gmax		23.9		33.9		35.9						
Max Q Clear Time (g_c+l		18.9		35.9		3.3						
Green Ext Time (p_c), s	0.0	3.0		0.0		2.7						
Intersection Summary												
HCM 2010 Ctrl Delay			37.9									
HCM 2010 Cur Delay			D									
			D									
Notes												

Intersection												
Intersection Delay, s/ve	ħ28 3											
Intersection LOS	F											
intersection EOS												
	EDI	EDT	EDD	MDI	MOT	MOD	NIDI	NDT	NDD	0.01	ODT	000
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	4		<u>ነ</u>	^	7	<u>ነ</u>	↑ }		<u>ነ</u>	↑ }	
Traffic Vol, veh/h	444	10	20	10	30	221	40	420	10	92	350	456
Future Vol, veh/h	444	10	20	10	30	221	40	420	10	92	350	456
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	483	11	22	11	33	240	43	457	11	100	380	496
Number of Lanes	1	1	0	1	1	1	1	2	0	1	2	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB	-	-	SB			NB		
Opposing Lanes	3			2			3			3		
Conflicting Approach Le	eft SB			NB			EB			WB		
Conflicting Lanes Left	3			3			2			3		
Conflicting Approach Ri	ightNB			SB			WB			EB		
Conflicting Lanes Right				3			3			2		
HCM Control Delay	46.4			37.5			50.4			238.8		
HCM LOS	Ε			Ε			F			F		
Lane	1	VBL n1	NBLn21	VBLn3	EBL n1	EBI n2\	VBL n1V	VBLn2V	VBL n3	SBI n1	SBI n2	SBI n3
Vol Left, %		100%	0%	0%	100%	87%	100%	0%		100%	0%	0%
Vol Thru, %		0%		93%	0%	4%	0%	100%	0%	0%		20%
Vol Right, %		0%	0%	73%	0%	9%	0%	0%		0%	0%	80%
Sign Control		Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane		40	280	150	240	234	10	30	221	92	233	573
LT Vol		40	0	0	240	204	10	0	0	92	0	0
Through Vol		0	280	140	0	10	0	30	0	0	233	117
RT Vol		0	0	10	0	20	0	0	221	0	0	456
Lane Flow Rate		43	304	163	261	255	11	33	240	100	254	622
Geometry Grp		8	8	8	8	8	8	8	8	8	8	8
Degree of Util (X)		0.137		0.49	0.795	0.768	0.037	0.105	0.73			
Departure Headway (Ho	d) ^		11.869			11.716					10.488	
Convergence, Y/N	u)	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Convergence, 1714		291	307	307	308	311	273	284	305	326	345	367
Service Time		10.091	9.569			9.416			9.674		8.265	
HCM Lane V/C Ratio		0.148	0.99		0.847	0.82	0.04			0.307		1.695
		17	68.5	25.4	48.2	44.5	16.4		41.2	18.6	38	356
HCM Control Delay		1/	08.5	25.4	48.2	44.5	10.4	16.9	41.2	18.6	38	300

Ε

6.4

2.5

C

0.1

С

0.3

Ε

5.3

1.3

Ε

5.6 38.2

LOS Engineering, Inc.

HCM Lane LOS

HCM 95th-tile Q

0.5

8.8

Intersection						
Int Delay, s/veh	1.3					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	^	T T	WDL	^	NDL	T T
Traffic Vol, veh/h	1305	106	0	0	0	92
Future Vol, veh/h	1305	106	0	0	0	92
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None		None	Jiop -	None
Storage Length	_	250	_	-	_	0
Veh in Median Storage	, # 0	-	-	0	0	-
Grade, %	0	_	_	0	0	_
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	1418	115	0	0	0	100
WWW.CT IOW	1110	110	U	U	U	100
		_				
	/lajor1		/lajor2	Λ	/linor1	
Conflicting Flow All	0	0	-	-	-	709
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	7.14
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	3.92
Pot Cap-1 Maneuver	-	-	0	-	0	323
Stage 1	-	-	0	-	0	-
Stage 2	-	-	0	-	0	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	-	-	-	323
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Annroach	EB		WB		NB	
Approach						
HCM Control Delay, s	0		0		21.1	
HCM LOS					С	
Minor Lane/Major Mvm	t l	VBLn1	EBT	EBR	WBT	
Capacity (veh/h)		323	-	-	-	
HCM Lane V/C Ratio		0.31	-	-	-	
HCM Control Delay (s)		21.1	-	-	-	
HCM Lane LOS		С	-	-	-	
HCM 95th %tile Q(veh)		1.3	-	-	-	

Intersection													
Int Delay, s/veh	0.8												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	LDL	ተተጉ	LDIN	VVDL	^	7	ሻ	4	NDI	JDL	4	JUIN	
Traffic Vol, veh/h	74	1418	85	38	590	10	61	4	58	0	3	100	
Future Vol, veh/h	74	1418	85	38	590	10	61	4	58	0	3	100	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None	-	-	None	- -	Jiop -	None	- -	Jiop -	None	
Storage Length	_	_	-	_	_	400	0	_	-	_	_	-	
Veh in Median Storage,		0	_	_	0	-	-	0	_	_	0	_	
Grade, %	" -	0	_	_	0	_	_	0	_	_	0	_	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
leavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Nymt Flow	80	1541	92	41	641	11	66	4	63	0	3	109	
WIVIIIL FIOW	00	1341	92	41	041	- 11	00	4	03	U	3	109	
Major/Minor N	1ajor1		N	Major2		N	/linor1		N	/linor2			
Conflicting Flow All	652	0	0	1633	0	0	2087	2481	817	1501	2516	321	
Stage 1	032	-	U	1033	-	U	1747	1747	-	723	723	321	
Stage 2	-	-	-	-	-	-	340	734	-	778	1793	-	
	5.34		-	5.34		-	6.44	6.54	7.14	6.44	6.54	7.14	
ritical Hdwy	5.54	-	-	5.54	-	-	7.34	5.54		7.34	5.54		
ritical Hdwy Stg 1	-	-	-	-	-	-		5.54	-	6.74		-	
Critical Hdwy Stg 2	-	-	-	2 12	-	-	6.74		-		5.54	-	
ollow-up Hdwy	3.12	-	-	3.12	-	-	3.82	4.02	3.92	3.82	4.02	3.92	
Pot Cap-1 Maneuver	574	-	-	191	-	-	~ 56	29	274	129	28	576	
Stage 1	-	-	-	-	-	-	~ 59	138	-	309	429	-	
Stage 2	-	-	-	-	-	-	594	424	-	323	131	-	
Platoon blocked, %		-	-	404	-	-		•	074		•	/	
Nov Cap-1 Maneuver	574	-	-	191	-	-	-	0	274	-	0	576	
Nov Cap-2 Maneuver	-	-	-	-	-	-	-	0	-	-	0	-	
Stage 1	-	-	-	-	-	-	~ 59	0	-	309	284	-	
Stage 2	-	-	-	-	-	-	316	281	-	-	0	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	0.6			1.7									
HCM LOS							-			-			
Minor Lane/Major Mvmt	t ſ	NBLn1 N	VBLn2	EBL	EBT	EBR	WBL	WBT	WBR S	SBLn1			
Capacity (veh/h)		-	274	574	-	-	191	-	-	-			
ICM Lane V/C Ratio		-	0.246	0.14	-	-	0.216	-	-	-			
HCM Control Delay (s)		-	22.4	12.3	-	-	29	-	-	-			
ICM Lane LOS		-	С	В	-	-	D	-	-	-			
HCM 95th %tile Q(veh)		-	0.9	0.5	-	-	0.8	-	-	-			
Votes													
	acity	¢. Da	Nav ova	oods 2	nnc .	L. Com	outotic:	Not D	ofinad	*, AII	major	volumo i	n nlataan
: Volume exceeds cap	acity	⊅: D€	elay exc	eeus 3	005	+: Com	pulaliof	ו ואטנ טי	enneu	: All	major \	/olume I	n platoon

Movement EBI EBI EBI WBI WBI WBI NBI NBI NBI NBI NBI NBI SBI	-	۶	→	•	•	←	•	•	†	~	/	+	✓
Traffic Volume (veh/h)	Movement	EBL		EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (veh/h)	Lane Configurations	16.5%	ተተተ	7	ሻ	ተተተ	7	ሻሻ	ĵ∍		7	1>	7
Number 5 2 12 2 1 6 16 3 8 18 7 4 14 Initial O (Ob), weh 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Traffic Volume (veh/h)			120	80		70			50	30		
Initial O (Ob), weh	Future Volume (veh/h)	408	770	120	80	400	70	190	10	50	30	20	145
Ped-Bike Adj(A, pbT)	Number	5	2	12	1	6	16	3	8	18	7	4	14
Parking Bus, Adj	Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Adj Saf Flow, veh/hlm	Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.99
Adj Flow Rate, veh/h Adj Flow	Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj No. of Lanes 2 3 1 1 3 1 2 1 0 1 0 2 Peak Hour Factor 0.92	Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1863	1863	1863	1863	1900	1863	1863	1863
Peak Hour Factor 0,92 0,92 0,92 0,92 0,92 0,92 0,92 0,92	Adj Flow Rate, veh/h	443	837	130	87	435	76	207	11	54	33	0	173
Percent Heavy Veh,	Adj No. of Lanes	2	3	1	1	3	1	2	1	0	1	0	2
Cap, veh/h Arrive On Green O.13 O.22 O.22 O.06 O.16 O.16 O.08 O.15 O.15 O.15 O.17 O.00 O.14 O.16 O.08 O.15 O.15 O.15 O.17 O.00 O.14 O.17 O.00 O.14 O.17 O.00 O.14 O.17 O.00 O.14 O.17 O.00 O.14 O.17 O.00 O.18 O.17 O.00 O.17 O.00 O.17 O.00 O.18 O.17 O.00 O.17 O.00 O.18 O.18 O.19 O.19 O.19 O.19 O.19 O.19 O.19 O.19		0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Cap, veh/h	Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Arrive On Green	3	462	1131	352	111	791	246	270	42	204	655	0	1367
Grp Volume(v), veh/h 443 837 130 87 435 76 207 0 65 33 0 173 Grp Sal Flow(s), veh/h/ln 1721 1695 1583 1774 1695 1580 1721 0 1625 1774 0 1564 Q Serve(g_s), s 13.3 16.0 7.3 5.0 8.2 4.5 6.2 0.0 3.7 1.2 0.0 3.4 Cycle O Clear(g_c), s 13.3 16.0 7.3 5.0 8.2 4.5 6.2 0.0 3.7 1.2 0.0 3.4 Prop In Lane 1.00 1.00 1.00 1.00 1.00 1.00 0.03 3.7 1.2 0.0 3.4 V/C Ratio(X) 0.96 0.74 0.37 0.79 0.55 0.31 0.77 0.0 0.24 655 0 1367 H/C Ratio(X) 0.96 0.74 0.37 0.79 0.55 0.31 0.77 0.0 </td <td></td> <td>0.13</td> <td>0.22</td> <td>0.22</td> <td>0.06</td> <td>0.16</td> <td>0.16</td> <td>0.08</td> <td>0.15</td> <td>0.15</td> <td>0.37</td> <td>0.00</td> <td>0.44</td>		0.13	0.22	0.22	0.06	0.16	0.16	0.08	0.15	0.15	0.37	0.00	0.44
Gry Volume(v), veh/h 443 837 130 87 435 76 207 0 65 33 0 173 Gry Sat Flow(s), veh/h/ln 1721 1695 1583 1774 1695 1580 1721 0 1625 1774 0 1564 Q Serve(g_s), s 13.3 16.0 7.3 5.0 8.2 4.5 6.2 0.0 3.7 1.2 0.0 3.4 Cycle O Clear(g_c), s 13.3 16.0 7.3 5.0 8.2 4.5 6.2 0.0 3.7 1.2 0.0 3.4 Prop In Lane 1.00 1.00 1.00 1.00 1.00 0.03 3.7 1.2 0.0 3.4 ViC Ratio(X) 0.96 0.74 0.37 0.79 0.55 0.31 0.77 0.00 0.246 655 0 1367 ViC Ratio(X) 0.96 0.74 0.37 0.79 0.55 0.31 0.77 0.0 0.24	Sat Flow, veh/h	3442	5085	1583	1774	5085	1580	3442	275	1350	1774	0	3127
Grp Sat Flow(s), veh/h/ln 1721 1695 1583 1774 1695 1580 1721 0 1625 1774 0 1564 Q Serve(g_s), s 13.3 16.0 7.3 5.0 8.2 4.5 6.2 0.0 3.7 1.2 0.0 3.4 Prop In Lane 1.00 1.		443		130	87	435	76				33	0	173
Q Serve(g_s), s 13.3 16.0 7.3 5.0 8.2 4.5 6.2 0.0 3.7 1.2 0.0 3.4 Cycle O Clear(g_c), s 13.3 16.0 7.3 5.0 8.2 4.5 6.2 0.0 3.7 1.2 0.0 3.4 Prop In Lane 1.00 1.00 1.00 1.00 1.00 1.00 0.03 1.00 1.00 3.4 Prop In Lane 1.00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>													
Cycle Q Člear(g_c), s													
Prop In Lane 1.00													
Lane Grp Cap(c), veh/h 462 1131 352 111 791 246 270 0 246 655 0 1367 V/C Ratio(X) 0.96 0.74 0.37 0.79 0.55 0.31 0.77 0.00 0.26 0.05 0.00 0.13 Avail Cap(c_a), veh/h 462 1721 536 168 1560 485 294 0 249 655 0 1367 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.1.00 1.00 0.00 0.00													
V/C Ratio(X) 0.96 0.74 0.37 0.79 0.55 0.31 0.77 0.00 0.26 0.05 0.00 0.13 Avail Cap(c_a), veh/h 462 1721 536 168 1560 485 294 0 249 655 0 1367 HCM Platoon Ratio 1.00 1.			1131			791			0			0	
Avail Cap(c_a), veh/h													
HCM Platoon Ratio 1.00													
Upstream Filter(I)													
Uniform Delay (d), s/veh													
Incr Delay (d2), s/veh 31.5 1.0 0.6 12.7 0.6 0.7 10.7 0.0 0.6 0.1 0.0 0.2 Initial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Sile BackOfQ(50%), veh/ln 8.4 7.5 3.2 2.9 3.9 2.0 3.3 0.0 1.7 0.6 0.0 1.5 InGrp Delay(d), s/veh 76.3 38.7 35.0 60.9 41.3 39.8 57.8 0.0 39.7 21.3 0.0 17.7 InGrp LOS E D C E D D E D C B Approach Vol, veh/h 1410 598 272 206 Approach LOS D D D B Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 3 4 5 6 7 8 Phs Duration (G+Y+Rc), s 11.0 30.5 12.7 50.1 18.0 23.5 42.5 20.3 Change Period (Y+Rc), s 4.5 7.3 4.5 *4.5 4.0 *7.3 4.0 4.5 Max Green Setting (Gmax), s 9.9 35.3 8.9 *46 14.0 *32 38.5 16.0 Max Q Clear Time (g_C+I1), s 7.0 18.0 8.2 5.4 15.3 10.2 3.2 5.7 Green Ext Time (p_c), s 0.0 5.2 0.0 0.7 0.0 2.8 0.1 0.1 Intersection Summary HCM 2010 Ctrl Delay 46.4 HCM 2010 LOS D													
Initial Q Delay(d3),s/veh													
%ile BackOfQ(50%),veh/ln 8.4 7.5 3.2 2.9 3.9 2.0 3.3 0.0 1.7 0.6 0.0 1.5 LnGrp Delay(d),s/veh 76.3 38.7 35.0 60.9 41.3 39.8 57.8 0.0 39.7 21.3 0.0 17.7 LnGrp LOS E D C E D D E D C B Approach Vol, veh/h 1410 598 272 206 Approach Delay, s/veh 50.2 43.9 53.5 18.3 Approach LOS D D D D B Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 3 4 5 6 7 8 Phs Duration (G+Y+Rc), s 11.0 30.5 12.7 50.1 18.0 23.5 42.5 20.3 Change Period (Y+Rc), s 4.5 7.3 4.5 4.5 4.0 *7.3 4.0 4.5													
LnGrp Delay(d),s/veh 76.3 38.7 35.0 60.9 41.3 39.8 57.8 0.0 39.7 21.3 0.0 17.7 LnGrp LOS E D C E D D E D C B Approach Vol, veh/h 1410 598 272 206 Approach LOS B Approach LOS D D D D D B B Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 3 4 5 6 7 8 Assigned Phs 1 2 3 4 5 6 7 8 Assigned Phs 1 2 3 4 5 6 7 8 Assigned Phs 1 2 3 4 5 6 7 8 Phs 20.3 Change Period (Y+Rc), s 4.5 7.3 4.5 4.5 4.0 *7.3													
LnGrp LOS E D C E D D E D C B Approach Vol, veh/h 1410 598 272 206 Approach Delay, s/veh 50.2 43.9 53.5 18.3 Approach LOS D D D D B Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 3 4 5 6 7 8 Phs Duration (G+Y+Rc), s 11.0 30.5 12.7 50.1 18.0 23.5 42.5 20.3 Change Period (Y+Rc), s 4.5 7.3 4.5 *4.5 4.0 *7.3 4.0 4.5 Max Green Setting (Gmax), s 9.9 35.3 8.9 *46 14.0 *32 38.5 16.0 Max Q Clear Time (g_c+II), s 7.0 18.0 8.2 5.4 15.3 10.2 3.2 5.7 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
Approach Vol, veh/h 1410 598 272 206 Approach Delay, s/veh 50.2 43.9 53.5 18.3 Approach LOS D D D D B Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 3 4 5 6 7 8 Phs Duration (G+Y+Rc), s 11.0 30.5 12.7 50.1 18.0 23.5 42.5 20.3 Change Period (Y+Rc), s 4.5 7.3 4.5 *4.5 4.0 *7.3 4.0 4.5 Max Green Setting (Gmax), s 9.9 35.3 8.9 *46 14.0 *32 38.5 16.0 Max Q Clear Time (g_c+l1), s 7.0 18.0 8.2 5.4 15.3 10.2 3.2 5.7 Green Ext Time (p_c), s 0.0 5.2 0.0 0.7 0.0 2.8 0.1 0.1 Intersection Summary HCM 2010 Ctrl Del													
Approach Delay, s/veh 50.2 43.9 53.5 18.3 Approach LOS D D D B Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 3 4 5 6 7 8 Phs Duration (G+Y+Rc), s 11.0 30.5 12.7 50.1 18.0 23.5 42.5 20.3 Change Period (Y+Rc), s 4.5 7.3 4.5 *4.5 4.0 *7.3 4.0 4.5 Max Green Setting (Gmax), s 9.9 35.3 8.9 *46 14.0 *32 38.5 16.0 Max Q Clear Time (g_c+I1), s 7.0 18.0 8.2 5.4 15.3 10.2 3.2 5.7 Green Ext Time (p_c), s 0.0 5.2 0.0 0.7 0.0 2.8 0.1 0.1 Intersection Summary HCM 2010 Ctrl Delay 46.4 HCM 2010 LOS D									272			206	
Approach LOS D D D B Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 3 4 5 6 7 8 Phs Duration (G+Y+Rc), s 11.0 30.5 12.7 50.1 18.0 23.5 42.5 20.3 Change Period (Y+Rc), s 4.5 7.3 4.5 *4.5 4.0 *7.3 4.0 4.5 Max Green Setting (Gmax), s 9.9 35.3 8.9 *46 14.0 *32 38.5 16.0 Max Q Clear Time (g_c+l1), s 7.0 18.0 8.2 5.4 15.3 10.2 3.2 5.7 Green Ext Time (p_c), s 0.0 5.2 0.0 0.7 0.0 2.8 0.1 0.1 Intersection Summary HCM 2010 Ctrl Delay 46.4 HCM 2010 LOS D	• •												
Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 3 4 5 6 7 8 Phs Duration (G+Y+Rc), s 11.0 30.5 12.7 50.1 18.0 23.5 42.5 20.3 Change Period (Y+Rc), s 4.5 7.3 4.5 * 4.5 4.0 * 7.3 4.0 4.5 Max Green Setting (Gmax), s 9.9 35.3 8.9 * 46 14.0 * 32 38.5 16.0 Max Q Clear Time (g_c+l1), s 7.0 18.0 8.2 5.4 15.3 10.2 3.2 5.7 Green Ext Time (p_c), s 0.0 5.2 0.0 0.7 0.0 2.8 0.1 0.1 Intersection Summary HCM 2010 LOS D 46.4 HCM 2010 LOS D 46.4													
Assigned Phs 1 2 3 4 5 6 7 8 Phs Duration (G+Y+Rc), s 11.0 30.5 12.7 50.1 18.0 23.5 42.5 20.3 Change Period (Y+Rc), s 4.5 7.3 4.5 *4.5 4.0 *7.3 4.0 4.5 Max Green Setting (Gmax), s 9.9 35.3 8.9 *46 14.0 *32 38.5 16.0 Max Q Clear Time (g_c+11), s 7.0 18.0 8.2 5.4 15.3 10.2 3.2 5.7 Green Ext Time (p_c), s 0.0 5.2 0.0 0.7 0.0 2.8 0.1 0.1 Intersection Summary HCM 2010 Ctrl Delay 46.4 HCM 2010 LOS D		4		0			,	-					
Phs Duration (G+Y+Rc), s 11.0 30.5 12.7 50.1 18.0 23.5 42.5 20.3 Change Period (Y+Rc), s 4.5 7.3 4.5 * 4.5 4.0 * 7.3 4.0 4.5 Max Green Setting (Gmax), s 9.9 35.3 8.9 * 46 14.0 * 32 38.5 16.0 Max Q Clear Time (g_c+I1), s 7.0 18.0 8.2 5.4 15.3 10.2 3.2 5.7 Green Ext Time (p_c), s 0.0 5.2 0.0 0.7 0.0 2.8 0.1 0.1 Intersection Summary HCM 2010 Ctrl Delay 46.4 HCM 2010 LOS D		1											
Change Period (Y+Rc), s 4.5 7.3 4.5 *4.5 4.0 *7.3 4.0 4.5 Max Green Setting (Gmax), s 9.9 35.3 8.9 *46 14.0 *32 38.5 16.0 Max Q Clear Time (g_c+I1), s 7.0 18.0 8.2 5.4 15.3 10.2 3.2 5.7 Green Ext Time (p_c), s 0.0 5.2 0.0 0.7 0.0 2.8 0.1 0.1 Intersection Summary HCM 2010 Ctrl Delay 46.4 HCM 2010 LOS D													
Max Green Setting (Gmax), s 9.9 35.3 8.9 *46 14.0 *32 38.5 16.0 Max Q Clear Time (g_c+I1), s 7.0 18.0 8.2 5.4 15.3 10.2 3.2 5.7 Green Ext Time (p_c), s 0.0 5.2 0.0 0.7 0.0 2.8 0.1 0.1 Intersection Summary HCM 2010 Ctrl Delay 46.4 HCM 2010 LOS D													
Max Q Clear Time (g_c+l1), s 7.0 18.0 8.2 5.4 15.3 10.2 3.2 5.7 Green Ext Time (p_c), s 0.0 5.2 0.0 0.7 0.0 2.8 0.1 0.1 Intersection Summary HCM 2010 Ctrl Delay 46.4 HCM 2010 LOS D													
Green Ext Time (p_c), s 0.0 5.2 0.0 0.7 0.0 2.8 0.1 0.1 Intersection Summary HCM 2010 Ctrl Delay 46.4 HCM 2010 LOS D	, , , , , , , , , , , , , , , , , , ,												
Intersection Summary HCM 2010 Ctrl Delay 46.4 HCM 2010 LOS D													
HCM 2010 Ctrl Delay 46.4 HCM 2010 LOS D	Green Ext Time (p_c), s	0.0	5.2	0.0	0.7	0.0	2.8	0.1	0.1				
HCM 2010 Ctrl Delay 46.4 HCM 2010 LOS D	Intersection Summary												
HCM 2010 LOS D				46.4									
Notes	Notes												

Intersection												
Int Delay, s/veh	0.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ተ ተ ኈ			ተተተ	7			7			7
Traffic Vol, veh/h	0	860	10	0	540	70	0	0	10	0	0	50
Future Vol, veh/h	0	860	10	0	540	70	0	0	10	0	0	50
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	500	-	-	0	-	-	0
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	935	11	0	587	76	0	0	11	0	0	54
Major/Minor N	1ajor1		_	Major2			Minor1		N	/linor2		
Conflicting Flow All	-	0	0	-	_	0	_	_	473	_	_	294
Stage 1	-	-	-	-	-	-	-	-	-	-	-	
Stage 2	_	-	_	-	-	_	_	_	-	-	_	_
Critical Hdwy	-	-	-	-	-	-	-	-	7.14	-	-	7.14
Critical Hdwy Stg 1	-	-	-	-	_	-	-	_	-	-	_	-
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-
Follow-up Hdwy	_	-	-	-	-	_	_	-	3.92	-	-	3.92
Pot Cap-1 Maneuver	0	-	-	0	-	-	0	0	460	0	0	599
Stage 1	0	-	-	0	_	-	0	0	-	0	0	-
Stage 2	0	-	-	0	-	-	0	0	-	0	0	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	-	-	-	-	-	-	-	-	460	-	-	599
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	-	_	-
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-		-	-	-
5 ·												
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			0			13			11.6		
HCM LOS							В			В		
= 2 2												
Minor Lane/Major Mvmt	1	VBLn1	EBT	EBR	WBT	WBR S	SBLn1					
Capacity (veh/h)		460	-			-	599					
HCM Lane V/C Ratio		0.024	_	_	_		0.091					
HCM Control Delay (s)		13	-	-	-	_	11.6					
HCM Lane LOS		В	_	_	_	_	В					
HCM 95th %tile Q(veh)		0.1	_	_	_	_	0.3					
/ 541 / 5410 @(1011)		J. 1					0.0					

	۶	→	•	•	←	•	•	†	~	\	+	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	ተተተ	7	44	ተተተ	7	ሻ	₽		<u>ነ</u>	^	77
Traffic Volume (veh/h)	250	305	155	50	240	150	133	80	90	210	60	157
Future Volume (veh/h)	250	305	155	50	240	150	133	80	90	210	60	157
Number	3	8	18	7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1.00	0.99	1.00	1.00	1.00	1.00	1.00	0.99	1.00	1.00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1863	1863	1863	1863	1900	1863	1863	1863
Adj Flow Rate, veh/h	272	332	168	54	261	163	145	87	98	228	65	171
Adj No. of Lanes	2	3	1	2	3	1	1	1	0	1	1	2
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2 361	1000	2	2 115	2 725	2	2 181	2 285	2	2 269	2 760	2 1137
Cap, veh/h	0.10	1089	336 0.21	0.03	0.14	226		0.36	321	0.15		0.41
Arrive On Green		0.21 5085	1568	3442		0.14 1583	0.10	795	0.36		0.41 1863	2787
Sat Flow, veh/h	3442				5085		1774		895	1774		
Grp Volume(v), veh/h	272	332	168	54	261	163	145	0	185	228	65	171
Grp Sat Flow(s), veh/h/ln	1721	1695	1568 8.3	1721	1695 4.1	1583	1774	0	1690	1774	1863 1.9	1393
Q Serve(g_s), s	6.8 6.8	4.8	8.3	1.4 1.4	4.1	8.7 8.7	7.0 7.0	0.0	6.9	11.0 11.0	1.9	3.4 3.4
Cycle Q Clear(g_c), s	1.00	4.8	1.00	1.00	4.1	1.00	1.00	0.0	6.9 0.53	1.00	1.9	1.00
Prop In Lane	361	1089	336	1.00	725	226	1.00	0	605	269	760	1137
Lane Grp Cap(c), veh/h V/C Ratio(X)	0.75	0.30	0.50	0.47	0.36	0.72	0.80	0.00	0.31	0.85	0.09	0.15
Avail Cap(c_a), veh/h	607	2371	731	176	1735	540	363	0.00	605	444	760	1137
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	38.2	29.0	30.4	41.7	34.1	36.0	38.6	0.0	20.3	36.3	16.0	16.4
Incr Delay (d2), s/veh	3.2	0.2	1.2	3.0	0.3	4.3	7.9	0.0	1.3	7.8	0.2	0.3
Initial Q Delay(d3),s/veh	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0
%ile BackOfQ(50%),veh/ln	3.4	2.3	3.7	0.7	1.9	4.0	3.8	0.0	3.5	6.0	1.0	1.4
LnGrp Delay(d),s/veh	41.4	29.2	31.6	44.7	34.4	40.3	46.5	0.0	21.6	44.1	16.2	16.7
LnGrp LOS	D	C	C C	D	C	70.5 D	70.5 D	0.0	C C	D	В	В
Approach Vol, veh/h		772			478			330			464	
Approach Delay, s/veh		34.0			37.6			32.6			30.1	
Approach LOS		C			D			C			C	
•			_									
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	13.0	43.3	13.2	18.4	17.4	38.9	6.9	24.7				
Change Period (Y+Rc), s	4.0	7.4	4.0	5.9	4.0	* 7.4	4.0	5.9				
Max Green Setting (Gmax), s	18.0	35.2	15.5	30.0	22.0	* 32	4.5	41.0				
Max Q Clear Time (g_c+I1), s	9.0	5.4	8.8	10.7	13.0	8.9	3.4	10.3				
Green Ext Time (p_c), s	0.2	1.0	0.5	1.9	0.4	1.0	0.0	2.6				
Intersection Summary												
HCM 2010 Ctrl Delay			33.7									
HCM 2010 LOS			С									
Notes												

PM Horizion Year 2062 + Project 1: Ocean View Hills Pkwy & Starfish Way/Westport View Dr

	۶	→	•	•	←	•	•	†	~	/	+	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		, J	∱ }		¥	↑ 1>	
Traffic Volume (veh/h)	20	10	35	62	10	60	24	875	67	160	689	20
Future Volume (veh/h)	20	10	35	62	10	60	24	875	67	160	689	20
Number	3	8	18	7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		0.98	1.00		0.97
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1863	1900	1900	1863	1900	1863	1863	1900	1863	1863	1900
Adj Flow Rate, veh/h	21	11	37	65	11	63	25	921	71	168	725	21
Adj No. of Lanes	0	1	0	0	1	0	1	2	0	1	2	0
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	37	20	66	87	15	85	38	1457	112	207	1873	54
Arrive On Green	0.07	0.07	0.07	0.11	0.11	0.11	0.02	0.44	0.44	0.12	0.53	0.53
Sat Flow, veh/h	510	267	898	788	133	764	1774	3324	256	1774	3509	102
Grp Volume(v), veh/h	69	0	0	139	0	0	25	490	502	168	365	381
Grp Sat Flow(s),veh/h/ln	1675	0	0	1686	0	0	1774	1770	1811	1774	1770	1841
Q Serve(g_s), s	3.1	0.0	0.0	6.1	0.0	0.0	1.1	16.5	16.5	7.1	9.3	9.3
Cycle Q Clear(g_c), s	3.1	0.0	0.0	6.1	0.0	0.0	1.1	16.5	16.5	7.1	9.3	9.3
Prop In Lane	0.30		0.54	0.47		0.45	1.00		0.14	1.00		0.06
Lane Grp Cap(c), veh/h	123	0	0	186	0	0	38	776	794	207	944	983
V/C Ratio(X)	0.56	0.00	0.00	0.75	0.00	0.00	0.65	0.63	0.63	0.81	0.39	0.39
Avail Cap(c_a), veh/h	590	0	0	596	0	0	137	776	794	285	944	983
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	34.3	0.0	0.0	33.0	0.0	0.0	37.2	16.7	16.7	33.0	10.5	10.5
Incr Delay (d2), s/veh	4.0	0.0	0.0	5.8	0.0	0.0	17.3	3.9	3.8	11.7	1.2	1.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.6	0.0	0.0	3.2	0.0	0.0	0.7	8.9	9.1	4.1	4.8	5.0
LnGrp Delay(d),s/veh	38.3	0.0	0.0	38.9	0.0	0.0	54.5	20.6	20.5	44.8	11.7	11.7
LnGrp LOS	D			D			D	С	С	D	В	В
Approach Vol, veh/h		69			139			1017			914	
Approach Delay, s/veh		38.3			38.9			21.4			17.8	
Approach LOS		D			D			С			В	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	6.1	46.7		13.4	13.3	39.4		10.5				
Change Period (Y+Rc), s	4.4	* 5.8		4.9	4.4	5.8		4.9				
Max Green Setting (Gmax), s	5.9	* 40		27.1	12.3	33.6		27.0				
Max Q Clear Time (q_c+l1), s	3.1	11.3		8.1	9.1	18.5		5.1				
Green Ext Time (p_c), s	0.0	4.4		0.6	0.1	5.2		0.3				
	0.0			0.0	0.1	0.2		0.0				
Intersection Summary			21 5									
HCM 2010 Ctrl Delay HCM 2010 LOS			21.5 C									
Notes												
เพษเติง												

Intersection Int Delay, s/veh	1					
	· ·	EDD	NE	NET	ODT	000
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y		<u>ነ</u>	^	^	
Traffic Vol, veh/h	40	33	32	747	716	80
Future Vol, veh/h	40	33	32	747	716	80
Conflicting Peds, #/hr	8	8	8	0	_ 0	- 8
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	225	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	42	35	34	786	754	84
Major/Minor N	Minor2	١	Major1	N	/lajor2	
Conflicting Flow All	1273	435	846	0	- najoiz	0
Stage 1	804	433	040	-	-	-
Stage 2	469	-	-	-	-	
Critical Hdwy	6.84	6.94	4.14	-		-
Critical Hdwy Stg 1	5.84	0.94	4.14	-	-	-
3 0			-	-	-	-
Critical Hdwy Stg 2	5.84	-	2 22	-	-	-
Follow-up Hdwy	3.52	3.32	2.22	-	-	-
Pot Cap-1 Maneuver	159	569	787	-	-	-
Stage 1	401	-	-	-	-	-
Stage	596	-	-	-	-	-
Stage 2	370					
Platoon blocked, %				-	-	-
Platoon blocked, % Mov Cap-1 Maneuver	150	561	782	-	-	-
Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver	150 272		782 -	- -	- - -	- - -
Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1	150 272 381	561	782 - -	- - -	- - -	-
Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver	150 272	561 -	782 - -	- - -	- - -	- - -
Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1	150 272 381	561 - -	782 - - -	- - -	- - - -	-
Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2	150 272 381 592	561 - -	- - -		- - - - - -	-
Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach	150 272 381 592	561 - -	- - - NB	-	- - - - - -	-
Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s	150 272 381 592 EB 17.9	561 - -	- - -	-	- - - - - SB	-
Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach	150 272 381 592	561 - -	- - - NB	-		
Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS	150 272 381 592 EB 17.9	561 - - -	NB 0.4	-	0	-
Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s	150 272 381 592 EB 17.9	561 - -	NB 0.4	- - - - -		SBR
Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS	150 272 381 592 EB 17.9	561 - - -	NB 0.4		0	SBR
Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm	150 272 381 592 EB 17.9 C	561 - - - NBL	NB 0.4		0 SBT	
Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	150 272 381 592 EB 17.9 C	561 - - - - NBL 782	NB 0.4	355 0.216	0 SBT	-
Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	150 272 381 592 EB 17.9 C	561 - - - - - - - - - - - - - - - - - - -	NB 0.4	355 0.216	0 SBT -	-
Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	150 272 381 592 EB 17.9 C	561 - - - - - - - - - - - - - - - - - - -	NB 0.4	355 0.216 17.9	0 SBT - -	- - -

	۶	→	•	•	←	•	1	†	/	/	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑	7	ሻ	₽		ሻሻ	↑ ↑↑		ሻ	∱ ∱	
Traffic Volume (veh/h)	160	10	163	31	10	20	226	829	39	60	509	290
Future Volume (veh/h)	160	10	163	31	10	20	226	829	39	60	509	290
Number	3	8	18	7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.95	0.96		0.98	1.00		0.97	1.00		0.98
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1863	1900	1863	1863	1900	1863	1863	1900
Adj Flow Rate, veh/h	168	11	172	33	11	21	238	873	41	63	536	305
Adj No. of Lanes	1	1	1	1	1	0	2	3	0	1	2	0
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	534	474	381	425	117	223	322	1957	92	80	746	424
Arrive On Green	0.10	0.25	0.25	0.05	0.21	0.21	0.09	0.39	0.39	0.05	0.35	0.35
Sat Flow, veh/h	1774	1863	1498	1774	567	1083	3442	4972	233	1774	2161	1227
Grp Volume(v), veh/h	168	11	172	33	0	32	238	595	319	63	439	402
Grp Sat Flow(s),veh/h/ln	1774	1863	1498	1774	0	1650	1721	1695	1814	1774	1770	1619
Q Serve(g_s), s	5.4	0.3	7.3	1.1	0.0	1.2	5.1	9.8	9.8	2.7	16.4	16.4
Cycle Q Clear(g_c), s	5.4	0.3	7.3	1.1	0.0	1.2	5.1	9.8	9.8	2.7	16.4	16.4
Prop In Lane	1.00		1.00	1.00		0.66	1.00		0.13	1.00		0.76
Lane Grp Cap(c), veh/h	534	474	381	425	0	340	322	1334	714	80	611	559
V/C Ratio(X)	0.31	0.02	0.45	0.08	0.00	0.09	0.74	0.45	0.45	0.78	0.72	0.72
Avail Cap(c_a), veh/h	732	884	711	708	0	783	345	1334	714	154	611	559
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	19.2	21.2	23.8	21.3	0.0	24.4	33.5	16.9	16.9	35.8	21.6	21.6
Incr Delay (d2), s/veh	0.3	0.0	0.8	0.1	0.0	0.1	7.6	1.1	2.0	15.1	7.1	7.8
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.7	0.2	3.1	0.5	0.0	0.6	2.8	4.7	5.3	1.6	9.1	8.5
LnGrp Delay(d),s/veh	19.6	21.2	24.7	21.3	0.0	24.5	41.1	18.0	19.0	50.9	28.7	29.4
LnGrp LOS	В	С	С	С		С	D	В	В	D	С	<u>C</u>
Approach Vol, veh/h		351			65			1152			904	
Approach Delay, s/veh		22.1			22.9			23.0			30.6	
Approach LOS		С			С			С			С	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	11.5	31.8	12.0	20.5	7.8	35.5	8.4	24.2				
Change Period (Y+Rc), s	4.4	* 5.6	4.4	4.9	4.4	5.6	4.4	4.9				
Max Green Setting (Gmax), s	7.6	* 26	16.1	36.0	6.6	27.0	16.1	36.0				
Max Q Clear Time (g_c+l1), s	7.1	18.4	7.4	3.2	4.7	11.8	3.1	9.3				
Green Ext Time (p_c), s	0.0	3.0	0.3	0.1	0.0	4.8	0.0	0.6				
Intersection Summary												
HCM 2010 Ctrl Delay			25.7									
HCM 2010 LOS			С									
Notes												

	۶	→	•	•	←	•	1	†	/	/	ļ	✓	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4		ሻ	(ሻ	ተ ተጮ		ሻ	ተ ተጮ		
Traffic Volume (veh/h)	20	10	90	51	10	30	150	923	49	80	642	30	
Future Volume (veh/h)	20	10	90	51	10	30	150	923	49	80	642	30	
Number	3	8	18	7	4	14	1	6	16	5	2	12	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		0.99	1.00		1.00	1.00		0.96	1.00		0.96	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln	1900	1863	1900	1863	1863	1900	1863	1863	1900	1863	1863	1900	
Adj Flow Rate, veh/h	21	11	95	54	11	32	158	972	52	84	676	32	
Adj No. of Lanes	0	1	0	1	1	0	1	3	0	1	3	0	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2	
Cap, veh/h	30	16	136	89	21	62	166	2745	147	108	2600	122	
Arrive On Green	0.11	0.11	0.11	0.05	0.05	0.05	0.09	0.56	0.56	0.06	0.52	0.52	
Sat Flow, veh/h	268	140	1212	1774	421	1225	1774	4931	263	1774	4966	234	
Grp Volume(v), veh/h	127	0	0	54	0	43	158	668	356	84	460	248	
Grp Sat Flow(s), veh/h/h		0	0	1774	0	1647	1774	1695	1804	1774	1695	1809	
Q Serve(q_s), s	6.9	0.0	0.0	2.7	0.0	2.3	8.1	10.0	10.0	4.3	6.9	6.9	
Cycle Q Clear(g_c), s	6.9	0.0	0.0	2.7	0.0	2.3	8.1	10.0	10.0	4.3	6.9	6.9	
Prop In Lane	0.9	0.0	0.75	1.00	0.0	0.74	1.00	10.0	0.15	1.00	0.9	0.9	
•		0	0.75	89	0	83	1.00	1887	1004	1.00	1775	947	
Lane Grp Cap(c), veh/h	181 0.70	0.00	0.00	0.60		0.52	0.95	0.35	0.35	0.78	0.26	0.26	
V/C Ratio(X)					0.00			1887	1004	186	1775	947	
Avail Cap(c_a), veh/h	550	1.00	1.00	621	1.00	577	166					1.00	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/vel		0.0	0.0	42.6	0.0	42.4	41.3	11.2	11.2	42.4	12.0	12.1	
Incr Delay (d2), s/veh	4.9	0.0	0.0	6.4	0.0	4.9	54.8	0.5	1.0	11.4	0.4	0.7	
Initial Q Delay(d3),s/vel		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),vel		0.0	0.0	1.5	0.0	1.2	6.5	4.8	5.2	2.4	3.3	3.6	
LnGrp Delay(d),s/veh	44.1	0.0	0.0	49.0	0.0	47.4	96.1	11.7	12.2	53.8	12.4	12.7	
LnGrp LOS	D			D		D	F	В	В	D	В	В	
Approach Vol, veh/h		127			97			1182			792		
Approach Delay, s/veh		44.1			48.3			23.2			16.9		
Approach LOS		D			D			С			В		
Timer	1	2	3	4	5	6	7	8					
Assigned Phs	1	2		4	5	6		8					
Phs Duration (G+Y+Rc)). 153.0	54.0		9.5	10.0	57.0		15.2					
Change Period (Y+Rc),		6.0		4.9	4.4	6.0		4.9					
Max Green Setting (Gm		48.0		32.1	9.6	47.0		31.1					
Max Q Clear Time (g_c		8.9		4.7	6.3	12.0		8.9					
Green Ext Time (p_c),		4.6		0.3	0.0	7.2		0.6					
Intersection Summary		1.0		5.0	3.3	,		3.0					
			22.2										
HCM 2010 Ctrl Delay			23.2										
HCM 2010 LOS			С										

	•	•	₽I	†	/	/	ļ
Movement	WBL	WBR	NBU	NBT	NBR	SBL	SBT
Lane Configurations	ሻ	7		ተ ተኈ		ሻ	^ ^
Traffic Volume (veh/h)	94	10	40	1202	101	10	693
Future Volume (veh/h)	94	10	40	1202	101	10	693
Number	7	14		6	16	5	2
Initial Q (Qb), veh	0	0		0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1.00		U	0.96	1.00	U
Parking Bus, Adj	1.00	1.00		1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863		1863	1900	1863	1863
Adj Flow Rate, veh/h	99	1003		1265	1900	11	729
Adj No. of Lanes	1	1		3	0	1	3
Peak Hour Factor	0.95	0.95		0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2		2	2	2	2
Cap, veh/h	139	124		2892	242	20	3608
Arrive On Green	0.08	0.08		0.61	0.61	0.01	0.71
Sat Flow, veh/h	1774	1583		4932	399	1774	5253
Grp Volume(v), veh/h	99	11		900	471	11	729
Grp Sat Flow(s), veh/h/lr	n1774	1583		1695	1773	1774	1695
Q Serve(g_s), s	2.7	0.3		7.0	7.0	0.3	2.4
Cycle Q Clear(q_c), s	2.7	0.3		7.0	7.0	0.3	2.4
Prop In Lane	1.00	1.00			0.23	1.00	
Lane Grp Cap(c), veh/h		124		2058	1077	20	3608
V/C Ratio(X)	0.71	0.09		0.44	0.44	0.55	0.20
Avail Cap(c_a), veh/h	1113	993		2058	1077	144	3608
HCM Platoon Ratio	1.00	1.00		1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00		1.00	1.00	1.00	1.00
Uniform Delay (d), s/veł		21.1		5.2	5.2	24.3	2.4
3	6.7	0.3			1.3		0.1
Incr Delay (d2), s/veh				0.7		21.1	
Initial Q Delay(d3),s/veh		0.0		0.0	0.0	0.0	0.0
%ile BackOfQ(50%),vel		0.3		3.4	3.8	0.3	1.1
LnGrp Delay(d),s/veh	28.9	21.5		5.9	6.5	45.4	2.6
LnGrp LOS	С	С		Α	A	D	A
Approach Vol, veh/h	110			1371			740
Approach Delay, s/veh				6.1			3.2
Approach LOS	С			Α			Α
Timer	1	2	3	4	5	6	7
Assigned Phs		2		4	5	6	
Phs Duration (G+Y+Rc)	۱ د	41.1		8.4	5.1	36.0	
Change Period (Y+Rc),		6.0		4.5	4.5	6.0	
		29.5		31.0		30.0	
Max Green Setting (Gm					4.0		
Max Q Clear Time (g_c Green Ext Time (p_c), s		4.4 4.8		4.7 0.3	2.3	9.0 9.0	
		4.0		0.5	0.0	7.0	
Intersection Summary							
HCM 2010 Ctrl Delay			6.2				
HCM 2010 LOS			A				
Notes							

