VIII. Appendices

- A. Terms and Abbreviations used in this Report
- B. Methods of Analysis
- C. Frequency of Analysis and Type of Sample
- D. Laboratories contributing Results used in this report
- E. QA Summary Report
- F. Staff Contributing to this Report
- G. System wide calculation definition
- H. Annual Flow Calibration Report

A. Terms and Abbreviations used in this Report

Along with standard abbreviations the following is a list of local/uncommon abbreviations and terms for the readers' reference.

PLANT TERMS

U.S.EPA - United States Environmental Protection Agency.

NPDES - National Pollutant Discharge Elimination System.

WWTP - Wastewater Treatment Plant.

WRP - Water Reclamation Plant.

PLWWTP - Pt. Loma Wastewater Treatment Plant

PLR - Point Loma Raw (influent to the plant).

PLE - Point Loma Effluent (effluent from the plant).

N-1-P - North Digester Number 1, Primary, Pt. Loma

N-2-P - North Digester Number 2, Primary, Pt. Loma

C-1-P - Central Digester Number 1, Primary, Pt. Loma

C-2-P - Central Digester Number 2, Primary, Pt. Loma

S-2-P - South Digester Number 2, Primary, Pt. Loma

Dig 7 - Digester Number 7, Primary, Pt. Loma

Dig 8 - Digester Number 8, Primary, Pt. Loma

DIG COMP - Digested Biosolids Composite; a composite of grabs taken from each of the in-service digesters.

RAW COMP - A Composite of Raw Sludge taken over the preceding 24 hrs.

NCWRP- North City Water Reclamation Plant

N01-PS INF - The plant primary Influent from Pump Station 64

N01-PEN - The plant primary Influent from the Penasquitos pump station.

N30-DFE - Disinfected Final Effluent

N34-REC WATER - Reclaimed Water.

N10-PSP COMB - raw sludge

N15-WAS LCP - Waste Activated Sludge – low capacity pumps

MBC - Metro Biosolids Center

MBCDEWCN - Metro Biosolids Center Dewatering Centrifuges; typically the dewatered biosolids from these.

MBC COMBCN - MBC Combined Centrate; the centrate from all the dewatering centrifuges.

(The return stream from MBC to the sewer system.)

MBC_NC_DSL - North City to Metropolitan Biosolids Center (MBC) Digested Sludge Line.

Dig 1 - MBC Digester number 1.

Dig 2 - MBC Digester number 2.

Dig 3 - MBC Digester number 3.

Biosolids - In most cases Biosolids and digested (a processed) Sludge is synonymous.

<u>UNITS</u>

ng/L milligrams per liter	mg/I
g/L micrograms per liter = 0.001 mg/L	ug/L
g/L nanograms per liter = 0.001 ug/L	
ng/Kg milligrams per kilogram	mg/I
g/Kg micrograms per kilogram	
g/Kg nanograms per kilogram	
g/L picograms per liter	pg/L
g/Kgpicograms per kilogram	pg/K
c/L or pCi/L pico curies per liter	pc/L
U toxicity units	TU
tu nephelometric turbidity units	ntu
C degrees Celsius = degrees centigrade	о _С
MGD million gallons per day	MGI
mhos/cm micromhos per centimeter	umh
S microsiemens = umhos	uS
nils/100 mLmillions per 100 milliliters	
dnot detected	nd
IAnot analyzed (when in a data column)	NA.
JRnot required	NR.
ISnot sampled	NS

CHEMICAL TERMS & ABBREVIATIONS:

AA	Atomic Absorption Spectroscopy
BOD	Biochemical Oxygen Demand
CN ⁻	Cyanide
	Chemical Oxygen Demand
Cr ⁶⁺	Hexavalent Chromium
D.O	Dissolved Oxygen
DDD	Dichlorodiphenyldichloroethane
	(a.k.a. TDE-tetrachlorodiphenylethane)
DDE	Dichlorodiphenyldichloroethylene
DDT	Dichlorodiphenyltrichloroethane
FeCl ₃	Ferric Chloride
G&O	Grease and Oil
GC	Gas chromatography.
GC-ECD	Electron Capture Detector.
GC-FID	Flame Ionization Detector.
GC-FPD	Flame Photometric Detector.
GC-MS	Mass Spectroscopy.
H ₂ S	Hydrogen Sulfide
Hg	Mercury
IC	Ion Chromatography
	Inductively Coupled Plasma-Atomic
	Emission Spectroscopy

MDL	. Method Detection Limit
MSD	. Mass Spectroscopy Detector
NH ₃	. Ammonia
	. Ammonia Nitrogen
NH ₄ ⁺	. Ammonium ion
NO ₃	. Nitrate
PAD	. Pulsed Amperometric Detector
PCB	. Polychlorinated Biphenyls
PO ₄ ³	. Phosphate
SO ₄ ²	. Sulfate
SS	. Suspended Solids
TBT	. Tributyl tin
TCH	. Total Chlorinated Hydrocarbons
	(i.e. chlorinated pesticides & PCB's
TCLP	. Toxicity Characteristic Leaching
	Procedure
TDS	. Total Dissolved Solids
TS	. Total Solids
TVS	. Total Volatile Solids
VSS	. Volatile Suspended Solids

B. Methods of Analysis

WASTEWATER INFLUENT and EFFLUENT (General)

Analyte	Description	Instrumentation	Reference ¹
Alkalinity	Selected Endpoint Titration	Mettler DL-21 & 25 Titrator Orion 950	(g) 2320 B
Ammonia Nitrogen	Distillation and Titration	Buchi Distillation Unit K-314 Orion 950	(i) 4500-NH3 B & E
Biochemical Oxygen Demand (BOD-5 Day)	Dissolved Oxygen Probe	YSI-5000 DO Meter	(i) 5210 B
Biochemical Oxygen Demand (BOD-Soluble)	Dissolved Oxygen Probe	YSI-5000 DO Meter	(i) 5210 B
Chemical Oxygen Demand (COD)	Closed Reflux / Colorimetric	Hach DR-2010 UV/Vis spectrophotometer	(i) 5220 D
Conductivity	Wheatstone Bridge	YSI-3100, YSI-3200, Orion 115A,Orion 250 Conductivity Meter	(g) 2510 B
Cyanide	Acid Digest/Distil / Colorimetric	Hach DR-4000/Vis	(i) 4500-CN E
Floating Particulates	Flotation Funnel	Mettler AX-105 Mettler AG 204 Balance	(g) 2530 B
Flow	Continuous Meter	Gould (pressure sensor), ADS (sonic sensor), or Venturi (velocity sensor)	
Hardness; Ca, Mg, Total	ICP-AES / Calculation	TJA IRIS	(a) 200.7 (h) 2340 B
Kjeldahl Nitrogen (TKN)	Macro-Digestion / Titration	Labconco digestion block Buchi B-324 distiller & Mettler DL25 titrator	(i)Digestion= 4500-Norg B
Oil and Grease	Hexane Extraction / Gravimetric	Mettler AX-105 Balance	(a) 1664A
Organic Carbon (TOC)	Catalytic Oxidation / IR Water Production Laboratory)	Shimadzu ASI-5000	(f) 5310 B
рН	Hydrogen+Reference Electrode	Various models of pH meters.	(g) 4500-H+ B
Radiation (alpha & beta)	Alpha Spectroscopy Gamma Spectroscopy	Canberra 7401 (alpha) Canberra GC25185 (beta)	(h) 7110 B
Solids, Dissolved-Total	Gravimetric @ 180oC	Mettler AX-105 &AB204 Meter	(i) 2540 C
Solids, Settleable	Volumetric	Imhoff Cone	(g) 2540 F
Solids, Suspended-Total	Gravimetric @ 103-105oC	Mettler AG204 & AX-105	(i) 2540 D
Solids, Suspended-Volatile	Gravimetric @ 500oC	Mettler AG204 & AX-105	(i) 2540 E
Solids, Total	Gravimetric @ 103-105oC	Mettler AG204 & AX-105	(a) 160.3
Solids, Total-Volatile	Gravimetric @ 500oC	Mettler AG204 & AX-105	(a) 160.4
Temperature	Direct Reading	Fisher Digital Thermometer	(g) 2550 B
Turbidity	Nephelometer Turbidimeter	Hach 2100-N Meter Hach 2100-AN Meter	(g) 2130 B
Bromide, Chloride, Fluoride, Nitrate, Phosphate, Sulfate	Ion Chromatography	Dionex DX-500	(d) 300.0

¹ Reference listing is found following this listing of analytical methods.

