All Peoples Church City of San Diego (PTS 636444) Northeast corner of College Ave at Interstate 8 August 12, 2020 Revised March 2, 2022

Local Mobility Analysis Report

Prepared for:

All Peoples Church 5555 University Ave San Diego, CA 92105

Prepared by Justin Rasas (TR 2135) a principal with:

LOS Engineering, Inc.

11622 El Camino Real, Suite 100, San Diego, CA 92130 Phone 619-890-1253

Job #1817

SEXLES ON 3/2/2022

Table of Contents

Execu	tive Summary	V
1.0 I	ntroduction	1
2.0 I	Project Description	4
3.0 I	Local Mobility Analysis Methodology	4
3.1	Local Mobility Analysis Study Area	
4.0 F	Pedestrian Analysis	8
5.0 I	Bicycle Analysis	10
6.0	Fransit Analysis	12
7.0 S	Systemic Safety Review	13
8.0	Fraffic Analysis	14
8.1	Study Scenarios	14
8.2	Traffic Analysis Methodology	14
8.2.	.1 Intersections	14
8.2.	.2 Street Segments	15
8.2.	.3 Freeway Off-Ramp Queuing	15
8.2.	.4 Intersection Queuing	16
8.2.	.5 Project Traffic Effects	16
8.3	Existing Conditions	17
8.3	.1 Existing Street System	17
8.3.	.2 Existing Traffic Volumes and LOS Analyses	19
8.4	Project Trip Generation	22
8.4.	.1 Weekday Trip Generation	22
8.4.	.2 Sunday Trip Generation	23
8.5	Project Distribution and Assignment	
8.6	Project Access and Parking	
8.6	\mathcal{E}	
8.6		
8.6	.3 On-Site Parking	28
8.7	Near-Term Opening Day (Year 2022) without Project Conditions	
8.8	Near-Term Opening Day (Year 2022) with Project Conditions	
8.9	Horizon Year 2050 without Project Conditions	
8.10	Horizon Year 2050 with Project Conditions	
8.11	Queuing at College Ave/Main Project Access Signalized Intersection	
	Queuing at College Ave/Del Cerro Blvd Signalized Intersection	
9.0	Conclusions	48
list of	f Figures	
		2
	: Project Location	
_	: Site Plan	
	: Local Mobility Analysis Study Area: Shared Path Cross Section	
	: Snared Path Cross Section	
	: Shared Path Bicycle Transition	
	: Bicycle Local Mobility Analysis Conditions	
	: Existing Conditions	
riguie o	LAISHIIE COHUIUOIIS	10

Figure 9: Existing Volumes	20
Figure 10: Project Distribution	25
Figure 11: Project Assignment	26
Figure 12: Pedestrian Access	28
Figure 13: Parking Structure Lower Level	29
Figure 14: Parking Structure Upper Level	
Figure 15: Cumulative Project Locations	
Figure 16: Cumulative Project Volumes	
Figure 17: Near-Term Opening Day (Year 2022) without Project Volumes	
Figure 18: Near-Term Opening Day (Year 2022) with Project Volumes	
Figure 19: Horizon Year 2050 Roadway Conditions	
Figure 20: Horizon Year 2050 without Project Volumes	
Figure 21: Horizon Year 2050 with Project Volumes	
Tigare 21. Tronzon Tear 2000 Will Froject Foreines	
liet of Tables	
List of Tables	
Table 1: Weekday Bus Service Operations and Frequency	
Table 2: Weekend Bus Service Operations and Frequency	
Table 3: Systemic Hotspot Summary	
Table 4: Intersection Level of Service Definitions (6 th Edition HCM)	
Table 5: Intersection Level of Service (HCM 2000)	
Table 6: Street Segment Daily Capacity and LOS (City of San Diego)	15
Table 7: City of San Diego Traffic Effect Triggers for Potential Roadway Improvements	16
Table 8: Existing Intersection LOS	19
Table 9: Existing Freeway Off-Ramp Intersection Queuing	21
Table 10: Existing Segment ADT Volumes and LOS	21
Table 11: Weekday Project Trip Generation	
Table 12: Existing and Forecasted Sunday Attendance for 900 Seat Occupancy	23
Table 13: Sunday Trip Generation	24
Table 14: Project Parking Summary	
Table 15: Cumulative Project Trip Generation	
Table 16: Near-Term Opening Day (Year 2022) without Project Intersection LOS	
Table 17: Near-Term Opening Day (Year 2022) without Project Freeway Off-Ramp Inters	
Queuing	
Table 18: Near-Term Opening Day (Year 2022) without Project Segment ADT Volumes a	
Table 19: Near-Term Opening Day (Year 2022) with Project Intersection LOS	
Table 20: Near-Term Opening Day (Year 2022) with Project Freeway Off-Ramp Intersect	
Queuing	
Table 21: Near-Term Opening Day (Year 2022) with Project Segment ADT Volumes and	LOS 38
Table 22: Near-Term Opening Day (Year 2022) with Project Main Access LOS with Improve	
Table 22. Team Opening Day (Teat 2022) with Troject Wall Access Los with Imp	
Table 23: Horizon Year 2050 without Project Intersection LOS	
Table 24: Horizon Year 2050 without Project Freeway Off-Ramp Intersection Queuing	
Table 25: Horizon Year 2050 without Project Segment ADT Volumes and LOS	
Table 26: Horizon Year 2050 with Project Intersection LOS	
Table 27: Horizon Year 2050 with Project Freeway Off-Ramp Intersection Queuing	43
Table 27. Horizon Teat 2000 with Froject Freeway Off-Kamp intersection Queuing	43

Table 29:	Horizon Year 2050 with Project Segment ADT Volumes and LOS
Table 31:	College Ave/Del Cerro Blvd Near-Term Queuing47
Table 32:	College Ave/Del Cerro Blvd Horizon Year Queuing
Appen	dices
	A Excerpts from City of San Diego Bicycle Master Plan Update and Community Plan
	BTransit Map and Schedules
	C City of San Diego Segment Capacities
Appendix	DExcerpts from City of San Diego TSM Roadway Improvement Criteria
	E City of San Diego Community Roadway Classification Map
	FCount Data
Appendix	G Freeway Off-Ramp Storage Documentation
Appendix	H
Appendix	I Existing LOS and Queuing Worksheets
Appendix	J
Appendix	K
Appendix	L
Appendix	M
Appendix	N
Appendix	O
Appendix	PNear Term Opening Day (Year 2022) without Project LOS and Queueing Worksheets
	Q Near Term Opening Day (Year 2022) with Project LOS and Queueing Worksheets
Appendix	RNear Term Opening Day (Year 2022) with Project Improvement LOS Worksheets
	S
Appendix	T Horizon Year 2050 without Project LOS and Queueing Worksheets
	U Horizon Year 2050 with Project Intersection LOS and Queueing Worksheets
	V
11	W
Appendix	X

Executive Summary All Peoples Church

All Peoples Church is proposed on the northeast corner of I-8 and College Avenue with a sanctuary capacity of 900 seats (587 fixed seats and 3,690 s.f. of non-fixed seats). The site with residential zoning RS-1-7 on approximately 6 acres is vacant. The project site currently has no vehicular access and frontage only along College Avenue. Project access is proposed from a signalized main driveway and a secondary right-in/right-out driveway, both on College Avenue. Project opening is forecasted to occur in 2022. The following discretionary approvals are required as part of the project:

- 1) Community Plan Amendment
- 2) Planned Development Permit
- 3) Site Development Permit
- 4) Vacation of Easements and Slope Rights

This Local Mobility Analysis (LMA) determines if there are any traffic effects caused by the project traffic that would trigger roadway and other multi-modal improvements or a fair share participation. The LMA is based on the City of San Diego *Transportation Study Manual*, September 29, 2020 and includes the analysis of pedestrian, bicycle, transit, and vehicular facilities.

Pedestrian facilities within the ½ mile walking distance from the project were evaluated. Intersection curb ramps were missing at the following locations:

- 1) Chrismark Ave/Wenrich Dr
- 2) Rockhurst Ct/Rockhurst Dr
- 3) Rockhurst Dt/Lambda Dr
- 4) Rockhurst Dr/Romany Dr (N. and E. Corners only)
- 5) Theta Pl/Romany Dr
- 6) Arno Dr/Capri Dt
- 7) Arno Dr/ Helena Pl

There were missing sidewalks at the following locations:

- 1) College Ave along the western side of the roadway from approximately 150 feet south of Del Cerro Blvd to Canyon Crest Dr/Alvarado Rd. There are no pedestrian access points to the adjacent parcels along this segment. Additionally, the College Ave bridge over I-8 does not have a sidewalk on the western side of the roadway.
- 2) Alvarado Rd extending east of College Ave.

As part of the project, the following pedestrian improvements will be constructed along the project's frontage on College Avenue. From the northern project boundary down to the proposed signalized main project driveway, a non-contiguous sidewalk will be installed with a transition to the existing contiguous sidewalk north of the project. From the proposed signalized main project driveway down to the southern project boundary, a 12-foot shared path consisting of a 6-foot bike path and a 6-foot pedestrian path will be installed outside of the vehicular traveled way.

Bicycle facilities within a ½ mile bicycling distance from the project were evaluated. No bike lanes nor bike routes were observed within ½ mile of the project access points. As part of the

project, the following bicycle improvements will be constructed along the project's frontage on College Avenue. From the northern project boundary down to the proposed signalized main project driveway, a buffered Class II bike lane will be installed. From the proposed signalized main project driveway down to the southern project boundary, a 12-foot shared path consisting of a 6-foot bike path and a 6-foot pedestrian path will be installed outside of the vehicular traveled way.

Transit facilities within a ½ mile walking distance which included four bus stops were evaluated. Two on College Avenue just north of Del Cerro Boulevard and two on College Ave just south of Alvarado Road. Metropolitan Transit System (MTS) lists Bus Routes 14 and 115 within ½ mile walking distance from the project access. Bus Route 14 has 60-minute headways listed for the AM and PM peak hours and Bus Route 115 has 30-minute headways listed for the AM and PM peak hours. On Sunday, Bus Route 14 does not have service and Bus Route 115 has 60-minute headways through the day. The San Diego State University trolley station is approximately 5,000 feet (just under 1 mile) walking distance from the project pedestrian access point.

Vehicular facilities included the analysis of four (4) intersections, and three (3) roadway segments under Near-Term Opening Day (Year 2022) and Horizon Year 2050 conditions for weekday conditions. For the Sunday scenario, five (5) intersections and three (3) roadway segments were analyzed under near-term and horizon year conditions. A horizon year 2050 analysis is included because the project is proposing a Community Plan Amendment.

The City of San Diego Vision Zero policy promotes safe roadway design with a goal toward preventing collisions. As part of that goal, a systemic safety review provides an assessment of hotspots and possible countermeasures to align with Vision Zero. City staff identified the intersection of College Ave and Del Cerro Blvd as appearing on the City's hot spot map for pedestrians. A review of the accident history for the latest available five years (2015-2019) at the intersection of College Ave and Del Cerro Blvd concluded that no specific pattern of pedestrian-vehicle accidents was found for the study period; therefore, the project proposes no changes at this location.

The 95th percentile vehicle queues were calculated at the following locations using SimTraffic 10 software.

The freeway westbound off-ramp at College Ave under Sunday conditions was calculated to have a 95th percentile queue of 164 feet under near-term + project conditions and 171 feet under horizon year + project conditions that can be accommodated within the existing off-ramp storage length of approximately 1,220 feet.

The freeway eastbound off-ramp at College Ave under Sunday conditions was calculated to have a 95th percentile queue of 421 feet under near-term + project conditions and 624 feet under horizon year + project conditions that can be accommodated within the existing off-ramp storage length of approximately 750 feet.

The proposed signalized Main Access on College Ave has a 95th percentile southbound left turn queue calculated between 10 feet and 47 feet (depending on the scenario) that can be accommodated within the proposed left turn lane with a storage length of 130 feet. The 95th percentile northbound right turn queue was calculated at 157 feet under Sunday AM conditions that can be accommodated within the proposed right turn lane with a storage length of 360 feet. The northbound through lane has a 95th percentile queue calculated between 19

feet and 242 feet (depending on the scenario) that does not spill back to the adjacent intersection approximately 650 feet away. The southbound through lane has a 95th percentile queue calculated between 110 feet and 359 feet (depending on the scenario) that does not spill back to the adjacent intersection approximately 500 feet away.

The intersection of College Ave at Del Cerro Blvd has a 95th percentile northbound left turn queue of 118 feet under Sunday near-term + project conditions and 132 feet under Sunday horizon year + project conditions, which exceed the available storage length of approximately 75 feet. However, the addition of project traffic does not cause the forecasted 95th percentile queue to exceed the available storage. The addition of Sunday project traffic is calculated to extend the northbound left turn queue by 0 feet under near-term conditions and 5 feet under horizon year conditions. The northbound through lanes 95th percentile with project queues are calculated between 197 feet and 305 feet (depending on the scenario) that can be accommodated within the available storage of approximately 550 feet from the stop bar at Del Cerro Blvd and the proposed main signalized Church driveway.

The project's forecasted traffic generation was based on the higher trip generation rates between the City of San Diego *Trip Generation Manual*, May 2003 and site-specific trip generation rates calculated from the existing All Peoples Church currently operating at 5555 University Avenue in San Diego. The weekday trip generation is calculated at 280 ADT with 31 AM peak hour trips (31 inbound and 0 outbound) and 107 PM peak hour trips (76 inbound and 31 outbound). The Sunday trip generation (based on a maximum occupancy of 900 seats) is calculated at 1,976 ADT with 690 Sunday peak hour trips (378 outbound after the 10 AM service) and 312 inbound (from the 11:30 AM service).

Under Near-Term Opening Day (Year 2022) with Project Conditions, the project would add more than 50 peak hour turn moves or more than 500 daily trips to the study locations forecasted to operate at LOS E/F at the following locations:

- 1) College Ave/Main Project Access (LOS F Weekday PM and Sunday AM). The project would add more than 50 peak hour trips to this intersection and the applicant proposes to install a traffic signal to provide acceptable LOS.
- 2) College Ave between Project Main Access and I-8 WB Ramps (LOS E Sunday). The project would add more than 500 Sunday only trips to this segment and less than 500 Weekday trips; therefore, no roadway improvements are proposed because this additional Sunday project traffic would not be added during typical Monday through Friday commuter periods.
- 3) College Ave between I-8 WB and EB Ramps (LOS F Sunday). The project would add more than 500 Sunday only trips to this segment and less than 500 Weekday trips; therefore, no roadway improvements are proposed because this additional Sunday project traffic would not be added during typical Monday through Friday commuter periods.

Under Horizon Year 2050 with Project Conditions, the project would add more than 50 peak hour turn moves or more than 500 daily trips to the study locations forecasted to operate at LOS E/F:

- 1) College Ave/Main Project Access (LOS F Weekday PM and Sunday AM). The project would add more than 50 peak hour trips to this intersection and the applicant proposes to install a traffic signal to provide acceptable LOS.
- 2) College Ave between Project Main Access and I-8 WB Ramp (LOS E Sunday). The project would add more than 500 Sunday only trips to this segment and less than 500 Weekday trips; therefore, no roadway improvements are proposed because the Sunday project traffic would not be added during typical Monday through Friday commuter periods.
- 3) College Ave between I-8 WB and EB Ramps (LOS F Sunday). The project would add more than 500 Sunday only trips to this segment and less than 500 Weekday trips; therefore, no roadway improvements are proposed because the Sunday project traffic would not be added during typical Monday through Friday commuter periods.

As part of the project, the Owner/Permittee will install a traffic signal and associated median improvements at the Project Main Access on College Ave. The California MUTCD rev5 Warrant 3, Part B (Peak Hour) warrant is satisfied under Opening Day (Year 2022) Plus Project Sunday conditions. Prior to issuance of the first building permit, Owner/Permittee shall assure by permit and bond the construction of a traffic signal and associated communication equipment, satisfactory to the City Engineer. All Improvements shall be completed and operational prior to first occupancy.

1.0 Introduction

All Peoples Church is proposed on the northeast corner of I-8 and College Avenue with a sanctuary capacity of 900 seats (587 fixed seats and 3,690 s.f. of non-fixed seats). The site with residential zoning RS-1-7 on approximately 6 acres is vacant. The project site currently has no vehicular access and frontage only along College Avenue. The location of the project is shown in **Figure 1** with a preliminary site plan shown in **Figure 2**. Project access is from a proposed signalized main driveway and a proposed secondary right-in/right-out driveway, both on College Avenue. Project opening is forecasted to occur in 2022. The following discretionary approvals are required as part of the project:

- 1) Community Plan Amendment
- 2) Planned Development Permit
- 3) Site Development Permit
- 4) Vacation of Easements and Slope Rights

This Local Mobility Analysis (LMA) determines if there are any traffic effects caused by the project traffic that would justify roadway improvements or fair share participation. The format of this study includes the following chapters:

- 1.0 Introduction
- 2.0 Project Description
- 3.0 Local Mobility Analysis Methodology
- 4.0 Pedestrian Analysis
- 5.0 Bicycle Analysis
- 6.0 Transit Analysis
- 7.0 Systemic Safety Review
- 8.0 Traffic Analysis
- 9.0 Conclusions

Figure 1: Project Location

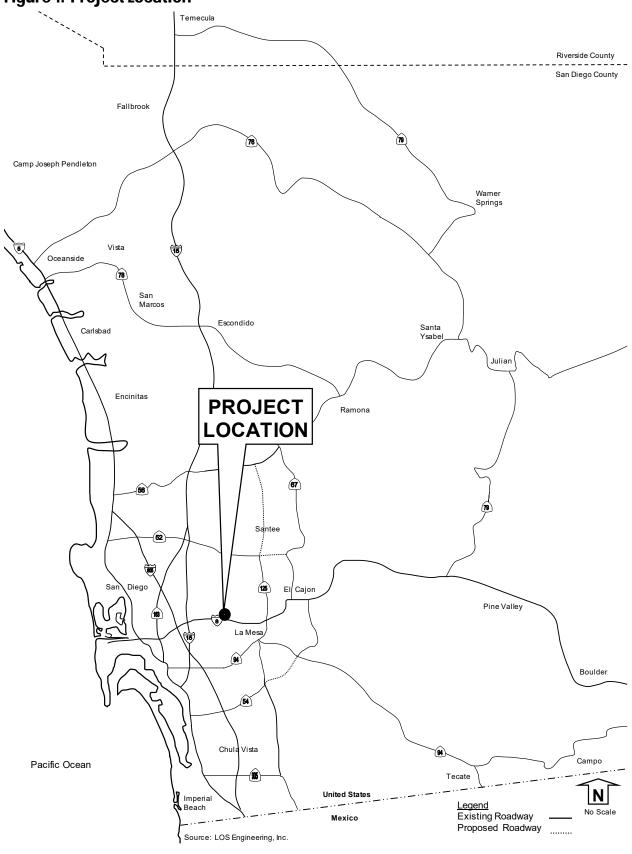
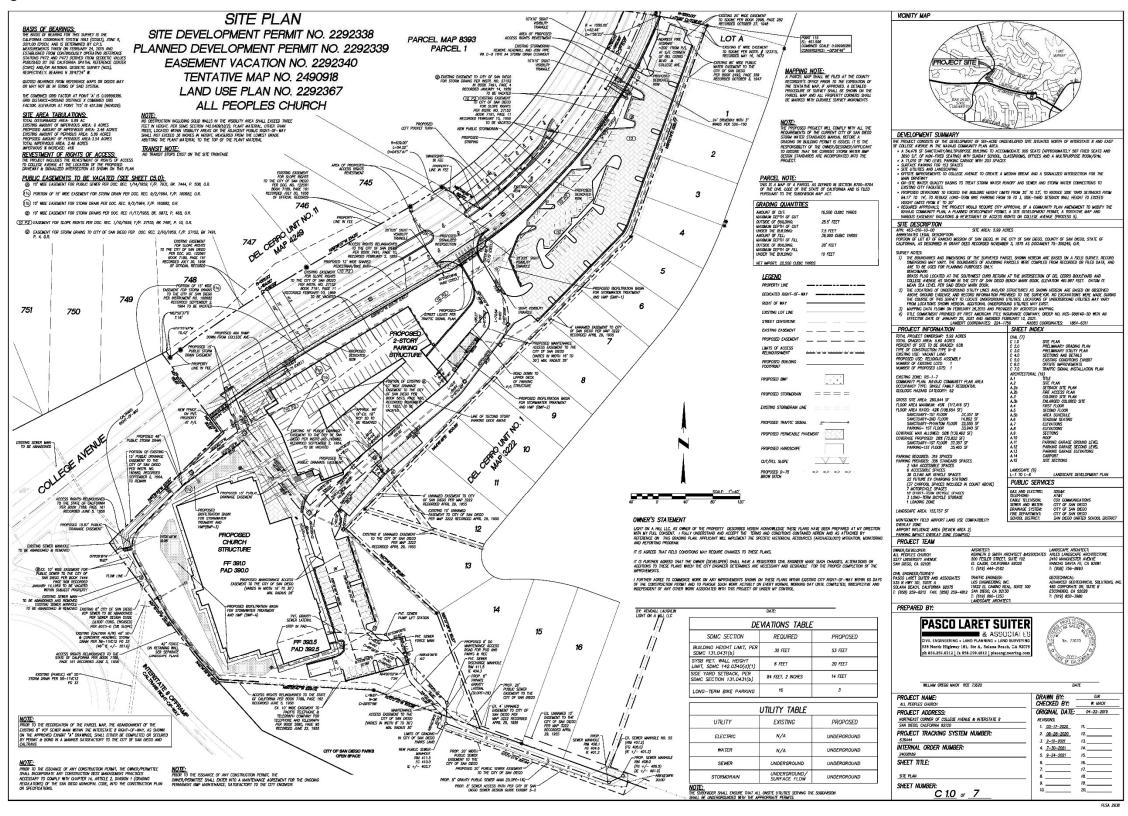



Figure 2: Site Plan

Source: PLSA

2.0 Project Description

All Peoples Church is proposed on the northeast corner of I-8 and College Avenue with a sanctuary capacity of 900 seats (587 fixed seats and 3,690 s.f. of non-fixed seats). The site with residential zoning RS-1-7 on approximately 6 acres is vacant.

The project site currently has no vehicular access and frontage only along College Avenue. Project access is from a proposed signalized main driveway and a proposed secondary right-in/right-out driveway, both on College Avenue.

The following discretionary approvals are required as part of the project:

- 1) Community Plan Amendment
- 2) Planned Development Permit
- 3) Site Development Permit
- 4) Vacation of Easements and Slope Rights

3.0 Local Mobility Analysis Methodology

The City of San Diego *Transportation Study Manual* states that all projects must complete a Local Mobility Analysis (LMA) unless they meet the following trip generation screening criteria:

- 1) Land uses consistent with the Community Plan/Zoning Designation: Generate less than 1,000 daily unadjusted driveway vehicle trips,
- 2) Land uses inconsistent with the Community Plan/Zoning Designation: Generate less than 500 daily unadjusted driveway vehicle trips, or
- 3) Projects in the Downtown Community Planning Area that generate less than 2,400 daily unadjusted trips.

The project requires a Planned Development Permit because the proposed Church is not allowed by the existing RS-1-7 zone, but would be an allowed use upon approval of a Community Plan amendment (CP). Thus, the LMA criteria is applied for projects inconsistent with CP (500 or more daily trips). As shown in Section 8.4.2, the Church is calculated to generate 1,976 daily Sunday trips; therefore, an LMA is required.

The extent of the LMA is based on each mode as follows:

1) Pedestrian: Documentation of pedestrian facilities and basic deficiencies (missing sidewalk, curb ramps, and major obstructions) within ½ walking distance measured from each pedestrian access point to a public street.

- 2) Bicycle: Documentation of bicycle facilities and basic deficiencies (bike lane gaps, obstructions) within ½ mile bicycling distance measured from the center of the intersection formed by each project driveway.
- 3) Transit: Identification of the closest transit routes and stops to the project. If the transit stops are within ½ mile walking distance of each pedestrian access point, the condition of the stop amenities must be described/evaluated.
- 4) Intersection Operations (projects with < 2,400 daily final driveway trips):
 - a. Signalized intersections within ½ mile path of travel from the project driveway AND the project will add 50 or more peak hour trips to any TURNING movement.
 - b. Un-signalized intersections within ½ mile path of travel from the project driveway AND the project will add 50 or more peak hour trips to any EITHER direction.
 - c. Freeway ramp intersections where a project adds 50 or more peak hour trips regardless of their distance from the project site.
- 5) Roadway Segments: The study area should include any roadway segments where the project adds > 1,000 daily final driveway trips if consistent with the Community Plan, or > 500 daily final driveway trips if inconsistent with the Community Plan AND: the segment has improvements identified in the Community Plan; OR the segment is not built to the Community Plan ultimate classification (including planned new circulation element roadways).

3.1 Local Mobility Analysis Study Area

The study area is based on a ½ mile walking, biking, or driving distance from the project driveway and access points on College Avenue. The study elements and areas included:

Pedestrian Facilities

All public streets within ½ mile walking distance of the project pedestrian access points on College Ave.

Bicycle Facilities

- 1) College Ave approximately ½ mile north of project northerly driveway and ½ south of main project driveway.
- 2) Del Cerro Blvd approximately ½ mile east and west of project northerly driveway.

Transit Facilities

1) The transit study included four bus stops within ½ mile walking distance. Two are on College Avenue just north of Del Cerro Boulevard and two are on College Ave just south of Alvarado Road.

Systemic Safety Review Facilities

The study area included the following intersection on the City Hotspot Map for pedestrians:

1) College Ave/Del Cerro Blvd

Vehicular Facilities

The study area included the following intersections:

- 1) College Ave/Del Cerro Blvd for the weekday and Sunday analysis. While the project is not expected to add >50 peak hour project turning movements for either a weekday or Sunday at this location, it was included due to its location relative to the project.
- 2) College Ave/North Project Access for the weekday and Sunday analysis. This location was included to ensure all project access points were analyzed.
- 3) College Ave/Main Project Access for the weekday and Sunday analysis (project forecasted to add > 50 peak hour turning movements).
- 4) College Ave/I-8 WB Ramps for the weekday and Sunday analysis (project forecasted to add > 50 peak hour turning movements only on Sunday; however, weekday peak hours included to support the project review).
- 5) College Ave/I-8 EB Ramps for the Sunday analysis (project forecasted to add > 50 peak hour turning movements).

The study area included the following street segments for the weekday analysis:

- 1) College between Del Cerro Blvd and Project Main Access (location relative to the project)
- 2) College between Project Main Access and I-8 WB Ramps (location relative to the project)
- 3) College between I-8 WB Ramps and I-8 EB Ramps (location relative to the project)

The study area included the following street segments for the Sunday analysis:

- 1) College between Del Cerro Blvd and Project Main Access (location relative to the project)
- 2) College between Project Main Access and I-8 WB Ramps (>500 ADT)
- 3) College between I-8 WB Ramps and I-8 EB Ramps (> 500 ADT)

The study area included the following freeway off-ramps for queuing analysis where the project added > 50 peak hour trips:

- 1) College Ave at I-8 WB Off-Ramp during the Sunday AM peak hour.
- 2) College Ave at I-8 EB Off-Ramp during the Sunday AM peak hour.

The study included a queuing analysis for the proposed signalized Main Access at College Ave during Weekday AM, Weekday PM, and Sunday AM peak hour scenarios under with project conditions. At the request of City staff, queueing was analyzed for the intersection of College Ave/Del Cerro Blvd even though the project adds well under the typical 50 peak hour trips used to determine a study location.

The Local Mobility Analysis study area is shown in **Figure 3**.

Figure 3: Local Mobility Analysis Study Area

Legend

Approximate ½ mile extent from project access points

Sunday Study Intersections

Sunday and Weekday Study Segments

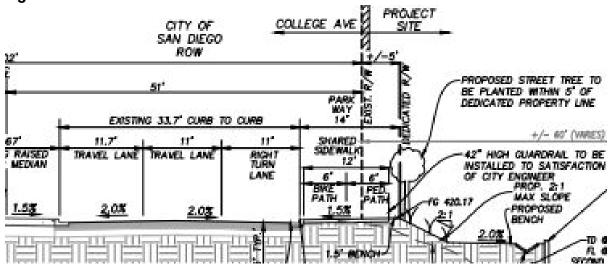
Weekday and Sunday Study Intersections

Bus Stops

Project Pedestrian Access

4.0 Pedestrian Analysis

The pedestrian analysis consists of documenting existing pedestrian facilities and basic deficiencies such as missing sidewalk sections, curb ramps, and major obstructions within ½ mile walking distance from the project access.


Intersection curb ramps were missing at the following locations:

- 1) Chrismark Ave/Wenrich Dr
- 2) Rockhurst Ct/Rockhurst Dr
- 3) Rockhurst Dt/Lambda Dr
- 4) Rockhurst Dr/Romany Dr (N. and E. Corners only)
- 5) Theta Pl/Romany Dr
- 6) Arno Dr/Capri Dt
- 7) Arno Dr/ Helena Pl

There were missing sidewalks at the following locations:

- 1) College Ave along the western side of the roadway from approximately 150 feet south of Del Cerro Blvd to Canyon Crest Dr/Alvarado Rd. There are no pedestrian access points to the adjacent parcels along this segment. Additionally, the College Ave bridge over I-8 does not have a sidewalk on the western side of the roadway.
- 2) Alvarado Rd extending east of College Ave.

As part of the project, the following pedestrian improvements will be constructed along the project's frontage on College Avenue. From the northern project boundary down to the proposed signalized main project driveway, a non-contiguous sidewalk will be installed with a transition to the existing contiguous sidewalk north of the project. From the proposed signalized main project driveway down to the southern project boundary, a 12-foot shared path consisting of a 6-foot bike path and a 6-foot pedestrian path will be installed. A cross section of the shared path is shown in **Figure 4.**

Figure 4: Shared Path Cross Section

The existing pedestrian facility study area and deficiencies are shown in Figure 5.

Figure 5: Pedestrian Local Mobility Analysis Conditions

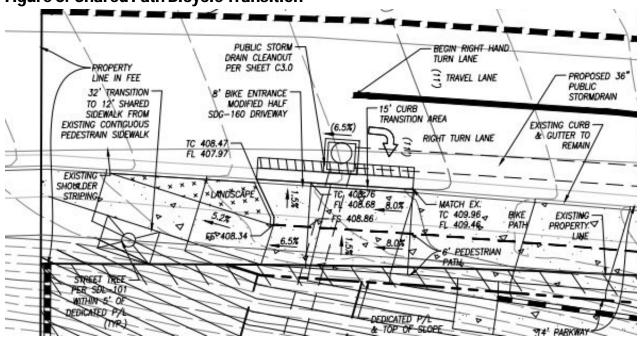
Legend

Approximate ½ mile extent from project access points

Project Pedestrian Access

5.0 Bicycle Analysis

The bicycle analysis consists of documenting existing bicycle facilities and basic deficiencies such bike lane gaps or obstructions within a ½ mile bicycling distance from the project access along the study roadways.


Existing Bicycle Lanes and Routes

No bike lanes nor bike routes were observed within ½ mile of the project access points.

Proposed Bicycle Lanes and Routes

According to the City of San Diego *Bicycle Master Plan Update*, July 2013, there are proposed Class III or Class III bike network classifications on College Avenue within a ½ mile of the project access points. The Navajo Community Plan describes a proposed Class III bike route along Del Cerro and a Class II bike route along College Ave within a ½ mile of the proposed project access points. Excerpts from the City of San Diego *Bicycle Master Plan Update* and the Navajo Community Plan are included in **Appendix A**.

As part of the project, the following bicycle improvements will be constructed along the project's frontage on College Avenue. From the northern project boundary down to the proposed signalized main project driveway, a buffered Class II bike lane will be installed. From the proposed signalized main project driveway down to the southern project boundary, a 12-foot shared path consisting of a 6-foot bike path and a 6-foot pedestrian path will be installed. The transition of the bicycle path to the shared path is shown in **Figure 6.**

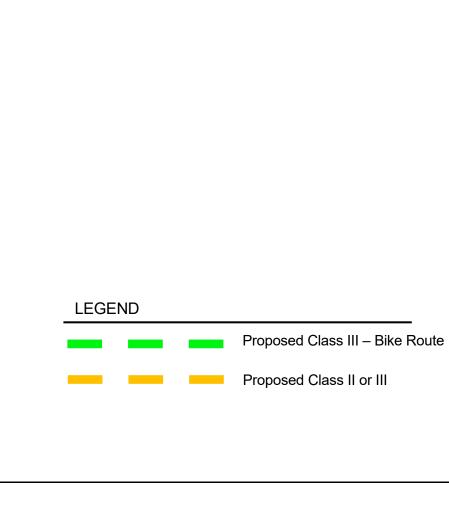


Figure 6: Shared Path Bicycle Transition

The proposed bike lanes and route are shown in **Figure 7**.

Figure 7: Bicycle Local Mobility Analysis Conditions

6.0 Transit Analysis

The transit analysis includes identifying the closest transit routes and stops to the project. If the stops are within ½ mile walking distance of the project access, the condition of the stop amenities must be describe/evaluated.

Metropolitan Transit System (MTS) lists Bus Routes 14 and 115 within ½ mile walking distance from the project access. There are four bus stops within the ½ mile walking distance, of which two are on College Avenue just north of Del Cerro Boulevard and two are on College Ave just south of Alvarado Road.

Route 14 has Monday through Friday service starting around 6:00 AM and ending around 7:00 PM with headways of approximately 60 minutes. Route 14 does not have Saturday nor Sunday service.

Route 115 has Monday through Friday service starting around 6:15 AM and ending around 10:00 PM with approximately 30-minute headways. Saturday service starts around 7:00 AM and ends around 9:00 PM with approximately headways of 60 minutes. Sunday service starts around 7:00 AM and ends around 6:30 PM with approximately headways of 60 minutes.

The San Diego State University trolley station is approximately 5,000 feet (just under 1 mile) walking distance from the project pedestrian access point.

A summary of the service times is shown in **Table 1** for weekdays and **Table 2** for Saturday and Sunday. A map showing the nearby transit routes and bus schedules are included in **Appendix B**.

TABLE 1: WEEKDAY BUS SERVICE OPERATIONS AND FREQUENCY

Bus Route	Weekday (Mon-Fri) Service Operations (Off-Peak Service Frequency Range)	7-9 AM Peak Hour Service Frequency	4-6 PM Peak Hour Service Frequency
Route 14	≈ 6:00 AM to ≈ 7:00 PM (≈ 60 minutes)	60 minutes	60 minutes
Route 115	≈ 6:15 AM to ≈ 10:00 PM (≈ 30 minutes)	30 minutes	30 minutes

TABLE 2: WEEKEND BUS SERVICE OPERATIONS AND FREQUENCY

Bus Route	Saturday Service Operations (Service Frequency Range)	Sunday Service Operations (Service Frequency Range)
Route 14	No Service	No Service
Route 115	≈ 7:00 AM to ≈ 9:00 PM (≈ 60 min.)	≈ 7:00 AM to ≈ 6:30 PM (≈ 60 min.)

7.0 Systemic Safety Review

The City of San Diego Vision Zero policy promotes safe roadway design with a goal toward preventing collisions. As part of that goal, a systemic safety review provides an assessment of hotspots and possible countermeasures to align with Vision Zero.

City staff identified the intersection of College Ave and Del Cerro Blvd for analysis as appearing on the City's hot spot map for pedestrians. A review of the accident history for the latest available five years (2015-2019) at the intersection of College Ave and Del Cerro Blvd concluded that no specific pattern of pedestrian-vehicle accidents was found for the study period; therefore, the project proposes no changes at this location. The systemic hotspot summary is shown in **Table 3**.

TABLE 3: SYSTEMIC HOTSPOT SUMMARY

Intersection Crieria for Analysis	College Ave at Del Cerro Blvd
Pedestrian-vehicle crashes (2015-2019)	No specific pattern of pedestrian-vehicle accidents was found; therefore, no changes are recommended.

8.0 Traffic Analysis

The Local Mobility Analysis includes the analysis of specific study scenarios, methodology for the analysis of roadway operations, and determination of potential off-site improvements. Details for each of these parameters are include herein.

8.1 Study Scenarios

The number of study scenarios is dependent on the required permits and project zoning. For this project, the following scenarios were analyzed:

- 1) Existing Conditions
- 2) Near-Term Opening Day (Year 2022) without Project Conditions
- 3) Near-Term Opening Day (Year 2022) with Project Conditions
- 4) Horizon Year 2050 without Project Conditions
- 5) Horizon Year 2050 with Project Conditions

8.2 Traffic Analysis Methodology

The traffic analysis prepared for this study was based on the 6th Edition Highway Capacity Manual (HCM) operations analysis using Level of Service (LOS) evaluation criteria. The operating conditions of the study intersections, street segments, and freeway segments were measured using the HCM LOS designations, which ranges from A through F. LOS A represents the best operating condition and LOS F denotes the worst operating condition. The individual LOS criteria for each roadway component are described below.

8.2.1 Intersections

The study intersections were analyzed based on the **operational analysis** outlined in the 6th Edition HCM. This process defines LOS in terms of **average control delay** per vehicle, which is measured in seconds. LOS at the intersections were calculated using the computer software program Synchro 10 (Trafficware Corporation). The 6th Edition HCM LOS for the range of delay by seconds for intersections is shown in **Table 4**.

TABLE 4: INTERSECTION LEVEL OF SERVICE DEFINITIONS (6[™] EDITION HCM)

Level of Service	Un-Signalized Control Delay	Signalized Control Delay
	for TWSC, AWSC, and Roundabout	(sec/veh where v/c ≤ 1)
	(sec/veh where v/c ≤ 1)	
Α	0-10	<u><</u> 10
В	> 10-15	> 10-20
С	> 15-25	> 20-35
D	> 25-35	> 35-55
E	> 35-50	> 55-80
F	> 50	> 80

Source: 6th Edition HCM. TWSC: Two Way Stop Control. AWSC: All Way Stop Control. For unsignalized intersections, the control delay is the worst movement delay in seconds/vehicle.

Please note that the 6th Edition computation algorithm does not support turning movement with shared lanes nor non-NEMA phasing; therefore, the intersections of College Avenue at Del Cerro Blvd, College Ave at I-8 WB Ramp, and College Ave at I-8 EB Ramp were analyzed using HCM 2000. The 2000 HCM LOS for un-signalized and signalized intersections is shown in **Table 5**.

TABLE 5: INTERSECTION LEVEL OF SERVICE (HCM 2000)

Level of Service	Un-Signalized	Signalized
	Average Control Delay (seconds/vehicle)	Average Control Delay (seconds/vehicle)
Α	0-10	0-10
В	> 10-15	> 10-20
С	> 15-25	> 20-35
D	> 25-35	> 35-55
E	> 35-50	> 55-80
F	> 50	> 80

Source: Highway Capacity Manual 2000. For unsignalized intersections, the control delay is the worst movement delay in seconds/vehicle.

8.2.2 Street Segments

The study street segments were analyzed based on the functional classification of the roadway using the City of San Diego *Roadway Segment LOS by Classification and Average Daily Traffic* capacity lookup table (**Appendix C**). The roadway segment capacity and LOS standards used to analyze street segments are summarized in **Table 6**.

TABLE 6: STREET SEGMENT DAILY CAPACITY AND LOS (CITY OF SAN DIEGO)

LOS	LOS	LOS	LOS	LOS
Α	В	С	D	E
<25,000	<35,000	<50,000	<55,000	<60,000
<20,000	<28,000	<40,000	<45,000	<50,000
<17,500	<24,500	<35,000	<40,000	<45,000
<20,000	<28,000	<40,000	<45,000	<50,000
<17,500	<24,500	<35,000	<40,000	<45,000
<15,000	<21,000	<30,000	<35,000	<40,000
<12,500	<17,500	<25,000	<30,750	<37,500
<10,000	<14,000	<20,000	<25,000	<30,000
<5,000	<7,000	<10,000	<13,000	<15,000
<4,000	<5,500	<7,500	<9,000	<10,000
<2,500	<3,500	<5,000	<6,500	<8,000
-	-	<2,200	-	-
	A <25,000 <20,000 <17,500 <20,000 <17,500 <15,000 <12,500 <10,000 <5,000 <4,000 <2,500 -	A B <25,000 <35,000 <20,000 <28,000 <17,500 <24,500 <20,000 <28,000 <17,500 <24,500 <17,500 <24,500 <15,000 <21,000 <12,500 <17,500 <10,000 <14,000 <5,000 <7,000 <4,000 <5,500	A B C <25,000	A B C D <25,000

Source: City of San Diego Transportation Study Manual 9/29/2020.

8.2.3 Freeway Off-Ramp Queuing

The 95th percentile queues for both locations at Interstate 8/College Avenue eastbound and westbound off-ramps were evaluated using SimTraffic 10 software. The queue was calculated running ten 60-minute simulations runs with a ten-minute seeding time. The 95th percentile queue was compared to the off-ramp storage that is measured from the ramp gore to the off-ramp intersection stop bar.

8.2.4 Intersection Queuing

The 95th percentile queue for intersections located within the study area were evaluated using SimTraffic 10 software. The queue was calculated running ten 60-minute simulations runs with a ten-minute seeding time. The 95th percentile queue was compared to the turn pocket storage that is generally measured from the intersection stop bar to the end of the turn pocket strip or where there is a consistent lane width of 12 feet.

8.2.5 Project Traffic Effects

A project Owner/Permittee should consider an improvement if the project traffic effect triggers the need for an improvement per the City of San Diego *Transportation Study Manual* (TSM) defined effects as shown in **Table 7** (TSM excerpts included in **Appendix D**).

TABLE 7: CITY OF SAN DIEGO TRAFFIC EFFECT TRIGGERS FOR POTENTIAL ROADWAY IMPROVEMENTS

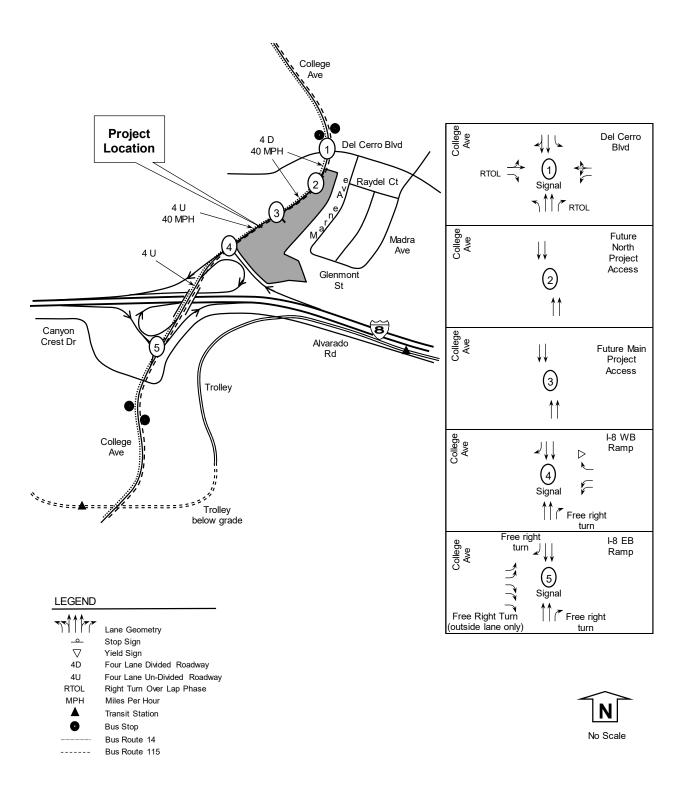
Facility	Triggers for Considering an Improvement
Signalized Intersection	No Existing Left-Turn Lane: If the project adds traffic to an individual left turn movement causing the total number of peak hour left turns to exceed 100, consider adding a left turn lane.
	Existing Single Left-Turn Lane: If the project adds traffic to an individual left turn movement causing the total number of peak hour left turns to exceed 300, consider adding a second left turn lane.
	No Existing Right Turn-Lane: If the addition of a right turn lane will not negatively affect other roadway users, will maintain a comfortable roadway environment, AND the project adds traffic to an individual right turn movement causing the total number of peak hour right turns to exceed 500, consider adding a right turn lane.
	Existing Single Right-Turn Lane: If the addition of a right turn lane will not negatively affect other roadway users, will maintain a comfortable roadway environment, AND the project adds traffic to an individual right turn movement causing the total number of peak hour right turns to exceed 800, consider adding a second right turn lane.
Un-	Lengthening a Turn Pocket: If the project adds traffic to a turning movement and causes the 95 th percentile queue to exceed the available turn pocket length, consider lengthening the turn pocket. An Intersection Control Evaluation should be prepared if:
Signalized Intersection	All Way Stop Control: Within a ½ mile path of travel of a Major Transit Stop, if the project causes intersection to degrade to LOS F, or if the project adds traffic to an intersection already operating at LOS F.
	All Way Stop Control: Outside of a ½ mile path of travel of a Major Transit Stop, if the project causes intersection to degrade to LOS E or F, or if the project adds traffic to an intersection already operating at LOS E or F.
	Side Street Stop Control: Within a $\frac{1}{2}$ mile path of travel of a Major Transit Stop, if the project causes the worst movement to degrade to LOS F, or if the project adds traffic to an intersection already operating at LOS F.
	Side Street Stop Control: Outside a ½ mile path of travel of a Major Transit Stop, if the project causes the worst movement to degrade to LOS E or F, or if the project adds traffic to an intersection already operating at LOS E or F.
Roadway Segment	If the project adds greater than 50% of total daily vehicle trips on the segment, the project should consider implementing the improvements as identified in the community plan.
Source: City of Sar	If the project adds less than or equal to 50% of total daily vehicle trips on the segment, the project should evaluate its fair share toward the improvement. Diego Transportation Study Manual, 9/29/2020.

8.3 Existing Conditions

This section describes the study area street system, peak hour intersection volumes, daily roadway volumes, existing LOS, and left turn bay queuing.

8.3.1 Existing Street System

Within the LMA study area, the following roadway was analyzed as part of this study.


<u>College Avenue</u> from Del Cerro Blvd to I-8 EB Ramp is classified as a *4-Lane Major* in the City of San Diego *Navajo Community Plan* (excerpts included in **Appendix E**).

College Avenue from Del Cerro Blvd to I-8 WB Ramp is constructed as a four-lane roadway with a raised median from Del Cerro Blvd extending south for about 900 feet and then transitions to center double-double yellow markings. For the purpose of this analysis, a capacity of 40,000 at LOS E (Major) is applied for the raised median segment while 30,000 at LOS E (Collector) is applied for the center double-double yellow segment. The posted speed limit along this segment is 40 Miles Per Hour (MPH). A contiguous sidewalk exists along the eastern side of the roadway. There is no sidewalk along the western side of the roadway. No bike lanes nor marking were observed along this segment.

College Avenue from I-8 WB Ramp to I-8 EB Ramp is constructed as a four-lane roadway with center double-double yellow markings. For the purpose of this analysis, a capacity of 30,000 at LOS E (Collector) is applied for this segment with center double-double yellow markings. The posted speed limit is 40 MPH. A contiguous sidewalk exists along the eastern side of the roadway. There is no sidewalk along the western side of the roadway. No bike lanes nor marking were observed along this segment.

The existing conditions are shown in **Figure 8**.

Figure 8: Existing Conditions

8.3.2 Existing Traffic Volumes and LOS Analyses

Existing counts were collected between 7:00 AM and 9:00 AM for the AM commuter period and from 4:00 PM to 6:00 PM for the PM commuter period on Tuesday, April 16, 2019, and from 10:45-11:45 AM on Sunday, April 28, 2019 to capture the time period between the two historically highest attended services. Nearby elementary schools and San Diego State University were in session during the weekday counts. Counts were collected for the following intersections within the study area:

- 1) College Ave/Del Cerro Blvd
- 2) College Ave/Project North Access (DNE not analyzed under Existing Conditions)
- 3) College Ave/Project Main Access (DNE not analyzed under Existing Conditions)
- 4) College Ave/I-8 WB Ramps
- 5) College Ave/I-8 EB Ramps (Sunday only because the project is not forecasted to add 50 or more peak hour trips to any turning movement under weekday conditions)

Existing street segmentdaily volumes were collected on Tuesday, April 16, 2019 and Sunday, April 14, 2019 at the following locations:

- 1) College Ave between Del Cerro Blvd and I-8 WB Ramps
- 2) College Ave between I-8 WB Ramps and I-8 EB Ramps

A queuing analysis was performed at freeway off-ramps where the project added 50 or more peak hour trips based on TSM study criteria. The ramps and scenarios included:

- 1) College Ave at I-8 WB Off-Ramp during the Sunday AM peak hour.
- 2) College Ave at I-8 EB Off-Ramp during the Sunday AM peak hour.

The existing AM, PM, and daily volumes are shown on **Figure 9**, with count data included in **Appendix F**. The intersection LOS is shown in **Table 8**. The freeway off-ramp 95th percentile queues are shown in **Table 9** with documentation of ramp storage lengths shown in **Appendix G**. The segment LOS is shown in **Table 10**. The intersections were analyzed based on existing signal timing. The signal timing sheets are included in **Appendix H**. The intersection LOS and queueing worksheets are included in **Appendix I**.

TABLE 8: EXISTING INTERSECTION LOS

Intersection and	Approach	Study	Existing		
(Analysis) ¹		Period	Delay ²	LOS ³	
1) College Ave	All	Weekday AM	44.9	D	
at Del Cerro	All	Weekday PM	26.8	С	
Blvd (S)	All	Sunday AM	24.8	С	
2) College Ave	WB	Weekday AM	DNE	NA	
at Project N.	WB	Weekday PM	DNE	NA	
Access (U)	WB	Sunday AM	DNE	NA	
3) College Ave	WB	Weekday AM	DNE	NA	
at Project Main	WB	Weekday PM	DNE	NA	
Access (U)	WB	Sunday AM	DNE	NA	
4) College Ave	All	Weekday AM	10.9	В	
at I-8 WB	All	Weekday PM	11.3	В	
Ramp (S)	All	Sunday AM	10.8	В	
5) College Ave at		-			
I-8 EB Ramps (S)	All	Sunday AM	11.4	В	

Notes: 1) Intersection Analysis - (S) Signalized, (U) Unsignalized. 2) Delay - HCM Average Control Delay in seconds. 3) LOS: Level of Service. DNE: Does Not Exist. NA: Not Applicable.

Figure 9: Existing Volumes



TABLE 9: EXISTING FREEWAY OFF-RAMP INTERSECTION QUEUING

	Existing	
Ramp	Sunday AM Peak Hour	
I-8 Westbound Off-Ramp at College Ave		
95th Percentile Off-Ramp Queue	105 Feet	
Off-Ramp Storage from Exit Gore to Stop Bar	1,220 Feet	
Queue Exceeds Storage?	No	
I-8 Eastbound Off-Ramp at College Ave		
95th Percentile Off-Ramp Queue	383 Feet	
Off-Ramp Storage from Exit Gore to Stop Bar	750 Feet	
Queue Exceeds Storage?	No	

Notes: 95th percentile off-ramp queue calculated using SimTraffic 10 software.

TABLE 10: EXISTING SEGMENT ADT VOLUMES AND LOS

	Functional	Existing					
Segment	Classification	Daily Volume	LOS E Capacity	V/C	LOS		
WEEKDAY							
College Ave							
Del Cerro to Project Main Access	4 Lane Major	29,858	40,000	0.75	С		
Project Main Access to I-8 WB Ramps	4 Lane Collector	29,858	30,000	1.00	E		
I-8 WB Ramp to I-8 EB Ramps	4 Lane Collector	36,813	30,000	1.23	F		
SUNDAY							
College Ave							
Del Cerro to Project Main Access	4 Lane Major	23,486	40,000	0.59	С		
Project Main Access to I-8 WB Ramps	4 Lane Collector	23,486	30,000	0.78	D		
I-8 WB Ramps to I-8 EB Ramps	4 Lane Collector	26,097	30,000	0.87	Е		

Notes: Daily volume is a 24 hour volume. LOS: Level of Service.

Under Existing Conditions, the following deficiencies were calculated:

Weekday segments:

- 1) College Ave between Project Main Access and I-8 WB Ramps (LOS E)
- 2) College Ave between I-8 WB and EB Ramps (LOS F)

Sunday segments:

1) College Ave between I-8 WB and EB Ramps (LOS E)

8.4 Project Trip Generation

The project's expected trip generation was calculated using rates from the City of San Diego *Trip Generation Manual*, May 2003 and site-specific Sunday trip generation data calculated from the existing All Peoples Church currently operating at 5555 University Avenue in San Diego.

8.4.1 Weekday Trip Generation

Weekday trip generation was based on the higher generation between City rates and historical with projected uses by Church staff. The proposed Church will not offer a day care or a children's school during weekdays, thus the City's House of Worship without school or day care rate was applied for this comparison. The City of San Diego trip rate was applied based on the total building size of 54,476 square feet.

The site-specific trip generation is based on the existing and forecasted weekday use of the Church facilities. Existing Pastoral offices located at 5555 University Avenue are open Monday-Thursday from 9AM to 6PM and closed on Fridays with a current staff of 8 to 25 persons. The proposed Pastoral offices are to be open Monday-Thursday from 9AM to 6PM and closed on Fridays with 25 to 30 anticipated staff. For trip generation purposes, the AM inbound is assumed to occur just before 9 AM with a total of 30 inbound trips. The PM outbound is assumed to have 30 outbound trips. The ADT was taken at double the peak hours (60 x 2 = 120 ADT) to account lunch and/or errands. There are various proposed group bible studies of youth, college, married couples, etc. from 6 PM to 10 PM Monday - Thursday. These range from 30-50 for some groups and 50-100 for the highest anticipated gatherings. An average of 75 attendees was used for the weekday gathering trip generation (0 AM and 75 inbound PM). The basketball gym is proposed to be open during Pastoral office hours anticipated to have between 0 and 10 users (with an average of 5 gym users assigned for the trip generation resulting in 10 ADT with 1 AM trip and 2 PM trips).

The higher weekday project traffic volume was based on the applicant forecasted uses and was calculated at 280 ADT with 31 AM peak hour trips (31 inbound and 0 outbound) and 107 PM peak hour trips (76 inbound and 31 outbound) as shown in **Table 11**.

TABLE 11: WEEKDAY PROJECT TRIP GENERATION

WEEKDAY	Rate, Size & Units		ADT	Weekday AM Peak Hr			Weekday PM Peak Hr		
(Mon-Thur, Pastoral offices closed Friday)				% & Split		% & Spl		plit	
				Total	IN	OUT	Total	IN	OUT
City of San Diego Trip Rate									
House of Worship	5	/KSF		4%	8.0	0.2	8%	0.5	0.5
	54.476	KSF	272	11	9	2	22	11	11
Applicant Forcasted Uses									
Staff 9am-6pm (up to 30)			120		30	0		0	30
Highest weekday bible study (avg. 75)					0	0		75	0
Basketball gym (avg. 5 users)			<u>10</u>		<u>1</u>	<u>0</u>		<u>1</u>	<u>1</u>
			280	31	31	0	107	76	31
Highest volumes used for analysis:				31	31	0	107	76	31

Source: City of San Diego Trip Generation for weekday and site specific data for forecasted use. ADT - Average Daily Traffic; Split-percent inbound & outbound. Excel rounding may cause values to be slightly higher or lower than whole number.

