- II. Influent and Effluent Data Summary
 - A. Mass Emissions
 - B. Discharge Limits
 - C. Influent and Effluent Data Summaries
 - D. Influent and Effluent Graphs
 - E. Daily Values of Selected Parameters
 - F. Toxicity Bioassay

This page left blank intentionally.

A. Mass Emissions

Mass Emissions of Effluent Using 2012 Monthly Averages

DISCHARGE SPECIFICATIONS from NPDES Permit No. CA0109045/RWQCB Order No. 2006-067 effective on January 1st 2007 with limits on pollutant discharges.

Effluent Limitations Based on Secondary Treatment Standards							
	Limit: Monthly20122012Average (30MassAverageday)EmissionsConcentration						
Constituent/Property	(lbs/day)	<u>(lbs/day)^[1]</u>		Units			
Flow (MGD)			3.27	MGD			
Total Suspended Solids	3,750	120	4.4	mg/L			
BOD	3,750	191	7	mg/L			
Oil & Grease	3,130	55	2	mg/L			

Effluent Limitations Based on 2005 California Ocean Plan								
		2012	2012					
	Limit: Daily Maximum	Mass Emissions	Average Concentration					
Constituent/Property	(lbs/day)	<u>(lbs/day)^[1]</u>		Units				
Arsenic	350	0.014	0.5	ug/L				
Cadmium	48	0	0	ug/L				
Chromium	96	0.008	0.3	ug/L				
Copper	120	0.3	10	ug/L				
Lead	96	0	0	ug/L				
Mercury	1.9	0.00011	0.004	ug/L				
Nickel	240	0.16	5.88	ug/L				
Selenium	720	0.011	0.39	ug/L				
Silver	32	0	0	ug/L				
Zinc	860	0.8	30.7	ug/L				
Cyanide	48	0.005	0.0002	mg/L				
Residual Chlorine	96	1.1	0.04	mg/L				
Ammonia	29,000	19.1	0.7	mg/L				
Non-Chor. Phenols	1,400	0	0	ug/L				
Chlorinated Phenols	48	0	0	ug/L				
Endosulfan	0.21	0.00	0	ng/L				
Endrin	0.05	0.00	0	ng/L				
hexachlorocyclohexanes*(HCH)	0.1	0.0	0	ng/L				

* (all as Lindane, the gamma isomer)

Effluent Limitations Based on 2005 California Ocean Plan								
	Limit: Daily Maximum	2012 Mass Emissions	2012 Average Concentration					
Constituent/Property	(lbs/day)	<u>(lbs/day)^[1]</u>		Units				
Acrolein	2,600	0	0	ug/L				
Antimony	14,000	0	0	ug/L				
Bis(2-chloroethoxy) methane	53	0	0	ug/L				
Bis(2-chloroisopropyl) ether	14,000	0	0	ug/L				
Chlorobenzene	6,800	0	0	ug/L				
Chromium (III)								
di-n-butyl phthalate	42,000	0	0	ug/L				
dichlorobenzenes	61,000	0	0	ug/L				
1,1-dichloroethylene	11	0	0	ug/L				
Diethyl phthalate	390,000	0	0	ug/L				
Dimethyl phthalate	9,800,000	0	0	ug/L				
4,6-dinitro-2-methylphenol	2,600	0	0	ug/L				
2,4-dinitrophenol	480	0	0	ug/L				
Ethylbenzene	49,000	0	0	ug/L				
Fluoranthene	180	0	0	ug/L				
Hexachlorocyclopentadiene	690	0	0	ug/L				
Isophorone	70,000	0	0	ug/L				
Nitrobenzene	59	0	0	ug/L				
Thallium	24	0	0	ug/L				
Toluene	1,000,000	0	0	ug/L				
1,1,2,2-tetrachloroethane	27	0	0	ug/L				
TributyItin	0.02	0.00	0	ug/L				
1,1,1-trichloroethane	6,500,000	0	0	ug/L				
1,1,2-trichloroethane	110	0	0	ug/L				
Acrylonitrile	1.2	0.0	0	ug/L				
Aldrin	0.00026	0.00000	0	ng/L				
Benzene	71	0	0	ug/L				
Benzidine	82,000	0	0	ug/L				
Beryllium	0.39	0.000055	0.002	ug/L				
Bis(2-chloroethyl)ether	0.54	0	0	ug/L				
Bis(2-ethylhexyl)phthalate	42	0.076	2.8	ug/L				
Carbon Tetrachloride	11	0	0	ug/L				
Chlordane	0.00027	0.00000	0	ng/L				
Chlorodibromomethane	100	0	0	ug/L				
Chloroform	1,500	0.02	0.8	ug/L				
DDT	0.002	0.000	0	ng/L				
1,4-dichlorobenzene	210	0	0	ug/L				
3,3-dichlorobenzidine	0.097	0.000	0	ug/L				
1,2-dichloroethane	330	0	0	ug/L				
Dichlorobromomethane	74	0.008	0.3	ug/L				
Dichloromethane (methylene	5,400	0.003	0.1	ug/L				
chloride)				-				
1,3-dichloropropene	110	0	0	ug/L				
Dieldrin	0.00048	0.00000	0	ng/L				

Effluent Limitations Based on 2005 California Ocean Plan								
Constituent/Dronorty	Limit: Daily Maximum (Ibs/day)	2012 Mass Emissions (lbs/day) ^[1]	2012 Average Concentration	Unite				
2,4-dinitrotoluene	(IDS/day) 31	<u>(IDS/UAY)</u> 0	0	Units				
1,2-diphenylhydrazine	1.9	0.0	0	ug/L ug/L				
Halomethanes	1,500	0.0	0	ug/L				
Heptachlor	0.0006	0.0000	0	ng/L				
Heptachlor epoxide	0.00024	0.00000	0	ng/L				
Hexachlorobenzene	0.0025	0.0000	0	ug/L				
Hexachlorobutadiene	170	0	0	ug/L				
Hexachloroethane	30	0	0	ug/L				
N-nitrosodimethylamine	87	0	0	ug/L				
N-nitrosodi-N-Propylamine	4.5	0.0	0	ug/L				
N-nitrosodiphenylamine	30	0	0	ug/L				
PAHs	0.11	0.00	0	ug/L				
PCBs	0.00023	0.00000	0	ng/L				
TCDD equivalents	0.00000048	0.000000000	0	pg/L				
Tetrachloroethylene	24	0	0	ug/L				
Toxaphene	0.0025	0.0000	0	ng/L				
Trichloroethylene	320	0	0	ug/L				
2,4,6-trichlorophenol	3.5	0.0	0	ug/L				
Vinyl Chloride	430	0	0	ug/L				

^[1] Mass emissions is calculated assuming the density of effluent is 1. The mean constituent value and mean daily flow value over the year is used to compute the mass emissions, assuming that constant concentration over 365 days.

B. Discharge Limits

DISCHARGE SPECIFICATIONS from NPDES Permit No. CA0109045/RWQCB Order No. 2006-067 effective on January 1st, 2007 with limits on pollutant discharges.

The discharge of effluent through the South Bay Ocean Outfall(E-001) shall maintain compliance with the following effluent limitations:

Effluent Limitations based on Secondary Treatment Standards							
Constituent	Units	6-month Median	30-day Average	7-Day Average	Daily Maximum	Instantaneous Maximum	
Biochemical Oxygen Demand(BOD ₅)@	mg/L		30	45		50	
20°C	lb/day		3,750	5,630		6,260	
Total Suspended Solids	mg/L		30	45		50	
	lb/day		3,750	5,630		6,260	
pH	pH units	Within the limits of 6.0 - 9.0 at all times.					

Effluent Limitations based on 2005 California Ocean Plan							
Constituent	Units	6-month	30-day Average	7-Day	Daily	Instantaneous	
		Median		Average	Maximum	Maximum	
Grease & Oil	mg/L		25	40		75	
	lb/day		3,130	5,000		9,380	
Settleable Solids	mL/L		1	1.5		3	
Turbidity	NTU		75	100		225	
Total Residual	mg/L	0.19			0.76	5.7	
Chlorine(TRC)	lb/day	24			96	720	
Copper, Total Recoverable	ug/L	98			960	2,700	
	lb/day	12			120	330	

Constituents that do not have reasonable potential or had inconclusive reasonable potential analysis results are referred to as performance goal constituents and are assigned the performance goals listed in the following table. Performance goal constituents shall also be monitored at E-001.

Constituent	Units	6-month Median	Daily Maximum	Instantaneous Maximum
Arsenic	ug/L	480	2,800	7,400
	lb/day	60	350	920
Cadmium	ug/L	96	380	960
	lb/day	12	48	120
Chromium ² (Hexavalent)	ug/L	190	760	1900
	lb/day	24	96	240
Lead	ug/L	190	760	1,900
	lb/day	24	96	240
Mercury	ug/L	38	15.0	3.8
	lb/day	4.8	1.9	0.48
Nickel	ug/L	480	1,900	4,800
	lb/day	60	240	600
Selenium	ug/L	1,400	5,700	14,000
	lb/day	180	720	1800
Silver	ug/L	52	250	650
	lb/day	6.5	32	82
Zinc	ug/L	1,100	6,900	18,000
	lb/day	140	860	2300
Cyanide	mg/L	0.096	0.38	0.96
	lb/day	12	48	120
Ammonia (expressed as Nitrogen)	mg/L	57	230	570
	lb/day	7200	29,000	72,000
Acute Toxicity	TUa		3.1^{3}	
Chronic Toxicity	TUc		96	
Phenolic Compounds(non- chlorinated)	ug/L	2,900	11,000	29,000
	lb/day	360	1400	3600
Chlorinated Phenolics	ug/L	96	380	960
	lb/day	12	48	120
Endosulfan	ng/L	860	1,700	2,600
	lb/day	0.11	0.21	0.32
Endrin	ng/L	190	380	570
	lb/day	0.02	0.05	0.07
HCH (hexachlorocyclohexanes)	ng/L	380	760	1,100
•	lb/day	0.04	0.1	0.14
Radioactivity	Not to exceed lim	its specified in Title 17 Ca		Regulations

Section 30253, Standards for Protection Against Radiation

 $Y: EMTS \ 41. Sections \ WCS \ EPORTS \ SBWRP \ Annual \ 2012 \ Final \ Section \ 2012 \ Annual \ docx$

 $^{^{2}\,}$ Hexavalent Chromium limit met as Total Chromium.

³ Permit shows 2.9x10⁻¹ which reflects an apparent error in calculation as discussed with SDRWQCB staff. Correction to 3.1 TUa referenced by email of Friday, January 26, 2007 4:14 PM, From: Melissa Valdovinos [mailto:mvaldovinos@waterboards.ca.gov] To: Stebbins, Tim, [<u>Tstebbins@sandiego.gov</u>]

Performance Goals Based on 2005 Cal				
Constituent	Monthly Average			
	(30-Day)			
	ug/L	lbs/day		
Acrolein	21,000	2600		
Antimony	110,000	14,000		
Bis(2-chloroethoxy) methane	420	53		
Bis(2-chloroisopropyl) ether	110,000	14,000		
Chlorobenzene	54,000	6800		
Chromium (III) ⁴	18,000,000	2,300,000		
di-n-butyl phthalate	330,000	42,000		
Dichlorobenzenes	490,000	61,000		
Diethyl phthalate	3,100,000	390,000		
Dimethyl phthalate	78,000,000	9,800,000		
4,6-dinitro-2-methylphenol	21,000	2600		
2,4-dinitrophenol	3800	480		
Ethylbenzene	390,000	49,000		
Fluoranthene	1,400	180		
Hexachlorocyclopentadiene	5,500	690		
Nitrobenzene	470	59		
Thallium	190	24		
Toluene	8,100,000	1,000,000		
Tributyltin	0.13	0.020		
1,1,1-trichloroethane	52,000,000	6,500,000		
Acrylonitrile	9.6	1.2		
Benzene	560	71		
Benzidine	0.0066	82,000		
Beryllium	3.1	0.39		
Bis(2-chloroethyl)ether	4.3	0.54		
Bis(2-ethylhexyl)phthalate	330	42		
Carbon Tetrachloride	86	11		
Chloroform	12,000	1500		
1,4-dichlorobenzene	1,700	210		
3,3-dichlorobenzidine	0.77	0.097		
1,2-dichloroethane	2,700	330		
1,1-dichloroethylene	86	11		
Dichlorobormomethane	590	74		
Dichloromethane	43,000	5400		
1,3-dichloropropene	850	110		
2,4-dinitrotoluene	250	31		
1,2-diphenylhydrazine	15	1.9		
Halomethanes	12,000	1500		
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			

Constituent	Monthly Avera	ge
	(30-Day)	6
	ug/L	lbs/day
Hexachlorobenzene	0.02	0.0025
Hexachlorobutadiene	1,300	170
Hexachloroethane	240	30
Isophorone	70,000	8700
N-nitrosodimethylamine	700	87
N-nitrosodi-N-propylamine	36	4.5
N-nitrosodiphenylamine	240	30
PAHs	0.84	0.11
1,1,2,2-tetrachloroethane	220	27
Tetrachloroethylene	190	24
Trichloroethylene	2,600	320
1,1,2-trichloroethane	900	110
2,4,6-trichlorophenol	28	3.5
Vinyl Chloride	3,400	430
	ng/L	lbs/day
Aldrin	2.1	0.00026
Chlordane	2,200,000	0.00027
DDT	16	0.0026
Dieldrin	3.8	0.00048
Heptachlor	48	.00060
Heptachlor Epoxide	1.9	0.00024
PCBs	1.8	0.00023
Toxaphene	200	0.0025
	pg/L	lbs/day
TCDD equivalents	0.37	0.00000004

⁴ Chromium (III) limit is met by Total Chromium.

C. Influent and Effluent Data Summaries

The results of all analyses performed on the SBWRP influent and effluent are summarized in tables with monthly and annual averages (and in some cases annual totals) calculated. Data that has been reevaluated as discussed in Section 1.E are explicitly indicated. All other tables and charts include all data.

SOUTH BAY WATER RECLAMATION PLANT SEWAGE INFLUENT and EFFLUENT

Annual 2012

Biochemical Oxygen Demand Concentration (24-hour composite)

	Influent Flow	Daily Influent Value	Daily Influent Value	Effluent Flow	Daily Effluent Value	Daily Effluent Value	Percent Removal BOD
Month/ Units:	(MGD)	(mg/L)	(lbs/Day)	(MGD)	(mg/L)	(lbs/Day)	(%)
==============							
JANUARY -2012	7.95	296	19626	4.59	13	498	95.6
FEBRUARY -2012	8.01	311	20776	5.11	10	426	96.8
MARCH - 2012	8.26	300	20667	5.15	7	301	97.7
APRIL -2012	8.25	294	20229	4.25	5	177	98.3
MAY -2012	8.25	297	20435	2.68	4	89	98.7
JUNE -2012	8.01	324	21644	1.42	6	71	98.1
JULY -2012	8.03	318	21297	1.00	9	75	97.2
AUGUST -2012	8.16	325	22118	1.22	4	41	98.8
SEPTEMBER-2012	8.00	315	21017	1.64	6	82	98.1
OCTOBER -2012	7.86	322	21108	2.54	5	106	98.4
NOVEMBER -2012	7.80	334	21727	3.78	4	126	98.8
DECEMBER -2012	7.86	316	20715	5.81	6	291	98.1
Average	8.04	313	20947	3.27	7	190	97.9

Annual Mass Emissions are calculated from monthly averages of flow for BOD, wheras Monthly Report average mass emissions are calculated from average daily mass emissions.

ND=not detected NA=not analyzed

SOUTH BAY WATER RECLAMATION PLANT SEWAGE INFLUENT and EFFLUENT

Annual 2012

Total Suspended Solids Concentration (24-hour composite)

	Influent	Daily	Daily		Daily
	Flow	Influent	Influent	Percent	Influent
		TSS	VSS		Mass Emission
Month/ Units:	(MGD)	(mg/L)	(mg/L)	(%)	(lbs/Day)
JANUARY -2012	7.95	299	269	90.0	19825
FEBRUARY -2012	8.01	287	259	90.2	19173
MARCH - 2012	8.26	292	262	89.7	20115
APRIL -2012	8.25	287	258	89.9	19747
MAY -2012	8.25	296	266	89.9	20366
JUNE -2012	8.01	292	264	90.4	19507
JULY -2012	8.03	284	253	89.1	19020
AUGUST -2012	8.16	286	256	89.5	19464
SEPTEMBER-2012	8.00	272	243	89.3	18148
OCTOBER -2012	7.86	291	254	87.3	19076
NOVEMBER -2012	7.80	282	248	87.9	18345
DECEMBER -2012	7.86	283	254	89.8	18551
Average	8.04	288	257		19278

Total Suspended Solids Concentration (24-hour composite)

Month/ Units:	Effluent Flow (MGD)	Daily Effluent TSS (mg/L)	Daily Effluent VSS (mg/L)	Percent VSS (%)	Daily Effluent Mass Emission (lbs/Day)	Percent Removal n TSS (%)	Percent Removal VSS (%)
==================== JANUARY -2012	4.59	8.1	7.1	======== 87.7	310	97.3	97.4
FEBRUARY -2012	5.11	5.3	4.6	86.8	226	98.2	98.2
MARCH -2012	5.15	5.0	4.1	82.0	215	98.3	98.4
APRIL -2012	4.25	4.1	3.6	87.8	145	98.6	98.6
MAY -2012	2.68	2.8	2.4	85.7	63	99.1	99.1
JUNE -2012	1.42	5.4	4.7	87.0	64	98.2	98.2
JULY -2012	1.00	5.3	4.6	86.8	44	98.1	98.2
AUGUST -2012	1.22	4.8	4.1	85.4	49	98.3	98.4
SEPTEMBER-2012	1.64	3.4	2.8	82.4	47	98.8	98.8
OCTOBER -2012	2.54	2.3	2.0	87.0	49	99.2	99.2
NOVEMBER -2012	3.78	2.8	2.4	85.7	88	99.0	99.0
DECEMBER -2012	5.81	3.5	3.1	88.6	170	98.8	98.8
	===============				=================		======
Average	3.27	4.4	3.8		123	98.5	98.5

Annual Mass Emissions are calculated from monthly averages of flow and TSS, whereas Monthly Report average mass emissions are calculated from average daily mass emissions.

VSS= Volatile Suspended Solids TSS= Total Suspended Solids

SOUTH BAY WATER RECLAMATION PLANT

Annual 2012

Effluent to Ocean Outfall (SB_OUTFALL_01)

Analyte:	Flow	рН	Settleable	Biochemical	Total	Volatile	Total
			Solids	0xygen	Suspended	Suspended	Dissolved
				Demand	Solids	Solids	Solids
Units:	(mgd)	(pH)	(ml/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
JANUARY -2012	4.59	7.25	ND	13	8.1	7.1	926
FEBRUARY -2012	5.11	7.29	ND	10	5.3	4.6	968
MARCH - 2012	5.15	7.29	ND	7	5.0	4.1	913
APRIL -2012	4.25	7.29	ND	5	4.1	3.6	1000
MAY -2012	2.68	7.35	ND	4	2.8	2.4	1030
JUNE -2012	1.42	7.30	ND	6	5.4	4.7	995
JULY -2012	1.00	7.46	ND	9	5.3	4.6	990
AUGUST -2012	1.22	7.39	ND	4	4.8	4.1	1050
SEPTEMBER-2012	1.64	7.46	ND	6	3.4	2.8	1030
OCTOBER -2012	2.54	7.40	ND	5	2.3	2.0	984
NOVEMBER -2012	3.78	7.32	ND	4	2.8	2.4	905
DECEMBER -2012	5.81	7.38	ND	6	3.5	3.1	918
=============	========						=======
Average	3.27	7.35	ND	7	4.4	3.8	976

Analyte:	Oil & Grease	Outfall Temperature	Residual Chlorine	Turbidity	Dissolved Oxygen
Units:	(mg/L)	(°C)	(mg/L)	(NTU)	(mg/L)
	=======				
JANUARY -2012	2.8	22.9	0.05	3.24	1.73
FEBRUARY -2012	3.5	22.1	0.03	2.69	1.79
MARCH -2012	1.8	22.9	0.03	2.77	2.13
APRIL -2012	1.9	23.4	0.05	2.37	2.50
MAY -2012	2.2	24.4	0.06	1.68	2.66
JUNE -2012	<1.2	25.6	0.04	2.54	2.42
JULY -2012	1.3	26.3	0.05	3.40	1.55
AUGUST -2012	2.1	26.9	0.06	2.04	2.52
SEPTEMBER-2012	<1.2	27.2	0.04	2.08	2.00
OCTOBER -2012	1.4	26.4	0.03	1.44	2.03
NOVEMBER -2012	3.8	24.9	0.04	1.65	2.39
DECEMBER -2012	3.4	23.6	0.05	2.22	3.10
Average	2.0	24.7	0.04	2.34	2.24

ND=not detected NR=not required

SOUTH BAY WATER RECLAMATION PLANT

Annual 2012

Influent to Plant (SB_INF_02)

Analyte:	Flow	рН	Total Dissolved Solids	Biochemical Oxygen Demand	Total Suspended Solids	Volatile Suspended Solids	Turbidity
Units:	(mgd)	(pH)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(NTU)
		==========					=======
JANUARY -2012	7.95	NR	992	296	299	269	NR
FEBRUARY -2012	8.01	7.72	1020	311	287	259	140
MARCH - 2012	8.26	NR	973	300	292	262	NR
APRIL -2012	8.25	NR	974	294	287	258	160
MAY -2012	8.25	7.44	1020	297	296	266	155
JUNE -2012	8.01	NR	982	324	292	264	160
JULY -2012	8.03	NR	992	318	284	253	177
AUGUST -2012	8.16	7.57	1020	325	286	256	168
SEPTEMBER-2012	8.00	NR	1020	315	272	243	166
OCTOBER -2012	7.86	7.88	962	322	291	254	155
NOVEMBER -2012	7.80	NR	958	334	282	248	167
DECEMBER -2012	7.86	NR	964	316	283	254	160
Average	8.04	7.65	990	313	288	257	161

