IV. Combined Ocean Outfall Data

Data Summaries

This section presents the results of analyses of the combined or mixed effluent stream being discharged to the South Bay Ocean Outfall from the South Bay Wastewater Reclamation and International Wastewater Treatment Plant for 2011.

SB_ITP_COMB_EFF designates a composite sample taken at a point downstream of the discharges of both plants where the wastewater stream is a mixture of both effluents (the secondary or tertiary effluent from SBWRP and the primary effluent from the IWTP).

Sampling and monitoring analyses occurred quarterly in February, May, August and October.

Discharge limits do not apply to this combined flow; but quarterly monitoring is required.

SOUTH BAY WATER RECLAMATION PLANT COMBINED OUTFALL

Annual 2011

Source: SB_ITP_COMB_EFF

Source: SB_ITP_COMB_EFF			01 FFD 2011	02 FFR 2011	1E EED 2011	Q2 MAY 2011	A2 AUC 2011
Date:	MDL	Units	01-FEB-2011	03-FEB-2011	15-FEB-2011	03-MAY-2011	02-AUG-2011
			========	========	========	========	=========
Aluminum	47	UG/L		439		ND	112
Antimony	2.9	UG/L		ND		ND	3.2
Arsenic	.4	UG/L		1.0		2.0	2.33
Barium	.039	UG/L		35.2		2.7	37.7
Beryllium	.022	UG/L		ND		0.03	0.06
Boron	7	UG/L		445		72.8	424
Cadmium	.53	UG/L		ND		ND	ND
Chromium	1.2	UG/L		2.4		ND	4.5
Cobalt	.85	UG/L		ND		ND	ND
Copper	2	UG/L		52		3.9	33.6
Iron	37	UG/L		1550		37	2550
Lead	2	UG/L		22.2		2.3	2.4
Manganese	. 24	UG/L		101		20.5	112
Mercury	.005	UG/L		0.02		0.01	0.04
Molybdenum	.89	UG/L		7.7		2.1	8.1
Nickel	.53	UG/L		15		3.6	13.2
Selenium	.28	UG/L		1.0		1.0	1.23
Silver	.4	UG/L		ND		ND	ND
Thallium	3.9	UG/L		ND		ND	ND
Vanadium	.64	UG/L		2.0		1.0	4.0
Zinc	2.5	UG/L		46.7		6.0	53.9
		======	=========	========	========	========	========
Calcium Hardness	.1	MG/L		226		217	229
Magnesium Hardness	.4	MG/L		153		157	179
Total Hardness	.4	MG/L		378		374	408
Total Alkalinity (bicarbonate)	20	MG/L		280		204	163
			=========		========		
Calcium	.04	MG/L		90		87	92
Lithium		MG/L		0.05		0.04	0.06
Magnesium	.1	MG/L		37		38	43
Potassium	.3	MG/L		22		22	24
Sodium	1	MG/L		256		253	296
Bromide	.1	====== MG/L	========	0.44	========	1 02	0 F2
Chloride	. 1 7	•		0.44		1.03 358	0.52
	.05	MG/L		313			363
Fluoride		MG/L		0.59		0.64 50.7	0.69
Nitrate	.04	MG/L		11.5			59
Ortho Phosphate	.2 9	MG/L		2.29		3.04	3.87
Sulfate	-	MG/L		305		267	358
Cyanides, Total		MG/L		0.009		0.005	0.005
Sulfides-Total		MG/L	=========	0.33		ND	ND
BOD (Biochemical Oxygen Demand)		MG/L			58.2	33.4	78.8
Total Suspended Solids	1.4	MG/L		120		7.5	158
Volatile Suspended Solids	1.6	MG/L		90		6.0	130
Total Dissolved Solids	28	MG/L		1230		1290	1680
Settleable Solids	.1	ML/L	0.3			ND	0.4
рН		PH	7.3			7.2	7.4
Turbidity	.13	NTU		31.1		2.3	39.5
Chlorine Residual, Total	.03	MG/L	ND			ND	0.1
Ammonia-N	.3	MG/L		22		6.4	2.1
Total Kjeldahl Nitrogen	1.6	MG/L		32.3		6.9	10.9
5		•					

