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Abstract The difference in timing between water supply and urban water demand neces-
sitates water storage. Existing reservoirs were designed based upon hydrologic data from a
given historical period, and, given recent evidence for climatic change, may be insufficient to
meet demand under future climate change scenarios. The focus of this study is to present a
generally applicable methodology to assess the ability of existing storage to meet urban
water demand under present and projected future climatic scenarios, and to determine the
effectiveness of storage capacity expansions. Uncertainties in climatic forcing and projected
demand scenarios are considered explicitly by the models. The reservoir system in San
Diego, California is used as a case study. We find that the climate change scenarios will be
more costly to the city than scenarios using historical hydrologic parameters. The magnitude
of the expected costs and the optimal investment policy are sensitive to projected population
growth and the accuracy to which our model can predict spills.

Keywords Climate change adaptation - Reservoir storage expansion -

Urban water reliability - Land surface hydrology - Water planning

1 Introduction

1.1 Background

The recently released Fourth Assessment Report of the Intergovernmental Panel for Climate

Change (Rosenzweig et al. 2007) states with high confidence that climate change is
strongly affecting snow dependent systems and that emerging evidence exists that climate
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induced changes in water resources are occurring around the world. The observed and
anticipated climatic changes are expected to lead to early melting of snowpacks due to
temperature increases (e.g., Dettinger and Cayan 1995, Xu 2000), which will alter runoff
patterns in cold and mountainous regions; increasing evaporation with implications for
significant changes in runoff variability (e.g., Manabe et al. 2004); altering both the
intensity and frequency of precipitation with implications for changes in the occurrence of
floods and flash floods (e.g., Trenberth et al. 2007); and increasing seasonal demands for
urban water, hydropower, and irrigation while in many cases reducing water supply (e.g.,
Kundzewicz et al. 2007). All these impacts will significantly affect water supply around the
world (e.g., Arnell 1999), and water management strategies must adapt to the changing
climate in order to avoid expensive water shortages.

The objective of this study is to formulate a methodology that may be used to examine
the economic implications of a changing climate for an urban area that depends on storage
reservoirs and water imports for its water supply, and to consider the effectiveness of
expanding reservoir storage as a means of adaptation. An important aspect of this work is
the explicit treatment of uncertainty throughout the system components. Despite a recog-
nition and awareness of the impending problems climate change poses to water systems,
water management and decision making in California (and elsewhere around the world) has
yet to incorporate quantitative climate change information in operations and planning
(Purkey et al. 2007). In addition, little research has studied the economic costs and benefits
of expanding existing water storage facilities to adapt to future climate change.

Urban water managers can influence both the demand and supply of water when
considering adaptation to climate change. We are examining expanding reservoir storage as
a means of adaptation because existing reservoirs are constructed based on historical runoff
and demand distributions and may be ineffective at preventing water shortages if the
amplitudes of supply and demand change over time under climate change scenarios (e.g.,
Graham and Georgakakos 2006). Urban water reservoir storage has economic value since it
allows agents to transfer water both within and between years from periods when supply is
high to periods when demands are high. The effectiveness of expanding reservoir storage
as a means of adaptation will be a function of the existing reservoir storage, the climate
change impacts on the basin specific hydrologic variables, and reservoir operating rules.

To exemplify our methodology, we choose to study a single municipal water district so
that we can design a reservoir model that can analyze adaptation conceptually and accu-
rately. The urban water reservoir system of San Diego, California is suitable to serve as an
example because it is in a large urban water district and because it relies extensively on its
reservoir system. Desirable features of the model we design and implement, that do not
exist with some of the larger reservoir models currently used in California, are: it can
accommodate different climate scenarios; it is simulation based with explicit account for
hydrologic and other system uncertainties; and it can be used with a set of inputs not limited
to the sequence of historical inflows.

Following a short literature review of past studies relevant to this work, we discuss our
methodology in Section 2 through the presentation of the water balance formulation and
parameterizations. The models for uncertainty characterization as well as the climate model
information used in this work are also presented in that section. Section 3 formulates the
adaptation strategy as a reservoir capacity expansion program with estimation of the
economic parameters. The results of our simulations and sensitivity study are discussed in
Section 4, with conclusions and recommendations for future research constituting Section 5.
Nomenclature is included in the Appendix.
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1.2 Literature Review

A literature exists that explores the adverse impacts that climate change will cause on
water supply and demand throughout the world. These studies have examined impli-
cations on a worldwide basis, such as Barnett et al. (2005), and also on a regional scale,
including studies in China (Xu et al. 2004), Canada (Simonovic and Li 2004), Japan (Islam
et al. 2005), Korea (Georgakakos et al. 2005) and New Zealand (Ruth et al. 2007).
Specifically, these problems are expected to be significant in the western United States
(Barnett et al. 2004; Dracup et al. 2005; Hayhoe et al. 2004). Large reservoir models have
been designed to evaluate the impacts of climate change on water resources in California,
and Dracup et al. (2005) contains a discussion of the drawbacks of some of these larger
models. In addition to lacking desirable modeling features (discussed earlier), the larger
models have coarse representation of individual water districts. This is problematic as
heterogeneity exists for water rights and population growth for water districts, even for ones
in close proximity to each other spatially.

Adaptive strategies in the western United States have thus far focused on improving
reservoir management (Carpenter and Georgakakos 2001; Yao and Georgakakos 2001;
Vanrheenen et al. 2004) by incorporating climate forecasts and projections. To the best of
our knowledge, other forms of adaptation to potential climatic change under increasing
populations have not received significant attention. Our study extends this research by
focusing on the economic effectiveness of reservoir storage capacity expansion as a
means of adaptation to climatic change. Similar studies include Ruth et al. (2007), which
discusses adaptive responses to climate change for a single water district in New Zeland,
and Semadeni-Davies (2004), who examines the need for infrastructure expansion for urban
sewerage networks in regions affected by snow melt changes. However, unlike the present
study, these works do not incorporate economic criteria when considering adaptation.
Pertinent to the adequacy of storage capacity under an uncertain water supply, Fisher and
Rubio (1997) derive a theoretical model that shows that increased uncertainty in projections
leads to higher level of reservoir storage in the long term.

