CITY OF SAN DIEGO
WATER QUALITY STUDY

Prepared by: San Diego Land Surveying and Engineering, INC.
9665 Chesapeake Drive, Suite 445, San Diego, Ca. 92123
 Michael L. Smith, Project Engineer, RCE 35471

Date: October 03, 2016

PROJECT SITE LOCATION: City PTS No. 502954
The project is located at 5228 Chelsea Street, San Diego, Ca.
Assessor’s Parcel Number 415-062-10

EXISTING PROJECT SITE DESCRIPTION:
The existing site is occupied by a single family home. A portion of the site drains to the south to the
Pacific Ocean and a portion drain to Chelsea Street to the north. The storm runoff from the site sheet
flows to the public right-of-way and is not treated.

The impervious area of the existing site is 3496 square feet or 39.4% of the site.
See Exhibit A at the back of this report.

PROPOSED PROJECT DESCRIPTION:
The disturbed area for this project is 0.1607 acres. The existing single family home is to be removed.
Earth work will consist of minor grading and compaction of the area underneath the proposed
structure. One new home, landscaping, hardscape, and a 2 two car garage are proposed.
Installation of landscaping will require minor grading on site. Off site work will be limited to the closing
of the existing driveway and the construction of a new driveway. The majority of storm runoff will be
directed to the public street.

The impervious area of the proposed site is 5,783 square feet or 65.1% of the site.
See Exhibit B at the back of this report

Required Permanent Best Management Practices for Standard Development Projects

Source Control (SC) BMP Requirements:

SC-1: Prevent illicit discharges into the MS4
An illicit discharge is any discharge to the MS4 that is not composed entirely of storm water except
discharges pursuant to a National Pollutant Discharge Elimination System permit and discharges resulting
from firefighting activities. Projects must effectively eliminate discharges of non-storm water into the
MS4. This may involve a suite of housekeeping BMPs which could include effective irrigation, dispersion
of non-storm water discharges into landscaping for infiltration, and controlling wash water from vehicle
washing.
The proposed irrigation and landscape design is done by a registered professional and will be submitted to the City of San Diego to comply with Municipal Code. It shall include flow reducers or shutoff valves triggered by a pressure drop to control water loss in the event of broken sprinkler heads or lines. Any vehicle maintenance conducted by the home owner will follow good housekeeping practices such as not allowing contaminated water to run into the public street. This is accomplished by the utilization of a temporary flow diverter to a landscaped area.

SC-2: Identify the storm drain system using stenciling or signage
Storm drain signs and stencils are visible source controls typically placed adjacent to the inlets. Posting notices regarding discharge prohibitions at storm drain inlets can prevent waste dumping. Stenciling shall be provided for all storm water conveyance system inlets and catch basins within the project area. Inlet stenciling may include concrete stamping, concrete painting, placards, or other methods approved by the local municipality. In addition to storm drain stenciling, projects are encouraged to post signs and prohibitive language (with graphical icons) which prohibit illegal dumping at trailheads, parks, building entrances and public access points along channels and creeks within the project area.
Language associated with the stamping (e.g., “No Dumping-Drains to Ocean”) must be satisfactory to the City Engineer. Stamping may also be required in Spanish.

DISCUSSION:
There is no existing storm drain system. The proposed project storm drain system will be on private property and not accessible by the general public. It will consist of roof drains, small landscape inlets and 6” brass grates in the patio. The 3” or 4” PVC pipes onsite will discharge to the public street. It will be the responsibility of the home owner to prevent pollutants from entering the storm drain system.

