INDIVIDUAL WATER QUALITY ASSESSMENT REPORT

Site Name/Facility:	Soledad Canyon/Sorrento Creek & Flintkote Channel		
Master Program Map No.:	9, 11 & 12	SUP PROFESSIONAL	
Date:	October 15, 2013	E our E	
Civil Engineer: (name, company, phone number):	Derek Reed Dudek 760-479-4131	Ho. 55042 Expires 12/14 OF CALIFORNIT	

Registered Civil Engineer Number & Expiration Date RCE No. 56042, Exp. 12/31/2014

***Instructions:** This form must be completed for each target facility following the completion of the Individual Maintenance Plan (IMP) report form and prior to any work being conducted at the facility. Attach additional sheets if needed.

EXISTING CONDITIONS

The City of San Diego (City) has developed the Master Storm Water System Maintenance Program (MMP; Master Maintenance Program) to optimize its business processes and environmental protection practices related to channel operation and maintenance activities. The Master Maintenance Program is intended to integrate operation and maintenance planning, implementation and assessment activities with its water quality protection programs. This document provides a summary of the Individual Water Quality Assessment (IWQA) activities conducted within the Soledad Canyon/Sorrento Creek & Flintkote Channel in order to comply with the MMP's Programmatic Environmental Impact Report (PEIR).

IWQA procedures under the MMP provide a methodology for a water quality management model to evaluate potential water quality benefits and impacts associated with channel maintenance activities. The site-specific field measurements and conditions provide the analytical data to both determine the pollutant load removed, and therefore water quality benefits, resulting from sediment excavation during maintenance and estimate the loss of temporary pollutant sorption/retention capacity as a result of sediment and vegetation removal during channel maintenance. The sediment pollutant load removal, combined with an estimate of pollutant removal during vegetation regrowth between maintenance events, is compared to the estimated loss of pollutant removal capacity due to vegetation removal as a means of assessing potential water quality benefits and impacts of channel maintenance. Additional factors are also presented, including a suite of water quality improvement activities the City will

EXISTING CONDITIONS

implement within the Los Peñasquitos Watershed.

The IWQA procedures are documented in the Standard Operating Procedure (SOP) To Conduct Water Quality Assessment and Quantification Model for Flood Channel Maintenance found in Appendix A of the Water Quality Assessment – White Paper ("White Paper", Appendix F of the PEIR). The SOP identifies two criteria that must be met for IWQA component implementation: 1) The storm water facility must have fairly consistent dry weather (low) flows, and 2) it must have vegetation capable of assimilation of pollutants. Both of these criteria are met by the sections of Soledad Canyon/Sorrento Creek and Flintkote Channel designated for maintenance at this time. The results of the IWQA procedures established in the White Paper are considered below as one of several lines of evidence in assessing the overall water quality benefits and impacts associated with channel maintenance.

Project Description:

The channels associated with this assessment report, collectively referred to hereafter as the Sorrento Valley Channels, are located in the Sorrento Valley area, within the jurisdiction of the City. See Figure 1 in Attachment 1 for the general project location. The major drainage facilities that serve the region consist of the Soledad Canyon Channel (commonly known as the Sorrento Creek Channel), the Los Peñasquitos Creek, the 11000 Roselle Street/11100 Flintkote Avenue Channel (commonly known as the Flintkote Channel), and the Dunhill Street at Roselle Street Channel (commonly known as the Sorrento Creek Channel is included in Maps 7, 11, and 12 of the MMP, the Los Peñasquitos Creek is included in MMP map 7 and 8, the Flintkote Channel is included in MMP map 9, and the Dunhill Street Channel is included in MMP map 10.

For purposes of this assessment, every drainage facility has been assigned a Reach number. The general location of every drainage facility and their assigned reach numbers are included in Figure 2 in Attachment 1 Although brief descriptions for Reaches 1 through 7 have been included below, based on the results of the Individual Hydrologic and Hydraulic Assessment (IHHA), Reach 3 and Reach 7 are the drainage facilities proposed for maintaince. The remaining reaches associated with the overall hydraulic analysis included herein are only incidental to the analyses and recommendations per this assessment.

The project is located in Sorrento Valley at the Interstate 5/Interstate 805 interchange within the City's Coastal Overlay Zone and Torrey Pines Community Plan and Local Coastal Program (LCP). The project area is zoned IL-3-1 (Industrial-Light) and designated for Industrial and Open Space land uses in the Torrey Pines Community Plan

EXISTING CONDITIONS

LCP. Reaches 3 and 7 are adjacent to the City's Multiple Species Conservation Program's Multi-Habitat Planning Area. The project area is also located within the Federal Emergency Management Agency's (FEMA) Special Flood Hazard Areas subject to inundation by the 1-percent Annual Chance Flood and 100-year floodway.

A more detailed discussion of Reaches 1 through 7 is provided below in channel geometry.

Description of creek/channel geometry:

Sorrento Creek – Reach 1:

Sorrento Creek (MMP map 7-Los Peñasquitos Creek): Reach 1 is an earthen-bottom channel that extends from the southerly boundary of the Torrey Pines Preserve, which is located opposite to Estuary Way, to a point approximately 740 feet to the southeast where the Los Peñasquitos Creek's Reach 4, confluences with Sorrento Creek's Reach 2. The Reach 1 main channel top width is approximately 100 feet, and the channel bottom width varies from approximately 60 to 90 feet. The west bank of the channel is protected with rock riprap. The original channel configuration identified in the 1997 Sorrento Creek Emergency Project and the redesigned 2006 Sorrento Creek Maintenance Project included an additional 980 linear feet north into the Torrey Pines State Reserve.

Soledad Creek – Reaches 2 through 3:

Soledad Creek (MMP maps 11 & 12 – Soledad Creek): The proposed maintenance in the Soledad Creek can be segmented into two distinct channel types: a) Earthen, Reach 2, and b) Concrete-lined, Reach 3.

Reach 2

Earthen-portion of Soledad Creek (MMP map 11): Reach 2 is also an earthen-bottom channel that extends to the southeast for approximately 1,590 feet from the upstream end of Reach 1 to the downstream end of Sorrento Creek's Reach 3. The Reach 2 main channel top width varies in width from approximately 10 feet at its narrowest to 20 feet for most of its length and transitions to approximately 45 feet at its upstream end. The channel bottom width varies from approximately 8 to 15 feet. The west bank of the channel is protected with rock riprap.

Reach 3

Concrete-lined portion of Soledad Creek (MMP maps 11 &12-Soledad Creek): Reach 3 is a trapezoidal concrete-lined channel that extends from the southerly end of Reach 2 to the southeast for approximately 2,280 feet to a point located approximately 1,550 feet to the southeast of Sorrento Valley Boulevard, where the trapezoidal concrete-lined channel ends and transitions to an earthen-bottom channel. The trapezoidal channel geometry consists of a 63-foot wide bottom, 1.5 (H)-to-1 (V) side slope section and a minimum

EXISTING CONDITIONS

depth of 5 feet.

Los Peñasquitos Creek – Reaches 4 through 6:

Los Peñasquitos Creek (MMP map 8-Los Peñasquitos Creek): Similar to the Sorrento Creek Channel, the Los Peñasquitos Creek was also divided into three reaches, Reach 4, 5, and 6. Reach 4 is bound by commercial complexes to the north, and by Sorrento Valley Boulevard to the south. Reach 5 is within Caltrans Right-of-Way, and it is completely below the Interstate 5/Interstate 805 interchange bridges. Reach 6 is bound by undeveloped open space to the north, and by commercial/light industrial complexes to the south. Reaches 4, 5, and 6 roughly flow in an east to west direction and confluence with Reach 2. Reach 4 extends for approximately 1,350 feet from the confluence with Reach 2, to the west side of the Interstate 5 southbound bridge. Reach 5 extends for approximately 635 feet from Reach 4 to the east side of Caltrans northbound on-ramp bridge. Reach 6 extends to the east for approximately 1,170 feet from the east end of Reach 5. Reaches 4 and 6 consist of an earthen-bottom channel, while Reach 5 is a concrete-lined channel. Reach 4 through 6 vary in bottom width from 75 to 100 feet, with 1.5-to-1 side slopes that are protected with riprap.

Flintkote Channel – Reach 7:

Flintkote channel (MMP Map 9-11000 Roselle St/11100 Flintkote Ave): Reach 7 is a trapezoidal concrete-lined channel that extends for approximately 1,000 feet, from the easterly side of Flintkote Avenue to Sorrento Creek (Reach 2) near the stream confluence. Reach 7 flows roughly in a southwest to northeast direction, bisecting a light industrial park along its entire length, and crossing Roselle Street. A 2-foot high, 12-foot wide culvert conveys the storm flows under Roselle Street and a dual 36-inch Reinforced Concrete Pipe (RCP) culvert discharges the storm flows into Sorrento Creek's Reach 2. The trapezoidal geometry is described as an 8-foot wide bottom, 1-to-1 side slopes and a depth of approximately 4 feet.

The proposed maintenance areas (i.e., Reaches 3 and 7) are consistent with the project impact footprints prescribed in the MMP. Reaches 1, 2 and 4 through 6 are potential maintenance areas that are not currently proposed for maintenance, and are not discussed further in this IWQA.

The maintenance activities proposed for the designated extents of Reaches 3 and 7 of the Sorrento Valley channels include vegetation trimming, and the removal of approximately 2,000 to 4,000 cubic yards in Reach 3, and approximately 125-175 cubic yards in Reach 7, of material (i.e., sediment and vegetation debris). The impact acreage includes the maintenance, access/loading, and staging/stockpiling areas which accumulate to approximately 3.29 acres for Reach 3 and 0.18 acres for Reach 7.

Existing Conditions:

Reaches 3 and 7 of the Sorrento Valley channels are located in the Los Peñasquitos Watershed Management Area (WMA) which comprises two Hydrological Areas (HA) 906.1 (Miramar Reservoir) and 906.2 (Poway) (City of San Diego, 2008). Surface waters in the Los Peñasquitos WMA are subject to comply with the Water Quality Control Plan for the San Diego Basin (Basin Plan, San Diego RWQCB 1994), which designates beneficial uses, establishes water quality objectives, and contains implementation programs and policies to achieve those objectives for receiving waters. The Los Peñasquitos Watershed Urban Runoff Management Program (PEN-WURMP, City of San Diego, 2012) identifies the following priority pollutants as being recommended for pollutant loading reductions:

- Bacteria in both HAs
- Sedimentation in the Miramar HA

The PEN-WURMP identifies eating and drinking establishments and animal facilities as suspected contributors to the discharges of bacteria within both HAs (City of San Diego, 2012).

In accordance with the Water Quality Control Policy for Developing California's Clean Water Act Section 303(d) List (SWRCB, 2004), Soledad Canyon, Los Peñasquitos Creek, and Los Peñasquitos Lagoon are 303(d) listed as impaired water bodies, in which standards are not met. Total Maximum Daily Loads (TMDL) are required, but not yet completed, for at least one of the pollutants listed for the segments (SWRCB, 2010). Flintkote is tributary to the Los Peñasquitos Creek at its convergence with the Los Peñasquitos Lagoon. The pollutants listed for the three water bodies on the 303(d) list are presented in Table 1.

Water Body	Pollutant	Current TMDL (Yes or No)	Current or Anticipated TMDL Date
Solodad Canvon	Sediment Toxicity	No	2019
Soledad Canyon	Selenium	No	2021
	Enterococcus	No	2019
	Fecal Coliform	No	2019
Los Doñosquitos Crook	Selenium	No	2019
Los Peñasquitos Creek	Total Nitrogen as N	No	2019
	Total Dissolved Solids (TDS)	No	2019
	Toxicity	No	2021
Los Peñasquitos Lagoon	Sedimentation/Siltation	No	2012

Table 1. 303(d) Listed Pollutants

Unknown point and nonpoint sources, urban runoff/storm sewers, wastewater, natural sources, and flow regulation/modification are listed among the potential sources for these pollutants.

Dry weather historical monitoring data for Los Peñasquitos Creek, Los Peñasquitos Lagoon, and Soledad Canyon have been required under the regional municipal separate storm sewer system (MS4) National Pollutant Discharge Elimination System (NPDES) permit R9-2007-0001 (San Diego RWQCB, 2007) issued to the 21 Municipal Copermitties in San Diego County, including the City of San Diego. The data compiled under this permit was also reviewed during the background investigation for the IWQA. There are several monitoring stations within the three interconnected water bodies associated with this maintenance area. Data from LPC-TWAS-1was most closely evaluated due to its location in the upstream earthen portion of Soledad Canyon Creek. Under this historical monitoring, dry weather flow concentrations of Enterococcus, TDS, and Toxicity for *Ceriodaphnia* and *Selenastrum* exceeded water quality benchmarks established in the Basin Plan at least once between September 2007 and May 2011 (Project Clean Water, 2012).

On May 8, 2013, the Regional Water Quality Control Board San Diego Region (RWQCB) approved a new MS4 permit for San Diego, southern Orange, and southwestern Riverside counties (San Diego RWQCB, 2013). The region-wide NPDES Permit (commonly referred to as the Regional MS4 Permit) is intended to set the framework for municipalities, such as the City, to implement a collaborative watershedbased approach to restore and maintain the health of surface waters. The Regional MS4 Permit requires development of Water Quality Improvement Plans (WQIPs) that will allow the City (and other watershed stakeholders) to prioritize and address pollutants through an appropriate suite of best management practices (BMPs) for each watershed. Water quality BMPs related to channel maintenance activities are outlined later in this report and provide a framework that may be used by the City to address priority pollutants. It is recommended that the relative effectiveness of any implemented water quality and conservation strategies be evaluated and the programs adaptively managed to maximize pollutant and/or storm water flow reduction benefits over the course of the program lifecycle. This adoptive management approach, coupled with other storm water management techniques implemented by the City as part of the Regional MS4 Permit, may lead to long term reductions in the need for channel maintenance activities.

During the preliminary site visit, conducted on April 16, 2013, and sampling activities carried out on April 23, 2013, it was observed that Reach 7 is heavily vegetated and Reach 3 contains thick vegetation near the downstream extent. Discernible flow was observed at the downstream and upstream portions of Reach 3, however flow was not observed at Reach 7. Water was observed along the full length of Reach 3 and some areas exhibited ponded water. As described in the Individual Biological Assessment

(IBA), freshwater marsh (FWM), disturbed/ruderal, and non-native vegetation/ornamental habitat was observed in Reach 3 and FWM and non-native vegetation habitat was observed in Reach 7.

Description of Sediment Sampling Activities:

In accordance with the SOP, a single sample location was selected for every 1,000 cubic yards (yd³) of estimated accumulated sediment to be removed within the proposed maintenance area in Reaches 3 and 7 of the Sorrento Valley channels. Using upper limit estimates of maintenance sediment removal volume, one sediment sample location was selected for Reach 7 and three sediment sample locations were selected for Reach 3. Specific sample locations were selected based on field conditions and to be representative of channel characteristics, such as vegetation and water depth. The sample locations were distributed so as to best represent the full extent of sediment within Reaches 3 and 7. The sample locations (R-3-1 through R-3-3 and R-7-1) are indicated on Figure 3 in Attachment 1.

Sediment sampling activities were conducted by personnel on April 23, 2013 in accordance with EPA SOP #2016 (USEPA 1994). Sediment depths in Reaches 3 and 7 were shallow enough that samples were collected via shoveling until refusal in accordance with standard EPA methodologies. Locations were chosen based on where sediment deposition was prevalent, and in some cases the deposition rose above the water level. Sediment depths ranged from one to six inches. The location of each sediment sample was marked with a hand-held GPS device. A photo log is included in Attachment 2.

The sediment from each sample location was placed in a clean, dedicated five gallon bucket and homogenized using a clean stainless steel spoon. Homogenized sediment was then split into two, laboratory-supplied, clean 8-ounce glass jars that were labeled with the sample ID, date, time, analytes, company, project, and initials of sampling personnel. Samples were placed on ice in an insulated cooler and transported to the laboratory by courier under chain-of-custody (COC) procedures. COC documentation can be found in Attachment 3. All non-dedicated sampling equipment was decontaminated prior to sampling and between each sample collection by washing in non-phosphate detergent (Alconox®) and deionized water followed by two separate rinses in deionized water. Rinse water was collected and will be disposed of in accordance with applicable local, state and federal guidelines.

A bulk sediment sample was collected near the location of R-3-1 for grain-size analysis in accordance with the SOP and ASTM-D6913-04. This sample was collected using a clean shovel from ground surface to approximately 1.5 feet below ground surface and placing the sediment into clean, dedicated 5-gallon buckets. Lids were placed on the buckets and each was labeled with a sample ID. Grain-size gradation curves are provided

in Attachment 4.

All sediment laboratory analyses with the exception of toxicity were conducted by Pat-Chem Laboratories, Inc. of Moorpark, California, a state-accredited laboratory. Sediment toxicity tests were performed by Nautilus Environmental in San Diego, California. The samples were analyzed for the constituents listed in table A-3 of the SOP with the exception of TDS, which is not applicable to a sediment matrix. The laboratory analytical results can be found in Attachment 4 and tabulated results of constituents in Attachment 5. A list of sediment constituents for which laboratory analysis were performed is presented in Attachment 6.

Description of Flow Measurement Activities:

On April 23, 2013, field personnel measured instantaneous flow (flow) during low flow conditions at two sections in the Sorrento Valley Channels. Following SOP guidelines, locations upstream of the proposed maintenance area and downstream of the proposed maintenance area were selected for flow measurements. Upon arrival at Reach 7, it was determined that there was no discernible flow and therefore no flow measurements were taken. Henceforth flow measurements will refer to those taken in Reach 3. The convergence of the earthen bottomed Reach 4 and concrete lined Reach 3 was selected as the upstream measurement point. The downstream flow measurement location was at the convergence of the earthen bottomed Reach 2 and concrete lined Reach 3. Locations of each flow measurement site were marked with a hand-held GPS device. These locations are indicated on Figure 3 in Attachment 1.

Upon entering the channel, field personnel extended a tape measure across the full width of the wetted channel and measured total width in feet. Flow velocity was measured using a Valeport Model 801 Electromagnetic Flow Meter at regular horizontal intervals. In addition, flow measurement locations were chosen to capture significant changes in channel geometry (e.g. obstructions in channel, pools, or thalweg). The flow meter was set at 60% depth for water depth less than 1.5 feet, or 20% and 80% depth for stages greater than 1.5 feet (USGS, 1976). Personnel stood downstream and slightly off to the side of the flow meter while facing upstream to minimize interference with flow measurements. The 10 second average flow rate (velocity) was recorded at each interval. Water depth and distance from the left wetted bank (LWB) were also recorded along with each velocity reading. Field forms used to record flow measurements can be found in Attachment 7.

The total wetted channel was 26.2 feet wide at the upstream measurement location. Eleven flow measurements were recorded along the channel at approximately two and half foot horizontal spacing. At the downstream location the total wetted channel width was 12 feet, where thirteen measurements were recorded at approximately one foot spacing. To conduct representative flow measurements, a certain percent of the flow must be captured. Sample interval distances are based off of this percentage and are directly related to wetted channel width. In some cases, a closer sample interval width may be chosen to account for drastic changes in channel geometry of natural channels, as done at the downstream location.

Total flow (discharge) across the channel was calculated by integrating velocity measurements over the cross-sectional area of the channel at each location using an excel model. A discharge of 3.28 cubic feet per second (cfs) was determined for the upstream location and a discharge of 1.07 cfs was determined for the downstream location. The discrepancy between upstream and downstream discharge may be attributed to incomplete capture of discharge at the downstream measurement location, potentially due to the presence of a thick cattail grove. An example of the excel model used to calculate discharge is presented in Attachment 8. It should be noted that these discharges were derived from one-time instantaneous measurements, and may not characterize overall ambient discharge within Reach 3.

In the absence of dry weather flow monitoring data, the number of dry weather days per year was estimated using the following methodology: Daily precipitation data was obtained from the San Diego Lindbergh Field Weather Station (Station ID: GHCND: USW00023188) accessed from the National Climatic Data Center (NCDC, 2013). The SOP defines a wet day as a storm event where ≥ 0.2 inches of rain fell within a 24-hour period and the following three calendar days. Following this definition, the number of wet days in each year since 1950 was determined using the San Diego Lindbergh Field Weather Station daily precipitation record. These numbers were subtracted from the total number of days in the year to determine the number of dry days in a given year since 1950. The number of wet days was subtracted from the total number of days in the year, as opposed to days in the wet season, because Reach 3 is likely perennial in nature, and therefore experiences significant amounts of dry weather flow through the dry summer season. An estimated 322 dry days per year in Reach 3 was derived by averaging the annual number of dry days since 1950.

The annual treatment volume, i.e. the volume of water that discharges through Reach 3 during low flow conditions in one year, was estimated following the SOP by multiplying the upstream discharge determined from instantaneous flow measurements by the number of dry days per year. Using this method, the annual treatment volume in Reach 3 is estimated to be approximately 680 million gallons.

There are limitations to this SOP driven approach, especially due to the fact that the SOP does not provide explicit direction for determining annual treatment volume other than relying on historical information. Additionally, a rain event considers a 24 hour period that may cross over two calendar days. Historical precipitation data is presented as sums for calendar days, not hourly readings. With these uncertainties, compounded with one

instantaneous flow measurement, the resulting annual treatment volume calculation is not necessarily adequate to characterize Reach 3 or the Sorrento Valley Channel system as a whole.

Description of Volume Measurement Activities:

Site visits were conducted by personnel in March 2013 and April 2013 to evaluate the current channel conditions from a hydrologic and hydraulic perspective. Dimensions used to estimate the water volume were derived from field observations and as-built drawings and are listed in Table 2.

Reach	Туре	Length (ft) ¹	Avg. Bottom Width (ft) ¹	Avg. Top Width (ft) ¹	Approximate Sediment Depth (ft) ²	Approximate Water Depth (ft) ³
3	Concrete	2,280	63	78	0.5	0.25 – deeper downstream.
7	Concrete	1,000	8	16	0.25	<0.1

Table 2. Parameters used in approximating Sorrento Channel volume, Reaches 3 and 7.

Notes:

1) See IHHA for further information on channel dimensions.

2) Based on field observations, consistent with estimated sediment depth ranges outlined in IHHA.

3) Average of water depth estimated at each sediment sampling location using best professional judgment.

Cross sectional area was estimated using the parameters in Table 2. Water volume was estimated by determining a cross sectional area of water within only Reach 3, and multiplying this area by length. The resulting approximate water volume is 154, 575 cubic feet (ft^3). It should be noted that there is some uncertainty associated with this estimate due to approximated channel dimensions.

Hydraulic residence time (HRT) was determined by dividing the length of Reach 3 by the average measured upstream velocity of 0.0825 feet per second (ft/s). This method is employed by Caltrans when determining the HRT of a water quality or biofiltration swale following the Caltrans Storm Water Quality Handbook (Caltrans, 2011). Using the average upstream velocity, a HRT of 7.71 hours was determined. It should be noted that these velocities represent one-time instantaneous measurements, and may not characterize overall ambient flow velocities within Reach 3.

Description of Water Quality Sampling Activities:

On April 23, 2013, personnel collected surface water grab samples during low-flow conditions following SOP guidelines and Surface Water Collection SOP #EH-01 (Syracuse Research Corporation, 2003). Samples were collected at a location upstream of the maintenance area (R-3-U) and downstream of the maintenance area (R-3-D) in Reach 3. These locations are indicated on Figure 3 in Attachment 1.

The downstream sample was collected first. The sampler stood in the center of the channel, downstream of the sampling location facing upstream. Any sediment suspended when the sampler entered the channel was allowed to settle out prior to sample

collection. Clean, laboratory supplied bottles labeled with the sample ID, date, time, analytes, company, project, and initials of sampling personnel, were filled, capped and placed on ice in an insulated cooler, and transported to the laboratory via courier following COC procedures.

The samples were analyzed for the constituents listed in Attachment 8. This suite of constituents was determined based on the SOP and a through a review of the 303(d) pollutants listed in Table 1 and TMDLs in the local surface waters. Water sample chemical analyses, with the exception of the bacterial indicators (total coliform, fecal coliform and enterococcus) and toxicity were conducted by Pat-Chem Laboratories, Inc. of Moorpark, California, a state-accredited laboratory. The toxicity tests were performed by Nautilus Environmental in San Diego, California and the bacterial indicators were analyzed by the City of San Diego Environmental Monitoring & Technical Services (EMTS) Division Marine Microbiology Laboratory also in San Diego, California. Bacterial indicators were selected due to their being listed as pollutants in the Los Peñsaquitos Creek on the 303(d) list (SWRCB, 2010). The laboratory analytical results can be found in Attachment 4 and tabulated analysis results in Attachment 9.

The concentrations of all constituents analyzed were below their respective water quality benchmarks with the exception of TDS, total nitrogen and total selenium. The upstream and downstream concentrations of TDS, 2,620 mg/L and 2,472 mg/L respectively, exceed the water quality benchmark of 1,500 mg/L established by the Basin Plan. The downstream concentration of total nitrogen, 1.52 mg/L exceed the water quality benchmark of 1.0 mg/L extrapolated from the water quality benchmark of 0.1 mg/L for total phosphorous established in the Basin Plan. Both the upstream (0.0099 mg/L) and downstream (0.0092 mg/L) concentrations of selenium exceed the water quality benchmark of 0.005 mg/L (40 CFR 131.38).

Description of Wetland Assessment (Existing) Activities:

Assessment of existing wetland conditions was performed following the SOP. Field observations made during water quality and sediment sampling activities on April 23, 2013 as well as information obtained from the IBA site survey was considered in carrying out the Existing Wetland Assessment. Three macrofeatures of wetland treatment systems were assessed: existing vegetation, hydrosoil and hydroperiod. Scores for these features are presented in Table 3. Scoring criteria can be found in Attachment 10.

Wetland Macrofeature	Sc	ore
wettand wacroleature	Reach 3	Reach 7
Vegetation	0.6	1.4
Hydrosoil	1	1
Hydroperiod	2	0
Overall Existing Score	3.6	2.4

Because Reach 3 and Reach 7 are separated geographically, their wetland macrofeatures were considered separately. Because Reach 7 did not exhibit discernible flow, wetland pollutant removal load capacity cannot be estimated following the SOP. Therefore, although wetland macrofeatures for Reach 7 were assessed, this assessment does not factor into Benefit/Impact calculations discussed below. Following the SOP, the Overall Score of the reaches is used to evaluate potential water quality impacts as described in the Evaluation of Benefits/Impacts Section. The scores presented in Table 3 were determined using the procedure described below.

Vegetation

The Sorrento Valley IBA presents the acreage of each vegetation community or land cover type surveyed that will be impacted by maintenance activities in Reaches 3 and 7. Three vegetation communities, undisturbed and disturbed freshwater marsh (FWM), Disturbed/Ruderal, Non-native/Ornamental Vegetation, and one land cover type, Developed/Concrete Channel, are identified in Table 2 of the IBA. A score of 0 - 3 was assigned to each of these surveyed vegetation communities and land cover types based on the SOP scoring criteria (Attachment 10) and personal communication with the qualified IBA biologists. These scores are listed in Table 4 below.

Vegetation Community or Land Cover Type (Holland Code)	Vegetation Score	Reach 3 Coverage (acre)	Reach 7 Coverage (acre)	Scoring Rationale			
Freshwater Marsh*	3	0.63	0.19	>75% coverage of wet areas, both submerged and emergent wetland species, abundant cattail (<i>Typha</i> sp.)			
Disturbed/Ruderal	1	0.05	0	Primarily bare ground or invasive, broad-leaved, non-native species			
Non- native/Ornamental Vegetation	1	0.02	0.01	Primarily cultivated plants with low surface area coverage			
Developed/Concrete Channel	0	2.77	0.19	No visible vegetation in wet areas			
Total Acreage		3.47	0.38	-			
Overall Existing Vegetation Score		0.6	1.4	-			
* Includes disturbed form	* Includes disturbed form						

Table 4 Vegetation	Community/Land	Lico Turno Scoring
Table 4. Vegetation	Community/Land	Use Type Scoring

Using the acreage identified in Table 2 of the IBA, an area-weighted average vegetation score was determined for each reach. The overall vegetation score for Reach 3 and Reach 7 in Table 3 above represents the area-weighted average of these individual vegetation scores for Reaches 3 and 7.

<u>Hydrosoil</u>

Following the SOP criteria in Attachment 10, an existing hydrosoil score of 0-3 was assigned to each sediment sampling location based upon field observations recorded during sediment sampling activities. These scores were then weighted by the sediment removal volume represented by each sediment sample. Determination of these sediment removal volumes is discussed in the Sediment Pollutant Loading Estimates section below. The location-specific and overall hydrosoil scores are identified in Table 5.

Sediment Sampling Location	Reach	Associated Sediment Removal Volume (yd ³)	Hydrosoil Score	Scoring Rationale
R-3-1	3	833	1	Primarily fine sand, concrete lined.
R-3-2	3	833	1	Primarily fine sand, slight organic odor, concrete lined.
R-3-3	3	833	1	Primarily fine sand, concrete lined.
R-7-1	7	150	1	Primarily fine sand, concrete lined.
	Overall Existing Hydrosoil Score			-

Table 5. Hydrosoil Scoring

An existing hydrosoil score of 1 was assigned to all sediment sample locations based primarily on the fact that Reaches 3 and 7 are concrete lined but still exhibit significant sediment deposition of fine sand.

Hydroperiod

Following the SOP criteria in Attachment 10, an existing hydroperiod score of 0 - 3 was assigned to each sediment sampling location based upon observations of water depth and movement recorded during sediment sampling activities and consideration of overall HRT in Reaches 3 and 7. The overall hydroperiod score was determined by taking the average of the score from the individual sediment sampling locations, as indicated in Table 6.

Table 6. Hydr	Table 6. Hydroperiod Scoring						
Sediment Sampling Location	Reach	Approximate Water Depth (ft.)	Hydroperiod Score	Scoring Rationale			
R-3-1	3	0.25	2	Shallow water (0.5 – 1 ft.), HRT < 12 hrs, some deposition of fines			
R-3-2	3	0*	2	Shallow water (0.5 – 1 ft.), HRT < 12 hrs, some deposition of fines			
R-3-3	3	0*	2	Shallow water (0.5 – 1 ft.), HRT < 12 hrs, some deposition of fines			
R-7-1	7	0.08	0	No visible surface water within the storm water facility reach other than ponded areas.			
Overall Ex	Overall Existing Hydroperiod Score		2				

* Sediment accumulation above water level.

Under the SOP scoring system, the overall wetland assessment score of 3.6 for Reach 3 is comparable to fair conditions for wetland quality and health and a score of 2.4 for Reach 7 is considered poor conditions. It should be noted, however, that this scoring system is not designed to assess the range of wetland characteristics within flood conveyance channels. The primary function of these channels is to provide flood control for human health and safety. Unlike natural or engineered wetlands, flood conveyance channels can be fully developed and devoid of vegetation, or, as in the case of Sorrento Valley, exhibit aspects of hydrosoil, hydroperiod and vegetation that resemble wetland conditions. However, the Sorrento Valley Channels were not designed as a wetland or natural treatment system (NTS). For example, of the species discussed in the White Paper as commonly used in natural treatment systems, Typha sp. (cattail) is the one that predominates within Reaches 3 and 7, despite its providing the lowest nitrogen, biological oxygen demand (BOD) and total suspended solid (TSS) treatment efficiency (Gersberb et al., 1986). While the proposed maintenance is projected to return the flood conveyance capacity of Reaches 3 and 7 to previous design levels, the likely sediment redeposition and recovery of FWM (wetland) species, including Typha, within one to five years may facilitate pollutant removal.