The present paper complements the existing literature by examining stochastic urban
water supply and demand under projected climatic and population changes in economic
terms, and by formulating an adaptation solution through capacity expansion. The inno-
vative aspects of this study consist of the economic focus, the incorporation of uncertainty,
the development of capacity expansion as an adaptation approach for urban water supply-
demand problems, and the application to actual data from a water district in semi-arid
southern California.

2 Water Balance Model and Climate Information
2.1 The Water Balance Model

We modify the abcd model presented in Rogers and Fiering (1990) for application to the
San Diego’s reservoir system. The formulated model is a series of equations that simulate
the conservation of water volume for a regulated watershed on a monthly time scale. A
significant modification to the abcd model that is necessary for our methodology is the
inclusion of imports into the system of water balance equations. With this modification the
model represents a generally applicable tool for the purposes of climate change adaptation
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studies in urban environments in semi-arid or arid regions. We adopt a monthly time scale
because of the time interval of the available historical data for the application region, and of
the time interval of the climate model information used as discussed in subsequent sections.
Sensitivity analysis is conducted for water balance components that may require higher
resolution for more accurate representation (i.e., reservoir spills).

The City of San Diego, like many other cities in semi arid regions, relies upon local
runoff to meet 10-20% of its water demand and imports the residual demand. It operates
nine reservoirs with a total capacity of 512 million cubic meters. The sole objective of the
reservoirs is for urban water deliveries. We assume that the reservoirs are perfectly
connected in the model, although at times this assumption may not be true in practice due to
pipeline constraints. The abcd model component that simulates groundwater withdrawals is
not used as no such withdrawals exist.

Figure 1 provides a schematic overview of the components of the water balance model
as applied to the case study and their interconnections. Precipitation and temperature
constitute the climatic forcing of the water balance model. Precipitation estimates serve as
input to the local runoff model component of the water balance model, for the estimation of
expected imports, and for the estimation of expected urban water consumption targets.
Temperature estimates are used for the determination of water consumption and reservoir
evaporation. Urban population estimates are also used for the estimation of expected
imports and water consumption. Water in reservoir storage is replenished by local runoff
and imports. It is depleted by evaporation from the water surface in the reservoirs, releases
to meet expected water consumption and any losses due to enforced spillage to avoid
overtopping.

The model mathematical formulation is shown next in discrete form for a typical month
t. To keep variable symbols to a minimum, the equations are generalized to show depen-
dence on the kth ensemble member of the uncertain weather variables (as discussed in
Section 2.1.2):

Ok, = min{d;aK ,divy,} (1)
Vierr = min{ (1 — d;)aK, (1 — d;)vis} (2)

where
Ve = Vie + Iey + (1= b)) Pry — Exy (3)

In these equations, ¢ is the time index for a monthly time interval of computations, & is
the ensemble-member index, j is a season index to indicate parameter dependence on
season, and i is a monthly index to indicate parameter dependence on a particular month. Q,
P, I, and E denote monthly volumetric flow quantities: reservoir release, basin precipitation,
water imports, and total reservoir water surface evaporation. ¥}, denotes the water volume
in reservoir system storage at the beginning of month ¢ and for ensemble member k. The
symbol vy, represents the stock of water at the end of month # and for ensemble member k.

Every month, the city releases a certain fraction d of the water in storage. The water that
is not released becomes storage for the following period. A capacity constraint exists so that
the amount of water in the reservoir does not exceed the amount of water that the system is
capable of holding. If the water stock exceeds this amount at the end of month ¢ then the
excess water is lost through spillage, enforced to avoid overtopping and structural damage.
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Fig. 1 Schematic of water
balance model and interactions as
applied to the case study
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In this monthly formulation, the spillage capacity is taken to be a function of the actual
reservoir capacity (denoted by K in the previous equations) times a multiplier o (<1). A
multiplier of less than one is used because daily or hourly accounting is not possible with
the existing data, and this information is necessary to approximate the precise conditions at
which a spill occurs.

Assuming that monthly precipitation is distributed uniformly over the natural drainage
basin of the city reservoir system and that runoff is a linear function of precipitation for
monthly aggregate quantities, for each realization of precipitation we use:

Ri: = (1 - bj)Pk.t (4)

This expression is implicit in Eq. 3, where b; is a parameter depending on season ;. This
implies that only a fraction of precipitation enters the reservoir each period, and that the rest
is lost to evapotranspiration or percolation to deep groundwater storage in the upstream
drainage basin. The parameters d;, b; and a are calibrated to fit historical data.

These precipitation assumptions are reasonable since this is a small urban basin relative
to the large spatial and temporal resolution associated with climate change projections.
Also, in view of the significant uncertainty in precipitation and temperature projections for
future climates (e.g., Koutsoyiannis et al. 2007), assuming a linear relationship between
regional monthly runoff and precipitation is reasonable while it yields parsimonious and
easily calibrated models. Furthermore, and typical for semi-arid urban environments, import
volumes from outside the urban basin are as important or even more important than local-
basin runoff volumes, thus reducing the sensitivity of the overall analysis to the rainfall-
runoff relationship.