ND=not detected NR=not required

SOUTH BAY WATER RECLAMATION PLANT ANNUAL SEWAGE

Annual 2012

Trace Metals

Analyte:	Aluminum	Aluminum	Antimony	Antimony	Arsenic	Arsenic
MAX MDL Units: Source:	47 UG/L Influent	47 UG/L Effluent	2.9 UG/L Influent	2.9 UG/L Effluent	.4 UG/L Influent	.4 UG/L Effluent
Month/Limit:	Influenc	LITTUENC	Infidenc	LITTUENC	Influenc	2800
=================						
JANUARY -2012	627	82	ND	ND	0.8	0.5
FEBRUARY -2012	536	135	ND	ND	ND	0.6
MARCH -2012	564	336	ND	ND	0.8	ND
APRIL -2012	711	ND	ND	ND	0.6	0.7
MAY -2012	628	58	ND	ND	ND	ND
JUNE -2012	1070	265	ND	ND	0.8	0.6
JULY -2012	704	111	ND	ND	1.0	0.6
AUGUST -2012	673	138	ND	ND	0.9	0.6
SEPTEMBER-2012	795	128	ND	ND	0.9	0.6
OCTOBER -2012	861	133	3.1	ND	0.9	0.5
NOVEMBER -2012	581	127	ND	ND	0.6	0.5
DECEMBER -2012	604	94	ND	ND	0.5	0.4
AVERAGE	696	134	0.3	ND	0.7	0.5
Analyte:	Barium	Barium	Beryllium	Beryllium	Boron	Boron
MAX MDL Units:	.039 UG/L	.039 UG/L	.022 UG/L	.022 UG/L	7 UG/L	7 UG/L
Source:	Influent	Effluent	Influent	Effluent	Influent	Effluent
Month/Limit:						
JANUARY -2012	67.1	44.1	ND	ND	251	318
FEBRUARY -2012	62.3	41.8	ND	0.025	264	261
MARCH -2012	67.0	40.8	ND	ND	266	269
APRIL -2012	77.0	43.3	ND	ND	316	307
MAY -2012	69.8	45.1	ND	ND	292	327
JUNE -2012	96.0	52.2	ND	ND	404	358
JULY -2012	78.8	49.0	ND	ND	296	296
AUGUST -2012	75.5	48.1	ND	ND	281	307
SEPTEMBER-2012	71.8	44.6	ND	ND	290	310
OCTOBER -2012	71.1	46.2	ND	ND	271	297
NOVEMBER -2012	62.3	42.4	ND	ND	241	274
DECEMBER -2012	76.3	43.6	ND	ND	297	165
AVERAGE	72.9	45.1	ND	0.002	289	291
Analyte:	Cadmium	Cadmium	Chromium	Chromium	Cobalt	Cobalt
MAX MDL Units:	.53 UG/L	.53 UG/L	1.2 UG/L	1.2 UG/L	.85 UG/L	.85 UG/L
Source:	Influent	Effluent	Influent	Effluent	Influent	Effluent
Month/Limit:		48		760		
	======================================		=======================================			
JANUARY -2012	ND	ND	3.7 4.2	ND	NR	ND
FEBRUARY -2012	ND	ND		ND	ND	ND
MARCH -2012	ND	ND	3.5	ND	NR	ND
APRIL -2012	ND	ND	3.2	ND	NR	ND
MAY -2012	ND	ND	3.2	ND	ND	ND
JUNE -2012	ND	ND	4.0	ND	NR	ND
JULY -2012	ND	ND	2.7	ND 1 2	ND	ND
AUGUST -2012	ND	ND	2.9 2.3	1.3	ND	ND
SEPTEMBER-2012 OCTOBER -2012	ND	ND		ND	NR	ND
NOVEMBER - 2012	ND ND	ND ND	2.5 3.5	ND ND	ND NP	ND ND
DECEMBER -2012	0.80	ND			NR	ND ND
DECEMBER -2012	0.80		3.0	1.7	NR ===========	
AVERAGE	0.07	ND	3.2	0.3	ND	ND
	0.07		5.2	0.5	UVI	שאו

ND= not detected; NR= not required

SOUTH BAY WATER RECLAMATION PLANT ANNUAL SEWAGE

Annual 2012

Trace Metals

Analyte: MAX MDL Units: Source: Month/Limit:	Copper 2 UG/L Influent	Copper 2 UG/L Effluent 960	Iron 37 UG/L Influent	Iron 37 UG/L Effluent	Lead 2 UG/L Influent	Lead 2 UG/L Effluent 760
JANUARY -2012	73	16	621	81	ND	ND
FEBRUARY -2012	78	9	476	ND	ND	ND
MARCH -2012	71	9	477	ND	ND	ND
APRIL -2012	104	10	575	ND	ND	ND
MAY -2012	68	9	698	ND	ND	ND
JUNE -2012	97	10	1070	174	ND	ND
JULY -2012	266	18	679	72	4.7	ND
AUGUST -2012	78	8	618	52	2.8	ND
SEPTEMBER-2012	81	9	752	49	2.0	ND
OCTOBER -2012	99	7	856	38	2.4	ND
NOVEMBER -2012	84	8	598	70	4.0	ND
DECEMBER -2012	95	9	718	42	ND	ND
	==================					
AVERAGE	100	10	678	48	1.3	ND

Analyte: MAX MDL Units: Source: Month/Limit:	Manganese .24 UG/L Influent	Manganese .24 UG/L Effluent	Mercury .005 UG/L Influent	Mercury .005 UG/L Effluent 15.00	Molybdenum .89 UG/L Influent	Molybdenum .89 UG/L Effluent
JANUARY - 2012	91.4	44.7	0.154	0.004*	NR	3.0
FEBRUARY -2012	79.0	73.6	0.158*	0.005*	5.0	2.9
MARCH -2012	78.7	25.3	0.116*	0.008*	NR	3.9
APRIL -2012	84.8	24.2	0.122*	0.004*	NR	8.5
MAY -2012	86.7	14.0	0.160*	0.006*	5.2	3.0
JUNE -2012	105	36.0	0.056*	0.001*	NR	4.8
JULY -2012	77.6	50.4	0.121*	0.002*	5.7	4.2
AUGUST -2012	62.2	16.1	0.091*	0.001*	5.5	2.9
SEPTEMBER-2012	62.6	18.1	0.242	0.006	NR	3.4
OCTOBER -2012	63.6	38.4	0.218	ND	5.5	3.3
NOVEMBER -2012	63.3	34.6	0.180*	0.004*	NR	2.5
DECEMBER -2012	86.4	19.0	0.182*	0.004*	NR	2.9
			===============			=======
AVERAGE	78.4	32.9	0.149	0.004	5.4	3.8

*= In these months the mercury was performed using the method detection limit of 0.0005 UG/L.

ND= not detected NR= not required

SOUTH BAY WATER RECLAMATION PLANT

ANNUAL SEWAGE

Annual 2012

Trace Metals

Analyte: MAX MDL Units: Source: Month/Limit:	Nickel .53 UG/L Influent	Nickel .53 UG/L Effluent 1900	Selenium .28 UG/L Influent	Selenium .28 UG/L Effluent 5700	Silver .4 UG/L Influent	Silver .4 UG/L Effluent 250
JANUARY -2012 FEBRUARY -2012 MARCH -2012 APRIL -2012 JUNE -2012 JUNE -2012 JULY -2012 AUGUST -2012 SEPTEMBER-2012 OCTOBER OCTOBER -2012 DECEMBER -2012	6.37 6.62 6.09 7.35 5.69 8.59 61.60 18.70 6.48 5.72 6.29 11.50	7.73 6.98 5.60 4.67 4.63 6.69 6.24 7.32 5.83 5.96 3.76 5.13	0.63 0.84 1.18 0.80 0.77 1.31 1.29 1.47 1.47 1.47 1.19 0.82 1.19	0.37 0.48 ND 0.39 0.48 0.57 0.58 0.46 ND 0.46 0.47 0.40	0.5 ND 0.5 0.8 ND ND 0.5 1.3 0.4 ND 0.7 1.4	ND ND ND ND ND ND ND ND ND ND ND ND
AVERAGE	12.58	5.88	1.08	0.39	 0.5	ND
Analyte: MAX MDL Units: Source: Month/Limit:	Thallium^ 3.9 UG/L Influent	Thallium^ 3.9 UG/L Effluent	Vanadium .64 UG/L Influent	Vanadium .64 UG/L Effluent	Zinc 2.5 UG/L Influent	Zinc 2.5 UG/L Effluent 6900
JANUARY -2012 FEBRUARY -2012 MARCH -2012 APRIL -2012 JUNE -2012 JULY -2012 AUGUST -2012 SEPTEMBER-2012 OCTOBER OCTOBER -2012 NOVEMBER -2012 DECEMBER -2012	ND ND ND ND ND ND 4.5 ND ND 4.9 ND	ND ND ND ND ND ND ND ND ND ND ND	NR 1.7 NR 2.8 NR 2.1 1.8 NR 2.4 NR NR 2.4 NR NR	1.43 0.72 1.12 1.09 1.68 0.79 0.65 1.19 0.64 1.12 0.85 1.00	146 123 191 187 139 179 193 154 159 150 167 166	37.2 22.0 25.0 31.2 30.1 34.6 22.4 34.6 37.2 23.8 32.8 32.8 37.6
AVERAGE	0.8	ND	2.2	1.02	163	30.7

^= Total recoverable thallium.

ND= not detected NR= not required

SOUTH BAY WATER RECLAMATION PLANT Annual Sewage Cations

ANNUAL 2012

Analyte: MDL/Units:		lcium mg/L		agnesium .1 mg/L		thium 2 mg/L
Source:	INFLUENT	EFFLUENT	INFLUENT	EFFLUENT	INFLUENT	EFFLUENT
=======						
JANUARY -2012	64.6	66.2	29.9	29.5	0.022	0.021
FEBRUARY -2012	72.6	73.3	37.1	36.1	0.023	0.021
MARCH -2012	66.4	70.0	33.4	33.7	0.025	0.023
APRIL -2012	67.7	71.9	33.8	33.2	0.024	0.022
MAY -2012	58.4	60.5	27.6	28.3	0.026	0.026
JUNE -2012	64.1	65.5	29.9	29.5	0.030	0.026
JULY -2012	64.2	66.2	30.4	30.5	0.027	0.028
AUGUST -2012	62.3	63.1	29.1	28.5	0.031	0.030
SEPTEMBER-2012	56.7	61.2	30.0	31.4	0.021	0.025
OCTOBER -2012	60.2	59.2	31.5	30.0	0.031	0.025
NOVEMBER -2012	55.6	58.2	28.5	29.4	0.028	0.025
DECEMBER -2012	65.1	63.8	34.6	33.4	0.024	0.024
						=======
Average:	63.2	64.9	31.3	31.1	0.026	0.025

Analyte:			Sodium	Po	Potassium	
MDL/Units:		1 mg/L			.3 mg/L	
Source:		INFLUENT	EFFLUENT	INFLUENT	EFFLUENT	
==========				=========		
JANUARY -2	2012	186	194	19.4	17.9	
FEBRUARY -2	2012	208	213	19.1	18.5	
MARCH - 2	2012	195	202	18.3	17.9	
APRIL -2	2012	193	200	18.9	18.6	
MAY -2	2012	158	169	16.9	15.8	
JUNE -2	2012	174	189	18.2	17.2	
JULY -2	2012	177	195	18.1	17.8	
AUGUST -2	2012	172	179	18.6	17.1	
SEPTEMBER-2	2012	172	185	17.0	17.1	
OCTOBER -2	2012	178	184	18.4	16.5	
NOVEMBER -2	2012	176	184	18.3	17.3	
DECEMBER -2	2012	206	207	20.9	19.3	
Average:		183	192	18.5	17.6	

ND=not detected INF= Influent EFF= Effluent

SOUTH BAY WATER RECLAMATION PLANT ANNUAL SEWAGE

Anions

Annual 2012

Analyte:	Bromide	Bromide	Chloride	Chloride	Fluoride	Fluoride
MDL:	.1	.1	7	7	.05	.05
Units:	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
Source:	INFLUENT	EFFLUENT	INFLUENT	EFFLUENT	INFLUENT	EFFLUENT
JANUARY -2012	0.5	0.6	270	249	0.55	0.93
FEBRUARY -2012	0.5	0.7	276	295	0.53	0.84
MARCH -2012	0.5	0.6	266	284	0.56	0.66
APRIL -2012	0.5	0.5	255	266	0.48	0.57
MAY -2012	0.5	0.5	258	262	0.55	0.77
JUNE -2012	0.4	0.5	249	273	0.33	0.54
JULY -2012	0.5	0.4	241	264	0.52	0.60
AUGUST -2012	0.4	0.5	236	246	0.56	0.65
SEPTEMBER-2012	0.4	0.5	248	257	0.61	0.56
OCTOBER -2012	0.4	0.4	244	250	0.55	0.70
NOVEMBER -2012	0.4	0.4	250	252	0.39	0.71
DECEMBER -2012	0.4	0.5	252	258	0.51	0.58
AVERAGE	0.5	0.5	254	263	0.51	0.68

Analyte: MDL: Units: Source:	Nitrate .04 MG/L INFLUENT	Nitrate .04 MG/L EFFLUENT	Ortho Phosph .2 MG/L INFLUENT	Ortho Phosphate .2 MG/L EFFLUENT	Sulfate 9 MG/L INFLUENT	Sulfate 9 MG/L EFFLUENT
=======================================		=========	=============		=================	
JANUARY -2012	0.21	37.9	10.5	4.6	131	137
FEBRUARY -2012	0.16	28.9	10.3	4.1	135	164
MARCH -2012	0.20	30.8	10.3	5.0	128	166
APRIL -2012	0.21	31.9	10.0	5.3	119	151
MAY -2012	0.22	39.3	10.6	7.5	129	153
JUNE -2012	0.13	41.4	10.8	5.2	126	164
JULY -2012	0.31	20.7	10.8	7.8	123	164
AUGUST -2012	0.74	41.4	10.8	5.6	115	154
SEPTEMBER-2012	0.12	44.9	10.8	8.0	106	149
OCTOBER -2012	1.15	21.5	10.1	1.5	107	140
NOVEMBER -2012	0.63	39.4	10.7	3.0	109	127
DECEMBER -2012	0.92	36.6	10.9	5.6	106	140
AVERAGE	0.42	34.6	10.6	5.3	 120	 151

ND= not detected NA= not analyzed NS= not sampled

SOUTH BAY WATER RECLAMATION PLANT ANNUAL SEWAGE

Ammonia-Nitrogen and Total Cyanides

Annual 2012

			Total	Total
Analyte:	Ammonia-N	Ammonia-N	Cyanides	Cyanides
MDL/Units:	.3 MG/L	.3 MG/L	.002 MG/L	.002 MG/L
Source:	INFLUENT	EFFLUENT	INFLUENT	EFFLUENT
=============			==========	
JANUARY -2012	35.1	1.8	ND	ND
FEBRUARY -2012	32.3	2.7	ND	ND
MARCH - 2012	36.2	0.3	ND	ND
APRIL -2012	33.0	ND	ND	ND
MAY -2012	34.8	ND	ND	ND
JUNE -2012	36.1	ND	ND	ND
JULY -2012	37.1	0.6	ND	0.002
AUGUST -2012	36.5	ND	0.003	ND
SEPTEMBER-2012	38.5	ND	ND	ND
OCTOBER -2012	35.2	2.5	ND	ND
NOVEMBER -2012	39.2	ND	ND	ND
DECEMBER -2012	38.1	ND	ND	ND
======			=========	
Average:	36.0	0.7	0.0003	0.0002

ND= not detected NA= not analyzed

SOUTH BAY WATER RECLAMATION PLANT Radioactivity Effluent to the Ocean (SB_OUTFALL_01)

Analyzed by: TestAmerica Laboratories Richland

Annual 2012

Month		Gross Alpha Radiation	Gross Beta Radiation
==========	====		
JANUARY -	2012	1.0 ± 4.2	21.3 ± 5.2
FEBRUARY -	2012	-2.1 ± 3.8	21.7 ± 5.8
MARCH -	2012	1.2 ± 3.3	19.8 ± 3.7
APRIL -	2012	0.7 ± 3.1	17.9 ± 3.8
MAY -	2012	3.9 ± 3.9	18.3 ± 7.5
JUNE -	2012	3.3 ± 4.1	14.0 ± 7.4
JULY -	2012	2.8 ± 3.1	22.2 ± 4.7
AUGUST -	2012	0.1 ± 2.8	17.5 ± 4.5
SEPTEMBER-	2012	1.5 ± 3.3	17.9 ± 4.9
OCTOBER -	2012	-1.0 ± 3.4	19.0 ± 3.7
NOVEMBER -	2012	5.1 ± 3.8	20.8 ± 4.6
DECEMBER -	2012	-4.0 ± 4.3	22.2 ± 5.5
==========	====		
AVERAGE		1.0 ± 3.6	19.4 ± 5.1

Units in picocuries/liter (pCi/L)

SOUTH BAY WATER RECLAMATION PLANT SEWAGE ANNUAL- Chlorinated Pesticide Analysis

Annual 2012

Source:			EFF												
Date:			JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	0CT	NOV	DEC*	
Analyte	MDL	Units	07.11	. 25				0011	001		51.			510	Avg
=======================================		=====													=====
Aldrin	7	NG/L	ND												
Dieldrin	8	NG/L	ND												
BHC, Alpha isomer	7	NG/L	ND												
BHC, Beta isomer	6	NG/L	ND												
BHC, Gamma isomer	5	NG/L	ND												
BHC, Delta isomer	4	NG/L	ND												
p,p-DDD	4	NG/L	ND												
p,p-DDE	4	NG/L	ND												
p,p-DDT	8	NG/L	ND												
o,p-DDD	4	NG/L	ND												
o,p-DDE	5	NG/L	ND												
o,p-DDT	3	NG/L	ND												
Heptachlor	8	NG/L	ND												
Heptachlor epoxide	4	NG/L	ND												
Alpha (cis) Chlordane	3	NG/L	ND												
Gamma (trans) Chlordane	4	NG/L	ND												
Alpha Chlordene		NG/L	NA												
Gamma Chlordene		NG/L	NA												
Oxychlordane	6	NG/L	ND												
Trans Nonachlor	5	NG/L	ND												
Cis Nonachlor	5	NG/L	ND												
Alpha Endosulfan	4	NG/L	ND												
Beta Endosulfan	5	NG/L	ND												
Endosulfan Sulfate	6	NG/L	ND												
Endrin	8	NG/L	ND												
Endrin aldehyde	9	NG/L	ND												
Mirex	10	NG/L	ND												
Methoxychlor	10	NG/L	ND												
Toxaphene	330	NG/L	ND												
PCB 1016	4000	NG/L	ND												
PCB 1221	4000	NG/L	ND												
PCB 1232	360	NG/L	ND												
PCB 1242	4000	NG/L	ND												
PCB 1248	2000	NG/L	ND												
PCB 1254	2000	NG/L	ND												
PCB 1260	2000	NG/L	ND												
PCB 1262	930	NG/L	ND												
	====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====
Aldrin + Dieldrin	8	NG/L	0	0	0	0	0	0	0	0	0	0	0	0	0
Hexachlorocyclohexanes	7	NG/L	0	0	0	0	0	0	0	0	0	0	0	0	0
DDT and derivatives	8	NG/L	0	0	0	0	0	0	0	0	0	0	0	0	0
Chlordane + related cmpds.	6	NG/L	0	0	0	0	0	0	0	0	0	0	0	0	0
Polychlorinated biphenyls	4000	NG/L	0	0	0	0	0	0	0	0	0	0	0	0	0
Endosulfans	6	NG/L	0	0	0	0	0	0	0	0	0	0	0	0	0
				=====		=====		=====	=====		=====				=====
Heptachlors	8	NG/L	0	0	0	0	0	0	0	0	0	0	0	0	0
			=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====
Chlorinated Hydrocarbons	4000	NG/L	0	0	0	0	0	0	0	0	0	0	0	0	0
-		-													

*= This sample was extracted approximately 10 hours after the holding time.

ND=not detected

NA=not analyzed

Standards for alpha and gamma chlordene are no longer available in the U.S. for the analysis of these compounds.

