INDIVIDUAL WATER QUALITY ASSESSMENT REPORT FOR ALVARADO CHANNEL (LOWER PORTION) MAP NUMBERS 59 AND 60

Job Number 17204-BA

June 3, 2015

RICK ENGINEERING COMPANY ENGINEERING COMPANY RICK ENGINEERING CO

INDIVIDUAL WATER QUALITY ASSESSMENT REPORT

Site Name/Facility:	Alvarado Channel (Lower Poption)
Master Program Map No.:	Map Numbers 59 and 60
Date:	June 3, 2015 Jayne Janda-Timba, R.C.E. Rick Engineering Company
	5620 Friars Road, San Diego, CA 92110 (619) 688-1448
Register Civil Engineer Number & Expiration Date (place stamp here):	R.C.E. 70649 Exp. 06/17

<u>Instructions</u>: This form must be completed for each facility prior to the completion of the Individual Maintenance Plan and prior to any work being conducted in the facility. Attach additional sheets if needed.

EXISTING CONDITIONS

The City of San Diego (City) has developed the Master Storm Water System Maintenance Program (Master Maintenance Program –MMP) to optimize its business processes and environmental protection practices related to channel operation and maintenance activities. The MMP is intended to integrate operation and maintenance planning, implementation and assessment activities with its water quality protection programs. This document provides a summary of the Individual Water Quality Assessment (IWQA) activities conducted within the lower portion of The Alvarado Channel (henceforth referred to as "Lower Alvarado Channel") in order to comply with the MMP's Programmatic Environmental Impact Report (PEIR) and the MMP.

IWQA procedures under the MMP provide a methodology for a water quality management model to evaluate potential water quality benefits and impacts associated with channel maintenance activities. The site-specific field measurements and conditions provide the analytical data to both determine the pollutant load removed, and therefore water quality benefits, resulting from sediment excavation during maintenance and estimate the loss of temporary pollutant sorption/retention capacity as a result of sediment and vegetation removal during channel maintenance. The sediment pollutant load removal, combined with an estimate of pollutant removal during vegetation regrowth between maintenance events, is compared to the estimated loss of total channel pollutant removal capacity due to vegetation removal as a means of assessing potential water quality benefits and impacts of channel maintenance. Channel maintenance eliminates the potential for accumulated pollutants from returning into the water, via natural vegetation decomposition and channel scour. In addition, periodic maintenance facilitates optimal sorption of pollutants in vegetation. Additional factors are also presented, including a suite of water quality improvement activities the City will implement within the San Diego River Watershed.

The IWQA procedures are documented in the Standard Operating Procedure (SOP) to Conduct Water Quality Assessment and Quantification Model for Flood Channel Maintenance found in Appendix A of the Water Quality Assessment, written by Weston Solutions in March 2011, Appendix F of the PEIR (herein referred to as the 'White Paper'). The SOP identifies two criteria that must be met for HWQA component implementation: 1) the storm water facility must have fairly consistent dry weather (low) flows, and 2) it must have vegetation capable of assimilation of pollutants. Both of these criteria are met by the sections of Lower Alvarado Channel designated for maintenance at this time. The results of the IWQA procedures established in the White Paper are considered below as one of several lines of evidence assessing the overall water quality benefits and impacts associated with channel maintenance.

- Ĕ

Project Description:

The area of study extends from the location where the Alvarado Channel transitions from an underground culvert north east of Fairmount Avenue and flows in a westerly direction for approximately 3,520 feet to a point where the channel confluences with San Diego River west of Mission Gorge Road. The lower portion of the channel is aligned north of Alvarado Canyon Road just west of Fairmount Avenue. The central and upper portions of Lower Alvarado Channel are bounded by Mission Gorge Road and Mission Gorge Place to the north and Alvarado Canyon Road to the south (see Figure 1 located in Attachment 1 for a general project location)

The proposed maintenance activities will assist in reducing the flooding issues, but the maintenance will not eliminate the occurrence of flooding in this area. The associated Lower Alvarado Channel IHHA report, and the corresponding analyses, concludes that the proposed maintenance method, sediment and vegetation removal in City of San Diego maintained portions of the Lower Alvarado Channel will not increase the capacity of the channel to be above a 2-year storm capacity throughout the length of the channel. The proposed maintenance method will include sediment and vegetation removal in the bottom of the concrete lined section of the channel and bank to bank in the rock lined section of the channel, at the downstream side of the reinforced concrete box underneath Fairmont Avenue.

The area of study has been divided into four reaches: Reach 1, Reach 2, Reach 3, and Reach 4. For analytical purposes, Reaches 2 and 3 are subdivided into reaches 2a, 2b, 3a and 3b respectively. Reach 1 is the most downstream reach of the channel.

General descriptions of each reach are provided below:

Reach 1

Reach 1 extends from the downstream limits of the area of study (at the confluence with the San Diego River), and continues upstream for approximately 450 feet. The downstream portion of Reach 1 consists of an earthen portion with rock lined slopes (approximately 180 feet), and a naturally lined portion (approximately 250 feet), that confluences with the San Diego River. Reach 1 consists of very dense vegetation and is bounded by parking lots and commercial buildings to the north and south. Reach 1 is maintained by Willis Enterprises Incorporated and is not a part of proposed channel maintenance.

Reach 2

Reach 2 is subdivided into Reaches 2a and 2b. Reach 2a consists of approximately 100 feet of earthen channel with rock lined slopes downstream, and 300 feet of concrete lined channel upstream. Reach 2a is bounded by parking lots and commercial buildings to the north and south. Reach 2b consists of approximately 220' of concrete lined channel. At the downstream limits of Reach 2b, there is a triple 8'W x12'H reinforced concrete box (RCB) culvert crossing under Fairmount Avenue. This reinforced concrete box is included in Reach 2b. Reach 2b has moderate vegetation and is bounded by commercial buildings to the north and Alvarado Canyon Road to the south. The City of San Diego maintains Reach 2 (2a and 2b).

Reach 3

Reach 3 is subdivided into Reaches 3a and 3b. Reach 3a is an earthen channel with moderate vegetation, approximately 530 feet in length. Reach 3a is bounded by the commercial buildings and parking lot to the north and south. Reach 3b is an earthen channel approximately 770 feet in length with very dense vegetation. It is bounded by the commercial buildings and parking lot to the north and south. Reach 3 (3a and 3b) is maintained by the San Diego Metropolitan Transit Development Board and is not proposed for channel maintenance.

Reach 4

Reach 4 is the most upstream reach with moderate to dense vegetation growth, and extends for approximately 500 feet in length. Reach 4 is concrete lined and maintained by the City of San Diego. Reach 4 is bounded by the commercial buildings to the north and south, Mission George and Mission Gorge Place to the north, and Alvarado Canyon Road to the south. As recommended in the Lower Alvarado Channel IHHA, Reach 4 requires soil and vegetation removal to retain the as-built storm water conveyance capacity.

The Lower Alvarado Channel area is mapped within the Federal Emergency Management Agency's (FEMA) flood areas; all reaches are within the FEMA Special Flood Hazard Areas Subject to inundation by the 1-percent Annual Chance Flood (100-year floodplain) designated Zone AE. Most of the adjacent buildings to the channel are also mapped within FEMA Special Flood Hazard Area Zone AE, a small area of buildings on the northern side of the upstream end of Lower Alvarado Channel are within Zone AO.

The overall channel maintenance areas are not within the City of San Diego Multiple Species Conservation Program's Multi-Habitat Planning Area (MHPA). The closest Multi-Habitat Planning Area is approximately 270 feet from the downstream end of the channel, within the San Diego River.

The Lower Alvarado Channel had maintenance (full vegetation and sediment removal) done by the City of San Diego in February 2011. During this instance, only Reach 2b and Reach 4 had maintenance. Since then, there has been reported flooding of the area around Reach 4.

The maintenance activities proposed for the designated extents of Reaches 2 and 4 of the Lower Alvarado Channel include removal of sediment and vegetation.

All channel reaches are briefly described above; however Reaches 2a, 2b, and 4 are the focal point of this assessment, as they are the only reaches that are proposed for maintenance. As such, from this point on only Reaches 2a, 2b, and 4 will be referred to and assessed in the report.

Description of Channel Geometry (length, width, and depth):

Reach 2:

Lower Alvarado Channel – concrete channel (MMP Map 59): Reach 2 is subdivided into Reaches 2a and 2b. Reach 2a consists of approximately 100 feet of earthen channel with rock lined slopes downstream, and 300 feet of concrete lined channel upstream. At the downstream limits of Reach 2b, there is a triple 8 feet wide by 12 feet high Reinforced Concrete Box (RCB) culvert crossing under Fairmount Avenue. Reach 2b consists of approximately 220 feet of concrete lined channel and includes the RCB at its downstream limits. Reach 2 (2a and 2b) is maintained by the City of San Diego. The proposed maintenance area for Reach 2 (2a and 2b) is approximately 400 feet in length by 30 feet wide by 0.1 feet of sediment depth, occupying approximately 0.3 acres. Channel construction was performed February 18, 1957, per the As-Built Plans I-172(12). As recommended in the Lower Alvarado Channel IHHA, Reach 2 (2a and 2b) requires soil and vegetation removal to retain the as-built storm water conveyance capacity.

Reach 4:

<u>Lower Alvarado Channel – concrete channel (MMP Map 60)</u>: Reach 4 is the most upstream reach. It is entirely concrete lined and maintained by the City of San Diego. Maintenance is proposed to be done through the entire length of the Reach 4 channel area. The proposed maintenance area for Reach 4 is approximately 500 feet in length, 25 feet wide by 0.5 feet to 1.2 feet of sediment depth, occupying approximately 0.3 acres. Channel construction was performed February 18, 1957, per the As-Built Plans I-172(12). As recommended in the Lower Alvarado Channel IHHA, Reach 4 requires soil and vegetation removal to retain the as-built storm water conveyance capacity.

Existing Conditions

Reaches 2 (2a and 2b) and 4 of the Lower Alvarado Channel are located within the San Diego River Watershed Management Area (WMA), Hydrologic Area (HA) 907.1 (Lower San Diego), Hydrologic Subarea 907.11 (Mission San Diego) (City of San Diego, 2008). Surface waters in the San Diego River WMA, and elsewhere are subject to comply with the Water Quality Control Plan for the San Diego Basin (Basin Plan, San Diego RWQCB 1994) which designates beneficial uses and established water quality objectives. The San Diego River Watershed Urban Runoff Management Plan (SDR-WURMP, City of San Diego, 2008) identifies the following priority pollutant loading reductions".

- Bacteria Indicators
- Phosphorous
- Total Dissolved Solids (TDS)
- Low Dissolved Oxygen
- Turbidity

The SDR-WURMP identifies residential, park/municipal, commercial and industrial land uses as suspected contributors to discharges of these priority pollutants within the Lower San Diego HA (City of San Diego, 2008).

Alvarado Channel is a tributary to the lower San Diego River. In accordance with the Water Quality Control Policy for Developing California's Clean Water Act Section 303 (d) List (SWRCB, 2004), the Lower San Diego River is 303(d) list as an impaired water body, in which standards are not met and a Total Maximum Daily Load (TMDL) is required, but not yet completed, for at least one of the pollutants listed for the segment. The pollutants listed for the lower San

Diego River on the 303(d) list are indicated in Table 1.

Current TMDL (Yes or No)	Current or Anticipated TMDL Date
No	2021
Yes	2009
No	2019
No	2021
No	2021
No	2019
No	2019
No	2021
	TMDL(Yes or No)NoYesNoNoNoNoNoNoNoNo

*This pollutant was not sampled for due to the scope of the project.

On May 8, 2013, the Regional Water Quality Control Board San Diego Region (RWQCB) approved a new Municipal Storm Water Permit for San Diego, southern Orange, and southwestern Riverside Counties (San Diego RWQCB, 2013). The region-wide NPDES Permit (commonly referred to as the Regional MS4 Permit) is intended to set the framework for municipalities, such as the City, to implement a collaborative watershed-based approach to restore and maintain the health of surface waters. The Regional MS4 Permit requires development of Water Quality Improvement Plans (WQIPs) that will allow the City (and other watershed stakeholders) to prioritize and address pollutants through an appropriate suite of best management practices (BMPs) for each watershed. Water quality BMPs related to channel maintenance activities are outlined later in this report and provide a framework that may be used by the City to address priority pollutants. It is recommended that the relative effectiveness of any implemented water quality and conservation strategies be evaluated and the programs adaptively managed to maximize pollutant and/or stormwater flow reduction benefits over the course of the program lifecycle. This adaptive management approach, coupled with other storm water management techniques implemented by the City as part of the Regional MS4 Permit, may lead to long-term reductions in the need for channel maintenance activities.

Unknown point and nonpoint sources, urban runoff/storm sewers, wastewater, natural resources, and flow regulation/modification are listed among the potential sources for these pollutants.

During background research for this IWQA is was noted particular reaches of Lower Alvarado Channel are adjacent to Closed and Cleanup Completed Leaking Underground Storage Tank (LUST) Cleanup Sites (Geotracker). Located along the southern bank of Reach 1 there is an existing car wash station, located at 4282 Camino Del Rio North San Diego, California 92108, in which there is a listed Closed and Cleanup Completed Leaking Underground Storage Tank (LUST) Cleanup Site (Geotracker). Reach 3 is bounded to the south by an undeveloped lot which also has a listed Closed and Cleanup Completed Leaking Underground Storage Tank (LUST) Cleanup Site (Geotracker).

Dry weather historical monitoring data for the San Diego River have been required under the regional municipal separate storm sewer system (MS4) National Pollutant Discharge Elimination System (NPDES) permit R9-2007-0001 (San Diego RWQB 2007) issued to the 21 Municipal Copermitties in San Diego County, including the City of San Diego. The data compiled under this permit was reviewed during the background investigation for this IWQA. Under this historical monitoring, dry weather flow concentrations of total phosphorous, dissolved phosphorous and TDS exceeded water quality benchmarks established in the Basin Plan at least once between January 2010 and May 2012 (Project Clean Water, 2012).

Since there are two maintenance areas in Lower Alvarado Channel separated by 1,300 feet, calculations and assessments for each maintenance area were performed separately. The maintenance area consisting of Reach 2a and Reach 2b is referred to as "Lower Alvarado West Area" and the maintenance area consisting of Reach 4 is referred to as "Lower Alvarado East Area". Although both areas are within the Lower Alvarado Channel area of study, separate models were made for each area.

Description of Sediment Sampling Activities (location(s), depth, shipment/deliverer to laboratory(s)):

AGE personnel collected two sediment samples from Lower Alvarado Channel (LAC-1 and LAC-2) on December 22, 2014. LAC-1 is the sample taken representing The Lower Alvarado East Area, and LAC-2 is the sample taken to represent The Lower Alvarado West Area. The samples were collected from locations deemed the best representation of their respective channel area conditions. The sampling locations are shown on Figure 4 in Attachment 3. The sampling activities were performed in general accordance with the Standard Operating Procedures (SOP) to Conduct Water Quality Assessment and Quantification Model for Flood Channel Maintenance (Weston Solutions, 2011).

Bulk sediment samples were collected using a clean shovel from ground surface to approximately 24 inches below the top of the existing sediment. The sediment samples were then placed in clean dedicated 5-gallon buckets. The buckets were tagged with the sample ID, collection date, project number and sampling personnel name. Grain-size analysis was performed on the samples in accordance with the procedures of ASTM D6913. The test results and grain-size distribution curve are presented in Attachment 3.

A stainless steel hand auger was used to collect the analytical sample from location LAC-2. The sediment at the sampling location LAC-1 contains abundant cobbles. Therefore, sampling for the analytical sample at location LAC-1 was performed with a clean shovel. A mound of sediment had accumulated near the center of the channel and at the time of sampling activities, the top of the existing sediment mound was above the water level in the channel.

The sediment samples were placed in individual sealed plastic bags. Preliminary screening for the potential presence of organic vapors was performed using a MiniRAE 3000 Volatile Organic Compound Gas Monitor. The samples were then labeled with the sample ID, collection date, project number and sampling personnel name. The samples were then placed on ice in a cooler box and transported to the laboratory under chain-of-custody (COC). COC documents are included with the analytical test results.

Non-dedicated sampling equipment used on this project was decontaminated prior to sampling and between sampling by washing in non-phosphate detergent (Alconox). Sediment analytical testing was performed by Clarkson Laboratory and Supply, Inc. of Chula Vista and American Scientific Laboratories, LLC of Los Angeles. The sediment samples were tested for the constituents listed in table A-3 of the SOP with the exception of Total Dissolved Solids (TDS) which is not applicable to sediment matrix samples. The test results are presented in Attachment 3.

Description of Flow Measurement Activities (location(s) and equipment):

On December 11, 2014, field personnel measured instantaneous flow during dry weather flow conditions at four cross sections along Lower Alvarado Channel. The upstream and downstream flow measurement locations surrounding the proposed maintenance area were chosen following Standard Operating Procedure Guidelines. The locations are referred to as Sampling Location 1 - 4, with 1 representing the most downstream location and 4 representing the most upstream location. Permission to access the locations was obtained from the City of San Diego prior to conducting flow measurement activities. Due to access restrictions to Sampling Locations 2 through 4, City of San Diego maintenance workers assisted personnel in access to the location and remained on-site during the sampling activities. Coordinates of each sampling location were marked with a hand-held GPS device. These locations are indicated in Figure 4 of Attachment 3.

A site northwest of the intersection of Fairmont Avenue and Alvarado Canyon Road was selected as Sampling Location 1 (the most downstream sampling location). This sampling location is bounded to the north by an existing new car lot and to the south by commercial buildings and their association parking lots. A trolley overpass crosses overhead just upstream of Sampling Location 1.

A site just northeast of the intersection of Fairmont Avenue and Alvarado Canyon Road was selected as Sampling Location 2 (located upstream of Sampling Location 1). Sampling Location 2 is bounded to the north by an existing used car lot and to the south by Alvarado Canyon Road. A trolley overpass crosses overhead just upstream, as well as downstream, of Sampling Location 2. A site south of Mission Gorge Place was selected as Sampling Location 3. This sampling location is bounded to the north and south by existing commercial buildings and their associated parking lots. A site south of Mission Gorge Place (upstream of Location 3) was selected as Sampling Location 4. This sampling location is bounded to the north and south by existing commercial buildings and their associated parking lots.

Upon entering the channel, field personnel extended a measuring tape across the full width of the wetted channel and measured the width of the cross section in total feet. The width was measured from the waterline of the south bank to the waterline of the north bank. Flow velocity was measured using the Marsh McBirney Flow-Mate 2000 Flow Meter at regular horizontal intervals. The flow meter was set at 60% depth for water depth less than 1.5 feet, or 20% and 80% depth for stages greater than 1.5 feet (USGS, 1976). For stages where water depth was greater than 1.5 feet and measurements were taken at 20% and 80% depth, an average of the measurements was calculated to solve for velocity at 60% depth. To minimize interference with flow meter readings, personnel stood downstream and slightly off to the side of the flow meter while facing upstream. The 10 second average flow velocity was recorded at each interval. Distance from the left wetted bank (southern wetted bank) and the associated water depth was recorded with each velocity reading. Field forms that were used to record flow measurements can be found in Attachment 4.

At Sampling Location 1, the total width of the wetted channel measured 15.0 feet across. A total of five flow measurements, at a distance of two foot horizontal spacing, were recorded along the width of the wetted downstream channel. Although the width of the wetted downstream channel allowed for seven flow measurements, field personal could only retrieve five recordable measurements due to dense vegetation and the water being too shallow at the sixth and seventh flow measurement locations for measurable readings by the flow meter.

At Sampling Location 2, the total width of the wetted channel measured 11.16 feet across. A total of four flow measurements, at a distance of two foot horizontal spacing, were recorded along the width of the wetted downstream channel. Although the width of the wetted downstream channel allowed for five flow measurements, field personal could only retrieve four recordable measurements due to the water being too shallow at the first flow measurement location for a measurable reading by the flow meter.

At Sampling Location 3, the total width of the wetted channel measured 4.0 feet across. A total of three flow measurements, at a distance of one foot horizontal spacing, were recorded along the width of the wetted downstream channel. Although the width of the wetted downstream channel allowed for four flow measurements, field personal could only retrieve three recordable measurements due to the water being too shallow at the fourth flow measurement location for a measurable reading by the flow meter.

At Sampling Location 4, the total width of the wetted channel measured 13.5 feet across. A total of six flow measurements, at a distance of two foot horizontal spacing, were recorded along the width of the wetted downstream channel.

To calculate total flow (discharge) across the channel the velocity measurements were integrated over the crosssectional area of the channel at each sampling location using an Excel model. The calculated discharge at each sampling location is as follows: Sampling Location 1 had a discharge of 0.46 cubic feet per second (cfs), Sampling Location 2 had a discharge of 0.57 cfs, Sampling Location 3 had a discharge of 0.52 cfs and Sampling Location 4 had a discharge of 0.10 cfs. An example of the Excel spreadsheet used to calculate the total discharge rate across the channel at these locations can be found in Attachment 4.

Description of Volume Measurement Activities (interval, total number, equipment):

As described in the SOP, the process to estimate the annual treatment volume of water uses one instantaneous flow measurement and a representative data sample. The annual treatment volumes, the volume of water in one year that discharges into each maintenance area (East Area and West Area) of the Lower Alvarado Channel due to low flow conditions, was estimated following the White Paper's SOP. To determine the annual treatment volume, the average number of "dry days" per year was calculated. "Dry days" are days in which the channel experiences "dry weather" low flow conditions. The number of "dry days" was estimated using rainfall data from the County of San Diego's Project Clean Water website. Rainfall data, between 1968 and 2008, from the Fashion Valley ALERT Station (Sensor ID 32) was analyzed to calculate the number of "wet days" in each year. Pursuant to the SOP, "wet days" are defined as the days in which rainfall greater than or equal to 0.2 inches occurs, also including the 3 days (72 hours) following. The number of "dry days" for each year was calculated by subtracting the total number of "wet days" in a year from the total number of days in the wet season, October 1 to June 30. Since The Lower Alvarado Channel is expected to have dry weather flows continuous through the summer months, July 1 through September 30, the days of the summer months are added to the number of "dry days". The White Paper's method for estimating the number of "dry days" takes a conservative approach and assumes that low flow is continuous year round on all days not considered "wet days". Thus the number of "wet days" and "dry days" sum up to the total number of days in a year, 365. From the calculations averaging the number of dry days each year from 1968-2008, it is estimated that the Lower Alvarado Channel experiences 320 dry days annually. The total annual treatment volumes were calculated by multiplying the estimated number of dry days per year by the measured instantaneous upstream discharges in both the Lower Alvarado East Area and West Area. For the Lower Alvarado East Area, 25,056 cubic feet per day (0.29 cfs) was multiplied by 320 dry days per year, resulting in approximately 8,000,000 cubic feet (ft³) or 60 million gallons per year (See Table 10E in Attachment 6 for annual treatment volume in the Lower Alvarado East Area). For the Lower Alvarado West Area, 49,248 cubic feet per day (0.57 cfs) was multiplied by 320 dry days per year, resulting in approximately 16,000,000 cubic feet (ft³) or 120 million gallons per year (See Table 10W in Attachment 6 for annual treatment volume in the Lower Table 10W in Attachment 6 for annual treatment volume in the Lower Table 10W in Attachment 6 for annual treatment volume in the Lower Table 10W in Attachment 6 for annual treatment volume in the Lower Table 10W in Attachment 6 for annual treatment volume in the Lower Table 10W in Attachment 6 for annual treatment volume in the Lower Table 10W in Attachment 6 for annual treatment volume in the Lower Table 10W in Attachment 6 for annual treatment volume in the Lower Alvarado West Area).

Hydraulic residence time (HRT) for the Lower Alvarado West Area was determined by dividing the length of the maintenance area, 750 feet, by the average of the upstream and downstream velocity in the west area, which averages to 0.17 feet per second (ft/s). Similarly, the HRT for Lower Alvarado East Area was determined by dividing the length of the maintenance area, 500 feet, by 0.36 ft/s, the average of the upstream and downstream velocity in the East Area. This method is employed by Caltrans when determining the HRT of water quality or bio filtration swale following the Caltrans Storm Water Quality Handbook (Caltrans, 2011). Using the average velocities of each area, a HRT of 1.22 hours was determined for the West area, and a HRT of 0.39 hours was determined for the East area.

Description of Water Quality Sampling Activities (location(s), shipment/delivery to laboratory(s)):

On December 11, 2014 field personnel collected surface water grab samples during dry weather conditions following SOP guidelines and Surface Water Collection SOP #EH-01 (Syracruse Research Corporation, 2003). Samples were collected at upstream and downstream locations surrounding each of the two proposed maintenance areas along Lower Alvarado Channel.

Lower Alvarado West Area is downstream of Lower Alvarado East Area, and therefore sampling surrounding the proposed maintenance in Lower Alvarado West Area occurred before sampling in the Lower Alvarado East Area. Sampling Location 1, the most downstream location of the proposed maintenance within the Lower Alvarado West Area, was collected first and was followed by sampling at Sampling Location 2 (the upstream sampling location of the proposed maintenance within the Lower Alvarado West Area). Sampling at Sampling Location 2 was followed by sampling at Sampling at Sampling Location 3 (the downstream sampling location of the proposed maintenance in the Lower Alvarado East Area) and was followed by sampling at Sampling Location 4 (the upstream sampling location of the proposed maintenance in the Lower Alvarado East Area).

For each sample collected, the sampler stood in the horizontal center of the channel, downstream of the sampling location facing upstream. Prior to sample collection, the field personnel allowed sediment that was suspended in the water column to settle out prior to collection. Clean, laboratory supplied bottles labeled with the sample ID, date, time, analytes, project, and name of sampling personnel, were completed, capped and immediately placed on ice within an insulated cooler with ice, and transported to the laboratory by the water quality samplers following Chain of Custody procedures.

The samples were analyzed for constituents, which were determined based on the SOP, a thorough review of the 303(d) pollutants listed in Table 1, and TMDLs in the local surface waters. Water sample chemical analyses were conducted by Enviromatrix of San Diego, California, a state-accredited laboratory. The laboratory analytical results can be found in Attachment 3 and tabulated analysis in Tables 10E and 10W of Attachment 6.

Within the Lower Alvarado East Area all constituents analyzed were below their respective water quality values with the exception of Total Dissolved Solids (TDS), Phosphorous, and Total Nitrogen. The upstream concentration of TDS (1,860 mg/L) exceeds the water quality benchmark 1,500 mg/L established by the Basin Plan. The upstream concentration of Phosphorous (0.11mg/L) exceeds the water quality benchmark 0.05 mg/L. The upstream concentration of Total Nitrogen (1.7mg/L) exceeds the water quality benchmark of 1.0 mg/L.

Within the Lower Alvarado East Area all constituents analyzed were below their respective water quality values with the exception of Total Dissolved Solids (TDS), Enterococcus, and Fecal Coliform. The upstream concentration of TDS (1,800 mg/L) exceeds the water quality benchmark of 1,500 mg/L established by the Basin Plan. The upstream concentration of Enterococcus (1,600 CFU/100 mL) exceeds the water quality benchmark of 151 CFU/100 mL. The upstream concentration of Fecal Coliform (240 MPN/100 mL) exceeds the water quality benchmark of 200 MPN/100 mL. Within the Lower Alvarado West Area all constituents analyzed were below their respective water quality values with the exception of Total Dissolved Solids (TDS), Enterococcus, and Fecal Coliform. The upstream concentration of TDS (1,880 mg/L) exceeds the water quality benchmark of 1,500 mg/L established by the Basin Plan. The upstream concentration of TDS (1,880 mg/L) exceeds the water quality benchmark of 1,500 mg/L established by the Basin Plan. The upstream concentration of TDS (1,880 mg/L) exceeds the water quality benchmark of 1,500 mg/L established by the Basin Plan.

concentration of Enterococcus (1,600 CFU/100 mL) exceeds the water quality benchmark of 151 CFU/100 mL. The upstream concentration of Fecal Coliform (240 MPN/100 mL) exceeds the water quality benchmark of 200 MPN/100 mL (see Tables 11E and 11W in Attachment 6 for a comparison of pollutant concentrations to water quality benchmarks).

Description of Wetland Assessment (Existing) Activities (personnel, general conditions):

An assessment of existing wetland conditions of the Lower Alvarado creek channel (specifically western reaches 2A and 2B, and eastern reach 4) was performed by HELIX biologists to evaluate the ability of the channel to recover to its current condition following maintenance. A scoring system was used which evaluated the following three key macrofeatures: vegetation, hydrosoil, and hydroperiod. The scoring system estimates the influence of maintenance on sorption, deposition, and other transfers and transformations of waterborne pollutants. The methodology follows the one identified in the Water Quality Assessment and Quantification Model for Flood Channel Maintenance White Paper prepared for the Master Stormwater Maintenance PEIR (Weston 2011). Field observations made during water quality and sediment sampling activities on December 10, 2014 as well as information obtained from the IBA site survey on November 5, 2014 were considered in carrying out the Existing Wetland Assessment. Worksheets used for the scoring are included in Attachment 10.

Vegetation

The vegetation recovery score of a storm water facility is defined by the time required for the vegetation to return to its current condition with an assumed removal of greater than 75-percent of the sediment and standing vegetative crop. A score of 0 corresponds to an assumption that the current vegetation will not recover to its current density after removal of the current standing crop. A score of 1 assumes that the current vegetation is comprised of trees and woody species, and recovery would take more than 5 years. A score of 2 indicates that the current standing crop is a mature mix of woody and leafy vegetation (both terrestrial and wetland species), and recovery to the current condition is expected to require 1 to 5 years. A score of 3 corresponds to vegetation comprised of primarily emergent and submerged wetland species which would take approximately 1 year to re-establish to the current condition.

The Lower Alvarado Creek IBA presents the acreage of each vegetation community or land cover type surveyed within each reach that will be impacted by maintenance activities in the channel. A total of four vegetation communities are identified in the IBA for Reaches 2A, 2B, and 4 of the Lower Alvarado Creek including freshwater marsh, southern willow scrub, non-native riparian (dominated by giant reed [*Arundo donax*]), non-native vegetation/ornamental, and two land cover types: open water and developed/concrete channel. In accordance with the scoring system described above, a score of 0 - 3 was assigned to each of the vegetation communities and land cover types. These scores are listed in Table 1 below.

Table 2 EXISTING Vegetation Community/Land Use Type Scoring								
	Acres*							
Vegetation Community or Land Cover Type (Holland)	West		East	Sub-	- Vegetation Score	Scoring Rationale		
	R2A	R2B	R4	total				
Freshwater marsh	0.15	0.09	0.09	0.33	3	Dominance (> 75%) of emergent wetland species (i.e., <i>Typha</i>)		
outhern willow scrub	0.08	0.14	0.14	0.36	2	Mature wetland population		
Open water	0.02			0.02	0	No visible vegetation		
Non-native Riparian			0.02	0.02	1	Monotypic stands of invasive species (i.e. giant reed [<i>Arundo</i> <i>donax</i>])		
Non-native Vegetation/Ornamental	0.04			0.04	1	Adjacent upland species		
Developed/Concrete channel	0.02	0.05	0.04	0.11	0	No visible vegetation		
TOTAL	0.31	0.28	0.29	0.88				
Overall Existing Vegetation So	core (Wes	st/ East)			2.03 / 1.97			

Prepared By: Rick Engineering Company – Water Resources Division Using the acreage identified in the IBA for each reach, an area-weighted average vegetation score was determined to be 2 for the Lower Alvarado creek channel (2.03 for western reaches 2A and 2B, and 1.97 for eastern reach 4) which would mean that the current vegetation condition is expected to return within 1-5 years.

<u>Hydrosoil</u>

The importance of the existing hydrosoil condition to a storm water facility is evaluated by estimating how removal of greater than 75 percent of the sediments will affect the organic carbon concentration, particle size distribution, nutrient availability, and overall load removal of contaminants. The evaluation is based on the effects of the potential hydrosoil removal on water depth, flow, hydraulic retention time (HRT), and deposition/settling rates. The evaluation is also based on how the removal of sediments will affect the re-growth of vegetation to current densities and distributions.

The hydrosoil parameter is scored between 0 and 3. A score of 0 represents a high flow or no flow area with little to no deposition likely. A score of 1 corresponds to short-term sand deposition where the likelihood of the accumulation of fines and/or organic carbon is considered low within the next five-year period. A score of 2 anticipates that a heterogeneous mix of sand, organics, and fines is expected to accumulate in the next 1 to 5 years. A score of 3 indicates that a heterogeneous mix of sand, organics, and fines is expected to accumulate within 1 year.