2.1.1 Hydrologic Model Parameter Estimation

Parameter » depends on season with two parameter values defined: one for the winter
months, which we define as November through March; and the other for the summer
months, defined as April through October. We find these parameters by comparing actual
precipitation with actual runoff data. We employ a random sampling method for parameter
estimation. We impose a uniform probability distribution U(0,1) upon the possible range of
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values for b. Using a random number generator, we choose the pair of b values that lead to
the smallest mean square error when compared to the runoff data. We adopt this convention
as precipitation and runoff are not perfectly correlated to due soil characteristics such as
porosity and moisture content, and these deviations may occur in either a positive or
negative direction.

The release parameter d takes an average value of 0.025 when the available reservoir
rule curves are used. We make monthly adjustments to the value of d because releases have
occurred at different levels in different months. We find the release fraction for a given
month of the year by multiplying d by the ratio of the release for that month to the average
release for all months of the year.

Spills occur as a result of reservoir inflow while reservoir content is at capacity. We
define the parameter o as the highest percentage of capacity that the system can hold
without spills occurring. For model simulations, aK denotes the capacity constraint for
which spills occur. In the absence of hourly or even daily data, a reasonable approach to
estimate a value for o from the historical record is to use:

a =053 " (V+ Vi) /30 K (5)

where ¢ denotes a month for which historical spills occurred, and T is the total number of
months with spills. Application of Eq. 5 with the historical data (1948-2003) gives an
estimate of 0.807 for a. This estimate tends to underestimate the total spill volume over the
historical record. For this reason, we obtain a second estimate for the value of « that
preserves the historically observed total spill volume and use this new estimate in the
sensitivity analysis with respect to spills (presented in the Results section). This new
estimate of o (denoted by «’) is equal to 0.4 and it yields a higher spill volume in
accordance with the historical record.

2.1.2 Precipitation

Precipitation stochasticity must be incorporated for urban water supply planning. We
incorporate uncertainty in monthly precipitation over the entire catchment of the urban
water supply system of reservoirs through the development of monthly precipitation
distributions. We create these distributions by pooling all available historical precipitation
data from all the reservoir drainage areas by month and fitting a frequency distribution to
the sample. We assume that precipitation patterns are identical at all of the reservoir
drainage basins and that monthly precipitation distributions are not changing over the
historical time period. On the basis of preliminary analysis for the case study, we further
assume that non-zero precipitation in one month is independent of non-zero precipitation in
adjacent months.

We fit the distributions to the sample of non-zero precipitation. However, summer
months have a high proportion of months with no precipitation. The simulations incorporate
the chance of a dry month as follows. A random sample u,; is drawn from a uniform
distribution U(0,1) for each month. If the sample is less than the estimated fraction of zero
precipitation observations for the given month, we assign zero precipitation for that month.
If not, we obtain precipitation for that month by randomly sampling from the best-fit
monthly distribution for non-zero precipitation amounts.

Persistence exists for summer and fall months for zero precipitation amounts. We assume
that zero precipitation in these months follows a Markov lag-1 process. We create different
probability distributions for the probability of zero precipitation occurrences so that the
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probability of zero precipitation in a given month is conditioned on whether or not zero
precipitation occurred in the previous month. We present the sample frequencies of the
unconditional and conditional distributions for the case study in Table 1.

Table 2 shows the historical precipitation statistics and results from the Kolmogorov-
Smirnoff (KS) test of fitting distributions to monthly non-zero precipitation data. The
values of the parameters chosen are the maximum likelihood estimates from the historical
monthly data. We use two-parameter gamma distributions for October through April and
two-parameter lognormal distributions for May through September. In Table 2, p denotes
the shape of the gamma and the mean of the lognormal distributions, while ¢ denotes the
scale of the gamma and the variance of the lognormal distributions.

2.1.3 Imports

To proceed with the analysis of the urban water system under potential climatic change it is
necessary to develop models to estimate imports. Future imports into the city are uncertain
because of their dependence on precipitation and population growth. The historical
operating policy of the city is maximize the capture of local runoff during wet years. This
strategy minimizes losses to spills and evaporation but increases vulnerability during dry
years due to the possibility of paying extra to acquire imports. Alternate importing strate-
gies are considered as a sensitivity. We estimate annual import volume, /}/, for year y based
on the following regression equation. Table 3 shows the parameter values and regression
statistics.

I Iy

=Nt Pt (6)

P v p y—1
where v, (/=0,1,2,3) are regression parameters, p; represents the urban population in year
», Py represents the precipitation volume in year y, and &, is the zero-mean, normally
distributed residual error of the regression. The r-squared for the regression is 0.78, which
indicates that the specified regression is capturing a significant part of the variation in per
capita imports. The parameter estimates, shown in the first column in Table 3, are all
statistically significant at the 99% confidence level with the expected signs. On the basis of

Table 1 Sample unconditional and conditional frequencies for precipitation

Month Marginal Marginal ~ Sample Sample Sample Sample
frequency (zero  frequency  conditional conditional conditional conditional
rainfall; %) (non-zero  frequency frequency frequency frequency

rainfall; %) (zero/zero; %) (zero/non- (non-zero/ (non-zero/
zero; %) zero; %) non-zero; %)

May 18.2 81.8 56.9 43.1 50.4 49.6

June 51.6 48.4 57.6 424 59.4 40.6

July 58.5 41.5 63.7 36.3 48.9 51.1

August 57.5 42.5 47.5 52.5 37.6 62.4

September 42.5 57.5 25.1 74.9 18.0 82.0

October 20.2 79.8 11.0 89.0 6.6 93.4

November 7.5 92.5 8.5 91.5 0.9 99.1
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Table 2 Precipitation statistics for historical data

