

PRIORITY DEVELOPMENT PROJECT (PDP) STORM WATER QUALITY MANAGEMENT PLAN (SWQMP) FOR

Montezuma Multi-Family P.T.S. No, 501449 Drawing Number (If Applicable) & Internal Order Number (If Applicable)

ENGINEER OF WORK:

Jorge H. Palacios, RCE 32031 Provide Wet Signature and Stamp Above Line

PREPARED FOR:

Elsey Partners 1532 College Avenue, F19 Manhattan, KS 66502 (785) 317-5265

PREPARED BY:

JP Engineering, Inc. 4849 Ronson Court, Suite 105 San Diego, CA 92111 (858) 569-7377

DATE: March 9, 2017

Approved by: City of San Diego

Date

TABLE OF CONTENTS

- Acronyms
- Certification Page
- Submittal Record
- Project Vicinity Map
- FORM DS-560: Storm Water Applicability Checklist
- FORM I-1: Applicability of Permanent, Post-Construction Storm Water BMP Requirements
- FORM I-3B: Site Information Checklist for PDPs
- FORM I-4: Source Control BMP Checklist for All Development Projects
- FORM I-5: Site Design BMP Checklist for All Development Projects
- FORM I-6: Summary of PDP Structural BMPs
- FORM DS-563: Permanent BMP Construction, Self Certification Form
- Attachment 1: Backup for PDP Pollutant Control BMPs
 - o Attachment 1a: DMA Exhibit
 - 0 Attachment 1b: Tabular Summary of DMAs and Design Capture Volume Calculations
 - o Attachment 1c: Harvest and Use Feasibility Screening (when applicable)
 - o Attachment 1d: Categorization of Infiltration Feasibility Condition (when applicable)
 - o Attachment 1e: Pollutant Control BMP Design Worksheets / Calculations
- Attachment 2: Backup for PDP Hydromodification Control Measures
 - o Attachment 2a: Hydromodification Management Exhibit
 - o Attachment 2b: Management of Critical Coarse Sediment Yield Areas
 - o Attachment 2c: Geomorphic Assessment of Receiving Channels
 - o Attachment 2d: Flow Control Facility Design
- Attachment 3: Structural BMP Maintenance Plan
 - o Attachment 3a: Structural BMP Maintenance Thresholds and Actions
 - o Attachment 3b: Draft Maintenance Agreement (when applicable)
- Attachment 4: Copy of Plan Sheets Showing Permanent Storm Water BMPs
- Attachment 5: Project's Drainage Report
- Attachment 6: Project's Geotechnical and Groundwater Investigation Report

ACRONYMS

APN	Assessor's Parcel Number
ASBS	Area of Special Biological Significance
BMP	Best Management Practice
CEQA	California Environmental Quality Act
CGP	Construction General Permit
DCV	Design Capture Volume
DMA	Drainage Management Areas
ESA	Environmentally Sensitive Area
GLU	Geomorphic Landscape Unit
GW	Ground Water
HMP	Hydromodification Management Plan
HSG	Hydrologic Soil Group
HU	Harvest and Use
INF	Infiltration
LID	Low Impact Development
LUP	Linear Underground/Overhead Projects
MS4	Municipal Separate Storm Sewer System
N/A	Not Applicable
NPDES	National Pollutant Discharge Elimination System
NRCS	Natural Resources Conservation Service
PDP	Priority Development Project
PE	Professional Engineer
POC	Pollutant of Concern
SC	Source Control
SD	Site Design
SDRWQCB	San Diego Regional Water Quality Control Board
SIC	Standard Industrial Classification
SWPPP	Stormwater Pollutant Protection Plan
SWQMP	Storm Water Quality Management Plan
TMDL	Total Maximum Daily Load
WMAA	Watershed Management Area Analysis
WPCP	Water Pollution Control Program
WQIP	Water Quality Improvement Plan

CERTIFICATION PAGE

Project Name:	Montezuma Multi-Family
Permit Application Number:	PTS No. 501449

I hereby declare that I am the Engineer in Responsible Charge of design of storm water BMPs for this project, and that I have exercised responsible charge over the design of the project as defined in Section 6703 of the Business and Professions Code, and that the design is consistent with the requirements of the Storm Water Standards, which is based on the requirements of SDRWQCB Order No. R9-2013-0001 as amended by R9-2015-0001 and R9-2015-0100 (MS4 Permit).

I have read and understand that the City Engineer has adopted minimum requirements for managing urban runoff, including storm water, from land development activities, as described in the Storm Water Standards. I certify that this PDP SWQMP has been completed to the best of my ability and accurately reflects the project being proposed and the applicable source control and site design BMPs proposed to minimize the potentially negative impacts of this project's land development activities on water quality. I understand and acknowledge that the plan check review of this PDP SWQMP by the City Engineer is confined to a review and does not relieve me, as the Engineer in Responsible Charge of design of storm water BMPs for this project, of my responsibilities for project design.

Jacio

Engineer of Work's Signature, PE Number & Expiration Date

Jorge H. Palacios, RCE 32031, Exp. 12-31-18 Print Name

JP Engineering, Inc. Company

March 9, 2017

Date

SUBMITTAL RECORD

Use this Table to keep a record of submittals of this PDP SWQMP. Each time the PDP SWQMP is re-submitted, provide the date and status of the project. In last column indicate changes that have been made or indicate if response to plancheck comments is included. When applicable, insert response to plancheck comments.

Submittal Number	Date	Project Status	Changes
1	12/8/16	 Preliminary Design/Planning/CEQA Final Design 	Initial Submittal
2	3/9/17	 Preliminary Design/Planning/CEQA Final Design 	Second Submittal
3	Enter a date.	 Preliminary Design/Planning/CEQA Final Design 	Click here to enter text.
4	Enter a date.	 O Preliminary Design/Planning/CEQA ● Final Design 	Click here to enter text.

PROJECT VICINITY MAP

Project Name: Permit Application Number: Montezuma Multi-Family PTS No. 501449

City of San Diego **Development Services** 1222 First Ave., MS-302 San Diego, CA 92101 (619) 446-5000

Storm Water Requirements D Applicability Checklist

FORM	
DS-56)

OCTOBER **2016**

Project Address:

Project Number	for City Use Only):
----------------	---------------------

SECTION 1. Construction Storm Water BMP Requirements:

All construction sites are required to implement construction BMPs in accordance with the performance standards in the <u>Storm Water Standards Manual</u>. Some sites are additionally required to obtain coverage under the State Construction General Permit (CGP)¹, which is administered by the State Water Resources Control Board.

For all projects complete PART A: If project is required to submit a SWPPP or WPCP, continue to PART B.

PART A: Determine Construction Phase Storm Water Requirements.
 Is the project subject to California's statewide General NPDES permit for Storm Water Discharges Associated with Construction Activities, also known as the State Construction General Permit (CGP)? (Typically projects with land disturbance greater than or equal to 1 acre.)

□ Yes; SWPPP required, skip questions 2-4 □ No; next question

2. Does the project propose construction or demolition activity, including but not limited to, clearing, grading, grubbing, excavation, or any other activity resulting in ground disturbance and contact with storm water runoff?

Yes; WPCP required, skip 3-4

3. Does the project propose routine maintenance to maintain original line and grade, hydraulic capacity, or original purpose of the facility? (Projects such as pipeline/utility replacement)

Yes; WPCP required, skip 4

No; next question

No; next guestion

4. Does the project only include the following Permit types listed below?

- Electrical Permit, Fire Alarm Permit, Fire Sprinkler Permit, Plumbing Permit, Sign Permit, Mechanical Permit, Spa Permit.
- Individual Right of Way Permits that exclusively include only ONE of the following activities: water service, sewer lateral, or utility service.
- Right of Way Permits with a project footprint less than 150 linear feet that exclusively include only ONE of the following activities: curb ramp, sidewalk and driveway apron replacement, pot holing, curb and gutter replacement, and retaining wall encroachments.

Yes; no document required

Check one of the boxes below, and continue to PART B:

- lf you checked "Yes" for question 1, a SWPPP is REQUIRED. Continue to PART B
- □ If you checked "No" for question 1, and checked "Yes" for question 2 or 3, a WPCP is REQUIRED. If the project proposes less than 5,000 square feet of ground disturbance AND has less than a 5-foot elevation change over the entire project area, a Minor WPCP may be required instead. Continue to PART B.

If you checked "No" for all guestions 1-3, and checked "Yes" for guestion 4
PÁRT B does not apply and no document is required. Continue to Section 2.

1.	More information on the City's construction BMP requirements as well as CGP requirements can be found at:
	www.sandiego.gov/stormwater/regulations/index.shtml

Printed on recycled paper. Visit our web site at <u>www.sandiego.gov/development-services</u>. Upon request, this information is available in alternative formats for persons with disabilities.

Page 2 of 4 C	ity of San Diego •	Development Services •	Storm Water Requirements	Applicability Checklist
---------------	--------------------	------------------------	--------------------------	-------------------------

PART B: Determine Construction Site Priority						
Th Th Cit Sta an nif tha	This prioritization must be completed within this form, noted on the plans, and included in the SWPPP or WPCP. The city reserves the right to adjust the priority of projects both before and after construction. Construction projects are assigned an inspection frequency based on if the project has a "high threat to water quality." The City has aligned the local definition of "high threat to water quality" to the risk determination approach of the State Construction General Permit (CGP). The CGP determines risk level based on project specific sediment risk and receiving water risk. Additional inspection is required for projects within the Areas of Special Biological Sig- nificance (ASBS) watershed. NOTE: The construction priority does NOT change construction BMP requirements that apply to projects; rather, it determines the frequency of inspections that will be conducted by city staff.					
Co	mplete P	ART B and continued to Section 2				
1.		ASBS				
		a. Projects located in the ASBS watershed.				
2.		High Priority				
		a. Projects 1 acre or more determined to be Risk Level 2 or Risk Level 3 per the Cons General Permit and not located in the ASBS watershed.	truction			
		b. Projects 1 acre or more determined to be LUP Type 2 or LUP Type 3 per the Const General Permit and not located in the ASBS watershed.	ruction			
3.		Medium Priority				
		a. Projects 1 acre or more but not subject to an ASBS or high priority designation.				
		b. Projects determined to be Risk Level 1 or LUP Type 1 per the Construction Genera not located in the ASBS watershed.	al Permit and			
4.		Low Priority				
		a. Projects requiring a Water Pollution Control Plan but not subject to ASBS, high, or priority designation.	medium			
SE	CTION 2.	Permanent Storm Water BMP Requirements.				
Ad	ditional in	formation for determining the requirements is found in the <u>Storm Water Standards M</u>	lanual.			
PA Pro vel BM	ART C: De ojects that opment p 1Ps. "yes" is c	termine if Not Subject to Permanent Storm Water Requirements. are considered maintenance, or otherwise not categorized as "new development proj rojects" according to the <u>Storm Water Standards Manual</u> are not subject to Permanen hecked for any number in Part C, proceed to Part F and check "Not Subje	jects" or "rede- t Storm Water ct to Perma-			
lf '	"no" is cl	necked for all of the numbers in Part C continue to Part D.				
1.	Does the existing	e project only include interior remodels and/or is the project entirely within an enclosed structure and does not have the potential to contact storm water?	Yes 🛛 No			
2.	Does the creating	e project only include the construction of overhead or underground utilities without new impervious surfaces?	Yes 🛛 No			
3.	Does the roof or e lots or e replacer	e project fall under routine maintenance? Examples include, but are not limited to: exterior structure surface replacement, resurfacing or reconfiguring surface parking xisting roadways without expanding the impervious footprint, and routine nent of damaged pavement (grinding, overlay, and pothole repair).	🖵 Yes 📮 No			

City	City of San Diego • Development Services • Storm Water Requirements Applicability Checklist Page 3 of 4				
PART D: PDP Exempt Requirements.					
PC	OP Exempt projects are required to implement site design and source control BMP	s.			
lf <i>"</i> "P	"yes" was checked for any questions in Part D, continue to Part F and check the bo DP Exempt."	ox labeled			
lf '	"no" was checked for all questions in Part D, continue to Part E.				
1.	Does the project ONLY include new or retrofit sidewalks, bicycle lanes, or trails that:				
	 Are designed and constructed to direct storm water runoff to adjacent vegetated area non-erodible permeable areas? Or; 	ıs, or other			
	 Are designed and constructed to be hydraulically disconnected from paved streets an Are designed and constructed with permeable pavements or surfaces in accordance w Green Streets guidance in the City's Storm Water Standards manual? 	d roads? Or; /ith the			
	Yes; PDP exempt requirements applyNo; next question				
2.	Does the project ONLY include retrofitting or redeveloping existing paved alleys, streets or road and constructed in accordance with the Green Streets guidance in the <u>City's Storm Water Stand</u>	ds designed dards Manual?			
	Yes; PDP exempt requirements apply INO; project not exempt.				
PA Pro a S If ' or	 PART E: Determine if Project is a Priority Development Project (PDP). Projects that match one of the definitions below are subject to additional requirements including preparation of a Storm Water Quality Management Plan (SWQMP). If "yes" is checked for any number in PART E, continue to PART F and check the box labeled "Priority Development Project". 				
"S	tandard Development Project".				
1.	New Development that creates 10,000 square feet or more of impervious surfaces collectively over the project site. This includes commercial, industrial, residential, mixed-use, and public development projects on public or private land.	Yes No			
2.	Redevelopment project that creates and/or replaces 5,000 square feet or more of impervious surfaces on an existing site of 10,000 square feet or more of impervious surfaces. This includes commercial, industrial, residential, mixed-use, and public development projects on public or private land.	Yes No			
3.	New development or redevelopment of a restaurant. Facilities that sell prepared foods and drinks for consumption, including stationary lunch counters and refreshment stands sellin prepared foods and drinks for immediate consumption (SIC 5812), and where the land development creates and/or replace 5,000 square feet or more of impervious surface.	g 🖵 Yes 📮 No			
4.	New development or redevelopment on a hillside. The project creates and/or replaces 5,000 square feet or more of impervious surface (collectively over the project site) and where the development will grade on any natural slope that is twenty-five percent or greater.	Yes No			
5.	New development or redevelopment of a parking lot that creates and/or replaces 5,000 square feet or more of impervious surface (collectively over the project site).	Yes No			
6.	New development or redevelopment of streets, roads, highways, freeways, and driveways. The project creates and/or replaces 5,000 square feet or more of impervious surface (collectively over the project site).	Yes No			

Pag	ge 4 of 4	City of San Diego • De	velopment Serv	vices · Storm Water	r Requirements Applicability Che	ecklist	
7.	New dev Sensitiv (collectiv Area (ES, feet or le as an iso lands).	velopment or redevelopment or redevelopment or redevelopment or ely over project site), a A). "Discharging directlops from the project to lated flow from the project or black flow from the project or black flow from the project or black flow from the project black flow flow flow flow flow flow flow flow	opment disch eates and/or re nd discharges y to" includes f the ESA, or cor oject to the ESA	arging directly to eplaces 2,500 squa directly to an Envi low that is convey nveyed in a pipe o A (i.e. not comming	b an Environmentally are feet of impervious surface ironmentally Sensitive ed overland a distance of 200 r open channel any distance gled with flows from adjacent	Yes	No
8.	New dev create a project r Average	relopment or redevel nd/or replaces 5,000 neets the following crit Daily Traffic (ADT) of 1	opment proje square feet of eria: (a) 5,000 s 00 or more ve	ects of a retail gas f impervious surf square feet or mo hicles per day.	soline outlet (RGO) that face. The development re or (b) has a projected	Yes	X No
9.	New dev creates projects 5541, 75	velopment or redevel and/or replaces 5,000 categorized in any one 32-7534, or 7536-7539	opment proje oguare feet o of Standard Ir	ects of an automo or more of imper industrial Classifica	otive repair shops that vious surfaces. Development tion (SIC) codes 5013, 5014,	☐ Yes	× No
10.	Other P results in post con less thar use of po the squa vehicle u with per	bllutant Generating F the disturbance of or struction, such as ferti 5,000 sf of imperviou esticides and fertilizers re footage of impervic se, such as emergency vious surfaces of if the	Project. The project or more acreatives and pestiss surface and v, such as slope us surface need maintenance y sheet flow to	roject is not covere es of land and is es icides. This does r where added lands stabilization using d not include line access or bicycle p surrounding perv	ed in the categories above, xpected to generate pollutants not include projects creating scaping does not require regula g native plants. Calculation of ar pathways that are for infreq pedestrian use, if they are built ious surfaces.	ar uent Ves	X No
PA	RT F: Se	lect the appropriat	e category ba	ased on the out	comes of PART C through	PART E.	
1.	The pro	ect is NOT SUBJECT T	O PERMANENT	T STORM WATER	REQUIREMENTS.		
2.	The pro BMP red	ect is a STANDARD D quirements apply. See	the Storm Wat	PROJECT. Site des ter Standards Mar	sign and source control and source .	-	
3.	The pro See the	ect is PDP EXEMPT . S Storm Water Standard	ite design and <u>s Manual</u> for g	source control BM uidance.	IP requirements apply.		
4.	The pro structur for guid	ject is a PRIORITY DEV al pollutant control BN ance on determining it	ELOPMENT PF Prequiremen project requir	ROJECT . Site designs apply. See the set of a hydromodific	gn, source control, and Storm Water Standards Manua Pation plan management	I	X
Jo	rge H.	Palacios	rint		Agent		
Na	me or Ow	mer of Agent (Please P	rint)		IItle		
	SH	places			12/08/2016		
Sig	nature				Date		

Applicability of Permaner Storm Water (Storm Water Intake Form for all Develop	nt, Post-Con r BMP Requ ment Permit A	struction firements pplications)	Form I-1	
Project Id	dentification			
Project Name: Montezuma Multi-Family				
Permit Application Number: PTS No. 501449		Date: 1	2/8/16	
Determination	of Requirement	nts		
The purpose of this form is to identify permanent, post-construction requirements that apply to the project. This form serves as a short <u>summary</u> of applicable requirements, in some cases referencing separate forms that will serve as the backup for the determination of requirements. Answer each step below, starting with Step 1 and progressing through each step until reaching "Stop".				
Step	Answer	Progression	n	
Step 1: Is the project a "development project"? See Section 1.3 of the BMP Design Manual (Part 1	• Yes	Go to Step 2.		
of Storm Water Standards) for guidance.	O No	Stop. Permanent BMP requirements do not apply. No SWQMP will be required. Provide discussion below.		
Step 2: Is the project a Standard Project, Priority	0	Stop.	t and processors	
Development Project (PDP), or exception to PDP definitions?	Standard Project	Standard Project requirements app		
To answer this item, see Section 1.4 of the BMP Design Manual (Part 1 of Storm Water Standards) <u>in its entirety</u> for guidance, AND complete Storm Water Requirements Applicability Checklist.	⊙ PDP	PDP requirements apply, including PDP SWQMP. Go to Step 3.		
	O PDP Exempt	Stop. Standard Project requirements apply. Provide discussion and list any additional requirements below.		
Discussion / justification, and additional requirement Click or tap here to enter text.	ts for exception	ns to PDP def	initions, if applicable:	

Form I	-1 Page 2	
Step	Answer	Progression
Step 3. Is the project subject to earlier PDP requirements due to a prior lawful approval? See Section 1.10 of the BMP Design Manual (Part 1 of Storm Water Standards) for guidance.	s the project subject to earlier PDP nents due to a prior lawful approval? ion 1.10 of the BMP Design Manual (Part 1 o Water Standards) for guidance. Consult the City E determine requirer Provide discussion requirements below Go to Step 4.	
	O No	BMP Design Manual PDP requirements apply. Go to Step 4.
Discussion / justification of prior lawful approval, an <u>approval does not apply</u>): Click or tap here to enter text.	d identify requi	irements (<u>not required if prior lawful</u>
Step 4. Do hydromodification control requirements apply? See Section 1.6 of the BMP Design Manual (Part 1 of Storm Water Standards) for guidance.	⊙ Yes	PDP structural BMPs required for pollutant control (Chapter 5) and hydromodification control (Chapter 6). Go to Step 5.
	O No	Stop. PDP structural BMPs required for pollutant control (Chapter 5) only. Provide brief discussion of exemption to hydromodification control below.
Discussion / justification if hydromodification contro Runoff from project discharges into the San Deigo B attached Figure H-G.2-2 for exempted bodies and se 2.	ol requirements ay, which is exe e City of San D	do <u>not</u> apply: empted from Hydromodification. See biego Drawing and picture in Attachment
Step 5. Does protection of critical coarse sediment yield areas apply? See Section 6.2 of the BMP Design Manual (Part 1 of Storm Water Standards) for guidance.	O Yes	Management measures required for protection of critical coarse sediment yield areas (Chapter 6.2). Stop.
	⊙ No	Management measures not required for protection of critical coarse sediment yield areas. Provide brief discussion below. Stop.
Discussion / justification if protection of critical coar The property does not have on-site or upstream critic shown in the attached Figure H-G.2-1 for potential (rse sediment yie cal coarse sedin CCSYA.	eld areas does <u>not</u> apply: nent yield areas (CCSYA) and is not

PDP SWQMP Template Date: January, 2016 PDP SWQMP Submittal Date: March 9, 2017 .

Site Information Checklist For PDPs Form I-3B			
Project Sum	imary Information		
Project Name	Montezuma Multi-Family		
Project Address	6213 Montezuma Road. San Diego, CA 92115		
Assessor's Parcel Number(s) (APN(s))	467-171-28-00 & 467-171-29-00		
Permit Application Number	PTS No. 501449		
Project Watershed	Select One: O San Dieguito River O Penasquitos O Mission Bay O San Diego River O San Diego Bay O Tijuana River		
Hydrologic subarea name with Numeric Identifier up to two decimal paces (9XX.XX)	San Diego River Hydrologic Unit - 907-11		
Project Area (total area of Assessor's Parcel(s) associated with the project or total area of the right-of-way)	12,416 SQFT Acres ([SQFT] Square Feet)		
Area to be disturbed by the project (Project Footprint)	12,416 SQFT Acres ([SQFT] Square Feet)		
Project Proposed Impervious Area (subset of Project Footprint)	9,861 Acres ([SQFT] Square Feet)		
Project Proposed Pervious Area (subset of Project Footprint)	2,555 SQFT Acres ([SQFT] Square Feet)		
Note: Proposed Impervious Area + Proposed Perv. This may be less than the Project Area. The proposed increase or decrease in impervious area in the proposed condition as compared to the pre-project condition	ious Area = Area to be Disturbed by the Project.		

Form I-3B Page 2 of 11
Description of Existing Site Condition and Drainage Patterns
Current Status of the Site (select all that apply):
X Existing development
Previously graded but not built out
Agricultural or other non-impervious use
X Vacant, undeveloped/natural
Description / Additional Information:
The property was previously a multi-family building that has been demolished.
Existing Land Cover Includes (select all that apply):
V egetative Cover
X Non-Vegetated Pervious Areas
A Impervious Areas
The property is presently 20% impervious due to the existing buildings that were demolished
The property is presentity 2070 impervious due to the existing buildings that were demonstred
Underlying Soil belongs to Hydrologic Soil Group (select all that apply):
NRCS Type A
D NRCS Type B
LINKCS Type C
A INRES Type D
Approximate Depth to Groundwater (Gw):
OGW Depth < 5 feet
• 5 feet $<$ GW Depth $<$ 10 feet
• 10 feet < GW Depth < 20 feet
• GW Depth > 20 feet
Existing Natural Hydrologic Features (select all that apply):
□Watercourses
□ Seeps
□ Springs
□ Wetlands
X None
Description / Additional Information:
Click or tap here to enter text.

Form I-3B Page 3 of 11

Description of Existing Site Topography and Drainage:

How is storm water runoff conveyed from the site? At a minimum, this description should answer:

- 1. Whether existing drainage conveyance is natural or urban;
- 2. If runoff from offsite is conveyed through the site? If yes, quantification of all offsite drainage areas, design flows, and locations where offsite flows enter the project site and summarize how such flows are conveyed through the site;
- 3. Provide details regarding existing project site drainage conveyance network, including storm drains, concrete channels, swales, detention facilities, storm water treatment facilities, and natural and constructed channels;
- 4. Identify all discharge locations from the existing project along with a summary of the conveyance system size and capacity for each of the discharge locations. Provide summary of the pre-project drainage areas and design flows to each of the existing runoff discharge locations.

Description / Additional Information:

1. The existing drainage is urban.

2. There is no runoff from offsite that is being conveyed throughout the site.

3. The existing site drains northerly to the existing concrete curb and gutter at Montezuma Road. The runoff from Montezuma Road is conveyed to an existing 10' curb inlet type C, which is 300 feet west of the property.

4. The pre-development and post-development project will maintain the same pattern. The area of site, 0.28 acres and the Q50=0.65 cfs will drain to the existing concrete curb and gutter at Montezuma Road.

Form I-3B Page 4 of 11
Description of Proposed Site Development and Drainage Patterns
Project Description / Proposed Land Use and/or Activities: The project consists of a student dormitory building.
List/describe proposed impervious features of the project (e.g., buildings, roadways, parking lots, courtyards, athletic courts, other impervious features):
Proposed five (5) story building with three levels of underground parking and courtyard.
List/describe proposed pervious features of the project (e.g., landscape areas): Proposed biofiltration areas and permeable areas within the property
riopoted storaduatin aloue and perificaçõe aloue witani are property.
Does the project include grading and changes to site topography?
⊙ Yes
O No Description / Additional Information:
The proposed grading will export 11,600 cubic yards of dirt to construct the underground parking.

Form I-3B Page 5 of 11

Does the project include changes to site drainage (e.g., installation of new storm water conveyance systems)? • Yes

ONo

If yes, provide details regarding the proposed project site drainage conveyance network, including storm drains, concrete channels, swales, detention facilities, storm water treatment facilities, natural and constructed channels, and the method for conveying offsite flows through or around the proposed project site. Identify all discharge locations from the proposed project site along with a summary of the conveyance system size and capacity for each of the discharge locations. Provide a summary of pre and post-project drainage areas and design flows to each of the runoff discharge locations. Reference the drainage study for detailed calculations.

Description / Additional Information:

The proposed site will drain to biofiltration areas inside the property and then to the existing concrete curb and gutter at Montezuma road via a curb outlet.

A summary of the pre and post-project drainage areas and design flows are shown in page 2 of our Hydrology and Drainage calculations report in Attachment 5.

Form I-3B Page 6 of 11
Identify whether any of the following features, activities, and/or pollutant source areas will be present (select
all that apply):
xOn-site storm drain inlets
x Interior floor drains and elevator shaft sump pumps
x Interior parking garages
□ Need for future indoor & structural pest control
x Landscape/Outdoor Pesticide Use
Deols, spas, ponds, decorative fountains, and other water features
Food service
□ Refuse areas
□ Industrial processes
Outdoor storage of equipment or materials
□ Vehicle and Equipment Cleaning
□ Vehicle/Equipment Repair and Maintenance
Fuel Dispensing Areas
□ Loading Docks
x Fire Sprinkler Test Water
x Miscellaneous Drain or Wash Water
x Plazas, sidewalks, and parking lots
Large Trash Generating Facilities
□ Animal Facilities
Plant Nurseries and Garden Centers
Automotive-related Uses

Description / Additional Information: Click or tap here to enter text.

Form I-3B Page 7 of 11
Identification and Narrative of Receiving Water
Narrative describing flow path from discharge location(s), through urban storm conveyance system, to receiving creeks, rivers, and lagoons and ultimate discharge location to Pacific Ocean (or bay, lagoon, lake or reservoir, as applicable) The existing site drains northerly to the existing concrete curb and gutter at Montezuma Road and westerly to an existing public storm drain system which discharges to the Alvarado Creek and continues to the Sar Diego River and ultimately to the Pacific Ocean.
Dravida a summary of all hanaficial uses of reasiring waters downstress of the surject distance land
Provide a summary of all denenicial uses of receiving waters downstream of the project discharge locations.
Ine San Diego River Hydrologic Unit 90/.11 are as follows:
-Municipal and Domestic Supply (MUN) -Cold Freshwater Habitat (COLD)
-Agricultural Supply (AGR) -Wildlife Habitat (WILD)
-Industrical Process Supply (PROC)
-Contact Recreation (REC1)
-Non-Contact Recreation (REC2)
-Warm Freshwater Habitat (WARM)
Project not subject to ASBS.
Provide distance from project outfall location to impaired or sensitive receiving waters. The nearest impaired body is the Pacific Ocean, which is approximately 12 miles west from the project.
Sumarize information regarding the proximity of the permanent, post-construction storm water BMPs to the City's Multi-Habitat Planning Area and environmentally sensitive lands The City's Multi-Habitat Planning Area and environmentally sensitive lands are not close to the property.

Form I-3B Page 8 of 11

Identification of Receiving Water Pollutants of Concern

List any 303(d) impaired water bodies within the path of storm water from the project site to the Pacific Ocean (or bay, lagoon, lake or reservoir, as applicable), identify the pollutant(s)/stressor(s) causing impairment, and identify any TMDLs and/or Highest Priority Pollutants from the WQIP for the impaired water bodies:

Pollutant(s)/Stressor(s)	TMDLs/ WQIP Highest Priori Pollutant	
cal Coliform (lower 6 miles)	TMDL/WQIP	
ick or tap here to enter text.	Click or tap here to enter text.	
ick or tap here to enter text.	Click or tap here to enter text.	
ick or tap here to enter text.	Click or tap here to enter text.	
ick or tap here to enter text.	Click or tap here to enter text.	
ick or tap here to enter text.	Click or tap here to enter text.	
	Pollutant(s)/Stressor(s) cal Coliform (lower 6 miles) ick or tap here to enter text. ick or tap here to enter text.	

Identification of Project Site Pollutants*

*Identification of project site pollutants is only required if flow-thru treatment BMPs are implemented onsite in lieu of retention or biofiltration BMPs (note the project must also participate in an alternative compliance program unless prior lawful approval to meet earlier PDP requirements is demonstrated)

Identify pollutants anticipated from the project site based on all proposed use(s) of the site (see BMP Design Manual (Part 1 of Storm Water Standards) Appendix B.6):

Pollutant	Not Applicable to the Project Site	Anticipated from the Project Site	Also a Receiving Water Pollutant of Concern	
Sediment	0	0	0	
Nutrients	0	٥	0	
Heavy Metals	۲	0	0	
Organic Compounds	۲	0		
Trash & Debris	0	۲	0	
Oxygen Demanding Substances	0	۲	0	
Oil & Grease	۲	0	0	
Bacteria & Viruses	0	۲	0	
Pesticides	0	0	0	

Form 1-3B Page 9 of 11
Hydromodification Management Requirements
 Do hydromodification management requirements apply (see Section 1.6 of the BMP Design Manual)? Yes, hydromodification management flow control structural BMPs required. No, the project will discharge runoff directly to existing underground storm drains discharging directly to water storage reservoirs, lakes, enclosed embayments, or the Pacific Ocean.
 No, the project will discharge runoff directly to conveyance channels whose bed and bank are concrete-lined all the way from the point of discharge to water storage reservoirs, lakes, enclosed embayments, or the Pacific Ocean. No, the project will discharge runoff directly to an area identified as empropriate for an emproprement emproprement emproprement empropriste for an emproprist
WMAA for the watershed in which the project resides.
Description / Additional Information (to be provided if a 'No' answer has been selected above): Click or tap here to enter text.
Critical Coarse Sediment Yield Areas*
*This Section only required if hydromodification management requirements apply
Based on Section 6.2 and Appendix H does CCSYA exist on the project footprint or in the upstream area
draining through the project footprint?
 No, No critical coarse sediment yield areas to be protected based on WMAA maps
Discussion / Additional Information:
The property does not have on-site or upstream Critical Coarse Sediment Yield Areas (CCSYA) and is not shown in the atatched Figure H-G.2-1 for potential CCSYA and shown in Attachment 2.

Form I-3B Page 10 of 11
Flow Control for Post-Project Runoff*
*This Section only required if hydromodification management requirements apply
List and describe point(s) of compliance (POCs) for flow control for hydromodification management (see Section 6.3.1). For each POC, provide a POC identification name or number correlating to the project's HMP Exhibit and a receiving channel identification name or number correlating to the project's HMP Exhibit. POC: BMP 1 on the northwesterly corner of property.
Has a geomorphic assessment been performed for the receiving channel(s)?
• No, the low flow threshold is 0.1Q2 (default low flow threshold)
• Yes, the result is the low flow threshold is 0.1Q2
• Yes, the result is the low flow threshold is 0.3Q2
• Yes, the result is the low flow threshold is 0.5Q2
If a geomorphic assessment has been performed, provide title, date, and preparer: Click or tap here to enter text.
Discussion / Additional Information: (optional)
Click or tap here to enter text.

Form I-3B Page 11 of 11

Other Site Requirements and Constraints

When applicable, list other site requirements or constraints that will influence storm water management design, such as zoning requirements including setbacks and open space, or local codes governing minimum street width, sidewalk construction, allowable pavement types, and drainage requirements. None.

Optional Additional Information or Continuation of Previous Sections As Needed

This space provided for additional information or continuation of information from previous sections as needed.

Click or tap here to enter text.

Source Control BMP Checklist for All Development Projects		Form 1-	4
Source Control BMPs			
All development projects must implement source control BMPs SC-1 thro feasible. See Chapter 4 and Appendix E of the BMP Design Manual (Part 1 or information to implement source control BMPs shown in this checklist.	ugh SC-6 y f the Storm	where app Water Sta	licable and ndards) for
 Answer each category below pursuant to the following. "Yes" means the project will implement the source control BMP as Answer dia E af the BMP Desire Meanel Dispersion (instification in 	described	in Chapte	r 4 and/or
 Appendix E of the BMP Design Manual. Discussion / justification is not required. "No" means the BMP is applicable to the project but it is not feasible to implement. Discussion / justification must be provided. 			
 "N/A" means the BMP is not applicable at the project site because feature that is addressed by the BMP (e.g., the project has no o Discussion / justification may be provided. 	the project utdoor mat	does not erials stor	include the age areas).
Source Control Requirement		Applied	
SC-1 Prevention of Illicit Discharges into the MS4	OVer	ON _a	ONI/A
	• I es	VINO	VIN/A
Click of tap here to enter text.			
SC-2 Storm Drain Stenciling or Signage	• Yes	ONo	ON/A
Click or tap here to enter text.			
SC-3 Protect Outdoor Materials Storage Areas from Rainfall, Run-On, Runoff, and Wind Dispersal	• Yes	O No	O _{N/A}
Discussion / justification if SC-3 not implemented: Click or tap here to enter text.			
SC-4 Protect Materials Stored in Outdoor Work Areas from Rainfall, Run- On, Runoff, and Wind Dispersal	• Yes	ONo	O _{N/A}
Discussion / justification if SC-4 not implemented: Click or tap here to enter text.			
SC-5 Protect Trash Storage Areas from Rainfall, Run-On, Runoff, and Wind Dispersal	• Yes	O No	O _{N/A}
Discussion / justification if SC-5 not implemented: Click or tap here to enter text.			
		_	

Form I-4 Page 2 of 2			
Source Control Requirement		Applied	2
SC-6 Additional BMPs Based on Potential Sources of Runoff Pollutants (r	nust answer	for each s	source listed
below)			
On-site storm drain inlets	• Yes	ONo	O _{N/A}
Interior floor drains and elevator shaft sump pumps	• Yes	ONo	ON/A
Interior parking garages	• Yes	ONo	O _{N/A}
Need for future indoor & structural pest control	OYes	O No	⊙n/A
Landscape/Outdoor Pesticide Use	• Yes	ONo	ON/A
Pools, spas, ponds, decorative fountains, and other water features	O Yes	ONo	⊙N/A
Food service	OYes	ONo	⊙N/A
Refuse areas	O Yes	ONo	⊙n/A
Industrial processes	O Yes	ONo	⊙n/A
Outdoor storage of equipment or materials	O Yes	ONo	⊙n/A
Vehicle/Equipment Repair and Maintenance	O Yes	ONo	⊙N/A
Fuel Dispensing Areas	OYes	ONo	⊙n/A
Loading Docks	O Yes	ONo	⊙n/A
Fire Sprinkler Test Water	• Yes	ONo	O _{N/A}
Miscellaneous Drain or Wash Water	• Yes	ONo	ON/A
Plazas, sidewalks, and parking lots	• Yes	ONo	O _{N/A}
SC-6A: Large Trash Generating Facilities	O Yes	ONo	⊙N/A
SC-6B: Animal Facilities	O Yes	O No	⊙N/A
SC-6C: Plant Nurseries and Garden Centers	O Yes	O No	⊙n/A
SC-6D: Automotive-related Uses	OYes	ONO	ON/A

Discussion / justification if SC-6 not implemented. Clearly identify which sources of runoff pollutants are discussed. Justification must be provided for <u>all</u> "No" answers shown above. Click or tap here to enter text.

for All Development Projects		Form I-5	
Site Design BMPs			
All development projects must implement site design BMPs SD-1 throug feasible. See Chapter 4 and Appendix E of the BMP Design Manual (Part 1 information to implement site design BMPs shown in this checklist.	gh SD-8 w of Storm	where appli Water Stan	cable and dards) for
 Answer each category below pursuant to the following. "Yes" means the project will implement the site design BMP as a Appendix E of the BMP Design Manual. Discussion / justification is "No" means the BMP is applicable to the project but it is not feasi justification must be provided. "N/A" means the BMP is not applicable at the project site because a feature that is addressed by the BMP (e.g., the project site has no exist Discussion / justification may be provided. 	described in not require ble to impl the project sting natur	n Chapter d. lement. Di does not i ral areas to	4 and/or scussion / nclude the conserve).
A site map with implemented site design BMPs must be included at the end of	f this check	list.	
Site Design Requirement		Applied?	
SD-1 Maintain Natural Draiange Pathways and Hydrologic Features	OYes	ONO	⊙N/A
1-1 Are existing natural drainage pathways and hydrologic features mapped on the site map?	OYes	ONo	⊙n/A
1-2 Are street trees implemented? If yes, are they shown on the site map?	• Yes	ONo	O _{N/A}
1-3 Implemented street trees meet the design criteria in SD-1 Fact	• Yes	ONo	0
Sheet (e.g. soil volume, maximum credit, etc.)?			UN/A
1-4 Is street tree credit volume calculated using Appendix B.2.2.1 and SD-1 Fact Sheet in Appendix E?	O Yes	No	O _{N/A}
1-4 Is street tree credit volume, maximum credit, etc.)r SD-1 Fact Sheet in Appendix E? SD-2 Have natural areas, soils and vegetation been conserved?	O Yes	NoNo	0 N/A 0 N/A 0 N/A

Form 1-5 Page 2 of 4	-		
Site Design Requirement		Applied?	
SD-3 Minimize Impervious Area	• Yes	ONo	ON/A
Discussion / justification if SD-3 not implemented: Click or tap here to enter text.			
SD-4 Minimize Soil Compaction	0 y	ON	
	• res	₩ INO	✓N/A
SD-5 Impervious Area Dispersion	• Yes	O No	O N/A
Discussion / justification if SD-5 not implemented: Click or tap here to enter text.			
5-1 Is the pervious area receiving runon from impervious area identified on the site map?	• Yes	ONo	J. S. Janua
5-2 Does the pervious area satisfy the design criteria in SD-5 Fact Sheet in Appendix E (e.g. maximum slope, minimum length, etc.)	• Yes	0 _{No}	
5-3 Is impervious area dispersion credit volume calculated using Appendix B.2.1.1 and SD-5 Fact Sheet in Appendix E?	• Yes	O No	

0' 7 ' 7 '	Provide states and state		in the second
Site Design Requirement		Applied?	
D-6 Runoff Collection	• Yes	ONO	ON/A
Click or tap here to enter text.			
6a-1 Are green roofs implemented in accordance with design criteria in SD-6A Fact Sheet? If yes, are they shown on the site map?	• Yes	O _{No}	O _{N/A}
6a-2 Is green roof credit volume calculated using Appendix B.2.1.2 and SD-6A Fact Sheet in Appendix E?	OYes	• No	ON/A
6b-1 Are permeable pavements implemented in accordance with design criteria in SD-6B Fact Sheet? If yes, are they shown on the site map?	• Yes	O _{No}	0 N/2
6b-2 Is permeable pavement credit volume calculated using Appendix B.2.1.3 and SD-6B Fact Sheet in Appendix E?	OYes	• No	O N/1
D-7 Landscaping with Native or Drought Tolerant Species	• Yes	O No	ON/
Click or tap here to enter text.			
Click or tap here to enter text.			
Click or tap here to enter text.	O Yes	© No	O N/ <i>I</i>
Discussion / justification if SD-7 not implemented. Click or tap here to enter text. D-8 Harvesting and Using Precipitation Discussion / justification if SD-8 not implemented: The amount of landscaping is minimal, therefore harvest and use is consid	O Yes dered econo	⊙ No omically inf	ON/2 easible.
 Discussion / justification if SD-7 not implemented. Click or tap here to enter text. D-8 Harvesting and Using Precipitation Discussion / justification if SD-8 not implemented: The amount of landscaping is minimal, therefore harvest and use is considered in accordance with design criteria in SD-8 Fact Sheet? If yes, are they shown on the site map?	O Yes dered econo	Omically inf	O N/A

PDP SWQMP Template Date: January, 2016 PDP SWQMP Submittal Date: March 9, 2017

Summary of PDP Structural BMPs Form 1-6 PDP Structural BMPs

All PDPs must implement structural BMPs for storm water pollutant control (see Chapter 5 of the BMP Design Manual, Part 1 of Storm Water Standards). Selection of PDP structural BMPs for storm water pollutant control must be based on the selection process described in Chapter 5. PDPs subject to hydromodification management requirements must also implement structural BMPs for flow control for hydromodification management (see Chapter 6 of the BMP Design Manual). Both storm water pollutant control and flow control for hydromodification management can be achieved within the same structural BMP(s).

PDP structural BMPs must be verified by the City at the completion of construction. This includes requiring the project owner or project owner's representative to certify construction of the structural BMPs (complete Form DS-563). PDP structural BMPs must be maintained into perpetuity (see Chapter 7 of the BMP Design Manual).

Use this form to provide narrative description of the general strategy for structural BMP implementation at the project site in the box below. Then complete the PDP structural BMP summary information sheet (page 3 of this form) for each structural BMP within the project (copy the BMP summary information page as many times as needed to provide summary information for each individual structural BMP).

Describe the general strategy for structural BMP implementation at the site. This information must describe how the steps for selecting and designing storm water pollutant control BMPs presented in Section 5.1 of the BMP Design Manual were followed, and the results (type of BMPs selected). For projects requiring hydromodification flow control BMPs, indicate whether pollutant control and flow control BMPs are integrated or separate.

The storm water pollutant control BMP for the project site is bio-filtration swales that are shown in the DMA exhibit. The DCV for the project site will be retained and treated by the bio-filtration detail. The BMP footprint has been calculated and will fit in the project site. The BMP's for the property will be done via biofiltration swales for a flow-thru treatment control. See Attachment 1b with Design Capture Volume (DCV) calculations.

(Continue on page 2 as necessary.)

Form I-6 Page 2 of X			
(Page reserved for continuation of description of general strategy for structural BMP implementation at the site)	е		
(Continued from page 1)			
Click or tap here to enter text.			

Form 1-6 Page 3 of X (Copy as many as needed)				
Structural BMP Su	mmary Information			
Structural BMP ID No. 1				
Construction Plan Sheet No. C-1, C-3				
Type of structural BMP:				
C Retention by harvest and use (HU-1)				
C Retention by infiltration basin (INF-1)				
O Retention by bioretention (INF-2)				
O Retention by permeable pavement (INF-3)				
• Partial retention by biofiltration with partial retentio	n (PR-1)			
O Biofiltration (BF-1)				
• Flow-thru treatment control with prior lawful approval to meet earlier PDP requirements (provide (BMP type/description in discussion section below)				
Flow-thru treatment control included as pre-treatment/forebay for an onsite retention or biofiltration O BMP (provide BMP type/description and indicate which onsite retention or biofiltration BMP it serves in discussion section below)				
O Flow-thru treatment control with alternative compliance (provide BMP type/description in discussion				
O Detention pond or vault for hydromodification management				
O Other (describe in discussion section below)				
Purpose:				
O Pollutant control only				
O Hydromodification control only				
• Combined pollutant control and hydromodification control				
• Pre-treatment/forebay for another structural BMP				
O Other (describe in discussion section below)				
Who will certify construction of this BMP? Provide name and contact information for the party responsible to sign BMP verification form DS-563Elsey Partners 1532 College Avenue, F19 				
Who will be the final owner of this BMP? Elsey Partners				
Who will maintain this BMP into perpetuity? Elsey Partners				
What is the funding mechanism for maintenance?	Property Owner			

Form I-6 Page 4 of X (Copy as many as needed)				
Structural BMP ID No.				
Construction Plan Sheet No.				
Discussion (as needed): Type of structural BMP:				
O Retention by harvest and use (HU-1)				
O Retention by infiltration basin (INF-1)				
O Retention by bioretention (INF-2)				
O Retention by permeable pavement (INF-3)				
O Partial retention by biofiltration with partial retention (PR-1)				
O Biofiltration (BF-1)				
• Flow-thru treatment control with prior lawful approval to meet earlier PDP requirements (provide (BMP type/description in discussion section below)				
Flow-thru treatment control included as pre-treatment/forebay for an onsite retention or biofiltration O BMP (provide BMP type/description and indicate which onsite retention or biofiltration BMP it serves in discussion section below)				
O Flow-thru treatment control with alternative compliance (provide BMP type/description in discussion				
O Detention pond or vault for hydromodification management				
O Other (describe in discussion section below)				
Purpose: O Pollutant control only				
O Hydromodification control only				
• Combined pollutant control and hydromodification control				
O Pre-treatment/forebay for another structural BMP				
O Other (describe in discussion section below)				
Who will certify construction of this BMP? Provide name and contact information for the party responsible to sign BMP verification form DS-563				
Who will be the final owner of this BMP?				
Who will maintain this BMP into perpetuity?				
What is the funding mechanism for maintenance?				

	City of San Diego Development Services 1222 First Ave., MD-302 San Diego, CA 92101 (619) 446-5000	Permenant BMP Construction Self Certification Form	FORM DS-563 January 2016
Date Prepared	:	Project No.:	
Project Applic	ant:	Phone:	
Project Addres	55:		
Project Engine	eer:	Phone:	
This form mu permit. Comp projects in ord 0001 as amen grading or pub of San Diego.	ast be completed by the engineer eletion and submittal of this for- ler to comply with the City's Storr ded by R9-2015-0001 and R9-20 plic improvement bonds may be d	and submitted prior to final inspection of m is required for all new development an m Water ordinances and NDPES Permit Or 015-0100. Final inspection for occupancy a lelayed if this form is not submitted and app	the constructio d redevelopmen der No. R9-2013 and/or release of roved by the Cit
CERTIFICA As the profess all constructed per the appro- been construct and Order Not Water Quality I understand verification	TION: sional in responsible charge for the d Low Impact Development (LII wed SWQMP and Construction P ted in compliance with the approx b. R9-2013-0001 as amended by 2 Control Board. that this BMP certification state	he design of the above project, I certify that D) site design, source control and structura Permit No. Click here to enter text.; and that wed plans and all applicable specifications, per R9-2015-0001 and R9-2015-0100 of the Sar tement does not constitute an operation	I have inspecte I BMP's require said BMP's hav ermits, ordinance n Diego Regions and maintenance
verification.			
Signature:			
Date of Signa	ature:		

PDP SWQMP Template Date: January, 2016 PDP SWQMP Submittal Date: March 9, 2017

THIS PAGE INTENTIONALLY LEFT BLANK FOR DOUBLE-SIDED PRINTING

ATTACHMENT 1 BACKUP FOR PDP POLLUTANT CONTROL BMPS

This is the cover sheet for Attachment 1.

PDP SWQMP Template Date: January, 2016 PDP SWQMP Submittal Date: March 9, 2017

THIS PAGE INTENTIONALLY LEFT BLANK FOR DOUBLE-SIDED PRINTING

Indicate which Items are Included:

Attachment Sequence	Contents	Checklist
Attachment 1a	DMA Exhibit (Required) See DMA Exhibit Checklist.	X Included
Attachment 1b	Tabular Summary of DMAs Showing DMA ID matching DMA Exhibit, DMA Area, and DMA Type (Required)* *Provide table in this Attachment OR on DMA Exhibit in Attachment 1a	 Included on DMA Exhibit in Attachment 1a Included as Attachment 1b, separate from DMA Exhibit
Attachment 1c	Form I-7, Harvest and Use Feasibility Screening Checklist (Required unless the entire project will use infiltration BMPs) Refer to Appendix B.3-1 of the BMP Design Manual to complete Form I-7.	 Included Not included because the entire project will use infiltration BMPs
Attachment 1d	Form I-8, Categorization of Infiltration Feasibility Condition (Required unless the project will use harvest and use BMPs) Refer to Appendices C and D of the BMP Design Manual to complete Form I-8.	 Included Not included because the entire project will use harvest and use BMPs
Attachment 1e	Pollutant Control BMP Design Worksheets / Calculations (Required) Refer to Appendices B and E of the BMP Design Manual for structural pollutant control BMP design guidelines and site design credit calculations	Included

Use this checklist to ensure the required information has been included on the DMA Exhibit:

The DMA Exhibit must identify:

- X Underlying hydrologic soil group
- X Approximate depth to groundwater
- X Existing natural hydrologic features (watercourses, seeps, springs, wetlands)
- □ Critical coarse sediment yield areas to be protected
- X Existing topography and impervious areas
- X Existing and proposed site drainage network and connections to drainage offsite
- X Proposed grading
- X Proposed impervious features
- X Proposed design features and surface treatments used to minimize imperviousness
- X Drainage management area (DMA) boundaries, DMA ID numbers, and DMA areas (square footage or acreage), and DMA type (i.e., drains to BMP, self-retaining, or self-mitigating)
- X Potential pollutant source areas and corresponding required source controls (see Chapter 4, Appendix E.1, and Form I-3B)
- X Structural BMPs (identify location, type of BMP, and size/detail)

Hanson HEIDELBERGCEMENTGroup **A-1 Bio-Retention Soil** (Soil Medium for Bio-Swales & Bio-Retention Basins)

PRODUCT DESCRIPTION:

A-1 Bioswale Soil is a blend of 80% washed coarse sand and A-1 Bioswale Soit is a biefa of 80% washed coarse sand and 20% sandy loam topsoit. The blended material is low in silt and clay which allows the material to perform at the required minimum drainage properties of >5" per hour KSat Perc Rate (@ 85% rela-tive compaction. This satisfies civil engineering requirements while maintaining the agronomical properties of a well graded sand with silt to satisfy the landscape architect's desire to support growth of plant material. Clay content is limited to provide a mini-mum cation exchange capacity for healthy plant material if desired.

will benefit the plants and restrict water movement.)

DI ΡL

A-1 Bio-Retention Soil is a soil medium for Bio-Retention Basins and Swales which helps remove con-Ar Inter-Attention som is a som medium för bre-recention basins and swares winden nelps remove con-taminants from storm water runoff as required by the State of California Regional Water Quality Control Board and other government agencies charged with enforcement of these requirements. The ultimate goal is to help prevent contamination of the downstream beneficial water sources of the State.

The uniform sand sizes of A-1 Bio-Retention Soil results in long lasting pore space and moisture capaci-ty for a reasonably priced, readily available, consistent source of an appropriate soil medium to comply with State Water Quality requirements.

(*NOTE; Organic matter may be incorporated by volume percentage when requested by the customer for an additional cost that will vary depending on the desired type and percentage requested. It is recom-mended that organic matter be incorporated into the soil medium's top six inches after installation to relieve compaction or in the planting hole for trees or shrubs to concentrated the amendment where it

(*NOTE: All materials should be sampled, submitted, and approved prior to shipment or installation as job plans and specifications VARY GREATLY! It is the customer's responsibility to assure the soil is approved BEFORE installation!

INSTALLATION:

PRODUCT USES:

A-1 Bio-Retention Soil should be installed per construction plans or engineers specifications. Compac-tion should be avoided and ideally the soil should be installed at less than optimum moisture.

A-1 Bioswale Soil is a locally available mix that is a reasonably priced solution for architects and engineers designing project to achieve LEED credits and certification as well as compliance with local and state storm drain requ

Sustainable Sites Credit 5.1 Site Development - Protect / Restore Habitat

- Sustainable Sites Credit 6.1 Storm Water Design Quality Control
 Sustainable Sites Credit 6.2 Storm Water Design Quality Control

Water Efficiency Prerequisite Water Use Reduction - 20% Reduction
 Water Efficiency Credit 1 - Water Efficiency Landscaping
 Material and Resources Credit 5 - Regional Materials

· Innovation in Design - Protect & Restore Habitat

POLLUTANT SOURCE AREAS	SOURCE AREAS	LOCATION
a.ON-SITE STORM DRAIN INLETS	 All inlets will be marked with the words "NO Dumping! Flows to River" or similar. 	DMA-1
	 Maintain and periodically repaint or replace inlet markings. 	
	 Provide storm water pollution prevention information to new site owners, lessees, or operators. 	
	 See applicable operational BMPs in Fact Sheet SC-44, "Drainage System Maintenance," in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com. 	
	 Include the following in lease agreements: "Tenant shall not allow anyone to discharge anything to storm drains or to store or deposit materials so as to create a potential discharge to storm drains." 	
b.SIDEWALK AND WALKWAYS	 Sidewalks, and parking lots will be swept regularly to prevent the accumulation of litter and debris. 	DMA-1
	 Debris from pressure washing will be collected to prevent entry into the storm drain system. Washwater containing any clean agent or degreaser will be collected and discharged to the sanitary sewer and not discharged to a storm drain. 	

COLOR	DMA NO.	LEGEND	DMA AREA (SQ. FT.)	DMA TYPE	AREA TREATED (SQ. FT.)
	1-A	IMPERVIOUS AREA	9,470	DRAINS TO BMP	9,470
	1-B	PLANTER AREA	1,093	SELF-MITIGATING	1,093
	1–C	PERMEABLE CONCRETE OR PERMEABLE PAVERS	368	SELF-MITIGATING	368
	1–D	BIORETENTION AREA	1,078	SELF-MITIGATING	1,078
		TOTAL	12,009		12,009

LEGEND

PROPOSED 2"-3" PVC SIDEWALK UNDERDRAIN
PROPOSED PRIVATE CATCH BASIN
LIMITS OF DMA-1
PROPOSED VAULT
PROPOSED TYPE "A" CURB OUTLET
PROPOSED PRIVATE 2" FORCE MAIN
PROPOSED PRIVATE STORM DRAIN PIPE
PROPOSED PRIVATE 0.48"Ø ORIFICE STORM DRAIN PIPE.
PROPOSED PRIVATE PERFORATED PIPE
PROPOSED IMPERVIOUS AREA
PROPOSED BIOFILTRATION AREA
PROPOSED PLANTER AREA
PROPOSED PERMEABLE CONCRETE OR PERMEABLE PAVERS
DIRECTION OF FLOW
PLACE PLACARD SIGN ON CONCRETE ("NO DUMPING – DRAINS TO OCEAN")

NOTES

1

- 1. HYDROLOGIC SOIL GROUP : NRCS TYPE D 2. DEPTH OF GROUNDWATER=GREATER THAN 20 FEET BELOW EXISTING GROUND. 3. POTENTIAL POLLUTANTS FROM SITE:
- -SEDIMENT -NUTRIENTS
- -TRASH AND DEBRIS

- -PESTICIDES -BACTERIA AND VIRUSES
- 4. RECOMMENDED EQUIPMENT TO PERFORM MAINTENANCE:
- -LANDSCAPE EQUIPMENT

5. 5. POLLUTANT SOURCE AREAS, SOURCE CONTROL AND LOCATION OF FOLLOWS: 2

IMPERVIOUS AREA = 9,470 SQ. FT. = 0.22 ACRES. PERVIOUS AREA = 2,539 SQ. FT. = 0.06 ACRES. TOTAL =12,009 SQ. FT. = 0.28 ACRES.

ž	10. DATE	BY NO.	DATE		BΥ	A 100.	DESIGNER JHP	SHEET TITLE: DRAINAGE MANAGEMENT AREA	SHEET
					V	compatilly	DP A MAI		•
					URG.	F H PALACIOS	NHO	UNAJ EATIDII ANU DMF	
						10000	CHECKED	PROJECT NAME	
					ч. С.Е.		HOLEGARE JHD	621.3 MONTEZUMA APARTMENTS	or _
						03-09-17	DATE AT ON 1	A D N 467_171_28_00 & 467_171_20_00	•
							1-60-00	/ A.F.N. 70/-1/1-20-00 & 70/-1/1-23-00	
	CIVIL ENGINEERING	LAND PLANNING	SURVEYING	 4849 RONSON COURT, 	SUITE	105, SAN DIEG	30, CA 9211	1 • (858)569-7377 FAX (858)569-0830 ^F	² roject No. 999-15

DESIGN CAPTURE VOLUME (DCV) CALCULATIONS

Figure B.1-1: 85th Percentile 24-hour Isopluvial Map

Appendix B: Storm Water Pollutant Control Hydrologic Calculations and Sizing Methods

Montezuma PDP/CUP

The Montezuma PDP/CUP is a priority project that will be required to retain the 85th percentile storm event. The definition of retain will be to infiltrate or store the volume.

The project, via Bioretention, will hold 75% of the Design Capture Volume (DCV).

DCV Calculations For Basin 1

Using equation B.1-1 from Appendix B of the Storm Water Standards Manual:

DCV = CxdxAx43,560 sf/ACx1/12 in/ft

DCV = 3,630xCxdxA

- C = runoff factor, using equation B.1-2.
- d = 85th percentile, 24-hour storm event rainfall depth (inches), using Figure B.1-1 =0.55
- A = Tributary area (acres) = 0.28 Acres

The C runoff factor is computed using Table B.1-1 as follows:

From DMA Exhibit		
Impervious Area	=	9,470 S.F.
	Total Impervious Area =	9,470 S.F. 0.22 Acres
Pervious Areas and Bioretention Areas	=	<u>2,539 S.F.</u>
	Total Pervious Area =	2,539 S.F. 0.06 Acres
	Total Tributary Area = 0.22 + 0.06 =	0.28 Acres
C for Impervious area = $\frac{0.90 \times 0.22}{0.28}$ =	0.71	

C for pervious area = $\frac{0.10 \times 0.06}{0.28}$ = 0.02

Weighted C = 0.71 + 0.02 = 0.81

DCV is computed as follows:

DCV = 3,630 x 0.81 x 0.55 x 0.22 = 356 cubic feet 75% DCV = 356 x 0.75 = 267 cubic feet

Proposed Storage Volume

- Voidance within 3/4" gravel storage within Bioretention Area =
 [(6' wide x 66' long) + (4+ wide x 21' long) + (6.5' wide x 90' long)] [2.5+ deep x
 0.40 (40%voidance)]
 = 1,065 cubic feet
- 6" freeboard for ponding:
 = [(6' wide x 66' long) + (4' wide x 21' long) + (6' wide x 90' long)] [0.50' freeboard]
 = 532 cubic feet

Total Storage Volume = 1,065 + 532 = 1,597 cubic feet

 \therefore Total Storage volume of 1,597 cubic feet is greater than the 75% of DCV of 267 cubic feet.

Project complies with the bio-filtration area and exceeds the DCV on site and has addressed the storm water pollutant control BMP's requirements.

Appendix B: Storm Water Pollutant Control Hydrologic Calculations and Sizing Methods

D	esign Capture Volume	Workshe	et B.2- 1	
1	85th percentile 24-hr storm depth from Figure B.1-1	d=	0.55	inches
2	Area tributary to BMP (s)	A=	0.22	acres
3	Area weighted runoff factor (estimate using Appendix B.1.1 and B.2.1)	C=	0.81	unitless
4	Trees Credit Volume	TCV=	0	cubic-feet
5	Rain barrels Credit Volume	RCV=	0	cubic-feet
6	Calculate DCV = $(3630 \times C \times d \times A) - TCV - RCV$	DCV=	356	cubic-feet

Worksheet B.2-1 DCV

JP ENGINEERING, INC. 4849 RONSON COURT, SUITE 105 SAN DIEGO, CALIFORNIA 92111 (858) 569-7377 FAX (858) 569-0830

JOB Montezuma Multi-Family

SHEET NO. 1

____0F___1 CALCULATED BY____JHP_____DATE___03-09-17

_ DATE_

CHECKED BY SCALE . **BASIN 1 DRAWDOWN CALCULATIONS** BASIN AREA = 970 SQ. FT. PONDING = 970 SQ. FT. x 0.50 FT = 485 CU. FT. DISCHARGE VIA 4" Ø PIPE RATE = 0.09 CFS485/0.09 = 5,389 SECONDS = 1.50 HOURS

Appendix B: Storm Water Pollutant Control Hydrologic Calculations and Sizing Methods

Harvest and Use Fea	sibility Screening	Worsksheet B.3-1
 1. Is there a demand for harvested v during the wet season? Toilet and urinal flushing Landscape irrigation Other: 	water (check all that apply) at the proj	ect site that is reliably present
2. If there is a demand; estimate the Guidance for planning level deman provided in Section B.3.2.[Provide a summary of calculations]	e anticipated average wet season dema d calculations for toilet/urinal flushin here]	and over a period of 36 hours. g and landscape irrigation is
3. Calculate the DCV using worksh[Provide a results here]356 CU FT.	neet B-2.1.	
3a. Is the 36-hour demand greater than or equal to the DCV? Yes / No =>	3b. Is the 36-hour demand greater to 0.25DCV but less than the full DC Yes / No	than 3c. Is the 36-hour demand less than 0.25DCV?
Harvest and use appears to be feasible. Conduct more detailed evaluation and sizing calculations to confirm that DCV can be used at an adequate rate to meet drawdown criteria.	Harvest and use may be feasible. Conduct more detailed evaluation a sizing calculations to determine feasibility. Harvest and use may onl able to be used for a portion of the or (optionally) the storage may need be upsized to meet long term captu targets while draining in longer than hours.	Harvest and use is considered to be infeasible. y be site, l to re n 36

W/ a sl-ala D 2 1 TT d Has Es a a i la i li da a C •

Appendix D: Approved Infiltration Rate Assessment Methods

Fact	or of Safety and	Design Infiltration Rate Worksheet		Worksh	neet D.5-1	
Facto	or Category	Factor Description	Assig Weigl	ned ht (w)	Factor Value (v)	$\begin{array}{c} Product (p) \\ p = w x v \end{array}$
		Soil assessment methods	0.25		2	0.50
		Predominant soil texture	0.25		2	0.50
А	Suitability	Site soil variability	0.25		2	0.50
	Assessment	Depth to groundwater / impervious layer	0.25		1	0.25
		Suitability Assessment Safety Factor, S	$S_{\rm A} = \Sigma_{\rm F}$)		1.75
		Level of pretreatment/ expected sediment loads	0.5		1	0.50
В	Design	Redundancy/resiliency	0.25		1	0.25
		Compaction during construction	0.25		1	0.25
		Design Safety Factor, $S_B = \Sigma p$				1.0
Com	bined Safety Facto	Dr, $S_{total} = S_A \times S_B$			1.	0
Obse (corr	erved Infiltration l ected for test-spec	Rate, inch/hr, K _{observed} cific bias)			0	20
Desig	gn Infiltration Rat	e, in/hr, $K_{design} = K_{observed} / S_{total}$			0.	20
Supp	orting Data					
Brief	Briefly describe infiltration test and provide reference to test forms:					
See	Attachment 6 fo	or Geotechnical and Infiltration Ass	sessme	nt Repo	rt.	

Worksheet D.5-1: Factor of Safety and Design Infiltration Rate Worksheet

Appendix B: Storm Water Pollutant Control Hydrologic Calculations and Sizing Methods

	Simple Sizing Method for Biofiltration BMPs Workshe	et B.5-1 (Pa	age 1 of 2)
1	Remaining DCV after implementing retention BMPs	356	cubic- feet
Par	tial Retention		
2	Infiltration rate from Worksheet D.5-1 if partial infiltration is feasible	0.2	in/hr.
3	Allowable drawdown time for aggregate storage below the underdrain	36	hours
4	Depth of runoff that can be infiltrated [Line 2 x Line 3]	7.2	inches
5	Aggregate pore space	0.40	in/in
6	Required depth of gravel below the underdrain [Line 4/ Line 5]	18	inches
7	Assumed surface area of the biofiltration BMP	350	sq-ft
8	Media retained pore storage	0.1	in/in
9	Volume retained by BMP [II ine $4 + (\text{Line 12 y Line 8}) / 12$] y Line 7	2(2	cubic-
		202	feet
10	DCV that requires biofiltration [Line $1 - Line 9$]	0.4	cubic-
10	bev that requires biointration [Enter 1 – Enter 7]	94	feet
BM	IP Parameters		
11	Surface Ponding [6 inch minimum, 12 inch maximum]	6	inches
12	Media Thickness [18 inches minimum], also add mulch layer		inches
12	thickness to this line for sizing calculations	18	menes
	Aggregate Storage above underdrain invert (12 inches typical) – use 0	10	
13	inches for sizing if the aggregate is not over the entire bottom surface	18	inches
	area		
14	Freely drained pore storage	0.2	in/in
	Media filtration rate to be used for sizing (5 in/hr. with no outlet		
15	control; if the filtration rate is controlled by the outlet use the outlet	5	in/hr.
	controlled rate which will be less than 5 in/hr.)		
Bas	seline Calculations		
16	Allowable Routing Time for sizing	6	hours
17	Depth filtered during storm [Line 15 x Line 16]	30	inches
18	Depth of Detention Storage	18	inches
	[Line II + (Line I2 x Line I4) + (Line I3 x Line 5)]	10	
19	Total Depth Treated [Line 17 + Line 18]	48	inches

Worksheet B.5-1: Simple Sizing Method for Biofiltration BMPs

Note: Line 7 is used to estimate the amount of volume retained by the BMP. Update assumed surface area in Line 7 until its equivalent to the required biofiltration footprint (either Line 21 or Line 23)

Appendix B: Storm Water Pollutant Control Hydrologic Calculations and Sizing Methods

	Simple Sizing Method for Biofiltration BMPs Worksh	neet B.5-1 (1 2)	Page 2 of
Op	tion 1 – Biofilter 1.5 times the DCV		
20	Required biofiltered volume [1.5 x Line 10]	141	cubic- feet
21	Required Footprint [Line 20/ Line 19] x 12	35	sq-ft
Op	tion 2 - Store 0.75 of remaining DCV in pores and ponding		
22	Required Storage (surface + pores) Volume [0.75 x Line 10]	70	cubic- feet
23	Required Footprint [Line 22/ Line 18] x 12	47	sq-ft
Foo	otprint of the BMP		
24	Area draining to the BMP	12,009	sq-ft
25	Adjusted Runoff Factor for drainage area (Refer to Appendix B.1 and B.2)	0.81	
26	BMP Footprint Sizing Factor (Default 0.03 or an alternative minimum footprint sizing factor from Worksheet B.5-2, Line 11)	0.03	
27	Minimum BMP Footprint [Line 24 x Line 25 x Line 26]	292	sq-ft
28	Footprint of the BMP = Maximum(Minimum(Line 21, Line 23), Line 27)	292	sq-ft
Che	eck for Volume Reduction [Not applicable for No Infiltration Cor	dition]	
29	Calculate the fraction of DCV retained in the BMP [Line 9/Line 1]	0.740	unitless
30	Minimum required fraction of DCV retained for partial infiltration condition	0.375	unitless
31	Is the retained DCV ≥ 0.375 ? If the answer is no increase the footprint sizing factor in Line 26 until the answer is yes for this criterion.	X Yes	□ No

Worksheet B.5-1: Simple Sizing Method for Biofiltration BMPs (continued)

Note:

1. Line 7 is used to estimate the amount of volume retained by the BMP. Update assumed surface area in Line 7 until its equivalent to the required biofiltration footprint (either Line 21 or Line 23)

2. The DCV fraction of 0.375 is based on a 40% average annual percent capture and a 36-hour drawdown time.

3. The increase in footprint for volume reduction can be optimized using the approach presented in Appendix B.5.2. The optimized footprint cannot be smaller than the alternative minimum footprint sizing factor from Worksheet B.5-2.

4. If the proposed biofiltration BMP footprint is smaller than the alternative minimum footprint sizing factor from Worksheet B.5-2, but satisfies Option 1 or Option 2 sizing, it is considered a compact biofiltration BMP and may be allowed at the discretion of the City Engineer, if it meets the requirements in Appendix F.

Categoriz	ation of Infiltration Feasibility Condition	Form I-8		
Part 1 - Fu Would infi consequen	Il Infiltration Feasibility Screening Criteria Iltration of the full design volume be feasible from a physical ces that cannot be reasonably mitigated?	perspective without	any unde	esirable
Criteria	Screening Question		Yes	No
1	Is the estimated reliable infiltration rate below proposed far greater than 0.5 inches per hour? The response to this Scre shall be based on a comprehensive evaluation of the factor. Appendix C.2 and Appendix D.	cility locations ening Question s presented in		X
Provide ba	isis:			
The infilt classifica D. As su greater th	tration rate of the on-site soils has not been measured. How tion and grain-size analysis, the soils are expected to be class uch, it is our professional opinion that soil does not allow for han 0.5 inches per hour.	ever, based on our so ified as hydrologic so a reliable infiltration	il il type rate	
Summarize narrative d	e findings of studies; provide reference to studies, calculation iscussion of study/data source applicability.	s, maps, data sources	, etc. Pro	ovide
2	Can infiltration greater than 0.5 inches per hour be allowed risk of geotechnical hazards (slope stability, groundwater m or other factors) that cannot be mitigated to an acceptable to this Screening Question shall be based on a comprehens the factors presented in Appendix C.2.	without increasing ounding, utilities, level? The response ive evaluation of	Х	
Provide ba	isis:			
C.2.1 A sit C.2.2 Base very old pa deposits an C.2.3 The nuisance se minimum of C.2.4 It is nearby utili C.2.5 Gro C.2.6 Reco	te specific geotechnical investigation was performed. Ed upon the soil conditions observed in our borings, the site stralic deposits and Mission Valley formation. In our opinion Ed Mission Valley formation are not subject to significant col- site is sloping and descending slopes, if saturated, can becom- eepage issues can occur. As such, it is recommended that the fof 50 feet from descending slopes. recommended that a vertical liner will be used to prevent lat ity trenches. undwater mounding is not expected to be a concern. pommendations are provided in the report to mitigate this haz	is underlain by fill, co the colluvium, very o lapse or heave upon ne unstable. In additi e storm water BMPs l eral migration of wate ard.	lluvium, old parali wetting. on, be setbac er into	c :k a

Appendix I: Forms and Checklists

	Form I-8 Page 2 of 4		
Criteria	Screening Question	Yes	No
3	Can infiltration greater than 0.5 inches per hour be allowed without increasing risk of groundwater contamination (shallow water table, storm water pollutants or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.	Х	
Provide ba	1515:		
The risk of anticipate	of groundwater contamination has not been evaluated at this time; however, we do any groundwater related concerns at the subject site.	o not	
Summariz narrative d	e findings of studies; provide reference to studies, calculations, maps, data sources liscussion of study/data source applicability.	s, etc. Pro	ovide
4	Can infiltration greater than 0.5 inches per hour be allowed without causing potential water balance issues such as change of seasonality of ephemeral streams or increased discharge of contaminated groundwater to surface waters? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.	Х	
Provide ba	isis:		
The risk o increased o however, v	f causing potential water balance issues such as change of seasonality of ephemera discharge of contaminated groundwater to surface waters has not been evaluated a we do not anticipate any issues.	l sreams at this tir	or ne;
Part 1	If all answers to rows 1 - 4 are "Yes" a full infiltration design is potentially feasib The feasibility screening category is Full Infiltration	ole.	No Infil-
Result*	If any answer from row 1-4 is "No", infiltration may be possible to some extent would not generally be feasible or desirable to achieve a "full infiltration" design Proceed to Part 2	but	tration

*To be completed using gathered site information and best professional judgment considering the definition of MEP in the MS4 Permit. Additional testing and/or studies may be required by the City Engineer to substantiate findings

	Form I-8 Page 3 of 4		
Part 2 – Par	artial Infiltration vs. No Infiltration Feasibility Screening Criteria iltration of water in any appreciable amount be physically feasible without any ne ces that cannot be reasonably mitigated?	egative	
Criteria	Screening Question	Yes	No
5	Do soil and geologic conditions allow for infiltration in any appreciable rate or volume? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2 and Appendix D.	Х	
Provide ba	isis:		
The infil our soil o type D. and less	tration rate for the on-site soils has not been measured. However, based on so classification and grain-size analysis, the soils are expected to be classified as hyd As such, the soil is expected to have an infiltration rate greater than 0.01 inch than 0.5 inches per hour.	drologic drologic les per h	ing, soil our
6	Can Infiltration in any appreciable quantity be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2.	Х	
Provide ba	isis:		
C.2.1 A si C.2.2 Base colluvium, very old pa heave upor C.2.3 The nuisance se setback a r C.2.4 It is nearby util C.2.5 Gro C.2.6 Reco	te specific geotechnical investigation was performed. ed upon the soil conditions observed in our borings, the site is underlain by fill, very old paralic deposits and Mission Valley formation. In our opinion the collu- aralic deposits and Mission Valley formation are not subject to significant collaps in wetting. site is sloping and descending slopes, if saturated, can become unstable. In addi- eepage issues can occur. As such, it is recommended that the storm water BMPs ninimum of 50 feet from descending slopes. recommended that a vertical liner will be used to prevent lateral migration of wa ity trenches. undwater mounding is not expected to be a concern. ommendations are provided in the report to mitigate this hazard.	avium, e or ation, s be ater into	

Appendix I: Forms and Checklists

	Form I-8 Page 4 of 4		
Criteria	Screening Question	Yes	No
7	Can Infiltration in any appreciable quantity be allowed without posing significant risk for groundwater related concerns (shallow water table, storm water pollutants or other factors)? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.	X	
Provide ba	sis:		
The risk of anticipate	of groundwater contamination has not been evaluated at this time; however, we do any groundwater related concerns at the subject site.	o not	
8	Can infiltration be allowed without violating downstream water rights? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.	X	
Provide ba	sis:		
The risk o increased however,	f causing potential water balance issues such as change of seasonality of ephemera discharge of contaminated groundwater to surface waters has not been evaluated a we are unaware of any water rights in this area of San Diego.	ıl stream at this tir	s or ne;
Part 2 Result*	If all answers from row 1-4 are yes then partial infiltration design is potentially for The feasibility screening category is Partial Infiltration. If any answer from row 5-8 is no, then infiltration of any volume is considered to infeasible within the drainage area. The feasibility screening category is No Infilt	easible. o be ration.	Partial Infiltra- tion

*To be completed using gathered site information and best professional judgment considering the definition of MEP in the MS4 Permit. Additional testing and/or studies may be required by the City Engineer to substantiate findings

ATTACHMENT 2 BACKUP FOR PDP HYDROMODIFICATION CONTROL MEASURES

This is the cover sheet for Attachment 2.

□ Mark this box if this attachment is empty because the project is exempt from PDP hydromodification management requirements.

Z

THIS PAGE INTENTIONALLY LEFT BLANK FOR DOUBLE-SIDED PRINTING

Indicate which Items are Included:

Attachment Sequence	Contents	Checklist
Attachment 2a	Hydromodification Management Exhibit (Required)	Included See Hydromodification Management Exhibit Checklist.
Attachment 2b	Management of Critical Coarse Sediment Yield Areas (WMAA Exhibit is required, additional analyses are optional) See Section 6.2 of the BMP Design Manual.	 XExhibit showing project drainage boundaries marked on WMAA Critical Coarse Sediment Yield Area Map (Required) Optional analyses for Critical Coarse Sediment Yield Area Determination 6.2.1 Verification of Geomorphic Landscape Units Onsite 6.2.2 Downstream Systems Sensitivity to Coarse Sediment 6.2.3 Optional Additional Analysis of Potential Critical Coarse Sediment Yield Areas Onsite
Attachment 2c	Geomorphic Assessment of Receiving Channels (Optional) See Section 6.3.4 of the BMP Design Manual.	 Not Performed Included Submitted as separate stand-alone document
Attachment 2d	Flow Control Facility Design and Structural BMP Drawdown Calculations (Required) Overflow Design Summary for each structural BMP See Chapter 6 and Appendix G of the BMP Design Manual	 Included Submitted as separate stand-alone document
Attachment 2e	Vector Control Plan (Required when structural BMPs will not drain in 96 hours)	 Included Not required because BMPs will drain in less than 96 hours

Use this checklist to ensure the required information has been included on the Hydromodification Management Exhibit:

The Hydromodification Management Exhibit must identify:

- Underlying hydrologic soil group
- \blacksquare Approximate depth to groundwater
- Existing natural hydrologic features (watercourses, seeps, springs, wetlands)
- I Critical coarse sediment yield areas to be protected
- **X** Existing topography
- I Existing and proposed site drainage network and connections to drainage offsite
- I Proposed grading
- I Proposed impervious features
- I Proposed design features and surface treatments used to minimize imperviousness
- Depint(s) of Compliance (POC) for Hydromodification Management
- Existing and proposed drainage boundary and drainage area to each POC (when necessary, create separate exhibits for pre-development and post-project conditions)
- I Structural BMPs for hydromodification management (identify location, type of BMP, and size/detail)

Hanson HEIDELBERGCEMENTGroup **A-1 Bio-Retention Soil** (Soil Medium for Bio-Swales & Bio-Retention Basins)

PRODUCT DESCRIPTION:

A-1 Bioswale Soil is a blend of 80% washed coarse sand and A-1 Bioswale Soit is a biefa of 80% washed coarse sand and 20% sandy loam topsoit. The blended material is low in silt and clay which allows the material to perform at the required minimum drainage properties of >5" per hour KSat Perc Rate (@ 85% rela-tive compaction. This satisfies civil engineering requirements while maintaining the agronomical properties of a well graded sand with silt to satisfy the landscape architect's desire to support growth of plant material. Clay content is limited to provide a mini-mum cation exchange capacity for healthy plant material if desired.

will benefit the plants and restrict water movement.)

DI ΡL

A-1 Bio-Retention Soil is a soil medium for Bio-Retention Basins and Swales which helps remove con-Ar Inter-Attention som is a som medium för bre-recention basins and swares winden nelps remove con-taminants from storm water runoff as required by the State of California Regional Water Quality Control Board and other government agencies charged with enforcement of these requirements. The ultimate goal is to help prevent contamination of the downstream beneficial water sources of the State.

The uniform sand sizes of A-1 Bio-Retention Soil results in long lasting pore space and moisture capaci-ty for a reasonably priced, readily available, consistent source of an appropriate soil medium to comply with State Water Quality requirements.

(*NOTE; Organic matter may be incorporated by volume percentage when requested by the customer for an additional cost that will vary depending on the desired type and percentage requested. It is recom-mended that organic matter be incorporated into the soil medium's top six inches after installation to relieve compaction or in the planting hole for trees or shrubs to concentrated the amendment where it

(*NOTE: All materials should be sampled, submitted, and approved prior to shipment or installation as job plans and specifications VARY GREATLY! It is the customer's responsibility to assure the soil is approved BEFORE installation!

INSTALLATION:

PRODUCT USES:

A-1 Bio-Retention Soil should be installed per construction plans or engineers specifications. Compac-tion should be avoided and ideally the soil should be installed at less than optimum moisture.

A-1 Bioswale Soil is a locally available mix that is a reasonably priced solution for architects and engineers designing project to achieve LEED credits and certification as well as compliance with local and state storm drain requ

Sustainable Sites Credit 5.1 Site Development - Protect / Restore Habitat

- Sustainable Sites Credit 6.1 Storm Water Design Quality Control
 Sustainable Sites Credit 6.2 Storm Water Design Quality Control

Water Efficiency Prerequisite Water Use Reduction - 20% Reduction
 Water Efficiency Credit 1 - Water Efficiency Landscaping
 Material and Resources Credit 5 - Regional Materials

· Innovation in Design - Protect & Restore Habitat

POLLUTANT SOURCE AREAS	SOURCE AREAS	LOCATION
a.ON-SITE STORM DRAIN INLETS	 All inlets will be marked with the words "NO Dumping! Flows to River" or similar. 	DMA-1
	 Maintain and periodically repaint or replace inlet markings. 	
	 Provide storm water pollution prevention information to new site owners, lessees, or operators. 	
	 See applicable operational BMPs in Fact Sheet SC-44, "Drainage System Maintenance," in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com. 	
	 Include the following in lease agreements: "Tenant shall not allow anyone to discharge anything to storm drains or to store or deposit materials so as to create a potential discharge to storm drains." 	
b.SIDEWALK AND WALKWAYS	 Sidewalks, and parking lots will be swept regularly to prevent the accumulation of litter and debris. 	DMA-1
	 Debris from pressure washing will be collected to prevent entry into the storm drain system. Washwater containing any clean agent or degreaser will be collected and discharged to the sanitary sewer and not discharged to a storm drain. 	

COLOR	DMA NO.	LEGEND	DMA AREA (SQ. FT.)	DMA TYPE	AREA TREATED (SQ. FT.)
	1-A	IMPERVIOUS AREA	9,470	DRAINS TO BMP	9,470
	1-B	PLANTER AREA	1,093	SELF-MITIGATING	1,093
	1-C	PERMEABLE CONCRETE OR PERMEABLE PAVERS	368	SELF-MITIGATING	368
	1-D	BIORETENTION AREA	1,078	SELF-MITIGATING	1,078
		TOTAL	12,009		12,009

LEGEND

PROPOSED 2"-3" PVC SIDEWALK UNDERDRAIN
PROPOSED PRIVATE CATCH BASIN
LIMITS OF DMA-1
PROPOSED VAULT
PROPOSED TYPE "A" CURB OUTLET
PROPOSED PRIVATE 2" FORCE MAIN
PROPOSED PRIVATE STORM DRAIN PIPE
PROPOSED PRIVATE 0.48"Ø ORIFICE STORM DRAIN PIPE.
PROPOSED PRIVATE PERFORATED PIPE
PROPOSED IMPERVIOUS AREA
PROPOSED BIOFILTRATION AREA
PROPOSED PLANTER AREA
PROPOSED PERMEABLE CONCRETE OR PERMEABLE PAVERS
DIRECTION OF FLOW
PLACE PLACARD SIGN ON CONCRETE ("NO DUMPING – DRAINS TO OCEAN")

NOTES

1

- 1. HYDROLOGIC SOIL GROUP : NRCS TYPE D 2. DEPTH OF GROUNDWATER=GREATER THAN 20 FEET BELOW EXISTING GROUND. 3. POTENTIAL POLLUTANTS FROM SITE:
- -SEDIMENT
- -NUTRIENTS
- -TRASH AND DEBRIS
- -PESTICIDES -BACTERIA AND VIRUSES
- 4. RECOMMENDED EQUIPMENT TO PERFORM MAINTENANCE:
- -LANDSCAPE EQUIPMENT

5. 5. POLLUTANT SOURCE AREAS, SOURCE CONTROL AND LOCATION OF FOLLOWS: 2

IMPERVIOUS AREA = 9,470 SQ. FT. = 0.22 ACRES. PERVIOUS AREA = 2,539 SQ. FT. = 0.06 ACRES. TOTAL =12,009 SQ. FT. = 0.28 ACRES.

NC	0. DATE BY N	D. DATE	BY	A 100.	DESIGNER JHP	SHEET TITLE: HYDROMODIFYCA TION MANAGFMFNT	SHEET
				approxim	DRAWN		
				IORGE H PALACIOS	NHO	EARIDI AND DIMF	
						DDO IECT NAME:	
				R.C.E. 32031	CHECKED JHP	621.3 MONTEZIMA APARTMENTS	OF .
				03-09-17	DATE		
				DAIE:	200-17 US-09-17	A.P.N. 46/-1/1-28-00 & 46/-1/1-29-00	-
	CIVIL ENGINEERING - LAND PLANNING	 SURVEYING 	4849 RONSON COURT. SU	JITE 105. SAN DIEG	SO. CA 92111	- (858)569-7377 FAX (858)569-0830	Project No.
							01-000

SDHM 3.0 PROJECT REPORT

Project Name: JP Montezuma Bio and Vault Site Name: JP Engineering Site Address: 6213 Montezuma Rd City : San Diego Report Date: 3/2/2017 Gage : FASHIONV Data Start : 10/01/1971 Data End : 09/30/2004 Precip Scale: 1.00 Version Date: 2016/05/11

Low Flow Threshold for POC 1 : 10 Percent of the 2 Year

High Flow Threshold for POC 1: 10 year

PREDEVELOPED LAND USE

Name : Basin 1 Bypass: No

GroundWater: No

Pervious Land Use	acre
D,NatVeg,Flat	.276
Pervious Total	0.276
Impervious Land Use	acre
Impervious Total	0
Basin Total	0.276

Element Flows To: Surface Interflow Groundwater

MITIGATED LAND USE

Name : Basin 1 Bypass: No

GroundWater: No

Pervious Land Use acre

D, Urban, Flat	.036
Pervious Total	0.036
Impervious Land Use IMPERVIOUS-FLAT	<u>acre</u> 0.217
Impervious Total	0.217
Basin Total	0.253

Element Flows To:InterflowGroundwaterSurfaceiofiltrationSurface iofiltration

Name : Biofiltration Bottom Length: 180.00 ft. Bottom Width: 5.00 ft. Material thickness of first layer: 0.5 Material type for first layer: Amended 1.5 in/hr Material thickness of second layer: 1.5 Material type for second layer: Amended 5 in/hr Material thickness of third layer: 2.5 Material type for third layer: GRAVEL Underdrain used Underdrain Diameter (feet): 0.34 Orifice Diameter (in.): 4 Offset (in.): 0 Flow Through Underdrain (ac-ft.): 4.929 Total Outflow (ac-ft.): 5.037 Percent Through Underdrain: 97.86 Discharge Structure Riser Height: 0.5 ft. Riser Diameter: 27 in.