Based on the scoring criteria described above, a hydrosoil score of 0 - 3 was assigned to the western (R2A and R2B) and eastern reaches (R4) of Lower Alvarado Creek channel based on the type of substrate and deposition, pH, and Redox value. An existing hydrosoil score of 2 was assigned to the western reach (reaches 2A and 2B) based on comprising primarily silty sand with visible deposition of fines and a neutral pH (7.94). An existing hydrosoil score of 1 was assigned to the eastern reach (reach 4) based on comprising primarily poorly graded gravel with some but limited deposition of fines and having a basic pH (8.81). An overall existing hydrosoil score of 1.5 was assigned to the lower Alvarado creek channel, based upon the combined average scores for the western and eastern reaches (Table 2). A hydrosoil score of 1.5 corresponds to short-term sand deposition and indicates that fines may or may not accumulate in the next 5 years.

Table 3 EXISTING HYDROSOIL Scoring					
Reach	Hydrosoil Score	Scoring Rationale			
Western (R2A and R2B)	2	Primarily silty sand with some deposition of fines/detritus, neutral pH			
Eastern (R4)	1	Primarily poorly graded gravel, $pH > 8$			
Overall Score	1.5				

Hydroperiod

The hydroperiod recovery score of a storm water facility is defined by the time it takes for the storm water facility to recover to an average, optimal depth of 1 to 1.5 feet of overlying water. A score of 0 indicates the expectation that the velocity of storm water flow will prevent sediment deposition. A score of 1 indicates the expectation that some slowdown of flow will occur resulting in some deposition of sand and other coarse grain materials. A score of 2 typically represents a broader channel bottom with an overlying water depth of 0.5 feet resulting in resulting in some deposition of fines. A score of 3 corresponds to a channel with an overlying water depth greater than 1 foot with proportionately greater deposition of fines and organics.

An overall existing hydroperiod score of 2 was assigned to the Lower Alvarado Creek channel, based upon the combined average scores for the western (R2A and R2B) and eastern (R4) reaches. Both the western and eastern reaches had shallow water depth (0.5 to 1 ft.), slow flow (velocity of 0.017 and 0.39 ft/sec, respectively) but likely dependent on volume inputs, and observable HRT. Based on this score, moderate sediment deposition is expected to occur.

		EXIS	Table 4 TING HYDROPERIOD Scoring
Reach	Average Water Depth (ft.)	Hydrosoil Score	Scoring Rationale
Western (R2A and R2B)	0.74	2	Primarily shallow water $(0.5 - 1 \text{ ft.})$, HRT > 1 hr
Eastern (R4)	0.57	2	Primarily shallow water $(0.5 - 1 \text{ ft.})$, Redox 62 mV
Ove	erall Score	2	

Total Existing Score

The total existing wetland macrofeature assessment score for a storm water facility is derived by adding the ratings from all three categories (vegetation, hydrosoil, and hydroperiod). An overall score of 0 to 2 is considered a poor rating, 3 to 4 is considered fair, 5 to 7 is comparable to good wetland quality and health, and 8 to 9 represents the best recovery for sorption and deposition of suspended solids and associated contaminants.

Adding the three scores for the Lower Alvarado Creek channel results in an overall existing score of 5.5 (6.03 for the western reaches and 4.97 for the eastern reach) for the existing wetlands which indicates good wetland quality and health (Table 4).

Table 5 EXISTING Wetland Macrofeature Assessment Scoring				
Wetland Macrofeature	Score			
weualiu Macroleature	West	East	Overall	
Vegetation	2.03	1.97	2	
Hydrosoil	2	1	1.5	
Hydroperiod	2	2	2	
Overall Existing Wetland Score	6.03	4.97	5.5	

Description of Wetland Assessment (Recovery) Activities (personnel, general conditions):

Vegetation

In a similar manner to the existing vegetation score, a recovery vegetation score of 0 - 3 was assigned to each vegetation community (excluding land cover types) identified in the IBA for each reach. Using the acreage identified in the IBA, an area-weighted average recovery vegetation score was determined to be 2.34 for the Lower Alvarado Creek channel which would mean that the vegetation condition is expected to return within 1-5 years. The recovery vegetation scores are listed in Table 5 below.

Table 6 RECOVERY Vegetation Community Scoring								
Vegetation Community or	Acres*				Vegetation			
Land Cover Type	W	est	East	Sub-	Score	Scoring Rationale		
(Holland)	R2A	R2B	R4	total				
Freshwater marsh	0.15	0.09	0.09	0.33	3	Emergent wetland species (i.e., <i>Typha</i>) will exhibit regrowth within 1 year		
Southern willow scrub	0.08	0.14	0.14	0.36	2	Recovery of mixed vegetation (i.e., <i>Salix</i> and <i>Typha</i>) will take 1-5 years		
Non-native Riparian			0.02	0.02	1	Recovery of existing vegetation (i.e., <i>Arundo</i>) will take 1-5 years		
Non-native Vegetation/Ornamental	0.04			0.04	1	Recovery of encroachment from adjacent upland species will take 1-5 years		
TOTAL	0.27	0.23	0.25	0.75				
Overall Existing	, Vegeta	tion Sco	re (Wes	t/ East)	2.40 / 2.28			

*Divided into western reaches 2A and 2B , and eastern reach 4

<u>Hydrosoil</u>

A recovery hydrosoil score of 1.5 was calculated for the Lower Alvarado Creek channel and represents a combined average for the western and eastern reaches. This assignment was based on the fact that the sediment currently deposited in the channel primarily consists of sand with limited fines and that flow is either high (during storms) or low which would result in little deposition within five years of maintenance activities.

Hydroperiod

A recovery hydroperiod score of 1.5 was calculated for the Lower Alvarado Creek channel and represents a combined average for the western and eastern reaches. The western reach scored higher due to its greater HRT (> 1 hour) and greater accumulation of fines and revegetation.

Total Estimated Recovery Score

The total estimated recovery wetland macrofeature assessment score for a storm water facility is calculated similarly to the existing score and is derived by adding the ratings from all three categories (vegetation, hydrosoil, and hydroperiod). An overall score of 0 to 2 is considered a poor rating, 3 to 4 is considered fair, 5 to 7 is comparable to good wetland quality and health, and 8 to 9 represents the best recovery for sorption and deposition of suspended solids and associated contaminants. Adding the three recovery scores results in an overall predicted recovery score of 5.34 which is comparable to the existing condition, and indicates good water quality and health (Table 6). In summary, the likely sediment redeposition and recovery of wetland species, including *Typha*, is expected to occur within one to five years.

Table 7 RECOVERY Wetland Macrofeature As	ssessment S	coring		
	Score			
Wetland Macrofeature	West	East	Overall	
Vegetation	2.40	2.28	2.34	
Hydrosoil	2	1	1.5	
Hydroperiod	2	1	1.5	
Overall Existing Wetland Score	6.40	4.28	5.34	

Sediment Pollutant Loading Estimates:

Pollutant loading estimates were performed following the guidelines outlined in the SOP. Sediment volumes were split into two areas, Lower Alvarado West Area and Lower Alvarado East Area. A total sediment volume of approximately 309 yd³ are scheduled to be removed from the Lower Alvarado West Area and a total sediment volume of approximately 336 yd³ are scheduled to be removed from the Lower Alvarado East Area. These removal volumes were applied to the 1 sample taken for each area (LAC-1 and LAC-2). LAC-2 was taken within for the West Area, and LAC-1 was taken from the East Area. Load removal estimates are corrected for the presence of cobble larger than 1.5 inches in accordance with the SOP. A correction factor of 0.75 was applied to LAC-1 as the presence cobbles was observed at the sediment sampling location and in the sieve test results, see Attachment 3 for full sieve test results. No correction factor was applied to LAC-2 as no cobbles was observed at the sediment sampling location or in the sieve test results, see Attachment 3 for full sieve test results. The resultant pollutant loading estimates and Excel model calculations can be found in Table 8E and 8W of Attachment 6.

MAINTENANCE IMPACTS

Evaluation of Benefits / Impacts:

Are there constituents that have potential impacts greater than benefits?

Yes 🛛 No 🗆

If so, identify constituents here and compare measured concentrations to thresholds.

An evaluation of the water quality benefits versus impacts of both proposed channel maintenance areas, East and West, of the Lower Alvarado Channel was carried out in accordance with the SOP. The maintained pollutant removal estimates were compared to the corresponding existing pollutant removal estimates for each constituent over a three year maintenance period. The results of this comparison can be found in Tables 12E and 12W in Attachment 6. The results of this comparison show for each constituent that the estimated maintained pollutant removal exceeds the estimated existing pollutant removal, with the exception of nitrate. A difference of six pounds (lbs) of impact on nitrate load removal, over the three year maintenance period, is estimated in the Lower Alvarado West Area (see Table 12W in Attachment 6 for a comparison of impacts to benefits in the West Area). A difference of one pound (lb) of impact on nitrate load removal, over the three year maintenance period, is estimated in the Lower Alvarado East Area (see Table 12E in Attachment 6 for a comparison of impacts to benefits in the East Area). The water quality benchmark for Nitrate as listed in the San Diego Basin Plan is 10 mg/L. The concentration of Nitrate in the water column sample taken at the upstream end of the West Area is 0.29 mg/L (for comparisons of each constituent to the listed benchmark in the San Diego Basin Plan see Tables 11W and 11E in Attachment 6).

Nitrate was found to have a potential impact greater than the benefit in both the East Area and West Area. However, as discussed below, a potential temporary increase in water column nitrate concentrations does not represent a significant impact to the water quality.

The anaerobic sediments typical of wetland environments allow for the process of denitrification, in which nitrate is converted to nitrogen gases that are released to the atmosphere. Removal of sediment and vegetation from the East and West maintenance areas in the Lower Alvarado Channel will temporarily disturb this denitrification process and nitrate assimilation by wetland plants, potentially resulting in a temporary increase to water column nitrate concentrations. However, as specified in the White Paper and other publications the removal of vegetation is beneficial to water quality. Periodic removal of vegetation prevents the reintegration of nitrate into the water via natural decomposition of vegetation that is carrying collected nitrate. In addition the regrowth phase of vegetation, facilitated by periodic

vegetation removal, allows for optimal sorption rates of pollutants in the vegetation, including nitrate. Lastly, since the measured water column nitrate concentration is below the suggested benchmarks established in the Basin Plan, this temporary disruption does not pose a risk to the water quality.

These results of the water quality impact analysis outlined by the SOP suggest that overall the proposed sediment removal during maintenance of the Lower Alvarado Channel will remove a larger pollutant load than that which is theoretically removed under existing conditions during dry weather flow by NTS processes over three years. The proposed maintenance will therefore provide an overall water quality benefit. Sediment excavation will prevent the resuspension and downstream transport of sediment-bound pollutants during wet weather, and regrowth of fresh water marsh species within one year will further enhance pollutant removal from the channel.

MITIGATION

If impacts are identified, list potential mitigation efforts (e.g., BMPs type(s) and number(s)) that may be implemented in the watershed:

The results of this IWQA process suggest that there is a pollutant reduction benefit due to sediment removal as a result of the proposed maintenance activities, and therefore no additional mitigation measures are necessary. For the constituents analyzed, all but nitrate show and increase in estimated maintained pollutant removal. However, as stated in the SOP, "In cases where the impact is greater than the benefit, but the measured concentrations are less than the water quality objectives established by the San Diego Basin Plan for the water body segment in which the maintenance would occur no risk to the beneficial uses exist. In order to take a conservative approach, maintained channels that result in water column concentrations of the specific pollutants that are monitored under the NPDES Permit that exceed, or are within 25 percent of the water quality objectives established by the San Diego Basin Plan for the specific pollutants that are monitored under the maintenance would occur should have mitigation. In cases where the impact is greater than the benefit, but the maintained channel water column concentrations of the specific pollutants that are monitored under the NPDES Permit that the benefit, but the maintained channel water column concentrations of the specific pollutants that are monitored under the NPDES Permit that the benefit, but the maintained channel water column concentrations of the specific pollutants that are monitored under the NPDES Permit will be less than the lower limits described above (25 percent below the water quality objectives), no risk to the beneficial uses exist, and therefore no mitigation is necessary."

Nitrate has a listed water quality objective in the San Diego basin plan of 10 mg/L. The highest result of Nitrate concentration, out of both the West Area and the East Area, measured in the water column sample is 0.40 mg/L and since this measured concentration is less than 25 percent of the established water quality objective in the San Diego Basin Plan (10 mg/l), no mitigation for Nitrate is necessary.

Despite the fact that no additional mitigation is necessary pursuant to the White Paper, mitigation measures may be implemented in order to further decrease pollutant concentrations and improve overall water quality. The applicable mitigation measures, as identified in the PEIR, include: street sweeping, retrofitting residential landscaping to reduce runoff, installing artificial turf, installing inlet devices on storm drains, replacing impermeable surfaces with permeable surfaces, installing modular storm water filtration systems, installing storm water retention basins, installing catch basin media filters, creating vegetated swales, restoring wetlands, and installing check dams. All of the listed mitigation measures would decrease the overall bacteria, metals, pesticides, total dissolved solids, and trash in the water. A summary and table of Applicable PEIR mitigation measures and benefits can be found in their entirety in Attachment 7. In order to comply with the settlement agreement, the City shall increase frequency of catch basin inspection and asneeded cleaning for one year after maintenance. For every segment that is cleared, the City shall conduct an inspection and cleaning if necessary of every catch basin within 100 feet of the maintained segment, and conduct additional inspections and cleaning if necessary every three months.

REFERENCES

Caltrans, 2011. Biofiltration Swale Design Guidance. Sacramento, California. June 2011

- City of San Diego, 2008. San Diego Watershed Urban Runoff Management Plan, San Diego River Watershed, San Diego County, California. March 2008.
- NCDC, 2013. NOAA National Climatic Data Center, <u>http://www.ncdc.noaa.gov/cdo-web/#t=secondTabLink</u>, Climatic Data Online: Text & Map Search, accessed May 6, 2013
- Project Clean Water. 2012. San Diego County Watersheds. Accessed April 2013. http://projectcleanwater.org
- San Diego RWQCB, 1994. Water Quality Control Plan for the San Diego Basin (9), September 8, 1994 with amendments effective on or before April 4, 2011.
- San Diego RWQCB, 2007. Order No. R9-2007-0001, NPDES No. CAS0108757, Waste Discharge Requirements for Discharges of Urban Runoff from the Municipal Separate Storm Sewer Systems (MS4s) Draining the Watersheds of the County of San Diego, the Incorporated Cities of San Diego County, the San Diego Unified Port District, and the San Diego County Regional Airport Authority, January 2007
- San Diego RWQCB, 2013. Order No. R9-2013-0001, NPDES No. CAS0109266, National Pollutant Discharge Elimination System (NPDES) Permit and Waste Discharge Requirements for Discharges from the Municipal Separate Storm Sewer Systems (MS4s) Draining the Watersheds Within the San Diego Region. May 2013.
- SWRCB, 2004. Water Quality Control Policy for Developing California's Clean Water Act Section 303(d) List, September, 2004/
- SWRCB, 2010. 2010 Integrated Report (Clean Water Act Section 303(d) List / 305(b) Report) Statewide, accessed from: <u>http://www.waterboards.ca.gov/water_issues/programs/tmdl/integrated2010.shtml</u> May 2013

USEPA 1994. Sediment Sampling. SOP #: 2016 November 17, 1994

Attachment 1: Channel Exhibits

- □ Figure 1 Vicinity Map
- □ Figure 2 Channel Reach Exhibit

Attachment 2: Site Photos

- □ Figure 3 Photo map exhibit
- □ Site Photographic Log

Attachment 3: Analytical Sampling Results

- □ Figure 4 Sediment and Water Sampling Locations Map
- □ Chain of Custody Sheet(s) for Sediment Sampling
- □ Analytical Results of Sediment Sample(s)
- □ Sieve Analysis Laboratory Results of Sediment Samples
- □ Chain of Custody Sheet(s) for Water Column Sampling
- □ Analytical Results of Water Column Sample(s)

Attachment 4: Flow Measurement Model

- **□** Flow Measurement Field Sheets
- **G** Flow Measurement Calculation Sheets

Attachment 5: Channel Wetland Assessment

- □ Wetland Land Assessment Scoring Field Notes (Existing Condition)
- □ Wetland Land Recovery Assessment Field Notes (Maintained Storm Water Facility)

Attachment 6: Impact-Benefits Model

- Table 8E- Sediment Pollutant Loading Model for the East Area(Benefit Load Removal in Sediment)
- Table 8W- Sediment Pollutant Loading Model for the West Area(Benefit Load Removal in Sediment)
- Table 9E Comparison of pollutant concentrations to Human Health Screening Level for the East Area
- Table 9W Comparison of pollutant concentrations to Human Health Screening Level for the West Area
- **T** able 10E Potential Water Quality Impacts Model for the East Area
- □ Table 10W Potential Water Quality Impacts Model for the West Area
- Table 11E Comparison of Pollutant Concentrations to Water Quality Benchmarks for the East Area
- Table 11W Comparison of Pollutant Concentrations to Water Quality Benchmarks for the West Area
- **T** able 12E Comparison of Impacts to Benefits for the East Area
- **u** Table 12W Comparison of Impacts to Benefits for the West Area

Attachment 7: Potential Mitigation Efforts Model

Applicable PEIR Mitigation Measures

ATTACHMENT 1 – CHANNEL EXHIBITS

FIGURE 1 – VICINITY MAP

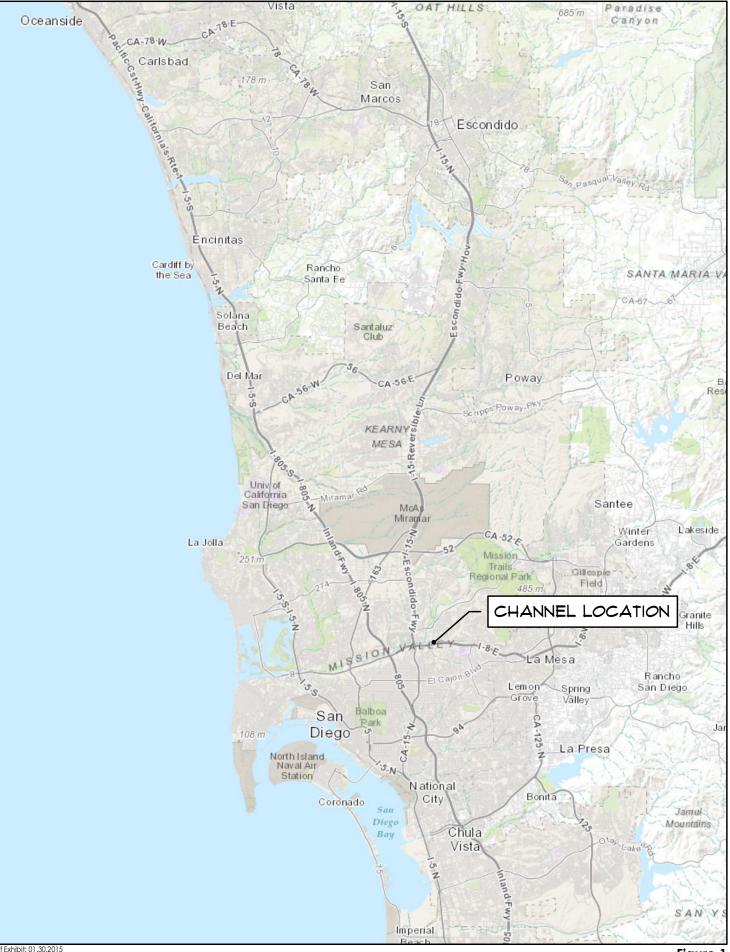
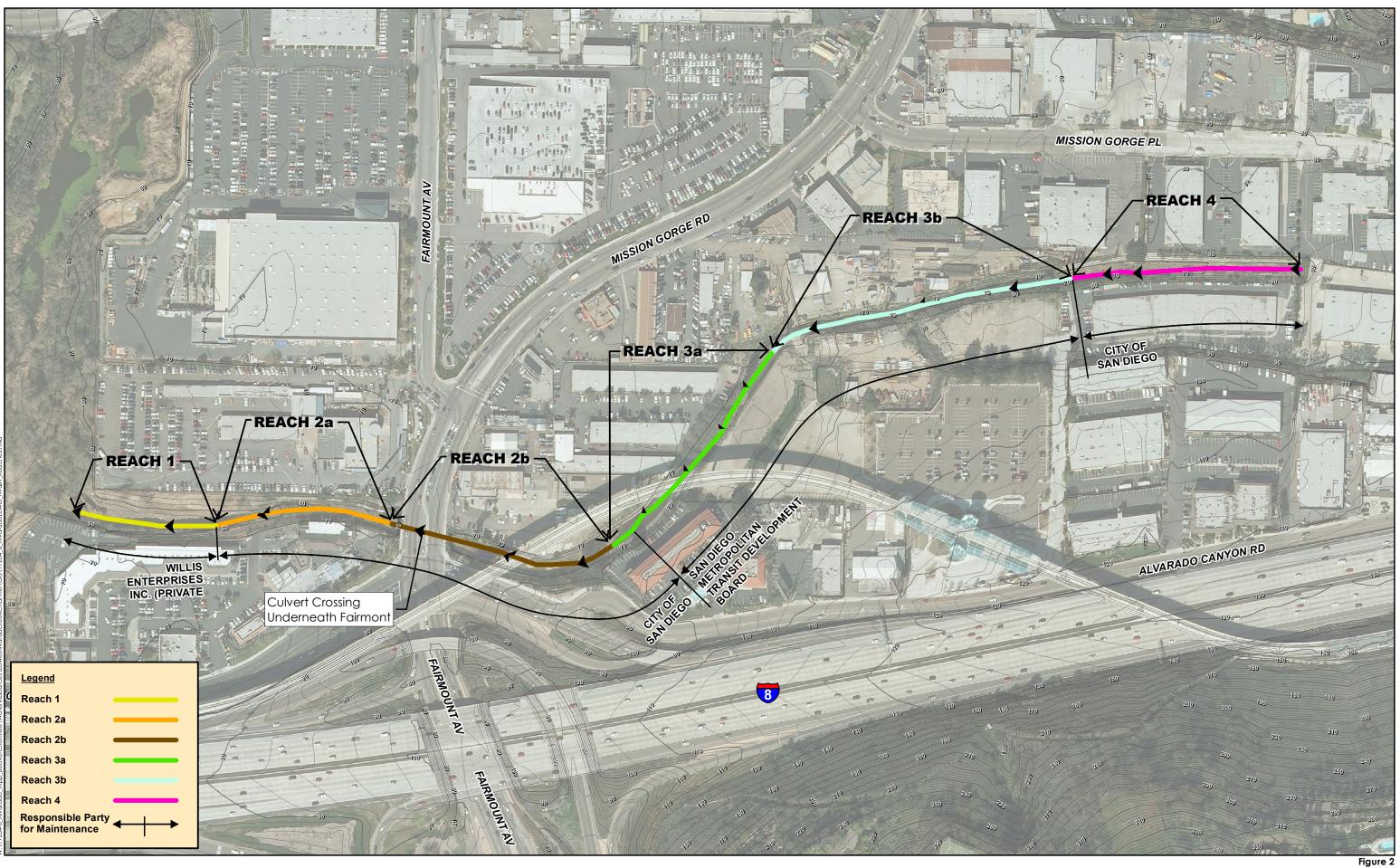
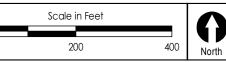
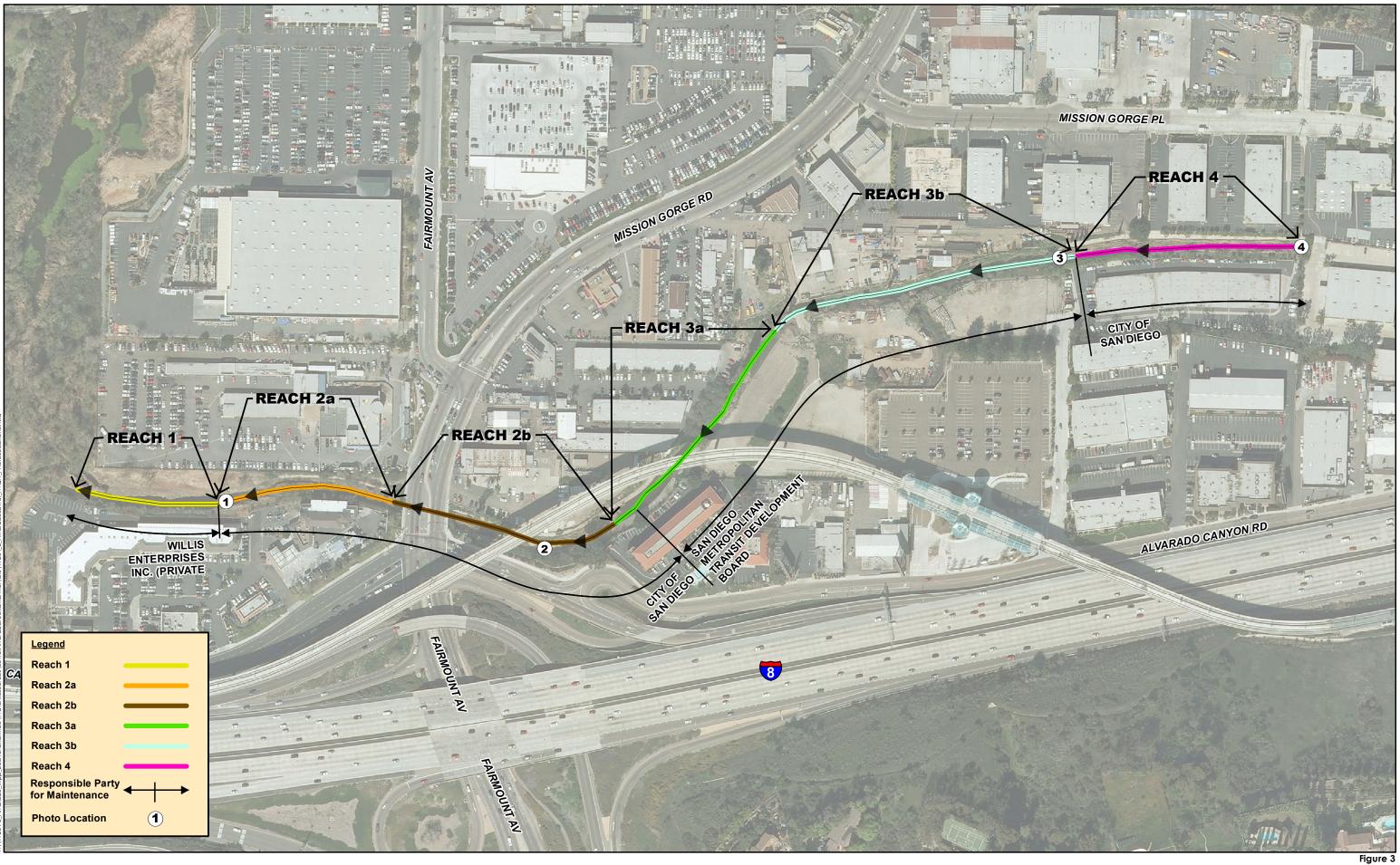
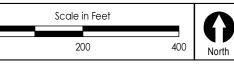



Figure 1 IWQA Report - Project Vicinity Map Lower Alvarado Channel J-17204 BA


Date of Exhibit: 01.30.2015 Source: ESRI World Topographic Baselayer

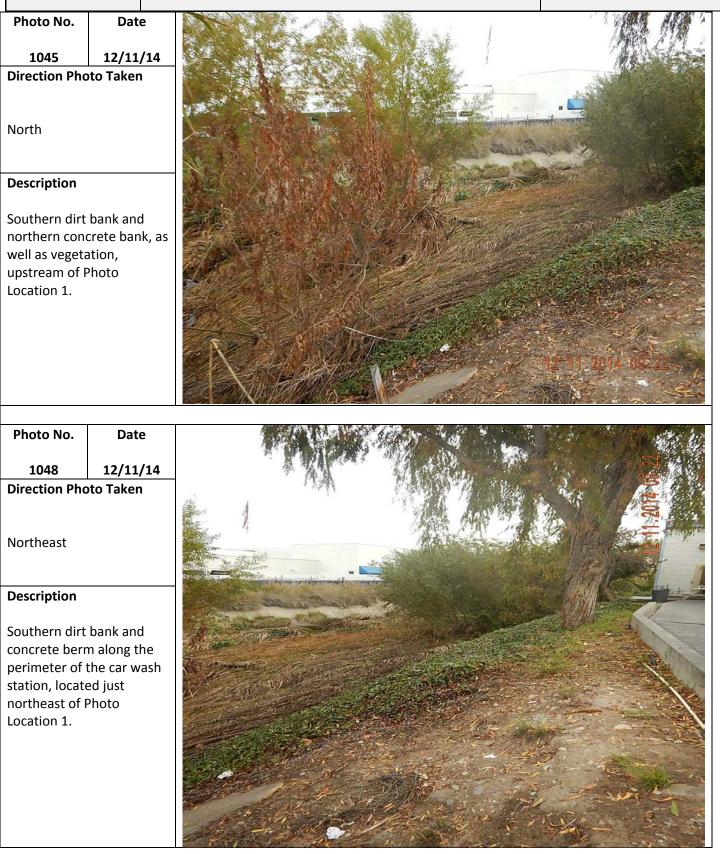

FIGURE 2 – CHANNEL REACH EXHIBIT



Lower Alvarado Channel IWQA Report - Channel Reaches 17204-BA

Date of Exhibit: 01.30.2015 DigitalGlobe Aerial Image: 04.2013 Lower Alvarado Channel IWQA Report - Photo Locations 17204-BA

SITE PHOTOGRAPHIC LOG


IWQA Photographic Log

Client Name
City of San Diego

Lower Alvarado Channel

Site Location

Project No. 17204-BA

IWQA Photographic Log Client Name City of San Diego Site Location Lower Alvarado Channel Project No. 1204-BA Photo No. Date 1053 12/11/14 Direction Photo Taken Image: Colored C

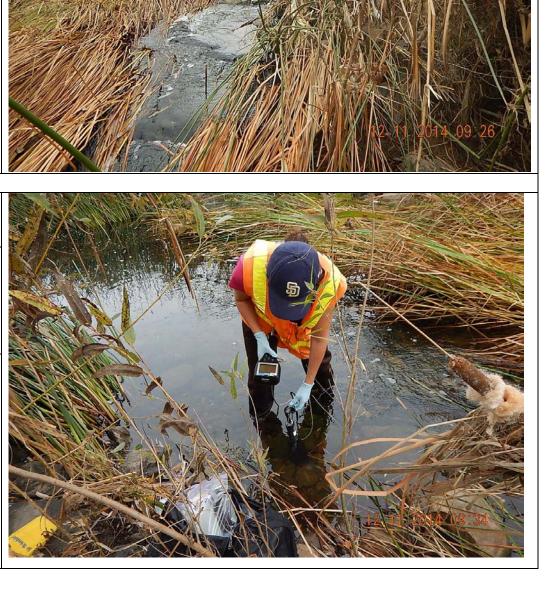

Upstream view of vegetation and flowing stream from Photo Location 1.

Photo No.	Date
1054	12/11/14
Direction Pho	oto Taken

Northwest

Description

Sampler collected data from YSI 556 Multi-Probe System (MPS) at Photo Location 1.

IWQA Photographic Log Client Name Site Location Project No. 17204-BA City of San Diego Lower Alvarado Channel Photo No. Date 1065 12/11/14 **Direction Photo Taken** Northwest Description Sampler collecting velocity measurements using the Marsh-McBirney Flow Mate 2000 at Photo Location 1. Photo No. Date ins 1071 12/11/14 **Direction Photo Taken** North Description 1 Th Upstream view of vegetation and large cobble from Photo Location 1.

