APPENDIX G. ACOUSTICAL ASSESSMENT

ACOUSTICAL ASSESSMENT

ARE Science Village

City of San Diego, California

April 2022

MBAKERINTL.COM JN 181315 This page intentionally left blank

Acoustical Assessment

ARE Science Village

City of San Diego, California

- Prepared for: Alexandra Real Estate Equities, Inc. 10996 Torreyana Road, Suite 250 San Diego, CA 92121 Contact: Neil Hyytinen Phone: (858) 610-5420 Email: nhyytinen@hechtsolberg.com
- Prepared by: Michael Baker International 9755 Clairemont Mesa Boulevard, Suite 100 San Diego, California 92124 Contact: Bob Stark, AICP Phone: (858) 614-5000 Email: bstark@mbakerintl.com

April 2022

This page intentionally left blank

TABLE OF CONTENTS

E	cecutive Summary	L
1	Introduction	2
	1.1 Project Location	2
	1.2 Environmental Setting/Existing Conditions	2
	1.3 Project Description	2
2	Description of Noise Metrics11	L
	2.1 Standard Unit of Measurement11	L
	2.2 Health Effects of Noise	L
3	Laws, Ordinances, Regulations, and Standards16	5
	3.1 U.S. Environmental Protection Agency	5
	3.2 City of San Diego	7
4	Existing Conditions)
	4.1 Noise Measurements)
	4.2 Sensitive Receptors	L
	4.3 Existing Noise Levels	1
5	Potential Acoustical Impacts25	5
6	References	5
	6.1 List of Preparers	5
	6.2 Documents	5
	6.3 Software/WebSites	5

LIST OF TABLES

Table 1. Building Use Summary	3
Table 2. Noise Descriptors	12
Table 3. City of San Diego Land Use Compatibility for Community Noise Environments	18
Table 4. Sound Level Limits	19
Table 5. Traffic Noise Significance Thresholds International System	20
Table 6. Noise Measurements	21
Table 7. Sensitive Receptors	24
Table 8. Existing Traffic Noise Levels	25
Table 9. Construction Schedule and Equipment	26
Table 10. Maximum Noise Levels Generated by Construction Equipment	26
Table 11. Construction Noise Model Results Summary	28
Table 12. Opening Year (2027) Traffic Noise Levels With and Without Project	30
Table 13. Typical Noise Levels Generated by Parking Lots	31
Table 14. Typical Vibration Levels for Construction Equipment	34

LIST OF EXHIBITS

Figure 1	Regional Vicinity	. 5
Figure 2	Site Vicinity	. 7
Figure 3	Site Plan	. 9
Figure 4	Common Environmental Noise Levels	13
Figure 5	Noise Measurement Locations and Sensitive Receptors	22

LIST OF APPENDICES

Appendix A: Noise Data

EXECUTIVESUMMARY

The purpose of this Acoustical Assessment is to evaluate potential short- and long-term noise and vibration impacts resulting from implementation of the proposed ARE Science Village Project ("project" or "proposed project").

The project site is generally located west of Interstate 805 and north of State Route 52 in the City of San Diego, California. Specifically, the approximately 3.97-acre project site is located at the northeast corner of Towne Centre Drive and Executive Drive in the University Towne Center. The project site is developed and surrounded by a variety of land uses, such as light industrial, scientific/clinical research, medical, and general office uses. The project proposes to redevelop an existing commercial site. The proposed project consists of two primary components: (1) demolition of the existing on-site buildings totaling approximately 138,400 square feet (sq. ft.) and (2) redevelopment of the site with approximately 369,878 sq. ft. of mixed-use research, retail, and office uses across two buildings. The project would consist of approximately 310,416 sq. ft. of scientific research and development (R&D) uses and 59,462 sq. ft. are planned as accessory/amenity space. The accessory/amenity space is expected to consist of a 7,655 sq. ft. market, 563 sq. ft. food and beverage space, 23,397 sq. ft. fitness center, and 27,847 sq. ft. conference space(s). Additionally, three levels of subterranean with approximately 938 parking spaces are proposed.

<u>Short-Term Construction Impacts</u>. Based upon the results of the analysis, noise associated with short-term construction would not exceed the City of San Diego's noise standard for construction (12-hour average noise level of 75 dBA) with implementation of Mitigation Measures NOI-1 and NOI-2 and impacts would be less than significant. Similarly, construction vibration impacts would be less than significant.

<u>Long-Term Operational Impacts</u>. The analysis found that implementation of the proposed project would result in less than significant impacts related to vehicular (mobile) noise and stationary noise sources.

1

INTRODUCTION

The purpose of this Acoustical Assessment is to evaluate potential short- and long-term noise and vibration impacts resulting from implementation of the proposed ARE Science Village Project ("proposed project" or "project") in the City of San Diego (City).

1.1 PROJECT LOCATION

The project site is generally located west of Interstate 805 (I-805) and north of State Route 52 in the City; refer to <u>Figure 1</u>, <u>Regional Vicinity</u>. Specifically, the approximately 3.97-acre project site is located at 9393 Towne Centre Drive at the northeast corner of Towne Centre Drive and Executive Drive in the University Towne Center; refer to <u>Figure 2</u>, <u>Site Vicinity</u>. The site is located within the University Community Plan Area. Regional access to the project area is provided via I-805 approximately one mile to the east and Interstate 5 approximately two miles to the west.

1.2 ENVIRONMENTAL SETTING/EXISTING CONDITIONS

The area surrounding the project site is highly developed and urbanized with a variety of land uses, such as light industrial, scientific/clinical research, medical, and general office uses. Open space uses are located approximately 0.6 miles to the east beyond I-805. Commercial uses are located immediately adjacent to the west and south. The University of California, San Diego campus is located further west. Additionally, residential uses are located approximately 0.2 mile to the southwest.

The site currently supports existing office buildings which are connected below grade by one level of subterranean parking. Surface parking exists on the roof of the subterranean parking level. Access to the parking garage is provided from a driveway on Executive Drive and from a ramp located in the surface parking lot.

1.3 PROJECT DESCRIPTION

Alexandria Real Estate Equities (applicant) proposes to redevelop an existing commercial site in the community of La Jolla, located in the City of San Diego, California. The proposed project consists of two primary components: (1) demolition of the existing on-site buildings totaling approximately 138,400 square feet (sq. ft.) and (2) redevelopment of the site with approximately 369,878 sq. ft. of mixed-use research, retail, and office uses across two buildings. The project would consist of approximately 310,416 sq. ft. of scientific research and development (R&D) uses and 59,462 sq. ft. are planned as accessory/amenity space. The accessory/amenity space is expected to consist of a 7,655 sq. ft. market, 563 sq. ft. food and beverage space, 23,397 sq. ft. fitness center, and 27,847 sq. ft. conference space(s). Additionally, three levels of subterranean with approximately 938 parking spaces are proposed. Consistent with the current University Community Plan, accessory and amenity spaces would be provided on-site within the principal buildings (non-freestanding) and the uses are planned to be oriented towards the interior of the project.

	Square Footage
Use by Building	of Proposed Use
Existing Buildings (to be Demolished)	
Scientific Research and Development	138,400
Total	138,400
Proposed Buildings	
Scientific Research and Development	310,416
Secondary Uses	
Food and Beverage	563
Retail/Market	7,655
Fitness Center	23,397
Conference Space	27,847
Subtotal	59,462
Total	369,878

TABLE 1. BUILDING USE SUMMARY

Discretionary actions associated with the project include a Specific Plan Amendment (SPA) to the Nexus Technology Centre Specific Plan, Planned Development Permit (PDP), a Rezone, and a Community Plan Amendment (CPA). If approved, these entitlements would allow for the proposed redevelopment of the project site.