ND= Not Detected NA= Not Analyzed NS= Not Sampled

Chromium results are for Total Chromium

SOUTH BAY WATER RECLAMATION PLANT COMBINED OUTFALL

Annual 2011

Source: SB_ITP_COMB_EFF

Source: SB_ITP_COMB_EFF				
Date:			04-0CT-2011	05-0CT-2011
	MDL	Units		
=======================================	====	======		
Aluminum	47	UG/L	246	
Antimony	2.9	UG/L	ND	
Arsenic	.4	UG/L	2.68	
Barium	.039	UG/L	22	
Beryllium	.022	UG/L	ND	
Boron	7	UG/L	474	
Cadmium	.53	UG/L	ND	
Chromium	1.2	UG/L	2.0	
Cobalt	.85	UG/L	ND	
Copper	2	UG/L	7.4	
Iron	37	UG/L	579	
Lead	2	UG/L	ND	
Manganese	.24	UG/L	62.8	
Mercury		UG/L	0.02	
Molybdenum	.89	UG/L	7.6	
Nickel	.53	UG/L	14.6	
Selenium	.28	UG/L	0.93	
Silver	.4	UG/L	ND	
Thallium	3.9	UG/L	ND ND	
Vanadium	.64		0.9	
		UG/L		
Zinc ====================================	2.5	UG/L	24.8	
Calcium Hardness	.1	MG/L	219	
Magnesium Hardness	.4	MG/L	173	
Total Hardness	.4	MG/L	392	
Total Alkalinity (bicarbonate)	20	MG/L	181	
C-1-4::::				========
Calcium	.04	MG/L	88	
Lithium		MG/L	0.07	
Magnesium	.1	MG/L	42	
Potassium	.3	MG/L	25	
Sodium	1	MG/L	293	
				========
Bromide	.1	MG/L	0.44	
Chloride	7	MG/L	358	
Fluoride	.05	MG/L	0.65	
Nitrate	.04	MG/L	33.8	
Ortho Phosphate	.2	MG/L	16.9	
Sulfate	9	MG/L	360	
Cyanides,Total		MG/L	0.005	
Sulfides-Total	.18	MG/L	ND	
			========	========
BOD (Biochemical Oxygen Demand)		MG/L	47.5	
Total Suspended Solids	1.4	MG/L	26.7	
Volatile Suspended Solids	1.6	MG/L	16.7	
Total Dissolved Solids	28	MG/L	1180	
Settleable Solids	.1	ML/L	0.2	
рН		PH	7.2	
Turbidity	.13	NTU	7.9	
Chlorine Residual, Total	.03	MG/L		0.04
Ammonia-N	.3	MG/L	3.3	
Total Kjeldahl Nitrogen	1.6	MG/L	9.1	

ND= Not Detected NA= Not Analyzed NS= Not Sampled

Chromium results are for Total Chromium

SOUTH BAY WATER RECLAMATION PLANT ANNUAL SEWAGE: COMBINED OUTFALL (SB_ITP_COMB_EFF) Temperature

Annual 2011

	Temperature GRAB (C)
========	========
01-FEB-2011	19.7
03-MAY-2011	24.8
02-AUG-2011	26.9
04-0CT-2011	24.2
========	========
Average:	23.9
Maximum:	26.9
Minimum:	19.7

SOUTH BAY WATER RECLAMATION PLANT ANNUAL SEWAGE: COMBINED EFFLUENT (SB_ITP_COMB_EFF)

Ammonia-Nitrogen and Total Cyanides

Annual 2011

Analyte: MDL: Source:	Ammonia-N .3 MG/L COMB EFF	Cyanides,Total .002 MG/L COMB EFF
Source.	COMB EFF	COMB EFF
=========	=========	==========
FEBRUARY -2011	21.8	0.009
MAY -2011	6.4	0.005
AUGUST -2011	2.1	0.005
OCTOBER -2011	3.3	0.005
		==========
Average:	8.4	0.006

SOUTH BAY WATER RECLAMATION PLANT ANNUAL SEWAGE: COMBINED OUTFALL (SB_ITP_COMB_EFF) Radioactivity

Annual 2011

Source	Month		Gross Alpha Radiation
==========			=======================================
SB_ITP_COMB_EFF	FEBRUARY	-2011	0.9 ± 3.0
SB_ITP_COMB_EFF	MAY	-2011	4.4 ± 2.6
SB_ITP_COMB_EFF	AUGUST	-2011	4.8 ± 3.1
SB_ITP_COMB_EFF	OCTOBER	-2011	-0.2 ± 5.3
==========	=======	=====	
AVERAGE			2.5 ± 3.5

Source	Month		Gross Beta Radiation
==========	=======	=====	
SB_ITP_COMB_EFF	FEBRUARY	-2011	27.9 ± 7.4
SB_ITP_COMB_EFF	MAY	-2011	24.7 ± 6.9
SB_ITP_COMB_EFF	AUGUST	-2011	27.6 ± 7.3
SB_ITP_COMB_EFF	OCTOBER	-2011	26.9 ± 6.1
	=======		===========
AVERAGE			26.8 ± 6.9