Description of Wetland Assessment (Recovery) Activities:

Following the SOP, vegetation, hydrosoil and hydroperiod in Reaches 3 and 7 were scored on the basis of their ability to recover to their current state following maintenance. Scores for these features macrofeatures are presented in Table 7 and scoring criteria can be found in Attachment 10.

	S	core	
Wetland Macrofeature	Reach 3	Reach 7	
Vegetation	2.9	2.8	
Hydrosoil	2	2	
Hydroperiod	2	2	
Overall Recovery Score	6.9	7.3	

The scores presented in Table 7 were determined in the following manner:

Vegetation

In a similar manner to the existing vegetation score, a recovery vegetation score of 0-3 was assigned to each vegetation community identified Table 2 of the IBA. Assignments were made based on the criteria established in the SOP (Attachment 10) and personal communication with IBA biologists. These scores are listed in Table 8 below.

_	-		-	
Vegetation Community or Land Cover Type (Holland Code)	Vegetation Score	Reach 3 Coverage (acre)	Reach 7 Coverage (acre)	Scoring Rationale
Freshwater Marsh*	3	0.63	0.18	Emergent wetland species will exhibit re-growth within 1 year
Disturbed/Ruderal	2	0.05	0	Recovery of mixed population of woody and leafy vegetation will take 1 – 5 years
Non- native/Ornamental Vegetation	2	0.02	0.01	Recovery of mixed population of woody and leafy vegetation will take 1 – 5 years
Total Acreage		0.7	0.19	-
Overall Recovery Vegetation Score		2.9	2.8	-

* Includes disturbed form

<u>Hydrosoil</u>

A single recovery hydrosoil score of 2 was assigned to Reaches 3 and 7 following the SOP criteria in Attachment 10 and best professional judgment. This assignment was based on the fact that the sediment currently deposited in Reaches 3 and 7 primarily consists of a heterogeneous mix of sand, organics and fines that will likely re-accumulate within one to five years of maintenance activities.

Hydroperiod

A single recovery hydroperiod score of 2 was assigned to Reaches 3 and 7 following the SOP criteria in Attachment 10 and best professional judgment. This assignment is based primarily on the fact that the overlying water depth in Reaches 3 and 7 was generally observed to be less than 0.5 - 1 ft. and the regrowth of the FWM will facilitate the

deposition of fines and organics.

Sediment Pollutant Loading Estimates:

Pollutant loading estimates were performed following the guidelines outlined in the SOP and using best professional judgment. Total sediment volumes of approximately 2,500 yd³ and 150 yd³ are scheduled to be removed from Reaches 3 and 7 respectively. These removal volumes were distributed among the 4 sediment samples in the following manner: The 150 yd³ for Reach 7 was allocated to the only sediment sample collected in Reach 7 (R-7-1) and the 2,500 yd³ for Reach 3 was divided evenly among the remaining 3 sediment samples collected in Reach 3 (R-3-1 through R-3-3). Total load removal estimates for each pollutant were determined by taking the sum of the estimates for each sediment sampling location. The resultant pollutant loading estimates can be found in Attachment 11 and an example of the Excel model used to determine the pollutant loads in Attachment 12. Manganese exhibited the greatest overall estimated load removal with 743 lbs from Reach 3 56 lbs from Reach 7 for a total load removal of 799 lbs. Nitrate, nitrite, antimony, selenium, Malathion and Chlorpyrifos, were not detected above laboratory reporting limits (RLs) in any of the sediment samples.

MAINTENANCE IMPACTS

Evaluation of Benefits / Impacts:

Are there constituents that have potential impacts greater than benefits?

Yes No

X

An evaluation of the water quality benefits versus impacts of the proposed channel maintenance in Reach 3 was carried out in accordance with the SOP. The estimated annual existing pollutant removal load capacity for each constituent measured in the upstream water quality sample (R-3-U) was determined. The resulting estimates were multiplied over the three year duration of the proposed maintenance period to derive the theoretical existing pollutant load removal capacity for the given maintenance period, i.e. existing pollutant removal. A theoretical maintained pollutant load removal capacity, i.e. maintained pollutant removal was also calculated for the three year maintenance period following the SOP. This calculation takes into account the pollutant removal resulting from sediment excavation as well as that facilitated by regrowth of wetland vegetation between maintenance events. Although biomass plays a key role in the pollution uptake capacity of most wetland species, studies have also shown that the growth phase provides increased levels of pollutant removal, as well as harvesting the biomass after the growth cycle to prevent the release of absorbed pollutants during decomposition (Kouki et al., 2012). These additional benefits to the removal of vegetation as a result of the proposed maintenance activities are not captured in the calculations presented, but are relevant in assessing the overall benefit of removing and trimming the existing vegetation. The maintained pollutant removal estimates were compared to the corresponding existing

pollutant removal estimates for each constituent. The results of this comparison are presented in Attachment 13. An example of the Excel model used to calculate the NTS removal estimates is provided as Attachment 14.

Cadmium, phosphorus, and Diazinon were only detected in the Reach 7 sediment sample. Lead was not detected above laboratory RLs in the water samples and antimony, nitrate, nitrite and the rest of the organophosphorous pesticides (Malathion and Chlorpyrifos) were not detected above laboratory RLs in either the sediment or water samples. For the remaining constituents analyzed in both matrices, the estimated maintained NTS pollutant removal exceeds the estimated existing NTS pollutant removal.

These results of the water quality impact analysis outlined by the SOP suggest that proposed sediment removal during maintenance of Reach 3 will remove a larger pollutant load than that which is theoretically removed during ambient flow by NTS processes over the three year maintenance period, and therefore provide an overall water quality benefit. Due to lack of discernible flow, the corresponding evaluation for Reach 7 could not be conducted. However, the sediment pollutant loading estimates for Reach 7 (Attachment 11) indicate that the proposed maintenance activities will generate a pollutant reduction benefit through the removal of pollutant-laden sediment. Sediment excavation in Reaches 3 and 7 will prevent the re-suspension and downstream transport of sediment-bound pollutants during wet weather, and regrowth of fresh water marsh species in Reach 3 within one year will further enhance dry-season pollutant removal from the channel. However, The City, in accordance with the California Coastal Commission Development Permit No. A-6-NOC-11-086 (CDP) and Site Development Permit No. 1134892 (SDP) will implement the suite of water quality improvement activities described in the following section.

Water Quality Improvement Activities:

The results of this IWQA process suggest that there is a pollutant reduction benefit due to sediment removal as a result of the proposed maintenance activities, and therefore no additional mitigation is necessary. Nevertheless, the City will implement water quality improvement activities, as required by the governing CDP which satisfy the SDP requirements. The City will utilize a suite of pollution prevention, source control and treatment BMPs to address sediment and other pollutant inputs to the Sorrento Valley channels within the coastal zone (Table 9).

Number	Water Quality Activity Type	Description		Duration	
1	Pollution Prevention	Commercial and residential property sediment reduction outreach distribution.	250 parcels	Approximately one month prior to maintenance initiation.	
2	Source Control	Street sweeping improvements- targeted vacuum-assisted/regenerative air machine usage.	19.4 curb miles		
3	Source Control Street sweeping improvements- targeted median sweeping route addition.		10.8 curb miles	One year subsequen to sediment removal maintenance events.	
4	Treatment	Enhanced catch basin inspection and as- needed cleaning implementation.	25 inlet locations		
5	Special Study	Evaluate the need and potential effectiveness of implementing slope stabilization measures and small scale water quality basin BMPs on City- owned parcels within the Los Penasquitos drainage area.	N/A	One year subsequen to sediment removal maintenance event.	
6	Special Study	Degraded canyon area municipal		One year subsequen to sediment removal maintenance event for one priority channel segment.	
7	Pilot Implementation Study	Conduct repairs on a prioritized representative degraded outfall to determine the relative level of planning, engineering and implementation effort needed to address identified canyon- area outfall problems.	1 outfall location (La Jolla Farms location)	Five years	

Applicable PEIR mitigation measures can be found in their entirety in Attachment 15. Since the findings of this IWQA result in a water quality benefit by reducing pollutant loads downstream; potential water quality impacts are not identified, and therefore no additional mitigation is required.

Attachment 2 of the IMP includes all additional permits and their conditions which must be incorporated.

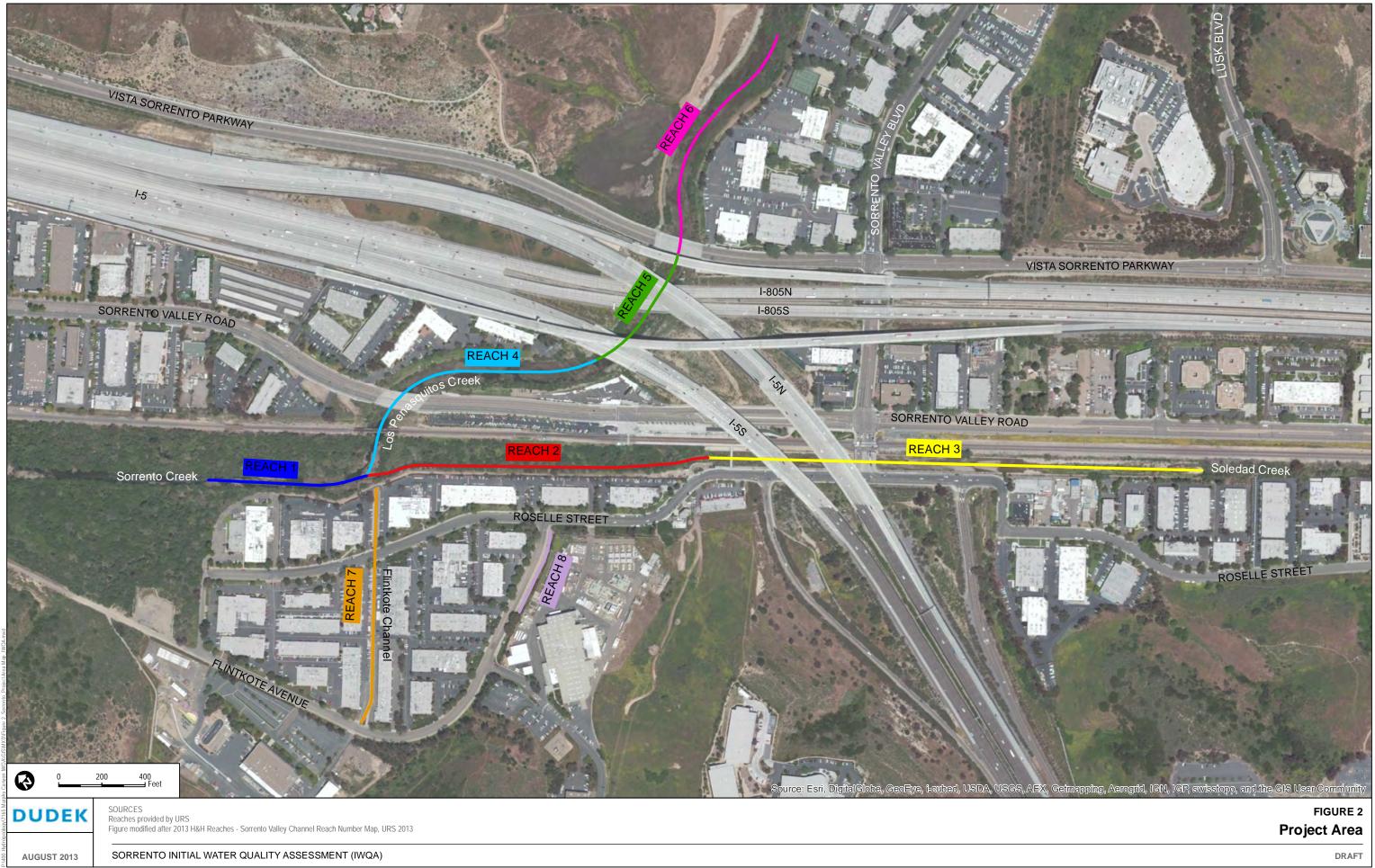
Additional Comments or Recommendations

The SOP acknowledges that site conditions may require modifications to the procedures. Some procedures described in this document were modified from the original SOP based on existing site-specific conditions.

References

Caltrans, 2011. Biofiltration Swale Design Guidance. Sacramento, California. June 2011.

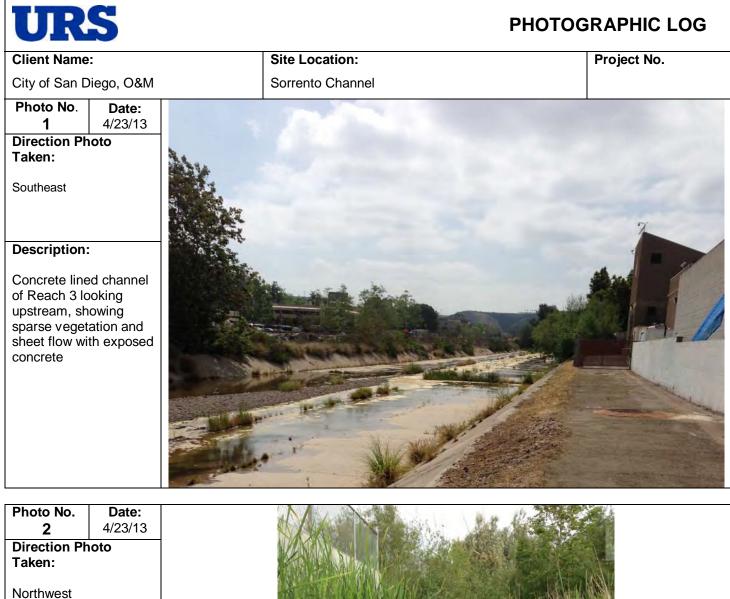
- City of San Diego, 2008. Penasquitos Watershed Urban Runoff Management Program, March 2008.
- Gersberg, R.M., *et al.*, 1986. Role of aquatic plants in wastewater treatment by artificial wetlands. *Water Res.* 20(3) 363-368.
- Kouki, S., et al., 2012. Potential of polyculture of *Arundo donax* and *Typha latifolia* for growth and phytotreatment of wastewater pollution. *African Journal of Biotechnology* 11 15341-15352.
- NCDC, 2013. NOAA National Climatic Data Center, <u>http://www.ncdc.noaa.gov/cdo-web/#t=secondTabLink</u>, Climatic Data Online: Text & Map Search, accessed May 6, 2013.
- Project Clean Water. 2012. San Diego County Watersheds. Accessed April 2013. http://projectcleanwater.org/
- San Diego RWQCB, 1994. Water Quality Control Plan for the San Diego Basin (9), September 8, 1994 with amendments effective on or before April 4, 2011.
- San Diego RWQCB, 2007. Order No. R9-2007-0001, NPDES No. CAS0108757, Waste Discharge Requirements for Discharges of Urban Runoff from the Municipal Separate Storm Sewer Systems (MS4s) Draining the Watersheds of the County of San Diego, the Incorporated Cities of San Diego County, the San Diego Unified Port District, and the San Diego County Regional Airport Authority, January 2007
- San Diego RWQCB, 2013. Order No. R9-2013-0001, NPDES No. CAS0109266, National Pollutant Discharge Elimination System (NPDES) Permit and Waste Discharge Requirements for Discharges from the Municipal Separate Storm Sewer Systems (MS4s) Draining the Watersheds Within the San Diego Region. May 2013.


Syracuse Research Corporation, 2003. SOP #EH-01, Surface Water Collect, September 2003

- SWRCB, 2004. Water Quality Control Policy for Developing California's Clean Water Act Section 303(d) List, September, 2004/
- SWRCB, 2010. 2010 Integrated Report (Clean Water Act Section 303(d) List / 305(b) Report) – Statewide, accessed from: <u>http://www.waterboards.ca.gov/water_issues/programs/tmdl/integrated2010.shtml</u> May 2013
- USEPA 1994. Sediment Sampling. SOP #: 2016. November 17, 1994
- USGS, 1976. Techniques of Water-Resources Investigations of the United States Geological Survey, Chapter A8 Discharge Measurements at Gaging Stations

ATTACHMENT 1

Figure 1 – Vicinity Map Figure 2 – Project Area Figure 3 – Sample Locations



DRAFT

ATTACHMENT 2

Photographic Log

Description:

Downstream water quality sampling location R-3-D looking downstream

URS	P	HOTOGRAPHIC LOG
Client Name:	Site Location:	Project No.
City of San Diego, O&N	Sorrento Channel	
Photo No. Date: 3 4/23/13		
Direction Photo Taken:		
Southeast		
Description:		
Upstream water quality sampling location R-3- D-U		
Photo No. Date: 4 4/23/13		
Direction Photo		
Taken:		
South southeast		Se Maria
Description:		
R-3-1 sediment sampling location, showing vegetation ma		

UR	S		PHOTOGRAPHIC LOG
Client Name	:	Site Location:	Project No.
City of San D	iego, O&M		
Photo No. 5	Date: 4/23/13		
Direction Ph Taken:	ioto		
Southeast			
Description:	:		
R-3-2 sedime sampling loca vegetation ar sediment	ation with		
Photo No. 6	Date: 4/23/13		
Direction Ph Taken:			
Southeast			
Description: R-3-3 sedime sampling loca	ent		
showing veg	etation		

URS		PHOTOGRAPHIC LOG
Client Name:	Site Location:	Project No.
City of San Diego, O&M	Sorrento Channel	
Photo No. Date: 7 4/23/13		e
Direction Photo Taken:		
Northeast		
Description:	and the second s	- Contraction
Concrete lined channel of Reach 7 showing vegetation and accumulated sediment, absence of flowing water		
Photo No. Date: 8 4/23/13		
Direction Photo Taken: Northwest		
Description:		Hose a
R-7-1 sediment sampling location showing vegetation and exposed sediment		

ATTACHMENT 3

Chain-of-Custody Forms

$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	DUDEK		Chain -	of - Ci	Istody	/ Forr	F	A.	# 130427	FOR	5	6	-	Page of	ſ	
See DU 39 0 F.M. IV/QA Servert TIL Tweed Analysis use the intermediation of the intermedi	605 Third Street Ercinitas, CA 92024 Tel: 760-942-5147 Fax: 760-942-5206			5				Proj	Contact: ect Manag	A Le re	ws w	renz :		1 Att And ANG	1 mg	Uvs.
P and L Latvex P of I P and L Latvex P of I P and L Latvex P of I Sumpressinature Matrix Method Preserved Number of Sample Container P and L Latvex P of I Sumpressinature Method Preserved Number of Sample Container Method Preserved Number of Sample Container Date Time Matrix Method Preserved Number of Sample Container Date Time Matrix Method Preserved Number of Sample Container Date Time Matrix Method Preserved Number of Sample Container Date Time Matrix Method Preserved Number of Sample Container Date Time Matrix Method Preserved Number of Sample Container Date Time Matrix Method Preserved Number of Sample Container Date Time Matrix Method Preserved Number of Sample Container Matrix Matrix N N N Matrix Matrix N N N Matrix N N N	Project Name:	a DEM IV	Job Number:	34 V24	ta	117	Л	Typ 4	e of Analy	sis to be 1	erforme	P	TAT	Special Instru	ctions	
Sample Calterian Matrix Method Preserved Number of Sample Sample Calterian Matrix Method Preserved Number of Sample Date Time Time Matrix Part Time Time Noove Part Part Noove Noove Part Part Part Noove Part Part Part Part Part Part <td>Sampled by: Lydin Parch Chil</td> <td>avra Poil</td> <td>Sampler Signa</td> <td>ture:</td> <td>hultre</td> <td>T N</td> <td></td> <td>ELY 8260</td> <td>EPA 8081</td> <td></td> <td>NAL</td> <td>(PON)</td> <td>- E</td> <td>Vhore)</td> <td>2de t</td> <td></td>	Sampled by: Lydin Parch Chil	avra Poil	Sampler Signa	ture:	hultre	T N		ELY 8260	EPA 8081		NAL	(PON)	- E	Vhore)	2de t	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Sample Collection	-	fethod Prese	erved Nun	iber of San	nple Contai		s	1 250		0551	1	lists		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sample ID		Vapor Iiož	^c ONH	ssalg Jm 04	S oz. Class Jar	Viod Ingely		OCPs / Pesticide	H+ sai	Revent So	D1550142	A-muT brebnet2	~		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	23	×	×	-		2	-		XX		XX				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	- U	4/22/13 09 00			2				×			XX	×			
$\frac{4}{123} (3 10 20 \times 10^{-10} \times$	- 3 - 1	1/23/13 1000	×			2			X	×						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 22 1	23/3	×			2					11					
$\frac{1}{12} = \frac{1}{12} $	- 3 - 3	123/13	×			4										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	rt i	123/13	×	>		6)			\rightarrow				~			
AINSIZE 1/23/2 X IN I X INSIZE 1/23/2 X INSIZE 1/23/2 X INSIZE 1/23/2 X INSIZE 1/2 Total # of containers per type 3 2 4 2 Total # of containers 1 b Total # of containers per type 3 2 4 2 Total # of containers 1 b Total # of containers per type 3 2 4 2 Total # of containers 1 b Total # of containers per type 3 2 4 2 Total # of containers 1 b Total # of containers per type 3 2 4 2 Total # of containers 1 b Total # of containers per type 3 2 4 2 Total # of containers 1 b Total # of containers per type 3 2 4 2 Total # of containers 1 b Total # of containers per type 3 2 4 2 Total # of containers 1 b Total # of containers per type 3 2 4 2 Total # of containers 1 b Total # of containers per type 3 2 4 2 Total # of containers 1 b Total # of containers per type 3 2 4 2 Total # of containers 1 b Total # of containers per type 3 2 4 2 Total # of containers 1 b Total # of containers per type 3 2 4 2 Total # of containers 1 b Total # of containers per type 3 2 4 2 Total # of containers 1 b Total # of containers per type 3 2 4 2 Total # of containers 1 b Total # of containers per type 3 2 4 2 Total # of containers 1 b Total # of containers per type 3 2 4 2 Total # of containers 1 b Total # of containers per type 3 2 4 2 Total # of containers 1 b Total # of containers per type 3 2 4 2 Total # of containers 1 b Total # of containers per type 3 2 4 2 Total # of containers 1 b Total # of containers per type 3 2 4 2 Total # of containers 1 b Total # of containers per type 3 2 4 2 Total # of containers 1 b Total # of containers 1 b			×		_								X			
Total # of containers per type 3 2 4 2 Total # of containers 16 Total # of containers per type 3 2 4 2 Total # of containers 16 Total # of containers 16 Time Received by: Company Date Time Time ACD PUEK 4/23/13 1436 POULAD 00 PEC 473/13 1436	R-7 GIVAINSIZE	23	×					XI					~			
Total # of containers per type 8 2 4 2 Total # of containers 16 Total # of containers per type 8 2 4 2 Total # of containers 16 Time Company Date Time Received by: Company Date 1/3/13 1/3 6 POULLA COUR PEL 4/32/13 1/430													_			
acity Hurlan Duliek 4/23/13 1436 POULVA COU R. 4/23/13 1436 Samples			Total # of co	intainers per	t type		7		tal # of co	ntainers	1	-	lease ret	In original COC to D	udek	
Which are busen 423/13 1436 POUND COU PC 43313 1430 conter	Relinquished by:	Company		me	Received	by:		Con		ate	Tir	ne		Sample Receipt		
We COLO PCL 4/23/3 Loy O D PCL 23/3/45/0 Contorns to COC	X	1	1/23/13 1	136	T	UMPA,	B	\$	L C	5	10		Samp	es Intact		
and take it and a langer and a land and and and and and and and and and	VIII CON	1.VI	417212	VD"	-	K	A	9	111	120	200	211	Coole			
	HANNA LAN	J	Patt	211		2/	0	4	T	1	1	2]	
														Re	Rev 01/13	

City of San Diego Metropolitan Wastewater Department

Environmental Monitoring & Technical Services Division

Marine Microbiology Laboratory

DATE:

2392 Kincaid Rd San Diego, CA 92101-0811 (619)758-2361

CHAIN OF CUSTODY RECORD

Project/Client:	LALIGRON LYTE PUEIT	Type of sampling equipment / How sample obtained / Other sampling notes
Contact Name:	Contact Name: Flizsbell Chilnen	
Phone:	Phone: 358-812-8271	

Time Initials Source / 1D. Matrix (water, bio-solid, etc.) Image: Source / 1D. Matrix (water, bio-solid, etc.) Image: Source / 1D. Matrix (grab, comp., etc.) 2	ALYSES	YSE	NAL	A			SAMPLE			
0700 LR R-3-U Water X X X International							Source / I.D.	Initials	Time	
	E. coli Enterococcus Coliphage Other	Enterococcus	E. coli	Fecal Coliform	Total Coliform	creek			182 A	5
	\times	χ		\times	\times	Water	R-3-4	6.2	0700	
	×	X		X	Х	Bally	R-3-D	L.D.	0800	
Image: Sector								5. 1 14		14
Image: Sector of the sector								4	-	

CHAIN-OF-CUSTODY

COMMENTS-

Relinquished by(print): Elizabeth Chail Men	Relinquished by(print): TELIER BRITH CCARIMAN	$f = f^{2}$
sign: Eichork Chilman	sign Dysak CChilman	
Received by(print): Participante Diruk	Received by (print):	
ET H	ton Kussen	
Sign:	Sign:	
7/H3/131	Date/Time: 1425 1/3	
Date/Time:		
Location: DUTS (P13 185	Location: GMTS LAND I MM	

Rev 01/13

N	Autilus En 4340 Vandever Ave San Diego, CA 9212 Phone 858.587.733	nue 20	tal							Chai	n of Cı	ustoc	ly
- SD	Fax 858.587.3961	5							Da	te <u>+//3/13</u>	Page_	of	
Sample Collection	By: Vdia	Puerte (Alie Ral	ELIZ	abrini	Chilnan	ļ	ANALYSE	S REQUIRED				
Report to:				Invoice	То:								Keceipt Temperature (°C)
Company	URS	CUN		Compa		25 COLD							atur
Address City/State/	Zip			Addres City/S	tate/Zip	1225 CAPCILATIVE Sq. Suite 160							ber
Contact				Contac	t <u>E</u>	lizalath Chilman							Len
Phone Email				Phone Email		58-812-8271 izabeth chi) monours.com							ceip
				CONTAINER	NO. OF							1	a
SAMPLE II		TIME	MATRIX	plastic bog	CONTAINERS	COMMENTS							-
1 R-3-D-TR 2 12 3- U T		0800	Serliment										-
3 R-3 U-1		0900	water	Vollarer	2								
4 R 3 D		0800		L	2-								
5													_
6	1												_
7													
8													
9													
	INFORMATION	S	AMPLE RECEI			L) RELINQUISHED BY (CLIENT)			ECEIVED	BY (COURI	ER)		
Client:		Total No.	of Containers		(Signature)	6 C. Chilm 1510	(Signature)					(Time)	
PO No.:		Received (Good Condition		Elitala	the Chilmon 4/23/13	(Printed Na					(Date)	
Shipped Via:			Test Schedule?		(Company) UBS	Corporation	(Company)						
SPECIAL INSTRU	UCTIONS/COMME	ITS:			(Signature)	3) RELINQUISHED BY (COURIER)	(Signature)	0		D BY (LABOR	ATORY)	(Time)	_
							N	ha	a	~		510	
					(Printed Name)	(Date)	(Printed Na	Mive	s lai		4	(Date)	3
					(Company)		(Company)	N	aufil	us			

Additional costs maybe required for sample disposal or storage. Payment Net 30 unless otherwise contracted.

www.nautilusenvironmental.com

DISTRIBUTION: WHITE - Nautilus Environmental, COLOR - Originator

ATTACHMENT 4

Laboratory Analytical Reports

11990 Discovery Ct. • Moorpark, CA 93021 • Ph. (805) 532-0012 • Fax (805) 532-0016

Customer:	URS Corporation (San Diego) - Vendor # 112052 4225 Executive Square, Suite 1600 La Jolla CA, 92037
Attention:	Bryn Evans
Report Date:	25-Apr-13 19:13

Page 1 of 25

Project/P.O.#: City of San Diego O&M IWQA

Allention.	Dryn Evans
Report Date:	25-Apr-13 19:13
Subject:	Murphy Canyon 7165

		QC RE	EPORTING	ANALYZED		RESULT	NOTE
PARAMETER	METHOD	BATCH	LIMIT	(ANALYST)			
R-3-D (Sample I.D.# : 1304275-01)	Collected: 23-Apr-1	3 By Dudek					
Arsenic	EPA 200.8	AD32406	0.5	24-Apr-13 (AF)		2.8 ug/l	
Cadmium	EPA 200.8	AD32406	0.2	24-Apr-13 (AF)	<	0.2 ug/l	
Chromium	EPA 200.8	AD32406	1.0	24-Apr-13 (AF)		5.8 ug/l	
Copper	EPA 200.8	AD32406	1.0	24-Apr-13 (AF)		3.8 ug/l	
Manganese	EPA 200.8	AD32406	1.0	24-Apr-13 (AF)		26 ug/l	
Nickel	EPA 200.8	AD32406	1.0	24-Apr-13 (AF)		9.9 ug/l	
Lead	EPA 200.8	AD32406	1.0	24-Apr-13 (AF)	<	1.0 ug/l	
Antimony	EPA 200.8	AD32406	1.0	24-Apr-13 (AF)	<	1.0 ug/l	
Selenium	EPA 200.8	AD32406	2.0	24-Apr-13 (AF)		9.2 ug/l	
Zinc	EPA 200.8	AD32406	5.0	24-Apr-13 (AF)		8.2 ug/l	
Arsenic - Dissolved	EPA 200.8	AD32406	0.5	24-Apr-13 (AF)		2.2 ug/l	
Cadmium - Dissolved	EPA 200.8	AD32406	0.2	24-Apr-13 (AF)	<	0.2 ug/l	
Chromium - Dissolved	EPA 200.8	AD32406	1.0	24-Apr-13 (AF)		3.5 ug/l	
Copper - Dissolved	EPA 200.8	AD32406	1.0	24-Apr-13 (AF)		3.2 ug/l	
Manganese - Dissolved	EPA 200.8	AD32406	1.0	24-Apr-13 (AF)		18 ug/l	
Nickel - Dissolved	EPA 200.8	AD32406	1.0	24-Apr-13 (AF)		7.5 ug/l	
Lead - Dissolved	EPA 200.8	AD32406	1.0	24-Apr-13 (AF)	<	1.0 ug/l	
Antimony - Dissolved	EPA 200.8	AD32406	1.0	24-Apr-13 (AF)	<	1.0 ug/l	
Selenium - Dissolved	EPA 200.8	AD32406	2.0	24-Apr-13 (AF)		7.0 ug/l	
Zinc - Dissolved	EPA 200.8	AD32406	5.0	24-Apr-13 (AF)		8.0 ug/l	
Chlorpyrifos	EPA 8141	AD32401	1.0	25-Apr-13 (SJ)	<	1.0 ug/l	
Diazinon	EPA 8141	AD32401	0.2	25-Apr-13 (SJ)	<	0.2 ug/l	
Malathion	EPA 8141	AD32401	1.0	25-Apr-13 (SJ)	<	1.0 ug/l	
Total Hardness	SM 2340	AD32422	2	24-Apr-13 (CS)		1290 mg/l	
Phosphorus, Dissolved as P	EPA 365.3	AD32413	0.03	24-Apr-13 (LL)	<	0.03 mg/l	
Total Kjeldahl Nitrogen	EPA 351.3	AD32421	0.10	24-Apr-13 (JA)		0.20 mg/l	
Phosphorus, Total as P	EPA 365.3	AD32413	0.03	24-Apr-13 (LL)	<	0.03 mg/l	
Total Nitrogen	varies	[CALC]	0.30	24-Apr-13 (JA)		1.52 mg/l	