WASTEWATER INFLUENT and EFFLUENT (Metals)

Analyte	Description	Instrumentation	Reference ¹
Aluminum	Acid Digestion / ICP-AES	TJA IRIS	(e) 200.7
Antimony	Acid Digestion / ICP-AES	TJA IRIS	(e) 200.7
Arsenic	Hydride Generation / AA	TJA Solaar M6	(hh) 3114 C
Barium	Acid Digestion / ICP-AES	TJA IRIS	(e) 200.7
Beryllium	Acid Digestion / ICP-AES	TJA IRIS	(e) 200.7
Boron	Acid Digestion / ICP-AES	TJA IRIS	(e) 200.7
Cadmium	Acid Digestion / ICP-AES	TJA IRIS	(e) 200.7
Calcium	Acid Digestion / ICP-AES	TJA IRIS	(e) 200.7
Chromium	Acid Digestion / ICP-AES	TJA IRIS	(e) 200.7
Cobalt	Acid Digestion / ICP-AES	TJA IRIS	(e) 200.7
Copper	Acid Digestion / ICP-AES	TJA IRIS	(e) 200.7
Iron	Acid Digestion / ICP-AES	TJA IRIS	(e) 200.7
Lead	Acid Digestion / ICP-AES	TJA IRIS	(e) 200.7
Lithium	Acid Digestion / ICP-AES	TJA IRIS	(e) 200.7
Magnesium	Acid Digestion / ICP-AES	TJA IRIS	(e) 200.7
Manganese	Acid Digestion / ICP-AES	TJA IRIS	(e) 200.7
Mercury	Cold Vapor Generation / AA	Leeman PS 200II	(g) 3112 B
Molybdenum	Acid Digestion / ICP-AES	TJA IRIS	(e) 200.7
Nickel	Acid Digestion / ICP-AES	TJA IRIS	(e) 200.7
Potassium	Acid Digestion / ICP-AES	TJA IRIS	(e) 200.7
Selenium	Hydride Generation / AA	TJA Solaar M6	(h) 3114 C
Silver	Acid Digestion / ICP-AES	TJA IRIS	(e) 200.7
Sodium	Acid Digestion / ICP-AES	TJA IRIS	(e) 200.7
Thallium	Acid Digestion / ICP-AES	TJA IRIS	(e) 200.7
Vanadium	Acid Digestion / ICP-AES	TJA IRIS	(e) 200.7
Zinc	Acid Digestion / ICP-AES	TJA IRIS	(e) 200.7

¹ Reference listing is found following this listing of analytical methods.

WASTEWATER INFLUENT and EFFLUENT (Organics)

Analyte	Description	Instrumentation	Reference ¹
Acrolein and Acrylonitrile	Purge & Trap, GC-MSD	O-I Analytical Eclipse	(c) 8260 B
		4660/4552	
		HP-6890N GC / 5973N MSD	
		Capillary J&W DB-624	
Base/Neutral Extractables	Basic / CH2Cl2	HP-6890GC / 5973MSD	(a) 625
	continuous extraction,	HP-5890GC / 5972MSD	(b)
	GC-MSD	Capillary DB-5.625	
Benzidines	HPLC- ED / UV/Vis Diode Array	Dionex DX-500 / PDA-100/ED-	(a) 605
		40C-18 Luna 5um	
Chlorinated Compounds	CH2Cl2 extraction,	Varian 3800 GC-ECD	(a) 608
-	GC-ECD	Varian 3800 GC-ECD	
		RTX-5/60m: RTX-1701/60m	
Dioxin	CH2Cl2 extraction,	Varian Saturn -MS-MS	(a) 8280A
	GC/MS/MS	Varian 3800 GC	
Organophosphorus Pesticides	CH2Cl2 extraction,	Varian 3800 GC-PFPD	(a) 622
	hexane exchange,	RTX-1 :RTX-50	
	GC-PFPD		
Phenolic Compounds	Acidic / CH2Cl2	HP-6890GC / 5973MSD	(a) 625
	continuous extraction,	HP-5890GC / 5972MSD	(b)
	GC-MSD	Capillary DB-5.625	
Purgeables (VOCs)	Purge & Trap, GC-MSD	O-I Analytical Eclipse	(a) 8260B
		4660/4552	(b)
		HP-6890N GC / 5973N MSD	
		Capillary J&W DB-624	
Tri, Di, and Monobutyl Tin	CH2Cl2 extraction,	Varian 3400 GC-FPD	(1)
	derivatization,	DB-1/30m: RTX-50	
	hexane exchange, GC-FPD		

¹ Reference listing is found following this listing of analytical methods.

LIQUID SLUDGE: Raw, Digested, and Filtrate (General)

Analyte	Description	Instrumentation	Reference ¹
Alkalinity	Selected Endpoint Titration	Mettler DL-25 Titrator	(g) 2320 B
		Orion 950	
Cyanide	Acid Digest-Distil / Colorimetric	Hach DR/4000V	(h) 4500-CN
			E
рН	Hydrogen+Reference Electrode	Various models of pH meters.	(c) 9010 B
Radiation (alpha & beta)	Gross proportional counter	Protean IPC-9025 (alpha)	(g) 7110 B
	(Truesdail Labs Inc.)	Tennelec LB-50100 (beta)	
Radiation (alpha & beta)	Alpha Spectroscopy	Canberra 7401 (alpha)	(h) 7110 B
	Gamma Spectroscopy	Canberra GC25185 (beta)	
Sulfides	Acid Digest-Distil / Titration	Class A Manual Buret	(c) 9030 B
Sulfides, reactive	Distillation / Titration	Class A Manual Buret	(c) 7.3.4.2
Solids, Total	Gravimetric @ 103-105oC	Mettler PM 4600	(i) 2540 B
		Mettler PG 5002-S	
		Balance	
Solids, Total-Volatile	Gravimetric @ 500oC	Mettler PM 4600	(i) 2540 E
		Mettler PG 5002-S	
		Balance	

LIQUID SLUDGE: Raw, Digested, and Filtrate (Metals)

Analyte	Description	Instrumentation	Reference ¹
Aluminum	Acid Digestion / ICP-AES	TJA IRIS	(c) 6010 B
Antimony	Acid Digestion / ICP-AES	TJA IRIS	(c) 6010 B
Arsenic	Hydride Generation / AA	TJA Solaar M6	(c) 7062
Beryllium	Acid Digestion / ICP-AES	TJA IRIS	(c) 6010 B
Barium	Acid Digestion / ICP-AES	TJA IRIS	(c) 6010 B
Boron	Acid Digestion / ICP-AES	TJA IRIS	(c) 6010 B
Cadmium	Acid Digestion / ICP-AES	TJA IRIS	(c) 6010 B
Chromium	Acid Digestion / ICP-AES	TJA IRIS	(c) 6010 B
Cobalt	Acid Digestion / ICP-AES	TJA IRIS	(c) 6010 B
Copper	Acid Digestion / ICP-AES	TJA IRIS	(c) 6010 B
Iron	Acid Digestion / ICP-AES	TJA IRIS	(c) 6010 B
Lead	Acid Digestion / ICP-AES	TJA IRIS	(c) 6010 B
Manganese	Acid Digestion / ICP-AES	TJA IRIS	(c) 6010 B
Mercury	Cold Vapor Generation / AA	Leeman PS 200II	(c) 7471 A
Molybdenum	Acid Digestion / ICP-AES	TJA IRIS	(c) 6010 B
Nickel	Acid Digestion / ICP-AES	TJA IRIS	(c) 6010 B
Selenium	Hydride Generation / AA	TJA Solaar M6	(c) 7742
Silver	Acid Digestion / ICP-AES	TJA IRIS	(c) 6010 B
Thallium	Acid Digestion / ICP-AES	TJA IRIS	(c) 6010 B
Vanadium	Acid Digestion / ICP-AES	TJA IRIS	(c) 6010 B
Zinc	Acid Digestion / ICP-AES	TJA IRIS	(c) 6010 B

¹ Reference listing is found following this listing of analytical methods.