Element Flows To: Outlet 1 Outlet 2 Vault 1

Biorittration Aydraulic Table								
Stage (feet)	Area(ac.)	Volume (ac-ft.)	Discharge(cfs)	Infilt (cfs)				
0.0000	0.0207	0.0000	0.0000	0.0000				
0.0604	0.0207	0.0005	0.0000	0.0000				
0.1209	0.0207	0.0009	0.0000	0.0000				
0.1813	0.0207	0.0014	0.0000	0.0000				
0.2418	0.0207	0.0018	0.0000	0.0000				
0.3022	0.0207	0.0023	0.0000	0.0000				
0.3626	0.0207	0.0027	0.0000	0.0000				
0.4231	0.0207	0.0032	0.0003	0.0000				

Biofiltration Hydraulic Table

			3	
				•
3.9890	0.0207	0.0339	0.0410	0.0000
3.9286	0.0207	0.0333	0.0410	0.0000
3.8681	0.0207	0.0328	0.0410	0.0000
3.8077	0.0207	0.0323	0.0410	0.0000
3.7473	0.0207	0.0318	0.0410	0.0000
3.6868	0.0207	0.0313	0.0410	0.0000
3.6264	0.0207	0.0308	0.0410	0.0000
3.5659	0,0207	0.0302	0.0410	0.0000
3.5055	0.0207	0.0297	0.0410	0.0000
3,4451	0.0207	0 0292	0.0410	0.0000
3,3846	0.0207	0.0287	0.0410	0.0000
3.3242	0,0207	0.0282	0.0410	0.0000
3.2637	0.0207	0.0276	0.0410	0.0000
3 2022	0.0207	0.0200	0 0410	0.0000
3 1429	0.0207	0 0265	0 0410	0.0000
3 0824	0.0207	0.0250	0.0410	0.0000
2.3013	0.0207	0.0250	0.0410	0.0000
2.9011 2.961F	0.0207	0.0245	0.0410	0.0000
2.840/	0.0207	0.0240	0.0410	0.0000
2.7002	0.0207	0.0235	0.0410	0.0000
2.7198	0.0207	0.0230	0.0410	0.0000
2.0333	0.0207	0.0225	0.0410	0.0000
2.5303	0.0207	0.0219	0.0410	0.0000
2.3385	0.0207	0.0214	0.0410	0.0000
2.4/80	0.0207	0.0209	0.0410	0.0000
2.41/0	0.0207	0.0204	0.0410	0.0000
2.3371	0.0207	0.0199	0.0410	0.0000
2.2907	0.0207	0 0199	0.0410	0.0000
2.2303	0.0207	0 0102	0.0410	0.0000
2 . 1 / 50	0.0207	0 0100	0.0410	0.0000
2.1758	0 0207	0 0183	0 0410	0.0000
2.0545	0 0207	0 0178	0 0410	0.0000
2 0540	0.0207	0.0100	0.0410	0.0000
1 0045	0.0207	0.0160	0.0410	0.0000
1 0241	0.0207	0.0157	0.0410	0.0000
1 9726	0.0207	0.0152	0.0378	0.0000
1 0122	0.0207	0.014/	0.0366	0.0000
1 7523	0.0207	0.0141	0.0358	0.0000
1.6319	0.0207	0.0141	0.0305	0.0000
1.5714	0.0207	0.0131	0.0273	0.0000
1.5110	0.0207	0.0126	0.0257	0.0000
1.4505	0.0207	0.0120	0.0214	0.0000
1.3901	0.0207	0.0115	0.0190	0.0000
1.3297	0.0207	0.0110	0.0188	0.0000
1.2692	0.0207	0.0105	0.0175	0.0000
1.2088	0.0207	0.0099	0.0141	0.0000
1.1484	0.0207	0.0094	0.0122	0.0000
1.0879	0.0207	0.0089	0.0112	0.0000
1.0275	0.0207	0.0084	0.0086	0.0000
0.9670	0.0207	0.0078	0.0078	0.0000
0.9066	0.0207	0.0073	0.0074	0.0000
0.8462	0.0207	0.0068	0.0064	0.0000
0.7857	0.0207	0.0063	0.0046	0.0000
0.7253	0.0207	0.0057	0.0042	0.0000
0.6648	0.0207	0.0052	0.0032	0.0000
0.6044	0.0207	0.0047	0.0021	0.0000
0.5440	0.0207	0.0042	0.0012	0.0000
0.4835	0.0207	0.0036	0.0006	0.0000
4.0495	0.0207	0.0344	0.0410	0.0000
--------	--------	--------	--------	--------
4.1099	0.0207	0.0349	0.0410	0.0000
4.1703	0.0207	0.0354	0.0410	0.0000
4.2308	0.0207	0.0359	0.0410	0.0000
4.2912	0.0207	0.0365	0.0410	0.0000
4.3516	0.0207	0.0370	0.0410	0.0000
4.4121	0.0207	0.0375	0.0410	0.0000
4.4725	0.0207	0.0380	0.0410	0.0000
4.5000	0.0207	0.0382	0.0410	0.0000

Surface iofiltration Hydraulic Table

Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	To Amended (cfs)	Wetted Surface
4.5000	0.0207	0.0382	0.0000	0.0410	0.0000
4.5604	0.0207	0.0395	0.0000	0.0410	0.0000
4.6209	0.0207	0.0407	0.0000	0.0410	0.0000
4.6813	0.0207	0.0420	0.0000	0.0410	0.0000
4.7418	0.0207	0.0432	0.0000	0.0410	0.0000
4.8022	0.0207	0.0445	0.0000	0.0410	0.0000
4.8626	0.0207	0.0457	0.0000	0.0410	0.0000
4.9231	0.0207	0.0470	0.0000	0.0410	0.0000
4.9835	0.0207	0.0482	0.0000	0.0410	0.0000
5.0440	0.0207	0.0495	0.2200	0.0410	0.0000
5.1044	0.0207	0.0507	0.8044	0.0410	0.0000
5.1648	0.0207	0.0520	1.5933	0.0410	0.0000
5.2253	0.0207	0.0532	2.5373	0.0410	0.0000
5.2857	0.0207	0.0545	3.6035	0.0410	0.0000
5.3462	0.0207	0.0557	4.7633	0.0410	0.0000
5.4066	0.0207	0.0570	5.9885	0.0410	0.0000
5.4670	0.0207	0.0582	7.2502	0.0410	0.0000
5.5000	0.0207	0.0589	8.5190	0.0410	0.0000

Name : Surface iofiltration

Element	Flows	To:	
Outlet	1		Outlet 2
Vault	1		Biofiltration

Name : Vault 1
Width : 18 ft.
Length : 18.5 ft.
Depth: 4 ft.
Discharge Structure
Riser Height: 3 ft.
Riser Diameter: 12 in.
Notch Type: Rectangular
Notch Width: 1.000 ft.
Notch Height: 0.023 ft.
Orifice 1 Diameter: 0.484 in. Elevation: 0 ft.
Element Flows To:
Outlet 1 Outlet 2

	vauru	Hydraulic la	DIE	
Stage(feet)	Area(ac.)	Volume(ac-ft.) Discharge(cfs	Infilt(cfs)
0.0000	0.007	0.000	0.000	0.000
0.0444	0.007	0.000	0.001	0.000
0.0889	0.007	0.000	0.001	0.000
0.1333	0.007	0.001	0.002	0.000
0.1778	0.007	0.001	0.002	0.000
0.2222	0.007	0.001	0.003	0.000
0.2667	0.007	0.002	0.003	0.000
0 3111	0 007	0 002	0 003	0 000
0.3556	0.007	0.002	0.003	0.000
0.4000	0.007	0.002	0.004	0.000
0.4000	0.007	0.003	0.004	0.000
0.4444	0.007	0.003	0.004	0.000
0.4889	0.007	0.003	0.004	0.000
0.5333	0.007	0.004	0.004	0.000
0.5778	0.007	0.004	0.004	0.000
0.6222	0.007	0.004	0.005	0.000
0.6667	0.007	0.005	0.005	0.000
0.7111	0.007	0.005	0.005	0.000
0.7556	0.007	0.005	0.005	0.000
0.8000	0.007	0.006	0.005	0.000
0.8444	0.007	0.006	0.005	0.000
0.8889	0.007	0.006	0.006	0.000
0.9333	0.007	0.007	0.006	0.000
0.9778	0.007	0.007	0.006	0.000
1.0222	0.007	0.007	0.006	0.000
1,0667	0.007	0.008	0.006	0.000
1,1111	0.007	0.008	0.006	0.000
1,1556	0.007	0.008	0.006	0.000
1,2000	0.007	0.009	0.007	0.000
1.2444	0.007	0.009	0.007	0.000
1.2889	0.007	0.009	0.007	0.000
1.3333	0.007	0.010	0.007	0.000
1.3778	0.007	0.010	0.007	0.000
1 4222	0 007	0 010	0 007	0 000
1 4667	0 007	0 011	0 007	0 000
1 5111	0.007	0 011	0.007	0.000
1 5556	0.007	0 011	0.007	0.000
1 6000	0.007	0.012	0.009	0.000
1 6444	0.007	0.012	0.008	0.000
1 6000	0.007	0.012	0.008	0.000
1 7222	0.007	0.012	0.008	0.000
1.7333	0.007	0.013	0.008	0.000
1.0000	0.007	0.013	0.008	0.000
1.8222	0.007	0.013	0.008	0.000
1.8667	0.007	0.014	0.008	0.000
1.9111	0.007	0.014	0.008	0.000
1.9556	0.007	0.014	0.008	0.000
2.0000	0.007	0.015	0.009	0.000
2.0444	0.007	0.015	0.009	0.000
2.0889	0.007	0.016	0.009	0.000
2.1333	0.007	0.016	0.009	0.000
2.1778	0.007	0.016	0.009	0.000
2.2222	0.007	0.017	0.009	0.000
2.2667	0.007	0.017	0.009	0.000
2.3111	0.007	0.017	0.009	0.000
2.3556	0.007	0.018	0.009	0.000
2.4000	0.007	0.018	0.009	0.000
2.4444	0.007	0.018	0.009	0.000

Vault Hydraulic Table

5

.

2.4889	0.007	0.019	0.010	0.000
2.5333	0.007	0.019	0.010	0.000
2.5778	0.007	0.019	0.010	0.000
2.6222	0.007	0.020	0.010	0.000
2.6667	0.007	0.020	0.010	0.000
2.7111	0.007	0.020	0.010	0.000
2.7556	0.007	0.021	0.010	0.000
2.8000	0.007	0.021	0.010	0.000
2.8444	0.007	0.021	0.010	0.000
2.8889	0.007	0.022	0.010	0.000
2.9333	0.007	0.022	0.010	0.000
2.9778	0.007	0.022	0.011	0.000
3.0222	0.007	0.023	0.057	0.000
3.0667	0.007	0.023	0.204	0.000
3.1111	0.007	0.023	0.412	0.000
3.1556	0.007	0.024	0.660	0.000
3.2000	0.007	0.024	0.930	0.000
3.2444	0.007	0.024	1.206	0.000
3.2889	0.007	0.025	1.470	0.000
3.3333	0.007	0.025	1.706	0.000
3.3778	0.007	0.025	1.902	0.000
3.4222	0.007	0.026	2.052	0.000
3.4667	0.007	0.026	2.161	0.000
3.5111	0.007	0.026	2.275	0.000
3.5556	0.007	0.027	2.371	0.000
3.6000	0.007	0.027	2.463	0.000
3.6444	0.007	0.027	2.551	0.000
3.6889	0.007	0.028	2.637	0.000
3.7333	0.007	0.028	2.720	0.000
3.7778	0.007	0.028	2.801	0.000
3.8222	0.007	0.029	2.879	0.000
3.8667	0.007	0.029	2.956	0.000
3.9111	0.007	0.029	3.030	0.000
3.9556	0.007	0.030	3.102	0.000
4.0000	0.007	0.030	3.173	0.000
4.0444	0.007	0.030	3.243	0.000
4.0889	0.000	0.000	3.310	0.000

ANALYSIS RESULTS

Predeveloped Landuse Totals for POC #1 Total Pervious Area:0.276 Total Impervious Area:0

Mitigated Landuse Totals for POC #1 Total Pervious Area:0.036 Total Impervious Area:0.217

Flow Frequency ReturnPeriods for Predeveloped.POC #1Return PeriodFlow(cfs)2 year0.017568

5 year	0.054262
10 year	0.073983
25 year	0.11202

Flow Frequency ReturnPeriods for Mitigated.POC #1Return PeriodFlow(cfs)2 year0.009975 year0.0147310 year0.03163525 year0.041135

POC #1 The Facility PASSED

The Facility PASSED.

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
0.0115	42	43	102	Pass
0.0133	40	35	87	Pass
0.0150	36	27	75	Pass
0.0168	33	26	78	Pass
0.0186	31	19	61	Pass
0.0203	29	16	55	Pass
0.0221	26	15	57	Pass
0.0238	24	13	54	Pass
0.0256	21	12	57	Pass
0.0274	19	11	57	Pass
0.0291	19	10	52	Pass
0.0309	19	9	47	Pass
0.0327	19	8	42	Pass
0.0344	18	7	38	Pass
0.0362	18	5	27	Pass
0.0379	17	4	23	Pass
0.0397	16	3	18	Pass
0.0415	14	1	7	Pass
0.0432	12	0	0	Pass
0.0450	10	0	0	Pass
0.0468	10	0	0	Pass
0.0485	10	0	0	Pass
0.0503	10	0	0	Pass
0.0520	9	0	0	Pass
0.0538	9	0	0	Pass
0.0556	7	0	0	Pass
0.0573	6	0	0	Pass
0.0591	5	0	0	Pass
0.0609	5	0	0	Pass
0.0626	5	0	0	Pass
0.0644	5	0	0	Pass
0.0661	4	0	0	Pass
0.0679	4	0	0	Pass
0.0697	4	0	0	Pass
0.0714	4	0	0	Pass
0.0732	4	0	0	Pass
0.0750	4	0	0	Pass
0.0767	4	0	0	Pass

0 0705	4	0	0	D
0.0785	4	0	0	Pass
0.0802	4	0	0	Pass
0.0820	4	0	0	Pass
0 0939	4	0	0	Dage
0.0050	-	0	0	Lass
0.0855	4	U	U	Pass
0.0873	3	0	0	Pass
0.0891	3	0	0	Pass
0.0908	3	0	0	Pass
0.0926	3	0	0	Pass
0 0943	2	0	0	Page
0.0040	2		0	Daga
0.0961	3	0	0	Pass
0.0979	3	0	0	Pass
0.0996	3	0	0	Pass
0.1014	3	0	0	Pass
0.1032	3	0	0	Pass
0 1049	2	0	0	Page
0.1049	4	0	0	rass
0.106/	2	0	0	Pass
0.1084	2	0	0	Pass
0.1102	1	0	0	Pass
0.1120	1	0	0	Pass
0.1137	1	0	0	Pass
0 1155	1	0	0	Dage
0.1173	1	0	0	Pass
0.11/3	1	0	0	Pass
0.1190	1	0	0	Pass
0.1208	1	0	0	Pass
0.1225	1	0	0	Pass
0.1243	1	0	0	Pass
0 1261	1	0	0	Dage
0.1070	1	0	0	Daga
0.1278	1	0	0	Pass
0.1296	0	0	0	Pass
0.1314	0	0	0	Pass
0.1331	0	0	0	Pass
0.1349	0	0	0	Pass
0 1366	0	0	0	Page
0 1394	0	0	0	Page
0.1304	0	0	0	Fass
0.1402	0	0	0	Pass
0.1419	0	0	0	Pass
0.1437	0	0	0	Pass
0.1455	0	0	0	Pass
0 1472	0	0	0	Pass
0 1490	0	0	0	Dage
0.1490	0	0	0	Pass
0.1507	0	0	0	Pass
0.1525	0	0	0	Pass
0.1543	0	0	0	Pass
0.1560	0	0	0	Pass
0.1578	0	0	0	Pass
0 1596	0	0	0	Page
0.1612	0	0	0	Daga
0.1013	0	0	0	Pass
0.1631	0	0	0	Pass
0.1648	0	0	0	Pass
0.1666	0	0	0	Pass
0.1684	0	0	0	Pass
0.1701	0	0	0	Pass
0 1710	0	0	0	Dage
0.1727	0	0	0	Fass
0.1/37	0	U	0	Pass
0.1754	0	0	0	Pass
0.1772	0	0	0	Pass
0.1789	0	0	0	Pass
0.1807	0	0	0	Pass
/	-	-	-	

0.1825	0	0	0	Pass	
0.1842	0	0	0	Pass	
0.1860	0	0	0	Pass	

Drawdown Time Results

Perlnd and Implnd Changes

No changes have been made.

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright [©] by : Clear Creek Solutions, Inc. 2005-2017; All Rights Reserved.

General Model Information

Project Name:	JP Montezuma Bio and Vault
Site Name:	JP Engineering
Site Address:	6213 Montezuma Rd
City:	San Diego
Report Date:	3/1/2017
Gage:	FASHIONV
Data Start:	10/01/1968
Data End:	09/30/2004
Timestep:	Hourly
Precip Scale:	1.000
Version Date:	2016/11/23

POC Thresholds

Low Flow Threshold for POC1:	10 Percent of the 2 Year
High Flow Threshold for POC1:	10 Year

Landuse Basin Data Predeveloped Land Use

Basin 1

Bypass:	No
GroundWater:	No
Pervious Land Use D,NatVeg,Flat	acre 0.276
Pervious Total	0.276
Impervious Land Use	acre
Impervious Total	0
Basin Total	0.276
Element Flows To: Surface	Interflow

Groundwater

Mitigated Land Use

Basin 1

Bypass:	No
GroundWater:	No
Pervious Land Use D,Urban,Flat	acre 0.036
Pervious Total	0.036
Impervious Land Use IMPERVIOUS-FLAT	acre 0.217
Impervious Total	0.217
Basin Total	0.253
Floment Flower To:	

Element Flows 10:		
Surface	Interflow	Groundwater
Surface iofiltration	Surface iofiltration	

Routing Elements Predeveloped Routing

Mitigated Routing

Biofiltration

Bottom Length: Bottom Width: Material thickness of f Material type for first la	irst layer: ayer:	180.00 ft. 5.00 ft. 0.5 Amended 1.5 in/hr
Material thickness of s	second layer:	1.5 Amondod E in/hr
Material thickness of t	hird lover:	
Material type for third	lillu layer.	
Inderdrain used	ayer.	GRAVEL
Underdrain Diameter ((foot).	0.34
Orifice Diameter (in):	leet).	0.54 A
Offset (in)		0
Flow Through Underd	rain (ac-ft) [.]	4 929
Total Outflow (ac-ft.):		5.037
Percent Through Unde	erdrain:	97.86
Discharge Structure		
Riser Height:	0.5 ft.	
Riser Diameter:	27 in.	
Element Flows To:		
Outlet 1 Vault_1	Outlet 2	

Landscape Swale Hydraulic Table

Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
0.0000	0.0207	0.0000	0.0000	0.0000
0.0604	0.0207	0.0005	0.0000	0.0000
0.1209	0.0207	0.0009	0.0000	0.0000
0.1813	0.0207	0.0014	0.0000	0.0000
0.2418	0.0207	0.0018	0.0000	0.0000
0.3022	0.0207	0.0023	0.0000	0.0000
0.3626	0.0207	0.0027	0.0000	0.0000
0.4231	0.0207	0.0032	0.0003	0.0000
0.4835	0.0207	0.0036	0.0006	0.0000
0.5440	0.0207	0.0042	0.0012	0.0000
0.6044	0.0207	0.0047	0.0021	0.0000
0.6648	0.0207	0.0052	0.0032	0.0000
0.7253	0.0207	0.0057	0.0042	0.0000
0.7857	0.0207	0.0063	0.0046	0.0000
0.8462	0.0207	0.0068	0.0064	0.0000
0.9066	0.0207	0.0073	0.0074	0.0000
0.9670	0.0207	0.0078	0.0078	0.0000
1.0275	0.0207	0.0084	0.0086	0.0000
1.0879	0.0207	0.0089	0.0112	0.0000
1.1484	0.0207	0.0094	0.0122	0.0000
1.2088	0.0207	0.0099	0.0141	0.0000
1.2692	0.0207	0.0105	0.0175	0.0000
1.3297	0.0207	0.0110	0.0188	0.0000
1.3901	0.0207	0.0115	0.0190	0.0000
1.4505	0.0207	0.0120	0.0214	0.0000
1.5110	0.0207	0.0126	0.0257	0.0000
1.5714	0.0207	0.0131	0.0273	0.0000
1.6319	0.0207	0.0136	0.0305	0.0000
1.6923	0.0207	0.0141	0.0358	0.0000

1.7527 1.8132 1.8736 1.9341 1.9945 2.0549 2.1154 2.2363 2.2967 2.3571 2.4176 2.4780 2.5385 2.5989 2.6593 2.7198 2.7802 2.9011 2.9615 3.0220 3.0824 3.2637 3.2637 3.3242 3.3846 3.4451 3.5055 3.5659 3.6264 3.6868 3.7473 3.8077 3.8681 3.9286 3.9890 4.0495 4.1099 4.1703 4.2308 4.2912 4.3516 4.4121 4.4725 4.5000	0.020 0.020)7)7)7)7)7)7)7)7)7)7)7)7)7)	0.0147 0.0152 0.0157 0.0162 0.0168 0.0173 0.0178 0.0183 0.0183 0.0193 0.0199 0.0204 0.0209 0.0214 0.0219 0.0225 0.0230 0.0235 0.0240 0.0245 0.0250 0.0256 0.0261 0.0266 0.0271 0.0276 0.0282 0.0287 0.0297 0.0292 0.0297 0.0302 0.0313 0.0318 0.0313 0.0318 0.0323 0.0328 0.0333 0.0328 0.0333 0.0328 0.0354 0.0359 0.0365 0.0370 0.0382 draulic Table	0.0366 0.0378 0.0410 0.04	0.0000 0.00000 0.00000 0.00000 0.00000 0.000000
Stage(fe 4.5000 4.5604	et)Area(ac.) 0.0207	Volume(0.0382 0.0395	(ac-ft.)Dischar	ge(cfs)To Ame 0.0410	nded(cfs)Infilt(cfs) 0.0000
4.6209	0.0207 0.0207 0.0207	0.0407 0.0420	0.0000 0.0000 0.0000	0.0410 0.0410 0.0410	0.0000 0.0000 0.0000
4.8022 4.8626 4.9231	0.0207 0.0207 0.0207 0.0207	0.0432 0.0445 0.0457 0.0470	0.0000 0.0000 0.0000 0.0000	0.0410 0.0410 0.0410 0.0410	0.0000 0.0000 0.0000 0.0000

4.9035 0.0207 0.0482 0.0000 0.0410	0.0000
5.0440 0.0207 0.0495 0.2200 0.0410	0.0000
5.1044 0.0207 0.0507 0.8044 0.0410	0.0000
5.1648 0.0207 0.0520 1.5933 0.0410	0.0000
5.2253 0.0207 0.0532 2.5373 0.0410	0.0000
5.2857 0.0207 0.0545 3.6035 0.0410	0.0000
5.3462 0.0207 0.0557 4.7633 0.0410	0.0000
5.4066 0.0207 0.0570 5.9885 0.0410	0.0000
5.4670 0.0207 0.0582 7.2502 0.0410	0.0000
5.5000 0.0207 0.0589 8.5190 0.0410	0.0000

Surface iofiltration

Element Flows To: Outlet 1 Outlet 2 Vault 1 Biofiltration

Vault 1

Width:	18 ft.
Length:	18.5 ft.
Depth:	4 ft.
Discharge Structure	
Riser Height:	3 ft.
Riser Diameter:	12 in.
Notch Type:	Rectangular
Notch Width:	1.000 ft.
Notch Height:	0.023 ft.
Orifice 1 Diameter:	0.484 in. Elevation:0 ft.
Element Flows To:	
Outlet 1	Outlet 2

Vault Hydraulic Table

Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
0.0000	0.007	0.000	0.000	0.000
0.0444	0.007	0.000	0.001	0.000
0.0889	0.007	0.000	0.001	0.000
0.1333	0.007	0.001	0.002	0.000
0.1778	0.007	0.001	0.002	0.000
0.2222	0.007	0.001	0.003	0.000
0.2667	0.007	0.002	0.003	0.000
0.3111	0.007	0.002	0.003	0.000
0.3556	0.007	0.002	0.003	0.000
0.4000	0.007	0.003	0.004	0.000
0.4444	0.007	0.003	0.004	0.000
0.4889	0.007	0.003	0.004	0.000
0.5333	0.007	0.004	0.004	0.000
0.5778	0.007	0.004	0.004	0.000
0.6222	0.007	0.004	0.005	0.000
0.6667	0.007	0.005	0.005	0.000
0.7111	0.007	0.005	0.005	0.000
0.7556	0.007	0.005	0.005	0.000
0.8000	0.007	0.006	0.005	0.000
0.8444	0.007	0.006	0.005	0.000
0.8889	0.007	0.006	0.006	0.000
0.9333	0.007	0.007	0.006	0.000
0.9778	0.007	0.007	0.006	0.000
1.0222	0.007	0.007	0.006	0.000
1.0667	0.007	0.008	0.006	0.000
1.1111	0.007	0.008	0.006	0.000
1.1556	0.007	0.008	0.006	0.000
1.2000	0.007	0.009	0.007	0.000
1.2444	0.007	0.009	0.007	0.000
1.2889	0.007	0.009	0.007	0.000
1.3333	0.007	0.010	0.007	0.000
1.3778	0.007	0.010	0.007	0.000
1.4222	0.007	0.010	0.007	0.000
1.4667	0.007	0.011	0.007	0.000
1.5111	0.007	0.011	0.007	0.000
1.5556	0.007	0.011	0.007	0.000
1.6000	0.007	0.012	0.008	0.000
1.6444	0.007	0.012	0.008	0.000
1.6889	0.007	0.012	0.008	0.000

1.7333 1.7778	0.007 0.007	0.013 0.013	0.008 0.008	0.000 0.000
1.8222 1.8667	0.007 0.007	0.013 0.014	0.008 0.008	0.000
1.9111	0.007	0.014	0.008	0.000
1.9556	0.007	0.014	0.008	0.000
2.0444	0.007	0.015	0.009	0.000
2.0889	0.007	0.016	0.009	0.000
2.1778	0.007	0.016	0.009	0.000
2.2222	0.007	0.017	0.009	0.000
2.3111	0.007	0.017	0.009	0.000
2.3556	0.007	0.018	0.009	0.000
2.4444	0.007	0.018	0.009	0.000
2.4889	0.007	0.019	0.010	0.000
2.55778	0.007	0.019	0.010	0.000
2.6222	0.007	0.020	0.010	0.000
2.7111	0.007	0.020	0.010	0.000
2.7556	0.007	0.021	0.010	0.000
2.8000	0.007	0.021	0.010	0.000
2.8889	0.007	0.022	0.010	0.000
2.9355	0.007	0.022	0.010	0.000
3.0222	0.007	0.023	0.057	0.000
3.1111	0.007	0.023	0.204	0.000
3.1556	0.007	0.024	0.660	0.000
3.2000	0.007	0.024 0.024	1.206	0.000
3.2889	0.007	0.025	1.470	0.000
3.3333 3.3778	0.007	0.025	1.902	0.000
3.4222	0.007	0.026	2.052	0.000
3.4667	0.007	0.026	2.161 2.275	0.000
3.5556	0.007	0.027	2.371	0.000
3.6000	0.007	0.027	2.463	0.000
3.6889	0.007	0.028	2.637	0.000
3.7778	0.007	0.028	2.720	0.000
3.8222	0.007	0.029	2.879	0.000
3.9111	0.007	0.029	2.950 3.030	0.000
3.9556	0.007	0.030	3.102	0.000
4.0000	0.007	0.030	3.173	0.000
4.0889	0.000	0.000	3.310	0.000

Analysis Results POC 1

+ Predeveloped x

ŦΊ

Mitigated Landuse Totals for POC #1 Total Pervious Area: 0.036 Total Impervious Area: 0.217

Flow Frequency Method: Weibull

Flow Frequency Return Periods for Predeveloped. POC #1Return PeriodFlow(cfs)2 year0.0175685 year0.04742410 year0.06517825 year0.110923

Flow Frequency Return Periods for Mitigated. POC #1Return PeriodFlow(cfs)2 year0.0099245 year0.01409910 year0.03050325 year0.041107

Duration Flows The Facility PASSED

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
0.0115	42	46	109	Pass
0.0133	40	37	92	Pass
0.0150	36	27	75	Pass
0.0168	33	26	78	Pass
0.0186	31	19	61	Pass
0.0203	29	16	55	Pass
0.0221	26	15	57	Pass
0.0238	24	13	54	Pass
0.0256	21	12	57	Pass
0.0274	19	11	57	Pass
0.0291	19	10	52	Pass
0.0309	19	9	47	Pass
0.0327	19	8	42	Pass
0.0344	18	7	38	Pass
0.0362	18	5	27	Pass
0.0379	17	4	23	Pass
0.0397	16	3	18	Pass
0.0415	14	1	7	Pass
0.0413	12	0	0	Pass
0.0450	10	0	0	Pass
0.0468	10	0	0	Pass
0.0485	10	0	0	Pass
0.0503	10	0	0	Pass
0.0520	9	0	0	Pass
0.0538	ğ	0	0	Pass
0.0556	7	Õ	Õ	Pass
0.0573	6	Õ	Õ	Pass
0.0591	5	Õ	Õ	Pass
0.0609	5	Õ	Õ	Pass
0.0626	5	Ō	0	Pass
0.0644	5	0	0	Pass
0.0661	4	0	0	Pass
0.0679	4	0	0	Pass
0.0697	4	0	0	Pass
0.0714	4	0	0	Pass
0.0732	4	0	0	Pass
0.0750	4	0	0	Pass
0.0767	4	0	0	Pass
0.0785	4	0	0	Pass
0.0802	4	0	0	Pass
0.0820	4	0	0	Pass
0.0838	4	0	0	Pass
0.0855	4	0	0	Pass
0.0873	3	0	0	Pass
0.0891	3	0	0	Pass
0.0908	3	0	0	Pass
0.0926	3	0	0	Pass
0.0943	3	0	0	Pass
0.0961	3	0	0	Pass
0.0979	3	0	0	Pass
0.0996	3	0	0	Pass
0.1014	3	0	0	Pass
0.1032	3	0	0	Pass

0.1049	2	0	0	Pass
0.1067	2	0	0	Pass
0.1084	2	0	0	Pass
0.1102	1	0	0	Pass
0.1120	1	0	0	Pass
0.1137	1	0	0	Pass
0.1155	1	0	0	Pass
0.1173	1	0	0	Pass
0.1190	1	0	0	Pass
0.1208	1	0	0	Pass
0.1225	1	0	0	Pass
0.1243	1	0	0	Pass
0.1261	1	0	0	Pass
0.1278	1	0	0	Pass
0.1296	0	0	0	Pass
0.1314	0	0	0	Pass
0.1331	0	0	0	Pass
0.1349	0	0	0	Pass
0.1366	0	0	0	Pass
0.1384	0	0	0	Pass
0.1402	0	0	0	Pass
0.1419	0	0	0	Pass
0.1437	0	0	0	Pass
0.1455	0	0	0	Pass
0.1472	0	0	0	Pass
0.1490	0	0	0	Pass
0.1507	0	0	0	Pass
0.1525	0	0	0	Pass
0.1543	0	0	0	Pass
0.1560	0	0	0	Pass
0.1578	0	0	0	Pass
0.1596	0	0	0	Pass
0.1613	0	0	0	Pass
0.1631	0	0	0	Pass
0.1648	0	0	0	Pass
0.1666	0	0	0	Pass
0.1684	0	0	0	Pass
0.1701	0	0	0	Pass
0.1719	0	0	0	Pass
0.1737	0	0	0	Pass
0.1754	0	0	0	Pass
0.1772	0	0	0	Pass
0.1789	0	U	U	Pass
0.1007	0	0	0	Pass
0.1020	0	0	0	Pass
0.1042	0	0	0	Fass Dass
0.1000	U	U	U	газэ

Water Quality

Model Default Modifications

Total of 0 changes have been made.

PERLND Changes

No PERLND changes have been made.

IMPLND Changes

No IMPLND changes have been made.

Appendix Predeveloped Schematic

	Basin 0.28ac	1			

Mitigated Schematic

	97	Basin 0.25ac	1			
	SI					
		Bilofilitr	ation			
	s					
		Vault	1			

Predeveloped UCI File

RUN

GLOBAL WWHM4 model simulation END 2004 09 30 3 0 START 1968 10 01 RUN INTERP OUTPUT LEVEL RESUME 0 RUN 1 UNIT SYSTEM 1 END GLOBAL FILES <File> <Un#> <-----File Name---->*** * * * <-ID-> 26 JP Montezuma Bio and Vault.wdm WDM MESSU 25 PreJP Montezuma Bio and Vault.MES PreJP Montezuma Bio and Vault.L61 27 PreJP Montezuma Bio and Vault.L62 28 30 POCJP Montezuma Bio and Vault1.dat END FILES OPN SEOUENCE INGRP 28 INDELT 00:60 PERLND 501 COPY DISPLY 1 END INGRP END OPN SEQUENCE DISPLY DISPLY-INF01 # - #<-----Title---->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND 1 Basin 1 1 2 30 9 MAX END DISPLY-INF01 END DISPLY COPY TIMESERIES # - # NPT NMN *** 1 1)1 1 1 1 501 END TIMESERIES END COPY GENER OPCODE # # OPCD *** END OPCODE PARM K *** # # END PARM END GENER PERLND GEN-INFO <PLS ><-----Name----->NBLKS Unit-systems Printer *** User t-series Engl Metr *** # - # in out * * * 1 1 1 1 27 0 2.8 D,NatVeg,Flat END GEN-INFO *** Section PWATER*** ACTIVITY # -# ATMP SNOW PWATSEDPSTPWGPQALMSTLPESTNITRPHOSTRAC***2800100000000 END ACTIVITY PRINT-INFO # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ********* 28 0 0 4 0 0 0 0 0 0 0 0 0 1 9 END PRINT-INFO

PWAT-PARM1 <PLS > PWATER variable monthly parameter value flags ***

 # - # CSNO RTOP UZFG VCS VUZ VNN VIFW VIRC VLE INFC HWT ***

 28
 0
 1
 1
 0
 0
 1
 1
 0

 END PWAT-PARM1 PWAT-PARM2
 <PLS >
 PWATER input info: Part 2

 # - # ***FOREST
 LZSN
 INFILT
 LSUR
 SLSUR
 KVARY
 AGWRC

 28
 0
 4.8
 0.04
 200
 0.05
 2.5
 0.915
 END PWAT-PARM2 PWAT-PARM3 PWAT-PARM3<PLS >PWATER input info: Part 3***# - # ***PETMAXPETMININFEXPINFILDDEEPFR2800220DEEPER INFILD DEEPFR BASETP AGWETP 2 0 0.05 0.05 END PWAT-PARM3 PWAT-PARM4 <PLS > PWATER input info: Part 4 * * * - # CEPSC UZSN NSUR INTFW IRC LZETP *** 0 0.6 0.2 1.5 0.7 0 # - # 28 END PWAT-PARM4 MON-LZETPARM <PLS > PWATER input info: Part 3 * * * # - # JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC *** 28 0.4 0.4 0.4 0.4 0.6 0.6 0.6 0.6 0.6 0.4 0.4 0.4 END MON-LZETPARM MON-INTERCEP <PLS > PWATER input info: Part 3 * * * 28 END MON-INTERCEP PWAT-STATE1 <PLS > *** Initial conditions at start of simulation ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 *** GWVS
 # # *** CEPS
 SURS
 UZS
 IFWS
 LZS
 AGWS

 28
 0
 0
 0.01
 0
 0.4
 0.01
 0 END PWAT-STATE1 END PERLND IMPLND GEN-INFO <PLS ><-----Name----> Unit-systems Printer *** User t-series Engl Metr *** # - # * * * in out END GEN-INFO *** Section IWATER*** ACTIVITY # - # ATMP SNOW IWAT SLD IWG IQAL *** END ACTIVITY PRINT-INFO <ILS > ******* Print-flags ******* PIVL PYR # - # ATMP SNOW IWAT SLD IWG IQAL ******** END PRINT-INFO IWAT-PARM1 <PLS > IWATER variable monthly parameter value flags *** # - # CSNO RTOP VRS VNN RTLI *** END IWAT-PARM1 IWAT-PARM2 <PLS > IWATER input info: Part 2 * # - # *** LSUR SLSUR NSUR RETSC * * * END IWAT-PARM2

IWAT-PARM3 IWATER input info: Part 3 *** <PLS > # - # ***PETMAX PETMIN END IWAT-PARM3 IWAT-STATE1 <PLS > *** Initial conditions at start of simulation # - # *** RETS SURS END IWAT-STATE1 END IMPLND SCHEMATIC <--Area--> <-Target-> MBLK *** <-factor-> <Name> # Tbl# *** <-Source-> <Name> # Basin 1*** PERLND 28 0.276 COPY 501 12 0.276 COPY 501 13 PERLND 28 *****Routing***** END SCHEMATIC NETWORK <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # #<-factor->strg <Name> # # <Name> # # ***
COPY 501 OUTPUT MEAN 1 1 12.1 DISPLY 1 INPUT TIMSER 1 <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # #<-factor->strg <Name> # # <Name> # # *** END NETWORK RCHRES GEN-INFO Name Nexits Unit Systems Printer * * * RCHRES * * * # - #<---- User T-series Engl Metr LKFG in out * * * END GEN-INFO *** Section RCHRES*** ACTIVITY # - # HYFG ADFG CNFG HTFG SDFG GOFG OXFG NUFG PKFG PHFG *** END ACTIVITY PRINT-INFO # - # Hydr adca cons heat sed $\bar{\rm gQL}$ oxrx nutr plnk phcb pivl pyr ******** END PRINT-INFO HYDR-PARM1 * * * RCHRES Flags for each HYDR Section END HYDR-PARM1 HYDR-PARM2 # - # FTABNO LEN DELTH STCOR KS DB50 * * * <----><----><----><----> * * * END HYDR-PARM2 HYDR-INIT RCHRES Initial conditions for each HYDR section END HYDR-INIT END RCHRES

SPEC-ACTIONS END SPEC-ACTIONS FTABLES END FTABLES

EXT SOURCES <-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name># <Name> # tem strg<-factor->strg<Name># #<Name> # #<Name> # #<Name> # #<Name> # #<Name> # #***WDM2PRECENGL1PERLND1999EXTNLPRECWDM2PRECENGL1IMPLND1999EXTNLPRECWDM1EVAPENGL1PERLND1999EXTNLPETINPWDM1EVAPENGL1IMPLND1999EXTNLPETINP END EXT SOURCES EXT TARGETS <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Volume-> <Member> Tsys Tgap Amd *** <Name> # <Name> # #<-factor->strg <Name> # <Name> tem strg strg*** COPY 501 OUTPUT MEAN 1 1 12.1 WDM 501 FLOW ENGL REPL END EXT TARGETS MASS-LINK PERLND PWATER SURO 0.083333 COPY INPUT MEAN END MASS-LINK 12 MASS-LINK 13 PERLND PWATER IFWO 0.083333 COPY INPUT MEAN END MASS-LINK 13

END MASS-LINK

END RUN

Mitigated UCI File

RUN

GLOBAL WWHM4 model simulation
 START
 1968 10 01
 END
 2004 09 30

 RUN INTERP OUTPUT LEVEL
 3
 0
 RESUME 0 RUN 1 UNIT SYSTEM 1 END GLOBAL FILES <File> <Un#> <-----File Name---->*** * * * <-ID-> WDM 26 JP Montezuma Bio and Vault.wdm MESSU 25 MitJP Montezuma Bio and Vault.MES 27 MitJP Montezuma Bio and Vault.L61 28 MitJP Montezuma Bio and Vault.L62 30 POCJP Montezuma Bio and Vault1.dat END FILES OPN SEOUENCE INGRP INDELT 00:60 46 PERLND 1 IMPLND 1 RCHRES RCHRES 2 2 3 1 RCHRES COPY COPY 501 DISPLY 1 END INGRP END OPN SEQUENCE DISPLY DISPLY-INF01 # - #<-----Title---->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND 1 Vault 1 1 2 30 9 MAX END DISPLY-INF01 END DISPLY COPY TIMESERIES # - # NPT NMN *** 1 1 1 501 1 1 END TIMESERIES END COPY GENER OPCODE # # OPCD *** END OPCODE PARM K *** # # END PARM END GENER PERLND GEN-INFO <PLS ><-----Name----->NBLKS Unit-systems Printer *** User t-series Engl Metr *** # - # in out 1 1 1 1 27 0 * * * 46 D,Urban,Flat END GEN-INFO *** Section PWATER*** ACTIVITY # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC *** 46 0 0 1 0 0 0 0 0 0 0 0 0 0 END ACTIVITY PRINT-INFO

- # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ********* 46 0 0 4 0 0 0 0 0 0 0 0 0 1 9 END PRINT-INFO PWAT-PARM1 <PLS > PWATER variable monthly parameter value flags *** # - # CSNO RTOP UZFG VCS VUZ VNN VIFW VIRC VLE INFC HWT *** 46 0 1 1 1 0 0 0 0 1 1 0 46 END PWAT-PARM1 PWAT-PARM2

 >WAT-PARM2

 <PLS >
 PWATER input info: Part 2

 # # ***FOREST
 LZSN
 INFILT
 LSUR
 SLSUR
 KVARY
 AGWRC

 46
 0
 4.8
 0.04
 200
 0.05
 2.5
 0.915

 END
 PWAT-PARM2

 END PWAT-PARM2 PWAT-PARM3 PWAT-PARM3<PLS >PWATER input info: Part 3***# - # ***PETMAXPETMININFEXP460022 INFILD DEEPFR BASETP AGWETP 2 0 0.05 0.05 END PWAT-PARM3 PWAT-PARM4
 <PLS >
 PWATER input info: Part 4

 # - #
 CEPSC
 UZSN
 NSUR
 INTFW
 IRC
 LZETP ***

 46
 0
 0.6
 0.2
 1.5
 0.7
 0
 END PWAT-PARM4 MON-LZETPARM <PLS > PWATER input info: Part 3 * * * # - # JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC *** 46 0.4 0.4 0.4 0.4 0.6 0.6 0.6 0.6 0.6 0.4 0.4 0.4 END MON-LZETPARM MON-INTERCEP <PLS > PWATER input info: Part 3 * * *
 # # JAN
 FEB
 MAR
 APR
 MAY
 JUN
 JUL
 AUG
 SEP
 OCT
 NOV
 DEC

 46
 0.1
 0.1
 0.1
 0.06
 0.06
 0.06
 0.06
 0.1
 0.1
 0.1
 END MON-INTERCEP PWAT-STATE1 <PLS > *** Initial conditions at start of simulation ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 *** # *** CEPS SURS UZS IFWS LZS AGWS 0 0 0.15 0 1 0.05 GWVS 46 0 END PWAT-STATE1 END PERLND IMPLND GEN-INFO <PLS ><-----Name----> Unit-systems Printer *** # - # User t-series Engl Metr *** * * * in out 1 IMPERVIOUS-FLAT 1 1 1 27 0 END GEN-INFO *** Section IWATER*** ACTIVITY # - # ATMP SNOW IWAT SLD IWG IQAL *** 1 0 0 1 0 0 0 END ACTIVITY PRINT-INFO <ILS > ******* Print-flags ******* PIVL PYR # - # ATMP SNOW IWAT SLD IWG IQAL ********* 1 0 0 4 0 0 0 1 9 1 END PRINT-INFO IWAT-PARM1 <PLS > IWATER variable monthly parameter value flags ***

- # CSNO RTOP VRS VNN RTLI 1 0 0 0 0 0 1 * * * END IWAT-PARM1

 IAT-PARM2
 <PLS >
 IWATER input info: Part 2
 **

 # - # *** LSUR
 SLSUR
 NSUR
 RETSC

 1
 100
 0.05
 0.05
 0.1

 IWAT-PARM2 * * * 1 100 0.05 END IWAT-PARM2 IWAT-PARM3 IWATER input info: Part 3 * * * <PLS > # - # ***PETMAX PETMIN п _____0 1 0 END IWAT-PARM3 IWAT-STATE1 <PLS > *** Initial conditions at start of simulation # - # *** RETS SURS 1 0 0 1 0 END IWAT-STATE1 END IMPLND SCHEMATIC <--Area--> <-Target-> MBLK *** <-factor-> <Name> # Tbl# *** <-Source-> <Name> # Basin 1*** 2 PERLND 46 0.036 RCHRES 1 RCHRES12RCHRES13RCHRES15 0.036 0.217 PERLND 46 IMPLND 1 *****Routing*****

 RCHRES
 3
 6

 COPY
 1
 16

 RCHRES
 3
 7

 COPY
 1
 17

 RCHRES
 2
 8

 COPY
 501
 16

 RCHRES 2 1 2 RCHRES 1 RCHRES 1 1 RCHRES 1 RCHRES 1 ⊥ 1 RCHRES 3 END SCHEMATIC NETWORK <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # #<-factor->strg <Name> # # <Name> # # *** COPY 501 OUTPUT MEAN 1 1 12.1 DISPLY 1 INPUT TIMSER 1 <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # #<-factor->strg <Name> # # <Name> # # *** END NETWORK RCHRES GEN-INFO Name Nexits Unit Systems Printer * * * RCHRES * * * # - #<----> User T-series Engl Metr LKFG in out * * *

 1
 Surface iofiltra-004
 3
 1
 1
 1
 28
 0
 1

 2
 Biofiltration
 1
 1
 1
 1
 28
 0
 1

 3
 Vault 1
 1
 1
 1
 1
 28
 0
 1

 END GEN-INFO *** Section RCHRES*** ACTIVITY # - # HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG *** 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 2 3 END ACTIVITY

P	RIN <p # 2 3</p 	IT-IN PLS > - #	IFO • * ⊧ H	* * * YDR 4 4	* * * * 2 AI	* * * * OCA 0 0 0	* * * COI	* * * NS 0 0 0	** HEA	Pr: T 0 0 0	int- SEI C C	fla 0 G	igs SQL 0 0 0	* * * OXF	* * * 2X 0 0 0	*** NUT	* * [:] R] 0 0 0	*** PLN	0 0 0 1K	*** PHC	* E B E O O O	VIV	L L 1 1	PYI PYI 9	R R 9 9 9	* * *	* * *	* * *
H	IYDR RC	PRIN -PAR HRES	M1 SM1	Fla	ıgs	for	r ea	ach	ı HY	DR	Sec	tic	n														*	* *
	#	- #	ŧ	VC FG	A1 FG *	A2 FG *	A3 FG *	C F	DFV oss *	FG ib	for le	exi	ich .t	* * *	7 0 7 p	DGT oss *	FG ib: *	fc le *	e e	eac xit *	h *		FU po	JNC: bss:	r ibl ***	for e	ea exi	ch t
E	1 2 3 SND	HYDR	2−P	0 0 0 ARM	1 1 1 1	0 0 0	0 0 0		4 4 4	5 0 0	6 0 0	0 0 0	0 0 0			0 0 0	0 0 0)))	0 0 0	0 0 0			2 2 2	2 2 2	2 2 2	2 2 2	2 2 2
Н	IYDR #	-PAR - #	2M2	F	TAT	BNO			LF	N		DEI	TH		S	тсо	R			K	S		Γ)B5(0		*	* *
<	: 1	>	->>			>< 1	<			><			-><	<			><				><-			:	>		*	* *
E	1 2 3 ND	HYDR	2−P	ARM	12	1 2 3			0.0	1 3 1).0).0).0			0. 0. 0.	0 0 0			0. 0. 0.	5 5 5			0.0)))			
Η	IYDR RC	-INI	T	Tni	tia	al c	rono	dit	ion	s ·	For	еас	∙h ⊦	IYDE	2 9	ect	ioi	n									*	* *
	#	- #	**	** * a	1 1 1 1 1 1	/OL Et		I fc	nit r e	ia: acl	l v n pc	alu ssi	ie .ble	of e ex	CO	LIN	D	***	I: fo	nit r e	ial ach	ı po	val	lue sib	o le	f O exi	UTE t	GT
	1	/			()			4.	0	5.0	6	5.0	0.	0	0.	0			0.	0	0.0	0	0.0	0	0.0	0	.0
	2				()			4. 4.	0	0.0).0	0.	0	0. 0.	0			0. 0.	0	0.0	0	0.0	0	0.0	0	.0
E END	ND RC	HYDR HRES	2-I 3	NIT	1																							
SPE END FTA	C-A SP BLE	CTIC PEC-A	NS CT	ION	IS																							
F	76	зын: 4	Ł	2																								
	D	epth (ft)	1	(a	A1 Cre	rea es)	(a	Vc cre	olum e-ft	ie .)	Out (c	flc fs)	w1	Vel (ft	.oc :/s	ity ec)		Tra (ve Mi	l T nut	ime es)	**	* *					
0	.00	0000)	0.0	206	561 561	0	.00	000	0 6	0.0	000	000															
0	.12	0879)	0.0	206	561	0	.00	091	2	0.0	000	000															
0	.18 .24	1758	3	0.0	206	561 561	0	.00	182	3	0.0	0000	000															
0	.30	2198	3	0.0	206	561 561	0	.00	227	9 5	0.0	000	000															
0	.42	3077		0.0	206	561	0	.00	319	1	0.0	002	259															
0	.48	3956) 	0.0	206	561 561	0	.00	417	1	0.0	012	24															
0 0	.60	4396 4835		0.0	206	561 561	0 0	.00	469 522	5 0	0.0	020)56 .91															
0	.72	5275	5	0.0	206	561	0	.00	574	4	0.0	042	243															
0	.84	6154	ł	0.0	206	561	0	.00	679	3	0.0	064	40															
0 0	.90	6593 7033	5	0.0	206 206	561 561	0 0	.00	0731 0784	.8 :2	0.0	073 078	86 828															
1	.02	7473	3	0.0	206	561	0	.00	836	7	0.0	086	503															
1	.14	8352	2	0.0	200	561	0	.00	941	6	0.0	121	.80															
1 1	.20	8791 9231	-	0.0	206	561 561	0 0	.00	994 046	0	0.0	141	.20															
1	.32	9670)	0.0	206	561	0	.01	.098	9	0.0	187	56															
1 1	. 39	0110)	0.0	206	561 561	0 0	.01	.151 .203	3	0.0	190 213	948 860															
1	.51	.0989)	0.0	206	561	0	.01	256	2	0.0	256	573															

1.571429 1.631868 1.692308 1.752747 1.813187 1.873626 1.934066 1.994505 2.054945 2.115385 2.175824 2.236264 2.296703 2.357143 2.417582 2.478022 2.538462 2.598901 2.659341 2.719780 2.780220 2.840659 2.901099 2.961538 3.021978 3.082418 3.142857 3.203297 3.263736 3.324176 3.384615 3.445055 3.505495 3.565934 3.626374 3.6868132 3.928571 3.989011 4.049451 4.109890 4.170330 4.230769 4.291209 4.351648 4.412088 4.472527 4.500000 END FTABL	0.020661 0.0	0.013087 0.013611 0.014136 0.014660 0.015185 0.015709 0.016234 0.016758 0.017276 0.017276 0.017795 0.018313 0.019349 0.019349 0.020386 0.020904 0.021422 0.021422 0.021422 0.021422 0.021422 0.024532 0.024532 0.024532 0.024532 0.025050 0.025568 0.026086 0.026086 0.026086 0.026086 0.026086 0.026086 0.026086 0.026086 0.026086 0.026086 0.026086 0.026086 0.027123 0.027123 0.027641 0.028159 0.028159 0.029196 0.029196 0.031787 0.032322 0.030750 0.031269 0.031787 0.032823 0.033860 0.034378 0.034896 0.035415 0.036969 0.037488 0.038006 0.080307	0.027253 0.030473 0.035776 0.03612 0.037793 0.041010 0.04100 0.04100 0.04100 0.04100 0.04100 0.04100 0.04100 0.04100 0.04100 0.04100 0.04100 0.04100 0.04100 0.04100 0.04100 0.04100 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.04000 0.0000 0.				
FTABLE 18 6	1						
Depth Time***	Area	Volume	Outflow1	Outflow2	outflow 3	Velocity	Travel
(ft) (Minutes)**	(acres) *	(acre-ft)	(cfs)	(cfs)	(cfs)	(ft/sec)	
$\begin{array}{c} 0.00000\\ 0.060440\\ 0.120879\\ 0.181319\\ 0.241758\\ 0.302198\\ 0.362637\\ 0.423077\\ 0.483516\\ 0.543956\\ 0.604396\\ 0.664835\\ 0.725275\end{array}$	0.020661 0.020661 0.020661 0.020661 0.020661 0.020661 0.020661 0.020661 0.020661 0.020661 0.020661 0.020661	0.000000 0.0012498 0.003746 0.004995 0.006244 0.007493 0.008741 0.009990 0.011239 0.012488 0.013736 0.014985	$\begin{array}{c} 0.000000\\ 0.000000\\ 0.000000\\ 0.000000\\ 0.000000\\ 0.000000\\ 0.000000\\ 0.000000\\ 0.220020\\ 0.804417\\ 1.593288\\ 2.537261 \end{array}$	$\begin{array}{c} 0.000000\\ 0.041010\\ 0.041010\\ 0.041010\\ 0.041010\\ 0.041010\\ 0.041010\\ 0.041010\\ 0.041010\\ 0.041010\\ 0.041010\\ 0.041010\\ 0.041010\\ 0.041010\\ 0.041010\\ \end{array}$	$\begin{array}{c} 0.000000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.000\\ 0.000\\ 0.0000\\ 0.0000\\ 0.$		

0.785714 0.846154 0.906593	0.020661 0.020661 0.020661	0.016234 0.017483 0.018731	3.603508 4.763335 5.988526	$0.041010 \\ 0.041010 \\ 0.041010$	0.000000 0.000000 0.000000
0.967033	0.020661	0.019980	7.250231	0.041010	0.00000
END FTABL	0.020661 E 1	0.020661	8.518959	0.041010	0.000000
FTABLE	3				
92 4	7	TTo Jumo	0	Malarita.	
(ft)	(acres)	(acre-ft)	(cfs)	(ft/sec)	(Minutes)***
0.000000	0.007645	0.000000	0.000000	(-,,	(,
0.044444	0.007645	0.000340	0.001340		
0.133333	0.007645	0.00080 0.001019	0.001895 0.002321		
0.177778	0.007645	0.001359	0.002680		
0.222222	0.007645	0.001699	0.002997		
0.311111	0.007645	0.002039	0.003283		
0.355556	0.007645	0.002718	0.003791		
0.400000	0.007645	0.003058	0.004020		
0.488889	0.007645	0.003398	0.004238		
0.533333	0.007645	0.004077	0.004642		
0.577778	0.007645	0.004417	0.004832		
0.666667	0.007645	0.005096	0.005190		
0.711111	0.007645	0.005436	0.005361		
0.755556	0.007645	0.005776	0.005526		
0.844444	0.007645	0.006455	0.005842		
0.888889	0.007645	0.006795	0.005993		
0.933333	0.007645	0.007135	0.006141		
1.022222	0.007645	0.007815	0.006427		
1.066667	0.007645	0.008154	0.006565		
1.111111	0.007645	0.008494 0 008834	0.006701		
1.200000	0.007645	0.009174	0.006964		
1.244444	0.007645	0.009513	0.007091		
1.288889 1.333333	0.007645 0 007645	0.009853 0.010193	0.007217 0.007340		
1.377778	0.007645	0.010533	0.007462		
1.422222	0.007645	0.010872	0.007581		
1.466667 1.511111	0.007645 0 007645	0.011212 0.011552	0.007699		
1.555556	0.007645	0.011892	0.007929		
1.600000	0.007645	0.012231	0.008041		
1.644444 1.688889	0.007645	0.012571 0.012911	0.008152		
1.733333	0.007645	0.013251	0.008369		
1.777778	0.007645	0.013590	0.008476		
1.866667	0.007645	0.014270	0.008685		
1.911111	0.007645	0.014610	0.008788		
1.955556	0.007645	0.014949	0.008890		
2.044444	0.007645	0.015629	0.009089		
2.088889	0.007645	0.015969	0.009188		
2.133333	0.007645	0.016309	0.009285		
2.222222	0.007645	0.016988	0.009476		
2.266667	0.007645	0.017328	0.009571		
2.311111 2.355556	U.U07645 0 007645	U.U17668 0 018007	0.009664		
2.400000	0.007645	0.018347	0.009848		
2.444444	0.007645	0.018687	0.009939		
∠.488889 2 533333	0.007645	U.U19027 0 019366	0.010029		
2.577778	0.007645	0.019706	0.010206		
2.622222	0.007645	0.020046	0.010294		

2.666667 0.007 2.711111 0.007 2.755556 0.007 2.80000 0.007 2.844444 0.007 2.888889 0.007 2.93333 0.007 2.977778 0.007 3.022222 0.007 3.022222 0.007 3.111111 0.007 3.155556 0.007 3.200000 0.007 3.244444 0.007 3.288889 0.007 3.33333 0.007 3.377778 0.007 3.422222 0.007 3.466667 0.007 3.55555 0.007 3.60000 0.007 3.644444 0.007 3.68889 0.007 3.68889 0.007 3.73333 0.007 3.77778 0.007 3.68889 0.007 3.68889 0.007 3.644444 0.007 3.68889 0.007 3.77778 0.007 3.68889 0.007 3.73333 0.007 3.77778 0.007 3.822222 0.007 3.866667 0.007 3.91111 0.007 3.955556 0.007 4.00000 0.007 4.044444 0.007 END FTABLE 3 END FTABLE 3 END FTABLES	645 0.020386 645 0.020725 645 0.021065 645 0.021405 645 0.021745 645 0.022084 645 0.022424 645 0.022424 645 0.023104 645 0.023144 645 0.023444 645 0.024123 645 0.024803 645 0.024463 645 0.025482 645 0.025482 645 0.025822 645 0.025822 645 0.025822 645 0.025822 645 0.025822 645 0.025822 645 0.025822 645 0.025822 645 0.025822 645 0.025822 645 0.025822 645 0.028840 645 0.028540 645 0.028540 645 0.0292152 645 0.0292152 645 0.030239 645 0.030918 645 0.030918	5 0.010381 5 0.010467 5 0.010552 5 0.010637 5 0.010721 4 0.010805 4 0.010805 4 0.011002 4 0.057571 4 0.204739 6 0.412424 6 0.930421 3 0.412424 3 0.659986 3 0.930421 3 1.206382 2 1.470396 2 1.902326 2 0.052521 2 161535 2 2.052521 2 161535 2 2.052521 2 161535 2 2.75019 2 370955 2 463127 2 2.551947 2 2.637754 2 2.720838 2 2.801441 2 2.879774 2 2.956019 3 0.30334 3 102859 3 .173717 3 2.243018			
EXT SOURCES <-Volume-> <membe <name> # <name> WDM 2 PREC WDM 2 PREC WDM 1 EVAP WDM 1 EVAP WDM 22 IRRG WDM 2 PREC WDM 2 PREC WDM 1 EVAP</name></name></membe 	r> SsysSgap<- # tem strg<- ENGL 1 ENGL 1 ENGL 1 ENGL 1 ENGL 0. ENGL 1 ENGL 0.	Mult>Tran factor->strg	<-Target vols <name> # PERLND 1 99 IMPLND 1 99 PERLND 1 99 IMPLND 1 99 PERLND 46 RCHRES 1 RCHRES 1 PCURES 2</name>	 Solution Solution<	?-> *** ŧ
END EXT SOURCES	ENGL 0.	. /	RCHRES 2	EXINL POTEV	
EXT TARGETS <-Volume-> <-Grp> <name> # RCHRES 3 HYDR RCHRES 3 HYDR COPY 1 OUTPUT COPY 501 OUTPUT END EXT TARGETS</name>	<-Member-><- <name> # #<- RO 1 1 STAGE 1 1 MEAN 1 1 MEAN 1 1</name>	Mult>Tran factor->strg 1 1 12.1 12.1 12.1	<-Volume-> <m <name> # <n WDM 1004 FL WDM 1005 ST WDM 701 FL WDM 801 FL</n </name></m 	lember> Tsys Tgap Jame> tem strg JOW ENGL JOW ENGL JOW ENGL JOW ENGL	Amd *** strg*** REPL REPL REPL REPL
MASS-LINK <volume> <-Grp></volume>	<-Member-><- <name> # #<-</name>	Mult>	<target></target>	<-Grp> <-Member	<u>>***</u> + ++**
MASS-LINK PERLND PWATER END MASS-LINK	2 SURO (2	0.083333	RCHRES	INFLOW IVOL	
MASS-LINK PERLND PWATER END MASS-LINK	3 IFWO 0 3).083333	RCHRES	INFLOW IVOL	
MASS-LINK	5				

IMPLND END MASS-	IWATER LINK	SURO 5		0.083333	RCHRES	INFLOW	IVOL
MASS-LINK RCHRES END MASS-	ROFLOW LINK	6 6			RCHRES	INFLOW	
MASS-LINK RCHRES END MASS-	OFLOW LINK	7 OVOL 7	1		RCHRES	INFLOW	IVOL
MASS-LINK RCHRES END MASS-	OFLOW LINK	8 OVOL 8	2		RCHRES	INFLOW	IVOL
MASS-LINK RCHRES END MASS-	ROFLOW LINK	16 16			COPY	INPUT	MEAN
MASS-LINK RCHRES END MASS-	OFLOW LINK	17 OVOL 17	1		СОРҮ	INPUT	MEAN

END MASS-LINK

END RUN

Predeveloped HSPF Message File
Mitigated HSPF Message File

Disclaimer

Legal Notice

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2017; All Rights Reserved.

Clear Creek Solutions, Inc. 6200 Capitol Blvd. Ste F Olympia, WA. 98501 Toll Free 1(866)943-0304 Local (360)943-0304

www.clearcreeksolutions.com

JP Engineering SDHM 3.0

Site:					
Rain Gage:	Fashion Valley				
Soil:	D				
Pre-Veg:	NatVeg				
Slope:	Flat				
Total Area:	12009 sq ft				
	0.276 ac				
Imp Area:	9470 sq ft				Final
	0.217 ac		Vault	Vault	Vault
biofiltration	180 ft	length	0 length	14 ft	18.5
	5 ft	width	0 width	14 ft	18
	970 sq ft	area	0 height	7 ft	4
	0.022 ac	area	0.000 vol	1372 cu ft	1332
landscape	1569 sq ft		2539		
	0.036 ac		0.058		
biofiltration					
layer 1	0.5 ft	mulch (amend	ed 1.5 in/hr)		
layer 2	1.5 ft	bioretention s	oil (amended 5 in/hr)		
layer 3	2.5 ft	gravel			
underdrain					
dia	0.33 ft				
orifice	4 in				
offset	0 in				
riser					
length	2 ft				
width	2 ft				
area	4 ft				
equiv dia	2.26 ft				
	27 in				

CLEAR CREEK SOLUTIONS, INC DOUG BEYERLEIN DATE: 10/30/2015

SAN DIEGO

USGS REGRESSION EQUATION (GOTVALD, 2012)

- Q2 = 3.60*(A^0.672)*(P^0.753)
- Q10 = 6.56*(A^0.783)*(P^1.07)
- A = AREA (SQ MI)
- P = MEAN ANNUAL PRECIP (IN)

			USGS	USGS		SDHM 3.0 (D	,Grass,Flat)
А	Р	0.1Q2	Q2	Q10		Q2	Q10
0.000431	10.4	0.0115	0.1150	0.186	Fashion Valley	0.002	0.065

ATTACHMENT 3 STRUCTURAL BMP MAINTENANCE INFORMATION

This is the cover sheet for Attachment 3.

THIS PAGE INTENTIONALLY LEFT BLANK FOR DOUBLE-SIDED PRINTING

Indicate which Items are Included:

Attachment Sequence	Contents	Checklist
Attachment 3a	Structural BMP Maintenance Thresholds and Actions (Required)	X Included See Structural BMP Maintenance Information Checklist.
Attachment 3b	Maintenance Agreement (Form DS-3247) (when applicable)	O Included ⊙ Not Applicable

Use this checklist to ensure the required information has been included in the Structural BMP Maintenance Information Attachment:

Preliminary Design / Planning / CEQA level submittal:

- Attachment 3a must identify:
 - X Typical maintenance indicators and actions for proposed structural BMP(s) based on Section 7.7 of the BMP Design Manual
- Attachment 3b is not required for preliminary design / planning / CEQA level submittal.

Final Design level submittal:

Attachment 3a must identify:

- X Specific maintenance indicators and actions for proposed structural BMP(s). This shall be based on Section 7.7 of the BMP Design Manual and enhanced to reflect actual proposed components of the structural BMP(s)
- How to access the structural BMP(s) to inspect and perform maintenance
- □ Features that are provided to facilitate inspection (e.g., observation ports, cleanouts, silt posts, or other features that allow the inspector to view necessary components of the structural BMP and compare to maintenance thresholds)
- □ Manufacturer and part number for proprietary parts of structural BMP(s) when applicable
- □ Maintenance thresholds specific to the structural BMP(s), with a location-specific frame of reference (e.g., level of accumulated materials that triggers removal of the materials, to be identified based on viewing marks on silt posts or measured with a survey rod with respect to a fixed benchmark within the BMP)
- □ When applicable, frequency of bioretention soil media replacement
- □ Recommended equipment to perform maintenance
- □ When applicable, necessary special training or certification requirements for inspection and maintenance personnel such as confined space entry or hazardous waste management

Attachment 3b: For private entity operation and maintenance, Attachment 3b must include a Storm Water Management and Discharge Control Maintenance Agreement (Form DS-3247). The following information must be included in the exhibits attached to the maintenance agreement:

- □ Vicinity map
- □ Site design BMPs for which DCV reduction is claimed for meeting the pollutant control obligations.
- □ BMP and HMP location and dimensions
- BMP and HMP specifications/cross section/model
- □ Maintenance recommendations and frequency
- LID features such as (permeable paver and LS location, dim, SF).

THE CITY OF SAN DIEGO RECORDING REQUESTED BY THE CITY OF SAN DIEGO AND WHEN RECORDED MAIL T	: 'O:					
	(THIS SPACE IS FOR TH	E RECORDER'S USE ONLY)				
STORM WATER MANAGEME	INT AND DISCHARGE CONTROL	MAINTENANCE AGREEMENT				
APPROVAL NUMBER:	ASSESSOR'S PARCEL NUMBER:	PROJECT NUMBER:				
	Click or tap here to enter text.	Click or tap here to enter text.				
This agreement is made by and betwe enter text.	en the City of San Diego, a municipal cor	poration [City] and Click or tap here to				
the owner or duly authorized represer	tative of the owner [Property Owner] of Click or tap here to enter text.	property located at:				
(PROPERTY ADDRESS) and more particularly described as: Click or tap here to enter text.						
	(LEGAL DESCRIPTION OF PROPERTY)					
in the City of San Diego, County of S	an Diego, State of California.					

Property Owner is required pursuant to the City of San Diego Municipal Code, Chapter 4, Article 3, Division 3, Chapter 14, Article 2, Division 2, and the Land Development Manual, Storm Water Standards to enter into a Storm Water Management and Discharge Control Maintenance Agreement [Maintenance Agreement] for the installation and maintenance of Permanent Storm Water Best Management Practices [Permanent Storm Water BMP's] prior to the issuance of construction permits. The Maintenance Agreement is intended to ensure the establishment and maintenance of Permanent Storm Water BMP's onsite, as described in the attached exhibit(s), the project's Storm Water Quality Management Plan [SWQMP] and Grading and/or Improvement Plan Drawing No(s), or Building Plan Project No(s): Click or tap here to enter text.

Property Owner wishes to obtain a building or engineering permit according to the Grading and/or Improvement Plan Drawing No(s) or Building Plan Project No(s): Click or tap here to enter text.

Continued on Page 2

Page 2 of 2 City of San Diego • Development Services Department • Storm Water Requirements Applicability Checklist

NOW, THEREFORE, the parties agree as follows:

- 1. Property Owner shall have prepared, or if qualified, shall prepare an Operation and Maintenance Procedure [OMP] for Permanent Storm Water BMP's, satisfactory to the City, according to the attached exhibit(s), consistent with the Grading and/or Improvement Plan Drawing No(s), or Building Plan Project No(s):Click or tap here to enter text.
- 2. Property Owner shall install, maintain and repair or replace all Permanent Storm Water BMP's within their property, according to the OMP guidelines as described in the attached exhibit(s), the project's WQTR and Grading and/or Improvement Plan Drawing No(s), or Building Plan Project No(s)Click or tap here to enter text.
- 3. Property Owner shall maintain operation and maintenance records for at least five (5) years. These records shall be made available to the City for inspection upon request at any time.

This Maintenance Agreement shall commence upon execution of this document by all parties named hereon, and shall run with the land.

Executed by the City of San Diego and by Property Owner in San Diego, California.

(Owner Signature)	- THE CITY OF SAN DIEGO APPROVED:	
Print Name and Title)		
	(City Control engineer Signature	
npany/Organization Name)		
	(Print Name)	
(Date)		
	(Date)	

If These Sources Will Be on the Project Site	Then Your SWQMP Shall Consider These Source Control BMPs				
1 Potential Sources of Runoff Pollutants	2 Permanent Controls—Show on Drawings	3 Permanent Controls—List in Table and Narrative	4 Operational BMPs—Include in Table and Narrative		
 A. Onsite storm drain inlets Not Applicable 	Locations of inlets.	Mark all inlets with the words "No Dumping! Flows to Bay" or similar.	 Maintain and periodically repaint or replace inlet markings. Provide storm water pollution prevention information to new site owners, lessees, or operators. See applicable operational BMPs in Fact Sheet SC-44, "Drainage System Maintenance," in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com. Include the following in lease agreements: "Tenant shall not allow anyone to discharge anything to storm drains or to store or deposit materials so as to create a potential discharge to storm drains." 		

If These Sources Will Be on the Project Site	Then Your SWQMP shall consider These Source Control BMPs			
1 Potential Sources of Runoff Pollutants	2 Permanent Controls—Show on Drawings	3 Permanent Controls—List in Table and Narrative	4 Operational BMPs—Include in Table and Narrative	
B. Interior floor drains and elevator shaft sump pumpsNot Applicable		State that interior floor drains and elevator shaft sump pumps will be plumbed to sanitary sewer.	Inspect and maintain drains to prevent blockages and overflow.	
C. Interior parking garagesNot Applicable		State that parking garage floor drains will be plumbed to the sanitary sewer.	Inspect and maintain drains to prevent blockages and overflow.	
 D1. Need for future indoor & structural pest control Not Applicable 		Note building design features that discourage entry of pests.	Provide Integrated Pest Management information to owners, lessees, and operators.	

If These Sources Will Be on the Project Site	Then Your SWQMP shall consider These Source Control BMPs				
1 Potential Sources of Runoff Pollutants	2 Permanent Controls—Show on Drawings	3 Permanent Controls—List in Table and Narrative	4 Operational BMPs—Include in Table and Narrative		
 D2. Landscape/ Outdoor Pesticide Use Not Applicable 	 Show locations of existing trees or areas of shrubs and ground cover to be undisturbed and retained. Show self-retaining landscape areas, if any. Show storm water treatment facilities. 	 State that final landscape plans will accomplish all of the following. Preserve existing drought tolerant trees, shrubs, and ground cover to the maximum extent possible. Design landscaping to minimize irrigation and runoff, to promote surface infiltration where appropriate, and to minimize the use of fertilizers and pesticides that can contribute to storm water pollution. Where landscaped areas are used to retain or detain storm water, specify plants that are tolerant of periodic saturated soil conditions. Consider using pest-resistant plants, especially adjacent to hardscape. To ensure successful establishment, select plants appropriate to site soils, slopes, climate, sun, wind, rain, land use, air movement, ecological consistency, and plant interactions. 	 Maintain landscaping using minimum or no pesticides. See applicable operational BMPs in Fact Sheet SC-41, "Building and Grounds Maintenance," in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com. Provide IPM information to new owners, lessees and operators. 		

If These Sources Will Be on the Project Site	Then Your SWQMP shall consider These Source Control BMPs				
1 Potential Sources of Runoff Pollutants	2 Permanent Controls—Show on Drawings	3 Permanent Controls—List in Table and Narrative	4 Operational BMPs—Include in Table and Narrative		
 E. Pools, spas, ponds, decorative fountains, and other water features. Mot Applicable 	□ Show location of water feature and a sanitary sewer cleanout in an accessible area within 10 feet.	□ If the local municipality requires pools to be plumbed to the sanitary sewer, place a note on the plans and state in the narrative that this connection will be made according to local requirements.	□ See applicable operational BMPs in Fact Sheet SC-72, "Fountain and Pool Maintenance," in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com.		
F. Food serviceNot Applicable	 For restaurants, grocery stores, and other food service operations, show location (indoors or in a covered area outdoors) of a floor sink or other area for cleaning floor mats, containers, and equipment. On the drawing, show a note that this drain will be connected to a grease interceptor before discharging to the sanitary sewer. 	 Describe the location and features of the designated cleaning area. Describe the items to be cleaned in this facility and how it has been sized to ensure that the largest items can be accommodated. 			

If These Sources Will Be on the Project Site	Then Your SWQMP shall consider These Source Control BMPs					
1 Potential Sources of Runoff Pollutants	2 Permanent Controls—Show on Drawings	3 Permanent Controls—List in Table and Narrative	4 Operational BMPs—Include in Table and Narrative			
□ G. Refuse areas ⊠ Not Applicable	 Show where site refuse and recycled materials will be handled and stored for pickup. See local municipal requirements for sizes and other details of refuse areas. If dumpsters or other receptacles are outdoors, show how the designated area will be covered, graded, and paved to prevent runon and show locations of berms to prevent runoff from the area. Also show how the designated area will be protected from wind dispersal. Any drains from dumpsters, compactors, and tallow bin areas shall be connected to a grease removal device before discharge to sanitary sewer. 	 State how site refuse will be handled and provide supporting detail to what is shown on plans. State that signs will be posted on or near dumpsters with the words "Do not dump hazardous materials here" or similar. 	□ State how the following will be implemented: Provide adequate number of receptacles. Inspect receptacles regularly; repair or replace leaky receptacles. Keep receptacles covered. Prohibit/prevent dumping of liquid or hazardous wastes. Post "no hazardous materials" signs. Inspect and pick up litter daily and clean up spills immediately. Keep spill control materials available on- site. See Fact Sheet SC-34, "Waste Handling and Disposal" in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com.			

If These Sources Will Be on the Project Site	Then Your SWQMP shall consider These Source Control BMPs				
1 Potential Sources of Runoff Pollutants	2 Permanent Controls—Show on Drawings	3 Permanent Controls—List in Table and Narrative	4 Operational BMPs—Include in Table and Narrative		
H. Industrial processes.Not Applicable	□ Show process area.	□ If industrial processes are to be located onsite, state: "All process activities to be performed indoors. No processes to drain to exterior or to storm drain system."	□ See Fact Sheet SC-10, "Non- Stormwater Discharges" in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com.		
 I. Outdoor storage of equipment or materials. (See rows J and K for source control measures for vehicle cleaning, repair, and maintenance.) Not Applicable 	 Show any outdoor storage areas, including how materials will be covered. Show how areas will be graded and bermed to prevent runon or runoff from area and protected from wind dispersal. Storage of non-hazardous liquids shall be covered by a roof and/or drain to the sanitary sewer system, and be contained by berms, dikes, liners, or vaults. Storage of hazardous materials and wastes must be in compliance with the local hazardous materials ordinance and a Hazardous Materials Management Plan for the site. 	 Include a detailed description of materials to be stored, storage areas, and structural features to prevent pollutants from entering storm drains. Where appropriate, reference documentation of compliance with the requirements of local Hazardous Materials Programs for: Hazardous Materials Programs for: Hazardous Materials Release Response and Inventory California Accidental Release Prevention Program Aboveground Storage Tank Uniform Fire Code Article 80 Section 103(b) & (c) 1991 Underground Storage Tank 	□ See the Fact Sheets SC-31, "Outdoor Liquid Container Storage" and SC-33, "Outdoor Storage of Raw Materials" in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com.		

If These Sources Will Be on the Project Site	Then Your SWQMP shall consider These Source Control BMPs				
1 Potential Sources of Runoff Pollutants	2 Permanent Controls—Show on Drawings	3 Permanent Controls—List in Table and Narrative	4 Operational BMPs—Include in Table and Narrative		
 □ J. Vehicle and Equipment Cleaning ☑ Not Applicable 	 Show on drawings as appropriate: Commercial/industrial facilities having vehicle /equipment cleaning needs shall either provide a covered, bermed area for washing activities or discourage vehicle/equipment washing by removing hose bibs and installing signs prohibiting such uses. Multi-dwelling complexes shall have a paved, bermed, and covered car wash area (unless car washing is prohibited onsite and hoses are provided with an automatic shutoff to discourage such use). Washing areas for cars, vehicles, and equipment shall be paved, designed to prevent run-on to or runoff from the area, and plumbed to drain to the sanitary sewer. Commercial car wash facilities shall be designed such that no runoff from the facility is discharged to the storm drain system. Wastewater from the facility shall discharge to the sanitary sewer, or a wastewater reclamation system shall be installed. 	□ If a car wash area is not provided, describe measures taken to discourage onsite car washing and explain how these will be enforced.	Describe operational measures to implement the following (if applicable): Washwater from vehicle and equipment washing operations shall not be discharged to the storm drain system. Car dealerships and similar may rinse cars with water only. See Fact Sheet SC-21, "Vehicle and Equipment Cleaning," in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com		

If These Sources Will Be on the Project Site	Then Your SWQMP shall co	nsider These Source Control BM	(Ps
1 Potential Sources of Runoff Pollutants K. Vehicle/Equipment Repair	2 Permanent Controls—Show on Drawings Accommodate all vehicle	 3 Permanent Controls—List in Table and Narrative State that no vehicle repair or provide and provid	4 Operational BMPs—Include in Table and Narrative In the report, note that all of the following systematics apply to use the
Image: And Maintenance Image: Applicable Image: Applicable	 equipment repair and maintenance indoors. Or designate an outdoor work area and design the area to protect from rainfall, run-on runoff, and wind dispersal. Show secondary containment for exterior work areas where motor oil, brake fluid, gasoline, diesel fuel, radiator fluid, acid-containing batteries or other hazardous materials or hazardous wastes are used or stored. Drains shall not be installed within the secondary containment areas. Add a note on the plans that states either (1) there are no floor drains, or (2) floor drains are connected to wastewater pretreatment systems prior to discharge to the sanitary sewer and an industrial waste discharge permit will be obtained. 	 maintenance will be done outdoors, or else describe the required features of the outdoor work area. State that there are no floor drains or if there are floor drains, note the agency from which an industrial waste discharge permit will be obtained and that the design meets that agency's requirements. State that there are no tanks, containers or sinks to be used for parts cleaning or rinsing or, if there are, note the agency from which an industrial waste discharge permit will be obtained and that the design meets that agency's requirements. 	 In No person shall dispose of, nor permit the disposal, directly or indirectly of vehicle fluids, hazardous materials, or rinsewater from parts cleaning into storm drains. In No vehicle fluid removal shall be performed outside a building, nor on asphalt or ground surfaces, whether inside or outside a building, except in such a manner as to ensure that any spilled fluid will be in an area of secondary containment. Leaking vehicle fluids shall be contained or drained from the vehicle immediately. In No person shall leave unattended drip parts or other open containers containing vehicle fluid, unless such containers are in use or in an area of secondary containment.

If These Sources Will Be on the Project Site	Then Your SWQMP shall co	Then Your SWQMP shall consider These Source Control BMPs						
1 Potential Sources of Runoff Pollutants	2 Permanent Controls—Show on Drawings	3 Permanent Controls—List in Table and Narrative	4 Operational BMPs—Include in Table and Narrative					
 L. Fuel Dispensing Areas Not Applicable 	 Fueling areas¹ shall have impermeable floors (i.e., portland cement concrete or equivalent smooth impervious surface) that are (1) graded at the minimum slope necessary to prevent ponding; and (2) separated from the rest of the site by a grade break that prevents run-on of storm water to the MEP. Fueling areas shall be covered by a canopy that extends a minimum of ten feet in each direction from each pump. [Alternative: The fueling area must be covered and the cover's minimum dimensions must be equal to or greater than the area within the grade break or fuel dispensing area1.] The canopy [or cover] shall not drain onto the fueling area. 		 The property owner shall dry sweep the fueling area routinely. See the Business Guide Sheet, "Automotive Service—Service Stations" in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com. 					

The fueling area shall be defined as the area extending a minimum of 6.5 feet from the corner of each fuel dispenser or the length at which the hose and nozzle assembly may be operated plus a minimum of one foot, whichever is greater.

If These Sources Will Be on the Project Site	Then Your SWQMP shall co	onsider These Source Control B	MPs
1 Potential Sources of Runoff Pollutants	2 Permanent Controls—Show on Drawings	3 Permanent Controls—List in Table and Narrative	4 Operational BMPs—Include in Table and Narrative
M. Loading Docks Not Applicable	 Show a preliminary design for the loading dock area, including roofing and drainage. Loading docks shall be covered and/or graded to minimize run-on to and runoff from the loading area. Roof downspouts shall be positioned to direct storm water away from the loading area. Water from loading dock areas should be drained to the sanitary sewer where feasible. Direct connections to storm drains from depressed loading docks are prohibited. Loading dock areas draining directly to the sanitary sewer shall be equipped with a spill control valve or equivalent device, which shall be kept closed during periods of operation. Provide a roof overhang over the loading area or install door skirts (cowling) at each bay that enclose the end of the trailer. 		 Move loaded and unloaded items indoors as soon as possible. See Fact Sheet SC-30, "Outdoor Loading and Unloading," in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com.

If These Sources Will Be on the Project Site	Then Your SWQMP shall consider These Source Control BMPs					
1 Potential Sources of Runoff Pollutants	2 Permanent Controls—Show on Drawings	3 Permanent Controls—List in Table and Narrative	4 Operational BMPs—Include in Table and Narrative			
 N. Fire Sprinkler Test Water Not Applicable 		Provide a means to drain fire sprinkler test water to the sanitary sewer.	See the note in Fact Sheet SC- 41, "Building and Grounds Maintenance," in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com.			

O. 1	Aiscellaneous Drain or Wash	Boiler drain lines shall be
Wat	er	directly or indirectly connected to
X	Boiler drain lines	the sanitary sewer system and may
X	Condensate drain lines	not discharge to the storm drain
X	Rooftop equipment	system.
X	Drainage sumps	Condensate drain lines may
Х	Roofing, gutters, and trim	discharge to landscaped areas if the
		flow is small enough that runoff will
	Not Applicable	not occur. Condensate drain lines
		may not discharge to the storm
		drain system.
		Rooftop mounted equipment
		with potential to produce pollutants
		shall be roofed and/or have
		secondary containment.
		Any drainage sumps onsite
		shall feature a sediment sump to
		reduce the quantity of sediment in
		pumped water.
		Avoid roofing, gutters, and
		trim made of copper or other
		unprotected metals that may leach
		into runoff.

If These Sources Will Be on the Project Site	Then Your SWQMP shall co	onsider These Source Control BN	ЛРs
1 Potential Sources of Runoff Pollutants	2 Permanent Controls—Show on Drawings	3 Permanent Controls—List in Table and Narrative	4 Operational BMPs—Include in Table and Narrative
 P. Plazas, sidewalks, and parking lots. Not Applicable 			 Plazas, sidewalks, and parking lots shall be swept regularly to prevent the accumulation of litter and debris. Debris from pressure washing shall be collected to prevent entry into the storm drain system. Washwater containing any cleaning agent or degreaser shall be collected and discharged to the sanitary sewer and not discharged to a storm drain.

ATTACHMENT 4 COPY OF PLAN SHEETS SHOWING PERMANENT STORM WATER BMPS

This is the cover sheet for Attachment 4.

THIS PAGE INTENTIONALLY LEFT BLANK FOR DOUBLE-SIDED PRINTING

Use this checklist to ensure the required information has been included on the plans:

The plans must identify:

- X Structural BMP(s) with ID numbers matching Form I-6 Summary of PDP Structural BMPs
- X The grading and drainage design shown on the plans must be consistent with the delineation of DMAs shown on the DMA exhibit
- X Details and specifications for construction of structural BMP(s)
- X Signage indicating the location and boundary of structural BMP(s) as required by the City Engineer
- X How to access the structural BMP(s) to inspect and perform maintenance
- X Features that are provided to facilitate inspection (e.g., observation ports, cleanouts, silt posts, or other features that allow the inspector to view necessary components of the structural BMP and compare to maintenance thresholds)
- □ Manufacturer and part number for proprietary parts of structural BMP(s) when applicable
- X Maintenance thresholds specific to the structural BMP(s), with a location-specific frame of reference (e.g., level of accumulated materials that triggers removal of the materials, to be identified based on viewing marks on silt posts or measured with a survey rod with respect to a fixed benchmark within the BMP)
- X Recommended equipment to perform maintenance
- □ When applicable, necessary special training or certification requirements for inspection and maintenance personnel such as confined space entry or hazardous waste management
 - Include landscaping plan sheets showing vegetation requirements for vegetated structural BMP(s)
- X All BMPs must be fully dimensioned on the plans
- □ When propritery BMPs are used, site specific cross section with outflow, inflow and model number shall be provided. Broucher photocopies are not allowed.

THIS PAGE INTENTIONALLY LEFT BLANK FOR DOUBLE-SIDED PRINTING

6213 MONTEZUMA MULTI-FAMILY PDP/CUP

GENERAL NOTES

- DEVELOPMENT DESCRIPTION: CONSTRUCTION OF A FIVE (5) STORY BUILDING WITH ONE HUNDRED AND TWENTY EIGHT (128) BEDROOM SUITES OVER 3 LEVELS OF UNDERGROUND PARKING GARAGE ON A VACANT PARCEL OF 0.285 ACRES.
- 2.
- ZONING AND PARCEL INFORMATION: a. BASIC ZONE: RM-3-9 b. COMMUNITY PLAN: COLLEGE AREA COMMUNITY PLANNING AREA c. OVERLAY ZONES: AIRPORT INFLUENCE AREA DEDRIVE UPDATC
- -PARKING IMPACT

- --PARKING IMPACT d. ENVIRONMENTALLY SENSITIVE LANDS: -NOT APPLICABLE TO SITE e. PERMITTED LAND USE: RESIDENTIAL f. DEVELOPMENT REGULATIONS (PER TABLE 131-04G); --MAXIMUM DENSITY ALLOWED: 1 DWELLING UNIT PER 600 S.F. OF LOT AREA --MINIMUM LOT AREA: 7,000 SQUARE FEET --STERACYS: -SETBACKS:
- FRONT SETBACK: MINIMUM 10' FOR UP TO 50% OF THE WIDTH OF BUILDING ENVELOPE, PROVIDED THE REMAINING PERCENTAGE OF THE BUILDING ENVELOPE WIDTH OBSERVES THE STANDARD 20 FOOT SETBACK SIDE SETBACK: MINIMUM 5' OR 10% OF THE PREMISES WIDTH
- REAR SETBACK: 5' -MAXIMUM STRUCTURE HEIGHT: 60 FEET
- -MAXIMUM FLOOR AREA RATIO: 2.9
- 3. <u>PERMITS REQUESTED:</u> a CONDITIONAL USE PERMIT FOR:
- 1. STUDENT DORMITORY, SUBJECT TO SDMC SECTIONS 141.0304 AND 131.0422
- PLANNED DEVELOPMENT PERMIT FOR: b.
- DEVIATIONS FOR 27% PARKING REDUCTION, FROM 78 SPACES TO 57 SPACES
- 4. BUILDING DATA LONGING DATA: FIVE (5) STORY BUILDING WITH THREE (3) LEVELS OF UNDERGROUND PARKING FOR RENTAL COMMUNITY HOUSING WITH SHARED LIVING & OUTDOOR OPEN SPACE BUILDING HEIGHT: 56'-0' WITH DEVIATION REQUESTED FOR ELEVATOR
- OVERHEAD AT 58'-3" TO ALLOW ACCESSIBLE ACCESS TO ROOFTOP AREA 128 BEDROOM SUITES:

COMMON ACCESSIBLE BATHROOM: OFFICE: LAUNDRY ROOM:

- GARAGE UNDERGROUND PARKING DATA: PROPOSED NUMBER OF OFF-STREET HANDICAPPED PARKING: 3 SPACES PROPOSED NUMBER OF OFF-STREET STANDARD PARKING: 54 SPACES TOTAL: 57 SPACES 5. PROJECT WILL PROVIDE FOR FORTY (40) BICYCLE SPACES.
- PROJECT WILL PROVIDE FOR EIGHT (8) MOTORCYCLE SPACES
- SEWER AND WATER SERVICES: SEWER AND WATER SERVICES ARE PROVIDED BY THE CITY OF SAN DIEGO. ON-SITE SEWER AND WATER SYSTEMS WILL BE PRIVATE AND SHALL CONFORM TO THE CITY OF SAN DIEGO STANDARDS AND UNIFORM PLUMBING CODE. 6.
- DRAINAGE SYSTEM: WATER WILL BE DISPOSED OF BY SURFACE FLOW AND UNDERGROUND STORM DRAIN SYSTEM. THE DRAINAGE SYSTEM SHOWN IS CONCEPTUAL, THE FINAL DRAINAGE DESIGN SHALL CONFORM TO THE CITY OF SAN DIEGO STANDARDS. 7.
- 8. SERVICES: THE GAS AND ELECTRIC POWER IS PROVIDED BY SAN DIEGO GAS AND ELECTRIC COMPANY. THE GAS AND ELECTRIC FOWER IS PROVIDED BY SAN DIEGO GAS AND ELECTRIC COMPANI-THE FLEEHENDE SERVICE IS PROVIDED BY SBC COMMUNICATIONS. SCHOOL SERVICE IS PROVIDED BY SAN DIEGO UNIFIED SCHOOL DISTRICT. FIRE SERVICE IS PROVIDED BY THE CITY OF SAN DIEGO FIRE DEPARTMENT.
- 9. GRADING AND LANDSCAPING
- <u>GRADING AND LANDSCAPING:</u> THE PROPOSED PRELIMINARY GRADING IS SUBJECT TO REVISIONS DURING FINAL DESIGN. CUT OF APPROXIMATELY 11,600 CUBIC YARDS AND FILL OF APPROXIMATELY 0.00 CUBIC YARDS OF MATERIAL WILL BE REQUIRED ON SITE. CUT AND FILL QUANTITIES ARE SUBJECT TO CHANGE DURING FINAL DESIGN. THE MAXIMUM SLOPE GRADIENT WILL BE 2:1. ALL SLOPES SHALL BE ROUNDED IN ACCORDANCE WITH CITY DESIGN STANDARDS. ALL CUT AND FILL BALKS WILL BE PROPERLY LANDSCAPED, IRRIGATED AND MAINTAINED, IN ACCORDANCE WITH CITY STANDARDS.
- 10. CONTOURS SHOWN WERE DERIVED FROM AN AERIAL TOPOGRAPHY DATED 10-29-15 BY SAN-LO AERIAL SURVEYS AND JP ENGINEERING, INC..
- ENGINEER OF WORK: JP ENGINEERING, INC. 11. 4849 RONSON COURT. SUITE 105 SAN DIEGO, CA 9211 TELEPHONE: (619) 569-7377
- No. 3203 Allolin 12/31/18 DATE: 03-09-17 JORGE H. PALACIOS, R.C.E. 32031

DATUM: M.S

BENCH MARK DESCRIPTION: BRASS PLUC LOCATION: NORTHWEST CORNER OF MONTEZUMA ROAD AND E. FALLS VIEW DR. RECORD FROM: CITY OF SAN DIEGO

NOTES:

- ALL DRIVEWAYS SHALL CONFORM TO MUNICIPAL CODE SECTION 142.0560 (j()9)(c) AND DIACRAM 142-05D. DRIVEWAY SLOPES GREATER THAN 14% SHALL HAVE TRANSITIONS FOR THE FIRST AND LAST 8 FEET OF THE RAMP A DETAILED DRIVEWAY PROFILE WILL BE SHOWN IN THE FINAL CONSTRUCTION FOR THE SHOWN IN THE FINAL CONSTRUCTION FOR FINAL FOR FI PLANS TO VERIFY THE PROPOSED DRIVEWAY WILL ADHERE TO THE MUNICIPA CODE
- 2. VISIBILITY AREA TRIANGLES DETAILS SHALL BE SHOWN IN THE FINAL CONSTRUCTION PLANS AT THE DRIVEWAYS PER MUNICIPAL CODE SECTION 113-0237, DIAGRAW 113-025S. THE VISIBILITY AREA SHALL EXTEND 10 FEET INWARD ONTO PRIVATE PROPERTY ALONG THE DRIVEWAY AND ALONG THE PROPERTY LINE. NO OBSTRUCTION, INCLUDING LANDSCAPING OR SOLID WALLS IN THE VISIBILITY AREA SHALL EXCEED 3 FEET IN HEIGHT.
- 3. THE DEVELOPER SHALL UNDERGROUND PROPOSED PUBLIC UTILITY SYSTEMS AND SERVICE FACILITIES IN ACCORDANCE WITH THE SAN DIEGO MUNICIPAL CODE
- 4. THE COLOR OF THE RETAINING WALLS SHALL BLEND WITH THE NATURAL TERRAIN AND THE COLOR OF THE STRUCTURES ON THE SITE.
- 5. THE MINIMUM TREE OR SHRUB SEPARATION DISTANCES SHALL BE AS TRAFFIC SIGNAL, STOP SIGN - 20 FEET
- UNDERGROUND UTILITY LINES (EXCEPT SEWER) 5 FEET
- SEWER LINES 10 FEET ABOVE GROUND UTILITY STRUCTURES 10 FEET
- DRIVEWAYS 10 FEE - INTERSECTIONS (INTERSECTION CURB LINES OF TWO STREETS) - 25 FEET
- <u>BUILDING ADDRESS</u>: PROVIDE BUILDING ADDRESS NUMBERS, VISIBLE AND LEGIBLE FROM THE STREET OR ROAD FRONTING THE PROPERTY PER SDMC SECTION 95.0209
- 7. BUS STOPS: BUS STOPS ARE LOCATED IN THE VICINITY OF THE DEVELOPMENT.
- <u>TRASH RECEPTACLES:</u> TRASH RECEPTACLES WILL BE LOCATED IN EACH FLOOR WITH MAIN STORAGE FOR REFUSE AND RECYCLEABLE MATERIAL ON GARAGE LEVEL 1.
- PRIOR TO THE ISSUANCE OF ANY CONSTRUCTION PERMIT, THE OWNER/PERMITTEE SHALL ENTER INTO A MAINTENANCE AGREEMENT FOR THE ONCOMO PERMANENT BMP MAINTENANCE, SATISFACTORY TO THE CITY EXCINCT. ENGINEER
- 10. PRIOR TO THE ISSUANCE OF ANY CONSTRUCTION PERMIT, THE OWNER/PERMITTE SHALL INCORPORATE ANY CONSTRUCTION BEST MANAGEMENT PRACTICES NECESSARY TO COMPLY WITH CHAPTER 14, ARTICLE 2, DIVISION 1 (GRADING REGULATIONS) OF THE SAN DIEGO MUNICIPAL CODE, INTO THE CONSTRUCTION PLANS OR SPECIFICATIONS.
- 11. PRIOR TO THE ISSUANCE OF ANY CONSTRUCTION PERMIT, THE OWNER/PERMITE SHALL SUMMITA WATER FOLLUTION CONTROL PLAN (WPCP). THE WPCP SHALL BE PREPARED IN ACCORDANCE WITH THE GUIDELINES IN PART 2 CONSTRUCTION BMP STANDARDS CHAPTER 4 OF THE CITY'S STORM WATER STANDARDS.
- 12. ALL GRADED, DISTURGED, OR ERODED AREA THAT WILL NOT BE PERMANENTLY PAVED, COVERED BY STRUCTURE, OR PLANTED FOR A PERIOD OVER 90 CALENDAR DAYS SHALL BE TEMPORARILY REVEGETATED WITH A NON-IRRIGATED HYDROSEED MIX. ALL REQUIRED REVEGETATION AND ROSIGN CONTROL SHALL BE COMPLETED WITH IN 90 CALENDAR DAYS OF THE COMPLETION OF GRADING OR DISTURBANCE. PLEASE PROVIDE DETAILS OF A PROVISIONAL HYDROSEED MIX, INDICATING SEED MIX BOTANICAL NAMES, POUNDS PER ACRE, PERCENT PURE LIVE SEED AND TOTAL POUNDS PER ACRE, INCLUDING SPECIFICATIONS FOR APPLICANT.

