INDIVIDUAL WATER QUALITY ASSESSMENT REPORT FOR ALVARADO CHANNEL (UPPER PORTION) MAP NUMBER 64

Job Number 17204-BA

June 3, 2015

RICK ENGINEERING COMPANY ENGINEERING COMPANY RICK ENGINEERING CO

INDIVIDUAL WATER QUALITY ASSESSMENT REPORT

Site Name/Facility:

Master Program Map No.:

Date:

Civil Engineer (name, company, phone number):

Register Civil Engineer Number & Expiration Date (place stamp here):

Alvarado Channel (Upper Portion)

Map Number 64

June 3, 2015

Jayne Janda-Timba Rick Engineering Company 5620 Friars Road, San Diego, CA 92110

(619) 688-1448 R.C.E. #70649 Exp. 06/2017

<u>Instructions</u>: This form must be completed for each facility following the completion of the Individual Maintenance Plan and prior to any work being conducted in the facility. Attach additional sheets if needed.

EXISTING CONDITIONS

The City of San Diego (City) has developed the Master Storm Water System Maintenance Program (Master Maintenance Program –MMP) to optimize its business processes and environmental protection practices related to channel operation and maintenance activities. The MMP is intended to integrate operation and maintenance planning, implementation and assessment activities with its water quality protection programs. This document provides a summary of the Individual Water Quality Assessment (IWQA) activities conducted within the upper portion of Alvarado Channel (Henceforth referred to as "Upper Alvarado Channel") in order to comply with the MMP's Programmatic Environmental Impact Report (PEIR) and the MMP.

IWQA procedures under the MMP provide a methodology for a water quality management model to evaluate potential water quality benefits and impacts associated with channel maintenance activities. The site-specific field measurements and conditions provide the analytical data to both determine the pollutant load removed, and therefore water quality benefits, resulting from sediment excavation during maintenance and estimate the loss of temporary pollutant sorption/retention capacity as a result of sediment and vegetation removal during channel maintenance. The sediment pollutant load removal, combined with an estimate of pollutant removal during vegetation regrowth between maintenance events, is compared to the estimated loss of total channel pollutant removal capacity due to vegetation removal as a means of assessing potential water quality benefits and impacts of channel maintenance. Channel maintenance eliminates the potential for accumulated pollutants from returning into the water, via natural vegetation decomposition and channel scour. In addition, periodic maintenance facilitates optimal sorption of pollutants in vegetation. Additional factors are also presented, including a suite of water quality improvement activities the City will implement within the San Diego River Watershed.

The IWQA procedures are documented in the Standard Operating Procedure (SOP) to Conduct Water Quality Assessment and Quantification Model for Flood Channel Maintenance found in Appendix A of the ater Quality Assessment, written by Weston Solutions Incorporated in March 2011, Appendix F of the PEIR (herein referred to as the 'White Paper'). The SOP identifies two criteria that must be met for IWQA component implementation: 1) the storm water facility must have fairly consistent dry weather (low) flows, and 2) it must have vegetation capable of assimilation of pollutants. Both of these criteria are met by the sections of Upper Alvarado Channel designated for maintenance at this time. The results of the IWQA procedures established in the White Paper are considered below as one of several lines of evidence assessing the overall water quality benefits and impacts associated with channel maintenance.

Prepared By Rick Engineering Company – Water Resources Division JJT KA vs Reports/17204-BA 004

Revised 6-3-15

The proposed maintenance would occur within a portion of the Upper Alvarado Channel, slightly south of the intersection at Alvarado Court and Alvarado Road, See Figure 1 in Attachment 1 for the channel location. The Upper Alvarado Channel geometry is trapezoidal in shape within the area of study, with both concrete and earth sections throughout the channel. The area of study extends from the location where the channel transitions from an underground culvert, immediately south of Alvarado Road, and flows in a westerly direction for approximately 4,000 feet to a point where the channel is conveyed in a crossing under College Avenue located in the south eastern quadrant of the intersection of Interstate 8 and College Avenue (see Figure 2 in Attachment 1 for area of study). The Upper Alvarado Channel is aligned south of the medical and commercial buildings that are located on the south side of Alvarado Road. For the purposes of this assessment the area of study has been divided into three reaches: Reach 1, Reach 2, and Reach 3. Reaches 2 and 3 are the City's responsibility for maintenance. Based on the Individual Hydrologic and Hydraulic Assessment (IHHA) results the City is proposing to routinely maintain the mid-section of the Upper Alvarado Channel, within Reach 2 only.

Below is a description of each Reach:

Reach 1

Reach 1 extends from the downstream limits of the area of study and continues upstream for approximately 1,700 feet, which is 400 feet upstream of the existing pedestrian bridge that divides the maintenance boundary of the State of California and the City of San Diego. The Reach consists of dense vegetation and is bounded by Alvarado Road to the north and a parking lot to the south. Reach 1 is earthen on its bottom as well as each side. Reach 1 is the most downstream reach and is maintained by the State of California.

Reach 2

The downstream limits of Reach 2 begin approximately 400 feet upstream of the existing pedestrian bridge that divides the maintenance boundary of the State of California and the City of San Diego, and extends upstream approximately 1,100 feet. Reach 2 is a trapezoidal channel that consists of a concrete lined north side slope with an earthen bottom and earthen south side slope. Reach 2 contains dense vegetation and pursuant to the IHHA, is proposed for maintenance.

Reach 3

Reach 3 is the most upstream reach and is approximately 1,200 feet in length. The downstream end of reach 3 begins at the upstream end of Reach 2. The Reach is bounded by residential on the east and west, a commercial and a medical building to the north, and a vegetated slope on the south. The channel at the upstream portion of Reach 3 is located immediately adjacent to a hospital. Reach 3 is a fully concrete lined channel relatively free of vegetation and is not proposed for maintenance pursuant to the IHHA.

The Upper Alvarado Channel area is mapped within the Federal Emergency Management Agency's (FEMA) flood areas; all three reaches and the adjacent buildings are within the FEMA Special Flood Hazard Areas Subject to Inundation by the 1-percent Annual Chance Flood (100-year floodplain) designated Zone AE.

The overall project area is located in the Navajo Community Planning District and specific land-use designations are described in the Navajo Community Plan. The area associated with Reach 2 and 3 is zoned as an Institution land use. The channel area associated with Reach 1 is zoned as University Campus land use.

The upstream end of the maintenance area, located in Reach 2, is located within subarea 114 of the City's Multiple Species Conservation Program's Multi-Habitat Planning Area (MHPA).

The maintenance activities proposed for the designated extents of Reach 2 of the Upper Alvarado Channel include removal of sediment and vegetation. The impact acreage includes the maintenance, access/loading, and staging/stockpiling areas which accumulate to approximately 1.49 acres.

The Upper Alvarado Channel had last been maintained (full vegetation and sediment removal) in January 2011. Prior to that maintenance, cars along the adjacent streets to the north have been flooded on multiple instances and structural flooding may have occurred during a storm event in December 2010.

All channel reaches are briefly described above; however Reach 2 is the focal point of this assessment, as it is

the only reach that is proposed for maintenance. As such, from this point on only Reach 2 will be referred to and assessed.

Description of Channel Geometry (length, width, and depth):

Reach 2 (MMP Map 64)

Reach 2 is a trapezoidal channel with sedimentation and dense vegetation. It is bound by commercial and medical buildings to the north and a vegetated slope to the south. The bottom is approximately 19 feet wide, with one to one side slopes and a depth of approximately 9 feet. The proposed maintenance is approximately 1,110 feet in length by 19 feet in width by 0.2 feet to 1.7 feet in sediment depth, occupying approximately 0.5 acres. Although Reach 2 is the only reach proposed for maintenance and is 1,100 feet in length, the extra 10 feet on the downstream limits of maintenance is used as a gradual transition of grade in the channel bed from the area being maintained to the area not being maintained.

Existing Conditions

Reach 2 of the Upper Alvarado Channel is located within the San Diego River Watershed Management Area (WMA), Hydrologic Area (HA) 907.1 (Lower San Diego), Hydrologic Subarea 907.11 (Mission San Diego) (City of San Diego, 2008). Surface waters in the San Diego River WMA, and elsewhere are subject to comply with the Water Quality Control Plan for the San Diego Basin (Basin Plan, San Diego RWQCB 1994) which designates beneficial uses and established water quality objectives. The San Diego River Watershed Urban Runoff Management Plan (SDR-WURMP, City of San Diego, 2008) identifies the following priority pollutant loading reductions.

- Bacteria Indicators
- Phosphorous
- Total Dissolved Solids (TDS)
- Low Dissolved Oxygen
- Turbidity

The SDR-WURMP identifies residential, park/municipal, commercial and industrial land uses as suspected contributors to discharges of these priority pollutants within the Lower San Diego HA (City of San Diego, 2008).

The Alvarado Channel is a tributary to the Lower San Diego River. In accordance with the Water Quality Control Policy for Developing California's Clean Water Act Section 303 (d) List (SWRCB, 2004), the Lower San Diego River is 303(d) list as an impaired water body, in which standards are not met and a Total Maximum Daily Load (TMDL) is required, but not yet completed, for at least one of the pollutants listed for the segment. The pollutants listed for the Lower San Diego River on the 303(d) list are indicated in Table 1.

TABLE 1. 303(d) Listed Pollutants for the Lower San Diego River

Pollutant	Current TMDL (Yes or No)	Current or Anticipated TMDL Date
Enterococcus	No	2021
Fecal Coliform	Yes	2009
Low Dissolved Oxygen (lower 6 miles)	No	2019
Manganese	No	2021
Nitrogen	No	2021
Phosphorous	No	2019
Total Dissolved Solids (TDS)	No	2019
Toxicity*	No	2021

^{*}This pollutant was not sampled for due to the scope of the project.

On May 8, 2013, the Regional Water Quality Control Board San Diego Region (RWQCB) approved a new

Municipal Storm Water Permit for San Diego, southern Orange, and southwestern Riverside Counties (San Diego RWQCB, 2013). The region-wide NPDES Permit (commonly referred to as the Regional MS4 Permit) is intended to set the framework for municipalities, such as the City, to implement a collaborative watershed-based approach to restore and maintain the health of surface waters. The Regional MS4 Permit requires development of Water Quality Improvement Plans (WQIPs) that will allow the City (and other watershed stakeholders) to prioritize and address pollutants through an appropriate suite of best management practices (BMPs) for each watershed. Water quality BMPs related to channel maintenance activities are outlined later in this report and provide a framework that may be used by the City to address priority pollutants. It is recommended that the relative effectiveness of any implemented water quality and conservation strategies be evaluated and the programs adaptively managed to maximize pollutant and/or stormwater flow reduction benefits over the course of the program lifecycle. This adaptive management approach, coupled with other storm water management techniques implemented by the City as part of the Regional MS4 Permit, may lead to long-term reductions in the need for channel maintenance activities.

Unknown point and nonpoint sources, urban runoff/storm sewers, wastewater, natural resources, and flow regulation/modification are listed among the potential sources for these pollutants.

Dry weather historical monitoring data for the San Diego River have been required under the regional municipal separate storm sewer system (MS4) National Pollutant Discharge Elimination System (NPDES) permit R9-2007-0001 (San Diego RWQB 2007) issued to the 21 Municipal Copermitties in San Diego County, including the City of San Diego. The data compiled under this permit was reviewed during the background investigation for this IWQA. Under this historical monitoring, dry weather flow concentrations of total phosphorous, dissolved phosphorous and TDS exceeded water quality benchmarks established in the Basin Plan at least once between January 2010 and May 2012 (Project Clean Water, 2012).

Description of Sediment Sampling Activities (location(s), depth, shipment/deliverer to laboratory(s)):

Allied Geotechnical Engineers personnel collected one sediment sample from Upper Alvarado Channel (UAC-1) on December 22, 2014. The sample was collected from a location as deemed the best representation of the channel condition. The sampling location is shown on Figure 4 Attachment 3. The sampling activities were performed in general accordance with the Standard Operating Procedures (SOP) to Conduct Water Quality Assessment and Quantification Model for Flood Channel Maintenance (Weston Solutions, 2011).

A bulk sediment sample was collected using a clean shovel from ground surface to approximately 24 inches below the top of the existing sediment. The sediment sample was then placed in a clean dedicated 5-gallon bucket. The bucket was tagged with the sample ID, collection date, project number and sampling personnel name. Grain-size analysis was performed on the sample in accordance with the procedures of ASTM D6913. The test results and grain-size distribution curve are presented in Attachment 3.

The sediment at the sampling location contains abundant cobbles. Therefore, sampling for the analytical sample was also performed with a clean shovel. A mound of sediment had accumulated near the center of the channel and at the time of sampling activities, the top of the existing sediment mound was above the water level in the channel.

The sediment sample was placed in a sealed plastic bag. Preliminary screening for the potential presence of organic vapors was performed using a MiniRAE 3000 Volatile Organic Compound Gas Monitor. The sample was then labeled with the sample ID, collection date, project number and sampling personnel name. The sample was then placed on ice in a cooler box and transported to the laboratory under chain-of-custody (COC). COC documents are included with the analytical test results.

Non-dedicated sampling equipment used on this project was decontaminated prior to sampling and between sampling by washing in non-phosphate detergent (Alconox). Sediment analytical testing was performed by Clarkson Laboratory and Supply, Inc. of Chula Vista and American Scientific Laboratories, LLC of Los Angeles. The sediment sample was tested for the constituents listed in table A-3 of the SOP with the exception of Total Dissolved Solids (TDS) which is not applicable to sediment matrix samples. The test results are presented in Attachment 3.

Description of Flow Measurement Activities (location(s) and equipment):

On December 9, 2014, field personnel measured instantaneous flow during "dry weather" conditions at two

cross sections in the Upper Alvarado Channel. "Dry weather" conditions, in a channel, are defined as low flowrates that occur outside of a 72 hour window of days that have more than 0.2 inches of rainfall. It was confirmed that on December 9th, 2014 the Alvarado Channel was flowing under "dry weather" conditions since the last rainfall event of more than 0.2 inches occurred 5 days prior, on December 4th, 2014, according to the National Weather Service's Daily Climatological Reports. The upstream and downstream flow measurement locations surrounding the proposed maintenance area were initially chosen following SOP guidelines, as the upstream and downstream edges of the proposed maintenance area. However, a site visit was conducted to verify the initial selections, which resulted in an adjustment of measuring locations based on accessibility and potential safety hazards to personnel. Locations of each flow measurement site were marked with a hand-held GPS device; see Figure 4 in Attachment 3 for actual measuring locations. Permission to access the locations was obtained from the City of San Diego prior to conducting flow measurement activities. The City of San Diego provided City Maintenance workers to assist field personnel in accessing the sampling locations.

The downstream site, southwest of Alvarado Court, was selected as Sampling Location 1 (the downstream sampling location). Sampling Location 1 is bounded to the north by an existing parking lot and commercial buildings and to the south by open space consisting of thick vegetative cover. Due to limited access to the downstream end of the proposed maintenance area, this location was selected as the closest downstream feasible access point. This location was chosen during a preliminary survey of the sampling locations by the City of San Diego, Rick Engineering Company (RICK), Helix Environmental (Helix), and Allied Geotechnical Services (Allied). Based on observations during the preliminary survey this location was determined to be the safest sampling location in close proximity to the initial chosen sampling location. A downstream site, south of Alvarado Road, was selected as Sampling Location 2 (the upstream sampling location). Sampling Location 2 is bounded to the north by medical and commercial buildings and their associated parking lots and to the south by a small vegetated open space hillside lined with occupied residential housing units.

Upon entering the channel, field personnel extended a measuring tape across the full width of the wetted channel and measured the width of the cross section in total feet. The width was measured from the waterline of the south bank to the waterline of the north bank. Flow velocity was measured using the Marsh McBirney Flow-Mate 2000 Flow Meter at regular horizontal intervals. The flow meter was set at 60% depth for water depth less than 1.5 feet, or 20% and 80% depth for stages greater than 1.5 feet (USGS, 1976). For stages where water depth was greater than 1.5 feet and measurements were taken at 20% and 80% depth, an average of the measurements was calculated to solve for velocity at 60% depth. To minimize interference with flow meter readings, personnel stood downstream and slightly off to the side of the flow meter while facing upstream. The 10 second average flow velocity was recorded at each interval. Distance from the left wetted bank (southern wetted bank) and the associated water depth was recorded with each velocity reading. Field forms that were used to record flow measurements can be found in Attachment 4.

At the downstream sampling location, the total width of the wetted channel measured 24.3 feet across. A total of 22 flow measurements, at a distance of one foot horizontal spacing, were recorded along the width of the wetted downstream channel. Although the channel allowed for 24 measurements to be taken, due to the water being too shallow for a measurable reading by the flow meter at the 23rd and 24th flow measurement locations only 22 recordable measurements were taken.

At the upstream sampling location the total width of the wetted channel measured 19.3 feet across. A total of 17 flow measurements, at a distance of one foot horizontal spacing, were recorded along the width of the wetted upstream channel allowed for 19 flow measurements, field personnel could only retrieve 16 recordable measurements, due to the water being too shallow at the 1st, 3rd, and 19th flow measurement locations for a measurable reading by the flow meter. To conduct representative flow measurements, a certain percent of the flow must be captured.

To calculate total flow (discharge) across the channel the velocity measurements were integrated over the cross-sectional area of the channel at each sampling location. At the upstream sampling location a discharge of 0.47

cubic feet per second (cfs) and at the downstream location a discharge of 0.11 cfs was determined.

Description of Volume Measurement Activities (interval, total number, equipment):

As described in the SOP, the process to estimate the annual treatment volume of water uses one instantaneous flow measurement and a representative data sample. The annual treatment volume, the volume of water in one year that discharges into the maintenance area (Reach 2) of the Upper Alvarado Channel due to low flow conditions, was estimated following the White Paper's SOP. To determine the annual treatment volume, the average number of "dry days" per year was calculated. "Dry days" are days in which the channel experiences "dry weather" low flow conditions. The number of "dry days" was estimated using rainfall data from the County of San Diego's Project Clean Water website. Rainfall data, between 1968 and 2008, from the Fashion Valley ALERT Station (Sensor ID 32) was analyzed to calculate the number of "wet days" in each year. Pursuant to the SOP, "wet days" are defined as the days in which rainfall greater than or equal to 0.2 inches occurs, also including the 3 days (72 hours) following. The number of "dry days" for each year was calculated by subtracting the total number of "wet days" in a year from the total number of days in the wet season, October 1 to June 30. Upper Alvarado Channel is expected to have dry weather flows continuous through the summer months, July 1 through September 30, the days of the summer months are added to the number of "dry days". The White Paper's method for estimating the number of "dry days" takes a conservative approach and assumes that low flow is continuous year round on all days not considered "wet days". Thus the number of "wet days" and "dry days" sum up to the total number of days in a year, 365. From the calculations averaging the number of dry days each year from 1968-2008, it is estimated that the Upper Alvarado Channel experiences 320 dry days annually. The total annual treatment volume was calculated by multiplying the estimated number of dry days per year by the measured instantaneous upstream discharge, 40,625 cubic feet per day (0.47 cfs), resulting in approximately 13,000,000 cubic feet (ft³) or 97 million gallons per year (See Table 10 in Attachment 6 for annual treatment volume).

The Hydraulic Residence Time (HRT) of the channel was determined by dividing the length of Reach 2, 1,100 feet, by the average of the measured upstream and downstream velocities, .07 feet per second (ft/s). This method is employed by Caltrans when determining the HRT of water quality or bio filtration swale following the Caltrans Storm Water Quality Handbook (Caltrans, 2011). Using the average velocity, a HRT of 4.3 hours was determined.

Description of Water Quality Sampling Activities (location(s), shipment/delivery to laboratory(s)):

On December 9, 2014 field personnel collected surface water grab samples during dry weather flow conditions following SOP guidelines and Surface Water Collection SOP #EH-01 (Syracruse Research Corporation, 2003). Samples were collected at upstream and downstream locations surrounding the proposed maintenance area along Upper Alvarado Channel (See Figure 4 in Attachment 3 for sampling locations).

Sampling Location 1 (the most downstream location) was collected first, followed by Sampling Location 2 (upstream location). For each sample collected, the sampler stood in the horizontal center of the channel, downstream of the sampling location facing upstream. Prior to sample collection, the field personnel allowed sediment that was suspended in the water column to settle out prior to collection. Clean, laboratory supplied bottles labeled with the sample ID, date, time, analytes, project, and name of sampling personnel, were completed, capped and immediately placed on ice within an insulated cooler with ice, and transported to the laboratory by the water quality samplers following Chain of Custody procedures.

The samples were analyzed for constituents, which were determined based on the SOP to include Table A-4 of the SOP, and a thorough review of the 303(d) pollutants listed in Table 1, and TMDLs in the local surface waters. Water sample chemical analyses were conducted by Environmetrix of San Diego, California, a state-accredited laboratory. The laboratory analytical results can be found in Attachment 3 and tabulated analysis in Attachment 6.

Within the Upper Alvarado Channel all constituents analyzed were below their respective water quality values

with the exception of Total Dissolved Solids (TDS) and Enterococcus. The upstream concentration of TDS (1,780 mg/L) exceeds the water quality benchmark of 1,500 mg/L established by the Basin Plan. The upstream concentration of Enterococcus (1600 CFU/100 mL) exceeds the water quality benchmark of 151 CFU/100 ml.

Description of Wetland Assessment (Existing) Activities (personnel, general conditions):

An assessment of existing wetland conditions of the upper Alvarado creek channel was performed by HELIX biologists to evaluate the ability of the channel to recover to its current condition following maintenance. A scoring system was used which evaluated the following three key macrofeatures: vegetation, hydrosoil, and hydroperiod. The scoring system estimates the influence of maintenance on sorption, deposition, and other transfers and transformations of waterborne pollutants. The methodology follows the one identified in the Water Quality Assessment and Quantification Model for Flood Channel Maintenance White Paper prepared for the Master Stormwater Maintenance PEIR (Weston 2011). Field observations made during water quality and sediment sampling activities on December 9, 2014 as well as information obtained from the IBA site survey on November 5, 2014 were considered in carrying out the Existing Wetland Assessment. Worksheets used for the scoring are included in Attachment 10.

Vegetation

The vegetation recovery score of a storm water facility is defined by the time required for the vegetation to return to its current condition with an assumed removal of greater than 75-percent of the sediment and standing vegetative crop. A score of 0 corresponds to an assumption that the current vegetation will not recover to its current density after removal of the current standing crop. A score of 1 assumes that the current vegetation is comprised of trees and woody species, and recovery would take more than 5 years. A score of 2 indicates that the current standing crop is a mature mix of woody and leafy vegetation (both terrestrial and wetland species), and recovery to the current condition is expected to require 1 to 5 years. A score of 3 corresponds to vegetation comprised of primarily emergent and submerged wetland species which would take approximately 1 year to reestablish to the current condition.

The Upper Alvarado Creek IBA presents the acreage of each vegetation community or land cover type surveyed that will be impacted by maintenance activities in the channel. Five vegetation communities are identified in the IBA for Reach 2 of the Upper Alvarado Creek including freshwater marsh, undisturbed and disturbed southern willow scrub, disturbed habitat (including non-native riparian dominated by fan palm [Washingtonia sp.] and castor bean [Ricinus communis]), non-native riparian, non-native vegetation/ornamental, and two land cover types: open water and developed/concrete channel. In accordance with the scoring system described above, a score of 0-3 was assigned to each of the vegetation communities and land cover types. These scores are listed in Table 1 below.