Month Number (n) Percent zeros Distribution p* q° KS p-value
January 620 1.7 Gamma (p,q) 1.049 2.832 0.104
February 621 2.1 Gamma (p,q) 1.195 2.613 0.334
March 617 2.8 Gamma (p,q) 1.228 2.409 0.182
April 609 4.2 Gamma (p,q) 1.080 1.296 0.636
May 520 18.2 Lognormal (p,q) 0.731 0.713 0.135
June 308 51.6 Lognormal (p,q) —2.155 1.255 0.320
July 264 58.5 Lognormal (p,q) —2.225 1.293 0.323
August 271 57.5 Lognormal (p,q) -1.742 1.506 0.383
September 366 425 Lognormal (p,q) 0.677 0.740 0.046
October 502 20.2 Gamma (p,q) 0.857 0.886 0.126
November 582 7.5 Gamma (p,q) 1.082 1.489 0.086
December 620 1.4 Gamma (p,q) 1.141 2.093 0.270

?Denotes the shape parameter for the Gamma and the mean parameter for the Lognormal distributions

® Denotes the scale parameter for the Gamma and the variance parameter for the Lognormal distributions

historical data analysis, from the annual import estimates we create gamma distributions of
the percentages of total imports placed into reservoirs for the summer and winter. For the
climate runs, we use the distributions as estimated from the period 1978-2003. (O’Hara and
Georgakakos 2006) provide the analysis and the parameter values for those distributions.

2.1.4 Evaporation

We model monthly potential evaporation (PE) using the Thornthwaite equation for monthly
potential evaporation estimation (see formulation in standard texts such as Bras 1987). We
assume evapotranspiration from the drainage areas is insignificant when compared to the
surface area evaporation from the city reservoirs, which occurs at the potential rate.
Estimates of the surface area of the reservoir system are necessary for the computation of
free water surface evaporation (potential evaporation over a water body). Approximate
estimates may be obtained from the known capacity K’ and corresponding lake surface
area A’ of reservoir i in the urban reservoir system of study. This may be accomplished
through the approximation of the shape of the reservoir lake with a regular shape (we

Table 3 Import regression results for 1960-2003

Parameters OLS parameter estimate Standard error t-statistic p-value*
Regression constant 0.0246 0.0046 5.37 0.000
Annual rainfall —0.0003 0.0001 —3.46 0.001
Lagged per capita imports 0.7285 0.0740 9.85 0.000
Lagged annual rainfall —0.0003 0.0001 -3.40 0.002
r-squared 0.782

*The p-value denotes the probability that the parameter estimate is statistically different than zero. The #-
statistic is the parameter estimate divided by the SE
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produced similar results for a cone and a rectangular prism). For a conic shape, the surface
area A, of reservoir i with volume V' (<K') is:

Ay = A (V/K)" (7)

We find V for each reservoir at the beginning of a given month by distributing the total
volume computed from Eq. 2 proportionally based on capacity amongst all of the
reservoirs. For a given month, reservoir system evaporation is then obtained from:

E = (PE) (Zf:] A"V) (8)

where i is a reservoir index.

2.1.5 Model Validation Using Historical Data

Figure 2 shows the 5th and 95th percentile of predicted model historical (1948 — 2003)
cumulative releases from the San Diego urban reservoir system simulated by Monte Carlo
sampling from the precipitation distributions. The corresponding observed release during
this period is also shown with the black line denoted with the symbol x. Figure 2
demonstrates that the ensemble releases contain the historical releases throughout the period
while they maintain low variance. To further evaluate performance, we construct the bulk
reliability diagram to demonstrate how well the frequency distribution of predicted histori-
cal releases by the model matches the frequency distribution of actual historical releases.
This is denoted in the upper panel of Fig. 3 with a dashed line. Perfect performance, which
would arise if the probability distribution of historical outflows from the model exactly
matched the probability distribution of actual historical outflows, is shown by the 45° line
in the same upper panel as a benchmark and is represented by a solid line. The uncondi-
tional sample frequency distributions of simulated and actual releases are also shown in the
lower panels of Fig. 3 for reference. The results show that the model tends to somewhat
over predict the low frequency of outflows but predicts adequately the higher outflow
occurrence frequencies (>0.5).

Fig. 2 Ensemble realizations of X - historical release; dash - Sth and 95th percentile ensemble releases
5th and 95th percentile cumula- 6000 ' ' ' ' ' '
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Fig. 3 Bulk Reliability Diagram
(top panel) and histograms for
simulated (middle panel) and
actual release outflow (bottom
panel). See text for a more
detailed description of the panels
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2.2 Climate Model Data and Future Water Balance Model Forcing

To simulate the water balance model for future climates, we use readily available output
from Global Climate Models (GCMs) pertaining to monthly surface air (screen) tem-
perature and precipitation. The output corresponds to the GCM grid point encompassing
San Diego and was obtained form the Intergovernmental Panel for Climate Change (IPCC)
Data Distribution Centre. We use data for the period 20062030 from three climate models
to allow for multiple climate change scenarios. The models are: CGCM2 (Canadian
Model), HadCM3 (Hadley Model) and ECHAM4 (Echam Model). We choose to explore
scenarios in San Diego until 2030 since this timescale corresponds to existing planning
horizons for urban water managers.

All three models have a control scenario in which greenhouse gas (GHG) emissions
remain fixed at 1990 levels throughout the entire future period of model simulation. All
three also have a standard GHG emission scenario of 1% annual growth in GHGs over the
future period of simulation. O’Hara and Georgakakos (2006) perform an analysis of
precipitation annual totals and annual average temperatures for various future scenarios for
each of the three GCM models and for several grid nodes in the vicinity of San Diego. No
consistent differences for precipitation exist at the annual level between control and GHG
scenarios for the future period examined. There is, however, a trend in all models for
increasing temperature with simulated temperatures for 2006 substantially warmer than the
historical average.