This page intentionally left blank.

This page intentionally left blank

400

Feet

Michael Baker

0

100

200

Location Map Exhibit 2 This page intentionally left blank

Michael Baker INTERNATIONAL File: 174043Figures.indd

Not to Scale
Sources: The Miller Hull Partnership, LLP and Alexandria, 02/22/2022

ARE SCIENCE VILLAGE

Exhibit 3

This page intentionally left blank

2 DESCRIPTION OF NOISE METRICS

2.1 STANDARD UNIT OF MEASUREMENT

Sound is described in terms of the loudness (amplitude) of the sound and frequency (pitch) of the sound. The standard unit of measurement of the loudness of sound is the decibel (dB). Since the human ear is not equally sensitive to sound at all frequencies, a special frequency-dependent rating scale has been devised to relate noise to human sensitivity. The A-weighted decibel scale (dBA) performs this compensation by differentiating among frequencies in a manner approximating the sensitivity of the human ear.

Decibels are based on the logarithmic scale. The logarithmic scale compresses the wide range in sound pressure levels to a more usable range of numbers in a manner similar to the Richter scale used to measure earthquakes. In terms of human response to noise, a sound 10 dBA higher than another is perceived to be twice as loud and 20 dBA higher is perceived to be four times as loud, and so forth. Everyday sounds normally range from 30 dBA (very quiet) to 100 dBA (very loud). Examples of various sound levels in different environments are illustrated on Figure 4, *Common Environmental Noise Levels*.

Many methods have been developed for evaluating community noise to account for, among other things:

- The variation of noise levels over time;
- The influence of periodic individual loud events; and
- The community response to changes in the community noise environment.

Table 2, *Noise Descriptors*, provides a listing of methods to measure sound over a period of time.

2.2 HEALTH EFFECTS OF NOISE

Human response to sound is highly individualized. Annoyance is the most common issue regarding community noise. The percentage of people claiming to be annoyed by noise generally increases with the environmental sound level. However, many factors also influence people's response to noise. The factors can include the character of the noise, the variability of the sound level, the presence of tones or impulses, and the time of day of the occurrence. Additionally, non-acoustical factors, such as the person's opinion of the noise source, the ability to adapt to the noise, the attitude towards the source and those associated with it, and the predictability of the noise, all influence people's response. As such, response to noise varies widely from one person to another and with any particular noise, individual responses would range from "not annoyed" to "highly annoyed."

Term	Definition
Decibel (dB)	The unit for measuring the volume of sound equal to 10 times the logarithm (base 10) of the ratio of the pressure of a measured sound to a reference pressure (20 micropascals).
A-Weighted Decibel (dBA)	A sound measurement scale that adjusts the pressure of individual frequencies according to human sensitivities. The scale accounts for the fact that the region of highest sensitivity for the human ear is between 2,000 and 4,000 cycles per second (hertz).
Equivalent Sound Level (L _{eq})	The sound level containing the same total energy as a time varying signal over a given time period. The L_{eq} is the value that expresses the time averaged total energy of a fluctuating sound level.
Maximum Sound Level (L _{max})	The highest individual sound level (dBA) occurring over a given time period.
Minimum Sound Level (L _{min})	The lowest individual sound level (dBA) occurring over a given time period.
Community Noise Equivalent Level (CNEL)	A rating of community noise exposure to all sources of sound that differentiates between daytime, evening, and nighttime noise exposure. CNEL is the average sound level taken over a 24-hour period with adjustments made during evening and nighttime hours. These adjustments are +5 dBA for the evening, 7:00 p.m. to 10:00 p.m., and +10 dBA for the night, 10:00 p.m. to 7:00 a.m.
Day/Night Average (L _{dn})	The L_{dn} is a measure of the 24-hour average noise level at a given location. It was adopted by the U.S. Environmental Protection Agency for developing criteria for the evaluation of community noise exposure. It is based on a measure of the average noise level over a given time period called the L_{eq} . The L_{dn} is calculated by averaging the L_{eq} 's for each hour of the day at a given location after penalizing the "sleeping hours" (defined as 10:00 p.m. to 7:00 a.m.) by 10 dBA to account for the increased sensitivity of people to noises that occur at night.
Exceedance Level	The A-weighted noise levels that are exceeded 1, 10, 50, and 90 percent (L_{01} , L_{10} , L_{50} , L_{90} ,
(L _n)	respectively) of the time during the measurement period.

TABLE 2. NOISE DESCRIPTORS

Source: Cyril M. Harris, Handbook of Noise Control, 1979.

Environmental Protection Agency, Information on Levels of Environmental Noise Requisite to Protect Public Health and Welfare with an Adequate Margin of Safety (EPA/ONAC 550/9-74-004), March 1974.

ARE Science Village Common Environmental Noise Levels This page intentionally left blank

When the noise level of an activity rises above 70 dBA, the chance of receiving a complaint is possible, and as the noise level rises, dissatisfaction among the public steadily increases. However, an individual's reaction to a particular noise depends on many factors, such as the source of the sound, its loudness relative to the background noise, and the time of day. The reaction to noise can also be highly subjective; the perceived effect of a particular noise can vary widely among individuals in a community.

The effects of noise are often only transitory, but adverse effects can be cumulative with prolonged or repeated exposure. The effects of noise on the community can be organized into six broad categories:

- Noise-Induced Hearing Loss;
- Interference with Communication;
- Effects of Noise on Sleep;
- Effects on Performance and Behavior;
- Extra-Auditory Health Effects; and
- Annoyance.

Although it often causes discomfort and sometimes pain, noise-induced hearing loss usually takes years to develop. Noise-induced hearing loss can impair the quality of life through a reduction in the ability to hear important sounds and to communicate with family and friends. Hearing loss is one of the most obvious and easily quantified effects of excessive exposure to noise. While the loss may be temporary at first, it could become permanent after continued exposure. When combined with hearing loss associated with aging, the amount of hearing loss directly caused by the environment is difficult to quantify. Although the major cause of noise-induced hearing loss is occupational, substantial damage can be caused by non-occupational sources.

According to the National Institute on Deafness and Other Communication Disorders, at least ten million Americans with hearing impairments owe their losses to noise exposure (NIH, 2019). Noise can mask important sounds and disrupt communication between individuals in a variety of settings. This process can cause anything from a slight irritation to a serious safety hazard, depending on the circumstance. Noise can disrupt face-to-face communication and telephone communication, and the enjoyment of music and television in the home. It can also disrupt effective communication between teachers and pupils in schools and can cause fatigue and vocal strain in those who need to communicate in spite of the noise.

Interference with communication has proven to be one of the most important components of noiserelated annoyance. Noise-induced sleep interference is one of the critical components of community annoyance. Sound level, frequency distribution, duration, repetition, and variability can make it difficult to fall asleep and may cause momentary shifts in the natural sleep pattern, or level of sleep. It can produce short-term adverse effects on mood changes and job performance, with the possibility of more serious effects on health if it continues over long periods. Noise can cause adverse effects on task performance and behavior at work, and non-occupational and social settings. These effects are the subject of some controversy, since the presence and degree of effects depends on a variety of intervening variables. Most research in this area has focused mainly on occupational settings, where noise levels must be sufficiently high and the task sufficiently complex for effects on performance to occur.

