PRELIMINARY DRAINAGE REPORT THE TRAILS AT CARMEL MOUNTAIN RANCH

City of San Diego, CA July 28, 2020 VTM PTS #652519

Prepared For:

NUWI – 2 CMR, LLC 2001 Wilshire Blvd, Suite 401 Santa Monica, California 90403 Phone: 925-708-3638

Prepared By:

PROJECT DESIGN CONSULTANTS

Planning | Landscape Architecture | Engineering | Survey

701 B Street, Suite 800 San Diego, CA 92101 619.235.6471 Tel 619.234.0349 Fax

PDC Job No. 4394.00

Prepared by: G. Anderson *Under the supervision of*

Chelisa Pack, PE RCE 71026 Registration Expires 06/30/21

TABLE OF CONTENTS

1.	INT	RODUCTION	. 1
2.	EXI	ISTING AND PROPOSED DRAINAGE PATTERNS	2
2	2.1	Existing Drainage Patterns	3
-	2.2	Proposed Drainage Patterns and Storm Drain Improvements	. 4
3.	HY	DROLOGY CRITERIA, METHODOLOGY, AND RESULTS	4
-	3.1	Hydrology Criteria	4
	3.2	Hydrology Methodology	5
-	3.3	Hydrology Results	7
4.	COI	NCLUSION	8

FIGURES

Figure 1:	Project	Vicinity M	ıp	. 2
-----------	---------	------------	----	-----

TABLES

Table 1: Hydrology Criteria	. 5
Table 2: Summary of Hydrology Results	. 8

APPENDICES

1	Supporting Documentation (IDF Curve, Runoff Coefficients, FEMA Firmette)
2	Existing Conditions 100-year Rational Method Computer Output
3	Proposed Conditions 100-year Rational Method Computer Output
4	Backbone Study As-built Record Drawings
5	Detention Basin Routing Analysis
6	Exhibits

1. INTRODUCTION

This preliminary drainage report has been prepared in support of a Vesting Tentative Map Entitlement submittal for the Trails at Carmel Mountain Ranch Project (the Project), which is located in the City of San Diego, California. The purpose of this report is to determine the hydrologic impact, if any, to the existing storm drain facilities or natural drainage, and to provide peak 100-year discharge values for the project.

The drainage analysis presented herein reflects a Vesting Tentative Map level-of-effort, which includes peak 100-year storm event hydrologic analyses using preliminary grades. Hydraulic analyses for inlets, pipe sizes, inverts, and HGL's will be provided during final engineering. Therefore, the purpose of this report submittal is to acquire from the City of San Diego: 1) concept approval of the proposed storm drain layout, 2) approval of the methodology used in the evaluation of the project storm drain system hydrology, and 3) identification of critical path drainage issues that need to be addressed during final engineering.

The Trails at Carmel Mountain Ranch Project is a proposed residential community located in the City of San Diego. The site is approximately 164.5 acres in size and is located east of Interstate 15, west of Pomerado Road, and between Carmel Mountain Road and Ted Williams Parkway. The Property was formerly operated as a golf course and is currently owned by PACS Enterprises, LLC. The Proposed Project includes approximately 101.2 acres of open space (including natural open space, landscaped slopes, and parkland), and a total of approximately 1200 residential units. The vicinity map is shown in Figure 1.

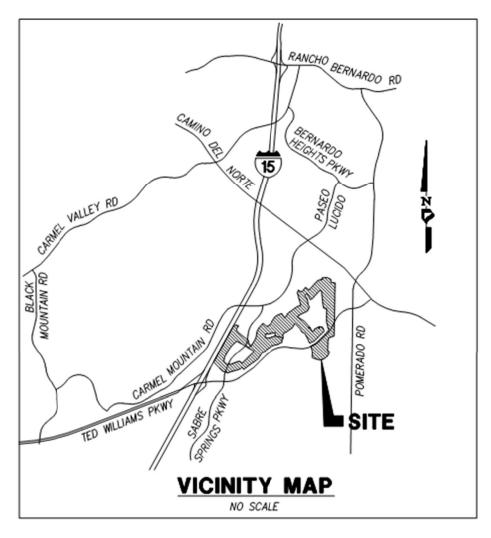


Figure 1: Project Vicinity Map

Redevelopment of the site will involve demolition of the existing golf course and regrading of the site to a usable condition compatible with future land uses. The project will not require a 401 Certification or an Army Corps of Engineers 404 permit. A blend of market rate homes, multi-family homes, and affordable housing is to be constructed including all associated landscaping, hardscaping, and utilities.

From a regional drainage perspective, the project's storm drain system will discharge into Los Penasquitos Creek. There is one FEMA special flood hazard area near the project site, see Appendix 1 for the full FEMA Firm.

 $P:\label{eq:label_e$

Treatment of onsite storm water prior to discharging into the downstream systems will be facilitated by several biofiltration basins. For a detailed discussion of the project's stormwater quality BMPs and hydromodification management approach, refer to the Preliminary Stormwater Quality Management Plan (SWQMP) report. For the Southern California Coastal Water Research Project (SCCWRP) channel screening report for the project, refer to the SCCWRP report prepared by Chang Consultants and submitted under a separate cover. The SCCWRP report documents the channel erosivity analysis, which was used to document the low flow threshold to be used for design of the proposed hydromodification management facilities. The final post-construction BMP design will be provided during final engineering.

2. EXISTING AND PROPOSED DRAINAGE PATTERNS

2.1 Existing Drainage Patterns

The existing site is currently the location of the Carmel Mountain Ranch Golf Course and clubhouse. Generally the site drains to two different locations; the western half of the site drains west and is conveyed to outfalls in Chicarita Creek, and the eastern half of the site drains east and is conveyed to an outfall near Ted Williams Parkway on existing golf course hole 14. This water is then conveyed through natural canyons near Poway Fire Station 3 until it drains into Los Penasquitos Creek. Los Penasquitos Creek runs from east to west, and the runoff from Chicarita Creek eventually commingles with Los Penasquitos Creek at Cypress Canyon.

Because the majority of the area surrounding the project site is already developed, there is minimal run-on into the project site.

There are several existing private storm drain systems within the project site and two major public systems in the adjacent streets: a 72-inch CIP concrete storm drain per Drawing 22088-12-D on Shoal Creek Drive and a 72-inch RCP storm drain per Drawing 22745-23-D on Carmel Ridge Road. There are two additional storm drain system outlets near the project. A 48" RCP outlets into Chicarita Creek near Rancho Carmel Drive and a 54" RCP outlets into existing golf course hole 12 near Ted Williams Parkway.

Onsite, under existing conditions, the drainage from most holes generally sheetflows into a type F catch basin at the downhill side of the hole. A private storm drain attached to the type F CB then conveys water to one of the public storm drain systems listed above.

See Exhibit A in Appendix 6 for an existing conditions drainage map. Note that for some of the systems, the downstream limits of the onsite drainage areas were set to approximate the downstream limits of the proposed drainage areas, in order to compare similar areas in pre-project and post-project flows.

2.2 Proposed Drainage Patterns and Storm Drain Improvements

Redevelopment will disturb approximately 74 acres of the project site. Proposed development will not significantly alter ultimate discharge points of onsite and offsite runoff. There is minimal offsite runon onto the project site, and proposed onsite drainage patterns will mimic existing drainage patterns. Some local re-direction of runoff occurs onsite, however most flows converge in the storm drain systems that head to Chicarita Creek or Los Penasquitos Creek.

The west side of the project site (existing course holes 1, 2, 5, 6, 8, and 9) will continue to discharge to Chicarita Creek through either a 48" or 72" RCP. The east side of the site (existing holes 10, 11, 16, 17, and 18) will drain through a 72" RCP into natural canyons before converging with Los Penasquitos Creek. The proposed drainage improvements include private storm drains collecting rooftop and surface drainage and public storm drains in public roads that connect private pipes with the public storm drain system. Refer to Exhibit B in Appendix 6 for the proposed condition drainage map.

3. HYDROLOGY CRITERIA, METHODOLOGY, AND RESULTS

3.1 Hydrology Criteria

Table 1 summarizes the key hydrology assumptions and criteria used for the hydrologic modeling.

Table 1: Hydrology Criteria

Existing and Proposed Hydrology:	100-year storm frequency
Soil Type:	Hydrologic Soil Group D per Drainage Design Manual requirements
Runoff coefficients:	Based on land use in sub-drainage area, from C=0.45 to 0.95. See Rational Method output.
Rainfall intensity:	Based on the City of San Diego Intensity Frequency Duration Curves presented in the 2017 City of San Diego Drainage Design Manual.

3.2 Hydrology Methodology

Hydrology calculations were completed for existing and proposed conditions accounting for all areas draining to the onsite storm drain systems. Drainage areas were defined from existing and proposed topographic maps of the area. A hydrologic analysis was completed utilizing the Rational Method, outlined in the 2017 City of San Diego Drainage Design Manual. The goal of the Rational Method analysis was to determine the peak 100-year flow rates for the storm drain pipes by developing a node link model of the contributing drainage area and applying the intensity-duration-frequency (IDF) curve to the areas. See Appendix 1 for the City of San Diego IDF curve.

The Civil-D computer program was used to obtain peak flow rates for the offsite and onsite drainage areas under existing and proposed conditions. The Civil-D Modified Rational Method Hydrology Program is a computer-aided design program where the user develops a node link model of the watershed. Developing independent node link models for each interior watershed and linking these sub-models together at confluence points creates the node link model. The intensity-duration-frequency relationships are applied to each of the drainage areas in the model to get the peak flow rates at each point of interest.

The project drainage areas were split into multiple systems representing different outfall areas of concern. Generally, each existing course hole is a separate system. For the proposed condition, Systems 1000 and 2000 represent existing course holes 1 and 2, respectively. System 1000 drains to BMP 1, which is conveyed offsite by an 18" RCP per Drawing 22838-5-D, while System 2000

drains to BMP 2, which is conveyed offsite by an 18" RCP per Drawing 22088-3-D. System 5000 represents the area on existing hole 5 to the east of Chicarita Creek and outside of the environmental buffer. This area drains to BMP 5 and is conveyed offsite via a 48" RCP per Drawing 22917-5-D. System 6000 represents existing hole 6 and some run-on area from existing hole 7. This system drains to BMP 6 and is conveyed offsite via a 36" RCP per Drawing 22917-5-D. Both Systems 5000 and 6000 are conveyed to the Chicarita Creek point of compliance "A" (POC A) via the 48" RCP. System 8000 consists of the area that is existing condition course hole 8 and some hillside run-on. This area drains to BMP 8 and is conveyed offsite by a 48" RCP via Drawing 22939-3-D. System 9000 consists of a portion of existing hole 9 and the existing clubhouse parking lot. This system drains to BMP 9. System 9500 consists of the detained flow from BMP 9 and hillside bypass area from the remaining portion of existing hole 9. Systems 1000, 2000, 8000, and 9000 are all conveyed to the Chicarita Creek POC B within a 72" RCP via Drawing 22088-3-D.

System 11000 consists of existing course holes 10 and 11. This area drains to BMP 11 and is conveyed offsite by an 18" RCP pipe per Drawing 24565-2-D. The detained flow from BMP 11 is conveyed to the open space area POC E on existing hole 12. System 16000 consists of the existing course hole 16. This area drains to BMP 16 and is conveyed offsite and to the open space area POC C by a 72" RCP via Drawing 22745-21-D. System 17000 consists of the existing hole 17 and drains to BMP 17. System 18 consists of existing course hole 18 and the existing course clubhouse. This area drains to BMP 18. System 18500 consists of the detained flow from BMPs 17 and 18, and hillside bypass area on existing hole 18. This system is conveyed offsite by an 18" RCP via Drawing 26514-11-D. It eventually heads to natural canyon POC D. Flow from the 72" RCP at POC C is also conveyed through open space area to POC D.

Four systems are being planned as potential public city parks, and are pending City approval before a site plan is created. Because of this, a Civil D model for existing and proposed conditions for each system has been created based on the preliminary park footprints and assuming a proposed runoff coefficient of 0.45. Because the parks do not yet have site plans, the imperviousness of each park is currently unknown. Therefore, it is assumed that the stormwater quality approach for each park will be deferred until site plans are developed. The parks are anticipated to be almost exclusively pervious, with very little impervious area. There, this submittal includes no BMPs or

subsequent BMP calculations for water quality and hydromodification for these systems. System 7000 consists of existing course hole 7. This area drains to Chicarita Creek via POC B. System 13000 consists of a small portion of existing course hole 13, and flows to POC F. Systems 15000 (existing course hole 15) and 17500 (a portion of existing course hole 17) both drain to POC C which outlets into natural canyons on the east side of the site. Basin and/or BMP design for these systems will accompany a future submittal once each system land use is determined. However, as with all systems, flows for proposed conditions will be less than or equal to existing condition flows.

For comparison purposes, existing condition drainage systems are named similarly to the postproject drainage systems. For example, System 800 for existing conditions corresponds to System 8000 for proposed conditions. City of San Diego Drainage Design Manual runoff coefficients, based on land use, were assigned for each drainage sub-basin within CivilD. Additionally, site plans are still in development and therefore proposed conditions "C" values are estimated based on proposed land uses.

3.3 Hydrology Results

The results of the Rational Method hydrology modeling are provided in Appendices 2 and 3 and the results are summarized in this section. Redevelopment of the project site increased the 100-year runoff from the site, but peak flows after detention are less than either backbone storm drain system capacity or existing condition peak flow at the project outfall, whichever condition governs.

For all outfalls, proposed condition unmitigated peak flows are greater than existing condition peak flows. The existing condition 100-year peak flow of Outfall A near the southwest corner of the site is 15.7 cfs, whereas the proposed condition 100-year peak flow is 23.6 cfs. For outfall B (which represents flow from Systems 1000, 2000, 8000, and 9500), the unmitigated 100-year post-project flow rates are increased from 57.7 cfs to 101.9 cfs. Outfall E that represents flow from System 11000 increases 100-year post-project flow rates from 21.7 cfs to 39.6 cfs. Finally, Outfalls C and D (which represents flow in Systems 16000 and 18500, respectively) increase 100-year post-project flow rates from 8.3 cfs to 18.0 cfs and from 19.8 cfs to 31.0 cfs, respectively. However, preliminary detention modeling was performed for a couple of representative basins, and peak flows after detention are significantly less than the existing flows and backbone flows. During

final engineering, calculations will be prepared for all basins to show the final detained flow rates out of the detention basins. The combination of basins will be sufficient to ensure the graded total peak 100-year flow rate for the proposed condition is less than the maximum allowable peak flow rate. Therefore, there will be no adverse impact from a peak flow perspective.

For the results of the analysis, see Exhibit A for the existing conditions hydrology map and Exhibit B for the proposed conditions hydrology map in Appendix 6. Refer to the appendices for the hydrology calculations. Table 2 summarizes the hydrology results and compares existing and proposed conditions.

PRELIMINARY TRAILS AT CARMEL MOUNTAIN RANCH HYDROLOGY SUMMARY								.OGY SUMMA	RY		
	EXISTING	G CONDITI	ON		BACKBON	E COMPARISON		PROPOSED	CONDITION		
OUTFALL OF	SYSTEM	AREA	тс	Q100	BackboneQ ¹ Q100	Qallowable If no backbone Q, Qallowable=Qexisting	SYSTEM	AREA	тс	Q100	w/ Detention Q100 ⁴
INTEREST		(ac)	(min)	(cfs)	(cfs)	(cfs)		(ac)	(min)	(cfs)	(cfs)
	100	8.6	14.5	11.5	10.6	(013)	1000	8.5	6.9	24.9	7.0
	200	8.6	14.1	11.6	9.7		2000	8.6	13.0	19.0	4.0
	700	4.1	9.4	6.4	-	6.4	7000	5.3	17.6	6.5	
	750	1.2	10.7	1.8	34.1	0.1		0.0	2,10	0.0	
	800	10.8	12.9	15.0	111.3		8000	10.8	8.0	29.1	10.9
	900	10.1	12.9	16.8	4.8		9000	7.0	6.6	23.0	
To POC B	950	0.8	6.4	2.8	-	2.8	9500 ²	9.8	32.8	5.9	5.9
Outfall	TOTAL	44.2		65.9	170.5	9.2	TOTAL	43.0		85.4	<65.9
	500	2.6	11.9	3.7	2.9		5000	2.6	6.4	8.5	1.0
	600	6.4	8.2	10.5	10.1		6000	7.2	14.7	15.1	4.6
To POC A	650	0.9	8.0	1.5	1.1						
Outfall	TOTAL	9.9		15.7	14.1	-	TOTAL	9.8		23.6	<15.7
To POC E	1100	14.9	12.6	21.7	15.8		11000	14.9	9.4	39.6	2.0
Outfall	TOTAL	14.9		21.7	15.8	-	TOTAL	14.9		39.6	<21.7
To POC E	1300	1.3	7.1	2.2	-	2.2	13000	1.3	7.1	2.2	
Outfall	TOTAL	1.3		2.2	-	2.2	TOTAL	1.3		2.2	<2.2
	1500	3.3	9.8	5.1	-	5.1	15000	3.3	9.8	5.1	
To POC C	1600	5.8	13.5	8.3	-	8.3	16000	5.7	7.5	18.0	2.9
Outfall	TOTAL	9.1		13.4	-	13.4	TOTAL	9.0		23.1	<13.4
							17000	5.6	9.4	15.9	
	1800	12.6	11.6	18.2	18.1		18000	4.7	7.2	15.1	
To POC D	1850	1.0	8.3	1.6	-	1.6	18500 ³	14.9	6.0	9.8	9.8
Outfall	TOTAL	13.6		19.8	18.1	1.6	TOTAL	14.9		31.0	<19.8
	GRAND TOTAL	93.0		138.7	218.5	26.4	GRAND TOTAL	92.9		204.9	<138.7
	Notes:										
	1) Backbone flowrates are based on As-Built Drawings (see Appendix 4)										
	2) System 9500 represe	ents the cor	nbined rou	uting res	ult of Systems 90	00 and hillside bypass ar	ea				
	3) System 18500 repres			-							
	•					uring final engineering,					
		1	The combi	nation o	f basins will be su	ufficient to ensure the g	rand total Q100 for the	proposed condit	ion is less th	an the maxi	mum allowable
	Q100. The preliminary	,									

Table 2: Summary of Hydrology Results

3.4 Detention Basins

There are 10 detention basins proposed for the project site for water quality treatment and hydromodification management. From the Rational Method results for each of the systems draining to a basin, the proposed condition peak inflow hydrographs were generated with Rick Engineering Rational Method Hydrograph Generator. This program develops a synthetic hydrograph per the 2003 County Hydrology Manual using the results of the Rational Method output.

The inflow hydrograph for each system was then entered into Haestad Method's PondPack software and the detention routing was performed with the design of the detention basin and the proposed outlet structure. The 100-year hydrograph was routed through the basin to demonstrate that the post-development peak flow rate will comply with the detention requirements and that the detention facility will not overtop during the 100-year peak event. The time of concentration coinciding with the basin outflow peak was established by adding the inflow hydrograph time of concentration plus the lag time of the detained flow within the basin. This combined time of concentration to get to the basin and the detention time within the basin. The riser for each basin was designed to ensure that riser size, rim elevation, and orifice placement will work in conjunction to properly mitigate the increased flow rate.

Preliminary detention modeling has been completed for representative basins Basin 9 and Basin 11. A complete set of detention models will be included during final engineering. The preliminary hydrograph routing calculations and detention models are included in Appendix 5. With detention, the proposed 100-year flow rates at the project outfalls are less than the existing 100-year flow rates. During the City's review process, it was requested that a table be included that shows the proposed volume of the basins along with the minimum necessary volume for the drainage area conveyed to the basin. Table 3 on the next page shows the results for all DMAs/Basins. The table shows that the minimum detention volume of each basin is less than the proposed volume of the basin for each DMA, showing that the detention area is sufficient to detain peak Q100 flows. This table shows TM level-of-effort for the preliminary engineering submittal, during final engineering full detention calculations and results will be included in the report.

Trails at Carmel Mountain Ranch Detention Volume Comparison									
DMA	Basin	Proposed Basin	Post-Project Detention	Pre-Project Runoff	Minimum Detention Volume				
	DdSIII	Volume (CF)	Volume Estimate (CF)	Volume Estimate (CF)	Needed From Basin (CF)				
1	1	1.108	1.615	0.956	0.659				
2	2	1.111	1.527	0.968	0.559				
5	5	0.660	0.527	0.293	0.234				
6	6	0.662	1.278	0.810	0.468				
8	8	1.082	1.971	1.215	0.756				
9	9	0.966	1.453	0.788	0.665				
11	11	2.927	2.868	1.676	1.192				
16	16	0.654	1.183	0.641	0.542				
17	17	0.816	1.162	0.630	0.532				
18	18	0.565	0.975	0.529	0.447				

Table 3: Required DMA Detention Volume versus Proposed Basin Volume

3.5 Water Quality Calculations

The water quality calculations are included, under separate cover, in the Storm Water Quality Management Plan (SWQMP) prepared by PDC. The biofiltration basins will be combined hydromodification/biofiltration/detention basins.

3.6 Hydromodification Analysis

The biofiltration basins also address hydromodification requirements, since both biofiltration basins and hydromodification basins produce similar alterations to the flow regime for the smaller, more frequent storm events. Flow duration control is the most common form of hydromodification management. The majority of all onsite water will be treated with biofiltration/hydromodification basins, which will detain the smaller, more frequent events and therefore will mitigate the post-development onsite flows. Refer to the Hydromodification report prepared by PDC for detailed calculations.

4. CONCLUSION

This drainage report supports the VTM for the proposed Trails at Carmel Mountain Ranch development. This report was prepared to ensure that project development would not adversely affect existing drainage patterns. Hydrology calculations indicate that redevelopment will result in an overall increase in flows from the site, but the total flow rates after detention is less than or equal to existing flow. Small onsite re-direction of flows does not alter general drainage patterns

as onsite storm drain systems ultimately discharge to the same location downstream of the project. As such, the project redevelopment should not have an adverse effect on local or global drainage patterns. The drainage system will be designed appropriately to accommodate the peak-flow conditions for the site. Detention calculations and pipe hydraulic calculations will be included during final engineering.

APPENDIX 1

Supporting Documentation

(IDF Curve, Runoff Coefficients, FEMA Firmette)

APPENDIX A: RATIONAL METHOD AND MODIFIED RATIONAL METHOD

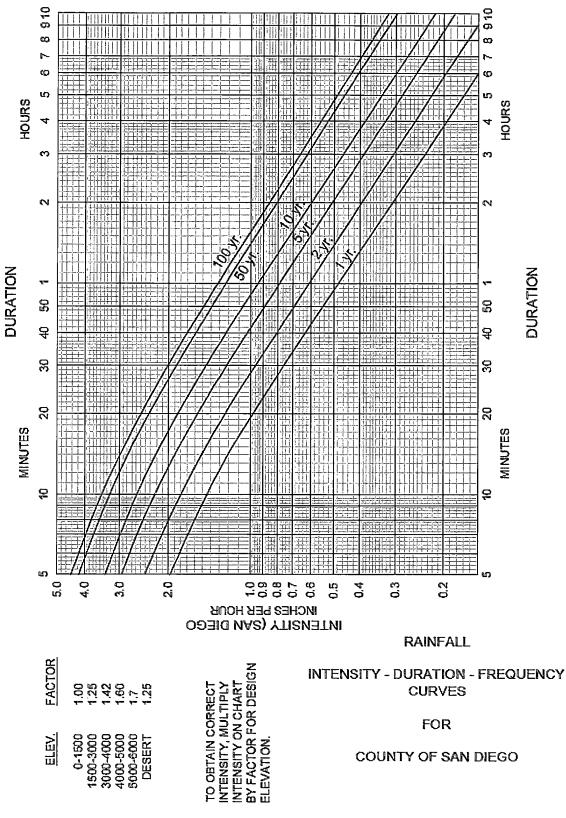


Figure A-1. Intensity-Duration-Frequency Design Chart

Table A-1. Runon Coefficients	s for Rational Method
Land Use	Runoff Coefficient (C)
Land Use	Soil Type (1)
Residential:	
Single Family	0.55
Multi-Units	0.70
Mobile Homes	0.65
Rural (lots greater than 1/2 acre)	0.45
Commercial ⁽²⁾	
80% Impervious	0.85
Industrial ⁽²⁾	
90% Impervious	0.95

Table A-1. Runoff Coefficients for Rational Method

Note:

⁽¹⁾ Type D soil to be used for all areas.

⁽²⁾ Where actual conditions deviate significantly from the tabulated imperviousness values of 80% or 90%, the values given for coefficient C, may be revised by multiplying 80% or 90% by the ratio of actual imperviousness to the tabulated imperviousness. However, in case shall the final coefficient be less than 0.50. For example: Consider commercial property on D soil.

Actual impe	ervior	isness	=	50%
Tabulated in	mper	viousness	=	80%
Revised C	=	(50/80) x 0.85	=	0.53

The values in Table A–1 are typical for urban areas. However, if the basin contains rural or agricultural land use, parks, golf courses, or other types of nonurban land use that are expected to **be permanent**, the appropriate value should be selected based upon the soil and cover and **approved by the C**ity.

FLOOD HAZARD INFORMATION

E FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

NOTES TO USERS

For information and questions about this Flood Insurance Rate Map (FIRM), wellable products associated with this FIRM, including haltors versions, the current map data for each FIRM panel, how to order products, or the National Flood Insurance Program (FIPP) in general, passe call the FEMA Map Information ackhange at 1-877-FEMA-MAP (1-877-338-2827) or visit the FEMA Flood Map Service Center website at thomas Imma good Available products may include previously issued Letter of Map Change. The Dod Insurance Study Report, and/or digital versions of this map. Many of these products can be ordered or obtained directly from the website.

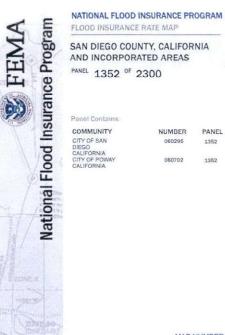
Communities annexing land on adjacent FIRM panels must obtain a current copy of the adjacent panel as well as the current FIRM index. These may be ordered directly from the Flood Map Service Center at the number listed above.

For community and countywide map dates refer to the Flood insurance Study Report for this jurisdiction.

To determine if flood insurance is available in this community, contact your insurance agent or call the National Flood Insurance Program at 1-800-538-6620.

Basemap information shown on this FIRM was provided in digital format by USDA, Farm Service Agency (FSA). This information was derived from NAIP, dated April 11, 2018.

This map was reported from FFMA's National Flood Hazard Layer (NFH4) on **84/2019** 1:42:30 PM and does not reflect changes or amendments subsequent to this date and time. The NFH4 and effective information may change or become supersided by new data veri time. The additional information, plasas each she Flood Hazard Mapping Updates Overview Fact Sheet at https://www.fema.gov/media-library/assets/documents/118418


This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone lacers, legend, acate bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date.

SCALE

1	inch = 5	1:6,0	00		
0	250	500	1,000	1,500	2,000 Fee
				Meters	Fee
0	50 100	200	300	400	

PANEL

1352

1352

National Flood Hazard Layer FIRMette

Legend

APPENDIX 2

Existing Conditions 100-year Rational Method Computer Output

P:\4394.00\Engr\Reports\Drainage\HYDRO\EXISTING\S100E100\S100E100.out

San Diego County Rational Hydrology Program

CIVILCADD/CIVILDESIGN Engineering Software, (c) 1991-2003 Version 6.3

Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 09/23/19

CARMEL MOUNTAIN RANCH SYSTEM 100 - EXISTING CONDITION 100-YEAR STORM EVENT

******** Hydrology Study Control Information *********

Program License Serial Number 4049

Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used English (in) rainfall data used

Standard intensity of Appendix I-B used for year and Elevation 0 - 1500 feet Factor (to multiply * intensity) - 1.000 Only used if inside City of San Diego San Diego hydrology manual 'C' values used Runoff coefficients by rational method

Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 1.000 [RURAL(greater than 0.5 Ac, 0.2 ha) area type] Initial subarea flow distance = 106.000(Ft.) Highest elevation = 801.000(Ft.) Lowest elevation = 798.000 (Ft.) Elevation difference = 3.000(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 8.52 min. TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)] $TC = [1.8*(1.1-0.4500)*(106.000^{-1})/(2.830^{-1})] = 8.52$ Rainfall intensity (I) = 3.577(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.450Subarea runoff = 0.290(CFS) Total initial stream area = 0.180(Ac.)

Printed: 10/21/2019 9:46:27 AM AM

Modified: 9/23/2019 4:38:33 PM PM Page 1 of 2

-D

P:\4394.00\Engr\Reports\Drainage\HYDRO\EXISTING\S100E100\S100E100.out

Upstream point elevation = 798.000(Ft.) Downstream point elevation = 733.000(Ft.) Channel length thru subarea = 1190.000(Ft.) Channel base width = 5.000 (Ft.) Slope or 'Z' of left channel bank = 20.000 Slope or 'Z' of right channel bank = 20.000 Estimated mean flow rate at midpoint of channel = 7.090(CFS) Manning's 'N' = 0.030Maximum depth of channel = 2.000(Ft.) Flow(q) thru subarea = 7.090(CFS) Depth of flow = 0.225(Ft.), Average velocity = 3.308(Ft/s) Channel flow top width = 14.016(Ft.) Flow Velocity = 3.31(Ft/s) Travel time = 5.99 min. Time of concentration = 14.51 min. Critical depth = 0.277(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 1.000 [RURAL(greater than 0.5 Ac, 0.2 ha) area type] Rainfall intensity = 2.942(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method, Q=KCIA, C = 0.450Subarea runoff = 11.188(CFS) for 8.450(Ac.) Total runoff = 11.477(CFS) Total area = 8.63(Ac.) End of computations, total study area = 8.630 (Ac.)

Page 2 of 2

P:\4394.00\Engr\Reports\Drainage\HYDRO\EXISTING\S200E100\S200E100.out San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c)1991-2003 Version 6.3 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 10/07/19 CARMEL MOUNTAIN RANCH SYSTEM 200 - EXISTING CONDITIONS 100-YEAR STORM EVENT -D ******** Hydrology Study Control Information ********* Program License Serial Number 4049 Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used English (in) rainfall data used Standard intensity of Appendix I-B used for year and Elevation 0 - 1500 feet Factor (to multiply * intensity) = 1.000 Only used if inside City of San Diego San Diego hydrology manual 'C' values used Runoff coefficients by rational method Process from Point/Station 200.000 to Point/Station 201.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 1.000 [RURAL(greater than 0.5 Ac, 0.2 ha) area type] Initial subarea flow distance = 100.000(Ft.) Highest elevation = 711.000(Ft.) Lowest elevation = 706.500(Ft.) Elevation difference = 4.500(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 7.09 min. TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)] $TC = [1.8*(1.1-0.4500)*(100.000^{.5})/(4.500^{(1/3)}] = 7.09$ Rainfall intensity (I) = 3.829(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.450Subarea runoff = 0.293(CFS) Total initial stream area = 0.170(Ac.)

Process from Point/Station 201.000 to Point/Station 202.000 **** IMPROVED CHANNEL TRAVEL TIME ****

Printed: 10/21/2019 9:46:27 AM AM

Modified: 10/7/2019 11:45:24 AM AM Page 1 of 2

Printed: 10/21/2019 9:46:27 AM AM

7.589(CFS)

8.64 (Ac.)

8.640 (Ac.)

P:\4394.00\Engr\Reports\Drainage\HYDRO\EXISTING\S200E100\S200E100.out

Depth of flow = 0.224(Ft.), Average velocity = 3.577(Ft/s)

Rainfall intensity = 2.976(In/Hr) for a 100.0 year storm

Runoff coefficient used for sub-area, Rational method, Q=KCIA, C = 0.450

Upstream point elevation = 706.500(Ft.)

Channel base width = 5.000(Ft.) Slope or 'Z' of left channel bank = 20.000

Maximum depth of channel = 2.000(Ft.) Flow(q) thru subarea = 7.589(CFS)

Channel flow top width = 13.955(Ft.)

Time of concentration = 14.08 min.

Decimal fraction soil group D = 1.000

End of computations, total study area =

[RURAL(greater than 0.5 Ac, 0.2 ha) area type]

Subarea runoff = 11.345(CFS) for 8.470(Ac.) Total runoff = 11.638(CFS) Total area =

Critical depth = 0.287(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000

Manning's 'N' = 0.030

Flow Velocity = 3.58(Ft/s) Travel time = 6.99 min.

Downstream point elevation = 610.000(Ft.) Channel length thru subarea = 1500.000(Ft.)