8.4.2 Sunday Trip Generation

Sunday trip generation was based on the higher generation between City rates and historical with projected uses by Church staff.

The proposed Church will offer a Sunday day care/school during Sunday services, thus the City's House of Worship with school or day care rate was applied for this comparison. The City's peak hour rates do not specify the hours for a Sunday; therefore, the AM rate was applied for the first service and the PM rate was applied for the services that typically occurs around 10 AM and around noon.

The Sunday site specific trip generation was calculated from current Church operations at 5555 University Avenue based on current service times, attendance variation between services, and vehicle occupancy. Vehicle occupancy data are included in **Appendix J**. The existing service times occur at 8:30 AM, 10:00 AM, and 11:30 AM with the higher attendance typically occurring at 10:00 AM. Using current attendance and vehicle occupancy, a peak hour and daily vehicle forecasted was determined for the maximum seating capacity of 900 seats as shown in **Table 12**.

TABLE 12: EXISTING AND FORECASTED SUNDAY ATTENDANCE FOR 900 SEAT OCCUPANCY

SUNDAY Service Times	Average November 2018 Attendees (Adults + Children)	Attendance % of Nov. 2018 Attendees	Normalized to 100% attendance for 10 AM service	Attendee Forecast based on full use of 900 Seats	10 AM serivce typically has one bus* of 35 attendees	Attendees that drive	Inbound ADT based on a vehicle occupancy of 2.30**	Inbound ADT based on a vehicle occupancy of 2.30**
8:30-9:30 AM	255	26%	63%	569	No bus	569	248	248
10:00-11:00 AM	403	41%	100%	900	35	865	376	376
11:30 AM -12:30	321	33%	80%	717	No bus	717	312	312
Totals	979	100%		2,186			936	936
							Inbound ADT	Outbound ADT
						TOTAL ADT	: 1,8	372

^{*}Bus is from Point Loma Nazarene University (with average 35 students) that will drop off and leave the parking lot to return for pickup.

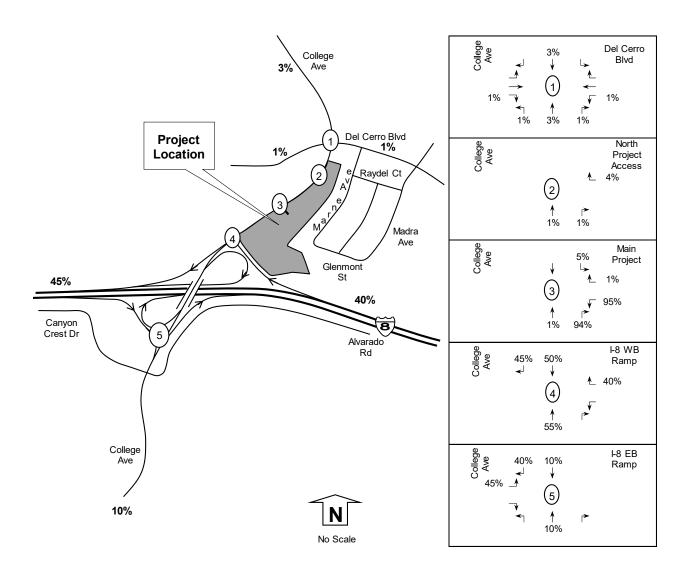
**Vehicle occupancy average from data collected by LOS Engineering, Inc. during services on Sun 12/2/18, Sun 12/9/18, Sun 11/10/19, and Sun 11/17/19 (Appendix J).

The higher Sunday project traffic volume between City rates and site-specific rates (based on a maximum occupancy of 900 seats during the historically highest attended 10 AM service) is calculated at 1,976 ADT with 690 Sunday peak hour trips (378 outbound after the 10 AM service and 312 inbound for the 11:30 AM service) as shown in **Table 13**.

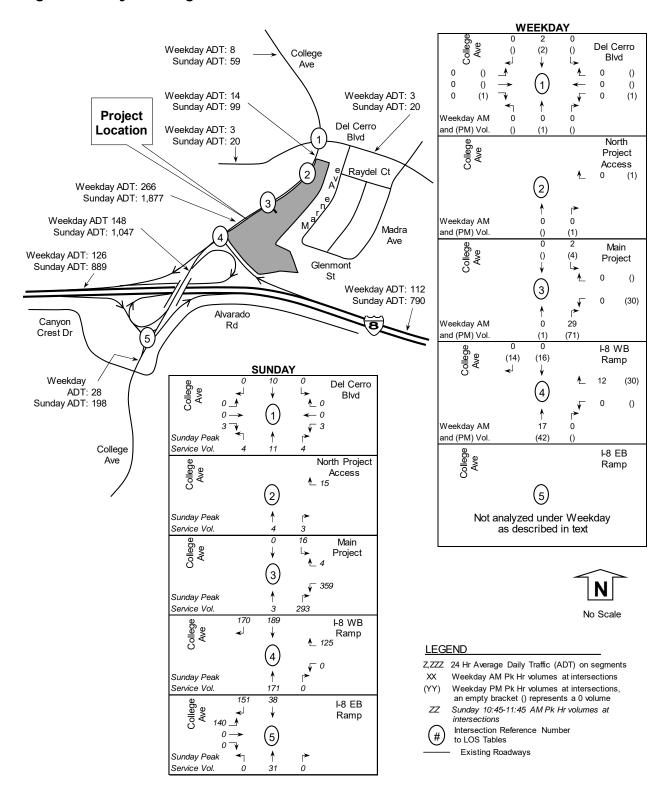
TABLE 13: SUNDAY TRIP GENERATION

				S	unda	у	(Sunda	y	S	unda	y	
SUNDAY	Rate, Size & Units		Rate, Size & Units ADT		8:30 AM Service			10:00 AM Service			11:30 AM Service		
					IN	OUT		IN	OUT		IN	OUT	
City of San Diego Trip Rates				% &			% &			% &			
				Total			Total			Total			
House of Worship	20	/KSF		4%	8.0	0.2	8%	0.5	0.5	8%	0.5	0.5	
	52.585	KSF	1,052	42	34	8	42	21	21	42	21	21	
Trips Rates based on Historic	al Data												
House of Worship	900	Seats	1,872 *	ŧ	248	248		376	376		312	312	
Volunteers**	50	People	100		0	0		0	0		0	0	
One Bus*** x 2 PCE	1	Bus	4		0	0		2	2		0	0	
Higher volumes used for ar	nalysis:	Totals	1,976		248	248		378	378		312	312	
Sunday Pk Hr (10:45-	11:45) bet	ween two	largest s	services	s (10a	m out-	-11:30a	m in):	378	Out	312	In	
									Р	eak Hou	ır = 69	90	

Source: Site specific data for Sunday use. ADT - Average Daily Traffic. Excel rounding may cause values to be slightly higher or lower than whole number. *ADT calculated by adding individual attendee inbound and outbound volumes from columns to the right. **Volunteers typically arrive before first service and leave after last service, thus peak hour for the 8:30am, 10am, and 11:30am services are zero (0). ***Bus brings in approximately 35 students from Point Loma Nazarene University only for 10 AM service, thus no buses during other service times. PCE: Passenger Car Equivalent.


8.5 Project Distribution and Assignment

Church attendees come from a larger area than immediately surrounding to the Church. Over 100 different zip codes represent the current congregation. Attendees living in the same zip code as the Church only account for approximately 5% of the congregation.


The distribution was based on the percentage of Church attendees by zip codes to which the majority (85%) are forecasted to use I-8 (i.e. 45% to/from the west and 40% to/from the east). Currently, the proposed site of the Church (zip code 92120) represents about 2% of the congregation. Access to the Church to/from College Ave north of the site is estimated at 5% to account for potential increase of members and access from immediately adjacent areas. The remaining 10% is forecasted to arrive/depart using College Avenue south of I-8. Zip code data are included in **Appendix K**.

The project distribution is shown in Figure 10. The project assignment is shown in Figure 11.

Figure 10: Project Distribution

Figure 11: Project Assignment

8.6 Project Access and Parking

The project site currently has no vehicular points of access with frontage only on College Avenue. Project access is proposed from a signalized main driveway and a secondary right-in/right-out driveway, both on College Avenue.

The project main access is approximately 630 feet (curb return to curb return) north of the Caltrans I-8 WB Ramp. According to Caltrans, the minimum distance (curb return to curb return) between a ramp intersection and local road intersections shall be 400 feet with a preferred distance of 500 feet. The project main access is located beyond the Caltrans minimum and preferred distance (Caltrans correspondence is included in **Appendix L**).

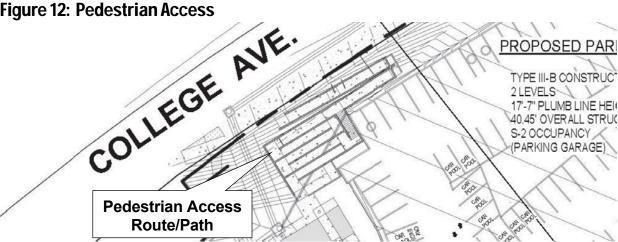
8.6.1 Main Access Traffic Signal Warrant and Sight Distance

The project main access, with a proposed traffic signal, was analyzed to determine if signal warrants were satisfied. The California MUTCD rev5 Warrant 3, Part B (Peak Hour) warrant is satisfied under Sunday conditions based on Opening Day (Year 2022) + Project volumes. Signal warrant calculations are included in **Appendix M**.

Intersection sight distance details for the main access and secondary right-in/right-out driveway are included on the Civil drawings under separate cover. The proposed traffic signal design with median break at the main project access on College Avenue is shown in **Appendix N**. This appendix also includes an aerial with the main driveway overlay and several cross-sections. The main project access cross-section will have a consistent cross-slope of the pavement that is linear across the entire intersection that then ties into the project driveway.

8.6.2 On-Site Vehicular and Pedestrian Circulation

On-site vehicular circulation is provided through two project driveways and on-site drive aisles.


Pedestrian access is provided from one accessible route near the southwest corner of project site. No sidewalks are proposed along the project driveways due to:

- 1) The driveways and much of the parking area has slopes that exceed ADA requirements, and
- 2) The proposed separate pedestrian accessible route fulfills the building code requirements.

The single pedestrian accessible route fulfills building code 11B-206.2.1 requirement of at least one accessible route shall be provided between a public sidewalk and the accessible building entrance. The same building code also notes an exception as follows "An accessible route shall not be required between site arrival points and the building or facility entrance if the only means of access between them is a vehicular way not providing pedestrian access."

For the above noted reasons, sidewalks along the vehicular access point are not provided nor required. The accessible route is shown in **Figure 12**.

Figure 12: Pedestrian Access

8.6.3 **On-Site Parking**

The project's minimum required parking is 319 spaces based on 587 fixed seats (requiring 196 parking spaces) and 3,690 sf of non-fixed seating (requiring 123 parking spaces for non-fixed). The provided parking includes 319 standard spaces, 2 van accessible spaces, 6 accessible spaces, and 29 clean air vehicle standard spaces for a total of 356 automobile parking spaces. There are 17 short term bicycle spaces and 2 long term bicycle spaces. Seven motorcycle parking spaces are proposed. There is also one loading zone space. A summary of the parking is shown in **Table 14**.

TABLE 14: PROJECT PARKING SUMMARY

Project Component	Minimum Required Parking by Code	Provided Parking
Church (587 fixed seating plus		356 Automobile Spaces
3,690 sf of non-fixed seating for		7 Motorcycle Spaces
about 900 seats in total)	16 Short Term Bicycle Spaces	17 Short Term Bicycle Spaces
	16 Long Term Bicycle Spaces	2* Long Term Bicycle Spaces

^{*}Requesting deviation from LDC where 16 bike spaces are required, while 2 spaces provided.

The parking structure has two levels. Level one is shown in Figure 13 and level two in Figure 14.

Figure 13: Parking Structure Lower Level

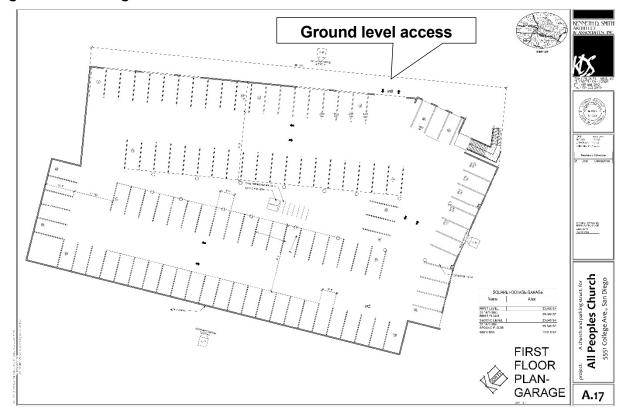
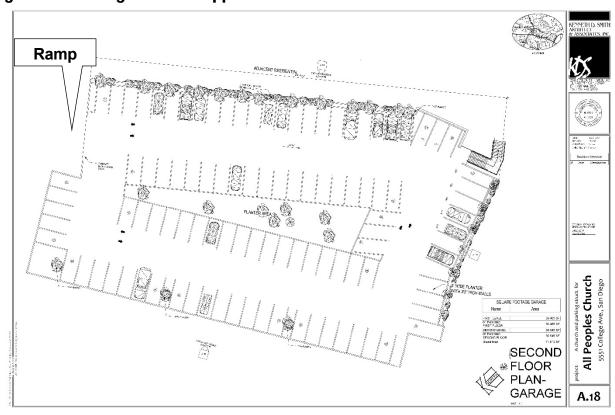



Figure 14: Parking Structure Upper Level

8.7 Near-Term Opening Day (Year 2022) without Project Conditions

The Near-Term without project conditions describe the anticipated roadway operations during the opening day of the project anticipated to be in in the year 2022. Upon review of available cumulative project information, the following reasonably foreseeable projects were identified that are anticipated to add traffic to the study area roadways by the year 2022:

- 1) Capstone A multi-family project with 94 units located at 5030 College Avenue (PTS 431026). Approved and completed; however, traffic counts were collected while this project was under construction, thus it is included in this cumulative analysis.
- 2) *Montezuma Multi-Family* A multi-family project with 40 multi-family units located at 6195 Montezuma Road (PTS 593021). Approved but not yet constructed.
- 3) *Montezuma PDP/CUP/SDP* A multi-family project with 128 multi-family units located at 6213 Montezuma Road (PTS 501449). Approved but not yet constructed.
- 4) *Montezuma PDP/RZ/Amend* A multi-family project with 39 multi-family units located at 6253 Montezuma Road (PTS 623199). This project is under City review.
- 5) San Diego State University Master Plan A master plan to include student headcount increase, Adobe Falls facility/staff housing, and a hotel generally located on the San Diego State University grounds or nearby. Approved by California State University Board of Trustees in May 2018. Project has yet to be constructed.

Cumulative project trip assignments that are anticipated to add traffic to the study area roadways are included in **Appendix O**. The cumulative project trip generation is summarized below in **Table 15**.

TABLE 15: CUMULATIVE PROJECT TRIP GENERATION

Cumulative Project	City PTS#	Average Daily Trips	Status
Capstone 5030 College Ave 94 MF Units	431026	752	Approved and completed
6195 Montezuma Rd 40 MF Units	593021	320	Approved not constructed
6213 Montezuma Rd 128 MF Units	501449	1,024	Approved not constructed
6253 Montezuma Rd 39 MF Units	623199	312	Under City review
San Diego State University Master Plan	No PTS, SDSU EIR State Clearinghouse No. 2007021020	5,607	Not constructed

PTS: Project Tracking System

The cumulative project information did not include Sunday traffic; Therefore, a 0.5% annual growth rate per year (1.5% total) was applied to existing Sunday counts (peak hour and daily) to represent Sunday cumulative volumes.

A map showing the cumulative project locations are shown on **Figure 15**. The combined cumulative project traffic volumes are shown on **Figure 16**. Near-term (2022) traffic volumes (existing + cumulative) without the project are shown on **Figure 17**.

Figure 15: Cumulative Project Locations

Google Maps

Figure 16: Cumulative Project Volumes

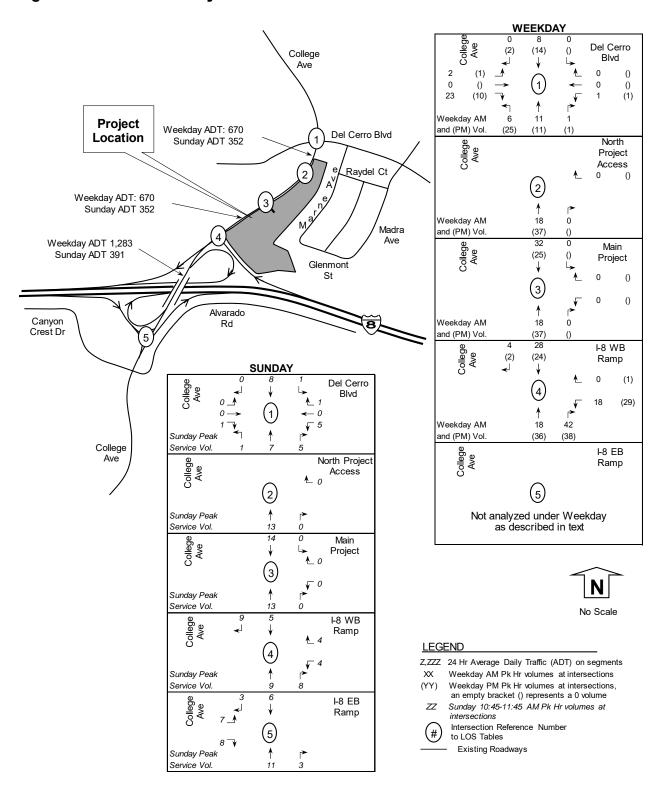


Figure 17: Near-Term Opening Day (Year 2022) without Project Volumes

The intersection LOS is shown in **Table 16**. The freeway off-ramp 95th percentile queues are shown in **Table 17**. The segment LOS is shown in **Table 18**. The intersection LOS and queueing output are included in **Appendix P**.

TABLE 16: NEAR-TERM OPENING DAY (YEAR 2022) WITHOUT PROJECT INTERSECTION LOS

Intersection and	Approach	Study	Near-Term Opening Day (Year 2022)		
(Analysis) ¹		Period	Delay ²	LOS ³	
1) College Ave	All	Weekday AM	46.7	D	
at Del Cerro	All	Weekday PM	27.7	С	
Blvd (S)	All	Sunday AM	25.1	С	
2) College Ave	WB	Weekday AM	Does Not Exist	Not Applicable	
at Project N.	WB	Weekday PM	Does Not Exist	Not Applicable	
Access (U)	WB	Sunday AM	Does Not Exist	Not Applicable	
3) College Ave	WB	Weekday AM	Does Not Exist	Not Applicable	
at Project Main	WB	Weekday PM	Does Not Exist	Not Applicable	
Access (U)	WB	Sunday AM	Does Not Exist	Not Applicable	
4) College Ave	All	Weekday AM	10.8	B	
at I-8 WB	All	Weekday PM	11.4	В	
Ramp (S)	All	Sunday AM	10.9	В	
5) College Ave at					
I-8 EB Ramps (S)	All	Sunday AM	11.5	В	

Notes: 1) Intersection Analysis - (S) Signalized, (U) Unsignalized. 2) Delay - HCM Average Control Delay in seconds. 3) LOS: Level of Service.

TABLE 17: NEAR-TERM OPENING DAY (YEAR 2022) WITHOUT PROJECT FREEWAY OFF-RAMP INTERSECTION QUEUING

	Near-Term	
Ramp	Sunday AM Peak Hour	
I-8 Westbound Off-Ramp at College Ave		
95th Percentile Off-Ramp Queue	119 Feet	
Off-Ramp Storage from Exit Gore to Stop Bar	1,220 Feet	
Queue Exceeds Storage?	No	
I-8 Eastbound Off-Ramp at College Ave		
95th Percentile Off-Ramp Queue	338 Feet	
Off-Ramp Storage from Exit Gore to Stop Bar	750 Feet	
Queue Exceeds Storage?	No	

Notes: 95th percentile off-ramp queue calculated using SimTraffic 10 software.

TABLE 18: NEAR-TERM OPENING DAY (YEAR 2022) WITHOUT PROJECT SEGMENT ADT VOLUMES AND LOS

	Functional -	Near-Term Opening Day (Year 2022)				
Segment	Classification	Daily Volume	LOS E Capacity	V/C	LOS	
WEEKDAY						
College Ave						
Del Cerro to Project Main Access	4 Lane Major	30,528	40,000	0.763	D	
Project Main Access to I-8 WB Ramps	4 Lane Collector	30,528	30,000	1.018	F	
I-8 WB Ramp to I-8 EB Ramps	4 Lane Collector	38,096	30,000	1.270	F	
SUNDAY						
College Ave						
Del Cerro to Project Main Access	4 Lane Major	23,838	40,000	0.596	С	
Project Main Access to I-8 WB Ramps	4 Lane Collector	23,838	30,000	0.795	D	
I-8 WB Ramps to I-8 EB Ramps	4 Lane Collector	26,488	30,000	0.883	E	

Notes: Daily volume is a 24 hour volume. LOS: Level of Service.

Under Near-Term Opening Day (Year 2022) without Project Conditions, the following deficiencies are forecasted:

Weekday segments:

- 1) College Ave between Project Main Access and I-8 WB Ramps (LOS F)
- 2) College Ave between I-8 WB and EB Ramps (LOS F)

Sunday segments:

1) College Ave between I-8 WB and EB Ramps (LOS E)

8.8 Near-Term Opening Day (Year 2022) with Project Conditions

This scenario documents the addition of project traffic onto Near-Term Opening Day (Year 2022) conditions with volumes shown in **Figure 18**. The intersection LOS is shown in **Table 19**. The freeway off-ramp 95th percentile queues are shown in **Table 20**. The segment LOS is shown in **Table 21**. The intersection LOS and queueing output are included in **Appendix Q**.

TABLE 19: NEAR-TERM OPENING DAY (YEAR 2022) WITH PROJECT INTERSECTION LOS

Intersection and	Approach	Study _	Near-	Near-Term		Term + Pr	oject
(Analysis) ¹		Period	Delay ²	LOS ³	Delay ²	LOS ³	Delta⁴
1) College Ave	All	Weekday AM	46.7	D	46.7	D	0.0
at Del Cerro	All	Weekday PM	27.7	С	27.8	С	0.1
Blvd (S)	All	Sunday AM	25.1	С	25.3	С	0.2
2) College Ave	WB	Weekday AM	DNE	NA	0.0	Α	NA
at Project N.	WB	Weekday PM	DNE	NA	13.6	В	NA
Access (U)	WB	Sunday AM	DNE	NA	12.1	В	NA
3) College Ave	WB	Weekday AM	DNE	NA	0.0	Α	NA
at Project Main	WB	Weekday PM	DNE	NA	124.4	F	>1
Access (U)	WB	Sunday AM	DNE	NA	BRD	F	>1
4) College Ave	All	Weekday AM	10.8	В	11.0	В	0.2
at I-8 WB	All	Weekday PM	11.4	В	11.4	В	0.0
Ramp (S)	All	Sunday AM	10.9	В	11.8	В	0.9
5) College Ave at							
I-8 EB Ramps (S)	All	Sunday AM	11.5	В	12.4	В	0.9

Notes: 1) Intersection Analysis - (S) Signalized, (U) Unsignalized. 2) Delay - HCM Average Control Delay in seconds. 3) LOS: Level of Service. 4) Delta is the increase in delay from project. DNE: Does Not Exist. NA: Not Applicable. BOLD indicated unacceptable LOS and/or impact. BRD: Beyond Reasonable Delay (>180 sec.).

TABLE 20: NEAR-TERM OPENING DAY (YEAR 2022) WITH PROJECT FREEWAY OFF-RAMP INTERSECTION QUEUING

	Near-Term	Near-Term + Project
Ramp	Sunday AM Peak Hour	Sunday AM Peak Hour
I-8 Westbound Off-Ramp at College Ave		
95th Percentile Off-Ramp Queue	119 Feet	164 Feet
Off-Ramp Storage from Exit Gore to Stop Bar	1,220 Feet	1,220 Feet
Queue Exceeds Storage?	No	No
I-8 Eastbound Off-Ramp at College Ave		
95th Percentile Off-Ramp Queue	338 Feet	421 Feet
Off-Ramp Storage from Exit Gore to Stop Bar	750 Feet	750 Feet
Queue Exceeds Storage?	No	No

Notes: 95th percentile off-ramp queue calculated using SimTraffic 10 software.

Figure 18: Near-Term Opening Day (Year 2022) with Project Volumes

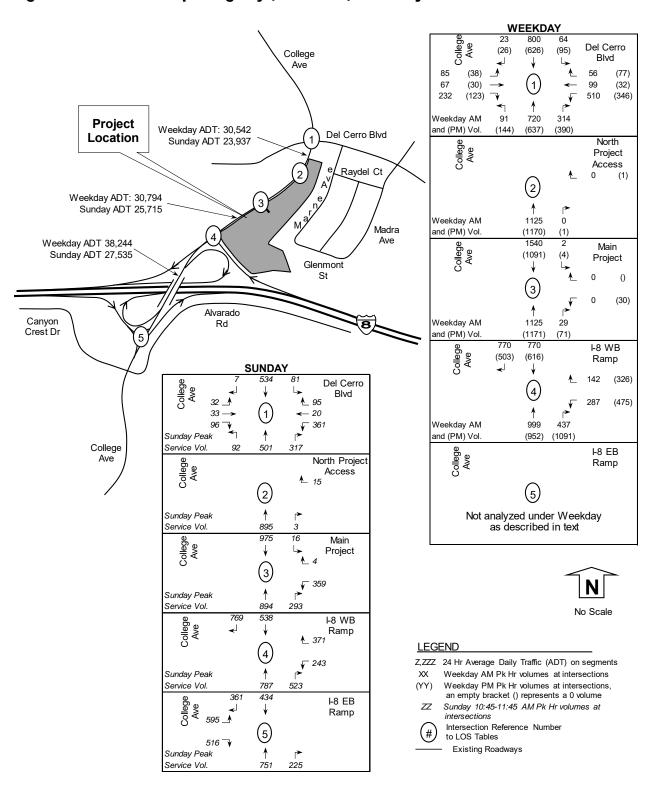


TABLE 21: NEAR-TERM OPENING DAY (YEAR 2022) WITH PROJECT SEGMENT ADT VOLUMES AND LOS

·	Functional	Near-Term			Project	Near-Term + Project					
Segment	Classification	Daily Volume	LOS E Capacity	V/C	LOS	Daily Volume	Daily Volume	LOS E Capacity	V/C	LOS	Δ in V/C
WEEKDAY											
College Ave											
Del Cerro to Project Main Access	4 Lane Major	30,528	40,000	0.763	D	14	30,542	40,000	0.764	D	0.000
Project Main Access to I-8 WB Ramps	4 Lane Collector	30,528	30,000	1.018	F	266	30,794	30,000	1.026	F	0.009
I-8 WB Ramp to I-8 EB Ramps	4 Lane Collector	38,096	30,000	1.270	F	148	38,244	30,000	1.275	F	0.005
SUNDAY											
College Ave											
Del Cerro to Project Main Access	4 Lane Major	23,838	40,000	0.596	С	99	23,937	40,000	0.598	С	0.002
Project Main Access to I-8 WB Ramps	4 Lane Collector	23,838	30,000	0.795	D	1,877	25,715	30,000	0.857	Е	0.063
I-8 WB Ramps to I-8 EB Ramps	4 Lane Collector	26,488	30,000	0.883	Е	1,047	27,535	30,000	0.918	Е	0.035

Notes: Daily volume is a 24 hour volume. LOS: Level of Service.

Under Near-Term Opening Day (Year 2022) with Project Conditions, the project adds more than 50 peak hour turn moves or more than 500 daily trips to study locations forecasted to operate at LOS E/F that include:

- College Ave/Main Project Access (LOS F Weekday PM and Sunday AM). The project adds more than 50 peak hour trips to this intersection and the applicant proposes to install a traffic signal to provide acceptable LOS as shown below in **Table 22** (LOS calculation are included in **Appendix R**).
- 2) College Ave between Project Main Access and I-8 WB Ramps (LOS E Sunday). The project adds more than 500 Sunday only trips to this segment and less than 500 Weekday trips; therefore, no roadway improvements are proposed because the Sunday traffic is not added during typical Monday through Friday commuter periods.
- 3) College Ave between I-8 WB and EB Ramps (LOS F Sunday). The project adds more than 500 Sunday only trips to this segment and less than 500 Weekday trips; therefore, no roadway improvements are proposed because the Sunday traffic is not added during typical Monday through Friday commuter periods.

TABLE 22: NEAR-TERM OPENING DAY (YEAR 2022) WITH PROJECT MAIN ACCESS LOS WITH IMPROVEMENT

Intersection and	Movement	Study	Near-Term + Project without Traffic Signal				
(Analysis) ¹		Period	Delay ²	LOS ³			
3) College Ave at	WB	Weekday PM	158.4	F			
Project Main Access (U)	WB	Sunday AM	BRD	F			
. ,		·	Near-Term + Project with Traffic Signal				
College Ave at	All	Weekday PM	18.5	В			
Project Main Access (S)	All	Sunday AM	10.4	В			

Notes: 1) Intersection Analysis - (S) Signalized, (U) Unsignalized. 2) Delay - HCM Average Control Delay in seconds. 3) LOS: Level of Service. BRD: Beyond Reasonable Delay (>180 sec.).

8.9 Horizon Year 2050 without Project Conditions

The Horizon Year 2050 growth forecast was based on a formula provided by City of San Diego staff to calculate future year traffic volumes. Calculations of the Series 12 growth forecasts are included in **Appendix S**.

The compound growth rate was calculated by segment using SANDAG Series 12 unadjusted regional travel demand model volumes as follows:

```
Compound growth = (2050 \text{ unadjusted ADT} / 2008 \text{ unadjusted ADT})^{1/N} -1 Where N = number of years (2050 - 2008 = 42 \text{ years})
```

The compound growth rate was applied for a period of 31 years to existing segment counts collected in 2019 to represent year 2050 daily traffic volumes (2050 - 2019 = 31). This was applied to both the weekday and Sunday volumes.

Intersection turning movement forecasts were based on applying the Series 12 average annual growth rate of 0.53% per year. The compounded growth rate factor to year 2050 is 1.178.

Horizon Year 2050 conditions showing the study area roadway conditions, which were assumed as the same as existing conditions, are shown in **Figure 19**. The Horizon Year 2050 volumes without the project are shown in **Figure 20**.

The intersection LOS is shown in **Table 23**. The freeway off-ramp 95th percentile queues are shown in **Table 24**. The segment LOS is shown in **Table 25**. The intersection LOS and queueing output are included in **Appendix T**.

TABLE 23: HORIZON YEAR 2050 WITHOUT PROJECT INTERSECTION LOS

Intersection and	Approach	Study	Horizon	Year 2050
(Analysis) ¹		Period	Delay ²	LOS ³
1) College Ave	All	Weekday AM	48.8	D
at Del Cerro	All	Weekday PM	31.0	С
Blvd (S)	All	Sunday AM	27.9	С
2) College Ave	WB	Weekday AM	DNE	NA
at Project N.	WB	Weekday PM	DNE	NA
Access (U)	WB	Sunday AM	DNE	NA
3) College Ave	WB	Weekday AM	DNE	NA
at Project Main	WB	Weekday PM	DNE	NA
Access (U)	WB	Sunday AM	DNE	NA
4) College Ave	All	Weekday AM	14.3	В
at I-8 WB	All	Weekday PM	12.9	В
Ramp (S)	All	Sunday AM	10.8	В
5) College Ave at		•		
I-8 EB Ramps (S)	All	Sunday AM	11.8	В

Notes: 1) Intersection Analysis - (S) Signalized, (U) Unsignalized. 2) Delay - HCM Average Control Delay in seconds. 3) LOS: Level of Service. DNE: Does Not Exist. NA: Not Applicable.

Figure 19: Horizon Year 2050 Roadway Conditions

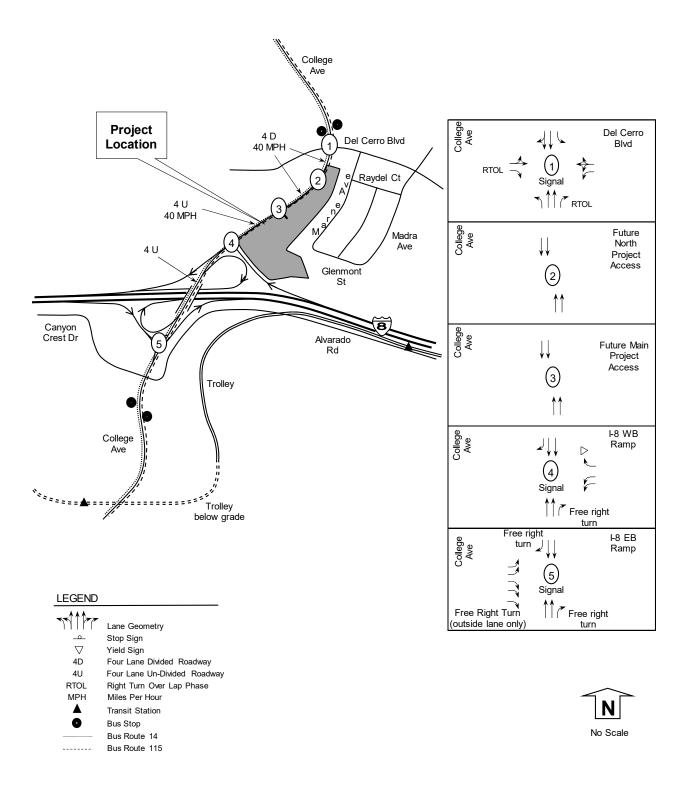


Figure 20: Horizon Year 2050 without Project Volumes

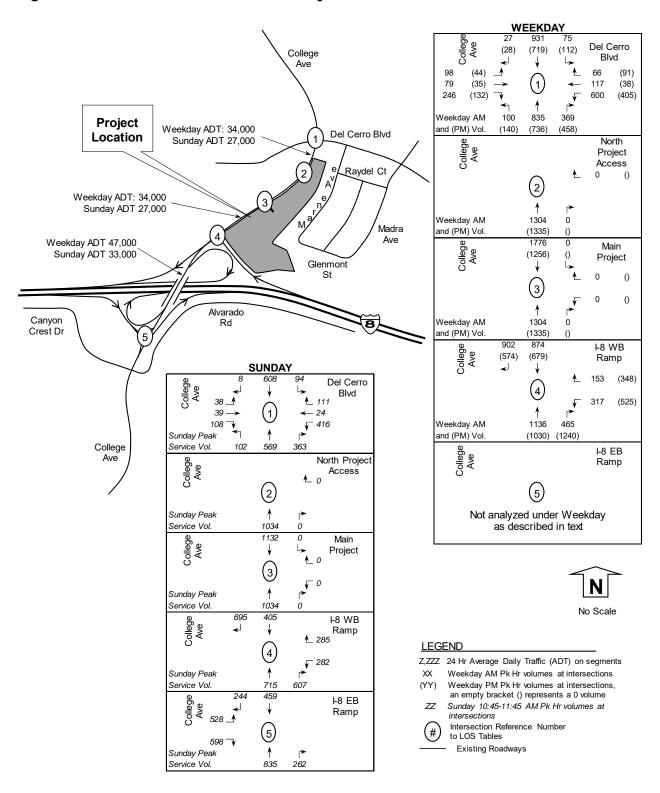


TABLE 24: HORIZON YEAR 2050 WITHOUT PROJECT FREEWAY OFF-RAMP INTERSECTION QUEUING

	Horizon Year 2050	
Ramp	Sunday AM Peak Hour	
I-8 Westbound Off-Ramp at College Ave		
95th Percentile Off-Ramp Queue	144 Feet	
Off-Ramp Storage from Exit Gore to Stop Bar	1,220 Feet	
Queue Exceeds Storage?	No	
I-8 Eastbound Off-Ramp at College Ave		
95th Percentile Off-Ramp Queue	462 Feet	
Off-Ramp Storage from Exit Gore to Stop Bar	750 Feet	
Queue Exceeds Storage?	No	

Notes: 95th percentile off-ramp queue calculated using SimTraffic 10 software.

TABLE 25: HORIZON YEAR 2050 WITHOUT PROJECT SEGMENT ADT VOLUMES AND LOS

	Functional		Horizon Year 2050				
Segment	Classification	Daily Volume	LOS E Capacity	V/C	LOS		
WEEKDAY							
College Ave							
Del Cerro to Project Main Access	4 Lane Major	34,000	40,000	0.850	D		
Project Main Access to I-8 WB Ramps	4 Lane Collector	34,000	30,000	1.133	F		
I-8 WB Ramp to I-8 EB Ramps	4 Lane Collector	47,000	30,000	1.567	F		
SUNDAY							
College Ave							
Del Cerro to Project Main Access	4 Lane Major	27,000	40,000	0.675	С		
Project Main Access to I-8 WB Ramps	4 Lane Collector	27,000	30,000	0.900	E		
I-8 WB Ramps to I-8 EB Ramps	4 Lane Collector	33,000	30,000	1.100	F		

Notes: Daily volume is a 24 hour volume. LOS: Level of Service.

Under Horizon Year 2050 without Project Conditions, the following deficiencies are forecasted: Weekday segments:

- 1) College Ave between Project Main Access and I-8 WB Ramps (LOS F)
- 2) College Ave between I-8 WB and EB Ramps (LOS F)

Sunday segments:

- 1) College Ave between Project Main Access and I-8 WB Ramps (LOS E)
- 2) College Ave between I-8 WB and EB Ramps (LOS F)

8.10 Horizon Year 2050 with Project Conditions

The Horizon Year 2050 with the Project Conditions were analyzed by adding the project traffic onto Horizon Year 2050 volumes. The Horizon Year 2050 volumes with project traffic are shown in **Figure 21.**

The intersection LOS is shown in **Table 26**. The freeway off-ramp 95th percentile queues are shown in **Table 27**. The segment LOS is shown in **Table 28**. The intersection LOS and queueing output are included in **Appendix U**.

TABLE 26: HORIZON YEAR 2050 WITH PROJECT INTERSECTION LOS

Intersection and	Approach	Study	Horizon Year (2050)		Horizon \	ear (2050)	+ Project
(Analysis) ¹		Hour	Delay ²	LOS ³	Delay ²	LOS ³	Delta⁴
1) College Ave	All	Weekday AM	48.8	D	48.9	D	0.1
at Del Cerro	All	Weekday PM	31.0	С	31.0	С	0.0
Blvd (S)	All	Sunday AM	27.9	С	28.2	С	0.3
2) College Ave	WB	Weekday AM	DNE	NA	0.0	Α	0.0
at Project N.	WB	Weekday PM	DNE	NA	14.9	В	14.9
Access (U)	WB	Sunday AM	DNE	NA	13.0	В	13.0
3) College Ave	WB	Weekday AM	DNE	NA	0.0	Α	0.0
at Project Main	WB	Weekday PM	DNE	NA	BRD	F	>1
Access (U)	WB	Sunday AM	DNE	NA	BRD	F	>1
4) College Ave	All	Weekday AM	14.3	В	14.3	В	0.0
at I-8 WB	All	Weekday PM	12.9	В	13.2	В	0.3
Ramp (S)	All	Sunday AM	10.8	В	12.1	В	1.3
5) College Ave at		•					
I-8 EB Ramps (S)	All	Sunday AM	11.8	В	13.2	В	1.4
Notes: 1) Intersection	Analysis /C	C) Cianalized (LI)	Llagiandiza	d 0) Dolov	LICM Average Con	tral Dalay in a	aaanda 2\

Notes: 1) Intersection Analysis - (S) Signalized, (U) Unsignalized. 2) Delay - HCM Average Control Delay in seconds. 3) LOS: Level of Service. 4) Delta is the increase in delay from project. 5) Direct impact if project traffic exceeds threshold. DNE: Does Not Exist. NA: Not Applicable. BRD: Beyond Reasonable Delay (>180 sec.)

TABLE 27: HORIZON YEAR 2050 WITH PROJECT FREEWAY OFF-RAMP INTERSECTION QUEUING

Horizon Year 2050	Horizon Year 2050 + Project
Sunday AM Peak Hour	Sunday AM Peak Hour
144 Feet	171 Feet
1,220 Feet	1,220 Feet
No	No
462 Feet	624 Feet
750 Feet	750 Feet
No	No
	Sunday AM Peak Hour 144 Feet 1,220 Feet No 462 Feet 750 Feet

Notes: 95th percentile off-ramp queue calculated using SimTraffic 10 software.

Figure 21: Horizon Year 2050 with Project Volumes

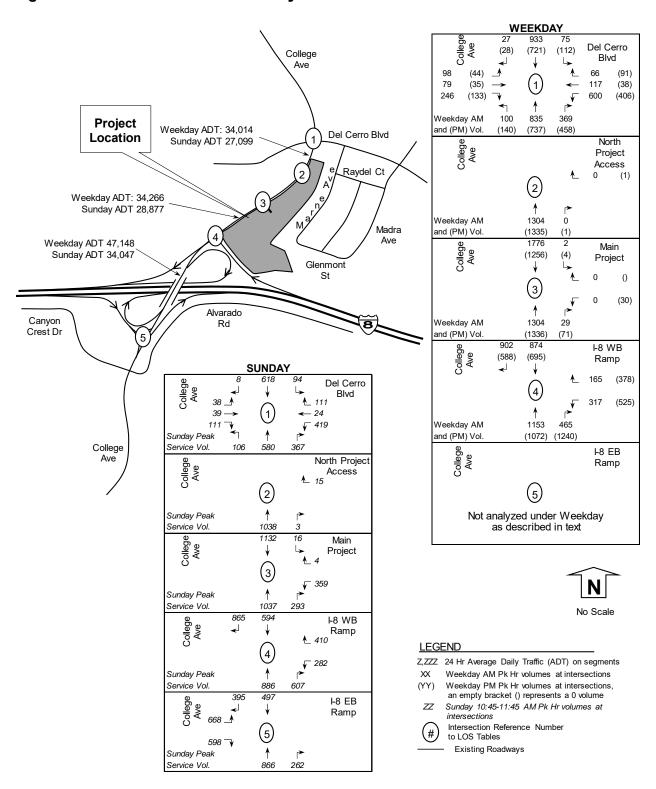


TABLE 28: HORIZON YEAR 2050 WITH PROJECT SEGMENT ADT VOLUMES AND LOS

	Functional	Horizon Year 2050			Project Horizon Year 2050					50 + Project		
Segment	Classification	Daily Volume	LOS E Capacity	V/C	LOS	Daily Volume	Daily Volume	LOS E Capacity	V/C	LOS	Δ in V/C	Project % of total ADT
WEEKDAY												
College Ave												
Del Cerro to Project Main Access	4 Lane Major	34,000	40,000	0.850	D	14	34,014	40,000	0.850	D	0.000	0.04%
Project Main Access to I-8 WB Ramps	4 Lane Coll.	34,000	30,000	1.133	F	266	34,266	30,000	1.142	F	0.009	0.78%
I-8 WB Ramp to I-8 EB Ramps	4 Lane Coll.	47,000	30,000	1.567	F	148	47,148	30,000	1.572	F	0.005	0.31%
SUNDAY												
College Ave												
Del Cerro to Project Main Access	4 Lane Major	27,000	40,000	0.675	С	99	27,099	40,000	0.677	С	0.002	0.37%
Project Main Access to I-8 WB Ramps	4 Lane Coll.	27,000	30,000	0.900	Ε	1,877	28,877	30,000	0.963	Е	0.063	6.50%
I-8 WB Ramps to I-8 EB Ramps	4 Lane Coll.	33,000	30,000	1.100	F	1,047	34,047	30,000	1.135	F	0.035	3.08%

Notes: Daily volume is a 24 hour volume. LOS: Level of Service. Coll. = Collector.

Under Horizon Year 2050 with Project Conditions, the project adds more than 50 peak hour turn moves or more than 500 daily trips to study locations forecasted to operate at LOS E/F that include:

- 1) College Ave/Main Project Access (LOS F Weekday PM and Sunday AM). The project adds more than 50 peak hour trips to this intersection and the applicant proposes to install a traffic signal to provide acceptable LOS as shown below in **Table 29** (LOS calculation are included in **Appendix V**).
- 2) College Ave between Project Main Access and I-8 WB Ramp (LOS E Sunday). The project adds more than 500 Sunday only trips to this segment and less than 500 Weekday trips; therefore, no roadway improvements are proposed because the Sunday traffic is not added during typical Monday through Friday commuter periods.
- 3) College Ave between I-8 WB and EB Ramps (LOS F Sunday). The project adds more than 500 Sunday only trips to this segment and less than 500 Weekday trips; therefore, no roadway improvements are proposed because the Sunday traffic is not added during typical Monday through Friday commuter periods.

TABLE 29: HORIZON YEAR 2050 WITH PROJECT MAIN ACCESS INTERSECTION LOS WITH IMPROVEMENT

Intersection and	Approach	Study	Horizon Year + Project without Traffic Signa					
(Analysis) ¹		Period	Delay ²	LOS ³				
3) College Ave at	WB	Weekday PM	BRĎ	F				
Project Main Access (U)	WB	Sunday AM	BRD	F				
. ,		•	Horizon Year + Project with Traffic Signal					
3) College Ave at	All	Weekday PM	19.5	В				
Project Main Access (S)	All	Sunday AM	12.0	В				

Notes: 1) Intersection Analysis - (S) Signalized, (U) Unsignalized. 2) Delay - HCM Average Control Delay in seconds. 3) LOS: Level of Service. BRD: Beyond Reasonable Delay (>180 sec.).

8.11 Queuing at College Ave/Main Project Access Signalized Intersection

As part of the project, the Owner/Permittee is proposing a traffic signal and associated median improvements at the Project Main Access on College Ave. The 95th percentile queue was analyzed using SimTraffic 10 software at this location. The queue was calculated running ten 60-minute simulations runs with a ten-minute seeding time.

The 95th percentile queue was compared to the turn pocket storage length. For this intersection, the storage length is the from the stop bar to the end of the lane stripe as shown on the civil plans. For through movements, the storage was taken as the distance from the intersection stop bar to the upstream intersection curb return. The 95th percentile queues for the main access are shown in **Table 30** with calculations included in **Appendix W**.

TABLE 30: PROJECT MAIN ACCESS QUEUING

	Near-	Term + Pro	ject	Horizon Year 2050 + Project			
College Ave at Main Project Access	Weekday	Weekday	Sunday	Weekday	Weekday	Sunday	
-	AM	PM	AM	AM	PM	AM	
Northbound Through Lanes 95th %ile Queue (ft)	19	105	226	33	124	242	
Lane storage between intersections in feet (a)	650	650	650	650	650	650	
Exceeds Storage?	No	No	No	No	No	No	
Northbound Right Turn Lane 95th %ile Queue (ft)	0	23	88	0	26	157	
Turn Pocket Storage Length (ft)	360	360	360	360	360	360	
Exceeds Storage?	No	No	No	No	No	No	
Southbound Left Turn Lane 95th %ile Queue (ft)	10	21	44	18	18	47	
Turn Pocket Storage Length (ft)	130	130	130	130	130	130	
Exceeds Storage?	No	No	No	No	No	No	
Southbound Through Lanes 95th %ile Queue (ft)	0 (c)	110	313	0 (c)	143	359	
Lane storage between intersections in feet (b)	500	500	500	500	500	500	
Exceeds Storage?	No	No	No	No	No	No	

Notes: (a) Approximately 650 ft from proposed intersection stop bar back to I-8 WB off-ramp intersection northside curb return. (b) Approximately 500 ft from proposed intersection stop bar back to Del Cerro intersection southside curb return. (c) No southbound queue reported because project does not have forecasted AM trips leaving the site; therefore, traffic signal is not forecasted to trigger a red light for southbound vehciles, thus no reported southbound queue.

8.12 Queuing at College Ave/Del Cerro Blvd Signalized Intersection

At the request of City staff, queueing was analyzed for the intersection of College Ave/Del Cerro Blvd even though the project adds well under the typical 50 peak hour project trips used to determine a study location. The 95th percentile queue was analyzed using SimTraffic 10 software at this location. The queue was calculated running ten 60-minute simulations runs with a ten-minute seeding time.

The 95th percentile queue was compared to the available storage. For this intersection, the northbound left turn pocket storage length is 75 feet while the storage is approximately 550 for each northbound through travel lane. The 95th percentile queues under near-term conditions are shown in **Table 31** and **Table 32** for horizon year conditions. Calculations are included in **Appendix X**.

TABLE 31: COLLEGE AVE/DEL CERRO BLVD NEAR-TERM QUEUING

	Near-Term			Near-	Term + P	roject	Change in		
College Ave at Del Cerro Blvd	95th % Queue (ft)			95th	% Queu	e (ft)	95th % Queue (ft)		
	WD AM	WD PM	Sun AM	WD AM	WD PM	Sun AM	WD AM	WD PM	Sun AM
NB LT 95th Percentile Queue (ft)	NA (1)	NA (1)	118	NA (1)	NA (1)	118	NA (1)	NA (1)	0
Available Storage (ft)	75	75	75	75	75	75	Incre	ease in qu	eue
Queue Exceeds Storage?	NA (1)	NA (1)	Yes	NA (1)	NA (1)	Yes	(f	eet) due t	0
Distance Exceeding Storage (ft)	NA (1)	NA (1)	43	NA (1)	NA (1)	43	pr	oject traffi	С
NB Through Lanes 95th Percentile Queue (ft)	NA (1)	294	178	NA (1)	303	197	NA (1)	9	19
Available Storage between intersections(a) (ft)	550	550	550	550	550	550	Incre	ease in qu	eue
Queue Exceeds Storage?	NA (1)	No	No	NA (1)	No	No	(f	eet) due t	0
Amount Exceeding Available Storage (ft)	NA (1)	0	0	NA (1)	0	0	pr	oject traffi	С

Notes: WD: Weekday. Sun: Sunday. Ft: Feet. (a) Approximately 550 ft from northbound stop bar at Del Cerro intersection south to proposed Church main driveway signalized intersection. NA (1) Not Applicable because project does not add peak hour traffic to this movement under the referenced scenario.

TABLE 32: COLLEGE AVE/DEL CERRO BLVD HORIZON YEAR QUEUING

	Horizon Year 2050 95th % Queue (ft)			Horizo	n Year +	Project	Change in 95th % Queue (ft)		
College Ave at Del Cerro Blvd				95th	% Queu	e (ft)			
	WD AM	WD PM	Sun AM	WD AM	WD PM	Sun AM	WD AM WD PM St	ın AM	
NB LT 95th %ile Queue (ft)	NA (1)	NA (1)	127	NA (1)	NA (1)	132	NA (1) NA (1)	5	
Available Storage (ft)	75	75	75	75	75	75	Increase in queu	ie	
Queue Exceeds Storage?	NA (1)	NA (1)	Yes	NA (1)	NA (1)	Yes	(feet) due to		
Distance Exceeding Storage (ft)	NA (1)	NA (1)	52	NA (1)	NA (1)	57	project traffic		
NB Through Lanes 95th percentile Queue (ft)	NA (1)	285	262	NA (1)	305	298	NA (1) 20	36	
Available Storage between intersections(a) (ft)	550	550	550	550	550	550	Increase in queu	ie	
Queue Exceeds Storage?	NA (1)	No	No	NA (1)	No	No	(feet) due to		
Amount Exceeding Available Storage (ft)	NA (1)	0	0	NA (1)	0	0	project traffic		

Notes: WD: Weekday. Sun: Sunday. Ft: Feet. (a) Approximately 550 ft from northbound stop bar at Del Cerro intersection south to proposed Church main driveway signalized intersection. NA (1) Not Applicable because project does not add peak hour traffic to this movement under the referenced scenario.

9.0 Conclusions

All Peoples Church is proposed on the northeast corner of I-8 and College Avenue with a sanctuary capacity of 900 seats (587 fixed seats and 3,690 s.f. of non-fixed seats). The site with residential zoning RS-1-7 on approximately 6 acres is vacant. The project site currently has no vehicular access and frontage only along College Avenue. Project access is proposed from a signalized main driveway and a secondary right-in/right-out driveway, both on College Avenue. Project opening is forecasted to occur in 2022. The following discretionary approvals are required as part of the project:

- 1) Community Plan Amendment
- 2) Planned Development Permit
- 3) Site Development Permit
- 4) Vacation of Easements and Slope Rights

This Local Mobility Analysis (LMA) determines if there are any traffic effects caused by the project traffic that would trigger roadway and other multi-modal improvements or a fair share participation. The LMA is based on the City of San Diego *Transportation Study Manual*, September 29, 2020 and includes the analysis of pedestrian, bicycle, transit, and vehicular facilities.

Pedestrian facilities within the ½ mile walking distance from the project were evaluated. Intersection curb ramps were missing at the following locations:

- 1) Chrismark Ave/Wenrich Dr
- 2) Rockhurst Ct/Rockhurst Dr
- 3) Rockhurst Dt/Lambda Dr
- 4) Rockhurst Dr/Romany Dr (N. and E. Corners only)
- 5) Theta Pl/Romany Dr
- 6) Arno Dr/Capri Dt
- 7) Arno Dr/ Helena Pl

There were missing sidewalks at the following locations:

- 1) College Ave along the western side of the roadway from approximately 150 feet south of Del Cerro Blvd to Canyon Crest Dr/Alvarado Rd. There are no pedestrian access points to the adjacent parcels along this segment. Additionally, the College Ave bridge over I-8 does not have a sidewalk on the western side of the roadway.
- 2) Alvarado Rd extending east of College Ave.

As part of the project, the following pedestrian improvements will be constructed along the project's frontage on College Avenue. From the northern project boundary down to the proposed signalized main project driveway, a non-contiguous sidewalk will be installed with a transition to the existing contiguous sidewalk north of the project. From the proposed signalized main project driveway down to the southern project boundary, a 12-foot shared path consisting of a 6-foot bike path and a 6-foot pedestrian path will be installed outside of the vehicular traveled way.

Bicycle facilities within a ½ mile bicycling distance from the project were evaluated. No bike lanes nor bike routes were observed within ½ mile of the project access points. As part of the project, the following bicycle improvements will be constructed along the project's frontage on

College Avenue. From the northern project boundary down to the proposed signalized main project driveway, a buffered Class II bike lane will be installed. From the proposed signalized main project driveway down to the southern project boundary, a 12-foot shared path consisting of a 6-foot bike path and a 6-foot pedestrian path will be installed outside of the vehicular traveled way.

