

TRANSPORTATION

Mission Valley is experiencing, to a varying degree, all the classical problems associated with communities located adjacent to the urban core of most major U.S. cities. These problems include physical separation of various community elements by new freeway and transportation corridors, non-development of forms of transportation other than private automobile, and the continual upgrading of the supporting local surface street system. In any community the movement of people and goods is one of the most important considerations in the planning process and vital to the survival and continued prosperity of the individual community. Ideally, transportation systems should be well balanced between the individual needs of the various users and the necessary support of public transit convenience that will offer a wide choice of options to the traveling public within that particular community. The transportation system must offer residents and/or employees the maximum opportunity of transportation choices to fulfill their individual needs and provide a dynamic system for the growth of the community.

A major goal of the Plan is the provision of a surface street system, carefully coordinated with the regional freeway system, which is adequate to meet the total future needs of Mission Valley. A major problem facing the existing transportation system is its lack of any uniformity. Many streets are under-designed and route an excessive number of cars on streets that were never intended for such volumes. In addition, there seems to be an inordinate amount of out of direction travel. The streets in the community vary in width, sometimes from block to block. The chief reason for this varying design in street standards and sometimes what appears to be confused routing of traffic is more a result of the manner in which Mission Valley developed than any oversight by responsible parties. Today communities are usually developed by an individual firm or a group of developers working together using an overall plan for the area. Under these circumstances, careful attention is given to insure all requirements are fulfilled by the public and private sectors.

In the past there has been no overall development plan for the public and private sectors to follow in Mission Valley. Several of the largest parcels are currently in uses such as sand and gravel extraction. Other major parcels in areas along the San Diego River cannot be redeveloped at the present time. Development intensities and land uses together with the accompanying public improvements necessary for development could not be fully ascertained prior to the current community planning program. Therefore, the transportation system for Mission Valley falls far short of the ideal in several aspects. This element will examine the existing street system, parking problems, proposed public transit expansion in the Valley, bicycle routes, pedestrian walkways, and will end with a discussion of the extension of the light rail transit line through the Valley.

STREET SYSTEM

The street system in the Mission Valley community is characterized by five functional classifications: freeways; primary arterials; major streets; collector streets and local streets. Freeways may have four or more lanes with full controlled access and grade separation at interchanges. Their primary function is to carry high volumes of traffic at high speeds between different communities and cities. Primary arterials within the City of San Diego are usually four to six lanes wide with severely limited access. They are designed for through traffic generally linking several communities and usually have signals at major intersections. Major streets are also four to six lanes wide, and although they are designed primarily for through traffic, again linking communities, they generally provide some access to abutting property; much more than would be provided by a primary arterial. The collector streets are typically two to four lanes wide. Their function is to collect trips from the various adjacent properties and bring them to either major or primary arterial streets for longer trip purposes. They provide for continuity with local streets. The last category is the local street system whose primary function is to serve adjacent properties and provide links to collector streets.

It is very difficult to do an evaluation of the existing surface street system in the Mission Valley community. The primary arterial in the Valley (portions of Friars Road) functions smoothly most of the time because there are few intersections and minimal driveway access. On the other hand, the major streets in the area are not built to major street standards at this time and are experiencing congestion, especially during the peak-hour periods. This congestion is both a function of incomplete or undersigned major streets, and the congestion on the freeways during peak hours causing backup onto the surface street system.

In addition, Mission Valley has several unique traffic generators that tend to overburden the surface street system during certain periods of the day or year. These include San Diego Jack Murphy Stadium (overloads Friars Road) and Mission Valley and Fashion Valley Shopping Centers (to put excessive amounts of traffic onto the adjacent surface street system during peak shopping periods). The San Diego Jack Murphy Stadium is expected to generate even more traffic in the future as a result of seating capacity increases and as more events are scheduled and the attendance at events increases. In addition, the traffic on Friars Road is expected to increase from the present 33,000 to 75,000 vehicles daily if and when full development adjacent to the stadium occurs. A separate special study of stadium access and egress will be necessary, including the possibility of additional grade separated facilities, to accommodate future traffic. As the Valley continues to grow, the existing substandard surface street system will be continually called upon to handle greater and greater traffic demands. The existing street volumes (1983) are indicated on the **Traffic Flow Map** (**Figure 11**).

Although Mission Valley is readily accessible by freeway, travel to specific points within the community by means of the surface street system can be extremely difficult during the peak hours. Several factors contribute to the traffic congestion problem in Mission Valley. These factors include:

1. Rapid Growth of Commercial Development

The freeway has greatly influenced commercial development in Mission Valley. The five freeways that serve the Valley are I-5, I-8 and I-15 together with SR-163. Construction of these freeways has dramatically increased accessibility to the Valley from all parts of the San Diego region.

2. Increased Freeway Access

Better freeway access to the Valley coupled with the rapid growth of attractors within Mission Valley has far exceeded the expansion of the supporting surface street system. This lack of an up-to-date surface street system has caused congestion during peak hours in the Valley. In the morning and noon peak hours, the congestion occurs on the freeways as workers living in other communities commute to jobs in the Valley, while in the evening the surface street system backs up. The evening congestion is due to the backup of cars waiting to get on the freeways, plus motorists coming into the Valley to frequent the restaurants, bars, shops and theaters after work.

3. Gaps in the Surface Street System

These gaps exist for a variety of reasons. In some cases they exist because off-site improvements were not required from existing development. In addition, major sections of the Valley, as pointed out earlier, are undeveloped or are in extractive uses and therefore, normal road improvements have not been required. Gaps result in out of directional travel.

These problems, together with the reduction of public funding at the federal and state level, have resulted in an undue proportion of region-wide traffic passing through Mission Valley. Completion of 52 and 125 should help redirect some of this regional throughtraffic.

4. Flooded Streets

These are a potential seasonal problem. The streets usually affected during heavy storms include Fashion Valley Road, Mission Center Road, Stadium Way, Camino de la Reina, San Diego Mission Road and the private Avenida Del Rio.

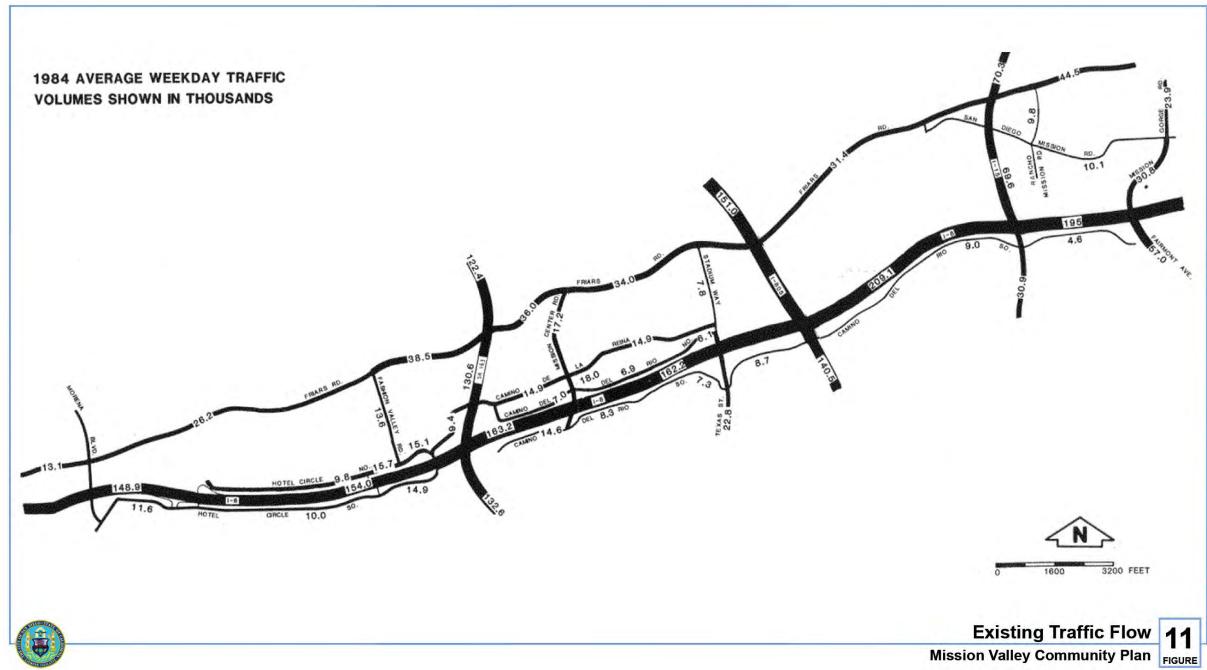
Accidents

The City of San Diego maintains current accident rates for all primary arterial, major, and collector streets within the City as well as high accident intersections. These rates are generally based on accidents per million vehicle miles including intersections. This rate is determined using the number of accidents that occur on any given street, the volume of traffic that particular street carries, and the distance between intersections. Only one street segment in Mission Valley has had an accident rate that exceeded the citywide accident rate by more than 100 percent; that was Friars Road between Ulric Street and Mission Center Road. Only two intersections in Mission Valley are ranked in the top 50 on the citywide list of problem intersections. The sixth ranked intersection is 40th Street (future I-15) at Camino del Rio South while Camino del Rio South at Texas ranked 38th. Both of these intersections are currently being rebuilt by Caltrans as part of a freeway improvement program. Even with the proposed

improvements some facilities will experience congestion during peak periods. In many cases this is because existing development precludes improving existing streets as much as would be desirable. At other locations, topography or interchange spacing limits what can be done to improve capacity.

