

SOUTH BAY WATER RECLAMATION PLANT & OCEAN OUTFALL ANNUAL PRETREATMENT REPORT

NPDES PERMIT No. CA 0109045 SDRWQCB ORDER No. R9-2006-0067

JANUARY 1 – DECEMBER 31, 2010

Environmental Monitoring and Technical Services Public Utilities Department 2392 Kincaid Road • Mail Station 45A• San Diego, CA 92101 Tel (619) 758-2310 • Fax (619) 758-2309

TABLE OF CONTENTS

2010 SBWRP REPORT	1
Distribution of Permits and Flows	6
Active Permits	7
SIU Regulated Parameters	8
SIU Category, Process, and Pretreatment Technology	11
Semi-Annual SIU Compliance Status	13
Annual SIU Compliance Status	14
SIU Sampling	17
TTO Sampling at SIUs	20
Non SIU Permits	21
Groundwater Permits	22
Silver BMPs	23
Dry Cleaner BMPs	24
SBWRP Influent and Effluent Data Summary	25

CY2010 ANNUAL PRETREATMENT REPORT FOR SOUTH BAY WATER RECLAMATION PLANT

I. Description of the South Bay Water Reclamation Plant and Its Service Area

The South Bay Water Reclamation Plant (SBWRP) is located on a 22.3 acre site near Dairy Mart Road and Monument Road in the eastern portion of the Tijuana River Valley. The site is approximately 300 feet north of the international boundary between Mexico and the United States and approximately 2000 feet west of the International Wastewater treatment Plant. The SBWRP treats raw wastewater collected from the southern portion of the City of San Diego, the City of Imperial Beach, the City of Chula Vista, and the unincorporated portions of south and east San Diego County, a total of approximately 44 square miles, and serves a population of nearly 107,000 people.

The plant is designed to treat up to 15 MGD of raw wastewater to secondary and/ or tertiary reclaimed water standards. All SBWRP tertiary treated wastewater in excess of reclaimed water demands is discharged to the Pacific Ocean through the South Bay Ocean Outfall (SBOO). The SBOO was constructed for shared use by the International Wastewater treatment Plant (IWTP), which is operated by the International Boundary and Water Commission (IBWC), and the City of San Diego's SBWRP. The SBOO extends westward approximately 23,600 feet from the mouth of the Tijuana River and terminates in a "wye" diffuser with two 1980 foot long diffusers. The IWTP currently discharges a maximum of 25 MDG of advanced primary treated wastewater from the City of Tijuana. This discharge is regulated by Regional Board Order No. 96-50 (NPDES Permit No. CA0108928). The total average design capacity of the outfall is 174 MGD with a peak hydraulic capacity of 233 MGD. The effluent from the SBWRP is combined with the effluent from the IWTP within the SBOO prior to discharge to the Pacific Ocean.

The SBWRP's primary and secondary processes consist of influent screening using mechanically cleaned bar screens, grit removal using aerated grit chambers, primary sedimentation clarifiers with chain and flight sludge collectors and tilting trough scum collectors, primary effluent flow equalization storage tanks, air activated sludge biological treatment with anoxic selector, and secondary clarifiers with chain and flight sludge collectors. The tertiary treatment process consists of filter feed pumping, coagulation with chemical addition, direct filtration with conventional deep bed mono-media filters, backwash facilities, and disinfection using ultraviolet light. Sludge processing is handled at the Point Loma Wastewater Treatment plant (PLWWTP). Solids from the SBWRP are pumped to the PLWWTP through the South Metro Interceptor.

During CY2002 the South Bay Water Reclamation Plant (SBWRP) began operations, accepting an average of 3.5 MGD influent through the Grove Avenue Pump Station (GAPS). In October 2003 the Otay River Pump Station (ORPS) came on-line. The ORPS is divided into two pumping streams, with one sending high TDS flows from the Imperial Beach Sewer directly to the South Metro Interceptor influent to the Point Loma plant, and the other sending flows from the Otay Trunk Sewer and Salt Creek Trunk Sewer to the GAPS. Since start-up, the ORPS facility has been directing nearly *5 MGD* to the GAPS, which combines with the ongoing 3.5 MGD GAPS flow for a total of 8.33 MGD. In that some wastewater from areas tributary to the GAP and ORPS is able to be diverted to the PLWWTP via the South Metro

Interceptor, facilities tributary to the GAP and ORPS are included in Annual Pretreatment Reports for both plants.

II.

A. Summary of analytical results from representative flow-proportioned, 24-hour composite sampling of the SBWRP influent and effluent for those pollutants that the USEPA has identified under Section 307(a) of the CWA, and which are known or suspected to be discharged by industrial users. The summary must include a full priority pollutant scan.

Tables II.A-1 and II.A-2, below, summarize influent and effluent heavy metal loadings by month.

Pages 25 through 48 provide results for all influent and effluent pollutant monitoring during CY2010. These reports were extracted from the South Bay Treatment Plant and Ocean Outfall Annual Report. The summary includes a full priority pollutant scan.

Ş	TABLE II.A-1 SOUTH BAY WATER RELAMATION PLANT INFLUENT HEAVY METALS Average Concentration and Loadings for 2010														
Month MDL(ug/L)	Flow MGD	Cd ug/L 0.53	Cr ug/L 1.2	Cu ug/L 0.63	Pb ug/L 2	Ni ug/L 0.53	Ag ug/L 0.40	Zn ug/L 0.41							
Jan	8.1	0.7	3.1	76	4.1	11.6	0.8	187							
Feb	8.4	0	3.5	73	0	5.8	1.2	153							
Mar	8.2	0	2.5	54	2.9	3.7	1.7	137							
Apr	8.4	0	3.8	79	3.5	4.9	1.4	245							
May	8.3	0	1.5	32	0	4.1	0	63							
Jun	8.2	0	3.4	70	2.4	5.1	1.7	149							
Jul	8.2	0	2.3	64	0	3.9	1	81							
Aug	8.2	0	2.2	57	0	4.7	0	83							
Sep	8.1	0	0	2.6	84	5.1	6.3	176							
Oct	8.1	0	3	64	0	4.9	0.6	143							
Nov	8.2	0	3.4	83	0	15.1	2.2	167							
Dec	8.4	0	2.3	69	2.5	5.0	0.8	150							
Avg Flow	8.2														
Avg ug/L		0.1	2.6	60	8.3	6	1.5	145							
LBS/day		0.0	0.2	4	0.6	0	0.1	10							
Total HM	15														
Total(-)Ag	15														

	SOUTH BAY			LE II.A-2				
	SOUTHBAT	Average Co	-		-		TALS	
Zero = ND		-			-			
Month	Flow	Cd	Cr	Cu	Pb	Ni	Ag	Zn
	MGD	ug/L	ug/L	ug/L	ug/L	ug/L	ug/Ľ	ug/L
MDL(ug/L)		0.53	1.2	2	2	0.53	0.40	2.50
Jan	8.1	0	1.8	28	0	5.0	0	37
Feb	8.4	0	0.6	11	0	10.1	0	30
Mar	8.2	0	0	8	0	4.2	0.6	40
Apr	8.4	0	0	21	0	3.3	0	32
May	8.3	0	2.1	13	0	5.2	0	32
Jun	8.2	0	0	8	0	5.2	0	29
Jul	8.2	0	0	19	0	4.5	0	24
Aug	8.2	0	0	12	0	4.6	0	31
Sep	8.1	0	0	24	0	4.1	0	26
Oct	8.1	0	1.5	14	0	3.9	0	30
Nov	8.2	0	0	16	0	8.9	0.5	27
Dec	8.4	0	0	29	0	3.6	0	27
Avg Flow	8.2							
Avg ug/L		0.0	0.5	17	0.0	5.2	0.1	30
LBS/day		0.0	0.0	1.2	0.0	0.4	0.0	2
Total HM	3.6							
Total(-)Ag	3.6							

B. Upset, Interference, and Pass-through

In CY2010, there were no reported incidents of interference with ORPS operations and the treatment plant by rags. By March, 2010, the RJ Donovan Correctional Center took measures to prevent the discharge of rags to the sewer. In October, 2010, the discharger completed installation of a new sewer grinder and solids removal system, as required by a compliance schedule established in their discharge permit.

In CY2010, influent TDS values exceeded the SBWRP reclaimed water TDS limit of 1200 mg/L on 2 occasions and 122 influent values exceeded the reclaimed water goal of 1000 ppm. These elevated TDS levels have been attributed to infiltration and, in part, to an increase in the number of SIUs tributary to the plant discharging high TDS wastestreams from food processing and self-regenerating water softeners. The program conducts monthly sewershed monitoring for TDS to quickly identify infiltration. The program is also working with contributing industries to minimize the impacts of water softener regenerant discharges; however, a study conducted in FY2009 determined that, even if the regulated industries in the SBWRP sewershed eliminated their water softeners, the plant would likely still need to install TDS removal technology to consistently meet reclaimed water sale standards.

C. List of Deletions, Additions, and Name Changes of Significant Industrial Users during CY2010

There were no SIU name changes during CY2010.

One new SIU initiated discharge to SBWRP in CY2010:Ind # Ind NamePmt Issue DtSIU TypeApplicable Standards17-0013 UT; Thrifty Oil Company #416 110-Oct-10SlugBenzene, BTEX, shutdown mech

No SIUs were deleted from the CY09 CIU list during CY2010. No existing facilities discharging to SBWRP became SIUs in CY2010.

D. Characterization of the Compliance Status of Each SIU

The compliance status of SIUs tributary to the SBWRP is included in the combined Annual SIU Compliance Status Report; see Chapter 4 of the CY2010 Annual Report for the Point Loma POTW, NPDES Permit No. CA 0109045.

No IUs have been required to prepare or implement a pollution prevention plan as the result of noncompliance.

E. Programs San Diego has implemented to reduce pollutants from industrial users not classified as SIUs

The Metropolitan Wastewater Department of San Diego controls pollutants discharged by non-SIUs and from non-industrial sources through a combination of Class 2 and 3 permits, Best Management Practice Certification programs, and Hazardous Waste Collection events and facilities throughout the Metropolitan Sewerage System service area in cooperation with contributing agencies. For details, see Chapters Two and Three of the CY2010 Annual Report for the Point Loma POTW, NPDES Permit No. CA 0109045.

F. Pretreatment Program Changes

During CY2010, the program made the following significant changes: None

There were no significant changes in operating the pretreatment program in the areas of administrative structure, local limits, monitoring program, legal authority, enforcement policy, or funding or staffing levels.

G. Annual Pretreatment Program Budget

The pretreatment program budget is administered as a single budget for the three treatment plants in the Metropolitan Sewerage System service area. See Chapter 2 of the CY2010 Annual Report for the Point Loma POTW, NPDES Permit No. CA 0109045, for details.

H. Public Information and Involvement

Each year, a combined list of all facilities in the Metropolitan Sewerage System service area that were in SNC at any time during the year is published in the Union Tribune; this list is included in Chapter 4 of the CY2010 Annual Report for the Point Loma POTW NPDES Permit No. CA0109045.

In CY2010, the following SIUs discharging tributary to the SBWRP were in Significant Non-Compliance:

Name	Address	Pollutant in Violation
Cantare Foods Inc	7651 Saint Andrews Ave, San Diego	oil and grease

I. Biosolids Disposal Methods

Biosolids from the SBWRP is conveyed to the Miramar Biosolids Center for processing and disposal in combination with biosolids from throughout the Metropolitan Sewerage System service area. See Chapter 5 Table 5.4-1 of the CY2010 Annual Report for the Point Loma POTW, NPDES Permit No. CA 0109045, for details on CY10 biosolids disposal locations and beneficial uses.

J. Other Concerns

There are no other concerns pertaining to the administration of the pretreatment program or control of industrial contributions to the headworks loadings at the SBWRP at this time.

Distribution of Permits and Industrial Flows by Area Treatment Plant 6

Report run on: January 14, 2011 4:30 PM

Class		1		2		2F		3		4		4C		4D		5	Total	Total
Area	Count	IW (gpd)	Permits	flow (gpd)														
12	2	290	5	15,454	19	2	5	214,766	60	23,300	4		2	C	4		101	253,812
13	1	250	5	6,982	19	520	3	15,087	45	14,297	0		1	С	6		80	37,136
17	0		1	7,200	0		0		0		0		0		0		1	7,200
36	1	43,200	0		0		0		2	917	0		0		0		3	44,117
	4	43,740	11	29,636	38	522	8	229,853	107	38,514	4		3	0	10		185	342,265

Active Permits, Treatment Plant 6

Report run on: January 14, 2011 4:20 PM

Description	SIU SIU Type	Permit Count
- Federally Regulated	Y CIU	4
		4
2 - Local: Toxic Pollutants in Process	Ν	10
	Y SLUG	1
		11
2F - Film Processing only	Ν	38
		38
3 - Local: Conventional Pollutants in Process	N	4
	Y FLOW	4
		8
4 - No Discharge: Ww Generated or Chemicals Stor	redN	107
-		107
4C - No Discharge: Fed Regulated Ww Generated	N CIU ZERO	4
		4
4D - Dry Cleaning only, no discharge	N	3
,		3
5 - No IW Generated: No potential to discharge	N	10
		10
Total:		185

SIU Facilities: Federally and Locally Regulated Parameters by Connection Treatment Plant 6