Transit facilities within a ½ mile walking distance which included four bus stops were evaluated. Two on College Avenue just north of Del Cerro Boulevard and two on College Ave just south of Alvarado Road. Metropolitan Transit System (MTS) lists Bus Routes 14 and 115 within ½ mile walking distance from the project access. Bus Route 14 has 60-minute headways listed for the AM and PM peak hours and Bus Route 115 has 30-minute headways listed for the AM and PM peak hours. On Sunday, Bus Route 14 does not have service and Bus Route 115 has 60-minute headways through the day. The San Diego State University trolley station is approximately 5,000 feet (just under 1 mile) walking distance from the project pedestrian access point.

Vehicular facilities included the analysis of four (4) intersections, and three (3) roadway segments under Near-Term Opening Day (Year 2022) and Horizon Year 2050 conditions for weekday conditions. For the Sunday scenario, five (5) intersections and three (3) roadway segments were analyzed under near-term and horizon year conditions. A horizon year 2050 analysis is included because the project is proposing a Community Plan Amendment.

The City of San Diego Vision Zero policy promotes safe roadway design with a goal toward preventing collisions. As part of that goal, a systemic safety review provides an assessment of hotspots and possible countermeasures to align with Vision Zero. City staff identified the intersection of College Ave and Del Cerro Blvd as appearing on the City's hot spot map for pedestrians. A review of the accident history for the latest available five years (2015-2019) at the intersection of College Ave and Del Cerro Blvd concluded that no specific pattern of pedestrian-vehicle accidents was found for the study period; therefore, the project proposes no changes at this location.

The 95th percentile vehicle queues were calculated at the following locations using SimTraffic 10 software.

The freeway westbound off-ramp at College Ave under Sunday conditions was calculated to have a 95th percentile queue of 164 feet under near-term + project conditions and 171 feet under horizon year + project conditions that can be accommodated within the existing off-ramp storage length of approximately 1,220 feet.

The freeway eastbound off-ramp at College Ave under Sunday conditions was calculated to have a 95th percentile queue of 421 feet under near-term + project conditions and 624 feet under horizon year + project conditions that can be accommodated within the existing off-ramp storage length of approximately 750 feet.

The proposed signalized Main Access on College Ave has a 95th percentile southbound left turn queue calculated between 10 feet and 47 feet (depending on the scenario) that can be accommodated within the proposed left turn lane with a storage length of 130 feet. The 95th percentile northbound right turn queue was calculated at 157 feet under Sunday AM conditions that can be accommodated within the proposed right turn lane with a storage length of 360 feet. The northbound through lane has a 95th percentile queue calculated between 19 feet and 242 feet (depending on the scenario) that does not spill back to the adjacent intersection approximately 650 feet away. The southbound through lane has a 95th percentile

queue calculated between 110 feet and 359 feet (depending on the scenario) that does not spill back to the adjacent intersection approximately 500 feet away.

The intersection of College Ave at Del Cerro Blvd has a 95th percentile northbound left turn queue of 118 feet under Sunday near-term + project conditions and 132 feet under Sunday horizon year + project conditions, which exceed the available storage length of approximately 75 feet. However, the addition of project traffic does not cause the forecasted 95th percentile queue to exceed the available storage. The addition of Sunday project traffic is calculated to extend the northbound left turn queue by 0 feet under near-term conditions and 5 feet under horizon year conditions. The northbound through lanes 95th percentile with project queues are calculated between 197 feet and 305 feet (depending on the scenario) that can be accommodated within the available storage of approximately 550 feet from the stop bar at Del Cerro Blvd and the proposed main signalized Church driveway.

The project's forecasted traffic generation was based on the higher trip generation rates between the City of San Diego *Trip Generation Manual*, May 2003 and site-specific trip generation rates calculated from the existing All Peoples Church currently operating at 5555 University Avenue in San Diego. The weekday trip generation is calculated at 280 ADT with 31 AM peak hour trips (31 inbound and 0 outbound) and 107 PM peak hour trips (76 inbound and 31 outbound). The Sunday trip generation (based on a maximum occupancy of 900 seats) is calculated at 1,976 ADT with 690 Sunday peak hour trips (378 outbound after the 10 AM service) and 312 inbound (from the 11:30 AM service).

Under Near-Term Opening Day (Year 2022) with Project Conditions, the project would add more than 50 peak hour turn moves or more than 500 daily trips to the study locations forecasted to operate at LOS E/F at the following locations:

- 1) College Ave/Main Project Access (LOS F Weekday PM and Sunday AM). The project would add more than 50 peak hour trips to this intersection and the applicant proposes to install a traffic signal to provide acceptable LOS.
- 2) College Ave between Project Main Access and I-8 WB Ramps (LOS E Sunday). The project would add more than 500 Sunday only trips to this segment and less than 500 Weekday trips; therefore, no roadway improvements are proposed because this additional Sunday project traffic would not be added during typical Monday through Friday commuter periods.
- 3) College Ave between I-8 WB and EB Ramps (LOS F Sunday). The project would add more than 500 Sunday only trips to this segment and less than 500 Weekday trips; therefore, no roadway improvements are proposed because this additional Sunday project traffic would not be added during typical Monday through Friday commuter periods.

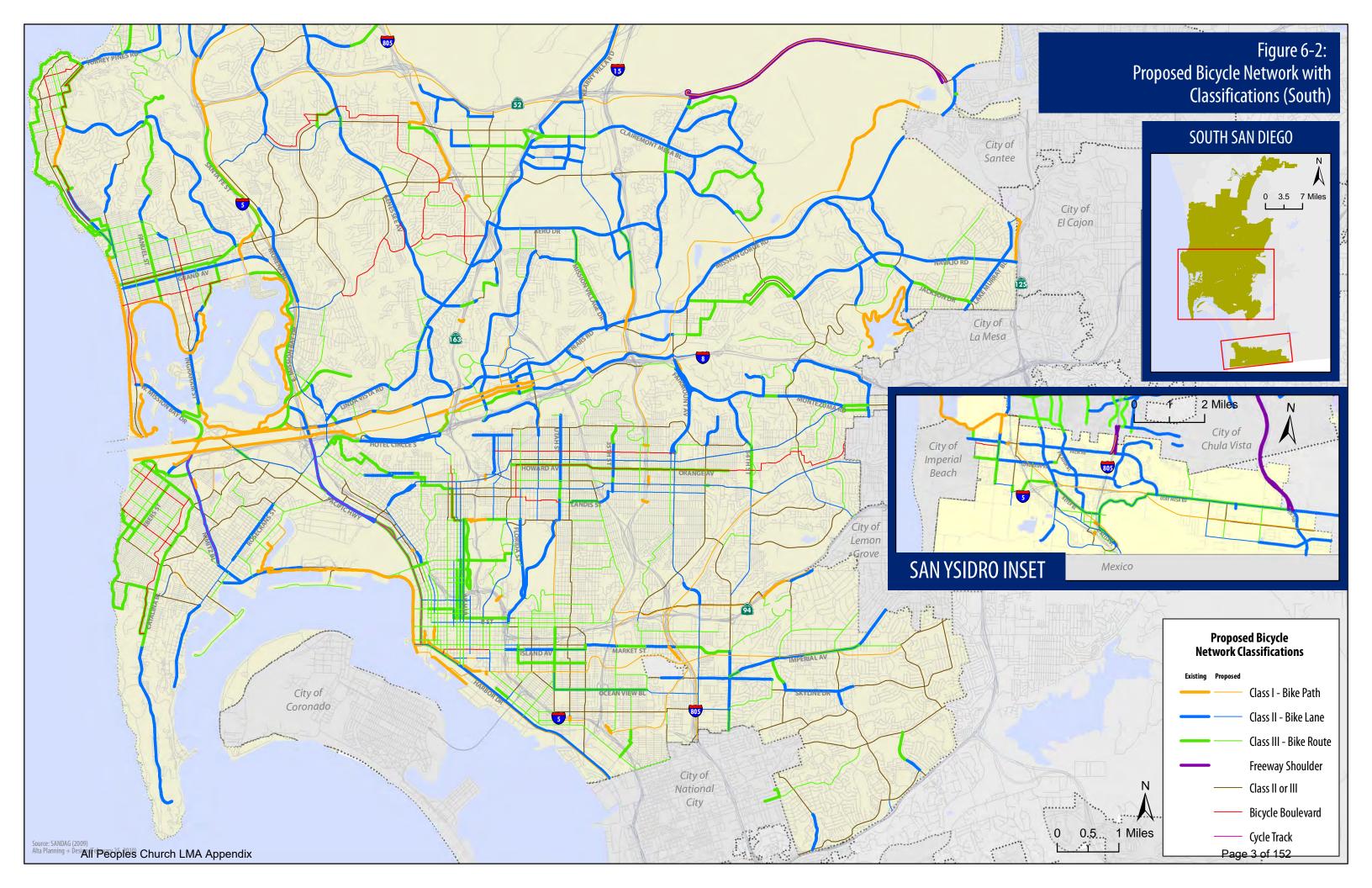
Under Horizon Year 2050 with Project Conditions, the project would add more than 50 peak hour turn moves or more than 500 daily trips to the study locations forecasted to operate at LOS E/F:

- 1) College Ave/Main Project Access (LOS F Weekday PM and Sunday AM). The project would add more than 50 peak hour trips to this intersection and the applicant proposes to install a traffic signal to provide acceptable LOS.
- 2) College Ave between Project Main Access and I-8 WB Ramp (LOS E Sunday). The project would add more than 500 Sunday only trips to this segment and less than 500 Weekday trips; therefore, no roadway improvements are proposed because the Sunday project traffic would not be added during typical Monday through Friday commuter periods.
- 3) College Ave between I-8 WB and EB Ramps (LOS F Sunday). The project would add more than 500 Sunday only trips to this segment and less than 500 Weekday trips; therefore, no roadway improvements are proposed because the Sunday project traffic would not be added during typical Monday through Friday commuter periods.

As part of the project, the Owner/Permittee will install a traffic signal and associated median improvements at the Project Main Access on College Ave. The California MUTCD rev5 Warrant 3, Part B (Peak Hour) warrant is satisfied under Opening Day (Year 2022) Plus Project Sunday conditions. Prior to issuance of the first building permit, Owner/Permittee shall assure by permit and bond the construction of a traffic signal and associated communication equipment, satisfactory to the City Engineer. All Improvements shall be completed and operational prior to first occupancy.

###

Appendix A
Excerpts from City of San Diego Bicycle Master Plan Update and Community Plan


City of San Diego Bicycle Master Plan

San Diego, California

FINAL DRAFT - July 8, 2013

PREPARED BY:
Alta Planning + Design
PREPARED FOR:
The City of San Diego

BICYCLES

INTRODUCTION

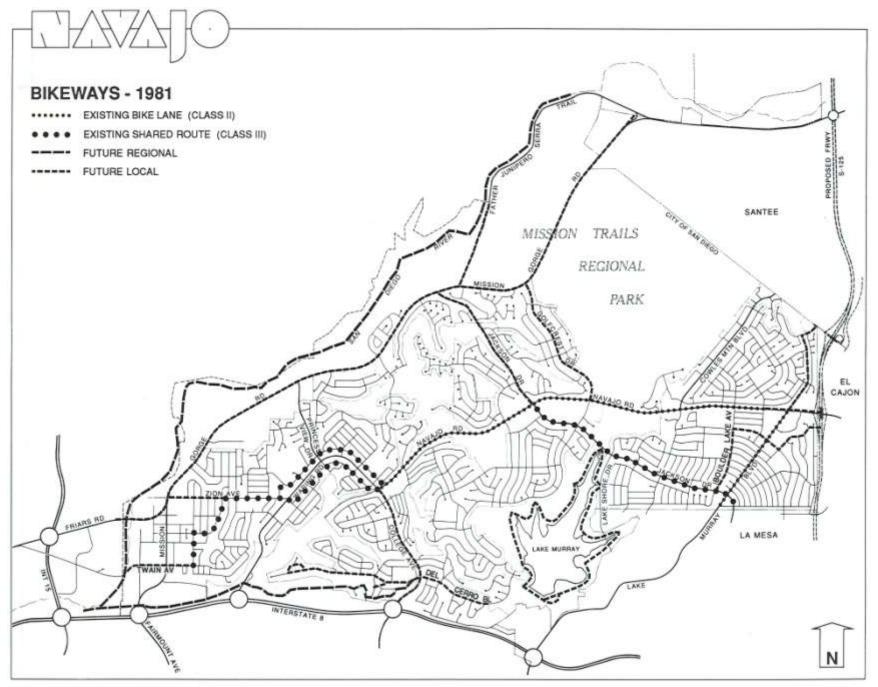
Today across the United States the bicycle boom continues. People of all ages are riding bicycles as never before. People have turned to bicycles for exercise, recreation and transportation. Schools within a community often generate a high demand for bicycle facilities. Bikes do not pollute, are energy efficient, and they offer an opportunity to bypass congested streets.

The City has design standards for the construction of bikeways and an ongoing program of providing a comprehensive bikeway system for City residents that will connect to a regional bikeway network. Bikeways fall into three categories based on the degree or extent of their improvements: bicycle paths (Class I), lanes (Class II) and routes (Class III). Four such bikeways have been constructed in Navajo, and are noted on the bikeways map. They are described in the following section along with the proposed routes.

PROPOSALS

Regional Bikeway

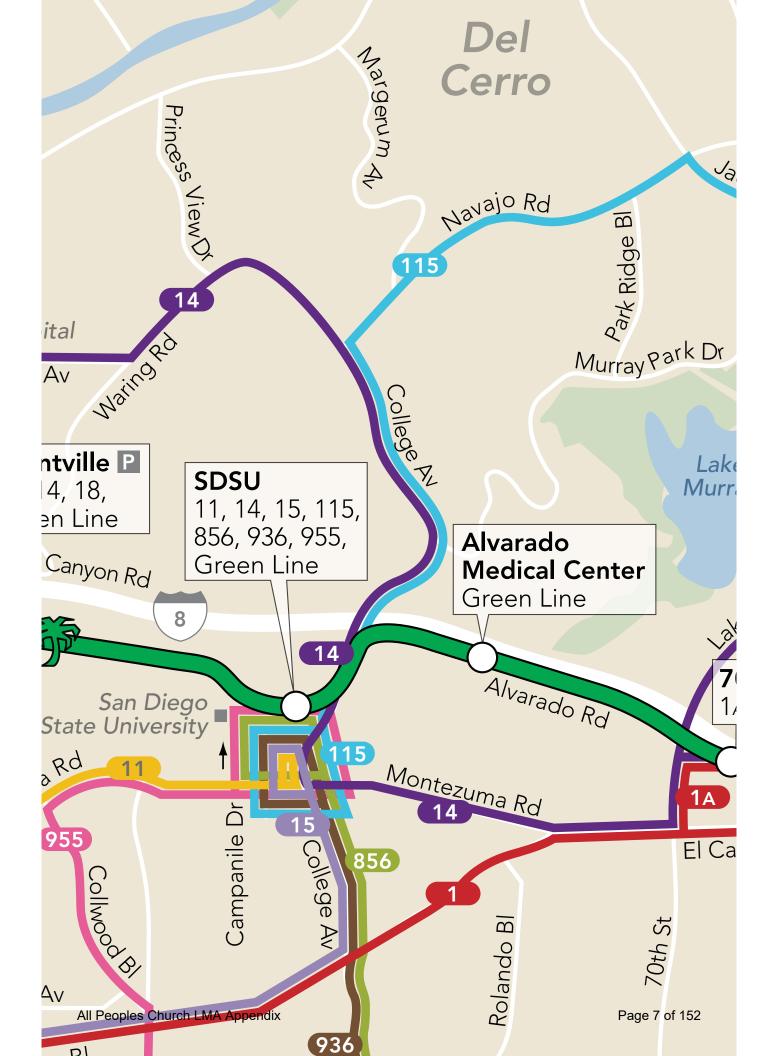
A regional bike route is proposed from the ocean through Mission Valley to Mission Gorge Road and northeasterly along Mission Gorge Road. This route will also continue east parallel to the north side of I-8 from Mission Gorge Road to the vicinity of College Avenue.


• Del Cerro Route

This route would be oriented to the Del Cerro area and would utilize Del Cerro Boulevard from Trinity Way on the west to Linfield Avenue on the east. The intended alignment would provide a scenic overlook of Mission Valley. Length: 2.0 miles.

Allied Gardens Route

This route would be oriented to Allied Gardens and also provide for the extension of bicycling opportunities from that community easterly to the Del Cerro area. This existing route utilizes Barclay Avenue and Brunswick Avenue between Galewood Street and Zion Avenue. Both streets run through attractive residential areas. College Avenue, the link to Del Cerro, would provide scenic overlooks of San Diego. Length: 2.0 miles.


Connector - This route provides a connection between the Allied Gardens route and the proposed San Diego River route in the vicinity of Zion Avenue. The route is aligned along Zion Avenue, Delbarton Street, Crawford Street, and Twain Avenue. Except for Twain Avenue, this route exists. Length: 2.0 miles.

CITY OF SAN DIEGO . PLANNING DEPARTMENT

Appendix B

Transit Map and Schedules

Exact fare, please / Favor de pagar la cantidad exacta									
Day Pass (Regional) / Pase diario (Regional) Compass Card required (\$2) / Se requiere un Compass Card (\$2)	\$5.00								
One-Way Fare / Tarifa de una direccíon	\$2.25								
Senior (60+)/Disabled/Medicare Mayores de 60 años/Discapacitados/Medicare	\$1.10*								
Children 5 & under / Niños de 5 años o menos	FREE / GRATIS								

Up to two children ride free per paying adult / Máximo dos niños viajan gratis por cada adulto

MONTHLY PASSES / Pases mensual

Adult / Adulto	\$72.00
Senior (60+)/Disabled/Medicare Mayores de 60 años/Discapacitados/Medicare	\$18.00*
Youths (18 and under) Jóvenes (18 años o menos)	\$36.00*

^{*}I.D. required for discount fare or pass.

DAY PASS (REGIONAL) / Pase diario (Regional)

All passes are sold on Compass Card, which can be reloaded and reused for up to five years. Compass Cards are available for \$2 at select outlets. A \$5 Day Pass requires a Compass Card. A paper Day Pass can be purchased on board buses for an additional \$2 fee.

Todos los pases se venden en el Compass Card, el cual puede ser recargado y reutilizado por hasta cinco años. Compass Cards están disponibles por \$2 en selectas sucursales. Un pase de un día por \$5 requiere un Compass Card. Un pase de un día de papel se puede obtener a bordo los autobuses por un costo adicional de \$2.

DIRECTORY / Directorio

Regional Transit Information Información de transporte público regional	511 or/ó (619) 233-3004
TTY/TDD (teletype for hearing impaire Teletipo para sordos	(619) 234-5005 or/ó (888) 722-4889
InfoExpress (24-hour info via Touch-Tone phone) Información las 24 horas (via teléfono de tecle	
Customer Service / Suggestions Servicio al cliente / Sugerencias	(619) 557-4555
SafeWatch	(619) 557-4500
Lost & Found Objetos extraviados	(619) 557-4555
Transit Store 12	(619) 234-1060 th & Imperial Transit Center

12th & Imperial Transit Center M-F 8am-5pm

For MTS online trip planning Planificación de viajes por Internet

sdmts.com

For more information on riding MTS services, pick up a Rider's Guide on a bus or at the Transit Store, or visit sdmts.com. Para obtener más información sobre el uso de los servicios de MTS, recoga un 'Rider's Guide' en un autobús o en la Transit Store, o visita a sdmts.com.

Thank you for riding MTS! ¡Gracias por viajar con MTS!

Effective JANUARY 27, 2019

Grantville Trolley – Lake Murray Bl.

Allied Gardens Community Park

Mission San Diego SDSU 70th St.

via Kaiser Hospital / SDSU

DESTINATIONS

Kaiser Hospital

• SDSU

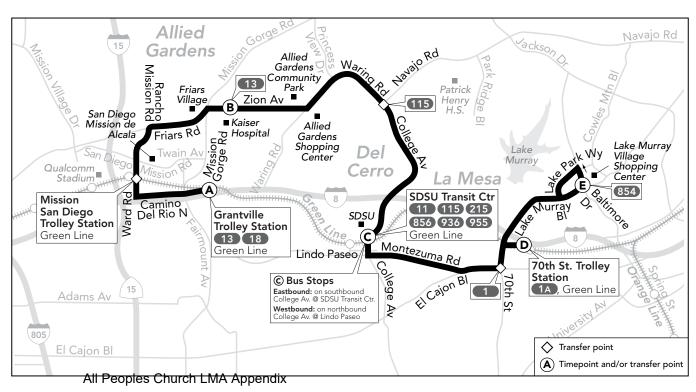
• SD Mission de Alcala

compass card

S/D/M and Youth Compass Card

All riders using reduced fares must comply with one of the following options: MTS

Option 1 (Recommended by MTS) MTS offers a picture ID on a Compass Card to eliminate the need to carry multiple identifications for proof of eligibility.


Option 2

Riders using a standard S/D/M or Youth Compass Card or a one-way ticket must carry supporting identification to prove eligibility.

For additional benefits of **Option 1** and or list of valid forms of ID for Option 2 go to: www.sdmts.com/fares_discounted.asp.

Page 8 of 152

^{*}Se requiere identificación para tarifas o pases de descuento.

Route	14 _	Mond	av t	hrouc	ıh Fı	ridav	/ lı	unes a viernes	
Noute	_	IVICIIC	uy u	III Oug	ш	Iddy	, ,,,	ancs a vicinic.	

Grantville ➡ La	Mesa				La Mesa ➡ Gran	ntville			
Grantville Trolley Station DEPART	B Kaiser Hospital	SDSU Transit Center (College Av.)	70th Street Trolley Station	E Baltimore Dr. & Lake Murray Bl. ARRIVE	E Baltimore Dr. & Lake Murray Bl. DEPART	70th Street Trolley Station	SDSU (College Av. & Lindo Paseo)	B Kaiser Hospital	(A) Grantville Trolley Station ARRIVE
5:43a	5:53a	6:05a	6:16a	6:23a	6:38a	6:46a	6:57a	7:10a	7:21a
6:40	6:51	7:04	7:16	7:24	7:36	7:44	7:56	8:09	8:21
7:40	7:51	8:04	8:16	8:24	8:36	8:44	8:56	9:09	9:21
8:40	8:51	9:04	9:16	9:24	9:38	9:46	9:58	10:10	10:21
9:40	9:51	10:03	10:14	10:22	10:38	10:46	10:58	11:10	11:21
10:40	10:51	11:03	11:14	11:22	11:38	11:46	11:58	12:10p	12:21p
11:40	11:51	12:04p	12:16p	12:24p	12:35p	12:43p	12:56p	1:09	1:21
12:40p	12:51p	1:04	1:16	1:24	1:35	1:43	1:56	2:09	2:21
1:40	1:51	2:04	2:16	2:24	2:35	2:43	2:56	3:09	3:21
2:40	2:51	3:04	3:16	3:24	3:35	3:43	3:56	4:09	4:21
3:39	3:50	4:04	4:17	4:25	4:35	4:43	4:56	5:09	5:21
4:39	4:50	5:04	5:17	5:25	5:37	5:45	5:58	6:10	6:21
5:39	5:50	6:04	6:17	6:25					
6:40	6:50	7:03	7:15	7:22					

Route 14 does not operate on weekends or on the following holidays and observed holidays La ruta 14 no ofrece servicio durante el fin de semana ó durante los siguientes días festivos y feriados observados

>>:

New Year's Day, Presidents' Day, Memorial Day, Independence Day, Labor Day, Thanksgiving, Christmas

EASY FARES!

COMPASS CASH

Load money on your Compass Card.

Great for One-Ways.

Follow prompts on machine to load value.

CHANGING THE WAY

SAN DIEGO MOVES

Just tap and ride!

Compass Service Center (619) 595-5636 sdmts.com

COMPASS CLOUD

Free mobile ticketing app.

- One-Day & 30-Day Passes, Special Events
- Good on Buses, Trolley, SPRINTER & COASTER
- Multiple Riders per Phone
- Fast. Easy. Convenient.

sdmts.com/compass-cloud

CASH FARES / Tarifas en efectivo

Exact fare, please / Favor de pagar la cantidad exacta								
Day Pass (Regional) / Pase diario (Regional) Compass Card required (\$2) / Se requiere un Compass Card (\$2)	\$5.00							
One-Way Fare / Tarifa de una direccíon	\$2.25							
Senior (60+)/Disabled/Medicare Mayores de 60 años/Discapacitados/Medicare	\$1.10*							
Children 5 & under / Niños de 5 años o menos	FRFF / GRATIS							

Up to two children ride free per paying adult / Máximo dos niños viajan gratis por cada adulto

MONTHLY PASSES / Pases mensual

Adult / Adulto	\$72.00
Senior (60+)/Disabled/Medicare Mayores de 60 años/Discapacitados/Medicare	\$18.00*
Youths (18 and under) Jóvenes (18 años o menos)	\$36.00*

^{*}I.D. required for discount fare or pass.

DAY PASS (REGIONAL) / Pase diario (Regional)

All passes are sold on Compass Card, which can be reloaded and reused for up to five years. Compass Cards are available for \$2 at select outlets. A \$5 Day Pass requires a Compass Card. A paper Day Pass can be purchased on board buses for an additional \$2 fee.

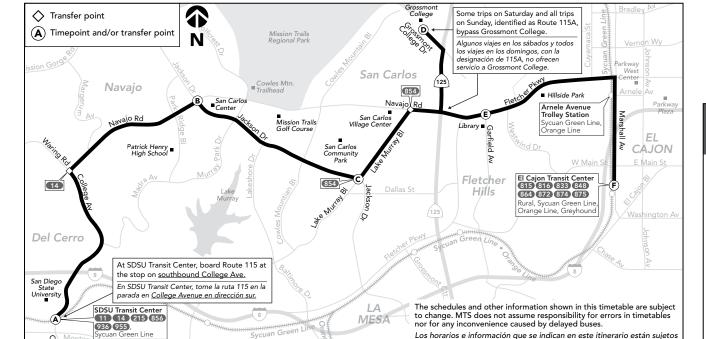
Todos los pases se venden en el Compass Card, el cual puede ser recargado y reutilizado por hasta cinco años. Compass Cards están disponibles por \$2 en selectas sucursales. Un pase de un día por \$5 requiere un Compass Card. Un pase de un día de papel se puede obtener a bordo los autobuses por un costo adicional de \$2.

All Peoples Church LMA Appendix

DIRECTORY / Directorio

Regional Transit Information Información de transporte público region	511 or/ó nal (619) 233-3004
TTY/TDD (teletype for hearing impai Teletipo para sordos	red) (619) 234-5005 or/ó (888) 722-4889
InfoExpress (24-hour info via Touch-Tone pho Información las 24 horas (via teléfono de te	
Customer Service / Suggestions Servicio al cliente / Sugerencias	(619) 557-4555
SafeWatch	(619) 557-4500
Lost & Found Objetos extraviados	(619) 557-4555
Transit Store	(619) 234-1060

For MTS online trip planning Planificación de viajes por Internet


www.sdmts.com

M-F 8am-5pm

For more information on riding MTS services, pick up a Rider's Guide on a bus or at the Transit Store, or visit www.sdmts.com. Para obtener más información sobre el uso de los servicios de MTS, recoja un 'Rider's Guide' en un autobús o en la Transit Store, o visita a www.sdmts.com.

Thank you for riding MTS! ¡Gracias por viajar con MTS!

a cambios. MTS no asume responsabilidad por errores en los itinerários, ni por ningún perjuicio que se origine por los autobuses demorados.

115

SDSU – El Cajon Transit Center

via Del Cerro / Grossmont College

DESTINATIONS

- Grossmont College
- San Carlos Center
- San Carlos Village Center
- SDSU

SDSU Arnele El Cajon

Alternative formats available upon request. Please call: (619) 557-4555

Formato alternativo disponible al preguntar. Favor de llamar: (619) 557-4555

COMPASS CASH

Load money onto your Compass Card.

Great for One-Ways.

Follow prompts on machine to load value.

Just tap and ride!

Compass Service Center (619) 595-5636 sdmts.com

Page 10 of 152

^{*}Se requiere identificación para tarifas o pases de descuento.

Route 115 - Monday through Friday / lunes a viernes

SDSU → Navajo → San Carlos → El Cajon							→ San Car	los ➡ Na	vajo 🗪 SD	SU	
	В	<u>C</u>	D	E	F	F	E	D	<u>C</u>	В	A
SDSU Transit Center*	Jackson Dr. &	Lake Murray Bl. &	Grossmont College	Fletcher Pkwy. &	El Cajon Transit Center	El Cajon Transit Center	Fletcher Pkwy. &	Grossmont College	Lake Murray Bl. &	Navajo Rd. &	SDSU Transit Center
DEPART	Navajo Rd.	Jackson Dr.	College	Garfield Av.	ARRIVE	DEPART	Garfield Av.	College	Jackson Dr.	Jackson Dr.	ARRIVE
_	<u> </u>	6:17a	6:26a	6:32a	6:39a	_	-		6:02a	6:08a	6:18a
6:28a	6:41a	6:47	6:56	7:02	7:09	6:11a	6:19a	6:25a	6:32	6:38	6:48
6:58	7:13	7:19	7:29	7:35	7:42	6:39	6:47	6:54	7:02	7:10	7:21
7:33	7:48	7:54	8:05	8:12	8:19	7:09	7:18	7:26	7:34	7:42	7:54
8:08	8:23	8:29	8:40	8:47	8:54	7:39	7:48	7:56	8:04	8:12	8:24
8:38	8:53	8:59	9:10	9:17	9:24	8:09	8:18	8:26	8:34	8:42	8:54
9:08	9:22	9:28	9:39	9:45	9:52	8:39	8:48	8:56	9:04	9:11	9:22
9:38	9:52	9:58	10:09	10:15	10:22	9:10	9:19	9:26	9:34	9:40	9:51
10:08	10:22	10:28	10:39	10:45	10:52	9:40	9:49	9:56	10:04	10:10	10:21
10:38	10:53	10:59	11:10	11:16	11:24	10:10	10:19	10:26	10:34	10:40	10:51
11:08	11:23	11:29	11:40	11:46	11:54	10:40	10:49	10:56	11:04	11:10	11:21
11:38	11:53	11:59	12:10p	12:16p	12:24p	11:10	11:19	11:26	11:34	11:40	11:51
12:08p	12:23p	12:29p	12:40	12:46	12:54	11:40	11:49	11:56	12:04p	12:10p	12:21p
12:38	12:53	12:59	1:10	1:16	1:24	12:10p	12:20p	12:27p	12:36	12:42	12:54
1:08	1:23	1:29	1:40	1:46	1:54	12:40	12:50	12:57	1:06	1:12	1:24
1:38	1:53	1:59	2:10	2:16	2:24	1:10	1:20	1:27	1:36	1:42	1:54
2:08	2:23	2:29	2:40	2:46	2:54	1:40	1:50	1:57	2:06	2:12	2:24
2:36	2:52	2:58	3:10	3:16	3:24	2:10	2:20	2:27	2:36	2:42	2:54
3:06	3:22	3:28	3:40	3:46	3:54	2:40	2:50	2:57	3:06	3:12	3:24
3:36	3:52	3:58	4:10	4:16	4:24	3:10	3:20	3:27	3:36	3:42	3:54
4:08	4:23	4:29	4:40	4:46	4:54	3:40	3:50	3:57	4:06	4:12	4:24
4:38	4:53	4:59	5:10	5:16	5:24	4:10	4:20	4:27	4:36	4:42	4:54
5:08	5:23	5:29	5:40	5:46	5:54	4:40	4:50	4:57	5:06	5:12	5:24
5:40	5:54	6:00	6:10	6:16	6:23	5:10	5:20	5:27	5:35	5:41	5:52
6:10	6:24	6:30	6:40	6:46	6:53	5:40	5:49	5:56	6:03	6:09	6:19
6:57	7:11	7:17	7:27	7:33	7:40	6:10	6:19	6:26	6:33	6:39	6:49
7:57	8:09	8:14	8:23	8:28	8:35	7:11	7:19	7:26	7:32	7:38	7:47
8:57	9:09	9:14	9:23	9:28	9:35	8:11	8:19	8:26	8:32	8:38	8:47
9:57	10:09	10:14	10:22	10:27	10:33	9:13	9:21	9:27	9:33	9:39	9:47

Route 115 – Saturday / sábado

SDSU ➡ Navajo ➡ San Carlos ➡ El Cajon						El Cajon	➡ San Car	los ⇒ Na	vajo ⇒ SD						
	В	<u>C</u>	D	E		F	E	D	<u>C</u>	B	(A)				
SDSU Transit Center* DEPART	Jackson Dr. & Navajo Rd.	Lake Murray Bl. & Jackson Dr.	Grossmont College	Fletcher Pkwy. & Garfield Av.	El Cajon Transit Center ARRIVE	El Cajon Transit Center DEPART	Fletcher Pkwy. & Garfield Av.	Grossmont College	Lake Murray Bl. & Jackson Dr.	Navajo Rd. & Jackson Dr.	SDSU Transit Center ARRIVE				
7:22a	7:33a	7:38a	7:47a	7:52a	7:58a	A 6:33a	6:41a	_	6:47a	6:52a	7:01a				
8:22	8:33	8:38	8:47	8:52	8:58	7:30	7:38	7:44a	7:51	7:56	8:05				
9:21	9:33	9:38	9:47	9:52	9:59	8:27	8:36	8:42	8:50	8:56	9:06				
10:21	10:33	10:38	10:47	10:52	10:59	9:27	9:36	9:42	9:50	9:56	10:06				
11:21	11:33	11:38	11:47	11:52	11:59	10:27	10:36	10:42	10:50	10:56	11:06				
12:21p	12:33p	12:38p	12:47p	12:52p	12:59p	11:27	11:36	11:42	11:50	11:56	12:06p				
1:21	1:33	1:39	1:48	1:54	2:01	12:27p	12:36p	12:42p	12:50p	12:56p	1:06				
2:21	2:33	2:39	2:48	2:54	3:01	1:27	1:36	1:42	1:50	1:56	2:06				
3:21	3:33	3:39	3:48	3:54	4:01	2:27	2:36	2:42	2:50	2:56	3:06				
4:21	4:33	4:39	4:48	4:54	5:01	3:27	3:36	3:42	3:50	3:56	4:06				
A 5:23	5:35	5:41		5:48	5:54	4:27	4:36	4:42	4:50	4:56	5:06				
A 6:23	6:35	6:41		6:48	6:54	A 5:33	5:42		5:49	5:55	6:05				
A 7:25	7:37	7:42		7:48	7:54	A 6:33	6:41		6:48	6:54	7:03				
A 8:25	8:37	8:42	_	8:48	8:54	A 7:33	7:41		7:48	7:54	8:03				
						A 8:39	8:47	_	8:53	8:59	9:07				

Route 115A – Sunday / domingo

SDSU → Navajo → San Carlos → El Cajon							E	l Cajon	→ San Car	los ⇒ Na	vajo ⇒ SD	SU	
	Ā	В	©	D	E			F	E	D	©	В	
Cer	Transit nter* PART	Jackson Dr. & Navajo Rd.	Lake Murray Bl. & Jackson Dr.	Grossmont College	Fletcher Pkwy. & Garfield Av.	El Cajon Transit Center ARRIVE	Tra	El Cajon Insit Center DEPART	Fletcher Pkwy. & Garfield Av.	Grossmont College	Lake Murray Bl. & Jackson Dr.	Navajo Rd. & Jackson Dr.	SDSU Transit Center ARRIVE
A 7:	:26a	7:37a	7:42a		7:48a	7:54a	Α	6:33a	6:41a		6:47a	6:52a	7:01a
A 8:	:26	8:37	8:42		8:48	8:54	Α	7:33	7:42		7:49	7:55	8:04
A 9:	:23	9:35	9:40		9:47	9:54	Α	8:33	8:42		8:49	8:55	9:05
A 10:	:23	10:35	10:40		10:47	10:54	Α	9:33	9:42		9:49	9:55	10:05
A 11:	:23	11:35	11:40		11:47	11:54	Α	10:33	10:42		10:49	10:55	11:05
A 12:	:23p	12:35p	12:40p	-	12:47p	12:54p	Α	11:33	11:42		11:49	11:55	12:05p
A 1:	:22	1:34	1:40		1:47	1:54	Α	12:33p	12:42p		12:49p	12:55p	1:05
A 2:	:22	2:34	2:40		2:47	2:54	A	1:33	1:42		1:49	1:55	2:05
A 3:	:22	3:34	3:40		3:47	3:54	, A	. =	2:42		2:49	2:55	3:05
A 4:	:22	4:34	4:40		4:47	4:54	I A	3:33	3:42		3:49	3:55	4:05
A 5	:23	5:35	5:41	-	5:48	5:54	. A	4:33	4:42		4:49	4:55	5:05
A 6	:23	6:35	6:41	_	6:48	6:54	A	5:33	5:42	_	5:49	5:55	6:05

A = Route 115A: Trip does not serve Grossmont College. / Ruta 115A: No ofrece servicio a Grossmont College.
 ★ = Board at bus stop on Southbound College Av. / Suba en la parada de autobús en College Av. en dirección sur.

Appendix C

City of San Diego Segment Capacities

Transportation Study Manual (TSM)

DATE: 09/29/2020

Roadway Segment LOS by Classification and Average Daily Traffic (ADT)

Table Appendix F-1 provides street classifications and associated LOS thresholds dependent on the roadway's average daily traffic (ADT).

TABLE APPENDIX F-1
ROADWAY CLASSIFICATIONS, LOS, AND AVERAGE DAILY TRAFFIC (ADT)

CTD.F.T			LE	VEL OF SERVI	CE	l
STREET CLASSIFICATION	LANES	Α	В	С	D	E
Expressway	8 lanes	40,000	56,000	80,000	93,500	107,000
Expressway	7 lanes	35,000	49,000	70,000	82,000	93,500
Expressway	6 lanes	30,000	42,000	60,000	70,000	80,000
Prime Arterial ¹	8 lanes	35,000	50,000	70,000	75,000	80,000
Prime Arterial ¹	7 lanes	30,000	42,500	60,000	65,000	70,000
Prime Arterial	6 lanes	25,000	35,000	50,000	55,000	60,000
Prime Arterial ¹⁰	5 lanes	20,000	28,000	40,000	45,000	50,000
Prime Arterial ¹¹	4 lanes	17,500	24,500	35,000	40,000	45,000
Major Arterial ²	7 lanes	22,500	31,500	45,000	50,000	55,000
Major Arterial	6 lanes	20,000	28,000	40,000	45,000	50,000
Major Arterial ³	5 lanes	17,500	24,500	35,000	40,000	45,000
Major Arterial	4 lanes	15,000	21,000	30,000	35,000	40,000
Major Arterial	3 lanes	11,250	15,750	22,500	26,250	30,000
Major Arterial	2 lanes	7,500	10,500	15,000	17,500	20,000
Major Arterial (one-way) ⁴	3 lanes	12,500	16,500	22,500	25,000	27,500
Major Arterial (one-way) ⁵	2 lanes	10,000	13,000	17,500	20,000	22,500

TSM: APPENDIX F

			LE	VEL OF SERVI	CE	l
STREET CLASSIFICATION	LANES	Α	В	С	D	E
Collector (with two-way left turn lane)	5 lanes	12,500	17,500	25,000	30,750	37,500
Collector (with two-way left turn lane)	4 lanes	10,000	14,000	20,000	25,000	30,000
Collector (with two-way left turn lane)	3 lanes	7,500	10,500	15,000	18,750	22,500
Collector (with two-way left turn lane)	2 lanes	5,000	7,000	10,000	13,000	15,000
Collector (without two-way left turn lane)	4 lanes	5,000	7,000	10,000	13,000	15,000
Collector (without two-way left turn lane) ⁶	3 lanes	4,000	5,000	7,500	10,000	11,000
Collector (without two-way left turn lane)	2 lanes	2,500	3,500	5,000	6,500	8,000
Collector (with no fronting property)	2 lanes	4,000	5,500	7,500	9,000	10,000
Collector (one-way) ⁷	3 lanes	11,000	14,000	19,000	22,500	26,000
Collector (one-way) ⁸	2 lanes	7,500	9,500	12,500	15,000	17,500
Collector (one-way) ⁹	1 lane	2,500	3,500	5,000	6,500	7,500
Sub-Collector (Single- family)	2 lanes			2,200		

Notes:

The volumes and the average daily level of service listed above are only intended as a general planning guideline. Levels of service are not applied to residential streets since their primary purpose is to serve abutting lots, not carry through traffic. Levels of service normally apply to roads carrying through traffic between major trip generators and attractors.

 1 Calculated assuming that each additional lane above a 6-Ln Arterial adds 5,000 ADT for LOS A, 7,500 ADT for LOS B and 10,000 ADT for LOS C, D, and E

²Calculated assuming that ADT is 1/2 way between steps of a 6-Ln Major Arterial & 6 Ln Prime Arterial

³Calculated assuming that ADT is 1/2 way between steps of a 4-Ln Major Arterial & 6 Ln Major Arterial

⁴Calculated using: Capacity = 0.5 (6-Ln Major (2-way) + Added Capacity of 2,500 ADT)

⁵Calculated using: Capacity = 0.5 (4-Ln Major (2-way) + Added Capacity of 2,500 ADT)

⁶Calculated using: Capacity = 4-Ln Collector (no center lane) * (3/4)

⁷Calculated using: Capacity = 2-Ln Collector (one-way) * (3/2)

⁸Calculated using: Capacity = 0.5 (4-Ln Collector w/continuous left turn lane) + Added Capacity of 2,500 ADT)

⁹Calculated using: Capacity = 0.5 (2-Ln Collector w/ continuous left turn lane). Capacity took into account parking friction from both sides of roadway

¹⁰ Calculated by applying same differences between 8-Ln Prime & 7-Ln Prime & 7-Ln Prime & 6-Ln Prime

¹¹ Calculated assuming ratio between 6-Ln Prime & 6-Ln Major applied to 4-Ln Major

Ap	pe	nd	ix	D
	\sim		-/-	_

Excerpts from City of San Diego TSM Roadway Improvement Criteria

Transportation Study Manual (TSM)

DATE: 09/29/2020

Roadway Segment Analysis

Roadway segment analysis should be evaluated for any roadway segment that has identified improvements (including planned new circulation element roadways) in the Community Plan and the project is expected to add 1,000 or more daily final primary trips (cumulative trips) if consistent with the Community Plan, or 500 or more daily final primary trips (cumulative trips) if inconsistent with the Community Plan. Roadways should be evaluated using **Appendix F**: Roadway Segment LOS by Classification and Average Daily Traffic (ADT). The intent of this analysis is to determine if the project results in the need to implement roadway improvements as identified in the Community Plan. The functional classification of the roadway segment should be evaluated in this analysis.

Freeway Interchange Analysis

Freeway analysis should focus on off-ramp queuing spillbacks onto freeway mainline. Studies should normally document changes in off-ramp maximum queues and propose mitigation for queues that spill back onto mainline (or exacerbate conditions already or projected to be) occurring. Freeway interchange analysis should be coordinated with Caltrans.

Identifying Off-Site Improvements

Off-site improvements to accommodate project traffic that address access, circulation and safety for all modes should be determined using the following analysis methods for each type of improvement:

Pedestrian Facilities

- Closing Sidewalk Gaps/Removing Obstructions:
 - The project should construct sidewalks to close sidewalk gaps adjacent to the project site.
 - The project should remove sidewalk obstructions that constrain pedestrian access route to less than four feet adjacent to the project site.
 - The project should construct curb ramps/meet accessibility standards for any intersections adjacent to the project site.
- Accommodating Pedestrian Demand:
 - The project should consider adding traffic calming and pedestrian-related signal timing changes (such as pedestrian hybrid beacons, leading pedestrian interval signal timing, etc.) to accommodate an increase in pedestrian demand on roadways and intersections adjacent to the project site.

Bicycle Facilities

- o Accommodating Bicycle Demand:
 - The project should construct (or reserve space for) any planned bicycle facility per the Community Plan or Bicycle Master Plan.
 - The project should consider upgrading adjacent bicycle facilities by adding upgraded treatments (such as green bike lane paint, buffers, etc. where appropriate) to accommodate an increase in bicycle demand.

Transit Facilities

- o Transit Priority Treatments/Improvements
 - The project should consider transit priority treatments when operational analysis determines a transit movement would experience LOS E or worse.
 - The project should consider transit priority treatments identified within the Community Plan for the study area.
- Proposed Transit Stops:
 - The project should consider accommodating transit stops to serve existing or proposed transit services, including those identified in the Community Plan, RTIP and/or RTP within the study area. The project should coordinate any identified transit stops with SANDAG, the Metropolitan Transit System (MTS) and/or the North County Transit District (NCTD).
- Transit Stop Amenities:
 - The project should coordinate with MTS and/or the NCTD, as applicable, to determine additional or upgraded transit stop amenities.

Signalized Intersections

- Adding or lengthening a turn lane:
 - Considerations for intersection improvements:
 - When considering intersection improvements for circulation, access, and safety for all modes, factors that should be considered include, but are not limited to, conflicting pedestrian movements, existing and proposed bicycle facilities, transit priority, protected or permissive turn movement phasing, number of lanes, speed of prevailing traffic and expected queue lengths.
 - Left Turn Lane:

- No Existing Left-Turn Lane: If the project adds traffic to an individual left turn movement causing the total number of peak hour left turns to exceed 100, consider adding a left turn lane.⁸
- Existing Single Left-Turn Lane: If the project adds traffic to an individual left turn movement causing the total number of peak hour left turns to exceed 300, consider adding a second left turn lane.

o Right Turn Lane:

- No Existing Right-Turn Lane: If the addition of a right turn lane will not negatively affect other roadway users, will maintain a comfortable roadway environment, AND the project adds traffic to an individual right turn movement causing the total number of peak hour right turns to exceed 500, consider adding a right turn lane.
- Existing Single Right-Turn Lane: If the addition of a right turn lane will not negatively affect other roadway users, will maintain a comfortable roadway environment, AND the project adds traffic to an individual right turn movement causing the total number of peak hour right turns to exceed 800, consider adding a second right turn lane. In addition to the considerations previously stated, dual-right turn (or more) treatments may require supplementary improvements including but not limited to no right-turn on red with blank-out signs, lead pedestrian intervals (LPIs) for pedestrians and cycle track treatment for bicyclists.

Lengthening a Turn Pocket:

- If the project adds traffic to a turning movement and causes the 95th percentile queue to exceed the available turn pocket length, consider lengthening the turn pocket.
- Signal Timing Improvements/Signal Modifications:
 - o Determined based on intersection operations analysis as follows:

⁸ FHWA, *Signalized Intersections: Informational Guide*, August 2004. This source also provides additional factors which can be used to determine the need of a single left turn lane or additional left turn lanes including, left-turn volumes on the major and minor approaches, number of lanes, and vehicles per hour.

- Within a 1/2 mile path of travel of a Major Transit Stop: If the project causes an
 intersection to degrade to LOS F, or if the project adds traffic to a signal already
 operating at LOS F.
- Outside of a 1/2 mile path of travel of a *Major Transit Stop*: If the project causes an intersection to degrade to LOS E or F, or if the project adds traffic to a signal already operating at LOS E or F.
- o Types of signal improvements that can be considered are:
 - Updating signal split times
 - Transit signal priority improvements
 - Right turn overlap phasing
 - Signal phasing changes
 - Intelligent Transportation Systems (ITS) improvements

Unsignalized Intersections

- Considerations for intersection improvements:
 - When considering intersection improvements for circulation, access, and safety for all modes, factors that should be considered include, but are not limited to, conflicting pedestrian movements, existing and proposed bicycle facilities, transit priority, protected or permissive turn movement phasing, number of lanes, speed of prevailing traffic and expected queue lengths.
- Constructing a Roundabout or Traffic Signal at an all-way stop-controlled intersection: If the
 project causes the operations at an all-way stop-controlled intersection to degrade (see
 below), perform an intersection control evaluation that includes a signal warrant analysis
 and a roundabout LOS analysis. Prepare a roundabout conceptual layout (prepared by a
 consultant qualified/experienced in roundabout design) to determine the geometric impact
 of a roundabout. Coordinate with Development Services Department Transportation
 Development Section staff on appropriate intersection control improvement. Staff may
 request additional lifecycle safety and mobility
 - The intersection control evaluation should be prepared If the project causes an all-way stop-controlled intersection to degrade as follows:
 - Within a 1/2 mile path of travel of a Major Transit Stop: If the project causes an all-way stop-controlled intersection located to degrade to LOS F, or if the project adds traffic to an all-way stop-controlled intersection already operating at LOS F.

- Outside of a 1/2 mile path of travel of a Major Transit Stop: If the project causes an all-way stop-controlled intersection to degrade to LOS E or F, or if the project adds traffic to a adds traffic to an all-way stop controlled intersection already operating at LOS E or F.
- Constructing a Roundabout or Traffic Signal at a side-street stop-controlled intersection: If
 the project causes the operations at a side-street stop-controlled intersection to degrade
 (see below), perform an intersection control evaluation that includes a signal warrant
 analysis and a roundabout LOS analysis. Prepare a roundabout conceptual layout (prepared
 by a consultant qualified/experienced in roundabout design) to determine the geometric
 impact of a roundabout. Coordinate with Development Services Department Transportation
 Development Section staff on appropriate intersection control improvement. Staff may
 request additional lifecycle safety and mobility
 - The intersection control evaluation should be prepared If the project causes a side-street stop-controlled intersection to degrade as follows:
 - Within a 1/2 mile path of travel of a Major Transit Stop: If the project causes the worst movement of a side-street stop-controlled intersection to degrade to LOS F, or if the project adds traffic to the worst movement of a side-street stop-controlled intersection that is already operating at LOS F.
 - Outside of a 1/2 mile path of travel of a Major Transit Stop: If the project
 causes the worst movement of a side-street stop-controlled intersection to
 degrade to LOS E or F, or if the project adds traffic to the worst movement
 of a side-street stop-controlled intersection that is already operating at LOS E
 or F.
- Improvements to a Roundabout Intersection
 - If the project causes a roundabout intersection to degrade determined based on operations analysis as follows:
 - Within a 1/2 mile path of travel of a Major Transit Stop: If the project causes an intersection to degrade to LOS F, or if the project adds traffic to a roundabout already operating at LOS F.
 - Outside of a 1/2 mile path of travel of a Major Transit Stop: If the project causes an intersection to degrade to LOS E or F, or if the project adds traffic to a roundabout already operating at LOS E or F.
 - Determine improvements to the roundabout to reduce vehicle delay, such as metering traffic during peak hours or other geometric improvements - such

as adding a right turn bypass lane or multilane segments within the roundabout.

Roadway Segments

- Improvements identified in the community plan (including upgrading to ultimate classification):
 - If the project adds greater than 50% of total daily vehicle trips on the segment, the project should consider implementing the improvement as identified in the community plan.
 - o If the project adds less than or equal to 50% of total daily vehicle trips on the segment, the project should evaluate its fair share towards the improvement.
- Planned new circulation element roadways:
 - If the project adds greater than 50% of total daily vehicle trips on the segment, the project should consider implementing the improvement as identified in the community plan.
 - o If the project adds less than or equal to 50% of total daily vehicle trips on the segment, the project should evaluate its fair share towards the improvement.

In addition, the project should make improvements to study intersections and roadways to preserve consistency with Community Plan/PFFP/IFS identified improvements. The project applicant will have responsibility for the implementation of identified improvements.

The improvement types listed above are typical mobility improvements. Other types of mobility improvements may be proposed by the applicant or considered thorough coordination with the Development Services Departments Transportation Development Section staff.

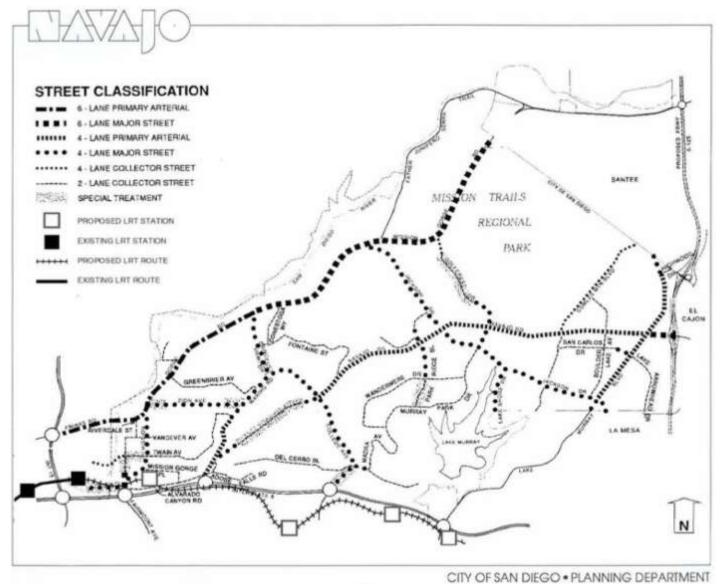
Appendix E

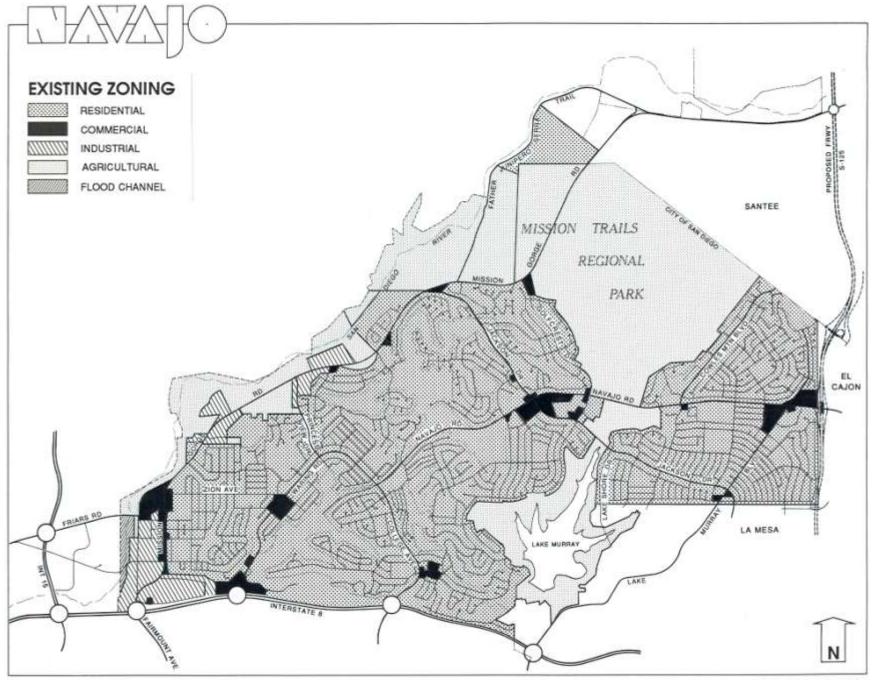
City of San Diego Community Roadway Classification Map

COMMONITY PLAN NAVAO

THE CILK OF SAN DIEGO supposed COMMUNITY PLANNERS Prepared by the supposed by the samples of th

City of San Diego Planning Department 202 C Street, MS 4A San Diego, CA 92101


Printed on recycled paper.