Table 2 EXISTING Vegetation Community/Land Use Type Scoring			
Vegetation Community or Land Cover Type (Holland)	Acres	Vegetation Score	Scoring Rationale
Freshwater marsh	0.31	3	Dominance (> 75%) of emergent wetland species (i.e., <i>Typha</i>)

Southern willow scrub	0.08	2	Mature wetland
Open water	0.01	0	No visible vegetation
Non-native Riparian	0.09	1	Monotypic stands of invasive species
Non-native	0.04	1	Adjacent upland species
Vegetation/Ornamental	0.04	1	
Developed/Concrete channel	0.04	0	No visible vegetation
Disturbed Habitat 0.01	1	Disturbed non-native riparian outside	
		channel and within loading area	
TOTAL	0.57		
Overall Existing Vegetation Scor	e	2.13	

Using the acreage identified in the IBA, an area-weighted average vegetation score was determined to be 2.13 for the Upper Alvarado creek channel which would mean that the current vegetation condition is expected to return within 1-2 years.

Hydrosoil

The importance of the existing hydrosoil condition to a storm water facility is evaluated by estimating how removal of greater than 75 percent of the sediments will affect the organic carbon concentration, particle size distribution, nutrient availability, and overall load removal of contaminants. The evaluation is based on the effects of the potential hydrosoil removal on water depth, flow, hydraulic retention time (HRT), and deposition/settling rates. The evaluation is also based on how the removal of sediments will affect the re-growth of vegetation to current densities and distributions.

The hydrosoil parameter is scored between 0 and 3. A score of 0 represents a high flow or no flow area with little to no deposition likely. A score of 1 corresponds to short-term sand deposition where the likelihood of the accumulation of fines and/or organic carbon is considered low within the next five-year period. A score of 2 anticipates that a heterogeneous mix of sand, organics, and fines is expected to accumulate in the next 1 to 5 years. A score of 3 indicates that a heterogeneous mix of sand, organics, and fines is expected to accumulate within 1 year.

Based on the scoring criteria described above, a hydrosoil score of 0-3 was assigned to the Upper Alvarado Creek channel based on the type of substrate and deposition, pH, and Redox value. An existing hydrosoil score of 2 was assigned based upon the combined visible deposition of a mix consisting primarily of sands and cobbles with some deposition of detritus, neutral pH (7.5), and a positive Redox value of 148 mV. A hydrosoil score of 2 indicates that a heterogeneous mix of sand, organics, and fines is expected to accumulate in the next 1 to 5 years.

Hydroperiod

The hydroperiod recovery score of a storm water facility is defined by the time it takes for the storm water facility to recover to an average, optimal depth of 1 to 1.5 feet of overlying water. A score of 0 indicates the expectation that the velocity of storm water flow will prevent sediment deposition. A score of 1 indicates the expectation that some slowdown of flow will occur resulting in some deposition of sand and other coarse grain materials. A score of 2 typically represents a broader channel bottom with an overlying water depth of 0.5 feet resulting in resulting in some deposition of fines. A score of 3 corresponds to a channel with an overlying water depth greater than 1 foot with proportionately greater deposition of fines and organics.

An existing hydroperiod score of 2 was assigned to the Upper Alvarado Creek channel, based upon the combined average water depth of 0.6 ft (ranging from approximately 0.2 ft - 1.7 ft), slow flow (velocity of 0.07 ft/sec) but likely dependent on volume inputs, and a significant hydraulic retention time (HRT) of 4.36 hours. Based on this score, moderate sediment deposition is expected to occur.

Total Existing Recovery Score

The total existing wetland macrofeature assessment score for a storm water facility is derived by adding the

ratings from all three categories (vegetation, hydrosoil, and hydroperiod). An overall score of 0 to 2 is considered a poor rating, 3 to 4 is considered fair, 5 to 7 is comparable to good wetland quality and health, and 8 to 9 represents the best recovery for sorption and deposition of suspended solids and associated contaminants.

Adding the three scores for the Upper Alvarado Creek channel results in an overall existing score of 6.1 for the existing wetlands which indicates good water quality and health (Table 2).

Table 3 Existing Wetland Macrofeature Assessment Scoring		
Wetland Macrofeature	Score	
Vegetation	2.1	
Hydrosoil	2	
Hydroperiod	2	
Overall Existing Wetland Score	6.1	

Description of Wetland Assessment (Recovery) Activities (personnel, general conditions):

Vegetation

In a similar manner to the existing vegetation score, a recovery vegetation score of 0-3 was assigned to each vegetation community (excluding land cover types) identified in the IBA. Using the acreage identified in the IBA, an area-weighted average recovery vegetation score was determined to be 2.34 for the Upper Alvarado Creek channel which would mean that the vegetation condition is expected to return within 1-5 years. The recovery vegetation scores are listed in Table 3 below.

Table 4 RECOVERY Vegetation Community Scoring			
Vegetation Community (Holland)	Acres	Vegetation Score	Scoring Rationale
Freshwater marsh	0.31	3	Emergent wetland species (i.e., <i>Typha</i>) will exhibit regrowth within 1 year
Southern willow scrub	0.08	2	Recovery of mixed vegetation (i.e., <i>Salix</i> and <i>Typha</i>) will take 1-5 years
Non-native riparian	0.09	1	Recovery of existing trees (i.e., <i>Washingtonia</i>) will take more than 5 years
Non-native vegetation	0.04	2	Recovery of encroachment from adjacent upland species will take 1-5 years
TOTAL	0.52		
Overall Existing Vegetation Scor	e	2.34	

Hydrosoil

A single recovery hydrosoil score of 1 was assigned to the Upper Alvarado Creek channel. This assignment was based on the fact that the sediment currently deposited in the channel primarily consists of cobbles and sand with some fines and that flow is either high (during storms) or low which would result in little deposition within five years of maintenance activities.

Hydroperiod

A single recovery hydroperiod score of 3 was assigned to the Upper Alvarado Creek channel based on criteria in Attachment 10 and best professional judgment. This assignment is based primarily on the fact that the water depth in the channel was generally observed to be 0.5 - 1 ft., and that the regrowth of the freshwater marsh will facilitate the deposition of fines and organics.

Total Estimated Recovery Score

Adding the three scores results in an overall predicted recovery score of 6.34 which is comparable to the existing condition, and indicates good water quality and health (Table 4). In summary, the likely sediment redeposition and recovery of wetland species, including *Typha*, is expected to occur within one to five years.

Table 5 RECOVERY Wetland Macrofeature Assessment Scoring		
Wetland Macrofeature	Score	
Vegetation	2.34	
Hydrosoil	1	
Hydroperiod	3	
Overall Existing Wetland Score	6.34	

Sediment Pollutant Loading Estimates:

Pollutant loading estimates were performed following the guidelines outlined in the SOP. Total sediment volumes of approximately 517 cubic yards (yd³) are scheduled to be removed from maintenance in Upper Alvarado Channel. These removal volumes were applied to the 1 sample (UAC-1) in pollutant loading calculations. Load removal estimates were corrected for the presence of cobble larger than 1.5 inches in accordance with the SOP. A correction factor of 0.75 was applied to UAC-1 as the presence cobbles was observed at these sediment sampling locations and in the sieve test results, see Attachment 3 for full sieve test results. The resultant pollutant loading estimates and Excel model calculations can be found in Table 8 of Attachment 6.

MAINTENANCE IMPACTS

Evaluation of Benefits / Impacts:

Are there constituents that have potential impacts greater than benefits?

Yes ■ No □

If so, identify constituents here and compare measured concentrations to thresholds.

An evaluation of the water quality benefits versus impacts of both proposed channel maintenance area, Reach 2, of the Upper Alvarado Channel was carried out in accordance with the SOP. The maintained pollutant removal estimates were compared to the corresponding existing pollutant removal estimates for each constituent over a three year maintenance period. The results of this comparison can be found in Table 12 in Attachment 6. The results of this comparison show for each constituent that the estimated maintained pollutant removal exceeds the estimated existing pollutant removal, with the exception of nitrate. A difference of 69 pounds (lbs) of impact on nitrate load removal, over the three year maintenance period, is estimated (see Table 12 in Attachment 6). The water quality benchmark for Nitrate as listed in the San Diego Basin Plan is 10 mg/L. The concentration of Nitrate in the water column sample taken at the upstream sampling location is 1.16 mg/L. (for comparisons of each constituent to the listed benchmark in the San Diego Basin Plan see Table 11 in Attachment 6).

Nitrate was found to have a potential impact greater than the benefit. However, as discussed below, a potential temporary increase in water column nitrate concentrations does not represent a significant impact to the water quality.

The anaerobic sediments typical of wetland environments allow for the process of denitrification, in which nitrate is converted to nitrogen gases that are released to the atmosphere. Removal of sediment and vegetation from the maintenance area in the Upper Alvarado Channel will temporarily disturb this denitrification process

and nitrate assimilation by wetland plants, potentially resulting in a temporary increase to water column nitrate concentrations. However, as specified in the White Paper and other publications the removal of vegetation is beneficial to water quality. Periodic removal of vegetation prevents the reintegration of nitrate into the water via natural decomposition of vegetation that is carrying collected nitrate. In addition the regrowth phase of vegetation, facilitated by periodic vegetation removal, allows for optimal sorption rates of pollutants in the vegetation, including nitrate. Lastly, since the measured water column nitrate concentration is below the suggested benchmarks established in the Basin Plan, this temporary disruption does not pose a risk to the water quality.

These results of the water quality impact analysis outlined by the SOP suggest that overall the proposed sediment removal during maintenance of the Upper Alvarado Channel will remove a larger pollutant load than that which is theoretically removed under existing conditions during dry weather flow by natural treatment system processes over three years. The proposed maintenance will therefore provide an overall water quality benefit. Sediment excavation will prevent the re-suspension and downstream transport of sediment-bound pollutants during wet weather, and regrowth of fresh water marsh species within one year will further enhance pollutant removal from the channel.

MITIGATION

If impacts are identified, list potential mitigation efforts (e.g., BMPs type(s) and number(s)) that may be implemented in the watershed:

The results of this IWQA process suggest that there is an overall pollutant reduction benefit due to sediment removal as a result of the proposed maintenance activities, and therefore no additional mitigation measures are necessary. For the constituents analyzed, all but nitrate show an increase in estimated maintained pollutant removal. However, as stated in the SOP, "In cases where the impact is greater than the benefit, but the measured concentrations are less than the water quality objectives established by the San Diego Basin Plan for the water body segment in which the maintenance would occur no risk to the beneficial uses exist. In order to take a conservative approach, maintained channels that result in water column concentrations of the specific pollutants that are monitored under the NPDES Permit that exceed, or are within 25 percent of the water quality objectives established by the San Diego Basin Plan for the water body segment in which the maintenance would occur should have mitigation. In cases where the impact is greater than the benefit, but the maintained channel water column concentrations of the specific pollutants that are monitored under the NPDES Permit will be less than the lower limits described above (25 percent below the water quality objectives), no risk to the beneficial uses exist, and therefore no mitigation is necessary."

Nitrate has a listed water quality objective in the San Diego basin plan of 10 mg/L. The result of the water column sample concentration is 1.16 mg/L and since this measured concentration is less than 25 percent of the established water quality objective in the San Diego Basin Plan (10 mg/l), no mitigation for Nitrate is necessary.

Despite the fact that no additional mitigation is necessary pursuant to the White Paper, mitigation measures may be implemented in order to further decrease pollutant concentrations and improve overall water quality. The applicable mitigation measures, as identified in the PEIR, include: street sweeping, retrofitting residential landscaping to reduce runoff, installing artificial turf, installing inlet devices on storm drains, replacing impermeable surfaces with permeable surfaces, installing modular storm water filtration systems, installing storm water retention basins, installing catch basin media filters, creating vegetated swales, restoring wetlands, and installing check dams. All of the listed mitigation measures would decrease the overall bacteria, metals, pesticides, total dissolved solids, and trash in the water. A summary and table of Applicable PEIR mitigation

measures and benefits can be found in their entirety in Attachment 7. In order to comply with the settlement agreement, the City shall increase frequency of catch basin inspection and as-needed cleaning for one year after maintenance. For every segment that is cleared, the City shall conduct an inspection and cleaning if necessary of every catch basin within 100 feet of the maintained segment, and conduct additional inspections and cleaning if necessary every three months.

REFERENCES

- Caltrans, 2011. Biofiltration Swale Design Guidance. Sacramento, California. June 2011
- City of San Diego, 2008. San Diego Watershed Urban Runoff Management Plan, San Diego River Watershed, San Diego County, California. March 2008.
- NCDC, 2013. NOAA National Climatic Data Center, http://www.ncdc.noaa.gov/cdo-web/#t=secondTabLink, Climatic Data Online: Text & Map Search, accessed May 6, 2013
- Project Clean Water. 2012. San Diego County Watersheds. Accessed April 2013. http://projectcleanwater.org
- San Diego RWQCB, 1994. Water Quality Control Plan for the San Diego Basin (9), September 8, 1994 with amendments effective on or before April 4, 2011.
- San Diego RWQCB, 2007. Order No. R9-2007-0001, NPDES No. CAS0108757, Waste Discharge Requirements for Discharges of Urban Runoff from the Municipal Separate Storm Sewer Systems (MS4s) Draining the Watersheds of the County of San Diego, the Incorporated Cities of San Diego County, the San Diego Unified Port District, and the San Diego County Regional Airport Authority, January 2007
- San Diego RWQCB, 2013. Order No. R9-2013-0001, NPDES No. CAS0109266, National Pollutant Discharge Elimination System (NPDES) Permit and Waste Discharge Requirements for Discharges from the Municipal Separate Storm Sewer Systems (MS4s) Draining the Watersheds Within the San Diego Region. May 2013.
- SWRCB, 2004. Water Quality Control Policy for Developing California's Clean Water Act Section 303(d) List, September, 2004/
- SWRCB, 2010. 2010 Integrated Report (Clean Water Act Section 303(d) List / 305(b) Report) Statewide, accessed from: http://www.waterboards.ca.gov/water_issues/programs/tmdl/integrated2010.shtml May 2013
- USEPA 1994. Sediment Sampling. SOP #: 2016 November 17, 1994

LIST OF ATTACHMENTS (Check All That Apply):

Attachment 1: Channel Exhibits

- □ Figure 1 Vicinity Map
- □ Figure 2 Channel Reach Exhibit

Attachment 2: Site Photos

- □ Figure 3 Photo map exhibit
- □ Site Photographic Log

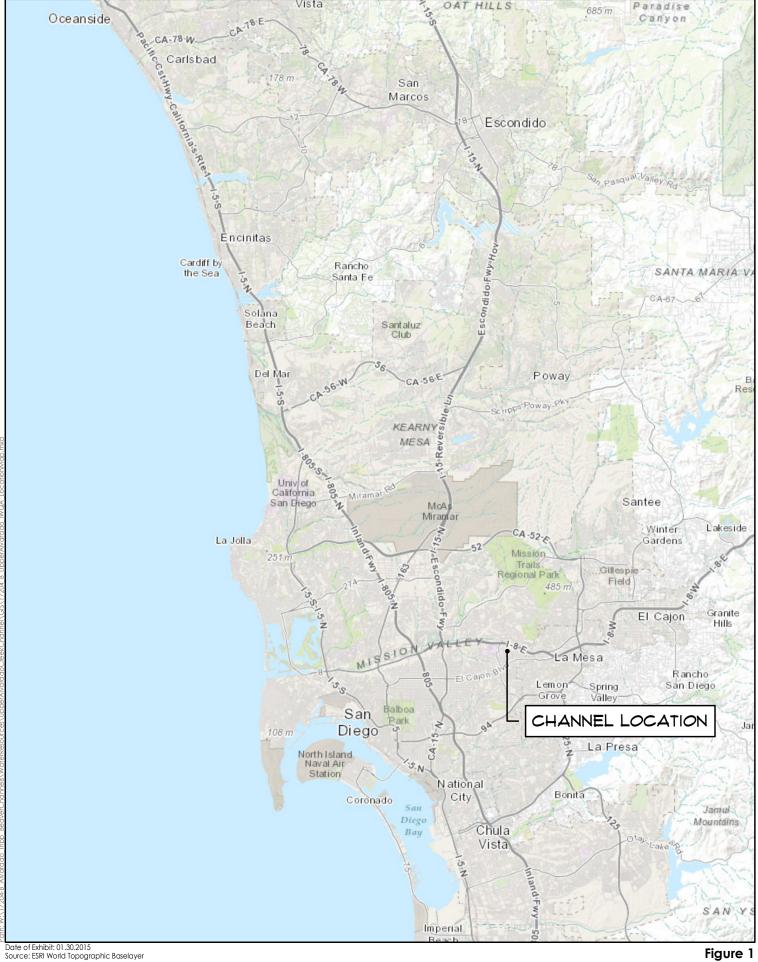
Attachment 3: Analytical Sampling Results

- □ Figure 4 Sediment and Water Sampling Locations Map
- □ Chain of Custody Sheet(s) for Sediment Sampling
- □ Analytical Results of Sediment Sample(s)
- □ Sieve Analysis Laboratory Results of Sediment Samples
- □ Chain of Custody Sheet(s) for Water Column Sampling
- □ Analytical Results of Water Column Sample(s)

Attachment 4: Flow Measurement Model

- □ Flow Measurement Field Sheets
- □ Flow Measurement Calculation Sheets

Attachment 5: Channel Wetland Assessment


- □ Wetland Land Assessment Scoring Field Notes (Existing Condition)
- □ Wetland Land Recovery Assessment Field Notes (Maintained Storm Water Facility)

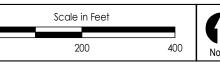
Attachment 6: Impact-Benefits Model

- □ Table 6 Sediment Pollutant Loading Model (Benefit Load Removal in Sediment)
- □ Table 7 Comparison of pollutant concentrations to Human Health Screening Level
- □ Table 8 Potential Water Quality Impacts Model
- □ Table 9 Comparison of Pollutant Concentrations to Water Quality Benchmarks
- □ Table 10 Comparison of Impacts to Benefits

Attachment 7: Potential Mitigation Efforts Model

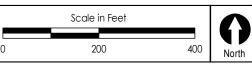
□ Applicable PEIR Mitigation Measures

PICK Miles


IWQA Report - Project Vicinity Map

Upper Alvarado Channel

J-17204 BA



Upper Alvarado Channel IWQA Report - Channel Reaches 17204-BA

Client NameCity of San Diego

Site LocationUpper Alvarado Channel

Project No. 17204-BA

Photo No.

Date

957

12/09/14

Direction Photo Taken

Southeast

Description

View upstream of Photo Location 1.

Photo No. Date

959

12/09/14

Direction Photo Taken

Southeast

Description

Upstream view from Photo Location 1.

Client NameCity of San Diego

Site LocationUpper Alvarado Channel

Project No. 17204-BA

Photo No.

Date

960

12/09/14

Direction Photo Taken

West

Description

Downstream view from Photo Location 1.

Photo No.

Date

961

12/09/14

Direction Photo Taken

South

Description

Sampler collecting water quality sample at Photo Location 1.

Client NameCity of San Diego

Site LocationUpper Alvarado Channel

Project No. 17204-BA

Photo No.

Date

964

12/09/14

Direction Photo Taken

South

Description

Sampler measuring width of channel at Photo Location 1.

Photo No. Date

966

12/09/14

Direction Photo Taken

Description

Sampler measuring depth and collecting velocity measurements at Photo Location 1.

Client NameCity of San Diego

Site LocationUpper Alvarado Channel

Project No. 17204-BA

Photo No.

Date

973

12/09/14

Direction Photo Taken

Southeast

Description

Sampler collecting water quality samples at Photo Location 2.

Photo No. Date

974

12/09/14

Direction Photo Taken

Southwest

Description

View of vegetative growth downstream of Photo Location 2.

Client NameCity of San Diego

Site LocationUpper Alvarado Channel

Project No. 17204-BA

Photo No.

Date

978

12/09/14

Direction Photo Taken

Southwest

Description

View of rolled vegetation downstream of Photo Location 2.

Photo No. Date

979

12/09/14

Direction Photo Taken

Southeast

Description

View upstream of Photo Location 2.

Client NameCity of San Diego

Site LocationUpper Alvarado Channel

Project No. 17204-BA

Photo No.

Date

983

12/09/14

Direction Photo Taken

Southeast

Description

View upstream of Photo Location 2 of large cobblestones breaching out of the water column.

Photo No. Date

986

12/09/14

Direction Photo Taken

South

Description

Sampler collecting velocity measurements using Marsh-Mcbirney Flow Mater 2000 at Photo Location 2.

Client NameCity of San Diego

Site LocationUpper Alvarado Channel

Project No. 17204-BA

Photo No.

Date

988

12/09/14

Direction Photo Taken

Southeast

Description

Photo Location 2 of vegetative growth above southern concrete bank and chain link fence above northern concrete bank.

Photo No.

991

12/09/14

Date

Direction Photo Taken

South

Description

Sampler measuring depth at Photo Location 2.

Client NameCity of San Diego

Site LocationUpper Alvarado Channel

Project No. 17204-BA

Photo No.

Date

995

12/09/14

Direction Photo Taken

South

Description

Concrete southern bank and vegetative growth above concrete at Photo Location 2.

Photo No. Date

997

12/09/14

Direction Photo Taken

Northeast

Description

Substrate lining center of channel at Photo Location 2.

Client NameCity of San Diego

Site LocationUpper Alvarado Channel

Project No. 17204-BA

Photo No.

Date

1000

12/09/14

Direction Photo Taken

South

Description

Substrate lining channel bottom by south bank at Photo Location 2.

Photo No.

Date

1001

12/09/14

Direction Photo Taken

Southwest

Description

Downstream view from Photo Location 2.

Client NameCity of San Diego

Site LocationUpper Alvarado Channel

Project No. 17204-BA

Photo No.

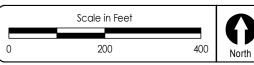
Date

1002

12/09/14

Direction Photo Taken

Southeast


Description

Upstream view from Photo Location 2.