Report run on: January 14, 2011 4:45 PN

Facility	Permi	it Name	Address	Conn	Total IW (gpd)	Parmcode	City freq	Self freq	Cat	Period	Lower Limit	Upper Limit	Units
12-0038	04-A	RJ Donovan Correctional Facility	480 Alta Rd, San Diego	100	50,028	OIL/GREASE	Н	Н	L	DM		500	mg/L
						PH	Н	Н	L	DM	5	12.5	рН
12-0144	03-A	AP Precision Metals	1215 30th St , San Diego	110	264	CADMIUM	Q	Q	F	DM		.11	mg/L
										MO		.07	mg/L
						CHROMIUM	Q	Q	F	DM		2.77	mg/L
										MO		1.71	mg/L
						COPPER	Q	Q	F	DM		3.38	mg/L
							_	_	_	MO		2.07	mg/L
						CYANIDE(T)	Q	Q	F	DM		1.2	mg/L
									_	MO		.65	mg/L
						LEAD	Q	Q	F	DM		.69	mg/L
							0	0	F	MO		.43	mg/L
						NICKEL	Q	Q	F	DM		3.98	mg/L
						PH	0	0		MO DM	5	2.38 12.5	mg/L
						SILVER	Q Q	Q Q	L F	DM	5	.43	pH mg/L
						JILVLK	Q	Q	ſ	MO		.43 .24	mg/L
						TTO(413+433)-P	А	Q	F	DM		.24 2130	ug/L
						ZINC	Q	Q	F	DM		2.61	mg/L
						LING	4	Q	•	MO		1.48	mg/L
12-0154	02-A	Heinz Frozen Foods	7878 Airway Rd , San Diego	110	90,000	CHROMIUM	Q	Q	0	DM		5	mg/L
					70,000	OIL/GREASE	М	М	L	DM		500	mg/L
						PH	М	М	L	DM	5	12.5	рĤ
						PH HIGHEST	Ν		L	DM		12.5	рН
						TEMP	М	М	L	DM		65.5	DegC
12-0202	02-A	Spec-Built Systems Inc	2150 Michael Faraday Dr , San Diego	110	26	CADMIUM	Q	Q	F	DM		.11	mg/L
										MO		.07	mg/L
						CHROMIUM	Q	Q	F	DM		2.77	mg/L
										MO		1.71	mg/L
						COPPER	Q	Q	F	DM		3.38	mg/L
										MO		2.07	mg/L
						CYANIDE(T)	Q	Q	F	DM		1.2	mg/L
							0	0	-	MO		.65	mg/L
						LEAD	Q	Q	F	DM		.69	mg/L
						NICKEL	0	~	-	MO		.43	mg/L
						NICKEL	Q	Q	F	DM		3.98 2.20	mg/L
						PH	0	\cap	ī	MO DM	5	2.38 12.5	mg/L pH
						гі]	Q	Q	L	DIVI	5	12.0	рп

SIU Facilities: Federally and Locally Regulated Parameters by Connection Treatment Plant 6

Report run on: January 14, 2011 4:45 PN

Facility	Permi	it Name	Address	Conn	Total IW (gpd)	Parmcode	City freq	Self freq	Cat	Period	Lower Limit	Upper Limit	Units
12-0202	02-A	Spec-Built Systems Inc	2150 Michael Faraday Dr , San Diego	110	26	SILVER	Q	Q	F	DM		.43	mg/L
										MO		.24	mg/L
						TTO(413+433)-P	А	Q	F	DM		2130	ug/L
						ZINC	Q	Q	F	DM		2.61	mg/L
										MO		1.48	mg/L
12-0212	01-B	Cantare Foods Inc	7651 Saint Andrews Av, San Diego	100	22,882	OIL/GREASE	М	М	L	DM		500	mg/L
						PH	М	М	L	DM	5	12.5	рН
12-0220	01-A	Circle Foods LLC	8411 Siempre Viva Rd, San Diego	110	30,000	OIL/GREASE	М	М	L	DM	_	500	mg/L
						PH	М	М	L	DM	5	12.5	рН
						PH HIGHEST	Ν		L	DM		12.5	рН
						TEMP	М	М	L	DM		65.5	DegC
13-0115	04-A	Doncasters GCE Industries	1891 Nirvana Av, Chula Vista	330	208	CADMIUM	Q	Q	F	DM		.11	mg/L
							-	_	_	MO		.07	mg/L
						CHROMIUM	Q	Q	F	DM		2.77	mg/L
						000050	0	~	-	MO		1.71	mg/L
						COPPER	Q	Q	F	DM		3.38	mg/L
							0	0	F	MO		2.07	mg/L
						CYANIDE(T)	Q	Q	F	DM MO		1.2 .65	mg/L
						LEAD	Q	Q	F	DM		.05 .69	mg/L
						LEAD	Q	Q	Г	MO		.09 .43	mg/L mg/L
						NICKEL	Q	Q	F	DM		.43 3.98	mg/L
						MUKLL	Q	Q	ſ	MO		2.38	mg/L
						РН	Q	Q	L	DM	5	12.5	pH
						PH HIGHEST	S	Q	L	DM	U	12.5	рН
						SILVER	Q	Q	F	DM		.43	mg/L
						SILVER	Q	Q	•	MO		.24	mg/L
						TTO(413+433)-P	А	Q	F	DM		2130	ug/L
						ZINC	Q	Q	F	DM		2.61	mg/L
						2	-	-	•	MO		1.48	mg/L
				410	41	CADMIUM	Q	Q	F	DM		.11	mg/L
					41		-	-		MO		.07	mg/L
						CHROMIUM	Q	Q	F	DM		2.77	mg/L
							_	_		MO		1.71	mg/L
						COPPER	Q	Q	F	DM		3.38	mg/L
										MO		2.07	mg/L
						CYANIDE(T)	Q	Q	F	DM		1.2	mg/L
						· ·				MO		.65	mg/L

SIU Facilities: Federally and Locally Regulated Parameters by Connection Treatment Plant 6

Report run on: January 14, 2011 4:45 PN

Facility		t Name	Address	Conn	Total IW (gpd)	Parmcode	City freq	Self freq	Cat	Period	Lower Limit	Upper Limit	Units
13-0115	04-A	Doncasters GCE Industries	1891 Nirvana Av, Chula Vista	410	41	LEAD	Q	Q	F	DM MO		.69 .43	mg/L mg/L
						NICKEL	Q	Q	F	DM MO		3.98 2.38	mg/L mg/L
						PH	Q	Q	L	DM	5	12.5	рĤ
						PH HIGHEST	S		L	DM		12.5	рН
						SILVER	Q	Q	F	DM		.43	mg/L
										MO		.24	mg/L
						TTO(413+433)-P	А	Q	F	DM		2130	ug/L
						ZINC	Q	Q	F	DM		2.61	mg/L
										MO		1.48	mg/L
17-0013	01-A	UT; Thrifty Oil Company # 416	1185 Palm Av, Imperial Beach	100	7,200	BNZ(W/OAGG)	Н	М	L	DM		50	ug/L
						BTEX	Н	М	L	DM		750	ug/L
						FLOW RATE MAX		М	L	DM		20	gpm
36-0001	01-A	Otay Mesa Energy Center LLC	606 De La Fuente Ct, San Diego	110	43,000	CHROMIUM	Q	Q	F	DM		.2	mg/L
						OIL/GREASE	Q	Q	L	DM		500	mg/L
						PH	Q	Q	L	DM	5	12.5	pН
						PH HIGHEST	Ν		L	DM		12.5	рН
						TDS	Q	Q	0	DM		3200	mg/L
						ZINC	Q	Q	F	DM		1	mg/L

SIU Facilities Federal Category, Process, and Pretreatment Technology by Connection Treatment Plant 6

Report run on: January 14, 2011 4:51 PM

Facility Per	rmit	Name	IW Discharged (gpd)	Conn	Principle Process	Federal/ Local	CFR Part	CFR Section	Order	Pre Treat Code
12-0038 04-/	A	RJ Donovan Correctional Faci	lity 50,028	100	Prison Sewer Main	Local	130		1	GREASE
							133		2	GRIND
									3	SCREEN
12-0144 03-/	-A	AP Precision Metals	264	110	Metal Coating (Iron Phosphating)	Federal	433	.17	1	PH
									2	SETTLE
12-0154 02-/	A	Heinz Frozen Foods	90,000	110	Food Manufacturing	Local	137		1	EQUAL
									2	SCREEN
									3	DAF+C
									4	GREASE
12-0202 02-/	-A	Spec-Built Systems Inc	26	110	Iron Phosphating	Federal	433	.17	1	SETTLE
									2	RECYL
									3	CC
									4	PH
									5	MIXER
									6	HAUL
12-0212 01-	·B	Cantare Foods Inc	26,210	100	Cheese Manufacturing Lateral	Local	134		1	EQUAL
							137		2	SCREEN
									3	PH
									4	DAF+C
									5	HAUL
				210	Bakery, salsa, tapenade mfg	Local			1	SETTLE
									2	HAUL
									3	ELBOW
12-0220 01-/	-A	Circle Foods LLC	30,000	110	Food manufacturing	Local	137		1	EQUAL
									2	SCREEN
									3	DAF+C
		D							4	SD-FP
13-0115 04-/	·A	Doncasters GCE Industries	250	200	Bldg 2 Lateral, 1887 Nirvana Av	Local			1	ZERO
									2	HAUL
				300	Bldg 3 Lateral, 757 Main St	Local	130		1	ERU+1
								<i>.</i> –	2	
				330	Dye Pen/ Vibra Clean	Federal	433	.17	1	SETTLE
									2	IX

SIU Facilities Federal Category, Process, and Pretreatment Technology by Connection Treatment Plant 6

Facility Permit Name IW Discharged Conn Principle Process **CFR CFR** Order Pre Treat Federal/ Local Code (gpd) Part Section FILT-O 13-0115 04-A **Doncasters GCE Industries** 250 330 3 Dye Pen/Water Jet Cutting Federal SETTLE 410 433 .17 1 IX 2 FILT-O 3 O/W 4 HAUL 5 EQUAL 17-0013 01-A UT; Thrifty Oil Company # 416 GW remediation: gas w/FP 100 101 1 Local 7,200 ADS-C 2 FILT-O 3 Otay Mesa Energy Center LLC WetSac blowdown + OWS 423 SETTLE 36-0001 01-A Federal .17 1 110 43,200 PH 2 120 PCB zero discharge Federal 423 .17 ZERO 1 9

Report run on: January 14, 2011 4:51 PM

Semi-Annual SIU Compliance Status Report

01-Jul-2010 through 31-Dec-2010

SIU Name	IU#	Class	IW Disch	SNC?	[If Yes, Why]	Conn	Violation Date	Description/Parameter	Value	Limit	Period	Cat	TRC
Cantare Foods Inc	12-0212	2 3	26210	No		100	20-Jul-10	SMR Incomplete - failed notify in 24 hrs					
7651 Saint Andrews Av, San						100	23-Jul-10	SMR Late - written notice					
Diego						100	30-Jul-10	Oil and grease, Total	710	500	DM	L	Y
						100	30-Jul-10	pH-Instantaneous					
						100	15-Aug-10	SMR Incomplete - failed notify in 24 hrs					
						100	15-Aug-10	SMR Incomplete - missing parameter					
						100	27-Aug-10	Oil and grease, Total	923	500	DM	L	Y
						100	30-Sep-10	Oil and grease, Total	596	500	DM	L	Ν
						100	21-Oct-10	Oil and grease, Total	775	500	DM	L	Y
						100	21-Oct-10	pH-Instantaneous					Ν
						100	29-Nov-10	SMR Incomplete - failed notify in 24 hrs					
						100	29-Nov-10	SMR Incomplete - missing parameter					
						100	06-Dec-10	Oil and grease, Total	544	500	DM	L	Y
						100	18-Jan-11	SMR Incomplete					
						100	19-Jan-11	SMR Incomplete					
						210	23-Jul-10	SMR Late - written notice					
						210	18-Jan-11	SMR Incomplete					
Heinz Frozen Foods	12-0154	43	90000	No		110	21-Oct-10	Oil and grease, Total	841	500	DM	L	Y
7878 Airway Rd, San Diego						110	15-Dec-10	Oil and grease, Total	1290	500	DM	L	Y
, or o raiway ita, can biego													
Spec-Built Systems Inc	12-0202	2 1	26	No		110	14-Dec-10	SMR Incomplete					
2150 Michael Faraday Dr, San Diego						110	28-Jan-11	SMR Incomplete					

Annual SIU Compliance Status Report

01-Jan-2010 through 31-Dec-2010

Page 1

SIU Name	IU#	Class	IW Disch	SNC?	[If Yes, Why]	Conn	Violation Date	Description/Parameter	Value	Limit	Period Cat TR
AP Precision Metals	12-014	4 1	264	No		NA					

1215 30th St, San Diego

Annual SIU Compliance Status Report

01-Jan-2010 through 31-Dec-2010

SIU Name	IU#	Class	IW Disch	SNC? [If Yes, Why]	Conn	Violation Date	Description/Parameter	Value	Limit	Period	Cat	TRC
Cantare Foods Inc	12-021	23	26210	Yes SNC2 - TRC (DM): O/G	100	26-Jan-10	Oil and grease, Total	773	500	DM	L	Y
7651 Saint Andrews Av, San				6/16(q2)	100	02-Feb-10	SMR Incomplete					
Diego					100	22-Feb-10	Oil and grease, Total	1000	500	DM	L	Y
-					100	25-Feb-10	SMR Late - written notice					
					100	19-Mar-10	SMR Incomplete					
					100	20-Mar-10	SMR Incomplete					
					100	30-Mar-10	Oil and grease, Total	816	500	DM	L	Y
					100	04-May-10	Oil and grease, Total	1000	500	DM	L	Y
					100	05-May-10	Oil and grease, Total	1000	500	DM	L	Y
					100	18-May-10	SMR Incomplete - failed notify in 24 hrs					
					100	18-May-10	SMR Incomplete - incorrect sample type					
					100	27-May-10	Oil and grease, Total	906	500	DM	L	Y
					100	30-Jun-10	pH-Instantaneous	4.6	5-12.5	DM	L	Ν
					100	20-Jul-10	SMR Incomplete - failed notify in 24 hrs					
					100	23-Jul-10	SMR Late - written notice					
					100	30-Jul-10	Oil and grease, Total	710	500	DM	L	Y
					100	30-Jul-10	pH-Instantaneous					
					100	15-Aug-10	SMR Incomplete - failed notify in 24 hrs					
					100	15-Aug-10	SMR Incomplete - missing parameter					
					100	27-Aug-10	Oil and grease, Total	923	500	DM	L	Y
					100	30-Sep-10	Oil and grease, Total	596	500	DM	L	Ν
					100	21-Oct-10	Oil and grease, Total	775	500	DM	L	Y
					100	21-Oct-10	pH-Instantaneous					Ν
					100	29-Nov-10	SMR Incomplete - failed notify in 24 hrs					
					100	29-Nov-10	SMR Incomplete - missing parameter					
					100	06-Dec-10	Oil and grease, Total	544	500	DM	L	Y
					100	18-Jan-11	SMR Incomplete					
					100	19-Jan-11	SMR Incomplete					
					210	02-Feb-10	SMR Incomplete					
					210	25-Feb-10	SMR Late - written notice					
					210	20-Mar-10	SMR Incomplete					
					210	04-May-10	SMR Incomplete					
					210	23-Jul-10	SMR Late - written notice					
					210	18-Jan-11	SMR Incomplete					