SC-3: Protect outdoor material storage areas from rainfall, run-on, runoff, and wind dispersal
Materials with the potential to pollute storm water runoff shall be stored in a manner that prevents contact with rainfall and storm water runoff. Contaminated runoff shall be managed for treatment incorporate the following structural or pollutant control BMPs for outdoor material storage areas, as applicable and feasible:
Materials with the potential to contaminate storm water shall be:

• Placed in an enclosure such as, but not limited to, a cabinet, or similar structure, or under a roof or awning that prevents contact with rainfall runoff or spillage to the storm water conveyance system; or
• Protected by secondary containment structures such as berms, dikes, or curbs.
• The storage areas shall be paved and sufficiently impervious to contain leaks and spills, where necessary. (continued below)
• The storage area shall be sloped towards a sump or another equivalent measure that is effective to contain spills.
• Runoff from downspouts/roofs shall be directed away from storage areas.
• The storage area shall have a roof or awning that extends beyond the storage area to minimize collection of storm water within the secondary containment area. A manufactured storage shed may be used for small containers.
DISCUSSION:

This project is the construction of a single family home. There are no outdoor material storage areas included in the design.

SC-4: Protect materials stored in outdoor work areas from rainfall, run-on, runoff, and wind dispersal
Outdoor work areas have an elevated potential for pollutant loading and spills. All development projects shall include the following structural or pollutant control BMPs for any outdoor work areas with potential for pollutant generation, as applicable and feasible:

• Create an impermeable surface such as concrete or asphalt, or a prefabricated metal drip pan, depending on the size needed to protect the materials.
• Cover the area with a roof or other acceptable cover.
• Berm the perimeter of the area to prevent water from adjacent areas from flowing on to the surface of the work area.
• Directly connect runoff to sanitary sewer or other specialized containment system(s), as needed and where feasible. This allows the more highly concentrated pollutants from these areas to receive special treatment that removes particular constituents. Approval for this connection must be obtained from the appropriate sanitary sewer agency.
• Locate the work area away from storm drains or catch basins.

DISCUSSION:

This project is the construction of a single family home. There are no materials stored in outdoor work area included in the design.

SC-5: Protect trash storage areas from rainfall, run-on, runoff, and wind dispersal
Storm water runoff from areas where trash is stored or disposed of can be polluted. In addition, loose trash and debris can be easily transported by water or wind into nearby storm drain inlets, channels, and/or creeks. All development projects shall include the following structural or pollutant control BMPs, as applicable:

• Design trash container areas so that drainage from adjoining roofs and pavement is diverted around the area(s) to avoid run-on. This can include berming or grading the waste handling area to prevent run-on of storm water.
• Ensure trash container areas are screened or walled to prevent offsite transport of trash.
• Provide roofs, awnings, or attached lids on all trash containers to minimize direct precipitation and prevent rainfall from entering containers.
• Locate storm drains away from immediate vicinity of the trash storage area and vice versa.
• Post signs on all dumpsters informing users that hazardous material are not to be disposed.

DISCUSSION:

This is a single family home; the trash storage area will be limited to the City approved trash containers that will be stored in the garage.
SC-6: Use any additional BMPs determined to be necessary by the Copermittee to minimize pollutant generation at each project site
Appendix E.1 provides guidance on permanent controls and operational BMPs that are applicable at a project site based on potential sources of runoff pollutants at the project site. The project shall implement all applicable and feasible source control BMPs listed in Appendix E.1. In addition to the source control BMPs in Appendix E.1, additional source control requirements apply for the following project types within the City jurisdiction. Guidance for implementing these additional source control requirements are presented in Appendix E.
• SC-6A: Large Trash Generating Facilities: Includes but are not limited to restaurants, supermarkets, “big box” retail stores serving food, and pet stores. Refer to Appendix E.20
• SC-6B: Animal Facilities: Includes but are not limited to animal shelters, dog daycare centers, veterinary clinics, groomers, pet care stores, and breeding, boarding, and training facilities. Refer to Appendix E.21
• SC-6C: Plant Nurseries and Garden Centers: Includes but are not limited to commercial facilities that grow, distribute, sell, or store plants and plant material. Refer to Appendix E.22
• SC-6D: Automotive-related Uses: include but are not limited to facilities that perform maintenance or repair of vehicles, vehicle washing facilities, and retail gasoline outlets. Refer to Appendix E.23

DISCUSSION:
This is a single family home, this is not a large trash generation facility, animal facility, plant nursery or for automotive related uses.

