

THE CITY OF SAN DIEGO

NORTH CITY WATER RECLAMATION PLANT

ANNUAL MONITORING REPORT 2012

(SDRWQCB Order No. 97-03)

Environmental Monitoring and Technical Services
Public Utilities Department
2392 Kincaid Road * Mail Station 45A * San Diego, CA 92101
Tel (619) 758-2300 Fax (619) 758-2309

THE CITY OF SAN DIEGO

January 30, 2013

Mr. David W. Gibson, Executive Officer California Regional Water Quality Control Board, San Diego Region 9174 Sky Park Court, Suite 100 San Diego, CA 92123

Attn: Ground Water Unit

Dear Mr. Gibson:

Enclosed is the Annual Monitoring report for 2012 for the City of San Diego North City Water Reclamation Plant, as is specified in Monitoring and Reporting Program No. 97-03 for the production and purveyance of reclaimed water.

In addition, results of analyses performed on North City samples, as part of the Metropolitan Wastewater system-wide Quarterly Sludge Project, a portion of the City's Pretreatment Program, have also been included.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, I certify that the information submitted is, to the best of my knowledge and belief,

Page 2

Mr. David W. Gibson, Executive Officer

January 30, 2013

true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Sincerely,

Steve Meyer C

Deputy Public Utilities Director

SWM/bb

Enclosure:

CD containg PDF file of Report

cc:

EPA Region 9

San Diego County Department of Environmental Health,

Distribution

File

INTRODUCTION:

The purpose of this document is to both meet the requirements of Monitoring and Reporting Program and to provide a reference source and resource tools for both regulatory agencies and City staff and their consultants. To this end, the past year's data is presented in tabular and graphical form. To make this document more useful we have included operational data and background analyses.

Notes on data conventions and analyses:

It should be noted that for averaging purposes "less than" and "not detected" (nd) values were treated as zeros. In many parts of the report zero values are found. Our computer system reads "less than" values as zero for summaries, as well as in computing averages. In those areas where zeros are found, the reader can find appropriate Method Detection Limit (MDL) in the table of data. Because "less than" values are averaged as zero, a number of the summary table values are lower than the detection limits.

The data tables may also contain values expressed as a <X (less than) with some number X. For example, the Diazinon value for PLE on March 10, 1998 (in the table below) is reported as <2.4 ug/L (see the below table); this indicates that one or more, of two or more, determinations was above the MDL, while the average was below the MDL. This value is still treated as a zero for averaging and other summary calculations. Note also, that sub-totals and totals consisting of multiple analytes (see below) are also reported as "<X", where the "X" value is the highest MDL for the particular group of analytes. This has the same significance as a "ND" or not detected.

Organo	ophospl	norus P	esticides
--------	---------	---------	-----------

organophosphorus r esticides			PLE	PLE	PLE	PLR	PLR	PLR
			10-MAR-1998	27-APR-1998	10-SEP-1998	10-MAR-1998	27-APR-1998	10-SEP-1998
	MDL	Units	0311980006	0428980006	9809107494	0311980007	0428980007	9809107515
	====	=====						
Demeton O	1.69	UG/L	ND	ND	ND	ND	ND	ND
Demeton S	1.82	UG/L	ND	ND	ND	ND	ND	ND
Diazinon	2.41	UG/L	<2.4	ND	ND	<2.4	ND	ND
Guthion	7.1	UG/L	ND	ND	ND	ND	ND	ND
Malathion	2.98	UG/L	ND	ND	ND	ND	ND	ND
Parathion	2.83	UG/L	ND	ND	ND	ND	ND	ND
	====	=====	========	========	========	========	========	========
Thiophosphorus Pesticides			<7.1	<7.1	<7.1	<7.1	<7.1	<7.1
Demeton -O, -S			<1.8	<0.2	<0.2	<1.8	<0.2	<0.2
Total Organophosphorus Pestic	==== ides	=====	<7.1	<7.1	<7.1	<7.1	<7.1	<7.1

A further limitation, that the user of this data should note, is that confidence in the results of an analysis is heavily dependent upon the concentration relative to the Method Detection Limit (MDL). For the most part our detection limits have been established using the procedure in 40 CFR, part 136. This statistical basis for the MDL results in a defined statistical confidence (at the 99% Confidence Interval) of essentially $\pm 100\%$ of the result at or near the MDL. Only at concentrations approximately 5 times the MDL is the confidence interval at $\pm 20\%$ relative. While the precision of our methods generally ranges from 2-3 significant figures, the above limitations of confidence should always be considered.

Laboratories Contributing Results used in this report.

Metropolitan Wastewater Chemistry Laboratory (EPA Lab Code: CA00380, ELAP Certificate: 1609) 5530 Kiowa Drive La Mesa, CA 91942 (619)668-3212

All results except those listed below.

Point Loma Wastewater Chemistry Laboratory (EPA Lab Code: CA01435, ELAP Certificate: 2474) 1902 Gatchell Road San Diego, CA 92106 (619)221-8765

Process control analyses and wet methods for the plant.

North City Wastewater Chemistry Laboratory (EPA Lab Code: CA01436,

ELAP Certificate: 2477) 4949 Eastgate Mall San Diego, CA 92121 (858)824-6009

Process control analyses and wet methods for the plant.

Metro Biosolids Center Chemistry Laboratory

(EPA Lab Code: CA01437, ELAP Certificate: 2478) 5240 Convoy Street San Diego, CA 92111 (858)614-5834

Process control analyses and wet methods for the plant.

City of San Diego - Water Quality Laboratory (EPA Lab Code: CA00080, ELAP Certificate: 1058) 5530 Kiowa Drive

La Mesa, CA 91942 (619)668-3237

Totals of Organic Carbon, Nitrogen, and Phosphorus in Wastewater

City of San Diego - Marine Microbiology and Vector Management (EPA LabCode: CA01393, ELAP Certificate: 2185) 2392 Kincaid Road San Diego, CA 92101

(619)758-2312 *Microbiology*

Test America Richland (EPA Lab Code: WA00023, ELAP Certificate: 2425) 2800 George Washington Way Richland, WA 99354-1613 (509)375-3131

Gross Alpha/Beta Radioactivity

Graphs:

Graphs of monthly averages show the arithmetic mean of the determinations made in the calendar month without weighting for variation in frequency or number of determinations. If the mean is less than the MDL (i.e. 'nd' or '<X'), the expressed graphical value is zero (0).

Terms:

North City Water Reclamation Plant Source Codes

N01-PEN Penasquitos Influent Pump Station

NO1 PS_INF Pump Station 64 Influent

N30-DFE Disinfected Final Effluent

N15 AE Aeration Effluent

N34 REC WATER Compliance point. Reclaimed water distributed to customers,

downstream of EDR unit.

N25 FES Filter Effluent Structure

N10 EFF Primary Effluent

N10-PSP COMB Combined Primary Sludge Pump

N15-WAS HCP Waste Activated Sludge (High Capacity Pump) N15-WAS LCP Waste Activated Sludge (Low Capacity Pump)

North City Water Reclamation Plant Operator Certification

Name	Grade	Cert. No.	Expiration Date
North City Plant Superinte	andant		
	\/	V-7227	12/31/2013
Molas, Ernesto	V	V-1221	12/31/2013
North City Sr. Operations	Supervisor		
Pruett, Sam	V	V-7791	06/30/2013
raou, cam	•		00/00/2010
North City Operations Sup	<u>oervisors</u>		
Cozad, John		III-7138	12/31/2013
Relph, Robert	III	III-6742	12/31/2014
John Quigley	IV	IV-7837	12/31/2012
Bruce Blumer	III	III-9347	12/31/2014
North City Operators			
Castillo, Jose	III	III-9849	06/30/2013
Jacques, Richie	III	III-27921	06/30/2014
Saulog, Noel	II	II-10299	12/31/2014
Daniel Bois	II	II-5678	06/30/2014
Michael A. Duhamel	II	II-9444	06/30/2014
Gabriel L. Duresseau	II	II-28294	06/30/2014
North City Operator in Tra	aining		
Jesse A. Bartlett-May	OIT I	NA	12/31/2012
Michelle P. Berrens	OIT I	NA	12/31/2012
James F. Decarolis	OIT I	NA	12/31/2012

NCWRP Sampling Schematic Influent Pump Station Pump Station Inf P.S. Penasq Sampler Sampler Screening Filter Backwash Primary Grit Removal Aeration Secondary Filtration Clarification Sedimentation Primary Sludge Waste Sludge / Pri Eff Aeration Secondary Secondary Scum Sampler Sampler Sampler Reclaimed Water Diversion Effluent Drop Point Loma Plant Demineralization Wetwell Structure Structure Diversion Filter BW Waste Sampler Sampler Blended Sludge Metro Biosolids Centrate Waste Drop Filter Backwash Pump Station Center Waste Tank Structure Bypass Plant Drain Tank Filter Backwash Sampler Plant Drain Sampler 4/2/2009

North City Water Reclamation Plant 2012 FLOWS

Monthly Totals

Month	Penas- quitos Influent (MGD)	Headworks Flow 36" (MGD)		Disinfect Final Effluent (MGD)	Reclaim Water (MGD)	N Return (MGD)	FES Filter Effluent (MGD)	•	Primary Sludge (MGD)	WAS Hi Cap sludge (MGD)	WAS Lo Cap sludge (MGD)	Filter Backwash (MGD)	Total Sludge Flow to MBC (MGD)
01	236.5	255.5	24.6	34.3	95.5	300.42	140.34	479.15	23.42	2.02	4.17	4.72	28.57
02	221.7	238.4	23.2	28.7	75.9	301.33	115.93	448.59	20.33	.51	4.42	3.42	23.88
03	234.4	276.4	31.9	33.9	97.1	290.14	142.65	473.40	23.95	.13	4.52	4.48	25.00
04	237.8	243.1	28.4	43.1	121.9	250.90	178.54	464.11	21.80	.11	4.01	11.86	23.81
05	253.4	262.8	26.9	47.7	194.4	190.44	249.39	481.64	23.03	.00	5.04	6.37	27.28
06	251.7	255.3	26.0	42.1	221.2	153.83	270.95	464.23	21.96	.19	5.10	6.69	26.03
07	196.8	325.3	25.5	44.0	287.6	99.72	343.14	478.51	22.59	.00	4.98	10.59	26.59
08	237.5	291.6	31.2	45.3	320.5	72.08	381.76	490.51	24.58	.42	4.67	14.54	26.07
09	237.5	265.0	25.7	40.8	266.1	113.96	319.17	464.72	20.98	.00	4.17	11.32	22.17
10	240.8	275.6	21.7	39.9	209.3	192.23	261.13	478.77	22.01	.60	4.34	9.48	19.85
11	218.2	266.5	20.1	29.7	137.2	282.60	179.84	464.56	20.13	.54	4.42	10.01	19.35
12	221.2	251.6	18.5	34.1	55.3	368.56	116.78	463.07	23.00	.00	4.28	3.96	23.44
Average	232.3	267.2	25.3	38.6	173.5	218.02		470.94	22.32	.38	4.51	8.12	24.34
Total	2787.5	3206.9	303.5	463.7	2082.0	2616.21	2699.62	5651.26	267.78	4.52	54.12	97.44	292.04

Daily Averages

Month	Penas- quitos Influent (MGD)	Headworks Flow 36" (MGD)			Reclaim		FES Filter Effluent (MGD)	Primary Effluent (MGD)	Primary Sludge (MGD)	WAS Hi Cap sludge (MGD)	WAS Lo Cap sludge (MGD)	Filter Backwash (MGD)	Total Sludge Flow to MBC (MGD)
01	7.6	8.2	.8	1.1	3.1	9.69	4.53	15.46	.76	.07	.13	.15	.92
02	7.6	8.2	.8	1.0	2.6	10.39	4.00	15.47	.70	.02	.15	.12	.82
03	7.6	8.9	1.0	1.1	3.1	9.36	4.60	15.27	.77	.00	.15	.14	.81
04	7.9	8.1	.9	1.4	4.1	8.36	5.95	15.47	.73	.00	.13	.40	.79
05	8.2	8.5	.9	1.5	6.3	6.14	8.04	15.54	.74	.00	.16	.21	.88
06	8.4	8.5	.9	1.4	7.4	5.13	9.03	15.47	.73	.01	.17	.22	.87
07	6.3	10.5	.8	1.4	9.3	3.22	11.07	15.44	.73	.00	.16	.34	.86
08	7.7	9.4	1.0	1.5	10.3	2.33	12.31	15.82	.79	.01	.15	.47	.84
09	7.9	8.8	.9	1.4	8.9	3.80	10.64	15.49	.70	.00	.14	.38	.74
10	7.8	8.9	.7	1.3	6.8	6.20	8.42	15.44	.71	.02	.14	.31	.64
11	7.3	8.9	.7	1.0	4.6	9.42	5.99	15.49	.67	.02	.15	.33	.65
12	7.4	8.4	.6	1.1	1.8	12.29	3.89	15.44	.77	.00	.14	.13	.78
Average	7.6	8.8	.8	1.3	5.7	7.19	7.37	15.48	.73	.01	.15	.27	.80

Reclaim Water = Distribution Water

North City Water Reclamation Plant (N34-REC WATER) Recycled Water Chlorine Report N34-REC WATER is compliance point for reclaimed water Minimum Daily 1 Maximum Daily 2 Time ³ Chlorine Residual Chlorine Residual Operations 2012 CT less than Date (mg/L) (mg/L) 450 mg-min/l (min) 3.84 6.02 Jan 0 0 Feb 5.14 6.83 Mar 4.79 8.33 0 4.78 7.94 0 Apr 4.07 6.53 0 May 4.09 5.97 0 Jun 3.07 5.47 Jul 0 3.35 8.50 0 Aug Sep 3.81 7.20 0 Oct 3.83 6.40 0 Nov 4.59 6.27 0 4.23 7.57 0 Dec Total: 0 1 Minimum Daily value is the average recorded for the month 2 Maximum Daily value is the average recorded value for the month 3 Total time for the month.

North City Water Reclamation Plant Recycled Water Coliform Report

	Tot. Coliform	
Operations	(7-day median)	
2012		
Date	(MPN)	
Jan	<1.8	
Feb	<1.8	
Mar	<1.8	
Apr	<1.8	
May	<1.8	
Jun	<1.8	
Jul	<1.8	
Aug	<1.8	
Sep	<1.8	
Oct	<1.8	
Nov	<1.8	
Dec	<1.8	

North City Water Reclamation Plant

Recycled Water Turbidity Report

Data from in-plant meter 4

	Average Daily	Minimum Daily 1	Maximum Daily 2	Time Over ³
			-	
Operations 2012	Turbidity	Turbidity	Turbidity	5 NTU's
Date	(NTU)	(NTU)	(NTU)	(MINUTES)
Jan	0.19	0.17	0.43	0.00
Feb	0.19	0.17	0.48	0.00
Mar	0.19	0.16	0.63	0.00
Apr	0.22	0.18	0.97	0.00
May	0.19	0.14	1.11	0.00
Jun	0.15	0.13	0.39	0.00
Jul	0.19	0.16	1.05	0.00
Aug	0.17	0.13	0.69	0.00
Sep	0.16	0.12	0.82	0.00
Oct	0.17	0.14	0.58	0.00
Nov	0.12	0.09	0.76	0.00
Dec	0.22	0.15	0.71	0.00
Average:	0.18		Total:	0.00

Minimum Daily value is the average recorded for the month.

² Maximum Daily value is the average recorded value for the month.

³ Total time for the month.