Congestion is anticipated on Friars Road, (Fashion Valley Road to Mission Center Road, and Mission Village Drive to Mission Gorge Road), Hotel Circle North (near Fashion Valley Road), Hotel Circle South (east of the Hotel Circle ramps), Camino del Rio South (west of Mission Center Road and near the I-15 interchange), and Mission Center Road (south of Camino de la Reina).

Transportation Design Criteria and Environmental Criteria


The design of a balanced transportation system, which implements the planning principles underlying the development of Mission Valley, requires re-evaluating present transportation practices. The assumption is that better control over land use, along with implementation and provision of economic and social balance within the community, make new approaches possible to traditional problems of trip generation, distribution and route assignment. This allows better integration of the transportation facility design with other land use elements of the community.

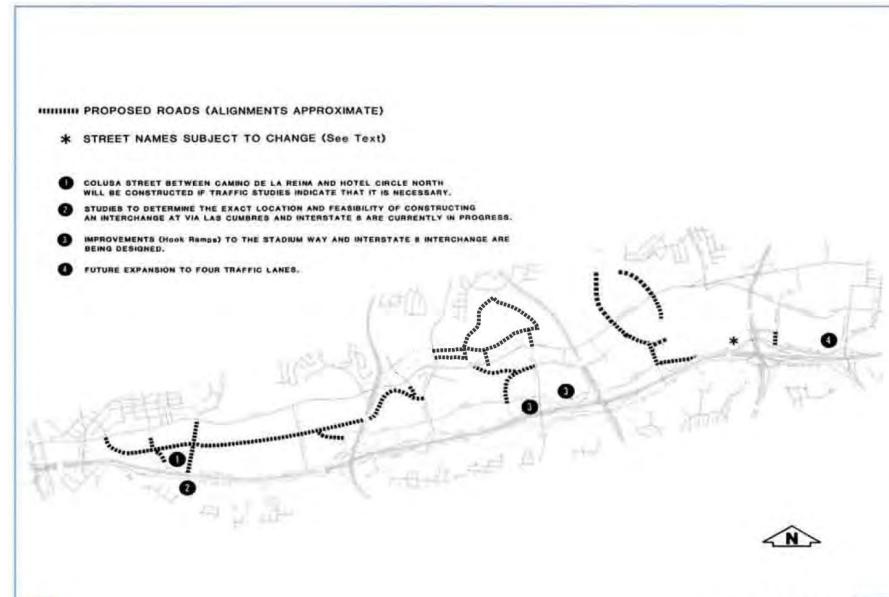
The design of the transportation system is conceptualized in two ways: first, as a flow of people and goods linking specific centers of activity; and second, as a physical structure-occupying horizontal and vertical space. In dealing with the flow of people and goods between centers of activity, analysis of basic trip behavior and travel motivation is required. Preliminary analysis of the Mission Valley community therefore, begins by examining travel behavior at the household and workplace level. The distribution of trips was considered over all subsystem networks simultaneously. This was accomplished by estimating the trip distribution, trip length, travel time, and distribution patterns, and were developed to reflect expected home base travel behavior within the Mission Valley community.

Non-home based or workplace trips were distributed based on activity center characteristics, service areas, and urban goods (products and services) flow requirements. In addition, special attention was given to the assignment of trips with the unique trip generators of Mission Valley such as the regional retail centers and the stadium.

The physical shape of transportation facilities should complement the adjoining communities. The use of standardized rigid physical design concepts should be avoided short of demonstrable safety or hazard problems.

In an attempt to create a balance between development intensities, the vehicular traffic they generate and the capacity of the street network within Mission Valley, two land use plans were used to forecast future vehicle trips. They differ only in the assumed development of several parcels of city-owned land adjacent to San Diego Jack Murphy Stadium. Portions of the stadium were analyzed for potential future vehicle trips. They differ only in the assumed development of several parcels of City-owned land adjacent to San Diego Jack Stadium. Portions of the stadium were analyzed for potential future development as commercial-office and retail uses.

The traffic forecast for the horizon year (buildout) development in Mission Valley was based on several regional land use and network assumptions. The San Diego Association of Governments (SANDAG) Series V, Year 2000 Land Use projections were assumed for the area outside of Mission Valley. In the regional street and highway network it was assumed that State Route 52 (SR-52) would be completed east to State Route 67 (SR-67). Construction of I-15 would be finished north of I-8, as would I-15 between I-8 and I-5, and SR-125 between I-8 and SR-56 in Poway. In addition, an access road from University Hospital to Hotel Circle South was assumed in Bachman Canyon. Testing the stadium development did not change any of the recommendations for street classifications shown on the proposed future street system. New streets and improved facilities are indicated on the **Recommended Street Classification Map** (**Figure 13**). Despite these improvements, some areas of the Valley will experience congestion during peak periods. The projected level of congestion is considered acceptable near freeway interchanges in partially built communities like Mission Valley.


Some roadways north of Friars Road will need to be developed as part of the Mission Valley transportation system. These roads will be located in those areas between SR-163 and I-15, which are currently involved in sand and gravel extraction. The roads will be implemented at the time of each individual area's proposed change of land use from sand and gravel extraction to urban development, once resource depletion has occurred.

OBJECTIVE

• To facilitate transportation into, throughout and out of the Valley while seeking to establish and maintain a balanced transportation system.

PROPOSALS

- Close gaps and correct other deficiencies in the surface street system.
- Reduce the effects of floods on the transportation network.
- Encourage the use of the surface street system for intra-Valley trips.
- Provide adequate access to developable and redevelopable parcels.
- Encourage the rapid completion of the total freeway system for which will provide relief to the Mission Valley circulation system.
- Reduce conflicts between vehicles, bicycles and pedestrians.
- Improve traffic control techniques used during events at San Diego Jack Murphy Stadium.
- Establish alternative methods of transporting capacity stadium crowds, especially now that the seating capacity of San Diego Jack Murphy Stadium has been expanded.

Proposed Roads Mission Valley Community Plan FIGURE

DEVELOPMENT GUIDELINES

REGIONAL HIGHWAYS

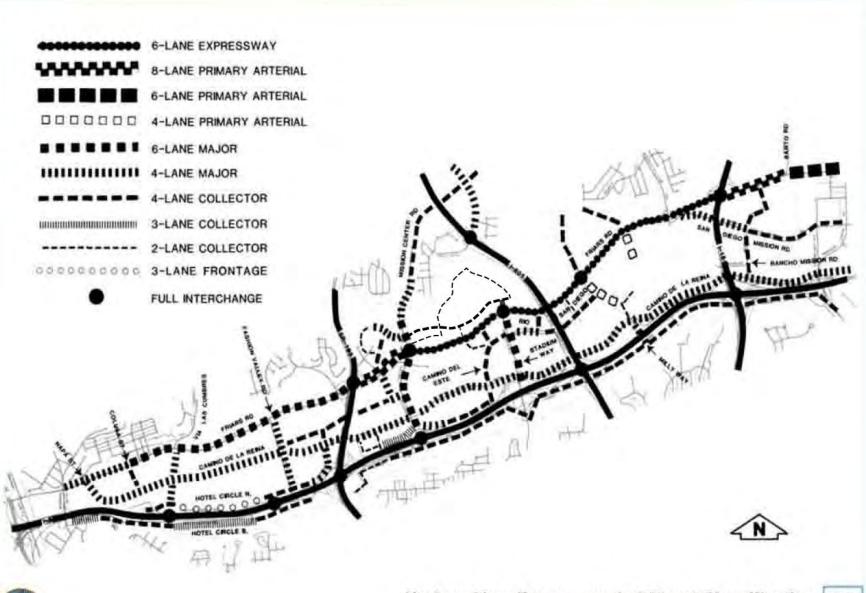
- Complete SR-52 and SR-125 to provide an alternate route from East San Diego County to North San Diego County, and from Southeast San Diego County to Downtown San Diego (relieving SR-94), and to points north (relieving I-8).
- Expedite construction of I-15 from Friars Road to SR-52 and its interchange with SR-163.