Respectfully Submitted,

+ Buchn

Pat Brueckner Laboratory Director

(

4/25/2013

Customer:	URS Corporation (San Diego) - Vendor # 112052 4225 Executive Square, Suite 1600 La Jolla CA, 92037
Attention:	Bryn Evans

Page 2 of 25

Project/P.O.#: City of San Diego O&M IWQA

Report Date:	25-Apr-13 19:13
Subject:	Murphy Canyon 7165

		QC RI	EPORTING	ANALYZED		RESULT	NOTE
PARAMETER	METHOD	BATCH	LIMIT	(ANALYST)			
R-3-D (Sample I.D.# : 1304275-01)) Collected: 23-Apr-1	3 By Dudek					
Total Suspended Solids	EPA 160.2	AD32412	1	24-Apr-13 (LL)		8 mg/l	
Total Dissolved Solids	EPA 160.1	AD32411	1	24-Apr-13 (LL)		2472 mg/l	
Nitrite as N	EPA 353.2	AD32416	0.10	24-Apr-13 (JA)		0.22 mg/l	
Nitrate as N	EPA 353.3	AD32416	0.10	24-Apr-13 (JA)		1.10 mg/l	
R-3-U (Sample I.D.# : 1304275-02)) Collected: 23-Apr-1	3 By Dudek					
Arsenic	EPA 200.8	AD32406	0.5	24-Apr-13 (AF)		3.4 ug/l	
Cadmium	EPA 200.8	AD32406	0.2	24-Apr-13 (AF)	<	0.2 ug/l	
Chromium	EPA 200.8	AD32406	1.0	24-Apr-13 (AF)		6.9 ug/l	
Copper	EPA 200.8	AD32406	1.0	24-Apr-13 (AF)		4.2 ug/l	
Manganese	EPA 200.8	AD32406	1.0	24-Apr-13 (AF)		47 ug/l	
Nickel	EPA 200.8	AD32406	1.0	24-Apr-13 (AF)		13 ug/l	
Lead	EPA 200.8	AD32406	1.0	24-Apr-13 (AF)	<	1.0 ug/l	
Antimony	EPA 200.8	AD32406	1.0	24-Apr-13 (AF)	<	1.0 ug/l	
Selenium	EPA 200.8	AD32406	2.0	24-Apr-13 (AF)		9.9 ug/l	
Zinc	EPA 200.8	AD32406	5.0	24-Apr-13 (AF)		22 ug/l	
Arsenic - Dissolved	EPA 200.8	AD32406	0.5	24-Apr-13 (AF)		2.6 ug/l	
Cadmium - Dissolved	EPA 200.8	AD32406	0.2	24-Apr-13 (AF)	<	0.2 ug/l	
Chromium - Dissolved	EPA 200.8	AD32406	1.0	24-Apr-13 (AF)		6.1 ug/l	
Copper - Dissolved	EPA 200.8	AD32406	1.0	24-Apr-13 (AF)		3.3 ug/l	
Manganese - Dissolved	EPA 200.8	AD32406	1.0	24-Apr-13 (AF)		32 ug/l	
Nickel - Dissolved	EPA 200.8	AD32406	1.0	24-Apr-13 (AF)		8.8 ug/l	
Lead - Dissolved	EPA 200.8	AD32406	1.0	24-Apr-13 (AF)	<	1.0 ug/l	
Antimony - Dissolved	EPA 200.8	AD32406	1.0	24-Apr-13 (AF)	<	1.0 ug/l	
Selenium - Dissolved	EPA 200.8	AD32406	2.0	24-Apr-13 (AF)		7.8 ug/l	
Zinc - Dissolved	EPA 200.8	AD32406	5.0	24-Apr-13 (AF)		19 ug/l	
Chlorpyrifos	EPA 8141	AD32401	1.0	25-Apr-13 (SJ)	<	1.0 ug/l	
Diazinon	EPA 8141	AD32401	0.2	25-Apr-13 (SJ)	<	0.2 ug/l	
Malathion	EPA 8141	AD32401	1.0	25-Apr-13 (SJ)	<	1.0 ug/l	

Respectfully Submitted,

Buch

Pat Brueckner Laboratory Director

<

Customer:	URS Corporation (San Diego) - Vendor # 112052 4225 Executive Square, Suite 1600 La Jolla CA, 92037
Attention: Report Date:	Bryn Evans 25-Apr-13 19:13

Page 3 of 25

Project/P.O.#: City of San Diego O&M IWQA

Report Date:	25-Apr-13 19:13
Subject:	Murphy Canyon 7165

		QC RE	EPORTING	ANALYZED		RESULT	NOTE
PARAMETER	METHOD	BATCH	LIMIT	(ANALYST)			
R-3-U (Sample I.D.# : 1304275-02) Coll	ected: 23-Apr-1	3 By Dudek					
Total Hardness	SM 2340	AD32422	2	24-Apr-13 (CS)		1150 mg/l	
Phosphorus, Dissolved as P	EPA 365.3	AD32413	0.03	24-Apr-13 (LL)	<	0.03 mg/l	
Total Kjeldahl Nitrogen	EPA 351.3	AD32421	0.10	24-Apr-13 (JA)		0.20 mg/l	
Phosphorus, Total as P	EPA 365.3	AD32413	0.03	24-Apr-13 (LL)	<	0.03 mg/l	
Total Nitrogen	varies	[CALC]	0.30	24-Apr-13 (JA)	<	0.30 mg/l	
Total Suspended Solids	EPA 160.2	AD32412	1	24-Apr-13 (LL)		7 mg/l	
Total Dissolved Solids	EPA 160.1	AD32411	1	24-Apr-13 (LL)		2620 mg/l	
Nitrite as N	EPA 353.2	AD32416	0.10	24-Apr-13 (JA)	<	0.10 mg/l	
Nitrate as N	EPA 353.3	AD32416	0.10	24-Apr-13 (JA)	<	0.10 mg/l	
-3-1 (Sample I.D.# : 1304275-03) Coll	ected: 23-Apr-1	3 By Dudek					
Copper	EPA 6020	AD32405	0.2	24-Apr-13 (AF)		9.3 mg/kg	
Manganese	EPA 200.8	AD32405	10	24-Apr-13 (AF)		230 mg/kg	
Lead	EPA 6020	AD32405	0.02	24-Apr-13 (AF)		6.8 mg/kg	
Zinc	EPA 6020	AD32405	0.5	24-Apr-13 (AF)		58 mg/kg	
Arsenic	EPA 6020	AD32405	0.2	24-Apr-13 (AF)		5.2 mg/kg	
Cadmium	EPA 6020	AD32405	0.2	24-Apr-13 (AF)	<	0.2 mg/kg	
Chromium	EPA 6020	AD32405	0.2	24-Apr-13 (AF)		5.7 mg/kg	
Nickel	EPA 6020	AD32405	0.5	24-Apr-13 (AF)		3.9 mg/kg	
Antimony	EPA 6020	AD32405	1.0	24-Apr-13 (AF)	<	1.0 mg/kg	
Selenium	EPA 6020	AD32405	1.0	24-Apr-13 (AF)	<	1.0 mg/kg	
Chlorpyrifos	EPA 8141	AD32402	50.0	25-Apr-13 (SJ)	<	50.0 ug/kg	
Diazinon	EPA 8141	AD32402	50.0	25-Apr-13 (SJ)	<	50.0 ug/kg	
Malathion	EPA 8141	AD32402	50.0	25-Apr-13 (SJ)	<	50.0 ug/kg	
Surrogate: 1,3-Dimethyl-2-nitrobenze	EPA 8141	AD32402		25-Apr-13 (SJ)		36.8 % (30-120)	
Total Kjeldahl Nitrogen	EPA 351.3	AD32403	0.5	24-Apr-13 (JA)		100 mg/kg	
Phosphorus, Total as P	EPA 365.3	AD32414	0.5	24-Apr-13 (LL)		171 mg/kg	
% Solids	% calculation	AD32410		24-Apr-13 (CS)		70.9 %	

Respectfully Submitted,

copectially Cubinitied,

& Buehn

Pat Brueckner Laboratory Director

(

Customer:	URS Corporation (San Diego) - Vendor # 112052 4225 Executive Square, Suite 1600 La Jolla CA, 92037
Attention:	Bryn Evans

Page 4 of 25

Project/P.O.#: City of San Diego O&M IWQA

Alleniion.	DIVILEVAIIS
Report Date:	25-Apr-13 19:13
Subject:	Murphy Canyon 7165

		QC RE	EPORTING	ANALYZED		RESULT	NOTE
PARAMETER	METHOD	BATCH	LIMIT	(ANALYST)			
R-3-1 (Sample I.D.# : 1304275-03) Col	ected: 23-Apr-1	3 By Dudek					
Nitrite as N	EPA 354.1	AD32415	0.5	24-Apr-13 (JA)	<	0.5 mg/kg	
Nitrate as N	EPA 353.3	AD32415	0.5	24-Apr-13 (JA)	<	0.5 mg/kg	
R-3-2 (Sample I.D.# : 1304275-04) Col	ected: 23-Apr-1	3 By Dudek					
Copper	EPA 6020	AD32405	0.2	24-Apr-13 (AF)		2.5 mg/kg	
Manganese	EPA 200.8	AD32405	10	24-Apr-13 (AF)		60 mg/kg	
Lead	EPA 6020	AD32405	0.02	24-Apr-13 (AF)		2.5 mg/kg	
Zinc	EPA 6020	AD32405	0.5	24-Apr-13 (AF)		21 mg/kg	
Arsenic	EPA 6020	AD32405	0.2	24-Apr-13 (AF)		2.8 mg/kg	
Cadmium	EPA 6020	AD32405	0.2	24-Apr-13 (AF)	<	0.2 mg/kg	
Chromium	EPA 6020	AD32405	0.2	24-Apr-13 (AF)		1.7 mg/kg	
Nickel	EPA 6020	AD32405	0.5	24-Apr-13 (AF)		1.3 mg/kg	
Antimony	EPA 6020	AD32405	1.0	24-Apr-13 (AF)	<	1.0 mg/kg	
Selenium	EPA 6020	AD32405	1.0	24-Apr-13 (AF)	<	1.0 mg/kg	
Chlorpyrifos	EPA 8141	AD32402	50.0	25-Apr-13 (SJ)	<	50.0 ug/kg	
Diazinon	EPA 8141	AD32402	50.0	25-Apr-13 (SJ)	<	50.0 ug/kg	
Malathion	EPA 8141	AD32402	50.0	25-Apr-13 (SJ)	<	50.0 ug/kg	
Surrogate: 1,3-Dimethyl-2-nitrobenze	e EPA 8141	AD32402		25-Apr-13 (SJ)		40.3 % (30-120)	
Total Kjeldahl Nitrogen	EPA 351.3	AD32403	0.5	24-Apr-13 (JA)		19 mg/kg	
Phosphorus, Total as P	EPA 365.3	AD32414	0.5	24-Apr-13 (LL)		42.3 mg/kg	
% Solids	% calculation	AD32410		24-Apr-13 (CS)		74.3 %	
Nitrite as N	EPA 354.1	AD32415	0.5	24-Apr-13 (JA)	<	0.5 mg/kg	
Nitrate as N	EPA 353.3	AD32415	0.5	24-Apr-13 (JA)	<	0.5 mg/kg	
R-3-3 (Sample I.D.# : 1304275-05) Col	ected: 23-Apr-1	3 By Dudek					
Copper	EPA 6020	AD32405	0.2	24-Apr-13 (AF)		8.4 mg/kg	
Manganese	EPA 200.8	AD32405	10	24-Apr-13 (AF)		140 mg/kg	
Lead	EPA 6020	AD32405	0.02	24-Apr-13 (AF)		5.1 mg/kg	
Zinc	EPA 6020	AD32405	0.5	24-Apr-13 (AF)		51 mg/kg	

Respectfully Submitted,

Pat Buch

Pat Brueckner Laboratory Director

<

Customer:	URS Corporation (San Diego) - Vendor # 112052 4225 Executive Square, Suite 1600 La Jolla CA, 92037
Attention:	Bryn Evans

Page 5 of 25

Project/P.O.#: City of San Diego O&M IWQA

Report Date: 25-Apr-13 19:13 Subject: Murphy Canyon 7165

		QC RE	EPORTING	ANALYZED		RESULT	NOTE
PARAMETER	METHOD	BATCH	LIMIT	(ANALYST)			
-3-3 (Sample I.D.# : 1304275-05) Colle	ected: 23-Apr-1	3 By Dudek					
Arsenic	EPA 6020	AD32405	0.2	24-Apr-13 (AF)		3.4 mg/kg	
Cadmium	EPA 6020	AD32405	0.2	24-Apr-13 (AF)	<	0.2 mg/kg	
Chromium	EPA 6020	AD32405	0.2	24-Apr-13 (AF)		3.6 mg/kg	
Nickel	EPA 6020	AD32405	0.5	24-Apr-13 (AF)		3.1 mg/kg	
Antimony	EPA 6020	AD32405	1.0	24-Apr-13 (AF)	<	1.0 mg/kg	
Selenium	EPA 6020	AD32405	1.0	24-Apr-13 (AF)	<	1.0 mg/kg	
Chlorpyrifos	EPA 8141	AD32402	50.0	25-Apr-13 (SJ)	<	50.0 ug/kg	
Diazinon	EPA 8141	AD32402	50.0	25-Apr-13 (SJ)	<	50.0 ug/kg	
Malathion	EPA 8141	AD32402	50.0	25-Apr-13 (SJ)	<	50.0 ug/kg	
Surrogate: 1,3-Dimethyl-2-nitrobenze	EPA 8141	AD32402		25-Apr-13 (SJ)		40.5 % (30-120)	
Total Kjeldahl Nitrogen	EPA 351.3	AD32403	0.5	24-Apr-13 (JA)		83 mg/kg	
Phosphorus, Total as P	EPA 365.3	AD32414	0.5	24-Apr-13 (LL)		109 mg/kg	
% Solids	% calculation	AD32410		24-Apr-13 (CS)		65.4 %	
Nitrite as N	EPA 354.1	AD32415	0.5	24-Apr-13 (JA)	<	0.5 mg/kg	
Nitrate as N	EPA 353.3	AD32415	0.5	24-Apr-13 (JA)	<	0.5 mg/kg	
-7-1 (Sample I.D.# : 1304275-06) Colle	ected: 23-Apr-1	3 By Dudek					
Copper	EPA 6020	AD32405	0.2	24-Apr-13 (AF)		21 mg/kg	
Manganese	EPA 200.8	AD32405	10	24-Apr-13 (AF)		230 mg/kg	
Lead	EPA 6020	AD32405	0.02	24-Apr-13 (AF)		14 mg/kg	
Zinc	EPA 6020	AD32405	0.5	24-Apr-13 (AF)		110 mg/kg	
Arsenic	EPA 6020	AD32405	0.2	24-Apr-13 (AF)		6.7 mg/kg	
Cadmium	EPA 6020	AD32405	0.2	24-Apr-13 (AF)		0.3 mg/kg	
Chromium	EPA 6020	AD32405	0.2	24-Apr-13 (AF)		14 mg/kg	
Nickel	EPA 6020	AD32405	0.5	24-Apr-13 (AF)		9.9 mg/kg	
Antimony	EPA 6020	AD32405	1.0	24-Apr-13 (AF)	<	1.0 mg/kg	
Selenium	EPA 6020	AD32405	1.0	24-Apr-13 (AF)	<	1.0 mg/kg	

Respectfully Submitted,

Pat Buen

Pat Brueckner Laboratory Director

Customer:	URS Corporation (San Diego) - Vendor # 112052 4225 Executive Square, Suite 1600 La Jolla CA, 92037	
Attention: Report Date:	Bryn Evans 25-Apr-13 19:13	Proj

Page 6 of 25

Project/P.O.#: City of San Diego O&M IWQA

Attention: Bryn Evans Report Date: 25-Apr-13 19:13 Subject: Murphy Canyon 7165

PARAMETER	METHOD	QC RE BATCH	EPORTING LIMIT	ANALYZED (ANALYST)		RESULT	NOTE
R-7-1 (Sample I.D.# : 1304275-06) Colle	ected: 23-Apr-1	3 By Dudek					
Chlorpyrifos	EPA 8141	AD32402	50.0	25-Apr-13 (SJ)	<	50.0 ug/kg	
Diazinon	EPA 8141	AD32402	50.0	25-Apr-13 (SJ)	<	50.0 ug/kg	
Malathion	EPA 8141	AD32402	50.0	25-Apr-13 (SJ)	<	50.0 ug/kg	
Surrogate: 1,3-Dimethyl-2-nitrobenze	EPA 8141	AD32402		25-Apr-13 (SJ)		40.2 % (30-120)	
Total Kjeldahl Nitrogen	EPA 351.3	AD32403	0.5	24-Apr-13 (JA)		270 mg/kg	
Phosphorus, Total as P	EPA 365.3	AD32414	0.5	24-Apr-13 (LL)		241 mg/kg	
% Solids	% calculation	AD32410		24-Apr-13 (CS)		60.0 %	
Nitrite as N	EPA 354.1	AD32415	0.5	24-Apr-13 (JA)	<	0.5 mg/kg	
Nitrate as N	EPA 353.3	AD32415	0.5	24-Apr-13 (JA)	<	0.5 mg/kg	

Respectfully Submitted,

& Buch

Pat Brueckner Laboratory Director

(

Customer:	URS Corporation (San Diego) - Vendor # 112052 4225 Executive Square, Suite 1600 La Jolla CA, 92037
Attention:	Bryn Evans
Report Date:	25-Apr-13 19:13
Subject:	Murphy Canyon 7165

Page 7 of 25

Project/P.O.#: City of San Diego O&M IWQA

Metals by EPA 200 Series Methods - Quality Control										
Parameter	Result	Rep. Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Note
Batch AD32405 - EPA 3050B										
Blank (AD32405-BLK1)				Prepare	d & Analy	zed: 24-A	pr-13			
Copper	ND	0.2	mg/kg	•						
Zinc	ND	0.5	"							
Manganese	ND	1.0	"							
Lead	ND	0.02	"							
LCS (AD32405-BS1)				Prepare	d & Analy	zed: 24-A	pr-13			
Zinc	2.70	0.5	mg/kg	2.50		108	85-115			
Manganese	2.48	1.0	"	2.50		99.3	85-115			
Lead	2.42	0.02	"	2.50		96.7	85-115			
Copper	2.52	0.2	"	2.50		101	85-115			
LCS Dup (AD32405-BSD1)				Prepare	d & Analy	zed: 24-A	pr-13			
Manganese	2.46	1.0	mg/kg	2.50		98.3	85-115	0.992	20	
Copper	2.48	0.2	"	2.50		99.0	85-115	1.58	20	
Lead	2.44	0.02	"	2.50		97.8	85-115	1.11	20	
Zinc	2.64	0.5	"	2.50		106	85-115	2.47	20	
Duplicate (AD32405-DUP1)	S	ource: 13042	275-03	Prepare	d & Analy	zed: 24-A	vpr-13			
Manganese	228	10	mg/kg		226			1.04	20	
Lead	6.73	0.02	"		6.76			0.445	20	
Zinc	58.4	0.5	"		58.0			0.602	20	
Copper	9.42	0.2	"		9.30			1.28	20	
Matrix Spike (AD32405-MS1)	S	ource: 13042	275-03	Prepare	d & Analy	zed: 24-A	pr-13			
Lead	30.5	0.02	mg/kg	25.0	6.76	95.1	80-120			
Manganese	237	10	"	25.0	226	43.8	80-120			QM-05
Copper	32.8	0.2	"	25.0	9.30	94.2	80-120			
Zinc	78.2	0.5	"	25.0	58.0	80.6	80-120			

Respectfully Submitted,

Buch

Pat Brueckner Laboratory Director

(

Project/P.O.#: City of San Diego O&M IWQA

Page 8 of 25

Customer:	URS Corporation (San Diego) - Vendor # 112052 4225 Executive Square, Suite 1600 La Jolla CA, 92037
Attention:	Bryn Evans
Report Date:	25-Apr-13 19:13
Subject:	Murphy Canyon 7165

Metals by EPA 200 Series Methods - Quality Control RPD Spike Source %REC Parameter Result Rep. Limit Units Level Result %REC Limits RPD Limit Note Batch AD32405 - EPA 3050B Matrix Spike Dup (AD32405-MSD1) Source: 1304275-03 Prepared & Analyzed: 24-Apr-13 Manganese 235 0.678 QM-05 10 mg/kg 25.0 226 37.4 80-120 20 " Lead 29.8 0.02 25.0 6.76 92.2 80-120 2.42 20 78.6 0.5 . 25.0 82.6 0.638 20 58.0 80-120 " 32.4 0.2 25.0 Copper 9.30 92.4 80-120 1.39 20 Batch AD32406 - EPA 200 Series Blank (AD32406-BLK1) Prepared & Analyzed: 24-Apr-13 Cadmium ND 0.2 ug/l ND 0.5 ... Arsenic ... Chromium ND 1.0 Copper ND 1.0 ND 1.0 Manganese Selenium ND 2.0 Nickel ND 1.0 Zinc ND 5.0 ND 1.0 . Antimony ND . 1.0 Lead LCS (AD32406-BS1) Prepared & Analyzed: 24-Apr-13 Nickel 51.1 1.0 ug/l 50.0 102 85-115 ... 47.2 50.0 94.3 85-115 Lead 1.0 " 50.0 Selenium 49.4 2.0 98.7 85-115

" 50.0 80-120 Zinc 50.6 5.0 101 . Chromium 51.6 1.0 50.0 103 85-115 " Antimony 48.2 1.0 50.0 96.3 85-115 . Copper 51.5 1.0 50.0 103 85-115 " Arsenic 48.6 0.5 50.0 97.3 80-120

Respectfully Submitted,

Zinc

& Buch

Pat Brueckner Laboratory Director

Customer:	URS Corporation (San Diego) - Vendor # 112052 4225 Executive Square, Suite 1600 La Jolla CA, 92037
Attention:	Bryn Evans
Report Date:	25-Apr-13 19:13
Subject:	Murphy Canyon 7165

Page 9 of 25

Project/P.O.#: City of San Diego O&M IWQA

				Spike	Source		%REC		RPD	
Parameter	Result	Rep. Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Note
Batch AD32406 - EPA 200 Series										
LCS (AD32406-BS1)				Prepared	d & Analyz	zed: 24-A	pr-13			
Manganese	53.4	1.0	"	50.0		107	85-115			
Cadmium	49.7	0.2	"	50.0		99.4	85-115			
LCS Dup (AD32406-BSD1)				Prepared	d & Analyz	zed: 24-A	pr-13			
Lead	47.8	1.0	ug/l	50.0		95.6	85-115	1.35	20	
Arsenic	48.7	0.5	"	50.0		97.5	80-120	0.205	20	
Chromium	50.7	1.0	"	50.0		101	85-115	1.72	20	
Antimony	48.2	1.0	"	50.0		96.4	85-115	0.104	20	
Nickel	50.7	1.0	"	50.0		101	85-115	0.884	20	
Cadmium	49.5	0.2	"	50.0		99.0	85-115	0.383	20	
Selenium	49.8	2.0	"	50.0		99.7	85-115	0.948	20	
Manganese	53.1	1.0	"	50.0		106	85-115	0.488	20	
Zinc	50.4	5.0	"	50.0		101	80-120	0.555	20	
Copper	51.5	1.0	"	50.0		103	85-115	0.0389	20	
Duplicate (AD32406-DUP1)	S	ource: 13042	275-01	Prepared	d & Analyz	zed: 24-A	pr-13			
linc	8.15	5.0	ug/l		8.23		•	0.977	20	
Antimony	0.580	1.0	"		0.650			11.4	20	
Lead	ND	1.0	"		ND				20	
Manganese	26.2	1.0	"		26.4			0.723	20	
Cadmium	ND	0.2			ND				20	
Arsenic	2.85	0.5			2.83			0.704	20	
Selenium	9.29	2.0	"		9.16			1.41	20	
Nickel	10.1	1.0			9.93			1.99	20	
Copper	3.90	1.0			3.76			3.66	20	
Chromium	5.97	1.0			5.81			2.72	20	
Matrix Spike (AD32406-MS1)	e	ource: 13042	75-01	Pronared	d & Analyz	20d· 21_1	nr-13			

Respectfully Submitted,

Buch

Pat Brueckner Laboratory Director

(

Customer:	URS Corporation (San Diego) - Vendor # 112052 4225 Executive Square, Suite 1600 La Jolla CA, 92037
Attention: Report Date:	Bryn Evans 25-Apr-13 19:13
Subject:	Murphy Canyon 7165

Page 10 of 25

Project/P.O.#: City of San Diego O&M IWQA

Me	tals by E	PA 200 Se	ries M	ethods -	Quality	/ Contr	ol			
Parameter	Result	Rep. Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Note
Batch AD32406 - EPA 200 Series										
Matrix Spike (AD32406-MS1)	S	ource: 13042	275-01	Prepared	d & Analyz	zed: 24-A	pr-13			
Zinc	51.0	5.0	ug/l	50.0	8.23	85.5	80-120			
Copper	49.1	1.0	"	50.0	3.76	90.7	80-120			
Manganese	73.8	1.0	"	50.0	26.4	94.7	80-120			
Nickel	55.4	1.0	"	50.0	9.93	91.0	80-120			
Antimony	50.5	1.0	"	50.0	0.650	99.7	80-120			
Chromium	53.3	1.0		50.0	5.81	95.1	80-120			
Lead	49.6	1.0	"	50.0	ND	99.2	80-120			
Cadmium	45.7	0.2		50.0	ND	91.4	80-120			
Selenium	59.1	2.0	"	50.0	9.16	99.9	80-120			
Arsenic	52.7	0.5	"	50.0	2.83	99.7	80-120			
Matrix Spike Dup (AD32406-MSD1)	S	ource: 13042	275-01	Prepared	a & Analyz	zed: 24-A	pr-13			
Zinc	50.9	5.0	ug/l	50.0	8.23	85.3	80-120	0.196	20	
Lead	49.6	1.0	"	50.0	ND	99.3	80-120	0.121	20	
Selenium	58.4	2.0		50.0	9.16	98.4	80-120	1.24	20	
Nickel	55.1	1.0		50.0	9.93	90.4	80-120	0.579	20	
Chromium	52.4	1.0	"	50.0	5.81	93.3	80-120	1.70	20	
Arsenic	52.1	0.5	"	50.0	2.83	98.6	80-120	1.01	20	
Copper	49.1	1.0		50.0	3.76	90.7	80-120	0.0611	20	
Cadmium	45.6	0.2		50.0	ND	91.2	80-120	0.219	20	
Manganese	73.2	1.0	"	50.0	26.4	93.5	80-120	0.830	20	
Antimony	51.0	1.0	"	50.0	0.650	101	80-120	1.02	20	

Respectfully Submitted,

Pat Buchn

Pat Brueckner Laboratory Director

(

Customer:	URS Corporation (San Diego) - Vendor # 112052 4225 Executive Square, Suite 1600 La Jolla CA, 92037
Attention:	Bryn Evans
Report Date:	25-Apr-13 19:13
Subject:	Murphy Canyon 7165

Page 11 of 25

Project/P.O.#: City of San Diego O&M IWQA

				Spike	Source		%REC		RPD	
Parameter	Result	Rep. Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Note
Batch AD32406 - EPA 200 Series										
Blank (AD32406-BLK1)				Prepared	d & Analyz	zed: 24-A	pr-13			
Nickel - Dissolved	ND	1.0	ug/l				•			
Zinc - Dissolved	ND	5.0	"							
Antimony - Dissolved	ND	1.0								
Chromium - Dissolved	ND	1.0	"							
Copper - Dissolved	ND	1.0								
Selenium - Dissolved	ND	2.0	"							
Cadmium - Dissolved	ND	0.2	"							
Arsenic - Dissolved	ND	0.5	"							
Manganese - Dissolved	ND	1.0								
Lead - Dissolved	ND	1.0	"							
LCS (AD32406-BS1)				Prepared	d & Analyz	zed: 24-A	pr-13			
Manganese - Dissolved	53.4	1.0	ug/l	50.0		107	85-115			
Arsenic - Dissolved	48.6	0.5	"	50.0		97.3	85-115			
Lead - Dissolved	47.2	1.0	"	50.0		94.3	85-115			
Antimony - Dissolved	48.2	1.0	"	50.0		96.3	85-115			
Nickel - Dissolved	51.1	1.0	"	50.0		102	85-115			
Copper - Dissolved	51.5	1.0	"	50.0		103	85-115			
Zinc - Dissolved	50.6	5.0	"	50.0		101	80-120			
Chromium - Dissolved	51.6	1.0	"	50.0		103	85-115			
Cadmium - Dissolved	49.7	0.2	"	50.0		99.4	85-115			
Selenium - Dissolved	49.4	2.0	"	50.0		98.7	85-115			
LCS Dup (AD32406-BSD1)				Prepared	d & Analyz	zed: 24-A	pr-13			
Arsenic - Dissolved	48.7	0.5	ug/l	50.0		97.5	85-115	0.205	20	
Copper - Dissolved	51.5	1.0	"	50.0		103	85-115	0.0389	20	
Cadmium - Dissolved	49.5	0.2	"	50.0		99.0	85-115	0.383	20	

Respectfully Submitted,

Buch <

Pat Brueckner Laboratory Director

Customer:	URS Corporation (San Diego) - Vendor # 112052 4225 Executive Square, Suite 1600 La Jolla CA, 92037
Attention:	Bryn Evans
Report Date:	25-Apr-13 19:13
Subject:	Murphy Canyon 7165

Page 12 of 25

Project/P.O.#: City of San Diego O&M IWQA

				Spike	Source		%REC		RPD	
Parameter	Result	Rep. Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Note
Batch AD32406 - EPA 200 Series										
LCS Dup (AD32406-BSD1)				Prepared	d & Analy:	zed: 24-A	pr-13			
Chromium - Dissolved	50.7	1.0	"	50.0		101	85-115	1.72	20	
Selenium - Dissolved	49.8	2.0	"	50.0		99.7	85-115	0.948	20	
Antimony - Dissolved	48.2	1.0	"	50.0		96.4	85-115	0.104	20	
Lead - Dissolved	47.8	1.0	"	50.0		95.6	85-115	1.35	20	
Zinc - Dissolved	50.4	5.0	"	50.0		101	80-120	0.555	20	
Manganese - Dissolved	53.1	1.0		50.0		106	85-115	0.488	20	
Nickel - Dissolved	50.7	1.0	"	50.0		101	85-115	0.884	20	
Duplicate (AD32406-DUP1)	S	ource: 13042	275-01	Prepared	d & Analy	zed: 24-A	pr-13			
Lead - Dissolved	ND	1.0	ug/l		ND				20	
Arsenic - Dissolved	2.21	0.5	"		2.22			0.451	20	
Cadmium - Dissolved	ND	0.2	"		ND				20	
Selenium - Dissolved	6.89	2.0	"		6.99			1.44	20	
Chromium - Dissolved	3.93	1.0	"		3.47			12.4	20	
Antimony - Dissolved	0.650	1.0	"		0.690			5.97	20	
Copper - Dissolved	3.15	1.0	"		3.22			2.20	20	
Manganese - Dissolved	18.1	1.0	"		18.4			1.48	20	
Zinc - Dissolved	7.83	5.0	"		8.00			2.15	20	
Nickel - Dissolved	7.57	1.0	"		7.51			0.796	20	
Matrix Spike (AD32406-MS1)	S	ource: 13042	275-01	Prepared	d & Analy	zed: 24-A	pr-13			
Cadmium - Dissolved	46.0	0.2	ug/l	50.0	ND	92.0	80-120			
Chromium - Dissolved	50.5	1.0		50.0	3.47	94.0	80-120			
Manganese - Dissolved	66.6	1.0		50.0	18.4	96.4	80-120			
Arsenic - Dissolved	51.5	0.5		50.0	2.22	98.6	75-125			
Lead - Dissolved	49.3	1.0		50.0	ND	98.7	80-120			
Antimony - Dissolved	50.5	1.0	"	50.0	0.690	99.7	80-120			