LIQUID SLUDGE: Raw, Digested, and Decant (Organics)

Analyte	Description	Instrumentation	Reference ¹
Acrolein and Acrylonitrile	Purge & Trap, GC-MSD	O-I Analytical Eclipse 4660/4552 HP-6890N GC / 5973N MSD	(c) 8260 B (b)
		Capillary J&W DB-624	
Base/Neutral Extractables	Basic / CH2Cl2	HP-6890GC / 5973MSD	(a) 625
	continuous extraction,	HP-5890GC / 5972MSD	(b)
	GC-MSD	Capillary DB-5.625	
Benzidines	HPLC-ED / UV/Vis Diode Array	Dionex DX-500 / PDA-40/ED-40	(a) 605
		C-18 Luna 5um	
Chlorinated Compounds	CH2Cl2 extraction,	Varian 3800 GC-ECD	(c) 8081 A
	GC-ECD	RTX-5/60m: RTX-1701/60m	
PCBs	CH2Cl2 extraction,	Varian 3800 GC-ECD	(c) 8082
	GC-ECD	RTX-5/60m: RTX-1701/60m	
Dioxin	CH2Cl2 extraction	Varian GC-MS/MS	(c) 8280A
Herbicides	HPLC-UV/Vis Diode Array	Dionex DX-500 / PDA-100	(c) 8321
		C-18 Hypersil 5um	
Organophosphorus Pesticides	CH2Cl2 extraction,	Varian 3800 GC-PFPD	(a) 622
	hexane exchange,	RTX-1: RTX-50	
	GC-PFPD		
Phenolic Compounds	Acidic / CH2Cl2	HP-6890GC / 5973MSD	(a) 625
_	continuous extraction,	HP-5890GC / 5972MSD	(b)
	GC-MSD	Capillary DB-5.625	
Purgeables (VOCs)	Purge & Trap, GC-MSD	O-I Analytical Eclipse 4660/4552	(c) 8260 B
		HP-6890N GC / 5973N MSD	(b)
		Capillary J&W DB-624	
Tri, Di, and Monobutyl Tin	CH2Cl2 extraction, derivatization,	Varian 3400 GC-FPD	(1)
	hexane exchange, GC-FPD	DB-1/30m: RTX-50	

LIQUID SLUDGE: Raw, Digested, and Decant (Digester Gases)

Analyte	Description	Instrumentation	Reference ¹
Methane	Gas Chromatography	SRI 8610C GC	(g) 2720 C
Carbon Dioxide	Gas Chromatography	SRI 8610C GC	(g) 2720 C
Hydrogen Sulfide	Colorimetric	Draeger H2S 2/a	

¹ Reference listing is found following this listing of analytical methods.

DRIED SLUDGE: Metro Biosolids Center (General)

Analyte	Description	Instrumentation	Reference ¹
Cyanide	Acid Digest-Distillation	Hach DR/4000V UV/Vis	(c) 9010 A
	Colorimetric		
Cyanide Reactive	Distillation / Colorimetric	Hach DR/4000V UV/Vis	(c) 7.3.3.2
рН	Hydrogen+Reference Electrode	Various models of pH meters.	(c) 9045 C
Radiation (alpha & beta)	Alpha Spectroscopy	Canberra 7401 (alpha)	(h) 7110 B
	Gamma Spectroscopy	Canberra GC25185 (beta)	
Sulfides	Acid Digest-Distil / Titration	Class A Manual Buret	(c) 9030 B
Sulfides, reactive	Distillation / Titration	Class A Manual Buret	(c) 7.3.4.2
Solids, Total	Gravimetric @ 103-105oC	Denver PI-314 Balance	(i) 2540 B
Solids, Total-Volatile	Gravimetric @ 500oC	Denver PI-314 Balance	(i) 2540 E

DRIED SLUDGE: Metro Biosolids Center (Metals)

Analyte	Description	Instrumentation	Reference ¹
Aluminum	Acid Digestion / ICP-AES	TJA IRIS	(c) 6010 B
Antimony	Acid Digestion / ICP-AES	TJA IRIS	(c) 6010 B
Arsenic	Hydride Generation / AA	TJA Solaar M6	(c) 7062
Barium	Acid Digestion / ICP-AES	TJA IRIS	(c) 6010 B
Beryllium	Acid Digestion / ICP-AES	TJA IRIS	(c) 6010 B
Boron	Acid Digestion / ICP-AES	TJA IRIS	(c) 6010 B
Cadmium	Acid Digestion / ICP-AES	TJA IRIS	(c) 6010 B
Chromium	Acid Digestion / ICP-AES	TJA IRIS	(c) 6010 B
Cobalt	Acid Digestion / ICP-AES	TJA IRIS	(c) 6010 B
Copper	Acid Digestion / ICP-AES	TJA IRIS	(c) 6010 B
Iron	Acid Digestion / ICP-AES	TJA IRIS	(c) 6010 B
Lead	Acid Digestion / ICP-AES	TJA IRIS	(c) 6010 B
Manganese	Acid Digestion / ICP-AES	TJA IRIS	(c) 6010 B
Mercury	Cold Vapor Generation / AA	Leeman PS 200II	(c) 7471 A
Molybdenum	Acid Digestion / ICP-AES	TJA IRIS	(c) 6010 B
Nickel	Acid Digestion / ICP-AES	TJA IRIS	(c) 6010 B
Selenium	Hydride Generation / AA	TJA Solaar M6	(c) 7742
Silver	Acid Digestion / ICP-AES	TJA IRIS	(c) 6010 B
Thallium	Acid Digestion / ICP-AES	TJA IRIS	(c) 6010 B
Vanadium	Acid Digestion / ICP-AES	TJA IRIS	(c) 6010 B
Zinc	Acid Digestion / ICP-AES	TJA IRIS	(c) 6010 B

Waste Extraction Test	Extraction with Sodium Citrate	Burrel wrist action shaker	(j) Section 66261.100
(WET)	ICP-AES	TJA IRIS	

¹ Reference listing is found following this listing of analytical methods.