Primary Arterials

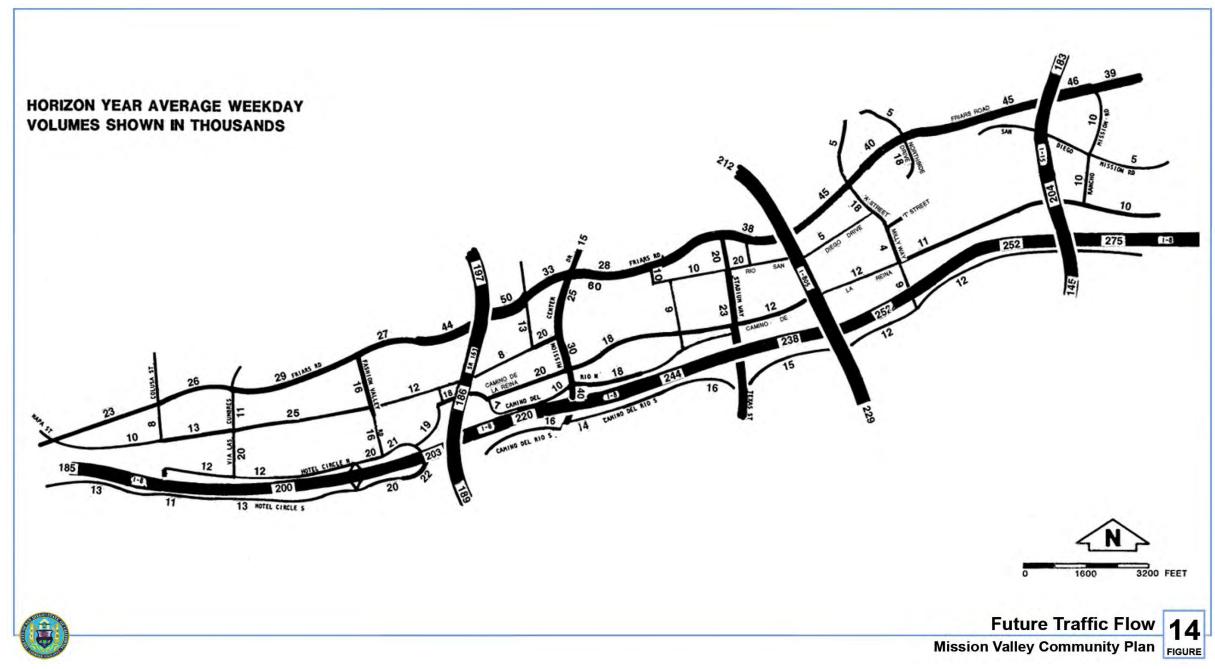
• Any intersections with access to Friars Road from SR-163 to Mission Gorge Road should be restricted to right-turn in and out only. The intersection at Frazee Road, at Santo Road, and at Dos Pueblos Drive may require prohibition of left-turn ingress and egress when volumes exceed City Street Design Standards on Friars Road. Fenton Parkway should be a four-lane primary arterial between Rio San Diego Drive and Camino del Rio North (future Camino del la Reina). Ultimately, Friars Road between the northbound ramps of SR-163 and Mission Center Road must be widened to eight lanes.

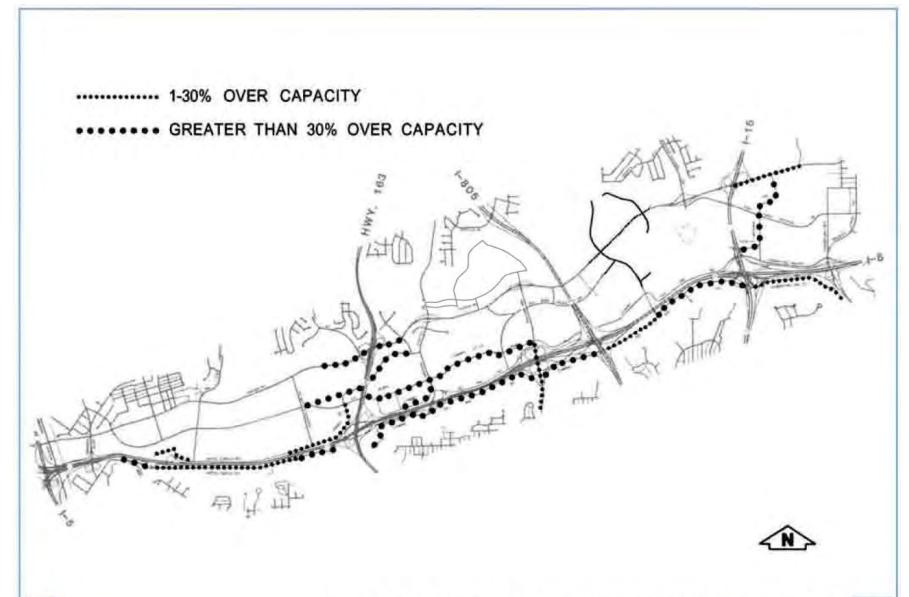
MAJOR STREETS

- Camino de la Reina Camino del Rio North should be a four-lane major street over its entirety from Napa Street/Friars Road on the west to Fairmount Avenue on the east. Existing sections west of Mission Center Road, west of Qualcomm Way, and east of Fenton Parkway should be improved to major street standards.
- Frazee Road needs to be four lanes south of Friars Road.
- Friars Road needs to be restriped as a six-lane major street from Colusa Street to Fashion Valley Road to accommodate the forecasted horizon year volume.
- Fenton Parkway should be constructed as a six-lane major street north of Rio San Diego Drive.
- Rio San Diego Drive should be constructed as a four-lane major street from Rio Vista Avenue to Rio Bonito Way.
- Qualcomm Way will need to be six lanes south of Friars Road and four lanes when
 extended north of Friars Road. Public streets of adequate capacity to connect Qualcomm
 Way and Mission Center Road with I-805 at Phyllis Place will be needed when urban
 development occurs north of Friars Road between Mission Center Road and I-805.
 Provision of these streets will not be considered until the sand and gravel operation has
 ceased and resource depletion has occurred. Additionally, the exact alignment will be


determined by detailed engineering studies, by agreement between the City and the property owner at the time urban development takes place on these parcels.

- Mission Center Road will need to be a six-lane major street from Camino del Rio North to Friars Road.
- Colusa Street should be constructed as a four-lane collector street between Friars Road
 and Camino de la Reina. Depending upon the intensity of current and future development
 projects and upon results of traffic studies pertaining to these projects, it may be necessary
 to construct Colusa Street as a four-lane major street between Friars Road and Camino de
 la Reina.
- Rancho Mission Road should be extended as a four-lane collector south across the San Diego River to Camino de la Reina. Although forecast for more than 10,000 ADT, present development limits widening the street to major street standards.
- A four-lane collector street will be needed north of the river between Frazee Road and either Fashion Valley Road or Camino de la Reina.
- A collector street will be needed between Rio San Diego Drive and the existing Friars Road underpass (located between Mission Center Road and Qualcomm Way).
- An access road to the stadium parking lot from Fenton Parkway should be constructed to alleviate congestion during Stadium events and from future development on City-owned land.
- Within Quarry Falls and paralleling Friars Road, Quarry Falls Boulevard should be constructed as a four-lane urban collector to provide vehicular and pedestrian east-west connection between Mission Center Road and Qualcomm Way. Diagonal parking should be permitted on the south side of the roadway within the Village Walk and commercial portions of the Creekside District of Quarry Falls to create the sense of a busy urban street and compliment the pedestrian activity of the Village Walk District. A Class II bikeway should be constructed on both sides of the roadway.
 - Qualcomm Way should be extended to Quarry Falls Boulevard to provide a direct
 connection to development within the Quarry Falls Specific Plan area. It should be
 constructed as a six-lane urban major roadway. Class II bike lanes should be
 constructed along both sides of the Qualcomm Way extension and should connect to
 existing Qualcomm Way bike lanes.
 - Russell Park Way should be constructed as a two-lane collector street to provide access
 to Quarry Falls from Friars Road. Class II bikeways that connect to existing bike lanes
 on Friars road should be provided on both sides of the street. Russell Park Way should
 transition to a four-lane urban collector as it approaches Quarry Falls Boulevard, at
 which point diagonal parking will be allowed for on the west side of the roadway.