SOUTH BAY WATER RECLAMATION PLANT SEWAGE ANNUAL - Chlorinated Pesticide Analysis

Annual 2012

-							
Source:			INF	INF	INF	INF	INF
Date:			FEB	MAY	AUG	OCT	
Analyte	MDL	Units					Avg =====
Aldrin	7	NG/L	ND	ND	ND	ND	ND
Dieldrin	8	NG/L	ND	ND	ND	ND	ND
BHC, Alpha isomer	7	NG/L	ND	ND	ND	ND	ND
BHC, Beta isomer	6	NG/L	ND	ND	ND	ND	ND
BHC, Gamma isomer	5	NG/L	ND	ND	ND	ND	ND
BHC, Delta isomer	4	NG/L	ND	ND	ND	ND	ND
p,p-DDD	4	NG/L	ND	ND	ND	ND	ND
p,p-DDE	4	NG/L	ND	ND	ND	4	1
p,p-DDT	8	NG/L	ND	ND	ND	ND	ND
o,p-DDD	4	NG/L	ND	ND	ND	ND	ND
o,p-DDE	5	NG/L	ND	ND	ND	ND	ND
o,p-DDT	3	NG/L	ND	ND	ND	ND	ND
Heptachlor	8	NG/L	ND	ND	ND	ND	ND
Heptachlor epoxide	4	NG/L	ND	ND	ND	ND	ND
Alpha (cis) Chlordane	3	NG/L	ND	ND	ND	ND	ND
Gamma (trans) Chlordane	4	NG/L	ND	ND	ND	ND	ND
Alpha Chlordene	4	NG/L	NA	NA	NA	NA	NA
Gamma Chlordene			NA	NA	NA	NA	NA
Oxychlordane	6	NG/L NG/L	ND	ND	ND	ND	NA
Trans Nonachlor	5	NG/L	ND	ND	ND	ND	ND
	5 5		ND	ND	ND	ND	ND
Cis Nonachlor Alpha Endosulfan	5 4	NG/L	ND	ND	ND	ND	ND
Beta Endosulfan	4 5	NG/L	ND	ND	ND		ND
Endosulfan Sulfate	5 6	NG/L	ND			ND	ND
		NG/L		ND	ND	ND	
Endrin Endrin aldebude	8 9	NG/L	ND ND	ND ND	ND ND	ND ND	ND ND
Endrin aldehyde Mirex	9 10	NG/L	ND	ND		ND	
		NG/L		ND	ND ND		ND ND
Methoxychlor	10 330	NG/L	ND ND	ND		ND ND	
Toxaphene		NG/L			ND		ND ND
PCB 1016	4000		ND	ND	ND	ND	
PCB 1221	4000		ND	ND	ND	ND	ND
PCB 1232 PCB 1242	360	NG/L	ND	ND	ND	ND	ND
РСБ 1242 РСВ 1248	4000		ND ND	ND ND	ND ND	ND ND	ND ND
РСБ 1248 РСВ 1254	2000		ND	ND	ND	ND	ND
РСБ 1254 РСВ 1260		NG/L	ND	ND	ND	ND	ND
PCB 1260 PCB 1262	2000 930	NG/L NG/L	ND	ND	ND	ND	ND
PCB 1202	950	-,	UN =====				ND =====
Aldrin + Dieldrin	==== 8	===== NG/L	===== 0	===== 0	===== 0	===== 0	===== 0
	o 7	- /	0			0	0
Hexachlorocyclohexanes DDT and derivatives	8	NG/L	0	0 0	0 0	4	1
	° 6	NG/L	0	0	0	4	0
Chlordane + related cmpds.		NG/L	0	0	0	0	0
Polychlorinated biphenyls	4000						
Endosulfans	6	NG/L =====	0 =====	0 =====	0 =====	0	0
	==== 8	===== NG/L				===== 0	===== 0
Heptachlors			0	0	0	0	0
	==== 4000	===== NG / I		===== 0	===== 0		===== 1
Chlorinated Hydrocarbons	4000	NG/L	0	0	0	4	T

ND=not detected NA=not analyzed

Standards for alpha and gamma chlordene are no longer available in the U.S. for the analysis of these compounds.

SOUTH BAY WATER RECLAMATION PLANT Organophosphorus PesticidesEPA Method 614/622 (with additions)

INFLUENT & EFFLUENT

Annual 2012

Source:			Effluent	Effluent	Influent	Influent
Date:					01-MAY-2012	
Analyte	MDL	Units	P614092	P634422	P614087	P634417
	: ===	=====	========	========		========
Demeton O		UG/L	ND	ND	ND	ND
Demeton S	.08	UG/L	ND	ND	ND	ND
Diazinon	.03	UG/L	ND	ND	ND	ND
Guthion	.15	UG/L	ND	ND	ND	ND
Malathion	.03	UG/L	ND	ND	ND	ND
Parathion	.03	UG/L	ND	ND	ND	ND
Dichlorvos	.05	UG/L	ND	ND	ND	ND
Disulfoton	.02	UG/L	ND	ND	ND	ND
Dimethoate	.04	UG/L	ND	ND	ND	ND
Stirophos	.03	UG/L	ND	ND	ND	ND
Coumaphos	.15	UG/L	ND	ND	ND	ND
Chlorpyrifos	.03	UG/L	ND	ND	ND	ND
Thiophosphorus Pesticides	.15	UG/L	0.0	0.0	0.0	0.0
Demeton -O, -S	.15	UG/L	0.0	0.0	0.0	0.0
	: ===	=====				======
Total Organophosphorus Pesticides	.15	UG/L	0.0	0.0	0.0	0.0

ND=not detected

SOUTH BAY WATER RECLAMATION PLANT ANNUAL SEWAGE - Tributyl Tin Analysis

Annual 2012

Source: Date:			EFF FEB	EFF MAY	EFF AUG	EFF OCT	
Analyte	MDL	Units					Average
	===	=====	=====	=====	=====	=====	=====
Dibutyltin	7	UG/L	ND	ND	ND	ND	ND
Monobutyltin	16	UG/L	ND	ND	ND	ND	ND
Tributyltin	2	UG/L	ND	ND	ND	ND	ND
Source: Date:			INF FEB	INF MAY	INF AUG	INF OCT	
Analyte	MDL	Units					Average
	===	=====	=====	=====	=====	=====	=====
Dibutyltin	7	UG/L	ND	ND	ND	ND	ND
Monobutyltin	16	UG/L	ND	ND	ND	ND	ND
Tributyltin	2	UG/L	ND	ND	ND	ND	ND

ND=not detected EFF= Effluent INF= Influent

Annual 2012

Source:								EFFL	UENT						
Analyte	MDL	Units	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	AVG
2-Chlorophenol	1.32	UG/L	ND												
2,4-Dichlorophenol	1.01	UG/L	ND												
4-Chloro-3-methylphenol	1.67	UG/L	ND												
2,4,6-Trichlorophenol	1.65	UG/L	ND												
Pentachlorophenol	1.12	UG/L	ND												
Phenol	1.76	UG/L	ND												
2-Nitrophenol		UG/L	ND												
2,4-Dimethylphenol		UG/L	ND												
2,4-Dinitrophenol		UG/L	ND												
4-Nitrophenol		UG/L	ND												
2-Methyl-4,6-dinitrophenol	1.52	UG/L	ND												
Total Chlorinated Phenols	1.67	UG/L	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Non-Chlorinated Phenols	2.16	UG/L	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====
Total Phenols	2.16	UG/L	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Additional analytes determined															
	====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====
2-Methylphenol		UG/L	ND												
3-Methylphenol(4-MP is unresolved)		UG/L	NA												
4-Methylphenol(3-MP is unresolved)		UG/L	ND												
2,4,5-Trichlorophenol	1.66	UG/L	ND												

Source:

INFLUENT

Analyte	MDL	Units	FEB	MAY	AUG	ОСТ	AVG
	====	=====	=====	=====	=====	=====	=====
2-Chlorophenol	1.32	UG/L	ND	ND	ND	ND	ND
2,4-Dichlorophenol	1.01	UG/L	ND	ND	ND	ND	ND
4-Chloro-3-methylphenol	1.67	UG/L	ND	ND	ND	ND	ND
2,4,6-Trichlorophenol	1.65	UG/L	ND	ND	ND	ND	ND
Pentachlorophenol	1.12	UG/L	ND	ND	ND	ND	ND
Phenol	1.76	UG/L	42.5	31.4	40.2	40.5	38.7
2-Nitrophenol	1.55	UG/L	ND	ND	ND	ND	ND
2,4-Dimethylphenol	2.01	UG/L	ND	ND	ND	ND	ND
2,4-Dinitrophenol	2.16	UG/L	ND	ND	ND	ND	ND
4-Nitrophenol	1.14	UG/L	ND	ND	ND	ND	ND
2-Methyl-4,6-dinitrophenol	1.52	UG/L	ND	ND	ND	ND	ND
	====	=====	=====	=====	=====		=====
Total Chlorinated Phenols	1.67	UG/L	0.0	0.0	0.0	0.0	0.0
Total Non-Chlorinated Phenols	2.16	UG/L	42.5	31.4	40.2	40.5	38.7
	====	=====	=====	=====	=====	=====	=====
Total Phenols	2.16	UG/L	42.5	31.4	40.2	40.5	38.7

Additional analytes determined

	====	=====	=====	=====	=====	=====	=====
2-Methylphenol	2.15	UG/L	ND	ND	ND	ND	ND
3-Methylphenol(4-MP is unresolved)		UG/L	NA	NA	NA	NA	NA
<pre>4-Methylphenol(3-MP is unresolved)</pre>	2.11	UG/L	118	91.7	93.6	95.2	99.6
2,4,5-Trichlorophenol	1.66	UG/L	ND	ND	ND	ND	ND

ND=not detected NA=not analyzed

SOUTH BAY WATER RECLAMATION PLANT SEWAGE ANNUAL Priority Pollutants Base/Neutrals

Annual 2012

-	
Source	٠
Julice	•

EFFLUENT

Analyte	MDL	Units	FEB	MAY	AUG	ОСТ	AVG	
			=====	=====	=====	=====	=====	
Bis-(2-chloroethyl) ether	1.38	UG/L	ND	ND	ND	ND	ND	
Bis-(2-chloroisopropyl) ether	1.16	UG/L	ND	ND	ND	ND	ND	
N-nitrosodi-n-propylamine	1.16	UG/L	ND	ND	ND	ND	ND	
Nitrobenzene	1.6	UG/L	ND	ND	ND	ND	ND	
Hexachloroethane	1.32	UG/L	ND	ND	ND	ND	ND	
Isophorone	1.53	UG/L	ND	ND	ND	ND	ND	
Bis-(2-chloroethoxy) methane	1.01	UG/L	ND	ND	ND	ND	ND	
1,2,4-Trichlorobenzene	1.52	UG/L	ND	ND	ND	ND	ND	
Naphthalene	1.65	UG/L	ND	ND	ND	ND	ND	
Hexachlorobutadiene	1.64	UG/L	ND	ND	ND	ND	ND	
Hexachlorocyclopentadiene	1.25	UG/L	ND	ND	ND	ND	ND	
Acenaphthylene	1.77	UG/L	ND	ND	ND	ND	ND	
Dimethyl phthalate	1.44	UG/L	ND	ND	ND	ND	ND	
2,6-Dinitrotoluene	1.53	UG/L	ND	ND	ND	ND	ND	
Acenaphthene	1.8	UG/L	ND	ND	ND	ND	ND	
2,4-Dinitrotoluene	1.36	UG/L	ND	ND	ND	ND	ND	
Fluorene	1.61	UG/L	ND	ND	ND	ND	ND	
4-Chlorophenyl phenyl ether	1.57	UG/L	ND	ND	ND	ND	ND	
Diethyl phthalate	3.05	UG/L	ND	ND	ND	ND	ND	
N-nitrosodiphenylamine	3.48	UG/L	ND	ND	ND	ND	ND	
4-Bromophenyl phenyl ether	1.4	UG/L	ND	ND	ND	ND	ND	
Hexachlorobenzene	1.48	UG/L	ND	ND	ND	ND	ND	
Phenanthrene	1.34	UG/L	ND	ND	ND	ND	ND	
Anthracene	1.29	UG/L	ND	ND	ND	ND	ND	
Di-n-butyl phthalate	3.96	UG/L	ND	ND	ND	ND	ND	
N-nitrosodimethylamine	1.27	UG/L	ND	ND	ND	ND	ND	
Fluoranthene	1.33	UG/L	ND	ND	ND	ND	ND	
Pyrene	1.43	UG/L	ND	ND	ND	ND	ND	
Benzidine	1.52	UG/L	ND	ND	ND	ND	ND	
Butyl benzyl phthalate	2.84	UG/L	ND	ND	ND	ND	ND	
Chrysene	1.16	UG/L	ND	ND	ND	ND	ND	
Benzo[a]anthracene	1.1	UG/L	ND	ND	ND	ND	ND	
Bis-(2-ethylhexyl) phthalate	8.96	UG/L	11.2	ND	ND	ND	2.8	
Di-n-octyl phthalate	1	UG/L	ND	ND	ND	ND	ND	
3,3-Dichlorobenzidine	2.44	UG/L	ND	ND	ND	ND	ND	
Benzo[k]fluoranthene	1.49	UG/L	ND	ND	ND	ND	ND	
3,4-Benzo(b)fluoranthene	1.35	UG/L	ND	ND	ND	ND	ND	
Benzo[a]pyrene	1.25	UG/L	ND	ND	ND	ND	ND	
Indeno(1,2,3-CD)pyrene	1.14	UG/L	ND	ND	ND	ND	ND	
Dibenzo(a,h)anthracene	1.01	UG/L	ND	ND	ND	ND	ND	
Benzo[g,h,i]perylene	1.09	UG/L	ND	ND	ND	ND	ND	
1,2-Diphenylhydrazine	1.37		ND	ND	ND	ND	ND	
Polynuc. Aromatic Hydrocarbons			===== 0.0	===== 0.0	===== 0.0	===== 0.0	===== 0.0	
				=====				
Base/Neutral Compounds	8.96		11.2	0.0	0.0	0.0	2.8	
Additional analytes determined								
Additional analytes determined								
	==== 2 10	=====	=====	=====			===== ND	
1-Methylnaphthalene	2.18	UG/L	ND	ND	ND	ND	ND	

	====	=====	=====	=====	=====	=====	==
1-Methylnaphthalene	2.18	UG/L	ND	ND	ND	ND	
2-Methylnaphthalene	2.14	UG/L	ND	ND	ND	ND	
2,6-Dimethylnaphthalene	2.16	UG/L	ND	ND	ND	ND	
2,3,5-Trimethylnaphthalene	2.18	UG/L	ND	ND	ND	ND	
1-Methylphenanthrene	1.46	UG/L	ND	ND	ND	ND	
Benzo[e]pyrene	1.44	UG/L	ND	ND	ND	ND	
Perylene	1.41	UG/L	ND	ND	ND	ND	
Biphenyl	2.29	UG/L	ND	ND	ND	ND	

ND=not detected

ND ND ND ND ND

ND

SOUTH BAY WATER RECLAMATION PLANT SEWAGE ANNUAL Priority Pollutants Base/Neutrals

Annual 2012

Counco	
Source	٠

INFLUENT

Analyte	MDL	Units	FEB	MAY	AUG	ОСТ	AVG
2	====						AVU
Bis-(2-chloroethyl) ether	1.38	UG/L	ND	ND	ND	ND	ND
Bis-(2-chloroisopropyl) ether		UG/L	ND	ND	ND	ND	ND
N-nitrosodi-n-propylamine		UG/L	ND	ND	ND	ND	ND
Nitrobenzene	1.6	UG/L	ND	ND	ND	ND	ND
Hexachloroethane		UG/L	ND	ND	ND	ND	ND
Isophorone		UG/L	ND	ND	ND	ND	ND
Bis-(2-chloroethoxy) methane		UG/L	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene		UG/L	ND	ND	ND	ND	ND
Naphthalene		UG/L	ND	ND	ND	ND	ND
Hexachlorobutadiene		UG/L	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene		UG/L	ND	ND	ND	ND	ND
Acenaphthylene		UG/L	ND	ND	ND	ND	ND
Dimethyl phthalate		UG/L	ND	ND	ND	ND	ND
2,6-Dinitrotoluene		UG/L	ND	ND	ND	ND	ND
Acenaphthene	1.8	UG/L	ND	ND	ND	ND	ND
2,4-Dinitrotoluene		UG/L	ND	ND	ND	ND	ND
Fluorene		UG/L	ND	ND	ND	ND	ND
4-Chlorophenyl phenyl ether		UG/L	ND	ND	ND	ND	ND
Diethyl phthalate		UG/L	10.0	5.7	8.6	7.0	7.8
N-nitrosodiphenylamine		UG/L	ND	ND	ND	ND	ND
4-Bromophenyl phenyl ether	1.4	UG/L	ND	ND	ND	ND	ND
Hexachlorobenzene		UG/L	ND	ND	ND	ND	ND
Phenanthrene		UG/L	ND	ND	ND	ND	ND
Anthracene		UG/L	ND	ND	ND	ND	ND
Di-n-butyl phthalate		UG/L	ND	ND	ND	ND	ND
N-nitrosodimethylamine		UG/L	ND	ND	ND	ND	ND
Fluoranthene		UG/L	ND	ND	ND	ND	ND
Pyrene		UG/L	ND	ND	ND	ND	ND
Benzidine		UG/L	ND	ND	ND	ND	ND
Butyl benzyl phthalate		UG/L	ND	ND	ND	ND	ND
Chrysene		UG/L	ND	ND	ND	ND	ND
Benzo[a]anthracene	1.10	UG/L	ND	ND	ND	ND	ND
Bis-(2-ethylhexyl) phthalate		UG/L	22.5	ND	23.7	10.5	14.2
Di-n-octyl phthalate	1	UG/L	ND	ND	ND	ND	ND
3,3-Dichlorobenzidine		UG/L	ND	ND	ND	ND	ND
Benzo[k]fluoranthene		UG/L	ND	ND	ND	ND	ND
3,4-Benzo(b)fluoranthene		UG/L	ND	ND	ND	ND	ND
Benzo[a]pyrene		UG/L	ND	ND	ND	ND	ND
Indeno(1,2,3-CD)pyrene		UG/L	ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene		UG/L	ND	ND	ND	ND	ND
Benzo[g,h,i]perylene		UG/L	ND	ND	ND	ND	ND
1,2-Diphenylhydrazine		UG/L	ND	ND	ND	ND	ND
=======================================		/	=====				
Polynuc. Aromatic Hydrocarbons			0.0	0.0	0.0	0.0	0.0
			0.0				
Base/Neutral Compounds		UG/L	32.5	5.7	32.3	17.5	22.0
,	5.20		52.5	2.7	52.5	1.15	

Additional analytes determined

	====	=====	=====	=====	=====	=====	=====
1-Methylnaphthalene	2.18	UG/L	ND	ND	ND	ND	ND
2-Methylnaphthalene	2.14	UG/L	ND	ND	ND	ND	ND
2,6-Dimethylnaphthalene	2.16	UG/L	ND	ND	ND	ND	ND
2,3,5-Trimethylnaphthalene	2.18	UG/L	ND	ND	ND	ND	ND
1-Methylphenanthrene	1.46	UG/L	ND	ND	ND	ND	ND
Benzo[e]pyrene	1.44	UG/L	ND	ND	ND	ND	ND
Perylene	1.41	UG/L	ND	ND	ND	ND	ND
Biphenyl	2.29	UG/L	ND	ND	ND	ND	ND

ND=not detected

SOUTH BAY WATER RECLAMATION PLANT SEWAGE ANNUAL Priority Pollutants Purgeables

Annual 2012

Source:				EFF	LUENT		
Analyte	MDL	Units	FEB	MAY	AUG	ОСТ	AVG
	====		=====			=====	
Dichlorodifluoromethane	.66	UG/L	ND	ND	ND	ND	ND
Chloromethane	.5	UG/L	ND	ND	ND	ND	ND
Vinyl chloride	.4	UG/L	ND	ND	ND	ND	ND
Bromomethane	.7	UG/L	ND	ND	ND	ND	ND
Chloroethane	.9	UG/L	ND	ND	ND	ND	ND
Trichlorofluoromethane	.3	UG/L	ND	ND	ND	ND	ND
Acrolein	1.3	UG/L	ND	ND	ND	ND	ND
1,1-Dichloroethane Methylene chloride	.4 .3	UG/L UG/L	ND ND	ND ND	ND 0.3	ND ND	ND 0.1
trans-1,2-dichloroethene	.6	UG/L	ND	ND	ND	ND	ND
1,1-Dichloroethene	.4	UG/L	ND	ND	ND	ND	ND
Acrylonitrile	.7	UG/L	ND	ND	ND	ND	ND
Chloroform	.2	UG/L	0.4	1.7	0.7	0.4	0.8
1,1,1-Trichloroethane	.4	UG/L	ND	ND	ND	ND	ND
Carbon tetrachloride	.4	UG/L	ND	ND	ND	ND	ND
Benzene	.4	UG/L	ND	ND	ND	ND	ND
1,2-Dichloroethane	.5	UG/L	ND	ND	ND	ND	ND
Trichloroethene	.7	UG/L	ND	ND	ND	ND	ND
1,2-Dichloropropane	.3	UG/L	ND	ND	ND	ND	ND
Bromodichloromethane	.5	UG/L	ND	1.0	ND	ND	0.3
2-Chloroethylvinyl ether	1.1	UG/L	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	.3	UG/L	ND	ND	ND	ND	ND
Toluene	.4	UG/L	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	.5	UG/L	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	.5	UG/L	ND	ND	ND	ND	ND
Tetrachloroethene	1.1	UG/L	ND	ND	ND	ND	ND
Dibromochloromethane	.6	UG/L	ND	<0.6	ND	ND	0.0
Chlorobenzene	.4	UG/L	ND	ND	ND	ND	ND
Ethylbenzene	.3	UG/L	ND	ND	ND	ND	ND
Bromoform	.5	UG/L	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	.5	UG/L	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	.5	UG/L	ND	ND	ND	ND	ND
1,4-Dichlorobenzene 1,2-Dichlorobenzene	.4 .4	UG/L UG/L	ND ND	ND ND	ND ND	ND ND	ND ND
1,2,4-Trichlorobenzene		UG/L	ND	ND	ND	ND	ND
=======================================						=====	
Halomethane Purgeable Cmpnds		UG/L	0.0	0.0	0.0	0.0	0.0
						=====	=====
Total Dichlorobenzenes	.5	UG/L	0.0	0.0	0.0	0.0	0.0
						=====	
Total Chloromethanes	.5 ====	UG/L =====	0.4 =====	1.7	1.0	0.4 =====	0.9
Purgeable Compounds	1.3	UG/L	0.4	2.7	1.0	0.4	1.1
Additional analytes determin							
Mathul Tadida						=====	
Methyl Iodide Carbon disulfide	.6 .6	UG/L	ND	ND	ND	ND ND	ND
Acetone	.6 4.5	UG/L UG/L	ND ND	ND ND	ND ND	ND ND	ND ND
Allyl chloride	4.5 .6	UG/L UG/L	ND ND	ND	ND	ND	ND
Methyl tert-butyl ether	.0 .4	UG/L UG/L	ND	ND	ND	ND	ND
Chloroprene	.4	UG/L	ND	ND	ND	ND	ND
1,2-Dibromoethane	.4	UG/L	ND	ND	ND	ND	ND
2-Butanone	6.3	UG/L	ND	ND	ND	ND	ND
Methyl methacrylate	.8	UG/L	ND	ND	ND	ND	ND
2-Nitropropane	.0 12	UG/L	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	1.3	UG/L	ND	ND	ND	ND	ND
meta,para xylenes	.6	UG/L	ND	ND	ND	ND	ND
ortho-xylene	.4	UG/L	ND	ND	ND	ND	ND
Isopropylbenzene	.3	UG/L	ND	ND	ND	ND	ND
Styrene	.3	UG/L	ND	ND	ND	ND	ND
Benzyl chloride	1.1	UG/L	ND	ND	ND	ND	ND