Client Name	1	Site Location	Project No.
City of San D	iego	Lower Alvarado Channel	17204-BA
Photo No.	Dat		
1073	12/11		
Direction Pho	12/11		A PARTICIPANT
South			
Description South bank al Location 2.	ong Phot		
Photo No.	Dat	A A A A A A A A A A A A A A A A A A A	
1074	12/11	14	
Direction Pho			
Description			
North bank al Location 2.	ong Phot		

		e Location ver Alvarado Channel	Project No. 17204-BA
Photo No.	Date		
1077	12/11/14		and the second
Direction Pho	oto Taken		
Northeast			
Description Upstream vie			
vegetation, so and overhead			
tracks from P		n	
2.			
			and the second
			12 11 2014 10 46
			and the second
Dhata Na			
Photo No.	Date		
1087	12/11/14		
Direction Pho	oto Taken	- AN REAL	
		A State Man	
West			
West Description			
Description View looking			
Description			
Description View looking			
Description View looking			
Description View looking			12 11 2014 10-47

		Site Location	Project No.
		Lower Alvarado Channel	17204-ВА
Photo No.	Dat		
1101	12/11		
Direction Pho	12/11 to Take		
South Description Vegetative gr cracks of the channel botto Location 2.	concrete		
Photo No. 1109 Direction Pho South	Dat 12/11 oto Takei	714	
Description Vegetative gr channel, just Location 3.			

		Site	Location	Project No.
		Low	er Alvarado Channel	17204-BA
Photo No.	Dat	te		
1110	12/11	1/14		
Direction Pho				
Southeast				
Description				
Vegetative gr channel east in Photo DSC east of Photo	of vegeta N1109LR	ation R and		12.11.2014 11:52
Photo No.	Dat	te		- Alexandre
1112	12/11	l/14		and the second sec
Direction Pho				
Southeast				
Description				
Vegetation on the north bank of the channel alongside Photo Location 4.				
				12.11.2014 11:52

			Location er Alvarado Channel	Project No. 17204-BA
Photo No.	Dat	e:		£5.,
1118	12/11	/14		
Direction Pho	oto Take	n		
Description Culverts and s lining the cha upstream of f Location 2.	nnel	2		12.11.2017
Photo No.	Dat	e		
1123	12/11	/14		
Direction Pho				
Northwest				
Description				
Concrete line of the channe overhanging growth.	el and			2.11.2014 12.10

		Site Lo	cation	Project No.
		Lower	Alvarado Channel	17204-BA
Photo No.	Dat	te		
1125	12/11	1/14		
Direction Pho			and the second second	The second s
East				
Description				
Substrate and level within c upstream of F Location 4.	ulvert bo			
Photo No.	Dat	te	M	
1127	12/11	1/14		T I smar stilles
Direction Pho				
Southwest				
Description				
Sampler colle measuremen Marsh-McBiri Mate 2000 a Location 4.	ts using t ney Flow	the		

Client NameSiteCity of San DiegoLowe		Lower Alvarado Channel	Project No. 17204-BA
Photo No.	Date		
1133	12/11/	14	
Direction Pho			A March M
Southwest			
Southwest			
Description		- martine the	the Canada
Description			The second second
Concrete line			The second framework
of the channe alongside Pho			
4.			1 - June 6 Real I - 1's
			11 -1
			12 14 2001 12 01
Photo No.	Date		
1135	12/11/	14	
Direction Pho			
West			
WEST			
D			
Description			
Downstream			
Photo Locatio	on 4.		
			- 200 D / 2000
			12.11.2014 13:02

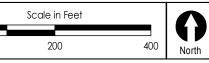
		Site Location Lower Alvarado Channel	Project No. 17204-BA
Photo No.	Dat	e e	
1140	12/11		
Direction Pho	oto Taker		
East			
Description			
/iew of samp			
GIS data at Pl I.	noto Loca	ition	
		THE PET SECOND	
			12.11.2014 13:02
Photo No.	Dat	e	
1142	12/11	/14	· · · · · · · · · · · · · · · · · · ·
Direction Pho			
/est			
Description		- ? Dank.	e • • •
ubstrate on	channel		
ottom and b	oubbles a	long	
he top of the olumn at Ph		cion	0
1.		40.	
			· · · · · · · · · · · · · · · · · · ·
		and the state of t	
			2 12.11.2014 13:02

Client Name City of San D			Location er Alvarado Channel	Project No. 17204-BA
Photo No.	Da	te		
1146	12/1/	1/1/	State Strate Strate	
Direction Pho	12/12 to Take			
East				
Description				
Vegetation uț Photo Locatic		of		
Photo No.	Da	te		
1153	12/11			
Direction Pho Northeast	oto Take	n		
Description				
Substrate alo bottom of the vegetation up Photo Locatio	e channe ostream			

Client Name		Site Location	Project No.
City of San D	Diego	Lower Alvarado Channel	17204-BA
Photo No.	Dat		
1157	12/11	/14	
Direction Pho			
Northeast			
Description			
View of north	nern con	rete	
lined bank up			
Photo Locatio			
		A CONTRACTOR	
			12 11 2044 12 525
			CALLANNIN MELEN
Photo No.	Dat	e	
1170	12/14		and the second of the
1173 Direction Pho	12/11 nto Take		A CONTRACTOR OF
East			A STATE AND AND AND A STATE
		and the second	
Description			
View west of Location 3 loc			
upstream.	JAILE		
-			
		- A -	12 02 2014 14-24

IWQA Photographic Log

		C :+-		Ductorst No.
Client Name City of San D			Location er Alvarado Channel	Project No. 17204-BA
Photo No.	Dat	e		
1176	12/11	/14	AND THE MILLING AND	
Direction Pho				
Southwest				
Description				
Soil sampler a equipment at				
Location 3.	. 1 11010			
				Charles and the second se
Photo No.	Dat	e		
			Martin Contractor	
1179 Direction Pho	12/11 to Take			
West				
Description				
Sampler prep	aring to	use		1 2 1 2
Marsh-McBir	ney Flow			
Mate 2000 a Location 3.	t Photo			
				A A A A A A A A A A A A A A A A A A A
				12,11,2014,14.25
				12011 2014 44 23
			a an	


IWQA Ph	otogra	phic Log	
Client Name		Site Location	Project No.
City of San D	iego	Lower Alvarado Channel	17204-BA
Photo No.	Dat		
1180	12/11	714	
Direction Pho			
West			
Description		and the second sec	
View downstr Photo Locatio			

ATTACHMENT 3 – ANALYTICAL SAMPLING RESULTS

FIGURE 4 – SEDIMENT AND WATER SAMPLING LOCATIONS MAP

Date of Exhibit: 01.30.2015 DigitalGlobe Aerial Image: 04.2013 Lower Alvarado Channel IWQA Report - Sampling Locations 17204-BA

CHAIN OF CUSTODY SHEET(S) FOR SEDIMENT SAMPLING

ASL	JOB #	63209
-----	-------	-------

Clarkson Laboratory & Supply Inc.	Client's Name:						
Phone (619) 425-1993 Fax (619)425-7917	Address						
www.clarksonlab.com	Tel./Fax						
E-mail Laura Torres laura@clarksonlab.com	Contact Person:	LAURA TORRES					

Chain-of-Custody Record

PO# 50082

Survey				Sam	olers:	CUST	OMER		
Station		Date	Time	Sam	ole Typ	е	Sample	No. Of	Analysis Required
Number	City of SD. Lab. I.D.			Wate	r	Other	Size	Containers	X0" 3
	Channel Maintenance			Com	Grab.				A'
1	505532-1 326445								X
	TCC-1	12/20/14	9:45	1		Sed	1602	2	19. 19
		11							V pr
2	505532-2-326446								× ×
	LAC-2	12/22/14	11:20		-	500	1602	2	he for the
2	505532 2 408442								Xa S & inter
3	505532-3 329447 LAC-1	1 state	10:00	-		Ged	1602	3	Alle Moral House
		1-papir	B.00	1			1002		I M COL X'
4	505532-4 306448								1 March
1	VAC-1	12/2/14	12:45	1		Sec	1202	2	200 m Var
			111						N. I I I I I I I I I I I I I I I I I I I
the second se		(en)	Receive						Date/Time par /14 C. 3p
Relinqui	shed by:)		Receive	ived by:					Date/Time
Relinqui	shed by:		Receive	ed by					Date/Time
Relinquished by: Recei									Date/Time
Method	of Shipment:		~ /	/					
Method	Preserved: HCIHNO3H	SO4	Ice X	None	0	ther			
Commer	nts:		/						
		OTTT -	10						
Ρ.	LEASE E-MAIL RE	SOLI	S						
					_				

Distribution: Original.--Must Accompany Shipment, 1 Copy--Client (Relinquishing Samples)

$\overline{\mathbf{O}}$	DATE: 13/30	P.O. NO.:	auote no.	osepians	3 EREQUESTED ANALYSES	3.4 C J	P5*	5030 1.5464	5 hq 1'=280		DUJE DUJE						ECI 12-24 JH ILLE	Date: Time:	-
WO#/LAB USE ONLY	ence 14-12-2232		PROJECT CONTACT:	2IP: Alen H 90065 상1 / 1	ίστι 19 α	Э́лиі s	oc cone:	uəsvy oyds 1/600 1/600	<mark>- би</mark> 	ed Itere	Antin Polo Preserv Unprese	××××	× × × ×				Received by: (Signature/Athl)adon)	Received by: (Signature/Affiliation)	
		LABORATORY CLIENT. 3 M FRICAN SCIFNTIFIC LABS	ADDRESS. 2520 N. San Fernando Road	STATE: CA	TEL: 23.273.9700 E-MAIL: alen@asllab.com	TURNAROUND TIME (Rush surcharges may apply to any TAT not "STANDARD"): 10 DOUNS CANE DAY 024 HR 048 HR 072 HR 024 NG (STANDARD)		SPECIAL INSTRUCTIONS 10 Days.	2		LAB SAMPLE ID SAMPLING MATRIX OF OF ONLY ONLY DATE TIME TIME CONT.	326405 12/22/14 9245 Sedimut 1		~	4 326448 V 12-45 V 1		Relinquished by: (Signature)	Relinquished by: (Signature)	

01/01/14 Revision

ANALYTICAL RESULTS OF SEDIMENT SAMPLE(S)

Ordered By

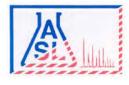
Clarkson Laboratory & Supply, In	с.
350 Trousdale Drive	
Chula Vista, CA 91910-	

Telephone	(619)425-1993					
Attn	Laura Torres					

Number of Pages	4
Date Received	12/23/2014
Date Reported	01/09/2015

Job Number	Ordered	Client
63209	12/23/2014	CLSI

Project ID: S05532-1/2/3/4 Project Name:


Enclosed are the results of analyses on 4 samples analyzed as specified on attached chain of custody.

Werk

Wendy Lu Organics Supervisor

American Scientific Laboratories, LLC (ASL) accepts sample materials from clients for analysis with the assumption that all of the information provided to ASL verbally or in writing by our clients (and/or their agents), regarding samples being submitted to ASL, is complete and accurate. ASL accepts all samples subject to the following conditions:
1) ASL is not responsible for verifying any client-provided information regarding any samples submitted to the laboratory.

2) ASL is not responsible for any consequences resulting from any inaccuracies, omissions, or misrepresentations contained in client-provided information regarding samples submitted to the laboratory.

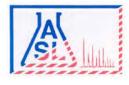
AMERICAN SCIENTIFIC LABORATORIES, LLC Environmental Testing Services

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Ordered By

Clarkson Laboratory & Supply, Inc.				
350 Trousdale Drive				
Chula Vista, CA 91910-				
Telephone: (619)425-1993				
Attn: Laura T	orres			
Page:	2			
Project ID:	S05532-1/2/3/4			


ASL Job Number
er

Method: 300, Nitrite by Ion Chromatography

QC Batch No: 122414-1 Our Lab I.D. 326445 326446 326447 326448 Client Sample I.D. S05532-1 S05532-2 S05532-3 S05532-4 Date Sampled 12/22/2014 12/22/2014 12/22/2014 12/22/2014 **Date Prepared** 12/24/2014 12/24/2014 12/24/2014 12/24/2014 Preparation Method 12/24/2014 12/24/2014 12/24/2014 12/24/2014 Date Analyzed Matrix Sediment Sediment Sediment Sediment Units mg/Kg mg/Kg mg/Kg mg/Kg **Dilution Factor** 1 1 1 1 PQL Analytes Results Results Results Results Conventionals 0.500 0.960 0.860 Nitrite as N ND ND

QUALITY CONTROL REPORT

QC Batch No: 122414-1									
	LCS	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD				
Analytes	% REC	% REC	% REC	% Limit	% Limit				
Conventionals									
Nitrite as N	93	95	1.9	80-120	20				

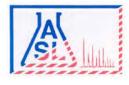
AMERICAN SCIENTIFIC LABORATORIES, LLC Environmental Testing Services

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Ordered By

Clarkson Laboratory & Supply, Inc.					
350 Trousdale Drive					
Chula Vista, CA 91910-					
Telephone: (619)42	Telephone: (619)425-1993				
Attn: Laura T	orres				
Page:	3				
Project ID:	S05532-1/2/3/4				


ASL Job Number	Submitted	Client
63209	12/23/2014	CLSI

Method: 300, Nitrate by Ion Chromatography

QC Batch No: 122414-1 Our Lab I.D. 326445 326446 326447 326448 Client Sample I.D. S05532-1 S05532-2 S05532-3 S05532-4 Date Sampled 12/22/2014 12/22/2014 12/22/2014 12/22/2014 **Date Prepared** 12/24/2014 12/24/2014 12/24/2014 12/24/2014 Preparation Method 12/24/2014 12/24/2014 12/24/2014 12/24/2014 Date Analyzed Matrix Sediment Sediment Sediment Sediment Units mg/Kg mg/Kg mg/Kg mg/Kg **Dilution Factor** 1 1 1 1 PQL Analytes Results Results Results Results Conventionals 1.00 ND ND ND ND Nitrate as N

QUALITY CONTROL REPORT

QC Batch No: 122414-1									
	LCS	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD				
Analytes	% REC	% REC	% REC	% Limit	% Limit				
Conventionals									
Nitrate as N	101	101	<1	80-120	20				

AMERICAN SCIENTIFIC LABORATORIES, LLC Environmental Testing Services

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Ordered By

Clarkson Laboratory & Supply, Inc.				
350 Trousdale Drive				
Chula Vista, CA 91910-				
Telephone: (619)425-1993				
Attn: Laura T	orres			
Page:	4			
Project ID:	S05532-1/2/3/4			

oject ID:	S05532-1/2/3/4	AS	SL Job Number	Submitted	Client
			63209	12/23/2014	CLSI

Method: SM2540-G, Percent Solids

QC Batch No: 122414-1

Our Lab I.D.		326445	326446	326447	326448			
Client Sample I.D.		S05532-1	S05532-2	S05532-3	S05532-4			
Date Sampled		12/22/2014	12/22/2014	12/22/2014	12/22/2014			
Date Prepared		12/24/2014	12/24/2014	12/24/2014	12/24/2014			
Preparation Method								
Date Analyzed		12/24/2014	12/24/2014	12/24/2014	12/24/2014			
Matrix		Sediment	Sediment	Sediment	Sediment			
Units		percent(%)	percent(%)	percent(%)	percent(%)			
Dilution Factor		1	1	1	1			
Analytes	PQL	Results	Results	Results	Results			
Conventionals								
% Solids	1.00	18.4	59.4	60.4	50.1			

QUALITY CONTROL REPORT

QC Batch No: 122414-1										
	SM	SM DUP	RPD	SM RPD						
Analytes	Result	Result	%	% Limit						
Conventionals										
% Solids	18.4	18.1	1.6	20						

Contents

	or Project Name: 63209 Corder Number: 14-12-2232	
1	Work Order Narrative	3
2	Sample Summary	4
3	Client Sample Data. 3.1 SM 4500 N Org B (M) Total Kjeldahl Nitrogen (Solid). 3.2 SM 4500 P B/E (M) Total Phosphorus (Solid). 3.3 EPA 6020 ICP/MS Metals (Solid). 3.4 EPA 8141A Organophosphorus Pesticides (Solid).	5 5 6 7 10
4	Quality Control Sample Data.4.1 MS/MSD.4.2 PDS/PDSD.4.3 Sample Duplicate.4.4 LCS/LCSD.	15 15 18 19 20
5	Sample Analysis Summary.	23
6	Glossary of Terms and Qualifiers.	24
7	Chain-of-Custody/Sample Receipt Form	25

Work Order: 14-12-2232

Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 12/24/14. They were assigned to Work Order 14-12-2232.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

New York NELAP air certification does not certify for all reported methods and analytes, reference the accredited items here: http://www.calscience.com/PDF/New_York.pdf

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

14-12-2232

12/24/14 14:40

63209

4

Client: American Scientific Laboratories, LLC Work Order: 2520 North San Fernando Road Project Name: Los Angeles, CA 90065-1324 PO Number: Date/Time

POJect Name. PO Number: Date/Time Received: Number of Containers:

Attn: Alen Hosepians

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
3264445	14-12-2232-1	12/22/14 09:45	1	Sediment
3264446	14-12-2232-2	12/22/14 11:20	1	Sediment
3264447	14-12-2232-3	12/22/14 12:00	1	Sediment
3264448	14-12-2232-4	12/22/14 12:45	1	Sediment

American Scientific Laboratories, L	LC		Date Recei	ved:	12/24/14		
2520 North San Fernando Road			Work Order	:			14-12-2232
Los Angeles, CA 90065-1324			Preparation	:			N/A
			Method:			SM 450	0 N Org B (M)
			Units:				mg/kg
Project: 63209						Pa	ige 1 of 1
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3264445	14-12-2232-1-A	12/22/14 09:45	Sediment	BUR05	12/26/14	12/26/14 16:00	E1226TKNB1
Parameter		Result	RL		DF	Qua	alifiers
Total Kjeldahl Nitrogen		1200	10	0	10.0		
3264446	14-12-2232-2-A	12/22/14 11:20	Sediment	BUR05	12/26/14	12/26/14 16:00	E1226TKNB1
Parameter		Result	RL		DF	Qua	alifiers
Total Kjeldahl Nitrogen		620	10	0	10.0		
3264447	14-12-2232-3-A	12/22/14 12:00	Sediment	BUR05	12/26/14	12/26/14 16:00	E1226TKNB1
Parameter		Result	RL		DF	Qua	alifiers
Total Kjeldahl Nitrogen		810	10)	10.0		
3264448	14-12-2232-4-A	12/22/14 12:45	Sediment	BUR05	12/26/14	12/26/14 16:00	E1226TKNB1
Parameter		Result	RL		DF	Qua	alifiers
Total Kjeldahl Nitrogen		1700	10	0	10.0		
Method Blank	099-05-025-2225	N/A	Solid	BUR05	12/26/14	12/26/14 16:00	E1226TKNB1
Parameter		<u>Result</u>	<u>RL</u>		DF	Qua	alifiers
Total Kjeldahl Nitrogen		ND	10		1.00		

American Scientific Laboratories, L	LC		Date Receiv	ved:			12/24/14
2520 North San Fernando Road			Work Order	:			14-12-2232
Los Angeles, CA 90065-1324			Preparation	:			N/A
-			Method:			SM 4	500 P B/E (M)
			Units:				mg/kg
Project: 63209						Ра	ge 1 of 1
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3264445	14-12-2232-1-A	12/22/14 09:45	Sediment	UV 7	12/31/14	12/31/14 15:39	E1231TPL2
Parameter		Result	RL		DF	Qua	alifiers
Phosphorus, Total		91	25		50.0		
3264446	14-12-2232-2-A	12/22/14 11:20	Sediment	UV 7	12/31/14	12/31/14 15:39	E1231TPL2
Parameter		Result	RL		DF	Qua	alifiers
Phosphorus, Total		110	25		50.0		
3264447	14-12-2232-3-A	12/22/14 12:00	Sediment	UV 7	12/31/14	12/31/14 15:39	E1231TPL2
Parameter		Result	RL		DF	Qua	alifiers
Phosphorus, Total		91	25		50.0		
3264448	14-12-2232-4-A	12/22/14 12:45	Sediment	UV 7	12/31/14	12/31/14 15:39	E1231TPL2
Parameter		Result	RL		DF	Qua	alifiers
Phosphorus, Total		280	50		100		
Method Blank	099-05-001-5246	N/A	Solid	UV 7	12/31/14	12/31/14 15:39	E1231TPL2
Parameter		<u>Result</u>	RL		DF	Qua	alifiers
Phosphorus, Total		ND	0.1	0	0.200		

American Scientific Laboratories	LLC		Date Recei	ved:			12/24/14
2520 North San Fernando Road			Work Order				14-12-2232
Los Angeles, CA 90065-1324			Preparation	:			EPA 3050B
C			Method:				EPA 6020
			Units:				mg/kg
Project: 63209						Pa	ge 1 of 3
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3264445	14-12-2232-1-A	12/22/14 09:45	Sediment	ICP/MS 04	12/26/14	12/27/14 02:25	141226L01E
Parameter		Result	RL		DF	Qua	lifiers
Antimony		0.545	0.5	00	1.00		
Arsenic		1.36	0.1	00	1.00		
Cadmium		1.17	0.1	00	1.00		
Chromium		9.35	0.1	00	1.00		
Copper		39.1	0.1	00	1.00	В	
Lead		10.4	0.1	00	1.00		
Manganese		36.3	0.5	00	1.00		
Nickel		10.2	0.1	00	1.00		
Selenium		6.55	0.1	00	1.00		
Zinc		147	1.0	0	1.00	В	
3264446	14-12-2232-2-A	12/22/14 11:20	Sediment	ICP/MS 04	12/26/14	12/27/14 02:29	141226L01E
Parameter		<u>Result</u>	<u>RL</u>		<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	0.5	00	1.00		
Arsenic		2.69	0.1	00	1.00		
Cadmium		0.121	0.1	00	1.00		
Chromium		4.23	0.1	00	1.00		
		4.20	•••				
Copper		11.6	0.1	00	1.00	В	
Copper Lead					1.00 1.00	В	
		11.6	0.1	00		В	
Lead		11.6 11.3	0.1 0.1	00 00	1.00	В	
Lead Manganese		11.6 11.3 389	0.1 0.1 0.5	00 00 00	1.00 1.00	В	

American Scientific Laboratories, I	can Scientific Laboratories, LLC Date Received:						
2520 North San Fernando Road			Work Order	:			14-12-2232
Los Angeles, CA 90065-1324			Preparation):			EPA 3050B
5			Method:				EPA 6020
			Units:				mg/kg
Project: 63209			ornito.			Pa	ge 2 of 3
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3264447	14-12-2232-3-A	12/22/14 12:00	Sediment	ICP/MS 04	12/26/14	12/27/14 02:32	141226L01E
Parameter		Result	RL		DF	Qua	lifiers
Antimony		ND	0.5	600	1.00		
Arsenic		2.64	0.1	00	1.00		
Cadmium		ND	0.1	00	1.00		
Chromium		3.18	0.1	00	1.00		
Copper		11.3	0.1	00	1.00	В	
Lead		6.84	0.1	00	1.00		
Manganese		242	0.5	00	1.00		
Nickel		3.50	0.1	00	1.00		
Selenium		0.231	0.1	00	1.00		
Zinc		95.9	1.0	0	1.00	В	
3264448	14-12-2232-4-A	12/22/14 12:45	Sediment	ICP/MS 04	12/26/14	12/27/14 02:35	141226L01E
Parameter		Result	RL		DF	Qua	<u>lifiers</u>
Antimony		ND	0.5	00	1.00		
Antimony Arsenic		ND 7.33	0.5 0.1		1.00 1.00		
•				00			
Arsenic		7.33	0.1	00 00	1.00		
Arsenic Cadmium		7.33 0.174	0.1 0.1	00 00 00	1.00 1.00	В	
Arsenic Cadmium Chromium		7.33 0.174 4.48	0.1 0.1 0.1	00 00 00 00	1.00 1.00 1.00	В	
Arsenic Cadmium Chromium Copper		7.33 0.174 4.48 15.3	0.1 0.1 0.1 0.1	00 00 00 00 00	1.00 1.00 1.00 1.00	В	
Arsenic Cadmium Chromium Copper Lead		7.33 0.174 4.48 15.3 10.6	0.1 0.1 0.1 0.1 0.1	00 00 00 00 00 00	1.00 1.00 1.00 1.00 1.00	В	
Arsenic Cadmium Chromium Copper Lead Manganese		7.33 0.174 4.48 15.3 10.6 561	0.1 0.1 0.1 0.1 0.1	00 00 00 00 00 00 00	1.00 1.00 1.00 1.00 1.00 1.00	В	

American Scientific Laboratories, L	LC		Date Red	ceived:			12/24/14
2520 North San Fernando Road			Work Ord	der:			14-12-2232
Los Angeles, CA 90065-1324	os Angeles, CA 90065-1324 Preparation:						
			Method:				EPA 6020
			Units:				mg/kg
Project: 63209						Pa	ge 3 of 3
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-15-254-278	N/A	Solid	ICP/MS 04	12/26/14	12/27/14 00:49	141226L01E
Parameter		Result		RL	DF	Qua	lifiers
Antimony		ND		0.500	1.00		
Arsenic		ND		0.100	1.00		
Cadmium		ND		0.100	1.00		
Chromium		ND		0.100	1.00		
Copper		0.160		0.100	1.00		
Lead		ND		0.100	1.00		
Manganese		ND		0.500	1.00		
Nickel		ND		0.100	1.00		
Selenium		ND		0.100	1.00		
Zinc		1.09		1.00	1.00		

American Scientific Laboratories, L	LC		Date Recei	ved:			12/24/14
2520 North San Fernando Road			Work Orde	r:			14-12-2232
Los Angeles, CA 90065-1324			Preparation):			EPA 3545
<u> </u>			Method:				EPA 8141A
			Units:				mg/kg
Project: 63209			Offito.			Dr	age 1 of 5
						Fc	
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3264445	14-12-2232-1-A	12/22/14 09:45	Sediment	GC 35	12/26/14	01/08/15 12:00	141226L06
Parameter		<u>Result</u>	RL	:	DF	Qua	alifiers
Atrazine		ND	0.5	50	1.00		
Azinphos Methyl		ND	0.5	50	1.00		
Bolstar		ND	0.5	50	1.00		
Chlorpyrifos		ND	0.5	50	1.00		
Coumaphos		ND	0.5	50	1.00		
Demeton-o/s		ND	0.5	50	1.00		
Diazinon		ND	0.5	50	1.00		
Dichlorvos		ND	0.5	50	1.00		
Dimethoate		ND	0.5	50	1.00		
Disulfoton		ND	0.5	50	1.00		
Ethion		ND	0.5	50	1.00		
Ethoprop		ND	0.5	50	1.00		
Famphur		ND	0.5	50	1.00		
Fensulfothion		ND	0.5	50	1.00		
Fenthion		ND	0.5	50	1.00		
Malathion		ND	0.5	50	1.00		
Merphos		ND	0.5	50	1.00		
Methyl Parathion		ND	0.5	50	1.00		
Mevinphos		ND	0.5	50	1.00		
Naled		ND	4.0)	1.00		
Parathion		ND	0.5	50	1.00		
Phorate		ND	0.5	50	1.00		
Ronnel		ND	0.5	50	1.00		
Simazine		ND	0.5	50	1.00		
Stirophos		ND	2.0)	1.00		
Thionazin		ND	0.5	50	1.00		
Tokuthion		ND	0.5	50	1.00		
Trichloronate		ND	0.5	50	1.00		
Surrogate		<u>Rec. (%)</u>	Co	ntrol Limits	Qualifiers		
Tributylphosphate		61		-130	<u>waamers</u>		
modyphosphate			50	100			

American Scientific Laboratories, L	LC		Date Recei	ved:			12/24/14
2520 North San Fernando Road			Work Orde	r:			14-12-2232
Los Angeles, CA 90065-1324			Preparation	ו:			EPA 3545
<u> </u>			Method:				EPA 8141A
			Units:				mg/kg
Project: 63209			Offito.			Pa	ige 2 of 5
						10	
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3264446	14-12-2232-2-A	12/22/14 11:20	Sediment	GC 35	12/26/14	01/08/15 12:46	141226L06
Parameter		<u>Result</u>	RL		DF	Qua	alifiers
Atrazine		ND	0.5	50	1.00		
Azinphos Methyl		ND	0.5	50	1.00		
Bolstar		ND	0.5	50	1.00		
Chlorpyrifos		ND	0.5	50	1.00		
Coumaphos		ND	0.5	50	1.00		
Demeton-o/s		ND	0.5	50	1.00		
Diazinon		ND	0.5	50	1.00		
Dichlorvos		ND	0.5	50	1.00		
Dimethoate		ND	0.5	50	1.00		
Disulfoton		ND	0.5	50	1.00		
Ethion		ND	0.5	50	1.00		
Ethoprop		ND	0.5	50	1.00		
Famphur		ND	0.5	50	1.00		
Fensulfothion		ND	0.5	50	1.00		
Fenthion		ND	0.5	50	1.00		
Malathion		ND	0.5	50	1.00		
Merphos		ND	0.5	50	1.00		
Methyl Parathion		ND	0.5	50	1.00		
Mevinphos		ND	0.5	50	1.00		
Naled		ND	4.0)	1.00		
Parathion		ND	0.5	50	1.00		
Phorate		ND	0.5	50	1.00		
Ronnel		ND	0.5	50	1.00		
Simazine		ND	0.5		1.00		
Stirophos		ND	2.0)	1.00		
Thionazin		ND	0.5	50	1.00		
Tokuthion		ND	0.5		1.00		
Trichloronate		ND	0.5	50	1.00		
Surrogate		<u>Rec. (%)</u>	<u>Co</u>	ontrol Limits	<u>Qualifiers</u>		
Tributylphosphate		66	30	-130			

American Scientific Laboratories, LI	_C		Date Recei	ved:			12/24/14
2520 North San Fernando Road			Work Orde	r:			14-12-2232
Los Angeles, CA 90065-1324			Preparation	ו:			EPA 3545
<u> </u>			Method:				EPA 8141A
			Units:				mg/kg
Project: 63209			ernte.			Pa	ige 3 of 5
						10	
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3264447	14-12-2232-3-A	12/22/14 12:00	Sediment	GC 35	12/26/14	01/08/15 13:32	141226L06
Parameter		<u>Result</u>	RL		DF	Qua	alifiers
Atrazine		ND	0.5	50	1.00		
Azinphos Methyl		ND	0.5	50	1.00		
Bolstar		ND	0.5	50	1.00		
Chlorpyrifos		ND	0.5	50	1.00		
Coumaphos		ND	0.5	50	1.00		
Demeton-o/s		ND	0.5	50	1.00		
Diazinon		ND	0.5	50	1.00		
Dichlorvos		ND	0.5	50	1.00		
Dimethoate		ND	0.5	50	1.00		
Disulfoton		ND	0.5	50	1.00		
Ethion		ND	0.5	50	1.00		
Ethoprop		ND	0.5	50	1.00		
Famphur		ND	0.5	50	1.00		
Fensulfothion		ND	0.5	50	1.00		
Fenthion		ND	0.5	50	1.00		
Malathion		ND	0.5	50	1.00		
Merphos		ND	0.5	50	1.00		
Methyl Parathion		ND	0.5	50	1.00		
Mevinphos		ND	0.5	50	1.00		
Naled		ND	4.0)	1.00		
Parathion		ND	0.5	50	1.00		
Phorate		ND	0.5	50	1.00		
Ronnel		ND	0.5	50	1.00		
Simazine		ND	0.5	50	1.00		
Stirophos		ND	2.0)	1.00		
Thionazin		ND	0.5	50	1.00		
Tokuthion		ND	0.5	50	1.00		
Trichloronate		ND	0.5	50	1.00		
Surrogate		<u>Rec. (%)</u>		ontrol Limits	Qualifiers		
Tributylphosphate		60	30	-130			

American Scientific Laboratories, Ll	_C		Date Recei	ved:			12/24/14
2520 North San Fernando Road			Work Orde	r:			14-12-2232
Los Angeles, CA 90065-1324			Preparation	ו:			EPA 3545
3			Method:				EPA 8141A
			Units:				mg/kg
Project: 63209			Onito.			De	age 4 of 5
						Fc	ge 4 01 5
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3264448	14-12-2232-4-A	12/22/14 12:45	Sediment	GC 35	12/26/14	01/08/15 14:29	141226L06
Parameter		<u>Result</u>	RL	-	DF	Qua	alifiers
Atrazine		ND	0.8	50	1.00		
Azinphos Methyl		ND	0.8	50	1.00		
Bolstar		ND	0.8	50	1.00		
Chlorpyrifos		ND	0.8	50	1.00		
Coumaphos		ND	0.8	50	1.00		
Demeton-o/s		ND	0.8	50	1.00		
Diazinon		ND	0.8	50	1.00		
Dichlorvos		ND	0.8	50	1.00		
Dimethoate		ND	0.5	50	1.00		
Disulfoton		ND	0.8	50	1.00		
Ethion		ND	0.5	50	1.00		
Ethoprop		ND	0.5	50	1.00		
Famphur		ND	0.8	50	1.00		
Fensulfothion		ND	0.5	50	1.00		
Fenthion		ND	0.5	50	1.00		
Malathion		ND	0.5	50	1.00		
Merphos		ND	0.5	50	1.00		
Methyl Parathion		ND	0.5	50	1.00		
Mevinphos		ND	0.5	50	1.00		
Naled		ND	4.0)	1.00		
Parathion		ND	0.5	50	1.00		
Phorate		ND	0.5	50	1.00		
Ronnel		ND	0.5	50	1.00		
Simazine		ND	0.5	50	1.00		
Stirophos		ND	2.0)	1.00		
Thionazin		ND	0.5	50	1.00		
Tokuthion		ND	0.5	50	1.00		
Trichloronate		ND	0.5	50	1.00		
Surrogate		<u>Rec. (%)</u>	<u>Cc</u>	ontrol Limits	<u>Qualifiers</u>		
Tributylphosphate		68	30	-130			