Annual SIU Compliance Status Report

01-Jan-2010 through 31-Dec-2010

SIU Name	IU#	Class	IW Disch	SNC?	[If Yes, Why]	Conn	Violation Date	Description/Parameter	Value	Limit	Period	Cat	TRC
Circle Foods LLC	12-0220) 3	30000	No		NA							
8411 Siempre Viva Rd, San Diego													
Doncasters GCE Industries	13-0115	51	250	No		330	02-Feb-10	SMR Incomplete					
1891 Nirvana Av, Chula Vista						330	29-Mar-10	SMR Incomplete					
						410	02-Feb-10	SMR Incomplete					
Heinz Frozen Foods	12-0154	43	90000	No		110	04-May-10	SMR Incomplete					
7878 Airway Rd, San Diego						110	21-Oct-10	Oil and grease, Total	841	500	DM	L	Y
1010 Aliway Ku, Sali Diego						110	15-Dec-10	Oil and grease, Total	1290	500	DM	L	Y
Otay Mesa Energy Center	36-0001	1 1	43200	No		110	26-Mar-10	Zinc, Total	6.91	1	DM	F	Y
LLC 606 De La Fuente Ct, San Dieg	10					110	04-May-10	SMR Incomplete - failed notify in 24 hrs					
RJ Donovan Correctional	12-0038	3 3	50028	No		100	02-Feb-10	SMR Incomplete					
Facility						100	02-Jun-10	SMR Incomplete					
480 Alta Rd, San Diego						100	15-Jun-10	SMR Incomplete					
Spec-Built Systems Inc	12-0202	2 1	26	No		110	02-Feb-10	SMR Incomplete					
						110	14-Dec-10	SMR Incomplete					
2150 Michael Faraday Dr, San Diego						110	28-Jan-11	SMR Incomplete					

Sampling at SIUs Discharging to Treatment Plant 6 between 01-Jan-10 and 31-Dec-10

Report ru	un on: I	February 25, 2011 3:01 PM						Page 1
Facility	Pmt	Name	Conn	Principle Process	Pmt Include	Parmcode	City Samples	Self Samples
12-0038	04-A	RJ Donovan Correctional Facility	100	Prison Sewer Main	L	OIL/GREASE	6	6
						PH	6	4
10.0144	00.4		110		F	SILVER CERT		1
12-0144	03-A	AP Precision Metals	110	Metal Coating (Iron Phosphating)	F	CADMIUM	4	4
						CHROMIUM COPPER	4 4	4
						CYANIDE(T)	4	4
						FLOW	4	4
						LEAD	4	4
						NICKEL	4	4
						PH	4	4
						SILVER	4	4
						TTO CERT		4
						TTO(413+433)-P	1	
						ZINC	4	4
12-0154	02-A	Heinz Frozen Foods	110	Food Manufacturing	L	OIL/GREASE	22	12
						PH	22	12
						PH HIGHEST		
						PH LOWEST		
40.0000	00.4		110		F	TEMP	22	12
12-0202	02-A	Spec-Built Systems Inc	110	Iron Phosphating	F	CADMIUM	2	1
						CHROMIUM	2	1
						COPPER	2 2	1
						CYANIDE(T) FLOW	Z	1
						LEAD	2	4
						NICKEL	2	1
						PH	2	
						SILVER	2	1
						TTO CERT	_	4
						TTO(413+433)-P		
						ZINC	2	1
12-0212	01-B	Cantare Foods Inc	100	Cheese Manufacturing Lateral	L	FLOW		12
				-		FLOW MAX		
						OIL/GREASE	31	12
						PH	17	10
			210	Bakery, salsa, tapenade mfg	L	CLARIFIER RPT		2
						FLOW		12
40.0000						FLOW MAX		4.5
12-0220	01-A	Circle Foods LLC	110	Food manufacturing	L	FLOW		12

Sampling at SIUs Discharging to Treatment Plant 6 between 01-Jan-10 and 31-Dec-10

•		February 25, 2011 3:01 PM Name	Conn	Principle Process	Pmt Include	Parmcode	City Samples	Page 2 Self Samples
12-0220	01-A	Circle Foods LLC	110			OIL/GREASE PH PH HIGHEST PH LOWEST	21 24	12 12
12-0244	01-A	Harcon Precision Metals Inc	110	Chemical conversion coating	F	TEMP CADMIUM CHROMIUM COPPER FLOW FLOW MAX LEAD NICKEL PH PH HIGHEST PH LOWEST SILVER TTO CERT TTO CERT TTO(413+433)-P ZINC	24	12
13-0115	04-A	Doncasters GCE Industries	200 300	Bldg 2 Lateral, 1887 Nirvana Av Bldg 3 Lateral, 757 Main St	L	ZINC ZERODISCHRG CERT		4
			330	Dye Pen/ Vibra Clean	F	CADMIUM	4	5
						CHROMIUM	4	5
						COPPER	4	5
						CYANIDE(T)	4	5
						FLOW		5
						LEAD	4	5
						NICKEL	4	5
						PH	4	5
						PH HIGHEST	2	
						PH LOWEST	2	
						SILVER	4	5
						TTO CERT		5
						TTO(413+433)-P	1	
						ZINC	4	5
			410	Dye Pen/Water Jet Cutting	F	CADMIUM	4	5
				5		CHROMIUM	4	5
						COPPER	4	5
						CYANIDE(T)	4	5
						FLOW		5

Sampling at SIUs Discharging to Treatment Plant 6 between 01-Jan-10 and 31-Dec-10

		February 25, 2011 3:01 PM Name	Conn	Principle Process	Pmt Include	Parmcode	City Samples	Page 3 Self Samples
3-0115	04-A	Doncasters GCE Industries	410			LEAD	4	5
						NICKEL	4	5
						PH	4	5
						PH HIGHEST	2	
						PH LOWEST	2	
						SILVER	4	5
						TTO CERT		5
						TTO(413+433)-P	1	
						ZINC	4	5
7-0013	01-A	UT; Thrifty Oil Company # 416	100	GW remediation: gas w/FP	L	BNZ(W/OAGG)		3
				5		BTEX		3
						FLASH		3
						FLOW RATE MAX		3
						FLOW RATE MIN		3
-0001	01-A	Otay Mesa Energy Center LLC	110	WetSac blowdown + OWS	F	CHROMIUM	3	5
		5 05				FLOW		4
						OIL/GREASE	3	5
						PH	3	5
						PH HIGHEST		
						PH LOWEST		
						ZINC	3	5
			120	PCB zero discharge	F	ZERODISCHRG CERT		4

10

TTO Sampling at SIUs discharging to Treatment Plant 6 between 01-Jan-10 and 31-Dec-10

Report run on: February 25, 2011 3:02 PM Pag										
Facility	Pmt Nam	e	Conn	Principle Process	Batch	City TTO Samples	Self TTO Samples	Self Certification		
12-0144	03-A AP Pred	cision Metals	110	Metal Coating (Iron Phosphating)	Ν	1		4		
12-0202	02-A Spec-B	uilt Systems Inc	110	Iron Phosphating	Ν			4		
13-0115	04-A Doncas	sters GCE Industries	330	Dye Pen/ Vibra Clean	Ν	1		5		
			410	Dye Pen/Water Jet Cutting	Ν	1		5		

Active Non-SIU Permits, Treatment Plant 6

Report run on: January 14, 2011 4:14 PM

		Report run on:	January 14	, 2011 4:14 PM					Page 1
Class	Facility Permit			Address				City	Zip
		Name							
2	12-0024 02-A	US Border Patrol	3752	Beyer	BI			San Diego	92173
	12-0140 01-A	Kaiser Foundation Health Plan	4652	Palm	Av			San Diego	92154
	12-0143 02-A	Adesa San Diego	2175	Cactus	Rd			San Diego	92154
	12-0145 03-A	Larkspur Energy	9355	Otay Mesa	Rd			San Diego	92154
	12-0177 01-A	Truck Net LLC	8490	Avenida De La Fuente				San Diego	92154
	13-0159 03-A	SOS Metals San Diego	635	Anita	St			Chula Vista	91911
	13-0278 03-A	Allied Waste Systems dba Allied Waste Services SD	881	Energy	Wy			Chula Vista	91911
	13-0316 02-A	Fuller Ford	560	Auto Park	Dr			Chula Vista	91911
	13-0327 02-A	Dresser-Rand	1675	Brandywine	Av	Suite	E&F	Chula Vista	91911
	13-0399 02-A	Veolia Transportation	3650A	Main	St			Chula Vista	91911
	10								
3	12-0065 03-A	Emerald Textiles LLC	1725	Dornoch	Ct			San Diego	92154
	13-0095 01-A	Otay Valley Shell	4555	Main	St			Chula Vista	92012
	13-0298 03-A	Chula Vista Energy Center LLC	3497	Main	St			Chula Vista	91911
	13-0439 01-A	Toyota Chula Vista	650	Main	St			Chula Vista	91911
	4								
	14								

Active Groundwater Permits, Treatment Plant 6

Report run on: January 14, 2011 4:10 PM Page 1 Class Facility Permit Address City Zip Name 2 UT; Thrifty Oil Company # 416 1185 Palm Av Imperial Beach 91932 17-0013 01-A 1 1

Film Processors Subject to Best Management Practices, Treatment Plant 6

Page 1

Report run on: January 14, 2011 4:17 PM

lass Fa	cility	Permit	Name			Address				City
	-0081	00-A	San Ysidro Health Center	4004		Beyer	BI			San Diego
12-	-0100	01-A	County;George Bailey Detention	446		Alta	Rd			San Diego
12-	-0112	01-A	NAC	1330		30th	St	Suite	Е	San Diego
12-	-0113	01-A	So San Diego Veterinary Hosp	2910		Coronado	Av			San Diego
12-	-0114	02-A	EZ Smiles Dental Care	1850		Coronado	Av			San Diego
12-	-0115	01-A	Lewis J Dorria DDS	2930		Coronado	Av			San Diego
12-	-0117	01-A	Montgomery High School	3250		Palm	Av			San Diego
12-	0119	01-A	Jeffrey W Brown DDS	1761		Palm	Av			San Diego
12-	0121	01-A	Jerome A Bannister DDS	4370		Palm	Av	Suite	С	San Diego
12-	0122	02-A	Carlos Garcia DDS	1270		Picador	BI	Suite	L-M	San Diego
12-	0123	02-A	Southland Plaza Dental	655		Saturn	BI	Suite	G	San Diego
12-	0124	01-A	I-5 Palm Ave Medical Clinic	655		Saturn	BI			San Diego
12-	0125	02-A	San Ysidro Dental Care	2004		Dairy Mart	Rd			San Diego
12-	0146	02-A	CVS Pharmacy # 9115	645		Saturn	BI			San Diego
12-	0186	01-A	Rancho Vista Medical & Therapy Center Inc	342	W	San Ysidro	BI	Suite	F	San Diego
12-	0208	01-A	CVS Pharmacy # 9524	3320		Palm	Av			San Diego
12-	0209	01-A	Rite Aid # 5668	1856		Coronado	Av			San Diego
12-	0222	01-A	Jose L Lopez DDS Inc	3490		Palm	Av	Unit	1	San Diego
12-	0231	01-A	Juvenile Detention Facility	446		Alta	Rd			San Diego
13-	0048	02-A	Hyspan Precision Products	1685		Brandywine	Av			Chula Vis
13-	0117	02-A	Bay Port Press	645		Marsat	St	Suite	D	Chula Vis
13-	0235	01-A	Photo Max	1367		3rd	Av			Chula Vis
13-	0249	01-A	The Pet Clinic	3326		Main	St			Chula Vis
13-	0255	01-A	Hilltop Dentistry	11		Naples	St			Chula Vis
13-	-0256	01-A	Langford Chiropractor	4360		Main	St	Suite	209	Chula Vis
13-	-0257	01-A	Robert N Woodall DDS Inc	330		Oxford	St			Chula Vis
13-	0261	02-A	Palomar Dental Group	648		Palomar	St			Chula Vis
13-	-0306	02-A	CVS Pharmacy # 9113	645	Е	Palomar	St			Chula Vis
13-	0333	01-A	Costco Wholesale # 781	1130		Broadway				Chula Vis
13-	-0355	01-A	Walgreens # 7867	1430		Eastlake	Py			Chula Vis
13-	0379	01-A	Amazon Animal Hospital	1172		3rd	Av	Suite	D8	Chula Vis
13-	0387	01-A	Perpecta Dental Group	314		Palomar	St			Chula Vis
13-	-0388	01-A	Palomar Dental Group	664		Palomar	St	Suite	1103	Chula Vis
13-	-0412	01-A	Wal-Mart Store # 5305	1150		Broadway				Chula Vis
13-	-0414	01-A	Walgreens # 2623	1111		3rd	Av			Chula Vis
13-	-0419	01-A	CVS Pharmacy # 9196	1376		Third	Av			Chula Vis
13-	-0442	01-A	Wal-Mart # 3516	1360		Eastlake	Py			Chula Vis
13-	-0456	01-A	East Lake Plaza Dental	2060		Otay Lakes	Rd	Suite	230	Chula Vist
38										

Dry Cleaners Subject to Best Management Practices, Treatment Plant 6

Rep	port run on: January 14, 2011 4:07 PM						Page 1			
Class	Facility	Permit	Name		Address				City	
4D	12-0106	02-A	Saturn Cleaners	655	Saturn	BI	Suite	E	San Diego	
	12-0108	02-A	Rainbow Cleaners	2004	Dairy Mart	Rd	Suite	121	San Diego	
	13-0176	01-A	Speedy Clean Specialists Inc	1327	3rd	Av			Chula Vista	
	3									

Page 24 of 48

Influent / Effluent Data from South Bay Water Reclamation Plant and Ocean Outfall Annual Report:

SOUTH BAY WATER RECLAMATION PLANT SEWAGE INFUENT and EFFLUENT

Annual 2010

Biochemical Oxygen Demand Concentration (24-hour composite)

	Influent Flow MGD	Daily Influent Value (mg/L)	Daily Influent Value (lbs/Day)	Effluent Flow MGD	Daily Effluent Value (mg/L)	Daily Effluent Value (lbs/Day)	Percent Removal BOD (%)
	=		==========		=======================================	===============	=========
JANUARY -2010 FEBRUARY -2010	8.1 8.4	331 332	22360 23259	5.1 6.3	20.6 13.6	876 715	93.8 95.9
MARCH -2010	8.2	346	23662	5.2	9.8	425	97.2
APRIL -2010	8.4	349	24450	5.1	9.5	404	97.3
MAY -2010	8.3	363	25128	2.4	4.2	84	98.8
JUNE -2010	8.2	374	25577	0.8	8.8	59	97.6
JULY -2010	8.2	356	24346	1.0	11.5	96	96.8
AUGUST -2010	8.2	378	25851	0.7	9.4	55	97.5
SEPTEMBER-2010	8.1	379	25603	1.1	10.3	94	97.3
OCTOBER -2010	8.1	367	24792	4.4	8.5	312	97.7
NOVEMBER -2010	8.2	359	24551	3.9	10.2	332	97.2
DECEMBER -2010	8.4	324	22698	5.3	19.3	853	94.0
======================================	8.2	355	24356	3.4	11.3	======== 359	96.8

Annual Mass Emissions are calculated from monthly averages of flow and BOD, wheras Monthly Report average mass emissions are calculated from average daily mass emissions.