LEGAL DESCRIPTION

THE LAND REFERRED TO HEREIN BELOW IS SITUATED IN THE CITY OF SAN DIEGO, IN THE COUNTY OF SAN DIEGO, STATE OF CALIFORNIA, AND IS DESCRIBED AS FOLLOWS:

NO SCALE

LOTS 188 AND 189 OF COLLWOOD PARK UNIT NO. 2, IN THE CITY OF SAN DIEGO, COUNTY OF SAN DIEGO, STATE OF CALIFORNIA, ACCORDING TO MAP NO. 2495, FILED IN THE OFFICE OF THE COUNTY RECORDER OF SAN DIEGO COUNTY, AUGUST 12, 1948, TOGETHER WITH THAT PORTION OF THE SOUTH 6.00 FEET OF MONTEZUMA ROAD ADJOINING SAID LOTS ON THE NORTH AS CLOSED TO PUBLIC USE BY RESOLUTION NO. 184453, RECORDED AUGUST 06, 1965 AS INSTRUMENT NO. 141427 OF OFFICIAL RECORDS.

A.P.N.: 467-171-28-00 AND 467-171-29-00

SHEET INDEX

SHEET NO.	 DWG_NO.	<u>117LE</u>
1	C-1	TITLE SHEET, STREET TYPICAL SECTION AND NOTES
2	C-2	PROPERTY BOUNDARY, TOPOGRAPHY, EXISTING EASEMENTS AND SLOPE ANALYSIS
3	C-3	PRELIMINARY GRADING PLAN

EXISTING UNCOMPACTED

4"Ø PVC PERFORATED PIPE

≥

INSTALL MARATHON III TURF AND/OR AS RECOMMENDED BY THE LANDSCAPE ARCHITECT 3.0' MIN /EGETATED SWALE @ 1% MIN.

2%

2%

VEGETATED SWALE DETAIL

- PERMEABLE FILTER FABRIC 18" A-1 BIORETENTION SOIL BY HANSON OR EQUAL) FILTER FABRIC AROUND GRAVEL

IMPERMEABLE MEMBRANE (30 MIL CLEAR POLYETHYLENE) SHEETING OR FOLIAL (SIDEWALLS OF A-1 SOIL AND CRUSHED ROCK)

-EXIST. GROUND

PERMEABLE FILTER FABRIC

18" A-1 BIORETENTION SOIL

FILTER FABRIC AROUND GRAVEL

IMPERMEABLE MEMBRANE (30 MIL

CLEAR POLYETHYLENE) SHEETING OR EQUAL, (SIDEWALLS OF A-1

SOIL AND CRUSHED ROCK)

3/4" CRUSHED ROCK -

EXISTING UNCOMPACTED -

4"ø PVC PERFORATED PIPE -

- EXIST. GROUND

BY HANSON OR EQUAL)

3/4" CRUSHED ROCK -

LEGEN									-		2		-15 -15
RIGHT OF	Y BOUNDARY	 	• • •					-	H		Ľ		ct N 999-
ADJACEN	T LOT LINE					—		_	0)		0		roje
EXISTING	CONTOUR LINE						-455		ΗΥ,	S	Y	8	<u> </u>
EXISTING	CONCRETE CURB							_	RAP	r x	AMI	29-	330
EXISTING	CONCRETE SIDEWALK.						CONC.	-	DOG	ANA	Ŷ	7-	ĕ
EXISTING	AC DRIVEWAY					· [AC	-	5 2	Å	11	2-	69
EXISTING	RETAINING WALL						455		NILS	2	M	\$ 4	8)5
EXISTING	TOP OF CURB ELEVAT	TION			••••		455.42 E		Ĕ	AN	МA	ŝ	(85
EXISTING	FLOWLINE ELEVATION.						465.62		RY,	ñ	ΩZ.	28-	×
EXISTING	TOP OF WALL ELEVAT	TION				• •			NDA	ME	21	7-	FΑ
EXISTING	SPOT ELEVATION						× ^{456.7}		BOU	EASE	ЮW	7-1	5
EXISTING	FENCE					· ·	— x —	-	ž	ŝ	5	46	737
EXISTING	ROOF OVERHANG				• • • •	. —		-	PER	ILSI	62	P.N	6
EXISTING	EASEMENT					· —		-	PR	۵	ШN	A)56
EXIST CEN	NTERLINE					· —	- <u>e</u>	- 5	-		₹Z		358
EXISTING	FIREHYDRANT	• • • • •				• •	Ř		_		LEC1		3
EXISTING	WATER MAIN		• • • •		• • • •	· ·	— W —	- 1			PRO		-
EXISTING	SEWER MAIN		• • • •			· ·	— s ——	- [₽		<u>م</u>	17	1
EXISTING	GAS MAIN.					·	— G ——	-	5	¥	ㅎ	-60	321
	UNDERGROUND ELECTRICA	IL RICAI				•		- 6	5		_	03-	۶,
FXISTING	SEWER MANHOLF.					· · ·	— UE ——	- 00		AWN	ECK	ATE	U,
EXISTING	POWER POLE							2	3 8	ř.	Ъ	à	0 S
EXISTING	WATER SERVICE AND	METER BO	ox					n)	2	l s	ļ	-	B
EXISTING	SEWER LATERAL						— s — (!	s,	oce	ACIO	:	- 60	¥
EXISTING	GAS SERVICE		• • •			· ·	— c — (0	12	PAL	31	- 20	S
FOUND LE	EAD AND DISC STAMP	ED "LS 8	733" P	'ER				Ø	H H	Ŧ	320		05,
FOUND LE	EAD AND TACK PER M	MAP 2495							V) RG	ц	Ξ	-
FOUND 5	/8" SQUARE PIN PER						•			13	œ	à	En
CORNER I EQUIND S	RECORD 33586 TREET SURVEY MONUM	AENT PER	ROS	6770				2	5				S
							_						IRT
													ğ
													_
													N
SLOPE ANALYS	IS	IM	IPAC	ts by ge		G	1						NOSN (
SLOPE ANALYS	IS PERCENT(%)	IM ENCRO		TS BY GF	RADIN	G K) OF							RONSON (
SLOPE ANALYS AREA (SQ.FT.)	IS PERCENT(%) OF AREA	IM ENCROA AREA (IPAC	TS BY GF	CENT(9	G %) OF REA							49 RONSON (
SLOPE ANALYS AREA (SQ.FT.) 12,416 12,416	IS PERCENT(%) OF AREA 100%	IM ENCROA AREA (PAC ACHME (SQ. F 12,416	TS BY GF ENT PER('T.) SL(ADIN CENT(9 DPE AI	G %) OF REA							4849 RONSON (
SLOPE ANALYS AREA (SQ.FT.) 12,416 12,416	IS PERCENT(%) OF AREA 100%	IM ENCROA AREA ((PAC ACHME (SQ. F 12,416	TS BY GF ENT PER(T.) SL(ADIN CENT(9 DPE AI	G 8) OF REA							4849 RONSON (
SLOPE ANALYS AREA (SQ.FT.) 12,416 12,416	IS PERCENT(%) OF AREA 100%	IM ENCROA AREA (IPAC ACHME (SQ. F 12,416	TS BY GF	ADIN CENT(9 DPE AI	G \$) OF REA							4849 RONSON (
SLOPE ANALYS AREA (SQ.FT.) 12,416 12,416	IS PERCENT(%) OF AREA 100%	IM ENCROA AREA (1PAC ACHME (SQ. F 12,416	TS BY GF	CENT(9 DPE AI	G Ø) OF REA							NG = 4849 RONSON (
SLOPE ANALYS AREA (SQ.FT.) 12,416 12,416 PROPERT	IS PERCENT(%) OF AREA 100% Y AREA: 12,416	IM ENCROA AREA (IPAC ACHME (SQ. F 12,416	TS BY GF ENT PERC T.) SLC	ADIN CENT(9 DPE AI 100%	G \$) OF REA							EYING = 4849 RONSON (
SLOPE ANALYS AREA (SQ.FT.) 12,416 12,416 PROPERT TOPOGRAF	IS PERCENT(%) OF AREA 1000% Y AREA: 12,416 PHY SOURCE	IN ENCRO/ AREA (IPAC ACHME SQ. F 12,416	TS BY GF ENT PERC SLC - = 0.285	ADIN CENT(9 DPE AI 100%	G %) OF REA							JRVEYING = 4849 RONSON (
SLOPE ANALYS AREA (SQ.FT.) 12,416 12,416 PROPERT TOPOGRAF CONTOURS AN APPE	IS PERCENT(%) OF AREA 100% V AREA: 12,416 PHY SOURCE ND ELEVATIONS WE DID TOPORE DAILY	IN ENCRO/ AREA (SQUARE	IPAC CHME SQ. F 12,416	TS BY GF ENT PERC SLC	ADIN CENT(3 DPE AI 100%	G \$) OF REA			JAIE				SURVEYING = 4849 RONSON (
SLOPE ANALYS AREA (SQ.FT.) 12,416 12,416 PROPERT TOPOCRAP CONTOURS AN AFF ROM AN AFF TOPOCRAP	IS PERCENT(%) OF AREA 100% 100% Y AREA: 12,416 PHY SOURCE ND ELEVATIONS WE SIAL TOPOGRAPHY 'SAN-LO. AERIAL	IN ENCROJ AREA (SQUARE RE DERI DATED SURVEYS	IPAC ACHME SQ. F 12,416	TS BY GF ENT PERC SLC	ADIN CENT(2) DPE AI 100%	G \$) OF REA							 SURVEYING 4849 RONSON
SLOPE ANALYS AREA (SQ.FT.) 12,416 12,416 12,416 12,416 PROPERT TOPOGRAP CONTOURS AN AEF TO_92-15 AND AND	IS PERCENT(%) OF AREA 100% 100% 100% Y AREA: 12,416 12,416 PHY SOURCE 12,416 ND ELEVATIONS WE 12,416 2013 ALL TOPOGRAPHY 12,410 AERIAL V SAN-LO AERIAL VERING, INC.	IN ENCRO/ AREA (SQUARE RE DERI DATED SURVEYS	IPAC ACHME (SQ. F 12,416 : FEET VED S	TS BY GP ENT PERC T.) PERC SLC 	AC	G KEA		ALO DATT					NG = SURVEYING = 4849 RONSON (
SLOPE ANALYS AREA (SQ.FT.) 12,416 12,416 12,416 12,416 PROPERT 10,000 TOPOGRAP 10,000 CONTOURS NO AFF 10,000 ND JP ENGIN 10,000	IS PERCENT(%) OF AREA 100% V AREA: 12,416 PHY SOURCE ND ELEVATIONS WE ALL TOPOGRAPHY SAN-LO AERIAL VEERING, INC.	IN ENCROJ AREA (SQUARE RE DERI DATED SURVEYS	IPAC SQ. F 12,416 12,416 VED S	TS BY GP ENT PERC T.) PERC SLC 	AC	G \$) OF REA							NNING = SURVEYING = 4849 RONSON (
SLOPE ANALYS AREA (SQ.FT.) 12,416 12,416 12,416 12,416 PROPERT 7 TOPOGRAP 7 CONTOURS NO AN AEF 10-29-15 BY AND JP ENGIN 7	IS PERCENT(%) OF AREA 100% V AREA: 12,416 PHY SOURCE ND ELEVATIONS WE XIAL TOPOGRAPHY SAN-LO AERIAL VEERING, INC.	IN ENCRO AREA (SQUARE RE DERI DATED SURVEY:	IPAC ACHME SQ. F 12,416	TS BY GP T.) PERC T.) SLC - = 0.285 Revision 14	AC	G &) OF REA			DI NO. DAIE				LANNING = SURVEYING = 4849 RONSON (
SLOPE ANALYS AREA (SQ.FT.) 12,416 12,416 12,416 12,416 PROPERT 7 TOPOGRAF 7 CONTOURS NO ARD AFROM AN AEF 10-29-15 BY AND JP ENGIN PROPERTS	IS PERCENT(%) OF AREA 100% 100% Y AREA: 12,416 PHY SOURCE ND ELEVATIONS WE XIAL TOPOGRAPHY ' SAN-LO AERIAL NEERING, INC.	IN ENCROA AREA (SQUARE RE DERI DATED SURVEYS	IPAC ACHME SQ. F 12,416	TS BY GF T.) PERC T.) PERC SLC - = 0.285 Revision 14 Revision 13	AC	G S) OF REA							D PLANNING = SURVEYING = 4849 RONSON (
SLOPE ANALYS AREA (SQ.FT.) 12,416 12,416 PROPERT TOPOGRAF CONTOURS AN FROM AN AEE 10-29-15 BY AND JP ENGIN	IS PERCENT(%) OF AREA 100% Y AREA: 12,416 PHY SOURCE WD ELEVATIONS ND ELEVATIONS ND ELEVATIONS ND ELEVATIONS SAN-LO AERIAL NEERING, INC. JP ENGINEERING, IN	IM ENCRO/ AREA (SQUARE RE DERI DATED SURVEY:	IPAC ACHME (SQ. F 12,416 : FEET VED S	TS BY GF T. PERC T. SLO - = 0.285 Revision 14 Revision 12 Revision 12 Revision 12	RADIN CENT(2) 100% 100%	G S) OF REA			DI NO. DAIE				AND PLANNING * SURVEYING * 4849 RONSON (
SLOPE ANALYS AREA (SQ.FT.) 12,416 12,416 12,416 PROPERT TOPOGRAF CONTOURS AN FROM AN AEE 10-29-15 BY AND JP ENGIN Prepared By: Name: Address: 4845	IS PERCENT(%) OF AREA 100% 100% Y AREA: 12,416 PHY SOURCE ND ELEVATIONS WE XAL TOPOGRAPHY ' SAN-LO AERIAL NEERING, INC. JP ENGINEERING, IN P ROBINEERING, IN	IM ENCROJ AREA (SQUARE DATED SURVEY: C.	IPAC ACHME SQ. F 12,416	TS BY GF T. PERC T. SLC - = 0.285 Revision 12 Revision 12 Revision 11 Revision 12 Revision 11	RADIN CENT(2) 100% 100%	G S) OF NEA			DI NU. UAIE				LAND PLANNING - SURVEYING - 4849 RONSON (
SLOPE ANALYS AREA (SQ.FT.) 12,416 12,416 12,416 7 PROPERT TOPOGRAP CONTOURS AN FROM AN AEF 10-29-15 BY AND JP ENGIN Prepared By: Nome: Address: 484 SAN Phone 4 (55)	IS PERCENT(%) OF AREA 100% 100% Y AREA: 12,416 PHY SOURCE ND ELEVATIONS WE RIAL TOPOGRAPHY SAN-LO AERIAL NEERING, INC. UP ENGINEERING, INC. PROSON COURT, SU DIEGO, CA 92111 8) 569-7377	IM ENCROJ AREA (SQUARE DATED DATED DATED SURVEY!	IPAC ACHME SO. F 12,416	TS BY CF T. PERC T. SLC T.	ADIN ENT(2 ID0% 100% AC AC	G K) OF REA							. LAND PLANNING . SURVEYING . 4849 RONSON (
SLOPE ANALYS AREA (SQ.FT.) 12,416 12,416 12,416 12,416 PROPER TO TOPOGRAF CONTOURS AN FROM AN ACE TOPOGRAF 10-29-15 AND JP ENGIN Nome:	IS PERCENT(%) OF AREA 100% 100% Y AREA: 12,416 PHY SOURCE ND ELEVATIONS WE XAL TOPOGRAPHY ' SAN-LO AERIAL VEERING, INC. JP ENGINEERING, IN JP ENGINEERING, IN DIEGO, CA 92111 18) 569-7377 18) 569-0830	IM ENCROJ AREA (SQUARE DATED DATED SURVEY!	IPAC ACHME 12,416	Revision 14 Revision 14 Revision 13 Revision 13 Revision 12 Revision 13 Revision 14 Revision 15 Revision	AC	G K) OF REA							ting = Land Planning = Surveying = 4849 ronson (
SLOPE ANALYS AREA (SQ.FT.) 12,416 12,416 12,416 12,416 PROPER TO TOPOGRAF CONTOURS AN FCOM AN AEF 10 - 29 - 15 BY AND JP ENGIN Propared By: Name:	IS PERCENT(%) OF AREA 100% 100% Y AREA: 12,416 PHY SOURCE ND ELEVATIONS WE RIAL TOPOGRAPHY SAN-LO AERIAL VEERING, INC. JP ENGINEERING, IN PERGINEERING, INC. DEGO, CA 92111 8) 569-7377 18) 569-0830	IM ENCROA AREA (SQUARE RE DERI DATED DATED SURVEY!	IPAC SQ. F 12.416 : FEET VED S	Revision 14 Revision 14 Revision 12 Revision 12 Revision 13 Revision 13 Revision 13 Revision 13 Revision 13 Revision 14 Revision 14 Revision 15 Revision 14 Revision 15 Revision 15 Revision 16 Revision 17 Revision 17 Revisi	AC	G © OF REA							EERING = LAND PLANNING = SURVEYING = 4849 RONSON (
SLOPE ANALYS AREA (SQ.FT.) 12,416 12,416 12,416 12,416 PROPERT 7 TOPOGRAF CONTOURS AN FROM AN AEF FCOM JP ENGIN NON JP ENGIN Prepared By: Name: Address: 4844 Phone #: (85) FAX #: (85) Project Addresse 621	IS PERCENT(%) OF AREA 100% 100% V AREA: 12,416 PHY SOURCE ND ELEVATIONS WE NAL TOPOGRAPHY SAN-LO AERIAL VEERING, INC. JP ENGINEERING, IN PROBOD COURT, Su DIEGO, CA 92111 8) 569-7377 8) 569-0830	IM ENCROY AREA (SQUARE RE DERI DATED DATED SURVEYS C.	ACHMENSOL FEET	Revision 14 Revision 14 Revision 12 Revision 12 Revision 12 Revision 13 Revision 13 Revision 13 Revision 13 Revision 14 Revision 15 Revision 5: Revision 5:	AC	G S) OF REA 	н о9, 2017						GINEERING • LAND PLANNING • SURVEYING • 4849 RONSON (
SLOPE ANALYS AREA (SQ.FT.) 12,416 12,416 12,416 PROPERT TOPOGRAF CONTOURS AN FROM AN AEF ROM AN AEF CONTOURS AN FROM A	IS PERCENT(%) OF AREA 100% Y AREA: 12,416 PHY SOURCE ND ELEVATIONS WE RIAL TOPOGRAPHY SAN-LO AERIAL VEERING, INC. JP ENGINEERING, IN R Ronson Court, Su DIEGO, CA 92111 18) 569–0830	IM ENCRO AREA (SQUARE SQUARE C. International Source YS SURVEYS C. International Source YS Surveys S	IPAC ACHME SQ. F 12,416	Revision 14 Revision 14 Revision 13 Revision 12 Revision 14 Revision 14	AC	G © OF REA EA EA EBRUAR	н <u>09, 2017</u> Y 22, 2017						ENGINEERING . LAND PLANNING . SURVEYING . 4849 RONSON (
SLOPE ANALYS AREA (SQ.FT.) 12,416 12,416 12,416 12,416 PROPER T TOPOGRAF CONTOURS AN FROM AN ACE FOM AN ACE Prepared By: NAD JP ENGIN Name:	IS PERCENT(%) OF AREA 100% 100% V AREA: 12,416 PHY SOURCE ND ELEVATIONS WE SIAL TOPOGRAPHY SAN-LO AERIAL VEERING, INC. UP ENGINEERING, INC. UP ENGINEERING, INC. UP ENGINEERING, INC. P EN	IM ENCROO AREA (SQUARE SQUARE RE DERI DATED DATED SURVEYS C.	IPAC ACHME SQ. F 12,416	Revision 14 Revision 14 Revision 13 Revision 12 Revision 12 Revis	AC	G © OF REA MARC EBRUAR MARCC	H 09, 2017 Y 22, 2017 30, 2017						/IL ENGINEERING • LAND PLANNING • SURVEYING • 4849 RONSON (
SLOPE ANALYS AREA (SQ.FT.) 12,416 12,416 12,416 12,416 PROPER TO TOPOCRAF CONTOURS AN FROM AN ACE FROM AN AND JP ENGIN NAND JP ENGIN Prepared By: Name: Address: 4845 SAN Phone #: Phone #: (85) FAX #: (85) Project Address: 621 San San	IS PERCENT(%) OF AREA 100% 100% V AREA: 12,416 PHY SOURCE ND ELEVATIONS WE AIL TOPOGRAPHY V SAN-LO AERIAL VEERING, INC. JP ENGINEERING, INC. JP ENGINEERING, INC. JP ENGINEERING, INC. JP ENGINEERING, INC. JB 569–0330 F 3–6219 Montezumc Diego, California S	IM ENCROO AREA (SQUARE RE DERI SURVEYS C. 	IPAC ACHME SQ. F 12,416	Revision 14 Revision 14 Revision 13 Revision 13 Revision 12	AC	G © OF REA MARCC EBRUAR ANUARY ECEMBE	H 09, 2017 Y 22, 2017 '30, 2017 R 12, 2016						CIVIL ENGINEERING . LAND PLANNING . SURVEYING . 4849 RONSON (
SLOPE ANALYS AREA (SQ.FT.) 12,416 12,416 12,416 12,416 PROPER TO TOPOCRAP CONTOURS AN AEF CONTOURS AN AFF CONTOURS AN AFF NAME AND JP ENGIN Prepared By: Name: Address: 4845 SAN Phone #: (65 FAX #: Project Address 621 San Project Name: 621	IS PERCENT(%) OF AREA 100% 100% Y AREA: 12,416 PHY SOURCE ND ELEVATIONS WE ALL TOPOGRAPHY SAN-LO AERIAL VEERING, INC. PERGINEERING, INC. PERGINEER	IM ENCROO AREA (SQUARE RE DERI SURVEY: C. 	IPAC ACHME SQ. F 12,416 : FEET VED 5	Revision 14 Revision 14 Revision 13 Revision 13 Revision 12 Revision	AC	G REA MARCC EBRUAR ANUARYS	H 09, 2017 Y 22, 2017 C 30, 2017 R 12, 2016						CIVIL ENGINEERING • LAND PLANNING • SURVEYING • 4849 RONSON (
SLOPE ANALYS AREA (SQ.FT.) 12,416 12,416 12,416 12,416 PROPERT 7 TOPOGRAP CONTOURS AN AER CONTOURS AN AFROM AN AER 10-29-15 BY AND JP ENGIN AND JP ENGIN Prepared By: Name: Address: 4845 SAN Phone #: (65) FAX #: Project Address 621 San 521	IS PERCENT(%) OF AREA 100% 100% Y AREA: 12,416 PHY SOURCE ND ELEVATIONS WE ALL TOPOGRAPHY SAN-LO AERIAL VEERING, INC. PHY ENGINEERING, IN REGO, CA 92111 B) 569-7377 B) 569-0830 F 3-6219 Montezuma Diego, Colifornia S 3 Montezuma Multi	IM ENCROY AREA (SOUARE RE DERI SURVEY: C. 	IPAC ACHME SQ. F 12,416 VED 5	Revision 14 Revision 14 Revision 13 Revision 13 Revision 12 Revision 2 Revision 2 Revision 12 Revision 2 Revision 12 Revision 12 Revision 2 Revision 12 Revision 12 Revision 2 Revision 12 Original Da	AC	G REA MARCO EBRUAR ANUARY JUNE 3	H 09, 2017 Y 22, 2017 '30, 2017 R 12, 2016						CIVIL ENGINEERING • LAND PLANNING • SURVEYING • 4849 RONSON (
SLOPE ANALYS AREA (SQ.FT.) 12,416 12,416 12,416 12,416 PROPERT 7 TOPOGRAP CONTOURS AN AFEROM AN AFEROM AN AFERON AN AFERON NOD JP ENGIN AND JP ENGIN Address:	IS PERCENT(%) OF AREA 100% 100% Y AREA: 12,416 PHY SOURCE ND ELEVATIONS WE XAL TOPOGRAPHY SAN-LO AERIAL VEERING, INC. P ENGINEERING, INC. P ENGINE	IM ENCROD AREA (SOUARE RE DERI DATED Jareo C.	IPAC	Revision 14 Revision 14 Revision 13 Revision 13 Revision 12 Revision 2 Revision 12 Revision 2 Revision 12 Revision 12 Revision 2 Revision 12 Original Da Sheet	AC	G K) OF REA B C C C C C C C C C C C C C	H 09, 2017 Y 22, 2017 30, 2017 R 12, 2016 j0, 2016 f 3						CIVIL ENGINEERING • LAND PLANNING • SURVEYING • 4849 RONSON (
SLOPE ANALYS AREA (SQ.FT.) 12,416 12,416 12,416 12,416 PROPERT 7 TOPOGRAF CONTOURS AN AFEROM AN AFERON AN AFERON AN AFERON Nome:	IS PERCENT(%) OF AREA 100% 100% Y AREA: 12,416 PHY SOURCE ND ELEVATIONS WE XAL TOPOGRAPHY SAN-LO AERIAL VEERING, INC. PP ENGINEERING, I	IM ENCROJ AREA (SQUARE SQUARE RE DERI DATED Jared SURVEY:	IPAC ACHME SQ. F 12,416 VED S	Revision 14 Revision 14 Revision 13 Revision 12 Revision 2 Revision 12 Revision 2 Revision 12 Revision	AC AC AC AC AC AC AC AC	G K) OF REA B C C C C C C C C C C C C C	H 09, 2017 Y 22, 2017 30, 2017 R 12, 2016 j0, 2016 f _ 3						CIVIL ENGINEERING • LAND PLANNING • SURVEYING • 4849 RONSON (
SLOPE ANALYS AREA (SQ.FT.) 12,416 12,416 12,416 12,416 PROPERT 7 TOPOGRAF CONTOURS AN AFE CONTOURS AN AFE 10-29-15 BY Nome:	IS PERCENT(%) OF AREA 100% 100% Y AREA: 12,416 PHY SOURCE VY SOURC	IM ENCRO AREA (SQUARE SQUARE RE DERI DATED SURVEY: C.	IPAC ACHME SQ. F 12,416 VED S	TS BY GF T.T. PERC	AC AC AC AC AC AC AC AC	G K) OF REA MARCC EBRUAR MARCC EBRUAR MARCC SDUDE 3 0 0 0 0 0 0 0 0 0 0 0 0 0	H 09, 2017 Y 22, 2017 30, 2017 R 12, 2016 f f f		NU. DAIE				CIVIL ENGINEERING . LAND PLANNING . SURVEYING . 4849 RONSON (
SLOPE ANALYS AREA (SQ.FT.) 12,416 12,416 12,416 12,416 PROPERT 7 TOPOGRAF CONTOURS AN AFE CONTOURS AN AFE 10-29-15 BY Nome:	IS PERCENT(%) OF AREA 100% 100% Y AREA: 12,416 PHY SOURCE VP SOURCE VP SOURCE VP SOURCE VP SAN-LO AERIAL VP	IM ENCROJ AREA (SQUARE SQUARE RE DERI DATED SURVEY: ''	IPAC ACHME SQ. F 12,416 VED S	TS BY GF T.T. PERC Revision 13 Revision 12 Revision 12 Revision 13 Revision 14 Revision 15 Revision 12 Original Da Sheet DEPP 1	AC AC AC AC AC AC AC AC	G &) OF REA 	H 09, 2017 Y 22, 2017 S 30, 2017 R 12, 2016 f f		NU. DATE DI NU: UATE DI NU: UATE				CIVIL ENGINEERING . LAND PLANNING . SURVEYING . 4849 RONSON (
SLOPE ANALYS AREA (SQ.FT.) 12,416 12,416 12,416 12,416 PROPERTS TOPOGRAF CONTOURS AN AEF 10-29-15 BY Name:	IS PERCENT(%) OF AREA 100% 100% Y AREA: 12,416 PHY SOURCE VY SOURCE VY AREA: 12,416 PHY SOURCE VY SOURCE VY AREA: 12,416 VY SOURCE VY AREA: 12,416 VY SOURCE	IN ENCROJ AREA (SQUARE RE DERI SURVEY: C. 	IPAC ACHME SQ. F 12,416 : FEET VED S	TS BY GF T.T. PERC T.T. PERC T.T. SLC Revision 13 Revision 12 Revision <	AC AC AC AC AC AC AC AC	G \$) OF REA 	H 09, 2017 Y 22, 2017 30, 2016 f f f		NV. VAIE DI NV. VAIE				CIVIL ENGINEERING . LAND PLANNING . SURVEYING . 4849 RONSON (
SLOPE ANALYS AREA (SQ.FT.) 12,416 12,416 12,416 12,416 PROPERTY TOPOGRAF CONTOURS AN AFROM AN	IS PERCENT(%) OF AREA 100% 100% V AREA: 12,416 PHY SOURCE VY SOURCE VY AREA: 12,416 PHY SOURCE VY AREA: 12,416 VY SOURCE VY AREA: 12,416 VY AR	IN ENCROJ AREA (SQUARE DATED SURVEY: C. C. C. C. C. C. C. C. C. C. C. C. C.	IPAC	TS BY GF T.T. PERC T.T. PERC T.T. SLC Revision 13 Revision Revision Revision 12 Original Do Sheet MO. No. Sheet	AC 	G \$) OF REA 	H 09, 2017 Y 22, 2017 30, 2017 R 12, 2016 f f 449 C2		NU DATE DI NU: DATE DI NU: DATE				CIVIL ENGINEERING . LAND PLANNING . SURVEYING . 4849 RONSON

TOTAL

	<u>LEGEND</u>						⊢	۲	2	lo. - 15
	IMPROVEMENT		STANDA	RD DWGS.	SYMBOL		ШЩ	اح		et. 999
	PROPERTY BOUNDARY						0,		J	^o roje
	PROPOSED CONCRETE CURB AND GUT	TER	SDG-	-151				>	. 8	<u> </u>
	PROPOSED SEWER EASEMENT								29- MIL	30
	PROPOSED CONCRETE SIDEWALK		SDG	-155			FA	l		80-
	PROPOSED TRENCH RESURFACING TYP	E A	SDG	–107			4 0	F	17	-69
	PROPOSED PERMEABLE CONCRETE OF	R PERVIC	US PAVERS				Na	1.1.1	58	3)5(
	PROPOSED BIOFILTRATION AREA					_	GP	5	50	858
10	PROPOSED CONCRETE DRIVEWAY		SDG	-159		:	2			×
	PROPOSED PRIVATE CURB OUTLET TYP	PE 'A'	D-	-25		-	NA	ļ	11	FA:
	PROPOSED PRIVATE 4"/6" FIRE							Š	S I	
	PREVENTER DIVIDE		SDW-118,	SDW-105.			P RE		s (9	37
	PROPOSED 2" WATER SERVICE		SDW-135, SDW-149,	WS-03	···· — ——(W)			5	ž ž	-
	PROPOSED PRESSURE BACKFLOW							ы Ш	A.	565
	PREVENTER DEVICE		SDW	-155	(RP)		ÿ	NAM		8
	PROPOSED PRIVATE 6" SEWER LATERA	AL	SDS-101, SDS-105,	SDS-110			Ē	CT		(8
	PROPOSED PRIVATE SEWER CLEANOUT		SI	DS-103	o		HE	ROJI		
	PROPOSED STREET LIGHT						0,			-
	PROPOSED FINISHED FLOOR ELEVATION	۹			F.F. 462.25		퇴		6-1-6	211
	PROPOSED TOP OF CONCRETE CURB E	ELEVATIO	N		TC 454.25		~		9-0	6
	PROPOSED SPOT ELEVATION				434.00		WN ICINE	CKE	ц.	S
	PROPOSED MASONRY RETAINING WALL						DES	EH	DAT	o,
	BOTTOM OF WALL ELEVATION				• 462.25 BW			(0)		Ы
	PROPOSED 24"x24" CATCH BASIN						4 hr	CIOS	9-17	z
	PROPOSED CATCH BASIN				0 <u></u>		J.	PAL∕	0-0 -0	SA
	PROPOSED STORM DRAIN PIPE	- (0.49*/				•	J.	Н. 320		5,
	PROPOSED CONTOUR FLEVATION	_ (0.10)	,		····· ////////////////////////////////	2	Ø	C.E.	Ë	- -
	PROPOSED VEGETATED SWALE							×α	6	E
	DIRECTION OF FLOW						μ			s,
	PROPOSED 4"Ø PVC PERFORATED	PIPE				-				JRT
	PROPOSED STORM DRAIN CLEANOU	JT	SI	DS-103	sdO					õ
	PROPOSED 2 Ø PVC FORCE MAIN					•				z
	PROPUSED Z Ø FM NDS POP-OUT									lso
	CRADING DATA.									ð
	1TOTAL AMOUNT OF SITE	E TO BE	GRADED:	0.285	ACRES.					61
	2PERCENT OF TOTAL SIT	TE GRAD	ED: <u>100%</u>	<u> </u>						484
	3AMOUNT OF CUT: 11	1,600_c	UBIC YARDS	S.						
	4 AMOUNT OF FILL:	<u>0 </u>	UBIC YARDS	S.						-
	5MAXIMUM HEIGHT OF FI	ILL SLO	PE(S):	_ FEET	0 SLOPE RATIO.					g
	6MAXIMUM HEIGHT OF C	UT SLO	PE(S): <u>36</u>	<u>6 FEET SH</u>	HORING SLOPE RATIO.					E
	7 AMOUNT OF EXPORT SO	IL: <u>11,</u>	600_CUBIC	YARDS.						ЪХ
	 RETAINING/CRIB WALLS: MA 	HOW XIMUM I	MANY:	4 110 FEE	т		ATE			ซ
	МА	XIMUM	HEIGHT:	5.2 FEE	т			$\left + \right $	+	-
							ž		+	ы
							B	\square		NN
			Revision 1	4:						LA
ared B			Revision 1	3:						
·	or Endineering, Inc.		Revision 1 Revision 1	2: 1·						AN
ss:	4849 Ronson Court, Suite 105		Revision 1	10:						_
	SAN DIEGO, CA 92111 (858) 569-7377		Revision 9	9:						
?#: #:	(858) 569-0830		Revision 8 Revision 7	3: 7.						N
			Revision 6	5:						ER
ct Add	ress:		Revision 5	5:	MARCH 09 2017					INIS
	5213-6219 Montezuma Road		Revision 3	+: 3:FEB	RUARY 22, 2017					Ы
			Revision 2	2:JA	NUARY 30, 2017				-	Ę
			Revision 1	: <u>DE</u>	CEMBER 12, 2016		ш			<u>S</u>
ct Nam	e: 6213 Montezuma Multi—Family						DAT			
			Original D	late:l	JNE 30, 2016		ġ		+	
			Che-+	.3	of 3				Ű.	
t Title:			oneet		01					
MINARY	GRADING PLAN		DEP#	PTS NO.	501449					
			W.O. No	240	06849					
					C-3					
	I	L.C.	220-17	748 1 0	CS 1880-6308					
			1/							

ROOF TOP GARDEN

PLANT SCHE	DULE					
	BOTANICAL NAME	COMMON NAME	<u>975.</u>	WUCOLS		ഇ
$\left(\cdot \right)$	KOELREUTERIA BIPINNATA	CHINESE FLAME TREE	24" BOX	M		2
	SYAGRUS ROMANZOFFIANA	QUEEN PALM	BTH	M		1
COURTYARD TREES	BITHE 17 BICH AGE (1998 AC BOD) BOTANICAL NAME	COMMON NAME	SIZE	WICOLS		ØD
£3	SCHEFFLERA PLECKLERI	TUPIDANTHUS	24 "B OX	м		1
			975			
			344			81
V	HYMENOSPORUM FLAVUM BURLAR: (1995: SPF REQ.	SWEETSHADE	24 "B OX	M		4
STREET TREES	BOTANCAL NAME	COMMON NAME	<u>977</u>	WUCOLS		<u>9</u> T
X	SYAGRUS ROMANZOFFIANA	QUEEN PALM	BTH	M		2
NATIVE SHRUBS	BOTANICAL MANE	COMMON NAME	<u>977</u>	WICOLS		<u>9</u> 1
Ο	CEANOTHUS GRISEUS HORIZONTALIS 'YANKEE POINT'	CALIFORNIA LILAC	5 GAL	L		5
õ	MAHONIA AQUIFOLIUM 'GOLDEN ABUNDANCE'	GOLDEN ABUNDANCE OREGON GRAPE	5 GAL	L		7
Ĉ	RHAPHICLEPIS INDICA	INDIAN HAWTHORN	5 GAL	L		30
SHADE PLANTS	BIELAE (UTELIAL). BOTANICAL NAME	COMMON NAME	97E	WUCOLS		от
0	ASPIDISTRA ELATIOR 'MILKY WAY'	MILKY WAY CAST IRON PLANT	1 GAL	M		1
G	GRAPTOPETALUM PARAGUAYENSE SIGN AG: (2014 1 AM- 2014 8 AM-)	GHOST PLANT	1 GAL	L		2
SUCCULENTS	BOTANICAL MAME	COMMON NAME	<u>977</u>	WUCCLS		<u>0</u> 1
Θ	KALANCHOE LUCIAE	PADDLE PLANT	5 GAL	L		23
С С	SENECIO DECARYI Sich de: (1995: 10 on.)	MADAGASCAR SENECIO	1 GAL	L		9
VINE/ESPALIER	BOTANICAL NAME	COMMON NAME	<u>975.</u>	WICOLS		91
-	DISTICTIS BUCCINATORIA BUCH AG: (100K FLATI)	BLOOD RED TRUMPET VINE	15 GAL ESP.	M		10
ground covers	BOTANICAL MAME	COMMON NAME	<u>977</u>	WUCOLS	SPACING.	
	BULBINE FRUTESCENS 'HALLMARK' BIGH AR: (1998: 1 AN.)	STALKED BULDINE	FLAT	L	18° a.a.	
<u>GRASSES</u>	BOTANICAL NAME	COMMON NAME	<u>975</u>	WUCOLS		
ମାନାନାନାନ ଜୋନାନାନାନ ଜାନାନାନାନାନ ଜାନାନାନାନ	CAREX FLACCA	BLUE SEDGE	1 GAL	L	18° a.c.	
	CAREX OSHIMENSIS 'EVERGOLD'	VARIEGATED JAPANESE SEDGE	1 GAL	M	24° a.c.	
	CAREX TUMULICOLA Biologia (1775 - 1 ani, 2715 flate, 2015 d' ante)	BERKELEY SEDGE	1 GAL	L	18° a.c.	
ROOF TOP GARDEN	BOTANICAL NAME	COMMON NAME	<u>975</u>	WUCOLS	SPACING	
· ** ·			47901	L	12" a.a.	
	CRASSULA CAPITELLA "CAMPFIRE" MIX WITH ASSORTED OTHER SUCCULENTS	CAMPTINE CRASSULA		-		
	CRASSULA CAPITELLA "CAMPFIRE" MIX WITH ASSORTED OTHER SUCCULENTS HELICTOTRICHON SEMPERVIRENS	BLUE OAT GRASS	FLAT	M	36° a.a.	

MAINTENANCE RESPONSELITY NOTE

THE PROPERTY OWNERS ARE RESPONSIBLE FOR THE CONTINUAL MAINTENANCE OF ALL LANDSCAPED AREAS ON SITE AND WITHIN THE ADJACENT RIGHTS-OF-WAY. ALL LANDSCAPED AREAS SHALL BE KEPT FREE OF WEEDS AND DEBRIS. PLANTINGS SHALL BE MAINTAINED IN A HEALTHY, MGOROUSLY GROWING CONDITION, AND SHALL RECEIVE REGULAR PRUNING, FERTILIZING, MOWING AND TRIMMING, IRRIGATION SYSTEMS SHALL BE REGULARLY INSPECTED AND KEPT IN FULLY OPERATIONAL CONDITION ACCORDING TO MANUFACTURERS' DESIGN STANDARDS AT ALL TIMES.

DESIGN STANDARDS AT ALL TIMES. **PHIONITION NOTE** ALL PLANTING AREAS SHALL BE IRRIGATED ACCORDING TO PLANT TYPE AND ENVIRONMENTAL EXPOSURE. ALL IRRIGATED AREAS SHALL RECEVE UNIFORM ENVIRONMENTAL EXPOSURE. ALL IRRIGATED AREAS SHALL RECEVE UNIFORM UNDERGROUND PIPED IRRIGATION SYSTEM FOR WATER CONSERVATION AND TO UNDERGROUND PIPED IRRIGATION SYSTEM FOR WATER CONSERVATION AND TO UNDERGROUND PIPED IRRIGATION SYSTEM FOR WATER CONSERVATION AND TO UNINIMIZE EROSION. STATE OF THE ART AUTOMATIC CONTROLLER WITH MASTER VALVE AND RAIN SHUTOFF CAPABILITES. A REDUCED PRESSURE BACKFLOW PREVENTER WILL BE USED IN ACCORDANCE WITH LOCAL HAD REGIONAL STANDARDS. REMOTE CONTROL VALVES SHALL BE UTILIZED WITH LOW PRECIPITATION HEADS FOR REDUCED WATER CONSUMPTION, PRESSURE COMPENSATING DRIP AND LOW PRECIPITATION RATE EQUIPMENT SHALL BE USED WHERE APPLICABLE. ALL PRESSURIZED MANNLINE AND LATERAL LINES WILL BE PVC INSTALLED BELOW GRADE PER LOCAL AND REGIONAL STANDARDS. AN AUTOMATIC, WATER EFFICIENT IRRIGATION SYSTEM SHALL BE PROVIDED TO ESTABLISH AND MAINTAIN LANDSCAPING.

- LANDSCAPE NOTE 1. ALL LANDSCAPE AND IRRIGATION SHALL CONFORM TO THE CITY OF SAN DIEGO LANDSCAPE STANDARDS MANUAL AND ALL OTHER APPLICABLE STANDARDS AS OF THE APPROVED DATE OF THESE PLANS.
- TREES PLANTED WITHIN 5 FET OF WALKS, CURBS OR PAVING SHALL BE PLANTED WITH A ROOT BARRIER (BIO-BARRIER).
 MULCH: ALL REQUIRED PLANTING AREAS AND ALL EXPOSED SOIL AREAS WITHOUT VEGETATION SHALL BE COVERED WITH MULCH TO A MINIMUM DEPTH OF 3 INCHES.
- 4. IF ANY EXISTING HARDSCAPE OR LANDSCAPE INDICATED ON THE APPROVED PLANS ARE DAMAGED OR REMOVED DURING DEMOLITION OR CONSTRUCTION, IT SHALL BE REPAIRED AND/OR REPLACED IN KIND AND EQUIVALENT SIZE PER THE APPROVED
- REPAIRED AND/OR REPLACED IN KIND AND EQUIVALENT SIZE PER THE APPROVED PLANS BY THE OWNER/PERMITTEE. 5. ALL LANDSCAPE MATERIALS SHALL BE PERMANENTLY MAINTAINED IN A GROWING AND HEALTHY CONDITION AT ALL TIMES, INCLUDING TRIMMING AS APPROPRIATE TO MAINTAIN APPROVED LANDSCAPE MATERIALS. ANY REQUIRED PLANT MATERIAL THAT DIES POS-CONSTUCTION SHALL BE REPLACED AT SIZES AND QUANTITIES SET FORTH UNDER 142.0403(b)(8). 6. IN THE EVENT THE ROADS ARE WIDENED, THE EXISTING STREET TREES SHALL BE RELOCATED TO THE SATIFACTION OF THE CITY OF SAN DIEGO'S DEVELOPMENT SERVICES.
- 7. NO BRUSH MANAGEMENT SHALL BE BE REQUIRED FOR THIS PROJECT.

MINIMUM TREE SEPARATION DISTANCE

	NUMBER DISTANCE TO OTDEET TOES
MPROVEMENT	NIMUM DISTANCE TO STREET TREE
TRAFFIC SIGNALS (STOP SIGN)	20 FEET
UNDERGROUND UTILITY LINES	5 FEET
ABOVE GROUND UTILITY STRUCTURES	10 FEET
DRIVEWAY (ENTRIES)	10 FEET
INTERSECTIONS (INTERSECTING CURB LINES OF 2 S	STREETS) 25 FEET
SEWER LINES	10 FEET

TREE SEPARATION NOTES:

- 1. NO TREES OR SHRUBS EXCEEDING THREE FEET IN HEIGHT AT MATURITY SHALL BE INSTALLED WITHIN TEN FEET OF ANY PUBLIC WATER AND SEWER FACILITIES.
- AND A CONTRACT AND A

NOTE: ALL GRADED, DISTURBED, OR ERODED AREAS THAT WILL NOT BE PERMANENTLY PAVED, COVERED BY STRUCTURE, OR PLANTED FOR A PERIOD OVER 90 CALENDAR DAYS SHALL BE TEMPORARILY REVEGETATED WITH A NON-IRRIGATED HYDROSED MIX. ALL REQUIRED REVEGETATION AND EROSION COMMENTS SHALL BE COMPLETED WITHIN 90 CALENDER DAYS OF THE COMPLETION OF GRADING OR DISTURBANCE.

Tree Christer West Datase	City of San Diego Development Services 1222 First Ave. MS-501 San Diego, CA 12101-4154 (619) 448-5000	Lan M	Idscape Calculat ultiple Dwelling Unit De	tions Worksh velopment in All Zo
Provide the follo required by the L STREET YARD • A minimum 40 • At least one-bi	ving linformation on the Landscape Pile andscape Regulations, Chapter 14, Arti and the second shall be provided for so, ft planting area shall be provided for 10 of the required planting points shall be	ms. The Lands dis 2, Division 4 7 all trees, with 6 achieved with	cape Calculations determine t of the Land Devalopment Cod no dimension less than 5 ft. trees.	he planting area and po le.
	Planting Area Required [142.0404]		Planting Area Provided	Excess Area Provide
Total Area	1952 BG. R × 60% + 976	e sq. ft.	768 sq. 11.	-208 sq. n.
	Planting Points Required [142-0404]		Plant Points Provided	Excess Points Provide
Total Alea	1952 sq. tr. x 0,05+ 97.	6 polítics	340 points	242.4 points
Points achiev	ad with thees: 80 points			
F	anting Area allowable as hardscebe or attached unit pavars (142.0405(b)(1)(B	Ŋ	Provided	
Total A/as	1952 89. 11 × 10%= 195	.Z sq. ft.	656 sq. A.	
REMAINING YA	RD - 2 Dwelling Units			
	Plant Points Required		Plant Points Provided	Points Achiaved with trees (at least 50%)
	60 points in the remaining yard		🕶 points	Points
REMAINING YA	RD - 3 or more Dwelling Units			
	Plant Points Required		Plant Points Provided	Points Achieved with trees (at least \$0%)
60 poin	s× 1 #arbuildings		<u>60</u> points	Le O Points
VEHICLEARUS	E AREA (VUA) - See separate worksl	19et (D8-5)		
10mbochic ou				
ADDITIONAL Y	RD PLANTING AREA AND POINT R	QUIREMENTS		
ADDITIONAL Y/	IRD PLANTING AREA AND POINT RU rements of Landscepe Regulations, Se ng how requirements are being net.	EQUIREMENTS	e) 1, 2, or 3 apply to your proje	ect, provide a written

PER THE CITY OF SAN DIEGO PUD-WATER & SEWER DEVELOPMENT COMMENTS ISSUE NUMBER 8, "NO TREES OR SHRUBS EXCEEDING THREE FEET IN HEIGHT AT MATURITY SHALL BE INSTALLED WITHIN 5 FEET OF ANY PUBLIC WATER FACILITIES OR WITHIN AND 10 FEET OF ANY PUBLIC SEWER FACILITIES.

LANDSCAPE CALCULATIONS SUMMARY OF LANDSCAPE CALCULATIONS LANDSCAPE CALCULATIONS FOR 6213 MONTEZUMA STREET TREES IN PUBLIC RIGHT-OF-WAY Length of street - width of driveway = 85' Required: 4 Trees (provided at a rate of one per 20ft) Provided: 2 Palms & 2 Trees	
STREET YARD* Total Area 1,952 s.f. *Planting Area required 976 s.f 448 s.f. = 528 s.f., provided= 192 s.f. hardscape Plant Points Required 97.6, provided 340 points - 97.6 s.f.= 242.4 excess points - Planting Area required 97.6 s.f provided 1,424 s.f. = 448 s.f. excess provided Concrete pavers area: 656 s.f., Planting area: 768	STREET YARD 1,952 SQ. FT.
 Plant Points required 97.6, provided 340 pts. Points achieved through Trees: 80 REMAINING YARD** Total Area 2,007 s.f. Plant Points required 60, provided 658 Plant Points required to be achieved by trees: NA 	REMAINING YARD 2,007 SQ. FT.
Plant Points achieved through Trees : 0 VEHICULAR USE AREA Total Area 556 s.f. Planting Area required 27.8 s.f., provided 149 s.f. Plant Points required 0 provided 0 Points achieved through Trees : n/a	S56 SQ. FT.

ZONE 1

HYDROZONE 1: DRIP, LOW WATER-USE PLANTING (2,579 SF, 79% OF TOTAL LANDSCAPE AREA)

ZONE 2

HYDROZONE 2: DRIP, MEDIUM WATER-USE PLANTING (388 SF, 12% OF TOTAL LANDSCAPE AREA)

ZONE 3

HYDROZONE 3: TREE BUBBLERS, MEDIUM WATER-USE (250 SF, 8% OF TOTAL LANDSCAPE AREA)

ZONE 4

HYDROZONE 4: ESPALIER BUBBLER, MEDIUM WATER-USE PLANTING (40 SF, 1% OF TOTAL LANDSCAPE AREA)

THE TOTAL IRRIGATED AREA (INCLUDING WATER FOUNTAINS POOL, AND SPA) IS 3,257 SF

WATER USE CALCULATIONS

This calculation assumes that Hydrozone 1 is planted with low water shrubs with a Plant Factor (PF) of 0.1 and utilizes a Drip System with an Irrigation Efficiency (IE) of 0.8 (80%). It assumes that Hydrozone 2 is planted with medium water shrubs with a PF of 0.3 and utilizes a Drip system with an IE of 0.8 (80%). It assumes that Hydrozone 3 is planted with medium water-use trees with a PF of 0.3 and utilizes a drip system with an IE of 0.85 (85%). It assumes that Hydrozone 4 is planted with medium water-use espalier on with a PF of 0.3 and utilizes a drip system with an IE of 0.85 (85%).

HYDROZONE	PLANT WATER USE TYPE	PLANT FACTOR	IRRIGATION METHOD	IRRIGATION EFFICIENCY	LA (SQ FT)	PERCENT OF TOTAL LA	ETAF	SLA
1	LOW	0.1	DRIP	0.8	2,579	79%	0.55	NO
2	MEDIUM	0.3	DRIP	0.8	388	12%	055	NO
3	MEDIUM	0.3	BUBBLER	0.85	250	8%	0.55	NO
4	MEDIUM	0.3	BUBBLER	0.85	40	1%	0.55	NO

ETO - (47)

0.62 - The conversion factor to gallons per SQ FT ETAF - 0.55 for residential areas FTAE - 0.45 for non-residential areas LA - The Landscaped Area for each zone. SLA - Is the total special landscape area in SQ FT

HYDROZONE 1

MAWA = (ETO) (0.62) [(ETAF x LA) + ((1-ETAF) x SLA)] $MAWA = (47) (0.62) [(0.55 \times 2,579) + ((1-0.55) \times 0)]$ MAWA = 41,334 gal / yr

<u>HYDROZONE 2</u> MAWA = (ETO) (0.62) [(ETAF x LA) + ((1-ETAF) x SLA)] MAWA = (47) (0.62) [(0.55 x 388) + ((1-0.55) x X)] MAWA = 6.219 gal/vr

<u>HYDROZONE 3</u> MAWA = (ETO) (0.62) [(ETAF x LA) + ((1-ETAF) x SLA)] $MAWA = (47) (0.62) [(0.55 \times 250) + ((1-0.55) \times 0)]$ MAWA = 4,007 gal / yr

MAWA = (ETO) (0.62) [(ETAF x LA) + ((1-ETAF) x SLA)] MAWA = (47) (0.62) [(0.55 x 40) + ((1-0.55) x 0)] MAWA = 642 gal / yr

MAXIMUM APPLIED WATER ALLOWANCE (MAWA) MAWA = (ETO) (0.62) [(ETAF x LA) + ((1-ETAF) x SLA)] $MAWA = (47) (0.62) [(0.55 \times 3,257) + ((1-0.55) \times 0)]$ MAWA = 52,202 gal / yr

HYDROZONE	IRRIGATION EFFICIENCY	PLANT FACTOR	LA (SQ FT)	ETAF (PF/IE)
1	0.8	0.1	2.579	0.125
2	0.8	0.3	388	0.375
3	0.85	0.3	250	0.353
4	0.85	0.3	40	0.353

ETO - (47) 0.62 - The conversion factor to gallons per SQ FT ETAF - The Plant factor/Irrigation Efficiency AREA - The Landscaped Area for each zone. SLA - Is the total special landscape area in SQ FT

HYDROZONE 1

ETWU = (Eto) (0.62) x ETAF x AREA ETWU = (47) (0.62) x 0.125 x 2,579 ETWU = 9,395 gal / yr

HYDROZONE 2 ETWU = (Eto) (0.62) x ETAF x AREA ETWU = (47) (0.62) x 0.375 x 388 ETWU = 4,240 gal / yr

ETWU = (Eto) (0.62) x ETAF x AREA

ESTIMATED TOTAL WATER USE (ETWU) ETWU = (Eto) (0.62) x ETAF x AREA ETWU = 16,619 gal/ yr

Total project ETWU = 16,619 gal/ yr The ETWU (16,619 gal / yr) is less than the MAWA (52,202 gal / yr)

PERCENT = <u>ETWU</u> x 100 = <u>16,619 gal</u> x 100 = 32% MAWA 52,202 ga The annual water savings is 68% (35,583 gallons per year)

HYDROZONE 3 ETWU = (Eto) (0.62) x ETAF x AREA ETWU = (47) (0.62) x 0.353 x 250 ETWU = 2,572 gal / yr HYDROZONE 4

> ETWU = (47) (0.62) x 0.353 x 40 ETWU = 412 gal / yr

HYDROSEED MIX

Solution Sector Transition Annulased for regid growth in the lower related in control of the regid growth in the lower related in control of the regid growth in the lower related in control of the regid growth in the control of the regident of	-FAMILY DEVELOPMENT 3 MONTEZUMA ROAD AND DIEGO, CA 92115 AND DIEGO, CA 9215 AND DIEGO, CA 9215 AND DIEGO, CA
PENEITE: WWW.355EEDS.COM	REVISIONS

ATTACHMENT 5 DRAINAGE REPORT

Attach project's drainage report. Refer to Drainage Design Manual to determine the reporting requirements.

THIS PAGE INTENTIONALLY LEFT BLANK FOR DOUBLE-SIDED PRINTING

4849 Ronson Court Suite No. 105 San Diego, CA 92111 Tel 858.569.7377 Fax 858.569.0830

Web www.jpeng.com Email jp@jpeng.com

HYDROLOGY AND DRAINAGE CALCULATIONS FOR MONTEZUMA PDP/CUP

P.T.S. #501449

Aldein

Jorge H. Palacios, RCE 32031

03-09-17

Date

PROJECT NO. 999-15

TABLE OF CONTENTS

Scope of Study	2
Declaration of Responsible Charge	3
Vicinity Map	4
50-Year Storm Pre-Development and Post-Development	5-6
10-Year Storm Pre-Development and Post-Development	7-8
2-Year Storm Pre-Development and Post-Development	9-10
Priority Project Treatment Calculations	11-17
Circular Channel and Trapezoidal Channel Analysis	18-21
Hydraulic References and Graphs	22-29

ATTACHMENTS -DRAINAGE PLAN

Exhibit 'A' - Post Development Plan Exhibit 'B' Pre-Development Plan

SCOPE OF STUDY

The goal of this drainage study is to analyze the 50-year, 10-year storm and 2-year storm runoff for the Montezuma PDP/CUP, in the City of San Diego.

One-hundred percent of the site has been previously graded for construction of the existing buildings. Montezuma Road are fully improved with curb, gutters, concrete sidewalk, AC paving and underground utilities. The site drains northerly to the existing concrete curbs and gutters at the existing street. The surface runoff and private storm drains are designed to drain to the same locations.

There is no change in land use and therefore it will not increase the composite runoff coefficient of the project.

The runoff coefficient for the site that has been used for the runoff calculations is 0.70, which is the land use of the property. The soil type used is D for all areas. Runoff Calculations are based on the requirements outlined in the City of San Diego's Drainage Design Manual, 1984 Edition.

Rational Method runoff calculations were performed using the Rational Method. The method calculates times of concentration and runoff volumes using the criteria specified in the City of San Diego's Drainage Design Manual, 1984 Edition.

To comply with the California Water Quality Control requirements, Order No. 2001-01, we are proposing biolfiltration swales and erosion control construction BMP's.

For:	A (Acres)	Q _{pre} (cfs)	Q _{post} (cfs)	Q _{diff} (cfs)
50-Year Storm	0.28	0.65	0.65	+0.00
10-Year Storm	0.28	0.51	0.51	+0.00
2-year Storm	0.28	0.35	0.35	+0.00
Priority Treatment Flows (Q _{wq})	0.28	0.11	0.11	+0.00

The pre-development and post-development runoff summaries are as follows:

Conclusion

The post-development (Q_{post}) runoffs are the same as the pre-development (Q_{pre}) runoffs. No additional runoff will be generated from this development. Therefore, no adverse impacts are being caused to neighboring and downstream properties.

DECLARATION OF RESPONSIBLE CHARGE

I HEREBY DECLARE THAT I AM THE ENGINEER OF WORK FOR THIS PROJECT, THAT I HAVE EXERCISED RESPONSIBLE CHARGE OVER THE DESIGN OF THE PROJECT AS DEFINED IN SECTION 6703 OF THE BUSINESS AND PROFESSIONS CODE, AND THAT THE DESIGN IS CONSISTENT WITH CURRENT STANDARDS.

I UNDERSTAND THAT THE CHECK OF PROJECT DRAWINGS AND SPECIFICATIONS BY THE CITY OF SAN DIEGO IS CONFINED TO A REVIEW ONLY AND DOES NOT RELIEVE ME, AS ENGINEER OF WORK, OF MY RESPONSIBILITIES FOR PROJECT DESIGN.

JP ENGINEERING, INC. 4849 RONSON COURT, SUITE 105 SAN DIEGO, CA 92111 (858) 569-7377

BY:

DATE:_____03-09-17

JORGE H. PALACIOS R.C.E. 32031, EXP. 12-31-18

50-YEAR STORM PRE-DEVELOPMENT

AND

POST-DEVELOPMENT

JP ENGINEERING, INC. 4849 Ronson Court, Suite 105 San Diego, CA 92111 (858) 569-7377 Fax: (858) 569-0830

RATIONAL	METHOD S	IUDY			SE	EALIAC	HED EXHI	BITS "A" /	AND "B"			
CITY OF S	STUDY NAME: _			CALCULATED BY: JHP DATE: 03-09-17					JOB NO. <u>999-15</u>			
		50 YR.	STORM RATI	ONAL MET	HOD STUDY	1	CHECKED	BY:		DATE:		SHEET NO. 1 OF 1
	Α			В					С		4	
CONCEN- TRATION POINT	AREA (ACRES)	REMARKS	RUNOFF COEFF. C	FLOW PATH LENGTH (FT)	FLOW PATH HEIGHT (FT)	TC (Min)	l in/hr	Q (cfs)	SIZE AND TYPE OF INLET	PIPE SIZE AND MATERIAL	SLOPE (%)	NOTES
1	0.02		0.70			10	3.3	0.05	24"x24" C.B.		1.0% min	Post-Development
2	0.22		0.70			10	3.3	0.51	Trapez <mark>oidal</mark> Swale		1.0% min	Post-Development
3	0.01		0.70			10	3.3	0.02	24"x24" C.B.		5.0% max	Post-Development
4	0.02		0.70			10	3.3	0.05	24"x24" C.B.		8.3% max	Post-Development
5	0.01		0.70			10	3.3	0.02			10.0 % max	Post-Development
TOTAL	0.28							0.65		_		
			-									
6	0.14		0.70			10	3.3	0.32			0.02	Pre-Development
7	0.14		0.70			10	3.3	0.33			0.03	Pre-Development
TOTAL	0.28							0.65				

G:\Project Docs\999-15\Hydrology Drainage Calc Rpt\50 Yr Rational Method Study

The Post-Development Q50 is the same as the Pre-Development Q50

10-YEAR STORM

PRE-DEVELOPMENT

AND

POST-DEVELOPMENT

JP ENGINEERING, INC. 4849 Ronson Court, Suite 105 San Diego, CA 92111 (858) 569-7377 Fax: (858) 569-0830

RATIONAL I	METHOD S	TUDY			SE	E ATTAC	HED EXHI	BITS "A"	AND "B"			
CITY OF S	AN DIEGO MANUAL	STUDY NAME:	Montezuma I					TED BY: _	JHP	DATE:	09-17	JOB NO. <u>999-15</u>
	٨	10 11	JUNINAN	D	100 31001		OTLORED	DI	2	DATE		
CONCEN- TRATION POINT	AREA (ACRES)	REMARKS	RUNOFF COEFF. C	FLOW PATH LENGTH (FT)	FLOW PATH HEIGHT (FT)	TC (Min)	l in/hr	Q (cfs)	SIZE AND TYPE OF INLET	PIPE SIZE AND MATERIAL	SLOPE (%)	NOTES
Post-D	0.28	= 1+2+3+4+5	0.70			10	2.6	0.51			1% min.	Post-Development
Pre-D	0.28	= 6+7	0.70			10	2.6	0.51			2% min.	Pre-Development
						_						

The Post-Development Q10 is the same as the Pre-Development Q10

2-YEAR STORM

PRE-DEVELOPMENT

AND

POST-DEVELOPMENT

JP ENGINEERING, INC. 4849 Ronson Court, Suite 105 San Diego, CA 92111 (858) 569-7377 Fax: (858) 569-0830

RATIONAL	METHOD S	TUDY			SE	E ATTAC	HED EXHI	BITS "A"	AND "B"			
CITY OF S	AN DIEGO	STUDY NAME: _	Montezuma	PDP/CUP			CALCULA	TED BY: _	JHP	DATE: 03-	09-17 JOB NO. 999-15	
		2 YR. S	TORM RATIO	ONAL METH	HOD STUDY		CHECKED) BY:		DATE:		SHEET NO1_ OF _1_
	Α			В			C					
CONCEN- TRATION POINT	AREA (ACRES)	REMARKS	RUNOFF COEFF. C	FLOW PATH LENGTH (FT)	FLOW PATH HEIGHT (FT)	TC (Min)	l in/hr	Q (cfs)	SIZE AND TYPE OF INLET	PIPE SIZE AND MATERIAL	SLOPE (%)	NOTES
Post-D	0.28	= 1+2+3+4+5	0.70			10	1.8	0.35			1% min.	Post-Development
Pre-D	0.28	= 6+7	0.70			10	1.8	0.35			2% min.	Post-Development
										-		

The Post-Development Q2 is the same as the Pre-Development Q2

PRIORITY PROJECT TREATMENT CALCULATIONS

JP ENGINEERING, INC. 4849 Ronson Court, Suite 105 San Diego, CA 92111 (858) 569-7377 Fax: (858) 569-0830

SEE ATTACHED EXHIBITS 'A' AND 'B'

RATIONAL METHOD STUDY

SAN DIEGO	SAN DIEGO COUNTY HYDROLOGY MANUAL PRIORITY TREATMENT - RATIONAL METHOD STUDY						CALCULATE	CALCULATED BY: JHP DATE: 03/09/2017 CHECKED BY: DATE:				JOB NO. <u>999-15</u> SHEET NO. <u>1</u> OF <u>2</u>	
CONCEN- TRATION POINT	AREA ACRES	REN TAB *SO	Marks ILE 3.1 IL group 'a'	SOIL TYPE C	FLOW PATH LENGTH (FT)	FLOW PATH HEIGHT (FT)	TC (Min)	l in/hr	Q (cfs)	SIZE AND TYPE OF INLET	PIPE SIZE AND MATERIAL	SLOPE (%)	NOTES
1	0.02			0.70				0.55	0.01	24"X24" C.B.	4" PVC	1.0 % min	POST-DEVELOPMENT
2	0.22			0.70				0.55	0.08	Trapezoidal Channel		1.0 % min	POST-DEVELOPMENT
3	0.01			0.70				0.55	0.005	24"X24" C.B.	4" PVC	5.0% max	POST-DEVELOPMENT
4	0.02			0.70				0.55	0.01	24"x24" C.B	2" Force Main	8.3% max	POST-DEVELOPMENT
5	0.01			0.70				0.55	0.005				
TOTAL	0.28							TOTAL	0.11				
	-												
6	0.14			0.70				0.55	0.05				PRE-DEVELOPMENT
\overline{O}	0.14			0.70				0.55	0.06				PRE-DEVELOPMENT
TOTAL	0.28							TOTAL	0.11				

* APPENDIX 'A', SAN DIEGO COUNTY HYDROLOGY MANUAL

THE POST-DEVELOPMENT Q_{wq} IS THE SAME AS THE PRE-DEVELOPMENT Q_{wq}

PRIORITY TREATMENT FOR:

1, 2, 3, 4 BIOFILTRATION SWALE

TREATMENT VOLUME CALCULATIONS - BMP 1

% Imperviousness (i):

BMP 1 Impervious Area = 12,009 SQ. FT. = 9,470 SQ. FT.

i = 9,470 = 0.79 = 79%12,009

Average Runoff Coefficient (C): 0.70

Pwq Water Quality Precipitation : Pwq = 0.55 IN

Event Capture Ratio (a):

48 Hours $= \alpha = 1.545$

Water Quality Volume :

 $Po = \alpha CPwq = 1.545 (0.70) (0.55)$ Po = 0.59'' = 0.050'

<u>California Stormwater Quality Association Stormwater Best Management Practices</u> <u>Handbook :</u>

Required Area of Filter Bed A_f :

 $A_f = WQV d / [Kt (h+d)]$

Where:

WQV = Water Quality Volume

 $A_f =$ Area of the filter bed (ft²)

d = depth of the filter bed

K = coefficient of permeability of the filtering medium (ft/day)

t = time of the water quality volume to filter through the system (days). Assume 1.67 days

h = average water height above A-1 soil

Filter Bed :

A-1 SOIL = 3.5 ft/dayCOMPOST = 8.7 ft/day

d = depth of filter media = 0.50' compost + 1.50' A-1 Soil d = 2.00'

K = use weighted value K = 8.7 (0.50) + 3.5 (1.50) = 4.802.00

 $h \Rightarrow Use h = 0.50'$

BMP 1 CALCULATIONS

Media Filter Treatment Control BMP

• Volume based BMP

Water Quality Volume (WQV) WQV = Po A Po = 0.05' from treatment volume calculations A = 0.28 Ac = 12,009 SQ. FT.

WQV = (0.05) (12,009) ∴ WQV = 600 CU. FT.

Filter Area Required :

 $A_{f} = WQV d / [Kt (h+d)] = (600) (2.00)$ (4.80) (1.67) (0.50 + 2.00)

 $\therefore A_f = 60 \text{ SQ. FT.}$

Filter Area Provided:

A = 970 SQ. FT. $\therefore A > A_f$ OK

Volume Provided = 970 (2.00) = 1,940 CU. FT. > 60 CU. FT.

CIRCULAR CHANNEL AND

TRAPEZOIDAL CHANNEL

ANALYSIS

G:\project docs\999-15\Hydrology Drainage Calc Report\hydrology title pages.wpd

JP ENGINEERING, INC. 4849 Ronson Court, Suite 105 San Diego, CA 92111 (858) 569-7377 Fax: (858) 569-0830

SEE ATTACHED EXHIBIT 'A' RATIONAL METHOD STUDY

SAN DIEGO	COUNTY BY MANUAL	STUDY NAME: <u>Montezuma PDP/CUP</u> (POST-DEVELOPMEN PRIORITY TREATMENT	<u>T)</u>	CALCULATED BY: <u>JHP</u> CHECKED BY:	DATE:DATE:DATE:	03/09/2017	JOB NO 999-15 SHEET NO 2 _ OF _ 2
CONCEN- TRATION POINT	REMARKS		Q (cfs)	SIZE AND TYPE OF INLET	PIPE SIZE AND MATERIAL	SLOPE (%)	NOTES
P-1	= (1)		0.05	24" X 24" C.B.	4" PVC PIPE	1.0% MIN.	DN= 0.11', V= 2.07 fps
P-2	= 1 + (2	0.56	Trapezoidal Swale		1.0% MIN.	DN= 0.18', V= 0.51 fps
P-3	= 4		0.02	24"x24" C.B.	2" FORCE MAIN	8.3% MIN.	
P-4	= (1) + (2+3+4	0.63	24"X24" C.B.	Trapezoidal Swale	5% MIN.	DN=0.12' V=0.88 fps
P-5	= P-4		0.63	24"x24" C.B.	4" PVC	10% MIN.	DN=0.25' V=9.18 fps
P-6	= P-5		0.63	Trapezoidal Channel	Type 'A' curb outlet	1.5% MIN.	DN=0.06' V=3.53 fps
	-						

CIRCULAR CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION

March 17, 2017

	.====
PROGRAM INPUT DATA	
DESCRIPTION	VALUE
Flow Rate (cfs)	0.05
Channel Bottom Slope (ft/ft)	0.01
Manning's Roughness Coefficient (n-value)	0.011
Channel Diameter (ft)	0.33
COMPUTATION RESULTS	
DESCRIPTION	VALUE
Normal Depth (ft)	0.11
Flow Velocity (fps)	2.07
Froude Number	1.31
Velocity Head (ft)	0.07
Energy Head (ft)	0.17
Cross-Sectional Area of Flow (sq ft)	0.02
Top Width of Flow (ft)	0.31
	.=====
HYDROCALC Hydraulics for Windows, Version 1.2a Copyright (c) 1996	
Dodson & Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069	
Phone: (281)440-3787, Fax: (281)440-4742, Email:software@dodson-hydro.com	
All Rights Reserved.	

P-1

TRAPEZOIDAL CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION

March 17, 2017

PROGRAM INPUT DATA	
DESCRIPTION	VALUE
Flow Rate (cfs)	0.56
Channel Bottom Slope (ft/ft)	0.01
Manning's Roughness Coefficient (n-value)	0.09
Channel Left Side Slope (horizontal/vertical)	0.0
Channel Right Side Slope (norizontal/vertical)	0.0
Channel Bottom Width (It)	6.0
COMPUTATION RESULTS	
DESCRIPTION	VALUE
Normal Depth (ft)	0.18
Flow Velocity (fps)	0.51
Froude Number	0.211
Velocity Head (ft)	0.0
Energy Head (ft)	0.19
Cross-Sectional Area of Flow (sq ft)	1.09
Top Width of Flow (ft)	6.0
	========

HYDROCALC Hydraulics for Windows, Version 1.2a Copyright (c) 1996 Dodson & Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069 Phone: (281)440-3787, Fax: (281)440-4742, Email:software@dodson-hydro.com All Rights Reserved.

P-2

TRAPEZOIDAL CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION

March 17, 2017

PROGRAM INPUT DATA	
DESCRIPTION	VALUE
Flow Rate (cfs) Channel Bottom Slope (ft/ft) Manning's Roughness Coefficient (n-value) Channel Left Side Slope (horizontal/vertical) Channel Right Side Slope (horizontal/vertical) Channel Bottom Width (ft)	0.63 0.05 0.09 0.0 0.0 6.0
COMPUTATION RESULTS DESCRIPTION	VALUE
Normal Depth (ft) Flow Velocity (fps) Froude Number Velocity Head (ft) Energy Head (ft) Cross-Sectional Area of Flow (sq ft) Top Width of Flow (ft).	0.12 0.88 0.446 0.01 0.13 0.72 6.0

HYDROCALC Hydraulics for Windows, Version 1.2a Copyright (c) 1996 Dodson & Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069 Phone: (281)440-3787, Fax: (281)440-4742, Email:software@dodson-hydro.com All Rights Reserved.

P-4

CIRCULAR CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION

March 17, 2017

PROGRAM INPUT DATA	
DESCRIPTION	VALUE
Flow Rate (cfs)).63).1).011).33
COMPUTATION RESULTS	
DESCRIPTION	VALUE
Normal Depth (ft)	0.25
Flow Velocity (fps)	9.18
Froude Number	3.307
Velocity Head (ft)	1.31
Energy Head (ft)	1.56
Cross-Sectional Area of Flow (sg ft)	0.07
Top Width of Flow (ft)	0.29
HYDROCALC Hydraulics for Windows, Version 1.2a Copyright (c) 1996 Dodson & Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069 Phone: (281)440-3787, Fax: (281)440-4742, Email:software@dodson-hydro.com All Rights Reserved.	

P-5

TRAPEZOIDAL CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION

March 17, 2017

	========
PROGRAM INPUT DATA DESCRIPTION	VALUE
Flow Rate (cfs) Channel Bottom Slope (ft/ft) Manning's Roughness Coefficient (n-value) Channel Left Side Slope (horizontal/vertical) Channel Right Side Slope (horizontal/vertical) Channel Bottom Width (ft)	0.63 0.05 0.014 0.0 0.0 3.0
COMPUTATION RESULTS DESCRIPTION	VALUE
Normal Depth (ft) Flow Velocity (fps) Froude Number Velocity Head (ft) Energy Head (ft) Cross-Sectional Area of Flow (sq ft) Top Width of Flow (ft)	0.06 3.53 2.557 0.19 0.25 0.18 3.0

HYDROCALC Hydraulics for Windows, Version 1.2a Copyright (c) 1996 Dodson & Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069 Phone: (281)440-3787, Fax: (281)440-4742, Email:software@dodson-hydro.com All Rights Reserved.

P-6

HYDRAULIC REFERENCES

AND

GRAPHS

f:\project docs\999-1 5Hydrology Drainage Calc Report\hydrology title pages.wpd

۰.

TABLE 2

RUNOFF COEFFICIENTS (RATIONAL METHOD)

DEVELOPED AREAS (URBAN)			
Land Use	Coefficient, C Soil Type (1)		
Residential:	D		
Single Family	.55		
Multi-Units	.70		
Mobile Homes	.65		
Rural (lots greater than 1/2 acre)	.45		
Commercial (2) 80% Impervious	.85		
Industrial (2) 90% Impervious	.95		

NOTES:

- (1) Type D soil to be used for all areas.
- (2) Where actual conditions deviate significantly from the tabulated imperviousness values of 80% or 90%, the values given for coefficient C, may be revised by multiplying 80% or 90% by the ratio of actual imperviousness to the tabulated imperviousness. However, in no case shall the final coefficient be less than 0.50. For example: Consider commercial property on D soil.

Actual imperviousness			=	50%	
Tabulated in	nperv	iousness		=	80%
Revised C	=	50 80 ×	0.85	H	0.53

82

25

• :

)

27

EXAMPLE: GIVEN: LENGTH OF FLOW = 400 FT. SLOPE = 1.0% COEFFICIENT OF RUNOFF C = .70 READ; OVERLAND FLOWTIME = 15 MINUTES 86 20

28

X-C

Appendix B: Storm Water Pollutant Control Hydrologic Calculations and Sizing Methods

Figure B.1-1: 85th Percentile 24-hour Isopluvial Map

Storm Water Standards Part 1: BMP Design Manual January 2016 Edition

A-1 Bio-Retention Soil (Soil Medium for Bio-Swales & Bio-Retention Basins)

PRODUCT DESCRIPTION:

A-1 Bioswale Soil is a blend of 80% washed coarse sand and 20% sandy loam topsoil. The blended material is low in silt and clay which allows the material to perform at the required minimum drainage properties of > 5" per hour KSat Perc Rate @ 85% relative compaction. This satisfies civil engineering requirements while maintaining the agronomical properties of a well graded sand with silt to satisfy the landscape architect's desire to support growth of plant material. Clay content is limited to provide a minimum cation exchange capacity for healthy plant material if desired.

The uniform sand sizes of A-1 Bio-Retention Soil results in long lasting pore space and moisture capacity for a reasonably priced, readily available, consistent source of an appropriate soil medium to comply with State Water Quality requirements.

(***NOTE**; Organic matter may be incorporated by volume percentage when requested by the customer for an additional cost that will vary depending on the desired type and percentage requested. It is recommended that organic matter be incorporated into the soil medium's top six inches after installation to relieve compaction or in the planting hole for trees or shrubs to concentrated the amendment where it will benefit the plants and restrict water movement.)

PRODUCT USES:

A-1 Bio-Retention Soil is a soil medium for Bio-Retention Basins and Swales which helps remove contaminants from storm water runoff as required by the State of California Regional Water Quality Control Board and other government agencies charged with enforcement of these requirements. The ultimate goal is to help prevent contamination of the downstream beneficial water sources of the State.

(*NOTE: All materials should be sampled, submitted, and approved prior to shipment or installation as job plans and specifications VARY GREATLY! It is the customer's responsibility to assure the soil is approved **BEFORE** installation!

INSTALLATION:

A-1 Bio-Retention Soil should be installed per construction plans or engineers specifications. Compaction should be avoided and ideally the soil should be installed at less than optimum moisture.

Specification data subject to change. Additional data available upon request.

Limitation of Warranties: Seller makes no warranty of any kind, express or implied, regarding the materials; and all warranties, including any implied warranty of merchantability and any implied warranty of fitness for a particular purpose, are hereby excluded.

A-1 Bio-Retention Soil (Soil Medium for Bio-Swales and Bio-Retention Basins)

A-1 Bioswale Soil is a locally available mix that is a reasonably priced solution for architects and engineers designing project to achieve LEED credits and certification as well as compliance with local and state storm drain requirements.

- Sustainable Sites Credit 5.1 Site Development Protect / Restore Habitat
- Sustainable Sites Credit 6.1 Storm Water Design Quality Control
- Sustainable Sites Credit 6.2 Storm Water Design Quality Control
- Water Effiiency Prerequisite Water Use Reduction 20% Reduction
- Water Efficiency Credit 1 Water Efficiency Landscaping
- Material and Resources Credit 5 Regional Materials
- Innovation in Design Protect & Restore Habitat

PRODUCT ANALYSIS: (Unameded A-1 Bioswale) - Product can be amended per specification

Passing	
3/8"	
#4	····· 90%-100%
#8	
#200 ·····	<15%
USDA Soil Classification	····· Very Gravelly Sand
PH Range ·····	
ECe (Salinity) ·····	< 3.0
KSat (Perc Rate)······>5.0 inches/hr @ 85% Compa	action (Compaction affects permeability)
Sand	
Topsoil	topsoil shows up in final mix evaluation)
Silt & Clay	

*Analysis based on UN-AMENDED soil. Amendments added by volume and type requested.

Specification data subject to change. Additional data available upon request.

Limitation of Warranties: Seller makes no warranty of any kind, express or implied, regarding the materials; and all warranties, including any implied warranty of merchantability and any implied warranty of fitness for a particular purpose, are hereby excluded.

Table 1.--- Manning roughness coefficients, n 1

Manning's

IV.

V.

VI.

 Manning's
 n range 3

 A. Concrete pipe
 0.011-0.013

 B. Corrugated-metal pipe or pipe-arch:
 0.0011-0.013

 1. 23% by ½-in. corrugation (riveted pipe): 3
 0.024

 b. Paved invert (range values are for 25 and 50 percent of circumference paved):
 0.021-0.018

 (1) Flow full depth.
 0.021-0.018

 (2) Flow 0.8 depth.
 0.021-0.016

 (3) Flow 0.6 depth.
 0.03

 C. Vitrified clay pipe.
 0.012-0.014

 D. Steel pipe.
 0.012-0.014

 C. Wood forms, rough.
 0.014-0.017

 G. Monolithic concrete:
 0.012-0.014

 1. Wood forms, smooth.
 0.012-0.013

 B. Cemented rubble masonry walls:
 0.012-0.013

 I. Cemented rubble masonry walls:
 0.017-0.022

 2. Natural floor
 0.015-0.017

 J. Vitrified clay liner plates.
 0.015-0.017

 0.011-0.013 0. 024

 II. Open channels, lined 4 (straight alinement): 5

 A. Concrete, with surfaces as indicated:

 1. Formed, no finish.

 2. Trowel finish.

 3. Float finish.

 6. Gunite, good section

 0.013-0.017

 5. Gunite, good section

 0.016-0.019

 6. Gunite, wavy section

 0.016-0.019

 7. Gunite, good section

 0.016-0.019

 6. Gunite, wavy section

 0.016-0.019

 7. Random stone in mortar

 0.017-0.020

 3. Cement rubble masoury, plastered

 0.016-0.020

 5. Dry rubble (riprap)

 0.020-0.030

 C. Gravel bottom, sides as indicated:

 1. Formed concrete.

 0.017-0.020

 2. Random stone in mortar

 0.020-0.033

 Dry rubble (riprap)

 0.020-0.033

 Dry rubble (riprap)

 0.023-0.033

 D. Brick

 0.014-0.017

 E. Asphalt:

 1. Smooth
 0.013

 2. Rough
 0.014-0.013

 3. Dry rubble (riprap)
 0.013

 3. Concrete-lined excavat III. Open channels, excavated ⁴ (straight alinement,⁵ natural liming): A. Earth, uniform section:

 A. Earth, uniform section:
 0.016-0.018

 1. Clean, recently completed
 0.018-0.020

 2. Clean, after weathering
 0.018-0.020

 3. With short grass, few weeds
 0.022-0.027

 4. In gravelly soil, uniform section:
 0.022-0.025

 5. Earth, fairly uniform section:
 0.022-0.025

 2. Grass, some weeds
 0.022-0.033

 3. Dense weeds or aquatic plants in deep channels
 0.030-0.035

 4. Sides clean, gravel bottom
 0.025-0.030

 5. Sides clean, cobble bottom
 0.030-0.040

 C. Dragline ercavated or dredged:
 0.032-0.035

 1. No vegetation
 0.035-0.050

 D. Rock:
 0.035-0.050

 D: Rock:

_	~ ~ ~		
	1.	Dense weeds, high as flow depth	0.08-0.12
	2.	Clean bottom, brush on sides	0.05-0.08
	3.	Clean bottom, brush on sides, highest stage of flow	0.07-0.11
	4.	Dense brush, high stage	0.10-0.14

Footnotes to table 1 appear at the top of page 101.

•	High way channels and swales with maintained vegetation 5	7
	(values shown are for velocities of 2 and 6 f.p.s.):	Manning's
	1. Bermudagrass, Kentucky bluegrass, buffalograss;	n range 2
	a. Mowed to 2 inches	0.07-0.045
	b. Length 4-6 inches	0.09-0.05
	a. Length about 12 inches	0, 18-0, 09
	b. Length about 24 inches	0.30-0.15
	3. Fair stand, any grass:	0 14 0 08
	b. Length about 12 inches	0.25-0.13
	B. Depth of flow 0.7-1.5 feet:	
	1. Bermudagrass, Kentucky bluegrass, buffalograss:	0.05.0.025
	a. Mowed to 2 mones	0.05-0.035
	2. Good stand, any grass:	0.00 0.01
	a. Length about 12 inches	0.12-0.07
	b. Length about 24 inches	0. 20-0. 10
	a. Length about 12 inches	0, 10-0, 06
	b. Length about 24 inches	0.17-0.09
	Street and approximate duttants	
	A. Concrete gutter, troweled finish	0.012
	B. Asphalt pavement:	01 011
	1. Smooth texture	0.013
	2. Rough texture	0, 016
	1. Smooth	0.013
	2. Rough	0.015
	D. Concrete pavement:	0.000
	1. Float finish	0.014
	E. For gutters with small slope, where sediment may accu-	0.010
	mulate, increase above values of n by	0.002
	A Minor streams & (surface width at flood stage less than 100	
	ft.):	
	1. Fairly regular section:	
	a. Some grass and weeds, little or no brush	0.030-0.035
	greater than weed height	0.035-0.05
	c. Some weeds, light brush on banks	0.035-0.05
	d. Some weeds, heavy brush on banks	0.05-0.07
	e. Some weeds, dense willows on banks	0.06-0.08
	at high stage, increase all above values by	0.01-0.02
	2. Irregular sections, with pools, slight channel meander;	
	increase values given in 1a-e about	0.01-0.02
	3. Mountain streams, no vegetation in channel, banks sub-	
	merged at high stage:	
	a. Bottom of gravel, cobbles, and few boulders	0.04-0.05
-	b. Bottom of cobbles, with large boulders	0.05-0.07
1	1. Pasture, no brush:	
	a. Short grass	0.030-0.035
	b. High grass	0. 035-0. 05
	2. Cultivated areas:	0.03-0.04
	b. Mature row crops	0. 035-0. 045
	c. Mature field crops	0.04-0.05
	 Heavy weeds, scattered brush Light brush and trees: 10 	0.05-0.07
	a. Winter	0.05-0.06
	b. Summer	0.06-0.08
	5. Medium to dense brush: 10	0 07 0 11
	h Summer	0.10-0.16
	6. Dense willows, summer, not bent over by current	0. 15-0. 20
	7. Cleared land with tree stumps, 100-150 per acre:	0.01.0.05
	a. No sprouts	0.04-0.05
	8. Heavy stand of timber, a few down trees, little under-	0.00 0.00
	growth:	
	a. Flood depth below branches	0. 10-0. 12
,	Major streams (surface width at flood stage more than	0. 12-0. 10
1	100 ft.): Roughness coefficient is usually less than for	
	minor streams of similar description on account of less	
	effective resistance offered by irregular banks or vege-	
	duced. Follow recommendation in publication cited 8	
	if possible. The value of n for larger streams of most	
	regular section, with no boulders or brush, may be in the	0.000 0.022
	range of	0. 028-0. 083

ASSUME 25% CLOGGING

33

TABLE F

5	sheet 1	or 2	Project No. 999–15
= IMPERVIOUS AREA = 407 SQ.FT. $ = PERVIOUS AREA = 0 SQ.FT. $ $ TOTAL AREA = 407 SQ.FT. $ $ MPERVIOUS AREA = 342 SQ.FT. $ $ PERVIOUS AREA = 568 SQ.FT. $ $ TOTAL AREA = 910 SQ.FT.$	TITLE: DRAINAGE PLAN EXHIBIT 'A'	П МАМЕ: 6213 MONTEZUMA MULTI-FAMILY V. 467-171-28-00 & 467-171-29-00	858)569-7377 FAX (858)569-0830
PROFESSION REPORT SION AND AND AND AND AND AND AND AND AND AN	BY ARCONN DESIGNER JL SHEET	R.C.E. 32031 CHECKED JHP PROJEC	N COURT, SUITE 105, SAN DIEGO, CA 92111 • (
0 10 20 40 SCALE: 1"=20'	BY NO. DATE		PLANNING & SURVEYING & 4849 RONSOI
IMPERVIOUS AREA = 9,861 SQ.FT. PERVIOUS AREA = <u>2,555</u> SQ.FT. TOTAL AREA = 12,416 SQ.FT.	DATE		CIVIL ENGINEERING - LAND
<u>exhibit 'a'</u> t—development	NO		

ATTACHMENT 6 GEOTECHNICAL AND GROUNDWATER INVESTIGATION REPORT

Attach project's geotechnical and groundwater investigation report. Refer to Appendix C.4 to determine the reporting requirements.

Project Name: Montezuma Multi-Family

THIS PAGE INTENTIONALLY LEFT BLANK FOR DOUBLE-SIDED PRINTING

December 14, 2016

Elsey Partners 1532 College Avenue F19 Manhattan, Kansas 66502 Attention: Chris Elsey CWE 2150650.02

Subject:Response to City of San Diego LDR-Geology Cycle 2 Review of Geotechnical DocumentsProposed Apartment Building, 6213-6219 Montezuma Road, San Diego, California

References: 1) City of San Diego LDR-Geology Cycle 2 Review of Geotechnical Documents, October 3, 2016, Project No. 501449

2) Christian Wheeler Engineering, Report 2150650.01, dated November 17, 2015

Ladies and Gentlemen:

In accordance with your request, Christian Wheeler Engineering has prepared this letter to address the review comments presented in the referenced City of San Diego review memorandum. The geotechnical comments and our responses are presented below.

City Comment 4: This proposed development is a Priority Development Project (PDP). The project's geotechnical consultant must submit an addendum geotechnical report that provides the information required in the Storm Water Standards, Part 1, BMP Design Manual and Appendix F of the City's Guidelines for Geotechnical Reports.

CWE Response: This report has been prepared as an addendum to our referenced geotechnical report. Based on our review of the referenced plans, it is our opinion that all the recommendations contained in our previous geotechnical report for the proposed project remain applicable.

The soil underlying the project site and the surrounding area is classified as Type D soils based on the Web Soil Survey mapping of soil hydrologic properties and the findings from our subsurface investigation. As such, the project should be designed using BMP's that will incorporate partial infiltration. Infiltration testing can be performed at a later date if requested.

Based on the current Storm Water Standards, BMP Design Manual, certain geotechnical criteria need to be addressed when assessing the feasibility and desirability of the use of infiltration BMPs for a project site. Those criteria, Per Section C.2 of the manual, are addressed below.

C2.1 SOIL AND GEOLOGIC CONDITIONS

Site soil and geologic conditions influence the rate at which water can physically enter the soils. Based on the conditions observed in our exploratory borings, the existing soils in the area of the proposed BMPs consist of slightly permeable, clayey sand (SC) and silty sand (SM). Groundwater was not encountered within our subsurface investigation and is expected to be greater than 40 feet below grade.

C2.2 SETTLEMENT AND VOLUME CHANGE

Settlement and volume change can occur when water is introduced below grade. Based upon the soil conditions observed in our borings, the site is underlain by competent colluvium, very old paralic deposits and Mission Valley formation. In in our opinion these competent soils are not subject to collapse or heave upon wetting.