We assume that the shape of the historical precipitation distributions is preserved in the
future under all climate change scenarios, and that only the distributional parameters
change. We find new parameters for precipitation by obtaining the mean and variance of the
monthly data from 2006 through 2030 for both the control run and greenhouse gas run. We
compute the ratios for each month and for each model by dividing the greenhouse gas mean
and variance by the corresponding mean and variance from the control run. This allows us
to capture the predicted impacts of climate change on precipitation statistics from each of
the models. We then estimate monthly precipitation means and variances for the climate
change scenarios in the San Diego basin by multiplying the historical means and variances
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Table 4 Precipitation statistics for the ECHAM4 model scenario of climate change (parameters p and ¢
correspond to the fitted distribution of Table 2)

Month Mean Variance p q Percent zeros
January 3.73 26.16 0.53 7.02 9.2
February 2.98 9.05 0.98 3.03 13.2
March 2.21 2.79 1.76 1.26 13.9
April 2.19 3.98 1.21 1.82 1.4
May 2.97 13.93 0.61 0.95 21.9
June 0.19 0.11 -2.39 1.42 51.6
July 0.21 0.14 —2.28 1.42 65.9
August 0.24 0.16 —2.11 1.35 68.6
September 2.52 8.77 0.49 0.87 46.2
October 0.49 0.11 2.29 0.21 38.7
November 2.10 3.82 1.16 1.82 11.2
December 2.98 16.60 0.53 5.57 5.1

by the mean and variance ratios that we obtain from the climate data. Lastly we estimate
new parameters for the monthly precipitation distribution (gamma or lognormal) directly
for each month from the estimated mean and variance.

For model monthly simulations, we define a zero-precipitation month as a month that
has a monthly precipitation estimate less than a given threshold (e.g., 1 mm/month). For
each month, we calculate the absolute difference between zero percentages from the
greenhouse gas scenario and the control scenario for each of the climate change models. We
then obtain long-term average zero precipitation percentages for future periods by adding
the percentage of the time zero precipitation occurred in a given month of the year in the
historical data to this calculated difference. Tables 4, 5, and 6 display the monthly
precipitation means, variances, and distributional parameter estimates for each of the
climate scenarios and for each month of the year.

A similar procedure was followed to produce future monthly temperature averages. We
subtract the control temperature from the greenhouse gas temperature for each month and
we then add this difference to the average monthly temperature from the historical
temperature data.

Table 5 As in Table 4 but for the Hadley model scenario of climate change

Month Mean Variance p q Percent zeros
January 4.12 33.49 0.51 8.12 1.2
February 2.78 7.57 1.02 2.72 5.8
March 2.77 3.62 2.13 1.30 2.8
April 0.95 0.82 1.10 0.87 19.1
May 3.39 13.50 0.83 0.78 33.1
June 0.00 0.00 NA NA 62.7
July 0.18 0.19 -2.70 1.95 51.1
August 0.30 2.24 -2.82 3.25 389
September 2.50 8.94 0.47 0.89 42,5
October 2.59 97.79 0.07 37.71 20.2
November 1.50 1.58 1.44 1.05 22.3
December 2.90 3.03 2.78 1.04 5.1

@ Springer



J.K. O’Hara, K.P. Georgakakos

Table 6 As in Table 4 but for the Canadian model scenario of climate change

Month Mean Variance V4 q Percent zeros
January 4.39 18.50 1.04 422 11.6
February 2.51 4.08 1.54 1.63 1.4
March 3.24 7.47 1.41 2.30 5.3
April 1.08 0.65 1.79 0.60 0.5
May 2.03 4.11 0.36 0.69 19.5
June 0.40 1.22 —2.01 2.17 55.3
July 0.16 0.06 —2.46 1.22 375
August 0.33 0.30 -1.79 1.34 41.4
September 2.62 5.68 0.66 0.60 27.7
October 0.96 1.50 0.61 1.57 16.5
November 2.30 7.71 0.68 3.36 9.9
December 245 7.19 0.84 2.93 1.4

2.3 Water Consumption Target

Controlled releases of stored water are made to meet water demand for the urban area of
interest. We need estimates of water consumption targets (see Fig. 1) to simulate this
process for historical and future periods and to have a basis for estimating urban system
operation costs. Municipal water demand is an increasing function of precipitation deficit,
because precipitation is a substitute for outdoor uses of water. We use monthly historical
data to obtain the relationship between per capita water consumption, precipitation, and
temperature. The formulation of the relevant regression equation is:

C C._ 11
p_’:yo+y]P,+y2T,+y3P,,1 +y4p’ L+ D+ e 9)
=1

t t—1

where P, is observed monthly precipitation volume for month #, 7, is monthly average
temperature for month ¢, p, is the urban population for month #, C; is the monthly water
consumption for month ¢, D, (I=1,...,11) are long-term average monthly water consumption
per capita estimates for month / of the year, v, (/=0,1,2,3,4) and §; (/=1,..,12) are regression
parameters, and &, represents the regression zero-mean and normally distributed random
residual. We include monthly indicator variables for January through November (D)) to
control for month effects.

We present parameter estimation results using monthly data from San Diego and for
the period June 1999 through December 2004 in Table 7. The coefficient estimates for
precipitation, temperature, lagged precipitation, and lagged per capita consumption are all
statistically significant and have the appropriate signs. The parameter estimates d; for the
monthly variables for the fall and winter months are not statistically significant, but these
coefficients for the spring and summer months are significant (significant §; coefficients are
shown in Table 7). The r-squared for the regression is 0.96, which indicates that the model
has sufficient explanatory power.