		→	`	•	←	•	•	<u>†</u>	<u> </u>	\	 	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7	ሻሻ	†	7	*	^	7	ሻሻ	^	7
Traffic Volume (veh/h)	50	109	80	1183	147	562	120	860	577	496	400	10
Future Volume (veh/h)	50	109	80	1183	147	562	120	860	577	496	400	10
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	U	1.00	1.00	U	0.98	1.00	U	0.99	1.00	U	0.96
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863
Adj Flow Rate, veh/h	53	115	84	1245	155	592	126	905	607	522	421	11
Adj No. of Lanes	1	2	1	2	1	1	120	2	1	2	2	1
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
	116	335	283	1211	710	593	149	949	976	521	1188	508
Cap, veh/h												
Arrive On Green	0.07	0.09	0.09	0.35	0.38	0.38	0.08	0.27	0.27	0.15	0.34	0.34
·	1774	3539	1583	3442	1863	1555	1774	3539	1563	3442	3539	1515
Grp Volume(v), veh/h	53	115	84	1245	155	592	126	905	607	522	421	11
Grp Sat Flow(s), veh/h/ln		1770	1583	1721	1863	1555	1774	1770	1563	1721	1770	1515
Q Serve(g_s), s	4.3	4.6	6.9	52.8	8.4	57.1	10.5	37.7	36.2	22.7	13.5	0.7
Cycle Q Clear(g_c), s	4.3	4.6	6.9	52.8	8.4	57.1	10.5	37.7	36.2	22.7	13.5	0.7
Prop In Lane	1.00	0	1.00	1.00	7	1.00	1.00	0.10	1.00	1.00	4400	1.00
Lane Grp Cap(c), veh/h		335	283	1211	710	593	149	949	976	521	1188	508
V/C Ratio(X)	0.46	0.34	0.30	1.03	0.22	1.00	0.85	0.95	0.62	1.00	0.35	0.02
Avail Cap(c_a), veh/h	130	363	295	1211	710	593	222	949	976	521	1188	508
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	0.92	0.92	0.92	1.00	1.00	1.00
Uniform Delay (d), s/veh		63.5	53.5	48.6	31.3	46.4	67.8	54.0	17.7	63.7	37.6	33.4
Incr Delay (d2), s/veh	2.8	0.6	0.6	33.2	0.2	36.5	16.0	18.9	2.7	40.0	0.8	0.1
Initial Q Delay(d3),s/veh		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh		2.3	3.1	30.7	4.4	30.5	5.8	21.0	16.3	13.7	6.7	0.3
LnGrp Delay(d),s/veh	70.3	64.2	54.0	81.8	31.5	82.9	83.8	72.9	20.4	103.6	38.4	33.4
LnGrp LOS	E	E	D	F	С	F	F	Е	С	F	D	С
Approach Vol, veh/h		252			1992			1638			954	
Approach Delay, s/veh		62.1			78.2			54.3			74.0	
Approach LOS		Ε			Е			D			Е	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc)	, 27.4	45.3	58.0	19.3	17.3	55.4	15.0	62.3				
Change Period (Y+Rc),		5.1	* 5.2	5.1	* 4.7	5.1	* 5.2	5.1				
Max Green Setting (Gm.		39.0	* 53	15.4	* 19	42.9	* 11	57.2				
Max Q Clear Time (g_c+	•	39.7	54.8	8.9	12.5	15.5	6.3	59.1				
Green Ext Time (p_c), s		0.0	0.0	0.4	0.1	2.6	0.0	0.0				
Intersection Summary												
HCM 2010 Ctrl Delay			68.4									
			08.4 E									
HCM 2010 LOS			E									
Notes												

		→	`	√	←	•	•	†	<u> </u>	\		4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					4	7	ች	ተተተ			ተ ተኈ	
Traffic Volume (veh/h)	0	0	0	90	10	224	530	1234	0	0	442	1132
Future Volume (veh/h)	0	0	0	90	10	224	530	1234	0	0	442	1132
Number	U	U	U	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh				0	0	0	0	0	0	0	0	0
` '				1.00	U	1.00	1.00	U	1.00	1.00	U	0.95
Ped-Bike Adj(A_pbT)				1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00
Parking Bus, Adj							1.00				1863	1900
Adj Sat Flow, veh/h/ln				1900	1863	1863	1863	1863	0	0		
Adj Flow Rate, veh/h				95	11	236	558	1299	0	0	465	1192
Adj No. of Lanes				0	1	1	1	3	0	0	3	0
Peak Hour Factor				0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %				2	2	2	2	2	0	0	2	2
Cap, veh/h				269	31	267	544	3653	0	0	1219	540
Arrive On Green				0.17	0.17	0.17	0.31	0.72	0.00	0.00	0.36	0.36
Sat Flow, veh/h				1598	185	1583	1774	5253	0	0	3558	1503
Grp Volume(v), veh/h				106	0	236	558	1299	0	0	465	1192
Grp Sat Flow(s),veh/h/lr	1			1783	0	1583	1774	1695	0	0	1695	1503
Q Serve(g_s), s				4.7	0.0	13.1	27.6	8.7	0.0	0.0	9.2	32.3
Cycle Q Clear(g_c), s				4.7	0.0	13.1	27.6	8.7	0.0	0.0	9.2	32.3
Prop In Lane				0.90		1.00	1.00		0.00	0.00		1.00
Lane Grp Cap(c), veh/h				300	0	267	544	3653	0	0	1219	540
V/C Ratio(X)				0.35	0.00	0.89	1.03	0.36	0.00	0.00	0.38	2.21
Avail Cap(c_a), veh/h				305	0	271	544	3653	0	0	1219	540
ICM Platoon Ratio				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Jpstream Filter(I)				1.00	0.00	1.00	0.32	0.32	0.00	0.00	0.45	0.45
Jniform Delay (d), s/veh	1			33.1	0.0	36.6	31.2	4.8	0.0	0.0	21.4	28.8
ncr Delay (d2), s/veh				0.7	0.0	27.2	28.5	0.1	0.0	0.0	0.4	545.9
Initial Q Delay(d3),s/veh)			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh				2.4	0.0	7.7	17.8	4.0	0.0	0.0	4.3	95.3
LnGrp Delay(d),s/veh				33.8	0.0	63.8	59.7	4.9	0.0	0.0	21.8	574.7
LnGrp LOS				C	0.0	E	F	A	0.0	0.0	C	F
Approach Vol, veh/h					342		•	1857			1657	•
Approach Delay, s/veh					54.5			21.3			419.5	
Approach LOS					D D			Z 1.3			F	
•												
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2			5	6		8				
Phs Duration (G+Y+Rc)		69.7			32.3	37.4		20.3				
Change Period (Y+Rc),		5.1			* 4.7	5.1		5.1				
Max Green Setting (Gm	ax), s	64.4			* 28	32.1		15.4				
/lax Q Clear Time (g_c-	+l1), s	10.7			29.6	34.3		15.1				
Green Ext Time (p_c), s		11.7			0.0	0.0		0.0				
ntersection Summary			105 1									
HCM 2010 Ctrl Delay			195.4									
HCM 2010 LOS			F									
Notes												
10:00												

-	۶	→	•	•	←	•	1	†	/	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4						∱ ∱∱			^	
	711	10	500	0	0	0	0	1064	230	121	421	0
	711	10	500	0	0	0	0	1064	230	121	421	0
Number	7	4	14				5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0				0	0	0	0	0	0
	1.00		1.00				1.00		0.99	1.00		1.00
	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
	863	1863	1900				0	1863	1900	1863	1863	0
	642	159	526				0	1120	242	127	443	0
Adj No. of Lanes	1	1	0				0	3	0	1	2	0
	0.95	0.95	0.95				0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2				0.70	2	2	2	2	0.70
	730	157	518				0	1307	282	159	1632	0
	0.41	0.41	0.41				0.00	0.31	0.31	0.09	0.46	0.00
	774	381	1260				0.00	4345	902	1774	3632	0.00
	642	0	685				0	909	453	127	443	0
Grp Sat Flow(s), veh/h/ln1		0	1640				0	1695	1690	1774	1770	0
	26.7	0.0	32.9				0.0	20.1	20.1	5.6	6.2	0.0
	26.7 26.7	0.0	32.9				0.0	20.1	20.1	5.6	6.2	0.0
, io_ ,	1.00	0.0	0.77				0.00	ZU. I	0.53	1.00	0.2	0.00
Lane Grp Cap(c), veh/h		0	675				0.00	1061	529	1.00	1632	0.00
	0.88	0.00	1.02				0.00	0.86	0.86	0.80	0.27	0.00
` '	730	0.00	675				0.00	1061	529	162	1632	0.00
• • • • • • • • • • • • • • • • • • • •	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
	1.00	0.00	1.00				0.00	1.00	1.00	0.26	0.26	0.00
1 1/		0.00	23.6				0.00	25.8	25.8	35.7	13.3	0.00
Uniform Delay (d), s/veh							0.0	8.9	16.3			
J \ /·	12.0	0.0	38.5							7.1	0.1	0.0
Initial Q Delay(d3),s/veh		0.0	0.0				0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/1		0.0	22.0 62.1				0.0	10.7 34.7	11.7 42.1	3.1 42.8	3.0	0.0
, , , ,	33.7	0.0					0.0				13.4	0.0
LnGrp LOS	С	1227	F					C	D	D	F70	
Approach Vol, veh/h		1327						1362			570	
Approach LOS		48.4						37.2			19.9	
Approach LOS		D						D			В	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4		6						
Phs Duration (G+Y+Rc),	1 31.9	30.1		38.0		42.0						
Change Period (Y+Rc), \$		5.1		5.1		5.1						
Max Green Setting (Gmat		24.9		32.9		36.9						
Max Q Clear Time (g_c+l		22.1		34.9		8.2						
Green Ext Time (p_c), s		2.0		0.0		2.7						
Intersection Summary												
HCM 2010 Ctrl Delay			38.7									
HCM 2010 CIT Delay			30.7 D									
			D									
Notes												

Intersection												
Intersection Delay, s/vel	h93.7											
Intersection LOS	F											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		ሻ	†	7	ሻ	ħβ		ሻ	ħβ	
Traffic Vol., veh/h	401	30	40	10	20	373	20	430	10	252	400	229
Future Vol, veh/h	401	30	40	10	20	373	20	430	10	252	400	229
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	422	32	42	11	21	393	21	453	11	265	421	241
Number of Lanes	1	1	0	1	1	1	1	2	0	1	2	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	3			2			3			3		
Conflicting Approach Le	ft SB			NB			EB			WB		
Conflicting Lanes Left	3			3			2			3		
Conflicting Approach Rig	ghtNB			SB			WB			EB		
Conflicting Lanes Right	3			3			3			2		
HCM Control Delay	59.1			175.8			73.7			85		
HCM LOS	F			F			F			F		
HCM LOS	F			F			F			F		
HCM LOS Lane	•	NBLn11	NBLn21		EBLn1	EBLn2\		VBLn2W	VBLn3		SBLn2	SBLn3
Lane	•	NBLn11	<u>NBLn2 I</u> 0%		EBLn1 100%	EBLn2\ 70%		<u>VBLn2V</u> 0%			SBLn2 0%	SBLn3 0%
	•	100%		NBLn3			WBLn1V	0%		SBLn1 100%		
Lane Vol Left, %	•	100%	0%	NBLn3 0%	100%	70%	<u>WBLn1\</u> 100%	0%	0%	SBLn1 100%	0%	0%
Lane Vol Left, % Vol Thru, %	•	100% 0%	0% 100%	NBLn3 0% 93%	100% 0%	70% 13%	WBLn1\ 100% 0%	0% 100%	0% 0%	SBLn1 100% 0%	0% 100%	0% 37%
Lane Vol Left, % Vol Thru, % Vol Right, %	•	100% 0% 0%	0% 100% 0%	NBLn3 0% 93% 7%	100% 0% 0%	70% 13% 17%	WBLn1\ 100% 0% 0%	0% 100% 0%	0% 0% 100%	SBLn1 100% 0% 0%	0% 100% 0%	0% 37% 63%
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control	•	100% 0% 0% Stop	0% 100% 0% Stop	NBLn3 0% 93% 7% Stop	100% 0% 0% Stop	70% 13% 17% Stop	WBLn1V 100% 0% 0% Stop	0% 100% 0% Stop	0% 0% 100% Stop	SBLn1 100% 0% 0% Stop	0% 100% 0% Stop	0% 37% 63% Stop
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane	•	100% 0% 0% Stop 20	0% 100% 0% Stop 287	NBLn3 0% 93% 7% Stop 153	100% 0% 0% Stop 237	70% 13% 17% Stop 234	WBLn1\\ 100% 0% 0% Stop	0% 100% 0% Stop 20	0% 0% 100% Stop 373	SBLn1 100% 0% 0% Stop 252	0% 100% 0% Stop 267	0% 37% 63% Stop 362
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol	•	100% 0% 0% Stop 20 20 0	0% 100% 0% Stop 287 0 287 0	NBLn3 0% 93% 7% Stop 153 0	100% 0% 0% Stop 237 237 0	70% 13% 17% Stop 234 164	WBLn1V 100% 0% 0% Stop 10	0% 100% 0% Stop 20	0% 0% 100% Stop 373 0	SBLn1 100% 0% 0% Stop 252 252 0	0% 100% 0% Stop 267 0 267	0% 37% 63% Stop 362 0 133 229
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol	•	100% 0% 0% Stop 20 20	0% 100% 0% Stop 287 0 287	NBLn3 0% 93% 7% Stop 153 0 143	100% 0% 0% Stop 237 237	70% 13% 17% Stop 234 164 30	WBLn1V 100% 0% 0% Stop 10 10	0% 100% 0% Stop 20 0	0% 0% 100% Stop 373 0	SBLn1 100% 0% 0% Stop 252 252 0	0% 100% 0% Stop 267 0 267	0% 37% 63% Stop 362 0 133
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol	•	100% 0% 0% Stop 20 20 0	0% 100% 0% Stop 287 0 287 0	NBLn3 0% 93% 7% Stop 153 0 143	100% 0% 0% Stop 237 237 0	70% 13% 17% Stop 234 164 30 40	WBLn1V 100% 0% 0% Stop 10 10 0	0% 100% 0% Stop 20 0 20	0% 0% 100% Stop 373 0 0	SBLn1 100% 0% 0% Stop 252 252 0	0% 100% 0% Stop 267 0 267	0% 37% 63% Stop 362 0 133 229
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate	•	100% 0% 0% Stop 20 20 0 0	0% 100% 0% Stop 287 0 287 0 302	NBLn3 0% 93% 7% Stop 153 0 143 10 161 8	100% 0% 0% Stop 237 237 0 0 249	70% 13% 17% Stop 234 164 30 40 247	WBLn1V 100% 0% 0% Stop 10 0 0	0% 100% 0% Stop 20 0 20 0	0% 0% 100% Stop 373 0 0 373 393	SBLn1 100% 0% Stop 252 252 0 0 265 8	0% 100% 0% Stop 267 0 267 0 281	0% 37% 63% Stop 362 0 133 229 381
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp	N	100% 0% 0% Stop 20 0 0 0 21 8 0.075	0% 100% 0% Stop 287 0 287 0 302 8 1.031	NBLn3 0% 93% 7% Stop 153 0 143 10 161 8 0.549	100% 0% 0% Stop 237 237 0 0 249 8 0.865	70% 13% 17% Stop 234 164 30 40 247 8 0.839	WBLn1V 100% 0% 0% Stop 10 0 0 11 8 0.038	0% 100% 0% Stop 20 0 20 0 21	0% 0% 100% Stop 373 0 0 373 393 8 1.295	SBLn1 100% 0% 0% Stop 252 252 0 0 265 8 0.85	0% 100% 0% Stop 267 0 267 0 281 8 0.861	0% 37% 63% Stop 362 0 133 229 381 8 1.124
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)	N	100% 0% 0% Stop 20 0 0 0 21 8 0.075	0% 100% 0% Stop 287 0 287 0 302 8 1.031	NBLn3 0% 93% 7% Stop 153 0 143 10 161 8 0.549	100% 0% 0% Stop 237 237 0 0 249 8 0.865	70% 13% 17% Stop 234 164 30 40 247 8 0.839	WBLn1V 100% 0% 0% Stop 10 0 0 11 8 0.038	0% 100% 0% Stop 20 0 20 0 21 8	0% 0% 100% Stop 373 0 0 373 393 8 1.295 12.209 Yes	SBLn1 100% 0% 0% Stop 252 252 0 0 265 8 0.85 12.459 Yes	0% 100% 0% Stop 267 0 267 0 281 8 0.861 11.932 Yes	0% 37% 63% Stop 362 0 133 229 381 8 1.124
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Ho	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	100% 0% Stop 20 0 0 21 8 0.075 13.559 Yes 266	0% 100% 0% Stop 287 0 302 8 1.031 13.032 Yes 281	NBLn3 0% 93% 7% Stop 153 0 143 10 161 8 0.549 12.984 Yes 279	100% 0% 0% Stop 237 237 0 0 249 8 0.865 12.718 Yes 286	70% 13% 17% Stop 234 164 30 40 247 8 0.839 12.449 Yes 294	WBLn1V 100% 0% 0% Stop 10 10 0 11 8 0.038 13.452 Yes 268	0% 100% 0% Stop 20 0 21 8 0.074 12.934 Yes 279	0% 0% 100% Stop 373 0 0 373 393 8 1.295 12.209 Yes 302	SBLn1 100% 0% 0% Stop 252 252 0 0 265 8 0.85 12.459 Yes 292	0% 100% 0% Stop 267 0 281 8 0.861 11.932 Yes 306	0% 37% 63% Stop 362 0 133 229 381 8 1.124 11.465 Yes 320
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hoc Convergence, Y/N	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	100% 0% Stop 20 0 0 21 8 0.075 13.559 Yes 266	0% 100% 0% Stop 287 0 302 8 1.031 13.032 Yes 281	NBLn3 0% 93% 7% Stop 153 0 143 10 161 8 0.549 12.984 Yes 279	100% 0% 0% Stop 237 237 0 0 249 8 0.865 12.718 Yes 286	70% 13% 17% Stop 234 164 30 40 247 8 0.839 12.449 Yes 294	WBLn1V 100% 0% 0% Stop 10 10 0 11 8 0.038 13.452 Yes 268	0% 100% 0% Stop 20 0 20 0 21 8 0.074 12.934	0% 0% 100% Stop 373 0 0 373 393 8 1.295 12.209 Yes 302	SBLn1 100% 0% 0% Stop 252 252 0 0 265 8 0.85 12.459 Yes 292	0% 100% 0% Stop 267 0 281 8 0.861 11.932 Yes 306	0% 37% 63% Stop 362 0 133 229 381 8 1.124 11.465 Yes 320
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Ho Convergence, Y/N Cap	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	100% 0% Stop 20 0 0 21 8 0.075 13.559 Yes 266 11.259	0% 100% 0% Stop 287 0 302 8 1.031 13.032 Yes 281	NBLn3 0% 93% 7% Stop 153 0 143 10 161 8 0.549 12.984 Yes 279 10.684	100% 0% Stop 237 237 0 0 249 8 0.865 12.718 Yes 286 10.418	70% 13% 17% Stop 234 164 30 40 247 8 0.839 12.449 Yes 294 10.149	WBLn1V 100% 0% 0% Stop 10 10 0 11 8 0.038 13.452 Yes 268	0% 100% 0% Stop 20 0 21 8 0.074 12.934 Yes 279 10.634	0% 0% 100% Stop 373 0 0 373 393 8 1.295 12.209 Yes 302	SBLn1 100% 0% 0% Stop 252 252 0 0 265 8 0.85 12.459 Yes 292 10.159	0% 100% 0% Stop 267 0 281 8 0.861 11.932 Yes 306	0% 37% 63% Stop 362 0 133 229 381 8 1.124 11.465 Yes 320 9.165
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Ho Convergence, Y/N Cap Service Time	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	100% 0% Stop 20 0 0 21 8 0.075 13.559 Yes 266 11.259	0% 100% 0% Stop 287 0 287 0 302 8 1.031 13.032 Yes 281	NBLn3 0% 93% 7% Stop 153 0 143 10 161 8 0.549 12.984 Yes 279 10.684	100% 0% Stop 237 237 0 0 249 8 0.865 12.718 Yes 286 10.418	70% 13% 17% Stop 234 164 30 40 247 8 0.839 12.449 Yes 294 10.149	WBLn1V 100% 0% 0% Stop 10 0 11 8 0.038 13.452 Yes 268 11.152	0% 100% 0% Stop 20 0 21 8 0.074 12.934 Yes 279 10.634	0% 0% 100% Stop 373 0 0 373 393 8 1.295 12.209 Yes 302 9.909	SBLn1 100% 0% 0% Stop 252 252 0 0 265 8 0.85 12.459 Yes 292 10.159	0% 100% 0% Stop 267 0 267 0 281 8 0.861 11.932 Yes 306 9.632	0% 37% 63% Stop 362 0 133 229 381 8 1.124 11.465 Yes 320 9.165
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Ho Convergence, Y/N Cap Service Time HCM Lane V/C Ratio	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	100% 0% Stop 20 0 0 21 8 0.075 3.559 Yes 266 1.259 0.079	0% 100% 0% Stop 287 0 287 0 302 8 1.031 13.032 Yes 281 10.732	NBLn3 0% 93% 7% Stop 153 0 143 10 161 8 0.549 12.984 Yes 279 10.684 0.577	100% 0% Stop 237 237 0 0 249 8 0.865 12.718 Yes 286 10.418 0.871	70% 13% 17% Stop 234 164 30 40 247 8 0.839 12.449 Yes 294 10.149 0.84	WBLn1V 100% 0% 0% Stop 10 0 11 8 0.038 13.452 Yes 268 11.152 0.041	0% 100% 0% Stop 20 0 21 8 0.074 12.934 Yes 279 10.634 0.075	0% 0% 100% Stop 373 0 0 373 393 8 1.295 12.209 Yes 302 9.909 1.301	SBLn1 100% 0% 0% Stop 252 252 0 0 265 8 0.85 12.459 Yes 292 10.159 0.908	0% 100% 0% Stop 267 0 267 0 281 8 0.861 11.932 Yes 306 9.632 0.918	0% 37% 63% Stop 362 0 133 229 381 8 1.124 11.465 Yes 320 9.165 1.191

0.2 10.9 3.1 7.5 7.1 0.1 0.2 18.6 7.3 7.6 14.2

LOS Engineering, Inc.

HCM 95th-tile Q

Intersection						
Int Delay, s/veh	2.3					
		EDD	MDI	WDT	NDI	NDD
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	^	074	0	^	0	7
Traffic Vol, veh/h	1072	271	0	0	0	165
Future Vol, veh/h	1072	271	0	0	0	165
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	-	250	-	-	-	0
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	1128	285	0	0	0	174
Major/Minor N	/lajor1	N	Najor2	N	/linor1	
Conflicting Flow All	0	0	-	-	-	564
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	_	-	_	7.14
Critical Hdwy Stg 1	_	-	-	_	-	-
Critical Hdwy Stg 2	-	_	-	_	-	-
Follow-up Hdwy	_	_	_	_	-	3.92
Pot Cap-1 Maneuver	-	_	0	_	0	402
Stage 1	_	_	0	_	0	-
Stage 2	-	-	0	-	0	-
Platoon blocked, %	_	_		-		
Mov Cap-1 Maneuver	-	_	-	_	-	402
MOV Cab-7 Maneriver	_	_	_	_	_	-
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
		- - -	- - -	-	- - -	- - -
Stage 1 Stage 2	-	- - -	- - -	- - -	-	- - -
Stage 1 Stage 2 Approach	- - EB	-	- - - WB	-	- - - NB	-
Stage 1 Stage 2 Approach HCM Control Delay, s	-	-	- - - WB 0	-	20.6	
Stage 1 Stage 2 Approach	- - EB	-		-		
Stage 1 Stage 2 Approach HCM Control Delay, s	- - EB	-		-	20.6	
Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS	- - EB 0	-	0	- - -	20.6 C	-
Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm	- - EB 0	- - - - -	0 EBT		20.6 C	-
Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h)	- - EB 0	- - - NBLn1 402	0 EBT	-	20.6 C WBT	-
Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	- - EB 0	NBLn1 402 0.432	0 EBT -	-	20.6 C WBT	-
Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	- - EB 0	NBLn1 402 0.432 20.6	0 EBT - -	- - -	20.6 C WBT	-
Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	- - EB 0	NBLn1 402 0.432	0 EBT -	-	20.6 C WBT	-

Intersection													
Int Delay, s/veh	3.7												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
	EDL Š								NDK	SDL		SDK	
Lane Configurations		↑↑↑	122	\	↑↑↑	7	200	þ	00	20	4	70	
raffic Vol, veh/h	132	993	122	96	1600	40	208	11	89	20	12	70	
uture Vol, veh/h	132	993	122	96	1600	40	208	11	89	20	12	70	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
ign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	250	-	250	250	-	400	0	-	-	-	-	-	
eh in Median Storage	:,# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
eak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95	
leavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
lvmt Flow	139	1045	128	101	1684	42	219	12	94	21	13	74	
	Major1			Major2		1	Minor1			Minor2			
Conflicting Flow All	1726	0	0	1173	0	0	2205	3251	523	2588	3337	842	
Stage 1	-	-	-	-	-	-	1323	1323	-	1886	1886	-	
Stage 2	-	-	-	-	-	-	882	1928	-	702	1451	-	
ritical Hdwy	5.34	-	-	5.34	-	-	6.44	6.54	7.14	6.44	6.54	7.14	
itical Hdwy Stg 1	-	-	-	-	-	-	7.34	5.54	-	7.34	5.54	-	
itical Hdwy Stg 2	-	-	-	-	-	-	6.74	5.54	-	6.74	5.54	-	
ollow-up Hdwy	3.12	_	-	3.12	-	_	3.82	4.02	3.92	3.82	4.02	3.92	
ot Cap-1 Maneuver	172	-	-	323	-	-	~ 47	~ 9	427	27	~ 8	264	
Stage 1	_	_	-	_	-	_	~ 118	224	_	47	118	_	
Stage 2	-	-	_	_	_	_	278	112	-	359	194	_	
atoon blocked, %		_	_		_	_	2,0			007	171		
ov Cap-1 Maneuver	172	_	_	323	_	_	_	~ 1	427	_	~ 1	264	
ov Cap-1 Maneuver	- 172	_		323	_		_	~ 1	721	_	~ 1	204	
Stage 1							~ 23	43	-	~ 9	81	-	
Stage 2	-	-	-	-	-	-	~ 116	77	-	39	37	-	
Stage 2	-	-	-	-	-	-	~ 110	11	-	39	31	-	
pproach	EB			WB			NB			SB			
ICM Control Delay, s	8.5			1.2						- 55			
ICM LOS	0.0			1.2			_			_			
OW EGG													
linor Lane/Major Mvm	it N	NBLn1 N	VBLn2	EBL	EBT	EBR	WBL	WBT	WBR S	SBLn1			
Capacity (veh/h)		_	9	172	-		323						
CM Lane V/C Ratio		_ 1	11.696	0.808	_	_		_	_	_			
CM Control Delay (s)			5621.7	80	-		21.1			-			
CM Lane LOS		ф: -	F	F	-	-	Z1.1	-	-	-			
CM 95th %tile Q(veh)		-	14.7	5.4	-	-	1.3	-	-	_			
` '			17.7	J. 4			1.0						
otes	'1.	¢ D	Jan		00 s			N. D	- El I	* 41		.al	a alct-
Volume exceeds cap	oacity	\$: De	eiay exc	ceeds 30	UUS	+: Com	putatior	n Not D	efined	î: All	major v	volume ii	n platoon

	۶	→	•	•	←	•	1	†	~	/	†	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1,4	ተተተ	7	7	ተተተ	7	ሻሻ	£		7	ĵ»	7
Traffic Volume (veh/h)	211	603	160	120	1104	130	250	20	70	120	20	394
Future Volume (veh/h)	211	603	160	120	1104	130	250	20	70	120	20	394
Number	5	2	12	1	6	16	3	8	18	7	4	14
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.99
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1863	1863	1863	1863	1900	1863	1863	1863
Adj Flow Rate, veh/h	222	635	168	126	1162	137	263	21	74	126	0	429
Adj No. of Lanes	2	3	1	1	3	1	2	1	0	1	0	2
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	222	2029	632	267	1512	470	343	36	127	631	0	1112
Arrive On Green	0.06	0.40	0.40	0.30	0.30	0.30	0.10	0.10	0.10	0.36	0.00	0.36
Sat Flow, veh/h	3442	5085	1583	675	5085	1582	3442	362	1276	1774	0	3127
Grp Volume(v), veh/h	222	635	168	126	1162	137	263	0	95	126	0	429
Grp Sat Flow(s), veh/h/ln	1721	1695	1583	675	1695	1582	1721	0	1638	1774	0	1563
Q Serve(g_s), s	7.0	9.3	7.7	17.5	22.5	7.2	8.1	0.0	6.0	5.3	0.0	11.1
Cycle Q Clear(g_c), s	7.0	9.3	7.7	17.5	22.5	7.2	8.1	0.0	6.0	5.3	0.0	11.1
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.78	1.00		1.00
Lane Grp Cap(c), veh/h	222	2029	632	267	1512	470	343	0	163	631	0	1112
V/C Ratio(X)	1.00	0.31	0.27	0.47	0.77	0.29	0.77	0.00	0.58	0.20	0.00	0.39
Avail Cap(c_a), veh/h	222	2334	727	310	1831	570	508	0	242	631	0	1112
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	50.6	22.4	21.9	32.9	34.6	29.3	47.5	0.0	46.6	24.2	0.0	26.1
Incr Delay (d2), s/veh	59.7	0.1	0.2	1.3	1.7	0.3	4.0	0.0	3.3	0.7	0.0	1.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	5.1	4.4	3.4	3.4	10.8	3.2	4.0	0.0	2.9	2.7	0.0	4.9
LnGrp Delay(d),s/veh	110.3	22.4	22.1	34.2	36.3	29.6	51.6	0.0	49.9	24.9	0.0	27.1
LnGrp LOS	F	С	С	С	D	С	D		D	С		С
Approach Vol, veh/h		1025			1425			358			555	
Approach Delay, s/veh		41.4			35.5			51.1			26.6	
Approach LOS		D			D			D			С	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2		4	5	6		8				
Phs Duration (G+Y+Rc), s		50.5		42.5	11.0	39.5		15.3				
Change Period (Y+Rc), s		7.3		4.0	4.0	* 7.3		4.5				
Max Green Setting (Gmax), s		49.7		38.5	7.0	* 39		16.0				
Max Q Clear Time (g_c+I1), s		11.3		13.1	9.0	24.5		10.1				
Green Ext Time (p_c), s		4.8		2.1	0.0	7.7		0.7				
Intersection Summary												
HCM 2010 Ctrl Delay			37.5									
HCM 2010 LOS			D									
Notes												

Intersection												
Int Delay, s/veh	1.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ተ ተጉ			ተተተ	7			7			7
Traffic Vol, veh/h	0	733	10	0	994	60	0	0	10	0	0	150
Future Vol, veh/h	0	733	10	0	994	60	0	0	10	0	0	150
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	500	-	-	0	-	-	0
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	772	11	0	1046	63	0	0	11	0	0	158
Major/Minor N	1ajor1		١	Major2		N	Minor1		N	/linor2		
Conflicting Flow All	-	0	0	-	-	0	-	-	392	-	-	523
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	-	-	-	7.14	-	-	7.14
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	-	-	-	3.92	-	-	3.92
Pot Cap-1 Maneuver	0	-	-	0	-	-	0	0	519	0	0	427
Stage 1	0	-	-	0	-	-	0	0	-	0	0	-
Stage 2	0	-	-	0	-	-	0	0	-	0	0	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	-	-	-	-	-	-	-	-	519	-	-	427
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			0			12.1			18.3		
HCM LOS							В			С		
Minor Lane/Major Mvmt	t ſ	VBLn1	EBT	EBR	WBT	WBR S						
Capacity (veh/h)		519	-	-	-	-	127					
HCM Lane V/C Ratio		0.02	-	-	-	-	0.37					
HCM Control Delay (s)		12.1	-	-	-	-	18.3					
HCM Lane LOS		В	-	-	-	-	С					
HCM 95th %tile Q(veh)		0.1	-	-	-	-	1.7					

	۶	→	•	•	←	•	4	†	~	/	↓	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	44	ተተተ	7	1,4	ተተተ	7	Ĭ	f)		*	†	77
Traffic Volume (veh/h)	235	372	136	30	477	190	298	80	100	250	140	349
Future Volume (veh/h)	235	372	136	30	477	190	298	80	100	250	140	349
Number	3	8	18	7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.99	1.00		1.00	1.00		0.99	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1863	1863	1863	1863	1900	1863	1863	1863
Adj Flow Rate, veh/h	247	392	143	32	502	200	314	84	105	263	147	367
Adj No. of Lanes	2	3	1	2	3	1	1	1	0	1	1	2
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	324	1233	381	81	874	272	355	263	329	303	600	898
Arrive On Green	0.09	0.24	0.24	0.02	0.17	0.17	0.20	0.35	0.35	0.17	0.32	0.32
Sat Flow, veh/h	3442	5085	1570	3442	5085	1583	1774	748	935	1774	1863	2787
Grp Volume(v), veh/h	247	392	143	32	502	200	314	0	189	263	147	367
Grp Sat Flow(s),veh/h/ln	1721	1695	1570	1721	1695	1583	1774	0	1682	1774	1863	1393
Q Serve(g_s), s	7.0	6.4	7.6	0.9	9.1	12.1	17.3	0.0	8.3	14.5	5.8	10.3
Cycle Q Clear(g_c), s	7.0	6.4	7.6	0.9	9.1	12.1	17.3	0.0	8.3	14.5	5.8	10.3
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.56	1.00		1.00
Lane Grp Cap(c), veh/h	324	1233	381	81	874	272	355	0	592	303	600	898
V/C Ratio(X)	0.76	0.32	0.38	0.40	0.57	0.73	0.88	0.00	0.32	0.87	0.24	0.41
Avail Cap(c_a), veh/h	547	2077	641	154	1496	466	670	0	592	582	600	898
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	44.5	31.3	31.8	48.4	38.3	39.5	39.1	0.0	23.8	40.6	25.1	26.6
Incr Delay (d2), s/veh	3.7	0.1	0.6	3.1	0.6	3.8	7.3	0.0	1.4	7.5	1.0	1.4
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	3.5	3.0	3.4	0.5	4.3	5.5	9.2	0.0	4.1	7.7	3.2	4.2
LnGrp Delay(d),s/veh	48.2	31.4	32.4	51.5	38.9	43.3	46.4	0.0	25.2	48.2	26.1	28.0
LnGrp LOS	D	С	С	D	D	D	D		С	D	С	С
Approach Vol, veh/h		782			734			503			777	
Approach Delay, s/veh		36.9			40.7			38.5			34.5	
Approach LOS		D			D			D			С	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	24.2	39.8	13.5	23.2	21.2	42.8	6.4	30.3				
Change Period (Y+Rc), s	4.0	7.4	4.0	5.9	4.0	* 7.4	4.0	5.9				
Max Green Setting (Gmax), s	38.0	30.1	16.0	29.6	33.0	* 35	4.5	41.1				
Max Q Clear Time (g_c+I1), s	19.3	12.3	9.0	14.1	16.5	10.3	2.9	9.6				
Green Ext Time (p_c), s	0.8	2.1	0.4	3.2	0.7	1.0	0.0	2.9				
Intersection Summary												
HCM 2010 Ctrl Delay			37.5									
HCM 2010 LOS			D									
Notes												

Appendix Y

Horizon Year 2062 with Project Intersection LOS Calculations with Mitigation and Concept Striping

	ၨ	→	•	•	←	1	1	†	/	/	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7	ሻሻሻ	₽	7	ሻ	^	7	ሻሻ	^↑	7
Traffic Volume (veh/h)	50	88	110	426	99	269	100	410	778	405	860	10
Future Volume (veh/h)	50	88	110	426	99	269	100	410	778	405	860	10
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		0.97	1.00		0.99	1.00		0.96
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863
Adj Flow Rate, veh/h	53	93	116	448	238	194	105	432	819	426	905	11
Adj No. of Lanes	1	2	1	3	1	1	1	2	1	2	2	1
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	169	414	304	732	297	245	133	1285	785	452	1484	638
Arrive On Green	0.10	0.12	0.12	0.14	0.16	0.16	0.08	0.36	0.36	0.13	0.42	0.42
Sat Flow, veh/h	1774	3539	1583	5322	1863	1542	1774	3539	1563	3442	3539	1523
Grp Volume(v), veh/h	53	93	116	448	238	194	105	432	819	426	905	11
Grp Sat Flow(s), veh/h/ln	1774	1770	1583	1774	1863	1542	1774	1770	1563	1721	1770	1523
Q Serve(g_s), s	2.2	1.9	5.1	6.3	9.9	9.7	4.7	7.1	29.0	9.8	16.0	0.3
Cycle Q Clear(g_c), s	2.2	1.9	5.1	6.3	9.9	9.7	4.7	7.1	29.0	9.8	16.0	0.3
Prop In Lane	1.00	1.7	1.00	1.00	7.7	1.00	1.00	7.1	1.00	1.00	10.0	1.00
Lane Grp Cap(c), veh/h	169	414	304	732	297	245	133	1285	785	452	1484	638
V/C Ratio(X)	0.31	0.22	0.38	0.61	0.80	0.79	0.79	0.34	1.04	0.94	0.61	0.02
Avail Cap(c_a), veh/h	244	681	424	838	396	328	146	1285	785	452	1484	638
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	0.95	1.00	1.00	1.00
Uniform Delay (d), s/veh	33.8	32.0	28.2	32.5	32.4	32.3	36.4	18.5	20.0	34.5	18.1	13.6
Incr Delay (d2), s/veh	1.1	0.3	0.8	1.0	8.4	9.1	21.7	0.7	43.1	28.5	1.9	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.1	0.9	2.3	3.2	5.8	4.7	3.1	3.5	26.6	6.5	8.2	0.0
LnGrp Delay(d),s/veh	34.8	32.3	29.0	33.5	40.9	41.4	58.1	19.2	63.1	62.9	20.0	13.6
LnGrp LOS	34.0 C	32.3 C	27.0 C	33.5 C	40.7 D	41.4 D	50.1 E	17.2 B	03.1 F	02.9 E	20.0 C	13.0 B
•	C	262	C	C	880	D	<u> </u>	1356	ı	<u> </u>	1342	D
Approach Vol, veh/h					37.3			48.7			33.6	
Approach LOS		31.3 C			37.3 D			48.7 D			33.0 C	
Approach LOS		C			D			D			C	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	15.2	34.1	16.2	14.5	10.7	38.6	12.8	17.8				
Change Period (Y+Rc), s	* 4.7	5.1	* 5.2	5.1	* 4.7	5.1	* 5.2	5.1				
Max Green Setting (Gmax), s	* 11	21.4	* 13	15.4	* 6.6	25.3	* 11	17.0				
Max Q Clear Time (q_c+l1), s	11.8	31.0	8.3	7.1	6.7	18.0	4.2	11.9				
Green Ext Time (p_c), s	0.0	0.0	0.7	0.5	0.0	3.3	0.0	0.9				
Intersection Summary												
HCM 2010 Ctrl Delay			39.6									
HCM 2010 LOS			D									

	•	→	•	•	←	4	1	†	<i>></i>	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					सी	7	*	ተተተ			^ ^	7
Traffic Volume (veh/h)	0	0	0	50	10	155	450	1120	0	0	445	623
Future Volume (veh/h)	0	0	0	50	10	155	450	1120	0	0	445	623
Number				3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh				0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)				1.00		1.00	1.00		1.00	1.00		0.96
Parking Bus, Adj				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln				1900	1863	1863	1863	1863	0	0	1863	1863
Adj Flow Rate, veh/h				53	11	163	474	1179	0	0	468	656
Adj No. of Lanes				0	1	1	1	3	0	0	3	1
Peak Hour Factor				0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %				2	2	2	2	2	0	0	2	2
Cap, veh/h				186	39	199	510	3871	0	0	2143	638
Arrive On Green				0.13	0.13	0.13	0.29	0.76	0.00	0.00	0.42	0.42
Sat Flow, veh/h				1481	307	1583	1774	5253	0	0	5253	1515
Grp Volume(v), veh/h				64	0	163	474	1179	0	0	468	656
Grp Sat Flow(s), veh/h/ln				1789	0	1583	1774	1695	0	0	1695	1515
Q Serve(q_s), s				2.9	0.0	9.0	23.4	6.5	0.0	0.0	5.3	37.9
Cycle Q Clear(g_c), s				2.9	0.0	9.0	23.4	6.5	0.0	0.0	5.3	37.9
Prop In Lane				0.83		1.00	1.00		0.00	0.00		1.00
Lane Grp Cap(c), veh/h				225	0	199	510	3871	0	0	2143	638
V/C Ratio(X)				0.29	0.00	0.82	0.93	0.30	0.00	0.00	0.22	1.03
Avail Cap(c_a), veh/h				306	0	271	558	3871	0	0	2143	638
HCM Platoon Ratio				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)				1.00	0.00	1.00	0.49	0.49	0.00	0.00	0.76	0.76
Uniform Delay (d), s/veh				35.7	0.0	38.4	31.2	3.3	0.0	0.0	16.6	26.0
Incr Delay (d2), s/veh				0.7	0.0	13.3	12.4	0.1	0.0	0.0	0.2	38.4
Initial Q Delay(d3),s/veh				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln				1.5	0.0	4.7	13.2	3.0	0.0	0.0	2.5	22.6
LnGrp Delay(d),s/veh				36.4	0.0	51.7	43.6	3.4	0.0	0.0	16.8	64.4
LnGrp LOS				D		D	D	Α			В	F
Approach Vol, veh/h					227			1653			1124	
Approach Delay, s/veh					47.4			15.0			44.6	
Approach LOS					D			В			D	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	<u> </u>	2	<u> </u>		5	6	,	8				
Phs Duration (G+Y+Rc), s		73.6			30.6	43.0		16.4				
Change Period (Y+Rc), s		5.1			* 4.7	5.1		5.1				
Max Green Setting (Gmax), s		64.4			* 28	31.4		15.4				
Max Q Clear Time (q_c+l1), s		8.5			25.4	39.9		11.0				
Green Ext Time (p_c), s		10.1			0.5	0.0		0.3				
Intersection Summary												
HCM 2010 Ctrl Delay			28.5									
HCM 2010 CIT Delay			28.5 C									
Notes												
140103												