ND=not detected

SOUTH BAY WATER RECLAMATION PLANT SEWAGE ANNUAL Priority Pollutants Purgeables

Annual 2012

Source:	INFLUENT						
Analyte	MDL	Units	FEB	MAY	AUG	ОСТ	AVG
<pre>====================================</pre>	==== .66	===== UG/L	===== ND	===== ND	===== ND	===== ND	===== ND
Chloromethane	.5	UG/L	ND	ND	ND	ND	ND
Vinyl chloride	.4	UG/L	ND	ND	ND	ND	ND
Bromomethane	.7	UG/L	ND	ND	ND	ND	ND
Chloroethane	.9	UG/L	ND	ND	ND	ND	ND
Trichlorofluoromethane	.3	UG/L	ND	ND	ND	ND	ND
Acrolein	1.3	UG/L	ND	ND	ND	ND	ND
1,1-Dichloroethane	.4	UG/L	ND	ND 1 Q	ND 0.9	ND 9.0	ND 2.9
Methylene chloride trans-1,2-dichloroethene	.3 .6	UG/L UG/L	0.6 ND	1.0 ND	ND	9.0 ND	ND
1,1-Dichloroethene	.4	UG/L	ND	ND	ND	ND	ND
Acrylonitrile	.7	UG/L	ND	ND	ND	ND	ND
Chloroform	.2	UG/L	1.2	2.3	1.7	12.0	4.3
1,1,1-Trichloroethane	.4	UG/L	ND	ND	ND	ND	ND
Carbon tetrachloride	.4	UG/L	ND	ND	ND	ND	ND
Benzene	.4	UG/L	ND	ND	ND	ND	ND
1,2-Dichloroethane	.5	UG/L	ND	ND	ND	ND	ND
Trichloroethene	.7	UG/L	ND	ND	ND	ND	ND
1,2-Dichloropropane Bromodichloromethane	.3 .5	UG/L UG/L	ND ND	ND ND	ND ND	ND ND	ND ND
2-Chloroethylvinyl ether	1.1	UG/L	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	.3	UG/L	ND	ND	ND	ND	ND
Toluene	.4	UG/L	0.6	1.3	0.8	0.7	0.9
trans-1,3-dichloropropene	.5	UG/L	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	.5	UG/L	ND	ND	ND	ND	ND
Tetrachloroethene	1.1	UG/L	5.6	ND	ND	ND	1.4
Dibromochloromethane	.6	UG/L	ND	ND	ND	ND	ND
Chlorobenzene	.4	UG/L	ND	ND	ND	ND	ND
Ethylbenzene	.3	UG/L	ND	ND	ND	ND	ND
Bromoform 1,1,2,2-Tetrachloroethane	.5 .5	UG/L UG/L	ND ND	ND ND	ND ND	ND ND	ND ND
1,3-Dichlorobenzene	.5	UG/L	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	.4	UG/L	0.5	0.9	0.9	0.8*	0.8
1,2-Dichlorobenzene	.4	UG/L	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	1.52	UG/L	ND	ND	ND	ND	ND
				=====			
Halomethane Purgeable Cmpnds		UG/L	0.0	0.0	0.0	0.0	0.0
 Total Dichlorobenzenes	==== .5	===== UG/L	===== 0.0	===== 0.0	===== 0.0	===== 0.0	===== 0.0
Total Chloromethanes	==== .5	===== UG/L	===== 1.8	===== 3.3	===== 2.6	===== 21.0	===== 7.2
				5.5 =====			
Purgeable Compounds	1.3	UG/L	8.5	5.5	4.3	21.7	10.0
Additional analytes determin							
Methyl Iodide Carbon disulfide	.6 .6	UG/L UG/L	ND 1.3		ND 2.3	ND 1 Q	ND 1.8
Acetone	.0 4.5	UG/L UG/L	332	1.7 453	2.5	1.8 195	318
Allyl chloride	.6	UG/L	ND	ND	ND	ND	ND
Methyl tert-butyl ether	.4	UG/L	ND	ND	ND	ND	ND
Chloroprene	.4	UG/L	ND	ND	ND	ND	ND
1,2-Dibromoethane	.3	UG/L	ND	ND	ND	ND	ND
2-Butanone	6.3	UG/L	6.5	10.9	10.1	6.4	8.5
Methyl methacrylate	.8	UG/L	ND	ND	ND	ND	ND
2-Nitropropane	12	UG/L	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	1.3	UG/L	ND	ND	ND	ND	ND
meta,para xylenes ortho-xylene	.6 .4	UG/L UG/L	ND ND	ND ND	ND ND	ND ND	ND ND
Isopropylbenzene	.4 .3	UG/L UG/L	ND	ND	ND	ND	ND
Styrene	.3	UG/L	ND	ND	ND	ND	ND
Bonzyl chlonido	1 1			ND	ND	ND	ND

*= Blank did not meet QC criteria for this analyte due to contamination. The result value of the blank in this batch was 0.44 UG/L, result above the MDL. Result is not used in computations.

ND

ND

ND

ND

ND

ND=not detected

Benzyl chloride

1.1 UG/L

Annual 2012

Councos							тыс
Source:				INF JAN	INF FEB	INF MAR	INF APR
Analyte	MDL	Units	Equiv	P601833	P602860	P609204	P612409
	====						
2,3,7,8-tetra CDD	.26	PG/L PG/L	1.000 0.500	ND ND	ND ND	ND ND	ND ND
1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD		PG/L PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD		PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD	.46	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD	.497	PG/L	0.010	27.2	90.6	DNQ23.7	DNQ22.4
octa CDD		PG/L	0.001	340	660	300	270
2,3,7,8-tetra CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8-penta CDF	.335	PG/L	0.050	ND ND	ND ND	ND ND	ND ND
2,3,4,7,8-penta CDF 1,2,3,4,7,8-hexa CDF		PG/L PG/L	0.500 0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDF		PG/L	0.100	ND	DNQ2.33	ND	ND
1,2,3,7,8,9-hexa CDF		PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDF	.324	PG/L	0.010	4.61	DNQ4.01	DNQ4.11	DNQ4.1
1,2,3,4,7,8,9-hepta CDF		PG/L	0.010	ND	ND	ND	ND
octa CDF	.805	PG/L	0.001	23	DNQ12	DNQ14.1	DNQ13.3
Source:				INF	INF	INF	INF
5601222				MAY	JUN	JUL	AUG
Analyte	MDL	Units	Equiv	P614087	P620069	P623996	P626993
2,3,7,8-tetra CDD	.26	PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD		PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD		PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	.484 .46	PG/L PG/L	0.100 0.100	ND ND	ND ND	ND ND	ND ND
1,2,3,7,8,9-hexa CDD 1,2,3,4,6,7,8-hepta CDD			0.010	DNQ14.8	DNQ15.8	DNQ18.4	DNQ19.3
octa CDD		PG/L	0.001	260	150	240	160
2,3,7,8-tetra CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8-penta CDF		PG/L	0.050	ND	ND	ND	ND
2,3,4,7,8-penta CDF	.34	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDF		PG/L	0.100	ND	ND	DNQ2.07	DNQ1.48
1,2,3,7,8,9-hexa CDF		PG/L	0.100	ND ND	ND	ND	ND ND
2,3,4,6,7,8-hexa CDF 1,2,3,4,6,7,8-hepta CDF		PG/L PG/L	0.100 0.010	DNQ3.02	ND ND	ND DNQ4.72	DNQ4.14
		PG/L	0.010	ND	ND	ND	ND
octa CDF		PG/L	0.001	DNQ9.53	DNQ8.42	DNQ14.2	DNQ7.69
				-	-	-	-
Source:				INF	INF	INF	INF
			_ ·	SEP	OCT	NOV	DEC
Analyte ========	MDL	Units	Equiv	P631911	P634417	P638904	P642243
2,3,7,8-tetra CDD	.26	PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD		PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD	.482	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	.484	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD	.46		0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD		PG/L	0.010	24.5	25.6	DNQ19.0	DNQ13.8
octa CDD		PG/L	0.001	220	160	210	140
2,3,7,8-tetra CDF 1,2,3,7,8-penta CDF		PG/L PG/L	0.100 0.050	ND ND	ND ND	ND ND	ND ND
2,3,4,7,8-penta CDF	.34	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDF		PG/L	0.100	DNQ3.46	ND	ND	ND
1,2,3,7,8,9-hexa CDF	.348	PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDF			0.010	DNQ3.71	ND	DNQ3.89	ND
1,2,3,4,7,8,9-hepta CDF			0.010		ND		ND
octa CDF	.005	PG/L	0.001	DNQ9.69	DNQ8.47	DNQ10.9	DNQ6.47

ND= not detected DNQ= (Detected but not quantified). Estimated analyte concentration below calibration range.

Annual 2012

Source:				EFF	EFF	EFF	EFF
				JAN	FEB	MAR	APR
Analyte	MDL	Units	Equiv	P601836	P602865	P609208	P612413
2,3,7,8-tetra CDD	.26	PG/L	1.000	ND	ND	======================================	ND
1,2,3,7,8-penta CDD		PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD		PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD		PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD	.46	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD			0.010	ND	ND	ND	ND
octa CDD		PG/L	0.001	DNQ11.7	DNQ8.45	DNQ7.68	DNQ8.01
2,3,7,8-tetra CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8-penta CDF		PG/L	0.050	ND	ND	ND	ND
2,3,4,7,8-penta CDF	.34	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDF		PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDF			0.010	ND	ND	ND	ND
1,2,3,4,7,8,9-hepta CDF		PG/L	0.010	ND	ND	ND	ND
octa CDF		PG/L	0.001	ND	ND	ND	ND
Source:				EFF	EFF	EFF	EFF
				MAY	JUN	JUL	AUG
Analyte	MDL	Units	Equiv	P614092	P620073	P623999	P626998
	====		=====	=========			
2,3,7,8-tetra CDD	.26	PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD		PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD		PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD		PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD	.46	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD			0.010	ND	ND	ND	ND
octa CDD		PG/L	0.001	DNQ6.53	ND	DNQ8.69	ND
2,3,7,8-tetra CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8-penta CDF		PG/L	0.050	ND	ND	ND	ND
2,3,4,7,8-penta CDF	.34	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDF		PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDF			0.010	ND	ND	ND	ND
1,2,3,4,7,8,9-hepta CDF		PG/L	0.010	ND	ND	ND	ND
octa CDF	.005	PG/L	0.001	ND	ND	ND	ND
Source:				EFF	EFF	EFF	EFF
5601 62.				SEP	OCT	NOV	DEC
Analyte	MDL	Units	Eauiv	P631915	P634422	P638908	P642247
=======================================						===========	
2,3,7,8-tetra CDD	.26	PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD		PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD	.482	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	.484	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD	.46	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD	.497	PG/L	0.010	ND	ND	ND	ND
octa CDD	1.41	PG/L	0.001	DNQ7.24	ND	DNQ6.19	ND
2,3,7,8-tetra CDF	.257	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8-penta CDF	.335	PG/L	0.050	ND	ND	ND	ND
2,3,4,7,8-penta CDF	.34	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF	.284	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDF	.281	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDF	.348	PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDF		PG/L	0.010	ND	ND	ND	ND
1,2,3,4,7,8,9-hepta CDF		PG/L	0.010	ND	ND	ND	ND
octa CDF	.805	PG/L	0.001	ND	ND	ND	ND

ND= not detected DNQ= (Detected but not quantified). Estimated analyte concentration below calibration range.

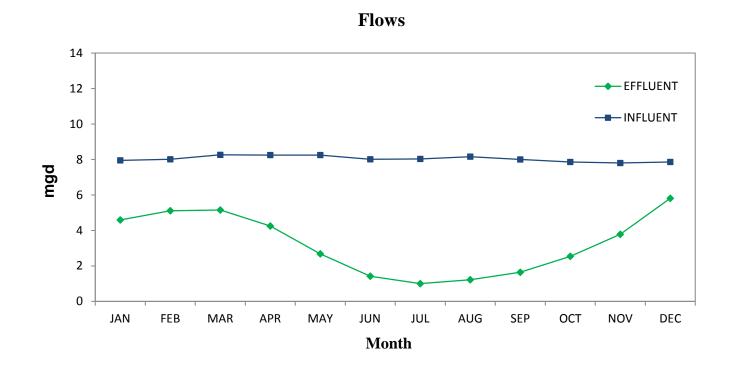
Annual 2012

Source:				INF TCCD	INF TCCD	INF TCCD	INF TCCD
Analyte	MDL	Units	Equiv	JAN P601833 =======	FEB P602860	MAR P609204	APR P612409
2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD	.482	PG/L PG/L PG/L PG/L	1.000 0.500 0.100	ND ND ND	ND ND ND	ND ND ND	ND ND ND
1,2,3,6,7,8-hexa CDD 1,2,3,7,8,9-hexa CDD 1,2,3,4,6,7,8-hepta CDD	.46	PG/L PG/L PG/L	0.100 0.100 0.010	ND ND 0.272	ND ND 0.906	ND ND DNQ0.237	ND ND DNQ0.224
octa CDD 2,3,7,8-tetra CDF 1,2,3,7,8-penta CDF	.257	PG/L PG/L PG/L	0.001 0.100 0.050	0.340 ND ND	0.660 ND ND	0.300 ND ND	0.270 ND ND
2,3,4,7,8-penta CDF 1,2,3,4,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF		PG/L PG/L PG/L	0.500 0.100 0.100	ND ND ND	ND ND DNQ0.233	ND ND ND	ND ND ND
1,2,3,7,8,9-hexa CDF 2,3,4,6,7,8-hexa CDF	.348 .294	PG/L PG/L	0.100 0.100	ND ND	ND ND	ND ND	ND ND
1,2,3,4,6,7,8-hepta CDF 1,2,3,4,7,8,9-hepta CDF octa CDF	.49	PG/L PG/L PG/L	0.010 0.010 0.001	0.046 ND 0.023	DNQ0.040 ND DNQ0.012	DNQ0.041 ND DNQ0.014	DNQ0.041 ND DNQ0.013
Source:				INF TCCD	INF TCCD	INF TCCD	INF TCCD
Analyte ========	MDL ====	Units ========	Equiv =====	MAY P614087 ======	JUN P620069	JUL P623996	AUG P626993
2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD		PG/L PG/L PG/L	1.000 0.500 0.100	ND ND ND	ND ND ND	ND ND ND	ND ND ND
1,2,3,6,7,8-hexa CDD 1,2,3,7,8,9-hexa CDD 1,2,3,4,6,7,8-hepta CDD	.484 .46	PG/L PG/L PG/L	0.100 0.100 0.010	ND ND DNQ0.148	ND ND DNQ0.158	ND ND DNQ0.184	ND ND DNQ0.193
octa CDD 2,3,7,8-tetra CDF	1.41 .257	PG/L PG/L	0.001 0.100	0.26 ND	0.15 ND	0.24 ND	0.16 ND
1,2,3,7,8-penta CDF 2,3,4,7,8-penta CDF 1,2,3,4,7,8-hexa CDF	.34 .284	PG/L PG/L PG/L	0.050 0.500 0.100	ND ND ND	ND ND ND	ND ND ND	ND ND ND
1,2,3,6,7,8-hexa CDF 1,2,3,7,8,9-hexa CDF 2,3,4,6,7,8-hexa CDF	.348	PG/L PG/L PG/L	0.100 0.100 0.100	ND ND ND	ND ND ND	DNQ0.207 ND ND	DNQ0.148 ND ND
1,2,3,4,6,7,8-hepta CDF 1,2,3,4,7,8,9-hepta CDF octa CDF	.49	PG/L PG/L PG/L	0.010 0.010 0.001	DNQ0.030 ND DNQ0.010	ND ND DNQ0.008	DNQ0.047 ND DNQ0.014	DNQ0.041 ND DNQ0.008
Source:				INF TCCD	INF TCCD	INF TCCD	INF TCCD
Analyte 	MDL ====	Units ========	Equiv	SEP P631911 =======	OCT P634417 ======	NOV P638904	DEC P642243
2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD	.26 .317 .482	PG/L PG/L PG/L PG/L	1.000 0.500 0.100	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND
1,2,3,6,7,8-hexa CDD 1,2,3,7,8,9-hexa CDD 1,2,3,4,6,7,8-hepta CDD	.46 .497	PG/L PG/L	0.100 0.100 0.010	ND 0.245	ND 0.256	ND DNQ0.190	ND DNQ0.138
octa CDD 2,3,7,8-tetra CDF 1,2,3,7,8-penta CDF	.257 .335	PG/L PG/L PG/L	0.001 0.100 0.050	0.220 ND ND	0.160 ND ND	0.210 ND ND	0.140 ND ND
2,3,4,7,8-penta CDF 1,2,3,4,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF	.284 .281	PG/L PG/L PG/L	0.500 0.100 0.100	ND ND DNQ0.346	ND ND ND	ND ND ND	ND ND ND
1,2,3,7,8,9-hexa CDF 2,3,4,6,7,8-hexa CDF 1,2,3,4,6,7,8-hepta CDF	.294 .324	PG/L PG/L PG/L	0.100 0.100 0.010	ND ND DNQ0.037	ND ND ND	ND ND DNQ0.039	ND ND ND
1,2,3,4,7,8,9-hepta CDF octa CDF	.49 .805	PG/L PG/L	0.010 0.001	ND DNQ0.010	ND DNQ0.008	ND DNQ0.011	ND DNQ0.006

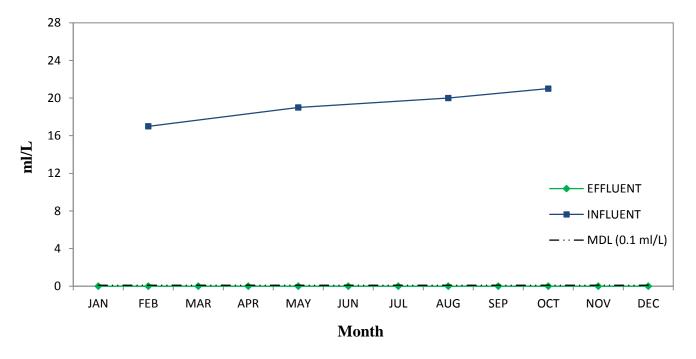
ND= not detected DNQ= (Detected but not quantified). Estimated analyte concentration below calibration range.

Annual 2012

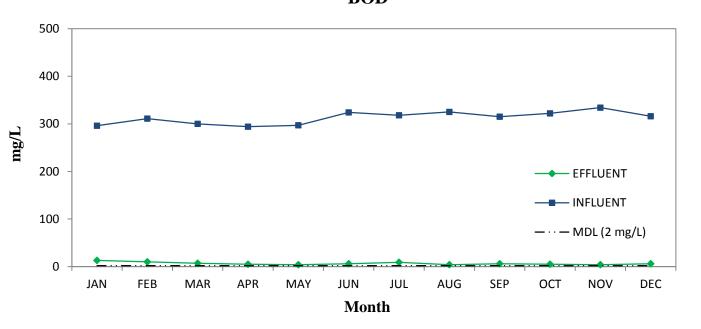
Source:				EFF TCCD JAN	EFF TCCD FEB	EFF TCCD MAR	EFF TCCD APR
Analyte =========	MDL ====	Units ========	Equiv =====	P601836	P602865	P609208	P612413
•	==== .26 .317 .482 .484 .46 .497 1.41 .257 .34 .284 .284 .281 .348 .294 .324 .324			ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N		
Source:				EFF TCCD MAY	EFF TCCD JUN	EFF TCCD JUL	EFF TCCD AUG
Analyte	MDL	Units	Equiv	P614092	P620073	P623999	P626998
2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8-hexa CDD 1,2,3,4,7,8-hexa CDD 1,2,3,4,7,8-hexa CDD 1,2,3,7,8,9-hexa CDD 1,2,3,4,6,7,8-hepta CDD 2,3,7,8-penta CDF 1,2,3,7,8-penta CDF 1,2,3,4,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF 1,2,3,4,6,7,8-hexa CDF 1,2,3,4,6,7,8-hepta CDF 1,2,3,4,7,8,9-hepta CDF 1,2,3,4,7,8,9-hepta CDF 1,2,3,4,7,8,9-hepta CDF 0cta CDF	.482 .484 .46 .497 1.41 .257 .34 .284 .284 .281 .348 .294 .324 .324	PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L	1.000 0.500 0.100 0.100 0.010 0.010 0.001 0.100 0.500 0.100 0.100 0.100 0.100 0.100 0.010 0.010		ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N
Source:				EFF TCCD SEP	EFF TCCD OCT	EFF TCCD NOV	EFF TCCD DEC
Analyte =======	MDL ====	Units ======	Equiv =====	P631915	P634422	P638908	P642247
2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8-penta CDD 1,2,3,6,7,8-hexa CDD 1,2,3,7,8,9-hexa CDD 1,2,3,7,8-penta CDD 0cta CDD 2,3,7,8-tetra CDF 1,2,3,7,8-penta CDF 1,2,3,4,7,8-penta CDF 1,2,3,4,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF 1,2,3,4,6,7,8-hexa CDF 2,3,4,6,7,8-hexa CDF	.482 .484 .46 .497 1.41 .257 .335 .34 .284 .281 .348 .294 .324	PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L	1.000 0.500 0.100 0.100 0.001 0.001 0.000 0.050 0.500 0.100 0.100 0.100 0.100 0.010	ND ND ND ND ND DNQ0.007 ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND DNQ0.006 ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND
1,2,3,4,7,8,9-hepta CDF octa CDF	.49 .805	PG/L PG/L	0.010 0.001	ND ND	ND ND	ND ND	ND ND


ND= not detected DNQ= (Detected but not quantified). Estimated analyte concentration below calibration range.