Recent research indicates that more moderate noise levels can produce disruptive after-effects, commonly manifested as a reduced tolerance for frustration, increased anxiety, decreased incidence of "helping" behavior, and increased incidence of "hostile" behavior. Noise has been implicated in the development or exacerbation of a variety of health problems, ranging from hypertension to psychosis. As with other categories, quantifying these effects is difficult due to the number of variables that need to be considered in each situation. As a biological stressor, noise can influence the entire physiological system. Most effects seem to be transitory, but with continued exposure some effects have been shown to be chronic in laboratory animals.

Annoyance can be viewed as the expression of negative feelings resulting from interference with activities, as well as the disruption of one's peace of mind and the enjoyment of one's environment. Field evaluations of community annoyance are useful for predicting the consequences of planned actions involving highways, airports, road traffic, railroads, or other noise sources. The consequences of noise-induced annoyance are privately held dissatisfaction, publicly expressed complaints to authorities, and potential adverse health effects, as discussed above. In a study conducted by the U.S. Department of Transportation, the relationship between the effects of annoyance and the community were quantified. In areas where exterior noise levels were consistently above 60 dBA Community Noise Equivalent Level (CNEL), approximately nine percent of the community is highly annoyed. When levels exceed 65 dBA CNEL, that percentage rises to 15 percent. Although evidence for the various effects of noise have differing levels of certainty, it is clear that noise can affect human health. Most of the effects are, to a varying degree, stress-related.

3 LAWS, ORDINANCES, REGULATIONS, AND STANDARDS

This noise analysis was conducted in accordance with Federal, State, and local criteria described in the following sections.

3.1 U.S. ENVIRONMENTAL PROTECTION AGENCY

The U.S. Environmental Protection Agency (EPA) offers guidelines for community noise exposure in the publication *Noise Effects Handbook – A Desk Reference to Health and Welfare Effects of Noise*. These guidelines consider occupational noise exposure as well as noise exposure in homes. The EPA recognizes an exterior noise level of 55 decibels day-night level (dB L_{dn}) as a general goal to protect the public from hearing loss, activity interference, sleep disturbance, and annoyance. The EPA and other Federal agencies have adopted suggested land use compatibility guidelines that indicate that residential noise exposures of 55 to 65 dB L_{dn} are acceptable. However, the EPA notes that these levels are not regulatory goals, but are levels defined by a negotiated scientific consensus, without concern for economic and technological feasibility or the needs and desires of any particular community.

3.2 CITY OF SAN DIEGO

CITY OF SAN DIEGO GENERAL PLAN

The Noise Element of the *City of San Diego General Plan* (General Plan) provides goals and policies to guide compatible land uses and to incorporate noise attenuation measures for new uses to protect people living and working in the City from an excessive noise environment. The City's goal is controlling noise to acceptable levels at its source. However, when this is not feasible, the City applies additional measures to limit the effect of noise on future land uses, which include spatial separation, site planning, and building design techniques that address noise exposure and the insulation of buildings to reduce interior noise levels. The following goals and policies from the General Plan are applicable to the project.

Goal A: Consider existing and future noise levels when making land use planning decisions to minimize people's exposure to excessive noise.

Policy A.1: Separate excessive noise-generating uses from residential and other noise-sensitive land uses with a sufficient spatial buffer of less sensitive uses.

Policy A.2: Assure the appropriateness of proposed developments relative to existing and future noise levels by consulting the guidelines for noise-compatible land use (<u>Table 3</u>, *City of* <u>San Diego Land Use Compatibility for Community Noise Environments</u>) to minimize the effects on noise sensitive land uses.

Goal G: Minimize exposure of residential and other noise-sensitive land uses to excessive construction, refuse vehicles, parking lot sweeper-related noise and public noise.

Policy G.1: Implement limits on the hours of operation for non-emergency construction and refuse vehicle and parking lot sweeper activity in residential areas and areas abutting residential areas.

TABLE 3. CITY OF SAN DIEGO LAND USE COMPATIBILITY FOR COMMUNITY NOISE ENVIRONMENTS

Land Use	and Use Category Exterior Nois (dBA C			Noise A CN	e Exposure NEL)			
				60	65	70	75	1
Parks and Re	creational							
Parks, Active	and Passive Recrea	ation						
Outdoor Spec Facilities	ctator Sports, Golf G	Courses; Water R	ecreational Facilities; Indoor Recreation					
Agricultural								
Crop Raising Nurseries & C	& Farming; Comm Greenhouses; Anim	unity Gardens, A al Raising, Maint	quaculture, Dairies; Horticulture ain & Keeping; Commercial Stables					
Residential								
Single Dwell	ing Units; Mobile H	Iomes			45			
Multiple Dwe	elling Units *For use	es affected by aircr	aft noise, refer to Policies NE-D.2. & NE-D.3.		45	45*		
Institutional								
Hospitals; Nu 12Educationa	arsing Facilities; Int al Facilities; Librari	ermediate Care F es; Museums; Ch	acilities; Kindergarten through Grade ild Care Facilities		45			
Other Educat Universities	ional Facilities incl	uding Vocational	/Trade Schools and Colleges and		45	45		
Cemeteries								
Retail Sales								
Building Sup Pharmaceutic	plies/Equipment; For al, & Convenience	ood, Beverages & Sales; Wearing A	a Groceries; Pets & Pet Supplies; Sundries Apparel & Accessories			50	50	
Commercial S	Services							
Building Serv Maintenance religious asse	vices; Business Sup & Repair; Personal embly); Radio & Te	port; Eating & Di Services; Assem levision Studios;	rinking; Financial Institutions; bly & Entertainment (includes public and Golf Course Support			50	50	
Visitor Accommodations					45	45	45	
Offices					_		_	_
Business & P Corporate He	rofessional; Govern adquarters	nment; Medical, I	Dental & Health Practitioner; Regional &			50	50	
Vahiala and 1	Vahiaulan Fauiama	A Salan and Same		-				_
Commercial	or Personal Vehicle	Repair & Mainte	enance: Commercial or Personal Vehicle					_
Sales & Rent	als; Vehicle Equipr	ment & Supplies	Sales & Rentals; Vehicle Parking					
Wholesale, D	Distribution, Storage	e Use Category					_	
Equipment & Wholesale D	Materials Storage	Yards; Moving &	z Storage Facilities; Warehouse;					
Industrial								
Heavy Manu Terminals; M	facturing; Light Ma lining & Extractive	nufacturing; Mar Industries	ine Industry; Trucking & Transportation					
Research & I	Development						50	
	Competible	Indoor Uses	Standard construction methods should att acceptable indoor noise level. Refer to Se	enuate ex	terio	r noise	to an	
	Compatible	Outdoor Uses	Activities associated with the land use ma	y be carr	ried o	ut.		
	Conditionally	Indoor Uses	Building structure must attenuate exterior indicated by the number (45 or 50) for oc	noise to cupied ar	the in eas. H	ndoor n Refer to	noise le o Secti	evel on I.
45, 50	Compatible	Outdoor Uses	Feasible noise mitigation techniques shou make the outdoor activities acceptable. R	ild be ana efer to Se	lyzed	l and in I.	ncorpo	rated 1
	-	Indoor Uses	New construction should not be undertake	en.				
Incompatible Outdoor Uses Severe noise interference makes outdoor activities unacceptable.					le.			

Source: City of San Diego General Plan Noise Element, 2015.