Units in picocuries/liter (pCi/L)

SOUTH BAY WATER RECLAMATION PLANT QUARTTERLY SEWAGE - COMBINED EFFLUENT

Chlorinated Pesticide Analysis

Annual 2011

			COMB_EFF	COMB_EFF 03-MAY-2011	COMB_EFF	COMB_EFF	COMB_EFF
Analyte	MDL	Units	03-FEB-2011	03-MAY-2011	02-AUG-2011	04-0C1-2011	Avg
Aldnin	==== 7	===== NC /I	ND	=======	ND	ND	ND
Aldrin Dieldrin	3	NG/L	ND ND	ND ND	ND ND	ND ND	ND ND
	5 7	NG/L	ND ND	ND ND	ND ND	ND ND	ND ND
BHC, Alpha isomer		NG/L					ND
BHC, Beta isomer	3 5	NG/L	ND	ND	ND	ND	ND
BHC, Gamma isomer		NG/L	ND	ND	ND	ND	ND
BHC, Delta isomer	3	NG/L	ND	ND	ND	ND	ND
p,p-DDD	3	NG/L	ND	ND	ND	ND	ND
p,p-DDE	4	NG/L	ND	ND	ND	ND	ND
p,p-DDT	8	NG/L	ND	ND	ND	ND	ND
o,p-DDD	4	NG/L	ND	ND	ND	ND	ND
o,p-DDE	5	NG/L	ND	ND	ND	ND	ND
o,p-DDT	3	NG/L	ND	ND	ND	ND	ND
Heptachlor	8	NG/L	ND	ND	ND	ND	ND
Heptachlor epoxide	4	NG/L	ND	ND	ND	ND	ND
Alpha (cis) Chlordane	3	NG/L	ND	ND	ND	ND	ND
Gamma (trans) Chlordane	4	NG/L	ND	ND	ND	ND	ND
Alpha Chlordene		NG/L	NA	NA	NA	NA	NA
Gamma Chlordene		NG/L	NA	NA	NA	NA	NA
Oxychlordane	6	NG/L	ND	ND	ND	ND	ND
Trans Nonachlor	5	NG/L	ND	ND	ND	ND	ND
Cis Nonachlor	3	NG/L	ND	ND	ND	ND	ND
Alpha Endosulfan	4	NG/L	ND	ND	ND	ND	ND
Beta Endosulfan	2	NG/L	ND	ND	ND	ND	ND
Endosulfan Sulfate	6	NG/L	ND	ND	ND	ND	ND
Endrin	2	NG/L	ND	ND	ND	ND	ND
Endrin aldehyde	9	NG/L	ND.	ND	ND.	ND	ND
Mirex	10	NG/L	ND.	ND	ND	ND	ND
Methoxychlor	10	NG/L	ND.	ND ND	ND ND	ND ND	ND
Toxaphene	330	NG/L	ND.	ND ND	ND.	ND ND	ND
PCB 1016	4000		ND	ND ND	ND ND	ND ND	ND ND
PCB 1221		NG/L	ND ND	ND ND	ND ND	ND ND	ND ND
PCB 1221 PCB 1232	360	NG/L	ND ND	ND ND	ND ND	ND ND	ND ND
PCB 1232 PCB 1242		NG/L	ND ND	ND ND	ND ND	ND ND	ND ND
PCB 1242 PCB 1248		NG/L	ND ND	ND ND	ND ND	ND ND	ND ND
PCB 1248 PCB 1254		NG/L					ND ND
			ND	ND	ND	ND	
PCB 1260		NG/L	ND	ND	ND	ND	ND
PCB 1262	930	NG/L	ND	ND	ND	ND	ND
Aldrin + Dieldrin	7	NG/L	0	0	0	0	0
Hexachlorocyclohexanes	7	NG/L	0	0	0	0	0
DDT and derivatives	8	NG/L	0	0	0	0	0
			0	0	0	0	0
Chlordane + related cmpds.		NG/L	0	0	0	0	0
Polychlorinated biphenyls	4000						
Endosulfans	6 ====	NG/L	0	0	0	0	0
Heptachlors	8	NG/L	0	0	0	0	0
======================================		===== NG/L	0	0	0	0	0
Chian Thaten Hydrocarbons	4000	NG/ L	0	0	0	О	0

Standards for alpha and gamma chlordene are no longer available in the U.S. for the analysis of these compounds. $ND=not\ detected$