This information, or this document (or portions thereof), will be made available in alternative formats upon request.

NAVAJO COMMUNITY PLAN AMENDMENTS

The following amendments have been incorporated into this February 2008 posting of this plan:

Amendment	Date Adopted by City Council	Resolution Number
Navajo Community Plan adopted	December 7, 1982	R-257606
Grantville Amendment- updates existing conditions, provides design guidelines, and establishes supplemental development regulations	April 4, 1989	R-273164
The Circulation and Public Transportation Element was added	August 5, 2002	R-296956
Centerpoint at Grantville	May 15, 2007	R-302636
Archstone at Mission Gorge	November 18, 2008	R-304443
Pasatiempo	February 6, 2012	R-307260
Shawnee – Riverbend	October 2, 2012	R-307718
Village at Zion	February 26, 2013	R-308010
San Diego River Park Subdistrict	May 20, 2013	R-308199

CITY OF SAN DIEGO . PLANNING DEPARTMENT

Appendix F

Count Data

San Diego College Avenue Del Cerro Boulevard Location: N/S: E/W:

Date: 4/16/19
Day: TUESDAY
Project # 143-19242

TURNING MOVEMENT COUNT

7:00 AM to 9:00 AM 7:00 AM to 8:00 AM Count Period: Peak Hour:

Vehicle Counts

	Col	College Avenue	nne	Col	College Avenue	ine	Del Ce	Del Cerro Boulevard	evard	Del Ce	Del Cerro Boulevard	evard	
	Z	Northbound	þ	Sc	Southbound	q	Е	Eastbound		>	Westbound	D D	
	٦N	LN	NR	TS	LS	SR	13	ET	ER	ML	MT	WR	TOTAL
7:00 AM	14	248	142	11	183	3	70	11	30	125	8	15	810
7:15 AM	70	156	94	14	506	4	6	7	39	157	14	14	734
7:30 AM	88	137	35	70	204	8	97	22	99	129	63	18	761
7:45 AM	18	168	42	19	161	8	28	27	74	86	14	6	702
8:00 AM	16	127	46	18	186	5	16	9	46	86	3	11	999
8:15 AM	17	113	48	14	170	0	13	2	33	82	2	16	516
8:30 AM	21	26	39	8	112	2	8	9	38	92	2	10	435
8:45 AM	27	98	22	18	149	6	10	2	56	93	2	10	499
TOTAL VOLUMES:	166	1141	501	122	1407	39	130	98	352	862	114	103	5023

700 AM AM Peak Hr Begins at:

	NL	L	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
PEAK VOLUMES:	82	602	313	64	790	23	83	29	209	209	66	26	3007
PEAK HR FACTOR:		0.685			0.945			969.0			0.790		0.928

Bicycle Counts

,													
	Col	College Avenue	nne	Col	College Avenue	nne	Del C	Del Cerro Boulevard	evard	Del C	Del Cerro Boulevard	evard	
	Z	Northbound	þı	Š	Southbound	pu	F	Eastbound	d	>	Westbound	þ	
	٦N	IN	NR	TS	ST	SR	TB	£Ι	ER	٦M	LΜ	WR	TOTAL
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL VOLUMES:	0	0	0	0	0	0	0	0	0	0	0	0	0
	IN	IN	NR	SL	ST	SR	TE	LΞ	ER	JW	LM	WR	TOTAL
PEAK VOLLIMES	O	C	C	C	C	C	C	C	c	O	C	O	C

į		TOTAL	1	8	35	18	4	2	ъ	5	92
	Del Cerro Boulevard	West Leg	0	0	0	0	0	0	0	0	0
regestrian Counts	Del Cerro Boulevard	East Leg	0	0	8	1	1	7	1	1	6
Pedestrie	College Avenue	South Leg	0	0	0	0	0	0	0	0	0
	College Avenue	North Leg	1	8	32	17	3	0	2	4	29
!			7:00 AM	7:15 AM	7:30 AM	7:45 AM	8:00 AM	8:15 AM	8:30 AM	8:45 AM	TOTAL VOLUMES:

ſ			ĺ
	TOTAL	62	
	West Leg	0	
	East Leg	4	
	South Leg	0	
	North Leg	58	
		PEAK VOLUMES:	

Location: N/S: E/W:

San Diego College Avenue Del Cerro Boulevard

Date: 4/16/19
Day: TUESDAY
Project # 143-19242

TURNING MOVEMENT COUNT

4:00 PM to 6:00 PM 4:45 PM to 5:45 PM Count Period: Peak Hour:

Vehicle Counts

PM Peak Hr Begins at: 445 PM

	N	IN	NR	SL	ST	SR	EL	ET	ER	ML	TW	WR	TOTAL
PEAK VOLUMES:	119	625	389	92	610	24	37	30	112	344	32	77	2494
PEAK HR FACTOR:		0.911			0.954			0.734			0.952		0.958

Bicycle Counts	Del Cerro Boulevard Del Cerro Boulevard	Eastbound Westbound	EL ET ER WL WT WR TOTAL	0 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 0 0 0 0				0 0 0 0 1 0 2	0 0 0 0 0 0 0	0 0 0 0 3
ы	College Avenue	Southbound	SL ST	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
	College Avenue	punoq	NT NR	0 (0 1	0 (0 (0 (0 (0 1	0 (2 0
	college ,	Northbound	N N	0 0	0 1	0 0	0 0	0 0	0 0	0 1	0 0	0
1				4:00 PM	4:15 PM	4:30 PM	4:45 PM	5:00 PM	5:15 PM	5:30 PM	5:45 PM	TOTAL VOLUMES:

PEAK VOLUMES:

Pedestrian Counts

	College Avenue	College Avenue	Del Cerro Boulevard	Del Cerro Boulevard	
	35	25	5		H
	North Leg	South Leg	East Leg	West Leg	IOIAL
4:00 PM	0	0	0	0	0
4:15 PM	0	0	2	0	2
4:30 PM	0	0	2	0	2
4:45 PM	1	0	0	0	1
5:00 PM	1	0	0	0	1
5:15 PM	1	0	1	0	2
5:30 PM	1	0	2	0	3
5:45 PM	2	0	1	0	3
TOTAL VOLUMES:	9	0	8	0	14

TOTAL	7	
West Leg	0	
East Leg	3	
South Leg	0	
North Leg	4	
	PEAK VOLUMES:	

Location: San Diego
N/S: College Avenue
E/W: Del Cerro Boulevard

Date: 4/28/19 Day: SUNDAY Project # 143-19242

TURNING MOVEMENT COUNT

Count Period: 10:45 AM to 11:45 AM Peak Hour: 10:45 AM to 11:45 AM

Vehicle Counts

		llege Ave Iorthbour			lege Aver			erro Boul Eastboun			erro Boul Vestbour		
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
10:45 AM	19	124	78	13	137	2	12	8	22	80	5	16	516
11:00 AM	22	133	84	23	149	0	9	8	22	93	6	24	573
11:15 AM	21	118	67	19	122	4	3	9	17	85	6	29	500
11:30 AM	25	108	79	25	108	1	8	8	31	95	3	25	516
TOTAL VOLUMES:	87	483	308	80	516	7	32	33	92	353	20	94	2105

AM Peak Hr Begins at: 1045 AM

DEAKLYOULD AFG 07 400 200 00 F46 7 20 20 00 250 20		
PEAK VOLUMES: 87 483 308 80 516 7 32 33 92 353 20	20 94	94 2105

PEAK HR FACTOR: 0.918	0.876	0.835	0.949	0.918
-----------------------	-------	-------	-------	-------

Bicycle Counts

		lege Ave			lege Ave			erro Boul			erro Boul		
	N	orthbour	nd	S	outhbour	nd	Е	Eastboun	d	V	Vestboun	nd	
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
10:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
11:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
11:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
11:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL VOLUMES:	0	0	0	0	0	0	0	0	0	0	0	0	0

	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
PEAK VOLUMES:	0	0	0	0	0	0	0	0	0	0	0	0	0

Pedestrian Counts

	College Avenue	College Avenue	Del Cerro Boulevard	Del Cerro Boulevard	
	North Leg	South Leg	East Leg	West Leg	TOTAL
10:45 AM	0	0	0	0	0
11:00 AM	0	0	0	0	0
11:15 AM	0	0	0	0	0
11:30 AM	0	0	0	0	0
TOTAL VOLUMES:	0	0	0	0	0

	North Leg	South Leg	East Leg	West Leg	TOTAL
PEAK VOLUMES:	0	0	0	0	0

San Diego College Avenue I-8 WB Ramps Location: N/S: E/W:

Date: 4/16/19 Day: TUESDAY Project # 143-19242

TURNING MOVEMENT COUNT

7:00 AM to 9:00 AM 7:00 AM to 8:00 AM

Count Period: Peak Hour:

Vehicle Counts

	Col	College Avenue	nne	Co	College Avenue	nue	8-1	I-8 WB Ramps	sd	8-I	I-8 WB Ramps	bs	
	Z	Northbound	þ	Sc	Southbound	р	F	Eastbound		>	Westbound	р	
	NL	LN	NR	SL	ST	SR	EL	13	ER	٦M	WT	WR	TOTAL
7:00 AM	0	898	06	0	124	210	0	0	0	42	0	59	863
7:15 AM	0	235	113	0	187	214	0	0	0	09	0	56	825
7:30 AM	0	207	103	0	221	184	0	0	0	62	0	28	822
7:45 AM	0	154	68	0	210	158	0	0	0	86	0	47	756
8:00 AM	0	148	82	0	168	151	0	0	0	82	0	47	029
8:15 AM	0	125	81	0	140	144	0	0	0	81	0	09	631
8:30 AM	0	115	65	0	114	127	0	0	0	110	0	47	909
8:45 AM	0	133	106	0	139	129	0	0	0	143	0	52	702
TOTAL VOLUMES:	0	1485	752	0	1303	1317	0	0	0	681	0	336	5874

700 AM AM Peak Hr Begins at:

	N	Ż	Z Z	SL	ST	SR	П	ET	ER	M	⋚	W.R	TOTAL	
PEAK VOLUMES:	0	964	362	0	742	992	0	0	0	569	0	130	3266	
COTO AT CITY ATC		0			,						000			

Bicycle Counts

			ĺ			ĺ			ĺ				
	00	College Avenue	ne	8	College Avenue	nne	∞_	I-8 WB Ramps	bs	<u>~</u>	I-8 WB Ramps	bs	
	Ž	Northbound	þ	Sc	Southbound	d	F	Eastbound		>	Westbound	9	
	NL	LN	NR	SL	ST	SR	13	ET	ER	٦M	MT	WR	TOTAL
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	1	0	0	0	0	0	0	0	1
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL VOLUMES:	0	0	0	0	1	0	0	0	0	0	0	0	1

TOTAL SR ST PEAK VOLUMES:

		TOTAL	1	0	1	2	0	0	0	0	4
	I-8 WB Ramps	West Leg	0	0	0	0	0	0	0	0	0
Pedestrian Counts	I-8 WB Ramps	East Leg	1	0	1	2	0	0	0	0	4
Pedestria	College Avenue	South Leg	0	0	0	0	0	0	0	0	0
	College Avenue	North Leg	0	0	0	0	0	0	0	0	0
			7:00 AM	7:15 AM	7:30 AM	7:45 AM	8:00 AM	8:15 AM	8:30 AM	8:45 AM	TOTAL VOLUMES:

TOTAL	4
West Leg	0
East Leg	4
South Leg	0
North Leg	0
	PEAK VOLUMES:

San Diego College Avenue I-8 WB Ramps Location: N/S: E/W:

Date: 4/16/19
Day: TUESDAY
Project # 143-19242

TURNING MOVEMENT COUNT

4:00 PM to 6:00 PM 4:30 PM to 5:30 PM Count Period: Peak Hour:

Vehicle Counts

	CO	College Avenue	nne	Col	College Avenue	ne	8-1	I-8 WB Ramps	sd	8-1	I-8 WB Ramps	sd	
	2	Northbound	ρι	Sc	Southbound	þ	F	Eastbound	_	>	Westbound	q	
	٦N	LΝ	NR	SL	LS	SR	13	LΞ	ER	٦M	MT	WR	TOTAL
4:00 PM	0	194	233	0	147	131	0	0	0	16	0	89	864
4:15 PM	0	186	215	0	128	137	0	0	0	84	0	82	832
4:30 PM	0	214	276	0	122	119	0	0	0	109	0	20	910
4:45 PM	0	211	265	0	167	123	0	0	0	120	0	29	953
5:00 PM	0	232	255	0	159	105	0	0	0	118	0	74	943
5:15 PM	0	217	257	0	128	140	0	0	0	66	0	84	925
5:30 PM	0	207	258	0	136	119	0	0	0	66	0	79	868
5:45 PM	0	201	241	0	109	95	0	0	0	122	0	89	836
TOTAL VOLUMES:	0	1662	2000	0	1096	696	0	0	0	842	0	592	7161

PM Peak Hr Begins at: 430 PM

	NL	IN	NR	SL	ST	SR	EL	ET	ER	ML	TW	WR	TOTAL
PEAK VOLUMES:	0	874	1053	0	226	487	0	0	0	446	0	295	3731
PEAK HR FACTOR:		0.983			0.916			0.000			0.965		0.979

Bicycle Counts

						פורארופ	DICYCIE COUILLS						
	Col	College Avenue	ne	Col	College Avenue	nne	8-I	I-8 WB Ramps	bs	8-I	I-8 WB Ramps	bs	
	Z	Northbound	þ	Sc	Southbound	þ	В	Eastbound		>	Westbound	р	
	NL	NT	NR	TS	ST	SR	13	ET	ER	٦M	WT	WR	TOTAL
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	1	0	0	0	0	0	0	0	0	0	0	Н
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	1	0	0	0	0	0	0	0	0	0	0	Н
5:45 PM	0	1	0	0	0	0	0	0	0	0	0	0	1
TOTAL VOLUMES:	0	3	0	0	0	0	0	0	0	0	0	0	3

PEAK VOLUMES:

•		Pedestria	Pedestrian Counts		
	College Avenue	College Avenue	I-8 WB Ramps	I-8 WB Ramps	
	North Leg	South Leg	East Leg	West Leg	TOTAL
4:00 PM	0	0	0	0	0
4:15 PM	0	0	1	0	1
4:30 PM	0	0	1	0	1
4:45 PM	0	0	0	0	0
5:00 PM	0	0	1	0	1
5:15 PM	0	0	1	0	1
5:30 PM	0	0	7	0	4
5:45 PM	0	0	1	0	1
TOTAL VOLUMES:	0	0	6	0	6

Location: San Diego N/S: College Avenue E/W: I-8 WB Ramps Date: 4/28/19 Day: SUNDAY Project # 143-19242

TURNING MOVEMENT COUNT

Count Period: 10:45 AM to 11:45 AM Peak Hour: 10:45 AM to 11:45 AM

Vehicle Counts

		llege Ave Iorthbour			lege Aver			3 WB Ram Eastboun	•		WB Ram Vestboun	•	
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
10:45 AM	0	151	118	0	85	146	0	0	0	48	0	62	610
11:00 AM	0	159	120	0	90	162	0	0	0	64	0	66	661
11:15 AM	0	137	134	0	86	134	0	0	0	59	0	69	619
11:30 AM	0	160	143	0	83	148	0	0	0	68	0	45	647
TOTAL VOLUMES:	0	607	515	0	344	590	0	0	0	239	0	242	2537

AM Peak Hr Begins at: 1045 AM

NL	NT	NR	SL	SI	SR	EL	ET	ER	WL	WT	WR	TOTAL
PEAK VOLUMES: 0	607	515	0	344	590	0	0	0	239	0	242	2537

PEAK HR FACTOR:	0.926	0.927	0.000	0.925	0.960

Bicycle Counts

		lege Ave			lege Ave			3 WB Ram			WB Ram	•	
	N	orthbour	nd	S	outhbour	nd	l	Eastboun	d	V	Vestboun	ıd	
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
10:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
11:00 AM	0	0	0	0	1	0	0	0	0	0	0	0	1
11:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
11:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL VOLUMES:	0	0	0	0	1	0	0	0	0	0	0	0	1

	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
PEAK VOLUMES:	0	0	0	0	1	0	0	0	0	0	0	0	1

Pedestrian Counts

	College Avenue	College Avenue	I-8 WB Ramps	I-8 WB Ramps	
	North Leg	South Leg	East Leg	West Leg	TOTAL
10:45 AM	0	0	0	0	0
11:00 AM	0	0	1	0	1
11:15 AM	0	0	0	0	0
11:30 AM	0	0	5	0	5
TOTAL VOLUMES:	0	0	6	0	6

	North Leg	South Leg	East Leg	West Leg	TOTAL
PEAK VOLUMES:	0	0	6	0	6

Location: San Diego
N/S: College Avenue
E/W: I-8 EB Ramps

Date: 4/28/19
Day: SUNDAY
Project # 143-19242

TURNING MOVEMENT COUNT

Count Period: 10:45 AM to 11:45 AM Peak Hour: 10:45 AM to 11:45 AM

Vehicle Counts

		llege Ave Iorthbour			College Avenue Southbound		I-8 EB Ramps Eastbound			I-8 EB Ramps Westbound			
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
10:45 AM	0	164	61	0	82	59	121	2	129	0	0	0	618
11:00 AM	0	164	48	0	101	53	114	0	108	0	0	0	588
11:15 AM	0	190	53	0	101	48	90	0	150	0	0	0	632
11:30 AM	0	191	60	0	106	47	123	0	121	0	0	0	648
TOTAL VOLUMES:	0	709	222	0	390	207	448	2	508	0	0	0	2486

AM Peak Hr Begins at: 1045 AM

DEALLY OLLINATES 0 700 222 0 200 207 440 2 500 0				
PEAK VOLUMES: 0 709 222 0 390 207 448 2 508 0	0	0	0 (0 2486

PEAK HR FACTOR: 0.927	0.969	0.950	0.000	0.959
-----------------------	-------	-------	-------	-------

Bicycle Counts

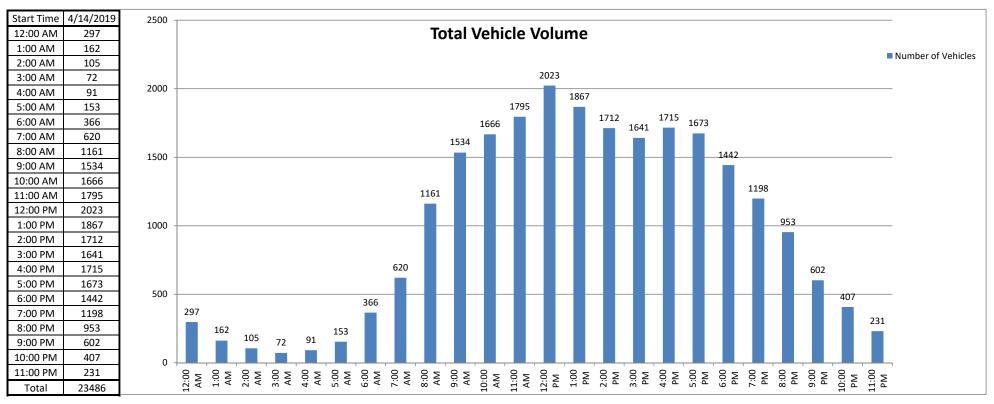
		lege Ave			College Avenue			I-8 EB Ramps			B EB Ram		
	N	orthbour	nd	S	Southbound			Eastbound			Vestboun		
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
10:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
11:00 AM	0	0	0	0	1	0	0	0	0	0	0	0	1
11:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
11:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL VOLUMES:	0	0	0	0	1	0	0	0	0	0	0	0	1

	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
PEAK VOLUMES:	0	0	0	0	1	0	0	0	0	0	0	0	1

Pedestrian Counts

	College Avenue	College Avenue	I-8 EB Ramps	I-8 EB Ramps	
	North Leg	South Leg	East Leg	West Leg	TOTAL
10:45 AM	0	0	0	0	0
11:00 AM	1	0	1	0	1
11:15 AM	3	0	0	0	3
11:30 AM	2	0	0	0	2
TOTAL VOLUMES:	6	0	0	0	6

	North Leg	South Leg	East Leg	West Leg	TOTAL
PEAK VOLUMES:	6	0	0	0	6


City of San Diego College Avenue

File Name: 001 Site Code: 143-19252 B/ Del Cerro Boulevard - Interstate 8 Westbound 24 Hour Directional Volume Count

B/ Del Cerro Boulev	vard - Inters					Couth	bound	24 Hour	Directional \	olume Coun
Date: 4/14/2019	1E Minu	ite Totals	bound	Totals	1E Minu	ute Totals		Totals	Combin	ed Totals
4/14/2019 Time	Morning	1	Morning		Morning		· ·	Afternoon	Morning	Afternoon
12:00	60	215	Willing	Arternoon	38	280	Worming	Arternoon	Willing	Arternoor
12:15	47	233			41	273				
12:30	35	255 259			25	273				
12:45	33	216	175	923	18	270	122	1100	297	2023
1:00	27	248	1/3	323	12	245	122	1100	257	2023
1:15	33	248			13	241				
1:30	28	220			12	227				
1:45	24	233	112	949	13	205	50	918	162	1867
2:00	24	218			4	227				
2:15	17	219			9	223				
2:30	14	194			12	198				
2:45	14	253	69	884	11	180	36	828	105	1712
3:00	14	203			6	190				
3:15	11	213			10	193				
3:30	5	229			5	198				
3:45	11	238	41	883	10	177	31	758	72	1641
4:00	11	237			10	202				
4:15	6	239			15	188				
4:30	10	219			9	189				
4:45	17	247	44	942	13	194	47	773	91	1715
5:00	17	226			9	218				
5:15	12	220			15	209				
5:30	19	226			33	194				
5:45	19	195	67	867	29	185	86	806	153	1673
6:00	24	209			37	185				
6:15	22	168			56	176				
6:30	40	211			69	173				
6:45	48	175	134	763	70	145	232	679	366	1442
7:00	54	175			72	149				
7:15	64	161			68	139				
7:30	55	158			109	121				
7:45	68	174	241	668	130	121	379	530	620	1198
8:00	78	152			149	131				
8:15	86	130			142	107				
8:30	113	123			212	107				
8:45	162	131	439	536	219	72	722	417	1161	953
9:00	138	103			157	88				
9:15	150	86			201	65				
9:30	170	79			251	48				
9:45	200	88	658	356	267	45	876	246	1534	602
10:00	190	62			261	60				
10:15	173	67			221	39				
10:30	183	55		22.4	234	55	010	4=0	4655	
10:45	201	47	747	231	203	22	919	176	1666	407
11:00	201	35			214	29 25				
11:15	174	39			238	25				
11:30	202	40 30	022	1//	250	18	072	07	1705	224
11:45	245	30	822	144	271	7219	973	87	1795	231
Totals Combined Totals	3549	8146 11695			4473	7318 11791				
ADT										22406
ADT AM Peak Hour	1100	AM			930	AM				23486
Volume	822	AIVI			1000	AIVI				
P.H.F.	822 0.839				0.936					
P.H.F. PM Peak Hour	0.033	1230	PM		0.530	1200	PM			
Volume		971	1 101			1100	I IVI			
		3/1				1100				
		0 027				ር ወይን				
P.H.F. Percentage	30.3%	0.937 69.7%			37.9%	0.982 62.1%				

24 Hour Volume Plot College Avenue B/ Del Cerro Boulevard - Interstate 8 Westbound 4/14/2019

Volumes represent the combined totals for both directions

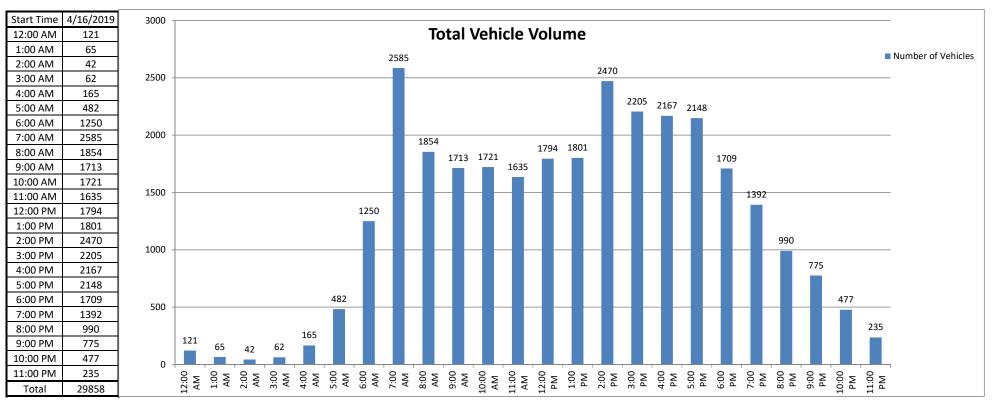
File Name:

Site Code:

001

143-19252

City of San Diego College Avenue
B/ Del Cerro Boulevard - Interstate 8 Westbound


B/ Del Cerro Boule	vard - Inter	state 8 Westb	ound	U n	limite	d		24 Hou	r Directional \	olume Count
Date:		North	bound				nbound			
4/16/2019	15 Min	ute Totals	Hourly	y Totals	15 Min	ute Totals		/ Totals	Combine	ed Totals
Time	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon
12:00	24	242			16	227				
12:15	22	211			11	208				
12:30	12	251			13	221				
12:45	16	217	74	921	7	217	47	873	121	1794
1:00	11	195			6	180				
1:15	13	206			6	213				
1:30	11	232			6	245				
1:45	8	291	43	924	4	239	22	877	65	1801
2:00	5	322			11	216				
2:15	6	312			3	284				
2:30	2	298			7	404				0.170
2:45	4	294	17	1226	4	340	25	1244	42	2470
3:00	7	271			4	272				
3:15	8	285			9	295				
3:30	5	247	20	1075	5	275	26	1120	63	2205
3:45 4:00	6 11	272 279	26	1075	18 15	288 263	36	1130	62	2205
4:15	12	256			15	203				
4:30	10	279			27	244				
4:45	16	286	49	1100	59	288	116	1067	165	2167
5:00	30	283	43	1100	56	266	110	1007	103	2107
5:15	28	320			81	262				
5:30	28	269			100	260				
5:45	42	268	128	1140	117	220	354	1008	482	2148
6:00	51	266			124	195				
6:15	62	237			154	199				
6:30	116	244			249	165				
6:45	228	227	457	974	266	176	793	735	1250	1709
7:00	399	254			318	152				
7:15	265	212			379	153				
7:30	238	175			425	119				
7:45	205	208	1107	849	356	119	1478	543	2585	1392
8:00	201	144			316	132				
8:15	174	158			286	91				
8:30	172	161			248	81				
8:45	185	143	732	606	272	80	1122	384	1854	990
9:00	180	170			277	77				
9:15	154	132			256	62				
9:30	173	104			262	58				
9:45	143	117	650	523	268	55	1063	252	1713	775
10:00	173	104			238	56				
10:15	186	93			268	43				
10:30	162	70	74.0	224	257	29	1005	450	4704	477
10:45	195	54 42	716	321	242	28	1005	156	1721	477
11:00	200	43			201	21				
11:15 11:30	195 182	34 49			217 209	19 22				
11:30 11:45	192	48 31	769	156	209	22 17	866	79	1635	235
Totals	4768	9815	703	130	6927	8348	800	13	1033	233
	4700	2013			0321	0340				
Combined Totals		14583				15275				
ADT	a									29858
AM Peak Hour	645	AM			700	AM				
Volume	1130				1478					
P.H.F.	0.708	200	DM		0.869	220	DM			
PM Peak Hour		200 1226	PM			230	PM			
Volume		1226				1311				
P.H.F.	22 70/	0.952			4E 20/	0.811				
Percentage	32.7%	67.3%			45.3%	54.7%				

24 Hour Volume Plot **College Avenue**

B/ Del Cerro Boulevard - Interstate 8 Westbound

4/16/2019

Volumes represent the combined totals for both directions

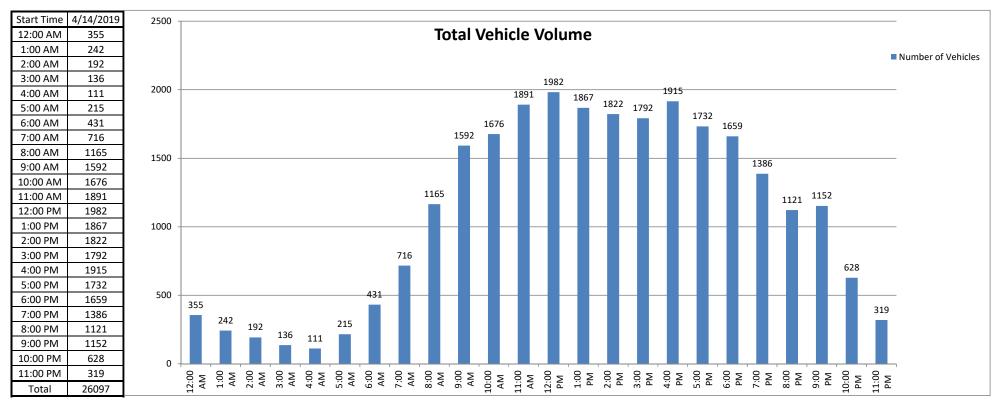
Counts

File Name:

Site Code:

24 Hour Directional Volume Count

001


143-19252

City of San Diego College Avenue B/ Interstate 8 Westbound - Interstate 8 Eastbound

Date:	stbouria iiii		bound			South	bound	2111001	Directional v	
Date:	1 F N Aim.			Totala	1 F N A :			Totala	Camabina	d Tatala
4/14/2019		te Totals		Totals		ite Totals		/ Totals		ed Totals
Time	Morning		Morning	Afternoon		Afternoon	Morning	Afternoon	Morning	Afternoon
12:00	66	321			23	176				
12:15	80	334			25	190				
12:30	66	304			22	176				
12:45	58	305	270	1264	15	176	85	718	355	1982
1:00	57	326			8	159				
1:15	55	278			19	166				
1:30	39	292			10	180				
1:45	37	303	188	1199	17	163	54	668	242	1867
2:00	34	299			13	135				
2:15	46	283			13	161				
2:30	37	316			19	149				
2:45	24	306	141	1204	6	173	51	618	192	1822
3:00	25	249			3	147				
3:15	20	341			6	165				
3:30	29	286			15	156				
3:45	20	289	94	1165	18	159	42	627	136	1792
4:00	16	290			10	156				
4:15	16	311			7	161				
4:30	21	332			10	188				
4:45	25	290	78	1223	6	187	33	692	111	1915
5:00	24	277			14	163				
5:15	35	287			13	150				
5:30	39	271			15	159				
5:45	53	260	151	1095	22	165	64	637	215	1732
6:00	60	251	131	1033	26	163	0-1	037	213	1,32
6:15	67	294			38	152				
6:30	80	271			39	157				
6:45	76	218	283	1034	45	153	148	625	431	1659
7:00	85	229	203	1034	55	124	140	023	431	1033
7:15	99	220			72	148				
7:30	95	213			88	127				
7:45	106	206	385	868	116	119	331	518	716	1386
8:00	142	201	363	808	117	110	331	318	710	1380
8:15	175	182			133	81				
8:30	173	206			108	90				
8:45	181	170	670	759	137	81	495	362	1165	1121
9:00	213	147	070	739	157	77	453	302	1105	1121
9:15	238	167			156	63				
9:30	256	296			169	74				
9:45	242	278	040	000		50	642	264	1502	1152
			949	888	161		643	264	1592	1152
10:00	275	220			138	47 22				
10:15	242	108 76			144	32				
10:30	271		1000	404	157	32	EOC	124	1676	620
10:45	302	90 63	1090	494	147	23	586	134	1676	628
11:00	286	63 72			149	31				
11:15	293	72 40			170	24				
11:30	336	49 46	1215	220	188	17 17	CZC	00	1001	210
11:45	300	46	1215	230	169	17	676	89	1891	319
Totals	5514	11423			3208	5952				
Combined Totals		16937				9160				
ADT										26097
AM Peak Hour	1045	AM	<u>-</u>		1100	AM	<u>-</u>			
Volume	1217				676					
P.H.F.	0.906				0.899					
PM Peak Hour		1215	PM	<u> </u>		1200	PM	<u> </u>		<u> </u>
Volume		1269				718				
P.H.F.		0.950				0.945				
Percentage	32.6%	67.4%			35.0%	65.0%				

24 Hour Volume Plot College Avenue B/ Interstate 8 Westbound - Interstate 8 Eastbound 4/14/2019

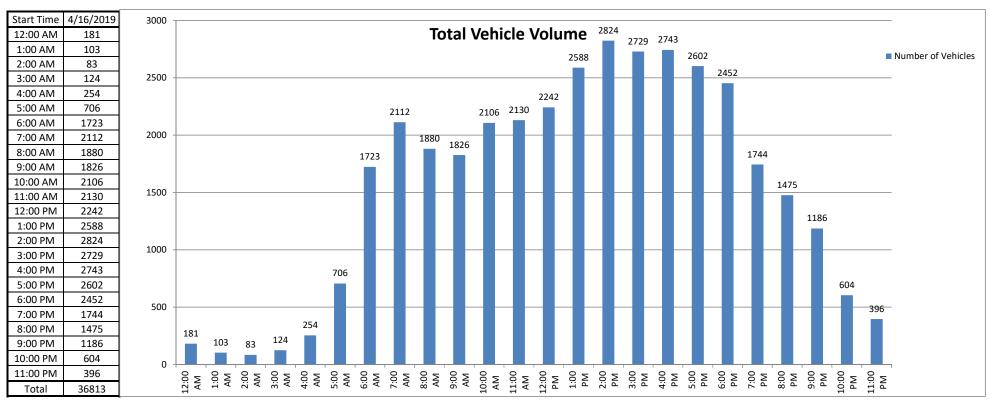
Volumes represent the combined totals for both directions

File Name:

Site Code:

24 Hour Directional Volume Count

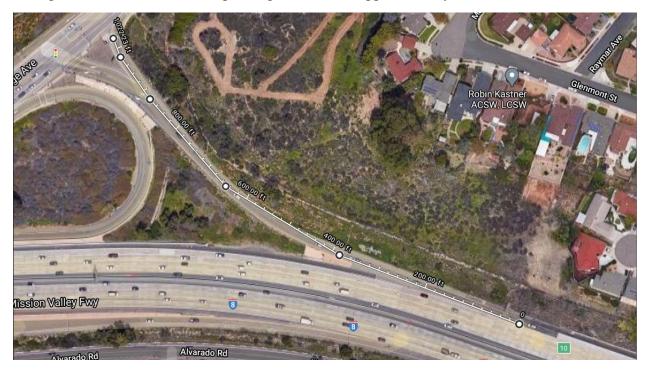
001


143-19252

City of San Diego College Avenue B/ Interstate 8 Westbound - Interstate 8 Eastbound

Date:	Northbound				Southbound					
4/16/2019	15 Minute Totals		Hourly Totals		15 Minute Totals		Hourly Totals		Combined Totals	
Time	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon
12:00	38	436		•	17	172		•		•
12:15	31	425			14	191				
12:30	27	342			14	176				
12:45	34	303	130	1506	6	197	51	736	181	2242
1:00	22	332			9	227				
1:15	22	380			3	232				
1:30	17	449			13	203				
1:45	13	515	74	1676	4	250	29	912	103	2588
2:00	14	445			9	285				
2:15	17	442			3	287				
2:30	13	412			8	252				
2:45	11	423	55	1722	8	278	28	1102	83	2824
3:00	14	472			7	280				
3:15	24	437			12	231				
3:30	25	442			6	224				
3:45	27	416	90	1767	9	227	34	962	124	2729
4:00	26	388			15	215				
4:15	31	456			25	271				
4:30	38	462			24	277				
4:45	57	460	152	1766	38	214	102	977	254	2743
5:00	66	454			64	227				
5:15	114	442			63	219				
5:30	119	424			56	181				
5:45	151	458	450	1778	73	197	256	824	706	2602
6:00	159	417	.50	2770	69	183	250	02.	, 00	2002
6:15	240	458			93	183				
6:30	333	455			165	153				
6:45	430	468	1162	1798	234	135	561	654	1723	2452
7:00	328	334	1101	2730	291	135	301	00.	1,10	2.52
7:15	301	299			296	128				
7:30	238	321			236	137				
7:45	207	275	1074	1229	215	115	1038	515	2112	1744
8:00	201	281	1074	1223	231	102	1030	313	2112	1744
8:15	191	295			264	96				
8:30	246	244			285	83				
8:45	220	288	858	1108	242	86	1022	367	1880	1475
9:00	271	270	030	1100	210	57	1022	307	1880	14/3
9:15	267	240			190	85				
9:30	244	249			176	44				
9:45	251	193	1033	952	217	48	793	234	1826	1186
10:00	262	138	1033	932	271	34	793	234	1820	1160
					234					
10:15 10:30	299 371	120 116				38 35				
			1275	167	168		021	127	2106	604
10:45 11:00	343 292	93 92	1275	467	158 181	30 39	831	137	2106	004
11:15	281	79 62			222	22				
11:30	330	62 64	1272	207	246	26 13	050	00	2420	200
11:45	369	64	1272	297	209	12	858	99	2130	396
Totals	7625	16066			5603	7519				
Combined Totals		23691				13122				
ADT										36813
AM Peak Hour	630	AM			645	AM				
Volume	1392				1057					
P.H.F.	0.809				0.893					
PM Peak Hour		130	PM			200	PM			
Volume		1851				1102				
P.H.F.		0.899				0.960				
Percentage	32.2%	67.8%			42.7%	57.3%				
		_								

24 Hour Volume Plot College Avenue B/ Interstate 8 Westbound - Interstate 8 Eastbound 4/16/2019

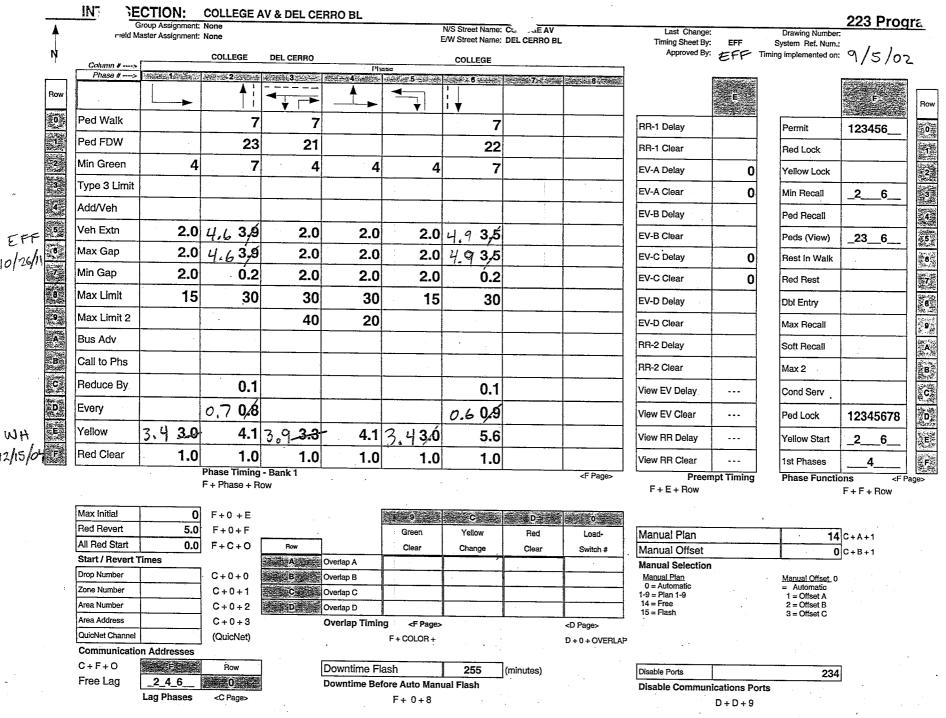


Volumes represent the combined totals for both directions

Appendix G

Freeway Off-Ramp Storage Documentation

College Ave at I-8 WB Off-Ramp storage distance of approximately 1,020 feet



College Ave at I-8 EB Off-Ramp storage distance of approximately 750 feet.

Appendix H

Signal Timing Sheets

Row				Column F			Row	7		_
	Time	Function	Doy of Wools		T.O.D. Functions		How	-		
Ş Ô.	06:30	В	Day of Week 	Phases/Bits 34	0 = Permitted Phases 1 = Red Lock			·	F. F.	
1		В	_23456_		2 = Yellow Lock		3. 0			_
2			23436		3 = Veh Min Recall 4 = Ped Recall		321			_
3.					5 = 6 = Rest in Walk	,		RR Overlap B - Phases		
4.2					7 = Red Rest			RR Overlap C - Phases		
5					8 = Double Entry 9 = Veh Max Recall		4:4:	RR Overlap D - Phases		
6					A = Veh Soft Recall B = Maximum 2		5	Ped 2P	_2	
7					C = Conditional Service D = Free Lag Phases	•	6.35	Ped 6P	6	7
					E = Bit 1 - Local Overrie		7. 7	Ped 4P		7
8				<u> </u>	Bit 2 - Phase Bank Bit 3 - Phase Bank		2008	Ped 8P	3	7
後9號					Bit 4 - Disable Dete OFF Monitor		维9	Yellow Flash Phases		7
ÆA ∴					Bit 7 - Detector Cou		₩ A *#	Overlap A - Phases	_23	7
≽B.		·			Bit 8 - Real Time Si F = Output Bits 1 thru 4		B	Overlap B - Phases	45	7
⊗C.							清集 C 🚉	Overlap C - Phases		7
D							海 Dan	Overlap D - Phases	•	7
EE					•	•	# E W	Restricted Phases		_
₿ F ₽			<u></u>				Family Family	Assign 5 Outputs	1	7
	TOD Function			<d page=""></d>	•	•	-	Configuration	<e page=""></e>	
		7 + ROW		D + F + ROW		Day of Week		E+F+ROW		
	·					1 = Sunday				
Row			E 44			2 = Monday				
ROTE STREET			·护宫阳影(1876)			3 = Tuesday	Assign 5	Outputs		
0	Exclusive Phases			Extra 1 Flags 1 = TBC Type 1		4 = Wednesday	1 = Right Tu 2 = TOD Out	puts		
21 %	RR-1 Clear Phases		2 = NEMA Ext. Coord 3 = Auto Daylight Savings 4 = EV Advance		5 = Thursday	3 = EV Beacon - Steady 4 = EV Beacon - Flashing 5 = Special Event Outputs 6 = Phase 3 & 7 Ped				
2	RR-2 Clear Phases				6 = Friday					
3	RR-2 Limited Service			5 = Remote Download 6 = Special Event		•	7 = Advance	લ 7 Ped d Warning Sign		
4	Prot / Perm Phases			7 = Pretimed Operatio		7 = Saturday	8 =			
# 5	Overlap A - Green Omit		2	8 = Split Ring Operation	on					
6				1						
	HOACHED D - CHECK ONLY		4							
Delivery Carret			4	<u> </u>						
7	Overlap C - Green Omit		4			Time and Date				
. 7 . 8	Overlap C - Green Omit Overlap D - Green Omit		4			Time and Date		Disable Parity	0	D+B+0
7 8 9	Overlap C - Green Omit Overlap D - Green Omit Overlap Yellow Flash			IC Select Flags		8-0 Hour, Minute, Day-of-W		Dial-Up Telephone Cor	nmunications	D+B+0
7 8 9 A	Overlap C - Green Omit Overlap D - Green Omit Overlap Yellow Flash EV-A Phases		4	IC Select Flags		8-0 Hour, Minute, Day-of-W 8-1 Day-of-Month, Year, M		<u> </u>	nmunications	D+B+0
7 8 9 A B	Overlap C - Green Omit Overlap D - Green Omit Overlap Yellow Flash EV-A Phases EV-B Phases		_2_5	1 = 2 = Modem 3 = 7-Wire Slave		8-0 Hour, Minute, Day-of-W		Dial-Up Telephone Cor	mmunications arity will be disabled)	D+B+0
7 8 9 A B C	Overlap C - Green Omit Overlap D - Green Omit Overlap Yellow Flash EV-A Phases EV-B Phases EV-C Phases			1 = 2 = Modem 3 = 7-Wire Slave 4 = Flash / Free		8-0 Hour, Minute, Day-of-W 8-1 Day-of-Month, Year, M		Dial-Up Telephone Cor (If set to a non-zero value, pa	mmunications arity will be disabled)	D+B+0
7 8 9 A B C D	Overlap C - Green Omit Overlap D - Green Omit Overlap Yellow Flash EV-A Phases EV-B Phases EV-C Phases EV-D Phases			1 = 2 = Modem 3 = 7-Wire Slave 4 = Flash / Free 5 = 6 = Simplex Master		8-0 Hour, Minute, Day-of-W 8-1 Day-of-Month, Year, M		Dial-Up Telephone Con (If set to a non-zero value, pa (This parameter is NOT down	mmunications arity will be disabled)	D+B+0
7 8 9 A B C C	Overlap C - Green Omit Overlap D - Green Omit Overlap Yellow Flash EV-A Phases EV-B Phases EV-C Phases		_2_5	1 = 2 = Modem 3 = 7-Wire Slave 4 = Flash / Free 5 =		8-0 Hour, Minute, Day-of-W 8-1 Day-of-Month, Year, M 8-F Seconds	onth	Dial-Up Telephone Con (If set to a non-zero value, pa (This parameter is NOT down	mmunications arity will be disabled)	D+B+0

Configuration For access, set F + 9 + E = 1 F + F

E+E+ROW

\sim
\circ
\simeq
\ppendi)
മ
ă.
<u>~</u>
Ω.
_
ч.
_
◂
⋚
>
_
_
_
Church
ပ
_
\neg
=
ر ۲
$\overline{}$
(i)
a)
sobles
$^{\circ}$
₩
Ψ.
n
_
_
₹
◂

	1998	3 - 3
Row	Delay	Carry- over
≟ 0≨		
11		1.8
3		
4		
5		:
《6巻		
7.		
第8章 第0章		
A		<u> </u>
₫ВӲ		
₹C#		
D	10.0	
窓E 湾		
楽片祭		

		
Detector	332 Input	Detector
Name	File	Number
	111	14
	212U	1
	2l2L	5
	213U	21
	2 3L	25
	214	9
	315	16
:	4I6U	3
	416L	. 7
	417U	23
	417L	27
	418	11
	119U	18
	319L	20

	2	4 = 4
Row	Delay	Carry- over
* o *		
型1章		1.8
2	•	
23元		
4 / 5		
₹5.		
6		
₹7 ∻		
. 8‰		
*9		
EA T		
⊗B#		
C		
₽D.	-	
≨E ₹	·	
意F準		
	Detector Delay & Ca	arryover <d page=""></d>

Detector Name	332 Input File	Detector Number
	5J1	13
	6J2U	2
	6J2L	6
	6J3U	22
:	6J3L	26
	6J4	10
	7J5	15
	8J6U	4
	8J6L	8
	8J7U	24
	8J7L	28
	8J8	12
	5J9U	17
	7J9L	19

D + X (across) + ROW

	Ro	W	
4	<u> </u>		
	ŒΕ		
	C		
	C	1	
	§E	W	*
	F		

Detector Numbers	A PART EN SER
1 2.3 4 5 6 7 8	12345678
9 10 11 12	1234
13 14 15 16 17 18 19 20	12345678
21 22 23 24	5678
	1234
25 26 27 28	_2345

Active Detectors <D Page>

	Row	
	0	E,
	13	
	2	
W	3	教育を
瓣	4	
	5 -	
	6	
	7	4
P.A	8	2

	0: 200
	Detector #
System Det. # 1	
System Det. # 2	0
System Det. # 3	0
System Det. # 4	0
System Det. # 5	0
System Det. # 6	0
System Det. # 7	0
System Det. # 8	0

System Detectors <D Page>

Max ON (min)	5	D+A+E
Max OFF (min)	60	D+A+F

Detector Failure Monitor

Phase Number	0 F+C+1
Time Before Yellow	0.0 F+C+3

Advance Warning Beacon - Sign 1

Phase Number	0 F+D+1
Time Before Yellow	0.0 F+D+3

Advance Warning Beacon - Sign 2

Long Failure	0.5 F+0+6
Short Failure	0.5 F+0+7

Power Cycle Correction (Default = 0.5) (These parameters are NOT downloaded.)