- Via Alta should be constructed as two-lane collector to provide north-south travel through Quarry Falls. Class II bike lanes should occur on both sides of Via Alta; parking should not be allowed.
- Franklin Ridge Road should be constructed as a north-south two-lane collector street through Quarry Falls. Class II bike lanes should be provided on both sides of the street. Parking should not be allowed.
- CREEKSIDE PARK LANE SHOULD BE CONSTRUCTED AS A TWO-LANE COLLECTOR, CONNECTING MISSION CENTER ROAD AND VIA ALTA WITHIN QUARRY FALLS. PARALLEL PARKING MAY BE PROVIDED ON BOTH SIDES OF CREEKSIDE PARK LANE.


INTERCHANGES

- Modify the SR-163 and Friars Road interchange to increase its capacity.
- Hotel Circle and the I-8 interchange will need to be improved where the ramps intersect Hotel Circle North and Hotel Circle South, which will require additional right-of-way along the north side of Hotel Circle North, east of the ramps.
- Texas Street/Qualcomm Way and I-8 interchange: provide new westbound on- and off-ramps at Camino del Rio North, east of Qualcomm Way; and new on- and off-ramps of Camino de la Reina west of Qualcomm Way. Eliminate the existing signalized intersection and off-ramp directly north of the stadium overpass.
- Construct a new interchange at Hotel Circle North and South and the southerly extension
 of via las Cumbres, which will require the realignment of Hotel Circle North and Hotel
 Circle South.
- The Presidio interchange at I-8 should be modified by closing the eastbound off-ramp (Note: Depending upon the intensity of current and future development projects and upon the results of traffic studies pertaining to those projects, it may become necessary to.

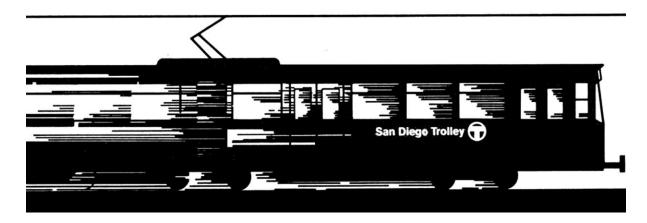
Horizon Year Recommended Street Classification 13

Street Name Changes:

. The existing section of Camino de la Reina between Hotel Circle North and Avenida del Rio should be renamed Hotel Circle North.

. The existing and proposed section of Camino del Rio North between Stadium Way and Fairmount Avenue should be renamed Camino de la Reina.

change to CAMINO DE LA REINA


Section of Camino de la Reina change to HOTEL CIRCLE N.

PUBLIC TRANSIT

The long-term development of Mission Valley as a vital regional employment and residential community may be severely impacted by total reliance on the automobile. In order to accommodate projected development it is essential that public transit corridors and stations be provided. Use of public transit (alternative transportation systems), specifically an LRT line, could go a long way in preserving the vitality of Mission Valley. With proper studies and the determination of the transportation impacts the LRT and other transit systems will have on the surface street system, it may be possible to grant some limited development intensity increases. Mission Valley development, already severely limited by the vehicular transportation system, could be offered new development opportunities. Through cooperation among the various private interests, and working together with government, a new transportation system could be developed that would ensure the long term viability of Mission Valley as a major transportation hub of the San Diego region.

Light Rail Transit

An essential element of the long-range transportation solution for Mission Valley is the extension of the regional LRT system. The LRT provides an alternative method of moving commuters through the Valley. An extension could include a line running from downtown, through the Valley to the vicinity of the Stadium with future extensions to the east county area and north to Escondido (via I-15). Preliminary studies indicate that ridership in the Valley would be relatively high. The LRT corridor may also provide opportunities for higher intensity of development as described in the **Development Intensity Element**.

The LRT should be incorporated along an east-west alignment with an exclusive right-of-way, separated as much as possible from cross-traffic. The MTDB on May 3, 1984, adopted a preferred LRT alignment through Mission Valley. The alignment is located south of Friars Road and north of the river corridor except for a segment between SR-163 and Stadium Way which is located to the south of the river corridor. This alignment provides the greatest potential access (based upon a 1,000-foot radius or —walking-distance") and, as much of the property is undeveloped, the best possibility for securing the necessary right-of-way. The precise alignment is subject to further study and development project proposals or subdivision approvals. The final alignment of the LRT, as ultimately constructed, is subject

to precise engineering studies and additional environmental studies by MTDB to determine any mitigation necessary resulting from any possible encroachments into wetland habitat areas. It is anticipated that the ultimate alignment of the LRT will preclude encroachment into wetland habitat areas to the maximum extent possible. Since the preferred alignment as adopted by MTDB is incorporated in this Plan document it will not be necessary to process a Plan amendment pertaining to the ultimate alignment of the LRT.

Transit stations or shops should be located at approximately one-half mile intervals along the LRT route. Station locations should be coordinated with bus routes and stops. Preferred locations are those at or near crossroads and at major activity centers. Activity centers include the major retail centers, large office buildings or complexes, and high-density residential areas.

Public Bus System

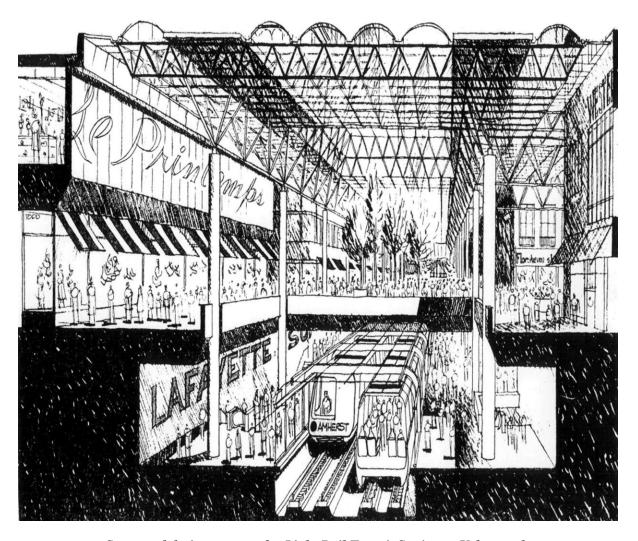
Mission Valley currently functions as a major destination and transfer point for bus routes serving the San Diego region. In November 1980, the Fashion Valley Transit Station opened in the Fashion Valley Shopping Center. This passenger boarding and transfer facility serves over 4,000 transit riders per day. 77 percent have an origin or destination at Fashion Valley; the remaining 23 percent are connecting with trips to and from either another point in Mission Valley or outside the community.

Since January 1980, San Diego Transit (SDT) has had an informal agreement with the management of both Fashion Valley and Mission Valley Shopping Centers to allow commuters to park there. Currently this has only appealed to a small number of commuters. If it becomes a major park-and-ride Center these agreements maybe reviewed by the Fashion Valley and Mission Valley Shopping Centers to avoid interference with customer parking. Currently, commuters wishing to park in these areas must contact security and park in specially designated areas. No specific number of spaces are set aside for this particular use. The park-and-ride is not advertised or promoted by SDT but is allowed to occur on a limited informal basis.

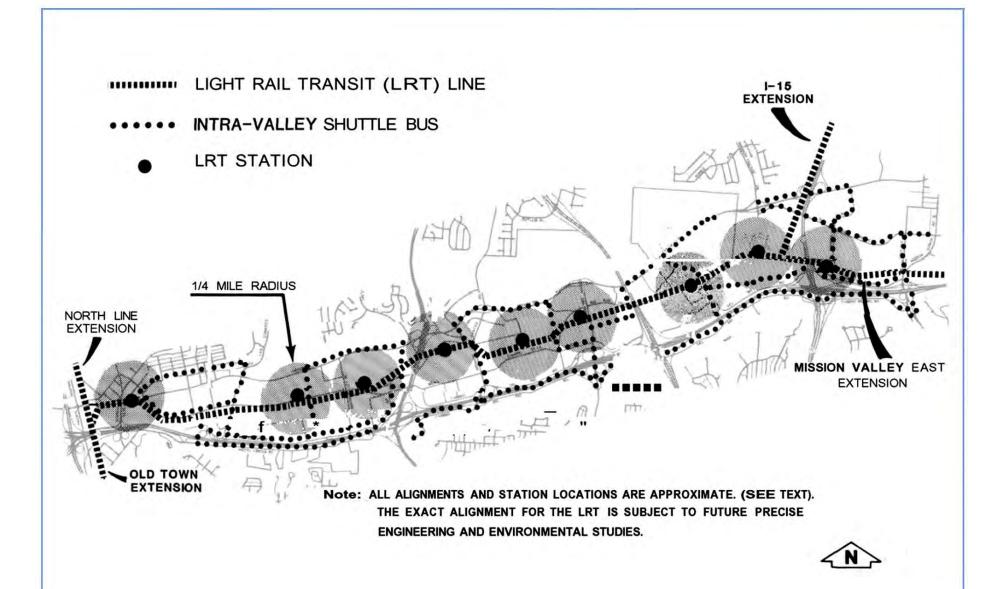
Bus service provided to Mission Valley by SDT appears excellent in terms of the amount of route coverage and headways (time between buses) provided. However, since the Valley is itself an urban center with many regional attractions, the transit system utilization system is comparatively poor. At present, there are seven bus routes serving Mission Valley. They include: Route 80 - Pacific Beach to San Diego State via Mission Beach, Fashion Valley and Mission Valley Shopping Centers; Route 43 - Downtown San Diego and Allied Gardens via Fashion Valley Shopping Center, Mission San Diego De Alcala and Grantville; Route 6 - North Park to Point Loma via Mission Valley and Fashion Valley, Hotel Circle and Old Town; Route 20 - Downtown San Diego to Rancho Bernardino via Fashion Valley; Route 47 serves Fashion Valley via Genesee; Route 16 - College Grove Shopping Center to Mission Village via Lemon Grove, Market Street, Downtown, Fashion Valley and Mission Valley Shopping Centers, and Route 25 - Downtown San Diego to Clairemont via Mission Valley.