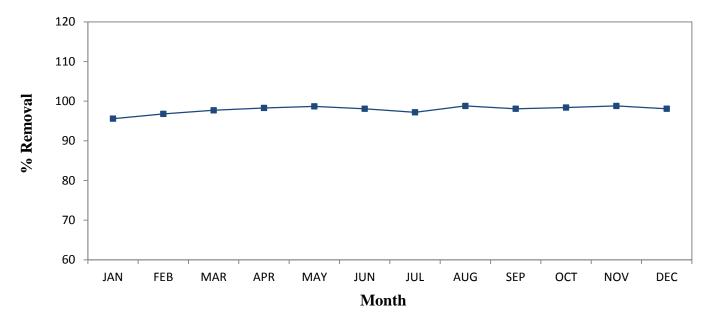
D. Influent and Effluent Graphs

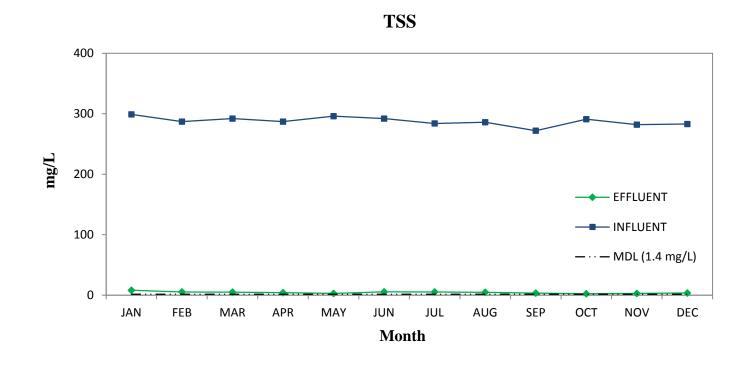

Graphs of monthly averages for permit parameters with measurable concentration averages.

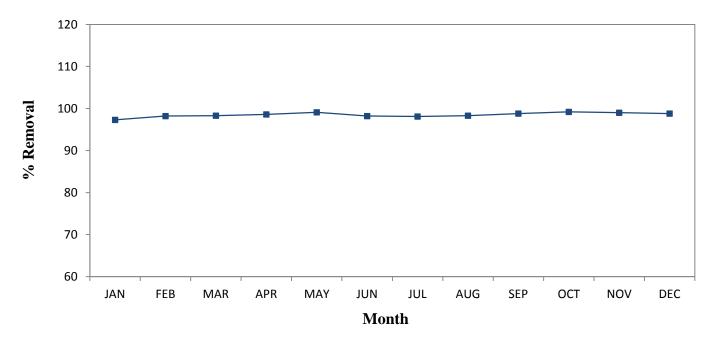
Where possible, the influent and effluent values of a given parameter have been included on the same graph so that removals and other relationships are readily apparent. Please note that many of the graphs are on expanded scales. That is, they normally don't go to zero concentrations but show, in magnified scale, that range of concentrations where variation takes place. This makes differences and some trends obvious that might normally not be noticed. However, it also provides the temptation to interpret minor changes or trends as being of more significance than they are. Frequent reference to the scales and the actual differences in concentrations is therefore necessary.

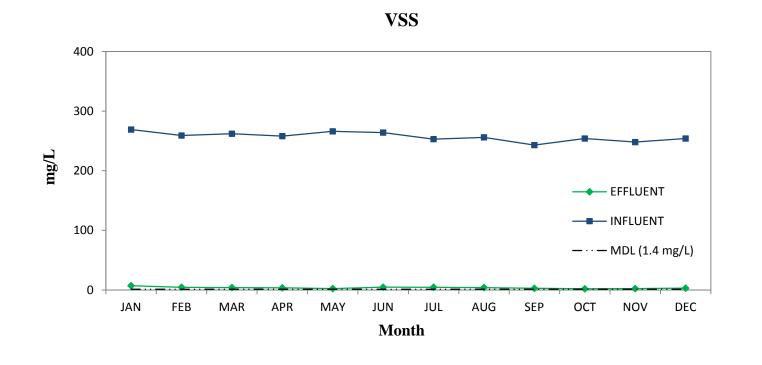

2012 South Bay Water Reclamation Plant Monthly Averages

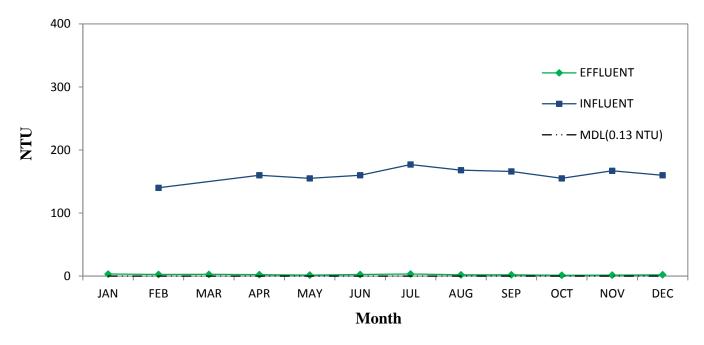
Settleables Solids

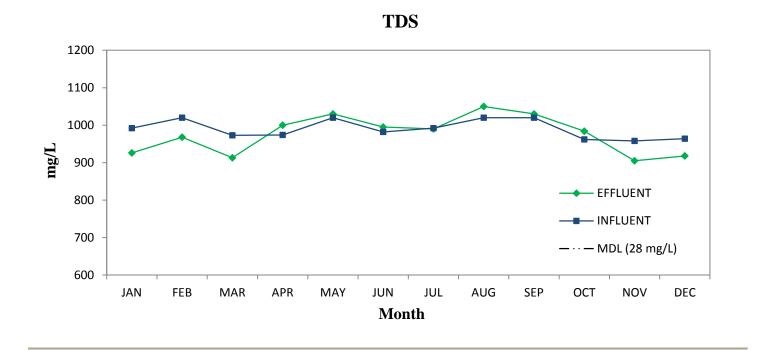


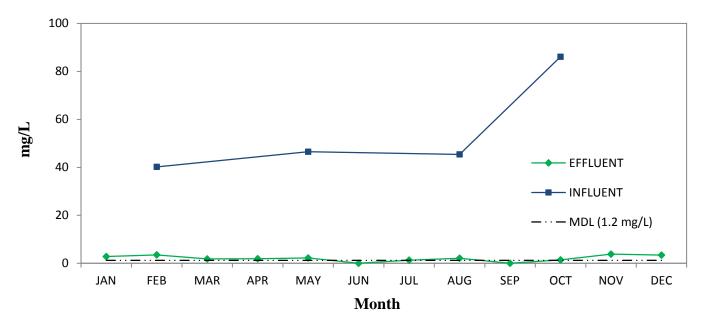

2012 South Bay Water Reclamation Plant Monthly Averages

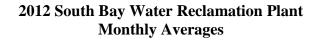

BOD

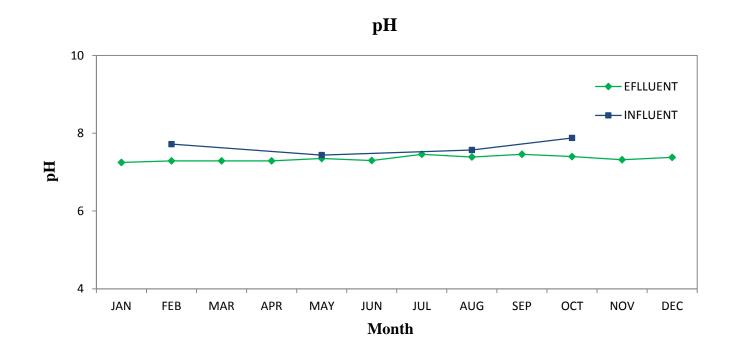

BOD Removals

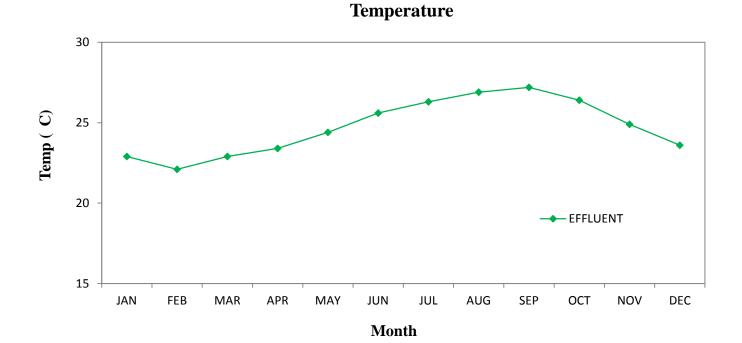


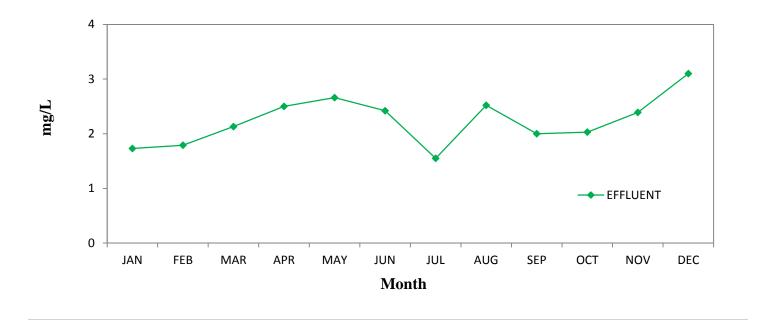

TSS Removals

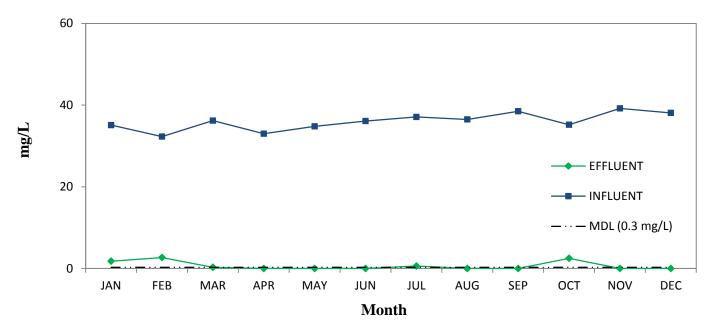


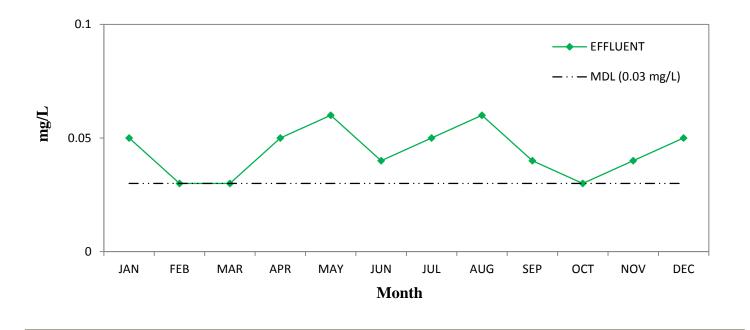

Turbidity



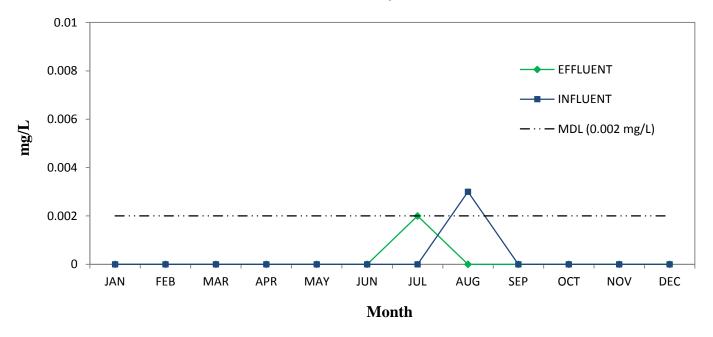


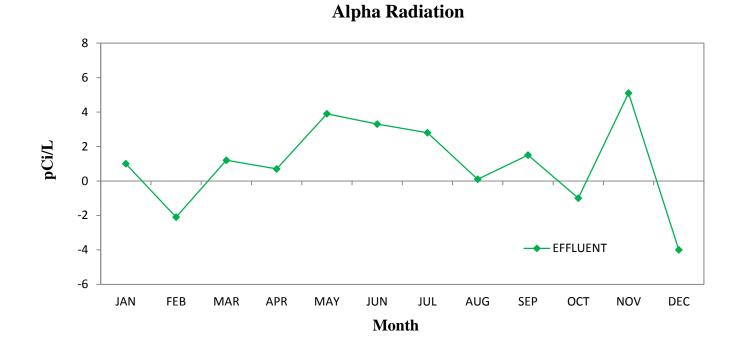

Oil & Grease

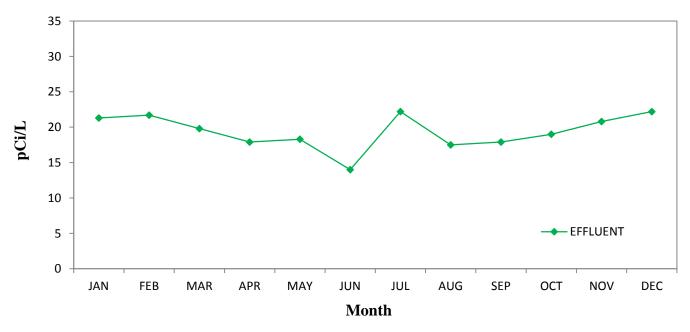


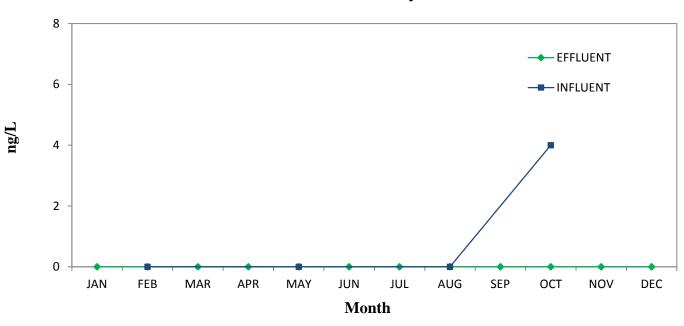


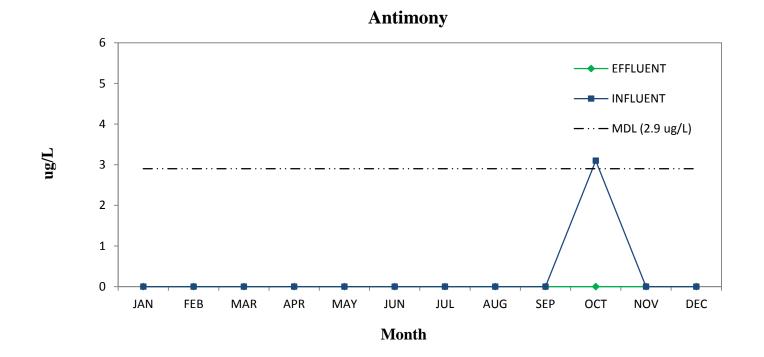
Dissolved Oxygen

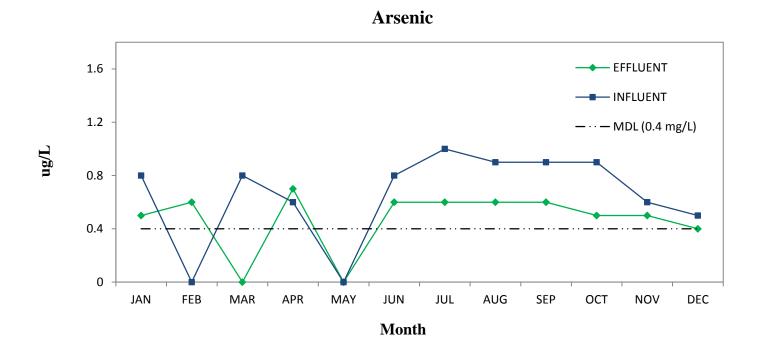

Ammonia-N

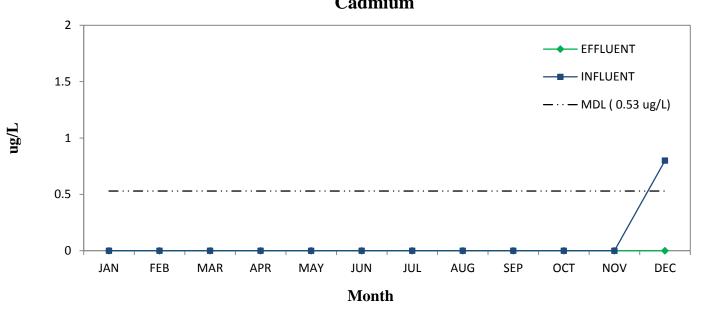


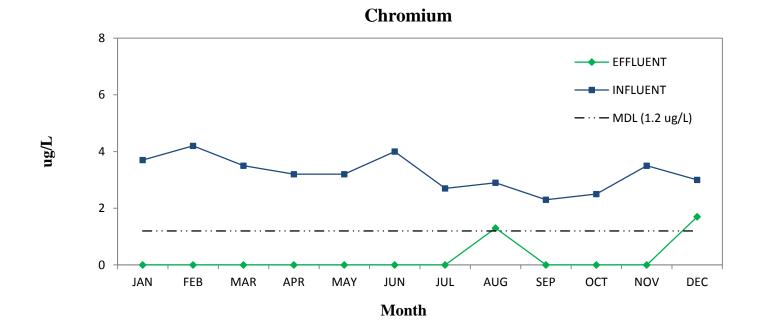

Residual Chlorine


Total Cyanides

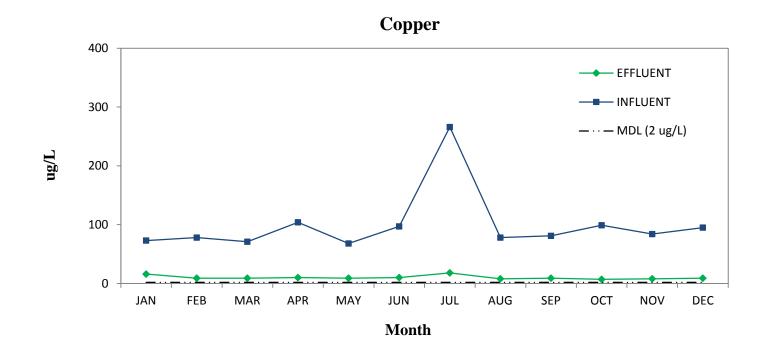


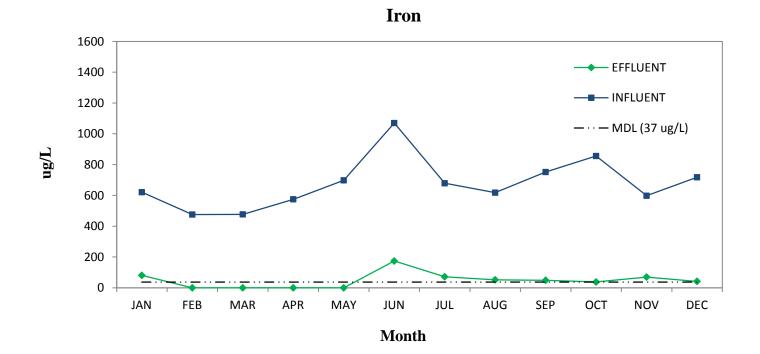

Beta Radiation


Total Chlorinated Hydrocarbons

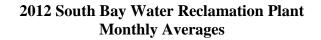


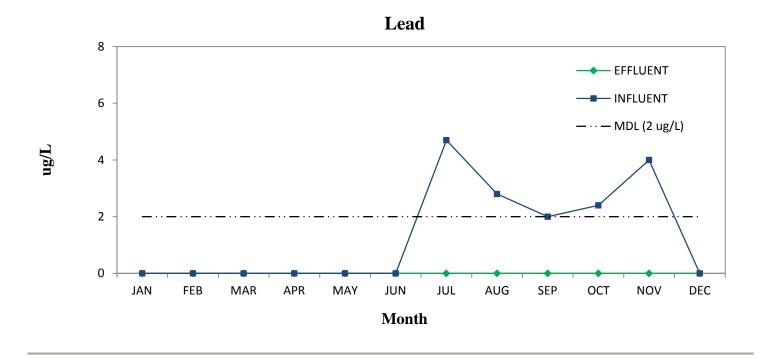
Influent Effluent Summary II.75

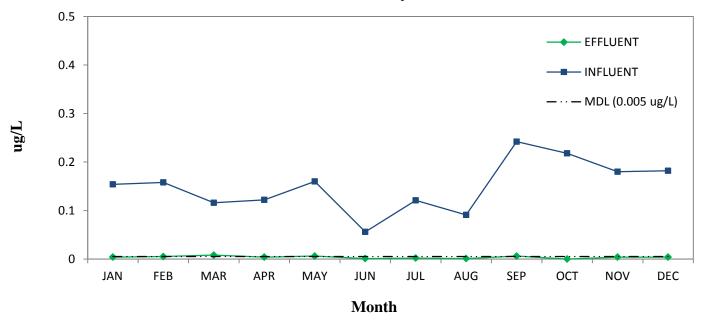


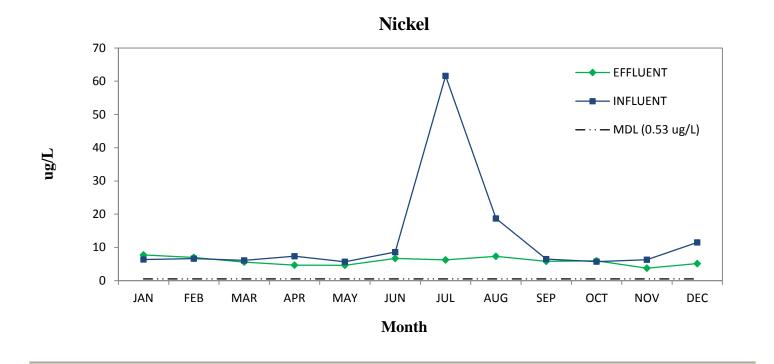


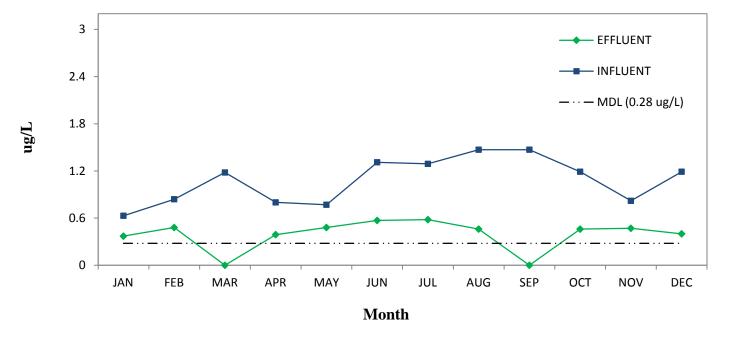
 $Y: EMTS \ 41. Sections \ WCS \ EPORTS \ SBWRP \ Annuals \ Annual 2012 \ Final \ Section \ 2012 \ Annual. \ docx$