American Scientific Laboratories, L	LC		Date Rece	eived:			12/24/14
2520 North San Fernando Road			Work Ord	er:			14-12-2232
Los Angeles, CA 90065-1324			Preparatio	on:			EPA 3545
			Method:				EPA 8141A
			Units:				mg/kg
Project: 63209			Official.			Do	age 5 of 5
						Fc	
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-15-973-147	N/A	Solid	GC 35	01/07/15	01/09/15 02:01	141226L06
Parameter		Result	<u> </u>	<u>RL</u>	DF	Qua	alifiers
Atrazine		ND	C	0.50	1.00		
Azinphos Methyl		ND	C	0.50	1.00		
Bolstar		ND	C	0.50	1.00		
Chlorpyrifos		ND	C	.50	1.00		
Coumaphos		ND	C	.50	1.00		
Demeton-o/s		ND	C	.50	1.00		
Diazinon		ND	C	.50	1.00		
Dichlorvos		ND	C	.50	1.00		
Dimethoate		ND	C	.50	1.00		
Disulfoton		ND	C	0.50	1.00		
Ethion		ND	C	.50	1.00		
Ethoprop		ND	C	.50	1.00		
Famphur		ND	C	0.50	1.00		
Fensulfothion		ND	C	.50	1.00		
Fenthion		ND	C	.50	1.00		
Malathion		ND	C	.50	1.00		
Merphos		ND	C	0.50	1.00		
Methyl Parathion		ND	C	.50	1.00		
Mevinphos		ND	C	0.50	1.00		
Naled		ND	4	.0	1.00		
Parathion		ND	C	.50	1.00		
Phorate		ND	C	0.50	1.00		
Ronnel		ND	C	0.50	1.00		
Simazine		ND	C	0.50	1.00		
Stirophos		ND	2	2.0	1.00		
Thionazin		ND	C	0.50	1.00		
Tokuthion		ND	C	0.50	1.00		
Trichloronate		ND	C	0.50	1.00		
Surrogate		<u>Rec. (%)</u>	C	Control Limits	Qualifiers		
Tributylphosphate		117		0-130			

Quality Control - Spike/Spike Duplicate

American Scientific Labora	atories, LLC			Dat	te Received	:				12/24/14		
2520 North San Fernando	Fernando Road Work Order:								14	1-12-2232		
Los Angeles, CA 90065-1	jeles, CA 90065-1324 F				Preparation:				N/A			
				Me	thod:				SM 4500	P B/E (M)		
Project: 63209									Page 1	of 3		
Quality Control Sample ID	Туре		Matrix		Instrument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number		
3264445	Sample		Sedime	nt	UV 7	12/31/14	12/31/14	15:39	E1231TPS2			
3264445	Matrix Spike		Sedime	nt	UV 7	12/31/14	12/31/14	15:39	E1231TPS2			
3264445	Matrix Spike I	Duplicate	Sedime	nt	UV 7	12/31/14	12/31/14	15:39	E1231TPS2			
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> %Red	c. <u>MSD</u> Conc.	<u>MSD</u> %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>		
Phosphorus, Total	91.48	100.0	189.5	98	190.5	99	70-130	1	0-25			

American Scientific Laboratories, LLC	Date Received:	12/24/14
2520 North San Fernando Road	Work Order:	14-12-2232
Los Angeles, CA 90065-1324	Preparation:	EPA 3050B
	Method:	EPA 6020
Project: 63209		Page 2 of 3

Quality Control Sample ID	Туре		Matrix	Ins	trument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	tch Number
14-12-2197-1	Sample	Sample		Sediment ICP/MS 04		12/26/14	01/05/15	16:00	141226S01	
14-12-2197-1	Matrix Spike		Sedime	ent ICI	P/MS 04	12/26/14	12/27/14	00:59	141226S01	
14-12-2197-1	Matrix Spike	Duplicate	Sedime	ent ICI	P/MS 04	12/26/14	12/27/14	01:41	141226S01	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	MS Conc.	<u>MS</u> %Rec.	<u>MSD</u> Conc.	<u>MSD</u> %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
Antimony	ND	25.00	7.640	31	7.377	30	80-120	4	0-20	3
Arsenic	5.927	25.00	31.30	101	30.58	99	80-120	2	0-20	
Cadmium	0.1701	25.00	25.75	102	26.19	104	80-120	2	0-20	
Chromium	40.47	25.00	69.09	114	62.64	89	80-120	10	0-20	
Copper	25.90	25.00	51.83	104	49.27	93	80-120	5	0-20	
Lead	11.84	25.00	37.42	102	36.78	100	80-120	2	0-20	
Manganese	215.2	25.00	227.8	4X	232.3	4X	80-120	4X	0-20	Q
Nickel	45.00	25.00	66.59	86	66.93	88	80-120	1	0-20	
Selenium	0.2939	25.00	26.89	106	27.53	109	80-120	2	0-20	
Zinc	59.53	25.00	83.69	97	81.45	88	80-120	3	0-20	

American Scientific Laboratories, LLC	Date Received:	12/24/14
2520 North San Fernando Road	Work Order:	14-12-2232
Los Angeles, CA 90065-1324	Preparation:	EPA 3545
	Method:	EPA 8141A
Project: 63209		Page 3 of 3

Quality Control Sample ID	Туре		Matrix	Inst	ument	Date Prepared	d Date Ana	lyzed	MS/MSD Ba	tch Number
14-12-2146-24	Sample		Solid	GC	35	12/26/14	01/09/15	05:05	141226S06	
14-12-2146-24	Matrix Spike		Solid	GC	35	12/26/14	01/09/15	03:33	141226S06	
14-12-2146-24	Matrix Spike	Duplicate	Solid	GC	35	12/26/14	01/09/15	04:19	141226S06	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> %Rec.	<u>MSD</u> Conc.	<u>MSD</u> %Rec.	%Rec. CL	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
Azinphos Methyl	ND	4.000	2.863	72	1.819	45	30-130	45	0-30	4
Bolstar	ND	4.000	3.022	76	1.941	49	30-130	44	0-30	4
Chlorpyrifos	ND	4.000	2.937	73	1.717	43	30-130	52	0-30	4
Coumaphos	ND	4.000	2.936	73	1.883	47	30-130	44	0-30	4
Diazinon	ND	4.000	2.989	75	1.933	48	30-130	43	0-30	4
Disulfoton	ND	4.000	3.140	78	1.929	48	30-130	48	0-30	4
Ethoprop	ND	4.000	3.142	79	1.948	49	30-130	47	0-30	4
Fensulfothion	ND	4.000	3.244	81	2.063	52	30-130	44	0-30	4
Fenthion	ND	4.000	3.066	77	1.897	47	30-130	47	0-30	4
Merphos	ND	4.000	3.561	89	2.556	64	30-130	33	0-30	4
Methyl Parathion	ND	4.000	3.167	79	1.914	48	30-130	49	0-30	4
Phorate	ND	4.000	3.288	82	2.073	52	30-130	45	0-30	4
Ronnel	ND	4.000	3.050	76	1.861	47	30-130	48	0-30	4
Stirophos	ND	4.000	1.931	48	1.163	29	30-130	50	0-30	3,4
Tokuthion	ND	4.000	2.917	73	1.859	46	30-130	44	0-30	4
Trichloronate	ND	4.000	2.915	73	1.723	43	30-130	51	0-30	4

American Scientific Laboratories, LLC	Date Received:	12/24/14
2520 North San Fernando Road	Work Order:	14-12-2232
Los Angeles, CA 90065-1324	Preparation:	EPA 3050B
	Method:	EPA 6020
Project: 63209		Page 1 of 1

Quality Control Sample ID	Туре	Ν	latrix	Instru	ment	Date Prepared	Date Analyze	d PDS/PDSD E Number	Batch
14-12-2197-1	Sample	s	ediment	ICP/M	IS 04	12/26/14 00:00	01/05/15 16:0	0 141226S01	
14-12-2197-1	PDS	s	ediment	ICP/M	IS 04	12/26/14 00:00	12/27/14 01:4	4 141226S01	
Parameter		Sample Conc.	Spike Adde	<u>d P</u>	DS Conc.	PDS %Re	<u>c. %Rec</u>	<u>CL</u> Qua	lifiers
Antimony		ND	25.00	2	5.62	102	75-12	5	
Arsenic		5.927	25.00	3	0.83	100	75-12	5	
Cadmium		0.1701	25.00	2	5.47	101	75-12	5	
Chromium		40.47	25.00	6	3.56	92	75-12	5	
Copper		25.90	25.00	4	8.75	91	75-12	5	
Lead		11.84	25.00	3	7.11	101	75-12	5	
Manganese		215.2	25.00	2	41.6	4X	75-12	5 Q	
Nickel		45.00	25.00	6	7.08	88	75-12	5	
Selenium		0.2939	25.00	2	8.01	111	75-12	5	
Zinc		59.53	25.00	8	2.17	91	75-12	5	

Quality Control - Sample Duplicate

American Scientific Labor	American Scientific Laboratories, LLC			1:		12/24/14		
2520 North San Fernando	Work Order:		14-12-2232					
Los Angeles, CA 90065-1324			Preparation:			N/A		
	Method:		5	SM 4500 N Org B (M)				
Project: 63209						Page 1 of 1		
Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number		
3264448	Sample	Sediment	BUR05	12/26/14 00:00	12/26/14 16:00	E1226TKND1		
3264448	Sample Duplicate	Sediment	BUR05	12/26/14 00:00	12/26/14 16:00	E1226TKND1		
Parameter		Sample Conc.	DUP Conc.	RPD	RPD CL	Qualifiers		
Total Kjeldahl Nitrogen		1708	1764	3	0-25			

American Scientific Labora	atories, LLC			Date Recei	ved:					12/24/14	
2520 North San Fernando Road				Work Order:					14-12-2232		
Los Angeles, CA 90065-1324			Preparation:				N/A				
				Method:					SM 4500	0 P B/E (M)	
Project: 63209									Page	1 of 3	
Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pr	epared	Date	Analyzed	LCS/LCSD B	atch Number	
099-05-001-5246	LCS	Soli	d	UV 7	12/31/1	4	12/31	/14 15:39	E1231TPL2		
099-05-001-5246	LCSD	Soli	d	UV 7	12/31/1	4	12/31	/14 15:39	E1231TPL2		
Parameter	Spike Adde	d LCS Conc.	LCS	LCSD Conc.	LCSD	%Rec	. CL	<u>RPD</u>	RPD CL	Qualifiers	
			<u>%Rec.</u>		<u>%Rec.</u>						

Quality Control - LCS/LCSD

American Scientific Laboratories, LLC
2520 North San Fernando Road
Los Angeles, CA 90065-1324

Date Received:	12/24/14
Work Order:	14-12-2232
Preparation:	EPA 3050B
Method:	EPA 6020
	Page 2 of 3

Project: 63209

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pre	pared Date	Analyzed	LCS/LCSD Ba	atch Number
099-15-254-278	LCS	Soli	id	ICP/MS 04	12/26/14	12/2	7/14 00:53	141226L01E	
099-15-254-278	LCSD	Soli	id	ICP/MS 04	12/26/14	12/2	7/14 00:56	141226L01E	
Parameter	Spike Added	LCS Conc.	<u>LCS</u> <u>%Rec.</u>	LCSD Conc.	LCSD %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	RPD CL	Qualifiers
Antimony	25.00	25.81	103	25.54	102	80-120	1	0-20	
Arsenic	25.00	27.00	108	27.15	109	80-120	1	0-20	
Cadmium	25.00	25.29	101	25.37	101	80-120	0	0-20	
Chromium	25.00	29.17	117	28.23	113	80-120	3	0-20	
Copper	25.00	27.72	111	27.19	109	80-120	2	0-20	
Lead	25.00	26.60	106	26.51	106	80-120	0	0-20	
Manganese	25.00	25.01	100	24.99	100	80-120	0	0-20	
Nickel	25.00	25.05	100	25.06	100	80-120	0	0-20	
Selenium	25.00	28.12	112	28.51	114	80-120	1	0-20	
Zinc	25.00	29.18	117	27.04	108	80-120	8	0-20	

Quality Control - LCS

American Scientific Laboratories, LLC	Date Received:	12/24/14
2520 North San Fernando Road	Work Order:	14-12-2232
Los Angeles, CA 90065-1324	Preparation:	EPA 3545
	Method:	EPA 8141A
Project: 63209		Page 3 of 3

Quality Control Sample ID	Туре	Matrix	Instrumen	t Date Prep	ared Date Anal	yzed LCS Batch	Number
099-15-973-147	LCS	Solid	GC 35	01/07/15	01/09/15	02:47 141226L06	
Parameter		Spike Added	Conc. Recovered	LCS %Rec.	<u>%Rec. CL</u>	ME CL	<u>Qualifiers</u>
Azinphos Methyl		4.000	3.784	95	30-130	13-147	
Bolstar		4.000	3.986	100	30-130	13-147	
Chlorpyrifos		4.000	3.780	94	30-130	13-147	
Coumaphos		4.000	3.977	99	30-130	13-147	
Diazinon		4.000	3.583	90	30-130	13-147	
Disulfoton		4.000	4.207	105	30-130	13-147	
Ethoprop		4.000	3.913	98	30-130	13-147	
Fensulfothion		4.000	4.404	110	30-130	13-147	
Fenthion		4.000	4.078	102	30-130	13-147	
Merphos		4.000	4.687	117	30-130	13-147	
Methyl Parathion		4.000	4.252	106	30-130	13-147	
Phorate		4.000	4.294	107	30-130	13-147	
Ronnel		4.000	3.950	99	30-130	13-147	
Stirophos		4.000	2.318	58	30-130	13-147	
Tokuthion		4.000	3.882	97	30-130	13-147	
Trichloronate		4.000	3.753	94	30-130	13-147	

Total number of LCS compounds: 16 Total number of ME compounds: 0 Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

Page 1 of 1

Calscience

Sample Analysis Summary Report

Work Order: 14-12-2232

Method	Extraction	<u>Chemist ID</u>	Instrument	Analytical Location
EPA 6020	EPA 3050B	598	ICP/MS 04	1
EPA 8141A	EPA 3545	886	GC 35	1
SM 4500 N Org B (M)	N/A	685	BUR05	1
SM 4500 P B/E (M)	N/A	848	UV 7	1

Page 1 of 1

Calscience

Work Order: 14-12-2232

Glossary of Terms and Qualifiers

Qualifiers	Definition
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
Е	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
SG	The sample extract was subjected to Silica Gel treatment prior to analysis.
Х	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.
	Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

eurofins WORK ORDER	#: 14-	Page 26	
Calscience SAMPLE RECEIPT FOR	RM	≎ooler	of _/
CLIENT: <u>ASL</u>	DATE: _	12/24/	<u> 14 </u>
TEMPERATURE: Thermometer ID: SC2 (Criteria: $0.0^{\circ}C - 6.0^{\circ}C$, not frozen Temperature $2 \cdot 9^{\circ}C - 0.2^{\circ}C$ (CF) $2 \cdot 9^{\circ}C^{\circ}C$ \Box Sample(s) outside temperature criteria (PM/APM contacted by:)	Blank	Sample	
□ Sample(s) outside temperature criteria but received on ice/chilled on same d		ling.	
□ Received at ambient temperature, placed on ice for transport by Co Ambient Temperature: □ Air □ Filter	urier.	Checked by	: 307
CUSTODY SEALS INTACT: Cooler Image: No (Not Intact) Sample Image: No (Not Intact) No (Not Intact) Image: Not Present	□ N/A	Checked by Checked by	
SAMPLE CONDITION:	Yes	No	N/A
Chain-Of-Custody (COC) document(s) received with samples	. •		
 COC document(s) received complete □ Collection date/time, matrix, and/or # of containers logged in based on sample labels. □ No analysis requested. □ Not relinquished. □ No date/time relinquished. 			
Sampler's name indicated on COC.			
Sample container label(s) consistent with COC			
Sample container(s) intact and good condition			
Proper containers and sufficient volume for analyses requested			
Analyses received within holding time			
Aqueous samples received within 15-minute holding time			
□ pH □ Residual Chlorine □ Dissolved Sulfides □ Dissolved Oxygen			
Proper preservation noted on COC or sample container			
Volatile analysis container(s) free of headspace	. 🗆		6
Tedlar bag(s) free of condensation			4
Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve () □EnCore	s® ⊡Terra	aCores [®] □	
Aqueous: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBp			1AGB s
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs			
□250PB □250PBn □125PB □125PBznna □100PJ □100PJna ₂ □			
Air: Tedlar [®] Canister Other: Trip Blank Lot#: Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: Er Preservative: h: HCL n: HNO ₃ na ₂ :Na ₂ S ₂ O ₃ na: NaOH p: H ₃ PO ₄ s: H ₂ SO ₄ u: Ultra-pure znna: ZnAc ₂ +Na	Labelec	l/Checked by: Reviewed by:	SE .

Return to Contents

SIEVE ANALYSIS LABORATORY RESULTS OF SEDIMENTS SAMPLES

SUMMARY OF GRAIN SIZE DISTRIBUTION CITY OF SAN DIEGO CHANNEL MAINTENANCE PROJECT % Passing

			% Pa	ssing	
	Sample				
	ID	TCC-1	LAC-1	LAC-2	UAC-1
	6"		-	-	
	5"				100
	4"		100		75.5
	3"		97.4		57.9
	2"		90		47.1
	1.5"		75.3		44.6
	1"		60.6		39.3
	0.75"		52.8		36.5
U.S. STD.	0.5"		45.2		32.3
Sieve	0.375"		41.3		30.4
Size	#4		34.1	100	26.5
	#8		28.6	98.6	23.6
	#10	100	27.2	97.8	22.8
	#16	97.7	22.6	94.2	20.3
	#30	88.9	16.2	87.3	16.8
	#40	78.9	10.9	77	13.7
	#50	67.6	7.6	64.6	11.2
	#100	37.9	3.8	35.6	6.8
	#200	16.9	2.1	19.4	3.9
С	u	19.5	64.3	29	317.6
С	с	4.1	0.8	5.6	4
		Court Che	nnal		

TCC = Trip Court Channel

LAC = Lower Alvarado Channel

UAC = Upper Alvarado Channel

Cu = Coefficient of Uniformity

Cc = Coefficient of Curvature

CHAIN OF CUSTODY SHEETS(S) FOR WATER COLUMN SAMPLING

CHAIN-OF-CUSTODY RECORD

HLO494 - EnviroMatrix Analytical, Inc. -

TOG #		4340 Viewridge Ave., Ste. A - San Diego, CA 92123 - Phone (858) 560-7717 - Fax (858) 560-7763	- San Diego, C/	A 92123 - Phone (858	8) 560-7717 - I	Fax (858) 560-7763	
Client (17) of San Diego via Rick Engineerion	Mi avion Company		R	Requested Analysis	ysis			
Attin: Nelly Dayle U Samplers(s): Kelly Dayle EChelser Ohenesisen Address: 5620 Echart Rend	1	·		pəvloss				
Sur Diego CA 9110		qes) E O	(s	LC Lics Dis	ratioi			
Phone: (619) 903-3588	Fax: (619) 291 - 4165	Ext ATB IJy stici	opio	ITT (ame nolei	(51	
Held Tickensineering.	ion	el 🗆 KE N Hon	(s	2) 8 0 □ □ s[1	n3 D otre	nide HPC	son J [/]	
ଫ		Dieso DTD AG Iorii	pune	vleta Ials A (□ ∀/		1ð 99	
200 Dieyo, (A		upou □ (] []n] □	odw	<u>П</u> юм и 2 I	а Р/		- [
÷	ł	:Bsu OC) E	0)	0 WV			· +	
Project #:	PO #:	0) (0 00 00	nito)(() ()	s, ک درہ	соі 102		
ID # Client Sample ID	Sample Sample Sample Container Date Time Marry # / Trae	808 / 8085 98 / 8085 98 / 8085 100 (HdL) 510 (HdL) 5100 (HdL) 510 (HdL) 510 (HdL) 510 (HdL) 510 (HdL) 510 (HdL) 510	41 (Organ 76 (Organ 76 D	Иітаte 🕅 АС Тікle 27 СГР (RCR.	oliform, 🔥 olilert, T+E iterococcus	BOD 🗆 (1690555 N'75'0	
1 Lower Aharada Location 1	3:340m 5W	09 (9 (9 (9 (8) (0)	ц Т	D L D L	Er C		N17	Т
N	9-490.2					-		- <u>-</u>
3 Lower Alverade Levenher 3	WS MS					$\left \right $		T
4 LOWER Alyerado Location 4	5W					_		T
5	Γ					+		-
6						-		Τ
7								<u> </u>
8								
6							in and and and and and and and and and and	
10								
Matrix Codes: A = Air, DW = Drinking Water, GW = Groundwater, SW = Storm Water	SW = Storm Water	RELINQUISHED BY	ВҮ	DATE/TIME		BECEL	ETVEBBY A	1
WW = Wastewater, S = Soil, SED = Sediment, SD = Solid, T = Tissue, O = Oil, L = Liquid	e, O = Oil, L = Liquid	Signature Chilber Chilmin	1	1500	Signature			
Shipped By: a Counter a UPS a FedEx a USPS XClient Drop Off a Other	o Off 🗆 Other	PrintChelsen Ohanesian	5100		Print		N. M. I. R.	Γ
Turn-Around-Time: 🗆 Same Day 🗆 1 day 🗆 2 day 🗆 3 day 🗆 4 day 🗁 5 day 🗙 STD	day 🗆 5 day 🗙 STD (7 day)	Company: Rick Ennin	NOLED DA	14/11/41	Company:	\succ	es c	Г
'Reporting Requirements: □ Fax 'XPDF □ Excel □ Geotracker/EDF □ Hard Copy	EDF 🗆 Hard Copy 🔤 EDT	Signature	h		Signature	te à transfer		
'Sample Disposal: XBy Laboratory a Return to Client: P/U or Delivery DArchive	elivery 🗆 Archive	Print			Print			Τ
Sample Integrity		Company:			Company:			Т
Correct Containeds: Yes Ny N/A	Containers Properly Preseved Con N/A	Signature			Signature			1
Custody Seals Intact: Yes No-NA	Temp @ Receipt S o CE	Print			Print			Т
COC/Labels Agree Com No N/A	Sampled B. Client EMA Autosampler	Company:			Company:			Τ
Project/Sample Comments:								

'Additional costs may apply. Please note there is a \$35 minimum charge for all clients.

 $^3\mathrm{EMA}$ reserves the right to return any samples that do not match our waste profile.

NOTE: By relinquishing samples to EMA, Inc., client agrees to pay for the services requested on this COC form and any additional analyses performed on this project. Payment for services is due within 30 days from date of invoice. Samples will be disposed of 7 days after report has been finalized unless otherwise noted. All work is subject to EMA's terms and conditions.

Page 1 of 1

ANALYTICAL RESULTS OF WATER COLUMN SAMPLE(S)

23 December 2014

Rick Engineering Company Attn: Kelly Doyle 5620 Friars Road San Diego, California 92110-2596 EMA Log #: 14L0494

Project Name: Lower Alvarado IWQA

Enclosed are the results of analyses for samples received by the laboratory on 12/11/14 15:00. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that this data is in compliance both technically and for completeness.

Dan Verdon Laboratory Director

CA ELAP Certification #: 2564

4340 Viewridge Avenue, Suite A - San Diego, California 92123 - (858) 560-7717 - Fax (858) 560-7763 Analytical Chemistry Laboratory

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Lower Alvarado Location 1	14L0494-01	Stormwater	12/11/14 08:24	12/11/14 15:00
Lower Alvarado Location 2	14L0494-02	Stormwater	12/11/14 09:49	12/11/14 15:00
Lower Alvarado Location 3	14L0494-03	Stormwater	12/11/14 12:39	12/11/14 15:00
Lower Alvarado Location 4	14L0494-04	Stormwater	12/11/14 11:08	12/11/14 15:00

Total Metals by EPA 200 Series Methods

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Lower Alvarado Location 1 (14L0494-01	1) Stormwater	· Sampled	d: 12/11/14 (08:24 Rec	ceived: 12/	11/14 15:00			
Arsenic	ND	0.010	mg/l	1	4121579	12/15/14	12/19/14	EPA 200.7	
Zinc	ND	0.05	"	"	"	"	12/17/14		
Nickel	ND	0.05	"	"	"	"	"		
Lead	ND	0.05	"	"	"	"	"		
Copper	ND	0.05	"	"	"	"	"		
Chromium	ND	0.05	"	"	"	"	"		
Cadmium	ND	0.01	"	"	"	"	"		
Manganese	0.144	0.030	"	"	"	"	12/17/14	"	
Antimony	ND	0.100	"	"	"	"	12/17/14		
Selenium	ND	0.010	"	"		"		"	
Lower Alvarado Location 2 (14L0494-02	2) Stormwater	Sampled	d: 12/11/14	09:49 Rec	ceived: 12/	11/14 15:00			
Arsenic	ND	0.010	mg/l	1	4121579	12/15/14	12/19/14	EPA 200.7	
Lead	ND	0.05	"	"	"	"	12/17/14		
Nickel	ND	0.05	"		"	"	"		
Zinc	ND	0.05	"		"	"	"		
Chromium	ND	0.05	"		"	"	"		
Cadmium	ND	0.01	"		"	"	"		
Copper	ND	0.05	"	"	"	"	12/17/14		
Manganese	0.302	0.030	"	"	"	"	"		
Antimony	ND	0.100	"	"	"	"	12/17/14		
Selenium	ND	0.010	"	"	"	"		"	
Lower Alvarado Location 3 (14L0494-03	3) Stormwater	Sampled	d: 12/11/14	12:39 Red	eived: 12/	11/14 15:00			
Arsenic	ND	0.010	mg/l	1	4121579	12/15/14	12/19/14	EPA 200.7	
Cadmium	ND	0.01	"	"	"	"	12/17/14		
Chromium	ND	0.05	"	"	"	"	"		
Copper	ND	0.05	"	"	"	"	"		
Lead	ND	0.05	"	"	"	"	"	"	
Zinc	ND	0.05	"	"	"	"	"	"	
Nickel	ND	0.05	"	"	"	"	"		
Manganese	0.039	0.030	"	"	"	"	12/17/14	"	
Antimony	ND	0.100	"	"	"	"	12/17/14	"	
Selenium	ND	0.010	"	"	"	"	"	"	

Total Metals by EPA 200 Series Methods

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Lower Alvarado Location 4 (14L0494-04)	Stormwater	Sampled:	12/11/14	11:08 Red	eived: 12/	11/14 15:00			
Arsenic	ND	0.010	mg/l	1	4121579	12/15/14	12/19/14	EPA 200.7	
Chromium	ND	0.05	"	"	"		12/17/14	"	
Cadmium	ND	0.01	"	"	"		"	"	
Nickel	ND	0.05	"	"	"		"	"	
Zinc	0.07	0.05	"	"	"	"	"	"	
Lead	ND	0.05		"	"		"	"	
Copper	ND	0.05		"	"	"	"	"	
Manganese	0.111	0.030		"	"		12/17/14	"	
Antimony	ND	0.100	"	"	"	"	12/17/14	"	
Selenium	ND	0.010		"		"	"	"	

Organophosphorus Pesticides by EPA Method 8141A

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Lower Alvarado Location 1 (14L0494-	01) Stormwater	Sampleo	l: 12/11/14 0	8:24 Red	ceived: 12/	11/14 15:00			
Chlorpyrifos	ND	0.05	ug/l	1	4121217	12/16/14	12/17/14	EPA 8141A	
Diazinon	ND	0.05	"	"	"		"	"	
Malathion	ND	0.05	"	"	"	"	"	"	
Surrogate: Triphenyl phosphate		116 %	60-1	130	"	"	"	"	
Surrogate: Tribuytlphosphate		112 %	60-1	130	"	"	"	"	
Lower Alvarado Location 2 (14L0494-	02) Stormwater	Sampleo	l: 12/11/14 0	9:49 Red	ceived: 12/	/11/14 15:00			
Chlorpyrifos	ND	0.05	ug/l	1	4121217	12/16/14	12/17/14	EPA 8141A	
Diazinon	ND	0.05	"	"	"		"	"	
Malathion	ND	0.05	"	"	"	"	"	"	
Surrogate: Triphenyl phosphate		108 %	60-1	130	"	"	"	"	
Surrogate: Tribuytlphosphate		108 %	60-1	130	"	"	"	"	
Lower Alvarado Location 3 (14L0494-	03) Stormwater	Sampleo	l: 12/11/14 1	2:39 Red	ceived: 12/	/11/14 15:00			
Chlorpyrifos	ND	0.05	ug/l	1	4121217	12/16/14	12/17/14	EPA 8141A	
Diazinon	ND	0.05	"	"	"	"	"	"	
Malathion	ND	0.05	"	"	"	"	"		
Surrogate: Triphenyl phosphate		116 %	60-1	130	"	"	"	"	
Surrogate: Tribuytlphosphate		100 %	60-1	130	"	"	"	"	
Lower Alvarado Location 4 (14L0494-	04) Stormwater	Sampleo	l: 12/11/14 1	1:08 Red	ceived: 12/	/11/14 15:00			
Chlorpyrifos	ND	0.05	ug/l	1	4121217	12/16/14	12/17/14	EPA 8141A	
Diazinon	ND	0.05	"	"	"	"	"	"	
Malathion	ND	0.05	"	"	"	"	"	"	
Surrogate: Triphenyl phosphate		96 %	60-1	130	"	"	"	"	
Surrogate: Tribuytlphosphate		104 %	60-1	130	"	"	"		

Conventional Chemistry Parameters by Standard/EPA Methods

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Lower Alvarado Location 1 (14L	0494-01) Stormwater	Sample	d: 12/11/14 08	3:24 Rec	eived: 12/	11/14 15:00			
Hardness (Total)	809	100	mg CaCO3/L	10	4121579	12/15/14	12/16/14	EPA 200.7	
Nitrate as N	0.32	0.05	mg/l	1	4122227	12/20/14	12/20/14	SM4500 NO3 E	W-02
Nitrate/Nitrite as N	0.32	0.05			"	"	"	"	
Nitrite as N	ND	0.05			4121422	12/12/14	12/12/14	SM4500 NO2 B	
Total Kjeldahl Nitrogen	0.9	0.5			4121941	12/18/14	12/19/14	SM4500 N C	
Total Nitrogen	1.2	0.5			4122254	12/22/14	12/22/14	Calculation	
Dissolved Oxygen	10.0	0.10			4121128	12/11/14	12/11/14	SM4500-O G	HT-15
Phosphorus, Total	0.08	0.05			4122027	12/20/14	12/20/14	SM4500 P B, E	
Total Dissolved Solids	1800	20.0	"		4121576	12/15/14	12/16/14	SM2540 C	
Lower Alvarado Location 2 (14L	0494-02) Stormwater	Sample	d: 12/11/14 09	9:49 Rec	eived: 12/	11/14 15:00			
Hardness (Total)	821	100	mg CaCO3/L	10	4121579	12/15/14	12/16/14	EPA 200.7	
Nitrate as N	0.29	0.05	mg/l	1	4122227	12/20/14	12/20/14	SM4500 NO3 E	W-02
Nitrate/Nitrite as N	0.29	0.05			"	"	"	"	
Nitrite as N	ND	0.05		"	4121422	12/12/14	12/12/14	SM4500 NO2 B	
Total Kjeldahl Nitrogen	1.3	0.5			4121941	12/18/14	12/19/14	SM4500 N C	
Total Nitrogen	1.6	0.5			4122254	12/22/14	12/22/14	Calculation	
Dissolved Oxygen	6.31	0.10			4121128	12/11/14	12/11/14	SM4500-O G	HT-15
Phosphorus, Total	0.10	0.05			4122027	12/20/14	12/20/14	SM4500 P B, E	
Total Dissolved Solids	1880	20.0	"		4121576	12/15/14	12/16/14	SM2540 C	
Lower Alvarado Location 3 (14L	0494-03) Stormwater	Sample	d: 12/11/14 12	2:39 Rec	eived: 12/	11/14 15:00			
Hardness (Total)	731	100	mg CaCO3/L	10	4121579	12/15/14	12/16/14	EPA 200.7	
Nitrate as N	0.27	0.05	mg/l	1	4122227	12/20/14	12/20/14	SM4500 NO3 E	W-02
Nitrate/Nitrite as N	0.27	0.05			"	"	"	"	
Nitrite as N	ND	0.05			4121422	12/12/14	12/12/14	SM4500 NO2 B	
Total Kjeldahl Nitrogen	1.1	0.5			4121941	12/18/14	12/19/14	SM4500 N C	
Total Nitrogen	1.4	0.5		"	4122254	12/22/14	12/22/14	Calculation	
Dissolved Oxygen	5.72	0.10		"	4121128	12/11/14	12/11/14	SM4500-O G	HT-15
Phosphorus, Total	0.06	0.05			4122027	12/20/14	12/20/14	SM4500 P B, E	
Total Dissolved Solids	1790	20.0	"	"	4121576	12/15/14	12/16/14	SM2540 C	