SOUTH BAY WATER RECLAMATION PLANT COMBINED EFFLUENT

Acid Extractables

Annual 2011

Source: SB_ITP_COMB_EFF

		FEB	MAY	AUG	OCT	
MDL	Units					Avg
====	=====	=====	=====	=====	=====	=====
1.32	UG/L	ND	ND	ND	ND	ND
1.01	UG/L	ND	ND	ND	ND	ND
1.67	UG/L	ND	ND	ND	ND	ND
1.65	UG/L	ND	ND	ND	ND	ND
1.12	UG/L	ND	ND	ND	ND	ND
1.76	UG/L	ND	ND	ND	ND	ND
1.55	UG/L	ND	ND	ND	ND	ND
2.01	UG/L	ND	ND	ND	ND	ND
2.16	UG/L	ND	ND	ND	ND	ND
1.14	UG/L	ND	ND	ND	ND	ND
1.52	UG/L	ND	ND	ND	ND	ND
====	=====	=====	=====	=====	=====	=====
1.67	UG/L	0.0	0.0	0.0	0.0	0.0
2.16	UG/L	0.0	0.0	0.0	0.0	0.0
2.16	UG/L	0.0	0.0	0.0	0.0	0.0
====	=====	=====	=====	=====	=====	=====
2.15	UG/L	ND	ND	ND	ND	ND
	UG/L	NA	NA	NA	NA	NA
2.11	UG/L	ND	ND	ND	ND	ND
1.66	UG/L	ND	ND	ND	ND	ND
	==== 1.32 1.01 1.67 1.65 1.12 1.76 1.55 2.01 2.16 1.14 1.52 ==== 1.67 2.16 2.16 2.16 2.15	==== ==== 1.32 UG/L 1.01 UG/L 1.67 UG/L 1.65 UG/L 1.12 UG/L 1.76 UG/L 2.01 UG/L 2.16 UG/L 1.14 UG/L 1.52 UG/L 2.16 UG/L 2.16 UG/L 2.16 UG/L 2.16 UG/L 2.15 UG/L	MDL Units ==== ==== ==== 1.32 UG/L ND 1.01 UG/L ND 1.67 UG/L ND 1.12 UG/L ND 1.76 UG/L ND 1.55 UG/L ND 2.01 UG/L ND 1.14 UG/L ND 1.52 UG/L ND 1.52 UG/L ND 1.54 UG/L ND 1.55 UG/L ND 2.16 UG/L ND 1.52 UG/L ND 2.16 UG/L ND 2.16 UG/L ND 2.16 UG/L 0.0 2.16 UG/L 0.0 2.16 UG/L ND 2.16 UG/L ND	MDL Units ==== ==== ==========================	MDL Units	MDL Units