Appendix I

Existing LOS and Queuing Worksheets

	۶	→	•	•	←	4	4	†	/	/	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	7	ሻ	4		7	^	7	ሻ	∱ ∱	
Traffic Volume (vph)	83	67	209	509	99	56	85	709	313	64	790	23
Future Volume (vph)	83	67	209	509	99	56	85	709	313	64	790	23
ldeal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.1	4.4	4.9	4.9		4.4	5.1	4.9	4.4	6.6	
Lane Util. Factor		1.00	1.00	0.95	0.95		1.00	0.95	1.00	1.00	0.95	
Frpb, ped/bikes		1.00	0.99	1.00	0.99		1.00	1.00	0.98	1.00	1.00	
Flpb, ped/bikes		1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Frt		1.00	0.85	1.00	0.97		1.00	1.00	0.85	1.00	1.00	
FIt Protected		0.97	1.00	0.95	0.97		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)		1795	1553	1665	1640		1752	3505	1539	1752	3487	
Flt Permitted		0.97	1.00	0.95	0.97		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (perm)		1795	1553	1665	1640		1752	3505	1539	1752	3487	
Peak-hour factor, PHF	0.70	0.70	0.70	0.79	0.79	0.79	0.69	0.69	0.69	0.95	0.95	0.95
Adj. Flow (vph)	119	96	299	644	125	71	123	1028	454	67	832	24
RTOR Reduction (vph)	0	0	0	0	6	0	0	0	132	0	1	0
Lane Group Flow (vph)	0	215	299	419	415	0	123	1028	322	67	855	0
Confl. Peds. (#/hr)						58			5			5
Confl. Bikes (#/hr)			5			5			5			5
Turn Type	Split	NA	pm + ov	Split	NA		Prot	NA	pm + ov	Prot	NA	
Protected Phases	4	4	5	3	3		5	2	3	1	6	
Permitted Phases			4						2			
Actuated Green, G (s)		15.6	27.5	33.1	33.1		11.9	41.3	74.4	5.5	33.4	
Effective Green, g (s)		15.6	27.5	33.1	33.1		11.9	41.3	74.4	5.5	33.4	
Actuated g/C Ratio		0.14	0.24	0.29	0.29		0.10	0.36	0.65	0.05	0.29	
Clearance Time (s)		5.1	4.4	4.9	4.9		4.4	5.1	4.9	4.4	6.6	
Vehicle Extension (s)		3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)		243	371	479	472		181	1258	995	83	1012	
v/s Ratio Prot		c0.12	c0.08	0.25	c0.25		0.07	c0.29	0.09	0.04	0.25	
v/s Ratio Perm			0.11						0.12			
v/c Ratio		0.88	0.81	0.87	0.88		0.68	0.82	0.32	0.81	0.84	
Uniform Delay, d1		48.8	41.2	39.0	39.0		49.7	33.4	9.1	54.2	38.4	
Progression Factor		1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2		29.3	12.0	16.2	16.7		9.7	4.2	0.2	41.7	6.6	
Delay (s)		78.2	53.3	55.1	55.7		59.4	37.7	9.3	95.9	44.9	
Level of Service		E	D	E	E		E	D	A	F	D	
Approach Delay (s)		63.7			55.4			31.3			48.6	
Approach LOS		E			E			C			D	
Intersection Summary												
HCM 2000 Control Delay			44.9	HC	CM 2000 Lev	vel of Servi	ce		D			
HCM 2000 Volume to Capacity ratio			0.88									
Actuated Cycle Length (s)			115.0		ım of lost tiı				21.0			
Intersection Capacity Utilization			75.8%	IC	U Level of S	ervice			D			
Analysis Period (min)			15									

c Critical Lane Group

4: College Ave & I-8 WB Ramp

	۶	→	•	•	←	4	1	†	<i>></i>	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				44		7		^	7		^	7
Traffic Volume (vph)	0	0	0	269	0	130	0	964	395	0	742	766
Future Volume (vph)	0	0	0	269	0	130	0	964	395	0	742	766
ldeal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)				5.5		5.5		5.5	4.0		5.5	5.5
Lane Util. Factor				0.97		1.00		0.95	1.00		0.95	1.00
Frpb, ped/bikes				1.00		0.97		1.00	0.97		1.00	1.00
Flpb, ped/bikes				1.00		1.00		1.00	1.00		1.00	1.00
Frt				1.00		0.85		1.00	0.85		1.00	0.85
Flt Protected				0.95		1.00		1.00	1.00		1.00	1.00
Satd. Flow (prot)				3400		1529		3505	1526		3505	1568
Flt Permitted				0.95		1.00		1.00	1.00		1.00	1.00
Satd. Flow (perm)				3400		1529		3505	1526		3505	1568
Peak-hour factor, PHF	0.92	0.92	0.92	0.69	0.69	0.69	0.74	0.74	0.74	0.93	0.93	0.93
Adj. Flow (vph)	0	0	0	390	0	188	0	1303	534	0	798	824
RTOR Reduction (vph)	0	0	0	0	0	31	0	0	0	0	0	407
Lane Group Flow (vph)	0	0	0	390	0	157	0	1303	534	0	798	417
Confl. Peds. (#/hr)						10			10			
Confl. Bikes (#/hr)			5			5			5			5
Turn Type				Perm		Perm		NA	Free		NA	Prot
Protected Phases								8			4	4
Permitted Phases				6		6			Free			
Actuated Green, G (s)				18.6		18.6		30.4	60.0		30.4	30.4
Effective Green, g (s)				18.6		18.6		30.4	60.0		30.4	30.4
Actuated g/C Ratio				0.31		0.31		0.51	1.00		0.51	0.51
Clearance Time (s)				5.5		5.5		5.5			5.5	5.5
Vehicle Extension (s)				3.0		3.0		3.0			3.0	3.0
Lane Grp Cap (vph)				1054		473		1775	1526		1775	794
v/s Ratio Prot								c0.37			0.23	0.27
v/s Ratio Perm				0.11		0.10			c0.35			
v/c Ratio				0.37		0.33		0.73	0.35		0.45	0.53
Uniform Delay, d1				16.1		15.9		11.6	0.0		9.5	10.0
Progression Factor				1.00		1.00		1.00	1.00		1.00	1.00
Incremental Delay, d2				1.0		1.9		1.6	0.6		0.2	0.6
Delay (s)				17.1		17.8		13.2	0.6		9.6	10.6
Level of Service				В		В		В	A		A	В
Approach Delay (s)		0.0			17.3			9.6			10.1	
Approach LOS		A			В			A			В	
Intersection Summary												
HCM 2000 Control Delay			10.9	HC	M 2000 Le	vel of Servic	е		В			
HCM 2000 Volume to Capacity ratio			0.63									
Actuated Cycle Length (s)			60.0		m of lost ti				11.0			
Intersection Capacity Utilization			52.0%	IC	U Level of S	ervice			A			
Analysis Period (min)			15									
o Critical Lana Croun												

c Critical Lane Group

	۶	→	•	•	←	•	•	†	<i>></i>	/	+	-√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	7	ሻ	4		ሻ	^	7	ሻ	∱ ⊅	
Traffic Volume (vph)	37	30	112	344	32	77	119	625	389	95	610	24
Future Volume (vph)	37	30	112	344	32	77	119	625	389	95	610	24
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.1	4.4	4.9	4.9		4.4	5.1	4.9	4.4	6.6	
Lane Util. Factor		1.00	1.00	0.95	0.95		1.00	0.95	1.00	1.00	0.95	
Frpb, ped/bikes		1.00	0.99	1.00	0.99		1.00	1.00	0.98	1.00	1.00	
Flpb, ped/bikes		1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Frt		1.00	0.85	1.00	0.95		1.00	1.00	0.85	1.00	0.99	
Fit Protected		0.97	1.00	0.95	0.98		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)		1795	1558	1665	1608		1752	3505	1539	1752	3481	
Fit Permitted		0.97	1.00	0.95	0.98		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	0.70	1795	1558	1665	1608	2.05	1752	3505	1539	1752	3481	2.25
Peak-hour factor, PHF	0.73	0.73	0.73	0.95	0.95	0.95	0.91	0.91	0.91	0.95	0.95	0.95
Adj. Flow (vph)	51	41	153	362	34	81	131	687	427	100	642	25
RTOR Reduction (vph)	0	0	0	0	16	0	0	0	172	0	2	0
Lane Group Flow (vph)	0	92	153	243	218	0	131	687	255	100	665	0
Confl. Peds. (#/hr)			_			5			5			5
Confl. Bikes (#/hr)	• "		5	• "		5			5			5
Turn Type	Split	NA	pm+ov	Split	NA		Prot	NA	pm + ov	Prot	NA	
Protected Phases	4	4	5	3	3		5	2	3	1	6	
Permitted Phases		0.4	4	01.0	01.0		10.0	20.0	2	0.4	00.0	
Actuated Green, G (s)		8.4	21.3	21.6	21.6		12.9	32.2	53.8	8.4	26.2	
Effective Green, g (s)		8.4	21.3 0.24	21.6	21.6		12.9	32.2	53.8	8.4 0.09	26.2	
Actuated g/C Ratio		0.09 5.1	4.4	0.24 4.9	0.24 4.9		0.14 4.4	0.36 5.1	0.60 4.9	4.4	0.29 6.6	
Clearance Time (s) Vehicle Extension (s)		3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	
					385							
Lane Grp Cap (vph) v/s Ratio Prot		167	368 0.06	399			250	1252 0.20	918 0.07	163 0.06	1012	
•		c0.05	0.00	c0.15	0.14		c0.07	0.20	0.07	0.00	c0.19	
v/s Ratio Perm v/c Ratio		0.55	0.42	0.61	0.57		0.52	0.55	0.10	0.61	0.66	
Uniform Delay, d1		39.0	29.1	30.5	30.1		35.8	23.1	8.8	39.3	28.0	
Progression Factor		1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2		3.9	0.8	2.6	1.00		2.0	0.5	0.2	6.7	1.6	
Delay (s)		42.9	29.9	33.1	32.0		37.7	23.6	8.9	46.0	29.6	
Level of Service		42.3 D	23.3 C	C	C C		01.1 D	20.0 C	0.5 A	40.0 D	23.0 C	
Approach Delay (s)		34.8	U	U	32.6		J	20.1	n	D	31.7	
Approach LOS		C			C			C			C	
Intersection Summary			00.0	110	M 2000 I	ual of Carri			0			
HCM 2000 Control Delay			26.8	HU	M 2000 Le	vei ot Servi	ce		C			
HCM 2000 Volume to Capacity ratio			0.60	r	m of last !!	ma (a)			01.0			
Actuated Cycle Length (s)			90.1		m of lost ti				21.0			
Intersection Capacity Utilization			58.6%	16	U Level of S	ervice			В			
Analysis Period (min)			15									

c Critical Lane Group

	۶	→	•	•	←	4	1	†	~	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				1,1		7		^	7		^	7
Traffic Volume (vph)	0	0	0	446	0	295	0	874	1053	0	576	487
Future Volume (vph)	0	0	0	446	0	295	0	874	1053	0	576	487
ldeal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)				5.5		5.5		5.5	4.0		5.5	5.5
Lane Util. Factor				0.97		1.00		0.95	1.00		0.95	1.00
Frpb, ped/bikes				1.00		0.99		1.00	0.98		1.00	1.00
Flpb, ped/bikes				1.00		1.00		1.00	1.00		1.00	1.00
Frt				1.00		0.85		1.00	0.85		1.00	0.85
Flt Protected				0.95		1.00		1.00	1.00		1.00	1.00
Satd. Flow (prot)				3400		1545		3505	1530		3505	1568
Flt Permitted				0.95		1.00		1.00	1.00		1.00	1.00
Satd. Flow (perm)				3400		1545		3505	1530		3505	1568
Peak-hour factor, PHF	0.92	0.92	0.92	0.97	0.97	0.97	0.98	0.98	0.98	0.92	0.92	0.92
Adj. Flow (vph)	0	0	0	460	0	304	0	892	1074	0	626	529
RTOR Reduction (vph)	0	0	0	0	0	40	0	0	0	0	0	332
Lane Group Flow (vph)	0	0	0	460	0	264	0	892	1074	0	626	197
Confl. Peds. (#/hr)									5			
Confl. Bikes (#/hr)						5			5			5
Turn Type				Perm		Perm		NA	Free		NA	Prot
Protected Phases								8			4	4
Permitted Phases				6		6			Free			
Actuated Green, G (s)				26.7		26.7		22.3	60.0		22.3	22.3
Effective Green, g (s)				26.7		26.7		22.3	60.0		22.3	22.3
Actuated g/C Ratio				0.44		0.44		0.37	1.00		0.37	0.37
Clearance Time (s)				5.5		5.5		5.5			5.5	5.5
Vehicle Extension (s)				3.0		3.0		3.0			3.0	3.0
Lane Grp Cap (vph)				1513		687		1302	1530		1302	582
v/s Ratio Prot								0.25			0.18	0.13
v/s Ratio Perm				0.14		0.17			c0.70			
v/c Ratio				0.30		0.38		0.69	0.70		0.48	0.34
Uniform Delay, d1				10.7		11.1		15.9	0.0		14.4	13.5
Progression Factor				1.00		1.00		1.00	1.00		1.00	1.00
Incremental Delay, d2				0.5		1.6		1.5	2.7		0.3	0.3
Delay (s)				11.2		12.8		17.4	2.7		14.7	13.9
Level of Service				В		В		В	A		В	В
Approach Delay (s)		0.0			11.8			9.4			14.3	
Approach LOS		A			В			A			В	
Intersection Summary												
HCM 2000 Control Delay			11.3	HC	M 2000 Le	vel of Servic	e		В			
HCM 2000 Volume to Capacity ratio			0.86									
Actuated Cycle Length (s)			60.0	Su	m of lost ti	me (s)			11.0			
Intersection Capacity Utilization			51.6%		U Level of S				A			
Analysis Period (min)			15									
o Critical Lana Croun												

c Critical Lane Group

	۶	→	•	•	←	•	4	†	/	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ર્ન	7	7	4		ň	^	7	7	ħβ	
Traffic Volume (vph)	32	33	92	353	20	94	87	483	308	80	516	7
Future Volume (vph)	32	33	92	353	20	94	87	483	308	80	516	7
ldeal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.1	4.4	4.9	4.9		4.4	5.1	4.9	4.4	6.6	
Lane Util. Factor		1.00	1.00	0.95	0.95		1.00	0.95	1.00	1.00	0.95	
Frpb, ped/bikes		1.00	0.99	1.00	0.99		1.00	1.00	0.98	1.00	1.00	
Flpb, ped/bikes		1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Frt		1.00	0.85	1.00	0.94		1.00	1.00	0.85	1.00	1.00	
FIt Protected		0.98	1.00	0.95	0.98		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)		1800	1557	1665	1590		1752	3505	1541	1752	3496	
FIt Permitted		0.98	1.00	0.95	0.98		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (perm)		1800	1557	1665	1590		1752	3505	1541	1752	3496	
Peak-hour factor, PHF	0.84	0.84	0.84	0.95	0.95	0.95	0.92	0.92	0.92	0.88	0.88	0.88
Adj. Flow (vph)	38	39	110	372	21	99	95	525	335	91	586	8
RTOR Reduction (vph)	0	0	0	0	21	0	0	0	143	0	1	0
Lane Group Flow (vph)	0	77	110	253	218	0	95	525	192	91	593	0
Confl. Peds. (#/hr)						5			5			5
Confl. Bikes (#/hr)			5			5			5			5
Turn Type	Split	NA	pm + ov	Split	NA		Prot	NA	pm + ov	Prot	NA	
Protected Phases	4	4	5	3	3		5	2	3	1	6	
Permitted Phases			4						2			
Actuated Green, G (s)		7.4	18.1	20.2	20.2		10.7	26.7	46.9	8.0	22.5	
Effective Green, g (s)		7.4	18.1	20.2	20.2		10.7	26.7	46.9	8.0	22.5	
Actuated g/C Ratio		0.09	0.22	0.25	0.25		0.13	0.33	0.57	0.10	0.28	
Clearance Time (s)		5.1	4.4	4.9	4.9		4.4	5.1	4.9	4.4	6.6	
Vehicle Extension (s)		3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)		162	344	411	392		229	1144	883	171	961	
v/s Ratio Prot		c0.04	0.04	c0.15	0.14		0.05	c0.15	0.05	c0.05	c0.17	
v/s Ratio Perm			0.03						0.07			
v/c Ratio		0.48	0.32	0.62	0.56		0.41	0.46	0.22	0.53	0.62	
Uniform Delay, d1		35.4	26.7	27.4	26.9		32.7	21.8	8.5	35.1	25.9	
Progression Factor		1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2		2.2	0.5	2.7	1.7		1.2	0.3	0.1	3.2	1.2	
Delay (s)		37.5	27.2	30.1	28.6		33.9	22.1	8.6	38.3	27.1	
Level of Service		D	C	C	C		C	C	A	D	C	
Approach Delay (s)		31.5			29.4			18.6			28.6	
Approach LOS		C			C			В			C	
Intersection Summary												
HCM 2000 Control Delay			24.8	HC	M 2000 Le	vel of Servi	ce		C			
HCM 2000 Volume to Capacity ratio			0.56									
Actuated Cycle Length (s)			81.8	Su	m of lost ti	me (s)			21.0			
Intersection Capacity Utilization			54.5%		U Level of S				A			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	•	←	4	1	†	<i>></i>	/	†	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				ቪኒ		7		^	7		^	7
Traffic Volume (vph)	0	0	0	239	0	242	0	607	515	0	344	590
Future Volume (vph)	0	0	0	239	0	242	0	607	515	0	344	590
ldeal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)				5.5		5.5		5.5	4.0		5.5	5.5
Lane Util. Factor				0.97		1.00		0.95	1.00		0.95	1.00
Frpb, ped/bikes				1.00		0.99		1.00	0.97		1.00	1.00
Flpb, ped/bikes				1.00		1.00		1.00	1.00		1.00	1.00
Frt				1.00		0.85		1.00	0.85		1.00	0.85
Flt Protected				0.95		1.00		1.00	1.00		1.00	1.00
Satd. Flow (prot)				3400		1546		3505	1526		3505	1568
Flt Permitted				0.95		1.00		1.00	1.00		1.00	1.00
Satd. Flow (perm)				3400		1546		3505	1526		3505	1568
Peak-hour factor, PHF	0.92	0.92	0.92	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	0	0	0	257	0	260	0	653	554	0	370	634
RTOR Reduction (vph)	0	0	0	0	0	85	0	0	0	0	0	433
Lane Group Flow (vph)	0	0	0	257	0	175	0	653	554	0	370	201
Confl. Peds. (#/hr)									10			
Confl. Bikes (#/hr)						5			5			5
Turn Type				Perm		Perm		NA	Free		NA	Prot
Protected Phases								8	_		4	4
Permitted Phases				6		6			Free			
Actuated Green, G (s)				30.0		30.0		19.0	60.0		19.0	19.0
Effective Green, g (s)				30.0		30.0		19.0	60.0		19.0	19.0
Actuated g/C Ratio				0.50		0.50		0.32	1.00		0.32	0.32
Clearance Time (s)				5.5		5.5		5.5			5.5	5.5
Vehicle Extension (s)				3.0		3.0		3.0			3.0	3.0
Lane Grp Cap (vph)				1700		773		1109	1526		1109	496
v/s Ratio Prot						0.44		c0.19			0.11	0.13
v/s Ratio Perm				0.08		0.11			c0.36			
v/c Ratio				0.15		0.23		0.59	0.36		0.33	0.40
Uniform Delay, d1				8.1		8.5		17.2	0.0		15.7	16.1
Progression Factor				1.00		1.00		0.70	1.00		1.00	1.00
Incremental Delay, d2				0.2		0.7		0.7	0.6		0.2	0.5
Delay (s)				8.3		9.1		12.8	0.6		15.8	16.6
Level of Service		0.0		A	0.7	A		B	A		B	В
Approach Delay (s)		0.0			8.7			7.2			16.3	
Approach LOS		A			A			A			В	
Intersection Summary												
HCM 2000 Control Delay			10.8	HC	M 2000 Le	vel of Servi	ce		В			
HCM 2000 Volume to Capacity ratio			0.49									
Actuated Cycle Length (s)			60.0		m of lost ti				11.0			
Intersection Capacity Utilization			41.1%	IC	U Level of S	ervice			A			
Analysis Period (min)			15									
c Critical Lane Group												

c Critical Lane Group

	۶	→	•	•	←	•	1	†	~	-		1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1,4		777					^	7		^	7
Traffic Volume (vph)	448	0	508	0	0	0	0	709	222	0	390	207
Future Volume (vph)	448	0	508	0	0	0	0	709	222	0	390	207
ldeal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0		4.0					5.0	5.0		5.0	4.0
Lane Util. Factor	0.97		0.76					0.95	1.00		0.95	1.00
Frpb, ped/bikes	1.00		1.00					1.00	0.97		1.00	1.00
Flpb, ped/bikes	1.00		1.00					1.00	1.00		1.00	1.00
Frt	1.00		0.85					1.00	0.85		1.00	0.85
Flt Protected	0.95		1.00					1.00	1.00		1.00	1.00
Satd. Flow (prot)	3400		3575					3505	1526		3505	1568
Flt Permitted	0.95		1.00					1.00	1.00		1.00	1.00
Satd. Flow (perm)	3400		3575					3505	1526		3505	1568
Peak-hour factor, PHF	0.95	0.95	0.95	0.92	0.92	0.92	0.93	0.93	0.93	0.97	0.97	0.97
Adj. Flow (vph)	472	0	535	0	0	0	0	762	239	0	402	213
RTOR Reduction (vph)	0	0	119	0	0	0	0	0	82	0	0	0
Lane Group Flow (vph)	472	0	416	0	0	0	0	762	157	0	402	213
Confl. Peds. (#/hr)									5			
Confl. Bikes (#/hr)									5			
Turn Type	Prot		Prot					NA	Perm		NA	Free
Protected Phases	1		6					2 4			8	
Permitted Phases									2 4			Free
Actuated Green, G (s)	12.6		36.0					39.4	39.4		15.0	60.0
Effective Green, g (s)	12.6		36.0					39.4	39.4		15.0	60.0
Actuated g/C Ratio	0.21		0.60					0.66	0.66		0.25	1.00
Clearance Time (s)	4.0		4.0								5.0	
Vehicle Extension (s)	3.0		3.0								3.0	
Lane Grp Cap (vph)	714		2145					2301	1002		876	1568
v/s Ratio Prot	c0.14		0.12					c0.22			c0.11	
v/s Ratio Perm			· · · · ·						0.10			0.14
v/c Ratio	0.66		0.19					0.33	0.16		0.46	0.14
Uniform Delay, d1	21.7		5.4					4.5	3.9		19.1	0.0
Progression Factor	1.00		1.00					1.00	1.00		1.36	1.00
Incremental Delay, d2	2.3		0.2					0.1	0.1		1.7	0.2
Delay (s)	24.0		5.6					4.6	4.0		27.7	0.2
Level of Service	C		A					A	A		C	A
Approach Delay (s)	_	14.3			0.0			4.5			18.1	••
Approach LOS		В			A			A			В	
Intersection Summary												
HCM 2000 Control Delay			11.4	HC	M 2000 Le	vel of Servi	ce		В			
HCM 2000 Volume to Capacity ratio			0.48									
Actuated Cycle Length (s)			60.0	Su	m of lost ti	me (s)			14.0			
Intersection Capacity Utilization			39.9%		U Level of S				A			
Analysis Period (min)			15									
c Critical Lane Group												

Intersection: 14: College Ave & I-8 WB Ramp

Movement	WB	WB	WB	NB	NB	SB	SB
Directions Served	L	L	R	T	Т	T	T
Maximum Queue (ft)	46	120	80	174	160	112	155
Average Queue (ft)	14	63	3	66	72	55	57
95th Queue (ft)	38	105	26	127	132	95	109
Link Distance (ft)			1098	1059	1059	1034	1034
Upstream Blk Time (%)							
Queuing Penalty (veh)							
Storage Bay Dist (ft)	150	150					
Storage Blk Time (%)							
Queuing Penalty (veh)							

Intersection: 15: College Ave & I-8 EB Ramp

Movement	EB	EB	EB	EB	NB	NB	SB	SB	
Directions Served	L	L	R	R	Т	T	T	T	
Maximum Queue (ft)	142	154	386	318	118	139	113	116	
Average Queue (ft)	115	148	158	48	70	64	71	82	
95th Queue (ft)	188	168	383	226	112	117	104	118	
Link Distance (ft)			920	920	672	672	1059	1059	
Upstream Blk Time (%)									
Queuing Penalty (veh)									
Storage Bay Dist (ft)	130	130							
Storage Blk Time (%)	1	25				0			
Queuing Penalty (veh)	2	43				0			

Network Summary

Network wide Queuing Penalty: 45

Appendix J

All Peoples Church Vehicle Occupancy Data

Vehicle Occupancy Summary from All Peoples Church at 5555 University Avenue, San Diego Data on the next few pages

Sunday 12/2/18 11:30 AM service

Vehicles 39 People 85 Occupancy 2.18

Sunday 12/9/18 10 AM service

Vehicles People 202 2.15 Occupancy

Sunday 11/10/19 8:30 AM service

Vehicles 61 People 130 Occupancy 2.13

Sunday 11/10/19 10:00 AM service

Vehicles 61 People 152 2.49 Occupancy

Sunday 11/17/19 8:30 AM service

Vehicles 73 People 184 Occupancy 2.52

Weighted Average

Vehicles 328 People 753 Avg Occupancy 2.30

Vehicle Occupancy from All Peoples Church at 5555 University Avenue, San Diego
--

Sunday '		11:30 AM service		2/9/18 10 AM		ity Avenue,	Can Diego
Vehicle				Occupancy		Occupano	ev
1	1	,	1	3	53	2	,
2	3		2	4	54	2	
3	3		3	2	55	2	
4	2		4	2	56	2	
5	4		5	4	57	2	
6	1		6	4	58	2	
7	2		7	3	59	1	
8	2		8	2	60	1	
9	3		9	3	61	2	
10	2		10	2	62	1	
11	2		11	2	63	2	
12	1		12	2	64	1	
13	2		13	2	65	2	
14	3		14	3	66	2	
15	2		15	1	67	2	
16	1		16	4	68	1	
17	2		17	2	69	1	
18	2		18	2	70	1	
19	3		19	3	71	2	
20	2		20	2	72	3	
21	6		21	3	73	1	
22	1		22	3	74	2	
23	2		23	2	75	1	
24	1		24	1	76	1	
25	2		25	4	77	1	
26	1		26	3	78	3	
27	2		27	2	79	1	
28	2		28	1	80	3	
29	1		29	4	81	1	
30	2		30	2	82	2	
31	6		31	2	83	2	
32	1		32	2	84	1	
33	2		33	1	85	3	
34	2		34	2	86	5	
35	1		35	6	87	3	
36	4		36	1	88	4	
37	3		37	1	89	1	
38	1		38	2	90	2	
39	2		39	3	91	3	
	85	Total Persons	40	2	92	2	
	2.18	Avg Veh Occupancy	41	1	93	2	
			42	1	94	3	
			43	6		202	Total Persons
			44	1		2.15	Avg Veh Occupancy
			45	1			
			46	3			
			47	1			
			48	1			
			49	1			
			50	1			
			51	2			
			52	3			

Cundou						555 University			
	11/10/19 8:30					1/10/19 10:00			
	Occupancy					Occupancy			;y
1 2	1	53 54	2		1 2	5	53 54	2	
	3		4		3	3		3	
3 4	1	55 56	1		3 4	2	55 56	3	
	4	56	2			2	56 57	1	
5	1	57	1		5	3	57	1	
6	1	58	3		6	2	58	1	
7	2	59	2		7	2	59	2	
8	3	60	3		8	1	60	5	
9	5	61	1		9	3	61	3	
10	3		130	People	10	2		152	People
11	2		2.13	Occupancy	11	3		2.49	Occupancy
12	1				12	1			
13	3				13	2			
14	1				14	3			
15	2				15	1			
16	2				16	5			
17	2				17	5			
18	3				18	2			
19	3				19	3			
20	2				20	2			
21	4				21	3			
22	2				22	2			
23	1				23	1			
24	7				24	1			
25	3				25	2			
26	1				26	1			
27	6				27	2			
28	1				28	2			
29	1				29	5			
30	1				30	4			
31	2				31	4			
32	1				32	2			
33	1				33	2			
34	4				34	3			
35	2				35	4			
36	3				36	3			
37	1				37	2			
38	2				38	1			
39	3				39	2			
40	1				40	2			
41	1				41	5			
42	1				42	2			
43	2				43	1			
44	1				44	2			
45					45	4			
45 46	2 2				46	3			
46 47	2				46 47	3 2			
47 48						2			
48 49	4				48 49	2 2			
	1								
50	1				50	1			
51 52	1				51 52	4			
52	1				52	3			

Vehicle Occupancy from All Peoples Church at 5555 University Avenue, San Diego

Sunday	11/17/19	8:30 AM	service
--------	----------	---------	---------

	11/17/19 8:30			•
Vehicle	Occupancy		Occupancy	
1	1	53	2	
2	1	54	4	
3	2	55	2	
4	1	56	2	
5	2	57	3	
6	2	58	1	
7	5	59	2	
8	1	60	1	
9	2	61	3	
10	4	62	3	
11	1	63	1	
12	3	64	2	
13	3	65	1	
14	1	66	4	
15	1	67	1	
16	5	68	3	
17	5	69	6	
18	2	70	2	
19	1	71	4	
20	1	72	5	
21	6	73	4	
22	1		184	People
23	2		2.52	Occupancy
24	6			
25	3			
26	5			
27	3			
28	1			
29	2			
30	2			
31	1			
32	3			
33	1			
34	2			
35	6			
36	2			
37	2			
38	2 3 2 3 2 2 4			
39	2			
40	3			
41	2			
42	2			
43	4			
44	2			
45	2			
46	5			
47	1			
48	3			
49	2			
50	2			
51	1			
52	2			

Appendix K

All Peoples Church Zip Code Data

Zip Code	Church Attendees	Percentage	9		
91901		1.7%			
91902		0.7%			
91903		0.2%			
91910		0.2%			
91911		0.5%			
91913		0.4%			
91914		0.2%			
91915		0.6%			
91916		1.0%			
91932		1.0%			
91935		0.8%			
91941		4.9%			
91942	? 74	6.8%			
91945	5 11	1.0%			
91950	4	0.4%			
91977		4.0%			
91978		2.2%			
92019		2.3%			
92020		3.8%			
92021		3.9%			
92024		0.4%			
92027		0.4%			
92037		2.0%			
92040		1.9%			
92064		0.9%			
92065		0.3%			
92069		0.2%			
92071		2.6%			
92092		0.3% 0.9%			
92101 92102		0.9%			
92103		1.7%			
92104		1.7%			
92105		5.3%	Current Church Locati	ion	
92106		5.6%	_		
92107		1.4%			
92108	8	0.7%			
92109	13	1.2%	Remaining Z	ip Codes w	ith one
92110	18	1.7%	or two perso	ns who atte	end service
92111		2.4%			
92114		0.5%	90018	92026	92175
92115		10.1%	90274	92029	92178
92116		1.2%	90630	92054	92346
92117		1.6%	90706	92072	92675
92118		0.6%	91006	92078	92806
92119 92120		1.8% 2.5%	91104 91944	92081	92867
92120		2.5% 1.5%	92008	92112 92113	92879
92123		1.3%	92015	92113	92977 93111
92124		1.9%	92016	92121	93427
92126		0.8%	92010	92126	95032
92127		0.3%		92165	95037
92129		0.6%		02100	95135
92130		0.5%			95662
92131		0.9%			95991
92139		0.3%			
92154		1.0%			
92173		0.3%			
	1048	96%			
Remaining Zip Codes:	39	4%			
Totals	1087	100%			

Appendix L

Caltrans Intersection Spacing Correspondence

RE: Signal distance from ramp criteria question

Armstrong, Jacob M@DOT < jacob.armstrong@dot.ca.gov>

Mon 12/10/2018 3:28 PM

To: Justin Rasas < Justin@losengineering.com>

Cc: Will Mack <wmack@plsaengineering.com>; Mccumsey, Mark@DOT <mark.mccumsey@dot.ca.gov>

Hi Justin,

Thanks for reaching out to us on this project. Our HDM Ch. 500, states that "the minimum distance (curb return to curb return) between ramp intersections and local road intersections shall be 400 feet. The preferred minimum distance should be 500 feet. Where intersections are closely spaced, traffic operations are often inhibited by short weave distance, storage lengths, and signal phasing". You should also consider the off-ramp is a free right move. The main thing we would want to see is your traffic analysis with the new signal and any potential operational issues it may present with the off-ramp. We also could look at signal coordination with our ramp signals, but you still have the free right move from the off-ramp. I would recommend you provide us an early review of your traffic study and we can take a look, and if needed coordinate with the City. Thanks

Jacob Armstrong, Branch Chief District 11 Planning Dept. CA Dept. of Transportation 4050 Taylor Street MS-240 San Diego, CA 92110 ph: (619) 688-6960

cell: (619) 709-4345

From: Justin Rasas < Justin@losengineering.com>

Sent: Friday, December 7, 2018 3:04 PM

To: Armstrong, Jacob M@DOT < jacob.armstrong@dot.ca.gov>

Cc: Will Mack <wmack@plsaengineering.com> **Subject:** Signal distance from ramp criteria question

Hi Jacob,

Happy Friday!

Here's a question for next week. My client is proposing a Church on the northeast corner of I-8 at College Avenue. This site is the slender L shaped parcel between College Ave and homes along Marne Ave. Access is planned to be signalized and is located approximately 840 feet (center line to center line) from the off-ramp. It's closer to Del Cerro (approx. 550 feet).

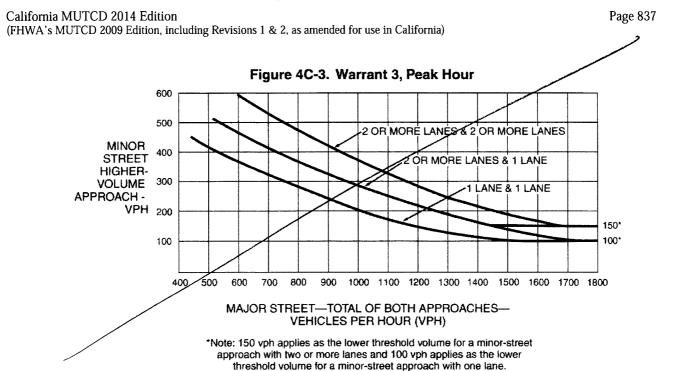
What is the criteria for Caltrans to either require an interconnect or specific spacing from an interchange intersection? If you could point me in the right direction it would be great.

Thanks, Justin Rasas, P.E. (RCE 60690), PTOE Principal

LOS Engineering, Inc. 11622 El Camino Real, Suite 100 San Diego, CA 92130

Appendix M

Signal Warrant Calculations



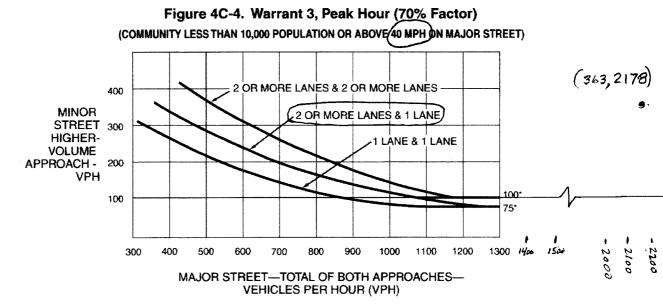

California MUTCD 2014 Edition (FHWA's MUTCD 2009 Edition, including Revisions 1 & 2, as amended for use in California)

Figure 4C-101 (CA). Traffic Signal Warrants Worksheet (Sheet 2 of 5)

WARRANT 2 - Four Hour Vehicular \	/olume	SATISFIED	YES 🗆	NO □	
Record hourly vehicular volumes for any for	ur hours of an average	day.			
APPROACH LANES	2 or One More	Hour			
Both Approaches - Major Street					
Higher Approach - Minor Street					
*All plotted points fall above the applicable	e curve in Figure 4C-1.	(URBAN AREAS)	Yes 🗆	No 🗆	
OR, All plotted points fall above the applic	able curve in Figure 4	C-2. (RURAL AREAS)	Yes 🗆	No 🗆	
WARRANT 3 - Peak Hour (Part A or Part B must be satisfied)		SATISFIED	YES 🗵	NO 🗆	
PART A (All parts 1, 2, and 3 below must be satione hour, for any four consecutive 15-r		SATISFIED	YES 🗆	NO 🗆	
The total delay experienced by traffic on controlled by a STOP sign equals or excapproach, or five vehicle-hours for a two	one minor street appr	oach (one direction only rs for a one-lane	Yes 🗆	No 🗆	
The volume on the same minor street ap 100 vph for one moving lane of traffic or	pproach (one direction 150 vph for two movir	only) equals or exceeds ag lanes; <u>AND</u>	Yes 🗆	No 🗆	
The total entering volume serviced during for intersections with four or more approaches.			Yes 🗆	No 🗆	
PART B	M	SATISFIED	YES 💆	NO 🗆	
APPROACH LANES	One More	Hour		. > ^ -	750
Both Approaches - Major Street	V 2178	OPENING VOLUME	9 YEAR	, + PICE	Jec
Higher Approach - Minor Street	✓ 363) VOLUMI	=3.		
The plotted point falls above the applicable	e curve in Figure 4C-3	(URBAN AREAS)	Yes 🗆	No 🗆	NA .
OR, The plotted point falls above the appl	icable curve in Figure	4C-4. (RURAL AREAS)	Yes 🗵	No 🗆	

The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal.



*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

Appendix N

College Ave/Project Main Access Preliminary Signal Design

ALL PEOPLES CHURCH SATELLITE OVERLAY OF PROPOSED SIGNALIZED INTERSECTION

ALL PEOPLES CHURCH INTERSECTION EXHIBT

SAN DIEGO, CA PROJECT NUMBER: PLSA 2936 SCALE: 1" = 20' DATE: NOVEMBER 5, 2020

PASCO LARET SUITER

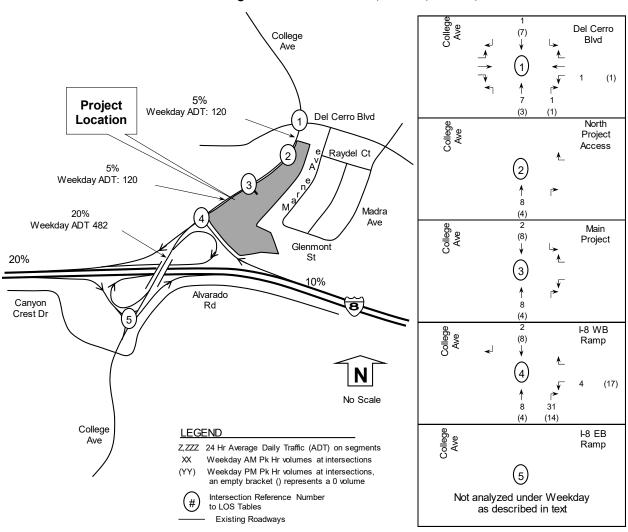
& ASSOCIATES

CIVIL ENGINEERING + LAND PLANNING + LAND SURVEYING 535 North Highway 101, Ste A, Solana Beach, CA 92075 ph 858.259.8212 | fx 858.259.4812 | plsaengineering.com

TRAFFIC SIGNAL INSTALLATION PLAN POLE SCHEDULE * TRAFFIC SIGNAL GENERAL NOTES * SITE DEVELOPMENT PERMIT NO. 92338 LUMINARE PLACEMENT SIGNAL MOUNTING TYPE HGT SIG. M.A. LUM. M.A. 1. PULL BOXES SHALL BE NO. 6 AND CONDUIT 3"UNLESS NOTED OTHERWISE. VEHICLE 6. THE TRAFFIC SIGNAL CONTRACTOR SHALL NOT ERECT ANY SIGNAL STANDARDS SIGNAL PLANNED DEVELOPMENT PERMIT NO. 92339 LOCATIONS OF ALL UNDERGROUND UTILITIES ARE APPROXIMATE. IT IS THE MORE THAN THREE (3) WEEKS PRIOR TO SCHEDULED TRAFFIC SIGNAL TURN-ON. Ø2 8 RESPONSIBILITY OF THE CONTRACTOR TO DETERMINE AND VERIFY THE 7. CONTRACTOR SHALL PROVIDE ALL CABLING AND CONDUCTORS NECESSARY EXACT LOCATIONS AND CONDITIONS ON THE JOB SITE. TO PERFORM ALL FUNCTIONS SHOWN ON THESE PLANS. TV-2-T SP-1-T EASEMENT VACATION NO. 92340 3. THE TRAFFIC SIGNAL CONTRACTOR SHALL OBTAIN A TRAFFIC CONTROL 8. ALL POLES, CONDUIT, PULL BOXES, STRIPING AND LOOP DETECTOR ALL PEOPLE'S CHURCH 26-5-100 30' 40' 4' 2-MAS SV-2-T PLAN PERMIT FROM THE CITY OF SAN DIEGO DEVELOPMENT SERVICES LOCATIONS SHOWN ON THESE PLANS ARE APPROXIMATE. ACTUAL DEPARTMENT PERMIT CENTER A MINIMUM OF FIVE (5) WORKING DAYS PRIOR LOCATIONS SHALL BE DETERMINED BY FIELD CONDITIONS AT THE TIME ON COLLEGE AVE. MAS TENTATIVE MAP NO._____ CONSTRUCTION AND AS DIRECTED BY THE CITY OF SAN DIEGO. MAS SV-2-T ALL PEOPLE'S CHURCH 19-4-100 | 30' | 30' 9. ROUTING AND LOCATIONS OF UNDERGROUND ELECTRICAL SYSTEM IS 4. ALL TRAFFIC SIGNAL POLE FOUNDATIONS SHALL HAVE A 3" CONDUIT DIAGRAMMATIC AND SUBJECT TO APPROVAL OF THE CITY ELECTRICAL ENGINEER. INSTALLED TO THE ADJACENT NO. 6 PULL BOX. THE CONTROLLER FOUNDATION ALL PEOPLES CHURCH SHALL HAVE A SPARE 3" CONDUIT INSTALLED TO THE ADJACENT NO. 6 PULL UNDERGROUND ELECTRICAL LINES AND SUBSURFACE STRUCTURES MAY BE RELOCATED PED PUSH BUTTONS SHALL BE 2-WIRE ACCESSIBLE PEDESTRIAN SIGNALS (APS) PER CITY SPECIFICATIONS. ALL VEHICLE HEADS SHALL BE 12" WITH BACKPLATES AND GLASS LENSES. ANCHOR IF NECESSARY TO CLEAR OTHER EXISTING UNDERGROUND FACILITIES. BOX FOR FUTURE USE AS SHOWN ON CONDUIT SCHEDULE. (NEEDS TO BE BOLT NUT COVERS SHALL BE PROVIDED. ADDED AS A NOTE AT THE BOTTOM OF THE CONDUIT SCHEDULE) NOTE: ALL SECTIONS 12" 10. ALL TREES AND SHRUBS SHALL BE TRIMMED OR REMOVED AS DETERMINED NOTE: ALL SECTIONS 12" BY THE CITY RESIDENT ENGINEER AS REQUIRED TO MAINTAIN SIGNAL HEAD A. ALL CONDUIT CROSSINGS SHALL INCLUDE A MINIMUM OF VISIBILITY AND SIGHT DISTANCE. TWO (2) 3" CONDUITS. **LEGEND** 11. ALL VEHICLE HEADS SHALL BE 12" L.E.D. WITH AN INCANDESCENT LOOK AND BACKPLATES. 5. THE TRAFFIC SIGNAL CONTRACTOR IS RESPONSIBLE FOR THE LAYOUT AND 12. ALL VEHICLE DETECTOR LOOPS SHALL BE TYPE "E" AS SHOWN ON THIS PLAN. INSTALLATION OF LOOP DETECTORS, TRAFFIC STRIPING, PAVEMENT A. DETECTOR LOOPS SHALL BE 6' DIAMETER WITH 10' SPACING AND VIDEO DETECTION CAMERA MARKINGS, PARKING REMOVAL AND TRAFFIC SIGNING (EXCEPT "G" SERIES POSITIONED IN CENTER OF LANE UNLESS OTHERWISE SHOWN. STREET NAME SIGNS) AS SHOWN ON THESE PLANS. B. FRONT DETECTOR LOOPS SHALL BE TYPE "E" MODIFIED LOOPS PER SDE - 104. PPB LOCATION - VIDEO DETECTION ZONE (SIZE AND C. ALL LOOP LAYOUTS SHALL INCLUDE LAYOUT OF HOMERUN LINES. WHICH A. THE TRAFFIC SIGNAL CONTRACTOR SHALL OBTAIN THE APPROVAL OF LOCATION TO BE DETERMINED IN FIELD) MUST BE APPROVED PRIOR TO INSTALLATION. CITY RESIDENT TRAFFIC ENGINEER (ETS DIVISION) OF THE LOOP LOCATIONS PRIOR BICYCLE DETECTOR LOOPS SHALL BE TYPE Q. TO CUTTING, AS WELL AS, PRIOR TO ANY INSTALLATION AND/OR REMOVAL OF 13. PEDESTRIAN SIGNAL INDICATIONS AND PUSH BUTTONS SHALL BE INTERNATIONAL STRIPING, PAVEMENT MARKING, PARKING REMOVAL AND SIGN LOCATIONS. SIMULTANEOUS SYMBOLS. PEDESTRIAN SIGNAL INDICATIONS SHALL BE 16"X18" L.E.D. COUNTDOWN TIMER B. THE TRAFFIC SIGNAL CONTRACTOR IS RESPONSIBLE FOR THE REMOVAL WITH AN INCANDESCENT LOOK. PEDESTRIAN PUSH BUTTONS SHALL BE 2" PER ADA REQ. DETAIL "A" OF ALL UNNECESSARY AND CONFLICTING STRIPING AND PAVEMENT MARKINGS. 14. ALL CROSSWALKS SHALL BE CONTINENTAL TYPE PER SDM-116. C. THE TRAFFIC SIGNAL CONTRACTOR IS RESPONSIBLE FOR REMOVAL OF ALL 15. PEDESTRIAN PUSH BUTTON HOUSING COLOR SHALL MATCH COLOR NO. 33538 OF CONDUCTOR TABLE * PAVEMENT MARK-OUTS. FED-STD-595 WHEN PEDESTRIAN PUSH BUTTONS ARE PLACED ON A TRAFFIC SIGNAL POLE. DETAIL "B" 16. PEDESTRIAN PUSH BUTTON LOCATIONS SHALL FOLLOW THE CA MUTCD STANDARDS AND THE CONDUIT SIZE & RUN AWG SIZE POLE OR OR CIRCUIT CABLE TYPE TOTAL CABLES | 3 CONDUCTOR/12 CONDUCT SIGNAL SERVICE LOOPS AND POLES PLACEMENT DETAIL GROUND INTERCONNECT CAL LOOP DETECTO SIGN LEGEND EMERGENCY VEHICLE DETECTOR (EV-DLC) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ PERCENT FILL 2. INSTALL 1 UNBROKEN GROUND FROM MP TO CONTROLLER. COLLEGE AVENUE DETECTOR ASSIGNMENT THE LOCATIONS OF EXISTING UTILITY INSTALLATIONS ENGINEERING PERMIT NO: DISCRETIONARY PERMIT NO: PREPARED BY: TRAMES SOLUTIONS INC. ALL PEOPLES CHURCH PRELIMINARY 4225 OCEANSIDE BLVD, #354 H OCEANSIDE, CA 92056 PRIVATE DRIVE FOR CONSTRUCTION TEL: 760-291-1400 TRAFFIC SIGNAL CONSTRUCTION NOTES * 1 FURNISH AND INSTALL 2770 CONTROLLER IN A TYPE 332 CABINET, EQUIPPED WITH ONE MODEL 412C SYSTEM 20 10 0 [2] FURNISH AND INSTALL TYPE III SERVICE PEDESTAL AND CABINET WITH 50A-1P CIRCUIT BREAKER AND 30A-1P BREAKER FOR STREET LIGHTS. 3 CONTRACTOR TO VERIFY SERVICE REQUIREMENTS WITH SDG&E. EXPIRATION: 6/30/2023 PHASE DIAGRAM FURNISH AND INSTALL COUNTDOWN PEDESTRIAN SIGNAL HEADS PER CITY OF SAN DIEGO REQUIREMENTS. PROJECT NAME: DRAWN BY: FURNISH AND INSTALL CCTV CAMERA ON POLE G WITH ALL APPURTENANT EQUIPMENT, CONTRACTOR SHALL SUPPLY ALL NECESSARY HARDWARE PER CITY REQUIREMENTS. CHECKED BY: ALL PEOPLES CHURCH INSTALL #6 PULL BOX. NO SPLICING IN HANDHOLE. PROJECT ADDRESS: ORIGINAL DATE: 3-17-20 FURNISH AND INSTALL VIDEO DETECTION CAMERA ON TELSPAR WITH ALL EQUIPMENT, CONTRACTOR SHALL SUPPLY ALL NECESSARY HARDWARE PER \triangleleft - - - \triangleright NORTHEAST CORNER OF COLLEGE AVENUE & INTERSTATE 8 REVISIONS: SAN DIEGO, CALIFORNIA 92120 I. <u>03–17–2020</u> FURNISH AND INSTALL 522B1—DIRECTIONAL DUAL CHANNEL EVPE DETECTOR PER CITY OF SAN DIEGO REQUIREMENTS. Ø4 PROJECT TRACKING SYSTEM NUMBER: INTERNAL ORDER NUMBER: STREET DATA TABLE The City of SPEED (MPH) STREET NAME (VEHICLES) (FT) Ø8 4 LANE MAJOR COLLEGE AVENUE TRAFFIC SIGNAL INSTALLATION PLAN FLASHING OPERATION SHALL BE ALL RED. DEVELOPMENT SERVICES DEPARTMENT 2 LANE LOCAL 2222 PRIVATE DRIVE SHEET NUMBER: 0F

Page 74 of 152 Pl SA 2936

3-17-2020


Appendix 0

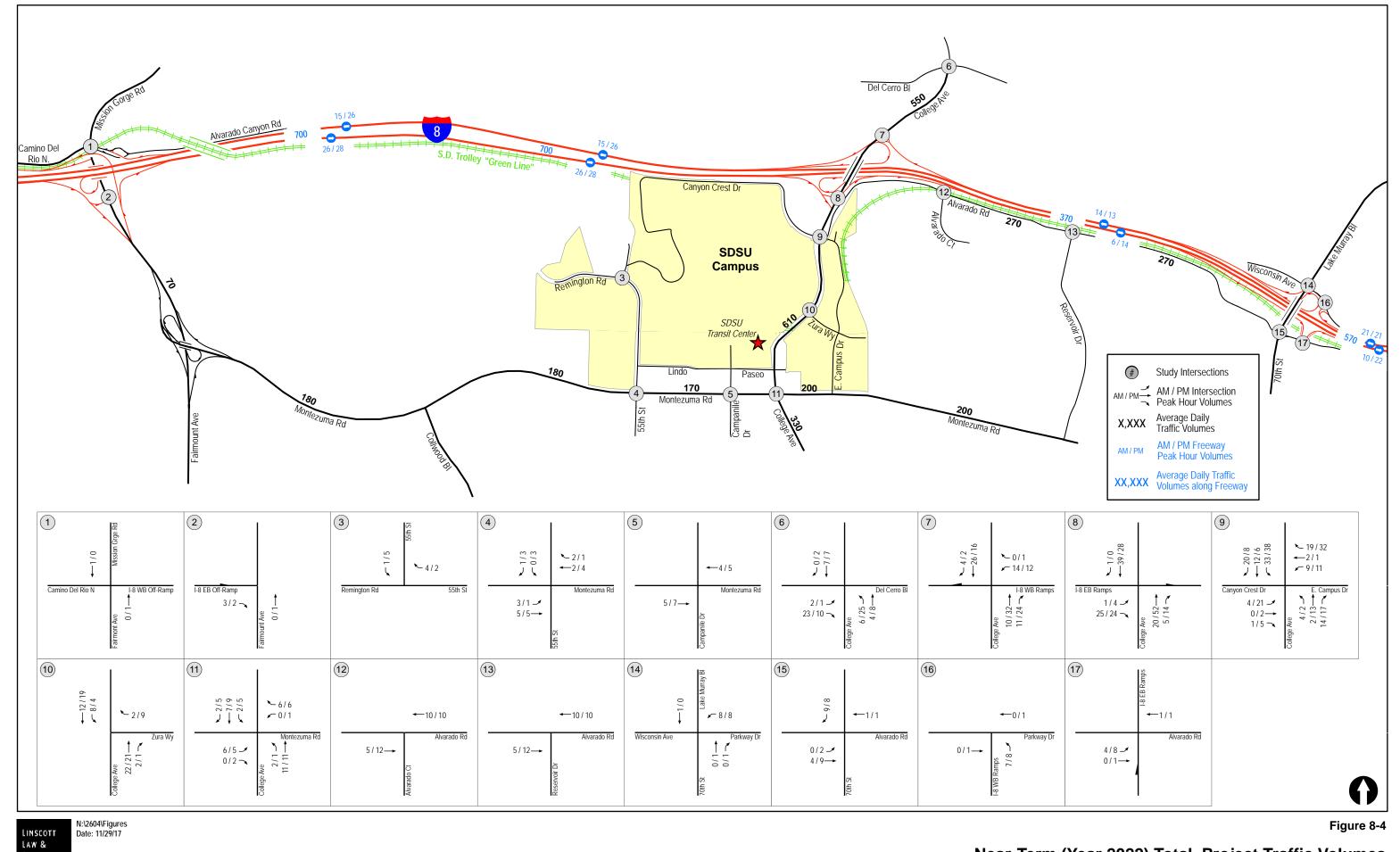
Cumulative Project Information

Cumulative Trip Generation and Assignment for PTS 431026, 593021, 501449, and 623199

						AM				PM		
Cumulative Project	Rate	Size	& Units	ADT	%	Split	IN	OUT	%	Split	IN	OUT
Capstone PTS 431026	8 /DU	94	DU	752	8%	0.2 0.8	12	48	10%	0.7 0.3	53	23
Montezuma MF PTS 593021	8 /DU	40	DU	320	8%	0.2 0.8	5	20	10%	0.7 0.3	22	10
Montezuma PDP/CUP PTS 501449	8 /DU	128	DU	1,024	8%	0.2 0.8	16	66	10%	0.7 0.3	72	31
Montezuma PDP/RZ PTS 623199	8 /DU	39	DU	312	8%	0.2 0.8	5	20	10%	0.7 0.3	22	9
			TOTAL	2,408			39	154			169	72

Combined Cumulative Assignment for PTS 431026, 593021, 501449, and 623199

TRANSPORTATION IMPACT ANALYSIS


SDSU MASTER PLAN UPDATE

San Diego, California January 9, 2018

LLG Ref. 3-16-2604

Linscott, Law & Greenspan, Engineers

4542 Ruffner Street Suite 100 San Diego, CA 92111 **858.300.8800 τ** 858.300.8810 F

GREENSPAN

Peoples Church LMA Appendix

Figure 8-4

Appendix P
Near Term Opening Day (Year 2022) without Project LOS and Queueing Worksheets

AM Existing + Cumulative 1: College Ave & Del Cerro Blvd

	۶	→	•	•	←	•	•	†	~	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	7	, A	4		Į,	^	7	¥	↑ }	
Traffic Volume (vph)	85	67	232	510	99	56	91	720	314	64	798	23
Future Volume (vph)	85	67	232	510	99	56	91	720	314	64	798	23
ldeal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.1	4.4	4.9	4.9		4.4	5.1	4.9	4.4	6.6	
Lane Util. Factor		1.00	1.00	0.95	0.95		1.00	0.95	1.00	1.00	0.95	
Frpb, ped/bikes		1.00	0.99	1.00	0.99		1.00	1.00	0.98	1.00	1.00	
Flpb, ped/bikes		1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Frt		1.00	0.85	1.00	0.97		1.00	1.00	0.85	1.00	1.00	
Fit Protected		0.97	1.00	0.95	0.97		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)		1795	1553	1665	1640		1752	3505	1539	1752	3487	
Flt Permitted		0.97	1.00	0.95	0.97		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (perm)		1795	1553	1665	1640		1752	3505	1539	1752	3487	
Peak-hour factor, PHF	0.70	0.70	0.70	0.79	0.79	0.79	0.69	0.69	0.69	0.95	0.95	0.95
Adj. Flow (vph)	121	96	331	646	125	71	132	1043	455	67	840	24
RTOR Reduction (vph)	0	0	0	0	6	0	0	0	131	0	1	0
Lane Group Flow (vph)	0	217	331	420	416	0	132	1043	324	67	863	0
Confl. Peds. (#/hr)						58			5			5
Confl. Bikes (#/hr)			5			5			5			5
Turn Type	Split	NA	pm + ov	Split	NA		Prot	NA	pm+ov	Prot	NA	
Protected Phases	. 4	4	. 5	. 3	3		5	2	3	1	6	
Permitted Phases			4						2			
Actuated Green, G (s)		15.7	27.9	33.2	33.2		12.2	41.8	75.0	5.5	33.6	
Effective Green, g (s)		15.7	27.9	33.2	33.2		12.2	41.8	75.0	5.5	33.6	
Actuated g/C Ratio		0.14	0.24	0.29	0.29		0.11	0.36	0.65	0.05	0.29	
Clearance Time (s)		5.1	4.4	4.9	4.9		4.4	5.1	4.9	4.4	6.6	
Vehicle Extension (s)		3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)		243	374	477	470		184	1266	997	83	1012	
v/s Ratio Prot		c0.12	c0.09	0.25	c0.25		0.08	c0.30	0.09	0.04	0.25	
v/s Ratio Perm		00112	0.12	0.20	00.20		0.00	00.00	0.12	0.01	0.20	
v/c Ratio		0.89	0.89	0.88	0.88		0.72	0.82	0.32	0.81	0.85	
Uniform Delay, d1		49.2	42.4	39.4	39.4		50.1	33.6	9.1	54.6	38.7	
Progression Factor		1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2		31.0	21.2	17.1	17.7		12.5	4.5	0.2	41.7	7.1	
Delay (s)		80.2	63.6	56.4	57.1		62.6	38.1	9.3	96.3	45.8	
Level of Service		F	E	E	E		E	D	A	F	D	
Approach Delay (s)		70.1	_	-	56.7		-	32.0	••	•	49.4	
Approach LOS		E			E			C			D	
Intersection Summary												
HCM 2000 Control Delay			46.7	HC	M 2000 Lev	el of Servi	ce		D			
HCM 2000 Volume to Capacity ratio			0.90									
Actuated Cycle Length (s)			115.7	Su	m of lost ti	ne (s)			21.0			
Intersection Capacity Utilization			76.5%		U Level of S				D			
Analysis Period (min)			15									
c Critical Lane Groun												

c Critical Lane Group

۶	→	\rightarrow	•	←	•	•	†	/	-	ţ	4
EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
			1,1		7		^	7		^	7
0	0	0	287	0	130	0	982	437	0	770	770
0	0		287	0	130	0	982	437	0	770	770
1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
								4.0		5.5	5.5
								1.00		0.95	1.00
								0.97		1.00	1.00
											1.00
											0.85
											1.00
								1526			1568
			0.95					1.00		1.00	1.00
			3400		1528		3505	1526		3505	1568
0.92	0.92	0.92	0.69	0.69	0.69	0.74	0.74	0.74	0.93	0.93	0.93
0	0	0	416	0	188	0	1327	591	0	828	828
0	0	0	0	0	31	0	0	0	0	0	404
0	0	0	416	0	157	0	1327	591	0	828	424
					10			10			
		5			5			5			5
			Perm		Perm		NA	Free		NA	Prot
							8			4	4
			6		6			Free			
			18.3		18.3		30.7	60.0		30.7	30.7
			18.3		18.3		30.7	60.0		30.7	30.7
			0.31		0.31		0.51	1.00		0.51	0.51
			5.5		5.5		5.5			5.5	5.5
			3.0		3.0		3.0			3.0	3.0
			1037		466		1793	1526		1793	802
							c0.38			0.24	0.27
			0.12		0.10			c0.39			
			0.40		0.34		0.74	0.39		0.46	0.53
			16.5		16.1		11.5	0.0		9.4	9.8
			1.00		1.00		1.00	1.00		1.00	1.00
			1.2		1.9		1.7	0.7		0.2	0.6
			17.7		18.1		13.2	0.7		9.6	10.4
			В		В		В	A		A	В
	0.0			17.8			9.4			10.0	
	A			В			A			A	
		10.8	HC	M 2000 Le	el of Servi	ce		В			
		0.65									
		60.0	Su	m of lost ti	ne (s)			11.0			
		52.3%	IC	U Level of S	ervice			A			
		15									
	0 0 1900	0 0 0 0 1900 1900 1900 0 0 0 0 0 0 0 0 0	EBL EBT EBR 0 0 0 0 0 0 0 1900 1900 1900 0.92 0.92 0.92 0 0 0 0 0 0 0 0 0 0 5 5	EBL EBT EBR WBL 0 0 0 0 287 0 0 0 287 1900 1900 1900 1900 1900 5.5 0.97 1.00 1.00 1.00 1.00 0.95 3400 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.	BBL BBT BBR WBL WBT	EBL EBT EBR WBL WBT WBR 0 0 0 0 287 0 130 0 0 0 287 0 130 1900 1900 1900 1900 1900 1900 5.5 5.5 5.5 0.97 1.00 1.00 0.97 1.00 1.00 1.00 1.00 0.85 0.95 1.00 3400 1528 0.95 1.00 3400 1528 0.95 1.00 3400 1528 0.95 0.69 0.69 0.69 0 0 0 416 0 188 0 0 0 0 0 416 0 188 0 0 0 0 0 416 0 157 100 5 5 5 Perm Perm 6 6 6 18.3 18	EBL EBT EBR WBL WBT WBR NBL 0 0 0 0 287 0 130 0 1900 1900 1900 1900 1900 1900 1900 15.5.5 5.5 5.5 0.97 1.00 1.00 0.95 1.00 0.97 1.00 0.	BBL BBT BBR WBL WBT WBR NBL NBT	EBL EBT EBR WBL WBT WBR NBL NBT NBR	EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL 0 0 0 0 287 0 130 0 982 437 0 1900 1900 1900 1900 1900 1900 1900 19	FBL FBT FBR WBL WBT WBR NBL NBT NBR SBL SBT