	•	→	*	•	•	•	1	Ī		-	¥	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	4		1,1	↑	77	ሻሻ	ተተኈ		ሻሻ	∱ ∱	
Traffic Volume (veh/h)	444	10	20	10	30	221	40	420	10	92	350	456
Future Volume (veh/h)	444	10	20	10	30	221	40	420	10	92	350	456
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		0.98	1.00		0.87	1.00		0.88
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1900	1863	1863	1863	1863	1863	1900	1863	1863	1900
Adj Flow Rate, veh/h	494	0	0	11	32	233	42	442	11	97	368	480
Adj No. of Lanes	2	1	0	2	1	2	2	3	0	2	2	0
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	712	374	0	431	233	341	106	2003	49	164	727	572
Arrive On Green	0.20	0.00	0.00	0.13	0.13	0.13	0.03	0.39	0.39	0.05	0.41	0.41
Sat Flow, veh/h	3548	1863	0	3442	1863	2720	3442	5084	126	3442	1770	1392
Grp Volume(v), veh/h	494	0	0	11	32	233	42	294	159	97	368	480
Grp Sat Flow(s), veh/h/ln	1774	1863	0	1721	1863	1360	1721	1695	1819	1721	1770	1392
Q Serve(g_s), s	10.0	0.0	0.0	0.2	1.2	6.3	0.9	4.5	4.5	2.1	12.0	24.0
Cycle Q Clear(g_c), s	10.0	0.0	0.0	0.2	1.2	6.3	0.9	4.5	4.5	2.1	12.0	24.0
Prop In Lane	1.00		0.00	1.00		1.00	1.00		0.07	1.00		1.00
Lane Grp Cap(c), veh/h	712	374	0	431	233	341	106	1336	717	164	727	572
V/C Ratio(X)	0.69	0.00	0.00	0.03	0.14	0.68	0.40	0.22	0.22	0.59	0.51	0.84
Avail Cap(c_a), veh/h	1443	757	0	733	397	579	200	2031	1090	338	1131	889
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	28.7	0.0	0.0	29.7	30.2	32.4	36.8	15.6	15.6	36.2	17.0	20.5
Incr Delay (d2), s/veh	1.2	0.0	0.0	0.0	0.3	2.4	2.4	0.1	0.2	3.4	0.5	4.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	5.0	0.0	0.0	0.1	0.6	2.5	0.5	2.1	2.3	1.1	5.9	9.9
LnGrp Delay(d),s/veh	30.0	0.0	0.0	29.8	30.4	34.8	39.2	15.7	15.7	39.6	17.5	24.8
LnGrp LOS	С	10.1		С	С	С	D	В	В	D	В	С
Approach Vol, veh/h		494			276			495			945	
Approach Delay, s/veh		30.0			34.1			17.7			23.5	
Approach LOS		С			С			В			С	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	8.2	35.0		20.1	6.9	36.3		14.2				
Change Period (Y+Rc), s	4.5	4.5		4.5	4.5	4.5		4.5				
Max Green Setting (Gmax), s	7.6	46.4		31.5	4.5	49.5		16.5				
Max Q Clear Time (q_c+l1), s	4.1	6.5		12.0	2.9	26.0		8.3				
Green Ext Time (p_c), s	0.1	2.7		1.6	0.0	5.8		0.7				
Intersection Summary												
HCM 2010 Ctrl Delay			25.0									
HCM 2010 LOS			C									
Notes												

	۶	→	•	•	←	•	1	†	<i>></i>	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	^ ^	7	ሻ	ተተተ	7	ሻ	₽			4	
Traffic Volume (veh/h)	74	1418	85	38	590	10	61	4	58	35	3	100
Future Volume (veh/h)	74	1418	85	38	590	10	61	4	58	35	3	100
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1863	1863	1863	1863	1900	1900	1863	1900
Adj Flow Rate, veh/h	78	1493	89	40	621	11	64	4	61	37	3	105
Adj No. of Lanes	1	3	1	1	3	1	1	1	0	0	1	0
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	100	2237	697	59	2119	660	142	8	120	53	4	151
Arrive On Green	0.06	0.44	0.44	0.03	0.42	0.42	0.08	0.08	0.08	0.13	0.13	0.13
Sat Flow, veh/h	1774	5085	1583	1774	5085	1583	1774	98	1500	417	34	1183
Grp Volume(v), veh/h	78	1493	89	40	621	11	64	0	65	145	0	0
Grp Sat Flow(s),veh/h/ln	1774	1695	1583	1774	1695	1583	1774	0	1598	1633	0	0
Q Serve(g_s), s	2.4	13.1	1.9	1.3	4.6	0.2	1.9	0.0	2.2	4.8	0.0	0.0
Cycle Q Clear(g_c), s	2.4	13.1	1.9	1.3	4.6	0.2	1.9	0.0	2.2	4.8	0.0	0.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.94	0.26		0.72
Lane Grp Cap(c), veh/h	100	2237	697	59	2119	660	142	0	128	209	0	0
V/C Ratio(X)	0.78	0.67	0.13	0.68	0.29	0.02	0.45	0.00	0.51	0.69	0.00	0.00
Avail Cap(c_a), veh/h	299	3018	940	173	2658	827	534	0	481	463	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	26.3	12.5	9.4	27.0	10.9	9.7	24.8	0.0	24.9	23.6	0.0	0.0
Incr Delay (d2), s/veh	12.3	0.3	0.1	13.1	0.1	0.0	2.2	0.0	3.1	4.1	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.5	6.2	0.8	0.8	2.1	0.1	1.0	0.0	1.1	2.4	0.0	0.0
LnGrp Delay(d),s/veh	38.6	12.9	9.5	40.1	11.0	9.7	27.0	0.0	28.0	27.7	0.0	0.0
LnGrp LOS	D	В	Α	D	В	Α	С		С	С		
Approach Vol, veh/h		1660			672			129			145	
Approach Delay, s/veh		13.9			12.7			27.5			27.7	
Approach LOS		В			В			С			С	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s		9.0	6.4	29.3		11.7	7.7	28.0				
Change Period (Y+Rc), s		4.5	4.5	4.5		4.5	4.5	4.5				
Max Green Setting (Gmax), s		17.0	5.5	33.5		16.0	9.5	29.5				
Max Q Clear Time (q_c+l1), s		4.2	3.3	15.1		6.8	4.4	6.6				
Green Ext Time (p_c), s		0.3	0.0	9.7		0.4	0.1	3.9				
Intersection Summary												
HCM 2010 Ctrl Delay			15.0									
HCM 2010 LOS			В									

Lane Configurations		<u>→</u>	→	•	•	←	4	1	†	/	/	 	1
Traffic Volume (vehrlh) 50 109 80 1183 147 562 120 860 577 496 400 11 Number	Movement	EBL		EBR		WBT	WBR	NBL		NBR		SBT	SBR
Future Volume (veh/h)	Lane Configurations	ሻ	^	7	ሻሻሻ	₽	7	ሻ	^	7	ሻሻ	^↑	7
Number 7 4 14 4 3 8 18 5 2 12 12 1 6 14 18 18 18 5 2 12 12 1 6 6 14 18 18 18 5 2 12 12 1 6 6 14 18 18 18 18 5 2 12 12 1 7 6 14 18 18 18 18 18 5 2 12 12 1 7 6 14 18 18 18 18 18 18 5 2 12 12 1 7 6 14 18 18 18 18 18 18 18 18 18 18 18 18 18	Traffic Volume (veh/h)	50			1183	147	562		860		496		10
Initial O (Ob), veh Pearking Bus, Adj 1.00 1.	Future Volume (veh/h)	50	109	80	1183	147	562	120	860	577	496	400	10
Ped-Bike Adjik AgifA, pbT) 1.00 <t< td=""><td>Number</td><td>7</td><td>4</td><td>14</td><td>3</td><td>8</td><td>18</td><td>5</td><td>2</td><td>12</td><td>1</td><td>6</td><td>16</td></t<>	Number	7	4	14	3	8	18	5	2	12	1	6	16
Parking Bus, Adj	Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Adj Sai Flow, vehrblin 1863 1863 1863 1863 1863 1863 1863 1863	Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		0.98	1.00		0.99	1.00		0.96
Adj Flow Rate, veh/h	Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj No. of Lanes	Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863
Peak Hour Factor 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	Adj Flow Rate, veh/h	53	115	84	1245	483	374	126	905	607	522	421	11
Peak Hour Factor 0.95 0.96 Colorable Colorable Colorable Colorable Colorable Colorable Colorable 2 2 27.7 26.5 1.	Adj No. of Lanes	1	2	1	3	1	1	1	2	1	2	2	1
Cap, veh/h Arive On Green Arive On G		0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Cap, veh/h Arive On Green Arive On G	Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Arrive On Green		142	389	312	1333	522	434	155	1061	865	541	1309	562
Sat Flow, veh/h 1774 3539 1583 5322 1863 1551 1774 3539 1563 3442 3539 1515 Grp Volume(v), veh/h 53 115 84 1245 483 374 126 905 607 522 421 11 Grp Sat Flow(s), veh/h/h 1774 1770 1583 1774 4863 1551 1774 1770 1563 1721 1770 1513 Oserve(g.s.).s 3.1 3.3 4.9 25.2 27.7 25.2 7.7 26.5 31.4 16.6 9.4 0.5 Cycle O Clear(g.c.).s 3.1 3.3 4.9 25.2 27.7 25.2 7.7 26.5 31.4 16.6 9.4 0.5 Cycle O Clear(g.c.).s 3.1 3.3 4.9 25.2 27.7 25.2 7.7 26.5 31.4 16.6 9.4 0.5 Lane Gro Cap(c.), weh/h 177 495 360 1345 545		0.08											0.37
Gry Volume(v), veh/h 53 115 84 1245 483 374 126 905 607 522 421 11 Gry Sat Flow(s), veh/h/ln 1774 1770 1583 1774 1863 1551 1774 1770 1513 0 1519 1571 1770 1513 0 2 27.7 25.2 27.7 26.5 31.4 16.6 9.4 0.5 0 0.5 0.2 27.7 26.5 31.4 16.6 9.4 0.5 0.2 0.2 27.7 26.5 31.4 16.6 9.4 0.5 0.2 0.7 26.5 31.4 16.6 9.4 0.5 0.02 2.0													
Grp Sat Flow(s), veh/h/ln													
Q Serve(g_s), s													
Cycle Q Clear(g_c), s													
Prop In Lane													
Lane Grp Cap(c), veh/h			5.5			21.1			20.5			7.4	
V/C Ratio(X) 0.37 0.30 0.27 0.93 0.93 0.86 0.81 0.85 0.70 0.96 0.32 0.02 Avail Cap(c_a), veh/h 177 495 360 1345 545 454 248 1061 865 541 1309 562 HCM Platoon Ratio 1.00 <t< td=""><td></td><td></td><td>380</td><td></td><td></td><td>522</td><td></td><td></td><td>1061</td><td></td><td></td><td>1300</td><td></td></t<>			380			522			1061			1300	
Avail Cap(c_a), veh/h													
HCM Platoon Ratio 1.00 0.0													
Upstream Filter(I)													
Uniform Delay (d), s/veh 48.0 45.1 37.5 40.3 38.5 37.6 49.3 36.2 18.2 46.0 24.8 22.0 Incr Delay (d2), s/veh 1.6 0.4 0.5 12.0 21.5 15.0 9.6 8.1 4.3 29.8 0.7 0.1 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.													
Incr Delay (d2), s/veh													
Initial Q Delay(d3),s/veh													
%ile BackOfO(56%),veh/ln 1.6 1.6 2.2 13.8 17.3 12.5 4.2 14.1 14.4 10.1 4.7 0.2 LnGrp Delay(d),s/veh 49.6 45.5 37.9 52.4 60.0 52.5 58.9 44.3 22.5 75.8 25.4 22.1 LnGrp LOS D D D D E D E D C E C C Approach Vol, veh/h 252 2102 1638 954 Approach Delay, s/veh 43.8 54.1 37.3 53.0 Approach LOS D D D D D D D Timer 1 2 3 4 5 6 7 8 8 Assigned Phs 1 2 3 4 5 6 7 8 8 8 9 14.1 14.4 10.1 14.7 0.2 14.2 14.1 14.4 10.1 14.7 0.2 15.1 14.2 14.1 14.2 14.3 14.2 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>													
LnGrp Delay(d),s/veh 49.6 45.5 37.9 52.4 60.0 52.5 58.9 44.3 22.5 75.8 25.4 22.1 LnGrp LOS D D D D E D E D C E C C C Approach Vol, veh/h 252 2102 1638 954 Approach Delay, s/veh 43.8 54.1 37.3 53.0 Approach LOS D													
LnGrp LOS D D D D E D E D C E C C Approach Vol, veh/h 252 2102 1638 954 Approach Delay, s/veh 43.8 54.1 37.3 53.0 Approach LOS D D D D D Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 3 4 5 6 7 8 Phs Duration (G+Y+Rc), s 22.0 38.1 32.7 17.2 14.3 45.8 14.0 35.9 Change Period (Y+Rc), s * 4.7 5.1 * 5.2 5.1 * 4.7 5.1 * 5.2 5.1 Max Green Setting (Gmax), s * 17 29.4 * 28 15.4 * 15 31.3 * 11 32.2 Max Q Clear Time (g_c+I1), s 18.6 33.4 27.2 6.9 9.7 11.4 5.1 29.7													
Approach Vol, veh/h Approach Delay, s/veh Approach Delay, s/veh Approach LOS D D D D D D D D D D D D D D D D D D													
Approach Delay, s/veh		D		U	D		D	<u> </u>		C	<u>E</u>		C
Approach LOS D D D D Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 3 4 5 6 7 8 Phs Duration (G+Y+Rc), s 22.0 38.1 32.7 17.2 14.3 45.8 14.0 35.9 Change Period (Y+Rc), s * 4.7 5.1 * 5.2 5.1 * 4.7 5.1 * 5.2 5.1 Max Green Setting (Gmax), s * 17 29.4 * 28 15.4 * 15 31.3 * 11 32.2 Max Q Clear Time (g_c+I1), s 18.6 33.4 27.2 6.9 9.7 11.4 5.1 29.7 Green Ext Time (p_c), s 0.0 0.0 0.4 0.5 0.1 2.4 0.0 1.1 Intersection Summary HCM 2010 Ctrl Delay 47.8 HCM 2010 LOS D	• •												
Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 3 4 5 6 7 8 Phs Duration (G+Y+Rc), s 22.0 38.1 32.7 17.2 14.3 45.8 14.0 35.9 Change Period (Y+Rc), s * 4.7 5.1 * 5.2 5.1 * 4.7 5.1 * 5.2 5.1 Max Green Setting (Gmax), s * 17 29.4 * 28 15.4 * 15 31.3 * 11 32.2 Max Q Clear Time (g_c+11), s 18.6 33.4 27.2 6.9 9.7 11.4 5.1 29.7 Green Ext Time (p_c), s 0.0 0.0 0.4 0.5 0.1 2.4 0.0 1.1 Intersection Summary HCM 2010 LOS D 47.8 HCM 2010 LOS D 0 0 0 0 0 0 0 0 0 0 0 0 0													
Assigned Phs 1 2 3 4 5 6 7 8 Phs Duration (G+Y+Rc), s 22.0 38.1 32.7 17.2 14.3 45.8 14.0 35.9 Change Period (Y+Rc), s * 4.7 5.1 * 5.2 5.1 * 4.7 5.1 * 5.2 5.1 Max Green Setting (Gmax), s * 17 29.4 * 28 15.4 * 15 31.3 * 11 32.2 Max Q Clear Time (g_c+I1), s 18.6 33.4 27.2 6.9 9.7 11.4 5.1 29.7 Green Ext Time (p_c), s 0.0 0.0 0.4 0.5 0.1 2.4 0.0 1.1 Intersection Summary HCM 2010 Ctrl Delay 47.8 HCM 2010 LOS D	Approach LOS		D			D			D			D	
Phs Duration (G+Y+Rc), s 22.0 38.1 32.7 17.2 14.3 45.8 14.0 35.9 Change Period (Y+Rc), s * 4.7 5.1 * 5.2 5.1 * 4.7 5.1 * 5.2 5.1 Max Green Setting (Gmax), s * 17 29.4 * 28 15.4 * 15 31.3 * 11 32.2 Max Q Clear Time (g_c+I1), s 18.6 33.4 27.2 6.9 9.7 11.4 5.1 29.7 Green Ext Time (p_c), s 0.0 0.0 0.4 0.5 0.1 2.4 0.0 1.1 Intersection Summary HCM 2010 Ctrl Delay 47.8 HCM 2010 LOS D	Timer	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s 22.0 38.1 32.7 17.2 14.3 45.8 14.0 35.9 Change Period (Y+Rc), s * 4.7 5.1 * 5.2 5.1 * 4.7 5.1 * 5.2 5.1 Max Green Setting (Gmax), s * 17 29.4 * 28 15.4 * 15 31.3 * 11 32.2 Max Q Clear Time (g_c+I1), s 18.6 33.4 27.2 6.9 9.7 11.4 5.1 29.7 Green Ext Time (p_c), s 0.0 0.0 0.4 0.5 0.1 2.4 0.0 1.1 Intersection Summary HCM 2010 Ctrl Delay 47.8 HCM 2010 LOS D	Assigned Phs	1	2	3	4	5	6	7	8				
Change Period (Y+Rc), s * 4.7 5.1 * 5.2 5.1 * 4.7 5.1 * 5.2 5.1 Max Green Setting (Gmax), s * 17 29.4 * 28 15.4 * 15 31.3 * 11 32.2 Max Q Clear Time (g_c+I1), s 18.6 33.4 27.2 6.9 9.7 11.4 5.1 29.7 Green Ext Time (p_c), s 0.0 0.0 0.4 0.5 0.1 2.4 0.0 1.1 Intersection Summary HCM 2010 Ctrl Delay 47.8 HCM 2010 LOS D		22.0	38.1	32.7	17.2			14.0	35.9				
Max Green Setting (Gmax), s * 17 29.4 * 28 15.4 * 15 31.3 * 11 32.2 Max Q Clear Time (g_c+l1), s 18.6 33.4 27.2 6.9 9.7 11.4 5.1 29.7 Green Ext Time (p_c), s 0.0 0.0 0.4 0.5 0.1 2.4 0.0 1.1 Intersection Summary HCM 2010 Ctrl Delay 47.8 HCM 2010 LOS D	, ,					* 4.7	5.1						
Max Q Clear Time (g_c+I1), s 18.6 33.4 27.2 6.9 9.7 11.4 5.1 29.7 Green Ext Time (p_c), s 0.0 0.0 0.4 0.5 0.1 2.4 0.0 1.1 Intersection Summary HCM 2010 Ctrl Delay 47.8 HCM 2010 LOS D													
Green Ext Time (p_c), s 0.0 0.0 0.4 0.5 0.1 2.4 0.0 1.1 Intersection Summary HCM 2010 Ctrl Delay 47.8 HCM 2010 LOS D													
HCM 2010 Ctrl Delay 47.8 HCM 2010 LOS D	·0— ,												
HCM 2010 Ctrl Delay 47.8 HCM 2010 LOS D	Intersection Summary												
HCM 2010 LOS D				47 R									
	Notes												

Lane Configurations 4 7 5 6 7		۶	→	•	•	←	•	1	†	/	/	 	4
Traffic Volume (veh/h)	Movement	EBL	EBT	EBR	WBL	WBT		NBL		NBR	SBL		SBR
Traffic Volume (velvh) 0 0 0 90 10 224 530 1234 0 0 442 1132 Number 0 3 8 18 5 2 12 1 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Lane Configurations					र्स	7	ሻ	ተተተ			ተተተ	7
Number	Traffic Volume (veh/h)	0	0	0	90	10	224	530		0	0		1132
Initial O (Ob), weh Pead-Bike Adj/A_pbT) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Future Volume (veh/h)	0	0	0	90	10	224	530	1234	0	0	442	1132
Ped-Bike Adj(A_pbT)	Number				3	8	18	5	2	12	1	6	16
Parkling Bus, Adj	Initial Q (Qb), veh				0	0	0	0	0	0	0	0	0
Adj Saf Flow, veh/thin	Ped-Bike Adj(A_pbT)				1.00		1.00	1.00		1.00	1.00		0.95
Adj Flow Rate, veh/h Adj Flow Rate, veh/h Adj No ol Lanes 0 1 1 1 3 0 0 0 465 1192 Adj No ol Lanes 0 1 1 1 1 3 0 0 0 3 1 Percent Heavy Veh, % 2 2 2 2 2 2 0 0 0 2 2 Cap, veh/h 269 31 267 499 3653 0 0 1958 581 Sal Flow, veh/h 106 0 236 558 1299 0 0 465 1192 Arrive On Green 0.17 0.17 0.17 0.28 0.72 0.00 0.00 0.38 0.38 Sal Flow, veh/h 106 0 236 558 1299 0 0 465 1192 Arrive On Green 1783 0 1583 1774 1695 0 0 1695 1508 Grp Volume(v), veh/h 1783 0 1583 1774 1695 0 0 1695 1508 Cycle Q Clear(g, c), s 4.7 0.0 13.1 25.3 8.7 0.0 0.0 5.6 34.6 Cycle Q Clear(g, c), s 4.7 0.0 13.1 25.3 8.7 0.0 0.0 5.6 34.6 Cycle Q Clear(g, c), s 4.7 0.0 13.1 25.3 8.7 0.0 0.0 5.6 34.6 Cycle Q Clear(g, c), s 4.7 0.0 13.1 25.3 8.7 0.0 0.0 5.6 34.6 Cycle Q Clear(g, c), s 4.7 0.0 13.1 25.3 8.7 0.0 0.0 5.6 34.6 Cycle Q Clear(g, c), s 4.7 0.0 13.1 25.3 8.7 0.0 0.0 5.6 34.6 Cycle Q Clear(g, c), s 4.7 0.0 13.1 25.3 8.7 0.0 0.0 1.00 1.00 Lane Grp Cap(c), veh/h 300 0 267 499 3653 0 0 1958 581 CYC Ratio(X) Avail Cap(c, a), veh/h 305 0 271 499 3653 0 0 1958 581 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Parking Bus, Adj				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj No. of Lanes 0 1 1 1 3 0 0 3 1 Peak Hour Factor 0.95 34	Adj Sat Flow, veh/h/ln				1900	1863	1863	1863	1863	0	0	1863	1863
Peak Hour Factor 0.95 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	Adj Flow Rate, veh/h				95	11	236	558	1299	0	0	465	1192
Percent Heavy Veh, % 26	Adj No. of Lanes				0	1	1	1	3	0	0	3	1
Cap, veh/h On Green O.17 0.17 0.17 0.17 0.28 0.72 0.00 0.00 1.958 581 Arrive On Green O.17 0.17 0.17 0.17 0.28 0.72 0.00 0.00 0.38 0.38 Sat Flow, veh/h Sat Flow, veh/h 106 0.236 558 1299 0 0 5253 1508 Grp Volume(v), veh/h 106 0.236 558 1299 0 0 465 1192 Grp Sat Flow(s), veh/h/ln 1783 0 1583 1774 1695 0 0 1695 1508 Q Serve(g, S), S 4.7 0.0 13.1 25.3 8.7 0.0 0.0 5.6 34.6 Prop In Lane Q Serve(g, S), S 4.7 0.0 13.1 25.3 8.7 0.0 0.0 5.6 34.6 Prop In Lane 0 0,90 1.00 1.00 0.00 0.00 0.00 0.00 1.00 Lane Grp Cap(c), veh/h 300 0 267 499 3653 0 0 1958 581 VCC Ratio(X) 0 0.35 0.00 0.89 1.12 0.36 0.00 0.00 0.00 1.95 Avail Cap(c, a), veh/h 305 0 271 499 3653 0 0 1958 581 HCM Platoon Ratio 1 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Peak Hour Factor				0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Cap, veh/h Arrive On Green O.17 0.17 0.17 0.17 0.28 0.72 0.00 0.00 0.38 0.38 Arrive On Green O.17 0.17 0.17 0.17 0.28 0.72 0.00 0.00 0.38 0.38 Sal Flow, veh/h 1598 185 1583 1774 5253 0 0 0.5253 1508 Grp Volume(v), veh/h 106 0 236 558 1299 0 0 465 1192 Grp Sal Flow(s), veh/h/ln 1783 0 1583 1774 1695 0 0 1695 1508 OS serve(g_S), s 4.7 0.0 13.1 25.3 8.7 0.0 0.0 5.6 34.6 Cycle O Clear(g_c), s 4.7 0.0 13.1 25.3 8.7 0.0 0.0 5.6 34.6 Cycle O Clear(g_c), s 4.7 0.0 13.1 25.3 8.7 0.0 0.0 5.6 34.6 Prop In Lane 0.90 1.00 1.00 1.00 0.00 0.00 0.00 1.00 Lane Grp Cap(c), veh/h 300 0 267 499 3653 0 0 1958 581 HCM Platoon Raiio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Percent Heavy Veh, %				2	2	2	2	2	0	0	2	2
Arrive On Green Arrive On Green Sat Flow, weh/h 1598 1855 1853 17774 5253 0 0 0 5253 1508 Grp Volume(v), veh/h 106 0 236 558 1299 0 0 0 465 1192 Grp Sat Flow(s), veh/h/ln 1783 0 1583 1774 1695 0 0 0 1695 1508 0 Serve(g_s), s 4,7 0,0 13.1 25.3 8,7 0,0 0,0 0,0 0 5,6 34,6 Prop In Lane 0,90 1,00 1,00 1,00 1,00 1,00 1,00 1,00					269	31	267	499	3653	0	0	1958	581
Sat Flow, veh/h 1598 185 1583 1774 5253 0 0 5253 1508 Grp Volume(v), veh/h 106 0 236 558 1299 0 0 465 1192 Grp Sat Flow(s), veh/h/ln 1783 0 1583 1774 1695 0 0 1695 1508 Q Senve(g.s), s 4,7 0.0 13.1 25.3 8.7 0.0 0.0 5.6 34.6 Cycle O Clear(g.c), s 4,7 0.0 13.1 25.3 8.7 0.0 0.0 5.6 34.6 Prop In Lane 0.90 1.00 1.00 0.00 0.00 0.0 15.6 34.6 Prop In Lane 0.90 0.35 0.00 0.89 1.12 0.36 0.0 0.0 0.0 15.6 34.6 Prop In Lane 0.00 0.35 0.00 0.89 1.12 0.36 0.0 0.0 0.0 0.0 0.0 0.0													0.38
Grp Volume(v), veh/h 106 0 236 558 1299 0 465 1192 Grp Sat Flow(s), veh/h/lin 1783 0 1583 1774 1695 0 0 1695 1508 Q Serve(g_s), s 4.7 0.0 13.1 25.3 8.7 0.0 0.0 5.6 34.6 Cycle Q Clear(g_c), s 4.7 0.0 13.1 25.3 8.7 0.0 0.0 5.6 34.6 Prop In Lane 0.90 1.00 1.00 0.00 0.00 0.00 1.00 Lane Grp Cap(c), veh/h 300 0 267 499 3653 0 0 1958 581 V/C Ratio(X) 0.35 0.00 0.089 1.12 0.36 0.00 0.00 0.2 2.05 Avail Cap(c_a), veh/h 305 0.271 499 3653 0 0 1958 581 HCC Black 1.00 1.00 1.00 1.00 1.00 <													
Grp Sat Flow(s), veh/h/ln													
Q Serve(g_s), s 4.7 0.0 13.1 25.3 8.7 0.0 0.0 5.6 34.6 Cycle Q Clear(g_c), s 4.7 0.0 13.1 25.3 8.7 0.0 0.0 5.6 34.6 Prop In Lane 0.90 1.00 1.00 0.00 0.00 0.00 1.00 Lane Grp Cap(c), veh/h 300 0 267 499 3653 0 0 1958 581 V/C Ratio(X) 0.35 0.00 0.89 1.12 0.36 0.00 0.00 0.24 2.05 Avail Cap(c_a), veh/h 305 0 271 499 3653 0 0 1958 581 HCM Platon Ratio 1.00 1.01 1.00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>													
Cycle Q Clear(g_c), s 4.7 0.0 13.1 25.3 8.7 0.0 0.0 5.6 34.6 Prop In Lane 0.90 1.00 1.00 0.00 0.00 1.00 Lane Grp Cap(c), veh/h 300 0.267 499 3653 0 0.1958 581 VC Ratio(X) 0.35 0.00 0.89 1.12 0.36 0.00 0.00 0.24 2.05 Avail Cap(c_a), veh/h 305 0 271 499 3653 0 0 1958 581 HCM Platoon Ratio 1.00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>													
Prop In Lane 0.90 1.00 1.00 0.00 0.00 1.00 Lane Grp Cap(c), veh/h 300 0 267 499 3653 0 0 1958 581 V/C Ratio(X) 0.35 0.00 0.89 1.12 0.36 0.00 0.00 0.24 2.05 Avail Cap(c_a), veh/h 305 0 271 499 3653 0 0 1.958 581 HCM Platoon Ratio 1.00													
Lane Grp Cap(c), veh/h V/C Ratio(X) 0.35 0.00 0.89 1.12 0.36 0.00 0.00 0.024 2.05 Avail Cap(c_a), veh/h 100 1.00	,					0.0			0.7			0.0	
V/C Ratio(X) 0.35 0.00 0.89 1.12 0.36 0.00 0.00 0.24 2.05 Avail Cap(c_a), veh/h 305 0 271 499 3653 0 0 1958 581 HCM Platoon Ratio 1.00 0.00 0.0	•					0			3653			1958	
Avail Cap(c_a), veh/h 305 0 271 499 3653 0 0 1958 581 HCM Platoon Ratio 1.00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
HCM Platoon Ratio	` '												
Upstream Filter(I) 1.00 0.00 1.00 0.32 0.32 0.00 0.00 0.51 0.51 Uniform Delay (d), s/veh 33.1 0.0 36.6 32.3 4.8 0.0 0.0 18.7 27.7 Incr Delay (d2), s/veh 0.7 0.0 27.2 62.6 0.1 0.0 0.0 0.1 477.0 Initial O Delay(d3),s/veh 0.0 0.													
Uniform Delay (d), s/veh													
Incr Delay (d2), s/veh													
Initial O Delay(d3),s/veh 0.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>													
%ile BackOfQ(50%),veh/ln 2.4 0.0 7.7 21.0 4.0 0.0 0.0 2.6 91.3 LnGrp Delay(d),s/veh 33.8 0.0 63.8 95.0 4.9 0.0 0.0 18.9 504.7 LnGrp LOS C E F A B F Approach Vol, veh/h 342 1857 1657 Approach Delay, s/veh 54.5 32.0 368.3 Approach LOS D C F Timer 1 2 3 4 5 6 7 8 Assigned Phs 2 5 6 8 8 8 8 9 9 9 0													
LnGrp Delay(d),s/veh 33.8 0.0 63.8 95.0 4.9 0.0 0.0 18.9 504.7 LnGrp LOS C E F A B F Approach Vol, veh/h 342 1857 1657 Approach Delay, s/veh 54.5 32.0 368.3 Approach LOS D C F Timer 1 2 3 4 5 6 7 8 Assigned Phs 2 5 6 8 8 8 9													
LnGrp LOS C E F A B F Approach Vol, veh/h 342 1857 1657 Approach Delay, s/veh 54.5 32.0 368.3 Approach LOS D C F Timer 1 2 3 4 5 6 7 8 Assigned Phs 2 5 6 8 8 Phs Duration (G+Y+Rc), s 69.7 30.0 39.7 20.3 Change Period (Y+Rc), s 5.1 * 4.7 5.1 5.1 Max Green Setting (Gmax), s 64.4 * 25 34.4 15.4 Max Q Clear Time (g_c+I1), s 10.7 27.3 36.6 15.1 The contract of time (p_c), s 11.7 0.0 0.0 0.0 0.0 0.0 Intersection Summary													
Approach Vol, veh/h 342 1857 1657 Approach Delay, s/veh 54.5 32.0 368.3 Approach LOS D C F Timer 1 2 3 4 5 6 7 8 Assigned Phs 2 5 6 8 Phs Duration (G+Y+Rc), s 69.7 30.0 39.7 20.3 Change Period (Y+Rc), s 5.1 * 4.7 5.1 5.1 Max Green Setting (Gmax), s 64.4 * 25 34.4 15.4 Max Q Clear Time (g_c+I1), s 10.7 27.3 36.6 15.1 Green Ext Time (p_c), s 11.7 0.0 0.0 0.0 Intersection Summary HCM 2010 Ctrl Delay 178.5 HCM 2010 LOS F	1 3 1 7					0.0				0.0	0.0		
Approach Delay, s/veh Approach LOS D C F Timer 1 2 3 4 5 6 7 8 Assigned Phs Phs Duration (G+Y+Rc), s 69.7 30.0 39.7 20.3 Change Period (Y+Rc), s 5.1 4.7 5.1 5.1 Max Green Setting (Gmax), s 64.4 25 34.4 15.4 Max Q Clear Time (g_c+I1), s 10.7 27.3 36.6 15.1 Green Ext Time (p_c), s 11.7 0.0 0.0 Intersection Summary HCM 2010 Ctrl Delay HCM 2010 LOS F						242	<u> </u>	<u>'</u>					
Approach LOS Timer 1 2 3 4 5 6 7 8 Assigned Phs 2 5 6 8 Phs Duration (G+Y+Rc), s 69.7 30.0 39.7 20.3 Change Period (Y+Rc), s 5.1 *4.7 5.1 5.1 Max Green Setting (Gmax), s 64.4 *25 34.4 15.4 Max Q Clear Time (g_c+I1), s 10.7 27.3 36.6 15.1 Green Ext Time (p_c), s 11.7 0.0 0.0 0.0 Intersection Summary HCM 2010 Ctrl Delay 178.5 HCM 2010 LOS F													
Timer 1 2 3 4 5 6 7 8 Assigned Phs 2 5 6 8 Phs Duration (G+Y+Rc), s 69.7 30.0 39.7 20.3 Change Period (Y+Rc), s 5.1 * 4.7 5.1 5.1 Max Green Setting (Gmax), s 64.4 * 25 34.4 15.4 Max Q Clear Time (g_c+l1), s 10.7 27.3 36.6 15.1 Green Ext Time (p_c), s 11.7 0.0 0.0 0.0 Intersection Summary HCM 2010 Ctrl Delay 178.5 HCM 2010 LOS F F													
Assigned Phs 2 5 6 8 Phs Duration (G+Y+Rc), s 69.7 30.0 39.7 20.3 Change Period (Y+Rc), s 5.1 *4.7 5.1 5.1 Max Green Setting (Gmax), s 64.4 *25 34.4 15.4 Max Q Clear Time (g_c+I1), s 10.7 27.3 36.6 15.1 Green Ext Time (p_c), s 11.7 0.0 0.0 0.0 Intersection Summary HCM 2010 Ctrl Delay 178.5 HCM 2010 LOS F	Арргоасті 103					U			C			Г	
Phs Duration (G+Y+Rc), s 69.7 30.0 39.7 20.3 Change Period (Y+Rc), s 5.1 * 4.7 5.1 5.1 Max Green Setting (Gmax), s 64.4 * 25 34.4 15.4 Max Q Clear Time (g_c+I1), s 10.7 27.3 36.6 15.1 Green Ext Time (p_c), s 11.7 0.0 0.0 0.0 Intersection Summary HCM 2010 Ctrl Delay 178.5 HCM 2010 LOS F	Timer	1	2	3	4	5	6	7	8				
Change Period (Y+Rc), s 5.1 * 4.7 5.1 5.1 Max Green Setting (Gmax), s 64.4 * 25 34.4 15.4 Max Q Clear Time (g_c+I1), s 10.7 27.3 36.6 15.1 Green Ext Time (p_c), s 11.7 0.0 0.0 0.0 Intersection Summary HCM 2010 Ctrl Delay 178.5 HCM 2010 LOS F	Assigned Phs		2			5	6		8				
Change Period (Y+Rc), s 5.1 * 4.7 5.1 5.1 Max Green Setting (Gmax), s 64.4 * 25 34.4 15.4 Max Q Clear Time (g_c+I1), s 10.7 27.3 36.6 15.1 Green Ext Time (p_c), s 11.7 0.0 0.0 0.0 Intersection Summary HCM 2010 Ctrl Delay 178.5 HCM 2010 LOS F	Phs Duration (G+Y+Rc), s		69.7			30.0	39.7		20.3				
Max Green Setting (Gmax), s 64.4 * 25 34.4 15.4 Max Q Clear Time (g_c+I1), s 10.7 27.3 36.6 15.1 Green Ext Time (p_c), s 11.7 0.0 0.0 0.0 Intersection Summary HCM 2010 Ctrl Delay 178.5 HCM 2010 LOS F			5.1			* 4.7							
Max Q Clear Time (g_c+l1), s 10.7 27.3 36.6 15.1 Green Ext Time (p_c), s 11.7 0.0 0.0 0.0 Intersection Summary HCM 2010 Ctrl Delay 178.5 HCM 2010 LOS F						* 25							
Green Ext Time (p_c), s 11.7 0.0 0.0 0.0 Intersection Summary HCM 2010 Ctrl Delay 178.5 HCM 2010 LOS F						27.3	36.6		15.1				
HCM 2010 Ctrl Delay 178.5 HCM 2010 LOS F													
HCM 2010 Ctrl Delay 178.5 HCM 2010 LOS F	Intersection Summary												
HCM 2010 LOS F				178 5									
				'									

	۶	→	•	✓	←	•	•	†	~	/		✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	4		44	↑	77	ሻሻ	ተተኈ		ሻሻ	∱ ∱	
Traffic Volume (veh/h)	401	30	40	10	20	373	20	430	10	252	400	229
Future Volume (veh/h)	401	30	40	10	20	373	20	430	10	252	400	229
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		0.98	1.00		0.79	1.00		0.85
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1900	1863	1863	1863	1863	1863	1900	1863	1863	1900
Adj Flow Rate, veh/h	484	0	0	11	21	393	21	453	11	265	421	241
Adj No. of Lanes	2	1	0	2	1	2	2	3	0	2	2	0
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	777	408	0	631	341	502	66	1164	28	358	641	359
Arrive On Green	0.22	0.00	0.00	0.18	0.18	0.18	0.02	0.23	0.23	0.10	0.31	0.31
Sat Flow, veh/h	3548	1863	0	3442	1863	2741	3442	5072	122	3442	2041	1144
Grp Volume(v), veh/h	484	0	0	11	21	393	21	301	163	265	364	298
Grp Sat Flow(s),veh/h/ln	1774	1863	0	1721	1863	1371	1721	1695	1804	1721	1770	1415
Q Serve(g_s), s	8.4	0.0	0.0	0.2	0.6	9.3	0.4	5.1	5.2	5.1	12.1	12.5
Cycle Q Clear(g_c), s	8.4	0.0	0.0	0.2	0.6	9.3	0.4	5.1	5.2	5.1	12.1	12.5
Prop In Lane	1.00		0.00	1.00		1.00	1.00		0.07	1.00		0.81
Lane Grp Cap(c), veh/h	777	408	0	631	341	502	66	778	414	358	556	445
V/C Ratio(X)	0.62	0.00	0.00	0.02	0.06	0.78	0.32	0.39	0.39	0.74	0.65	0.67
Avail Cap(c_a), veh/h	834	438	0	834	451	664	202	846	450	379	556	445
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	24.1	0.0	0.0	22.8	23.0	26.5	32.9	22.2	22.2	29.6	20.2	20.3
Incr Delay (d2), s/veh	1.3	0.0	0.0	0.0	0.1	4.4	2.7	0.3	0.6	7.1	2.8	3.9
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	4.2	0.0	0.0	0.1	0.3	3.8	0.2	2.4	2.6	2.8	6.3	5.3
LnGrp Delay(d),s/veh	25.4	0.0	0.0	22.8	23.0	30.9	35.6	22.5	22.8 C	36.7	22.9	24.2
LnGrp LOS	С	404		С	C	С	D	C 405		D	C	С
Approach Vol, veh/h		484			425			485			927	
Approach LOS		25.4 C			30.3			23.2			27.3 C	
Approach LOS		C			С			С			C	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	11.6	20.1		19.4	5.8	25.9		17.0				
Change Period (Y+Rc), s	4.5	4.5		4.5	4.5	4.5		4.5				
Max Green Setting (Gmax), s	7.5	17.0		16.0	4.0	20.5		16.5				
Max Q Clear Time (g_c+l1), s	7.1	7.2		10.4	2.4	14.5		11.3				
Green Ext Time (p_c), s	0.0	1.8		0.9	0.0	2.0		0.8				
Intersection Summary												
HCM 2010 Ctrl Delay			26.6									
HCM 2010 LOS			C									
Notes												

	۶	→	•	•	←	•	•	†	<i>></i>	/	ļ	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	,	ተተተ	7	ň	ተተተ	7	Ĭ	f)			4	
Traffic Volume (veh/h)	132	993	122	96	1600	40	208	11	89	20	12	70
Future Volume (veh/h)	132	993	122	96	1600	40	208	11	89	20	12	70
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863	1863	1863	1863	1863	1863	1900	1900	1863	1900
Adj Flow Rate, veh/h	139	1045	128	101	1684	42	219	12	94	21	13	74
Adj No. of Lanes	1	3	1	1	3	1	1	1	0	0	1	0
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	174	2167	675	131	2041	636	276	28	222	30	19	107
Arrive On Green	0.10	0.43	0.43	0.07	0.40	0.40	0.16	0.16	0.16	0.10	0.10	0.10
Sat Flow, veh/h	1774	5085	1583	1774	5085	1583	1774	182	1428	320	198	1129
Grp Volume(v), veh/h	139	1045	128	101	1684	42	219	0	106	108	0	0
Grp Sat Flow(s), veh/h/ln	1774	1695	1583	1774	1695	1583	1774	0	1611	1648	0	0
Q Serve(g_s), s	5.5	10.7	3.6	4.0	21.4	1.2	8.6	0.0	4.3	4.6	0.0	0.0
Cycle Q Clear(g_c), s	5.5	10.7	3.6	4.0	21.4	1.2	8.6	0.0	4.3	4.6	0.0	0.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.89	0.19		0.69
Lane Grp Cap(c), veh/h	174	2167	675	131	2041	636	276	0	250	157	0	0
V/C Ratio(X)	0.80	0.48	0.19	0.77	0.83	0.07	0.79	0.00	0.42	0.69	0.00	0.00
Avail Cap(c_a), veh/h	209	2167	675	288	2174	677	411	0	373	366	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	31.8	14.9	12.9	32.8	19.3	13.3	29.3	0.0	27.5	31.6	0.0	0.0
Incr Delay (d2), s/veh	16.3	0.2	0.1	9.3	2.6	0.0	6.3	0.0	1.1	5.3	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	3.5	5.0	1.6	2.3	10.5	0.5	4.7	0.0	2.0	2.3	0.0	0.0
LnGrp Delay(d),s/veh	48.0	15.1	13.0	42.1	21.9	13.3	35.7	0.0	28.7	36.9	0.0	0.0
LnGrp LOS	D	В	В	D	С	В	D		С	D		
Approach Vol, veh/h		1312			1827			325			108	
Approach Delay, s/veh		18.4			22.8			33.4			36.9	
Approach LOS		В			С			С			D	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s		15.7	9.8	35.2		11.4	11.6	33.4				
Change Period (Y+Rc), s		4.5	4.5	4.5		4.5	4.5	4.5				
Max Green Setting (Gmax), s		16.7	11.7	27.6		16.0	8.5	30.8				
Max Q Clear Time (q_c+l1), s		10.6	6.0	12.7		6.6	7.5	23.4				
Green Ext Time (p_c), s		0.6	0.1	6.1		0.3	0.0	5.6				
Intersection Summary												
HCM 2010 Ctrl Delay			22.6									
HCM 2010 LOS			С									

Existing Conditions (Caliente Ave/Otay Mesa Rd/Ocean View Hills Pkwy)

Proposed Conditions (Caliente Ave/Otay Mesa Rd/Ocean View Hills Pkwy)

Appendix Z

Fair Share Calculations

Fair Share Calculations

7) Caliente/SR905 WB Ramp

A=	1883	Existing number of vehicles entering the intersection (AM)
B=	2790	Horizon Year without Project number of vehicles entering the intersection (AM)
C=	2853	Horizon Year with Project number of vehicles entering the intersection (AM)

AM Percent of Fair-Share (C-B)/(C-A) = 6.5%

A=	2272	Existing number of vehicles entering the intersection (Pl	M)

B= 3540 Horizon Year without Project number of vehicles entering the intersection (PM)
C= 3662 Horizon Year with Project number of vehicles entering the intersection (PM)

PM Percent of Fair-Share (C-B)/(C-A) = 8.8%

Waste Management Plan for the California Terraces Planning Area 61 Project San Diego, California

Prepared for

Mr. Allen Kashani, Director of Project Management Pardee Homes 13400 Sabre Springs Parkway, Suite 200 San Diego, CA 92128

Prepared by RECON Environmental, Inc. 1927 Fifth Avenue San Diego, CA 92101 P 619.308.9333

RECON Number 4135.1 September 14, 2018

Andrew Capobianco, Assistant Environmental Analyst

TABLE OF CONTENTS

Acro	onyms	s and Abbreviations	iii			
1.0	Intr	oduction	1			
2.0	Existing Conditions					
3.0	Pro	ject Description	4			
4.0		ulatory Framework				
	4.1	State Regulations				
	4.2	City of San Diego Requirements				
5.0		nolition, Grading, and Construction Waste Generation and	-			
		ersion				
	5.1	Demolition				
	5.2 5.3	Grading Construction				
	5.5	Waste Diversion				
6.0						
6.0	6.1	upancy-Operational Waste Waste Generation				
	6.2	Waste Reduction Measures				
	6.3	Exterior Storage				
	6.4	Organic Waste Recycling.				
7.0		clusion				
	7.1	Demolition, Grading, and Construction Waste				
	7.2	Occupancy-Operational Waste				
	7.3	Overall Compliance				
8.0	Ref	erences Cited	17			
FIGU	URES					
1:	_	onal Location				
2:	-	Project Location on Aerial Photograph				
3:	Site Plan					

TABLE OF CONTENTS (cont.)