Upper Alvarado Channel
IWQA Report - Sampling Locations
17204-BA

CHAIN OF CUSTODY SHEET(S) FOR WATER COLUMN SAMPLING

S
e encerteer
Hem
0
Name of the last
3

age 25 of 26 01/01/14 Revision Time: 12/20/01 QUOTE NO. EREQUESTED ANALYSES Date: DATE: PAGE: Alen Hosepians 14-12-2232 63209 PROJECT CONTACT: WO#/LAB USE ONLY Received by: (Signature/Affiliation) 6x/6m Received by: (Signature/Affiliation) Received by: (Signature/Afft)atfon) LKN Field Filtered 90065 Preserved Nubreserved not "STANDARD": 10 DOUYS (STANDARD) Anolysis: TKN, 8141A and metals by 6020 NO. OF CONT. alen@asllab.com S Sedimul MATRIX 13,00 TIME 11.20 Shib hi jec jei SAMPLING Total Phosphorus DATE □ 48 HR E-MAIL AMERICAN SCIENTIFIC LABS 2520 N. San Fernando Road SPECIAL INSTRUCTIONS: 10 Day. GLOBAL ID. ☐ 24 HR SAMPLE ID Refinquished by: (Signature) Relinquished by: (Signature) Relinquished by: (Signature) 2 30cyy6 4 326448 Shoce 1449CE 323-223-9700 COELT EDF ☐ SAME DAY Los Angeles LAB USE ONLY

ASC JOB # 63209

Clarkson Laboratory & Supply Inc.	Client's Name:	
Phone (619) 425-1993 Fax (619)425-7917	Address	
www.clarksonlab.com	Tel./Fax	I P
E-mail Laura Torres laura@clarksonlab.com	Contact Person: LAURA TORRES	


Chain-of-Custody Record

PO# 50082

Survey				Samplers:	CUST	OMER		
Station		Date	Time	Sample Typ		Sample	No. Of	Analysis Required
Number	City of SD. Lab. I.D			Water	Other	Size	Containers	(0° 7)
	Channel Maintenance			Comp Grab				A.
1	505532-1 326445							X
	TCC-1	12/22/14	9:45		Sey	1602	2	19. 6
		1 1						V /01/2
2	505532-2-326446							1 / 6
	LAC-2	14/وحودر	11:20		500	1602	2	Jan V
		///						X 42 1013
3	S05532-3 32 CY47	11			-	1.0	-	NIC GO MOIN
	LAC-I	12/20/14	19:00		Sed	1602	2	11/00/08
11	COFFERENCE	1				-		1/0000
7	505532-4 306448	1-1 1.			Sed	1202	2	150 X CO
	VAC-1	12/02/14	12:45		200	1002	1	2,00
Relingui	shed by: Laura ton	(0-)	Receiv	ed by:	1-			Date/Time 12/22/14 @ 34
	shed by:		Receiv					Date/Time
	shed by:		Receiv					Date/Time
	shed by:		Receiv					Date/Time
Method	of Shipment:			/				
	Preserved: HCIHNO ₃ H	SO,	Ice X	NoneO	ther			
Commer			/					
P	LEASE E-MAIL RE	SULI	S					

Distribution: Original.--Must Accompany Shipment, 1 Copy--Client (Relinquishing Samples)

ANALYTICAL RES	ULTS OF WATE	R COLUMN S	SAMPLE(S)
----------------	--------------	------------	-----------

Environmental Testing Services

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

Ordered By

Clarkson Laboratory & Supply, Inc. 350 Trousdale Drive Chula Vista, CA 91910-

Telephone (619)425-1993 Attn Laura Torres Number of Pages 4

Date Received 12/23/2014
Date Reported 01/09/2015

Job Number	Ordered	Client
63209	12/23/2014	CLSI

Project ID: S05532-1/2/3/4

Project Name:

Enclosed are the results of analyses on 4 samples analyzed as specified on attached chain of custody.

Wendy Lu
Organics Supervisor

American Scientific Laboratories, LLC (ASL) accepts sample materials from clients for analysis with the assumption that all of the information provided to ASL verbally or in writing by our clients (and/or their agents), regarding samples being submitted to ASL, is complete and accurate. ASL accepts all samples subject to the following conditions:

- 1) ASL is not responsible for verifying any client-provided information regarding any samples submitted to the laboratory.
- 2) ASL is not responsible for any consequences resulting from any inaccuracies, omissions, or misrepresentations contained in client-provided information regarding samples submitted to the laboratory.

Environmental Testing Services

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Ordered By

Clarkson Laboratory & Supply, Inc.

350 Trousdale Drive Chula Vista, CA 91910-

Telephone: (619)425-1993 Attn: Laura Torres

Page: 2

Project ID: S05532-1/2/3/4

ASL Job Number	Submitted	Client
63209	12/23/2014	CLSI

Method: 300, Nitrite by Ion Chromatography

QC Batch No: 122414-1

WO DESCRIPTOR 122717-1										
Our Lab I.D.		326445	326446	326447	326448					
Client Sample I.D.		S05532-1	S05532-2	S05532-3	S05532-4					
Date Sampled		12/22/2014	12/22/2014	12/22/2014	12/22/2014					
Date Prepared		12/24/2014	12/24/2014	12/24/2014	12/24/2014					
Preparation Method										
Date Analyzed		12/24/2014	12/24/2014	12/24/2014	12/24/2014					
Matrix		Sediment	Sediment	Sediment	Sediment					
Units		mg/Kg	mg/Kg	mg/Kg	mg/Kg					
Dilution Factor		1	1	1	1					
Analytes	PQL	Results	Results	Results	Results					
Conventionals										
Nitrite as N	0.500	ND	0.960	0.860	ND					

QUALITY CONTROL REPORT

QC Batch No: 122414-1

	LCS	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD			
Analytes	% REC	% REC	% REC	% Limit	% Limit			
Conventionals								
Nitrite as N	93	95	1.9	80-120	20			

Environmental Testing Services

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Ordered By

Clarkson Laboratory & Supply, Inc.

350 Trousdale Drive Chula Vista, CA 91910-

Telephone: (619)425-1993 Attn: Laura Torres

Page: 3

Project ID: S05532-1/2/3/4

ASL Job Number	Submitted	Client
63209	12/23/2014	CLSI

Method: 300, Nitrate by Ion Chromatography

QC Batch No: 122414-1

Our Lab I.D.		326445	326446	326447	326448	
Client Sample I.D.		S05532-1	S05532-2	S05532-3	S05532-4	
Date Sampled		12/22/2014	12/22/2014	12/22/2014	12/22/2014	
Date Prepared		12/24/2014	12/24/2014	12/24/2014	12/24/2014	
Preparation Method						
Date Analyzed		12/24/2014	12/24/2014	12/24/2014	12/24/2014	
Matrix		Sediment	Sediment	Sediment	Sediment	
Units		mg/Kg	mg/Kg	mg/Kg	mg/Kg	
Dilution Factor		1	1	1	1	
Analytes	PQL	Results	Results	Results	Results	
Conventionals						
Nitrate as N	1.00	ND	ND	ND	ND	

QUALITY CONTROL REPORT

QC Batch No: 122414-1

	LCS	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD			
Analytes	% REC	% REC	% REC	% Limit	% Limit			
Conventionals								
Nitrate as N	101	101	<1	80-120	20			

Environmental Testing Services

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Ordered By

Clarkson Laboratory & Supply, Inc.

350 Trousdale Drive Chula Vista, CA 91910-

Telephone: (619)425-1993 Attn: Laura Torres

Page: 4

Project ID: S05532-1/2/3/4

ASL Job Number	Submitted	Client
63209	12/23/2014	CLSI

Method: SM2540-G, Percent Solids

QC Batch No: 122414-1

QC Datell No. 122414-1									
Our Lab I.D.		326445	326446	326447	326448				
Client Sample I.D.		S05532-1	S05532-2	S05532-3	S05532-4				
Date Sampled		12/22/2014	12/22/2014	12/22/2014	12/22/2014				
Date Prepared		12/24/2014	12/24/2014	12/24/2014	12/24/2014				
Preparation Method									
Date Analyzed		12/24/2014	12/24/2014	12/24/2014	12/24/2014				
Matrix		Sediment	Sediment	Sediment	Sediment				
Units		percent(%)	percent(%)	percent(%)	percent(%)				
Dilution Factor		1	1	1	1				
Analytes	PQL	Results	Results	Results	Results				
Conventionals									
% Solids	1.00	18.4	59.4	60.4	50.1				

QUALITY CONTROL REPORT

QC Batch No: 122414-1

	SM	SM DUP	RPD	SM RPD			
Analytes	Result	Result	%	% Limit			
Conventionals							
% Solids	18.4	18.1	1.6	20			

Contents

Client Project Name: 63209 Work Order Number: 14-12-2232

1	Work Order Narrative	3
2	Sample Summary	4
3	Client Sample Data. 3.1 SM 4500 N Org B (M) Total Kjeldahl Nitrogen (Solid). 3.2 SM 4500 P B/E (M) Total Phosphorus (Solid). 3.3 EPA 6020 ICP/MS Metals (Solid). 3.4 EPA 8141A Organophosphorus Pesticides (Solid).	5 5 6 7 10
4	Quality Control Sample Data. 4.1 MS/MSD. 4.2 PDS/PDSD. 4.3 Sample Duplicate. 4.4 LCS/LCSD.	15 15 18 19 20
5	Sample Analysis Summary	23
6	Glossary of Terms and Qualifiers	24
7	Chain-of-Custody/Sample Receipt Form	25

Work Order Narrative

Work Order: 14-12-2232 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 12/24/14. They were assigned to Work Order 14-12-2232.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

New York NELAP air certification does not certify for all reported methods and analytes, reference the accredited items here: http://www.calscience.com/PDF/New_York.pdf

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Sample Summary

Client: American Scientific Laboratories, LLC Work Order: 14-12-2232 2520 North San Fernando Road Project Name: 63209 Los Angeles, CA 90065-1324 PO Number: Date/Time Received: 12/24/14 14:40

Number of 4 Containers:

Attn: Alen Hosepians

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
3264445	14-12-2232-1	12/22/14 09:45	1	Sediment
3264446	14-12-2232-2	12/22/14 11:20	1	Sediment
3264447	14-12-2232-3	12/22/14 12:00	1	Sediment
3264448	14-12-2232-4	12/22/14 12:45	1	Sediment

Qualifiers

Parameter

Total Kjeldahl Nitrogen

Analytical Report

 American Scientific Laboratories, LLC
 Date Received:
 12/24/14

 2520 North San Fernando Road
 Work Order:
 14-12-2232

 Los Angeles, CA 90065-1324
 Preparation:
 N/A

 Method:
 SM 4500 N Org B (M)

 Units:
 mg/kg

 Project: 63209
 Page 1 of 1

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3264445	14-12-2232-1-A	12/22/14 09:45	Sediment	BUR05	12/26/14	12/26/14 16:00	E1226TKNB1
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	<u>alifiers</u>
Total Kjeldahl Nitrogen		1200	100)	10.0		
3264446	14-12-2232-2-A	12/22/14 11:20	Sediment	BUR05	12/26/14	12/26/14 16:00	E1226TKNB1
Parameter		Result	<u>RL</u>		<u>DF</u>	Qualifiers	
Total Kjeldahl Nitrogen		620	100)	10.0		
3264447	14-12-2232-3-A	12/22/14 12:00	Sediment	BUR05	12/26/14	12/26/14 16:00	E1226TKNB1
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	alifiers
Total Kjeldahl Nitrogen		810	100)	10.0		
3264448	14-12-2232-4-A	12/22/14 12:45	Sediment	BUR05	12/26/14	12/26/14 16:00	E1226TKNB1

Method Blank	099-05-025-2225	N/A	Solid	BUR05	12/26/14	12/26/14 16:00	E1226TKNB1
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qu	alifiers
Total Kjeldahl Nitrogen		ND	1	0	1.00		

<u>RL</u>

100

<u>DF</u>

10.0

Result

1700

 American Scientific Laboratories, LLC
 Date Received:
 12/24/14

 2520 North San Fernando Road
 Work Order:
 14-12-2232

 Los Angeles, CA 90065-1324
 Preparation:
 N/A

 Method:
 SM 4500 P B/E (M)

 Units:
 mg/kg

 Project: 63209
 Page 1 of 1

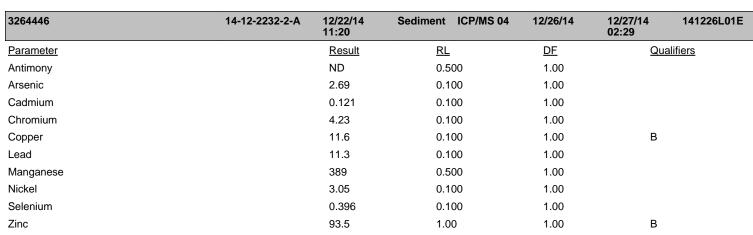
<u> </u>							
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3264445	14-12-2232-1-A	12/22/14 09:45	Sediment	UV 7	12/31/14	12/31/14 15:39	E1231TPL2
<u>Parameter</u>	·	Result	<u>RL</u>		<u>DF</u>	Qua	alifiers
Phosphorus, Total		91	25		50.0		
3264446	14-12-2232-2-A	12/22/14 11:20	Sediment	UV 7	12/31/14	12/31/14 15:39	E1231TPL2
<u>Parameter</u>		Result	RL		<u>DF</u>	Qualifiers	
Phosphorus, Total		110	25		50.0		
3264447	14-12-2232-3-A	12/22/14 12:00	Sediment	UV 7	12/31/14	12/31/14 15:39	E1231TPL2
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
Phosphorus, Total		91	25		50.0		
3264448	14-12-2232-4-A	12/22/14 12:45	Sediment	UV 7	12/31/14	12/31/14 15:39	E1231TPL2
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
Phosphorus, Total		280	50		100		

Method Blank	099-05-001-5246	N/A	Solid	UV 7	12/31/14	12/31/14 15:39	E1231TPL2
<u>Parameter</u>		<u>Result</u>	<u>RL</u>		<u>DF</u>	Qua	alifiers
Phosphorus, Total		ND	0.1	0	0.200		

American Scientific Laboratories, LLC 2520 North San Fernando Road Los Angeles, CA 90065-1324 Date Received: Work Order: Preparation: Method:

Units:

14-12-2232 EPA 3050B EPA 6020


12/24/14

mg/kg

Project: 63209

Page 1 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3264445	14-12-2232-1-A	12/22/14 09:45	Sediment	ICP/MS 04	12/26/14	12/27/14 02:25	141226L01E
Parameter		Result	RL	•	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		0.545	0.5	500	1.00		
Arsenic		1.36	0.1	00	1.00		
Cadmium		1.17	0.1	00	1.00		
Chromium		9.35	0.1	00	1.00		
Copper		39.1	0.1	00	1.00	В	
Lead		10.4	0.1	00	1.00		
Manganese		36.3	0.5	500	1.00		
Nickel		10.2	0.1	00	1.00		
Selenium		6.55	0.1	00	1.00		
Zinc		147	1.0	00	1.00	В	

American Scientific Laboratories, LLC 2520 North San Fernando Road Los Angeles, CA 90065-1324 Date Received:
Work Order:
Preparation:
Method:

14-12-2232 EPA 3050B EPA 6020

12/24/14

Units:

mg/kg Page 2 of 3

Project: 63209

Lab Sample Number Date/Time Collected Date Prepared Date/Time Analyzed Client Sample Number Matrix QC Batch ID Instrument 12/27/14 02:32 12/22/14 12:00 3264447 14-12-2232-3-A ICP/MS 04 12/26/14 141226L01E Sediment **Parameter** Result <u>RL</u> <u>DF</u> Qualifiers ND 0.500 Antimony 1.00 2.64 1.00 Arsenic 0.100 Cadmium ND 0.100 1.00 Chromium 0.100 1.00 3.18 1.00 В Copper 11.3 0.100 Lead 6.84 0.100 1.00 Manganese 242 0.500 1.00 Nickel 3.50 0.100 1.00 Selenium 0.231 0.100 1.00 Zinc 95.9 1.00 1.00 В

3264448	14-12-2232-4-A	12/22/14 12:45	Sediment ICP/MS 04	12/26/14	12/27/14 141226L01E 02:35
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
Antimony		ND	0.500	1.00	
Arsenic		7.33	0.100	1.00	
Cadmium		0.174	0.100	1.00	
Chromium		4.48	0.100	1.00	
Copper		15.3	0.100	1.00	В
Lead		10.6	0.100	1.00	
Manganese		561	0.500	1.00	
Nickel		4.00	0.100	1.00	
Selenium		0.294	0.100	1.00	
Zinc		112	1.00	1.00	В

American Scientific Laboratories, LLC 2520 North San Fernando Road Los Angeles, CA 90065-1324 Date Received: Work Order: Preparation: Method:

Units:

12/24/14 14-12-2232 EPA 3050B EPA 6020 mg/kg

Project: 63209

Page 3 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-15-254-278	N/A	Solid	ICP/MS 04	12/26/14	12/27/14 00:49	141226L01E
Parameter		Result	R	<u>RL</u>	<u>DF</u>	Qua	alifiers
Antimony		ND	0	.500	1.00		
Arsenic		ND	0	.100	1.00		
Cadmium		ND	0	.100	1.00		
Chromium		ND	0	.100	1.00		
Copper		0.160	0	.100	1.00		
Lead		ND	0	.100	1.00		
Manganese		ND	0	.500	1.00		
Nickel		ND	0	.100	1.00		
Selenium		ND	0	.100	1.00		
Zinc		1.09	1	.00	1.00		

American Scientific Laboratories, LLC 2520 North San Fernando Road Los Angeles, CA 90065-1324 Date Received: Work Order: Preparation: Method:

Units:

14-12-2232 EPA 3545 EPA 8141A mg/kg

12/24/14

Project: 63209 Page 1 of 5

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3264445	14-12-2232-1-A	12/22/14 09:45	Sediment	GC 35	12/26/14	01/08/15 12:00	141226L06
Parameter		Result	RL		DF	Qua	alifiers
Atrazine		ND	0.5	0	1.00		
Azinphos Methyl		ND	0.5	0	1.00		
Bolstar		ND	0.5	0	1.00		
Chlorpyrifos		ND	0.5	0	1.00		
Coumaphos		ND	0.5	0	1.00		
Demeton-o/s		ND	0.5	0	1.00		
Diazinon		ND	0.5	0	1.00		
Dichlorvos		ND	0.5	0	1.00		
Dimethoate		ND	0.5	0	1.00		
Disulfoton		ND	0.5	0	1.00		
Ethion		ND	0.5	0	1.00		
Ethoprop		ND	0.5	0	1.00		
Famphur		ND	0.5	0	1.00		
Fensulfothion		ND	0.5	0	1.00		
Fenthion		ND	0.5	0	1.00		
Malathion		ND	0.5	0	1.00		
Merphos		ND	0.5	0	1.00		
Methyl Parathion		ND	0.5	0	1.00		
Mevinphos		ND	0.5	0	1.00		
Naled		ND	4.0		1.00		
Parathion		ND	0.5		1.00		
Phorate		ND	0.5		1.00		
Ronnel		ND	0.5		1.00		
Simazine		ND	0.5	0	1.00		
Stirophos		ND	2.0		1.00		
Thionazin		ND	0.5		1.00		
Tokuthion		ND	0.5		1.00		
Trichloronate		ND	0.5		1.00		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
Tributylphosphate		61	30-	130			

RL: Reporting Limit. DF: [

DF: Dilution Factor.

MDL: Method Detection Limit.

American Scientific Laboratories, LLC 2520 North San Fernando Road Los Angeles, CA 90065-1324 Date Received: Work Order: Preparation: Method: 12/24/14 14-12-2232 EPA 3545 EPA 8141A

Units:

mg/kg Page 2 of 5

Project: 63209

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3264446	14-12-2232-2-A	12/22/14 11:20	Sediment	GC 35	12/26/14	01/08/15 12:46	141226L06
<u>Parameter</u>		<u>Result</u>	RL		<u>DF</u>	Qua	alifiers
Atrazine		ND	0.5	0	1.00		
Azinphos Methyl		ND	0.5	0	1.00		
Bolstar		ND	0.5	0	1.00		
Chlorpyrifos		ND	0.5	0	1.00		
Coumaphos		ND	0.5	0	1.00		
Demeton-o/s		ND	0.5	0	1.00		
Diazinon		ND	0.5	0	1.00		
Dichlorvos		ND	0.5	0	1.00		
Dimethoate		ND	0.5	0	1.00		
Disulfoton		ND	0.5	0	1.00		
Ethion		ND	0.5	0	1.00		
Ethoprop		ND	0.5	0	1.00		
Famphur		ND	0.5	0	1.00		
Fensulfothion		ND	0.5	0	1.00		
Fenthion		ND	0.5	0	1.00		
Malathion		ND	0.5	0	1.00		
Merphos		ND	0.5	0	1.00		
Methyl Parathion		ND	0.5	0	1.00		
Mevinphos		ND	0.5	0	1.00		
Naled		ND	4.0	1	1.00		
Parathion		ND	0.5	0	1.00		
Phorate		ND	0.5	0	1.00		
Ronnel		ND	0.5	0	1.00		
Simazine		ND	0.5	0	1.00		
Stirophos		ND	2.0		1.00		
Thionazin		ND	0.5		1.00		
Tokuthion		ND	0.5		1.00		
Trichloronate		ND	0.5		1.00		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
Tributylphosphate		66	30-	130			

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

American Scientific Laboratories, LLC 2520 North San Fernando Road Los Angeles, CA 90065-1324

Date Received: Work Order: Preparation: Method:

14-12-2232 **EPA 3545 EPA 8141A**

12/24/14

Units:

mg/kg Page 3 of 5

Project: 63209

Surrogate

Tributylphosphate

Date/Time Date Prepared QC Batch ID Client Sample Number Lab Sample Date/Time Matrix Instrument Number Collected Analyzed 01/08/15 13:32 12/22/14 12:00 3264447 14-12-2232-3-A Sediment GC 35 12/26/14 141226L06 **Parameter** Result <u>RL</u> <u>DF</u> Qualifiers ND Atrazine 0.50 1.00 ND 0.50 1.00 Azinphos Methyl ND **Bolstar** 0.50 1.00 Chlorpyrifos ND 0.50 1.00 ND 0.50 1.00 Coumaphos Demeton-o/s ND 0.50 1.00 Diazinon ND 0.50 1.00 Dichlorvos ND 0.50 1.00 Dimethoate ND 0.50 1.00 Disulfoton ND 0.50 1.00 Ethion ND 0.50 1.00 Ethoprop ND 0.50 1.00 Famphur ND 0.50 1.00 Fensulfothion ND 0.50 1.00 Fenthion ND 0.50 1.00 Malathion ND 0.50 1.00 Merphos ND 0.50 1.00 ND Methyl Parathion 0.50 1.00 Mevinphos ND 0.50 1.00 Naled ND 4.0 1.00 Parathion ND 0.50 1.00 Phorate ND 1.00 0.50 Ronnel ND 0.50 1.00 Simazine ND 0.50 1.00 Stirophos ND 2.0 1.00 **Thionazin** ND 0.50 1.00 Tokuthion ND 0.50 1.00 Trichloronate ND

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Rec. (%)

60

0.50

30-130

Control Limits

1.00

Qualifiers

American Scientific Laboratories, LLC 2520 North San Fernando Road Los Angeles, CA 90065-1324

Project: 63209

Date Received: Work Order: Preparation: Method:

Units:

12/24/14 14-12-2232 EPA 3545 EPA 8141A mg/kg

Page 4 of 5

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3264448	14-12-2232-4-A	12/22/14 12:45	Sediment	GC 35	12/26/14	01/08/15 14:29	141226L06
Parameter		Result	RL	•	DF	Qua	alifiers
Atrazine		ND	0.5	50	1.00		
Azinphos Methyl		ND	0.5	50	1.00		
Bolstar		ND	0.5	50	1.00		
Chlorpyrifos		ND	0.5	50	1.00		
Coumaphos		ND	0.5	50	1.00		
Demeton-o/s		ND	0.5	50	1.00		
Diazinon		ND	0.5	50	1.00		
Dichlorvos		ND	0.5	50	1.00		
Dimethoate		ND	0.5	50	1.00		
Disulfoton		ND	0.5	50	1.00		
Ethion		ND	0.5	50	1.00		
Ethoprop		ND	0.5	50	1.00		
Famphur		ND	0.5	50	1.00		
Fensulfothion		ND	0.5	50	1.00		
Fenthion		ND	0.5	50	1.00		
Malathion		ND	0.5	50	1.00		
Merphos		ND	0.5	50	1.00		
Methyl Parathion		ND	0.5	50	1.00		
Mevinphos		ND	0.5	50	1.00		
Naled		ND	4.0)	1.00		
Parathion		ND	0.5	50	1.00		
Phorate		ND	0.5	50	1.00		
Ronnel		ND	0.5	50	1.00		
Simazine		ND	0.5	50	1.00		
Stirophos		ND	2.0)	1.00		
Thionazin		ND	0.5	50	1.00		
Tokuthion		ND	0.5	50	1.00		
Trichloronate		ND	0.5	50	1.00		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
Tributylphosphate		68	30-	-130			