PM Existing + Cumulative 1: College Ave & Del Cerro Blvd

	۶	→	•	•	←	•	•	†	/	/		4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	7	7	4		Ť	^	7	Ť	∱ β	
Traffic Volume (vph)	38	30	122	345	32	77	144	636	390	95	624	26
Future Volume (vph)	38	30	122	345	32	77	144	636	390	95	624	26
ldeal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.1	4.4	4.9	4.9		4.4	5.1	4.9	4.4	6.6	
Lane Util. Factor		1.00	1.00	0.95	0.95		1.00	0.95	1.00	1.00	0.95	
Frpb, ped/bikes		1.00	0.99	1.00	0.99		1.00	1.00	0.98	1.00	1.00	
Flpb, ped/bikes		1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Frt		1.00	0.85	1.00	0.95		1.00	1.00	0.85	1.00	0.99	
FIt Protected		0.97	1.00	0.95	0.98		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)		1794	1558	1665	1608		1752	3505	1538	1752	3479	
FIt Permitted		0.97	1.00	0.95	0.98		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (perm)		1794	1558	1665	1608		1752	3505	1538	1752	3479	
Peak-hour factor, PHF	0.73	0.73	0.73	0.95	0.95	0.95	0.91	0.91	0.91	0.95	0.95	0.95
Adj. Flow (vph)	52	41	167	363	34	81	158	699	429	100	657	27
RTOR Reduction (vph)	0	0	0	0	16	0	0	0	170	0	2	0
Lane Group Flow (vph)	0	93	167	243	219	0	158	699	259	100	682	0
Confl. Peds. (#/hr)						5			5			5
Confl. Bikes (#/hr)			5			5			5			5
Turn Type	Split	NA	pm + ov	Split	NA		Prot	NA	pm + ov	Prot	NA	
Protected Phases	. 4	4	5	. 3	3		5	2	3	1	6	
Permitted Phases			4						2			
Actuated Green, G (s)		8.6	22.8	21.9	21.9		14.2	34.1	56.0	8.5	26.9	
Effective Green, g (s)		8.6	22.8	21.9	21.9		14.2	34.1	56.0	8.5	26.9	
Actuated g/C Ratio		0.09	0.25	0.24	0.24		0.15	0.37	0.60	0.09	0.29	
Clearance Time (s)		5.1	4.4	4.9	4.9		4.4	5.1	4.9	4.4	6.6	
Vehicle Extension (s)		3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)		166	383	393	380		268	1290	930	160	1010	
v/s Ratio Prot		c0.05	0.07	c0.15	0.14		c0.09	0.20	0.07	0.06	c0.20	
v/s Ratio Perm			0.04						0.10			
v/c Ratio		0.56	0.44	0.62	0.58		0.59	0.54	0.28	0.62	0.68	
Uniform Delay, d1		40.2	29.5	31.6	31.2		36.5	23.1	8.7	40.5	29.0	
Progression Factor		1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2		4.3	0.8	2.9	2.1		3.3	0.5	0.2	7.4	1.8	
Delay (s)		44.5	30.3	34.5	33.4		39.8	23.6	8.9	47.9	30.8	
Level of Service		D	C	C	C		D	C	A	D	C	
Approach Delay (s)		35.3			33.9			20.6			33.0	
Approach LOS		D			C			C			C	
Intersection Summary												
HCM 2000 Control Delay			27.7	HC	M 2000 Le	vel of Servi	ice		C			
HCM 2000 Volume to Capacity ratio			0.63									
Actuated Cycle Length (s)			92.6	Su	ım of lost ti	me (s)			21.0			
Intersection Capacity Utilization			60.3%		U Level of S				В			
Analysis Period (min)			15									
c Critical Lane Group												

c Critical Lane Group

4: College Ave & I-8 WB Ramp

	۶	→	•	•	←	4	1	†	<i>></i>	\	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				77		7		^	7		^	7
Traffic Volume (vph)	0	0	0	475	0	296	0	910	1091	0	600	489
Future Volume (vph)	0	0	0	475	0	296	0	910	1091	0	600	489
ldeal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)				5.5		5.5		5.5	4.0		5.5	5.5
Lane Util. Factor				0.97		1.00		0.95	1.00		0.95	1.00
Frpb, ped/bikes				1.00		0.99		1.00	0.98		1.00	1.00
Flpb, ped/bikes				1.00		1.00		1.00	1.00		1.00	1.00
Frt				1.00		0.85		1.00	0.85		1.00	0.85
FIt Protected				0.95		1.00		1.00	1.00		1.00	1.00
Satd. Flow (prot)				3400		1545		3505	1530		3505	1568
FIt Permitted				0.95		1.00		1.00	1.00		1.00	1.00
Satd. Flow (perm)				3400		1545		3505	1530		3505	1568
Peak-hour factor, PHF	0.92	0.92	0.92	0.97	0.97	0.97	0.98	0.98	0.98	0.92	0.92	0.92
Adj. Flow (vph)	0	0	0	490	0	305	0	929	1113	0	652	532
RTOR Reduction (vph)	0	0	0	0	0	36	0	0	0	0	0	328
Lane Group Flow (vph)	0	0	0	490	0	269	0	929	1113	0	652	204
Confl. Peds. (#/hr)				100		200		020	5		002	201
Confl. Bikes (#/hr)						5			5			5
Turn Type				Perm		Perm		NA	Free		NA	Prot
Protected Phases				I GIIII		I GIIII		8	1100		4	4
Permitted Phases				6		6		· ·	Free		7	7
Actuated Green, G (s)				26.0		26.0		23.0	60.0		23.0	23.0
Effective Green, g (s)				26.0		26.0		23.0	60.0		23.0	23.0
Actuated g/C Ratio				0.43		0.43		0.38	1.00		0.38	0.38
Clearance Time (s)				5.5		5.5		5.5	1.00		5.5	5.5
Vehicle Extension (s)				3.0		3.0		3.0			3.0	3.0
									1520			
Lane Grp Cap (vph)				1473		669		1343	1530		1343	601
v/s Ratio Prot				0.14		0.17		0.27	-0.70		0.19	0.13
v/s Ratio Perm								0.00	c0.73		0.40	0.24
v/c Ratio				0.33		0.40		0.69	0.73		0.49	0.34
Uniform Delay, d1				11.3		11.7		15.5	0.0		14.0	13.1
Progression Factor				1.00		1.00		1.00	1.00		1.00	1.00
Incremental Delay, d2				0.6		1.8		1.6	3.1		0.3	0.3
Delay (s)				11.9		13.5		17.1	3.1		14.3	13.5
Level of Service				В	40 -	В		В	A		В	В
Approach Delay (s)		0.0			12.5			9.4			13.9	
Approach LOS		A			В			A			В	
Intersection Summary												
HCM 2000 Control Delay			11.4	HC	M 2000 Le	vel of Servio	e		В			
HCM 2000 Volume to Capacity ratio			0.89									
Actuated Cycle Length (s)			60.0		m of lost ti				11.0			
Intersection Capacity Utilization			52.6%	IC	J Level of S	ervice			A			
Analysis Period (min)			15									
c Critical Lane Group												

c Critical Lane Group

	۶	→	•	•	←	•	4	†	/	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	7	ሻ	4		ሻ	^	7	ሻ	ħβ	
Traffic Volume (vph)	32	33	93	358	20	95	88	490	313	81	524	7
Future Volume (vph)	32	33	93	358	20	95	88	490	313	81	524	7
ldeal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.1	4.4	4.9	4.9		4.4	5.1	4.9	4.4	6.6	
Lane Util. Factor		1.00	1.00	0.95	0.95		1.00	0.95	1.00	1.00	0.95	
Frpb, ped/bikes		1.00	0.99	1.00	0.99		1.00	1.00	0.98	1.00	1.00	
Flpb, ped/bikes		1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Frt		1.00	0.85	1.00	0.94		1.00	1.00	0.85	1.00	1.00	
FIt Protected		0.98	1.00	0.95	0.98		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)		1800	1557	1665	1590		1752	3505	1541	1752	3496	
Flt Permitted		0.98	1.00	0.95	0.98		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (perm)		1800	1557	1665	1590		1752	3505	1541	1752	3496	
Peak-hour factor, PHF	0.84	0.84	0.84	0.95	0.95	0.95	0.92	0.92	0.92	0.88	0.88	0.88
Adj. Flow (vph)	38	39	111	377	21	100	96	533	340	92	595	8
RTOR Reduction (vph)	0	0	0	0	21	0	0	0	144	0	1	0
Lane Group Flow (vph)	0	77	111	256	221	0	96	533	196	92	602	0
Confl. Peds. (#/hr)		•				5			5			5
Confl. Bikes (#/hr)			5			5			5			5
Turn Type	Split	NA	pm + ov	Split	NA		Prot	NA	pm + ov	Prot	NA	
Protected Phases	4	4	5	3	3		5	2	3	1	6	
Permitted Phases			4						2			
Actuated Green, G (s)		7.5	18.3	20.4	20.4		10.8	27.2	47.6	8.1	23.0	
Effective Green, g (s)		7.5	18.3	20.4	20.4		10.8	27.2	47.6	8.1	23.0	
Actuated g/C Ratio		0.09	0.22	0.25	0.25		0.13	0.33	0.58	0.10	0.28	
Clearance Time (s)		5.1	4.4	4.9	4.9		4.4	5.1	4.9	4.4	6.6	
Vehicle Extension (s)		3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)		163	344	410	392		228	1152	886	171	972	
v/s Ratio Prot		c0.04	0.04	c0.15	0.14		0.05	c0.15	0.05	c0.05	c0.17	
v/s Ratio Perm			0.03						0.07			
v/c Ratio		0.47	0.32	0.62	0.56		0.42	0.46	0.22	0.54	0.62	
Uniform Delay, d1		35.7	27.0	27.7	27.3		33.1	22.0	8.5	35.5	26.0	
Progression Factor		1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2		2.2	0.5	3.0	1.9		1.3	0.3	0.1	3.2	1.2	
Delay (s)		37.9	27.6	30.7	29.1		34.3	22.3	8.7	38.8	27.2	
Level of Service		D	C	C	C		C	C	A	D	C	
Approach Delay (s)		31.8			29.9			18.7			28.7	
Approach LOS		C			C			В			C	
Intersection Summary												
HCM 2000 Control Delay			25.1	HC	M 2000 Le	vel of Servi	ce		C			
HCM 2000 Volume to Capacity ratio			0.57									
Actuated Cycle Length (s)			82.7	Su	m of lost ti	me (s)			21.0			
Intersection Capacity Utilization			54.9%		U Level of S				A			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	•	←	4	1	†	<i>></i>	-	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				ሻሻ		7		^	7		^	7
Traffic Volume (vph)	0	0	0	243	0	246	0	616	523	0	349	599
Future Volume (vph)	0	0	0	243	0	246	0	616	523	0	349	599
ldeal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)				5.5		5.5		5.5	4.0		5.5	5.5
Lane Util. Factor				0.97		1.00		0.95	1.00		0.95	1.00
Frpb, ped/bikes				1.00		0.99		1.00	0.97		1.00	1.00
Flpb, ped/bikes				1.00		1.00		1.00	1.00		1.00	1.00
Frt				1.00		0.85		1.00	0.85		1.00	0.85
Flt Protected				0.95		1.00		1.00	1.00		1.00	1.00
Satd. Flow (prot)				3400		1546		3505	1526		3505	1568
Flt Permitted				0.95		1.00		1.00	1.00		1.00	1.00
Satd. Flow (perm)				3400		1546		3505	1526		3505	1568
Peak-hour factor, PHF	0.92	0.92	0.92	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	0	0	0	261	0	265	0	662	562	0	375	644
RTOR Reduction (vph)	0	0	0	0	0	83	0	0	0	0	0	439
Lane Group Flow (vph)	0	0	0	261	0	182	0	662	562	0	375	205
Confl. Peds. (#/hr)									10			
Confl. Bikes (#/hr)						5			5			5
Turn Type				Perm		Perm		NA	Free		NA	Prot
Protected Phases								8			4	4
Permitted Phases				6		6			Free			
Actuated Green, G (s)				29.9		29.9		19.1	60.0		19.1	19.1
Effective Green, g (s)				29.9		29.9		19.1	60.0		19.1	19.1
Actuated g/C Ratio				0.50		0.50		0.32	1.00		0.32	0.32
Clearance Time (s)				5.5		5.5		5.5			5.5	5.5
Vehicle Extension (s)				3.0		3.0		3.0			3.0	3.0
Lane Grp Cap (vph)				1694		770		1115	1526		1115	499
v/s Ratio Prot								c0.19			0.11	0.13
v/s Ratio Perm				0.08		0.12			c0.37		•	
v/c Ratio				0.15		0.24		0.59	0.37		0.34	0.41
Uniform Delay, d1				8.2		8.6		17.2	0.0		15.6	16.0
Progression Factor				1.00		1.00		0.70	1.00		1.00	1.00
Incremental Delay, d2				0.2		0.7		0.8	0.6		0.2	0.6
Delay (s)				8.4		9.3		12.9	0.6		15.8	16.6
Level of Service				A		A		В	A		В	В
Approach Delay (s)		0.0			8.8			7.2			16.3	_
Approach LOS		A			A			A			В	
Intersection Summary												
HCM 2000 Control Delay			10.9	HC	M 2000 Le	vel of Servic	ce		В			
HCM 2000 Volume to Capacity ratio			0.50									
Actuated Cycle Length (s)			60.0	Su	m of lost ti	me (s)			11.0			
Intersection Capacity Utilization			41.7%		U Level of S				A			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	\rightarrow	•	←	•	4	†	/	>	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	16.54		777					^	7		^	7
Traffic Volume (vph)	455	0	516	0	0	0	0	720	225	0	396	210
Future Volume (vph)	455	0	516	0	0	0	0	720	225	0	396	210
ldeal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0		4.0					5.0	5.0		5.0	4.0
Lane Util. Factor	0.97		0.76					0.95	1.00		0.95	1.00
Frpb, ped/bikes	1.00		1.00					1.00	0.97		1.00	1.00
Flpb, ped/bikes	1.00		1.00					1.00	1.00		1.00	1.00
Frt	1.00		0.85					1.00	0.85		1.00	0.85
Flt Protected	0.95		1.00					1.00	1.00		1.00	1.00
Satd. Flow (prot)	3400		3575					3505	1526		3505	1568
Flt Permitted	0.95		1.00					1.00	1.00		1.00	1.00
Satd. Flow (perm)	3400		3575					3505	1526		3505	1568
Peak-hour factor, PHF	0.95	0.95	0.95	0.92	0.92	0.92	0.93	0.93	0.93	0.97	0.97	0.97
Adj. Flow (vph)	479	0	543	0	0	0	0	774	242	0	408	216
RTOR Reduction (vph)	0	0	116	0	0	0	0	0	83	0	0	0
Lane Group Flow (vph)	479	0	427	0	0	0	0	774	159	0	408	216
Confl. Peds. (#/hr)									5			
Confl. Bikes (#/hr)									5			
Turn Type	Prot		Prot					NA	Perm		NA	Free
Protected Phases	1		6					2 4			8	
Permitted Phases									2 4			Free
Actuated Green, G (s)	12.7		36.0					39.3	39.3		15.0	60.0
Effective Green, g (s)	12.7		36.0					39.3	39.3		15.0	60.0
Actuated g/C Ratio	0.21		0.60					0.65	0.65		0.25	1.00
Clearance Time (s)	4.0		4.0								5.0	
Vehicle Extension (s)	3.0		3.0								3.0	
Lane Grp Cap (vph)	719		2145					2295	999		876	1568
v/s Ratio Prot	c0.14		0.12					c0.22			c0.12	
v/s Ratio Perm									0.10			0.14
v/c Ratio	0.67		0.20					0.34	0.16		0.47	0.14
Uniform Delay, d1	21.7		5.5					4.6	4.0		19.1	0.0
Progression Factor	1.00		1.00					1.00	1.00		1.35	1.00
Incremental Delay, d2	2.3		0.2					0.1	0.1		1.8	0.2
Delay (s)	24.0		5.7					4.7	4.1		27.6	0.2
Level of Service	C		A					A	A		C	A
Approach Delay (s)	-	14.3			0.0			4.5			18.1	
Approach LOS		В			A			A			В	
Intersection Summary												
HCM 2000 Control Delay			11.5	HC	M 2000 Lev	el of Servi	ce		В			
HCM 2000 Volume to Capacity ratio			0.49									
Actuated Cycle Length (s)			60.0	Su	m of lost tii	ne (s)			14.0			
Intersection Capacity Utilization			40.4%		J Level of S				A			
Analysis Period (min)			15	.00	20.0.0.							
c Critical Lane Group												

Intersection: 14: College Ave & I-8 WB Ramp

Movement	WB	WB	WB	NB	NB	NB	SB	SB
Directions Served	L	L	R	T	T	R	T	T
Maximum Queue (ft)	106	137	88	152	155	21	209	216
Average Queue (ft)	19	66	6	76	79	1	64	66
95th Queue (ft)	65	119	42	125	132	21	166	168
Link Distance (ft)			1098	1059	1059		1034	1034
Upstream Blk Time (%)								0
Queuing Penalty (veh)								0
Storage Bay Dist (ft)	150	150				200		
Storage Blk Time (%)	0	0			0			
Queuing Penalty (veh)	0	1			0			

Intersection: 15: College Ave & I-8 EB Ramp

Movement	EB	EB	EB	EB	NB	NB	NB	SB	SB	
Directions Served	L	L	R	R	T	T	R	T	T	
Maximum Queue (ft)	142	154	394	279	123	136	34	130	150	
Average Queue (ft)	105	139	113	27	62	69	1	76	89	
95th Queue (ft)	188	173	338	169	105	116	24	119	133	
Link Distance (ft)			920	920	672	672		1059	1059	
Upstream Blk Time (%)										
Queuing Penalty (veh)										
Storage Bay Dist (ft)	130	130					150			
Storage Blk Time (%)	1	18	0			0				
Queuing Penalty (veh)	1	30	1			0				

Network Summary

Network wide Queuing Penalty: 34

Appendix Q
Near Term Opening Day (Year 2022) with Project LOS and Queueing Worksheets

	۶	→	•	•	←	4	1	†	<i>></i>	/	†	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ર્ન	7	*	4		ሻ	^	7	ň	∱ }	
Traffic Volume (vph)	85	67	232	510	99	56	91	720	314	64	800	23
Future Volume (vph)	85	67	232	510	99	56	91	720	314	64	800	23
ldeal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.1	4.4	4.9	4.9		4.4	5.1	4.9	4.4	6.6	
Lane Util. Factor		1.00	1.00	0.95	0.95		1.00	0.95	1.00	1.00	0.95	
Frpb, ped/bikes		1.00	0.99	1.00	0.99		1.00	1.00	0.98	1.00	1.00	
Flpb, ped/bikes		1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Frt		1.00	0.85	1.00	0.97		1.00	1.00	0.85	1.00	1.00	
Flt Protected		0.97	1.00	0.95	0.97		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)		1795	1553	1665	1640		1752	3505	1539	1752	3487	
Flt Permitted		0.97	1.00	0.95	0.97		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (perm)		1795	1553	1665	1640		1752	3505	1539	1752	3487	
Peak-hour factor, PHF	0.70	0.70	0.70	0.79	0.79	0.79	0.69	0.69	0.69	0.95	0.95	0.95
Adj. Flow (vph)	121	96	331	646	125	71	132	1043	455	67	842	24
RTOR Reduction (vph)	0	0	0	0	6	0	0	0	131	0	1	0
Lane Group Flow (vph)	0	217	331	420	416	0	132	1043	324	67	865	0
Confl. Peds. (#/hr)						58			5			5
Confl. Bikes (#/hr)			5			5			5			5
Turn Type	Split	NA	pm + ov	Split	NA		Prot	NA	pm + ov	Prot	NA	
Protected Phases	4	4	5	3	3		5	2	3	1	6	
Permitted Phases			4						2			
Actuated Green, G (s)		15.7	27.9	33.2	33.2		12.2	41.9	75.1	5.5	33.7	
Effective Green, g (s)		15.7	27.9	33.2	33.2		12.2	41.9	75.1	5.5	33.7	
Actuated g/C Ratio		0.14	0.24	0.29	0.29		0.11	0.36	0.65	0.05	0.29	
Clearance Time (s)		5.1	4.4	4.9	4.9		4.4	5.1	4.9	4.4	6.6	
Vehicle Extension (s)		3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)		243	374	477	470		184	1268	998	83	1014	
v/s Ratio Prot		c0.12	c0.09	0.25	c0.25		0.08	c0.30	0.09	0.04	0.25	
v/s Ratio Perm			0.12						0.12			
v/c Ratio		0.89	0.89	0.88	0.88		0.72	0.82	0.32	0.81	0.85	
Uniform Delay, d1		49.2	42.4	39.4	39.5		50.1	33.6	9.1	54.6	38.7	
Progression Factor		1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2		31.0	21.2	17.1	17.7		12.5	4.4	0.2	41.7	7.1	
Delay (s)		80.2	63.6	56.5	57.1		62.7	38.0	9.2	96.3	45.8	
Level of Service		F	E	E	E		E	D	A	F	D	
Approach Delay (s)		70.2			56.8			32.0			49.4	
Approach LOS		E			E			C			D	
Intersection Summary												
HCM 2000 Control Delay			46.7	HC	M 2000 Le	vel of Servi	ce		D			
HCM 2000 Volume to Capacity ratio			0.90									
Actuated Cycle Length (s)			115.8		ım of lost ti				21.0			
Intersection Capacity Utilization			76.5%	IC	U Level of S	ervice			D			
Analysis Period (min)			15									
o Critical Lana Croun												

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		7	Φ₽			^
Traffic Vol, veh/h	0	0	1125	0	0	32
Future Vol, veh/h	0	0	1125	0	0	32
Conflicting Peds, #/hr	0	5	0	5	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage, #	0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	3	3	3	3	3	3
Mvmt Flow	0	Ō	1223	Ō	Ō	35
invinction	•	•	1220	J	•	00
Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	-	622	0	0	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.96	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	3.33	_	-	_	-
Pot Cap-1 Maneuver	0	427	_	_	0	_
Stage 1	0	-	_	_	0	_
Stage 2	0	_	_	_	0	_
Platoon blocked, %	U		_	_	U	_
Mov Cap-1 Maneuver	_	423	_	_	_	_
	_	423			_	_
Mov Cap-2 Maneuver			-	-		
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	0		0		0	
HCM LOS	A		•		•	
IIONI LUU	^					
Minor Lane/Major Mvmt		NBT	NBR	WBLn1	SBT	
Capacity (veh/h)		-	-	-	-	
HCM Lane V/C Ratio		-	-	-	-	
HCM Control Delay (s)		-	-	0	-	
HCM Lane LOS		-	-	A	-	
HCM 95th %tile Q(veh)		_	-	-	_	

Intersection						
Int Delay, s/veh	0					
		WDD	UDT	NDD	CDI	CDT
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		† \$		<u>ች</u>	^
Traffic Vol, veh/h	0	0	1125	29	2	1540
Future Vol, veh/h	0	0	1125	29	2	1540
Conflicting Peds, #/hr	0	0	_ 0	- 5	_ 0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	75	-
Veh in Median Storage, #	0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	3	3	3	3	3	3
Mvmt Flow	0	0	1223	32	2	1674
Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	2085	633	<u>шајин</u> О	0	1260	0
Stage 1	1244	033			1200	U -
_	841	_	-	-	_	
Stage 2			-	-		-
Critical Hdwy	6.86	6.96	-	-	4.16	-
Critical Hdwy Stg 1	5.86	-	-	-	-	-
Critical Hdwy Stg 2	5.86	-	-	-	-	-
Follow-up Hdwy	3.53	3.33	-	-	2.23	-
Pot Cap-1 Maneuver	45	420	-	-	542	-
Stage 1	233	-	-	-	-	-
Stage 2	381	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	45	418	-	-	540	-
Mov Cap-2 Maneuver	45	-	-	-	-	-
Stage 1	232	-	-	-	-	-
Stage 2	379	-	-	-	-	-
Annroach	WB		NB		SB	
Approach						
HCM Control Delay, s	0		0		0	
HCM LOS	A					
Minor Lane/Major Mvmt		NBT	NBR	WBLn1	SBL	SBT
Capacity (veh/h)		-	-	-	540	-
HCM Lane V/C Ratio		-	-	-	0.004	-
HCM Control Delay (s)		-	-	0	11.7	-
HCM Lane LOS		-	-	A	В	-
HCM 95th %tile Q(veh)		-	-	-	0	-

	۶	→	•	•	←	•	4	†	/	>	ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				44		7		^	7		^	7
Traffic Volume (vph)	0	0	0	287	0	142	0	999	437	0	770	770
Future Volume (vph)	0	0	0	287	0	142	0	999	437	0	770	770
ldeal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)				5.5		5.5		5.5	4.0		5.5	5.5
Lane Util. Factor				0.97		1.00		0.95	1.00		0.95	1.00
Frpb, ped/bikes				1.00		0.97		1.00	0.97		1.00	1.00
Flpb, ped/bikes				1.00		1.00		1.00	1.00		1.00	1.00
Frt				1.00		0.85		1.00	0.85		1.00	0.85
Flt Protected				0.95		1.00		1.00	1.00		1.00	1.00
Satd. Flow (prot)				3400		1528		3505	1526		3505	1568
Flt Permitted				0.95		1.00		1.00	1.00		1.00	1.00
Satd. Flow (perm)				3400		1528		3505	1526		3505	1568
Peak-hour factor, PHF	0.92	0.92	0.92	0.69	0.69	0.69	0.74	0.74	0.74	0.93	0.93	0.93
Adj. Flow (vph)	0	0	0	416	0	206	0	1350	591	0	828	828
RTOR Reduction (vph)	0	0	0	0	0	31	0	0	0	0	0	404
Lane Group Flow (vph)	0	0	0	416	0	175	0	1350	591	0	828	424
Confl. Peds. (#/hr)						10			10			
Confl. Bikes (#/hr)			5			5			5			5
Turn Type				Perm		Perm		NA	Free		NA	Prot
Protected Phases								8			4	4
Permitted Phases				6		6			Free			
Actuated Green, G (s)				18.3		18.3		30.7	60.0		30.7	30.7
Effective Green, g (s)				18.3		18.3		30.7	60.0		30.7	30.7
Actuated g/C Ratio				0.31		0.31		0.51	1.00		0.51	0.51
Clearance Time (s)				5.5		5.5		5.5			5.5	5.5
Vehicle Extension (s)				3.0		3.0		3.0			3.0	3.0
Lane Grp Cap (vph)				1037		466		1793	1526		1793	802
v/s Ratio Prot								c0.39			0.24	0.27
v/s Ratio Perm				0.12		0.11			c0.39			
v/c Ratio				0.40		0.37		0.75	0.39		0.46	0.53
Uniform Delay, d1				16.5		16.4		11.6	0.0		9.4	9.8
Progression Factor				1.00		1.00		1.00	1.00		1.00	1.00
Incremental Delay, d2				1.2		2.3		1.8	0.7		0.2	0.6
Delay (s)				17.7		18.7		13.5	0.7		9.6	10.4
Level of Service				В		В		В	A		A	В
Approach Delay (s)		0.0			18.0			9.6			10.0	
Approach LOS		A			В			A			A	
Intersection Summary												
HCM 2000 Control Delay			11.0	HC	M 2000 Le	vel of Servi	ce		В			
HCM 2000 Volume to Capacity ratio			0.66									
Actuated Cycle Length (s)			60.0		m of lost ti				11.0			
Intersection Capacity Utilization			52.3%	IC	U Level of S	ervice			A			
Analysis Period (min)			15									
c Critical Lane Group												

EBT 30 30 1900 5.1 1.00 1.00 1.00 0.97 1794 0.97 1794 0.73 41	123 123 1900 4.4 1.00 0.99 1.00 0.85 1.00 1558	WBL 346 346 1900 4.9 0.95 1.00 1.00 0.95 1665	WBT 32 32 1900 4.9 0.95 0.99 1.00 0.95 0.98	77 77 1900	NBL 144 144 1900 4.4 1.00 1.00	NBT 637 637 1900 5.1 0.95 1.00	NBR 390 390 1900 4.9 1.00 0.98	95 95 1900 4.4 1.00 1.00	SBT 626 626 1900 6.6 0.95	26 26 1900
30 30 1900 5.1 1.00 1.00 1.00 0.97 1794 0.97 1794	123 123 1900 4.4 1.00 0.99 1.00 0.85 1.00 1558	346 346 1900 4.9 0.95 1.00 1.00 0.95 1665	32 32 1900 4.9 0.95 0.99 1.00 0.95 0.98	77	144 144 1900 4.4 1.00 1.00	637 637 1900 5.1 0.95 1.00	390 390 1900 4.9 1.00 0.98	95 95 1900 4.4 1.00	626 626 1900 6.6 0.95	26
30 1900 5.1 1.00 1.00 1.00 0.97 1794 0.97 1794	123 1900 4.4 1.00 0.99 1.00 0.85 1.00 1558	346 1900 4.9 0.95 1.00 1.00 0.95	32 1900 4.9 0.95 0.99 1.00 0.95 0.98	77	144 1900 4.4 1.00 1.00	637 1900 5.1 0.95 1.00	390 1900 4.9 1.00 0.98	95 1900 4.4 1.00	626 1900 6.6 0.95	26
1900 5.1 1.00 1.00 1.00 1.00 0.97 1794 0.97 1794	1900 4.4 1.00 0.99 1.00 0.85 1.00 1558	1900 4.9 0.95 1.00 1.00 1.00 0.95 1665	1900 4.9 0.95 0.99 1.00 0.95 0.98		1900 4.4 1.00 1.00 1.00	1900 5.1 0.95 1.00	1900 4.9 1.00 0.98	1900 4.4 1.00	1900 6.6 0.95	
5.1 1.00 1.00 1.00 1.00 0.97 1794 0.97 1794 0.73 41	4.4 1.00 0.99 1.00 0.85 1.00 1558	4.9 0.95 1.00 1.00 1.00 0.95 1665	4.9 0.95 0.99 1.00 0.95 0.98	1900	4.4 1.00 1.00 1.00	5.1 0.95 1.00	4.9 1.00 0.98	4.4 1.00	6.6 0.95	1900
1.00 1.00 1.00 1.00 0.97 1794 0.97 1794 0.73	1.00 0.99 1.00 0.85 1.00 1558	0.95 1.00 1.00 1.00 0.95 1665	0.95 0.99 1.00 0.95 0.98		1.00 1.00 1.00	0.95 1.00	1.00 0.98	1.00	0.95	
1.00 1.00 1.00 0.97 1794 0.97 1794 0.73	0.99 1.00 0.85 1.00 1558 1.00	1.00 1.00 1.00 0.95 1665	0.99 1.00 0.95 0.98		1.00 1.00	1.00	0.98			
1.00 1.00 0.97 1794 0.97 1794 0.73 41	1.00 0.85 1.00 1558 1.00	1.00 1.00 0.95 1665	1.00 0.95 0.98		1.00			1.00	4 00	
1.00 0.97 1794 0.97 1794 0.73 41	0.85 1.00 1558 1.00	1.00 0.95 1665	0.95 0.98			1 00			1.00	
0.97 1794 0.97 1794 0.73 41	1.00 1558 1.00	0.95 1665	0.98				1.00	1.00	1.00	
1794 0.97 1794 0.73 41	1558 1.00	1665			1.00	1.00	0.85	1.00	0.99	
0.97 1794 0.73 41	1.00				0.95	1.00	1.00	0.95	1.00	
1794 0.73 41		0.00	1608		1752	3505	1538	1752	3479	
0.73 41	1558	0.95	0.98		0.95	1.00	1.00	0.95	1.00	
41		1665	1608		1752	3505	1538	1752	3479	
	0.73	0.95	0.95	0.95	0.91	0.91	0.91	0.95	0.95	0.95
0	168	364	34	81	158	700	429	100	659	27
0	0	0	16	0	0	0	169	0	2	0
93	168	244	219	0	158	700	260	100	684	0
				5			5			5
	5			5			5			5
NA	pm + ov	Split	NA		Prot	NA	pm+ov	Prot	NA	
4	5	3	3		5	2	3	1	6	
	4						2			
8.6	22.8	22.0	22.0		14.2	34.2	56.2	8.5	27.0	
8.6	22.8	22.0	22.0		14.2	34.2	56.2	8.5	27.0	
0.09	0.25	0.24	0.24		0.15	0.37	0.61	0.09	0.29	
5.1	4.4	4.9	4.9		4.4	5.1	4.9	4.4	6.6	
3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	
166	382	394	381		268	1291	931	160	1012	
c0.05	0.07	c0.15	0.14		c0.09	0.20	0.07	0.06	c0.20	
	0.04						0.10			
0.56	0.44	0.62	0.57		0.59	0.54	0.28	0.62	0.68	
40.3	29.6	31.7	31.3		36.6	23.1	8.7	40.6	29.0	
1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	
4.3	0.8	2.9	2.1		3.3	0.5	0.2	7.4	1.8	
44.6	30.4	34.5	33.4		39.9	23.6	8.8	48.0	30.8	
D	C	C	C		D	C	A	D	C	
35.5			34.0			20.7			33.0	
D			C			C			C	
	27.8	HC	M 2000 Lev	el of Servi	ce		C			
	0.63									
	92.8	Su	m of lost tir	ne (s)			21.0			
	60.4%	IC	U Level of S	ervice			В			
	15									
	166 c0.05 0.56 40.3 1.00 4.3 44.6 D	166 382 c0.05 0.07 0.04 0.56 0.44 40.3 29.6 1.00 1.00 4.3 0.8 44.6 30.4 D C 35.5 D 27.8 0.63 92.8 60.4%	166 382 394 c0.05 0.07 c0.15 0.04 0.56 0.44 0.62 40.3 29.6 31.7 1.00 1.00 1.00 4.3 0.8 2.9 44.6 30.4 34.5 D C C 35.5 D 27.8 H0 0.63 92.8 Su 60.4% ICI	166 382 394 381 c0.05 0.07 c0.15 0.14 0.04 0.56 0.44 0.62 0.57 40.3 29.6 31.7 31.3 1.00 1.00 1.00 1.00 4.3 0.8 2.9 2.1 44.6 30.4 34.5 33.4 D C C C 35.5 34.0 D C 27.8 HCM 2000 Lev 0.63 92.8 Sum of lost tin 60.4% ICU Level of Se	166 382 394 381 c0.05 0.07 c0.15 0.14 0.04 0.56 0.44 0.62 0.57 40.3 29.6 31.7 31.3 1.00 1.00 1.00 1.00 4.3 0.8 2.9 2.1 44.6 30.4 34.5 33.4 D C C C 35.5 34.0 D C 27.8 HCM 2000 Level of Service 0.63 92.8 Sum of lost time (s) 60.4% ICU Level of Service	166 382 394 381 268 c0.05 0.07 c0.15 0.14 c0.09 0.04 0.04 0.56 0.44 0.62 0.57 0.59 40.3 29.6 31.7 31.3 36.6 1.00 1.00 1.00 1.00 4.3 0.8 2.9 2.1 3.3 44.6 30.4 34.5 33.4 39.9 D C C C D 35.5 34.0 D C C C C D 27.8 HCM 2000 Level of Service 0.63 92.8 Sum of lost time (s) 60.4% ICU Level of Service	166 382 394 381 268 1291 c0.05 0.07 c0.15 0.14 c0.09 0.20 0.04 0.04 0.50 0.57 0.59 0.54 40.3 29.6 31.7 31.3 36.6 23.1 1.00 1.00 1.00 1.00 1.00 1.00 4.3 0.8 2.9 2.1 3.3 0.5 44.6 30.4 34.5 33.4 39.9 23.6 D C C C D C 35.5 34.0 20.7 D C C C C C C	166 382 394 381 268 1291 931 c0.05 0.07 c0.15 0.14 c0.09 0.20 0.07 0.04 0.010 0.50 0.54 0.28 40.3 29.6 31.7 31.3 36.6 23.1 8.7 1.00 1.00 1.00 1.00 1.00 1.00 4.3 0.8 2.9 2.1 3.3 0.5 0.2 44.6 30.4 34.5 33.4 39.9 23.6 8.8 D C C C A 35.5 34.0 20.7 C C 0.63 0.63 92.8 Sum of lost time (s) 21.0 60.4% ICU Level of Service B	166 382 394 381 268 1291 931 160 c0.05 0.07 c0.15 0.14 c0.09 0.20 0.07 0.06 0.04 0.00 0.10 0.10 0.10 0.00 0.00 0.00 0.00 0.00 0.62 0.63 0.63 0.5 0.28 0.62 0.63 0.	166 382 394 381 268 1291 931 160 1012 c0.05 0.07 c0.15 0.14 c0.09 0.20 0.07 0.06 c0.20 0.04 0.04 0.10 0.10 0.10 0.10 0.00 0.62 0.68 40.3 29.6 31.7 31.3 36.6 23.1 8.7 40.6 29.0 1.00

Intersection						
Int Delay, s/veh	0					
		Was	UNT	HDD	CDI	CDT
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	^	7	† ‡		•	^
Traffic Vol, veh/h	0	1	1170	1	0	25
Future Vol, veh/h	0	1	1170	1	0	25
Conflicting Peds, #/hr	0	0	_ 0	_ 0	_ 0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage, #	0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	3	3	3	3	3	3
Mvmt Flow	0	1	1272	1	0	27
Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	-	637	0	0	- -	
Stage 1	_	-	-	-	_	_
Stage 2	_	_	_	-	_	
Critical Hdwy	_	6.96			-	-
•	_	0.30	-	-	_	_
Critical Hdwy Stg 1			-			
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	3.33	-	-	-	-
Pot Cap-1 Maneuver	0	418	-	-	0	-
Stage 1	0	-	-	-	0	-
Stage 2	0	-	-	-	0	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	-	418	-	-	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	13.6		0		0	
			U		U	
HCM LOS	В					
Minor Lane/Major Mvmt		NBT	NDD	WBLn1	SBT	
Capacity (veh/h)		-	-	418	-	
HCM Lane V/C Ratio		-	-	0.003	-	
HI:M CONTROL HEISY (C)		-	-	13.6	-	
HCM Control Delay (s)						
HCM Lane LOS HCM 95th %tile Q(veh)		-	-	B 0	-	

Intersection						
Int Delay, s/veh	1.6					
		WBR	MDT	NDD	CDI	SBT
Movement	WBL	MRK	NBT	NBR	SBL	
Lane Configurations	Y	•	† \$	74	7	^
Traffic Vol, veh/h	30	0	1171	71	4	1091
Future Vol, veh/h	30	0	1171	71	4	1091
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	75	-
Veh in Median Storage, #	0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	3	3	3	3	3	3
Mvmt Flow	33	0	1273	77	4	1186
Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	1913	675	0	0	1350	0
Stage 1	1312	-	-	-	-	-
Stage 2	601	-	-	-	-	-
Critical Hdwy	6.86	6.96	-	-	4.16	-
Critical Hdwy Stg 1	5.86	-	-	-	-	-
Critical Hdwy Stg 2	5.86	-	-	_	-	-
Follow-up Hdwy	3.53	3.33	-	-	2.23	-
Pot Cap-1 Maneuver	59	394	-	-	501	-
Stage 1	214	_	-	_	_	_
Stage 2	507	_	_	_	_	-
Platoon blocked, %	007		_	_		_
Mov Cap-1 Maneuver	59	394	_	_	501	_
	59					
Mov Cap-2 Maneuver		-	-	-	-	-
Stage 1	214	-	-	-	-	-
Stage 2	503	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	124.4		0		0	
HCM LOS	124.4 F		U		U	
HOM EGS	1					
Minor Lane/Major Mvmt		NBT	NBR	WBLn1	SBL	SBT
Capacity (veh/h)		-	-	59	501	-
HCM Lane V/C Ratio		-	<u>-</u>	0.553	0.009	_
HCM Control Delay (s)				124.4	12.2	
HCM Lane LOS		-	-			
		-	-	F	В	-
HCM 95th %tile Q(veh)		-	-	2.2	0	-

•	-	•	•	•	•	•	†	~	-	ţ	1
EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
					7			7			7
				0							503
				0							503
1900	1900	1900		1900		1900			1900		1900
											5.5
											1.00
											1.00
											1.00
											0.85
											1.00
											1568
											1.00
			3400		1545		3505	1530		3505	1568
0.92	0.92	0.92	0.97	0.97	0.97	0.98	0.98	0.98	0.92	0.92	0.92
0	0	0	490	0	336	0	971	1113	0	670	547
0	0	0	0	0	32	0	0	0	0	0	331
0	0	0	490	0	304	0	971	1113	0	670	216
								5			
					5			5			5
			Perm		Perm		NA	Free		NA	Prot
							8			4	4
			6		6			Free			
			25.3		25.3		23.7	60.0		23.7	23.7
			25.3		25.3		23.7	60.0		23.7	23.7
			0.42		0.42		0.39	1.00		0.39	0.39
			5.5		5.5		5.5			5.5	5.5
			3.0		3.0		3.0			3.0	3.0
			1433		651		1384	1530		1384	619
							0.28			0.19	0.14
			0.14		0.20			c0.73			
			0.34		0.47		0.70	0.73		0.48	0.35
			11.7		12.5		15.2	0.0		13.6	12.7
			1.00		1.00		1.00	1.00		1.00	1.00
			0.7		2.4		1.6	3.1		0.3	0.3
			12.4		14.9		16.8	3.1		13.8	13.1
			В		В		В	A		В	В
	0.0			13.4			9.5			13.5	
	A			В			A			В	
		11.4	HC	M 2000 Le	vel of Servi	ce		В			
		0.89									
		60.0	Su	m of lost ti	me (s)			11.0			
		55.7%	IC	U Level of S	ervice			В			
		15									
	0 0 1900 0.92 0 0	DEBL EBT O O O O O O O O O O O O O O O O O O O	EBL EBT EBR 0 0 0 0 0 0 0 1900 1900 1900 0.92 0.92 0.92 0 555.7%	EBL EBT EBR WBL 0 0 0 0 475 0 0 0 475 1900 1900 1900 1900 1900 5.5 0.97 1.00 1.00 1.00 0.95 3400 0.92 0.92 0.92 0.92 0.92 0.97 0 0 0 490 0 0 0 0 490 0 0 0 0 490 0 0 0 490 Ferm 6 25.3 25.3 25.3 0.42 5.5 3.0 1433 11.7 1.00 0.7 12.4 B 0.0 A 11.4 HC 0.89 60.0 Su 55.7% 1C	EBL EBT EBR WBL WBT 0 0 0 475 0 0 0 0 475 0 1900 1900 1900 1900 1900 5.5 0.97 1.00 1.00 1.00 1.00 0.95 3400 0.92 0.92 0.92 0.92 0.92 0.92 0.97 0 0 0 490 0	EBL EBT EBR WBL WBT WBR 0 0 0 0 475 0 326 0 0 0 475 0 326 1900 1900 1900 1900 1900 1900 5.5 5.5 0.97 1.00 1.00 0.99 1.00 1.00 1.00 1.00 0.85 0.95 1.00 3400 1545 0.95 1.00 3400 1545 0.95 1.00 3400 1545 0.95 1.00 3400 1545 0.95 1.00 3400 1545 0.95 1.00 3400 5545 0.95 1.00 3400 1545 0.95 1.00 3400 1545 0.95 1.00 3400 1545 0.95 1.00 3400 1545 0.95 1.00 3400 1545 0.92 0.92 0.97 0.97 0.97 0 0 0 490 0 336 0 0 0 0 490 0 304 Ferm Perm Perm Perm Perm 1 0 0 0 490 0 304	BIL EBT EBR WBL WBT WBR NBL 0 0 0 0 475 0 326 0 1900 1900 1900 1900 1900 1900 15.5 5.5 5.5 0.97 1.00 1.00 0.98 1.00 1.00 1.00 1.00 0.85 0.95 1.00 3400 1545 0.95 1.00 3400 1545 0.92 0.92 0.97 0.97 0.97 0.97 0 0 0 490 0 336 0 0 0 0 490 0 336 0 0 0 0 490 0 336 0 0 0 0 490 0 336 0 0 0 0 490 0 336 0 0 0 0 490 0 336 0 0 0 0 490 0 304 0 Ferm Perm Perm Perm Perm Perm Perm 11.4 0.20 0.34 0.47 11.7 12.5 1.00 1.00 0.7 2.4 12.4 14.9 B B B 0.0 Sum of lost time (s) 13.4 A B ILM 2000 Level of Service	BEL BBT BBR WBL WBT WBR NBL NBT	EBL EBT EBR WBL WBT WBR NBL NBT NBR 0 0 0 0 475 0 326 0 952 1091 1900 1900 1900 1900 1900 1900 190	EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL 0 0 0 0 475 0 326 0 952 1091 0 1900 1900 1900 1900 1900 1900 19	FBL EBT EBR WBL WBT WBR NBL NBR NBR

	۶	→	•	•	←	•	4	†	/	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	7	7	4		ሻ	^	7	7	ħβ	
Traffic Volume (vph)	32	33	96	361	20	95	92	501	317	81	534	7
Future Volume (vph)	32	33	96	361	20	95	92	501	317	81	534	7
ldeal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.1	4.4	4.9	4.9		4.4	5.1	4.9	4.4	6.6	
Lane Util. Factor		1.00	1.00	0.95	0.95		1.00	0.95	1.00	1.00	0.95	
Frpb, ped/bikes		1.00	0.99	1.00	0.99		1.00	1.00	0.98	1.00	1.00	
Flpb, ped/bikes		1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Frt		1.00	0.85	1.00	0.94		1.00	1.00	0.85	1.00	1.00	
FIt Protected		0.98	1.00	0.95	0.98		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)		1800	1557	1665	1591		1752	3505	1540	1752	3496	
Flt Permitted		0.98	1.00	0.95	0.98		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (perm)		1800	1557	1665	1591		1752	3505	1540	1752	3496	
Peak-hour factor, PHF	0.84	0.84	0.84	0.95	0.95	0.95	0.92	0.92	0.92	0.88	0.88	0.88
Adj. Flow (vph)	38	39	114	380	21	100	100	545	345	92	607	8
RTOR Reduction (vph)	0	0	0	0	20	0	0	0	145	0	1	0
Lane Group Flow (vph)	0	77	114	255	226	0	100	545	200	92	614	0
Confl. Peds. (#/hr)		•		200	220	5	100	0.10	5	02	011	5
Confl. Bikes (#/hr)			5			5			5			5
Turn Type	Split	NA	pm + ov	Split	NA		Prot	NA	pm + ov	Prot	NA	
Protected Phases	4	4	5	3	3		5	2	3	1	6	
Permitted Phases			4						2			
Actuated Green, G (s)		7.5	18.5	20.5	20.5		11.0	27.8	48.3	8.1	23.4	
Effective Green, g (s)		7.5	18.5	20.5	20.5		11.0	27.8	48.3	8.1	23.4	
Actuated g/C Ratio		0.09	0.22	0.25	0.25		0.13	0.33	0.58	0.10	0.28	
Clearance Time (s)		5.1	4.4	4.9	4.9		4.4	5.1	4.9	4.4	6.6	
Vehicle Extension (s)		3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)		161	345	409	391		231	1168	891	170	980	
v/s Ratio Prot		c0.04	0.04	c0.15	0.14		0.06	c0.16	0.06	c0.05	c0.18	
v/s Ratio Perm			0.03						0.07			
v/c Ratio		0.48	0.33	0.62	0.58		0.43	0.47	0.22	0.54	0.63	
Uniform Delay, d1		36.1	27.2	28.0	27.6		33.3	21.9	8.5	35.9	26.2	
Progression Factor		1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2		2.2	0.6	3.0	2.1		1.3	0.3	0.1	3.5	1.3	
Delay (s)		38.3	27.8	31.0	29.7		34.6	22.2	8.6	39.4	27.5	
Level of Service		D	C	C	C		C	C	A	D	C	
Approach Delay (s)		32.1	_	-	30.3		_	18.7		_	29.0	
Approach LOS		C			C			В			C	
Intersection Summary												
HCM 2000 Control Delay			25.3	HC	M 2000 Lev	vel of Servi	ce		C			
HCM 2000 Volume to Capacity ratio			0.57						-			
Actuated Cycle Length (s)			83.4	Su	m of lost ti	me (s)			21.0			
Intersection Capacity Utilization			55.4%		U Level of S				В			
Analysis Period (min)			15	.0.								
c Critical Lane Group												

Intersection						
	0.2					
Int Delay, s/veh						
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		7	∱ ∱			^
Traffic Vol, veh/h	0	15	895	3	0	14
Future Vol, veh/h	0	15	895	3	0	14
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	_	None	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage, #	0	-	0	_	-	0
Grade, %	0	_	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	3	3	3	3	3	3
Mymt Flow	Ö	16	973	3	Ö	15
MVIIIC 110W	J	10	010	U	Ų	10
Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	-	488	0	0	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.96	-	-	-	-
Critical Hdwy Stg 1	_	-	-	_	_	_
Critical Hdwy Stg 2	_	_	_	_	_	_
Follow-up Hdwy	_	3.33	_	_	_	-
Pot Cap-1 Maneuver	0	523	_	_	0	_
Stage 1	0	-	_	_	Ō	_
Stage 2	0	_	_	_	0	_
Platoon blocked, %	U		_	_	U	_
		523				
Mov Cap-1 Maneuver	-		-	-	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	12.1		0		0	
HCM LOS	B		U		U	
IIUM LUS	U					
Minor Lane/Major Mvmt		NBT	NBR	WBLn1	SBT	
Capacity (veh/h)		_	-	523	-	
HCM Lane V/C Ratio		-	-	0.031	_	
HCM Control Delay (s)		_	-	12.1	-	
HCM Lane LOS		_	_	В	_	
HCM 95th %tile Q(veh)		_	-	0.1	-	
ווטאי טטנוו יינווט ע(יינוו)		_	_	0.1	_	

Note	
ane Configurations raffic Vol, veh/h 359 4 894 293 16 975 atture Vol, veh/h 359 4 894 293 16 975 atture Vol, veh/h 359 4 894 293 16 975 atture Vol, veh/h 359 4 894 293 16 975 atture Vol, veh/h 359 4 894 293 16 975 atture Vol, veh/h 369 4 894 293 16 975 atture Vol, veh/h 369 4 894 293 16 975 atture Vol, veh/h 369 4 894 293 16 975 atture Vol, veh/h 369 4 894 293 16 975 atture Vol, veh/h 369 4 894 293 16 975 atture Vol, veh/h 369 4 894 293 16 975 atture Vol, veh/h 4 976 atture Vol, veh/h 4 894 293 16 975 atture Vol, veh/h 4 976 atture Vol, veh/h 4 894 293 16 975 atture Vol, veh/h 4 976 atture Vol, veh/h 4 894 293 16 975 atture Vol, veh/h 4 976 atture Vol, veh/h 4 977 atture Vol, veh/h 4 978 atture Vol, veh/h 4 979 atture Vole veh/h 4 979 attur	
Traffic Vol, veh/h Traffi	
Traffic Vol, veh/h Traffi	
auture Vol, veh/h auture Vol, veh/h auture Vol, veh/h conflicting Peds, #/hr auture Vol, veh/h conflicting Peds, #/hr auture Vol, veh/h conflicting Peds, #/hr auture Vol, veh/h auture Vol auture	
Stop Control Stop Stop Free Free Free Free Free Free Free Free	
Stop Control Stop In Control Stop In Control Free In Free In Free In In Control In Control In Inc. Free In Inc. Free In Inc. Free In Inc. Free Inc. None Inc. </td <td></td>	
Storage Length	
Teh in Median Storage, # 0	
Peak Hour Factor 92 92 92 92 92 92 92 9	
Peak Hour Factor 92 92 92 92 92 92 92 92 92 92 92 92 92	
Reavy Vehicles, % 3 3 3 3 3 3 3 3 3	
Anjor/Minor Minor1 Major1 Major2 Conflicting Flow All 1695 645 0 0 1290 0 Stage 1 1131 - - - - - Stage 2 564 - - - - - Critical Hdwy 6.86 6.96 - - 4.16 - - Critical Hdwy Stg 1 5.86 -	
Major/Minor Minor1 Major1 Major2 Major2 Major2 Major3 Major4 Major5 Major6 Major6 Major7 Major7 Major7 Major8 Major	
Sonflicting Flow All 1695 645 0 0 1290 0 Stage 1 1131 Stage 2 564	
Sonflicting Flow All 1695 645 0 0 1290 0 Stage 1 1131 Stage 2 564	
Sonflicting Flow All 1695 645 0 0 1290 0 Stage 1 1131 Stage 2 564	
Stage 1 1131 - - - - Stage 2 564 - - - - Critical Hdwy 6.86 6.96 - - 4.16 - Critical Hdwy Stg 1 5.86 - - - - Critical Hdwy Stg 2 5.86 - - - - Follow-up Hdwy 3.53 3.33 - 2.23 - Follow-up Hdwy 3.53 3.33 - 2.23 - Stage 1 ~268 - - - - Stage 2 530 - - - - Platoon blocked, % - - - - - Mov Cap-1 Maneuver ~ 80 - - - - Stage 1 ~ 268 - - - - - Stage 2 513 - - - - - - - - - - - - - - - - <	
Stage 2 564 - - - - Critical Hdwy 6.86 6.96 - - 4.16 - Critical Hdwy Stg 1 5.86 - - - - Critical Hdwy Stg 2 5.86 - - - - Collow-up Hdwy 3.53 3.33 - 2.23 - Pot Cap-1 Maneuver ~ 83 413 - - 528 - Stage 1 ~ 268 -	
Britical Hdwy 6.86 6.96 - - 4.16 - Britical Hdwy Stg 1 5.86 - - - - Britical Hdwy Stg 2 5.86 - - - - Britical Hdwy Stg 1 5.86 - - - - Britical Hdwy Stg 2 5.86 - - - - Britical Hdwy Stg 1 5.86 -	
Critical Hdwy Stg 1 5.86 - - - - Critical Hdwy Stg 2 5.86 - - - - Critical Hdwy Stg 2 5.86 - - - - Collow-up Hdwy 3.53 3.33 - - 2.23 - Collow-up Hdwy 3.53 3.33 - - 528 - Stage 1 ~ 268 - - - - - - Stage 1 ~ 268 - - - - - - Stage 2 513 - <	
Critical Hdwy Stg 2 5.86 - <td></td>	
Stage 1	
Pot Cap-1 Maneuver ~ 83 413 - 528 - Stage 1 ~ 268 - - - - Stage 2 530 - - - - Platoon blocked, % - - - - Mov Cap-1 Maneuver ~ 80 413 - - 528 - Mov Cap-2 Maneuver ~ 80 - - - - - Stage 1 ~ 268 - - - - - Stage 2 513 - - - - -	
Stage 1 ~ 268 Stage 2 530	
Stage 2 530 - - - Platoon blocked, % - - - Mov Cap-1 Maneuver ~ 80 413 - - 528 - Mov Cap-2 Maneuver ~ 80 - - - - - Stage 1 ~ 268 - - - - - Stage 2 513 - - - - -	
Platoon blocked, %	
Mov Cap-1 Maneuver ~ 80 413 - - 528 - Mov Cap-2 Maneuver ~ 80 - - - - Stage 1 ~ 268 - - - - Stage 2 513 - - - -	
Nov Cap-2 Maneuver ~ 80 Stage 1 ~ 268 Stage 2 513	
Stage 1 ~ 268 Stage 2 513	
Stage 2 513	
pproach WB NB SB	
ICM Control Delay, s \$1845.7 0 0.2	
ICM LOS F	
IUIII LUJ	
Ainor Lane/Major Mymt NBT NBR WBLn1 SBL SBT	
apacity (veh/h) 81 528 -	
ICM Lane V/C Ratio 4.871 0.033 -	
ICM Control Delay (s) \$ 1845.7 12.1 -	
ICM Lane LOS F B -	
ICM 95th %tile Q(veh) 42.7 0.1 -	
lotes	
\sim : Volume exceeds capacity $\$$: Delay exceeds 300s $+$: Computation Not Defined $*$: All ma	