Slope or 'Z' of right channel bank = 20.000

Estimated mean flow rate at midpoint of channel =

P:\4394.00\Engr\Reports\Drainage\HYDRO\EXISTING\S500E100\S500E100.out San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1991-2003 Version 6.3 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 09/19/19 CARMEL MOUNTAIN RANCH SYSTEM 500 - EXISTING CONDITIONS 100-YEAR STORM EVENT -D ******** Hydrology Study Control Information ********* Program License Serial Number 4049 _____ Rational hydrology study storm event year is 100.0 English (in-1b) input data Units used English (in) rainfall data used Standard intensity of Appendix I-B used for year and Elevation 0 - 1500 feet Factor (to multiply * intensity) = 1.000 Only used if inside City of San Diego San Diego hydrology manual 'C' values used Runoff coefficients by rational method Process from Point/Station 500.000 to Point/Station 501 000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 1.000 [RURAL(greater than 0.5 Ac, 0.2 ha) area type] Initial subarea flow distance = 135.000(Ft.) Highest elevation = 564.000(Ft.) Lowest elevation = 561.000(Ft.) Elevation difference = 3.000 (Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 10.42 min. TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)] $TC = [1.8*(1.1-0.4500)*(135.000^{.5})/(2.222^{(1/3)}] = 10.42$ Rainfall intensity (I) = 3.325(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.450Subarea runoff = 0.344 (CFS) Total initial stream area = 0.230(Ac.) Process from Point/Station 501.000 to Point/Station 502.000 **** IMPROVED CHANNEL TRAVEL TIME ****

Printed: 10/21/2019 9:46:27 AM AM

Modified: 9/19/2019 1:21:33 PM PM Page 1 of 2

Printed: 10/21/2019 9:46:27 AM AM

2.132(CFS)

2.62(Ac.)

2.620 (Ac.)

P:\4394.00\Engr\Reports\Drainage\HYDRO\EXISTING\S500E100\S500E100.out

Depth of flow = 0.109(Ft.), Average velocity = 2.738(Ft/s)

Rainfall intensity = 3.164(In/Hr) for a 100.0 year storm

Runoff coefficient used for sub-area, Rational method, O=KCIA, C = 0.450

Upstream point elevation = 561.000(Ft.)

Downstream point elevation = 540.000(Ft.) Channel length thru subarea = 250.000(Ft.) Channel base width = 5.000(Ft.)

Slope or 'Z' of left channel bank = 20.000

Slope or 'Z' of right channel bank = 20.000

Maximum depth of channel = 2.000(Ft.) Flow(q) thru subarea = 2.132(CFS)

Channel flow top width = 9.343(Ft.)

Time of concentration = 11.94 min.

Decimal fraction soil group D = 1.000

End of computations, total study area =

[RURAL(greater than 0.5 Ac, 0.2 ha) area type]

Subarea runoff = 3.403(CFS) for 2.390(Ac.) Total runoff = 3.747(CFS) Total area =

Critical depth = 0.146 (Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000

Manning's 'N' = 0.030

Flow Velocity = 2.74(Ft/s) Travel time = 1.52 min.

Estimated mean flow rate at midpoint of channel =

P:\4394.00\Engr\Reports\Drainage\HYDRO\EXISTING\S600E100\S600E100.out

San Diego County Rational Hydrology Program

CIVILCADD/CIVILDESIGN Engineering Software, (c) 1991-2003 Version 6.3

Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 09/25/19

CARMEL MOUNTAIN RANCH SYSTEM 600 - EXISTING CONDITION 100-YEAR STORM EVENT

******** Hydrology Study Control Information *********

Program License Serial Number 4049

Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used English (in) rainfall data used

Standard intensity of Appendix I-B used for year and Elevation 0 - 1500 feet Factor (to multiply * intensity) = 1.000 Only used if inside City of San Diego San Diego hydrology manual 'C' values used Runoff coefficients by rational method

Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 1.000[RURAL(greater than 0.5 Ac, 0.2 ha) area type] Initial subarea flow distance = 83.000(Ft.) Highest elevation = 641.000(Ft.) Lowest elevation = 612.000(Ft.) Elevation difference = 29.000(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 3.26 min. $TC = [1.8*(1.1-C)*distance(Ft.)^{.5})/(% slope^{(1/3)}]$ $TC = [1.8*(1.1-0.4500)*(83.000^{.5})/(34.940^{(1/3)}] = 3.26$ Setting time of concentration to 5 minutes Rainfall intensity (I) = 4.389(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.450Subarea runoff = 0.237 (CFS) Total initial stream area = 0.120 (Ac.)

Printed: 10/21/2019 9:46:27 AM AM

Modified: 9/25/2019 11:04:10 AM AM Page 1 of 3

-D

P:\4394.00\Engr\Reports\Drainage\HYDRO\EXISTING\S600E100\S600E100.out

Upstream point elevation = 612.000(Ft.) Downstream point elevation = 566.000(Ft.) Channel length thru subarea = 615.000 (Ft.) Channel base width = 5.000(Ft.) Slope or 'Z' of left channel bank = 20.000 Slope or 'Z' of right channel bank = 20.000 Estimated mean flow rate at midpoint of channel = 4.859(CFS) Manning's 'N' = 0.030Maximum depth of channel = 2.000(Ft.) Flow(q) thru subarea = 4.859(CFS) Depth of flow = 0.172 (Ft.), Average velocity = 3.338 (Ft/s) Channel flow top width = 11.893(Ft.) Flow Velocity = 3.34(Ft/s) Travel time = 3.07 min. Time of concentration = 8.07 min. Critical depth = 0.229 (Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 1.000 [RURAL(greater than 0.5 Ac, 0.2 ha) area type] Rainfall intensity = 3.648(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method, Q=KCIA, C = 0.450 Subarea runoff = 7.682(CFS) for 4.680(Ac.) Total runoff = 7.919(CFS) Total area = 4.80(Ac.) Process from Point/Station 604.000 to Point/Station 602.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000Decimal fraction soil group D = 1.000 [RURAL(greater than 0.5 Ac, 0.2 ha) area type] Time of concentration = 8.07 min. Rainfall intensity = 3.648(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method, Q=KCIA, C = 0.450 Subarea runoff = 1.707 (CFS) for 1.040 (Ac.) Total runoff = 9.626(CFS) Total area = 5.84 (Ac.) Process from Point/Station 602.000 to Point/Station 603.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 566.000(Ft.) Downstream point/station elevation = 550.000 (Ft.) Pipe length = 116.00(Ft.) Manning's N = 0.015 No. of pipes = 1 Required pipe flow = 9.626(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 9.626(CFS) Normal flow depth in pipe = 8.41(In.) Flow top width inside pipe = 10.99(In.) Critical depth could not be calculated. Pipe flow velocity = 16.36(Ft/s) Travel time through pipe = 0.12 min. Time of concentration (TC) = 8 19 min

Printed: 10/21/2019 9:46:27 AM AM

P:\4394.00\Engr\Reports\Drainage\HYDRO\EXISTING\S600E100\S600E100.out

Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [RURAL(greater than 0.5 Ac, 0.2 ha) area type] Time of concentration = 8.19 min. Rainfall intensity = 3.628(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.450 Subarea runoff = 0.865(CFS) for 0.530(Ac.) Total runoff = 10.492(CFS) Total area = 6.37(Ac.) End of computations, total study area = 6.370 (Ac.)

P:\4394.00\Engr\Reports\Drainage\HYDRO\EXISTING\S650E100\S650E100.out

San Diego County Rational Hydrology Program

-D

CIVILCADD/CIVILDESIGN Engineering Software, (c) 1991-2003 Version 6.3

Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 09/25/19

CARMEL MOUNTAIN RANCH SYSTEM 650 - EXISTING CONDITION 100-YEAR STORM EVENT

******** Hydrology Study Control Information **********

Program License Serial Number 4049

Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used English (in) rainfall data used

Standard intensity of Appendix I-B used for year and Elevation 0 - 1500 feet Factor (to multiply * intensity) = 1.000 Only used if inside City of San Diego San Diego hydrology manual 'C' values used Runoff coefficients by rational method

Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 1.000 [RURAL(greater than 0.5 Ac, 0.2 ha) area type] Initial subarea flow distance = 86.000(Ft.) Highest elevation = 595.000(Ft.) Lowest elevation = 576.000(Ft.) Elevation difference = 19.000(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 3.87 min. TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)] $TC = [1.8*(1.1-0.4500)*(86.000^{.5})/(22.093^{(1/3)}] = 3.87$ Setting time of concentration to 5 minutes Rainfall intensity (I) = 4.389(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.450Subarea runoff = 0.435(CFS) Total initial stream area = 0.220 (Ac.)

Printed: 10/21/2019 9:46:27 AM AM

P:\4394.00\Engr\Reports\Drainage\HYDRO\EXISTING\S650E100\S650E100.out

Upstream point elevation = 576.000(Ft.) Downstream point elevation = 563.000 (Ft.) Channel length thru subarea = 320.000(Ft.) Channel base width = 5.000(Ft.) Slope or 'Z' of left channel bank = 20.000 Slope or 'Z' of right channel bank = 20.000 Estimated mean flow rate at midpoint of channel = 1.076(CFS) Manning's 'N' = 0.030Maximum depth of channel = 2.000(Ft.) 1.076(CFS) Flow(q) thru subarea = Depth of flow = 0.091(Ft.), Average velocity = 1.728(Ft/s) Channel flow top width = 8.651(Ft.) Flow Velocity = 1.73(Ft/s) Travel time = 3.09 min. Time of concentration = 8.09 min. Critical depth = 0.099(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 1.000 [RURAL(greater than 0.5 Ac, 0.2 ha) area type] Rainfall intensity = 3.645(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method, Q=KCIA, C = 0.450 Subarea runoff = 1.066 (CFS) for 0.650 (Ac.) Total runoff = 1.501(CFS) Total area = 0.87 (Ac.) End of computations, total study area = 0.870 (Ac.)

P:\4394.00\Engr\Reports\Drainage\HYDRO\EXISTING\S700E100\S700E100.out

San Diego County Rational Hydrology Program

CIVILCADD/CIVILDESIGN Engineering Software, (c) 1991-2003 Version 6.3

Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 01/28/20

CARMEL MOUNTAIN RANCH SYSTEM 700 - EXISTING CONDITIONS 100-YEAR STORM EVENT

******** Hydrology Study Control Information **********

Program License Serial Number 4049

Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used English (in) rainfall data used

Standard intensity of Appendix I-B used for year and Elevation 0 - 1500 feet Factor (to multiply * intensity) = 1.000 Only used if inside City of San Diego San Diego hydrology manual 'C' values used Runoff coefficients by rational method

Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 1.000[RURAL(greater than 0.5 Ac, 0.2 ha) area type] Initial subarea flow distance = 64.000(Ft.) Highest elevation = 682.500(Ft.) Lowest elevation = 675.000(Ft.) Elevation difference = 7.500(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 4.12 min. $TC = [1.8*(1.1-C)*distance(Ft.)^{.5})/(% slope^{(1/3)}]$ $TC = [1.8*(1.1-0.4500)*(64.000^{.5})/(11.719^{(1/3)}] = 4.12$ Setting time of concentration to 5 minutes Rainfall intensity (I) = 4.389(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.4500.454 (CFS) Subarea runoff = Total initial stream area = 0.230 (Ac.)

Printed: 1/28/2020 9:50:54 AM AM

Modified: 1/28/2020 9:25:46 AM AM Page 1 of 2

Printed: 1/28/2020 9:50:54 AM AM

P:\4394.00\Engr\Reports\Drainage\HYDRO\EXISTING\S700E100\S700E100.out

Upstream point elevation = 675.000(Ft.) Downstream point elevation = 640.000 (Ft.) Channel length thru subarea = 705.000 (Ft.) Channel base width = 5.000(Ft.) Slope or 'Z' of left channel bank = 25.000 Slope or 'Z' of right channel bank = 25.000 Estimated mean flow rate at midpoint of channel = 4.227 (CFS) Manning's 'N' = 0.030 Maximum depth of channel = 2.000 (Ft.) Flow(q) thru subarea = 4.227 (CFS) Depth of flow = 0.172(Ft.), Average velocity = 2.647(Ft/s) Channel flow top width = 13.590(Ft.) Flow Velocity = 2.65(Ft/s) Travel time = 4.44 min. Time of concentration = 9.44 min. Critical depth = 0.203(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 1.000 [RURAL(greater than 0.5 Ac, 0.2 ha) area type] Rainfall intensity = 3.445(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method, Q=KCIA, C = 0.450 Subarea runoff = 5.922(CFS) for 3.820(Ac.) Total runoff = 6.377(CFS) Total area = 4.05(Ac.) End of computations, total study area = 4.050 (Ac.)

P:\4394.00\Engr\Reports\Drainage\HYDRO\EXISTING\S750E100\S750E100.out

San Diego County Rational Hydrology Program

CIVILCADD/CIVILDESIGN Engineering Software, (c) 1991-2003 Version 6.3

Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 01/28/20

CARMEL MOUNTAIN RANCH SYSTEM 750 - EXISTING CONDITIONS 100-YEAR STORM EVENT

******** Hydrology Study Control Information *********

Program License Serial Number 4049

Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used English (in) rainfall data used

Standard intensity of Appendix I-B used for year and Elevation 0 - 1500 feet Factor (to multiply * intensity) = 1.000 Only used if inside City of San Diego San Diego hydrology manual 'C' values used Runoff coefficients by rational method

Decimal fraction soil group A = 0.000Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 1.000 [RURAL(greater than 0.5 Ac, 0.2 ha) area type] Initial subarea flow distance = 120.000(Ft.) Highest elevation = 657.000(Ft.) Lowest elevation = 653.000(Ft.) Elevation difference = 4.000(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 8.58 min. TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)] $TC = [1.8*(1.1-0.4500)*(120.000^{.5})/(3.333^{(1/3)}] = 8.58$ Rainfall intensity (I) = 3.567(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.450Subarea runoff = 0.385(CFS) Total initial stream area = 0.240 (Ac.)

Printed: 1/28/2020 9:50:54 AM AM

Modified: 1/28/2020 9:33:06 AM AM Page 1 of 2

P:\4394.00\Engr\Reports\Drainage\HYDRO\EXISTING\S750E100\S750E100.out

Upstream point elevation = 653.000(Ft.) Downstream point elevation = 633.000(Ft.) Channel length thru subarea = 270.000(Ft.) Channel base width = 5.000 (Ft.) Slope or 'Z' of left channel bank = 25.000 Slope or 'Z' of right channel bank = 25.000 Estimated mean flow rate at midpoint of channel = 1.156(CFS) Manning's 'N' = 0.030Maximum depth of channel = 2.000(Ft.) Flow(q) thru subarea = 1.156(CFS) Depth of flow = 0.079(Ft.), Average velocity = 2.100(Ft/s) Channel flow top width = 8.946(Ft.) Flow Velocity = 2.10 (Ft/s) Travel time = 2.14 min. Time of concentration = 10.72 min. Critical depth = 0.100(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000Decimal fraction soil group D = 1.000 [RURAL(greater than 0.5 Ac, 0.2 ha) area type] Rainfall intensity = 3.290(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method, Q=KCIA, C = 0.450 Subarea runoff = 1.421(CFS) for 0.960(Ac.) Total runoff = 1.807(CFS) Total area = 1.20 (Ac.) End of computations, total study area = 1.200 (Ac.)

P:\4394.00\Engr\Reports\Drainage\HYDRO\EXISTING\S800E100\S800E100.out San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c)1991-2003 Version 6.3 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 09/24/19 CARMEL MOUNTAIN RANCH SYSTEM 800 - EXISTING CONDITION 100-YEAR STORM EVENT -D ******** Hydrology Study Control Information ********* Program License Serial Number 4049 Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used English (in) rainfall data used Standard intensity of Appendix I-B used for year and Elevation 0 - 1500 feet Factor (to multiply * intensity) = 1.000 Only used if inside City of San Diego San Diego hydrology manual 'C' values used Runoff coefficients by rational method Process from Point/Station 800.000 to Point/Station 801.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 1.000[RURAL(greater than 0.5 Ac, 0.2 ha) area type] Initial subarea flow distance = 120.000(Ft.) Highest elevation = 727.000(Ft.) Lowest elevation = 713.500 (Ft.) Elevation difference = 13.500(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 5.72 min. TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)] $TC = [1.8*(1.1-0.4500)*(120.000^{.5})/(11.250^{(1/3)}] = 5.72$ Rainfall intensity (I) = 4.158(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.450Subarea runoff = 0.243(CFS) Total initial stream area = 0.130(Ac.) Process from Point/Station 801.000 to Point/Station 802.000

Process from Point/Station 801.000 to Point/Station 802. **** IMPROVED CHANNEL TRAVEL TIME ****

Printed: 10/21/2019 9:46:27 AM AM

Printed: 10/21/2019 9:46:27 AM AM

10.225 (CFS)

10.80(Ac.)

10.800 (Ac.)

P:\4394.00\Engr\Reports\Drainage\HYDRO\EXISTING\S800E100\S800E100.out

Depth of flow = 0.271(Ft.), Average velocity = 3.626(Ft/s)

Rainfall intensity = 3.076(In/Hr) for a 100.0 year storm

Runoff coefficient used for sub-area, Rational method, Q=KCIA, C = 0.450

Upstream point elevation = 713.500 (Ft.)

Channel base width = 5.000(Ft.) Slope or 'Z' of left channel bank = 20.000

Maximum depth of channel = 2.000(Ft.)

Flow(q) thru subarea = 10.225(CFS)

Channel flow top width = 15.830(Ft.)

Time of concentration = 12.89 min.

Decimal fraction soil group D = 1.000

End of computations, total study area =

[RURAL(greater than 0.5 Ac, 0.2 ha) area type]

Subarea runoff = 14.770(CFS) for 10.670(Ac.) Total runoff = 15.013(CFS) Total area =

Critical depth = 0.336(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000

Manning's 'N' = 0.030

Flow Velocity = 3.63(Ft/s)

Travel time = 7.17 min.

Downstream point elevation = 630.000(Ft.) Channel length thru subarea = 1560.000(Ft.)

Slope or 'Z' of right channel bank = 20.000

Estimated mean flow rate at midpoint of channel =

P:\4394.00\Engr\Reports\Drainage\HYDRO\EXISTING\S900E100\S900E100.out

San Diego County Rational Hydrology Program

CIVILCADD/CIVILDESIGN Engineering Software, (c) 1991-2003 Version 6.3

Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 09/24/19

CARMEL MOUNTAIN RANCH SYSTEM 900 - EXISTING CONDITION 100-YEAR STORM EVENT

******** Hydrology Study Control Information *********

Program License Serial Number 4049

Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used English (in) rainfall data used

Standard intensity of Appendix I-B used for year and Elevation 0 - 1500 feet Factor (to multiply * intensity) = 1.000 Only used if inside City of San Diego San Diego hydrology manual 'C' values used Runoff coefficients by rational method

Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 1.000[RURAL(greater than 0.5 Ac, 0.2 ha) area type] Initial subarea flow distance - 85.000(Ft.) Highest elevation = 809.000(Ft.) Lowest elevation = 804.500(Ft.) Elevation difference = 4.500(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 6.19 min. $TC = [1.8*(1.1-C)*distance(Ft.)^{.5})/(% slope^{(1/3)}]$ $TC = [1.8*(1.1-0.4500)*(85.000^{-1.5})/(5.294^{-1.5})] = 6.19$ Rainfall intensity (I) = 4.032(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.450Subarea runoff = 0.218(CFS) Total initial stream area = 0.120(Ac.)

Printed: 10/21/2019 9:46:27 AM AM

Modified: 9/24/2019 2:44:06 PM PM Page 1 of 2

P:\4394.00\Engr\Reports\Drainage\HYDRO\EXISTING\S900E100\S900E100.out

Upstream point elevation = 804.500(Ft.) Downstream point elevation = 733.000(Ft.) Channel length thru subarea = 1400.000(Ft.) Channel base width = 5.000(Ft.) Slope or 'Z' of left channel bank = 20.000Slope or 'Z' of right channel bank = 20.000 Estimated mean flow rate at midpoint of channel = 9.289(CFS) Manning's 'N' = 0.030Maximum depth of channel = 2.000(Ft.) Flow(q) thru subarea = 9.289(CFS) Depth of flow = 0.261(Ft.), Average velocity = 3.474(Ft/s) Channel flow top width = 15.458(Ft.) Flow Velocity = 3.47(Ft/s) Travel time = 6.72 min. Time of concentration = 12.91 min. Critical depth = 0.318(Ft.) Adding area flow to channel User specified 'C' value of 0.540 given for subarea Subarea runoff = 16.603(CFS) for 10.000(Ac.) Total runoff = 16.821(CFS) Total area = 10.12(Ac.) End of computations, total study area = 10.120 (Ac.)

Land Use Type	Area (SF)	% of DMA	Land Use "C" Coefficient	Area-Weighted "C" Coefficient	
Parking Lot	102627	23.3%	0.85	0.543	
Pervious Area	338409	76.7%	0.45	0.545	
Total Area (SF)=	441036				
Total Area (AC)=	10.1				

Table 1: S900E100 Area Weighted Rational Method "C" Coefficient

P:\4394.00\Engr\Reports\Drainage\HY	DRO\EXISTING\S950E100\S950E100.out		P:\4394.00\Engr\Reports\Drainage\I	HYDRO\EXISTING\S950E100\S950E100.out	
San Diago Cour	nty Rational Hydrology Program		**** STREET FLOW TRAVEL TIME	+ SUBAREA FLOW ADDITION ****	
Sall Diego Cour	ity kational hydrology program	n,	Top of street segment elevat	ion = 802.000(Ft.)	
CIVILCADD/CIVILDESIGN Engineer	 A second contraction of the sec	csion 6.3	Top of street segment elevat End of street segment elevat Length of street segment =	255.000(Ft.)	
Rational method hydrology pro San Diego County Flood Control Rational Hydrology Stu	Division 1985 hydrology manu	Jal	Height of curb above gutter Width of half street (curb t Distance from crown to cross	o crown) = 10.000(Ft.) fall grade break = 9.990(Ft.)	
CARMEL MOUNTAIN RANCH SYSTEM 950 - EXISTING CONDITIC			Slope from gutter to grade b Slope from grade break to cr Street flow is on [2] side(s	own (v/hz) = 0.020	
100-YEAR STORM EVENT		->	Distance from curb to proper Slope from curb to property	ty line = 20.000(Ft.)	
			Gutter width = 0.000(Ft.) Gutter hike from flowline =	2.000(In.)	
******** Hydrology Study (Control Information *********	•	Manning's N in gutter = 0. Manning's N from gutter to	0150 grade break = 0.0150	
			Manning's N from grade brea Estimated mean flow rate at r	midpoint of street = 1.962(C	
rogram License Serial Number			Streetflow hydraulics at mid Halfstreet flow width = 5.	611(Ft.))
Rational hydrology study storm Inglish (in-lb) input data Uni English (in) rainfall data use	ts used		Flow velocity = 3.12(Ft/s) Travel time = 1.36 min. Adding area flow to street Decimal fraction soil group	TC = 6.36 min.	
Standard intensity of Appendix	I-B used for year and		Decimal fraction soil group Decimal fraction soil group	B = 0.000 C = 0.000	
Elevation 0 - 1500 feet Factor (to multiply * intensit			Decimal fraction soil group [[COMMERCIAL area type	D = 1.000] 988(In/Hr) for a 100.0 year sto	
nly used if inside City of Sa an Diego hydrology manual 'C' unoff coefficients by rationa	values used		Rainfall intensity = 3. Runoff coefficient used for Subarea runoff = 2.136(Total runoff = 2.849(CF	sub-area, Rational method, Q=KCIA,	C = 0.850
++++++++++++++++++++++++++++++++++++++	950.000 to Point/Station		Street flow at end of street Half street flow at end of s Depth of flow = 0.296(Ft.) Flow width (from curb toward	= 2.849(CFS) treet = 1.425(CFS) , Average velocity = 3.432(Ft/s s crown) = 6.443(Ft.))
Decimal fraction soil group A Decimal fraction soil group B	= 0.000		End of computations, total s	tudy area = 0.810 (Ac.)	
Decimal fraction soil group C Decimal fraction soil group D [COMMERCIAL area type	= 1.000				
Note: user entry of impervious Initial subarea flow distance	s value, Ap = 0.850 = 120.000(Ft.)				
Highest elevation = 808.000(F Lowest elevation = 802.000(Ft					
Elevation difference = 6.00	00(Ft.)				
Time of concentration calculat areas overland flow method (Ap	pp X-C) = 2.27 min.				
TC = [1.8*(1.1-C)*distance(Ft.TC = [1.8*(1.1-0.9031)*(120.00)])^.5)/(% slope^(1/3)])00^.5)/(5.000^(1/3)]= 2.	.27			
Setting time of concentration	to 5 minutes				
Rainfall intensity (I) = Effective runoff coefficient u	used for area (Q=KCIA) is C =				
Subarea runoff = 0.713(CE Total initial stream area =	TS)				
+++++++++++++++++++++++++++++++++++++++					
Process from Point/Station	931.000 to Point/Station	952.000			
nted: 10/21/2019 9:46:27 AM AM	Modified: 9/24/2019 3:29:46 PM PM	Page 1 of 2	Printed: 10/21/2019 9:46:27 AM AM	Modified: 9/24/2019 3:29:46 PM PM	Page 2 of 2

-D

P:\4394.00\Engr\Reports\Drainage\HYDRO\EXISTING\S1100E100\S1100E100.out

San Diego County Rational Hydrology Program

CIVILCADD/CIVILDESIGN Engineering Software, (c) 1991-2003 Version 6.3

Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 09/27/19

CARMEL MOUNTAIN RANCH SYSTEM 1100 - EXISTING CONDITION 100-YEAR STORM EVENT EXISTING CONDITION

******** Hydrology Study Control Information **********

Program License Serial Number 4049

Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used English (in) rainfall data used

Standard intensity of Appendix I-B used for year and Elevation 0 - 1500 feet Factor (to multiply * intensity) = 1.000 Only used if inside City of San Diego San Diego hydrology manual 'C' values used Runoff coefficients by rational method

Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000Decimal fraction soil group D = 1.000[RURAL(greater than 0.5 Ac, 0.2 ha) area type] Initial subarea flow distance = 155.000(Ft.) Highest elevation = 784.000(Ft.) Lowest elevation = 757.000(Ft.) Elevation difference = 27.000(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 5.62 min. $TC = [1.8*(1.1-C)*distance(Ft.)^{.5})/(% slope^{(1/3)}]$ $TC = [1.8*(1.1-0.4500)*(155.000^{-1}.5)/(17.419^{-1}.41$ Rainfall intensity (I) = 4.187(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.4500.678(CFS) Subarea runoff = Total initial stream area = 0.360(Ac.)

Upstream point elevation = 757.000(Ft.)

Printed: 10/21/2019 9:46:27 AM AM

Modified: 9/27/2019 9:33:10 AM AM Page 1 of 4

P:\4394.00\Engr\Reports\Drainage\HYDRO\EXISTING\S1100E100\S1100E100.out

Downstream point elevation = 641.000(Ft.) Channel length thru subarea = 1645.000(Ft.) Channel base width = 5.000(Ft.) Slope or 'Z' of left channel bank = 25.000 Slope or 'Z' of right channel bank = 25.000 Estimated mean flow rate at midpoint of channel = 11.654 (CFS) Manning's 'N' = 0.030Maximum depth of channel = 2.000(Ft.) Flow(q) thru subarea = 11.654 (CFS) Depth of flow = 0.258(Ft.), Average velocity = 3.953(Ft/s) Channel flow top width = 17.883(Ft.) Flow Velocity = 3.95(Ft/s) Travel time = 6.94 min. Time of concentration = 12.55 min. Critical depth = 0.336(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 1.000 [RURAL(greater than 0.5 Ac, 0.2 ha) area type] Rainfall intensity = 3.106(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method, Q=KCIA, C = 0.450 Subarea runoff = 16.284(CFS) for 11.650(Ac.) Total runoff = 16.963(CFS) Total area = 12.01(Ac.) Process from Point/Station 1001.000 to Point/Station 1002.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 12.010(Ac.) Runoff from this stream = 16.963 (CFS) Time of concentration = 12.55 min. Rainfall intensity = 3.106(In/Hr) Process from Point/Station 1003.000 to Point/Station 1004.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 1.000[RURAL(greater than 0.5 Ac, 0.2 ha) area type] Initial subarea flow distance = 100.000(Ft.) Highest elevation = 679.000(Ft.) Lowest elevation = 663.000(Ft.) Elevation difference = 16.000(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 4.64 min. TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)] $TC = [1.8*(1.1-0.4500)*(100.000^{.5})/(16.000^{(1/3)}] = 4.64$ Setting time of concentration to 5 minutes

Rainfall intensity (I) = 4.389(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.450 Subarea runoff = 0.257(CFS)Total initial stream area = 0.130(Ac.)

Printed: 10/21/2019 9:46:27 AM AM

P:\4394.00\Engr\Reports\Drainage\HYDRO\EXISTING\S1100E100\S1100E100.out

Upstream point elevation = 663.000(Ft.) Downstream point elevation = 654.000(Ft.) Channel length thru subarea = 380.000(Ft.) Channel base width = 5.000 (Ft.) Slope or 'Z' of left channel bank = 20.000 Slope or 'Z' of right channel bank = 20.000 Estimated mean flow rate at midpoint of channel = 3.012 (CFS) Manning's 'N' = 0.030Maximum depth of channel = 2.000(Ft.) Flow(q) thru subarea = 3.012(CFS) Depth of flow - 0.181(Ft.), Average velocity = 1.930(Ft/s) Channel flow top width = 12.241 (Ft.) Flow Velocity = 1.93(Ft/s) Travel time = 3.28 min. Time of concentration = 8.28 min. Critical depth = 0.176(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 1.000 [RURAL(greater than 0.5 Ac, 0.2 ha) area type] Rainfall intensity = 3.613(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method, Q=KCIA, C = 0.450 Subarea runoff = 4.537 (CFS) for 2.790 (Ac.) Total runoff = 4.793(CFS) Total area = 2.92(Ac.)

Upstream point elevation = 654.000 (Ft.)Downstream point elevation = 642.000 (Ft.)Channel length thru subarea = 480.000 (Ft.)Channel base width = 4.000 (Ft.)Slope or 'Z' of left channel bank = 20.000Slope or 'Z' of right channel bank = 20.000Manning's 'N' = 0.030Maximum depth of channel = 2.000 (Ft.)Flow(q) thru subarea = 4.793 (CFS)Depth of flow = 0.240 (Ft.), Average velocity = 2.264 (Ft/s)Channel flow top width = 13.617 (Ft.)Flow Velocity = 2.26 (Ft/s)Travel time = 3.53 min. Time of concentration = 11.82 min. Critical depth = 0.242 (Ft.)

Along Main Stream number: 1 in normal stream number 2 Stream flow area = 2.920(Ac.) Runoff from this stream = 4.793(CFS) Time of concentration = 11.82 min. Rainfall intensity = 3.176(In/Hr)

Printed: 10/21/2019 9:46:27 AM AM

P:\4394.00\Engr\Reports\Drainage\HYDRO\EXISTING\S1100E100\S1100E100.out

Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 16.963 12.55 3.106 2 4.793 11.82 3.176 Qmax(1) =1.000 * 1.000 * 16.963) +0.978 * 1.000 * 4.793) + =21.651 Omax(2) =1.000 * 0.941 * 16.963) +1.000 * 1.000 * 4.793) + =20.758 Total of 2 streams to confluence: Flow rates before confluence point: 16.963 4.793 Maximum flow rates at confluence using above data: 21.651 20.758 Area of streams before confluence: 12.010 2.920 Results of confluence: Total flow rate = 21.651(CFS) Time of concentration = 12.555 min. Effective stream area after confluence = 14.930(Ac.) End of computations, total study area = 14.930 (Ac.)

P:\4394.00\Engr\Reports\Drainage\HYDRO\EXISTING\S1300E100\S1300E100.out

San Diego County Rational Hydrology Program

CIVILCADD/CIVILDESIGN Engineering Software, (c) 1991-2003 Version 6.3

Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 01/28/20

CARMEL MOUNTAIN RANCH SYSTEM 1300 - EXISTING CONDITIONS 100-YEAR STORM EVENT

******* Hydrology Study Control Information *********

Program License Serial Number 4049

Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used English (in) rainfall data used

Standard intensity of Appendix I-B used for year and Elevation 0 - 1500 feet Factor (to multiply * intensity) = 1.000 Only used if inside City of San Diego San Diego hydrology manual 'C' values used Runoff coefficients by rational method

Decimal fraction soil group A = 0.000Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 1.000[RURAL(greater than 0.5 Ac, 0.2 ha) area type] Initial subarea flow distance = 81.000(Ft.) Highest elevation = 586.000(Ft.) Lowest elevation = 579.000(Ft.) Elevation difference = 7.000(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 5.13 min. $TC = [1.8*(1.1-C)*distance(Ft.)^{.5})/(% slope^{(1/3)}]$ $TC = [1.8*(1.1-0.4500)*(81.000^{.5})/(8.642^{(1/3)}] = 5.13$ Rainfall intensity (I) = 4.343(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.450Subarea runoff = 0.371 (CFS) Total initial stream area = 0.190(Ac.)