DRIED SLUDGE: Metro Biosolids Center (Organics)

Analyte	Description	Instrumentation	Reference ¹
Acrolein and Acrylonitrile	Purge & Trap, GC-MSD	O-I Analytical Eclipse 4660/4552	(c) 8260 B
-		HP-6890N GC / 5973N MSD	(b)
		Capillary J&W DB-624	
Base/Neutral Extractables	CH2Cl2 /Acetone	HP-6890GC / 5973MSD	(c) 8270 C
	sonication extraction,	HP-5890GC / 5972MSD	(c) 3550 A
	GC-MSD	Capillary DB-5MS	(b)
Benzidines	Basic / CH2Cl2	HP-6890GC / 5976MSD	(c) 8270C
	Sonication extraction	Capillary HP-5MS	(c) 3550 A
Chlorinated Compounds	CH2Cl2 extraction,	Varian 3400 GC-ECD	(c) 8081 A
•	GC-ECD	RTX-5/60m: RTX-1701/60m	
PCBs	CH2Cl2 extraction,	Varian 3400 GC-ECD	(c) 8082
	GC-ECD	RTX-5/60m: RTX-1701/60m	
Dioxin	Outside Contact	GC-MS	(a) 8290
	(Severn Trent Labs)		
Herbicides	HPLC-UV/Vis Diode Array	Dionex DX-500 / PDA-40	(c) 8321/3545
		C-18 Hypersil 5um	
Organophosphorus Pesticides	CH2Cl2 extraction,	Varian 3800 GC-PFPD	(c) 8141 A
	hexane exchange,	DB-1/30m DB-608/30m	
	GC-PFPD		
Phenolic Compounds	CH2Cl2 / Acetone	HP-6890GC / 5973MSD	(c) 8270 C
•	sonication extraction,	HP-5890GC / 5972MSD	(c) 3550 A
	GC-MSD	Capillary DB-5MS	(b)
Purgeables (VOCs)	Purge & Trap, GC-MSD	O-I Analytical Eclipse 4660/4552	(c) 8260 B
		HP-6890N GC / 5973N MSD	
		Capillary J&W DB-624	
Tri, Di, and Monobutyl Tin	CH2Cl2 extraction, derivatization,	Varian 3400 GC-FPD	(1)
-	hexane exchange, GC-FPD	DB-1/30m DB-608/30m	

¹ Reference listing is found following this listing of analytical methods.

OCEAN SEDIMENT (General)

Analyte	Description	Instrumentation	Reference ¹
Biochemical Oxygen Demand	Dissolved Oxygen Probe	YSI-5000 DO Meter	(g) 5210 B
(BOD-5 Day)			
Particle Size	Coarse fraction by sieve;	Horiba LA-920	(q) 3-380
	fine fraction by laser scatter		
Sulfides	Acid Digest-Distil / IC-PAD	Dionex IC-PAD(Ag)	(k)
Solids, Total	Gravimetric @ 103-105oC	AND HM-120	(g) 2540 B
Solids, Total-Volatile	Gravimetric @ 500oC	AND HM-120	(g) 2540 E
Total Organic Carbon (TOC)	Combustion / GC-TCD	Carlo-Erba NC-2500	(m)
and Total Nitrogen (TN)		Porapak QS	

OCEAN SEDIMENT (Metals)

Analyte	Description	Instrumentation	Reference ¹
Aluminum	Acid Digestion / ICP-AES	TJA IRIS	(c) 6010 B
Antimony	Acid Digestion / ICP-AES	TJA IRIS	(c) 6010 B
Arsenic	Hydride Generation / AA	TJA Solaar M6	(c) 7062
Beryllium	Acid Digestion / ICP-AES	TJA IRIS	(c) 6010 B
Cadmium	Acid Digestion / ICP-AES	TJA IRIS	(c) 6010 B
Chromium	Acid Digestion / ICP-AES	TJA IRIS	(c) 6010 B
Copper	Acid Digestion / ICP-AES	TJA IRIS	(c) 6010 B
Iron	Acid Digestion / ICP-AES	TJA IRIS	(c) 6010 B
Lead	Acid Digestion / ICP-AES	TJA IRIS	(c) 6010 B
Manganese	Acid Digestion / ICP-AES	TJA IRIS	(c) 6010 B
Mercury	Cold Vapor Generation / AA	Leeman PS 200II	(c) 7471 A
Nickel	Acid Digestion / ICP-AES	TJA IRIS	(c) 6010 B
Selenium	Hydride Generation / AA	TJA Solaar M6	(c) 7742
Silver	Acid Digestion / ICP-AES	TJA IRIS	(c) 6010 B
Thallium	Acid Digestion / ICP-AES	TJA IRIS	(c) 6010 B
Tin	Acid Digestion / ICP-AES	TJA IRIS	(c) 6010 B
Zinc	Acid Digestion / ICP-AES	TJA IRIS	(c) 6010 B

OCEAN SEDIMENT (Organics)

Analyte	Description	Instrumentation	Reference ¹
Base/Neutral Extractables	Base/Neutral Extractables CH2Cl2 / Acetone F		(c) 8270 C
	ASE	HP-5890GC / 5972MSD	(b)
	GC-MSD	Capillary DB-5MS	
Chlorinated Compounds	CH2Cl2 extraction,	Varian Saturn GC-ECD/MS/MS	(c) 8081 A
	GC-ECD/MS/MS	DBXLB/60m	
PCBs as Congeners	CH2Cl2 extraction,	Varian Saturn GC-ECD/MS/MS	(c) 8082
	GC-ECD/MS/MS	DBXLB/60m	
Organophosphorus Pesticides	CH2Cl2 extraction,	Varian 3800 GC-PFPD	(c) 8141 A
	hexane exchange, GC-PFPD	RTX-1: RTX-50	
Tri, Di, and Monobutyl Tin	CH2Cl2 extraction, derivatization,	Varian 3400 GC-FPD	(1)
	hexane exchange, GC-FPD	DB-1/30m: RTX_50	

¹ Reference listing is found following this listing of analytical methods.

FISH TISSUE: Liver, Muscle, and Whole (General)

Analyte	te Description Instrumentation		Reference ¹
Solids, Total	Freeze Drying	Labconco Freezone 6	(n)
	Gravimetric	Mettler AG-104 Balance	
Lipids	Hexane/Acetone Extraction	Dionex ASE-200	(o)
	Gravimetric	Mettler AG-104 Balance	

FISH TISSUE: Liver, Muscle, and Whole (Metals)

Analyte	Description	Instrumentation	Reference ¹
Aluminum	Acid Digestion / ICP-AES	TJA IRIS	(e) 200.3 / 200.7
Antimony	Acid Digestion / ICP-AES	TJA IRIS	(e) 200.3 / 200.7
Arsenic	Acid Digestion / ICP-AES	TJA IRIS	(e) 200.3 / 200.7
Beryllium	Acid Digestion / ICP-AES	TJA IRIS	(e) 200.3 / 200.7
Cadmium	Acid Digestion / ICP-AES	TJA IRIS	(e) 200.3 / 200.7
Chromium	Acid Digestion / ICP-AES	TJA IRIS	(e) 200.3 / 200.7
Copper	Acid Digestion / ICP-AES	TJA IRIS	(e) 200.3 / 200.7
Iron	Acid Digestion / ICP-AES	TJA IRIS	(e) 200.3 / 200.7
Lead	Acid Digestion / ICP-AES	TJA IRIS	(e) 200.3 / 200.7
Manganese	Acid Digestion / ICP-AES	TJA IRIS	(e) 200.3 / 200.7
Mercury	Cold Vapor Generation / AA	Leeman PS 200II	(e) 245.6
Nickel	Acid Digestion / ICP-AES	TJA IRIS	(e) 200.3 / 200.7
Selenium	Hydride Generation / AA	TJA Solaar M6	(c) 7742
Silver	Acid Digestion / ICP-AES	TJA IRIS	(e) 200.3 / 200.7
Thallium	Acid Digestion / ICP-AES	TJA IRIS	(e) 200.3 / 200.7
Tin	Acid Digestion / ICP-AES	TJA IRIS	(e) 200.3 / 200.7
Zinc	Acid Digestion / ICP-AES	TJA IRIS	(e) 200.3 / 200.7

FISH TISSUE: Liver, Muscle, and Whole (Organics)

Analyte	Description	Instrumentation	Reference ¹	
Base/Neutral Extractables	Basic / CH2Cl2	Dionex ASE-200		
	ASE extraction,	HP-5890GC / 5971MSD	(c) 3545 / 8270 C	
	GC-MSD	Capillary DB-XLB/30m		
Chlorinated Compounds	CH2Cl2 extraction,	Varian 3800 GC		
_	GC-ECD/MS/MS	Saturn 2000 MS-Ion Trap	(c) 3545 / 8081 A	
		DB-XLB/60m		
PCBs	CH2Cl2 extraction,	Varian 3800 GC		
	hexane exchange,	Saturn 2000 MS-Ion Trap	(c) 3545 / 8082	
	GC-ECD/MS/MS	DB-XLB/60m		

¹ Reference listing is found following this listing of analytical methods.