⁴ Compliance monitoring point, values taken from the combined filter effluent turbidity meter (N25AI1673) or (N25AI1674), located at meter room of Area 25 (Tertiary Filter Structures)

North City Reclamation Plant Monthly Monitoring Report Annual Monitoring Report

2012 (N34-REC) Reclaimed Water - Daily Parameters

Analyte:	Biochemical Oxygen Demand	Total Dissolved Solids	Total Suspended Solids	Volatile Suspended Solids	pH Grab
Units:	MG/L	MG/L	MG/L	MG/L	
MDL:	MG/L 2	MG/L 28	1.4	1.4	(pH)
MDL:	2	20	1.4	1.4	
	========				
JANUARY -2012	<2	696	<1.4	ND	6.84
FEBRUARY -2012	ND	707	<1.4	<1.6	6.80
MARCH -2012	<2	752	ND	ND	6.88
APRIL -2012	<2	763	ND	ND	6.89
MAY -2012	ND	842	ND	ND	6.86
JUNE -2012	ND	906	ND	ND	6.87
JULY -2012	ND	929	ND	ND	6.82
AUGUST -2012	ND	862	ND	ND	6.91
SEPTEMBER-2012	ND	826	<1.4	<1.4	6.98
OCTOBER -2012	<2	821	ND	ND	6.92
NOVEMBER -2012	ND	788	ND	ND	6.91
DECEMBER -2012	ND	767	ND	ND	6.87
=========	========	========	========	========	========
Average:	0	805	0	0	6.88
	========		========		
Maximum:	0	929	0	0	6.98
=======================================	========				
Minimum:	0	696	0	0	6.80

(N01-PS-INF) Pump Station 64 Influent - Daily Parameters

Analyte: Units:	Biochemical Oxygen Demand (mg/L)	Total Dissolved Solids (mg/L)	Total Suspended Solids (mg/L)	Volatile Suspended Solids (mg/L)	Turbidity (NTU)	pH COMPOSITE (pH)
JANUARY -2012	270	963	234	212	117	7.50
			_			
FEBRUARY -2012	251	1020	226	203	114	7.46
MARCH -2012	270	1010	207	187	110	7.45
APRIL -2012	238	992	252	226	113	7.45
MAY -2012	279	1020	283	252	113	7.37
JUNE -2012	292	1100	262	233	128	7.42
JULY -2012	277	1040	280	245	120	7.43
AUGUST -2012	272	993	255	227	119	7.38
SEPTEMBER-2012	262	984	266	233	116	7.40
OCTOBER -2012	263	993	276	244	116	7.37
NOVEMBER -2012	276	985	278	245	131	7.42
DECEMBER -2012	267	977	249	217	112	7.35
Average:	268	1006	256	227	117	7.42
=========	========	========		========	========	========
Maximum:	292	1100	283	252	131	7.50
==========	========		========			========
Minimum:	238	963	207	187	110	7.35

 $^{^{\}rm 8}$ MDL for VSS was changed from 1.6 to 1.4 MG/L on August 14, 2012

All samples are 24-hour composite. NA= Not Analyzed

NS= Not Sampled

North City Reclamation Plant Annual Monitoring Report

2012

(N01-PEN) Penasquitos Pump Station Influent - Daily Parameters

Analyte: Unit:	Biochemical Oxygen Demand (mg/L)	Total Dissolved Solids (mg/L)	Total Suspended Solids (mg/L)	Volatile Suspended Solids (mg/L)	Turbidity (NTU)	pH COMPOSITE (pH)
=========	========	========	========	========	========	========
JANUARY -2012	271	707	341	289	121	7.49
FEBRUARY -2012	256	731	312	270	115	7.48
MARCH -2012	311	742	344	297	114	7.51
APRIL -2012	297	752	325	282	108	7.55
MAY -2012	268	785	339	284	103	7.49
JUNE -2012	265	817	308	262	111	7.53
JULY -2012	264	772	332	272	115	7.50
AUGUST -2012	237	726	276	232	102	7.45
SEPTEMBER-2012	226	687	327	274	112	7.56
OCTOBER -2012	252	702	356	299	107	7.43
NOVEMBER -2012	294	687	324	271	116	7.47
DECEMBER -2012	313	703	323	276	105	7.47
==========	========	========	========	========	========	========
Average:	271	734	326	276	111	7.49
=========	========			========		
Maximum:	313	817	356	299	121	7.56
Minimum:	226	687	276	232	102	7.43

All samples are 24-hour composite.

NA= Not Analyzed NS= Not Sampled ND= Not Detected

2012

2012

* Turbidity average daily results taken from in-plant meter

2012 (N34-REC) Reclaim Water - Monthly/Annual Averages

						_
Analyte:	Aluminum	Antimony	Arsenic	Barium	Beryllium	Boron
MDL:	47 UG/L	2.9	.4	.039	.022	7 UG/L
Units: Limit:	1000	UG/L 6	UG/L 50	UG/L 1000	UG/L 4	700
	1000	0	JU	1000	4	700
JANUARY -2012	<47	ND	ND	14.9	ND	305
FEBRUARY -2012	ND	ND ND	ND ND	12.3	ND ND	251
MARCH -2012	ND ND	5.1	ND ND	11.4	ND ND	240
APRIL -2012	ND ND	ND	<0.4	26.9	ND ND	303
MAY -2012	ND ND	ND ND	ND	15.1	ND ND	329
JUNE -2012	301	ND ND	0.5	17.9	ND ND	434
JULY -2012	85	ND ND	0.6	19.3	ND ND	449
AUGUST -2012	117	ND ND	0.5	14.8	ND	370
SEPTEMBER-2012	111	ND.	0.4	14.5	ND.	339
OCTOBER -2012	92	ND ND	<0.4	12.0	0.033	339
NOVEMBER -2012	125	ND ND	ND	16.7	<0.022	292
DECEMBER -2012	<47	ND	ND.	11.9	ND	314
===========	==========	=========	=========	==========	=========	=========
Annual Average:	69	0.4	0.2	15.6	0.003	330
_						
Analyte:	Cadmium	Chromium	Cobalt	Copper	Iron	Lead
MDL:	.53	1.2	.85	2	37	2
Units:	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L
Limit:	5	50			300	
==========	========			========		
JANUARY -2012	ND	ND	ND	5	89	ND
FEBRUARY -2012	ND	ND	ND	6	51	ND
MARCH -2012	ND	ND	ND	7	99	ND
APRIL -2012	ND	1.6	ND	6	123	ND
MAY -2012	ND	ND	ND	3	73	ND
JUNE -2012	ND	1.4	ND	5	257	ND
JULY -2012	ND	ND	ND	5	120	ND
AUGUST -2012	ND	ND	ND	6	83	ND
SEPTEMBER-2012	ND	ND	ND	3	57	ND
OCTOBER -2012	ND	ND	ND	4	67	ND
NOVEMBER -2012	ND	<1.2	<0.85	2	78	<2.0
DECEMBER -2012	<0.53	ND	ND	2	67	ND
Annual Average:	0.00	0.3	0.00	5	97	0.0
Allitual Average.	0.00	0.5	0.00	3	37	0.0
Analyte:	Manganese	Mercury	Molybdenum	Nickel	Selenium	Silver
MDL:	.24	.005	.89	.53	.28	.4
Units:	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L
Limit:	50	2	00, 2	100	50	00, 1
===========	=========		=========	=========	=========	=========
JANUARY -2012	79.0	ND	4.99	4.69	0.43	ND
FEBRUARY -2012	54.0	ND	3.02	3.87	0.48	ND
MARCH -2012	69.4	ND	6.58	6.36	0.43	ND
APRIL -2012	86.0	ND	5.68	6.48	0.36	ND
MAY -2012	72.9	ND	4.90	4.73	0.34	ND
JUNE -2012	109.0	ND	8.25	8.20	0.68	ND
JULY -2012	91.0	ND	7.56	6.23	0.77	ND
AUGUST -2012	86.9	ND	8.03	6.31	0.67	ND
SEPTEMBER-2012	82.5	ND ND	7.52	5.94	0.61	ND
OCTOBER -2012	88.9	ND ND	6.73	6.94	0.42	ND
NOVEMBER -2012	90.5	0.001	4.50	5.28	0.50	ND ND
DECEMBER -2012	65.3	ND	5.85	7.01	0.46	ND ND
======================================	=========	=========				
Annual Average:	81.3	0.000	6.13	6.00	0.51	ND
	01.5	0.000	0.13	0.00	0.51	.,,

MDL's listed are the maximum MDL for the past 12 months

2012 (N34-REC) Reclaim Water - Monthly/Annual Averages

Analyte: MDL:	Thallium 3.9	Vanadium .64	Zinc 2.5	Calcium .04	Lithium .002	Magnesium .1
Units: Limit:	UG/L 2	UG/L	UG/L	MG/L	MG/L	MG/L
				47.4		
JANUARY -2012 FEBRUARY -2012	ND ND	<0.64 ND	27.2 22.3	47.4 48.5	0.016 0.019	23.3 23.7
MARCH -2012	ND ND	1.16	20.4	51.5	0.019	25.2
APRIL -2012	ND ND	1.09	21.1	51.2	0.021	25.3
MAY -2012	ND ND	<0.64	24.0	56.9	0.022	27.0
JUNE -2012	ND	0.79	28.7	62.3	0.027	28.3
JULY -2012	ND	<0.64	24.4	63.7	0.030	29.7
AUGUST -2012	ND	0.88	26.8	61.3	0.033	28.6
SEPTEMBER-2012	ND	<0.64	26.6	56.9	0.026	26.7
OCTOBER -2012	<3.9	<0.64	29.0	54.6	0.026	25.9
NOVEMBER -2012	⟨3.9	<0.64	31.6	52.0	0.020	24.9
DECEMBER -2012	ND	0.74	30.0	54.2	0.024	27.0
======================================	0.0	0.39	26.0	55.0	0.024	26.3
Amidal Average.	0.0	0.33				
A	De#	C - 12	Calcium	U	Total	Total
Analyte:	Potassium	Sodium	Hardness	Hardness	Hardness	Alkalinity
MDL: Units:	.3 MC/I	1 MC /I	.1 MG/L		.4	20 MC / I
Limit:	MG/L	MG/L	MG/ L	MG/L	MG/L	MG/L
3ANUADY 2012	45.3	140	110		24.4	70
JANUARY -2012	15.2	148	118	96	214	78
FEBRUARY -2012 MARCH -2012	14.5	149	121	97	219	79 103
MARCH -2012 APRIL -2012	15.0 14.6	165 154	129 128	103 104	232 232	102 108
MAY -2012	15.4	156	142	104	252	82
JUNE -2012	17.3	170	156	117	273	89
JULY -2012	17.9	178	159	122	281	100
AUGUST -2012	18.8	180	153	118	271	91
SEPTEMBER-2012	18.2	182	142	110	252	97
OCTOBER -2012	17.7	166	136	106	243	89
NOVEMBER -2012	17.8	164	130	103	232	76
DECEMBER -2012	17.8	178	135	111	246	82
===========	=========			=========		
Annual Average:	16.7	166	137	108	246	89
					Ortho	MBAS
Analyte:	Chloride	Fluoride	Nitrate	Sulfate	Phosphate	(Surfactants)
MDL:	7	.05	.04	9	.2	.03
Units:	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
Limit:	300	1		300		
JANUARY -2012	207	0.50	49.5	106	0.9	0.13
FEBRUARY -2012	221	0.62	46.6	118	1.0	0.06
MARCH -2012	256	0.72	45.1		4.9	0.06
APRIL -2012	239	0.65	54.1	140	2.5	0.21
MAY -2012	220	0.62	56.0	145	2.2	0.15
JUNE -2012	246	0.66	62.2	170	3.8	0.17
JULY -2012	272	0.68	58.0	178	4.1	0.11
AUGUST -2012	251	0.72	50.7	175	3.8	0.25
SEPTEMBER-2012	271	0.83	56.3	147	2.7	0.17
OCTOBER -2012	249	0.62	58.4	133	2.2	0.07
NOVEMBER -2012	258	0.55	48.8	134	1.1	0.21
DECEMBER -2012	255	0.60	48.9	130	1.1	0.27
A 1 A	245					
Annual Average:	245	0.65	52.9	144	2.5	0.16

MDL's listed are the maximum MDL for the past 12 months

2012 (N34-REC) Reclaim Water - Monthly/Annual Averages

Analyte: MDL:	Total Organic Carbon	Percent Sodium	Sodium Adsorption Calculated	Total Cyanides .002	Total Dissolved Solids 28
Units: Limit:	MG/L	Percent	Percent 6	MG/L 0.2	MG/L 1200
=======================================	=======================================	=======================================	=======================================	0.2	=========
JANUARY -2012	6.2	58	4.0	ND	696
FEBRUARY -2012	5.9	58	4.0	ND	707
MARCH -2012	6.4	59	4.4	ND	752
APRIL -2012	7.1	57	4.2	0.013	763
MAY -2012	5.7	56	4.0	ND	842
JUNE -2012	6.7	56	4.3	ND	906
JULY -2012	6.3	56	4.5	0.005	929
AUGUST -2012	7.4	57	4.6	0.006	862
SEPTEMBER-2012	6.6	59	4.7	0.005	826
OCTOBER -2012	6.3	58	4.3	0.007	821
NOVEMBER -2012	6.0	58	4.3	0.002	788
DECEMBER -2012	6.2	59	4.6	0.005	767
Annual Average:	6.4	58	4.3	0.004	805

MDL's listed are the maximum MDL for the past 12 months

2012 (N01-PS_INF) Pump Station 64 Influent - Annual Averages

Analyte:	Aluminum	Antimony	Arsenic	Barium	Beryllium	Boron
MDL:	47	2.9	.4		.022	7
Units:	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L
=============	=========	==========		==========	==========	=========
JANUARY -2012	488	ND	0.74	55	ND	327
FEBRUARY -2012	477	ND.	0.72	50	ND	258
MARCH -2012	367	ND ND	0.83	50	ND	282
APRIL -2012	462	ND ND	0.88	60	ND ND	303
MAY -2012	391		0.70	60	ND ND	284
JUNE -2012	766	ND ND	0.70	90	ND ND	388
		ND				
JULY -2012	957	ND	0.85	86	ND	329
AUGUST -2012	598	ND	0.87	68	ND	351
SEPTEMBER-2012	515	ND	0.69	72	ND	331
OCTOBER -2012	535	ND	0.94	69	ND	345
NOVEMBER -2012	579	ND	0.85	58	0.05	305
DECEMBER -2012	445	ND	0.68	59	ND	335
	=========	=========	========	=========	=========	=========
Annual Average:	548	ND	0.80	65	0.00	320
Analyte:	Cadmium	Chromium	Cobalt	Copper	Iron	Lead
MDL:	.53	1.2	.85	2	37	2
Units:	UG/L	UG/L	MG/L	UG/L	UG/L	UG/L
===========	=========	=========	FIG/ E	=========	=========	=========
JANUARY -2012	ND	1.8	ND	117	537	ND
FEBRUARY -2012	ND	2.6	ND	102	650	ND
MARCH -2012	ND	2.3	ND	94	421	ND
APRIL -2012	ND	4.9	ND	118	3940	<2.0
MAY -2012	ND	4.2	ND	120	4950	<2.0
JUNE -2012	ND.	6.1	ND	169	5240	<2.0
JULY -2012	ND ND	4.8	<0.85	144	5760	6.6
AUGUST -2012	ND ND	6.7	ND	139	6990	3.3
SEPTEMBER-2012	ND ND	4.1	<0.85	155	7230	ND
OCTOBER -2012	ND ND	5.2	ND	153	6380	<2.0
NOVEMBER -2012	<0.53	4.5	<0.85	115	5580	<2.0
	0.60	4.8	ND	117	5580	ND
DECEMBER -2012	0.00	4.0	ND	11/	5566	טוו
Annual Average:	0.05	4.3	0.00	129	4438	0.8
_						
Analyte:	Lithium	Manganese	Mercury	•	Nickel	Selenium
MDL:	.002	. 24	0.005	.89	.53	.28
Units:	MG/L	UG/L	UG/L	UG/L	UG/L	UG/L
		4.27				
JANUARY -2012	0.023	127	0.182	6.69	5.69	0.67
FEBRUARY -2012	0.027	116	0.029	5.07	5.50	1.25
MARCH -2012	0.032	89	0.069	5.84	5.61	0.81
APRIL -2012	0.027	135	0.144		5.53	1.02
MAY -2012	0.034	140	0.205	5.78	6.34	1.08
JUNE -2012	0.042	169	0.126		9.48	1.43
JULY -2012	0.037	144	0.120	9.46	6.46	1.26
AUGUST -2012	0.043	137	0.114		7.64	1.63
SEPTEMBER-2012	0.032	131	0.060	10.20	7.46	1.30
OCTOBER -2012	0.033	144	0.110	11.30	7.41	1.21
NOVEMBER -2012	0.029	133	0.090	5.87	7.35	0.87
DECEMBER -2012	0.028	134	0.143	7.43	7.39	0.95
	=========	=========		=========		=========
Annual Average:	0.032	133	0.12	7.61	6.82	1.12
_						