ND=not detected NS=not sampled NA=not analyzed SEWAGE ANNUAL

Total Suspended Solids Concentration (24-hour composite)

Annual 2010

		Daily	Daily		Daily
	Influent	Influent	Influent	Percent	Influent
	Flow	TSS	VSS	VSS	Mass Emission
	(MGD)	(mg/L)	(mg/L)	(응)	(lbs/Day)
	===========				=======
JANUARY -2010	8.1	300	259	86.3	20266
FEBRUARY -2010	8.4	314	272	86.6	21998
MARCH -2010	8.2	284	250	88.0	19422
APRIL -2010	8.4	305	263	86.2	21367
MAY -2010	8.3	313	274	87.5	21666
JUNE -2010	8.2	327	285	87.2	22363
JULY -2010	8.2	309	269	87.1	21132
AUGUST -2010	8.2	317	275	86.8	21679
SEPTEMBER-2010	8.1	328	286	87.2	22158
OCTOBER -2010	8.1	308	268	87.0	20807
NOVEMBER -2010	8.2	306	270	88.2	20927
DECEMBER -2010	8.4	314	274	87.3	21998
	===========				
Average	8.2	310	270		21315

Total Suspended Solids Concentration (24-hour composite)

	Effluent Flow (MGD)	Daily Effluent TSS (mg/L)	Daily Effluent VSS (mg/L)	Percent VSS (%)	Daily Effluent Mass Emission (lbs/Day)	Percent Removal TSS (%)	Percent Removal VSS (%)
================= JANUARY -2010	5.1	======== = 8.7		85.1	370	97.1	97.1
FEBRUARY -2010	6.3	7.9	6.7	84.8	415	97.5	97.5
MARCH -2010	5.2	6.6	5.7	86.4	286	97.7	97.7
APRIL -2010	5.1	7.3	6.3	86.3	310	97.6	97.6
MAY -2010	2.4	3.2	2.6	81.3	64	99.0	99.1
JUNE -2010	0.8	б.4	5.5	85.9	43	98.0	98.1
JULY -2010	1.0	6.7	5.7	85.1	56	97.8	97.9
AUGUST -2010	0.7	5.6	4.7	83.9	33	98.2	98.3
SEPTEMBER-2010	1.1	4.7	3.7	78.7	43	98.6	98.7
OCTOBER -2010	4.4	2.7	2.0	74.1	99	99.1	99.3
NOVEMBER -2010	3.9	3.2	2.4	75.0	104	99.0	99.1
DECEMBER -2010	5.3	6.6	5.7	86.4	292	97.9	97.9
============= Average	3.4	======= = = = = = = = = = = = = = = = =	4.9		176	98.1	======= 98.2

Annual Mass Emissions are calculated from monthly averages of flow and TSS, wheras Monthly Report average mass emissions are calculated from average daily mass emissions.

VSS = Volatile Suspended Solids TSS = Total Suspended Solids SOUTH BAY WATER RECLAMATION PLANT

Annual 2010

Effluent to Ocean Outfall (SB_OUTFALL_01)

	Flow (mgd) 15	рH	Settleable Solids (ml/L)	Biochemical Oxygen Demand (mg/L)	Total Suspended Solids (mg/L)	Volatile Suspended Solids (mg/L)	Total Dissolved Solids (mg/L)
JANUARY -2010	5.06	7.55	ND	20.60	8.70	7.38	1060
FEBRUARY -2010	6.32	7.42	ND	13.60	7.85	6.71	1010
MARCH -2010	5.20	7.40	ND	9.83	6.63	5.68	1010
APRIL -2010	5.12	7.38	ND	9.49	7.29	6.28	1030
MAY -2010	2.41	7.37	ND	4.17	3.22	2.59	955
JUNE -2010	0.84	7.35	ND	8.79	6.41	5.49	991
JULY -2010	0.95	7.42	ND	11.50	6.70	5.72	973
AUGUST -2010	0.66	7.36	ND	9.39	5.59	4.71	999
SEPTEMBER-2010	1.07	7.41	ND	10.30	4.66	3.67	921
OCTOBER -2010	4.38	7.36	ND	8.46	2.65	2.03	920
NOVEMBER -2010	3.90	7.35	ND	10.20	3.21	2.40	968
DECEMBER -2010	5.32	7.39	ND	19.30	6.63	5.73	975
	=======						
Average	3.44	7.40	ND	11.30	5.80	4.87	984

	Oil & Grease (mg/L)	Outfall Temperature (C)	Residual Chlorine (mg/L)	Turbidity (NTU)	Dissolved Oxygen (mg/L)
	=================		===================	4 65	4 40
JANUARY -2010	2.3	21.7	0.06	4.65	4.42
FEBRUARY -2010	4.2	21.6	0.06	3.68	4.26
MARCH -2010	2.6	22.4	0.07	2.96	4.34
APRIL -2010	5.3	22.9	0.06	2.81	4.09
MAY -2010	4.1	22.8	0.07	1.23	4.71
JUNE -2010	2.7	24.4	0.07	2.51	3.86
JULY -2010	1.8	24.9	0.16	2.96	4.37
AUGUST -2010	1.7	25.9	0.10	2.32	3.40
SEPTEMBER-2010	2.7	25.6	0.07	1.90	4.07
OCTOBER -2010	3.8	24.8	0.05	1.39	3.99
NOVEMBER -2010	1.9	23.8	0.05	2.07	3.79
DECEMBER -2010	6.0	22.6	0.05	3.47	3.86
================					
Average	3.3	23.6	0.07	2.66	4.10

ND=not detected NR=not required

SOUTH BAY WATER RECLAMATION PLANT

Annual 2010

Influent to Plant
(SB_INF_02)

	Flow (mgd)	рН	Total Dissolved Solids (mg/L)	Biochemical Oxygen Demand (mg/L)	Total Suspended Solids (mg/L)	Volatile Suspended Solids (mg/L)	Turbidity (NTU)
JANUARY -2010	8.09	NR	1050	331	300	259	NR
FEBRUARY -2010	8.37	8.16	1030	331	314	272	134
MARCH -2010	8.21	NR NR	1030	346	284	250	NR IST
APRIL -2010	8.43	NR	1050	349	305	263	NR
MAY -2010	8.26	7.44	979	363	313	274	191
JUNE -2010	8.19	NR	986	374	327	285	NR
JULY -2010	8.22	NR	979	356	309	269	NR
AUGUST -2010	8.20	7.05	976	378	317	275	124
SEPTEMBER-2010	8.09	NR	985	379	328	286	NR
OCTOBER -2010	8.09	7.35	938	367	308	268	152
NOVEMBER -2010	8.23	NR	1000	359	306	270	NR
DECEMBER -2010	8.35	NR	990	324	314	274	NR
Average	8.23	7.50	1000	355	310	270	150

ND=not detected NR=not required SOUTH BAY WATER RECLAMATION PLANT ANNUAL SEWAGE

Annual 2010

Trace Metals

Analyte: MAX MDL Units: Source: Month/Limit:	Aluminum 47 UG/L Influent	Aluminum 47 UG/L Effluent	Antimony 2.9 UG/L Influent	Antimony 2.9 UG/L Effluent	Arsenic .4 UG/L Influent	Arsenic .4 UG/L Effluent 480
JANUARY -2010 FEBRUARY -2010 MARCH -2010 APRIL -2010 MAY -2010 JUNE -2010	1130 1300 1360 1440 618 1310	106 135 177 152 115 101	4.40 ND ND ND ND	ND ND ND ND ND ND	0.92 1.22 1.48 0.90 0.87 1.13	0.51 0.79 1.01 0.86 0.79 0.72
JULY -2010 AUGUST -2010 SEPTEMBER-2010 OCTOBER -2010 NOVEMBER -2010 DECEMBER -2010	382 380 1150 1260 1350 1030	109 342 174 131 158 111	ND ND ND ND ND	ND ND ND ND ND	0.53 ND 0.85 ND 0.87 0.94	0.42 0.56 0.83 0.49 0.52 0.78
======================================	1059	151	0.37	ND	0.81	0.69
Analyte: MAX MDL Units: Source: Month/Limit:	Barium .039 UG/L Influent	Barium .039 UG/L Effluent	Beryllium .022 UG/L Influent	Beryllium .022 UG/L Effluent	Boron 7 UG/L Influent	Boron 7 UG/L Effluent
JANUARY -2010	111.0	72.8	0.03	ND	316	299
FEBRUARY -2010	97.8	68.3	ND	ND	347	361
MARCH -2010	101.0	61.6	ND	ND	279	290
APRIL -2010	129.0	78.4	ND	ND	332	309
MAY -2010	63.4	52.1	ND	ND	306	369
JUNE -2010	98.6	61.4	ND	ND	312	334
JULY -2010	71.5	57.6	ND	ND	330	351
AUGUST -2010	76.8	48.1	ND	ND	325	334
SEPTEMBER-2010	85.3	54.9	ND	ND	310	320
OCTOBER -2010	77.8	46.6	ND	ND	260	194
NOVEMBER -2010	85.9	55.1	<0.02	ND	348	317
DECEMBER -2010	90.3	55.6	ND	ND	318	319
	=======================================		=======================================			
AVERAGE	90.7	59.4	<0.00	ND	315	316
Analyte: MAX MDL Units: Source:	Cadmium .53 UG/L Influent	Cadmium .53 UG/L Effluent	Chromium 1.2 UG/L Influent	Chromium 1.2 UG/L Effluent	Cobalt .85 UG/L Influent	Cobalt .85 UG/L Effluent
Month/Limit:		48		760		
			=============		==============	=========
JANUARY -2010	0.7	ND	3.1	1.8	NR	ND
FEBRUARY -2010	ND	ND	3.5	<1.2	ND	ND
MARCH -2010	ND	ND	2.5	ND	ND	ND
APRIL -2010	ND	ND	3.8	ND	NR	ND
MAY -2010	ND	ND	1.5	2.1	ND	ND
JUNE -2010	ND	ND	3.4	ND	NR	ND
JULY -2010	ND	ND	2.3	ND	NR	ND
AUGUST -2010	ND	ND	2.2	ND	ND	ND
SEPTEMBER-2010	ND	ND	2.6	ND	NR	ND
OCTOBER -2010	ND	ND	3.0	1.5	ND	ND
NOVEMBER -2010	ND	ND	3.4	ND	NR	ND
DECEMBER -2010	ND	ND	2.3	ND	NR	ND
DECEMBER -2010	ND ==============		2.3		NR ==============	
AVERAGE	0.1	ND	2.8	0.5	ND	ND

ND= not detected NA= not analyzed NS= not sampled Annual 2010

Trace Metals

Analyte: MAX MDL Units: Source: Month/Limit:	Copper 2 UG/L Influent	Copper 2 UG/L Effluent 960	Iron 37 UG/L Influent	Iron 37 UG/L Effluent	Lead 2 UG/L Influent	Lead 2 UG/L Effluent 760
JANUARY -2010	76	28	583	76	4.1	ND
FEBRUARY -2010	73	11	623	103	ND	ND
MARCH -2010	54	8	840	94	2.9	ND
APRIL -2010	79	21	823	128	3.5	ND
MAY -2010	32	13	255	95	ND	ND
JUNE -2010	70	8	827	99	2.4	ND
JULY -2010	64	19	318	41	ND	ND
AUGUST -2010	57	12	282	<37	ND	ND
SEPTEMBER-2010	84	24	643	115	5.1	ND
OCTOBER -2010	64	14	602	95	ND	ND
NOVEMBER -2010	83	16	682	ND	ND	ND
DECEMBER -2010	69	29	527	40	2.5	ND
		==========			================	
AVERAGE	67	17	584	74	1.7	ND
Analyte: MAX MDL Units: Source: Month/Limit:	Manganese .24 UG/L Influent	Manganese .24 UG/L Effluent	Mercury .09 UG/L Influent	Mercury .09 UG/L Effluent 15	Molybdenum .89 UG/L Influent	Molybdenum .89 UG/L Effluent
JANUARY -2010	58.0	32.7	ND	ND	NR	4.3
FEBRUARY -2010	59.1	40.1	0.31	ND	5.6	3.3
MARCH -2010	51.5	21.4	0.17	ND	6.8	4.6
APRIL -2010	60.9	47.6	0.37	ND	NR	4.0
MAY -2010	59.3	29.7	ND	ND	5.5	б.4
JUNE -2010	53.7	32.3	0.13	ND	NR	3.5
JULY -2010	39.7	28.1	ND	ND*	NR	3.6
AUGUST -2010	43.8	23.4	ND	ND	5.4	3.0
SEPTEMBER-2010	46.7	24.4	0.13	ND	NR	3.3
OCTOBER -2010	40.2	25.1	0.07	0.01*	4.6	3.0
NOVEMBER -2010	66.0	41.0	0.07	ND*	NR	3.3
DECEMBER -2010	73.9	38.2	0.09	ND*	NR	4.6
======================================	======================================	32.0	0.11	======== 0.00	======================================	 3.9