Method References: Methods of Analysis Used to Produce the Data Presented in this Report.

- Methods for Chemical Analysis of Water and Wastes,
 EPA, Environmental Monitoring and Support Laboratory, Cincinnati, Ohio,
 March 1979 (EPA-600/4-79-020), 1983 Revision, and March 1984 (EPA-600/4-84-017).
- U.S. EPA Contract Laboratory Program, Statement of Work for Organic Analysis, Multi-Media, Multi-Concentration, 7/85 revision and 1/91 revision.
- c) Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, U.S. EPA Office of Solid Waste and emergency Response, Washington, D.C. 20460, November 1986, SW-846, Third Edition. Revision 0 September 1994, December 1996, Revision 2
- The Determination of Inorganic Anions in Water by Ion Chromatography, Revision 2.1, August 1993
- e) The Determination of Metals and Trace Elements in Water and Waste Revision 4.4, EMMC Version, EMMC Methods Work Group, 1994
- f) Standard Methods for the Examination of Water and Wastewater, APHA, AWWA, WPCF, 17th Edition, 1989.
- g) Standard Methods for the Examination of Water and Wastewater, APHA, AWWA, WPCF, 18th Edition, 1992.
- h) Standard Methods for the Examination of Water and Wastewater, APHA, AWWA, WPCF, 19th Edition, 1995.
- i) Standard Methods for the Examination of Water and Wastewater, APHA, AWWA, WPCF, 20th Edition, 1998.
- j) Criteria for Identification of Hazardous and Extremely Hazardous Wastes, California Code of Regulations (CCR), Title 22.
- k) DIONEX AU 107, R.D.Rocklin and E.L.Johnson, ANAL. CHEM., 1986, 55, 4
- Adaptation of method by the Naval Ocean Systems Center, San Diego, Marine Environment Branch, San Diego, CA 92152-5000
- m) "TOC/TN in Marine Sediments...", SCCWRP Annual Report, 1990-1991, and 1991-1992.
- n) "A Guide to Freeze Drying for the Laboratory...", LABCONCO, 3-53-5/94-Rosse-5M-R3, 1994.
- o) "Lipids Content in Fish Tissues via Accelerated Solvent Extraction...", WWChem, EMTS/MWWD, 1998
- v) Procedures for Handling and Chemical Analysis of Sediment and Water Samples, Russel H. Plumb, Jr., May 1981, EPA/Corp of Engineers Technical Committee on Criteria for Dredged and Fill Material, EPA Contract 4805572010.

C. Frequency of analysis and Type of Sample - 2007

		Sample	Permit F	Required	
CONSTITUENT	Frequency	Туре	t	Effluent	Comments
Process Control		- J F -			
Biochemical Oxygen Demand -Total	Daily	Composite	X	X	
Biochemical Oxygen Demand -Soluble	Daily	Composite			Monday-Friday
Chemical Oxygen Demand	Weekly	Composite			
Conductivity	Weekly	Composite			
Floating Particulates	Daily	Composite	X	X	
Flow	Daily	1	X	X	Same meter used
Oil and Grease	Daily	Grab	X	X	
рН	Daily	Grab	X	X	
Settleable Solids	Daily	Grab	X	X	
Temperature	Daily	Grab	X	X	
Total Dissolved Solids	Daily	Composite	X	X	
Total Solids	Weekly	Composite			
Total Suspended Solids	Daily	Composite	X	X	
Total Volatile Solids	Weekly	Composite			
Turbidity	Daily	Composite	X	X	
Volatile Suspended Solids	Daily	Composite	X	X	
Metals	,				
As,Cd,Cr,Cu,Pb,Hg,Ni,Se,Ag,Zn	Weekly	Composite	X	X	
Sb, Be, Tl	Weekly	Composite	X	X	Req. Frequency=Monthly
Fe	Weekly	Composite			
Ions		- Company			
Alkalinity	Weekly	Composite			
Ammonia-Nitrogen	Weekly	Composite	X	X	
Anions (F-,Cl-,Br-,SO42-,NO3-,PO43-)	Weekly	Composite			
Cations (Ca2+, Mg2+, Li+,Na+,K+)	Weekly	Composite			
Cyanide	Weekly	Composite	X	X	
Hardness (Total, Ca, Mg)	Weekly	Composite			By calculation
Organic Priority Pollutants		P			
Acrolein and Acrylonitrile	Monthly	Grab	X	X	Method 8260
Base/Neutral Compounds	Monthly	Composite	X	X	Method 625
Benzidines	Monthly	Composite	X	X	
Dioxin	Monthly	Composite	X	X	Method 8280A
Pesticides, chlorinated	Monthly	Composite	X	X	
	Semi-	P			
Pesticides, organophosphorus	Annual	Composite			
Phenols, non-chlorinated	Weekly	Composite	X	X	Method 625
Phenols, chlorinated	Weekly	Composite	X	X	Method 625
Polychlorinated Biphenyls	Weekly	Composite	X	X	
Purgeable (Volatile) Compounds	Monthly	Grab	X	X	Method 8260
Tri, Di, & monobutyl tins	Monthly	Composite	X	X	_
Miscellaneous					
Radiation	Monthly	Composite	X	X	Performed by a contract lab. Reported in the monthly
Toxicity (Acute & Chronic)	Monthly	Composite	X		Toxicity Testing Report by the Biology Section

D. Laboratories Contributing Results used in this report.

 Metropolitan Wastewater Chemistry Laboratory (EPA Lab Code: CA00380,

ELAP Certificate: 1609) 5530 Kiowa Drive La Mesa, CA 91942 (619)668-3212 All results except those listed below.

ii. Point Loma Wastewater Chemistry Laboratory (EPA Lab Code: CA01435, ELAP Certificate: 2474) 1902 Gatchell Road San Diego, CA 92106 (619)221-8765 Process control analyses and wet methods for the plant.

iii. North City Wastewater Chemistry Laboratory (EPA Lab Code: CA01436, ELAP Certificate: 2477)
4949 Eastgate Mall San Diego, CA 92121 (858)824-6009
Process control analyses and wet methods for the plant.

iv. Metro Biosolids Center Chemistry Laboratory (EPA Lab Code: CA01437, ELAP Certificate: 2478) 5240 Convoy Street San Diego, CA 92111 (858)614-5834 Process control analyses and wet methods for the plant.

v. South Bay Water Reclamation Plant
(EPA Lab Code: CA01460,
ELAP Certificate: 2539)
2411 Dairy Mart Road
San Diego, CA 92173
619.428.7349
Process control analyses and wet methods for the plant.

vi. City of San Diego - Water Quality Laboratory
(EPA Lab Code: CA00080,
ELAP Certificate: 1058)
5530 Kiowa Drive
La Mesa, CA 91942
(619)668-3237
Total Organic Carbon in Wastewater

vii. City of San Diego - Marine Microbiology and Vector Management
(EPA LabCode: CA01393, ELAP Certificate: 2185)
4918 Harbor Drive, Suite 101
San Diego, CA 92106
(619) 758-2311
Microbiology

viii. City of San Diego - Toxicity Bioassay Laboratory (EPA Lab Code: CA01302, ELAP Certificate: 1989) 4918 Harbor Drive, Suite 101 San Diego, CA 92106 (619) 758-2347 Bioassays

ix. Truesdail Laboratories, Inc.
(EPA Lab Code: CA09469,
ELAP Certificate: 1237)
14201 Franklin Ave.
Tustin, CA 92780-7008
(714)730-6239
Gross Alpha/Beta Radioactivity and some mercury, arsenic and selenium values.