C2.3 SLOPE STABILITY

Infiltration of water has the potential to increase the risk of failure to nearby slopes. The site is currently sloping. Setbacks from descending slopes are discussed on page 3.

C2.4 UTILITY CONSIDERATIONS

Utilities are either public or private infrastructure components that include underground pipelines, vaults, and wires/conduit, and above ground wiring and associated structures. Infiltration of water can pose a risk to subsurface utilities, or geotechnical hazards can occur within the utility trenches when water is introduced. Care should be taken when planning proposed utility trench and BMP siting. Cutoff walls are recommended to reduce the potential for water flow into offsite utility trenches.

C2.5 GROUNDWATER MOUNDING

Groundwater mounding occurs when infiltrated water creates a rise in the groundwater table beneath the facility. Groundwater mounding can affect nearby subterranean structures and utilities. Based on the anticipated depth to groundwater, the potential for groundwater mounding is low.

C2.6 RETAINING WALL AND FOUNDATIONS

Infiltration of water can result in potential increases in lateral pressures and potential reduction in soil strength. Retaining walls and foundations can be negatively impacted by these changes in soil conditions.

This should be taken into account when designing the storm water BMPs, retaining walls and foundations for the site. Recommendations are provided herein to mitigate for this hazard.

Based on our experience with similar projects, we anticipate that, as long as the recommendations contained herein are followed, infiltration of stormwater utilizing the proposed onsite storm water infiltration BMP will not result in soil piping, daylight water seepage, or slope instability for the property or project sites down-gradient of the site.

For the proposed BMPs, we recommend that infiltration occurs within either colluvium, very old paralic deposits or Mission Valley formation. It is also recommended that the infiltration BMPs be setback a minimum of 50 feet from descending slopes, or extend below the base of any slope within 50 feet of the BMP. Where BMP basins are located within 10 feet of the proposed basement retaining wall, the wall designer should increase the equivalent fluid pressure by 13 per square foot for potential saturated soil conditions. Where BMP basins are located within 10 feet of settlement sensitive improvements we recommended that a cut-off wall be constructed around the perimeter of the BMP. The cut-off wall should extend a minimum of 5 feet below proposed pad grade or at least 2 feet below the bottom of the BMP whichever is greater.

It should be recognized that routine inspection and maintenance of the BMPs are necessary to prevent clogging and failure. A maintenance plan should be specified for each BMP by the designer and followed by the owner during the entire lifetime of the BMP device.

"Worksheet C.4-1: Categorization of Infiltration Feasibility Criteria," has been completed and signed for the subject project, and is included in Appendix A of this report.

It should be noted that it is not our intent to review the civil engineering plans, notes, details, or calculations, when prepared, to verify that the engineer has complied with any particular storm water design standards. It is the responsibility of the designer to properly prepare the storm water plan based on the municipal requirements considering the planned site development and infiltration rates.

City Comment 5: The geotechnical consultant must comment whether or not the proposed construction as recommended will measurably destabilize neighboring properties or induce the settlement of adjacent properties.

CWE Response: It is our professional opinion and judgement that the proposed construction as recommended will not measurably destabilize neighboring properties or induce the settlement of adjacent properties.

City Comment 6: Submit original quality prints and digital copies of the geotechnical investigation report listed as "references" and the requested addendum for our records.

CWE Response: Original quality prints and a digital copy of the referenced geotechnical report will be submitted with this report.

If you have any questions regarding this response to the City review, please do not hesitate to contact our office. This opportunity to be of continuing service on this project is sincerely appreciated.

Respectfully submitted, CHRISTIAN WHEELER ENGINEERING

#2551 Wilson, C.E.G.

TSW:tsw;scc

encl: Appendix A ec: chris@myprimeplace.com brad@myprimedesign.com jp@jpeng.com

Appendix A

Worksheet C.4-1: Categorization of Infiltration Feasibility Condition

Worksheet C.4-1: Categorization of Infiltration Feasibility Condition

CWE Project Name: Proposed Apartment Building, 6213-6219 Montezuma Road CWE Project Number: 2150650.01

Categor	ization of Infiltration Feasibility Condition	Worksheet C.4-1		
Part 1 - Full Infiltration Feasibility Screening Criteria Would infiltration of the full design volume be feasible from a physical perspective without any undesirable consequences that cannot be reasonably mitigated?				
Criteria	Screening Question		Yes	No
1	Is the estimated reliable infiltration rate below proposed facility locations greater than 0.5 inches per hour? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2 and Appendix D.			X
Provide b	pasis:			
The infiltra analysis, the does not all	ion rate of the on-site soils has not been measured. However, based soils are expected to be classified as hydrologic soil type D. As such ow for a reliable infiltration rate greater than 0.5 inches per hour.	on our soil classificati , it is our professional	on and gr opinion t	ain-size hat soil
2	Can infiltration greater than 0.5 inches per hour be allowed w risk of geotechnical hazards (slope stability, groundwater more other factors) that cannot be mitigated to an acceptable level this Screening Question shall be based on a comprehensive e factors presented in Appendix C.2.	vithout increasing unding, utilities, or The response to valuation of the	Х	
Provide b C.2.1 A sin C.2.2 Base deposits a formation C.2.3 The can occur, slopes. C.2.4 It is trenches. C.2.5 Gro C.2.6 Reco	pasis: the specific geotechnical investigation was performed. In dupon the soil conditions observed in our borings, the site is under and Mission Valley formation. In in our opinion the colluvium, very of are not subject to significant collapse or heave upon wetting. site is sloping and descending slopes, if saturated, can become unsta As such, it is recommended that the storm water BMPs be setback a recommended that a vertical liner will be used to prevent lateral mig undwater mounding is not expected to be a concern. ommendations are provided in the report to mitigate this hazard.	lain by fill, colluvium, v old paralic deposits and ble. In addition, nuisar a minimum of 50 feet : ration of water into ne	very old p Mission ace seepag from desc arby utilit	varalic Valley ge issues cending y

Criteria	Screening Question Can infiltration greater than 0.5 inches per hour be allowed without increasing	Yes	No
	Can infiltration greater than 0.5 inches per hour be allowed without increasing		110
3	risk of groundwater contamination (shallow water table, storm water pollutants or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.	Х	
Provide b	asis:		
The risk of groundwat	f groundwater contamination has not been evaluated at this time; however, we do not antic ter related concerns at the subject site.	ipate any	
4	Can infiltration greater than 0.5 inches per hour be allowed without causing potential water balance issues such as change of seasonality of ephemeral streams or increased discharge of contaminated groundwater to surface waters? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.	X	
Provide b	asis:		
The risk of discharge of anticipate a	f causing potential water balance issues such as change of seasonality of ephemeral streams of contaminated groundwater to surface waters has not been evaluated at this time; howeve any issues.	or increa er, we do	sed not
Part 1 Result*	If all answers to rows 1 - 4 are "Yes" a full infiltration design is potentially feasible feasibility screening category is Full Infiltration If any answer from row 1-4 is "No", infiltration may be possible to some extent be would not generally be feasible or desirable to achieve a "full infiltration" design.	e. The	NO

*To be completed using gathered site information and best professional judgment considering the definition of MEP in the MS4 Permit. Additional testing and/or studies may be required by City Engineer to substantiate findings.

Worksheet C.4-1 Page 3 of 4				
Part 2 – Partial Infiltration vs. No Infiltration Feasibility Screening Criteria Would infiltration of water in any appreciable amount be physically feasible without any negative consequences that cannot be reasonably mitigated?				
Criteria	Screening Question	Yes	No	
5	Do soil and geologic conditions allow for infiltration in any appreciable rate or volume? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2 and Appendix D.	Х		
Provide b	pasis:	L		
The infiltra and grain-si have an infi	ion rate of the on-site soils has not been measured. However, based on soil mapping, our s ze analysis, the soils are expected to be classified as hydrologic soil type D. As such, the soil ltration rate greater than 0.01 inches per hour and less than 0.5 inches per hour.	oil classif l is expec	ication ted to	
6	Can Infiltration in any appreciable quantity be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2.	X		
 Provide basis: C.2.1 A site specific geotechnical investigation was performed. C.2.2 Based upon the soil conditions observed in our borings, the site is underlain by fill, colluvium, very old paralic deposits and Mission Valley formation. In in our opinion the colluvium, very old paralic deposits and Mission Valley formation are not subject to significant collapse or heave upon wetting. C.2.3 The site is sloping and descending slopes, if saturated, can become unstable. In addition, nuisance seepage issues can occur. As such, it is recommended that the storm water BMPs be setback a minimum of 50 feet from descending slopes. C.2.4 It is recommended that a vertical liner will be used to prevent lateral migration of water into nearby utility trenches. C.2.5 Groundwater mounding is not expected to be a concern. C.2.6 Recommendations are provided in the report to mitigate this hazard. 				

Worksheet C.4-1 Page 4 of 4					
Criteria	Screening Question	Yes	No		
7	Can Infiltration in any appreciable quantity be allowed without posing significant risk for groundwater related concerns (shallow water table, storm water pollutants or other factors)? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.	X			
Provide l	Dasis:				
The risk ogroundwa	of groundwater contamination has not been evaluated at this time; however, we do not antio ter related concerns at the subject site.	cipate any			
8	Can infiltration be allowed without violating downstream water rights? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.	X			
Provide l	Dasis:		1		
The risk of discharge unaware of	of causing potential water balance issues such as change of seasonality of ephemeral streams of contaminated groundwater to surface waters has not been evaluated at this time; howev of any water rights in this area of San Diego.	or increa	sed e		
Part 2 Result*	If all answers from row 1-4 are yes then partial infiltration design is potentially fea The feasibility screening category is Partial Infiltration. If any answer from row 5-8 is no, then infiltration of any volume is considered to infeasible within the drainage area. The feasibility screening category is No Infiltration	asible. be ation.	Partial		

JJL

Troy S. Wilson, CEG #2551

REPORT OF PRELIMINARY GEOTECHNICAL INVESTIGATION

PROPOSED APARTMENT BUILDING 6213-6219 MONTEZUMA ROAD SAN DIEGO, CALIFORNIA

PREPARED FOR

ELSEY PARTNERS 1532 COLLEGE AVENUE F19 MANHATTAN, KANSAS 66502

PREPARED BY

CHRISTIAN WHEELER ENGINEERING 3980 HOME AVENUE SAN DIEGO, CALIFORNIA 92105

3980 Home Avenue + San Diego, CA 92105 + 619-550-1700 + FAX 619-550-1701

November 17, 2015

Elsey Partners 1532 College Avenue F19 Manhattan, Kansas 66502 Attention: Chris Elsey CWE 2150650.01

Subject:Report of Preliminary Geotechnical InvestigationProposed Apartment Building, 6213-6219 Montezuma Road, San Diego, California

Ladies and Gentlemen:

In accordance with your request, and our proposal and agreement dated October 28, 2015, we have completed a geotechnical investigation for the subject project. We are presenting herewith a report of our findings and recommendations.

If you have questions after reviewing this report, please do not hesitate to contact our office. This opportunity to be of professional service is sincerely appreciated.

If you have any questions after reviewing this report, please do not hesitate to contact our office. This opportunity to be of professional service is sincerely appreciated.

Respectfully submitted, CHRISTIAN WHEELER ENGINEERING

Shawn C. Caya, R.G.E. #2748 TSW:jdb;tsw;scc cc: chris@myprimeplace.com

NGINEERING GEOLOGIS1 FOFCA

CERTIFIED

Troy S. Wilson, C.E.G. #2551

TABLE OF CONTENTS

PAGE

Project Scope 2 Findings 3 Site Description 3 General Geology and Subsurface Conditions 3 Geologic Setting and Soil Description 3 Artificial Fill 3 Colluvium 4 Very Old Paralic Deposits 4 Mission Valley Formation 4 Groundwater 4 Tectonic Setting 5 Geologic Hazards 5 Geologic Hazards 5 Geologic Hazards 5 Geologic Hazards 5 Liquefaction 7 Flooding 7 Seiches 7 Conclusions 7 Recommendations 8 Grading and Earthwork 8 General 9 Compaction and Method of Filling 9 Surface Drainage 10 Temporary Cut Slopes 10 Shored Slopes 10 Shored Slopes 10 Shored Slopes 10 Shored Slopes 10 Shoring Design and La
Findings 3 Site Description 3 General Geology and Subsurface Conditions 3 Geologic Setting and Soil Description 3 Artificial Fill 3 Colluvium 4 Very Old Paralic Deposits 4 Mission Valley Formation 4 Groundwater 4 Tectonic Setting 5 Geologic Hazards 5 Geologic Hazards Category 5 Landslide Potential and Slope Stability 5 Seismic Design Hazard 6 Liquefaction 7 Flooding. 7 Seiches 7 Conclusions 7 Recommendations 8 Grading and Earthwork 8 Grading and Earthwork 8 Observation of Grading 9 Surface Drainage 10 Shored Slopes. 10 General 10 Shored Slopes. 10 Shored Slopes. 10 Shored Slopes. 10 Shored Slopes. 10 <
Site Description 3 General Geology and Subsurface Conditions 3 Geologic Setting and Soil Description 3 Artificial Fill 3 Colluvium 4 Very Old Paralic Deposits 4 Mission Valley Formation 4 Groundwater 4 Tectonic Setting 5 Geologic Hazards 5 Geologic Hazards Category 5 Landslide Potential and Slope Stability 6 Seisnic Design Hazard 6 Liquefaction 7 Flooding 7 Sciches 7 Conclusions 7 Recommendations 8 Grading and Earthwork 8 Grading and Earthwork 8 Site Preparation 8 Stie Preparation 9 Surface Drainage 10 Shored Slopes. 10 Shoring Design and Lateral Pressures
General Geology and Subsurface Conditions 3 Geologic Setting and Soil Description 3 Artificial Fill 3 Colluvium 4 Very Old Paralic Deposits 4 Mission Valley Formation 4 Groundwater 4 Tectonic Setting 5 Geologic Hazards 55 Geologic Hazards Category 5 Landslide Potential and Slope Stability 6 Seismic Design Hazard 6 Liquefaction 7 Flooding. 7 Testonamis. 7 Seiches. 7 Conclusions 7 Recommendations. 8 Grading and Earthwork 8 Grading and Earthwork 8 Stite Preparation 9 Surface Drainage 10 Temporary Cut Slopes 10 Shored Slopes. 10 Shoring Design and Lateral Pressures 11 Lagging. 11 Texpoke A nchor Desim 11
Geologic Setting and Soil Description 3 Artificial Fill 3 Colluvium 4 Very Old Paralic Deposits 4 Mission Valley Formation 4 Groundwater 4 Tectonic Setting 5 Geologic Hazards 5 Geologic Hazards 5 Geologic Hazards 5 Landslide Potential and Slope Stability 6 Seismic Design Hazard 6 Liquefaction 7 Flooding 7 Tsunamis 7 Seiches. 7 Conclusions 7 Recommendations 8 Grading and Earthwork 8 General 8 Observation of Grading 9 Surface Drainage 10 Temporary Cut Slopes 10 General 10 Shoring Design and Lateral Pressures 11 Lagging 11 Texpeck Anchor Design 11
Artificial Fill 3 Colluvium 4 Very Old Paralic Deposits 4 Mission Valley Formation 4 Groundwater 4 Tectonic Setting 5 Geologic Hazards 5 Geologic Hazards Category 5 Landslide Potential and Slope Stability 6 Seismic Design Hazard 6 Liquefaction 7 Flooding. 7 Tsunamis 7 Seiches 7 Conclusions 7 Recommendations 8 Grading and Earthwork 8 General 9 Observation of Grading 9 Surface Drainage 10 Temporary Cut Slopes 10 Shoring Design and Lateral Pressures 11 Lagging. 11 Lagging. 11 Tespic A nebor Design 11
Colluvium4Very Old Paralic Deposits4Mission Valley Formation4Groundwater4Tectonic Setting5Geologic Hazards5Geologic Hazards5Landslide Potential and Slope Stability6Seismic Design Hazard6Liquefaction7Flooding7Tsunamis7Seiches7Conclusions7Recommendations8Greneral8Observation of Grading8Site Preparation8Processing of Fill Areas and Building Pad9Compaction and Method of Filling9Shoring Design and Lateral Pressures10Shoring Design and Lateral Pressures11Lagging11Lagging of Soldier Piles11Lagging11Lagging11Tieback Anchor Design11
Very Old Paralic Deposits 4 Mission Valley Formation 4 Groundwater 4 Tectonic Setting 5 Geologic Hazards 5 Geologic Hazards Category 5 Landslide Potential and Slope Stability 6 Seismic Design Hazard. 6 Liquefaction 7 Flooding. 7 Tunamis. 7 Seiches. 7 Conclusions 7 Recommendations 8 Grading and Earthwork 8 General 8 Diservation of Grading 9 Compaction and Method of Filling 9 Surface Drainage 10 Shoring Design and Lateral Pressures 11 Design of Soldier Piles 11 Lagging. 11
Mission Valley Formation 4 Groundwater 4 Tectonic Setting 5 Geologic Hazards 5 Geologic Hazards Category 5 Landslide Potential and Slope Stability 6 Seismic Design Hazard 6 Liquefaction 7 Flooding 7 Tsunamis. 7 Seiches 7 Conclusions 7 Recommendations 8 Grading and Earthwork 8 General 8 Observation of Grading 8 Site Preparation 8 Processing of Fill Areas and Building Pad 9 Compaction and Method of Filling 9 Surface Drainage 10 Shoring Design and Lateral Pressures 11 Lagging 11 Lagging 11
Groundwater4Tectonic Setting5Geologic Hazards5Geologic Hazards Category5Landslide Potential and Slope Stability6Seismic Design Hazard6Liquefaction7Flooding7Tsunamis7Seiches7Conclusions7Recommendations8Grading and Earthwork8General8Observation of Grading9Compaction and Method of Filling9Surface Drainage10Temporary Cut Slopes10Shoring Design and Lateral Pressures11Design of Soldier Piles11Lagging11Lagging11Lagging11Lagging11Lagging11Lagging11Lagging11Lagging11
Tectonic Setting5Geologic Hazards5Geologic Hazards Category5Landslide Potential and Slope Stability6Seismic Design Hazard6Liquefaction7Flooding7Tsunamis7Seiches7Conclusions7Recommendations8Grading and Earthwork8General8Observation of Grading9Compaction and Method of Filling9Surface Drainage10Shoring Design and Lateral Pressures11Design of Soldier Piles11Lagging11Ligging11Ligging11Ligging11Ligging11Ligging11Ligging11Ligging11
Geologic Hazards 5 Geologic Hazards Category 5 Landslide Potential and Slope Stability 6 Seismic Design Hazard 6 Liquefaction 7 Flooding 7 Tsunamis 7 Seiches 7 Conclusions 7 Recommendations 8 Grading and Earthwork 8 General 8 Nobservation of Grading 8 Site Preparation 8 Processing of Fill Areas and Building Pad 9 Compaction and Method of Filling 9 Surface Drainage 10 Temporary Cut Slopes 10 Shored Slopes 10 Shoring Design and Lateral Pressures 11 Lagging 11 Lagging 11 Tieback Anchor Design 11
Geologic Hazards Category5Landslide Potential and Slope Stability6Seismic Design Hazard6Liquefaction7Flooding7Tsunamis7Seiches7Conclusions7Recommendations8Grading and Earthwork8Observation of Grading8Site Preparation8Processing of Fill Areas and Building Pad9Compaction and Method of Filling9Surface Drainage10Temporary Cut Slopes10Shoring Design and Lateral Pressures11Lagging11Lagging11Lagging11
Landslide Potential and Slope Stability 6 Seismic Design Hazard 6 Liquefaction 7 Flooding 7 Tsunamis 7 Seiches 7 Conclusions 7 Recommendations 8 Grading and Earthwork 8 General 8 Observation of Grading 8 Site Preparation 8 Processing of Fill Areas and Building Pad 9 Compaction and Method of Filling 9 Surface Drainage 10 Temporary Cut Slopes 10 Shoring Design and Lateral Pressures 11 Design of Soldier Piles 11 Lagging 11 Tieback Anchor Design 11
Seismic Design Hazard. 6 Liquefaction 7 Flooding. 7 Tsunamis. 7 Seiches. 7 Conclusions 7 Recommendations 8 Grading and Earthwork 8 General 8 Observation of Grading 8 Site Preparation 8 Processing of Fill Areas and Building Pad. 9 Compaction and Method of Filling 9 Surface Drainage 10 Temporary Cut Slopes 10 Shored Slopes. 10 Shoring Design and Lateral Pressures 11 Design of Soldier Piles 11 Lagging. 11 Tieback Anchor Design 11
Liquefaction 7 Flooding. 7 Tsunamis 7 Seiches. 7 Conclusions 7 Recommendations 8 Grading and Earthwork 8 General 8 Observation of Grading. 8 Site Preparation 8 Processing of Fill Areas and Building Pad. 9 Compaction and Method of Filling 9 Surface Drainage 10 Temporary Cut Slopes 10 General 10 Shored Slopes 10 Shoring Design and Lateral Pressures 11 Design of Soldier Piles 11 Liquefactor 11 Liquefactor 11 Tieback Archor Design 11
Flooding
Tsunamis.7Seiches.7Conclusions7Recommendations8Grading and Earthwork8General8Observation of Grading8Site Preparation8Processing of Fill Areas and Building Pad9Compaction and Method of Filling9Surface Drainage10Temporary Cut Slopes10Shored Slopes10Shoring Design and Lateral Pressures11Lagging11Lagging11Tieback Anchor Design11
Seiches7Conclusions7Recommendations8Grading and Earthwork8General8Observation of Grading8Site Preparation8Processing of Fill Areas and Building Pad9Compaction and Method of Filling9Surface Drainage10Temporary Cut Slopes10Shored Slopes10Shoring Design and Lateral Pressures11Design of Soldier Piles11Lagging11Tieback Anchor Design11
Conclusions7Recommendations8Grading and Earthwork8General8Observation of Grading8Site Preparation8Processing of Fill Areas and Building Pad9Compaction and Method of Filling9Surface Drainage10Temporary Cut Slopes10Shored Slopes.10Shoring Design and Lateral Pressures11Design of Soldier Piles11Lagging.11Tieback Anchor Design11
Recommendations 8 Grading and Earthwork 8 General 8 Observation of Grading. 8 Site Preparation. 8 Processing of Fill Areas and Building Pad. 9 Compaction and Method of Filling 9 Surface Drainage 10 Temporary Cut Slopes 10 Shored Slopes 10 Shoring Design and Lateral Pressures 11 Design of Soldier Piles 11 Lagging. 11 Tieback Anchor Design 11
Grading and Earthwork8General8Observation of Grading8Site Preparation8Processing of Fill Areas and Building Pad9Compaction and Method of Filling9Surface Drainage10Temporary Cut Slopes10Shored Slopes.10Shoring Design and Lateral Pressures11Design of Soldier Piles11Lagging.11
General8Observation of Grading8Site Preparation8Processing of Fill Areas and Building Pad9Compaction and Method of Filling9Surface Drainage10Temporary Cut Slopes10Shored Slopes10General10Shoring Design and Lateral Pressures11Lagging11Tieback Anchor Design11
Observation of Grading.8Site Preparation.8Processing of Fill Areas and Building Pad.9Compaction and Method of Filling
Site Preparation.8Processing of Fill Areas and Building Pad.9Compaction and Method of Filling9Surface Drainage10Temporary Cut Slopes10Shored Slopes.10General10Shoring Design and Lateral Pressures11Lagging.11Tieback Anchor Design11
Processing of Fill Areas and Building Pad 9 Compaction and Method of Filling 9 Surface Drainage 10 Temporary Cut Slopes 10 Shored Slopes 10 General 10 Shoring Design and Lateral Pressures 11 Lagging 11 Tieback Anchor Design 11
Compaction and Method of Filling9Surface Drainage10Temporary Cut Slopes10Shored Slopes10General10Shoring Design and Lateral Pressures11Design of Soldier Piles11Lagging11Tieback Anchor Design11
Surface Drainage10Temporary Cut Slopes10Shored Slopes10General10Shoring Design and Lateral Pressures11Design of Soldier Piles11Lagging11Tieback Anchor Design11
Temporary Cut Slopes 10 Shored Slopes 10 General 10 Shoring Design and Lateral Pressures 11 Design of Soldier Piles 11 Lagging 11 Tieback Anchor Design 11
Shored Slopes
General 10 Shoring Design and Lateral Pressures 11 Design of Soldier Piles 11 Lagging 11 Tieback Anchor Design 11
Shoring Design and Lateral Pressures 11 Design of Soldier Piles 11 Lagging 11 Tieback Anchor Design 11
Design of Soldier Piles
Lagging
Tieback Anchor Design 11
The back America Design
Anchor Testing
Internal Bracing
Monitoring 12
Foundations
General
Dimensions
Bearing Capacity
Footing Reinforcing 14

CWE 2150650.01 Proposed Apartment Building 6213-6219 Montezuma Road, San Diego, California

Lateral Load Resistance	14
Settlement Characteristics	14
Expansive Characteristics	14
Foundation Plan Review	14
Foundation Excavation Observation:	15
Soluble Sulfates	15
On-Grade Slabs	15
Interior Floor Slabs	15
Under-Slab Vapor Retarders	15
Exterior Concrete Flatwork	16
Earth Retaining Walls	16
Backfill	16
Foundations	17
Passive Pressures	17
Active Pressures	17
Waterproofing and Wall Drainage Systems	18
Limitations	18
Review, Observation and Testing	18
Uniformity of Conditions	18
Change in Scope	19
Time Limitations	19
Professional Standard	19
Client's Responsibility	20
Field Explorations	20
Laboratory Testing	21

TABLES

FIGURES

Figure 1 Site Vicinity Map, Follows Page 1

PLATES

Plates 1	Site Plan & Geologic Map
Plates 2-3	Geologic Cross Sections A-A' and B-B'
Plate 4	Active Lateral Pressures
Plates 5-6	Retaining Wall Subdrain

APPENDICES

- Appendix A Boring Logs
- Appendix B Lab Test Results
- Appendix C References
- Appendix D Recommended Grading Specifications-General Provisions

CHRISTIAN WHEELER ENGINEERING

REPORT OF PRELIMINARY GEOTECHNICAL INVESTIGATION

PROPOSED APARTMENT BUILDING 6213-6219 MONTEZUMA ROAD SAN DIEGO, CALIFORNIA

INTRODUCTION AND PROJECT DESCRIPTION

This report presents the results of a geotechnical investigation performed for a proposed apartment building to be constructed at 6213-6219 Montezuma Road, in the city of San Diego, California. The following Figure No. 1 presents a site vicinity map showing the location of the property.

We have not been provided with project plans; however, we understand that it is proposed to construct a four-story apartment structure over three levels of subterranean garage and associated improvements. The parking garage is expected to consist of masonry, concrete or shotcrete construction with concrete floor slabs. Site retaining walls may be necessary along the north, east and west property lines. We understand that the parking garage will be about 30 feet below the level of Montezuma Road. Grading is expected to be limited to making the excavation for the subterranean parking garage and associated driveways. The anticipated cuts will be about 30 feet at the front of the property, and about 43 feet at the rear. Shoring will be required for all sides of the excavation.

To assist in the preparation of this report, we were provided with a topographic survey map of the site prepared by JP Engineering, Inc., dated November 6, 2015. A copy of this plan was used as a base map for our geologic mapping, and is included herein as Plate No. 1. We have also reviewed our previous report by our firm for the project site. The borings logs from our previous subsurface investigation are provided in Appendix A.

This report has been prepared for the exclusive use of Elsey Partners and its consultants for specific application to the project described herein. Should the project be modified, the conclusions and recommendations presented in this report should be reviewed by Christian Wheeler Engineering for

conformance with our recommendations and to determine whether any additional subsurface investigation, laboratory testing and/or recommendations are necessary. Our professional services have been performed, our findings obtained, and our recommendations prepared in accordance with generally accepted engineering principles and practices. This warranty is in lieu of all other warranties, expressed or implied.

PROJECT SCOPE

Our preliminary geotechnical investigation included site reconnaissance analysis of the field and laboratory data from our previous investigation, and review of relevant literature. Our scope of services does not include additional subsurface exploration, additional laboratory testing, assessment of hazardous substance contamination, recommendations to prevent floor slab moisture intrusion or the formation of mold within the structure, or providing an evaluation or design of storm water infiltration facilities, or any other services not specifically described in the scope of services presented below. More specifically, our services included the following items.

- Review the previous preliminary geotechnical report prepared for the subject site.
- Describe the general geology at the site including possible geologic hazards that could have an effect on the proposed construction, and provide the seismic design parameters as required by the 2013 edition of the California Building Code.
- Address potential construction difficulties that may be encountered due to soil conditions, groundwater or geologic hazards, and provide recommendations concerning these problems.
- Provide site preparation recommendations for the anticipated work, as necessary.
- Provide design recommendations for temporary shoring.
- Prepare two cross sections that include the limits of grading.
- Recommend an appropriate foundation system for the type of structures anticipated and develop soil engineering design criteria for the recommended foundation design.
- Provide geotechnical design parameters for the construction of restrained and unrestrained retaining walls.
- Prepare this report, which includes, in addition to our conclusions and recommendations, a plan showing the aerial extent of the geological units and the locations of our exploratory borings, exploration logs, and a summary of the laboratory test results.

Although a test for the presence of soluble sulfates within the soils that may be in contact with reinforced concrete was performed as part of our previous investigation, it should be understood Christian Wheeler Engineering does not practice corrosion engineering. If such an analysis is considered necessary, we recommend that the client retain an engineering firm that specializes in this field to consult with them on this matter. The results of the test should only be used as a guideline to determine whether additional testing and analysis is necessary.

FINDINGS

SITE DESCRIPTION

The subject site is a rectangular shaped property located at 6213-6219 Montezuma Road, in the College area of San Diego. The property includes two parcels identified by Assessor's Parcel Numbers 467-171-28, and -29. The parcels cover about 0.3 acre in area, have about 110 feet of frontage along Montezuma Road, and extend back from the street about 120 feet. Topographically, the property slopes upward and southward from Montezuma Road, rising a vertical distance of about 13 feet. Various old foundations, retaining walls, concrete stairways and sidewalks from the previous structures and improvements exist on the property, along with a few small- to medium-size trees. The adjacent project to the east has below grade parking levels that are expected to extend up to 15 feet below grade.

GENERAL GEOLOGY AND SUBSURFACE CONDITIONS

GEOLOGIC SETTING AND SOIL DESCRIPTION: The subject site is located within the Coastal Physiographic Province of San Diego County. Based on our subsurface explorations, and analysis of readily available, pertinent geologic literature, the area of the site investigated was found to be underlain by artificial fill, colluvium, very old paralic deposits, and Mission Valley Formation deposits. Each of these units is discussed below in order of increasing age.

ARTIFICIAL FILL (Qaf): Fill materials were encountered in borings B-1 and B-2, extending to a depth of about four feet and two feet below existing grade, respectively. The fill encountered consists of light brown, reddish-brown, and dark brown, damp and moist, silty sand with clay

Page No. 4

and some cobble (SM). The maximum cobble size was about six inches. In general, the fill is loose. However, in boring B-1, the fill becomes medium dense at a depth of about two feet below existing grade. The fill soils encountered were judged to have a low expansive potential (EI < 50).

COLLUVIUM (Qcol): Colluvial deposits were encountered in borings B-1, B-2, and B-3 underlying the site to a depth of about ten feet, nine feet, and five feet below existing grade, respectively. These materials consist of light reddish-brown and reddish-brown, moist to very moist, medium dense, silty sand with clay and some gravel and cobble (SM). The maximum cobble size noted was about five inches. These materials were judged to have a low expansion potential (EI < 50).

VERY OLD PARALIC DEPOSITS (Qvop): Very old paralic deposits were encountered underlying the colluvium in all the borings. These materials consist of interbedded light reddishbrown, reddishbrown, dark brown, and light gray, moist to very moist, medium dense to very dense, silty sand with some gravel and cobble (SM), and sandy gravel with silt and cobble (GM). The maximum cobble size noted was about six inches. These materials were judged to have a low expansion potential (EI < 50).

MISSION VALLEY FORMATION (Tmv): Mission Valley Formation deposits were encountered underlying the very old paralic deposits in borings B-1, B-2, and B-3 at a depth of about 27 feet, 32 feet, and 25 feet, below existing grade, respectively. These materials consist of light gray and gray, moist, dense, silty sand and silty sand with clay. These materials were judged to have a low expansion potential (EI < 50).

GROUNDWATER: No groundwater or seepage was encountered in our subsurface explorations and we do not expect any groundwater related conditions during or after the proposed construction provided that proper drainage is maintained at the site.

It should, however be recognized that minor groundwater seepage problems might occur after development of a site even where none were present before development. These are usually minor

phenomena and are often the result of an alteration in drainage patterns and/or an increase in irrigation water.

TECTONIC SETTING: No active or potentially active faults are known to traverse the subject site. However, it should be noted that much of Southern California, including the San Diego County area, is characterized by a series of Quaternary-age fault zones that consist of several individual, en echelon faults that generally strike in a northerly to northwesterly direction. Some of these fault zones (and the individual faults within the zone) are classified as "active" according to the criteria of the California Division of Mines and Geology. Active fault zones are those that have shown conclusive evidence of faulting during the Holocene Epoch (the most recent 11,000 years). The Division of Mines and Geology used the term "potentially active" on Earthquake Fault Zone maps until 1988 to refer to all Quaternary-age (last 1.6 million years) faults for the purpose of evaluation for possible zonation in accordance with the Alquist-Priolo Earthquake Fault Zoning Act and identified all Quaternary-age faults as "potentially active" except for certain faults that were presumed to be inactive based on direct geologic evidence of inactivity during all of Holocene time or longer. Some faults considered to be "potentially active" would be considered to be "active" but lack specific criteria used by the State Geologist, such as sufficiently active and well-defined. Faults older than Quaternary-age are not specifically defined in Special Publication 42, Fault Rupture Hazard Zones in California, published by the California Division of Mines and Geology. However, it is generally accepted that faults showing no movement during the Quaternary period may be considered to be "inactive".

The nearest active fault zone is the Rose Canyon Fault Zone located approximately 5½ miles to the southwest of the site. Other active fault zones in the region that could possibly affect the site include the Newport-Inglewood Fault Zone to the northwest; the Palos Verde and Coronado Bank Fault Zones to the west; and the Elsinore, San Jacinto, and San Andreas Fault Zones to the northeast.

GEOLOGIC HAZARDS

GEOLOGIC HAZARDS CATEGORY: The site is located in Geologic Hazards Category 53 according to the most recent edition of the City of San Diego Seismic Safety Study. Hazards Category 53 is assigned to level or sloping terrain with unfavorable geologic structure where the risks are considered to be low to moderate. Based on the results of our study, it is our opinion that the potential risks can be considered to be low.

LANDSLIDE POTENTIAL AND SLOPE STABILITY: As part of this investigation we reviewed the publication, "Landslide Hazards in the Southern Part of the San Diego Metropolitan Area" by Tan, 1995. This reference is a comprehensive study that classifies San Diego County into areas of relative landslide susceptibility. According to this publication, the site is mapped within Relative Landslide Susceptibility Area 2, which is considered to be "marginally susceptible" to landsliding. Based on our findings, it is our professional opinion that the potential for slope failures within the site is low.

SEISMIC DESIGN HAZARD: A likely geologic hazard to affect the site is ground shaking as a result of movement along one of the major active fault zones mentioned in the "Tectonic Setting" section of this report. Per Chapter 16 of the 2013 California Building Code (CBC), the Maximum Considered Earthquake (MCE) ground motion is that considered to have a two percent probability of being exceeded in 50 years. Figures 1613.5(3) and 1614.5(4) of the CBC present regional MCE spectral accelerations for short (0.2 sec.) and long (1.0 sec.) periods, respectively, based on a soil Site Class B (CBC Table 1613.5.2) and a structural damping of five percent. For the subject site, we expect that correlation with field penetration resistance values will indicate that the upper 100 feet of geologic subgrade can be characterized as Site Class C. In this case, the mapped MCE spectral accelerations are modified using the Site Coefficients presented in Tables 1613.5.3(1) and (2). The modified MCE spectral accelerations are then multiplied by two-thirds in order to obtain the design spectral accelerations. These seismic design parameters for the subject site (32.770 °, -117.066°), based on Chapter 16 of the CBC, are presented in Table I below.

CBC – Chapter 16	Seismic Design Parameter	Recommende
Section		d Value
Table 1613.5.2	Soil Site Class	С
Figure 1613.5 (3)	Mapped Spectral Acceleration for Short Periods (0.2 sec), S _s	0.924 g
Figure 1613.5 (4)	Mapped Spectral Acceleration for 1.0 Sec Periods (1.0 sec), S1	0.354 g
Table 1613.5.3 (1)	Site Coefficient, Fa	1.030
Table 1613.5.3 (2)	Site Coefficient, F _v	1.446
Section 1613.5.3	$S_{MS} = MCE$ Spectral Response at 0.2 sec. = $(S_s)(F_a)$	0.952 g
Section 1613.5.3	S_{M1} = MCE Spectral Response at 1.0 sec. = $(S_1)(F_v)$	0.512 g
Section 1613.5.4	S_{DS} = Design Spectral Response at 0.2 sec. = $2/3(S_{MS})$	0.635 g
Section 1613.5.4	S_{D1} = Design Spectral Response at 1.0 sec. = $2/3(S_{M1})$	0.341 g
Section 1803.2.12	PGAmper Section 11.8.3 of ASCE 7	0.368 g

 TABLE I: CBC 2013 EDITION - SEISMIC DESIGN PARAMETERS

LIQUEFACTION: The near-surface soils encountered at the site are not considered susceptible to liquefaction due to such factors as depth to the groundwater table, soil density and grain-size distribution.

FLOODING: The site is located outside the boundaries of both the 100-year and the 500-year floodplains according to the maps prepared by the Federal Emergency Management Agency.

TSUNAMIS: Tsunamis are great sea waves produced by submarine earthquakes or volcanic eruptions. Due to the site's elevation and location, the site will not be affected by tsunamis.

SEICHES: Seiches are periodic oscillations in large bodies of water such as lakes, harbors, bays or reservoirs. Due to the site's location, it will not be affected by seiches.

CONCLUSIONS

It is our professional opinion and judgment that no geotechnical conditions exist within the subject site that would preclude the construction of the proposed apartment structure, provided the recommendations presented herein are followed.

The findings of our investigation indicate that most of the site is underlain by a relatively thin layer of potentially compressible fill soils. As encountered in our borings, these deposits do not exceed four feet in thickness. The fill materials are considered unsuitable, in their present condition, for the support of settlement sensitive improvements. Based on the proposed development scheme, it is anticipated that the majority of the existing fill will be removed in order to achieve finished pad grade. Any remaining fill underlying proposed settlement sensitive improvements will require removal and replacement as compacted fill.

An additional consideration is the temporary cut slopes proposed adjacent or near to property lines. The slopes will extend to a maximum depth of about 43 feet. We anticipate that these slopes will require shoring.

The adjacent property to the east supports a structure that has a subterranean parking component. We anticipate that the lowest level extends up to 15 feet below grade; however, the depth should be verified prior to designing foundations and shoring.

The site is located in an area that is relatively free of geologic hazards that will have a significant effect on the proposed construction. The most likely geologic hazard that could affect the site is ground shaking due to seismic activity along one of the regional active faults. However, construction in accordance with the requirements of the most recent edition of the California Building Code and the local governmental agencies should provide a level of life-safety suitable for the type of development proposed.

The final project plans should be submitted to this office for review in order to ascertain that the geotechnical recommendations remain applicable to the final plan and that no additional recommendations are needed due to changes in the anticipated development.

RECOMMENDATIONS

GRADING AND EARTHWORK

GENERAL: All grading should conform to the guidelines presented in Appendix J of the California Building Code, the minimum requirements of the City of San Diego, and the recommended Grading Specifications and Special Provisions attached hereto, except where specifically superseded in the text of this report. Prior to grading, a representative of Christian Wheeler Engineering should be present at the pre-construction meeting to provide additional grading guidelines, if necessary, and to review the earthwork schedule.

OBSERVATION OF GRADING: Continuous observation by the Geotechnical Consultant is essential during the grading operation to confirm conditions anticipated by our investigation, to allow adjustments in design criteria to reflect actual field conditions exposed, and to determine that the grading proceeds in general accordance with the recommendations contained herein.

SITE PREPARATION: Site preparation should begin with the removal of all existing construction debris, and the demolition of the remnants of the previous structures that existed at the site. The resulting debris as well as any vegetation and deleterious matter in areas of the site to be graded or receive proposed improvements should be removed and disposed of off-site at a legal dump site. Existing fill materials underlying settlement-sensitive improvements should be removed and replaced as compacted fill. Based on the proposed grading scheme, it is anticipated that the majority of these

materials will be removed to achieve finished pad grade, and the extent of this operation will be very minor. The bottoms of all excavations should be approved by our representative prior to placing fills or constructing improvements, and all areas to receive fill should be processed as described below in the "Processing of Fill Areas and Building Pad" section of this report. The soils removed may be replaced as compacted fill. It is anticipated that the building pad will be underlain by competent formational soils. However, the upper few inches of these materials will likely be disturbed during grading operations. It is recommended that the proposed building pad be prepared as described in the following paragraph.

PROCESSING OF FILL AREAS AND BUILDING PAD: Prior to placing any new fill soils or constructing any new improvements in areas that have been cleaned out to receive fill and approved by the geotechnical consultant or his representative, any exposed soils should be scarified to a depth of 12 inches, moisture conditioned, and compacted to at least 90 percent relative compaction. If the building pad is disturbed during grading operations, it is recommended that it be scarified to a depth of six inches, moisture-conditioned, and compacted to at least 95 percent relative compaction. This requirement will be determined by the Geotechnical Engineer after the building pad finished grade is reached.

COMPACTION AND METHOD OF FILLING: All structural fill and backfill material placed at the site should be compacted to a relative compaction of at least 90 percent of maximum dry density as determined by ASTM Laboratory Test D1557. Fills should be placed at or slightly above optimum moisture content, in lifts six to eight inches thick, with each lift compacted by mechanical means. Fills should consist of approved earth material, free of trash or debris, roots, vegetation, or other materials determined to be unsuitable by our soil technicians or project geologist. Fill material should be free of rocks or lumps of soil in excess of six inches in maximum dimension; however, in the upper two feet of pad grade, no rocks or lumps of soil in excess of three inches should be allowed.

All utility trench backfill should be compacted to a minimum of 90 percent of its maximum dry density. The upper twelve inches of subgrade beneath paved areas should be compacted to 95 percent of the materials maximum dry density. This compaction should be obtained by the paving contractor just prior to placing the aggregate base material and should not be part of the mass grading requirements or operation.

Page No. 10

SURFACE DRAINAGE: The drainage around the proposed improvements should be designed to collect and direct surface water away from proposed improvements toward appropriate drainage facilities. Rain gutters with downspouts that discharge runoff away from the structures into controlled drainage devices are recommended.

The ground around the proposed structures should be graded so that surface water flows rapidly away from the structure without ponding. In general, we suggest that the ground adjacent to structure slope away at a gradient of at least 2 percent. Densely vegetated areas where runoff can be impaired should have a minimum gradient of 5 percent within the first 5 feet from the structure. In our opinion, the project site is not suitable for storm water infiltration BMPs. We recommend that pervious pavements, bio retention areas, and bio swales be lined in such a manner as to prevent the storm water from infiltrating into the underlying soils and should be connected via pipes to the storm drain system.

TEMPORARY CUT SLOPES

Temporary cut slopes of up to about 43 feet in height are anticipated to be required during the construction of the proposed structure. The contractor is solely responsible for designing and constructing stable, temporary excavations and will need to shore, slope, or bench the sides of trench excavations as required to maintain the stability of the excavation sides. The contractor's "competent person", as defined in the OSHA Construction Standards for Excavations, 29 CFR, Part 1926, should evaluate the soil exposed in the excavations as part of the contractor's safety process. We anticipate that the existing on-site soils will consist of Type B material. Our firm should be contacted to observe all temporary cut slopes during grading to ascertain that no unforeseen adverse conditions exist. No surcharge loads such as foundation loads, or soil or equipment stockpiles, vehicles, etc. should be allowed within a distance from the top of temporary slopes equal to half the slope height.

SHORED SLOPES

GENERAL: It will be necessary to use shoring to support the sides most of the proposed excavation. Typically, cantilevered soldier pile walls with wood lagging are used for the conditions anticipated. Included herein are design parameters for such cantilevered walls. A specialty contractor with experience in shoring and bracing should provide shoring recommendations and plans. The subterranean level of the structure to the east of the project and underground utilities within Montezuma Road will need to be clearly identified prior to designing the tieback locations.

SHORING DESIGN AND LATERAL PRESSURES: A triangular distribution of lateral earth pressure equal to that developed by a fluid with a density of 40 pounds per cubic foot may be used for the design of cantilevered shoring. Cantilevered shoring is normally limited to excavations that do not exceed approximately 15 feet in depth in order to limit the deflection at the tops of the soldier piles. For heights of shoring greater than about 15 feet, the use of braced or tied-back shoring should be considered to limit deflection of the shoring system. The recommended pressure distributions for the design of tied-back or braced shoring are presented in Plate No. 4. Other loads should be analyzed on an individual basis.

DESIGN OF SOLDIER PILES: Soldier piles should be spaced at least two diameters on center each way. The allowable lateral bearing value (passive value) of the formational soils below the level of the excavation may be assumed to be 350 pounds per square foot per foot of depth from the excavated surface, up to a maximum of 4,500 pounds per square foot. The allowable lateral bearing value (passive value) of compacted fill and/or colluvium below the level of excavation may be assumed to be 300 pounds per square foot per foot of depth from the excavated surface, up to a maximum of 2,500 pounds per square foot. To develop the full lateral value, provisions should be taken to assure firm contact between the soldier piles and the undisturbed soils. The concrete placed in the soldier pile that is below the planned excavation level should be of sufficient strength to adequately transfer the imposed loads to the surrounding soils.

LAGGING: Continuous lagging will be required between the soldier piles. The soldier piles and anchors should be designed for the full anticipated lateral pressure. However, the pressure on the lagging will likely be somewhat less due to arching in the soils. We recommend that the lagging be designed for a semi-circular distribution of earth pressure where the maximum pressure is 400 pounds per square foot at the mid-point between soldier piles, and zero pounds per square foot at the soldier piles. This value does not include any surcharge pressures.

TIEBACK ANCHOR DESIGN: Tieback friction anchors may be used to resist lateral loads. For preliminary design purposes, it may be assumed that the active wedge adjacent to the shoring is defined by

a plane drawn at 32 degrees from the vertical through the bottom of the excavation. The anchors should extend at least 20 feet beyond the potential active wedge; this provision is to provide global stability for the shored wall as opposed to adequate friction for the anchors.

The capacities of anchors should be determined by testing of the initial anchors as outlined by the anchor designer. For preliminary design purposes, it may be estimated that for conventionally drilled, gravity-grouted anchors the average allowable (FOS=2) bond stress between the grout and soil will be 1,000 pounds per square foot. Only the bond stress developed beyond the active wedge should be used in resisting lateral loads. If the anchors are spaced at least 4 feet on centers, no reduction in the capacity of the anchors need be considered due to group action. In no event should the anchors extend less than the minimum length beyond the potential active wedge as given above.

ANCHOR TESTING: Since the actual load-carrying capacity of tieback anchors will depend on various site-specific factors, the tieback capacity should be verified by load testing. The load testing program should be specified by the design engineer and be approved by the Geotechnical Consultant.

Christian Wheeler Engineering shall observe the tieback anchor installation and testing of the completed anchors. The shoring contractor should provide all appropriate testing equipment, including properly calibrated hydraulic jacking equipment, pressure gauges, and dial gauges for measuring tieback anchor movement. All anchor testing shall be performed under the observation of our firm.

INTERNAL BRACING: Rakers may be used to internally brace the soldier piles. The raker bracing may be supported laterally by temporary concrete footings (deadmen). Temporary footings founded in compacted fill or competent natural soils poured with the bearing surface normal to rakers inclined at 45 to 60 degrees with the vertical, may be designed for a bearing value of 4,000 pounds per square foot (psf). This value assumes that the footings are at least 12 inches deep and 24 inches wide. To reduce the movement of the shoring, the rakers should be preloaded or at least tightly wedged between the footings and the soldier piles.

MONITORING: Monitoring of the performance of the shoring system is recommended. One option would be to install a slope inclinometer pipe within the concrete soldier pile approximately every 50

lineal feet, with at least 2 inclinometer pipes for each shoring wall section. The inclinometer pipe should extend full depth of the soldier pile. Monitoring should consist of periodic measurements using a slope inclinometer instrument. Another option would be to periodically survey the lateral and vertical locations of the tops of the soldier piles approximately every 50 lineal feet.

FOUNDATIONS

GENERAL: It is our opinion that the proposed structure and site retaining walls may be supported on conventional shallow foundations, provided that the site preparation recommendations contained in this geotechnical report are implemented. It is anticipated that the footings supporting the proposed structure will be founded in sandstones of the Mission Valley Formation. Footings supporting site retaining walls will likely be founded on a combination of soils including compacted fill, colluvium, and/or very old paralic deposits. The following recommendations are based on the soil conditions exposed in our borings, and are not intended to be in lieu of structural considerations. All foundations should be designed by a qualified structural engineer.

DIMENSIONS: Conventional footings supporting the proposed structure and exterior site retaining walls exceeding ten feet in height should have a minimum embedment depth of 24 inches below lowest adjacent finish grade. For site retaining walls less than ten feet high, a minimum embedment of 18 inches is recommended. Continuous and isolated footings should have a minimum width of 18 inches and 24 inches, respectively. All retaining wall footings should be at least 24 inches wide.

BEARING CAPACITY: Footings supporting the proposed structure and exterior site walls founded in very old paralic deposits or formational soil with a minimum embedment of 24 inches and a minimum width of 18 inches may be designed for an allowable soil bearing pressure of 5,000 pounds per square foot. This value may be increased by 900 pounds per square foot for each additional foot of embedment and 600 pounds per square foot for each additional foot of width up to a maximum of 10,000 pounds per square foot. Footings supporting proposed exterior site retaining walls founded in compacted fill or colluvium with a minimum embedment of 18 inches and a minimum width of 24 inches may be designed for an allowable soil bearing pressure of 2,500 pounds per square foot. This value may be increased by 600 pounds per square foot for each additional foot of embedment and 400 pounds per square foot for each additional foot of embedment and 400 pounds per square foot for each additional foot of embedment and 400 pounds per square foot for each additional foot of embedment and 400 pounds per square foot for each additional foot of embedment and 400 pounds per square foot for each additional foot of embedment and 400 pounds per square foot for each additional foot of embedment and 400 pounds per square foot for each additional foot of embedment and 400 pounds per square foot for each additional foot of embedment and 400 pounds per square foot for each additional foot of embedment and 400 pounds per square foot for each additional foot of embedment and 400 pounds per square foot for each additional foot of embedment and 400 pounds per square foot. The

bearing values may also be increased by one-third for combinations of temporary loads such as those due to wind or seismic loads.

FOOTING REINFORCING: The project structural engineer should provide reinforcement requirements for the proposed building and site retaining wall foundations. However, based on soil conditions, we recommend that the minimum reinforcing for continuous footings supporting the building should consist of at least two No. 5 bars positioned near the bottom of the footing and two No. 5 bars positioned near the top of the footing.

LATERAL LOAD RESISTANCE: Lateral loads against foundations may be resisted by friction between the bottom of the footing and the supporting soil, and by the passive pressure against the footing. The coefficient of friction between concrete and soil may be considered to be 0.35. The passive resistance may be considered to be equal to an equivalent fluid weight of 350 pounds per cubic foot. This assumes the footings are poured tight against undisturbed soil. If a combination of the passive pressure and friction is used, the friction value should be reduced by one-third.

SETTLEMENT CHARACTERISTICS: The anticipated total and differential foundation settlement is expected to be less than about 1 inch and 1 inch over 40 feet respectively, provided the recommendations presented in our report are followed. It should be recognized that minor cracks normally occur in concrete slabs and foundations due to shrinkage during curing or redistribution of stresses, therefore some cracks should be anticipated. Such cracks are not necessarily an indication of excessive vertical movements.

EXPANSIVE CHARACTERISTICS: The foundation soils are expected to have a low expansive potential (EI < 50). The recommendations presented in this report reflect this condition.

FOUNDATION PLAN REVIEW: The final foundation plan and accompanying details and notes should be submitted to this office for review. The intent of our review will be to verify that the plans used for construction reflect the minimum dimensioning and reinforcing criteria presented in this section and that no additional criteria are required due to changes in the foundation type or layout. It is not our intent to review structural plans, notes, details, or calculations to verify that the design engineer has correctly applied the geotechnical design values. It is the responsibility of the design engineer to properly design/specify the foundations and other structural elements based on the requirements of the structure and considering the information presented in this report.

FOUNDATION EXCAVATION OBSERVATION: All foundation excavations should be observed by the geotechnical consultant prior to placing reinforcing steel or formwork in order to determine if the foundation recommendations presented herein are followed. All footing excavations should be excavated neat, level, and square. All loose or unsuitable material should be removed prior to the placement of concrete.

SOLUBLE SULFATES

The water soluble sulfate content of a randomly selected soil sample from the site was determined in accordance with California Test Method 417. The results of this test indicate that the representative soil sample had a soluble sulfate content of 0.006 percent. Soils with a soluble sulfate content of less than 0.1 percent are considered to be negligible and no special recommendations are considered necessary for this condition. Nevertheless, Type II modified Portland cement is recommended for concrete in contact with soil.

ON-GRADE SLABS

INTERIOR FLOOR SLABS: We recommend that the interior slab-on-grade floor be at least 5 inches thick (actual) and be reinforced with at least No. 4 bars spaced at 18 inches on center each way. The reinforcing bars should extend at least 12 inches into the foundations and should be supported by chairs and be positioned in the center of the slab. The slab reinforcement should extend down into the perimeter grade beams or foundations at least 12 inches.

UNDER-SLAB VAPOR RETARDERS: Where floor coverings are installed, steps should be taken to minimize the transmission of moisture vapor from the subsoil through the interior slabs where it can potentially damage the interior floor coverings. We recommend that the owner/contractor follow national standards for the installation of vapor retarders below interior slabs as presented in currently published standards including ACI 302, "Guide to Concrete Floor and Slab Construction" and ASTM

E1643, "Standard Practice for Installation of Water Vapor Retarder Used in Contact with Earth or Granular Fill Under Concrete Slabs". If sand is placed above or below the vapor retarding material, it should have a sand equivalent of at least 30 and contain less than 20% passing the Number 100 sieve and less than 10% passing the Number 200 sieve.

We recommend that the flooring installer perform standard moisture vapor emission tests prior to the installation of all moisture-sensitive floor coverings in accordance with ASTM F1869 "Standard Test Method for Measuring Moisture Vapor Emission Rate of Concrete Subfloor Using Anhydrous Calcium Chloride".

EXTERIOR CONCRETE FLATWORK: Exterior concrete on-grade slabs should have a minimum thickness of 4 inches and be reinforced with at least No. 3 bars placed at 18 inches on center each way. All slabs should be provided with weakened plane joints in accordance with the American Concrete Institute (ACI) guidelines. Alternative patterns consistent with ACI guidelines can also be used. A concrete mix with a 1-inch maximum aggregate size and a water/cement ratio of less than 0.6 is recommended for exterior slabs. Lower water content will decrease the potential for shrinkage cracks. Both coarse and fine aggregate should conform to the latest edition of the "Standard Specifications for Public Works Construction" ('Greenbook").

Special attention should be paid to the method of concrete curing to reduce the potential for excessive shrinkage and resultant random cracking. It should be recognized that minor cracks occur normally in concrete slabs due to shrinkage. Some shrinkage cracks should be expected and are not necessarily an indication of excessive movement or structural distress.

EARTH RETAINING WALLS

BACKFILL: All retaining wall backfill should be compacted in accordance with the "Compaction and Method of Filling" section of this report. Expansive or clayey soils should not be used for backfill material. Retaining walls should not be backfilled until the masonry/concrete has reached an adequate strength.

FOUNDATIONS: Foundations for retaining walls can be designed in accordance with the foundation recommendations previously presented.

PASSIVE PRESSURES: The passive pressure for the prevailing soil conditions may be considered to be 300 pounds per square foot per foot of depth for foundations in compacted fill or colluvium. The passive pressure in very old paralic deposits or formational soil may be considered to be 350 pounds per square foot per foot. The upper foot of embedment should be neglected when calculating passive pressures, unless the foundation abuts a hard surface such as a concrete slab. The passive pressure may be increased by one-third for seismic loading. The coefficient of friction for concrete to soil may be assumed to be 0.30 and 0.35 for the resistance to lateral movement for fill or colluvium, and paralic or formational material, respectively. When combining frictional and passive resistance, the friction should be reduced by one-third.

ACTIVE PRESSURES: The active soil pressure for the design of unrestrained earth retaining structures with level backfill surface may be assumed to be equivalent to the pressure of a fluid weighing 38 pounds per cubic foot. In the design of walls restrained from movement at the top (non-yielding walls), the at-rest soil pressure may be assumed to be equivalent to the pressure of a fluid weighing 59 pounds per cubic foot, provided there is a level backfill surface.

Alternative active pressure design recommendations are provided in Plate No. 4. Non-yielding building retaining walls braced by multiple floor levels should be designed to resist a uniform horizontal soil pressure of 25H (in pounds per square foot), where "H" is the wall height in feet. Thirty percent of any area surcharge placed adjacent to the retaining wall may be assumed to act as a uniform horizontal pressure against the wall. Where vehicles will be allowed within ten feet of the retaining wall, a uniform horizontal pressure of 100 pounds per square foot should be added to the upper 10 feet of the retaining wall to account for the effects of adjacent traffic. Special cases such as a combination of shored and sloping temporary slopes, or other surcharge loads not described above, may require an increase in the design values recommended above. These conditions should be evaluated by the project geotechnical engineer on a case-by-case basis. If any other loads are anticipated, the Geotechnical Consultant should be contacted for the necessary increase in soil pressure. All values are based on a drained backfill condition.

Seismic lateral earth pressures may be assumed to equal an inverted triangle starting at the bottom of the wall with the maximum pressure equal to 6H pounds per square foot (where H = wall height in feet) occurring at the top of the wall.

WATERPROOFING AND WALL DRAINAGE SYSTEMS: The need for waterproofing should be evaluated by others. If required, the project architect should provide (or coordinate) waterproofing details for the retaining walls. The design values presented above are based on a drained backfill condition and do not consider hydrostatic pressures. Unless hydrostatic pressures are incorporated into the design, the retaining wall designer should provide a detail for a wall drainage system. Typical retaining wall drain system details are presented as Plate Nos. 5 and 6 of this report for informational purposes. Additionally, outlets points for the retaining wall drain system should be coordinated with the project civil engineer. For subterranean walls, it may be necessary to collect the subdrain water in sumps and then pump it to an appropriate outlet.

LIMITATIONS

REVIEW, OBSERVATION AND TESTING

The recommendations presented in this report are contingent upon our review of final plans and specifications. Such plans and specifications should be made available to the geotechnical engineer and engineering geologist so that they may review and verify their compliance with this report and with the California Building Code.

It is recommended that Christian Wheeler Engineering be retained to provide continuous soil engineering services during the earthwork operations. This is to verify compliance with the design concepts, specifications or recommendations and to allow design changes in the event that subsurface conditions differ from those anticipated prior to start of construction.

UNIFORMITY OF CONDITIONS

The recommendations and opinions expressed in this report reflect our best estimate of the project requirements based on an evaluation of the subsurface soil conditions encountered at the subsurface

exploration locations and on the assumption that the soil conditions do not deviate appreciably from those encountered. It should be recognized that the performance of the foundations and/or cut and fill slopes may be influenced by undisclosed or unforeseen variations in the soil conditions that may occur in the intermediate and unexplored areas. Any unusual conditions not covered in this report that may be encountered during site development should be brought to the attention of the geotechnical engineer so that he may make modifications if necessary.

CHANGE IN SCOPE

This office should be advised of any changes in the project scope or proposed site grading so that we may determine if the recommendations contained herein are appropriate. This should be verified in writing or modified by a written addendum.

TIME LIMITATIONS

The findings of this report are valid as of this date. Changes in the condition of a property can, however, occur with the passage of time, whether they be due to natural processes or the work of man on this or adjacent properties. In addition, changes in the Standards-of-Practice and/or Government Codes may occur. Due to such changes, the findings of this report may be invalidated wholly or in part by changes beyond our control. Therefore, this report should not be relied upon after a period of two years without a review by us verifying the suitability of the conclusions and recommendations.

PROFESSIONAL STANDARD

In the performance of our professional services, we comply with that level of care and skill ordinarily exercised by members of our profession currently practicing under similar conditions and in the same locality. The client recognizes that subsurface conditions may vary from those encountered at the locations where our test pits, surveys, and explorations are made, and that our data, interpretations, and recommendations be based solely on the information obtained by us. We will be responsible for those data, interpretations, and recommendations, but shall not be responsible for the interpretations by others of the information developed. Our services consist of professional consultation and observation only, and no warranty of any kind whatsoever, express or implied, is made or intended in connection with the
work performed or to be performed by us, or by our proposal for consulting or other services, or by our furnishing of oral or written reports or findings.

CLIENT'S RESPONSIBILITY

It is the client's responsibility, or their representatives, to ensure that the information and recommendations contained herein are brought to the attention of the structural engineer and architect for the project and incorporated into the project's plans and specifications. It is further their responsibility to take the necessary measures to insure that the contractor and his subcontractors carry out such recommendations during construction.

FIELD EXPLORATIONS

Three subsurface explorations were made on July 1, 2011 at the locations indicated on the attached Plate Number 1. These explorations consisted of borings drilled utilizing a Unimog Marl M-5 truck mounted drill rig using both hollow stem and air-rotary drilling methods. The fieldwork was conducted under the observation of our engineering geology personnel.

The explorations were carefully logged when made. The logs are presented Appendix A. The soils are described in accordance with the Unified Soils Classification System. In addition, a verbal textural description, the wet color, the apparent moisture and the density or consistency are provided. The density of granular soils is given as very loose, loose, medium dense, dense or very dense. The consistency of silts or clays is given as either very soft, soft, medium stiff, stiff, very stiff, or hard.

Relatively undisturbed drive samples were collected using a modified California sampler. The sampler, with an external diameter of 3.0 inches, is lined with 1-inch-long, thin, brass rings with inside diameters of approximately 2.4 inches. The sample barrel was driven into the ground with the weight of a 140-pound hammer falling 30 inches in general accordance with ASTM D3550. The driving weight is permitted to fall freely. The number of blows per foot of driving, or as indicated, is presented on the boring logs as an index to the relative resistance of the sampled materials. The samples were removed from the sample barrel in the brass rings, and sealed. Bulk and chunk samples

of the encountered earth materials were also collected. Samples were transported to our laboratory for testing.

LABORATORY TESTING

Laboratory tests were performed in accordance with the generally accepted American Society for Testing and Materials (ASTM) test methods or suggested procedures. A brief description of the tests performed is presented in Appendix B.

DESIGNER	JHP	SHEET TITLE:	:			SHEET	
DRAWN	AL		TOPOGRAP	HY AND E	BOUNDARY	1	
CHECKED	JHP	PROJECT NA	ME: 6213-621	19 MONTEZU	MA ROAD	OF 1	
5 DATE 1	1-06-15		SAN DIEG	GO, CA. 921	15		
DIEGO, CA	92111	• (858))569–7377	FAX (858))569-0830	Project No. 999-15	
SED APARTMENT BUILDING 3-6219 MONTEZUMA ROAD AN DIEGO, CALIFORNIA							
DER 2015 JOB NO.: 2150650.01 CHRISTIAN WHEELER							
					1		

Appendix A

Boring and CPT Logs

				LOG	OF BORIN		<u>S</u> :	ample '	Туре	and La	boratory	Test Leg	end	
┝	Date 1	Excavat	ed:	7/1/2011	Equit	oment:	Unimog-Marl M5	Cal M SPT St ST Sł	odified (andard I ielby Tu	Califo Penetr be	rnia Samp ation Test	ler CK DR	Chunk Sar Density Ri	nple ng
	Logge	d by:		TSW	Auge	r Size:	7"	MD SO4	Maximu Soluble	um Do Sulfa	ensity tes	DS Con	Direct She	ar
	Existi	ng Elev	ation:	460 feet	Drive	e Weight:	140 lbs @ 30"	SA HA	Sieve A Hydron	nalysi neter	s	EI R-Val	Expansion Resistance	Index Value
	Propo	sed Ele	evation	: 442 feet	Dept	h to Water:	N/A	SE PI	Sand Ed Plasticit	quival ty Ind	ent ex	Chl Res	Soluble Ch pH & Resi	lorides
DEPTH (ft)	(ft) (ft)	GRAPHIC LOG	USCS SYMBOL		SUMMARY OF SUBSUI (based on Unified Soil (RFACE CON Classification	NDITIONS n System)	PENETRATION (blows)	SAMPLE TYPE	BULK	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	RELATIVE COMPACTION (%)	LABORATORY TESTS
0	_ 460 _		SC	Artificial Fil	1 (Qaf): Light to mediu	m reddish-b	rown, moist, loose,							
-	_			Becomes me	dium dense at about 2 fe	eet.	оск. 							
5 —	- 455 		SC	Colluvium (Qcol): Medium reddish CLAYEY SAND with re	n-brown, mo ock.	ist, medium dense,	68	Cal		8.9	108.2		
10 -	-450							50/6'	Cal					
			SM	Very Old Pa moist, mediu	ralic Deposits (Qvop≵ m dense to dense, very f): Light to n fine- to fine-	nedium reddish-brown, grained SILTY SAND.	35	Cal		12.1	111.2		DS SA SO4
20-	- 440		GM	Light brown with silt and	to light gray, moist, dens rock.	se to very de	ense, SANDY GRAVEL							
- - -	-		SM	Light red bro SAND with 1	wn, moist, medium den rock.	se to dense,	fine-grained SILTY							
25 -	- 435 		GM	Red brown, r Practical drill	noist, dense to very dens refusal with auger, swite	se, SANDY ched to air-r	GRAVEL with rock. otary drilling.	50/3'	SPT					
- - 30 -	- - - 430		SM	Mission Val fine- to medi	ley Formation (Tmv): um-grained SILTY SAN	Light to me ID with clay.	edium gray, moist, dense	,						SA
		na an a		Boring continu	ued on APPENDIX A-2	2.			•		<u>.</u>	•		
Symbol Legend ▼ Groundwater ♥ Apparent Seepage					PROPOSED MON 6213-6219 SAN DI	ſEZUM MONT IEGO, (IA RO EZUN CALIF	DAD MA I FOR	APAR'I ROAD NIA	'MEN'I	'S			
*] **	No Samp	le Recov	ery Blow	ENG	INEERING	BY:	MWL		DATE	:	Ν	NOVEM	BER 201	5
(Count (ro	cks prese	ent)			JOB NO	D.: 2150650.01	I	PPEN	NDE	X.:	A-1		

				LOG	OF BORIN		<u>S</u> ;	ample '	Гуре	and La	boratory	Test Leg	end	
	Date I	Excava	ted:	7/1/2011	Ea	uipment:	Unimog-Marl M5	Cal M SPT St ST Sh	odified (andard I ielby Tui	Califo Peneti be	rnia Samp ration Test	ler CK DR	Chunk Sar Density R	nple ing
	Logge Existit Propo	d by: ng Elev sed Ele	vation: evation:	TSW 460 feet 442 feet	Au Dri De	ger Size: ive Weight: pth to Water:	7" 140 lbs @ 30" N/A	MD SO4 SA HA SE PI	Maximu Soluble Sieve A Hydron Sand Eo Plasticit	um D Sulfa nalysi neter quival y Ind	ensity tes s ent ex	DS Con EI R-Val Chl Res	Direct She Consolida Expansior Resistance Soluble Cl pH & Res	ar tion 1 Index Value nlorides istivity
DEPTH (ft)	ELEVATION (ft)	GRAPHIC LOG	USCS SYMBOL		SUMMARY OF SUBS (based on Unified So	URFACE CON	NDITIONS n System)	PENETRATION (blows)	SAMPLE TYPE	BULK	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	RELATIVE COMPACTION (%)	LABORATORY TESTS
30 35 	430 		SM	Mission V	7alley Formation (Tmv edium-grained SILTY SA	t): Light to mo	edium gray, moist, dense,							SA
40 - - - 45 - - - 50 - - - - - - - - - - - - - - - - - - -	 420 415 415 415 410 405 400 	114121		Boring tern No ground	minated at 40 feet. lwater or seepage encou	ntered.								
<u>ب</u> ۲	Symbol] Groundwa Apparent	L egend ater Seepage	2	СЦРТ			PROPOSED MONT 6213-6219 M SAN DII	EZUM 10NT 2GO, (IA RO EZUN CALIF	AD IA I OR	APAR'I ROAD NIA	'MEN'I	'S	
* 1 **	No Sampl Nonrepre	e Recov	very Blow		GINEERING	BY:	MWL	Ι	DATE	:	N	OVEM	BER 201	5
Ċ	Count (roc	ks pres	ent)			JOB NO	D.: 2150650.01	A	PPEN	JDE	X:	A-2		

				LOG	OF BORIN	NG B-2		<u>S</u> a	ample '	Гуре	and Lab	ooratory	Test Leg	<u>end</u>
	Date l	Excava	ted:	7/1/2011	Ec	quipment:	Unimog-Marl M5	Cal M SPT Sta ST Sh	odified (andard I elby Tu	Califo Penetr be	rnia Sampl ation Test	ler CK DR	Chunk San Density Ri	nple ng
	Logge Existi	d by: og Elev	ration.	TSW 463 feet	Au	iger Size:	7" 140 lbs @ 30"	MD SO4 SA	Maximu Soluble Sieve A	ım Do Sulfa nalysi	ensity tes s	DS Con EI	Direct She Consolidat Expansion	ar ion Index
	Propo	sed Ele	evation	: 442 feet	De	epth to Water:	N/A	HA SE PI	Hydron Sand Eo Plasticit	neter quival y Ind	ent ex	R-Val Chl Res	Resistance Soluble Ch pH & Resi	Value Ilorides stivity
DEPTH (ft)	ELEVATION (ft)	GRAPHIC LOG	USCS SYMBOL		SUMMARY OF SUBS (based on Unified S	SURFACE CON oil Classificatior	IDITIONS a System)	PENETRATION (blows)	SAMPLE TYPE	BULK	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	RELATIVE COMPACTION (%)	LABORATORY TESTS
0 _	463		SC	Artificial F CLAYEY S	ill (Qaf): Dark brown AND with rock.	1, damp, loose, 1	fine- to medium-grained							
	- - 458 - -		SC	Colluvium CLAYEY S	(Qcol): Light reddish AND with rock.	n brown, very m	oist, medium dense,	30/3"	Cal		21.0	102.4		
10 - - - 15 - - - 20 -	453 		SM	Very Old P very moist, coarse-grain	Paralic Deposits (Qvc medium dense, very fr ned SILTY SAND with	2p_): Light to m ne- to fine-grain n clay and rock.	nedium reddish-brown, ned and medium- to	50 24	Cal SPT		18.5	100.5		
_	_		GM	Reddish-bro to fine-grain	own to light gray, mois ned with rock up to ab	t, medium dens out 2 inches.	e to dense, very fine-	66	Cal		8.1	105.8	·	
 25 	- - - 438		SM	Light to me fine- to fine	dium reddish-brown, r -grained SILTY SANI	noist, medium o D with rock.	dense to dense, very	24	SPT					
_	Light gray to orange, moist, dense,					, SANDY GRA	VEL with silt and rock.	$\left \right $		_		╞ —		
- 30 -	433		SM	Light to me SILTY SAN	dium reddish brown, r N <u>D with</u> r <u>ock; Slightly</u>	noist, dense, ve micaceous.	ry fine- to fine-grained	35	SPT	_	<u> </u>	<u> </u> _		
		II		Boring contin	ued on APPENDIX	A-4.		- I				I		
¥ ₹	Symbol Legend Groundwater Apparent Seepage		CHRIS				EZUM 40NT EGO, 0	A RO EZUN CALIF	AD /IA I OR	APART ROAD NIA	'MEN'I	'S		
*] **	No Sampl Nonrepre	le Recov estative l	very Blow	ENC	GINEERING	BY:	MWL	Ι	DATE	:	N	NOVEM	BER 201	5
(** Nonreprestative Blow Count (rocks present) JOB NO.: 2150650.01					0.: 2150650.01	A	PPEN	JDE	X:	A-3			

				LOGO	F BORINO		Sa	ample '	Туре	and Lab	ooratory '	Test Leg	end	
	Data I		tod.	7/1/2011	Emi		Unimon Mort M5	Cal Mo SPT Sta	odified (andard I	Califo Peneti	rnia Sampl ation Test	ler CK DR	Chunk Sar Density Ri	nple ng
	Logged Existir Propos	d by: g Elev sed Ele	ration: evation:	TSW 463 feet 442 feet	Equip Bucke Drive Deptl	et Size: Weight: n to Water:	7" 140 lbs @ 30" N/A	MD SO4 SA HA SE PI	Maximu Soluble Sieve A Hydron Sand E Plasticit	um D Sulfa nalysi neter quival ty Ind	ensity tes s ent ex	DS Con EI R-Val Chl Res	Direct She Consolidat Expansion Resistance Soluble Ch pH & Resi	ar ion Index Value ilorides istivity
DEPTH (ft)	ELEVATION (ft)	GRAPHIC LOG	USCS SYMBOL	SU (UMMARY OF SUBSUF based on Unified Soil (RFACE CON Classification	IDITIONS 1 System)	PENETRATION (blows)	SAMPLE TYPE	BULK	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	RELATIVE COMPACTION (%)	LABORATORY TESTS
30	- 433		SM	Light to medium SILTY SAND;	m reddish-brown, moi Slightly micaceous.	st, dense, ve	ry fine- to fine-grained							
	- - - 428		SM	<u>Mission Valle</u> fine- to mediu	y Formation (Tmv): m-grained SILTY SAN	Light to m ND with clay	edium gray, moist, dense,	50/6"	Cal		14.1	111.9		DS
	_		SC	Light to medius CLAYEY SAN	m gray with light red, 1 ID.	moist, dense	, fine- to medium-grained							
40 - - - 45 - - - 50 - - - - - - - - - - - - - - - - - - -	- 423 			Boring termina No groundwate	ted at 40 feet. er or seepage encounte	ered.								
ن بر بر	Symbol I Groundwa Apparent 3	Legend iter Seepage	2	CHRISTI	AN WHEFI FR		PROPOSED MONTI 6213-6219 M SAN DIE	EZUM IONTI IGO, C	A RO EZUN CALIF	AD AA I OR	APART ROAD NIA	'MENT	'S	
* 1 **]	No Sampl Nonrepre	e Recov stative l	very Blow	E N G I	NEERING	BY:	MWL	Ι	DATE	:	N	NOVEM	BER 201	5
C	Count (roc	ks pres	ent)			JOB NO	0.: 2150650.01	А	PPEN	NDE	X:	A-4		

				LOG	OF BORIN		<u>Sa</u>	umple '	Гуре	and Lab	ooratory	Test Lege	<u>end</u>	
	Date I	Excava	ted:	7/1/2011	Equir	oment:	Unimag-Mail M5	Cal M SPT Sta ST Sh	odified (andard F elby Tul	Califo Penetr be	rnia Sampl ation Test	ler CK DR	Chunk San Density Ri	nple ng
	Logge	d by:		TSW	Buck	et Size:	N/A	MD SO4	Maximu Soluble	ım De Sulfa	ensity tes	DS Con	Direct She Consolidat	ar ion
	Existin	ng Elev	ration:	456 feet	Drive	e Weight:	140 lbs @ 30"	SA HA	Sieve Ar Hydron	nalysi neter	s	EI R-Val	Expansion Resistance	Index Value
	Propo	sed Ele	evation	: 442 feet	Dept	h to Water:	N/A	SE PI	Sand Ec Plasticit	juival y Ind	ent ex	Chl Res	Soluble Ch pH & Resi	lorides stivity
DEPTH (ft)	ELEVATION (ft)	GRAPHIC LOG	USCS SYMBOL	s	SUMMARY OF SUBSUI (based on Unified Soil)	RFACE CON Classification	IDITIONS 1 System)	PENETRATION (blows)	SAMPLE TYPE	BULK	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	RELATIVE COMPACTION (%)	LABORATORY TESTS
0	456 	[]]]		6	inches of Portland Cer	ment Concre	ete (PCC)							
	 		SC	CLAYEY SA	Qcol): Light reddish bro ND with rock.	own, moist,	medium dense,							
			SM	Very Old Par moist, mediur coarse-grained Rock layer at	y Old Paralic Deposits (Qvop ₇): Light to medium reddish-brown, st, medium dense to dense, very fine- to fine-grained and medium- to rse-grained SILTY SAND with clay and rock.									
10 -	- 446 		SM	Light to medi to fine-grained	ight to medium reddish-brown, moist, medium dense to dense, very fine- o fine-grained SILTY SAND with rock.									
15 -	- 441		GM	Reddish-brow GRAVEL wit -rotary. Rock	n and gray, moist, med th silt. Practical refusal a layer at about 15 to 17	ium dense to at 15 feet wi feet.	o dense, SANDY th auger, switch to air							
 20 	436 		SM	Light to medi to fine-grained	um reddish brown, moi d SILTY SAND with re	ist, medium ock; Slightly	dense to dense, very fine- micaceous.							
-			GM	Light gray to	orange, moist, dense, SA	ANDY GRA	VEL with silt and rock.							
25	- 431 		SM	SM Mission Valley Formation (Tmv): Light to medium gray, moist, dense, fine- to medium-grained SILTY SAND with clay.										
30 -	- 426			Boring terminat	ted at 30 feet.									
				No groundwate	er or seepage encountere	ed.								
Symbol Legend ↓ Groundwater ↓ Apparent Seepage					IAN WHEELER		PROPOSED MONT 6213-6219 N SAN DIE	EZUM IONT EGO, O	A RO EZUN CALIF	AD 1A I OR	APART ROAD NIA	'MEN'I	'S	
* 1	No Sampl	e Recov	very	ENG	INEERING	BY:	MWL	Ι	DATE:		N	JOVEM	BER 201	.5
C	Count (roo	stative l ks pres	ent)			JOB NO	0.: 2150650.01	A	PPEN	JDE	X:	A-5		

Appendix B

Laboratory Test Results

Laboratory tests were performed in accordance with the generally accepted American Society for Testing and Materials (ASTM) test methods or suggested procedures. Brief descriptions of the tests performed are presented below:

- a) **CLASSIFICATION:** Field classifications were verified in the laboratory by visual examination. The final soil classifications are in accordance with the Unified Soil Classification System and are presented on the exploration logs in Appendix A.
- b) **GRAIN SIZE DISTRIBUTION:** The grain size distributions of selected samples were determined in accordance with ASTM C136 and/or ASTM D422.
- c) **DIRECT SHEAR:** Direct shear tests were performed to determine the failure envelope of selected soils based on yield shear strength. The shear box was designed to accommodate a sample having a diameter of 2.375 inches or 2.50 inches and a height of 1.0 inch. Samples were tested at different vertical loads and a saturated moisture content. The shear stress was applied at a constant rate of strain of approximately 0.05 inch per minute.
- d) **SOLUBLE SULFATE TEST:** The soluble sulfate content was determined for a representative sample in accordance with California Test Method 417.

		PROPOS 6213- SA	SED APARTMENT BUILDING 5219 MONTEZUMA ROAD N DIFGO CALIFORNIA	LAB	SUMMARY	
ENGINEERING	BY:	JDB	DATE: NOV. 2015	REPORT NO	0.:2150650.01	APPENDIX B, B-1

LABORATORY TEST RESULTS

PROPOSED APARTMENT BUILDING 6213-6219 MONTEZUMA ROAD SAN DIEGO, CALIFORNIA

DIRECT SHEAR (ASTM D3080)

Sample Location	Boring B-1 @ 15'	Boring B-2 @ 211/2'
Sample Type	Undisturbed	Undisturbed
Friction Angle	34°	36°
Cohesion	200 psf	200 psf

GRAIN SIZE DISTRIBUTION (ASTM D422)

Sample Location	Boring B-1 @ 14'-19'	Boring B-2 @ 23'-28'
Sieve Size	Percent Passing	Percent Passing
1"	100	
³ /4"	99	
¹ /2"	98	
3/8	96	
#4	90	
#8	85	100
#16	81	99
#30	78	96
#50	76	61
#100	60	29
#200	33	20

SOLUBLE SULFATES (CALIFORNIA TEST METHOD 417)

Sample Location	Boring B-1 @ 14'-19'
Soluble Sulfate	0.006 % (SO4)

Appendix C

References

REFERENCES

Bryant, W. A. (compiler), 2005, Digital Database of Quaternary and Younger Faults from the Fault Activity Map of California, version 2.0: California Geological Survey Web Page, http://www.consrv.ca.gov/CGS/information/publications/QuaternaryFaults_ver2.htm

City of San Diego, 1995, Seismic Hazard Study, Geologic Hazards and Faults, Sheet 22, Scale 1" = 800'.

Kennedy, Michael P., 1975, Geology of the San Diego Metropolitan Area, California, California Division of Mines and Geology, Bulletin 200.

Kennedy, Michael P. and Tan, Siang S., 2008, Geologic Map of the San Diego 30'x60' Quadrangle, California, California Geologic Survey, Map No. 3.

Tan, S.S., 1995, Landslide Hazards in the Southern Part of the San Diego Metropolitan Area, San Diego County, California, California Division of Mines and Geology Open-File Report 95-03.

U.S. Geological Survey, U.S. Seismic Design Maps Web Application, http://geohazards.usgs.gov/designmaps/us/application.php

U.S. Geological Survey, Quaternary Faults in Google Earth, http://earthquake.usgs.gov/hazards/qfaults/google.php

TOPOGRAPHIC MAPS

City of San Diego, 1952, Revised 1988, 200-Scale Topographic Map, Sheet 218-1749. City of San Diego, 1979, 200-Scale Orthographic Map, Sheet 218-1749.

PHOTOGRAPHS

San Diego County, 1928, Packet 60C; Scale: 1 inch = 1000 feet (approximate).

San Diego County, 1973, Flight 22, Photograph 22; Scale: 1 inch = 1000 feet (approximate).

San Diego County, 1978, Flight 26C, Photographs 3 and 4; Scale: 1 inch = 1000 feet (approximate).

San Diego County, 1978, Flight 27, Photograph C5 and C6; Scale: 1 inch = 1000 feet (approximate).

Appendix D

Recommended Grading Specifications - General Provisions

RECOMMENDED GRADING SPECIFICATIONS - GENERAL PROVISIONS

MONTEZUMA APARTMENTS 6213-6219 MONTEZUMA ROAD SAN DIEGO, CALIFORNIA

GENERAL INTENT

The intent of these specifications is to establish procedures for clearing, compacting natural ground, preparing areas to be filled, and placing and compacting fill soils to the lines and grades shown on the accepted plans. The recommendations contained in the preliminary geotechnical investigation report and/or the attached Special Provisions are a part of the Recommended Grading Specifications and shall supersede the provisions contained hereinafter in the case of conflict. These specifications shall only be used in conjunction with the geotechnical report for which they are a part. No deviation from these specifications will be allowed, except where specified in the geotechnical report or in other written communication signed by the Geotechnical Engineer.

OBSERVATION AND TESTING

Christian Wheeler Engineering shall be retained as the Geotechnical Engineer to observe and test the earthwork in accordance with these specifications. It will be necessary that the Geotechnical Engineer or his representative provide adequate observation so that he may provide his opinion as to whether or not the work was accomplished as specified. It shall be the responsibility of the contractor to assist the Geotechnical Engineer and to keep him apprised of work schedules, changes and new information and data so that he may provide these opinions. In the event that any unusual conditions not covered by the special provisions or preliminary geotechnical report are encountered during the grading operations, the Geotechnical Engineer shall be contacted for further recommendations.

If, in the opinion of the Geotechnical Engineer, substandard conditions are encountered, such as questionable or unsuitable soil, unacceptable moisture content, inadequate compaction, adverse weather, etc., construction should be stopped until the conditions are remedied or corrected or he shall recommend rejection of this work.

Tests used to determine the degree of compaction should be performed in accordance with the following American Society for Testing and Materials test methods:

Maximum Density & Optimum Moisture Content - ASTM D1557 Density of Soil In-Place - ASTM D1556 or ASTM D6938

All densities shall be expressed in terms of Relative Compaction as determined by the foregoing ASTM testing procedures.

PREPARATION OF AREAS TO RECEIVE FILL

All vegetation, brush and debris derived from clearing operations shall be removed, and legally disposed of. All areas disturbed by site grading should be left in a neat and finished appearance, free from unsightly debris.

After clearing or benching the natural ground, the areas to be filled shall be scarified to a depth of 6 inches, brought to the proper moisture content, compacted and tested for the specified minimum degree of compaction. All loose soils in excess of 6 inches thick should be removed to firm natural ground which is defined as natural soil which possesses an in-situ density of at least 90 percent of its maximum dry density.

When the slope of the natural ground receiving fill exceeds 20 percent (5 horizontal units to 1 vertical unit), the original ground shall be stepped or benched. Benches shall be cut to a firm competent formational soil. The lower bench shall be at least 10 feet wide or 1-1/2 times the equipment width, whichever is greater, and shall be sloped back into the hillside at a gradient of not less than two (2) percent. All other benches should be at least 6 feet wide. The horizontal portion of each bench shall be compacted prior to receiving fill as specified herein for compacted natural ground. Ground slopes flatter than 20 percent shall be benched when considered necessary by the Geotechnical Engineer.

Any abandoned buried structures encountered during grading operations must be totally removed. All underground utilities to be abandoned beneath any proposed structure should be removed from within 10 feet of the structure and properly capped off. The resulting depressions from the above described procedure should be backfilled with acceptable soil that is compacted to the requirements of the Geotechnical Engineer. This includes, but is not limited to, septic tanks, fuel tanks, sewer lines or leach lines, storm drains and water lines. Any buried structures or utilities not to be abandoned should be brought to the attention of the Geotechnical Engineer so that he may determine if any special recommendation will be necessary.

All water wells which will be abandoned should be backfilled and capped in accordance to the requirements set forth by the Geotechnical Engineer. The top of the cap should be at least 4 feet below finish grade or 3 feet below the bottom of footing whichever is greater. The type of cap will depend on the diameter of the well and should be determined by the Geotechnical Engineer and/or a qualified Structural Engineer.

FILL MATERIAL

Materials to be placed in the fill shall be approved by the Geotechnical Engineer and shall be free of vegetable matter and other deleterious substances. Granular soil shall contain sufficient fine material to fill the voids. The definition and disposition of oversized rocks and expansive or detrimental soils are covered in the geotechnical report or Special Provisions. Expansive soils, soils of poor gradation, or soils with low strength characteristics may be thoroughly mixed with other soils to provide satisfactory fill material, but only with the explicit consent of the Geotechnical Engineer. Any import material shall be approved by the Geotechnical Engineer before being brought to the site.

PLACING AND COMPACTION OF FILL

Approved fill material shall be placed in areas prepared to receive fill in layers not to exceed 6 inches in compacted thickness. Each layer shall have a uniform moisture content in the range that will allow the compaction effort to be efficiently applied to achieve the specified degree of compaction. Each layer shall be uniformly compacted to the specified minimum degree of compaction with equipment of adequate size to economically compact the layer. Compaction equipment should either be specifically designed for soil compaction or of proven reliability. The minimum degree of compaction to be achieved is specified in either the Special Provisions or the recommendations contained in the preliminary geotechnical investigation report. When the structural fill material includes rocks, no rocks will be allowed to nest and all voids must be carefully filled with soil such that the minimum degree of compaction recommended in the Special Provisions is achieved. The maximum size and spacing of rock permitted in structural fills and in nonstructural fills is discussed in the geotechnical report, when applicable.

Field observation and compaction tests to estimate the degree of compaction of the fill will be taken by the Geotechnical Engineer or his representative. The location and frequency of the tests shall be at the Geotechnical Engineer's discretion. When the compaction test indicates that a particular layer is at less than the required degree of compaction, the layer shall be reworked to the satisfaction of the Geotechnical Engineer and until the desired relative compaction has been obtained.

Fill slopes shall be compacted by means of sheepsfoot rollers or other suitable equipment. Compaction by sheepsfoot roller shall be at vertical intervals of not greater than four feet. In addition, fill slopes at a ratio of two horizontal to one vertical or flatter, should be trackrolled. Steeper fill slopes shall be over-built and cut-back to finish contours after the slope has been constructed. Slope compaction operations shall result in all fill material six or more inches inward from the finished face of the slope having a relative compaction of at least 90 percent of maximum dry density or the degree of compaction specified in the Special Provisions section of this specification. The compaction operation on the slopes shall be continued until the Geotechnical Engineer is of the opinion that the slopes will be surficially stable.

Density tests in the slopes will be made by the Geotechnical Engineer during construction of the slopes to determine if the required compaction is being achieved. Where failing tests occur or other field problems arise, the Contractor will be notified that day of such conditions by written communication from the Geotechnical Engineer or his representative in the form of a daily field report.

If the method of achieving the required slope compaction selected by the Contractor fails to produce the necessary results, the Contractor shall rework or rebuild such slopes until the required degree of compaction is obtained, at no cost to the Owner or Geotechnical Engineer.

CUT SLOPES

The Engineering Geologist shall inspect cut slopes excavated in rock or lithified formational material during the grading operations at intervals determined at his discretion. If any conditions not anticipated in the preliminary report such as perched water, seepage, lenticular or confined strata of a potentially adverse nature, unfavorably inclined bedding, joints or fault planes are encountered during grading, these conditions shall be analyzed by the Engineering Geologist and Geotechnical Engineer to determine if mitigating measures are necessary.

Unless otherwise specified in the geotechnical report, no cut slopes shall be excavated higher or steeper than that allowed by the ordinances of the controlling governmental agency.

ENGINEERING OBSERVATION

Field observation by the Geotechnical Engineer or his representative shall be made during the filling and compaction operations so that he can express his opinion regarding the conformance of the grading with acceptable standards of practice. Neither the presence of the Geotechnical Engineer or his representative or the observation and testing shall release the Grading Contractor from his duty to compact all fill material to the specified degree of compaction.

SEASON LIMITS

Fill shall not be placed during unfavorable weather conditions. When work is interrupted by heavy rain, filling operations shall not be resumed until the proper moisture content and density of the fill materials can be achieved. Damaged site conditions resulting from weather or acts of God shall be repaired before acceptance of work.