Water price is not included as an independent variable because the authors do not have
the appropriate data to estimate price elasticity. However, we use the price elasticity
reported in Olmstead et al. (2006) to reduce demand in the capacity expansion scenarios
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Table 7 Regression results for ] -
per capita consumption (59 Parameters Parameter estimates t-statistic p value

observations; r-squared=0.962)

Yo 0.0003 0.31 0.76
" ~0.0002 -4.38 0.00
2 0.0000 2.29 0.03
V3 ~0.0001 226 0.03
Va 0.4312 4.11 0.00
5 0.0006 3.09 0.00
54 0.0006 373 0.00
5 0.0009 5.06 0.00
56 0.0006 2.58 0.01
5 0.0008 3.16 0.00
5 0.0006 2.17 0.04

employed later in this work because an increase in reservoir infrastructure would increase
rates in order to pay for the investment. We assume that the rates would increase by the
anticipated percentage in average cost that the expansion would create.

We refer the interested reader to (O’Hara and Georgakakos 2006) for more details on the
formulation.

2.4 Method for the Evaluation of Climate Change Impacts

We conduct simulations of the urban water system for the purpose of answering the
following question: Given historical operating policy, is the existing reservoir capacity
sufficient to meet urban water demand under climate change scenarios? If not then: Can
reservoir capacity expansion and associated costs accommodate projected climatic and
population changes? The simulations conducted for the climate change scenarios for the
future years 20062030 are identical to the historical simulations, except that we adjust the
historical precipitation and temperature data by the climate model output as discussed
previously (Section 2.2). Simulations labeled “historical” use the historical precipitation
distributions and temperature data in a historical analog scenario and are presented as
benchmarks for the future simulation period.

We consider several sensitivities under each climate scenario. A “baseline” case is run,
in which capacity expansion is evaluated with regard to historical operating procedures,
historical importing patterns, and projected population growth. We use population forecasts
from SANDAG, a regional planning agency for the city of San Diego, in order to use this
equation for the future climate scenarios. SANDAG does not provide confidence intervals
for their forecasts, so we run two additional scenarios in which sensitivity to population
projections are explored — a “high” population case and a “low” population case. We
explore scenarios in which importing patterns are altered solely to winter months (which
could be the result of the seasonal import availability changing or as a desire to purchase
more imports during off-peak periods). In the winter import scenario, we assume that there
is no change in the total volume of water available, but we assume that none of the
imported water is placed into the reservoirs in summer months and that the percentage of
water placed into the reservoirs during winter months is distributed uniformly to match the
historical average mean monthly percentage of the historical import volume placed into
reservoirs.
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We run a sensitivity to alter the release rule by changing the value of the parameter d
from 0.025 to 0.05. We also explore the sensitivity of all the results to the spill parameter
for the reasons outlined in the section on spills. In addition, we consider a scenario in which
we modify the runoff parameter by setting b equal to 0.6 in every month. The reason for
doing this is to simulate fire effects expected for higher temperatures in the region
(Westerling et al. 2006). These effects would mainly consist of increased runoff in burnt
areas. Increased fires may further have adverse impacts on water quality, rendering some of
the additional runoff unusable, although examining water quality is beyond the scope of the
model and is not considered here.

3 Economic Model

Three capacity expansion increments are considered for increasing urban reservoir capacity
for the purposes of this analysis: 0 m®, A, (62 million m®), or A, (123 million m®). The two
time periods when capacity can be added are after 9 years, or one third of the sample
period, and after 18 years, or two thirds of the sample period. These discrete measures are
necessitated due to the time necessary to appropriate funds for capacity expansion and to
complete the structural work.

We formulate the capacity expansion problem as a recursive mathematical programming
program:

Ew{V[(K, W)} = min{Ol; 02; 03} (10)
where
0 = O(A)"+L(K, W) + S(K, W) + BEw{Vis(K + Ay, W)} (12)
O3 = O(A)"+L(K, W) + S(K, W) + BEw{Vis(K + Ay, W)} (13)
with terminal condition
Ew{Vra(K, W)} =0 (14)

A terminal condition is necessary to initiate the backward recursive technique that is
necessary for solving the optimization problem. K is a state variable that denotes the
reservoir capacity, f is the discount factor, W is a stochastic state variable representing
climate, and 6 and A are economic parameters that capture returns to scale for investment
costs. The expectation operator Ep{} has a subscript to denote the source of future
uncertainty. The power function in the expressions for O, and O; represents the amount
spent on investment in capacity for that period. It is the size of the capacity converted into
monetary units by the two previously mentioned economic parameters. The second term, L
(K, W), represents the monetary losses associated with rationing and equals zero if no water
shortage occurs. As the reservoir capacity increases, it is expected that reliability improves,
and, hence, economic losses associated with water shortages are reduced. The term S(K, W)
represents the costs associated with spilled water and evaporation. Spilled water and
evaporation are costly because they represent purchased water that is lost and unused. The
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time step 7 in the economic model above does not correspond to the monthly time step used
in the hydrologic model but corresponds to the 9 year period discrete increment discussed
earlier.

We calibrate the parameters 6 and A to fit historical construction costs for recently
constructed reservoirs in southern California. They represent the private costs of
construction and do not include external costs or benefits. However, the model is
sufficiently general that these could easily be incorporated in basins where these were
prominent. The benefits of additional construction will extend beyond 2030. In order to
account for this, we charge the city the ‘annualized’ construction cost for every year that the
additional capacity exists in our framework. We assume that the new capacity will last for
50 years. The formula for the annualized investment cost is:

o VC]
=1/ )

where 7 is the lifetime of the investment, C; is the total cost of the investment, and 7 is the
discount rate.