Site Design (SD) BMP Requirements:

How to comply: Projects shall comply with this requirement by using all of the site design BMPs listed in this section that are applicable and practicable to their project type and site conditions. Applicability of a given site design BMP shall be determined based on project type, soil conditions, presence of natural features (e.g. streams), and presence of site features (e.g. parking areas). Explanation shall be provided by the applicant when a certain site design BMP is considered to be not applicable or not practicable/feasible. Site plans shall show site design BMPs and provide adequate details necessary for effective implementation of site design BMPs. The “Site Design BMP Checklist for All Development Projects” located in Appendix I-5 shall be used to document compliance with site design BMP requirements.

SD-1: Maintain natural drainage pathways and hydrologic features
 Maintain or restore natural storage reservoirs and drainage corridors (including topographic depressions, areas of permeable soils, natural swales, and ephemeral and intermittent streams)
 Buffer zones for natural water bodies (where buffer zones are technically infeasible, require project applicant to include other buffers such as trees, access restrictions, etc.)
During the site assessment, natural drainages must be identified along with their connection to creeks and/or streams, if any. Natural drainages offer a benefit to storm water management as the soils and habitat already function as a natural filtering/infiltrating swale. When determining the development footprint of the site, altering natural drainages should be avoided. By providing a development envelope set back from natural drainages, the drainage can retain some water quality benefits to the watershed. In some situations, site constraints, regulations, economics, or other factors may not allow avoidance of drainages and sensitive areas. Projects proposing to dredge or fill materials in Waters of the U.S. must obtain Clean Water Act Section 401 Water Quality Certification. Projects proposing to dredge or fill waters of the State must obtain waste discharge requirements. Both the 401 Certification and the Waste Discharge Requirements are administered by the San Diego Water Board. The project applicant shall consult the local jurisdiction for other specific requirements.
Projects can incorporate SD-1 into a project by implementing the following planning and design phase techniques as applicable and practicable:

- Evaluate surface drainage and topography in considering selection of Site Design BMPs that will be most beneficial for a given project site. Where feasible, maintain topographic depressions for infiltration.
- Optimize the site layout and reduce the need for grading. Where possible, conform the site layout along natural landforms, avoid grading and disturbance of vegetation and soils, and replicate the site’s natural drainage patterns. Integrating existing drainage patterns into the site plan will help maintain the site’s predevelopment hydrologic function.
- Preserve existing drainage paths and depressions, where feasible and applicable, to help
- Structural BMPs cannot be located in buffer zones if a State and/or Federal resource agency (e.g. SDRWQCB, California Department of Fish and Wildlife; U.S. Army Corps of Engineers, etc.) prohibits maintenance or activity in the area.

DISCUSSION:

This project is the construction of a single family home on a previously developed home site. The existing surface drainage and topography are maintained. The design of the new house conforms to the existing contours and graded pad.

SD-2: Conserve natural areas, soils and vegetation
- Conserve natural areas within the project footprint including existing trees, other vegetation, and soils
To enhance a site’s ability to support source control and reduce runoff, the conservation and restoration of natural areas must be considered in the site design process. By conserving or restoring the natural drainage features, natural processes are able to intercept storm water, thereby reducing the amount of runoff. The upper soil layers of a natural area contain organic material, soil biota, vegetation, and a configuration favorable for storing and slowly conveying storm water and establishing or restoring vegetation to stabilize the site after construction. The canopy of existing native trees and shrubs also provide a water conservation benefit by intercepting rain water before it hits the ground. By minimizing disturbances in these areas, natural processes are able to intercept storm water, providing a water quality benefit. By keeping the development concentrated to the least environmentally sensitive areas of the site and set back from natural areas, storm water runoff is reduced, water quality can be improved, environmental impacts can be decreased, and many of the site’s most attractive native landscape features can be retained. In some situations, site constraints, regulations, economics, and/or other factors may not allow avoidance of all sensitive areas on a project site. Project applicant shall consult the local municipality for jurisdictional specific requirements for mitigation of removal of sensitive areas.