Respectfully Submitted,

Buch <

Pat Brueckner Laboratory Director

Customer:	URS Corporation (San Diego) - Vendor # 112052 4225 Executive Square, Suite 1600 La Jolla CA, 92037
Attention:	Bryn Evans
Report Date:	25-Apr-13 19:13
Subject:	Murphy Canyon 7165

Page 13 of 25

Project/P.O.#: City of San Diego O&M IWQA

Metals (Dissolved) by EPA 200 Series Methods - Quality Control										
Parameter	Result	Rep. Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Note
Batch AD32406 - EPA 200 Series										
Matrix Spike (AD32406-MS1)	S	ource: 13042	275-01	Prepared	d & Analy	zed: 24-A	pr-13			
Nickel - Dissolved	53.7	1.0	"	50.0	7.51	92.3	80-120			
Copper - Dissolved	48.7	1.0	"	50.0	3.22	91.0	80-120			
Selenium - Dissolved	56.3	2.0	"	50.0	6.99	98.6	80-120			
Zinc - Dissolved	51.6	5.0	"	50.0	8.00	87.3	80-120			
Matrix Spike Dup (AD32406-MSD1)	S	ource: 13042	275-01	Prepared	d & Analy					
Manganese - Dissolved	66.8	1.0	ug/l	50.0	18.4	96.8	80-120	0.330	20	
Chromium - Dissolved	50.7	1.0	"	50.0	3.47	94.5	80-120	0.455	20	
Lead - Dissolved	49.1	1.0	"	50.0	ND	98.2	80-120	0.427	20	
Selenium - Dissolved	55.2	2.0	"	50.0	6.99	96.3	80-120	1.99	20	
Zinc - Dissolved	51.3	5.0	"	50.0	8.00	86.6	80-120	0.661	20	
Cadmium - Dissolved	45.5	0.2	"	50.0	ND	91.0	80-120	1.09	20	
Antimony - Dissolved	50.4	1.0	"	50.0	0.690	99.4	80-120	0.258	20	
Copper - Dissolved	48.5	1.0	"	50.0	3.22	90.6	80-120	0.432	20	
Nickel - Dissolved	53.7	1.0	"	50.0	7.51	92.4	80-120	0.0931	20	
Arsenic - Dissolved	51.1	0.5	"	50.0	2.22	97.8	75-125	0.741	20	

Respectfully Submitted,

Pat Buch

Pat Brueckner Laboratory Director

Customer:	URS Corporation (San Diego) - Vendor # 112052 4225 Executive Square, Suite 1600 La Jolla CA, 92037
Attention:	Bryn Evans
Report Date:	25-Apr-13 19:13
Subject:	Murphy Canyon 7165

Page 14 of 25

Project/P.O.#: City of San Diego O&M IWQA

				Spike	Source		%REC		RPD	
Parameter	Result	Rep. Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Note
Batch AD32405 - EPA 3050B										
Blank (AD32405-BLK1)				Prepared	d & Analyz	zed: 24-A	pr-13			
Selenium	ND	1.0	mg/kg				•			
Antimony	ND	1.0	"							
Chromium	ND	0.2	"							
Arsenic	ND	0.2	"							
Nickel	ND	0.5	"							
Cadmium	ND	0.2	"							
LCS (AD32405-BS1)				Prepared	d & Analyz	zed: 24-A	pr-13			
Antimony	2.44	1.0	mg/kg	2.50		97.7	85-115			
Selenium	2.63	1.0	"	2.50		105	85-115			
Nickel	2.44	0.5	"	2.50		97.7	85-115			
Cadmium	2.48	0.2	"	2.50		99.1	85-115			
Chromium	2.34	0.2	"	2.50		93.6	85-115			
Arsenic	2.49	0.2	"	2.50		99.7	85-115			
LCS Dup (AD32405-BSD1)				Prepared	d & Analyz	zed: 24-A	pr-13			
Selenium	2.62	1.0	mg/kg	2.50		105	85-115	0.190	20	
Arsenic	2.48	0.2	"	2.50		99.1	85-115	0.624	20	
Cadmium	2.46	0.2	"	2.50		98.5	85-115	0.628	20	
Nickel	2.40	0.5	"	2.50		96.0	85-115	1.78	20	
Antimony	2.43	1.0	"	2.50		97.1	85-115	0.637	20	
Chromium	2.33	0.2	"	2.50		93.1	85-115	0.536	20	
Duplicate (AD32405-DUP1)	S	ource: 13042	275-03	Prepared	d & Analyz	zed: 24-A	pr-13			
Antimony	ND	1.0	mg/kg		0.135				20	
Cadmium	0.115	0.2	"		0.115			0.00	20	
Chromium	5.64	0.2	"		5.66			0.354	20	
Nickel	4.04	0.5	"		3.93			2.64	20	

Respectfully Submitted,

Buch (

Pat Brueckner Laboratory Director

Customer:	URS Corporation (San Diego) - Vendor # 112052 4225 Executive Square, Suite 1600 La Jolla CA, 92037
Attention:	Bryn Evans
Report Date:	25-Apr-13 19:13
Subject:	Murphy Canyon 7165

Page 15 of 25

Project/P.O.#: City of San Diego O&M IWQA

Metals by SM 3500 Series Methods - Quality Control										
Parameter	Result	Rep. Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Note
Batch AD32405 - EPA 3050B										
Duplicate (AD32405-DUP1)	S	ource: 13042	275-03	Prepared	d & Analyz	zed: 24-A	pr-13			
Arsenic	5.20	0.2	"	•	5.20			0.0961	20	
Selenium	ND	1.0			ND				20	
Matrix Spike (AD32405-MS1)	S	ource: 13042	Prepared	d & Analyz						
Nickel	27.0	0.5	mg/kg	25.0	3.93	92.3	80-120			
Antimony	24.1	1.0	"	25.0	0.135	96.0	80-120			
Cadmium	24.8	0.2	"	25.0	0.115	98.6	80-120			
Selenium	25.0	1.0	"	25.0	ND	100	80-120			
Arsenic	28.8	0.2	"	25.0	5.20	94.2	80-120			
Chromium	28.4	0.2		25.0	5.66	91.1	80-120			
Matrix Spike Dup (AD32405-MSD1)	S	ource: 13042	275-03	Prepared	d & Analyz	pr-13				
Chromium	28.3	0.2	mg/kg	25.0	5.66	90.6	80-120	0.405	20	
Selenium	25.2	1.0	"	25.0	ND	101	80-120	0.836	20	
Cadmium	24.6	0.2	"	25.0	0.115	97.9	80-120	0.709	20	
Antimony	24.2	1.0		25.0	0.135	96.3	80-120	0.352	20	
Arsenic	28.6	0.2		25.0	5.20	93.8	80-120	0.418	20	
Nickel	26.8	0.5	"	25.0	3.93	91.4	80-120	0.818	20	

Respectfully Submitted,

Buch

Pat Brueckner Laboratory Director

(

Customer:	URS Corporation (San Diego) - Vendor # 112052 4225 Executive Square, Suite 1600 La Jolla CA, 92037	
Attention:	Bryn Evans	Projec
Report Date:	25-Apr-13 19:13	
Subject:	Murphy Canyon 7165	

Page 16 of 25

Project/P.O.#: City of San Diego O&M IWQA

Parameter	Result	Rep. Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Note	
Batch AD32401 - Solvent Extraction	on										
Blank (AD32401-BLK1)				Prepared	l: 24-Apr-	13 Analy:	zed: 25-A	pr-13			
Chlorpyrifos	ND	1.0	ug/l								
Diazinon	ND	0.2	"								
Malathion	ND	1.0	"								
LCS (AD32401-BS1)				Prepared	l: 24-Apr-	13 Analy	zed: 25-A	pr-13			
Surrogate: 1,3-Dimethyl-2-nitrobenzene	4.68		ug/l	10.0		46.8	30-120				
Malathion	4.10	1.0	"	5.00		81.9	50-130				
LCS Dup (AD32401-BSD1)				Prepared: 24-Apr-13 Analyzed: 25-Apr-13							
Surrogate: 1,3-Dimethyl-2-nitrobenzene	5.50		ug/l	10.0		55.0	30-120				
Malathion	4.46	1.0	"	5.00		89.1	50-130	8.42	30		
Matrix Spike (AD32401-MS1)	S	ource: 13040	01-17	Prepared: 24-Apr-13 Analyzed: 25-Apr-13							
Surrogate: 1,3-Dimethyl-2-nitrobenzene	4.71		ug/l	10.0		47.1	30-120				
Malathion	4.11	1.0	"	5.00	ND	82.2	50-130				
Matrix Spike Dup (AD32401-MSD1)	S	ource: 13040	01-17	Prepared: 24-Apr-13 Analyzed: 25-Apr-13							
Surrogate: 1,3-Dimethyl-2-nitrobenzene	4.96		ug/l	10.0		49.6	30-120				
Malathion	4.21	1.0	"	5.00	ND	84.2	50-130	2.40	40		
Batch AD32402 - Solvent Extraction	on										
Blank (AD32402-BLK1)				Prepared	l: 24-Apr-	13 Analy	zed: 25-A	pr-13			
Surrogate: 1,3-Dimethyl-2-nitrobenzene	1090		ug/kg	2000		54.4	30-120				
Chlorpyrifos	ND	50.0	"								
Diazinon	ND	50.0	"								
Malathion	ND	50.0	"								

Respectfully Submitted,

Buch

Pat Brueckner Laboratory Director

<

Customer:	URS Corporation (San Diego) - Vendor # 112052 4225 Executive Square, Suite 1600 La Jolla CA, 92037	
Attention: Report Date:	Bryn Evans 25-Apr-13 19:13	Project/I
Subject:	Murphy Canyon 7165	

Page 17 of 25

Project/P.O.#: City of San Diego O&M IWQA

Organophosphorus Pesticides by EPA Method 8141A - Quality Control %REC RPD Spike Source Parameter Result Rep. Limit Units Level Result %REC Limits RPD Limit Note **Batch AD32402 - Solvent Extraction** LCS (AD32402-BS1) Prepared: 24-Apr-13 Analyzed: 25-Apr-13 Surrogate: 1,3-Dimethyl-2-nitrobenzene 918 ug/kg 2000 45.9 30-120 836 Malathion 50.0 1000 83.6 60-130 LCS Dup (AD32402-BSD1) Prepared: 24-Apr-13 Analyzed: 25-Apr-13 Surrogate: 1,3-Dimethyl-2-nitrobenzene 2000 53.0 30-120 1060 ug/kg 877 н 1000 87.7 60-130 Malathion 50.0 4.79 30 Matrix Spike (AD32402-MS1) Source: 1304001-18 Prepared: 24-Apr-13 Analyzed: 25-Apr-13 Surrogate: 1,3-Dimethyl-2-nitrobenzene 43.3 30-120 866 ug/kg 2000 ... Malathion 766 50.0 1000 ND 76.6 40-130 Matrix Spike Dup (AD32402-MSD1) Prepared: 24-Apr-13 Analyzed: 25-Apr-13 Source: 1304001-18 Surrogate: 1,3-Dimethyl-2-nitrobenzene 41.0 821 ug/kg 2000 30-120 " Malathion 716 50.0 1000 ND 71.6 40-130 6.75 40

Respectfully Submitted,

Pat Buehn

Pat Brueckner Laboratory Director

Customer:	URS Corporation (San Diego) - Vendor # 112052 4225 Executive Square, Suite 1600 La Jolla CA, 92037
Attention:	Bryn Evans
Report Date:	25-Apr-13 19:13
Subject:	Murphy Canyon 7165

Page 18 of 25

Project/P.O.#: City of San Diego O&M IWQA

				Spike	Source		%REC		RPD	
Parameter	Result	Rep. Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Note
Batch AD32403 - General Prepara	tion									
Blank (AD32403-BLK1)				Prepared	d & Analy	zed: 24-A	Apr-13			
Total Kjeldahl Nitrogen	ND	0.5	mg/kg							
LCS (AD32403-BS1)				Prepared	d & Analy	zed: 24-A	pr-13			
Total Kjeldahl Nitrogen	38	0.5	mg/kg	33.3		114	80-120			
LCS Dup (AD32403-BSD1)				Prepared	d & Analy	zed: 24-A	pr-13			
Total Kjeldahl Nitrogen	35	0.5	mg/kg	33.3		105	80-120	8.22	20	
Duplicate (AD32403-DUP1)	S	ource: 1304	275-03	Prepared	d & Analy	zed: 24-A	Apr-13			
Total Kjeldahl Nitrogen	100	0.5	mg/kg		100			0.643	20	
Matrix Spike (AD32403-MS1)	S	ource: 1304	275-03	Prepared	d & Analy	zed: 24-A	pr-13			
Total Kjeldahl Nitrogen	130	0.5	mg/kg	33.3	100	86.0	75-125			
Matrix Spike Dup (AD32403-MSD1)	S	ource: 1304	275-03	Prepared						
Total Kjeldahl Nitrogen	130	0.5	mg/kg	33.3	100	93.0	75-125	1.75	35	
Batch AD32410 - General Prepara	tion									
Blank (AD32410-BLK1)				Prepared	d & Analy	zed: 24-A	Apr-13			
% Solids	0.00		%	•			•			
Duplicate (AD32410-DUP1)	S	ource: 1304	275-03	Prepared	d & Analy	zed: 24-A	Apr-13			
% Solids	70.3		%	•	70.9			0.850	15	
Batch AD32413 - General Prepara	tion									
Blank (AD32413-BLK1)				Prepared	d & Analy	zed: 24-A	Apr-13			
Phosphorus, Dissolved as P	ND	0.03	mg/l							
Phosphorus, Total as P	ND	0.03	"							

Respectfully Submitted,

Pat Buehn

Pat Brueckner Laboratory Director

(

Customer:	URS Corporation (San Diego) - Vendor # 112052 4225 Executive Square, Suite 1600 La Jolla CA, 92037
Attention:	Bryn Evans
Report Date:	25-Apr-13 19:13
Subject:	Murphy Canyon 7165

Page 19 of 25

Project/P.O.#: City of San Diego O&M IWQA

				Spike	Source		%REC		RPD	
Parameter	Result	Rep. Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Note
Batch AD32413 - General Preparat	ion									
LCS (AD32413-BS1)				Prepared	d & Analyz	zed: 24-A	pr-13			
Phosphorus, Total as P	0.5000	0.03	mg/l	0.500		100	80-120			
Phosphorus, Dissolved as P	0.5000	0.03	"	0.500		100	80-120			
LCS Dup (AD32413-BSD1)				Prepared	d & Analyz	zed: 24-A	pr-13			
Phosphorus, Dissolved as P	0.4970	0.03	mg/l	0.500		99.4	80-120	0.602	20	
Phosphorus, Total as P	0.4970	0.03	"	0.500		99.4	80-120	0.602	20	
Duplicate (AD32413-DUP1)	plicate (AD32413-DUP1) Source: 1304275-01				Prepared & Analyzed: 24-Apr-13					
Phosphorus, Total as P	ND	0.03	mg/l		ND				20	
Phosphorus, Dissolved as P	ND	0.03	"		ND				20	
Matrix Spike (AD32413-MS1)	s	ource: 13042	275-01	Prepared	d & Analyz	zed: 24-A	pr-13			
Phosphorus, Total as P	0.4010	0.03	mg/l	0.500	ND	80.2	80-120			
Phosphorus, Dissolved as P	0.5570	0.03	"	0.500	ND	111	80-120			
Matrix Spike Dup (AD32413-MSD1)	S	ource: 13042	275-01	Prepared	d & Analyz	zed: 24-A	pr-13			
Phosphorus, Total as P	0.4050	0.03	mg/l	0.500	ND	81.0	80-120	0.993	20	
Phosphorus, Dissolved as P	0.4960	0.03	"	0.500	ND	99.2	80-120	11.6	20	
Batch AD32414 - General Preparat	ion									
Blank (AD32414-BLK1)				Prepared	d & Analyz	zed: 24-A	pr-13			
Phosphorus, Total as P	ND	0.5	mg/kg							
LCS (AD32414-BS1)				Prepared	d & Analyz	zed: 24-A	pr-13			
Phosphorus, Total as P	16.8	0.5	mg/kg	16.7	,	101	75-125			

Respectfully Submitted,

at Buehn

Pat Brueckner Laboratory Director

(

Customer:	URS Corporation (San Diego) - Vendor # 112052 4225 Executive Square, Suite 1600 La Jolla CA, 92037
Attention:	Bryn Evans
Report Date:	25-Apr-13 19:13
Subject:	Murphy Canyon 7165

Page 20 of 25

Project/P.O.#: City of San Diego O&M IWQA

General Inorganic Nor	metallic C	hemistry k	by Star	ndard Me	ethods/	EPA Me		Qualit	-	ol
Parameter	Result	Rep. Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Note
Batch AD32414 - General Prepa	ration									
LCS Dup (AD32414-BSD1)				Prepare	d & Analy	zed: 24-A	pr-13			
Phosphorus, Total as P	16.3	0.5	mg/kg	16.7		98.0	75-125	2.82	20	
Duplicate (AD32414-DUP1)	s	ource: 1304	275-03	Prepare	d & Analy	zed: 24-A	pr-13			
Phosphorus, Total as P	177	0.5	mg/kg		171		•	3.45	20	
Matrix Spike (AD32414-MS1)	S	ource: 1304	275-03	Prepare	d & Analy	zed: 24-A	vpr-13			
Phosphorus, Total as P	330	0.5	mg/kg	167	171	95.6	75-125			
Batch AD32421 - General Prepa	ration									
Blank (AD32421-BLK1)				Prepare	d & Analy	zed: 24-A	pr-13			
Total Kjeldahl Nitrogen	ND	0.10	mg/l				•			
LCS (AD32421-BS1)				Prepared	d & Analy	zed: 24-A	vpr-13			
Total Kjeldahl Nitrogen	1.15	0.10	mg/l	1.00	F	115	80-120			
LCS Dup (AD32421-BSD1)				Prepared	d & Analy	zed: 24-A	vpr-13			
Total Kjeldahl Nitrogen	1.15	0.10	mg/l	1.00		115	80-120	0.00	20	
Duplicate (AD32421-DUP1)	S	ource: 1304	275-01	Prepared	d & Analy	zed: 24-A	vpr-13			
Total Kjeldahl Nitrogen	0.21	0.10	mg/l	•	0.20			3.39	20	
Matrix Spike (AD32421-MS1)	s	ource: 1304	275-01	Prepare	d & Analy	zed: 24-A	pr-13			
Total Kjeldahl Nitrogen	1.40	0.10	mg/l	1.00	0.20	120	80-120			
Matrix Spike Dup (AD32421-MSD1)) S	ource: 1304	275-01	Prepare	d & Analy	zed: 24-A	pr-13			
Total Kjeldahl Nitrogen	1.36	0.10	mg/l	1.00	0.20	116	80-120	2.90	20	

Respectfully Submitted,

of Buchn

Pat Brueckner Laboratory Director

(

Customer:	URS Corporation (San Diego) - Vendor # 112052 4225 Executive Square, Suite 1600 La Jolla CA, 92037
Attention:	Bryn Evans
Report Date:	25-Apr-13 19:13
Subject:	Murphy Canyon 7165

Page 21 of 25

Project/P.O.#: City of San Diego O&M IWQA

General Inorganic Nonmetallic Chemistry by Standard Methods/EPA Methods - Quality Control

Parameter	Result	Rep. Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Note
Batch AD32422 - General Prepa	aration									
Blank (AD32422-BLK1)				Prepared	d & Analy	zed: 24-A	pr-13			
Total Hardness	ND	2	mg/l							
LCS (AD32422-BS1)				Prepared	d & Analy	zed: 24-A	pr-13			
Total Hardness	260	2	mg/l	250		104	80-120			
Duplicate (AD32422-DUP1)	So	ource: 13042	75-01	Prepared	d & Analy	zed: 24-A	pr-13			
Total Hardness	1280	2	mg/l		1290			0.311	20	

Respectfully Submitted,

R Bue

Pat Brueckner Laboratory Director

Customer:	URS Corporation (San Diego) - Vendor # 112052 4225 Executive Square, Suite 1600 La Jolla CA, 92037	
Attention:	Bryn Evans	Proje
Report Date: Subject:	25-Apr-13 19:13 Murphy Canyon 7165	

Page 22 of 25

Project/P.O.#: City of San Diego O&M IWQA

General Physical Chemistry by Standard Methods/EPA Methods - Quality Control %REC RPD Spike Source RPD Parameter Result Rep. Limit Units Level Result %REC Limits Limit Note **Batch AD32411 - General Preparation** Blank (AD32411-BLK1) Prepared & Analyzed: 24-Apr-13 **Total Dissolved Solids** ND 1 mg/l LCS (AD32411-BS1) Prepared & Analyzed: 24-Apr-13 Total Dissolved Solids 932 1 mg/l 989 94.2 85-115 Duplicate (AD32411-DUP1) Source: 1304271-01 Prepared & Analyzed: 24-Apr-13 **Total Dissolved Solids** 532 1 mg/l 512 3.83 15 **Batch AD32412 - General Preparation** Blank (AD32412-BLK1) Prepared & Analyzed: 24-Apr-13 ND **Total Suspended Solids** 1 mg/l LCS (AD32412-BS1) Prepared & Analyzed: 24-Apr-13 Total Suspended Solids 862 1 mg/l 803 107 85-115 Duplicate (AD32412-DUP1) Source: 1304275-01 Prepared & Analyzed: 24-Apr-13 Total Suspended Solids 7.60 1 mg/l 7.60 0.00 15

Respectfully Submitted,

at Buehn

Pat Brueckner Laboratory Director

Customer:	URS Corporation (San Diego) - Vendor # 112052 4225 Executive Square, Suite 1600 La Jolla CA, 92037
Attention: Report Date:	Bryn Evans 25-Apr-13 19:13 Murphy Canyon 7165
Subject:	

Page 23 of 25

Project/P.O.#: City of San Diego O&M IWQA

	Anions b	oy EPA Me	thod 3	00.0 - Qı	uality C	ontrol				
Parameter	Result	Rep. Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Note
Batch AD32415 - General Prepara	tion									
Blank (AD32415-BLK1)				Prepare	d & Analy	zed: 24-A	pr-13			
Nitrate as N	ND	0.5	mg/kg				•			
Nitrite as N	ND	0.5	"							
LCS (AD32415-BS1)				Prepared	d & Analy	zed: 24-A	vpr-13			
Nitrate as N	17.7	0.5	mg/kg	16.7		106	80-120			
Nitrite as N	16.6	0.5	"	16.7		99.8	85-115			
LCS Dup (AD32415-BSD1)	(AD32415-BSD1)			Prepared & Analyzed: 24-Apr-13						
Nitrite as N	16.7	0.5	mg/kg	16.7		100	85-115	0.200	20	
Nitrate as N	18.0	0.5	"	16.7		108	80-120	1.68	20	
Duplicate (AD32415-DUP1)	S	ource: 13042	275-03	Prepare	d & Analy	zed: 24-A	vpr-13			
Nitrite as N	ND	0.5	mg/kg		ND				20	
Nitrate as N	0.690	0.5	"		ND				20	
Matrix Spike (AD32415-MS1)	S	ource: 13042	275-03	Prepared & Analyzed: 24-Apr-13						
Nitrate as N	18.5	0.5	mg/kg	16.7	ND	111	75-125			
Nitrite as N	16.5	0.5	"	16.7	ND	98.8	85-115			
Matrix Spike Dup (AD32415-MSD1)	S	ource: 13042	275-03	Prepared	d & Analy	zed: 24-A	vpr-13			
Nitrite as N	16.7	0.5	mg/kg	16.7	ND	100	85-115	1.21	20	
Nitrate as N	18.7	0.5	"	16.7	ND	112	75-125	0.717	20	
Batch AD32416 - General Prepara	tion									
Blank (AD32416-BLK1)				Prepared	d & Analy	zed: 24-A	pr-13			
Nitrite as N	ND	0.10	mg/l							
Nitrate as N	ND	0.10	"							

Respectfully Submitted,

Pat Buehn

Pat Brueckner Laboratory Director

(

Customer:	URS Corporation (San Diego) - Vendor # 112052 4225 Executive Square, Suite 1600 La Jolla CA, 92037
Attention: Report Date:	Bryn Evans 25-Apr-13 19:13
Subject:	Murphy Canyon 7165

Page 24 of 25

Project/P.O.#: City of San Diego O&M IWQA

Anions by EPA Method 300.0 - Quality Control										
Parameter	Result	Rep. Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Note
Batch AD32416 - General Preparat	tion									
LCS (AD32416-BS1)				Prepared	d & Analy	zed: 24-A	pr-13			
Nitrate as N	0.525	0.10	mg/l	0.500		105	80-120			
Nitrite as N	0.495	0.10	"	0.500		99.0	80-120			
LCS Dup (AD32416-BSD1)				Prepared	d & Analy	zed: 24-A	pr-13			
Nitrite as N	0.472	0.10	mg/l	0.500		94.4	80-120	4.76	20	
Nitrate as N	0.507	0.10	"	0.500		101	80-120	3.49	20	
Duplicate (AD32416-DUP1)	S	ource: 13042	271-01	Prepared	d & Analy	zed: 24-A	Apr-13			
Nitrate as N	ND	0.10	mg/l		ND				20	
Nitrite as N	ND	0.10	"		ND				20	
Matrix Spike (AD32416-MS1)	S	ource: 13042	271-01	Prepared	a & Analy	zed: 24-A	pr-13			
Nitrite as N	0.498	0.10	mg/l	0.500	ND	99.6	80-120			
Nitrate as N	0.542	0.10	"	0.500	ND	108	80-120			
Matrix Spike Dup (AD32416-MSD1)	S	ource: 13042	271-01	Prepared	a & Analy	zed: 24-A	pr-13			
Nitrate as N	0.532	0.10	mg/l	0.500	ND	106	80-120	1.86	20	
Nitrite as N	0.488	0.10	"	0.500	ND	97.6	80-120	2.03	20	

Respectfully Submitted,

Buch

Pat Brueckner Laboratory Director

(

¹¹⁹⁹⁰ Discovery Ct. Moorpark, CA 93021 Ph. (805) 532-0012 Fax (805) 532-0016

Customer:	URS Corporation (San Diego) - Vendor # 112052 4225 Executive Square, Suite 1600 La Jolla CA, 92037		Page 25 of 25
Attention: Report Date: Subject:	Bryn Evans 25-Apr-13 19:13 Murphy Canyon 7165	Project/P.O.#:	City of San Diego O&M IWQA

Notes and Definitions

- QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were within acceptance limits showing that the laboratory is in control and the data is acceptable.
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis

Respectfully Submitted,

Bue

Pat Brueckner Laboratory Director

Project Name:		Pat-Chem Labs		Sampled By:	Client	Date:	4/24/13
Project No.:		A8798-06-01		Set Up By:	СС	Date:	4/27/13
Location:		-		Tested By:	СС	Date:	4/29/13
	2	Depth:	-	Engineer/ Ge	ologist:	1	NDB
Soil Description:			R-3				

Total Wet Weight in Use with Tare	522.30
Total Dry Weight in Use with Tare	374.67
Moisture Content	39.40%
Container Number	Pan 14
Container Weight	0
Dry Weight After 200 Washed with Tare	374.67
Total Dry Weight of Sample	374.67

U.S. SIEVE SIZE	CUMULATIVE WEIGHT RETAINED			
0.3. SIEVE SIZE	Accumulative	Accumulative Wegiht		% Passing
2"			0.00%	100.00%
11⁄2"			0.00%	100.00%
1"			0.00%	100.00%
³ /4"			0.00%	100.00%
1/2"	2.9		0.77%	99.23%
³ /8"	2.9		0.77%	99.23%
No. 4	2.9		0.77%	99.23%
No. 10	3.2		0.85%	99.15%
No. 20	3.6		0.96%	99.04%
No. 40	6.7		1.79%	98.21%
No. 100	262.3		70.01%	29.99%
No. 200	346.1		92.39%	7.61%
Pan	374.7		100.00%	0.00%

Percent Loss: 0.00%

Project Name:	ne: Pat-Chem Labs		Sampled By:	Client	Date:	4/24/13	
Project No.:	A8798-06-01		Set Up By:	СС	Date:	4/27/13	
Location:		-		Tested By:	СС	Date:	4/29/13
Sample #	3 Depth: -		-	Engineer/ Ge	ologist:	١	NDB
Soil Description:			R-7			_	

Total Wet Weight in Use with Tare	155.60
Total Dry Weight in Use with Tare	109.64
Moisture Content	41.92%
Container Number	Pan 15
Container Weight	0
Dry Weight After 200 Washed with Tare	109.64
Total Dry Weight of Sample	109.64

U.S. SIEVE SIZE	CUMULATIVE WEIGHT RETAINED			
0.3. SIEVE SIZE	Accumulative	Wegiht	% Retained	% Passing
2"			0.00%	100.00%
11⁄2"			0.00%	100.00%
1"			0.00%	100.00%
³ /4"			0.00%	100.00%
1/2"			0.00%	100.00%
³ /8"			0.00%	100.00%
No. 4	0.2		0.16%	99.84%
No. 10	1.1		1.02%	98.98%
No. 20	4.9		4.51%	95.49%
No. 40	11.9		10.81%	89.19%
No. 100	53.1		48.40%	51.60%
No. 200	100.3		91.44%	8.56%
Pan	109.6		100.00%	0.00%

Percent Loss: 0.00%

Toxicity Test Results Sorrento Water Quality Project

April 23, 2013 Sampling Event

Prepared for:	URS Corporation 4225 Executive Square, Suite 1600 La Jolla, CA 92037
Prepared by:	Nautilus Environmental
Submitted:	May 15, 2013

Data Quality Assurance:

- Nautilus Environmental is a certified laboratory under the State of California Department of Health Services, Environmental Laboratory Accreditation Program (ELAP), Certificate No. 1802.
- All data have been reviewed and verified.
- All test results have met minimum test acceptability criteria under their respective EPA protocols, unless otherwise noted in this report.
- o All test results have met internal Quality Assurance Program requirements.

Josh E.

Results verified by:

4340 Vandever Ave San Diego, California 92120 858.587.7333 fax: 858.587.3961

British Columbia

California

8664 Commerce Court Burnaby, British Columbia V5A 4N7 604.420.8773 fax: 604.603.9381

Introduction

Water and sediment samples were collected from the Sorrento Water Quality project site on April 23, 2013. Samples were collected from locations both upstream and downstream of the project site. After the samples were collected, it was determined that the upstream site would be the focus of this study. The upstream water sample was tested, and the downstream water sample was not included in the analysis. The upstream sediment sample, however, was not testable (see Quality Assurance section for additional information). The downstream sediment sample was therefore tested as a substitute. Sample information is summarized in Table 1.