Conventional Chemistry Parameters by Standard/EPA Methods

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Lower Alvarado Location 4 (14L0494-04)	Stormwater	Sample	d: 12/11/14 11	l:08 Rec	eived: 12/	11/14 15:00			
Hardness (Total)	765	100	mg CaCO3/L	10	4121579	12/15/14	12/16/14	EPA 200.7	
Nitrate as N	0.40	0.05	mg/l	1	4122227	12/20/14	12/20/14	SM4500 NO3 E	W-02
Nitrate/Nitrite as N	0.40	0.05			"	"	"	"	
Nitrite as N	ND	0.05			4121422	12/12/14	12/12/14	SM4500 NO2 B	
Total Kjeldahl Nitrogen	1.3	0.5			4121941	12/18/14	12/19/14	SM4500 N C	
Total Nitrogen	1.7	0.5			4122254	12/22/14	12/22/14	Calculation	
Dissolved Oxygen	6.35	0.10			4121128	12/11/14	12/11/14	SM4500-O G	HT-15
Phosphorus, Total	0.11	0.05	"	"	4122027	12/20/14	12/20/14	SM4500 P B, E	
Total Dissolved Solids	1860	20.0	"		4121576	12/15/14	12/16/14	SM2540 C	

Microbiological Parameters by Standard Methods

		Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Analyte	Result	LIIIII	Units	Dilution	Daten	Ttepated	Anaryzeu	Wiethou	Inotes
Lower Alvarado Location 1 (14L0494-01)	Stormwater	Sample	d: 12/11/14 0	8:24 Rec	eived: 12/	11/14 15:00			
Total Coliforms	1600	2	MPN/100 ml	1	4121122	12/11/14	12/15/14	SM 9221 B, E	A-01a
Fecal Coliforms	240	2	"	"	"		12/14/14	"	
Enterococcus	1600	2	"	"	4121123	"	12/15/14	SM 9230 A, B	
Lower Alvarado Location 2 (14L0494-02)	Stormwater	Sample	d: 12/11/14 0	9:49 Rec	eived: 12/	11/14 15:00			
Total Coliforms	1600	2	MPN/100 ml	1	4121122	12/11/14	12/15/14	SM 9221 B, E	A-01a
Fecal Coliforms	1600	2	"	"	"		12/14/14	"	
Enterococcus	1600	2	"	"	4121123	"	12/15/14	SM 9230 A, B	A-01
Lower Alvarado Location 3 (14L0494-03)	Stormwater	Sample	d: 12/11/14 12	2:39 Rec	eived: 12/	11/14 15:00			
Total Coliforms	1600	2	MPN/100 ml	1	4121122	12/11/14	12/15/14	SM 9221 B, E	A-01a
Fecal Coliforms	170	2	"	"	"		12/14/14	"	
Enterococcus	500	2	"	"	4121123	"	12/15/14	SM 9230 A, B	
Lower Alvarado Location 4 (14L0494-04)	Stormwater	Sample	d: 12/11/14 1	1:08 Rec	eived: 12/	11/14 15:00			
Total Coliforms	1600	2	MPN/100 ml	1	4121122	12/11/14	12/15/14	SM 9221 B, E	A-01a
Fecal Coliforms	240	2	"	"	"	"	12/14/14	"	
Enterococcus	1600	2	"	"	4121123	"	12/15/14	SM 9230 A, B	

Total Metals by EPA 200 Series Methods - Quality Control

Batch 4121579-BLK1)Blank (4121579-BLK1)ChromiumNDLeadNDManganeseNDNickelNDZincNDAntimonyNDCopperNDCadmiumND	$\begin{array}{c} 0.05\\ 0.05\\ 0.030\\ 0.05\\ 0.05\\ 0.100\\ 0.05\\ 0.01\\ 0.010\\ 0.010\\ 0.010\\ \end{array}$	mg/l " " " "	Prepared:	12/15/14	Analyzed	: 12/16/14	4		
ChromiumNDLeadNDManganeseNDNickelNDZincNDAntimonyNDCopperND	$\begin{array}{c} 0.05 \\ 0.030 \\ 0.05 \\ 0.05 \\ 0.100 \\ 0.05 \\ 0.01 \\ 0.010 \end{array}$	 	Prepared:	12/15/14	Analyzed	: 12/16/14	4		
ChromiumNDLeadNDManganeseNDNickelNDZincNDAntimonyNDCopperND	$\begin{array}{c} 0.05 \\ 0.030 \\ 0.05 \\ 0.05 \\ 0.100 \\ 0.05 \\ 0.01 \\ 0.010 \end{array}$	 							
ManganeseNDNickelNDZincNDAntimonyNDCopperND	$\begin{array}{c} 0.030 \\ 0.05 \\ 0.05 \\ 0.100 \\ 0.05 \\ 0.01 \\ 0.010 \end{array}$	" " " "							
NickelNDZincNDAntimonyNDCopperND	0.05 0.05 0.100 0.05 0.01 0.010								
ZincNDAntimonyNDCopperND	0.05 0.100 0.05 0.01 0.010	" "							
Antimony ND Copper ND	0.100 0.05 0.01 0.010	"							
Copper ND	0.05 0.01 0.010								
	0.01 0.010								
Cadmium ND	0.010								
112									
Selenium ND	0.010	"							
Arsenic ND	0.010	"							
LCS (4121579-BS1)			Prepared:	12/15/14	Analyzed	: 12/16/14	4		
Manganese 0.813	0.030	mg/l	1.00		81	75-125			
Nickel 0.89	0.05	"	1.00		89	75-125			
Zinc 0.85	0.05	"	1.00		85	75-125			
Cadmium 0.85	0.01	"	1.00		85	75-125			
Copper 0.88	0.05	"	1.00		88	75-125			
Chromium 0.87	0.05		1.00		87	75-125			
Antimony 0.872	0.100	"	1.00		87	75-125			
Lead 0.90	0.05		1.00		90	75-125			
Arsenic 0.866	0.010	"	1.00		87	75-125			
Selenium 0.858	0.010	"	1.00		86	75-125			
LCS Dup (4121579-BSD1)			Prepared:	12/15/14	Analyzed	: 12/16/14	4		
Antimony 0.901	0.100	mg/l	1.00		90	75-125	3	20	
Manganese 0.863	0.030	"	1.00		86	75-125	6	20	
Cadmium 0.87	0.01		1.00		87	75-125	2	20	
Copper 0.90	0.05		1.00		90	75-125	2	20	
Chromium 0.90	0.05	"	1.00		90	75-125	2	20	
Lead 0.92	0.05		1.00		92	75-125	3	20	
Nickel 0.91	0.05	"	1.00		91	75-125	2	20	
Zinc 0.87	0.05	"	1.00		87	75-125	3	20	
Selenium 0.886	0.010	"	1.00		89	75-125	3	20	
Arsenic 0.895	0.010	"	1.00		90	75-125	3	20	

Total Metals by EPA 200 Series Methods - Quality Control

Batch 4121579 Duplicate (4121579-DUP1) Source: 141.0512-01 Prepared: 12/15/14 Analyzed: 12/17/14 Nickel ND 0.05 mg/l ND 20 Antinony ND 0.01 ND 20 Cadmium 0.001 0.05 ND 20 Commun 0.002 0.05 ND 20 Chromium 0.002 0.05 ND 20 Chromium 0.002 0.05 ND 20 Zine 0.27 0.05 ND 20 Ameanic ND 0.010 ND 20 Asenic ND 0.010 0.056 9 20 Asenic ND 0.010 0.008 20 Marganese 0.05 0.030 1.04 75-125 Chromium 1.00 0.05 1.00 0.05 1.01 75-125 Zine 1.28 0.05 1.00 ND 100	Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Duplicate (4121579-DUP1) Source: 141.0512-01 Prepared: 12/15/14 Analyzed: 12/17/14 Nickel ND 0.05 mg/l ND 20 Antimony ND 0.00 "ND 20 Cadmium 0.001 0.01 ND 20 Copper 0.01 0.05 ND 20 Chromium 0.002 0.05 ND 20 Lad ND 0.05 ND 20 Zinc 0.27 0.05 ND 20 Asenic ND 0.030 0.056 9 20 Asenic ND 0.010 ND 20 20 Marganese 0.051 0.030 0.008 20 Marki Spike (4121579-MS1) Source: 141.0512-01 Prepared: 12/15/14 Analyzed: 12/17/14 Nickel 1.04 0.05 mg/1 1.00 ND 104 75-125 Zine 1.28 0.05 1.00 0.00 75-125 50 </th <th></th> <th>Ttosuit</th> <th>2</th> <th>enns</th> <th>20101</th> <th>itesuit</th> <th>,orale</th> <th>23111113</th> <th>14.2</th> <th>2</th> <th>110105</th>		Ttosuit	2	enns	20101	itesuit	,orale	23111113	14.2	2	110105
Nickel ND 0.05 mg/l ND ND 20 Antimony ND 0.100 ND ND 20 Cadmium 0.001 0.05 " ND 20 Copper 0.01 0.05 " ND 20 Chronium 0.002 0.05 " ND 20 Lad ND 0.05 " ND 20 Zinc 0.27 0.05 " 0.28 3 20 Maganese 0.051 0.030 " 0.08 " 20 Selenium ND 0.010 " 0.08 " 20 Marix Spike (4121579-MS1) Source: 14L0512-01 Prepared: 12/15/14 Analyzed: 12/17/14 Nickel 1.04 0.05 " 1.00 ND 104 75-125 Zine 1.28 0.05 " 1.00 ND 75-125 - Zine 1.04 0.05 " 1.00 ND 101 75-125 Zine 1.04 0.05 " 1.00 ND 101 75-125 Zine 1.04 0.01 " 1.00 ND 101 75-1			~								
AntimonyND0.100"ND20Cadmiuno0.0010.010.02ND20Copper0.0020.05"ND20Chroniuro0.0020.05"ND20LadND0.05"ND20EadND0.05"ND20ManganeseND0.010"ND20SeleniuroND0.010"ND100SeleniuroND0.010"ND100NickelND0.010"10075-125Marganese1.060.030"1.00ND101Nickel1.021.030"1.0010175-125Marganese1.060.030"1.001.0075-125Chronium1.000.05"1.0010175-125Chronium1.000.05"1.0010175-125Chronium1.010.01"1.00ND10175-125Cadmiuno1.010.01"1.00ND10175-125Cadmiuno1.010.01"1.00ND10175-125Cadmiuno1.020.01"1.00ND10175-125Cadmiuno1.040.01"1.00ND10175-125Cadmiuno1.020.05"1.00ND10275-125Cadmiuno					Prepared:		Analyzed	: 12/17/14	4	20	
Annunony IND O.100 "ND JO Cadmium 0.001 0.01 "ND 20 Copper 0.01 0.05 "ND 20 Chronium 0.002 0.05 "ND 20 Zine 0.27 0.05 "ND 20 Manganese 0.051 0.030 "ND 0.085 9 20 Mareiro ND 0.010 "ND 0.008 "20 Marganese 0.051 0.030 "ND 0.008 "21/17/14 Y-17/14 Nickel 1.04 0.05 mg/ 1.00 ND 104 75-125 Manganese 1.06 0.030 " 1.00 ND 100 75-125 Cornnium 1.01 0.015 " 1.00 ND 100 75-125 Cornnium 1.01 0.010 " 1.00 ND 101 75-125 Cornnium 0.01 0.010 "											
Copper 0,01 0,05 " 0,01 18 20 Chronium 0,002 0,05 "ND 20 Lead ND 0,005 "ND 20 Zinc 0,27 0,05 0,28 9 20 Manganese 0,010 " 0,008 "9 20 Selenium ND 0,010 " ND 20 Mars Spike (4121579-MS1) Source: 14L0512-01 Prepared: 12/15/14 Analyze: 12/17/14 Y1/14	•										
Chromium 0,002 0,05 " ND 20 Lad ND 0,05 " 0.05 20 Zinc 0,27 0,050 " 0.028 20 Manganese 0,051 0.010 " ND 20 Selenium ND 0.010 " ND 20 Markinganese 1.04 0.05 mgl 1.00 ND 1215/14 Analyzet: 1217/14 Nickel 1.04 0.05 mgl 1.00 0.05 101 75:125									10		
Lead ND 0.05 " ND 20 Zine 0.27 0.05 " 0.28 3 20 Manganese 0.051 0.030 " 0.056 9 20 Arsenic ND 0.010 " ND 20 Marix Spike (4121579-MS1) Source: 14L0512-01 Prepared: 12/15/14 Analyzed: 12/17/14 20 Maringanese 1.06 0.030 " 1.00 0.05 101 75-125 Zine 1.28 0.05 " 1.00 0.05 101 75-125 Chromium 1.00 0.05 " 1.00 ND 100 75-125 Lead 1.01 0.01 " 1.00 ND 101 75-125 Copper 1.04 0.010 " 1.00 ND 101 75-125 Antimony 1.01 0.010 " 1.00 ND 101 75-125 Selenium 0.981									18		
Zinc 0.05 0.05 0.05 9 20 Manganese 0.051 0.030 " 0.05 9 20 Arsenic ND 0.010 " ND 20 Selenium 0.010 " 0.008 " 20 Matrix Spike (4121579-MS1) Source: 14L0512-0 Prepared: 12/15/1 Analyzed: 12/17/1 - Maganese 1.04 0.05 mg/l 1.00 0.05 101 75-125 - Marka Spike (4121579-MS1) 0.05 " 1.00 0.05 100 0.28 100 75-125 - - Marganese 1.06 0.05 " 1.00 0.00 75-125 - <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
Maganese 0.051 0.030 " 0.056 9 20 Arsenic ND 0.010 " ND 20 Selenium ND 0.010 " 0.008 " 20 Matrix Spike (4121579-MS1) Source: 14L0512-01 Prepared: 12/15/14 Analyze: 12/17/14 Nickel 1.04 0.05 mg/l 1.00 ND 104 75-125 Zinc 1.28 0.05 " 1.00 0.05 100 75-125 Chromium 1.00 0.05 " 1.00 ND 100 75-125 Cadmium 1.01 0.01 " 1.00 ND 100 75-125 Cadmium 1.01 0.01 " 1.00 ND 101 75-125 Cadmium 1.01 0.010 " 1.00 ND 101 75-125 Antimony 1.01 0.010 " 1.00 ND 101 75-125 Marganese 1.07 0.030 mg/l 1.00 0.048 <				"							
Nemic ND 0.000 " ND 20 Selenium ND 0.010 " 0.008 20 Marix Spike (4121579-MS1) Source: 14L.0512-01 Prepared: 12/15/14 Analyzed: 12/17/14 12/17/14 Nickel 1.04 0.05 mg/l 1.00 ND 104 75-125 Manganese 1.06 0.030 " 1.00 0.028 100 75-125 Chromium 1.00 0.05 " 1.00 ND 100 75-125 Cadmium 1.01 0.01 " 1.00 ND 100 75-125 Cadmium 1.01 0.01 " 1.00 ND 100 75-125 Cadmium 1.01 0.010 " 1.00 ND 101 75-125 Cadmium 1.01 0.010 " 1.00 ND 104 75-125 Marke (4121579-MS2) Source: 14L060-01 Prepared: 12/15/14 Analyzet: 12/17/4 M				"							
Selenium ND 0.010 " 0.008 20 Matrix Spike (4121579-MS1) Source: 14L0512-01 Prepared: 12/15/14 Analyzed: 12/17/14 Nickel 1.04 0.05 mg1 1.00 0.056 101 75-125 Manganese 1.06 0.030 " 1.00 0.28 100 75-125 Chromium 1.00 0.055 " 1.00 ND 104 75-125 Coper 1.04 0.05 " 1.00 ND 100 75-125 Cadmium 1.01 0.01 " 1.00 ND 101 75-125 Cadmium 1.01 0.010 " 1.00 ND 101 75-125 Cadmium 1.01 0.010 " 1.00 ND 101 75-125 Selenium 0.981 0.010 " 1.00 ND 104 75-125 Marganese 1.04 0.010 " 1.00 0.008	Manganese			"					9		
Selentian ND 0,010 0.008 0.008 20 Matrix Spike (4121579-MS1) Source: 14L0512-01 Prepared: 12/15/14 Analyzed: 12/17/14 Nickel 1.04 0.05 mg/l 1.00 ND 104 75-125 Manganese 1.06 0.030 " 1.00 0.02 100 75-125 Chromium 1.00 0.05 " 1.00 ND 100 75-125 Lead 1.00 0.05 " 1.00 ND 100 75-125 Copper 1.04 0.05 " 1.00 ND 101 75-125 Antimony 1.01 0.01 " 1.00 ND 101 75-125 Assenic 1.04 0.010 " 1.00 ND 101 75-125 Mark Spike (4121579-MS2) Source: 14L0600-01 Prepared: 12/15/14 Analyzed: 12/17/14 Analyzed: 12/17/14 Manganese 1.07 0.030 mg/l 1.00 0.048	Arsenic	ND	0.010	"		ND				20	
Nickel 1.04 0.05 mg/l 1.00 ND 104 75-125 Manganese 1.06 0.030 " 1.00 0.056 101 75-125 Zinc 1.28 0.05 " 1.00 0.28 100 75-125 Chromium 1.00 0.05 " 1.00 ND 100 75-125 Lead 1.00 0.05 " 1.00 ND 100 75-125 Copper 1.04 0.05 " 1.00 ND 101 75-125 Cadmium 1.01 0.01 " 1.00 ND 101 75-125 Arsenic 1.04 0.01 " 1.00 ND 101 75-125 Mark Spike (4121579-MS2) Source: 14L0600-01 Prepared: 12/15/14 Analyzed: 12/17/14 Manganese 1.07 0.030 mg/l 1.00 0.048 102 75-125 Chromium 1.02 0.05 " 1.00 0.048 102 75-125 Manganese 1.07 0.030	Selenium	ND	0.010	"		0.008				20	
Maganese 1.06 0.030 " 1.00 0.056 101 75-125 Zinc 1.28 0.05 " 1.00 0.28 100 75-125 Chromium 1.00 0.05 " 1.00 ND 100 75-125 Lead 1.00 0.05 " 1.00 ND 100 75-125 Copper 1.04 0.01 " 1.00 ND 101 75-125 Cadmium 1.01 0.01 " 1.00 ND 101 75-125 Animony 1.01 0.100 " 1.00 ND 101 75-125 Arsenic 1.04 0.010 " 1.00 ND 104 75-125 Marganese 1.04 0.010 " 1.00 0.008 97 75-125 Copper 1.02 0.030 mg/ 1.00 0.048 102 75-125 Marganese 1.07 0.030 " 1.00 0.02 103 75-125 Copper 1.06 <	Matrix Spike (4121579-MS1)		Source: 14L05	512-01	Prepared:	12/15/14	Analyzed	: 12/17/14	4		
Marganese1.000.0501.000.0501.000.0501.001.011.01Zine1.280.05"1.00ND10075-125Chromium1.000.005"1.00ND10075-125Lead1.000.01"1.00ND10175-125Cadmium1.010.01"1.00ND10175-125Antimony1.010.010"1.00ND10175-125Arsenic1.040.010"1.00ND10475-125Selenium0.9810.010"1.00ND10475-125Martix Spike (4121579-MS2)Source: 141.0600-01Prepared: 12/15/14Analyzed: 12/17/14Manganese1.070.030mg/l1.000.04810275-125Chromium1.020.05"1.000.0210375-125Copper1.060.05"1.000.0275-125Chromium1.020.05"1.000.0275-125Copper1.060.05"1.000.0275-125Chromium1.020.05"1.000.0110375-125Chromium1.020.05"1.000.0110375-125Chromium1.060.05"1.000.0110075-125Chromium1.030.05"1.00ND103	Nickel	1.04	0.05	mg/l	1.00	ND	104	75-125			
Linc 1.28 0.05 100 0.23 100 75-125 Chromium 1.00 0.05 " 1.00 ND 100 75-125 Copper 1.04 0.05 " 1.00 ND 101 75-125 Cadmium 1.01 0.01 " 1.00 ND 101 75-125 Antimony 1.01 0.010 " 1.00 ND 101 75-125 Selenium 0.981 0.010 " 1.00 ND 104 75-125 Marganese 1.04 0.010 " 1.00 ND 104 75-125 Copper 1.02 0.981 0.010 " 1.00 ND 104 75-125 Marganese 1.07 0.030 mg/ 1.00 0.08 97 75-125 Chromium 1.02 0.05 " 1.00 0.048 102 75-125 Chromium 1.02 0.05 " 1.00 0.02 103 75-125 Copper 1.06	Manganese	1.06	0.030	"	1.00	0.056	101	75-125			
Lead1.000.05"1.00ND10075-125Copper1.040.05"1.000.0110375-125Cadmium1.010.01"1.00ND10175-125Antinony1.010.100"1.00ND10475-125Arsenic1.040.010"1.00ND10475-125Selenium0.9810.010"1.000.0089775-125Matrix Spike (4121579-MS2)Source: 14L060-UPreparet: 12/15/14Analyzet: 12/17/14Manganese1.070.005"1.000.04810275-125Chromium1.020.05"1.000.04810275-125Copper1.060.05"1.000.0210375-125Nickel1.030.05"1.000.0110375-125Lead1.010.05"1.000.0110375-125Lead1.010.05"1.00ND10375-125Lead1.010.05"1.00ND10375-125Antimony1.070.100"1.00ND10375-125Antimony1.010.05"1.00ND10375-125Antimony1.010.01"1.00ND10475-125Antimony1.010.01"1.00ND10175-125	Zinc	1.28	0.05	"	1.00	0.28	100	75-125			
Lear1.000.051.00ND10075-125Copper1.040.05"1.00ND10175-125Cadmium1.010.01"1.00ND10175-125Antimony1.010.100"1.00ND10475-125Arsenic1.040.010"1.00ND10475-125Selenium0.9810.010"1.000.089775-125Matrix Spike (4121579-MS2)Source: 14L0600-01Prepared: 12/15/14Analyzed: 12/17/14Manganese1.070.030mg/11.000.04810275-125Chromium1.020.05"1.000.0210375-125Copper1.060.05"1.000.0210375-125Nickel1.030.05"1.000.0110375-125Lead1.010.05"1.000.0110375-125Lead1.010.05"1.000.0110375-125Lead1.010.05"1.00ND10375-125Antimony1.070.100"1.00ND10475-125Antimony1.010.05"1.00ND10375-125Antimony1.070.100"1.00ND10475-125Antimony1.070.100"1.00ND10475-125	Chromium	1.00	0.05	"	1.00	ND	100	75-125			
Cadmium1.010.01"1.00ND10175-125Antimony1.010.100"1.00ND10175-125Arsenic1.040.010"1.00ND10475-125Selenium0.9810.010"1.000.0089775-125Martix Spike (4121579-MS2)Source: 14L0600-UPrepared: 12/15/14Analyzed: 12/17/14Manganese1.070.030mg/l1.000.04810275-125Chromium1.020.05"1.000.0210375-125Copper1.060.05"1.000.0210375-125Nickel1.030.05"1.000.1310375-125Lead1.010.05"1.00ND10375-125Antimony1.070.100"1.00ND10375-125Antimony1.010.05"1.00ND10375-125Antimony1.070.100"1.00ND10375-125Antimony1.070.100"1.00ND10175-125Antimony1.010.01"1.00ND10175-125Antimony1.010.01"1.00ND10175-125Antimony1.020.010"1.00ND10175-125Antimony1.020.010"1.00ND101 <td>Lead</td> <td>1.00</td> <td>0.05</td> <td>"</td> <td>1.00</td> <td>ND</td> <td>100</td> <td>75-125</td> <td></td> <td></td> <td></td>	Lead	1.00	0.05	"	1.00	ND	100	75-125			
Calminin1.010.011.00ND1017.512.5Antimony1.010.100"1.00ND10175-125Arsenic1.040.010"1.00ND10475-125Selenium0.9810.010"1.000.0089775-125Matrix Spike (4121579-MS2)Source: 14L0600-01Prepared: 12/15/14Analyzed:12/17/14Manganese1.070.030mg/l1.000.04810275-125Chromium1.020.05"1.000.00510275-125Copper1.060.05"1.000.0210375-125Nickel1.030.05"1.000.0110375-125Lead1.010.05"1.00ND10375-125Antimony1.070.100"1.00ND10075-125Aritimony1.010.05"1.00ND10375-125Antimony1.070.100"1.00ND10175-125Antimony1.070.100"1.00ND10775-125Cadmium1.010.01"1.00ND10175-125Aritimony1.070.100"1.00ND10175-125Cadmium1.010.01"1.00ND10175-125Aritimon1.010.01"1.00ND101 </td <td>Copper</td> <td>1.04</td> <td>0.05</td> <td>"</td> <td>1.00</td> <td>0.01</td> <td>103</td> <td>75-125</td> <td></td> <td></td> <td></td>	Copper	1.04	0.05	"	1.00	0.01	103	75-125			
Arsenic1.040.010"1.00ND10475-125Selenium0.9810.010"1.000.0089775-125Matrix Spike (4121579-MS2)Source: 14L0600-01Prepared: 12/15/14Analyzed: 12/17/14Manganese1.070.030mg/l1.000.04810275-125Chromium1.020.05"1.000.00510275-125Copper1.060.05"1.000.0210375-125Zinc1.160.05"1.00ND10375-125Lead1.010.05"1.00ND10375-125Antimony1.070.100"1.00ND10775-125Cadmium1.010.01"1.00ND10175-125Arsenic1.020.010"1.00ND10175-125Common1.010.01"1.00ND10175-125	Cadmium	1.01	0.01	"	1.00	ND	101	75-125			
Selenium0.9810.010"1.000.0089775-125Matrix Spike (4121579-MS2)Source: 14L0600-UPrepared: 12/15/14Analyzed: 12/17/14Manganese1.070.030mg/l1.000.04810275-125Chromium1.020.05"1.000.0210375-125Copper1.060.05"1.000.0110375-125Zinc1.160.05"1.00ND10375-125Nickel1.030.05"1.00ND10375-125Lead1.010.05"1.00ND10375-125Antimony1.070.100"1.00ND10775-125Arsenic1.020.010"1.00ND10175-125Output1.010.01"1.00ND10175-125Cadmium1.010.01"1.00ND10175-125	Antimony	1.01	0.100	"	1.00	ND	101	75-125			
Matrix Spike (4121579-MS2)Source: 14L0600-01Prepared: 12/15/14Analyzed: 12/17/14Manganese1.070.030mg/l1.000.04810275-125Chromium1.020.05"1.000.00510275-125Copper1.060.05"1.000.0210375-125Zinc1.160.05"1.000.1310375-125Nickel1.030.05"1.00ND10375-125Lead1.010.05"1.00ND10075-125Antimony1.070.100"1.00ND10175-125Arsenic1.020.010"1.00ND10175-125	Arsenic	1.04	0.010	"	1.00	ND	104	75-125			
Manganese 1.07 0.030 mg/l 1.00 0.048 102 75-125 Chromium 1.02 0.05 " 1.00 0.005 102 75-125 Copper 1.06 0.05 " 1.00 0.02 103 75-125 Zinc 1.16 0.05 " 1.00 0.13 103 75-125 Nickel 1.03 0.05 " 1.00 ND 103 75-125 Lead 1.01 0.05 " 1.00 ND 103 75-125 Antimony 1.07 0.100 " 1.00 ND 107 75-125 Arsenic 1.02 0.010 " 1.00 ND 107 75-125	Selenium	0.981	0.010	"	1.00	0.008	97	75-125			
Manganese 1.07 0.030 mg/l 1.00 0.048 102 75-125 Chromium 1.02 0.05 " 1.00 0.005 102 75-125 Copper 1.06 0.05 " 1.00 0.02 103 75-125 Zinc 1.16 0.05 " 1.00 0.13 103 75-125 Nickel 1.03 0.05 " 1.00 ND 103 75-125 Lead 1.01 0.05 " 1.00 ND 103 75-125 Antimony 1.07 0.100 " 1.00 ND 107 75-125 Arsenic 1.02 0.010 " 1.00 ND 107 75-125	Matrix Spike (4121579-MS2)		Source: 14L06	500-01	Prepared:	12/15/14	Analyzed	: 12/17/14	4		
Chromium1.020.05"1.000.00510275-125Copper1.060.05"1.000.0210375-125Zinc1.160.05"1.000.1310375-125Nickel1.030.05"1.00ND10375-125Lead1.010.05"1.000.0110075-125Antimony1.070.100"1.00ND10775-125Cadmium1.020.010"1.00ND10175-125	Manganese	1.07									
Copper1.060.05"1.000.0210375-125Zinc1.160.05"1.000.1310375-125Nickel1.030.05"1.00ND10375-125Lead1.010.05"1.000.0110075-125Antimony1.070.100"1.00ND10775-125Cadmium1.020.010"1.00ND10175-125	Chromium				1.00	0.005	102	75-125			
Zinc1.160.05"1.000.1310375-125Nickel1.030.05"1.00ND10375-125Lead1.010.05"1.000.0110075-125Antimony1.070.100"1.00ND10775-125Cadmium1.020.010"1.00ND10175-125	Copper				1.00	0.02	103	75-125			
Nickel1.030.05"1.00ND10375-125Lead1.010.05"1.000.0110075-125Antimony1.070.100"1.00ND10775-125Cadmium1.010.01"1.00ND10175-125Arsenic1.020.010"1.00ND10275-125	Zinc			"	1.00	0.13	103	75-125			
Lead1.010.05"1.000.0110075-125Antimony1.070.100"1.00ND10775-125Cadmium1.010.01"1.00ND10175-125Arsenic1.020.010"1.00ND10275-125	Nickel				1.00	ND	103	75-125			
Antimony1.070.100"1.00ND10775-125Cadmium1.010.01"1.00ND10175-125Arsenic1.020.010"1.00ND10275-125	Lead			"	1.00	0.01	100				
Cadmium1.010.01"1.00ND10175-125Arsenic1.020.010"1.00ND10275-125	Antimony										
Arsenic 1.02 0.010 " 1.00 ND 102 75-125	Cadmium										
	Selenium	0.984	0.010	"	1.00	ND	98	75-125			

Total Metals by EPA 200 Series Methods - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4121579										
Matrix Spike Dup (4121579-MSD1)		Source: 14L0	512-01	Prepared:	12/15/14	Analyzed	1: 12/17/1	4		
Chromium	1.02	0.05	mg/l	1.00	ND	102	75-125	2	20	
Lead	0.90	0.05	"	1.00	ND	90	75-125	10	20	
Cadmium	0.93	0.01	"	1.00	ND	93	75-125	9	20	
Copper	1.08	0.05	"	1.00	0.01	107	75-125	4	20	
Antimony	0.934	0.100	"	1.00	ND	93	75-125	8	20	
Zinc	1.75	0.05	"	1.00	0.28	147	75-125	31	20	QM-06
Nickel	1.02	0.05	"	1.00	ND	102	75-125	2	20	
Manganese	5.80	0.030	"	1.00	0.056	574	75-125	138	20	QM-06
Selenium	0.914	0.010	"	1.00	0.008	91	75-125	7	20	
Arsenic	0.970	0.010	"	1.00	ND	97	75-125	7	20	