Projects can incorporate SD-2 by implementing the following planning and design phase techniques as applicable and practicable:

- Identify areas most suitable for development and areas that should be left undisturbed. Additionally, reduced disturbance can be accomplished by increasing building density and increasing height, if possible.
- Cluster development on least-sensitive portions of a site while leaving the remaining land in a natural undisturbed condition.
- Avoid areas with thick, undisturbed vegetation. Soils in these areas have a much higher capacity to store and infiltrate runoff than disturbed soils, and reestablishment of a mature vegetative community can take decades. Vegetative cover can also provide additional volume storage of rainfall by retaining water on the surfaces of leaves, branches, and trunks of trees during and after storm events.
- Preserve trees, especially native trees and shrubs, and identify locations for planting additional native or drought tolerant trees and large shrubs.
• In areas of disturbance, topsoil should be removed before construction and replaced after the project is completed. When handled carefully, such an approach limits the disturbance to native soils and reduces the need for additional (purchased) topsoil during later phases.
• Avoid sensitive areas, such as wetlands, biological open space areas, biological mitigation sites, streams, floodplains, or particular vegetation communities, such as coastal sage scrub and intact forest. Also, avoid areas that are habitat for sensitive plants and animals, particularly those, State or federally listed as endangered, threatened or rare. Development in these areas is often restricted by federal, state and local laws.

DISCUSSION:

This project is the construction of a single family home on a previously developed home site. There is minimal natural area or vegetation remaining on the site due to the construction of the existing house. Much of the existing vegetation will be preserved.

SD-3: Minimize impervious area
• Construct streets, sidewalks or parking lots aisles to the minimum widths necessary, provided public safety is not compromised
• Minimize the impervious footprint of the project
One of the principal causes of environmental impacts by development is the creation of impervious surfaces. Imperviousness links urban land development to degradation of aquatic ecosystems in two ways:

• First, the combination of paved surfaces and piped runoff efficiently collects urban pollutants and transports them, in suspended or dissolved form, to surface waters. These pollutants may originate as airborne dust, be washed from the atmosphere during rains, or may be generated by automobiles and outdoor work activities.

• Second, increased peak flows and runoff durations typically cause erosion of stream banks and beds, transport of fine sediments, and disruption of aquatic habitat. Measures taken to control stream erosion, such as hardening banks with riprap or concrete, may permanently eliminate habitat. Impervious cover can be minimized through identification of the smallest possible land area that can be practically impacted or disturbed during site development. Reducing impervious surfaces retains the permeability of the project site, allowing natural processes to filter and reduce sources of pollution.

Projects can incorporate SD-3 by implementing the following planning and design phase techniques as applicable and practicable:

• Decrease building footprint through (the design of compact and taller structures when allowed by local zoning and design standards and provided public safety is not compromised.
• Construct walkways, trails, patios, overflow parking lots, alleys and other low-traffic areas with permeable surfaces.
• Construct streets, sidewalks and parking lot aisles to the minimum widths necessary, provided that public safety and alternative transportation (e.g. pedestrians, bikes) are not compromised.
• Consider the implementation of shared parking lots and driveways where possible.
• Landscaped area in the center of a cul-de-sac can reduce impervious area depending on configuration. Design of a landscaped cul-de-sac must be coordinated with fire department personnel to accommodate turning radii and other operational needs.
• Design smaller parking lots with fewer stalls, smaller stalls, more efficient lanes.
• Design indoor or underground parking.
• Minimize the use of impervious surfaces in the landscape design.
DISCUSSION:

This project is the construction of a single family home on a previously developed home site. The proposed project will increase the impervious area by 25.7% or 2,287 square feet, compared to the existing development. A water polisher will be installed to mitigate the increase in impervious area.

SD-4: Minimize soil compaction
• Minimize soil compaction in landscaped areas
The upper soil layers contain organic material, soil biota, and a configuration favorable for storing and slowly conveying storm water down gradient. By protecting native soils and vegetation in appropriate areas during the clearing and grading phase of development the site can retain some of its existing beneficial hydrologic function. Soil compaction resulting from the movement of heavy construction equipment can reduce soil infiltration rates. It is important to recognize that areas adjacent to and under building foundations, roads and manufactured slopes must be compacted with minimum soil density requirements in compliance with local building and grading ordinances.