San Diego Transit also operates shuttle bus service for football and baseball games at the stadium; based upon the 1981 seasons, SDT carried approximately five percent of the overall gate attendance. This compares to approximately two percent of all the trips in the region. In addition, private charter bus lines transport a portion of the overall gate attendance to the football and basketball games. Since the stadium parking area can accommodate 300 buses, a significant portion of the gate attendance can be potentially transported by both SDT and private charter bus lines. A much higher transit ridership could be achieved with more buses and a higher level of service. This would, however, require additional parking area to be reserved for the exclusive use of buses.

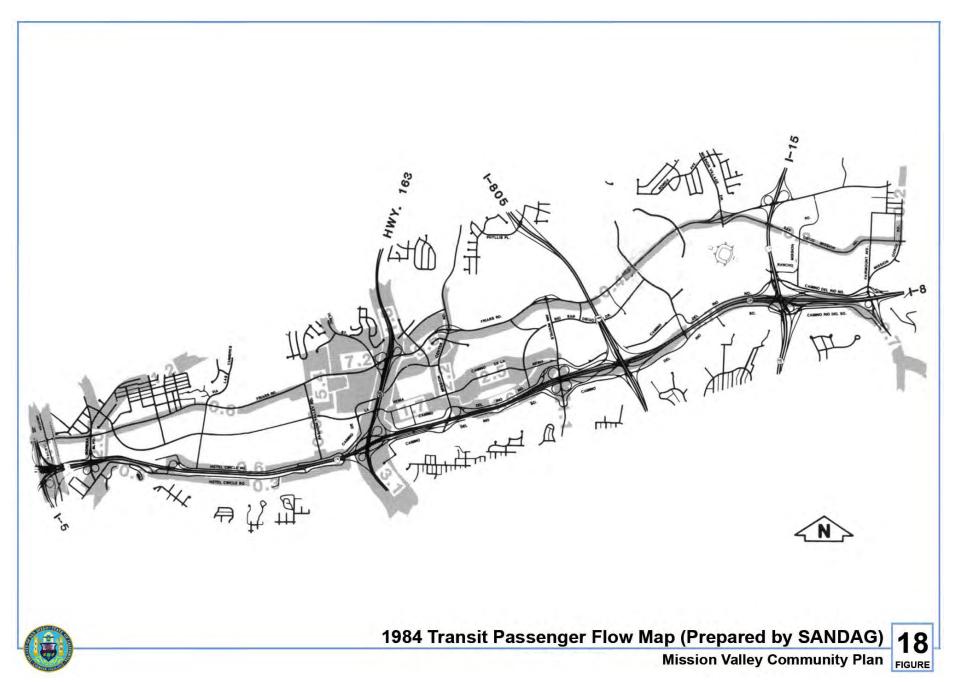
The number of Transit routes coming into the Valley is relatively significant. The routes have been designed to mix trips throughout the region and to provide accessibility within Mission Valley. They serve the major destination points and transfer facilities. Express routes serve both the north-south and east-west freeway corridors while local routes connect to neighborhoods on all sides of the Valley. San Diego Transit believes that additional routes, additional stops and modification of the routes for Mission Valley could substantially increase ridership within the Valley area. By providing a more complete bus system in the Valley, trips to the offices located on the south side of I-8 or office buildings east of Mission Valley Shopping Center could greatly increase transit ridership in the Valley. Public transit as a solution to some of the Valley's traffic problems can only be achieved with improved bus access, reduction of traffic congestion to reduce delays, safe pedestrian access to stops, and an increased number and size of red curb bus stop zones.

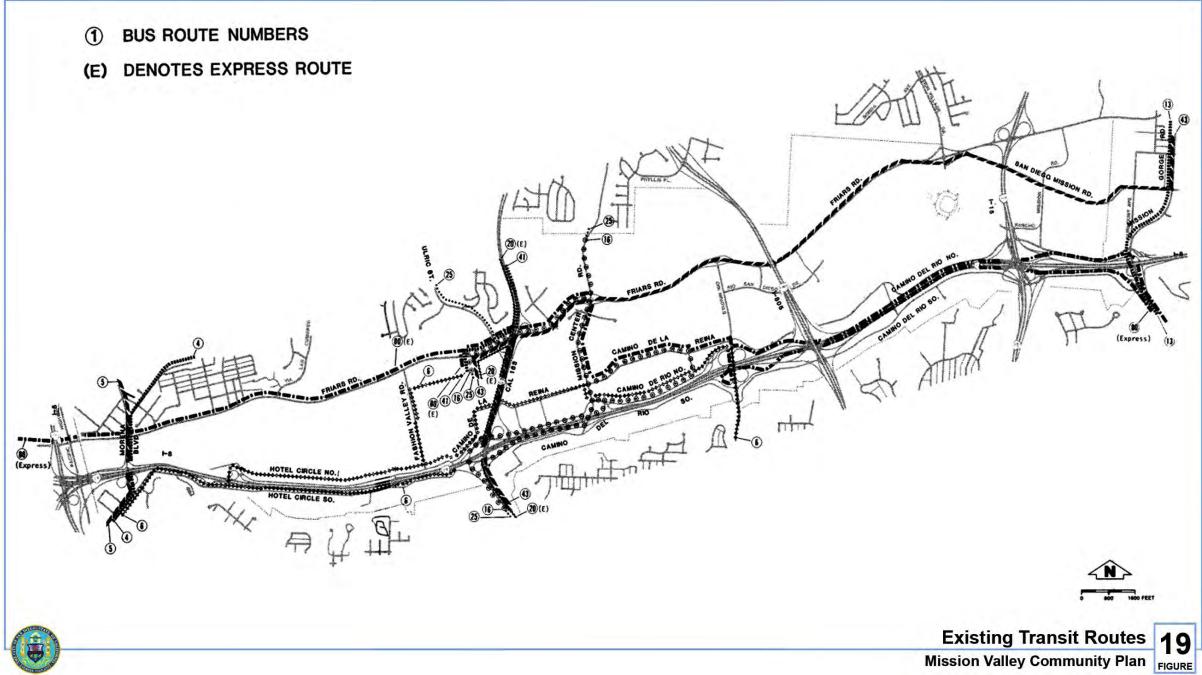

Intra-Valley —PeopleMover" System

A —peoplemover" system generally handles trip distribution within compact areas. These systems usually collect trips from major transportation systems (freeways, streets, transit terminals) and distribute them within a community such as Mission Valley. The use of such a system in the Valley could help alleviate congestion on the surface street system. Since the configuration of the Valley precludes the compactness of development necessary to foster strong pedestrian movement patterns, the existence of —people mover" or private intra-Valley transit system becomes a viable substitute for short distance vehicle use and, as a result, removes trips from the surface street system. The substitute is particularly desirable for the movement of shoppers between retail centers, and the movement of workers, clients, and visitors between offices, restaurants, and entertainment or recreation attractions.


The initial system in the Valley could consist of buses utilizing the surface street system to connect the various activity centers. This may eventually be replaced by a more sophisticated system (perhaps even an elevated guide-way) as part of major new development projects in the Valley. The establishment of such a system should be initiated by property owners in the Valley, and administered through the formulation of a transit authority. The routes would be determined some time in the future. **Figure 16** indicates how such a system might interface with the LRT.