MDL's listed are the maximum MDL for the past 12 months

2012 (N01-PS_INF) Pump Station 64 Influent - Annual Averages

Analyte: MDL: Units:	Silver .4 UG/L	Thallium 3.9 UG/L	Vanadium .64 UG/L	Zinc 2.5 UG/L	Calcium .04 MG/L	Magnesium .1 MG/L
=========						
JANUARY -2012	0.9	ND	<0.64	136	58.3	32.3
FEBRUARY -2012	0.6	ND	0.97	121	67.5	34.6
MARCH -2012	1.0	ND	1.36	107	60.2	29.6
APRIL -2012	0.7	ND	1.13	132	58.5	30.0
MAY -2012	0.7	ND	1.19	128	78.3	37.0
JUNE -2012	ND	ND	1.32	158	75.4	34.8
JULY -2012	0.7	<3.9	1.67	174	71.5	33.7
AUGUST -2012	0.9	ND	1.53	156	68.6	32.3
SEPTEMBER-2012	1.0	<3.9	1.34	150	65.0	31.5
OCTOBER -2012	2.3	ND	0.74	168	63.8	31.8
NOVEMBER -2012	1.2	<3.9	1.40	151	60.3	31.4
DECEMBER -2012	0.8	ND	1.17	136	62.8	33.7
		=========				
Annual Average:	0.9	0.0	1.15	143	65.9	32.7

Analyte: MDL: Units:	Potassium .3 MG/L	Sodium 1 MG/L	Chloride 7 MG/L	Fluoride .05 MG/L	Sulfate 9 MG/L	Total Dissolved Solids 28 MG/L
JANUARY -2012	20.9	194	NR	NR	NR	963
FEBRUARY -2012	21.0	205	309	0.84	147	1020
MARCH -2012	17.8	167	NR	NR	NR	1010
APRIL -2012	17.4	170	NR	NR	NR	992
MAY -2012	21.2	202	309	0.76	173	1020
JUNE -2012	20.8	200	NR	NR	NR	1100
JULY -2012	18.8	187	NR	NR	NR	1040
AUGUST -2012	22.4	194	302	0.91	162	993
SEPTEMBER-2012	20.5	194	NR	NR	NR	984
OCTOBER -2012	20.9	199	311	1.16	158	993
NOVEMBER -2012	20.8	190	NR	NR	NR	985
DECEMBER -2012	23.4	214	NR	NR	NR	977
==========	=========	=========	=========	========	=========	=========
Annual Average:	20.5	193	308	0.92	160	1006

Analyte: MDL:		Total Cyanides
Units:		.002 MG/L
=======		=========
JANUARY	-2012	0.0021
FEBRUARY	-2012	ND
MARCH	-2012	ND
APRIL	-2012	ND
MAY	-2012	ND
JUNE	-2012	ND
JULY	-2012	ND
AUGUST	-2012	0.0027
SEPTEMBER	-2012	ND
OCTOBER	-2012	ND
NOVEMBER	-2012	ND
DECEMBER	-2012	ND
=======	=====	=========
Annual Av	erage:	0.0004

MDL's listed are the maximum MDL for the past 12 months

2012 (N01-PEN) Penasquitos Influent - Annual Averages

Analyte:	Aluminum	Antimony	Arsenic	Barium	Beryllium	Boron
MDL: Units:	47 UG/L	2.9 UG/L	.4 UG/L	.039 UG/L	.022 UG/L	7 UG/L
=======================================	=========	=======================================	==========	==========	==========	=======================================
JANUARY -2012	2300	ND	2.94	52	ND	294
FEBRUARY -2012	1700	ND	1.61	42	ND	232
MARCH -2012	2860	ND	4.42	51	ND	262
APRIL -2012	1620	ND	1.67	57	<0.02	252
MAY -2012	1770	ND	1.28	59	<0.02	313
JUNE -2012	2510	<2.9	2.36	81	ND	411
JULY -2012	961	ND	1.07	171	ND	327
AUGUST -2012	3820	ND	4.59	82	<0.02	311
SEPTEMBER-2012	3190	ND	2.83	140	ND	599
OCTOBER -2012	2240	<2.9	2.04	81	ND	314
NOVEMBER -2012	3250	ND	3.06	61	<0.02	288
DECEMBER -2012	1990	ND	1.74	64	ND	303
Annual Average:	2351	0.0	2.47	78	0.00	326
Analyte:	Cadmium	Chromium	Cobalt	Copper	Iron	Lead
MDL:	.53	1.2	.85	2	37	2
Units:	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L
7 ANUADY 2012	ND					
JANUARY -2012 FEBRUARY -2012	ND ND	7.4 6.0	ND ND	85 67	9900	ND 2.3
MARCH -2012	ND ND	7.6	<0.85	75	8120 8190	<2.0
APRIL -2012	ND ND	9.6	ND	85	10600	4.7
MAY -2012	ND ND	6.6	<0.85	89	9630	ND
JUNE -2012	ND ND	12.3	<0.85	138	13800	ND ND
JULY -2012	ND.	7.2	1.20	102	31100	4.5
AUGUST -2012	ND	14.7	1.31	117	17900	2.6
SEPTEMBER-2012	1.16	16.3	3.02	190	26100	ND ND
OCTOBER -2012	<0.53	12.3	<0.85	129	18300	ND
NOVEMBER -2012	ND	7.7	<0.85	89	13100	4.0
DECEMBER -2012	0.72	7.9	1.59	89	11200	ND
==========	=========	=========	=========	=========	=========	=========
Annual Average:	0.16	9.6	0.59	105	14828	1.5
A man Taratha a	1.441.4	M	Managemen	Ma 1. da da	Må alaa 1	C-1
Analyte: MDL:	Lithium .002	Manganese .24	Mercury .005	Molybdenum .89	Nickel .53	Selenium .28
MDL: Units:	MG/L	UG/L	UG/L	UG/L	UG/L	UG/L
===========	rid/ L			0G/L		
JANUARY -2012	0.018	109	0.126	8.52	12.2	0.60
FEBRUARY -2012	0.024	96	0.096	5.96	10.2	0.99
MARCH -2012	0.028	95	0.057	10.60	14.1	0.69
APRIL -2012	0.024	96	0.345	9.02	7.8	0.61
MAY -2012	0.032	119	0.063	8.19	8.4	0.73
JUNE -2012	0.035	178	0.122	13.20	13.9	1.44
JULY -2012	0.034	116	0.128	18.60	8.8	0.99
AUGUST -2012	0.036	179	0.226	14.30	14.9	1.46
SEPTEMBER-2012	0.026	243	0.086	23.20	18.8	1.13
OCTOBER -2012	0.035	160	0.388	14.10	10.8	0.83
NOVEMBER -2012	0.025	131	0.150	9.58	13.4	0.78
DECEMBER -2012	0.027	112	0.067	9.64	11.1	0.99
				12.00		
Annual Average:	0.029	136	0.155	12.08	12.0	0.94

MDL's listed are the maximum MDL for the past 12 months

2012 (N01-PEN) Penasquitos Influent - Annual Averages

Analyte:	Silver	Thallium	Vanadium	Zinc	Calcium	Magnesium
•						Ū
MDL:	.4	3.9	.64	2.5	.04	.1
Units:	UG/L	UG/L	UG/L	UG/L	MG/L	MG/L
==========	=========	=========	=========	=========	=========	=========
JANUARY -2012	<0.40	ND	4.64	125	44.0	24.1
FEBRUARY -2012	1.39	ND	3.08	106	51.1	26.5
MARCH -2012	0.45	ND	4.24	113	52.3	25.6
APRIL -2012	<0.40	ND	4.29	128	49.1	25.0
MAY -2012	<0.40	ND	3.45	111	65.6	31.6
JUNE -2012	ND	ND	4.55	139	59.8	26.8
JULY -2012	ND	ND	4.84	158	59.4	26.9
AUGUST -2012	1.37	ND	4.85	166	60.4	27.2
SEPTEMBER-2012	1.54	ND	7.36	285	54.8	24.9
OCTOBER -2012	0.53	ND	4.75	205	50.8	22.2
NOVEMBER -2012	0.74	ND	4.29	151	42.8	19.8
DECEMBER -2012	1.80	ND	4.49	137	54.2	26.5
=========	=========	=========	=========	=========	=========	=========
Annual Average:	0.65	ND	4.57	152	53.7	25.6
Analysta	Datassium	د مائیس	Chlanida	Fluenida	Culfata	Total Dissolved

						1004	
						Dissolved	
Analyte:	Potassium	Sodium	Chloride	Fluoride	Sulfate	Solids	
MDL:	.3	1	7	.05	9	28	
Units:	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	
=========	=========	=========	=========	=========	=========	========	
JANUARY -2012	19.6	133	NR	NR	NR	707	
FEBRUARY -2012	18.5	142	192	0.70	116	731	
MARCH -2012	15.7	131	NR	NR	NR	742	
APRIL -2012	15.6	130	NR	NR	NR	752	
MAY -2012	18.8	162	219	0.70	156	785	
JUNE -2012	16.6	136	NR	NR	NR	817	
JULY -2012	16.9	137	NR	NR	NR	772	
AUGUST -2012	18.2	148	229	0.66	129	726	
SEPTEMBER-2012	18.8	138	NR	NR	NR	687	
OCTOBER -2012	17.6	130	195	0.63	97	702	
NOVEMBER -2012	17.3	121	NR	NR	NR	687	
DECEMBER -2012	18.9	153	NR	NR	NR	703	
=========	=========	=========	=========	=========	=========	=========	
Annual Average:	17.7	138	209	0.67	125	734	

Total
Cyanides
.002
MG/L
== =========
2 ND
2 ND
2 ND
2 ND
2 0.002
2 ND
== ========
e: 0.000

MDL's listed are the maximum MDL for the past 12 months

2012 Annual Pretreatment Program Sludge Analysis (QUARTERLY SLUDGE PROJECT)

POINT LOMA WASTEWATER TREATMENT PLANT ORDER NO. R9-2009-001 NPDES PERMIT NO. CA0107409

The Quarterly Sludge Project is part of the Pt. Loma WWTP NPDES (Permit No. CA0107409/Order No. R9-2010-001) monitoring requirements. The sampling plan is designed so as to provide a "snapshot" of all of the physical and chemical characteristics monitored of the wastewater treatment waste streams for a short interval of time (1-2 days). This is conducted quarterly.

The Quarterly Sludge Project was conducted 4 times during 2012, composite and grab samples were taken in February, May, August, and October.

The North City Reclamation Water Plant is included in the Pre-treatment monitoring program and data from that aspect of the program is reported in the following section. The plant primary influents (N01-PS_INF and N01-PEN), Primary effluent (N10-EFF), and reclaimed water (N34-REC WATER) were sampled. For influent and effluent samples, automatic refrigerated samplers are composited over a 24 hour period.

Grease & Oils, pH, temperature, and conductivity are determined from grab samples.

Abbreviations:

NCWRP North City Water Reclamation Plant

NO1-PS_INF NCWRP influent from pump station 64

NO1-PEN NCWRP Penasquitos influent

N34-REC WATER NCWRP reclaimed water.

N10-EFF NCWRP Primary effluent

2012 (Metals from Digestion and Ions from Supernatant)

Source:			N01-PS_INF 07-FEB-2012	N01-PS_INF	N01-PS_INF	N01-PS_INF
Date: Sample ID:		Units	P602760	01-MAY-2012 P613996	08-AUG-2012 P626893	02-0CT-2012 P634326
======================================	==== 47	====== UG/L	413	380	668	600
Antimony	2.9	UG/L	ND	ND	ND	ND
Arsenic	.4	UG/L	0.7	0.7	0.9	0.9
Barium		UG/L	49.1	62.3	76.0	68.7
Beryllium		UG/L	ND	ND	ND	ND
Boron	7	UG/L	270	242	358	331
Cadmium	.53	UG/L	ND	ND	ND	ND
Chromium	1.2	UG/L	3.1	4.8	8.2	5.0
Cobalt	.85	UG/L	ND	ND	ND	ND
Copper	2	UG/L	109	122	148	152
Iron	37	UG/L	567	4750	7710	7290
Lead	2	UG/L	ND	2	3	ND
Manganese	.24	UG/L	117	137	138	129
Mercury	.005	UG/L	0.029	0.205	0.114	0.110
Molybdenum	.89	UG/L	4.53	5.82	8.97	13.4
Nickel	.53	UG/L	6.69	5.48	7.66	7.47
Selenium	.28	UG/L	1.25	1.08	1.63	1.21
Silver	.4	UG/L	0.7	0.9	0.9	2.2
Thallium, Total Recoverable	3.9	UG/L	ND	ND	ND	ND
Vanadium	.64	UG/L	0.91	1.49	1.85	1.48
Zinc	2.5	UG/L	131	125	176	163
Total Kjeldahl Nitrogen	1.6	MG/L	56.9	53.9	NR	76.9
	====	======	=========	=========	=========	=========
Calcium	.04	MG/L	67.5	78.3	68.6	63.8
Lithium		MG/L	0.027	0.034	0.043	0.033
Magnesium	.1	MG/L	34.6	37.0	32.3	31.8
Potassium	.3	MG/L	21.0	21.2	22.4	20.9
Sodium	1	MG/L	205	202	194	199
	====	======				=======================================
Calcium Hardness	.1	MG/L	168	196	171	159
Magnesium Hardness	.4	MG/L	143	152	133	131
Total Hardness	.4	MG/L	311	348	304	290
Duami da		====== MC / I	0.7		0.6	
Bromide	.1 7	MG/L MG/L	0.7 309	0.6 309	0.6 302	0.6
Chloride	, 05	MG/L MG/L			0.91	311
Fluoride	.05	MG/L MG/L	0.84 0.33	0.76 0.19	0.91	1.16 ND
Nitrate Ortho Phosphate	.04	MG/L MG/L	11.0	7.8	8.8	6.8
•	. 2 9		11.0	7.8 173	8.8 162	
Sulfate	-	MG/L	147	1/3	162	158
Cyanides, Total		MG/L	ND	ND	0.003	ND
Sulfides-Total	.4	MG/L	ND ND	3.0	4.0	3.6
Ammonia-N	.3	MG/L	38.7	37.8	NR	40.1
/ mmorizu N		J/ L	30.7	37.8	MIX	-0.1

ND= Not Detected NR= Not Required

N34-REC WATER = NCWRP Reclaimed Water After Mixing

2012 (Metals from Digestion and Ions from Supernatant)

Source:			N01-PEN	N01-PEN	N01-PEN	N01-PEN
Date:			07-FEB-2012	01-MAY-2012	07-AUG-2012	02-0CT-2012
Sample ID:	MDL I	Jnits	P602765	P614001	P626898	P634331
			========	=========		=========
Aluminum	47	UG/L	1530	1480	5430	3410
Antimony	2.9	UG/L	ND	ND	ND	ND
Arsenic	.4	UG/L	1.6	1.3	4.6	2.0
Barium		UG/L	37.9	50.5	89.6	88.3
Beryllium		UG/L	ND	ND	0.048	ND
Boron	7	UG/L	225	306	284	290
Cadmium	.53	UG/L	ND	ND	ND	0.88
Chromium	1.2	UG/L	6.0	5.9	19.3	14.2
Cobalt	.85	UG/L	ND	ND	1.75	1.17
Copper	2	UG/L	65	74	130	152
Iron	37	UG/L	8160	8660	23400	21500
Lead	2	UG/L	ND	ND	2	ND
Manganese	.24	UG/L	101	103	220	180
Mercury		UG/L	0.096	0.063	0.226	0.388
Molybdenum	.89	UG/L	5.48	8.05	16.6	15.1
Nickel	.53	UG/L	9.27	7.42	19.1	10.4
Selenium	.28	UG/L	0.99	0.73	1.46	0.83
Silver	.4	UG/L	1.7	ND	1.0	1.1
Thallium, Total Recoverable		UG/L	ND	ND	ND	ND
Vanadium	.64	UG/L	3.31	3.54	5.80	5.65
Zinc	2.5	UG/L	100	92.9	178	228
Total Kjeldahl Nitrogen	1.6	MG/L	47.6	44.0	48.7	57.9
	====	======				
Calcium	.04	MG/L	51.1	65.6	60.4	50.8
Lithium 		MG/L	0.024	0.032	0.036	0.035
Magnesium	.1	MG/L	26.5	31.6	27.2	22.2
Potassium	.3	MG/L	18.5	18.8	18.2	17.6
Sodium	1	MG/L	142	162	148	130
Calladam Handra a	====	======	420	164	454	127
Calcium Hardness	.1	MG/L	128	164	151	127
Magnesium Hardness	.4	MG/L	109	130	112	92
Total Hardness	• •	MG/L	237	294	263	218
Bromide			0.4	0.3	0.3	
Chloride	.1 7	MG/L MG/L	0.4 192	219	229	0.3 195
	, 05	-,	0.70	0.70	0.66	0.63
Fluoride	.05	MG/L	0.70	0.70	0.66 ND	0.63
Nitrate	.04	MG/L	2.7	2.5		3.2
Ortho Phosphate		MG/L			1.0	
Sulfate	9	MG/L	116	156 ======	129	97
Cyanides, Total		MG/L	ND	0.002	ND	ND
Sulfides-Total	.4	MG/L MG/L	2.8	6.1	2.0	6.0
Ammonia-N	.3	MG/L	34.2	33.8	28.0	35.7
AIIIIIOITTa-N		nd/ L	J 4 .2	٥.در	20.0	33.7