Printed: 1/28/2020 9:50:54 AM AM

Modified: 1/28/2020 8:42:35 AM AM Page 1 of 2

P:\4394.00\Engr\Reports\Drainage\HYDRO\EXISTING\S1300E100\S1300E100.out

Upstream point elevation = 579.000(Ft.) Downstream point elevation = 577.000(Ft.) Channel length thru subarea = 143.000(Ft.) Channel base width = 5.000(Ft.) Slope or 'Z' of left channel bank = 25.000 Slope or 'Z' of right channel bank = 25.000 Estimated mean flow rate at midpoint of channel = 1.427 (CFS) Manning's 'N' = 0.030Maximum depth of channel = 2.000(Ft.) Flow(q) thru subarea = 1.427(CFS) Depth of flow = 0.137(Ft.), Average velocity = 1.239(Ft/s) Channel flow top width = 11.840 (Ft.) Flow Velocity = 1.24 (Ft/s) Travel time = 1.92 min. Time of concentration = 7.06 min. Critical depth = 0.112(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000Decimal fraction soil group D = 1.000 [RURAL(greater than 0.5 Ac, 0.2 ha) area type] Rainfall intensity = 3.835(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method, Q=KCIA, C = 0.450 Subarea runoff = 1.864(CFS) for 1.080(Ac.) Total runoff = 2.235(CFS) Total area = 1.27 (Ac.) End of computations, total study area = 1.270 (Ac.)

P:\4394.00\Engr\Reports\Drainage\HYDRO\EXISTING\S1500E100\S1500E100.out

San Diego County Rational Hydrology Program

CIVILCADD/CIVILDESIGN Engineering Software, (c) 1991-2003 Version 6.3

Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 01/28/20

CARMEL MOUNTAIN RANCH SYSTEM 1500 - EXISTING CONDITIONS 100-YEAR STORM EVENT

5

******** Hydrology Study Control Information *********

Program License Serial Number 4049

Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used English (in) rainfall data used

Standard intensity of Appendix I-B used for year and Elevation 0 - 1500 feet Factor (to multiply * intensity) = 1.000 Only used if inside City of San Diego San Diego hydrology manual 'C' values used Runoff coefficients by rational method

Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [RURAL(greater than 0.5 Ac, 0.2 ha) area type] Initial subarea flow distance = 77.000(Ft.) Highest elevation = 647.000(Ft.) Lowest elevation = 644.000(Ft.) Elevation difference = 3.000(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 6.52 min. $TC = [1.8*(1.1-C)*distance(Ft.)^{.5})/(% slope^{(1/3)}]$ $TC = [1.8*(1.1-0.4500)*(77.000^{-1.5})/(3.896^{-1.5})] = 6.52$ Rainfall intensity (I) = 3.951(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.450Subarea runoff = 0.427 (CFS) Total initial stream area = 0.240 (Ac.)

Printed: 1/28/2020 9:50:54 AM AM

Modified: 1/28/2020 8:30:07 AM AM Page 1 of 2

P:\4394.00\Engr\Reports\Drainage\HYDRO\EXISTING\S1500E100\S1500E100.out

Upstream point elevation = 644.000 (Ft.) Downstream point elevation = 620.000 (Ft.) Channel length thru subarea = 480.000(Ft.) Channel base width = 5.000(Ft.) Slope or 'Z' of left channel bank = 25.000 Slope or 'Z' of right channel bank = 25.000 Estimated mean flow rate at midpoint of channel = 3.129(CFS) Manning's 'N' = 0.030 Maximum depth of channel = 2.000(Ft.) Flow(q) thru subarea = 3.129(CFS) Depth of flow = 0.148(Ft.), Average velocity = 2.442(Ft/s) Channel flow top width = 12.375(Ft.) Flow Velocity = 2.44 (Ft/s) Travel time = 3.28 min. Time of concentration = 9.80 min. Critical depth = 0.172(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 1.000[RURAL(greater than 0.5 Ac, 0.2 ha) area type] Rainfall intensity = 3.399(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method, Q=KCIA, C = 0.450 4.649(CFS) for 3.040(Ac.) Subarea runoff = Total runoff = 5.076(CFS) Total area = 3.28 (Ac.) End of computations, total study area = 3.280 (Ac.)

P:\4394.00\Engr\Reports\Drainage\HYDRO\EXISTING\S1600E100\S1600E100.out San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1991-2003 Version 6.3 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 09/17/19 CARMEL MOUNTAIN RANCH SYSTEM 1600 - EXISTING CONDITIONS 100-YEAR STORM EVENT ******* Hydrology Study Control Information ********* Program License Serial Number 4049 Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used English (in) rainfall data used Total runoff = Standard intensity of Appendix I-B used for year and Elevation 0 - 1500 feet Factor (to multiply * intensity) = 1.000 Only used if inside City of San Diego San Diego hydrology manual 'C' values used Runoff coefficients by rational method Process from Point/Station 1600.000 to Point/Station 1601.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 1.000[RURAL(greater than 0.5 Ac, 0.2 ha) area type] Initial subarea flow distance = 105.000(Ft.) Highest elevation = 667.000(Ft.) Lowest elevation = 659.000(Ft.) Critical depth = Elevation difference = 8.000(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 6.09 min. TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)] $TC = [1.8*(1.1-0.4500)*(105.000^{.5})/(7.619^{(1/3)}] = 6.09$ Rainfall intensity (I) = 4.056(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.450Along Main Stream number: 1 in normal stream number 1 Subarea runoff = 0.602(CFS) Stream flow area = 2.520 (Ac.) Total initial stream area = 0.330(Ac.) Runoff from this stream = Time of concentration = 10.45 min. Rainfall intensity = 3.321(In/Hr) Process from Point/Station 1601.000 to Point/Station 1602.000 **** IMPROVED CHANNEL TRAVEL TIME **** Printed: 10/21/2019 9:46:27 AM AM Printed: 10/21/2019 9:46:27 AM AM

P:\4394.00\Engr\Reports\Drainage\HYDRO\EXISTING\S1600E100\S1600E100.out Upstream point elevation = 659.000(Ft.) Downstream point elevation = 652.600(Ft.) Channel length thru subarea = 190.000(Ft.) Channel base width = 5.000 (Ft.) Slope or 'Z' of left channel bank = 20.000 Slope or 'Z' of right channel bank = 20.000 Estimated mean flow rate at midpoint of channel = 2.601 (CFS) Manning's 'N' = 0.030Maximum depth of channel = 2.000(Ft.) Flow(q) thru subarea = 2.601(CFS) Depth of flow = 0.153(Ft.), Average velocity = 2.101(Ft/s) Channel flow top width = 11.138 (Ft.) Flow Velocity = 2.10(Ft/s) Travel time = 1.51 min. Time of concentration - 7.60 min. Critical depth = 0.162 (Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 1.000[RURAL(greater than 0.5 Ac, 0.2 ha) area type] Rainfall intensity = 3.730(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method, Q=KCIA, C = 0.450 Subarea runoff = 3.676 (CFS) for 2.190 (Ac.) 4.278(CFS) Total area = 2.52(Ac.) Process from Point/Station 1602.000 to Point/Station 1603.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 652.600(Ft.) Downstream point elevation = 620.000(Ft.) Channel length thru subarea = 670.000 (Ft.) Channel base width = 4.000(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Manning's 'N' = 0.030Maximum depth of channel = 2.000(Ft.) 4.278 (CFS) Flow(q) thru subarea = Depth of flow = 0.243(Ft.), Average velocity = 3.917(Ft/s) Channel flow top width = 4.974 (Ft.) Flow Velocity = 3.92(Ft/s) Travel time = 2.85 min. Time of concentration = 10.45 min. 0.313(Ft.) Process from Point/Station 1602.000 to Point/Station 1603.000 **** CONFLUENCE OF MINOR STREAMS ****

4.278 (CFS)

Process from Point/Station 1604.000 to Point/Station

Modified: 9/17/2019 8:12:52 AM AM Page 2 of 4

1605.000

P:\4394.00\Engr\Reports\Drainage\HYDRO\EXISTING\S1600E100\S1600E100.out

**** INITIAL AREA EVALUATION ****

Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C - 0.000 Decimal fraction soil group D = 1.000 [RURAL(greater than 0.5 Ac, 0.2 ha) area type] Initial subarea flow distance = 96.000(Ft.) Highest elevation = 659.000(Ft.) Lowest elevation = 657.500 (Ft.) Elevation difference = 1.500 (Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 9.88 min. $TC = [1.8*(1.1-C)*distance(Ft.)^{.5})/(% slope^{(1/3)}]$ $TC = [1.8*(1.1-0.4500)*(96.000^{.5})/(1.563^{(1/3)}] = 9.88$ Rainfall intensity (I) = 3.389(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.450Subarea runoff = 0.397 (CFS) Total initial stream area = 0.260 (Ac.)

Upstream point elevation = 657.500(Ft.) Downstream point elevation = 634.000(Ft.) Channel length thru subarea = 500.000(Ft.) Channel base width = 5.000(Ft.) Slope or 'Z' of left channel bank = 25.000 Slope or 'Z' of right channel bank = 25.000 Estimated mean flow rate at midpoint of channel = 2.661 (CFS) Manning's 'N' = 0.030Maximum depth of channel = 2.000(Ft.) Flow(q) thru subarea = 2.661 (CFS) Depth of flow = 0.138(Ft.), Average velocity = 2.282(Ft/s) Channel flow top width = 11.901(Ft.) Flow Velocity = 2.28(Ft/s) Travel time = 3.65 min. Time of concentration = 13.53 min. Critical depth = 0.158(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 1.000 [RURAL(greater than 0.5 Ac, 0.2 ha) area type] Rainfall intensity = 3.021(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method, Q=KCIA, C = 0.450 Subarea runoff = 4.038(CFS) for 2.970(Ac.) Total runoff = 4.434(CFS) Total area = 3.23(Ac.)

Along Main Stream number: 1 in normal stream number 2 Stream flow area = 3.230 (Ac.) Runoff from this stream = 4.434 (CFS) Time of concentration = 13.53 min. Rainfall intensity = 3.021 (In/Hr)

Printed: 10/21/2019 9:46:27 AM AM

Summary	of stream c	lata:		
Stream	Flow rate	TC	Rainfal	ll Intensity
No.	(CFS)	(min)		(In/Hr)
1 2	4.278	10.45	3.32	21
2	4.434	13.53	3.02	21
Qmax(1)	=			
	1.000 *	1.000 *	4.278) +	
	1.000 *	0.772 *	4.434) + =	7.703
Qmax(2)				
		1.000 *		
	1.000 *	1.000 *	4.434) + =	8.326
Flow ra		to confluence confluence po: 4.434		
Maximum	flow rates 7.703		e using above	data:
Area of	streams bef 2.520	ore confluend 3.230	ce:	
Results	of confluen	ice:		
Total f	low rate =	8.326 (CFS	5)	
Time of	concentrati	on = 13.5.	31 min.	
Effecti	ve stream ar	ea after cont	fluence =	5.750 (Ac.)
End of	computations	, total study	/ area =	5.750 (Ac.)

P:\4394.00\Engr\Reports\Drainage\HYDRO\EXISTING\S1600E100\S1600E100.out

P:\4394.00\Engr\Reports\Drainage\HYDRO\EXISTING\S1750E100\S1750E100.out

San Diego County Rational Hydrology Program

CIVILCADD/CIVILDESIGN Engineering Software, (c) 1991-2003 Version 6.3

Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 01/28/20

CARMEL MOUNTAIN RANCH SYSTEM 1750 - EXISTING CONDITIONS 100-YEAR STORM EVENT

V

******** Hydrology Study Control Information *********

Program License Serial Number 4049

Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used English (in) rainfall data used

Standard intensity of Appendix I-B used for year and Elevation 0 - 1500 feet Factor (to multiply * intensity) = 1.000 Only used if inside City of San Diego San Diego hydrology manual 'C' values used Runoff coefficients by rational method

Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 1.000[RURAL(greater than 0.5 Ac, 0.2 ha) area type] Initial subarea flow distance = 90.000(Ft.) Highest elevation = 701.000(Ft.) Lowest elevation = 700.000(Ft.) Elevation difference = 1.000(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 10.72 min. $TC = [1.8*(1.1-C)*distance(Ft.)^{.5})/(% slope^{(1/3)}]$ $TC = [1.8*(1.1-0.4500)*(90.000^{.5})/(1.111^{(1/3)}] = 10.72$ Rainfall intensity (I) = 3.291(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.450Subarea runoff = 0.237 (CFS) Total initial stream area = 0.160(Ac.)

Printed: 1/28/2020 9:50:54 AM AM

P:\4394.00\Engr\Reports\Drainage\HYDRO\EXISTING\S1750E100\S1750E100.out

Upstream point elevation = 700.000(Ft.) Downstream point elevation = 693.000 (Ft.) Channel length thru subarea = 68.000(Ft.) Channel base width = 4.000 (Ft.) Slope or 'Z' of left channel bank = 25.000 Slope or 'Z' of right channel bank = 25.000 Estimated mean flow rate at midpoint of channel = 0.437 (CES) Manning's 'N' = 0.030Maximum depth of channel = 2.000(Ft.) Flow(q) thru subarea = 0.437(CFS) Depth of flow = 0.047 (Ft.), Average velocity = 1.802 (Ft/s) Channel flow top width = 6.343(Ft.) Flow Velocity = 1.80(Ft/s) Travel time = 0.63 min. Time of concentration = 11.35 min. Critical depth = 0.063(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 1.000 [RURAL(greater than 0.5 Ac, 0.2 ha) area type] Rainfall intensity = 3.223(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method, Q=KCIA, C = 0.450 Subarea runoff = 0.392 (CFS) for 0.270 (Ac.) Total runoff = 0.629(CFS) Total area = 0.43(Ac.) End of computations, total study area -0.430 (Ac.)

P:\4394.00\Engr\Reports\Drainage\HYDRO\EXISTING\S1800E100\S1800E100.out P:\4394.00\Engr\Reports\Drainage\HYDRO\EXISTING\S1800E100\S1800E100.out Upstream point elevation = 801.000(Ft.) San Diego County Rational Hydrology Program Downstream point elevation = 680.000(Ft.) Channel length thru subarea = 1300.000(Ft.) Channel base width = 5.000(Ft.) CIVILCADD/CIVILDESIGN Engineering Software, (c) 1991-2003 Version 6.3 Slope or 'Z' of left channel bank = 20.000 Rational method hydrology program based on Slope or 'Z' of right channel bank = 20.000 San Diego County Flood Control Division 1985 hydrology manual Estimated mean flow rate at midpoint of channel = 6.615(CFS) Rational Hydrology Study Date: 04/01/20 Manning's 'N' = 0.030_____ Maximum depth of channel = 2.000(Ft.) CARMEL MOUNTAIN RANCH Flow(q) thru subarea = 6.615(CFS) Depth of flow = 0.191(Ft.), Average velocity = 3.937(Ft/s) SYSTEM 1800 - EXISTING CONDITION 100-YEAR STORM EVENT Channel flow top width = 12.626(Ft.) Flow Velocity = 3.94(Ft/s) Travel time = 5.50 min. -D Time of concentration = 11.62 min. ******* Hydrology Study Control Information ******** Critical depth = 0.268(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Program License Serial Number 4049 Decimal fraction soil group D = 1.000 [RURAL(greater than 0.5 Ac, 0.2 ha) area type] Rainfall intensity = 3.195(In/Hr) for a 100.0 year storm Rational hydrology study storm event year is 100.0 Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.450 English (in-lb) input data Units used Subarea runoff = 9.806(CFS) for 6.820(Ac.) English (in) rainfall data used Total runoff = 10.207(CFS) Total area = 7.04(Ac.) Standard intensity of Appendix I-B used for year and Elevation 0 - 1500 feet Factor (to multiply * intensity) = 1.000 Process from Point/Station 1803.000 to Point/Station 1802.000 Only used if inside City of San Diego **** SUBAREA FLOW ADDITION **** San Diego hydrology manual 'C' values used Runoff coefficients by rational method Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 1.000Process from Point/Station 1800.000 to Point/Station 1801.000 [RURAL(greater than 0.5 Ac, 0.2 ha) area type] **** INITIAL AREA EVALUATION **** Time of concentration = 11.62 min. Rainfall intensity = 3.195(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000Runoff coefficient used for sub-area, Rational method, Q=KCIA, C = 0.450 Decimal fraction soil group B = 0.000Subarea runoff = 8.009(CFS) for 5.570(Ac.) Decimal fraction soil group C = 0.000Total runoff = 18.215(CFS) Total area = 12.61(Ac.) Decimal fraction soil group D = 1.000End of computations, total study area = 12.610 (Ac.) [RURAL(greater than 0.5 Ac, 0.2 ha) area type] Initial subarea flow distance = 80.000(Ft.) Highest elevation = 805.000(Ft.) Lowest elevation = 801.000(Ft.) Elevation difference = 4.000(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 6.12 min. TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)] TC = [1.8*(1.1-0.4500)*(80.000^.5)/(5.000^(1/3)] = 6.12 Rainfall intensity (I) = 4.049(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.450Subarea runoff = 0.401(CFS) Total initial stream area = 0.220(Ac.) Process from Point/Station 1801.000 to Point/Station 1802.000 **** IMPROVED CHANNEL TRAVEL TIME **** Printed: 4/1/2020 5:22:29 PM PM Printed: 4/1/2020 5:22:29 PM PM Modified: 4/1/2020 5:11:05 PM PM Modified: 4/1/2020 5:11:05 PM PM Page 2 of 2 Page 1 of 2

P:\4394.00\Engr\Reports\Drainage\HYDRO\EXISTING\S1850E100\S1850E100.out

San Diego County Rational Hydrology Program

CIVILCADD/CIVILDESIGN Engineering Software, (c) 1991-2003 Version 6.3

Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 09/24/19

CARMEL MOUNTAIN RANCH SYSTEM 1850 - EXISTING CONDITION 100-YEAR STORM EVENT

-D

******** Hydrology Study Control Information *********

Program License Serial Number 4049

Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used English (in) rainfall data used

Standard intensity of Appendix I-B used for year and Elevation 0 - 1500 feet Factor (to multiply * intensity) - 1.000 Only used if inside City of San Diego San Diego hydrology manual 'C' values used Runoff coefficients by rational method

Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000Decimal fraction soil group D = 1.000 [RURAL(greater than 0.5 Ac, 0.2 ha) area type] Initial subarea flow distance = 86.000(Ft.) Highest elevation = 794.000(Ft.) Lowest elevation = 791.000(Ft.) Elevation difference = 3.000(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 7.15 min. $TC = [1.8*(1.1-C)*distance(Ft.)^{.5})/(% slope^{(1/3)}]$ $TC = [1.8*(1.1-0.4500)*(86.000^{-1.5})/(3.488^{-1.5})] = 7.15$ Rainfall intensity (I) = 3.815(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.450Subarea runoff = 0.206(CFS) Total initial stream area = 0.120(Ac.)

Printed: 10/21/2019 9:46:27 AM AM

Modified: 9/24/2019 3:24:22 PM PM Page 1 of 2

P:\4394.00\Engr\Reports\Drainage\HYDRO\EXISTING\S1850E100\S1850E100.out

Upstream point elevation = 791.000(Ft.) Downstream point elevation = 781.000 (Ft.) Channel length thru subarea = 135.000(Ft.) Channel base width = 5.000 (Ft.) Slope or 'Z' of left channel bank = 20.000 Slope or 'Z' of right channel bank = 20.000 Estimated mean flow rate at midpoint of channel = 0.918(CFS) Manning's 'N' = 0.030Maximum depth of channel = 2.000(Ft.) Flow(q) thru subarea = 0.918(CFS) Depth of flow = 0.071(Ft.), Average velocity = 2.020(Ft/s) Channel flow top width = 7.834 (Ft.) Flow Velocity = 2.02(Ft/s) Travel time = 1.11 min. Time of concentration = 8.27 min. Critical depth = 0.090(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 1.000 [RURAL(greater than 0.5 Ac, 0.2 ha) area type] Rainfall intensity = 3.616(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method, Q=KCIA, C = 0.450Subarea runoff = 1.350(CFS) for 0.830(Ac.) Total runoff = 1.556(CFS) Total area = 0.95(Ac.) End of computations, total study area = 0.950 (Ac.)

APPENDIX 3

Proposed Conditions 100-year Rational Method Computer Output

P:\4394.00\Engr\Reports\Drainage\HYDRO\PROPOSED\S1000P100\S1000P100.out

San Diego County Rational Hydrology Program

CIVILCADD/CIVILDESIGN Engineering Software, (c) 1991-2003 Version 6.3

Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 10/01/19

CARMEL MOUNTAIN RANCH

SYSTEM 1000 - PROPOSED CONDITION 100-YEAR STORM EVENT

>

******* Hydrology Study Control Information *********

Program License Serial Number 4049

Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used English (in) rainfall data used

Standard intensity of Appendix I-B used for year and Elevation 0 - 1500 feet Factor (to multiply * intensity) = 1.000 Only used if inside City of San Diego San Diego hydrology manual 'C' values used Runoff coefficients by rational method

User specified 'C' value of 0.850 given for subarea Initial subarea flow distance = 83.000 (Ft.) Highest elevation = 792.000 (Ft.) Lowest elevation = 776.500 (Ft.) Elevation difference = 15.500 (Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.55 min. TC = $[1.8*(1.1-C)*distance(Ft.)^{.5}/($ slope^{(1/3)}]$ TC = $[1.8*(1.1-0.8500)*(83.000^{.5})/(18.675^{(1/3)}]= 1.55$ Setting time of concentration to 5 minutes Rainfall intensity (I) = 4.389(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850Subarea runoff = 0.672 (CFS) Total initial stream area = 0.180 (Ac.)

Upstream point elevation = 776.500(Ft.) Downstream point elevation = 730.000(Ft.) Channel length thru subarea = 770.000(Ft.)

Printed: 10/21/2019 10:08:37 AM AM

Modified: 10/1/2019 2:44:44 PM PM Page 1 of 2

P:\4394.00\Engr\Reports\Drainage\HYDRO\PROPOSED\S1000P100\S1000P100.out

Channel base width = 5.000(Ft.) Slope or 'Z' of left channel bank = 20.000 Slope or 'Z' of right channel bank = 20.000 Estimated mean flow rate at midpoint of channel = 12.460 (CFS) Manning's 'N' = 0.015Maximum depth of channel = 2.000 (Ft Flow(q) thru subarea = 12.460 (CFS) 2.000(Ft.) Depth of flow = 0.206(Ft.), Average velocity = 6.623(Ft/s) Channel flow top width = 13.248(Ft.) Flow Velocity = 6.62 (Ft/s) Travel time = 1.94 min. Time of concentration = 6.94 min. Critical depth = 0.367(Ft.) Adding area flow to channel User specified 'C' value of 0.850 given for subarea Rainfall intensity = 3.859(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method, Q=KCIA, C = 0.850 Subarea runoff = 20.732(CFS) for 6.320(Ac.) Total runoff = 21.404(CFS) Total area = 6.50(Ac.)

User specified 'C' value of 0.450 given for subarea Time of concentration = 6.94 min. Rainfall intensity = 3.859(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method, Q=KCIA, C = 0.450 Subarea runoff = 2.622(CFS) for 1.510(Ac.) Total runoff = 24.026(CFS) Total area = 8.01(Ac.)

User specified 'C' value of 0.450 given for subarea Time of concentration = 6.94 min. Rainfall intensity = 3.859(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.450 Subarea runoff = 0.834(CFS) for 0.480(Ac.) Total runoff = 24.860(CFS) Total area = 8.49(Ac.) End of computations, total study area = 8.490 (Ac.)

Printed: 10/21/2019 10:08:37 AM AM

	Slope or 171 of left charged hash - 20 000
San Diego County Rational Hydrology Program	Slope or 'Z' of left channel bank = 20.000 Slope or 'Z' of right channel bank = 20.000 Estimated mean flow rate at midpoint of channel = 2.498(CFS)
VILCADD/CIVILDESIGN Engineering Software, (c)1991-2003 Version 6.3	Manning's 'N' = 0.030
tional method hydrology program based on n Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 10/07/19	Maximum depth of channel = 2.000(Ft.) Flow(q) thru subarea = 2.498(CFS) Depth of flow = 0.149(Ft.), Average velocity = 2.108(Ft/s) Channel flow top width = 10.947(Ft.)
RMEL MOUNTAIN RANCH	Flow Velocity = 2.11(Ft/s) Travel time = 3.72 min.
STEM 2000 - PROPOSED CONDITION 0-YEAR STORM EVENT →	Time of concentration = 10.80 min. Critical depth = 0.158(Ft.) Adding area flow to channel
****** Hydrology Study Control Information *********	User specified 'C' value of 0.450 given for subarea Rainfall intensity = 3.281(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0. Subarea runoff = 3.780(CFS) for 2.560(Ac.) Total runoff = 4.073(CFS) Total area = 2.73(Ac.)
ogram License Serial Number 4049	++++++++++++++++++++++++++++++++++++++
tional hydrology study storm event year is 100.0 glish (in-lb) input data Units used	Upstream point elevation = 690.000(Ft.)
glish (in) rainfall data used	Downstream point elevation = 620.000(Ft.)
andard interactive of Arrandive T. D. used for every and	Channel length thru subarea = 855.000(Ft.)
andard intensity of Appendix I-B used for year and evation 0 - 1500 feet	Channel base width = 5.000(Ft.) Slope or 'Z' of left channel bank = 20.000
ctor (to multiply * intensity) = 1.000	Slope or 'Z' of right channel bank = 20.000
ly used if inside City of San Diego	Estimated mean flow rate at midpoint of channel = 8.198(CFS)
n Diego hydrology manual 'C' values used noff coefficients by rational method	Manning's 'N' = 0.015 Maximum depth of channel = 2.000 (Ft.)
Holl coefficience by factorial method	Flow(q) thru subarea = 8.198 (CFS)
	Depth of flow = 0.154 (Ft.), Average velocity = 6.571 (Ft/s)
++++++++++++++++++++++++++++++++++++++	Channel flow top width = 11.172 (Ft.)
** INITIAL AREA EVALUATION ****	Flow Velocity = 6.57 (Ft/s) Travel time = 2.17 min.
	Time of concentration = 12.97 min.
er specified 'C' value of 0.450 given for subarea	Critical depth = 0.299(Ft.)
<pre>itial subarea flow distance = 100.000(Ft.) ghest elevation = 711.000(Ft.)</pre>	Adding area flow to channel User specified 'C' value of 0.850 given for subarea
west elevation = 706.500(Ft.)	Rainfall intensity = 3.069(In/Hr) for a 100.0 year storm
evation difference = 4.500 (Ft.)	Runoff coefficient used for sub-area, Rational method, $O=KCIA$, $C = 0$.
me of concentration calculated by the urban eas overland flow method (App X-C) = 7.09 min.	Subarea runoff = 14.425(CFS) for 5.530(Ac.) Total runoff = 18.498(CFS) Total area = 8.26(Ac.)
<pre>= [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)] = [1.8*(1.1-0.4500)*(100.000^.5)/(4.500^(1/3)] = 7.09</pre>	Total runoff = 18.498(CFS) Total area = 8.26(Ac.)
infall intensity (I) = 3.829(In/Hr) for a 100.0 year storm fective runoff coefficient used for area (Q-KCIA) is C = 0.450 barea runoff = 0.293(CFS)	++++++++++++++++++++++++++++++++++++++
tal initial stream area = 0.170(Ac.)	
	User specified 'C' value of 0.450 given for subarea
**********	Time of concentration = 12.97 min. Rainfall intensity = 3.069(In/Hr) for a 100.0 year storm
ocess from Point/Station 2001.000 to Point/Station 2002.000 ** IMPROVED CHANNEL TRAVEL TIME ****	Runoff coefficient used for sub-area, Rational method, Q=KCIA, C = 0. Subarea runoff = 0.525(CFS) for 0.380(Ac.) Total runoff = 19.023(CFS) Total area = 8.64(Ac.)
stream point elevation = 706.500(Ft.)	End of computations, total study area = 8.640 (Ac.)
<pre>wnstream point elevation = 690.000(Ft.) annel length thru subarea = 470.000(Ft.) annel base width = 5.000(Ft.)</pre>	

-D

P:\4394.00\Engr\Reports\Drainage\HYDRO\PROPOSED\S5000P100\S5000P100.out	P:\4394.00\Engr\Reports\Drainage\HYDRO\PROPOSED\S5000P100\S5000P100.out
San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c)1991-2003 Version 6.3 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 09/19/19	Channel base width = 5.000(Ft.) Slope or 'Z' of left channel bank = 20.000 Slope or 'Z' of right channel bank = 20.000 Estimated mean flow rate at midpoint of channel = 4.794(CFS) Manning's 'N' = 0.015 Maximum depth of channel = 2.000(Ft.) Flow(q) thru subarea = 4.794(CFS) Depth of flow = 0.152(Ft.), Average velocity = 3.931(Ft/s) Channel flow top width = 11.070(Ft.) Flow Velocity = 3.93(Ft/s)
SYSTEM 5000 - PROPOSED CONDITION 100-YEAR STORM EVENT →	Flow Velocity = 3.93(Ft/s) Travel time = 1.42 min. Time of concentration = 6.42 min. Critical depth = 0.227(Ft.) Adding area flow to channel
******** Hydrology Study Control Information **********	User specified 'C' value of 0.850 given for subarea Rainfall intensity = 3.975(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.85 Subarea runoff = 7.129(CFS) for 2.110(Ac.) Total runoff = 7.987(CFS) Total area = 2.34(Ac.)
Program License Serial Number 4049	

Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used English (in) rainfall data used	Process from Point/Station 5002.000 to Point/Station 5002.000 **** SUBAREA FLOW ADDITION **** User specified 'C' value of 0.450 given for subarea
Standard intensity of Appendix I-B used for year and Elevation 0 - 1500 feet Factor (to multiply * intensity) = 1.000 Only used if inside City of San Diego San Diego hydrology manual 'C' values used Runoff coefficients by rational method	Time of concentration = 6.42 min. Rainfall intensity = 3.975(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.45 Subarea runoff = 0.501(CFS) for 0.280(Ac.) Total runoff = 8.488(CFS) Total area = 2.62(Ac.) End of computations, total study area = 2.620 (Ac.)
++++++++++++++++++++++++++++++++++++++	
User specified 'C' value of 0.850 given for subarea Initial subarea flow distance = 88.000 (Ft.) Highest elevation = 560.000 (Ft.) Lowest elevation = 560.000 (Ft.) Elevation difference = 4.000 (Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 2.55 min. TC = $[1.8*(1.1-C)*distance(Ft.)^{.5})/($ % slope^ $(1/3)]$ TC = $[1.8*(1.1-C)*distance(Ft.)^{.5})/($ % slope^ $(1/3)]$ = 2.55 Setting time of concentration to 5 minutes Rainfall intensity (I) = $4.389(In/Hr)$ for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff = $0.858(CFS)$ Total initial stream area = $0.230(Ac.)$	
++++++++++++++++++++++++++++++++++++++	
Upstream point elevation = 560.000(Ft.) Downstream point elevation = 550.000(Ft.) Channel length thru subarea = 335.000(Ft.)	
inted: 10/21/2019 10:08:37 AM AM Modified: 9/19/2019 1:47:02 PM PM Page 1 of 2	Printed: 10/21/2019 10:08:37 AM AM Modified: 9/19/2019 1:47:02 PM PM Page 2 of 2

Þ

P:\4394.00\Engr\Reports\Drainage\HYDRO\PROPOSED\S6000P100\S6000P100.out	P:14394.00\Engr\Reports\Drainage\HYDRO\PROPOSED\S6000P100\S6000P100.out
San Diego County Rational Hydrology Program	Slope or 'Z' of left channel bank = 20.000 Slope or 'Z' of right channel bank = 20.000 Estimated mean flow rate at midpoint of channel = 1.887(CFS)
CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2003 Version 6.3	Manning's 'N' = 0.030 Maximum depth of channel = 2.000 (Ft.)
Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 04/06/20	Flow(q) thru subarea = 1.887(CFS) Depth of flow = 0.093(Ft.), Average velocity = 2.977(Ft/s) Channel flow top width = 8.701(Ft.) Flow Velocity = 2.98(Ft/s)
CARMEL MOUNTAIN RANCH SYSTEM 6000 - PROPOSED CONDITION 100-YEAR STORM EVENT →	Travel time = 2.83 min. Travel time = 2.83 min. Time of concentration = 12.88 min. Critical depth = 0.136(Ft.) Adding area flow to channel User specified 'C' value of 0.450 given for subarea
******* Hydrology Study Control Information *********	Rainfall intensity = 3.077(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.450 Subarea runoff = 2.894(CFS) for 2.090(Ac.) Total runoff = 3.197(CFS) Total area = 2.29(Ac.)
Program License Serial Number 4049	++++++++++++++++++++++++++++++++++++++
Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used English (in) rainfall data used	Upstream point elevation = 615.000(Ft.) Downstream point elevation = 560.000(Ft.) Channel length thru subarea = 670.000(Ft.)
Standard intensity of Appendix I-B used for year and Elevation 0 - 1500 feet Factor (to multiply * intensity) = 1.000	Channel base width = 5.000(Ft.) Slope or 'Z' of left channel bank = 20.000 Slope or 'Z' of right channel bank = 20.000
Only used if inside City of San Diego San Diego hydrology manual 'C' values used Runoff coefficients by rational method	Estimated mean flow rate at midpoint of channel = $6.450(CFS)$ Manning's 'N' = 0.015 Maximum depth of channel = $2.000(Ft.)$ Flow(q) thru subarea = $6.450(CFS)$
Process from Point/Station 6000.000 to Point/Station 6001.000 **** INITIAL AREA EVALUATION ****	Depth of flow = 0.136(Ft.), Average velocity = 6.138(Ft/s) Channel flow top width = 10.443(Ft.) Flow Velocity = 6.14(Ft/s) Travel time = 1.82 min. Time of concentration = 14.70 min.
User specified 'C' value of 0.450 given for subarea Initial subarea flow distance = 110.000(Ft.) Highest elevation = 677.000(Ft.) Lowest elevation = 675.000(Ft.) Elevation difference = 2.000(Ft.)	Critical depth = 0.266(Ft.) Adding area flow to channel User specified 'C' value of 0.850 given for subarea Rainfall intensity = 2.928(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.850
Time of concentration calculated by the urban areas overland flow method (App X-C) = 10.05 min. TC = $[1.8*(1.1-C)*distance(Ft.)^{.5})/(\$ slope^{(1/3)}]$ TC = $[1.8*(1.1-0.4500)*(110.000^{.5})/(1.818^{(1/3)}] = 10.05$	Subarea runoff = 11.596 (CFS) for 4.660 (Ac.) Total runoff = 14.793 (CFS) Total area = 6.95 (Ac.)
Rainfall intensity (I) = 3.368 (In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.450 Subarea runoff = 0.303 (CFS) Total initial stream area = 0.200 (Ac.)	++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++	User specified 'C' value of 0.450 given for subarea Time of concentration = 14.70 min. Rainfall intensity = 2.928(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.450 Subarea runoff = 0.303(CFS) for 0.230(Ac.) Total runoff = 15.096(CFS) Total area = 7.18(Ac.)
Upstream point elevation = 675.000(Ft.) Downstream point elevation = 615.000(Ft.) Channel length thru subarea = 505.000(Ft.) Channel base width = 5.000(Ft.)	End of computations, total study area = 7.180 (Ac.)
Printed: 4/6/2020 10:26:48 AM AM Modified: 4/6/2020 10:23:05 AM AM Page 1 of 2	Printed: 4/6/2020 10:26:48 AM AM Modified: 4/6/2020 10:23:05 AM AM Page 2 of 2

⊸

C:\CIVILD\S7000P100.out

San Diego County Rational Hydrology Program

CIVILCADD/CIVILDESIGN Engineering Software, (c) 1991-2003 Version 6.3

Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 01/28/20

CARMEL MOUNTAIN RANCH SYSTEM 7000 - PROPOSED CONDITIONS 100-YEAR STORM EVENT

******** Hydrology Study Control Information *********

Program License Serial Number 4049

Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used English (in) rainfall data used

Standard intensity of Appendix I-B used for year and Elevation 0 - 1500 feet Factor (to multiply * intensity) = 1.000 Only used if inside City of San Diego San Diego hydrology manual 'C' values used Runoff coefficients by rational method

User specified 'C' value of 0.450 given for subarea Initial subarea flow distance = 110.000(Ft.) Highest elevation = 658.900(Ft.)Lowest elevation = 658.900(Ft.)Elevation difference = 1.100(Ft.)Time of concentration calculated by the urban areas overland flow method (App X-C) = 12.27 min. TC = $[1.8*(1.1-C)*distance(Ft.)^{.5})/(\$ slope^{(1/3)}]$ TC = $[1.8*(1.1-C)*distance(Ft.)^{.5})/(\$ slope^{(1/3)}] = 12.27$ Rainfall intensity (I) = 3.132(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.450 Subarea runoff = 0.423(CFS)Total initial stream area = 0.300(Ac.)