TABLES

1:	Site Development Summary	4
2:	Construction Waste	
3:	Construction Waste Diversion and Disposal by Material Type	9
4:	Total Waste Generated, Diverted, and Disposed of by Phase	11
5 :	Occupancy Phase Annual Waste Generation	11
6:	Minimum Exterior Refuse and Recyclable Material Storage Areas for	
	Non-Residential Development	15
7:	Minimum Exterior Refuse and Recyclable Material Storage Areas for	
	Residential Development	15

ATTACHMENTS

- 1: City of San Diego Environmental Services Department Construction & Demolition Debris Conversion Rate Table
- 2: City of San Diego 2016 Construction & Demolition Recycling Facility Directory
- 3: City of San Diego Waste Generation Factors Occupancy Phase

Acronyms and Abbreviations

AB Assembly Bill

C&D Construction and Demolition

CalRecycle State of California Department of Resources Recycling and Recovery

City City of San Diego du dwelling unit

ESD Environmental Services Department

PA Planning Area

project California Terraces Planning Area 61

sf square foot SR-905 State Route 905

SWMC Solid Waste Management Coordinator U.S. EPA U.S. Environmental Protection Agency

WMP Waste Management Plan

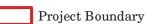
1.0 Introduction

The purpose of this Waste Management Plan (WMP) for the California Terraces Planning Area (PA) 61 project (project) is to identify potential solid waste impacts that could be generated by construction and operation of the project and propose measures (project design features or mitigation measures) to reduce those impacts.

The WMP addresses all four phases of site development, including the Demolition Phase, Grading Phase, Construction Phase, and the Occupancy (post-construction) Phase. The WMP addresses the amount of waste that could be generated by project activities during each phase; waste reduction goals, and the recommended techniques to achieve the waste reduction goals. More specifically, for each phase, the WMP includes the following:

- Tons of waste anticipated to be generated;
- Material/type and amount of waste anticipated to be diverted;
- Project features that would reduce the amount of waste generated;
- Project features that would divert or limit the generation of waste;
- Source separation techniques for waste generated;
- How materials shall be reused on-site; and
- Name and location of recycling, reuse, or landfill facilities where waste shall be taken.

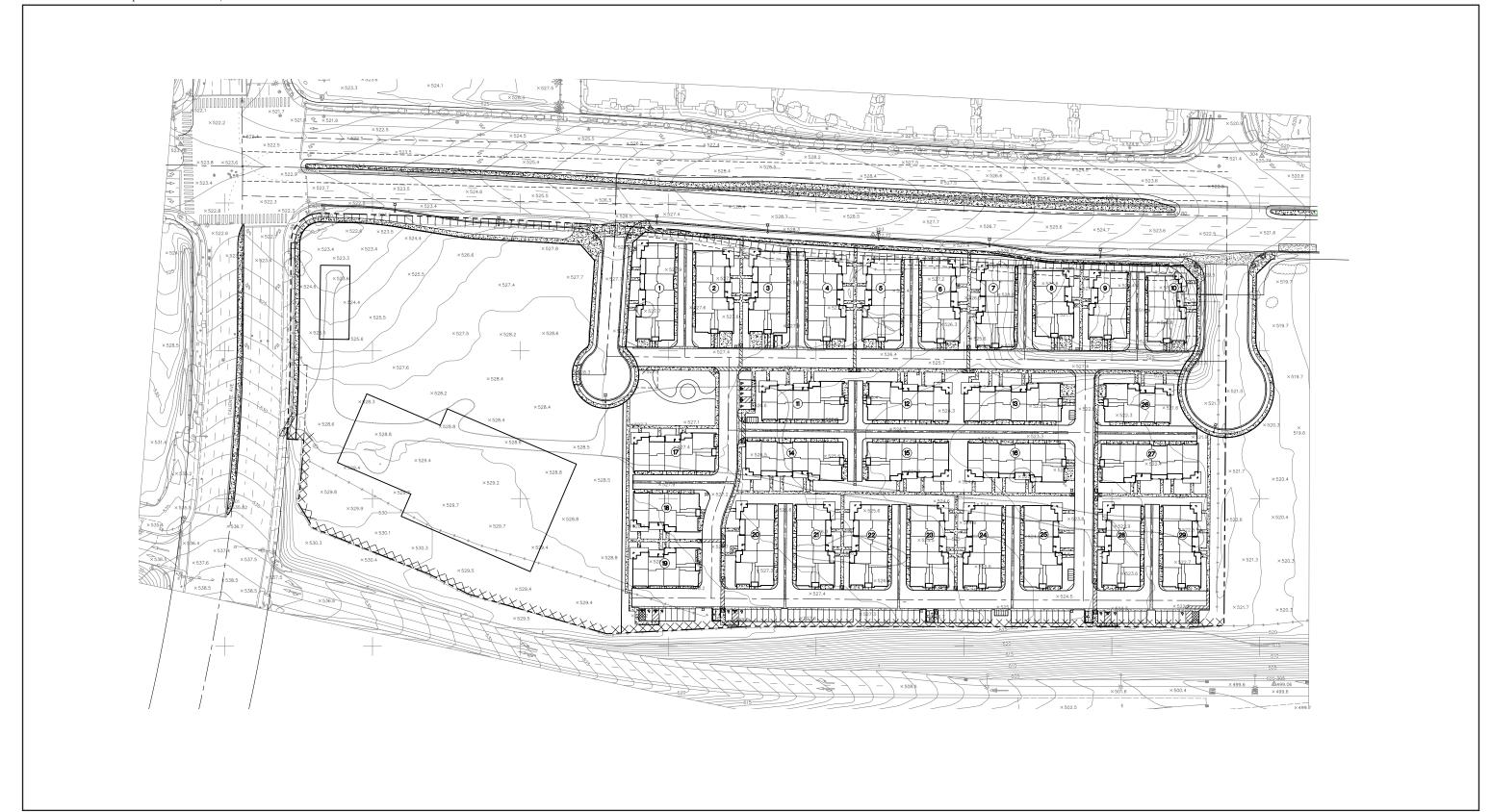
2.0 Existing Conditions


The project site is located north of State Route 905 (SR-905) and southeast of the intersection of Otay Mesa Road and Ocean View Hills Parkway/Caliente Avenue in the Otay Mesa Community Plan area, in the city of San Diego, Figure 1 shows the regional location. An aerial photograph of the project site and vicinity is shown in Figure 2. The project site is bounded by multi-family uses to the north, SR-905 and open space to the south, San Ysidro High School to the southwest, and vacant land to the east and west. The project site is currently undeveloped.

3.0 Project Description

The project site is located north of State Route 905 (SR-905), southeast of the intersection of Otay Mesa Road and Ocean View Hills Parkway/Caliente Avenue in the Otay Mesa Community Plan area, in the City of San Diego, California. Figure 1 shows the regional location. An aerial photograph of the project site and vicinity is shown in Figure 2. The project site is bounded by multi-family uses to the north, SR-905 and open space to the south, San Ysidro High School to the southwest, and vacant land to the east and west. The project site is currently undeveloped. Under proposed zoning (RM-2-5), the residential development potential on the project site would be 15 to 29 dwelling units per acre, for a maximum residential buildout up to 267 units. The remaining development would include up to 45,000 square feet of commercial uses and internal roadways and parking lots on an approximately 14.3-acre site. Figure 3 shows the overall site plan for the project.

The proposed mix of land uses for the project is shown in Table 1.


Table 1 Site Development Summary						
Land Use Acres Dwelling Units Building Square Foota						
Commercial	4.49	_	45,000 sf			
Multi-Family Residential	9.20	267 du	138,000 sf			
Park	0.19	_	8,400 sf			
Streets (private and public)	0.41	_	144,700 sf			
Total	336,100 sf					
du = dwelling unit; sf = square fee						

4.0 Regulatory Framework

4.1 State Regulations

The California State Legislature has enacted several bills intended to promote waste diversion. In 1989, Assembly Bill (AB) 939, the Integrated Waste Management Act—as modified in 2010 by Senate Bill 1016—mandated that all local governments reduce disposal waste in landfills from generators within their borders by 50 percent by the year 2000 (State of California 1989, 2010).

AB 341, approved October 2011, sets a statewide policy goal of 75 percent waste diversion by the year 2020 (State of California 2011). This bill also created a mandatory commercial recycling requirement that would hold local jurisdictions responsible for implementing and to be in compliance with the 75 percent diversion rate through outreach and monitoring programs.

AB 1826, approved September 2014, requires businesses in California to arrange for recycling services for organic waste including food waste, green waste, landscape and pruning waste, nonhazardous wood waste, and food-soiled paper waste that is mixed in with food waste. The law is effective on and after January 1, 2016 for businesses that generate greater than 8 cubic yards of organic waste per week; effective January 1, 2017 for businesses that generate greater than 4 cubic yards of organic waste per week; effective January 1, 2019 for businesses that generate greater than 4 cubic yards of commercial solid waste per week; and, if a 50 percent statewide reduction in organic waste from 2014 has not yet been achieved, the law will be effective January 1, 2020 for businesses that generate greater than 2 cubic yards of commercial solid waste per week (State of California 2014). Strategies for compliance are discussed in Section 6.2, Waste Reduction Measures.

4.2 City of San Diego Requirements

All landfills within the San Diego region are approaching capacity and are due to close within the next 3 to 20 years. In compliance with the state policies, the City of San Diego (City) Environmental Services Department (ESD) developed the Source Reduction and Recycling Element, which describes local waste management policies and programs. The City's Recycling Ordinance, adopted November 2007, requires on-site recyclable collection for residential and commercial uses (City of San Diego 2007a). The ordinance requires recycling of plastic and glass bottles and jars, paper, newspaper, metal containers, and cardboard. The focus of the ordinance is on education, with responsibility shared between the ESD, haulers, and building owners and managers. On-site technical assistance, educational materials, templates, and service provider lists are provided by the ESD. Property owners and managers provide on-site recycling services and educational materials annually and to new tenants. Strategies for compliance are discussed in Section 6.2, Waste Reduction Measures.

The City's Refuse and Recyclable Materials Storage Regulations, adopted December 2007, addresses the minimum exterior refuse and recyclable material storage areas required at residential and commercial properties (City of San Diego 2007b). These are intended to provide permanent, adequate, and convenient space for the storage and collection of refuse and recyclable materials; encourage recycling of solid waste to reduce the amount of waste material entering landfills; and meet the recycling goals established by the City Council and mandated by the State of California. These regulations are discussed further in Section 6.3, Exterior Storage.

In July 2008, the Construction and Demolition (C&D) Debris Deposit Ordinance was adopted by the City (City of San Diego 2008). The ordinance, which was updated in July 2016, requires that the majority of construction, demolition, and remodeling projects requiring building, combination, or demolition permits pay a refundable C&D Debris Recycling Deposit and divert at least 65 percent of their waste by recycling, reusing, or donating reusable materials. The ordinance is designed to keep C&D materials out of local landfills. Requirements are discussed further in Section 5.4.1, Contractor Education and Responsibilities.

In December 2013, City Council adopted the Zero Waste Objective, implementing the 75 percent diversion of waste target goal from landfills by the year 2020 and zero waste by 2040. An additional City target of 90 percent diversion by 2035 is proposed in the City's Climate Action Plan.

5.0 Demolition, Grading, and Construction Waste Generation and Diversion

This section discussed the waste generation and diversion rates from the demolition, grading, and construction phases of the project.

5.1 Demolition

As discussed in Section 2.0, Existing Conditions, the project site is currently undeveloped (see Figure 2). Therefore, no demolition would be involved, and no demolition waste would be generated.

5.2 Grading

The project site has been previously graded, which resulted in balanced amount of approximately 4,348,000 cubic yards of cut and fill soil (requiring no net export of soil). Any vegetation removed during site preparation would be taken to the Otay Landfill facility for 100 percent diversion. Therefore, no soil export waste would result from the grading phase of the project.

5.3 Construction

The project includes the construction of 29 multi-family residential buildings containing a maximum of 267 units, totaling 138,000 square feet of residential space, as well as 45,000 square feet of commercial space, for a total building square footage of 183,000 square feet. Construction of sidewalks and any new surface parking or driveway areas are not anticipated to generate additional waste during the construction phase. Therefore, the assessment of construction waste is based on the square footage of buildings proposed within the project site.

According to a 2009 sample study by the U.S. Environmental Protection Agency (U.S. EPA), commercial construction projects including office, retail and restaurant space generated an average of 4.3 pounds of construction waste per square foot (U.S. EPA 2009). According to the same sample study, multi-family residential units generate an average of 4.4 pounds per square foot of construction (U.S. EPA 2009). Based on these construction generation rates, the project's total square footage of 183,000 would generate approximately 1,066 tons of construction waste (see calculations below). Table 2 summarizes the project's construction waste by the different land uses.

Table 2 Construction Waste						
Land Has Type	Gross Square	Generation Rate ¹	Tons			
Land Use Type	Footage	(pounds per square foot)	Generated			
Commercial	45,000	4.3	97			
Multi-Family Residential	138,000	4.4	304			
Total 183,000 401						
¹ U.S. EPA 2009						
NOTE: Totals may vary due to independent rounding.						

Commercial:

45,000 square feet
$$\times \frac{4.3 \ pounds}{square \ foot} \times \frac{1 \ ton}{2,000 \ pounds} = 96.75 \ tons$$

Multi-Family Residential:

138,000 square feet
$$\times \frac{4.4 \ pounds}{square \ foot} \times \frac{1 \ ton}{2,000 \ pounds} = 303.6 \ tons$$

5.4 Waste Diversion

There are two types of waste diversion, "mixed-debris diversion" and "source-separated diversion." Mixed-debris diversion is a method in which all material waste is disposed of in a single container for transport to a mixed C&D recycling facility where 75 percent of the mixed-debris is diverted for recycling. Under source-separated diversion, materials are separated on-site before transport to appropriate facilities that accept specific material types. Generally, a greater diversion rate is achieved under source-separated diversion, as facilities that accept mixed debris typically achieve 50–70 percent diversion, whereas single materials recyclers often achieve a nearly 100 percent diversion rate (Attachment 1; City of San Diego 2013).

The project would implement source-separated diversion, and recyclable waste materials would be separated on-site into material-specific containers and diverted to an approved recycler selected from the City's ESD directory of facilities that recycle specific waste materials from construction and demolition (Attachment 2). These facilities achieve a 100 percent diversion rate for most materials with the exception of a 75 percent diversion rate for roof material (mixed C&D debris). Implementing the City's 75 percent diversion of waste target goal adopted under the Zero Waste Objective requires a majority of waste to be handled at facilities other than landfills.

Construction waste would be diverted or disposed of at nearby facilities based on the material type. Table 3 provides a breakdown of the total tonnage by material type estimated for the project's construction waste and the closest handling facility.

Table 3							
Construction Waste Diversion and Disposal by Material Type							
	Estimated			Estimated	Estimated		
	Waste	Percent	Nearest Handling	Diversion	Disposal		
Material Type	(tons)1	Diverted ²	Facility ¹	(tons)	(tons)		
Asphalt and Concrete	75	100	Vulcan Otay Asphalt Recycling Center	76	0		
Metals	118	100	Cactus Recycling	118	0		
Brick/Masonry/Tile	36	100	Vulcan Carol Canyon Landfill and Recycle Site	36	0		
Clean Wood/Wood Pallets	20	100	Otay Landfill	20	0		
Carpet, Padding/Foam	8	100	DFS Flooring	8	0		
Drywall	22	100	EDCO Recovery & Transfer	22	0		
Corrugated Cardboard	32	100	Cactus Recycling	32	0		
Trash/Garbage	89	0	Otay Landfill	0	89		
Total	401			312 (78%)	89 (22%)		

NOTE: Totals may vary due to independent rounding.

¹City of San Diego ESD 2017 Certified C&D Recycling Facility Directory (see Attachment 2).

With implementation of the diversion-estimated calculations outlined in Table 3, it is estimated that 78 percent of the waste generated during the construction phase of the project would be diverted to appropriate facilities for reuse. Thereafter, 89 tons (trash/garbage), equivalent to 22 percent of the total construction waste, would be required to be disposed of in the landfill.

5.4.1 Contractor Education and Responsibilities

In order to ensure that the anticipated diversion of waste would occur during project construction, the project would include the designation of a Solid Waste Management Coordinator (SWMC) for the duration of project construction. The SWMC would ensure that all contractors and subcontractors are educated and trained to follow City waste diversion regulations and that procedures for waste reduction and recycling efforts are implemented. Specific responsibilities of the SWMC would include the following:

- Review of the WMP at the preconstruction meeting, including the SWMC responsibilities.
- Distribute the WMP to all contractors when they first begin work on-site and when training workers, subcontractors, and suppliers on proper waste management procedures applicable to the project.
- Work with the contractors to estimate the quantities of each type of material that would be salvaged, recycled, or disposed of as waste, then assist in documentation.

- Use detailed material estimates to reduce risk of unplanned and potentially wasteful material cuts.
- Review and enforce procedures for source-separated receptacles. Containers of various sizes shall:
 - o Be placed in readily accessible areas that will minimize misuse or contamination.
 - o Be clearly labeled with a list of acceptable and unacceptable materials, the same as the materials recycled at the receiving material recovery facility or recycling processor.
 - o Contain no more than 10 percent non-recyclable materials, by volume.
 - o Be inspected daily to remove contaminants and evaluate discarded material for reuse on-site.
- Review and enforce procedures for transportation of materials to appropriate recipients selected from ESD's directory of facilities that recycle C&D materials (see Attachment 2 for ESD's facility directory).
- Ensure removal of C&D waste materials from the project site at least once every week to ensure no over-topping of containers. The accumulation and burning of onsite construction, demolition, and land-clearing waste materials will be prohibited.
- Document the return or reuse of excess materials and packaging to enhance the diversion rate.
- Coordinate implementation of a "buy recycled" program for green construction products, including incorporating mulch and compost into the landscaping.
- Coordinate implementation of solid waste mitigation with other requirements such as storm water requirements, which may include specifications such as the placement of bins to minimize the possibility of runoff contamination.

The SWMC would ensure that the project meets the following state law and City Municipal Code requirements. Adjustments would be made as needed to maintain conformance:

- The City's C&D Debris Diversion Deposit Program, which requires a refundable deposit based on the tonnage of the expected recyclable waste materials as part of the building permit requirements (City of San Diego 2008).
- The City's Recycling Ordinance, which requires that collection of recyclable materials is provided (City of San Diego 2007a).
- The City's Storage Ordinance, which requires that areas for recyclable material collection must be provided (City of San Diego 2007b).
- The name and contact information of the waste contractor provided to ESD at least 10 days prior to the start of any work and updated within 5 days of any changes.

5.4.2 Total Diversion

With the oversight of the SWMC, the project would meet City waste diversion goals. Table 4 summarizes the amount of waste estimated to be generated and diverted by each phase of the project. Of the 401 tons estimated to be generated, 312 tons would be diverted, primarily through source separation. This would result in the diversion and reuse of 78 percent of the waste material generated from the project from the landfill.

Table 4 Total Waste Generated, Diverted, and Disposed of by Phase							
Phase Tons Generated Tons Diverted Tons Disposed							
Demolition	0	0		0			
Grading	0	0			0		
Construction	401	312	(78%)	89	(22%)		
Total 401 312 (78%) 89 (22				(22%)			
NOTE: Totals may vary due to independent rounding.							

6.0 Occupancy-Operational Waste

6.1 Waste Generation

The annual waste estimated to be generated during occupancy of the project was calculated using the City ESD Waste Generation Factors for Commercial (General Retail¹) and multifamily residential (Attachment 3). The estimated solid waste generation rate for commercial uses (general retail) is 0.0028 ton/square foot/year. The estimated solid waste generation rate for multi-family residential is 1.2 tons/year/unit. The estimated annual operational amount in tons is based on 45,000 square feet of general retail (commercial) space and 267 multi-family dwelling units, calculated below. Table 5 shows the amount of waste that would be generated during the occupancy phase.

Table 5 Occupancy Phase Annual Waste Generation						
Annual Generation Waste						
Land Use Type	Amount	Rate ¹	$Generated^{2,3}$			
Commercial (General Retail)	45,000 sf	0.0028 tons/sf/year	126			
Multi-family Residential	267 du	1.2 tons/year/du	321			
Total	447					

du = dwelling unit; sf = square feet

³Totals may vary due to independent rounding

¹City of San Diego Environmental Services Department, Waste Generation Factors – Occupancy Phase (see Attachment 3)

 $^{^2}$ Tons per year

¹Since commercial uses within the project site are unknown at this time, this Waste Management Plan assumes a waste generation factor for "General Retail" commercial uses, as identified in the City ESD Waste Generation Factors document (Attachment 3).

Commercial (General Retail):

45,000 square feet
$$\times \frac{0.0028 tons}{square feet/year} = 126 tons/year$$

Multi-Family Residential:

270 dwelling units
$$\times \frac{1.2 \text{ tons}}{\text{year}} = 320.4 \text{ tons/year}$$

The total generation of waste for the total proposed building space of 485,604 square feet equates to approximately 447 tons per year. As discussed in Section 6.2 below, the applicant (or applicant's successor in interest) would implement a long-term waste management plan to manage waste disposal in order to meet state and City waste reduction goals.

6.2 Waste Reduction Measures

According to the City Waste Management Guidelines (City of San Diego 2013), compliance with the City's Recycling Ordinances is expected to provide a minimum recycling service volume of 40 percent for large complexes. Therefore, waste anticipated to be diverted during the occupancy phase would be approximately 179 tons per year. The remaining 268 tons per year would, however, exceed the 60 ton-per-year threshold of significance for a cumulative impact on solid waste services in the City (City of San Diego 2016).

To mitigate for the cumulative impact on solid waste, the applicant (or applicant's successor in interest) shall be responsible for implementing a long-term waste management program. This program shall include recyclable collection services required by and in accordance with the Recycling Ordinance, as well as providing exterior storage space for refuse, recyclable materials, and a means of handling landscaping and green waste materials. Specific program measures shall include the following:

- For commercial facilities, which receive solid waste collection services from a Franchisee, the responsible person shall provide on-site recycling services to occupants as required by the dates prescribed in the San Diego Municipal Code, Chapter 6, Article 6, Division 7, Section 66.0707a.
- For multi-family residential facilities which receive solid waste collection services from a Franchisee, the responsible person shall provide on-site recycling services to occupants as required by the dates prescribed in the San Diego Municipal Code, Chapter 6, Article 6, Division 7, Section 66.0706c.
- Occupants of commercial facilities, which receive solid waste collection services from a Franchisee, shall participate in a recycling program by separating recyclable material from other solid waste and depositing the recyclable materials in the recycling container provided by the Franchisee or Recyclable Materials Collector.

- Occupants of multi-family residential facilities which receive solid waste collection services from a Franchisee, shall participate in a recycling program by separating recyclable material from other solid waste and depositing the recyclable materials in the recycling container provided by the Franchisee or Recyclable Materials Collector (San Diego Municipal Code, Chapter 6, Article 6, Division 7, Section 66.0706d).
- At a minimum, commercial facilities' recycling services would include the following (San Diego Municipal Code, Chapter 6, Article 6, Division 7, Section 66.0707c):
 - 1. Collection of recyclable materials as frequently as necessary to meet demand.
 - 2. Collection of plastic bottles and jars, paper, newspaper, metal containers, cardboard, and glass containers.
 - 3. Collection of other recyclable materials for which markets exist, such as scrap metal, wood pallets, and food waste.
 - 4. Utilization of recycling receptacles which comply with the standards in the Container and Signage Guidelines established by the City ESD or its successor.
 - 5. Designated recycling collection and storage areas.
 - 6. Signage on all recycling receptacles, containers, and/or enclosures which comply with the standards described in the Container and Signage Guidelines established by the City ESD or its successor.
- At a minimum, multi-family residential facilities' recycling services would include the following (San Diego Municipal Code, Chapter 6, Article 6, Division 7, Section 66.0706e):
 - 1. Collection of recyclable materials at least two times per month.
 - 2. Collection of plastic bottles and jars, paper, newspaper, metal containers, cardboard, and glass containers.
 - 3. Utilization of recycling receptacles which comply with the standards in the Container and Signage Guidelines established by the City ESD or its successor.
 - 4. Designated recycling collection and storage areas.
 - 5. Signage on all recycling receptacles, containers, chutes, and/or enclosures which comply with the standards described in the Container and Signage Guidelines established by the City ESD or its successor.
- Occupant Education For commercial facilities, the responsible person shall ensure that occupants are educated about the recycling services as follows (San Diego Municipal Code, Chapter 6, Article 6, Division 7, Section 66.0707d):

- 1. Information, including the types of recyclable materials accepted, the location of recycling containers, and the occupants' responsibility to recycle, shall be distributed to all occupants annually.
- 2. All new occupants shall be given educational information on recycling programs and procedures and instructions upon occupancy.
- 3. All occupants shall be given information and instructions upon any change in recycling service to the facility.
- Occupant Education For multi-family residential facilities, the responsible person shall ensure that occupants are educated about the recycling services as follows (San Diego Municipal Code, Chapter 6, Article 6, Division 7, Section 66.0706f):
 - 1. Information, including the types of recyclable materials accepted, the location of recycling containers, and the occupants' responsibility to recycle, shall be distributed to all occupants annually.
 - 2. All new occupants shall be given information and instructions upon occupancy.
 - 3. All occupants shall be given information and instructions upon any change in recycling service to the facility.

Implementation of a project-specific waste management program would reduce the project's cumulative portion of impacts on solid waste, as, per the City's California Environmental Quality Act Significance Determination Thresholds, the implementation of a WMP would ensure that the overall waste produced is reduced sufficiently to comply with waste reduction targets established in the Public Resources Code (City of San Diego 2016).

6.3 Exterior Storage

The project would be required to implement the City's Municipal Code on-site refuse and recyclable material storage space requirements (City of San Diego 2007b) for the duration of project occupancy. Tables 6 and 7 show the City's exterior storage area requirements for commercial and residential developments, respectively, and the application of the requirements to the project.

Table 6 Minimum Exterior Refuse and Recyclable Material Storage Areas for Non-Residential Development							
	Minimum Refuse	Minimum Recyclable	Total Minimum				
Gross Floor Area per	Storage Area	Material Storage Area	Storage Area				
Development	per Development	per Development	per Development				
(square feet)	(square feet)	(square feet)	(square feet)				
0-5,000	12	12	24				
5,001-10,000	24	24	48				
10,001-25,000	48	48	96				
25,001-50,000	96	96	192				
50,001-75,000	144	144	288				
75,001–100,000	192	192	384				
	192 plus 48 square	192 plus 48 square	384 plus 96 square				
	feet for every 25,000	feet for every 25,000	feet for every 25,000				
	square feet of building	square feet of building	square feet of building				
100,000+	area above 100,001	area above 100,001	area above 100,001				
Project (45,000 sf) 96 96 192							

SOURCE: City of San Diego Municipal Code, Article 2, Division 8: Refuse and Recyclable Material Storage Regulations, Section 142.0830, Table 142-08C

Table 7							
Minimum Exterior Refuse and Recyclable Material Storage Areas							
	for Resid	dential Development					
Number of	Minimum Refuse Area	Minimum Recyclable Area	Total Storage Area				
units	(square feet)	(square feet)	(square feet)				
2-6	12	12	24				
7-15	24	24	48				
16-25	48	48	96				
26-50	96	96	192				
51-75	144	144	288				
76-100	192	192	384				
101-125	240	240	480				
126-150	288	288	576				
151-175	336	336	672				
176-200	384	384	768				
	384 plus 48 square feet for	384 plus 48 square feet for	768 plus 96 square feet				
	every 25 dwelling units	every 25 dwelling units	for every 25 dwelling				
200+	above 201	above 201	units above 201				
Total	Total 480 480 960						
SOURCE: City of San Diego Municipal Code, Chapter 14, Article 2, Division 8: Refuse and Recyclable							
Material Storage Regulations, Section 142.0820, Table 142-08B.							

The project includes the construction of 45,000 square feet of commercial uses. As shown in Table 6, the project would require a minimum of 96 square feet of refuse storage area and a minimum of 96 square feet of recyclable material storage area. The total exterior refuse and recyclable material storage requirement for the project's non-residential uses would be 192 square feet.

The project includes the construction of 267 dwelling units. As shown in Table 7, the project would require a minimum of 480 square feet of refuse storage area and a minimum of

480 square feet of recyclable material storage area would be required. The total exterior refuse/recyclable material storage requirement for the project's residential uses would be 960 square feet. Overall, the total amount of refuse and recyclable material storage areas for its commercial and residential development is equivalent to 1,152 square feet. Site plans would be required to show the location and required square footage of refuse and recyclable storage areas.

6.4 Organic Waste Recycling

The project would incorporate landscaping and landscape maintenance. Drought-tolerant plants would be used to reduce the amount of green waste produced. Collection of organic waste and its disposal at recycling centers that accept organic waste would further reduce the waste generated by the project during occupancy. An ongoing WMP would include a means for handling landscaping and other organic waste materials.

7.0 Conclusion

7.1 Demolition, Grading, and Construction Waste

A total of approximately 401 tons of material would be generated from the construction phase of the project, of which 312 tons would be diverted through recycling at source-separated facilities that achieve a 100 percent diversion rate. When necessary, mixed debris and trash would be recycled at a lower diversion rate, leaving 89 tons to be disposed of. This amounts to an approximate solid waste diversion rate of 78 percent that would be diverted from the landfill.

7.2 Occupancy-Operational Waste

The project would include 45,000 square feet of commercial uses and 267 multi-family dwelling units, generating approximately 447 tons of waste per year. As such, the project would be required to provide a minimum of 96 square feet of exterior refuse area and 96 square feet of recyclable material storage area (total of 192 square feet; see Table 6) for the commercial area. In addition, the provision of 480 square feet of exterior refuse area and 480 square feet of recyclable material storage area (total of 960 square feet; see Table 7) would be required for the residential area. The applicant (or applicant's successor in interest) would implement ongoing waste reduction measures as prescribed in this WMP to ensure that the waste is minimized and the operation of the project complies with City ordinances. According to the City of San Diego Waste Management Guidelines (City of San Diego 2013), compliance with existing ordinances is expected to achieve a 40 percent diversion rate. Therefore, approximately 269 tons of non-recyclable waste per year would be generated from the project, exceeding the 60 ton-per-year threshold of significance for having a cumulative impact on solid waste. However, preparation of this WMP and

implementation of the Waste Reduction Measures, outlined in Section 6.2 above, would ensure the cumulative solid waste impact is reduced to below a level of significance.

7.3 Overall Compliance

With implementation of the strategies outlined in this WMP and compliance with all applicable City ordinances, solid waste impacts would be reduced to below a level of significance regarding collection, diversion, and disposal of waste generated from C&D, grading, and occupancy. The implementation of a SWMC for the project during demolition, grading, and construction phases would achieve a 78 percent of waste diverted from landfill disposal.

During occupancy, the applicant or applicant's successor in interest would be required to implement the ongoing WMP measures detailed herein to ensure maximum diversion from landfills. Implementation of the WMP would include provisions to provide adequate exterior storage space for refuse, recyclable, and landscape/green waste materials.

This WMP outlines strategies to achieve 78 percent of waste being diverted from disposal during C&D of the project. This would reduce the anticipated impact of waste disposal to below the direct impact threshold of significance. Without implementation of WMP measures, the occupancy phase would only achieve 40 percent diversion. However, with implementation of ongoing WMP measures detailed in Section 6.2, and achievement of a 78 percent diversion rate during the C&D phase, the project would achieve overall compliance.

8.0 References Cited

California, State of

- 1989 Assembly Bill 939. Integrated Waste Management Act.
- 2010 Senate Bill 1016. Solid Waste Per Capita Disposal Measurement Act.
- 2011 Assembly Bill 341. Jobs and Recycling.
- 2014 Assembly Bill 1826. Solid Waste: Organic Waste.

San Diego, City of

- 2007a Recycling Ordinance. San Diego Municipal Code Chapter 6, Article 6, Division 7. November 20, 2007.
- 2007b Refuse and Recyclable Materials Storage Regulations. Municipal Code Chapter 14, Article 2, Division 8. December 9, 2007.
- 2008 Construction and Demolition Debris Diversion Deposit Program. San Diego Municipal Code Chapter 6, Article 6, Division 6.

- 2013 California Environmental Quality Act Guidelines for a Waste Management Plan. June 2013. Available at https://www.sandiego.gov/sites/default/files/legacy/environmental-services/pdf/recycling/wmpguidelines.pdf. Accessed on December 22, 2016.
- 2016 Significance Determination Thresholds. California Environmental Quality Act. July.
- 2017 Certified Construction & Demolition Recycling Facility Directory. October.

United States Environmental Protection Agency (U.S. EPA)

2009 Estimating 2003 Building-Related Construction and Demolition Materials Amounts. March.

ATTACHMENTS

ATTACHMENT 1

City of San Diego Environmental Services Department Construction & Demolition Debris Conversion Rate Table

CITY OF SAN DIEGO CONSTRUCTION & DEMOLITION (C&D) DEBRIS CONVERSION RATE TABLE

This worksheet lists materials typically generated from a construction or demolition project and provides formulas for converting common units (i.e., cubic yards, square feet, and board feet) to tons. It should be used for preparing your Waste Management Form, which requires that quantities be provided in tons.

Step 1

Enter the estimated quantity for each applicable material in Column I, based on units of cubic yards (cy), square feet (sq ft), or board feet (bd ft).

Step 2

Multiply by Tons/Unit figure listed in Column II. Enter the result for each material in Column III. If using Excel version, column III will automatically calculate tons.

Step 3

Enter quantities for each separated material from Column III on this worksheet into the corresponding section of your Waste Management Form.

For your final calculations, use the actual quantities, based on weight tags, gate receipts, or other documents,

		Column I	_		Column II		Column III
<u>Category</u>	<u>Material</u>	<u>Volume</u>	<u>Unit</u>		Tons/Unit		<u>Tons</u>
Asphalt/Concrete	Asphalt (broken)		су	x	0.70	=	
	Concrete (broken)		су	x	1.20	=	
	Concrete (solid slab)		су	x	1.30	=	
Brick/Masonry/Tile	Brick (broken)		су	x	0.70	=	
	Brick (whole, palletized)		cy	x	1.51	=	
	Masonry Brick (broken)		су	X	0.60	=	
	Tile		sq ft	X	0.00175	=	-
Building Materials (doors, win	dows, cabinets, etc.)		су	x	0.15	=	
Cardboard (flat)			су	x	0.05	=	
Carpet	By square foot		sq ft	x	0.0005	=	
	By cubic yard		су	x	0.30	=	
Carpet Padding/Foam			sq ft	x	0.000125	=	
Ceiling Tiles	Whole (palletized)		sq ft	x	0.0003	=	
	Loose		су	x	0.09	=	
Orywall (new or used)	1/2" (by square foot)		sq ft	x	0.0008	=	
	5/8" (by square foot)		sq ft	x	0.00105	=	
	Demo/used (by cubic yd)		су	x	0.25	=	
Earth	Loose/Dry		су	x	1.20	=	
	Excavated/Wet		су	X	1.30	=	
	Sand (loose)		су	x	1.20	=	
andscape Debris (brush, tree	es, etc)		су	x	0.15	=	
lixed Debris	Construction		су	x	0.18	=	
	Demolition		су	x	1.19	=	
Scrap metal			су	x	0.51	=	
Shingles, asphalt			су	x	0.22	=	
Stone (crushed)			су	x	2.35	=	
Inpainted Wood & Pallets	By board foot		bd ft	x	0.001375	=	
	By cubic yard		су	x	0.15	=	
Garbage/Trash			су	x	0.18	=	
Other (estimated weight)			су	x	estimate	=	
	<u></u>		су	x	estimate	=	
	<u></u>		су	x	estimate	=	
			су	x	estimate	=	

ATTACHMENT 2

City of San Diego 2017 Construction & Demolition Recycling Facility Directory

2017 Certified Construction & Demolition Recycling Facility Directory

These facilities are certified by the City of San Diego to accept materials listed in each category. Hazardous materials are not accepted. The diversion rate for these materials shall be considered 100%, except mixed C&D debris which updates quarterly. The City is not responsible for changes in facility information. Please call ahead to confirm details such as accepted materials, days and hours of operation, limitations on vehicle types, and cost. For more information visit: www.recyclingworks.com.

Please note: In order to receive recycling credit, Mixed C&D Facility and transfer station receipts must: -be coded as construction & demolition (C&D) debris -have project address or permit number on receipt *Make sure to notify weighmaster that your load is subject to the City of San Diego C&D Ordinance. Note about landfills: Miramar Landfill and other landfills do not recycle mixed C&D debris.	Mixed C&D Debris	Asphalt/Concrete	Brick/Block/Rock	Building Materials for Reuse	Cardboard	Carpet	Carpet Padding	Ceiling Tile	Ceramic Tile/Porcelain	Clean Fill Dirt	Clean Wood/Green Waste	Drywall	Industrial Plastics	Lamps/Light Fixtures	Metal	Mixed Inerts	Styrofoam Blocks
EDCO Recovery & Transfer 3660 Dalbergia St, San Diego, CA 92113	71%																
619-234-7774 www.edcodisposal.com/public-disposal	7 170																
EDCO Station Transfer Station & Buy Back Center																	
8184 Commercial St, La Mesa, CA 91942	71%				•										•		
619-466-3355 www.edcodisposal.com/public-disposal																	
EDCO CDI Recycling & Buy Back Center																	
224 S. Las Posas Rd, San Marcos, CA 92078	90%				•										•		
760-744-2700 www.edcodisposal.com/public-disposal																	
Escondido Resource Recovery																	
1044 W. Washington Ave, Escondido	71%																
760-745-3203 www.edcodisposal.com/public-disposal																	
Fallbrook Transfer Station & Buy Back Center																	
550 W. Aviation Rd, Fallbrook, CA 92028	71%				•										•		
760-728-6114 www.edcodisposal.com/public-disposal																	
Otay C&D/Inert Debris Processing Facility																	
1700 Maxwell Rd, Chula Vista, CA 91913	75%																
619-421-3773 www.sd.disposal.com																	
Ramona Transfer Station & Buy Back Center																	
324 Maple St, Ramona, CA 92065	71%				•										•		
760-789-0516 www.edcodisposal.com/public-disposal																	
SANCO Resource Recovery & Buy Back Center																	
6750 Federal Blvd, Lemon Grove, CA 91945	71%				•										•		
619-287-5696 www.edcodisposal.com/public-disposal																	
All American Recycling																	
10805 Kenney St, Santee, CA 92071 619-508-1155 (Must call for appointment)																	
Allan Company																	
6733 Consolidated Wy, San Diego, CA 92121																	
858-578-9300 www.allancompany.com/facilities.htm																	
Allan Company Miramar Recycling																	
5165 Convoy St, San Diego, CA 92111					•												
858-268-8971 www.allancompany.com/facilities.htm																	
AMS																	
4674 Cardin St, San Diego, CA 92111								•									
858-541-1977 www.a-m-s.com																	

October 1, 2017 1

	Mixed C&D Debris	Asphalt/Concrete	Brick/Block/Rock	Building Materials for Reuse	Cardboard	Carpet	Carpet Padding	Ceiling Tile	Ceramic Tile/Porcelain	Clean Fill Dirt	Clean Wood/Green Waste	Drywall	Industrial Plastics	Lamps/Light Fixtures	Metal	Mixed Inerts	Styrofoam Blocks
Armstrong World Industries, Inc. 300 S. Myrida St, Pensacola, FL 32505 877-276-7876 (Press 1, Then 8) www.armstrong.com/commceilingsna								•									
Cactus Recycling 8710 Avenida De La Fuente, San Diego, CA 92154 619-661-1283 www.cactusrecycling.com					•								•		•		•
DFS Flooring 10178 Willow Creek Road, San Diego, CA 92131 858-630-5200 www.dfsflooring.com						•	•										
Duco Metals 220 Bingham Drive Suite 100, San Marcos, CA 92069 760-747-6330 www.ducometals.com Enniss Incorporated															•		
12421 Vigilante Rd, Lakeside, CA 92040 619-443-9024 www.ennissinc.com		•	•						•	•							
500 N. Tulip St, Escondido, CA 92025 760-432-4690 www.weirasphalt.com/esg Habitat for Humanity ReStore		•															
10222 San Diego Mission Rd, San Diego, CA 92108 619-516-5267 www.sdhfh.org/restore.php Hanson Aggregates West – Lakeside Plant				•													
12560 Highway 67, Lakeside, CA 92040 858-547-2141 Hanson Aggregates West – Miramar		•															
9229 Harris Plant Rd, San Diego, CA 92126 858-974-3849 HVAC Exchange		•								•							
2675 Faivre St, Chula Vista, CA 91911 619-423-1855 www.thehvacexchange.com															•		
2740 Boston Ave, San Diego, CA 92113 619-423-1564 www.imsrecyclingservices.com					•								•				
2697 Main St, San Diego, CA 92113 619-231-2521 www.imsrecyclingservices.com Inland Pacific Resource Recovery													•		•		
12650 Slaughterhouse Canyon Rd, Lakeside, CA 92040 619-390-1418 Lamp Disposal Solutions											•						
1405 30 th Street, San Diego, CA 92154 858-569-1807 www.lampdisposalsolutions.com														•			
4920 S. Boyle Ave, Vernon, CA 90058 323-589-5637 www.lafiber.com						•	•										

October 1, 2017 2

	N			s for Reuse					elain		en Waste			ıres			
	Mixed C&D Debris	Asphalt/Concrete	Brick/Block/Rock	Building Materials for Reuse	Cardboard	Carpet	Carpet Padding	Ceiling Tile	Ceramic Tile/Porcelain	Clean Fill Dirt	Clean Wood/Green Waste	Drywall	Industrial Plastics	Lamps/Light Fixtures	Metal	Mixed Inerts	Styrofoam Blocks
Miramar Greenery, City of San Diego 5180 Convoy St, San Diego, CA 92111 858-694-7000 www.sandiego.gov/environmental- services/miramar/greenery.shtml											•						
Moody's 3210 Oceanside Blvd., Oceanside, CA 92056 760-433-3316		•								•						•	
Otay Valley Rock, LLC 2041 Heritage Rd, Chula Vista, CA 91913 619-591-4717 www.otayrock.com		•															
Reclaimed Aggregates Chula Vista 855 Energy Wy, Chula Vista, CA 91913 619-656-1836		•														•	
Reconstruction Warehouse 3650 Hancock St., San Diego, CA 92110 619-795-7326 www.recowarehouse.com				•													
Robertson's Ready Mix 2094 Willow Glen Dr, El Cajon, CA 92019 619-593-1856		•								•						•	
Romero General Construction Corp. 8354 Nelson Wy, Escondido, CA 92026 760-749-9312 www.romerogc.com/crushing/nelsonway.htm		•															
SA Recycling 3055 Commercial St., San Diego, CA 92113 619-238-6740 www.sarecycling.com SA Recycling															•		
1211 S. 32 nd St., San Diego, CA 92113 619-234-6691 www.sarecycling.com															•		
8051 Wing Avenue, El Cajon, CA 92020 619-438-1093 www.universalwastedisposal.com Vulcan Carol Canyon Landfill and Recycle Site														•			
10051 Black Mountain Rd, San Diego, CA 92126 858-530-9465 www.vulcanmaterials.com Vulcan Otay Asphalt Recycle Center		•	•							•						•	
7522 Paseo de la Fuente, San Diego, CA 92154 619-571-1945 www.vulcanmaterials.com		•															

October 1, 2017 3

ATTACHMENT 3

City of San Diego Waste Generation Factors – Occupancy Phase

Waste Generation Factors - Occupancy Phase

The following factors are used by the City of San Diego Environmental Services Department to estimate the expected waste generation in a new residential or commercial development.