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

American Scientific Laboratories, LLC 2520 North San Fernando Road Los Angeles, CA 90065-1324 Date Received: Work Order: Preparation: Method:

Units:

12/24/14 14-12-2232 EPA 3545 EPA 8141A mg/kg

Project: 63209

Page 5 of 5

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-15-973-147	N/A	Solid	GC 35	01/07/15	01/09/15 02:01	141226L06
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	alifiers
Atrazine		ND	0.	.50	1.00		
Azinphos Methyl		ND	0.	.50	1.00		
Bolstar		ND	0.	.50	1.00		
Chlorpyrifos		ND	0.	.50	1.00		
Coumaphos		ND	0.	.50	1.00		
Demeton-o/s		ND	0.	.50	1.00		
Diazinon		ND	0.	.50	1.00		
Dichlorvos		ND	0.	.50	1.00		
Dimethoate		ND	0.	.50	1.00		
Disulfoton		ND	0.	.50	1.00		
Ethion		ND	0.	.50	1.00		
Ethoprop		ND	0.	.50	1.00		
Famphur		ND	0.	.50	1.00		
Fensulfothion		ND	0.	.50	1.00		
Fenthion		ND	0.	.50	1.00		
Malathion		ND	0.	.50	1.00		
Merphos		ND	0.	.50	1.00		
Methyl Parathion		ND	0.	.50	1.00		
Mevinphos		ND	0.	.50	1.00		
Naled		ND	4.	.0	1.00		
Parathion		ND	0.	.50	1.00		
Phorate		ND	0.	.50	1.00		
Ronnel		ND	0.	.50	1.00		
Simazine		ND	0.	.50	1.00		
Stirophos		ND	2.		1.00		
Thionazin		ND		.50	1.00		
Tokuthion		ND		.50	1.00		
Trichloronate		ND		50	1.00		
Surrogate		Rec. (%)	<u>C</u>	ontrol Limits	Qualifiers		
Tributylphosphate		117	30	0-130			

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

12/24/14

14-12-2232

Quality Control - Spike/Spike Duplicate

American Scientific Laboratories, LLC

2520 North San Fernando Road

Los Angeles, CA 90065-1324

Date Received:

Work Order:

Preparation:

Preparation: N/A Method: SM 4500 P B/E (M)

Project: 63209 Page 1 of 3

Quality Control Sample ID	Type		Matrix	Ir	nstrument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
3264445	Sample		Sedime	nt U	IV 7	12/31/14	12/31/14	15:39	E1231TPS2	
3264445	Matrix Spike		Sedime	nt U	IV 7	12/31/14	12/31/14	15:39	E1231TPS2	
3264445	Matrix Spike D	Matrix Spike Duplicate		nt U	IV 7	12/31/14	12/31/14	15:39	E1231TPS2	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Phosphorus, Total	91.48	100.0	189.5	98	190.5	99	70-130	1	0-25	

Quality Control - Spike/Spike Duplicate

American Scientific Laboratories, LLC 2520 North San Fernando Road Los Angeles, CA 90065-1324 Date Received: Work Order: Preparation: Method: 12/24/14 14-12-2232 EPA 3050B EPA 6020

Project: 63209 Page 2 of 3

Quality Control Sample ID	Туре		Matrix	Ins	strument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	tch Number
14-12-2197-1	Sample		Sedime	nt IC	P/MS 04	12/26/14	01/05/15	16:00	141226S01	
14-12-2197-1	Matrix Spike		Sedime	nt IC	P/MS 04	12/26/14	12/27/14	00:59	141226S01	
14-12-2197-1	Matrix Spike	Duplicate	Sedime	nt IC	P/MS 04	12/26/14	12/27/14	01:41	141226S01	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Antimony	ND	25.00	7.640	31	7.377	30	80-120	4	0-20	3
Arsenic	5.927	25.00	31.30	101	30.58	99	80-120	2	0-20	
Cadmium	0.1701	25.00	25.75	102	26.19	104	80-120	2	0-20	
Chromium	40.47	25.00	69.09	114	62.64	89	80-120	10	0-20	
Copper	25.90	25.00	51.83	104	49.27	93	80-120	5	0-20	
Lead	11.84	25.00	37.42	102	36.78	100	80-120	2	0-20	
Manganese	215.2	25.00	227.8	4X	232.3	4X	80-120	4X	0-20	Q
Nickel	45.00	25.00	66.59	86	66.93	88	80-120	1	0-20	
Selenium	0.2939	25.00	26.89	106	27.53	109	80-120	2	0-20	
Zinc	59.53	25.00	83.69	97	81.45	88	80-120	3	0-20	

Quality Control - Spike/Spike Duplicate

American Scientific Laboratories, LLC 2520 North San Fernando Road Los Angeles, CA 90065-1324 Date Received: Work Order: Preparation: Method: 12/24/14 14-12-2232 EPA 3545 EPA 8141A

Project: 63209 Page 3 of 3

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepared	d Date Ana	lyzed	MS/MSD Ba	tch Number
14-12-2146-24	Sample		Solid	GC	35	12/26/14	01/09/15	05:05	141226S06	
14-12-2146-24	Matrix Spike		Solid	GC	35	12/26/14	01/09/15	03:33	141226S06	
14-12-2146-24	Matrix Spike	Duplicate	Solid	GC	35	12/26/14	01/09/15	04:19	141226S06	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Azinphos Methyl	ND	4.000	2.863	72	1.819	45	30-130	45	0-30	4
Bolstar	ND	4.000	3.022	76	1.941	49	30-130	44	0-30	4
Chlorpyrifos	ND	4.000	2.937	73	1.717	43	30-130	52	0-30	4
Coumaphos	ND	4.000	2.936	73	1.883	47	30-130	44	0-30	4
Diazinon	ND	4.000	2.989	75	1.933	48	30-130	43	0-30	4
Disulfoton	ND	4.000	3.140	78	1.929	48	30-130	48	0-30	4
Ethoprop	ND	4.000	3.142	79	1.948	49	30-130	47	0-30	4
Fensulfothion	ND	4.000	3.244	81	2.063	52	30-130	44	0-30	4
Fenthion	ND	4.000	3.066	77	1.897	47	30-130	47	0-30	4
Merphos	ND	4.000	3.561	89	2.556	64	30-130	33	0-30	4
Methyl Parathion	ND	4.000	3.167	79	1.914	48	30-130	49	0-30	4
Phorate	ND	4.000	3.288	82	2.073	52	30-130	45	0-30	4
Ronnel	ND	4.000	3.050	76	1.861	47	30-130	48	0-30	4
Stirophos	ND	4.000	1.931	48	1.163	29	30-130	50	0-30	3,4
Tokuthion	ND	4.000	2.917	73	1.859	46	30-130	44	0-30	4
Trichloronate	ND	4.000	2.915	73	1.723	43	30-130	51	0-30	4

Quality Control - PDS

American Scientific Laboratories, LLC 2520 North San Fernando Road Los Angeles, CA 90065-1324 Date Received: Work Order: Preparation: Method: 12/24/14 14-12-2232 EPA 3050B EPA 6020

Project: 63209 Page 1 of 1

Quality Control Sample ID	Type	ľ	Matrix	Instrument	Date Prepared Date		S/PDSD Batch nber
14-12-2197-1	Sample		Sediment	ICP/MS 04	12/26/14 00:00 01/0	5/15 16:00 141	226S01
14-12-2197-1	PDS	;	Sediment	ICP/MS 04	12/26/14 00:00 12/2	7/14 01:44 141	226S01
<u>Parameter</u>		Sample Conc.	Spike Added	PDS Conc	. PDS %Rec.	%Rec. CL	<u>Qualifiers</u>
Antimony		ND	25.00	25.62	102	75-125	
Arsenic		5.927	25.00	30.83	100	75-125	
Cadmium		0.1701	25.00	25.47	101	75-125	
Chromium		40.47	25.00	63.56	92	75-125	
Copper		25.90	25.00	48.75	91	75-125	
Lead		11.84	25.00	37.11	101	75-125	
Manganese		215.2	25.00	241.6	4X	75-125	Q
Nickel		45.00	25.00	67.08	88	75-125	
Selenium		0.2939	25.00	28.01	111	75-125	
Zinc		59.53	25.00	82.17	91	75-125	

RPD: Relative Percent Difference. CL: Control Limits

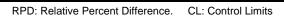
Quality Control - Sample Duplicate

American Scientific Laboratories, LLC 2520 North San Fernando Road Los Angeles, CA 90065-1324

Project: 63209

Date Received: Work Order: 12/24/14 14-12-2232

Preparation:


N/A

Method:

SM 4500 N Org B (M)

Page 1 of 1

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
3264448	Sample	Sediment	BUR05	12/26/14 00:00	12/26/14 16:00	E1226TKND1
3264448	Sample Duplicate	Sediment	BUR05	12/26/14 00:00	12/26/14 16:00	E1226TKND1
Parameter		Sample Conc.	DUP Conc.	RPD	RPD CL	Qualifiers
Total Kjeldahl Nitrogen		1708	1764	3	0-25	

Quality Control - LCS/LCSD

American Scientific Laboratories, LLC 2520 North San Fernando Road Los Angeles, CA 90065-1324 Date Received: Work Order: 12/24/14 14-12-2232

N/A

Preparation:

SM 4500 P B/E (M)

Method: Project: 63209

Page 1 of 3

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Prep	pared Date	e Analyzed	LCS/LCSD Ba	atch Number
099-05-001-5246	LCS	Sol	id	UV 7	12/31/14	12/3	31/14 15:39	E1231TPL2	
099-05-001-5246	LCSD	Sol	id	UV 7	12/31/14	12/3	31/14 15:39	E1231TPL2	
Parameter	Spike Added	LCS Conc.	<u>LCS</u> %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	Qualifiers
Phosphorus, Total	2.000	1.935	97	1.900	95	80-120	2	0-20	

Quality Control - LCS/LCSD

American Scientific Laboratories, LLC 2520 North San Fernando Road Los Angeles, CA 90065-1324 Date Received: Work Order: Preparation: Method: 12/24/14 14-12-2232 EPA 3050B EPA 6020

Project: 63209 Page 2 of 3

Quality Control Sample ID	Туре	Matrix		Instrument	Date Pre	pared Date	Analyzed	LCS/LCSD Ba	atch Number
099-15-254-278	LCS	Sol	Solid		12/26/14	12/2	7/14 00:53	141226L01E	
099-15-254-278	LCSD	Sol	id	ICP/MS 04	12/26/14	12/2	7/14 00:56	141226L01E	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Antimony	25.00	25.81	103	25.54	102	80-120	1	0-20	
Arsenic	25.00	27.00	108	27.15	109	80-120	1	0-20	
Cadmium	25.00	25.29	101	25.37	101	80-120	0	0-20	
Chromium	25.00	29.17	117	28.23	113	80-120	3	0-20	
Copper	25.00	27.72	111	27.19	109	80-120	2	0-20	
Lead	25.00	26.60	106	26.51	106	80-120	0	0-20	
Manganese	25.00	25.01	100	24.99	100	80-120	0	0-20	
Nickel	25.00	25.05	100	25.06	100	80-120	0	0-20	
Selenium	25.00	28.12	112	28.51	114	80-120	1	0-20	
Zinc	25.00	29 18	117	27 04	108	80-120	8	0-20	

Quality Control - LCS

American Scientific Laboratories, LLC 2520 North San Fernando Road Los Angeles, CA 90065-1324 Date Received: Work Order: Preparation: Method: 12/24/14 14-12-2232 EPA 3545 EPA 8141A

Project: 63209 Page 3 of 3

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepa	ared Date Analyz	ed LCS Batch N	lumber
099-15-973-147	LCS	Solid	GC 35	01/07/15	01/09/15 02	:47 141226L06	
Parameter		Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	Qualifiers
Azinphos Methyl		4.000	3.784	95	30-130	13-147	
Bolstar		4.000	3.986	100	30-130	13-147	
Chlorpyrifos		4.000	3.780	94	30-130	13-147	
Coumaphos		4.000	3.977	99	30-130	13-147	
Diazinon		4.000	3.583	90	30-130	13-147	
Disulfoton		4.000	4.207	105	30-130	13-147	
Ethoprop		4.000	3.913	98	30-130	13-147	
Fensulfothion		4.000	4.404	110	30-130	13-147	
Fenthion		4.000	4.078	102	30-130	13-147	
Merphos		4.000	4.687	117	30-130	13-147	
Methyl Parathion		4.000	4.252	106	30-130	13-147	
Phorate		4.000	4.294	107	30-130	13-147	
Ronnel		4.000	3.950	99	30-130	13-147	
Stirophos		4.000	2.318	58	30-130	13-147	
Tokuthion		4.000	3.882	97	30-130	13-147	
Trichloronate		4.000	3.753	94	30-130	13-147	

Total number of LCS compounds: 16
Total number of ME compounds: 0
Total number of ME compounds allowed: 1
LCS ME CL validation result: Pass

RPD: Relative Percent Difference. CL: Control Limits

Sample Analysis Summary Report

Work Order: 14-12-2232	Page 1 of 1			
Method	Extraction	Chemist ID	Instrument	Analytical Location
EPA 6020	EPA 3050B	598	ICP/MS 04	1
EPA 8141A	EPA 3545	886	GC 35	1
SM 4500 N Org B (M)	N/A	685	BUR05	1
SM 4500 P B/E (M)	N/A	848	UV 7	1

Glossary of Terms and Qualifiers

Work Order: 14-12-2232 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
Е	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike

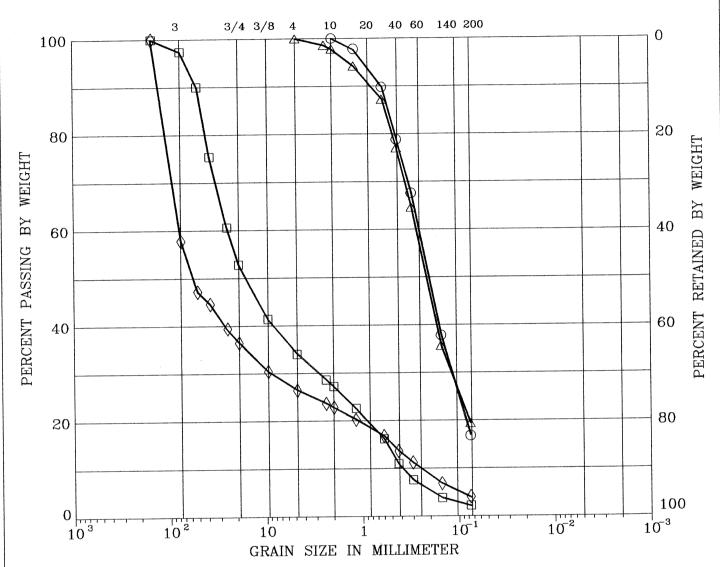
- concentration by a factor of four or greater.
- SG The sample extract was subjected to Silica Gel treatment prior to analysis.X % Recovery and/or RPD out-of-range.
- Z Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

Calscience


WORK ORDER #: 14-12- 2 2 3 2

SAMPLE RECEIPT FORM

M Cooler <u>↓</u> of <u>↓</u>

CLIENT: ASL	DATE: _	12/24/	<u>14_</u>
TEMPERATURE: Thermometer ID: SC2 (Criteria: 0.0 °C – 6.0 °C, not frozer		diment/tissue)	teans of
Temperature 2.9° C - 0.2 °C (CF) = 2.7° °C	Blank	☐ Sample	
☐ Sample(s) outside temperature criteria (PM/APM contacted by:)			
☐ Sample(s) outside temperature criteria but received on ice/chilled on same d	ay of sampl	ing.	
☐ Received at ambient temperature, placed on ice for transport by Co	urier.		
Ambient Temperature: ☐ Air ☐ Filter		Checked by:	300
CUCTODY SEALS INTACT.	Nose, est and la Scale and edition		
CUSTODY SEALS INTACT: □ Cooler □ □ No (Not Intact) □ Not Present	□ N/A	Checked by:	30
	□ IV/A	Checked by:	
☐ Sample ☐ ☐ No (Not Intact) ♣ Not Present		Checked by.	
SAMPLE CONDITION:	Yes	No	N/A
Chain-Of-Custody (COC) document(s) received with samples			
COC document(s) received complete	. 🔎		
☐ Collection date/time, matrix, and/or # of containers logged in based on sample labels.			
☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished.			
Sampler's name indicated on COC			
Sample container label(s) consistent with COC	_		
Sample container(s) intact and good condition			
Proper containers and sufficient volume for analyses requested			
Analyses received within holding time			
Aqueous samples received within 15-minute holding time			
☐ pH ☐ Residual Chlorine ☐ Dissolved Sulfides ☐ Dissolved Oxygen	. 🗆		
Proper preservation noted on COC or sample container			
☐ Unpreserved vials received for Volatiles analysis			
Volatile analysis container(s) free of headspace			
Tedlar bag(s) free of condensation CONTAINER TYPE:			4
Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve () □EnCore	s [®] □Terra	ıCores [®] □	····
Aqueous: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBp	□1AGB [⊐1AGB na ₂ □	1AGB s
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs	□1PB	□1PB na □5	00PB
□250PB □250PB n □125PB □125PB znna □100PJ □100PJ na₂ □	□		
Air: □Tedlar [®] □Canister Other: □ Trip Blank Lot#:	_ Labeled	/Checked by:	300
Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: Er Preservative: h: HCL n: HNO3 na2:Na2S2O3 na: NaOH p: H3PO4 s: H2SO4 u: Ultra-pure znna: ZnAc2+Na	velope	Reviewed by: _	335

SYMBOL	BORING	DEPTH _(ft)_	LL (%)	PI (%)_	DESCRIPTION
. 0	TCC-1				SILTY SAND (SM)
	LAC-1				POORLY GRADED GRAVEL (GP)
Δ	LAC-2				SILTY SAND (SM)
\Diamond	UAC-1				POORLY GRADED GRAVEL (GP)

Remark:

Project 154 GS-13	CHANNEL MAINTENANCE PROJECT	
ALLIED GEOTECHNICAL ENGINEERS, INC.	GRAIN SIZE DISTRIBUTION	Figure No

SUMMARY OF GRAIN SIZE DISTRIBUTION CITY OF SAN DIEGO CHANNEL MAINTENANCE PROJECT % Passing

	Sample			_	
	ID	TCC-1	LAC-1	LAC-2	UAC-1
	6"				
	5"				100
	4"		100		75.5
	3"		97.4		57.9
	2"		90		47.1
	1.5"		75.3		44.6
	1"		60.6		39.3
	0.75"		52.8		36.5
U.S. STD.	0.5"		45.2		32.3
Sieve	0.375"		41.3		30.4
Size	#4		34.1	100	26.5
	#8		28.6	98.6	23.6
	#10	100	27.2	97.8	22.8
	#16	97.7	22.6	94.2	20.3
	#30	88.9	16.2	87.3	16.8
	#40	78.9	10.9	77	13.7
	#50	67.6	7.6	64.6	11.2
	#100	37.9	3.8	35.6	6.8
	#200	16.9	2.1	19.4	3.9
C	u	19.5	64.3	29	317.6
C	С	4.1	0.8	5.6	4

TCC = Trip Court Channel LAC = Lower Alvarado Channel UAC = Upper Alvarado Channel

Cu = Coefficient of Uniformity Cc = Coefficient of Curvature

CHAIN OF	CUSTODY SHEETS(S)	FOR WATER	COLUMN SA	MPLING
CHAIN OF		I'UN WAILN		1711 T-1114

h1407h1

CHAIN-OF-CUSTODY RECORD

- EnviroMatrix (Analytical, Inc. —— 4340 Viewridge Ave., Ste. A - San Diego, CA 92123 - Phone (858) 560-7717 - Fax (858) 560-7763

EMALOG#:		4340	4340 Viewridge Ave., Ste. A - San Diego, CA 92123 - Phone (858) 560-7717 - Fax (858) 560-7763	ge Av	e., Ste.	. A - S	an Die	go, C	A 921	123 - F	hone	(858)	560-7	717 -	Fax	(858)	560-7	763			
Clienti City of San Dieso via Rick I	> Engineering Company								Regu	Requested Analysis	d Ar	alys	is								
Attn: Melly Dayle Samplers(s): Melly Dayle & CMelse a Address: \$620 Frac Skaal	ONANES		dsN yxO			(s					bəvlossi							ļ			
Phone: 619 908 3538	10 Fax: 619-291-4165			λļι	ssticides				εHN					rolert	(up			
Email: Kd Ory le C. Nel Staringe Billing Address: 57020 Fig. 1200	neering com			10 HA9				.DS	KN 🗆		7			o Ente	1 (HPC	yanide	ċΑ,	siu		·· ························	
Grow D	2110			_ (S				L X SS	TX ə					ATM,	uno) ə	Э ^п	957	1040			
<u>آ</u>	PO#:			OAS				T	iiniN					×('	plat	COD	Į'u	ĽS		···	
ID# Client Sample ID	Sample Sample Sample Container Date Time, Matrix # / Type	il & Grease	(H9T) 210: (V) 0328/42:	0278/57		2808 \ 80 141 (Sga	onsgrO) T8	DH 🗆 EC	X strate X	AC Title 22	OCP (RCRA	Moliform, X	olilert, T+E	nterococcus	oidqortorətə	BOD a	দ'হ্বত	.63uy) <u>\</u>			
1 UDSELATIVARION DIS	320		+	9	+	- ' -'	+	□×	4X	-	+	_	-	X E	Н		x D	II X	_	+	Т
2 Majer Alvarado MIS	12491H12:13 SW 7		$ \cdot $			X		Z	×		X		<u> </u>	<u> </u>		<u> </u>			-	┼	Т-
						\dashv					H	-						<u> </u>		-	T
۸ م			+		\dashv	\dashv	_	_			_							1	\vdash	\vdash	
9			+		1	-	4	_		\top	+	+	_				1927	521 	igas el egas el		ejn
7			+		+	+	_			\dagger	+	+	_			1	+	+-	+	_	Т
∞			_			-	<u> </u>				+	+	<u> </u>			1	\dagger	+	+	+	\top
6			<u> </u>			 	$igl \bot$	1		\dagger	+-	\bot	_			 	\dagger	+	-	+	T
10						<u> </u>	_	L		T	_	\vdash	<u> </u>			T	T	-	+	╀	T
Matrix Codes: A = Air, DW = Drinking Water, GW = Groundwater, SW = Storm Water	r, SW = Storm Water		RE	LINQ	RELINQUISHED BY	ED BY				DATE/TIME	/TIM	l H	_		~	13	B	1	1	1	Т
WW = Wastewater, S = Soil, SED = Sediment, SD = Solid, T = Tissue, O = Oil, L = Liquid	ue, O = Oil, L = Liquid	Signature	e.						Ĺ	70 11	7		Sign	Jan 1	W	Y	H	N			Т
Shipped By: a Courier a UPS a FedEx a USPS X Client Drop Off a Other	p Off 🗆 Other	Print	7	(<u>)</u>	2	2			•	,	Š	2	Print		A	1	رزا	3			Т
	l day 🗅 5 day 🗲 STD (7 day)	Company:	17: K	×	70%	Den	S K	Conc	นนน	1 (16-21	11	Company	pany:		V	1	4			Т
	√EDF □ Hard Copy □ EDT	Signature	re		þ		þ						Sign	Signature							T-
'Sample Disposal: Dey Laboratory Deturn to Client: P/U or Delivery Derchive	Delivery 🗆 Archive	Print											Print								T
Sample Integrity	y	Company	ıy:										Company	pany:							T
Correct Container Ye No N/A	Containers Properly Preseved Yes No N/A	Signature	re										Signature	ature		(San		T II - CALL			1
Custody Seals Intact: Yes North	Temp @ Receipt: G'c >> ; C C:	Print											Print								T-
COC/Labels Agree; 200 N/A	Sampled By: Chent EMA Autosampler	Company:	ıy:										Com	Company:							Т
Project/Sample Comments:)																				1

'Additional costs may apply. Please note there is a \$35 minimum charge for all clients.