Upstream point elevation = 658.900(Ft.) Downstream point elevation = 636.000(Ft.) Channel length thru subarea = 650.000(Ft.) Channel base width = 5.000(Ft.)

Printed: 1/28/2020 1:55:20 PM PM

Printed: 1/28/2020 1:55:20 PM PM

Modified: 1/28/2020 1:45:47 PM PM

C:\CIVILD\S7000P100.out

Slope or 'Z' of left channel bank = 25.000Slope or 'Z' of right channel bank = 25.000Estimated mean flow rate at midpoint of channel = 2.544 (CFS) Manning's 'N' = 0.030 Depth of flow = 0.145 (Ft.), Average velocity = 2.031 (Ft/s) Channel flow top width = 12.258(Ft.) Flow Velocity = 2.03(Ft/s) Travel time = 5.33 min. Time of concentration = 17.60 min. Critical depth = 0.154(Ft.) Adding area flow to channel User specified 'C' value of 0.450 given for subarea Rainfall intensity = 2.725(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method, Q=KCIA, C = 0.450 3.691 (CFS) for 3.010 (Ac.) Subarea runoff = Total runoff = 4.114(CFS) Total area = 3.31 (Ac.)

```
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[RURAL(greater than 0.5 Ac, 0.2 ha) area type]
Time of concentration = 17.60 min.
Rainfall intensity =
                        2.725(In/Hr) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method, Q=KCIA, C = 0.450
                   2.379(CFS) for 1.940(Ac.)
Subarea runoff =
Total runoff =
                   6.493(CFS) Total area =
                                                  5.25(Ac.)
End of computations, total study area =
                                                5.250 (Ac.)
```

P:\4394.00\EngrlReports\Drainage\HYDRO\PROPOSED\S8000P100\S8000P100.out	P:14394.00\EngrlReports\Drainage\HYDRO\PROPOSED\S8000P100\S8000P100.out
San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c)1991-2003 Version 6.3 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 10/01/19	Channel base width = 5.000(Ft.) Slope or 'Z' of left channel bank = 20.000 Slope or 'Z' of right channel bank = 20.000 Estimated mean flow rate at midpoint of channel = 14.550(CFS) Manning's 'N' - 0.015 Maximum depth of channel = 2.000(Ft.) Flow(q) thru subarea = 14.550(CFS) Depth of flow = 0.241(Ft.), Average velocity = 6.140(Ft/s)
CARMEL MOUNTAIN RANCH SYSTEM 8000 - PROPOSED CONDITION 100-YEAR STORM EVENT ********* Hydrology Study Control Information **********	Channel flow top width = 14.648(Ft.) Flow Velocity - 6.14(Ft/s) Travel time = 2.99 min. Time of concentration = 7.99 min. Critical depth = 0.398(Ft.) Adding area flow to channel User specified 'C' value of 0.850 given for subarea Rainfall intensity = 3.662(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method, Q=KCIA, C = 0.850 Subarea runoff = 23.781(CFS) for 7.400(Ac.) Total runoff = 23.781(CFS) Total area = 7.60(Ac.)
Program License Serial Number 4049 Rational hydrology study storm event year is 100.0	<pre>++++++++++++++++++++++++++++++++++++</pre>
English (in-lb) input data Units used English (in) rainfall data used Standard intensity of Appendix I-B used for year and Elevation 0 - 1500 feet Factor (to multiply * intensity) = 1.000 Only used if inside City of San Diego San Diego hydrology manual 'C' values used Runoff coefficients by rational method	User specified 'C' value of 0.450 given for subarea Time of concentration = 7.99 min. Rainfall intensity = 3.662(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.450 Subarea runoff = 4.449(CFS) for 2.700(Ac.) Total runoff = 28.230(CFS) Total area = 10.30(Ac.)
++++++++++++++++++++++++++++++++++++++	++++++++++++++++++++++++++++++++++++++
User specified 'C' value of 0.850 given for subarea Initial subarea flow distance = 120.000(Ft.) Highest elevation = 700.000(Ft.) Lowest elevation = 688.000 (Ft.) Elevation difference = 12.000(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 2.29 min. TC = $[1.8*(1.1-C)*distance(Ft.)^{.5})/(\$ slope^{(1/3)}]$ TC = $[1.8*(1.1-C)*distance(Ft.)^{.5})/(\$ slope^{(1/3)})$ TC = $[1.8*(1.1-C)*distance(Ft.)^{.5})/(\$ slope^{(1/3)})$ TC = $[1.8*(1.1-C)*distance(Ft.)^{.5})/(\$ slope^{(1/3)})$ TC = $[1.8*(1.1-C)*distance(Ft.)^{.5})/($ slope^{(1/3)})$ TC = $[1.8*(1.1-C)*distance(Ft.)^$	Rainfall intensity = 3.662 (In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.450 Subarea runoff = 0.824(CFS) for 0.500(Ac.) Total runoff = 29.054(CFS) Total area = 10.80(Ac.) End of computations, total study area = 10.800 (Ac.)
<pre>++++++++++++++++++++++++++++++++++++</pre>	
Printed: 10/21/2019 10:08:37 AM AM Modified: 10/1/2019 2:38:53 PM PM Page 1 of 2	Printed: 10/21/2019 10:08:37 AM AM Modified: 10/1/2019 2:38:53 PM PM Page 2 of 2

->

P:\4394.00\EngriReports\Drainage\HYDRO\PROPOSED\S9000P100\S9000P100.out	P:\4394.00\Engr\Reports\Drainage\HYDRO\PROPOSED\S9000P100\S9000P100.out
San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2003 Version 6.3 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 09/30/19	Channel base width = 5.000(Ft.) Slope or 'Z' of left channel bank = 20.000 Slope or 'Z' of right channel bank = 20.000 Estimated mean flow rate at midpoint of channel = 12.945(CFS) Manning's 'N' = 0.015 Maximum depth of channel = 2.000(Ft.) Flow(q) thru subarea = 12.945(CFS) Depth of flow = 0.208(Ft.), Average velocity = 6.777(Ft/s)
CARMEL MOUNTAIN RANCH SYSTEM 9000 - PROPOSED CONDITION 100-YEAR STORM EVENT	Channel flow top width = 13.335(Ft.) Flow Velocity = 6.78(Ft/s) Travel time = 1.38 min. Time of concentration = 6.38 min. Critical depth = 0.375(Ft.) Adding area flow to channel
******* Hydrology Study Control Information *********	User specified 'C' value of 0.850 given for subarea Rainfall intensity = 3.985(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0. Subarea runoff = 20.799(CFS) for 6.140(Ac.)
Program License Serial Number 4049	Total runoff = 22.292(CFS) Total area = 6.54(Ac.)
Rational hydrology study storm event year is 100.0	++++++++++++++++++++++++++++++++++++++
English (in-lb) input data Units used English (in) rainfall data used Standard intensity of Appendix I-B used for year and Elevation 0 - 1500 feet Factor (to multiply * intensity) = 1.000 Only used if inside City of San Diego San Diego hydrology manual 'C' values used Runoff coefficients by rational method ************************************	Upstream point/station elevation = 764.000(Ft.) Downstream point/station elevation = 735.000(Ft.) Pipe length = 210.00(Ft.) Manning's N = 0.015 No. of pipes = 1 Required pipe flow = 22.292(CFS) Nearest computed pipe diameter = 18.00(In.) Calculated individual pipe flow = 22.292(CFS) Normal flow depth in pipe = 10.66(In.) Flow top width inside pipe = 17.69(In.) Critical depth could not be calculated. Pipe flow velocity = 20.44(Ft/s) Travel time through pipe = 0.17 min. Time of concentration (TC) = 6.55 min.
**** INITIAL AREA EVALUATION **** User specified 'C' value of 0.850 given for subarea Initial subarea flow distance = 90.000(Ft.) Highest elevation = 802.000(Ft.)	++++++++++++++++++++++++++++++++++++++
Lowest elevation = 799.000(Ft.) Elevation difference = 3.000 (Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 2.86 min. TC = $[1.8*(1.1-C)*distance(Ft.)^{5.})/($ % slope^(1/3)] TC = $[1.8*(1.1-0.8500)*(90.000^{5.})/(3.333^{(1/3)}] = 2.86$ Setting time of concentration to 5 minutes Rainfall intensity (I) = 4.389 (In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff = 1.492 (CFS) Total initial stream area = 0.400 (Ac.)	User specified 'C' value of 0.450 given for subarea Time of concentration = 6.55 min. Rainfall intensity = 3.945(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0. Subarea runoff = 0.746(CFS) for 0.420(Ac.) Total runoff = 23.037(CFS) Total area = 6.96(Ac.) End of computations, total study area = 6.960 (Ac.)
++++++++++++++++++++++++++++++++++++++	
Upstream point elevation = 799.000(Ft.) Downstream point elevation = 764.000(Ft.) Channel length thru subarea = 560.000(Ft.)	

 $\neg \triangleright$

P:\4394.00\Engr\Reports\Drainage\HYDRO\PROPOSED\S9500P100\S9500P100.out

San Diego County Rational Hydrology Program

CIVILCADD/CIVILDESIGN Engineering Software, (c) 1991-2003 Version 6.3

Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 10/23/19

CARMEL MOUNTAIN RANCH SYSTEM 9500 - PROPOSED CONDITION

100-YEAR STORM EVENT

******** Hydrology Study Control Information *********

Program License Serial Number 4049

Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used English (in) rainfall data used

Standard intensity of Appendix I-B used for year and Elevation 0 - 1500 feet Factor (to multiply * intensity) = 1.000 Only used if inside City of San Diego San Diego hydrology manual 'C' values used Runoff coefficients by rational method

User specified 'C' value of 0.830 given for subarea Rainfall intensity (I) = 2.001(In/Hr) for a 100.0 year storm User specified values are as follows: TC = 32.55 min. Rain intensity = 2.00(In/Hr)Total area = 6.960(Ac.) Total runoff = 3.300(CFS)

Upstream point/station elevation = 732.000(Ft.) Downstream point/station elevation = 730.000(Ft.) Pipe length = 100.00(Ft.) Manning's N = 0.015 No. of pipes = 1 Required pipe flow = 3.300(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 3.300(CFS) Normal flow depth in pipe = 7.79(In.) Flow top width inside pipe = 11.45(In.) Critical Depth = 9.33(In.) Pipe flow velocity = 6.11(Ft/s) Travel time through pipe = 0.27 min. Time of concentration (TC) = 32.82 min.

Printed: 10/23/2019 3:05:44 PM PM

P:\4394.00\Engr\Reports\Drainage\HYDRO\PROPOSED\S9500P100\S9500P100.out

Along Main Stream number: 1 in normal stream number 1 Stream flow area = 6.960(Ac.) Runoff from this stream = 3.300(CFS) Time of concentration = 32.82 min. Rainfall intensity = 1.991(In/Hr)

User specified 'C' value of 0.450 given for subarea Initial subarea flow distance = 55.000 (Ft.) Highest elevation = 762.000 (Ft.) Lowest elevation = 788.000 (Ft.) Elevation difference = 4.000 (Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 4.48 min. TC = $[1.8*(1.1-C)*distance(Ft.)^{.5})/(\$ slope^{(1/3)}]$ TC = $[1.8*(1.1-C)*distance(Ft.)^{.5})/(\$ slope^{(1/3)}] = 4.48$ Setting time of concentration to 5 minutes Rainfall intensity (I) = 4.389 (In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.450Subarea runoff = 0.217 (CFS) Total initial stream area = 0.110 (Ac.)

Upstream point elevation = 758.000(Ft.) Downstream point elevation = 733.000(Ft.) Channel length thru subarea = 430.000(Ft.) Channel base width = 5.000(Ft.) Slope or 'Z' of left channel bank = 20.000 Slope or 'Z' of right channel bank = 20.000 Estimated mean flow rate at midpoint of channel = 2.933(CFS) Manning's 'N' = 0.030Maximum depth of channel = 2.000(Ft.) Flow(q) thru subarea = 2.933(CFS) Depth of flow = 0.142(Ft.), Average velocity = 2.641(Ft/s) Channel flow top width = 10.669(Ft.) Flow Velocity = 2.64(Ft/s) Travel time = 2.71 min. Time of concentration = 7.71 min. Critical depth = 0.174(Ft.) Adding area flow to channel User specified 'C' value of 0.450 given for subarea Rainfall intensity = 3.709(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method, Q=KCIA, C = 0.450 Subarea runoff = 4.590(CFS) for 2.750(Ac.) Total runoff = 4.808(CFS) Total area = 2.86(Ac.)

Printed: 10/23/2019 3:05:44 PM PM

P:\4394.00\Engr\Reports\Drainage\HYDRO\PROPOSED\S9500P100\S9500P100.out

Process from Point/Station 9006.000 to Point/Station 9004.000 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2 Stream flow area = 2.860 (Ac.) Runoff from this stream = 4.808(CFS) Time of concentration = 7.71 min. Rainfall intensity = 3.709(In/Hr) Summary of stream data: StreamFlow rateTCRainfall IntensityNo.(CFS)(min)(In/Hr) 1 3.300 32.82 2 4.808 7.71 1.991 3.709 $\begin{array}{c} 1.000 & * & 1.000 & * & 3.300) \\ 0.537 & * & 1.000 & * & 4.808) & + = \\ Qmax(2) & = \end{array}$ 5.881 1.000 * 0.235 * 3.300) + 1.000 * 1.000 * 4.808) + = 5.583 Total of 2 streams to confluence: Flow rates before confluence point: 3.300 4.808 Maximum flow rates at confluence using above data: 5.881 5.583 Area of streams before confluence: 6.960 2.860 Results of confluence: Total flow rate = 5.881(CFS)

Time of concentration = 32.823 min. Effective stream area after confluence = 9.820 (Ac.) End of computations, total study area = 9.820 (Ac.)

Printed: 10/23/2019 3:05:44 PM PM

P:14394.00\Engr\Reports\Drainage\HYDRO\PROPOSED\S11000P100\S11000P100.out	P:\4394.00\EngrlReports\DrainagelHYDRO\PROPOSED\S11000P100\S11000P100.out
San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c)1991-2003 Version 6.3 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 09/27/19	Channel base width = 5.000(Ft.) Slope or 'Z' of left channel bank = 20.000 Slope or 'Z' of right channel bank = 20.000 Estimated mean flow rate at midpoint of channel = 22.328(CFS) Manning's 'N' - 0.015 Maximum depth of channel = 3.000(Ft.) Flow(q) thru subarea = 22.328(CFS) Depth of flow = 0.281(Ft.), Average velocity = 7.483(Ft/s)
CARMEL MOUNTAIN RANCH SYSTEM 11000 - PROPOSED CONDITION 100-YEAR STORM EVENT →	Channel flow top width = 16.239(Ft.) Flow Velocity = 7.48(Ft/s) Travel time = 4.40 min. Time of concentration = 9.40 min. Critical depth = 0.492(Ft.) Adding area flow to channel
******** Hydrology Study Control Information **********	User specified 'C' value of 0.850 given for subarea Rainfall intensity = 3.451(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.85 Subarea runoff = 34.288(CFS) for 11.690(Ac.) Total runoff = 34.810(CFS) Total area = 11.83(Ac.)
Program License Serial Number 4049	+++++++++++++++++++++++++++++++++++++++
Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used English (in) rainfall data used Standard intensity of Appendix I-B used for year and Elevation 0 - 1500 feet Factor (to multiply * intensity) = 1.000 Only used if inside City of San Diego San Diego hydrology manual 'C' values used Runoff coefficients by rational method	Process from Point/Station 10003.000 to Point/Station 10002.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [RURAL(greater than 0.5 Ac, 0.2 ha) area type] Time of concentration = 9.40 min. Rainfall intensity = 3.451(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.45 Subarea runoff = 1.630(CFS) for 1.050(Ac.) Total runoff = 36.441(CFS) Total area = 12.88(Ac.)
Process from Point/Station 10000.000 to Point/Station 10001.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.850 given for subarea Initial subarea flow distance = 95.000(Ft.)	++++++++++++++++++++++++++++++++++++++
<pre>Highest elevation = 767.000(Ft.) Lowest elevation = 758.000(Ft.) Elevation difference = 9.000(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 2.07 min. TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^1(1/3)] TC = [1.8*(1.1-0.8500)*(95.000^.5)/(9.474^(1/3)] = 2.07 Setting time of concentration to 5 minutes</pre>	User specified 'C' value of 0.450 given for subarea Time of concentration = 9.40 min. Rainfall intensity = 3.451(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.45 Subarea runoff = 0.901(CFS) for 0.580(Ac.) Total runoff = 37.341(CFS) Total area = 13.46(Ac.)
Rainfall intensity (I) = $4.389(In/Hr)$ for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff = $0.522(CFS)$ Total initial stream area = $0.140(Ac.)$	++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++	Decimal fraction soil group $B = 0.000$ Decimal fraction soil group $C = 0.000$ Decimal fraction soil group $D = 1.000$ [RURAL(greater than 0.5 Ac, 0.2 ha) area type]
Upstream point elevation = 758.000(Ft.) Downstream point elevation = 650.000(Ft.) Channel length thru subarea = 1975.000(Ft.)	Time of concentration = 9.40 min. Rainfall intensity = 3.451(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.45 Subarea runoff = 2.283(CFS) for 1.470(Ac.)
inted: 10/21/2019 10:08:37 AM AM Modified: 9/27/2019 9:28:50 AM AM Page 1 of 3	Printed: 10/21/2019 10:08:37 AM AM Modified: 9/27/2019 9:28:50 AM AM Page 2 of 3

-D

P:\4394.00\Engr\Reports\Drainage\HYDRO\PROPOSED\S11000P100\S11000P100.out

Total runoff =	39.624 (CFS) Total area	= 14.93(Ac.)	
End of computations	, total st	udy area =	14.930 (Ac.)	

C:\CIVILD\S13000P100.out

San Diego County Rational Hydrology Program

CIVILCADD/CIVILDESIGN Engineering Software, (c) 1991-2003 Version 6.3

Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 01/28/20

CARMEL MOUNTAIN RANCH SYSTEM 13000 - PROPOSED CONDITIONS 100-YEAR STORM EVENT

******** Hydrology Study Control Information *********

Program License Serial Number 4049

Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used English (in) rainfall data used

Standard intensity of Appendix I-B used for year and Elevation 0 - 1500 feet Factor (to multiply * intensity) = 1.000 Only used if inside City of San Diego San Diego hydrology manual 'C' values used Runoff coefficients by rational method

Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 1.000[RURAL(greater than 0.5 Ac, 0.2 ha) area type] Initial subarea flow distance = 81.000(Ft.) Highest elevation = 586.000(Ft.) Lowest elevation = 578.600(Ft.) Elevation difference = 7.400(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 5.04 min. $TC = [1.8*(1.1-C)*distance(Ft.)^{.5})/(% slope^{(1/3)}]$ $TC = [1.8*(1.1-0.4500)*(81.000^{-5})/(9.136^{-1/3})] = 5.04$ Rainfall intensity (I) = 4.376(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.450Subarea runoff = 0.374 (CFS) Total initial stream area = 0.190 (Ac.)

Printed: 1/28/2020 1:55:20 PM PM

Modified: 1/28/2020 11:56:47 AM AM Page 1 of 2

C:\CIVILD\S13000P100.out

Upstream point elevation = 578.600 (Ft.) Downstream point elevation = 577.000(Ft.) Channel length thru subarea = 143.000(Ft.) Channel base width = 5.000(Ft.) Slope or 'Z' of left channel bank = 25.000 Slope or 'Z' of right channel bank = 25.000 Estimated mean flow rate at midpoint of channel = 1.437 (CFS) Manning's 'N' = 0.030Maximum depth of channel = 2.000(Ft.) Flow(q) thru subarea = 1.437(CFS) Depth of flow = 0.145(Ft.), Average velocity = 1.146(Ft/s) Channel flow top width = 12.267 (Ft.) Flow Velocity = 1.15(Ft/s) Travel time = 2.08 min. Time of concentration = 7.12 min. Critical depth = 0.112(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 1.000[RURAL(greater than 0.5 Ac, 0.2 ha) area type] Rainfall intensity = 3.822(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method, Q=KCIA, C = 0.450 Subarea runoff = 1.858(CFS) for 1.080(Ac.) Total runoff = 2.232(CFS) Total area = 1.27 (Ac.) End of computations, total study area = 1.270 (Ac.)

C:\CIVILD\S15000P100.out

San Diego County Rational Hydrology Program

CIVILCADD/CIVILDESIGN Engineering Software, (c) 1991-2003 Version 6.3

Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 01/28/20

CARMEL MOUNTAIN RANCH SYSTEM 15000 - PROPOSED CONDITIONS 100-YEAR STORM EVENT

******** Hydrology Study Control Information **********

Program License Serial Number 4049

Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used English (in) rainfall data used

Standard intensity of Appendix I-B used for year and Elevation 0 - 1500 feet Factor (to multiply * intensity) = 1.000 Only used if inside City of San Diego San Diego hydrology manual 'C' values used Runoff coefficients by rational method

Decimal fraction soil group A = 0.000Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 1.000 [RURAL(greater than 0.5 Ac, 0.2 ha) area type] Initial subarea flow distance = 77.000(Ft.) Highest elevation = 647.000(Ft.) Lowest elevation = 644.400(Ft.) Elevation difference = 2.600(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 6.84 min. TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)] $TC = [1.8*(1.1-0.4500)*(77.000^{.5})/(3.377^{(1/3)}] = 6.84$ Rainfall intensity (I) = 3.879(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.450Subarea runoff = 0.419(CFS) Total initial stream area = 0.240 (Ac.)

Printed: 1/28/2020 1:55:20 PM PM

Modified: 1/28/2020 11:57:08 AM AM Page 1 of 2

C:\CIVILD\S15000P100.out

Upstream point elevation = 644.400(Ft.) Downstream point elevation = 620.000 (Ft.) Channel length thru subarea = 480.000(Ft.) Channel base width = 5.000(Ft.) Slope or 'Z' of left channel bank = 25.000 Slope or 'Z' of right channel bank = 25.000 Estimated mean flow rate at midpoint of channel = 3.072(CFS) Manning's 'N' = 0.030Maximum depth of channel = 2.000(Ft.) Flow(q) thru subarea = 3.072(CFS)Depth of flow = 0.146(Ft.), Average velocity = 2.444(Ft/s) Channel flow top width = 12.277 (Ft.) Flow Velocity = 2.44 (Ft/s) Travel time = 3.27 min. Time of concentration = 10.12 min. Critical depth = 0.170(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 1.000 [RURAL(greater than 0.5 Ac, 0.2 ha) area type] Rainfall intensity = 3.360(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method, Q=KCIA, C = 0.450Subarea runoff = 4.596(CFS) for 3.040(Ac.)Total runoff = 5.015(CFS) Total area = 3.28 (Ac.) End of computations, total study area = 3.280 (Ac.)

P:\4394.00\Engr\Reports\Drainage\HYDRO\PROPOSED\S16000P100\S16000P100.out P:\4394.00\Engr\Reports\Drainage\HYDRO\PROPOSED\S16000P100\S16000P100.out Slope or 'Z' of left channel bank = 20.000 Slope or 'Z' of right channel bank = 20.000 San Diego County Rational Hydrology Program Estimated mean flow rate at midpoint of channel = 10.577(CFS) CIVILCADD/CIVILDESIGN Engineering Software, (c) 1991-2003 Version 6.3 Manning's 'N' = 0.015Maximum depth of channel = 2.000(Ft.) Rational method hydrology program based on Flow(q) thru subarea = 10.577(CFS) San Diego County Flood Control Division 1985 hydrology manual Depth of flow = 0.216(Ft.), Average velocity = 5.262(Ft/s) Date: 09/17/19 Rational Hydrology Study Channel flow top width = 13.631(Ft.) Flow Velocity = 5.26(Ft/s) Travel time = 2.53 min. CARMEL MOUNTAIN RANCH SYSTEM 16000 Time of concentration = 7.53 min. PROPOSED CONDITION Critical depth = 0.340(Ft.) 100-YEAR STORM EVENT Adding area flow to channel User specified 'C' value of 0.850 given for subarea ******** Hydrology Study Control Information ********* Rainfall intensity = 3.742(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method, Q=KCIA, C = 0.850 Subarea runoff = 16.762 (CFS) for 5.270 (Ac.) Total runoff = 17.508(CFS) Total area = 5.47 (Ac.) Program License Serial Number 4049 Process from Point/Station 16002.000 to Point/Station 16002.000 **** SUBAREA FLOW ADDITION **** Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used English (in) rainfall data used User specified 'C' value of 0.450 given for subarea Time of concentration = 7.53 min. Standard intensity of Appendix I-B used for year and Rainfall intensity = 3.742(In/Hr) for a 100.0 year storm Elevation 0 - 1500 feet Runoff coefficient used for sub-area, Rational method, Q=KCIA, C = 0.450 Factor (to multiply * intensity) = 1.000 Subarea runoff = 0.455(CFS) for 0.270(Ac.) Total runoff = 17.963(CFS) Total area = Only used if inside City of San Diego 5.74(Ac.) San Diego hydrology manual 'C' values used End of computations, total study area = 5.740 (Ac.) Runoff coefficients by rational method Process from Point/Station 16000.000 to Point/Station 16001.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.850 given for subarea Initial subarea flow distance = 75.000(Ft.) Highest elevation = 666.000(Ft.) Lowest elevation = 664.000(Ft.) Elevation difference = 2.000 (Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 2.81 min. $TC = [1.8*(1.1-C)*distance(Ft.)^{.5})/(% slope^{(1/3)}]$ $TC = [1.8*(1.1-0.8500)*(75.000^{.5})/(2.667^{(1/3)}] = 2.81$ Setting time of concentration to 5 minutes Rainfall intensity (I) = 4.389(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850Subarea runoff = 0.746 (CFS) Total initial stream area = 0.200(Ac.) Process from Point/Station 16001.000 to Point/Station 16002.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 664.000(Ft.) Downstream point elevation = 635.000(Ft.) Channel length thru subarea = 800.000(Ft.) = 5.000(Ft.) Channel base width Printed: 10/21/2019 10:08:37 AM AM Modified: 9/17/2019 8:33:06 AM AM Page 1 of 2 Printed: 10/21/2019 10:08:37 AM AM Modified: 9/17/2019 8:33:06 AM AM Page 2 of 2

P:\4394.00\Engr\Reports\Drainage\HYDRO\PROPOSED\S17000P100\S17000P100.out	P:\4394.00\Engr\Reports\Drainage\HYDRO\PROPOSED\S17000P100\S17000P100.out
P:4394.00\Engr\Reports\Drainage\HYDRO\PROPOSED\S17000P100\S17000P100.out San Diego County Rational Hydrology Program IVILCADD/CIVILDESIGN Engineering Software, (c)1991-2003 Version 6.3 ational method hydrology program based on an Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 04/02/20 ARMEL MOUNTAIN RANCH YSTEM 17000 - PROPOSED CONDITION 00-YEAR STORM EVENT ********* Hydrology Study Control Information ********* rrogram License Serial Number 4049 ational hydrology study storm event year is 100.0 mglish (in-1b) input data Units used mglish (in) rainfall data used	Channel base width = 5.000(Ft.) Slope or 'Z' of left channel bank = 20.000 Slope or 'Z' of right channel bank = 20.000 Estimated mean flow rate at midpoint of channel = 9.868(CFS) Maximum depth of channel = 2.000(Ft.) Flow(q) thru subarea = 9.868(CFS) Depth of flow = 0.271(Ft.), Average velocity = 3.503(Ft/s) Channel flow top width = 15.822(Ft.) Flow Velocity = 3.50(Ft/s) Travel time = 4.38 min. Time of concentration = 9.38 min. Critical depth = 0.328(Ft.) Adding area flow to channel User specified 'C' value of 0.850 given for subarea Rainfall intensity = 3.454(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.85 Subarea runoff = 14.825(CFS) for 5.050(Ac.) Total runoff = 15.272(CFS) Total area = 5.17(Ac.)
<pre>tandard intensity of Appendix I-B used for year and levation 0 - 1500 feet actor (to multiply * intensity) = 1.000 nly used if inside City of San Diego an Diego hydrology manual 'C' values used unoff coefficients by rational method ************************************</pre>	Time of concentration = 9.38 min. Rainfall intensity = 3.454(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.45 Subarea runoff = 0.606(CFS) for 0.390(Ac.) Total runoff = 15.878(CFS) Total area = 5.56(Ac.) End of computations, total study area = 5.560 (Ac.)
*** INITIAL AREA EVALUATION **** ser specified 'C' value of 0.850 given for subarea nitial subarea flow distance = $60.000(Ft.)$ ighest elevation = $702.000(Ft.)$ owest elevation = $701.500(Ft.)$ levation difference = $0.500(Ft.)$ ime of concentration calculated by the urban reas overland flow method (App X-C) = 3.70 min. C = $[1.8*(1.1-C)*distance(Ft.)^{.5})/(\$$ slope^ $(1/3)]$ C = $[1.8*(1.1-C)*distance(Ft.)^{.5})/(\$$ slope^ $(1/3)] = 3.70etting time of concentration to 5 minutesainfall intensity (I) = 4.389(In/Hr) for a 100.0 year stormiffective runoff coefficient used for area (Q=KCIA) is C = 0.850ubarea runoff = 0.448(CFS)otal initial stream area = 0.120(Ac.)$	
<pre>t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+</pre>	

≁

C:\CIVILD\S17500P100.out

San Diego County Rational Hydrology Program

CIVILCADD/CIVILDESIGN Engineering Software, (c) 1991-2003 Version 6.3

Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 01/28/20

CARMEL MOUNTAIN RANCH SYSTEM 17500 - PROPOSED CONDITIONS 100-YEAR STORM EVENT

-D

******** Hydrology Study Control Information **********

Program License Serial Number 4049

Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used English (in) rainfall data used

Standard intensity of Appendix I-B used for year and Elevation 0 - 1500 feet Factor (to multiply * intensity) = 1.000 Only used if inside City of San Diego San Diego hydrology manual 'C' values used Runoff coefficients by rational method

Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 1.000 [RURAL(greater than 0.5 Ac, 0.2 ha) area type] Initial subarea flow distance = 90.000(Ft.) Highest elevation = 696.000(Ft.) Lowest elevation = 692.000(Ft.) Elevation difference = 4.000(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 6.75 min. $TC = [1.8*(1.1-C)*distance(Ft.)^{.5})/(% slope^{(1/3)}]$ $TC = [1.8*(1.1-0.4500)*(90.000^{.5})/(4.444^{(1/3)}] = 6.75$ Rainfall intensity (I) = 3.899(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.4500.281 (CFS) Subarea runoff = Total initial stream area = 0.160 (Ac.)