CITY OF SAN DIEGO MUNICIPAL CODE

The City regulates noise through the *City of San Diego Municipal Code* (Municipal Code), Chapter 5, Article 9.5, *Noise Abatement and Control*. The following sections of the Noise Ordinance provide sound level limits between adjacent properties, noise insulation standards, and construction noise limits.

Section 59.5.0401 It shall be unlawful for any person to cause noise by any means to the extent that the one-hour average sound level exceeds the applicable limit given in the following table, at any location in the City of San Diego on or beyond the boundaries of the property on which the noise is produced. The property line noise level limits for various land uses by time of day are shown in <u>Table 4</u>, <u>Sound</u> Level Limits.

Land Use	Time of Day	One-Hour Average Sound Level (decibels)	
	7 a.m. to 7 p.m.	50	
Single Family Residential	7 p.m. to 10 p.m.	45	
	10 p.m. to 7 a.m.	40	
	7 a.m. to 7 p.m.	55	
Multi-Family Residential	7 p.m. to 10 p.m.	50	
	ensity of 1/2000) 7 p.m. to 10 p.m. 10 p.m. to 7 a.m.		
	7 a.m. to 7 p.m.	60	
All other Residential	7 p.m. to 10 p.m.	55	
	10 p.m. to 7 a.m.	50	
	7 a.m. to 7 p.m.	65	
Commercial	7 p.m. to 10 p.m.	60	
	10 p.m. to 7 a.m.	60	
Industrial or Agriculture	Any time	75	

TABLE 4. SOUND LEVEL LIMITS

Source: City of San Diego, City of San Diego Municipal Code, 2019.

Section 59.5.0404 Construction Noise of the noise ordinance regulates noise produced by construction activities. Construction activities are prohibited between the hours of 7 p.m. and 7 a.m. and on Sundays and certain legal holidays, unless a permit has been granted beforehand by the Noise Abatement and Control Administrator or conjunction with emergency work. Section 59.5.0404 limits construction noise to an average sound level of 75 dBA during the 12-hour period from 7 a.m. to 7 p.m. at or beyond the property lines of any property zoned residential.

CITY OF SAN DIEGO SIGNIFICANCE DETERMINATION THRESHOLDS

The following applicable thresholds have been used in this analysis for identifying significant noise impacts applicable to the project:

Interior and Exterior Noise Impacts from Traffic-Generated Noise

The City's California Environmental Quality Act (CEQA) Significance Determination Thresholds provide guidance on implementing the City's noise policies and ordinances, including the general thresholds of significance for uses affected by traffic noise included in <u>Table 5</u>, <u>Traffic Noise Significance Thresholds</u>.

Operational noise is typically considered permanent. A significant permanent increase is defined as a direct project related permanent ambient increase of 3 dBA or greater, where exterior noise levels would already exceed the City's significance thresholds. An increase of 3 dBA is perceived by the human ear as a barely perceptible increase.

Structure or Proposed Use That Would Be Impacted by Traffic Noise	Interior Space	Exterior Useable Space ¹	General Indication of Potential Significance
Single-family detached	45 dB	65 dB	Structure or outdoor useable area ²
Multi-family, school, library, hospital, day care center, hotel, motel, park, convalescent home	- Development Services Department (DSD) ensures - 45 dB pursuant to Title 24	65 dB	is <50 feet from center of the closest (outside) lane on a street with existing or future ADTs > 7,500
Office, church, business, professional uses	N/A	70 dB	Structure or outdoor useable area is <50 feet from the center of the closest lane on a street with existing or future ADTs > 20,000
Commercial, retail, industrial, outdoor sports uses	N/A	75 dB	Structure or outdoor useable area is <50 feet from the center of the closest lane on a street with existing or future ADTs > 40,000

TABLE 5. TRAFFIC NOISE SIGNIFICANCE THRESHOLDS

Notes:

ADT = average daily trips; dB = decibels; N/A = not applicable

1 If a project is currently at or exceeds the significance thresholds for traffic noise described above and noise levels would result in less than a 3-dB increase, then the impact is not considered significant.

2

Source: City of San Diego, California Environmental Quality Act Significance Determination Thresholds, 2020.

4 EXISTING CONDITIONS

4.1 NOISE MEASUREMENTS

In order to quantify existing ambient noise levels in the project area, Michael Baker International utilized three noise measurements conducted by dBF Associates (dBF Associates 2016) during the afternoon peak traffic period of Tuesday, February 9, 2016 to quantify the existing on-site acoustical environment due to

vehicle traffic (refer to <u>Table 6</u>, <u>Noise Measurements</u>). Agencies such as the U.S. Department of Housing and Urban Development (HUD) and the City consider the peak hour sound level reasonably equivalent to the CNEL for vehicular traffic.

A RION Model NA-28 American National Standards Institute Type 1 Integrating Sound Level Meter was used as the data-collection device. The meter was mounted to a tripod, roughly five feet above ground, to simulate the average height of the human ear. The sound level meter was calibrated before and after the measurement period.

The measurement results are summarized in <u>Table 6</u> and correspond to the locations depicted on <u>Figure 5</u>, <u>Noise Measurement Locations and Sensitive Receptors</u>. A review of <u>Table 6</u> shows that the measured noise levels ranged from 58.6 to 63.3 dBA L_{eq} in the project vicinity. Other noise sources observed during the site visit include heating, ventilation, and air conditioning (HVAC) units on nearby buildings, birds calling, and wind in trees. The meter was occasionally paused briefly during aircraft overflights, to isolate the measurements to traffic noise.

Site No.	Location	L _{eq} (dBA)	L _{min} (dBA)	L _{max} (dBA)	Time				
ML1	Towne Centre Drive	58.6	61.3	69.9	3:45 p.m.				
ML2	Eastgate Mall	63.3	56.3	71.5	4:10 p.m.				
ML3	Judicial Drive	59.2	52.9	73.2	4:35 p.m.				

TABLE 6. NOISE MEASUREMENTS

Notes: dBA = A-weighted decibels; L_{eq} = Equivalent Sound Level; L_{min} = Minimum Sound Level; L_{max} = Maximum Sound Level Source: dBF Associates, *Towne Centre Drive Redevelopment Exterior Noise Analysis Report*, August 9, 2016.

4.2 SENSITIVE RECEPTORS

Certain land uses are particularly sensitive to noise, including schools, libraries, museums, hospitals, rest homes, long-term medical and mental care facilities, and parks and recreation areas. Residential areas are also considered noise sensitive, especially during the nighttime hours. Existing sensitive receptors located in the project vicinity include residential uses, schools, places of worship, and parks. Sensitive receptors are listed in <u>Table 7</u>, <u>Sensitive Receptors</u> and shown in <u>Figure 5</u>.

Source: dBF Associates, ESRI World Imagery

This page intentionally left blank

Туре	Receptor No.	Name	Location	Distance from Project Site ¹ (feet)	Direction from Project Site
Multi-	1	Devonshire Woods II	4639 Executive Drive, San Diego 92121	220	Southwest
Residential	2	La Jolla Mesa Estates	9505 Easter Way, San Diego CA 92121	780	Northwest
	3	Braille Institute	4555 Executive Drive, San Diego, CA 92121	710	Southwest
	4	La Jolla Country Day School	9490 Genesee Avenue, San Diego, CA 92037	2,750	West
Schools	5	University City High School	6949 Genesee Avenue, San Diego, CA 92122	5,665	South
	6	Doyle Elementary School	3950 Berino Court, San Diego, CA 92122	6,265	Southwest
	7	Standley Middle School	6298 Radcliffe Drive, San Diego, CA 92122	8,375	South
Places of	8	La Jolla Community Church	4377 Eastgate Mall, San Diego, CA 92121	1,460	West
Worship	9	Newman Center Catholic Community	4321 Eastgate Mall, San Diego, CA 92121	1,800	West
Parks	10	Mandell-Weiss Eastgate Park	Regents Road and Eastgate Mall, San Diego, CA 92121	2,870	West
	11	Nobel Athletic Area	8810 Judicial Drive, San Diego, CA 92121	3,100	Southeast

Note:

1. The distance is measured from the project site property line to the sensitive receptor property line.

Source: Google Earth, 2021.