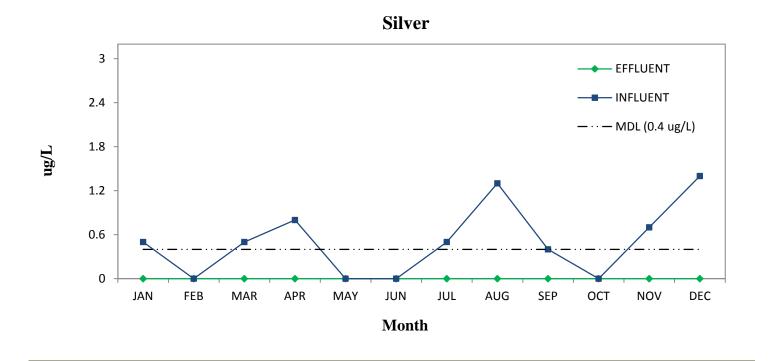

Influent Effluent Summary II.76

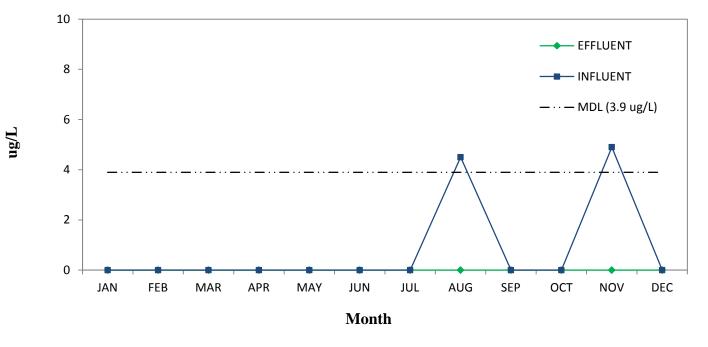


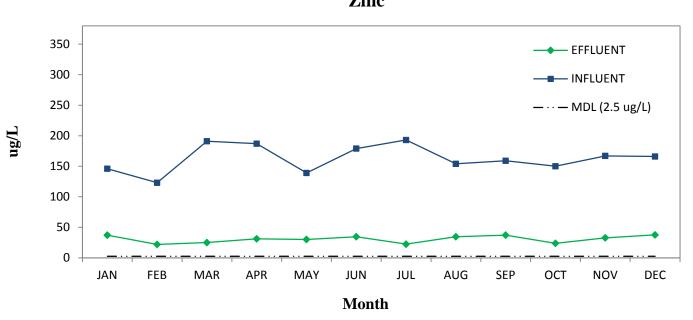

 $Y: EMTS \ 41. Sections \ WCS \ EPORTS \ SBWRP \ Annual \ 2012 \ Final \ Section \ 2012 \ Annual \ docx$

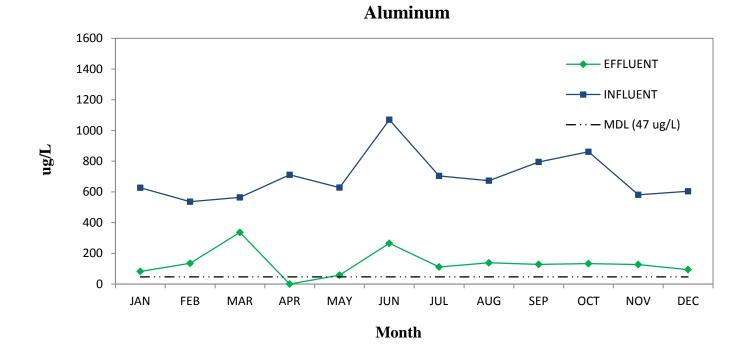

Influent Effluent Summary II.77

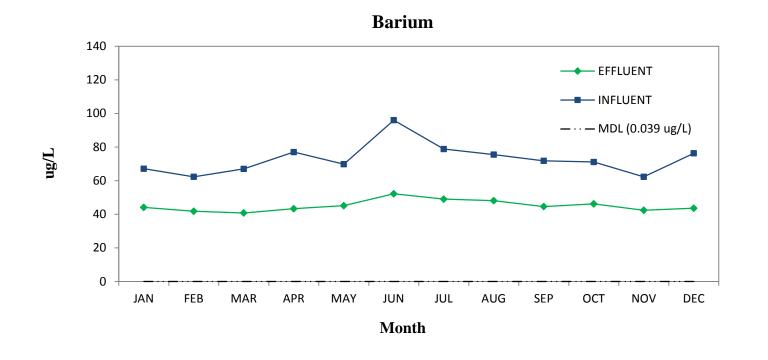


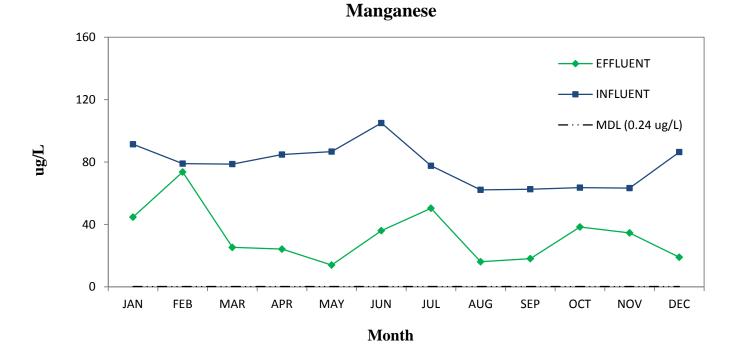

Mercury

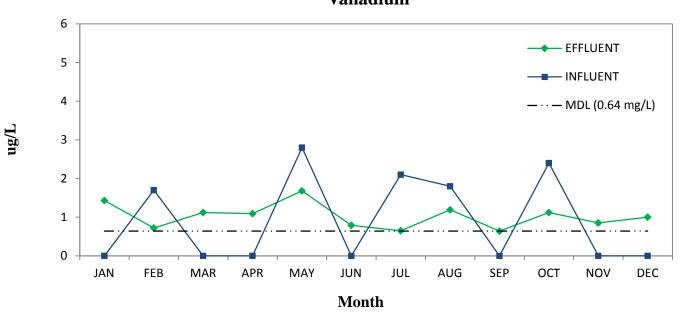


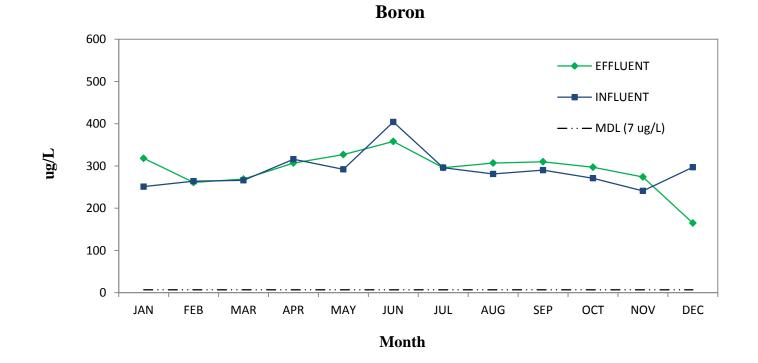

Selenium

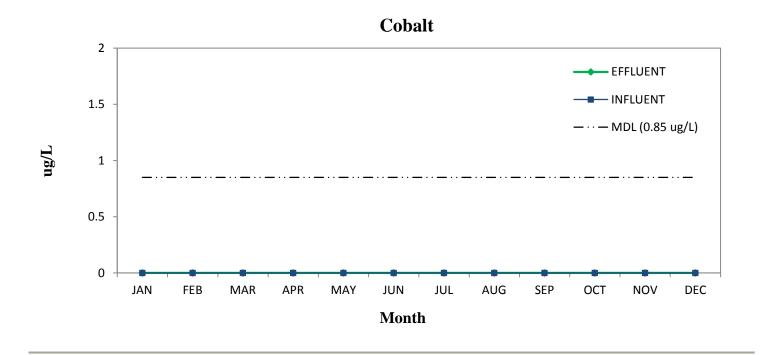


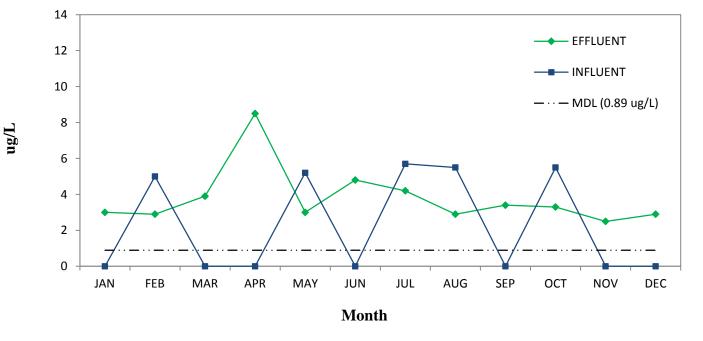

Thallium

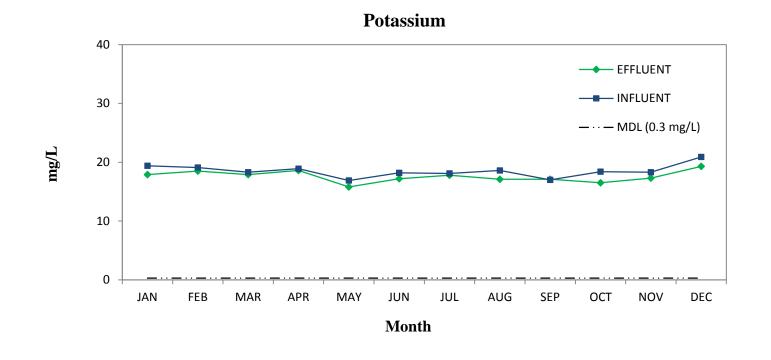


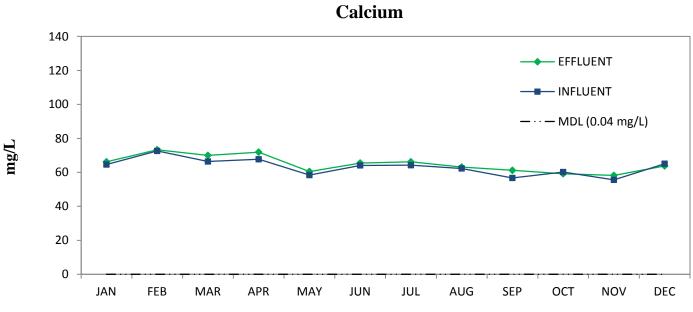

Zinc

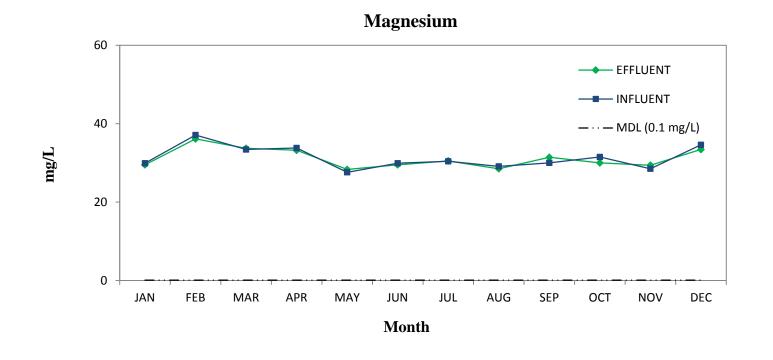


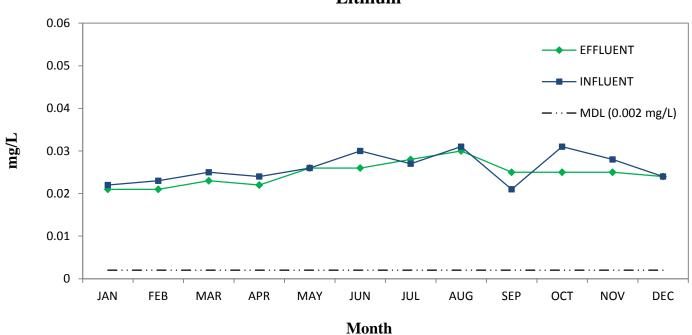

 $Y: EMTS \ 41. Sections \ WCS \ EPORTS \ SBWRP \ Annuals \ Annual 2012 \ Final \ Section \ 2012 \ Annual. \ docx$

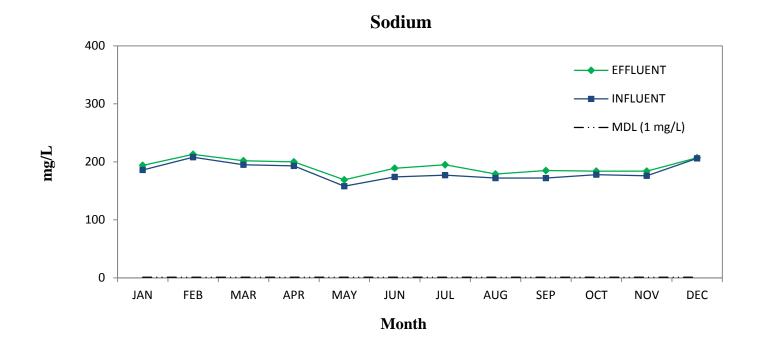


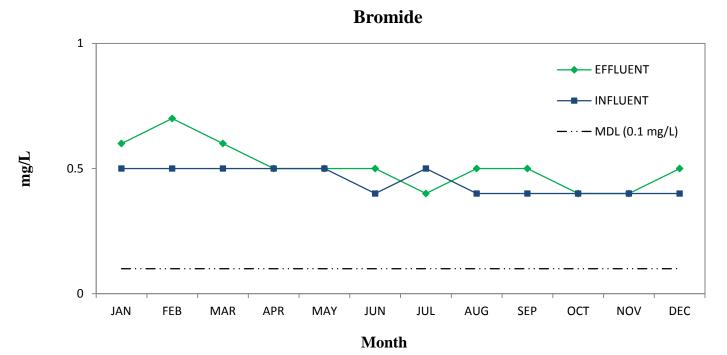


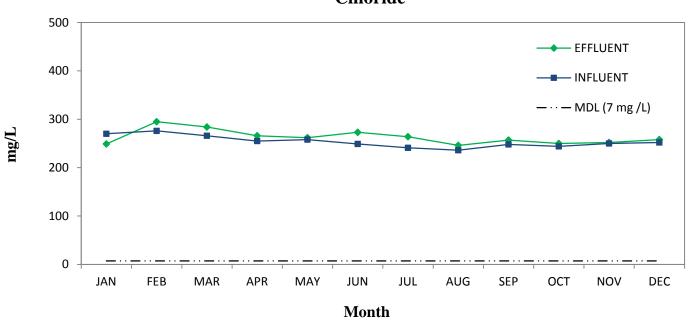

 $Y: EMTS \ 41. Sections \ WCS \ EPORTS \ SBWRP \ Annual \ 2012 \ Final \ Section \ 2012 \ Annual \ docx$