Projects can incorporate SD-4 by implementing the following planning and design phase techniques as applicable and practicable:

• Avoid disturbance in planned green space and proposed landscaped areas where feasible. These areas that are planned for retaining their beneficial hydrological function should be protected during the grading/construction phase so that vehicles and construction equipment do not intrude and inadvertently compact the area.
• In areas planned for landscaping where compaction could not be avoided, re-till the soil surface to allow for better infiltration capacity. Soil amendments are recommended and may be necessary to increase permeability and organic content. Soil stability, density requirements, and other geotechnical considerations associated with soil compaction must be reviewed by a qualified landscape architect or licensed geotechnical, civil or other professional engineer.

DISCUSSION:

The proposed irrigation and landscape design is done by a registered professional and will be submitted to the City of San Diego to comply with Municipal Code. It shall include flow reducers or shutoff valves triggered by a pressure drop to control water loss in the event of broken sprinkler heads or lines. Soil will be compacted to maximize the infiltration of storm water.

SD-5: Disperse impervious areas
• Disconnect impervious surfaces through disturbed pervious areas
Design and construct landscaped or other pervious areas to effectively receive and infiltrate, retain and/or treat runoff from impervious areas prior to discharging to the MS4
Impervious area dispersion (dispersion) refers to the practice of essentially disconnecting impervious areas from directly draining to the storm drain system by routing runoff from impervious areas such as rooftops, walkways, and driveways onto the surface of adjacent pervious areas. The intent is to slow runoff discharges, and reduce volumes while achieving incidental treatment. Volume reduction from dispersion is dependent on the infiltration characteristics of the pervious area and the amount of impervious area draining to the pervious area. Treatment is achieved through filtration, shallow sedimentation, sorption, infiltration, evapotranspiration, biochemical processes and plant uptake.
The effects of imperviousness can be mitigated by disconnecting impervious areas from the drainage system and by encouraging detention and retention of runoff near the point where it is generated. Detention and retention of runoff reduces peak flows and volumes and allows pollutants to settle out or adhere to soils before they can be transported downstream. Disconnection practices may be applied in almost any location, but impervious surfaces must discharge into a suitable receiving area for the practices to be effective. Information gathered during the site assessment will help determine appropriate receiving areas.

Project designs should direct runoff from impervious areas to adjacent landscaping areas that have higher potential for infiltration and surface water storage. This will limit the amount of runoff generated, and therefore the size of the mitigation BMPs downstream. The design, including consideration of slopes and soils, must reflect a reasonable expectation that runoff will soak into the soil and produce no runoff of the DCV. On hillside sites, drainage from upper areas may be collected in conventional catch basins and piped to landscaped areas that have higher potential for infiltration. Or use low retaining walls to create terraces that can accommodate BMPs.

Projects can incorporate SD-5 by implementing the following planning and design phase techniques as applicable and practicable:

- Implement design criteria and considerations listed in impervious area dispersion fact sheet (SD-5) presented in Appendix E.
- Drain rooftops into adjacent landscape areas.
- Drain impervious parking lots, sidewalks, walkways, trails, and patios into adjacent landscape areas.
- Reduce or eliminate curb and gutters from roadway sections, thus allowing roadway runoff to drain to adjacent pervious areas.
- Replace curbs and gutters with roadside vegetated swales and direct runoff from the paved street or parking areas to adjacent LID facilities. Such an approach for alternative design can reduce the overall capital cost of the site development while improving the storm water quantity and quality issues and the site’s aesthetics.
- Plan site layout and grading to allow for runoff from impervious surfaces to be directed into distributed permeable areas such as turf, landscaped or permeable recreational areas, medians, parking islands, planter boxes, etc.
- Detain and retain runoff throughout the site. On flatter sites, landscaped areas can be interspersed among the buildings and pavement areas. On hillside sites, drainage from upper areas may be collected in conventional catch basins and conveyed to landscaped areas in lower areas of the site.
- Pervious area that receives run on from impervious surfaces shall have a minimum width of 10 feet and a maximum slope of 5%.