4.3 EXISTING NOISE LEVELS

MOBILE SOURCES

The noise environment at the project site is dominated by vehicular traffic on Towne Centre Drive, Executive Drive, and Judicial Drive, as well as aircraft operations associated with Marine Corps Air Station (MCAS) Miramar.

In order to assess the potential for mobile source noise impacts, it is necessary to determine the noise currently generated by vehicles traveling through the project area. Vehicle noise was modeled using the Federal Highway Administration's Highway Noise Prediction Model (FHWA RD-77-108). The model calculates the average noise level at specific locations based on traffic volumes, average speeds represented by the posted speed limit, roadway geometry, and site environmental conditions. The model does not account for ambient noise levels. Noise projections are based on modeled vehicular traffic as derived from the street segment analysis (refer to <u>Appendix A</u>). As shown in <u>Table 8</u>, <u>Existing Traffic Noise</u>

Levels, mobile noise sources in the vicinity of the project site range from 62.0 to 63.7 dBA CNEL at 100 feet from roadway centerline.

	Existing Conditions						
		dBA @ 100	Distance in Feet from Roadway Centerline to				
		Feet from	60 CNEL	65 CNEL	70 CNEL		
		Roadway	Noise	Noise	Noise		
Roadway Segment	ADT ¹	Centerline	Contour	Contour	Contour		
Towne Centre Drive							
Eastgate Mall to Project Driveway "A"	14,996	62.0	136	63	-		
Project Driveway "A" to Executive Drive	15,274	62.3	142	66	-		
Executive Drive to Towne Centre Driveway	21,886	63.7	176	82	-		
Towne Centre Driveway to La Jolla Village	21,734	63.7	176	82	-		
Drive							
Judicial Drive							
Executive Drive to Judicial Driveway	9,028	60.0	100	-	-		
Judicial Driveway to Golden Haven	9,320	60.1	102	-	-		
Drive/Brook Lane							
Executive Drive							
Towne Centre Drive to Project Driveway "B"	6,489	56.1	55	-	-		
Project Driveway "B" to Judicial Drive	6,489	56.1	55	-	-		

TABLE 8. EXISTING TRAFFIC NOISE LEVELS

Notes: ADT = average daily traffic; dBA = A-weighted decibels; CNEL = Community Noise Equivalent Level, "-" = contour located within roadway right of way

1. Existing ADTs were provided by Urban Systems Associates, Inc. on November 11, 2021.

Source: Refer to Appendix A, Noise Data.

STATIONARY SOURCES

The project site is located in an industrial area of the University Community Plan Area. Primary sources of stationary noise in the project vicinity are urban-related activities, including mechanical equipment and parking areas. Noise associated with these sources may represent a single-event noise occurrence, short-term, or long-term/continuous noise.

5 POTENTIAL ACOUSTICAL IMPACTS

CITY OF SAN DIEGO

The *City of San Diego California Environmental Quality Act Significance Determination Thresholds*, dated July 2016, outline the criteria and thresholds used to determine whether project impacts are significant (City of San Diego 2016). A significant impact would occur if the project would cause one or more of the following to occur:

 Exposure of people to noise levels that exceed the City's adopted Noise Ordinance, San Diego Municipal Code, Section 5.9.5.0404 (i.e., 75db(A) L_{eg});

• Exposure of people to transportation noise levels that exceed the sound level limits as presented in *Table K-2* (<u>Table 5</u>) of the City's Significance Determination Thresholds (refer to Impact Statement N-1); Exposure of people to noise levels that exceed the City's adopted Noise Ordinance, San Diego Municipal Code, Section 5.9.5.0401, as identified in <u>Table 4</u>;

Based on these standards and thresholds, the effects of the proposed project have been categorized as either a "less than significant impact" or a "potentially significant impact." Mitigation measures are recommended for potentially significant impacts. If a potentially significant impact cannot be reduced to a less than significant level through the application of mitigation, it is categorized as a significant and unavoidable impact.

PROJECT-RELATED IMPACTS

CONSTRUCTION

Construction of the proposed project would occur over approximately 31 months and would include demolition, grading, paving, building construction, and architectural coatings. The anticipated construction schedule and equipment are shown in <u>Table 9</u>, <u>Construction Schedule and Equipment</u>.

Construction Phase	Construction Equipment	Start Date	End Date					
Demolition	Excavators, Rubber Tired Dozers, Concrete Saws	1/3/2022	4/29/2022					
Grading	Excavators, Graders, Rubber Tired Dozers, Scrapers, Tractors	4/1/2022	7/29/2022					
Building Construction	Cranes, Pile Driver, Tractors, Generator Sets, Welders	8/1/2022	7/31/2024					
Paving	Pavers, Rollers	5/1/2023	6/29/2023					
Architectural Coating	Air Compressors	1/1/2024	6/28/2024					

TABLE 9. CONSTRUCTION SCHEDULE AND EQUIPMENT

Groundborne noise and other types of construction-related noise impacts would typically occur during excavation activities in the grading and construction phases. <u>Table 10</u>, <u>Maximum Noise Levels Generated</u> <u>by Construction Equipment</u>, indicates the anticipated noise levels of construction equipment. It should be noted that the noise levels identified in <u>Table 10</u> are maximum sound levels (L_{max}), which are the highest individual sound occurring at an individual time period. Operating cycles for these types of construction equipment may involve one or two minutes of full power operation followed by three to four minutes at lower power settings. Other primary sources of acoustical disturbance would be due to random incidents, which would last less than one minute (such as dropping large pieces of equipment or the hydraulic movement of machinery lifts).

TABLE 10. MAXIMUM NOISE LEVELS GENERATED BY CONSTRUCTION EQUIPMENT

Equipment Type	Actual L _{max} at 50 Feet (dBA)	Actual L _{max} at 220 Feet ¹ (dBA)
Backhoe	78	65
Bulldozer	82	69

Compactor	82	69
Compressor	78	65
Concrete Mixer	79	66
Concrete Pump	81	68
Crane, Mobile	81	68
Dump Truck	76	63
Excavator	81	68
Generator	81	68
Grader	85	72
Impact Pile Driver	101	88
Loader	79	66
Paver	77	74
Pump	81	68
Roller	80	67
Tractor	84	71
Flatbed Truck	74	61
Welder	74	61

Notes:

dBA = A-Weighted Decibel; L_{max} = Maximum Sound Level

1 Distance from the closest sensitive receptor to the project boundary.

Source: Federal Highway Administration, Roadway Construction Noise Model User's Guide, January 2006.

The nearest sensitive receptor (residential use) is located approximately 220 feet southwest of the proposed project boundary. As shown in <u>Table 10</u>, construction equipment noise levels would range between 61 dBA and 88 dBA at a distance of 220 feet.