ND= Not Detected NR= Not Required

N34-REC WATER = NCWRP Reclaimed Water After Mixing

2012 (Metals from Digestion and Ions from Supernatant)

Source:			N10-EFF	N10-EFF	N10-EFF	N10-EFF
Date:			07-FEB-2012	01-MAY-2012	07-AUG-2012	02-0CT-2012
Sample ID:	WDI I	Units	P602770	P614006	P626903	P634336
•		======	P002770	P014000	P020903	F034330 =========
Aluminum	 47	UG/L	594	404	821	579
Antimony	2.9	UG/L	ND	ND	ND	ND
Arsenic	.4	UG/L	0.9	0.8	1.3	1.2
Barium		UG/L	41.1	42.0	52.0	35.4
Beryllium		UG/L	41.1 ND	42.0 ND	52.0 ND	33.4 ND
Boron	.022 7	UG/L	ND 249	318	339	303
Cadmium	, .53	,	ND	ND ND	ND ND	ND
		UG/L				
Chromium	1.2	UG/L	2.4	3.7	5.1	2.2
Cobalt	.85	UG/L	ND	ND	ND	ND
Copper	2	UG/L	67	60	79	64
Iron	37	UG/L	3170	4470	5990	5240
Lead	2	UG/L	3	2	2	ND
Manganese	. 24	UG/L	97.4	110	131	122
Mercury		UG/L	0.024	0.040	0.065	0.055
Molybdenum	.89	UG/L	5.32	5.65	10.30	9.72
Nickel	.53	UG/L	5.36	6.42	7.57	6.21
Selenium	.28	UG/L	1.08	0.69	1.27	0.63
Silver	.4	UG/L	ND	0.7	1.2	0.8
Thallium, Total Recoverable		UG/L	ND	ND	ND	ND
Vanadium	.64	UG/L	1.61	1.81	1.65	1.40
Zinc	2.5	UG/L	83.8	63.2	88.5	68.1
Total Kjeldahl Nitrogen	1.6	MG/L	49.1	46.1	49.7	48.8
	====	======	=========	=========	=========	=========
Calcium	.04	MG/L	57.8	69.0	68.3	58.0
Lithium	.002	MG/L	0.026	0.032	0.041	0.032
Magnesium	.1	MG/L	30.0	34.0	29.4	28.1
Potassium	.3	MG/L	19.3	20.2	20.0	19.6
Sodium	1	MG/L	171	182	170	171
=======================================	====	======				
Calcium Hardness	.1	MG/L	144	172	171	145
Magnesium Hardness	.4	MG/L	123	140	121	116
Total Hardness	.4	MG/L	268	312	292	260
	====	======	=========	=========	========	========
Bromide	.1	MG/L	0.5	0.4	0.5	0.5
Chloride	7	MG/L	259	267	267	266
Fluoride	.05	MG/L	0.59	0.58	0.70	0.76
Nitrate	.04	MG/L	0.07	0.10	0.13	0.04
Ortho Phosphate	.2	MG/L	4.6	3.7	4.4	4.8
Sulfate	9	MG/L	143	173	169	138
	====	======	=========	==========	=========	==========
Cyanides, Total	.002	MG/L	ND	ND	ND	ND
Sulfides-Total	.4	MG/L	ND	0.4	1.6	1.4
Ammonia-N	.3	MG/L	37.4	35.1	34.0	38.2
		-, -				

ND= Not Detected NR= Not Required

N34-REC WATER = NCWRP Reclaimed Water After Mixing

2012

(Metals from Digestion and Ions from Supernatant)

Antimony 2.9 UG/L ND ND ND Arsenic .4 UG/L ND ND 0.5 <0 Barium .039 UG/L 13.8 14.7 16.0 12 Beryllium .022 UG/L ND ND ND	
Aluminum 47 UG/L ND ND 123 1 Antimony 2.9 UG/L ND ND ND Arsenic .4 UG/L ND ND 0.5 <0	ND 0.4 2.6 ND 330 ND
Antimony 2.9 UG/L ND ND ND Arsenic .4 UG/L ND ND 0.5 <0 Barium .039 UG/L 13.8 14.7 16.0 12 Beryllium .022 UG/L ND ND ND	ND 9.4 2.6 ND 830 ND ND
Arsenic .4 UG/L ND ND 0.5 <0	0.4 2.6 ND 330 ND ND
Barium .039 UG/L 13.8 14.7 16.0 12 Beryllium .022 UG/L ND ND ND	2.6 ND 330 ND ND
Beryllium .022 UG/L ND ND ND	ND 330 ND ND
	ND ND
BOPON / UG/L 269 322 3/5 3	ND ND
	ND
,	
· · · · · · · · · · · · · · · · ·	ND
· · · · · · · · · · · · · · · · · · ·	_
	6 75
=	75 ND
	עא 5.7
0	ND
· · · · · · · · · · · · · · · · · · ·	עא 72.
	. 72 . 84
	42
	ND
	1.1
	+.1 .77
, ,	7.0
	ND
======================================	
Calcium .04 MG/L 48.5 56.9 61.3 54	1.6
Lithium .002 MG/L 0.019 0.026 0.033 0.0	326
Magnesium .1 MG/L 23.7 27.0 28.6 25	5.9
	7.7
	L66
	:==
, ,	L36
	L06
	243
Bromide .1 MG/L ND ND ND	=== ND
,	249
-,	.62
	1.0
	2.2
·	L33
=======================================	
Cyanides, Total .002 MG/L ND ND 0.006 0.0	907
	1.3
	7.6
Total Organic Carbon MG/L 5.9 5.7 7.4 6	5.3
Sulfides-Total .4 MG/L ND ND ND 0	3.4
Ammonia-N .3 MG/L ND 0.5 ND 0	3.3

ND= Not Detected NR= Not Required

N34-REC WATER = NCWRP Reclaimed Water After Mixing

NORTH CITY WATER RECLAMATION PLANT QUARTERLY SLUDGE PROJECT

2012

Radioactivity

Source	Sample Date	Sample	Units	Gross Alpha Radiation	Gross Beta Radiation
			=====	=======================================	=======================================
N10-EFF	07-FEB-2012	P602770	pCi/L	6.0±7.0	43.8±9.9
N10-EFF	01-MAY-2012	P614006	pCi/L	0.4±3.9	17.3±6.5
N10-EFF	07-AUG-2012	P626903	pCi/L	1.4±2.9	26.2±5.1
N10-EFF	02-OCT-2012	P634336	pCi/L	-2.4±3.4	19.2±3.3
NOA DE THE	07 550 0040	D.C.0.7.C.0	6: //	2 4 4 2	20.215.6
N01-PS_INF	07-FEB-2012	P602760	pCi/L	2.4±4.0	20.2±5.6
N01-PS_INF	01-MAY-2012	P613996	pCi/L	2.2±4.7	18.0±9.2
N01-PS_INF	08-AUG-2012	P626893	pCi/L	4.1±3.6	22.6±4.9
N01-PS_INF	02-0CT-2012	P634326	pCi/L	3.3±4.4	24.2±4.2
N01-PEN	07-FEB-2012	P602765	pCi/L	-5.4±6.5	25.0±7.4
N01-PEN	01-MAY-2012	P614001	pCi/L	4.3±4.0	19.1±5.9
N01-PEN	07-AUG-2012	P626898	pCi/L	6.2±4.1	21.0±4.7
N01-PEN	02-OCT-2012	P634331	pCi/L	0.2±1.5	17.8±3.1
N34-REC WATER	07-FEB-2012	P602775	pCi/L	0.0±2.2	16.2±4.4
N34-REC WATER	01-MAY-2012	P614011	pCi/L	0.2±2.4	18.0±6.2
N34-REC WATER	07-AUG-2012	P626908	pCi/L	-2.2±2.3	21.3±4.5
N34-REC WATER	02-0CT-2012			-0.8±2.9	15.7±2.9
NO4-NEC WATER	02-UC1-2012	P634341	pCi/L	-0.6±2.9	15./12.9

pCi/L= picocuries

N34-REC WATER = NCWRP Reclaimed Water After Mixing

NORTH CITY WATER RECLAMATION PLANT QUARTERLY SLUDGE PROJECT

2012

Physical Parameters

Source:			N01-PS_INF	N01-PS_INF	N01-PS_INF	N01-PS_INF
Date:	MDL	Units	07-FEB-2012	01-MAY-2012	07-AUG-2012	08-AUG-2012
	===	=======	=======================================			
Ammonia-N	.3	MG/L	38.7	37.8	NR	NR
BOD (Biochemical Oxygen Demand)	2	MG/L	252	280	NR	236
Hexane Extractable Material	1.2	MG/L	55.3	35.1	52.9	NR
Chemical Oxygen Demand	18	MG/L	680	605	NR	NR
Conductivity	10	UMHOS/CM	1880	2020	NR	NR
MBAS (Surfactants)	.03	MG/L	5.90	5.50	NR	NR
pH (grab)		PH	6.8	7.1	6.9	NR
Total Alkalinity (bicarbonate)	20	MG/L	276	275	NR	NR
Total Dissolved Solids	28	MG/L	1040	1040	NR	844
Total Suspended Solids	1.4	MG/L	262.0	252.0	NR	243.0
Volatile Suspended Solids	1.6	MG/L	236.0	224.0	NR	209.0
Total Kjeldahl Nitrogen	1.6	MG/L	56.9	53.9	NR	NR
Turbidity	.13	NTU	120.00	98.00	NR	140.00
Sulfides-Total	.4	MG/L	ND	3.0	NR	4.0

Source:			N01-PS_INF	N01-PEN	N01-PEN	N01-PEN
Date:	MDL	Units	02-0CT-2012	07-FEB-2012	01-MAY-2012	07-AUG-2012
	===	======				
Ammonia-N	.3	MG/L	40.1	34.2	33.8	28.0
BOD (Biochemical Oxygen Demand)	2	MG/L	288	202	208	202
Hexane Extractable Material	1.2	MG/L	34.5	67.3	58.3	4.4
Chemical Oxygen Demand	18	MG/L	627	601	374	313
Conductivity	10	UMHOS/CM	NA	1400	1390	1430
MBAS (Surfactants)	.03	MG/L	2.80	5.70	5.20	5.18
pH (grab)		PH	6.9	7.0	7.2	7.0
Total Alkalinity (bicarbonate)	20	MG/L	285	270	277	245
Total Dissolved Solids	28	MG/L	956	736	808	656
Total Suspended Solids	1.4	MG/L	308.0	240.0	276.0	223.0
Volatile Suspended Solids	1.6	MG/L	272.0	200.0	220.0	191.0
Total Kjeldahl Nitrogen	1.6	MG/L	76.9	47.6	44.0	48.7
Turbidity	.13	NTU	110.00	120.00	92.00	110.00
Sulfides-Total	.4	MG/L	3.6	2.8	6.1	2.0

NR= Not Required NA= Not Analyzed ND= Not Detected

NORTH CITY WATER RECLAMATION PLANT QUARTERLY SLUDGE PROJECT

2012

Physical Parameters

Source:			NØ1-PEN	N10-EFF	N10-EFF	N10-EFF
Date:	MDL	Units	02-OCT-2012	07-FEB-2012	01-MAY-2012	07-AUG-2012
=======================================	===	=======	==========	=========	=========	=========
Ammonia-N	.3	MG/L	35.7	37.4	35.1	34.0
BOD (Biochemical Oxygen Demand)	2	MG/L	251	136	124	99
Hexane Extractable Material	1.2	MG/L	65.6	55.2	37.0	24.6
Chemical Oxygen Demand	18	MG/L	888	387	337	374
Conductivity	10	UMHOS/CM	NA	1680	1890	1650
MBAS (Surfactants)	.03	MG/L	2.46	5.20	4.10	3.32
pH (grab)		PH	7.0	7.1	7.2	7.1
Total Alkalinity (bicarbonate)	20	MG/L	274	271	271	261
Total Dissolved Solids	28	MG/L	680	896	884	768
Total Suspended Solids	1.4	MG/L	344.0	114.0	120.0	52.0
Volatile Suspended Solids	1.6	MG/L	288.0	98.0	96.0	43.0
Total Kjeldahl Nitrogen	1.6	MG/L	57.9	49.1	46.1	49.7
Turbidity	.13	NTU	100.00	80.00	79.00	70.00
Sulfides-Total	.4	MG/L	6.0	ND	0.4	1.6

Source:			N10-EFF	N34-REC WATER	N34-REC WATER	N34-REC WATER
Date:	MDL	Units	02-OCT-2012	07-FEB-2012	01-MAY-2012	07-AUG-2012
=======================================	===	======	=========	==========		==========
Ammonia-N	.3	MG/L	38.2	ND	0.5	ND
BOD (Biochemical Oxygen Demand)	2	MG/L	150	ND	ND	ND
Hexane Extractable Material	1.2	MG/L	43.7	4.8	3.5	1.8
Chemical Oxygen Demand	18	MG/L	358	20	20	22
Conductivity	10	UMHOS/CM	NA	1230	1380	1530
MBAS (Surfactants)	.03	MG/L	2.63	0.06	0.15	0.25
pH (grab)		PH	7.1	6.9	7.0	7.0
Total Alkalinity (bicarbonate)	20	MG/L	275	79	82	91
Total Dissolved Solids	28	MG/L	888	744	740	766
Total Suspended Solids	1.4	MG/L	144.0	ND	ND	ND
Volatile Suspended Solids	1.6	MG/L	116.0	ND	ND	ND
Total Kjeldahl Nitrogen	1.6	MG/L	48.8	ND	ND	ND
Total Organic Carbon		MG/L	NR	5.9	5.7	7.4
Turbidity	.13	NTU	80.00	0.79	0.98	0.81
Sulfides-Total	.4	MG/L	1.4	ND	ND	ND

NR= Not Required NA= Not Analyzed ND= Not Detected

NORTH CITY WATER RECLAMATION PLANT QUARTERLY SLUDGE PROJECT

2012

Physical Parameters

Source:		N34-REC WATER
Date:	MDL Units	02-0CT-2012
	=== ======	=========
Ammonia-N	.3 MG/L	0.3
BOD (Biochemical Oxygen Demand)	2 MG/L	ND
Hexane Extractable Material	1.2 MG/L	ND
Chemical Oxygen Demand	18 MG/L	61
Conductivity	10 UMHOS/CM	NA
MBAS (Surfactants)	.03 MG/L	0.07
pH (grab)	PH	8.6
Total Alkalinity (bicarbonate)	20 MG/L	89
Total Dissolved Solids	28 MG/L	820
Total Suspended Solids	1.4 MG/L	ND
Volatile Suspended Solids	1.6 MG/L	ND
Total Kjeldahl Nitrogen	1.6 MG/L	ND
Total Organic Carbon	MG/L	6.3
Turbidity	.13 NTU	0.88
Sulfides-Total	.4 MG/L	0.4

NORTH CITY WATER RECLAMATION PLANT ANNUAL - QUARTERLY SLUDGE PROJECT

2012

Organo - Tins

Source: Date: Sample ID:		Units	N01-PS_INF 07-FEB-2012 P602760	N01-PS_INF 01-MAY-2012 P613996	N01-PS_INF 08-AUG-2012 P626893	N01-PS_INF 02-OCT-2012 P634326
Tributyltin Dibutyltin Monobutyltin	2 7	UG/L UG/L UG/L	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Source: Date: Sample ID:		Units	N01-PEN 07-FEB-2012 P602765	N01-PEN 01-MAY-2012 P614001	N01-PEN 07-AUG-2012 P626898	NØ1-PEN Ø2-OCT-2012 P634331
Tributyltin Dibutyltin Monobutyltin	2 7	UG/L UG/L UG/L	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Source: Date: Sample ID:		Units	N10-EFF 07-FEB-2012 P602770	N10-EFF 01-MAY-2012 P614006	N10-EFF 07-AUG-2012 P626903	N10-EFF 02-OCT-2012 P634336
Tributyltin Dibutyltin Monobutyltin	2 7	UG/L UG/L UG/L	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Source: Date: Sample ID:		Units	N34-REC WATER 07-FEB-2012 P602775	N34-REC WATER 01-MAY-2012 P614011	N34-REC WATER 07-AUG-2012 P626908	N34-REC WATER 02-OCT-2012 P634341
Tributyltin Dibutyltin Monobutyltin	2 7	UG/L UG/L UG/L	ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND

2012

Chlorinated Pesticides

Analyte	MDL	Units	N01-PS_INF 07-FEB-2012 P602760	N01-PS_INF 01-MAY-2012 P613996	N01-PS_INF 08-AUG-2012 P626893	N01-PS_INF 02-OCT-2012 P634326
Aldrin	7	NG/L	ND	ND	ND	ND
BHC, Alpha isomer	7	NG/L	ND	ND	ND	ND
BHC, Beta isomer	6	NG/L	ND	ND	ND	ND
BHC, Delta isomer	4	NG/L	ND	ND	ND	ND
BHC, Gamma isomer	5	NG/L	ND	ND	ND	ND
Alpha (cis) Chlordane	3	NG/L	ND	ND	ND	ND
Gamma (trans) Chlordane	4	NG/L	ND	ND	ND	ND
Alpha Chlordene		NG/L	NA	NA	NA	NA
Gamma Chlordene		NG/L	NA	NA	NA	NA
Cis Nonachlor	5	NG/L	ND	ND	ND	ND
Dieldrin	8	NG/L	ND	ND	ND	ND
Endosulfan Sulfate	6	NG/L	ND	ND	ND	ND
Alpha Endosulfan	4	NG/L	ND	ND	ND	ND
Beta Endosulfan	5	NG/L	ND	ND	ND	ND
Endrin	8	NG/L	ND	ND	ND	ND
Endrin aldehyde	9	NG/L	ND	ND	ND	ND
Heptachlor	8	NG/L	ND	ND	ND	ND
Heptachlor epoxide	4	NG/L	ND	ND	ND	ND
Methoxychlor	10	NG/L	ND	ND	ND	ND
Mirex	10	NG/L	ND	ND	ND	ND
o,p-DDD	4	NG/L	ND	ND	ND	ND
o,p-DDE	5	NG/L	ND	ND	ND	ND
o,p-DDT	3	NG/L	ND	ND	ND	ND
Oxychlordane	6	NG/L	ND	ND	ND	ND
PCB 1016	4000	NG/L	ND	ND	ND	ND
PCB 1221	4000	NG/L	ND	ND	ND	ND
PCB 1232	360	NG/L	ND	ND	ND	ND
PCB 1242	4000	NG/L	ND	ND	ND	ND
PCB 1248	2000	NG/L	ND	ND	ND	ND
PCB 1254	2000	NG/L	ND	ND	ND	ND
PCB 1260	2000	NG/L	ND	ND	ND	ND
PCB 1262	930	NG/L	ND	ND	ND	ND
p,p-DDD	4	NG/L	ND	ND	ND	ND
p,p-DDE	4	NG/L	ND	ND	2	2
p,p-DDT	8	NG/L	ND	ND	ND	ND
Toxaphene	330	NG/L	ND	ND	ND	ND
Trans Nonachlor	5	NG/L	ND	ND	ND	ND
=======================================	====	=====	=========	========	=========	========
Heptachlors	8	NG/L	0	0	0	0
Endosulfans	6	NG/L	0	0	0	0
Polychlorinated biphenyls		NG/L	0	0	0	0
Chlordane + related cmpds.		NG/L	0	0	0	0
DDT and derivatives	8	NG/L	0	0	2	2
Hexachlorocyclohexanes	7	NG/L	0	0	0	0
Aldrin + Dieldrin	8	NG/L	0	0	0	0
Chlorinated Hydrocarbons		NG/L	0	0	2	2

2012
Chlorinated Pesticides

Analyte	MDL	Units	N01-PEN 07-FEB-2012 P602765	N01-PEN 01-MAY-2012 P614001	N01-PEN 07-AUG-2012 P626898	N01-PEN 02-OCT-2012 P634331
			=========	=========		=========
Aldrin	7	NG/L	ND	ND	ND	ND
BHC, Alpha isomer	7	NG/L	ND	ND	ND	ND
BHC, Beta isomer	6	NG/L	ND	ND	ND	ND
BHC, Delta isomer	4	NG/L	ND	ND	ND	ND
BHC, Gamma isomer	5	NG/L	ND	ND	ND	ND
Alpha (cis) Chlordane	3	NG/L	ND	ND	ND	ND
Gamma (trans) Chlordane	4	NG/L	ND	ND	ND	ND
Alpha Chlordene		NG/L	NA	NA	NA	NA
Gamma Chlordene		NG/L	NA	NA	NA	NA
Cis Nonachlor	5	NG/L	ND	ND	ND	ND
Dieldrin	8	NG/L	ND	ND	ND	ND
Endosulfan Sulfate	6	NG/L	ND	ND	ND	ND
Alpha Endosulfan	4	NG/L	ND	ND	ND	ND
Beta Endosulfan	5	NG/L	ND	ND	ND	ND
Endrin	8	NG/L	ND	ND	ND	ND
Endrin aldehyde	9	NG/L	ND	ND	ND	ND
Heptachlor	8	NG/L	ND	ND	ND	ND
Heptachlor epoxide	4	NG/L	ND	ND	ND	ND
Methoxychlor	10	NG/L	ND	ND	ND	ND
Mirex	10	NG/L	ND	ND	ND	ND
o,p-DDD	4	NG/L	ND	ND	ND	ND
o,p-DDE	5	NG/L	ND	ND	ND	ND
o,p-DDT	3	NG/L	ND	ND	ND	ND
Oxychlordane	6	NG/L	ND	ND	ND	ND
PCB 1016	4000	NG/L	ND	ND	ND	ND
PCB 1221	4000	NG/L	ND	ND	ND	ND
PCB 1232	360	NG/L	ND	ND	ND	ND
PCB 1242	4000	NG/L	ND	ND	ND	ND
PCB 1248	2000	NG/L	ND	ND	ND	ND
PCB 1254	2000	NG/L	ND	ND	ND	ND
PCB 1260	2000	NG/L	ND	ND	ND	ND
PCB 1262	930	NG/L	ND	ND	ND	ND
p,p-DDD	4	NG/L	ND	ND	ND	ND
p,p-DDE	4	NG/L	ND	ND	2	2
p,p-DDT	8	NG/L	ND	ND	ND	ND
Toxaphene	330	NG/L	ND	ND	ND	ND
Trans Nonachlor	5	NG/L	ND	ND	ND	ND
=======================================	====	=====	=========	=========	========	=========
Heptachlors	8	NG/L	0	0	0	0
Endosulfans	6	NG/L	0	0	0	0
Polychlorinated biphenyls	4000	NG/L	0	0	0	0
Chlordane + related cmpds.	6	NG/L	0	0	0	0
DDT and derivatives	8	NG/L	0	0	2	2
Hexachlorocyclohexanes	7	NG/L	0	0	0	0
Aldrin + Dieldrin	8	NG/L	0	0	0	0
Chlorinated Hydrocarbons	4000	===== NG/L	0	0	2	2

2012

Chlorinated Pesticides

			N10-EFF 07-FEB-2012	N10-EFF 01-MAY-2012	N10-EFF 07-AUG-2012	N10-EFF 02-OCT-2012
Analyte ==========	MDL	Units	P602770	P614006	P626903	P634336
Aldrin	7	NG/L	ND	ND	ND	4
BHC, Alpha isomer	7	NG/L	ND ND	ND	ND.	ND
BHC, Beta isomer	6	NG/L	ND ND	ND	ND	ND
BHC, Delta isomer	4	NG/L	ND	ND	ND	ND
BHC, Gamma isomer	5	NG/L	ND	ND	ND	ND
Alpha (cis) Chlordane	3	NG/L	ND	ND	ND	ND
Gamma (trans) Chlordane	4	NG/L	ND	ND	ND	ND
Alpha Chlordene		NG/L	NA	NA	NA	NA
Gamma Chlordene		NG/L	NA	NA	NA	NA
Cis Nonachlor	5	NG/L	ND	ND	ND	ND
Dieldrin	8	NG/L	ND	ND	ND	ND
Endosulfan Sulfate	6	NG/L	ND	ND	ND	ND
Alpha Endosulfan	4	NG/L	ND	ND	ND	ND
Beta Endosulfan	5	NG/L	ND	ND	ND	ND
Endrin	8	NG/L	ND	ND	ND	ND
Endrin aldehyde	9	NG/L	ND	ND	ND	ND
Heptachlor	8	NG/L	ND	ND	ND	ND
Heptachlor epoxide	4	NG/L	ND	ND	ND	ND
Methoxychlor	10	NG/L	ND	ND	ND	ND
Mirex	10	NG/L	ND	ND	ND	ND
o,p-DDD	4	NG/L	ND	ND	ND	ND
o,p-DDE	5	NG/L	ND	ND	ND	ND
o,p-DDT	3	NG/L	ND	ND	ND	ND
Oxychlordane	6	NG/L	ND	ND	ND	ND
PCB 1016	4000	•	ND	ND	ND	ND
PCB 1221	4000	-,	ND	ND	ND	ND
PCB 1232	360	NG/L	ND	ND	ND	ND
PCB 1242	4000		ND	ND	ND	ND
PCB 1248	2000	•	ND	ND	ND	ND
PCB 1254	2000	•	ND	ND	ND	ND
PCB 1260	2000	•	ND	ND	ND	ND
PCB 1262	930 4	NG/L	ND	ND	ND ND	ND
p,p-DDD	4	NG/L NG/L	ND ND	ND ND	ди 3	ND 2
p,p-DDE	8	NG/L NG/L	ND ND	ND ND	ND	ND
p,p-DDT Toxaphene	330	NG/L NG/L	ND ND	ND ND	ND ND	ND ND
Trans Nonachlor	5	NG/L	ND ND	ND ND	ND ND	ND ND
=======================================	====	=====	ND			IND
Heptachlors	8	NG/L	0	0	0	0
Endosulfans	6	NG/L	0	0	0	0
Polychlorinated biphenyls	4000	•	0	0	0	0
Chlordane + related cmpds.		NG/L	0	0	0	0
DDT and derivatives	8	NG/L	0	0	3	2
Hexachlorocyclohexanes	7	NG/L	0	0	0	0
Aldrin + Dieldrin	8	NG/L	0	0	0	4
	====			========	========	
Chlorinated Hydrocarbons	4000	NG/L	0	0	3	6

2012

Chlorinated Pesticides

Analyte	MDL	Units	N34-REC WATER 07-FEB-2012 P602775	N34-REC WATER 01-MAY-2012 P614011	N34-REC WATER 07-AUG-2012 P626908	
=======================================		=====		P014011		P034341
Aldrin	7	NG/L	ND	ND	ND	ND
BHC, Alpha isomer	7	NG/L	ND ND	ND.	ND ND	ND ND
BHC, Beta isomer	6	NG/L	ND.	ND.	ND	ND ND
BHC, Delta isomer	4	NG/L	ND.	ND.	ND.	ND ND
BHC, Gamma isomer	5	NG/L	ND.	ND.	ND ND	ND ND
Alpha (cis) Chlordane	3	NG/L	ND.	ND.	ND	ND
Gamma (trans) Chlordane	4	NG/L	ND.	ND.	ND.	ND ND
Alpha Chlordene	•	NG/L	NA NA	NA NA	NA NA	NA NA
Gamma Chlordene		NG/L	NA NA	NA NA	NA NA	NA NA
Cis Nonachlor	5	NG/L	ND.	ND.	ND.	ND
Dieldrin	8	NG/L	ND.	ND.	ND	ND
Endosulfan Sulfate	6	NG/L	ND.	ND.	ND.	ND ND
Alpha Endosulfan	4	NG/L	ND.	ND.	ND	ND
Beta Endosulfan	5	NG/L	ND.	ND.	ND	ND
Endrin	8	NG/L	ND.	ND.	ND	ND
Endrin aldehyde	9	NG/L	ND.	ND.	ND.	ND
Heptachlor	8	NG/L	ND.	ND.	ND	ND
Heptachlor epoxide	4	NG/L	ND.	ND	ND	ND
Methoxychlor	10	NG/L	ND.	ND.	ND	ND
Mirex	10	NG/L	ND.	ND.	ND.	ND
o,p-DDD	4	NG/L	ND.	ND.	ND.	ND
o,p-DDE	5	NG/L	ND.	ND.	ND.	ND ND
o,p-DDT	3	NG/L	ND.	ND.	ND.	ND ND
Oxychlordane	6	NG/L	ND.	ND.	ND.	ND
PCB 1016	4000		ND.	ND.	ND.	ND
PCB 1221	4000		ND.	ND.	ND.	ND
PCB 1232	360	NG/L	ND.	ND.	ND.	ND
PCB 1242	4000		ND.	ND.	ND.	ND ND
PCB 1248	2000	- /	ND.	ND.	ND.	ND
PCB 1254	2000	- /	ND.	ND.	ND.	ND
PCB 1260	2000		ND.	ND.	ND.	ND
PCB 1262	930	NG/L	ND.	ND.	ND.	ND
p,p-DDD	4	NG/L	ND.	ND.	ND.	ND
p,p-DDE	4	NG/L	ND	ND	ND	ND
p,p-DDT	8	NG/L	ND	ND	ND	ND
Toxaphene	330	NG/L	ND	ND	ND	ND
Trans Nonachlor	5	NG/L	ND	ND	ND	ND
=======================================		=====	===========		==========	=======================================
Heptachlors	8	NG/L	0	0	0	0
Endosulfans	6	NG/L	0	0	0	0
Polychlorinated biphenyls	4000		0	0	0	0
Chlordane + related cmpds.		NG/L	0	0	0	0
DDT and derivatives	8	NG/L	0	0	0	0
Hexachlorocyclohexanes	7	NG/L	0	0	0	0
Aldrin + Dieldrin	8	NG/L	0	0	0	0
=======================================	====	=====	=========	=========	=========	=========
Chlorinated Hydrocarbons	4000	NG/L	0	0	0	0

NA= Not Analyzed ND= Not Detected

2012

Base/Neutral Compounds

			NA1 DC TNE	NO1 DC TNE	NO1 DC TNE	NO1 DC TNE
			N01-PS_INF 07-FEB-2012	N01-PS_INF 01-MAY-2012	N01-PS_INF 08-AUG-2012	N01-PS_INF 02-OCT-2012
Analyte	MDL	Units	P602760	P613996	P626893	P634326
=======================================	====		=========		=========	========
1,2,4-Trichlorobenzene	1.52	UG/L	ND	ND	ND	ND
1,2-Diphenylhydrazine		UG/L	ND	ND	ND	ND
2,4-Dinitrotoluene		UG/L	ND	ND	ND	ND
2,6-Dinitrotoluene		UG/L	ND	ND	ND	ND
Dibenzo(a,h)anthracene		UG/L	ND	ND	ND	ND
Diethyl phthalate		UG/L	4.7	3.3	4.6	4.4
Dimethyl phthalate Di-n-butyl phthalate		UG/L UG/L	ND ND	ND ND	ND ND	ND ND
Di-n-octyl phthalate	1	UG/L	ND ND	ND ND	ND ND	ND ND
2-Chloronaphthalene		UG/L	ND	ND.	ND	ND
3,3-Dichlorobenzidine		UG/L	ND	ND	ND	ND
3,4-Benzo(b)fluoranthene	1.35	UG/L	ND	ND	ND	ND
4-Bromophenyl phenyl ether	1.4	UG/L	ND	ND	ND	ND
4-Chlorophenyl phenyl ether	1.57	UG/L	ND	ND	ND	ND
Hexachloroethane	1.32	UG/L	ND	ND	ND	ND
Hexachlorobenzene		UG/L	ND	ND	ND	ND
Hexachlorobutadiene		UG/L	ND	ND	ND	ND
Hexachlorocyclopentadiene		UG/L	ND	ND	ND	ND
Acenaphthene	1.8	UG/L	ND	ND ND	ND ND	ND ND
Acenaphthylene Anthracene		UG/L UG/L	ND ND	ND ND	ND ND	ND ND
Bis-(2-chloroisopropyl) ether		UG/L	ND ND	ND ND	ND ND	ND ND
Bis-(2-ethylhexyl) phthalate		UG/L	10.8	9.2	12.2	ND ND
Benzidine		UG/L	ND	ND	ND	ND
Benzo[a]anthracene	1.1		ND	ND	ND	ND
Benzo[a]pyrene	1.25	UG/L	ND	ND	ND	ND
Benzo[g,h,i]perylene	1.09	UG/L	ND	ND	ND	ND
Benzo[k]fluoranthene	1.49	UG/L	ND	ND	ND	ND
Bis-(2-chloroethoxy) methane		UG/L	ND	ND	ND	ND
Bis-(2-chloroethyl) ether		UG/L	ND	ND	ND	ND
Butyl benzyl phthalate		UG/L	ND	ND	ND	ND
Chrysene		UG/L	ND	ND	ND	ND
Fluoranthene		UG/L	ND	ND ND	ND ND	ND ND
Fluorene Indeno(1,2,3-CD)pyrene		UG/L UG/L	ND ND	ND ND	ND ND	ND ND
Isophorone		UG/L	ND ND	ND ND	ND ND	ND ND
Naphthalene		UG/L	ND ND	ND ND	ND ND	ND ND
Nitrobenzene		UG/L	ND	ND	ND	ND
N-nitrosodimethylamine		UG/L	ND	ND	ND	ND
N-nitrosodiphenylamine	3.48	UG/L	ND	ND	ND	ND
N-nitrosodi-n-propylamine	1.16	UG/L	ND	ND	ND	ND
Phenanthrene	1.34	UG/L	ND	ND	ND	ND
Pyrene		UG/L	ND	ND	ND	ND
					=========	
Polynuc. Aromatic Hydrocarbons			0.0	0.0	0.0 16.80	0.0
Base/Neutral Compounds		UG/L	15.50	12.50		4.40
1-Methylnaphthalene		UG/L	ND	ND	ND	ND
2-Methylnaphthalene		UG/L	ND ND	ND ND	ND ND	ND ND
2,6-Dimethylnaphthalene		UG/L	ND ND	ND ND	ND ND	ND ND
2,3,5-Trimethylnaphthalene		UG/L	ND	ND ND	ND ND	ND ND
1-Methylphenanthrene		UG/L	ND	ND	ND	ND
Benzo[e]pyrene		UG/L	ND	ND	ND	ND
Perylene	1.41	UG/L	ND	ND	ND	ND
Biphenyl		UG/L	ND	ND	ND	ND
Pyridine	3.33	UG/L	ND	ND	ND	ND