Chronic toxicity tests with the water sample were conducted using the green algae *Selenastrum capricornutum* (*Selenastrum*) and water flea *Ceriodaphnia dubia* (*Ceriodaphnia*). Solid-phase testing with the sediment sample was conducted using the freshwater amphipod *Hyalella azteca* (*Hyalella*). Testing was performed at Nautilus Environmental (Nautilus), located in San Diego, California from April 24 to May 6, 2013.

Materials and Methods

The water samples were collected into low-density polyethylene (LDPE) cubitainers, and the sediment samples were collected into plastic bags. Collection was performed by URS Corporation (URS) personnel and the samples were delivered to Nautilus on the same day as collection. Appropriate chain-of-custody (COC) procedures were employed during collection and transport. Upon arrival at Nautilus, coolers were opened, samples inspected, and the contents verified against information provided on the COC forms. Receipt temperatures were measured and recorded on the COC form for each sample. The samples were stored at 4°C in the dark until used for testing. Sample receipt information is provided in Table 1.

Testing was conducted in accordance with methods published in USEPA (2000a and 2002). Test specifications are summarized in Tables 2 through 4.

•	
Client:	URS Corporation
Project:	Sorrento Water Quality
Sample IDs:	 R-3-U-TOX (upstream water sample) R-3-D-TOX (downstream water sample)^a R-3-U-TOX-S (upstream sediment sample)^b R-3-D-TOX-S (downstream sediment sample)
Sample Collection Date, Time:	1) R-3-U-TOX: 4/23/13, 09:00 2) R-3-D-TOX: 4/23/13, 08:00 3) R-3-U-TOX-S: 4/23/13, 09:00 4) R-3-D-TOX-S: 4/23/13, 08:00
Sample Receipt Date, Time:	4/23/13, 15:10 (all samples)
Sample Material:	Ambient stream water and streambed sediment.

Table 1. Sample Information

^a Sample not included in study and therefore not tested.

^b Not tested due to sample characteristics. See Quality Assurance section.

Test Period:	4/24/13 - 4/28/13
Test Organism:	Selenastrum capricornutum (green algae)
Test Organism Source/ Age:	In-house culture/ 6 days
Dilution/ Control Water:	Nutrient-enriched EPA diluted mineral water, 8:2 (8 parts Nanopure, 2 parts Perrier [®])
Test Concentrations:	100 ^a , 50, 25, 12.5, and 6.25 percent sample, plus lab control ^b
Protocol Used:	EPA/821/R-02-013 (US EPA 2002b)
Acceptability Criteria:	Mean control density of $\ge 1 \times 10^6$ cells/ml $\le 20\%$ variability among control replicates (CV) MSD for density $\le 29\%$
Statistical Analysis Software:	CETIS™, version 1.8.4.23

^a Sample was 0.45-µm filtered prior to preparation of the dilution series to ensure that any native algae present in the sample could not compete with the *Selenastrum* for nutrients; an unfiltered and undiluted sample was tested concurrently for comparison purposes.

purposes. ^b Macro- and micronutrient solutions were added to sample and dilution waters to ensure any observed decreases in algal growth were due to toxic constituents present in the sample rather than nutrient deficiency.

were due to toxic constituents present in the sample rather than nutrient deficiency. Note: Filtered and unfiltered 100 percent sample blanks (not inoculated with *Selenastrum*) were also tested to determine if native algae or particulate material present in the samples might be competing for nutrients, light, and/or space.

	-
Test Period:	4/24/13 - 5/1/13
Test Organism:	Ceriodaphnia dubia (water flea)
Test Organism Source/ Age:	In-house culture/ < 8 hours
Dilution/ Control Water:	8:2 diluted mineral water
Additional Control:	Conductivity Control (8:2 with seawater added to match conductivity of sample).
Test Concentrations:	100, 50, 25, 12.5, and 6.25 percent sample, plus lab and conductivity controls
Protocol Used:	EPA/821/R-02-013 (US EPA 2002b)
Acceptability Criteria:	Mean control survival $\ge 80\%$ $\ge 60\%$ of surviving females produce 3 or more broods Mean number of offspring ≥ 15 per surviving female MSD for reproduction $\le 47\%$
Statistical Analysis Software:	CETIS™, version 1.8.4.23

Table 3. Ceriodaphnia Chronic Toxicity Test Specifications

	• •
Test Period:	4/26/13 - 5/6/13
Test Organism:	Hyalella azteca (amphipod)
Test Organism Source/ Age:	Aquatic Indicators; St. Augustine, FL/ 14 days
Overlying Water:	Activated carbon filtered water
Overlying Water Renewal:	50 percent of volume twice daily
Control Sediment:	Beach sand collected from San Diego, CA, and cleaned with deionized water
Test Concentrations:	Undiluted sediment; 2cm in 500mL overlying water
Aeration:	Continuous (2-3 bubbles per second)
Sample Manipulation:	Samples were sieved through a 1mm Nitex® mesh screen to remove native organisms and large debris that may interfere with the survival and recovery of test organisms
Protocol Used:	EPA 600/R-99/064 (USEPA 2000a)
Test Acceptability Criteria:	\ge 80 percent mean survival in controls and measureable growth in control replicates.
Statistical Analysis Software:	GraphPad Prism, v. 4.02

Table 4. Solid Phase Amphipod Toxicity Test Specifications

Results

Raw data and statistical analyses for each test species are presented in full in Appendix A. Sample information and water quality measurements upon receipt are in Appendix B, and a copy of the chain-of-custody form can be found in Appendix C.

Water Sample

Results for the chronic bioassays are presented in Tables 5 and 6. The R-3-U-TOX sample had an effect on Selenastrum growth, with a statistically significant reduction observed in the 100 percent concentration. Effects were also observed in the 100 percent unfiltered concentration.

The R-3-U-TOX sample also had an effect on Ceriodaphnia reproduction, with a statistically significant reduction observed in the 100 percent concentration. The conductivity control also resulted in a statistically significant reduction in reproduction, indicating that the effects observed in the sample may be due to high conductivity. No effects were observed to Ceriodaphnia survival.

Table 5. Summary of Statistical Results for Chronic Testing – R-3-U-TOX

Test Species & Endpoint	NOEC	EC₅₀	TU_c value
	(% sample)	(% sample)	(chronic toxic units)
Selenastrum Growth	50	> 100	2.0
<i>Ceriodaphnia</i> Survival	100	> 100	1.0
Reproduction	50	91.1	2.0

NOEC = the highest concentration tested that results in No Observed Effect.

 EC_{50} = Concentration expected to cause a 50% adverse effect to the test organisms.

TU_c value (Chronic toxic unit) = 100 ÷ NOEC. Note: a TU of 1.0 means no toxicity was observed.

Test Concentration (% sample)	Selenastrum	Ceriodaphnia					
	Mean Cell Density (10 ⁶ cells/ml)	Mean Survival (%)	Mean Reproduction (neonates/org.)				
Lab Control	3.14	100	30.3				
Conductivity Control	-	80	12.6*				
6.25	3.25	100	30.8				
12.5	3.15	90	28.0				
25	3.21	100	34.0				
50	3.15	100	25.9				
100	2.56*	100	13.1*				
100 unfiltered	1.60*	-	-				

Table 6. Summary of Chronic Toxicity Test Data – R-3-U-TOX

***bold asterisk** indicates a statistically significant reduction from the lab control.

Sediment Sample

Results of solid-phase testing with Hyalella are provided in Table 7 and Figures 1 and 2. The R-3-D-TOX-S sample did not have any effects on Hyalella survival or growth.

Site	Mean Survival (%)	p value	Survival Statistically Reduced from Control ^a	Mean Growth (mg/org)	p value	Growth Statistically Reduced from Control ^a
Lab Control	100	-	-	0.288		-
R-3-D-TOX-S	100	N/A	No	0.290	N/A	No

Table 7. St	ummarv of 10-Da	Hyalella Survival and Growth	Results – R-3-D-TOX-S
-------------	-----------------	------------------------------	-----------------------

^a Student's one-tailed t-test, $p \le 0.05$. Statistics for survival endpoint performed on arcsin-square root transformed data. NA - Not applicable, mean survival equals or exceeds that in the lab control.

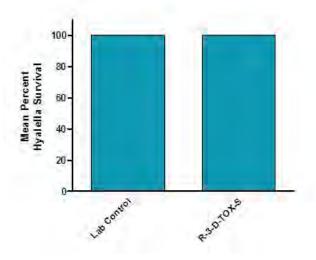


Figure 1. Summary of 10-Day Hyalella Survival (± 95% Confidence Interval; n=5).

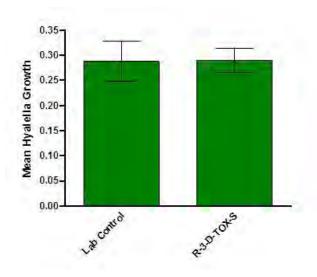


Figure 2. Summary of 10-Day Hyalella Growth (± 95% Confidence Interval; n=5).

Quality Assurance

Water Sample

The samples were received within appropriate temperature range, and the tests were initiated within the required 36-hour holding time. The toxicity tests met acceptability criteria for performance of control organisms. Statistical analysis followed standard USEPA flowchart selections and the dose-response relationships were reviewed to ensure the validity of the data. Based on the dose responses observed during testing, the calculated effect concentrations for the tests reported are deemed reliable.

Percent minimum significance difference (PMSD) values are calculated as a measure of test variability. The PMSD value for Ceriodaphnia reproduction was within the appropriate range. The PMSD value for Selenastrum growth was 7.2, which is below the acceptable range of 9.1 to 29, indicating statistics may be over-sensitive in detecting a response due to low variability. The percent difference between the control and the low observed effect concentration (LOEC) was 18.4, which is above the lower bound limit. The calculated NOEC and LOEC were therefore deemed accurate according to EPA (2000b).

Minor deviations in temperature from the recommended protocol range of $25 \pm 1^{\circ}$ C occurred at 24 and 48 hours during the Selenastrum test. Corrective actions were taken, and no negative impacts on test results were observed.

The unfiltered blank of the green algae test, which was not inoculated with Selenastrum, showed a measurable value on the flourometer, indicating the possible presence of native algae in the sample. Manual microscope counts were performed on the unfiltered sample replicates to determine the actual density of Selenastrum, while accounting for the presence of any native algae; microscope counts are reported herein.

Sediment Sample

The sample R-3-U-TOX-S was collected by URS and delivered to the Nautilus laboratory. However, the sample consisted almost entirely of river rock and contained very little sediment. The *Hyalella* protocol calls for sieving sediment samples in order remove native organisms and large debris that may interfere with the survival and recovery of test organisms. For this round of testing samples were sieved through a 1mm screen. The R-3-U-TOX-S sample did not contain a sufficient amount of sediment to perform the test after sieving; therefore, this sample was not tested.

The laboratory control met all test acceptability criteria and water quality measurements were within recommended ranges.

Ammonia is a potential confounding factor in sediment tests. The sample porewater ammonia concentration was 1.0 mg/L upon sample receipt, and overlying water ammonia concentrations for the sample were <0.5 mg/L at test initiation and termination. These values are extremely low and well below levels at which effects to Hyalella have been observed (USEPA 2000a). Additionally, no effects were observed in the test, therefore ammonia is not a factor.

A list of qualifier codes used to indicate QA issues and minor deviations on datasheets is provided in Appendix D.

References

GraphPad Software Inc. 1992-2004. GraphPad Prism, Version 4.02.

- Tidepool Scientific Software. 2001-2002. CETIS Comprehensive Toxicity Data Analysis and Database Software, Version 1.8.4.23.
- USEPA. 2000a. Methods for Measuring the Toxicity and Bioaccumulation of Sedimentassociated Contaminants with Freshwater Invertebrates. EPA/600/R-99/064. US EPA Office of Water, Washington, DC.
- USEPA. 2000b. Understanding and Accounting for Method Variability in Whole Effluent Toxicity Applications Under the National Pollutant Discharge Elimination System. United States Environmental Protection Agency Office of Wastewater Management (EPA-833-R-00-003).
- USEPA. 2002. Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, Fourth Edition (EPA-821-R-02-013). US EPA Office of Water, Washington DC.

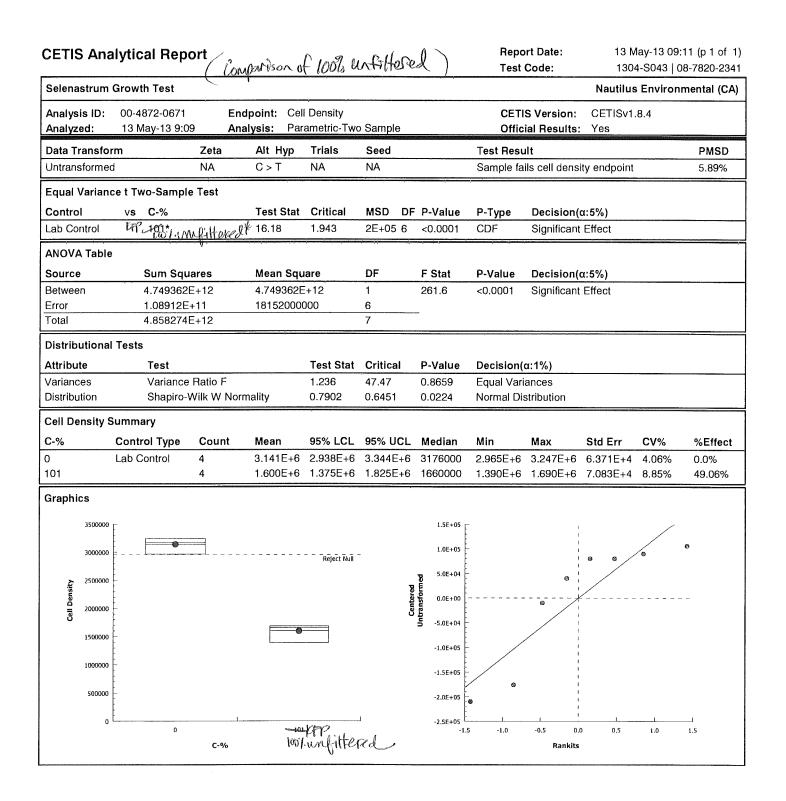
Appendix A

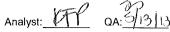
Raw Data and Statistical Summaries

Selenastrum capricornutum

CETIS Sun	nmary Repo	rt					-	ort Date: Code:	13 May-13 09:10 (p 1 of 1 1304-S043 08-7820-234		
Selenastrum	Growth Test								Nautilus	Environr	nental (CA
Batch ID: Start Date: Ending Date: Duration:	02-9465-6565 24 Apr-13 13:1 28 Apr-13 13:1 96h	5 Prot	cies: Sele	4/821/R-02-0	apricornutum)	Anal Dilue Brine Age:	ent: Nutr	ient Enriche Applicable	d 8:2	
•	10-5435-0900 23 Apr-13 09:00 23 Apr-13 15:10 28h (20.5 °C)		erial: Aml rce: URS		53-U =	ToX)	Clien Proje		S Corp		
Comparison	Summary										
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	τu	Method			
13-3812-3071			50	100	70.71	7.23%	2		y-One Rank	Sum Test	
Point Estimat	te Summarv				99-94-94-94-94-94-94-94-94-94-94-94-94-9						
Analysis ID	Endpoint		Level	%	95% LCL	95% UCL	тυ	Method			
07-6422-0947			IC25	>100	N/A	N/A	<1	Linear Inte	erpolation (IC	PIN)	
	-		IC50	>100	N/A	N/A	<1				
Test Acceptal	bility										******
Analysis ID	Endpoint		Attribute		Test Stat	TAC Limi	ts	Overlap	Decision		
07-6422-0947	Cell Density		Control CV	1	0.04057	NL - 0.2		Yes	Passes Ac	ceptability	Criteria
13-3812-3071	Cell Density		Control CV	/	0.04057	NL - 0.2		Yes	Passes Ac	ceptability	/ Criteria
07-6422-0947	Cell Density		Control Re	sp	3.14E+6	1.00E+6 -	NL	Yes	Passes Ac	ceptability	/ Criteria
13-3812-3071	Cell Density		Control Re	sp	3.14E+6	1.00E+6 -	NL	Yes	Passes Ac		
13-3812-3071	Cell Density		PMSD		0.07231	0.091 - 0.2	9	Yes	Below Acc	eptability (Criteria 6
Cell Density S	Summary										
C-%	Control Type	Count	Mean	95% LCL			Max	Std Err	Std Dev	CV%	%Effec
0					95% UCL	Min	Wax				
0	Lab Control	4		3.093E+6	3.189E+6	2.965E+6	3.247E+6	6.371E+4			0.0%
6.25	Lab Control	4 4	3.249E+6	3.093E+6 3.202E+6	3.189E+6 3.296E+6	2.965E+6 3.069E+6	3.247E+6 3.362E+6	6.371E+4 6.287E+4	1.257E+5	4.06% 3.87%	-3.44%
6.25 12.5	Lab Control		3.249E+6 3.152E+6	3.093E+6 3.202E+6 3.098E+6	3.189E+6 3.296E+6 3.207E+6	2.965E+6 3.069E+6 2.966E+6	3.247E+6 3.362E+6 3.315E+6	6.371E+4 6.287E+4 7.314E+4	1.257E+5 1.463E+5	4.06% 3.87% 4.64%	-3.44% -0.36%
6.25 12.5 25	Lab Control	4	3.249E+6 3.152E+6 3.211E+6	3.093E+6 3.202E+6 3.098E+6 3.148E+6	3.189E+6 3.296E+6 3.207E+6 3.275E+6	2.965E+6 3.069E+6 2.966E+6 2.960E+6	3.247E+6 3.362E+6 3.315E+6 3.329E+6	6.371E+4 6.287E+4 7.314E+4 8.532E+4	1.257E+5 1.463E+5 1.706E+5	4.06% 3.87% 4.64% 5.31%	-3.44% -0.36% -2.24%
6.25 12.5 25 50	Lab Control	4 4 4 4	3.249E+6 3.152E+6 3.211E+6 3.148E+6	3.093E+6 3.202E+6 3.098E+6 3.148E+6 3.105E+6	3.189E+6 3.296E+6 3.207E+6 3.275E+6 3.191E+6	2.965E+6 3.069E+6 2.966E+6 2.960E+6 2.979E+6	3.247E+6 3.362E+6 3.315E+6 3.329E+6 3.241E+6	6.371E+4 6.287E+4 7.314E+4 8.532E+4 5.791E+4	1.257E+5 1.463E+5 1.706E+5 1.158E+5	4.06% 3.87% 4.64% 5.31% 3.68%	-3.44% -0.36% -2.24% -0.21%
6.25 12.5 25 50 100		4 4 4	3.249E+6 3.152E+6 3.211E+6 3.148E+6 2.563E+6	3.093E+6 3.202E+6 3.098E+6 3.148E+6 3.105E+6 2.524E+6	3.189E+6 3.296E+6 3.207E+6 3.275E+6 3.191E+6 2.602E+6	2.965E+6 3.069E+6 2.966E+6 2.960E+6 2.979E+6 2.428E+6	3.247E+6 3.362E+6 3.315E+6 3.329E+6 3.241E+6 2.657E+6	6.371E+4 6.287E+4 7.314E+4 8.532E+4 5.791E+4 5.213E+4	1.257E+5 1.463E+5 1.706E+5 1.158E+5 1.043E+5	4.06% 3.87% 4.64% 5.31% 3.68% 4.07%	-3.44% -0.36% -2.24% -0.21% 18.4%
6.25 12.5 25 50 100 101 100/.UM	littere	4 4 4 4	3.249E+6 3.152E+6 3.211E+6 3.148E+6 2.563E+6	3.093E+6 3.202E+6 3.098E+6 3.148E+6 3.105E+6 2.524E+6	3.189E+6 3.296E+6 3.207E+6 3.275E+6 3.191E+6 2.602E+6	2.965E+6 3.069E+6 2.966E+6 2.960E+6 2.979E+6 2.428E+6	3.247E+6 3.362E+6 3.315E+6 3.329E+6 3.241E+6 2.657E+6	6.371E+4 6.287E+4 7.314E+4 8.532E+4 5.791E+4 5.213E+4	1.257E+5 1.463E+5 1.706E+5 1.158E+5	4.06% 3.87% 4.64% 5.31% 3.68% 4.07%	-3.44% -0.36% -2.24% -0.21% 18.4%
6.25 12.5 25 50 100	<u>Littered</u>	4 4 4 4	3.249E+6 3.152E+6 3.211E+6 3.148E+6 2.563E+6 1.600E+6	3.093E+6 3.202E+6 3.098E+6 3.148E+6 3.105E+6 2.524E+6 1.547E+6	3.189E+6 3.296E+6 3.207E+6 3.275E+6 3.191E+6 2.602E+6 1.653E+6	2.965E+6 3.069E+6 2.966E+6 2.960E+6 2.979E+6 2.428E+6	3.247E+6 3.362E+6 3.315E+6 3.329E+6 3.241E+6 2.657E+6	6.371E+4 6.287E+4 7.314E+4 8.532E+4 5.791E+4 5.213E+4	1.257E+5 1.463E+5 1.706E+5 1.158E+5 1.043E+5	4.06% 3.87% 4.64% 5.31% 3.68% 4.07%	-3.44% -0.36% -2.24% -0.21% 18.4%
6.25 12.5 25 50 100 101 100/.UM	littere	4 4 4 4 4 4 8	3.249E+6 3.152E+6 3.211E+6 3.148E+6 2.563E+6 1.600E+6 Rep 2	3.093E+6 3.202E+6 3.098E+6 3.148E+6 3.105E+6 2.524E+6 1.547E+6 Rep 3	3.189E+6 3.296E+6 3.207E+6 3.275E+6 3.191E+6 2.602E+6 1.653E+6 Rep 4	2.965E+6 3.069E+6 2.966E+6 2.960E+6 2.979E+6 2.428E+6	3.247E+6 3.362E+6 3.315E+6 3.329E+6 3.241E+6 2.657E+6	6.371E+4 6.287E+4 7.314E+4 8.532E+4 5.791E+4 5.213E+4	1.257E+5 1.463E+5 1.706E+5 1.158E+5 1.043E+5	4.06% 3.87% 4.64% 5.31% 3.68% 4.07%	-3.44% -0.36% -2.24% -0.21% 18.4%
6.25 12.5 25 50 100 101 100/.UM Cell Density D	<u>Littered</u>	4 4 4 4 4 4 8 Rep 1 3.247E+6	3.249E+6 3.152E+6 3.211E+6 3.148E+6 2.563E+6 1.600E+6 Rep 2 3.221E+6	3.093E+6 3.202E+6 3.098E+6 3.148E+6 3.105E+6 2.524E+6 1.547E+6 Rep 3 2.965E+6	3.189E+6 3.296E+6 3.207E+6 3.275E+6 3.191E+6 2.602E+6 1.653E+6 Rep 4 3.131E+6	2.965E+6 3.069E+6 2.966E+6 2.960E+6 2.979E+6 2.428E+6	3.247E+6 3.362E+6 3.315E+6 3.329E+6 3.241E+6 2.657E+6	6.371E+4 6.287E+4 7.314E+4 8.532E+4 5.791E+4 5.213E+4	1.257E+5 1.463E+5 1.706E+5 1.158E+5 1.043E+5	4.06% 3.87% 4.64% 5.31% 3.68% 4.07%	-3.44% -0.36% -2.24% -0.21% 18.4%
6.25 12.5 25 50 100 101 100/.UM Cell Density I C-%	<u>Gittered</u> Detail Control Type	4 4 4 4 4 4 Rep 1 3.247E+6 3.286E+6	3.249E+6 3.152E+6 3.211E+6 3.148E+6 2.563E+6 1.600E+6 Rep 2 3.221E+6 3.279E+6	3.093E+6 3.202E+6 3.098E+6 3.148E+6 3.105E+6 2.524E+6 1.547E+6 Rep 3 2.965E+6 3.362E+6	3.189E+6 3.296E+6 3.207E+6 3.191E+6 2.602E+6 1.653E+6 Rep 4 3.131E+6 3.069E+6	2.965E+6 3.069E+6 2.966E+6 2.960E+6 2.979E+6 2.428E+6	3.247E+6 3.362E+6 3.315E+6 3.329E+6 3.241E+6 2.657E+6	6.371E+4 6.287E+4 7.314E+4 8.532E+4 5.791E+4 5.213E+4	1.257E+5 1.463E+5 1.706E+5 1.158E+5 1.043E+5	4.06% 3.87% 4.64% 5.31% 3.68% 4.07%	-3.44% -0.36% -2.24% -0.21% 18.4%
6.25 12.5 25 50 100 101 100/.UM Cell Density D C-% 0	<u>Gittered</u> Detail Control Type	4 4 4 4 4 4 Rep 1 3.247E+6 3.286E+6 2.966E+6	3.249E+6 3.152E+6 3.211E+6 3.148E+6 2.563E+6 1.600E+6 Rep 2 3.221E+6 3.279E+6 3.315E+6	3.093E+6 3.202E+6 3.098E+6 3.148E+6 3.105E+6 2.524E+6 1.547E+6 Rep 3 2.965E+6 3.362E+6 3.201E+6	3.189E+6 3.296E+6 3.207E+6 3.191E+6 2.602E+6 1.653E+6 Rep 4 3.131E+6 3.069E+6 3.127E+6	2.965E+6 3.069E+6 2.966E+6 2.960E+6 2.979E+6 2.428E+6	3.247E+6 3.362E+6 3.315E+6 3.329E+6 3.241E+6 2.657E+6	6.371E+4 6.287E+4 7.314E+4 8.532E+4 5.791E+4 5.213E+4	1.257E+5 1.463E+5 1.706E+5 1.158E+5 1.043E+5	4.06% 3.87% 4.64% 5.31% 3.68% 4.07%	-3.44% -0.36% -2.24% -0.21% 18.4%
6.25 12.5 25 50 100 101 100/.11M Cell Density D C-% 0 6.25	<u>Gittered</u> Detail Control Type	4 4 4 4 4 4 Rep 1 3.247E+6 3.286E+6 2.966E+6	3.249E+6 3.152E+6 3.211E+6 3.148E+6 2.563E+6 1.600E+6 Rep 2 3.221E+6 3.279E+6	3.093E+6 3.202E+6 3.098E+6 3.148E+6 3.105E+6 2.524E+6 1.547E+6 Rep 3 2.965E+6 3.362E+6 3.201E+6	3.189E+6 3.296E+6 3.207E+6 3.191E+6 2.602E+6 1.653E+6 Rep 4 3.131E+6 3.069E+6 3.127E+6	2.965E+6 3.069E+6 2.966E+6 2.960E+6 2.979E+6 2.428E+6	3.247E+6 3.362E+6 3.315E+6 3.329E+6 3.241E+6 2.657E+6	6.371E+4 6.287E+4 7.314E+4 8.532E+4 5.791E+4 5.213E+4	1.257E+5 1.463E+5 1.706E+5 1.158E+5 1.043E+5	4.06% 3.87% 4.64% 5.31% 3.68% 4.07%	-3.44% -0.36% -2.24% -0.21% 18.4%
6.25 12.5 25 50 100 101 100/.11M Cell Density D C-% 0 6.25 12.5	<u>Gittered</u> Detail Control Type	4 4 4 4 4 3.247E+6 3.286E+6 2.966E+6 3.251E+6 3.196E+6	3.249E+6 3.152E+6 3.211E+6 3.148E+6 2.563E+6 1.600E+6 Rep 2 3.221E+6 3.279E+6 3.315E+6 3.329E+6 3.175E+6	3.093E+6 3.202E+6 3.098E+6 3.148E+6 3.105E+6 2.524E+6 1.547E+6 Rep 3 2.965E+6 3.362E+6 3.201E+6 2.960E+6 3.241E+6	3.189E+6 3.296E+6 3.275E+6 3.191E+6 2.602E+6 1.653E+6 Rep 4 3.131E+6 3.069E+6 3.127E+6 3.305E+6 2.979E+6	2.965E+6 3.069E+6 2.966E+6 2.960E+6 2.979E+6 2.428E+6	3.247E+6 3.362E+6 3.315E+6 3.329E+6 3.241E+6 2.657E+6	6.371E+4 6.287E+4 7.314E+4 8.532E+4 5.791E+4 5.213E+4	1.257E+5 1.463E+5 1.706E+5 1.158E+5 1.043E+5	4.06% 3.87% 4.64% 5.31% 3.68% 4.07%	-3.44% -0.36% -2.24% -0.21% 18.4%
6.25 12.5 25 50 100 101 100/.UM Cell Density I C-% 0 6.25 12.5 25	<u>Gittered</u> Detail Control Type	4 4 4 4 4 3.247E+6 3.286E+6 2.966E+6 3.251E+6 3.196E+6	3.249E+6 3.152E+6 3.211E+6 3.148E+6 2.563E+6 1.600E+6 Rep 2 3.221E+6 3.279E+6 3.315E+6 3.329E+6	3.093E+6 3.202E+6 3.098E+6 3.148E+6 3.105E+6 2.524E+6 1.547E+6 Rep 3 2.965E+6 3.362E+6 3.201E+6 2.960E+6 3.241E+6	3.189E+6 3.296E+6 3.275E+6 3.191E+6 2.602E+6 1.653E+6 Rep 4 3.131E+6 3.069E+6 3.127E+6 3.305E+6 2.979E+6	2.965E+6 3.069E+6 2.966E+6 2.960E+6 2.979E+6 2.428E+6	3.247E+6 3.362E+6 3.315E+6 3.329E+6 3.241E+6 2.657E+6	6.371E+4 6.287E+4 7.314E+4 8.532E+4 5.791E+4 5.213E+4	1.257E+5 1.463E+5 1.706E+5 1.158E+5 1.043E+5	4.06% 3.87% 4.64% 5.31% 3.68% 4.07%	-3.44% -0.36% -2.24% -0.21%

Riv. The porcent difference between the controland the LOEC is above the lower bound PMSD limit and therefore significant according to EPA 2000.