Residential Uses

Residential Unit = 1.6 tons/year/unit Multi-family Unit = 1.2 tons/year/unit **Example:** To calculate the amount of waste that will be generated from a project with 100 new homes, multiply the number of homes by the generation factor.

100 single family homes x 1.6 = 160 tons/year 100 multi-family units x 1.2 = 120 tons/year

Commercial/Industria	l Uses
General Retail	0.0028
Restaurants & Bars	0.0122
Hotels/Motels	0.0045
Food Stores	0.0073
Auto/Service/Repair	0.0051
Medical Offices	0.0033
Hospitals	0.0055
Office	0.0017
Transp/Utilities	0.0085
Manufacturing	0.0059
Education	0.0013
Unclassified Services	0.0042

Example: To calculate the amount of waste that could be generated from a new building with 10,000 square feet for offices and 10,000 square feet for manufacturing, multiply the square footage for each use by the generation factor.

10,000 square feet x 0.0017 = 17 tons/year 10,000 square feet x 0.0059 = 59 tons per year Total estimated waste generation for building = 76 tons/year

DEXTER WILSON ENGINEERING, INC.

WATER • WASTEWATER • RECYCLED WATER

CONSULTING ENGINEERS

WATER STUDY
FOR THE CALIFORNIA TERRACES
PLANNING AREA 61 PROJECT
IN THE CITY OF SAN DIEGO

September 14, 2018

WATER STUDY FOR THE CALIFORNIA TERRACES PLANNING AREA 61 PROJECT IN THE CITY OF SAN DIEGO

September 14, 2018

Prepared by:
Dexter Wilson Engineering, Inc.
2234 Faraday Avenue
Carlsbad, CA 92008
(760) 438-4422

Job No. 648-032

TABLE OF CONTENTS

	PAGE NO.
Introduction	1
Purpose of Study	3
Study Area	3
PA61 Project Water	Demand
City of San Diego De	esign Criteria4
Static Pressures	5
Existing and Propose	ed Water System6
	uter Model9
Water System Analy	sis and Results9
Conclusions and Rec	ommendations
	APPENDICES
APPENDIX A	PA-61 CONCEPTUAL SITE PLAN
APPENDIX B	TABLE 2-1 IN THE CITY OF SAN DIEGO DESIGN GUIDELINES
	AND STANDARDS AND PEAKING FACTOR TABLES
APPENDIX C	HYDRAULIC COMPUTER MODELING OUTPUT FROM
	APPROVED CALIFORNIA TERRACES WATER STUDY (OCTOBER 2003)
APPENDIX D	COMPUTER MODELING OUTPUT

LIST OF TABLES

PAGE N	<u>10.</u>
E 1 PA61 PROJECT POTABLE WATER DEMAND	4
E 2 CITY OF SAN DIEGO WATER SYSTEM DESIGN CRITERIA	5

LIST OF FIGURES

	PAGE NO.
FIGURE 1	LOCATION MAP2
FIGURE 2	EXISTING AND PROPOSED PUBLIC WATER FACILITIES7
FIGURE 3	HYDRAULIC CONTROL MAP 8
	EXHIBITS
EXHIBIT A	NODE AND PIPE DIAGRAM

DEXTER S. WILSON, P.E.
ANDREW M. OVEN, P.E.
STEPHEN M. NIELSEN, P.E.
NATALIE J. FRASCHETTI, P.E.
STEVEN J. HENDERSON, P.E.

September 14, 2018

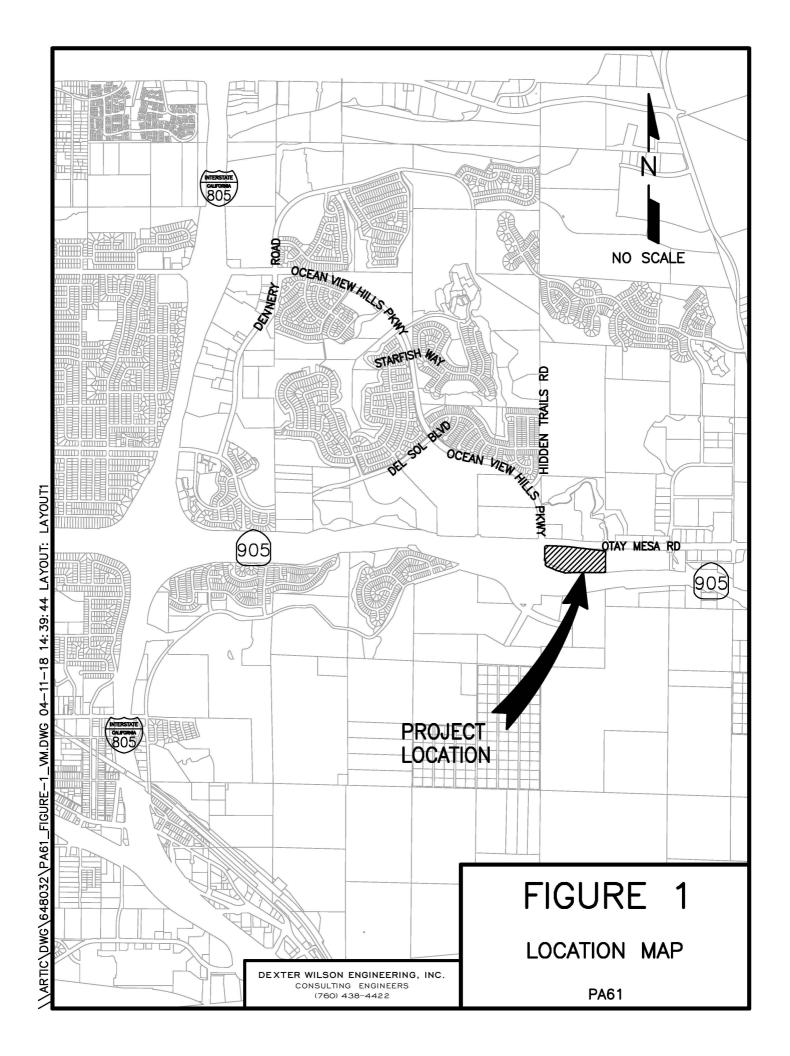
648-032

Pardee Homes 13400 Sabre Springs Parkway, Suite 200 San Diego, CA 92128

Attention:

Allen Kashani, Director of Project Management

Subject:


Water Study for the California Terraces Planning Area 61 Project in the City

of San Diego

Introduction

This report provides a water study for the California Terraces Planning Area 61 (PA61) project in the City of San Diego. The project proposes up to 45,000 SF of commercial uses within Lot 1 totaling 195,584 SF (4.49 AC) and multi-family residential units including affordable units and a private recreation park all within Lot 2 totaling 400,752 SF (9.20 AC). The residential development permits a density of 15 to 29 units per acre within the RM-2-5 zone and would allow Lot 2 to construct up to a maximum of 267 multi-family residential units. The 13.7 gross acres project site is located at the southeast corner of Otay Mesa Road and Caliente Ave and within the Otay Mesa Community Plan Area.

Figure 1 provides a location map for the project and a conceptual site plan is attached as Appendix A.

Purpose of Study

The purpose of this study is to analyze and determine if the existing public water system is able to provide adequate domestic and fire protection service for the PA61 project. This report will address if any offsite (public) water system improvements are needed for the development of the project so that the offsite water system will be in conformance with the City of San Diego Water Department water system design standards.

An overview of the proposed water system(s) will be presented as well. In conformance with City design and operations standards, there will be two separate private onsite water systems. A looped fire protection system along with two private domestic systems (residential and commercial) will be constructed as part of the onsite water system and connected to the existing City system.

Study Area

The study area for this report is the boundary of the PA61 project and the water system surrounding the project. The extent of the existing water system which was incorporated into the analysis of the project site was based on the existing Otay Mesa 680 Zone distribution system that serves the area.

All onsite water lines will be private and will connect to the City's public water system via approved backflow preventers and meters at each end of the PA61 project boundary. A preliminary analysis of the onsite private fire protection system is included in this report. The private domestic water facilities will be under a separate report/study.

PA61 Project Water Demand

The water demands were developed in accordance with the City of San Diego Design Guidelines and Standards. Multi-family residential water demand is estimated based on density and a unit water demand of 150 gpd/person. The PA61 project proposes up to 267 residential units over 9.20 net acres equaling 29.0 units per acre. Table 2-1 in the City of

San Diego Design Guidelines and Standards, attached as Appendix C, indicates that 29.0 units per acre falls in the range of 3.0 persons per dwelling unit. A dwelling unit density of 3.0 persons per dwelling unit and a unit water demand of 150 gpd/person results in a water demand rate of 450 gpd per multi-family dwelling unit at the project.

Table 1 presents the projected potable water demand for the PA61 project.

	PA61 I	BLE 1 PROJECT ATER DEMAND	
Land Use	Average Water Use, gpd		
Multi-Family Residential (29 DUs/net acre)	267 Units	450 gpd/DU	120,150
Commercial	4.49 Acres	5,000 gpd/acre	22,450
TOTAL			142,600 = 99.0 gpm

From the City of San Diego Guidelines and Standards, Figure 2-2, the maximum day demand to average annual demand ratio is approximately 2.3 based on the Coastal/Downtown peaking curve, resulting in an estimated maximum day demand in the pressure zone of 327,980 gpd (228 gpm).

From the City of San Diego Guidelines and Standards, Figure 2-1, the peak hour demand to average annual demand ratio is approximately 6.0 based on the Coastal/Downtown peaking curve, resulting in an estimated peak hour demand of 855,600 gpd (594 gpm).

Appendix B of this report presents the backup data for determining these peaking factors.

City of San Diego Design Criteria

Book 2 of the City of San Diego Guidelines and Standards was used to analyze the existing water system.

A summary of the design criteria from Book 2 is presented as Table 2.

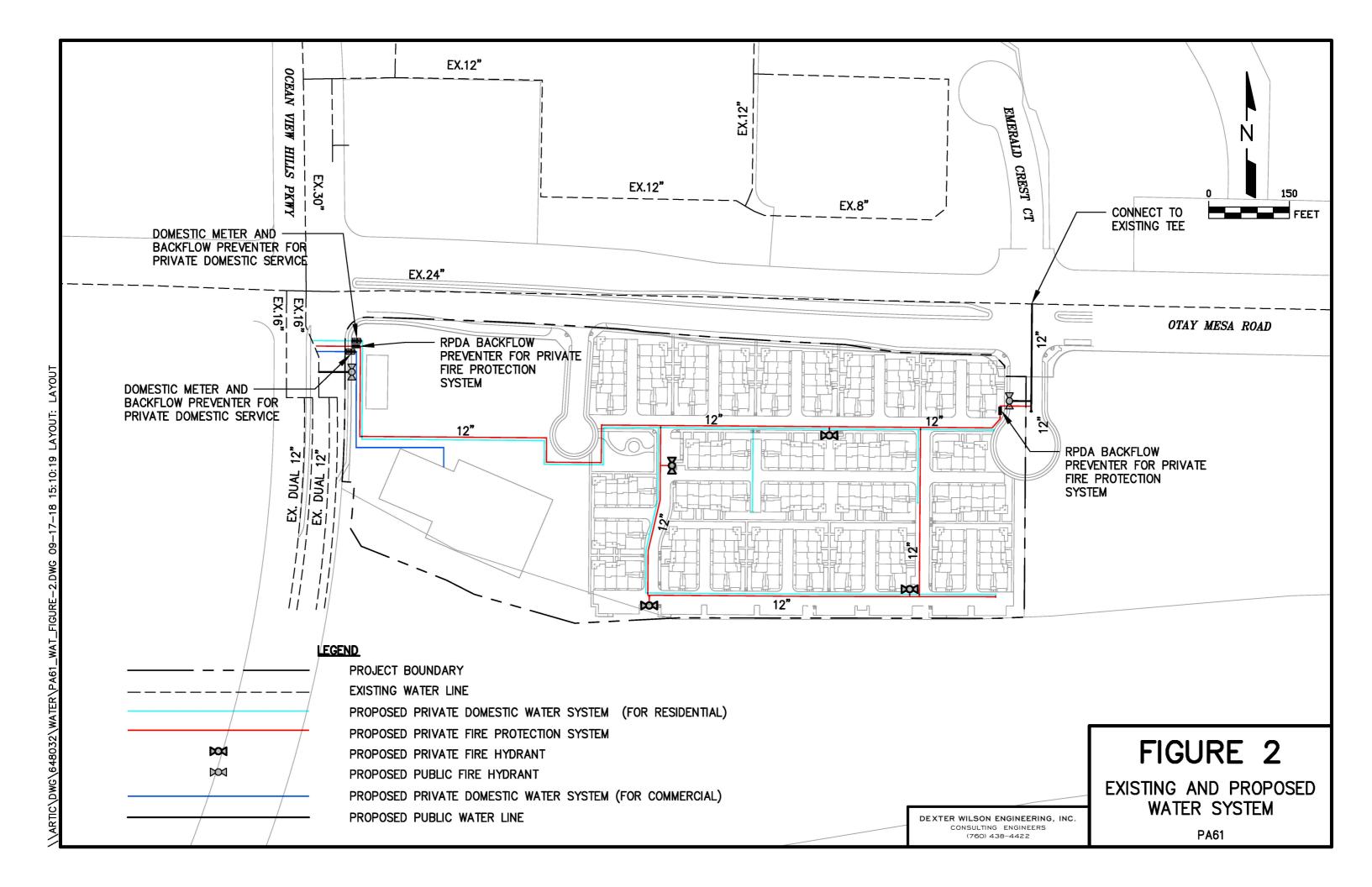
TABLE 2 CITY OF SAN DIEGO WATER SYSTEM DESIGN CRITERIA							
Criteria	Design Requirement						
Multi-Family Residential Fire Flow	3,000 gpm						
Commercial Fire Flow	4,000 gpm						
Minimum Static Pressure	65 psi						
Maximum Static Pressure	120 psi						
Maximum Pressure Drop – Reservoir Out of Service	40 psi						
Maximum Pressure Drop – Peak Hour & Max Day plus Fire	25 psi						
Minimum Pressure – Peak Hour	40 psi						
Minimum Pressure – Max Day plus Fire	20 psi						
Maximum Pipeline Velocity (Fire Flow) ¹	15 fps						
Maximum Pipeline Velocity (Normal Operating Conditions) ²	5 fps						

¹ Section 3.3.1 E

Static Pressures

Maximum static pressures within the PA61 project are calculated based on the Otay Mesa 680 Water Service Pressure Zone. Pad elevations onsite range from 524 feet to 532 feet. Using the maximum potential hydraulic gradeline of 680 feet, maximum static pressures within the project will range between 64 psi and 68 psi.

² Section 3.10.1


Existing and Proposed Water System

There are existing public water facilities directly adjacent to the PA61 project site. The existing facilities are part of the Otay Mesa 680 Zone. There is an existing 24-inch public water line in Otay Mesa Road adjacent to the project. The project will be connecting to this 24-inch line at one location. At this location, the "east" cul-de-sac, there is an existing stub in which the project will connect to.

The other private fire protection system connection will be made in Caliente Avenue along the western boundary of the project. Both private domestic system connections will be made at this location as well. Connecting to the existing 16-inch public line in Caliente Avenue ensures looping within the City water system.

The existing and proposed public water facilities in the vicinity of the project are shown on Figure 2 and a hydraulic control map is presented on Figure 3. The hydraulic control map shows existing water service areas and pressure zones in the vicinity of the proposed project.

Note that the two separate private domestic water systems (residential and commercial) will be established in parallel off Caliente Avenue with the onsite residential supply lateral being aligned through a private easement within the parking lot of the commercial area. The sizing of the private domestic water facilities will be under a separate report/study once final unit count and water fixture units are determined for the project.

Water System Computer Model

The University of Kentucky KYPIPE computer program was used to conduct a hydraulic model of the proposed water system within the study area. This computer program utilizes the Hazen-Williams equation for determining headloss in pipes; the Hazen-Williams "C" value used for all pipes is 120.

The model for this analysis includes existing public and proposed public lines in the near vicinity of the project site. The hydraulic grade line (HGL) was determined by the results of the computer hydraulic modeling in the approved California Terraces Water Study (October 2003). Using the data provided by the peak hour and 3,000 gpm multi-family fire flow modeling scenarios in the approved study, an extrapolation calculation was done to determine the HGL at various flow values. The location of this hydraulic modeling node in the vicinity of the PA61 project is at the Ocean View Hills Boulevard and Hidden Trials Road intersection approximately 1,300 feet north of the project boundary.

Output from the approved California Terraces Water Study is included as Appendix C. Junction "6503" is the location of the node mentioned in the above paragraph.

This location also was chosen as the source ("0" Node) of the water model for this study. Making this modeling node the location of the water model source allows for a more accurate calculation of the HGL in the vicinity of the project. Utilizing the modeling data and extrapolation calculation described above, an HGL of 680 feet was determined for a static condition and an HGL of 670 feet was determined for a maximum day demand plus 4,000 gpm fire flow condition.

Water System Analysis and Results

Appendix D presents the computer modeling results and Exhibit A at the back of this report presents the corresponding Node and Pipe Diagram. The planning-level multi-family fire flow guideline of 3,000 gpm was modeled at the multi-family residential area at several locations within the project site. The planning-level commercial fire flow guideline of 4,000 gpm was modeled at both a designated node central within the commercial area and a

proposed public hydrant adjacent to the commercial site. Pipe break scenarios were also modeled within the public water system.

Note that the maximum rated flow through a 10-inch RPDA backflow prevention device is approximately 3,500 gpm. The remaining 500 gpm in the 4,000 gpm total planning level commercial fire flow requirement is modeled at the proposed public hydrant along Caliente Avenue during the appropriate public pipe break scenario.

Under normal operating conditions (all pipes open) the planning-level fire flow of 3,000 gpm is being met with a minimum residual pressure of greater than 45 psi and a maximum pipeline velocity of 4.3 feet per second (fps) in the proposed 12-inch public water line in the "east" cul-de-sac. Under normal operating conditions the planning-level fire flow of 4,000 gpm is being met with a minimum residual pressure of greater than 42 psi and a maximum pipeline velocity of 5.6 fps in the proposed 12-inch public water line in the "east" cul-de-sac.

Under pipe break conditions, a fire flow of 3,000 gpm is being met with minimum residual pressures of greater than 38 psi and a maximum pipeline velocity of 8.5 fps and a fire flow of 4,000 gpm is being met with minimum residual pressures of greater than 37 psi and a maximum pipeline velocity of 9.9 fps.

The results of the computer hydraulic analyses for the PA61 project indicate that with the proposed connections off Caliente Avenue and the addition of a 12-inch public water main from the existing stub in Otay Mesa Road in the "east" cul-de-sac, the existing and proposed water system can provide sufficient flow and pressure for the PA61 projects' domestic and fire protection service needs.

Conclusions and Recommendations

The following conclusions and recommendations are summarized based on the water system analysis prepared for the PA61 project.

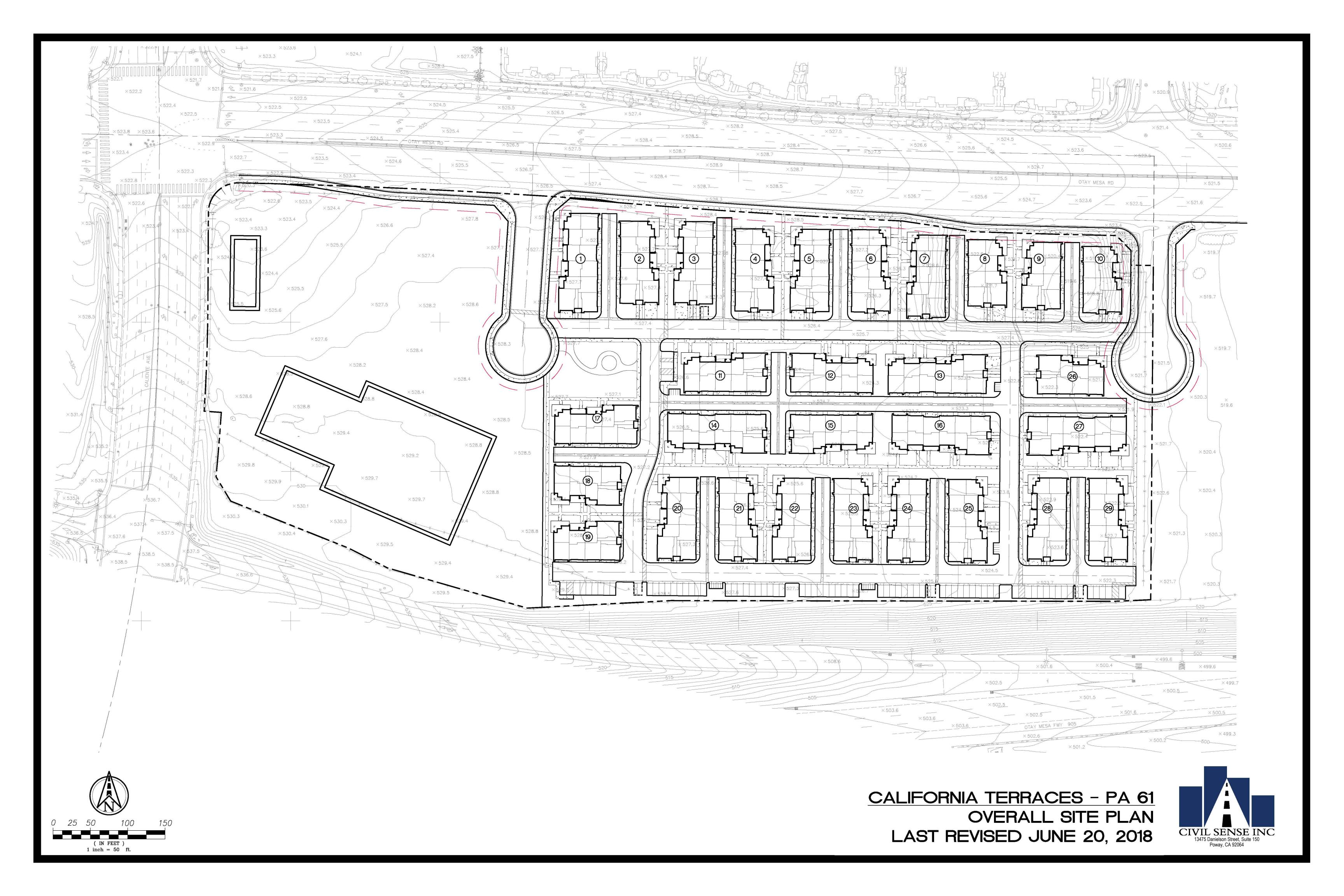
1. The PA61 project will be supplied from the Otay Mesa 680 Zone system.

- 2. Maximum static pressure within the residential project will range between 64 psi and 68 psi.
- 3. A maximum day demand plus 3,000 gpm and 4,000 gpm fire flow scenarios can be met at the project site with all residual pressures greater than 45 psi and 42 psi, respectively, and pipeline velocities less than 15 fps under all-pipes-open scenarios as well as under pipe break scenarios.
- 4. A preliminary analysis of the private onsite fire protection system and hydrants is included in this report. The private domestic water facilities will be under a separate report/study. These facilities are proposed to be private and separate from the City's public water system.
- 5. Figure 2 presents the existing and proposed water systems surrounding and within the project.
- 6. The recommended material specification for all new potable water lines is AWWA C900 PVC DR18 Class 235.
- 7. If any water lines to be constructed by this development are metallic, a California Licensed Corrosion Engineer will be required to perform a soil corrosivity study and to design a Corrosion Control System.

If you have any questions regarding the information or conclusions and recommendations presented in this report, please do not hesitate to call.

Dexter Wilson Engineering, Inc.

Henlan


Steven J. Henderson, P.E.

SH:AO:ps

Attachments

APPENDIX A

PA-61 CONCEPTUAL SITE PLAN

APPENDIX B

TABLE 2-1 IN THE CITY OF SAN DIEGO DESIGN GUIDELINES AND STANDARDS AND PEAKING FACTOR TABLES

Chapter 2

WATER DEMANDS AND SERVICE CRITERIA

2.1 General

This chapter outlines planning procedures to estimate water demands and fire flows. Water system service requirements are also defined in terms of water pressure and reservoir storage.

2.2 Service Area

The DESIGN CONSULTANT defines the project's service area and identifies the pressure zones in which it is located. The Senior Civil Engineer in charge of either Water Planning and Project Development, or Planning and Development Review Water Review Section, approves the service area boundaries.

2.3 Land Use and Residential Population

The DESIGN CONSULTANT develops present and future land use maps for the service area to define the following land use categories: residential (by zone in accordance with Table 2-1), central business district, commercial and institutional, parks, hospitals, hotels, industrial, office, and schools.

The DESIGN CONSULTANT estimates the residential population in the service area based on present and future allowable land use. Unless more accurate population density estimates are available, the residential population in the service area is estimated based on the figures presented in Table 2-1.

Table 2-1
Residential Population Density

Zone	Dwelling Unit Density (dwelling unit/net acre)	Unit Density (persons/dwelling unit)	Population Density (persons/net acre)
A-1-10	0.1	3.5	0.4
A-1-5	0.2	3.5	0.7
A-1-1	1	3.5	3.5
R-1-40	1	3.5	3.5
R-1-20	2	3.5	7.0
R-1-10	4	3.5	14
R-1-5	9	3.5	32
R-2	14	3.2	45
R-2A	29	3.0	87
R-3	43	2.6	112
R-3A	73	2.2	161
R-4	109	1.8	196
R-4C	218	1.5	327

Dwelling unit density in Table 2-1 is based on net area. The net area is measured in acres, and is 80% of the gross area for each residential zone.

2.4 Average Annual Water Demands

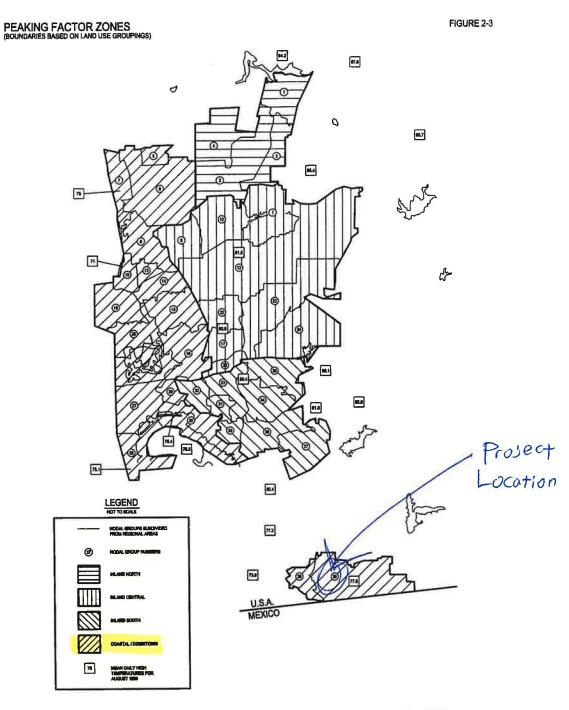
For most projects, average annual water demands are determined based on the unit water demand criteria presented in Table 2-2.

Table 2-2
Unit Water Demands

Land Use Category	Unit Water Demand	
Residential	150 gallons/person-day	
Central Business District	6000 gallons/net acre-day	
Commercial and Institutional	5000 gallons/net acre-day	
Fully Landscaped Park	4000 gallons/net acre-day	
Hospitals	22500 gallons/net acre-day	
Hotels	6555 gallons/net acre-day	
Industrial	6250 gallons/net acre-day	
Office	5730 gallons/net acre-day	
Schools	4680 gallons/net acre-day	

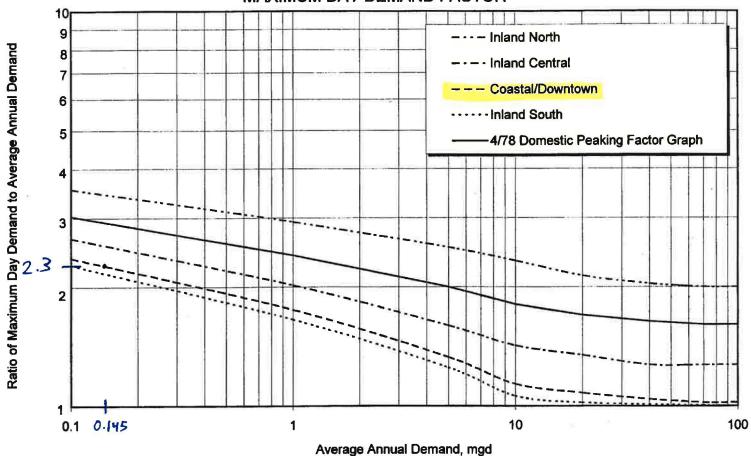
Average annual water demands are calculated as the sum of: (1) the residential water demand, and (2) other water demands for each land use category as follows:

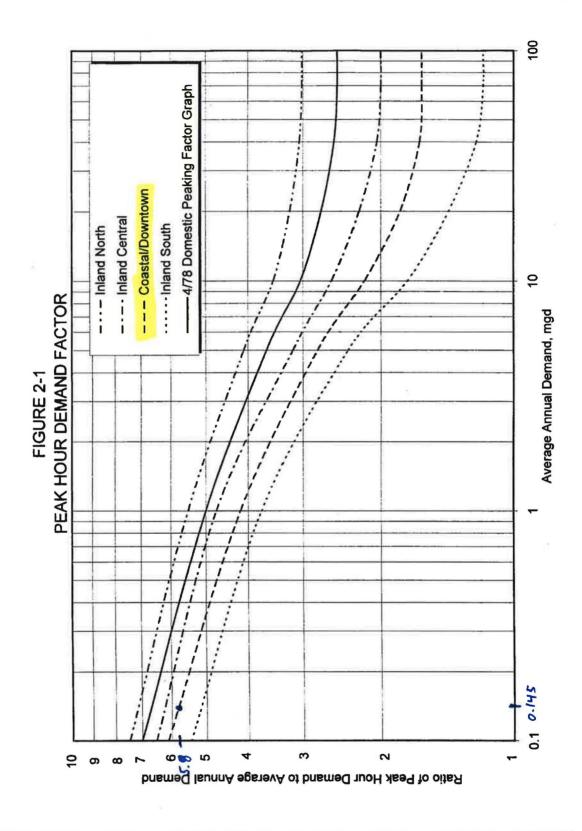
Residential Water Demand (gallons/day) = Residential Population x 150 gallons/person-day


Other Water Demand (gallons/day) = Land Use Area by Category (net acres) x Unit Water Demand for Each Land Use Category (gallons/net acre-day)

Average Annual Water Demand (gallons/day) = Residential Water Demand + Other Water Demands

On some projects, particularly large residential developments, using the unit water demands in Table 2-2 may generate unrealistically high estimates of water requirements. For these large projects, the DESIGN CONSULTANT or developer may request that the CIP Project Manager consider an alternative approach, making use of the City's water demand distribution data developed for macroscale planning purposes. Similarly, the CIP Project Manager may also consider alternative unit water demand estimates for specific land use types where such estimates are based on detailed demand evaluations.


2.5 Peak Water Demands


Unless the project involves a large development that calls for an alternative approach, peak hour and maximum day water demands are estimated using the peaking factors presented in Figures 2-1 and 2-2. These peaking factors correspond to the zones identified in Figure 2-3.

July 1999

FIGURE 2-2
MAXIMUM DAY DEMAND FACTOR

APPENDIX C

HYDRAULIC COMPUTER MODELING OUTPUT FROM APPROVED CALIFORNIA TERRACES WATER STUDY (OCTOBER 2003)

TABLE B-1A PEAK HOUR

			CTATIO	MODEL	- ADDECOURE
NODE No.	ELEVATION	HGL ZONE	STATIC PRESSURE	MODEL PRESSURE	△PRESSURE FROM STATIC
NODE NO.	(ft)	(ft)	(psi)	(psi)	(psi)
1454	525	680	67	48	19
202	512	680	73	54	19
204	490	680	82	63	19
206	440	680	104	85	19
208	490	680	82	63	19
210	494	680	81	62	19
212	504	680	76	57	19
214	514	680	72	53	19
216	515	680	71	52	19
218	519	680	70	51	19
220	518	680	70	51	· 19
222	526	680	67	48	19
224	505	680	76	57	19
226	515	680	71	53	19
228	517	680	71	52	19
229	505	680	76	57	19
230	494	680	81	62	19
232	497	680	79	61	19
234	507	680	75	56	19
236	504	680	76	57	19
238	501	680	77	59	19
240	496	680	80	61	19
242	497	680	79	60	19
244	464	680	94	75	19
246	495	680	80	61	19
248	490	680	82	63	19
250	500	680	78	59	19
252	499	680	78	59	19
254	495	680	80	61	19
256 258	499 500	680	78	59	19
256 260	502	680	77	58	19
262	502 507	680	77	58 50	19
264	507 506	680	75 75	56 50	19
266	508 503	680 680	75 77	56	19
268	503 502	680	77	57 50	19
270	493	680	77 81	58 62	19
272	514	680	72	52 52	19
274	491	680	72 82	62 62	19 19
276	492	680	81	62 62	19
278	486	680	84	65	19
280	480	680	87	67	19
282	483	680	85	66	19
284	504	680	76	57	19
286	498	680	78 79	60	19
288	500	680	79 78	59	19
290	512	680	73	59 54	19
292	505	680	75 76	57	19
294	523	680	68	49	19
1 20-7	020	000	1 00	1 43	l 19 [

		ELEVATION	HGL ZONE	STATIC	MODEL	ΔPRESSURE
	NODE No.	· 图128年7636年128日 李明明 新新州	CONTROL TO CONTROL TO A TEMPERATURE	PRESSURE	PRESSURE	FROM STATIC
		(ft)	(ft)	(psi)	(psi)	(psi)
	296	508	680	74	56	19
	298	523	680	68	49	19
	300	504	680	76	57	19
	302	512	680	73	54	19
	304	515	680	71	53	19
	306	523	680	68	49	19
	308	522	680	68	50	19
	310 312	525	680	67	48	19
	314	528 515	680 680	66 71	47	19
	314	518	680	71	53 51	19 19
	318	521	680	69	50	19
	320	519	680	70	51	19
	322	517	680	70 71	52	19
	326	524	680	68	49	19
	328	521	680	69	50	19
	330	523	680	68	49	19
1	4002	382	680	129	110	19
	4004	387	<mark>680</mark>	127 \/	108	19
<	4006	389	<mark>680</mark>	1 <mark>26</mark>	107	19
	4008	392	<mark>680</mark>	1 <mark>25</mark>	106	19
	4010_	379	680	130	112	19
9	4012	511	680	73	54	19
	4014	523	680	68	49	19
	4016 4018	522	680	68	49	19
	4016	520 519	680 680	69 70	50 51	19 19
	4032	525	680	67	48	19
	4034	527	680	66	47	19
	4036	529	680	65	46	19
	4038	531	680	65	45	20
	4040	524	680	68	48	20
	4042	522	680	68	49	20
- 1	4044	530	680	65	46	19
	4046	533	680	64	45	19
- 1	4048	521	680	69	49	20
	4050	520	680	69	50	19
	4052	526	680	67	48	19
	4054	535	680	63	44	19
	4056 4058	528 534	680 680	66	47	19
	4060	534 526	680	63 67	44 48	19 19
	4062	530	680	65	46	19
	4064	526	680	67	48	19
	4066	527	680	66	47	19
	4068	440	680	104	85	19
	4070	528	680	66	47	19
	6503	521	680	69	50	19
	700	472	680	90	71	19
	702	480	680	87	68	19
	704	484	680	85	66	19
	706	486	680	84	65	19

NODE No.	ELEVATION (ft)	HGL ZONE (ft)	STATIC PRESSURE (psi)	MODEL PRESSURE (psi)	△PRESSURE FROM STATIC (psi)
708	493	680	81	(psi) 62	(psi) 19
710	478	680	87	69	19
712	491	680	82	63	19
714	490	680	82	63	19
714	498	680	79	60	19
718	500	680	78	59	19
720	505	680	76 76	5 9 57	19
722	512	680	73	57 54	19
724	515	680	73 71	53	19
726	514	680	72	53	19
728	497	680	79	60	19
730	520	680	69	51	19
732	521	680	69	50	19
801	360	680	139	120	19
802	332	490	68	58	10
803	330	490	69	/ 59	10
804	328	490	70	60	10
805	351	680	142	124	19
806	356	680	140	122	19
807	364	6 <mark>80</mark>	137	118	19
808	350	680	143	124	19
809	360	680	139	120	19
810	365	680	136	118	19
811	360	6 <mark>80</mark>	139	120	19
812	370	680	134	115	19
813	370	6 <mark>80</mark>	134	115	19
814	375	6 <mark>80</mark>	132	113	19
815	357	6 <mark>80</mark>	140	121	19
816	370	6 <mark>80</mark>	1 <mark>34</mark>	115	19
817	376	6 <mark>80</mark>	1 <mark>32</mark>	113	19
818	370	680	134	115	19
819	327	490	71	60	10
825	520	680	69	51	19
826	522	680	68	50	19
827	511	680	73	55	19
828	499	680	78	60	19
829	472	680	90	71	19
830	468	680	92	73	19
832	400	680	121	103	19
850	370	680	134	115	19

			1
			1
			1
		·	

TABLE B-1B PEAK HOUR

	PIPE No.	DIAMETER	FLOW	VELOCITY
		(in)	(gpm)	(fps)
3	1002	30	-1637.64	0.74
	200	16	-673.84	1.08
ı	202	16	623.87	1.00
	204	16	256.13	0.41
	206	12	40.85	0.12
	208	12	-333.12	0.94
	210	12	-306.55	0.87
ı	212	8	-24.28	0.16
	214	8	76.42	0.49
	216	8	-43.67	0.28
	218	12	-318.26	0.90
i	220	8	-86.13	0.55
1	222	8	9.68	0.06
١	224	8	-102.73	0.66
١	226	8	16.63	0.11
	228	8	-137.36	0.88
١	229	12	-257.06	0.73
1	230	12	-250.15	0.71
1	231	30	-159.62	0.07
١	232	8	-120.60	0.77
١	234	8	-23.22	0.15
l	236	8	9.68	0.06
1	238	8	-60.59	0.39
ı	240	12	-210.44	0.60
1	242	8	-32.72	0.21
١	244	12	-211.23	0.60
	246	12	-257.81	0.73
1	248	12	-98.56	0.28
ı	250	8	13.86	0.09
	252 254	12	133.19	0.38
ı	254 256	8 12	9.68	0.06
١	258 258	8	-162.24	0.46
1	260	6 12	11.09	0.07
	262	8	-198.28	0.56
١	264	12	13.86 -87.63	0.09
ı	266	8	1	0.25
	268	0 12	17.02 52.18	0.11
	270	12	52.18 12.47	0.15
	270	12	47.28	0.04
	274	12	-77.06	0.13
	276	12	65.92	0.22
	278	12	28.85	0.19
	280	12	-61.91	0.08
1	282	12	-61.91 -111.40	0.18
	284	(12)	1	0.32
1	286	~	-154.08	0.44
j	288	8	19.85	0.13
1		8	21.27	0.14
	290	8	9.93	0.06
I	292	12	-155.74	0.44

	DIAMETER	FLOW	VELOCITY
PIPE No.	(in)	(gpm)	(fps)
294	8	11.35	0.07
296 298	8 8	17.02	0.11
= 300	8	21.13 29.92	0.13 0.19
302	8	17.15	0.19
304	8	9.92	0.06
306	8	7.09	0.05
308	8	43.96	0.28
312	8	4.26	0.03
314	8	28.36	0.18
316 318	8 8	11.35 7.09	0.07 0.05
320	8	194.69	1.24
322	8	6.91	0.04
324	8	165.64	1.06
326	8	6.91	0.04
328	8	121.52	0.78
330 332	8 8	11.09 96.57	0.07
334	8	55.14	0.62 0.35
336	8	6.91	0.04
338	8	24.69	0.16
340	8	-36.22	0.23
342	8	-108.33	0.69
344 346	8 8	-137.74	0.88
348	8	179.28 11.09	1.14 0.07
350	8	-9.68	0.06
352	8	12.35	0.08
354	8	-26.42	0.17
356	16	-27.49	0.04
358 4002	24 8	198.32 65.65	0.14 0.42
4004	8	12.86	0.42
4006	8	22.23	0.14
4008	8	12.86	0.08
4010	8	-3.48	0.02
4012	8	17.71	0.11
4014 4016	8 16	1.37 -818.06	0.01 1.31
4018	8	144.21	0.92
4020	8	127.49	0.81
4022	8	50.17	0.32
4030	8	6.31	0.04
4036	16	713.98	1.14
4038 4040	16	-695.65	1.11
4040	12 8	741.47 291.67	2.10 1.86
4044	8	90.30	0.58
4046	8	-111.08	0.71
4048	8	248.43	1.59
4050	8	245.60	1.57
4052	12	668.15	1.90

PIPE No.	DIAMETER	FLOW	VELOCITY
50000000000000000000000000000000000000	(in)	(gpm)	(fps)
4054	8	-198.55	1.27
4056	8	268.23	1.71
4058 4060	8	66.85	0.43
4062	12 12	350.09	0.99
4064	12	433.67 323.42	1.23 0.92
4066	12	338.08	0.92
4068	12	-100.63	0.29
4070	12	313.79	0.89
4072	12	93.29	0.26
4076	8	47.23	0.30
4077	8	63.02	0.40
4078	8	-57.97	0.37
4079	12	12.01	0.03
4080	8	69.23	0.44
4084	12 24	6.50 . 40.37 _~	0.02 0.03
4086	12	50.96	0.14
4090	16	-328.52	0.52
4092	8	-43.86	0.28
4094	12	237.46	0.67
4096	8	41.02	0.26
427	24	-1675.46	1.19
700 702	16	337.38	0.54
702 704	12 24	179.15	0.51
706	24	326.50 249.03	0.23 0.18
708	12	155.28	0.44
710	8	70.25	0.45
712	8	13.98	0.09
714	8	32.51	0.21
716	8	9.78	0.06
718	8	20.58	0.13
720 722	8	47.14	0.30
724	8 12	8.39 76.50	0.05
726	12	-71.04	0.22 0.20
728	12	38.97	0.11
730	12	69.72	0.20
732	8	19.57	0.12
734	8	11.18	0.07
736	12	-128.44	0.36
801	12	17.06	0.05
802	8	11.81	0.08
803 804	8	-3.94	0.03
806	8 8	-4.59 -19.93	0.03
807	8	-40.44	0.13 0.26
808	12	-150.61	0.43
810	8	7.41	0.05
811	8	9.57	0.06
812	12	-103.34	0.29
813	8	-10.47	0.07