'EMA reserves the right to return any samples that do not match our waste profile.

NOTE: By relinquishing samples to EMA, Inc., client agrees to pay for the services requested on this COC form and any additional analyses performed on this project. Payment for services is due within 30 days from date of invoice. Samples will be disposed of 7 days after report has been finalized unless otherwise noted. All work is subject to EMA's terms and conditions.

ANALYTICAL RES	ULTS OF WATE	R COLUMN S	SAMPLE(S)
----------------	--------------	------------	-----------

EMA Log #: 14L0414

Client Name: Rick Engineering Company Project Name: Upper Alvarado IWQA

Total Metals by EPA 200 Series Methods

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Upper Alvarado D/S (14L0414-01) Storm	water Sai	mpled: 12/09/	14 12:23	Received:	12/09/14 1	6:04			
Arsenic	ND	0.010	mg/l	1	4121105	12/11/14	12/15/14	EPA 200.7	
Chromium	ND	0.05	"	"	"	"	"	"	
Cadmium	ND	0.01	"	"	"	"	"	"	
Lead	ND	0.05	"	"	"	"	"	"	
Nickel	ND	0.05	"	"	"	"	"	"	
Zinc	0.07	0.05	"	"	"	"	"	"	
Copper	ND	0.05	"	"	"	"	"	"	
Manganese	0.089	0.030	"	"	"	"	12/15/14	"	
Antimony	ND	0.100	"	"	"	"	12/15/14	"	
Selenium	ND	0.010	"	"	"	"	"	"	
Upper Alvarado U/S (14L0414-02) Storm	water Sai	mpled: 12/09/	14 14:13	Received:	12/09/14 1	6:04			
Arsenic	ND	0.010	mg/l	1	4121105	12/11/14	12/15/14	EPA 200.7	
Chromium	ND	0.05	"	"	"	"	"	"	
Copper	ND	0.05	"	"	"	"	12/15/14	"	
Lead	ND	0.05	"	"	"	"	12/15/14	"	
Nickel	ND	0.05	"	"	"	"	"	"	
Zinc	ND	0.05	"	"	"	"	"	"	
Cadmium	ND	0.01	"	"	"	"	"	"	
Manganese	0.092	0.030	"	"	"	"	12/15/14	"	
Antimony	ND	0.100	"	"	"	"	12/15/14	"	
Selenium	ND	0.010	"	"	"	"	"	"	

Project Name: Upper Alvarado IWQA

Organophosphorus Pesticides by EPA Method 8141A

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Upper Alvarado D/S (14L0414-01) Storm	water Sa	mpled: 12/09/	14 12:23	Received:	12/09/14 1	6:04			
Chlorpyrifos	ND	0.05	ug/l	1	4121217	12/16/14	12/17/14	EPA 8141A	
Diazinon	ND	0.05	"	"	"	"	"	"	
Malathion	ND	0.05	"	"	"	"	"	"	
Surrogate: Triphenyl phosphate		84 %	60-	130	"	"	"	"	
Surrogate: Tribuytlphosphate		88 %	60-	130	"	"	"	"	
Upper Alvarado U/S (14L0414-02) Storm	water Sa	mpled: 12/09/	14 14:13	Received:	12/09/14 1	6:04			
Chlorpyrifos	ND	0.05	ug/l	1	4121217	12/16/14	12/17/14	EPA 8141A	
Diazinon	ND	0.05	"	"	"	"	"	"	
Malathion	ND	0.05	"	"	"	"	"	"	
Surrogate: Triphenyl phosphate		92 %	60-	130	"	"	"	"	
Surrogate: Tribuytlphosphate		92 %	60-	130	"	"	"	"	

EMA Log #: 14L0414

Client Name: Rick Engineering Company Project Name: Upper Alvarado IWQA

Conventional Chemistry Parameters by Standard/EPA Methods

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Upper Alvarado D/S (14L0414-01) Sto	rmwater Sar	npled: 12/09	9/14 12:23 F	Received:	12/09/14 1	6:04			
Hardness (Total)	711	100	mg CaCO3/I	. 10	4121105	12/11/14	12/15/14	EPA 200.7	
Nitrate as N	1.26	0.25	mg/l	5	4121423	12/14/14	12/14/14	SM4500 NO3 E	W-02
Nitrate/Nitrite as N	1.26	0.25	"	"	"	"	"	"	
Nitrite as N	ND	0.05	"	1	4121420	12/10/14	12/10/14	SM4500 NO2 B	
Total Kjeldahl Nitrogen	2.2	0.5	"	"	4121827	12/17/14	12/18/14	SM4500 N C	
Total Nitrogen	3.5	0.5	"	"	4121832	12/18/14	12/18/14	Calculation	
Dissolved Oxygen	11.2	0.10	"	"	4120964	12/12/14	12/12/14	SM4500-O G	HT-15
Phosphorus, Total	0.21	0.05	"	"	4121328	12/13/14	12/13/14	SM4500 PB, E	
Total Dissolved Solids	1700	20.0	"	"	4121337	12/13/14	12/15/14	SM2540 C	
Upper Alvarado U/S (14L0414-02) Sto	rmwater Sar	npled: 12/09	9/14 14:13 F	Received:	12/09/14 1	6:04			
Hardness (Total)	732	100	mg CaCO3/I	. 10	4121105	12/11/14	12/15/14	EPA 200.7	
Nitrate as N	1.16	0.25	mg/l	5	4121423	12/14/14	12/14/14	SM4500 NO3 E	W-02
Nitrate/Nitrite as N	1.16	0.25	"	"	"	"	"	"	
Nitrite as N	ND	0.05	"	1	4121420	12/10/14	12/10/14	SM4500 NO2 B	
Total Kjeldahl Nitrogen	0.6	0.5	"	"	4121827	12/17/14	12/18/14	SM4500 N C	
Total Nitrogen	1.8	0.5	"	"	4121832	12/18/14	12/18/14	Calculation	
Dissolved Oxygen	10.4	0.10	"	"	4120964	12/12/14	12/12/14	SM4500-O G	HT-15
Phosphorus, Total	ND	0.05	"	"	4121328	12/13/14	12/13/14	SM4500 PB, E	
Total Dissolved Solids	1780	20.0	"	"	4121337	12/13/14	12/15/14	SM2540 C	

Project Name: Upper Alvarado IWQA

Microbiological Parameters by Standard Methods

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Upper Alvarado D/S (14L0414-01) Stormw	ater Sai	mpled: 12/09	0/14 12:23 R	eceived:	12/09/14 1	6:04			
Total Coliforms	1600	2	MPN/100 ml	1	4121027	12/09/14	12/13/14	SM 9221 B, E	A-01a
Fecal Coliforms	500	2	"	"	"	"	12/12/14	"	
Enterococcus	1600	2	"	"	4121028	"	12/13/14	SM 9230 A, B	A-01
Upper Alvarado U/S (14L0414-02) Stormw	ater Sai	mpled: 12/09)/14 14:13 R	eceived:	12/09/14 1	6:04			
Total Coliforms	1600	2	MPN/100 ml	1	4121027	12/09/14	12/13/14	SM 9221 B, E	A-01a
Fecal Coliforms	130	2	"	"	"	"	12/12/14	"	
Enterococcus	1600	2	"	"	4121028	"	12/13/14	SM 9230 A, B	

Project Name: Upper Alvarado IWQA

Total Metals by EPA 200 Series Methods - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4121105										
Blank (4121105-BLK1)				Prepared:	12/11/14	Analyzed	: 12/15/1	4		
Cadmium	ND	0.01	mg/l							
Manganese	ND	0.030	"							
Nickel	ND	0.05	"							
Zinc	ND	0.05	"							
Lead	ND	0.05	"							
Copper	ND	0.05	"							
Chromium	ND	0.05	"							
Antimony	ND	0.100	"							
Arsenic	ND	0.010	"							
Selenium	ND	0.010	"							
LCS (4121105-BS1)				Prepared:	12/11/14	Analyzed	: 12/15/1	4		
Antimony	1.03	0.100	mg/l	1.00		103	75-125			
Chromium	1.00	0.05	"	1.00		100	75-125			
Zinc	1.01	0.05	"	1.00		101	75-125			
Copper	0.99	0.05	"	1.00		99	75-125			
Nickel	1.02	0.05	"	1.00		102	75-125			
Lead	1.01	0.05	"	1.00		101	75-125			
Manganese	0.979	0.030	"	1.00		98	75-125			
Cadmium	1.00	0.01	"	1.00		100	75-125			
Selenium	1.00	0.010	"	1.00		100	75-125			
Arsenic	0.996	0.010	"	1.00		100	75-125			
LCS Dup (4121105-BSD1)				Prepared:	12/11/14	Analyzed	: 12/15/1	4		
Chromium	1.00	0.05	mg/l	1.00		100	75-125	0.2	20	
Cadmium	1.01	0.01	"	1.00		101	75-125	0.9	20	
Copper	0.99	0.05	"	1.00		99	75-125	0.6	20	
Zinc	1.01	0.05	"	1.00		101	75-125	0.3	20	
Manganese	1.00	0.030	"	1.00		100	75-125	2	20	
Nickel	1.02	0.05	"	1.00		102	75-125	0.1	20	
Antimony	1.04	0.100	"	1.00		104	75-125	0.6	20	
Lead	1.02	0.05	"	1.00		102	75-125	1	20	
Selenium	1.02	0.010	"	1.00		102	75-125	2	20	
Arsenic	1.00	0.010	"	1.00		100	75-125	0.8	20	

EMA Log #: 14L0414

Client Name: Rick Engineering Company Project Name: Upper Alvarado IWQA

Total Metals by EPA 200 Series Methods - Quality Control

<u></u>	ъ •	Reporting	** **	Spike	Source	0/ DEC	%REC	DDD	RPD	N7 .
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4121105										
Duplicate (4121105-DUP1)		Source: 14L03	302-01	Prepared:	12/11/14	Analyzed	: 12/15/1	4		
Cadmium	ND	0.01	mg/l		ND				20	
Copper	ND	0.05	"		ND				20	
Zinc	ND	0.05	"		ND				20	
Lead	ND	0.05	"		ND				20	
Nickel	ND	0.05	"		ND				20	
Chromium	ND	0.05	"		ND				20	
Manganese	ND	0.030	"		ND				20	
Antimony	ND	0.100	"		ND				20	
Selenium	ND	0.010	"		ND				20	
Arsenic	ND	0.010	"		ND				20	
Matrix Spike (4121105-MS1)		Source: 14L03	302-01	Prepared:	12/11/14	Analyzed	: 12/15/1	4		
Nickel	1.00	0.05	mg/l	1.00	ND	100	75-125			
Cadmium	0.98	0.01	"	1.00	ND	98	75-125			
Manganese	0.964	0.030	"	1.00	ND	96	75-125			
Lead	0.99	0.05	"	1.00	ND	99	75-125			
Copper	0.97	0.05	"	1.00	ND	97	75-125			
Chromium	0.98	0.05	"	1.00	ND	98	75-125			
Antimony	0.978	0.100	"	1.00	ND	98	75-125			
Zinc	1.00	0.05	"	1.00	ND	100	75-125			
Arsenic	0.971	0.010	"	1.00	ND	97	75-125			
Selenium	0.997	0.010	"	1.00	ND	100	75-125			
Matrix Spike (4121105-MS2)		Source: 14L04	427-01	Prepared:	12/11/14	Analyzed	: 12/15/1	4		
Zinc	1.09	0.05	mg/l	1.00	0.16	94	75-125			
Copper	0.96	0.05	"	1.00	ND	96	75-125			
Antimony	0.998	0.100	"	1.00	ND	100	75-125			
Chromium	0.96	0.05	"	1.00	ND	96	75-125			
Nickel	0.96	0.05	"	1.00	ND	96	75-125			
Lead	0.96	0.05	"	1.00	ND	96	75-125			
Manganese	0.953	0.030	"	1.00	ND	95	75-125			
Cadmium	0.96	0.01	"	1.00	ND	96	75-125			
Arsenic	0.988	0.010	"	1.00	ND	99	75-125			
Selenium	1.01	0.010	"	1.00	0.007	100	75-125			
	1.01	0.010		2.00		- 50				

Project Name: Upper Alvarado IWQA

Arsenic Selenium

Total Metals by EPA 200 Series Methods - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4121105										
Matrix Spike Dup (4121105-MSD1)		Source: 14L03	802-01	Prepared:	12/11/14	Analyzed	: 12/15/1	4		
Nickel	0.96	0.05	mg/l	1.00	ND	96	75-125	5	20	
Antimony	0.919	0.100	"	1.00	ND	92	75-125	6	20	
Zinc	0.95	0.05	"	1.00	ND	95	75-125	5	20	
Chromium	0.93	0.05	"	1.00	ND	93	75-125	5	20	
Copper	0.93	0.05	"	1.00	ND	93	75-125	5	20	
Lead	0.94	0.05	"	1.00	ND	94	75-125	5	20	
Manganese	0.904	0.030	"	1.00	ND	90	75-125	6	20	
Cadmium	0.92	0.01	"	1.00	ND	92	75-125	6	20	

1.00

1.00

ND

ND

0.010

0.010

0.910

0.942

91

94

75-125

75-125

6

20

20

Project Name: Upper Alvarado IWQA

Organophosphorus Pesticides by EPA Method 8141A - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4121217										
Blank (4121217-BLK1)				Prepared:	12/16/14	Analyzed	1: 12/17/1	4		
Chlorpyrifos	ND	0.05	ug/l							
Diazinon	ND	0.05	"							
Malathion	ND	0.05	"							
Surrogate: Triphenyl phosphate	0.190		"	0.250		76	60-130			
Surrogate: Tribuytlphosphate	0.210		"	0.250		84	60-130			
LCS (4121217-BS1)				Prepared:	12/16/14	Analyzed	l: 12/17/1	4		
Bolstar	0.40	0.10	ug/l	0.500		80	60-130			
Diazinon	0.44	0.05	"	0.500		88	60-130			
Ethoprop	0.42	0.05	"	0.500		84	60-130			
Mevinphos	0.42	0.25	"	0.500		84	60-130			
Methyl parathion	0.40	0.10	"	0.500		80	60-130			
Phorate	0.43	0.05	"	0.500		86	60-130			
Ronnel	0.59	0.25	"	0.500		118	60-130			
Trichlorinate	0.46	0.05	"	0.500		92	60-130			
Surrogate: Triphenyl phosphate	0.200		"	0.250		80	60-130			
Surrogate: Tribuytlphosphate	0.250		"	0.250		100	60-130			
LCS Dup (4121217-BSD1)				Prepared:	12/16/14	Analyzed	l: 12/17/1	4		
Bolstar	0.42	0.10	ug/l	0.500		84	60-130	5	30	
Diazinon	0.47	0.05	"	0.500		94	60-130	7	30	
Ethoprop	0.43	0.05	"	0.500		86	60-130	2	30	
Mevinphos	0.42	0.25	"	0.500		84	60-130	0	30	
Methyl parathion	0.43	0.10	"	0.500		86	60-130	7	30	
Phorate	0.41	0.05	"	0.500		82	60-130	5	30	
Ronnel	0.50	0.25	"	0.500		100	60-130	17	30	
Trichlorinate	0.46	0.05	"	0.500		92	60-130	0	30	
Surrogate: Triphenyl phosphate	0.180		"	0.250		72	60-130			
Surrogate: Tribuytlphosphate	0.220		"	0.250		88	60-130			

Project Name: Upper Alvarado IWQA

Conventional Chemistry Parameters by Standard/EPA Methods - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4120964										
Duplicate (4120964-DUP1)		Source: 14L	0414-01	Prepared	& Analyz	ed: 12/12/	14			
Dissolved Oxygen	11.7	0.10	mg/l		11.2			4	20	
Duplicate (4120964-DUP2)		Source: 14L	0414-02	Prepared	& Analyz	ed: 12/12/	14			
Dissolved Oxygen	10.5	0.10	mg/l		10.4			0.5	20	
Batch 4121105										
Blank (4121105-BLK1)				Prepared:	12/11/14	Analyzed	1: 12/15/1	4		
Hardness (Total)	ND	10	mg CaCO3	/L						
Duplicate (4121105-DUP1)		Source: 14L	0302-01	Prepared:	12/11/14	Analyzed	l: 12/15/1	4		
Hardness (Total)	ND	10	mg CaCO3	/L	ND				20	
Batch 4121328										
Blank (4121328-BLK1)				Prepared	& Analyz	ed: 12/13/	14			
Phosphorus, Total	ND	0.05	mg/l		-					
LCS (4121328-BS1)				Prepared	& Analyze	ed: 12/13/	14			
Phosphorus, Total	0.53	0.05	mg/l	0.500		106	80-120			
LCS Dup (4121328-BSD1)				Prepared	& Analyzo	ed: 12/13/	14			
Phosphorus, Total	0.56	0.05	mg/l	0.500	-	111	80-120	5	20	
Duplicate (4121328-DUP1)		Source: 14L	0198-02	Prepared	& Analyzo	ed: 12/13/	14			
Phosphorus, Total	0.36	0.05	mg/l		0.35			0.8	20	

Project Name: Upper Alvarado IWQA

Conventional Chemistry Parameters by Standard/EPA Methods - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4121328										
Matrix Spike (4121328-MS1)		Source: 14L01	198-02	Prepared	& Analyze	ed: 12/13	/14			
Phosphorus, Total	0.89	0.05	mg/l	0.500	0.35	108	80-120			
Matrix Spike Dup (4121328-MSD1)		Source: 14L0198-02 Prepared & Analyz								
Phosphorus, Total	0.86	0.05	mg/l	0.500	0.35	101	80-120	4	20	
Batch 4121337										
Blank (4121337-BLK1)				Prepared:	12/13/14	Analyze	d: 12/15/1	4		
Total Dissolved Solids	ND	20.0	mg/l			-				
Duplicate (4121337-DUP1)		Source: 14L04	414-01	Prepared:	12/13/14	Analyze	d: 12/15/1	4		
Total Dissolved Solids	1780	20.0	mg/l		1700			5	20	
Reference (4121337-SRM1)				Prepared:	12/13/14	Analyze	d: 12/15/1	4		
Total Dissolved Solids	364	20.0	mg/l	370		98	7.84-112.	1		
Batch 4121420										
Blank (4121420-BLK1)				Prepared	& Analyz	ed: 12/09/	/14			
Nitrite as N	ND	0.05	mg/l	•						
LCS (4121420-BS1)				Prepared	& Analyz	ed: 12/09/	/14			
Nitrite as N	0.10	0.05	mg/l	0.100		103	80-120			
LCS Dup (4121420-BSD1)				Prepared	& Analyzo	ed: 12/09/	/14			
Nitrite as N	0.10	0.05	mg/l	0.100		101	80-120	2	20	

Project Name: Upper Alvarado IWQA

Conventional Chemistry Parameters by Standard/EPA Methods - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4121420										
Duplicate (4121420-DUP1)	Source: 14L03	383-01	Prepared &	& Analyze	ed: 12/09/	14				
Nitrite as N	ND	0.05	mg/l		ND				20	
Matrix Spike (4121420-MS1)		Source: 14L03	383-01	Prepared &	& Analyz	ed: 12/09/	14			
Nitrite as N	0.10	0.05	mg/l	0.100	ND	101	80-120			
Matrix Spike Dup (4121420-MSD1) Source: 14L0383-01				Prepared &	& Analyze	ed: 12/09/	14			
Nitrite as N	0.10	0.05	mg/l	0.100	ND	104	80-120	3	20	
Batch 4121423										
Blank (4121423-BLK1)	x (4121423-BLK1)				& Analyze	ed: 12/14/	14			
Nitrate/Nitrite as N	ND	0.05	mg/l							
Nitrate as N	ND	0.05	"							
LCS (4121423-BS1)				Prepared & Analyzed: 12/14/14						
Nitrate/Nitrite as N	0.51	0.05	mg/l	0.500		102	80-120			
Nitrate as N	0.51	0.05	"	0.500		102	80-120			
LCS Dup (4121423-BSD1)	SD1)			Prepared & Analyzed: 12/14/14						
Nitrate/Nitrite as N	0.51	0.05	mg/l	0.500		102	80-120	0.6	20	
Nitrate as N	0.51	0.05	"	0.500		102	80-120	0.6	20	
Duplicate (4121423-DUP1)		Source: 14L04	427-03	Prepared &	& Analyze	ed: 12/14/	14			
Nitrate/Nitrite as N	6.28	1.25	mg/l		6.40			2	20	
Nitrate as N	6.28	1.25	"		6.40			2	20	
Matrix Spike (4121423-MS1)		Source: 14L04	427-03	Prepared &	& Analyz	ed: 12/14/	14			
Nitrate/Nitrite as N	18.6	1.25	mg/l	12.5	6.40	97	80-120			
Nitrate as N	18.6	1.25	"	12.5	6.40	97	80-120			

Project Name: Upper Alvarado IWQA

Conventional Chemistry Parameters by Standard/EPA Methods - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4121423										
Matrix Spike Dup (4121423-MSD1)		Source: 14L04	127-03	Prepared of	& Analyz	ed: 12/14/1	4			
Nitrate/Nitrite as N	19.0	1.25	mg/l	12.5	6.40	101	80-120	2	20	
Nitrate as N	19.0	1.25	"	12.5	6.40	101	80-120	2	20	
Batch 4121827										
Blank (4121827-BLK1)				Prepared:	12/17/14	Analyzed:	12/18/1	4		
Total Kjeldahl Nitrogen	ND	0.5	mg/l							
LCS (4121827-BS1)				Prepared:	12/17/14	Analyzed:	12/18/1	4		
Total Kjeldahl Nitrogen	4.7	0.5	mg/l	5.00		94	80-120			
LCS Dup (4121827-BSD1)				Prepared:	12/17/14	Analyzed:	12/18/1	4		
Total Kjeldahl Nitrogen	4.8	0.5	mg/l	5.00		96	80-120	2	20	
Duplicate (4121827-DUP1)		Source: 14L04	169-05	Prepared:	12/17/14	Analyzed:	12/18/1	4		
Total Kjeldahl Nitrogen	0.7	0.5	mg/l	•	0.6			9	20	
Matrix Spike (4121827-MS1)		Source: 14L04	169-05	Prepared:	12/17/14	Analyzed:	12/18/1	4		
Total Kjeldahl Nitrogen	5.3	0.5	mg/l	5.00	0.6	93	80-120			
Matrix Spike Dup (4121827-MSD1)		Source: 14L04	169-05	Prepared:	12/17/14	Analyzed:	12/18/1	4		
Total Kjeldahl Nitrogen	5.2	0.5	mg/l	5.00	0.6	91	80-120	2	20	

Project Name: Upper Alvarado IWQA

Notes and Definitions

W-02 The sample for nitrate analysis was preserved with H2SO4 after the nitrite portion of the analysis was completed to extend the

holding time for the sample. Nitrate results are corrected for the nitrite contribution per the method.