Printed: 1/28/2020 1:55:20 PM PM

Modified: 1/28/2020 1:43:37 PM PM Page 1 of 2

C:\CIVILD\S17500P100.out

Upstream point elevation = 692.000(Ft.) Downstream point elevation = 691.300(Ft.) Channel length thru subarea = 68.000(Ft.) Channel base width = 4.000(Ft.) Slope or 'Z' of left channel bank = 25.000 Slope or 'Z' of right channel bank = 25.000 Estimated mean flow rate at midpoint of channel = 0.518(CFS) Manning's 'N' = 0.030Maximum depth of channel = 2.000(Ft.) 0.518(CFS) Flow(q) thru subarea = Depth of flow = 0.095(Ft.), Average velocity = 0.849(Ft/s) Channel flow top width = 8.773(Ft.) Flow Velocity = 0.85(Ft/s)Travel time = 1.33 min. Time of concentration = 8.09 min. Critical depth = 0.069(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 1.000 [RURAL(greater than 0.5 Ac, 0.2 ha) area type] Rainfall intensity = 3.645(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method, Q=KCIA, C = 0.450Subarea runoff = 0.443(CFS) for 0.270(Ac.) Total runoff = 0.724(CFS) Total area = 0.43(Ac.) End of computations, total study area = -0.430 (Ac.)

P:\4394.00\Engr\Reports\Drainage\HYDRO\PROPOSED\S18000P100\S18000P100.out P:\4394.00\Engr\Reports\Drainage\HYDRO\PROPOSED\S18000P100\S18000P100.out Channel base width = 5.000(Ft.) San Diego County Rational Hydrology Program Slope or 'Z' of left channel bank = 20.000 Slope or 'Z' of right channel bank = 20.000CIVILCADD/CIVILDESIGN Engineering Software, (c) 1991-2003 Version 6.3 Estimated mean flow rate at midpoint of channel = Manning's 'N' = 0.015Rational method hydrology program based on Maximum depth of channel = 2.000(Ft.) San Diego County Flood Control Division 1985 hydrology manual 9.103(CFS) Flow(q) thru subarea = Rational Hydrology Study Date: 09/30/19 Depth of flow = 0.276(Ft.), Average velocity = 3.131(Ft/s) Channel flow top width = 16.050(Ft.) CARMEL MOUNTAIN RANCH Flow Velocity = 3.13(Ft/s) Travel time = 2.18 min. SYSTEM 18000 - PROPOSED CONDITION 100-YEAR STORM EVENT Time of concentration = 7.18 min. Critical depth = 0.316(Ft.) -Adding area flow to channel User specified 'C' value of 0.850 given for subarea ******** Hydrology Study Control Information ********* Rainfall intensity = 3.809(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method, Q=KCIA, C = 0.850 Subarea runoff = 13.211 (CFS) for 4.080 (Ac.) Total runoff = 14.703(CFS) Total area = Program License Serial Number 4049 Process from Point/Station 18002.000 to Point/Station 18002.000 Rational hydrology study storm event year is 100.0 **** SUBAREA FLOW ADDITION **** English (in-lb) input data Units used English (in) rainfall data used User specified 'C' value of 0.450 given for subarea Time of concentration = 7.18 min. Standard intensity of Appendix I-B used for year and Rainfall intensity = 3.809(In/Hr) for a 100.0 year storm Elevation 0 - 1500 feet Runoff coefficient used for sub-area, Rational method, Q=KCIA, C = 0.450 Factor (to multiply * intensity) - 1.000 Only used if inside City of San Diego Subarea runoff = 0.411(CFS) for 0.240(Ac.)Total runoff = 15.114(CFS) Total area = San Diego hydrology manual 'C' values used End of computations, total study area = Runoff coefficients by rational method Process from Point/Station 18000.000 to Point/Station 18001.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.850 given for subarea Initial subarea flow distance = 90.000(Ft.) Highest elevation = 802.000(Ft.) Lowest elevation = 799.000(Ft.) Elevation difference = 3.000(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 2.86 min. $TC = [1.8*(1.1-C)*distance(Ft.)^{.5})/(% slope^{(1/3)}]$ $TC = [1.8*(1.1-0.8500)*(90.000^{-1}.5)/(3.333^{-1}.5)] = 2.86$ Setting time of concentration to 5 minutes Rainfall intensity (I) = 4.389(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850Subarea runoff = 1.492(CFS) Total initial stream area = 0.400(Ac.) Process from Point/Station 18001.000 to Point/Station 18002.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 799.000(Ft.) Downstream point elevation = 795.000(Ft.) Channel length thru subarea = 410.000(Ft.)

9.103(CFS)

4.48(Ac.)

4.72(Ac.)

4.720 (Ac.)

P:\4394.00\Engr\Reports\Drainage\HYDRO\PROPOSED\S18500P100\ S18500P100.out	P:\4394.00\Engr\Reports\Drainage\HYDRO\PROPOSED\S18500P100\S18500P100.out
San Diego County Rational Hydrology Program	
CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2003 Version 6.3	++++++++++++++++++++++++++++++++++++++
Rational method hydrology program based on	**** CONFLUENCE OF MINOR STREAMS ****
San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 04/02/20	Along Main Stream number: 1 in normal stream number 1 Stream flow area = 4.720(Ac.)
ZARMEL MOUNTAIN RANCH SYSTEM 18500 - PROPOSED CONDITION .00-YEAR STORM EVENT	Runoff from this stream = 2.000(CFS) Time of concentration = 30.97 min. Rainfall intensity = 2.062(In/Hr)
->	*****
******* Hydrology Study Control Information *********	<pre>**** INITIAL AREA EVALUATION ****</pre>
	User specified 'C' value of 0.450 given for subarea Initial subarea flow distance = 85.000(Ft.)
	Highest elevation = $794.000(Ft.)$
rogram License Serial Number 4049	Lowest elevation = 772.000(Ft.) Elevation difference = 22.000(Ft.)
	Time of concentration calculated by the urban
Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used	areas overland flow method (App X-C) = 3.65 min. TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)]
Inglish (in) rainfall data used	$TC = [1.8*(1.1-0.4500)*(85.000^{-5})/(25.882^{-1}(1/3))] = 3.65$
Standard intensity of Appendix I-B used for year and	Setting time of concentration to 5 minutes Rainfall intensity (I) = $4.389(In/Hr)$ for a 100.0 year store
Elevation 0 - 1500 feet	Effective runoff coefficient used for area (Q=KCIA) is $C = 0.450$
actor (to multiply * intensity) = 1.000 mly used if inside City of San Diego	Subarea runoff = 0.178(CFS) Total initial stream area = 0.090(Ac.)
an Diego hydrology manual 'C' values used	iotal initial scream area = 0.050 (Ac.)
unoff coefficients by rational method	*****
	Process from Point/Station 18005.000 to Point/Station 18003.
Process from Point/Station 18002.000 to Point/Station 18002.000	**** IMPROVED CHANNEL TRAVEL TIME ****
**** USER DEFINED FLOW INFORMATION AT A POINT ****	Upstream point elevation = 772.000(Ft.) Downstream point elevation = 679.000(Ft.)
Jser specified 'C' value of 0.830 given for subarea	Channel length thru subarea = 900.000(Ft.)
Rainfall intensity (I) = 2.133(In/Hr) for a 100.0 year storm Jser specified values are as follows:	Channel base width = 4.560(Ft.) Slope or 'Z' of left channel bank = 0.000
IC = 29.20 min. Rain intensity = 2.13(In/Hr)	Slope or 'Z' of right channel bank = 0.000 Slope or 'Z' of right channel bank = 0.000
Total area = 4.720(Ac.) Total runoff = 2.000(CFS)	Estimated mean flow rate at midpoint of channel = 4.681(CFS) Manning's 'N' = 0.005
***************************************	Maximum depth of channel = 0.100(Ft.) Flow(q) thru subarea = 4.681(CFS)
Process from Point/Station 18002.000 to Point/Station 18003.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) ****	Depth of flow = 0.067 (Ft.), Average velocity = 15.404 (Ft/s) Channel flow top width = 4.560 (Ft.)
Jpstream point/station elevation = 789.000(Ft.)	Flow Velocity = 15.40 (Ft/s) Travel time = 0.97 min.
ownstream point/station elevation = 672.580(Ft.)	Time of concentration = 5.97 min.
Pipe length = 1085.00(Ft.) Manning's N = 0.015 No. of pipes = 1 Required pipe flow = 2.000(CFS)	Critical depth = 0.320(Ft.) Adding area flow to channel
Jearest computed pipe diameter = 9.00(In.)	User specified 'C' value of 0.450 given for subarea
Calculated individual pipe flow = 2.000(CFS) Normal flow depth in pipe = 4.10(In.)	Rainfall intensity = 4.088(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = (
rlow top width inside pipe = 8.96(In.)	Subarea runoff = 8.388(CFS) for 4.560(Ac.)
Critical Depth = 7.71(In.) Pipe flow velocity = 10.20(Ft/s)	Total runoff = 8.566(CFS) Total area = 4.65(Ac.)
Fravel time through pipe = 1.77 min.	
Fime of concentration (TC) = 30.97 min.	+++++++++++++++++++++++++++++++++++++++

P:\4394.00\Engr\Reports\Drainage\HYDRO\PROPOSED\S18500P100\S18500P100.out

Process from Point/Station 18005.000 to Point/Station 18003.000 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 2 Stream flow area = 4.650(Ac.) 8.566(CFS) Runoff from this stream = Time of concentration = 5.97 min. Rainfall intensity = 4.088(In/Hr)

Process from Point/Station 17002.000 to Point/Station 17002.000 **** USER DEFINED FLOW INFORMATION AT A POINT ****

User specified 'C' value of 0.830 given for subarea Rainfall intensity (I) = 2.675(In/Hr) for a 100.0 year storm User specified values are as follows: TC = 18.40 min. Rain intensity = 2.68(In/Hr) Total area = 5.560(Ac.) Total runoff = 2.600(CFS)

Process from Point/Station 17002.000 to Point/Station 18003.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) ****

Upstream point/station elevation = 675.000(Ft.) Downstream point/station elevation = 672.580(Ft.) Pipe length = 100.00 (Ft.) Manning's N = 0.015No. of pipes = 1 Required pipe flow = 2.600(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 2.600(CFS) Normal flow depth in pipe = 6.29(In.) Flow top width inside pipe = 11.99(In.) Critical Depth = 8.30(In.) Pipe flow velocity = 6.24 (Ft/s) Travel time through pipe = 0.27 min. Time of concentration (TC) = 18.67 min.

Process from Point/Station 17002.000 to Point/Station 18003.000 **** CONFLUENCE OF MINOR STREAMS ****

Along Main Stream number: 1 in normal stream number 3 Stream flow area = 5.560(Ac.) Runoff from this stream = 2.600(CFS) Time of concentration = 18.67 min. Rainfall intensity = 2.659(In/Hr) Summary of stream data:

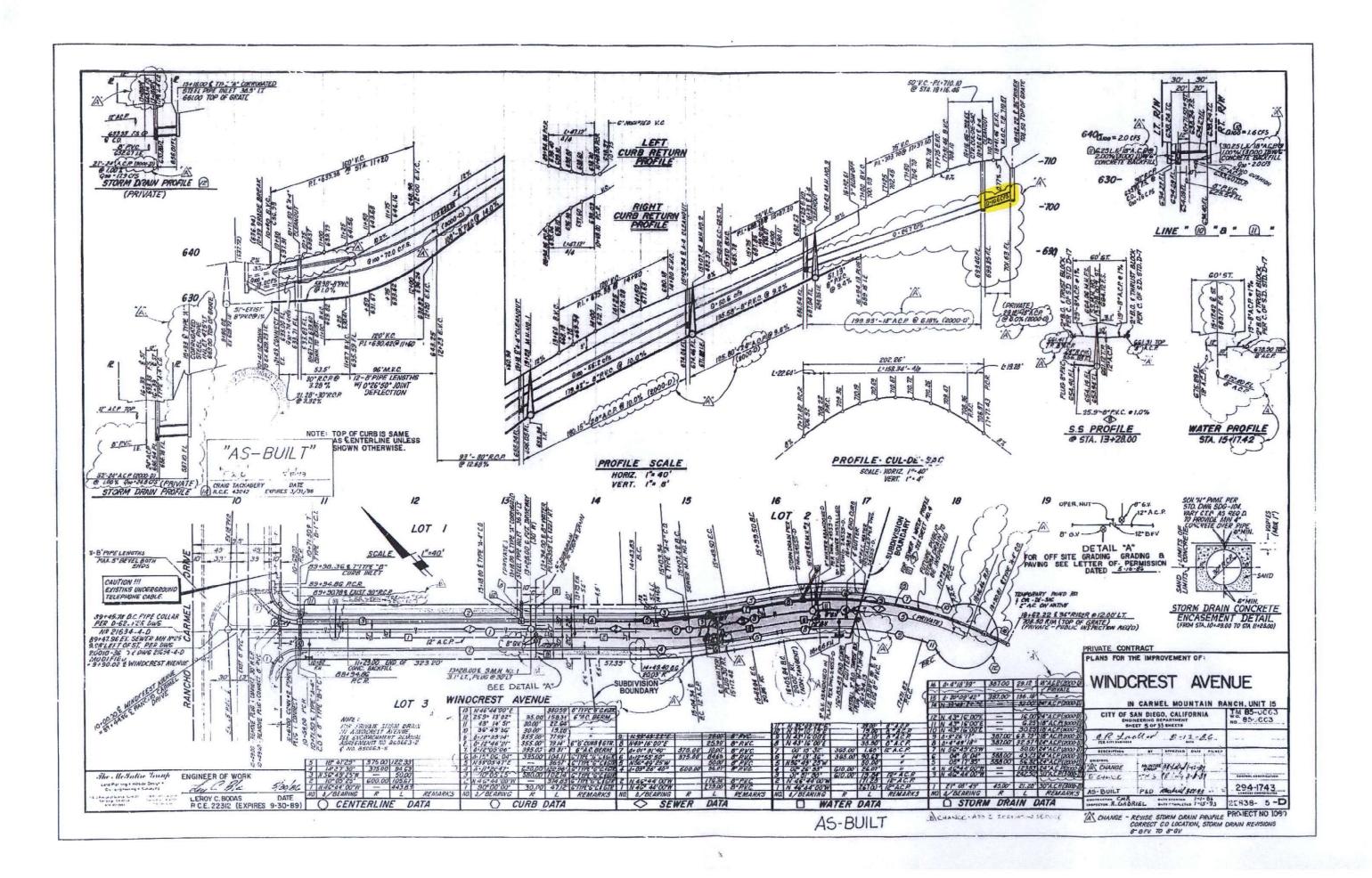
Stream No.	Flow rate (CFS)	TC (min)	Rainfall Intensity (In/Hr)
1 2 3 Omax(1)	2.000 8.566 2.600 =	30.97 5.97 18.67	2.062 4.088 2.659
~ · ·	1.000 * 0.504 * 0.775 *	1.000 *	2.000) + 8.566) + 2.600) + = 8.336
Qmax(2)	= 0.775 *	1.000 *	2.0007 + = 8.336

Printed: 4/2/2020 3:51:02 PM PM

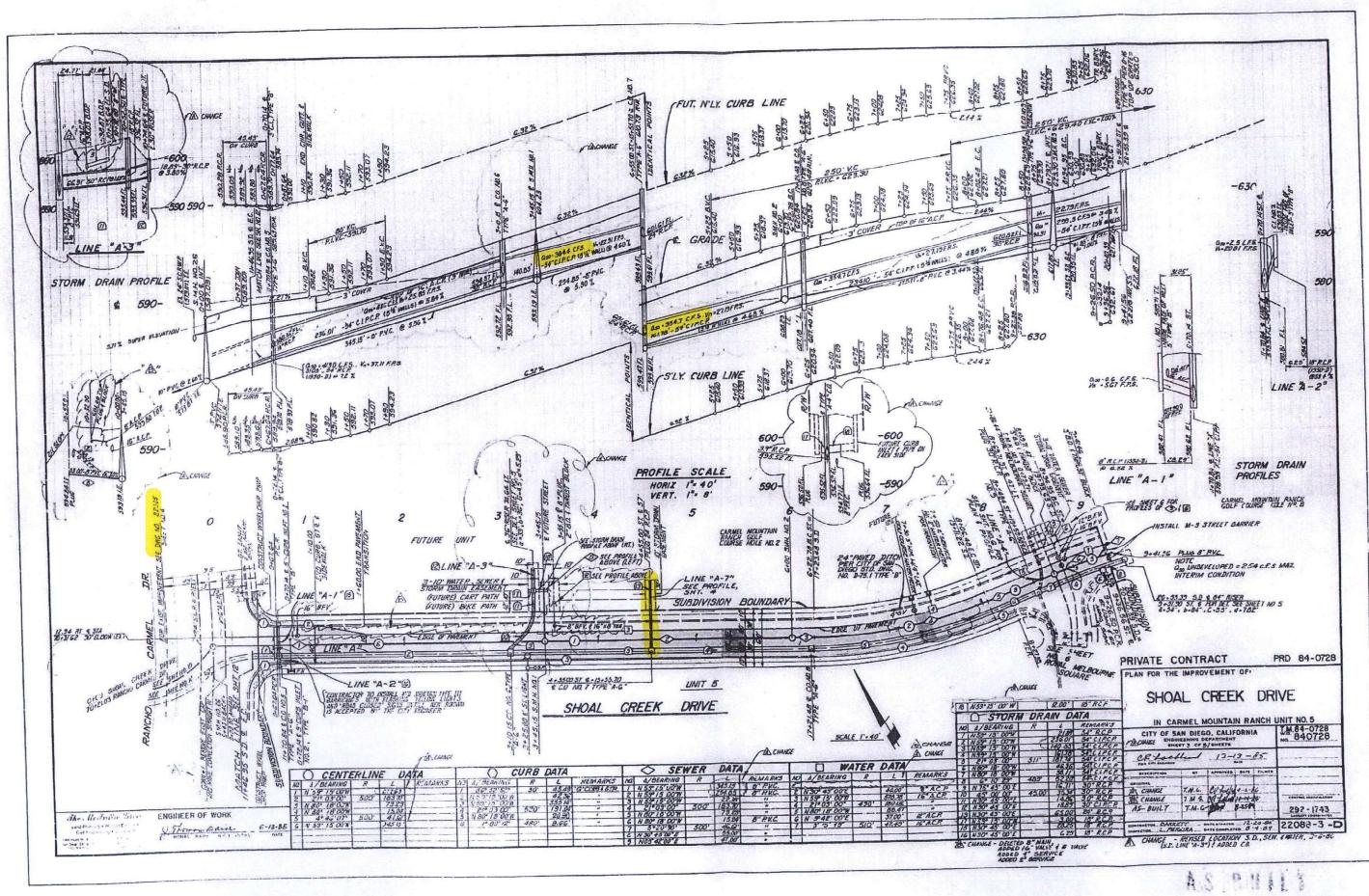
1.000 * 1.000 * 8.566) + 1.000 * 0.320 * 2.600) + =9.783 Omax(3) =1.000 * 0.603 * 2.000) +1.000 * 0.650 * 8.566) + 1.000 * 1.000 * 2.600) + =9.377

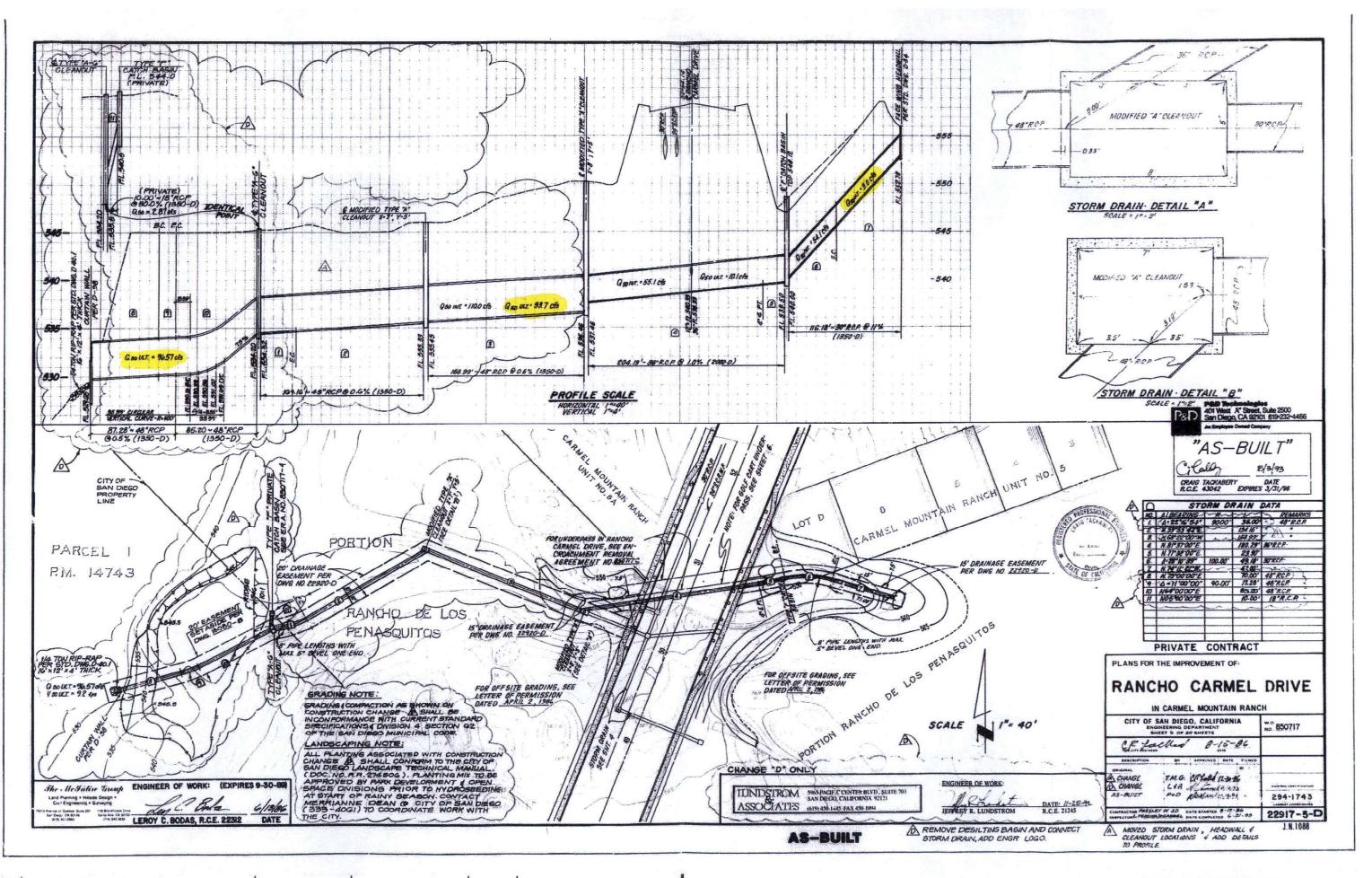
0.193 *

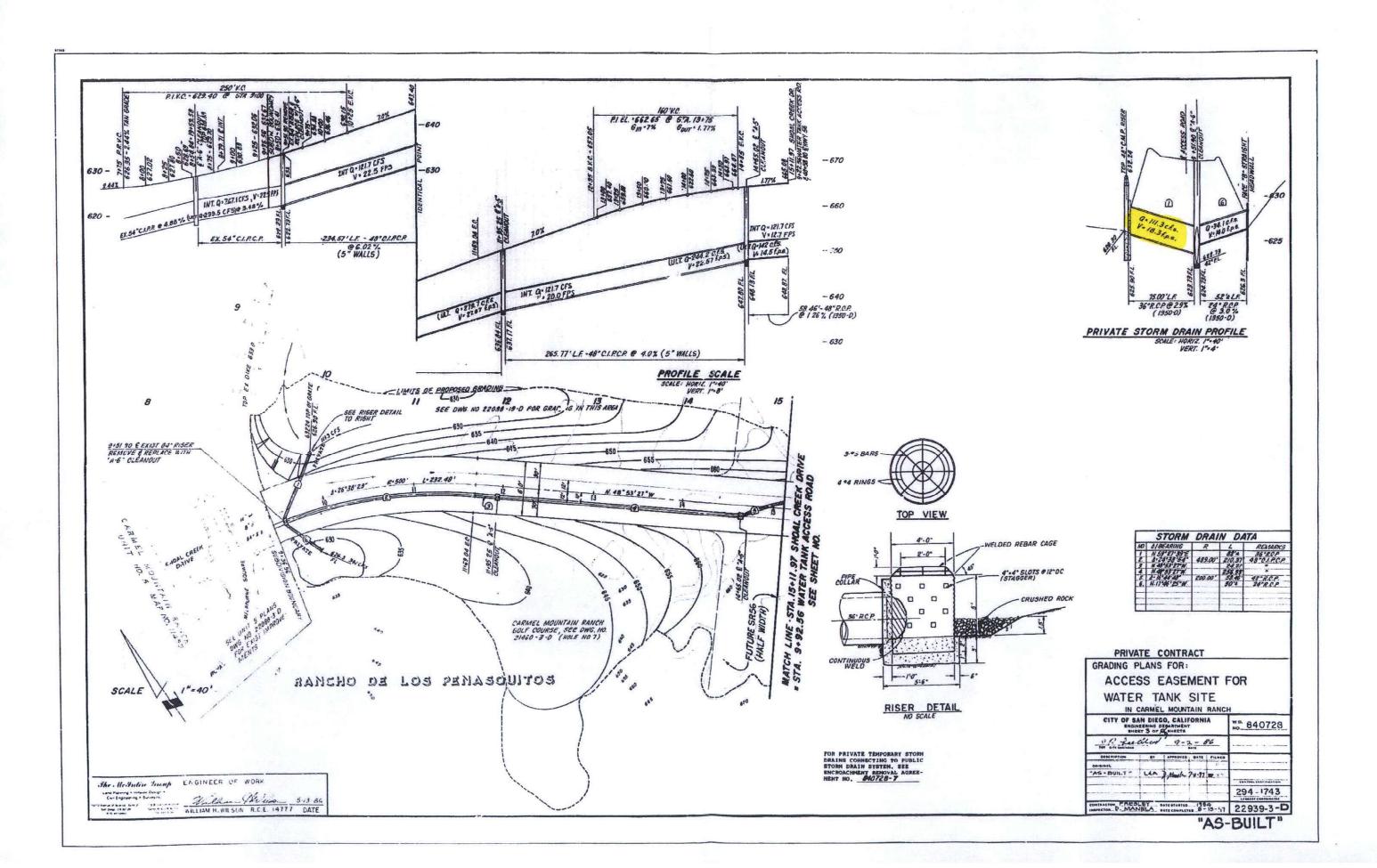
1.000 *

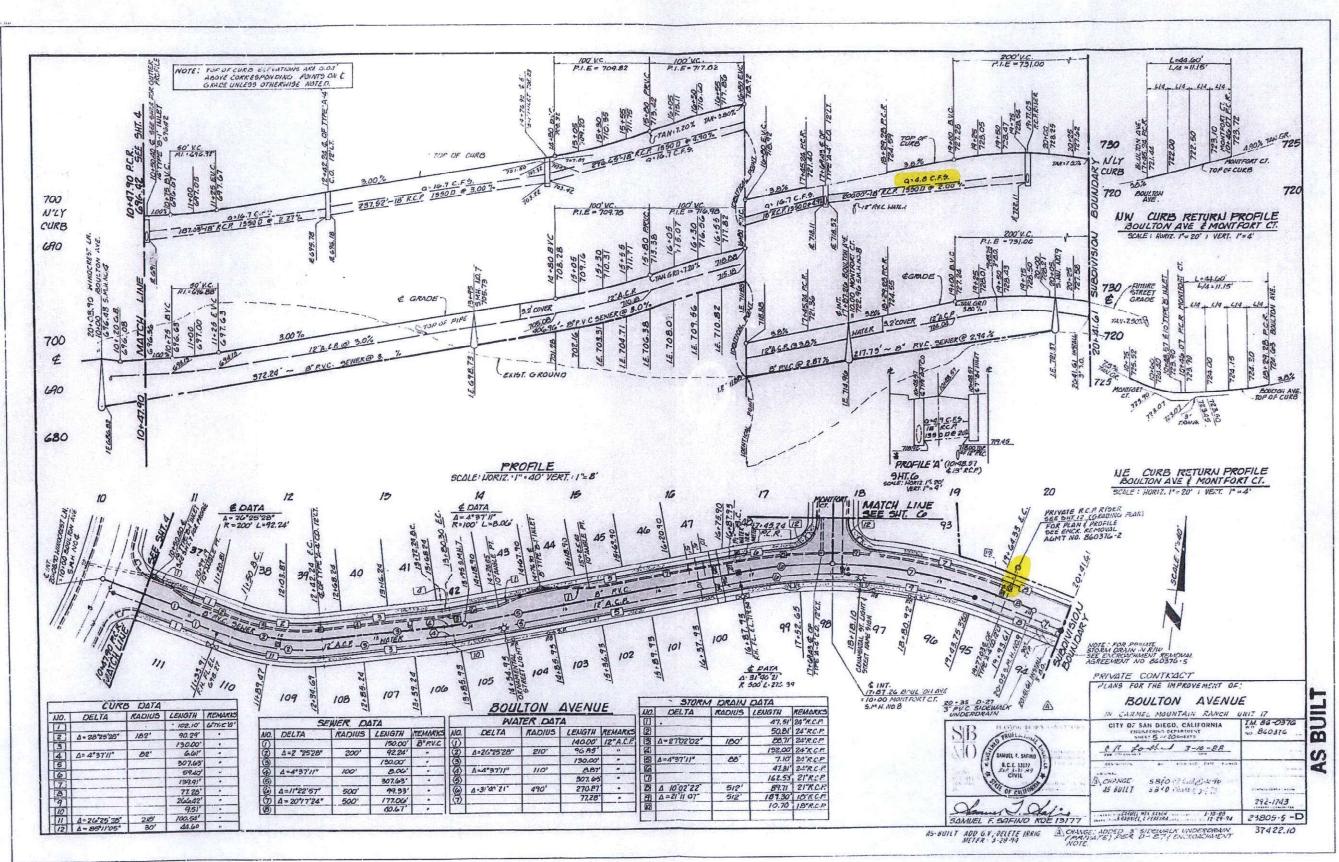

P:\4394.00\Engr\Reports\Drainage\HYDRO\PROPOSED\S18500P100\S18500P100.out

2.000) +

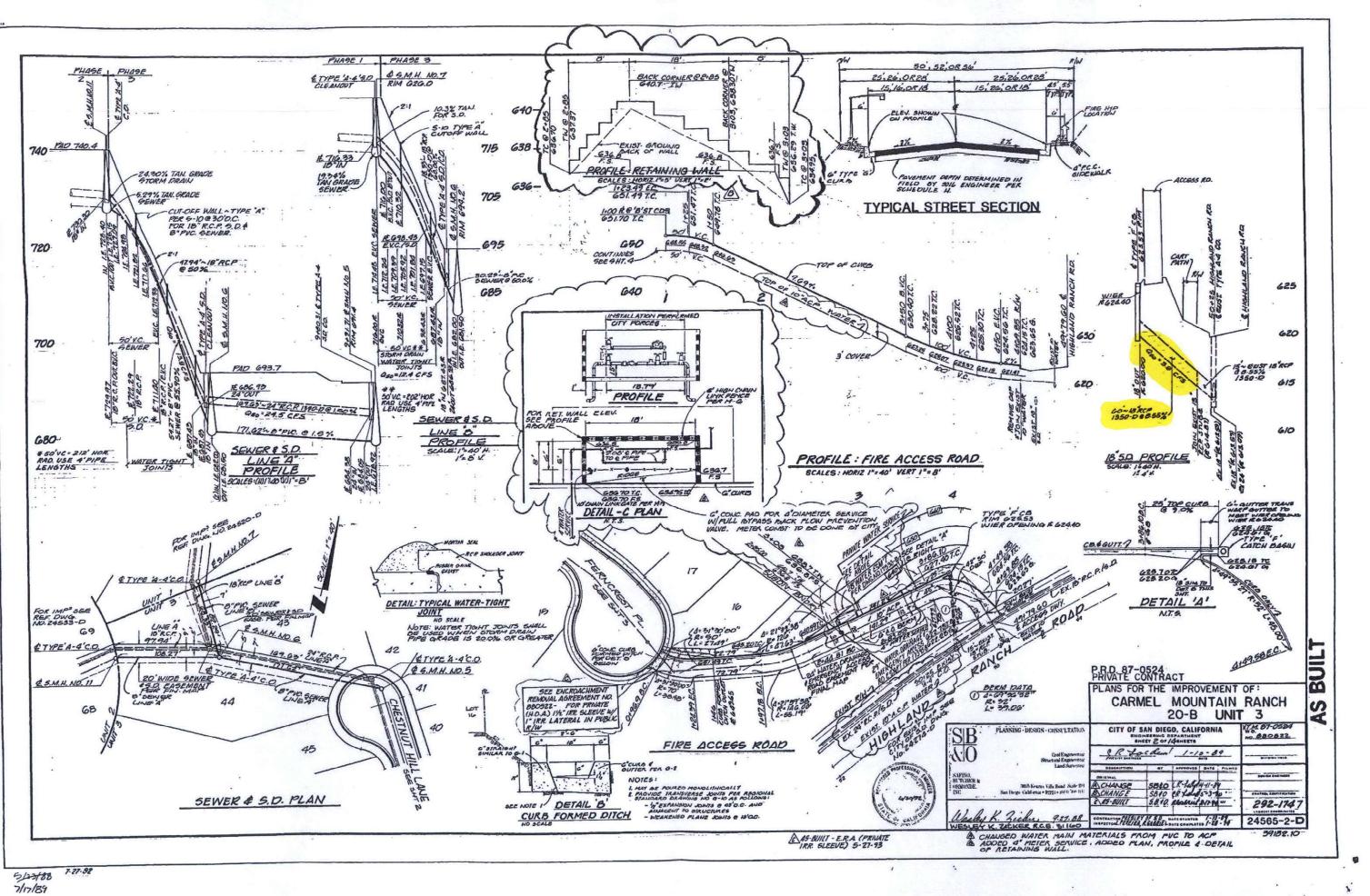

Total of 3 streams to confluence: Flow rates before confluence point: 2.000 8.566 2.600 Maximum flow rates at confluence using above data: 8.336 9.783 9.377 Area of streams before confluence: 4.720 4.650 5.560 Results of confluence: 9.783(CFS) Total flow rate = Time of concentration = 5.974 min. Effective stream area after confluence = 14.930(Ac.) End of computations, total study area = 14.930 (Ac.)