Organophosphorus Pesticides by EPA Method 8141A - Quality Control

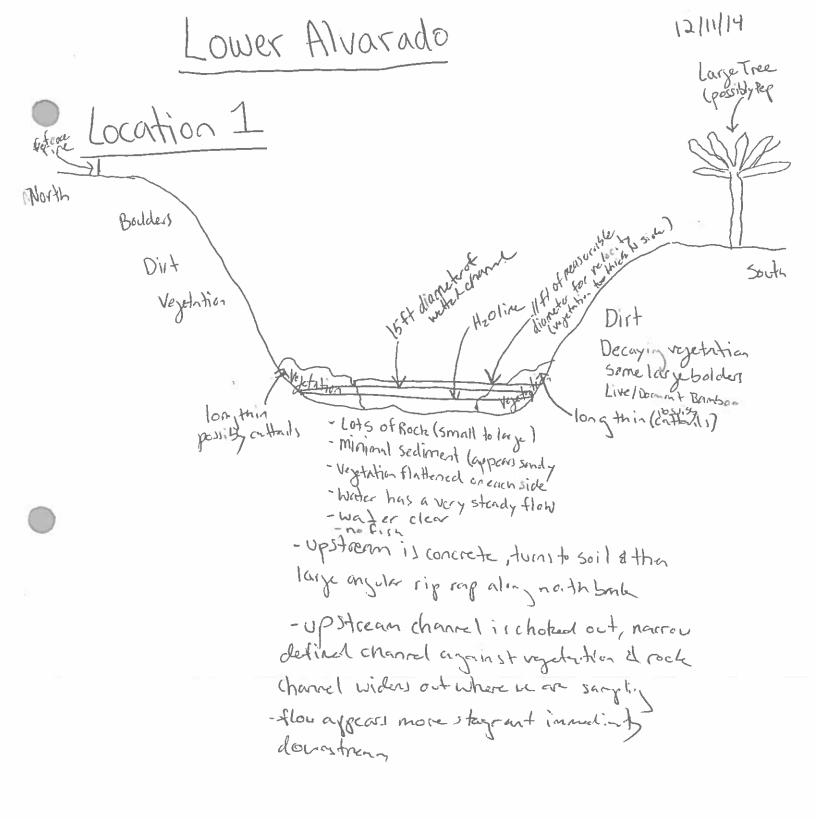
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4121217										
Blank (4121217-BLK1)				Prepared:	12/16/14	Analyzed	1: 12/17/14	4		
Chlorpyrifos	ND	0.05	ug/l							
Diazinon	ND	0.05	"							
Malathion	ND	0.05	"							
Surrogate: Triphenyl phosphate	0.190		"	0.250		76	60-130			
Surrogate: Tribuytlphosphate	0.210		"	0.250		84	60-130			
LCS (4121217-BS1)				Prepared:	12/16/14	Analyzed	1: 12/17/14	4		
Bolstar	0.40	0.10	ug/l	0.500		80	60-130			
Diazinon	0.44	0.05	"	0.500		88	60-130			
Ethoprop	0.42	0.05	"	0.500		84	60-130			
Mevinphos	0.42	0.25	"	0.500		84	60-130			
Methyl parathion	0.40	0.10	"	0.500		80	60-130			
Phorate	0.43	0.05	"	0.500		86	60-130			
Ronnel	0.59	0.25	"	0.500		118	60-130			
Trichlorinate	0.46	0.05	"	0.500		92	60-130			
Surrogate: Triphenyl phosphate	0.200		"	0.250		80	60-130			
Surrogate: Tribuytlphosphate	0.250		"	0.250		100	60-130			
LCS Dup (4121217-BSD1)				Prepared:	12/16/14	Analyzed	1: 12/17/14	4		
Bolstar	0.42	0.10	ug/l	0.500		84	60-130	5	30	
Diazinon	0.47	0.05	"	0.500		94	60-130	7	30	
Ethoprop	0.43	0.05	"	0.500		86	60-130	2	30	
Mevinphos	0.42	0.25	"	0.500		84	60-130	0	30	
Methyl parathion	0.43	0.10	"	0.500		86	60-130	7	30	
Phorate	0.41	0.05	"	0.500		82	60-130	5	30	
Ronnel	0.50	0.25	"	0.500		100	60-130	17	30	
Trichlorinate	0.46	0.05	"	0.500		92	60-130	0	30	
Surrogate: Triphenyl phosphate	0.180		"	0.250		72	60-130			
Surrogate: Tribuytlphosphate	0.220		"	0.250		88	60-130			

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4121128										
Duplicate (4121128-DUP1)		Source: 14L04	494-01	Prepared a	& Analyze	ed: 12/11/2	14			
Dissolved Oxygen	10.0	0.10	mg/l	-	10.0			0.4	20	
Duplicate (4121128-DUP2)		Source: 14L04	494-02	Prepared a	& Analyze	ed: 12/11/2	14			
Dissolved Oxygen	6.27	0.10	mg/l	-	6.31			0.6	20	
Duplicate (4121128-DUP3)		Source: 14L04	194-03	Prepared a	& Analyze	ed: 12/11/2	14			
Dissolved Oxygen	5.69	0.10	mg/l	•	5.72			0.5	20	
Duplicate (4121128-DUP4)		Source: 14L04	194-04	Prepared a	& Analyze	ed: 12/11/2	14			
Dissolved Oxygen	6.27	0.10	mg/l	•	6.35			1	20	
Batch 4121422										
Blank (4121422-BLK1)				Prepared a	& Analyze	ed: 12/12/2	14			
Nitrite as N	ND	0.05	mg/l	-	-					
LCS (4121422-BS1)				Prepared a	& Analyze	ed: 12/12/2	14			
Nitrite as N	0.10	0.05	mg/l	0.100		103	80-120			
LCS Dup (4121422-BSD1)				Prepared a	& Analyze	ed: 12/12/2	14			
Nitrite as N	0.10	0.05	mg/l	0.100	2	102	80-120	1	20	
Duplicate (4121422-DUP1)		Source: 14L04	199-01	Prepared a	& Analyze	ed: 12/12/2	14			
Nitrite as N	ND	0.05	mg/l	-	ND				20	
Matrix Spike (4121422-MS1)		Source: 14L04	499-01	Prepared a	& Analyze	ed: 12/12/2	14			
Nitrite as N	0.11	0.05	mg/l	0.100	ND	106	80-120			

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4121422										
Matrix Spike Dup (4121422-MSD1)		Source: 14L	0499-01	Prepared	& Analyz	ed: 12/12/	/14			
Nitrite as N	0.10	0.05	mg/l	0.100	ND	103	80-120	3	20	
Batch 4121576										
Blank (4121576-BLK1)				Prepared:	12/15/14	Analyzed	d: 12/16/1-	4		
Total Dissolved Solids	ND	20.0	mg/l							
Duplicate (4121576-DUP1)		Source: 14L	0469-01	Prepared:	12/15/14	Analyzed	d: 12/16/1	4		
Total Dissolved Solids	1810	20.0	mg/l		1770			2	20	
Reference (4121576-SRM1)				Prepared:	12/15/14	Analyzed	d: 12/16/1	4		
Total Dissolved Solids	326	20.0	mg/l	370		88	7.84-112.	1		
Batch 4121579										
Blank (4121579-BLK1)				Prepared:	12/15/14	Analyzed	d: 12/16/1-	4		
Hardness (Total)	ND	10	mg CaCO3/	/L						
Duplicate (4121579-DUP1)		Source: 14L	0512-01	Prepared:	12/15/14	Analyzed	d: 12/16/1	4		
Hardness (Total)	17	10	mg CaCO3/	•	17			2	20	
Batch 4121941										
Blank (4121941-BLK1)				Prepared:	12/18/14	Analyzed	d: 12/19/1	4		
Total Kjeldahl Nitrogen	ND	0.5	mg/l	-		-				

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4121941										
LCS (4121941-BS1)				Prepared:	12/18/14	Analyzed	: 12/19/14	4		
Total Kjeldahl Nitrogen	4.8	0.5	mg/l	5.00		97	80-120			
LCS Dup (4121941-BSD1)				Prepared:	12/18/14	Analyzed	: 12/19/14	4		
Total Kjeldahl Nitrogen	4.8	0.5	mg/l	5.00		96	80-120	0.7	20	
Duplicate (4121941-DUP1)		Source: 14L04	194-04	Prepared:	12/18/14	Analyzed	: 12/19/14	4		
Total Kjeldahl Nitrogen	1.4	0.5	mg/l	*	1.3	•		2	20	
Matrix Spike (4121941-MS1)		Source: 14L04	194-04	Prepared:	12/18/14	Analyzed	: 12/19/14	4		
Total Kjeldahl Nitrogen	6.1	0.5	mg/l	5.00	1.3	95	80-120			
Matrix Spike Dup (4121941-MSD1)	Source: 14L0494-04			Prepared:	12/18/14	Analyzed	: 12/19/14	4		
Total Kjeldahl Nitrogen	6.0	0.5	mg/l	5.00	1.3	94	80-120	1	20	
Batch 4122027										
Blank (4122027-BLK1)				Prepared	& Analyze	ed: 12/20/2	14			
Phosphorus, Total	ND	0.05	mg/l	1						
LCS (4122027-BS1)				Prepared	& Analyze	ed: 12/20/2	14			
Phosphorus, Total	0.51	0.05	mg/l	0.500	2	101	80-120			
LCS Dup (4122027-BSD1)				Prepared	& Analyze	ed: 12/20/2	14			
Phosphorus, Total	0.52	0.05	mg/l	0.500		104	80-120	3	20	
Duplicate (4122027-DUP1)		Source: 14L04	69-01	Prepared	& Analyze	ed: 12/20/2	14			
Phosphorus, Total	0.36	0.05	mg/l		0.38			8	20	

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4122027										
Matrix Spike (4122027-MS1)		Source: 14L04	469-01	Prepared	& Analyze	ed: 12/20/	14			
Phosphorus, Total	0.81	0.05	mg/l	0.500	0.38	85	80-120			
Matrix Spike Dup (4122027-MSD1)		Source: 14L04	469-01	Prepared	& Analyze	ed: 12/20/	14			
Phosphorus, Total	0.79	0.05	mg/l	0.500	0.38	81	80-120	3	20	
Batch 4122227										
Blank (4122227-BLK1)				Prepared	& Analyze	ed: 12/20/	14			
Nitrate/Nitrite as N	ND	0.05	mg/l							
Nitrate as N	ND	0.05	"							
LCS (4122227-BS1)				Prepared	& Analyze	ed: 12/20/	14			
Nitrate/Nitrite as N	0.52	0.05	mg/l	0.500		103	80-120			
Nitrate as N	0.52	0.05	"	0.500		103	80-120			
LCS Dup (4122227-BSD1)				Prepared of	& Analyze	ed: 12/20/	14			
Nitrate/Nitrite as N	0.51	0.05	mg/l	0.500		102	80-120	1	20	
Nitrate as N	0.51	0.05		0.500		102	80-120	1	20	
Duplicate (4122227-DUP1)		Source: 14L04	499-06	Prepared	& Analyze	ed: 12/20/	14			
Nitrate/Nitrite as N	23.0	5.00	mg/l	•	22.7			1	20	
Nitrate as N	22.9	5.00			22.6			1	20	
Matrix Spike (4122227-MS1)		Source: 14L04	499-06	Prepared	& Analyze	ed: 12/20/	14			
Nitrate/Nitrite as N	72.9	5.00	mg/l	50.0	22.7	100	80-120			
Nitrate as N	72.8	5.00		50.0	22.6	100	80-120			


Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4122227										
Matrix Spike Dup (4122227-MSD1)		Source: 14L04	199-06	Prepared	& Analyz	ed: 12/20/	14			
Nitrate/Nitrite as N	73.5	5.00	mg/l	50.0	22.7	102	80-120	0.8	20	
Nitrate as N	73.4	5.00	"	50.0	22.6	102	80-120	0.8	20	

Notes and Definitions

- W-02 The sample for nitrate analysis was preserved with H2SO4 after the nitrite portion of the analysis was completed to extend the holding time for the sample. Nitrate results are corrected for the nitrite contribution per the method.
- QM-06 Due to noted non-homogeneity of the QC sample matrix, the MS/MSD did not provide reliable results for accuracy and precision. Sample results for the QC batch were accepted based on LCS/LCSD percent recoveries and RPD values.
- HT-15 This sample was received outside of the EPA's recommended 15 minute holding time for this analysis. However, the sample was analyzed immediately upon receipt.
- A-01a >1600 MPN/100 mL
- A-01 >1600 MPN/ mL
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference

FLOW MEASUREMENT FIELD SHEETS

lent:				Date/Time: 12/11/19 8:38 a.~
roject Name: LOLA	er Alvasado	Locatio	2012	Location Description:
ield Crew: Kelly	Doyle			
	Isca Oncre	sion		Associated Sample ID:
engle (20 streft interactions) in a serie	Laudelleigeprozeite de Si	ALC: STREET, S	The second real second real second	Cross Section Measurements
			3	
- X Measurement From Left Bank (ft)	Y Depth of Water (ft)	Velocity (ft/sec)	Standard Deviation	Notes
	totter			
1.ft	0.8	0.06		- On Small rock approx Linch in Size
				day hat had started as a start of the start
				No algae, Clear Hoter, no leaf liter
		<u> </u>		Zui Close & the file live live
2Ft	0-95	0.09		- on medium sized rock approx 5 inch roch
				small amount of least lite. no algor, clear
				I C. O'VI
		┝─── ─ ┤		water, no fish 8:47
3FF	1 90	0.15		-adier Lib la internet
	U			-adjacent to large rock, on top of rock,
				rocks succent, meter water clear 8.45
				5
Uft	0.60	0.10		
711	0.60			-on top of very large rock, large bald
				to wh 8:47 0
SFL	110			
21+	1.15	0.11		-on roch, a attends immediate up stream
				(approx 4 ft away) appear to Sein futur
				2 deeport part of chame , cathe, 1s
				2 fact noth 8 49
			*	
1012	12			
GFK	1.3	0.04		to the part 8:52
				Lather and 8.52
<u>764</u>	1.3	-0-10		-on rock, catter ledges not four hing
•				
001				Velacity rol 8.54
8FL	1.2	-0.11		-Flowblacked by catheils upstream
				0
	·	<u> </u>		

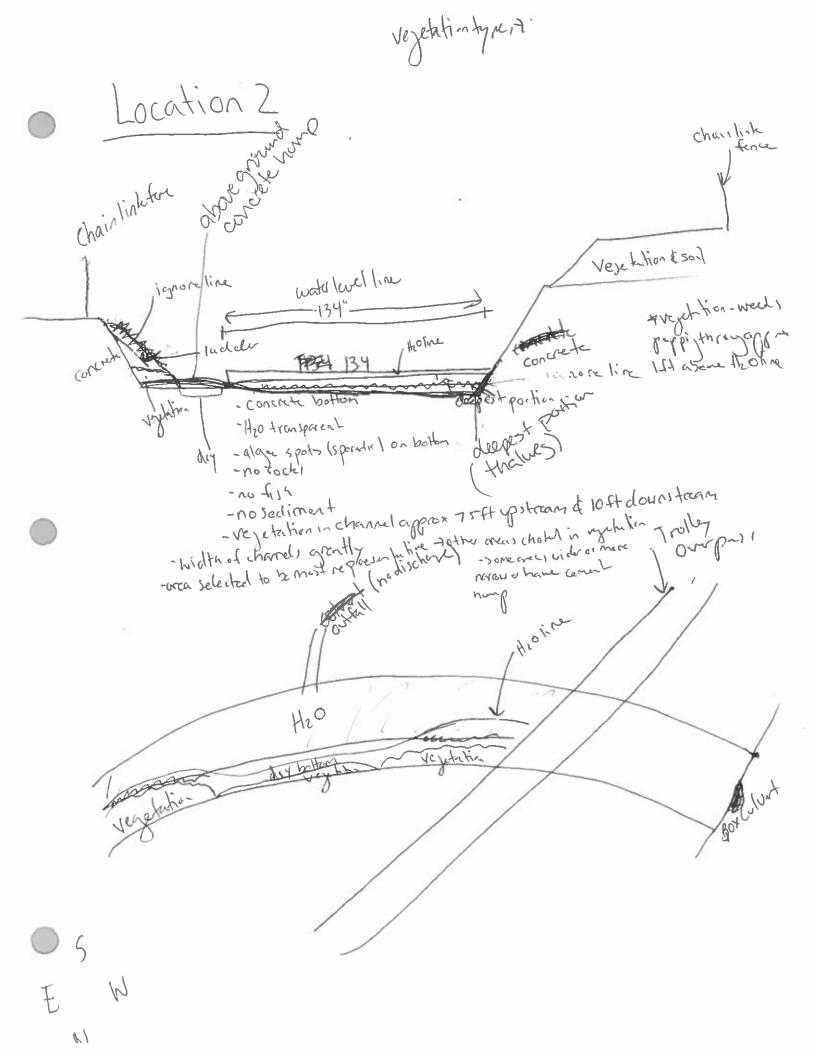
NOTE: Cross section surveys of the storm water facility segment shall be performed at a minimum of every 50 linear feet (eg, if segment is 1,000 feet, minimum of 21 cross sections shall be surveyed). For smaller wetted channels (less than 10 feet across), depth and distance from bank shall be measured at approximately 1-foot interval. For larger wetted channels (greater than 10 feet acorss), depth and distance from bank shall be measured at approximately 2-foot intervals.

Left and Right Bank are determined when looking downstream

3

3

LWB = left wetted bank - where surface water terminates at the left bank RWB = right wetted bank - where surface water terminates at the right bank


X Measurement = difference in horizontal distance from LWB

Y Depth of Water = difference in vertical distance from channel bottom to surface of water

Velocity - measured with YSI 556 (with flow cell) Flow Meter

				ection Measurement Field Form	
ent: oject Name: (Oh	to Mura -		cation	Date/Time: ()/(/// 9 - 3 9 Location Description:	
eld Crew: Kelly	D. 6	<u> </u>	aner.		
nery	here che	2. 1160		Associated Council (D)	
to be an end of the second	- coulon	reat and	agent in some state	Associated Sample ID:	
	<u> </u>			Cross Section Measurements	22
X Measurement	<u> </u>				1.33
rom Left Bank (ft)	Depth of Water (ft)	(ft/sec)	Deviation	Notes	
9A	1.\	-0.11		on rock, midst of endief catherly	
				Suroundi, velocity and flow Hocked	
	;			2 vezetation 18:57	
10Ft	1.0	-0-10		-on rock, midstatents of catherils urrounding	
1011		0-10		-on rock, milstof entrof catheils urrounding	85
				The sources - Juppenon	0-0
11 Ft	1.3	-0.10		- on edge of vyetation, flow bloch	
				by synthe 4:00	
				/ 0	
				Fend time 9:00 an	
		-			
	8				
		<u> </u>			
OTE: Cross section	surveys of the store	m water facility:	egment shall be	e performed at a minimum of every 50 linear feet (eg. If segment is 1,000 feet, minimum of 21 cross	
ctions shall be surv	eyed). For smaller	wetted channel	s (less than 10 f	eet across), depth and distance from bank shall be measured at approximately 1-foot interval. For larger bank shall be measured at approximately 2-foot intervals.	

RWB = right wetted bank - where surface water terminates at the right bank RWB = right wetted bank - where surface water terminates at the right bank X Measurement = difference in horizontal distance from LWB Y Depth of Water = difference in vertical distance from channel bottom to surface of water Velocity - measured with YSI 556 (with flow cell) Flow Meter

Cross Section Measurement Field Form	
Client: Date/Time: 12 (11)15	
Project Name: Ouse CAWULGADO DUADOO Z	
Field Crew Kelly Doyle Associated Sample ID:	1
nelly Loyce Associated Sample ID:	
	And analysis of the Austr
Cross Section Measurements	
X Measurement V Velocity Standard	
X Measurement	1
(ft) (ft) (ft)	
147 0.15 = 10:06 too shallow no readi.	
287 0.10 = 10:07 to shallow for reading once	
and share the station to reading and	ener -
<u> </u>	
3ft 0.19 = 10:05 be shallow for reading once	
347 0.19 = 10:08 too shallov for reading, once	ment
4ft 0.23 -0.14 10-11 on cement, smill plant debers	
normal senser on bottom of conce	net
547 0.30 -0.13 10:14 on cernent, higher clear	
6Ft 0.40 0.07 10:16 on cerent, water clear	
10.10 Under Wate Clew	
7Ft 0.45 0.17 10:18 on commit water clear	
74+ 0.45 0.17 10:18 on const. water clear	
]
ON DED BON MONT	
8FT 0.50 6.24 10:21 Greenel , atriclear	
9.55 0.30 10=23 on ceneral, water clea	_
The and the water water water	
10ft 0.5 0.39 10.25	
ILCL / 2 - IL ILL ICAN	
11ft C.2 = too shallow 10:28	
codtine = 10.28an	

NOTE: Cross section surveys of the storm water facility segment shall be performed at a minimum of every 50 linear feet (eg, if segment is 1,000 feet, minimum of 21 cross sections shall be surveyed). For smaller wetted channels (less than 10 feet across), depth and distance from bank shall be measured at approximately 1-foot interval. For larger wetted channels (greater than 10 feet across), depth and kishing be measured at approximately 1-foot interval. For larger wetted channels (greater than 10 feet across), depth and kishing be measured at approximately 2-foot intervals. For larger Left and Right Bank are determined when looking downstream

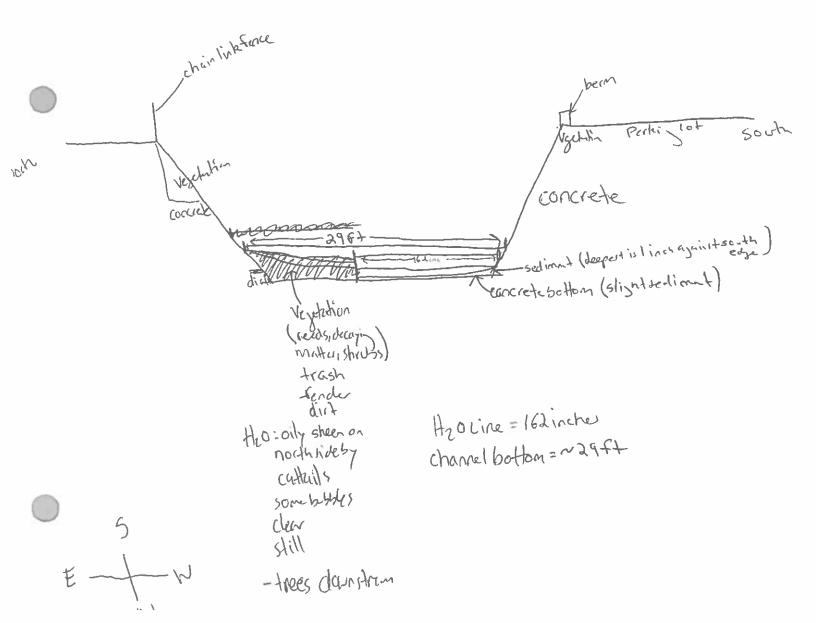
LWB = left wetted bank - where surface water terminates at the left bank

RWB = right wetted bank - where surface water terminates at the right bank

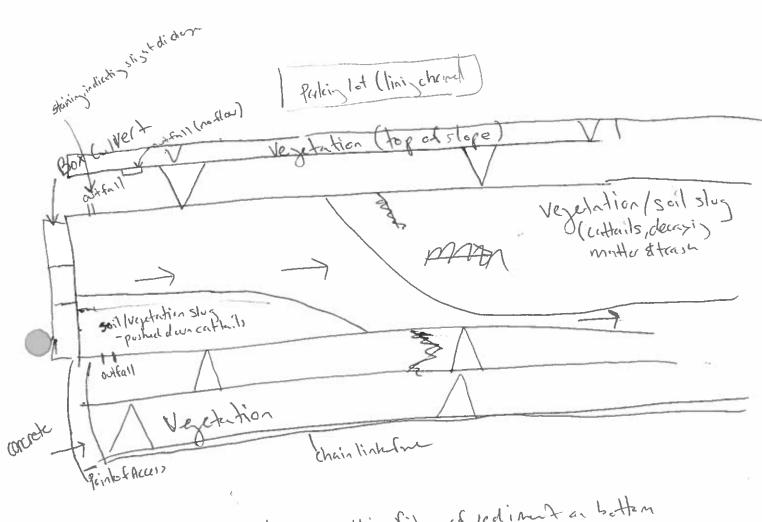
X Measurement = difference in horizontal distance from LWB

Y Depth of Water = difference in vertical distance from channel bottom to surface of water

Velocity - measured with YSI 556 (with flow cell) Flow Meter


Location 3 Water Samples taken 12:39pm by COC Access limited due to very thick very drive to south side of channel & accessed via ladder Thick veg-all upstream flow passes then thick veg Water appears clear & East maring Small Fish (tadpole?) observed? Thes orclet BBCG rock low *City Crews ance t Vele Concrete 11359 conditive PD Concreta Carparked hule parter * access pt Via ladder

e14			Cross S	Section Measurement Field Form	T
Client: Date/Time: \2/11/14 1/(77)					
Teld Crew: Kelly Doyle Chelsen Ohenesien				S Location Description:	1
an and a strength of the state	Chely	ica Ohan	esten	Associated Sample ID:	
		A second s	- La Hellow - Charles	Cross Section Measurements	
X Measurement	Y	Velocity	Standard		
From Left Bank (ft)	Depth of Water (ft)	(ft/sec)	Deviation	Notes	
1++	(). 5	1.01		on concrete, two small nicks upstream an either sid bank to the north is sediment & regross pulled	
				back tally add a least a least a least a least and the addition of the additio	$L \sim G$
				LOUTE TO THE TOTALS ZOUMENTOUR ME PALLECA	Bac
70+	0.3	00	· _ · _		
	0.5	$(), \varphi_{\lambda}, \varphi_{\lambda}$		on concrete	
201		0.62			
_ SFI_	0.3	0,51		on conclete	
YFF				(02)	
				L 0.2'	
ĺ					
T					
TE: Cross section surv tions shall be surveye	veys of the storm we	vater facility seg etted channels (li	ment shall be p	erformed at a minimum of every 50 linear feet (eg, If segment is 1,000 feet, minimum of 21 cross ; across), depth and distance from bank shall be measured at approximately 1-foot interval. For larger	
ted channels (greate and Right Bank are c	r than 10 feet acor	ss), denth and d	stance from he	across), depth and distance from bank shall be measured at approximately 1-foot interval. For larger nk shall be measured at approximately 2-foot intervals.	
8 = left wetted bank -	where surface wa	ter terminates a	dill t the laft back		
B = right wetted bank easurement = differe	- where surface w	ater terminates	at the right has	nk	
epth of Water = differ	ence in vertical dis	stance from char	nal hottom to	surface of water	
ocity - measured with	YSI 556 (with flow	(cell) Flow Mete	r		


12/11/14

Location 34 · Location selected due to access issues. We chose a location Where there is a concrete swale approx 20ft downstream of Culvert. Veretation along north half of samplin location. Downstream (approx 2017) hyperation lines southern half of channel moving towards north side. Downstream HLO lines 1-2 A of channel

on porth side with the remaining oren bein mostly vychiter. All Nexchation in Channel can be described as a catheris, large leaded shruss and decaying upatition matter.

Location 34 Aerial

Acorcrete lined, this film of sediment a better

1

			Cross S	Section Measurement Field Form	
Client: Project Name:	N. In Mark		1.	Date/Time: 12/11/19 11:19	
	wer Alvero		ation 2	Location Description:	
Ct	1 Doyle helsen Ohay	-sim		Associated Sample ID:	
	nen bezeinen er einen er einen er		an ann an Star Praichtean	Cross Section Measurements	11,12,18
X Measurement	Y	Velocity	Finadada		
From Left Bank (ft)	Depth of Water (ft)	(ft/sec)	Standard Deviation	Notes	
1 ()					
147	0.9	-0.06		11:19 - Fine sand a bottom of concrete	
				0 r 1 1 1 1 1 107 H 0	[
				on to chara slight only sheer along	
				Month bank by callails, that	_
2Ft	A a	DAT			
<u>ann</u>	0.9	-0.05		11:21 "	'
<u></u>					
3++	0.9	60.0=		11:22 "	-
				· · · · · · · · · · · · · · · · · · ·	
4ff	0.9	-0.06		11:25 "	-
TO	0.0	0.07			
5At	0.9	-0.03		11:27 "	
<u> </u>					
6++	0.9	-0.02		11.29"	1
7.52	185	0.01		11-214	2
					_
8ft	180	0.07		11:22	
D VI	100	0.03		11:33.1	
	11 .7				
944	0.80	0.01		11:35	
1077	1.80	0.03		11:36 "rock-poloren approx 18t	-
		<u> </u>			_
				Alvey - Gron Juse My	
TIAL	1.80				
		0.01		11:39	
1214	0.75	003		11: 40 on small amounted said this care to	
15tt	0.65 0	0 0		11:42 on sand approach south bench	
tions shall be surve	urveys of the storm syed). For smaller v	water facility seg vetted channels (sment shall be p less than 10 fee	11: 40 on small cm cunter sad his cancrete 11: 42 on 5 and approach South 6574 performed at a minimum of every 50 linear feldleg, If segment is 1,000 feet, minimum of 21 cross et across), depth and distance from bank shall be measured at approximately 1-foot interval. For far	
<u>ited channels (grea</u>	ter than 10 feet acc e determined when	orss), depth and r	listance from ha	ank shall be measured at approximately 2-foot intervals.	ger
8 = left wetted ban	ik - where surface w	ater terminates :	at the left bank		
feasurement = diffe	ank - where surface erence in horizontai	distance from LV	NB		
epth of Water = dif	ference in vertical (ith YSI 556 (with flo	distance from cha	nnel bottom to	D surface of water	
	2		er		
V 19A	+ C.2			too shallow	

FLOW MEASUREMENTS CALCULATION SHEETS

Location ID:	Lo	wer Alvarado East ar	еа	Upstream (Lo	ocation 4)		Average Channel Velocity(ft/s)= 0.020
Date:		12/11/20	14				Total Q (cfs)= 0.10
Time:		~11:15-11:4	5 AM				
X Measurement from Left Bank (ft)	Water Depth (ft)	Velocity (ft/sec)	SD	Effective Segment Area	Q (cfs)	Time sample was taken	Notes
							fine sand on bottom of concrete vegetation matter very close upstream,
							bubbles on surface, slightly oily sheen on water along north bank by cattails,
1	0.9	-0.06		0.00	0.00	11:19:00 AM	flat
2	0.9	-0.05		0.00	0.00	11:21:00 AM	Same as above
3	0.9	-0.08		0.00	0.00	11:22:00 AM	Same as above
4	0.9	-0.06		0.00	0.00	11:25:00 AM	Same as above
5	0.9	-0.03		0.00	0.00	11:27:00 AM	Same as above
6	0.9	-0.02		0.00	0.00	11:29:00 AM	Same as above
7	0.85	0.01		0.88	0.01	11:31:00 AM	Same as above
8	0.8	0.03		0.83	0.02	11:33:00 AM	Same as above
9	0.8	0.01		0.80	0.01	11:35:00 AM	Same as above
10	0.8	0.03		0.80	0.02	11:36:00 AM	rock upstream approximately 1 ft away from
11	0.8	0.01		0.80	0.01	11:39:00 AM	
12	0.75	0.03		0.78	0.02	11:40:00 AM	on small amount of sand lining concrete
13	0.65	0		0.00	0.00	11:42:00 AM	on sand, approaching south bank
14	<.2	-		0.00	0.00		too shallow to take a reading

X Measurement	•	Velocity	SD	Effective	Q (cfs)	Time sample	Notes	
Time:		~1:00-	1:30 PM					
Date:		12/1	1/2014				Total Q (cfs)=	0.52
Location ID:	Lowe	r Alvarado East	Area	Downstream (Loo	cation 3)		Average Channel Velocity(ft/s)=	0.698

from Left Bank (ft)	(ft)	(ft/sec)	30	Segment Area	Q (CIS)	was taken	Notes
							on concrete, two small rocks upstream on either side ~6" away, bank to the
1	0.3	1.01		0.15	0.15	1:00:00 PM	north is sediment and vegitation roots pulled back
2	0.3	0.62		0.3	0.19	-	on concrete
3	0.3	0.62		0.3	0.19	-	on concrete
4	<.2	-		0	0.00	-	too shallow to measure