Research by economists on urban water reliability has measured consumers’ willingness
to pay for water reliability (Carson 1991; Barakat and Chamberlain 1994; Howe et al. 1994;
and Griffin and Mjelde 2000). See Carson (2000) for an overview of issues relating to
contingent valuation studies. We use the results from Barakat and Chamberlin (1994) to
construct an index of consumer’s willingness to pay for water reliability as a function of
the magnitude and frequency of the shortage. Details of the algorithm for computing the
economic costs of a shortage are contained in (O’Hara and Georgakakos 2006). Once the
economic losses are computed for each ensemble trace, the economic losses are averaged
across ensembles. The expected costs for a representative consumer are then multiplied by
the number of urban households in order to obtain an aggregate willingness to pay for the
city to avoid the shortage.

We calculate costs associated with spills and evaporation by penalizing the city for
losing water through excessive importing. To calculate the penalty for lost water at a
specific point in time, we compare the sum of total imported water up to that month in the
iteration with the sum of penalized evaporation and spills up to that point. If the latter term
is greater, we calculate the volume of water to penalize for spills and evaporation as the
difference between the sum of total imported water at the current month and the summed
volume of water subject to the spill and evaporation penalty up through the month prior to
the current month. Otherwise, we calculate the total volume of water subject to evaporation
and spill penalty as the current volume of water that spilled and evaporated in the current
month. We then average the total volume of penalized lost water over ensembles, and,
lastly, we multiply the total by the rate charged for untreated imported water to convert it
into monetary units.

The location of the capacity expansion has to be specified in our model so that we know
the additional surface area that the expansion creates. We assume that our volume
expansions occur at the largest reservoir that the city operates.

(15)

Ce

4 Results

The results from all the climate change and population growth scenarios are included in
Table 8. The remainder of the section summarizes what is reported in the Table.
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Table 8 Climate change results summary table

Population growth Sensitivity drivers Historical Canadian Echam  Hadley

Import scenario d a b

Optimal capacity expansion policy in two stages (Mill m®)

Expected Historical 0.025 0.807 0.86,0.9 0-62 62-62 123-62  62-62
Expected Winter 0.025 0.807 0.86,0.9 0-62 62-62 123-0  62-62
High Historical 0.025 0.807 0.86,0.9 123-0 123-62  123-123 123-62
Low Historical 0.025 0.807 0.86,0.9 0-62 0-62 123-0 0-62,0—
123
Expected Historical 0.05 0.807 0.86,0.9 0-0 0-0 0-0 0-0
Expected Historical 0.025 04 0.86,0.9 123-123 123-123 123-123 123—
123
Expected Historical 0.025 0.807 0.6 0-62 62-62 62-62  62-62
Minimum expected costs (Mill US$)
Expected Historical 0.025 0.807 0.86, 0.9 540 635 783 729
Expected Winter 0.025 0.807 0.86,0.9 2,974 2,897 3,068 2,872
High Historical 0.025 0.807 0.86,0.9 607 700 864 805
Low Historical 0.025 0.807 0.86, 0.9 465 566 702 648
Expected Historical 0.05 0.807 0.86,0.9 14 29 72 91
Expected Historical 0.025 04 0.86, 0.9 6,565 7,367 7,517 7,481
Expected Historical 0.025 0.807 0.6 420 515 604 523

4.1 Baseline

The expected costs associated with anticipated water shortages and optimal investment
policy varies by climate scenario. The three climate change scenarios all required more
capacity than the historical scenario in order to minimize expected costs. The optimal
investment policy for the Canadian and Hadley scenarios is to add 62 million m® in each
period and the optimal investment policy for the ECHAM4 scenario is to add 123
million m® in the first period and then 62 million m® in the second period. The optimal
investment policy for the historical scenario is to add 62 million m® in the second period
only. Increasing capacity is more effective at mitigating water shortages for the climate
change scenarios, where the expected reliability losses are higher.

4.2 Winter Imports

Adding reservoir storage capacity leads to large reductions in expected shortage costs for all
of the scenarios. The optimal investment policy in this sensitivity is identical to the baseline
case for three of the four scenarios even though the expected costs in this sensitivity are far
higher. The only climate scenario in which the optimal investment policy changes is the
ECHAMA4 scenario, in which it is now optimal to add 123 million m® in the first period and
no capacity in the second period.

4.3 High Population

We find that higher population growth puts greater stress on the reservoir system.
Fortunately, capacity expansion can mitigate these costs. The optimal investment policy is
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to add 123 million m? in the first period in the historical scenario. The optimal investment
policy for the Canadian and Hadley scenarios is to add 123 million m® in the first period
and 62 million m® in the second period, while the optimal investment policy for the
ECHAM4 scenario is to add 123 million m® in each period. The expected costs associated
with higher than projected population growth are higher than the baseline case for all four
climate scenarios.

4.4 Low Population

The low population sensitivity results in both lower expected costs and less optimal
investment than the baseline case in all four climate scenarios. The optimal investment
policy for the historical, Canadian, and Hadley climate scenarios is to add 62 million m® in
the second period (the Hadley scenario had a tie between two possibilities). The optimal
investment policy for the ECHAM4 scenario is to add 123 million m® in the first
investment period.

4.5 Higher Release

The city is also required to maintain a fixed amount of water storage for emergency storage
requirements. Additional details and results concerning emergency storage requirements are
provided in O’Hara and Georgakakos (2006). We find that changing the release parameter
from 0.025 to 0.05 makes it difficult to maintain emergency storage requirements regardless
of how much capacity is added. If the emergency storage requirements were relaxed we
would be able to change the operating policy in order to improve reliability without adding
additional capacity.

4.6 Increased Spillage

The optimal investment policy for all climate scenarios is to add 123 million m® in each
period. This is the maximum allowed investment that our model considers. In this
sensitivity scenario it is difficult for the reservoir system to carry sufficient water due to
higher spills. Because the reservoir system is carrying less water, and the release is defined
as a percentage of the total amount of water in storage, the releases are far smaller than they
need to be in order to maintain reliability requirements. Adding capacity does reduce the
losses associated with this scenario, although we see on Table § that this is the most
expensive scenario.