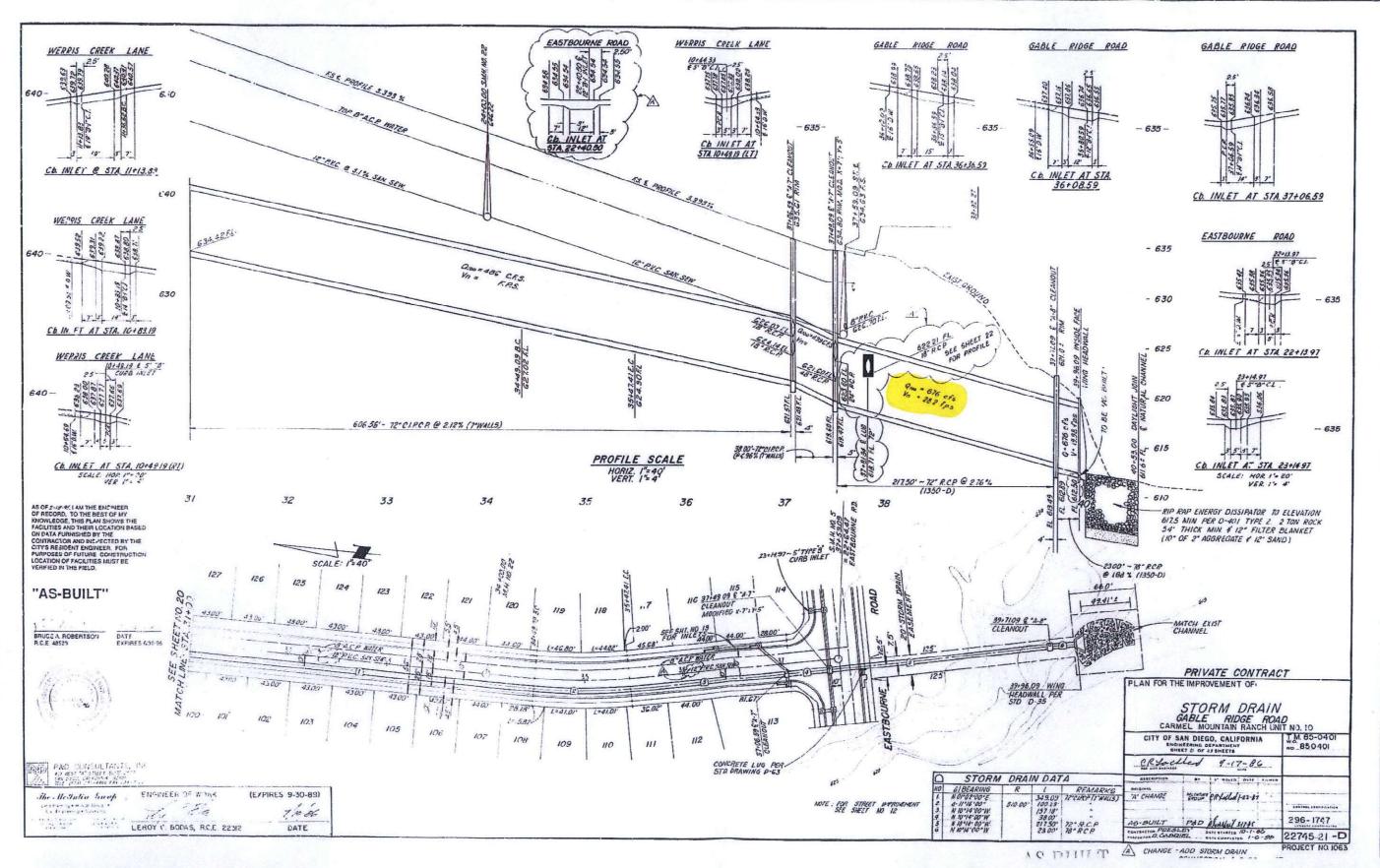

APPENDIX 4

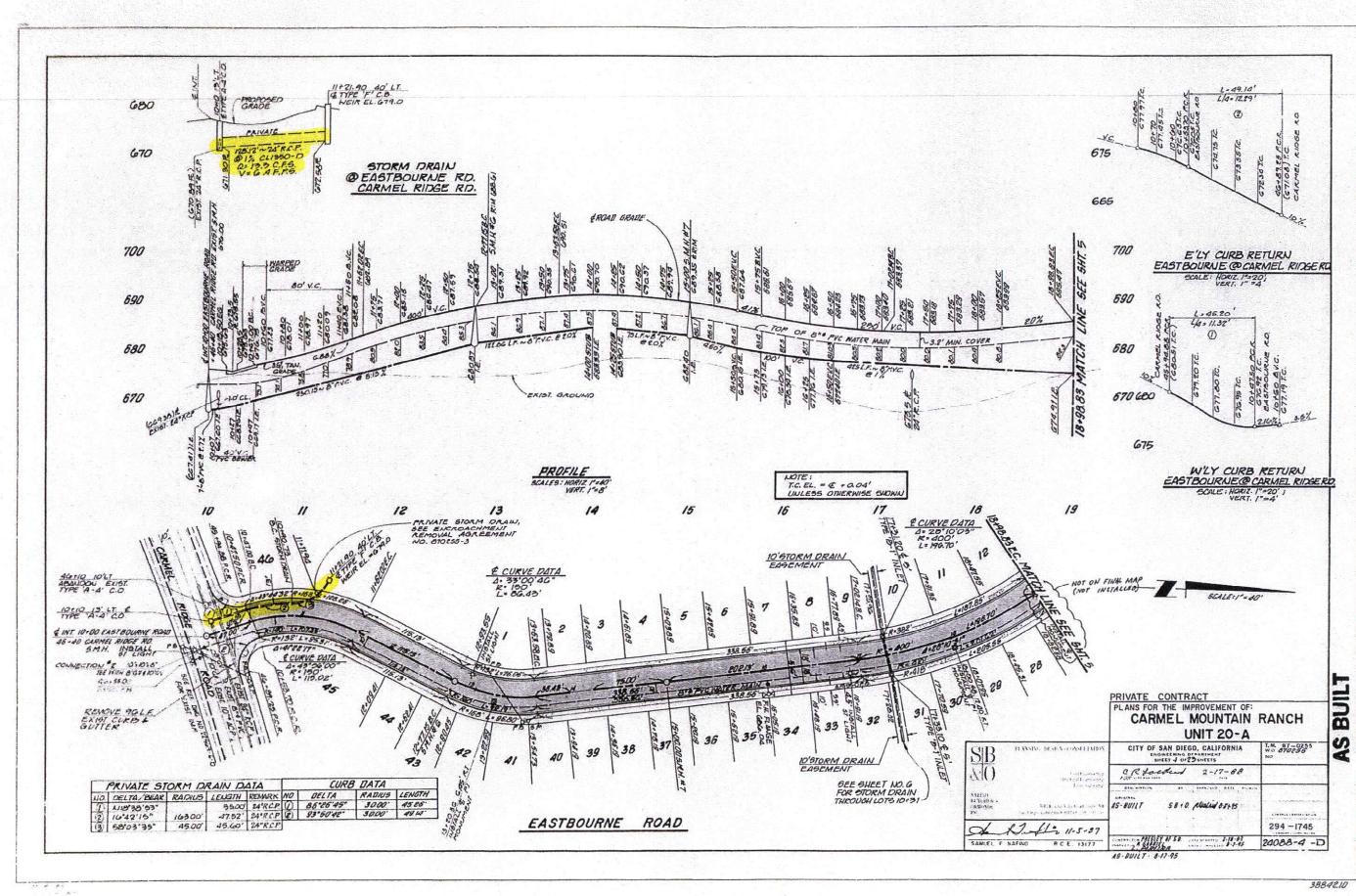

Backbone Study As-Built Record Drawings



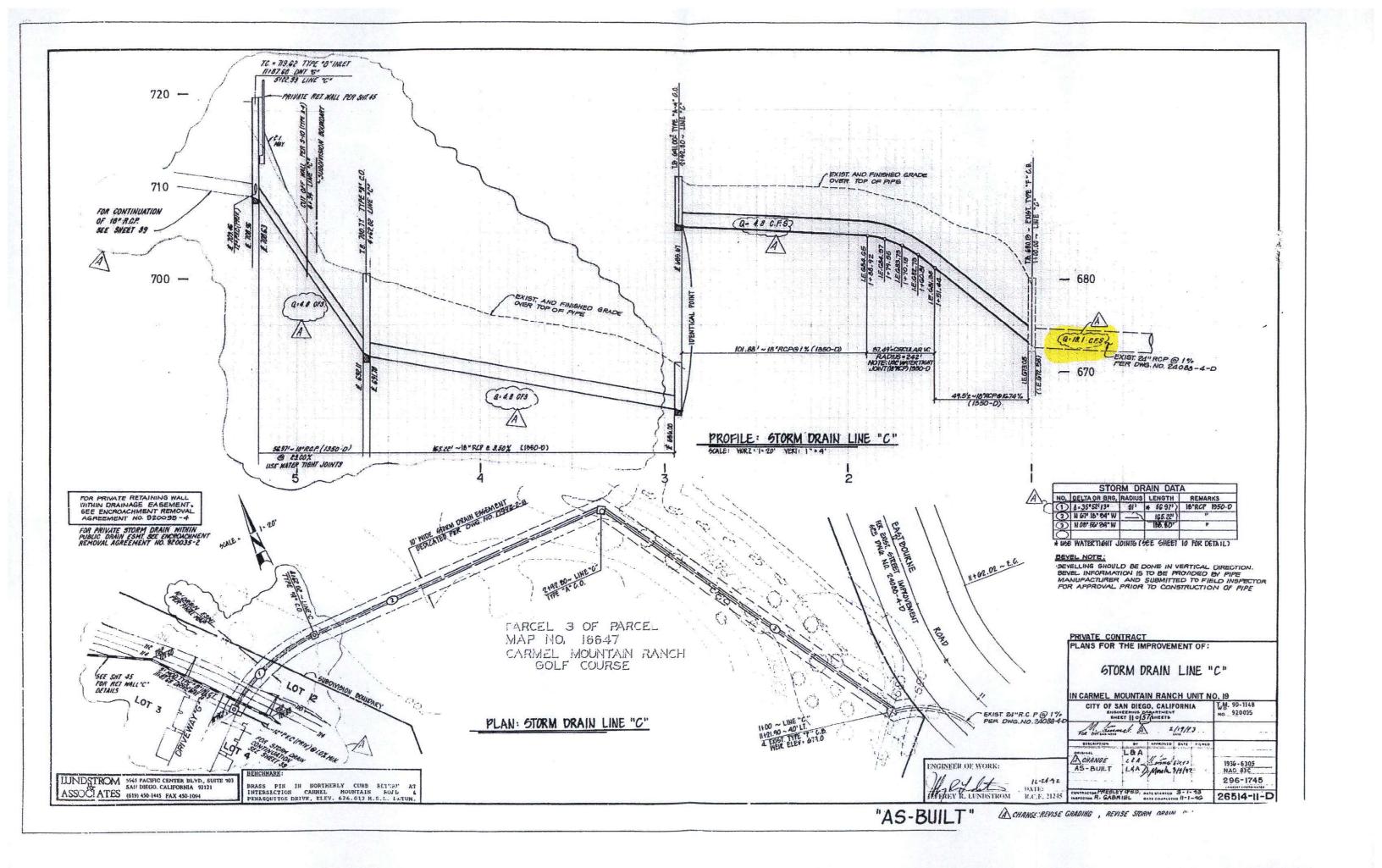
ſ




5 17 70


5

2 3 4N.



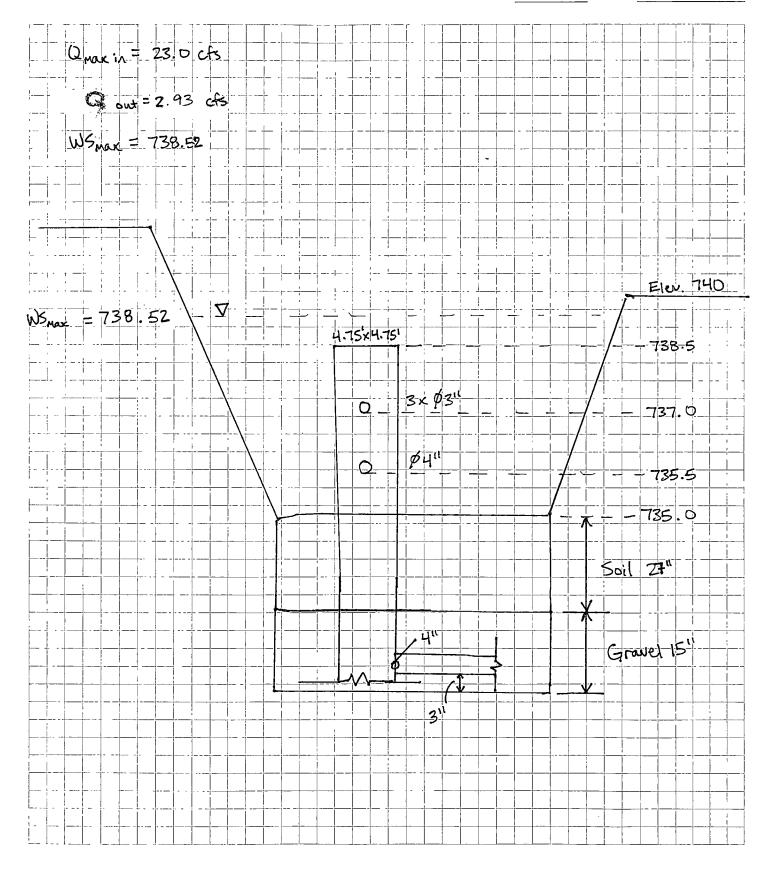
10-20

-

APPENDIX 5

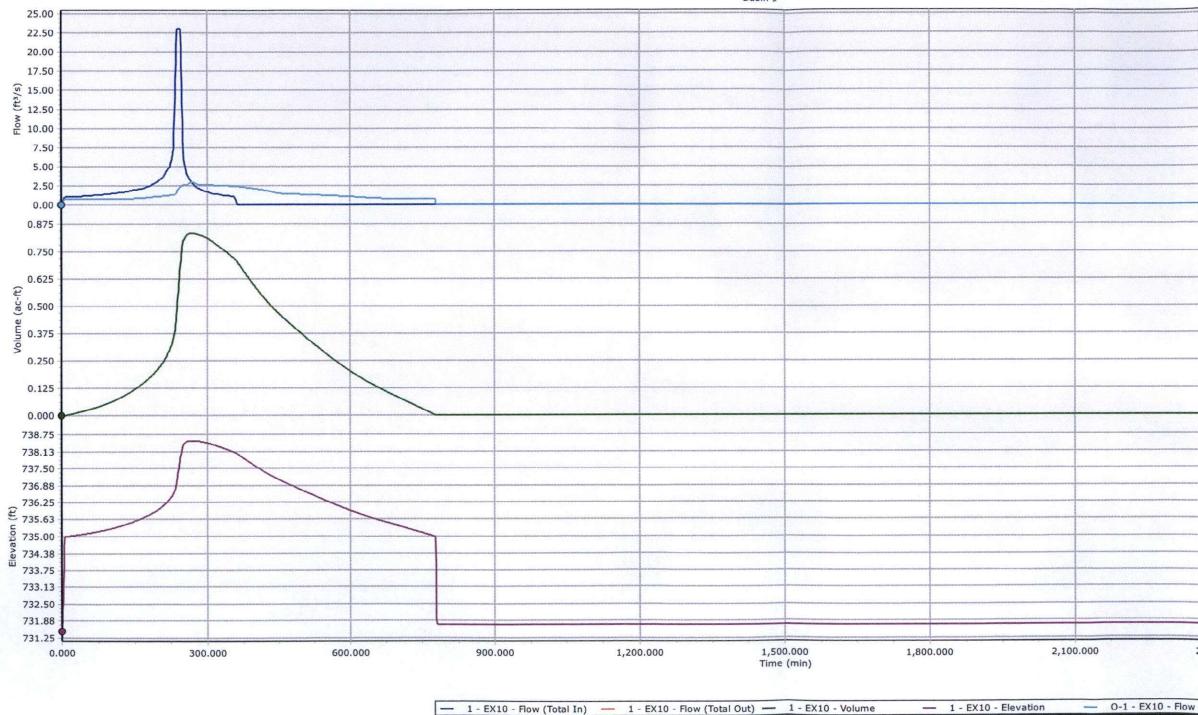
Detention Basin Routing Analysis

PLANNING | LANDSCAPE ARCHITECTURE ENGINEERING | SURVEY


WWW.PROJECTDESIGN.COM

PROJECT	The	Hills	at	CMR		
SUBJECT						
002020.					loou	•0

PAGE : _____ OF _____ JOB NO. : 4394.00


DRAWN BY : G. Anderson DATE : _____

CHECKED BY : _____ DATE : _____

RATIONAL METHOD HYDROGRAPH PROGRAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY 9/30/2019 RUN DATE HYDROGRAPH FILE NAME Text1 TIME OF CONCENTRATION 7 MIN. 6 HOUR RAINFALL 3 INCHES BASIN AREA 6.96 ACRES RUNOFF COEFFICIENT 0.83 PEAK DISCHARGE 23 CFS TIME (MIN) =DISCHARGE (CFS) = 0 0 TIME (MIN) = 7 DISCHARGE (CFS) = 1 TIME (MIN) =14 DISCHARGE (CFS) = 1.1 TIME (MIN) =21 DISCHARGE (CFS) =1.1 TIME (MIN) =DISCHARGE (CFS) = 28 1.1 TIME (MIN) = 35 DISCHARGE (CFS) = 1.1 TIME (MIN) =42 DISCHARGE (CFS) = 1.1 TIME (MIN) = 49 DISCHARGE (CFS) = 1.2 TIME (MIN) =56 DISCHARGE (CFS) = 1.2 TIME (MIN) =DISCHARGE (CFS) = 63 1.2 TIME (MIN) =70 DISCHARGE (CFS) = 1.3 TIME (MIN) =77 DISCHARGE (CFS) = 1.3 TIME (MIN) = 84 DISCHARGE (CFS) = 1.3 TIME (MIN) =91 DISCHARGE (CFS) = 1.4 TIME (MIN) =98 DISCHARGE (CFS) = 1.4 TIME (MIN) = 105 DISCHARGE (CFS) = 1.5 TIME (MIN) =112 DISCHARGE (CFS) = 1.5 TIME (MIN) =119 DISCHARGE (CFS) =1.6 TIME (MIN) =126 DISCHARGE (CFS) = 1.6 TIME (MIN) =133 DISCHARGE (CFS) = 1.7 DISCHARGE (CFS) = TIME (MIN) =140 1.8 TIME (MIN) =147 DISCHARGE (CFS) = 1.9 TIME (MIN) =154 DISCHARGE (CFS) = 1.9 TIME (MIN) = 161 DISCHARGE (CFS) = 2.1 TIME (MIN) =168 DISCHARGE (CFS) = 2.1 TIME (MIN) =175 DISCHARGE (CFS) = 2.3 TIME (MIN) =182 DISCHARGE (CFS) = 2.4 TIME (MIN) =189 DISCHARGE (CFS) = 2.7 TIME (MIN) =DISCHARGE (CFS) = 196 2.9 TIME (MIN) =203 DISCHARGE (CFS) = 3.3 TIME (MIN) =210 DISCHARGE (CFS) = 3.6 TIME (MIN) = 217 DISCHARGE (CFS) = 4.4 TIME (MIN) =224 DISCHARGE (CFS) = 5 TIME (MIN) =231 DISCHARGE (CFS) = 7.3 TIME (MIN) =238 DISCHARGE (CFS) = 24 TIME (MIN) =245 DISCHARGE (CFS) = 23 TIME (MIN) =252 DISCHARGE (CFS) =5.8 TIME (MIN) =259 DISCHARGE (CFS) = 3.9

TIME $(MIN) = 301$ DISCHARGE $(CFS) = 1.7$ TIME $(MIN) = 308$ DISCHARGE $(CFS) = 1.5$ TIME $(MIN) = 315$ DISCHARGE $(CFS) = 1.4$ TIME $(MIN) = 322$ DISCHARGE $(CFS) = 1.4$ TIME $(MIN) = 329$ DISCHARGE $(CFS) = 1.3$ TIME $(MIN) = 336$ DISCHARGE $(CFS) = 1.2$ TIME $(MIN) = 343$ DISCHARGE $(CFS) = 1.2$ TIME $(MIN) = 350$ DISCHARGE $(CFS) = 1.1$ TIME $(MIN) = 357$ DISCHARGE $(CFS) = 1.1$ TIME $(MIN) = 364$ DISCHARGE $(CFS) = 0$
TIME $(MIN) = 364$ DISCHARGE $(CFS) = 0$

		and the second
		and the second
	10 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
2,400.000	2,700.000	3,000.000

Project SummaryTitleBasin 9EngineerPDCCompanyPDCDate9/30/2019Notes

POC9.ppc 1/29/2020 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 1 of 33

Subsection: Master Network Summary

Catchments Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (min)	Peak Flow (ft ³ /s)
CM-1	EX10	0	1.424	238.000	23.00

Node Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (min)	Peak Flow (ft³/s)
0-1	EX10	0	1.424	268.000	2.93

Pond Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (min)	Peak Flow (ft³/s)	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ac-ft)
1 (IN)	EX10	0	1.424	238.000	23.00	(N/A)	(N/A)
1 (OUT)	EX10	0	1.424	268.000	2.93	738.52	0.833

POC9.ppc 1/29/2020 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 2 of 33

Subsection: Read Hydrograph Label: CM-1

Return Event: 100 years Storm Event:

Peak Discharge	23.00 ft ³ /s
Time to Peak	245.000 min
Hydrograph Volume	1.424 ac-ft

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 7.000 min Time on left represents time for first value in each row.

Time (min)	Flow (ft³/s)	Flow (ft ³ /s)	Flow (ft³/s)	Flow (ft ³ /s)	Flow (ft³/s)
0.000	0.00	1.00	1.10	1.10	1.10
35.000	1.10	1.10	1.20	1.20	1.20
70.000	1.30	1.30	1.30	1.40	1.40
105.000	1.50	1.50	1.60	1.60	1.70
140.000	1.80	1.90	1.90	2.10	2.10
175.000	2.30	2.40	2.70	2.90	3.30
210.000	3.60	4.40	5.00	7.30	23.00
245.000	23.00	5.80	3.90	3.10	2.60
280.000	2.20	2.00	1.80	1.70	1.50
315.000	1.40	1.40	1.30	1.20	1.20
350.000	1.10	1.10	0.00	(N/A)	(N/A)

POC9.ppc 1/29/2020 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 3 of 33

Subsection: Time vs. Volume Label: 1

Return Event: 100 years Storm Event:

Time vs. Volume (ac-ft)

Time Volume Volume Volume Volume Volume (ac-ft) (min) (ac-ft) (ac-ft) (ac-ft) (ac-ft) 0.000 0.000 0.000 0.000 0.000 0.000 5.000 0.001 0.001 0.001 0.001 0.001 10.000 0.001 0.001 0.002 0.002 0.003 15.000 0.003 0.004 0.004 0.005 0.006 20.000 0.006 0.007 0.007 0.008 0.008 25.000 0.009 0.009 0.010 0.010 0.011 30.000 0.011 0.012 0.012 0.013 0.013 35.000 0.014 0.015 0.015 0.016 0.016 40.000 0.017 0.017 0.018 0.018 0.019 45.000 0.019 0.020 0.021 0.021 0.022 50.000 0.022 0.023 0.025 0.024 0.024 55.000 0.025 0.026 0.027 0.027 0.028 60.000 0.028 0.029 0.030 0.030 0.031 65.000 0.032 0.032 0.033 0.034 0.034 70.000 0.035 0.036 0.037 0.037 0.038 75.000 0.039 0.040 0.040 0.041 0.042 80.000 0.043 0.043 0.044 0.045 0.046 0.048 85.000 0.046 0.047 0.049 0.049 90.000 0.050 0.051 0.052 0.053 0.054 95.000 0.055 0.056 0.056 0.057 0.058 100.000 0.059 0.060 0.061 0.062 0.063 105.000 0.064 0.065 0.066 0.067 0.068 110.000 0.069 0.070 0.071 0.072 0.073 115.000 0.074 0.075 0.076 0.077 0.078 120.000 0.079 0.081 0.082 0.083 0.084 125.000 0.085 0.086 0.087 0.088 0.090 130.000 0.091 0.092 0.093 0.094 0.096 135.000 0.097 0.098 0.100 0.101 0.102 0.105 0.107 0.108 140.000 0.104 0.109 145.000 0.111 0.112 0.114 0.115 0.117 150.000 0.118 0.120 0.121 0.123 0.124 155.000 0.126 0.127 0.129 0.131 0.132 160.000 0.134 0.136 0.137 0.139 0.141 165.000 0.142 0.144 0.146 0.147 0.149 170.000 0.151 0.153 0.154 0.156 0.158 175.000 0.160 0.164 0.166 0.168 0.162 180.000 0.170 0.173 0.175 0.178 0.172 185.000 0.180 0.188 0.182 0.184 0.186 0.200 190.000 0.191 0.193 0.195 0.198 195.000 0.203 0.205 0.208 0.210 0.213 200.000 0.216 0.219 0.222 0.225 0.228

Output Time increment = 1.000 min Time on left represents time for first value in each row.

POC9.ppc 1/29/2020 Bentley Systems, Inc. Haestad Methods Solution Center

27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 4 of 33

Subsection: Time vs. Volume Label: 1

Return Event: 100 years Storm Event:

Time vs. Volume (ac-ft)

Output Time increment = 1.000 min Time on left represents time for first value in each row.

Time (min)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)
205.000	0.231	0.234	0.237	0.240	0.244
210.000	0.247	0.250	0.254	0.258	0.262
215.000	0.266	0.270	0.274	0.279	0.283
220.000	0.288	0.293	0.298	0.303	0.308
225.000	0.313	0.319	0.325	0.332	0.339
230.000	0.347	0.355	0.364	0.377	0.393
235.000	0.412	0.434	0.459	0.487	0.517
240.000	0.546	0.575	0.604	0.632	0.661
245.000	0.689	0.716	0.739	0.759	0.776
250.000	0.789	0.798	0.804	0.809	0.812
255.000	0.816	0.819	0.822	0.824	0.826
260.000	0.828	0.829	0.830	0.831	0.832
265.000	0.833	0.833	0.833	0.833	0.833
270.000	0.833	0.833	0.833	0.833	0.832
275.000	0.832	0.831	0.831	0.830	0.829
280.000	0.829	0.828	0.828	0.827	0.826
285.000	0.825	0.825	0.824	0.823	0.822
290.000	0.821	0.820	0.819	0.818	0.817
295.000	0.816	0.815	0.814	0.813	0.811
300.000	0.810	0.809	0.808	0.807	0.805
305.000	0.804	0.803	0.801	0.800	0.798
310.000	0.797	0.795	0.794	0.792	0.791
315.000	0.789	0.787	0.786	0.784	0.783
320.000	0.781	0.780	0.778	0.777	0.775
325.000	0.774	0.772	0.770	0.769	0.767
330.000	0.765	0.764	0.762	0.760	0.759
335.000	0.757	0.755	0.753	0.752	0.750
340.000	0.748	0.746	0.745	0.743	0.741
345.000	0.740	0.738	0.736	0.734	0.732
350.000	0.731	0.729	0.727	0.725	0.723
355.000	0.722	0.720	0.718	0.716	0.714
360.000	0.712	0.709	0.707	0.704	0.700
365.000	0.697	0.694	0.691	0.688	0.684
370.000	0.681	0.678	0.675	0.672	0.669
375.000	0.666	0.662	0.659	0.656	0.653
380.000	0.650	0.647	0.644	0.641	0.638
385.000	0.635	0.632	0.629	0.626	0.623
390.000	0.620	0.617	0.614	0.611	0.608
395.000	0.605	0.602	0.599	0.597	0.594
400.000	0.591	0.588	0.585	0.582	0.580
405.000	0.577	0.574	0.571	0.569	0.566

POC9.ppc 1/29/2020

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 5 of 33

Subsection: Time vs. Volume Label: 1

Return Event: 100 years Storm Event:

Time vs. Volume (ac-ft)

Output Time increment = 1.000 min Time on left represents time for first value in each row.

Time (min)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)
410.000	0.563	0.560	0.558	0.555	0.552
415.000	0.550	0.547	0.544	0.542	0.539
420.000	0.536	0.534	0.531	0.529	0.526
425.000	0.524	0.521	0.519	0.516	0.514
430.000	0.511	0.509	0.507	0.504	0.502
435.000	0.499	0.497	0.495	0.493	0.490
440.000	0.488	0.486	0.484	0.482	0.479
445.000	0.477	0.475	0.473	0.471	0.469
450.000	0.467	0.465	0.463	0.461	0.459
455.000	0.457	0.455	0.453	0.451	0.449
460.000	0.447	0.445	0.443	0.441	0.439
465.000	0.437	0.435	0.433	0.431	0.429
470.000	0.427	0.425	0.423	0.421	0.419
475.000	0.417	0.415	0.414	0.412	0.410
480.000	0.408	0.406	0.404	0.402	0.400
485.000	0.398	0.396	0.395	0.393	0.391
490.000	0.389	0.387	0.385	0.383	0.381
495.000	0.380	0.378	0.376	0.374	0.372
500.000	0.370	0.368	0.367	0.365	0.363
505.000	0.361	0.359	0.357	0.356	0.354
510.000	0.352	0.350	0.348	0.347	0.345
515.000	0.343	0.341	0.339	0.338	0.336
520.000	0.334	0.332	0.330	0.329	0.327
525.000	0.325	0.323	0.322	0.320	0.318
530.000	0.316	0.315	0.313	0.311	0.309
535.000	0.308	0.306	0.304	0.303	0.301
540.000	0.299	0.297	0.296	0.294	0.292
545.000	0.291	0.289	0.287	0.286	0.284
550.000	0.282	0.281	0.279	0.277	0.276
555.000	0.274	0.272	0.271	0.269	0.267
560.000	0.266	0.264	0.262	0.261	0.259
565.000	0.258	0.256	0.254	0.253	0.251
570.000	0.250	0.248	0.246	0.245	0.243
575.000	0.242	0.240	0.239	0.237	0.235
580.000	0.234	0.232	0.231	0.229	0.228
585.000	0.226	0.225	0.223	0.222	0.220
590.000	0.219	0.217	0.215	0.214	0.213
595.000	0.211	0.210	0.208	0.207	0.205
600.000	0.204	0.202	0.201	0.199	0.198
605.000	0.196	0.195	0.193	0.192	0.191
610.000	0.189	0.188	0.186	0.185	0.184

POC9.ppc 1/29/2020

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 6 of 33

Subsection: Time vs. Volume Label: 1

Return Event: 100 years Storm Event:

Time vs. Volume (ac-ft)

Output Time increment = 1.000 min Time on left represents time for first value in each row.