* MDL = 0.009

ND= not detected NA= not analyzed NS= not sampled

SOUTH BAY WATER RECLAMATION PLANT ANNUAL SEWAGE

Annual 2010

Trace Metals

Analyte: MAX MDL Units: Source: Month/Limit: ====================================	Nickel .53 UG/L Influent	Nickel .53 UG/L Effluent 1900	Selenium .28 UG/L Influent	Selenium .28 UG/L Effluent 1400	Silver .4 UG/L Influent	Silver .4 UG/L Effluent 250
JANUARY -2010 FEBRUARY -2010 MARCH -2010 APRIL -2010 JUNE -2010 JUNE -2010 JULY -2010 AUGUST -2010 AUGUST -2010 OCTOBER -2010 NOVEMBER -2010 DECEMBER -2010	$ \begin{array}{c} 11.6\\ 5.75\\ 3.73\\ 4.89\\ 4.05\\ 5.09\\ 3.90\\ 4.67\\ 6.27\\ 4.90\\ 15.1\\ 5.00\\ \end{array} $	$\begin{array}{c} 4.97\\ 10.1\\ 4.17\\ 3.29\\ 5.19\\ 5.16\\ 4.46\\ 4.63\\ 4.10\\ 3.93\\ 8.91\\ 3.55\end{array}$	2.00 1.83 1.80 2.18 1.18 1.79 1.15 1.07 1.04 ND 1.43 1.53	0.90 0.85 0.83 0.63 0.66 0.51 0.64 0.60 0.53 0.39 0.61	0.8 1.2 1.7 1.4 ND 1.7 1.0 ND 0.5 0.6 2.2 0.8	ND ND 0.6 ND ND ND ND ND ND 0.5 ND
============== AVERAGE	======================================	5.21	======================================	======= 0.67	======================================	0.1
Analyte: MAX MDL Units: Source: Month/Limit:	Thallium 3.9 UG/L Influent	Thallium 3.9 UG/L Effluent	Vanadium .64 UG/L Influent	Vanadium .64 UG/L Effluent	Zinc 2.5 UG/L Influent	Zinc 2.5 UG/L Effluent 6900
JANUARY -2010 FEBRUARY -2010 MARCH -2010 APRIL -2010 JUNE -2010 JUNE -2010 JULY -2010 AUGUST -2010 SEPTEMBER-2010 OCTOBER -2010 NOVEMBER -2010 DECEMBER -2010	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND	NR 3.0 3.6 NR 1.4 NR 1.4 NR 1.4 NR 1.1 NR NR 1.1 NR NR	ND 1.31 2.02 1.61 1.12 ND 1.17 ND <0.64 1.12 0.95	187 153 137 245 63 149 81 83 176 143 167 150	37.3 29.8 39.6 32.4 31.5 28.5 23.8 30.7 26.0 30.0 27.4 27.2
AVERAGE	ND	ND	2.1	0.78	145	30.4

ND= not detected NA= not analyzed NS= not sampled

SOUTH BAY WATER RECLAMATION PLANT Annual Sewage Cations

Annual 2010

MDL/UNITS:		Calcium 04 mg/L		gnesium 1 mg/L		ithium 2 mg/L
	INF	EFF	INF	EFF	INF	EFF
	===========					
JANUARY -2010	78.0	78.2	31.3	29.8	0.043	0.044
FEBRUARY -2010	80.8	84.0	35.5	36.4	0.037	0.038
MARCH -2010	74.8	71.6	31.2	28.7	0.035	0.031
APRIL -2010	82.7	87.1	32.2	33.9	0.050	0.042
MAY -2010	68.3	73.1	29.3	30.5	0.029	0.028
JUNE -2010	79.5	78.4	31.2	30.9	0.041	0.038
JULY -2010	77.5	75.1	34.2	32.0	0.033	0.033
AUGUST -2010	75.6	73.1	31.9	29.8	0.041	0.041
SEPTEMBER-2010	72.1	73.0	34.2	33.2	0.035	0.032
OCTOBER -2010	66.4	68.8	30.4	30.1	0.032	0.031
NOVEMBER -2010	72.2	75.5	36.2	35.0	0.035	0.033
DECEMBER -2010	76.5	77.9	37.5	36.6	0.036	0.034
=======	==========	======		=======	==========	==========
Average:	75.4	76.3	32.9	32.2	0.037	0.035

MDL/UNITS:		Sodium 1 mg/L		Potassium .3 mg/L		
MDD/ 0N115:	INF	I MG/D EFF	INF	EFF		
JANUARY -2010	182	187	20.8	19.1		
FEBRUARY -2010	218	219	22.0	19.8		
MARCH -2010	190	180	19.4	15.7		
APRIL -2010	186	201	20.9	19.8		
MAY -2010	178	201	20.9	19.8		
JUNE -2010	192	196	22.8	20.2		
JULY -2010	196	197	24.5	20.5		
AUGUST -2010	178	182	19.8	21.4		
SEPTEMBER-2010	194	203	25.3	20.8		
OCTOBER -2010	191	192	20.6	19.2		
NOVEMBER -2010	207	215	22.4	20.3		
DECEMBER -2010	214	216	21.9	19.9		
==============						
Average:	194	199	21.8	19.7		

ND=not detected

SOUTH BAY WATER RECLAMATION PLANT ANNUAL SEWAGE

Anions

Annual 2010

Analyte: MDL Units: Source: Month/Limit:	Bromide .1 MG/L INFLUENT	Bromide .1 MG/L EFFLUENT	Chloride 7 MG/L INFLUENT	Chloride 7 MG/L EFFLUENT	Fluoride .05 MG/L INFLUENT	Fluoride .05 MG/L EFFLUENT
======= JANUARY -2010 FEBRUARY -2010	0.32	0.37 0.45	223 232	243 251	======================================	0.670 0.710
MARCH -2010	0.38	0.45	232	231	0.612	0.630
APRIL -2010 MAY -2010	0.44 0.46	0.45 0.53	239 230	250 251	0.547 0.647	0.690 0.670
JUNE -2010	0.34	0.42	220	235	0.434	0.544
JULY -2010 AUGUST -2010	0.30 0.32	0.39 0.36	238 235	244 229	0.476 0.530	0.560 0.590
SEPTEMBER-2010 OCTOBER -2010	0.29 <0.10	0.39 0.26	240 212	248 233	0.453 0.367	0.620 0.530
NOVEMBER -2010	0.27	0.33	254	278	0.475	0.578
DECEMBER -2010	0.36	0.38	279 ========	281 =======	0.521	0.562
AVERAGE	0.33	0.40	237	248	0.500	0.613

Analyte: MDL: Units: Source:	Nitrate .04 MG/L INFLUENT	Nitrate .04 MG/L EFFLUENT	Ortho PhosphOrt .2 MG/L INFLUENT	tho Phosphate .2 MG/L EFFLUENT	Sulfate 9 MG/L INFLUENT	Sulfate 9 MG/L EFFLUENT
=================	==================	==========	=================	=================	==================	==========
JANUARY -2010 FEBRUARY -2010 MARCH -2010 APRIL -2010 JUNE -2010 JULY -2010 AUGUST -2010 SEPTEMBER-2010 OCTOBER -2010	0.317 0.362 0.471 0.158 0.196 0.178 0.349 0.200 0.867 0.115	14.2 25.5 26.4 25.3 28.7 27.6 24.9 26.2 25.6 25.2	11.2 11.8 11.8 11.7 13.3 12.4 13.5 12.8 14.3 11.6	1.41 4.69 7.25 5.05 9.00 9.26 4.25 10.40 1.58 4.33	197 189 183 162 167 161 164 156 145	238 224 193 237 181 210 197 210 196 188
OCTOBER -2010 NOVEMBER -2010	0.115 0.044	25.2 24.0	11.6	4.33	145	188
DECEMBER -2010	0.117	29.3	11.5	3.14	166	198
======================================	0.281	25.2	12.3	5.08	 170	======= 205

ND= not detected NA= not analyzed

NS= not sampled

SOUTH BAY WATER RECLAMATION PLANT ANNUAL SEWAGE

Ammonia-Nitrogen and Total Cyanides

Annual 2010

			Total	Total
	Ammonia-N	Ammonia-N	Cyanides	Cyanides
	.3	.3	.002 MG/L	.002 MG/L
	SB_INF_02	SB_OUTFALL_01	SB_INF_02	SB_OUTFALL_01
==============	===========	==========		=======
JANUARY -2010	36.8	4.8	ND	ND
FEBRUARY -2010	32.7	1.7	ND	ND
MARCH -2010	30.6	0.3	ND	0.002
APRIL -2010	32.7	0.5	ND	ND
MAY -2010	47.0	ND	ND	ND
JUNE -2010	32.5	1.4	ND	ND
JULY -2010	40.3	1.4	ND	0.002
AUGUST -2010	30.8	ND	ND	ND
SEPTEMBER-2010	36.0	ND	ND	ND
OCTOBER -2010	30.9	ND	ND	ND
NOVEMBER -2010	26.8	1.8	ND	ND
DECEMBER -2010	34.3	1.8	ND	0.002
=============		===========	===========	===========
Average:	34.3	1.1	ND	0.001

ND= not detected

SOUTH BAY WATER RECLAMATION PLANT Radioactivity Effluent to the Ocean

Analyzed by: TestAmerica Laboratories Richland

Annual 2010

Source	Month	Gross Alpha Radiation	Gross Beta Radiation
=============			
SB_OUTFALL_01	JANUARY -2010	3.0 ± 2.0	21.2 ± 4.5
SB_OUTFALL_01	FEBRUARY -2010	2.1 ± 2.2	22.0 ± 4.5
SB_OUTFALL_01	MARCH -2010	1.5 ± 2.3	18.8 ± 4.1
SB_OUTFALL_01	APRIL -2010	1.8 ± 2.2	18.4 ± 4.4
SB_OUTFALL_01	MAY -2010	2.0 ± 2.6	21.9 ± 6.2
SB_OUTFALL_01	JUNE -2010	1.0 ± 1.4	20.4 ± 4.3
SB_OUTFALL_01	JULY -2010	1.9 ± 2.0	21.2 ± 4.5
SB_OUTFALL_01	AUGUST -2010	1.9 ± 1.5	25.5 ± 4.8
SB_OUTFALL_01	SEPTEMBER-2010	3.2 ± 2.2	19.1 ± 4.9
SB_OUTFALL_01	OCTOBER -2010	2.9 ± 2.8	28.3 ± 7.9
SB_OUTFALL_01	NOVEMBER -2010	2.0 ± 1.6	25.5 ± 5.7
SB_OUTFALL_01	DECEMBER -2010	0.9 ± 1.1	25.2 ± 4.7
AVERAGE		2.0 ± 2.0	22.3 ± 5.0

Units in picocuries/liter (pCi/L)

SOUTH BAY WATER RECLAMATION PLANT SEWAGE ANNUAL - Chlorinated Pesticide Analysis

Annual 2010

			EFF JAN	EFF FEB	EFF MAR	EFF APR	EFF MAY	EFF JUN	EFF JUL	EFF AUG	EFF SEP	EFF OCT	EFF NOV	EFF DEC	EFF
Analyte	MDL	Units =====		=====					=====					=====	Avg
Aldrin	7	NG/L	ND	ND											
Dieldrin	3	NG/L	ND	ND											
BHC, Alpha isomer	7	NG/L	ND	ND											
BHC, Beta isomer	3	NG/L	ND	ND											
BHC, Gamma isomer	5	NG/L	ND	ND											
BHC, Delta isomer	3	NG/L	ND	ND											
p,p-DDD	3	NG/L	ND	ND											
p,p-DDE	4	NG/L	ND	ND											
p,p-DDT	8	NG/L	ND	ND											
o,p-DDD	4	NG/L	ND	ND											
o,p-DDE	5	NG/L	ND	ND											
o,p-DDT	3	NG/L	ND	ND											
Heptachlor	8	NG/L	ND	ND											
Heptachlor epoxide	4	NG/L	ND	ND											
Alpha (cis) Chlordane	3	NG/L	ND	ND											
Gamma (trans) Chlordane	4	NG/L	ND	ND											
Alpha Chlordene	-	NG/L	NA	NA											
Gamma Chlordene		NG/L	NA	NA											
Oxychlordane	6	NG/L	ND	ND											
Trans Nonachlor	5	NG/L	ND	ND											
Cis Nonachlor	3	NG/L	ND	ND											
Alpha Endosulfan	4	NG/L	ND	ND											
Beta Endosulfan	2	NG/L	ND	ND											
Endosulfan Sulfate	6	NG/L	ND	ND											
Endrin	2	NG/L	ND	ND											
Endrin aldehyde	9	NG/L	ND	ND											
Mirex	10	NG/L	ND	ND											
Methoxychlor	10	NG/L	ND	ND											
Toxaphene	330	NG/L	ND	ND											
PCB 1016		NG/L	ND	ND											
PCB 1221		NG/L	ND	ND											
PCB 1232	360	NG/L	ND	ND											
PCB 1242		NG/L	ND	ND											
PCB 1248		NG/L	ND	ND											
PCB 1254		NG/L	ND	ND											
PCB 1260		NG/L	ND	ND											
PCB 1262	930	NG/L	ND	ND											
		=====	=====	=====	=====	=====	=====	=====			=====		=====	=====	=====
Aldrin + Dieldrin	7	NG/L	0	0	0	0	0	0	0	0	0	0	0	0	0
Hexachlorocyclohexanes	7	NG/L	0	0	0	0	0	0	0	0	0	0	0	0	0
DDT and derivatives	8	NG/L	0	0	0	0	0	0	0	0	0	0	0	0	0
Chlordane + related cmpds.	-	NG/L	0	0	0	0	0	0	0	0	0	0	0	0	0
Polychlorinated biphenyls		NG/L	0	0	0	0	0	0	0	0	0	0	0	0	0
Endosulfans	6	NG/L	0	0	0	0	0	0	0	0	0	0	0	0	0
				=====	=====	=====	=====	-	=====	=====	=====	-	=====	-	=====
Heptachlors	8	NG/L	0	0	0	0	0	0	0	0	0	0	0	0	0
=======================================		=====		=====		=====	=====				=====		=====		=====
Chlorinated Hydrocarbons		NG/L	0	0	0	0	0	0	0	0	0	0	0	0	0
Shiror macca myarocarbons	1000	1.0/1	0	0	0	0	0	0	0	0	0	0	0	0	5

ND= not detected

NA= not analyzed

NS= not sampled Standards for alpha and gamma chlordene are no longer available in the U.S. for the analysis of these compounds.