SOUTH BAY WATER RECLAMATION PLANT COMBINED EFFLUENT

Priority Pollutants Base/Neutrals

Annual 2011

			FEB	MAY	AUG	ОСТ	
Analyte	MDL	Units					Avg
	====	=====	=====	=====	=====	=====	=====
Acenaphthene	1.8	UG/L	ND	ND	ND	ND	ND
Acenaphthylene	1.77	UG/L	ND	ND	ND	ND	ND
Anthracene		UG/L	ND	ND	ND	ND	ND
Benzidine	1.52	UG/L	ND	ND	ND	ND	ND
Benzo[a]anthracene	1.1	UG/L	ND	ND	ND	ND	ND
3,4-Benzo(b)fluoranthene	1.35	UG/L	ND	ND	ND	ND	ND
Benzo[k]fluoranthene	1.49	UG/L	ND	ND	ND	ND	ND
Benzo[a]pyrene	1.25	UG/L	ND	ND	ND	ND	ND
Benzo[g,h,i]perylene	1.09	UG/L	ND	ND	ND	ND	ND
4-Bromophenyl phenyl ether	1.4	UG/L	ND	ND	ND	ND	ND
Bis-(2-chloroethoxy) methane	1.01	UG/L	ND	ND	ND	ND	ND
Bis-(2-chloroethyl) ether	1.38	UG/L	ND	ND	ND	ND	ND
Bis-(2-chloroisopropyl) ether	1.16	UG/L	ND	ND	ND	ND	ND
4-Chlorophenyl phenyl ether		UG/L	ND	ND	ND	ND	ND
2-Chloronaphthalene		UG/L	ND	ND	ND	ND	ND
Chrysene		UG/L	ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene		UG/L	ND	ND	ND	ND	ND
Butyl benzyl phthalate		UG/L	ND	ND	ND	ND	ND
Di-n-butyl phthalate		UG/L	ND	ND	ND	ND	ND
Bis-(2-ethylhexyl) phthalate	8.96		ND	ND	ND	ND	ND
Diethyl phthalate		UG/L	ND	ND	ND	ND	ND
Dimethyl phthalate		UG/L	ND	ND	ND	ND	ND
- •	1	UG/L	ND	ND	ND	ND	ND
Di-n-octyl phthalate 3,3-Dichlorobenzidine		UG/L		ND			ND ND
		•	ND		ND	ND	
2,4-Dinitrotoluene		UG/L	ND	ND	ND	ND	ND
2,6-Dinitrotoluene		UG/L	ND	ND	ND	ND	ND
1,2-Diphenylhydrazine	1.37		ND	ND	ND	ND	ND
Fluoranthene		UG/L	ND	ND	ND	ND	ND
Fluorene		UG/L	ND	ND	ND	ND	ND
Hexachlorobenzene		UG/L	ND	ND	ND	ND	ND
Hexachlorobutadiene		UG/L	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene		UG/L	ND	ND	ND	ND	ND
Hexachloroethane		UG/L	ND	ND	ND	ND	ND
Indeno(1,2,3-CD)pyrene		UG/L	ND	ND	ND	ND	ND
Isophorone		UG/L	ND	ND	ND	ND	ND
Naphthalene	1.65	UG/L	ND	ND	ND	ND	ND
Nitrobenzene	1.6	UG/L	ND	ND	ND	ND	ND
N-nitrosodimethylamine	1.27	UG/L	ND	ND	ND	ND	ND
N-nitrosodi-n-propylamine		UG/L	ND	ND	ND	ND	ND
N-nitrosodiphenylamine	3.48	UG/L	ND	ND	ND	ND	ND
Phenanthrene	1.34	UG/L	ND	ND	ND	ND	ND
Pyrene	1.43	UG/L	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	1.52	UG/L	ND	ND	ND	ND	ND
=======================================	====	=====	=====	=====	=====	=====	=====
Polynuc. Aromatic Hydrocarbons	1.77	UG/L	0.0	0.0	0.0	0.0	0.0
=======================================	====	=====	=====	=====	=====	=====	=====
Base/Neutral Compounds		UG/L	0.0	0.0	0.0	0.0	0.0
Benzo[e]pyrene		UG/L	===== ND	ND	ND	ND	ND
Biphenyl		UG/L	ND ND	ND	ND	ND	ND
2,6-Dimethylnaphthalene		UG/L	ND	ND	ND	ND	
							ND
1-Methylnaphthalene		UG/L	ND	ND	ND	ND	ND
1-Methylphenanthrene		UG/L	ND	ND	ND	ND	ND
2-Methylnaphthalene		UG/L	ND	ND	ND	ND	ND
2,3,5-Trimethylnaphthalene		UG/L	ND	ND	ND	ND	ND
Perylene	1.41	UG/L	ND	ND	ND	ND	ND

SOUTH BAY WATER RECLAMATION PLANT ANNUAL SEWAGE: COMBINED EFFLUENT

Tributyl Tin Analysis

Annual 2011

Source: SB_ITP_COMB_EFF

Analyte	MDL	Units	FEB	MAY	AUG	OCT	Avg
	===	=====	=====	=====	=====	=====	=====
Dibutyltin	7	UG/L	ND	ND	ND	ND	ND
Monobutyltin	16	UG/L	ND	ND	ND	ND	ND
Tributyltin	2	UG/L	ND	ND	ND	ND	ND