2012

Base/Neutral Compounds

			N01-PEN	N01-PEN	N01-PEN	NØ1-PEN
			07-FEB-2012	01-MAY-2012	07-AUG-2012	02-OCT-2012
Analyte	MDL	Units	P602765	P614001	P626898	P634331
1,2,4-Trichlorobenzene		UG/L	ND	ND	ND	ND
1,2-Diphenylhydrazine		UG/L	ND	ND	ND	ND
2,4-Dinitrotoluene		UG/L	ND	ND	ND	ND
2,6-Dinitrotoluene		UG/L	ND	ND	ND	ND
Dibenzo(a,h)anthracene		UG/L	ND	ND	ND	ND
Diethyl phthalate		UG/L	6.1	3.7	3.8	4.1
Dimethyl phthalate		UG/L	ND	ND	ND	ND
Di-n-butyl phthalate		UG/L	ND	ND	ND	ND
Di-n-octyl phthalate	1	UG/L	ND	ND	ND	ND
2-Chloronaphthalene		UG/L	ND	ND	ND	ND
3,3-Dichlorobenzidine		UG/L	ND	ND	ND	ND
3,4-Benzo(b)fluoranthene		UG/L	ND	ND	ND	ND
4-Bromophenyl phenyl ether		UG/L	ND	ND	ND	ND
4-Chlorophenyl phenyl ether		UG/L	ND	ND	ND	ND
Hexachloroethane		UG/L	ND ND	ND ND	ND ND	ND ND
Hexachlorobenzene		UG/L	ND ND	ND	ND	ND
Hexachlorobutadiene		UG/L	ND	ND	ND	ND
Hexachlorocyclopentadiene		UG/L UG/L	ND ND	ND ND	ND ND	ND
Acenaphthene	1.8	UG/L	ND ND	ND ND	ND ND	ND ND
Acenaphthylene Anthracene		UG/L	ND ND	ND ND	ND ND	ND ND
Bis-(2-chloroisopropyl) ether		UG/L	ND ND	ND ND	ND ND	ND ND
Bis-(2-ethylhexyl) phthalate		UG/L	ND ND	ND ND	10.0	ND ND
Benzidine		UG/L	ND ND	ND ND	ND	ND ND
Benzo[a]anthracene		UG/L	ND ND	ND ND	ND ND	ND ND
Benzo[a]pyrene		UG/L	ND ND	ND ND	ND ND	ND ND
Benzo[g,h,i]perylene		UG/L	ND ND	ND ND	ND ND	ND ND
Benzo[k]fluoranthene		UG/L	ND ND	ND ND	ND ND	ND ND
Bis-(2-chloroethoxy) methane		UG/L	ND ND	ND ND	ND ND	ND ND
Bis-(2-chloroethyl) ether		UG/L	ND ND	ND ND	ND ND	ND ND
Butyl benzyl phthalate		UG/L	ND ND	ND ND	ND ND	ND ND
Chrysene		UG/L	ND ND	ND ND	ND ND	ND ND
Fluoranthene		UG/L	ND ND	ND ND	ND ND	ND ND
Fluorene		UG/L	ND ND	ND ND	ND ND	ND ND
Indeno(1,2,3-CD)pyrene		UG/L	ND ND	ND ND	ND ND	ND ND
Isophorone		UG/L	ND	ND	ND	ND
Naphthalene		UG/L	ND	ND	ND	ND
Nitrobenzene		UG/L	ND	ND	ND	ND
N-nitrosodimethylamine		UG/L	ND	ND	ND	ND
N-nitrosodiphenylamine		UG/L	ND	ND	ND	ND
N-nitrosodi-n-propylamine		UG/L	ND	ND	ND	ND
Phenanthrene		UG/L	ND	ND	ND	ND
Pyrene		UG/L	ND	ND	ND	ND
=======================================	====	=====	=========	=========	=========	=========
Polynuc. Aromatic Hydrocarbons	1.77	UG/L	0.0	0.0	0.0	0.0
Base/Neutral Compounds		UG/L	6.10	3.70	13.80	4.10
_======================================	====	=====				
1-Methylnaphthalene	2.18	UG/L	ND	ND	ND	ND
2-Methylnaphthalene		UG/L	ND	ND	ND	ND
2,6-Dimethylnaphthalene		UG/L	ND	ND	ND	ND
2,3,5-Trimethylnaphthalene		UG/L	ND	ND	ND	ND
1-Methylphenanthrene		UG/L	ND	ND	ND	ND
Benzo[e]pyrene		UG/L	ND	ND	ND	ND
Perylene		UG/L	ND	ND	ND	ND
Biphenyl		UG/L	ND	ND	ND	ND
Pyridine		UG/L	ND	ND	ND	ND
•		-				

2012

Base/Neutral Compounds

Analyte	MDL	Units	N10-EFF 07-FEB-2012 P602770	N10-EFF 01-MAY-2012 P614006	N10-EFF 07-AUG-2012 P626903	N10-EFF 02-OCT-2012 P634336
4. 2. 4. Tučak lavak svetov					=========	
1,2,4-Trichlorobenzene		UG/L	ND	ND	ND	ND
1,2-Diphenylhydrazine		UG/L	ND ND	ND ND	ND ND	ND
2,4-Dinitrotoluene	1.36	•		ND ND	ND ND	ND
2,6-Dinitrotoluene	1.53	•	ND		ND ND	ND ND
Dibenzo(a,h)anthracene Diethyl phthalate	1.01		ND 6.8	ND 4.7	4.8	5.4
Dimethyl phthalate	1.44	•	ND	4.7 ND	ND	ND
Di-n-butyl phthalate		UG/L	ND ND	ND ND	ND ND	ND ND
Di-n-octyl phthalate	1	UG/L	ND ND	ND ND	ND ND	ND ND
2-Chloronaphthalene		UG/L	ND ND	ND ND	ND ND	ND
3,3-Dichlorobenzidine	2.44	,	ND	ND	ND	ND
3,4-Benzo(b)fluoranthene	1.35		ND	ND	ND.	ND
4-Bromophenyl phenyl ether	1.4		ND	ND	ND	ND
4-Chlorophenyl phenyl ether	1.57		ND	ND	ND	ND
Hexachloroethane	1.32		ND	ND	ND	ND
Hexachlorobenzene	1.48	UG/L	ND	ND	ND	ND
Hexachlorobutadiene	1.64	UG/L	ND	ND	ND	ND
Hexachlorocyclopentadiene	1.25	UG/L	ND	ND	ND	ND
Acenaphthene	1.8	UG/L	ND	ND	ND	ND
Acenaphthylene	1.77	UG/L	ND	ND	ND	ND
Anthracene	1.29	UG/L	ND	ND	ND	ND
Bis-(2-chloroisopropyl) ether	1.16	UG/L	ND	ND	ND	ND
Bis-(2-ethylhexyl) phthalate	8.96	UG/L	17.5	17.4	16.6	15.5
Benzidine	1.52	UG/L	ND	ND	ND	ND
Benzo[a]anthracene	1.1	UG/L	ND	ND	ND	ND
Benzo[a]pyrene	1.25	UG/L	ND	ND	ND	ND
Benzo[g,h,i]perylene	1.09		ND	ND	ND	ND
Benzo[k]fluoranthene	1.49		ND	ND	ND	ND
Bis-(2-chloroethoxy) methane	1.01	•	ND	ND	ND	ND
Bis-(2-chloroethyl) ether	1.38		ND	ND	ND	ND
Butyl benzyl phthalate	2.84		ND	ND	ND	ND
Chrysene	1.16	•	ND	ND	ND	ND
Fluoranthene	1.33	•	ND	ND	ND	ND
Fluorene	1.61		ND	ND	ND	ND
Indeno(1,2,3-CD)pyrene	1.14		ND	ND	ND	ND
Isophorone	1.53		ND	ND	ND	ND
Naphthalene	1.65		ND ND	ND ND	ND ND	ND
Nitrobenzene	1.27	UG/L	ND ND	ND ND	ND ND	ND ND
N-nitrosodimethylamine N-nitrosodiphenylamine	3.48	•	ND ND	ND ND	ND ND	ND ND
N-nitrosodi-n-propylamine	1.16	,	ND ND	ND ND	ND ND	ND ND
Phenanthrene	1.34		ND ND	ND ND	ND ND	ND ND
Pyrene	1.43		ND ND	ND ND	ND ND	ND ND
=======================================	====	=====				
Polynuc. Aromatic Hydrocarbons	1.77	UG/I	0.0	0.0	0.0	0.0
Base/Neutral Compounds	8.96	UG/L	24.30	22.10	21.40	20.90
1-Methylnaphthalene		UG/L	ND	ND	ND	ND
2-Methylnaphthalene	2.14		ND	ND	ND	ND
2,6-Dimethylnaphthalene		UG/L	ND	ND	ND	ND
2,3,5-Trimethylnaphthalene		UG/L	ND	ND	ND	ND
1-Methylphenanthrene		UG/L	ND	ND	ND	ND
Benzo[e]pyrene	1.44		ND	ND	ND	ND
Perylene		UG/L	ND	ND	ND	ND
Biphenyl		UG/L	ND	ND	ND	ND
Pyridine	3.33	UG/L	ND	ND	ND	ND

2012

Base/Neutral Compounds

					N34-REC WATER	
Analyte	MDL	Units	07-FEB-2012 P602775	01-MAY-2012 P614011	07-AUG-2012 P626908	02-0CT-2012 P634341
1,2,4-Trichlorobenzene		UG/L	ND	ND	ND	ND
1,2-Diphenylhydrazine		UG/L	ND	ND	ND	ND
2,4-Dinitrotoluene		UG/L	ND	ND	ND	ND
2,6-Dinitrotoluene		UG/L	ND	ND	ND	ND
Dibenzo(a,h)anthracene	1.01	UG/L	ND	ND	ND	ND
Diethyl phthalate	3.05	UG/L	ND	ND	ND	ND
Dimethyl phthalate	1.44	UG/L	ND	ND	ND	ND
Di-n-butyl phthalate	3.96	UG/L	ND	ND	ND	ND
Di-n-octyl phthalate	1	UG/L	ND	ND	ND	ND
2-Chloronaphthalene		UG/L	ND	ND	ND	ND
3,3-Dichlorobenzidine		UG/L	ND	ND	ND	ND
3,4-Benzo(b)fluoranthene		UG/L	ND	ND	ND	ND
4-Bromophenyl phenyl ether		UG/L	ND	ND	ND	ND
4-Chlorophenyl phenyl ether		UG/L	ND	ND	ND	ND
Hexachloroethane		UG/L	ND	ND	ND	ND
Hexachlorobenzene		UG/L	ND	ND	ND	ND
Hexachlorobutadiene		UG/L	ND	ND	ND	ND
Hexachlorocyclopentadiene		UG/L	ND ND	ND ND	ND ND	ND ND
Acenaphthene Acenaphthylene	1.8	UG/L UG/L	ND ND	ND ND	ND ND	ND ND
Anthracene		UG/L	ND ND	ND ND	ND ND	ND ND
Bis-(2-chloroisopropyl) ether		UG/L	ND ND	ND ND	ND ND	ND ND
Bis-(2-ethylhexyl) phthalate		UG/L	ND	13.1	ND	ND ND
Benzidine		UG/L	ND ND	ND	ND ND	ND ND
Benzo[a]anthracene	1.1		ND.	ND.	ND ND	ND
Benzo[a]pyrene		UG/L	ND.	ND.	ND.	ND
Benzo[g,h,i]perylene		UG/L	ND.	ND	ND.	ND
Benzo[k]fluoranthene		UG/L	ND	ND	ND	ND
Bis-(2-chloroethoxy) methane		UG/L	ND	ND	ND	ND
Bis-(2-chloroethyl) ether	1.38	UG/L	ND	ND	ND	ND
Butyl benzyl phthalate	2.84	UG/L	ND	ND	ND	ND
Chrysene	1.16	UG/L	ND	ND	ND	ND
Fluoranthene	1.33	UG/L	ND	ND	ND	ND
Fluorene	1.61	UG/L	ND	ND	ND	ND
Indeno(1,2,3-CD)pyrene	1.14	UG/L	ND	ND	ND	ND
Isophorone	1.53	UG/L	ND	ND	ND	ND
Naphthalene	1.65	UG/L	ND	ND	ND	ND
Nitrobenzene	1.6	UG/L	ND	ND	ND	ND
N-nitrosodimethylamine		UG/L	ND	ND	ND	ND
N-nitrosodiphenylamine		UG/L	ND	ND	ND	ND
N-nitrosodi-n-propylamine		UG/L	ND	ND	ND	ND
Phenanthrene		UG/L	ND	ND	ND	ND
Pyrene ===================================		UG/L	ND	ND	ND	ND
Polynuc. Aromatic Hydrocarbons			0.0	0.0	0.0	0.0
Base/Neutral Compounds		UG/L	0.00	13.10	0.00	0.00
======================================		,	========	========	========	========
1-Methylnaphthalene		UG/L	ND	ND	ND	ND
2-Methylnaphthalene		UG/L	ND.	ND.	ND	ND
2,6-Dimethylnaphthalene		UG/L	ND	ND	ND	ND
2,3,5-Trimethylnaphthalene		UG/L	ND	ND.	ND.	ND
1-Methylphenanthrene		UG/L	ND	ND	ND	ND
Benzo[e]pyrene		UG/L	ND	ND.	ND	ND
Perylene		UG/L	ND	ND	ND	ND
Biphenyl		UG/L	ND	ND	ND	ND
Pyridine	3.33	UG/L	ND	ND	ND	ND