			INF FEB	INF MAY	INF AUG	INF OCT	INF
Analyte	MDL	Units					Avg
	====	=====	=====	=====	=====	=====	=====
Aldrin	7	NG/L	ND	ND	ND	ND	ND
Dieldrin	3	NG/L	ND	ND	ND	ND	ND
BHC, Alpha isomer	7	NG/L	ND	ND	ND	ND	ND
BHC, Beta isomer	3	NG/L	ND	ND	ND	ND	ND
BHC, Gamma isomer	5	NG/L	ND	ND	ND	10	3
BHC, Delta isomer	3	NG/L	ND	ND	ND	ND	ND
p,p-DDD	3	NG/L	ND	ND	ND	ND	ND
p,p-DDE	4	NG/L	ND	ND	ND	ND	ND
p,p-DDT	8	NG/L	ND	ND	ND	ND	ND
o,p-DDD	4	NG/L	ND	ND	ND	ND	ND
o,p-DDE	5	NG/L	ND	ND	ND	ND	ND
o,p-DDT	3	NG/L	ND	ND	ND	ND	ND
Heptachlor	8	NG/L	ND	ND	ND	ND	ND
Heptachlor epoxide	4	NG/L	ND	ND	ND	ND	ND
Alpha (cis) Chlordane	3	NG/L	ND	ND	ND	ND	ND
Gamma (trans) Chlordane	4	NG/L	ND	ND	ND	ND	ND
	4		NA				ND
Alpha Chlordene		NG/L		NA	NA	NA	
Gamma Chlordene	~	NG/L	NA	NA	NA	NA	NA
Oxychlordane	6	NG/L	ND	ND	ND	ND	ND
Trans Nonachlor	5	NG/L	ND	ND	ND	ND	ND
Cis Nonachlor	3	NG/L	ND	ND	ND	ND	ND
Alpha Endosulfan	4	NG/L	ND	ND	ND	ND	ND
Beta Endosulfan	2	NG/L	ND	ND	ND	ND	ND
Endosulfan Sulfate	б	NG/L	ND	ND	ND	ND	ND
Endrin	2	NG/L	ND	ND	ND	ND	ND
Endrin aldehyde	9	NG/L	ND	ND	ND	ND	ND
Mirex	10	NG/L	ND	ND	ND	ND	ND
Methoxychlor	10	NG/L	ND	ND	ND	ND	ND
Toxaphene	330	NG/L	ND	ND	ND	ND	ND
PCB 1016	4000	NG/L	ND	ND	ND	ND	ND
PCB 1221	4000	NG/L	ND	ND	ND	ND	ND
PCB 1232	360	NG/L	ND	ND	ND	ND	ND
PCB 1242	4000	NG/L	ND	ND	ND	ND	ND
PCB 1248	2000	NG/L	ND	ND	ND	ND	ND
PCB 1254	2000	NG/L	ND	ND	ND	ND	ND
PCB 1260		NG/L	ND	ND	ND	ND	ND
PCB 1262	930	NG/L	ND	ND	ND	ND	ND
	====	=====	=====	=====	=====	=====	=====
Aldrin + Dieldrin	7	NG/L	0	0	0	0	0
Hexachlorocyclohexanes	, 7	NG/L	0	0	0	10	3
DDT and derivatives	8	NG/L NG/L	0	0	0	10	0
	6	NG/L NG/L	0	0	0	0	0
Chlordane + related cmpds.							
Polychlorinated biphenyls	4000		0	0	0	0	0
Endosulfans	6	NG/L	0	0	0	0	0
		=====	=====	=====	=====	=====	=====
Heptachlors	8 ====	NG/L =====	0	0	0	0	0
Chlorinated Hydrocarbons		NG/L	0	0	0	10	3

ND= not detected

NA= not analyzed

NS= not sampled

Standards for alpha and gamma chlordene are no longer available in the U.S. for the analysis of these compounds.

SOUTH BAY WATER RECLAMATION PLANT Organophosphorus PesticidesEPA Method 614/622 (with additions)

INFLUENT & EFFLUENT

Annual 2010

			Effluent 04-MAY-2010	Effluent 05-OCT-2010	Influent 04-MAY-2010	Influent 05-OCT-2010
Analyte	MDL	Units	P515506	P533621	P515501	P533616
	===	=====				
Demeton O	.15	UG/L	ND	ND	ND	ND
Demeton S	.08	UG/L	ND	ND	ND	ND
Diazinon	.03	UG/L	ND	ND	ND	ND
Guthion	.15	UG/L	ND	ND	ND	ND
Malathion	.03	UG/L	ND	ND	ND	ND
Parathion	.03	UG/L	ND	ND	ND	ND
Dichlorvos	.05	UG/L	ND	ND	ND	ND
Dibrom	.2	UG/L	ND	NR	ND	NR
Ethoprop	.04	UG/L	ND	NR	ND	NR
Phorate	.04	UG/L	ND	NR	ND	NR
Sulfotepp	.04	UG/L	ND	NR	ND	NR
Disulfoton	.02	UG/L	ND	ND	ND	ND
Dimethoate	.04	UG/L	ND	ND	ND	ND
Ronnel	.03	UG/L	ND	NR	ND	NR
TrichloroNRte	.04	UG/L	ND	NR	ND	NR
Merphos	.09	UG/L	ND	NR	ND	NR
Dichlofenthion	.03	UG/L	ND	NR	ND	NR
Tokuthion	.06	UG/L	ND	NR	ND	NR
Stirophos	.03	UG/L	ND	ND	ND	ND
Bolstar	.07	UG/L	ND	NR	ND	NR
Fensulfothion	.07	UG/L	ND	NR	ND	NR
EPN	.09	UG/L	ND	NR	ND	NR
Coumaphos	.15	UG/L	ND	ND	ND	ND
Mevinphos, e isomer	.05	UG/L	ND	NR	ND	NR
Mevinphos, z isomer	.3	UG/L	ND	NR	ND	NR
Chlorpyrifos	.03	UG/L	ND	ND	ND	ND
	===	=====	===========			======
Thiophosphorus Pesticides	.15	UG/L	0.0	0.0	0.0	0.0
Demeton -0, -S	.15	UG/L	0.0	0.0	0.0	0.0
		=====	==========			
Total Organophosphorus Pesticides	.3	UG/L	0.0	0.0	0.0	0.0

ND=not detected NR=not required

Effluent

Analyte	MDL	Units	FEB	MAY	AUG	OCT	Average
============	===	====	=====	=====	=====	=====	=====
Dibutyltin	7	UG/L	ND	ND	ND	ND	ND
Monobutyltin	16	UG/L	ND	ND	ND	ND	ND
Tributyltin	2	UG/L	ND	ND	ND	ND	ND

Influent

Analyte	MDL	Units	FEB	MAY	AUG	OCT	Average
	===	=====	====	=====	=====	=====	=====
Dibutyltin	7	UG/L	ND	ND	ND	ND	ND
Monobutyltin	16	UG/L	ND	ND	ND	ND	ND
Tributyltin	2	UG/L	ND	ND	ND	ND	ND

Analyte	MDL	Units	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	AVG
	====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====
2-chlorophenol	1.32	UG/L	ND												
2,4-dichlorophenol	1.01	UG/L	ND												
4-chloro-3-methylphenol	1.67	UG/L	ND												
2,4,6-trichlorophenol	1.65	UG/L	ND												
Pentachlorophenol	1.12	UG/L	ND												
Phenol	1.76	UG/L	ND												
2-nitrophenol	1.55	UG/L	ND												
2,4-dimethylphenol	2.01	UG/L	ND												
2,4-dinitrophenol	2.16	UG/L	ND												
4-nitrophenol	1.14	UG/L	ND												
2-methyl-4,6-dinitrophenol	1.52	UG/L	ND												
	====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====
Total Chlorinated Phenols	1.67	UG/L	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Non-Chlorinated Phenols	2.16	UG/L	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Phenols	2.16	UG/L	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	====	=====	=====	=====	====	=====	====	=====	=====	=====	=====	=====	=====	=====	====
2-methylphenol	2.15	UG/L	ND												
3-methylphenol(4-MP is unresolved)		UG/L	NA												
4-methylphenol(3-MP is unresolved)	2.11	UG/L	ND												
2,4,5-trichlorophenol	1.66	UG/L	ND												

INFLUENT

EFFLUENT

Analyte	MDL	Units	FEB	MAY	AUG	OCT	AVG
2-chlorophenol	1.32	===== UG/L	===== ND	===== ND	===== ND	===== ND	===== ND
2,4-dichlorophenol		UG/L	ND	ND	ND	ND	ND
4-chloro-3-methylphenol	1.67	UG/L	ND	ND	ND	ND	ND
2,4,6-trichlorophenol	1.65	UG/L	ND	ND	ND	ND	ND
Pentachlorophenol	1.12	UG/L	ND	ND	ND	ND	ND
Phenol	1.76	UG/L	26.7	47.7	44.2	36.5	38.8
2-nitrophenol	1.55	UG/L	ND	ND	ND	ND	ND
2,4-dimethylphenol	2.01	UG/L	ND	ND	ND	ND	ND
2,4-dinitrophenol	2.16	UG/L	ND	ND	ND	ND	ND
4-nitrophenol	1.14	UG/L	ND	ND	ND	ND	ND
2-methyl-4,6-dinitrophenol	1.52	UG/L	ND	ND	ND	ND	ND
	====	=====	=====	=====	=====	=====	=====
Total Chlorinated Phenols	1.67	UG/L	0.0	0.0	0.0	0.0	0.0
Total Non-Chlorinated Phenols	2.16	UG/L	26.7	47.7	44.2	36.5	38.8
Total Phenols	2.16	UG/L	26.7	47.7	44.2	36.5	38.8
	====	=====	=====	=====	=====	=====	=====
2-methylphenol	2.15	UG/L	ND	ND	ND	ND	ND
3-methylphenol(4-MP is unresolved)		UG/L	NA	NA	NA	NA	NA
4-methylphenol(3-MP is unresolved)	2.11	UG/L	101	123	120	92.5	109
2,4,5-trichlorophenol	1.66	UG/L	ND	ND	ND	ND	ND

ND=not detected NS=not sampled NA=not analyzed

			EFF	EFF	EFF	EFF	EFF
Analysta	MDT	Unita	FEB	MAY	AUG	OCT	Arrowago
Analyte	MDL	Units =====	Avg	Avg =====	Avg		Average =====
		UG/L					
bis(2-chloroethyl) ether			ND	ND	ND	ND	ND
Bis-(2-chloroisopropyl) ether		UG/L	ND	ND	ND	ND	ND
N-nitrosodi-n-propylamine Nitrobenzene	1.10	UG/L UG/L	ND	ND	ND	ND	ND
Hexachloroethane		UG/L UG/L	ND ND	ND ND	ND ND	ND ND	ND ND
Isophorone		UG/L UG/L	ND	ND	ND	ND	ND
bis(2-chloroethoxy)methane		UG/L UG/L	ND	ND	ND	ND	ND
1,2,4-trichlorobenzene		UG/L UG/L	ND	ND	ND	ND	ND
Naphthalene		UG/L UG/L	ND	ND	ND	ND	ND
Hexachlorobutadiene		UG/L UG/L	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene		UG/L UG/L	ND	ND	ND	ND	ND
Acenaphthylene		UG/L UG/L	ND	ND	ND	ND	ND
Dimethyl phthalate		UG/L	ND	ND	ND	ND	ND
2,6-dinitrotoluene		UG/L	ND	ND	ND	ND	ND
Acenaphthene	1.8	UG/L	ND	ND	ND	ND	ND
2,4-dinitrotoluene		UG/L	ND	ND	ND	ND	ND
Fluorene		UG/L	ND	ND	ND	ND	ND
4-chlorophenyl phenyl ether		UG/L	ND	ND	ND	ND	ND
Diethyl phthalate		UG/L	ND	ND	ND	ND	ND
N-nitrosodiphenylamine		UG/L	ND	ND	ND	ND	ND
4-bromophenyl phenyl ether	1.4	UG/L	ND	ND	ND	ND	ND
Hexachlorobenzene		UG/L	ND	ND	ND	ND	ND
Phenanthrene		UG/L	ND	ND	ND	ND	ND
Anthracene		UG/L	ND	ND	ND	ND	ND
Di-n-butyl phthalate		UG/L	ND	ND	ND	ND	ND
N-nitrosodimethylamine		UG/L	ND	ND	ND	ND	ND
Fluoranthene		UG/L	ND	ND	ND	ND	ND
Pvrene		UG/L	ND	ND	ND	ND	ND
Benzidine		UG/L	ND	ND	ND	ND	ND
Butyl benzyl phthalate		UG/L	ND	ND	ND	ND	ND
Chrysene		UG/L	ND	ND	ND	ND	ND
Benzo[A]anthracene	1.1	UG/L	ND	ND	ND	ND	ND
Bis-(2-ethylhexyl) phthalate	8.96	UG/L	9.8	ND	ND	ND	2.5
Di-n-octyl phthalate	1	UG/L	ND	ND	ND	ND	ND
3,3-dichlorobenzidine	2.44	UG/L	ND	ND	ND	ND	ND
Benzo[K]fluoranthene	1.49	UG/L	ND	ND	ND	ND	ND
3,4-benzo(B)fluoranthene	1.35	UG/L	ND	ND	ND	ND	ND
Benzo[A]pyrene	1.25	UG/L	ND	ND	ND	ND	ND
Indeno(1,2,3-CD)pyrene	1.14	UG/L	ND	ND	ND	ND	ND
Dibenzo(A,H)anthracene	1.01	UG/L	ND	ND	ND	ND	ND
Benzo[G,H,I]perylene	1.09	UG/L	ND	ND	ND	ND	ND
1,2-diphenylhydrazine	1.37	UG/L	ND	ND	ND	ND	ND
	====	=====	=====	=====	=====	=====	=====
Polynuc. Aromatic Hydrocarbons	1.77	UG/L	0.0	0.0	0.0	0.0	0.0
Base/Neutral Compounds	8.96	UG/L	9.8	0.0	0.0	0.0	2.5
	====	====	=====	=====	=====	=====	=====
1-methylnaphthalene	2.18	UG/L	ND	ND	ND	ND	ND
2-methylnaphthalene		UG/L	ND	ND	ND	ND	ND
2,6-dimethylnaphthalene		UG/L	ND	ND	ND	ND	ND
2,3,5-trimethylnaphthalene		UG/L	ND	ND	ND	ND	ND
1-methylphenanthrene		UG/L	ND	ND	ND	ND	ND
Benzo[e]pyrene		UG/L	ND	ND	ND	ND	ND
Perylene		UG/L	ND	ND	ND	ND	ND
Biphenyl	2.29	UG/L	ND	ND	ND	ND	ND