SOUTH BAY WATER RECLAMATION PLANT SEWAGE ANNUAL: COMBINED EFFLUENT

Priority Pollutants Purgeables

Annual 2011

Source: SB_ITP_COMB_EFF

Analyte	MDL ====	Units	FEB	MAY	AUG	0CT	Avg
Dichlorodifluoromethane	.66	UG/L	ND	ND	ND	ND	ND
Chloromethane	.5	UG/L	ND	ND	ND	ND	ND
Vinyl chloride	.4	UG/L	ND	ND	ND	ND	ND
Bromomethane	.7	UG/L	ND	ND	ND	ND	ND
Chloroethane	.9	UG/L	ND	ND	ND	ND	ND
Trichlorofluoromethane	.3	UG/L	ND	ND	ND	ND	ND
Acrolein	1.3	UG/L	ND	ND	ND	ND	ND
1,1-Dichloroethane	.4	UG/L	ND	ND	ND	ND	ND
Methylene chloride	.3	UG/L	1.0	0.4	ND	ND	0.4
trans-1,2-dichloroethene	.6	UG/L	ND	ND	ND	ND	ND
1,1-Dichloroethene	.4	UG/L	ND	ND	ND	ND	ND
Acrylonitrile	.7	UG/L	ND	ND	ND	ND	ND
Chloroform	.2	UG/L	3.1	2.6	0.8	0.5	1.8
1,1,1-Trichloroethane	.4	UG/L	ND	ND	ND	ND	ND
Carbon tetrachloride Benzene	.4 .4	UG/L UG/L	ND ND	ND ND	ND ND	ND ND	ND ND
1,2-Dichloroethane	.5	UG/L	ND	ND	ND	ND	ND
Trichloroethene	.7	UG/L	ND	ND	ND	ND	ND
1,2-Dichloropropane	.3	UG/L	ND	ND	ND	ND	ND
Bromodichloromethane	.5	UG/L	ND	ND	ND	ND	ND
2-Chloroethylvinyl ether	1.1	UG/L	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	.3	UG/L	ND	ND	ND	ND	ND
Toluene	.4	UG/L	ND	4.2	3.6	1.9	2.4
trans-1,3-dichloropropene	.5	UG/L	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	.5	UG/L	ND	ND	ND	ND	ND
Tetrachloroethene	1.1	UG/L	ND	ND	ND	ND	ND
Dibromochloromethane	.6	UG/L	1.0	ND	ND	ND	0.3
Chlorobenzene	.4	UG/L	ND	ND	ND	ND	ND
Ethylbenzene	.3	UG/L	ND	ND	ND	ND	ND
Bromoform	.5	UG/L	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	.5	UG/L	ND	ND	ND	ND	ND
<pre>1,3-Dichlorobenzene</pre>	.5	UG/L	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	.4	UG/L	2.4	1.3	1.6*	1.4	1.7
1,2-Dichlorobenzene	.4	UG/L	ND	ND	ND	ND	ND
					===== :		
· ·	.7	UG/L	0.0	0.0	0.0	0.0	0.0
Dishlambanana					===== :		
Dichlorobenzenes	.5	UG/L	0.0	0.0	0.0 =====	0.0	0.0
Total Chloromethanes	.5	UG/L	4.1	3.0	0.8	0.5	2.1
=======================================					===== :		
Purgeable Compounds	1.3	UG/L	7.5	8.5	4.4	3.8	6.1
Methyl Iodide	.6	UG/L	ND	ND	ND	ND	ND
Carbon disulfide	.6	UG/L	ND	ND	ND	ND	ND
Acetone	4.5	UG/L	ND	ND	ND	ND	ND
Allyl chloride	.6	UG/L	ND	ND	ND	ND	ND
Methyl tert-butyl ether	.4	UG/L	ND	ND	ND	ND	ND
Chloroprene	.4	UG/L	ND	ND	ND	ND	ND
1,2-Dibromoethane	.3	UG/L	ND	ND	ND	ND	ND
2-Butanone	6.3	UG/L	ND	ND	ND	ND	ND
Methyl methacrylate	.8	UG/L	ND	ND	ND	ND	ND
2-Nitropropane	12	UG/L	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	1.3	UG/L	ND	ND	ND	ND	ND
meta,para xylenes	.6	UG/L	ND	ND	ND	ND	ND
ortho-xylene	.4	UG/L	ND	ND	ND	ND	ND
Isopropylbenzene	.3	UG/L	ND	ND	ND	ND	ND
Styrene	.3	UG/L	ND	ND	ND	ND	ND
Benzyl chloride	1.1	UG/L	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	1.52	UG/L	ND	ND	ND	ND	ND

^{* =} The blank in this batch was 0.55 UG/L, result above the MDL.

SOUTH BAY WATER RECLAMATION PLANT Organophosphorus Pesticides COMBINED OUTFALL (SB_ITP_COMB_EFF)

Annual 2011

		03-MAY-2011	04-0CT-2011
Analyte:	MDL Unit	s P558047	P584736
		= ========	
Demeton O	.15 UG/L	. ND	ND
Demeton S	.08 UG/L	. ND	ND
Diazinon	.03 UG/L	. ND	0.1
Guthion	.15 UG/L	. ND	ND
Malathion	.03 UG/L	. ND	ND
Parathion	.03 UG/L	. ND	ND
Dichlorvos	.05 UG/L	. ND	ND
Disulfoton	.02 UG/L	. ND	ND
Dimethoate	.04 UG/L	. ND	ND
Stirophos	.03 UG/L	. ND	ND
Coumaphos	.15 UG/L	. ND	ND
Chlorpyrifos	.03 UG/L	. ND	ND
=======================================	=== ====	= ========	
Thiophosphorus Pesticides	.15 UG/L	0.0	0.0
Demeton -0, -S	.15 UG/L	0.0	0.0
	=== ====	= ========	========
Total Organophosphorus Pesticides	.15 UG/L	0.0	0.1