RECOMMENDED GRADING SPECIFICATIONS - SPECIAL PROVISIONS

RELATIVE COMPACTION: The minimum degree of compaction to be obtained in compacted natural ground, compacted fill, and compacted backfill shall be at least 90 percent. For street and

parking lot subgrade, the upper six inches should be compacted to at least 95 percent relative compaction.

EXPANSIVE SOILS: Detrimentally expansive soil is defined as clayey soil which has an expansion index of 50 or greater when tested in accordance with ASTM D 4829.

OVERSIZED MATERIAL: Oversized fill material is generally defined herein as rocks or lumps of soil over 6 inches in diameter. Oversized materials should not be placed in fill unless recommendations of placement of such material is provided by the Geotechnical Engineer. At least 40 percent of the fill soils shall pass through a No. 4 U.S. Standard Sieve.

TRANSITION LOTS: Where transitions between cut and fill occur within the proposed building pad, the cut portion should be undercut a minimum of one foot below the base of the proposed footings and recompacted as structural backfill. In certain cases that would be addressed in the geotechnical report, special footing reinforcement or a combination of special footing reinforcement and undercutting may be required.

EILAR ASSOCIATES, INC.

Acoustical and Environmental Consulting

210 South Juniper Street, Suite 100, Escondido, CA 92025 Phone: 760-738-5570 or 800-439-8205 • Fax: 760-738-5227 www.eilarassociates.com • info@eilarassociates.com

May 9, 2017

Job #B70115N1

Prime Built Chris Elsey 1532 College Avenue, F19 Manhattan, Kansas 66502

Subject: Response to Noise Cycle Issues for Montezuma PDP/CUP, City of San Diego Project No. 501449

This letter is in response to the City of San Diego's Cycle Issues letter for the project known as Montezuma PDP/CUP, City of San Diego Project No. 501449. Comments are found in the letter dated April 28, 2017 and are located in the Plan – Long Range Planning section. These comments have been addressed in a revised version of the report, dated May 9, 2017, and this letter will reference the location of each comment response or requested changes in the revised report.

Italics are added to indicate City of San Diego staff comments.

Plan – Long Range Planning Comments

18 According to the Acoustical Analysis Report prepared by Eilar Associates, Inc. for the proposed project, future traffic noise impacts were calculated to be 65 CNEL or less at outdoor use areas. According to Table NE-3 Land Use-Noise Compatibility Guidelines in the Noise Element of the General Plan, the proposed project falls under the Residential Category within the "Conditionally Compatible" noise environment and would need to attenuate exterior noise levels to an interior noise level of 45 CNEL (INFO ONLY). (New Issue) [Recommended]

19 According to the acoustical report, contemporary building construction is expected to achieve at least 15 decibels of exterior-to-interior noise attenuation with windows opened (Continued). (New Issue) [Recommended]

20 Even with adequate ventilation, requiring that all windows be closed cannot be regulated. Therefore, the report should state what other noise attenuation methods should be used in addition to adequate ventilation such as those identified in Table NE-5 Typical Noise Attenuation Methods to Insulate the Noise Receiver on page NE-21 of the Noise Element of the General Plan. (New Issue)

RESPONSE: A statement has been added to the report in Sections 1.0, 5.2, and 6.0, on pages 1, 10, and 14, respectively, detailing that the typical sound attenuation methods shown in Table NE-5 of the City of San Diego Noise Element to the General Plan are expected to adequately control interior noise levels to below 45 CNEL.

21 The Executive Summary and Conclusion sections of the report also indicate that noise levels generated by anticipated HVAC systems are expected to meet applicable night time limits at surrounding property lines, but makes no mention of its effect on residents of the proposed project. Please indicate in the report how HVAC noise levels will also be attenuated to acceptable interior noise levels. (New Issue)

RESPONSE: A statement has been added to the report in Sections 1.0, 5.3, and 6.0, on pages 1, 11, and 14, respectively, stating that noise impacts to residents of the proposed project will be negligible, due to noise shielding provided by the building. Additionally, if additional noise attenuation is required, the typical sound attenuation methods shown in Table NE-5 of the City of San Diego Noise Element to the General Plan are expected to adequately control interior noise levels to below 45 CNEL.

Please call if you have any questions or require additional information.

EILAR ASSOCIATES, INC.

Jonathan Brothers, Principal Acoustical Consultant

ACOUSTICAL ANALYSIS REPORT

Montezuma Road Multi-Family 6213 Montezuma Road San Diego, California 92115

City of San Diego Project No. 501449

Prepared For

Prime Built Attention: Chris Elsey 1532 College Avenue, F19 Manhattan, Kansas 66502 Phone: 785-317-5265

Prepared By

Eilar Associates, Inc. Acoustical & Environmental Consulting 210 South Juniper Street, Suite 100 Escondido, California 92025 www.eilarassociates.com Phone: 760-738-5570 Fax: 760-738-5227

Job #B70115N1

May 9, 2017

TABLE OF CONTENTS

		<u>Page</u>
1.0	EXECUTIVE SUMMARY	1
2.0	INTRODUCTION2.1Project Description2.2Project Location2.3Applicable Noise Regulations	2
3.0	ENVIRONMENTAL SETTING3.1Existing Noise Environment3.2Future Noise Environment	3
4.0	METHODOLOGY AND EQUIPMENT4.1Methodology4.2Measurement Equipment	6
5.0	NOISE IMPACTS5.1Exterior5.2Interior5.3Project-Related Noise Impacts on Surrounding Property Lines	9
6.0	CONCLUSION	13
7.0	CERTIFICATION	14
8.0	REFERENCES	15

FIGURES

- 1. Vicinity Map
- 2. Assessor's Parcel Map
- 3. Satellite Aerial Photograph
- 4. Topographic Map
- 5. Site Plan Showing Current Traffic CNEL Contours
- 6. Site Plan Showing Future Traffic CNEL Contours
- 7. Site Plan Showing Future Traffic CNEL Impacts at Outdoor Use Areas and Building Facades
- 8. Satellite Aerial Photograph Showing HVAC Noise Source and Receiver Locations
- 9. Satellite Aerial Photograph Showing Temporary Construction Noise Source and Receiver Locations

APPENDICES

- A. Project Plans
- B. Pertinent Sections of the City of San Diego Noise Element to the General Plan and Municipal Code
- C. Traffic Noise Model (TNM) Data and Results
- D. Manufacturer Data Sheets
- E. Cadna Analysis Data and Results
- F. Temporary Construction Noise Calculations

1.0 EXECUTIVE SUMMARY

The proposed project, Montezuma Road Multi-Family, consists of the construction of a new, five-story student dormitory building over three levels of underground parking. The project site is located at 6213 Montezuma Road in the City of San Diego, California.

The current and future noise environment primarily consists of traffic noise from Montezuma Road. Future traffic noise impacts at building facades will range from 27.7 CNEL at the west facade (facing the south courtyard) on the first floor to 67.6 CNEL at the north facade (facing Montezuma Road) on the first floor.

As per City of San Diego requirements, noise levels at outdoor use areas of the residential uses should be 65 CNEL or less. Future traffic noise impacts were calculated at common and private outdoor use areas to determine compliance with this requirement. Future traffic noise impacts were calculated to be 65 CNEL or less at all outdoor use areas, remaining in compliance with City of San Diego noise regulations. No project design features are deemed necessary for attenuating exterior noise impacts.

The City of San Diego and the State of California require interior noise levels not exceeding 45 CNEL in residential habitable space. Contemporary exterior building construction is expected to achieve at least 15 decibels of exterior-to-interior noise attenuation with windows opened. Calculations show that future noise levels on site are expected to exceed 60 CNEL at the on-site building, and therefore, the developer shall have an exterior-to-interior noise analysis performed by an acoustical consultant when building plans become available, prior to the issuance of building permits, in order to demonstrate that the project will have interior noise levels that meet the noise standards of the City of San Diego and State of California. The required interior noise levels are feasible and can be achieved with readily available building materials and construction methods. Typical sound attenuation methods shown in Table NE-5 of the City of San Diego Noise Element to the General Plan are expected to adequately control interior noise levels to below 45 CNEL, including the incorporation of mechanical fresh air ventilation, dual pane glazing, and exterior doors with appropriate seals into the design.

Calculations show that noise levels generated by anticipated HVAC units are expected to meet the applicable nighttime noise limits at surrounding property lines. No added project design features are deemed necessary for attenuating these mechanical noise impacts. It should be noted that interior noise impacts from HVAC equipment to residents of the proposed project will be negligible, as the building itself (including parapet walls at the roof level) will provide adequate noise shielding of HVAC equipment, such that noise impacts from rooftop HVAC equipment will be well below 60 CNEL at all building facades. However, if additional noise attenuation is required, then project design features shown in Table NE-5 of the City of San Diego Noise Element to the General Plan are expected to adequately control interior noise levels to below 45 CNEL.

Noise from temporary construction activities is not expected to exceed the applicable construction noise limits of the City of San Diego at any surrounding residential property line. Construction is prohibited between the hours of 7 p.m. and 7 a.m. and on Sundays or legal holidays. Standard construction noise control methods including adhering to permissible hours of operation, maintaining equipment in proper operating condition, and placing staging areas at furthest locations from noise sensitive receivers, are expected to be sufficient for reducing noise impacts to surrounding receivers.

2.0 INTRODUCTION

This acoustical analysis report is submitted to satisfy the acoustical requirements of the City of San Diego Noise Element to the General Plan and Municipal Code. This analysis addresses noise impacts from nearby roadway traffic to determine project features necessary to achieve compliance with the City of San Diego noise regulations, which require exterior noise levels of 65 CNEL or less at outdoor use areas, and interior noise levels of 45 CNEL or less in residential spaces. This analysis will also address the potential permanent and temporary noise impacts caused by the project at surrounding noise-sensitive receivers and recommend mitigation to reduce impacts to be compliant with applicable noise limits, if necessary.

All noise level or sound level values presented herein are expressed in terms of decibels, with Aweighting to approximate the hearing sensitivity of humans. Time-averaged noise levels are expressed by the symbol L_{EQ} , for a specified duration. The Community Noise Equivalent Level (CNEL) is a calculated 24-hour weighted average, where sound levels during evening hours of 7 p.m. to 10 p.m. have an added 5 dB weighting, and sound levels during nighttime hours of 10 p.m. to 7 a.m. have an added 10 dB weighting. This is similar to the Day-Night sound level, L_{DN} , which is a 24hour average with an added 10 dB weighting on the same nighttime hours but no added weighting on the evening hours. Sound levels expressed in CNEL are always based on A-weighted decibels. These metrics are used to express noise levels for both measurement and municipal regulations, for land use guidelines, and for enforcement of noise ordinances. Further explanation can be provided upon request.

2.1 **Project Description**

The proposed project, Montezuma Road Multi-Family, consists of the construction of a new, five-story student dormitory building over three levels of underground parking. The building will include 128 bedroom suites. Outdoor use areas for residents on site are provided as common balconies, a first floor terrace, and a rooftop garden. For further details, please refer to the project plans, provided as Appendix A.

2.2 **Project Location**

The project site is located at 6213 Montezuma Road in the City of San Diego, California. The Assessor's Parcel Numbers (APN) for the property are 467-171-28 and 467-171-29. The project location is shown on the Vicinity Map, Figure 1, following this report. An Assessor's Parcel Map, Satellite Aerial Photograph, and Topographic Map of this area are also provided as Figures 2 through 4, respectively.

2.3 Applicable Noise Regulations

This acoustical analysis report is submitted to satisfy the acoustical requirements of the City of San Diego Noise Element to the General Plan and Municipal Code. The City of San Diego Noise Element to the General Plan requires that at a multi-family residential property, indoor noise levels are attenuated to 45 CNEL for residential space, and noise levels at residential outdoor use areas do not exceed 65 CNEL.

Noise sources on the project site must also be evaluated to determine their impact on neighboring receivers. The City of San Diego Municipal Code gives noise limits for residential properties based on density. Section 59.5.0401 of the Municipal Code states that high density or mixed use properties have noise limits of 60 dBA between the hours of 7 a.m. and 7 p.m., 55 dBA between the hours of 7

p.m. and 10 p.m., and 50 dBA between the hours of 10 p.m. and 7 a.m., while single-family residential properties have noise limits of 50 dBA in daytime hours, 45 dBA in the evening hours, and 40 dBA in the nighttime hours. The subject property will be used for high-density multi-family residential with the development of the proposed project. The property to the east of the project site is also a high-density multi-family residential use, while the property to the west of the site is currently vacant but zoned for future high-density multi-family residential use. Properties to the south are single-family residential uses. Any noise-sensitive properties to the north are located at a greater distance from potential on-site noise sources and therefore are not considered in this analysis. The Municipal Code also contains a provision that states that the sound level limit on the boundary between two zoning districts is the arithmetic mean of the respective limits for the two districts. For this reason, noise limits applicable at single-family residential properties to the south will be the average of single-family and high-density multi-family residential noise limits.

In addition, Section 59.5.0404 of the City of San Diego Municipal Code states that construction activity is prohibited between the hours of 7 p.m. and 7 a.m. and on Sundays or legal holidays. During permissible hours of operation, noise levels from construction activity must be limited to a twelve-hour average of no greater than 75 dBA at any property line zoned for residential use.

Please refer to Appendix B for pertinent sections of the San Diego Noise Element to the General Plan and the City of San Diego Municipal Code.

3.0 ENVIRONMENTAL SETTING

3.1 Existing Noise Environment

Exterior noise at the site will consist primarily of traffic noise from Montezuma Road. No other noise sources are considered to be significant.

3.1.1 Roadway Noise Sources

Current (2012) and future (2035) traffic volumes are given based on information from the San Diego Association of Governments (SanDAG) Series 13 Transportation Forecast Information Center, located on the SanDAG website at http://tfic.sandag.org/.

Montezuma Road is a two-lane, two-way Major Arterial running east-west along the north boundary of the project site. The posted speed limit is 35 mph. According to SanDAG, the current traffic volume is estimated to be approximately 12,600 Average Daily Trips (ADT) east of East Campus Drive, and 11,800 ADT west of East Campus Drive.

No current or future truck percentages were available for this roadway; however, based on neighboring and surrounding land use, roadway classification, professional experience and on-site observations, a truck percentage mix of 4.1% medium and 3.6% heavy trucks was used for Montezuma Road.

Without proposed project structures, the current proposed project site will be exposed to traffic noise levels ranging from 57.8 CNEL to 67.1 CNEL. For a graphical representation of these contours, please refer to Figure 5: Site Plan Showing Current Traffic CNEL Contours. For additional information, please refer to Appendix C: Traffic Noise Model (TNM) Data and Results.

3.1.2 Measured Noise Level

An on-site inspection and traffic noise measurement were made on the afternoon of Thursday, November 20, 2008 at the site adjacent to the proposed project site. The weather conditions were as follows: clear skies, low humidity, and temperature in the mid 70's with no measurable wind. A "one-hour" equivalent measurement was made at the northeast corner of the property. The microphone was placed at approximately five feet above the existing project site grade.

Traffic volumes were recorded for automobiles, medium-size trucks, and large trucks on Montezuma Road during the measurement period. After a continuous 15-minute sound level measurement, no changes in the L_{EQ} were observed and the results were recorded. The measured noise level and related weather conditions are found in Table 1. The calculated equivalent hourly vehicle traffic count adjustment and a complete tabular listing of all traffic data recorded during the on-site traffic noise measurement are found in Appendix C: Traffic Noise Model (TNM) Data and Results.

Table 1	Table 1. On-Site Noise Measurement Conditions and Results					
Date	Thursday, November 20, 2008					
Time	12:50 p.m. – 1:05 p.m.					
Conditions	Clear skies, little to no measureable wind, temperature in the mid 70s with low humidity					
Measured Noise Level	63.8 dBA L _{EQ}					

3.1.3 Calculated Noise Level

Noise levels were calculated for the site using the methodology described in Section 4.1 for the location, conditions, and traffic volumes counted during the noise measurements. The calculated noise levels (L_{EQ}) were compared with the measured on-site noise level, to determine if adjustments or corrections (calibration) should be applied to the traffic noise prediction model in the Traffic Noise Model software (TNM). Adjustments are intended to account for site-specific variances in overall reflectivity or absorption, which may not be accurately represented by the default settings in the model.

The measured noise level of 63.8 dBA L_{EQ} at the northeastern corner of the adjacent property was compared to the calculated (modeled) noise level of 64.5 dBA L_{EQ} , for the same weather conditions and traffic flow. Despite the fact that the posted speed limit on Montezuma Road is 35 mph, traffic was observed moving at a speed closer to 30 mph, due to a nearby traffic signal and traffic flow from a parking garage and nearby roadways. This 30 mph traffic speed was incorporated into the traffic noise model for calibration only; for current and future models a traffic speed of 35 mph was used. According to the Federal Highway Administration's Highway Traffic Noise: Analysis and Abatement Guide (see reference), a traffic noise model is considered validated if the measured and calculated noise impacts differ by three decibels or less. No adjustment was deemed necessary to model future noise levels for this location as the difference between the measured and calculated levels was found to be less than three decibels. The Traffic Noise Model is assumed to be representative of actual traffic noise that is experienced on site. This information is presented in Table 2, and additional information is provided in Appendix C.

Table 2. Calculated versus Measured Traffic Noise Data									
Location	Calculated Measured		Difference	Correction					
45 feet South of Montezuma Road CL	64.5 dBA L _{EQ}	63.8 dBA L _{EQ}	0.7 dB	None Applied					

3.2 Future Noise Environment

The future noise environment in the vicinity of the project site will be primarily a result of the same ambient noise sources, as well as the noise generated by the proposed uses at the project site.

3.2.1 Future Traffic Volumes

The future (year 2035) traffic volumes for surrounding roadways were provided by SanDAG. The traffic volume of Montezuma Road is expected to increase to approximately 19,300 ADT east of East Campus Drive, and 18,000 ADT west of East Campus Drive by the year 2035.

The same truck percentages from the current traffic volumes were used for future traffic volume modeling. The roadway alignment and roadbed grade elevations are expected to remain the same for this section of roadway. For further roadway details and projected future ADT traffic volumes, please refer to Appendix C: Traffic Noise Model (TNM) Data and Results.

Without proposed project structures, the entire proposed project site will be exposed to future traffic noise levels ranging from 59.7 CNEL to 69.0 CNEL due to the increase in traffic. For a graphical representation of these contours, please refer to Figure 6: Site Plan Showing Future Traffic CNEL Contours.

3.2.2 HVAC Noise Sources

The primary source of noise generated on site is expected to be HVAC operational noise. Residential units on the project site are expected to be serviced by small heat pump units that will be roof-mounted on the building. Although the exact make/model of the equipment is unknown, it is assumed that the units will be similar to a Carrier CH14NB018 unit, and therefore, noise levels for this piece of equipment were used in analysis. As the sum of octave band noise levels given for the Carrier unit were found to be slightly less than the given sound rating, the octave band noise levels were increased accordingly such that the total sum was equal to the sound rating. The resultant estimated sound power spectrum for the Carrier unit is shown below in Table 3. Please refer to Appendix D: Manufacturer Data Sheets for additional information.

Table 3. Sound Power Level of Carrier Heat Pump Unit (Typical of Expected)										
Source	Sc	Total								
Jource	125	250	500	1K	2K	4K	8K	(dBA)		
Carrier CH14NB018	51.8	52.8	60.8	65.8	59.8	56.8	50.8	68		
3.2.3 Temporary Construction Equipment

Construction information was provided by Chris Elsey of Prime Built, with typical equipment assumptions made where necessary. Mr. Elsey provided information on the phases of construction expected to occur on site. Noise levels of typical construction equipment expected to be operational on site are shown in Table 4. All noise levels have been provided by the DEFRA Construction Equipment Noise Database (see reference), unless otherwise noted. Noise levels not taken from the DEFRA database are noise measurements made by Eilar Associates on March 25, 2010 for Brutoco Engineering & Construction, Inc. for the Orange Line Extension Project, Metro Contract #C0943, City of Los Angeles, California.

Table 4. Typical Construction Equipment Noise Levels					
Equipment Description	Duty Cycle (%)	Noise Level at 50 feet (dBA)			
Excavator	40	70			
Dump Truck	40	75			
Skid Steer Loader	40	65			
Crane*	16	81			
Concrete Mixer Truck	40	76			
Concrete Pump	20	74			
Backhoe*	40	73			
Forklift*	40	74			

*Eilar Associates noise measurements for Orange Line Extension project.

These noise levels have been incorporated into the temporary construction noise analysis for the site, provided in Section 5.3.

4.0 METHODOLOGY AND EQUIPMENT

4.1 Methodology

4.1.1 Field Measurement

Typically, a "one-hour" equivalent sound level measurement (L_{EQ} , A-Weighted) is recorded for at least one noise-sensitive location on the site. During the on-site noise measurement, start and end times are recorded, vehicle counts are made for cars, medium trucks (double-tires/two axles), and heavy trucks (three or more axles) for the corresponding road segment(s). Supplemental sound measurements of one hour or less in duration are often made to further describe the noise environment of the site.

For measurements of less than one hour in duration, the measurement time is long enough for a representative traffic volume to occur and the noise level (L_{EQ}) to stabilize. The vehicle counts are then converted to one-hour equivalent volumes by using the appropriate multiplier. Other field data gathered includes measuring or estimating distances, angles-of-view, slopes, elevations, roadway grades, and vehicle speeds. This data is checked against the available maps and records.

Eilar Associates, Inc.

Job #B70115N1

4.1.2 Roadway Noise Calculation

The Traffic Noise Model, Version 2.5 program released by the U.S. Department of Transportation is used to calculate the current future daytime average hourly noise level (HNL) contours at the project site, taking into account surrounding buildings, elevation, and additional topography. The daytime average hourly traffic volume is calculated as 0.058 times the ADT, based on the studies made by Wyle Laboratories (see reference). The HNL is equivalent to the hourly L_{EQ} , and both are converted to the CNEL by adding 2.0 decibels, as shown in the Wyle Study. Future CNEL is calculated for desired receptor locations using future road alignment, elevations, lane configurations, projected traffic volumes, estimated truck mixes, and vehicle speeds. Noise attenuation methods may be analyzed, tested, and planned with TNM, as required. Further explanation can be supplied on request.

4.1.3 Cadna Noise Modeling Software

Modeling of the outdoor noise environment is accomplished using Cadna Version 2017, which is a model-based computer program developed by DataKustik for predicting noise impacts in a wide variety of conditions. Cadna (Computer Aided Noise Abatement) assists in the calculation, presentation, assessment, and mitigation of noise exposure. It allows for the input of project information such as noise source data, barriers, structures, and topography to create a detailed model and uses the most up-to-date calculation standards to predict outdoor noise impacts.

4.1.4 Acoustical Formulas and Calculations

The following acoustical formulas and calculations have also been used in the preparation of this report.

Decibel Addition

To determine the combined logarithmic noise level of two known noise source levels, the values are converted to the base values, added together, and then converted back to the final logarithmic value, using the following formula:

$$L_{C} = 10\log(10^{L1/10} + 10^{L2/10} + \dots 10^{LN/10})$$

where L_c = the combined noise level (dB), and L_N = the individual noise sources (dB).

This procedure is also valid when used successively for each added noise source beyond the first two. The reverse procedure can be used to estimate the contribution of one source when the contribution of another concurrent source is known and the combined noise level is known. These methods can be used for L_{EQ} or other metrics (such as L_{DN} or CNEL), as long as the same metric is used for all components.

Attenuation Due To Distance

Attenuation due to distance is calculated by the equation:

$$SPL_2 = SPL_1 - 20\log(\frac{D_2}{D_1})$$

where $SPL_1 = Known$ sound pressure level at known distance, $SPL_2 = Calculated$ sound pressure level at distance, $D_1 = Distance$ from source to location of known sound pressure level, and $D_2 = Distance$ from source to location of calculated sound pressure level.

This is identical to the more commonly used reference of 6 dB reduction for every doubling of distance. This equation does not take into account reduction in noise due to atmospheric absorption.

Hourly L_{EQ} Summation

To determine the hourly average noise levels (L_{EQ}) when the noise is created for less than the full hour, convert the logarithm values to the base energy value, multiply by the percentage of the hour that the noise occurs, and then convert the sum back to a logarithmic value. This is done with the following formula:

$$L_{EO} = 10\log(P_H \times 10^{L_P/10})$$

where P_H = the percent or fraction of the hour noise is created, and L_P = the partial hour noise level (dB).

4.2 Measurement Equipment

Some or all of the following equipment was used at the site to measure existing noise levels:

- Larson Davis Model 720 Sound Level Meter, Serial # 0263
- Larson Davis Model CA150 Calibrator, Serial # 0203
- Tripod, microphone with windscreen

The sound level meter was field-calibrated immediately prior to the noise measurement and checked afterward, to ensure accuracy. All sound level measurements conducted and presented in this report, in accordance with the regulations, were made with a sound level meter that conforms to the American National Standards Institute specifications for sound level meters (ANSI S1.4). All instruments are maintained with National Bureau of Standards traceable calibration, per the manufacturers' standards.

5.0 NOISE IMPACTS

5.1 Exterior

5.1.1 Noise Impacts to Outdoor Use Areas

As per the City of San Diego Noise Element to the General Plan, noise impacts at outdoor use areas of multi-family land uses should not exceed 65 CNEL. Future traffic noise levels were calculated at common outdoor use areas. Noise impacts at common outdoor use areas are shown in Table 5, and receiver locations are shown in Figure 7.

Table 5. Future Exterior Noise Levels at Common Outdoor Use Areas					
Receiver	Description	Exterior Traffic Noise Level (CNEL)			
B1	Balcony, Second Floor	58			
B2	Balcony, Third Floor	58			
B3	Balcony, Fourth Floor 58				
B4	Balcony, Fifth Floor	58			
OU1	Courtyard, First Floor	62			
OU2	Courtyard, First Floor	29			
OU3	Rooftop Terrace	54			

As shown above, all common outdoor use areas are exposed to noise levels of less than 65 CNEL in the future noise environment, and therefore, are expected to be in compliance with City of San Diego noise regulations as currently designed. No project design features are deemed necessary for attenuating exterior noise impacts at common outdoor use areas.

5.1.2 Noise Impacts at Building Facades

Future traffic noise impacts were also calculated at building facades and showed that noise levels will range from 27.7 CNEL at the west facade (facing the south courtyard) on the first floor to 67.6 CNEL at the north facade (facing Montezuma Road) on the first floor. Noise levels are shown in Table 6 below, and receiver locations are shown in Figure 7.

	Table 6. Future Exterior Noise Levels at Building Facades					
Dessiver	Facade	Exterior Traffic Noise Level (CNEL)				
Receiver	Location	1st Floor	2nd Floor	3rd Floor	4th Floor	5th Floor
F1	North	67	67	67	67	66
F2	East	61	61	61	60	60
F3	North	58	58	58	58	58
F4	West	61	61	61	61	61
F5	North	66	66	66	66	66
F6	North	68	68	67	67	67
F7	East	64	65	64	64	64
F8	East	61	62	62	62	62
F9	East	57	60	60	60	60
F10	South	33	37	37	37	39
F11	West	28	32	30	31	36
F12	South	35	33	32	32	35
F13	East	28	32	31	31	36
F14	South	35	39	39	39	40
F15	West	58	60	60	60	60
F16	West	61	61	62	61	61
F17	West	65	66	65	65	65

5.2 Interior

The State of California and the City of San Diego require buildings to be designed in order to attenuate, control, and maintain interior noise levels to 45 CNEL or less in habitable residential space. Current exterior building construction is generally expected to achieve at least 15 decibels of exterior-to-interior noise attenuation, with windows opened. Therefore, proposed project building structures exposed to exterior noise levels greater than 60 CNEL could be subject to interior noise levels exceeding the 45 CNEL noise limit for residential habitable space.

Calculations show that future noise levels on site are expected to exceed 60 CNEL at the on-site building, and therefore, the developer shall have an exterior-to-interior noise analysis performed by an acoustical consultant when building plans become available, prior to the issuance of building permits, in order to demonstrate that the project will have interior noise levels that meet the noise standards of the City of San Diego and State of California.

The required interior noise levels are feasible and can be achieved with readily available building materials and construction methods. Typical sound attenuation methods shown in Table NE-5 of the City of San Diego Noise Element to the General Plan are expected to adequately control interior noise levels to below 45 CNEL, including the incorporation of mechanical fresh air ventilation, dual pane glazing, and exterior doors with appropriate seals into the design.

5.3 **Project-Related Noise Impacts on Surrounding Property Lines**

5.3.1 HVAC Noise

Anticipated HVAC noise levels have been calculated using Cadna at surrounding noise-sensitive receivers considering noise limits detailed in Section 2.3. Calculations take into account the proposed building on which HVAC units will be roof-mounted. Receivers have been placed at five feet above grade at surrounding properties to the south, east, and west. An additional receiver has been added at 35 feet above grade at the property to the east to account for upper level receivers at the adjacent building. As any other noise-sensitive receivers are located at a greater distance from equipment than those evaluated herein, noise levels at any other receivers are expected to be less than those shown in this report, as receivers will receive additional attenuation due to distance and shielding from intervening structures. Calculations assume that all HVAC units will be operational for 100 percent of the time during all hours of the day, for a worst-case analysis, although actual operation would be expected to be intermittent and less frequent during the more sensitive nighttime hours.

Results of the analysis are shown in Table 7. More information is provided in Appendix E: Cadna Analysis Data and Results, and a graphical representation of evaluated source/receiver locations is shown in Figure 8.

Table 7. Mechanical Equipment Noise Levels at Surrounding Receivers				
Receiver	Location	Noise Limit (dBA)	Equipment Noise Level (dBA)	
R1	South Property Line	45	35	
R2	East Property Line	50	34	
R3	West Property Line	50	36	
R4	East Property Line, Fourth Story	50	40	

As shown above, noise levels from proposed HVAC equipment on site are expected to meet the applicable nighttime noise limits set by the City of San Diego without the implementation of added project design features. This evaluation is considered to be representative of actual HVAC noise generated on site, although noise levels may be further reduced due to units cycling on and off periodically. It should be noted that interior noise impacts from HVAC equipment to residents of the proposed project will be negligible, as the building itself (including parapet walls at the roof level) will provide adequate noise shielding of HVAC equipment, such that noise impacts from rooftop HVAC equipment will be well below 60 CNEL at all building facades. However, if additional noise attenuation is required, then project design features shown in Table NE-5 of the City of San Diego Noise Element to the General Plan are expected to adequately control interior noise levels to below 45 CNEL.

5.3.2 Temporary Construction Noise

A schedule of construction activity was evaluated to determine potential temporary noise impacts to the surrounding residential receivers, per City of San Diego Municipal Code requirements. The nearest surrounding residential properties are located to the east and south of the project site. The neighboring lot to the west of the project site is currently vacant, and the nearest sensitive receiver to the north of the project site is located approximately 210 feet away, across Montezuma Road and to the east of the SDSU parking garage. Any other potentially noise-sensitive receivers are located at

a greater distance from construction activity and therefore, would be exposed to lesser noise impacts due to distance attenuation and shielding provided by intervening structures.

The anticipated construction schedule was provided by Chris Elsey of Prime Built. According to Mr. Elsey, the project will be constructed in an eight-month period. There will be some export of material required during the demolition phase, and therefore, a dump truck has been added to the anticipated activity list. A summary of construction activity is shown in Table 8.

Table 8. Anticipated Construction Activity				
Scope of Work	Anticipated Large Equipment			
Demolition and Excavation	Excavator, Backhoe, Dump Truck, Skid Steer Loader			
Foundation and Concrete Work	Dump Truck, Skid Steer Loader, Concrete Mixer, Concrete Pump			
Framing	Forklift, Crane, Skid Steer Loader			
Finish Work	Forklift, Skid Steer Loader			

Noise levels were calculated at the nearest receivers to the south and east and considered all large equipment to be located at the center of the site to evaluate typical impacts to the surrounding receivers as equipment moves around the property. Noise calculations consider typical duty cycles of equipment, to account for periods of activity and inactivity on the site.

Noise levels for each stage of construction are shown in Table 9. Detailed calculations can be found in Appendix F, and a graphical representation of noise source and receiver locations is provided as Figure 9.

Table 9. Temporary Construction Noise Levels at Neighboring Properties					
Phase	Equipment Used	Receiver Location	Distance (feet)	Average Noise Level (dBA)	
Demolition and	Excavator, Backhoe, Dump	South (CR1)	60	73	
Excavation	xcavation Truck, Skid Steer Loader		50	74	
Foundation and	Dump Truck, Skid Steer Loader,	South (CR1)	60	74	
Concrete Work	ncrete Work Concrete Mixer Truck, Concrete Pump Truck		50	75	
Froming	Forklift Crano Skid Stear Loader	South (CR1)	60	73	
Flaming Forkint, Crane, Skid Steer Loader		East (CR2)	50	75	
Finishing	Forklift, Skid Stoor Loodor	South (CR1)	60	69	
Finishing Forklift, Skid Steer Loader		East (CR2)	50	71	

It is determined that construction noise levels associated with this project will not create a significant impact at any surrounding property line with activity limited to the daytime hours of 7 a.m. to 7 p.m., as noise levels are expected at 75 dBA or less at the nearest surrounding residential receivers.

Although noise levels are shown to be in compliance with the construction noise limit of 75 dBA, the following measures should still be practiced as a courtesy to residential neighbors.

- 1. Staging areas should be placed as far from occupied receivers as possible on the project site to limit any additional unnecessary noise exposure at sensitive receivers.
- 2. Place stationary equipment in locations that will have a lesser noise impact on nearby sensitive receivers.
- 3. Turn off equipment when not in use.
- 4. Limit the use of enunciators or public address systems, except for emergency notifications.
- 5. Equipment used in construction should be maintained in proper operating condition, and all loads should be properly secured, to prevent rattling and banging.
- 6. Schedule work to avoid simultaneous construction activities that both generate high noise levels.
- 7. Use equipment with effective mufflers.
- 8. Minimize the use of backup alarms.

With work limited to daytime hours permissible by the City of San Diego and adherence to the general good practice construction noise control techniques, temporary construction noise is expected to remain in compliance with City of San Diego noise limits.

6.0 CONCLUSION

Future traffic noise impacts were calculated to be 65 CNEL or less at all outdoor use areas, remaining in compliance with City of San Diego noise regulations. No project design features are deemed necessary for attenuating exterior noise impacts.

Calculations show that future noise levels on site are expected to exceed 60 CNEL at the on-site building, and therefore, the developer shall have an exterior-to-interior noise analysis performed by an acoustical consultant when building plans become available, prior to the issuance of building permits, in order to demonstrate that the project will have interior noise levels that meet the noise standards of the City of San Diego and State of California. The required interior noise levels are feasible and can be achieved with readily available building materials and construction methods. Typical sound attenuation methods shown in Table NE-5 of the City of San Diego Noise Element to the General Plan are expected to adequately control interior noise levels to below 45 CNEL, including the incorporation of mechanical fresh air ventilation, dual pane glazing, and exterior doors with appropriate seals into the design.

Eilar Associates, Inc.

Job #B70115N1

Calculations show that noise levels generated by anticipated HVAC units are expected to meet the applicable nighttime noise limits at surrounding property lines. No added project design features are deemed necessary for attenuating these mechanical noise impacts. It should be noted that interior noise impacts from HVAC equipment to residents of the proposed project will be negligible, as the building itself (including parapet walls at the roof level) will provide adequate noise shielding of HVAC equipment, such that noise impacts from rooftop HVAC equipment will be well below 60 CNEL at all building facades. However, if additional noise attenuation is required, then project design features shown in Table NE-5 of the City of San Diego Noise Element to the General Plan are expected to adequately control interior noise levels to below 45 CNEL.

Noise from temporary construction activities is not expected to exceed the applicable construction noise limits of the City of San Diego at any surrounding residential property line. Construction is prohibited between the hours of 7 p.m. and 7 a.m. and on Sundays or legal holidays. Standard construction noise control methods including adhering to permissible hours of operation, maintaining equipment in proper operating condition, and placing staging areas at furthest locations from noise sensitive receivers, are expected to be sufficient for reducing noise impacts to surrounding receivers.

7.0 CERTIFICATION

All recommendations for noise control are based on the best information available at the time our consulting services are provided. However, as there are many factors involved in sound and impact transmission, and Eilar Associates has no control over the construction, workmanship or materials, Eilar Associates is specifically not liable for final results of any recommendations or implementation of the recommendations.

The findings and recommendations of this acoustical analysis report are based on the information available and are a true and factual analysis of the potential acoustical issues associated with 6213 Montezuma Road, to be located in the City of San Diego, California. This report was prepared by Jonathan Brothers and Amy Hool.

Jonathan/Brothers, Principal Acoustical Consultant

8.0 REFERENCES

- 1. California Building Code, Based on the International Building Code, Chapter 12, Section 1207 Sound Transmission Control.
- 2. California Mechanical Code, Based on the Uniform Mechanical Code, Chapter 4-Ventilation Air Supply.
- 3. Federal Highway Administration, Traffic Noise Model Version 2.5.
- 4. City of San Diego Noise Element to the General Plan, June 2015.
- 5. City of San Diego Municipal Code, Section 59.5.0401: Sound Level Limits, Effective February 9, 2006.
- 6. Harris, Cyril M., Handbook of Acoustical Measurements and Noise Control, 3rd Edition, Acoustical Society of America, 1998.
- 7. Heeden, Robert A., Compendium of Materials for Noise Control, U.S. Department of Health, Education and Welfare, National Institute for Occupational Safety and Health, November 1978.
- 8. Irvine, Leland K., Richards, Roy L., Acoustics and Noise Control Handbook for Architects and Builders, Kreiger Publishing Company, 1998.
- 9. NBS Building Sciences Series 77, Acoustical and Thermal Performance on Exterior Residential Walls, U.S. Department of Commerce/National Bureau of Standards, November 1976.
- Western Electro-Acoustic Laboratory, Inc., 1711 Sixteenth Street, Santa Monica, California 90404, 213-80-9268, Sound Transmission Loss Vs. Glazing Type, Window Size and Air Filtration, January 1985. The research described in this report was prepared for the California Association of Window Manufacturers, 823 North Harbor Boulevard, Suite E, Fullerton, California 92632, 714-525-7088.
- 11. Wyle Laboratories, Development of Ground Transportation System Contours for the San Diego Region, December 1973.
- 12. Traffic Distribution Study, by Katz-Okitsu and Associates Traffic Engineers, 1986.
- 13. Department for Environment Food and Rural Affairs (DEFRA), Update of Noise Database for Prediction of Noise on Construction and Open Sites, 2005.

FIGURES

Eilar Associates, Inc. 210 South Juniper Street, Suite 100 Escondido, California 92025 760-738-5570

Satellite Aerial Photograph Job # B70115N1

Figure 3

Eilar Associates, Inc. 210 South Juniper Street, Suite 100 Escondido, California 760-738-5570 Satellite Aerial Photograph Showing Temporary Construction Noise Source and Receiver Locations Job # B70115N1

Figure 9

APPENDIX A

Project Plans

DEVELOPMENT PROPOSAL FOR 6213 MONTEZUMA ROAD

SHEET INDEX

GENERAL	
AS1	ARCHITECTURAL SITE PLAN
AS2	SITE SECTION
AS3	SITE SECTION
AS4	BUILDING HEIGHT

ARCHITEC TURAL

A1	GARAGE LEVEL 3 PLAN
A2	GARAGE LEVEL 2 PLAN
A3	GARAGE LEVEL 1 PLAN
A4	FIRST FLOOR PLAN
A5	SECOND FLOOR PLAN
A6	THIRD FLOOR PLAN
A7	FOURTH FLOOR PLAN
A8	FIFTH FLOOR PLAN
A9	ROOF PLAN
A10	UNIT ENLARGED PLANS
A11	NORTH AND EAST ELEVATIONS
A12	SOUTH AND WEST ELEVATIONS

CIVIL

C-1	TITILE SHEET
C-2	EXISTING TOPOGRAPHY
C-3	PRELIMINARY GRADING PLAN

LANDSCAPE

LC1	LANDSCAPE
LC2	LANDSCAPE
LC3	LANDSCAPE
LC4	LANDSCAPE

PROJECT DATA

DESCRIPTION	CONSTRUCTION OF A 58'-3' TALL (FIVE-STORY) STUDENT	PERMITTE	d land use	: I	RESIDI	ential	
	(128) BEDROOM SUITES OVER 3 LEVELS OF			E	EXISTI	NG USE: VACANT	
	THE PROJECT WILL CONSIST OF FIVE (5) DWELLING			F	PROPO	OSED USE: DORMITORY	
	PARTIAL EXISTING FOUNDATION BEING REMOVED FOR NEW CONSTRUCTION.	Permit Ri	QUESTED:	CONDITI FOR: ST SDMC S	onal Udent Ectio	USE PERMIT (PROCESS 3 T DORMITORY, SUBJECT NS 141.0304 AND 131.04	3) TO 422
SITE	6213-6219 MONTEZUMA ROAD SAN DIEGO, CA 92115			PLANNE	D DEV	ELOPMENT PERMIT FOR:	:
OWNER	ELSEY PARTNERS 1532 COLLEGE AVE. F19			DEVIATI	(D SE DNS	ibagkə and pakking	
	MANHATTAN, KS 66502	LEGAL DE	CRIPTION				
ARCHITECT	PRIME DESIGN, LLC 1532 COLLEGE AVE. F19 MANHATTAN, KS 66502	LO TH CA	ts 188 and E city of S Lifornia, a	AN DIEGO	COLLV), COU NG TO	VOOD PARK UNIT NO. 2, I Inty of San Diego, Sta Map No. 2495, Filed in	in Te of The
CMIL	JP ENGINEERING 4849 RONSON COURT, SUITE NO. 105 SAN DIEGO, CA 92111	LEGAL DESC LOTS THE CALI OFFH COU POR ADJO PUBI AUG OFFH APN(S) EXISTING SI	office of the County, algu Portion of th Adjoining Sa	E COUNTY REC UST 12, 1948, HE SOUTH 6.0 ID LOTS ON T		48, TOGETHER WITH THAT 6.00 FEET OF MONTEZUMA ROAD V THE NORTH AS CLOSED TO	
STRUCTURAL	UNITED STRUCTURAL CONSULTANTS 7676 HILLMONT ST. SUITE 191 HOUSTON. TX 77040	AU OF	GUST 06, 19 FICIAL RECO	965 AS IN ORDS	ISTRU	MO. 184453, RECORDED IMENT NO. 141427 OF	
CONSTRUCTION TYPE	TYPE 1A GARAGE. TYPE 3 DORMITORY	APN(S)	467-17	1-28-00	AND 4	67-171-29-00	
OCCUPANCY CLASS.	R-2 (CONGREGANT LIVING OR DORMITORY) S-2 (ENCLOSED PARKING GARAGE)	EXISTING	SITE:	NO STRU DEMO P 132053	JCTUF ERMIT FOR T	RES ON THE SITE (IN 6/20 WAS ISSUED UNDER PT HREE STRUCTURES).)07 A 'S
ZONING	ZONE DESIGNATION: RM-3-9			FOUNDA WILL BE	TION	JF Partial existing From Previous Buildin IIRFD.	₩G
	COMMUNITY PLAN: College Area community planning Area	GEOLOGIC	AL HAZARD	CATEGO	RY:	CATEGORY 53	
	OVERLAY ZONES: AIRPORT INFLUENCE AREA (REVIEW AREA 2), CAMPUS PARKING IMPACT, THE COLLEGE COMMUNITY REDEVELOPMENT PROJECT MASTER PROJECT PLAN, AND ALUCOZ						
	ENVIRONMENTALLY SENSITIVE LANDS: NOT APPLICABLE TO SITE						

R00FT0P

TOTAL AREA

VARIANCES:

SIDE YARD: BASE ZONE STATES REQUIREMENT OF 5'-0" OR 10% OF LOT WIDTH (10'-10'), WHICHEVER IS GREATER. THE PROJECT PROPOSES TO DEVIATE FROM THE REQUIREMENT FOR A SETBACK OF 5'-0'.

PARKING: THE COLLEGE AREA PLAN STATES REQUIREMENT OF 0.6 PARKING STALLS PER TEMANT (78 SPACES). THE PROJECT PROPOSES TO DEVIATE FROM THE REQUIREMENT FOR A TOTAL OF 57 SPACES

BUILDING ARE E

	PROPOSED	(PER TABLE 131-04G)
ALLOWABLE USES	Student Dormitory	STUDENT DORMITORY, CONDITIONAL USE
FRONT SETBACK	VARIES, 10-0" MIN.	10-0" MIN. FOR 50% OF Building Width (Providing The Remaining Portion Follows the 20-0" Min.)
REAR SETBACK	7'-6" MIN.	5'-0" MIN.
SIDE	5'-0" MIN.	5'-0" MIN. OR 10% OF SITE WIDTH
Building Height	58-3" AT ELEVATOR PARAPET (56-0" AT REST OF PROJECT)	60'-0" MAX. (56'-0" COLLEGE AREA PLAN)
BEDROOM SUITES	128 UNITS	N/A
EXPECTED RESIDENTS	128 RESIDENTS	N/A
Dwelling Units	5 DWELLING UNITS	1 UNIT PER 600 SF LOT AREA (20 DU)
GROSS SITE AREA	12,416 SF	NONE
GROSS FLOOR AREA	40,208 SF	NONE
FLOOR AREA RATIO	3.2	4.9 (2.7 F.A.R. LIMIT + 2.2 F.A.R. FOR GARAGE AS PER 131.0446 ITEM F)
	FLOOR AREA RATIO S	UMMARY
	AREA (SF)	F.A.R.
RESIDENTIAL	35,936 SF	2.9
VERTICAL CIRCULATION	3,134 SF	0.25
GARAGE	740 SF	0.06
BALCONIES	796 SF	0.06
TOTAL	40.208 SE	32

ZONING CRITERIA RESIDENTIAL ZONE RAS4

GARAGE -	GROSS SF	
GARAGE LEVEL 3	10,218 SF	
GARAGE LEVEL 2	10,218 SF	
GARAGE LEVEL 1	8,670 SF	
TOTAL	29,106 SF	
	LOT COVERAGE SUMM	IARY
ITEM	AREA (SF)	% OF TOTAL
BUILDING AREA (FOOTRPRINT)	7,432 SF	60%
IMPERVIOUS AREA (WITH BUILDING)	10,167 SF	82%
LANDSCAPED AREA	2,249 SF	18%
TOTAL SITE AREA	12,416 SF	100%
	OPEN SPACE SUMMA	RY
SPACE	AREA OF OPEN SPACE	AREA OF OPEN SPACE WITH LANDS CAPING
COURT 1	629	50
COURT 2	475	0

SPACE	AREA OF SPACE	PERCENTAGE
IORTHEAS T PLANTER	209 S F	7%
IORTHWEST PLANTER	455 S F	15%
COURT 1 PLANTER	50 SF	2%
NEST EDGE .ANDSCAPE	538 SF	18%
OUTH EDGE ANDSCAPE	968 SF	32%
ROOF LANDSCAPE	760 SF	26%
OTAL AREA	2.980 SF	100%

1710

2814

(0.45 PER TENANT).

BUILDING HEIGHT: COLLEGE COMMUNITY REDEVELOPMENT PROJECT MASTER PROJECT PLAN REQUIREMENT THE ELEVATOR

STATES REDUREMENT OF 56:-0" MAX, BUILDING ROJECT PROPOSE TO DEVIATE FROM THE OGN A TOTAL MAX, BUILDING HEGHT OF 58:-3" AT PENTHOUSE ONLY. ALL OTHER PORTIONS OF THE BELOW THE 56:-0" HEIGHT.	BEDROOM SUITES EXPECTED RESIDENTS DWELLING UNITS
	GROSS SITE AREA
	GROSS FLOOR AREA
	FLOOR AREA RATIO

FLOOR AREA RATIO SUMMARY					
	AREA (SF)	F.A.R.			
RESIDENTIAL	35,936 SF	2.9			
VERTICAL CIRCULATION	3,134 SF	0.25			
GARAGE	740 SF	0.06			
BALCONIES	796 SF	0.06			
TOTAL	40,208 SF	3.2			

	PARKING TAR	BLE
PARKING TYPE	PROPOSED	REQUIRED/ALLOWED
PARKING RATIO	0.45 STALLS PER SLEEPING ROOM	0.6 STALLS PER SLEEPING ROOM
VEHICLE STALLS	57 STALLS	77 STALLS
VEHICLE STALLS (ACCESSIBILE)	2 STALLS	2 STALLS
VAN STALLS (ACCESSIBLE)	1 STALL	1 STALL
MOTORCYCLE STALLS	8 S TALLS	6 STALLS
BICYCLE STALLS	40 STALLS	38 STALLS

PEN SPACE WITH DSCAPING
50
0
760
810

VICINITY MAP

REVISIONS ĒZ OPMI 2 92 СA ш Ő DEVI ŝ Π SAN > FAMIL ROAD MONTEZUMA F 1 MUI 6213 MI ELSEY F JOB NO. 02-2016 SHEET AS1 ARCHITECTURAL SITE PLAN SHEET 1 OF ?

22 | ^{CU 1/2} \odot ∩ _{دي} ا

ŝ <0

CO -

 $\geq \leq$

22 <€

F- ∞

ലം

< ∞

<ζ

22

∩_ | ≥ ⊳

ŝ

- **r**-

CD

S

 \square

LL

2

.....

a٢

RENDERED PERSPECTIVE OF ENTRY COURTYARD

RENDERED PERSPECTIVE OF TYP. COMMUNITY ROOM

A		PRIME DESIGN
\5	6213 MONTEZUMA ROAD SAN DIEGO, CA 92115	M A N H A T T A N , K S 66502
	ELSEY PARTNERS	785.317.5725

A 2ND FLOOR - 7,400 SF A5 1/8" = 1'-0"

A		PRIME DESIGN
\6	6213 MONTEZUMA ROAD SAN DIEGO, CA 92115	MANHATTAN, KS 66502
	ELSEY PARTNERS	¹⁰ 7 8 5 . 3 1 7 . 5 7 2 5

A	MULTI-FAMILY DEVELOPMENT	PRIME DESIG
7	6213 MONTEZUMA ROAD SAN DIEGO, CA 92115	MANHATTAN, KS 665
	ELSEY PARTNERS	¹⁰ 7 8 5 . 3 1 7 . 5 7 2

JOB NO. 02-2016

APPENDIX B

Pertinent Sections of the City of San Diego Noise Element to the General Plan and Municipal Code

Noise Element

- NE-A.2. Assure the appropriateness of proposed developments relative to existing and future noise levels by consulting the guidelines for noise-compatible land use (shown on Table NE-3) to minimize the effects on noise-sensitive land uses.
- NE-A.3. Limit future residential and other noise-sensitive land uses in areas exposed to high levels of noise.
- NE-A.4. Require an acoustical study consistent with Acoustical Study Guidelines (Table NE-4) for proposed developments in areas where the existing or future noise level exceeds or would exceed the "compatible" noise level thresholds as indicated on the Land Use Noise Compatibility Guidelines (Table NE-3), so that noise mitigation measures can be included in the project design to meet the noise guidelines.
- NE-A.5. Prepare noise studies to address existing and future noise levels from noise sources that are specific to a community when updating community plans.

Land Use Category		Exterior Noise Exposure (dBA CNEL)			
		65	5 7	0 7	5
Parks and Recreational					
Parks, Active and Passive Recreation					
Outdoor Spectator Sports, Golf Courses; Water Recreational Facilities; Indoor Recreation Facilities					
Agricultural	·				
Crop Raising & Farming; Community Gardens, Aquaculture, Dairies; Horticulture Nurseries & Greenhouses; Animal Raising, Maintain & Keeping; Commercial Stables					
Residential					
Single Dwelling Units; Mobile Homes		45			
Multiple Dwelling Units *For uses affected by aircraft noise, refer to Policies NE-D.2. & NE-D.3.		45	45*		
Institutional					
Hospitals; Nursing Facilities; Intermediate Care Facilities; Kindergarten through Grade 12Educational Facilities; Libraries; Museums; Child Care Facilities		45			
Other Educational Facilities including Vocational/Trade Schools and Colleges and Universities		45	45		
Cemeteries					
Retail Sales					
Building Supplies/Equipment; Food, Beverages & Groceries; Pets & Pet Supplies; Sundries, Pharmaceutical, & Convenience Sales; Wearing Apparel & Accessories			50	50	

TABLE NE-3 Land Use - Noise Compatibility Guidelines

TABLE NE-4 Acoustical Study Guidelines

An acoustical study should include, but is not limited to the following analysis:

Provide noise level measurements to describe existing local conditions and the predominant noise sources.

Measure existing single event noise levels (SENEL, SEL, or Time Above) within airport influence areas.

Estimate existing and projected noise levels (CNEL) and compare them to levels on Table NE-3. For parks, may consider motor vehicle traffic noise measurements during the one-hour period where the worst-case traffic noise levels are expected to occur from dawn to dusk at a park.

Recommend appropriate mitigation measures to achieve acceptable noise levels on Table NE-3.

Estimate noise exposure levels with recommended mitigation measures.

Describe a post-project assessment to evaluate the effectiveness of the proposed mitigation measures.

B. Motor Vehicle Traffic Noise

Goal

• Minimal excessive motor vehicle traffic noise on residential and other noise-sensitive land uses.

Discussion

Motor vehicle traffic noise is a major contributor of noise within the City. Excessive noise levels along arterial roads, interstate freeways, and state highways affect much of the urban environment. Traffic noise level is dependent upon traffic volume, speed, flow, vehicle mix, pavement type and condition, the use of barriers, as well as distance to the receptor.

Local roadway design features and traffic management and calming techniques can minimize noise from traffic speed and frequent vehicle acceleration and deceleration, and innovative roadway paving material can further reduce traffic noise. Vehicles equipped with a properly functioning muffler system help to limit excessive exhaust noise. Future use of hybrid transit buses could help to reduce noise along mixed-use transit corridors.

At higher speeds, typically on freeways, highways and primary arterials, the noise from tire/pavement interaction can be greater than from vehicle exhaust and engine noise. The use of lower noise paving surfaces can reduce tire/pavement interaction noise. For noise-sensitive land uses adjacent to freeways and highways, these uses should be buffered from excessive noise levels by intervening, less sensitive, industrial-commercial uses or shielded by sound walls or landscaped berms. The City can, however, influence daily traffic volumes and reduce peak-hour

Article 9.5: Noise Abatement and Control

Division 4: Limits

("Noise Level Limits, Standards and Control" added 9–18–1973 by O–11122 N.S.) (Retitled to "Limits" on 9–22–1976 by O–11916 N.S.)

§59.5.0401 Sound Level Limits

(a) It shall be unlawful for any person to cause noise by any means to the extent that the one-hour average sound level exceeds the applicable limit given in the following table, at any location in the City of San Diego on or beyond the boundaries of the property on which the noise is produced. The noise subject to these limits is that part of the total noise at the specified location that is due solely to the action of said person.

	Land Use	Time of Day	One-Hour Average Sound Level (decibels)
1.	Single Family Residential	7 a.m. to 7 p.m. 7 p.m. to 10 p.m. 10 p.m. to 7 a.m.	50 45 40
2.	Multi-Family Residential (Up to a maximum density of 1/2000)	7 a.m. to 7 p.m. 7 p.m. to 10 p.m. 10 p.m. to 7 a.m.	55 50 45
3.	All other Residential	7 a.m. to 7 p.m. 7 p.m. to 10 p.m. 10 p.m. to 7 a.m.	60 55 50
4.	Commercial	7 a.m. to 7 p.m. 7 p.m. to 10 p.m. 10 p.m. to 7 a.m.	65 60 60
5.	Industrial or Agricultural	any time	75

TABLE OF APPLICABLE LIMITS

(b) The sound level limit at a location on a boundary between two zoning districts is the arithmetic mean of the respective limits for the two districts. Permissible construction noise level limits shall be governed by Sections 59.5.0404 of this article.

- (c) Fixed-location public utility distribution or transmission facilities located on or adjacent to a property line shall be subject to the noise level limits of Part A. of this section, measured at or beyond six feet from the boundary of the easement upon which the equipment is located.
- (d) This section does not apply to firework displays authorized by permit from the Fire Department.
- (e) This section does not apply to noise generated by helicopters at heliports or helistops authorized by a conditional use permit, nor to any roller coaster operated on City–owned parkland.

(Amended 9–11–1989 by O–17337 N.S.) (Amended 11-28-2005 by O-19446 N.S.; effective 2-9-2006.)

§59.5.0402 Motor Vehicles

- (a) Off–Highway
 - (1) Except as otherwise provided for in this article, it shall be unlawful to operate any motor vehicle of any type on any site, other than on a public street or highway as defined in the California Vehicle Code, in any manner so as to cause noise in excess of those noise levels permitted for on- highway motor vehicles as specified in the table for "45 mile- per-hour or less speed limits" contained in Section 23130 of the California Vehicle Code, and as corrected for distances set forth in subsection A.2. below.
 - (2) Corrections

The maximum noise level as the off-highway vehicle passes may be measured at a distance of other than fifty (50) feet from the center line of travel, provided the measurement is further adjusted by adding algebraically the applicable correction as follows:

Distance (Feet)	Correction (decibels)
25	-6
28	-5
32	-4
35	-3
40	-2
45	-1
50 (preferred distance)	0
56	+1
63	+2
70	+3
80	+4
90	+5
100	+6

- (3) A measured noise level thus corrected shall be deemed in violation of this section if it exceeds the applicable noise–level limit as specified above.
- (b) Nothing in this section shall apply to authorized emergency vehicles when being used in emergency situations, including the blowing of sirens and/or horns.

("Motor Vehicles" renumbered from Sec. 59.5.0403 on 9–22–1976 by O–11916 N.S.)

§59.5.0403 Watercraft

Violations for excessive noise of watercraft operating in waters under the jurisdiction of The City of San Diego shall be prosecuted under applicable provisions of the California Harbors and Navigation Code. Permits issued by The City of San Diego for the operation of watercraft not in compliance with noise criteria of the Harbors and Navigation Code shall be reviewed and approved by the Administrator prior to issuance.

("Watercraft" renumbered from Sec. 59.5.0407 and amended 9–22–1976 by O–11916 N.S.)

§59.5.0404 Construction Noise

- (a) It shall be unlawful for any person, between the hours of 7:00 p.m. of any day and 7:00 a.m. of the following day, or on legal holidays as specified in Section 21.04 of the San Diego Municipal Code, with exception of Columbus Day and Washington's Birthday, or on Sundays, to erect, construct, demolish, excavate for, alter or repair any building or structure in such a manner as to create disturbing, excessive or offensive noise unless a permit has been applied for and granted beforehand by the Noise Abatement and Control Administrator. In granting such permit, the Administrator shall consider whether the construction noise in the vicinity of the proposed work site would be less objectionable at night than during the daytime because of different population densities or different neighboring activities; whether obstruction and interference with traffic particularly on streets of major importance, would be less objectionable at night than during the daytime; whether the type of work to be performed emits noises at such a low level as to not cause significant disturbances in the vicinity of the work site; the character and nature of the neighborhood of the proposed work site; whether great economic hardship would occur if the work were spread over a longer time; whether proposed night work is in the general public interest; and he shall prescribe such conditions, working times, types of construction equipment to be used, and permissible noise levels as he deems to be required in the public interest.
- (b) Except as provided in subsection C. hereof, it shall be unlawful for any person, including The City of San Diego, to conduct any construction activity so as to cause, at or beyond the property lines of any property zoned residential, an average sound level greater than 75 decibels during the 12– hour period from 7:00 a.m. to 7:00 p.m.
- (c) The provisions of subsection B. of this section shall not apply to construction equipment used in connection with emergency work, provided the Administrator is notified within 48 hours after commencement of work.
 (Amended 1–3–1984 by O–16100 N.S.)

§59.5.0406 Refuse Vehicles and Parking Lot Sweepers

No person shall operate or permit to be operated a refuse compacting, processing, or collection vehicle between the hours of 7:00 p.m. to 6:00 a.m. or a parking lot sweeper between the hours of 7:00 p.m. to 7:00 a.m. in any residential area unless a permit has been applied for and granted by the Administrator. *("Refuse Vehicles" added 9–18–1973 by O–11122 N.S.; amended 9–22–1976 by*

O–11916 N.S.)

(Amended 6-9-2010 by O-19960 N.S.; effective 7-9-2010.)

APPENDIX C

Traffic Noise Model (TNM) Data and Results

14 February 2017 Eilar Associates **TNM 2.5** JB **INPUT: ROADWAYS** Average pavement type shall be used unless PROJECT/CONTRACT: B70115N1 a State highway agency substantiates the use of a different type with the approval of FHWA RUN: Calibration Roadway Points Width **Coordinates (pavement) Flow Control** Segment Name Name No. z Х Υ Control Speed Percent Pvmt On Device Constraint Vehicles Туре Struct? Affected m m m km/h % m 7.3 Montezuma EB point1 1 129.8 265.3 139.00 Average 2 point2 218.8 265.3 140.00 Average point3 290.2 266.2 140.00 3 Average point4 4 371.3 266.2 139.00 Average Average point5 5 390.9 267.0 139.00 6 438.9 268.0 139.00 Average point6 140.00 7 477.2 268.0 Average point7 8 506.7 266.5 140.00 Average point8 264.9 140.00 point9 9 525.4 Average 10 583.8 252.7 141.00 Average point10 point11 11 628.8 240.7 141.00 Average 12 753.1 213.0 141.00 point12 Montezuma WB 13 7.3 point13 754.2 221.6 141.00 Average point14 14 652.0 244.7 141.00 Average 15 611.9 253.6 141.00 Average point15 point16 16 583.5 259.7 141.00 Average 17 550.6 266.4 140.00 point17 Average 18 528.9 270.3 140.00 point18 Average 19 272.4 140.00 point19 513.5 Average point20 20 139.00 496.9 273.9 Average 21 274.7 point21 481.9 139.00 Average 22 459.4 275.0 139.00 point22 Average 23 139.00 point23 375.5 276.5 Average point24 24 328.0 276.7 139.00 Average 25 258.0 140.00 point25 276.8 Average

INPUT: ROADWAYS

B70115N1

INPUT: ROADWAYS

B70115N1

point26	26	202.7	277.3	140.00	Average	
point27	27	126.0	278.2	140.00		

INPUT: TRAFFIC FOR LAeq1h Volumes				В	70115N1	1							
				14 Eak		17							
					Fuary 20								
JB					.ə								
INPUT: TRAFFIC FOR LAeq1h Volumes													
PROJECT/CONTRACT:	B70115N1		1		1								
RUN:	Calibration												
Roadway	Points		-	-								_	
Name	Name	No.	Segmer	nt									
			Autos		MTruck	s	HTrucks	5	Buses		Motorc	ycles	3
			V	S	V	S	V	S	V	S	V	S	
			veh/hr	km/h	veh/hr	km/h	veh/hr	km/h	veh/hr	km/h	veh/hr	km	/h
Montezuma EB	point1	1	444	48	18	48	16	48	0	0		0	0
	point2	2	444	48	18	8 48	16	48	0	0		0	0
	point3	3	444	48	18	8 48	16	48	0	0		0	0
	point4	4	444	48	18	8 48	16	48	0	0		0	0
	point5	5	444	48	18	8 48	16	48	0	0		0	0
	point6	6	444	48	18	8 48	16	48	0	0		0	0
	point7	7	444	48	18	8 48	16	48	0	0		0	0
	point8	8	444	48	18	8 48	16	48	0	0		0	0
	point9	9	444	48	18	48	16	48	0	0		0	0
	point10	10	444	48	18	48	16	48	0	0		0	0
	point11	11	444	48	18	8 48	16	48	0	0		0	0
	point12	12	2										
Montezuma WB	point13	13	444	48	18	48	16	48	0	0		0	0
	point14	14	444	48	18	48	16	48	0	0		0	0
	point15	15	444	48	18	48	16	48	0	0		0	0
	point16	16	444	48	18	8 48	16	48	0	0		0	0
	point17	17	444	48	18	8 48	16	48	0	0		0	0
	point18	18	444	48	18	8 48	16	48	0	0		0	0
	point19	19	444	48	18	8 48	16	48	0	0		0	0
	point20	20	444	48	18	8 48	16	48	0	0		0	0
	point21	21	444	48	18	48	16	48	0	0	<u> </u>	0	0
	point22	22	444	48	18	48	16	48	0	0		0	0
	point23	23	444	48	18	48	16	48	0	0	1	0	0

INPUT: TRAFFIC FOR LAeq1h Volumes						В	70115N1					
	point24	24	444	48	18	48	16	48	0	0	0	0
	point25	25	444	48	18	48	16	48	0	0	0	0
	point26	26	444	48	18	48	16	48	0	0	0	0
	point27	27										

INPUT: RECEIVERS								B70115N	1			
Eilar Associates					1	4 Februa	ry 2017					
JB					Г	NM 2.5						
INPUT: RECEIVERS												
PROJECT/CONTRACT:	B70115N1			•								
RUN:	Calibration											
Receiver												
Name	No. #DUs	Coordinates	(ground)		F	leight	Input Sou	Ind Levels	and C	riteria		Active
		X	Y	Z	a	above	Existing	Impact C	riteria	N	IR	in
					C	Ground	LAeq1h	LAeq1h	Sub'l	I G	ioal	Calc.
		m	m	m	n	n	dBA	dBA	dB	d	В	
Calibration	1 1	539.0	250.6	3	141.00	1.52	0.00) 6	6	10.0	8.	0 Y

RESULTS: SOUND LEVELS			B70115N1	Υ.		- (
Filar Associates							14 Februa	rv 2017				
								d with TN	M 2 5			
							Calculate		WI 2.5			
		D70115	N14									
PROJECT/CONTRACT:		B/0113										
		Calibra	tion									
BARRIER DESIGN:		INPUT	HEIGHTS					Average	pavement typ	e shall be us	ed unles	S
								a State h	ighway agenc	y substantiat	tes the u	se
ATMOSPHERICS:		20 deg	C, 50% RH	4				of a diffe	erent type with	approval of	FHWA.	
Receiver												
Name	No.	#DUs	Existing	No Barrier					With Barrier	,		
	İ		LAeq1h	LAeq1h		Increase over	r existing	Туре	Calculated	Noise Redu	ction	
			_	Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculated
							Sub'l Inc		•			minus
	İ											Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
Calibration		1 1	0.0	64.5	i (66 64.5	5 10		64.5	5 0.0	0	8 -8.0
Dwelling Units		# DUs	Noise Re	duction								
			Min	Avg	Max							
			dB	dB	dB							
All Selected		1	0.0	0.0	0 0	.0						
All Impacted		C	0.0	0.0	0 0	.0						
All that meet NR Goal		C	0.0	0.0	0 0	.0						

INPUT: TRAFFIC FOR LAeq1h Volumes			1	1	1	В	70115N1	1	Ϊ.	1			
Filar Associatos Inc				14 Eob		17							
					5 5	, , ,							
9B					.5								
INPUT: TRAFFIC FOR LAeq1h Volumes													
PROJECT/CONTRACT:	B70115N1												
RUN:	Current Cor	ntours											
Roadway	Points												
Name	Name	No.	Segmer	t									
			Autos		MTruck	S	HTrucks	5	Buses		Motorcy	ycles	
			V	S	V	S	V	S	V	S	V	S	
			veh/hr	km/h	veh/hr	km/h	veh/hr	km/h	veh/hr	km/h	veh/hr	km/h	
Montezuma EB	point1	1	316	56	14	56	12	56	0	0	()	0
	point2	2	316	56	14	56	12	56	0	0	C)	0
	point3	3	316	56	14	56	12	56	0	0	0)	0
	point4	4	337	56	15	5 56	13	56	0	0	C)	0
	point5	5	337	56	15	5 56	13	56	0	0	()	0
	point6	6	337	56	15	5 56	13	56	0	0	()	0
	point7	7	337	56	15	5 56	13	56	0	0	C)	0
	point8	8	337	56	15	5 56	13	56	0	0	C)	0
	point9	9	337	56	15	5 56	13	56	0	0	C)	0
	point10	10	337	56	15	5 56	13	56	0	0	C)	0
	point11	11	337	56	15	5 56	13	56	0	0	C)	0
	point12	12											
Montezuma WB	point13	13	337	56	15	5 56	13	56	0	0	C)	0
	point14	14	337	56	15	5 56	13	56	0	0	C)	0
	point15	15	337	56	15	5 56	13	56	0	0	C)	0
	point16	16	337	56	15	5 56	13	56	0	0	<u> </u>)	0
	point17	17	337	56	15	5 56	13	56	0	0	C)	0
	point18	18	337	56	15	5 56	13	56	0	0	C)	0
	point19	19	337	56	15	5 56	13	56	0	0	C)	0
	point20	20	337	56	15	5 56	13	56	0	0	C)	0
	point21	21	337	56	15	5 56	13	56	0	0	C)	0
	point22	22	337	56	15	5 56	13	56	0	0	C)	0
	point23	23	316	56	14	56	12	56	0	0	()	0

INPUT: TRAFFIC FOR LAeq1h Volumes	B70115N1											
	point24	24	316	56	14	56	12	56	0	0	0	0
	point25	25	316	56	14	56	12	56	0	0	0	0
	point26	26	316	56	14	56	12	56	0	0	0	0
	point27	27										

INPUT: RECEIVERS				[B70115N1			
Eilar Associates, Inc.						14 Februa	ry 2017				
JB						TNM 2.5					_
INPUT: RECEIVERS											
PROJECT/CONTRACT:	B7011	5N1			1						
RUN:	Curre	nt Cont	ours								_
Receiver											
Name	No.	#DUs	Coordinates	(ground)		Height	Input Sou	nd Levels a	and Criteria	3	Active
			X	Y	Z	above	Existing	Impact Cri	iteria	NR	in
						Ground	LAeq1h	LAeq1h	Sub'l	Goal	Calc.
			m	m	m	m	dBA	dBA	dB	dB	
R1	1	1	460.1	258.0	139.00	1.52	0.00	66	10.0	8.() Y
R2	3	1	464.3	257.9	139.00	1.52	0.00	66	10.0	8.() Y
R3	4	1	468.3	257.7	139.00	1.52	0.00	66	10.0	8.() Y
R4	5	1	472.4	257.5	139.00	1.52	0.00	66	10.0	8.0) Y
R5	6	1	476.5	257.3	140.00	1.52	0.00	66	10.0	8.0) Y
R6	7	1	480.6	257.1	140.00	1.52	0.00	66	10.0	8.0) Y
R7	8	1	484.7	257.0	140.00	1.52	0.00	66	10.0	8.0) Y
R8	9	1	488.9	256.8	140.00	1.52	0.00	66	10.0	8.0) Y
R9	10	1	493.0	256.6	140.00	1.52	0.00	66	10.0	8.0) Y
R10	11	1	460.1	253.9	140.00	1.52	0.00	66	10.0	8.0) Y
R11	12	1	464.3	253.7	140.00	1.52	0.00	66	10.0	8.0) Y
R12	13	1	468.3	253.6	140.00	1.52	0.00	66	10.0	8.0) Y
R13	14	1	472.5	253.4	140.00	1.52	0.00	66	10.0	8.0) Y
R14	15	1	476.6	253.3	140.00	1.52	0.00	66	10.0	8.0) Y
R15	16	1	480.7	253.1	140.00	1.52	0.00	66	10.0	8.0) Y
R16	17	1	484.8	252.9	140.00	1.52	0.00	66	10.0	8.() Y
R17	18	1	488.9	252.8	140.00	1.52	0.00	66	10.0	8.0) Y
R18	19	1	492.9	252.6	140.00	1.52	0.00	66	10.0	8.0) Y
R19	20	1	460.1	249.9	141.00	1.52	0.00	66	10.0	8.0) Y
R20	21	1	464.3	249.7	141.00	1.52	0.00	66	10.0	8.0) Y
R21	22	1	468.4	249.5	141.00	1.52	0.00	66	10.0	8.0) Y
R22	23	1	472.5	249.3	141.00	1.52	0.00	66	10.0	8.0) Y

INPUT: RECEIVERS							B70115N1			
R23	24 1	l 476.6	249.1	141.00	1.52	0.00	66	10.0	8.0	Y
R24	25 1	l 480.7	249.0	141.00	1.52	0.00	66	10.0	8.0	Y
R25	26 1	l 484.9	248.8	141.00	1.52	0.00	66	10.0	8.0	Y
R26	27 1	l 489.0	248.6	141.00	1.52	0.00	66	10.0	8.0	Y
R27	28 1	l 492.8	248.5	141.00	1.52	0.00	66	10.0	8.0	Y
R28	29 1	l 460.0	245.4	141.00	1.52	0.00	66	10.0	8.0	Y
R29	30 1	l 464.4	245.3	141.00	1.52	0.00	66	10.0	8.0	Y
R30	31 1	l 468.4	245.1	141.00	1.52	0.00	66	10.0	8.0	Y
R31	32 1	l 472.5	244.9	141.00	1.52	0.00	66	10.0	8.0	Y
R32	33 1	l 476.5	244.7	141.00	1.52	0.00	66	10.0	8.0	Y
R33	34 1	l 480.7	244.6	141.00	1.52	0.00	66	10.0	8.0	Y
R34	35 1	l 484.8	244.4	141.00	1.52	0.00	66	10.0	8.0	Y
R35	36 1	l 489.0	244.3	141.00	1.52	0.00	66	10.0	8.0	Y
R36	37 1	l 492.6	244.1	141.00	1.52	0.00	66	10.0	8.0	Y
R37	38 1	l 460.2	241.4	141.50	1.52	0.00	66	10.0	8.0	Y
R38	39 1	l 464.3	241.2	141.50	1.52	0.00	66	10.0	8.0	Y
R39	40 1	l 468.4	241.1	141.50	1.52	0.00	66	10.0	8.0	Y
R40	41 1	l 472.5	240.9	141.50	1.52	0.00	66	10.0	8.0	Y
R41	42 1	l 476.6	240.7	141.50	1.52	0.00	66	10.0	8.0	Y
R42	43 1	l 480.7	240.6	141.50	1.52	0.00	66	10.0	8.0	Y
R43	44 1	l 484.9	240.4	141.50	1.52	0.00	66	10.0	8.0	Y
R44	45 1	l 489.0	240.2	141.50	1.52	0.00	66	10.0	8.0	Y
R45	46 1	l 492.4	240.1	141.50	1.52	0.00	66	10.0	8.0	Y
R46	47 1	l 460.3	237.2	142.00	1.52	0.00	66	10.0	8.0	Y
R47	48 1	l 464.3	237.1	142.00	1.52	0.00	66	10.0	8.0	Y
R48	49 1	l 468.4	236.9	142.00	1.52	0.00	66	10.0	8.0	Y
R49	50 1	l 472.5	236.8	142.00	1.52	0.00	66	10.0	8.0	Y
R50	51 1	I 476.6	236.5	142.00	1.52	0.00	66	10.0	8.0	Y
R51	52 1	l 480.8	236.4	142.00	1.52	0.00	66	10.0	8.0	Y
R52	53 1	l 484.9	236.3	142.00	1.52	0.00	66	10.0	8.0	Y
R53	54 1	l 488.9	236.0	142.00	1.52	0.00	66	10.0	8.0	Y
R54	55 1	l 492.2	235.9	142.00	1.52	0.00	66	10.0	8.0	Y
R55	56 1	l 460.2	233.1	142.00	1.52	0.00	66	10.0	8.0	Y
R56	57 ´	l 464.4	232.9	142.50	1.52	0.00	66	10.0	8.0	Y
R57	58 ´	l 468.4	232.8	142.50	1.52	0.00	66	10.0	8.0	Y
R58	59 1	l 472.6	232.6	142.50	1.52	0.00	66	10.0	8.0	Y

INPUT: RECEIVERS							B70115N1			
R59	60 1	476.7	232.4	142.50	1.52	0.00	66	10.0	8.0 Y	
R60	61 1	480.8	232.2	142.50	1.52	0.00	66	10.0	8.0 Y	
R61	62 1	484.9	232.1	142.50	1.52	0.00	66	10.0	8.0 Y	
R62	63 1	489.0	231.9	142.50	1.52	0.00	66	10.0	8.0 Y	
R63	64 1	492.1	231.7	142.50	1.52	0.00	66	10.0	8.0 Y	
R64	65 1	460.2	229.0	142.50	1.52	0.00	66	10.0	8.0 Y	
R65	66 1	464.3	228.7	143.00	1.52	0.00	66	10.0	8.0 Y	
R66	67 1	468.5	228.6	143.00	1.52	0.00	66	10.0	8.0 Y	
R67	68 1	472.6	228.4	143.00	1.52	0.00	66	10.0	8.0 Y	
R68	69 1	476.7	228.2	143.00	1.52	0.00	66	10.0	8.0 Y	
R69	70 1	480.8	228.0	143.00	1.52	0.00	66	10.0	8.0 Y	
R70	71 1	485.0	227.8	143.00	1.52	0.00	66	10.0	8.0 Y	
R71	72 1	489.0	227.6	143.00	1.52	0.00	66	10.0	8.0 Y	
R72	73 1	491.9	227.6	143.00	1.52	0.00	66	10.0	8.0 Y	
R73	74 1	460.2	224.8	143.00	1.52	0.00	66	10.0	8.0 Y	
R74	75 1	464.5	224.6	143.00	1.52	0.00	66	10.0	8.0 Y	
R75	76 1	468.5	224.4	143.00	1.52	0.00	66	10.0	8.0 Y	
R76	77 1	472.6	224.2	143.00	1.52	0.00	66	10.0	8.0 Y	
R77	78 1	476.7	224.1	143.00	1.52	0.00	66	10.0	8.0 Y	
R78	79 1	480.9	223.9	143.00	1.52	0.00	66	10.0	8.0 Y	
R79	80 1	485.0	223.7	143.00	1.52	0.00	66	10.0	8.0 Y	
R80	81 1	489.0	223.5	143.00	1.52	0.00	66	10.0	8.0 Y	
R81	82 1	491.8	223.3	143.00	1.52	0.00	66	10.0	8.0 Y	
R82	83 1	460.3	220.5	143.00	1.52	0.00	66	10.0	8.0 Y	
R83	84 1	464.5	220.3	143.00	1.52	0.00	66	10.0	8.0 Y	
R84	85 1	468.5	220.1	143.00	1.52	0.00	66	10.0	8.0 Y	
R85	86 1	472.7	220.0	143.00	1.52	0.00	66	10.0	8.0 Y	
R86	87 1	476.8	219.7	143.00	1.52	0.00	66	10.0	8.0 Y	
R87	88 1	480.8	219.6	143.00	1.52	0.00	66	10.0	8.0 Y	
R88	89 1	485.1	219.5	143.00	1.52	0.00	66	10.0	8.0 Y	
R89	90 1	489.1	219.3	143.00	1.52	0.00	66	10.0	8.0 Y	
R90	91 1	491.6	219.2	143.00	1.52	0.00	66	10.0	8.0 Y	

RESULTS: SOUND LEVELS		1			1		B70115N1						
Filar Associates Inc							14 Februa	ary 2017					
								li y 2017					
55								d with TNM	125				
							Calculate		12.5				
		B70115	N1										
RUN		Current	Contours										
		INDIIT	HEIGHTS					Average r	avement type	a shall ha usa	ad unlos	e	
BARRIER DEGIGN.								a State hi	chway agency	v substantiat	as the u	5	
ATMOSPHERICS:		20 deg	C, 50% RH	ł				of a differ	ent type with	approval of F	FHWA.	30	
Receiver					1			-					
Name	No.	#DUs	Existing	No Barrier					With Barrier	1			
			LAeq1h	LAeq1h		Increase over	existing	Туре	Calculated	Noise Redu	ction		
			-	Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calc	ulated
							Sub'l Inc					minı	JS
												Goal	i
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB	
R1	1	1	0.0	65.1	66	65.1	10		65.1	0.0)	8	-8.0
R2	3	1	0.0	65.0	66	65.0	10)	65.0	0.0)	8	-8.0
R3	4	1	0.0	64.9	66	64.9	10		64.9	0.0)	8	-8.0
R4	5	1	0.0	64.8	66	64.8	3 10		64.8	0.0)	8	-8.0
R5	6	1	0.0	65.0	66	65.0	10		65.0	0.0)	8	-8.0
R6	7	1	0.0	65.0	66	65.0	10		65.0	0.0)	8	-8.0
R7	8	1	0.0	65.0	66	65.0	10)	65.0	0.0)	8	-8.0
R8	9	1	0.0	65.0	66	65.0	10)	65.0	0.0)	8	-8.0
R9	10	1	0.0	65.1	66	65.1	10)	65.1	0.0)	8	-8.0
R10	11	1	0.0	63.8	66	63.8	s 10)	63.8	0.0)	8	-8.0
R11	12	1	0.0	63.8	66	63.8	s 10)	63.8	0.0)	8	-8.0
R12	13	1	0.0	63.7	66	63.7	10)	63.7	0.0)	8	-8.0
R13	14	1	0.0	63.7	66	63.7	10)	63.7	0.0)	8	-8.0
R14	15	1	0.0	63.7	66	63.7	10)	63.7	0.0)	8	-8.0
R15	16	1	0.0	63.6	66	63.6	5 1C)	63.6	6 O.C)	8	-8.0
R16	17	1	0.0	63.6	66	63.6	5 1C)	63.6	6 0.0)	8	-8.0
R17	18	1	0.0	63.6	66	63.6	5 1C)	63.6	6 O.C)	8	-8.0
R18	19	1	0.0	63.7	66	63.7	10)	63.7	0.0)	8	-8.0
R19	20	1	0.0	62.7	66	62.7	10		62.7	0.0)	8	-8.0
R20	21	1	0.0	62.6	66	62.6	i 10		62.6	6 <u>0.</u> 0)	8	-8.0
R21	22	1	0.0	62.6	66	62.6	5 10)	62.6	0.0)	8	-8.0
R22	23	1	0.0	62.6	66	62.6	5 10		62.6	0.0)	8	-8.0
R23	24	1	0.0	62.6	66	62.6	5 10		62.6	6 0.0)	8	-8.0
R24	25	1	0.0	62.6	66	62.6	i 10)	62.6	0.0)	8	-8.0

RESULTS: SOUND LEVELS						В	70115N1				
R25	26	1	0.0	62.6	66	62.6	10	 62.6	0.0	8	-8.0
R26	27	1	0.0	62.6	66	62.6	10	 62.6	0.0	8	-8.0
R27	28	1	0.0	62.6	66	62.6	10	 62.6	0.0	8	-8.0
R28	29	1	0.0	61.7	66	61.7	10	 61.7	0.0	8	-8.0
R29	30	1	0.0	61.6	66	61.6	10	 61.6	0.0	8	-8.0
R30	31	1	0.0	61.6	66	61.6	10	 61.6	0.0	8	-8.0
R31	32	1	0.0	61.6	66	61.6	10	 61.6	0.0	8	-8.0
R32	33	1	0.0	61.6	66	61.6	10	 61.6	0.0	8	-8.0
R33	34	1	0.0	61.6	66	61.6	10	 61.6	0.0	8	-8.0
R34	35	1	0.0	61.6	66	61.6	10	 61.6	0.0	8	-8.0
R35	36	1	0.0	61.6	66	61.6	10	 61.6	0.0	8	-8.0
R36	37	1	0.0	61.6	66	61.6	10	 61.6	0.0	8	-8.0
R37	38	1	0.0	60.7	66	60.7	10	 60.7	0.0	8	-8.0
R38	39	1	0.0	60.7	66	60.7	10	 60.7	0.0	8	-8.0
R39	40	1	0.0	60.7	66	60.7	10	 60.7	0.0	8	-8.0
R40	41	1	0.0	60.7	66	60.7	10	 60.7	0.0	8	-8.0
R41	42	1	0.0	60.6	66	60.6	10	 60.6	0.0	8	-8.0
R42	43	1	0.0	60.6	66	60.6	10	 60.6	0.0	8	-8.0
R43	44	1	0.0	60.6	66	60.6	10	 60.6	0.0	8	-8.0
R44	45	1	0.0	60.6	66	60.6	10	 60.6	0.0	8	-8.0
R45	46	1	0.0	60.6	66	60.6	10	 60.6	0.0	8	-8.0
R46	47	1	0.0	59.8	66	59.8	10	 59.8	0.0	8	-8.0
R47	48	1	0.0	59.7	66	59.7	10	 59.7	0.0	8	-8.0
R48	49	1	0.0	59.6	66	59.6	10	 59.6	0.0	8	-8.0
R49	50	1	0.0	59.6	66	59.6	10	 59.6	0.0	8	-8.0
R50	51	1	0.0	59.6	66	59.6	10	 59.6	0.0	8	-8.0
R51	52	1	0.0	59.6	66	59.6	10	 59.6	0.0	8	-8.0
R52	53	1	0.0	59.6	66	59.6	10	 59.6	0.0	8	-8.0
R53	54	1	0.0	59.5	66	59.5	10	 59.5	0.0	8	-8.0
R54	55	1	0.0	59.6	66	59.6	10	 59.6	0.0	8	-8.0
R55	56	1	0.0	58.6	66	58.6	10	 58.6	0.0	8	-8.0
R56	57	1	0.0	58.6	66	58.6	10	 58.6	0.0	8	-8.0
R57	58	1	0.0	58.6	66	58.6	10	 58.6	0.0	8	-8.0
R58	59	1	0.0	58.5	66	58.5	10	 58.5	0.0	8	-8.0
R59	60	1	0.0	58.5	66	58.5	10	 58.5	0.0	8	-8.0
R60	61	1	0.0	58.5	66	58.5	10	 58.5	0.0	8	-8.0
R61	62	1	0.0	58.5	66	58.5	10	 58.5	0.0	8	-8.0
R62	63	1	0.0	58.5	66	58.5	10	 58.5	0.0	8	-8.0
R63	64	1	0.0	58.5	66	58.5	10	 58.5	0.0	8	-8.0
R64	65	1	0.0	57.6	66	57.6	10	 57.6	0.0	8	-8.0
R65	66	1	0.0	57.6	66	57.6	10	 57.6	0.0	8	-8.0

RESULTS: SOUND LEVELS						I	B70115N1				
R66	67	1	0.0	57.5	66	57.5	10	 57.5	0.0	8	-8.0
R67	68	1	0.0	57.5	66	57.5	10	 57.5	0.0	8	-8.0
R68	69	1	0.0	57.5	66	57.5	10	 57.5	0.0	8	-8.0
R69	70	1	0.0	57.5	66	57.5	10	 57.5	0.0	8	-8.0
R70	71	1	0.0	57.5	66	57.5	10	 57.5	0.0	8	-8.0
R71	72	1	0.0	57.5	66	57.5	10	 57.5	0.0	8	-8.0
R72	73	1	0.0	57.5	66	57.5	10	 57.5	0.0	8	-8.0
R73	74	1	0.0	56.7	66	56.7	10	 56.7	0.0	8	-8.0
R74	75	1	0.0	56.7	66	56.7	10	 56.7	0.0	8	-8.0
R75	76	1	0.0	56.7	66	56.7	10	 56.7	0.0	8	-8.0
R76	77	1	0.0	56.7	66	56.7	10	 56.7	0.0	8	-8.0
R77	78	1	0.0	56.7	66	56.7	10	 56.7	0.0	8	-8.0
R78	79	1	0.0	56.7	66	56.7	10	 56.7	0.0	8	-8.0
R79	80	1	0.0	56.7	66	56.7	10	 56.7	0.0	8	-8.0
R80	81	1	0.0	56.6	66	56.6	10	 56.6	0.0	8	-8.0
R81	82	1	0.0	56.6	66	56.6	10	 56.6	0.0	8	-8.0
R82	83	1	0.0	56.0	66	56.0	10	 56.0	0.0	8	-8.0
R83	84	1	0.0	56.0	66	56.0	10	 56.0	0.0	8	-8.0
R84	85	1	0.0	55.9	66	55.9	10	 55.9	0.0	8	-8.0
R85	86	1	0.0	55.9	66	55.9	10	 55.9	0.0	8	-8.0
R86	87	1	0.0	55.9	66	55.9	10	 55.9	0.0	8	-8.0
R87	88	1	0.0	55.9	66	55.9	10	 55.9	0.0	8	-8.0
R88	89	1	0.0	55.8	66	55.8	10	 55.8	0.0	8	-8.0
R89	90	1	0.0	55.8	66	55.8	10	 55.8	0.0	8	-8.0
R90	91	1	0.0	55.9	66	55.9	10	 55.9	0.0	8	-8.0
Dwelling Units		# DUs	Noise Red	duction							
			Min	Avg	Max						
			dB	dB	dB						
All Selected		90	0.0	0.0	0.0						
All Impacted		0	0.0	0.0	0.0						
All that meet NR Goal		0	0.0	0.0	0.0						

INPUT: TRAFFIC FOR LAeq1h Volumes			Ϊ.	1	1	В	70115N1	1	1			
Filar Associatos, Inc.				14 Eab	ruary 20	17						
					5 5	17						
9B					.5							
INPUT: TRAFFIC FOR LAeq1h Volumes												
PROJECT/CONTRACT:	B70115N1		1		1							
RUN:	Future Con	tours										
Roadway	Points					-						
Name	Name	No.	Segmen	t								
			Autos		MTrucks	S	HTrucks	5	Buses		Motorcy	/cles
			V	S	V	S	V	S	V	S	V	S
			veh/hr	km/h	veh/hr	km/h	veh/hr	km/h	veh/hr	km/h	veh/hr	km/h
Montezuma EB	point1	1	482	56	21	56	19	56	0	0	C) 0
	point2	2	482	56	21	56	19	56	0	0	C) 0
	point3	3	482	56	21	56	19	56	0	0	C) 0
	point4	4	517	56	23	56	20	56	0	0	C) 0
	point5	5	517	56	23	56	20	56	0	0	C) 0
	point6	6	517	56	23	56	20	56	0	0	0) 0
	point7	7	517	56	23	56	20	56	0	0	0) 0
	point8	8	517	56	23	56	20	56	0	0	0) 0
	point9	9	517	56	23	56	20	56	0	0	0) 0
	point10	10	517	56	23	56	20	56	0) 0	0) 0
	point11	11	517	56	23	56	20	56	0) 0	0) 0
	point12	12										
Montezuma WB	point13	13	517	56	23	56	20	56	0) 0	0) 0
	point14	14	517	56	23	56	20	56	0) 0	0) 0
	point15	15	517	56	23	56	20	56	0) 0	0) 0
	point16	16	517	56	23	56	20	56	0) 0	0) 0
	point17	17	517	56	23	56	20	56	0) 0	0) 0
	point18	18	517	56	23	56	20	56	0) 0	0) 0
	point19	19	517	56	23	56	20	56	0) 0	0) 0
	point20	20	517	56	23	56	20	56	0) 0	0) 0
	point21	21	517	56	23	56	20	56	0	0	0	<u>)</u> 0
	point22	22	517	56	23	56	20	56	0	0	0	<u>ر</u> ر
	point23	23	482	56	21	56	19	56	0	0 0	0) 0