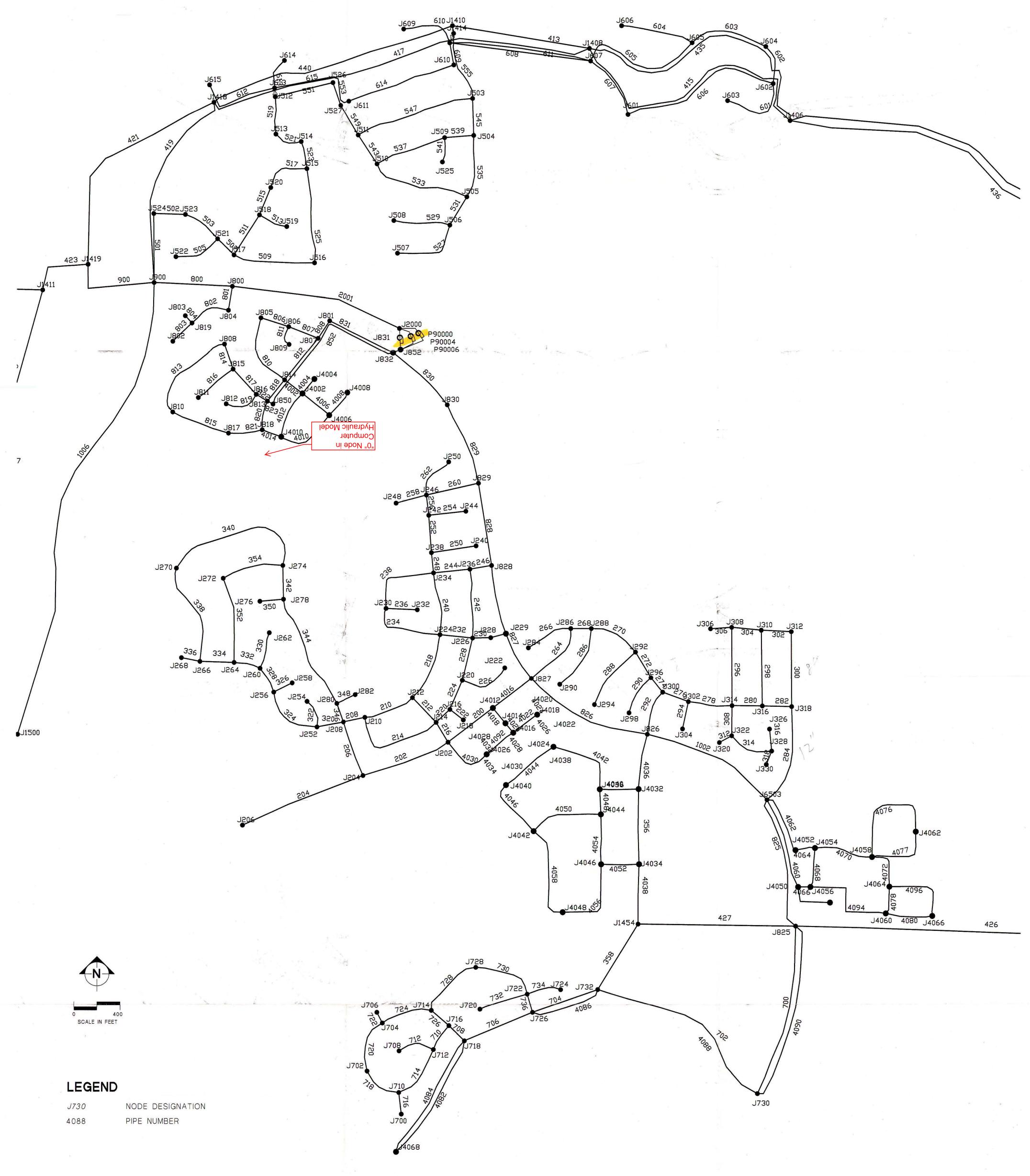
PIPE No.	DIAMETER (in)	FLOW (gpm)	VELOCITY (fps)
814	8	-36.44	0.23
815	. 8	36.02	0.23
816	8	13.67	0.09
817	8	-70.63	0.45
818	12	-13.87	0.04
819	8	10.94	0.07
820	8	61.99	0.40
821	8	53.79	0.34
822	8	92.50	0.59
823	8	140.62	0.90
825	30	-3011.60	1.37
826	30	746.06	0.34
827	30	-416.69	0.19
828	30	-693.25	0.31
829	30	-891.53	0.40
830	30	914.03	0.41
831	12	-218.86	0.62
852	12	-140.62	0.40

TABLE B-3A MAX DAY + MF FIRE (4058, 4062) W/8" MAIN (p4076) OOS

	ELEVATION	HGL ZONE	STATIC	MODEL	ΔPRESSURE
NODE No.	(ft)	(ft)	PRESSURE	PRESSURE	FROM STATIC
			(psi)	(psi)	(psi)
1454	525	680	67	64	3
202	512	680	73	70	3
204	490	680	82	79	3
206	440	680	104	101	3
208	490	680	82	79	3
210	494	680	81	78	3
212	504	680	76	73	3
214	514	680	72	69	3
216	515	680	71	68	3
218	519	680	70	67	3
220	518	680	70	67	3
222	526	680	67	64	3
224	505	680	76	73	3
226	515	680	71	68	3
228	517	680	71	68	3
229	505	680	76	73	3
230	494	680	81	78	3
232	497	680	79	77	3
234	507	680	75	72	3
236	504	680	76	73	3
238	501	680	77	75	3
240	496	680	80	77	3
242	497	680	79	76	3
244	464	680	94	91	3
246	495	680	80	77	3
248	490	680	82	80	3
250	500	680	78	75	3
252	499	680	78	75	3
254	495	680	80	77	3
256	499	680	78	75	3
258 260	502	680	77	74	3
	502 507	680	77	74	3
262 264	507 506	680	75	72 70	3
266	503	680 680	75	72	3
268	502	680	77	73	3
270	493	680	77	74 70	3
272	514	680	81 72	78	3
274	491	680	82	69 70	3
276	492	680	81	79	3
278	486	680	84	78	3
280	480	680	84 87	81 84	3
282	483	680	85	84	3
284	504	680	76	82	3
286	498	680	1	73 76	3
288	500	680	79 70	76	3
290	512	680	78 72	75 70	3
292	505	680	73 76	70 70	3
294	523	680	76 69	73	3
234	ا تاكا	1 000	68	65	3

ELEVATION			STATIC	MODEL	∆PRESSURE	
	NODE No.	ELEVATION	HGL ZONE	PRESSURE	PRESSURE	FROM STATIC
		(ft)	(ft)	(psi)	(psi)	(psi)
	296	508	680	74	71	3
	298	523	680	68	65	3
	300	504	680	76	73	3
	302	512	680	73	70	3
ı	304	515	680	71	68	3
1	306	523	680	68	65	3
ı	308 310	522 525	680 680	68 67	65 64	3
ı	310	525 528	680 680	67 66	64 63	3 3
	314	515	680	71	68	3
	316	518	680	70	67	3
ı	318	521	680	69	66	3
	320	519	680	70	67	3
ı	322	517	680	71	67	3
ı	326	524	680	68	64	3
ı	328	521	680	69	66	3
١	330	523	680	68	65	3
ı	4002	382	680	129	127	2
ı	4004	387	680	127	124	2
ı	4006 4008	389	680	126	124	2
ı	4008	392 379	680 680	125	122	2
ı	4010	511	680	130 73	128 70	2 3
١	4014	523	680 680	68	65	3
ı	4016	522	680	68	65	3
ı	4018	520	680	69	66	3
ı	4026	519	680	70	67	3
ı	4032	525	680	67	64	3
ı	4034	527	680	66	63	3
I	4036	529	680	65	62	3
ı	4038	531	680	65	61	3
ı	4040	524	680	68	64	3
ı	4042 4044	522	680	68 65	65	3
ı	4044	530 533	680 680	65 64	62 60	3 3
ı	4048	521	680	69	65	3
ı	4050	520	680	69	64	6
ı	4052	526	680	67	61	5
ı	4054	535	680	63	57	6
ı	4056	528	680	66	60	6
ı	4058	534	680	63	55	9
ı	4060	526	680	67	60	7
	4062	530	680	65	44	21
	4064	526	680	67	58	8
	4066	527	680	66	59	8
	4068	440	680	104	101	3
	4070 6503	528	680 680	66	60	6
	700	521 472	680 680	69 90	66 97	3
	700 702	472	680	90 87	87 83	3 3
	702 704	484	680	85	82	3
	706	486	680	84	81	3
1	. 00	1 700	1 000	1 04	1 01	, s

NODE No. (ft) (ft) PRESSURE (psi) P	SSURE STATIC si) 3
(ft) (ft) (psi) (si) 3 3
708 493 680 81 78	3 3
	3
I / 10 4/8 680 97 0/	
710 478 680 87 84 712 491 680 82 79	2
714 490 680 82 79	3 3
716 498 680 79 76	3
718 500 680 78 75	3
720 505 680 76 72	3
722 512 680 73 70	3
724 515 680 71 68	3
726 514 680 72 69	3
728 497 680 79 76	3
730 520 680 69 66	3
732 521 680 69 66	3
801 360 680 139 136	2
802 332 490 68 61	7
803 330 490 69 62	7
804 328 490 70 63	7
805 351 680 142 140	2
806 356 680 140 138	2
807 364 680 137 134	2
808 350 680 143 141	2
809 360 680 139 136	2
810 365 680 136 134	2
811 360 680 139 136	2
812 370 680 134 132	2
813 370 680 134 132	2
814 375 680 132 130	2
815 357 680 140 137	2
816 370 680 134 132	2 2
817 376 680 132 129	2
818 370 680 134 132	2
819 327 490 71 64	7
825 520 680 69 66 826 500	3
826 522 680 68 65 827 511 680 73 70	3
	3
	3
	3
	3
832 400 680 121 119 850 370 680 134 132	2


TABLE B-3B MAX DAY + MF FIRE (4058, 4062) W/8" MAIN (p4076) OOS

		DIAMETER	FLOW	Established Salahay
Р	IPE No.	(in)	(gpm)	VELOCITY (fps)
	1002	30	2389.30	1.08
	200	16	-199.10	0.32
1	202	16	248.79	0.40
l	204	16	122.94	0.20
	206	12	-31.06	0.09
	208	12	-210.56	0.60
	210	12	-198.07	0.56
1	212	8	52.74	0.34
	214	8	36.43	0.23
1	216	8	68.53	0.44
	218	12	-268.09	0.76
	220	8	-66.18	0.42
	222	8	4.65	0.03
	224	8	-74.14	0.47
1	226	8	7.98	0.47
	228	8	-90.76	0.58
	229	12	37.70	0.38
ı	230	12	41.02	0.17
	231	30	-3456.50	1.57
1	232	8	44.79	0.29
	234	8	-50.93	0.29
	236	8	4.65	0.03
	238	8	-68.87	0.44
	240	12	-279.23	0.79
	242	8	-279.25 -98.95	0.79
1	244	12	-68.11	0.03
	246	12	-173.71	0.49
1	248	12	-298.59	0.85
	250	8	6.65	0.04
	252	12	315.22	0.89
	254	8	4.65	0.03
	256	12	-329.16	0.93
	258	8	5.32	0.03
	260	12	-346.46	0.98
	262	8	6.65	0.04
İ	264	12	-248.75	0.71
	266	8	8.17	0.05
	268	12	231.73	0.66
	270	12	212.67	0.60
1	272	12	-183.99	0.52
	274	12	169.70	0.48
	276	12	182.56	0.52
1	278	12	164.77	0.32
	280	12	103.20	0.47
	282	12	76.56	0.29
	284	12	74.96	0.22 0.21
	286	8	9.53	
	288	8	10.21	0.06
	290	8		0.07
	290 292		4.76	0.03
I	282	12	-18.99	0.05

PIPE No. (in) (gpm) (fps)				
294 8 5.45 0.03 296 8 24.17 0.15 298 8 13.02 0.08 300 8 -4.52 0.03 302 8 -10.64 0.07 304 8 -11.23 0.07 306 8 3.40 0.02 308 8 23.11 0.15 312 8 2.04 0.01 314 8 13.61 0.09 316 8 5.45 0.03 318 8 3.40 0.02 320 8 93.45 0.60 322 8 3.32 0.02 324 8 79.51 0.51 326 8 3.32 0.02 322 8 46.36 0.30 332 8 46.36 0.30 334 8 26.47 0.17 336 8 3.32	PIPE No.	DIAMETER (in)	FLOW (gpm)	VELOCITY (fps)
296 8 24.17 0.15 298 8 13.02 0.08 300 8 -4.52 0.03 302 8 -10.64 0.07 304 8 -11.23 0.07 306 8 3.40 0.02 308 8 23.11 0.15 312 8 2.04 0.01 314 8 13.61 0.09 316 8 5.45 0.03 318 8 3.40 0.02 320 8 93.45 0.60 322 8 3.32 0.02 324 8 79.51 0.51 326 8 3.32 0.02 328 8 58.33 0.37 330 8 5.32 0.03 334 8 26.47 0.17 336 8 11.85 0.08 340 8 -17.39	294	**************************************	Management of States of the Control	KONTON TO THE CONTON TO THE CO
298 8 13.02 0.08 300 8 -4.52 0.03 302 8 -10.64 0.07 304 8 -11.23 0.07 306 8 3.40 0.02 308 8 23.11 0.15 312 8 2.04 0.01 314 8 13.61 0.09 316 8 5.45 0.03 318 8 3.40 0.02 320 8 93.45 0.60 322 8 93.45 0.60 322 8 3.32 0.02 324 8 79.51 0.51 326 8 3.32 0.02 328 8 5.83 3.32 0.02 328 8 5.83 3.32 0.02 338 8 11.85 0.08 340 8 17.39 0.11 342	I .			
300 8 -4.52 0.03 302 8 -10.64 0.07 306 8 -11.23 0.07 306 8 3.40 0.02 308 8 23.11 0.15 312 8 2.04 0.01 314 8 13.61 0.09 316 8 5.45 0.03 318 8 3.40 0.02 320 8 93.45 0.60 322 8 3.32 0.02 324 79.51 0.51 326 8 3.32 0.02 328 8 58.33 0.37 333 330 8 5.32 0.03 334 8 26.47 0.17 336 8 11.85 0.08 344 8 26.47 0.17 336 8 11.85 0.08 340 8 11.85 0.08 0.08 0.01 <	1	1		1
302 8 -10.64 0.07 304 8 -11.23 0.07 306 8 3.40 0.02 308 8 23.11 0.15 312 8 2.04 0.01 314 8 13.61 0.09 316 8 5.45 0.03 318 8 3.40 0.02 320 8 93.45 0.60 322 8 3.32 0.02 324 8 79.51 0.51 326 8 3.32 0.02 328 8 58.33 0.37 330 8 5.32 0.03 334 8 26.47 0.17 336 8 3.32 0.02 338 8 11.85 0.08 340 8 -17.39 0.11 342 8 -52.00 0.33 344 8 -66.11	1			
304 8 -11.23 0.07 306 8 3.40 0.02 308 8 23.11 0.15 312 8 2.04 0.01 314 8 13.61 0.09 316 8 5.45 0.03 318 8 3.40 0.02 320 8 93.45 0.60 322 8 93.45 0.60 322 8 93.22 0.02 324 8 79.51 0.51 326 8 3.32 0.02 328 8 5.32 0.03 330 8 5.32 0.03 334 8 26.47 0.17 336 8 3.32 0.02 338 8 11.85 0.08 340 8 -17.39 0.11 342 8 -52.00 0.33 344 8 -66.11 0	B	l I		
306 8 3.40 0.02 308 8 23.11 0.15 312 8 2.04 0.01 314 8 13.61 0.09 316 8 5.45 0.03 318 8 3.40 0.02 320 8 93.45 0.60 322 8 3.32 0.02 324 8 79.51 0.51 326 8 3.32 0.02 328 8 58.33 0.37 330 8 5.32 0.03 334 8 26.47 0.17 336 8 3.32 0.02 338 8 11.85 0.08 340 8 -17.39 0.11 342 8 -52.00 0.33 344 8 -66.11 0.42 346 8 86.06 0.55 348 8 5.32		1		
308 8 23.11 0.15 312 8 2.04 0.01 314 8 13.61 0.09 316 8 5.45 0.03 318 8 3.40 0.02 320 8 93.45 0.60 322 8 3.32 0.02 324 8 79.51 0.51 326 8 3.32 0.02 328 8 58.33 0.37 330 8 5.32 0.03 332 8 46.36 0.30 334 8 26.47 0.17 336 8 3.32 0.02 338 8 11.85 0.08 340 8 -17.39 0.11 342 8 -52.00 0.33 344 8 -66.11 0.42 346 8 6.06 0.55 348 8 5.32		l		
312 8 2.04 0.01 314 8 13.61 0.09 316 8 5.45 0.03 318 8 3.40 0.02 320 8 93.45 0.60 322 8 3.32 0.02 324 8 79.51 0.51 326 8 3.32 0.02 328 8 58.33 0.37 330 8 5.32 0.03 334 8 26.47 0.17 336 8 3.32 0.02 338 8 11.85 0.08 340 8 -17.39 0.11 342 8 -52.00 0.33 344 8 -66.11 0.42 346 8 6.32 0.03 352 8 5.93 0.04 348 8 5.32 0.03 352 8 5.93		t		
314 8 13.61 0.09 316 8 5.45 0.03 318 8 3.40 0.02 320 8 93.45 0.60 322 8 3.32 0.02 324 8 79.51 0.51 326 8 3.32 0.02 328 8 58.33 0.37 330 8 5.32 0.03 334 8 26.47 0.17 336 8 3.32 0.02 334 8 26.47 0.17 336 8 3.32 0.02 338 8 11.85 0.08 340 8 -17.39 0.11 342 8 -52.00 0.33 344 8 -66.11 0.42 346 8 86.06 0.55 348 8 5.32 0.03 352 8 5.32	•			
316 8 5.45 0.03 318 8 3.40 0.02 320 8 93.45 0.60 322 8 3.32 0.02 324 8 79.51 0.51 326 8 3.32 0.02 328 8 58.33 0.37 330 8 5.32 0.03 332 8 46.36 0.30 334 8 26.47 0.17 336 8 3.32 0.02 338 8 11.85 0.08 340 8 -17.39 0.11 0.42 342 8 -52.00 0.33 0.34 344 8 -66.11 0.42 0.42 348 8 5.32 0.03 0.03 350 8 -4.65 0.03 0.03 352 8 5.93 0.04 402 8 31.51<		l i		
318 8 3.40 0.02 320 8 93.45 0.60 322 8 3.32 0.02 324 8 79.51 0.51 326 8 3.32 0.02 328 8 58.33 0.37 330 8 5.32 0.03 334 8 26.47 0.17 336 8 3.32 0.02 338 8 11.85 0.08 340 8 -17.39 0.11 342 8 -52.00 0.33 344 8 -66.11 0.42 346 8 86.06 0.55 348 8 5.32 0.03 350 8 -4.65 0.03 352 8 5.93 0.04 354 8 12.68 0.08 356 16 176.13 0.28 358 24 120.88 </td <td></td> <td></td> <td></td> <td></td>				
320 8 93.45 0.60 322 8 3.32 0.02 324 8 79.51 0.51 326 8 3.32 0.02 328 8 58.33 0.37 330 8 5.32 0.03 334 8 26.47 0.17 336 8 3.32 0.02 338 8 11.85 0.08 340 8 -17.39 0.11 342 8 -52.00 0.33 344 8 -66.11 0.42 346 8 86.06 0.55 348 8 5.32 0.03 350 8 -4.65 0.03 352 8 5.93 0.04 354 8 -12.68 0.08 356 16 176.13 0.28 358 24 120.88 0.09 4002 8 31.5		1		
322 8 3.32 0.02 324 8 79.51 0.51 326 8 3.32 0.02 328 8 58.33 0.37 330 8 5.32 0.03 334 8 26.47 0.17 336 8 3.32 0.02 338 8 11.85 0.08 340 8 -17.39 0.11 342 8 -52.00 0.33 344 8 -66.11 0.42 346 8 86.06 0.55 348 8 5.32 0.03 350 8 -4.65 0.03 352 8 5.93 0.04 354 8 -12.68 0.08 356 16 176.13 0.28 358 24 120.88 0.09 4002 8 31.51 0.20 4040 8 6.1		1		
324 8 79.51 0.51 326 8 3.32 0.02 328 8 58.33 0.37 330 8 5.32 0.03 334 8 26.47 0.17 336 8 3.32 0.02 338 8 11.85 0.08 340 8 -17.39 0.11 342 8 -52.00 0.33 344 8 -66.11 0.42 346 8 86.06 0.55 348 8 5.32 0.03 350 8 -4.65 0.03 352 8 5.93 0.04 354 8 -12.68 0.08 356 16 176.13 0.28 358 24 120.88 0.09 4002 8 31.51 0.20 4004 8 6.17 0.04 4006 8 10		1		
326 8 3.32 0.02 328 8 58.33 0.37 330 8 5.32 0.03 332 8 46.36 0.30 334 8 26.47 0.17 336 8 3.32 0.02 338 8 11.85 0.08 340 8 -17.39 0.11 342 8 -52.00 0.33 344 8 -66.11 0.42 346 8 86.06 0.55 348 8 5.32 0.03 350 8 -4.65 0.03 352 8 5.93 0.04 354 8 -12.68 0.08 356 16 176.13 0.28 358 24 120.88 0.09 4002 8 31.51 0.20 4004 8 6.17 0.04 4010 8 6.	1			
328 8 58.33 0.37 330 8 5.32 0.03 334 8 26.47 0.17 336 8 3.32 0.02 338 8 11.85 0.08 340 8 -17.39 0.11 342 8 -52.00 0.33 344 8 -66.11 0.42 346 8 86.06 0.55 348 8 5.32 0.03 350 8 -4.65 0.03 352 8 -4.65 0.03 354 8 -12.68 0.08 356 16 176.13 0.28 358 24 120.88 0.09 4002 8 31.51 0.20 4004 8 6.17 0.04 4006 8 10.67 0.07 4008 8 6.17 0.04 4010 8 <td< td=""><td></td><td></td><td></td><td></td></td<>				
330 8 5.32 0.03 332 8 46.36 0.30 334 8 26.47 0.17 336 8 3.32 0.02 338 8 11.85 0.08 340 8 -17.39 0.11 342 8 -52.00 0.33 344 8 -66.11 0.42 346 8 86.06 0.55 348 8 5.32 0.03 350 8 -4.65 0.03 352 8 5.93 0.04 354 8 -12.68 0.08 356 16 176.13 0.28 358 24 120.88 0.09 4002 8 31.51 0.20 4004 8 6.17 0.04 4006 8 10.67 0.07 4008 8 6.17 0.04 4012 8	1			
332 8 46.36 0.30 334 8 26.47 0.17 336 8 3.32 0.02 338 8 11.85 0.08 340 8 -17.39 0.11 342 8 -52.00 0.33 344 8 -66.11 0.42 346 8 86.06 0.55 348 8 5.32 0.03 350 8 -4.65 0.03 352 8 5.93 0.04 354 8 -12.68 0.08 356 16 176.13 0.28 358 24 120.88 0.09 4002 8 31.51 0.20 4004 8 6.17 0.04 4006 8 10.67 0.07 4008 8 6.17 0.04 4010 8 -1.67 0.01 4012 8 <t< td=""><td></td><td></td><td></td><td></td></t<>				
334 8 26.47 0.17 336 8 3.32 0.02 338 8 11.85 0.08 340 8 -17.39 0.11 342 8 -52.00 0.33 344 8 -66.11 0.42 346 8 86.06 0.55 348 8 5.32 0.03 350 8 -4.65 0.03 352 8 5.93 0.04 354 8 -12.68 0.08 356 16 176.13 0.28 358 24 120.88 0.09 4002 8 31.51 0.20 4004 8 6.17 0.04 4006 8 10.67 0.07 4008 8 6.17 0.04 4010 8 -1.67 0.01 4012 8 8.50 0.05 4014 8 <t< td=""><td></td><td></td><td></td><td></td></t<>				
336 8 3.32 0.02 338 8 11.85 0.08 340 8 -17.39 0.11 342 8 -52.00 0.33 344 8 -66.11 0.42 346 8 86.06 0.55 348 8 5.32 0.03 350 8 -4.65 0.03 352 8 5.93 0.04 354 8 -12.68 0.08 356 16 176.13 0.28 358 24 120.88 0.09 4002 8 31.51 0.20 4004 8 6.17 0.04 4006 8 10.67 0.07 4008 8 6.17 0.04 4010 8 -1.67 0.01 4012 8 8.50 0.05 4014 8 6.6 0.00 4018 8 <td< td=""><td></td><td></td><td></td><td></td></td<>				
338 8 11.85 0.08 340 8 -17.39 0.11 342 8 -52.00 0.33 344 8 -66.11 0.42 346 8 86.06 0.55 348 8 5.32 0.03 350 8 -4.65 0.03 352 8 5.93 0.04 354 8 -12.68 0.08 356 16 176.13 0.28 358 24 120.88 0.09 4002 8 31.51 0.20 4004 8 6.17 0.04 4006 8 10.67 0.07 4008 8 6.17 0.04 4010 8 -1.67 0.01 4012 8 8.50 0.05 4014 8 0.66 0.00 4018 8 53.41 0.34 4020 8				
340 8 -17.39 0.11 342 8 -52.00 0.33 344 8 -66.11 0.42 346 8 86.06 0.55 348 8 5.32 0.03 350 8 -4.65 0.03 352 8 5.93 0.04 354 8 -12.68 0.08 356 16 176.13 0.28 358 24 120.88 0.09 4002 8 31.51 0.20 4004 8 6.17 0.04 4006 8 10.67 0.07 4008 8 6.17 0.04 4010 8 -1.67 0.01 4012 8 8.50 0.05 4014 8 0.66 0.00 4014 8 0.66 0.00 4016 16 -252.51 0.40 4018 8	L i			
342 8 -52.00 0.33 344 8 -66.11 0.42 346 8 86.06 0.55 348 8 5.32 0.03 350 8 -4.65 0.03 352 8 5.93 0.04 354 8 -12.68 0.08 356 16 176.13 0.28 358 24 120.88 0.09 4002 8 31.51 0.20 4004 8 6.17 0.04 4006 8 10.67 0.07 4008 8 6.17 0.04 4010 8 -1.67 0.01 4012 8 8.50 0.05 4014 8 0.66 0.00 4014 8 0.66 0.00 4016 16 -252.51 0.40 4018 8 53.41 0.34 4020 8				
344 8 -66.11 0.42 346 8 86.06 0.55 348 8 5.32 0.03 350 8 -4.65 0.03 352 8 5.93 0.04 354 8 -12.68 0.08 356 16 176.13 0.28 358 24 120.88 0.09 4002 8 31.51 0.20 4004 8 6.17 0.04 4006 8 10.67 0.07 4008 8 6.17 0.04 4010 8 -1.67 0.01 4012 8 8.50 0.05 4014 8 0.66 0.00 4016 16 -252.51 0.40 4018 8 53.41 0.34 4020 8 45.39 0.29 4022 8 24.08 0.15 4036 16				
346 8 86.06 0.55 348 8 5.32 0.03 350 8 -4.65 0.03 352 8 5.93 0.04 354 8 -12.68 0.08 356 16 176.13 0.28 358 24 120.88 0.09 4002 8 31.51 0.20 4004 8 6.17 0.04 4006 8 10.67 0.07 4008 8 6.17 0.04 4010 8 -1.67 0.01 4012 8 8.50 0.05 4014 8 0.66 0.00 4016 16 -252.51 0.40 4018 8 53.41 0.34 4020 8 45.39 0.29 4022 8 24.08 0.15 4030 8 18.84 0.12 4036 16	B .			
348 8 5.32 0.03 350 8 -4.65 0.03 352 8 5.93 0.04 354 8 -12.68 0.08 356 16 176.13 0.28 358 24 120.88 0.09 4002 8 31.51 0.20 4004 8 6.17 0.04 4006 8 10.67 0.07 4008 8 6.17 0.04 4010 8 -1.67 0.01 4012 8 8.50 0.05 4014 8 0.66 0.00 4016 16 -252.51 0.40 4018 8 53.41 0.34 4020 8 45.39 0.29 4022 8 24.08 0.15 4030 8 18.84 0.12 4036 16 536.46 0.86 4040 12				
350 8 -4.65 0.03 352 8 5.93 0.04 354 8 -12.68 0.08 356 16 176.13 0.28 358 24 120.88 0.09 4002 8 31.51 0.20 4004 8 6.17 0.04 4006 8 10.67 0.07 4008 8 6.17 0.04 4010 8 -1.67 0.01 4012 8 8.50 0.05 4014 8 0.66 0.00 4018 8 53.41 0.34 4020 8 45.39 0.29 4022 8 24.08 0.15 4030 8 18.84 0.12 4036 16 536.46 0.86 4038 16 -140.16 0.22 4040 12 360.33 1.02 4042 8 <td>6</td> <td></td> <td></td> <td></td>	6			
352 8 5.93 0.04 354 8 -12.68 0.08 356 16 176.13 0.28 358 24 120.88 0.09 4002 8 31.51 0.20 4004 8 6.17 0.04 4006 8 10.67 0.07 4008 8 6.17 0.04 4010 8 -1.67 0.01 4012 8 8.50 0.05 4014 8 0.66 0.00 4016 16 -252.51 0.40 4018 8 53.41 0.34 4020 8 45.39 0.29 4022 8 24.08 0.15 4030 8 18.84 0.12 4036 16 536.46 0.86 4040 12 360.33 1.02 4042 8 140.78 0.90 4044 8<	1			
354 8 -12.68 0.08 356 16 176.13 0.28 358 24 120.88 0.09 4002 8 31.51 0.20 4004 8 6.17 0.04 4006 8 10.67 0.07 4008 8 6.17 0.04 4010 8 -1.67 0.01 4012 8 8.50 0.05 4014 8 0.66 0.00 4016 16 -252.51 0.40 4018 8 53.41 0.34 4020 8 45.39 0.29 4022 8 24.08 0.15 4030 8 18.84 0.12 4036 16 536.46 0.86 4038 16 -140.16 0.22 4040 12 360.33 1.02 4042 8 140.78 0.90 4044 <	8			
356 16 176.13 0.28 358 24 120.88 0.09 4002 8 31.51 0.20 4004 8 6.17 0.04 4006 8 10.67 0.07 4008 8 6.17 0.04 4010 8 -1.67 0.01 4012 8 8.50 0.05 4014 8 0.66 0.00 4016 16 -252.51 0.40 4018 8 53.41 0.34 4020 8 45.39 0.29 4022 8 24.08 0.15 4030 8 18.84 0.12 4036 16 536.46 0.86 4038 16 -140.16 0.22 4040 12 360.33 1.02 4042 8 140.78 0.90 4044 8 44.12 0.28 4046 <	1			
358 24 120.88 0.09 4002 8 31.51 0.20 4004 8 6.17 0.04 4006 8 10.67 0.07 4008 8 6.17 0.04 4010 8 -1.67 0.01 4012 8 8.50 0.05 4014 8 0.66 0.00 4016 16 -252.51 0.40 4018 8 53.41 0.34 4020 8 45.39 0.29 4022 8 24.08 0.15 4030 8 18.84 0.12 4036 16 536.46 0.86 4038 16 -140.16 0.22 4040 12 360.33 1.02 4042 8 140.78 0.90 4044 8 44.12 0.28 4046 8 -52.54 0.34 4048 <				
4002 8 31.51 0.20 4004 8 6.17 0.04 4006 8 10.67 0.07 4008 8 6.17 0.04 4010 8 -1.67 0.01 4012 8 8.50 0.05 4014 8 0.66 0.00 4016 16 -252.51 0.40 4018 8 53.41 0.34 4020 8 45.39 0.29 4022 8 24.08 0.15 4030 8 18.84 0.12 4036 16 536.46 0.86 4038 16 -140.16 0.22 4040 12 360.33 1.02 4042 8 140.78 0.90 4044 8 44.12 0.28 4046 8 -52.54 0.34 4048 8 122.89 0.78 4050 8 118.13 0.75				
4004 8 6.17 0.04 4006 8 10.67 0.07 4008 8 6.17 0.04 4010 8 -1.67 0.01 4012 8 8.50 0.05 4014 8 0.66 0.00 4016 16 -252.51 0.40 4018 8 53.41 0.34 4020 8 45.39 0.29 4022 8 24.08 0.15 4030 8 18.84 0.12 4036 16 536.46 0.86 4038 16 -140.16 0.22 4040 12 360.33 1.02 4042 8 140.78 0.90 4044 8 44.12 0.28 4046 8 -52.54 0.34 4048 8 122.89 0.78 4050 8 118.13 0.75				
4006 8 10.67 0.07 4008 8 6.17 0.04 4010 8 -1.67 0.01 4012 8 8.50 0.05 4014 8 0.66 0.00 4016 16 -252.51 0.40 4018 8 53.41 0.34 4020 8 45.39 0.29 4022 8 24.08 0.15 4030 8 18.84 0.12 4036 16 536.46 0.86 4038 16 -140.16 0.22 4040 12 360.33 1.02 4042 8 140.78 0.90 4044 8 44.12 0.28 4046 8 -52.54 0.34 4048 8 122.89 0.78 4050 8 118.13 0.75				
4008 8 6.17 0.04 4010 8 -1.67 0.01 4012 8 8.50 0.05 4014 8 0.66 0.00 4016 16 -252.51 0.40 4018 8 53.41 0.34 4020 8 45.39 0.29 4022 8 24.08 0.15 4030 8 18.84 0.12 4036 16 536.46 0.86 4038 16 -140.16 0.22 4040 12 360.33 1.02 4042 8 140.78 0.90 4044 8 44.12 0.28 4046 8 -52.54 0.34 4048 8 122.89 0.78 4050 8 118.13 0.75	t .	1		
4010 8 -1.67 0.01 4012 8 8.50 0.05 4014 8 0.66 0.00 4016 16 -252.51 0.40 4018 8 53.41 0.34 4020 8 45.39 0.29 4022 8 24.08 0.15 4030 8 18.84 0.12 4036 16 536.46 0.86 4038 16 -140.16 0.22 4040 12 360.33 1.02 4042 8 140.78 0.90 4044 8 44.12 0.28 4046 8 -52.54 0.34 4048 8 122.89 0.78 4050 8 118.13 0.75	•	3		
4012 8 8.50 0.05 4014 8 0.66 0.00 4016 16 -252.51 0.40 4018 8 53.41 0.34 4020 8 45.39 0.29 4022 8 24.08 0.15 4030 8 18.84 0.12 4036 16 536.46 0.86 4038 16 -140.16 0.22 4040 12 360.33 1.02 4042 8 140.78 0.90 4044 8 44.12 0.28 4046 8 -52.54 0.34 4048 8 122.89 0.78 4050 8 118.13 0.75	i .	1		
4014 8 0.66 0.00 4016 16 -252.51 0.40 4018 8 53.41 0.34 4020 8 45.39 0.29 4022 8 24.08 0.15 4030 8 18.84 0.12 4036 16 536.46 0.86 4038 16 -140.16 0.22 4040 12 360.33 1.02 4042 8 140.78 0.90 4044 8 44.12 0.28 4046 8 -52.54 0.34 4048 8 122.89 0.78 4050 8 118.13 0.75				
4016 16 -252.51 0.40 4018 8 53.41 0.34 4020 8 45.39 0.29 4022 8 24.08 0.15 4030 8 18.84 0.12 4036 16 536.46 0.86 4038 16 -140.16 0.22 4040 12 360.33 1.02 4042 8 140.78 0.90 4044 8 44.12 0.28 4046 8 -52.54 0.34 4048 8 122.89 0.78 4050 8 118.13 0.75		1		
4018 8 53.41 0.34 4020 8 45.39 0.29 4022 8 24.08 0.15 4030 8 18.84 0.12 4036 16 536.46 0.86 4038 16 -140.16 0.22 4040 12 360.33 1.02 4042 8 140.78 0.90 4044 8 44.12 0.28 4046 8 -52.54 0.34 4048 8 122.89 0.78 4050 8 118.13 0.75	1	1		
4020 8 45.39 0.29 4022 8 24.08 0.15 4030 8 18.84 0.12 4036 16 536.46 0.86 4038 16 -140.16 0.22 4040 12 360.33 1.02 4042 8 140.78 0.90 4044 8 44.12 0.28 4046 8 -52.54 0.34 4048 8 122.89 0.78 4050 8 118.13 0.75	3			
4022 8 24.08 0.15 4030 8 18.84 0.12 4036 16 536.46 0.86 4038 16 -140.16 0.22 4040 12 360.33 1.02 4042 8 140.78 0.90 4044 8 44.12 0.28 4046 8 -52.54 0.34 4048 8 122.89 0.78 4050 8 118.13 0.75				
4030 8 18.84 0.12 4036 16 536.46 0.86 4038 16 -140.16 0.22 4040 12 360.33 1.02 4042 8 140.78 0.90 4044 8 44.12 0.28 4046 8 -52.54 0.34 4048 8 122.89 0.78 4050 8 118.13 0.75		1		1
4036 16 536.46 0.86 4038 16 -140.16 0.22 4040 12 360.33 1.02 4042 8 140.78 0.90 4044 8 44.12 0.28 4046 8 -52.54 0.34 4048 8 122.89 0.78 4050 8 118.13 0.75	ł .			
4038 16 -140.16 0.22 4040 12 360.33 1.02 4042 8 140.78 0.90 4044 8 44.12 0.28 4046 8 -52.54 0.34 4048 8 122.89 0.78 4050 8 118.13 0.75	1	1		
4040 12 360.33 1.02 4042 8 140.78 0.90 4044 8 44.12 0.28 4046 8 -52.54 0.34 4048 8 122.89 0.78 4050 8 118.13 0.75	1			
4042 8 140.78 0.90 4044 8 44.12 0.28 4046 8 -52.54 0.34 4048 8 122.89 0.78 4050 8 118.13 0.75				
4044 8 44.12 0.28 4046 8 -52.54 0.34 4048 8 122.89 0.78 4050 8 118.13 0.75				
4046 8 -52.54 0.34 4048 8 122.89 0.78 4050 8 118.13 0.75	I	l I		
4048 8 122.89 0.78 4050 8 118.13 0.75				
4050 8 118.13 0.75		i		
		1		
1 4UDZ 72 31629 000	4052	12	316.29	0.90

PIPE No.	DIAMETER	FLOW	VELOCITY
	(in)	(gpm)	(fps)
4054	8	-91.90	0.59
4056	8	127.74	0.82
4058 4060	8	31.08	0.20
4060 4062	12	1550.34	4.40
4062	12 12	1832.11	5.20
4064	12	1779.19 1538.33	5.05
4068	12	-448.85	4.36 1.27
4070	12	2175.12	6.17
4072	12	-930.72	2.64
4076	8	0.00	0.00
4077	8	1552.92	9.91
4078	8	-687.91	4.39
4079	12	12.01	0.03
4080	8	348.65	2.23
4082	12	3.27	0.01
4084	24	19.23	0.01
4086	12	24.46	0.07
4090	16	-145.01	0.23
4092	8	-5.25	0.03
4094 4096	12	1089.48	3.09
4090 427	8 24	-295.73 -636.16	1.89
700	24 16	148.93	0.45 0.24
702	12	60.30	0.2 4 0.17
704	24	156.72	0.17
706	24	119.53	0.08
708	12	74.53	0.21
710	8	33.72	0.22
712	8	6.71	0.04
714	8	15.60	0.10
716	8	4.70	0.03
718	8	9.88	0.06
720 700	8	22.63	0.14
722 724	8 12	4.03	0.03
724 726	12	36.72 -34.10	0.10
728	12	18.70	0.10 0.05
730	12	33.47	0.09
732	8	9.39	0.06
734	8	5.37	0.03
736	12	-61.65	0.17
801	12	11.38	0.03
802	8	7.88	0.05
803	8	-2.63	0.02
804	8	-3.06	0.02
806	8	-9.57	0.06
807	8	-19.41	0.12
808	12	-72.29	0.21
810	8	3.56	0.02
811	8	4.59	0.03
812	12	-49.60	0.14
813	8	-5.02	0.03

PIPE No.	DIAMETER (in)	FLOW (gpm)	VELOCITY (fps)
814	8	-17.49.	0.11
815	8	17.29	0.11
816	8	6.56	0.04
817	8	-33.90	0.22
818	12	-6.66	0.02
819	8	5.25	0.03
820	8	29.76	0.19
821	8	25.82	0.16
822	8	44.40	0.28
823	8	67.50	0.43
825	30	-1127.53	0.51
826	30	-2955.24	1.34
827	30	-3418.80	1.55
828	30	-3601.51	1.63
829	30	-3947.97	1.79
830	30	3958.77	1.80
831	12	-105.05	0.30
852	12	-67.50	0.19

PIPE AND NODE MAP

EXHIBIT B-1

NOTE: SEE FIGURE 2 FROM THE OTAY CORPORATE CENTER NORTH WATER STUDY ADDENDUM (JANUARY 2001) AND EXHIBIT 1 FROM THE CALIFORNIA TERRACES WATER STUDY (JUNE 1998) FOR THE SSD/OTAY MESA WATER SYSTEM PIPE AND NODE MAP.

APPENDIX D

COMPUTER MODELING OUTPUT

The following conditions were modeled:

- 1. Average Day Demand.
- 2. Peak Hour Demand.
- 3. Maximum Day Demand plus 3,000 gpm Fire Flow split between Nodes 114 and 122.
- 4. Maximum Day Demand plus 3,000 gpm Fire Flow split between Nodes 126 and 134.
- 5. Maximum Day Demand plus 4,000 gpm Fire Flow at Node 110.
- 6. Maximum Day Demand plus 3,000 gpm Fire Flow split between Nodes 126 and 134. Pipe 41 closed.
- 7. Maximum Day Demand plus 3,000 gpm Fire Flow split between Nodes 118 and 122. Pipe 39 closed.
- 8. Maximum Day Demand plus 4,000 gpm Fire Flow; 3,500 gpm at Node 110 and 500 gpm at Node 32. Pipe 41 closed.
- 9. Maximum Day Demand plus 4,000 gpm Fire Flow at Node 110. Pipe 39 closed.