Organophosphorous Pesticides

			N01-PS_INF 01-MAY-2012	_	N01-PEN 01-MAY-2012	N01-PEN 02-OCT-2012
Analyte	MDL	Units	P613996	P634326	P614001	P634331
=======================================	===	=====	=========	==========	==========	=========
Demeton O	.15	UG/L	ND	ND	ND	ND
Demeton S	.08	UG/L	ND	ND	ND	ND
Diazinon	.03	UG/L	ND	ND	ND	ND
Guthion	.15	UG/L	ND	ND	ND	ND
Malathion	.03	UG/L	ND	ND	ND	ND
Parathion	.03	UG/L	ND	ND	ND	ND
=======================================	===	=====	=========	=========	=========	=========
Thiophosphorus Pesticides	.15	UG/L	0.000	0.000	0.000	0.000
Demeton -0, -S	.15	UG/L	0.000	0.000	0.000	0.000
=======================================	===	=====	=========	=========	=========	=========
Total Organophosphorus Pesticides	.15	UG/L	0.000	0.000	0.000	0.000
=======================================	===	=====	=========	=========	=========	=========
Dichlorvos	.05	UG/L	ND	ND	ND	ND
Disulfoton	.02	UG/L	ND	ND	ND	ND
Dimethoate	.04	UG/L	ND	ND	ND	ND
Stirophos	.03	UG/L	ND	ND	ND	ND
Coumaphos	.15	UG/L	ND	ND	ND	ND
Chlorpyrifos	.03	UG/L	ND	ND	ND	ND

Organophosphorous Pesticides

			N10-EFF 01-MAY-2012	N10-EFF 02-OCT-2012	N34-REC WATER 01-MAY-2012	N34-REC WATER 02-OCT-2012
Analyte	MDL	Units	P614006	P634336	P614011	P634341
=======================================	===	=====	=========			
Demeton O	.15	UG/L	ND	ND	ND	ND
Demeton S	.08	UG/L	ND	ND	ND	ND
Diazinon	.03	UG/L	ND	ND	ND	ND
Guthion	.15	UG/L	ND	ND	ND	ND
Malathion	.03	UG/L	0.060	ND	ND	ND
Parathion	.03	UG/L	ND	ND	ND	ND
=======================================	===	=====				
Thiophosphorus Pesticides	.15	UG/L	0.060	0.000	0.000	0.000
Demeton -0, -S	.15	UG/L	0.000	0.000	0.000	0.000
=======================================	===	=====	=========	=========	=========	=========
Total Organophosphorus Pesticides	.15	UG/L	0.060	0.000	0.000	0.000
=======================================	===	=====	=======================================			
Dichlorvos	.05	UG/L	ND	ND	ND	ND
Disulfoton	.02	UG/L	ND	ND	ND	ND
Dimethoate	.04	UG/L	ND	ND	ND	ND
Stirophos	.03	UG/L	ND	ND	ND	ND
Coumaphos	.15	UG/L	ND	ND	ND	ND
Chlorpyrifos	.03	UG/L	ND	ND	ND	ND

Benzidines

Source: Date:		Units	N01-PS_INF 07-FEB-2012 P602760	N01-PS_INF 01-MAY-2012 P613996	N01-PS_INF 08-AUG-2012 P626893	N01-PS_INF 02-OCT-2012 P634326
3,3-Dichlorobenzidine Benzidine	2.44	UG/L UG/L	ND ND	ND ND	ND ND	ND ND
Source: Date: ===================================	==== 2.44	Units ===== UG/L UG/L	N01-PEN 07-FEB-2012 P602765 ======= ND ND	N01-PEN 01-MAY-2012 P614001 ====== ND ND	N01-PEN 07-AUG-2012 P626898 ====== ND ND	N01-PEN 02-OCT-2012 P634331 ====== ND ND
Source: Date:	====	Units =====	N10-EFF 07-FEB-2012 P602770 =======	N10-EFF 01-MAY-2012 P614006 ======	N10-EFF 07-AUG-2012 P626903 ======	N10-EFF 02-OCT-2012 P634336 ======
Benzidine		UG/L	ND ND	ND	ND	ND
Source: Date:		Units	N34-REC WATER 07-FEB-2012 P602775	N34-REC WATER 01-MAY-2012 P614011	N34-REC WATER 07-AUG-2012 P626908	02-0CT-2012 P634341
3,3-Dichlorobenzidine Benzidine	2.44		ND ND	ND ND	ND ND	ND ND

2012

Phenolic Compounds

Analyte	MDL	Units	N01-PS_INF 07-FEB-2012 P602760	N01-PS_INF 01-MAY-2012 P613996	N01-PS_INF 08-AUG-2012 P626893	N01-PS_INF 02-OCT-2012 P634326
2,4,6-Trichlorophenol		==== UG/L	ND	ND	ND	ND
2,4-Dichlorophenol		UG/L	ND ND	ND ND	ND ND	ND ND
2,4-Dimethylphenol		UG/L	ND ND	ND ND	ND ND	ND ND
2,4-Dinitrophenol		UG/L	ND ND	ND ND	ND ND	ND ND
2-Methyl-4,6-dinitrophenol		UG/L	ND ND	ND ND	ND ND	ND ND
2-Chlorophenol		UG/L	ND ND	ND	ND ND	ND ND
2-Nitrophenol		UG/L	ND ND	ND ND	ND ND	ND ND
4-Chloro-3-methylphenol		UG/L	ND ND	ND ND	ND ND	ND ND
4-Nitrophenol		UG/L	ND	ND.	ND	ND
Pentachlorophenol		UG/L	ND	ND	ND	ND ND
Phenol		UG/L	31.50	13.70	21.70	31.10
		,		=========		=========
Total Non-Chlorinated Phenols		UG/L	31.50	13.70	21.70	31.10
Total Chlorinated Phenols		UG/L	0.00	0.00	0.00	0.00
		•	=========			
Phenols	2.16	UG/L	31.50	13.70	21.70	31.10
Additional analytes determined;						
2-Methylphenol		UG/L	ND	ND	ND	ND
3-Methylphenol(4-MP is unresolved)	_,_,	UG/L	NA	NA.	NA	NA.
4-Methylphenol(3-MP is unresolved)	2.11		94.70	51.70	55.10	79.80
2,4,5-Trichlorophenol		UG/L	ND	ND	ND	ND
Analyte	MDL	Units	N01-PEN 07-FEB-2012 P602765	N01-PEN 01-MAY-2012 P614001	N01-PEN 07-AUG-2012 P626898	N01-PEN 02-OCT-2012 P634331
					=========	
2,4,6-Trichlorophenol	1.65	UG/L	ND	ND	ND	ND
2,4-Dichlorophenol	1.01	UG/L	ND	ND	ND	ND
2,4-Dimethylphenol	2.01	UG/L	ND	ND	ND	ND
2,4-Dinitrophenol	2.16	UG/L	ND	ND		
2-Methyl-4,6-dinitrophenol	1.52	UG/I		ND	ND	ND
2-Chlorophenol			ND	ND	ND	ND
		UG/L	ND	ND ND	ND ND	ND ND
2-Nitrophenol	1.55	UG/L UG/L	ND ND	ND ND ND	ND ND ND	ND ND ND
4-Chloro-3-methylphenol	1.55 1.67	UG/L UG/L UG/L	ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND
4-Chloro-3-methylphenol 4-Nitrophenol	1.55 1.67 1.14	UG/L UG/L UG/L UG/L	ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND
4-Chloro-3-methylphenol 4-Nitrophenol Pentachlorophenol	1.55 1.67 1.14 1.12	UG/L UG/L UG/L UG/L UG/L	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND
4-Chloro-3-methylphenol 4-Nitrophenol Pentachlorophenol Phenol	1.55 1.67 1.14 1.12 1.76	UG/L UG/L UG/L UG/L UG/L UG/L	ND ND ND ND ND 19.20	ND ND ND ND ND ND 9.30	ND ND ND ND ND ND 9.30	ND ND ND ND ND ND 4.40
4-Chloro-3-methylphenol 4-Nitrophenol Pentachlorophenol Phenol	1.55 1.67 1.14 1.12 1.76	UG/L UG/L UG/L UG/L UG/L UG/L	ND ND ND ND ND 19.20	ND ND ND ND ND 9.30	ND ND ND ND ND ND 9.30	ND ND ND ND ND ND 4.40
4-Chloro-3-methylphenol 4-Nitrophenol Pentachlorophenol Phenol ====================================	1.55 1.67 1.14 1.12 1.76 ==== 2.16	UG/L UG/L UG/L UG/L UG/L UG/L ===== UG/L	ND ND ND ND 19.20	ND ND ND ND ND 9.30 ====================================	ND ND ND ND ND 9.30	ND ND ND ND ND 4.40
4-Chloro-3-methylphenol 4-Nitrophenol Pentachlorophenol Phenol Total Non-Chlorinated Phenols Total Chlorinated Phenols	1.55 1.67 1.14 1.12 1.76 ==== 2.16 1.67	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	ND ND ND ND 19.20 ====================================	ND ND ND ND ND 9.30 ====================================	ND ND ND ND ND 9.30 ====================================	ND ND ND ND ND 4.40 ==================================
4-Chloro-3-methylphenol 4-Nitrophenol Pentachlorophenol Phenol ====================================	1.55 1.67 1.14 1.12 1.76 ==== 2.16 1.67	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	ND ND ND ND 19.20 ====================================	ND ND ND ND ND 9.30 ====================================	ND ND ND ND ND 9.30 ====================================	ND ND ND ND ND 4.40 ==================================
4-Chloro-3-methylphenol 4-Nitrophenol Pentachlorophenol Phenol ====================================	1.55 1.67 1.14 1.12 1.76 ==== 2.16 1.67 ==== 2.16	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	ND ND ND ND 19.20 	ND ND ND ND ND 9.30 ======= 9.30 0.00 ======	ND ND ND ND ND 9.30 ======= 9.30 0.00 ======	ND ND ND ND ND 4.40 ==================================
4-Chloro-3-methylphenol 4-Nitrophenol Pentachlorophenol Phenol Total Non-Chlorinated Phenols Total Chlorinated Phenols Phenols Additional analytes determined;	1.55 1.67 1.14 1.12 1.76 ==== 2.16 1.67 ==== 2.16	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	ND ND ND ND 19.20 	ND ND ND ND ND 9.30 ======= 9.30 0.00 ====== 9.30	ND ND ND ND ND 9.30 9.30 0.00 ======= 9.30	ND ND ND ND ND 4.40 ==================================
4-Chloro-3-methylphenol 4-Nitrophenol Pentachlorophenol Phenol Total Non-Chlorinated Phenols Total Chlorinated Phenols Total Chlorinated Phenols Additional analytes determined;	1.55 1.67 1.14 1.12 1.76 ==== 2.16 1.67 ==== 2.16	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	ND ND ND ND 19.20 ======== 19.20 0.00 ========= 19.20	ND ND ND ND ND 9.30 9.30 0.00 ======= 9.30	ND ND ND ND ND 9.30 9.30 0.00 ====== 9.30	ND ND ND ND ND 4.40 ======= 4.40 0.00 ====== 4.40
4-Chloro-3-methylphenol 4-Nitrophenol Pentachlorophenol Phenol Total Non-Chlorinated Phenols Total Chlorinated Phenols Tot	1.55 1.67 1.14 1.12 1.76 ==== 2.16 1.67 ==== 2.16	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	ND ND ND ND 19.20 	ND ND ND ND ND 9.30 ======= 9.30 0.00 ====== 9.30	ND ND ND ND ND 9.30 9.30 0.00 ======= 9.30	ND ND ND ND ND 4.40 ==================================

ND= Not Detected NA= Not Analyzed

2012

Phenolic Compounds

			N10-EFF	N10-EFF	N10-EFF	N10-EFF
			07-FEB-2012	01-MAY-2012	07-AUG-2012	02-0CT-2012
Analyte	MDL	Units	P602770	P614006	P626903	P634336
	====	=====				
2,4,6-Trichlorophenol		UG/L	ND	ND	ND	ND
2,4-Dichlorophenol		UG/L	ND	ND	ND	ND
2,4-Dimethylphenol	2.01	UG/L	ND	ND	ND	ND
2,4-Dinitrophenol	2.16	UG/L	ND	ND	ND	ND
2-Methyl-4,6-dinitrophenol	1.52	UG/L	ND	ND	ND	ND
2-Chlorophenol	1.32	UG/L	ND	ND	ND	ND
2-Nitrophenol	1.55	UG/L	ND	ND	ND	ND
4-Chloro-3-methylphenol	1.67	UG/L	ND	ND	ND	ND
4-Nitrophenol	1.14	UG/L	ND	ND	ND	ND
Pentachlorophenol	1.12	UG/L	ND	ND	ND	ND
Phenol	1.76	UG/L	24.90	ND	12.30	10.50
	====	=====				
Total Non-Chlorinated Phenols	2.16	UG/L	24.90	0.00	12.30	10.50
Total Chlorinated Phenols	1.67	UG/L	0.00	0.00	0.00	0.00
	====	=====	=========	=========		========
Phenols	2.16	UG/L	24.90	0.00	12.30	10.50
Additional analytes determined;						
	====	=====				
2-Methylphenol		UG/L	ND	ND	ND	ND
3-Methylphenol(4-MP is unresolved)		UG/L	NA 	NA	NA	NA
4-Methylphenol(3-MP is unresolved)			59.50	29.10	31.10	20.50
2,4,5-Trichlorophenol	1.66	UG/L	ND	ND	ND	ND

			N34-REC WATER	N34-REC WATER	N34-REC WATER
			07-FEB-2012	07-AUG-2012	02-0CT-2012
Analyte	MDL	Units	P602775	P626908	P634341
	====		========	========	========
2,4,6-Trichlorophenol	1.65	UG/L	ND	ND	ND
2,4-Dichlorophenol	1.01	UG/L	ND	ND	ND
2,4-Dimethylphenol	2.01	UG/L	ND	ND	ND
2,4-Dinitrophenol	2.16	UG/L	ND	ND	ND
2-Methyl-4,6-dinitrophenol	1.52	UG/L	ND	ND	ND
2-Chlorophenol	1.32	UG/L	ND	ND	ND
2-Nitrophenol	1.55	UG/L	ND	ND	ND
4-Chloro-3-methylphenol	1.67	UG/L	ND	ND	ND
4-Nitrophenol	1.14	UG/L	ND	ND	ND
Pentachlorophenol	1.12	UG/L	ND	ND	ND
Phenol	1.76	UG/L	ND	ND	ND
	====	=====	=========	========	========
Total Non-Chlorinated Phenols	2.16	UG/L	0.00	0.00	0.00
Total Chlorinated Phenols	1.67	UG/L	0.00	0.00	0.00
	====	=====	========	========	========
Phenols	2.16	UG/L	0.00	0.00	0.00
Additional analytes determined;					
	====	=====	========	=========	========
2-Methylphenol	2.15	UG/L	ND	ND	ND
3-Methylphenol(4-MP is unresolved)		UG/L	NA	NA	NA
4-Methylphenol(3-MP is unresolved)			ND	ND	ND
2,4,5-Trichlorophenol	1.66	UG/L	ND	ND	ND