INPUT: TRAFFIC FOR LAeq1h Volumes						B	70115N1					
	point24	24	482	56	21	56	19	56	0	0	0	0
	point25	25	482	56	21	56	19	56	0	0	0	0
	point26	26	482	56	21	56	19	56	0	0	0	0
	point27	27										

RESULTS: SOUND LEVELS		1				1	B70115N1						
Filar Associatos Inc							14 Eobrus	ary 2017					
								ary 2017					
55							Calculate	d with TNN	125				
							Calculate		12.5				
		B70115	NI1										
		Euturo	Contours										
								Avorago	avoment tun	a chall ha ucr			
BARRIER DESIGN.								a State bi		e shan be use	e the u	-3	
ATMOSPHERICS:		20 dea	C. 50% RH					of a differ	ent type with	approval of F	ES INE U FHWA.	36	
Receiver			-,	-									
Name	No.	#DUs	Existing	No Barrier					With Barrier				
			LAeq1h	LAeq1h		Increase over	existing	Туре	Calculated	Noise Redu	ction		
			-	Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calc	ulated
							Sub'l Inc	-	-			minı	JS
												Goa	1
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB	
R1	1	1	0.0	67.0	66	67.0	10) Snd Lvl	67.0	0.0)	8	-8.0
R2	3	1	0.0	66.9	66	66.9	10	Snd Lvl	66.9	0.0)	8	-8.0
R3	4	1	0.0	66.7	66	66.7	10	Snd Lvl	66.7	0.0)	8	-8.0
R4	5	1	0.0	66.6	66	66.6	5 10	Snd Lvl	66.6	0.0)	8	-8.0
R5	6	1	0.0	66.9	66	66.9	10) Snd Lvl	66.9	0.0)	8	-8.0
R6	7	1	0.0	66.9	66	66.9	10) Snd Lvl	66.9	0.0)	8	-8.0
R7	8	1	0.0	66.8	66	66.8	3 10	Snd Lvl	66.8	0.0)	8	-8.0
R8	9	1	0.0	66.9	66	66.9	9 10	Snd Lvl	66.9	0.0)	8	-8.0
R9	10	1	0.0	66.9	66	66.9	9 10	Snd Lvl	66.9	0.0)	8	-8.0
R10	11	1	0.0	65.7	66	65.7	' 10)	65.7	0.0)	8	-8.0
R11	12	1	0.0	65.6	66	65.6	6 1C)	65.6	6 O.C)	8	-8.0
R12	13	1	0.0	65.6	66	65.6	5 1C)	65.6	i 0.0)	8	-8.0
R13	14	1	0.0	65.5	66	65.5	5 10)	65.5	i 0.0)	8	-8.0
R14	15	1	0.0	65.5	66	65.5	5 10)	65.5	i 0.0)	8	-8.0
R15	16	1	0.0	65.5	66	65.5	5 10)	65.5	6 O.C)	8	-8.0
R16	17	1	0.0	65.5	66	65.5	5 10)	65.5	i 0.0)	8	-8.0
R17	18	1	0.0	65.5	66	65.5	5 10)	65.5	0.0)	8	-8.0
R18	19	1	0.0	65.5	66	65.5	5 10)	65.5	0.0)	8	-8.0
R19	20	1	0.0	64.5	66	64.5	5 10)	64.5	0.0)	8	-8.0
R20	21	1	0.0	64.5	66	64.5	5 10)	64.5	0.0)	8	-8.0
R21	22	1	0.0	64.5	66	64.5	5 10)	64.5	0.0)	8	-8.0
R22	23	1	0.0	64.5	66	64.5	5 10)	64.5	0.0)	8	-8.0
R23	24	1	0.0	64.5	66	64.5	5 10)	64.5	0.0)	8	-8.0
R24	25	1	0.0	64.5	66	64.5	5 10)	64.5	0.0)	8	-8.0

RESULTS: SOUND LEVELS						B7	0115N1				
R25	26	1	0.0	64.5	66	64.5	10	 64.5	0.0	8	-8.0
R26	27	1	0.0	64.5	66	64.5	10	 64.5	0.0	8	-8.0
R27	28	1	0.0	64.5	66	64.5	10	 64.5	0.0	8	-8.0
R28	29	1	0.0	63.5	66	63.5	10	 63.5	0.0	8	-8.0
R29	30	1	0.0	63.5	66	63.5	10	 63.5	0.0	8	-8.0
R30	31	1	0.0	63.5	66	63.5	10	 63.5	0.0	8	-8.0
R31	32	1	0.0	63.4	66	63.4	10	 63.4	0.0	8	-8.0
R32	33	1	0.0	63.4	66	63.4	10	 63.4	0.0	8	-8.0
R33	34	1	0.0	63.4	66	63.4	10	 63.4	0.0	8	-8.0
R34	35	1	0.0	63.4	66	63.4	10	 63.4	0.0	8	-8.0
R35	36	1	0.0	63.4	66	63.4	10	 63.4	0.0	8	-8.0
R36	37	1	0.0	63.5	66	63.5	10	 63.5	0.0	8	-8.0
R37	38	1	0.0	62.6	66	62.6	10	 62.6	0.0	8	-8.0
R38	39	1	0.0	62.6	66	62.6	10	 62.6	0.0	8	-8.0
R39	40	1	0.0	62.6	66	62.6	10	 62.6	0.0	8	-8.0
R40	41	1	0.0	62.5	66	62.5	10	 62.5	0.0	8	-8.0
R41	42	1	0.0	62.5	66	62.5	10	 62.5	0.0	8	-8.0
R42	43	1	0.0	62.5	66	62.5	10	 62.5	0.0	8	-8.0
R43	44	1	0.0	62.5	66	62.5	10	 62.5	0.0	8	-8.0
R44	45	1	0.0	62.5	66	62.5	10	 62.5	0.0	8	-8.0
R45	46	1	0.0	62.5	66	62.5	10	 62.5	0.0	8	-8.0
R46	47	1	0.0	61.6	66	61.6	10	 61.6	0.0	8	-8.0
R47	48	1	0.0	61.6	66	61.6	10	 61.6	0.0	8	-8.0
R48	49	1	0.0	61.5	66	61.5	10	 61.5	0.0	8	-8.0
R49	50	1	0.0	61.5	66	61.5	10	 61.5	0.0	8	-8.0
R50	51	1	0.0	61.5	66	61.5	10	 61.5	0.0	8	-8.0
R51	52	1	0.0	61.4	66	61.4	10	 61.4	0.0	8	-8.0
R52	53	1	0.0	61.4	66	61.4	10	 61.4	0.0	8	-8.0
R53	54	1	0.0	61.4	66	61.4	10	 61.4	0.0	8	-8.0
R54	55	1	0.0	61.4	66	61.4	10	 61.4	0.0	8	-8.0
R55	56	1	0.0	60.4	66	60.4	10	 60.4	0.0	8	-8.0
R56	57	1	0.0	60.4	66	60.4	10	 60.4	0.0	8	-8.0
R57	58	1	0.0	60.4	66	60.4	10	 60.4	0.0	8	-8.0
R58	59	1	0.0	60.4	66	60.4	10	 60.4	0.0	8	-8.0
R59	60	1	0.0	60.4	66	60.4	10	 60.4	0.0	8	-8.0
R60	61	1	0.0	60.4	66	60.4	10	 60.4	0.0	8	-8.0
R61	62	1	0.0	60.3	66	60.3	10	 60.3	0.0	8	-8.0
R62	63	1	0.0	60.3	66	60.3	10	 60.3	0.0	8	-8.0
R63	64	1	0.0	60.3	66	60.3	10	 60.3	0.0	8	-8.0
R64	65	1	0.0	59.5	66	59.5	10	 59.5	0.0	8	-8.0
R65	66	1	0.0	59.4	66	59.4	10	 59.4	0.0	8	-8.0

RESULTS: SOUND LEVELS						E	370115N1				
R66	67	1	0.0	59.4	66	59.4	10	 59.4	0.0	8	-8.0
R67	68	1	0.0	59.4	66	59.4	10	 59.4	0.0	8	-8.0
R68	69	1	0.0	59.4	66	59.4	10	 59.4	0.0	8	-8.0
R69	70	1	0.0	59.4	66	59.4	10	 59.4	0.0	8	-8.0
R70	71	1	0.0	59.3	66	59.3	10	 59.3	0.0	8	-8.0
R71	72	1	0.0	59.3	66	59.3	10	 59.3	0.0	8	-8.0
R72	73	1	0.0	59.4	66	59.4	10	 59.4	0.0	8	-8.0
R73	74	1	0.0	58.6	66	58.6	10	 58.6	0.0	8	-8.0
R74	75	1	0.0	58.6	66	58.6	10	 58.6	0.0	8	-8.0
R75	76	1	0.0	58.6	66	58.6	10	 58.6	0.0	8	-8.0
R76	77	1	0.0	58.6	66	58.6	10	 58.6	0.0	8	-8.0
R77	78	1	0.0	58.5	66	58.5	10	 58.5	0.0	8	-8.0
R78	79	1	0.0	58.5	66	58.5	10	 58.5	0.0	8	-8.0
R79	80	1	0.0	58.5	66	58.5	10	 58.5	0.0	8	-8.0
R80	81	1	0.0	58.5	66	58.5	10	 58.5	0.0	8	-8.0
R81	82	1	0.0	58.5	66	58.5	10	 58.5	0.0	8	-8.0
R82	83	1	0.0	57.9	66	57.9	10	 57.9	0.0	8	-8.0
R83	84	1	0.0	57.8	66	57.8	10	 57.8	0.0	8	-8.0
R84	85	1	0.0	57.8	66	57.8	10	 57.8	0.0	8	-8.0
R85	86	1	0.0	57.8	66	57.8	10	 57.8	0.0	8	-8.0
R86	87	1	0.0	57.7	66	57.7	10	 57.7	0.0	8	-8.0
R87	88	1	0.0	57.7	66	57.7	10	 57.7	0.0	8	-8.0
R88	89	1	0.0	57.7	66	57.7	10	 57.7	0.0	8	-8.0
R89	90	1	0.0	57.7	66	57.7	10	 57.7	0.0	8	-8.0
R90	91	1	0.0	57.7	66	57.7	10	 57.7	0.0	8	-8.0
Dwelling Units		# DUs	Noise Red	duction							
			Min	Avg	Max						
			dB	dB	dB						
All Selected		90	0.0	0.0	0.0						
All Impacted		9	0.0	0.0	0.0						
All that meet NR Goal		0	0.0	0.0	0.0						

INPUT: RECEIVERS								B70115N1			
Eilar Associates, Inc.						15 Februa	ry 2017				
JB						TNM 2.5					
INPUT: RECEIVERS											
PROJECT/CONTRACT:	B7011	5N1			I						
RUN:	Future	e Facad	des								
Receiver											
Name	No.	#DUs	Coordinates	(ground)		Height	Input Sou	nd Levels a	and Criteria	1	Active
			X	Y	Z	above	Existing	Impact Cri	iteria	NR	in
						Ground	LAeq1h	LAeq1h	Sub'l	Goal	Calc.
			m	m	m	m	dBA	dBA	dB	dB	
F1-1	1	1	466.9	251.0	141.00) 1.52	0.00	66	10.0	8.	0 Y
F2-1	3	1	473.0	245.7	141.00) 1.52	0.00	66	10.0	8.	0 Y
F3-1	4	1	474.8	240.6	141.00) 1.52	0.00	66	10.0	8.	0 Y
F4-1	5	1	477.5	245.3	141.00) 1.52	0.00	66	10.0	8.	0 Y
F5-1	6	1	480.9	250.9	141.00) 1.52	0.00	66	10.0	8.	0 Y
F6-1	7	1	487.3	253.0	141.00) 1.52	0.00	66	10.0	8.	0 Y
F7-1	8	1	491.6	249.5	141.00) 1.52	0.00	66	10.0	8.	0 Y
F8-1	9	1	490.6	238.1	141.00) 1.52	0.00	66	10.0	8.	0 Y
F9-1	10	1	489.3	222.9	141.00) 1.52	0.00	66	10.0	8.	0 Y
F10-1	11	1	483.0	220.7	141.00) 1.52	0.00	66	10.0	8.	0 Y
F11-1	12	1	475.8	223.5	141.00) 1.52	0.00	66	10.0	8.	0 Y
F12-1	13	1	474.6	232.0	141.00) 1.52	0.00	66	10.0	8.	0 Y
F13-1	14	1	472.7	223.9	141.00) 1.52	0.00	66	10.0	8.	0 Y
F14-1	15	1	467.0	220.0	141.00) 1.52	0.00	66	10.0	8.	0 Y
F15-1	16	1	461.0	223.0	141.00) 1.52	0.00	66	10.0	8.	0 Y
F16-1	17	1	461.3	236.6	141.00) 1.52	0.00	66	10.0	8.	0 Y
F17-1	18	1	461.3	249.5	141.00) 1.52	0.00	66	10.0	8.	0 Y
F1-2	19	1	466.9	251.0	141.00) 4.27	0.00	66	10.0	8.	0 Y
F2-2	20	1	473.0	245.7	141.00) 4.27	0.00	66	10.0	8.	0 Y
F3-2/B1	21	1	474.8	240.6	141.00) 4.27	0.00	66	10.0	8.	0 Y
F4-2	22	1	477.5	245.3	141.00) 4.27	0.00	66	10.0	8.	0 Y
F5-2	23	1	480.9	250.9	141.00) 4.27	0.00	66	10.0	8.	0 Y

INPUT: RECEIVERS							B7	70115N1			
F6-2	24	1	487.3	253.0	141.00	4.27	0.00	66	10.0	8.0	Y
F7-2	25	1	491.6	249.5	141.00	4.27	0.00	66	10.0	8.0	Y
F8-2	26	1	490.6	238.1	141.00	4.27	0.00	66	10.0	8.0	Y
F9-2	27	1	489.3	222.9	141.00	4.27	0.00	66	10.0	8.0	Y
F10-2	28	1	483.0	220.7	141.00	4.27	0.00	66	10.0	8.0	Y
F11-2	29	1	475.8	223.5	141.00	4.27	0.00	66	10.0	8.0	Y
F12-2	30	1	474.6	232.0	141.00	4.27	0.00	66	10.0	8.0	Y
F13-2	31	1	472.7	223.9	141.00	4.27	0.00	66	10.0	8.0	Y
F14-2	32	1	467.0	220.0	141.00	4.27	0.00	66	10.0	8.0	Y
F15-2	33	1	461.0	223.0	141.00	4.27	0.00	66	10.0	8.0	Y
F16-2	34	1	461.3	236.6	141.00	4.27	0.00	66	10.0	8.0	Y
F17-2	35	1	461.3	249.5	141.00	4.27	0.00	66	10.0	8.0	Y
F1-3	36	1	466.9	251.0	141.00	7.09	0.00	66	10.0	8.0	Y
F2-3	37	1	473.0	245.7	141.00	7.09	0.00	66	10.0	8.0	Y
F3-3/B2	38	1	474.8	240.6	141.00	7.09	0.00	66	10.0	8.0	Y
F4-3	39	1	477.5	245.3	141.00	7.09	0.00	66	10.0	8.0	Y
F5-3	40	1	480.9	250.9	141.00	7.09	0.00	66	10.0	8.0	Y
F6-3	41	1	487.3	253.0	141.00	7.09	0.00	66	10.0	8.0	Y
F7-3	42	1	491.6	249.5	141.00	7.09	0.00	66	10.0	8.0	Y
F8-3	43	1	490.6	238.1	141.00	7.09	0.00	66	10.0	8.0	Y
F9-3	44	1	489.3	222.9	141.00	7.09	0.00	66	10.0	8.0	Y
F10-3	45	1	483.0	220.7	141.00	7.09	0.00	66	10.0	8.0	Y
F11-3	46	1	475.8	223.5	141.00	7.09	0.00	66	10.0	8.0	Y
F12-3	47	1	474.6	232.0	141.00	7.09	0.00	66	10.0	8.0	Y
F13-3	48	1	472.7	223.9	141.00	7.09	0.00	66	10.0	8.0	Y
F14-3	49	1	467.0	220.0	141.00	7.09	0.00	66	10.0	8.0	Y
F15-3	50	1	461.0	223.0	141.00	7.09	0.00	66	10.0	8.0	Y
F16-3	51	1	461.3	236.6	141.00	7.09	0.00	66	10.0	8.0	Y
F17-3	52	1	461.3	249.5	141.00	7.09	0.00	66	10.0	8.0	Y
F1-4	53	1	466.9	251.0	141.00	9.91	0.00	66	10.0	8.0	Y
F2-4	54	1	473.0	245.7	141.00	9.91	0.00	66	10.0	8.0	Y
F3-4/B3	55	1	474.8	240.6	141.00	9.91	0.00	66	10.0	8.0	Y
F4-4	56	1	477.5	245.3	141.00	9.91	0.00	66	10.0	8.0	Y
F5-4	57	1	480.9	250.9	141.00	9.91	0.00	66	10.0	8.0	Y
F6-4	58	1	487.3	253.0	141.00	9.91	0.00	66	10.0	8.0	Y
F7-4	59	1	491.6	249.5	141.00	9.91	0.00	66	10.0	8.0	Y

P:\Jobs 2017\B70115N1 Prime Design-Montezume Rd Dorms\TNM\Facades

INPUT: RECEIVERS								B70115N1			
F8-4	60	1	490.6	238.1	141.00	9.91	0.00	66	10.0	8.0	Y
F9-4	61	1	489.3	222.9	141.00	9.91	0.00	66	10.0	8.0	Y
F10-4	62	1	483.0	220.7	141.00	9.91	0.00	66	10.0	8.0	Y
F11-4	63	1	475.8	223.5	141.00	9.91	0.00	66	10.0	8.0	Y
F12-4	64	1	474.6	232.0	141.00	9.91	0.00	66	10.0	8.0	Y
F13-4	65	1	472.7	223.9	141.00	9.91	0.00	66	10.0	8.0	Y
F14-4	66	1	467.0	220.0	141.00	9.91	0.00	66	10.0	8.0	Y
F15-4	67	1	461.0	223.0	141.00	9.91	0.00	66	10.0	8.0	Y
F16-4	68	1	461.3	236.6	141.00	9.91	0.00	66	10.0	8.0	Y
F17-4	69	1	461.3	249.5	141.00	9.91	0.00	66	10.0	8.0	Y
F1-5	70	1	466.9	251.0	141.00	12.73	0.00	66	10.0	8.0	Y
F2-5	71	1	473.0	245.7	141.00	12.73	0.00	66	10.0	8.0	Y
F3-5/B4	72	1	474.8	240.6	141.00	12.73	0.00	66	10.0	8.0	Y
F4-5	73	1	477.5	245.3	141.00	12.73	0.00	66	10.0	8.0	Y
F5-5	74	1	480.9	250.9	141.00	12.73	0.00	66	10.0	8.0	Y
F6-5	75	1	487.3	253.0	141.00	12.73	0.00	66	10.0	8.0	Y
F7-5	76	1	491.6	249.5	141.00	12.73	0.00	66	10.0	8.0	Y
F8-5	77	1	490.6	238.1	141.00	12.73	0.00	66	10.0	8.0	Y
F9-5	78	1	489.3	222.9	141.00	12.73	0.00	66	10.0	8.0	Y
F10-5	79	1	483.0	220.7	141.00	12.73	0.00	66	10.0	8.0	Y
F11-5	80	1	475.8	223.5	141.00	12.73	0.00	66	10.0	8.0	Y
F12-5	81	1	474.6	232.0	141.00	12.73	0.00	66	10.0	8.0	Y
F13-5	82	1	472.7	223.9	141.00	12.73	0.00	66	10.0	8.0	Y
F14-5	83	1	467.0	220.0	141.00	12.73	0.00	66	10.0	8.0	Y
F15-5	84	1	461.0	223.0	141.00	12.73	0.00	66	10.0	8.0	Y
F16-5	85	1	461.3	236.6	141.00	12.73	0.00	66	10.0	8.0	Y
F17-5	86	1	461.3	249.5	141.00	12.73	0.00	66	10.0	8.0	Y
OU1	87	1	475.0	246.3	141.00	1.52	0.00	66	10.0	8.0	Y
OU2	88	1	474.4	227.7	141.00	1.52	0.00	66	10.0	8.0	Y
OU3	89	1	486.1	246.9	141.00	15.33	0.00	66	10.0	8.0	Y

INPUT: BARRIERS									B701	15N1								
Eilar Associates, Inc.					14 Feb	ruary 20)17											
JB					TNM 2.	5												
INPUT: BARRIERS																		
PROJECT/CONTRACT:	B7011	5N1																
RUN:	Future	e Facade	es		u													
Barrier									Points									
Name	Туре	Height		If Wall	If Berm	۱ _.		Add'tnl	Name	No.	Coordinates	(bottom)		Height	Segme	ent		
		Min	Max	\$ per	\$ per	Тор	Run:Rise	\$ per			х	Y	Z	at	Seg Hr	Perturbs	On	Important
				Unit	Unit	Width		Unit						Point	Incre-	#Up #Dn	Struct	? Reflec-
				Area	Vol.			Length							ment			tions?
		m	m	\$/sq m	\$/cu m	m	m:m	\$/m			m	m	m	m	m			
Montezuma Apts	W	0.00	30.48	3 0.00				0.00	point1	1	478.4	250.7	141.00	15.10	0.00	0 0)	
									point2	2	483.2	250.1	141.00	15.10	0.00	0 0)	
									point3	3	483.3	252.6	141.00	15.10	0.00	0 0)	
									point4	4	491.3	252.0	141.00	15.10	0.00	0 0)	
									point5	5	491.3	248.3	141.00	15.10	0.00	0 0)	
									point6	6	490.8	248.4	141.00	15.10	0.00	0 0)	
									point7	7	490.6	245.3	141.00	15.10	0.00	0 0)	
									point8	8	490.9	245.3	141.00	15.10	0.00	0 0)	
									point9	9	490.2	238.4	141.00	15.10	0.00	0 0)	
									point10	10	490.0	238.3	141.00	15.10	0.00	0 0)	
									point11	11	488.6	220.6	141.00	15.10	0.00	0 0)	
									point12	12	481.6	221.2	141.00	15.10	0.00	0 0)	
									point13	13	481.5	220.1	141.00	15.10	0.00	0 0)	
									point14	14	476.0	220.7	141.00	15.10	0.00	0 0)	
									point15	15	476.9	232.5	141.00	15.10	0.00	0 0)	
									point16	16	472.4	232.6	141.00	15.10	0.00	0 ()	
									point17	17	472.3	220.3	141.00	15.10	0.00	0 0)	
									point18	18	461.5	220.4	141.00	15.10	0.00	0 0)	
									point19	19	462.0	250.2	141.00	15.10	0.00	0 0)	
	_								point20	20	472.6	250.0	141.00	15.10	0.00	0 0	/	
	_								point21	21	472.5	240.3	141.00	15.10	0.00	0 0	/	
	_								point22	22	477.4	239.9	141.00	15.10	0.00	0 0	/	
									point23	23	478.4	250.7	141.00	15.10	(

RESULTS: SOUND LEVELS	RESULTS: SOUND LEVELS E										B70115N1							
Filar Accodition Inc.							15 Eobrug	2017										
								ary 2017										
JB							Calculato	d with TNN	125									
							Calculate		12.5									
RESOLTS. SOUND LEVELS		D70115	N1															
		Euturo	Facados															
								Avorago	avoment tun	a chall ha ucr								
BARRIER DESIGN.		INFUT	HEIGHT 3					a Stato bi		e silali be use	su unies os tho u	.5 160						
ATMOSPHERICS:		20 dea	C. 50% RH					of a differ	ent type with	approval of F	HWA.	36						
Receiver								_										
Name	No.	#DUs	Existing	No Barrier					With Barrier									
			LAeq1h	LAeq1h		Increase over	existing	Туре	Calculated	Noise Redu	ction							
			-	Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calc	ulated					
							Sub'l Inc	-	-			mini	us					
												Goa						
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB						
F1-1	1	1	0.0	64.8	66	64.8	3 10)	64.8	0.0)	8	-8.0					
F2-1	3	1	0.0	58.9	66	58.9	10)	58.9	0.0	j	8	-8.0					
F3-1	4	. 1	0.0	55.8	66	55.8	3 10)	55.8	0.0)	8	-8.0					
F4-1	5	5 1	0.0	59.1	66	59.1	10)	59.1	0.0)	8	-8.0					
F5-1	6	i 1	0.0	64.1	66	64.1	10)	64.1	0.0)	8	-8.0					
F6-1	7	[′] 1	0.0	65.6	66	65.6	5 1C)	65.6	0.0)	8	-8.0					
F7-1	8	6 1	0.0	62.4	66	62.4	10)	62.4	0.0)	8	-8.0					
F8-1	9	1	0.0	59.0	66	59.0) 10)	59.0	0.0)	8	-8.0					
F9-1	10	1	0.0	55.1	66	55.1	10)	55.1	0.0)	8	-8.0					
F10-1	11	1	0.0	31.4	66	31.4	10)	31.4	0.0)	8	-8.0					
F11-1	12	: 1	0.0	25.7	66	25.7	10)	25.7	0.0)	8	-8.0					
F12-1	13	6 1	0.0	32.6	66	32.6	6 10)	32.6	0.0)	8	-8.0					
F13-1	14	. 1	0.0	26.2	66	26.2	2 10)	26.2	2 0.0)	8	-8.0					
F14-1	15	i 1	0.0	32.8	66	32.8	3 10)	32.8	0.0)	8	-8.0					
F15-1	16	i 1	0.0	55.5	66	55.5	5 10)	55.5	0.0)	8	-8.0					
F16-1	17	1	0.0	58.7	66	58.7	10)	58.7	0.0)	8	-8.0					
F17-1	18	1	0.0	63.4	66	63.4	10)	63.4	0.0)	8	-8.0					
F1-2	19	1	0.0	64.9	66	64.9	9 10)	64.9	0.0)	8	-8.0					
F2-2	20	1	0.0	59.2	66	59.2	2 10)	59.2	2 0.0)	8	-8.0					
F3-2/B1	21	1	0.0	56.3	66	56.3	3 10)	56.3	0.0)	8	-8.0					
F4-2	22	: 1	0.0	59.4	66	59.4	10)	59.4	0.0)	8	-8.0					
F5-2	23	1	0.0	64.2	66	64.2	2 10)	64.2	2 0.0)	8	-8.0					
F6-2	24	· 1	0.0	65.5	66	65.5	5 10)	65.5	0.0)	8	-8.0					
F7-2	25	1	0.0	62.5	66	62.5	5 10)	62.5	0.0)	8	-8.0					

P:\Jobs 2017\B70115N1 Prime Design-Montezume Rd Dorms\TNM\Facades

RESULTS: SOUND LEVELS			B70115N1											
F8-2	26	1	0.0	59.9	66	59.9	10		59.9	0.0	8	-8.0		
F9-2	27	1	0.0	57.7	66	57.7	10		57.7	0.0	8	-8.0		
F10-2	28	1	0.0	35.3	66	35.3	10		35.3	0.0	8	-8.0		
F11-2	29	1	0.0	29.9	66	29.9	10		29.9	0.0	8	-8.0		
F12-2	30	1	0.0	30.8	66	30.8	10		30.8	0.0	8	-8.0		
F13-2	31	1	0.0	29.8	66	29.8	10		29.8	0.0	8	-8.0		
F14-2	32	1	0.0	36.8	66	36.8	10		36.8	0.0	8	-8.0		
F15-2	33	1	0.0	57.5	66	57.5	10		57.5	0.0	8	-8.0		
F16-2	34	1	0.0	59.4	66	59.4	10		59.4	0.0	8	-8.0		
F17-2	35	1	0.0	63.5	66	63.5	10		63.5	0.0	8	-8.0		
F1-3	36	1	0.0	64.6	66	64.6	10		64.6	0.0	8	-8.0		
F2-3	37	1	0.0	58.7	66	58.7	10		58.7	0.0	8	-8.0		
F3-3/B2	38	1	0.0	55.9	66	55.9	10		55.9	0.0	8	-8.0		
F4-3	39	1	0.0	58.9	66	58.9	10		58.9	0.0	8	-8.0		
F5-3	40	1	0.0	63.9	66	63.9	10		63.9	0.0	8	-8.0		
F6-3	41	1	0.0	65.3	66	65.3	10		65.3	0.0	8	-8.0		
F7-3	42	1	0.0	62.2	66	62.2	10		62.2	0.0	8	-8.0		
F8-3	43	1	0.0	59.9	66	59.9	10		59.9	0.0	8	-8.0		
F9-3	44	1	0.0	57.9	66	57.9	10		57.9	0.0	8	-8.0		
F10-3	45	1	0.0	35.4	66	35.4	10		35.4	0.0	8	-8.0		
F11-3	46	1	0.0	28.2	66	28.2	10		28.2	0.0	8	-8.0		
F12-3	47	1	0.0	29.5	66	29.5	10		29.5	0.0	8	-8.0		
F13-3	48	1	0.0	28.6	66	28.6	10		28.6	0.0	8	-8.0		
F14-3	49	1	0.0	36.9	66	36.9	10		36.9	0.0	8	-8.0		
F15-3	50	1	0.0	57.7	66	57.7	10		57.7	0.0	8	-8.0		
F16-3	51	1	0.0	59.5	66	59.5	10		59.5	0.0	8	-8.0		
F17-3	52	1	0.0	63.3	66	63.3	10		63.3	0.0	8	-8.0		
F1-4	53	1	0.0	64.5	66	64.5	10		64.5	0.0	8	-8.0		
F2-4	54	1	0.0	58.4	66	58.4	10		58.4	0.0	8	-8.0		
F3-4/B3	55	1	0.0	55.7	66	55.7	10		55.7	0.0	8	-8.0		
F4-4	56	1	0.0	58.6	66	58.6	10		58.6	0.0	8	-8.0		
F5-4	57	1	0.0	63.7	66	63.7	10		63.7	0.0	8	-8.0		
F6-4	58	1	0.0	65.2	66	65.2	10		65.2	0.0	8	-8.0		
F7-4	59	1	0.0	62.0	66	62.0	10		62.0	0.0	8	-8.0		
F8-4	60	1	0.0	59.6	66	59.6	10		59.6	0.0	8	-8.0		
F9-4	61	1	0.0	58.0	66	58.0	10		58.0	0.0	8	-8.0		
F10-4	62	1	0.0	35.4	66	35.4	10		35.4	0.0	8	-8.0		
F11-4	63	1	0.0	29.4	66	29.4	10		29.4	0.0	8	-8.0		
F12-4	64	1	0.0	30.0	66	30.0	10		30.0	0.0	8	-8.0		
F13-4	65	1	0.0	29.2	66	29.2	10		29.2	0.0	8	-8.0		
F14-4	66	1	0.0	37.2	66	37.2	10		37.2	0.0	8	-8.0		

RESULTS: SOUND LEVELS					B70115N1									
F15-4	67	1	0.0	57.8	66	57.8	10		57.8	0.0	8	-8.0		
F16-4	68	1	0.0	59.3	66	59.3	10		59.3	0.0	8	-8.0		
F17-4	69	1	0.0	63.1	66	63.1	10		63.1	0.0	8	-8.0		
F1-5	70	1	0.0	64.3	66	64.3	10		64.3	0.0	8	-8.0		
F2-5	71	1	0.0	58.3	66	58.3	10		58.3	0.0	8	-8.0		
F3-5/B4	72	1	0.0	55.6	66	55.6	10		55.6	0.0	8	-8.0		
F4-5	73	1	0.0	58.5	66	58.5	10		58.5	0.0	8	-8.0		
F5-5	74	1	0.0	63.5	66	63.5	10		63.5	0.0	8	-8.0		
F6-5	75	1	0.0	65.0	66	65.0	10		65.0	0.0	8	-8.0		
F7-5	76	1	0.0	62.0	66	62.0	10		62.0	0.0	8	-8.0		
F8-5	77	1	0.0	59.6	66	59.6	10		59.6	0.0	8	-8.0		
F9-5	78	1	0.0	57.8	66	57.8	10		57.8	0.0	8	-8.0		
F10-5	79	1	0.0	37.2	66	37.2	10		37.2	0.0	8	-8.0		
F11-5	80	1	0.0	33.7	66	33.7	10		33.7	0.0	8	-8.0		
F12-5	81	1	0.0	33.3	66	33.3	10		33.3	0.0	8	-8.0		
F13-5	82	1	0.0	33.9	66	33.9	10		33.9	0.0	8	-8.0		
F14-5	83	1	0.0	38.3	66	38.3	10		38.3	0.0	8	-8.0		
F15-5	84	1	0.0	57.6	66	57.6	10		57.6	0.0	8	-8.0		
F16-5	85	1	0.0	59.3	66	59.3	10		59.3	0.0	8	-8.0		
F17-5	86	1	0.0	63.0	66	63.0	10		63.0	0.0	8	-8.0		
OU1	87	1	0.0	60.4	66	60.4	10		60.4	0.0	8	-8.0		
OU2	88	1	0.0	27.3	66	27.3	10		27.3	0.0	8	-8.0		
OU3	89	1	0.0	51.5	66	51.5	10		51.5	0.0	8	-8.0		
Dwelling Units		# DUs	Noise Red	duction										
			Min	Avg	Max									
			dB	dB	dB									
All Selected		88	0.0	0.0	0.0									
All Impacted		0	0.0	0.0	0.0									
All that meet NR Goal		0	0.0	0.0	0.0									

APPENDIX D

Manufacturer Data Sheets

CH14NB Single-Stage Heat Pump with Puron[®] Refrigerant 1-1/2 To 5 Tons

Product Data

NOTE: Ratings contained in this document are subject to change at any time. Always refer to the AHRI directory (www.ahridirectory.org) for the most up-to-date ratings information.

INDUSTRY LEADING FEATURES / BENEFITS

Efficiency

- 14 SEER / 11.5 11.7 EER / 8.2 HSPF
- Microtube Technology[™] refrigeration system
- Indoor air quality accessories available

Sound

- Sound level as low as 69 dBA
- · Sound levels as low as 68 dBA with accessory sound blanket

Comfort

System supports CôR[™], Edge[®] or standard thermostat controls

Reliability

- Puron[®] refrigerant environmentally sound, won't deplete the ozone layer and low lifetime service cost.
- Scroll compressor
- Internal pressure relief valve
- Internal thermal overload
- High pressure switch
- Loss of charge switch
- Filter drier
- Balanced refrigeration system for maximum reliability

Durability

WeatherArmor[™] protection package:

- Solid, durable sheet metal construction
- Dense wire coil guard

Applications

- Long-line up to 250 feet (76.20 m) total equivalent length, up to 200 feet (60.96 m) condenser above evaporator, or up to 80 ft. (24.38 m) evaporator above condenser (See Longline Guide for more information.)
- Low ambient (down to -20°F/-28.9°C) with accessory kit

ELECTRICAL DATA

	V/DH	OPER	/OLTS*	CO	MPR	FAN	MCA	MAX FUSE** or
UNIT SIZE	V/PN	MAX	MIN	LRA RLA		FLA	MCA	CKT BRK AMPS
18				48.0	9.0	0.50	11.8	20
24				62.9	10.9	0.60	14.2	25
30				72.5	13.5	1.40	18.3	30
36	208/230/1	253	197	75.0	15.1	1.10	20.0	30
42				105.5	15.5	1.40	24.0	40
48				108.0	19.0	1.40	25.2	40
60				144.2	24.4	1.52	32.0	50

Permissible limits of the voltage range at which the unit will operate satisfactorily

** Time-Delay fuse.

FLA – Full Load Amps LRA – Locked Rotor Amps

MCA - Minimum Circuit Amps

RLA - Rated Load Amps

NOTE: Control circuit is 24-V on all units and requires external power source. Copper wire must be used from service disconnect to unit.

All motors/compressors contain internal overload protection.

Complies with 2007 requirements of ASHRAE Standards 90.1

A-WEIGHTED SOUND POWER

UNIT SIZE		TYPICAL OCTAVE BAND SPECTRUM (dBA, without tone adjustment)											
	(dBA)	125	250	500	1000	2000	4000	8000					
18	69	45	48	56	62	55	53	47					
24	76	46	56	59	63	63	60	55					
30	77	52	62	67	68	65	62	55					
36	77	51	62	66	69	64	61	53					
42	76	49	61	63	65	62	60	52					
48	79	53	66	69	71	67	64	57					
60	73	50	63	62	63	60	58	52					

NOTE: Tested in accordance with AHRI Standard 270-08 (not listed in AHRI).

A-WEIGHTED SOUND POWER WITH SOUND HOOD

	STANDARD	TYPICAL OCTAVE BAND SPECTRUM (dBA, without tone adjustment)											
UNIT SIZE	RATING	125	250	500	1000	2000	4000	8000					
18	68	47	48	56	61	55	52	46					
24	74	47	57	59	62	61	58	51					
30	77	52	62	67	67	65	62	54					
36	76	52	62	66	67	64	60	52					
42	74	50	61	63	64	61	58	49					
48	79	54	66	69	70	67	64	56					
60	73	51	64	62	63	59	56	49					

NOTE: Tested in accordance with AHRI Standard 270-08 (not listed in AHRI).

CHARGING SUBCOOLING (TXV-TYPE EXPANSION DEVICE)

UNIT SIZE-SERIES	REQUIRED SUBCOOLING ° F (° C)
18	11 (6.1)
24	11 (6.1)
30	10 (5.6)
36	10 (5.6)
42	10 (5.6)
48	14 (7.8)
60	15 (8.3)

HP ONLY REPLACEMENT WITH PISTON INDOORS

When the CH14NB is used as a replacement component in a system with a piston fan coil, use the indoor piston size specified below:

	PISTON SIZE										
UNIT SIZE	FB4CNF	FFM	FPMA								
18	0.052	0.050	0.050								
24	0.057	0.057	0.056								
30	0.067	0.070	0.067								
36	0.070	0.072	0.069								
42	0.078										
48	0.084										
60											

= N/A

APPENDIX E

Cadna Analysis Data and Results

EILAR ASSOCIATES, INC. Acoustical and Environmental Consulting

Cadna Noise Model - Sound Levels														
Name	ID	Туре		Oktave Spectrum (dB)										Source
			Weight	63	125	250	500	1000	2000	4000	8000	Α	lin	
Carrier CH14NB018	L1	Lw	A		51.8	52.8	60.8	65.8	59.8	56.8	50.8	68.4	71.8	Mfr
Cadna Noise Model - Point Sources (1 of 4)														
--	------	-------------	------	-------	--------	--------	-------------	-------	--	--				
Name	ID	Result. PWL	L	.w/Li	Height		Coordinates							
		Day	Туре	Value		Х	Y	Z						
		(dBA)			(m)	(m)	(m)	(m)						
AC 1	S_1	68.4	Lw	L1	17.98	481.99	237.48	17.98						
AC 2	S_2	68.4	Lw	L1	17.98	481.98	236.65	17.98						
AC 3	S_3	68.4	Lw	L1	17.98	481.85	235.6	17.98						
AC 4	S_4	68.4	Lw	L1	17.98	481.6	234.47	17.98						
AC 5	S_5	68.4	Lw	L1	17.98	481.5	233.68	17.98						
AC 6	S_6	68.4	Lw	L1	17.98	481.48	233.04	17.98						
AC 7	S_7	68.4	Lw	L1	17.98	481.52	231.18	17.98						
AC 8	S_8	68.4	Lw	L1	17.98	481.32	230.25	17.98						
AC 9	S_9	68.4	Lw	L1	17.98	487.04	230.9	17.98						
AC 10	S_10	68.4	Lw	L1	17.98	487.08	229.83	17.98						
AC 11	S_11	68.4	Lw	L1	17.98	486.96	231.74	17.98						
AC 12	S_12	68.4	Lw	L1	17.98	488.38	237.86	17.98						
AC 13	S_13	68.4	Lw	L1	17.98	488.25	236.87	17.98						
AC 14	S_14	68.4	Lw	L1	17.98	488.05	235.81	17.98						
AC 15	S_15	68.4	Lw	L1	17.98	487.92	234.62	17.98						
AC 16	S_16	68.4	Lw	L1	17.98	487.58	232.51	17.98						
AC 17	S_17	68.4	Lw	L1	17.98	487.45	231.45	17.98						
AC 18	S_18	68.4	Lw	L1	17.98	487.45	230.32	17.98						
AC 19	S_19	68.4	Lw	L1	17.98	487.45	229.26	17.98						
AC 20	S_20	68.4	Lw	L1	17.98	487.25	228.27	17.98						
AC 21	S_21	68.4	Lw	L1	17.98	487.12	227.35	17.98						
AC 22	S_22	68.4	Lw	L1	17.98	487.12	226.35	17.98						
AC 23	S_23	68.4	Lw	L1	17.98	486.86	225.3	17.98						
AC 24	S_24	68.4	Lw	L1	17.98	486.79	224.7	17.98						
AC 25	S_25	68.4	Lw	L1	17.98	486.79	223.44	17.98						
AC 26	S_26	68.4	Lw	L1	17.98	486.72	222.65	17.98						
AC 27	S_27	68.4	Lw	L1	17.98	487.72	233.37	17.98						
AC 28	S_28	68.4	Lw	L1	17.98	481.46	232.15	17.98						
AC 29	S_29	68.4	Lw	L1	17.98	483.78	222.63	17.98						
AC 30	S_30	68.4	Lw	L1	17.98	484.51	222.41	17.98						
AC 31	S_31	68.4	Lw	L1	17.98	481.9	222.92	17.98						
AC 32	S_32	68.4	Lw	L1	17.98	486.05	222.4	17.98						

Cadna Noise Model - Point Sources (2 of 4)										
Name	ID	Result. PWL	L	_w / Li	Height		Coordinates			
		Day	Туре	Value		Х	Y	Z		
		(dBA)			(m)	(m)	(m)	(m)		
AC 33	S_33	68.4	Lw	L1	17.98	487.17	232.7	17.98		
AC 34	S_34	68.4	Lw	L1	17.98	482.89	222.73	17.98		
AC 35	S_35	68.4	Lw	L1	17.98	485.2	222.51	17.98		
AC 36	S_36	68.4	Lw	L1	17.98	487.67	237.74	17.98		
AC 37	S_37	68.4	Lw	L1	17.98	487.74	237	17.98		
AC 38	S_38	68.4	Lw	L1	17.98	487.64	236.1	17.98		
AC 39	S_39	68.4	Lw	L1	17.98	487.52	235.22	17.98		
AC 40	S_40	68.4	Lw	L1	17.98	487.31	234.31	17.98		
AC 41	S_41	68.4	Lw	L1	17.98	487.22	233.6	17.98		
AC 42	S_42	68.4	Lw	L1	17.98	485.55	222.27	17.98		
AC 43	S_43	68.4	Lw	L1	17.98	481.63	237.8	17.98		
AC 44	S_44	68.4	Lw	L1	17.98	481.5	236.94	17.98		
AC 45	S_45	68.4	Lw	L1	17.98	481.37	235.95	17.98		
AC 46	S_46	68.4	Lw	L1	17.98	481.3	234.82	17.98		
AC 47	S_47	68.4	Lw	L1	17.98	480.9	233.76	17.98		
AC 48	S_48	68.4	Lw	L1	17.98	480.84	233.04	17.98		
AC 49	S_49	68.4	Lw	L1	17.98	480.84	232.31	17.98		
AC 50	S_50	68.4	Lw	L1	17.98	480.7	231.51	17.98		
AC 51	S_51	68.4	Lw	L1	17.98	480.84	230.39	17.98		
AC 52	S_52	68.4	Lw	L1	17.98	480.84	228.54	17.98		
AC 53	S_53	68.4	Lw	L1	17.98	480.7	227.21	17.98		
AC 54	S_54	68.4	Lw	L1	17.98	480.64	226.09	17.98		
AC 55	S_55	68.4	Lw	L1	17.98	480.37	225.36	17.98		
AC 56	S_56	68.4	Lw	L1	17.98	480.37	224.57	17.98		
AC 57	S_57	68.4	Lw	L1	17.98	480.24	223.77	17.98		
AC 58	S_58	68.4	Lw	L1	17.98	480.04	223.05	17.98		
AC 59	S_59	68.4	Lw	L1	17.98	480.04	222.39	17.98		
AC 60	S_60	68.4	Lw	L1	17.98	480.7	229.33	17.98		
AC 61	S_61	68.4	Lw	L1	17.98	481.7	222.25	17.98		
AC 62	S_62	68.4	Lw	L1	17.98	482.42	222.05	17.98		
AC 63	S_63	68.4	Lw	L1	17.98	483.22	222.05	17.98		
AC 64	S_64	68.4	Lw	L1	17.98	483.81	222.05	17.98		

Cadna Noise Model - Point Sources (3 of 4)										
Name	ID	Result. PWL	L	_w / Li	Height		Coordinates			
		Day	Туре	Value		Х	Y	Z		
		(dBA)			(m)	(m)	(m)	(m)		
AC 65	S_65	68.4	Lw	L1	17.98	484.34	221.99	17.98		
AC 66	S_66	68.4	Lw	L1	17.98	484.74	221.99	17.98		
AC 67	S_67	68.4	Lw	L1	17.98	485.14	221.86	17.98		
AC 68	S_68	68.4	Lw	L1	17.98	485.73	221.72	17.98		
AC 69	S_69	68.4	Lw	L1	17.98	471.05	249.31	17.98		
AC 70	S_70	68.4	Lw	L1	17.98	470.98	248.78	17.98		
AC 71	S_71	68.4	Lw	L1	17.98	470.98	247.99	17.98		
AC 72	S_72	68.4	Lw	L1	17.98	470.85	246.93	17.98		
AC 73	S_73	68.4	Lw	L1	17.98	470.85	246	17.98		
AC 74	S_74	68.4	Lw	L1	17.98	470.91	245.07	17.98		
AC 75	S_75	68.4	Lw	L1	17.98	469.46	244.07	17.98		
AC 76	S_76	68.4	Lw	L1	17.98	468.72	243.21	17.98		
AC 77	S_77	68.4	Lw	L1	17.98	468.8	242.18	17.98		
AC 78	S_78	68.4	Lw	L1	17.98	468.71	241.39	17.98		
AC 79	S_79	68.4	Lw	L1	17.98	468.87	240.29	17.98		
AC 80	S_80	68.4	Lw	L1	17.98	468.92	238.9	17.98		
AC 81	S_81	68.4	Lw	L1	17.98	470.25	237.86	17.98		
AC 82	S_82	68.4	Lw	L1	17.98	470.25	237.27	17.98		
AC 83	S_83	68.4	Lw	L1	17.98	470.19	236.48	17.98		
AC 84	S_84	68.4	Lw	L1	17.98	470.19	235.75	17.98		
AC 85	S_85	68.4	Lw	L1	17.98	470.25	234.42	17.98		
AC 86	S_86	68.4	Lw	L1	17.98	470.25	232.9	17.98		
AC 87	S_87	68.4	Lw	L1	17.98	469.92	231.65	17.98		
AC 88	S_88	68.4	Lw	L1	17.98	469.92	230.65	17.98		
AC 89	S_89	68.4	Lw	L1	17.98	469.92	229.53	17.98		
AC 90	S_90	68.4	Lw	L1	17.98	469.72	228.34	17.98		
AC 91	S_91	68.4	Lw	L1	17.98	469.72	227.61	17.98		
AC 92	S_92	68.4	Lw	L1	17.98	469.72	226.68	17.98		
AC 93	S_93	68.4	Lw	L1	17.98	469.72	225.82	17.98		
AC 94	S_94	68.4	Lw	L1	17.98	469.72	224.83	17.98		
AC 95	S_95	68.4	Lw	L1	17.98	469.72	224.11	17.98		
AC 96	S_96	68.4	Lw	L1	17.98	469.66	223.38	17.98		

Cadna Noise Model - Point Sources (4 of 4)									
Name	ID	Result. PWL	L	_w / Li		Coordinates			
		Day	Туре	Value		Х	Y	Z	
		(dBA)			(m)	(m)	(m)	(m)	
AC 97	S_97	68.4	Lw	L1	17.98	469.66	222.58	17.98	
AC 98	S_98	68.4	Lw	L1	17.98	469.66	221.66	17.98	
AC 99	S_99	68.4	Lw	L1	17.98	462.71	221.39	17.98	
AC 100	S_100	68.4	Lw	L1	17.98	462.78	222.25	17.98	
AC 101	S_101	68.4	Lw	L1	17.98	462.84	223.18	17.98	
AC 102	S_102	68.4	Lw	L1	17.98	462.84	223.91	17.98	
AC 103	S_103	68.4	Lw	L1	17.98	462.84	224.7	17.98	
AC 104	S_104	68.4	Lw	L1	17.98	462.84	225.49	17.98	
AC 105	S_105	68.4	Lw	L1	17.98	462.84	226.55	17.98	
AC 106	S_106	68.4	Lw	L1	17.98	462.71	227.48	17.98	
AC 107	S_107	68.4	Lw	L1	17.98	462.71	228.07	17.98	
AC 108	S_108	68.4	Lw	L1	17.98	462.71	229.4	17.98	
AC 109	S_109	68.4	Lw	L1	17.98	462.71	230.46	17.98	
AC 110	S_110	68.4	Lw	L1	17.98	462.71	230.98	17.98	
AC 111	S_111	68.4	Lw	L1	17.98	462.65	231.98	17.98	
AC 112	S_112	68.4	Lw	L1	17.98	462.65	232.97	17.98	
AC 113	S_113	68.4	Lw	L1	17.98	462.65	233.96	17.98	
AC 114	S_114	68.4	Lw	L1	17.98	462.65	235.22	17.98	
AC 115	S_115	68.4	Lw	L1	17.98	462.98	237.2	17.98	
AC 116	S_116	68.4	Lw	L1	17.98	462.91	236.48	17.98	
AC 117	S_117	68.4	Lw	L1	17.98	462.98	237.86	17.98	
AC 118	S_118	68.4	Lw	L1	17.98	462.91	238.53	17.98	
AC 119	S_119	68.4	Lw	L1	17.98	462.91	239.58	17.98	
AC 120	S_120	68.4	Lw	L1	17.98	463.11	241.3	17.98	
AC 121	S_121	68.4	Lw	L1	17.98	463.11	242.36	17.98	
AC 122	S_122	68.4	Lw	L1	17.98	463.24	243.29	17.98	
AC 123	S_123	68.4	Lw	L1	17.98	463.31	244.21	17.98	
AC 124	S_124	68.4	Lw	L1	17.98	463.24	245.07	17.98	
AC 125	S_125	68.4	Lw	L1	17.98	463.04	246.2	17.98	
AC 126	S_126	68.4	Lw	L1	17.98	463.04	246.99	17.98	
AC 127	S_127	68.4	Lw	L1	17.98	463.11	248.45	17.98	
AC 128	S_128	68.4	Lw	L1	17.98	462.91	240.64	17.98	

Cadna Noise Model - Building								
Name	ID	Coordinates						
		Х	Y	Z				
		(m)	(m)	(m)				
		478.36	250.71	16.76				
		483.19	250.11	16.76				
		483.31	252.61	16.76				
		491.31	252.03	16.76				
		491.27	248.28	16.76				
		490.81	248.4	16.76				
		490.61	245.27	16.76				
		490.9	245.27	16.76				
		490.19	238.44	16.76				
		489.98	238.31	16.76				
		488.59	220.58	16.76				
On-Site Building	BL_1	481.58	221.15	16.76				
		481.48	220.12	16.76				
		475.95	220.72	16.76				
		476.88	232.49	16.76				
		472.41	232.56	16.76				
		472.31	220.29	16.76				
		461.52	220.41	16.76				
		462.02	250.17	16.76				
		472.61	250.04	16.76				
		472.52	240.29	16.76				
		477.36	239.87	16.76				
		478.36	250.67	16.76				

Cadna Noise Model - Noise Levels at Receivers										
Name	ID	Level Lr	Height		Coordinates					
		Day		X Y Z						
		(dBA)	(m)	(m)	(m)	(m)				
South	R_1	35.4	1.52	483.98	217.83	1.52				
East	R_2	33.7	1.52	491.60	233.54	1.52				
West	R_3	35.9	1.52	460.48	233.63	1.52				
East (4th)	R_4	40.2	10.67	491.69	233.54	10.67				

APPENDIX F

Temporary Construction Noise Calculations

Job:	Montezuma
Job #:	B70115N1
Date:	2/17/2017
Source:	Excavator
Receiver:	South-Demo

Noise Source]
Noise Level (dBA)	70	at	50	feet	
Distances					1
Source Elevation	0	feet	at	5	feet above grade
Receiver Elevation:	0	feet	at	5	feet above grade
Source to Receiver Distance:	60	feet	-		•
Path Calculation					
Source to Receiver Direct Pat	h Distance:	60	feet		
Sound Pressure Level	68.4	at	60	feet]
Hours of Use:	12				

Duty Cycle (%):	40		
Level During 12 Hour day:	64.4		
		_	

Summation		
Number of Sources:	4	_
Level during 12 hour day:	72.5	

Job:	Montezuma
Job #:	B70115N1
Date:	2/17/2017
Source:	Backhoe
Receiver:	South-Demo

73	at	50		
73	at	50		
		00	feet	
0	feet	at	5	feet above grade
0	feet	at	5	feet above grade
60	feet	_		-
n Distance:	60	feet		
71.4	at	60	feet]
12				
40				
67.4				
	0 0 60 h Distance: 71.4 12 40 67.4	0 feet 0 feet 60 feet h Distance: 60 71.4 at 12 40 67.4	0 feet at 0 feet at 60 feet at n Distance: 60 feet 71.4 at 60 12 40 67.4	0 feet at 5 0 feet at 5 60 feet at 5 n Distance: 60 feet feet 71.4 at 60 feet 12 40 67.4 67.4 67.4

Job:MontezumaJob #:B70115N1Date:2/17/2017Source:Dump TruckReceiver:South-Demo

Noise Source				1
Noise Level (dBA) 75	at	50	feet	
Distances				
Source Elevation 0	feet	at	5	feet above grade
Receiver Elevation: 0	feet	at	5	feet above grade
Source to Receiver Distance: 60	feet	-		
Path Calculation				
Source to Receiver Direct Path Distance:	60	feet		
Sound Pressure Level73.4	at	60	feet	1
Hours of Use: 12				
Duty Cycle (%): 40				
Level During 12 Hour day:69.4				

Job:MontezumaJob #:B70115N1Date:2/17/2017Source:Skid Steer LoaderReceiver:South-Demo

Noise Source]
Noise Level (dBA)	65	at	50	feet	
Distances					
Source Elevation	0	feet	at	5	feet above grade
Receiver Elevation:	0	feet	at	5	feet above grade
Source to Receiver Distance:	60	feet			-
Path Calculation					
Source to Receiver Direct Path	Distance:	60	feet		
Sound Pressure Level	63.4	at	60	feet	1
Hours of Use:	12			-	
Duty Cycle (%):	40				
Level During 12 Hour day:	59.4				

Job:	Montezuma
Job #:	B70115N1
Date:	2/17/2017
Source:	Excavator
Receiver:	East-Demo

Noise Source					
Noise Level (dBA)	70	at	50	feet	
Distances					
Source Elevation	0	feet	at	5	feet above grade
Receiver Elevation:	0	feet	at	5	feet above grade
Source to Receiver Distance:	50	feet			
Path Calculation					
Source to Receiver Direct Path	Distance:	50	feet		
Sound Pressure Level	70.0	at	50	feet	7
Hours of Use:	12				
Duty Cycle (%):	40	-			

Summation	
Number of Sources:	4
Level during 12 hour day:	74.1

Level During 12 Hour day: 66.0

Job:	Montezuma
Job #:	B70115N1
Date:	2/17/2017
Source:	Backhoe
Receiver:	East-Demo

Noise Source]
Noise Level (dBA) _	73	at	50	feet	
Distances					
Source Elevation	0	feet	at	5	feet above grade
Receiver Elevation:	0	feet	at	5	feet above grade
Source to Receiver Distance:	50	feet	-		-
Path Calculation					
Source to Receiver Direct Path	Distance:	50	feet		
Sound Pressure Level	73.0	at	50	feet	1
Hours of Use:	12				
Duty Cycle (%):	40				
Level During 12 Hour day:	69.0				

Job:MontezumaJob #:B70115N1Date:2/17/2017Source:Dump TruckReceiver:East-Demo

Noise Source				1
Noise Level (dBA) 75	at	50	feet	
Distances				
Source Elevation 0	feet	at	5	feet above grade
Receiver Elevation: 0	feet	at	5	feet above grade
Source to Receiver Distance: 50	feet			-
Path Calculation				
Source to Receiver Direct Path Distance:	50	feet		
Sound Pressure Level 75.0 Hours of Use: 12	at	50	feet]
Duty Cycle (%): 40				
Level During 12 Hour day: 71.0				

Job:MontezumaJob #:B70115N1Date:2/17/2017Source:Skid Steer LoaderReceiver:East-Demo

Noise Source					
Noise Level (dBA)	65	at	50	feet	
Distances					
Source Elevation	0	feet	at	5	feet above grade
Receiver Elevation:	0	feet	at	5	feet above grade
Source to Receiver Distance:	50	feet			-
Path Calculation]	
Source to Receiver Direct Path	Distance:	50	feet		
Sound Pressure Level	65.0	at	50	feet	7
Hours of Use:	12			_	
Duty Cycle (%):	40				
Level During 12 Hour day:	61.0				

Job:	Montezuma
Job #:	B70115N1
Date:	2/17/2017
Source:	Dump Truck
Receiver:	South-Foundation

Noise Source]
Noise Level (dBA)	75	at	50	feet	
Distanças					_
Source Elevation	0	feet	at	5	feet above grade
Receiver Elevation:	0	feet	at	5	feet above grade
Source to Receiver Distance:	60	feet	-		_
Path Calculation					
Source to Receiver Direct Path	Distance:	60	feet		
Sound Pressure Level	73.4	at	60	feet	7
Hours of Use:	12	•			

40

69.4

Summation		
Number of Sources:	4	
Level during 12 hour day:	73.8	

Duty Cycle (%):

Level During 12 Hour day:

Job:MontezumaJob #:B70115N1Date:2/17/2017Source:Skid Steer LoaderReceiver:South-Foundation

Noise Source]
Noise Level (dBA)	65	at	50	feet	
Distances					
Source Elevation	0	feet	at	5	feet above grade
Receiver Elevation:	0	feet	at	5	feet above grade
Source to Receiver Distance:	60	feet	-		
Path Calculation					
Source to Receiver Direct Path	Distance:	60	feet		
Sound Pressure Level	63.4	at	60	feet	1
Hours of Use:	12				
Duty Cycle (%):	40				
Level During 12 Hour day:	59.4				

Job:MontezumaJob #:B70115N1Date:2/17/2017Source:Concrete MixerReceiver:South-Foundation

Noise Source]
Noise Level (dBA) 76	at	50	feet	
Distances				
Source Elevation 0	feet	at	5	feet above grade
Receiver Elevation: 0	feet	at	5	feet above grade
Source to Receiver Distance: 60	feet			_
Path Calculation				
Source to Receiver Direct Path Distance:	60	feet		
Sound Pressure Level 74.4	at	60	feet	7
Hours of Use: 12				
Duty Cycle (%): 40				
Level During 12 Hour day: 70.4				

Job:MontezumaJob #:B70115N1Date:2/17/2017Source:Concrete PumpReceiver:South-Foundation

Noise Source]
Noise Level (dBA) 74	at	50	feet	
Distances				
Source Elevation 0	feet	at	5	feet above grade
Receiver Elevation: 0	feet	at	5	feet above grade
Source to Receiver Distance: 60	feet			_
Path Calculation]	
Source to Receiver Direct Path Distance:	60	feet		
Sound Pressure Level 72.4	at	60	feet	7
Hours of Use: 12	_		_	
Duty Cycle (%): 20	-			
Level During 12 Hour day: 65.4	-			

Job:	Montezuma
Job #:	B70115N1
Date:	2/17/2017
Source:	Dump Truck
Receiver:	East-Foundation

Noise Source]
Noise Level (dBA)	75	at	50	feet	
Distances					
Source Elevation	0	feet	at	5	feet above grade
Receiver Elevation:	0	feet	at	5	feet above grade
Source to Receiver Distance:	50	feet	-		
Path Calculation					
Source to Receiver Direct Path	Distance:	50	feet		
Sound Pressure Level	75.0	at	50	feet	1
Hours of Use:	12	-			
Duty Cycle (%):	40	•			

Summation	
Number of Sources:	4
Level during 12 hour day:	75.4

Level During 12 Hour day: 71.0

Job:MontezumaJob #:B70115N1Date:2/17/2017Source:Skid Steer LoaderReceiver:East-Foundation

Noise Source]
Noise Level (dBA)	65	at	50	feet	
Distances					
Source Elevation	0	feet	at	5	feet above grade
Receiver Elevation:	0	feet	at	5	feet above grade
Source to Receiver Distance:	50	feet	-		-
Path Calculation					
Source to Receiver Direct Path	Distance:	50	feet		
Sound Pressure Level	65.0	at	50	feet	1
Hours of Use:	12				
Duty Cycle (%):	40				
Level During 12 Hour day:	61.0				

Job:MontezumaJob #:B70115N1Date:2/17/2017Source:Concrete MixerReceiver:East-Foundation

Noise Source]
Noise Level (dBA) 76	at	50	feet	
Distances				
Source Elevation 0	feet	at	5	feet above grade
Receiver Elevation: 0	feet	at	5	feet above grade
Source to Receiver Distance: 50	feet	-		
Path Calculation				
Source to Receiver Direct Path Distance:	50	feet		
Sound Pressure Level	at	50	feet	7
Hours of Use: 12				
Duty Cycle (%): 40				
Level During 12 Hour day: 72.0				

Job:MontezumaJob #:B70115N1Date:2/17/2017Source:Concrete PumpReceiver:East-Foundation

Noise Source]
Noise Level (dBA)	74	at	50	feet	
Distances					
Source Elevation	0	feet	at	5	feet above grade
Receiver Elevation:	0	feet	at	5	feet above grade
Source to Receiver Distance:	50	feet			-
Path Calculation]	
Source to Receiver Direct Path	Distance:	50	feet		
Sound Pressure Level	74.0	at	50	feet	1
Hours of Use:	12			-	
Duty Cycle (%):	20				
Level During 12 Hour day:	67.0				

Job:	Montezuma
Job #:	B70115N1
Date:	2/17/2017
Source:	Forklift
Receiver:	South-Framing

Noise Source]
Noise Level (dBA)	74	at	50	feet	
Distances					
Source Elevation	0	feet	at	5	feet above grade
Receiver Elevation:	0	feet	at	5	feet above grade
Source to Receiver Distance:	60	feet	_		-
Path Calculation					
Source to Receiver Direct Path	n Distance:	60	feet		
Sound Pressure Level	72.4	at	60	feet	1
Hours of Use:	12	•			

Duty Cycle (%): 40

Number of Sources: 3

Level during 12 hour day: 73.4

Level During 12 Hour day: 68.4

Summation

Job:MontezumaJob #:B70115N1Date:2/17/2017Source:Skid Steer LoaderReceiver:South-Framing

Noise Source					T
Noise Level (dBA) _	65	at	50	feet	
Distances					
Source Elevation	0	feet	at	5	feet above grade
Receiver Elevation:	0	feet	at	5	feet above grade
Source to Receiver Distance:	60	feet	-		-
Path Calculation					
Source to Receiver Direct Path	Distance:	60	feet		
Sound Pressure Level	63.4	at	60	feet	1
Hours of Use:	12				
Duty Cycle (%):	40				
Level During 12 Hour day:	59.4				

Job:MontezumaJob #:B70115N1Date:2/17/2017Source:CraneReceiver:South-Framing

Noise Source]
Noise Level (dBA) 81	at	50	feet	
Distances				
Source Elevation 0	feet	at	5	feet above grade
Receiver Elevation: 0	feet	at	5	feet above grade
Source to Receiver Distance: 60	feet	-		-
Path Calculation				
Source to Receiver Direct Path Distance:	60	feet		
Sound Pressure Level 79.4	at	60	feet	7
Hours of Use: 12				
Duty Cycle (%): 16				
Level During 12 Hour day: 71.5				

Job:	Montezuma
Job #:	B70115N1
Date:	2/17/2017
Source:	Forklift
Receiver:	East-Framing

Noise Source]
Noise Level (dBA)	74	at	50	feet	
Distances					
Source Elevation	0	feet	at	5	feet above grade
Receiver Elevation:	0	feet	at	5	feet above grade
Source to Receiver Distance:	50	feet	-		
Path Calculation					
Source to Receiver Direct Path	n Distance:	50	feet		
Sound Pressure Level	74.0	at	50	feet]
Hours of Use:	12				

Duty Cycle (%): 40

Level During 12 Hour day: 70.0

Number of Sources: 3

Level during 12 hour day: 75.0

Summation

Job:MontezumaJob #:B70115N1Date:2/17/2017Source:Skid Steer LoaderReceiver:East-Framing

					_
Noise Source					
Noise Level (dBA)	65	at	50	feet	
Distances					
Source Elevation	0	feet	at	5	feet above grade
Receiver Elevation:	0	feet	at	5	feet above grade
Source to Receiver Distance:	50	feet	-		-
Path Calculation					
Source to Receiver Direct Path I	Distance:	50	feet		
Sound Pressure Level	65.0	at	50	feet	1
Hours of Use:	12				
Duty Cycle (%):	40				
Level During 12 Hour day:	61.0				

Job:MontezumaJob #:B70115N1Date:2/17/2017Source:CraneReceiver:East-Framing

Noise Source]
Noise Level (dBA) 81	at	50	feet	
Distances				
Source Elevation 0	feet	at	5	feet above grade
Receiver Elevation: 0	feet	at	5	feet above grade
Source to Receiver Distance: 50	feet	-		_
Path Calculation				
Source to Receiver Direct Path Distance:	50	feet		
Sound Pressure Level 81.0	at	50	feet	1
Hours of Use: 12				
Duty Cycle (%): 16				
Level During 12 Hour day: 73.0				

Job:	Montezuma
Job #:	B70115N1
Date:	2/17/2017
Source:	Forklift
Receiver:	South-Finishing

Noise Source]
Noise Level (dBA)	74	at	50	feet	
Distances					
Source Elevation	0	feet	at	5	feet above grade
Receiver Elevation:	0	feet	at	5	feet above grade
Source to Receiver Distance:	60	feet	-		-
Path Calculation					
Source to Receiver Direct Pat	h Distance:	60	feet		
Sound Pressure Level	72.4	at	60	feet]
Hours of Use:	12				

40

Summation		
Number of Sources:	2	

Duty Cycle (%):

Level During 12 Hour day: 68.4

Level during 12 hour day: 69.0

Job:MontezumaJob #:B70115N1Date:2/17/2017Source:Skid Steer LoaderReceiver:South-Finishing

Noise Source]
Noise Level (dBA)	65	at	50	feet	
Distances					
Source Elevation	0	feet	at	5	feet above grade
Receiver Elevation:	0	feet	at	5	feet above grade
Source to Receiver Distance:	60	feet	-		
Path Calculation					
Source to Receiver Direct Path	Distance:	60	feet		
Sound Pressure Level	63.4	at	60	feet	1
Hours of Use:	12				
Duty Cycle (%):	40				
Level During 12 Hour day:	59.4				

Montezuma
B70115N1
2/17/2017
Forklift
East-Finishing

Noise Source]
Noise Level (dBA)	74	at	50	feet	
Distances					-
Source Elevation	0	feet	at	5	feet above grade
Receiver Elevation:	0	feet	at	5	feet above grade
Source to Receiver Distance:	50	feet	-		-
Path Calculation					
Source to Receiver Direct Path	Distance:	50	feet		
Sound Pressure Level	74.0	at	50	feet]
Hours of Use:	12				

Duty Cycle (%): 40

Number of Sources: 2

Level during 12 hour day: 70.5

Level During 12 Hour day: 70.0

Summation

Job:MontezumaJob #:B70115N1Date:2/17/2017Source:Skid Steer LoaderReceiver:East-Finishing

Noise Source					7
Noise Level (dBA) _	65	at	50	feet	
Distances					
Source Elevation	0	feet	at	5	feet above grade
Receiver Elevation:	0	feet	at	5	feet above grade
Source to Receiver Distance:	50	feet	•		-
Path Calculation					
Source to Receiver Direct Path	Distance:	50	feet		
Sound Pressure Level	65.0	at	50	feet	1
Hours of Use:	12				
Duty Cycle (%):	40				
Level During 12 Hour day:	61.0				

REPORT OF PRELIMINARY GEOTECHNICAL INVESTIGATION

PROPOSED APARTMENT BUILDING 6213-6219 MONTEZUMA ROAD SAN DIEGO, CALIFORNIA

PREPARED FOR

ELSEY PARTNERS 1532 COLLEGE AVENUE F19 MANHATTAN, KANSAS 66502

PREPARED BY

CHRISTIAN WHEELER ENGINEERING 3980 HOME AVENUE SAN DIEGO, CALIFORNIA 92105

3980 Home Avenue + San Diego, CA 92105 + 619-550-1700 + FAX 619-550-1701

November 17, 2015

Elsey Partners 1532 College Avenue F19 Manhattan, Kansas 66502 Attention: Chris Elsey CWE 2150650.01

Subject:Report of Preliminary Geotechnical InvestigationProposed Apartment Building, 6213-6219 Montezuma Road, San Diego, California

Ladies and Gentlemen:

In accordance with your request, and our proposal and agreement dated October 28, 2015, we have completed a geotechnical investigation for the subject project. We are presenting herewith a report of our findings and recommendations.

If you have questions after reviewing this report, please do not hesitate to contact our office. This opportunity to be of professional service is sincerely appreciated.

If you have any questions after reviewing this report, please do not hesitate to contact our office. This opportunity to be of professional service is sincerely appreciated.

Respectfully submitted, CHRISTIAN WHEELER ENGINEERING

Shawn C. Caya, R.G.E. #2748 TSW:jdb;tsw;scc cc: chris@myprimeplace.com

NGINEERING GEOLOGIS1 FOFCA

CERTIFIED

Troy S. Wilson, C.E.G. #2551

TABLE OF CONTENTS

PAGE

Project Scope 2 Findings 3 Site Description 3 General Geology and Subsurface Conditions 3 Geologic Setting and Soil Description 3 Artificial Fill 3 Colluvium 4 Very Old Paralic Deposits 4 Mission Valley Formation 4 Groundwater 4 Tectonic Setting 5 Geologic Hazards 5 Geologic Hazards 5 Geologic Hazards 5 Geologic Hazards 5 Liquefaction 7 Flooding 7 Seiches 7 Conclusions 7 Recommendations 8 Grading and Earthwork 8 General 9 Compaction and Method of Filling 9 Surface Drainage 10 Temporary Cut Slopes 10 Shored Slopes 10 Shored Slopes 10 Shored Slopes 10 Shored Slopes 10 Shored Slopes
Findings 3 Site Description 3 General Geology and Subsurface Conditions 3 Geologic Setting and Soil Description 3 Artificial Fill 3 Colluvium 4 Very Old Paralic Deposits 4 Mission Valley Formation 4 Groundwater 4 Tectonic Setting 5 Geologic Hazards 5 Geologic Hazards Category 5 Landslide Potential and Slope Stability 6 Seismic Design Hazard 6 Liquefaction 7 Flooding 7 Seiches 7 Conclusions 7 Recommendations 8 Grading and Earthwork 8 Grading and Earthwork 8 Stite Preparation 8 Processing of Fill Areas and Building Pad 9 Observation of Grading 9 Surface Drainage 10 Temporary Cut Slopes 10 Shoring Design and Lateral Pressures 10 Shoring Design and Lateral Pressures 11
Site Description 3 General Geology and Subsurface Conditions 3 Geologic Setting and Soil Description 3 Artificial Fill 3 Colluvium 4 Very Old Paralic Deposits 4 Mission Valley Formation 4 Groundwater 4 Tectonic Setting 5 Geologic Hazards 5 Geologic Hazards Category 5 Landslide Potential and Slope Stability 6 Seismic Design Hazard 6 Liquefaction 7 Flooding 7 Sciches 7 Conclusions 7 Recommendations 8 Grading and Earthwork 8 Grading and Earthwork 8 Site Preparation 8 Stier Preparation 9 Compaction and Method of Filling 9 Surface Drainage 10 Shored Slopes 10 Shored Slopes 10 Shored Slopes 10 Shored Slopes 10 Shoring Design and Lateral Pres
General Geology and Subsurface Conditions 3 Geologic Setting and Soil Description 3 Artificial Fill 3 Colluvium 4 Very Old Paralic Deposits 4 Mission Valley Formation 4 Groundwater 4 Tectonic Setting 5 Geologic Hazards 55 Geologic Hazards Category 5 Landslide Potential and Slope Stability 6 Seismic Design Hazard 6 Liquefaction 7 Flooding. 7 Tsunamis 7 Seiches. 7 Conclusions 7 Recommendations 8 Grading and Earthwork 8 Grading and Earthwork 8 Stite Preparation 9 Surface Drainage 10 Temporary Cut Slopes 10 General 10 Shoring Design and Lateral Pressures 11 Lagging 11 Texpoke Anchor Design 11
Geologic Setting and Soil Description 3 Artificial Fill 3 Colluvium 4 Very Old Paralic Deposits 4 Mission Valley Formation 4 Groundwater 4 Tectonic Setting 5 Geologic Hazards 5 Geologic Hazards Category 5 Landslide Potential and Slope Stability 6 Seismic Design Hazard 6 Liquefaction 7 Flooding 7 Sciches 7 Conclusions 7 Recommendations 8 Grading and Earthwork 8 Greeral 8 Observation of Grading 9 Surface Drainage 10 Shoring Design and Lateral Pressures 10 Shoring Design and Lateral Pressures 11 Lagging 11 Texpick Anchor Design 11
Artificial Fill 3 Colluvium 4 Very Old Paralic Deposits 4 Mission Valley Formation 4 Groundwater 4 Tectonic Setting 5 Geologic Hazards 5 Geologic Hazards Category 5 Landslide Potential and Slope Stability 6 Seismic Design Hazard 6 Liquefaction 7 Flooding. 7 Tsunamis 7 Seiches 7 Conclusions 7 Recommendations 8 Grading and Earthwork 8 General 8 Observation of Grading 9 Surface Drainage 10 Temporary Cut Slopes 10 Shoring Design and Lateral Pressures 11 Design of Soldier Piles 11 Lagging. 11
Colluvium4Very Old Paralic Deposits4Mission Valley Formation4Groundwater4Tectonic Setting5Geologic Hazards5Geologic Hazards5Landslide Potential and Slope Stability6Seismic Design Hazard6Liquefaction7Flooding7Tsunamis7Seiches7Conclusions7Recommendations8General8Observation of Grading8Site Preparation8Processing of Fill Areas and Building Pad9Compaction and Method of Filling9Surface Drainage10Shoring Design and Lateral Pressures11Design of Soldier Piles11Lagging11Lagging11Lagging11Lagging11Lagging11
Very Old Paralic Deposits 4 Mission Valley Formation 4 Groundwater 4 Tectonic Setting 5 Geologic Hazards 5 Geologic Hazards Category 5 Landslide Potential and Slope Stability 6 Seismic Design Hazard. 6 Liquefaction 7 Flooding. 7 Tunamis. 7 Seiches. 7 Conclusions 7 Recommendations 8 Grading and Earthwork 8 General 8 Diservation of Grading 9 Compaction and Method of Filling 9 Surface Drainage 10 Shoring Design and Lateral Pressures 11 Lagging. 11 Lagging. 11
Mission Valley Formation 4 Groundwater 4 Tectonic Setting 5 Geologic Hazards 5 Geologic Hazards Category 5 Landslide Potential and Slope Stability 6 Seismic Design Hazard 6 Liquefaction 7 Flooding 7 Tsunamis. 7 Seiches 7 Conclusions 7 Recommendations 8 Grading and Earthwork 8 General 8 Observation of Grading 8 Site Preparation 8 Processing of Fill Areas and Building Pad 9 Compaction and Method of Filling 9 Surface Drainage 10 Temporary Cut Slopes 10 Shoring Design and Lateral Pressures 11 Design of Soldier Piles 11 Lagging 11
Groundwater4Tectonic Setting5Geologic Hazards5Geologic Hazards Category5Landslide Potential and Slope Stability6Seismic Design Hazard6Liquefaction7Flooding7Tsunamis7Seiches7Conclusions7Recommendations8Grading and Earthwork8General8Observation of Grading8Site Preparation8Processing of Fill Areas and Building Pad9Surface Drainage10Temporary Cut Slopes10Shoring Design and Lateral Pressures11Design of Soldier Piles11Lagging11Lagging11Lagging11Lagging11Lagging11Lagging11Lagging11Lagging11Lagging11
Tectonic Setting5Geologic Hazards5Geologic Hazards Category5Landslide Potential and Slope Stability6Seismic Design Hazard6Liquefaction7Flooding7Tsunamis7Seiches7Conclusions7Recommendations8Grading and Earthwork8General8Observation of Grading9Compaction and Method of Filling9Surface Drainage10Temporary Cut Slopes10Shoring Design and Lateral Pressures11Design of Soldier Piles11Lagging11Lagging11Lagging11Lagging11Lagging11Lagging11Lagging11Lagging11
Geologic Hazards 5 Geologic Hazards Category 5 Landslide Potential and Slope Stability 6 Seismic Design Hazard 6 Liquefaction 7 Flooding 7 Tsunamis 7 Seiches 7 Conclusions 7 Recommendations 8 Grading and Earthwork 8 General 8 Observation of Grading 8 Site Preparation 8 Processing of Fill Areas and Building Pad 9 Compaction and Method of Filling 9 Surface Drainage 10 Temporary Cut Slopes 10 Shoring Design and Lateral Pressures 11 Design of Soldier Piles 11 Lagging 11 Lagging 11 Tieback Anchor Design 11
Geologic Hazards Category5Landslide Potential and Slope Stability6Seismic Design Hazard6Liquefaction7Flooding7Tsunamis7Seiches7Conclusions7Recommendations8Grading and Earthwork8Observation of Grading8Site Preparation8Processing of Fill Areas and Building Pad9Compaction and Method of Filling9Surface Drainage10Temporary Cut Slopes10Shoring Design and Lateral Pressures11Lagging11Lagging11Lagging11
Landslide Potential and Slope Stability 6 Seismic Design Hazard 6 Liquefaction 7 Flooding 7 Tsunamis 7 Seiches 7 Conclusions 7 Recommendations 8 Grading and Earthwork 8 General 8 Observation of Grading 8 Site Preparation 8 Processing of Fill Areas and Building Pad 9 Compaction and Method of Filling 9 Surface Drainage 10 Temporary Cut Slopes 10 Shoring Design and Lateral Pressures 11 Design of Soldier Piles 11 Lagging 11 Tieback Anchor Design 11
Seismic Design Hazard. 6 Liquefaction 7 Flooding. 7 Tsunamis. 7 Seiches. 7 Conclusions 7 Recommendations 8 Grading and Earthwork 8 General 8 Observation of Grading 8 Site Preparation 8 Processing of Fill Areas and Building Pad. 9 Compaction and Method of Filling 9 Surface Drainage 10 Temporary Cut Slopes 10 Shored Slopes. 10 Shoring Design and Lateral Pressures 11 Design of Soldier Piles 11 Lagging. 11 Tieback Anchor Design 11
Liquefaction 7 Flooding. 7 Tsunamis 7 Seiches. 7 Conclusions 7 Recommendations 8 Grading and Earthwork 8 General 8 Observation of Grading. 8 Site Preparation 8 Processing of Fill Areas and Building Pad. 9 Compaction and Method of Filling 9 Surface Drainage 10 Temporary Cut Slopes 10 Shored Slopes. 10 Shoring Design and Lateral Pressures 11 Design of Soldier Piles 11 Lagging. 11 Tieback Anchor Design 11
Flooding
Tsunamis.7Seiches.7Conclusions7Recommendations8Grading and Earthwork8General8Observation of Grading8Site Preparation8Processing of Fill Areas and Building Pad9Compaction and Method of Filling9Surface Drainage10Temporary Cut Slopes10Shored Slopes10Shoring Design and Lateral Pressures11Design of Soldier Piles11Lagging11Tieback Anchor Design11
Seiches7Conclusions7Recommendations8Grading and Earthwork8General8Observation of Grading8Site Preparation8Processing of Fill Areas and Building Pad9Compaction and Method of Filling9Surface Drainage10Temporary Cut Slopes10Shored Slopes10Shoring Design and Lateral Pressures11Design of Soldier Piles11Lagging11Tieback Anchor Design11
Conclusions7Recommendations8Grading and Earthwork8General8Observation of Grading8Site Preparation8Processing of Fill Areas and Building Pad9Compaction and Method of Filling9Surface Drainage10Temporary Cut Slopes10Shored Slopes10Shoring Design and Lateral Pressures11Design of Soldier Piles11Lagging11Tieback Anchor Design11
Recommendations 8 Grading and Earthwork 8 General 8 Observation of Grading. 8 Site Preparation. 8 Processing of Fill Areas and Building Pad. 9 Compaction and Method of Filling 9 Surface Drainage 10 Temporary Cut Slopes 10 Shored Slopes. 10 Shoring Design and Lateral Pressures 11 Design of Soldier Piles 11 Lagging. 11 Tieback Anchor Design 11
Grading and Earthwork8General8Observation of Grading8Site Preparation8Processing of Fill Areas and Building Pad9Compaction and Method of Filling9Surface Drainage10Temporary Cut Slopes10Shored Slopes.10Shoring Design and Lateral Pressures11Lagging.11Tieback Anchor Design11
General8Observation of Grading8Site Preparation8Processing of Fill Areas and Building Pad9Compaction and Method of Filling9Surface Drainage10Temporary Cut Slopes10Shored Slopes10General10Shoring Design and Lateral Pressures11Lagging11Tieback Anchor Design11
Observation of Grading.8Site Preparation.8Processing of Fill Areas and Building Pad.9Compaction and Method of Filling
Site Preparation.8Processing of Fill Areas and Building Pad.9Compaction and Method of Filling9Surface Drainage10Temporary Cut Slopes10Shored Slopes.10General10Shoring Design and Lateral Pressures11Lagging.11Tieback Anchor Design11
Processing of Fill Areas and Building Pad9Compaction and Method of Filling9Surface Drainage10Temporary Cut Slopes10Shored Slopes10General10Shoring Design and Lateral Pressures11Design of Soldier Piles11Lagging11Tieback Anchor Design11
Compaction and Method of Filling9Surface Drainage10Temporary Cut Slopes10Shored Slopes10General10Shoring Design and Lateral Pressures11Design of Soldier Piles11Lagging11Tieback Anchor Design11
Surface Drainage10Temporary Cut Slopes10Shored Slopes10General10Shoring Design and Lateral Pressures11Design of Soldier Piles11Lagging11Tieback Anchor Design11
Temporary Cut Slopes 10 Shored Slopes 10 General 10 Shoring Design and Lateral Pressures 11 Design of Soldier Piles 11 Lagging 11 Tieback Anchor Design 11
Shored Slopes
General10Shoring Design and Lateral Pressures11Design of Soldier Piles11Lagging11Tieback Anchor Design11
Shoring Design and Lateral Pressures 11 Design of Soldier Piles 11 Lagging 11 Tieback Anchor Design 11
Design of Soldier Piles
Lagging
Tieback Anchor Design 11
Anchor Testing
Internal Bracing
Monitoring 12
Foundations
General
Dimensions
Bearing Capacity
Footing Reinforcing 14

CWE 2150650.01 Proposed Apartment Building 6213-6219 Montezuma Road, San Diego, California
Lateral Load Resistance	14
Settlement Characteristics	14
Expansive Characteristics	14
Foundation Plan Review	14
Foundation Excavation Observation:	15
Soluble Sulfates	15
On-Grade Slabs	15
Interior Floor Slabs	15
Under-Slab Vapor Retarders	15
Exterior Concrete Flatwork	16
Earth Retaining Walls	16
Backfill	16
Foundations	17
Passive Pressures	17
Active Pressures	17
Waterproofing and Wall Drainage Systems	18
Limitations	18
Review, Observation and Testing	18
Uniformity of Conditions	18
Change in Scope	19
Time Limitations	19
Professional Standard	19
Client's Responsibility	20
Field Explorations	20
Laboratory Testing	21

TABLES

FIGURES

Figure 1 Site Vicinity Map, Follows Page 1

PLATES

Plates 1	Site Plan & Geologic Map
Plates 2-3	Geologic Cross Sections A-A' and B-B'
Plate 4	Active Lateral Pressures
Plates 5-6	Retaining Wall Subdrain

APPENDICES

- Appendix A Boring Logs
- Appendix B Lab Test Results
- Appendix C References
- Appendix D Recommended Grading Specifications-General Provisions

CHRISTIAN WHEELER ENGINEERING

REPORT OF PRELIMINARY GEOTECHNICAL INVESTIGATION

PROPOSED APARTMENT BUILDING 6213-6219 MONTEZUMA ROAD SAN DIEGO, CALIFORNIA

INTRODUCTION AND PROJECT DESCRIPTION

This report presents the results of a geotechnical investigation performed for a proposed apartment building to be constructed at 6213-6219 Montezuma Road, in the city of San Diego, California. The following Figure No. 1 presents a site vicinity map showing the location of the property.

We have not been provided with project plans; however, we understand that it is proposed to construct a four-story apartment structure over three levels of subterranean garage and associated improvements. The parking garage is expected to consist of masonry, concrete or shotcrete construction with concrete floor slabs. Site retaining walls may be necessary along the north, east and west property lines. We understand that the parking garage will be about 30 feet below the level of Montezuma Road. Grading is expected to be limited to making the excavation for the subterranean parking garage and associated driveways. The anticipated cuts will be about 30 feet at the front of the property, and about 43 feet at the rear. Shoring will be required for all sides of the excavation.

To assist in the preparation of this report, we were provided with a topographic survey map of the site prepared by JP Engineering, Inc., dated November 6, 2015. A copy of this plan was used as a base map for our geologic mapping, and is included herein as Plate No. 1. We have also reviewed our previous report by our firm for the project site. The borings logs from our previous subsurface investigation are provided in Appendix A.

This report has been prepared for the exclusive use of Elsey Partners and its consultants for specific application to the project described herein. Should the project be modified, the conclusions and recommendations presented in this report should be reviewed by Christian Wheeler Engineering for

conformance with our recommendations and to determine whether any additional subsurface investigation, laboratory testing and/or recommendations are necessary. Our professional services have been performed, our findings obtained, and our recommendations prepared in accordance with generally accepted engineering principles and practices. This warranty is in lieu of all other warranties, expressed or implied.

PROJECT SCOPE

Our preliminary geotechnical investigation included site reconnaissance analysis of the field and laboratory data from our previous investigation, and review of relevant literature. Our scope of services does not include additional subsurface exploration, additional laboratory testing, assessment of hazardous substance contamination, recommendations to prevent floor slab moisture intrusion or the formation of mold within the structure, or providing an evaluation or design of storm water infiltration facilities, or any other services not specifically described in the scope of services presented below. More specifically, our services included the following items.

- Review the previous preliminary geotechnical report prepared for the subject site.
- Describe the general geology at the site including possible geologic hazards that could have an effect on the proposed construction, and provide the seismic design parameters as required by the 2013 edition of the California Building Code.
- Address potential construction difficulties that may be encountered due to soil conditions, groundwater or geologic hazards, and provide recommendations concerning these problems.
- Provide site preparation recommendations for the anticipated work, as necessary.
- Provide design recommendations for temporary shoring.
- Prepare two cross sections that include the limits of grading.
- Recommend an appropriate foundation system for the type of structures anticipated and develop soil engineering design criteria for the recommended foundation design.
- Provide geotechnical design parameters for the construction of restrained and unrestrained retaining walls.
- Prepare this report, which includes, in addition to our conclusions and recommendations, a plan showing the aerial extent of the geological units and the locations of our exploratory borings, exploration logs, and a summary of the laboratory test results.

Although a test for the presence of soluble sulfates within the soils that may be in contact with reinforced concrete was performed as part of our previous investigation, it should be understood Christian Wheeler Engineering does not practice corrosion engineering. If such an analysis is considered necessary, we recommend that the client retain an engineering firm that specializes in this field to consult with them on this matter. The results of the test should only be used as a guideline to determine whether additional testing and analysis is necessary.

FINDINGS

SITE DESCRIPTION

The subject site is a rectangular shaped property located at 6213-6219 Montezuma Road, in the College area of San Diego. The property includes two parcels identified by Assessor's Parcel Numbers 467-171-28, and -29. The parcels cover about 0.3 acre in area, have about 110 feet of frontage along Montezuma Road, and extend back from the street about 120 feet. Topographically, the property slopes upward and southward from Montezuma Road, rising a vertical distance of about 13 feet. Various old foundations, retaining walls, concrete stairways and sidewalks from the previous structures and improvements exist on the property, along with a few small- to medium-size trees. The adjacent project to the east has below grade parking levels that are expected to extend up to 15 feet below grade.

GENERAL GEOLOGY AND SUBSURFACE CONDITIONS

GEOLOGIC SETTING AND SOIL DESCRIPTION: The subject site is located within the Coastal Physiographic Province of San Diego County. Based on our subsurface explorations, and analysis of readily available, pertinent geologic literature, the area of the site investigated was found to be underlain by artificial fill, colluvium, very old paralic deposits, and Mission Valley Formation deposits. Each of these units is discussed below in order of increasing age.

ARTIFICIAL FILL (Qaf): Fill materials were encountered in borings B-1 and B-2, extending to a depth of about four feet and two feet below existing grade, respectively. The fill encountered consists of light brown, reddish-brown, and dark brown, damp and moist, silty sand with clay

Page No. 4

and some cobble (SM). The maximum cobble size was about six inches. In general, the fill is loose. However, in boring B-1, the fill becomes medium dense at a depth of about two feet below existing grade. The fill soils encountered were judged to have a low expansive potential (EI < 50).

COLLUVIUM (Qcol): Colluvial deposits were encountered in borings B-1, B-2, and B-3 underlying the site to a depth of about ten feet, nine feet, and five feet below existing grade, respectively. These materials consist of light reddish-brown and reddish-brown, moist to very moist, medium dense, silty sand with clay and some gravel and cobble (SM). The maximum cobble size noted was about five inches. These materials were judged to have a low expansion potential (EI < 50).

VERY OLD PARALIC DEPOSITS (Qvop): Very old paralic deposits were encountered underlying the colluvium in all the borings. These materials consist of interbedded light reddishbrown, reddishbrown, dark brown, and light gray, moist to very moist, medium dense to very dense, silty sand with some gravel and cobble (SM), and sandy gravel with silt and cobble (GM). The maximum cobble size noted was about six inches. These materials were judged to have a low expansion potential (EI < 50).

MISSION VALLEY FORMATION (Tmv): Mission Valley Formation deposits were encountered underlying the very old paralic deposits in borings B-1, B-2, and B-3 at a depth of about 27 feet, 32 feet, and 25 feet, below existing grade, respectively. These materials consist of light gray and gray, moist, dense, silty sand and silty sand with clay. These materials were judged to have a low expansion potential (EI < 50).