Time (min)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)
615.000	0.182	0.181	0.179	0.178	0.177
620.000	0.175	0.174	0.173	0.171	0.170
625.000	0.169	0.167	0.166	0.165	0.163
630.000	0.162	0.161	0.160	0.158	0.157
635.000	0.156	0.154	0.153	0.152	0.151
640.000	0.150	0.148	0.147	0.146	0.145
645.000	0.144	0.142	0.141	0.140	0.139
650.000	0.138	0.136	0.135	0.134	0.133
655.000	0.132	0.131	0.129	0.128	0.127
660.000	0.126	0.125	0.124	0.123	0.122
665.000	0.120	0.119	0.118	0.117	0.116
670.000	0.115	0.114	0.113	0.111	0.110
675.000	0.109	0.108	0.107	0.106	0.105
680.000	0.104	0.103	0.102	0.101	0.099
685.000	0.098	0.097	0.096	0.095	0.094
690.000	0.093	0.092	0.091	0.090	0.089
695.000	0.087	0.086	0.085	0.084	0.083
700.000	0.082	0.081	0.080	0.079	0.078
705.000	0.077	0.076	0.075	0.073	0.072
710.000	0.071	0.070	0.069	0.068	0.067
715.000	0.066	0.065	0.064	0.063	0.062
720.000	0.061	0.060	0.059	0.058	0.056
725.000	0.055	0.054	0.053	0.052	0.051
730.000	0.050	0.049	0.048	0.047	0.046
735.000	0.045	0.044	0.043	0.042	0.041
740.000	0.040	0.039	0.038	0.036	0.035
745.000	0.034	0.033	0.032	0.031	0.030
750.000	0.029	0.028	0.027	0.026	0.025
755.000	0.024	0.023	0.022	0.021	0.020
760.000	0.019	0.018	0.017	0.015	0.014
765.000	0.013	0.012	0.011	0.010	0.009
770.000	0.008	0.007	0.006	0.005	0.003
775.000	0.002	0.001	0.001	0.001	0.000
780.000	0.000	0.000	0.000	0.000	0.000
785.000	0.000	0.000	0.000	0.000	0.000
790.000	0.000	0.000	0.000	0.000	0.000
795.000	0.000	0.000	0.000	0.000	0.000
800.000	0.000	0.000	0.000	0.000	0.000
805.000	0.000	0.000	0.000	0.000	0.000
810.000	0.000	0.000	0.000	0.000	0.000
815.000	0.000	0.000	0.000	0.000	0.000

POC9.ppc 1/29/2020

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 7 of 33

Subsection: Time vs. Volume Label: 1

Return Event: 100 years Storm Event:

Time vs. Volume (ac-ft)

Output Time increment = 1.000 min Time on left represents time for first value in each row.

Time (min)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)
820.000	0.000	0.000	0.000	0.000	0.000
825.000	0.000	0.000	0.000	0.000	0.000
830.000	0.000	0.000	0.000	0.000	0.000
835.000	0.000	0.000	0.000	0.000	0.000
840.000	0.000	0.000	0.000	0.000	0.000
845.000	0.000	0.000	0.000	0.000	0.000
850.000	0.000	0.000	0.000	0.000	0.000
855.000	0.000	0.000	0.000	0.000	0.000
860.000	0.000	0.000	0.000	0.000	0.000
865.000	0.000	0.000	0.000	0.000	0.000
870.000	0.000	0.000	0.000	0.000	0.000
875.000	0.000	0.000	0.000	0.000	0.000
880.000	0.000	0.000	0.000	0.000	0.000
885.000	0.000	0.000	0.000	0.000	0.000
890.000	0.000	0.000	0.000	0.000	0.000
895.000	0.000	0.000	0.000	0.000	0.000
900.000	0.000	0.000	0.000	0.000	0.000
905.000	0.000	0.000	0.000	0.000	0.000
910.000	0.000	0.000	0.000	0.000	0.000
915.000	0.000	0.000	0.000	0.000	0.000
920.000	0.000	0.000	0.000	0.000	0.000
925.000	0.000	0.000	0.000	0.000	0.000
930.000	0.000	0.000	0.000	0.000	0.000
935.000	0.000	0.000	0.000	0.000	0.000
940.000	0.000	0.000	0.000	0.000	0.000
945.000	0.000	0.000	0.000	0.000	0.000
950.000	0.000	0.000	0.000	0.000	0.000
955.000	0.000	0.000	0.000	0.000	0.000
960.000	0.000	0.000	0.000	0.000	0.000
965.000	0.000	0.000	0.000	0.000	0.000
970.000	0.000	0.000	0.000	0.000	0.000
975.000	0.000	0.000	0.000	0.000	0.000
980.000	0.000	0.000	0.000	0.000	0.000
985.000	0.000	0.000	0.000	0.000	0.000
990.000	0.000	0.000	0.000	0.000	0.000
995.000	0.000	0.000	0.000	0.000	0.000
1,000.000	0.000	0.000	0.000	0.000	0.000
1,005.000	0.000	0.000	0.000	0.000	0.000
1,010.000	0.000	0.000	0.000	0.000	0.000
1,015.000	0.000	0.000	0.000	0.000	0.000
1,020.000	0.000	0.000	0.000	0.000	0.000

POC9.ppc 1/29/2020

Bentley Systems, Inc. Haestad Methods Solution

Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 8 of 33

Subsection: Time vs. Volume Label: 1

Return Event: 100 years Storm Event:

Time vs. Volume (ac-ft)

Output Time increment = 1.000 min Time on left represents time for first value in each row.

Time (min)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)
1,025.000	0.000	0.000	0.000	0.000	0.000
1,030.000	0.000	0.000	0.000	0.000	0.000
1,035.000	0.000	0.000	0.000	0.000	0.000
1,040.000	0.000	0.000	0.000	0.000	0.000
1,045.000	0.000	0.000	0.000	0.000	0.000
1,050.000	0.000	0.000	0.000	0.000	0.000
1,055.000	0.000	0.000	0.000	0.000	0.000
1,060.000	0.000	0.000	0.000	0.000	0.000
1,065.000	0.000	0.000	0.000	0.000	0.000
1,070.000	0.000	0.000	0.000	0.000	0.000
1,075.000	0.000	0.000	0.000	0.000	0.000
1,080.000	0.000	0.000	0.000	0.000	0.000
1,085.000	0.000	0.000	0.000	0.000	0.000
1,090.000	0.000	0.000	0.000	0.000	0.000
1,095.000	0.000	0.000	0.000	0.000	0.000
1,100.000	0.000	0.000	0.000	0.000	0.000
1,105.000	0.000	0.000	0.000	0.000	0.000
1,110.000	0.000	0.000	0.000	0.000	0.000
1,115.000	0.000	0.000	0.000	0.000	0.000
1,120.000	0.000	0.000	0.000	0.000	0.000
1,125.000	0.000	0.000	0.000	0.000	0.000
1,130.000	0.000	0.000	0.000	0.000	0.000
1,135.000	0.000	0.000	0.000	0.000	0.000
1,140.000	0.000	0.000	0.000	0.000	0.000
1,145.000	0.000	0.000	0.000	0.000	0.000
1,150.000	0.000	0.000	0.000	0.000	0.000
1,155.000	0.000	0.000	0.000	0.000	0.000
1,160.000	0.000	0.000	0.000	0.000	0.000
1,165.000	0.000	0.000	0.000	0.000	0.000
1,170.000	0.000	0.000	0.000	0.000	0.000
1,175.000	0.000	0.000	0.000	0.000	0.000
1,180.000	0.000	0.000	0.000	0.000	0.000
1,185.000	0.000	0.000	0.000	0.000	0.000
1,190.000	0.000	0.000	0.000	0.000	0.000
1,195.000	0.000	0.000	0.000	0.000	0.000
1,200.000	0.000	0.000	0.000	0.000	0.000
1,205.000	0.000	0.000	0.000	0.000	0.000
1,210.000	0.000	0.000	0.000	0.000	0.000
1,215.000	0.000	0.000	0.000	0.000	0.000
1,220.000	0.000	0.000	0.000	0.000	0.000
1,225.000	0.000	0.000	0.000	0.000	0.000

POC9.ppc 1/29/2020

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 9 of 33

Subsection: Time vs. Volume Label: 1

Return Event: 100 years Storm Event:

Time vs. Volume (ac-ft)

Output Time increment = 1.000 min Time on left represents time for first value in each row.

Time (min)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)
1,230.000	0.000	0.000	0.000	0.000	0.000
1,235.000	0.000	0.000	0.000	0.000	0.000
1,240.000	0.000	0.000	0.000	0.000	0.000
1,245.000	0.000	0.000	0.000	0.000	0.000
1,250.000	0.000	0.000	0.000	0.000	0.000
1,255.000	0.000	0.000	0.000	0.000	0.000
1,260.000	0.000	0.000	0.000	0.000	0.000
1,265.000	0.000	0.000	0.000	0.000	0.000
1,270.000	0.000	0.000	0.000	0.000	0.000
1,275.000	0.000	0.000	0.000	0.000	0.000
1,280.000	0.000	0.000	0.000	0.000	0.000
1,285.000	0.000	0.000	0.000	0.000	0.000
1,290.000	0.000	0.000	0.000	0.000	0.000
1,295.000	0.000	0.000	0.000	0.000	0.000
1,300.000	0.000	0.000	0.000	0.000	0.000
1,305.000	0.000	0.000	0.000	0.000	0.000
1,310.000	0.000	0.000	0.000	0.000	0.000
1,315.000	0.000	0.000	0.000	0.000	0.000
1,320.000	0.000	0.000	0.000	0.000	0.000
1,325.000	0.000	0.000	0.000	0.000	0.000
1,330.000	0.000	0.000	0.000	0.000	0.000
1,335.000	0.000	0.000	0.000	0.000	0.000
1,340.000	0.000	0.000	0.000	0.000	0.000
1,345.000	0.000	0.000	0.000	0.000	0.000
1,350.000	0.000	0.000	0.000	0.000	0.000
1,355.000	0.000	0.000	0.000	0.000	0.000
1,360.000	0.000	0.000	0.000	0.000	0.000
1,365.000	0.000	0.000	0.000	0.000	0.000
1,370.000	0.000	0.000	0.000	0.000	0.000
1,375.000	0.000	0.000	0.000	0.000	0.000
1,380.000	0.000	0.000	0.000	0.000	0.000
1,385.000	0.000	0.000	0.000	0.000	0.000
1,390.000	0.000	0.000	0.000	0.000	0.000
1,395.000	0.000	0.000	0.000	0.000	0.000
1,400.000	0.000	0.000	0.000	0.000	0.000
1,405.000	0.000	0.000	0.000	0.000	0.000
1,410.000	0.000	0.000	0.000	0.000	0.000
1,415.000	0.000	0.000	0.000	0.000	0.000
1,420.000	0.000	0.000	0.000	0.000	0.000
1,425.000	0.000	0.000	0.000	0.000	0.000
1,430.000	0.000	0.000	0.000	0.000	0.000

POC9.ppc 1/29/2020

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 10 of 33

Subsection: Time vs. Volume Label: 1

Return Event: 100 years Storm Event:

Time vs. Volume (ac-ft)

Output Time increment = 1.000 min Time on left represents time for first value in each row.

Time (min)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)
1,435.000	0.000	0.000	0.000	0.000	0.000
1,440.000	0.000	0.000	0.000	0.000	0.000
1,445.000	0.000	0.000	0.000	0.000	0.000
1,450.000	0.000	0.000	0.000	0.000	0.000
1,455.000	0.000	0.000	0.000	0.000	0.000
1,460.000	0.000	0.000	0.000	0.000	0.000
1,465.000	0.000	0.000	0.000	0.000	0.000
1,470.000	0.000	0.000	0.000	0.000	0.000
1,475.000	0.000	0.000	0.000	0.000	0.000
1,480.000	0.000	0.000	0.000	0.000	0.000
1,485.000	0.000	0.000	0.000	0.000	0.000
1,490.000	0.000	0.000	0.000	0.000	0.000
1,495.000	0.000	0.000	0.000	0.000	0.000
1,500.000	0.000	0.000	0.000	0.000	0.000
1,505.000	0.000	0.000	0.000	0.000	0.000
1,510.000	0.000	0.000	0.000	0.000	0.000
1,515.000	0.000	0.000	0.000	0.000	0.000
1,520.000	0.000	0.000	0.000	0.000	0.000
1,525.000	0.000	0.000	0.000	0.000	0.000
1,530.000	0.000	0.000	0.000	0.000	0.000
1,535.000	0.000	0.000	0.000	0.000	0.000
1,540.000	0.000	0.000	0.000	0.000	0.000
1,545.000	0.000	0.000	0.000	0.000	0.000
1,550.000	0.000	0.000	0.000	0.000	0.000
1,555.000	0.000	0.000	0.000	0.000	0.000
1,560.000	0.000	0.000	0.000	0.000	0.000
1,565.000	0.000	0.000	0.000	0.000	0.000
1,570.000	0.000	0.000	0.000	0.000	0.000
1,575.000	0.000	0.000	0.000	0.000	0.000
1,580.000	0.000	0.000	0.000	0.000	0.000
1,585.000	0.000	0.000	0.000	0.000	0.000
1,590.000	0.000	0.000	0.000	0.000	0.000
1,595.000	0.000	0.000	0.000	0.000	0.000
1,600.000	0.000	0.000	0.000	0.000	0.000
1,605.000	0.000	0.000	0.000	0.000	0.000
1,610.000	0.000	0.000	0.000	0.000	0.000
1,615.000	0.000	0.000	0.000	0.000	0.000
1,620.000	0.000	0.000	0.000	0.000	0.000
1,625.000	0.000	0.000	0.000	0.000	0.000
1,630.000	0.000	0.000	0.000	0.000	0.000
1,635.000	0.000	0.000	0.000	0.000	0.000

POC9.ppc 1/29/2020

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 11 of 33

Subsection: Time vs. Volume Label: 1

Return Event: 100 years Storm Event:

Time vs. Volume (ac-ft)

Output Time increment = 1.000 min Time on left represents time for first value in each row.

Time (min)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)
1,640.000	0.000	0.000	0.000	0.000	0.000
1,645.000	0.000	0.000	0.000	0.000	0.000
1,650.000	0.000	0.000	0.000	0.000	0.000
1,655.000	0.000	0.000	0.000	0.000	0.000
1,660.000	0.000	0.000	0.000	0.000	0.000
1,665.000	0.000	0.000	0.000	0.000	0.000
1,670.000	0.000	0.000	0.000	0.000	0.000
1,675.000	0.000	0.000	0.000	0.000	0.000
1,680.000	0.000	0.000	0.000	0.000	0.000
1,685.000	0.000	0.000	0.000	0.000	0.000
1,690.000	0.000	0.000	0.000	0.000	0.000
1,695.000	0.000	0.000	0.000	0.000	0.000
1,700.000	0.000	0.000	0.000	0.000	0.000
1,705.000	0.000	0.000	0.000	0.000	0.000
1,710.000	0.000	0.000	0.000	0.000	0.000
1,715.000	0.000	0.000	0.000	0.000	0.000
1,720.000	0.000	0.000	0.000	0.000	0.000
1,725.000	0.000	0.000	0.000	0.000	0.000
1,730.000	0.000	0.000	0.000	0.000	0.000
1,735.000	0.000	0.000	0.000	0.000	0.000
1,740.000	0.000	0.000	0.000	0.000	0.000
1,745.000	0.000	0.000	0.000	0.000	0.000
1,750.000	0.000	0.000	0.000	0.000	0.000
1,755.000	0.000	0.000	0.000	0.000	0.000
1,760.000	0.000	0.000	0.000	0.000	0.000
1,765.000	0.000	0.000	0.000	0.000	0.000
1,770.000	0.000	0.000	0.000	0.000	0.000
1,775.000	0.000	0.000	0.000	0.000	0.000
1,780.000	0.000	0.000	0.000	0.000	0.000
1,785.000	0.000	0.000	0.000	0.000	0.000
1,790.000	0.000	0.000	0.000	0.000	0.000
1,795.000	0.000	0.000	0.000	0.000	0.000
1,800.000	0.000	0.000	0.000	0.000	0.000
1,805.000	0.000	0.000	0.000	0.000	0.000
1,810.000	0.000	0.000	0.000	0.000	0.000
1,815.000	0.000	0.000	0.000	0.000	0.000
1,820.000	0.000	0.000	0.000	0.000	0.000
1,825.000	0.000	0.000	0.000	0.000	0.000
1,830.000	0.000	0.000	0.000	0.000	0.000
1,835.000	0.000	0.000	0.000	0.000	0.000
1,840.000	0.000	0.000	0.000	0.000	0.000

POC9.ppc 1/29/2020

Bentley Systems, Inc. Haestad Methods Solution

Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 12 of 33

Subsection: Time vs. Volume Label: 1

Return Event: 100 years Storm Event:

Time vs. Volume (ac-ft)

Output Time increment = 1.000 min Time on left represents time for first value in each row.

Time (min)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)
1,845.000	0.000	0.000	0.000	0.000	0.000
1,850.000	0.000	0.000	0.000	0.000	0.000
1,855.000	0.000	0.000	0.000	0.000	0.000
1,860.000	0.000	0.000	0.000	0.000	0.000
1,865.000	0.000	0.000	0.000	0.000	0.000
1,870.000	0.000	0.000	0.000	0.000	0.000
1,875.000	0.000	0.000	0.000	0.000	0.000
1,880.000	0.000	0.000	0.000	0.000	0.000
1,885.000	0.000	0.000	0.000	0.000	0.000
1,890.000	0.000	0.000	0.000	0.000	0.000
1,895.000	0.000	0.000	0.000	0.000	0.000
1,900.000	0.000	0.000	0.000	0.000	0.000
1,905.000	0.000	0.000	0.000	0.000	0.000
1,910.000	0.000	0.000	0.000	0.000	0.000
1,915.000	0.000	0.000	0.000	0.000	0.000
1,920.000	0.000	0.000	0.000	0.000	0.000
1,925.000	0.000	0.000	0.000	0.000	0.000
1,930.000	0.000	0.000	0.000	0.000	0.000
1,935.000	0.000	0.000	0.000	0.000	0.000
1,940.000	0.000	0.000	0.000	0.000	0.000
1,945.000	0.000	0.000	0.000	0.000	0.000
1,950.000	0.000	0.000	0.000	0.000	0.000
1,955.000	0.000	0.000	0.000	0.000	0.000
1,960.000	0.000	0.000	0.000	0.000	0.000
1,965.000	0.000	0.000	0.000	0.000	0.000
1,970.000	0.000	0.000	0.000	0.000	0.000
1,975.000	0.000	0.000	0.000	0.000	0.000
1,980.000	0.000	0.000	0.000	0.000	0.000
1,985.000	0.000	0.000	0.000	0.000	0.000
1,990.000	0.000	0.000	0.000	0.000	0.000
1,995.000	0.000	0.000	0.000	0.000	0.000
2,000.000	0.000	0.000	0.000	0.000	0.000
2,005.000	0.000	0.000	0.000	0.000	0.000
2,010.000	0.000	0.000	0.000	0.000	0.000
2,015.000	0.000	0.000	0.000	0.000	0.000
2,020.000	0.000	0.000	0.000	0.000	0.000
2,025.000	0.000	0.000	0.000	0.000	0.000
2,030.000	0.000	0.000	0.000	0.000	0.000
2,035.000	0.000	0.000	0.000	0.000	0.000
2,040.000	0.000	0.000	0.000	0.000	0.000
2,045.000	0.000	0.000	0.000	0.000	0.000

POC9.ppc 1/29/2020

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 13 of 33

Subsection: Time vs. Volume Label: 1

Return Event: 100 years Storm Event:

Time vs. Volume (ac-ft)

Output Time increment = 1.000 min Time on left represents time for first value in each row.

Time (min)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)
2,050.000	0.000	0.000	0.000	0.000	0.000
2,055.000	0.000	0.000	0.000	0.000	0.000
2,060.000	0.000	0.000	0.000	0.000	0.000
2,065.000	0.000	0.000	0.000	0.000	0.000
2,070.000	0.000	0.000	0.000	0.000	0.000
2,075.000	0.000	0.000	0.000	0.000	0.000
2,080.000	0.000	0.000	0.000	0.000	0.000
2,085.000	0.000	0.000	0.000	0.000	0.000
2,090.000	0.000	0.000	0.000	0.000	0.000
2,095.000	0.000	0.000	0.000	0.000	0.000
2,100.000	0.000	0.000	0.000	0.000	0.000
2,105.000	0.000	0.000	0.000	0.000	0.000
2,110.000	0.000	0.000	0.000	0.000	0.000
2,115.000	0.000	0.000	0.000	0.000	0.000
2,120.000	0.000	0.000	0.000	0.000	0.000
2,125.000	0.000	0.000	0.000	0.000	0.000
2,130.000	0.000	0.000	0.000	0.000	0.000
2,135.000	0.000	0.000	0.000	0.000	0.000
2,140.000	0.000	0.000	0.000	0.000	0.000
2,145.000	0.000	0.000	0.000	0.000	0.000
2,150.000	0.000	0.000	0.000	0.000	0.000
2,155.000	0.000	0.000	0.000	0.000	0.000
2,160.000	0.000	0.000	0.000	0.000	0.000
2,165.000	0.000	0.000	0.000	0.000	0.000
2,170.000	0.000	0.000	0.000	0.000	0.000
2,175.000	0.000	0.000	0.000	0.000	0.000
2,180.000	0.000	0.000	0.000	0.000	0.000
2,185.000	0.000	0.000	0.000	0.000	0.000
2,190.000	0.000	0.000	0.000	0.000	0.000
2,195.000	0.000	0.000	0.000	0.000	0.000
2,200.000	0.000	0.000	0.000	0.000	0.000
2,205.000	0.000	0.000	0.000	0.000	0.000
2,210.000	0.000	0.000	0.000	0.000	0.000
2,215.000	0.000	0.000	0.000	0.000	0.000
2,220.000	0.000	0.000	0.000	0.000	0.000
2,225.000	0.000	0.000	0.000	0.000	0.000
2,230.000	0.000	0.000	0.000	0.000	0.000
2,235.000	0.000	0.000	0.000	0.000	0.000
2,240.000	0.000	0.000	0.000	0.000	0.000
2,245.000	0.000	0.000	0.000	0.000	0.000
2,250.000	0.000	0.000	0.000	0.000	0.000

POC9.ppc 1/29/2020

Bentley Systems, Inc. Haestad Methods Solution

Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 14 of 33

Subsection: Time vs. Volume Label: 1

Return Event: 100 years Storm Event:

Time vs. Volume (ac-ft)

Output Time increment = 1.000 min Time on left represents time for first value in each row.

Time (min		Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)
2,25	5.000	0.000	0.000	0.000	0.000	0.000
2,26	0.000	0.000	0.000	0.000	0.000	0.000
2,26	5.000	0.000	0.000	0.000	0.000	0.000
2,27	0.000	0.000	0.000	0.000	0.000	0.000
2,27	5.000	0.000	0.000	0.000	0.000	0.000
2,28	0.000	0.000	0.000	0.000	0.000	0.000
2,28	5.000	0.000	0.000	0.000	0.000	0.000
2,29	0.000	0.000	0.000	0.000	0.000	0.000
2,29	5.000	0.000	0.000	0.000	0.000	0.000
2,30	0.000	0.000	0.000	0.000	0.000	0.000
2,30	5.000	0.000	0.000	0.000	0.000	0.000
2,31	0.000	0.000	0.000	0.000	0.000	0.000
2,31	5.000	0.000	0.000	0.000	0.000	0.000
2,32	0.000	0.000	0.000	0.000	0.000	0.000
2,32	5.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000
2,33	5.000	0.000	0.000	0.000	0.000	0.000
2,34	0.000	0.000	0.000	0.000	0.000	0.000
2,34	5.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000
	5.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000
2,36	5.000	0.000	0.000	0.000	0.000	0.000
2,37	0.000	0.000	0.000	0.000	0.000	0.000
2,37	5.000	0.000	0.000	0.000	0.000	0.000
2,380	0.000	0.000	0.000	0.000	0.000	0.000
	5.000	0.000	0.000	0.000	0.000	0.000
•	0.000	0.000	0.000	0.000	0.000	0.000
	5.000	0.000	0.000	0.000	0.000	0.000
2,400	0.000	0.000	0.000	0.000	0.000	0.000
	5.000	0.000	0.000	0.000	0.000	0.000
· · · · · · · · · · · · · · · · · · ·	0.000	0.000	0.000	0.000	0.000	0.000
	5.000	0.000	0.000	0.000	0.000	0.000
2,420	0.000	0.000	0.000	0.000	0.000	0.000
	5.000	0.000	0.000	0.000	0.000	0.000
2,430	0.000	0.000	0.000	0.000	0.000	0.000
2,43	5.000	0.000	0.000	0.000	0.000	0.000
2,440	0.000	0.000	0.000	0.000	0.000	0.000
2,44	5.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000
2,455	5.000	0.000	0.000	0.000	0.000	0.000

POC9.ppc 1/29/2020

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 15 of 33

Subsection: Time vs. Volume Label: 1

Return Event: 100 years Storm Event:

Time vs. Volume (ac-ft)

Output Time increment = 1.000 min Time on left represents time for first value in each row.

Time (min)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)
2,460.000	0.000	0.000	0.000	0.000	0.000
2,465.000	0.000	0.000	0.000	0.000	0.000
2,470.000	0.000	0.000	0.000	0.000	0.000
2,475.000	0.000	0.000	0.000	0.000	0.000
2,480.000	0.000	0.000	0.000	0.000	0.000
2,485.000	0.000	0.000	0.000	0.000	0.000
2,490.000	0.000	0.000	0.000	0.000	0.000
2,495.000	0.000	0.000	0.000	0.000	0.000
2,500.000	0.000	0.000	0.000	0.000	0.000
2,505.000	0.000	0.000	0.000	0.000	0.000
2,510.000	0.000	0.000	0.000	0.000	0.000
2,515.000	0.000	0.000	0.000	0.000	0.000
2,520.000	0.000	0.000	0.000	0.000	0.000
2,525.000	0.000	0.000	0.000	0.000	0.000
2,530.000	0.000	0.000	0.000	0.000	0.000
2,535.000	0.000	0.000	0.000	0.000	0.000
2,540.000	0.000	0.000	0.000	0.000	0.000
2,545.000	0.000	0.000	0.000	0.000	0.000
2,550.000	0.000	0.000	0.000	0.000	0.000
2,555.000	0.000	0.000	0.000	0.000	0.000
2,560.000	0.000	0.000	0.000	0.000	0.000
2,565.000	0.000	0.000	0.000	0.000	0.000
2,570.000	0.000	0.000	0.000	0.000	0.000
2,575.000	0.000	0.000	0.000	0.000	0.000
2,580.000	0.000	0.000	0.000	0.000	0.000
2,585.000	0.000	0.000	0.000	0.000	0.000
2,590.000	0.000	0.000	0.000	0.000	0.000
2,595.000	0.000	0.000	0.000	0.000	0.000
2,600.000	0.000	0.000	0.000	0.000	0.000
2,605.000	0.000	0.000	0.000	0.000	0.000
2,610.000	0.000	0.000	0.000	0.000	0.000
2,615.000	0.000	0.000	0.000	0.000	0.000
2,620.000	0.000	0.000	0.000	0.000	0.000
2,625.000	0.000	0.000	0.000	0.000	0.000
2,630.000	0.000	0.000	0.000	0.000	0.000
2,635.000	0.000	0.000	0.000	0.000	0.000
2,640.000	0.000	0.000	0.000	0.000	0.000
2,645.000	0.000	0.000	0.000	0.000	0.000
2,650.000	0.000	0.000	0.000	0.000	0.000
2,655.000	0.000	0.000	0.000	0.000	0.000
2,660.000	0.000	0.000	0.000	0.000	0.000

POC9.ppc 1/29/2020

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 16 of 33 Subsection: Time vs. Volume Label: 1

Return Event: 100 years Storm Event:

Time vs. Volume (ac-ft)

Output Time increment = 1.000 min Time on left represents time for first value in each row.

Time (min)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)
2,665.000	0.000	0.000	0.000	0.000	0.000
2,670.000	0.000	0.000	0.000	0.000	0.000
2,675.000	0.000	0.000	0.000	0.000	0.000
2,680.000	0.000	0.000	0.000	0.000	0.000
2,685.000	0.000	0.000	0.000	0.000	0.000
2,690.000	0.000	0.000	0.000	0.000	0.000
2,695.000	0.000	0.000	0.000	0.000	0.000
2,700.000	0.000	0.000	0.000	0.000	0.000
2,705.000	0.000	0.000	0.000	0.000	0.000
2,710.000	0.000	0.000	0.000	0.000	0.000
2,715.000	0.000	0.000	0.000	0.000	0.000
2,720.000	0.000	0.000	0.000	0.000	0.000
2,725.000	0.000	0.000	0.000	0.000	0.000
2,730.000	0.000	0.000	0.000	0.000	0.000
2,735.000	0.000	0.000	0.000	0.000	0.000
2,740.000	0.000	0.000	0.000	0.000	0.000
2,745.000	0.000	0.000	0.000	0.000	0.000
2,750.000	0.000	0.000	0.000	0.000	0.000
2,755.000	0.000	0.000	0.000	0.000	0.000
2,760.000	0.000	0.000	0.000	0.000	0.000
2,765.000	0.000	0.000	0.000	0.000	0.000
2,770.000	0.000	0.000	0.000	0.000	0.000
2,775.000	0.000	0.000	0.000	0.000	0.000
2,780.000	0.000	0.000	0.000	0.000	0.000
2,785.000	0.000	0.000	0.000	0.000	0.000
2,790.000	0.000	0.000	0.000	0.000	0.000
2,795.000	0.000	0.000	0.000	0.000	0.000
2,800.000	0.000	0.000	0.000	0.000	0.000
2,805.000	0.000	0.000	0.000	0.000	0.000
2,810.000	0.000	0.000	0.000	0.000	0.000
2,815.000	0.000	0.000	0.000	0.000	0.000
2,820.000	0.000	0.000	0.000	0.000	0.000
2,825.000	0.000	0.000	0.000	0.000	0.000
2,830.000	0.000	0.000	0.000	0.000	0.000
2,835.000	0.000	0.000	0.000	0.000	0.000
2,840.000	0.000	0.000	0.000	0.000	0.000
2,845.000	0.000	0.000	0.000	0.000	0.000
2,850.000	0.000	0.000	0.000	0.000	0.000
2,855.000	0.000	0.000	0.000	0.000	0.000
2,860.000	0.000	0.000	0.000	0.000	0.000
2,865.000	0.000	0.000	0.000	0.000	0.000

POC9.ppc 1/29/2020

Bentley Systems, Inc. Haestad Methods Solution

Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 17 of 33

Subsection: Time vs. Volume Label: 1

Return Event: 100 years Storm Event:

Time vs. Volume (ac-ft)

Output Time increment = 1.000 min Time on left represents time for first value in each row.

Time (min)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)
2,870.000	0.000	0.000	0.000	0.000	0.000
2,875.000	0.000	0.000	0.000	0.000	0.000
2,880.000	0.000	0.000	0.000	0.000	0.000
2,885.000	0.000	0.000	0.000	0.000	0.000
2,890.000	0.000	0.000	0.000	0.000	0.000
2,895.000	0.000	0.000	0.000	0.000	0.000
2,900.000	0.000	0.000	0.000	0.000	0.000
2,905.000	0.000	0.000	0.000	0.000	0.000
2,910.000	0.000	0.000	0.000	0.000	0.000
2,915.000	0.000	0.000	0.000	0.000	0.000
2,920.000	0.000	0.000	0.000	0.000	0.000
2,925.000	0.000	0.000	0.000	0.000	0.000
2,930.000	0.000	0.000	0.000	0.000	0.000
2,935.000	0.000	0.000	0.000	0.000	0.000
2,940.000	0.000	0.000	0.000	0.000	0.000
2,945.000	0.000	0.000	0.000	0.000	0.000
2,950.000	0.000	0.000	0.000	0.000	0.000
2,955.000	0.000	0.000	0.000	0.000	0.000
2,960.000	0.000	0.000	0.000	0.000	0.000
2,965.000	0.000	0.000	0.000	0.000	0.000
2,970.000	0.000	0.000	0.000	0.000	0.000
2,975.000	0.000	0.000	0.000	0.000	0.000
2,980.000	0.000	0.000	0.000	0.000	0.000
2,985.000	0.000	0.000	0.000	0.000	0.000
2,990.000	0.000	0.000	0.000	0.000	0.000
2,995.000	0.000	0.000	0.000	0.000	0.000
3,000.000	0.000	(N/A)	(N/A)	(N/A)	(N/A)

POC9.ppc 1/29/2020 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 18 of 33

Manager,				9
	-	-	10.00	
	~	-		-
		-		~

Subsection: Elevation-Area Volume Curve Label: 1

Return Event: 100 years Storm Event:

Elevation (ft)	Planimeter (ft²)	Area (ft²)	A1+A2+sqr (A1*A2) (ft²)	Volume (ac-ft)	Volume (Total) (ac-ft)
731.49	0.0	10.000	0.000	0.000	0.000
734.99	0.0	10.000	30.000	0.001	0.001
735.00	0.0	8,913.670	9,222.228	0.001	0.002
736.00	0.0	9,681.500	27,884.825	0.213	0.215
737.00	0.0	10,474.470	30,226.153	0.231	0.446
738.00	0.0	11,292.570	32,642.870	0.250	0.696
739.00	0.0	12,135.800	35,134.965	0.269	0.965
740.00	0.0	13,004.160	37,702.439	0.288	1.253

POC9.ppc 1/29/2020 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 19 of 33

Subsection: Volume Equations Label: 1

Return Event: 100 years Storm Event:

Pond Volume Equations * Incremental volume computed by the Conic Method for Reservoir Volumes.