ND= Not Detected NA= Not Analyzed

2012
Priority Pollutants Purgeable Compounds, EPA Method 8260B

			N01-PS_INF	N01-PS_INF	N01-PS_INF	N01-PS_INF
			07-FEB-2012	01-MAY-2012	07-AUG-2012	02-0CT-2012
Analyte		Units	P602763	P613999	P626896	P634329
613			========		========	
Chloromethane	.5	UG/L	ND	ND	ND	ND
Bromomethane	.7 .4	UG/L UG/L	ND ND	ND ND	ND ND	ND ND
Vinyl chloride Chloroethane	.9	UG/L	ND ND	ND ND	ND ND	ND ND
1,1-Dichloroethane	.4	UG/L	ND ND	ND ND	ND ND	ND ND
Trichlorofluoromethane	.3	UG/L	ND ND	ND	ND	ND ND
Methylene chloride	.3	UG/L	1.0	0.8	0.7	0.7
1,1-Dichloroethene	.4	UG/L	ND	ND	ND	ND
trans-1,2-dichloroethene	.6	UG/L	ND	ND	ND	ND
Chloroform	.2	UG/L	1.5	1.6	1.5	1.6
1,2-Dichloroethane	.5	UG/L	ND	ND	ND	ND
1,1,1-Trichloroethane	.4	UG/L	ND	ND	ND	ND
Carbon tetrachloride	.4	UG/L	ND	ND	ND	ND
Bromodichloromethane	.5	UG/L	0.6	ND	ND	ND
1,2-Dichloropropane	.3	UG/L	ND	ND	ND	ND
trans-1,3-dichloropropene	.5	UG/L	ND	ND	ND	ND
Trichloroethene	.7	UG/L	ND	ND	ND	ND
Benzene	.4	UG/L	ND	ND	ND	ND
Dibromochloromethane	.6	UG/L	0.9	ND	ND	0.7
1,1,2-Trichloroethane	.5	UG/L	ND	ND	ND	ND
cis-1,3-dichloropropene	.3	UG/L UG/L	ND ND	ND ND	ND ND	ND ND
2-Chloroethylvinyl ether Bromoform	.5	UG/L	ND ND	ND ND	ND ND	ND ND
1,1,2,2-Tetrachloroethane	.5	UG/L	ND ND	ND ND	ND ND	ND ND
Tetrachloroethene		UG/L	ND ND	ND ND	ND ND	ND ND
Chlorobenzene	.4	UG/L	ND	ND	ND	ND ND
Toluene		UG/L	85.5	2.1	4.7	30.7
Ethylbenzene	.3	UG/L	ND	ND	ND	ND
Acrylonitrile	.7	UG/L	ND	ND	ND	ND
Acrolein	1.3	UG/L	ND	ND	ND	ND
1,2-Dichlorobenzene	.4	UG/L	ND	ND	ND	ND
1,4-Dichlorobenzene	.4	UG/L	ND	1.2	1.1	0.96*
1,3-Dichlorobenzene	.5	UG/L	ND	ND	ND	ND
Dichlorodifluoromethane		UG/L	ND	ND	ND	ND
Halomethane Purgeable Cmpnds			1.5	0.0	0.0	0.7
Purgeable Compounds		UG/L	89.5	4.5	6.9	33.7
Total Dichlorobenzenes	.5	UG/L	0.0	1.2	1.1	0.0
Additional analytes determin	ed					
=======================================		=====	========	========	========	========
Allyl chloride	.6	UG/L	ND	ND	ND	ND
4-Methyl-2-pentanone	1.3	UG/L	ND	ND	ND	ND
meta,para xylenes	.6	UG/L	ND	ND	ND	ND
Styrene	.3	UG/L	ND	ND	ND	ND
1,2,4-Trichlorobenzene	.7	UG/L	ND	ND	ND	ND
Methyl Iodide	.6	UG/L	ND	ND	ND	ND
Chloroprene	.4	UG/L	ND	ND	ND	ND
Methyl methacrylate	.8	UG/L	ND	ND	ND	ND
2-Nitropropane		UG/L	ND ND	ND ND	ND ND	ND ND
1,2-Dibromoethane Isopropylbenzene	.3	UG/L UG/L	ND ND	ND ND	ND ND	ND ND
Benzyl chloride		UG/L UG/L	ND ND	עא ND	טא ND	ND ND
ortho-xylene		UG/L	ND ND	ND ND	ND ND	ND ND
Acetone		UG/L	574	581	496	737
Carbon disulfide		UG/L	1.2	0.9	1.4	2.4
2-Butanone		UG/L	ND	ND	7.1	8.9
Methyl tert-butyl ether	.4	UG/L	ND	ND	ND	ND

^{*=} This analyte was found in blanks (0.4 ug/L) above MDL. Value was not used in calculation of the average.

2012
Priority Pollutants Purgeable Compounds, EPA Method 8260B

			N01-PEN 07-FEB-2012	N01-PEN 01-MAY-2012	N01-PEN 07-AUG-2012	N01-PEN 02-OCT-2012
Analyte	MDL	Units	P602768	P614004	P626901	P634334
		=====		========	========	======================================
Chloromethane	.5	UG/L	ND	ND	ND	ND
Bromomethane	.7	UG/L	ND	ND	ND	ND
Vinyl chloride	.4 .9	UG/L	ND ND	ND ND	ND ND	ND ND
Chloroethane	.9	UG/L UG/L	ND ND	ND ND	ND ND	ND ND
1,1-Dichloroethane Trichlorofluoromethane	.3	UG/L	ND ND	ND ND	ND ND	ND ND
Methylene chloride	.3	UG/L	1.4	0.8	1.4	1.0
1,1-Dichloroethene	.4	UG/L	ND	ND	ND	ND
trans-1,2-dichloroethene	.6	UG/L	ND ND	ND ND	ND	ND ND
Chloroform	.2	UG/L	3.0	2.3	1.8	1.8
1,2-Dichloroethane	.5	UG/L	ND	ND	ND	ND
1,1,1-Trichloroethane	.4	UG/L	ND	ND	ND	ND
Carbon tetrachloride	.4	UG/L	ND	ND	ND	ND
Bromodichloromethane	.5	UG/L	ND	ND	ND	ND
1,2-Dichloropropane	.3	UG/L	ND	ND	ND	ND
trans-1,3-dichloropropene	.5	UG/L	ND	ND	ND	ND
Trichloroethene	.7	UG/L	ND	ND	ND	ND
Benzene	.4	UG/L	ND	ND	ND	ND
Dibromochloromethane	.6	UG/L	ND	ND	ND	ND
1,1,2-Trichloroethane	.5	UG/L	ND	ND	ND	ND
cis-1,3-dichloropropene	.3	UG/L	ND	ND	ND	ND
2-Chloroethylvinyl ether		UG/L	ND	ND	ND	ND
Bromoform	.5	UG/L	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	.5	UG/L	ND	ND	ND	ND
Tetrachloroethene		UG/L	2.0	ND	ND	ND
Chlorobenzene	.4	UG/L	ND	ND	ND	ND
Toluene	.4	UG/L	0.6	0.8	0.8	0.6
Ethylbenzene	.3	UG/L	ND	ND	ND	ND
Acrylonitrile	.7	UG/L	ND ND	ND ND	ND	ND ND
Acrolein	.4	UG/L UG/L	ND ND	ND ND	ND ND	ND ND
<pre>1,2-Dichlorobenzene 1,4-Dichlorobenzene</pre>	.4	UG/L	ND ND	ND ND	ND ND	ND ND
1,3-Dichlorobenzene	.5	UG/L	ND ND	ND ND	ND ND	ND ND
Dichlorodifluoromethane		UG/L	ND ND	ND ND	ND ND	ND ND
=======================================		,	========	========	========	========
Halomethane Purgeable Cmpnds	.7	UG/L	0.0	0.0	0.0	0.0
Purgeable Compounds		UG/L	7.0	3.9	4.0	3.4
Total Dichlorobenzenes	.5	===== UG/L	0.0	0.0	0.0	0.0
Additional analytes determin	od					
======================================	===		=======	========	=======	========
Allyl chloride	.6	UG/L	ND	ND	ND	ND
4-Methyl-2-pentanone	1.3	UG/L	ND	ND	ND	ND
meta,para xylenes	.6	UG/L	ND	ND	ND	ND
Styrene	.3	UG/L	ND	ND	ND	ND
1,2,4-Trichlorobenzene	.7	UG/L	ND	ND	ND	ND
Methyl Iodide	.6	UG/L	ND	ND	ND	ND
Chloroprene		UG/L	ND	ND	ND	ND
Methyl methacrylate	.8	UG/L	ND	ND	ND	ND
2-Nitropropane	12	UG/L	ND	ND	ND	ND
1,2-Dibromoethane	.3	UG/L	ND	ND	ND	ND
Isopropylbenzene	.3	UG/L	ND	ND	ND	ND
Benzyl chloride		UG/L	ND ND	ND ND	ND	ND ND
ortho-xylene		UG/L	ND 495	ND 263	ND 204	ND 244
Acetone Carbon disulfide		UG/L UG/L	495 0.6	263 0.9	294 0.8	244 1.2
2-Butanone		UG/L	ND	ND	ND	6.9
Methyl tert-butyl ether		UG/L	ND ND	ND ND	ND ND	ND
	• •	33, L	140	140	ND	ND

ND= not detected

2012
Priority Pollutants Purgeable Compounds, EPA Method 8260B

Analyte 		Units	N10-EFF 07-FEB-2012 P602773	N10-EFF 01-MAY-2012 P614009	N10-EFF 07-AUG-2012 P626906	N10-EFF 02-OCT-2012 P634339
Chloromethane	.5	UG/L	ND	ND	ND	ND
Bromomethane	.7	UG/L	ND	ND	ND	ND
Vinyl chloride	.4	UG/L	ND	ND	ND	ND
Chloroethane	.9	UG/L	ND	ND	ND	ND
1,1-Dichloroethane	.4	UG/L	ND	ND	ND	ND
Trichlorofluoromethane	.3	UG/L	ND	ND	ND	ND
Methylene chloride	.3	UG/L	1.2	1.5	1.7	3.2
1,1-Dichloroethene	.4	UG/L	ND	ND	ND	ND
trans-1,2-dichloroethene	.6	UG/L	ND	ND	ND	ND
Chloroform	.2	UG/L	2.1	1.8	1.8	2.0
1,2-Dichloroethane	.5	UG/L	ND	ND	ND	ND
1,1,1-Trichloroethane	.4	UG/L	ND	ND	ND	ND
Carbon tetrachloride	.4	UG/L	ND	ND	ND	ND
Bromodichloromethane	.5	UG/L	0.7	ND	ND	ND
1,2-Dichloropropane	.3	UG/L	ND	ND	ND	ND
trans-1,3-dichloropropene	.5	UG/L	ND	ND	ND	ND
Trichloroethene	.7	UG/L	ND	ND	ND	ND
Benzene	.4	UG/L	ND	ND	ND	ND
Dibromochloromethane	.6	UG/L	0.9	ND	ND	ND
1,1,2-Trichloroethane	.5	UG/L	ND	ND	ND	ND
cis-1,3-dichloropropene	.3	UG/L	ND	ND	ND	ND
2-Chloroethylvinyl ether		UG/L	ND	ND	ND	ND
Bromoform	.5	UG/L	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	.5	UG/L	ND	ND	ND	ND
Tetrachloroethene Chlorobenzene		UG/L	ND	ND	ND	ND
	.4	UG/L	ND	ND	ND	ND
Toluene	.4	UG/L	20.6	6.1 ND	11.2 ND	17.1
Ethylbenzene	.3 .7	UG/L UG/L	ND ND	ND ND	ND ND	ND ND
Acrylonitrile Acrolein		UG/L	ND ND	ND ND	ND ND	ND ND
1,2-Dichlorobenzene	.4	UG/L	ND ND	ND ND	ND ND	ND ND
1,4-Dichlorobenzene	.4	UG/L	ND ND	0.8	0.8	0.55*
1,3-Dichlorobenzene	.5	UG/L	ND	ND	ND	ND
Dichlorodifluoromethane		UG/L	ND	ND ND	ND	ND ND
=======================================			========	========	=========	========
Halomethane Purgeable Cmpnds	.7	UG/L	1.6	0.0	0.0	0.0
Purgeable Compounds		UG/L	25.5	9.4	14.7	22.3
=======================================			========	========	========	=========
Total Dichlorobenzenes	.5	UG/L	0.0	0.8	0.8	0.0
Additional analytes determin						
Allyl chlorido			ND	ND	ND	ND
Allyl chloride	.6	UG/L	ND ND	ND ND	ND ND	ND ND
4-Methyl-2-pentanone		UG/L	ND ND	ND 1 2	ND	ND
meta,para xylenes	.6 .3	UG/L UG/L	ND ND	1.2 ND	ND ND	ND ND
Styrene 1,2,4-Trichlorobenzene	.7		ND ND	ND ND	ND ND	ND ND
	.6	UG/L UG/L	ND ND	ND ND	ND ND	ND ND
Methyl Iodide	.4	UG/L	ND ND	ND ND	ND ND	ND ND
Chloroprene						
Methyl methacrylate 2-Nitropropane	.8 12	UG/L UG/L	ND ND	ND ND	ND ND	ND ND
1,2-Dibromoethane	.3	UG/L	ND ND	ND ND	ND ND	ND ND
Isopropylbenzene	.3	UG/L	ND ND	ND ND	ND ND	ND ND
Benzyl chloride		UG/L	ND ND	ND ND	ND ND	ND ND
ortho-xylene	.4	•	ND ND	0.5	ND ND	ND ND
Acetone		UG/L	692	426	1030	544
Carbon disulfide	.6	•	1.6	1.8	1.9	1.9
2-Butanone		UG/L	9.7	6.9	9.4	9.3
Methyl tert-butyl ether	.4		ND	ND	ND	ND
cer e bacyı cener	• •	30/ L	ND	110	ND	ND

^{*=} This analyte was found in blanks (0.4 ug/L) above MDL. Value was not used in calculation of the average. ND= Not Detected

2012
Priority Pollutants Purgeable Compounds, EPA Method 8260B

				N34-REC WATER		
Analysta	MDI	11-2	07-FEB-2012	01-MAY-2012	07-AUG-2012	02-0CT-2012
Analyte		Units	P602778	P614014	P626911	P634344
Chloromethane	.5	UG/L	======= ND	0.6	ND	ND
Bromomethane	.7	UG/L	ND ND	ND	ND ND	ND ND
Vinyl chloride	.4	UG/L	ND ND	ND ND	ND ND	ND ND
Chloroethane	.9	UG/L	ND ND	ND ND	ND ND	ND ND
1,1-Dichloroethane	.4	UG/L	ND	ND	ND	ND
Trichlorofluoromethane	.3	UG/L	ND	ND	ND	ND
Methylene chloride	.3	UG/L	0.3	ND	1.3	ND
1,1-Dichloroethene	.4	UG/L	ND	ND	ND	ND
trans-1,2-dichloroethene	.6	UG/L	ND	ND	ND	ND
Chloroform	.2	UG/L	37.4	46.7	38.3	34.7
1,2-Dichloroethane	.5	UG/L	ND	ND	ND	ND
1,1,1-Trichloroethane	.4	UG/L	ND	ND	ND	ND
Carbon tetrachloride	.4	UG/L	ND	ND	ND	ND
Bromodichloromethane	.5	UG/L	44.7	50.9	39.9	41.0
1,2-Dichloropropane	.3	UG/L	ND	ND	ND	ND
trans-1,3-dichloropropene	.5	UG/L	ND	ND	ND	ND
Trichloroethene	.7	UG/L	ND	ND	ND	ND
Benzene	.4	UG/L	ND	ND	ND	ND
Dibromochloromethane	.6	UG/L	32.0	33.7	28.2	37.1
1,1,2-Trichloroethane	.5	UG/L	ND	ND	ND	ND
cis-1,3-dichloropropene	.3	UG/L	ND	ND	ND	ND
2-Chloroethylvinyl ether		UG/L	ND	ND	ND	ND
Bromoform	.5	UG/L	4.3	4.0	3.0	7.8
1,1,2,2-Tetrachloroethane Tetrachloroethene	.5	UG/L UG/L	ND	ND	ND	ND
Chlorobenzene	.4		ND ND	ND ND	ND ND	ND ND
Toluene	.4	UG/L UG/L	ND ND	ND ND	ND ND	ND ND
Ethylbenzene	.3	UG/L	ND ND	ND ND	ND ND	ND ND
Acrylonitrile	.7	UG/L	ND ND	ND ND	ND ND	ND ND
Acrolein		UG/L	ND ND	ND ND	ND ND	ND ND
1,2-Dichlorobenzene	.4	UG/L	ND	ND	ND ND	ND
1,4-Dichlorobenzene	.4	UG/L	<0.4	ND	ND	ND
1,3-Dichlorobenzene	.5	UG/L	ND	ND	ND	ND
Dichlorodifluoromethane		UG/L	ND	ND	ND	ND
	===	=====	========	========	========	========
Halomethane Purgeable Cmpnds	.7	UG/L	81.0	89.2	71.1	85.9
Purgeable Compounds		UG/L	118.7	135.9	110.7	120.6
Total Dichlorobenzenes	.5	UG/L	0.0	0.0	0.0	0.0
Additional analytes determine						
Allyl chloride	.6	===== UG/L	ND	ND	ND	ND
4-Methyl-2-pentanone		UG/L	ND ND	ND ND	ND ND	ND ND
meta,para xylenes	.6	UG/L	ND ND	ND ND	ND ND	ND ND
Styrene	.3	UG/L	ND	ND	ND	ND
1,2,4-Trichlorobenzene	.7	UG/L	ND	ND	ND	ND
Methyl Iodide	.6	UG/L	ND	ND	ND	ND
Chloroprene	.4	UG/L	ND	ND	ND	ND
Methyl methacrylate	.8	UG/L	ND	ND	ND	ND
2-Nitropropane	12	UG/L	ND	ND	ND	ND
1,2-Dibromoethane	.3	UG/L	ND	ND	ND	ND
Isopropylbenzene	.3	UG/L	ND	ND	ND	ND
Benzyl chloride		UG/L	ND	ND	ND	ND
ortho-xylene		UG/L	ND	ND	ND	ND
Acetone		UG/L	ND	6	ND	ND
Carbon disulfide	.6		ND	ND	ND	ND
2-Butanone		UG/L	ND	ND	ND	ND
Methyl tert-butyl ether	.4	UG/L	ND	ND	ND	ND