Location ID:	Lower Alvarado West Area Upstream (Lo			Upstream (L	ocation 2)	Average Channel Velocity(ft/s)= 0.249
Date:		12/11	L/2014			Total Q (cfs)= 0.57
Time:	~10:10-10:30 AM					
					_	
Х						
Measurement			Effective	Q (cfs)	Time sample	Notes
from Left Bank	(ft)	(ft/sec)	Segment Area		was taken	
(ft)						

from Left Bank (ft)	(ft)	(ft/sec)	Segment Area		was taken		
4	0.23	-0.14	0	0.00	10:11:00 AM	on cement, small plant debris around sensor, on bottom of concrete	
5	0.3	-0.13	0	0.00	10:14:00 AM	on cement, water clear	
6	0.4	0.07	0.35	0.02	10:16:00 AM	on cement, water clear	
7	0.45	0.17	0.425	0.07	10:18:00 AM	on cement, water clear	
8	0.5	0.24	0.475	0.11	10:21:00 AM	on cement, water clear	
9	0.55	0.3	0.525	0.16	10:23:00 AM	on cement, water clear	
10	0.5	0.39	0.525	0.20	10:25:00 AM		
11	<.2	-	0	0.00	10:28:00 AM	too shallow to measure	

Location ID:	Lower Alvarado West Area	Downstream (Location 1)	Average Channel Velocity(ft/s)=	0.091
Date:	12/11/2014		Total Q (cfs)=	0.46
Time:	~8:30-9:00 AM			

X Measurement from Left Bank (ft)	Water Depth (ft)	Velocity (ft/sec)	Effective Segment Area	Q (cfs)	Time sample was taken	Notes	
1	0.8	0.06	0.4	0.02	8:38:00 AM	on small rock approximately 1" in size, close to dirt bank, no algae, clear water, no leaf litter	
2	0.95	0.09	0.875	0.08	8:43:00 AM	on medium sized rock approximately 5" rock, small amount of leaf litter, no algae, clear water, no fish	
3	0.9	0.15	0.925	0.14	8:45:00 AM	adjacent to large rock, on top of rock, rocks surrounding meter, water clear	
4	0.6	0.1	0.75	0.08	8:47:00 AM	on top of very large rock, large boulder to south	
				0.40		on rock, cattails immediately upstream (approximately 4 ft. away) appear to be in	
5	1.15	0.11	0.875	0.10	8:49:00 AM	fastest and deepest part of channel, cattails 2 feet north	
6	1.3	0.04	1.225	0.05	8:52:00 AM	on rock, tips of cattail approximately 1 ft. away to the north	
7	1.3	-0.1	0	0.00	8:54:00 AM	on rock, cattail edges now touching velocity rod	
8	1.2	-0.11	0	0.00	-	flow blocked by cattails upstream	
9	1.1	-0.11	0	0.00	8:57:00 AM	on rock, midst of ends of cattail surrounds velocity rod, flow blocked by vegetation	
10	1	-0.1	0	0.00	8:58:00 AM	on rock, midst of ends of cattail surrounds velocity rod, flow blocked by vegetation	
11	1.3	-0.1	0	0.00	9:00:00 AM	on edge of vegetation, flow blocked by vegetation	

WETLAND LAND ASSESSMENT SCORING FIELD NOTES (EXISTING CONDITION)

1BA Date 11/5/14

Lower Alvarado w

WATER QUALITY VALUE

Vege	tation – Vegetative cover of water surface, vertical density, & species dive	rsity	8
0	No visible vegetation in wet areas	WEST	EAS
	Young growth of new inhabitants	DW'	
1	• Woody and terrestrial species present	Statement Statement	
	• Minimal wetland species (submerged and/or emergent macrophytes)	NNV	
	• Low surface area coverage and density)
	Mature population near carrying capacity	51195	1
2	• >50% coverage of wet areas	3000	11011
	 Both submerged and emergent wetland species 	SWS	1
	Young life-stage and population	FWM	
3	 >75% coverage of wet areas 	FWM	
	 Both submerged and emergent wetland species 		
	• Wetland species that reproduce through tubers and/or rhizomes		V
	(e.g., Spartina, Typha, Scirpus, Phragmites)		
	Hydrosoil – Sample surficial sediments for ratio of sand to fines		
	(Measure conductivity, redox, and/or pH)		
0	Concrete or other impermeable substrate	C	
	• No sand and/or fines, organic carbon, detritus, and/or nutrient source		
$\langle \lambda$	• Sand and cobble substrate Gravel		
	 No visible deposition of fines, organic carbon, and/or detritus 	FAST	- 24
[• pH<6 or 8 8. & 1	1	11
	• Redox: +100 mV	0	//
	 Less than 50% sand S: /ty Sandy Some visible deposition of fines, organic carbon, and/or detritus 		1
2	• Some visible deposition of fines, organic carbon, and/or detritus	WEST	
\smile	• Neutral pH (6.0 to 8.5) 7.94		
	• Redox: -100 to +100 mV		
	• Less than 25% sand		
3	 Visible deposition of fines and other solids 		
	• Neutral pH (6.0 to 8.5)		
	• Redox: < -100 mV		-
	Hydroperiod – Observe water flow, hydraulic retention time, and depth		
0	 (Measure conductivity, redox, and/or pH) No visible surface water 		-
	 Very deep (> 2-ft) or very shallow (< 0.5-ft) 		
1	 Fast flowing and channeling, no deposition of fines 		
-	• Redox: $> +100$ mV		
2	• (Shallow (0.5 to 1-ft)) 0.74/0.57		
$\left(\begin{array}{c} 2 \end{array} \right)$	 Moderate and variable flow depending on volume inputs 	2	10
(- /	 Observable HRT, some deposition of fines - 10.36 hC 	a	12
	• (Redox: -100 to +100 mV)		
	 Moderate water depth (1 to 2-ft) 		{
3	 Slow flow with a significant HRT (> 1 h), deposition of fines 1.25 kg 	1	
	 Redox: < -100 mV 	1	
otal score fr	om all three categories $0-2 = poor$, $3-4 = fair$, $5-7 = good$, $8-9 = best$	F	
otal Scole II	**************************************	5.75/	4.13
		/	
		weraged weighter vegete ores per	
4		/	
		weighte	en
	\sim	~ UDDA	bin
	te	1 vegen	
	C,	ones ner	Commun

WETLAND LAND RECOVERY ASSESSMENT FIELD NOTES (MAINTAINED STORM WATER FACILITY)

LOWER ALUARMAD RECOVERY VALUE & TIMELINE

Assumption: Removal of >75% of solids will result in:

- A change in vegetation density and population diversity?
- Decrease in available organic carbon, sand, nutrients, and detritus?
- Decrease in COC concentrations?
- A change in water depth, flow, HRT, deposition/settling rates?
- A change in substrate for vegetative repopulation?

0	crop	
0	Will not recover in less than 10 years	
	Primarily trees and woody species	AW
1	• Recovery: > 5 years	ALAV
	Shift to a less desirable species diversity than current species	700.1
	 Mature habitat with mix of terrestrial and wetland species 	Suis
2	• Recovery: 1-5 years	12W2
	Return to current standing crop and diversity	Nwa
	• Primarily emergent and submerged wetland species	٨
3	Recovery: approximately 1 year	FWM
d a	Return to species density and diversity	
Hydroso	il – What is the sedimentation rate and timeline to return to current	depth?
0	• High flow area, narrow and/or shallow channel	
	• No deposition of organic carbon, nutrients and/or detritus	-ā
A	· Flow is significant (in put dependent)	
(1)	• Primarily sand deposition in the short-term	EAST
	• Fines and/or organic carbon will deposit over a > 5 year period	
2/	• Heterogenous mix of sand, organic carbon, and fines in < 1 year	WEST
3	• Heterogenous mix of sand, organic carbon, and fines in 1-5 years	
Tydroperio	d – What is timeline for reaching optimal depth of 1 to 2-ft of overly	ing water?
0	• Flow remains fast	8
	 No evidence of deposition or re-establishment of vegetation 	
	No HRT	
	• Some decrease of flow resulting in some deposition of sand and	
1	other coarse grain materials	
	• Some revegetation	1 N
	• No HRT	10
(1)	Wide area of the channel	
(2)	 Some deposition of fines and evidence of revegetation 	1
9	 Overlying water depth is less than 1-ft 	
	 HRT < 1-h 	
3	 Wide area of the channel Deposition of fines and organics 	
5		
	 Overlying water depth is greater than 1-ft HRT > 1-h 	

ATTACHMENT 6 –IMPACT-BENEFITS MODEL

TABLE 8E – SEDIMENT POLLUTANT MODELING FOR THE EAST AREA(BENEFIT LOAD REMOVAL IN SEDIMENT)

SAMPLE NAME	MATRIX	SAMPLE DATE	ANALYTE	SURROGATE	RESULT*	REPORTING LIMIT	UNITS	LOAD REMOVAL (mg)	LOAD REMOVAL (Ibs)
326447	Soil	12/22/2014	% Solid		60.4	1	%	NA	NA
326447	Soil	12/22/2014	Manganese		242	0.5	mg/kg	53836787.1	118
			Total Kjeldahl						
326447	Soil	12/22/2014	Nitrogen		810	100	mg/kg	180197511	396.4
326447	Soil	12/22/2014	Nitrate as N		ND	1	mg/kg	-	-
326447	Soil	12/22/2014	Nitrite as N		0.86	0.5	mg/kg	191320.814	0.4
326447	Soil	12/22/2014	Total Nitrogen		810.9	0.5	mg/kg	180388832	397
			Phosphorus, Total						
326447	Soil	12/22/2014	as P		91	25	mg/kg	20244411.7	45
326447	Soil	12/22/2014	Arsenic		2.64	0.1	mg/kg	587310.405	1
326447	Soil	12/22/2014	Cadmium		ND	0.1	mg/kg	-	-
326447	Soil	12/22/2014	Chromium		3.18	0.1	mg/kg	707442.079	2
326447	Soil	12/22/2014	Copper		11.3	0.1	mg/kg	2513866.51	6
326447	Soil	12/22/2014	Nickel		3.5	0.1	mg/kg	778631.219	2
326447	Soil	12/22/2014	Lead		6.84	0.1	mg/kg	1521667.87	3
326447	Soil	12/22/2014	Antimony		ND	0.5	mg/kg	-	-
326447	Soil	12/22/2014	Selenium		0.231	0.1	mg/kg	51389.6605	0
326447	Soil	12/22/2014	Zinc		95.9	1	mg/kg	21334495.4	47
326447	Soil	12/22/2014	Malathion	Tributylphosphate	ND	0.5	ug/kg	-	-
326447	Soil	12/22/2014	Chlorpyrifos	Tributylphosphate	ND	0.5	ug/kg	-	-
326447	Soil	12/22/2014	Diazinon	Tributylphosphate	ND	0.5	ug/kg	-	-

*Total Nitrogen was calculated following the testing laboratory's specified method of adding the concentrations of Total Kjeldahl Nitrogen, Nitrate as N, and Nitrite as N.

	Total Removal Vol	ume Estimati
Total Removal Volume	336	yd3
Number Sample Collected	1	unitless
Removal Fraction	1	_
Removal Volume	336.0	ft³/yd
yd3 to ft3	27	
Removal Volume	9,072	ft ³
ρ_{solid} =	165.4	lbs/ft3
$\rho_{water} =$	62.4	lbs/ft3
Fraction Solid=	0.604	unitless
ρ _{dry insitu} =	60.41264333	lbs/ft3
,		
% _{Finer} =	0.753	unitless
CF _{cobble} =	0.893008362	unitless
Sediment Mass	489,425	lbs/mg
lbs to kg	0.4545455	kg/lbs
mg to lbs	0.0000022	lbs/mg

Total Removal Volume Estimate at IMP stage

Support Material for Table 8E Equations:

ρ _{dry insitu} =	$(\%_{solid})^* \rho_{water} * \rho_{solid}$
	$ ho_{solid}$ - (% _{Solid}) * $ ho_{solid}$ + (% _{solid}) * $ ho_{water}$

Sediment Mass = Removal Volume *p dry insitu * CF cobble

		% Finer	_
CF _{cobble} =		$\rho_{dryinsitu}$	
	% Finer	+	(1-%Finer)
	$\rho_{dryinsitu}$	_	$\rho_{\text{ solid}}$

Load Removal = Sediment Mass * Measured Concentration

and

Where: ρ_{solid} =165.4lbs/ft³ ρ_{water} =62.4lbs/ft³

% _{Finer}= fraction passing through 1.5 inch sieve based on grain size analysis

Reach #

Sample ID	Reach	Туре	% Solid	Ρ _{dry insitu} (Ibs/ft ³)	CF cobble	Removal Volume ¹ (cyd)	Sediment Mass (lbs)
1	4	Concrete	60.4	60.4	0.89	336.00	548,063.50
-	-	-	-	-	-	-	-

Notes:

1) Removal value is specified in maintenance plan and typically determined during IMP process

The approximate sediment removal should come from the IMP process, place notes for backup related to sediment removal numbers here.

TABLE 8W – SEDIMENT POLLUTANT LOADING MODEL FOR THE WEST AREA(BENEFIT LOAD REMOVAL IN SEDIMENT)

SAMPLE NAME	MATRIX	SAMPLE DATE	ANALYTE	SURROGATE	RESULT*	REPORTING LIMIT	UNITS	LOAD REMOVAL (mg)	LOAD REMOVAL (lbs)
326446	Soil	12/22/2014	% Solid		59.4	1	%	NA	NA
326446	Soil	12/22/2014	Manganese		389	0.5	mg/kg	86778674.6	191
326446	Soil	12/22/2014	Total Kjeldahl Nitrogen		620	100	mg/kg	138310484	304
326446	Soil	12/22/2014	U		ND	1	mg/kg	-	-
326446	Soil	12/22/2014			0.96	0.5	mg/kg	214158.169	0
326446	Soil	12/22/2014	Total Nitrogen		620.96	0.5	mg/kg	138524642	305
			Phosphorus, Total						
326446	Soil	12/22/2014	as P		110	25	mg/kg	24538956.8	54
326446	Soil	12/22/2014	Arsenic		2.69	0.1	mg/kg	600089.035	1
326446	Soil	12/22/2014	Cadmium		0.121	0.1	mg/kg	26992.8525	0
326446	Soil	12/22/2014	Chromium		4.23	0.1	mg/kg	943634.431	2
326446	Soil	12/22/2014	Copper		11.6	0.1	mg/kg	2587744.54	6
326446	Soil	12/22/2014	Nickel		3.05	0.1	mg/kg	680398.349	1
326446	Soil	12/22/2014	Lead		11.3	0.1	mg/kg	2520820.11	6
326446	Soil	12/22/2014	Antimony		ND	0.5	mg/kg	-	-
326446	Soil	12/22/2014	Selenium		0.396	0.1	mg/kg	88340.2446	0
326446	Soil	12/22/2014	Zinc		93.5	1	mg/kg	20858113.3	46
326446	Soil	12/22/2014	Malathion	Tributylphosphate	ND	0.5	ug/kg	-	-
326446	Soil	12/22/2014	Chlorpyrifos	Tributylphosphate	ND	0.5	ug/kg	-	-
326446	Soil	12/22/2014	Diazinon	Tributylphosphate	ND	0.5	ug/kg	-	-

Table 8W - Sediment Pollutant Loading Model for the West Area

*Total Nitrogen was calculated following the testing laboratory's specified method of adding the concentrations of Total Kjeldahl Nitrogen, Nitrate as N, and Nitrite as N.

		anne Estimat
Total Removal Volume	309	yd3
Number Sample Collected	1	unitless
Removal Fraction	1	-
Removal Volume	309.0	ft³/yd
yd3 to ft3	27	
Removal Volume	8,343	ft ³
ρ _{solid} =	165.4	lbs/ft3
$\rho_{water} =$	62.4	lbs/ft3
Fraction Solid=	0.594	unitless
$\rho_{dry insitu} =$	58.82525322	lbs/ft3
% _{Finer} =	1	unitless
CF cobble=	1	unitless
Sediment Mass	490,779	lbs/mg
lbs to kg	0.4545455	kg/lbs
mg to lbs	0.0000022	lbs/mg

Total Removal Volume Estimate at IMP stage

Support Material for Table 8W Equations:

ρ _{dry insitu} =		(% _{solid})*ρ _{water} * ρ _{solid}				CF _{cobble} =		<mark>% Finer</mark> ρ _{dry insitu}	
	ρ _{sc}	ρ_{solid} - (% _{Solid}) * ρ_{solid} + (% _{solid}) * ρ_{water}						% Finer		(1-%Finer)
								$ ho_{dryinsitu}$		ρ _{solid}
Sediment M	ass = Remova	al Volume * p	dry insitu * CF _{cobble}				Load Remov	al = Sediment	: Mass * M	easured Concentration
<u>Where:</u>	ρ _{solid} =	165.4	lbs/ft ³	$\rho_{water} =$	62.4	lbs/ft ³		and	% _{Finer} =	fraction passing through 1.5 inch sieve b on grain size analysis

Reach #

Sample ID	Reach	Туре	% Solid	ρ _{dry insitu} (Ibs/ft ³)	CF _{cobble}	Removal Volume ¹ (cyd)	Sediment Mass (lbs)
1	2	Earthen	59.4	58.8	1.00	309.00	490,779.09
-	-	-	-	-	-	-	-

Notes:

1) Removal value is specified in maintenance plan and typically determined during IMP process

The approximate sediment removal should come from the IMP process, place notes for backup related to sediment removal numbers here.

based

TABLE 9E - COMPARISON OF POLLUTANT CONCENTRATION TO HUMAN HEALTHSCREENING LEVEL FOR EAST AREA

Table 9E - Comparison of Pollutant Concentrations to Human Health Screening Levels for the East Area

				Conc	entration (m	ng/kg)				н	ıman Health				
					Reach					Human Health					
Analyte															
Analyte	4	-	-	-	-	-	-	-	-	CHHSL/RSL (mg/kg)					
		-	r		Sample ID	1	1		1						
	1	-	-	-	-	-	-	-	_	Residential	Commercial/Industrial				
General Physical									1						
% Solids	60.4	-	-	-	-	-	-	-	-	NA	NA				
Inorganic Non-Metals															
Total Kjeldahl Nitrogen	810.0	-	-	-	-	-	-	-	-	NA	NA				
Nitrate as N	ND	-	-	-	-	-	-	-	-	130,000	1,900,000				
Nitrite as N	0.9	-	-	-	-	-	-	-	-	7,800	120,000				
Total Nitrogen	810.9	-	-	-	-	-	-	-	-	NA	NA				
Phosphorus, Total as P	91.0	-	-	-	-	-	-	-	-	1.6	23				
Metals			•		•				•						
Manganese	242.0	-	-	-	-	-	-	-	-	1,800	26,000				
Arsenic	2.6	-	-	-	-	-	-	-	-	0.07	0.24				
Cadmium	ND	-	-	-	-	-	-	-	-	1.7	7.5				
Chromium *	3.2	-	-	-	-	-	-	-	-	100,000	100,000				
Copper	11.3	-	-	-	-	-	-	-	-	3,000	38,000				
Nickel	3.5	-	-	-	-	-	-	-	-	1,600	16,000				
Lead	6.8	-	-	-	-	-	-	-	-	80	320				
Antimony	ND	-	-	-	-	-	-	-	-	30	380				
Selenium	0.2	-	-	-	-	-	-	-	-	380	4,800				
Zinc	95.9	-	-	-	-	-	-	-	-	23,000	100,000				
Organics															
Malathion	ND	-	-	-	-	-	-	-	-	1,200	16,000				
Chlorpyrifos	ND	ŀ	-	-	-	-	-	1	-	62	820				
Diazinon	ND	-	-	-	-	-	-	-	-	43	580				

Notes: CHHSL - California Human Health Screening Level, Updated as of 2010

RSL- Regional Screening Level, USEPA Region 9

* Human Health Standards Listed for Chromium (III)

mg/kg - milligrams per kilogram NA- No Human Level available

TABLE 9W – COMPARISON OF POLLUTANT CONCENTRATIONS TO HUMANHEALTH SCREENING LEVEL FOR THE WEST AREA

Table 9W - Comparison o		concentre			entration (n	-		cotraca							
				Hu	uman Health										
			#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!						
Analyte	2	-	СНН	CHHSL/RSL (mg/kg)											
		Sample ID Residential Commercial/Industrial													
	1	-	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	Residential	Commercial/Industrial				
General Physical															
% Solids	59.4	-	-	-	-	-	-	-	-	NA	NA				
Inorganic Non-Metals															
Total Kjeldahl Nitrogen	620.0	-	-	-	-	-	-	-	-	NA	NA				
Nitrate as N	ND	-	-	-	-	-	-	-	-	130,000	1,900,000				
Nitrite as N	1.0	-	-	-	-	-	-	-	-	7,800	120,000				
Total Nitrogen	621.0	-	-	-	-	-	-	-	-	NA	NA				
Phosphorus, Total as P	110.0	-	-	-	-	-	-	-	-	1.6	23				
Metals	1														
Manganese	389.0	-	-	-	-	-	-	-	-	1,800	26,000				
Arsenic	2.7	-	-	-	-	-	-	-	-	0.07	0.24				
Cadmium	0.1	-	-	-	-	-	-	-	-	1.7	7.5				
Chromium *	4.2	-	-	-	-	-	-	-	-	100,000	100,000				
Copper	11.6	-	-	-	-	-	-	-	-	3,000	38,000				
Nickel	3.1	-	-	-	-	-	-	-	-	1,600	16,000				
Lead	11.3	-	-	-	-	-	-	-	-	80	320				
Antimony	ND	-	-	-	-	-	-	-	-	30	380				
Selenium	0.4	-	-	-	-	-	-	-	-	380	4,800				
Zinc	93.5	-	-	-	-	-	-	-	-	23,000	100,000				
Organics															
Malathion	ND	-	-	-	-	-	-	-	-	1,200	16,000				
Chlorpyrifos	ND	-	-	-	-	-	-	-	-	62	820				
Diazinon	ND	-	-	-	-	-	-	-	-	43	580				

Table 9W - Comparison of Pollutant Concentrations to Human Health Screening Levels for the West Area

Notes:

CHHSL - California Human Health Screening Level, Updated as of 2010

RSL- Regional Screening Level USEPA Region 9, Updated as of November 2014

* Human Health Standards Listed for Chromium (III)

mg/kg - milligrams per kilogram

NA- No Human Level available

TABLE 10E - POTENTIAL WATER QUALITY IMPACTS MODEL FOR THE EASTAREA

Table 10E -Water Quality Impacts Model for the East Area - Upstream (Sheet 1 of 2)

SAMPLE NAME	MATRIX	SAMPLE DATE	ANALYTE	SURROGATE	RESULT	REPORTING LIMIT	UNITS	E _{NTS}	Corr E _{NTS}	NTS Removal (mg)	NTS Removal (Ibs)	NTS Removal (Ibs) existing per year	NTS Removal (Ibs) existing per maintenance period	Corr E _{NTS,} nyear = 1	Corr E _{NTS,} nyear = 2		NTS Removal (lbs) maintaned nyear = 1	NTS Removal (Ibs) maintaned nyear = 2	NTS Removal (Ibs) maintaned nyear = 3	NTS Removal (lbs) maintaned TOTAL
Lower Alvarado Location 4	Water	12/11/2014	Total Dissolved Solids		1860	20	mg/l	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lower Alvarado Location 4	Water	12/11/2014	Total Suspended Solids				mg/l	0.78	0.44694	0	0	0	0	0.193	0.307	0.422	0.0	0.0	0.0	0.0
Lower Alvarado Location 4	Water	12/11/2014	Arsenic		ND	0.01	mg/l	0.63	0.36099	-	-	-	-	0.156	0.248	0.341	-	-	-	-
Lower Alvarado Location 4	Water	12/11/2014	Cadmium		ND	0.01	mg/l	0.63	0.36099	-	-	-	-	0.156	0.248	0.341	-	-	-	-
Lower Alvarado Location 4	Water	12/11/2014	Chromium		ND	0.05	mg/l	0.63	0.36099	-	-	-	-	0.156	0.248	0.341	-	-	-	-
Lower Alvarado Location 4	Water	12/11/2014	Copper		ND	0.05	mg/l	0.4	0.2292	-	-	-	-	0.099	0.158	0.216	-	-	-	-
Lower Alvarado Location 4	Water	12/11/2014	Manganese		0.111	0.03	mg/l	0.63	0.36099	148001.7001	0.32560374	0.32560374	0.976811221	0.156	0.248	0.341	0.1	0.2	0.3	0.7
Lower Alvarado Location 4	Water	12/11/2014	Nickel		ND	0.05	mg/l	0.63	0.36099	-	-	-	-	0.156	0.248	0.341	-	-	-	-
Lower Alvarado Location 4	Water	12/11/2014	Lead		ND	0.05	mg/l	0.63	0.36099	-	-	-	-	0.156	0.248	0.341	-	-	-	-
Lower Alvarado Location 4	Water	12/11/2014	Antimony		ND	0.1	mg/l	0.63	0.36099	-	-	-	-	0.156	0.248	0.341	-	-	-	-
Lower Alvarado Location 4	Water	12/11/2014	Selenium		ND	0.01	mg/l	0.63	0.36099	-	-	-	-	0.156	0.248	0.341	-	-	-	-
Lower Alvarado Location 4	Water	12/11/2014	Zinc		0.07	0.05	mg/l	0.54	0.30942	80000.91899	0.176002022	0.176002022	0.528006065	0.133	0.213	0.292	0.1	0.1	0.2	0.4
Lower Alvarado Location 4	Water	12/11/2014	Total Kjeldahl Nitrogen		1.3	0.5	mg/l	0.15	0.08595	412703.1535	0.907946938	0.907946938	2.723840813	0.037	0.059	0.081	0.4	0.6	0.9	1.9
Lower Alvarado Location 4	Water	12/11/2014	Nitrite as N		ND	0.05	mg/l	0.67	0.38391	-	-	-	-	0.165	0.264	0.362	-	-	-	-
Lower Alvarado Location 4	Water	12/11/2014	Nitrate as N		0.4	0.05	mg/l	0.67	0.38391	567202.2828	1.247845022	1.247845022	3.743535066	0.165	0.264	0.362	0.5	0.9	1.2	2.6
Lower Alvarado Location 4	Water	12/11/2014	Total Nitrogen		1.7	0.05	mg/l	0.4	0.2292	1439169.971	3.166173937	3.166173937	9.49852181	0.099	0.158	0.216	1.4	2.2	3.0	6.5
Lower Alvarado Location 4	Water	12/11/2014	Phosphorus, Total as P		0.11	0.05	mg/l	0.51	0.29223	118731.5226	0.26120935	0.26120935	0.783628049	0.126	0.201	0.276	0.1	0.2	0.2	0.5
Lower Alvarado Location 4	Water	12/11/2014	Malathion	Triphenyl phosph	ND	0.05	mg/l	0.5	0.2865	-	-	-	-	0.124	0.197	0.271	-	-	-	-
Lower Alvarado Location 4	Water	12/11/2014	Chlorpyrifos	Triphenyl phosph	ND	0.05	mg/l	0.5	0.2865	-	-	-	-	0.124	0.197	0.271	-	-	-	-
Lower Alvarado Location 4	Water	12/11/2014	Diazinon	Triphenyl phosph	ND	0.05	mg/l	0.5	0.2865	-	-	-	-	0.124	0.197	0.271	-	-	-	-
Lower Alvarado Location 4	Water	12/11/2014	Total Hardness		765	100	mg/l	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

		<u>Units</u>
Dry Weather Instantaneous Flow (avg. of U/S and D/S)	0.29	ft3/sec
Daily Flow	25056	ft3/day
Days of dry weather flow per year	320	days
Annual Treatment Flow	8.0E+06	ft3/year
Total length	500	ft
Average channel velocity	0.358923077	ft/sec
HRT	0.386960042	hr
Retention Time Correction Factor	0.016123335	
Existing Vegetation Score	1.7	
Existing Hydrosoil Score	1.0	
Existing Hydroperiod Score	2.0	
Overall Existing Score	4.7	
Existing Efficiency Coefficient	0.57	
L to ft3 conversion	0.035	ft3/L
Overall Recovery Score	4.4	
Maintenance Period	3	years

nyear	Yearly Rec Score	Yearly Eff Coef
1	1.5	0.247
2	2.9	0.394
3	4.4	0.541

Table 10E -Water Qualit	ty Impacts Mod	el for the East A	rea - Downstream (Sheet 2	of 2)	This down	stream Water Sa	ample is optior	al and is not	utilized in ca	Iculations. It is us	sed primarily	to aid in verify	ng the scoring su	stem and c	alculation	of flow, vo	lume and retent	ion time		
SAMPLE NAME	MATRIX	SAMPLE DATE	ANALYTE	SURROGATE	RESULT	REPORTING LIMIT	UNITS	E _{NTS}	Corr E _{NTS}	NTS Removal (mg)	NTS Removal (Ibs)	NTS Removal (Ibs) existing per year	NTS Removal (Ibs) existing per maintenance period	Corr E _{NTS,} nyear = 1	Corr E _{NTS,} nyear = 2	Corr E _{NTS,} nyear = 3	NTS Removal (lbs) maintaned nyear = 1	NTS Removal (Ibs) maintaned nyear = 2	NTS Removal (Ibs) maintaned nyear = 3	NTS Removal (Ibs) maintaned TOTAL
Lower Alvarado Location 3	Water	12/11/2014	Total Dissolved Solids		1790	20	mg/l	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lower Alvarado Location 3	Water	12/11/2014	Total Suspended Solids		-	-	mg/l	0.78	0.44694	-	-	-	-	0.193	0.307	0.422	-	-	-	-
Lower Alvarado Location 3	Water	12/11/2014	Arsenic		ND	0.01	mg/l	0.63	0.36099	-	-	-	-	0.156	0.248	0.341	-	-	-	-
Lower Alvarado Location 3	Water	12/11/2014	Cadmium		ND	0.01	mg/l	0.63	0.36099	-	-	-	-	0.156	0.248	0.341	-	-	-	-
Lower Alvarado Location 3	Water	12/11/2014	Chromium		ND	0.05	mg/l	0.63	0.36099	-	-	-	-	0.156	0.248	0.341	-	-	-	-
Lower Alvarado Location 3	Water	12/11/2014	Copper		ND	0.05	mg/l	0.4	0.2292	-	-	-	-	0.099	0.158	0.216	-	-	-	-
Lower Alvarado Location 3	Water	12/11/2014	Manganese		0.039	0.03	mg/l	0.63	0.36099	52000.59734	0.114401314	0.114401314	0.343203942	0.156	0.248	0.341	0.0	0.1	0.1	0.2
Lower Alvarado Location 3	Water	12/11/2014	Nickel		ND	0.05	mg/l	0.63	0.36099	-	-	-	-	0.156	0.248	0.341	-	-	-	-
Lower Alvarado Location 3	Water	12/11/2014	Lead		ND	0.05	mg/l	0.63	0.36099	-	-	-	-	0.156	0.248	0.341	-	-	-	-
Lower Alvarado Location 3	Water	12/11/2014	Antimony		ND	0.1	mg/l	0.63	0.36099	-	-	-	-	0.156	0.248	0.341	-	-	-	-
Lower Alvarado Location 3	Water	12/11/2014	Selenium		ND	0.01	mg/l	0.63	0.36099	-	-	-	-	0.156	0.248	0.341	-	-	-	-
Lower Alvarado Location 3	Water	12/11/2014	Zinc		ND	0.05	mg/l	0.54	0.30942	-	-	-	-	0.133	0.213	0.292	-	-	-	-
Lower Alvarado Location 3	Water	12/11/2014	Total Kjeldahl Nitrogen		1.1	0.5	mg/l	0.15	0.08595	349210.3607	0.768262793	0.768262793	2.30478838	0.037	0.059	0.081	0.3	0.5	0.7	1.6
Lower Alvarado Location 3	Water	12/11/2014	Nitrite as N		ND	0.05	mg/l	0.67	0.38391	-	-	-	-	0.165	0.264	0.362	-	-	-	-
Lower Alvarado Location 3	Water	12/11/2014	Nitrate as N		0.27	0.05	mg/l	0.67	0.38391	382861.5409	0.84229539	0.84229539	2.52688617	0.165	0.264	0.362	0.4	0.6	0.8	1.7
Lower Alvarado Location 3	Water	12/11/2014	Total Nitrogen		1.4	0.05	mg/l	0.4	0.2292	1185198.8	2.60743736	2.60743736	7.822312079	0.099	0.158	0.216	1.1	1.8	2.5	5.4
Lower Alvarado Location 3	Water	12/11/2014	Phosphorus, Total as P		0.06	0.05	mg/l	0.51	0.29223	64762.6487	0.142477827	0.142477827	0.427433481	0.126	0.201	0.276	0.1	0.1	0.1	0.3
Lower Alvarado Location 3	Water	12/11/2014	Malathion	Triphenyl phosph	ND	0.05	ug/l	0.5	0.2865	-	-	-	-	0.124	0.197	0.271	-	-	-	-
Lower Alvarado Location 3	Water	12/11/2014	Chlorpyrifos	Triphenyl phosph	ND	0.05	ug/l	0.5	0.2865	-	-	-	-	0.124	0.197	0.271	-	-	-	-
Lower Alvarado Location 3	Water	12/11/2014	Diazinon	Triphenyl phosph	ND	0.05	ug/l	0.5	0.2865	-	-	-	-	0.124	0.197	0.271	-	-	-	-
Lower Alvarado Location 3	Water	12/11/2014	Total Hardness		731	100	mg CaCO₃/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