Volume = (1/3) * (EL2 - El1) * (Area1 + Area2 + sqr(Area1 * Area2))

where:

EL1, EL2 Area1, Area2

Volume

Lower and upper elevations of the increment Areas computed for EL1, EL2, respectively Incremental volume between EL1 and EL2

POC9.ppc 1/29/2020 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 20 of 33

Subsection: Outlet Input Data Label: Outlet#1 Return Event: 100 years Storm Event:

Requested Pond Water Surface Elevations						
-	Minimum (Headwater)	731.49 ft				
	Increment (Headwater)	0.10 ft				
100	Maximum (Headwater)	740.00 ft				
			Concernance of the			

Outlet Connectivity

Structure Type	Outlet ID	Direction	Outfall	E1 (ft)	E2 (ft)
Orifice-Circular	Orifice - 1	Forward	TW	735.50	740.00
Orifice-Circular	Orifice - 2	Forward	TW	737.00	740.00
Inlet Box	Riser - 1	Forward	TW	738.50	740.00
Orifice-Circular	Orifice - Underdrain	Forward	τw	731.75	740.00
Tailwater Settings	Tailwater			(N/A)	(N/A)

POC9.ppc 1/29/2020 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 21 of 33

Subsection: Outlet Input Data Label: Outlet#1

Return Event: 100 years Storm Event:

Number of Openings	1
Elevation	735.50 ft
Orifice Diameter	4.0 in
Orifice Coefficient	0.600
Structure ID: Riser - 1 Structure Type: Inlet Box	-
Number of Openings	1
Elevation	738.50 ft
Orifice Area	16.1 ft ²
Orifice Coefficient	0.600
Weir Length	16.50 ft
Weir Coefficient	3.00 (ft^0.5)/s
K Reverse	1.000
Manning's n	0.000
Kev, Charged Riser	0.000
Weir Submergence	False
Orifice H to crest	True
	1
Elevation Orifice Diameter	731.75 ft 4.0 in
Structure Type: Orifice-Circular Number of Openings Elevation	731.75 ft
Structure Type: Orifice-Circular Number of Openings Elevation Orifice Diameter	731.75 ft 4.0 in
Structure Type: Orifice-Circular Number of Openings Elevation Orifice Diameter Orifice Coefficient Structure ID: Orifice - 2	731.75 ft 4.0 in
Structure Type: Orifice-Circular Number of Openings Elevation Orifice Diameter Orifice Coefficient Structure ID: Orifice - 2 Structure Type: Orifice-Circular	731.75 ft 4.0 in 0.600
Structure Type: Orifice-Circular Number of Openings Elevation Orifice Diameter Orifice Coefficient Structure ID: Orifice - 2 Structure Type: Orifice-Circular Number of Openings	731.75 ft 4.0 in 0.600
Structure Type: Orifice-Circular Number of Openings Elevation Orifice Diameter Orifice Coefficient Structure ID: Orifice - 2 Structure Type: Orifice-Circular Number of Openings Elevation	731.75 ft 4.0 in 0.600 3 737.00 ft
Structure Type: Orifice-Circular Number of Openings Elevation Orifice Diameter Orifice Coefficient Structure ID: Orifice - 2 Structure Type: Orifice-Circular Number of Openings Elevation Orifice Diameter	731.75 ft 4.0 in 0.600 3 737.00 ft 3.0 in 0.600
Structure Type: Orifice-Circular Number of Openings Elevation Orifice Diameter Orifice Coefficient Structure ID: Orifice - 2 Structure Type: Orifice-Circular Number of Openings Elevation Orifice Diameter Orifice Coefficient Structure ID: TW	731.75 ft 4.0 in 0.600 3 737.00 ft 3.0 in 0.600
Structure Type: Orifice-Circular Number of Openings Elevation Orifice Diameter Orifice Coefficient Structure ID: Orifice - 2 Structure Type: Orifice-Circular Number of Openings Elevation Orifice Diameter Orifice Coefficient Structure ID: TW Structure ID: TW Structure Type: TW Setup, DS Ch	731.75 ft 4.0 in 0.600 3 737.00 ft 3.0 in 0.600
Structure Type: Orifice-Circular Number of Openings Elevation Orifice Diameter Orifice Coefficient Structure ID: Orifice - 2 Structure Type: Orifice-Circular Number of Openings Elevation Orifice Diameter Orifice Coefficient Structure ID: TW Structure ID: TW Structure Type: TW Setup, DS Ch Tailwater Type	731.75 ft 4.0 in 0.600 3 737.00 ft 3.0 in 0.600
Structure Type: Orifice-Circular Number of Openings Elevation Orifice Diameter Orifice Coefficient Structure ID: Orifice - 2 Structure Type: Orifice-Circular Number of Openings Elevation Orifice Diameter Orifice Coefficient Structure ID: TW Structure ID: TW Structure Type: TW Setup, DS Ch Tailwater Type Convergence Tolerances	731.75 ft 4.0 in 0.600 3 737.00 ft 3.0 in 0.600 annel Free Outfall

Bentley PondPack V8i [08.11.01.56] Page 22 of 33

POC9.ppc 1/29/2020

Subsection: Outlet Input Data Label: Outlet#1 Return Event: 100 years Storm Event:

Convergence Tolerances	
Tailwater Tolerance (Maximum)	0.50 ft
Headwater Tolerance (Minimum)	0.01 ft
Headwater Tolerance (Maximum)	0.50 ft
Flow Tolerance (Minimum)	0.001 ft ³ /s
Flow Tolerance (Maximum)	10.000 ft ³ /s

POC9.ppc 1/29/2020 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 23 of 33

e nisea

Storm Event: Return Event: 100 years

Label: Outlet#1 Subsection: Composite Rating Curve

Composite Outflow Summary

Center 27 Siemon Company Drive Suite 200 W			9/2020 C9.ppc
	Haestad Methods Solution	Bentley Systems, Inc	
00.0	(A/N)	08.0	05'SEZ
00.0	(A/N)	62.0	64.257
00.0	(A/N)	82.0	66.255
00.0	(A/N)	22.0	62'522
00.0	(\/N)	92.0	61'522
00.0	(\/N)	SZ'0	60'522
00.0	(A/N)	+2.0	66'422
00.0	(\/N)	ZZ.0	68.427
00.0	(\/N)	12.0	62.457
00.0	(A/N)	02.0	69'+22
00.0	(\/N)	69.0	65'757
00.0	(A/N)	29.0	64.457
00.0	(A/N)	99.0	65.455
00.0	(A/N)	59.0	62'422
00.0	(A/N)	0.63	61.457
00.0	(A/N)	29.0	60'+22
00.0	(A/N)	09.0	66'222
	(A/N)	65.0	68'222
00.0	(A/N)		
00.0		25.0	62'232'26
00.0	(A/N)	95.0	69'EZ
00.0	(\V/N)	+5.0	65'EEL
0.00	(A/N)	0.53	733.49
00.0	(A/N)	TS'0	65.23.39
00.0	(A/N)	64.0	733.29
00.0	(A/N)	74.0	61.857
00.0	(A/N)	24.0	60'232'09
00.0	(A/N)	44.0	66'222
00.0	(A/N)	14.0	68.257
00.0	(A/N)	65.0	62.257
00.0	(A/N)	28.0	69'222
00.0	(A/N)	0.34	65'722
0.00	(A/N)	0.32	732.49
00.0	(A/N)	62.0	732.39
00.0	(A/N)	92.0	732.29
00.0	(A/N)	0.22	61.257
00.0	(\/N)	21.0	60'222
0.00	(V/N)	01.0	66'122
0.00	(\/N)	+0.0	68'122
00.0	(\/N)	00.0	62'122
00.0	(\/N)	00.0	SZ'TEZ
00.0	(\/N)	00.0	69'122
00.0	(\/N)	00.0	65'122
00.0	(\/N)	00.0	64'122
	1	1000	(升)

i8V X3587bno9 Yelfne8 [33.10.11.80] F8 96 24 95 33

Watertown, CT 06795 USA +1-203-755-1666

Subsection: Composite Rating Curve Label: Outlet#1

Return Event: 100 years Storm Event:

Composite Outflow Summary

Water Surface Elevation (ft)	Flow (ft³/s)	Tailwater Elevation (ft)	Convergence Error (ft)
735.59	0.82	(N/A)	0.0
735.69	0.88	(N/A)	0.00
735.79	0.96	(N/A)	0.00
735.89	1.04	(N/A)	0.00
735.99	1.09	(N/A)	0.00
736.09	1.13	(N/A)	0.00
736.19	1.17	(N/A)	0.00
736.29	1.21	(N/A)	0.00
736.39	1.25	(N/A)	0.00
736.49	1.28	(N/A)	0.00
736.59	1.31	(N/A)	0.00
736.69	1.34	(N/A)	0.00
736.79	1.37	(N/A)	0.0
736.89	1.40	(N/A)	0.0
736.99	1.43	(N/A)	0.0
737.00	1.43	(N/A)	0.0
737.09	1.50	(N/A)	0.0
737.19	1.64	(N/A)	0.00
737.29	1.80	(N/A)	0.00
737.39	1.90	(N/A)	0.00
737.49	1.99	(N/A)	0.00
737.59	2.07	(N/A)	0.00
737.69	2.14	(N/A)	0.00
737.79	2.21	(N/A)	0.00
737.89	2.27	(N/A)	0.00
737.99	2.33	(N/A)	0.00
738.09	2.39	(N/A)	0.00
738.19	2.45	(N/A)	0.00
738.29	2.51	(N/A)	0.00
738.39	2.56	(N/A)	0.00
738.49	2.61	(N/A)	0.00
738.50	2.62	(N/A)	0.00
738.59	4.00	(N/A)	0.00
738.69	6.81	(N/A)	0.00
738.79	10.49	(N/A)	0.00
738.89	14.86	(N/A)	0.00
738.99	19.83	(N/A)	0.00
739.09	25.33	(N/A)	0.00
739.19	31.31	(N/A)	0.00
739.29	37.74	(N/A)	0.00
739.39	44.59	(N/A)	0.00
739.49	51.83	(N/A)	0.00
739.59	59.44	(N/A)	0.00

POC9.ppc 1/29/2020

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 25 of 33

Subsection: Composite Rating Curve Label: Outlet#1

Return Event: 100 years Storm Event:

Composite Outflow Summary

Water Surface Elevation (ft)	Flow (ft³/s)	Tailwater Elevation (ft)	Convergence Error (ft)
739.69	67.41	(N/A)	0.00
739.79	75.71	(N/A)	0.00
739.89	84.35	(N/A)	0.00
739.99	93.30	(N/A)	0.00
740.00	94.21	(N/A)	0.00

Contributing Structures

contributing Structur
None Contributing
None Contributing
None Contributing
None Contributing
Orifice - Underdrain

POC9.ppc 1/29/2020 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 26 of 33

Subsection: Composite Rating Curve Label: Outlet#1

Return Event: 100 years Storm Event:

Composite Outflow Summary

Contributing Structures Orifice - Underdrain Orifice - 1 + Orifice -Underdrain Orifice - 1 + Orifice - 2 + Orifice - Underdrain Orifice - 1 + Orifice - 2 + Orifice - Underdrain Orifice - 1 + Orifice - 2 + Orifice - Underdrain Orifice - 1 + Orifice - 2 + Orifice - Underdrain

POC9.ppc 1/29/2020 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 27 of 33

Subsection: Composite Rating Curve Label: Outlet#1

Return Event: 100 years Storm Event:

Composite Outflow Summary

Contributing Structures Orifice - 1 + Orifice - 2 + Orifice - Underdrain Orifice - 1 + Orifice - 2 + Orifice - Underdrain Orifice - 1 + Orifice - 2 + Orifice - Underdrain Orifice - 1 + Orifice - 2 + Orifice - Underdrain Orifice - 1 + Orifice - 2 + Orifice - Underdrain Orifice - 1 + Orifice - 2 + Orifice - Underdrain Orifice - 1 + Orifice - 2 + Orifice - Underdrain Orifice - 1 + Orifice - 2 + Orifice - Underdrain Orifice - 1 + Orifice - 2 + Orifice - Underdrain Orifice - 1 + Orifice - 2 + Orifice - Underdrain Orifice - 1 + Orifice - 2 + Orifice - Underdrain Orifice - 1 + Orifice - 2 + Riser - 1 + Orifice -Underdrain Orifice - 1 + Orifice - 2 + Riser - 1 + Orifice -Underdrain Orifice - 1 + Orifice - 2 + Riser - 1 + Orifice -Underdrain Orifice - 1 + Orifice - 2 + Riser - 1 + Orifice -Underdrain Orifice - 1 + Orifice - 2 + Riser - 1 + Orifice -Underdrain Orifice - 1 + Orifice - 2 + Riser - 1 + Orifice -Underdrain Orifice - 1 + Orifice - 2 + Riser - 1 + Orifice -Underdrain Orifice - 1 + Orifice - 2 + Riser - 1 + Orifice -Underdrain

POC9.ppc 1/29/2020 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 28 of 33

Subsection: Composite Rating Curve Label: Outlet#1

Return Event: 100 years Storm Event:

Composite Outflow Summary

Contributing Structures Orifice - 1 + Orifice - 2 + Riser - 1 + Orifice -Underdrain Orifice - 1 + Orifice - 2 + Riser - 1 + Orifice -Underdrain Orifice - 1 + Orifice - 2 + Riser - 1 + Orifice -Underdrain Orifice - 1 + Orifice - 2 + Riser - 1 + Orifice -Underdrain Orifice - 1 + Orifice - 2 + Riser - 1 + Orifice -Underdrain Orifice - 1 + Orifice - 2 + Riser - 1 + Orifice -Underdrain Orifice - 1 + Orifice - 2 + Riser - 1 + Orifice -Underdrain Orifice - 1 + Orifice - 2 + Riser - 1 + Orifice -Underdrain Orifice - 1 + Orifice - 2 + Riser - 1 + Orifice -Underdrain

POC9.ppc 1/29/2020 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 29 of 33

Subsection: Elevation-Volume-Flow Table (Pond) Label: 1

Infiltration	
Infiltration Method (Computed)	No Infiltration
Initial Conditions	
Elevation (Water Surface, Initial)	731.49 ft
Volume (Initial)	0.000 ac-ft
Flow (Initial Outlet)	0.00 ft ³ /s
Flow (Initial Infiltration)	0.00 ft ³ /s
Flow (Initial, Total)	0.00 ft ³ /s
Time Increment	1.000 min

Elevation (ft)	Outflow (ft³/s)	Storage (ac-ft)	Area (ft²)	Infiltration (ft ³ /s)	Flow (Total) (ft ³ /s)	2S/t + O (ft³/s)
731.49	0.00	0.000	10.000	0.00	0.00	0.00
731.59	0.00	0.000	10.000	0.00	0.00	0.03
731.69	0.00	0.000	10.000	0.00	0.00	0.07
731.75	0.00	0.000	10.000	0.00	0.00	0.09
731.79	0.00	0.000	10.000	0.00	0.00	0.10
731.89	0.04	0.000	10.000	0.00	0.04	0.17
731.99	0.10	0.000	10.000	0.00	0.10	0.26
732.09	0.17	0.000	10.000	0.00	0.17	0.37
732.19	0.22	0.000	10.000	0.00	0.22	0.45
732.29	0.26	0.000	10.000	0.00	0.26	0.52
732.39	0.29	0.000	10.000	0.00	0.29	0.59
732.49	0.32	0.000	10.000	0.00	0.32	0.65
732.59	0.34	0.000	10.000	0.00	0.34	0.71
732.69	0.37	0.000	10.000	0.00	0.37	0.77
732.79	0.39	0.000	10.000	0.00	0.39	0.83
732.89	0.41	0.000	10.000	0.00	0.41	0.88
732.99	0.44	0.000	10.000	0.00	0.44	0.94
733.09	0.45	0.000	10.000	0.00	0.45	0.99
733.19	0.47	0.000	10.000	0.00	0.47	1.04
733.29	0.49	0.000	10.000	0.00	0.49	1.09
733.39	0.51	0.000	10.000	0.00	0.51	1.14
733.49	0.53	0.000	10.000	0.00	0.53	1.19
733.59	0.54	0.000	10.000	0.00	0.54	1.24
733.69	0.56	0.001	10.000	0.00	0.56	1.29
733.79	0.57	0.001	10.000	0.00	0.57	1.34
733.89	0.59	0.001	10.000	0.00	0.59	1.39
733.99	0.60	0.001	10.000	0.00	0.60	1.44
734.09	0.62	0.001	10.000	0.00	0.62	1.49
734.19	0.63	0.001	10.000	0.00	0.63	1.53

Return Event: 100 years Storm Event:

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 30 of 33

POC9.ppc 1/29/2020

Subsection: Elevation-Volume-Flow Table (Pond) Label: 1 Return Event: 100 years Storm Event:

Elevation (ft)	Outflow (ft³/s)	Storage (ac-ft)	Area (ft²)	Infiltration (ft³/s)	Flow (Total) (ft ³ /s)	2S/t + 0 (ft³/s)
734.29	0.65	0.001	10.000	0.00	0.65	1.58
734.39	0.66	0.001	10.000	0.00	0.66	1.63
734.49	0.67	0.001	10.000	0.00	0.67	1.67
734.59	0.69	0.001	10.000	0.00	0.69	1.72
734.69	0.70	0.001	10.000	0.00	0.70	1.77
734.79	0.71	0.001	10.000	0.00	0.71	1.81
734.89	0.72	0.001	10.000	0.00	0.72	1.86
734.99	0.74	0.001	10.000	0.00	0.74	1.90
735.09	0.75	0.020	8,981.476	0.00	0.75	29.78
735.19	0.76	0.041	9,057.117	0.00	0.76	59.86
735.29	0.77	0.062	9,133.075	0.00	0.77	90.19
735.39	0.78	0.083	9,209.351	0.00	0.78	120.77
735.49	0.79	0.104	9,285.943	0.00	0.79	151.61
735.50	0.80	0.106	9,293.620	0.00	0.80	154.70
735.59	0.82	0.125	9,362.853	0.00	0.82	182.71
735.69	0.88	0.147	9,440.080	0.00	0.88	214.11
735.79	0.96	0.169	9,517.625	0.00	0.96	245.78
735.89	1.04	0.191	9,595.486	0.00	1.04	277.72
735.99	1.09	0.213	9,673.665	0.00	1.09	309.88
736.09	1.13	0.235	9,751.589	0.00	1.13	342.30
736.19	1.17	0.257	9,829.763	0.00	1.17	374.98
736.29	1.21	0.280	9,908.248	0.00	1.21	407.91
736.39	1.25	0.303	9,987.046	0.00	1.25	441.11
736.49	1.28	0.326	10,066.156	0.00	1.28	474.56
736.59	1.31	0.349	10,145.578	0.00	1.31	508.28
736.69	1.34	0.373	10,225.312	0.00	1.34	542.27
736.79	1.37	0.396	10,305.358	0.00	1.37	576.51
736.89	1.40	0.420	10,385.716	0.00	1.40	611.03
736.99	1.43	0.444	10,466.386	0.00	1.43	645.81
737.00	1.43	0.446	10,474.470	0.00	1.43	649.30
737.09	1.50	0.468	10,546.839	0.00	1.50	680.90
737.19	1.64	0.492	10,627.542	0.00	1.64	716.33
737.29	1.80	0.517	10,708.552	0.00	1.80	752.05
737.39	1.90	0.541	10,789.870	0.00	1.90	787.98
737.49	1.99	0.566	10,871.496	0.00	1.99	824.17
737.59	2.07	0.591	10,953.429	0.00	2.07	860.63
737.69	2.14	0.617	11,035.669	0.00	2.14	897.35
737.79	2.21	0.642	11,118.218	0.00	2.21	934.34
737.89	2.27	0.668	11,201.073	0.00	2.27	971.60
737.99	2.33	0.693	11,284.237	0.00	2.33	1,009.14
738.09	2.39	0.719	11,367.217	0.00	2.39	1,046.95
738.19	2.45	0.746	11,450.448	0.00	2.45	1,085.04
738.29	2.51	0.772	11,533.981	0.00	2.51	1,123.40

POC9.ppc 1/29/2020 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 31 of 33

Subsection: Elevation-Volume-Flow Table (Pond) Label: 1 Return Event: 100 years Storm Event:

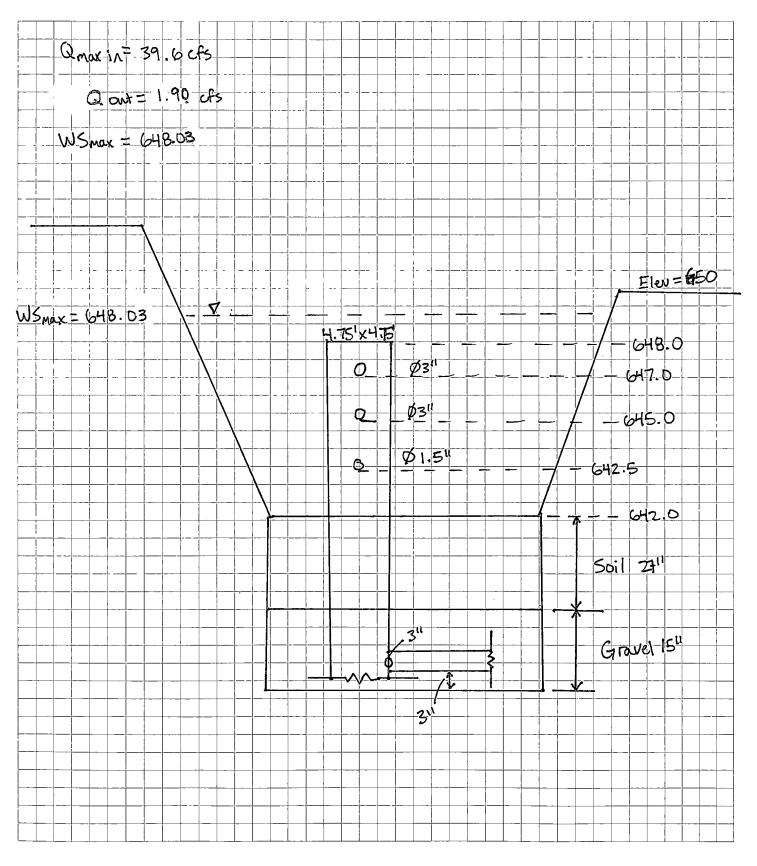
Elevation (ft)	Outflow (ft³/s)	Storage (ac-ft)	Area (ft²)	Infiltration (ft³/s)	Flow (Total) (ft ³ /s)	2S/t + 0 (ft³/s)
738.39	2.56	0.799	11,617.818	0.00	2.56	1,162.04
738.49	2.61	0.825	11,701.959	0.00	2.61	1,200.96
738.50	2.62	0.828	11,710.390	0.00	2.62	1,204.86
738.59	4.00	0.852	11,786.404	0.00	4.00	1,241.49
738.69	6.81	0.879	11,871.152	0.00	6.81	1,283.73
738.79	10.49	0.907	11,956.203	0.00	10.49	1,327.12
738.89	14.86	0.934	12,041.559	0.00	14.86	1,371.49
738.99	19.83	0.962	12,127.217	0.00	19.83	1,416.74
739.09	25.33	0.990	12,212.724	0.00	25.33	1,462.81
739.19	31.31	1.018	12,298.480	0.00	31.31	1,509.64
739.29	37.74	1.046	12,384.536	0.00	37.74	1,557.21
739.39	44.59	1.075	12,470.892	0.00	44.59	1,605.48
739.49	51.83	1.104	12,557.548	0.00	51.83	1,654.43
739.59	59.44	1.133	12,644.504	0.00	59.44	1,704.05
739.69	67.41	1.162	12,731.760	0.00	67.41	1,754.31
739.79	75.71	1.191	12,819.316	0.00	75.71	1,805.20
739.89	84.35	1.221	12,907.172	0.00	84.35	1,856.72
739.99	93.30	1.250	12,995.328	0.00	93.30	1,908.83
740.00	94.21	1.253	13,004.160	0.00	94.21	1,914.08

POC9.ppc 1/29/2020 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 32 of 33

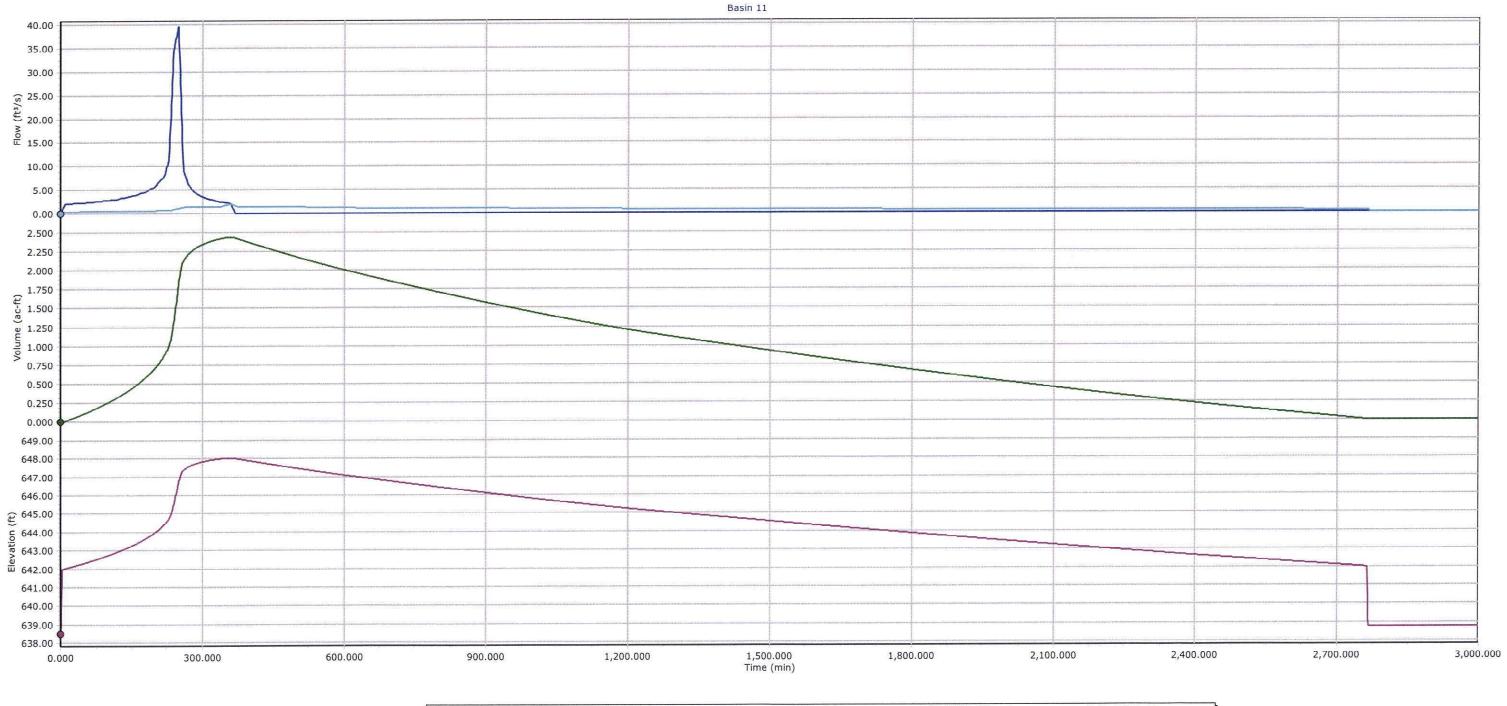
Subsection: Level Pool Pond Routing Summary Label: 1 (IN) Return Event: 100 years Storm Event:

Infiltration	·		
Infiltration Method (Computed)	No Infiltration		
Initial Conditions	· · · · · · · · · · · · · · · · · · ·		
Elevation (Water Surface, Initial)	731.49 ft		
Volume (Initial)	0.000 ac-ft		
Flow (Initial Outlet)	0.00 ft³/s		
Flow (Initial Infiltration)	0.00 ft³/s		
Flow (Initial, Total)	0.00 ft³/s		
Time Increment	1.000 min		
Flow (Peak In) Flow (Peak Outlet)	23.00 ft ³ /s 2.93 ft ³ /s	Time to Peak (Flow, In) Time to Peak (Flow, Outlet)	238.000 min 268.000 min
Elevation (Water Surface,	738.52 ft		
Peak) Volume (Peak)	0.833 ac-ft		
	0.000 ac-10		
Mass Balance (ac-ft)	·		
Volume (Initial)	0.000 ac-ft		
Volume (Total Inflow)	1.424 ac-ft		
Volume (Total Infiltration)			
	0.000 ac-ft		
Volume (Total Outlet Outflow)	0.000 ac-ft 1.424 ac-ft		
Outflow)	1.424 ac-ft		

POC9.ppc 1/29/2020 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 33 of 33


planning | landscape architecture ENGINEERING | SURVEY

WWW.PROJECTDESIGN.COM


	The Hills at CMR BMP Basin 11	
PAGE :	ог ЈОВ NO. : <u>4394.0</u> С)

DRAWN BY : G.Anderson DATE :

CHECKED BY : _____ DATE : _____

RATIONAL METHOD HYDROGRAPH PROGRAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY RUN DATE 9/27/2019 HYDROGRAPH FILE NAME Text1 TIME OF CONCENTRATION 10 MIN. 6 HOUR RAINFALL 3 INCHES BASIN AREA 14.93 ACRES RUNOFF COEFFICIENT 0.77 PEAK DISCHARGE 39.6 CFS TIME (MIN) =DISCHARGE (CFS) = 0 0 TIME (MIN) =10 DISCHARGE (CFS) = 2.1 TIME (MIN) =20 DISCHARGE (CFS) = 2.1 TIME (MIN) =30 DISCHARGE (CFS) = 2.2 TIME (MIN) =DISCHARGE (CFS) = 40 2.2 TIME (MIN) =50 DISCHARGE (CFS) = 2.3 TIME (MIN) =60 DISCHARGE (CFS) = 2.4 TIME (MIN) =70 DISCHARGE (CFS) =2.5 TIME (MIN) =DISCHARGE (CFS) = 80 2.6 TIME (MIN) =DISCHARGE (CFS) = 2.7 90 TIME (MIN) =DISCHARGE (CFS) = 100 2.8 TIME (MIN) =110 DISCHARGE (CFS) = 2.9 TIME (MIN) =120 DISCHARGE (CFS) = 3 TIME (MIN) =130 DISCHARGE (CFS) = 3.3 TIME (MIN) =140 DISCHARGE (CFS) = 3.4 TIME (MIN) =DISCHARGE (CFS) = 3.7 150 TIME (MIN) =160 DISCHARGE (CFS) = 3.9 TIME (MIN) =170 DISCHARGE (CFS) = 4.3 TIME (MIN) =DISCHARGE (CFS) = 180 4.5 TIME (MIN) =DISCHARGE (CFS) = 190 5.2 TIME (MIN) = 200 DISCHARGE (CFS) = 5.6 TIME (MIN) =210 DISCHARGE (CFS) = 6.9 DISCHARGE (CFS) = TIME (MIN) =220 7.8 TIME (MIN) =230 DISCHARGE (CFS) = 11.5 TIME (MIN) =DISCHARGE (CFS) = 240 34.7 TIME (MIN) =250 DISCHARGE (CFS) = 39.6 DISCHARGE (CFS) = TIME (MIN) = 260 9.2 TIME (MIN) =270 DISCHARGE (CFS) = 6.2 TIME (MIN) =280 DISCHARGE (CFS) = 4.8 TIME (MIN) =290 DISCHARGE (CFS) = 4 TIME (MIN) =300 DISCHARGE (CFS) = 3.5 TIME (MIN) =310 DISCHARGE (CFS) = 3.1 TIME (MIN) =320 DISCHARGE (CFS) = 2.9 TIME (MIN) =330 DISCHARGE (CFS) = 2.6 TIME (MIN) =340 DISCHARGE (CFS) = 2.4 DISCHARGE (CFS) = TIME (MIN) =350 2.3 TIME (MIN) =360 DISCHARGE (CFS) = 2.1 TIME (MIN) =370 DISCHARGE (CFS) = 0

- 1 - EX10 - Flow (Total In) - 1 - EX10 - Flow (Total Out) - 1 - EX10 - Volume - 1 - EX10 - Elevation - 0-1 - EX10 - Flow

low