HT-15 This sample was received outside of the EPA's recommended 15 minute holding time for this analysis. However, the sample was

analyzed immediately upon receipt.

A-01a >1600MPN/ mL

A-01 >1600 MPN/ mL

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

12/9/14 Upstream Sampling Acces, Courtien Opper Alvarado Crech Cemat Cerral Width=232 inches Sond & approx 30%. Cossle

> * Rolled up vegetation appear 20+ downstram

			Cross Se	ection Measurement Field Form
Client: Project Name: 130.				Date/Time: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Fleld Crew:	per Alvado	- Usitar	m Locat	Location Description:
	•	,		Annalysis Complete
THE PROPERTY OF SAME AND ADDRESS OF THE PERSON	Malain Announce principles of the Capital Section (Capital Section)	de electrica de proprieta de la compansión de la compansi	when many regard may have	Associated Sample ID:
	γ	<u> </u>		Cross Section Measurements
X Measurement From Left Bank (ft)	Depth of Water (ft)	Velocity (ft/sec)	Standard Deviation	Notes
1 ++	173,19	=	2:	2-too shallow for readin 2:27, cost
				- Corblestone
2+1	. 19	-0.07	J.,	Fortherine
387	.19	=	λ.	The ready, cossestore, my shalm,
4++	-21	0-19	3.	Thand & cossistere, no metition
				΄ δ
581	.25	- /\		Sand & coshlectore, no metation
				0
		0.14		2:50 2023
				9
6 F F	.22	0.08		2:31 Sandy with cossestones; long
7.3	2.2			though aloge type vocation
784	·dd	0.21		2:32 sandy with costes tree, long
P C I	775	. 2.6		town vyctrition
8++	.25	0.26		2:34 sandy with coffestores, long
0.67	15	0 21		2.36 scool in could
944	.92	0.21		a come in come
(of+	120	0.17		2:39 Sychites
	7 00	0,13		201
11 f+	-21	011		2:40
12FL	.70	0.06		2:41

NOTE: Cross section surveys of the storm water facility segment shall be performed at a minimum of every 50 linear feet (eg, if segment is 1,000 feet, minimum of 21 cross sections shall be surveyed). For smaller wetted channels (less than 10 feet across), depth and distance from bank shall be measured at approximately 1-foot interval. For larger wetted channels (greater than 10 feet acorss), depth and distance from bank shall be measured at approximately 2-foot intervals.

Left and Right Bank are determined when looking downstream

LWB = left wetted bank - where surface water terminates at the left bank

RWB = right wetted bank - where surface water terminates at the right bank

X Measurement = difference in horizontal distance from LWB

Y Depth of Water = difference in vertical distance from channel bottom to surface of water

Velocity - measured with YSI 556 (with flow cell) Flow Meter

			Cross S	ection Measurement Field Form
Client:				0310/7-03
Project Name: Up	zer Aluwad	o (Upst	com Loc	Location Description:
Field Crew:	1	- 1		
est of Williams origins, asset the	4 /9/2010 11	1 1 4 1 1 1 4 Wiles	ALL STORMS THE PARTY	Associated Sample ID:
				Cross Section Measurements
X Measurement	Y	Velocity	***************************************	
From Left Bank (ft)	Depth of Water	(ft/sec)	Standard Deviation	Notes
	(ft)			
13F1	.20_	0.07		2-41 5 and 1 44 1 41 1
	7 50 -	0,0		2:41 5 mall cossk , long thin alge
148+	.35	10-11		12:43 Small all 10 10 1
				2:43 small costle, la this algoryd
				sort sont
154+	39	80.0		2:44 concrete bottom
17.61	/1 ==	(1 6.5		
(0++	.40	0.06		2:45 concrete bottom
Ť				
17()	110	. 5/		
1/++	,40	0.06		Concret approven tout
, .				So the edy of conclute back
	-			Julie Englander Jak
(0) 0				<u> </u>
(31-	(.)	=		too shallow for reading
				Bratton p. traat
			<u> </u>	
				0
				* Samplin location chosen for
				upstrend sampling where no rocks
				section where sample total XII, sisman
				Soche the scale I bell Val . I
				The mile sample total fully some
				in water
ĺ				
				×erder at 3:52
				* C/VCh at) Sh

NOTE: Cross section surveys of the storm water facility segment shall be performed at a minimum of every 50 linear feet (eg. if segment is 1,000 feet, minimum of 21 cross sections shall be surveyed). For smaller wetted channels (less than 10 feet across), depth and distance from bank shall be measured at approximately 1-foot interval. For larger wetted channels (greater than 10 feet acorss), depth and distance from bank shall be measured at approximately 2-foot intervals.

Left and Right Bank are determined when looking downstream

LWB = left wetted bank - where surface water terminates at the left bank

RWB = right wetted bank - where surface water terminates at the right bank

X Measurement = difference In horizontal distance from EWB

Y Depth of Water = difference in vertical distance from channel bottom to surface of water

Velocity - measured with YSI 556 (with flow cell) Flow Meter

, Fence (City cuton site 12/9 for access) Cewer, Rubble - sediment covered in small (0.5 inch) 1 3 inch (1-3)

Weather: Surry, Clear Steis

Project Name: YORK HIVA rado Location Project Name: 12/9/14				Cross	Section Measurement Field Form
Field Crew: Kelly Chelta Charcis in , Jeas in Location Description: X Measurement From Left Bank (F) Depth of Water (H) Standard (H) Depth of Water (H) Depth of Water (H) Depth of Water (H) Standard (H) Late of Catally to the South, Mary algorithm of Fact of Catally to the South, Mary algorithm of Fact of Catally to the South, Mary algorithm of Fact of Catally to the South, Mary algorithm of Fact of Catally to the South, Mary algorithm of Fact of Catally to the South, Mary algorithm of Fact of Catally to the South, Mary algorithm of Fact of Catally to the South, Mary algorithm of Fact of Catally to the South, Mary algorithm of Fact of Catally to the South, Mary algorithm of Fact of Catally to the South, Mary algorithm of Catally to the South of Catally to the Sou	Client: Project Name: 130	011 111111	e. 1-		
Associated Sample 10: Cross Section Measurements X Measurement From Left Bank (If) Depth of Water (ft) Standard (ft) Standard (ft) Section Measurements Notes Notes Notes Notes 167 287 287 2006 12:48 Very shallow Nater, very titlle flow; possible celly within I fact of cartain to the south, breavy algorized cells within I fact of cartain to the south, breavy algorized as a shove, still an cettle of the south of the south, breavy algorized as measurement and I foot (14) Neasurement . Still on costle 471 471 471 471 471 471 471 47		Coule Mals	, raco	to Trans	
Cross Section Measurements Notes No		order Cimra	COCOMOVES	m, vasn	LOYUD KINDINACLO LUCIONA MARILI INC.
Measurement From Left Bank [A] Depth of Water Velocity (trisec) Deviation 1ft . 2 -0.12 12.48 Very shallow water, very little flow, possible celly within I fact of cuttain to the socky, brave algorization (cuttle store 12.54 same as above, still an cabble 12.57 same as above, still an cabble 12.57 same as measurement at 1 fact (14) measurement. Still an cabble 11.02 same as I feat from northerntonial (15t measurement). Still an cabble with all and 2 same as I feat from cuttain from 1.06 same as I feat from cuttain from 1.06 same as I feat from cuttain for cabble 1.06 same as I feat from cuttain for cabble 1.12 on cabble, along a possible eddy	- Prostantino de Cara		the second contract of the second	I a margin of a terror of the left of the party	A THE WASHINGTON TO BE A STATE OF THE STATE
Measurement (try sec) 17.48 Very shallow hater, very titlle flow possible cells within I fact of contain to the south, bravy algorication in the south and in the south of the south, bravy algorication in the south and in the south of the south and in the south of the south and in the south		· v		-	Cross Section Measurements
177 -0.06 12:48 Very shallow water, very little flow possible college within I fact of contains to the south, bravy algoricathlestore 2FL .32 -0.06 12:57 Same as above, still an costile 3FL .3 -0.08 12:57 Same as measurement and I fount (1st) measurement. Still on costile 4FL .4 -0.10 1:02 same as I foot from northeston back (1st measurement). Still on costile with all appears 2ft from contains appears 2ft from contains 5ft .5 -0.06 1:06 same as I foot from northeston banh. (1st measurement). Still on costile 6ft .7 -0.07 1:12 on costile, alonger, possible eddy		1 '			Maha
13.78 Stry Shallow Hoter, strylittle flow, possible cally within I fact of cartail to the South, breavy algor cathlestore 3Ft .32 -0.06 12:54 same as above, still an cathle 3Ft .3 -0.08 12:57 same as measurement at I fact (14) measurement. Still on cathle 4Ft .4 -0.10 1:02 same as I fact from northester bank (15t measurement). Still on cathle with all appears 2ft from cathail 5ft .5 -0.06 1:06 same as I fact from northester bank (15t measurement). Still on cathle 6ft .7 -0.07 1:12 on cathle, alonger, possible eddy		(ft)	(it/sec)	Deviation	Hotes
13.78 Stry Shallow Hoter, strylittle flow, possible cally within I fact of cartail to the South, breavy algor cathlestore 3Ft .32 -0.06 12:54 same as above, still an cathle 3Ft .3 -0.08 12:57 same as measurement at I fact (14) measurement. Still on cathle 4Ft .4 -0.10 1:02 same as I fact from northester bank (15t measurement). Still on cathle with all appears 2ft from cathail 5ft .5 -0.06 1:06 same as I fact from northester bank (15t measurement). Still on cathle 6ft .7 -0.07 1:12 on cathle, alonger, possible eddy	147	2	-017		12-110
2ft .32 -0.06 12:54 same as above, still an cottle 3ft .3 -0.08 12:57 same as measurement at 1 fort (14) measurement . Still on costle 4ft .4 -0.10 1:02 same as 1 foot from northetent back (1st measure most). Still on costle with all appex 2ft from cultarill 5ft .5 -0.06 1:06 same as 1 foot from north back (1st measure A). Still on costle 6ft .7 -0.07 1:12 on costle, alonge, possible eddy	(i)	000	U.I.A.		12:98 Very smallow water, very little flow; possible early,
2ft .32 -0.06 12:54 same as above, still an cottle 3ft .3 -0.08 12:57 same as measurement at 1 fort (14) measurement . Still on costle 4ft .4 -0.10 1:02 same as 1 foot from northetent back (1st measure most). Still on costle with all appex 2ft from cultarill 5ft .5 -0.06 1:06 same as 1 foot from north back (1st measure A). Still on costle 6ft .7 -0.07 1:12 on costle, alonge, possible eddy		77.			within I fact of cataily to the such heaven to
3Ft .32 -0.06 12:54 same as above, still an cottle 3Ft .3 -0.08 12:57 same as measurement at 1 fort (14) measurement. Still on cottle 4Ft .4 -0.10 1:02 same as 1 foot from northeten back (1st measure ment). Still on cottle with all appear 2ft from cultarily 5ft .5 -0.06 1:06 same as 1 foot from northeten back. (1st measure A). Still on cottle 6ft 7 -0.07 1:12 on cottle, alonger, possible eddy		i i	_		College de la Co
3F+ .3 -0.08 12:57 same as measurement at 1 fort (14) measurement. Still on cobble 1:02 same as 1 foot-from northerson broke (1st measure mont). Still on cobble with all approx 2ft from catherill 5ft .5 -0.06 1:06 same as 1 foot-from norther book. (1st measure t). Still on cobble book. (1st measure t). Still on cobble 6xt .7 -0.07 1:12 on cobble, alone, possible eddy	J&T	3)	-0.06		
3Ft .3 -0.08 12:57 same as measurement at 1 foot (14) measurement. Still on costle 4ft .4 -0.10 1:02 same as 1 foot from northetentionsh (1st measurement). Still on costle with all appear 2ft from cuttails 5ft .5 -0.06 1:06 same as 1 foot from northe banh. (1st measure A). Still on costle 6ft .7 -0.07 1:12 on costle, alger, possible eddy	<u> </u>	4 /0	150.00		10.30 Same as above, still on cobbe
12.5 Same as I foot from northeten back (1st measure ment). Still on cobble with all approx 2ft from cuttail 5ft .5 = 0.06 1:06 Same as I foot from northeten back (ast measure ment). Still on cobble (but .1st measure A). Still on cobble (aft .7 = 0.07) 1:12 on cobble, alone, possible eddy					
Measurement. Still on cobbe 1:02 same as I feathern nowhetenback (1st measure ment). Still on cobbe with all appear 2ft from cuttails 5ft .5 = 0.06 1:06 same as I footfrom nowh banh. (1st measure A). Still on cobbe 6ft .7 = 0.07 1:12 on cobble, alone, possible eddy	3F+	.3	-0.08		12:57 500000000000000000000000000000000000
4ft .4 -0.10 1:02 same as I foot from northeten bank (1st measure most). Still on costle with als apper 2ft from cathall 5ft .5 -0.06 1:06 same as I foot from north bank. (1st measure 4). Still on costle 6ft .7 -0.07 1:12 on costle, along possible eddy					when the tot (14)
(1st measure ment). Still on costle with als approx 2ft from cultural 5ft .5 = 0.06 1:06 Same a) I footfrom noch banh. (1st measure A). Still on costle 6ft .7 = 0.07 1:12 on costle, alone, possible eddy					Measurement. Still on cosse
(1st measure ment). Still on costle with als approx 2ft from cultural 5ft .5 = 0.06 1:06 Same a) I footfrom noch banh. (1st measure A). Still on costle 6ft .7 = 0.07 1:12 on costle, alone, possible eddy					
(1st measure ment). Still on costle with als approx 2ft from cultural 5ft .5 = 0.06 1:06 Same a) I footfrom noch banh. (1st measure A). Still on costle 6ft .7 = 0.07 1:12 on costle, alone, possible eddy	_4ft	.4	1-0.10		1:02 6000 05 16 16
5ft 5 -0.06 1:06 same a) footform noch bank. (Ist maxim A) . Still an costle		10.01			11 toot tran nowheten bank
5ft 5 -0.06 1:06 same a) footform noch bank. (Ist maxim A) . Still an costle			 		(1st measure ment). Still on costle with alme
5ft .5 -0.06 1:06 same as I footfrom noch bank. (Ist measure A). Still on costle					aporx 2ft from cottails
67+ 7 -0.07 1:12 on cobble, aloge, possible			[1 (//)
67+ 7 -0.07 1:12 on cobble, aloge, possible	5+1	5	ΔΔ1.		1 6/
67+ 7 -0.07 1:12 on cobble, aloge, possible	- / \ 	3 7	0.00		1.06 Same a) footfrom noch
67+ 7 -0.07 1:12 on cobble, aloge, possible					Wark. (Ist marin A) Still m colle
eddy on asse, with possiste					7. 511101 60956
eddy on asse, with possiste	(X)	7	- ^ ^ 7		1117
eady	0-11		70.01		1.1 d On cobble, alove possible
70)					eddy
7ft .85 -0.07 1:15 on cobbe, alique, possible edds					
1.13 on cobbe, alique, possible adds	Jtr	25	-0.0-7		1:15
, , , , , , , , , , , , , , , , , , ,		100	-0.01		1.12 on cobbe, alive, possible edds
					V
8Ft 85 -0.06 1:19 00 couple also parity and	SFL 1	# 85	-0.06		1.19 00 00/1/2
8ft 85 -0.06 1:19 on cottle, alge, possible eddy			<u> </u>		in on coone, alige, possible eddy
1 V 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tri	1 2 -			
9Ft 1.25 -0.04 1:24 00 1844 01011 001141 11	9++	1.72	-0.04		1:24 pp (6)66 along points 11
9++ 1.25 -0.04 1:24 on colder alger, possible eddy					District Edicy
	1054 1	m	007		
10 Ft 1.60 -0.02 1:25 on costle, alge, possible eddy	1017		-U-UA-		1. d) on cobble, alone, possible edd.
	<u>. </u>				8 11

NOTE: Cross section surveys of the storm water facility segment shall be performed at a minimum of every 50 linear feet (eg. if segment is 1,000 feet, minimum of 21 cross sections shall be surveyed). For smaller wetted channels (less than 10 feet across), depth and distance from bank shall be measured at approximately 1-foot interval. For larger wetted channels (greater than 10 feet acorss), depth and distance from bank shall be measured at approximately 2-foot intervals.

Cert and Right Bank are determined when looking downstream

LWB = left wetted bank - where surface water terminates at the left bank

RWB = right wetted bank - where surface water terminates at the right bank

X Measurement = difference in horizontal distance from LWB

Y Depth of Water = difference in vertical distance from channel bottom to surface of water

Velocity - measured with YSI S56 (with flow cell) Flow Meter

Client: Dore Alvarydo (Dranstram Sampli . 100 destrine) Field Crew: Kell Dorle Chel Associated Sample 10: Cross Section Measurements Y velocity (fr/sec) Transcription: 1	L			Cross !	Section Measurement Field Form
Field Crew: Kell Dojk , Chel Cross Section Measurements X Measurement From Left Bank (ft) Depth of Water (ft) Field Crew: Kell Dojk , Chel Cross Section Measurements X Measurement X Measurement From Left Bank (ft) Depth of Water (ft) Field Crew: Kell Dojk , Chel Cross Section Measurements Notes I Ft		<u> </u>	<u> </u>		
X Measurement From Left Bank (ft) Depth of Water Velocity (ft)sec) Depth of Water (ft) Standard (ft)sec) Depth of Water (ft)se	Field Crew:	per Hlyando	12 nucle	eim sampl	Location Description:
X Measurement From Left Bank (ft) Depth of Water Velocity (ft)sec) Depth of Water (ft) Standard (ft)sec) Depth of Water (ft)se	Kel	15 Doyle, C1	hel	Ü	4)
X Measurement From Left Bank (ft) Depth of Water (ft) Standard (ft) Depth of Water (ft) Standard Deviation 11 Ft 1.00 -0.03 fo.01 12 Ft 1.15 0.02 12 Ft 1.15 0.00 13 ft 1.30 0.01 13 ft 1.40 0.01 14 ft 1.40 0.01 15 ft 1.40 0.01 15 ft 1.40 0.01 15 ft 1.40 0.01 15 ft 1.40 0.01 16 ft 1.70 0.01 16 ft 1.70 0.01 17 ft 1.40 0.01 18 ft 1.40 0.01 19 ft 1.40 0.01 10 ft 1.40	Personal Processing and Association	and the property of the	Transaction of the Pro-	Children College and College	The state of the s
Standard (ft) Depth of Water (ft) Standard (ft) (ft/sec) Devlation		1]		Cross Section Measurements
11 ft 100 -0.03 fo.01 12 ft 1.00 -0.03 fo.01 12 ft 1.15 0.02 - were ge of the velocity reason will be the record (lear 1:33) 13 ft 1.30 0.01 13 ft 1.4 0.01 13 ft 1.4 0.01 135 - Very minimal alone, on colde 15 ft 1.65 0.04 138 - Very minimal alone, on colde 15 ft 1.65 0.04 138 - Very minimal alone, on colde 16 ft 1.7 - 7 0.01 at 201. 14 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1		Donth of Motor	rı ·	Standard	
13 ft 1.30 0.01 1:34 - very minimal alone, on cottle 14 ft 1.4 0.01 1:35 - very minimal alone, on cottle 15 ft 1.65 0.04 1:33 16 ft 1.7 -> 0.01 at 201. 1:42 0.02 at 801.		(ft)	(It/sec)	Devlation	Notes
12Ft 1.15 0.02 - weraye of the valority maximum by will be the whole 1:33 0 13ft 1.30 0.01 1:34 - wry minimal alone, on cottle 14ft 1.4 0.01 1:35 - very minimal alone, on cottle 15ft 1.65 0.04 1:33 - very minimal alone, on cottle 16ft 1.7 - 7 0.01 at 20'1. 1.42 - 0.02 at 80'1.	11tt_	1100	-0,03/0.01		1:25
12Ft 1.15 0.02 -average of the valority measurements will be three -very minimal along on cottle, water more clear 1:330 13ft 1.30 0.01 1:34 - very minimal along on cottle 14ft 1.4 0.01 1:35 - very minimal along on cottle 15ft 1.65 0.04 1:38 -" 16ft 1.7 -> 0.01 at 201. 1.42		 -1w	<u> </u>		too cobbe less alove (verminima) a
12F+ 1.15 0.02 - dery minimal alone on cottle, water more clear 1:33 0 13f+ 1.30 0.01 1:34 - very minimal alone, on cottle 14f+ 1.4 0.01 1:35 - very minimal alone, on cottle 15f+ 1.65 0.04 1:38 16f+ 1.7 - 7 0.01 at 201. 1:42 - 0.02 at 807.					+ Meter cont. Chancel from -0 024 -001
13ft 1.30 0.01 1:34 - Wity minimal alone, on cottle 14ft 1.4 0.01 1:35 - Very minimal alone, on cottle 15ft 1.65 0.04 1:38 - 1:38 - 1:42 16ft 1.7 - 7 0.01 at 201. 1:42 - 0.02 at 801.		A)			-areare of the reduction of the second
13ft 1.30 0.01 1:34 - WIY minimal alone, an cottle 14ft 1.4 0.01 1:35 - Very minimal alone, on cottle 15ft 1.65 0.04 1:38 - 1:42 16ft 1.7 - 7 0.01 at 201. 1:42 - 0.02 at 801.	11367	115	00		street of the variation will be to tre.
13ft 1.30 0.01 1:34 - very minimal alaye, an cossee 15ft 1.65 0.04 1:35 - very minimal alaye, on cossee 15ft 1.7 -> 0.01 at 201. 1:42 - 0.02 at 801.		1	10.00	 	- Very minimal alover, on cothe, Water
14ft 1.4 0.01 1:35 - Very minimal algre, on cosses 15ft 1.65 0.04 1:38 16ft 1.7 -> 0.01 at 201. 1.42 0.02 at 801.		 	 		More clear 1:33 0
14ft 1.4 0.01 1:35 - Very minimal algre, on cosses 15ft 1.65 0.04 1:38 16ft 1.7 -> 0.01 at 201. 1.42 0.02 at 801.				<u></u>	
14ft 1.4 0.01 1:35 - Very minimal algre, on cosses 15ft 1.65 0.04 1:38 16ft 1.7 -> 0.01 at 201. 1.42 0.02 at 801.	13 +	11.30	10.01		1.24
14ft 1.4 0.01 1:35 - Very minimal alage, on cosse 15ft 1.65 0.04 1:38 - 1. 16ft 1.7 - 7 0.01 at 201. 1.42 - 7 - 0.02 at 801.					1.) - very minimul while poncobble
15ft 1.65 0.04 1:38 -" 16ft 1.7 -7 0.01 at 201. 1.42 -0.02 at 801.	13111	1 11		-	
15ft 1.65 0.04 1:38 ··· 16ft 1.7 -7 0.01 at 201. 1:42	1714	11.7	10.01		1:35 - 1807 MINIMA CLASS 00 54/6
16st 1.7 -7 0.01 at 201. 1:42 -0.02 at 801.		,			1 00 2039Q
16st 1.7 -7 0.01 at 201. 1:42 -0.02 at 801.	15+1	165	0.04		1.33
7 -0.02 at 80%		1,00	10.01		(.)0
7 -0.02 at 80%	1001	1			
7 -0.02 at 80%	16++	1. 1		<u>†</u>	0,01 2+ 201
	·		_	1	1-10-
				 	
- Very Man alga on cosse					- Very Minn lalan on cosse
	- 0:				
17ft 1.55 -0.01 at 20%. 144	174+	1.55		1 1	-0 01 - 7 10°V
-0.02 at 80%. Mix of larger stones,					U.Od at 801. Mix of larger stones,
	100	3 (1			Coste stores & sone
18ft 1.4 -0.04 - roturn to 60%. sandy with larger stores 1:46	131+	1,4	-0.04		- returns to 60°C boards it
Lace of Street		[]		I	Lace of St.
Tanga sones 1:46					targer stores 1:46
19Ft 1-2 -003 Sood in 1	Iach	17	M - 7		<u> </u>
194+ 1-2 -0.07 Sandy with layer stones 1:48	17(1)	1-0	<u>-0.0)</u>		Sandy with lave a story 1:48
					1
2017- 0.9-0.05 Smc/V	JODET]	09	-0.05		60
2047 0.9 -0.03 Sondy			0,03		DUN CAY

NOTE: Cross section surveys of the storm water facility segment shall be performed at a minimum of every 50 linear feet (eg. if segment is 1,000 feet, minimum of 21 cross sections shall be surveyed). For smaller wetted channels (less than 10 feet across), depth and distance from bank shall be measured at approximately 1-foot interval. For larger wetted channels (greater than 10 feet acorss), depth and distance from bank shall be measured at approximately 2-foot intervals.