SOUTH BAY WATER RECLAMATION PLANT COMBINED OUTFALL

Annual Sewage Dioxin and Furan Analysis

Annual 2011

				COMB EFF	COMB EFF	COMB EFF	COMB EFF
				FEB	MAY	AUG	ОСТ
Analyte:		Units	Equiv	P549349	P558047	P564991	P584736
2,3,7,8-tetra CDD		PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD	123	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD	113	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	98	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD		PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD			0.010	ND	ND	ND	ND
octa CDD		PG/L	0.001	ND	ND	ND	DNQ19.7
2,3,7,8-tetra CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8-penta CDF		PG/L	0.050	ND ND	ND ND	ND	ND
2,3,4,7,8-penta CDF 1,2,3,4,7,8-hexa CDF		PG/L PG/L	0.500 0.100	ND ND	ND ND	ND ND	ND ND
1,2,3,6,7,8-hexa CDF		PG/L	0.100	ND ND	ND ND	ND ND	ND ND
1,2,3,7,8,9-hexa CDF		PG/L	0.100	ND ND	ND ND	ND ND	ND ND
2,3,4,6,7,8-hexa CDF		PG/L	0.100	ND ND	ND ND	ND ND	ND ND
1,2,3,4,6,7,8-hepta CDF		PG/L	0.010	ND ND	ND	ND	ND ND
1,2,3,4,7,8,9-hepta CDF			0.010	ND	ND	ND	ND
octa CDF		PG/L	0.001	ND	ND	ND	ND
Analvte:	MDL	Units	Eguiv	COMB EFF TCCD FEB P549349	COMB EFF TCCD MAY P558047	COMB EFF TCCD AUG P564991	COMB EFF TCCD OCT P584736
Analyte:	===	Units		TCCD FEB P549349 ==================================	TCCD MAY P558047	TCCD AUG P564991 ===================================	TCCD OCT P584736
2,3,7,8-tetra CDD	=== 125	====== PG/L	1.000	TCCD FEB P549349 ==================================	TCCD MAY P558047 ======= = ND	TCCD AUG P564991 ===================================	TCCD OCT P584736 =======
2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD	=== 125 123	PG/L PG/L	1.000 0.500	TCCD FEB P549349 ======= = = = ND ND	TCCD MAY P558047 ======= = = = ND ND	TCCD AUG P564991 P ND ND	TCCD OCT P584736 ND ND
2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD	=== 125 123 113	PG/L PG/L PG/L	1.000 0.500 0.100	TCCD FEB P549349 ======== ND ND ND ND	TCCD MAY P558047 = ND ND ND ND	TCCD AUG P564991 P ND ND ND	TCCD OCT P584736 ===== ND ND ND
2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD	=== 125 123 113 98	PG/L PG/L PG/L PG/L PG/L	1.000 0.500 0.100 0.100	TCCD FEB P549349 ========	TCCD MAY P558047 = ND ND ND ND ND	TCCD AUG P564991 P ND ND ND ND ND	TCCD OCT P584736 ND ND ND ND
2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD 1,2,3,7,8,9-hexa CDD	125 123 113 98 111	PG/L PG/L PG/L PG/L PG/L PG/L	1.000 0.500 0.100 0.100 0.100	TCCD FEB P549349 ========	TCCD MAY P558047 = ND ND ND ND ND ND	TCCD AUG P564991 = ND ND ND ND ND ND	TCCD OCT P584736 ND ND ND ND ND
2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD 1,2,3,7,8,9-hexa CDD 1,2,3,4,6,7,8-hepta CDD	=== 125 123 113 98 111 137	PG/L PG/L PG/L PG/L PG/L PG/L PG/L	1.000 0.500 0.100 0.100 0.100 0.100	TCCD FEB P549349 ========	TCCD MAY P558047 = ND ND ND ND ND ND ND	TCCD AUG P564991	TCCD OCT P584736 ND
2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD 1,2,3,7,8,9-hexa CDD 1,2,3,4,6,7,8-hepta CDD octa CDD	=== 125 123 113 98 111 137 247	PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L	1.000 0.500 0.100 0.100 0.100 0.010 0.010	TCCD FEB P549349 ========	TCCD MAY P558047 = ND ND ND ND ND ND	TCCD AUG P564991 = ND ND ND ND ND ND	TCCD OCT P584736 ND ND ND ND ND
2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD 1,2,3,7,8,9-hexa CDD 1,2,3,4,6,7,8-hepta CDD	=== 125 123 113 98 111 137 247 115	PG/L PG/L PG/L PG/L PG/L PG/L PG/L	1.000 0.500 0.100 0.100 0.100 0.100	TCCD FEB P549349 ======== ND ND ND ND ND ND ND ND ND	TCCD MAY P558047 = ND ND ND ND ND ND ND ND ND	TCCD AUG P564991	TCCD OCT P584736