Date: 9/14/18 Job Number: 648-032

Scenario: All Pipes Open - Average Day Demand

Node No.	Node El.	HGL Zone	Static P	Model Run	Delta P
	Ft.	Ft. (Static)*	psi	P, psi	from Static
4	533	680	63.69	63.7	-0.01
8	535	680	62.82	62.83	-0.01
12	548	680	57.19	57.2	-0.01
16	527	680	66.29	66.3	-0.01
20	544	680	58.93	58.93	0.00
24	544	680	58.93	58.93	0.00
28	548	680	57.19	57.2	-0.01
32	539	680	61.09	61.1	-0.01
36	534	680	63.26	63.27	-0.01
40	526	680	66.72	66.73	-0.01
102	532	680	64.12	64.13	-0.01
106	532	680	64.12	64.13	-0.01
110	530	680	64.99	65	-0.01
114	530	680	64.99	65	-0.01
118	530	680	64.99	65	-0.01
122	530	680	64.99	65	-0.01
126	528	680	65.86	65.87	-0.01
130	528	680	65.86	65.87	-0.01
134	528	680	65.86	65.87	-0.01
138	528	680	65.86	65.87	-0.01

Date: 9/14/18 Job Number: 648-032

Scenario: Peak Hour Demand

Node No.	Node El.	HGL Zone	Static P	Model Run	Delta P
	Ft.	Ft. (Static)*	psi	P, psi	from Static
4	533	680	63.69	44.19	19.50
8	535	680	62.82	43.33	19.49
12	548	680	57.19	37.69	19.50
16	527	680	66.29	46.79	19.50
20	544	680	58.93	39.42	19.51
24	544	680	58.93	39.42	19.51
28	548	680	57.19	37.69	19.50
32	539	680	61.09	41.58	19.51
36	534	680	63.26	43.75	19.51
40	526	680	66.72	47.23	19.49
102	532	680	64.12	44.62	19.50
106	532	680	64.12	44.62	19.50
110	530	680	64.99	45.49	19.50
114	530	680	64.99	45.49	19.50
118	530	680	64.99	45.49	19.50
122	530	680	64.99	45.49	19.50
126	528	680	65.86	46.35	19.51
130	528	680	65.86	46.36	19.50
134	528	680	65.86	46.35	19.51
138	528	680	65.86	46.36	19.50

Date: 9/14/18 Job Number: 648-032

Scenario: Maximum Day Demand plus 3000 gpm Fire Flow split between Nodes 114 and 122

Node No.	Node El.	HGL Zone	Static P	Model Run	Delta P
	Ft.	Ft. (Static)*	psi	P, psi	from Static
4	533	680	63.69	60.93	2.76
8	535	680	62.82	60.06	2.76
12	548	680	57.19	54.4	2.79
16	527	680	66.29	63.43	2.86
20	544	680	58.93	56.13	2.80
24	544	680	58.93	56.13	2.80
28	548	680	57.19	54.39	2.80
32	539	680	61.09	58.27	2.82
36	534	680	63.26	60.43	2.83
40	526	680	66.72	63.34	3.38
102	532	680	64.12	61.19	2.93
106	532	680	64.12	46.44	17.68
110	530	680	64.99	45.98	19.01
114	530	680	64.99	45.45	19.54
118	530	680	64.99	45.37	19.62
122	530	680	64.99	45.18	19.81
126	528	680	65.86	46.44	19.42
130	528	680	65.86	46.7	19.16
134	528	680	65.86	46.57	19.29
138	528	680	65.86	47.11	18.75

Date: 9/14/18 Job Number: 648-032

Scenario: Maximum Day Demand plus 3000 gpm Fire Flow split between Nodes 126 and 134

Node No.	Node El.	HGL Zone	Static P	Model Run	Delta P
	Ft.	Ft. (Static)*	psi	P, psi	from Static
4	533	680	63.69	60.93	2.76
8	535	680	62.82	60.06	2.76
12	548	680	57.19	54.4	2.79
16	527	680	66.29	63.43	2.86
20	544	680	58.93	56.13	2.80
24	544	680	58.93	56.13	2.80
28	548	680	57.19	54.39	2.80
32	539	680	61.09	58.27	2.82
36	534	680	63.26	60.43	2.83
40	526	680	66.72	63.33	3.39
102	532	680	64.12	61.2	2.92
106	532	680	64.12	46.7	17.42
110	530	680	64.99	46.26	18.73
114	530	680	64.99	45.74	19.25
118	530	680	64.99	45.68	19.31
122	530	680	64.99	45.53	19.46
126	528	680	65.86	46.1	19.76
130	528	680	65.86	46.42	19.44
134	528	680	65.86	46.31	19.55
138	528	680	65.86	46.84	19.02

Date: 9/14/18 Job Number: 648-032

Scenario: Maximum Day Demand plus 4000 gpm Fire Flow at Node 110

Node No.	Node El.	HGL Zone	Static P	Model Run	Delta P
	Ft.	Ft. (Static)*	psi	P, psi	from Static
4	533	680	63.69	59.09	4.60
8	535	680	62.82	58.22	4.60
12	548	680	57.19	52.54	4.65
16	527	680	66.29	61.52	4.77
20	544	680	58.93	54.27	4.66
24	544	680	58.93	54.26	4.67
28	548	680	57.19	52.52	4.67
32	539	680	61.09	56.38	4.71
36	534	680	63.26	58.55	4.71
40	526	680	66.72	61.1	5.62
102	532	680	64.12	59.23	4.89
106	532	680	64.12	43.76	20.36
110	530	680	64.99	42.26	22.73
114	530	680	64.99	43.16	21.83
118	530	680	64.99	43.23	21.76
122	530	680	64.99	43.43	21.56
126	528	680	65.86	44.69	21.17
130	528	680	65.86	44.95	20.91
134	528	680	65.86	44.63	21.23
138	528	680	65.86	45.62	20.24

Date: 9/14/18 Job Number: 648-032

Scenario: Maximum Day Demand plus 3000 gpm Fire Flow split between Nodes 126 and 134 Pipe 41 Closed

Node No.	Node El.	HGL Zone	Static P	Model Run	Delta P
	Ft.	Ft. (Static)*	psi	P, psi	from Static
4	533	680	63.69	60.93	2.76
8	535	680	62.82	60.05	2.77
12	548	680	57.19	54.34	2.85
16	527	680	66.29	63.53	2.76
20	544	680	58.93	56.06	2.87
24	544	680	58.93	56.05	2.88
28	548	680	57.19	54.3	2.89
32	539	680	61.09	58.13	2.96
36	534	680	63.26	60.29	2.97
40	526	680	66.72	39.51	27.21
102	532	680	64.12	60.76	3.36
106	532	680	64.12	45.11	19.01
110	530	680	64.99	41.1	23.89
114	530	680	64.99	39.15	25.84
118	530	680	64.99	38.98	26.01
122	530	680	64.99	38.57	26.42
126	528	680	65.86	38.58	27.28
130	528	680	65.86	38.65	27.21
134	528	680	65.86	38.68	27.18
138	528	680	65.86	38.65	27.21

Date: 9/14/18 Job Number: 648-032

Scenario: Maximum Day Demand plus 3000 gpm Fire Flow split between Nodes 118 and 122 Pipe 39 Closed

Node No.	Node El.	HGL Zone	Static P	Model Run	Delta P
	Ft.	Ft. (Static)*	psi	P, psi	from Static
4	533	680	63.69	60.93	2.76
8	535	680	62.82	59.91	2.91
12	548	680	57.19	53.29	3.90
16	527	680	66.29	63.42	2.87
20	544	680	58.93	54.86	4.07
24	544	680	58.93	54.7	4.23
28	548	680	57.19	52.81	4.38
32	539	680	61.09	55.73	5.36
36	534	680	63.26	57.81	5.45
40	526	680	66.72	63.29	3.43
102	532	680	64.12	58.58	5.54
106	532	680	64.12	45.02	19.10
110	530	680	64.99	44.66	20.33
114	530	680	64.99	44.17	20.82
118	530	680	64.99	43.68	21.31
122	530	680	64.99	43.55	21.44
126	528	680	65.86	44.98	20.88
130	528	680	65.86	45.34	20.52
134	528	680	65.86	45.24	20.62
138	528	680	65.86	45.79	20.07

Date: 9/14/18

Job Number: 648-032

Scenario: Maximum Day Demand plus 4000 gpm Fire Flow; 3500 gpm at Node 110 and 500 gpm at Node 32

Pipe 41 Closed

Node No.	Node El.	HGL Zone	Static P	Model Run	Delta P
	Ft.	Ft. (Static)*	psi	P, psi	from Static
4	533	680	63.69	59.09	4.60
8	535	680	62.82	58.2	4.62
12	548	680	57.19	52.44	4.75
16	527	680	66.29	61.69	4.60
20	544	680	58.93	54.15	4.78
24	544	680	58.93	54.13	4.80
28	548	680	57.19	52.37	4.82
32	539	680	61.09	56.14	4.95
36	534	680	63.26	58.31	4.95
40	526	680	66.72	39.01	27.71
102	532	680	64.12	58.66	5.46
106	532	680	64.12	42.9	21.22
110	530	680	64.99	37.28	27.71
114	530	680	64.99	37.28	27.71
118	530	680	64.99	37.28	27.71
122	530	680	64.99	37.28	27.71
126	528	680	65.86	38.15	27.71
130	528	680	65.86	38.15	27.71
134	528	680	65.86	38.15	27.71
138	528	680	65.86	38.15	27.71

Date: 9/14/18 Job Number: 648-032

Scenario: Maximum Day Demand plus 4000 gpm Fire Flow at Node 110 $\,$

Pipe 39 Closed

Node No.	Node El.	HGL Zone	Static P	Model Run	Delta P
	Ft.	Ft. (Static)*	psi	P, psi	from Static
4	533	680	63.69	59.11	4.58
8	535	680	62.82	58.01	4.81
12	548	680	57.19	50.95	6.24
16	527	680	66.29	61.52	4.77
20	544	680	58.93	52.45	6.48
24	544	680	58.93	52.21	6.72
28	548	680	57.19	50.25	6.94
32	539	680	61.09	52.72	8.37
36	534	680	63.26	54.77	8.49
40	526	680	66.72	61.02	5.70
102	532	680	64.12	55.47	8.65
106	532	680	64.12	41.57	22.55
110	530	680	64.99	40.3	24.69
114	530	680	64.99	41.29	23.70
118	530	680	64.99	41.37	23.62
122	530	680	64.99	41.59	23.40
126	528	680	65.86	42.89	22.97
130	528	680	65.86	43.17	22.69
134	528	680	65.86	42.83	23.03
138	528	680	65.86	43.91	21.95

Date: 9/14/18

Job Number: 648-032

Scenario: All Pipes Open - Average Day Demand

Pipe No.	Pipe Size	Model Run	Model Run
	(inches)	Flow (gpm)	Velocity (fps)
1	30	100	0.05
9	16	12.17	0.02
13	12	6.08	0.02
17	12	6.08	0.02
21	16	12.17	0.02
23	12	12.17	0.03
25	16	12.17	0.02
29	12	6.08	0.02
33	12	6.08	0.02
37	16	12.17	0.02
39	16	81.38	0.13
41	12	6.45	0.02
45	24	6.45	0
101	12	-5.45	-0.02
103	10	-5.45	-0.02
105	10	6.45	0.03
109	12	-5.45	-0.02
113	12	-6.45	-0.02
117	12	-2.46	-0.01
121	12	-2.46	-0.01
125	12	-2.46	-0.01
129	12	-2.46	-0.01
133	12	3.99	0.01
137	12	-3.99	-0.01
141	12	-6.45	-0.02

Date: 9/14/18

Job Number: 648-032

Scenario: Peak Hour Demand

Pipe No.	Pipe Size	Model Run	Model Run
	(inches)	Flow (gpm)	Velocity (fps)
1	30	600	0.27
9	16	73.33	0.12
13	12	36.67	0.1
17	12	36.67	0.1
21	16	73.33	0.12
23	12	73.33	0.21
25	16	73.33	0.12
29	12	36.67	0.1
33	12	36.67	0.1
37	16	73.33	0.12
39	16	490.5	0.78
41	12	36.17	0.1
45	24	36.17	0.03
101	12	-30.17	-0.09
103	10	-30.17	-0.12
105	10	36.17	0.15
109	12	-30.17	-0.09
113	12	-36.17	-0.1
117	12	-13.77	-0.04
121	12	-13.77	-0.04
125	12	-13.77	-0.04
129	12	-13.77	-0.04
133	12	22.39	0.06
137	12	-22.39	-0.06
141	12	-36.17	-0.1

Date: 9/14/18

Job Number: 648-032

Scenario: Maximum Day Demand plus 3000 gpm Fire Flow split between Nodes 114 and 122

Pipe No.	Pipe Size	Model Run	Model Run
	(inches)	Flow (gpm)	Velocity (fps)
1	30	3230	1.47
9	16	222.91	0.36
13	12	111.46	0.32
17	12	111.46	0.32
21	16	222.91	0.36
23	12	222.91	0.63
25	16	222.91	0.36
29	12	111.46	0.32
33	12	111.46	0.32
37	16	222.91	0.36
39	16	1490.93	2.38
41	12	1516.15	4.3
45	24	1516.15	1.08
101	12	1486.15	4.22
103	10	1486.15	6.07
105	10	1516.15	6.19
109	12	1486.15	4.22
113	12	1483.85	4.21
117	12	747.64	2.12
121	12	747.64	2.12
125	12	-752.36	-2.13
129	12	-752.36	-2.13
133	12	763.8	2.17
137	12	-763.8	-2.17
141	12	-1516.15	-4.3

Date: 9/14/18

Job Number: 648-032

Scenario: Maximum Day Demand plus 3000 gpm Fire Flow split between Nodes 126 and 134

Pipe No.	Pipe Size	Model Run	Model Run
	(inches)	Flow (gpm)	Velocity (fps)
1	30	3230	1.47
9	16	221.21	0.35
13	12	110.61	0.31
17	12	110.61	0.31
21	16	221.21	0.35
23	12	221.21	0.63
25	16	221.21	0.35
29	12	110.61	0.31
33	12	110.61	0.31
37	16	221.21	0.35
39	16	1479.55	2.36
41	12	1529.24	4.34
45	24	1529.24	1.08
101	12	1473.06	4.18
103	10	1473.06	6.02
105	10	1529.24	6.25
109	12	1473.06	4.18
113	12	1470.76	4.17
117	12	648.64	1.84
121	12	648.64	1.84
125	12	648.64	1.84
129	12	-851.36	-2.41
133	12	677.88	1.92
137	12	822.12	2.33
141	12	-1529.24	-4.34

Date: 9/14/18

Job Number: 648-032

Scenario: Maximum Day Demand plus 4000 gpm Fire Flow at Node 110

Pipe No.	Pipe Size	Model Run	Model Run
	(inches)	Flow (gpm)	Velocity (fps)
1	30	4227.7	1.92
9	16	293.43	0.47
13	12	146.71	0.42
17	12	146.71	0.42
21	16	293.43	0.47
23	12	293.43	0.83
25	16	293.43	0.47
29	12	146.71	0.42
33	12	146.71	0.42
37	16	293.43	0.47
39	16	1962.59	3.13
41	12	1971.69	5.59
45	24	1971.69	1.4
101	12	2028.31	5.75
103	10	2028.31	8.29
105	10	1971.69	8.05
109	12	2028.31	5.75
113	12	-1971.69	-5.59
117	12	-750.89	-2.13
121	12	-750.89	-2.13
125	12	-750.89	-2.13
129	12	-750.89	-2.13
133	12	1220.79	3.46
137	12	-1220.79	-3.46
141	12	-1971.69	-5.59

Date: 9/14/18

Job Number: 648-032

Scenario: Maximum Day Demand plus 3000 gpm Fire Flow split between Nodes 126 and 134 Pipe 41 Closed

Pipe No.	Pipe Size	Model Run	Model Run
1	(inches) 30	Flow (gpm) 3230	Velocity (fps) 1.47
9	16	420.11	0.67
13	12	210.06	0.67
13 17	12	210.06	0.6
21	16	420.11	0.67
23	12	420.11	1.19
25	16	420.11	0.67
29	12	210.06	0.6
33	12	210.06	0.6
37	16	420.11	0.67
39	16	2809.89	4.48
41	12		Closed
45	24	0	0
101	12	3002.3	8.52
103	10	3002.3	12.26
105	10	0	0
109	12	3002.3	8.52
113	12	3000	8.51
117	12	1135.1	3.22
121	12	1135.1	3.22
125	12	1135.1	3.22
129	12	-364.9	-1.04
133	12	-364.9	-1.04
137	12	1864.9	5.29
141	12	0	0

Date: 9/14/18

Job Number: 648-032

Scenario: Maximum Day Demand plus 3000 gpm Fire Flow split between Nodes 118 and 122 Pipe 39 Closed

Pipe No.	Pipe Size	Model Run	Model Run
	(inches)	Flow (gpm)	Velocity (fps)
1	30	3230	1.47
9	16	1652.09	2.64
13	12	826.04	2.34
17	12	826.04	2.34
21	16	1652.09	2.64
23	12	1652.09	4.69
25	16	1652.09	2.64
29	12	826.04	2.34
33	12	826.04	2.34
37	16	1652.09	2.64
39	16		Closed
41	12	1577.92	4.48
45	24	1577.92	1.12
101	12	1424.39	4.04
103	10	1424.39	5.82
105	10	1577.92	6.45
109	12	1424.39	4.04
113	12	1422.09	4.03
117	12	2091.53	5.93
121	12	591.53	1.68
125	12	-908.47	-2.58
129	12	-908.47	-2.58
133	12	669.44	1.9
137	12	-669.44	-1.9
141	12	-1577.92	-4.48

Date: 9/14/18

Job Number: 648-032

Scenario: Maximum Day Demand plus 4000 gpm Fire Flow; 3500 gpm at Node 110 and 500 gpm at Node 32 Pipe 41 Closed

Pipe No.	Pipe Size (inches)	Model Run Flow (gpm)	Model Run Velocity (fps)
1	30	4227.7	1.92
9	16	557.57	0.89
13	12	278.78	0.79
17	12	278.78	0.79
21	16	557.57	0.89
23	12	557.57	1.58
25	16	557.57	0.89
29	12	278.78	0.79
33	12	278.78	0.79
37	16	57.57	0.09
39	16	3670.13	5.86
41	12		Closed
45	24	0	0
101	12	3500	9.93
103	10	3500	14.3
105	10	0	0
109	12	3500	9.93
113	12	0	0
117	12	0	0
121	12	0	0
125	12	0	0
129	12	0	0
133	12	0	0
137	12	0	0
141	12	0	0

Date: 9/14/18

Job Number: 648-032

Scenario: Maximum Day Demand plus 4000 gpm Fire Flow at Node 110

Pipe 39 Closed

Pipe No.	Pipe Size (inches)	Model Run Flow (gpm)	Model Run Velocity (fps)
1	30	4099	1.86
9	16	2021.07	3.22
13	12	1010.53	2.87
17	12	1010.53	2.87
21	16	2021.07	3.22
23	12	2021.07	5.73
25	16	2021.07	3.22
29	12	1010.53	2.87
33	12	1010.53	2.87
37	16	2021.07	3.22
39	16		Closed
41	12	2077.93	5.89
45	24	2077.93	1.47
101	12	1922.07	5.45
103	10	1922.07	7.85
105	10	2077.93	8.49
109	12	1922.07	5.45
113	12	-2077.93	-5.89
117	12	-791.37	-2.24
121	12	-791.37	-2.24
125	12	-791.37	-2.24
129	12	-791.37	-2.24
133	12	1286.56	3.65
137	12	-1286.56	-3.65
141	12	-2077.93	-5.89

FLOWRATE IS EXPRESSED IN GPM AND PRESSURE IN PSIG

A SUMMARY OF THE ORIGINAL DATA FOLLOWS

PIP	E NO. N	ODE NOS	. LENGTH	DIAMETER	ROUGHNESS	MINOR LOSS K	FIXED GRADE
			(FEET)	(INCHES)			
1	0	4	1300.0	30.0	120.0	.00	680.00
9	4	8	200.0	16.0	120.0	.00	
13	8	12	1100.0	12.0	120.0	.00	
17	8	12	1100.0	12.0	120.0	.00	
21	12	20	200.0	16.0	120.0	.00	
23	20	24	50.0	12.0	120.0	.00	
25	24	28	200.0	16.0	120.0	.00	
29	28	32	1100.0	12.0	120.0	.00	
33	28	32	1100.0	12.0	120.0	.00	
37	32	36	100.0	16.0	120.0	.00	
39	4	36	100.0	16.0	120.0	.00	
41	16	40	190.0	12.0	120.0	.00	
45	4	16	1100.0	24.0	120.0	.00	
101	36	102	40.0	12.0	120.0	.00	
103	102	106	20.0	10.0	120.0	20.00	
105	40	138	20.0	10.0	120.0	20.00	
109	106	110	500.0	12.0	120.0	.00	
113	110	114	200.0	12.0	120.0	.00	
117	114	118	100.0	12.0	120.0	.00	
121	118	122	260.0	12.0	120.0	.00	
125	122	126	530.0	12.0	120.0	.00	
129	126	130	340.0	12.0	120.0	.00	
133	130	134	170.0	12.0	120.0	.00	
137	114	134	330.0	12.0	120.0	.00	
141	130	138	150.0	12.0	120.0	.00	

JUNCTION NUMBER	DEMAND	ELEVATION	CONNEC	TING	PIPES	
4	.00	533.00	1	9	39	45
8	.00	535.00	9	13	17	
12	.00	548.00	13	17	21	
16	.00	527.00	41	45		
20	.00	544.00	21	23		
24	.00	544.00	23	25		
28	.00	548.00	25	29	33	
32	.00	539.00	29	33	37	
36	99.00	534.00	37	39	101	
40	.00	526.00	41	105		
102	.00	532.00	101	103		
106	.00	532.00	103	109		
110	1.00	530.00	109	113		
114	.00	530.00	113	117	137	
118	.00	530.00	117	121		

September 14, 2018 Dexter Wilson Eng., Inc. Job 648-032

122	.00	530.00	121	125	
126	.00	528.00	125	129	
130	.00	528.00	129	133	141
134	.00	528.00	133	137	
138	.00	528.00	105	141	

OUTPUT SELECTION: ALL RESULTS ARE OUTPUT EACH PERIOD

THIS SYSTEM HAS 25 PIPES WITH 20 JUNCTIONS , 5 LOOPS AND 1 FGNS

THE RESULTS ARE OBTAINED AFTER 10 TRIALS WITH AN ACCURACY = .00323

PA61 Computer Hydraulic Analysis Average Day Demand

PIPE	NO. NODE	NOS.	FLOWRATE	HEAD LOSS	PUMP HEAD	MINOR LOSS	VELOCITY	HL/1000
1	0	4	100.00	.00	.00	.00	.05	.00
9	4	8	12.17	.00	.00	.00	.02	.00
13	8	12	6.08	.00	.00	.00	.02	.00
17	8	12	6.08	.00	.00	.00	.02	.00
21	12	20	12.17	.00	.00	.00	.02	.00
23	20	24	12.17	.00	.00	.00	.03	.00
25	24	28	12.17	.00	.00	.00	.02	.00
29	28	32	6.08	.00	.00	.00	.02	.00
33	28	32	6.08	.00	.00	.00	.02	.00
37	32	36	12.17	.00	.00	.00	.02	.00
39	4	36	81.38	.00	.00	.00	.13	.01
41	16	40	6.45	.00	.00	.00	.02	.00
45	4	16	6.45	.00	.00	.00	.00	.00
101	36	102	-5.45	.00	.00	.00	02	.00
103	102	106	-5.45	.00	.00	.00	02	.00
105	40	138	6.45	.00	.00	.00	.03	.00
109	106	110	-5.45	.00	.00	.00	02	.00
113	110	114	-6.45	.00	.00	.00	02	.00
117	114	118	-2.46	.00	.00	.00	01	.00
121	118	122	-2.46	.00	.00	.00	01	.00
125	122	126	-2.46	.00	.00	.00	01	.00
129	126	130	-2.46	.00	.00	.00	01	.00
133	130	134	3.99	.00	.00	.00	.01	.00
137	114	134	-3.99	.00	.00	.00	01	.00
141	130	138	-6.45	.00	.00	.00	02	.00

JUNCTION NUMBER	DEMAND	GRADE LINE	ELEVATION	PRESSURE
4	.00	680.00	533.00	63.70
8	.00	680.00	535.00	62.83
12	.00	680.00	548.00	57.20
16	.00	680.00	527.00	66.30
20	.00	680.00	544.00	58.93
24	.00	680.00	544.00	58.93
28	.00	680.00	548.00	57.20

September 14, 2018 Dexter Wilson Eng., Inc. Job 648-032

32	.00	680.00	539.00	61.10
36	99.00	680.00	534.00	63.27
40	.00	680.00	526.00	66.73
102	.00	680.00	532.00	64.13
106	.00	680.00	532.00	64.13
110	1.00	680.00	530.00	65.00
114	.00	680.00	530.00	65.00
118	.00	680.00	530.00	65.00
122	.00	680.00	530.00	65.00
126	.00	680.00	528.00	65.87
130	.00	680.00	528.00	65.87
134	.00	680.00	528.00	65.87
138	.00	680.00	528.00	65.87

THE NET SYSTEM DEMAND = 100.00

SUMMARY OF INFLOWS(+) AND OUTFLOWS(-) FROM FIXED GRADE NODES

PIPE NUMBER FLOWRATE 1 100.00

THE NET FLOW INTO THE SYSTEM FROM FIXED GRADE NODES = 100.00
THE NET FLOW OUT OF THE SYSTEM INTO FIXED GRADE NODES = .00

A SUMMARY OF CONDITIONS SPECIFIED FOR THE NEXT SIMULATION FOLLOWS

THE DEMANDS ARE CHANGED FROM ORIGINAL VALUES BY A FACTOR = 6.00

THE FOLLOWING CHANGES IN PIPE DATA ARE SPECIFIED

FOR PIPE NUMBER 1 THE VALUE OF THE FIXED GRADE IS CHANGED TO 635.0

THE RESULTS ARE OBTAINED AFTER 3 TRIALS WITH AN ACCURACY = .00016

PA61 Computer Hydraulic Analysis Peak Hour Demand

PIPE	NO. NOI	E NOS.	FLOWRATE	HEAD LOSS	PUMP HEAD	MINOR LOSS	VELOCITY	HL/1000
1	0	4	600.00	.02	.00	.00	.27	.01
9	4	8	73.33	.00	.00	.00	.12	.01
13	8	12	36.67	.01	.00	.00	.10	.01
17	8	12	36.67	.01	.00	.00	.10	.01
21	12	20	73.33	.00	.00	.00	.12	.01
23	20	24	73.33	.00	.00	.00	.21	.02
25	24	28	73.33	.00	.00	.00	.12	.01
29	28	32	36.67	.01	.00	.00	.10	.01
33	28	32	36.67	.01	.00	.00	.10	.01
37	32	36	73.33	.00	.00	.00	.12	.01
39	4	36	490.50	.02	.00	.00	.78	.19
41	16	40	36.17	.00	.00	.00	.10	.01
45	4	16	36.17	.00	.00	.00	.03	.00

September 14, 2018 Dexter Wilson Eng., Inc. Job 648-032

101	36	102	-30.17	.00	.00	.00	09	.00
103	102	106	-30.17	.00	.00	.00	12	01
105	40	138	36.17	.00	.00	.01	.15	.02
109	106	110	-30.17	.00	.00	.00	09	.00
113	110	114	-36.17	.00	.00	.00	10	01
117	114	118	-13.77	.00	.00	.00	04	.00
121	118	122	-13.77	.00	.00	.00	04	.00
125	122	126	-13.77	.00	.00	.00	04	.00
129	126	130	-13.77	.00	.00	.00	04	.00
133	130	134	22.39	.00	.00	.00	.06	.00
137	114	134	-22.39	.00	.00	.00	06	.00
141	130	138	-36.17	.00	.00	.00	10	01

JUNCTION NUMBER	DEMAND	GRADE LINE	ELEVATION	PRESSURE
4	.00	634.98	533.00	44.19
8	.00	634.98	535.00	43.33
12	.00	634.97	548.00	37.69
16	.00	634.98	527.00	46.79
20	.00	634.97	544.00	39.42
24	.00	634.97	544.00	39.42
28	.00	634.97	548.00	37.69
32	.00	634.96	539.00	41.58
36	594.00	634.96	534.00	43.75
40	.00	634.98	526.00	47.23
102	.00	634.96	532.00	44.62
106	.00	634.97	532.00	44.62
110	6.00	634.97	530.00	45.49
114	.00	634.97	530.00	45.49
118	.00	634.97	530.00	45.49
122	.00	634.97	530.00	45.49
126	.00	634.97	528.00	46.35
130	.00	634.97	528.00	46.36
134	.00	634.97	528.00	46.35
138	.00	634.97	528.00	46.36

THE NET SYSTEM DEMAND = 600.00

SUMMARY OF INFLOWS(+) AND OUTFLOWS(-) FROM FIXED GRADE NODES

PIPE NUMBER FLOWRATE
1 600.00

THE NET FLOW INTO THE SYSTEM FROM FIXED GRADE NODES = 600.00
THE NET FLOW OUT OF THE SYSTEM INTO FIXED GRADE NODES = .00

A SUMMARY OF CONDITIONS SPECIFIED FOR THE NEXT SIMULATION FOLLOWS

THE DEMANDS ARE CHANGED FROM ORIGINAL VALUES BY A FACTOR = 2.30

THE FOLLOWING SPECIFIC DEMAND CHANGES ARE MADE :

JUNCTION NUMBER DEMAND 114 1500.00 122 1500.00

September 14, 2018 Dexter Wilson Eng., Inc. Job 648-032

THE FOLLOWING CHANGES IN PIPE DATA ARE SPECIFIED

FOR PIPE NUMBER 1 THE VALUE OF THE FIXED GRADE IS CHANGED TO 674.0

ΡI	PE NO.	NOD	E NOS.	LENGTH	DIAMETER	ROUGHNESS	MINOR LOSS K	FIXED GRADE
10	3 1	02	106	20.0	10.0	120.0	59.00	.00
10)5	40	138	20.0	10.0	120.0	59.00	.00

THE RESULTS ARE OBTAINED AFTER 3 TRIALS WITH AN ACCURACY = .00048

PA61 Computer Hydraulic Analysis Max DAy Demand plus 3000 gpm Fire Flow split between Nodes 114 and 122

PIPE	NO. NODE	NOS.	FLOWRATE	HEAD LOSS	PUMP HEAD	MINOR LOSS	VELOCITY	HL/1000
1	0	4	3230.00	.39	.00	.00	1.47	.30
9	4	8	222.91	.01	.00	.00	.36	.04
13	8	12	111.46	.06	.00	.00	.32	.05
17	8	12	111.46	.06	.00	.00	.32	.05
21	12	20	222.91	.01	.00	.00	.36	.04
23	20	24	222.91	.01	.00	.00	.63	.18
25	24	28	222.91	.01	.00	.00	.36	.04
29	28	32	111.46	.06	.00	.00	.32	.05
33	28	32	111.46	.06	.00	.00	.32	.05
37	32	36	222.91	.00	.00	.00	.36	.04
39	4	36	1490.93	.15	.00	.00	2.38	1.52
41	16	40	1516.15	1.21	.00	.00	4.30	6.36
45	4	16	1516.15	.24	.00	.00	1.08	.22
101	36	102	1486.15	.25	.00	.00	4.22	6.13
103	102	106	1486.15	.30	.00	33.76	6.07	14.89
105	40	138	1516.15	.31	.00	35.13	6.19	15.45
109	106	110	1486.15	3.06	.00	.00	4.22	6.13
113	110	114	1483.85	1.22	.00	.00	4.21	6.11
117	114	118	747.64	.17	.00	.00	2.12	1.72
121	118	122	747.64	.45	.00	.00	2.12	1.72
125	122	126	-752.36	92	.00	.00	-2.13	-1.74
129	126	130	-752.36	59	.00	.00	-2.13	-1.74
133	130	134	763.80	.30	.00	.00	2.17	1.79
137	114	134	-763.80	59	.00	.00	-2.17	-1.79
141	130	138	-1516.15	95	.00	.00	-4.30	-6.36

JUNCTION NUMBER	DEMAND	GRADE LINE	ELEVATION	PRESSURE
4	.00	673.61	533.00	60.93
8	.00	673.60	535.00	60.06
12	.00	673.55	548.00	54.40
16	.00	673.37	527.00	63.43
20	.00	673.54	544.00	56.13
24	.00	673.53	544.00	56.13
28	.00	673.52	548.00	54.39
32	.00	673.47	539.00	58.27
36	227.70	673.46	534.00	60.43
40	.00	672.17	526.00	63.34
102	.00	673.22	532.00	61.19

September 14, 2018 Dexter Wilson Eng., Inc. Job 648-032

106	.00	639.16	532.00	46.44
110	2.30	636.10	530.00	45.98
114	1500.00	634.88	530.00	45.45
118	.00	634.71	530.00	45.37
122	1500.00	634.26	530.00	45.18
126	.00	635.18	528.00	46.44
130	.00	635.77	528.00	46.70
134	.00	635.47	528.00	46.57
138	.00	636.72	528.00	47.11

THE NET SYSTEM DEMAND = 3230.00

SUMMARY OF INFLOWS(+) AND OUTFLOWS(-) FROM FIXED GRADE NODES

PIPE NUMBER FLOWRATE
1 3230.00

THE NET FLOW INTO THE SYSTEM FROM FIXED GRADE NODES = 3230.00
THE NET FLOW OUT OF THE SYSTEM INTO FIXED GRADE NODES = .00

A SUMMARY OF CONDITIONS SPECIFIED FOR THE NEXT SIMULATION FOLLOWS

THE DEMANDS ARE CHANGED FROM ORIGINAL VALUES BY A FACTOR = 2.30

THE FOLLOWING SPECIFIC DEMAND CHANGES ARE MADE :

JUNCTION NUMBER DEMAND
126 1500.00
134 1500.00

THE FOLLOWING CHANGES IN PIPE DATA ARE SPECIFIED

PIPE	NO. NO	DE NOS.	LENGTH	DIAMETER	ROUGHNESS	MINOR LOSS K	FIXED GRADE
103	102	106	20.0	10.0	120.0	59.00	.00
105	40	138	20.0	10.0	120.0	59.00	.00

THE RESULTS ARE OBTAINED AFTER 3 TRIALS WITH AN ACCURACY = .00028

PA61 Computer Hydraulic Analysis Max Day Demand plus 3000 gpm Fire Flow split between Nodes 126 and 134

PIPE	NO. NODE	NOS.	FLOWRATE	HEAD LOSS	PUMP HEAD	MINOR LOSS	VELOCITY	HL/1000
1	0	4	3230.00	.39	.00	.00	1.47	.30
9	4	8	221.21	.01	.00	.00	.35	.04
13	8	12	110.61	.05	.00	.00	.31	.05
17	8	12	110.61	.05	.00	.00	.31	.05
21	12	20	221.21	.01	.00	.00	.35	.04
23	20	24	221.21	.01	.00	.00	.63	.18
25	24	28	221.21	.01	.00	.00	.35	.04
29	28	32	110.61	.05	.00	.00	.31	.05
33	28	32	110.61	.05	.00	.00	.31	.05

September 14, 2018 Dexter Wilson Eng., Inc. Job 648-032

37	32	36	221.21	.00	.00	.00	.35	.04
39	4	36	1479.55	.15	.00	.00	2.36	1.50
41	16	40	1529.24	1.23	.00	.00	4.34	6.46
45	4	16	1529.24	.24	.00	.00	1.08	.22
101	36	102	1473.06	.24	.00	.00	4.18	6.03
103	102	106	1473.06	.29	.00	33.17	6.02	14.64
105	40	138	1529.24	.31	.00	35.74	6.25	15.70
109	106	110	1473.06	3.01	.00	.00	4.18	6.03
113	110	114	1470.76	1.20	.00	.00	4.17	6.01
117	114	118	648.64	.13	.00	.00	1.84	1.32
121	118	122	648.64	.34	.00	.00	1.84	1.32
125	122	126	648.64	.70	.00	.00	1.84	1.32
129	126	130	-851.36	74	.00	.00	-2.41	-2.18
133	130	134	677.88	.24	.00	.00	1.92	1.43
137	114	134	822.12	.68	.00	.00	2.33	2.05
141	130	138	-1529.24	97	.00	.00	-4.34	-6.46

JUNCTION NUMBER	DEMAND	GRADE LINE	ELEVATION	PRESSURE
4	.00	673.61	533.00	60.93
8	.00	673.60	535.00	60.06
12	.00	673.55	548.00	54.40
16	.00	673.37	527.00	63.43
20	.00	673.54	544.00	56.13
24	.00	673.53	544.00	56.13
28	.00	673.52	548.00	54.39
32	.00	673.47	539.00	58.27
36	227.70	673.46	534.00	60.43
40	.00	672.14	526.00	63.33
102	.00	673.22	532.00	61.20
106	.00	639.76	532.00	46.70
110	2.30	636.75	530.00	46.26
114	.00	635.55	530.00	45.74
118	.00	635.42	530.00	45.68
122	.00	635.07	530.00	45.53
126	1500.00	634.38	528.00	46.10
130	.00	635.12	528.00	46.42
134	1500.00	634.87	528.00	46.31
138	.00	636.09	528.00	46.84

THE NET SYSTEM DEMAND = 3230.00

SUMMARY OF INFLOWS(+) AND OUTFLOWS(-) FROM FIXED GRADE NODES

PIPE NUMBER FLOWRATE
1 3230.00

THE NET FLOW INTO THE SYSTEM FROM FIXED GRADE NODES = 3230.00
THE NET FLOW OUT OF THE SYSTEM INTO FIXED GRADE NODES = .00

A SUMMARY OF CONDITIONS SPECIFIED FOR THE NEXT SIMULATION FOLLOWS

THE DEMANDS ARE CHANGED FROM ORIGINAL VALUES BY A FACTOR = 2.30

September 14, 2018 Dexter Wilson Eng., Inc. Job 648-032

THE FOLLOWING SPECIFIC DEMAND CHANGES ARE MADE :

JUNCTION NUMBER DEMAND 110 4000.00

THE FOLLOWING CHANGES IN PIPE DATA ARE SPECIFIED

FOR PIPE NUMBER 1 THE VALUE OF THE FIXED GRADE IS CHANGED TO 670.0

PIPI	E NO. NO	DE NOS.	LENGTH	DIAMETER	ROUGHNESS	MINOR LOSS K	FIXED GRADE
103	102	106	20.0	10.0	120.0	33.00	.00
105	40	138	20.0	10.0	120.0	33.00	.00

THE RESULTS ARE OBTAINED AFTER 3 TRIALS WITH AN ACCURACY = .00222

PA61 Computer Hydraulic Analysis
Max Day Demand plus 4000 gpm Commercial Fire FLow at Node 110

PIPE	NO. NODE	NOS.	FLOWRATE	HEAD LOSS	PUMP HEAD	MINOR LOSS	VELOCITY	HL/1000
1	0	4	4227.70	.64	.00	.00	1.92	.49
9	4	8	293.43	.01	.00	.00	.47	.07
13	8	12	146.71	.09	.00	.00	.42	.08
17	8	12	146.71	.09	.00	.00	.42	.08
21	12	20	293.43	.01	.00	.00	.47	.07
23	20	24	293.43	.02	.00	.00	.83	.30
25	24	28	293.43	.01	.00	.00	.47	.07
29	28	32	146.71	.09	.00	.00	.42	.08
33	28	32	146.71	.09	.00	.00	.42	.08
37	32	36	293.43	.01	.00	.00	.47	.07
39	4	36	1962.59	.25	.00	.00	3.13	2.53
41	16	40	1971.69	1.96	.00	.00	5.59	10.34
45	4	16	1971.69	.39	.00	.00	1.40	.35
101	36	102	2028.31	.44	.00	.00	5.75	10.90
103	102	106	2028.31	.53	.00	35.17	8.29	26.48
105	40	138	1971.69	.50	.00	33.23	8.05	25.13
109	106	110	2028.31	5.45	.00	.00	5.75	10.90
113	110	114	-1971.69	-2.07	.00	.00	-5.59	-10.34
117	114	118	-750.89	17	.00	.00	-2.13	-1.73
121	118	122	-750.89	45	.00	.00	-2.13	-1.73
125	122	126	-750.89	92	.00	.00	-2.13	-1.73
129	126	130	-750.89	59	.00	.00	-2.13	-1.73
133	130	134	1220.79	.72	.00	.00	3.46	4.26
137	114	134	-1220.79	-1.40	.00	.00	-3.46	-4.26
141	130	138	-1971.69	-1.55	.00	.00	-5.59	-10.34

JUNCTION NUMBER	DEMAND	GRADE LINE	ELEVATION	PRESSURE
4	.00	669.36	533.00	59.09
8	.00	669.35	535.00	58.22
12	.00	669.26	548.00	52.54
16	.00	668.97	527.00	61.52
20	.00	669.24	544.00	54.27
24	.00	669.23	544.00	54.26
28	.00	669.21	548.00	52.52
32	.00	669.12	539.00	56.38

September 14, 2018 Dexter Wilson Eng., Inc. Job 648-032

36	227.70	669.11	534.00	58.55
40	.00	667.01	526.00	61.10
102	.00	668.67	532.00	59.23
106	.00	632.98	532.00	43.76
110	4000.00	627.53	530.00	42.26
114	.00	629.59	530.00	43.16
118	.00	629.77	530.00	43.23
122	.00	630.22	530.00	43.43
126	.00	631.13	528.00	44.69
130	.00	631.72	528.00	44.95
134	.00	631.00	528.00	44.63
138	.00	633.27	528.00	45.62

THE NET SYSTEM DEMAND = 4227.70

SUMMARY OF INFLOWS(+) AND OUTFLOWS(-) FROM FIXED GRADE NODES

PIPE NUMBER FLOWRATE 1 4227.70

THE NET FLOW INTO THE SYSTEM FROM FIXED GRADE NODES = 4227.70
THE NET FLOW OUT OF THE SYSTEM INTO FIXED GRADE NODES = .00

A SUMMARY OF CONDITIONS SPECIFIED FOR THE NEXT SIMULATION FOLLOWS

THE DEMANDS ARE CHANGED FROM ORIGINAL VALUES BY A FACTOR = 2.30

THE FOLLOWING SPECIFIC DEMAND CHANGES ARE MADE :

 JUNCTION NUMBER
 DEMAND

 126
 1500.00

 134
 1500.00

THE FOLLOWING CHANGES IN PIPE DATA ARE SPECIFIED

FOR PIPE NUMBER 1 THE VALUE OF THE FIXED GRADE IS CHANGED TO 674.0

PIPI	E NO. NO	DDE NOS.	LENGTH	DIAMETER	ROUGHNESS	MINOR LOSS K	FIXED GRADE
103	102	106	20.0	10.0	120.0	15.00	.00
105	40	138	20.0	10.0	120.0	15.00	.00
41	16	40	190.0	12.0	120.0	.00	.00
LINE	41 IS 0	CLOSED					

THE RESULTS ARE OBTAINED AFTER 3 TRIALS WITH AN ACCURACY = .00001

PA61 Computer Hydraulic Analysis
Max DAy Demand plus 3000 gpm Fire Flow split between Nodes 126 and 134
Simulated Public Pipe Break No. 41

PIPE NO.	NODE	NOS.	FLOWRATE	HEAD LOSS	PUMP HEAD	MINOR LOSS	VELOCITY	HL/1000
1	0	4	3230.00	.39	.00	.00	1.47	.30
9	4	8	420.11	.03	.00	.00	.67	.15

September 14, 2018 Dexter Wilson Eng., Inc. Job 648-032

13	8	12	210.06	.18	.00	.00	.60	.16
17	8	12	210.06	.18	.00	.00	.60	.16
21	12	20	420.11	.03	.00	.00	.67	.15
23	20	24	420.11	.03	.00	.00	1.19	.59
25	24	28	420.11	.03	.00	.00	.67	.15
29	28	32	210.06	.18	.00	.00	.60	.16
33	28	32	210.06	.18	.00	.00	.60	.16
37	32	36	420.11	.01	.00	.00	.67	.15
39	4	36	2809.89	.49	.00	.00	4.48	4.91
LINE	41 IS	CLOSED						
45	4	16	.00	.00	.00	.00	.00	.00
101	36	102	3002.30	.90	.00	.00	8.52	22.53
103	102	106	3002.30	1.09	.00	35.03	12.26	54.75
105	40	138	.00	.00	.00	.00	.00	.00
109	106	110	3002.30	11.26	.00	.00	8.52	22.53
113	110	114	3000.00	4.50	.00	.00	8.51	22.50
117	114	118	1135.10	.37	.00	.00	3.22	3.72
121	118	122	1135.10	.97	.00	.00	3.22	3.72
125	122	126	1135.10	1.97	.00	.00	3.22	3.72
129	126	130	-364.90	15	.00	.00	-1.04	45
133	130	134	-364.90	08	.00	.00	-1.04	45
137	114	134	1864.90	3.08	.00	.00	5.29	9.33
141	130	138	.00	.00	.00	.00	.00	.00

JUNCTION NUMBER	DEMAND	GRADE LINE	ELEVATION	PRESSURE
4	.00	673.61	533.00	60.93
8	.00	673.58	535.00	60.05
12	.00	673.40	548.00	54.34
16	.00	673.61	527.00	63.53
20	.00	673.38	544.00	56.06
24	.00	673.35	544.00	56.05
28	.00	673.32	548.00	54.30
32	.00	673.14	539.00	58.13
36	227.70	673.12	534.00	60.29
40	.00	617.18	526.00	39.51
102	.00	672.22	532.00	60.76
106	.00	636.10	532.00	45.11
110	2.30	624.84	530.00	41.10
114	.00	620.34	530.00	39.15
118	.00	619.96	530.00	38.98
122	.00	619.00	530.00	38.57
126	1500.00	617.03	528.00	38.58
130	.00	617.18	528.00	38.65
134	1500.00	617.26	528.00	38.68
138	.00	617.18	528.00	38.65