CETIS Analytical Report								Test	Code:	1304-S043 08-7820-2341		
Selenastrum (Growth Test									Nautilus	Environ	mental (CA
Analysis ID: Analyzed:	13-3812-3071 13 May-13 9:05		•	ell Density onparametric-	Control v	rs T	reatments		CETIS Version: CETISv1.8.4 Official Results: Yes			
Data Transfor	m	Zeta	Alt Hyp	Trials	Seed			NOEL	LOEL	TOEL	TU	PMSD
Untransformed	1	NA	C > T	NA	NA			50	100	70.71	2	7.23%
Steel Many-O	ne Rank Sum Te	est										
Control	vs C-%		Test Stat	Critical	Ties	DF	P-Value	P-Type	Decision(a:5%)		
_ab Control	6.25		23	10	0	6	0.9966	Asymp	Non-Signif	icant Effect		
	12.5		18	10	0	6	0.8333	Asymp	Non-Signif	icant Effect		
	25		22	10	0	6	0.9908	Asymp	-	icant Effect		
	50		18	10	0	6	0.8333	Asymp	-	icant Effect		
	100*		10	10	0	6	0.0417	Asymp	Significant	Effect		
NOVA Table												
Source	Sum Squa	ares	Mean Sq	uare	DF		F Stat	P-Value	Decision(
Between	1.306265E		2.612531	E+11	5		14.67	<0.0001	Significant	Effect		
Error	3.205502E		17808350	0000	18		-					
Total	1.626816E	+12			23							
Distributional	Tests											
Attribute	Test			Test Stat	Critical		P-Value	Decision(α:1%)			
/ariances	Bartlett E	quality of	Variance	0.8312	15.09		0.9750	Equal Var	iances			
Distribution	Shapiro-V	Vilk W Ne	ormality	0.8796	0.884		0.0082	Non-norm	al Distributio	n		
Cell Density S	ummarv					وسر و ال		an de la section de la compañía de la section				
	Control Type	Count	Mean	95% LCL	95% UC	L	Median	Min	Мах	Std Err	CV%	%Effect
0	Lab Control	4	3.141E+6	2.938E+6	3.344E-	+6	3176000	2.965E+6	3.247E+6	6.371E+4	4.06%	0.0%
6.25		4	3,24 9 E+€	3.049E+6	3.449E+	+6	3283000	3.069E+6	3.362E+6	6.287E+4	3.87%	-3.44%
12.5		4	3.152E+€	2.919E+6	3.385E-	+6	3164000	2.966E+6	3.315E+6	7.314E+4	4.64%	-0.36%
25		4	3.211E+6	2.940E+6	3.483E+	+6	3278000	2.960E+6	3.329E+6	8.532E+4	5.31%	-2.24%
50		4	3.148E+6	6 2.963E+6	3.332E+	+6	3186000	2.979E+6	3.241E+6	5.791E+4	3.68%	-0.21%
100		4	2.563E+6	2.397E+6	2.729E-	+6	2584000	2.428E+6	2.657E+6	5.213E+4	4.07%	18.4%
Graphics												
2500000	_						2.0E+05 _					
3500000									, I			0
3000000				D			1.5E+05		1			
	-						1.0E+05		l l		6 ⁶ ″	
2500000	-					.0	5.0E+04		ا اھ_	908 908		
Cell Density Cell Density Cell Density	-					entere	0.0E+00		، ۳۵۵ ۲			
2000000 3	- - -					Centered	-5.0E+04		60			
1500000	- -						-1.0E+05					
1000000	- - -						-1.5E+05	. /	Ø 1			
1000000	-						-		0			
500000	- -						-2.0E+05		, 			
							-2.5E+05)	1			
0	0 6.25	12.5	25 5	i			-3.0E+05 -2.0) -1.5 -1	.0 -0.5 0.	0 0.5 1	.0 1.5	2.0



CETIS	S Ana	lytical Repo	ort						port Date: st Code:	13 May-13 09:10 (р 1 of _1) 1304-S043 08-7820-2341
Selena	astrum (Growth Test								Nautilus Environmental (CA)
Analys Analyz		07-6422-0947 13 May-13 9:05		•	Cell Density Linear Interpola	tion (ICPIN))	_	TIS Version	
Linear	Interpo	lation Options								
X Tran	sform	Y Transform	See	d I	Resamples	Exp 95%	CL Me	ethod		
Linear		Linear	1134	4240	1000	Yes	Tw	o-Point Inte	rpolation	
Point E	Estimate	S		<u> </u>						
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL				
IC25	>100	N/A	N/A	<1	NA	NA			10-10-10-10-00-000	
IC50	>100	N/A	N/A	<1	NA	NA				
Cell De	ensity S	ummary				Cal	culated V	/ariate		
C-%	C	ontrol Type	Count	Mean	Min	Мах	Std Err	Std Dev	/ CV%	%Effect
0	La	ab Control	4	3.141E	+6 2.965E+6	3.247E+6	6.371E+	-4 1.274E-	-5 4.06%	0.0%
6.25			4	3.249E	+6 3.069E+6	3.362E+6	6.287E+	+4 1.257E-	-5 3.87%	-3.44%
12.5			4	3.152E	+6 2.966E+6	3.315E+6	7.314E+	⊦4 1.463E-	-5 4.64%	-0.36%
25			4		+6 2.960E+6	3.329E+6	8.532E+		-5 5.31%	-2.24%
50			4	3.148E	+6 2.979E+6	3.241E+6	5.791E+	⊦4 1.158E⊣	-5 3.68%	-0.21%
100			4	2.563E	+6 2.428E+6	2.657E+6	5.213E+	⊦4 1.043E-	-5 4.07%	18.4%
Graphi المعلي المعلم	3.5E+06 3.0E+06 2.5E+06		•		•					

5.0E+00 0.0E+00 0 20 40 60 80 100 C-%

Fluorometric & Microscopic Determination of Cell Density Turner Fluorometer Model TD-700

Test	Species:	S. ca	pricornutum

Client: URS Corporation

1304-5043

Start Date/Time: 4/24/2013 1315

End Date/Time: 4/28/2013 310

Analyst:

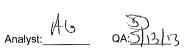
Sample ID: Upstream

Test No:

Random Number	Cell Density (fluorometric)	Dilution	Cell Density (microscopic)
	(cells/ml *10 ⁵)		(cells/ml *10 ⁴)
Blank		NA	
Cal Check 1 (NEW, Solid)	0.00, 3.61		
1	32.79		
2	30.109		
3	29.66		
4	29.79		
5	29.40		
6	32.01		
7	31.90		
3	31.27		
9	24.32		
10	24.57		
11	31.75		
12	32.47		
13	19.28 23.81		168
14	33.05		
Cal Check 2 (NEW, Solid)	0.00, 3,64		
15	29.65		
16	31.31		
17	24.28		
18	21.24		139
19	32.21		
20	82.51		
21	32.41		
22	33.29		
23	33.62		
24	33,15		
25	24.43		169
26	32.86		
27	21.99		164
28	29.35		
100% filtered blank	0.03		
100% unfiltered blank	4.70		

Comments: Michoscope counts performed on 1001. unfittered replicates due to presence of native algace in unfittered blank. QC Check: vgp_5/10/13

CETIS Test Data Worksheet


Report	Date:	2

Report Date: 23 Apr-13 15:36 (p	1 of 1)
Test Code: 1304-5043 08-7820-2341/345	84DE5-477

Selenastrum	Grow	th Te	st						Nautilus E	nvironmental (CA)
Start Date: End Date: Sample Date		Apr-13 Apr-13 Apr-13		Species: Protocol: Material:	EPA/821/R	-02-013 (20		Sample Code: Sample Source: Sample Station:		13-0423
C-%	Code	Rep	Pos	Cell Density	Absorbance	Biomass	Chlorophyll a		Notes	
0	LC	1	12							
0	LC	2	19							
0	LC	3	15							
0	LC	4	16							
6.25		1	26							
6.25		2	1							
6,25		3	23							
6.25		4	2				,			
12.5		1	3							
12.5		2	24							
12.5		3	6							
12.5		4	8							- //
25		1	20							
25		2	22							
25		3	5							
25		4	14							
50		1	7							
50		2	11							
50	1	3	21							
50		4	4							
100		1	10							
100		2	17							
100		3	28							
100		4	9							
1. 101		1	13							
10 1 101	1	2	27							
JA 101		3	18							
101		4	25							

GC:UN

.

Freshwater Chronic Bioassay

Water Quality Measurements **Algal Growth Inhibition**

Client :	URS Corporation	Test Species: <u>S. capricornutum</u>
Sample ID:	Upstream	Start Date/Time: 4/24/2013 1315
Sample Log No.:	13-0423	End Date/Time: 4/28/2013 1310
Dilutions made by:	LN	Test No: 1304 - S043

]		Initial Re	eadings		Final Re	eadings
Concentration (%)	D.O. (mg/L)	Conductivity (umhos-cm)	Alkalinity (mg/L)	Hardness (mg/L)	D.O, (mg/L)	Conductivity (umhos-cm)
LC	6.3	271	87	98	9.7	174
6.25	6.4	545	95	178	10.2	424
12.5	6.3	500		- Martin California	10-0	447
25	6,3	1282	129	396	9.9	1133
50	6.4	2220			10.2	2020
100 filt	6.4	3850	242	>1000	10.1	3410
100 unfilt	8.4	3890	237	7 1000	9.4	3440
<u></u>		0 Hour	(ع) 24 Hour	لم 48 Hour	72 Hour	96 Hour
pH/Temperature (ºC):	LC	8.28/24.0	8.26 / 25.7	851 /24.0	9.17 /24.5	9.46/24.5
pH/Temperature (ºC):	6.25	8.28/24.1	8.31 /26,4	8.56/244	9.17 /24.8	9.65/24.7
pH/Temperature (ºC):	12.5	8.24/240	8.35 /26.4	854 /24.3	9.09 /24.10	9.60/24.7
pH/Temperature (ºC):	25	8.21/24.0	8.38 / 25,8	8.52/25.8	8.91-124.5	9.40 / 24.6
pH/Temperature (ºC):	50	8.15/24.0	8.45 / 240.8	8.54 / 26.1	8.76/24.8	9.30 / 29.4

pH/Temperature (°C): 50 8.15/24.0 8.45/20.8 1854 / 261 18-76 /24.8 8.51 /24.3 8.50 /24.3 8.07/24.0 100 filt pH/Temperature (°C): 8.50 / 25.9 8.43/24.0 7.99/24.5 pH/Temperature (°C): 100 unfilt ML IN JF Technician:

Comments:

QC Check:

3 5 VM

5 13 Final Review: 😒 13

124.6

850 /24.3

(14

9.03 /2A.6

8.88 / 24:6

IN

Freshwater Chronic Bioassay		Algal Growth Inhibition Worksheet				
Client/Sample ID : <u>URS Corp</u> ira Test No: <u>1304-S043</u>	tion	Test Species:	S. capricornutum			
Test No: 1304-S043		Start Date/Time:	4/24/2013 1315			
Analyst:		End Date/Time:	4/28/2013 1310			
Culture Used (circle one): (Nutrient Enriched Date Stock Culture Started:		ery Hard Water (VHW) Culture Age:vd				
Culture subsample inspected for algal cell he	ealth? \underline{IN} (initials) ba	cteria/invasive algal spe	ecies present? Y			
Stock Cell Density Measurements:	<u>2x 27.94=55.98</u> 2x 27.64=55.28	50.44				
	<u>2x 27.61=55.28</u> 2x 27.61=55.22	75.39 Mean: 27.70 מ	J			
	2x 27.53=55.00					
	2,27.70=55.52					
(mean no. * 100,000)/(500,000) =`x (dilution	factor):1.0	8				

Prepare inoculum according to the dilution factor. This yields a solution with the desired cell density of 500,000 cells/ml.

dil. factor	11.08]			
	-1.0	part Sele stock	_ =	10 Sel	l
	10.08	part(s) NEW	_ =	100.8	NEN

Inoculate 1 ml into 3 initial count flasks containing 50 ml of NEW, stir and count on the hemacytometer. Flasks should contain a final density of 10,000 cells/ml ± 10%.

Inoculum Cell Density Confirmation Counts:

2		
0	Mean:	
<u> </u>		

Location in Environmental Chamber (All replicates in each test must be on the same shelf; do not split up tests among shelves):

Shelf Number	Measured Light Intensity Range (must be between 360 and 440 ft-c)	Random Number Range
1		
2		
3		
4		
5	369-427	1-28
6		

Are lights on 24 hour cycle? $(\hat{Y}) / N$

Comments:

QC Check:

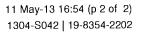
KAP 5/10/1	3
------------	---


Final Review: 30 5 13 B

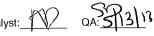
Ceriodaphnia dubia

CETIS Summary Report

Report Date: Test Code: 11 May-13 16:54 (p 1 of 2) 1304-S042 | 19-8354-2202


								rest coue.	130	14-3042	9-0304-220
Ceriodaphnia	ı 7-d Survival an	d Repro	duction Te	st					Nautilu	s Environn	nental (CA
Batch ID: Start Date: Ending Date: Duration:	21-2315-3525 24 Apr-13 14:40 01 May-13 13:5 6d 23h	D F 55 S	Fest Type: Protocol: Species: Source:	Reproduction-S EPA/821/R-02- Ceriodaphnia d In-House Cultu	013 (2002) ubia		l	Brine:	Diluted Mineral Not Applicable <8h	Water (8:2))
Sample ID:	01-2539-1927	C	Code:	13-0423				Client:	URS Corp		
•	23 Apr-13 09:00			Effluent Sample	e Ambali	nt		Project:			
Receive Date	: 23 Apr-13 15:10			URS	Wa	tic					
Sample Age:	30h (20.5 °C)	S	Station:	Upstream	<u>3-11-</u>	tox)					
Comparison	Summary										<u></u>
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	TU	Metho	bd		
19-3283-3343	7d Survival Rat	е	100	>100	NA	NA	1	Fisher	Exact Test		
07-6190-9072	Reproduction		50	100	70.71	24.8%	2	Wilco	kon/Bonferroni /	Adj Test	
Point Estimat	e Summary	-ii, -,,		nyike, beliefele ikaniki dingki yanî na manî na mananî					,		-, - , - , - , - , - , - , - , - , - ,
Analysis ID	Endpoint		Level	%	95% LCL	95% UCL	TU	Metho	bd		
18-5086-0552	Reproduction		IC25	61.03	46.8	68.9	1,639	Linear	Interpolation (I	CPIN)	
			IC50	91.08	80.95	N/A	1.098			·	
Test Acceptal	oility										
Analysis ID	Endpoint		Attribu	ıte	Test Stat	TAC Limi	ts	Overla	ap Decision		
19-3283-3343	7d Survival Rate	e	Contro	l Resp	1	0.8 - NL		Yes	Passes A	cceptability	Criteria
07-6190-9072	Reproduction		Contro	l Resp	30.3	15 - NL		Yes	Passes A	cceptability	Criteria
18-5086-0552	Reproduction		Contro	l Resp	30.3	15 - NL		Yes	Passes A	cceptability	Criteria
07-6190-9072	Reproduction		PMSD		0.2483	0.13 - 0.47	,	Yes	Passes A	cceptability	Criteria
7d Survival R	ate Summary					92000000000000000000000000000000000000				d	
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Ei	rr Std Dev	CV%	%Effect
0	Conductivity Co	10	0.8	0.6426	0.9574	0	1	0.1333	3 0.4216	52.7%	0.0%
0	Lab Control	10	1	1	1	1	1	0	0	0.0%	-25.0%
6.25		8	1	1	1	1	1	0	0	0.0%	-25.0%
12.5		10	0.9	0.7819	1	0	1	0.1	0.3162	35.14%	-12.5%
25		10	1	1	1	1	1	0	0	0.0%	-25.0%
50		10	1	1	1	1	1	0	0	0.0%	-25.0%
100		10	1	1	1	1	1	0	0	0.0%	-25.0%
Reproduction		-									
C-%	Control Type	Count	Mean		95% UCL	Min	Max	Std Er		CV%	%Effect
0	Conductivity Co	10	12.6	9.586	15.61	0	20	2.553	8.072	64.06%	0.0%
0	Lab Control	10	30.3	28.55	32.05	22	39	1.484	4.692	15.48%	-140.5%
6.25		9	30.78	27.15	34.41	7	38	3.239	9.718	31.58%	-144.3%
12.5		10	28	24.27	31.73	4	37	3.162	10	35.71%	-122.2%
25		10	34	31.69	36.31	24	40	1.955	6.182	18.18%	-169.8%
50		10	25.9	24.18	27.62	18	32	1.456	4.606	17.78%	-105.6%
100		10	13.1	11.26	14.94	6	21	1.56	4.932	37.65%	-3.97%

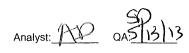
CETIS Summary Report


ET	IS™	v1.8.4.23	

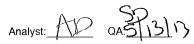
	X
Analyst:	1

Ceriodaph	nia 7-d Survival and	d Reprodu	uction Test						Nautilu	us Environr	nental (CA)
7d Surviva	l Rate Detail					i i na se					
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	Conductivity Co	1	1	1	1	1	0	0	1	1	1
0	Lab Control	1	1	1	1	1	1	1	1	1	1
6.25		1			1	1	1	1	1	1	1
12.5		1	1	1	1	1	1	1	1	0	1
25		1	1	1	1	1	1	1	1	1	1
50		1	1	1	1	1	1	1	1	1	1
100		1	1	1	1	1	1	1	1	1	1
Reproduct	ion Detail										
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	Conductivity Co	7	19	8	17	19	0	0	19	20	17
0	Lab Control	39	34	29	33	30	27	29	33	22	27
6.25		26	31		37	38	.7	33	32	35	38
12.5		18	37	34	32	36	31	27	32	4	29
25		29	38	40	40	24	35	39	30	39	26
50		18	29	30	27	20	30	32	24	23	26

Report Date: Test Code:

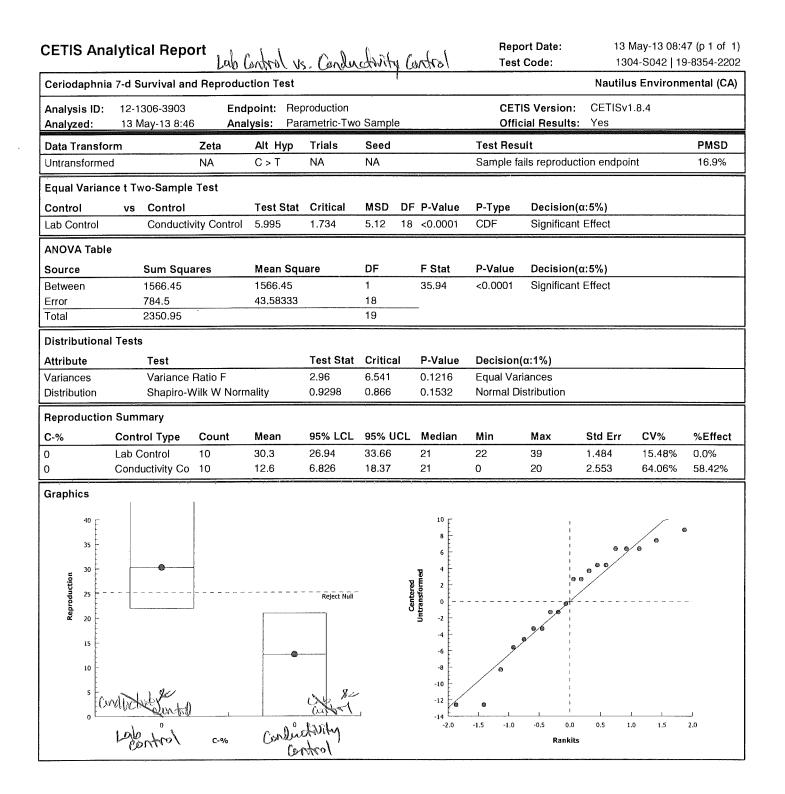


CETI	S A	na	lytic	al Rep	ort						-	ort Date: Code:			6:54 (p 1 of 1 19-8354-220
Cerio	dapł	nnia	7-d S	Survival ar	nd Rep	roductior	n Test						Nauti	lus Enviro	nmental (CA
Analy: Analy:				283-3343 May-13 16;	:51	Endpoint: 7d Survival Rate Analysis: Single 2x2 Contingency Table				ble		S Version: ial Results:	CETIS Yes	v1.8.4	
Data T					Zeta	Ali	Нур	Trials	Seed		NOEL	LOEL	TOEL	τu	
Untrar	nsfor	med				C :	> T	NA	NA		100	>100	NA	1	
Fisher	r Exa	act 1	ſest												
Contro	ol		vs	C-%		Te	st Stat	P-Value	Р-Туре	Decision	(α:5%)				
Lab Co	ontro	bl		6.25		1		1.0000	Exact	Non-Sign	ificant Effect				
				12.5		0.5	5	0.5000	Exact		ificant Effect				
				25		1		1.0000	Exact	-	ificant Effect				
				50		1		1.0000	Exact		ificant Effect				
				100		1		1.0000	Exact	Non-Sign	ificant Effect				
Data S	Sum	mar	y												
C-%			Cont	rol Type	ΝR	R		NR + R	Prop NR	Prop R	%Effect				
0			Lab (Control	10	0		10	1	0	0.0%				
6.25					8	0		8	1	0	0.0%				
12.5					9	1		10	0. 9	0.1	10.0%				
25					10	0		10	1	0	0.0%				
50					10	0		10	1	0	0.0%				
100					10	0		10	1	0	0.0%				
Graph	ics														
	1.	0 F	6	•		۵	0	0							
	0,	9			9										
	0.	Ę													
		Ē													
1	7d Survival Rate	7													
	<u>لَّہٰ</u> 0.	6													
	SP 0.	5 =													
	0.	4													
	0.	3 È													
	0.	F													
		Ē													
	0.	F				1									
	0.	0	0	6.25	12.5	25	50	100							
					C-%	0									



EIIS ANA	alytical Rep	on						Test	Code:	130	4-S042 19	-8354-220
Ceriodaphnia	a 7-d Survival a	nd Reprod	uction Test							Nautilus	s Environm	nental (CA
Analysis ID: Analyzed:	07-6190-9072 11 May-13 16		• •	roduction	Multiple (Con	nparison		IS Version: al Results:	CETISv1 Yes	.8.4	station of the station of
Data Transfo		Zeta	Alt Hyp	Trials	Seed			NOEL	LOEL	TOEL	TU	PMSD
Jntransformed	d	NA	C > T	NA	NA			50	100	70.71	2	24.8%
Wilcoxon/Bo	nferroni Adj Tes	st										
Control	vs C-%		Test Stat	Critical			P-Value	P-Type	Decision(
Lab Control	6.25		101	NA			1.0000	Exact	Non-Signif			
	12.5		105.5	NA			1.0000	Exact	Non-Signif			
	25		123.5	NA			1.0000	Exact	Non-Signif			
	50 100*		81 55	NA NA			0.1775 <0.0001	Exact Exact	Non-Signif Significant			
ANOVA Table Source	, Sum Squ	aree	Mean Squ	are	DF		F Stat	P-Value	Decision(a:5%)		
Between	2681.392		536.2784		5		10.9	<0.0001	Significant			
Error	2607.456		49.19727		53		10.0	<0.0001	organioum	Lindot		
Total	5288.848				58		-					
Distributiona	l Tests				<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	÷,					na na panana kaominina kaominina kaominina kaominina kaominina kaominina kaominina kaominina kaominina kaominin	
Attribute	Test			Test Stat	Critical	I	P-Value	Decision	(α:1%)			
Variances	Bartlett I	Equality of	Variance	11.32	15.09	·	0.0454	Equal Var	riances			
Distribution		Wilk W No		0.8757	0.9451		<0.0001	•	al Distributio	n		
Reproduction	n Summary										****	
C-%	Control Type	Count	Mean	95% LCL	95% U (CL	Median	Min	Max	Std Err	CV%	%Effect
2	Lab Control	10	30.3	26,94	33.66		29.5	22	39	1.484	15.48%	0.0%
3.25		9	30.78	23.31	38,25		33	7	38	3.239	31.58%	-1.58%
12.5		10	28	20.85	35.15		31.5	4	37	3.162	35.71%	7.59%
25		10	34	29.58	38.42		36.5	24	40	1.955	18.18%	-12.21%
50		10	25.9	22.61	29.19		26.5	18	32	1.456	17.78%	14.52%
100		10	13.1	9.572	16.63		12.5	6	21	1.56	37.65%	56.77%
Graphics 40 30 5 10 5 0		•		-@	J	Centered	10 5 -10 -10 -20	0,0000	and the second sec			-
0	0 6.25	12.5	25 50	100				-2.0 -1.5 -1	1.0 -0.5 0.0	0.5 1.0	1.5 2.0	2.5
		C-%							Rankits			

CETIS	S Ana	lytical Repo	ort						eport Date: est Code:	11 May-13 16:54 (p 1 of 1 1304-S042 19-8354-220
Ceriod	aphnia	7-d Survival an	d Reproduc	tion Te	est					Nautilus Environmental (CA
Analys Analyz		18-5086-0552 11 May-13 16:5		point: lysis:	Reproduction Linear Interpola	tion (ICPIN)			ETIS Version: fficial Results:	CETISv1.8.4 Yes
Linear	Interpo	lation Options								
X Tran	sform	Y Transform	See	d	Resamples	Exp 95% (CL Met	hod		
Linear		Linear	1288	3789	1000	Yes	Two	-Point Int	erpolation	
Point E	Estimate	es								
Level	%	95% LCL	95% UCL	TU	95% L C L	95% UCL				
IC25	61.03		68.9	1.639	1.451	2.137				
IC50	91.08		N/A	1.098	NA	1.235				
Reproc	duction	Summary			<u></u>	Calc	ulated Va	ariate		
C-%	с	ontrol Type	Count	Mean	Min	Max	Std Err	Std De	ev CV%	%Effect
0	L	ab Control	10	30.3	22	39	1.484	4.692	15.48%	0.0%
6.25			9	30.78	7	38	3.239	9.718	31.58%	-1.58%
12.5			10	28	4	37	3.162	10	35.71%	7.59%
25			10	34	24	40	1.955	6.182	18.18%	-12.21%
50			10	25.9	18	32	1.456	4.606	17.78%	14.52%
100			10	13.1	6	21	1.56	4.932	37.65%	56.77%
Graphi	35 30 25 10 10 5	G Y	, e		e					
	5 0 0	20	40 6	L						



.

C-%

CETIS Ana	lytical Repo	ort Lab (introl u	s Condu	ctury (iontral	Report Date: Test Code:	13 May-13 08:48 (p 1 of 1) 1304-S042 19-8354-2202
Ceriodaphnia	7-d Survival and	d Reprodu	ction Test	030 0210000	,			Nautilus Environmental (CA)
Analysis ID: Analyzed:	15-6481-7310 13 May-13 8:46		•	Survival Rat gle 2x2 Con	e tingency Ta	ble	CETIS Version: Official Results:	CETISv1.8.4 Yes
Data Transfor	'm	Zeta	Alt Hyp	Trials	Seed		Test Result	
Untransformed	b		C > T	NA	NA		Sample passes 7d surv	vival rate endpoint
Fisher Exact	Test							
Control	vs Control		Test Stat	P-Value	Р-Туре	Decision	α:5%)	
Lab Control	Conductivi	ty Control	0.2368	0.2368	Exact	Non-Signi	ficant Effect	
Data Summar	́у						in an	
C-%	Control Type	NR	R	NR + R	Prop NR	Prop R	%Effect	
0	Conductivity Co	8	2	10	0.8	0.2	20.0%	
0	Lab Control	10	0	10	1	0	0.0%	
Graphics						çı		
1.0 _			6					
0.9								
0.8	۵							
	ø							
D.7 USE CONTRACT OF CONTRACTS								
0.6								
P 0.5								
0.4								
0.3								
0.2								
0.1 [(Cenderatisity	1	ab cuntra					
0.0	antre		CON to (
5.0	0		0					
		C-%						

Analyst: _____ QA:

Analyst: D QA: SC

Client/Sample ID: URS/Upstream

Test No:

1304-5042

Conc.	Rep	Rand			Daily R	eprodu	ction/	Surviva	[-	
00110.	Kep	#	1	2	3	4	5	6	7	8	Total	QC
	1	20	0	\circ	O	7	Ø	15	17	11 C. 10. C. W. MIL	29	
LC	2	14	O	Ö	0	6.	13	0	145		24	15
	3	13	0	\bigcirc	Q	5	0	13	11		29	
	4	33	0	ð	⁰	5-	0	14-	14		33	
	5	9	0	2	0	5	0	14	14		30	
	6	37	ð	Ľð	0	6	٦	Q	14		27	
	7	49	C	Č	\Box	6	0	11	12		29	
	8	50	0	0	0	6	0	10	1-1		23	
	9	39	0	0	0	5-	9	0	X		22	
	10	6	0	0	C	24	0	10	3		271	
		Tech:	A6	RV	AP	Sa	JA	K	AS I			BK-
			,		Me	an neon	ates/su	rviving fe	male (for	r TAC):	3).3	

Conc.	Rep	Rand			Daily F	Reprodu	uction/	Surviva	1		Tatal	00
Conc.	Keh	#	1	2	3	4	5	6	7	8	- Total	QC
	1	24	0	0	0	A	0	14	6		210]
6.25%	2	2	0	S	0	P	11	0	110		31	
	3	34	118	-	-	-	-	-	-	-	LIP	ja
	4	4	0	0	0	6.	G	14	17		27	17
	5	54	0	S	ŏ	6	0	14-	18		28	
開発的な	6	31	0	0	0	7-	0	0	0	····	1 T	
	7	23	0	S	3	5-	C	11	17		33	
的话题	8	40	0	S	0	5	0	10	17		31	
	9	45	Ó	Ø	0	0	7	12	410		35	
	10	59	0		$\overline{0}$	5	Ó	15	18		38	

Conc.	Bon	Rand			Daily F	Reprodu	ction/ S	Surviva	ıl			
Conc.	Rep	#	1	2	3	4	5	6	7	8	Total	QC
	1	51	0	0		0	۲ ۲	13	10		181	
12.5%	2	60	0	0	10	17	ō	11	19		27	
119an son	3	19	Õ	Ð	0	6	13	0	15	-	34	15
	4	7	0	10	Ō	5	10	ŏ	17		32	
	5	30	Ø	0	0	4	0	14-	18		36	
	6	29	Õ	Q	13	1	12	0	12.		21	
N na States	7	25	0	$\overline{\Omega}$	Q	6	σ	8	13	-	27	
	8	46	ゆ	10	1	5	0	13	14		37	
) 	9	3	0	D	0	Mine					412	
	10	27	0	1.5	IN	20-	13	0	1 1	1	56	

	10	27	0	- S	Í Ó	5	13	0	11	1	29	
			Ne			•		ere blo		cross		
	,			C	oncent	rations	at test	: initiati	on			Notes: d = dead; M = male; LIP = lost in progress;
	Rep:	1	22	3	4	5	6	7	8	9	[•] 10	B = 4th brood (only the first 3 broods are included in
B	oard:	43	20%	43	43	45	45	45	45	44	યન	
	Cup:	14	20	26	29	14	50	53	501	6	13	
Initiate			6	Ver	ified By:	L	0			,		
Time Fed	/Test	Soluti	on Ren	ewed (day): ((0 <u>) 144</u>	<u>'0 (1)</u>	<u> </u>	(2 <u>)]</u> ()	050	3)0955	5 (4) 1325 (5) 1110 (6) 0945 (7)
Commen	ts:											

Daphnid Survival and Reproduction Datasheet

Test Species: C. dubia

Start Date/Time: 4/24/2013 1440

End Date/Time: 4/30/2013 1355

Conc.	Pop	Rand			Daily R	eprodu	uction/	Surviva	I			
Conc.	Rep	#	1	2	3	4	5	6	7	8	Total	QC
	1	28	0	0	6	5	EI	0	3		29	
25%	2	15	0	S	6	6	13	0	19		38	
物的运动	3	36	0	0	0	6	0	10	18		40	
	4	11	0	<u>C</u>	0		13	0	20		ЦŎ	· . ·
	5	18	0	0	D	14	12	0	12		75	
	6	22	0	C	0	-7	12	0	110		25	
	7	1	0	1	0	7	0	12	200		29	
	8	55	0	$\overline{\mathbf{S}}$	2	14	0	и	15		30	
	9	21	0	0	3	5	0	14	70		29	
Rate	10	48	0	\odot	0	Ö	61	0	15		2.12	15

Cono	Den	Rand			Daily R	leprodu	ction/	Surviva	l	T . (.)	
Conc.	Rep	#	1	2	3	4	5	6	7 8	Total	QC
	1	57	0	5	0	4	0	3		18	
50%	2	17	0	0	0	6	12	0	$ \gamma\rangle$	29	
	3	26	0	0	0	5-	0	8	17	30	
	4	47	0	N	Ň	24	C	9	14	21	
	5	58	0	5	10	Ġ	ণ	0	11	70	
	6	38	0	0	Tă	67-	ti	0	14	30	
	7	5	0	0	D	U U	0	12	10	32	
	8	16	0	D	0	5	8	0	11	74	it
	9	43	0	l O	0	6	0	0	H	23	
	10	35	0	C	6	5	0	8	13	20	