SOUTH BAY WATER RECLAMATION PLANT SEWAGE ANNUAL Priority Pollutants Base/Neutrals

Annual 2010

			INF	INF	INF	INF	INF
		• .	FEB	MAY	AUG	OCT	_
Analyte	MDL	Units =====	Avg =====	Avg =====	Avg =====	Avg =====	Average
bis(2-chloroethyl) ether		UG/L	ND	ND	ND	ND	ND
Bis-(2-chloroisopropyl) ether		UG/L	ND	ND	ND	ND	ND
N-nitrosodi-n-propylamine		UG/L	ND	ND	ND	ND	ND
Nitrobenzene	1.6	UG/L	ND	ND	ND	ND	ND
Hexachloroethane		UG/L	ND	ND	ND	ND	ND
Isophorone	1.53	UG/L	ND	33.8	ND	ND	8.5
bis(2-chloroethoxy)methane	1.01	UG/L	ND	ND	ND	ND	ND
1,2,4-trichlorobenzene	1.52	UG/L	ND	ND	ND	ND	ND
Naphthalene	1.65	UG/L	ND	ND	ND	ND	ND
Hexachlorobutadiene		UG/L	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene		UG/L	ND	ND	ND	ND	ND
Acenaphthylene		UG/L	ND	ND	ND	ND	ND
Dimethyl phthalate		UG/L	ND	ND	ND	ND	ND
2,6-dinitrotoluene		UG/L	ND	ND	ND	ND	ND
Acenaphthene	1.8	UG/L	ND	ND	ND	ND	ND
2,4-dinitrotoluene		UG/L	ND	ND	ND	ND	ND
Fluorene		UG/L	ND	ND	ND	ND ND	ND ND
4-chlorophenyl phenyl ether Diethyl phthalate		UG/L UG/L	ND 10.8	ND 13.2	ND 9.7	8.9	ND 10.7
N-nitrosodiphenylamine		UG/L UG/L	ND	IJ.Z ND	ND	ND	ND
4-bromophenyl phenyl ether	1.4	UG/L	ND	ND	ND	ND	ND
Hexachlorobenzene		UG/L	ND	ND	ND	ND	ND
Phenanthrene		UG/L	ND	ND	ND	ND	ND
Anthracene		UG/L	ND	ND	ND	ND	ND
Di-n-butyl phthalate		UG/L	ND	ND	ND	ND	ND
N-nitrosodimethylamine	1.27	UG/L	ND	ND	ND	ND	ND
Fluoranthene	1.33	UG/L	ND	ND	ND	ND	ND
Pyrene	1.43	UG/L	ND	ND	ND	ND	ND
Benzidine	1.52	UG/L	ND	ND	ND	ND	ND
Butyl benzyl phthalate		UG/L	3.9	ND	ND	ND	1.0
Chrysene		UG/L	ND	ND	ND	ND	ND
Benzo[A]anthracene	1.1	UG/L	ND	ND	ND	ND	ND
Bis-(2-ethylhexyl) phthalate		UG/L	10.3	11.1	12.2	23.6	14.3
Di-n-octyl phthalate	1	UG/L	ND	ND	ND	ND	ND
3,3-dichlorobenzidine		UG/L	ND	ND	ND	ND	ND
Benzo[K]fluoranthene		UG/L	ND	ND	ND	ND	ND
3,4-benzo(B)fluoranthene Benzo[A]pyrene		UG/L UG/L	ND ND	ND ND	ND ND	ND ND	ND ND
Indeno(1,2,3-CD)pyrene		UG/L UG/L	ND	ND ND	ND	ND	ND
Dibenzo(A,H)anthracene		UG/L	ND	ND	ND	ND	ND
Benzo[G,H,I]perylene		UG/L	ND	ND	ND	ND	ND
=======================================		/	=====			=====	
1,2-diphenylhydrazine		UG/L	ND	ND	ND	ND	ND
Polynuc. Aromatic Hydrocarbons			0.0	0.0	0.0	0.0	0.0
	====	=====	=====	=====	=====	=====	=====
Base/Neutral Compounds	8.96	UG/L	25.0	58.1	21.9	32.5	34.4
1-methylnaphthalene	2.18	UG/L	ND	ND	ND	ND	ND
2-methylnaphthalene		UG/L	ND	ND	ND	ND	ND
2,6-dimethylnaphthalene		UG/L	ND	ND	ND	ND	ND
2,3,5-trimethylnaphthalene	2 18	UG/L	ND	ND	ND	ND	ND
1-methylphenanthrene	1.46	UG/L	ND	ND	ND	ND	ND
Benzo[e]pyrene	1.46 1.44	UG/L	ND	ND	ND	ND	ND
	1.46 1.44 1.41						

SOUTH BAY WATER RECLAMATION PLANT SEWAGE ANNUAL Priority Pollutants Purgeables

Annual 2010

Analyte	MDL	Units	EFF FEB	EFF MAY	EFF AUG	EFF OCT	EFF Average
=======================================	====	=====	=====				=====
Dichlorodifluoromethane	.66	UG/L	ND	ND	ND	ND	ND
Chloromethane	.5	UG/L	ND	ND	ND	ND	ND
Vinyl chloride	.4	UG/L	ND	ND	ND	ND	ND
Bromomethane	.7	UG/L	ND	ND	ND	ND	ND
Chloroethane Trichlorofluoromethane	.9 .3	UG/L UG/L	ND ND	ND ND	ND ND	ND ND	ND ND
Acrolein	1.3	UG/L UG/L	ND	ND	ND	ND ND	ND
1,1-dichloroethane	.4	UG/L	ND	ND	ND	ND	ND
Methylene chloride	.3	UG/L	2.1	0.5	0.8	2.7	1.5
trans-1,2-dichloroethene	.6	UG/L	ND	ND	ND	ND	ND
1,1-dichloroethene	.4	UG/L	ND	ND	ND	ND	ND
Acrylonitrile	.7	UG/L	ND	ND	ND	ND	ND
Chloroform	.2	UG/L	0.5	0.6	1.0	0.5	0.7
1,1,1-trichloroethane	.4	UG/L	ND	ND	ND	ND	ND
Carbon tetrachloride	.4	UG/L	ND	ND	ND	ND	ND
Benzene	.4	UG/L	ND	ND	ND	ND	ND
1,2-dichloroethane	.5	UG/L	ND	ND	ND	ND	ND
Trichloroethene	.7	UG/L	ND	ND	ND	ND	ND
1,2-dichloropropane	.3	UG/L	ND	ND	ND	ND	ND
Bromodichloromethane	.5	UG/L	ND	ND	ND	ND	ND
2-chloroethylvinyl ether	1.1	UG/L	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	.3	UG/L	ND	ND	ND	ND	ND
Toluene	.4 .5	UG/L UG/L	ND	ND	ND	ND	ND
trans-1,3-dichloropropene 1,1,2-trichloroethane	.5 .5	UG/L UG/L	ND ND	ND ND	ND ND	ND ND	ND ND
Tetrachloroethene	1.1	UG/L UG/L	ND	ND	ND	ND ND	ND
Dibromochloromethane	.6	UG/L UG/L	ND	ND	ND	ND	ND
Chlorobenzene	.4	UG/L	ND	ND	ND	ND	ND
Ethylbenzene	.3	UG/L	ND	ND	ND	ND	ND
Bromoform	.5	UG/L	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	.5	UG/L	ND	ND	ND	ND	ND
1,3-dichlorobenzene	.5	UG/L	ND	ND	ND	ND	ND
1,4-dichlorobenzene	.4	UG/L	ND	ND	ND	ND	ND
1,2-dichlorobenzene	.4	UG/L	ND	ND	ND	ND	ND
	====	=====	=====	=====	=====	=====	=====
Halomethane Purgeable Cmpnds		UG/L	0.0	0.0	0.0	0.0	0.0
				=====			
Total Dichlorobenzenes	.5	UG/L	0.0	0.0	0.0	0.0	0.0
Total Chloromethanes	.5	UG/L	2.6	1.1	1.8	3.2	2.2
	====	=====	=====	=====	=====	====	=====
Purgeable Compounds	1.3	UG/L	2.6	1.1	1.8	3.2	2.2
	====		=====	=====	=====	=====	=====
Methyl Iodide	.6	UG/L	ND	ND	ND	ND	ND
Carbon disulfide	.6_	UG/L	ND	ND	ND	ND	ND
Acetone	4.5	UG/L	ND	ND	ND	ND	ND
Allyl chloride	.6	UG/L	ND	ND	ND	ND	ND
Methyl tert-butyl ether	.4	UG/L	ND	ND	ND	ND	ND
Chloroprene 1,2-dibromoethane	.4 .3	UG/L	ND	ND	ND	ND	ND
2-butanone	.s 6.3	UG/L UG/L	ND	ND	ND	ND	ND
Methyl methacrylate	.8	UG/L UG/L	ND ND	ND ND	ND ND	ND ND	ND ND
2-nitropropane	.8 12	UG/L UG/L	ND	ND ND	ND ND	ND ND	ND
4-methyl-2-pentanone	1.3	UG/L UG/L	ND	ND	ND	ND	ND
meta, para xylenes	.6	UG/L	ND	ND	ND	ND	ND
ortho-xylene	.4	UG/L	ND	ND	ND	ND	ND
Isopropylbenzene	.3	UG/L	ND	ND	ND	ND	ND
Styrene	.3	UG/L	ND	ND	ND	ND	ND
Benzyl chloride	1.1	UG/L	ND	ND	ND	ND	ND
1,2,4-trichlorobenzene	1.52	UG/L	ND	ND	ND	ND	ND

SOUTH BAY WATER RECLAMATION PLANT SEWAGE ANNUAL Priority Pollutants Purgeables

Annual 2010

Analyte	MDL	Units	INF FEB	INF MAY	INF AUG	INF OCT	INF Average
	====	=====	=====			=====	=====
Dichlorodifluoromethane	.66	UG/L	ND	ND	ND	ND	ND
Chloromethane	.5	UG/L	ND	ND	ND	ND	ND
Vinyl chloride	.4	UG/L	ND	ND	ND	ND	ND
Bromomethane Chloroethane	.7 .9	UG/L UG/L	ND ND	ND ND	ND ND	ND ND	ND ND
Trichlorofluoromethane	.3	UG/L UG/L	ND	ND	ND	ND	ND
Acrolein	1.3	UG/L	ND	ND	ND	ND	ND
1,1-dichloroethane	.4	UG/L	ND	ND	ND	ND	ND
Methylene chloride	.3	UG/L	1.4	1.8	2.2	10.2	3.9
trans-1,2-dichloroethene	.6	UG/L	ND	ND	ND	ND	ND
1,1-dichloroethene	.4	UG/L	ND	ND	ND	ND	ND
Acrylonitrile	.7	UG/L	ND	ND	ND	ND	ND
Chloroform	.2	UG/L	1.8	2.2	3.2	1.7	2.2
1,1,1-trichloroethane	.4	UG/L	ND	ND	ND	ND	ND
Carbon tetrachloride	.4	UG/L	ND	ND	ND	ND	ND
Benzene	.4	UG/L	ND	ND	ND	ND	ND
1,2-dichloroethane Trichloroethene	.5 .7	UG/L UG/L	ND ND	ND ND	ND ND	ND ND	ND ND
1,2-dichloropropane	.3	UG/L UG/L	ND	ND	ND	ND	ND
Bromodichloromethane	.5	UG/L	ND	ND	ND	ND	ND
2-chloroethylvinyl ether	1.1	UG/L	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	.3	UG/L	ND	ND	ND	ND	ND
Toluene	.4	UG/L	0.5	0.6	0.8	0.8	0.7
trans-1,3-dichloropropene	.5	UG/L	ND	ND	ND	ND	ND
1,1,2-trichloroethane	.5	UG/L	ND	ND	ND	ND	ND
Tetrachloroethene	1.1	UG/L	ND	ND	ND	ND	ND
Dibromochloromethane	.6	UG/L	ND	ND	ND	ND	ND
Chlorobenzene	.4	UG/L	ND	ND	ND	ND	ND
Ethylbenzene	.3	UG/L	ND	ND	ND	ND	ND
Bromoform	.5 .5	UG/L	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane 1,3-dichlorobenzene	.5	UG/L UG/L	ND ND	ND ND	ND ND	ND ND	ND ND
1,4-dichlorobenzene	. 4	UG/L UG/L	0.6	0.8	1.1	0.6	0.8
1,2-dichlorobenzene	.4	UG/L	ND	ND	ND	ND	ND
				=====			
Halomethane Purgeable Cmpnds	.7	UG/L	0.0	0.0	0.0	0.0	0.0
	====	=====	=====	=====	=====	=====	=====
Total Dichlorobenzenes	.5	UG/L	0.0	0.0	0.0	0.0	0.0
				=====			
Total Chloromethanes	.5	UG/L	3.2	4.0	5.4	11.9	6.1
Purgeable Compounds	1.3	===== UG/L	===== 4.3	===== 5.4	7.3	13.3	===== 7.6
=======================================				=====			
Methyl Iodide	.6	UG/L	ND	ND	ND	ND	ND
Carbon disulfide	.6	UG/L	1.6	4.6	1.3	1.9	2.4
Acetone	4.5	UG/L	120	199	173	168	165
Allyl chloride	.6	UG/L	ND	ND	ND	ND	ND
Methyl tert-butyl ether	.4	UG/L	ND	ND	ND	ND	ND
Chloroprene	.4	UG/L	ND	ND	ND	ND	ND
1,2-dibromoethane	.3	UG/L	ND	ND	ND	ND	ND
2-butanone	6.3	UG/L	ND	ND	9.8	12.8	5.7
Methyl methacrylate	.8	UG/L	ND	ND	ND	ND	ND
2-nitropropane	12	UG/L	ND	ND	ND	ND	ND
4-methyl-2-pentanone	1.3	UG/L	ND	ND	ND	ND ND	ND
meta,para xylenes ortho-xylene	.6 .4	UG/L UG/L	ND ND	ND ND	ND ND	ND ND	ND ND
Isopropylbenzene	.4	UG/L UG/L	ND	ND	ND	ND	ND
Styrene	.3	UG/L UG/L	ND	ND	ND	ND	ND
Benzyl chloride	1.1	UG/L	ND	ND	ND	ND	ND
1,2,4-trichlorobenzene		UG/L	ND	ND	ND	ND	ND