Left and Right Bank are determined when looking downstream

LWB = left wetted bank - where surface water terminates at the left bank

RWB = right wetted bank - where surface water terminates at the right bank

X Measurement = difference in horizontal distance from LWB

Y Depth of Water = difference in vertical distance from channel bottom to surface of water

Velocity - measured with YSI 556 (with flow cell) Flow Meter

				25
Client:			Cross 5	Section Measurement Field Form
Project Name:				Date/Time:
Field Crew:				Location Description:
STATE OF THE PARTY OF THE PARTY OF	ete kinggille a - f	CONTRACTOR	Clark that expression of	Associated Sample ID:
		T		Cross Section Measurements
X Measurement From Left Bank (ft)	Pepth of Water (ft)	Velocity (ft/sec)	Standard Deviation	Notes
2144	0.85	-0.06		-large rocke 2ft upstream of
				velocity measuring rod sand, bottom
7777	.55	-0.05		new south slope
1770		- U.U.		
234+	(02			~approxi2 = may not be deep
				Mouch for relique singe
				no readin
				at a second and a second a second and a second a second and a second a second and a
OTE: Cross section sur	rveys of the storm	water facility seg	ment shall be r	performed at a minimum of every 50 linear feet (eg. If segment is 1,000 feet, minimum of 21 econo

sections shall be surveyed). For smaller wetted channels (less than 10 feet across), depth and distance from bank shall be measured at approximately 1-foot interval. For larger wetted channels (greater than 10 feet acorss), depth and distance from bank shall be measured at approximately 2-foot intervals.

Left and Right Bank are determined when looking downstream

LWB = left wetted bank - where surface water terminates at the left bank

RWB = right wetted bank - where surface water terminates at the right bank

X Measurement = difference in horizontal distance from LWB

Y Depth of Water = difference in vertical distance from channel bottom to surface of water

Velocity - measured with YSI 556 (with flow cell) Flow Meter

Total Flow Calculations

Location ID:	Upper Alvarado	Downstream
Date:	12/9/2014	
Time:	~12:45-2:00 PN	1

Average Channel Velocity(ft/s)=	0.021
Total Q (cfs)=	0.11

X Measurement from Left Bank Looking Downstream (ft)	Water Depth (ft)	Velocity (ft/sec)	Effective Segment Area	Q (cfs)	Time Sample was Taken	Notes	
						Very shallow water, very little flow; possible eddy, within 1 foot of cat tail to	
1	0.2	-0.12	0	0.00	12:48:00 PM	the south, heavy algae, cobblestone	
2	0.32	-0.06	0	0.00	12:54:00 PM	same as above, still on cobble	
3	0.3	-0.08	0	0.00	12:57:00 PM	same as above, still on cobble	
4	0.4	-0.1	0	0.00	1:02:00 AM	same as above, still on cobble with algae approx 2 ft from caltails	
5	0.5	-0.06	0	0.00	1:06:00 AM	Sme as measurement 1 foot from north bank (1st measurement). Still on cobble	
6	0.7	-0.07	0	0.00	1:12:00 AM	On cobble, algae, possible eddy	
7	0.85	-0.07	0	0.00	1:15:00 AM	On cobble, algae, possible eddy	
8	0.85	-0.06	0	0.00	1:19:00 AM	On cobble, algae, possible eddy	
9	1.25	-0.04	0	0.00	1:24:00 AM	On cobble, algae, possible eddy	
10	1	-0.02	0	0.00	1:25:00 AM On cobble, algae, possible eddy		
						on cobble, algae, possible eddy; meter continuously changed from03 to -	
11	1	-0.02	0	0.00	1:29:00 AM	.01, average of the velocity measurements was used.	
12	1.15	0.02	1.075	0.02	1:33:00 AM	Very minimal algae, on cobble, water is more clear	
13	1.3	0.01	1.225	0.01	1:34:00 AM	Very minimal algae, on cobble	
14	1.4	0.01	1.35	0.01	1:35:00 AM	Very minimal algae, on cobble	
15	1.65	0.04	1.525	0.06	1:38:00 AM	Very minimal algae, on cobble	
16	1.7	0	0	0.00	1:42:00 AM	.01 at 20%;02 at 80%; very minimal algae, on cobble	
						01 at 20%;02 at 80%; very minimal algae, on cobble; mix of larger stones,	
17	1.55	-0.02	0	0.00	1:44:00 AM	cobble stones and sand	
18	1.4	-0.04	0	0.00	1:46:00 AM	returning to 60%; Sandy with larger stones	
19	1.2	-0.03	0	0.00	1:48:00 AM	sandy with larger stones	
20	0.9	-0.05	0	0.00		sandy	
21	0.85	-0.06	0	0.00		large rock ~2ft upstream of velocity measuring rod, sandy bottom, near south slope	
22	0.55	-0.05	0	0.00			
23	<.2	-	0	0.00		approximately <.2 ft, may not be deep enough for reliable sample, no reading	

Total Flow Calculations

Location ID:	Upper Alvarado	Upstream
Date:	12/9/2014	
Time:	2:20-3:50 PM	

Average Channel Velocity(ft/s)=	0.122
Total Q (cfs)=	0.47

X Measurement from Left Bank Looking Downstream (ft)	Water Depth (ft)	Velocity (ft/sec)	Effective Segment Area	Q (cfs)	Time Sample was taken	Notes	
2	0.19	-0.07	0	0.00	2:25:00 PM	Cobblestone	
4	0.21	0.19	0.4	0.08	2:27:00 PM	Sand and cobble stone, no vegetation	
5	0.25	0.14	0.23	0.03	2:30:00 PM	Sand and cobble stone, no vegetation	
6	0.22	0.08	0.235	0.02	2:31:00 PM	Sandy with Cobblestones, long flowing alge type vegetation	
7	0.22	0.21	0.22	0.05	2:32:00 PM	Sandy with Cobblestones, long flowing alge type vegetation	
8	0.25	0.26	0.235	0.06	2:34:00 PM	Sandy with Cobblestones, long flowing alge type vegetation	
9	0.25	0.21	0.25	0.05	2:36:00 PM	Sandy with Cobblestones, long flowing alge type vegetation	
10	0.2	0.12	0.225	0.03	2:39:00 PM		
11	0.21	0.11	0.205	0.02	2:40:00 PM		
12	0.2	0.06	0.205	0.01	2:41:00 PM		
13	0.2	0.07	0.2	0.01	2:41:00 PM	Small cobble, long thin alge, some sand	
14	0.35	0.11	0.275	0.03	2:43:00 PM	Small cobble, long thin alge, some sand	
15	0.39	0.08	0.37	0.03	2:44:00 PM	Concrete bottom	
16	0.4	0.06	0.395	0.02	2:45:00 PM	Concrete bottom	
17	0.4	0.06	0.4	0.02		Concrete, approaches south edge of concrete bank	
18	0.1	0	0	0.00			

WETI.	AND	ASSESSMENT	SCORING FIELD NOTES	S (EXISTING CONDITION)
*****	AIV.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		, , 1,5,28,16,3, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

Upper ALVARADO

WATER QUALITY VALUE

12/9/2014

*7	WATER QUALITY VALUE	•
	tation – Vegetative cover of water surface, vertical density, & species divers	ity
0	No visible vegetation in wet areas	
-	Young growth of new inhabitants	MAIN
1	Woody and terrestrial species present	NNY
	 Minimal wetland species (submerged and/or emergent macrophytes) 	NNV
AND THE STATE OF T	Low surface area coverage and density	
	Mature population near carrying capacity	SWS
2	• >50% coverage of wet areas	
	Both submerged and emergent wetland species	
	Young life-stage and population	
3	• >75% coverage of wet areas	FWN
	Both submerged and emergent wetland species	
	Wetland species that reproduce through tubers and/or rhizomes	1
	(e.g., Spartina, Typha, Scirpus, Phragmites)	
	Hydrosoil - Sample surficial sediments for ratio of sand to fines	
	(Measure conductivity, redox, and/or pH)	
0	Concrete or other impermeable substrate	
	 No sand and/or fines, organic carbon, detritus, and/or nutrient source 	
n a q	Sand and cobble substrate	
1	 No visible deposition of fines, organic carbon, and/or detritus 	8
	nu/6 or \0	
	• Redox: +100 mV 148 mV	J 115
	• Less than 50% sand	
(2)	• Some visible deposition of fines, organic carbon, and/or detritus	0
	• Neutral pH (6.0 to 8.5)	1
	• Redox: -100 to +100 mV	2
	• Less than 25% sand	
3	 Visible deposition of fines and other solids 	
	• Neutral pH (6.0 to 8.5)	
	• Redox: < -100 mV	
	Hydroperiod – Observe water flow, hydraulic retention time, and depth	
0	 (Measure conductivity, redox, and/or pH) No visible surface water 	F
U		
1	• Very deep (> 2-ft) or very shallow (< 0.5-ft)	
1	• Fast flowing and channeling, no deposition of fines	
	• (Redox: > +100 mV)	Tr.
$\binom{2}{2}$	• Shallow (0.5 to 1-ft) 0.6 / (0.2 - 1.7 /)	
2	• Moderate and variable flow depending on volume inputs 207 fulse	1
	Observable HRT, some deposition of fines	
	• Redox: -100 to \(\psi 100 \text{ mV}\)	1
	· Moderate water depth (1 to 2-ft) pools 1.7/x deer (downs been	
3	• Slow flow with a significant HRT (> Lk), deposition of fines	
	• Redox: <-100 mV 4.36 Wr	
otal score fr	om all three categories $0-2 = poor$, $3-4 = fair$, $5-7 = good$, $8-9 = best$	1/ >
		1 / <

Churstrem 11.68 mg/L DD 1.75 m/s recum 135 ORP 6.71 pt

WETLAND LAND RECOVERY ASSESSMENT SCORING SHEET (MAINTAINED STORM WATER FACILITY)

UPPER ALVARADO

RECOVERY VALUE & TIMELINE

Assumption: Removal of >75% of solids will result in:

- A change in vegetation density and population diversity?
- Decrease in available organic carbon, sand, nutrients, and detritus?
- Decrease in COC concentrations?
- A change in water depth, flow, HRT, deposition/settling rates?
- A change in substrate for vegetative repopulation?

Vegetation -	- Timeline to mature life-stage with removal of >75% of sediment and	standing
	crop	
0	Will not recover in less than 10 years	2117
	Primarily trees and woody species	DW
1	• Recovery: > 5 years	
	Shift to a less desirable species diversity than current species	
	Mature habitat with mix of terrestrial and wetland species	SWS
2	Recovery: 1-5 years	NNV
	Return to current standing crop and diversity	, , , , ,
	 Primarily emergent and submerged wetland species 	FWM
3	Recovery: approximately 1 year	1 .4, (
	Return to species density and diversity	
Hydroso	oil – What is the sedimentation rate and timeline to return to current o	lepth?
0	High flow area, narrow and/or shallow channel	
	No deposition of organic carbon, nutrients and/or detritus	
(20)	· Flow is significant (during sterms) or minimal (day)	
(1)	Primarily sand deposition in the short-term	1
	• Fines and/or organic carbon will deposit over a > 5 year period	1
2	• Heterogenous mix of sand, organic carbon, and fines in < 1 year	-
3	Heterogenous mix of sand, organic carbon, and fines in 1-5 years	
Hydroperio	d – What is timeline for reaching optimal depth of 1 to 2-ft of overlying	g water?
0	Flow remains fast	
	No evidence of deposition or re-establishment of vegetation	
	No HRT	
	Some decrease of flow resulting in some deposition of sand and	
1	other coarse grain materials	
	Some revegetation	
	No HRT	
	Wide area of the channel	
2	Some deposition of fines and evidence of revegetation	
	Overlying water depth is less than 1-ft	
	HRT < 1-h	,
1	Wide area of the channel	
(3)	Deposition of fines and organics	2
3	 Overlying water depth is greater than 1-ft (ροο 15) 	
	Overlying water depth is greater than 1-11 () HRT > 1-h	
7-4-1	from all three categories 0-2 = poor, 3-4 = fair, 5-7 = good, 8-9 = best	A .
OTOL COOPO	rom an incee categories u./ = noor 3.4 = tair 3./ = good X.y = hest	

averyl 243

TABLE 6 – SEDIMENT POLLUTANT LOAD	ING MODEL (BENEFIT	LOAD REMOVAL
IN SEDIMENT)		

Table 6 - Sediment Pollutant Loading Model

SAMPLE NAME	MATRIX	SAMPLE DATE	ANALYTE	SURROGATE	RESULT*	REPORTING LIMIT	UNITS	LOAD REMOVAL (mg)	LOAD REMOVAL (lbs)
1	Soil	12/22/2014	% Solid		50.1		%	NA	NA
1	Soil	12/22/2014	Manganese		561	0.5	mg/kg	120590583	265
			Total Kjeldahl						
1	Soil	12/22/2014	Nitrogen		1700	100	mg/kg	365426009	804
1	Soil	12/22/2014	Nitrate as N		ND	1	mg/kg	ND	ND
1	Soil	12/22/2014	Nitrite as N		ND	0.5	mg/kg	ND	ND
1	Soil	12/22/2014	Total Nitrogen		1700	0.5	mg/kg	365426009	804
			Phosphorus, Total						
1	Soil	12/22/2014	as P		280	50	mg/kg	60187813.2	132
1	Soil	12/22/2014	Arsenic		7.33	0.1	mg/kg	1575630.97	3
1	Soil	12/22/2014	Cadmium		0.174	0.1	mg/kg	37402.4268	0
1	Soil	12/22/2014	Chromium		4.48	0.1	mg/kg	963005.011	2
1	Soil	12/22/2014	Copper		15.3	0.1	mg/kg	3288834.08	7
1	Soil	12/22/2014	Nickel		4	0.1	mg/kg	859825.903	2
1	Soil	12/22/2014	Lead		10.6	0.1	mg/kg	2278538.64	5
1	Soil	12/22/2014	Antimony		ND	0.5	mg/kg	ND	ND
1	Soil	12/22/2014	Selenium		0.294	0.1	mg/kg	63197.2039	0
1	Soil	12/22/2014	Zinc		112	1	mg/kg	24075125.3	53
1	Soil	12/22/2014	Malathion	Tributylphosphate	ND	0.5	ug/kg	ND	ND
1	Soil	12/22/2014	Chlorpyrifos	Tributylphosphate	ND	0.5	ug/kg	ND	ND
1	Soil	12/22/2014	Diazinon	Tributylphosphate	ND	0.5	ug/kg	ND	ND

^{*}Total Nitrogen was calculated following the testing laboratory's specified method of adding the concentrations of Total Kjeldahl Nitrogen, Nitrate as N, and Nitrite as N.

Total Removal Volume Estimated at IMP stage

Total Removal Volume	517	yd3
Number Sample Collected	1	unitless
Removal Fraction	1	
Removal Volume	517.0	ft ³ /yd
yd3 to ft3	27	
Removal Volume	13,959	ft ³
$\rho_{solid} =$	165.4	lbs/ft3
ρ_{water} =	62.4	lbs/ft3
Fraction Solid=	0.501	unitless
$\rho_{dry insitu} =$	45.43881614	lbs/ft3
·		
% _{Finer} =	0.446	unitless
CF _{cobble} =	0.74557589	unitless
Sediment Mass	472,904	lbs/mg
lbs to kg	0.4545455	kg/lbs
mg to lbs	0.0000022	lbs/mg

Support Material for Table 6

Equations:

$$\rho_{\text{dry insitu}} = \frac{(\%_{\text{solid}})^* \rho_{\text{water}} * \rho_{\text{solid}}}{\rho_{\text{solid}} - (\%_{\text{Solid}})^* \rho_{\text{solid}} + (\%_{\text{solid}})^* \rho_{\text{water}}}$$

 $CF_{cobble} = \frac{\frac{\% \, Finer}{\rho_{\, dry \, insitu}}}{\frac{\% \, Finer}{\rho_{\, dry \, insitu}}} + \frac{(1-\% \, Finer)}{\rho_{\, solid}}$

Sediment Mass = Removal Volume * $\rho_{dry insitu}$ * CF cobble

Load Removal = Sediment Mass * Measured Concentration

Where: ρ

 $\rho_{solid} =$

165.4

lbs/ft³

 $_{\text{water}}$ = 62.4 lbs/ft³

and

_{Finer}= fr

fraction passing through 1.5 inch sieve based on grain size analysis

Reach

Sample ID	Reach	Туре	% Solid	ρ _{dry insitu} (lbs/ft ³)	CF cobble	Removal Volume ¹ (cyd)	Sediment Mass (lbs)
1	2	Earthen	50.1	45.4	0.75	517.00	634,280
-	-	•	-	•	-	-	-
-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-

The approximate sediment removal should come from the IMP process, place notes for backup related to sediment removal numbers here.

Notes:

1) Removal value is specified in maintenance plan and typically determined during IMP process

TABLE 7 – COMPARISON OF POLLUTANT CONCENTRATION TO HUMAN HEALTH SCREENING LEVEL

			Human Health											
				- Hullian Health										
Analyte	2	-	-	-	Reach -	-	-	-	-	CHHSL/RSL (mg/kg)				
				1	Sample ID	1	1	1						
	1		_	-	-	_	_	-	-	Residential	Commercial/Industrial			
General Physical	,		•											
% Solids	50.1	-	_	-	-	-	_	-	-	NA	NA			
Inorganic Non-Metals			•	•										
Total Kjeldahl Nitrogen	1700.0	-	-	-	-	-	-	-	-	NA	NA			
Nitrate as N	ND	-	-	-	-	-	-	-	-	130,000	1,900,000			
Nitrite as N	ND	-	-	-	-	-	-	-	-	7,800	120,000			
Total Nitrogen	1700.0	-	-	-	-	-	-	-	-	NA	NA			
Phosphorus, Total as P	280.0	-	-	-	-	-	-	-	-	1.6	23			
Metals	'		•	ı				1						
Manganese	561.0	-	-	-	-	-	-	-	-	1,800	26,000			
Arsenic	7.3	-	-	-	-	-	-	-	-	0.07	0.24			
Cadmium	0.2	-	-	-	-	-	-	-	-	1.7	7.5			
Chromium *	4.5	_	_	_	_	-	_	_		100,000	100,000			
Copper	15.3	-	-	-	-	-	-	-	-	3,000	38,000			
Nickel	4.0	-	-	-	-	-	-	-	-	1,600	16,000			
Lead	10.6	-	-	-	-	-	-	-		80	320			
Antimony	ND	-	-	-	-	-	-	-	-	30	380			
Selenium	0.3	_	-	-			-	-		380	4,800			
Zinc	112.0	-	-	-	-	-	-	-	-	23,000	100,000			
Organics	•													
Malathion	ND	-	-	-	-	-	-	-	-	1,200	16,000			
Chlorpyrifos	ND	-	-	-	-	-	-	-	-	62	820			
Diazinon	ND	_	_	_	_	_	_	_	-	43	580			

Notes:
CHHSL - California Human Health Screening Level, Updated as of 2010

RSL- Regional Screening Level, USEPA Region 9
* Human Health Standards Listed for Chromium (III)

mg/kg - milligrams per kilogram NA- No Human Level available

Table 8 -Water Quality Impacts Model - Upstream (Sheet 1 of 2)

SAMPLE NAME	MATRIX	SAMPLE DATE	ANALYTE	SURROGATE	RESULT	REPORTING LIMIT	UNITS	E _{NTS}	Corr E _{NTS}	NTS Removal (mg)	NTS Removal (lbs)	NTS Removal (lbs) existing per year	NTS Removal (lbs) existing per maintenance period	Corr E _{NTS,}	Corr E _{NTS,}	Corr E _{NTS} , nyear = 3	NTS Removal (lbs) maintaned nyear = 1	NTS Removal (lbs) maintaned nyear = 2	NTS Removal (lbs) maintaned nyear = 3	NTS Removal (lbs) maintaned TOTAL
Upper Alvarado U/S	Stormwater	12/9/2014	Total Dissolved Solids		1780	20	mg/l	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Upper Alvarado U/S	Stormwater	12/9/2014	Total Suspended Solids		-	-	mg/l	0.78	0.5694	-	-	-	-	0.244	0.411	0.577	-	-	-	-
Upper Alvarado U/S	Stormwater	12/9/2014	Arsenic		ND	0.01	mg/l	0.63	0.4599	-	-	-	-	0.197	0.332	0.466	-	-	-	-
Upper Alvarado U/S	Stormwater	12/9/2014	Cadmium		ND	0.01	mg/l	0.63	0.4599	-	-	-	-	0.197	0.332	0.466	-	-	-	-
Upper Alvarado U/S	Stormwater	12/9/2014	Chromium		ND	0.05	mg/l	0.63	0.4599	-	-	-	-	0.197	0.332	0.466	-	-	-	-
Upper Alvarado U/S	Stormwater	12/9/2014	Copper		ND	0.05	mg/l	0.4	0.292	-	-	-	-	0.125	0.211	0.296	-	-	-	-
Upper Alvarado U/S	Stormwater	12/9/2014	Manganese		0.092	0.03	mg/l	0.63	0.4599	2794316.279	6.147495814	6.147495814	18.44248744	0.197	0.332	0.466	2.6	4.4	6.2	13.3
Upper Alvarado U/S	Stormwater	12/9/2014	Nickel		ND	0.05	mg/l	0.63	0.4599	-	-	-	-	0.197	0.332	0.466	-	-	-	-
Upper Alvarado U/S	Stormwater	12/9/2014	Lead		ND	0.05	mg/l	0.63	0.4599	-	-	-	-	0.197	0.332	0.466	-	-	-	-
Upper Alvarado U/S	Stormwater	12/9/2014	Antimony		ND	0.1	mg/l	0.63	0.4599	-	-	-	-	0.197	0.332	0.466	-	-	-	-
Upper Alvarado U/S	Stormwater		Selenium		ND	0.01	mg/l	0.63	0.4599	-	-	-	-	0.197	0.332	0.466	-	-	-	-
Upper Alvarado U/S	Stormwater	12/9/2014	Zinc		ND	0.05	mg/l	0.54	0.3942	-	-	-	-	0.169	0.284	0.400	-	-	-	-
Upper Alvarado U/S	Stormwater	12/9/2014	Total Kjeldahl Nitrogen		0.6	0.5	mg/l	0.15	0.1095	4339000.434	9.545800954	9.545800954	28.63740286	0.047	0.079	0.111	4.1	6.9	9.7	20.7
Upper Alvarado U/S	Stormwater	12/9/2014	Nitrite as N		ND	0.05	mg/l	0.67	0.4891	-	-	-	-	0.210	0.353	0.496	-	-	-	-
Upper Alvarado U/S	Stormwater	12/9/2014	Nitrate as N		1.16	0.25	mg/l	0.67	0.4891	37469679.3	82.43329446		247.2998834	0.210	0.353	0.496	35.4	59.5	83.6	178.4
Upper Alvarado U/S	Stormwater	12/9/2014	Total Nitrogen		1.8	0.5	mg/l	0.4	0.292	34712003.47	76.36640763	76.36640763	229.0992229	0.125	0.211	0.296	32.8	55.1	77.4	165.3
Upper Alvarado U/S	Stormwater	12/9/2014	Dissolved Oxygen		10.4	0.1	mg/l		0	0	0	0	0	0.000	0.000	0.000	0.0	0.0	0.0	0.0
Upper Alvarado U/S	Stormwater	12/9/2014	Phosphorus, Total as P		ND	0.05	mg/l	0.51	0.3723	-	-	-	-	0.160	0.269	0.377	-	-	-	-
Upper Alvarado U/S	Stormwater	12/9/2014	Malathion	Triphenyl phosphate, Tribuytlphosphate	ND	0.05	ug/l	0.5	0.365	-	-	-	-	0.157	0.263	0.370	-	-	-	-
Upper Alvarado U/S	Stormwater		Chlorpyrifos	Triphenyl phosphate, Tribuytlphosphate	ND	0.05	ug/l	0.5	0.365	-	-	-	-	0.157	0.263	0.370	-	-	-	-
Upper Alvarado U/S	Stormwater	12/9/2014	Diazinon	Triphenyl phosphate, Tribuytlphosphate	ND	0.05	ug/l	0.5	0.365	-	-	-	-	0.157	0.263	0.370	-	-	-	-
Upper Alvarado U/S	Stormwater	12/9/2014	Total Hardness		732	100	mg CaCO ₃ /L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