Conc.	Rep	Rand			Daily F	Reprodu	ction/	Surviva	al		Tatal	00
Conc.	Reh	#	1	2	3	4	5	6	7	8	Total	QC
	1	41	0	0	U	0	O	6	-7		13	7
100%	2	52	D	0	0	2	Ċ	5	12		19	
	3	32	0		0	14	C	4-	8		15	
	4	8	0	D	0	2	0	0	8		11	
	5	42	0	$\Box O$	0	XX3	Ø	4	10		17	
	6	10	0	$\overline{\mathbf{O}}$	0	02.5	Ø	Ø	7		7	
	7	56	Ô	$\overline{0}$	0	3	Ø	0	7		10	
	8	12	0	\bigcirc	0	0	U	6	Ó		12	
	9	44	0	3	5	C	Ч	5	12		21	
	10	53	0	$\overline{\mathbf{O}}$	0	6	0	6	O		10	

total)

Final Review: \$5/13/13

Daphnid Survival and Reproduction Datasheet

Test Species: C. dubia

Client/Sample ID: URS

Test Number: 1304 - 504)2

Start Date/Time: 4/24/2013 1440

End Date/Time: 5/1/2013

2013 1355

Conc.	Rep	Rand			Daily I	Reprodu	iction/ S	urvival			Total	QC
00110.	IVCP	#	1	2	3	4	5	6	7	8	IUIAI	QC
	1	Α	0	()	0	0	И	3	\circ			
CC	2	В	ð	Ů	Ô	į	0	8	10		19	10
	3	С	6	0	0	\bigcirc	0	5	3		8	
	4	D	6	0	0	2	0	10	5		17	
	5	Е	0	()	0	4	0	5	10		19	
	6	F	0	Ŭ.	Õ	01d,	-1		-	-	old	
	7	G	9	O	0	0	old		-		ord	
	8	Н	0	Ŏ	U	2	Ø	5	12		19	
	9	I	6	Ó	Q	3	Ø	11	(o)		20	
	10	J	0	0	0	1	0	6	10		17	
		Tech:	A6	XP	Ar	56.	JA	LN	AD			BK

Conc.	Rep	Rand			Daily F	Reprodu	iction/ S	urvival	• • • • • •		Tatal	00
Conc.	reh	#	1	2	3	4	5	6	7	8	Total	QC
	1											
	2											
	3											
	4											
	5											
	6											
	7											
	8											
	9											
	10											

Conc.	Rep	Rand			Daily F	Reprodu	ction/ S	urvival			Tatal	00
conc.	Kep	#	1	2	3	4	5	6	7	8	Total	QC
	1											
	2											[
	3											
	4								i 1		[]	
	5											
	6									-		
	7											
	8										1	T
	9											
	10											

Neonates for each replicate were blocked across concentrations at test initiation

Rep:	1	2	3	4	5	6	7	8	9	10
Board:	43	43	43	43	45	45	45	45	44	44
Cup:	14	lo	26	29	14	50	53	59	6	13
Initiated By:	A	<u>í</u>	Ver	ified By:	U					

Time Fed/Test Solution Renewed (day): (0) 1440 (1) 0905 (2) 1005 (3) 0755 (4) 1375^{-} (5) 1110 (6) 0945 (7)

Notes: d = dead; M = male; LIP = lost in progress; B = 4th brood (only the first 3 broods are included in total)

QC Check: <u>FXV</u> 518113_ Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

Final Review: 50 5133

Freshwater Chronic Bioassay

Water Quality Measurements

Client:	URS
Sample ID:	Upstream
Test No:	1304-5042

Concentration				Lab C	ontrol			
Day	0	1	2	3	4	5	6	7
	1.0001/1600056	514 (States)	n waxa dina da	Ini	tial		이 제 제상을 다음	5H94178.5%
pН	8.20	8.12	8.16	1.8	8.15	8.15	8.12	
DO (mg/L)	3.1	7.8	7.8	8.0	8.0	84	8.7	
Cond. (µmhos/cm)	139	198	193	189	200	189	180	
Temp (°C)	24.7	24.8	25-1	25.0	2570	24.7	24.1	
	ang as hund ha		Alandosa (misu),	Fi	nal	Marian	44.519 (2011) A	
рН		8.22	8.10	8.03	8,02	5.18	8.13	8.09
DO (mg/L)		7.8	0-3-57.	\$ 7.6	8.3	8.3	80	7.8
Temp (°C)	1.89	258	12.	74.2	24.0	24,0	24.3	242

Concentration								
Day	0	1	2	3	4	5	6	7
a standard Wester Director			Red Alignment	Ini	tial	e fut en para		
pН	3.22	8.18	8.16	8.14	8.10	8.18	8.13	
DO (mg/L)	8.1	7.8	7.8	8.2	7.8	1.8.6	8.9	
Cond. (µmhos/cm)	479	481	480	1448	486	486	449	
Temp (°C)	24.8	24.9	25.3	5.1	2512	24,4	24.2	
NON OF				Fi Fi	nal		043	
pН		8.31	8.19	8.14	8.845	8.23	8.20	8.17
DO (mg/L)		8,0	digity.	7.5	8.2	8.4	8.1	7.8
Temp (°C)	1.0.00	25.8	12.1	24.3	24.11	24.0	24.3	24.2

Concentration	12.5%									
Day	0	1	2	3	4	5	6	7		
an shi u tha an an tha an an tha an an tha an	to be readed white		a na katalan ka	i de Ini	tial		la fa fa	essi ya har		
pН	8.21	8.15	18.16	813	8,15	8.16	8.13			
DO (mg/L)	8-1	7.9	7.9	8.2	7.9	8.1	8.9			
Cond. (µmhos/cm)	736	742	752	701	759	719	696			
Temp (°C)	249	24.9	25.1	25.5	25.4	24.8	2A:3			
Stangen (MUSACE) (B.S.	19062623	in the second		i ji Fi	nal	di sikati ya M	nin sasa	us og og delag		
pН		8.30	8.25	8.19	8.21	8.27	8.26	0.19		
DO (mg/L)	1	8.0	the con	07.5	9.1	8.4	5.1	7.10		
Temp (°C)		25.9	24.5	242	24.0	240	24,3	24.2		

Animal Source/Date Received:		
Animal Age at Initiation:	-Shours	
Sample Log-in Numbers:	A: 13-0423	<u>c:</u>
	B:	

Test Species:	C. dubia		
Start Date/Time:	4/24/13	1490	
End Date/Time:	3/30 /13	1355	

Concentration	25%								
Day	0	1	2	3	4	5	6	7	
halan se se se salah sini	NA SUA DA		382 DO 108 AN 128 P	il (in lini	tial	ité pasintes	anana Batas		
рН	8.16	8.13	8.13	8.11	8.14	8.16	8.15	19672623	
DO (mg/L)	.8.2	8.0	8.0	83	8.1	8.1	၅.၁		
Cond. (µmhos/cm)	1258	1244	1251	1168	1270	1180	1100		
Temp (°C)	25.0	25.0	25.2	25.3	25.4	24.8	24.5		
	HUN ARABIEN	(National des	W BORNESS	Fi	nalolasse	20	643,99649148	in an	
pН		8.36	8:33	8.20	8.27	8-34	8.3	8.23	
DO (mg/L)		7.9 :	نه مبرهما	17.7	8/1	8.4	8.1	7.1	
Temp (°C)	N SLAM	25.8	12A.1	24.3	24.6	24.0	24.3	24.2	

Concentration	50%								
Day	0	1	2	3	4	5	6	7	
e losminantes de la composición de la c	l tan an a	Managhaon		Ini	tial		killen angen	2002/06/00/3	
рН	8.10	8.09	8-08	8.08	8.11	8.08	814		
DO (mg/L)	8.3	8.3	8.2	8.6	9.5	8.8	8.9		
Cond. (µmhos/cm)	2170	2210	2200	2110	2170	2080	2100		
Temp (°C)	24.9	25.4	25.4	25.3	25.4	25.0	24.8		
			New Weiner	(Doubling Fil	nal	999-cen//20		hand states of the	
pН		8.38	6:39	8.35	8.39	8.39	8.40	8.33	
DO (mg/L)	l Naski	7.9	48-7-1	7:7	94	8.4	8.1	1.8	
Temp (°C)		25.8	24.1	24.3	74.6	24.0	24.3	24.2	

Concentration	100%										
Day	0	1	2	3	4	5	6	7			
Second Manager		si ang talapan		lni	tial	Y MAGAMAA	gsievel exactliste				
pH	8.03	8.03	8.00	8.03	8.03	8.09	8.08				
DO (mg/L)	8.4	9.4	8.6	8.8	8.9	8.7	8.5				
Cond. (µmhos/cm)	3810	3810	3800	3800	3310	3850	3790				
Temp (°C)	24.8	25.3	25.7	25.0	25.4	257	25.5				
	19032-012-04	garaasa (Hi	8116410/412/8	shinin Fi	nal 👘 👘	epersentistichers	이전 가지가				
pН		8.20	8.19	8.19	8.15	8.14	8:17	8.17			
DO (mg/L)		9.0	abon	\$ 7.4	8-1	8.5	8.1	17.8			
Temp (°C)		25.8	24.1	24.3	Z4.0	24.0	243	24.2			
	•		₅{ 2	3	4	5	6	_			

		v		91 -	· ·			•	<u> </u>
Analysts: I	nitial:	ML	\mathbb{N}	SOF	JF	2	ML	PG.	
-	Final:		LN		Mr	22	VĄ	JA	ML
Dilutions mad	de by:	ML	1A61	হয়	JF	54	AG	ぐし	
Sample Used (A,	в, с):	A	A	K	A	A	Ą	A	

Comments:

QC Check:

AD 518/13

Final Review: 5 13 13

Freshwater Chronic Bioassay

Water Quality Measurements

Client:	URS	Test Species: C. dubia	
Sample ID:	Upstream	Start Date/Time: 4/24/2013	1440
Test No:	1304-5042	End Date/Time: 5/1/2013	1355

Concentration	Conductivity Control							
Day	0	1	2	3	4	5	6	7
			1.21.1		nitial			1
рН	9.09	8.11	813	8-09	8.10	8.10	8.57	
DO (mg/L)	<i>8.</i> 0°	7.8	7.8	8.1	81	8.4	8.9	1
Cond. (µmhos/cm)	30,00	3810	3810	3800	3810	3810	3770	
Temp (°C)	24.1	24.8	25.3	25.0	25.2	24.6	25.1	
			1	Second	inal		1	L
pН		8.11	8.14	198	8.21	8.3	8.14	812
DO (mg/L)		7.50	BSI	0 7.4	8.1	8.4	8.2	8.0
Temp (°C)		25.8	14.1	24.3	24.11	24.0	24.3	74.7
				1.5 1.5	<u></u>	L	1-1-0	1240
Concentration								
Day	0	1	2	3	4	5	6	7
			-	In	itial			
рН								
DO (mg/L)								
Cond. (µmhos/cm)								
Temp (°C)								
				Fi	inal	L		
pН								<u> </u>
DO (mg/L)								
Temp (°C)								
			J					
Concentration								
Day	0	1	2	3	4	5	6	7
				Ini	itial			
pH								
DO (mg/L)								
Cond. (µmhos/cm)								
Temp (°C)								
				Fi	nal			
рН								
DO (mg/L)								
Temp (°C)								
			-					
Г	0	1	2	3	4	5	6	7
Analysts: Initial:	Ah	LN		VF	in	ML	10g	
Final:		LN	CL	ML	LN	JA	JAT	ML
Dilutions made by:	AG	Ali	(F)	IF I	46	Ala	ci_	
				-		MA	00	
Sample Used (A, B, C):		-	-				~	
Commente		1/.	111					10
Comments:	1				Animal Age at Initiation: $\angle \mathcal{B} h$			
Source/Date Received:	Interv	·····	J/A		Anin	nal Age at l	Initiation:	-0
	1	0423		B:	Anin		Initiation: _ C:	-0

Hyalella azteca

Appendix Table A-1 10-Day *Hyalella* Survival and Growth Bioassay URS Corporation Project: Sorrento Water Quality

Sample Collected 4/23/13 ; Test Initiated 4/26/13

Site ID	Rep	Random #	Number Alive	Percent Survival	Biomass (mg)	Growth (mg/org)	Mean Percent Survival	Mean Growth	Survival Standard Deviation	Growth Standard Deviation
	Α	9	10	100	3.28	0.328				
	В	1	10	100	2.40	0.240				
Lab Control	С	8	10	100	2.80	0.280	100	0.288	0.0	0.32
	D	6	10	100	2.92	0.292				
	E	3	10	100	2.99	0.299				
	Α	7	10	100	2.81	0.281				
	В	5	10	100	3.20	0.320				
R-3-D-TOX-S	С	4	10	100	2.75	0.275	100	0.290	0.0	0.19
	D	10	10	100	2.98	0.298				
	Е	2	10	100	2.76	0.276				

Analysis of *Hyalella* Survival URS Sorrento Water Quality Test Initiated: April 26, 2013

Table Analyzed Column A vs	Excel Transform Survival Lab Control vs
Column B	R-3-D-TOX-S
Unpaired t test P value P value summary Are means signif. different? (P < 0.05) One- or two-tailed P value? t, df	0.5000 ns No One-tailed t=0.0000 df=8
How big is the difference? Mean ± SEM of column A Mean ± SEM of column B Difference between means 95% confidence interval R squared	1.412 ± 0.0002000 N=5 1.412 ± 0.0002000 N=5 0.0000 ± 0.0002828 -0.0006522 to 0.0006522 0.0000
F test to compare variances F,DFn, Dfd P value P value summary Are variances significantly different?	1.000, 4, 4 1.0000 ns No

Analysis of *Hyalella* Growth URS Sorrento Water Quality Test Initiated: April 26, 2013

Table Analyzed Column A vs Column B	Growth Lab Control vs R-3-D-TOX-S
Unpaired t test P value P value summary Are means signif. different? (P < 0.05) One- or two-tailed P value? t, df	0.4492 ns No One-tailed t=0.1318 df=8
How big is the difference? Mean ± SEM of column A Mean ± SEM of column B Difference between means 95% confidence interval R squared	0.2878 ± 0.01433 N=5 0.2900 ± 0.008562 N=5 -0.002200 ± 0.01669 -0.04069 to 0.03629 0.002167
F test to compare variances F,DFn, Dfd P value P value summary Are variances significantly different?	2.800, 4, 4 0.3426 ns No

Freeshwater Sediment Bioassay

Organism Survival

Client:	URS		Test Species: H. azteca
Project ID:	Strendo wates	quality	Start Date/Time: 4/26/2013
Initiated by:	BK	0	End Date/Time: 5/6/2013
Initial No. O	rganisms: <u>10</u>		Test No.: 1304 -504 5
		-	

Random Number	Number Alive	10% QC Check of final counts	Random Number	Number Alive	10% QC Check of final counts
1	10	10			
2	10				
3	10	10			
4	0				
5	10				
6	10				
7	10	U IV			
8	01				
9	10	10			
10	10				
	0.	-	-		
Tech Initials:	BG	JVv	Tech Initials:		

Initiation QC Check Initials:

Organism Counts $\frac{\Im \hbar}{CL}$ Organism Count QC _	<u></u>	<u> </u>
Animal Source/Date Received: <u>Aquatic Indicators</u>	1 4/23/13 Age at Initi	ation: <u>14à</u>

QC Check: <u>fo</u>	5	13/13	 Final Review:	γs	5/13	13
					,	

Freshwater Chronic Bioassay

Amphipod 10-Day Weights

Client:	URS	Test Species: Hyalella azteca
Sample ID: _	R-3-D-TOX ∽≲	Start Date/Time: 4/26/13 11:00
Test No.:	1304-S045	End Date/Time: 5/6/13 11:50

Site ID <u>Conc.</u> ()	Rep.	pan weight (mg)	pan + organism weight (mg)	Weight Difference (mg)
Lab Control	a	469.09	472.37	3.28
	b	481.25	483.65	2.40
	c	490.68	493.48	2.80
	d	488.20	491.12	2.92
	e	463.58	466.57	2.99
R-3-D-Tox-∽S	a	534.41	537.22	2.81
	b	500.20	503.4	3.20
	с	482.16	484.91	2.75
	d	524.66	527.64	2.98
	е	490.20	492.96	2.76
Tec	h Initials:	BG	LN	
)ate/Time:	5/6/13 1120	5/12/2013 1125	

QC Check: 5 5 13 13Final Review: 45 5 13 13

Freshwater Chronic Bioassay

Amphipod Time Zero Weights

Client: URS

Sample ID: R-3-D-TOX-S

Test No.: 1304-S045

Test Species: Hyalella azteca

Start Date/Time: 4/26/13 11:00

End Date/Time: 5/6/13 11:50

Conc. No. Organisms Pan Weight Pan + Org. Biomass Mean Biomass Rep. Weight (mg) per Pan (mg) (mg) (mg) (____) 10 535.54 0.194 Time zero а 533.6 b 10 535.35 537.25 0.19 10 493.76 0.199 0.198 С 495.75 d 10 586.45 588.35 0.19 0.217 10 509.15 511.32 е Control Data 10 469.09 472.37 0.328 а Day 10 10 481.25 0.24 b 483.65 0.288 С 10 490.68 493.48 0.28 d 10 488.2 0.292 491.12 10 463.58 466.57 0.299 е

Mean % Growth: 45.35

QC Check:

60 5/13/13

Final Review:

45 5/13/13

10-Day Freshwater Sediment Bioassay Static Conditions

Client:	URS	Test Species:	H. azteca	
Site ID:	Lab Control	Start Date/Time:	4/26/2013	1100
Test No.:	1304-5045	End Date/Time:	5/6/2013	1150

Test Day	Conductivity (µmhos/cm)	Temperature (°C)	Dissolved Oxygen (mg/L)	pH (units)	Technician Initials	Comments
0	811	22.0	8.4	831	JF	Collect Ammonia
1	815	22.0	8.5	8.34	JF	
2	811	22.6	7.8	8.29	LN	
3	813	22.)	7.8	8.14	ML	
4	823	22.4	8.3	8.18	BG	
5	832	22.5	7.8	8.22	EC	
6	\$31	22,3	7,5	8.11	A6	
7	831	22.1	7.8	8.12	86	
8	834	22,4	7.4	8.18	AG	
9	835	22.2	7.4	8.17	W	
10	\$ 34	22-1	7.4	8.14	50	VCollect Ammonia
QC Check	: 50 511	3/13			Final Review	×5 5/13/13

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

Water Quality Measurements

10-Day Freshwater Sediment Bioassay Static Conditions

Client:	URS	_ Test Species: <i>H. azteca</i>	
Site ID:	R-3-D-Tox-55	Start Date/Time:	
Test No.:	1304-5045	End Date/Time: 5/6/2013	

Test Day	Conductivity (µmhos/cm)	Temperature (°C)	Dissolved Oxygen (mg/L)	pH (units)	Technician Initials	Comments
0	924	22.0	of \$107.3	8.30	VF	Collect Ammonia
1	914	22.0	7.5	8.09	JF	
2	855	22.3	7.3	8.14	LN	
3	852	22.0	6.7	7.918.	ML	
4	834	22.4	7.6	୫.୦୫	BG	
5	838	2.5	7.4	8.20	Ec	
6	839	22.3	6.7	8.12	AG	
7	847	21.2	ie.5	8.36	BG	
8	851	221	6.0	8.42	A6	
9	948	22.1	<u>48</u>	8,40	LN	
10	954	,22.0	Le D	8.44	SD	Collect Ammonia
QC Check:	OD 5)13	0/13			Final Review:	

10-Day Freshwater Sediment Bioassay Static Conditions

1 IPC

Client[.]

Renewal Water Quality Measurements

enemi.		
Site ID:	Renewal water du	K-3-D-TUC-\$\$
Test No.:	1304-5045	test

Test Species:	H. azteca	
Start Date/Time:	4/26/2013	1100
End Date/Time:	5/6/2013	1150

Test Day	Conductivity (µmhos/cm)	Temperature (°C)	Dissolved Oxygen (mg/L)	pH (units)	Technician Initials	Comments
0						
1	808	22.4	8.6	8.42	(IF	
2	800	22.9	8.2	8.36	LN	
3	815	22.9	9.0	8.35	ML	
4	634	22.8	9.0	8.31	BG	
5	833	12.1	8.7	8.40	EL	-
6	834	22,7	8.2	8.32	AG	
7	835	22.7	8,9	8.35	89	
8	836	22.8	8.4	8.42	A6	
9	838	22.7	8.3	8.40	LN	
10						
QC Check:	<u>s</u> 5)	3/13	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Final Review:	45 5/13/13

Final Review:

5/13/13 45

Total Ammonia Analysis Freshwater

Overlying Water

Client: URS

Project: Somewho Wighter Quali

Test Type: 10 day Hyalella Sx 2000 2 6-2 th

DI Blank: 0.0 Test Start Date: 4/26/2013

Analyst: UN Analysis Date: 5/12/13

	Nautilus	Sub-Sample	Test	рН	NH3-N	N x 1.22 Ammonia
Sample ID	ID	Date	Day	(units)	(mg/L)	(mg/L)
Blank Spike (10 mg/L NH3)		NA	NA	NA	8.0	9.8
Lab Control	1	4/26/2013	0	8,31	0.4	0.5
R-3-D-Tox-5 Lab Control	2	4/26/2013	0	8.30	0.3	0.410. 0.2
Lab Control	3	5/6/2013	10	8,44	0.2	0.2
R-3-D-Tox-ंऽ ^S	4	5/6/2013	10	8.44	01	0.418. 0.2 0.1
Spike Check (10 mg/L NH ₃)		NA	NA		8.0	<i>q.</i> g
Sample Duplicate ^a					0.1	0.
Sample Duplicate + Spike ^a			·····		8.3	10.1
pike Check (10 mg/L NH ₃)		NA	NA		8.0	9.8

sample duplicate (mg/L) x 100 [average ammonia] (mg/L)

Acceptable Range: 0-20%

Acceptable Range: 80-120%^b

Percent Recovery = [spiked sample] (mg/L) - [sample] (mg/L) x 100 nominal [spike] (mg/L)

Measured Nominal QC Sample ID [NH₃] [Sample Dup] [Spike] [Spike] RPD % Recovery Blank 0.0 NA 9.8 98% 10 NA R-3-D-Tox-25 0.1 0. 10.1 10 0 100% 50

Comments: _

Notes: ^aUnless otherwise noted, the last sample listed on the datasheet is used for duplicate and duplicate + spike QC check.

^b Acceptable range for % recovery applies only to the blank spike. Spike recoveries in samples may vary based on sample matrix and are for information only.

Method	Detection	Limit	= 0.5	ma/
--------	-----------	-------	-------	-----

QC Check: 5/13/112

Final Review: <u>Justial 13</u>

Total Ammonia Analysis Freshwater

Client: URS	
Project, 10-day hyalella Son into wartes auality	-
Test Type: 10 day typically annival + good	

DI Blank: __().() Test Start Date: __4]20(13_

Analysis Date: 5/12/13

Analyst: LN

P					N x 1.22			
Sample ID	Nautilus ID	Sub-Sample Date	Test Day	рН (units)	NH3-N (mg/L)	Ammonia (mg/L)		
Blank Spike (10 mg/L NH ₃)		NA	NA	NA	8.1	9.9	ko	
R-3-D-Tox		4/23/2013	check-in	7.77	0.8	1.0	64	
······································			······					
Public Observations								
Spike Check (10 mg/L NH ₃)		NA	NA		8.0	9.8		
ample Duplicate ^a					0.7	0.9		
ample Duplicate + Spike ^a					8.5	10.4		
pike Check (10 mg/L NH ₃)		NA	NA		8.0	9.8		

<u>Relative Percent Difference (RPD) = [sample] (mg/L) - [sample duplicate] (mg/L)</u> x 100 [average ammonia] (mg/L)

Acceptable Range: 0-20%

Acceptable Range: 80-120%^b

Percent Recovery = [spiked sample] (mg/L) - [sample] (mg/L) x 100 nominal [spike] (mg/L)

QC Sample ID	[NH ₃]	[Sample Dup]	Measured [Spike]	Nominal [Spike]	RPD	% Recovery
Blank	0.0	NA	9.9	10	NA	997.
R-3-D- TOX	1.0	0.9	10.4	10	10.5	941

Comments:

Notes: ^aUnless otherwise noted, the last sample listed on the datasheet is used for duplicate and duplicate + spike QC check.

^b Acceptable range for % recovery applies only to the blank spike. Spike recoveries in samples may vary based on sample matrix and are for information only.

Method Detection Limit = 0.5 mg/L

QC Check: 50 5 13 13

Appendix B

Sample Check-In Information

Nautilus EnvironmentalClient:URS Corporation4340 Vandever AvenueSample ID:R-3UpstreamAnd Downstre	Sample Check-In Information
San Diego, CA 92120 Test ID No(s).: 1304 - 5042, -5043	
	Sample Description:
R-3-P-Tox R-3-U-TOX	Pownicoloriess clear, no odor, no debris
Sample (A, B, C): Downstream upstream	Mp: coloness, clear, no oder, some debus
Log-in No. (13-10000): 0422 A423	
Sample Collection Date & Time: 42313 0,800 412313 0900	000 A
Sample Receipt Date & Time: 412313 1510 412313 1510	COC Complete (Y/N)?
Number of Containers & Container Type: 2-4 Loubi 2-4 Loubi	ABC
Approx. Total Volume Received (L): $\sim S \sim S$	Filtration? $\widehat{\mathbf{Y}}$ N
Check-in Temperature (°C) 20-5 20,5	
Temperature OK? ¹ N V N Y N Y N	Pore-Size: <u>1.45 MM</u> Organisms or Debris FIR SEVE
DO (mg/L) 9.0	Ciganisms or Debris FUL SUCE
pH (units) 구.위 구.86	Salinity Adjustment? Y (N)
Conductivity (µS/cm) 3790 3800	
Salinity (ppt) 2.0 2.0	Artificial Salts: target ppt: Hypersaline Brine: target ppt:
Alkalinity (mg/L)* 207 237	Tests:
Hardness (mg/L)* a \rightarrow 1000 \rightarrow 1000	pH Adjustment? Y N
Total Chlorine (mg/L) 0.05 0.00	
Technician Initials CL/AG CUBG	Initial pH:
	Amount of HCI added:
Test Performed: ({{/i`o` CWGNICControl/Dilution Water: (8:2)/ Lab SW / Lab ART Other:	Final pH:
Alkalinity: S	Cl_2 Adjustment? Y (N)
Additional Control? Y N = Alkalinity: Hardness or Salinity:	A BC
(Diatory Mitcorrichical)	Initial Free Cl ₂ :
Test Performed: Self UNINC Control/Dilution Water: (8:2 Lab SW / Lab ART Other:	STS added:
Alkalinity: 81 Hardness or Salinity: 98	Final Free Cl ₂ :
Additional Control? Y (N) = Alkalinity: Hardness or Salinity:	2
Test Performed: Control/Dilution Water: 8:2 / Lab SW / Lab ADT Other	Sample Aeration? Y $\left(N \right)$
Control Bindigen Water. 0.2 / Lab SW / Lab ART Other:	<u> </u>
Additional Control2	Initial D.O.
Additional Control? Y N = Alkalinity: Hardness or Salinity:	Duration & Rate
Notes: ¹ Temperature of sample should be 0-6°C, if received more than 24 hours past collection time.	Final D.O.
* = mg/L as CaCO3, a = Measured for freshwater samples only, NA = Not Applicable	
	Subsamples for Additional Chemistry Required? Y N
Additional Comments (D) Day ASTRAM Sacole AST tested	NH3 Other Tech Initials A B C
	QC Check: 477 5/10/13
	Final Review: 50 5/13/13

Nautilus Environmental 4340 Vandever Avenue San Diego, CA 92120

.

.

Client: <u>VRS</u> Co Project: <u>Source</u>	•	nel-17-	_ Log	-in Nos.: 13-	3040	+ 13.	-3050	
est Type(s): <u>H.azteca</u>		0	1	Test IDs:	304-5i	244 to -	-5045	
Sample ID	Collection Date & Time	Receipt Date & Time	Receipt Temp. (°C)	No. Containers	Container Type	Approx. Total Volume Received (L)	Sample Description	Tech Intials
R-3-D-70x-5	4/23/13 0400	4/23/13/1510	20.5	1	Plastic	26	5 ediment	JA
R-3- U-Tox-5	4/23/13 0900	4/23/13/1510		ſ	1º	26	5 ediment	JA
				-				
	-		-					
•								
							· · · · · · · · · · · · · · · · · · ·	
*								_
							· · · · · · · · · · · · · · · · · · ·	
							-	
-								_
i	1I			L				
Samples Shipped Via: <u>\\\\</u>			Sub-samples f			-		
COC Present?	-		R-3-0-,	NH3 PI	N Colleo	ted		
Sieving Required? $\widehat{(\mathbf{y})}$ N	-	I MW						
ab Control Sediment:	p and							
Test Organism:						T		7
Hy	allite retrain						······································	
Supplier:	uchic Indi arto	5			u.u.			
Receipt Date:	4/23/3							
	Greed							
8-3-11-7-		Carali					······	
nments: $\frac{K-5-U-7_{\circ}}{DST} \oplus A$	rd alug 1	- Jarvery	little se	liment,	no PW	· collector f	512 range.	
	LUI LUNK T	2 weeks	Scouth	N 8 M	- Apr	PT'CIL	>12 range:	

QC Check: 50 01313

45 5/13/13

Appendix C

Chain of Custody Form

ample Collection By:	Ydra I	Zoach, (aira Ro	IL Eha	abeth	Chilman				ANAL	Date $\frac{1}{2}$	- (T
Report to: Company Address City/State/Zip Contact Phone Email	URS	Corp		Invoice Compa Addre	To: any <u>W</u> ss 4 tate/Zip <u>Li</u> ct <u>E</u>	25 COCP 1225 Executive 8 25010, CA 921 Lizabeth Chin 58-812-8271 12010210, Chin 12010210, Chin	<u>137</u> han) admin	1- 1-	cletta 122				
SAMPLE ID	DATE	TIME	MATRIX	CONTAINER	NO. OF CONTAINERS	COMMEN		Level	Sel	Hyo				đ
R-3-D-TOX-0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	03.00	Sectiment	plastic bag						X				20
2-3-U-Tox- 2-3-U-Tox	4/23/13	0900 0900	Water		2			1.0	X	<u>× </u>				4
2-3-D-TOX	1.6	0800	Victer V	CV6Hainer	2-		-101 - 450	X						+
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							$\uparrow$						
- • vite						-								
- 11.								<u> </u>						
														-
PROJECT INFOR	MATION	S	AMPLE RECEI		1	) RELINQUISHED BY (CLI	IENT)			2) RECEI	VED BY (CO	OURIER)		8
Client:		Total No.	of Container:	5	Bejikk	C. Chilm	(Time) 15/0	(Signatu	ıre)				(Time)	)
PO No.:		Received G	iood Conditio	n?	(Printed Name) Eliza VA	C. Chilm	(Date) 4/23/13	(Printed	Name)				(Date)	,
Shipped Via:		Matches T	Test Schedule		(Company)	Corporation		(Compa	ny)			w		
PECIAL INSTRUCTIO						3) RELINQUISHED BY (C	OURIER)			4) RECEI	IVED BY (L	ABORATOF		
R-3-D-TO	ox and	t K-5	-u-Tox	-5	(Signature)		(Time)	(Signati	ire)			<u>,, .</u>	(Time) [5] (	
Not tested.					(Printed Name)	· · · · · · · · · · · · · · · · · · ·	(Date)	(Printed	Name)	E S	<u></u>		(Date) 4/23	

Appendix D

Qualifier Code Glossary



#### **Glossary of Qualifier Codes:**

#### Laboratory Procedures

- Q1 Temperatures out of recommended range; corrective action taken and recorded in Test Temperature Correction Log
- Q2 Temperatures out of recommended range; no action taken, test terminated same day
- Q3 Sample aerated prior to initiation or renewal due to dissolved oxygen (D.O.) levels below 6.0 mg/L
- Q4 Test aerated; D.O. levels dropped below 4.0 mg/L
- Q5 Test initiated with aeration due to an anticipated drop in D.O.
- Q6 Airline obstructed or fell out of replicate and replaced; drop in D.O. occurred
- Q7 Salinity out of recommended range; refer to QA section of report
- Q8 Spilled test chamber/ Unable to recover test organism(s)
- Q9 Inadequate sample volume remaining, 50% renewal performed
- Q10 Inadequate sample volume remaining, no renewal performed
- Q11 Sample out of holding time; refer to QA section of report
- Q12 Replicate(s) not initiated; excluded from data analysis
- Q13 Survival counts not recorded due to poor visibility or heavy debris
- Q14 D.O. percent saturation was checked and was  $\leq 110\%$

#### Data Analysis/Reporting

- Q15 Did not meet minimum test acceptability criteria. Refer to QA section of report.
- Q16 Percent minimum significant difference (PMSD) was <u>below</u> the lower bound limit for acceptability. This indicates that statistics may be over-sensitive in detecting a difference from the control due to low variability in the data set.
- Q17 Percent minimum significant difference (PMSD) was <u>above</u> the upper bound limit for acceptability. This indicates that statistics may be under-sensitive in detecting a difference from the control due to high variability in the data set.
- Q18 Reference toxicant test warning and control limits were recalculated based on 75th percentile inter-laboratory coefficient of variation, as defined in EPA 833-R-00-003, due to higher than recommended variability among  $LC_{50}/EC_{50}/IC_{50}$  data points included in the control chart.