4.7 Fire Induced Runoff

This sensitivity is very favorable for the city due to the increase in runoff. The optimal
investment policy is to add 62 million m® in both periods for the climate change scenarios
and to add 62 million m® in the second period with the historical parameters.

5 Conclusions and Recommendations

The paper formulates a methodology for assessing impacts of climate change and
population growth in urban environments and for generating adaptation strategies and

@ Springer



J.K. O’Hara, K.P. Georgakakos

associated costs. Uncertainty in climate variables and projected demands and population
growth is taken into consideration either explicitly through Monte Carlo simulation or
through sensitivity analysis of low and high estimates. The formulations are exemplified
through application to the urban area of San Diego, California, that relies on both local
runoff and imported water to meet water demand. We use output from three climate models
(Canadian, Hadley and Echam) in the case study and examine various scenarios of urban
water balance. We use monthly time steps in the analysis, consistent with the available
historical supply and demand data, and with the climate change model data.

The innovative aspects of this study consist of the economic focus, the incorporation of
uncertainty, the development of capacity expansion as an adaptation approach for urban
water supply-demand problems, and the application to actual data from a water district in
semi-arid southern California. The approach developed in this work may be applied to other
semi-arid urban environments to provide a first look for urban water managers of the
potential costs of adapting to uncertain climatic and population changes and identifying the
range of possible solutions through capacity expansion. The approach yields a screening
tool for conducting hypothetical studies with relatively easily obtained historical and
climate change data for specific regions and urban environments.

Water planners face difficult challenges in future years as successful adaptation must be
anticipatory due to the time length associated with capital infrastructure investment.
Planning is complicated by both weather stochasticity and parametric uncertainty about a
changing climate. This study evaluated the effectiveness of a given investment planning
strategy under different climate scenarios. However, it is important to recognize that the
model is general enough to evaluate storage expansion of different magnitudes, time
intervals, and beliefs about future climate change. The model could readily be
accommodated to incorporate learning through Bayesian updating of the climate parameters
in scenarios involving parametric uncertainty. The model does not make decisions, although
model output under various climate realizations could be used in optimization for a given
manager’s objective function.

Perhaps the most important conclusion of this work is that for urban environments with
pronounced seasonal precipitation variability and for which imported water is a significant
source of water supply, the expected costs of adaptation to climatic change and population
growth are high. Even over a short time horizon, the expected costs associated with climate
change are in the hundreds of millions of dollars. The expected costs associated with the
climate change scenarios are higher than those of the historical climate scenario for all
sensitivities and climate change scenarios except for the winter import sensitivity. Among
climate models, the Canadian climate model data produces the lowest expected costs of
adaptation for the case study. The loss of snowpack has drawn considerable attention in the
western United States and elsewhere as a major concern of climate change. The present
study finds that the expected costs of climate change scenarios for urban environments may
be high even though the region is not impacted by melting snowpack directly.

The magnitude of the expected costs associated with the optimal investment policy
indicates that further study in reducing unresolved uncertainty is warranted. First, obtaining
a better understanding of the distribution of future population projections should an
important future research target. The optimal amount of capacity to add during the climate
change scenarios varied sharply depending on anticipated population growth, underlying
the importance of this variable. Second, the uncertainty in the spill parameter needs to be
resolved by using higher resolution (either hourly or daily) data. It is clear from the results
that the decision on adding capacity will depend on how accurately spills are modeled, and
this is an important needed extension to the present case study work.
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Appendix

Ay
Ay
b;
C@
G
C,
D,

Qk, t

Ry,
Tn
T,

Uk

u(,1)
Vigt

Surface area of the reservoir i at capacity

Surface area of reservoir i for volume V

Runoff parameter for season j

Annualized cost of capacity expansion investment

Total cost of capacity expansion investment

Monthly urban water consumption estimate for month ¢

Long-term average monthly water consumption per capita estimates for
month / of the year

Reservoir system release parameter for month i of the year

Evaporation from reservoir system during month ¢ for realization

(ensemble member) &

Generic expected-value operator

Expected value operator with respect to uncertainty due to climate variables
Annual imports for year y

Imported water volume during month ¢ for realization (ensemble member) k&
Reservoir system capacity

Lifetime of investment in years

Annual precipitation volume for year y

Monthly potential evaporation volume

Precipitation during month ¢ for realization (ensemble member) k&
Parameter that denotes the shape of the gamma and the mean of the lognormal
distributions

Monthly population estimate for month ¢

Annual population estimate for year y

Parameter that denotes the scale of the Gamma and the variance of the
lognormal distributions

Reservoir system release during month ¢ for realization (ensemble member) k&
Discount rate

Runoff during month ¢ for realization (ensemble member) &

Total number of months with spills in historical record

Mean monthly temperature (degrees C) for month ¢

Random number generated from the uniform distribution U(0,7) for month
t and for realization &

Uniform probability distribution in the interval [0,1]

Reservoir system stock of water at the end of month ¢ for realization
(ensemble member) £; this is an intermediate computational variable
Individual-reservoir volume at the beginning of a given month

Reservoir system volume storage at the beginning of month ¢ for realization
(ensemble member) k

Denotes dependence on climate variables
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A, High increment of additional capacity
YAy Low increment of additional capacity
0O, Economic functions in the formulation of the capacity expansion

program (/=1,2,3)

a Spillage parameter estimate

a’ Higher spillage parameter estimate

15] Discount factor in the capacity expansion program

Y Regression parameters (/=0,1,2,...)

0y Regression parameters to include month of the year effects (/=1,..,11)
g, Residual error in annual imports regression for year y

0 Economic model parameter

A Economic model parameter
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