OBJECTIVES


- Encourage the use of public transit modes to reduce dependency on the automobile.
- Provide opportunities for individual property owners to achieve a higher use of their property through support of more efficient transportation modes.
- Provide financing for public transportation facilities through both public and private sources including the use of assessment districts.
- Provide mitigation for traffic generation impacts through the provision and/or financing of public transportation facilities on a project-by-project basis.



Suggested design concept for Light Rail Transit Station at Urban node

PROPOSALS

- Improve responsiveness of the City's bus system to Valley needs.
- Encourage private bus, taxicab and shuttle services to supplement the public system.
- Encourage a higher level of public transit service to the stadium during scheduled events.
- Extend the LRT line from downtown to Mission Valley and ultimately to Escondido via the I-15 corridor and to the East County via the I-8 corridor.
- Establish methods of financing and phasing public transit improvements.

DEVELOPMENT GUIDELINES

- Implement all means of reducing dependency on the automobile. In addition to public transit, bicycles, and new pedestrian facilities, private development should be encouraged to participate in the following modes of transportation and Transportation Systems Management Program (TSMP) techniques:
 - a. Van-pooling
 - b. Car-pooling
 - c. Park-and-ride (public and private)
 - d. Bicycle park-bus ride (public and private)
 - e. Piggyback bicycle-bus transportation
 - f. Jitney Service
 - g. Taxis
 - h. Employer subsidies of transit passes for employees
 - i. Ridesharing
 - j. Flextime (staggered work hours)
 - k. Preferential parking programs
 - 1. Any other current TSMP techniques which are available and may be applicable at the time of project review
- Achieve greater public transit responsiveness to Valley needs by:
 - a. Encouraging SDT and MTDB to study the possibility of locating additional bus destination transfer facilities in Mission Valley.

- b. Encouraging property owners to establish a shuttle bus or intra-Valley —people mver" system (administered through a transit authority) to serve major facilities in Mission Valley. The new routes should link the offices on the south side of I-8 with proposed residential areas north of Friars Road, and new residential developments with commercial areas. In addition, an intra-Valley shuttle should connect with the regional transit points in the Mission Valley/Fashion Valley shopping centers.
- Encourage greater public use of the transit system to events at San Diego Jack Murphy Stadium by:
 - a. Establishing more pickup points in heavily congested areas outside Mission Valley, preferably —park-and-ride" locations.
 - b. Setting parking fees high enough to encourage people to car-pool or use buses.
 - c. Developing faster ingress and egress routes and policies for buses.
 - d. Providing greater numbers of buses which leave at various times from several locations.
- Implement the Transit Route Plan developed by the MTDB.
- Eliminate on street parking at key destinations within the community to provide safe bus turnout and stop areas and design transit related improvements into those streets which are designated as transit routes.
- Provide transit stops which are:
 - a. Integrated into buildings, pedestrian areas, or urban plazas.
 - b. Sheltered from sun, wind and rain.
 - c. Highly visible to pedestrians and riders through signage, color, selection and structural design.
 - d. Located at major activity centers.
 - e. Carefully integrated into the street design through additional rights-of-way requirements, special transit shelter design, landscaping, security lighting, ornamental paving and other appropriate design techniques.

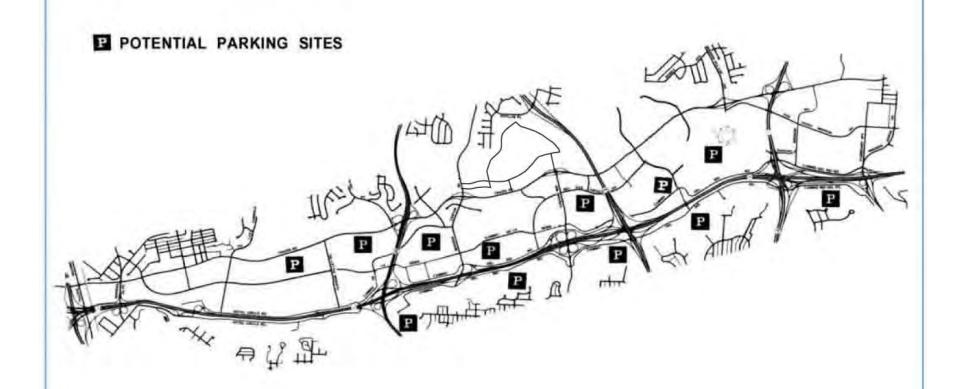
PARKING AND GOODS DELIVERY

On a project basis, parking supply and demand are often not well matched, leading to some local parking problems.

Three large parking lots exist in Mission Valley. Two of these are free—Fashion Valley Shopping Center (5,552 spaces) and Mission Valley Shopping Center (6,681 spaces). San Diego Jack Murphy Stadium has approximately 17,000 pay spaces. Usually, this supply of spaces is under-used. These lots are full only a few days a year—during the holiday season at the shopping centers, and during event sellouts at the San Diego Jack Murphy Stadium.

The demand for on-street parking spaces illustrates that the deficiencies are found at or near major office complexes, restaurants, automobile dealerships and in residential areas. Additionally, the tendency to develop parking spaces in a piecemeal fashion (dividing the areas on the basis of ownership) often results in adjacent parking areas in which one lot is full or overcrowded while the other lot is nearly empty. Comprehensive development of parking areas would result in greater efficiency and use.

A recent trend of increased employee density may require re-evaluation of parking requirements, especially for office employee parking. It is apparent that the crowding of employees into smaller spaces is occurring. Inflation in construction, land acquisition and leasing costs, is a major contributing factor to this trend.


A direct result of inflation is the increase in the number of fee parking facilities, the policy of charging for parking helps defray the considerable cost of providing parking spaces. However, people will seek free on-street parking to avoid parking fees. This accounts, in part, for the existing on-street parking demand in the vicinity of pay parking facilities.

A possible solution to this problem is to create special parking districts. Certain areas within the community could establish parking reservoirs to be used by a number of businesses or buildings and be served by a mode of public transit. Possible locations for these consolidated or shared parking areas are shown on **Figure 20**. Shared or consolidated parking may provide an economical alternative to individually provided on-site parking, particularly on small parcels or those with floodway or hillside review zoning.

Goods delivery is a necessary and indispensable function in Mission Valley and, as such, is an integral factor in the circulation system. Delivery vehicles are generally trucks and vans. Conflicts between these vehicles and through traffic occur when such vehicles park on the streets during deliveries, blocking one or more traffic lanes.

OBJECTIVES

- Provide adequate off-street parking for all new development in Mission Valley.
- Coordinate and combine parking areas and goods delivery to provide a more efficient use of land area.

PROPOSALS

- Discourage on-street curbside parking.
- Minimize conflicts between driveways and traffic flow.
- Encourage more efficient use of existing parking facilities, including the San Diego Jack Murphy Stadium parking lot.
- Provide a goods delivery system which doesn't conflict with other elements of the circulation system.
- Provide adequate, well-designed off-street parking facilities.

DEVELOPMENT GUIDELINES

Off-Street Parking

- Provide attractively designed parking structures or underground facilities to reduce the
 area of a site which must be devoted to parking. Auto-oriented uses such as service
 stations and drive-thru facilities should be integrated into the design of the parking
 facilities.
- Driveways should not be permitted along primary arterials and major streets where lower classification streets are available to provide adequate access. If driveways along major streets cannot be avoided, then design parking facilities to minimize the number of driveways needed. Private access roads may be used for combined parking areas.
- Design parking facilities to ensure proper access and specify if for use by residents, employees, customers, visitors, goods deliveries or the handicapped.
- Modify the off-street parking requirements contained in the zoning regulations by developing comprehensive zoning regulations tailored specifically to the Mission Valley community. Parking requirements should apply and be enforced throughout the entire planning area. Exclude on-street parking from consideration for meeting these parking requirements.
- Provide landscaping in parking areas in the form of mature trees and screening hedges and shrubs. Use native, or drought-resistant plants, and compatible vegetation along the river. Parking area landscaping should consist of large canopied trees and parking area edges should be mounded and be landscaped with shrubbery.
- Provide for safe and convenient pedestrian movement both within and to and from parking areas. Pedestrian ways should be incorporated into the design of parking areas so as to provide pedestrian passage through parking areas to pedestrian destinations (buildings, streets, etc.)

- Design parking facilities to be adequate for both initial development and future expansion of land uses in terms of size and intensity. For example, initial parking facilities could be surface lots capable of eventually accommodating parking structures. Surface lots could also reserve land for future development and provide multi-purpose parking areas and urban plazas through the use of decorative paving, kiosks, and other pedestrian and visual amenities.
- Encourage efficient use of parking resources through development of a comprehensive Valley-wide parking program to include:
 - 1. Off-site parking facilities to efficiently accommodate parking overflows in nearby areas.
 - 2. Sharing of parking facilities by various non-competing uses.
 - 3. Staggering user hours.
 - 4. Providing parking districts by identifying parking facilities that can serve several business activities in the same area.