Using the FHWA's Roadway Construction Noise Model and construction information, the estimated noise levels from construction was calculated for the nearest sensitive receptor (Sensitive Receptor #1); refer to <u>Figure 5</u>. Modeled construction equipment are shown in <u>Table 9</u>. The estimated noise levels for construction activities at the nearest sensitive receptor are shown in <u>Table 11</u>, <u>Construction Noise Model</u> <u>Results Summary</u>. As discussed previously, the City's Noise Ordinance states that construction noise may not exceed 75 dBA L_{eq} at or beyond the property line of a residentially zoned property.

		ADLE 11. CONST	RUCHUNINU	ISE IVIODE		IVIIVIAR I	
	Distance from Receptor Site to Project Boundary		Demolition	Grading	Building Construction	Paving	Architectural Coating
ID	(feet)	Land Use	(dBA L _{eq})	(dBA L _{eq})	(dBA L _{eq})	(dBA L _{eq})	(dBA L _{eq})
			Unmit	igated			
1	220	Residential	71.7	73.4	81.6	70.6	60.8
			. 73 When the constructio overl	4 ese two n phases ap	When these	82.0	ruction phases
					when these	overlap	i uction phases
			Miti	gated		-	
1	220	Residential	51.7	53.4	61.6	50.6	40.8
			53.4 When the constructio overl	4 ese two n phases ap			
					When these	62.0 three const overlap	ruction phases

 TABLE 11. CONSTRUCTION NOISE MODEL RESULTS SUMMARY

Notes: dBA = A-Weighted Decibel; L_{eq} = Equivalent Source: Refer to <u>Appendix A</u>, <u>Noise Data</u>.

The noise levels presented in <u>Table 11</u> are conservative, as these noise levels assume the simultaneous operation of all construction equipment at the same precise location. In reality, construction equipment would be used throughout the project site and would not be concentrated at the point closest to the sensitive receptors. It should also be acknowledged that construction activities would occur during normal daytime hours (between 7:00 a.m. and 7:00 p.m. Monday through Saturday) to avoid noise disturbances at nearby receptors during the more sensitive hours (between 7:00 a.m.).¹

As depicted in <u>Table 11</u>, construction noise levels would range from 60.8 dBA L_{eq} to 82.0 dBA L_{eq} at the nearest receptor. As shown in <u>Table 11</u>, construction phases may overlap during the demolition and grading phases, as well as the building construction, paving, and architectural coating phases. During the time when the demolition and grading phases would occur at the same time, the combined noise level would be approximately 73.4 dBA L_{eq} at the nearest residential sensitive receptor to the southwest of the project site. Similarly, the noise level generated during the overlapping building construction, paving, and architectural coating phases would be approximately 82.0 dBA L_{eq} at the nearest residential sensitive receptor to the southwest of the project site.

¹ Project construction will not occur at night (7:00 p.m. to 7:00 a.m.), on Sundays, or legal holidays.

receptor to the southwest of the project site. Thus, construction noise levels would exceed the 75 dBA L_{eq} threshold during the overlapping building construction, paving, and architectural coating phases.

Noise source control is the most effective method of controlling construction noise. Source controls, which limit noise, are the easiest to oversee on a construction project. Mitigation at the source reduces the problem everywhere, not just along one single path or for one receiver. Noise path controls are the second method in controlling noise. Barriers or enclosures can provide a substantial reduction in the nuisance effect in some cases. Path control measures include moving equipment farther away from the receiver; enclosing especially noisy activities or stationary equipment; erecting noise enclosures, barriers, or curtains; and using landscaping as a shield and dissipater.

Noise barriers or enclosures can provide a sound reduction up to 20 dBA or greater.² To be effective, a noise enclosure/barrier must physically fit in the available space, must completely break the line of sight between the noise source and the receptors, must be free of degrading holes or gaps, and must not be flanked by nearby reflective surfaces. Noise barriers must be sizable enough to cover the entire noise source, and extend length-wise and vertically as far as feasibly possible to be most effective. The limiting factor for a noise barrier is not the component of noise transmitted through the material, but rather the amount of noise flanking around and over the barrier. In these cases, the enclosure/barrier system must either be very tall or have some form of roofed enclosure to protect upper-story receptors.

To ensure compliance with the City's maximum construction noise limits (outlined in Municipal Code Section 59.5.0404) and substantially reduce construction-generated noise at nearby receptors, the proposed project would be required to implement Mitigation Measures NOI-1 and NOI-2. Mitigation Measure NOI-1 would include the designation of a "Noise Disturbance Coordinator" and orientation of stationary construction equipment away from nearby sensitive receivers, among other requirements. Further, as shown in <u>Table 11</u>, implementation of Mitigation Measure NOI-2 would reduce the project's construction noise levels below the City's 75 dBA standard during the overlapping building construction, paving, and architectural coating phases with the use of a temporary noise barrier or enclosure along the eastern and southern property lines to break the line of sight between the construction equipment and the nearest sensitive receptor (residential use). Therefore, project construction Measures NOI-1 and NOI-2. A less than significant impact would occur in this regard.

OPERATIONS

Vehicle Traffic Noise

The project would increase traffic volumes on local roadways. Based on the *ARE Science Village Trip Generation Table* prepared by Urban Systems Associates (received November 29, 2021), the proposed project is forecasted to generate approximately 2,959 average daily trips. Traffic noise modeling was conducted using the Federal Highway Administration's Highway Noise Prediction Model (FHWA RD-77-108). The noise model calculates the average noise level at specific locations based on traffic volumes, average speeds represented by the posted speed limit, roadway geometry, and site environmental

² Echo Barrier, *H9 Acoustic Barrier*, https://echobarrier.com/product/h9-acoustic-barrier, accessed December 8, 2021.

conditions. Street segment traffic noise calculations for "Opening Year Without Project" and "Opening Year With Project" conditions are detailed in <u>Appendix A</u>.

The "Opening Year Without Project" and "Opening Year With Project" scenarios are compared in <u>Table</u> <u>12</u>, <u>Opening Year (2027) Traffic Noise Levels With and Without Project</u>. As depicted in <u>Table 12</u>, under the "Opening Year Without Project" scenario, noise levels would range from approximately 56.9 dBA to 64.5 dBA at 100 feet from roadway centerline, with the highest noise levels occurring along the Towne Centre Drive segment from Executive Drive to Towne Centre Driveway. The "Opening Year With Project" scenario noise levels would range from approximately 57.2 dBA to 64.6 dBA at 100 feet from roadway centerline, with the highest noise levels from roadway centerline, with the highest noise levels would range from approximately 57.2 dBA to 64.6 dBA at 100 feet from roadway centerline, with the highest noise levels also occurring along the Towne Centre Drive segment from Executive Drive to Towne Centre Drives segments. As discussed under the City of San Diego Significance Determination Thresholds, an increase of 3 dBA or greater would result in a significant impact, therefore, project generated traffic noise would be less than significant.