	۶	→	•	•	←	•	4	†	/	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				ሻሻ		7		^	7		^	7
Traffic Volume (vph)	0	0	0	243	0	371	0	787	523	0	538	769
Future Volume (vph)	0	0	0	243	0	371	0	787	523	0	538	769
ldeal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)				5.5		5.5		5.5	4.0		5.5	5.5
Lane Util. Factor				0.97		1.00		0.95	1.00		0.95	1.00
Frpb, ped/bikes				1.00		0.99		1.00	0.97		1.00	1.00
Flpb, ped/bikes				1.00		1.00		1.00	1.00		1.00	1.00
Frt				1.00		0.85		1.00	0.85		1.00	0.85
FIt Protected				0.95		1.00		1.00	1.00		1.00	1.00
Satd. Flow (prot)				3400		1545		3505	1526		3505	1568
Flt Permitted				0.95		1.00		1.00	1.00		1.00	1.00
Satd. Flow (perm)				3400		1545		3505	1526		3505	1568
Peak-hour factor, PHF	0.92	0.92	0.92	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	0	0	0	261	0	399	0	846	562	0	578	827
RTOR Reduction (vph)	0	0	0	0	0	55	0	0	0	0	0	509
Lane Group Flow (vph)	0	0	0	261	0	344	0	846	562	0	578	318
Confl. Peds. (#/hr)				20.		• • • • • • • • • • • • • • • • • • • •		0.0	10		0.0	0.0
Confl. Bikes (#/hr)						5			5			5
Turn Type				Perm		Perm		NA	Free		NA	Prot
Protected Phases								8			4	4
Permitted Phases				6		6			Free			
Actuated Green, G (s)				25.9		25.9		23.1	60.0		23.1	23.1
Effective Green, g (s)				25.9		25.9		23.1	60.0		23.1	23.1
Actuated g/C Ratio				0.43		0.43		0.39	1.00		0.39	0.39
Clearance Time (s)				5.5		5.5		5.5			5.5	5.5
Vehicle Extension (s)				3.0		3.0		3.0			3.0	3.0
Lane Grp Cap (vph)				1467		666		1349	1526		1349	603
v/s Ratio Prot								c0.24			0.16	0.20
v/s Ratio Perm				0.08		c0.22			0.37			
v/c Ratio				0.18		0.52		0.63	0.37		0.43	0.53
Uniform Delay, d1				10.5		12.5		15.0	0.0		13.6	14.2
Progression Factor				1.00		1.00		0.83	1.00		1.00	1.00
Incremental Delay, d2				0.3		2.8		0.8	0.6		0.2	0.8
Delay (s)				10.8		15.3		13.2	0.6		13.8	15.1
Level of Service				В		В		В	A		В	В
Approach Delay (s)		0.0			13.5			8.2			14.6	
Approach LOS		A			В			A			В	
Intersection Summary												
HCM 2000 Control Delay			11.8	HC	M 2000 Le	vel of Service	e		В			
HCM 2000 Volume to Capacity ratio			0.57						_ _			
Actuated Cycle Length (s)			60.0	Su	m of lost ti	me (s)			11.0			
Intersection Capacity Utilization			53.9%		J Level of S				A			
Analysis Period (min)			15									
c Critical Lane Group												

	ၨ	→	•	•	←	•	4	†	/	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	44		777					^	7		^	7
Traffic Volume (vph)	595	0	516	0	0	0	0	751	225	0	434	361
Future Volume (vph)	595	0	516	0	0	0	0	751	225	0	434	361
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0		4.0					5.0	5.0		5.0	4.0
Lane Util. Factor	0.97		0.76					0.95	1.00		0.95	1.00
Frpb, ped/bikes	1.00		1.00					1.00	0.97		1.00	1.00
Flpb, ped/bikes	1.00		1.00					1.00	1.00		1.00	1.00
Frt	1.00		0.85					1.00	0.85		1.00	0.85
FIt Protected	0.95		1.00					1.00	1.00		1.00	1.00
Satd. Flow (prot)	3400		3575					3505	1526		3505	1568
FIt Permitted	0.95		1.00					1.00	1.00		1.00	1.00
Satd. Flow (perm)	3400		3575					3505	1526		3505	1568
Peak-hour factor, PHF	0.95	0.95	0.95	0.92	0.92	0.92	0.93	0.93	0.93	0.97	0.97	0.97
Adj. Flow (vph)	626	0	543	0	0	0	0	808	242	0	447	372
RTOR Reduction (vph)	0	0	93	0	0	0	0	0	87	0	0	0
Lane Group Flow (vph)	626	0	450	0	0	0	0	808	155	0	447	372
Confl. Peds. (#/hr)				-			_		5			
Confl. Bikes (#/hr)									5			
Turn Type	Prot		Prot					NA	Perm		NA	Free
Protected Phases	1		6					2 4			8	
Permitted Phases									2 4			Free
Actuated Green, G (s)	13.6		36.0					38.4	38.4		15.0	60.0
Effective Green, g (s)	13.6		36.0					38.4	38.4		15.0	60.0
Actuated g/C Ratio	0.23		0.60					0.64	0.64		0.25	1.00
Clearance Time (s)	4.0		4.0								5.0	
Vehicle Extension (s)	3.0		3.0								3.0	
Lane Grp Cap (vph)	770		2145					2243	976		876	1568
v/s Ratio Prot	c0.18		0.13					c0.23			c0.13	
v/s Ratio Perm									0.10			0.24
v/c Ratio	0.81		0.21					0.36	0.16		0.51	0.24
Uniform Delay, d1	22.0		5.5					5.1	4.3		19.3	0.0
Progression Factor	1.00		1.00					1.00	1.00		1.21	1.00
Incremental Delay, d2	6.6		0.2					0.1	0.1		2.1	0.3
Delay (s)	28.6		5.7					5.2	4.4		25.4	0.3
Level of Service	C		A					A	A		C	A
Approach Delay (s)		17.9			0.0			5.0			14.0	
Approach LOS		В			A			A			В	
Intersection Summary												
HCM 2000 Control Delay			12.4	HC	M 2000 Le	vel of Servi	ce		В			
HCM 2000 Volume to Capacity ratio			0.56									
Actuated Cycle Length (s)			60.0	Su	m of lost ti	me (s)			14.0			
Intersection Capacity Utilization			45.2%		U Level of S				A			
Analysis Period (min)			15									
c Critical Lane Group												

Intersection: 14: College Ave & I-8 WB Ramp

Movement	WB	WB	WB	NB	NB	SB	SB
Directions Served	L	L	R	T	Т	Т	T
Maximum Queue (ft)	162	172	196	168	161	141	160
Average Queue (ft)	29	88	22	79	79	76	90
95th Queue (ft)	104	164	101	129	128	126	142
Link Distance (ft)			1098	1059	1059	1034	1034
Upstream Blk Time (%)							
Queuing Penalty (veh)							
Storage Bay Dist (ft)	150	150					
Storage Blk Time (%)	0	1					
Queuing Penalty (veh)	0	3					

Intersection: 15: College Ave & I-8 EB Ramp

Movement	EB	EB	EB	EB	NB	NB	SB	SB	
Directions Served	L	L	R	R	Т	T	T	Т	
Maximum Queue (ft)	142	154	438	315	132	123	178	191	
Average Queue (ft)	118	144	171	66	64	64	92	97	
95th Queue (ft)	187	170	421	265	109	105	158	155	
Link Distance (ft)			920	920	672	672	1059	1059	
Upstream Blk Time (%)									
Queuing Penalty (veh)									
Storage Bay Dist (ft)	130	130							
Storage Blk Time (%)	2	28	0					0	
Queuing Penalty (veh)	3	47	0					0	

Network Summary

Network wide Queuing Penalty: 54

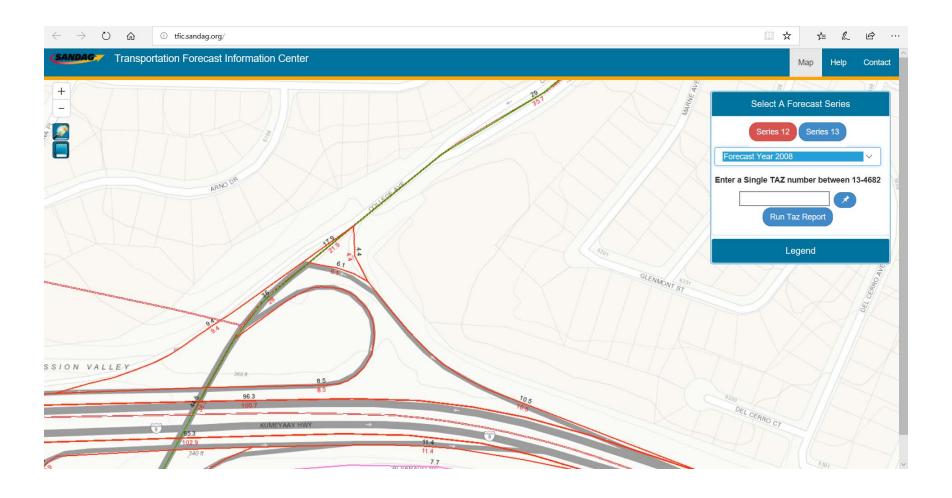
Appendix R
Near Term Opening Day (Year 2022) with Project Improvement LOS Worksheets

	•	•	†	/	/	↓		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	¥		^	7	ሻ	^		
Traffic Volume (veh/h)	30	0	1237	71	4	1146		
Future Volume (veh/h)	30	0	1237	71	4	1146		
Initial Q (Qb), veh	0	0	0	0	0	0		
Ped-Bike Adj(A pbT)	1.00	1.00		1.00	1.00			
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00		
Work Zone On Approach	No		No			No		
Adj Sat Flow, veh/h/ln	1856	1900	1856	1856	1856	1856		
Adj Flow Rate, veh/h	1412650 0 06	4514368	1345	77	4	1246		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Percent Heavy Veh, %	3	0	3	3	3	3		
Cap, veh/h	9999	9999	2249	1003	8	2579		
Arrive On Green	0.09	0.09	0.64	0.64	0.00	0.73		
Sat Flow, veh/h	2497936919184742	1935616	3618	1572	1767	3618		
Grp Volume(v), veh/h	1412650 0 06	4514368	1345	77	4	1246		
Grp Sat Flow(s),veh/h/ln	1767	1610	1763	1572	1767	1763		
Q Serve(g s), s	0.0	0.0	10.0	0.8	0.1	6.6		
Cycle Q Clear(g c), s	0.0	0.0	10.0	0.8	0.1	6.6		
Prop In Lane	1.00	1.00		1.00	1.00			
Lane Grp Cap(c), veh/h	2234742 028 49		2249	1003	8	2579		
V/C Ratio(X)	0.01	0.01	0.60	0.08	0.52	0.48		
Avail Cap(c a), veh/h	10056338453271		6624	2954	237	7412		
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00		
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00		
Uniform Delay (d), s/veh	18.5	18.5	4.7	3.1	22.2	2.5		
Incr Delay (d2), s/veh	0.0	0.0	0.3	0.0	45.7	0.1		
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0		
%ile BackOfQ(50%),veh/ln	0.0	0.0	1.8	0.1	0.1	0.5		
Unsig. Movement Delay, s/veh								
LnGrp Delay(d),s/veh	18.5	18.5	5.0	3.1	67.9	2.6		
LnGrp LOS	В	В	A	A	E	A		
Approach Vol, veh/h	1078640896		1422			1250		
Approach Delay, s/veh	18.5		4.9			2.8		
Approach LOS	В		A			A		
		0					•	
Timer - Assigned Phs	1 4 2	2 2 5				6	8	
Phs Duration (G+Y+Rc), s	4.2	32.5				36.7	8.0	
Change Period (Y+Rc), s	4.0	4.0				4.0	4.0	
Max Green Setting (Gmax), s	6.0	84.0				94.0	18.0	
Max Q Clear Time (g_c+11), s		12.0				8.6	2.0	
Green Ext Time (p_c), s	0.0	16.5				14.0	0.0	
Intersection Summary								
HCM 6th Ctrl Delay			18.5					
HCM 6th LOS			В					

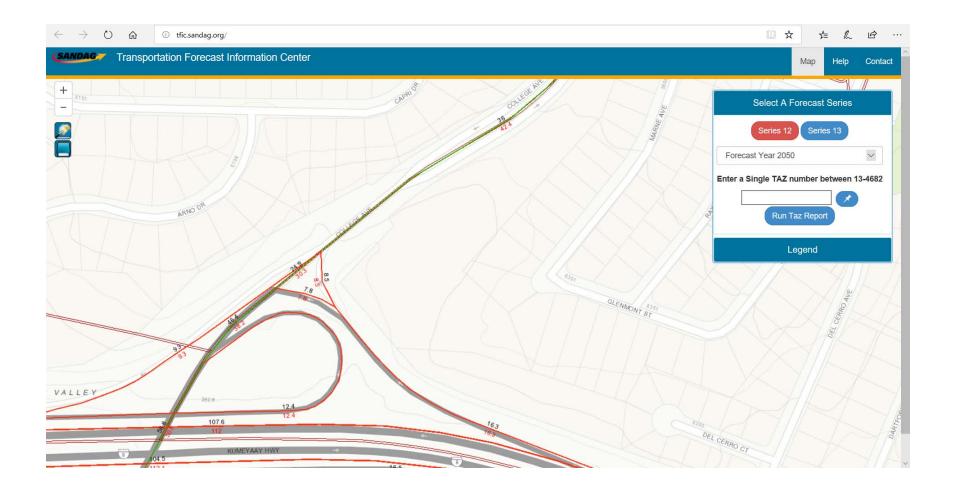
	•	•	†	<i>></i>	/	+	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	¥		^	7	ሻ	^	
Traffic Volume (veh/h)	359	4	894	293	16	975	
Future Volume (veh/h)	359	4	894	293	16	975	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00		1.00	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No		No			No	
Adj Sat Flow, veh/h/In	1900	1900	1856	1856	1856	1856	
Adj Flow Rate, veh/h	390	4	972	318	17	1060	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Percent Heavy Veh, %	0	0	3	3	3	3	
Cap, veh/h	479	5	1632	728	30	1980	
Arrive On Green	0.27	0.27	0.46	0.46	0.02	0.56	
Sat Flow, veh/h	1743	18	3618	1572	1767	3618	
Grp Volume(v), veh/h	395	0	972	318	17	1060	
Grp Sat Flow(s),veh/h/In	1765	0	1763	1572	1767	1763	
Q Serve(g_s), s	10.2	0.0	10.0	6.7	0.5	9.2	
Cycle Q Clear(g_c), s	10.2	0.0	10.0	6.7	0.5	9.2	
Prop In Lane	0.99	0.01		1.00	1.00		
ane Grp Cap(c), veh/h	485	0	1632	728	30	1980	
//C Ratio(X)	0.81	0.00	0.60	0.44	0.57	0.54	
Avail Cap(c_a), veh/h	1698	0	3896	1738	253	4689	
ICM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Jpstream Filter(I)	1.00	0.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	16.6	0.0	9.7	8.8	23.8	6.7	
Incr Delay (d2), s/veh	3.4	0.0	0.4	0.4	16.0	0.2	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/In	4.0	0.0	3.0	1.8	0.3	2.4	
Jnsig. Movement Delay, s/veh							
.nGrp Delay(d),s/veh	19.9	0.0	10.1	9.3	39.8	6.9	
nGrp LOS	В	A	В	A	D	A	
pproach Vol, veh/h	395		1290			1077	
Approach Delay, s/veh	19.9		9.9			7.5	
pproach LOS	В		A			A	
imer - Assigned Phs	1	2				6	8
Phs Duration (G+Y+Rc), s	4.8	26.6				31.4	17.4
Change Period (Y + Rc), s	4.0	4.0				4.0	4.0
Max Green Setting (Gmax), s	7.0	54.0				65.0	47.0
Max Q Clear Time (g c+l1), s	2.5	12.0				11.2	12.2
Green Ext Time (p_c), s	0.0	10.6				10.3	1.3
ntersection Summary							
HCM 6th Ctrl Delay			10.4				
HCM 6th LOS			В				
nom Jul Lus			U				

Appendix S

Year 2050 Compound Growth Worksheets


Segment	Existing Year 2019 Volume	SANDAG S12 Yr 2008 Unadj. Vol.	SANDAG S12 Yr 2050 Unadj. Vol.	Annual Growth Rate over 42 years (2050 - 2008 = 42)	Forecasted Year 2050 (2050 - 2019 = 31)	Adjustments (rounded)
WEEKDAY						
College Ave						
Del Cerro to Project Main Access	29,858	35,700	42,400	0.41%	33,900	34,000
Project Main Access to I-8 WB Ramp	29,858	35,700	42,400	0.41%	33,900	34,000
I-8 WB Ramp to I-8 EB Ramp	36,813	36,500	50,600	0.78%	46,850	47,000
SUNDAY						
College Ave						
Del Cerro to Project Main Access	23,486	No Sunday SA	NDAG volumes	0.41%	26,665	27,000
Project Main Access to I-8 WB Ramp	23,486	available, therefore, above week-		0.41%	26,665	27,000
I-8 WB Ramp to I-8 EB Ramp	26,097 day rates were used for Sunday.		0.78%	33,212	33,000	

Average Annual Growth Rate:


Average Growth Rate to Year 2050: 1.178

0.53%

Series 12 Year 2008 Unadjusted Volumes

Series 12 Year 2050 Unadjusted Volumes

Appendix T

Horizon Year 2050 without Project LOS and Queueing Worksheets

	۶	→	•	•	←	•	•	†	/	/	↓	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	7	ሻ	4		ሻ	^	7	ሻ	ተ ኈ	
Traffic Volume (vph)	98	79	246	600	117	66	100	835	369	75	931	27
Future Volume (vph)	98	79	246	600	117	66	100	835	369	75	931	27
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.1	4.4	4.9	4.9		4.4	5.1	4.9	4.4	6.6	
Lane Util. Factor		1.00	1.00	0.95	0.95		1.00	0.95	1.00	1.00	0.95	
Frpb, ped/bikes		1.00	0.99	1.00	0.98		1.00	1.00	0.97	1.00	1.00	
Flpb, ped/bikes		1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Frt		1.00	0.85	1.00	0.97		1.00	1.00	0.85	1.00	1.00	
Fit Protected		0.97	1.00	0.95	0.97		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)		1795	1552	1665	1638		1752	3505	1521	1752	3488	
Fit Permitted		0.97 1795	1.00 1552	0.95 1665	0.97 1638		0.95 1752	1.00 3505	1.00 1521	0.95 1752	1.00 3488	
Satd. Flow (perm)	0.00					0.00						0.00
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	107	86	267	652	127	72	109	908	401	82	1012	29
RTOR Reduction (vph)	0	0 193	0 267	0 424	8 419	0	0 109	0 908	133 268	0 82	2 1039	0
Lane Group Flow (vph)	0	193	201	424	419	45	109	908	208 10	82	1039	0
Confl. Peds. (#/hr) Confl. Bikes (#/hr)			5			40 5			10 5			5
	C"I:T	NA		C-1:4	MA	J J	Duet	NA		Duel	MA	J
Turn Type Protected Phases	Split 4	NA 4	pm + ov	Split 3	NA 3		Prot 5	NA 2	pm+ov 3	Prot 1	NA 6	
Permitted Phases	4	4	5 4	ა	3		J		2	ı	U	
Actuated Green, G (s)		9.9	17.7	23.1	23.1		7.8	32.8	55.9	5.5	29.0	
Effective Green, g (s)		9.9	17.7	23.1	23.1		7.8	32.8	55.9	5.5	29.0	
Actuated g/C Ratio		0.11	0.19	0.25	0.25		0.09	0.36	0.62	0.06	0.32	
Clearance Time (s)		5.1	4.4	4.9	4.9		4.4	5.1	4.9	4.4	6.6	
Vehicle Extension (s)		3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)		195	302	423	416		150	1266	936	106	1114	
v/s Ratio Prot		c0.11	c0.08	0.25	c0.26		0.06	0.26	0.07	0.05	c0.30	
v/s Ratio Perm		00.11	0.10	0.20	00.20		0.00	0.20	0.10	0.00	00.00	
v/c Ratio		0.99	0.88	1.00	1.01		0.73	0.72	0.29	0.77	0.93	
Uniform Delay, d1		40.4	35.6	33.8	33.8		40.5	25.0	8.1	42.0	30.0	
Progression Factor		1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2		60.8	24.9	44.3	45.8		16.0	2.0	0.2	28.8	13.7	
Delay (s)		101.2	60.4	78.2	79.7		56.5	27.0	8.3	70.9	43.6	
Level of Service		F	E	E	E		E	C	A	E	D	
Approach Delay (s)		77.5			78.9			24.0			45.6	
Approach LOS		E			E			C			D	
Intersection Summary												
HCM 2000 Control Delay			48.8	HC	M 2000 Le	el of Servi	ce		D			
HCM 2000 Volume to Capacity ratio			0.95									
Actuated Cycle Length (s)			90.8	Su	ım of lost ti	ne (s)			21.0			
Intersection Capacity Utilization			81.2%	IC	U Level of S	ervice			D			
Analysis Period (min)			15									

4: College Ave & I-8 WB Ramp

Lane Configurations	<i>,</i> ✓	↓	-	/	†	1	4	←	•	*	→	۶	
Traffic Nolume (γγγ) 0 0 0 317 0 153 0 1138 465 0 8 Inture Volume (γγγ) 1900 1900 1900 1900 1900 1900 1900 190	SBT SBR	SBT	SBL	NBR	NBT	NBL	WBR	WBT	WBL	EBR	EBT	EBL	Movement
Future Volume (vph)	<u>ተ</u>	^		7	^		7		1/1				Lane Configurations
Ideal Flow (yphpi) 1900		874	0	465		0		0		0		0	Traffic Volume (vph)
Total Lost time (s)		874											Future Volume (vph)
Lane Util. Factor		1900	1900			1900		1900		1900	1900	1900	
Frpb, ped/bikes		5.5											• •
Figh, ped/hikes		0.95											
First		1.00											
Fit Protected 0.95 1.00		1.00											
Satd. Flow (prot) 3400 1568 3505 1530 35 1510 1.0		1.00											
Fit Permitted		1.00											
Satd. Flow (perm) 3400 1568 3505 1530 35 Peak-hour factor, PHF 0.92		3505											
Peak-hour factor, PHF 0.92		1.00											
Adj. Flow (vph) 0 0 0 0 345 0 166 0 1235 505 0 9 RTOR Reduction (vph) 0 0 0 0 0 56 0 0 0 0 0 Lane Group Flow (vph) 0 0 0 0 345 0 110 0 1235 505 0 9 Confl. Ploks. (#/hr) 5 5 Turn Type Perm Perm NA Free 5 Turn Type 9 Perm Perm NA Free 6 Retuated Green, G (s) 30.7 30.7 48.3 90.0 48 Effective Green, g (s) 30.7 30.7 48.3 90.0 48 Effective Green, g (s) 30.7 30.7 48.3 90.0 48 Actuated g/C Ratio 0.34 0.34 0.54 1.00 0.0 Clearance Time (s) 5.5 5.5 5.5 5.5 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 1159 534 1881 1530 138 Lane Grp Cap (vph) 1159 534 1881 1530		3505											
RTOR Reduction (vph) 0 0 0 0 0 0 56 0 0 0 0 0 0 0 0 0 0 0 0		0.92											•
Lane Group Flow (\(\sigma\)ph		950											
Confl. Peds. (#/hr) 5 Confl. Bikes (#/hr) 5 Turn Type Perm Perm NA Free Protected Phases 6 6 Free Actuated Breen, 6 (s) 30.7 30.7 48.3 90.0 48 Effective Green, g (s) 30.7 30.7 48.3 90.0 48 Actuated g/C Ratio 0.34 0.34 0.54 1.00 0. Clearance Time (s) 5.5<	0 454							_					-
Confil. Bikes (#/hr) Perm Perm Perm NA Free Protected Phases 6 6 Free Actuated Green, G (s) 30.7 30.7 48.3 90.0 48 Effective Green, g (s) 30.7 30.7 48.3 90.0 48 Actuated g/C Ratio 0.34 0.34 0.54 1.00 0. Clearance Time (s) 5.5 5.5 5.5 5.5 5.5 5.5 Vehicle Extension (s) 3.0 18 1.530 18 1.530 18 1.530 18 1.530 18 1.530 18 1.530 18 1.530 1.0	950 526	950	0		1235	0	110	0	345	0	0	0	
Turn Type Perm Perm Perm NA Free Protected Phases 6 6 Free Actuated Green, G (s) 30.7 30.7 48.3 90.0 48 Effective Green, g (s) 30.7 30.7 48.3 90.0 48 Actuated g/C Ratio 0.34 0.34 0.54 1.00 0. Clearance Time (s) 5.5 5.5 5.5 5.5 5.5 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 1159 534 1881 1530 18 1530 18 v/s Ratio Prot c0.35 0.0 <td></td>													
Protected Phases 6													
Permitted Phases 6	NA Prot			Free			Perm		Perm				• .
Actuated Green, G (s) 30.7 30.7 48.3 90.0 48 Effective Green, g (s) 30.7 30.7 48.3 90.0 48 Actuated g/C Ratio 0.34 0.34 0.54 1.00 0. Clearance Time (s) 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.	4 4	4		_	8				_				
Effective Green, g (s) 30.7 30.7 48.3 90.0 48 Actuated g/C Ratio 0.34 0.34 0.54 1.00 0. Clearance Time (s) 5.5 5.0 5.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
Actuated g/C Ratio 0.34 0.34 0.54 1.00 0. Clearance Time (s) 5.5 5.5 5.5 5.5 5.5 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 1159 534 1881 1530 18 v/s Ratio Prot c0.35 0. 0.07 c0.33 v/s Ratio Perm 0.10 0.07 c0.33 0. v/s Ratio Perm 0.30 0.21 0.66 0.33 0. Uniform Delay, d1 21.7 21.0 14.9 0.0 13 Progression Factor 1.00		48.3											
Clearance Time (s) 5.5 5		48.3											_
Vehicle Extension (s) 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 1159 534 1881 1530 18 v/s Ratio Prot c0.35 0. 0.35 0. v/s Ratio Perm 0.10 0.07 c0.33 0. v/c Ratio 0.30 0.21 0.66 0.33 0. Uniform Delay, d1 21.7 21.0 14.9 0.0 13 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.0 Incremental Delay, d2 0.7 0.9 0.8 0.6 0.0 0		0.54		1.00									
Lane Grp Cap (vph)		5.5											
v/s Ratio Prot c0.35 0. v/s Ratio Perm 0.10 0.07 c0.33 v/c Ratio 0.30 0.21 0.66 0.33 0. Uniform Delay, d1 21.7 21.0 14.9 0.0 13 Progression Factor 1.00 <td></td> <td>3.0</td> <td></td>		3.0											
v/s Ratio Perm 0.10 0.07 c0.33 v/c Ratio 0.30 0.21 0.66 0.33 0.0 Uniform Delay, d1 21.7 21.0 14.9 0.0 13 Progression Factor 1.00		1881		1530			534		1159				
V/c Ratio 0.30 0.21 0.66 0.33 0. Uniform Delay, d1 21.7 21.0 14.9 0.0 13 Progression Factor 1.00 1.00 1.00 1.00 1.1 Incremental Delay, d2 0.7 0.9 0.8 0.6 0 Delay (s) 22.4 21.9 15.8 0.6 13 Level of Service C C B A Approach Delay (s) 0.0 22.2 11.3 14 Approach LOS A C B B Intersection Summary HCM 2000 Control Delay 14.3 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.55 Actuated Cycle Length (s) 90.0 Sum of lost time (s) 11.0	0.27 0.34	0.27		2.22	c0.35				0.40				-
Duriform Delay, d1		0.51											
Progression Factor		0.51											
Incremental Delay, d2		13.3											
Delay (s) 22.4 21.9 15.8 0.6 13 Level of Service C C B A Approach Delay (s) 0.0 22.2 11.3 14 Approach LOS A C B Intersection Summary HCM 2000 Control Delay 14.3 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.55 Actuated Cycle Length (s) 90.0 Sum of lost time (s) 11.0		1.00											
Level of Service C C B A Approach Delay (s) 0.0 22.2 11.3 14 Approach LOS A C B Intersection Summary HCM 2000 Control Delay 14.3 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.55 Actuated Cycle Length (s) 90.0 Sum of lost time (s) 11.0		0.2											•
Approach Delay (s) 0.0 22.2 11.3 14 Approach LOS A C B Intersection Summary HCM 2000 Control Delay 14.3 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.55 Actuated Cycle Length (s) 90.0 Sum of lost time (s) 11.0		13.5											•
Approach LOS A C B Intersection Summary HCM 2000 Control Delay 14.3 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.55 Actuated Cycle Length (s) 90.0 Sum of lost time (s) 11.0	B B			A			li	00.0	Ü		0.0		
Intersection Summary HCM 2000 Control Delay 14.3 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.55 Actuated Cycle Length (s) 90.0 Sum of lost time (s) 11.0		14.8											••
HCM 2000 Control Delay 14.3 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.55 Actuated Cycle Length (s) 90.0 Sum of lost time (s) 11.0	В	В			В			l l			A		
HCM 2000 Volume to Capacity ratio O.55 Actuated Cycle Length (s) 90.0 Sum of lost time (s) 11.0													
Actuated Cycle Length (s) 90.0 Sum of lost time (s) 11.0				В		e	vel of Servic	M 2000 Le	HC				_
				44.0									
Intervention Consolution Control Contr													
·				В			ervice	U Level of S	IC	60.4%			Intersection Capacity Utilization
Analysis Period (min) 15										15			

c Critical Lane Group

	۶	→	*	•	←	•	1	†	<i>></i>	>	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	7	ሻ	4		ሻ	^	7	7	∱ ∱	
Traffic Volume (vph)	44	35	132	405	38	91	140	736	458	112	719	28
Future Volume (vph)	44	35	132	405	38	91	140	736	458	112	719	28
ldeal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.1	4.4	4.9	4.9		4.4	5.1	4.9	4.4	6.6	
Lane Util. Factor		1.00	1.00	0.95	0.95		1.00	0.95	1.00	1.00	0.95	
Frpb, ped/bikes		1.00	0.99	1.00	0.99		1.00	1.00	0.98	1.00	1.00	
Flpb, ped/bikes		1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Frt		1.00	0.85	1.00	0.95		1.00	1.00	0.85	1.00	0.99	
Fit Protected		0.97	1.00	0.95	0.98		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)		1795	1558	1665	1608		1752	3505	1540	1752	3481	
FIt Permitted		0.97	1.00	0.95	0.98		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (perm)		1795	1558	1665	1608		1752	3505	1540	1752	3481	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	48	38	143	440	41	99	152	800	498	122	782	30
RTOR Reduction (vph)	0	0	0	0	16	0	0	0	203	0	2	0
Lane Group Flow (vph)	0	86	143	295	269	0	152	800	295	122	810	0
Confl. Peds. (#/hr)						5			5			5
Confl. Bikes (#/hr)			5			5			5			5
Turn Type	Split	NA	pm + ov	Split	NA		Prot	NA	pm + ov	Prot	NA	
Protected Phases	4	4	5	3	3		5	2	3	1	6	
Permitted Phases			4						2			
Actuated Green, G (s)		8.4	22.0	25.0	25.0		13.6	32.8	57.8	12.0	29.7	
Effective Green, g (s)		8.4	22.0	25.0	25.0		13.6	32.8	57.8	12.0	29.7	
Actuated g/C Ratio		0.09	0.23	0.26	0.26		0.14	0.34	0.59	0.12	0.30	
Clearance Time (s)		5.1	4.4	4.9	4.9		4.4	5.1	4.9	4.4	6.6	
Vehicle Extension (s)		3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)		154	350	426	411		243	1176	911	215	1058	
v/s Ratio Prot		c0.05	0.06	c0.18	0.17		c0.09	0.23	0.08	0.07	c0.23	
v/s Ratio Perm			0.04						0.11			
v/c Ratio		0.56	0.41	0.69	0.66		0.63	0.68	0.32	0.57	0.77	
Uniform Delay, d1		42.9	32.3	32.9	32.5		39.6	27.9	10.1	40.4	30.8	
Progression Factor		1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2		4.3	0.8	4.8	3.7		5.0	1.6	0.2	3.4	3.4	
Delay (s)		47.2	33.1	37.7	36.2		44.6	29.6	10.3	43.8	34.2	
Level of Service		D	C	D	D		D	C	В	D	C	
Approach Delay (s)		38.4			37.0			24.5			35.5	
Approach LOS		D			D			C			D	
Intersection Summary												
HCM 2000 Control Delay			31.0	HC	CM 2000 Le	vel of Servi	ce		C			
HCM 2000 Volume to Capacity ratio			0.69									
Actuated Cycle Length (s)			97.7	Su	ım of lost ti	me (s)			21.0			
Intersection Capacity Utilization			67.2%	IC	U Level of S	ervice			C			
Analysis Period (min)			15									

	۶	→	•	•	←	4	1	†	/	-	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				1,1		7		^	7		^	7
Traffic Volume (vph)	0	0	0	525	0	348	0	1030	1240	0	679	574
Future Volume (vph)	0	0	0	525	0	348	0	1030	1240	0	679	574
ldeal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)				5.5		5.5		5.5	4.0		5.5	5.5
Lane Util. Factor				0.97		1.00		0.95	1.00		0.95	1.00
Frpb, ped/bikes				1.00		0.99		1.00	0.98		1.00	1.00
Flpb, ped/bikes				1.00		1.00		1.00	1.00		1.00	1.00
Frt				1.00		0.85		1.00	0.85		1.00	0.85
Flt Protected				0.95		1.00		1.00	1.00		1.00	1.00
Satd. Flow (prot)				3400		1545		3505	1530		3505	1568
Flt Permitted				0.95		1.00		1.00	1.00		1.00	1.00
Satd. Flow (perm)				3400		1545		3505	1530		3505	1568
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	0	571	0	378	0	1120	1348	0	738	624
RTOR Reduction (vph)	0	0	0	0	0	27	0	0	0	0	0	361
Lane Group Flow (vph)	0	0	0	571	0	351	0	1120	1348	0	738	263
Confl. Peds. (#/hr)						_			5			
Confl. Bikes (#/hr)						5			5			5
Turn Type				Perm		Perm		NA	Free		NA	Prot
Protected Phases								8	_		4	4
Permitted Phases				6		6			Free			
Actuated Green, G (s)				23.7		23.7		25.3	60.0		25.3	25.3
Effective Green, g (s)				23.7		23.7		25.3	60.0		25.3	25.3
Actuated g/C Ratio				0.39		0.39		0.42	1.00		0.42	0.42
Clearance Time (s)				5.5		5.5		5.5			5.5	5.5
Vehicle Extension (s)				3.0		3.0		3.0			3.0	3.0
Lane Grp Cap (vph)				1343		610		1477	1530		1477	661
v/s Ratio Prot				0.47				0.32			0.21	0.17
v/s Ratio Perm				0.17		0.23			c0.88			
v/c Ratio				0.43		0.58		0.76	0.88		0.50	0.40
Uniform Delay, d1				13.2		14.2		14.8	0.0		12.7	12.1
Progression Factor				1.00		1.00		1.00	1.00		1.00	1.00
Incremental Delay, d2				1.0		3.9		2.3	7.6		0.3	0.4
Delay (s)				14.2		18.1		17.0	7.6		13.0	12.5
Level of Service		0.0		В	15.0	В		B	A		B	В
Approach LOS		0.0			15.8			11.9			12.7	
Approach LOS		A			В			В			В	
Intersection Summary												
HCM 2000 Control Delay			12.9	HC	M 2000 Le	vel of Servi	ce		В			
HCM 2000 Volume to Capacity ratio			1.08									
Actuated Cycle Length (s)			60.0		m of lost ti				11.0			
Intersection Capacity Utilization			59.2%	IC	U Level of S	ervice			В			
Analysis Period (min)			15									
c Critical Lane Group												

	ᄼ	→	•	•	+	•	1	†	/	\		4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		सी	7	7	4		Ť	^	7	Ť	∱ ∱	
Traffic Volume (vph)	38	39	108	416	24	111	102	569	363	94	608	8
Future Volume (vph)	38	39	108	416	24	111	102	569	363	94	608	8
ldeal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.1	4.4	4.9	4.9		4.4	5.1	4.9	4.4	6.6	
Lane Util. Factor		1.00	1.00	0.95	0.95		1.00	0.95	1.00	1.00	0.95	
Frpb, ped/bikes		1.00	0.99	1.00	0.99		1.00	1.00	0.98	1.00	1.00	
Flpb, ped/bikes		1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Frt		1.00	0.85	1.00	0.94		1.00	1.00	0.85	1.00	1.00	
FIt Protected		0.98	1.00	0.95	0.98		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)		1800	1557	1665	1590		1752	3505	1541	1752	3496	
Flt Permitted		0.98	1.00	0.95	0.98		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (perm)		1800	1557	1665	1590		1752	3505	1541	1752	3496	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	41	42	117	452	26	121	111	618	395	102	661	9
RTOR Reduction (vph)	0	0	0	0	21	0	0	0	158	0	1	0
Lane Group Flow (vph)	0	83	117	307	271	0	111	618	237	102	669	0
Confl. Peds. (#/hr)						5			5			5
Confl. Bikes (#/hr)			5			5			5			5
Turn Type	Split	NA	pm + ov	Split	NA		Prot	NA	pm+ov	Prot	NA	
Protected Phases	4	4	5	3	3		5	2	3	1	6	
Permitted Phases			4						2			
Actuated Green, G (s)		7.9	19.7	23.7	23.7		11.8	30.4	54.1	8.6	25.7	
Effective Green, g (s)		7.9	19.7	23.7	23.7		11.8	30.4	54.1	8.6	25.7	
Actuated g/C Ratio		0.09	0.22	0.26	0.26		0.13	0.34	0.60	0.10	0.29	
Clearance Time (s)		5.1	4.4	4.9	4.9		4.4	5.1	4.9	4.4	6.6	
Vehicle Extension (s)		3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)		157	340	437	418		229	1182	925	167	997	
v/s Ratio Prot		c0.05	0.05	c0.18	0.17		0.06	c0.18	0.07	c0.06	c0.19	
v/s Ratio Perm			0.03						0.09			
v/c Ratio		0.53	0.34	0.70	0.65		0.48	0.52	0.26	0.61	0.67	
Uniform Delay, d1		39.3	29.7	30.0	29.5		36.3	24.0	8.5	39.1	28.5	
Progression Factor		1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2		3.2	0.6	5.1	3.5		1.6	0.4	0.1	6.5	1.8	
Delay (s)		42.5	30.4	35.1	33.0		37.9	24.4	8.6	45.6	30.3	
Level of Service		D	C	D	C		D	C	A	D	C	
Approach Delay (s)		35.4			34.0			20.2			32.3	
Approach LOS		D			C			C			C	
Intersection Summary												
HCM 2000 Control Delay			27.9	нс	M 2000 Lev	vel of Servi	ce		С			
HCM 2000 Volume to Capacity ratio			0.63				·		_			
Actuated Cycle Length (s)			90.1	Su	m of lost ti	me (s)			21.0			
Intersection Capacity Utilization			62.3%		U Level of S				В			
Analysis Period (min)			15						<u>-</u>			
O di della d												

	۶	→	*	•	←	•	1	†	/	>	ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				44		7		^	7		^	7
Traffic Volume (vph)	0	0	0	282	0	285	0	715	607	0	405	695
Future Volume (vph)	0	0	0	282	0	285	0	715	607	0	405	695
ldeal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)				5.5		5.5		5.5	4.0		5.5	5.5
Lane Util. Factor				0.97		1.00		0.95	1.00		0.95	1.00
Frpb, ped/bikes				1.00		0.99		1.00	0.97		1.00	1.00
Flpb, ped/bikes				1.00		1.00		1.00	1.00		1.00	1.00
Frt				1.00		0.85		1.00	0.85		1.00	0.85
FIt Protected				0.95		1.00		1.00	1.00		1.00	1.00
Satd. Flow (prot)				3400		1545		3505	1526		3505	1568
Flt Permitted				0.95		1.00		1.00	1.00		1.00	1.00
Satd. Flow (perm)				3400		1545		3505	1526		3505	1568
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	0	307	0	310	0	777	660	0	440	755
RTOR Reduction (vph)	0	0	0	0	0	69	0	0	0	0	0	486
Lane Group Flow (vph)	0	0	0	307	0	241	0	777	660	0	440	269
Confl. Peds. (#/hr)									10			
Confl. Bikes (#/hr)						5			5			5
Turn Type				Perm		Perm		NA	Free		NA	Prot
Protected Phases								8			4	4
Permitted Phases				6		6			Free			
Actuated Green, G (s)				27.6		27.6		21.4	60.0		21.4	21.4
Effective Green, g (s)				27.6		27.6		21.4	60.0		21.4	21.4
Actuated g/C Ratio				0.46		0.46		0.36	1.00		0.36	0.36
Clearance Time (s)				5.5		5.5		5.5			5.5	5.5
Vehicle Extension (s)				3.0		3.0		3.0			3.0	3.0
Lane Grp Cap (vph)				1564		710		1250	1526		1250	559
v/s Ratio Prot								c0.22			0.13	0.17
v/s Ratio Perm				0.09		0.16			c0.43			
v/c Ratio				0.20		0.34		0.62	0.43		0.35	0.48
Uniform Delay, d1				9.6		10.4		16.0	0.0		14.2	15.0
Progression Factor				1.00		1.00		0.73	1.00		1.00	1.00
Incremental Delay, d2				0.3		1.3		0.8	0.8		0.2	0.7
Delay (s)				9.9		11.7		12.5	0.8		14.4	15.6
Level of Service				A		В		В	A		В	В
Approach Delay (s)		0.0			10.8			7.1			15.2	
Approach LOS		A			В			A			В	
Intersection Summary												
HCM 2000 Control Delay			10.8	HC	M 2000 Le	vel of Servi	ce		В			
HCM 2000 Volume to Capacity ratio			0.56									
Actuated Cycle Length (s)			60.0		m of lost ti				11.0			
Intersection Capacity Utilization			47.6%	IC	U Level of S	ervice			A			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	\rightarrow	•	←	•	4	†	/	>	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	16.54		777					^	7		^	7
Traffic Volume (vph)	528	0	598	0	0	0	0	835	262	0	459	244
Future Volume (vph)	528	0	598	0	0	0	0	835	262	0	459	244
ldeal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0		4.0					5.0	5.0		5.0	4.0
Lane Util. Factor	0.97		0.76					0.95	1.00		0.95	1.00
Frpb, ped/bikes	1.00		1.00					1.00	0.97		1.00	1.00
Flpb, ped/bikes	1.00		1.00					1.00	1.00		1.00	1.00
Frt	1.00		0.85					1.00	0.85		1.00	0.85
Flt Protected	0.95		1.00					1.00	1.00		1.00	1.00
Satd. Flow (prot)	3400		3575					3505	1526		3505	1568
Flt Permitted	0.95		1.00					1.00	1.00		1.00	1.00
Satd. Flow (perm)	3400		3575					3505	1526		3505	1568
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	574	0	650	0	0	0	0	908	285	0	499	265
RTOR Reduction (vph)	0	0	70	0	0	0	0	0	104	0	0	0
Lane Group Flow (vph)	574	0	580	0	0	0	0	908	181	0	499	265
Confl. Peds. (#/hr)									5			
Confl. Bikes (#/hr)									5			
Turn Type	Prot		Prot					NA	Perm		NA	Free
Protected Phases	1		6					2 4			8	
Permitted Phases									2 4			Free
Actuated Green, G (s)	13.9		36.0					38.1	38.1		15.0	60.0
Effective Green, g (s)	13.9		36.0					38.1	38.1		15.0	60.0
Actuated g/C Ratio	0.23		0.60					0.64	0.64		0.25	1.00
Clearance Time (s)	4.0		4.0								5.0	
Vehicle Extension (s)	3.0		3.0								3.0	
Lane Grp Cap (vph)	787		2145					2225	969		876	1568
v/s Ratio Prot	c0.17		0.16					c0.26			c0.14	
v/s Ratio Perm									0.12			0.17
v/c Ratio	0.73		0.27					0.41	0.19		0.57	0.17
Uniform Delay, d1	21.3		5.7					5.4	4.5		19.7	0.0
Progression Factor	1.00		1.00					1.00	1.00		1.20	1.00
Incremental Delay, d2	3.4		0.3					0.1	0.1		2.6	0.2
Delay (s)	24.7		6.0					5.5	4.6		26.2	0.2
Level of Service	C		A					A	A		C	A
Approach Delay (s)	-	14.8			0.0			5.3			17.2	
Approach LOS		В			A			A			В	
Intersection Summary												
HCM 2000 Control Delay			11.8	HC	M 2000 Lev	el of Servi	ce		В			
HCM 2000 Volume to Capacity ratio			0.58									
Actuated Cycle Length (s)			60.0	Su	m of lost tii	ne (s)			14.0			
Intersection Capacity Utilization			45.6%		J Level of S				A			
Analysis Period (min)			15	.00	20.0.0.							
c Critical Lane Group												

Intersection: 14: College Ave & I-8 WB Ramp

Movement	WB	WB	WB	NB	NB	SB	SB
Directions Served	L	L	R	Т	T	Т	Т
Maximum Queue (ft)	156	172	203	166	168	117	1047
Average Queue (ft)	34	91	22	84	84	61	104
95th Queue (ft)	96	144	97	133	143	109	396
Link Distance (ft)			1098	1059	1059	1034	1034
Upstream Blk Time (%)							0
Queuing Penalty (veh)							0
Storage Bay Dist (ft)	150	150					
Storage Blk Time (%)	0	1					
Queuing Penalty (veh)	0	3					

Intersection: 15: College Ave & I-8 EB Ramp

Movement	EB	EB	EB	EB	NB	NB	NB	SB	SB	
Directions Served	L	L	R	R	T	T	R	T	T	
Maximum Queue (ft)	142	154	576	472	154	164	169	146	168	
Average Queue (ft)	125	147	197	85	72	90	11	89	99	
95th Queue (ft)	182	172	462	313	116	143	80	133	142	
Link Distance (ft)			920	920	672	672		1059	1059	
Upstream Blk Time (%)										
Queuing Penalty (veh)										
Storage Bay Dist (ft)	130	130					150			
Storage Blk Time (%)	2	27		0		0	0			
Queuing Penalty (veh)	3	53		0		1	0			

Network Summary

Network wide Queuing Penalty: 61

Ap	ne	nd	ix	U
nρ	\sim	III	1/	v

Horizon Year 2050 with Project Intersection LOS and Queueing Worksheets

AM Horizon Year + Project 1: College Ave & Del Cerro Blvd

	۶	→	•	•	←	4	1	†	<i>></i>	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	7	ሻ	4		ř	^	7	ሻ	∱ }	
Traffic Volume (vph)	98	79	246	600	117	66	100	835	369	75	933	27
Future Volume (vph)	98	79	246	600	117	66	100	835	369	75	933	27
ldeal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.1	4.4	4.9	4.9		4.4	5.1	4.9	4.4	6.6	
Lane Util. Factor		1.00	1.00	0.95	0.95		1.00	0.95	1.00	1.00	0.95	
Frpb, ped/bikes		1.00	0.99	1.00	0.98		1.00	1.00	0.97	1.00	1.00	
Flpb, ped/bikes		1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Frt		1.00	0.85	1.00	0.97		1.00	1.00	0.85	1.00	1.00	
FIt Protected		0.97	1.00	0.95	0.97		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)		1795	1552	1665	1638		1752	3505	1521	1752	3488	
Flt Permitted		0.97	1.00	0.95	0.97		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (perm)		1795	1552	1665	1638		1752	3505	1521	1752	3488	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	107	86	267	652	127	72	109	908	401	82	1014	29
RTOR Reduction (vph)	0	0	0	0	8	0	0	0	133	0	2	0
Lane Group Flow (vph)	Ō	193	267	424	419	0	109	908	268	82	1041	0
Confl. Peds. (#/hr)		100	20,	121	110	45	100	000	10	02	1011	
Confl. Bikes (#/hr)			5			5			5			5
Turn Type	Split	NA	pm+ov	Split	NA		Prot	NA	pm + ov	Prot	NA	
Protected Phases	3 рпс	4	5 Fin 1 6V	3	3		5	2	3	1	6	
Permitted Phases	<u></u>	7	4	J	J		J		2	·	U	
Actuated Green, G (s)		9.9	17.7	23.1	23.1		7.8	32.8	55.9	5.5	29.0	
Effective Green, g (s)		9.9	17.7	23.1	23.1		7.8	32.8	55.9	5.5	29.0	
Actuated g/C Ratio		0.11	0.19	0.25	0.25		0.09	0.36	0.62	0.06	0.32	
Clearance Time (s)		5.1	4.4	4.9	4.9		4.4	5.1	4.9	4.4	6.6	
Vehicle Extension (s)		3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	
			302	423	416		150			106	1114	
Lane Grp Cap (vph)		195						1266	936	0.05		
v/s Ratio Prot		c0.11	c0.08	0.25	c0.26		0.06	0.26	0.07	0.05	c0.30	
v/s Ratio Perm		0.00	0.10	1.00	1.01		0.70	0.70	0.10	0.77	0.00	
v/c Ratio		0.99	0.88	1.00	1.01		0.73	0.72	0.29	0.77	0.93	
Uniform Delay, d1		40.4	35.6	33.8	33.8		40.5	25.0	8.1	42.0	30.0	
Progression Factor		1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2		60.8	24.9	44.3	45.8		16.0	2.0	0.2	28.8	13.9	
Delay (s)		101.2	60.4	78.2	79.7		56.5	27.0	8.3	70.9	43.9	
Level of Service		F	E	E	E		E	C	A	E	D	
Approach Delay (s)		77.5			78.9			24.0			45.8	
Approach LOS		E			E			C			D	
Intersection Summary												
HCM 2000 Control Delay			48.9	HC	M 2000 Le	vel of Servi	ce		D			
HCM 2000 Volume to Capacity ratio			0.95									
Actuated Cycle Length (s)			90.8	Su	m of lost ti	me (s)			21.0			
Intersection Capacity Utilization			81.3%	IC	U Level of S	ervice			D			
Analysis Period (min)			15									
c Critical Lane Group												

c Critical Lane Group

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	WDL			NDIN	JDL	↑ ↑
Traffic Vol, veh/h	0	7	↑ ↑→	0	0	TT 0
Future Vol, veh/h	0	0	1304	0	0	0
Conflicting Peds, #/hr	0	0	1304	0	0	0
Sign Control			Free	Free	Free	Free
RT Channelized	Stop -	Stop None	-	None	-	None
	-					NUILE
Storage Length		0	- 0	-	-	
Veh in Median Storage, #	0			-	-	0
Grade, %	0	- 02	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	3	3	3	3	3	3
Mvmt Flow	0	0	1417	0	0	0
Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	-	709	0	0	_	_
Stage 1	-	-	-	_	-	_
Stage 2	_	_	_	_	_	_
Critical Hdwy	_	6.96	_	_	_	_
Critical Hdwy Stg 1	_	-	_	_	_	_
Critical Hdwy Stg 2	_	_	_	_	_	_
Follow-up Hdwy	_	3.33	_	_	_	_
Pot Cap-1 Maneuver	0	374	_	_	0	_
Stage 1	0	-	_	_	0	_
Stage 2	0	_	_	_	0	_
Platoon blocked, %	U		_	_	U	_
Mov Cap-1 Maneuver	_	374	-	-	_	
Mov Cap-2 Maneuver		3/4			-	-
•	-		-	-		
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	0		0		0	
HCM LOS	A					
Minor Lane/Major Mvmt		NBT	NBR	WBLn1	SBT	
Capacity (veh/h)		-	HUIL			
HCM Lane V/C Ratio			-	-	-	
HCM Control Delay (s)		-	-	0	-	
HCM Lane LOS		-	-		-	
HCM 95th %tile Q(veh)		-	-	A	-	
DIJVI MOTH MITTER HI(VEII)		-	-	-	-	