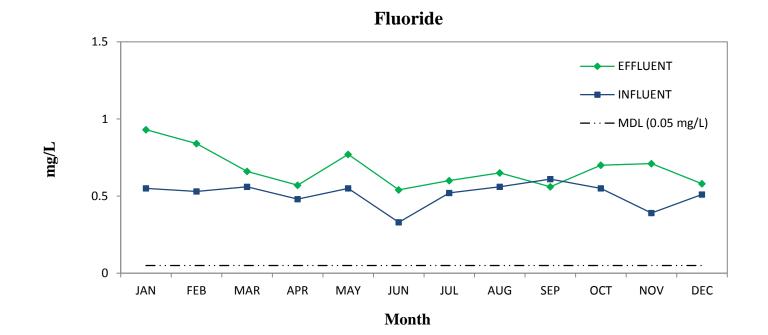

Molybdenum

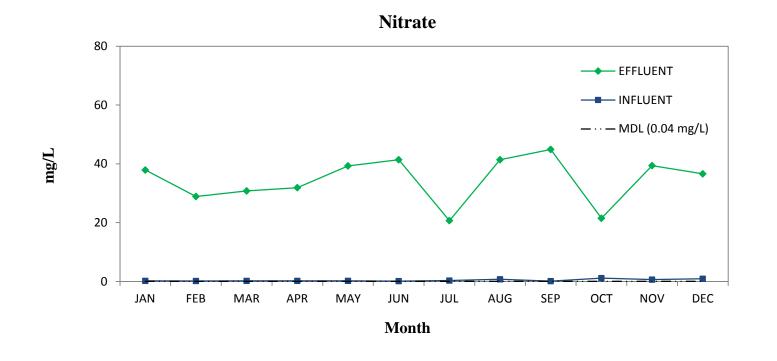


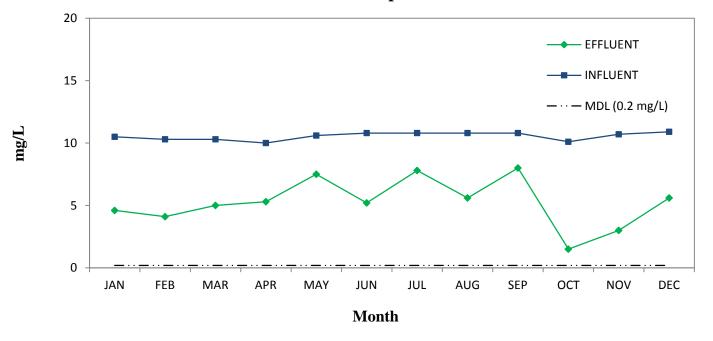


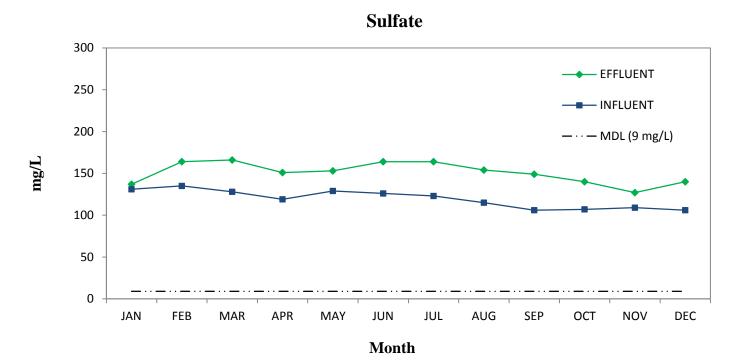

Month



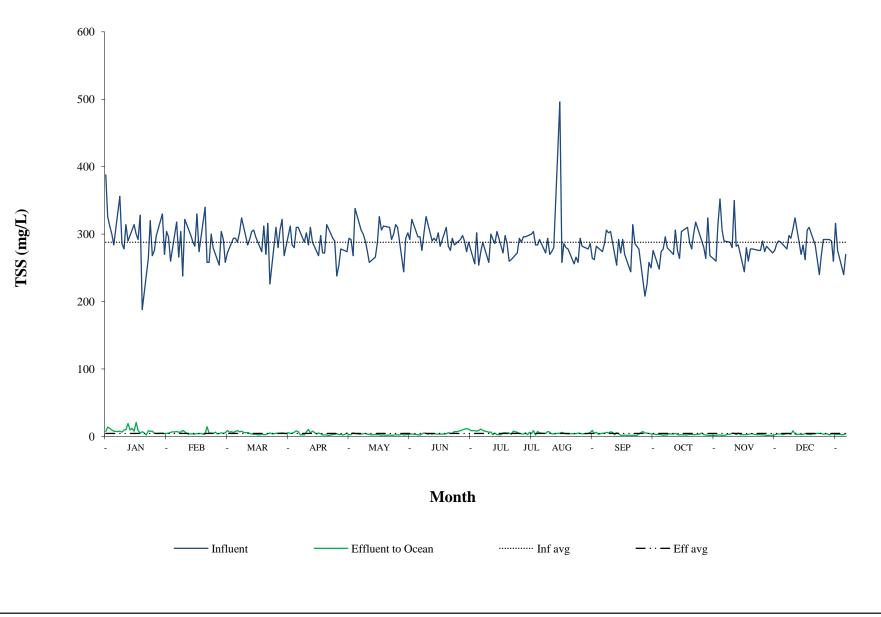

Lithium



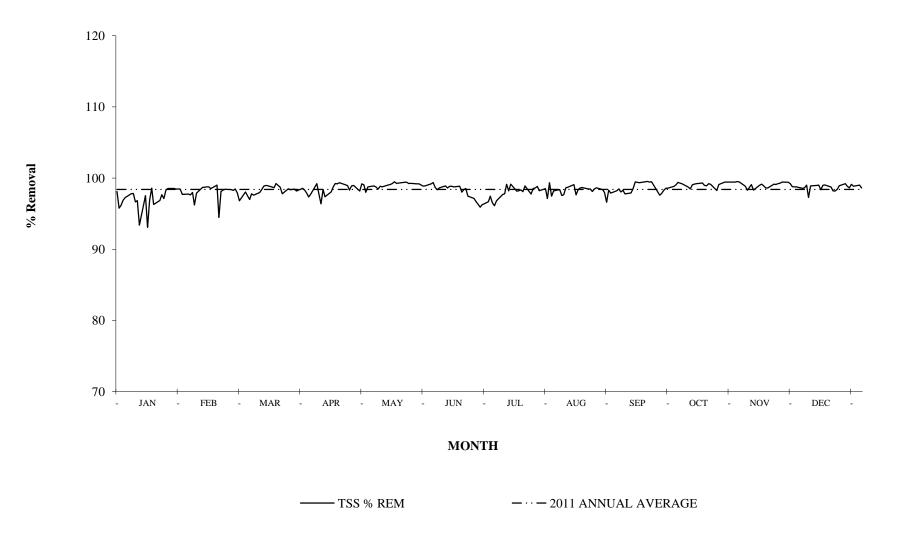



Chloride

O-Phosphate

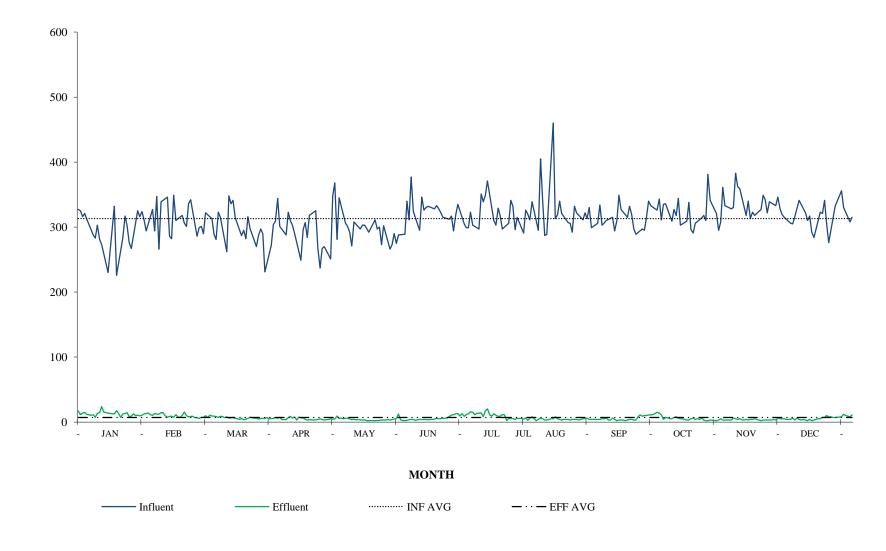


E. Daily Values of Selected Parameters.


Daily values of selected parameters (e.g. TSS, Flow, TSS Removals, etc.) are tabulated and presented graphically; statistical summary information is provided.

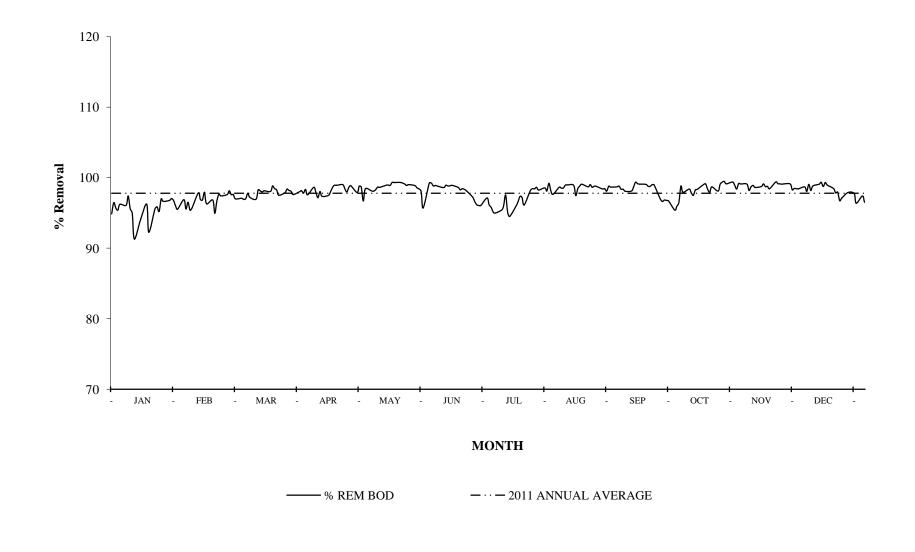
South Bay Wastewater Reclamation Plant 2012 Total Suspended Solids

2012 Total Suspended Solids


	,	Jan	F	-eb	N	Mar		Apr	Ν	lay		Jun		Jul	A	ug	S	ер	c	Oct	N	lov		Dec		
Day	INF	EFF	INF	EFF	INF	EFF	INF	EFF	INF	EFF	INF	EFF	INF	EFF	INF	EFF	INF	EFF	INF	EFF	INF	EFF	INF	EFF		
1	388	7.3	296	4.6	272	8.7	312	4.5	292	2.8		3.0	256	8.6	284	7.2		4.0	274	2.6	290	1.6		3.5		
2	326	13.8	260	6.0		6.4	284	4.8	268	5.4		2.8	302	7.7	292	5.3	274	4.9	278	1.7		2.2	278	4.0		
3	312	12.0		6.7		7.0	280	6.0	338	4.2	296	2.4	254	8.8		4.9	286	4.4	296			3.3	298	4.1		
4	300	9.4		6.6	294	5.8	310	8.3		4.0	296	1.9	274	10.7		4.4	306	6.0	280	2.3	288	3.3	294	2.9		
5	284	7.8	318	7.2	294	7.4	310	7.0		3.3	276	3.7	288	9.2	272	4.4	302	5.2		4.3	280	4.8	308	8.4		
6			266	6.3	288	8.7		2.3	306	3.4	302	5.0		7.7	294	7.2	304	6.8		3.6	350	4.6	324	3.6		
7		7.3	304	6.2	302	6.7		2.6	300	3.8	326	4.5		7.3	270	6.3		6.1	270	3.4	282	2.6		2.7		
8	356	7.8	238	9.0	324	7.8	288	2.3	290	4.5		3.1	258	6.0	274	3.8		2.3	306	4.7	284	4.8		3.3		
9	286	6.2	322	6.8		6.0	302	6.8	276	3.2		4.1	300	6.6	280	3.6	254	5.3	276	2.6		2.6	270	2.8		
10	278	9.3		4.3		5.3	284	10.3	258	3.2	290	3.2	292	2.6			292	4.3	264	2.3		2.8	284	2.8		
11	314	10.0		3.2	284	5.8	310	5.0		2.2	294	4.1	286	5.1		4.7	272	1.5	304	2.4	244	2.5	262	4.3		
12	290	19.2	298	3.9	292	4.7	288	7.6		2.5	290	3.4	304	2.6	496	4.6	292			2.5	280	2.4	306	3.1		
13		9.5	288	3.7	304	3.4		5.7	266	2.6	302	3.5		2.6	258	6.1	270	1.8	040	2.1	260	2.9	310	3.0		
14	044	12.0	282	3.5	306	3.2	000	3.5	288	2.6	282	3.5	070	2.4	286	4.7			310	2.2	278	3.9		2.8		
15	314	7.8	330	4.1	296	3.2	268	5.2	326	2.5		3.5	272	5.0	280	3.9	014		288	3.0	278	3.9	00.4	3.8		
16	300	20.8	274	4.1		2.6	298	3.8	306	1.6	240	3.7	298	5.3	278	3.7	244	4 5	278	3.0		3.0	284	3.6 4.7		
17 18	292 328	9.0 4.7		4.3 3.3	274	2.2 3.7	272 272	2.1 2.2	312	2.3 1.8	310 282	3.6 5.6	286 260	4.8 5.0		3.8 4.2	314 286	1.5 1.6	300 318	2.4 2.8	276	2.4 2.4	262 240	4.7 4.4		
10	188	7.0	340	3.4	312	2.4	314	2.2		1.8	276	4.5	260	2.9	256	4.2 3.9	282	1.5	510	2.0 3.3	276	2.4	268	4.4		
20	100	5.1	258	14.3	270	2.4	514	1.5	310	2.0	294	4.3	202	7.7	266	4.1	278	1.5		3.3	290	2.3	200	3.2		
20		2.0	258	4.9	316	4.1		1.9	292	1.7	284	7.2			258	4.9	210	5.6	290	5.1	274	2.0	202	3.8		
22	264	8.3	300	5.1	226	5.0	294	2.8	300	1.8	201	7.0	272	6.1	294	4.5		7.2	280	2.6	282	1.6		3.7		
23	320	7.5	280	4.4		4.0	290	3.1	314	2.4		7.8	294	4.3	282	3.9	208	5.0	264	2.1		1.7	292	2.3		
24	268	7.7		6.2		3.9	238	4.0	310	2.3	292	8.3	288	4.0		3.9	226	4.9	324			1.7	290	3.4		
25	276	4.6		3.6	310	4.7	254	2.8		2.0	298	9.9	296	3.5		4.0	258	4.5	268	1.5	272	1.6	260	3.6		
26	298	4.4	254	4.1	280	4.6	278	2.9		3.5	290	10.7	296	5.3	278	4.5	250	3.6		1.8	276	2.2	316	2.8		
27		4.4	304	5.3	306	4.9		2.1	244	2.0	274	11.2		2.5	286	5.8	276	3.9		1.5	286	3.4	276	3.2		
28		4.6	292	4.5	322	5.0		3.1	294	2.4	288	10.8		6.0	264	9.0		2.9	260		290	3.6		3.1		
29	330	4.9	258	5.4	268	4.9	274	5.0	302			8.7	300	4.5	262	4.5			314		288	3.6		2.3		
30	270	4.2				4.0	294	2.4	292	3.3		8.3	304	8.8	282	6.0	248	2.9	352	2.0		2.6	240	2.4	Annual	Summar
31	304	4.7				5.6			322	3.6			284	1.9		3.3			306	1.5			270	3.8	INF	EFF
Aw	299	8.1	287	5.3	292	5.0	287	4.1	296	2.8	292	5.4	284	5.5	286	4.8	272	4.1	291	2.7	282	2.8	283	3.5	288	4.5
Min	188	2.0	238	3.2	226	2.2	238	1.5	244	1.6	274	1.9	254	1.9	256	3.3	208	1.5	260	1.5	244	1.6	240	2.3	188	1.5
Max	388	20.8	340	14.3	324	8.7	314	10.3	338	5.4	326	11.2	304	10.7	496	9.0	314	7.2	352	5.1	350	4.8	324	8.4	496	20.8

2012 TSS Percent Removals

Day	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	_
1	98.1	98.4	96.8	98.6	99.0		96.7	97.5		99.1	99.4		
2	95.8	97.7		98.3	98.0		97.5	98.2	98.2	99.4		98.6	
3	96.2			97.9	98.8	99.2	96.5		98.5			98.6	
4	96.9		98.0	97.3		99.4	96.1		98.0	99.2	98.9	99.0	
5	97.2	97.7	97.5	97.7		98.7	96.8	98.4	98.3		98.3	97.3	
6		97.6	97.0		98.9	98.3		97.6	97.8		98.7	98.9	
7		98.0	97.8		98.7	98.6		97.7		98.7	99.1		
8	97.8	96.2	97.6	99.2	98.4		97.7	98.6		98.5	98.3		
9	97.8	97.9		97.7	98.8		97.8	98.7	97.9	99.1		99.0	
10	96.6			96.4	98.8	98.9	99.1		98.5	99.1		99.0	
11	96.8		98.0	98.4		98.6	98.2		99.4	99.2	99.0	98.4	
12	93.4	98.7	98.4	97.4		98.8	99.1	99.1			99.1	99.0	
13		98.7	98.9		99.0	98.8		97.6	99.3		98.9	99.0	
14		98.8	99.0		99.1	98.8		98.4		99.3	98.6		
16	97.5	98.8	98.9	98.1	99.2		98.2	98.6		99.0	98.6		
16	93.1	98.5		98.7	99.5		98.2	98.7		98.9		98.7	
17	96.9			99.2	99.3	98.8	98.3		99.5	99.2		98.2	
18	98.6		98.6	99.2		98.0	98.1		99.4	99.1	99.1	98.2	
19	96.3	99.0	99.2	99.3		98.4	98.9	98.5	99.5		99.1	98.4	
20		94.5	99.0		99.4	98.5		98.5			99.2	98.9	
21		98.1	98.7		99.4	97.5		98.1		98.2	99.3		
22	96.8	98.3	97.8	99.0	99.4		97.8	98.5		99.1	99.4		
23	97.7	98.4		98.9	99.2		98.5	98.6	97.6	99.2		99.2	
24	97.1			98.3	99.3	97.1	98.6		97.8			98.8	
25	98.3		98.5	98.9		96.7	98.8		98.3	99.4	99.4	98.6	
26	98.5	98.4	98.4	99.0		96.3	98.2	98.4	98.6		99.2	99.1	
27		98.3	98.4		99.2	95.9		98.0	98.6		98.8	98.8	
28		98.5	98.4		99.2	96.3		96.6			98.8		
29	98.5	97.9	98.2	98.2	100.0		98.5	98.3			98.8		
30	98.4			99.2	98.9		97.1	97.9	98.8	99.4		99.0	
31	98.5				98.9		99.3			99.5		98.6	
verage	97.1	98.0	98.2	98.4	99.1	98.1	98.0	98.2	98.6	99.1	98.9	98.7	
inimum	93.1	94.5	96.8	96.4	98.0	95.9	96.1	96.6	97.6	98.2	98.3	97.3	
aximum	98.6	99.0	99.2	99.3	100.0	99.4	99.3	99.1	99.5	99.5	99.4	99.2	


South Bay Wastewater Reclamation Plant 2012 Biochemical Oxygen Demand

2012 Biochemical Oxygen Demand

	,	Jan	F	eb	Ν	<i>l</i> lar		Apr	ſ	May		Jun		Jul	A	ug	S	ер	c	Oct	N	lov		Dec		
Day	INF	EFF	INF	EFF	INF	EFF	INF	EFF	INF	EFF	INF	EFF	INF	EFF	INF	EFF	INF	EFF	INF	EFF	INF	EFF	INF	EFF		
1	327	17	311	13	322	10	272	5	368	5		3	305	9	311	6		4	343	14	333	3		4	-	
2	325	12	294	13		7	304	6	281	9		2	299	12	339	8	306	4	311	11		3	306	4		
3	316	14		14		11	309	7	345	5	289	2	299	13		5	334	4	335	4		3	305	6		
4	321	15		11	313	9	344	6		6	340	3	323	16		2	303	5	336	7	328	3	316	3		
5	312	12	327	10	289	9	301	7		5	311	4	303	15	295	4	306	5		7	330	6	329	6		
6			294	13	281	8		4	306	6	377	4		11	405	6	310	6		5	383	5	341	4		
7		10	347	12	323	7		4	301	6	324	4		13	341	5		3	309	5	362	4		3		
8	288	11	266	12	315	9	288	4	292	5		3	297	14	287	3		3	327	7	359	5		4		
9	283	7	339	15		9	323	7	271	4		4	351	14	289	3	315	6	318	8		4	322	3		
10	303	13		14		7	310	9	308	4	295	4	339	8			294	4	344	6		3	310	2		
11	281	14		10	262	8	303	6		3	346	4	349	17		5	310	2	303	5	318	4	317	4		
12	273	24	346	7	348	6	290	8		4	326	4	371	20	460	5	349	3		5	340	3	292	2		
13		15	286	9	336	6		3	297	3	330	4		11	313	8	327	3		4	313	4	284	3		
14			282	9	341	7		8	303	3	332	4		9	319	5		3	309	3	323	4		4		
15	230	14	349	7	314	6	249	6	303	3		4	310	13	340	4		2	338	3	318	5		5		
16			310	12		5	296	6	298	2		4	303	10	321	3	315	3	296	5		4	323	5		
17	000	40		8	007	4	307	4	292	2	328	5	329	9		4	332	4	291	6	007	3	321	7		
18	332	13	24.0	7	287	6	284	3		2	333	6	317	9	207	4	320	4	306	4	327	2	341	7		
19	226	18	318	10	295	3	318	3	214	2 2	328	5	297	12	307	4	297	3		5	349	3	305	10		
20 21		13 7	306 301	16 10	282 316	4 5		3 3	311 297	2	322 315	5 6		11 2	306 292	3 4	289	3 8	314	4 6	342 322	3 3	276	8 8		
21	283	, 13	336	8	298	7	325	3	300	3	515	6	306	6	332	4		11	314	3	339	3		7		
23	317	13	342	9	230	7	268	4	273	3		6	341	5	322	4	297	9	310	2	559	3	332	7		
24	302	15	042	9		6	237	5	302	3	312	9	332	5	022	3	295	10	381	2		4	002	,		
25	276	8		7	270	6	267	4	002	3	317	11	296	4		4	315	10	341	3	333	3				
26	267	9	286	7	287	5	270	3		4	294	11	315	6	311	5	340	11		-	346	6	356	8		
27		13	299	6	297	5		4	266	3	319	13			322	5	333	11			328	5	330	12		
28		10	301	7	290	6		4	273	4	335	13		5	313	6		12	321	2	319	5		10		
29	325	11	290	7	231	6	251	5	290			9	291	4	330	4			295	3	315	5		9		
30	316	9				7	348	4	275	5		13	326	6	299	4	326	15	308	5		4	308	8	Annual	Summa
31	324	11				5			288	12			320	3		4			361	3			315	11	INF	EFF
Avg	297	13	311	10	300	7	294	5	297	4	324	6	318	10	325	4	315	6	322	5	335	4	316	6	313	7
Min	226	7	266	6	231	3	237	3	266	2	289	2	291	2	287	2	289	2	291	2	313	2	276	2	226	2
Max	332	24	349	16	348	11	348	9	368	12	377	13	371	20	460	8	349	15	381	14	383	6	356	12	460	24

South Bay Wastewater Reclamation Plant 2012 BOD Percent Removal

2012 BOD Percent Removals

Day	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	=
1	94.9	96.0	97.0	98.0	98.7		97.1	98.1		95.9	99.1		
2	96.5	95.5		98.2	96.7		96.2	97.6	98.7	96.5		98.7	
3	95.7			97.8	98.4	99.2	95.8		98.8	98.8		98.0	
4	95.4		97.1	98.3		99.2	95.1		98.3	97.9	99.1	99.1	
5	96.2	96.9	96.9	97.6		98.8	95.0	98.6	98.4		98.2	98.2	
6		95.5	97.0		98.1	98.9		98.5	98.1		98.7	98.8	
7		96.5	97.8		98.1	98.8		98.5		98.4	98.9		
8	96.1	95.4	97.2	98.6	98.3		95.4	99.0		97.9	98.6		
9	97.4	95.7		97.9	98.7		96.0	99.0	98.1	97.5		99.1	
10	95.6			97.2	98.6	98.6	97.6		98.6	98.3		99.4	
11	94.9		96.9	98.0		98.9	95.1		99.4	98.3	98.7	98.7	
12		97.8	98.3	97.4		98.8	94.5	98.9	99.1		99.1	99.3	
13		96.9	98.1		98.9	98.8		97.4	99.1		98.7	98.9	
14		96.8	98.0		99.0	98.9		98.4		99.0	98.8		
15	94.0	97.9	98.1	97.5	98.9		95.9	98.8		99.1	98.4		
16		96.3		97.9	99.3		96.6	99.1	99.0	98.3		98.5	
17				98.6	99.3	98.6	97.3		98.8	97.9		97.8	
18			98.0	98.9		98.3	97.2		98.8	98.7	99.4	97.9	
19	92.3	96.8	98.8	98.9		98.4	96.1	98.7	99.0		99.1	96.7	
20		94.9	98.4		99.3	98.3		99.0	99.0		99.1	97.1	
21		96.7	98.3			98.1		98.6		98.1	99.1		
22	95.6	97.7	97.5	99.0	99.1		98.2	98.8		99.1	99.1		
23	95.9	97.4		98.5	98.9		98.4	98.8	97.0	99.4		97.9	
24				98.0	99.0	97.3	98.4		96.6	99.5			
25	97.0		97.9	98.6		96.6	98.6		96.8	99.1	99.1		
26	96.6	97.6	98.4	98.8		96.2	98.2	98.4	96.8		98.3	97.8	
27		98.1	98.2		98.9	96.1		98.4	96.7		98.5	96.4	
28		97.6	98.1		98.6	96.1		98.1		99.4	98.4		
29	96.8	97.6	97.6	97.9	100.0		98.5	98.8		99.0	98.4		
30	97.0			98.8	98.1		98.1	98.7	95.4	98.4		97.4	
31	96.8				95.7		99.2			99.2		96.5	
Average	95.6	96.75	97.8	98.2	98.6	98.1	96.9	98.6	98.1	98.4	98.8	98.1	ļ
Minimum	91.3	94.93	96.9	97.2	95.7	96.1	94.5	97.4	95.4	95.9	98.2	96.4	
Maximum	97.4	98.1	98.8	99.0	100.0	99.2	99.2	99.1	99.4	99.5	99.4	99.4	

F. Toxicity Testing: South Bay Water Reclamation Plant 2012

INTRODUCTION

The City of San Diego's Toxicology Laboratory (CSDTL) conducted aquatic toxicity tests (bioassays) as required by NPDES Permit No. CA0109045, Order No. R9-2006-0067 for the South Bay Water Reclamation Plant (SBWRP). The testing requirements are designed to determine the acute and chronic toxicity of effluent samples collected from the SBWRP. In accordance with the above Order, the City also conducted toxicity tests of the combined effluent samples for the SBWRP and adjacent International Wastewater Treatment Plant (IWTP). This chapter presents summaries and discussion of all toxicity tests conducted in calendar year 2012.