	Traffic Vo	olume (ADT)	Noise Level (CNEL) at 100 feet from Roadway Centerline				
Roadway Segment	Opening Year Without Project		Opening Year without Project	Opening Year with Project	Noise Increase		
Towne Centre Drive							
Eastgate Mall to Project Driveway "A"	18,262	19,151	62.9	63.1	0.2		
Project Driveway "A" to Executive Drive	18,541	19,430	63.1	63.3	0.2		
Executive Drive to Towne Centre Driveway	26,140	26,709	64.5	64.6	0.1		
Towne Centre Driveway to La Jolla Village	25,988	26,557	64.4	64.5	0.1		
Judicial Drive							
Executive Drive to Judicial Driveway	10,179	10,890	60.5	60.8	0.3		
Judicial Drivewayto Golden Haven Drive/Brook Lane	10,473	11,184	60.6	60.9	0.3		
Executive Drive							
Towne Centre Drive to Project Driveway "B"	7,832	8,384	56.9	57.2	0.3		
Project Driveway "B" to Judicial Drive	7,832	8,384	56.9	57.2	0.3		
Notes: ADT = average daily traffic; dBA = A-w contour located within roadway right of way	veighteddec	ibels; CNEL = Co	ommunity No	ise Equivalent I	Level, "-"=		

TABLE 12. OPENING YEAR (2027) TRAFFIC NOISE LEVELS WITH AND WITHOUT PROJECT

Source: Refer to Appendix A, Noise Data.

Stationary Noise Impacts

Mechanical Equipment

The proposed project would require the use of commercial heating, ventilation, and air conditioning (HVAC) units. Commercial-scale HVAC equipment units are generally equipped with noise shielding cabinets, placed on the roof, and are not usually significant sources of noise impacts. HVAC units typically

result in noise levels that average 55 dBA at 50 feet from the source.³ Roof-mounted HVAC units would be located as close as 272 feet from the nearest sensitive receptor (Sensitive Receptor #1). At this distance, HVAC noise levels would be approximately 40 dBA. In addition, the HVAC units would not be visible to the nearest sensitive receptors as a parapet would separate the proposed Scientific Research building and receptors, further attenuating the HVAC noise levels by approximately 5 dBA.⁴ Therefore, the closest HVAC unit could produce a noise level of approximately 35 dBA. As such, the City's most restrictive multi-family residential noise standard (45 dBA during nighttime hours [10:00 p.m. to 7:00 a.m.]) would not be exceeded as a result of HVAC units at the project site. It should be noted that additional mechanical equipment, including an emergency generator, may be located in the first level of the underground parking garage. As the mechanical equipment would be fully enclosed and not visible to the nearest sensitive receptors (Sensitive Receptor #1). Impacts would be less than significant in this regard.

Parking Garage

Parking for the project would be provided by a three-level underground parking garage. The parking garage would provide approximately 938 parking spaces for project tenants and employees.

Traffic noise associated with parking lots is typically not of sufficient volume to exceed community noise standards, which are based on a time-averaged scale such as the L_{dn} scale. However, the instantaneous maximum sound levels generated by a car door slamming, engine starting up, and car pass-bys may be an annoyance to adjacent noise-sensitive receptors. Estimates of the maximum noise levels associated with typical parking lot activities are presented in <u>Table 13</u>, <u>Typical Noise Levels Generated by Parking Lots</u>.

Noise Source	Maximum Noise Levels at 50 Feet from Source
Car door slamming	61 dBA L _{eq}
Car starting	60 dBA L _{eq}
Car idling	53 dBA L _{eq}

TABLE 13. TYPICAL NOISE LEVELS GENERATED BY PARKING LOTS

Source: Kariel, H. G., *Noise in Rural Recreational Environments*, Canadian Acoustics 19(5), 3-10, 1991.

As shown in <u>Table 13</u>, parking lot noise levels range between 53 dBA and 61 dBA at a distance of 50 feet. The nearest sensitive receptor is located approximately 220 feet southwest of the project site. Given the distance and the parking garage being below ground, parking lot noise levels would be negligible at the nearest sensitive receptor. In addition, the project would comply with all Municipal Code ordinances related to stationary noise sources. Therefore, noise related to the underground parking structure would be less than significant.

⁴ Federal Highway Administration, *Roadway Construction Noise Model User's Guide*, January 2006.

³ U.S. Environmental Protection Agency, Community Noise, 1971.

Mitigation Measures:

- NOI-1 Prior to issuance of a demolition permit, the applicant/permittee shall coordinate with the City of San Diego Mitigation Monitoring Coordination and come to an agreement on the following measures:,
 - Construction contracts shall specify that all construction equipment, fixed or mobile, shall be equipped with properly operating and maintained mufflers and other state-required noise attenuation devices.
 - A sign, legible at a distance of 50 feet, shall be posted at the project construction site providing a contact name and a telephone number where residents can inquire about the construction process and register complaints. This sign shall indicate the dates and duration of construction activities. In conjunction with this required posting, a noise disturbance coordinator shall be identified to address construction noise concerns received. The coordinator shall be responsible for responding to any local complaints about construction noise. When a complaint is received, the disturbance coordinator shall notify the City within 24 hours of the complaint and determine the cause of the noise complaint (starting too early, malfunctioning muffler, etc.) and shall implement reasonable measures to resolve the complaint, as deemed acceptable by the City. All signs posted at the construction site shall include the contact name and the telephone number for the noise disturbance coordinator.
 - During construction, stationary construction equipment shall be placed such that emitted noise is directed away from sensitive noise receivers.
 - Per Municipal Code Section 59.5.0404, construction shall be limited to the hours between 7:00 a.m. and 7:00 p.m. daily (except Sundays and legal holidays). All construction activities shall be prohibited at night (between 7:00 p.m. and 7:00 a.m.) and on Sundays and legal holidays.
- NOI-2 In order to reduce construction noise, a temporary noise barrier or enclosure shall be used along the eastern and southern property lines to break the line of sight between the construction equipment and the adjacent residences. The temporary noise barrier shall have a sound transmission class (STC) of 20 or greater in accordance with American Society for Testing and Materials Test Method E90, or at least 2 pounds per square foot to ensure adequate transmission loss characteristics. In order to achieve this, the barrier may consist of 3-inch steel tubular framing, welded joints, a layer of 18-ounce tarp, a 2-inch-thick fiberglass blanket, a half-inch-thick weatherwood asphalt sheathing, and 7/16-inch sturdy board siding with a heavy duct seal around the perimeter. The length, height, and location of noise control barrier walls shall be adequate to assure proper acoustical performance. In addition, to avoid objectionable noise reflections, the source side of the noise barrier shall be lined with an acoustic absorption material meeting a noise reduction coefficient rating of 0.70 or greater in accordance with American Society for Testing and Materials Test Method C423. All noise control barrier walls shall be designed to preclude structural failure due to such factors as winds, shear, shallow soil failure, earthquakes, and erosion.

VIBRATION

CONSTRUCTION VIBRATION

Project construction can generate varying degrees of groundborne vibration, depending on the construction procedure and the construction equipment used. Operation of construction equipment generates vibrations that spread through the ground and diminish in amplitude with distance from the source. The effect on buildings located in the vicinity of the construction site often varies depending on soil type, ground strata, and construction characteristics of the receiver building(s). The impacts from vibration can range from no perceptible effects at the lowest vibration levels, to low rumbling sounds and perceptible vibration at moderate levels, to slight damage at the highest levels. Groundborne vibrations from construction activities rarely reach levels that damage structures.

The Federal Transit Administration (FTA) has published standard vibration velocities for construction equipment operations. The types of construction vibration impacts include human annoyance and building damage. Human annoyance occurs when construction vibration rises significantly above the threshold of human perception for extended periods of time. Building damage can be cosmetic or structural. According to the Caltrans *Transportation and Construction Vibration Guidance Manual*, the threshold for architectural damage to commercial structures is 0.5 inch-per-second peak particle velocity (PPV) and the human annoyance threshold is 0.2 inch-per-second PPV.⁵ Typical vibration produced by construction equipment is illustrated in <u>Table 14</u>, *Typical Vibration Levels for Construction Equipment*.