THE NET SYSTEM DEMAND = 3230.00

SUMMARY OF INFLOWS(+) AND OUTFLOWS(-) FROM FIXED GRADE NODES

PIPE NUMBER FLOWRATE 1 3230.00

THE NET FLOW INTO THE SYSTEM FROM FIXED GRADE NODES = 3230.00
THE NET FLOW OUT OF THE SYSTEM INTO FIXED GRADE NODES = .00

A SUMMARY OF CONDITIONS SPECIFIED FOR THE NEXT SIMULATION FOLLOWS

THE DEMANDS ARE CHANGED FROM ORIGINAL VALUES BY A FACTOR = 2.30

THE FOLLOWING SPECIFIC DEMAND CHANGES ARE MADE :

JUNCTION NUMBER DEMAND
118 1500.00
122 1500.00

THE FOLLOWING CHANGES IN PIPE DATA ARE SPECIFIED

FOR PIPE NUMBER 1 THE VALUE OF THE FIXED GRADE IS CHANGED TO 674.0

PIPE N	IO. NO	DE NOS.	LENGTH	DIAMETER	ROUGHNESS	MINOR LOSS K	FIXED GRADE
41	16	40	190.0	12.0	120.0	.00	.00
39	4	36	100.0	16.0	120.0	.00	.00
LINE 39	IS C	LOSED					
103	102	106	20.0	10.0	120.0	59.00	.00
105	40	138	20.0	10.0	120.0	59.00	.00

THE RESULTS ARE OBTAINED AFTER 3 TRIALS WITH AN ACCURACY = .00155

PA61 Computer Hydraulic Analysis
Max Day Demand plus 3000 gpm Fire FLow split between Nodes 118 and 122
Simulated Public Pipe Break No. 39

PIPE	NO. NOI	DE NOS.	FLOWRATE	HEAD LOSS	PUMP HEAD	MINOR LOSS	VELOCITY	HL/1000
1	0	4	3230.00	.39	.00	.00	1.47	.30
9	4	8	1652.09	.37	.00	.00	2.64	1.84
13	8	12	826.04	2.27	.00	.00	2.34	2.06
17	8	12	826.04	2.27	.00	.00	2.34	2.06
21	12	20	1652.09	.37	.00	.00	2.64	1.84
23	20	24	1652.09	.37	.00	.00	4.69	7.45
25	24	28	1652.09	.37	.00	.00	2.64	1.84
29	28	32	826.04	2.27	.00	.00	2.34	2.06
33	28	32	826.04	2.27	.00	.00	2.34	2.06
37	32	36	1652.09	.18	.00	.00	2.64	1.84
LINE	39 IS	CLOSED						
41	16	40	1577.92	1.30	.00	.00	4.48	6.84
45	4	16	1577.92	.26	.00	.00	1.12	.23
101	36	102	1424.39	.23	.00	.00	4.04	5.66
103	102	106	1424.39	.28	.00	31.01	5.82	13.76
105	40	138	1577.92	.33	.00	38.05	6.45	16.63
109	106	110	1424.39	2.83	.00	.00	4.04	5.66
113	110	114	1422.09	1.13	.00	.00	4.03	5.65
117	114	118	2091.53	1.15	.00	.00	5.93	11.53
121	118	122	591.53	.29	.00	.00	1.68	1.11
125	122	126	-908.47	-1.30	.00	.00	-2.58	-2.46
129	126	130	-908.47	84	.00	.00	-2.58	-2.46
133	130	134	669.44	.24	.00	.00	1.90	1.40
137	114	134	-669.44	46	.00	.00	-1.90	-1.40
141	130	138	-1577.92	-1.03	.00	.00	-4.48	-6.84

JUNCTION NUMBER	DEMAND	GRADE LINE	ELEVATION	PRESSURE
4	.00	673.61	533.00	60.93
8	.00	673.25	535.00	59.91
12	.00	670.98	548.00	53.29
16	.00	673.36	527.00	63.42
20	.00	670.61	544.00	54.86
24	.00	670.24	544.00	54.70
28	.00	669.87	548.00	52.81
32	.00	667.60	539.00	55.73
36	227.70	667.41	534.00	57.81
40	.00	672.06	526.00	63.29
102	.00	667.19	532.00	58.58
106	.00	635.90	532.00	45.02
110	2.30	633.07	530.00	44.66
114	.00	631.94	530.00	44.17
118	1500.00	630.79	530.00	43.68
122	1500.00	630.50	530.00	43.55
126	.00	631.80	528.00	44.98
130	.00	632.64	528.00	45.34
134	.00	632.40	528.00	45.24
138	.00	633.67	528.00	45.79

THE NET SYSTEM DEMAND = 3230.00

SUMMARY OF INFLOWS(+) AND OUTFLOWS(-) FROM FIXED GRADE NODES

PIPE NUMBER FLOWRATE 1 3230.00

THE NET FLOW INTO THE SYSTEM FROM FIXED GRADE NODES = 3230.00
THE NET FLOW OUT OF THE SYSTEM INTO FIXED GRADE NODES = .00

A SUMMARY OF CONDITIONS SPECIFIED FOR THE NEXT SIMULATION FOLLOWS

THE DEMANDS ARE CHANGED FROM ORIGINAL VALUES BY A FACTOR = 2.30

THE FOLLOWING SPECIFIC DEMAND CHANGES ARE MADE :

JUNCTION NUMBER DEMAND 110 3500.00 32 500.00

THE FOLLOWING CHANGES IN PIPE DATA ARE SPECIFIED

FOR PIPE NUMBER 1 THE VALUE OF THE FIXED GRADE IS CHANGED TO 670.0

PIPE	E NO.	NOI	DE NOS.	LENGTH	DIAMETER	ROUGHNESS	MINOR LOSS K	FIXED GRADE
39		4	36	100.0	16.0	120.0	.00	.00
41		L6	40	190.0	12.0	120.0	.00	.00
LINE	41 IS	S CI	LOSED					
103	10)2	106	20.0	10.0	120.0	11.00	.00
105	4	10	138	20.0	10.0	120.0	11.00	.00

THE RESULTS ARE OBTAINED AFTER 5 TRIALS WITH AN ACCURACY = .00035

PA61 Computer Hydraulic Analysis
Max Day Demand plus 4000 gpm Fire FLow; 3,500 gpm at Node 110 and 500 gpm at Node 32
Simulated Public Pipe Break No. 41

PIPE	NO. NOI	DE NOS.	FLOWRATE	HEAD LOSS	PUMP HEAD	MINOR LOSS	VELOCITY	HL/1000
1	0	4	4227.70	.64	.00	.00	1.92	.49
9	4	8	557.57	.05	.00	.00	.89	.25
13	8	12	278.78	.30	.00	.00	.79	.28
17	8	12	278.78	.30	.00	.00	.79	.28
21	12	20	557.57	.05	.00	.00	.89	.25
23	20	24	557.57	.05	.00	.00	1.58	1.00
25	24	28	557.57	.05	.00	.00	.89	.25
29	28	32	278.78	.30	.00	.00	.79	.28
33	28	32	278.78	.30	.00	.00	.79	.28
37	32	36	57.57	.00	.00	.00	.09	.00
39	4	36	3670.13	.81	.00	.00	5.86	8.05
LINE	41 IS	CLOSED						
45	4	16	.00	.00	.00	.00	.00	.00
101	36	102	3500.00	1.20	.00	.00	9.93	29.93
103	102	106	3500.00	1.45	.00	34.91	14.30	72.73
105	40	138	.00	.00	.00	.00	.00	.00
109	106	110	3500.00	14.97	.00	.00	9.93	29.93
113	110	114	.00	.00	.00	.00	.00	.00
117	114	118	.00	.00	.00	.00	.00	.00
121	118	122	.00	.00	.00	.00	.00	.00
125	122	126	.00	.00	.00	.00	.00	.00
129	126	130	.00	.00	.00	.00	.00	.00
133	130	134	.00	.00	.00	.00	.00	.00
137	114	134	.00	.00	.00	.00	.00	.00
141	130	138	.00	.00	.00	.00	.00	.00

JUNCTION NUMBER	DEMAND	GRADE LINE	ELEVATION	PRESSURE
4	.00	669.36	533.00	59.09
8	.00	669.31	535.00	58.20
12	.00	669.01	548.00	52.44
16	.00	669.36	527.00	61.69
20	.00	668.96	544.00	54.15
24	.00	668.91	544.00	54.13
28	.00	668.86	548.00	52.37
32	500.00	668.56	539.00	56.14
36	227.70	668.56	534.00	58.31
40	.00	616.03	526.00	39.01
102	.00	667.36	532.00	58.66
106	.00	631.00	532.00	42.90
110	3500.00	616.03	530.00	37.28
114	.00	616.03	530.00	37.28
118	.00	616.03	530.00	37.28
122	.00	616.03	530.00	37.28
126	.00	616.03	528.00	38.15
130	.00	616.03	528.00	38.15
134	.00	616.03	528.00	38.15
138	.00	616.03	528.00	38.15

September 14, 2018 Dexter Wilson Eng., Inc. Job 648-032

THE NET SYSTEM DEMAND = 4227.70

SUMMARY OF INFLOWS(+) AND OUTFLOWS(-) FROM FIXED GRADE NODES

PIPE NUMBER FLOWRATE 1 4227.70

THE NET FLOW INTO THE SYSTEM FROM FIXED GRADE NODES = 4227.70
THE NET FLOW OUT OF THE SYSTEM INTO FIXED GRADE NODES = .00

A SUMMARY OF CONDITIONS SPECIFIED FOR THE NEXT SIMULATION FOLLOWS

THE FOLLOWING SPECIFIC DEMAND CHANGES ARE MADE :

JUNCTION NUMBER DEMAND 110 4000.00

THE FOLLOWING CHANGES IN PIPE DATA ARE SPECIFIED

PIPE	NO. NO	DE NOS.	LENGTH	DIAMETER	ROUGHNESS	MINOR LOSS K	FIXED GRADE
41	16	40	190.0	12.0	120.0	.00	.00
39	4	36	100.0	16.0	120.0	.00	.00
LINE 3	39 IS C	LOSED					
103	102	106	20.0	10.0	120.0	33.00	.00
105	40	138	20.0	10.0	120.0	33.00	.00

THE RESULTS ARE OBTAINED AFTER 3 TRIALS WITH AN ACCURACY = .00234

PA61 Computer Hydraulic Analysis
Max Day Demand plus 4000 gpm Fire FLow at Node 110
Simulated Public Pipe Break No. 39

PIPE	NO. NOI	DE NOS.	FLOWRATE	HEAD LOSS	PUMP HEAD	MINOR LOSS	VELOCITY	HL/1000
1	0	4	4099.00	.60	.00	.00	1.86	.46
9	4	8	2021.07	.53	.00	.00	3.22	2.67
13	8	12	1010.53	3.30	.00	.00	2.87	3.00
17	8	12	1010.53	3.30	.00	.00	2.87	3.00
21	12	20	2021.07	.53	.00	.00	3.22	2.67
23	20	24	2021.07	.54	.00	.00	5.73	10.83
25	24	28	2021.07	.53	.00	.00	3.22	2.67
29	28	32	1010.53	3.30	.00	.00	2.87	3.00
33	28	32	1010.53	3.30	.00	.00	2.87	3.00
37	32	36	2021.07	.27	.00	.00	3.22	2.67
LINE	39 IS	CLOSED						
41	16	40	2077.93	2.17	.00	.00	5.89	11.40
45	4	16	2077.93	.43	.00	.00	1.47	.39
101	36	102	1922.07	.39	.00	.00	5.45	9.86
103	102	106	1922.07	.48	.00	31.58	7.85	23.97
105	40	138	2077.93	.55	.00	36.91	8.49	27.69
109	106	110	1922.07	4.93	.00	.00	5.45	9.86
113	110	114	-2077.93	-2.28	.00	.00	-5.89	-11.40

September 14, 2018 Dexter Wilson Eng., Inc. Job 648-032

117	114	118	-791.37	19	.00	.00	-2.24	-1.91
121	118	122	-791.37	50	.00	.00	-2.24	-1.91
125	122	126	-791.37	-1.01	.00	.00	-2.24	-1.91
129	126	130	-791.37	65	.00	.00	-2.24	-1.91
133	130	134	1286.56	.80	.00	.00	3.65	4.69
137	114	134	-1286.56	-1.55	.00	.00	-3.65	-4.69
141	130	138	-2077.93	-1.71	.00	.00	-5.89	-11.40

JUNCTION NUMBER	DEMAND	GRADE LINE	ELEVATION	PRESSURE
4	.00	669.40	533.00	59.11
8	.00	668.87	535.00	58.01
12	.00	665.57	548.00	50.95
16	.00	668.97	527.00	61.52
20	.00	665.03	544.00	52.45
24	.00	664.49	544.00	52.21
28	.00	663.96	548.00	50.25
32	.00	660.66	539.00	52.72
36	99.00	660.39	534.00	54.77
40	.00	666.80	526.00	61.02
102	.00	660.00	532.00	55.47
106	.00	627.94	532.00	41.57
110	4000.00	623.01	530.00	40.30
114	.00	625.28	530.00	41.29
118	.00	625.48	530.00	41.37
122	.00	625.97	530.00	41.59
126	.00	626.98	528.00	42.89
130	.00	627.63	528.00	43.17
134	.00	626.83	528.00	42.83
138	.00	629.34	528.00	43.91

THE NET SYSTEM DEMAND = 4099.00

SUMMARY OF INFLOWS(+) AND OUTFLOWS(-) FROM FIXED GRADE NODES

PIPE NUMBER FLOWRATE 1 4099.00

THE NET FLOW INTO THE SYSTEM FROM FIXED GRADE NODES = 4099.00
THE NET FLOW OUT OF THE SYSTEM INTO FIXED GRADE NODES = .00

For Non-Health Hazard Applications

Job Name	Contractor
lob Location	
Job Location	Approval
Engineer	Contractor's P.O. No.
Approval	Representative

LEAD FREE*

MasterSeries® LF856

Double Check Detector Backflow Prevention Assemblies (Type II)

Size: 21/2" - 10"

The FEBCO MasterSeries LF856 Double Check Detector Assemblies are designed to protect drinking water supplies from dangerous cross-connections in accordance with national plumbing codes and water authority requirements for non-health hazard non-potable service applications such as irrigation, fire line, or industrial processing. This Backflow Assembly is primarily used for protection of drinking water systems and fire sprinkler systems, where Local Governing Code mandates protection from non-potable quality water being pumped or siphoned back into the potable water system.

Features

Main Valve:

- Inline Serviceable Assembly
- No Special Tools Required for Servicing
- Captured Modular Spring Assembly
- Reversible & Replaceable Discs
- Field Replaceable Seats
- Ductile Iron Valve Body Design
- Stainless Steel Check Components
- Winterization feature with disc retainers and valve body drain ports
- Clapper Check Assembly
- Commonality between 1st & 2nd Check Components
- · Captured O-ring Design

Auxiliary Bypass:

- Compact Bypass Design; Remains within Main Valve Assembly Profile
- Inline Serviceable 3/4" Backflow Assembly
- No Special Tools Required for Servicing
- Field Replaceable Seats & Discs
- Detect Potential Underground Water Leaks
- Detect Unauthorized Water Usage

Model LF856 Double Check Detector Assembly

Sample RPDA BF

Specifications

The FEBCO MasterSeries LF856 Double Check Detector Valve Assembly shall be installed on the potable water supply and at each point of cross-connection to protect against possible backpressure and backsiphonage conditions for non-health hazard (i.e., pollutant) applications. The assembly shall consist of a main line valve body composed of two (2) independently acting approved clapper style check modules with replaceable seats and disc rubbers. Servicing of both check modules does not require any special tools and are accessed through independent top entry covers. This assembly shall be fitted with approved UL/ FM inlet/outlet resilient seated shutoff valves and contain four (4) properly located resilient seated test cocks as specified by AWWA Standard C510. The auxiliary bypass line contains a 5/8" x 3/4" (16 x 19mm) Water Meter that complies with ANSI/AWWA Standard C700 coupled with an approved check assembly. The bypass line is designed to detect leaks or unauthorized water usage of the water system while protecting against possible backpressure and backsiphonage conditions for non-health hazard (i.e., pollutant) application. Flow and pressure loss performance parameters shall meet the requirements of AWWA Standard C510.

NOTICE

The information contained herein is not intended to replace the full product installation and safety information available or the experience of a trained product installer. You are required to thoroughly read all installation instructions and product safety information before beginning the installation of this product.

*The wetted surface of this product contacted by consumable water contains less than 0.25% of lead by weight.

Options - Suffix

OSY: UL/FM Approved OS&Y Gate Valves

(ANSI/AWWA C515 Compliant)

CFM: Totalizing Cubic feet/min 5/8" x 3/4" Water Meter

(ANSI/AWWA C700 Compliant)

GPM: Totalizing Gallons/min 5/8"x 3/4" Water Meter

(ANSI/AWWA C700 Compliant)

LG: Less Shutoff valves; This is NOT an APPROVED

ASSEMBLY

Example Ordering Descriptions:

4" LF856-OSY-GPM - Valve Assembly fitted with OS&Y Shutoff Valves & Gallon Feet per Minute Water Meter

4" LF856-OSY-CFM - Valve Assembly fitted with OS&Y Shutoff Valves, Cubic feet per Minute Water Meter

Assembly Flow Orientation:

 Horizontal & Vertical Up (2½" – 10") - Approved by FCCCHR-USC, ASSE, cULus, FM, IAPMO

Materials

Below is a general material list of the Model LF856. All assemblies' size 2½" through 10" is similar in materials and construction. Please contact your local FEBCO Representative if you require further information.

Main Valve Body: Ductile iron Grade 65-45-12

Coating: Fusion epoxy coated internal and external

AWWA C550

Shutoff Valves: OS&Y resilient wedge gate valves AWWA

C515 (UL/FM)

Check Seats: Stainless Steel
Disc Holder: Stainless Steel
Elastomer Disc Silicone

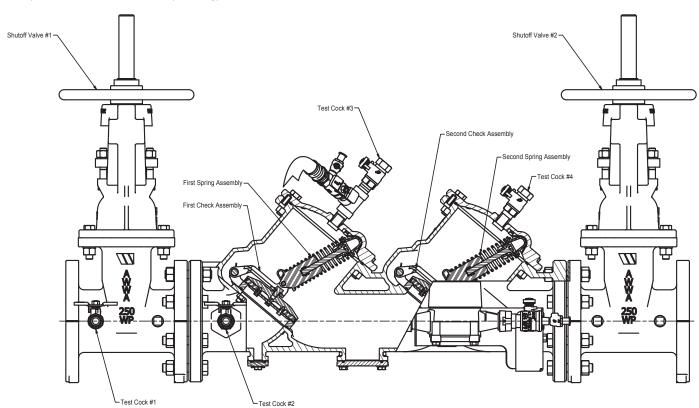
Spring: Stainless Steel

Clamp: AWWA C606 (10" Only)

Approvals

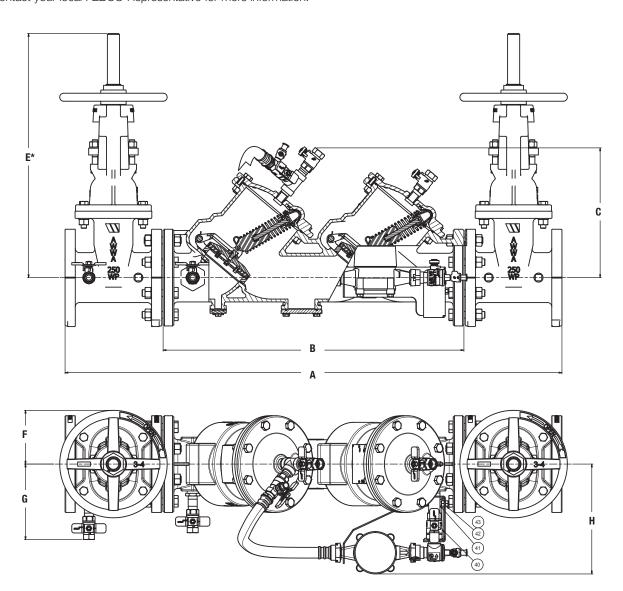
- Approved by the Foundation for Cross-Connection Control and Hydraulic Research at The University of Southern California (FCCCHR-USC)
- ASSE 1048 Listed
- **UL Classified (US & Canada)
- **FM Approved
- IAPMO
- AWWA Standard C510 Compliant
- End Connections: Compliant to ASME B16.1 Class 125 & AWWA Class D Flange

**Assembly configured with UL/FM Approved OS&Y RW Gate Valves. Less gate valve assemblies are not UL/FM approved configurations.



Pressure - Temperature

Max. Working Pressure: 175 psi (12.1 bar)
Min. Working Pressure: 10 psi (0.7 bar)
Hydrostatic Test Pressure: 350 psi (24.1 bar)
Hydrostatic Safety Pressure: 700 psi (48.3 bar)


Temperature Range: 33°F - 140°F (0.5°C- 60°C)

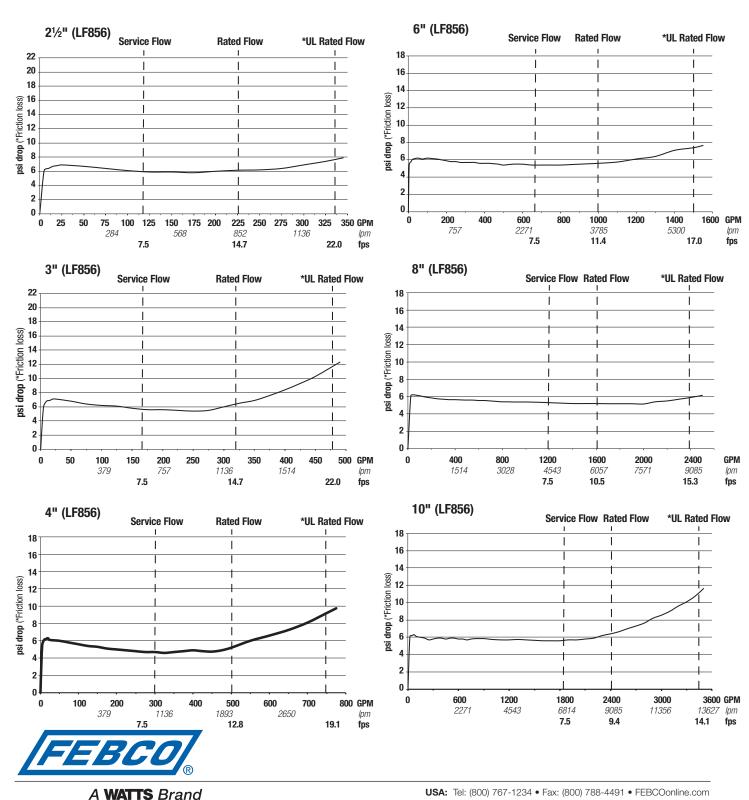
Continuous

Dimensions & Weights

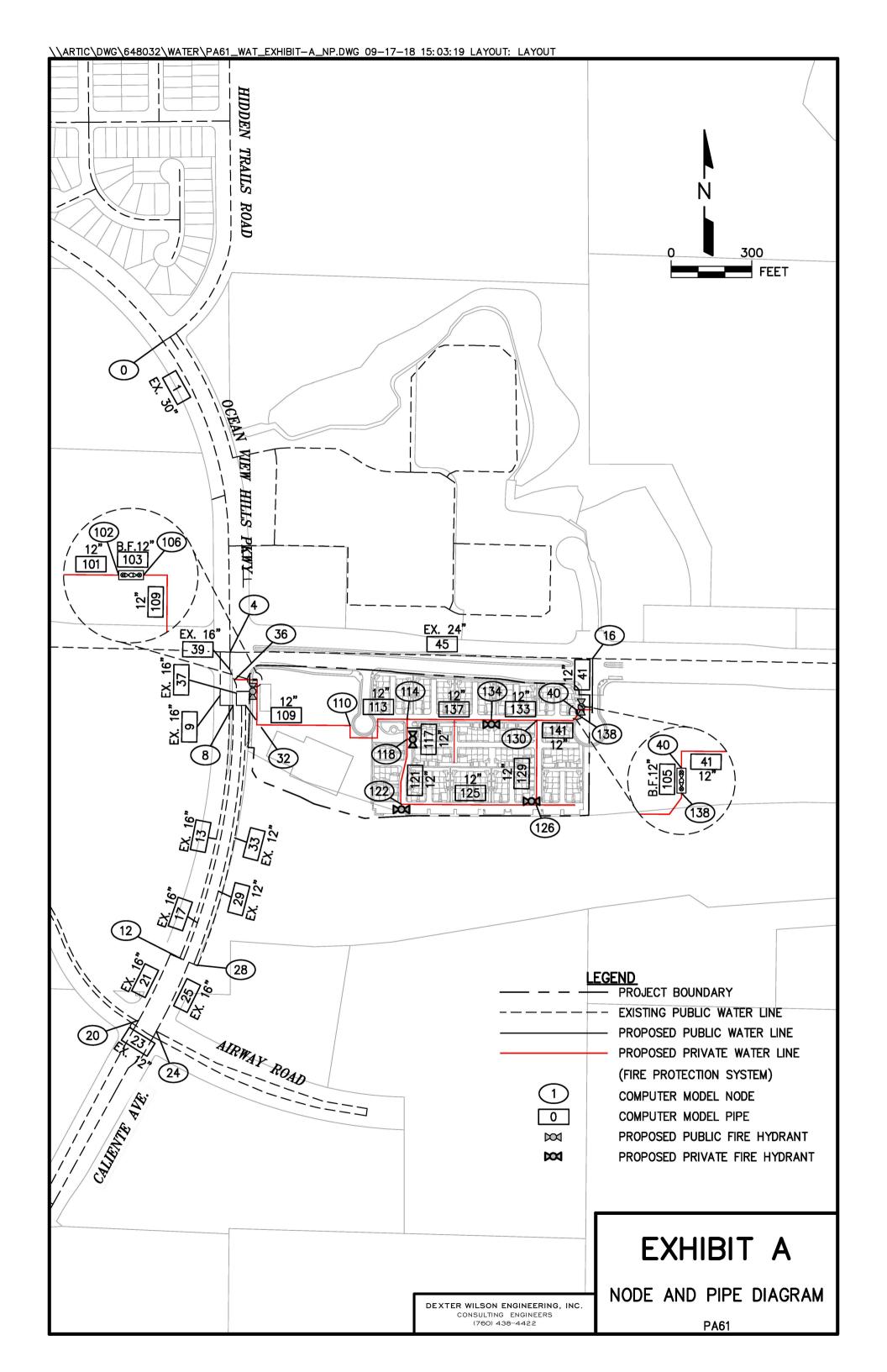
Below are the nominal dimensions and physical weights for the Model LF856 size 2½" through 10". Allowances must be made for normal manufacturing tolerances. Please visit our website to download a copy of this product's installation instructions, or contact your local FEBCO Representative for more information.

Model LF856 Assemblies

SIZE		DIMENSIONS												WEIG	HT***	
	,	A	E	3	(0	Е	**		F	(G		Н	09	SY
in.	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	lbs.	kg.
21/2	40¾	1035	25½	648	10	254	16%	416	41/2	114	71//8	181	13%	340	245	111
3	417/8	1064	25%	651	10	254	221/7	565	41/2	114	7%	187	13%	340	271	123
4	461/4	1175	28	711	10½	257	231/4	591	5½	140	81//8	206	14	356	338	153
6	56	1422	34¾	883	12¾	324	301//8	765	61/2	165	97/8	251	15	381	515	234
8	65	1651	41¾	1061	15%	397	37¾	959	7	178	1111/8	283	15¾	400	826	375
10	72%	1845	46%	1178	15%	397	48	1219	9	229	12%	314	15¾	400	1234	560


^{**} Indicates nominal dimensions with OSY Gate Valves (Full Open Position)

^{***} Indicates weight of complete Backflow Assemblies with specified Gate Valves


Performance

Flow capacity chart identifies valve performance based upon rated water Velocity up to 20fps.

- Maximum service flow rate is determined by maximum rated Velocity of 7.5fps.
- AWWA Manual M-22 (Appendix C) recommends that the maximum water Velocity in the services be not more than 10fps.
- UL flow rate is determined by typically rated Velocity of 15 feet/sec.

USA: Tel: (800) 767-1234 • Fax: (800) 788-4491 • FEBCOonline.com
Canada: Tel: (905) 332-4090 • Fax: (905) 332-7068 • FEBCOonline.ca
Latin America: (52) 81-1001-8600 • Fax: (52) 81-8000-7091 • FEBCOonline.com

An Employee-Owned Company

July 9, 2018

Mr. Jimmy Ayala Division President Pardee Homes 13400 Sabre Springs Parkway, Suite 200 San Diego, CA 92128

Reference: Western Burrowing Owl Non- Breeding Survey Results at the PA-61 Project Survey Area

(RECON Number 4135-1)

Dear Mr. Ayala:

This letter summarizes the results of the 2017-2018 non-breeding season surveys for the western burrowing owl (*Athene cunicularia hypugaea*) conducted within the PA-61 Project Area (project site). The project site is located in the city of San Diego, south of Otay Mesa Road, north of State Route 905 (SR-905), and east of the Caliente Avenue (Figures 1 to 4). The project site is found in Section 35, Township 18 South, Range 1 West, of the U.S. Geological Survey 7.5-minute topographic map, Otay Mesa quadrangle (see Figure 2; USGS 1996), and City of San Diego, Engineering and Development, City 800' scale map, Number 146-1761 (see Figure 3). It lies on assessor's parcel number 645-080-16-00, as shown on Figure 4.

RECON Environmental, Inc. biologists conducted non-breeding season western burrowing owl protocol surveys within suitable habitat in accordance with the guidelines developed by the California Department of Fish and Wildlife (CDFW; 2012). Non-breeding season surveys were conducted to determine the presence or absence of the species within the project site and a 150-meter buffer, and no burrowing owls were detected. A discussion of the results of the conducted surveys is provided below.

Western Burrowing Owl

The western burrowing owl is a CDFW species of special concern. This species is primarily restricted to the western United States and Mexico. A year-round resident in San Diego County, breeding western burrowing owls remain in five primary areas in San Diego County: Otay Mesa, Imperial Beach, Naval Air Station North Island, Warner Valley, and Borrego Valley (Unitt 2004). Habitat for the western burrowing owl includes dry, open, short-grass areas with level to gentle topography and well-drained soils (CDFW 2012). These areas are also often associated with burrowing mammals (Haug et al. 1993). Western burrowing owls are known to use multiple burrows, called "satellite" burrows, in addition to their nesting burrows. These non-nesting burrows are used to seek protection from predators and for roosting during the non-breeding season (CDFW 2012).

The western burrowing owl is diurnal and typically perches during daylight at the entrance to its burrow or on adjacent structures, such as low posts. Nesting occurs from March through August. Western burrowing owls form a pair bond for more than one year and exhibit high site fidelity, reusing the same burrow year after year (Haug et al. 1993). The female remains inside the burrow during most of the egg laying and incubation period and is fed by the male throughout brooding. Western burrowing owls are opportunistic feeders, consuming a diet that includes arthropods, small mammals, and birds, and occasionally amphibians and reptiles (Haug et al. 1993).

Urbanization has greatly reduced the amount of suitable habitat for this species. Other contributions to the decline of this species include the poisoning of fossorial mammals, road and ditch maintenance, and collisions with automobiles (CDFW 2012).

Mr. Jimmy Ayala Page 2 July 9, 2018

Survey Methods

RECON biologists Mandy Weston and Jamie Sue McBee conducted western burrowing owl non-breeding season surveys in accordance with the guidelines developed by the CDFW (CDFW 2012). Wildlife databases, including California Natural Diversity Database (CNDDB) and San Diego Biological Information and Observation System (SanBIOS), were consulted and available information of known western burrowing owl observations was gathered and compared to the parcel location. No previous records were found for the project site within the wildlife databases.

The current surveys included four non-breeding season western burrowing owl surveys. For the purposes of this report, the "survey area" includes the project's proposed ground disturbance footprint (project site) and a 150-meter buffer (see Figure 4). Meandering transects were walked through all suitable habitat identified within the project site. The 150-meter buffer was surveyed using binoculars, as access onto private property was not granted. All wildlife species observed during the surveys were noted. Survey dates, times, and weather conditions are provided in Table 1.

Vegetation community classifications in this report follow Oberbauer et.al. (2008), which is based on Holland (1986). It should be noted that vegetation community classifications should follow Sawyer et al. (2009) per the CDFW guidelines; however, Sawyer et al. (2009) does not contain a vegetation classification equivalent for disturbed land, an on-site land cover type.

	St	Table 1 urvey Informat	ion							
			Beginning	Ending						
Date	Survey Type	Surveyors	Conditions	Conditions						
11/20/2017	Western Burrowing	M. Weston	7:15 a.m.; 50°F;	10:00 a.m.; 68°F;						
11/20/2017	Owl Survey #1	w. weston	0-2 mph; 10% cc	0–2 mph; 10% cc						
12/12/2017	Western Burrowing	M. Weston,	7:30 a.m.; 56°F;	9:30 a.m.; 77°F;						
12/12/2017	Owl Survey #2	J. McBee	0-2 mph; 0% cc	0–2 mph; 0% cc						
1/10/2018	Western Burrowing	M. Weston,	3:00 p.m.; 59°F;	4:10 p.m.; 59°F;						
1/10/2016	Owl Survey #3	J. McBee	1-4 mph; 60% cc	1–3 mph; 25% cc						
1/91/9019	Western Burrowing	M. Weston,	7:30 a.m.; 60°F;	9:00 a.m.; 68°F;						
1/31/2018 Owl Survey #4 J. McBee 0-3 mph; 0% cc 1-3 mph; 0% cc										
°F = degrees F	ahrenheit; mph = miles per	r hour; $\sqrt[8]{}$ = perce	ent; cc = cloud cover.							

Existing Conditions

The project site consists of an undeveloped lot surrounded by State Route 905 to the south, Otay Mesa Road to the north, Caliente Avenue to the west, and undeveloped, private land to the east (see Figure 4). The 47.29-acre project site consists of a previously graded area and detention basin, and is highly disturbed. There are no records for observation of burrowing owl within the project site. One recent nesting burrowing owl observation occurred in 2017 approximately 2.5 miles east of the project site (State of California 2018).

Four soil types occur within the project area: Olivenhain cobbly loam, 2 to 9 percent slopes; Olivenhain cobbly loam, 30 to 50 percent slopes; Olivenhain cobbly loam, 9 to 30 percent slopes; and Stockpen gravelly clay loam, 2 to 5 percent slopes (USDA 1973). No sign of recent disking was observed within the project site.

The project site is entirely fenced with chain link and is relatively flat with earthen berms around the eastern and southern perimeters. The project site supports one land cover type: disturbed land (Figure 5). The disturbed land is dominated by Russian thistle (Salsola tragus), and other species present include red brome (Bromus madritensis), Australian saltbush (Atriplex semibaccata), crystalline iceplant (Mesembryanthemum crystallinum), and stinkwort (Dittrichia graveolens; Photographs 1 and 2). The majority of the site is comprised of a dense layer of Russian thistle, which ranges from one foot to three feet in height. In patches where the land is more open, red brome is dominant and the structure is approximately six to 12 inches in height.

Mr. Jimmy Ayala Page 3 July 9, 2018

The 150-meter buffer surrounding the project site is comprised of disturbed land and urban/developed land. Disturbed land dominated by Russian thistle, red brome, and Australian saltbush occurs adjacent to the project site to the east, and the structure is similar to that of the project site. Otay Mesa Road occurs to the north of the project site, and a developed area with multi-family residences occurs beyond Otay Mesa Road. An empty lot comprised of bare ground and disturbed land dominated by sow-thistle species (*Sonchus* sp.) and Russian thistle occurs to the northwest of the project site. Caliente Avenue occurs to the west of the project site, and a private lot comprised of disturbed land dominated by Russian thistle, red brome, and Australian saltbush occurs beyond Caliente Avenue. SR-905 occurs to the south of the project site, and a small patch of disturbed land dominated by Russian thistle and red brome occurs beyond SR-905 to the southeast of the project site.

Non-Breeding Season Western Burrowing Owl Surveys Results

Non-breeding season western burrowing owl surveys were conducted on four separate dates: November 20, 2017; December 12, 2017; January 10, 2018; and January 31, 2018. Three of the surveys were conducted between morning civil twilight and 10:00, and one survey was conducted between two hours prior to sunset and evening civil twilight. Meandering transects were walked through all suitable habitat identified within the project area. The 150-meter buffer was surveyed using binoculars. No burrowing owls were detected during the surveys. A burrow complex comprised of seven burrows was observed within the eastern portion of the site during the first survey on November 20 (see Figure 5); however, on the second and subsequent surveys, these burrows appeared to have been dug out and/or collapsed by predators. During the third and fourth surveys, several newly excavated burrows were observed within the same area, indicating that fossorial mammals are present within the project site. At the time of the surveys, no burrowing owl sign (e.g., cast pellets, prey remains, molted feathers, excrement at burrow entrances, etc.) was detected within or near the burrows.

Conclusion and Mitigation Requirements

Although western burrowing owls were not detected within the project site during these focused non-breeding season surveys, there is a moderate potential for this species to occur within the western portion of the project site, as the habitat is less dense and suitable burrows are present. Within the rest of the project site, there is low potential for burrowing owl to occur due the density and height of the Russian thistle. The disturbed land within the buffer to the west and to the east of the project site also has a moderate potential for this species. The closest recent observation of nesting burrowing owls occurred in 2017 approximately 2.5 miles east of the project site. Per the 2012 CDFW protocol guidelines, "Visits to the site in more than one year increases the likelihood of detection and failure to locate burrowing owls during one field season does not constitute evidence that the site is no longer active." As this project site is located within Otay Mesa, an area known to support burrowing owl, the City of San Diego may require preconstruction take avoidance surveys within 14 days prior to initiating ground disturbance activities. If construction activities do not commence before the 2019 burrowing owl breeding season of February 1 through August 31, additional surveys may be required, preferably during the peak breeding season of February 15 through July 15 (CDFW 2012). No additional mitigation is required at this time.

If you have any questions concerning the contents of this letter, please contact me (mweston@reconenvironmental.com; 619-308-9333 extension 153) or Lori Spar (lspar@reconenvironmental.com; 619-308-9333 extension 110).

Sincerely.

Mandy Weston

Biologist

Mr. Jimmy Ayala Page 4 July 9, 2018

References Cited

California Department of Fish and Wildlife (CDFW)

2012 Staff Report on Burrowing Owl Mitigation. March.

California, State of

2018 Natural Diversity Data Base. RareFind Version 3.1.0. Department of Fish and Wildlife.

Haug, E. A., B. A. Millsap, and M. S. Martell

1993 Burrowing Owl. The Birds of North America, No. 61. Edited by A. Poole and F. Gill.

Holland, R. F.

Preliminary Descriptions of the Terrestrial Natural Communities of California.

Nongame-Heritage Program, California Department of Fish and Game. October.

Oberbauer, T., M. Kelly, and J. Buegge

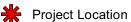
Draft Vegetation Communities of San Diego County. March. Based on Preliminary Descriptions of the Terrestrial Natural Communities of California, Robert F. Holland, Ph.D., October 1986.

Sawyer, J. O., T. Keeler-Wolf, and J. Evens

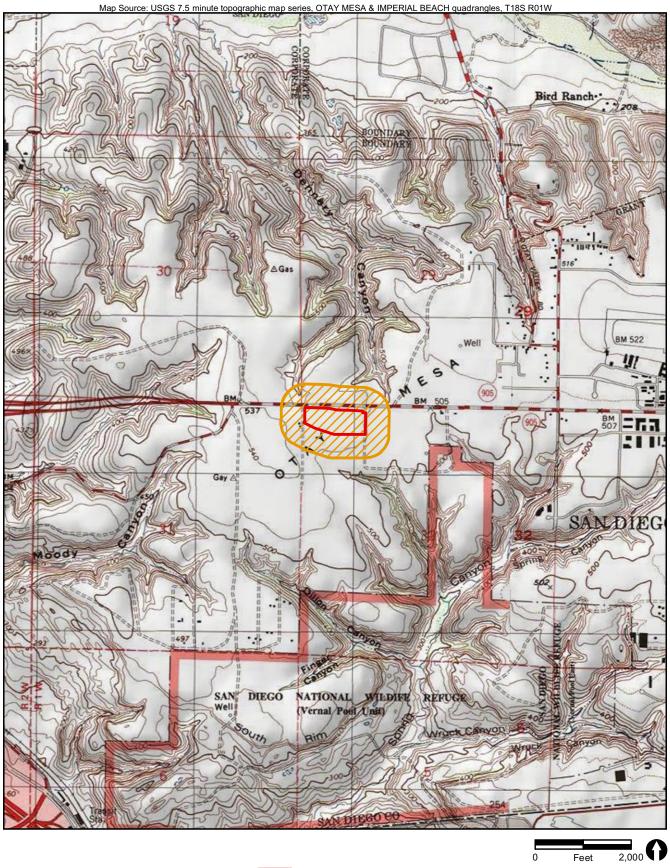
2009 A Manual of California Vegetation, 2nd ed. California Native Plant Society. Sacramento.

U.S. Department of Agriculture (USDA)

1973 Soil Survey, San Diego Area, California. Soil Conservation Service and Forest Service. Roy H. Bowman, ed. San Diego. December.


United States Geological Survey (USGS)

1996 Otay Mesa 7.5 Minute Topographic Map.


Unitt, Philip

2004 San Diego County Bird Atlas. October.

FIGURE 1 Regional Location of the Planning Area 61 Survey Area

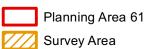
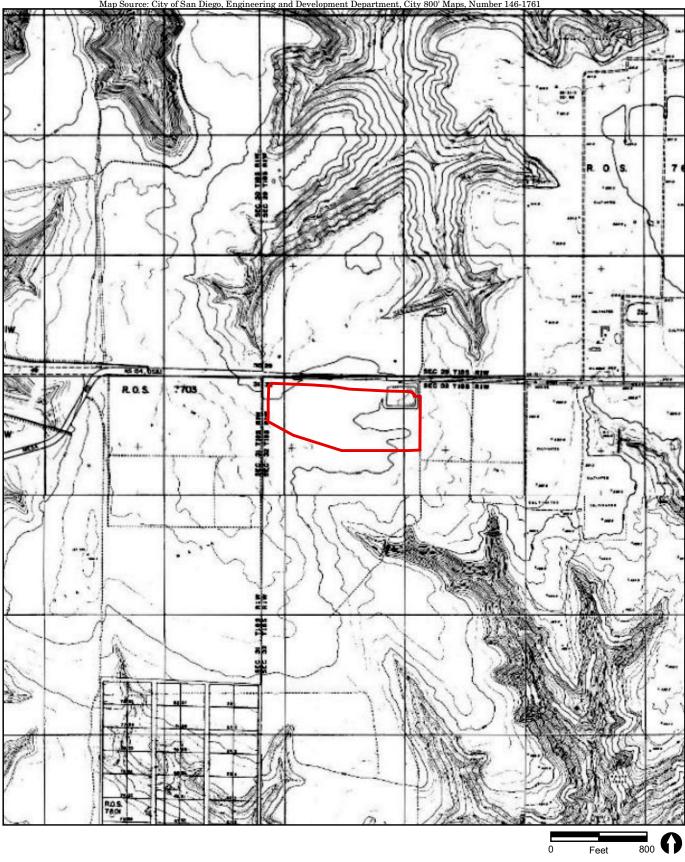



FIGURE 2

Planning Area 61 Survey Area on USGS Map

Planning Area 61

FIGURE 3 Planning Area 61 Survey Area on City 800' Scale Map

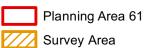


FIGURE 4 Planning Area 61 Survey Area on Aerial Photograph

Vegetation Communities within the Planning Area 61 Parcel

PHOTOGRAPH 1 View of Project Site Looking East Photo Taken December 12, 2017

PHOTOGRAPH 2 View of Project Site Looking West Photo Taken December 12, 2017