ON-STREET PARKING

- Eliminate on-street parking along primary arterial streets.
- Widen streets where necessary, to accommodate the needed number of traffic lanes based on transportation needs forecasts for Mission Valley.
- Provide acceleration and deceleration lanes, turning pockets and bus lanes, if necessary.
 Paint curb areas red to reduce curb parking at intersections and along existing major streets and collector streets where on-street parking is currently allowed.

GOODS DELIVERY

- Discourage the use of public rights-of-way for the loading and unloading of goods by providing adequate delivery areas.
- Provide off-street loading and unloading bays where possible for new commercial and recreational developments. Recommended standards require at least one 12-foot by 40-foot bay per 40,000 square feet of any fraction thereof of net usable floor area. Incorporate these requirements into the appropriate zoning regulations.

BIKEWAYS

Bikeways are classified into three general categories based on the degree or extent of their improvements, as follows:

Bicycle Path

A completely separate right-of-way for the exclusive use of bicycles. (Class I)

Bicycle Lane

A restricted right-of-way located on the paved road surface the traffic lane nearest the curb, and identified by special signs, lane stripping, and other pavement markings. (Class II)

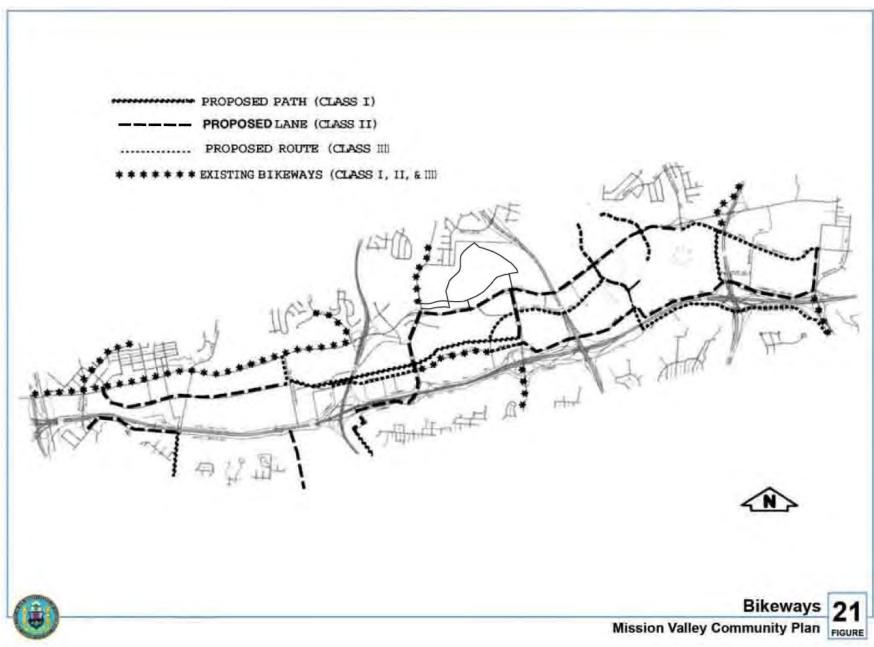
Bicycle Route

A shared right-of-way designated by signs only, with bicycle traffic sharing the roadway with pedestrian and motor vehicles. (Class III)

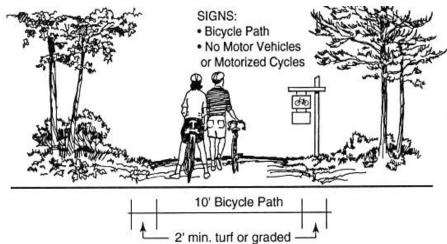
Mission Valley contains a major segment of the citywide bikeway system. This regional bikeway, to be built in three phases, will extend from Quivira Way (Mission Bay) to I-15. Other proposed bikeways would connect Mission Valley with Hillcrest and Mission Hills.

Existing bikeway route in Mission Valley

OBJECTIVES


- Create an intra-community bikeway system which would provide access to the various land use developments within the Valley, and connect to the regional system.
- Encourage bicycle use in the Valley.

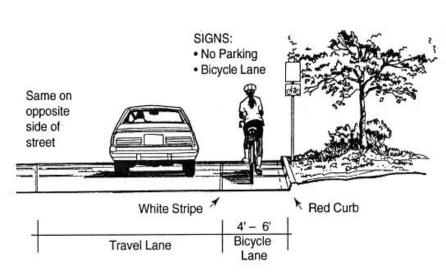
PROPOSALS


- Designate a community bikeway system as shown on Figure 21.
- Complete key elements of the regional bikeway system and connect it to adjacent communities.

DEVELOPMENT GUIDELINES

- Design bikeways to meet the minimum standards included in the current Caltrans Highway Design Manual and in the current City of San Diego Council Policy 600-4.
- Provide secure bicycle parking at activity areas, including transit stops, commercial areas and sports/recreational facilities.
- Provide lockers, shower and changing facilities at major developments in order to encourage the use of bicycles and bikeways by employees.
- Install bicycle sensitive signal detectors at signalized intersections along commuter routes.
- Utilize assessment districts and conditions placed on development permits to provide, among other improvements, bikeways.

BIKEWAY DESIGN SPECIFICATIONS

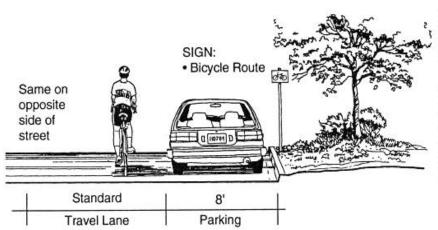


CLASS I

(Typical location - open space)

Bicycle Path:

A completely separate right-of-way for the exclusive use of non-motorized vehicles.



CLASS II

(Typical location - major street)

Bicycle Lane:

A restricted right-of-way located on the paved road surface alongside the traffic lane nearest the curb, and identified by special signs, land striping, and other pavement markings.

CLASS III

(Typical location - neighborhood street)

Bicycle Route:

A shared right-of-way designated by signs only, with bicycle traffic sharing the roadway with motor vehicles.

PEDESTRIAN CIRCULATION

Throughout its urban history, Mission Valley has developed with a strong automobile orientation. Pedestrian activity has been actively discouraged everywhere outside of the central malls at the two regional shopping centers. Such basic pedestrian amenities as sidewalks and crosswalks are found in only a few locations (usually within a residential development) and do not lead anywhere. There has in the past, been little or no effort to encourage or provide for this significant mode of transportation. As Mission Valley continues to develop as a major urban center, pedestrian circulation will become an increasingly important aspect of the overall circulation system for the community.

Walking is a form of transportation that must be provided for, especially in neighborhoods for short trips to local commercial and public facilities and in business areas where many shoppers congregate. Sidewalks, malls and similar spaces provide not only for pedestrian movement but also for childrens' play, socializing among residents, window-shopping, and sitting and watching. Congestion occurs on sidewalks in high activity areas, just as it does on streets. The inadequacy of pedestrian space creates inconveniences for those trying to pass through and those shopping or stopping to talk or look or rest.

A pedestrian circulation system for Mission Valley should be designed with the following characteristics as basic criteria:

1. Continuity

The pedestrian circulation system should achieve continuity by the incorporation of plazas, courts, and interior arcades connecting all pedestrian activities of major significance, the pedestrian system should also connect smoothly with other transportation components, thus providing a continuity in pedestrian scale between changing modes of movements. Visually, the pedestrian system can provide a sense of unity among adjoining buildings and strategically placed skyways can form effective gateways into development projects.

2. Convenience

A functional system should be convenient for the pedestrian (i.e., easy to find and use with a minimum of circulation level changes).

3. Safety

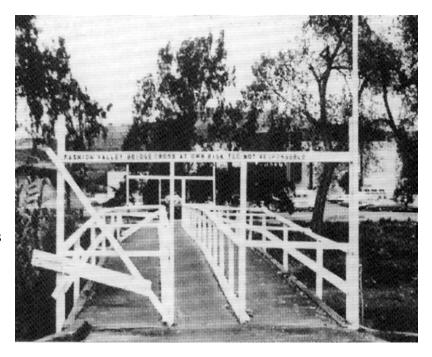

The pedestrian system, as designed and defined herein, is intended as a safe system of people movement kept apart from vehicular traffic.

4. Comfort

The entire system should be well lighted, spacious, and well maintained. The design should be orderly and the pedestrian needs emphasized in terms of walkways, furnishings and aesthetics.