x. Severn Trent Labs
880 Riverside Parkway
Sacramento, CA 95605
NELAP Certification: 01119CA
Telephone# (916) 373-5600
Dioxins/Furans in solids only.

xi. Test America 2800 George Washington Way Richland, WA 99354-1613 CA ELAP Certification: 2425 Telephone# (509) 375-3131 Gross Alpha/Beta Radioactivity

E. QA Report Summary

(excerpt from our Quality Assurance/Quality Control Report for Calendar Year 2007, March 28, 2008)

Overview:

The Wastewater Chemistry Services Section, Metropolitan Wastewater Department, City of San Diego performs most of the NPDES and other permit and process control chemical and physical testing for the City of San Diego E.W. Blom, Pt. Loma Wastewater Treatment Plant (PLWWTP), North City Water Reclamation Plant (NCWRP), South Bay Water Reclamation Plant (SBWRP), and the Metro Biosolids Center (MBC). We also performs the chemical/physical testing of ocean sediment and fish tissue samples for the Ocean monitoring program for the City of San Diego (PLWWTP Ocean Outfall and SBWRP Ocean Outfall) and the International Boundary and Water Commission, International Treatment Plant outfall. We also perform environmental testing for various customers, both internal to the City of San Diego and for other agencies.

The QA/QC activities of the Laboratory are comprehensive and extensive. Of the 36,252 samples received in the Laboratory in 2007, approximately 32% were Quality Control (QC) samples, such as blanks, check samples, standard reference materials, etc. 120 different analyses were performed throughout the year resulting in 268,852 analytical determinations on over 36,000 samples. Of the determinations, 110,857(~41%) were QC determinations (e.g. blanks, lab. replicates, matrix spikes, surrogates, etc.) used to support the accuracy, precision, and performance of each analysis and batch.

We have 5 separate laboratory facility locations, each with its own California ELAP (Environmental Laboratory Accreditation Program) certification for the fields of testing required under California regulations. This is a rigorous program involving continuing independent blind performance testing, biannual comprehensive audits, and extensive documentation requirements. Each of the 5 laboratory facilities in the Metropolitan Wastewater (Metro) Department are independently certified and copies of those certifications are included at Attachment 1. California ELAP certifies fields of testing (methods/analytes) only for Water, Wastewater, and Hazardous materials for which methods are published in the Federal Register or specifically approved in regulation by U.S.EPA. Additionally, the Laboratory performs analyses using methods for which certification does not exist, such as ocean sediment and sea water determinations. Those methods have been developed in-house, derived from or in collaboration with other scientific laboratories (e.g. Scripps Institute of Oceanography, Southern California Coastal Water Research Project, et. al.) and have been used extensively in multi-agency EPA and State sponsored studies over the past several years. Many methods of analysis developed for matrices and applications not within ELAP jurisdiction have been adapted from ELAP listed methods. In all cases, we apply generally accepted standards of performance and quality control to methods.

Additionally, the operating division and all Metro Department Laboratories maintained International Standards Organization (ISO) 14001 Environmental Management Systems certification.

Contract laboratories are also required to use only approved methods for which they hold certification for, and/or are approved by the appropriate regulatory agency (e.g. SDRWQCB). Copies of their certifications have been submitted in the 2007 Annual QA Report.

Facilities & Scope:

Each of our satellite laboratories at the treatment plants maintains California Department of Health Service, Environmental Laboratory Accreditation Program (ELAP) certification in their respective Fields of Testing (FoT). Each also has its own U.S.EPA Lab Code as shown in the following table.

Laboratory Facility	Laboratory	Address	Phone	EPA Lab. Code	ELAP Cert. No.
Alvarado Laboratory	Wastewater Chemistry Laboratory	5530 Kiowa Drive, La Mesa, CA 91942	619.668.3215	CA 00380	1609
Pt. Loma satellite lab.	Pt. Loma Wastewater Chemistry Laboratory	1902 Gatchell Rd., San Diego, CA	619.221.8765	CA 01435	2474
North City Water Reclamation Plant satellite lab.	North City Wastewater Chemistry Laboratory	4949 Eastgate Mall, San Diego, CA 92121	858.824.6009	CA 01436	2477
Metro Biosolids Center satellite lab.	Metro Biosolids Center Wastewater Chemistry Laboratory	5240 Convoy Street, San Diego, CA 92111	858.614.5834	CA 01437	2478
South Bay Water Reclamation Plant satellite Lab.	South Bay Wastewater Chemistry Laboratory	2411Dairy Mart Rd San Diego, CA 92154	619.428.7349	CA 01460	2539

The "Laboratory" means all of the laboratory facilities listed above. The information presented in this report applies to the Laboratory, including all satellite laboratories, unless specified otherwise. The Wastewater Chemistry Laboratory performs most of the NPDES and other permit and process control chemical and physical testing for the:

- E.W. Blom, Pt. Loma Wastewater Treatment Plant (PLWWTP), NPDES Permit No. R9-2002-0025, including the ocean monitoring program.
- North City Water Reclamation Plant (NCWRP), Permit No. 97-03.
- Metro Biosolids Center (MBC), no permit, but monitoring requirements contained in Permit No. R9-2002-0025.
- South Bay Water Reclamation Plant (SBWRP), NPDES Permit No.CA0109045/ Order No. 2006-067.
- Ocean monitoring program for the International Boundary and Water Commission, International Treatment Plant.
- Other environmental testing for various customers, both internal to the City of San Diego and other public agencies.

A small portion of the required monitoring testing is sub-contracted out to laboratories certified by ELAP for those analyses; specifically;

- Gross alpha- and Beta radiations are analyzed by Truesdail Labs., Inc.
- Total organic carbon (TOC) in water are analyzed by the Water Quality Laboratory, City of San Diego, Water Department.
- Copper by ICP-MS by CRG Marine Laboratories, Inc. for San Diego Convention Center monitoring during 2007.
- Dioxin and Furans in solids are analyzed by Severn Trent Labs.

The City of San Diego pays for additional QC samples (replicates, blanks, spikes) as a routine quality check on sub-contracted laboratory work. This is beyond the usual and customary practices with contract lab. work.

The Wastewater Chemistry Laboratory's main laboratory facilities and headquarters are located at the Alvarado Water Treatment Plant Site at 5530 Kiowa Dr, La Mesa, CA 91942. There are also 4 additional certified satellite laboratories located at each of the wastewater treatment plants:

Pt. Loma Wastewater Treatment Plant (PLWWTP), North City Water Reclamation Plant (NCWRP), Metro Biosolids Center (MBC), South Bay Water Reclamation Plant (SBWRP).

The main laboratory at Alvarado is the main offices for the Laboratory and contains the most extensive laboratory facilities of the several laboratories. Along with a variety of process control and wet chemistry analyses, this facility also handles all of the trace metals, pesticides/organics determinations, and other analyses. The satellite laboratories are primarily dedicated to process control, wet chemistry, and other analyses directly related to the support of the operations of the co-located wastewater treatment plant.

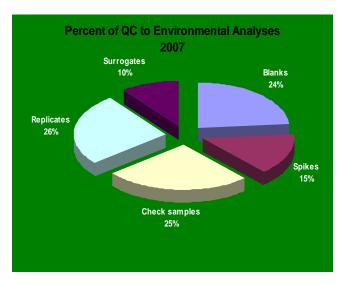
Ocean monitoring:

While there are no recognized State certifications for laboratory analyses of marine environmental samples (e.g. seawater, sediments, various tissues, etc.), the City of San Diego has been a leader in the development and standardization of analytical methods for determinations in these areas.