				INF	INF	INF	INF
Analyte	MDL	Units	Equiv	JAN P502514	FEB P504507	MAR P512089	APR P514107
-	===		_		==========		==========
2,3,7,8-tetra CDD		PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD		PG/L PG/L	0.500 0.100	ND ND	ND ND	ND ND	ND ND
1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD	98	PG/L PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD		PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD			0.010	ND	ND	ND	ND
octa CDD		PG/L	0.001	ND	ND	ND	ND
2,3,7,8-tetra CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8-penta CDF		PG/L	0.050	ND	ND	ND	ND
2,3,4,7,8-penta CDF		PG/L DC/I	0.500	ND ND	ND	ND ND	ND ND
1,2,3,4,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF		PG/L PG/L	0.100 0.100	ND	ND ND	ND	ND
1,2,3,7,8,9-hexa CDF		PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDF	90	PG/L	0.010	ND	ND	ND	ND
1,2,3,4,7,8,9-hepta CDF			0.010	ND	ND	ND	ND
octa CDF	222	PG/L	0.001	ND	ND	ND	ND
				INF	INF	INF	INF
				MAY	JUN	JUL	AUG
Analyte ====================================		Units ========	Equiv	P515501	P520723	P524640	P525067
2,3,7,8-tetra CDD		PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD	123	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD	113	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	98	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD		PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD octa CDD		PG/L PG/L	0.010 0.001	ND ND	ND ND	ND ND	ND ND
2,3,7,8-tetra CDF		PG/L PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8-penta CDF		PG/L	0.050	ND	ND	ND	ND
2,3,4,7,8-penta CDF		PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF	147	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDF	107	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDF		PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDF 1,2,3,4,7,8,9-hepta CDF		PG/L DC/L	0.010	ND ND	ND	ND	ND ND
octa CDF		PG/L PG/L	0.010 0.001	ND	ND ND	ND ND	ND ND
	222	10/1	0.001	ne	nD	112	n.
				INF	INF	INF	INF
Dura la tra	MDI	The data of		SEP	OCT	NOV	DEC
Analyte ====================================		Units =========	Equiv =====	P531924	P533616	P540027	P543578
2,3,7,8-tetra CDD		PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD		PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD		PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	98	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD		PG/L DC/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD octa CDD		PG/L PG/L	0.010 0.001	ND ND	ND ND	ND ND	ND ND
2,3,7,8-tetra CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8-penta CDF		PG/L	0.050	ND	ND	ND	ND
2,3,4,7,8-penta CDF		PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF	147	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDF		PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDF		PG/L DC/I	0.010	ND	ND	ND	ND
1,2,3,4,7,8,9-hepta CDF octa CDF		PG/L PG/L	0.010 0.001	ND ND	ND ND	ND ND	ND ND
		20/1	3.00I	ИD	ND	ND	ND

Above are permit required CDD/CDF isomers. ND= not detected

SOUTH BAY WATER RECLAMATION PLANT Annual Sewage Dioxin and Furan Analysis

Annual 2010

				EFF JAN	EFF FEB	EFF MAR	EFF APR
Analyte ====================================	MDL ===	Units ========	Equiv =====	P502518	P504512	P512092	P514111 =======
2,3,7,8-tetra CDD	125	PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD	123	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD	113	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	98	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD		PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD			0.010	ND	ND	ND	ND
octa CDD		PG/L	0.001	ND	ND	ND	ND
2,3,7,8-tetra CDF		PG/L PG/L	0.100 0.050	ND ND	ND	ND ND	ND ND
1,2,3,7,8-penta CDF 2,3,4,7,8-penta CDF		PG/L PG/L	0.500	ND	ND ND	ND	ND
1,2,3,4,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDF		PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDF	90	PG/L	0.010	ND	ND	ND	ND
1,2,3,4,7,8,9-hepta CDF	166	PG/L	0.010	ND	ND	ND	ND
octa CDF	222	PG/L	0.001	ND	ND	ND	ND
				EFF	EFF	EFF	EFF
				MAY	JUN	JUL	AUG
Analyte		Units	Equiv	P515506	P520727	P524644	P525072
======================================		====== PG/L	1.000	========= ND	=========== ND	========== ND	ND
1,2,3,7,8-penta CDD		PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD		PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	98	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD	111	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD	137	PG/L	0.010	ND	ND	ND	ND
octa CDD		PG/L	0.001	ND	ND	ND	ND
2,3,7,8-tetra CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8-penta CDF		PG/L	0.050	ND	ND	ND	ND
2,3,4,7,8-penta CDF		PG/L DC/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF		PG/L PG/L	0.100 0.100	ND ND	ND ND	ND ND	ND ND
1,2,3,7,8,9-hexa CDF		PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDF		PG/L	0.010	ND	ND	ND	ND
1,2,3,4,7,8,9-hepta CDF			0.010	ND	ND	ND	ND
octa CDF	222	PG/L	0.001	ND	ND	ND	ND
				EFF	EFF	EFF	EFF
				SEP	OCT	NOV	DEC
Analyte		Units	Equiv	P531928	P533621	P540031	P543582
2,3,7,8-tetra CDD	=== 1 0 E	====== PG/L	===== 1.000	=========	======================================	======================================	======================================
1,2,3,7,8-penta CDD		PG/L PG/L	0.500	ND ND	ND ND	ND ND	ND ND
1,2,3,4,7,8_hexa_CDD		PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	98	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD		PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD			0.010	ND	ND	ND	ND
octa CDD	247	PG/L	0.001	ND	ND	ND	ND
2,3,7,8-tetra CDF	115	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8-penta CDF		PG/L	0.050	ND	ND	ND	ND
2,3,4,7,8-penta CDF		PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDF		PG/L DC/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF 1,2,3,4,6,7,8-hepta CDF		PG/L PG/L	0.100 0.010	ND ND	ND ND	ND ND	ND ND
1,2,3,4,7,8,9-hepta CDF		PG/L PG/L	0.010	ND ND	ND ND	ND	ND ND
octa CDF		PG/L	0.010	ND	ND	ND	ND
		-, -		10	112	10	1.0

Above are permit required CDD/CDF isomers. ND= not detected

SOUTH BAY WATER RECLAMATION PLANT Annual Sewage Dioxin and Furan Analysis

Annual 2010

ual 2010				INF TCCD JAN	INF TCCD FEB	INF TCCD MAR	INF TCCD APR
Analyte ====================================		Units	Equiv	P502514	P504507	P512089	P514107
2,3,7,8-tetra CDD		PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD	123	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD	113	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	98	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD		PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD			0.010	ND	ND	ND	ND
octa CDD		PG/L	0.001	ND	ND	ND	ND
2,3,7,8-tetra CDF 1,2,3,7,8-penta CDF		PG/L PG/L	0.100 0.050	ND ND	ND ND	ND ND	ND ND
2,3,4,7,8-penta CDF		PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDF		PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF	148	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDF	90	PG/L	0.010	ND	ND	ND	ND
1,2,3,4,7,8,9-hepta CDF			0.010	ND	ND	ND	ND
octa CDF	222	PG/L	0.001	ND	ND	ND	ND
				INF	INF	INF	INF
				TCCD	TCCD	TCCD	TCCD
				MAY	JUN	JUL	AUG
Analyte ====================================		Units ========	Equiv =====	P515501	P520723	P524640	P525067
2,3,7,8-tetra CDD		PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD	123	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD		PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	98	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD		PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD		PG/L PG/L	0.010 0.001	ND	ND	ND	ND ND
octa CDD 2,3,7,8-tetra CDF		PG/L PG/L	0.100	ND ND	ND ND	ND ND	ND
1,2,3,7,8-penta CDF		PG/L	0.050	ND	ND	ND	ND
2,3,4,7,8-penta CDF		PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDF	107	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDF	152	PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDF		PG/L	0.010	ND	ND	ND	ND
1,2,3,4,7,8,9-hepta CDF octa CDF		PG/L PG/L	0.010 0.001	ND ND	ND ND	ND ND	ND ND
octa cbr	222	10/1	0.001				
				INF	INF	INF	INF
				TCCD	TCCD	TCCD	TCCD
Analyte	MDT.	Units	Equiv	SEP P531924	OCT P533616	NOV P540027	DEC P543578
_			=====	===========			=========
2,3,7,8-tetra CDD	125	PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD		PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD		PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	98	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD		PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD octa CDD		PG/L PG/L	0.010 0.001	ND ND	ND ND	ND ND	ND ND
2,3,7,8-tetra CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8-penta CDF		PG/L	0.050	ND	ND	ND	ND
2,3,4,7,8-penta CDF		PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDF		PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDF		PG/L	0.010	ND	ND	ND	ND
1,2,3,4,7,8,9-hepta CDF			0.010	ND	ND	ND	ND
octa CDF Above are permit red		PG/L -d CDD/CDF	0.001 isomer	ND S NI	ND D= not detecte	DN	ND
ADOVE ALE PETIMIC IEC	JUTT		TROMET	J. INI	- not detecte	u	

SOUTH BAY WATER RECLAMATION PLANT Annual Sewage Dioxin and Furan Analysis Annual 2010 Effluent Limit (TCDD): 0.37 pg/L (30-day Average)

Ident Limit (ICDD), 0.37 }	рд/ц	(SU-day AV	/erage)				
				EFF	EFF	EFF	EFF
				TCCD	TCCD	TCCD	TCCD
				JAN	FEB	MAR	APR
Analyte	MDL	Units	Equiv	P502518	P504512	P512092	P514111
		========					
2,3,7,8-tetra CDD	125	PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD	123	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD	113	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	98	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD		PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD			0.010	ND	ND	ND	ND
octa CDD		PG/L	0.001	ND	ND	ND	ND
2,3,7,8-tetra CDF	115	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8-penta CDF	140	PG/L	0.050	ND	ND	ND	ND
2,3,4,7,8-penta CDF	118	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF	147	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDF		PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDF	90	PG/L	0.010	ND	ND	ND	ND
1,2,3,4,7,8,9-hepta CDF	166	PG/L	0.010	ND	ND	ND	ND
octa CDF	222	PG/L	0.001	ND	ND	ND	ND
				EFF	EFF	EFF	EFF
				TCCD	TCCD	TCCD	TCCD
				MAY	JUN	JUL	AUG
Analyte		Units	Equiv	P515506	P520727	P524644	P525072
	===						
2,3,7,8-tetra CDD	125	PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD	123	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD	113	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	98	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD		PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD			0.010	ND	ND	ND	ND
octa CDD		PG/L	0.001	ND	ND	ND	ND
2,3,7,8-tetra CDF	115	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8-penta CDF	140	PG/L	0.050	ND	ND	ND	ND
2,3,4,7,8-penta CDF	118	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDF		PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDF	90	PG/L	0.010	ND	ND	ND	ND
1,2,3,4,7,8,9-hepta CDF	166	PG/L	0.010	ND	ND	ND	ND
octa CDF	222	PG/L	0.001	ND	ND	ND	ND
				EFF	EFF	EFF	EFF
				TCCD	TCCD	TCCD	TCCD
				SEP	OCT	NOV	DEC
Par a la cha	MDT	TT					
Analyte		Units	Equiv	P531928	P533621	P540031	P543582
			=====				
2,3,7,8-tetra CDD		PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD	123	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD	113	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	98	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD		PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD					ND	ND	ND
· · · · · · ·			0.010	ND			
octa CDD		PG/L	0.001	ND	ND	ND	ND
2,3,7,8-tetra CDF	115	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8-penta CDF	140	PG/L	0.050	ND	ND	ND	ND
2,3,4,7,8-penta CDF	118	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDF		PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDF	90	PG/L	0.010	ND	ND	ND	ND
1,2,3,4,7,8,9-hepta CDF	166	PG/L	0.010	ND	ND	ND	ND
octa CDF		PG/L	0.001	ND	ND	ND	ND

Above are permit required CDD/CDF isomers.