		<u>Units</u>
Dry Weather Instantaneous Flow (upstream)	0.47	ft3/sec
Daily Flow	40625.28	ft3/day
Days of dry weather flow per year	320	days
Annual Treatment Flow	1.3E+07	ft3/year
Total length	1100	ft
Average channel velocity	0.071603281	ft/sec
HRT	4.267340175	hr
Retention Time Correction Factor	0.177805841	
Existing Vegetation Score	2.3	
Existing Hydrosoil Score	2.0	
Existing Hydroperiod Score	2.0	
Overall Existing Score	6.3	
Existing Efficiency Coefficient	0.73	
L to ft3 conversion	0.035	ft3/L
Overall Recovery Score	6.4	
Maintenance Period	3	years

nyear	Yearly Rec Score	Yearly Eff Coef
1	2.1	0.313333333
2	4.3	0.526666667
3	6.4	0.74

Table 8 -Water Quality Impacts Model - Downstream (Sheet 2 of 2)

This downstream Water Sample is optional and is not utilized in calculations. It is used primarily to aid in verifying the scoring sustem and calculation of flow, volume and retention time

SAMPLE NAME	MATRIX	SAMPLE DATE	ANALYTE	SURROGATE	RESULT	REPORTING LIMIT	UNITS	E _{NTS}	Corr E _{NTS}	NTS Removal (mg)	NTS Removal (lbs)	NTS Removal (lbs) existing per year	NTS Removal (lbs) existing per maintenance period	Corr E _{NTS,}	Corr E _{NTS} ,	Corr E _{NTS} ,	NTS Removal (lbs) maintaned nyear = 1	NTS Removal (lbs) maintaned nyear = 2	NTS Removal (lbs) maintaned nyear = 3	NTS Removal (Ibs) maintaned TOTAL
Upper Alvarado D/S	Water	12/9/2014	Total Dissolved Solids		1780	20	mg/l	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Upper Alvarado D/S	Water	12/9/2014	Total Suspended Solids		-	-	mg/l	0.78	0.5694	-	-	-	-	0.244	0.411	0.577	1	•	-	-
Upper Alvarado D/S	Water	12/9/2014	Arsenic		ND	0.01	mg/l	0.63	0.4599	-	-	-	-	0.197	0.332	0.466	1	1	-	-
Upper Alvarado D/S	Water	12/9/2014	Cadmium		ND	0.01	mg/l	0.63	0.4599	-	-	-	-	0.197	0.332	0.466	-	-	-	-
Upper Alvarado D/S	Water	12/9/2014	Chromium		ND	0.05	mg/l	0.63	0.4599	-	-	-	-	0.197	0.332	0.466	-	-	-	-
Upper Alvarado D/S	Water	12/9/2014	Copper		ND	0.05	mg/l	0.4	0.292	-	-	-	-	0.125	0.211	0.296	-	-	-	-
Upper Alvarado D/S	Water	12/9/2014	Manganese		0.089	0.03	mg/l	0.63	0.4599	2703197.27	5.947033994	5.947033994	17.84110198	0.197	0.332	0.466	2.6	4.3	6.0	12.9
Upper Alvarado D/S	Water	12/9/2014	Nickel		ND	0.05	mg/l	0.63	0.4599	-	-	-	-	0.197	0.332	0.466	-	-	-	-
Upper Alvarado D/S	Water	12/9/2014	Lead		ND	0.05	mg/l	0.63	0.4599	-	-	-	-	0.197	0.332	0.466	-	-	-	-
Upper Alvarado D/S	Water	12/9/2014	Antimony		ND	0.1	mg/l	0.63	0.4599	-	-	-	-	0.197	0.332	0.466	-	-	-	-
Upper Alvarado D/S	Water	12/9/2014	Selenium		ND	0.01	mg/l	0.63	0.4599	-	-	-	-	0.197	0.332	0.466	-	-	-	-
Upper Alvarado D/S	Water	12/9/2014	Zinc		0.07	0.05	mg/l	0.54	0.3942	1822380.182	4.009236401	4.009236401	12.0277092	0.169	0.284	0.400	1.7	2.9	4.1	8.7
Upper Alvarado D/S	Water	12/9/2014	Total Kjeldahl Nitrogen		2.2	0.5	mg/l	0.15	0.1095	15909668.26	35.00127016	35.00127016	105.0038105	0.047	0.079	0.111	15.0	25.3	35.5	75.8
Upper Alvarado D/S	Water	12/9/2014	Nitrite as N		ND	0.05	mg/l	0.67	0.4891	-	-	-	-	0.210	0.353	0.496	-	-	-	-
Upper Alvarado D/S	Water	12/9/2014	Nitrate as N		1.26	0.25	mg/l	0.67	0.4891	40699824.07	89.53961295	89.53961295	268.6188388	0.210	0.353	0.496	38.4	64.6	90.8	193.8
Upper Alvarado D/S	Water	12/9/2014	Total Nitrogen		3.5	0.5	mg/l	0.4	0.292	67495562.3	148.4902371	148.4902371	445.4707112	0.125	0.211	0.296	63.7	107.1	150.5	321.4
Upper Alvarado D/S	Water	12/9/2014	Phosphorus, Total as P		0.21	0.05	mg/l	0.51	0.3723	5163410.516	11.35950314	11.35950314	34.07850941	0.160	0.269	0.377	4.9	8.2	11.5	24.6
Upper Alvarado D/S	Water	12/9/2014	Malathion		ND	0.05	ug/l	0.5	0.365	-	-	-	-	0.157	0.263	0.370	-	-	-	-
Upper Alvarado D/S	Water	12/9/2014	Chlorpyrifos		ND	0.05	ug/l	0.5	0.365	-	-	-	-	0.157	0.263	0.370	-	1	-	-
Upper Alvarado D/S	Water	12/9/2014	Diazinon		ND	0.05	ug/l	0.5	0.365	-	-	-	-	0.157	0.263	0.370	-	-	-	-
Upper Alvarado D/S	Water	12/9/2014	Total Hardness		711	100	mg CaCO ₃ /L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

		<u>Units</u>
Dry Weather		
Instantaneous Flow	0.47	ft3/sec
(upstream)		
Daily Flow	40625.28	ft3/day
Days of dry weather flow per year	320	days
Annual Treatment Flow	1.3E+07	ft3/year
Annual Treatment Flow	1.52+01	113/year
Total length	1100	ft
Average upstream		
velocity	0.071603281	ft/sec
HRT	4.267340175	seconds
HRT- (based on	0.177805841	hr
velocity and length)		
Existing Vegetation		
Score	2.3	
Existing Hydrosoil	2.2	
Score	2.0	
Existing Hydroperiod	20	
Score	2.0	
Overall Existing Score	6.3	
Existing Efficiency	0.73	
Coefficient	2.005	f (0 /l
L to ft3 conversion If Retention Time < 24	0.035	ft3/L
hrs: RT correction	0.177805841	
	0.177805841	
factor If Retention Time > 24		
hrs: RT correction	1	
factor		
Overall Recovery Score	6.4	
Maintenance Period	3	years

nyear	Yearly Rec Score	Yearly Eff Coef
1	2.1	0.313333333
2	4.3	0.526666667
3	6.4	0.74

TABLE 9 – COMPARISON OF POLLUTANT CONCENTRATIONS TO WATER QUALITY BENCHMARKS

Table 9 - Comparison of Pollutant Concentrations to Water Quality Benchmarks

12/9/2014 12/9/2014 12/9/2014 12/9/2014 12/9/2014	Upstream SAMPLE ID- UPSTREAM 1780 - 732 ND 0.6	Downstream SAMPLE ID- DOWNSTREAM 1780 - 100 0.21	Water Quality Benchmark 1500 50	Basin Plan Table 3-2 NA	Units mg/L
12/9/2014 12/9/2014 12/9/2014 12/9/2014 12/9/2014	1780 - 732 ND	1780 - 100	1500 50	Basin Plan Table 3-2	mg/L
12/9/2014 12/9/2014 12/9/2014 12/9/2014	1780 - 732 ND	1780 - 100	50		
12/9/2014 12/9/2014 12/9/2014 12/9/2014	- 732 ND	- 100	50		
12/9/2014 12/9/2014 12/9/2014 12/9/2014	- 732 ND	- 100	50		
12/9/2014 12/9/2014 12/9/2014	ND	100		NA	
12/9/2014 12/9/2014	ND		NIA		mg/L
12/9/2014		0.21	NA	NA	mg/L
	0.6	0.21	0.1	Basin Plan page 3-8	mg/L
	0.6	2.2	NA	NA	mg/L
12/9/2014	ND	ND	1	Basin Plan page 3-25	mg/L
12/9/2014 1.16 1.26 and Nitrate as N cannot be >10) Basin Plan		Basin Plan page 3-25	mg/L		
12/9/2014	1.8	3.5	1	Basin Plan page 3-8	mg/L
12/9/2014	ND	ND	0.05	Basin Plan page 3-25 ①	mg/L
12/9/2014	ND	ND	0.006	Basin Plan page 3-25 ①	mg/L
12/9/2014	ND	ND	0.005	Basin Plan page 3-25 ①	mg/L
12/9/2014	ND	ND	0.05	Basin Plan page 3-25 ①	mg/L
12/9/2014	ND	ND	49.6/27.3	40 CFR 131.38	mg/L
12/9/2014	ND	ND	230.9/9.0	40 CFR 131.38	mg/L
12/9/2014	0.092	0.089	1	Basin Plan table 3-2	mg/L
12/9/2014	ND	ND	0.1	Basin Plan page 3-25 ①	mg/L
12/9/2014	ND	ND	5	40 CFR 131.38	mg/L
12/9/2014	ND	0.07	379.3/382.4	40 CFR 131.38	mg/L
12/9/2014	ND	ND	0.43/0.1	40 CFR 131.38	mg/L
12/9/2014	ND	ND	0.02/0.014	40 CFR 131.38	mg/L
12/9/2014	ND	ND	0.08/0.05	40 CFR 131.38	mg/L
12/9/2014	1600	1600	151	Basin Plan Page 3-7	CFU/100 mL
12/9/2014	130	500	200	Basin Plan Page 3-6	MPN/100 mL
12/9/2014	1600	1600	NA	NA	MPN/100 mL
	12/9/2014 12/9/2014 12/9/2014 12/9/2014 12/9/2014 12/9/2014 12/9/2014 12/9/2014 12/9/2014 12/9/2014 12/9/2014 12/9/2014 12/9/2014 12/9/2014 12/9/2014	12/9/2014 1.8 12/9/2014 1.8 12/9/2014 ND 12/9/2014 ND	12/9/2014 1.16 1.26 12/9/2014 1.8 3.5 12/9/2014 ND ND 12/9/2014 1600 1600 12/9/2014 130 500	12/9/2014 1.16 1.26 and Nitrate as N cannot be >10) 12/9/2014 1.8 3.5 1 12/9/2014 ND ND 0.05 12/9/2014 ND ND 0.006 12/9/2014 ND ND 0.005 12/9/2014 ND ND 0.005 12/9/2014 ND ND 0.05 12/9/2014 ND ND 0.05 12/9/2014 ND ND 0.05 12/9/2014 ND ND 230.9/9.0 12/9/2014 ND ND ND 230.9/9.0 12/9/2014 ND ND O.1 12/9/2014 ND ND D 0.1 12/9/2014 ND ND S D S D D D S D D D D D D D D D D	12/9/2014 1.16 1.26 and Nitrate as N cannot be >10) 12/9/2014 1.8 3.5 1 Basin Plan page 3-25 12/9/2014 ND ND 0.05 Basin Plan page 3-25 12/9/2014 ND ND 0.006 Basin Plan page 3-25 12/9/2014 ND ND 0.005 Basin Plan page 3-25 12/9/2014 ND ND 0.005 Basin Plan page 3-25 12/9/2014 ND ND 0.05 Basin Plan page 3-25 12/9/2014 ND ND 0.05 Basin Plan page 3-25 12/9/2014 ND ND 49.6/27.3 40 CFR 131.38 12/9/2014 ND ND 230.9/9.0 40 CFR 131.38 12/9/2014 0.092 0.089 1 Basin Plan table 3-2 12/9/2014 ND ND 0.1 Basin Plan page 3-25 12/9/2014 ND ND 0.1 Basin Plan page 3-25 12/9/2014 ND ND 5 40 CFR 131.38 12/9/2014 ND ND 5 40 CFR 131.38 12/9/2014 ND ND 0.07 379.3/382.4 40 CFR 131.38 12/9/2014 ND ND 0.07 379.3/382.4 40 CFR 131.38 12/9/2014 ND ND 0.02/0.014 40 CFR 131.38 12/9/2014 ND ND 0.02/0.014 40 CFR 131.38 12/9/2014 ND ND 0.08/0.05 40 CFR 131.38 12/9/2014 ND ND 0.08/0.05 40 CFR 131.38

mg/L- milligrams per liter

mL - milliliters

e - estimated value

NA - No benchmark set

0.43/0.1 - CMC /CCC (Acute/Chronic)

MPN - Most Probable Number

CFU - Colony Forming Units

CA-MCL - California Maximum Contaminant Levels

 $\textbf{CMC-} \ \textbf{Criteria} \ \textbf{Maximum Concentration}$

CCC - Continuous Criteria Concentration

① - Per California Code of Regulations, Title 22, Table 64431-A of section 64431

Basin Plan - Water Quality Control Plan for the San Diego Basin (9), September 8, 1994 (with amendments effective on or before April 4, 2011)

40 CFR 131.38 - Establishment of numeric criteria for priority toxic pollutants for the State of California

Calculated - Per USEPA Federal Register Doc. 40 CFR Part 131, May 18, 2000

^{*} Chromium benchmarks based on total chromium (Basin Plan) or chromium (III) (40 CFR 131.38)

Table 10 - Comparison of Impacts to Benefits

	Pollutant Removal Benefit					Pollutant Removal Impact	
Analyte	Estimated Sediment Pollutant Load Removal (lbs) ¹	Estimated Annual Existing Pollutant Load Removal Capacity (lbs)	Maintenance Period (yrs)	Estimated Existing Pollutant Load Removal Capacity per Maintenance Period (Existing Pollutant Removal)(lbs) ²	Estimated Maintained Pollutant Load Removal Capacity per Maintenance Period (Maintained Pollutant Removal) (lbs) ³	Maintained - Existing Pollutant Load Removal capacities (lbs) ⁴	Pollutant Removal Benefit - Pollutant Removal Impact (lbs)
Arsenic	3	-	3	-	-	-	3
Cadmium	0	-	3	1	-	1	0
Chromium	2	-	3	•	-	-	2
Copper	7	-	3	-	-	-	7
Manganese	265	6.1	3	18.4	13.3	-5	260
Nickel	2	-	3	-	-	-	2
Lead	5	-	3	-	-	-	5
Antimony	ND	-	3	-	-	-	-
Selenium	0	-	3	-	-	-	0
Zinc	53	-	3	-	-	-	53
Total Kjeldahl Nitrogen	804	9.5	3	28.6	20.7	-8	796
Nitrite as N	ND	-	3	-	-	-	-
Nitrate as N	ND	82.4	3	247.3	178.4	-69	-69
Total Nitrogen	804	76.4	3	229.1	165.3	-64	740
Phosphorus, Total as P	132	-	3	-	-	-	132
Malathion	ND	-	3	-	-	-	-
Chlorpyrifos	ND	-	3	•	-	-	-
Diazinon	ND	-	3	-	-	-	-

Notes:

ND - Not Detected in soil above Laboratory Reporting Limit

- 1 The maintained channel will result in pollutant load reductions directly through the removal of sediment pollutants. This column represents the pollutants removed by the dredging effort
- 2 In their current condition, each channel possesses characteristics that are similar to a natural treatment system during low flow conditions. This column represents the pollutants removed by the existing channel over a 3 year period.
- 3 Once maintenance has occurred, the channel will lose some of its characteristics that are similar to a natural treatment system. This column represents the pollutants removed by the channel post-maintenance, over a 3 year period.
- 4 This column represents the loss in pollutant load removal in the channel, over a 3 year period, due to channel maintenance.

MITIGATION MONITORING AND REPORTING PROGRAM

Section 21081.6 of the State of California Public Resources Code requires a Lead or Responsible Agency that approves or carries out a project where an environmental impact report (EIR) has identified significant environmental effects to adopt a "reporting or monitoring program for adopted or required changes to mitigate or avoid significant environmental effects." The City of San Diego is the lead Agency for the Master Program PEIR, and, therefore, is responsible for implementation of the MMRP. Because the PEIR recommends measures to mitigate these impacts, an MMRP is required to ensure that adopted mitigation measures are implemented.

As Lead Agency for the proposed project under CEQA, the City of San Diego will administer the MMRP for the following environmental issue areas: biological resources, historical resources, land use policies, paleontological resources, and water quality.

GENERAL

General Mitigation 1: Prior to commencement of work, the ADD Environmental Designee of the Entitlements Division shall verify that mitigation measures for impacts to biological resources (Mitigation Measures 4.3.1 through 4.3.20), historical resources (Mitigation Measures 4.4.1 and 4.4.2), land use policy (Mitigation Measures 4.1.1 through 4.1.13), paleontological resources (Mitigation Measure 4.7.1), and water quality (Mitigation Measures 4.8.1 through 4.8.3) have been included in entirety on the submitted maintenance documents and contract specifications, and included under the heading, "Environmental Mitigation Requirements." In addition, the requirements for a Pre-maintenance Meeting shall be noted on all maintenance documents.

General Mitigation 2: Prior to the commencement of work, a Pre-maintenance Meeting shall be conducted and include, as appropriate, the MMC, SWD Project Manager, Biological Monitor, Historical Monitor, Paleontological Monitor, Water Quality Specialist, and Maintenance Contractor, and other parties of interest.

General Mitigation 3: Prior to the commencement of work, evidence of compliance with other permitting authorities is required, if applicable. Evidence shall include either copies of permits issued, letters of resolution issued by the Responsible Agency documenting compliance, or other evidence documenting compliance and deemed acceptable by the ADD Environmental Designee.

General Mitigation 4: Prior to commencement of work and pursuant to Section 1600 et seq. of the State of California Fish & Game Code, evidence of compliance with Section 1605 is required, if applicable. Evidence shall include either copies of permits issued, letters of resolution issued by the Responsible Agency documenting compliance, or other evidence documenting compliance and deemed acceptable by the ADD Environmental Designee.

WATER QUALITY

Potential impacts to water quality would be reduced to below a level of significance through implementation of the following mitigation measures.

Mitigation Measure 4.8.1: Prior to commencement of any activity within a specific annual maintenance program, a qualified water quality specialist shall prepare an IWQA for each area proposed to be maintained. The IWQA shall be prepared in accordance with the specifications included in the Master Program. If the IWQA indicates that maintenance would impact a water pollutant where the existing level for that pollutant exceeds or is within 25 percent of the standard established by the San Diego Basin Plan, mitigation measures identified in Table 4.8-8 shall be incorporated into the IMP to reduce the impact to within the established standard for that pollutant.

MITIGATIO	ON MEASU	RES FOR	Table 4 R REDUCEI		ANT REMO	OVAL CAPA	ACITY							
		Pollutant Type												
Mitigation Measure	Bacteria	Metals	Nutrients	Pesticides	Sediment	TDS/ Chloride Sulfates	Trash							
Remove kelp on beaches					•	•								
Sweep streets	•	•	•	•	•	•	•							
Retrofit residential landscaping to reduce runoff	•	•	•		•									
Install artificial turf	•	•	•	•	•		•							
Install inlet devices on storm drains		•	•		•									
Replace impermeable surfaces with permeable surfaces		•	•		•		•							
Install modular storm water filtration systems		•	•	•	•	•	•							

Install storm							
water							
retention							
basins							
Install catch							
basin media		•	•		•	•	•
filters							
Create							
vegetated	•	•	•	•	•	•	•
swales							
Restore							
wetlands	•	•	•	•	•	•	•
wettands							
Install check							
dams		•			•		•

Mitigation Measure 4.8.2: No maintenance activities within a proposed annual maintenance program shall be initiated before the City's ADD Environmental Designee and state and federal agencies with jurisdiction over maintenance activities have approved the IMPs and IWQAs including proposed mitigation and BMPs for each of the proposed activities. In their review, the ADD Environmental Designee and agencies shall also confirm that the appropriate maintenance protocols have been incorporated into each IMP.

Mitigation Measure 4.8.3: Prior to commencing any activity where the IWQA indicates significant water quality impacts may occur, a pre-maintenance meeting shall be held on site with following in attendance: City's SWD, MM, MMC, and MC. A qualified water quality specialist shall also be present. At this meeting, the water quality specialist shall identify and discuss mitigation measures, protocols and BMPs identified in the IWQA that must be carried out during maintenance. After the meeting, the water quality specialist shall provide DSD with a letter indicating that the applicable mitigation measures, protocols and BMPs identified in the IWQA have been appropriately implemented.