Toxicity testing of wastewater effluent measures the bioavailability of toxicants in a complex mixture, accounts for interactions among potential toxicants, and integrates the effects of all constituents. Acute and chronic bioassays are characterized by the duration of exposure of test organisms to a toxicant as well as the adverse effect (measured response) produced as the result of exposure to a toxicant.

Acute toxicity testing consists of a short-term exposure period, usually 96 hours or less, and the acute effect refers to mortality of the test animals. The City of San Diego is required to conduct acute toxicity tests of SBWRP effluent and the combined SBWRP/IWTP effluent on a quarterly schedule.

Chronic toxicity testing, in the classic sense, refers to long-term exposure of the test organism to a potential toxicant. This may involve exposing the test organism for its entire reproductive life cycle, which may exceed 12 months for organisms such as fish. In general, chronic tests are inherently more sensitive to toxicants than acute tests in that adverse effects are detected at lower toxicant concentrations. The City of San Diego is required to conduct monthly critical/early life stage chronic tests of SBWRP effluent that are intermediate between the acute and chronic toxicity testing protocols discussed above. These test results serve as short-term estimates of chronic toxicity.

MATERIALS & METHODS

Test Materials

SBWRP Effluent

Twenty-four hour, flow-weighted, effluent composite samples were collected at the in-stream sampling site (designated SB_Outfall_00) for the SBWRP and stored at 4 °C until test initiation. All tests were initiated within 36 hours of sample collection. The effluent exposure series

consisted of 3.88, 7.75, 15.5, 31.0, and 62.0% (nominal) for the acute tests and 0.26, 0.53, 1.05, 2.10, and 4.20% for the chronic tests. Dilution water for all tests (effluent and reference toxicant) was obtained from the Scripps Institution of Oceanography (SIO), filtered, held at 4 °C, and used within 96 hours of collection or frozen to produce hypersaline brine. Detailed descriptions for all toxicity tests are provided in the City of San Diego Toxicology Laboratory Quality Assurance Manual (City of San Diego 2012).

Combined Effluent

Composite samples for these bioassays were collected during overlapping 24-hour sampling period by SBWRP and IWTP personnel at their respective facilities and combined in the laboratory in accordance with a ratio that is proportional to the flow from each treatment plant at the time of sample collection. The comingled effluent samples are hereinafter referred to as "Combined Effluent".

The Combined Effluent samples were stored at 4 °C and testing was initiated within 36 hours of sample collection. The effluent exposure series consisted of 3.88, 7.75, 15.5, 31.0, and 62.0% (nominal) for the acute tests and 0.26, 0.53, 1.05, 2.10, and 4.20% for the chronic tests. Dilution water for all tests (effluent and reference toxicant) was obtained from SIO, filtered, held at 4 °C, and used within 96 hours of collection or frozen to produce hypersaline brine. Detailed descriptions for all toxicity tests are provided in the City of San Diego Toxicology Laboratory Quality Assurance Manual (City of San Diego 2012).

Acute Bioassays

Topsmelt Survival Bioassay

During the current reporting period (January–December 2012), acute bioassays using the topsmelt *Atherinops affinis* were conducted for the SBWRP effluent and the Combined Effluent on a quarterly basis. For the SBWRP effluent, these tests were performed as a part of the routine monitoring program. For the Combined Effluent, these tests were performed as a part of the mandated multiple-species screening effort. All tests were conducted in accordance with USEPA protocol EPA-821-R-02-012 (USEPA 2002).

Larval topsmelt (9-14 days old) were purchased from Aquatic Bio Systems (Fort Collins, CO), and acclimated to test temperature and salinity for at least 24 hours. Upon test initiation, the topsmelt (10 per replicate) were exposed for 96 hours in a static-renewal system to the effluent exposure series. Dilution water and brine controls were also tested. The test solutions were renewed at 48 hours and the organisms were fed once daily.

Simultaneous reference toxicant testing was performed using reagent grade copper chloride plus a negative control (i.e., SIO seawater). Test concentrations consisted of 56, 100, 180, 320, and 560 μ g/L copper. Dilution water was obtained from SIO, filtered, held at 4 °C, and used within 96 hours of collection. Upon conclusion of the exposure period, percent survival was recorded. Tests were declared valid if control mortality did not exceed 10%. Data were analyzed using a

multiple comparison and point estimation methods prescribed by USEPA (2002). ToxCalc (Tidepool Scientific Software 2002) and CETIS (Tidepool Scientific Software 2010) were used for all statistical analyses. In addition, all multi-concentration tests conducted according to EPA-821-R02-012 are subjected to an evaluation of the concentration-response relationship.

Mysid Survival Bioassay

During the current reporting period (January–December 2012), acute bioassays using the mysid shrimp, *Mysidopsis bahia* were conducted for the SBWRP effluent on a quarterly basis as a part of the mandated multiple-species screening effort. All tests were conducted in accordance with USEPA protocol EPA-821-R-02-012 (USEPA 2002).

Larval mysids (4-5 days old) were purchased from Aquatic Bio Systems (Fort Collins, CO), and acclimated to test temperature and salinity for at least 24 hours. Upon test initiation, the mysids (10 per replicate) were exposed for 96 hours in a static-renewal system to the effluent exposure series. Dilution water and brine controls were also tested. The test solutions were renewed at 48 hours and the organisms were fed once daily.

Simultaneous reference toxicant testing was performed using reagent grade copper chloride plus a negative control (i.e., SIO seawater). Test concentrations consisted of 56, 100, 180, 320, and 560 µg/L copper. Dilution water was obtained from SIO, filtered, held at 4 °C, and used within 96 hours of collection. Upon conclusion of the exposure period, percent survival was recorded. Tests were declared valid if control mortality did not exceed 10%. Data were analyzed using a multiple comparison and point estimation methods prescribed by USEPA (2002). ToxCalc (Tidepool Scientific Software 2002) and CETIS (Tidepool Scientific Software 2010) were used for all statistical analyses. In addition, all multi-concentration tests conducted according to EPA-821-R02-012 are subjected to an evaluation of the concentration-response relationship.

Chronic Bioassays

Kelp Germination and Growth Test

During the current reporting period (January–December 2012), chronic bioassays using the giant kelp, *Macrocystis pyrifera*, were conducted for the SBWRP effluent across multiple months as a part of the mandated multiple-species screening effort. Quarterly tests were also conducted for the Combined Effluent as a part of the routine monitoring program. All tests were conducted in accordance with USEPA protocol EPA/600/R-95/136 (USEPA 1995).

Kelp zoospores were obtained from the reproductive blades (sporophylls) of adult *Macrocystis* plants at the kelp beds near La Jolla, California one day prior to test initiation. The zoospores were exposed in a static system for 48 hours to the effluent exposure series. A SIO water control was also tested.

Simultaneous reference toxicant testing was performed using reagent grade copper chloride. The concentrations of copper in the exposure series were 5.6, 10, 18, 32, 100, and 180 μ g/L. A SIO seawater control was also tested.

At the end of the exposure period, 100 randomly-selected zoospores from each replicate were examined and the percent germination was recorded. In addition, germ-tube length was measured and recorded for 10 of the germinated zoospores.

Data were analyzed in accordance with "Flowchart for statistical analysis of giant kelp, *Macrocystis pyrifera*, germination data" and "Flowchart for statistical analysis of giant kelp, *Macrocystis pyrifera*, growth data" (see USEPA 1995). ToxCalc (Tidepool Scientific Software 2002) and CETIS (Tidepool Scientific Software 2010) were used for all statistical analyses.

In accordance with USEPA guidelines on method variability, the lower "Percent MSD" (PMSD) bound was also evaluated in order to minimize Type 1 error (i.e., false positive). If the relative difference between an exposure concentration and the control was smaller than the 10th percentile PMSD value listed for the test method in the USEPA guidance document (i.e., 6.5 for germination and 7.9 for growth), then the exposure concentration was treated as if it did not differ significantly from control for the purpose of determining the NOEC (USEPA, 2000).

Red Abalone Development Bioassay

During the current reporting period (January–December 2012), chronic bioassays using the red abalone *Haliotis rufescens* were attempted for the SBWRP effluent on a monthly basis in accordance with USEPA protocol EPA/600/R-95/136 (USEPA 1995). Three consecutive quarterly tests were also conducted for the Combined Effluent as a part of the mandated multiple-species screening effort. Due to poor gamete release during spawning induction, no red abalone tests were conducted during December.

Test organisms were purchased from Cultured Abalone (Goleta, California), and/or American Abalone Farm (Davenport, California), and shipped via overnight delivery to the CSDTL. Mature male and female abalones were placed in gender-specific natural seawater tanks and held at 15 °C. For each test event, spawning was induced in 6-10 abalones in gender-specific vessels. Eggs and sperm were retained and examined under magnification to ensure good quality. Once deemed acceptable, the sperm stock was used to fertilize the eggs, and a specific quantity of fertilized embryos was added to each test replicate and exposed to the effluent series for 48 hours. A SIO water control was also tested.

Simultaneous reference toxicant testing was performed using reagent grade zinc sulfate. The exposure series consisted of 10, 18, 32, 56, and 100 μ g/L. A SIO seawater control was also tested.

At the end of the exposure period, 100 randomly-selected embryos were examined and the number of normally and abnormally developed embryos was recorded. The percentage of normally developed embryos for each replicate was arcsine square root transformed. Data were analyzed in accordance with "Flowchart for statistical analysis of red abalone *Haliotis rufescens*, development data" (USEPA 1995). ToxCalc (Tidepool Scientific Software 2002) and CETIS (Tidepool Scientific Software 2010) were used for all statistical analyses.

The red abalone tests were scored both inclusive and exclusive of unicellular embryos, which can be indicative of poor animal quality. As shown in previous studies, the inclusive scoring method induced greater variability and reduced test sensitivity. Moreover, data from past and present studies showed no association between the distribution of unicellular embryos and exposure to the reference toxicant, which further support the use of the exclusive method in scoring the red abalone tests.

In accordance with USEPA guidelines on method variability, the lower "Percent MSD" (PMSD) bound was also evaluated in order to minimize Type 1 error (i.e., false positive). If the relative difference between an exposure concentration and the control was smaller than the 10th percentile PMSD value listed for the test method in the USEPA guidance document (i.e., 3.8), then the exposure concentration was treated as if it did not differ significantly from control for the purpose of determining the NOEC (USEPA, 2000).

Topsmelt Survival and Growth Bioassays

During the current reporting period (January–December 2012), chronic bioassays using the topsmelt, *Atherinops affinis*, were conducted for the SBWRP and Combined Effluent across multiple reporting periods as a part of the mandated multiple-species screening effort. All tests were conducted in accordance with EPA/600/R-95/136 (USEPA 1995).

Larval topsmelt (9-14 days old) were purchased from Aquatic Bio Systems (Fort Collins, CO) and exposed for seven days in a static-renewal system to the effluent. The test endpoints are survival and growth (dry biomass).

Simultaneous reference toxicant testing was performed using reagent grade copper chloride. The concentrations of copper in the exposure series were 32, 56, 100, 180, and 320 μ g/L. A SIO seawater control was also tested.

Upon conclusion of the exposure period, percent survival and dry biomass were recorded. Data were analyzed in accordance with "Flowchart for statistical analysis of the topsmelt, *Atherinops affinis*, larval survival data" and "Flowchart for statistical analysis of the topsmelt, *Atherinops affinis*, larval growth data" (USEPA 1995). ToxCalc (Tidepool Scientific Software 2002) and CETIS (Tidepool Scientific Software 2010) were used for all statistical analyses.

In accordance with USEPA guidelines on method variability, the lower "Percent MSD" (PMSD) bound was also evaluated in order to minimize Type 1 error (i.e., false positive). Although PMSD bounds have not been established for the topsmelt, percentiles of PMSD for a comparable method using the inland silverside (*Menidia beryllina*) may be considered (Hemmer, 1992). If the relative difference between an exposure concentration and the control was smaller than the 10th percentile PMSD value listed for the inland silverside test method in the USEPA guidance document (i.e., 7.0 for 96-h survival and 12.0 for growth), then the exposure concentration will be further evaluated using other EPA-approved statistical strategies (USEPA, 2000).

Purple Sea Urchin Fertilization Bioassay

During the current reporting period (January–December 2012), chronic bioassays using the purple sea urchin, *Strongylocentrotus purpuratus*, were conducted for the SBWRP effluent as an alternate to the red abalone development bioassay during months in which gravid red abalones were potentially unavailable or of questionable quality. All tests were conducted in accordance with USEPA protocol EPA/600/R-95/136 (USEPA 1995).

Test organisms were obtained from the Point Loma kelp beds by City of San Diego personnel and delivered to the CSDTL immediately following collection. The urchins were evaluated for health and evidence of spawning prior to being placed in natural seawater tanks and held at 15 °C. For each test event, spawning was induced in at least 6 urchins and gametes from each animal were examined for quantity and quality. Eggs from at least two females and sperm from at least two males were used to create separate egg and sperm stocks. Density of the sperm and egg stocks were separately determine using a hemacytometer and a well slide, respectively.

Test initiation began upon delivery of 90,000 sperm into each test replicate. Following a 20minute sperm-only exposure, 2,000 eggs were delivered into each test replicate and incubated for an additional 20 minutes to allow fertilization. A SIO seawater control was also tested.

Simultaneous reference toxicant testing was performed using reagent grade copper chloride. The exposure series consisted 10, 18, 32, 56, 100, and 180 μ g/L copper. A SIO seawater control was also tested.

At the end of the test period, 100 randomly-selected eggs were examined and the number of fertilized and unfertilized eggs was recorded. The percentage of fertilized eggs for each replicate was arcsine square root transformed. Data were analyzed in accordance with "Flowchart for statistical analysis of sea urchin and sand dollar fertilization data" (USEPA 1995). ToxCalc (Tidepool Scientific Software 2002) and CETIS (Tidepool Scientific Software 2010) were used for all statistical analyses.

In accordance with USEPA guidelines on method variability, the lower "Percent MSD" (PMSD) bound was also evaluated in order to minimize Type 1 error (i.e., false positive). If the relative difference between an exposure concentration and the control was smaller than the 10th percentile PMSD value listed for the test method in the USEPA guidance document (i.e., 5.1), then the exposure concentration was treated as if it did not differ significantly from control for the purpose of determining the NOEC.

RESULTS & DISCUSSION

Acute Toxicity of SBWRP Effluent

In 2012, the City conducted quarterly acute bioassays of the SBWRP effluent using the topsmelt and three additional bioassays using the mysid shrimp. The latter tests were conducted in accordance with the biennial re-screening requirement. All valid tests met the test acceptability criterion and the NPDES permit's acute toxicity performance goal (Table T.1).

Chronic Toxicity of SBWRP Effluent

In 2012, the City conducted monthly chronic bioassays of the SBWRP effluent using the red abalone and additional bioassays using the giant kelp, topsmelt, and purple sea urchin. The latter tests were conducted in accordance with the biennial re-screening requirement. All valid tests met the NPDES permit's chronic toxicity performance goal (Table T.2).

Combined Effluent Toxicity

The City also conducted quarterly acute and chronic bioassays for the Combined Effluent in 2012. All acute tests were conducted using the topsmelt and met the acceptability criterion (Table T.3).

During the first three quarterly chronic events, the City tested multiple species concurrently in order to enable a side-by-side comparison of test sensitivity among the giant kelp, red abalone, topsmelt and purple sea urchin bioassays. The results showed comparable sensitivity among all bioassays to the Combined Effluent. Therefore, the City conducted all subsequent routine acute toxicity monitoring tests with the giant kelp, which exhibited the greatest sensitivity during a previous multiple-species screening event. All tests met the acceptability criteria (Table T.4).

Although this combined effluent testing is a requirement of the SBWRP monitoring program, there are no compliance limits or performance goals for these data.

REFERENCES

City of San Diego. 2012. Quality Assurance Manual. City of San Diego Ocean Monitoring Program, Metropolitan Wastewater Department, Environmental Monitoring and Technical Services Division, San Diego, CA

Tidepool Scientific Software. 2002. ToxCalc Toxicity Information Management System Database Software.

Tidepool Scientific Software. 2010. Comprehensive Environmental Toxicity Information System Software.

USEPA. 1995. Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms. U.S. Environmental Protection Agency, Environmental Monitoring and Support Laboratory, Cincinnati, OH, EPA/600/R-95/136.

USEPA. 2000. Understanding and Accounting for Method Variability in Whole Effluent Toxicity Applications Under the National Pollutant Discharge Elimination System Program. U.S. Environmental Protection Agency, Office of Water (4203), EPA 833-R-00-003.

USEPA. 2002. Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. Fifth Edition. U.S. Environmental Protection Agency, Office of Water (4303T), Washington, DC, EPA-821-R-02-012.

Results of SBWRP effluent acute toxicity tests conducted in 2012. Data are presented as acute toxic units (TUa).

Sample Date	Topsmelt 96-Hour Survival	Mysid 96-Hour Survival
01/22/2012	<1.50	<1.50
05/20/2012	<1.50	<1.50
09/23/2012	<1.50	N.V.
10/14/2012	<1.50	<1.50
N	4	3
No. in compliance	4	3
Mean TUa	<1.50	<1.50

NPDES permit performance goal: 3.1 TUa.

N.V.: Test not valid

Samula Data	Red A	balone	Giant 1	Kelp	Tops	melt	Purple Urchin		
Sample Date	Develo	opment	Germination	Growth	Survival	Growth	Fertilization		
	Exclusive	Inclusive							
01/09/2012	23.8	23.8	-	-	-	-	-		
02/14/2012	23.8	23.8	-	-	-	-	-		
03/05/2012	23.8	23.8	-	-	-	-	23.8		
04/17/2012	23.8	23.8	-	-	-	-	23.8		
05/07/2012	23.8	23.8	23.8	N.V.	-	-	-		
06/11/2012	23.8	23.8	N.V.	23.8	N.V.	23.8	23.8		
07/09/2012	23.8	23.8	23.8	23.8	23.8	23.8	-		
08/06/2012	23.8	23.8	23.8	23.8	23.8	23.8	23.8		
09/10/2012	95.2	95.2	23.8	23.8	23.8	23.8	23.8		
10/08/2012	23.8	23.8	-	-	-	-	-		
11/05/2012	23.8	23.8	-	-	-	-	-		
11/27/2012	-	-	-	-	-	-	23.8		
12/17/2012	DNS	DNS	-	-	-	-	23.8		
N	11	11	4	4	3	4	7		
No. in compliance	11	11	4	4	3	4	7		
Mean TUc	30.3	30.3	23.8	23.8	23.8	23.8	23.8		

Results of SBWRP effluent chronic toxicity tests conducted in 2012. Data are presented as chronic toxic units (TUc).

NPDES permit performance goal is 95.6 TUc.

N.V.: Test not valid

DNS: Animals gravid but did not spawn

Results of SBWRP/IWTP combined effluent acute toxicity tests conducted in 2012. Data are presented as acute toxic units (TUa).

Sample Date	Topsmelt 96-Hour Survival
01/23/2012	<1.52
04/02/2012	<1.57
08/20/2012	<1.50
11/16/2012	<1.50

Results of SBWRP/IWTP combined effluent chronic toxicity tests conducted in 2012. Data are presented as chronic toxic units (TUc).

Sampla Data	Red A	balone	Giant	Kelp	Tops	melt	Purple Urchin		
Sample Date	Develo	opment	Germination	Growth	Survival	Growth	Fertilization		
	Exclusive	Inclusive							
02/10/2012	-	-	-	-	23.8	23.8	-		
02/13/2012	-	-	23.8	23.8	-	-	-		
02/15/2012	23.8	23.8	-	-	-	-	-		
04/13/2012	-	-	-	-	23.8	23.8	-		
04/16/2012	-	-	23.8	23.8	-	-	-		
04/18/2012	23.8	23.8	-	-	-	-	23.8		
09/11/2012	23.8	23.8	23.8	23.8	23.8	23.8	23.8		
12/11/2012	-	-	23.8	23.8	-	-	-		

This page is left blank intentionally.