DISCUSSION:

This project is the construction of a single family home on a previously developed home site. The proposed project will increase the impervious area by 25.7% or 2,287 square feet, compared to the existing development. A water polisher will be installed to mitigate the increase in impervious area.

SD-6: Collect runoff

- Use small collection strategies located at, or as close to as possible to the sources (i.e. the point where storm water initially meets the ground) to minimize the transport of runoff and pollutants to the MS4 and receiving waters

- Use permeable material for projects with low traffic areas and appropriate soil conditions

Distributed control of storm water runoff from the site can be accomplished by applying small collection techniques (e.g. green roofs), or integrated management practices, on small sub-catchments or on residential lots. Small collection techniques foster opportunities to maintain the natural hydrology provide a much greater range of control practices. Integration of storm water management into landscape design and natural features of the site, reduce site development and long-term maintenance costs, and provide redundancy if one technique fails. On flatter sites, it typically works best to intersperse landscaped areas and integrate small scale retention practices among the buildings and paving.
Permeable pavements contain small voids that allow water to pass through to a gravel base. They come in a variety of forms; they may be a modular paving system (concrete pavers, grass-pave, or gravel-pave) or poured in place pavement (porous concrete, permeable asphalt). Project applicants should identify locations where permeable pavements could be substituted for impervious concrete or asphalt paving. The O&M of the site must ensure that permeable pavements will not be sealed in the future. In areas where infiltration is not appropriate, permeable paving systems can be fitted with an under drain to allow filtration, storage, and evaporation, prior to drainage into the storm drain system.

Projects can incorporate SD-6 by implementing the following planning and design phase techniques as applicable and practicable:

- Implementing distributed small collection techniques to collect and retain runoff
- Installing permeable pavements (see SD-6B in Appendix E)

DISCUSSION:

This project is the construction of a single family home on a previously developed home site. The small proposed site does not support bio-retentions or infiltration trenches. Landscaped areas will be used to treat storm runoff before it is discharged to the public street.

SD-7: Landscape with native or drought tolerant species

All development projects are required to select a landscape design and plant palette that minimizes required resources (irrigation, fertilizers and pesticides) and pollutants generated from landscape areas. Native plants require less fertilizers and pesticides because they are already adapted to the rainfall patterns and soils conditions. Plants should be selected to be drought tolerant and not require watering after establishment (2 to 3 years). Watering should only be required during prolonged dry periods after plants are established. Final selection of plant material needs to be made by a landscape architect experienced with LID techniques. Microclimates vary significantly throughout the region and consulting local municipal resources will help to select plant material suitable for a specific geographic location.

Projects can incorporate SD-7 by landscaping with native and drought tolerant species. Recommended plant list is included in Appendix E (Fact Sheet PL).

DISCUSSION:

This project will be landscaped with native and drought tolerant species.
SD-8: Harvest and use precipitation
Harvest and use BMPs capture and stores storm water runoff for later use. Harvest and use can be applied at smaller scales (Standard Projects) using rain barrels or at larger scales (PDPs) using cisterns. This harvest and use technique has been successful in reducing runoff discharged to the storm drain system conserving potable water and recharging groundwater.
Rain barrels are above ground storage vessels that capture runoff from roof downspouts during rain events and detain that runoff for later reuse for irrigating landscaped areas. The temporary storage of roof runoff reduces the runoff volume from a property and may reduce the peak runoff velocity for small, frequently occurring storms. In addition, by reducing the amount of storm water runoff that flows overland into a storm water conveyance system (storm drain inlets and drain pipes), less pollutants are transported through the conveyance system into local creeks and the ocean. The reuse of the detained water for irrigation purposes leads to the conservation of potable water and the recharge of groundwater. SD-8 fact sheet in Appendix E provides additional detail for designing Harvest and Use BMPs. Projects can incorporate SD-8 by installing rain barrels or cisterns, as applicable.

DISCUSSION:
This project will not include harvesting of storm water. The site is to compact to efficiently use rain barrels for storm capture and use as irrigation water.

MICHAEL L. SMITH, RCE 35471