GROUNDWATER: No groundwater or seepage was encountered in our subsurface explorations and we do not expect any groundwater related conditions during or after the proposed construction provided that proper drainage is maintained at the site.

It should, however be recognized that minor groundwater seepage problems might occur after development of a site even where none were present before development. These are usually minor

phenomena and are often the result of an alteration in drainage patterns and/or an increase in irrigation water.

TECTONIC SETTING: No active or potentially active faults are known to traverse the subject site. However, it should be noted that much of Southern California, including the San Diego County area, is characterized by a series of Quaternary-age fault zones that consist of several individual, en echelon faults that generally strike in a northerly to northwesterly direction. Some of these fault zones (and the individual faults within the zone) are classified as "active" according to the criteria of the California Division of Mines and Geology. Active fault zones are those that have shown conclusive evidence of faulting during the Holocene Epoch (the most recent 11,000 years). The Division of Mines and Geology used the term "potentially active" on Earthquake Fault Zone maps until 1988 to refer to all Quaternary-age (last 1.6 million years) faults for the purpose of evaluation for possible zonation in accordance with the Alquist-Priolo Earthquake Fault Zoning Act and identified all Quaternary-age faults as "potentially active" except for certain faults that were presumed to be inactive based on direct geologic evidence of inactivity during all of Holocene time or longer. Some faults considered to be "potentially active" would be considered to be "active" but lack specific criteria used by the State Geologist, such as sufficiently active and well-defined. Faults older than Quaternary-age are not specifically defined in Special Publication 42, Fault Rupture Hazard Zones in California, published by the California Division of Mines and Geology. However, it is generally accepted that faults showing no movement during the Quaternary period may be considered to be "inactive".

The nearest active fault zone is the Rose Canyon Fault Zone located approximately 5½ miles to the southwest of the site. Other active fault zones in the region that could possibly affect the site include the Newport-Inglewood Fault Zone to the northwest; the Palos Verde and Coronado Bank Fault Zones to the west; and the Elsinore, San Jacinto, and San Andreas Fault Zones to the northeast.

GEOLOGIC HAZARDS

GEOLOGIC HAZARDS CATEGORY: The site is located in Geologic Hazards Category 53 according to the most recent edition of the City of San Diego Seismic Safety Study. Hazards Category 53 is assigned to level or sloping terrain with unfavorable geologic structure where the risks are considered to be low to moderate. Based on the results of our study, it is our opinion that the potential risks can be considered to be low.

LANDSLIDE POTENTIAL AND SLOPE STABILITY: As part of this investigation we reviewed the publication, "Landslide Hazards in the Southern Part of the San Diego Metropolitan Area" by Tan, 1995. This reference is a comprehensive study that classifies San Diego County into areas of relative landslide susceptibility. According to this publication, the site is mapped within Relative Landslide Susceptibility Area 2, which is considered to be "marginally susceptible" to landsliding. Based on our findings, it is our professional opinion that the potential for slope failures within the site is low.

SEISMIC DESIGN HAZARD: A likely geologic hazard to affect the site is ground shaking as a result of movement along one of the major active fault zones mentioned in the "Tectonic Setting" section of this report. Per Chapter 16 of the 2013 California Building Code (CBC), the Maximum Considered Earthquake (MCE) ground motion is that considered to have a two percent probability of being exceeded in 50 years. Figures 1613.5(3) and 1614.5(4) of the CBC present regional MCE spectral accelerations for short (0.2 sec.) and long (1.0 sec.) periods, respectively, based on a soil Site Class B (CBC Table 1613.5.2) and a structural damping of five percent. For the subject site, we expect that correlation with field penetration resistance values will indicate that the upper 100 feet of geologic subgrade can be characterized as Site Class C. In this case, the mapped MCE spectral accelerations are modified using the Site Coefficients presented in Tables 1613.5.3(1) and (2). The modified MCE spectral accelerations are then multiplied by two-thirds in order to obtain the design spectral accelerations. These seismic design parameters for the subject site (32.770 °, -117.066°), based on Chapter 16 of the CBC, are presented in Table I below.

CBC – Chapter 16	Seismic Design Parameter	Recommende
Section		d Value
Table 1613.5.2	Soil Site Class	С
Figure 1613.5 (3)	Mapped Spectral Acceleration for Short Periods (0.2 sec), S _s	0.924 g
Figure 1613.5 (4)	Mapped Spectral Acceleration for 1.0 Sec Periods (1.0 sec), S1	0.354 g
Table 1613.5.3 (1)	Site Coefficient, Fa	1.030
Table 1613.5.3 (2)	Site Coefficient, F _v	1.446
Section 1613.5.3	$S_{MS} = MCE$ Spectral Response at 0.2 sec. = $(S_s)(F_a)$	0.952 g
Section 1613.5.3	S_{M1} = MCE Spectral Response at 1.0 sec. = $(S_1)(F_v)$	0.512 g
Section 1613.5.4	S_{DS} = Design Spectral Response at 0.2 sec. = $2/3(S_{MS})$	0.635 g
Section 1613.5.4	S_{D1} = Design Spectral Response at 1.0 sec. = $2/3(S_{M1})$	0.341 g
Section 1803.2.12	PGAmper Section 11.8.3 of ASCE 7	0.368 g

 TABLE I: CBC 2013 EDITION - SEISMIC DESIGN PARAMETERS

LIQUEFACTION: The near-surface soils encountered at the site are not considered susceptible to liquefaction due to such factors as depth to the groundwater table, soil density and grain-size distribution.

FLOODING: The site is located outside the boundaries of both the 100-year and the 500-year floodplains according to the maps prepared by the Federal Emergency Management Agency.

TSUNAMIS: Tsunamis are great sea waves produced by submarine earthquakes or volcanic eruptions. Due to the site's elevation and location, the site will not be affected by tsunamis.

SEICHES: Seiches are periodic oscillations in large bodies of water such as lakes, harbors, bays or reservoirs. Due to the site's location, it will not be affected by seiches.

CONCLUSIONS

It is our professional opinion and judgment that no geotechnical conditions exist within the subject site that would preclude the construction of the proposed apartment structure, provided the recommendations presented herein are followed.

The findings of our investigation indicate that most of the site is underlain by a relatively thin layer of potentially compressible fill soils. As encountered in our borings, these deposits do not exceed four feet in thickness. The fill materials are considered unsuitable, in their present condition, for the support of settlement sensitive improvements. Based on the proposed development scheme, it is anticipated that the majority of the existing fill will be removed in order to achieve finished pad grade. Any remaining fill underlying proposed settlement sensitive improvements will require removal and replacement as compacted fill.

An additional consideration is the temporary cut slopes proposed adjacent or near to property lines. The slopes will extend to a maximum depth of about 43 feet. We anticipate that these slopes will require shoring.

The adjacent property to the east supports a structure that has a subterranean parking component. We anticipate that the lowest level extends up to 15 feet below grade; however, the depth should be verified prior to designing foundations and shoring.

The site is located in an area that is relatively free of geologic hazards that will have a significant effect on the proposed construction. The most likely geologic hazard that could affect the site is ground shaking due to seismic activity along one of the regional active faults. However, construction in accordance with the requirements of the most recent edition of the California Building Code and the local governmental agencies should provide a level of life-safety suitable for the type of development proposed.

The final project plans should be submitted to this office for review in order to ascertain that the geotechnical recommendations remain applicable to the final plan and that no additional recommendations are needed due to changes in the anticipated development.

RECOMMENDATIONS

GRADING AND EARTHWORK

GENERAL: All grading should conform to the guidelines presented in Appendix J of the California Building Code, the minimum requirements of the City of San Diego, and the recommended Grading Specifications and Special Provisions attached hereto, except where specifically superseded in the text of this report. Prior to grading, a representative of Christian Wheeler Engineering should be present at the pre-construction meeting to provide additional grading guidelines, if necessary, and to review the earthwork schedule.

OBSERVATION OF GRADING: Continuous observation by the Geotechnical Consultant is essential during the grading operation to confirm conditions anticipated by our investigation, to allow adjustments in design criteria to reflect actual field conditions exposed, and to determine that the grading proceeds in general accordance with the recommendations contained herein.

SITE PREPARATION: Site preparation should begin with the removal of all existing construction debris, and the demolition of the remnants of the previous structures that existed at the site. The resulting debris as well as any vegetation and deleterious matter in areas of the site to be graded or receive proposed improvements should be removed and disposed of off-site at a legal dump site. Existing fill materials underlying settlement-sensitive improvements should be removed and replaced as compacted fill. Based on the proposed grading scheme, it is anticipated that the majority of these

materials will be removed to achieve finished pad grade, and the extent of this operation will be very minor. The bottoms of all excavations should be approved by our representative prior to placing fills or constructing improvements, and all areas to receive fill should be processed as described below in the "Processing of Fill Areas and Building Pad" section of this report. The soils removed may be replaced as compacted fill. It is anticipated that the building pad will be underlain by competent formational soils. However, the upper few inches of these materials will likely be disturbed during grading operations. It is recommended that the proposed building pad be prepared as described in the following paragraph.

PROCESSING OF FILL AREAS AND BUILDING PAD: Prior to placing any new fill soils or constructing any new improvements in areas that have been cleaned out to receive fill and approved by the geotechnical consultant or his representative, any exposed soils should be scarified to a depth of 12 inches, moisture conditioned, and compacted to at least 90 percent relative compaction. If the building pad is disturbed during grading operations, it is recommended that it be scarified to a depth of six inches, moisture-conditioned, and compacted to at least 95 percent relative compaction. This requirement will be determined by the Geotechnical Engineer after the building pad finished grade is reached.

COMPACTION AND METHOD OF FILLING: All structural fill and backfill material placed at the site should be compacted to a relative compaction of at least 90 percent of maximum dry density as determined by ASTM Laboratory Test D1557. Fills should be placed at or slightly above optimum moisture content, in lifts six to eight inches thick, with each lift compacted by mechanical means. Fills should consist of approved earth material, free of trash or debris, roots, vegetation, or other materials determined to be unsuitable by our soil technicians or project geologist. Fill material should be free of rocks or lumps of soil in excess of six inches in maximum dimension; however, in the upper two feet of pad grade, no rocks or lumps of soil in excess of three inches should be allowed.

All utility trench backfill should be compacted to a minimum of 90 percent of its maximum dry density. The upper twelve inches of subgrade beneath paved areas should be compacted to 95 percent of the materials maximum dry density. This compaction should be obtained by the paving contractor just prior to placing the aggregate base material and should not be part of the mass grading requirements or operation.

Page No. 10

SURFACE DRAINAGE: The drainage around the proposed improvements should be designed to collect and direct surface water away from proposed improvements toward appropriate drainage facilities. Rain gutters with downspouts that discharge runoff away from the structures into controlled drainage devices are recommended.

The ground around the proposed structures should be graded so that surface water flows rapidly away from the structure without ponding. In general, we suggest that the ground adjacent to structure slope away at a gradient of at least 2 percent. Densely vegetated areas where runoff can be impaired should have a minimum gradient of 5 percent within the first 5 feet from the structure. In our opinion, the project site is not suitable for storm water infiltration BMPs. We recommend that pervious pavements, bio retention areas, and bio swales be lined in such a manner as to prevent the storm water from infiltrating into the underlying soils and should be connected via pipes to the storm drain system.

TEMPORARY CUT SLOPES

Temporary cut slopes of up to about 43 feet in height are anticipated to be required during the construction of the proposed structure. The contractor is solely responsible for designing and constructing stable, temporary excavations and will need to shore, slope, or bench the sides of trench excavations as required to maintain the stability of the excavation sides. The contractor's "competent person", as defined in the OSHA Construction Standards for Excavations, 29 CFR, Part 1926, should evaluate the soil exposed in the excavations as part of the contractor's safety process. We anticipate that the existing on-site soils will consist of Type B material. Our firm should be contacted to observe all temporary cut slopes during grading to ascertain that no unforeseen adverse conditions exist. No surcharge loads such as foundation loads, or soil or equipment stockpiles, vehicles, etc. should be allowed within a distance from the top of temporary slopes equal to half the slope height.

SHORED SLOPES

GENERAL: It will be necessary to use shoring to support the sides most of the proposed excavation. Typically, cantilevered soldier pile walls with wood lagging are used for the conditions anticipated. Included herein are design parameters for such cantilevered walls. A specialty contractor with experience in shoring and bracing should provide shoring recommendations and plans. The subterranean level of the structure to the east of the project and underground utilities within Montezuma Road will need to be clearly identified prior to designing the tieback locations.

SHORING DESIGN AND LATERAL PRESSURES: A triangular distribution of lateral earth pressure equal to that developed by a fluid with a density of 40 pounds per cubic foot may be used for the design of cantilevered shoring. Cantilevered shoring is normally limited to excavations that do not exceed approximately 15 feet in depth in order to limit the deflection at the tops of the soldier piles. For heights of shoring greater than about 15 feet, the use of braced or tied-back shoring should be considered to limit deflection of the shoring system. The recommended pressure distributions for the design of tied-back or braced shoring are presented in Plate No. 4. Other loads should be analyzed on an individual basis.

DESIGN OF SOLDIER PILES: Soldier piles should be spaced at least two diameters on center each way. The allowable lateral bearing value (passive value) of the formational soils below the level of the excavation may be assumed to be 350 pounds per square foot per foot of depth from the excavated surface, up to a maximum of 4,500 pounds per square foot. The allowable lateral bearing value (passive value) of compacted fill and/or colluvium below the level of excavation may be assumed to be 300 pounds per square foot per foot of depth from the excavated surface, up to a maximum of 2,500 pounds per square foot. To develop the full lateral value, provisions should be taken to assure firm contact between the soldier piles and the undisturbed soils. The concrete placed in the soldier pile that is below the planned excavation level should be of sufficient strength to adequately transfer the imposed loads to the surrounding soils.

LAGGING: Continuous lagging will be required between the soldier piles. The soldier piles and anchors should be designed for the full anticipated lateral pressure. However, the pressure on the lagging will likely be somewhat less due to arching in the soils. We recommend that the lagging be designed for a semi-circular distribution of earth pressure where the maximum pressure is 400 pounds per square foot at the mid-point between soldier piles, and zero pounds per square foot at the soldier piles. This value does not include any surcharge pressures.

TIEBACK ANCHOR DESIGN: Tieback friction anchors may be used to resist lateral loads. For preliminary design purposes, it may be assumed that the active wedge adjacent to the shoring is defined by

a plane drawn at 32 degrees from the vertical through the bottom of the excavation. The anchors should extend at least 20 feet beyond the potential active wedge; this provision is to provide global stability for the shored wall as opposed to adequate friction for the anchors.

The capacities of anchors should be determined by testing of the initial anchors as outlined by the anchor designer. For preliminary design purposes, it may be estimated that for conventionally drilled, gravity-grouted anchors the average allowable (FOS=2) bond stress between the grout and soil will be 1,000 pounds per square foot. Only the bond stress developed beyond the active wedge should be used in resisting lateral loads. If the anchors are spaced at least 4 feet on centers, no reduction in the capacity of the anchors need be considered due to group action. In no event should the anchors extend less than the minimum length beyond the potential active wedge as given above.

ANCHOR TESTING: Since the actual load-carrying capacity of tieback anchors will depend on various site-specific factors, the tieback capacity should be verified by load testing. The load testing program should be specified by the design engineer and be approved by the Geotechnical Consultant.

Christian Wheeler Engineering shall observe the tieback anchor installation and testing of the completed anchors. The shoring contractor should provide all appropriate testing equipment, including properly calibrated hydraulic jacking equipment, pressure gauges, and dial gauges for measuring tieback anchor movement. All anchor testing shall be performed under the observation of our firm.

INTERNAL BRACING: Rakers may be used to internally brace the soldier piles. The raker bracing may be supported laterally by temporary concrete footings (deadmen). Temporary footings founded in compacted fill or competent natural soils poured with the bearing surface normal to rakers inclined at 45 to 60 degrees with the vertical, may be designed for a bearing value of 4,000 pounds per square foot (psf). This value assumes that the footings are at least 12 inches deep and 24 inches wide. To reduce the movement of the shoring, the rakers should be preloaded or at least tightly wedged between the footings and the soldier piles.

MONITORING: Monitoring of the performance of the shoring system is recommended. One option would be to install a slope inclinometer pipe within the concrete soldier pile approximately every 50

lineal feet, with at least 2 inclinometer pipes for each shoring wall section. The inclinometer pipe should extend full depth of the soldier pile. Monitoring should consist of periodic measurements using a slope inclinometer instrument. Another option would be to periodically survey the lateral and vertical locations of the tops of the soldier piles approximately every 50 lineal feet.

FOUNDATIONS

GENERAL: It is our opinion that the proposed structure and site retaining walls may be supported on conventional shallow foundations, provided that the site preparation recommendations contained in this geotechnical report are implemented. It is anticipated that the footings supporting the proposed structure will be founded in sandstones of the Mission Valley Formation. Footings supporting site retaining walls will likely be founded on a combination of soils including compacted fill, colluvium, and/or very old paralic deposits. The following recommendations are based on the soil conditions exposed in our borings, and are not intended to be in lieu of structural considerations. All foundations should be designed by a qualified structural engineer.

DIMENSIONS: Conventional footings supporting the proposed structure and exterior site retaining walls exceeding ten feet in height should have a minimum embedment depth of 24 inches below lowest adjacent finish grade. For site retaining walls less than ten feet high, a minimum embedment of 18 inches is recommended. Continuous and isolated footings should have a minimum width of 18 inches and 24 inches, respectively. All retaining wall footings should be at least 24 inches wide.

BEARING CAPACITY: Footings supporting the proposed structure and exterior site walls founded in very old paralic deposits or formational soil with a minimum embedment of 24 inches and a minimum width of 18 inches may be designed for an allowable soil bearing pressure of 5,000 pounds per square foot. This value may be increased by 900 pounds per square foot for each additional foot of embedment and 600 pounds per square foot for each additional foot of width up to a maximum of 10,000 pounds per square foot. Footings supporting proposed exterior site retaining walls founded in compacted fill or colluvium with a minimum embedment of 18 inches and a minimum width of 24 inches may be designed for an allowable soil bearing pressure of 2,500 pounds per square foot. This value may be increased by 600 pounds per square foot for each additional foot of embedment and 400 pounds per square foot for each additional foot of embedment and 400 pounds per square foot for each additional foot of embedment and 400 pounds per square foot for each additional foot of embedment and 400 pounds per square foot for each additional foot of embedment and 400 pounds per square foot for each additional foot of embedment and 400 pounds per square foot for each additional foot of embedment and 400 pounds per square foot for each additional foot of embedment and 400 pounds per square foot for each additional foot of embedment and 400 pounds per square foot for each additional foot of embedment and 400 pounds per square foot for each additional foot of embedment and 400 pounds per square foot for each additional foot of embedment and 400 pounds per square foot. The

bearing values may also be increased by one-third for combinations of temporary loads such as those due to wind or seismic loads.

FOOTING REINFORCING: The project structural engineer should provide reinforcement requirements for the proposed building and site retaining wall foundations. However, based on soil conditions, we recommend that the minimum reinforcing for continuous footings supporting the building should consist of at least two No. 5 bars positioned near the bottom of the footing and two No. 5 bars positioned near the top of the footing.

LATERAL LOAD RESISTANCE: Lateral loads against foundations may be resisted by friction between the bottom of the footing and the supporting soil, and by the passive pressure against the footing. The coefficient of friction between concrete and soil may be considered to be 0.35. The passive resistance may be considered to be equal to an equivalent fluid weight of 350 pounds per cubic foot. This assumes the footings are poured tight against undisturbed soil. If a combination of the passive pressure and friction is used, the friction value should be reduced by one-third.

SETTLEMENT CHARACTERISTICS: The anticipated total and differential foundation settlement is expected to be less than about 1 inch and 1 inch over 40 feet respectively, provided the recommendations presented in our report are followed. It should be recognized that minor cracks normally occur in concrete slabs and foundations due to shrinkage during curing or redistribution of stresses, therefore some cracks should be anticipated. Such cracks are not necessarily an indication of excessive vertical movements.

EXPANSIVE CHARACTERISTICS: The foundation soils are expected to have a low expansive potential (EI < 50). The recommendations presented in this report reflect this condition.

FOUNDATION PLAN REVIEW: The final foundation plan and accompanying details and notes should be submitted to this office for review. The intent of our review will be to verify that the plans used for construction reflect the minimum dimensioning and reinforcing criteria presented in this section and that no additional criteria are required due to changes in the foundation type or layout. It is not our intent to review structural plans, notes, details, or calculations to verify that the design engineer has correctly applied the geotechnical design values. It is the responsibility of the design engineer to properly design/specify the foundations and other structural elements based on the requirements of the structure and considering the information presented in this report.

FOUNDATION EXCAVATION OBSERVATION: All foundation excavations should be observed by the geotechnical consultant prior to placing reinforcing steel or formwork in order to determine if the foundation recommendations presented herein are followed. All footing excavations should be excavated neat, level, and square. All loose or unsuitable material should be removed prior to the placement of concrete.

SOLUBLE SULFATES

The water soluble sulfate content of a randomly selected soil sample from the site was determined in accordance with California Test Method 417. The results of this test indicate that the representative soil sample had a soluble sulfate content of 0.006 percent. Soils with a soluble sulfate content of less than 0.1 percent are considered to be negligible and no special recommendations are considered necessary for this condition. Nevertheless, Type II modified Portland cement is recommended for concrete in contact with soil.

ON-GRADE SLABS

INTERIOR FLOOR SLABS: We recommend that the interior slab-on-grade floor be at least 5 inches thick (actual) and be reinforced with at least No. 4 bars spaced at 18 inches on center each way. The reinforcing bars should extend at least 12 inches into the foundations and should be supported by chairs and be positioned in the center of the slab. The slab reinforcement should extend down into the perimeter grade beams or foundations at least 12 inches.

UNDER-SLAB VAPOR RETARDERS: Where floor coverings are installed, steps should be taken to minimize the transmission of moisture vapor from the subsoil through the interior slabs where it can potentially damage the interior floor coverings. We recommend that the owner/contractor follow national standards for the installation of vapor retarders below interior slabs as presented in currently published standards including ACI 302, "Guide to Concrete Floor and Slab Construction" and ASTM

E1643, "Standard Practice for Installation of Water Vapor Retarder Used in Contact with Earth or Granular Fill Under Concrete Slabs". If sand is placed above or below the vapor retarding material, it should have a sand equivalent of at least 30 and contain less than 20% passing the Number 100 sieve and less than 10% passing the Number 200 sieve.

We recommend that the flooring installer perform standard moisture vapor emission tests prior to the installation of all moisture-sensitive floor coverings in accordance with ASTM F1869 "Standard Test Method for Measuring Moisture Vapor Emission Rate of Concrete Subfloor Using Anhydrous Calcium Chloride".

EXTERIOR CONCRETE FLATWORK: Exterior concrete on-grade slabs should have a minimum thickness of 4 inches and be reinforced with at least No. 3 bars placed at 18 inches on center each way. All slabs should be provided with weakened plane joints in accordance with the American Concrete Institute (ACI) guidelines. Alternative patterns consistent with ACI guidelines can also be used. A concrete mix with a 1-inch maximum aggregate size and a water/cement ratio of less than 0.6 is recommended for exterior slabs. Lower water content will decrease the potential for shrinkage cracks. Both coarse and fine aggregate should conform to the latest edition of the "Standard Specifications for Public Works Construction" ('Greenbook").

Special attention should be paid to the method of concrete curing to reduce the potential for excessive shrinkage and resultant random cracking. It should be recognized that minor cracks occur normally in concrete slabs due to shrinkage. Some shrinkage cracks should be expected and are not necessarily an indication of excessive movement or structural distress.

EARTH RETAINING WALLS

BACKFILL: All retaining wall backfill should be compacted in accordance with the "Compaction and Method of Filling" section of this report. Expansive or clayey soils should not be used for backfill material. Retaining walls should not be backfilled until the masonry/concrete has reached an adequate strength.

FOUNDATIONS: Foundations for retaining walls can be designed in accordance with the foundation recommendations previously presented.

PASSIVE PRESSURES: The passive pressure for the prevailing soil conditions may be considered to be 300 pounds per square foot per foot of depth for foundations in compacted fill or colluvium. The passive pressure in very old paralic deposits or formational soil may be considered to be 350 pounds per square foot per foot. The upper foot of embedment should be neglected when calculating passive pressures, unless the foundation abuts a hard surface such as a concrete slab. The passive pressure may be increased by one-third for seismic loading. The coefficient of friction for concrete to soil may be assumed to be 0.30 and 0.35 for the resistance to lateral movement for fill or colluvium, and paralic or formational material, respectively. When combining frictional and passive resistance, the friction should be reduced by one-third.

ACTIVE PRESSURES: The active soil pressure for the design of unrestrained earth retaining structures with level backfill surface may be assumed to be equivalent to the pressure of a fluid weighing 38 pounds per cubic foot. In the design of walls restrained from movement at the top (non-yielding walls), the at-rest soil pressure may be assumed to be equivalent to the pressure of a fluid weighing 59 pounds per cubic foot, provided there is a level backfill surface.

Alternative active pressure design recommendations are provided in Plate No. 4. Non-yielding building retaining walls braced by multiple floor levels should be designed to resist a uniform horizontal soil pressure of 25H (in pounds per square foot), where "H" is the wall height in feet. Thirty percent of any area surcharge placed adjacent to the retaining wall may be assumed to act as a uniform horizontal pressure against the wall. Where vehicles will be allowed within ten feet of the retaining wall, a uniform horizontal pressure of 100 pounds per square foot should be added to the upper 10 feet of the retaining wall to account for the effects of adjacent traffic. Special cases such as a combination of shored and sloping temporary slopes, or other surcharge loads not described above, may require an increase in the design values recommended above. These conditions should be evaluated by the project geotechnical engineer on a case-by-case basis. If any other loads are anticipated, the Geotechnical Consultant should be contacted for the necessary increase in soil pressure. All values are based on a drained backfill condition.

Seismic lateral earth pressures may be assumed to equal an inverted triangle starting at the bottom of the wall with the maximum pressure equal to 6H pounds per square foot (where H = wall height in feet) occurring at the top of the wall.

WATERPROOFING AND WALL DRAINAGE SYSTEMS: The need for waterproofing should be evaluated by others. If required, the project architect should provide (or coordinate) waterproofing details for the retaining walls. The design values presented above are based on a drained backfill condition and do not consider hydrostatic pressures. Unless hydrostatic pressures are incorporated into the design, the retaining wall designer should provide a detail for a wall drainage system. Typical retaining wall drain system details are presented as Plate Nos. 5 and 6 of this report for informational purposes. Additionally, outlets points for the retaining wall drain system should be coordinated with the project civil engineer. For subterranean walls, it may be necessary to collect the subdrain water in sumps and then pump it to an appropriate outlet.

LIMITATIONS

REVIEW, OBSERVATION AND TESTING

The recommendations presented in this report are contingent upon our review of final plans and specifications. Such plans and specifications should be made available to the geotechnical engineer and engineering geologist so that they may review and verify their compliance with this report and with the California Building Code.

It is recommended that Christian Wheeler Engineering be retained to provide continuous soil engineering services during the earthwork operations. This is to verify compliance with the design concepts, specifications or recommendations and to allow design changes in the event that subsurface conditions differ from those anticipated prior to start of construction.

UNIFORMITY OF CONDITIONS

The recommendations and opinions expressed in this report reflect our best estimate of the project requirements based on an evaluation of the subsurface soil conditions encountered at the subsurface

exploration locations and on the assumption that the soil conditions do not deviate appreciably from those encountered. It should be recognized that the performance of the foundations and/or cut and fill slopes may be influenced by undisclosed or unforeseen variations in the soil conditions that may occur in the intermediate and unexplored areas. Any unusual conditions not covered in this report that may be encountered during site development should be brought to the attention of the geotechnical engineer so that he may make modifications if necessary.

CHANGE IN SCOPE

This office should be advised of any changes in the project scope or proposed site grading so that we may determine if the recommendations contained herein are appropriate. This should be verified in writing or modified by a written addendum.

TIME LIMITATIONS

The findings of this report are valid as of this date. Changes in the condition of a property can, however, occur with the passage of time, whether they be due to natural processes or the work of man on this or adjacent properties. In addition, changes in the Standards-of-Practice and/or Government Codes may occur. Due to such changes, the findings of this report may be invalidated wholly or in part by changes beyond our control. Therefore, this report should not be relied upon after a period of two years without a review by us verifying the suitability of the conclusions and recommendations.

PROFESSIONAL STANDARD

In the performance of our professional services, we comply with that level of care and skill ordinarily exercised by members of our profession currently practicing under similar conditions and in the same locality. The client recognizes that subsurface conditions may vary from those encountered at the locations where our test pits, surveys, and explorations are made, and that our data, interpretations, and recommendations be based solely on the information obtained by us. We will be responsible for those data, interpretations, and recommendations, but shall not be responsible for the interpretations by others of the information developed. Our services consist of professional consultation and observation only, and no warranty of any kind whatsoever, express or implied, is made or intended in connection with the

work performed or to be performed by us, or by our proposal for consulting or other services, or by our furnishing of oral or written reports or findings.

CLIENT'S RESPONSIBILITY

It is the client's responsibility, or their representatives, to ensure that the information and recommendations contained herein are brought to the attention of the structural engineer and architect for the project and incorporated into the project's plans and specifications. It is further their responsibility to take the necessary measures to insure that the contractor and his subcontractors carry out such recommendations during construction.

FIELD EXPLORATIONS

Three subsurface explorations were made on July 1, 2011 at the locations indicated on the attached Plate Number 1. These explorations consisted of borings drilled utilizing a Unimog Marl M-5 truck mounted drill rig using both hollow stem and air-rotary drilling methods. The fieldwork was conducted under the observation of our engineering geology personnel.

The explorations were carefully logged when made. The logs are presented Appendix A. The soils are described in accordance with the Unified Soils Classification System. In addition, a verbal textural description, the wet color, the apparent moisture and the density or consistency are provided. The density of granular soils is given as very loose, loose, medium dense, dense or very dense. The consistency of silts or clays is given as either very soft, soft, medium stiff, stiff, very stiff, or hard.

Relatively undisturbed drive samples were collected using a modified California sampler. The sampler, with an external diameter of 3.0 inches, is lined with 1-inch-long, thin, brass rings with inside diameters of approximately 2.4 inches. The sample barrel was driven into the ground with the weight of a 140-pound hammer falling 30 inches in general accordance with ASTM D3550. The driving weight is permitted to fall freely. The number of blows per foot of driving, or as indicated, is presented on the boring logs as an index to the relative resistance of the sampled materials. The samples were removed from the sample barrel in the brass rings, and sealed. Bulk and chunk samples

of the encountered earth materials were also collected. Samples were transported to our laboratory for testing.

LABORATORY TESTING

Laboratory tests were performed in accordance with the generally accepted American Society for Testing and Materials (ASTM) test methods or suggested procedures. A brief description of the tests performed is presented in Appendix B.

DESIGNER	JHP	SHEET TITLE	:			SHEET					
DRAWN	AL		TOPOGRAPHY AND BOUNDARY								
CHECKED	JHP	PROJECT NA	OF 1								
5 DATE 11-	DATE 11-06-15 SAN DIEGO, CA. 92115										
DIEGO, CA 9	92111	• (858)569–7377	FAX (858))569–0830	Project No. 999-15					
SED APAR 3-6219 MON AN DIEGO	TME JTEZU , CALI	NT BUIL JMA ROA IFORNIA		K							
ER 2015 JOB NO.: 2150650.01 CHRISTIAN											
					1						

Appendix A

Boring and CPT Logs

	LOC OF BORING B-1									Sample Type and Laboratory Test Legend							
┝	Date 1	Excavat	ed:	7/1/2011	Equi	oment:	Unimog-Marl M5	Cal M SPT St ST Sh	odified (andard I ielby Tu	Califo Penetr be	rnia Samp ation Test	ler CK DR	Chunk Sar Density Ri	nple ng			
	Logge	d by:		TSW	Auge	7"	MD SO4	MD Maximum Density DS Direct Shea									
	Existi	ng Elev	ation:	460 feet	Drive	e Weight:	140 lbs @ 30"	SA HA	Sieve A Hydron	nalysi neter	s	EI R-Val	Expansion Resistance	Index Value			
	Propo	sed Ele	evation	: 442 feet	Dept	h to Water:	N/A	SE PI	Sand Ed Plasticit	quival ty Ind	ent ex	Chl Res	Soluble Ch pH & Resi	lorides			
DEPTH (ft)	(ft) (ft)	GRAPHIC LOG	USCS SYMBOL	s	UMMARY OF SUBSUI (based on Unified Soil	RFACE CON Classification	NDITIONS 1 System)	PENETRATION (blows)	SAMPLE TYPE	BULK	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	RELATIVE COMPACTION (%)	LABORATORY TESTS			
0	_ 460		SC	Artificial Fill	(Qaf): Light to mediu	m reddish-b	rown, moist, loose,										
-	_			Becomes med	ium dense at about 2 fe	eet.	оск. 										
5 —	- 455 		SC	Colluvium (C	<u>Colluvium (Qcol):</u> Medium reddish-brown, moist, medium dense, ine-grained CLAYEY SAND with rock.						8.9	108.2					
10 -	-450							50/6"	Cal								
			SM	Very Old Par moist, mediun	alic Deposits (Qvop): Light to n fine- to fine-	nedium reddish-brown, grained SILTY SAND.	35	Cal		12.1	111.2		DS SA SO4			
20-	- 440		GM	Light brown to with silt and re	o light gray, moist, den ock.	se to very de	nse, SANDY GRAVEL										
- - -	-		SM	Light red brow SAND with re	vn, moist, medium den ock.	se to dense,	fine-grained SILTY										
25 -	- 435 		GM	Red brown, m Practical drill	oist, dense to very den refusal with auger, swit	se, SANDY ched to air-r	GRAVEL with rock. otary drilling.	50/3"	SPT								
- - 30 -	- - - 430		SM	Mission Valle fine- to mediu	Mission Valley Formation (Tmv): Light to medium gray, moist, dense, fine- to medium-grained SILTY SAND with clay.									SA			
		na an an an an an an an an an an an an a		Boring continue	ed on APPENDIX A-2	2.			•		<u>.</u>	•					
⊻ ₹	Symbol Groundw Apparent	<mark>Legend</mark> ate r Seepage	;	CHRIST	AN WHEELFR	PROPOSED MONTEZUMA ROAD APARTMENTS 6213-6219 MONTEZUMA ROAD SAN DIEGO, CALIFORNIA											
*] **	No Samp	le Recov	ery Blow	ENGI	NEERING	BY:	MWL	I	DATE	:	Ν	NOVEM	BER 201	5			
(Count (ro	cks prese	ent)			JOB NO	D.: 2150650.01	I	PPEN	NDE	X.:	A-1					

				LOG	OF BORIN		Sample Type and Laboratory Test Legend							
	Date I	Excava	ted:	7/1/2011	Ea	uipment:	Unimog-Marl M5	Cal M SPT St ST Sh	odified (andard I ielby Tui	Califo Peneti be	rnia Samp ration Test	ler CK DR	Chunk Sar Density R	nple ing
	Logge Existit Propo	d by: ng Elev sed Ele	vation: evation:	TSW 460 feet 442 feet	Auger Size:7"tDrive Weight:140 lbs @ 30"tDepth to Water:N/A				Maximu Soluble Sieve A Hydron Sand Eo Plasticit	um Density Sulfates nalysis neter quivalent ty Index		DS Con EI R-Val Chl Res	Direct She Consolida Expansior Resistance Soluble Cl pH & Res	ar tion 1 Index Value nlorides istivity
DEPTH (ft)	ELEVATION (ft)	GRAPHIC LOG	USCS SYMBOL		SUMMARY OF SUBSURFACE CONDITIONS (based on Unified Soil Classification System)						MOISTURE CONTENT (%)	DRY DENSITY (pcf)	RELATIVE COMPACTION (%)	LABORATORY TESTS
30 35 	430 		SM	Mission V	7alley Formation (Tmv 2dium-grained SILTY SA							SA		
40 - - - 45 - - - 50 - - - - - - - - - - - - - - - - - - -	40 - 420 $410 - 410 -$													
<u>ب</u> ۲	Symbol] Groundwa Apparent	L egend ater Seepage	2	СЦРТ		PROPOSED MONT 6213-6219 M SAN DII	EZUM 10NT 2GO, (IA RO EZUN CALIF	AD IA I OR	APAR'I ROAD NIA	'MEN'I	'S		
* 1 **	No Sampl Nonrepre	e Recov	very Blow		GINEERING	BY:	MWL	Ι	DATE	:	N	OVEM	BER 201	5
** Nonreprestative Blow Count (rocks present)						JOB NO	D.: 2150650.01	A	PPEN	JDE	X:	A-2		

				LOG	OF BORIN	G B-2		Sa	Sample Type and Laboratory Test Legend							
	Date 1	Excavat	ted:	7/1/2011	Equ	ipment:	Unimog-Marl M5	Cal Me SPT Sta ST Sh	odified (andard F ielby Tul	Califo: Penetr be	rnia Sampl ation Test	ler CK DR	Chunk San Density Ri	nple .ng		
	Logge Existii Propo	d by: ng Elev sed El¢	vation: evation	TSW 463 feet : 442 feet	WAuger Size:7"3 feetDrive Weight:140 lbs @ 30"2 feetDepth to Water:N/A				Maximu Soluble Sieve An Hydron Sand Ec Plasticit	ım De Sulfat nalysis neter quival ty Ind	ensity tes s ent e <u>x</u>	DS Con EI R-Val Chl Res	Direct Shea Consolidat Expansion Resistance Soluble Cl pH & Resi	ar ion Index Value ilorides istivity		
DEPTH (ft)	ELEVATION (ft)	GRAPHIC LOG	USCS SYMBOL		SUMMARY OF SUBSU (based on Unified Soil	RFACE CON	IDITIONS 1 System)	PENETRATION (blows)	SAMPLE TYPE	BULK	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	RELATIVE COMPACTION (%)	LABORATORY TESTS		
0	463		SC	Artificial Fil CLAYEY SA	1 (Qaf): Dark brown, AND with rock.	damp, loose, :	fine- to medium-grained									
5 -	- - 458 - -		SC	CLAYEY SA	Colluvium (Qcol): Light reddish brown, very moist, medium dense, CLAYEY SAND with rock.							102.4				
	- 453 		SM	<u>Very Old Pa</u> very moist, m coarse-graine	ralic Deposits (Qvop nedium dense, very fine d SILTY SAND with c	2): Light to m to fine-grain clay and rock.	iedium reddish-brown, ied and medium- to	50 24	Cal SPT		18.5	100.5				
	-		GM	Reddish-brow to fine-graine	wn to light gray, moist, ed with rock up to abou	medium dens 1t 2 inches.	e to dense, very fine-	66	Cal		8.1	105.8				
 25 	- - 438		SM	Light to medi fine- to fine-s	ium reddish-brown, mo grained SILTY SAND	oist, medium o with rock.	dense to dense, very	24	SPT							
	-		GM	Light gray to	orange, moist, dense, S	SANDY GRA	VEL with silt and rock.				┝ ─	╞ —	$\lfloor - \rfloor$	┝ ──		
- 30 -	433		SM	Light to med SILTY SAN	ium reddish brown, mo <u>D with</u> r <u>ock; Slightly m</u>	oist, dense, ve icaceous.	ry fine- to fine-grained	35	SPT			\vdash $_$	╞╶┤	\square		
				Boring continu	led on APPENDIX A-	4.						·	·			
⊻ ₹	<u>Symbol I</u> Groundw Apparent	L egend ater Seepage	e	CHRIST	FIAN WHEELER		PROPOSED MONT 6213-6219 I SAN DI	'EZUM MONT' EGO, (A RO EZUN CALIF	AD 1A H OR	APART ROAD NIA	'MENT	'S			
* 1	No Sampl Nonrepre	e Recov estative I	'ery Blow	E N G	INEERING	BY:	MWL	I	DATE:	:	Ν	JOVEM	BER 201	15		
C	Count (roc	:ks prese	ent)		A	APPEN	1DE	X:	A-3							

				LOGO		Sample Type and Laboratory Test Legend								
	Data I		tod.	7/1/2011	Emi		Unimon Morl M5	Cal Mo SPT Sta	odified (andard I	Califo Peneti	rnia Sampl ation Test	ler CK DR	Chunk San Density Ri	nple ng
	Logged Existir Propos	d by: g Elev sed Ele	ration: evation:	TSW 463 feet 442 feet	Equip Bucke Drive Deptl	et Size: Weight: n to Water:	7" 140 lbs @ 30" N/A	MD SO4 SA HA SE PI	Maximu Soluble Sieve A Hydron Sand E Plasticit	um D Sulfa nalysi neter quival ty Ind	ensity tes s ent ex	DS Con EI R-Val Chl Res	Direct She Consolidat Expansion Resistance Soluble Ch pH & Resi	ar ion Index Value ilorides istivity
DEPTH (ft)	ELEVATION (ft)	GRAPHIC LOG	USCS SYMBOL	SU (UMMARY OF SUBSUF based on Unified Soil (RFACE CON Classification	IDITIONS 1 System)	PENETRATION (blows)	SAMPLE TYPE	BULK	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	RELATIVE COMPACTION (%)	LABORATORY TESTS
30	- 433		SM	Light to medium SILTY SAND;	m reddish-brown, moi Slightly micaceous.	st, dense, ve	ry fine- to fine-grained							
	- - - 428		SM	<u>Mission Valle</u> fine- to mediu	y Formation (Tmv): m-grained SILTY SAN	Light to m ND with clay	edium gray, moist, dense,	50/6"	Cal		14.1	111.9		DS
	_		SC	Light to medius CLAYEY SAN	Light to medium gray with light red, moist, dense, fine- to medium-grained CLAYEY SAND.									
40 - - - 45 - - - 50 - - - - - - - - - - - - - - - - - - -	- 423 			Boring termina No groundwate	ted at 40 feet. er or seepage encounte	ered.								
Symbol Legend Groundwater Apparent Seepage				CHRISTI	PROPOSED MONTI 6213-6219 M SAN DIE	EZUM IONTI IGO, C	A RO EZUN CALIF	AD AA I OR	APART ROAD NIA	'MENT	'S			
* 1 **]	No Sampl Nonrepre	e Recov stative l	very Blow	E N G I	NEERING	BY:	MWL	Ι	DATE	:	N	NOVEM	BER 201	5
C	Count (roc	ks pres	ent)		JOB NO.: 2150650.01					JDE	X:	A-4		

	LOG OF BORING B-3									Sample Type and Laboratory Test Legend							
	Date I	Excava	ted:	7/1/2011	Equir	pment:	Unimag-Mail M5	Cal Me SPT Sta ST Sh	odified (andard F elby Tul	Califo Penetr be	rnia Sampl ation Test	ler CK DR	Chunk San Density Ri	nple ng			
	Logge	d by:		TSW Bucket Size: N/A					Maximu Soluble	ım De Sulfa	ensity tes	DS Con	Direct Shear Consolidation				
	Existin	ng Elev	ration:	456 feet	56 feet Drive Weight: 140 lbs @ 30"					nalysi neter	s	EI R-Val	EI Expansion In R-Val Resistance V				
	Propo	sed Ele	evation	: 442 feet	Dept	h to Water:	N/A	SE PI	Sand Ec Plasticit	juival y Ind	ent ex	Chl Res	Soluble Ch pH & Resi	lorides stivity			
DEPTH (ft)	ELEVATION (ft)	GRAPHIC LOG	USCS SYMBOL	s	SUMMARY OF SUBSURFACE CONDITIONS (based on Unified Soil Classification System)				SAMPLE TYPE	BULK	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	RELATIVE COMPACTION (%)	LABORATORY TESTS			
0	456 	[]]]		6	inches of Portland Cer	ment Concre	ete (PCC)										
	 		SC	CLAYEY SA	<u>Colluvium (Qcol)</u> : Light reddish brown, moist, medium dense, CLAYEY SAND with rock.												
			SM	Very Old Par moist, mediur coarse-grained Rock layer at	ralic Deposits (Qvop- n dense to dense, very f d SILTY SAND with cl about 9 to 10 feet.												
10 -	- 446 		SM	Light to media to fine-grained	dense to dense, very fine-		_										
15 -	- 441		GM	Reddish-brow GRAVEL wit -rotary. Rock	n and gray, moist, med th silt. Practical refusal a layer at about 15 to 17	lium dense to at 15 feet wi feet.	o dense, SANDY th auger, switch to air										
 20 	436 		SM	Light to medi to fine-grained	um reddish brown, moi d SILTY SAND with re	ist, medium ock; Slightly	dense to dense, very fine- micaceous.										
-			GM	Light gray to	orange, moist, dense, S.	ANDY GRA	VEL with silt and rock.										
25	- 431 		SM	<u>Mission Vall</u> fine- to mediu	<u>Mission Valley Formation (Tmv)</u> : Light to medium gray, moist, dense, fine- to medium-grained SILTY SAND with clay.												
30 -	- 426			Boring terminat	ted at 30 feet.												
				No groundwate	er or seepage encounter	ed.											
• ⊻ ₹	Symbol] Groundwa Apparent	Legend ater Seepage	2	CHRIST	IAN WHEELER		PROPOSED MONT 6213-6219 N SAN DIE	EZUM IONT EGO, C	A RO EZUN CALIF	AD 1A I OR	APART ROAD NIA	'MEN'I	'S				
* 1	No Sampl	e Recov	very	ENG	INEERING	BY:	MWL	Ι	DATE:		N	JOVEM	BER 201	.5			
C	Count (roo	stative l ks pres	ent)			JOB NO	D.: 2150650.01	A	PPEN	JDE	X:	A-5					
Appendix B

Laboratory Test Results

Laboratory tests were performed in accordance with the generally accepted American Society for Testing and Materials (ASTM) test methods or suggested procedures. Brief descriptions of the tests performed are presented below:

- a) **CLASSIFICATION:** Field classifications were verified in the laboratory by visual examination. The final soil classifications are in accordance with the Unified Soil Classification System and are presented on the exploration logs in Appendix A.
- b) **GRAIN SIZE DISTRIBUTION:** The grain size distributions of selected samples were determined in accordance with ASTM C136 and/or ASTM D422.
- c) **DIRECT SHEAR:** Direct shear tests were performed to determine the failure envelope of selected soils based on yield shear strength. The shear box was designed to accommodate a sample having a diameter of 2.375 inches or 2.50 inches and a height of 1.0 inch. Samples were tested at different vertical loads and a saturated moisture content. The shear stress was applied at a constant rate of strain of approximately 0.05 inch per minute.
- d) **SOLUBLE SULFATE TEST:** The soluble sulfate content was determined for a representative sample in accordance with California Test Method 417.

CHRISTIAN WHEELER ENGINEERING		PROPOS 6213- SA	SED APARTMENT BUILDING 5219 MONTEZUMA ROAD N DIFGO CALIFORNIA	LAB SUMMARY	
	BY:	JDB	DATE: NOV. 2015	REPORT NO	0.:2150650.01

LABORATORY TEST RESULTS

PROPOSED APARTMENT BUILDING 6213-6219 MONTEZUMA ROAD SAN DIEGO, CALIFORNIA

DIRECT SHEAR (ASTM D3080)

Sample Location	Boring B-1 @ 15'	Boring B-2 @ 211/2'
Sample Type	Undisturbed	Undisturbed
Friction Angle	34°	36°
Cohesion	200 psf	200 psf

GRAIN SIZE DISTRIBUTION (ASTM D422)

Sample Location	Boring B-1 @ 14'-19'	Boring B-2 @ 23'-28'
Sieve Size	Percent Passing	Percent Passing
1"	100	
³ /4"	99	
¹ /2"	98	
3/8	96	
#4	90	
#8	85	100
#16	81	99
#30	78	96
#50	76	61
#100	60	29
#200	33	20

SOLUBLE SULFATES (CALIFORNIA TEST METHOD 417)

Sample Location	Boring B-1 @ 14'-19'
Soluble Sulfate	0.006 % (SO4)

Appendix C

References

REFERENCES

Bryant, W. A. (compiler), 2005, Digital Database of Quaternary and Younger Faults from the Fault Activity Map of California, version 2.0: California Geological Survey Web Page, http://www.consrv.ca.gov/CGS/information/publications/QuaternaryFaults_ver2.htm

City of San Diego, 1995, Seismic Hazard Study, Geologic Hazards and Faults, Sheet 22, Scale 1" = 800'.

Kennedy, Michael P., 1975, Geology of the San Diego Metropolitan Area, California, California Division of Mines and Geology, Bulletin 200.

Kennedy, Michael P. and Tan, Siang S., 2008, Geologic Map of the San Diego 30'x60' Quadrangle, California, California Geologic Survey, Map No. 3.

Tan, S.S., 1995, Landslide Hazards in the Southern Part of the San Diego Metropolitan Area, San Diego County, California, California Division of Mines and Geology Open-File Report 95-03.

U.S. Geological Survey, U.S. Seismic Design Maps Web Application, http://geohazards.usgs.gov/designmaps/us/application.php

U.S. Geological Survey, Quaternary Faults in Google Earth, http://earthquake.usgs.gov/hazards/qfaults/google.php

TOPOGRAPHIC MAPS

City of San Diego, 1952, Revised 1988, 200-Scale Topographic Map, Sheet 218-1749. City of San Diego, 1979, 200-Scale Orthographic Map, Sheet 218-1749.

PHOTOGRAPHS

San Diego County, 1928, Packet 60C; Scale: 1 inch = 1000 feet (approximate).

San Diego County, 1973, Flight 22, Photograph 22; Scale: 1 inch = 1000 feet (approximate).

San Diego County, 1978, Flight 26C, Photographs 3 and 4; Scale: 1 inch = 1000 feet (approximate).

San Diego County, 1978, Flight 27, Photograph C5 and C6; Scale: 1 inch = 1000 feet (approximate).

Appendix D

Recommended Grading Specifications - General Provisions

RECOMMENDED GRADING SPECIFICATIONS - GENERAL PROVISIONS

MONTEZUMA APARTMENTS 6213-6219 MONTEZUMA ROAD SAN DIEGO, CALIFORNIA

GENERAL INTENT

The intent of these specifications is to establish procedures for clearing, compacting natural ground, preparing areas to be filled, and placing and compacting fill soils to the lines and grades shown on the accepted plans. The recommendations contained in the preliminary geotechnical investigation report and/or the attached Special Provisions are a part of the Recommended Grading Specifications and shall supersede the provisions contained hereinafter in the case of conflict. These specifications shall only be used in conjunction with the geotechnical report for which they are a part. No deviation from these specifications will be allowed, except where specified in the geotechnical report or in other written communication signed by the Geotechnical Engineer.

OBSERVATION AND TESTING

Christian Wheeler Engineering shall be retained as the Geotechnical Engineer to observe and test the earthwork in accordance with these specifications. It will be necessary that the Geotechnical Engineer or his representative provide adequate observation so that he may provide his opinion as to whether or not the work was accomplished as specified. It shall be the responsibility of the contractor to assist the Geotechnical Engineer and to keep him apprised of work schedules, changes and new information and data so that he may provide these opinions. In the event that any unusual conditions not covered by the special provisions or preliminary geotechnical report are encountered during the grading operations, the Geotechnical Engineer shall be contacted for further recommendations.

If, in the opinion of the Geotechnical Engineer, substandard conditions are encountered, such as questionable or unsuitable soil, unacceptable moisture content, inadequate compaction, adverse weather, etc., construction should be stopped until the conditions are remedied or corrected or he shall recommend rejection of this work.

Tests used to determine the degree of compaction should be performed in accordance with the following American Society for Testing and Materials test methods:

Maximum Density & Optimum Moisture Content - ASTM D1557 Density of Soil In-Place - ASTM D1556 or ASTM D6938

All densities shall be expressed in terms of Relative Compaction as determined by the foregoing ASTM testing procedures.

PREPARATION OF AREAS TO RECEIVE FILL

All vegetation, brush and debris derived from clearing operations shall be removed, and legally disposed of. All areas disturbed by site grading should be left in a neat and finished appearance, free from unsightly debris.

After clearing or benching the natural ground, the areas to be filled shall be scarified to a depth of 6 inches, brought to the proper moisture content, compacted and tested for the specified minimum degree of compaction. All loose soils in excess of 6 inches thick should be removed to firm natural ground which is defined as natural soil which possesses an in-situ density of at least 90 percent of its maximum dry density.

When the slope of the natural ground receiving fill exceeds 20 percent (5 horizontal units to 1 vertical unit), the original ground shall be stepped or benched. Benches shall be cut to a firm competent formational soil. The lower bench shall be at least 10 feet wide or 1-1/2 times the equipment width, whichever is greater, and shall be sloped back into the hillside at a gradient of not less than two (2) percent. All other benches should be at least 6 feet wide. The horizontal portion of each bench shall be compacted prior to receiving fill as specified herein for compacted natural ground. Ground slopes flatter than 20 percent shall be benched when considered necessary by the Geotechnical Engineer.

Any abandoned buried structures encountered during grading operations must be totally removed. All underground utilities to be abandoned beneath any proposed structure should be removed from within 10 feet of the structure and properly capped off. The resulting depressions from the above described procedure should be backfilled with acceptable soil that is compacted to the requirements of the Geotechnical Engineer. This includes, but is not limited to, septic tanks, fuel tanks, sewer lines or leach lines, storm drains and water lines. Any buried structures or utilities not to be abandoned should be brought to the attention of the Geotechnical Engineer so that he may determine if any special recommendation will be necessary.

All water wells which will be abandoned should be backfilled and capped in accordance to the requirements set forth by the Geotechnical Engineer. The top of the cap should be at least 4 feet below finish grade or 3 feet below the bottom of footing whichever is greater. The type of cap will depend on the diameter of the well and should be determined by the Geotechnical Engineer and/or a qualified Structural Engineer.

FILL MATERIAL

Materials to be placed in the fill shall be approved by the Geotechnical Engineer and shall be free of vegetable matter and other deleterious substances. Granular soil shall contain sufficient fine material to fill the voids. The definition and disposition of oversized rocks and expansive or detrimental soils are covered in the geotechnical report or Special Provisions. Expansive soils, soils of poor gradation, or soils with low strength characteristics may be thoroughly mixed with other soils to provide satisfactory fill material, but only with the explicit consent of the Geotechnical Engineer. Any import material shall be approved by the Geotechnical Engineer before being brought to the site.

PLACING AND COMPACTION OF FILL

Approved fill material shall be placed in areas prepared to receive fill in layers not to exceed 6 inches in compacted thickness. Each layer shall have a uniform moisture content in the range that will allow the compaction effort to be efficiently applied to achieve the specified degree of compaction. Each layer shall be uniformly compacted to the specified minimum degree of compaction with equipment of adequate size to economically compact the layer. Compaction equipment should either be specifically designed for soil compaction or of proven reliability. The minimum degree of compaction to be achieved is specified in either the Special Provisions or the recommendations contained in the preliminary geotechnical investigation report. When the structural fill material includes rocks, no rocks will be allowed to nest and all voids must be carefully filled with soil such that the minimum degree of compaction recommended in the Special Provisions is achieved. The maximum size and spacing of rock permitted in structural fills and in nonstructural fills is discussed in the geotechnical report, when applicable.

Field observation and compaction tests to estimate the degree of compaction of the fill will be taken by the Geotechnical Engineer or his representative. The location and frequency of the tests shall be at the Geotechnical Engineer's discretion. When the compaction test indicates that a particular layer is at less than the required degree of compaction, the layer shall be reworked to the satisfaction of the Geotechnical Engineer and until the desired relative compaction has been obtained.

Fill slopes shall be compacted by means of sheepsfoot rollers or other suitable equipment. Compaction by sheepsfoot roller shall be at vertical intervals of not greater than four feet. In addition, fill slopes at a ratio of two horizontal to one vertical or flatter, should be trackrolled. Steeper fill slopes shall be over-built and cut-back to finish contours after the slope has been constructed. Slope compaction operations shall result in all fill material six or more inches inward from the finished face of the slope having a relative compaction of at least 90 percent of maximum dry density or the degree of compaction specified in the Special Provisions section of this specification. The compaction operation on the slopes shall be continued until the Geotechnical Engineer is of the opinion that the slopes will be surficially stable.

Density tests in the slopes will be made by the Geotechnical Engineer during construction of the slopes to determine if the required compaction is being achieved. Where failing tests occur or other field problems arise, the Contractor will be notified that day of such conditions by written communication from the Geotechnical Engineer or his representative in the form of a daily field report.

If the method of achieving the required slope compaction selected by the Contractor fails to produce the necessary results, the Contractor shall rework or rebuild such slopes until the required degree of compaction is obtained, at no cost to the Owner or Geotechnical Engineer.

CUT SLOPES

The Engineering Geologist shall inspect cut slopes excavated in rock or lithified formational material during the grading operations at intervals determined at his discretion. If any conditions not anticipated in the preliminary report such as perched water, seepage, lenticular or confined strata of a potentially adverse nature, unfavorably inclined bedding, joints or fault planes are encountered during grading, these conditions shall be analyzed by the Engineering Geologist and Geotechnical Engineer to determine if mitigating measures are necessary.

Unless otherwise specified in the geotechnical report, no cut slopes shall be excavated higher or steeper than that allowed by the ordinances of the controlling governmental agency.

ENGINEERING OBSERVATION

Field observation by the Geotechnical Engineer or his representative shall be made during the filling and compaction operations so that he can express his opinion regarding the conformance of the grading with acceptable standards of practice. Neither the presence of the Geotechnical Engineer or his representative or the observation and testing shall release the Grading Contractor from his duty to compact all fill material to the specified degree of compaction.

SEASON LIMITS

Fill shall not be placed during unfavorable weather conditions. When work is interrupted by heavy rain, filling operations shall not be resumed until the proper moisture content and density of the fill materials can be achieved. Damaged site conditions resulting from weather or acts of God shall be repaired before acceptance of work.

RECOMMENDED GRADING SPECIFICATIONS - SPECIAL PROVISIONS

RELATIVE COMPACTION: The minimum degree of compaction to be obtained in compacted natural ground, compacted fill, and compacted backfill shall be at least 90 percent. For street and

parking lot subgrade, the upper six inches should be compacted to at least 95 percent relative compaction.

EXPANSIVE SOILS: Detrimentally expansive soil is defined as clayey soil which has an expansion index of 50 or greater when tested in accordance with ASTM D 4829.

OVERSIZED MATERIAL: Oversized fill material is generally defined herein as rocks or lumps of soil over 6 inches in diameter. Oversized materials should not be placed in fill unless recommendations of placement of such material is provided by the Geotechnical Engineer. At least 40 percent of the fill soils shall pass through a No. 4 U.S. Standard Sieve.

TRANSITION LOTS: Where transitions between cut and fill occur within the proposed building pad, the cut portion should be undercut a minimum of one foot below the base of the proposed footings and recompacted as structural backfill. In certain cases that would be addressed in the geotechnical report, special footing reinforcement or a combination of special footing reinforcement and undercutting may be required.

December 14, 2016

Elsey Partners 1532 College Avenue F19 Manhattan, Kansas 66502 Attention: Chris Elsey CWE 2150650.02

Subject:Response to City of San Diego LDR-Geology Cycle 2 Review of Geotechnical DocumentsProposed Apartment Building, 6213-6219 Montezuma Road, San Diego, California

References: 1) City of San Diego LDR-Geology Cycle 2 Review of Geotechnical Documents, October 3, 2016, Project No. 501449

2) Christian Wheeler Engineering, Report 2150650.01, dated November 17, 2015

Ladies and Gentlemen:

In accordance with your request, Christian Wheeler Engineering has prepared this letter to address the review comments presented in the referenced City of San Diego review memorandum. The geotechnical comments and our responses are presented below.

City Comment 4: This proposed development is a Priority Development Project (PDP). The project's geotechnical consultant must submit an addendum geotechnical report that provides the information required in the Storm Water Standards, Part 1, BMP Design Manual and Appendix F of the City's Guidelines for Geotechnical Reports.

CWE Response: This report has been prepared as an addendum to our referenced geotechnical report. Based on our review of the referenced plans, it is our opinion that all the recommendations contained in our previous geotechnical report for the proposed project remain applicable.

The soil underlying the project site and the surrounding area is classified as Type D soils based on the Web Soil Survey mapping of soil hydrologic properties and the findings from our subsurface investigation. As such, the project should be designed using BMP's that will incorporate partial infiltration. Infiltration testing can be performed at a later date if requested.

Based on the current Storm Water Standards, BMP Design Manual, certain geotechnical criteria need to be addressed when assessing the feasibility and desirability of the use of infiltration BMPs for a project site. Those criteria, Per Section C.2 of the manual, are addressed below.

C2.1 SOIL AND GEOLOGIC CONDITIONS

Site soil and geologic conditions influence the rate at which water can physically enter the soils. Based on the conditions observed in our exploratory borings, the existing soils in the area of the proposed BMPs consist of slightly permeable, clayey sand (SC) and silty sand (SM). Groundwater was not encountered within our subsurface investigation and is expected to be greater than 40 feet below grade.

C2.2 SETTLEMENT AND VOLUME CHANGE

Settlement and volume change can occur when water is introduced below grade. Based upon the soil conditions observed in our borings, the site is underlain by competent colluvium, very old paralic deposits and Mission Valley formation. In in our opinion these competent soils are not subject to collapse or heave upon wetting.

C2.3 SLOPE STABILITY

Infiltration of water has the potential to increase the risk of failure to nearby slopes. The site is currently sloping. Setbacks from descending slopes are discussed on page 3.

C2.4 UTILITY CONSIDERATIONS

Utilities are either public or private infrastructure components that include underground pipelines, vaults, and wires/conduit, and above ground wiring and associated structures. Infiltration of water can pose a risk to subsurface utilities, or geotechnical hazards can occur within the utility trenches when water is introduced. Care should be taken when planning proposed utility trench and BMP siting. Cutoff walls are recommended to reduce the potential for water flow into offsite utility trenches.

C2.5 GROUNDWATER MOUNDING

Groundwater mounding occurs when infiltrated water creates a rise in the groundwater table beneath the facility. Groundwater mounding can affect nearby subterranean structures and utilities. Based on the anticipated depth to groundwater, the potential for groundwater mounding is low.

C2.6 RETAINING WALL AND FOUNDATIONS

Infiltration of water can result in potential increases in lateral pressures and potential reduction in soil strength. Retaining walls and foundations can be negatively impacted by these changes in soil conditions.

This should be taken into account when designing the storm water BMPs, retaining walls and foundations for the site. Recommendations are provided herein to mitigate for this hazard.

Based on our experience with similar projects, we anticipate that, as long as the recommendations contained herein are followed, infiltration of stormwater utilizing the proposed onsite storm water infiltration BMP will not result in soil piping, daylight water seepage, or slope instability for the property or project sites down-gradient of the site.

For the proposed BMPs, we recommend that infiltration occurs within either colluvium, very old paralic deposits or Mission Valley formation. It is also recommended that the infiltration BMPs be setback a minimum of 50 feet from descending slopes, or extend below the base of any slope within 50 feet of the BMP. Where BMP basins are located within 10 feet of the proposed basement retaining wall, the wall designer should increase the equivalent fluid pressure by 13 per square foot for potential saturated soil conditions. Where BMP basins are located within 10 feet of settlement sensitive improvements we recommended that a cut-off wall be constructed around the perimeter of the BMP. The cut-off wall should extend a minimum of 5 feet below proposed pad grade or at least 2 feet below the bottom of the BMP whichever is greater.

It should be recognized that routine inspection and maintenance of the BMPs are necessary to prevent clogging and failure. A maintenance plan should be specified for each BMP by the designer and followed by the owner during the entire lifetime of the BMP device.

"Worksheet C.4-1: Categorization of Infiltration Feasibility Criteria," has been completed and signed for the subject project, and is included in Appendix A of this report.

It should be noted that it is not our intent to review the civil engineering plans, notes, details, or calculations, when prepared, to verify that the engineer has complied with any particular storm water design standards. It is the responsibility of the designer to properly prepare the storm water plan based on the municipal requirements considering the planned site development and infiltration rates.

City Comment 5: The geotechnical consultant must comment whether or not the proposed construction as recommended will measurably destabilize neighboring properties or induce the settlement of adjacent properties.

CWE Response: It is our professional opinion and judgement that the proposed construction as recommended will not measurably destabilize neighboring properties or induce the settlement of adjacent properties.

City Comment 6: Submit original quality prints and digital copies of the geotechnical investigation report listed as "references" and the requested addendum for our records.

CWE Response: Original quality prints and a digital copy of the referenced geotechnical report will be submitted with this report.

If you have any questions regarding this response to the City review, please do not hesitate to contact our office. This opportunity to be of continuing service on this project is sincerely appreciated.

Respectfully submitted, CHRISTIAN WHEELER ENGINEERING

#2551 Wilson, C.E.G.

TSW:tsw;scc

encl: Appendix A ec: chris@myprimeplace.com brad@myprimedesign.com jp@jpeng.com

Appendix A

Worksheet C.4-1: Categorization of Infiltration Feasibility Condition

Worksheet C.4-1: Categorization of Infiltration Feasibility Condition

CWE Project Name: Proposed Apartment Building, 6213-6219 Montezuma Road CWE Project Number: 2150650.01

Categor	Categorization of Infiltration Feasibility Condition Worksheet C.4-1						
Part 1 - F Would in conseque	full Infiltration Feasibility Screening Criteria filtration of the full design volume be feasible from a physical nces that cannot be reasonably mitigated?	perspective without	any unde	esirable			
Criteria	Screening Question		Yes	No			
1	ity locations ing Question shall nted in Appendix		X				
Provide b	pasis:						
The infiltra analysis, the does not all	ion rate of the on-site soils has not been measured. However, based soils are expected to be classified as hydrologic soil type D. As such ow for a reliable infiltration rate greater than 0.5 inches per hour.	on our soil classificati , it is our professional	on and gr opinion t	ain-size hat soil			
2	Can infiltration greater than 0.5 inches per hour be allowed w risk of geotechnical hazards (slope stability, groundwater more other factors) that cannot be mitigated to an acceptable level this Screening Question shall be based on a comprehensive e factors presented in Appendix C.2.	vithout increasing unding, utilities, or The response to valuation of the	Х				
Provide b C.2.1 A sin C.2.2 Base deposits a formation C.2.3 The can occur, slopes. C.2.4 It is trenches. C.2.5 Gro C.2.6 Reco	pasis: the specific geotechnical investigation was performed. In dupon the soil conditions observed in our borings, the site is under and Mission Valley formation. In in our opinion the colluvium, very of are not subject to significant collapse or heave upon wetting. site is sloping and descending slopes, if saturated, can become unsta As such, it is recommended that the storm water BMPs be setback a recommended that a vertical liner will be used to prevent lateral mig undwater mounding is not expected to be a concern. ommendations are provided in the report to mitigate this hazard.	lain by fill, colluvium, v old paralic deposits and ble. In addition, nuisar a minimum of 50 feet : ration of water into ne	very old p Mission ace seepag from desc arby utilit	varalic Valley ge issues cending y			

Criteria	Screening Question Can infiltration greater than 0.5 inches per hour be allowed without increasing	Yes	No		
	Can infiltration greater than 0.5 inches per hour be allowed without increasing		110		
Can infiltration greater than 0.5 inches per hour be allowed without increasing risk of groundwater contamination (shallow water table, storm water pollutants or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.					
Provide b	asis:				
The risk of groundwat	f groundwater contamination has not been evaluated at this time; however, we do not antic ter related concerns at the subject site.	ipate any			
4	4 Can infiltration greater than 0.5 inches per hour be allowed without causing potential water balance issues such as change of seasonality of ephemeral streams or increased discharge of contaminated groundwater to surface waters? X The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.				
Provide b	asis:				
Provide Dasis: The risk of causing potential water balance issues such as change of seasonality of ephemeral streams or increased discharge of contaminated groundwater to surface waters has not been evaluated at this time; however, we do not anticipate any issues.					
Part 1 Result*	Part 1 Result* If any answer from row 1-4 is "No", infiltration may be possible to some extent but would not generally be feasible or desirable to achieve a "full infiltration" design.				

*To be completed using gathered site information and best professional judgment considering the definition of MEP in the MS4 Permit. Additional testing and/or studies may be required by City Engineer to substantiate findings.

Worksheet C.4-1 Page 3 of 4						
Part 2 – Partial Infiltration vs. No Infiltration Feasibility Screening Criteria Would infiltration of water in any appreciable amount be physically feasible without any negative consequences that cannot be reasonably mitigated?						
Criteria	Screening Question	Yes	No			
5	5 Do soil and geologic conditions allow for infiltration in any appreciable rate or volume? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2 and Appendix D.					
Provide b	pasis:	L				
The infiltra and grain-si have an infi	ion rate of the on-site soils has not been measured. However, based on soil mapping, our s ze analysis, the soils are expected to be classified as hydrologic soil type D. As such, the soi ltration rate greater than 0.01 inches per hour and less than 0.5 inches per hour.	oil classif l is expec	ication ted to			
6	Can Infiltration in any appreciable quantity be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2.	X				
Provide basis: C.2.1 A site specific geotechnical investigation was performed. C.2.2 Based upon the soil conditions observed in our borings, the site is underlain by fill, colluvium, very old paralic deposits and Mission Valley formation. In in our opinion the colluvium, very old paralic deposits and Mission Valley formation are not subject to significant collapse or heave upon wetting. C.2.3 The site is sloping and descending slopes, if saturated, can become unstable. In addition, nuisance seepage issues can occur. As such, it is recommended that the storm water BMPs be setback a minimum of 50 feet from descending slopes. C.2.4 It is recommended that a vertical liner will be used to prevent lateral migration of water into nearby utility trenches. C.2.5 Groundwater mounding is not expected to be a concern. C.2.6 Recommendations are provided in the report to mitigate this hazard.						

	Worksheet C.4-1 Page 4 of 4					
Criteria	Screening Question	Yes	No			
7	 Can Infiltration in any appreciable quantity be allowed without posing significant risk for groundwater related concerns (shallow water table, storm water pollutants or other factors)? The response to this Screening Question X shall be based on a comprehensive evaluation of the factors presented in Appendix C.3. 					
Provide l	Dasis:					
The risk ogroundwa	of groundwater contamination has not been evaluated at this time; however, we do not antio ter related concerns at the subject site.	cipate any				
8	Can infiltration be allowed without violating downstream water rights? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.	X				
Provide l	Dasis:		1			
The risk of discharge unaware of	of causing potential water balance issues such as change of seasonality of ephemeral streams of contaminated groundwater to surface waters has not been evaluated at this time; howev of any water rights in this area of San Diego.	or increa er, we are	sed			
Part 2 Result*If all answers from row 1-4 are yes then partial infiltration design is potentially feasible. The feasibility screening category is Partial Infiltration. If any answer from row 5-8 is no, then infiltration of any volume is considered to be infeasible within the drainage area. The feasibility screening category is No Infiltration.Participation						

JJL

Troy S. Wilson, CEG #2551

Technical Memorandum

To: Brad Buser, Prime Design, LLC

From: David Mizell, STC Traffic, Inc.

Date: May 22, 2017

Re: Montezuma PDP Student Housing Project Project Access Assessment and Transportation Demand Management (TDM) Plan

As requested by City of San Diego staff, a project access analysis and Transportation Demand Management (TDM) Plan was prepared for the proposed Montezuma PDP Student Housing Project. The project access analysis evaluates operations, queuing and sight distance at the project entry driveway on Montezuma Road. The purpose of the TDM Plan is to address the proposed deviation from the City's minimum off-street parking requirements and identify strategies aimed at reducing parking demand and vehicular trips generated by the site.

1. Project Location

The proposed project is located at 6213 Montezuma Road within the College Area Community surrounding the San Diego State University (SDSU) campus in the City of San Diego. The project site, which is currently vacant, is located on the south side of Montezuma Road next to the existing Zuma Student Apartments, and is located directly across from SDSU Parking Structure #4. The nearest signalized intersection to the west is Montezuma Road & East Campus Drive, located approximately 300 feet west of the site. The signalized intersection of Montezuma Road / 63rd Street is located approximately 450 feet east of the site.

The regional project vicinity map is shown in Figure 1, and Figure 2 illustrates the project location

2. Project Description

The proposed project consists of a five-story student dormitory building that will provide a total of 128 bedroom suites. Each bedroom would house one student; therefore, the proposed project would house a total of 128 student residents. A three-level underground parking garage will be constructed that will provide a total of 57 parking spaces. The project will also provide a total of six (6) motorcycle parking stalls and bicycle parking racks that will accommodate up to 108 bicycles. Day and overnight parking will also be available within SDSU Parking Structure #3 across the street from the project site for tenants who have purchased an SDSU 24-hour parking permit.

Access to the underground parking garage will be provided from one driveway on Montezuma Road. The project proposes full access (left and right turns) at the Montezuma Road & Project Driveway intersection. The driveway approach of the intersection will be stop-sign controlled, and the Montezuma Road intersection approaches will be uncontrolled.

The project site plan is shown in **Figure 3**.

Figure 1 Regional Vicinity Map

File Path

Figure 2 Project Location

File Path

Ζ

3. Existing Conditions

This section includes a detailed description of existing roadway conditions and volumes on Montezuma Road, and an assessment of existing transit, bicycle and pedestrian access from the project site.

Data Collection

Traffic counts were collected on Montezuma Road in front of the project site over a 24-hour period on Thursday, February 9, 2017 during the Spring Semester at SDSU. Vehicular gap data was also collected on the same day at the same location on Montezuma Road. The 24-hour counts were used to determine the existing AM and PM peak hour traffic volumes on Montezuma Road in front of the project site. The traffic count data is provided in **Appendix A** following this report.

Existing Traffic Volumes

Table 1 below summarizes the existing traffic data that was collected on Montezuma Road in front of theproject site.

Direction	Daily	AM Peak Hour	PM Peak Hour				
Eastbound	9,867	370	924				
Westbound	10,164	889	561				
Total	20,031	1,259	1,485				

Table 1 Existing Traffic Volumes

Existing Roadway Conditions

Montezuma Road extends from Fairmount Avenue to El Cajon Boulevard and is classified as a four-lane Major Street in the College Area Community Plan. In this area it functions as a four lane collector. The posted speed limit is 35 mph. Raised medians or two-way left-turn lanes are present along most of the corridor except for a 750-foot segment between East Campus Drive and 63^{rd} Street where only a double-yellow line separates the two eastbound and two westbound lanes. The proposed project site is located along the segment between East Campus Drive and 63^{rd} Street. Vehicles along this segment of Montezuma Road currently make a left-turn from the inside through lane to access the existing driveways and intersections along this segment. Left-turning vehicles exiting driveway and intersections along this segment currently enter the inside through lane to accelerate to the speed of free-flow traffic.

A double yellow line separates the two eastbound and two westbound lanes on Montezuma Road in front of the project site. The presence of on-street parking along the south side of the street and buffered bike lanes on both sides of the street does not allow adequate width for a center median or two-way left-turn lane. This striping configuration exists along a 750-foot segment of Montezuma Road between the signalized intersections of East Campus Drive and 63^{rd} Street.

Per California Vehicle Code (CVC) 21460(d)(1), a vehicle may cross a double yellow line to turn into or out of a private driveway. There is currently a total of 7 single-family residential driveways, one apartment complex driveway (Zuma Student Apartments) and one SDSU parking structure driveway (Zura Way) along this segment of Montezuma Road in which vehicles cross the existing double yellow line to make left-turn maneuvers. The double yellow line on Montezuma Road is broken for left-turn maneuvers onto and from East Falls View Drive; however, eastbound vehicles still make a left-turn maneuver from the inside through lane. Eastbound vehicles making a left-turn at the signalized Montezuma Road & 63rd Street intersection also make a left-turn maneuver from the inside through lane.

Existing Transit Access

The project site is within walking distance of two transit bus stops (one on each side of the street) along Montezuma Road at the intersection with 63rd Street that serve Metropolitan Transit System (MTS) Route 14. The transit bus stop along the south side of Montezuma Road is located approximately 400 feet east of the project site. The transit bus stop along the north side of Montezuma Road is located approximately 650 feet east of the project site.

Route 14, which operates Monday through Friday, provides service every 60 minutes, and extends from the Grantville Trolley Station to the Lake Murray Village Shopping Center in La Mesa. Transit riders on Route 14 can transfer to the San Diego Trolley Green Line at the Grantville Trolley Station, the Mission San Diego Trolley Station, the SDSU Transit Center, and the 70th Street Trolley Station. Major destinations along Route 14 include Mission Valley (via transfers at Grantville Trolley Station), Kaiser Hospital, and SDSU.

SDSU operates a free shuttle service called the Red & Black Shuttle, which operates Monday through Thursday from 5:00 PM to 10:00 PM during the Fall and Spring semesters and provides service every 10-15 minutes during operating hours. The shuttle stops at 13 locations on and near campus, including one stop along southbound East Campus Drive that is located approximately 500 feet from the project site.

The SDSU Transit Center, where transit riders can access the San Diego Trolley Green Line, is located approximately 2,300 feet by foot from the project site. The San Diego Trolley Green Line, which extends from 12th Street & Imperial Avenue in downtown San Diego to the Santee Town Center Station, operates between 4:00 AM and 1:00 AM seven days per week. The San Diego Trolley Green Line provides service every 15 minutes throughout most of the day, and provides service every 30 minutes during the evening hours. Major destinations along the San Diego Trolley Green Line include Grossmont Center, SDSU, Qualcomm Stadium, Mission Valley, Fashion Valley Shopping Center, Old Town, Little Italy, and Downtown San Diego.

Existing Bicycle and Pedestrian Access

Class II bike lanes are provided along Montezuma Road between College Avenue and El Cajon Boulevard, and several sections are striped with buffers between the bike lane and the outside through lane. The segment of Montezuma Road between East Campus Drive and 63rd Street, along which the project site is located, is striped with buffered Class II bike lanes in both directions of travel.

Sidewalks are provided along Montezuma Road on both sides of the street including in front of the proposed project site. Marked crosswalks are provided at the nearest signalized intersections of Montezuma Road & East Campus Drive and Montezuma Road & 63rd Street, and the signals at both intersections provide pedestrian phases to cross at the intersections.

The most direct non-vehicular route between the proposed project site and the central SDSU campus is via East Campus Drive and a pedestrian promenade located west of Parking Structure #3 that connects to a pedestrian bridge over College Avenue to the center of the SDSU campus. The total distance of the route is approximately 0.38 mile, or approximately 2,000 feet. The distance from the project site to the SDSU pedestrian promenade on the west side of Parking Structure #3 is approximately 800 feet.

4. Project Access Analysis

This section includes a detailed assessment of project trip generation and analysis of vehicular operations, gaps in traffic, queuing and sight distance at the proposed driveway on Montezuma Road.

Project Trip Generation

Neither the City of San Diego *Trip Generation Manual* (May 2003) nor the Institute of Transportation Engineers (ITE) Trip Generation (9th Edition, 2012) publication include a trip generation rate for a student housing use. Student dormitories located off-campus are typically built within walking distance of a university or college; therefore, a large percentage of school-related trips would be made by walking or bicycling. Most vehicular trips associated with a student housing use would be trips that are not school-related, and are most likely to occur outside of the primary peak traffic periods.

Due to the close proximity of San Diego State University (SDSU) to the project site, it is assumed that the majority of students residing at the proposed student housing project would walk or bicycle to the SDSU campus. As previously discussed, the distance of the most direct non-vehicular route between the project site and the SDSU campus is approximately 0.38 mile, or 2,000 feet.

Trip generation studies that have been performed for student housing apartments have shown that on average, a student housing apartment generates approximately one-third of the weekday trips generated by a typical apartment use. **Appendix B** provides a detailed trip generation study performed for six typical student housing apartments located near the University of Minnesota (*Private Student Housing Apartments Trip Generation Study*, Spack Consulting, 2012).

The results of the University of Minnesota student housing apartments trip generation study are shown below:

- Average Weekday Daily Trip Rate: 2.82 trips per unit
- Average Weekday AM Peak Hour Trip Rate: 5% of daily trips (39% In; 61% Out)
- Average Weekday PM Peak Hour Trip Rate: 9% of daily trips (54% In; 46% Out)

Based on the trip rates shown above, the proposed project is expected to generate a total of approximately 361 average weekday trips, including 17 AM peak hour trips and 31 PM peak hour trips.

However, because the student housing trip rates shown above have not been adopted by the City of San Diego, SANDAG, or the Institute of Transportation Engineers (ITE), the trip rates from the City of San Diego *Trip Generation Manual* (May 2003) for a multi-family residential use over 20 dwelling units per acre were used in this analysis, which provides a conservative estimate of trips generated by the proposed project. Table 2 below summarizes the vehicular trip generation of the proposed 128-unit student dormitory building based on the City's general multi-family dwelling unit trip rates. As shown in the table, the proposed project would generate approximately 768 daily trips, 61 AM peak hour trips and 69 PM peak hour trips based on the more conservative general multi-family residential trip rates.

Land Use			Daily	AM	Peak Ho	ur	PM	Peak Ho	ur
		Unit	Unit (per unit)	AM Rate	In	Out	PM Rate	In	Out
				(per unit)	(% AM)	(% AM)	(per unit)	(% PM)	(% PM)
Trip Generation Rates (City of San Diego)									
Multi-Family (over 20	DU/acre)	DU	6	8%	20%	80%	9%	70%	30%
		Daily		AM Peak Hour		ur	PM Peak Hour		ur
Land Use	Size	Unit	Trips	Total	In	Out	Total	In	Out
Proposed Project Trip Generation									
Student Dormitory	128	DU	768	61	12	49	69	48	21

Table 2 Proposed Project Trip Generation

Source: City of San Diego Trip Generation Manual, May 2003.

Project Trip Distribution and Assignment

The trip distribution at the project driveway assumes that most trips are not school-related trips. The trip distribution takes into account the surrounding land uses and the anticipated trip purposes such as work trips, shopping, dining or recreation trips.

It is assumed that approximately 60% of trips head west from the site toward College Avenue, and are primarily destined for Interstate 8 to Mission Valley and beyond. The remaining 40% are assumed to head east from the site toward commercial establishments along El Cajon Boulevard and in the City of La Mesa.

The assignment of trips at the project driveway during the peak hours was calculated using the trip generation shown in Table 2 and the assumed trip distribution from the project site.

Figure 4 illustrates the project trip distribution and trip assignment at the project driveway.

Figure 4 Project Trip Distribution and Assignment Montezuma Road & Project Driveway

Proposed Roadway and Intersection Conditions With Project

The driveway approach of the Montezuma Road & Project Driveway intersection will be stop-controlled and will consist of a single lane from which vehicles can turn either left or right onto Montezuma Road. Vehicles exiting the project driveway onto Montezuma Road would wait for sufficient gaps in traffic before making the left-turn or right-turn maneuver.

Vehicles entering the site from eastbound Montezuma Road would turn right from a shared through/right-turn lane on Montezuma Road. Westbound vehicles entering the site from Montezuma Road would make a left turn from the inside through lane, which would function as a shared left-turn/through lane. Vehicles entering the site from westbound Montezuma Road would need to wait for sufficient gaps in eastbound traffic before making a left-turn into the project driveway.

Westbound vehicles entering the project driveway would also have the option to continue approximately 1,100 feet west to the signalized Montezuma Road / College Avenue intersection, make a u-turn and head east to turn right into the project driveway. There are no u-turn options at signalized intersections to the east of the project site.

Proposed Pedestrian and Bicycle Conditions With Project

The proposed project will improve the existing sidewalk along the project frontage and construct ornamental landscaping in intervals that will separate the sidewalk from the street. The primary pedestrian-vehicle conflict would occur where the sidewalk crosses the project driveway/parking garage entrance.

The project would not be modifying or improving the existing bicycle facilities along Montezuma Road. The primary bicycle-vehicle conflict would also occur at the project driveway/parking garage entrance. To improve bicycle safety conditions, it is recommended that the areas within the sight triangles at the project driveway exit be kept clear of objects exceeding 36 inches in height. Red curb to prohibit parking is recommended within the driveway sight triangles so that parked vehicles do not obstruct the visibility of the adjacent bike lane to drivers exiting the driveway (as recommended in the Sight Distance Analysis section of the report).

Existing With Project Conditions Intersection Operations Analysis

An intersection level of service (LOS) analysis was conducted at the Montezuma Road & Project Driveway intersection during the AM and PM peak hours under existing conditions with the addition of project traffic at the proposed driveway. The traffic volumes collected on Montezuma Road as shown in Table 1 were applied to the eastbound and westbound volumes at the intersection. **Figure 5** illustrates the Existing With Project AM/PM peak hour traffic volumes and the proposed lane geometrics at the Montezuma Road & Project Driveway intersection.

Figure 5 Existing With Project Intersection Lane Geometrics and AM/PM Peak Hour Traffic Volumes Montezuma Road & Project Driveway

The Highway Capacity Manual (HCM) 2010 methodology was used to analyze the intersection. The SYNCHRO software program was utilized as an interface to the HCM 2010 methodology. Delays reported refer to the average delay for the worst movement at the intersection, which corresponds with the stop-controlled northbound (driveway) approach of the intersection.

The criteria for the LOS grade designations are provided in **Table 3**. LOS provides a quick overview of how well an intersection is performing. As indicated in the City's *Significant Determination Thresholds* (January 2011), the City of San Diego accepts LOS D or better operations for all signalized and unsignalized intersections during peak traffic periods.

	Control Delay (sec/veh)		
LOS	Signalized Intersections	Unsignalized Intersections	Description
А	<u><</u> 10	<u><</u> 10	Operations with very low delay and most vehicles do not stop.
В	>10 and <u><</u> 20	>10 and <u><</u> 15	Operations with good progression but with some restricted movements.
С	>20 and <u><</u> 35	>15 and <u><</u> 25	Operations where a significant number of vehicles are stopping with some backup and light congestion.
D	>35 and <u><</u> 55	>25 and <u><</u> 35	Operations where congestion is noticeable, longer delays occur, and many vehicles stop. The proportion of vehicles not stopping declines.
E	>55 and <u><</u> 80	>35 and <u><</u> 50	Operations where there is significant delay, extensive queuing, and poor progression.
F	>80	>50	Operations that are unacceptable to most drivers, when the arrival rates exceed the capacity of the intersection.

Table 3 LOS Criteria for Intersections

Source: Highway Capacity Manual (HCM) 2010.

Table 4 below summarizes the City of San Diego's significance thresholds for significant traffic impacts.

Allowable Increase Due to Project						
LOS	Roadway and Fr	Intersection				
	v/c ratio	Speed (mph)	Delay (sec)			
E	0.02	1.0	2.0			
F	0.01	0.5	1.0			

Table 4Summary of Significance Thresholds

Notes:

Based on the City of San Diego's Significance Determination Thresholds Report, dated January 2011.

Table 5 summarizes the findings of the Existing With Project conditions delay and level of service operations analysis at the Montezuma Road & Project Driveway intersection during the AM and PM peak hours. **Appendix C** contains the SYNCHRO HCM worksheets.

		Traffic	Peak	Existing With Project Conditions	
#	Intersection	Control	Hour	Delay ^(a)	LOS
1		014/50	AM	16.3	С
T	Montezuma Road & Project Driveway	UWSC	PM	22.8	C

 Table 5

 Existing With Project Conditions Intersection Operations Analysis

Note:

OWSC = One-Way Stop Control

(a) Reported delay refers to the worst approach delay at the stop-controlled driveway approach of the intersection.

As shown in the table, the Montezuma Road & Project Driveway intersection is expected to operate at LOS C during the AM and PM peak hours based on the delay at the stop-controlled project driveway approach of the intersection. The City of San Diego considers LOS D or better to be acceptable intersection operations during peak hours.

Gap Analysis

A gap analysis was conducted at the Montezuma Road & Project Driveway intersection during the AM and PM peak periods to determine the availability of gaps under existing field observations. All available gaps in major street traffic (eastbound and westbound Montezuma Road) of 5.0 seconds or more were observed on a typical weekday during the AM and PM peak periods on Montezuma Road in front of the proposed project site. The observed gap data was then applied to the gap analysis using the methodology presented in Chapter 19 (Two-Way Stop-Controlled Intersections) of the 2010 Highway Capacity Manual (HCM).

Based on the 2010 HCM methodology, the minimum acceptable gap (critical headway) for a left-turn movement from a stop-controlled minor street onto an uncontrolled four-lane major street is 7.5 seconds for a single-stage maneuver (no refuge area provided). Critical headway is the minimum time needed for the first vehicle in the queue to complete the left-turn movement.

The minimum follow-up headway for a left-turn movement from a minor street onto a four-lane major street is 3.5 seconds. Follow-up headway is the minimum time needed for the second vehicle in the queue to follow the first vehicle when a gap in traffic occurs.

The gap data collected on Montezuma Road is provided in **Appendix D**.

Table 6 summarizes the results of the gap analysis for the northbound left-turn movement from the proposed project driveway onto Montezuma Road.

Only gaps of 7.5 seconds or more were considered in the gap analysis. As shown in Table 6, the observed gaps were grouped into the following ranges based on the number of left-turning vehicles allowed during each gap range:

- <u>7.5-10.9 seconds</u>: 1 left-turning vehicle
- <u>11-14.4 seconds</u>: 2 left-turning vehicles
- <u>14.5-17.9 seconds</u>: 3 left-turning vehicles
- <u>18-21.4 seconds</u>: 4 left-turning vehicles
- <u>21.5-24.9 seconds</u>: 5 left-turning vehicles
- <u>25+ seconds</u>: 6 or more left-turning vehicles

Based on the project trip generation and distribution of trips at the Montezuma Road & Project Driveway intersection, there are a total of 29 northbound left-turning vehicles during the AM peak hour, and during the PM peak hour there are a total of 12 northbound left-turning vehicles. The findings of the gap analysis based on the field gap data that was collected show that there are sufficient gaps currently available on Montezuma Road in front of the project site during both the AM and PM peak hours.

	Montezuna Road & Project Driveway													
Peak Hour	7.5 - 10.9 Seconds (1 Vehicle at a Time)		7.5 - 10.911 - 14.4SecondsSeconds(1 Vehicle at a Time)(2 Vehicles at a Time)		14.5 - 17.918 - 21.4SecondsSeconds(3 Vehicles at a(4 Vehicles at aTime)Time)		21.5 - 24.9 Seconds (5 Vehicles at a Time)		25+ Seconds (6 Vehicles at a Time)		Total Vehicle Capacity for NB Left-	NB Left- Turn Movement Volume		
	# of Gaps	# of Vehicles (1)	# of Gaps	# of Vehicles ⑴	# of Gaps	# of Vehicles ⑴	# of Gaps	# of Vehicles ⑴	# of Gaps	# of Vehicles ⑴	# of Gaps	# of Vehicles ⑴	Turn Movement (2)	(Project Driveway)
AM	54	54	40	80	8	24	3	12	1	5	1	6	182	29 ⁽³⁾
PM	31	31	30	60	5	15	5	20	1	5	3	18	149	12 (3)

Table 6 Gap Analysis for Northbound Left-Turn Movement Montezuma Road & Project Driveway

⁽¹⁾Number of vehicles that the available gaps could potentially serve.