	<u>Units</u>
0.29	ft3/sec
25056	ft3/day
320	days
8.0E+06	ft3/year
500	ft
0.358923077	ft/sec
0.386960042	seconds
0.016123335	hr
1.7	
1.0	
2.0	
4.7	
0.57	
0.035	ft3/L
0.016123335	
1	
4.4	
3	years
	0.29 25056 320 8.0E+06 500 0.358923077 0.386960042 0.016123335 1.7 1.0 2.0 4.7 0.57 0.035 0.016123335 1

nyear	Yearly Rec Score	Yearly Eff Coef
1	1.5	0.247
2	2.9	0.394
3	4.4	0.541

TABLE 10W – POTENTIAL WATER QUALITY IMPACTS MODEL FOR THE WEST AREA

Table 10W -Water Quali	ty Impacts Mod	el for the West A	Area - Upstream (Sheet 1 of	2)	

SAMPLE NAME	MATRIX	SAMPLE DATE	ANALYTE	SURROGATE	RESULT	REPORTING LIMIT	UNITS	E _{NTS}	Corr E _{NTS}	NTS Removal (mg)	NTS Removal (Ibs)	NTS Removal (Ibs) existing per year	NTS Removal (lbs) existing per maintenance period	Corr E _{NTS,} nyear = 1	Corr E _{NTS,} nyear = 2	Corr E _{NTS,} nyear = 3	NTS Removal (lbs) maintaned nyear = 1	NTS Removal (Ibs) maintaned nyear = 2	NTS Removal (Ibs) maintaned nyear = 3	NTS Removal (Ibs) maintaned TOTAL
Lower Alvarado Location 2	Water	12/11/2014	Total Dissolved Solids		1880	20.0	mg/l	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lower Alvarado Location 2	Water	12/11/2014	Total Suspended Solids		-	-	mg/l	0.78	0.5265	-	-	-	-	0.220	0.361	0.503	-	-	-	-
Lower Alvarado Location 2	Water	12/11/2014	Arsenic		ND	0.01	mg/l	0.63	0.42525	-	-	-	-	0.177	0.292	0.406	-	-	-	-
Lower Alvarado Location 2	Water	12/11/2014	Cadmium		ND	0.01	mg/l	0.63	0.42525	-	-	-	-	0.177	0.292	0.406	-	-	-	-
Lower Alvarado Location 2	Water	12/11/2014	Chromium		ND	0.05	mg/l	0.63	0.42525	-	-	-	-	0.177	0.292	0.406	-	-	-	-
Lower Alvarado Location 2	Water	12/11/2014	Copper		ND	0.05	mg/l	0.4	0.27	-	-	-	-	0.113	0.185	0.258	-	-	-	-
Lower Alvarado Location 2	Water	12/11/2014	Manganese		0.302	0.03	mg/l	0.63	0.42525	2947799.396	6.485158671	6.485158671	19.45547601	0.177	0.292	0.406	2.7	4.5	6.2	13.4
Lower Alvarado Location 2	Water	12/11/2014	Nickel		ND	0.05	mg/l	0.63	0.42525	-	-	-	-	0.177	0.292	0.406	-	-	-	-
Lower Alvarado Location 2	Water	12/11/2014	Lead		ND	0.05	mg/l	0.63	0.42525	-	-	-	-	0.177	0.292	0.406	-	-	-	-
Lower Alvarado Location 2	Water	12/11/2014	Antimony		ND	0.1	mg/l	0.63	0.42525	-	-	-	-	0.177	0.292	0.406	-	-	-	-
Lower Alvarado Location 2	Water	12/11/2014	Selenium		ND	0.01	mg/l	0.63	0.42525	-	-	-	-	0.177	0.292	0.406	-	-	-	-
Lower Alvarado Location 2	Water	12/11/2014	Zinc		ND	0.05	mg/l	0.54	0.3645	-	-	-	-	0.152	0.250	0.348	-	-	-	-
Lower Alvarado Location 2	Water	12/11/2014	Total Kjeldahl Nitrogen		1.3	0.5	mg/l	0.15	0.10125	3021238.737	6.646725222	6.646725222	19.94017567	0.042	0.070	0.097	2.8	4.6	6.4	13.7
Lower Alvarado Location 2	Water	12/11/2014	Nitrite as N		ND	0.05	mg/l	0.67	0.45225	-	-	-	-	0.189	0.310	0.432	-	-	-	-
Lower Alvarado Location 2	Water	12/11/2014	Nitrate as N		0.29	0.05	mg/l	0.67	0.45225	3010393.265	6.622865183		19.86859555	0.189	0.310	0.432	2.8	4.5	6.3	13.6
Lower Alvarado Location 2	Water	12/11/2014	Total Nitrogen		1.6	0.05	mg/l	0.4	0.27	9915860.472	21.81489304	21.81489304	65.44467911	0.113	0.185	0.258	9.1	15.0	20.8	44.9
Lower Alvarado Location 2	Water	12/11/2014	Dissolved Oxygen		11.2	0.1														
Lower Alvarado Location 2	Water	<u>12/11/2014</u>	Phosphorus, Total as P		0.1	0.05	mg/l	0.51	0.34425	790170.1313	1.738374289	1.738374289	5.215122867	0.144	0.236	0.329	0.7	1.2	1.7	3.6
Lower Alvarado Location 2	Water	12/11/2014	Malathion	Triphenyl phosph	ND	0.05	ug/l	0.5	0.3375	-	-	-	-	0.141	0.232	0.323	-	-	-	-
Lower Alvarado Location 2	Water	12/11/2014	Chlorpyrifos	Triphenyl phosph	ND	0.05	ug/l	0.5	0.3375	-	-	-	-	0.141	0.232	0.323	-	-	-	-
Lower Alvarado Location 2	Water	12/11/2014	Diazinon	Triphenyl phosph	ND	0.05	ug/l	0.5	0.3375	-	-	-	-	0.141	0.232	0.323	-	-	-	-
Lower Alvarado Location 2	Water	12/11/2014	Total Hardness		821	100	mg CaCO ₃ /L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

		<u>Units</u>
Dry Weather Instantaneous Flow (upstream)	0.57	ft3/sec
Daily Flow	49248	ft3/day
Days of dry weather flow per year	320	days
Annual Treatment Flow	1.6E+07	ft3/year
Total length	750	ft
Average channel velocity	0.170283039	ft/sec
HRT	1.223453224	hr
Retention Time Correction Factor	0.050977218	
Existing Vegetation Score	1.8	
Existing Hydrosoil Score	2.0	
Existing Hydroperiod Score	2.0	
Overall Existing Score	5.8	
Existing Efficiency Coefficient	0.68	
L to ft3 conversion	0.035	ft3/L
Overall Recovery Score	5.5	
Maintenance Period	3	years

nyear	Yearly Rec Score	Yearly Eff Coef
1	1.8	0.281666667
2	3.6	0.463333333
3	5.5	0.645

Table 10W -Water Quality	Impacts Model	for the West Are	ea - Downstream (Sheet 2 o	f 2)	This dowr	nstream Water S	ample is optior	nal and is not	t utilized in ca	Iculations. It is us	sed primarily t	to aid in verify	ng the scoring su	stem and o	alculation	of flow, vo	lume and retent	ion time		
SAMPLE NAME	MATRIX	SAMPLE DATE	ANALYTE	SURROGATE	RESULT	REPORTING LIMIT	UNITS	E _{NTS}	Corr E _{NTS}	NTS Removal (mg)	NTS Removal (Ibs)	NTS Removal (Ibs) existing per year	NTS Removal (Ibs) existing per maintenance period	Corr E _{NTS,} nyear = 1	Corr E _{NTS,} nyear = 2	Corr E _{NTS,} nyear = 3	NTS Removal (Ibs) maintaned nyear = 1	NTS Removal (Ibs) maintaned nyear = 2	NTS Removal (Ibs) maintaned nyear = 3	NTS Removal (Ibs) maintaned TOTAL
Lower Alvarado Location 1	Water	12/11/2014	Total Dissolved Solids		1800	20	mg/l	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lower Alvarado Location 1	Water	12/11/2014	Total Suspended Solids		-	-	mg/l	0.78	0.5265	-	-	-	-	0.220	0.361	0.503	-	-	-	-
Lower Alvarado Location 1	Water	12/11/2014	Arsenic		ND	0.01	mg/l	0.63	0.42525	-	-	-	-	0.177	0.292	0.406	-	-	-	-
Lower Alvarado Location 1	Water	12/11/2014	Cadmium		ND	0.01	mg/l	0.63	0.42525	-	-	-	-	0.177	0.292	0.406	-	-	-	-
Lower Alvarado Location 1	Water	12/11/2014	Chromium		ND	0.05	mg/l	0.63	0.42525	-	-	-	-	0.177	0.292	0.406	-	-	-	-
Lower Alvarado Location 1	Water	12/11/2014	Copper		ND	0.05	mg/l	0.4	0.27	-	-	-	-	0.113	0.185	0.258	-	-	-	-
Lower Alvarado Location 1	Water	12/11/2014	Manganese		0.144	0.03	mg/l	0.63	0.42525	1405573.222	3.092261088	3.092261088	9.276783264	0.177	0.292	0.406	1.3	2.1	3.0	6.4
Lower Alvarado Location 1	Water	12/11/2014	Nickel		ND	0.05	mg/l	0.63	0.42525	-	-	-	-	0.177	0.292	0.406	-	-	-	-
Lower Alvarado Location 1	Water	12/11/2014	Lead		ND	0.05	mg/l	0.63	0.42525	-	-	-	-	0.177	0.292	0.406	-	-	-	- 1
Lower Alvarado Location 1	Water	12/11/2014	Antimony		ND	0.1	mg/l	0.63	0.42525	-	-	-	-	0.177	0.292	0.406	-	-	-	-
Lower Alvarado Location 1	Water	12/11/2014	Selenium		ND	0.01	mg/l	0.63	0.42525	-	-	-	-	0.177	0.292	0.406	-	-	-	-
Lower Alvarado Location 1	Water	12/11/2014	Zinc		ND	0.05	mg/l	0.54	0.3645	-	-	-	-	0.152	0.250	0.348	-	-	-	-
Lower Alvarado Location 1	Water	12/11/2014	Total Kjeldahl Nitrogen		0.9	0.5	mg/l	0.15	0.10125	2091626.818	4.601579	4.601579	13.804737	0.042	0.070	0.097	1.9	3.2	4.4	9.5
Lower Alvarado Location 1	Water	12/11/2014	Nitrite as N		ND	0.05	mg/l	0.67	0.45225	-	-	-	-	0.189	0.310	0.432	-	-	-	-
Lower Alvarado Location 1	Water	12/11/2014	Nitrate as N		0.32	0.05	mg/l	0.67	0.45225	3321813.258	7.307989168	7.307989168	21.9239675	0.189	0.310	0.432	3.0	5.0	7.0	15.0
Lower Alvarado Location 1	Water	12/11/2014	Total Nitrogen		1.2	0.05	mg/l	0.4	0.27	7436895.354	16.36116978	16.36116978	49.08350933	0.113	0.185	0.258	6.8	11.2	15.6	33.7
Lower Alvarado Location 1	Water	12/11/2014	Phosphorus, Total as P		0.08	0.05	mg/l	0.51	0.34425	632136.1051	1.390699431	1.390699431	4.172098293	0.144	0.236	0.329	0.6	1.0	1.3	2.9
Lower Alvarado Location 1	Water	12/11/2014	Malathion	Triphenyl phosph	a ND	0.05	ug/l	0.5	0.3375	-	-	-	-	0.141	0.232	0.323	-	-	-	-
Lower Alvarado Location 1	Water	12/11/2014	Chlorpyrifos	Triphenyl phosph	a ND	0.05	ug/l	0.5	0.3375	-	-	-	-	0.141	0.232	0.323	-	-	-	-
Lower Alvarado Location 1	Water	12/11/2014	Diazinon	Triphenyl phosph	a ND	0.05	ug/l	0.5	0.3375	-	-	-	-	0.141	0.232	0.323	-	-	-	-
Lower Alvarado Location 1	Water	12/11/2014	Total Hardness		809	100	mg CaCO₃/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lower Alvarado Location 1	Water	12/11/2014	Dissolved Oxygen		10.4	0.1														

		<u>Units</u>
Dry Weather Instantaneous Flow (upstream)	0.57	ft3/sec
Daily Flow	49248	ft3/day
Days of dry weather flow per vear	320	days
Annual Treatment Flow	1.6E+07	ft3/year
Total length	750	ft
Average upstream velocity	0.170283039	ft/sec
HRT	1.223453224	hr
Retention Time Correction Factor	0.050977218	hr
Existing Vegetation Score	1.8	
Existing Hydrosoil Score	2.0	
Existing Hydroperiod Score	2.0	
Overall Existing Score	5.8	
Existing Efficiency Coefficient	0.68	
L to ft3 conversion	0.035	ft3/L
If Retention Time < 24 hrs: RT correction factor If Retention Time > 24 hrs: RT	0.050977218	
If Retention Time > 24 hrs: RT correction factor	1	
Overall Recovery Score	5.5	
Maintenance Period	3	years

nyear	Yearly Rec Score	Yearly Eff Coef
1	1.8	0.281666667
2	3.6	0.463333333
3	5.5	0.645

TABLE 11E- COMPARISON OF POLLUTANT CONCENTRATIONS TO WATERQUALITY BENCHMARKS FOR THE EAST AREA

		CONCE	NTRATION			
ANALYTE	Sample Date	Upstream	Downstream	Water Quality	Benchmark Source	Units
ANALITE	Sample Date	SAMPLE ID-	SAMPLE ID-	Benchmark	Dencimark Source	Onits
		UPSTREAM	DOWNSTREAM			
Wet Chemistry						
Total Dissolved Solids	<u>12/11/2014</u>	1860	1790	1500	Basin Plan Table 3-2	mg/L
Total Suspended Solids	12/11/2014	0	-	50	NA	mg/L
Total Hardness	12/11/2014	765	731	NA	NA	mg/L
Phosphorus, Total as P	12/11/2014	0.11	0.06	0.1	Basin Plan page 3-8	mg/L
Totak Kjeldahl Nitrogen	<u>12/11/2014</u>	1.3	1.1	NA	NA	mg/L
Nitrite as N	12/11/2014	ND	ND	1	Basin Plan page 3-25	mg/L
				10* (Sum of		
Nitrata ac N	12/11/2014	0.4	0.27	Nitrite and	Desin Dian nago 2-25	m = /I
Nitrate as N	12/11/2014	0.4	0.27	Nitrate as N	Basin Plan page 3-25	mg/L
				cannot be >10)		
Total Nitrogen	12/11/2014	1.7	1.4	1	Basin Plan page 3-8	mg/L
Total Metals		•			-	
Arsenic	12/11/2014	ND	ND	0.05	Basin Plan page 3-25 ①	mg/L
Antimony	12/11/2014	ND	ND	0.006	Basin Plan page 3-25 ①	mg/L
Cadmium	<u>12/11/2014</u>	ND	ND	0.005	Basin Plan page 3-25 ①	mg/L
Chromium*	<u>12/11/2014</u>	ND	ND	0.05	Basin Plan page 3-25 ①	mg/L
Copper	12/11/2014	ND	ND	49.6/27.3	40 CFR 131.38	mg/L
Lead	12/11/2014	ND	ND	230.9/9.0	40 CFR 131.38	mg/L
Manganese	12/11/2014	0.111	0.039	1	Basin Plan table 3-2	mg/L
Nickel	12/11/2014	ND	ND	0.1	Basin Plan page 3-25 ①	mg/L
Selenium	12/11/2014	ND	ND	5	40 CFR 131.38	mg/L
Zinc	12/11/2014	0.07	ND	379.3/382.4	40 CFR 131.38	mg/L
Organics		•			-	
Malathion	12/11/2014	ND	ND	0.43/0.1	40 CFR 131.38	mg/L
Chlorpyrifos	12/11/2014	ND	ND	0.02/0.014	40 CFR 131.38	mg/L
Diazinon	12/11/2014	ND	ND	0.08/0.05	40 CFR 131.38	mg/L
Bacteriological			•			
Enterococcus	12/11/2014	1600	500	151	Basin Plan	CFU/100 mL
Fecal Coliform	12/11/2014	240	170	200	0 Basin Plan M	
Total Colform	12/11/2014	1600	1600	NA	NA	MPN/100 ml
Notes:						

Table 11E - Comparison of Pollutant Concentrations to Water Quality Benchmarks for the East Area

mg/L- milligrams per liter

mL - milliliters

e - estimated value

NA - No benchmark set

0.43/0.1 - CMC /CCC (Acute/Chronic)

MPN - Most Probable Number **CFU** - Colony Forming Units

CA-MCL - California Maximum Contaminant Levels CMC- Criteria Maximum Concentration

CCC - Continuous Criteria Concentration

D - Per California Code of Regulations, Title 22, Table 64431-A of section 64431

Basin Plan - Water Quality Control Plan for the San Diego Basin (9), September 8, 1994 (with amendments effective on or before April 4, 2011) 40 CFR 131.38 - Establishment of numeric criteria for priority toxic pollutants for the State of California Calculated - Per USEPA Federal Register Doc. 40 CFR Part 131, May 18, 2000

* Chromium benchmarks based on total chromium (Basin Plan) or chromium (III) (40 CFR 131.38)

TABLE 11W - COMPARISON OF POLLUTANT CONCENTRATIONS TO WATERQUALITY BENCHMARKS FOR WEST AREA

		CONCE	NTRATION				
ANALYTE	Sample Date	Upstream	Downstream	Water Quality	Benchmark Source	Units	
	Sumple Bate	SAMPLE ID-	AMPLE ID- SAMPLE ID-		Deneminark Source	onits	
		UPSTREAM DOWNSTREAM					
Net Chemistry							
Fotal Dissolved Solids	12/11/2014	1880	1800	1500	Basin Plan Table 3-2	mg/L	
Total Suspended Solids	12/11/2014	-	-	50	NA	mg/L	
Fotal Hardness	12/11/2014	821	809	NA	NA	mg/L	
Phosphorus, Total as P	12/11/2014	0.1	0.08	0.1	Basin Plan page 3-8	mg/L	
Total Kjeldahl Nitrogen	12/11/2014	1.3	0.9	NA	NA	mg/L	
Nitrite as N	12/11/2014	ND	ND	1	Basin Plan page 3-25	mg/L	
				10* (Sum of		mg/L	
Nitrate as N	12/11/2014	0.29	0.32	Nitrite and	Basin Plan page 3-25		
NILI ALE AS IN	12/11/2014	0.29	0.32	Nitrate as N	Dasili Pidli page 3-25		
				cannot be >10)			
Total Nitrogen	12/11/2014	1.6	1.2	1	Basin Plan page 3-8	mg/L	
Dissolved Oxygen	12/11/2014	11.2	10.4	NA	NA	mg/L	
Fotal Metals							
Arsenic	12/11/2014	ND	ND	0.05	Basin Plan page 3-25 ①	mg/L	
Antimony	12/11/2014	ND	ND	0.006	Basin Plan page 3-25 ①	mg/L	
Cadmium	12/11/2014	ND	ND	0.005	Basin Plan page 3-25 ①	mg/L	
Chromium	12/11/2014	ND	ND	0.05	Basin Plan page 3-25 ①	mg/L	
Copper	12/11/2014	ND	ND	49.6/27.3	40 CFR 131.38	mg/L	
Lead	12/11/2014	ND	ND	230.9/9.0	40 CFR 131.38	mg/L	
Vanganese	12/11/2014	0.302	0.144	1	Basin Plan table 3-2	mg/L	
Nickel	12/11/2014	ND	ND	0.1	Basin Plan page 3-25 ①	mg/L	
Selenium	12/11/2014	ND	ND	5	40 CFR 131.38	mg/L	
Zinc	12/11/2014	ND	ND	379.3/382.4	40 CFR 131.38	mg/L	
Organics							
Malathion	12/11/2014	ND	ND	0.43/0.1	40 CFR 131.38	mg/L	
Chlorpyrifos	12/11/2014	ND	ND	0.02/0.014	40 CFR 131.38	mg/L	
Diazinon	12/11/2014	ND	ND	0.08/0.05	40 CFR 131.38	mg/L	
Bacteriological							
Enterococcus	12/11/2014	1600	1600	151	Basin Plan	CFU/100 mL	
Fecal Coliform	12/11/2014	240	1600	200	Basin Plan Page 3-6	MPN/100 mL	
Fotal Colform	12/11/2014	1600	1600	NA	NA	MPN/100 mL	
Notes:							

Table 11W - Comparison of Pollutant Concentrations to Water Quality Benchmarks for the West Area

mg/L- milligrams per liter

mL - milliliters

e - estimated value

NA - No benchmark set

0.43/0.1 - CMC /CCC (Acute/Chronic)

MPN - Most Probable Number

CFU - Colony Forming Units

CA-MCL - California Maximum Contaminant Levels

CMC- Criteria Maximum Concentration

CCC - Continuous Criteria Concentration

D - Per California Code of Regulations, Title 22, Table 64431-A of section 64431

Basin Plan - Water Quality Control Plan for the San Diego Basin (9), September 8, 1994 (with amendments effective on or before April 4, 2011)

40 CFR 131.38 - Establishment of numeric criteria for priority toxic pollutants for the State of California

Calculated - Per USEPA Federal Register Doc. 40 CFR Part 131, May 18, 2000

* Chromium benchmarks based on total chromium (Basin Plan) or chromium (III) (40 CFR 131.38)

TABLE 12E – COMPARISON OF IMPACTS TO BENEFITS FOR THE EAST AREA

Table 12E - Comparison of Impacts to Benefits for the East Area

	Pollutant Removal Benefit					Pollutant Removal Impact	
Analyte	Estimated Sediment Pollutant Load Removal (lbs) ¹	Estimated Annual Existing Pollutant Load Removal Capacity (Ibs)	Maintenance Period (yrs)	Estimated Existing Pollutant Load Removal Capacity per Maintenance Period (Existing Pollutant Removal)(Ibs) ²	Estimated Maintained Pollutant Load Removal Capacity per Maintenance Period (Maintained Pollutant Removal) (Ibs) ³	Maintained - Existing Pollutant Load Removal capacities (Ibs) ⁴	Pollutant Removal Benefit - Pollutant Removal Impact (lbs)
Arsenic	1	-	3	-	-	-	1.3
Cadmium	ND	-	3	-	-	-	0.0
Chromium	2	-	3	-	-	-	1.6
Copper	6	-	3	-	-	-	5.5
Manganese	118	0.3	3	1.0	0.7	-0.3	118.1
Nickel	2	-	3	-	-	-	1.7
Lead	3	-	3	-	-	-	3.3
Antimony	ND	-	3	-	-	-	0.0
Selenium	0	-	3	-	-	-	0.1
Zinc	47	0.2	3	0.5	0.4	-0.2	46.8
Total Kjeldahl Nitrogen	396.43	0.9	3	2.7	1.9	-0.85	395.6
Nitrite as N	0	-	3	-	-	-	0.0
Nitrate as N	ND	1.2	3	3.7	2.6	-1.2	-0.7
Total Nitrogen	397	3.2	3	9.5	6.5	-3.0	393.9
Phosphorus, Total as P	45	0.3	3	0.8	0.5	-0.2	44.3
Malathion	ND	-	3	-	-	-	0.0
Chlorpyrifos	ND	-	3	-	-	-	0.0
Diazinon	ND	-	3	-	-	-	0.0

Notes:

ND - Not Detected in soil above Laboratory Reporting Limit

1 - The maintained channel will result in pollutant load reductions directly through the removal of sediment pollutants. This column represents the pollutants removed by the dredging effort

2 - In their current condition, each channel possesses characteristics that are similar to a natural treatment system during low flow conditions. This column represents the pollutants removed by the existing channel over a 3 year period.

3 - Once maintenance has occurred, the channel will lose some of its characteristics that are similar to a natural treatment system. This column represents the pollutants removed by the channel post-maintenance, over a 3 year period.

4 - This column represents the loss in pollutant load removal in the channel, over a 3 year period, due to channel maintenance.

TABLE 12W – COMPARISON OF IMPACTS TO BENEFITS FOR THE WEST AREA

Table 12W - Comparison of Impacts to Benefits for the West Area

	Pollutant Removal Benefit					Pollutant Removal Impact	
Analyte	Estimated Sediment Pollutant Load Removal (lbs) ¹	Estimated Annual Existing Pollutant Load Removal Capacity (Ibs)	Maintenance Period (yrs)	Estimated Existing Pollutant Load Removal Capacity per Maintenance Period (Existing Pollutant Removal)(lbs) ²	Estimated Maintained Pollutant Load Removal Capacity per Maintenance Period (Maintained Pollutant Removal) (Ibs) ³	Maintained - Existing Load Removal (Ibs) ⁴	Pollutant Removal Benefit - Pollutant Removal Impact (Ibs)
Arsenic	1	-	3	-	-	-	1
Cadmium	0	-	3	-	-	-	0
Chromium	2	-	3	-	-	-	2
Copper	6	-	3	-	-	-	6
Manganese	191	6.5	3	19.5	13.4	-6	185
Nickel	1	-	3	-	-	-	1
Lead	6	-	3	-	-	-	6
Antimony	ND	-	3	-	-	-	0
Selenium	0	-	3	-	-	-	0
Zinc	46	-	3	-	-	-	46
Total Kjeldahl Nitrogen	304	6.6	3	19.9	13.7	-6	298
Nitrite as N	0	-	3	-	-	-	0
Nitrate as N	ND	6.6	3	19.9	13.6	-6	-6
Total Nitrogen	305	21.8	3	65.4	44.9	-21	284
Phosphorus, Total as P	54	1.7	3	5.2	3.6	-2	52
Malathion	ND	-	3	-	-	-	0
Chlorpyrifos	ND	-	3	-	-	-	0
Diazinon	ND	-	3	-	-	-	0

Notes:

ND - Not Detected in soil above Laboratory Reporting Limit

1 - The maintained channel will result in pollutant load reductions directly through the removal of sediment pollutants. This column represents the pollutants removed by the dredging effort

2 - In their current condition, each channel possesses characteristics that are similar to a natural treatment system during low flow conditions. This column represents the pollutants removed by the existing channel over a 3 year period.

3 - Once maintenance has occurred, the channel will lose some of its characteristics that are similar to a natural treatment system. This column represents the pollutants removed by the channel post-maintenance, over a 3 year period.

4 - This column represents the loss in pollutant load removal in the channel, over a 3 year period, due to channel maintenance.

ATTACHMENT 7 - POTENTIAL MITIGATION EFFORTS MODEL

APPLICABLE PEIR MITIGATION MEASURES

MITIGATION MONITORING AND REPORTING PROGRAM

Section 21081.6 of the State of California Public Resources Code requires a Lead or Responsible Agency that approves or carries out a project where an environmental impact report (EIR) has identified significant environmental effects to adopt a "reporting or monitoring program for adopted or required changes to mitigate or avoid significant environmental effects." The City of San Diego is the lead Agency for the Master Program PEIR, and, therefore, is responsible for implementation of the MMRP. Because the PEIR recommends measures to mitigate these impacts, an MMRP is required to ensure that adopted mitigation measures are implemented.

As Lead Agency for the proposed project under CEQA, the City of San Diego will administer the MMRP for the following environmental issue areas: biological resources, historical resources, land use policies, paleontological resources, and water quality.

GENERAL

General Mitigation 1: Prior to commencement of work, the ADD Environmental Designee of the Entitlements Division shall verify that mitigation measures for impacts to biological resources (Mitigation Measures 4.3.1 through 4.3.20), historical resources (Mitigation Measures 4.4.1 and 4.4.2), land use policy (Mitigation Measures 4.1.1 through 4.1.13), paleontological resources (Mitigation Measure 4.7.1), and water quality (Mitigation Measures 4.8.1 through 4.8.3) have been included in entirety on the submitted maintenance documents and contract specifications, and included under the heading, "Environmental Mitigation Requirements." In addition, the requirements for a Pre-maintenance Meeting shall be noted on all maintenance documents.

General Mitigation 2: Prior to the commencement of work, a Pre-maintenance Meeting shall be conducted and include, as appropriate, the MMC, SWD Project Manager, Biological Monitor, Historical Monitor, Paleontological Monitor, Water Quality Specialist, and Maintenance Contractor, and other parties of interest.

General Mitigation 3: Prior to the commencement of work, evidence of compliance with other permitting authorities is required, if applicable. Evidence shall include either copies of permits issued, letters of resolution issued by the Responsible Agency documenting compliance, or other evidence documenting compliance and deemed acceptable by the ADD Environmental Designee.

General Mitigation 4: Prior to commencement of work and pursuant to Section 1600 et seq. of the State of California Fish & Game Code, evidence of compliance with Section 1605 is required, if applicable. Evidence shall include either copies of permits issued, letters of resolution issued by the Responsible Agency documenting compliance, or other evidence documenting compliance and deemed acceptable by the ADD Environmental Designee.

WATER QUALITY

Potential impacts to water quality would be reduced to below a level of significance through implementation of the following mitigation measures.

Mitigation Measure 4.8.1: Prior to commencement of any activity within a specific annual maintenance program, a qualified water quality specialist shall prepare an IWQA for each area proposed to be maintained. The IWQA shall be prepared in accordance with the specifications included in the Master Program. If the IWQA indicates that maintenance would impact a water pollutant where the existing level for that pollutant exceeds or is within 25 percent of the standard established by the San Diego Basin Plan, mitigation measures identified in Table 4.8-8 shall be incorporated into the IMP to reduce the impact to within the established standard for that pollutant.

MITIGATIO	Table 4.8-8 MITIGATION MEASURES FOR REDUCED POLLUTANT REMOVAL CAPACITY								
Mitigation Measure	Pollutant Type								
	Bacteria	Metals	Nutrients	Pesticides	Sediment	TDS/ Chloride Sulfates	Trash		
Remove kelp on beaches					•	•			
Sweep streets	•	•	•	•	•	•	•		
Retrofit residential landscaping to reduce runoff	•	•	•		•				
Install artificial turf	•	•	•	•	•		•		
Install inlet devices on storm drains		•	•		•				
Replace impermeable surfaces with permeable surfaces		●	•		•		•		
Install modular storm water filtration systems		•	•	•	•	•	•		

Install storm water retention basins		•	•	•	•	•	•
Install catch basin media filters		•	•		•	•	•
Create vegetated swales	•	•	•	•	•	•	•
Restore wetlands	•	●	•	•	•	•	•
Install check dams		●			●		•

Mitigation Measure 4.8.2: No maintenance activities within a proposed annual maintenance program shall be initiated before the City's ADD Environmental Designee and state and federal agencies with jurisdiction over maintenance activities have approved the IMPs and IWQAs including proposed mitigation and BMPs for each of the proposed activities. In their review, the ADD Environmental Designee and agencies shall also confirm that the appropriate maintenance protocols have been incorporated into each IMP.

Mitigation Measure 4.8.3: Prior to commencing any activity where the IWQA indicates significant water quality impacts may occur, a pre-maintenance meeting shall be held on site with following in attendance: City's SWD, MM, MMC, and MC. A qualified water quality specialist shall also be present. At this meeting, the water quality specialist shall identify and discuss mitigation measures, protocols and BMPs identified in the IWQA that must be carried out during maintenance. After the meeting, the water quality specialist shall provide DSD with a letter indicating that the applicable mitigation measures, protocols and BMPs identified in the IWQA have been appropriately implemented.