5. Entertainment

Surprises, happenings, and exhibits can all be part of the total experience for people walking through the pedestrian circulation system. Arcades may contain retail shops, banks, brokerage offices, art galleries, information booths, kiosks, and special places for newsstands, vendors, and flower stalls. The courts can become exciting places for both children and adults to gather, eat or watch other people passing by.


Encourage pedways to avoid pedestrian/automobile circulation conflicts.

In many high-activity areas the sidewalks are narrower than required for pedestrians. Where pedestrian traffic is high and through vehicular traffic is light or can be moved to alternate routes or reduced by transit improvements, some street space should be converted into wider sidewalks, landscaped strips and sitting areas. Through traffic should be discouraged or eliminated to avoid conflicts which inconvenience drivers and pedestrians alike and which may increase accidents. In a high-density residential area with little open space, wider sidewalks and small plazas should be created to provide more usable space as well as to discourage through traffic.

Pedestrian walkways should be sharply delineated from traffic areas and set apart where possible to provide a separate circulation system. Separation should include landscaping and other barriers, and walkways should pass through the interiors of blocks wherever practical. Walkways that cross streets should have pavement markings and good sight distances for motorists and pedestrians.

Driveways across sidewalks should be kept to a practical minimum, with control maintained over the number and width of curb cuts. Barriers should be installed along parking lots to avoid encroachments on sidewalks, with adequate sidewalks, with adequate sight distances maintained at driveways. Truck loading should occur on private property rather than in roadways or on sidewalks, and sidewalk freight elevators should be discouraged.

Where streets are designed for high volumes or relatively high-speed vehicular traffic, adequate provision must be made for safe and convenient pedestrian crossings with bridge structures or tunnels if necessary. This is especially important in higher density residential areas. Wide streets should have adequately timed lights and median strips or islands at intersections to allow safe crossings. If grade separation of pedestrian and vehicular movement is necessary; the roadway

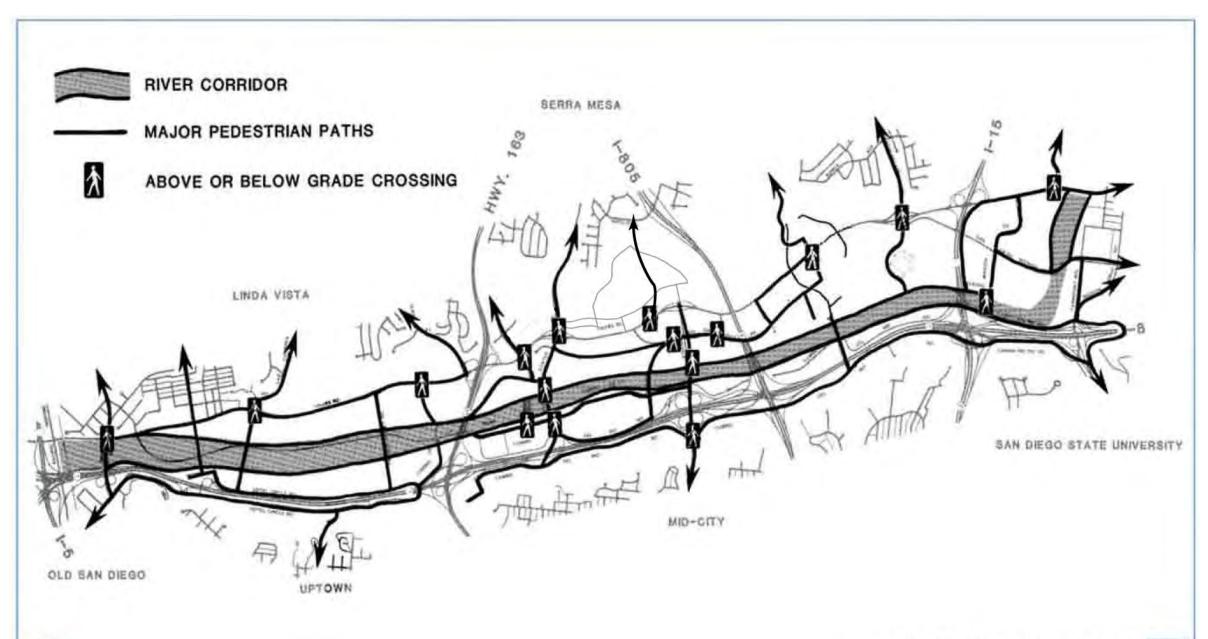
should be depressed to maintain continuity of pedestrian paths wherever possible. If a change in pedestrian level is required, ramps, escalators or elevators are usually preferable to stairs.

In order to reduce the hazards of traffic at night, and provide security from crime and other dangers, public areas should have adequate lighting. Although the need for lighting is general, special attention should be given to crosswalks, transit stops and to pathways in open space and around buildings. Care should be taken to shield the glare of any such lighting from residential properties.

Large integrated developments are expected to accommodate the pedestrian by providing passage through the interior or possibly creating another level of pedestrian activities separated from the street grade. Activities, attractive street furnishing, and public space are expected to become part of the pedestrian experiences.

OBJECTIVE

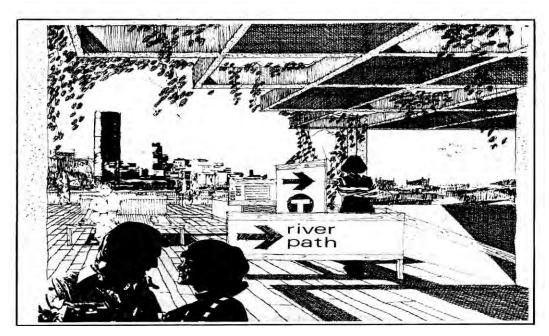
• Improve the visual quality as well as the physical efficiency of the existing and future pedestrian circulation system.


PROPOSALS

- Ensure convenient and safe pedestrian crossings.
- Provide adequate light in public areas.
- Provide a continuous pedestrian circulation system (east-west and north-south) to connect activity centers, residential development, and to provide access to adjacent communities with grade separations if necessary for pedestrian safety.

- Design walkways and parking facilities to minimize danger to pedestrians.
- Widen sidewalks where intensive commercial, recreational, or institutional activity is present and where residential densities are high.

DEVELOPMENT GUIDELINES


- Pedestrian and/or bikeway access should be provided along the length of the river as
 generally shown on Figure 22. The pedestrian and bikeway access should be placed in the
 buffer areas and in the floodway according to the criteria provided in the San Diego River
 Element, with lookouts developed at strategic areas along the river bends to afford views
 of the habitat areas.
- All pedestrian walks should have a minimum width of ten feet in order to encourage pedestrian use and related activities (i.e., vendors). In areas of high development intensity, widths of 15 feet to 20 feet or greater should be considered with the use of landscaping to buffer the pedestrian from the automobile.
- Separated pedestrian areas should be provided within the improved right-of-way on the
 major street crossings of the river. Other river crossings may be considered for pedestrian
 access only as part of the nature trail network. River crossings may be provided as long as
 they are found to be consistent with the necessary protection and habitat enhancement
 measures and can be adequately maintained.
- Urban plazas and project recreational areas for the commercial, residential, hotel and office development should have direct links to both the river and the public streets parallel to the river, re; Friars Road and Camino de la Reina.
- Landscaped pedestrian sidewalks should be provided along all public streets to encourage pedestrian activity and expedite pedestrian access. Trees should be located adjacent to the curb to provide pedestrian scale and separation from vehicular activity without reducing normal sidewalk area. Tall, canopied trees are preferable to other trees.
- Projects should front on the public street and provide identifiable pedestrian access from the street into the project, even in areas where parking lots are located between the street and the buildings.
 - Pedestrian crossings should be identified through special paving design or materials. In the event that mid-block pedestrian crossings are provided, they should be designed in accordance with applicable standards of safety and design.
- Areas of high pedestrian activity, which need to be linked above-ground (through the development of platform or bridge structures) or below-ground (through tunnels). These bridges or tunnels should connect high pedestrian activity areas and should be located in such a way as to link pedestrian areas as directly as possible. As an alternative, where feasible, roadbeds may be elevated or depressed to facilitate pedestrian crossings.

Pedestrian Circulation System 22

- Large development projects (PCDs or Specific Plans) should provide not only internal pedestrian circulation, but should ensure continuity community-wide by connecting the internal system with adjacent projects and the community-wide pedestrian system.
- Handicapped access must be provided to all areas of pedestrian activity, parking areas, buildings, pedestrian linkages and the community-wide pedestrian system.

Pedestrian access to the San Diego River Open Space and recreational system is of special importance.