Many of the methods are novel approaches developed after extensive research and development from other published work (e.g. organo-tin analyses, sediment grain size, etc.) or adaptations of exiting EPA methods (e.g. SW 846 Method 8082 for PCB congeners in sediments, etc.). In all of these cases we participate in extensive inter-laboratory calibration studies. Some of the most extensive studies have involved the participation of several public, academic/research, and private laboratories under the umbrella of the Southern California Coastal Water Research Project (SCCWRP). These programs are repeated periodically as part of the Southern California Bight Regional Monitoring/Survey Project. This is a massive sampling and monitoring program participated in by all of the major Publicly Owned Treatment Works (POTWs), California Water Resource Control Boards, and research organizations.

Our laboratory is a reference (referee) laboratory for the NRCC (National Research Council of Canada) CARP-2 Certified Reference Material (CRM) for fish tissue. This was adopted as the standard reference material for QC QA for the Southern California Bight Regional Project. This sample is also used worldwide as a standard reference material. We have worked with NIST to develop a West Coast marine sediment and fish tissue standard reference material (SRM).

QA/QC Activities Summary:


Report for January 1, 2007 - December 31, 2007.18

The sample distribution for 2007 is not significantly changed from 2006. In 2007, 36,252 samples were received by the Laboratory during 2007 (see table A.). Of these 11,589 or 32% were Quality Control (OC) samples. Approximately 10.2% were blanks

and 21.7% check or reference samples.

High levels of QC are used for laboratory determinations. Approximately 268,852 analytical determinations were made on these 36,252 samples. Of the determinations, 41 % (or 54% if calculated vs. customer samples only) were QC (e.g. blanks, lab. replicates, matrix spikes, surrogates, etc.).

A certain number (4.68% of total analyses and 0.2% of batches) of analyses fail internal QA review due to a variety of criteria, e.g. unsuccessful calibration, unacceptable QC performance, etc. Table C. list which analyses and the number of batches that were rejected outright. The analysis is then repeated, or, if that is not possible, the data is

either not reported or reported but flagged as having not met data quality objectives and may not be suitable for compliance determination.

	<u>2007</u>	
•	Number of Samples	Percent of total samples
Table A. Samples		
Customer/Environmental samples	24,663	<u>68.03%</u>
Quality Control (QC) samples	<u>11,589</u>	<u>31.97%</u>
Total Samples	<u>36,252</u>	<u>100.00%</u>
QC Samples:		
Blanks:		
<u>FIELD_BLANK</u>	<u>110</u>	<u>0.30%</u>
REAGENT_BLANK	<u>9</u>	<u>0.02%</u>
TRIP BLANK	<u>9</u> <u>5</u>	<u>0.01%</u>
METHOD BLANK	<u>3,593</u>	<u>9.91%</u>
Total Blanks:	<u>3,717</u>	<u>10.25%</u>
Check samples:		
External Check samples	<u>4,496</u>	<u>12.40%</u>
Internal Check samples	<u>3,363</u>	<u>9.28%</u>
SRMs (Standard Reference Material)	<u>13</u>	<u>0.04%</u>
Tradal Charle Consultan	7.073	21.710/
<u>Total Check Samples:</u>	<u>7,872</u>	<u>21.71%</u>
Total QC Samples:	<u>11,589</u>	<u>31.97%</u>

¹⁸ Data counts (metrics) were obtained on March 24, 2008 and do not include analyses that were underway, but incomplete as of that time. All table data is based on samples collected between January 1, 2007 and December 31, 2007. This data summary is comprehensive; includes all laboratory analyses work for all customers, projects, and programs unless otherwise indicated.

Appendices 8.354

NOTE: Analysis, for the purposes of the metrics used in this report generally refer to each analyte determined in each sample in a batch. For example, an analysis(determination) of several metals in a sample (e.g. iron, nickel, lead) would total as 3 analyses in the expression of totals such as those in Table A.2. in the following. This method of calculation has been used for many years and, with batch and method, is useful comparative measure of laboratory performance and is one of the fundamental constants in applying quality control measures.

Table A.2. Analyses (results) and Batches - 2007			
	Number	Percent of total	
Total number of analytes/results determined (by sample			
date): ¹	268,852	NA	
Total results not complete ³ :	7,975	3.0%	
No. of results for Customer/ Environmental			
Samples ¹ :	205,454	76.4%	
Total number of rejected results:	12,157	4.68%	
		4	
No. of results for blanks:	26,153	9.7%	12.7%
No. of results for matrix spikes:	16,341	6.1%	8.0%
No. of results for Check samples:	28,511	10.6%	13.9%
No. of results for Replicates:	28,514	10.6%	13.9%
No. of results for surrogates:	11,338	4.2%	5.5%
Total QC analyses run: 2	110,857	41.2%	54.0%
Total in-house analyses completed ³ :	260,028	100.0%	
Results from sub-contracted labs.			
Truesdail Laboratories/Test America	56	0.02%	
CRG Marine Laboratories	224	0.09%	
Water Quality, City of San Diego	23	0.01%	
Severn Trent Laboratories, Inc	433	0.17%	
Total outside results:	736	0.28%	

¹ Total Customer/Environmental Samples is used as denominator in caculating percentages. control_type of SAMPLE.

⁵ - percent of QC samples calculated from actual environmental samples (205,454).

	No. of	
	Batches	Percent of total
Total number of analytical batches:	13,938	
Total number of rejected analytical batches:	28	0.20%
Incomplete batches (as of Mar 24, '08):	133	0.95%

² matrix spikes, replicates, surrogates are also part of the total for Customer/Environmental samples; are special aliquots or handling for Quality Control purposes.

³ - as of March 24, 2008.

⁴ percent of QC samples calculated from grand total (268,852 analyses).

Outside laboratories

A small number of permit required analyses are sub-contracted out, including gross alpha- & Beta-radiation, and Total Organic Carbon in wastewater as summarized below. Additionally, a special analysis for copper by ICP-MS is done by an outside laboratory with specialized instrumentation.

		Number
		of
Outside Laboratory		analyses
	Copper by ICP-MS for SD Convention	
CRG Marine Labs.	Center	224
Severn Trent Labs	gross alpha- and Beta-radiations, Dioxins	433
Truesdail Labs	gross alpha- and Beta-radiations	56
City of San Diego Water Quality Lab.	Total Organic Carbon	23
	total:	736

QA Plan:

A copy of our Laboratory's current Quality Assurance Plan was included in the 2007 Annual QA Report submitted in March 2008. No significant changes were made in 2007.

Performance Testing (PT) Studies for 2007:

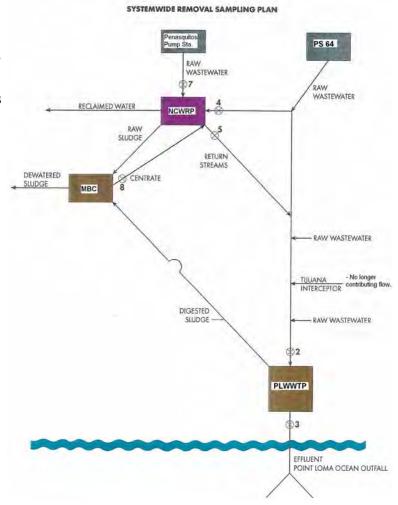
The Wastewater Chemistry Laboratory participates in required ELAP and U.S.EPA PT studies throughout the year. We participated in 13 PT studies throughout the year, including the Annual NPDES DMR-QA study. Our individual laboratory facilities participated individually (as required by ELAP). All PT studies were purchased from ERA and were successfully completed with satisfactory results for all analytes by in-house chemistry laboratories.