 $^{\rm (2)}$ Total number of vehicles per hour that could make left-turn based on available gaps.

⁽³⁾ Left-turn volumes shown in this table are based on the City's trip rate for a typical multi-family residential use and are likely overestimated for a student dormitory use. When constructed and occupied, the left-turn volumes exiting the project driveway are expected to be much lower than the volumes shown in this table.

Queuing Analysis

A queuing analysis was performed under Existing With Project conditions for the AM and PM peak hours at the Montezuma Road / Project Driveway intersection to evaluate queuing associated with the left-turn movements both entering and exiting the project driveway. The driveway approach of the intersection would consist of a shared left-turn/right-turn lane. Left-turn access from Montezuma Road would be taken from the inside through lane on the westbound approach of the intersection.

The SYNCHRO SimTraffic software program was utilized to conduct the queuing analysis, and the maximum (95th percentile) queue lengths are reported in this analysis.

Table 7 summarizes the results of the queuing analysis for the Montezuma Road / Project Driveway intersection during the peak hours under Existing With Project conditions. The SYNCHRO SimTraffic queuing reports are provided in **Appendix E** following this report.

			Existing With Project Conditions						
Movement/Lane	#	Control	AM Pea	ak Hour	PM Peak Hour				
	Lanes		Volume (vph)	95% Queue ⁽¹⁾	Volume (vph)	95% Queue ⁽¹⁾			
NB Left-Turn/Right-Turn (Shared Lane)	1	Stop Sign	49	55′	21	43′			
WB Left-Turn/Through (Shared Lane)	1	Uncontrolled	929	9′	580	41'			

Table 7 Queuing Analysis for Montezuma Road & Project Driveway Intersection

NB = Northbound; WB = Westbound

⁽¹⁾ Queue lengths expressed in feet. SYNCHRO assumes 25 feet per vehicle (including 5-foot headway between vehicles).

Table 7 shows that during the AM peak hour, the 95th percentile queue length for the project driveway northbound approach is approximately 55 feet, or approximately two (2) vehicles. The 95th percentile queue length for the shared left-turn/through lane on Montezuma Road is approximately 9 feet, which represents less than one vehicle during the AM peak hour.

During the PM peak hour, the 95th percentile queue length for the project driveway northbound approach is approximately 43 feet, which represents slightly less than two (2) vehicles. The 95th percentile queue length for the shared left-turn/through lane on Montezuma Road is approximately 41 feet, which also represents slightly less than two (2) vehicles during the PM peak hour.

Sight Distance Analysis

Line of sight was evaluated at the proposed project driveway intersection (Montezuma Road / Project Driveway) to ensure that adequate stopping and corner sight distance would be provided for vehicles exiting the project site. Along the project site frontage, Montezuma Road is striped with two travel lanes and buffered bike lanes in each direction. There is also a parking lane along the south side of Montezuma Road that begins approximately 110 feet west of the project driveway and extends to approximately 146 feet east of the project driveway in front of the adjacent Zuma Apartments.

Montezuma Road between College Avenue and 63rd Street has a posted speed limit of 35 miles per hour (mph). City of San Diego Traffic Engineering staff provided speed data for this segment of Montezuma Road from an Engineering and Traffic Survey, which revealed a prevailing (85th percentile) speed of 41 mph. The Engineering and Traffic Survey data provided by the City for Montezuma Road is contained in **Appendix F**.

Sight distance is measured along the direction of travel from a point on the minor road 10 feet from the edge of the major road travel way and is measured from a height of eye of 3.5 feet on the minor road to a height of object of 4.25 feet on the major road. The minimum stopping and intersection corner sight distance for a prevailing speed of 41 mph is approximately 310 feet and 450 feet, respectively, per the *Caltrans Highway Design Manual* (6th Edition, 2012).

A field survey was conducted to measure line of sight at the project driveway intersection location, at approximately 10 feet from the edge of the travel way on Montezuma Road, looking from a height of approximately 3.5 feet and looking toward an object at a height of approximately 4.25 feet from the ground. The edge of the travel way was determined to be the striped line separating the eastbound travel lane from the buffered bike lane along eastbound Montezuma Road (along project frontage).

The field survey results showed that looking west toward the eastbound lanes on Montezuma Road, the available line of sight is approximately **68 feet**. The presence of on-street parking currently obstructs line of sight looking toward the west.

The field survey results showed that looking east toward the westbound lanes on Montezuma Road, the available line of sight is approximately **130 feet**. The presence of on-street parking currently obstructs line of sight looking toward the east. There is also a slight curve along Montezuma Road to the east that further inhibits line of sight from the project driveway location.

Figure 6 shows the currently available sight distance looking in both directions of travel from the driver's approximate location at the project driveway intersection, approximately 10 feet back from the edge of the travel way on Montezuma Road. Also shown in Figure 6 are the minimum stopping and intersection sight distance lines from the project driveway location.

As shown in Figure 6, neither the minimum stopping sight distance (310 feet) nor the intersection corner sight distance (450 feet) can be accommodated under current conditions due to the presence of parked vehicles along the curb looking in both directions from the project driveway location.

Accommodating the minimum intersection corner sight distance would require prohibiting all on-street parking along the south side of Montezuma Road from approximately 110 feet west of the project driveway to approximately 146 feet east of the project driveway, including all on-street parking in front of the existing Zuma Apartments. Although the minimum intersection corner sight distance is recommended for vehicles to make a left-turn maneuver out of the project driveway based on the minimum 7.5-second gap criteria, it is not realistic to eliminate all on-street parking along properties adjacent to the project site.

At driveways where parked vehicles may obstruct line of sight, it is typical for vehicles to "inch" forward into the roadway to a point where more sight distance is available to make the turning maneuver onto the major street. Because of the presence of a buffered bike lane between the travel way and the parking lane, drivers exiting the project driveway can safely move slightly forward from the curb to improve their line of sight before making the turn onto Montezuma Road.

Figure 6 Sight Distance at Montezuma Road/Project Driveway Intersection Based on Existing Conditions

Due to the on-street parking impacts of accommodating the minimum intersection corner sight distance from the project driveway, it is recommended that the no parking (red curb) zones be based on the minimum stopping sight distance (310 feet) that is needed for vehicles on Montezuma Road approaching the project driveway.

To accommodate the minimum stopping sight distance to the west of the project driveway, it is recommended that a no parking (red curb) zone be provided for a total length of approximately **110 feet**. The no parking zone to the west would require red curb along **51 feet** of the project frontage and **59 feet** of red curb along the remaining existing parking lane from the western project boundary to the end of the existing parking lane.

To accommodate the minimum stopping sight distance to the east of the project driveway, it is recommended that a red curb zone be provided for a total length of approximately **80 feet**. The no parking zone to the west would require red curb along **34 feet** of the project frontage and **46 feet** of red curb in front of the adjacent Zuma Apartments. Approximately 66 feet of on-street parking would continue to be allowed in front of Zuma Apartments.

Figure 7 shows that with the recommended red curb zones, the minimum stopping distance can be accommodated at the Montezuma Road / Project Driveway intersection.

File Path

5. Parking Assessment

As discussed previously in this report, the project will construct a three-level underground parking garage that will provide a total of 57 parking spaces, which includes two (2) accessible parking spaces and one (1) van accessible parking space. The project will also provide a total of six (6) motorcycle parking stalls, and bicycle parking racks within the parking garage and central courtyard that will accommodate up to 108 bicycles.

The *College Community Redevelopment Project Master Plan*, which was approved by San Diego City Council in October 1993, includes specific parking requirements for a student dormitory use within the College Community Redevelopment Area. The City of San Diego utilizes this document to determine off-street parking requirements within the College Community Redevelopment Area.

Per the *College Community Redevelopment Project Master Plan*, the base parking rate for a student dormitory use is 0.58 spaces per bed or resident, plus 50% for guest parking. A 30% reduction in the number of required parking spaces is allowed for student dormitory projects exceeding a density of 143 residents per acre. The total size of the project site is 0.285 acres, which would result in a density of 449 residents per acre for the project site. Therefore, the 30% parking reduction is allowed for the project.

The above parking rate description results in the following calculation for the proposed student dormitory project: $128 \times 0.58 \times 1.5 \times 0.7 = 77.95$.

Therefore, a minimum of 78 parking spaces are required for the proposed project. The project is also required to provide a minimum of six (6) motorcycle parking stalls and 38 bicycle parking stalls. **Table 8** provides a comparison between the proposed parking and the City's minimum parking requirements.

Parking Type	Proposed Parking	Required Parking	Difference (Proposed-Required)
Parking Ratio	0.45 spaces per bed/resident	0.61 spaces per bed/resident	-0.16 spaces per bed/resident
Total Vehicle Parking Stalls ⁽¹⁾	57	78	-21
Accessible Parking Stalls	2	2	0
Van Accessible Parking Stalls	1	1	0
Motorcycle Parking Stalls	6	6	0
Bicycle Parking Stalls	108	38	+70

Table 8Comparison of Proposed Versus Required Parking

⁽¹⁾ The total 57 vehicle stalls include the 3 accessible parking stalls.

As shown in Table 8, the proposed project will provide 21 fewer vehicle parking stalls than the minimum required parking stalls. The project will provide a surplus of 70 bicycle parking stalls.

To accommodate guest parking, the City requires that the proposed project provide a minimum of 16 complimentary visitor passes to park in an SDSU on-campus parking structure, which represents 20 percent of the total off-street parking stalls that are required for the project. The visitor passes would be provided by the property management for the proposed student dormitory. SDSU Parking Structures #3 and #4 are located directly across Montezuma Road from the proposed project site.

On-street parking in the neighborhoods surrounding the project site requires an Area B Residential Parking Permit. Enforcement is conducted Monday through Friday between 8:00 AM and 7:00 PM except for City observed holidays. An Area B Residential Parking Permit is not required along Montezuma Road except for a short section east of 63rd Street between Ewing Street and La Dorna Street.

On-street parallel parking is currently allowed on Montezuma Road in front of the project site. The project driveway will remove approximately two of the existing on-street parking spaces. As indicated in the findings of the Sight Distance Analysis (pages 16-20), it is recommended that the project designate no parking zones (red curb) for a total length of approximately **110 feet** to the west of the project driveway, and for a total length of approximately **80 feet** to the east of the project driveway.

Along the project frontage, the recommended red curb areas would extend for a length of approximately **51 feet** from the project driveway to the western project boundary, and for a length of approximately **34 feet** from the project driveway to the eastern project boundary.

Figure 8 illustrates the on-street parking recommendations along the project frontage.

To provide adequate parking for the proposed student dormitory, the project will require as part of their lease that all prospective tenants who own automobiles to either provide proof of purchase of an SDSU day and overnight permit to park in an on-campus parking structure, or to rent one of the on-site parking stalls in the underground parking garage at the same cost to purchase an SDSU 24-hour parking permit. SDSU Parking Structure #3, which is located along East Campus Drive approximately 1,000 feet by foot from the project site, allows students to park their vehicles 24 hours per day, 7 days per week.

Per Item L (page 20) of the *College Community Redevelopment Project Master Plan*, "...a study may be submitted to justify lowering the base and/or guest parking rate. Sound reasons for lowering the parking rates include but are not limited to: shared parking facilities, nearby parking lots, a nearby Light Rail Transit Station, or agreements to limit the number of cars kept or owned by residents of fraternity or sorority houses. "

Three out of the four reasons to justify lowering the base parking rate as described above apply to the proposed project. First and second, the project is proposing that parking for the proposed project may be shared with the nearby SDSU Parking Structure #3, which would require that student tenants purchase and possess an SDSU 24-hour parking permit. Third, the project site is located within a reasonable walking distance (2,300 feet) of the SDSU Transit Center, from where transit riders can access the San Diego Trolley Green Line.

File Path

Figure 8 On-Street Parking Recommendations Along Project Frontage

6. Transportation Demand Management (TDM) Plan

The City of San Diego requires that the project implement a Transportation Demand Management (TDM) Plan to address the project's deviation from the City's minimum off-street parking requirements, and to address the project's Climate Action Plan (CAP) checklist. This TDM Plan has been prepared to provide the project with programs and strategies to reduce the need for automobile trips and on-site parking.

Most TDM Plans are geared toward reducing automobile trips and parking demand for non-residential uses that generate work-related or school-related trips. As the proposed project is a student dormitory building located within walking distance of San Diego State University, it is expected that the majority of the school-related trips will not be automobile trips. However, this leads to a parking challenge that is the opposite of most development projects that develop and implement a TDM Plan. Student residents who would walk or bike to the SDSU campus from the proposed student dormitory building would reduce the parking impact on the SDSU campus, but by leaving their automobile at home, they would thereby increase the parking demand of the proposed student dormitory building. The peak parking demand for all types of residential uses is during the late night/early morning hours when most residents are home sleeping. Therefore, instead of providing incentives to reduce parking demand as with a "typical" TDM Plan, this TDM Plan for the proposed student dormitory is intended to provide incentives to not owning a car at all.

Realistically, the parking garage of the proposed student dormitory cannot accommodate more than 54 tenants who own automobiles. Out of the 57 parking spaces, two (2) parking spaces are accessible-only and are limited to those who require those spaces. A third accessible parking space within the parking garage is reserved for accessible vans and so is not available for resident parking.

As a first step toward reducing the on-site parking demand of the proposed student dormitory, the project is requiring that tenants who own an automobile rent an on-site parking space at an additional cost to the standard dormitory rent. Because the on-site parking garage is limited to only 54-56 tenants with automobiles, there will not always be parking spaces available to rent for new tenants who own automobiles. If all on-site parking spaces are rented, prospective tenants with automobiles will be required to provide proof of purchase of an SDSU day and overnight permit to park in an on-campus parking structure. SDSU Parking Structure #3, which is located along East Campus Drive approximately 1,000 feet by foot from the project site, allows students to park their vehicles 24 hours per day, 7 days per week.

It is recommended that the project implement strategies that would encourage students who do not own an automobile to live at the proposed student dormitory. Therefore, this TDM Plan is focused on strategies that will provide viable transportation options to driving an automobile for the proposed student dormitory tenants.

The recommended programs and strategies included in this TDM Plan are focused on the following four (4) alternative transportation modes to driving an automobile:

- 1) Transit;
- 2) Ridesharing/Carpooling;
- 3) Walking; and
- 4) Bicycling.

The following TDM strategies are recommended to incentivize the student dormitory tenants to not bring/have automobiles:

TDM Plan Programs and Strategies – Transit

Subsidized Transit Passes

It is recommended that the project owner provide 75% subsidized transit passes to tenants who do not own an automobile.

Information Kiosk

It is recommended that an information kiosk be provided in a central location within the student dormitory building that provides tenants with transit information for the nearby vicinity, such as the locations of nearby bus and shuttle stops, MTS bus routes and schedule, the free SDSU shuttle service, and the San Diego Trolley. An example of the information that could be provided is that the San Diego Trolley Green Line stops at the SDSU Transit Center, which can transport the proposed student dormitory residents between SDSU and many major destinations in the San Diego area.

TDM Plan Programs and Strategies – Ridesharing/Carpooling

Ridesharing/Carpooling Information

In addition to providing transit information, it is recommended that the information kiosk that will be established within the student dormitory building also provide information about ridesharing/carpooling services such as through the iCommute program. The iCommute program and website, which was established by SANDAG, provides assistance to commuters to ridesharing, carpooling and vanpooling services including the Guaranteed Ride Home Program, transit planning services, and assistance for bicycle commuters.

SDSU also provides ridesharing information such as Zimride on their website, which should also be provided at the recommended information kiosk. Zimride is a social network program that provides ridesharing services to SDSU students and staff. The Zipcar car sharing service is also provided at SDSU that should be advertised at the recommended information kiosk.

Uber and/or Lyft Discount Coupons

It is recommended that upon move-in, the project owner provide tenants without automobiles discounted coupons or free credits for both first-time users and existing users of Uber and/or Lyft. Riding with Uber and Lyft has emerged as the primary transportation mode alternative to driving an automobile for most young people under 30 in urban areas. Due to the immense popularity of Uber and Lyft, incentivizing tenants without automobiles to utilize Uber and Lyft on a regular basis is likely to be one of the most effective strategies identified in this TDM Plan. The project owner should also further encourage use of Uber and Lyft by providing discounted coupons or free credits once per month for a year to tenants without automobiles who have signed a one-year lease agreement at the student dormitory.

Although no on-street public parking will be allowed in front of the project site (based on findings of the sight distance analysis), approximately three (3) on-street public parking spaces will continue to be provided in front of the adjacent Zuma Apartments. Passenger drop-off and pick-up activities for the project site associated with Uber, Lyft or other ridesharing/carpooling services will be allowed to park in these 3 parking spaces in front of Zuma Apartments.

TDM Plan Programs and Strategies – Walking

Wayfinding Information

It is recommended that the information kiosk within the student dormitory building also provide wayfinding maps for tenants who will walk between the student dormitory and the SDSU campus. It will be important to let new tenants know to use the pedestrian promenade near SDSU Parking Structure #3 and the pedestrian bridge over College Avenue. Uninformed new tenants may walk along Montezuma Road to College Avenue to head to the SDSU campus, which would be a longer route. SDSU also provides safety escorts between campus and the parking structures and residence halls, and information on the safety escorts should also be provided in the recommended kiosk.

Wayfinding Signage

To assist new tenants of the student dormitory building as well as other new students in the immediate area, it is recommended that the project owner work with the City of San Diego to install signage on the south side of the Montezuma Road & East Campus Drive intersection near the crosswalk to direct pedestrians to cross the street and head north on East Campus Drive to access the pedestrian promenade and bridge across College Avenue to the central SDSU campus and SDSU Transit Center.

TDM Plan Programs and Strategies – Bicycling

The proposed student dormitory will provide bicycle racks within the underground parking garage and within the central courtyard that will accommodate parking for up to 108 bicycles. It should be emphasized that the high-density grid-style or low-profile parking racks may be adequate for temporary parking in a commercial center or school campus, but is not as desirable for overnight parking and primary storage at one's place of residence. Because the proposed project is a student dormitory building, the percentage of tenants who own bicycles is likely to be much higher than tenants in a typical apartment building. But despite the higher ownership rate, student dormitory tenants are not likely to have adequate space to store their bicycles inside their residence units.

For the reasons described above, the following strategy is recommended to accommodate the tenants who own bicycles and to encourage bicycling as a viable transportation alternative to driving an automobile:

Bicycling Parking Options

It is recommended that the project owner consider a variety of bicycle parking options to the traditional high-density grid-style bicycle parking rack, and avoid the low-profile bicycle racks. Bicycle lockers could be provided for tenants with higher-end bicycle who desire more secure bicycle parking. Another secure bicycle parking option is to provide one or more bicycle cages, in which bicycles are hung at intervals on a wall surrounded by a locked heavy-duty wire enclosure than can be accessed with either a key, fob or electronic card.

TDM Plan Monitoring Program

It is recommended that the project owner monitor the results of the TDM Plan strategies on an annual basis for a period of five (5) years. The annual monitoring reports are to be submitted for review and approval by the City Engineer.

7. Summary and Recommendations

The trip generation for the proposed 128-resident student dormitory building was calculated using the City of San Diego's trip rate for a typical multi-family residential use. Based on the City's trip generation rates, the project would generate approximately 768 daily trips, 61 AM peak hour trips, and 69 PM peak hour trips. However, it is expected that this trip generation is overestimated and provides a conservative analysis. Trip generation studies have revealed that the trip generation of a student dormitory use is about one-third of a typical apartment use.

The findings of the project access operations analysis revealed that the worst movement at the Montezuma Road & Project Driveway intersection (left-turns out) is expected to operate at LOS C during both the AM and PM peak hours.

The results of the gap analysis on Montezuma Road in front of the project site revealed that sufficient gaps in traffic are available. Based on the City's trip generation rates, it is estimated that on the northbound project driveway approach of the intersection, approximately 29 left-turn trips would occur during the AM peak hour, and 12 left-turn trips would occur during the PM peak hour.

The findings of the queuing analysis for the left-turn in and left-turn out movements at the Montezuma Road & Project Driveway intersection showed that the 95th percentile queue lengths during the peak hours would not exceed two vehicles.

The results of the sight distance analysis showed that the existing on-street parking along Montezuma Road would obstruct sight distance at the project driveway location.

To accommodate the minimum stopping sight distance to the west of the project driveway, it is recommended that a no parking (red curb) zone be provided for a total length of approximately **110 feet**. The no parking zone to the west would require red curb along **51 feet** of the project frontage and **59 feet** of red curb along the remaining existing parking lane from the western project boundary to the end of the existing parking lane.

To accommodate the minimum stopping sight distance to the east of the project driveway, it is recommended that a red curb zone be provided for a total length of approximately **80 feet**. The no parking zone to the west would require red curb along **34 feet** of the project frontage and **46 feet** of red curb in front of the adjacent Zuma Apartments. Approximately 66 feet of on-street parking would continue to be allowed in front of Zuma Apartments.

The project proposes to provide a total of 57 parking spaces, and a minimum of 78 parking spaces are required. To address the proposed parking deviation and provide adequate parking for the proposed student dormitory, the project is requiring that all prospective tenants who own automobiles to either provide proof of purchase of an SDSU day and overnight permit to park in an on-campus parking structure, or to rent one of the on-site parking stalls in the underground parking garage. SDSU Parking Structure #3, which is located along East Campus Drive approximately 1,000 feet by foot from the project site, allows students to park their vehicles 24 hours per day, 7 days per week as indicated on the SDSU website.

To address the project's proposed deviation from the City's minimum parking requirements and to address the project's Climate Action Plan (CAP) checklist, a Transportation Demand Management (TDM) Plan was prepared to provide viable transportation options to owning and driving an automobile for the proposed student dormitory tenants.

The following improvements, programs and strategies are recommended in the TDM Plan:

- It is recommended that the project provide a minimum of 16 complimentary visitor passes to park in an SDSU on-campus parking structure, to be administered by the property management.
- It is recommended that the project provide 75% subsidized transit passes for tenants who do not own automobile.
- It is recommended that the project provide an information kiosk located in a central location within the student dormitory building that provides information about nearby transit services, ridesharing/carpooling services (iCommute), wayfinding pedestrian maps, and assistance for bicycle commuters.
- It is recommended that the project provide Uber and/or Lyft discount coupons or free credits for tenants who do not own automobile, and additional credits or coupons once per month for tenants without automobiles who sign a year lease.
- It is recommended that the project work with the City of San Diego to install wayfinding signage near the crosswalk on the south side of the Montezuma Road & East Campus Drive intersection to direct pedestrians toward the pedestrian promenade and bridge across College Avenue to the SDSU campus and SDSU Transit Center.
- It is recommended that the project include a variety of bicycle parking and storage options such as bicycle lockers and cages to provide more secure bicycle parking.

The following recommendations were made in this report to improve the safety of all transportation modes in the immediate vicinity of the project site:

- It is recommended that the project install signage at the parking garage exit to warn drivers driving up the ramp to ground level to watch for pedestrians crossing the driveway.
- It is recommended that the project keep areas within the driveway sight triangles clear of objects exceeding 36 inches in height.
- To accommodate the minimum stopping sight distance at the Montezuma Road/Project Driveway intersection, it is recommended that the project provide a no parking (red curb) zone for a length of **51 feet** from the project driveway to the western project boundary, and provide a no parking (red curb) zone for a length of **34 feet** from the project driveway to the eastern project boundary.
- Beyond the project boundary, it is recommended that the no parking (red curb) zones be extended an additional **59 feet** to the west of the western project boundary, and an additional **46 feet** to the east of the eastern project boundary.

In conclusion, it should be emphasized that the proposed student dormitory would satisfy three of the overall objectives of the *College Community Redevelopment Master Plan*. These three objectives are provided below:

- Mitigate traffic and parking congestion within the redevelopment project area and the surrounding neighborhoods through provision of high quality housing and retail services in pedestrian-oriented development directly adjacent to San Diego State University;
- Provide a living environment adjacent to the University which attracts University students who now commute to campus or reside in single-family homes in neighborhoods adjacent to campus which are ill suited for student living purposes; and
- Foster an environment which reflects a high level of concern for architecture, landscape, urban design, and land use principles appropriate to the objectives of the College Area Community Plan.

APPENDIX A

Montezuma Road Traffic Count Data

Prepared by NDS/ATD Prepared by National Data & Surveying Services

VOLUME

Montezuma Rd Bet. E Campus Dr & Sdsu Campus Parking

Day: Thursday Date: 2/9/2017

City:	San D	iego	
Project #:	CA17_	4035	001

					NB		SB		EB		WB						To	otal
	DAI	ILT TOTALS			0		0		9,867		10,164						20	,031
AM Period	NB	SB	EB		WB		то	TAL	PM Period	NB		SB	EB		WB		TC	TAL
00:00	0	0	42		24		66		12:00	0		0	107		143		250	
00:15	0	0	37		27		64		12:15	0		0	188		155		343	
00:30	0	0	26		20		46		12:30	0		0	175		168		343	
00:45	0	0	22	127	10	81	32	208	12:45	0		0	127	597	130	596	257	1193
01:00	0	0	21		/		28		13:00	0		0	128		127		255	
01:15	0	0	19		15		34		13:15	0		0	143		135		2/8	
01:30	0	0	10	60	1/	40	33	111	13:30	0		0	148	гог	157	600	305	1102
01:45	0	0	11	60	4	43	20	111	13.45	0		0	100	202	170	608	300	1193
02.00	0	0	12		10		20		14.00	0		0	153		118		269	
02:13	0	0	8		3		11		14.15	0		0	180		118		205	
02:45	Ő	0	6	37	4	26	10	63	14:45	Ő		0	158	682	142	557	300	1239
03:00	0	0	5	0,	3	20	8		15:00	0		0	175	002	119		294	1200
03:15	0	0	6		3		9		15:15	0		0	209		169		378	
03:30	0	0	4		8		12		15:30	0		0	238		234		472	
03:45	0	0	4	19	5	19	9	38	15:45	0		0	236	858	184	706	420	1564
04:00	0	0	3		2		5		16:00	0		0	245		133		378	
04:15	0	0	2		8		10		16:15	0		0	232		133		365	
04:30	0	0	6		11		17		16:30	0		0	233		133		366	
04:45	0	0	3	14	19	40	22	54	16:45	0		0	238	948	130	529	368	1477
05:00	0	0	3		25		28		17:00	0		0	225		130		355	
05:15	0	0	4		28		32		17:15	0		0	221		159		380	
05:30	0	0	5	27	35	455	40	400	17:30	0		0	251	0.2.4	130	5.64	381	4 405
05:45	0	0	15	27	67	155	82	182	17:45	0		0	227	924	142	561	369	1485
06:00	0	0	21		63		84		18:00	0		0	219		124		343	
06:15	0	0	14		99 1E0		113		10.15	0		0	230		146		307	
06:45	0	0	21	80	207	527	228	607	18:30	0		0	209	863	182	580	335	1/152
07:00	0	0	25	00	273	527	298	007	19:00	0		0	198	005	140	505	338	1452
07:15	Ő	0	47		289		336		19:15	Ő		Õ	174		114		288	
07:30	0	0	57		256		313		19:30	0		0	126		94		220	
07:45	0	0	79	208	229	1047	308	1255	19:45	0		0	136	634	104	452	240	1086
08:00	0	0	82		205		287		20:00	0		0	112		96		208	
08:15	0	0	83		214		297		20:15	0		0	191		112		303	
08:30	0	0	113		226		339		20:30	0		0	152		105		257	
08:45	0	0	92	370	244	889	336	1259	20:45	0		0	128	583	83	396	211	979
09:00	0	0	93		256		349		21:00	0		0	164		91		255	
09:15	0	0	85		186		271		21:15	0		0	140		97		237	
09:30	0	0	84	226	109	640	193	075	21:30	0		0	128	550	92	270	220	000
09:45	0	0	64	326	98	649	162	975	21:45	0		0	124	556	96	376	220	932
10:00	0	0	79		94 110		201		22.00	0		0	99		71		170	
10:15	0	0	83 76		110		201		22.15	0		0	80		20		120	
10.50	0	0	13/	372	154	518	250	800	22.30	0		0	95	338	45	218	112	556
11:00	0	0	121	572	105	210	2200	090	23:00	0		0	78	330	36	210	114	550
11:15	ŏ	õ	86		109		195		23:15	ŏ		õ	51		37		88	
11:30	Ő	õ	103		108		211		23:30	õ		õ	61		32		93	
11:45	0	0	104	414	118	440	222	854	23:45	0		0	47	237	37	142	84	379
TOTALS				2062		4434		6496	TOTALS					7805		5730		13535
SPLIT %				31.7%		68.3%		32.4%	SPLIT %					57.7%		42.3%		67.6%

					SB	EB	WB				Total
DAILT TOTALS				0	0	9,867	10,164				20,031
AM Peak Hour			11:45	07:00	08:15	PM Peak Hour			15:30	15:15	15:15
AM Pk Volume			574	1047	1321	PM Pk Volume			948	720	1648
Pk Hr Factor			0.493	0.906	0.946	Pk Hr Factor			0.967	0.792	0.873
7 - 9 Volume	0	0	578	1936	2514	4 - 6 Volume	0	0	1872	1090	2962
7 - 9 Peak Hour			08:00	07:00	08:00	4 - 6 Peak Hour			16:00	17:00	17:00
7 - 9 Pk Volume			370	1047	1259	4 - 6 Pk Volume			948	561	1485
Pk Hr Factor	0.000	0.000	0.819	0.906	0.928	Pk Hr Factor	0.000	0.000	0.967	0.882	0.974

APPENDIX B

Private Student Housing Apartments Trip Generation Study (Spack Consulting, 2012)

Technical Memorandum

From:Mike Spack, P.E., P.T.O.E., Lindsay deLeeuwDate:April 12, 2012Re:Trip Generation Study – Private Student Housing Apartments

A recent spike in new construction surrounding the University of Minnesota led to an interest in determining how trips generated by student housing apartments vary from trips generated by a generic apartment building (as defined by ITE's *Trip Generation*, 8th Edition Code 220). This report provides trip generation data for six student housing apartment buildings. Weekday daily, a.m., and p.m. peak hour trip generation rates are provided. In additon to providing trip generation rates per Dwelling Unit (as in *Trip Generation*), trip generation data is also provided based on number of bedrooms and number of parking stalls.

Overall, it was found student housing apartments generate approximately a third the amount of traffic compared to a similarly sized, generic apartment building. Using ITE's guideline of preparing full traffic impact studies only if a development will generate more than 100 peak hour trips, a student housing apartment complex would need to have 416 dwelling units to trigger the need for a full traffic impact study.

<u>Methodology</u>

Data was collected on Thursday, March 29, 2012 (while school was in full session) at six typical studenthousing apartment buildings near the University of Minnesota – Twin Cities using COUNTcam video recording systems. Each building is specifically designated for students by the property managers but none are directly associated with the university. The range of total apartment units is 44 to 253, with an average of 118, and the apartment types vary from studios to four-bedroom units. Additionally, all the buildings observed have parking with the number of stalls ranging from 40 to 135, with an average of 57 stalls.

The parking lot for each student housing apartment building was recorded for 24 hours on a weekday (multiple cameras were used for parking lots with more than one entrance or exit). The videos were watched at high speeds with the PC-TAS counting software and the vehicles in and out were tallied in 15-minute intervals.

Findings

Statistics and data plots for each trip generation period studied are attached. A summary of the student housing average trip generation rates is shown in Table 1 alongside the trip generation rates for Apartments from the Institute of Transportation Engineers' *Trip Generation*, 8th Edition (ITE Code 220).

Table 1 – Average Trip Generation Rates for Student Housing and Apartment per Number of Dwelling Units

	Student Housing Apartments	Apartment from <i>Trip Generation,</i> 8 th Edition
Weekday	2.82	6.65
Weekday A.M. Peak Hour (between 7-9 a.m.)	0.13	0.51
Weekday P.M. Peak Hour (between 4-6 p.m.)	0.24	0.62

The results in Table 1 show that student-housing apartments generate approximately one-third of the trips generated by regular apartment buildings. The student housing data was consistent where the fitted curves often resulted in R^2 values greater than 0.8 (anything higher than 0.75 indicates the data fits the best fit line equation well).

Similar trip generation reports (attached) were created based on the number of parking stalls and the number of bedrooms. The results for the number of parking stalls were as statistically significant as the number of dwelling units. However, the trip generation based on the number of bedrooms was less statistically valid with R² values less than 0.55.

Average Vehicle Trip Ends vs: Number of Dwelling Units On a: Weekday

Number of Studies: 6 Average Number of Units: 117.67 Directional Distribution: 50% Entering 50% Exiting

Trip Generation per Number of Dwelling Units

Average Rate	Range of Rates	Standard Deviation
2.82	1.64-3.93	0.88

Average Vehicle Trip Ends vs: Number of Dwelling Units On a: Weekday, Peak Hour of Adjacent Street Traffic One Hour Between 7 and 9 a.m.

Number of Studies: 6 Average Number of Units: 117.67 Directional Distribution: 39% Entering 61% Exiting

Trip Generation per Number of Dwelling Units

Average Rate	Range of Rates	Standard Deviation
0.13	0.08-0.19	0.04

Average Vehicle Trip Ends vs: Number of Dwelling Units On a: Weekday, Peak Hour of Adjacent Street Traffic One Hour Between 4 and 6 p.m.

Number of Studies: 6 Average Number of Units: 117.67 Directional Distribution: 54% Entering 46% Exiting

Trip Generation per Number of Dwelling Units

Average Rate	Range of Rates	Standard Deviation
0.24	0.13-0.38	0.09

Average Vehicle Trip Ends vs: Number of Bedrooms On a: Weekday

Number of Studies: 6 Average Number of Units: 147.67 Directional Distribution: 50% Entering 50% Exiting

Trip Generation per Number of Bedrooms

Average Rate	Range of Rates	Standard Deviation
1.42	0.96-2.00	0.43

Average Vehicle Trip Ends vs: Number of Bedrooms On a: Weekday,

Peak Hour of Adjacent Street Traffic One Hour Between 7 and 9 a.m.

Number of Studies: 6 Average Number of Units: 147.67 Directional Distribution: 43% Entering 57% Exiting

Trip Generation per Number of Bedrooms

Average Rate	Range of Rates	Standard Deviation
0.07	0.04-0.09	0.02

Average Vehicle Trip Ends vs: Number of Bedrooms On a: Weekday,

Peak Hour of Adjacent Street Traffic One Hour Between 4 and 6 p.m.

Number of Studies: 6 Average Number of Units: 147.67 Directional Distribution: 53% Entering 47% Exiting

Trip Generation per Number of Bedrooms

Average Rate	Range of Rates	Standard Deviation
0.13	0.11-0.20	0.05

Average Vehicle Trip Ends vs: Number of Parking Stalls On a: Weekday

Number of Studies: 6 Average Number of Units: 56.50 Directional Distribution: 50% Entering 50% Exiting

Trip Generation per Number of Parking Stalls

Average Rate	Range of Rates	Standard Deviation
2.82	2.36-3.08	0.33

Average Vehicle Trip Ends vs: Number of Parking Stalls On a: Weekday, Peak Hour of Adjacent Street Traffic

One Hour Between 7 and 9 a.m.

Number of Studies: 6 Average Number of Units: 56.50 Directional Distribution: 47% Entering 53% Exiting

Trip Generation per Number of Parking Stalls

Average Rate	Range of Rates	Standard Deviation
0.13	0.11-0.15	0.02

Average Vehicle Trip Ends vs: Number of Parking Stalls On a: Weekday, Peak Hour of Adjacent Street Traffic

One Hour Between 4 and 6 p.m.

Number of Studies: 6 Average Number of Units: 56.50 Directional Distribution: 54% Entering 46% Exiting

Trip Generation per Number of Parking Stalls

Average Rate	Range of Rates	Standard Deviation
0.27	0.20-0.45	0.12

APPENDIX C

SYNCHRO HCM Worksheets

Intersection

Int Delay, s/veh

EBT	EBR	WBL	WBT	NBL	NBR	
≜ †⊅			41	¥		
370	7	5	924	29	20	
370	7	5	924	29	20	
0	0	0	0	0	0	
Free	Free	Free	Free	Stop	Stop	
-	None	-	None	-	None	
-	-	-	-	0	-	
0	-	-	0	0	-	
0	-	-	0	0	-	
93	93	93	93	93	93	
2	2	2	2	2	2	
398	8	5	994	31	22	
	EBT 370 370 0 Free - - 0 0 93 2 398	EBT EBR ↑↑ 370 7 370 7 7 370 7 0 0 0 0 Free Free Free 0 - - 0 0 - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -	EBT EBR WBL *** - - 370 7 5 370 7 5 370 7 5 370 7 5 370 7 5 0 0 0 Free Free Free - None - 0 - - 0 - - 93 93 93 2 2 2 398 8 5	EBT EBR WBL WBT ↑↑	EBT EBR WBL WBT NBL *** *** *** *** *** 370 7 5 924 29 370 7 5 924 29 0 0 0 0 0 0 Free Free Free Stop - - - None - 0 0 0 - - 0 0 0 0 0 - - 0 0 0 0 0 0 0 - - 0<	EBT EBR WBL WBT NBL NBR *** *** *** *** *** *** 370 7 5 924 29 20 370 7 5 924 29 20 0 0 0 0 0 0 0 0 0 0 0 0 0 Free Free Free Free Stop Stop - None - 0 - None - - 0 0 - None 0 - - 0 0 - 0 - - 0 0 - 93 93 93 93 93 93 93 2 2 2 2 2 2 2 2 2 2 2 2 2 2 393 33 33

Major/Minor	Ν	lajor1		Ν	/lajor2		Minor1		
Conflicting Flow All		0	0		405	0	910	203	
Stage 1		-	-		-	-	402	-	
Stage 2		-	-		-	-	508	-	
Critical Hdwy		-	-		4.14	-	6.84	6.94	
Critical Hdwy Stg 1		-	-		-	-	5.84	-	
Critical Hdwy Stg 2		-	-		-	-	5.84	-	
Follow-up Hdwy		-	-		2.22	-	3.52	3.32	
Pot Cap-1 Maneuver		-	-		1150	-	274	804	
Stage 1		-	-		-	-	644	-	
Stage 2		-	-		-	-	569	-	
Platoon blocked, %		-	-			-			
Mov Cap-1 Maneuver		-	-		1150	-	271	804	
Mov Cap-2 Maneuver		-	-		-	-	271	-	
Stage 1		-	-		-	-	644	-	
Stage 2		-	-		-	-	563	-	
Approach		EB			WB		NB		
HCM Control Delay, s		0			0		16.3		
HCM LOS							С		
Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT				
Capacity (veh/h)	372	-	-	1150	-				
	0.4.40			0.005					

HCM Lane V/C Ratio	0.142	-	- 0	.005	-				
HCM Control Delay (s)	16.3	-	-	8.1	0				
HCM Lane LOS	С	-	-	А	А				
HCM 95th %tile Q(veh)	0.5	-	-	0	-				

Intersection

Int Delay, s/veh

Int Delay, s/veh 0	.5						
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	ta ta ta ta ta ta ta ta ta ta ta ta ta t			41	¥		
Traffic Vol, veh/h	889	29	19	561	12	9	
Future Vol, veh/h	889	29	19	561	12	9	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	-	-	0	-	
Veh in Median Storage, #	0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	97	97	97	97	97	97	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	916	30	20	578	12	9	

	-			-					
Major/Minor	N	lajor1		1	Major2		Minor1		
Conflicting Flow All		0	0		946	0	1259	473	
Stage 1		-	-		-	-	931	-	
Stage 2		-	-		-	-	328	-	
Critical Hdwy		-	-		4.14	-	6.84	6.94	
Critical Hdwy Stg 1		-	-		-	-	5.84	-	
Critical Hdwy Stg 2		-	-		-	-	5.84	-	
Follow-up Hdwy		-	-		2.22	-	3.52	3.32	
Pot Cap-1 Maneuver		-	-		721	-	163	538	
Stage 1		-	-		-	-	344	-	
Stage 2		-	-		-	-	702	-	
Platoon blocked, %		-	-			-			
Mov Cap-1 Maneuver		-	-		721	-	156	538	
Mov Cap-2 Maneuver		-	-		-	-	156	-	
Stage 1		-	-		-	-	344	-	
Stage 2		-	-		-	-	673	-	
Approach		ED					ND		
Арргоаст		ED			VVD		IND		
HCM Control Delay, s		0			0.5		22.8		
HCM LOS							С		
Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT				
Capacity (veh/h)	224	-	-	721	-				
HCM Lana V/C Datio	0.007			0.007					

HCM Lane V/C Ratio	0.097	-	- (0.027	-	
HCM Control Delay (s)	22.8	-	-	10.1	0.2	
HCM Lane LOS	С	-	-	В	А	
HCM 95th %tile Q(veh)	0.3	-	-	0.1	-	

APPENDIX D

Montezuma Road Gap Data

Prepared by National Data & Surveying Services

Gap Study (AM)

Location: Montezuma Rd Between East Campus Dr & Zura Way City: San Diego **Day:** Thursday **Date:** 2/9/2017

7.5-10.9 11-14.4 14.5-17.9 18-21.4 21.5-24.9 25+

TIME		DURATION (in seconds)									
8:00	5	8	6	15							
8:01	9	5	5	5	13	7					
8:02	5	9	8								
8:03	20	8	16	9							
8:04	9	6	8								
8:05	7	14	12								
8:06	9	10	9								
8:07	5	9	8								
8:08	7	6	6	5							
8.09	12	q	8	5	7						
8.10		16	0		,						
0.10	5		12								
0.11	17	0 E	14	7	6						
0:12	17	5	14	7	0						
8:13	8	5	11	/	8						
8:14	12	5									
8:15	10	7	5	9							
8:16	5	14	10	8	5	L					
8:17	6	9	8								
8:18	9	11	13	10	12						
8:19	8	6									
8:20	10	36									
8:21	5	6	6								
8:22	7	7	5	11							
8:23	5	5	13	5	5	5					
8:24	9	5	5	8	15						
8.25	11	13	12	5	7						
8.26		5	9	7							
9.20	12	5	5	,	10						
0.27	12	20		5	10						
8:28	0	20	7	C							
8:29	11	12	5	6	5	5					
8:30	8	7	11								
8:31	6	6	5	11							
8:32	14	8	5	8							
8:33	6										
8:34	5	7	9	7							
8:35	11	7	5	5							
8:36	5	11	14								
8:37	23	15	9								
8:38	9	7	7	7							
8:39	5	8	5	13	5						
8:40	5	5	10								
8:41	7	9	5								
8:42	6	6	5								
8:43	g	19	13								
8.41	12		7								
9.44 9.45	11	U	11	10							
0.45	11		11	- 12	<u> </u>						
8:46	11	5	15	/							
8:47	9	6	5		ļ						
8:48	8	7	13	9							
8:49	10	13	5								
8:50	11	5									
8:51	11	6									
8:52	7	13	6	8							
8:53	9	11	10	5							
8:54	5										
8.55	2	7	10								
8.55	16	, 	7	c	6						
0.50	- <u>10</u>		1.4	0	0						
0.57	/	5	- 14								
8:58	8	/	/	8	6						
8:59		5	5		1						

Prepared by National Data & Surveying Services

Gap Study (PM)

Location: Montezuma Rd Between East Campus Dr & Zura Way City: San Diego **Day:** Thursday **Date:** 2/9/2017

7.5-10.9 11-14.4 14.5-17.9 18-21.4 21.5-24.9 25+

TIME			DUR	ATION (in sec	onds)		
17:00	15	10	13				
17:01	7	12	6				
17:02	6	8	7				
17:03	7	13					
17:04	6						
17:05	26					 	
17:06	12					 	
17:07	11	7	6	22		 	
17:08							
17:09	/						
17:10	18						
17:11	12	14				 	
17:12	0	14				 	
17:13	14						
17.14	11						
17.15	11	12	7				
17:10	30	26	/		L		
17.12		20			L		
17.10	11	6	7	7	6		
17:20	6	0	,	,	0		
17:21	6	20	10				
17:22	10	8	6	6			
17:23	6	11					
17:24	19						
17:25	9						
17:26	9	11					
17:27	6	8					
17:28	8	7	8	13			
17:29	7						
17:30	7	7	6				
17:31	15	9	6	8			
17:32	14						
17:33	7	14	7	6	10		
17:34	8						
17:35	7	6					
17:36	8	9					
17:37	6	6	10	18			
17:38	7	12	8				
17:39	12	7					
17:40	13			ļ			
17:41				L			
17:42	7	11	8				
17:43	6	9					
17:44	8	10	10	6			
17:45	/	16	19	/	6		
17:46	6	7	0				
17:47	8	/	8	/			
17:48	6	C	C	C	10		
17.49	9	0	0	0	13		
17.50	12	11	1.4				
17:51	- 13		14				
17.52	/	0 د	11				
17:53	9	6				 	
17.54	10	12					
17.55	9	12	0	C	10		
17.50	/ 6	12	0	0	13		
17:59	15	6	6	12			
17:59	11	Q Q	8	7	6		
17.55		5	0			1	4

SYNCHRO SimTraffic Queuing Analysis Worksheets

Intersection: 1: Project Driveway & Montezuma Rd

Movement	WB	NB
Directions Served	LT	LR
Maximum Queue (ft)	27	58
Average Queue (ft)	1	28
95th Queue (ft)	9	55
Link Distance (ft)	613	132
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Network Summary

Network wide Queuing Penalty: 0
Intersection: 1: Project Driveway & Montezuma Rd

Movement	WB	NB
Directions Served	LT	LR
Maximum Queue (ft)	52	31
Average Queue (ft)	12	20
95th Queue (ft)	41	43
Link Distance (ft)	612	93
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Network Summary

Network wide Queuing Penalty: 0

Engineering and Traffic Survey Speed Data for Montezuma Road

CITY OF SAN DIEGO ENGINEERING AND TRAFFIC SURVEY Prepared in accordance with 627 CVC by methods determined by the California Department of Transportation

.				
STREET	MONTEZUMA	RD	85th PERCENTIL	e 41 mph
FROM	COLLEGE	\mathbf{AV}	POSTED SPEED I	LIMIT 35 MPH
ТО	63	ST	RADAR ENFORC	EABLE YES
BLOCK F	RANGE: <u>06000</u> TO	<u>06299</u>		
DIRECTI	ON: <u>BOTH</u>			
FEDERA	L CLASSIFIED STREET:	YES MAP	PAGE	
		SURVEY DATA	<u>N</u>	
DATE OI 10 MILE	F SURVEY <u>7/6/2011</u> PER HOUR PACE <u>32-41</u> N	85th PERCENTILE MPH	41 MPH MEAN PERCENT IN TH	SPEED <u>36</u> MPH E PACE <u>82</u> %
		ACCIDENT HISTO	DRY	
ACCIDENT ACCIDENT	RATE PER MILLION VEHICLE RATE PER MILLION VEHICLE	Two Year Review MILES FOR THIS SEGM MILES FOR SAME STRI	IENT EET CLASSIFICATION	1.69 (Accidents/MVM) 0.53 (Accidents/MVM)
	CONDITIONS I	REVIEWED WHEN SI	ETTING SPEED LIMIT	
 Accident Hi Profile Con Superelevat 	istory - Shoulder Conditions ditions - Roadway Design Speed ion - Safe Stopping Sight Distance - Intersection Spacing and Offs	 Commercial Driveway (No sidewalk(s) (Pedestreet Residential Density (In set - Pedestrian and Bicyclist 	Characteristics ian Traffic in Roadway) accordance with Section 627 (c Safety (In accordance with Sec) (1) of the CVC) tion 627 (c) (2) of the CVC)
CONDITIC ACCIDE	<u>ons found:</u> ENT HISTORY			
· ·				
	AUTHORIT	TY FOR SETTING OF	POSTED SPEED	:
IN ACCOR LIMIT IS S	RDANCE WITH CALIFORNIA MA SET TO INCREASE/DECREASE (ANUAL ON UNIFORM T ON LOCAL LIMITS PER	RAFFIC CONTROL DEVIC CVC 22357/22358	CES THE SPEED
		•		
Reviewed	by TY PALUSKY, P.E.			
In the professio Engineer, the p speed survey ar	nal opinion of the San Diego City Traffic osted speed limit is fully justified when the nd other factors are considered.			an Alta an taona
Printed Or	1 7/13/2011	FormRev 09/26/06	Page	975.00

Waste Management Plan

6213 Montezuma Apartments

Project Description

<u>General</u>

The project site is located at 6213 Montezuma Road in San Diego, CA. The proposed development is a private dormitory marketed to students attending SDSU. The site is 12,416 square feet (0.285 acres) and is currently vacant property. The project proposes a three level underground parking garage with a total area of 29,106 sf with 5 stories of residential living above the garage for a total of 40,208 sf. The total project area is 69,314 sf. To construct the proposed project, the project is applying for a Planned Development Permit (PDP), Conditional Use Permit (CUP), and a Site Development Permit (SDP).

<u>Grading</u>

To construct the three level underground parking garage, an estimated excavation of 11,600 cubic yards will be required, with all of that soil being removed from the site.

<u>Demolition</u>

The project site is currently devoid of any existing buildings, as past property owners had cleared most of the site. However, previous removal efforts left portions of foundation/retaining walls, paving for parking areas, and stairways along the northern third of the site. Complete demolition of these features will remove approximately 4870 sf concrete slab and 209 linear feet of concrete wall.

Waste Generated by Construction Activities

Grading & Excavation

Excavation of the site will generate an estimated 11,600 cubic yards or 15,080 tons of soil to export off site. All exported soil would be diverted using the City of San Diego Fill Dirt program, or an approved clear fill dirt handler listed on the 2017 Certified Construction & Demolition Recycling Facility Directory from the City of San Diego, and be recycled at a 100% rate.

WASTE GENERATED BY GRADING & EXCAVATION ACTIVITIES												
Material	Quantity	Conversion Rate	Tons	Diversion	Tons Diverted	Tons Disposed						
Clean Soil	11,600 cu yards	1.3 tons/cu yard	15,080	100%	15,080	0						

The site is very poorly vegetated in its current condition. The limited amount of organic material removed during the initial scraping of the site would be diverted to a green waste facility listed on the 2017 Certified Construction & Demolition Recycling Facility Directory from the City of San Diego for a 100% diversion rate.

<u>Demolition</u>

As noted in the project description, the project has approximately 4,870 sf of concrete slab and 209 linear feet of concrete wall to be removed. The depth of the concrete slab can be estimated at an average of 6" in depth. This would equate to 90 cubic yards or 117 tons of concrete waste.

(4,870 sf x 0.5) / 27 = 90 cubic yards x 1.3 tons/cubic yard = 117 tons

The 209 linear feet of foundation wall averages 8" in thickness and 4'-6" in height. This would equate to 23 cubic yards or 30 tons of concrete waste.

(209 x .67 x 4.5) / 27 = 23 cubic yards x 1.3 tons/cubic yard = 30 tons

All of the demolished concrete can be diverted to a concrete recycling facility listed on the <u>2017</u> <u>Certified Construction & Demolition Recycling Facility Directory</u> from the City of San Diego and be recycled at a 100% rate.

WASTE GENERATED BY DEMOLITION ACTIVITIES									
Material	aterial Quantity (tons) Diversion Rate Diverted (tons) Disposed (to								
Concrete slab	117	100%	117	0					
Concrete wall	30	100%	0						
Total	147	100%	147	0					

New Construction

During the construction of the proposed project it can be estimated that approximately 3 pounds of waste would be generated for each square foot of constructed building. Based on this rate and a proposed building area of 69,314 sf, an estimated 207,942 pounds or 104 tons of waste can be anticipated.

Since the project only slightly exceed the minimum threshold for preparation of a Waste Management Plan, a simplified plan has been prepared that considers all waste as "Mixed C&D Debris". Since all

facilities listed in the on the 2017 Certified Construction & Demolition Recycling Facility Directory from the City of San Diego can divert a minimum of 67% of debris:

WASTE GENERATED BY CONSTRUCTION ACTIVITIES											
Material	Quantity	Generation	Tons	Diversion Rate	Diverted (tons)	Disposed (tons)					
Mixed C&D	69,314 sf	3 lbs/sf	104	67%	70	34					

Given the limited site area available for waste containers, this may be a desirable method of waste collection for the construction team while not preventing them from taking additional efforts to minimize landfilled waste.

<u>Summary</u>

Construction and Demolition activities are expected to generate the wastes quantities and diversion rates in the table below. As can be see in the totals line, the 34 tons of disposed waste lowers the project below the 60 ton threshold for a project having a significant impact.

SUMMARY OF WASTE GENERATED DURING CONSTRUCTION AND DEMOLITION										
Source Quantity (tons) Diverted (tons) Disposed (tons)										
Grading & Excavation 15,080 15,080 0										
Demolition	147	147	0							
Construction Waste	104	70	34							
Total 15,331 15,297 (99.8%) 34 (2.2%)										

Waste Generated During Ongoing Use

Annual Occupancy

For each year of on-going use of the proposed building, approximately 3 pounds of waste is typically generated for each square foot of building. Based on this rate, an annual estimation of 207,942 pounds, or 104 tons of waste can be anticipated.

Referencing the <u>City of San Diego Waste Management Guidelines</u>, compliance with the municipal recycling ordinances is historically expected to divert 40% of waste to recycling facilities. With recent

state legislation AB 1826 mandating future diversion of organic waste for multifamily properties of 5 units or more, it is helpful to consider that organic is not included in the historical 40% figure. Referencing the <u>City of San Diego Waste Characterization Study (2014)</u> we can see when sorting by material class approximately 7% of waste from multifamily properties is leaves and grass and another 3.1% is prunings and trimmings for an approximate 10% of "landscaping" waste. Based on this rate, an annual estimation of 10 tons of landscaping waste will be generated.

104 tons x 10% = 10 tons of landscaping waste per year

Achieving total recycling of landscape related wastes would be possible through contracting of landscaping companies that remove and haul all landscaping debris to facilities that receive green waste as listed in the <u>2017 Certified Construction & Demolition Recycling Facility Directory</u> from the City of San Diego.

<u>Summary</u>

Annual occupancy is expected to generate the waste quantities and diversion rates indicated in the table below. As can be seen in the totals line, the 58 tons of disposed waste is below the 60 ton threshold of a project having a significant impact.

SUMMARY OF ANNUAL WASTE GENERATED DURING OCCUPANCY												
Source	Source Quantity (tons) Diverted (tons) Disposed (tons)											
Annual Waste	97	58 (60%)										
Landscaping Waste	10	10 (100%)	0									
Total	104	49 (47%)	55 (53%)									

<u>Summary</u>

The contents of this Waste Management Plan have outlined the methods of compliance to reduce the landfilled waste to a level below significance for both the construction phase and long term occupancy. The construction phase is expected to produce 34 tons of landfilled waste with a total reduction of 99.8%. The waste generated from long term occupancy is expected to be 55 tons of waste with a total reduction of 47%.

2017 Certified Construction & Demolition Recycling Facility Directory

These facilities are certified by the City of San Diego to accept materials listed in each category. Hazardous materials are not accepted. The diversion rate for these materials shall be considered 100%, except mixed C&D debris which updates quarterly. The City is not responsible for changes in facility information. Please call ahead to confirm details such as accepted materials, days and hours of operation, limitations on vehicle types, and cost. For more information visit: <u>www.recyclingworks.com</u>.

Please note: In order to receive recycling credit, Mixed C&D Facility and transfer station receipts must: -be coded as construction & demolition (C&D) debris -have project address or permit number on receipt *Make sure to notify weighmaster that your load is subject to the City of San Diego C&D Ordinance.	C&D Debris	//Concrete	lock/Rock	g Materials for Reuse	ard		Padding	Tile	c Tile/Porcelain	ill Dirt	Vood/Green Waste		ial Plastics	Light Fixtures		nerts	am Blocks
Note about landfills: Miramar Landfill and other landfills do not recycle mixed C&D debris.	Mixed (Asphalt	Brick/B	Buildin	Cardbo	Carpet	Carpet	Ceiling	Cerami	Clean F	Clean V	Drywal	Industr	Lamps/	Metal	Mixed I	Styrofo
EDCO Recovery & Transfer																	
3660 Dalbergia St, San Diego, CA 92113	67%											•					
619-234-7774 www.edcodisposal.com/public-disposal																	
EDCO Station Transfer Station & Buy Back Center																	
8184 Commercial St, La Mesa, CA 91942	67%				•							•			•		
619-466-3355 www.edcodisposal.com/public-disposal																	
EDCO CDI Recycling & Buy Back Center																	
224 S. Las Posas Rd, San Marcos, CA 92078	88%				•										•		
760-744-2700 www.edcodisposal.com/public-disposal																	
Escondido Resource Recovery																	
1044 W. Washington Ave, Escondido	67%																
760-745-3203 www.edcodisposal.com/public-disposal																	
Fallbrook Transfer Station & Buy Back Center																	
550 W. Aviation Rd, Fallbrook, CA 92028	67%				•										•		
760-728-6114 www.edcodisposal.com/public-disposal				-													
Otay C&D/Inert Debris Processing Facility																	
1/00 Maxwell Rd, Chula Vista, CA 91913	69%																
619-421-3773 www.sd.disposal.com																	<u> </u>
Ramona Transfer Station & Buy Back Center	670/																
324 Maple St, Ramona, CA 92065	67%				•										•		
760-789-0516 www.edcodisposal.com/public-disposal				-													
SANCO Resource Recovery & Buy Back Center	670/																
6/50 Federal Blvd, Lemon Grove, CA 91945	6/%				•										•		
619-287-5696 www.edcodisposal.com/public-disposal																	
All American Recycling																	
10805 Kenney SL, Sanlee, CA 92071						•											
Allah Company 6733 Consolidated W/v San Diego, CA 92121																	
858-578-9300 Lwww allancompany com/facilities htm					-												
Allan Company Miramar Recycling																	<u> </u>
5165 Convoy St. San Diego. (A 92111					•										•		
858-268-8971 www.allancompany.com/facilities.htm																	
AMS																	
4674 Cardin St, San Diego, CA 92111								•									
858-541-1977 www.a-m-s.com																	

				e													
				Reuse					_		aste						
				for					elain		n Wa			res			
	ebris	rete	к	erials			g		Porc		Gree		stics	ixtu			ocks
	Ď	onci	ck/R	Aate	q		ddir	e	ïle/I	Dirt)/po		Plas	ght F		sris	n Blo
	I C&	lt/C	Bloc	ng N	oard	Ŀ.	it Pa	g Til	nic T	Fill	٨o	lle	trial	s/Li£	_	l Ine	foan
	lixed	sphe	rick/	uildi	ardb	arpe	arpe	eilin	eran	lean	lean	ιζ.	snpi	dme	letal	lixed	tyrof
	2	A	ā	B	Ö	Ö	Ö	0	Ö	σ	σ	Δ	5	Ľ	2	2	S
Armstrong World Industries, Inc.																	
300 S. Myrida St, Pensacola, FL 32505								•									
8//-2/6-/8/6 (Press 1, Then 8)																	
8710 Avenida De La Evente, San Diego, CA 92154					•								•		•		
619-661-1283 www.cactusrecvcling.com					-								-		-		
DFS Flooring																	
10178 Willow Creek Road, San Diego, CA 92131							•										
858-630-5200 www.dfsflooring.com																	
Duco Metals																	
220 Bingham Drive Suite 100, San Marcos, CA 92069															•		
760-747-6330 www.ducometals.com																	
Enniss Incorporated																	
12421 Vigilante Rd, Lakeside, CA 92040		•	•						•	•							
619-443-9024 www.ennissinc.com																	
Escondido Sand and Gravel																	
500 N. Tulip St, Escondido, CA 92025		•															
760-432-4690 www.weirasphalt.com/esg																	
Habitat for Humanity ReStore																	
10222 San Diego Mission Rd, San Diego, CA 92108				•													
619-516-5267 www.sdhfh.org/restore.php																	
Hanson Aggregates West – Lakeside Plant																	
12560 Highway 67, Lakeside, CA 92040		•															
858-547-2141																	
Hanson Aggregates West – Miramar										_							
9229 Harris Plant Rd, San Diego, CA 92126		•								•							
2675 Eaivre St. Chula Vista, CA 91911															•		
619-423-1855 www.thehvacexchange.com															-		
IMS Recycling Services																	_
2740 Boston Ave. San Diego. CA 92113					•								•				
619-423-1564 www.imsrecyclingservices.com																	
IMS Recycling Services																	
2697 Main St, San Diego, CA 92113													•		•		
619-231-2521 www.imsrecyclingservices.com																	
Inland Pacific Resource Recovery																	
12650 Slaughterhouse Canyon Rd, Lakeside, CA 92040											•						
619-390-1418																	
Lamp Disposal Solutions																	
1405 30 th Street, San Diego, CA 92154														•			
858-569-1807 www.lampdisposalsolutions.com																	
Los Angeles Fiber Company																	
323-589-5637 www.lafiber.com																	

	Mixed C&D Debris	Asphalt/Concrete	Brick/Block/Rock	Building Materials for Reuse	Cardboard	Carpet	Carpet Padding	Ceiling Tile	Ceramic Tile/Porcelain	Clean Fill Dirt	Clean Wood/Green Waste	Drywall	Industrial Plastics	Lamps/Light Fixtures	Metal	Mixed Inerts	Styrofoam Blocks
Miramar Greenery, City of San Diego		`	_	_	-	-		-	-	•	-		_	-		-	
5180 Convoy St, San Diego, CA 92111 858-694-7000 www.sandiego.gov/environmental- services/miramar/greenery.shtml											•						
Moody's																	
3210 Oceanside Blvd., Oceanside, CA 92056		•								•						•	
760-433-3316																	
Otay Valley Rock, LLC																	
619-591-4717 www.otavrock.com		-															
Reclaimed Aggregates Chula Vista																	
855 Energy Wy, Chula Vista, CA 91913		•														•	
619-656-1836																	
Reconstruction Warehouse																	
3650 Hancock St., San Diego, CA 92110				•													
619-795-7326 www.recowarehouse.com																	
Robertson's Ready Mix																	
2094 Willow Glen Dr, El Cajon, CA 92019		•								•						•	
Romero General Construction Corn																	
8354 Nelson Wy, Escondido, CA 92026																	
760-749-9312 www.romerogc.com/crushing/nelsonway.htm																	
SA Recycling																	
3055 Commercial St., San Diego, CA 92113															•		
619-238-6740 www.sarecycling.com																	
SA Recycling																	
1211 S. 32 nd St., San Diego, CA 92113															•		
619-234-6691 www.sarecycling.com																	
Universal Waste Disposal																	
8051 Wing Avenue, El Cajon, CA 92020														•			
Vulcan Carol Canyon Landfill and Recycle Site																	
10051 Black Mountain Rd. San Diego CA 92126			•							•							
858-530-9465 www.vulcanmaterials.com																	
Vulcan Otay Asphalt Recycle Center																	
7522 Paseo de la Fuente, San Diego, CA 92154		•															
619-571-1945 www.vulcanmaterials.com																	

Franchise-collected Multifamily Substream

The field crew hand sorted 93 samples from the City's franchise-collected multifamily substream. The tonnage associated with this substream is shown in Table 21.

Table 21. Included Substream and Tons, Franchise-collected Multifamily

Included Substreams	Tons
Franchise Collected Multifamily	250,661
Total Disposal in Substream	250,661

Key Findings

The key recoverability and material class findings for the multifamily substream are shown in Figure 22 and Figure 23, respectively. Approximately 79% of the multifamily substream is recoverable (42% is Compostable/Potentially Compostable, 21% is Recyclable, and 16% is Potentially Recoverable). **Organics** (43%) and **Paper** (22%) are the two most prevalent material classes.

The ten most prevalent disposed materials can be found in Table 22. *Food* (20%), *leaves and grass* (7%), and *compostable/soiled paper* (7%) are the three most prevalent material types; together they represent approximately 34% of franchise-collected multifamily substream.

Material Type	Estimated Percent	Cumulative Percent	Estimated Tons
Food	20.1%	20.1%	50,450
Leaves and Grass	7.0%	27.1%	17,539
Compostable/Soiled Paper	6.9%	34.0%	17,266
Uncoated Corrugated Cardboard	6.2%	40.2%	15,520
Textiles	4.1%	44.3%	10,319
Diapers	3.9%	48.2%	9,753
Mixed Waste Paper	3.8%	52.0%	9,553
Other Wood Waste	3.6%	55.7%	9,095
Prunings and Trimmings	3.1%	58.7%	7,712
Dirty Film Plastic	3.1%	61.8%	7,704
All other material types	38.2%		95,751
Total	100.0%		250,661

Table 22. Ten Most Prevalent Disposed Material Types, Franchise-collected Multifamily, 2012

As illustrated in Figure 24, the prevalence of the **Organics** material class within the franchise-collected multifamily substream declined from October (51%) to June (36%).

The detailed composition of the multifamily substream is shown in Table 23.

	Estimated		Estimated		Estimated		Estimated
Material	Percent	+/-	Tons	Material	Percent	+/-	Tons
Paper	22.2%		55,761	Electronics	1.1%		2,728
Uncoated Corrugated Cardboard	6.2%	1.1%	15,520	Brown Goods	0.5%	0.5%	1,376
Waxed Corrugated Cardboard	0.2%	0.1%	517	CRT	0.2%	0.3%	597
Paper Bags	0.5%	0.2%	1,270	Computer-Related Electronics	0.0%	0.0%	32
Newspaper	1.3%	0.3%	3,344	Other Consumer Electronics	0.3%	0.2%	724
White Ledger Paper	1.0%	0.3%	2,594	Video Display Devices (non-CRT devices)	0.0%	0.0%	0
Mixed Waste Paper	3.8%	0.4%	9,553				
Magazines	0.7%	0.2%	1,661	Construction & Demolition	12.6%		31,641
Phone Books and Directories	0.1%	0.1%	254	Concrete	1.4%	1.0%	3,611
Compostable/Soiled Paper	6.9%	0.8%	17,266	Asphalt Paving	0.0%	0.0%	0
Aseptic/Milk Containers	0.2%	0.0%	409	Asphalt Composition Shingles	0.0%	0.0%	0
Remainder/Composite Paper	1.3%	0.4%	3,373	Roofing Tar Paper/Felt	0.0%	0.0%	0
				Roofing Mastic	0.0%	0.0%	0
Plastic	10.8%		27,062	Built-Up Roofing	0.0%	0.0%	0
CRV HDPE Containers	0.0%	0.0%	90	Other Asphalt Roofing Material	0.0%	0.1%	107
Non-CRV HDPE Containers	0.8%	0.2%	1,963	Clean Dimensional Lumber	0.6%	0.4%	1,592
CRV PETE Containers	0.3%	0.0%	766	Clean Engineered Wood	0.4%	0.3%	989
Non-CRV PETE Containers	0.4%	0.1%	900	Clean Pallets and Crates	0.6%	0.6%	1,584
Compostable Biodegradable Plastic Containers	0.0%	0.0%	23	Other Wood Waste	3.6%	1.2%	9,095
Miscellaneous Plastic Containers	0.8%	0.1%	1,901	Clean Gypsum Board	0.3%	0.3%	738
Plastic Grocery and Merchandise Bags	0.4%	0.1%	941	Painted/Demolition Gypsum Board	0.4%	0.4%	1,048
Clean Film Plastic	0.4%	0.2%	1,093	Carpet & Carpet Padding	2.5%	1.4%	6,299
Dirty Film Plastic	3.1%	0.4%	7,704	Rock, Soil and Fines	0.5%	0.2%	1,134
Durable Plastic Items	2.8%	0.7%	7,091	Contaminated Soil, Street Sweepings, Drain Cleaning	0.3%	0.4%	641
Expanded Polystyrene	0.6%	0.1%	1,383	Remainder/Composite C&D	1.9%	0.9%	4,802
Remainder/Composite Plastic	1.3%	0.5%	3,206		20. 10000000		
				Household Hazardous Waste	0.2%		428
Glass	1.7%		4,252	Oil-Based Paint	0.0%	0.0%	0
CRV Clear Glass Bottles	0.3%	0.1%	658	Water-Based Paint	0.0%	0.0%	24
Non-CRV Clear Glass Bottles and Containers	0.5%	0.1%	1,373	Vehicle and Equipment Fluids	0.0%	0.0%	0
CRV Brown Glass Bottles	0.3%	0.1%	734	Used Oil	0.0%	0.0%	0
Non-CRV Brown Glass Bottles and Containers	0.0%	0.0%	109	Lead-Acid Batteries	0.0%	0.0%	0
CRV Other Colored Glass Bottles	0.1%	0.0%	211	Household Batteries	0.0%	0.0%	35
Non-CRV other Colored Glass Bottles and Containers	0.3%	0.1%	665	Sharps	0.0%	0.0%	2
Flat Glass	0.0%	0.0%	38.	Pharmaceuticals	0.0%	0.0%	37
Remainder/Composite Glass	0.2%	0.1%	466	CFL, Fluorescent Tube and Other Mercury-Containing	0.0%	0.0%	3
1047 0 B	-			Remainder/Composite Household Hazardous	0.1%	0.1%	528
Metal	3.3%	0.44	8,211		2 49/		9 509
Tin/Steel Cans	0.6%	0.1%	1,493	Special Waste	3.4%	0.09/	0,350
Major Appliances	0.0%	0.0%	6/	Ash	0.0%	0.0%	0
Other Ferrous Metal	1.0%	0.3%	2,427	Sewage Solids	0.0%	0.0%	0
CRV Aluminum & Tin Cans	0.2%	0.0%	386	Industrial Sludge	0.0%	0.0%	20
Non-CRV Aluminum Cans	0.1%	0.1%	145	Treated Medical Waste	0.0%	0.0%	6 6 6 6
Used Oil Filters	0.0%	0.0%	0	Bulky Items	2.7%	1.1%	1 706
Other Non-Ferrous Metal	0.4%	0.2%	1,021	Tire	0.7%	0.3%	207
Remainder/Composite Metal	1.1%	0.4%	2,673	Remainder/Composite Special Waste	0.1%	0.1%	207
Organics	13 1%		107 924	Mixed Residue	1.6%		4.055
Ead	20.1%	2.7%	50,450	Mixed Residue	1.6%	0.5%	4.055
Pold Balm Succulant Coral Tree	20.1%	0.9%	6 891	mixed residue			
Leaves and Grass	7.0%	2.0%	17 539	Total	100.0%		250,661
Prunings and Trimmings	3.1%	1.3%	7.712				
Branches and Stumps	0.4%	0.4%	1.121	Curbside Residential Recycling Processing Residuals			0
Agricultural Crop Residues	0.0%	0.0%	_,	C&D Processing Residuals			0
Grass Sod	0.0%	0.0%	3				
Manures	0.0%	0.1%	104	Total Including Residuals			250,661
Diapers	3.9%	0.9%	9.753	versionen einen sich die die als 👻 inter die die eine sicher			
Textiles	4.1%	0.8%	10,319	Sample Count			93
Remainder/Composite Organics	1.6%	0.4%	4,033				

Table 23. Detailed Waste Composition, Franchise-collected Multifamily, 2012

Confidence intervals calculated at the 90% confidence level. Percentages for material types may not total 100% due to rounding.

SD CLIMATE ACTION PLAN CONSISTENCY CHECKLIST INTRODUCTION

In December 2015, the City adopted a Climate Action Plan (CAP) that outlines the actions that City will undertake to achieve its proportional share of State greenhouse gas (GHG) emission reductions. The purpose of the Climate Action Plan Consistency Checklist (Checklist) is to, in conjunction with the CAP, provide a streamlined review process for proposed new development projects that are subject to discretionary review and trigger environmental review pursuant to the California Environmental Quality Act (CEQA).¹

Analysis of GHG emissions and potential climate change impacts from new development is required under CEQA. The CAP is a plan for the reduction of GHG emissions in accordance with CEQA Guidelines Section 15183.5. Pursuant to CEQA Guidelines Sections 15064(h)(3), 15130(d), and 15183(b), a project's incremental contribution to a cumulative GHG emissions effect may be determined not to be cumulatively considerable if it complies with the requirements of the CAP.

This Checklist is part of the CAP and contains measures that are required to be implemented on a project-by-project basis to ensure that the specified emissions targets identified in the CAP are achieved. Implementation of these measures would ensure that new development is consistent with the CAP's assumptions for relevant CAP strategies toward achieving the identified GHG reduction targets. Projects that are consistent with the CAP as determined through the use of this Checklist may rely on the CAP for the cumulative impacts analysis of GHG emissions. Projects that are not consistent with the CAP must prepare a comprehensive project-specific analysis of GHG emissions, including quantification of existing and projected GHG emissions and incorporation of the measures in this Checklist to the extent feasible. Cumulative GHG impacts would be significant for any project that is not consistent with the CAP.

The Checklist may be updated to incorporate new GHG reduction techniques or to comply with later amendments to the CAP or local, State, or federal law.

¹ Certain projects seeking ministerial approval may be required to complete the Checklist. For example, projects in a Community Plan Implementation Overlay Zone may be required to use the Checklist to qualify for ministerial level review. See Supplemental Development Regulations in the project's community plan to determine applicability.

This page intentionally left blank

SUBMITTAL APPLICATION

- The Checklist is required only for projects subject to CEQA review.²
- If required, the Checklist must be included in the project submittal package. Application submittal procedures can be found in <u>Chapter 11: Land Development Procedures</u> of the City's Municipal Code.
- The requirements in the Checklist will be included in the project's conditions of approval.
- The applicant must provide an explanation of how the proposed project will implement the requirements described herein to the satisfaction of the Planning Department.

			. •
Ann	lication	Inform	nation
	leacion		

Contact Information		
Project No./Name:		
Property Address:		
Applicant Name/Co.:		
Contact Phone:	Contact Email:	
Was a consultant retained to complete this checklist? Consultant Name:	□ Yes □ No Contact Phone:	If Yes, complete the following
Company Name:	Contact Email:	
Project Information		
1. What is the size of the project (acres)?		
 Identify all applicable proposed land uses: □ Residential (indicate # of single-family units): 		
Residential (indicate # of multi-family units):		
Commercial (total square footage):		
Industrial (total square footage):		
 Other (describe): 3. Is the project or a portion of the project located in a Transit Priority Area? 	□ Yes □ No	

4. Provide a brief description of the project proposed:

² Certain projects seeking ministerial approval may be required to complete the Checklist. For example, projects in a Community Plan Implementation Overlay Zone may be required to use the Checklist to qualify for ministerial level review. See Supplemental Development Regulations in the project's community plan to determine applicability.

Step 1: Land Use Consistency

The first step in determining CAP consistency for discretionary development projects is to assess the project's consistency with the growth projections used in the development of the CAP. This section allows the City to determine a project's consistency with the land use assumptions used in the CAP.

Step 1: Land Use Consistency				
Checklist Item (Check the appropriate box and provide explanation and supporting documentation for your answer) Yes				
 A. Is the proposed project consistent with the existing General Plan and zoning designations?;³ <u>OR</u>, B. If the proposed project is not consistent with the existing land use plat includes a land use plan and/or zoning designation amendment, wour result in an increased density within a Transit Priority Area (TPA)⁴ and actions, as determined in Step 3 to the satisfaction of the Developme C. If the proposed project is not consistent with the existing land use plat the project include a land use plan and/or zoning designation amend equivalent or less GHG-intensive project when compared to the exist 	Community Plan land use and In and zoning designations, and Id the proposed amendment I implement CAP Strategy 3 □ Int Services Department?; <u>OR</u> , In and zoning designations, does ment that would result in an ing designations?			

If "**Yes**," proceed to Step 2 of the Checklist. For question B above, complete Step 3. For question C above, provide estimated project emissions under both existing and proposed designation(s) for comparison. Compare the maximum buildout of the existing designation and the maximum buildout of the proposed designation.

If "**No**," in accordance with the City's Significance Determination Thresholds, the project's GHG impact is significant. The project must nonetheless incorporate each of the measures identified in Step 2 to mitigate cumulative GHG emissions impacts unless the decision maker finds that a measure is infeasible in accordance with CEQA Guidelines Section 15091. Proceed and complete Step 2 of the Checklist.

³ This question may also be answered in the affirmative if the project is consistent with SANDAG Series 12 growth projections, which were used to determine the CAP projections, as determined by the Planning Department.

⁴ This category applies to all projects that answered in the affirmative to question 3 on the previous page: Is the project or a portion of the project located in a transit priority area.

Step 2: CAP Strategies Consistency

The second step of the CAP consistency review is to review and evaluate a project's consistency with the applicable strategies and actions of the CAP. Step 2 only applies to development projects that involve permits that would require a certificate of occupancy from the Building Official or projects comprised of one and two family dwellings or townhouses as defined in the California Residential Code and their accessory structures.⁵ All other development projects that would not require a certificate of occupancy from the Building Official shall implement Best Management Practices for construction activities as set forth in the <u>Greenbook</u> (for public projects).

Step 2: CAP Strategies Consistency	/		
Checklist Item (Check the appropriate box and provide explanation for your answer)	Yes	No	N/A
Strategy 1: Energy & Water Efficient Buildings			
1. Cool/Green Roofs.			
• Would the project include roofing materials with a minimum 3-year aged solar reflection and thermal emittance or solar reflection index equal to or greater than the values specified in the voluntary measures under <u>California Green Building</u> <u>Standards Code</u> (Attachment A)?; <u>OR</u>			
 Would the project roof construction have a thermal mass over the roof membrane, including areas of vegetated (green) roofs, weighing at least 25 pounds per square foot as specified in the voluntary measures under <u>California</u> <u>Green Building Standards Code</u>?; <u>OR</u> 			
 Would the project include a combination of the above two options? 			
Check "N/A" only if the project does not include a roof component.			

⁵ Actions that are not subject to Step 2 would include, for example: 1) discretionary map actions that do not propose specific development, 2) permits allowing wireless communication facilities, 3) special events permits, 4) use permits or other permits that do not result in the expansion or enlargement of a building (e.g., decks, garages, etc.), and 5) non-building infrastructure projects such as roads and pipelines. Because such actions would not result in new occupancy buildings from which GHG emissions reductions could be achieved, the items contained in Step 2 would not be applicable.

2.	Plumbing fixtures and fittings		
	With respect to plumbing fixtures or fittings provided as part of the project, would those low-flow fixtures/appliances be consistent with each of the following:		
	 Residential buildings: Kitchen faucets: maximum flow rate not to exceed 1.5 gallons per minute at 60 psi; Standard dishwashers: 4.25 gallons per cycle; Compact dishwashers: 3.5 gallons per cycle; and Clothes washers: water factor of 6 gallons per cubic feet of drum capacity? Nonresidential buildings: Plumbing fixtures and fittings that do not exceed the maximum flow rate specified in Table A5.303.2.3.1 (voluntary measures) of the California Green Building Standards Code (See Attachment A); and Appliances and fixtures for commercial applications that meet the provisions of Section A5.303.3 (voluntary measures) of the California Green Building Standards Code (See Attachment A)? Check "N/A" only if the project does not include any plumbing fixtures or fittings. 		

Strategy 3: Bicycling, Walking, Transit & Land Use		
3. Electric Vehicle Charging		
 <u>Multiple-family projects of 17 dwelling units or less</u>: Would 3% of the total parking spaces required, or a minimum of one space, whichever is greater, be provided with a listed cabinet, box or enclosure connected to a conduit linking the parking spaces with the electrical service, in a manner approved by the building and safety official, to allow for the future installation of electric vehicle supply equipment to provide electric vehicle charging stations at such time as it is needed for use by residents? <u>Multiple-family projects of more than 17 dwelling units</u>: Of the total required listed cabinets, boxes or enclosures, would 50% have the necessary electric vehicle supply equipment installed to provide active electric vehicle charging stations ready for use by residents? <u>Non-residential projects</u>: Of the total required listed cabinets, boxes or enclosures, would 50% have the necessary electric vehicle charging stations ready for use by residents? <u>Non-residential projects</u>: Of the total required listed cabinets, boxes or enclosures, would 50% have the necessary electric vehicle supply equipment installed to provide active electric vehicle charging stations ready for use? <u>Non-residential projects</u>: Of the total required listed cabinets, boxes or enclosures, would 50% have the necessary electric vehicle supply equipment installed to provide active electric vehicle charging stations ready for use? 		
Strategy 3: Bicycling, Walking, Transit & Land Use (Complete this section if project includes non-residential or mixed uses)		
4. Bicycle Parking Spaces Would the project provide more short- and long-term bicycle parking spaces than required in the City's Municipal Code (<u>Chapter 14, Article 2, Division 5</u>)? ⁶ Check "N/A" only if the project is a residential project.		

⁶ Non-portable bicycle corrals within 600 feet of project frontage can be counted towards the project's bicycle parking requirements.

Number of Tenant Occupants (Employees)	Shower/Changing Facilities Required	Two-Tier (12" X 15" X 72") Personal Effects Lockers Required		
0-10	0	0		
11-50	1 shower stall	2		
51-100	1 shower stall	3		
101-200	1 shower stall	4		
Over 200	1 shower stall plus 1 additional shower stall for each 200 additional tenant-occupants	1 two-tier locker plus 1 two-tier locker for each 50 additional tenant- occupants		
'N/A" only if the project idential development t yees).	is a residential project, hat would accommoda	or if it does not includ te over 10 tenant occu	e pants	

	Number of Required Parking	Number of Designated Parking			
	Spaces	Spaces			
	10-25	2			
	26-50	4			
	51-75	6			
	76-100	9			
	101-150	11			
	151-200	18			
	201 and over	At least 10% of total			
be conside spaces are	red eligible for designated pa to be provided within the over it.	stickers from expired HOV lane rking spaces. The required desi erall minimum parking requiren	programs may gnated parking nent, not in		
addition to					
addition to Check "N/A nonresider	" only if the project is a reside ntial use in a TPA.	ential project, or if it does not inc	clude		

7. Transportation Demand Management Program				
If the project would accommodate over 50 tenant-occ include a transportation demand management progra existing tenants and future tenants that includes:	upants (employees), would it am that would be applicable to			
At least one of the following components:				
Parking cash out program				
 Parking management plan that includes chargin single-occupancy vehicle parking and providing spaces for registered carpools or vanpools 	g employees market-rate for reserved, discounted, or free			
 Unbundled parking whereby parking spaces wo from the rental or purchase fees for the develop development 	uld be leased or sold separately ment for the life of the			
And at least three of the following components:				
 Commitment to maintaining an employer network program and promoting its RideMatcher service 	ork in the SANDAG iCommute to tenants/employees			
On-site carsharing vehicle(s) or bikesharing				
Flexible or alternative work hours				
Telework program				
Transit, carpool, and vanpool subsidies				
• Pre-tax deduction for transit or vanpool fares ar	d bicycle commute costs	_	_	
 Access to services that reduce the need to drive, stores, banks, post offices, restaurants, gyms, or 1,320 feet (1/4 mile) of the structure/use? 	such as cafes, commercial childcare, either onsite or within			
Check "N/A" only if the project is a residential project o over 50 tenant-occupants (employees).	r if it would not accommodate			

Step 3: Project CAP Conformance Evaluation (if applicable)

The third step of the CAP consistency review only applies if Step 1 is answered in the affirmative under option B. The purpose of this step is to determine whether a project that is located in a TPA but that includes a land use plan and/or zoning designation amendment is nevertheless consistent with the assumptions in the CAP because it would implement CAP Strategy 3 actions. In general, a project that would result in a reduction in density inside a TPA would not be consistent with Strategy 3.The following questions must each be answered in the affirmative and fully explained.

1. Would the proposed project implement the General Plan's City of Villages strategy in an identified Transit Priority Area (TPA) that will result in an increase in the capacity for transit-supportive residential and/or employment densities?

Considerations for this question:

- Does the proposed land use and zoning designation associated with the project provide capacity for transit-supportive residential densities within the TPA?
- Is the project site suitable to accommodate mixed-use village development, as defined in the General Plan, within the TPA?
- Does the land use and zoning associated with the project increase the capacity for transit-supportive employment intensities within the TPA?
- 2. Would the proposed project implement the General Plan's Mobility Element in Transit Priority Areas to increase the use of transit? Considerations for this question:
 - Does the proposed project support/incorporate identified transit routes and stops/stations?
 - Does the project include transit priority measures?
- 3. Would the proposed project implement pedestrian improvements in Transit Priority Areas to increase walking opportunities? Considerations for this question:
 - Does the proposed project circulation system provide multiple and direct pedestrian connections and accessibility to local activity centers (such as transit stations, schools, shopping centers, and libraries)?
 - Does the proposed project urban design include features for walkability to promote a transit supportive environment?

4. Would the proposed project implement the City of San Diego's Bicycle Master Plan to increase bicycling opportunities? Considerations for this question:

- Does the proposed project circulation system include bicycle improvements consistent with the Bicycle Master Plan?
- Does the overall project circulation system provide a balanced, multimodal, "complete streets" approach to accommodate mobility needs of all users?

5. Would the proposed project incorporate implementation mechanisms that support Transit Oriented Development? <u>Considerations for this question:</u>

- Does the proposed project include new or expanded urban public spaces such as plazas, pocket parks, or urban greens in the TPA?
- Does the land use and zoning associated with the proposed project increase the potential for jobs within the TPA?
- Do the zoning/implementing regulations associated with the proposed project support the efficient use of parking through mechanisms such as: shared parking, parking districts, unbundled parking, reduced parking, paid or time-limited parking, etc.?

6. Would the proposed project implement the Urban Forest Management Plan to increase urban tree canopy coverage?

Considerations for this question:

- Does the proposed project provide at least three different species for the primary, secondary and accent trees in order to accommodate varying parkway widths?
- Does the proposed project include policies or strategies for preserving existing trees?
- Does the proposed project incorporate tree planting that will contribute to the City's 20% urban canopy tree coverage goal?

SD CLIMATE ACTION PLAN CONSISTENCY CHECKLIST ATTACHMENT A

This attachment provides performance standards for applicable Climate Action Pan (CAP) Consistency Checklist measures.

Table 1	Roof Design Values for Question 1: Cool/Green Roofs supporting Strategy 1: Energy & Water Efficient Buildings of the Climate Action Plan				
Land Use	Гуре	Roof Slope	Minimum 3-Year Aged Solar Reflectance	Thermal Emittance	Solar Reflective Index
Low-Rise Residential		≤2:12	0.55	0.75	64
		> 2:12	0.20	0.75	16
High-Rise Residential Buildings,		≤2:12	0.55	0.75	64
Hotels and Motels		> 2:12	0.20	0.75	16
Non-Residential		≤2:12	0.55	0.75	64
		> 2:12	0.20	0.75	16
Source: Adapted from A4.106.5.1 and A5.10	the <u>California Gre</u> 6.11.2.2, respec	en Building Standards Code (CALG tively. Roof installation and verifica	reen) Tier 1 residential and non tion shall occur in accordance v	residential voluntary meas vith the CALGreen Code.	ures shown in Tables

CALGreen does not include recommended values for low-rise residential buildings with roof slopes of \leq 2:12 for San Diego's climate zones (7 and 10). Therefore, the values for climate zone 15 that covers Imperial County are adapted here.

Solar Reflectance Index (SRI) equal to or greater than the values specified in this table may be used as an alternative to compliance with the aged solar reflectance values and thermal emittance.

Table 2	able 2 Fixture Flow Rates for Non-Residential Buildings related to Question 2: Plumbing Fixtures a Fittings supporting Strategy 1: Energy & Water Efficient Buildings of the Climate Action Pla				
	Fixture Type	Maximum Flow Rate			
	Showerheads	1.8 gpm @ 80 psi			
	Lavatory Faucets	0.35 gpm @60 psi			
	Kitchen Faucets	1.6 gpm @ 60 psi			
	Wash Fountains	1.6 [rim space(in.)/20 gpm @ 60 psi]			
	Metering Faucets	0.18 gallons/cycle			
	Metering Faucets for Wash Fountains	0.18 [rim space(in.)/20 gpm @ 60 psi]			
	Gravity Tank-type Water Closets	1.12 gallons/flush			
	Flushometer Tank Water Closets	1.12 gallons/flush			
	Flushometer Valve Water Closets	1.12 gallons/flush			
	Electromechanical Hydraulic Water Closets	1.12 gallons/flush			
	Urinals	0.5 gallons/flush			
Courses Adapted	from the California Croon Building Standards Code (CAL Croon) Tic	x 1 non-regidential valuatory measures shown in Tables AF 202.0.2.1 and			

Source: Adapted from the <u>California Green Building Standards Code</u> (CALGreen) Tier 1 non-residential voluntary measures shown in Tables A5.303.2.3.1 and A5.106.11.2.2, respectively. See the <u>California Plumbing Code</u> for definitions of each fixture type.

Where complying faucets are unavailable, aerators rated at 0.35 gpm or other means may be used to achieve reduction.

Acronyms:

gpm = gallons per minute psi = pounds per square inch (unit of pressure)

in. = inch

Table 3Standards for Appliances and Fixtures for Commercial Application related to Question 2: Plumbing Fixtures and Fittings supporting Strategy 1: Energy & Water Efficient Buildings of the Climate Action Plan		
Appliance/Fixture Type	Standard	
Clothes Washers	Maximum Water Factor (WF) that will reduce the use of water by 10 percent below the California Energy Commissions' WF standards for commercial clothes washers located in Title 20 of the California Code of Regulations.	
Conveyor-type Dishwashers	0.70 maximum gallons per rack (2.6 L) (High-Temperature)	0.62 maximum gallons per rack (4.4 L) (Chemical)
Door-type Dishwashers	0.95 maximum gallons per rack (3.6 L) (High-Temperature)	1.16 maximum gallons per rack (2.6 L) (Chemical)
Undercounter-type Dishwashers	0.90 maximum gallons per rack (3.4 L) (High-Temperature)	0.98 maximum gallons per rack (3.7 L) (Chemical)
Combination Ovens	Consume no more than 10 gallons per hour (38 L/h) in the full operational mode.	
Commercial Pre-rinse Spray Valves (manufactured on or after January 1, 2006)	 Function at equal to or less than 1.6 gallons per minute (0.10 L/s) at 60 psi (414 kPa) and Be capable of cleaning 60 plates in an average time of not more than 30 seconds per plate. Be equipped with an integral automatic shutoff. Operate at static pressure of at least 30 psi (207 kPa) when designed for a flow rate of 1.3 gallons per minute (0.08 L/s) or less. 	
Source: Adapted from the <u>California Green Building Standards Code</u> (CALGreen) Tier 1 non-residential voluntary measures shown in Section A5.303.3. See the <u>California Plumbing Code</u> for definitions of each appliance/fixture type.		
Acronyms: L = liter L/h = liters per hour L/s = liters per second psi = pounds per square inch (unit of pressure) kPa = kilopascal (unit of pressure)		