2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD 1,2,3,7,8,9-hexa CDD 1,2,3,4,6,7,8-hepta CDD octa CDD 2,3,7,8-tetra CDF	=== 125 123 113 98 111 137 247 115 140	PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L	1.000 0.500 0.100 0.100 0.100 0.100 0.010 0.001 0.100	TCCD FEB P549349 ======== = ND ND ND ND ND ND ND ND ND ND	TCCD MAY P558047 	TCCD AUG P564991	TCCD OCT P584736 ND ND ND ND ND ND ND ND ND ND
2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD 1,2,3,7,8,9-hexa CDD 1,2,3,4,6,7,8-hepta CDD octa CDD 2,3,7,8-tetra CDF 1,2,3,7,8-penta CDF	=== 125 123 113 98 111 137 247 115 140 118	PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L	1.000 0.500 0.100 0.100 0.100 0.100 0.010 0.001 0.001 0.100 0.050	TCCD FEB P549349 ======== = ND ND ND ND ND ND ND ND ND ND ND	TCCD MAY P558047 	TCCD AUG P564991	TCCD OCT P584736
2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD 1,2,3,7,8,9-hexa CDD 1,2,3,4,6,7,8-hepta CDD 0cta CDD 2,3,7,8-tetra CDF 1,2,3,7,8-penta CDF 2,3,4,7,8-penta CDF	=== 125 123 113 98 111 137 247 115 140 118 147	PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L	1.000 0.500 0.100 0.100 0.100 0.010 0.010 0.001 0.050 0.500	TCCD FEB P549349 ==================================	TCCD MAY P558047 	TCCD AUG P564991	TCCD OCT P584736
2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD 1,2,3,4,6,7,8-hepta CDD 1,2,3,4,6,7,8-hepta CDD 0cta CDD 2,3,7,8-tetra CDF 1,2,3,7,8-penta CDF 2,3,4,7,8-penta CDF 1,2,3,4,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF	=== 125 123 113 98 111 137 247 115 140 118 147 107	PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L	1.000 0.500 0.100 0.100 0.100 0.010 0.010 0.001 0.050 0.500 0.100	TCCD FEB P549349 ==================================	TCCD MAY P558047 ND	TCCD AUG P564991	TCCD OCT P584736
2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,4,6,7,8-hexa CDD 1,2,3,4,6,7,8-hepta CDD 0cta CDD 2,3,7,8-tetra CDF 1,2,3,7,8-penta CDF 1,2,3,4,7,8-penta CDF 1,2,3,4,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF 1,2,3,7,8,9-hexa CDF 2,3,4,6,7,8-hexa CDF	=== 125 123 113 98 111 137 247 115 140 118 147 107 152 148	PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L	1.000 0.500 0.100 0.100 0.100 0.010 0.010 0.001 0.001 0.050 0.500 0.100	TCCD FEB P549349 ==================================	TCCD MAY P558047 ND	TCCD AUG P564991	TCCD OCT P584736
2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD 1,2,3,4,6,7,8-hepta CDD 0,2,3,4,6,7,8-hepta CDD 2,3,7,8-tetra CDF 1,2,3,4,7,8-penta CDF 1,2,3,4,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF 1,2,3,7,8,9-hexa CDF 1,2,3,7,8,9-hexa CDF 1,2,3,4,6,7,8-hexa CDF 1,2,3,4,6,7,8-hexa CDF	=== 125 123 113 98 111 137 247 115 140 118 147 107 152 148 90	PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L	1.000 0.500 0.100 0.100 0.100 0.010 0.001 0.001 0.050 0.500 0.100 0.100 0.100 0.100	TCCD FEB P549349 ==================================	TCCD MAY P558047 ND	TCCD AUG P564991	TCCD OCT P584736
2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,4,6,7,8-hexa CDD 1,2,3,4,6,7,8-hepta CDD 0cta CDD 2,3,7,8-tetra CDF 1,2,3,7,8-penta CDF 1,2,3,4,7,8-penta CDF 1,2,3,4,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF 1,2,3,7,8,9-hexa CDF 2,3,4,6,7,8-hexa CDF	125 123 113 98 111 137 247 115 140 118 147 107 152 148 90 166	PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L	1.000 0.500 0.100 0.100 0.100 0.010 0.010 0.001 0.050 0.500 0.100 0.100 0.100	TCCD FEB P549349 ==================================	TCCD MAY P558047 ND	TCCD AUG P564991	TCCD OCT P584736