F. Staff contributing to this Report

I. Staff Contributing to this Report.

Initials	3	ID	First Name	Last Name Signature
	BOAT	BOA	Ben	Andoh Benjamin Clydon
TB	TB	TSB	Tan	Bao, Jan Dao
VB	19	VFB	Virginia	Basilan Marie
	als.	BTX	Enrique	Blanco singuelten f
Tblasz		BEV	Tiffany	Blaszak = 13 W
	野母	N8B	Brent	Bowman + Bowm
TB -	TB	TMB	Tom	Burger Tom Bruns
DC C	0	DVC	Doug	Campbell Cambell
LC		UEC	Laura	Carr / / /
JC	50	G3C	Jose	Castro ///W/o
JCM	JCH	UBC	Jacqueline	Cazares-Medina M. Jacqueline Coranta Westing
CC	00	15C	CC	Chou Ca Ca
NC V	NC.	NLC	Nancy	Coglan
MC LL	E	M5C	Maricela	Coronel Maurel Conord
JCM		G8C	Jerry	Czajkowski Z. Czajkowski
KD	KD	KOD	Ken	Dang Kewom
HHDA	SHO	HZD	Heather	Duckett Hadher Duckett
ACD	A.3	AD4	Angelica	Duran (Syclin 4) 5m
SE	SE	SZE	Steve	Evans Steen L Evans
	JIF JIF		Jeff	Findley Jah Francisco
KG '	Kin	KG3	Kenneth	Genz K Seam
RJ	(A)	RCJ	Ron	Jardine Audit
LK /	2	LNK	Lee	King Lace Vita
EL	*	EVL	Estela	Lanez Hotela V. Lane
WLuce	ero M	WL7	Wendy	Lucero 9462 O
	for .	M5U	Armando	Martinez
FM		YBM	Fernando	Martinez Tomos A-TO
Connie	Mi	M4M	Connie	Mata / Mcsuato - 0
SWM	Din	SWM	Steve	Meyer SW King
FML	Ane	IZM	Francisco	Meza Can Ma
JM	1816	G7M	Jeff	McAnally Wen
JN	NIN	IEN	Jesus	Nieto Cant.
MN	MM	MGZ	Maria	Noller Man a Moller
LP/		LJP	Lorena	Pantoja erem medos
LP 3	20	LXP	Leonard	Przybylo Zatral
CAQ		CQ5	Corinna	Quinata alama a But
KRueh	rwein KR	KRV	Keith	Ruehrwein /2 4
	an	NDS	Robert	Sandoval Turnal id
DWS	DX4	DXS	David	Schlickman Om Sylle
	65	GTS	Greg	Schlimme Justil
GSGL	-S ~	HIR	Gloria	Siqueiros Significado
MRS	-mal.	MWS	Michael	Stewart Mehre Man
MIS h		S49	Margot	Szeterlak Mszeralan
sv		SCV	Sandra	Valenzuela Staturzula-SV
JW &	am	AIW	Julie	Webb Much much
	KLW	KLW	Kristof	Witczak V/1. 1114 woli -

Figure 1. Chemistry Laboratory Organization Chart. (2007)


Metropolitan Wastewater Department Environmental Monitoring and Technical Services Division Wastewater Chemistry Laboratory

		Deputy Director Alan Langworthy			
		Senior Chemist 1.00 Steve Meyer			
	_		_	_	
Pesticides/ Wet Chemistry Group Associate Chemist 1.00 JEFF MCANALLY	QA/DM Group Associate Chemist 1.00 BRENT BOWMAN	Metals Group Associate Chemist 1.00 DAVID SCHLICKMAN	Southern Services Group Associate Chemist 1.00 ROBERT SANDOVAL	North Services Group Associate Chemist 1.00 NANCY COGLAN	GC/MS Group Associate Chemist 1.00 Vacant - TBD BRENT BO WMAN (temporary)
Assistant Chemists: 9.00 TAN BAO CC CHOU KEN DANG MARIA NOLLER SANDRA VALENZUELA JACQUELINE CAZARES-MEDINA HEATHER DUCKETT MICHAEL STEWART RONALD JARDINE	Assistant Chemists: 4.00 LEE KING TOM BURGER Vacant	Assistant Chemists: 6.00 BEN ANDOH JERRY CZAJKOWSKI JEFF FINDLEY JESUS NIETO LEONARD PRZYBYLO GLORIA SIQUEIROS	Assistant Chemists: 5.00 JULIE WEBB GREG SCHLIMME ENRIQUE BLANCO ESTELA LANEZ FERNANDO MARTINEZ	Assistant Chemists: 3.00 VIRGINIA BASILAN KRIS WITCZAK LORENA PANTOJA Vacant	Assistant Chemists: 3.00 FRANCISCO MEZA STEVE EVANS DOUG CAMPBELL
Laboratory Technician: 1.00 TIFFANY BLASZAK	Laboratory Technician: 2.00 ARMANDO MARTINEZ KEITH RUEHRWEIN	Laboratory Technician: 1.00 MARGOT SZETERLAK	Laboratory Technician: 4.00 MARICELA CORONEL CONNIE MATA JOSE CASTRO Vacani	Laboratory Technician: 3.00 ANGELICA DURAN KENNETH GENZ WENDY LUCERO	Laboratory Technician: 0.00
Intern:	Word Processing Operator: 1.00 CORINNA QUINATA Intern:	Intern:			

G. System-wide calculation definition

System-wide removals are a practical extension of the "Adjusted Removals" previously reported. Adjusted removals were used to determine removal efficiency of TSS and BOD, during the period when biosolids dewatering occurred at Fiesta Island. The wastewater removed by dewatering (e.g. belt filter press or drying bed decant) was returned to the Point Loma WWTP headworks and contained a certain amount of solids. In order to account for the removal and return of TSS and BOD, on a complete mass-balance basis, the Adjusted Removals were determined. That calculation was relatively straight forward and included removing the contribution to the Pt. Loma WWTP influent of the returned stream. The calculation was done on a mass balance basis to fully account for the solids and BOD contributions returned back to the system.

With the replacement of Fiesta Island biosolids processing by the Metro Biosolids Center (MBC) and the addition of the NCWRP (North City Water Reclamation Plant) in the Metro System, the removal and return of solids to Pt. Loma WWTP was complicated by the addition of multiple inputs and outputs to the system. To calculate the system-wide removals, the net total inputs and outputs were determined and included in the updated calculation 19. The determination of Systemwide removals is represented by Equation 1 on the next page. This simplified diagram graphically shows the relationships of the input and output streams. The Tijuana interceptor (emergency connection) has not contributed flows since September 2003. The South Bay Water Reclamation Plant (SBWRP) is not shown since it currently has no net contribution or solids removal.

¹⁹ Calculations are performed by a computer database application working with Metro System flow and concentration data.

```
Equation 1.

System-wide %Removal= (ΣSystem Influents)-(ΣReturn Streams) - (ΣOutfall Discharge) x

100%

ΣSystem Influents - ΣReturn Streams

Where,

System Influents = Point Loma Wastewater Treatment Plant Influents,
NCWRP Influent Pump Station (i.e. Pump station 64),
NCWRP Influent from Penasquitos Pump Station

Return Streams = NCWRP Filter Backwash,
NCWRP Plant Drain,
NCWRP Plant Drain,
NCWRP Secondary Effluent,
NCWRP Un-disinfected Filtered Effluent Bypass,
NCWRP Final Effluent
Metro Biosolids Center Centrate
```

The TSS and BOD₅ concentrations, together with the flow rate, of each stream are measured daily and mass emissions (pounds a day) for each stream determined. The above formula is applied on the resultant mass balances and the system-wide removals calculated for each day. In the event that a data value (e.g. flow rate measurement, TSS concentration or BOD₅ concentration) is not available for a stream, the median value for the previous calendar year for that stream is used as a surrogate number to allow completion of the calculation. The annual averages and summaries in the system-wide data tables are derived (arithmetic mean) from the monthly averages of the daily calculated mass emissions values and removal rates.

H. Annual Flow Calibration Report

The firm of MWH completed the annu	al Gould Flow M	Metering System	Certification is	n March
2007.				

A copy of their findings, without appendices, follows.