Intersection Int Delay, s/veh Movement						
	0					
MOVEMENT		WDD	UDT	MDD	CDI	CDT
	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M		†		7	^
Traffic Vol, veh/h	0	0	1304	29	2	1776
Future Vol, veh/h	0	0	1304	29	2	1776
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	75	-
Veh in Median Storage, #	• 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	3	3	3	3	3	3
Mvmt Flow	0	0	1417	32	2	1930
Major/Minor	Minor1		Major1		Major2	_
Conflicting Flow All	2402	725	0	0	1449	0
Stage 1	1433	-	-	-	-	-
Stage 2	969	-	-	-	-	-
Critical Hdwy	6.86	6.96	-	-	4.16	-
Critical Hdwy Stg 1	5.86	-	-	-	-	-
Critical Hdwy Stg 2	5.86	-	-	-	-	-
Follow-up Hdwy	3.53	3.33	-	-	2.23	-
Pot Cap-1 Maneuver	27	365	-	-	458	-
Stage 1	184	-	-	-	-	-
Stage 2	326	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	27	365	_	-	458	-
Mov Cap-2 Maneuver	27	-	_	_	-	_
Stage 1	184	_	_	_	_	-
Stage 2	325	_	_	_	_	_
otugo z	020					
			MD		SB	
Approach	WB		NB			
Approach HCM Control Delay, s	WB O		O NR		0	
HCM Control Delay, s	0					
HCM Control Delay, s HCM LOS	0	NDT	0	WRI n1	0	CDT
HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt	0	NBT	O NBR	WBLn1	O SBL	SBT
HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h)	0	-	O NBR	-	0 SBL 458	-
HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio	0	- -	NBR -	-	SBL 458 0.005	-
HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	0	- - -	NBR	- - 0	SBL 458 0.005 12.9	- - -
HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio	0	- -	NBR -	-	SBL 458 0.005	-

	ၨ	→	•	•	←	•	4	†	<i>></i>	\	ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				44		7		^	7		^	7
Traffic Volume (vph)	0	0	0	317	0	165	0	1153	465	0	874	902
Future Volume (vph)	0	0	0	317	0	165	0	1153	465	0	874	902
ldeal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)				5.5		5.5		5.5	4.0		5.5	5.5
Lane Util. Factor				0.97		1.00		0.95	1.00		0.95	1.00
Frpb, ped/bikes				1.00		1.00		1.00	0.98		1.00	1.00
Flpb, ped/bikes				1.00		1.00		1.00	1.00		1.00	1.00
Frt				1.00		0.85		1.00	0.85		1.00	0.85
Flt Protected				0.95		1.00		1.00	1.00		1.00	1.00
Satd. Flow (prot)				3400		1568		3505	1530		3505	1568
Flt Permitted				0.95		1.00		1.00	1.00		1.00	1.00
Satd. Flow (perm)				3400		1568		3505	1530		3505	1568
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	0	345	0	179	0	1253	505	0	950	980
RTOR Reduction (vph)	0	0	0	0	0	54	0	0	0	0	0	453
Lane Group Flow (vph)	0	0	0	345	0	125	0	1253	505	0	950	527
Confl. Peds. (#/hr)									5			
Confl. Bikes (#/hr)									5			
Turn Type				Perm		Perm		NA	Free		NA	Prot
Protected Phases								8			4	4
Permitted Phases				6		6			Free			
Actuated Green, G (s)				30.6		30.6		48.4	90.0		48.4	48.4
Effective Green, g (s)				30.6		30.6		48.4	90.0		48.4	48.4
Actuated g/C Ratio				0.34		0.34		0.54	1.00		0.54	0.54
Clearance Time (s)				5.5		5.5		5.5			5.5	5.5
Vehicle Extension (s)				3.0		3.0		3.0			3.0	3.0
Lane Grp Cap (vph)				1156		533		1884	1530		1884	843
v/s Ratio Prot								c0.36			0.27	0.34
v/s Ratio Perm				0.10		0.08			c0.33			
v/c Ratio				0.30		0.23		0.67	0.33		0.50	0.63
Uniform Delay, d1				21.8		21.3		15.0	0.0		13.2	14.5
Progression Factor				1.00		1.00		1.00	1.00		1.00	1.00
Incremental Delay, d2				0.7		1.0		0.9	0.6		0.2	1.5
Delay (s)				22.5		22.3		15.9	0.6		13.4	15.9
Level of Service				C		C		В	A		В	В
Approach Delay (s)		0.0			22.4			11.5			14.7	
Approach LOS		A			C			В			В	
Intersection Summary												
HCM 2000 Control Delay			14.3	HC	M 2000 Le	vel of Servi	ce		В			
HCM 2000 Volume to Capacity ratio			0.56									
Actuated Cycle Length (s)			90.0	Su	m of lost ti	me (s)			11.0			
Intersection Capacity Utilization			60.4%	IC	U Level of S	ervice			В			
Analysis Period (min)			15									
c Critical Lane Group												

1: College Ave &	Del Cerro Blvd

	۶	→	•	•	←	•	•	†	/	/		4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	7	7	4		Ť	^	7	Ť	∱ β	
Traffic Volume (vph)	44	35	133	406	38	91	140	737	458	112	721	28
Future Volume (vph)	44	35	133	406	38	91	140	737	458	112	721	28
ldeal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.1	4.4	4.9	4.9		4.4	5.1	4.9	4.4	6.6	
Lane Util. Factor		1.00	1.00	0.95	0.95		1.00	0.95	1.00	1.00	0.95	
Frpb, ped/bikes		1.00	0.99	1.00	0.99		1.00	1.00	0.98	1.00	1.00	
Flpb, ped/bikes		1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Frt		1.00	0.85	1.00	0.95		1.00	1.00	0.85	1.00	0.99	
FIt Protected		0.97	1.00	0.95	0.98		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)		1795	1558	1665	1608		1752	3505	1540	1752	3481	
Flt Permitted		0.97	1.00	0.95	0.98		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (perm)		1795	1558	1665	1608		1752	3505	1540	1752	3481	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	48	38	145	441	41	99	152	801	498	122	784	30
RTOR Reduction (vph)	0	0	0	0	16	0	0	0	203	0	2	0
Lane Group Flow (vph)	0	86	145	295	270	0	152	801	295	122	812	0
Confl. Peds. (#/hr)					_,,	5			5		V. <u>_</u>	5
Confl. Bikes (#/hr)			5			5			5			5
Turn Type	Split	NA	pm+ov	Split	NA		Prot	NA	pm + ov	Prot	NA	
Protected Phases	4	4	5	3	3		5	2	3	1	6	
Permitted Phases	-	•	4					_	2	•		
Actuated Green, G (s)		8.4	22.0	25.0	25.0		13.6	32.8	57.8	12.0	29.7	
Effective Green, g (s)		8.4	22.0	25.0	25.0		13.6	32.8	57.8	12.0	29.7	
Actuated g/C Ratio		0.09	0.23	0.26	0.26		0.14	0.34	0.59	0.12	0.30	
Clearance Time (s)		5.1	4.4	4.9	4.9		4.4	5.1	4.9	4.4	6.6	
Vehicle Extension (s)		3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)		154	350	426	411		243	1176	911	215	1058	
v/s Ratio Prot		c0.05	0.06	c0.18	0.17		c0.09	0.23	0.08	0.07	c0.23	
v/s Ratio Perm		00.00	0.04	00.10	0.17		00.00	0.20	0.11	0.07	00.20	
v/c Ratio		0.56	0.41	0.69	0.66		0.63	0.68	0.32	0.57	0.77	
Uniform Delay, d1		42.9	32.3	32.9	32.5		39.6	27.9	10.1	40.4	30.9	
Progression Factor		1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2		4.3	0.8	4.8	3.8		5.0	1.6	0.2	3.4	3.4	
Delay (s)		47.2	33.1	37.7	36.3		44.6	29.6	10.3	43.8	34.3	
Level of Service		47.2 D	C C	31.1 D	30.3 D		44.0 D	23.0 C	10.3 B	45.0 D	04.0 C	
Approach Delay (s)		38.4	U	U	37.0		U	24.5	ט	U	35.5	
Approach LOS		30.4 D			57.0 D			24.3 C			33.3 D	
Intersection Summary			01.0			1.60						
HCM 2000 Control Delay			31.0	HC	M 2000 Le	vel of Servi	ice		C			
HCM 2000 Volume to Capacity ratio			0.69			, .						
Actuated Cycle Length (s)			97.7		m of lost ti				21.0			
Intersection Capacity Utilization			67.3%	IC	U Level of S	ervice			C			
Analysis Period (min)			15									
c Critical Lane Group												

c Critical Lane Group

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		7	↑ ↑			^
Traffic Vol, veh/h	0	1	1335	1	0	0
Future Vol, veh/h	0	1	1335	1	0	0
Conflicting Peds, #/hr	Ō	0	0	0	Ō	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	_
Veh in Median Storage, #	0	_	0	_	_	0
Grade, %	0	_	0	_	_	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	3	3	3	3	3	3
Mymt Flow	0	1	1451	1	0	0
minine i lon	•	•	1101	•	•	
Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	-	726	0	0	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.96	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	3.33	-	-	-	-
Pot Cap-1 Maneuver	0	365	-	-	0	-
Stage 1	0	-	-	-	0	-
Stage 2	0	-	-	-	0	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	-	365	-	-	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Annuasah	WP		MP		CD	
Approach	WB		NB		SB	
HCM Control Delay, s	14.9		0		0	
HCM LOS	В					
Minor Lane/Major Mvmt		NBT	NBR	WBLn1	SBT	
Capacity (veh/h)		_	-	365	-	
HCM Lane V/C Ratio		_	_	0.003	_	
HCM Control Delay (s)		_	_	14.9	_	
HCM Lane LOS		_	_	В	_	
HCM 95th %tile Q(veh)		_	_	0	_	
ווטווו סטנוו יטנווט ע(זטוו)				J		

Intersection						
Int Delay, s/veh	2.8					
		WDD	NDT	NDD	CDI	CDT
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		†	=4	٦	^
Traffic Vol, veh/h	30	0	1336	71	4	1256
Future Vol, veh/h	30	0	1336	71	4	1256
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	75	-
Veh in Median Storage, #	0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	3	3	3	3	3	3
Mvmt Flow	33	0	1452	77	4	1365
Major/Minor	Minor1		Major1		Major2	
		705				
Conflicting Flow All	2182	765	0	0	1529	0
Stage 1	1491	-	-	-	-	-
Stage 2	691	-	-	-	4 10	-
Critical Hdwy	6.86	6.96	-	-	4.16	-
Critical Hdwy Stg 1	5.86	-	-	-	-	-
Critical Hdwy Stg 2	5.86	-	-	-	-	-
Follow-up Hdwy	3.53	3.33	-	-	2.23	-
Pot Cap-1 Maneuver	39	344	-	-	427	-
Stage 1	171	-	-	-	-	-
Stage 2	456	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	39	344	-	-	427	-
Mov Cap-2 Maneuver	39	-	-	-	-	-
Stage 1	171	-	-	_	-	-
Stage 2	452	-	-	-	-	-
J						
Annroach	WB		NB		SB	
Approach						
HCM Control Delay, s	250.4		0		0	
HCM LOS	F					
Minor Lane/Major Mvmt		NBT	NBR	WBLn1	SBL	SBT
Capacity (veh/h)		-	-	39	427	-
HCM Lane V/C Ratio		_	_	0.836	0.01	_
HCM Control Delay (s)		_	_	250.4	13.5	_
HCM Lane LOS		_	_	F	В	_
HCM 95th %tile Q(veh)		_	_	3.1	0	_
nom oom /mile u(veil)				0.1	U	

	•	→	•	•	←	•	4	†	/	>	ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				44		7		^	7		^	7
Traffic Volume (vph)	0	0	0	525	0	378	0	1072	1240	0	695	588
Future Volume (vph)	0	0	0	525	0	378	0	1072	1240	0	695	588
ldeal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)				5.5		5.5		5.5	4.0		5.5	5.5
Lane Util. Factor				0.97		1.00		0.95	1.00		0.95	1.00
Frpb, ped/bikes				1.00		0.99		1.00	0.98		1.00	1.00
Flpb, ped/bikes				1.00		1.00		1.00	1.00		1.00	1.00
Frt				1.00		0.85		1.00	0.85		1.00	0.85
Flt Protected				0.95		1.00		1.00	1.00		1.00	1.00
Satd. Flow (prot)				3400		1545		3505	1530		3505	1568
Flt Permitted				0.95		1.00		1.00	1.00		1.00	1.00
Satd. Flow (perm)				3400		1545		3505	1530		3505	1568
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	0	571	0	411	0	1165	1348	0	755	639
RTOR Reduction (vph)	0	0	0	0	0	28	0	0	0	0	0	365
Lane Group Flow (vph)	0	0	0	571	0	383	0	1165	1348	0	755	274
Confl. Peds. (#/hr)									5			
Confl. Bikes (#/hr)						5			5			5
Turn Type				Perm		Perm		NA	Free		NA	Prot
Protected Phases				1 01111		1 01111		8	1100		4	4
Permitted Phases				6		6			Free		· ·	7
Actuated Green, G (s)				23.3		23.3		25.7	60.0		25.7	25.7
Effective Green, g (s)				23.3		23.3		25.7	60.0		25.7	25.7
Actuated g/C Ratio				0.39		0.39		0.43	1.00		0.43	0.43
Clearance Time (s)				5.5		5.5		5.5	1.00		5.5	5.5
Vehicle Extension (s)				3.0		3.0		3.0			3.0	3.0
Lane Grp Cap (vph)				1320		599		1501	1530		1501	671
v/s Ratio Prot				1320		J00		0.33	1330		0.22	0.17
v/s Ratio Perm				0.17		0.25		0.33	c0.88		0.22	0.17
v/c Ratio				0.17		0.23		0.78	0.88		0.50	0.41
Uniform Delay, d1				13.5		14.9		14.7	0.00		12.5	11.9
Progression Factor				1.00		1.00		1.00	1.00		1.00	1.00
Incremental Delay, d2				1.00		5.2		2.6	7.6		0.3	0.4
Delay (s)				14.5		20.1		17.3	7.6		12.8	12.3
Level of Service				14.3 B		20.1 C		17.3 B	7.0 A		12.0 B	12.3 B
		0.0		D	16.9	U		12.1	А		12.5	D
Approach Delay (s) Approach LOS		0.0 A			10.9 B			12.1 B			12.5 B	
Intersection Summary												
HCM 2000 Control Delay			13.2	HC	M 2000 Le	vel of Servi	ce		В			
HCM 2000 Volume to Capacity ratio			1.08									
Actuated Cycle Length (s)			60.0	Su	m of lost ti	me (s)			11.0			
Intersection Capacity Utilization			62.2%		U Level of S				В			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	•	←	•	•	†	/	/	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ર્ન	7	7	4		ň	^	7	7	∱ β	
Traffic Volume (vph)	38	39	111	419	24	111	106	580	367	94	618	8
Future Volume (vph)	38	39	111	419	24	111	106	580	367	94	618	8
ldeal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.1	4.4	4.9	4.9		4.4	5.1	4.9	4.4	6.6	
Lane Util. Factor		1.00	1.00	0.95	0.95		1.00	0.95	1.00	1.00	0.95	
Frpb, ped/bikes		1.00	0.99	1.00	0.99		1.00	1.00	0.98	1.00	1.00	
Flpb, ped/bikes		1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Frt		1.00	0.85	1.00	0.94		1.00	1.00	0.85	1.00	1.00	
FIt Protected		0.98	1.00	0.95	0.98		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)		1800	1557	1665	1590		1752	3505	1541	1752	3496	
FIt Permitted		0.98	1.00	0.95	0.98		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (perm)		1800	1557	1665	1590		1752	3505	1541	1752	3496	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	41	42	121	455	26	121	115	630	399	102	672	9
RTOR Reduction (vph)	0	0	0	0	21	0	0	0	158	0	1	0
Lane Group Flow (vph)	0	83	121	309	272	0	115	630	241	102	680	0
Confl. Peds. (#/hr)						5			5			5
Confl. Bikes (#/hr)			5			5			5			5
Turn Type	Split	NA	pm + ov	Split	NA		Prot	NA	pm + ov	Prot	NA	
Protected Phases	4	4	5	3	3		5	2	3	1	6	
Permitted Phases			4						2			
Actuated Green, G (s)		8.0	20.1	23.9	23.9		12.1	31.0	54.9	8.6	26.0	
Effective Green, g (s)		8.0	20.1	23.9	23.9		12.1	31.0	54.9	8.6	26.0	
Actuated g/C Ratio		0.09	0.22	0.26	0.26		0.13	0.34	0.60	0.09	0.29	
Clearance Time (s)		5.1	4.4	4.9	4.9		4.4	5.1	4.9	4.4	6.6	
Vehicle Extension (s)		3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)		158	343	437	417		232	1194	929	165	998	
v/s Ratio Prot		c0.05	0.05	c0.19	0.17		0.07	c0.18	0.07	c0.06	c0.19	
v/s Ratio Perm			0.03						0.09			
v/c Ratio		0.53	0.35	0.71	0.65		0.50	0.53	0.26	0.62	0.68	
Uniform Delay, d1		39.7	30.0	30.4	29.9		36.6	24.1	8.5	39.6	28.8	
Progression Factor		1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2		3.1	0.6	5.2	3.7		1.7	0.4	0.1	6.7	1.9	
Delay (s)		42.8	30.6	35.5	33.5		38.3	24.5	8.6	46.4	30.8	
Level of Service		D	C	D	C		D	C	A	D	C	
Approach Delay (s)		35.6			34.6			20.4			32.8	
Approach LOS		D			C			C			C	
Intersection Summary												
HCM 2000 Control Delay			28.2	HC	M 2000 Le	vel of Servi	ce		C			
HCM 2000 Volume to Capacity ratio			0.64									
Actuated Cycle Length (s)			91.0	Su	m of lost ti	me (s)			21.0			
Intersection Capacity Utilization			62.8%		U Level of S				В			
Analysis Period (min)			15									
c Critical Lane Group												

Intersection						
Int Delay, s/veh	0.2					
		Was	UNT	NDD	051	007
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		7	↑ ↑			^
Traffic Vol, veh/h	0	15	1038	3	0	0
Future Vol, veh/h	0	15	1038	3	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage, #	0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	3	3	3	3	3	3
Mvmt Flow	0	16	1128	3	0	0
Major/Minor	Minor1		Major1		Major2	
		FOO	_			
Conflicting Flow All	-	566	0	0	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.96	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	3.33	-	-	-	-
Pot Cap-1 Maneuver	0	465	-	-	0	-
Stage 1	0	-	-	-	0	-
Stage 2	0	-	-	-	0	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	-	465	-	-	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Annroach	WB		NB		SB	
Approach						
HCM Control Delay, s	13		0		0	
HCM LOS	В					
Minor Lane/Major Mvmt		NBT	NBR	WBLn1	SBT	
Capacity (veh/h)		_	-	465	-	
HCM Lane V/C Ratio		_	_	0.035	_	
HCM Control Delay (s)		-	_	13	-	
HCM Lane LOS		_	_	В	_	
HCM 95th %tile Q(veh)		_	-	0.1	-	
ווטווו טטנוו יטנווט ע(זטוו)		_		0.1	_	

Intersection							
Int Delay, s/veh	365.9						
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	¥		∱ }		*	^	
Traffic Vol, veh/h	359	4	1037	293	16	1132	
Future Vol, veh/h	359	4	1037	293	16	1132	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	_	_	_	75	_	
Veh in Median Storage, a		-	0	-	-	0	
Grade, %	0	-	0	-	_	0	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	3	3	3	3	3	3	
Mvmt Flow	390	4	1127	318	17	1230	
Major/Minor	Minor1		Major1		Major2		
Conflicting Flow All	1935	723	<u>шајогт</u> О	0	1445	0	
	1286						
Stage 1	649	-	-	-	-	-	
Stage 2				-		-	
Critical Hdwy	6.86 5.86	6.96	-	-	4.16	-	
Critical Hdwy Stg 1		-	-	-	-	-	
Critical Hdwy Stg 2	5.86	2 22	-	-	2 22	-	
Follow-up Hdwy	3.53	3.33	-	-	2.23	-	
Pot Cap-1 Maneuver	~ 57	366	-	-	460	-	
Stage 1	~ 221	-	-	-	-	-	
Stage 2	479	-	-	-	-	-	
Platoon blocked, %	FF	000	-	-	400	-	
Mov Cap-1 Maneuver	~ 55	366	-	-	460	-	
Mov Cap-2 Maneuver	~ 55	-	-	-	-	-	
Stage 1	~ 221	-	-	-	-	-	
Stage 2	461	-	-	-	-	-	
Approach	WB		NB		SB		
HCM Control Delay, s	\$ 2862.9		0		0.2		
HCM LOS	F						
Minor Lane/Major Mvmt		NBT	NBR	WBLn1	SBL	SBT	
Capacity (veh/h)		-	-	56	460	-	
HCM Lane V/C Ratio		-	-		0.038	-	
HCM Control Delay (s)		-	-\$	2862.9	13.1	-	
HCM Lane LOS		_	_	F	В	-	
HCM 95th %tile Q(veh)		-	-	45.6	0.1	-	
Notes		Dala		0-	0	Latina No.	Setting at the All marks of the Control of the
∼: Volume exceeds cap	acity \$:	Delay ex	ceeds 30	us +	-: Compu	tation Not	Defined *: All major volume in platoon

	۶	→	•	•	←	•	1	†	/	/	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				14.54		7		^	7		^	7
Traffic Volume (vph)	0	0	0	282	0	410	0	886	607	0	594	865
Future Volume (vph)	0	0	0	282	0	410	0	886	607	0	594	865
ldeal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)				5.5		5.5		5.5	4.0		5.5	5.5
Lane Util. Factor				0.97		1.00		0.95	1.00		0.95	1.00
Frpb, ped/bikes				1.00		0.99		1.00	0.97		1.00	1.00
Flpb, ped/bikes				1.00		1.00		1.00	1.00		1.00	1.00
Frt				1.00		0.85		1.00	0.85		1.00	0.85
Flt Protected				0.95		1.00		1.00	1.00		1.00	1.00
Satd. Flow (prot)				3400		1545		3505	1526		3505	1568
Flt Permitted				0.95		1.00		1.00	1.00		1.00	1.00
Satd. Flow (perm)				3400		1545		3505	1526		3505	1568
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	0	307	0	446	0	963	660	0	646	940
RTOR Reduction (vph)	0	0	0	0	0	46	0	0	0	0	0	542
Lane Group Flow (vph)	0	0	0	307	0	400	0	963	660	0	646	398
Confl. Peds. (#/hr)		-					_		10	_		
Confl. Bikes (#/hr)						5			5			5
Turn Type				Perm		Perm		NA	Free		NA	Prot
Protected Phases				1 01111		1 01111		8	1100		4	4
Permitted Phases				6		6			Free		•	•
Actuated Green, G (s)				23.6		23.6		25.4	60.0		25.4	25.4
Effective Green, g (s)				23.6		23.6		25.4	60.0		25.4	25.4
Actuated g/C Ratio				0.39		0.39		0.42	1.00		0.42	0.42
Clearance Time (s)				5.5		5.5		5.5	1.00		5.5	5.5
Vehicle Extension (s)				3.0		3.0		3.0			3.0	3.0
Lane Grp Cap (vph)				1337		607		1483	1526		1483	663
v/s Ratio Prot				1007		001		c0.27	1320		0.18	0.25
v/s Ratio Perm				0.09		c0.26		60.27	0.43		0.10	0.23
v/c Ratio				0.03		0.66		0.65	0.43		0.44	0.60
Uniform Delay, d1				12.1		14.9		13.8	0.40		12.2	13.4
Progression Factor				1.00		1.00		0.89	1.00		1.00	1.00
Incremental Delay, d2				0.4		5.5		0.03	0.7		0.2	1.50
Delay (s)				12.5		20.4		13.0	0.7		12.4	14.9
Level of Service				12.3 B		20.4 C		13.0 B	0.7 A		12.4 B	14.3 B
Approach Delay (s)		0.0		D	17.2	U		8.0	A		13.9	D
Approach LOS		0.0 A			17.2 B			0.U A			13.5 B	
Intersection Summary												
HCM 2000 Control Delay			12.1	HC	M 2000 Le	vel of Servi	ce		В			
HCM 2000 Volume to Capacity ratio			0.65									
Actuated Cycle Length (s)			60.0	Su	m of lost ti	me (s)			11.0			
Intersection Capacity Utilization			59.0%		J Level of S				В			
Analysis Period (min)			15									
c Critical Lane Group												

Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR Lane Configurations Transfer Volume (vph) 688 0 598 0 0 0 0 0 866 252 0 437 395 Future Volume (vph) 688 0 598 0 0 0 0 0 866 252 0 437 395 Future Volume (vph) 688 0 598 0 0 0 0 0 866 252 0 437 395 Future Volume (vph) 688 0 598 0 0 0 0 0 866 252 0 437 395 Future Volume (vph) 688 0 598 0 0 0 0 0 866 252 0 437 395 Future Volume (vph) 1910 1910 1910 1910 1910 1910 1910 1910 1910 Total Lost time (s) 4.0 4.0 4.0 5.0 5.0 5.0 5.0 5.0 4.0 Lane Util Factor 0.37 0.76 0.55 1.00 0.95 1.00 Tiph, pedvikes 1.00 1.00 1.00 1.00 0.0 1.00 1.00 Fit 100 0.85 1.00 1.00 1.00 1.00 1.00 1.00 Fit 100 0.85 1.00 375 3905 1526 3905 1528 Fit Pretected 0.95 1.00 3.75 3905 1526 3905 1528 Fit Premitted 0.95 1.00 3.75 3905 1526 3905 1528 Salf. Flow (parm) 3400 3375 3905 1528 3905 1528 Salf. Flow (parm) 3400 3375 3905 1528 3905 1528 Salf. Flow (parm) 276 0 650 0 0 0 0 0 941 285 0.92 0.92 0.92 Alj. Flow (ph) 726 0 650 0 0 0 0 941 285 0 640 428 Str. Right (action (ph)) 0 0 55 0 0 0 0 0 941 285 0 640 428 Str. Right (action (ph)) 0 0 55 0 0 0 0 0 941 77 0 640 428 Str. Right (action (ph)) 0 0 55 0 0 0 0 0 941 77 0 640 428 Str. Right (action (ph)) 338 245 3805 372 372 315 60 Str. Flow (ph) 338 245 3805 3805 3805 3805 3805 Str. Flow (ph) 338 245 3805 3805 3805 3805 3805 Str. Flow (ph) 338 245 3805 3805 3805 3805 3805 Str. Flow (ph) 338 245 3805 3805 3805 3805 3805 Str. Flow (ph) 338 245 3805 3805 3805 3805 Str. Flow (ph) 338 245 3805 3805 3805 3805 Str. Flow (ph) 338 245 3805 3805 3805 Str. Flow (ph) 330 3805 3805 3805 3805 Str. Flow (ph) 3805 3805		۶	→	•	•	—	•	4	†	~	/	ļ	4
Traffic Volume (υρh) 668 0 598 0 0 0 0 886 262 0 497 395 lifeal Flow (υρh) 668 0 598 0 0 0 0 886 262 0 497 395 lifeal Flow (υρh) 1900 1900 1900 1900 1900 1900 1900 190	Movement		EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	
Fiture Volume (nph)	Lane Configurations	77		777					^	7		^	7
Indea Investment (vphpin) 1900	Traffic Volume (vph)		0	598	0	0	0	0	866	262	0	497	
Total Last time (c)	Future Volume (vph)	668	0	598	0	0	0	0	866	262	0	497	395
Lane Util. Factor 0.97 0.76 0.76 0.95 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	ldeal Flow (vphpl)		1900		1900	1900	1900	1900		1900	1900	1900	1900
Frph, ped/bikes	Total Lost time (s)									5.0		5.0	4.0
Figh., ped/bikes		0.97		0.76					0.95	1.00		0.95	1.00
Firt Protected 0.95 1.00 0.85 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Frpb, ped/bikes	1.00		1.00					1.00	0.97		1.00	1.00
File Protected	Flpb, ped/bikes	1.00		1.00					1.00	1.00		1.00	1.00
Satd. Flow (prot) 3400 3575	Frt	1.00		0.85					1.00	0.85		1.00	0.85
Fit Permitted 0.95	FIt Protected	0.95		1.00					1.00	1.00		1.00	1.00
Satid Flow (perm) 3400 3575 3505 1526 3505 1568 26	Satd. Flow (prot)	3400		3575					3505	1526		3505	1568
Peak-hour actor, PHF	Flt Permitted	0.95		1.00					1.00	1.00		1.00	1.00
Adj. Flow (vph) 726 0 650 0 0 0 0 941 285 0 540 429 RTOR Reduction (vph) 0 0 55 0 0 0 0 0 0 108 0 0 0 Confl. Petas. (#/hr)	Satd. Flow (perm)	3400		3575					3505	1526		3505	1568
Adj. Flow (vph) 726 0 650 0 0 0 0 941 285 0 540 429 RTOR Reduction (vph) 0 0 55 0 0 0 0 0 0 108 0 0 0 Confl. Petas. (#/hr)	Peak-hour factor. PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
RTOR Reduction (yph)	•												
Lane Group Flow (right) 726 0 595 0 0 0 0 941 177 0 540 429 Confl. Bikes (#/hr) 5 Confl. Bikes (#/hr) 6 Confl. Bikes (#/hr) 7 Confl. Bikes (#/hr) 8 Confl.													
Conff. Peds. (#/hr) S S	-												
Confi. Bikes (#/hr) Frot Prot									· · · ·				
Protected Phases 1													
Permitted Phases	Turn Type	Prot		Prot					NA	Perm		NA	Free
Actuated Green, G (s) 14.8 36.0 37.2 37.2 15.0 60.0 Effective Green, g (s) 14.8 36.0 37.2 37.2 15.0 60.0 60.0 Actuated g/C Ratio 0.25 0.60 0.62 0.62 0.25 1.00 Clearance Time (s) 4.0 4.0 5.0 5.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0	Protected Phases	1		6					2 4			8	
Effective Green, g (s) 14.8 36.0 37.2 37.2 15.0 60.0 Actuated g/C Ratio 0.25 0.60 0.62 0.62 0.25 1.00 Clearance Time (s) 4.0 4.0 4.0 5.0 3.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 838 2145 2173 946 876 1568 v/s Ratio Prot c0.21 0.17 c0.27 c0.15 c0.15 c0.27 c0.27 c0.15 c0.27 c0.	Permitted Phases									2 4			Free
Actuated g/C Ratio 0.25 0.60 0.60 0.62 0.62 0.25 1.00 Clearance Time (s) 4.0 4.0 5.0 Vehicle Extension (s) 3.0 3.0 3.0 Lane Grp Cap (vph) 838 2145 2173 946 876 1568 v/s Ratio Prot c0.21 0.17 c0.27 c0.15 v/s Ratio Prot c0.21 0.17 c0.27 c0.15 v/s Ratio Prom 0.87 0.28 0.43 0.19 0.62 0.27 Uniform Delay, d1 21.7 5.8 5.9 4.9 19.9 0.0 Progression Factor 1.00 1.00 1.00 1.00 1.07 1.00 Incremental Delay, d2 9.4 0.3 0.1 0.1 0.1 3.1 0.4 Delay (s) 31.0 6.1 6.1 5.0 24.5 0.4 Level of Service C A A A A C A Approach Delay (s) 19.2 0.0 5.8 13.9 Approach LOS B A A A B Intersection Summary HCM 2000 Control Delay 13.2 HCM 2000 Level of Service B HCM 2000 Control Delay 13.2 HCM 2000 Level of Service A Analysis Period (min) 15	Actuated Green, G (s)	14.8		36.0					37.2	37.2		15.0	60.0
Clearance Time (s) 4.0 4.0 4.0 5.0 Vehicle Extension (s) 3.0 3.0 3.0 Lane Grp Cap (vph) 838 2145 2173 946 876 1568 V/S Ratio Prot c0.21 0.17 c0.27 c0.15 V/S Ratio Perm 0.12 0.27 V/C Ratio 0.87 0.28 0.43 0.19 0.62 0.27 Uniform Delay, d1 21.7 5.8 5.9 4.9 19.9 0.0 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.07 1.00 Incremental Delay, d2 9.4 0.3 0.1 0.1 0.1 3.1 0.4 Delay (s) 31.0 6.1 6.1 5.0 24.5 0.4 Level of Service C A A A C A Approach Delay (s) 19.2 0.0 5.8 13.9 Approach Delay (s) 19.2 0.0 5.8 13.9 Approach LOS B A A B Intersection Summary HCM 2000 Control Delay 13.2 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.66 Actuated Cycle Length (s) 60.0 Sum of lost time (s) 14.0 Intersection Capacity Utilization 50.5% ICU Level of Service A Analysis Period (min) 15	Effective Green, g (s)	14.8		36.0					37.2	37.2		15.0	60.0
Clearance Time (s) 4.0 4.0 4.0 5.0 Vehicle Extension (s) 3.0 3.0 3.0 Lane Grp Cap (vph) 838 2145 2173 946 876 1568 V/s Ratio Prot c0.21 0.17 c0.27 c0.15 V/s Ratio Perm 0.12 0.27 V/c Ratio 0.87 0.28 0.43 0.19 0.62 0.27 Uniform Delay, d1 21.7 5.8 5.9 4.9 19.9 0.0 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.07 1.00 Incremental Delay, d2 9.4 0.3 0.1 0.1 0.1 3.1 0.4 Delay (s) 31.0 6.1 6.1 5.0 24.5 0.4 Level of Service C A A A C A Approach Delay (s) 19.2 0.0 5.8 13.9 Approach LOS B A A B Intersection Summary HCM 2000 Control Delay 13.2 HCM 2000 Level of Service B HCM 2000 Control Delay (s) 60.0 Sum of lost time (s) 14.0 Intersection Capacity Utilization 50.5% ICU Level of Service A Analysis Period (min) 15	Actuated g/C Ratio	0.25		0.60					0.62	0.62		0.25	1.00
Lane Grp Cap (vph) 838 2145 2173 946 876 1568 v/s Ratio Prot c0.21 0.17 c0.27 c0.15 v/s Ratio Perm 0.12 0.27 v.27 v/c Ratio 0.87 0.28 0.43 0.19 0.62 0.27 Uniform Delay, d1 21.7 5.8 5.9 4.9 19.9 0.0 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.07 1.00 Incremental Delay, d2 9.4 0.3 0.1 0.1 0.1 3.1 0.4 Delay (s) 31.0 6.1 6.1 5.0 24.5 0.4 Level of Service C A A A C A Approach Delay (s) 19.2 0.0 5.8 13.9 Approach LOS B A A B B Intersection Summary HCM 2000 Centrol Delay 13.2 HCM 2000 Evel of Service B HCM 2000 Centrol De		4.0		4.0								5.0	
v/s Ratio Prot c0.21 0.17 c0.27 c0.15 v/s Ratio Perm 0.12 0.27 0.27 v/c Ratio 0.87 0.28 0.43 0.19 0.62 0.27 Uniform Delay, d1 21.7 5.8 5.9 4.9 19.9 0.0 Progression Factor 1.00	Vehicle Extension (s)	3.0		3.0								3.0	
v/s Ratio Prot c0.21 0.17 c0.27 c0.15 v/s Ratio Perm 0.12 0.27 0.27 v/c Ratio 0.87 0.28 0.43 0.19 0.62 0.27 Uniform Delay, d1 21.7 5.8 5.9 4.9 19.9 0.0 Progression Factor 1.00	Lane Grp Cap (vph)	838		2145					2173	946		876	1568
v/s Ratio Perm 0.12 0.27 v/c Ratio 0.87 0.28 0.43 0.19 0.62 0.27 Uniform Delay, d1 21.7 5.8 5.9 4.9 19.9 0.0 Progression Factor 1.00													
v/c Ratio 0.87 0.28 0.43 0.19 0.62 0.27 Uniform Delay, d1 21.7 5.8 5.9 4.9 19.9 0.0 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.07 1.00 Incremental Delay, d2 9.4 0.3 0.1 0.1 0.1 3.1 0.4 Delay (s) 31.0 6.1 6.1 5.0 24.5 0.4 Level of Service C A A A C A Approach Delay (s) 19.2 0.0 5.8 13.9 Approach LOS B A A B Intersection Summary HCM 2000 Control Delay 13.2 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.66 Actuated Cycle Length (s) 60.0 Sum of lost time (s) 14.0 Intersection Capacity Utilization 50.5% ICU Level of Service A Analysis Period (min) 15	•									0.12			0.27
Diniform Delay, d1	-	0.87		0.28					0.43			0.62	
Progression Factor 1.00 <td>-</td> <td></td>	-												
Incremental Delay, d2													
Delay (s) 31.0 6.1 5.0 24.5 0.4													
Level of Service C A A C C A Approach Delay (s) 19.2 0.0 5.8 13.9 Approach LOS B A A B Intersection Summary HCM 2000 Control Delay 13.2 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.66 Actuated Cycle Length (s) 60.0 Sum of lost time (s) 14.0 Intersection Capacity Utilization 50.5% ICU Level of Service A Analysis Period (min) 15	-												
Approach Delay (s) 19.2 0.0 5.8 13.9 Approach LOS B A A B Intersection Summary HCM 2000 Control Delay 13.2 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.66 Actuated Cycle Length (s) 60.0 Sum of lost time (s) 14.0 Intersection Capacity Utilization 50.5% ICU Level of Service A Analysis Period (min) 15	-												
Approach LOS B A A B Intersection Summary HCM 2000 Control Delay 13.2 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.66 Actuated Cycle Length (s) 60.0 Sum of lost time (s) 14.0 Intersection Capacity Utilization 50.5% ICU Level of Service A Analysis Period (min) 15		-	19.2			0.0							-
HCM 2000 Control Delay 13.2 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.66 Actuated Cycle Length (s) 60.0 Sum of lost time (s) 14.0 Intersection Capacity Utilization 50.5% ICU Level of Service A Analysis Period (min) 15	• • • • • • • • • • • • • • • • • • • •												
HCM 2000 Control Delay 13.2 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.66 Actuated Cycle Length (s) 60.0 Sum of lost time (s) 14.0 Intersection Capacity Utilization 50.5% ICU Level of Service A Analysis Period (min) 15	Intersection Summary												
HCM 2000 Volume to Capacity ratio Actuated Cycle Length (s) Intersection Capacity Utilization 50.5% CU Level of Service A Analysis Period (min) 15				13.2	HC	M 2000 Lev	vel of Servi	ce		В			
Actuated Cycle Length (s) 60.0 Sum of lost time (s) 14.0 Intersection Capacity Utilization 50.5% ICU Level of Service A Analysis Period (min) 15	-				110	2000 E0	. J. J. JUI II			-			
Intersection Capacity Utilization 50.5% ICU Level of Service A Analysis Period (min) 15					Sii	m of lost ti	me (s)			14 N			
Analysis Period (min) 15													
·					100		J. 1100			n			
	c Critical Lane Group			10									

Intersection: 14: College Ave & I-8 WB Ramp

Movement	WB	WB	WB	NB	NB	SB	SB	SB	
Directions Served	L	L	R	T	T	Т	T	R	
Maximum Queue (ft)	162	172	251	205	195	185	271	235	
Average Queue (ft)	45	91	50	104	104	77	92	8	
95th Queue (ft)	132	171	146	174	171	128	173	77	
Link Distance (ft)			1098	1059	1059	1034	1034		
Upstream Blk Time (%)									
Queuing Penalty (veh)									
Storage Bay Dist (ft)	150	150						210	
Storage Blk Time (%)	0	3	0		0		0	0	
Queuing Penalty (veh)	0	12	0		0		3	0	

Intersection: 15: College Ave & I-8 EB Ramp

Movement	EB	EB	EB	EB	NB	NB	SB	SB
Directions Served	L	L	R	R	T	Т	T	T
Maximum Queue (ft)	142	154	662	602	156	125	174	176
Average Queue (ft)	139	154	428	281	82	82	101	104
95th Queue (ft)	159	155	624	576	134	119	156	160
Link Distance (ft)			920	920	672	672	1059	1059
Upstream Blk Time (%)								
Queuing Penalty (veh)								
Storage Bay Dist (ft)	130	130						
Storage Blk Time (%)	4	50		0				
Queuing Penalty (veh)	8	99		1				

Network Summary

Network wide Queuing Penalty: 124

Appendix V

Horizon Year 2050 with Project Improvement LOS Worksheets

	•	•	†	/	/	+		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	M		44	7	Ţ	^		
Traffic Volume (veh/h)	30	0	1336	71	4	1256		
Future Volume (veh/h)	30	0	1336	71	4	1256		
Initial Q (Qb), veh	0	0	0	0	0	0		
Ped-Bike Adj(A_pbT)	1.00	1.00		1.00	1.00			
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00		
Work Zone On Approach	No		No			No		
Adj Sat Flow, veh/h/ln	1856	1900	1856	1856	1856	1856		
Adj Flow Rate, veh/h	1412650 0 06		1452	77	4	1365		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Percent Heavy Veh, %	3	0	3	3	3	3		
Cap, veh/h	9999	9999	2300	1026	8	2618		
Arrive On Green	0.09	0.09	0.65	0.65	0.00	0.74		
Sat Flow, veh/h	2497936 9389 132		3618	1572	1767	3618		
Grp Volume(v), veh/h	1412650 0 06	4514368	1452	77	4	1365		_
Grp Sat Flow(s),veh/h/ln	1767	1610	1763	1572	1767	1763		
Q Serve(g_s), s	0.0	0.0	11.3	0.8	0.1	7.6		
Cycle Q Clear(g_c), s	0.0	0.0	11.3	0.8	0.1	7.6		
Prop In Lane	1.00	1.00		1.00	1.00			
Lane Grp Cap(c), veh/h	2143200 386 69	7759744	2300	1026	8	2618		
V/C Ratio(X)	0.01	0.01	0.63	0.08	0.52	0.52		
Avail Cap(c_a), veh/h	8572802 048 791	006208	4386	1956	152	4991		
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00		
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00		
Uniform Delay (d), s/veh	19.5	19.5	4.8	3.0	23.2	2.5		
Incr Delay (d2), s/veh	0.0	0.0	0.3	0.0	45.8	0.2		
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0		
%ile BackOfQ(50%),veh/In	0.0	0.0	2.1	0.1	0.1	0.6		
Unsig. Movement Delay, s/veh								
LnGrp Delay(d),s/veh	19.5	19.5	5.1	3.0	69.0	2.7		
LnGrp LOS	В	В	A	A	E	A		
Approach Vol, veh/h	1078640896		1529			1369		
Approach Delay, s/veh	19.5		5.0			2.9		
Approach LOS	В		A			A		
Timer - Assigned Phs	1	2				6	8	
Phs Duration (G+Y+Rc), s	4.2	34.4				38.6	8.0	
Change Period (Y+Rc), s	4.0	4.0				4.0	4.0	
Max Green Setting (Gmax), s	4.0	58.0				66.0	16.0	
Max Q Clear Time (g_c+11), s	s 2.1	13.3				9.6	2.0	
Green Ext Time (p_c), s	0.0	17.1				15.8	0.0	
Intersection Summary								
HCM 6th Ctrl Delay			19.5					
HCM 6th LOS			В					

	•	•	†	<i>></i>	\	ļ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	¥		^	7	ሻ	^	
Traffic Volume (veh/h)	359	4	1037	293	16	1132	
Future Volume (veh/h)	359	4	1037	293	16	1132	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00		1.00	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No		No			No	
Adj Sat Flow, veh/h/ln	1900	1900	1856	1856	1856	1856	
Adj Flow Rate, veh/h	390	4	1127	318	17	1230	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Percent Heavy Veh, %	0	0	3	3	3	3	
Cap, veh/h	464	5	1726	770	29	2052	
Arrive On Green	0.27	0.27	0.49	0.49	0.02	0.58	
Sat Flow, veh/h	1743	18	3618	1572	1767	3618	
Grp Volume(v), veh/h	395	0	1127	318	17	1230	
Grp Sat Flow(s),veh/h/ln	1765	0	1763	1572	1767	1763	
Q Serve(g_s), s	12.5	0.0	14.2	7.7	0.6	13.3	
Cycle Q Clear(g_c), s	12.5	0.0	14.2	7.7	0.6	13.3	
Prop In Lane	0.99	0.01		1.00	1.00		
Lane Grp Cap(c), veh/h	470	0	1726	770	29	2052	
V/C Ratio(X)	0.84	0.00	0.65	0.41	0.58	0.60	
Avail Cap(c a), veh/h	1296	0	3361	1499	194	4016	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	0.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	20.6	0.0	11.3	9.7	28.9	8.0	
Incr Delay (d2), s/veh	4.1	0.0	0.4	0.4	17.2	0.3	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/In	5.2	0.0	4.7	2.3	0.4	3.9	
Unsig. Movement Delay, s/veh							
LnGrp Delay(d),s/veh	24.7	0.0	11.8	10.0	46.1	8.2	
LnGrp LOS	C	A	В	В	D	A	
Approach Vol, veh/h	395		1445			1247	
Approach Delay, s/veh	24.7		11.4			8.8	
Approach LOS	C		В			A	
Timer - Assigned Phs	1	2				6	8
Phs Duration (G+Y+Rc), s	5.5	33.5				39.0	20.3
Change Period (Y + Rc), s	4.5	4.5				4.5	4.5
Max Green Setting (Gmax), s	6.5	56.5				67.5	43.5
Max Q Clear Time (g_c+11), s	2.6	16.2				15.3	14.5
Green Ext Time (p_c), s	0.0	12.8				13.1	1.3
Intersection Summary							
HCM 6th Ctrl Delay			12.0				
HCM 6th LOS			В				

Appendix W

Main Access Queuing Worksheets

Intersection: 3: College Ave & Project Main Access

Movement	NB	NB	SB
Directions Served	Ţ	T	L
Maximum Queue (ft)	57	31	31
Average Queue (ft)	2	1	1
95th Queue (ft)	19	10	10
Link Distance (ft)	646	646	
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			120
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 3: College Ave & Project Main Access

Movement	WB	NB	NB	NB	SB	SB	SB
Directions Served	LR	T	T	R	L	T	T
Maximum Queue (ft)	59	127	120	31	31	52	143
Average Queue (ft)	16	22	39	5	4	12	38
95th Queue (ft)	39	75	105	23	21	41	110
Link Distance (ft)	255	646	646			588	588
Upstream Blk Time (%)							
Queuing Penalty (veh)							
Storage Bay Dist (ft)				360	120		
Storage Blk Time (%)							
Queuing Penalty (veh)							

Intersection: 13: College Ave & Project Main Access

Movement	WB	NB	NB	NB	SB	SB	SB
Directions Served	LR	T	T	R	L	T	T
Maximum Queue (ft)	272	225	259	104	49	252	377
Average Queue (ft)	154	97	131	49	15	73	178
95th Queue (ft)	253	186	226	88	44	172	313
Link Distance (ft)	255	646	646			588	588
Upstream Blk Time (%)	2						
Queuing Penalty (veh)	0						
Storage Bay Dist (ft)				360	120		
Storage Blk Time (%)						1	
Queuing Penalty (veh)						0	

Intersection: 3: College Ave & Project Main Access

Movement	NB	NB	SB
Directions Served	T	T	L
Maximum Queue (ft)	58	76	32
Average Queue (ft)	3	3	3
95th Queue (ft)	26	33	18
Link Distance (ft)	646	646	
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			120
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 3: College Ave & Project Main Access

Movement	WB	NB	NB	NB	SB	SB	SB
Directions Served	LR	Ţ	T	R	L	T	Т
Maximum Queue (ft)	55	112	152	41	31	104	186
Average Queue (ft)	16	25	44	5	3	18	51
95th Queue (ft)	40	84	124	26	18	66	143
Link Distance (ft)	255	646	646			588	588
Upstream Blk Time (%)							
Queuing Penalty (veh)							
Storage Bay Dist (ft)				360	120		
Storage Blk Time (%)						0	
Queuing Penalty (veh)						0	

Intersection: 13: College Ave & Project Main Access

Movement	WB	NB	NB	NB	SB	SB	SB
Directions Served	LR	T	T	R	L	T	T
Maximum Queue (ft)	270	225	272	200	69	334	415
Average Queue (ft)	157	114	152	80	15	93	212
95th Queue (ft)	257	199	242	157	47	216	359
Link Distance (ft)	255	646	646			588	588
Upstream Blk Time (%)	1						
Queuing Penalty (veh)	0						
Storage Bay Dist (ft)				300	75		
Storage Blk Time (%)			0		0	5	
Queuing Penalty (veh)			0		0	1	

Appendix X

College Ave at Del Cerro Blvd Queuing Worksheets

Intersection: 11: College Ave & Del Cerro Blvd

Movement	EB	EB	WB	WB	NB	NB	NB	NB	SB	SB	SB	
Directions Served	LT	R	L	LTR	L	T	T	R	L	Т	TR	
Maximum Queue (ft)	96	138	215	393	115	241	218	150	114	257	315	
Average Queue (ft)	41	61	112	203	64	90	98	64	59	109	161	
95th Queue (ft)	81	115	246	316	118	172	178	156	108	193	239	
Link Distance (ft)	479			472		1292	1292			588	588	
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)		175	190		90			125	90			
Storage Blk Time (%)			0	13	4	10	4	1	3	5		
Queuing Penalty (veh)			1	23	11	9	13	2	8	4		

Intersection: 11: College Ave & Del Cerro Blvd

Movement	EB	EB	WB	WB	NB	NB	NB	NB	SB	SB	SB	
Directions Served	LT	R	L	LTR	L	T	Т	R	L	T	TR	
Maximum Queue (ft)	109	104	214	368	114	217	244	150	114	263	222	
Average Queue (ft)	51	40	118	202	66	99	104	68	73	158	104	
95th Queue (ft)	96	78	240	312	118	179	197	153	132	234	187	
Link Distance (ft)	479			471		284	284			588	588	
Upstream Blk Time (%)				0		0	0					
Queuing Penalty (veh)				0		0	1					
Storage Bay Dist (ft)		175	190		90			125	90			
Storage Blk Time (%)	0		0	11	6	10	4	1	4	27		
Queuing Penalty (veh)	0		1	20	14	9	12	1	12	22		

Intersection: 1: College Ave & Del Cerro Blvd

Movement	EB	EB	WB	WB	NB	NB	NB	NB	SB	SB	SB	
Directions Served	LT	R	L	LTR	L	T	Т	R	L	T	TR	
Maximum Queue (ft)	128	175	214	344	115	283	299	150	115	371	318	
Average Queue (ft)	54	76	112	196	93	159	170	101	89	223	170	
95th Queue (ft)	106	140	239	300	138	270	294	192	141	331	281	
Link Distance (ft)	479			471		284	284			588	588	
Upstream Blk Time (%)				0		1	1					
Queuing Penalty (veh)				0		3	7					
Storage Bay Dist (ft)		175	190		90			125	90			
Storage Blk Time (%)		0	0	10	22	19	13	1	14	37		
Queuing Penalty (veh)		0	1	17	69	27	51	3	44	36		

Intersection: 1: College Ave & Del Cerro Blvd

Movement	EB	EB	WB	WB	NB	NB	NB	NB	SB	SB	SB	
Directions Served	LT	R	L	LTR	L	T	Т	R	L	T	TR	
Maximum Queue (ft)	115	118	214	284	115	291	300	150	115	293	294	
Average Queue (ft)	44	49	121	202	93	153	162	97	89	184	137	
95th Queue (ft)	90	85	233	293	138	289	303	192	132	270	237	
Link Distance (ft)	479			471		284	284			588	588	
Upstream Blk Time (%)						1	1					
Queuing Penalty (veh)						6	4					
Storage Bay Dist (ft)		175	190		90			125	90			
Storage Blk Time (%)			0	10	16	18	11	1	11	33		
Queuing Penalty (veh)			1	19	54	26	47	2	35	34		

Intersection: 11: College Ave & Del Cerro Blvd

Movement	EB	EB	WB	WB	NB	NB	NB	NB	SB	SB	SB	
Directions Served	LT	R	L	LTR	L	T	T	R	L	T	TR	
Maximum Queue (ft)	142	155	215	455	115	266	283	150	114	325	285	
Average Queue (ft)	62	72	148	244	79	136	150	89	88	204	151	
95th Queue (ft)	115	130	263	379	127	230	262	180	139	299	251	
Link Distance (ft)	479			471		284	284			588	588	
Upstream Blk Time (%)				0		0	1					
Queuing Penalty (veh)				0		1	3					
Storage Bay Dist (ft)		175	190		90			125	90			
Storage Blk Time (%)	0	0	1	19	10	19	10	1	12	36		
Queuing Penalty (veh)	0	0	2	39	27	19	35	3	36	34		

Intersection: 11: College Ave & Del Cerro Blvd

Movement	EB	EB	WB	WB	NB	NB	NB	NB	SB	SB	SB	
Directions Served	LT	R	L	LTR	L	T	Т	R	L	Т	TR	
Maximum Queue (ft)	166	149	215	444	115	287	305	150	114	318	273	
Average Queue (ft)	62	67	157	257	81	141	158	93	87	208	153	
95th Queue (ft)	121	126	263	401	132	268	298	191	139	294	252	
Link Distance (ft)	479			471		284	284			588	588	
Upstream Blk Time (%)				1		1	2					
Queuing Penalty (veh)				0		4	8					
Storage Bay Dist (ft)		175	190		90			125	90			
Storage Blk Time (%)	0	0	1	21	14	18	10	2	10	36		
Queuing Penalty (veh)	0	0	3	44	39	19	38	5	32	34		

Intersection: 1: College Ave & Del Cerro Blvd

Movement	EB	EB	WB	WB	NB	NB	NB	NB	SB	SB	SB	
Directions Served	LT	R	L	LTR	L	T	T	R	L	T	TR	
Maximum Queue (ft)	94	160	214	380	115	286	296	150	114	358	361	
Average Queue (ft)	51	82	160	233	81	162	177	111	92	226	177	
95th Queue (ft)	89	145	235	334	128	272	285	202	141	321	298	
Link Distance (ft)	479			471		284	284			588	588	
Upstream Blk Time (%)						0	1					
Queuing Penalty (veh)						3	4					
Storage Bay Dist (ft)		175	190		90			125	90			
Storage Blk Time (%)		0	1	17	19	23	15	2	19	35		
Queuing Penalty (veh)		0	2	34	71	32	70	6	67	39		

Intersection: 1: College Ave & Del Cerro Blvd

Movement	EB	EB	WB	WB	NB	NB	NB	NB	SB	SB	SB	
Directions Served	LT	R	L	LTR	L	T	Т	R	L	T	TR	
Maximum Queue (ft)	114	76	215	347	115	290	287	150	115	318	308	
Average Queue (ft)	48	42	157	216	73	158	169	106	92	217	177	
95th Queue (ft)	89	65	245	311	127	292	305	193	147	309	275	
Link Distance (ft)	479			471		284	284			588	588	
Upstream Blk Time (%)						1	1					
Queuing Penalty (veh)						3	9					
Storage Bay Dist (ft)		175	190		90			125	90			
Storage Blk Time (%)			1	17	6	18	11	3	20	41		
Queuing Penalty (veh)			2	34	20	26	51	11	72	46		