			Entero	Total	Fecal
Sample Date	Station	Time	CFU/100 mL	MPN/100 mL	MPN/100 mL
	R-58-D	830	240e	33000	45
22-Apr-2013	R-58-U	1000	<20	700	45
23-Apr-2013	R-3-D	855	80e	120	20
23-Apr-2013	R-3-U	1058	20e	1700	45

Sediment Sampling Results

### DRAFT ATTACHMENT 5 - Sediment Sampling Results

		Concentra	tion (mg/kg)			uman Health	
ANALYTE					CHHSL / RSL (mg/kg)		
	R-3-1	R-3-2	R-3-3	R-7-1	Residential	Commerical/Industrial	
General Physical						-	
% Solids	70.9	74.3	65.4	60	NA	NA	
Inorganic Non-Metals							
Nitrate as N	<0.5	<0.5	<0.5	<0.5	29,355	361,290	
Nitrite as N	<0.5	<0.5	<0.5	<0.5	2,374	30,435	
Phosphorus, Total as P	171	42.3	109	241	NA	NA	
Total Kjeldahl Nitrogen	100	19	83	270	NA	NA	
Metals							
Manganese	230	60	140	230	1,800	23,000	
Arsenic	5.2	2.8	3.4	6.7	0.07	0.24	
Cadmium	<0.2	<0.2	<0.2	0.3	1.7	7.5	
Chromium	5.7	1.7	3.6	14	100,000	100,000	
Copper	9.3	2.5	8.4	21	3,000	38,000	
Nickel	3.9	1.3	3.1	9.9	1,600	16,000	
Lead	6.8	2.5	5.1	14	80	320	
Antimony	<1.0	<1.0	<1.0	<1.0	30	380	
Selenium	<1.0	<1.0	<1.0	<1.0	380	4,800	
Zinc	58	21	51	110	23,000	100,000	
Organics							
Malathion	<0.05	<0.05	<0.05	<0.05	1,200	12,000	
Chlorpyrifos	<0.05	<0.05	<0.05	<0.05	61	620	
Diazinon	<0.05	<0.05	<0.05	<0.05	43	430	

#### Notes

* Human Health Standards for Chromium (III) listed

CHHSL - California Human Health Screening Level, January 2005

RSL - Regional Screening Level, USEPA Region 9

mg/kg - milligrams per kilogram

NA - No Human Health Level available

**Constituent Lists** 

#### DRAFT ATTACHMENT 6 - Consituent Lists

AQUEOUS								
Constituent	Analytical Method	Units	Maximum Hold Time	Source				
303(d) listed for Soledad Car	· · · · · · · · · · · · · · · · · · ·		•					
Enterococcus	MF, EPA 1600	CFU/100 mL	6 hours	303(d) list				
Fecal Coliform	MTF, SM 9221E	MPN/100 mL	6 hours	303(d) list				
Selenium, total	EPA 200.8	mg/L	6 months	303(d) list				
Total Dissolved Solids	EPA 160.1	mg/L	7 days	303(d) list				
Nitrogen, Total as N	Calculated	mg/L	-	303(d) list				
Toxicity	Multiple*	-	-	303(d) list				
General Physical								
Total Suspended Solids	SM 2540 D	mg/L	7 days	PEIR				
Inorganic Non-Metals		· ·						
Total Hardness	SM 2340 C	mg/L	6 months	PEIR				
Phosphorous, Total as P	EPA 365.3	mg/L	28 days	PEIR				
Phosphorous, Dissolved	EPA 365.3	mg/L	48 hours	Sampled-Dry Weather				
Nitrate as N	EPA 353.3	mg/L	48 hours	PEIR				
Nitrite as N	EPA 353.2	mg/L	48 hours	PEIR				
Total Kjeldahl Nitrogen	EPA 351.3	mg/L	28 days	PEIR				
Organics			20 00,0					
Diazinon	EPA 8141	mg/L	14 days	PEIR				
Chlorpyrifos	EPA 8141	mg/L	14 days	PEIR				
Malathion	EPA 8141	mg/L	14 days	PEIR				
Metals - Total		ilig/L	14 0035					
Antimony	EPA 200.8	mg/L	6 months	PEIR				
Arsenic	EPA 200.8	mg/L	6 months	PEIR				
Cadmium	EPA 200.8	mg/L	6 months	PEIR				
Chromium	EPA 200.8	mg/L	6 months	PEIR				
	EPA 200.8	Ŭ	6 months	PEIR				
Copper Lead	EPA 200.8	mg/L	6 months	PEIR				
		mg/L		PEIR				
Manganese Nickel	EPA 200.8	mg/L	6 months 6 months	PEIR				
	EPA 200.8	mg/L						
	EPA 200.8	mg/L	6 months	PEIR				
Metals - Dissolved (Filtered)			O manual the s	O a secola al Dara M/a atha a				
Antimony	EPA 200.8	mg/L	6 months	Sampled-Dry Weather				
Arsenic	EPA 200.8	mg/L	6 months	Sampled-Dry Weather				
Cadmium	EPA 200.8	mg/L	6 months	Sampled-Dry Weather				
Chromium	EPA 200.8	mg/L	6 months	Sampled-Dry Weather				
Copper	EPA 200.8	mg/L	6 months	Sampled-Dry Weather				
Lead	EPA 200.8	mg/L	6 months	Sampled-Dry Weather				
Manganese	EPA 200.8	mg/L	6 months	Sampled-Dry Weather				
Nickel	EPA 200.8	mg/L	6 months	Sampled-Dry Weather				
Selenium	EPA 200.8	mg/L	6 months	Sampled-Dry Weather				
Zinc	EPA 200.8	mg/L	6 months	Sampled-Dry Weather				
Bacteriological		-	-					
Total Coliform	MTF, SM 9221B	MPN/100 mL	6 hours	Sampled-Dry Weather				

	SEDIMENT								
Constituent	Analytical Method	Units	Maximum Hold Time	Source					
303(d) listed for Soledad Car									
Sediment Toxicity	Multiple**	-	36 hours	303(d) list					
General Physical									
Percent Solids	Percent Calculation	%		PEIR					
Inorganic Non-Metals									
Phosphorous, Total as P	EPA 365.3	mg/kg	28 days	PEIR					
Nitrate as N	EPA 353.3	mg/kg	48 hours	PEIR					
Nitrite as N	EPA 354.1	mg/kg	48 hours	PEIR					
Total Kjeldahl Nitrogen	EPA 351.3	mg/kg	28 days	PEIR					
Organics									
Diazinon	EPA 8141	ug/kg	14 days	PEIR					
Chlorpyrifos	EPA 8141	ug/kg	14 days	PEIR					
Malathion	EPA 8141	ug/kg	14 days	PEIR					
Metals									
Antimony	EPA 6020	mg/kg	6 months	PEIR					
Arsenic	EPA 6020	mg/kg	6 months	PEIR					
Cadmium	EPA 6020	mg/kg	6 months	PEIR					
Chromium	EPA 6020	mg/kg	6 months	PEIR					
Copper	EPA 6020	mg/kg	6 months	PEIR					
Lead	EPA 6020	mg/kg	6 months	PEIR					
Manganese	EPA 6020	mg/kg	6 months	PEIR					
Nickel	EPA 6020	mg/kg	6 months	PEIR					
Selenium	EPA 6020	mg/kg	6 months	PEIR					
Zinc	EPA 6020	mg/kg	6 months	PEIR					

#### Notes

mg/kg - milligrams per kilogram

ug/kg - micrograms per kilogram

mg/L - milligrams per liter

PEIR - Master Storm Water System Maintenance Program Programmatic Environmental Impact Report,

City of San Diego, October 2011, Appendix F

MPN - Most Probable Number

CFU - Colony Forming Unit

303(d) list - 2010 Integrated Report (Clean Water Act Section 303(d) List / 305(b) Report) - Statewide, accessed from: http://www.waterboards.ca.gov/water_issues/programs/tmdl/integrated2010.shtml

Sampled-Dry Weather - Constituent was analyzed during dry weather monitoring along the lower San Diego River

* Aqueous Toxicity Tests include:

Chronic toxicity test with Selenastrum capricornutum and Ceriodaphnia dubia

** Sediment Toxicity Tests Include

Chronic toxicity test with Hyalella azteca

Flow Measurement Field Forms

**Cross section measurement Field Form** 

Client:	City of San Die	ego	Date - Time: 4/23/13 , 11:05
Project Name:	7165 Murphy C	Canyon/Sorrento	
Field Crew:	Jon Martin/Lau	ra Roll/Lydia Ro	ach/Elizabeth Chilman
			Cross-section measurements
∆x - from left bank (ft)	∆y - channel depth (ft)	Velocity (ft/sec)	Notes
0-4	D	U	4ft of standing water to LWB
0	1.5	.643 = .01A	(.9A)
2.SFr	1.6	,071 - 020	(.3Ft)
2.5	1.6	.028*.015	(1.3 Ft)
5	1.5	.085017	(0.9Ft)
7.5	1.45	.058013	(0.9 ft) (2010
10	1.45	057=016	(0.9 Pf)
12.5	1.5	.007006	thick Veg patty. From 12.5 - LWB. Clear, + cobbly b
15	1.4	.031 ±.009	(Bff) Branches flosting upstremin veg patty
17.5	1.3	POO - 160.	(. Off) " submarged limbstrom tree
20	1.2	0.44017	
22.5	1.)	.044014	
	2		Gravelly bottom
25.4	-2	037015	
0		0 -	RWB is at 26.2 ft, 0 depth O flow
26.2	0	0 -	BAD

Left Bank and Right Bank are determined when looking downstream.

- LWB = left wetted bank where surface water terminates at the left bank
- RWB = right wetted bank where surface water terminates at the right bank
- $\Delta \mathbf{x} =$  difference in horizontal distance from LWB

 $\Delta y$  = difference in vertical distance from channel bottom to surface of water

Velocity - measured with Valeport Model 801 Electromagnetic Flow Meter

Velocity measured at 60% depth for stage less than 1.5 feet. Velocity measured at 20% and 80% depths for stages greater than 1.5 feet.

#### Cross section measurement Field Form

	Client: Project Name: Field Crew:		anyon/Sorrento (	Date - Time: $4/\partial 3/13 - 9.00$ Canyon WQAsLocation:ach/Elizabeth Chilman
	Δx - from left bank (ft)	Δy - channel depth (ft)	Velocity (fl/sec)	Cross-section measurements Notes
5%	0	1.5	·001-00:	5 (0.3ft)
5%	0	1.5	009 ⁺ 015	(1.2ft) (~3ft)
571	1 Ft	1.67	:023 - 0.14	(.33 ft) Piece of concrete directly upstream of
0%	154	1.67	.074 = 0.019	(1.37 ft) sompling location
៹៤៸៲	2ft	1.75 -	.033 t.031	(0.35 ft) 3 ft downstream of 1.5 dia rock
307,	2h	1.75	000 - 016	(1.4.Ft) II
209,	3F4	1.71	09-03	(0.35 ft) ifich rock directly in front of nec
307	3Ft	1.71	002-,015	1.37 ft) no rock obstruction.
Ph.	HFY	1.29	.014 5 .004	p.8ft) location is on a small bouldpar
90°/~	<u>SF</u> +	1.21	,055 [±] ,021	(0.7 Fr) location is on a small
5%	684	1.46	0.057	
5 ⁹ )	7 ft	, 75	,034 t,021	(0.35Ft) 1.5 dia boulder about a foot yestream
0%	<b>1</b> f ł	1.75	.1037.012	
υ%ι	8F1	1.78	0242 t. 024	
30%	8F+	1.75	1385.044	Y
0%.	961	1.75	13057	
0%	qFt	1.75	1237, 040	
0%	10ft	1.75	.044 - 005	
۶% [	10 FF	1.75	810.2800	1.4 [ ) )

NOTES

20% 11ft 86% 11ft 60% 12 ft

Left Bank and Right Bank a	re determined when looking downstream.
LWB = left wetted bank - w	here surface water terminates at the left bank
<b>RWB</b> = right wetted bank -	where surface water terminates at the right bank
$\Delta \mathbf{x} = difference in horizontal$	distance from LWB
$\Delta \mathbf{y} = \text{difference in vertical distribution}$	stance from channel bottom to surface of water
Velocity - measured with Va	leport Model 801 Electromagnetic Flow Meter
	measured at 60% depth for stage less than 1.5 feet. measured at 20% and 80% depths for stages greater than 1.5 feet.
1.92.052.007	(0.4ft)
92 .045 t .028	(1.5 Ft) Next to several shalls of catheris
29 .064013	(.78 fr) upagoinst grove of caldains, and of novigable channel,
	right welled bonks

Total Flow Calculation Example (See Attached CD)

### Water Quality Sampling Results

DRAFT
ATTACHMENT 9 - Water Quality Sampling Results

		Conce	entration			
Analyte	Sample Date	Upstream (R-3-U)	Downstream (R-3-D)	Water Quality Benchmark	Benchmark Source	Units
Wet Chemistry						
Total Dissolved Solids	4/23/2013	2620	2472	1,500	Basin Plan	mg/L
Total Suspended Solids	4/23/2013	7	8	NA	NA	mg/L
Total Hardness	4/23/2013	1150	1290	NA	NA	mg/L
Phosphorus, Dissolved as P	4/23/2013	<0.03	<0.03	0.1	Basin Plan	mg/L
Phosphorus, Total as P	4/23/2013	<0.03	<0.03	0.1	Basin Plan	mg/L
Total Kjeldahl Nitrogen	4/23/2013	0.2	0.20	NA	NA	mg/L
Nitrite as N	4/23/2013	<0.10	0.22	1	Basin Plan	mg/L
Nitrate as N	4/23/2013	<0.10	1.10	5	Basin Plan	mg/L
Total Nitrogen	4/23/2013	<0.30	1.52	1	Basin Plan	mg/L
Total Metals						
Arsenic	4/23/2013	0.0034	0.0028	0	Basin Plan	mg/L
Antimony	4/23/2013	<0.001	<0.001	0.006	Basin Plan	mg/L
Cadmium	4/23/2013	<0.002	<0.0002	0.005	Basin Plan	mg/L
Chromium	4/23/2013	0.0069	0.0058	0.05	Basin Plan	mg/L
Copper	4/23/2013	0.0042	0.0038	1	Basin Plan	mg/L
Lead	4/23/2013	<0.001	<0.001	0.065 / 0.0025	40 CFR 131.38	mg/L
Manganese	4/23/2013	0.047	0.026	0.05	Basin Plan	mg/L
Nickel	4/23/2013	0.013	0.0099	0.1	CA-MCL	mg/L
Selenium	4/23/2013	0.0099	0.0092	0.005	40 CFR 131.38	mg/L
Zinc	4/23/2013	0.022	0.0082	5	Basin Plan	mg/L
Dissolved Metals						
Antimony - Dissolved	4/23/2013	<0.001	<0.001	0	Basin Plan	mg/L
Arsenic - Dissolved	4/23/2013	0.0026	0.0022	0.34 / 0.15	40 CFR 131.38	mg/L
Cadmium - Dissolved	4/23/2013	<0.002	<0.0002	Calculated	40 CFR 131.38	mg/L
Chromium - Dissolved	4/23/2013	0.0061	0.0035	Calculated	40 CFR 131.38	mg/L
Copper - Dissolved	4/23/2013	0.0033	0.0032	Calculated	40 CFR 131.38	mg/L
Lead - Dissolved	4/23/2013	<0.001	<0.001	Calculated	40 CFR 131.38	mg/L
Manganese - Dissolved	4/23/2013	0.032	0.018	0.05	Basin Plan	mg/L
Nickel - Dissolved	4/23/2013	0.0088	0.0075	Calculated	40 CFR 131.38	mg/L
Selenium - Dissolved	4/23/2013	0.0078	0.007	NA	NA	mg/L
Zinc - Dissolved	4/23/2013	0.019	0.008	Calculated	40 CFR 131.38	mg/L
Organics					-	
Malathion	4/23/2013	<0.001	<0.001	0.43 / 0.1	40 CFR 131.38	mg/L
Chlorpyrifos	4/23/2013	<0.001	<0.001	0.02 / 0.014	40 CFR 131.38	mg/L
Diazinon	4/23/2013	<0.0002	<0.0002	0.08 / 0.05	40 CFR 131.38	mg/L
Bacteriological						
Enterococcus	4/23/2013	20e	80e	151	Basin Plan	CFU/100 mL
Fecal Coliform	4/23/2013	45	20	400	Basin Plan	MPN/100 mL
Total Coliform	4/23/2013	1700	1700	NA	NA	MPN/100 mL

#### Notes

mg/L - milligrams per liter

mL - milliliters e - estimated value

NA - No benchmark set

0.43 / 0.1 - CMC / CCC (Acute / Chronic)

Basin Plan - Water Quality Control Plan for the San Diego Basin (9), September 8, 1994 (with amendments effective on or before April 4, 2011) 40 CFR 131.38 - Establishment of numeric criteria for priority toxic pollutants for the State of California

Calculated - alculated as described by the USEPA Federal Register Doc. 40 CFR Part 131, May 18, 2000.

Criteria Maximum Concentration (CMC) and Continuous Criteria Concentration (CCC) used,

no concentration measured in R-3-D or R-3-U exceeds the calculated CMC or CCC

* Chromium benchmarks based on total chromium (Basin Plan) or chromium (III) (40 CFR 131.38) chromium concentration measured in R-3-D or R-3-U does not exceed the 40 CFR 131.38 benchmark for chromium (VI)

CFU - Colony Forming Units MPN - Most Probably Number

Wetland Assessment Criteria

Wetland Assessment (Existing) Value Scoring System

	Vegetation		Hydrosoil	Hydroperiod		
Score	Description	Score	Description	Score	Description	
0	No visible vegetation	0	Storm water facility reach with little to no sediment and storm water facility is lined with concrete or other impermeable substrate	0	No visible surface water within the storm water facility reach	
1	Very young population of woody, terrestrial species with an overall low surface area coverage	1	Hydrosoil consists of sand and cobble, with not visible deposition of fines, sediment pH is less than 6 or greater than 8, and redox within reach is positive (+100 mV)	1	Very deep (>2 feet) or very shallow (<0.5 feet) areas, fast flowing water and/or no deposition of fines and organic carbon in the storm water facility	
2	Mature wetland population near carrying capacity, overgrown with both submerged and emergent wetland species	2	Heterogeneous mixture of sand and fines with hydrosoil, visible sedimentation, organics, neutral pH, and redox from (-100 mV to +100 mV)	2	Moderate water flow, intermediate pulsed flow depending on inputs and effects of storm water events, a moderate HRT* (less than 12 hours), shallow(0.5-1 foot deep), redox ranging from – 100 to +100 mV, and some deposition of fines	
3	Young population of emergent and submerged wetland species which reproduce through tubers and/or rhizomes (Spartina, Typha, Scirpus, Phragmites)	3	System consisting of primarily fines and organic carbon, very little sand, and areas of high solids deposition, neutral pH, and redox less than -100 mV	3	Water 1 -2 feet deep, slow flow, with no evidence of scouring and/or channeling, a preferential HRT (>12Hours), and measurable/observable deposition of fines	

*HRT- Hydraulic Retention Time

Wetland Assessment (Recovery) Value Scoring System

	Vegetation	Hydrosoil		Hydroperiod		
Score	Description	Score	Description	Score	Description	
0	Assumption that the current population will not recover to its current density after removal of the standing crop	0	High flow or no flow area with little to no deposition likely	0	No sediment deposition within the reach due to channel flow	
1	The current population is comprised of trees and woody species and recovery would take greater than 5 years	1	Primarily sand deposition in the short- term. The likelihood of fines and/or organic carbon accumulating within the reach low within a 5 year period	1	Flow within the reach and thus some deposition of sand and other coarse grain materials	
2	The current population is mature habitat with mix of woody and leafy vegetation. (Terrestrial and wetland species) Recovery would take 1 - 5 years	2	Heterogeneous mix of sand, organics, and fines depositing and accumulating in the next 1 – 5 years	2	Wide spot in the storm water facility after maintenance, resulting in some deposition of fines, and an overlaying water depth of less than 0.5 feet	
3	Population comprised of primarily emergent and submerged wetland species and re-growth to the current density would take approximately 1 year	3	Heterogeneous mix of sand, organics, and fines depositing and accumulating within the reach in the next year	3	Flood control reach with an overlying water depth greater than 1- foot, typically a wide spot in the storm water facility after maintenance, and associated deposition of fines and organics	

Sediment Pollutant Loading Calculations

#### DRAFT ATTACHMENT 11 - Sediment Pollutant Loading Calculations

Equations:		$\rho_{dry\ insitu\ =\ \frac{\%_{solid}\ *\ \rho_{water}\ *\ \rho_{solid}}{\rho_{solid}\ -\ (\%_{solid}\ *\ \rho_{solid})+\ (\%_{solid}\ *\ \rho_{water})}}$					$CF_{cobble=\frac{\%_{Finer}/\rho_{dry insitu}}{\%_{Finer}/\rho_{dry insitu} + (1 - \%_{Finer})/\rho_{soild}}}$					
		Sediment	Mass = Re	emoval Volu	Load Removal = Sediment Mass * Measured Concentration							
where Reach 3 Remo Reach 7 Remo			= 165.4 <i>l</i> 2,500 150	bs/ft ³ cyd cyd	and	$ \rho_{water} = $	62.4 $lbs/ft^3$ and $\mathcal{N}_{Finer}$ = fraction passing through 1.5-inch seive based on grain size analysis ( $\mathcal{N}_{Finer}$ = 1 for all samples)					
Sample ID	Reach	Туре	% Solid	Pdry insitu (Ibs/ft ³ )	CF _{cobble}	Sediment Mass (Ibs)	The approximated removal volume for the entire maintenance project is expected to be approximately 2,650 cyd, with approximately 2,500 cyd to be removed from Reach 3 and the remaining 150 cyd to be removed from Reach 7. The 2,500 cubic yards from Reach 3 was distributed					
R-3-1	3	Concrete	70.9	79.2	1	1.78E+06	amongst the three analyzed sediment sample locations using after					
R-3-2	3	Concrete	74.3	86.3	1	1.94E+06	maintenance channel geometery. The 150 cyd for Reach 7 was assigned to the single analzyed sediment sample location from this					
R-3-3	3	Concrete	65.4	68.8	1	1.55E+06						
R-7-1	7	Concrete	60	59.8	1	2.42E+05	section.					

#### Sediment Pollutant Loading Results

Analyte	Load Removal (Ibs) at Sediment Sampling Locations						
•		Reach 7	Total				
	R-3-1	R-3-2	R-3-3	Reach 3 Total	R-7-1		
Manganese	410	116	217	743	56	799	
Total Kjeldahl Nitrogen	178	37	129	344	65	409	
Nitrate as N	-	-	-	-	-	-	
Nitrite as N	-	-	-	-	-	-	
Total Nitrogen	178	37	129	344	65	409	
Phosphorus, Total as P	305	82	169	556	58	614	
Arsenic	9.3	5.4	5.3	20	1.6	22	
Cadmium	-	-	-	-	0.1	0.1	
Chromium	10	3.3	5.6	19	3.4	22	
Copper	17	4.9	13	35	5.1	40	
Nickel	7	2.5	4.8	14	2.4	17	
Lead	12	4.9	7.9	25	3.4	28	
Antimony	-	-	-	-	-	-	
Selenium	-	-	-	-	-	-	
Zinc	103	41	79	223	27	250	
Malathion	-	-	-	-	-	-	
Chlorpyrifos	-	-	-	-	-	-	
Diazinon	-	-	-	-	-	-	

- Not detected above laboraty reporting limits

see Attachment 5 for measured concentrations of each analyte at each sediment sampling location

Sediment Pollutant Loading Calculations Example (See Attached CD)

Comparison of Existing and Maintained Pollutant Load Removal Estimates

DRAFT
ATTACHMENT 13 - Comparison Existing and Maintained Pollutant Load Removal Estimates

Analyte	Estimated Sediment Polluntant Load Removal (Ibs)	Estimated Existing Pollutant Load Removal Capcity per year (Ibs)	Maintenance Period (yrs)	Estimated Existing Pollutant Load Removal Capacity per maintenance period (Existing Pollutant Removal) (Ibs)	Estimated Maintained Pollutant Load Removal Capacity per maintenance period (Maintained Pollutant Removal) (Ibs)	Maintained - Existing Load Removal (Ibs) ¹
Arsenic	20	1.8	3	5.4	6.6	21
Cadmium	ND	ND	3	ND	ND	
Chromium	19	3.7	3	11	13	21
Copper	35	1.4	3	4.2	5.2	36
Manganese	743	25	3	75	92	760
Nickel	14	6.9	3	21	25	19
Lead	25	ND	3	ND	ND	25
Antimony	ND	ND	3	ND	ND	
Selenium	ND	5.3	3	16	19	3.6
Zinc	223	10	3	30	37	230
Total Kjeldahl Nitrogen	344	25	3	75	93	362
Nitrite as N	ND	ND	3	ND	ND	
Nitrate as N	ND	ND	3	ND	ND	
Total Nitrogen	344	ND	3	ND	ND	344
Phosphorus, Total as P	556	ND	3	ND	ND	556
Malathion	ND	ND	3	ND	ND	
Chlorpyrifos	ND	ND	3	ND	ND	
Diazinon	ND	ND	3	ND	ND	

#### Notes

Metal concentration reflects that of total recoverable concentration

ND - Not detected above Laboratory Reporting Limit

-- Anaylte not detected in either sediment or water

1. Calculated by: (Estimated Sediment Pollutant Load + Maintained Pollutant Removal) - Existing Pollutant Removal

### Existing and Maintained NTS Pollutant Removal Estimate Example (See Attached CD)

### Applicable PEIR Mitigation Measures

### **DRAFT - Attachment 15**

### **Applicable PEIR Mitigation Measures**

### **GENERAL**

*General Mitigation 1:* Prior to commencement of work, the Assistant Deputy Director (ADD) Environmental Designee of the Entitlements Division shall verify that mitigation measures for impacts to biological resources (Mitigation Measures 4.3.1 through 4.3.20), historical resources (Mitigation Measures 4.4.1 and 4.4.2), land use policy (Mitigation Measures 4.1.1 through 4.1.13), paleontological resources (Mitigation Measure 4.7.1), and water quality (Mitigation Measures 4.8.1 through 4.8.3) have been included in entirety on the submitted maintenance documents and contract specifications, and included under the heading, "Environmental Mitigation Requirements." In addition, the requirements for a Pre-maintenance Meeting shall be noted on all maintenance documents.

*General Mitigation 2:* Prior to the commencement of work, a Pre-maintenance Meeting shall be conducted and include, as appropriate, the MMC, SWD Project Manager, Biological Monitor, Historical Monitor, Paleontological Monitor, Water Quality Specialist, and Maintenance Contractor, and other parties of interest.

*General Mitigation 3:* Prior to the commencement of work, evidence of compliance with other permitting authorities is required, if applicable. Evidence shall include either copies of permits issued, letters of resolution issued by the Responsible Agency documenting compliance, or other evidence documenting compliance and deemed acceptable by the ADD Environmental Designee.

*General Mitigation 4:* Prior to commencement of work and pursuant to Section 1600 et seq. of the State of California Fish & Game Code, evidence of compliance with Section 1605 is required, if applicable. Evidence shall include either copies of permits issued, letters of resolution issued by the Responsible Agency documenting compliance, or other evidence documenting compliance and deemed acceptable by the ADD Environmental Designee.

### WATER QUALITY

Potential impacts to water quality would be reduced to below a level of significance through implementation of the following mitigation measures.

*Mitigation Measure 4.8.1:* Prior to commencement of any activity within a specific annual maintenance program, a qualified water quality specialist shall prepare an IWQA for each area proposed to be maintained. The IWQA shall be prepared in accordance with the specifications included in the Master Program. If the IWQA indicates that maintenance would impact a water pollutant where the existing level for that pollutant exceeds or is within 25 percent of the standard established by the San Diego Basin Plan, mitigation measures identified in Table 4.8-8 shall be incorporated into the IMP to reduce the impact to within the established standard for that pollutant.

			Table 4						
	FION MEASURES FOR REDUCED POLLUTANT REMOVAL CAPACITY Pollutant Type								
Mitigation Measure	Bacteria	Metals	Nutrients	Pesticides	Sediment	TDS/Chloride Sulfates	Trash		
Remove kelp on					•	•			
beaches					_	_			
Sweep streets	•	•	•	•	•	•	•		
Retrofit									
residential		•							
landscaping to	•	•	•		•				
reduce runoff									
Install artificial									
turf	•	•	•	•	•		•		
Install inlet									
devices on storm		•	•		•				
drains		·			•				
Replace									
impermeable									
surfaces with		•					•		
		•	•		•		•		
permeable surfaces									
Install modular				-			-		
storm water		•	•	•	•	•	•		
filtration systems									
Install storm									
water retention		•	•	•	•	•	•		
basins									
Install catch basin		•	•		•	•	•		
media filters		-	_		-		-		
Create vegetated	•	•	•	•	•	•	•		
swales				-	-		•		
Restore wetlands	•	•	•	•	•	•	•		
Install check		•			•		•		
dams									

*Mitigation Measure 4.8.2:* No maintenance activities within a proposed annual maintenance program shall be initiated before the City's ADD Environmental Designee and state and federal agencies with jurisdiction over maintenance activities have approved the IMPs and IWQAs including proposed mitigation and BMPs for each of the proposed activities. In their review, the ADD Environmental Designee and agencies shall also confirm that the appropriate maintenance protocols have been incorporated into each IMP.