⁵ California Department of Transportation (Caltrans), *Transportation and Construction Vibration Guidance Manual*, April 2020.

				•	
	Equipment	Approximate peak particle velocity at 25 feet (inches/second)	Approximate peak particle velocity at 55 feet (inches/second)	Approximate peak particle velocity at 220 feet (inches/second)	
Impact Pile	Upper Range	1.518	0.465	0.058	
Driver	Typical	0.644	0.197	0.025	
Sonic Pile	Upper Range	0.734	0.225	0.028	
Driver	Typical	0.170	0.052	0.007	
Vibrato	ry Roller	0.210	0.064	0.008	
Large B	ulldozer	0.089	0.027	0.003	
Loaded	d Trucks	0.076	0.023	0.003	
Jackha	ammer	0.035	0.011	0.001	
Small b	ulldozer	0.003	0.001	<0.001	

TABLE 14. TYPICAL VIBRATION LEVELS FOR CONSTRUCTION EQUIPMENT

Notes:

1. Calculated using the following formula:

PPV _{equip} = PPV_{ref} x $(25/D)^{1.5}$

where: PPV (equip) = the peak particle velocity in in/sec of the equipment adjusted for the distance PPV (ref) = the reference vibration level in in/sec from Table 12-2 of the FTA *Transit Noise and Vibration Impact Assessment Guidelines*

 D = the distance from the equipment to the receiver

Source: Federal Transit Administration, Transit Noise and Vibration Impact Assessment Manual, September 2018.

Construction activities are anticipated to occur up to the project boundary line. Therefore, the nearest structure (i.e. commercial uses) would be located approximately 55 feet to the north of the project site boundary and the nearest sensitive receptors (residential uses) would be located approximately 220 feet to the southwest of the project site boundary. As indicated in <u>Table 14</u>, groundborne vibration generated during project construction activities would range from 0.001 to 0.465 inch-per-second PPV at the nearest structure (i.e. commercial uses) and from less than 0.001 to 0.058 inch-per-second PPV at the nearest sensitive receptors (residential uses). Therefore, groundborne vibration generated during project construction activities would not exceed the human annoyance criterion (0.2 inch-per-second PPV) or the structural damage criterion (0.5 inch-per-second PPV). A less than significant impact would occur in this regard.

OPERATIONAL VIBRATION

The proposed scientific research and retail uses would not generate groundborne vibration that could be felt by surrounding uses. The proposed project would not involve railroads or substantial heavy truck operations, and therefore would not result in vibration impacts at surrounding uses. Thus, no impact would occur in this regard.

AIRPORT NOISE

The proposed project is located approximately 2.5 miles to the northwest of the MCAS Miramar and is within the Airport Influence Area (Review Area 2) of the adopted MCAS Miramar Airport Land Use Compatibility Plan (ALUCP) (San Diego County 2011). The project is located within airport's 60 dBA CNEL

noise contour and therefore must comply with the ALUCP's land use compatibility policies. Similar to the General Plan, the ALUCP considers outdoor noise levels of up to 75 dBA CNEL commercial and industrial uses (e.g., clinical laboratories, office buildings, and eating/drinking establishments) as being conditionally compatible as long as interior noise levels of 50 dBA CNEL can be maintained. As shown in <u>Table 6</u>, outdoor noise levels in the project vicinity range from 59.2 to 63.3 dBA. Accounting for a 24 dBA exterior-to-interior attenuation factor, interior noise levels would be approximately 39.3 dBA or lower. Therefore, the proposed project would be compatible with the ALUCP standards and guidelines (i.e. 75 dBA CNEL exterior noise threshold and 50 dBA CNEL interior noise threshold). Additionally, the project site is not located within the vicinity of a private airstrip or related facilities. Thus, project implementation would not expose people residing or working in the project area to excessive noise levels associated with aircraft and impacts would be less than significant.

6 REFERENCES

6.1 LIST OF PREPARERS

Michael Baker International 5 Hutton Centre Drive, Suite 500 Santa Ana, California 92707 949/472-3505 Eddie Torres, INCE, Planning Department Manager Danielle Regimbal, Senior Air Quality & Noise Specialist

6.2 DOCUMENTS

California Department of Transportation, *Transportation and Construction Vibration Guidance Manual*, April 2020.

City of San Diego, California Environmental Quality Act Significance Determination Thresholds, July 2016.

City of San Diego, City of San Diego General Plan Noise Element, 2015.

City of San Diego, City of San Diego Municipal Code, 2019.

Cyril M. Harris, Handbook of Noise Control, 1979.

dBF Associates, Towne Centre Drive Redevelopment Exterior Noise Analysis Report, August 9, 2016.

Echo Barrier, *H9 Acoustic Barrier*, https://echobarrier.com/product/h9-acoustic-barrier, accessed December 8, 2021.

FTA (Federal Highway Administration), Roadway Construction Noise Model User's Guide, January 2006.

FTA, Transit Noise and Vibration Impact Assessment Manual, September 2018.

Kariel, H. G., Noise in Rural Recreational Environments, Canadian Acoustics 19(5), March 10, 1991.

- NIH (National Institute on Deafness and Other Communication Disorders), *Noise-Induced Hearing Loss*, June 2019. https://www.nidcd.nih.gov/sites/default/files/Documents/health/ hearing/NoiseInducedHearingLoss.pdf, accessed September 30, 2021.
- Office of Planning and Research, California, General Plan Guidelines, July 2017.
- San Diego County Regional Airport Authority, *Marine Corps Air Station Miramar Airport Land Use Compatibility Plan*, December 1, 2011.
- U.S. Environmental Protection Agency, Community Noise, 1971.

6.3 SOFTWARE/WEBSITES

Federal Highway Administration, *Roadway Construction Noise Model* (FHWA-HEP-05-054), January 2006.

Federal Highway Administration, Highway Traffic Nosie Prediction Model (RD-77-108), 1978.

Google Earth, 2021.

Michael Baker

Appendix A: Noise Data

TRAFFIC NOISE LEVELS AND NOISE CONTOURS

Project Number: 181315 Project Name: ARE Science Village Scenario: Existing

Background Information

Model Description: Source of Traffic Volumes:	FHWA Highway Nois Urban Systems Asso	e Predictior ciates, Inc.	n Model (F (2021)	HWA-RD-77-108) with California Vehicle Noise (CALVENO) Emission Levels.
Community Noise Descriptor:	L _{dn} :	CNEL:	x	
Assumed 24-Hour Traffic Distribution:	Day	Evening	Night	
Total ADT Volumes	77.50%	12.90%	9.60%	
Medium-Duty Trucks	84.80%	4.90%	10.30%	
Heavy-Duty Trucks	86.50%	2.70%	10.80%	

				Design		Vehic	le Mix	Di	stance fror	n Centerlin	e of Roadw	/ay	
Analysis Condition		Median	ADT	Speed	Alpha	Medium	Heavy	CNEL at		Distance	to Contour		Calc
Roadway, Segment	Lanes	Width	Volume	(mph)	Factor	Trucks	Trucks	100 Feet	70 CNEL	65 CNEL	60 CNEL	55 CNEL	Dist
Towne Centre Drive													-
Eastgate Mall to Project Driveway "A"	4	0	14,996	40	0.5	1.8%	0.7%	62.0	-	63	136	294	100
Project Driveway "A" to Executive Drive	4	20	15,274	40	0.5	1.8%	0.7%	62.3	-	66	142	305	100
Executive Drive to Towne Centre Driveway	4	5	21,886	40	0.5	1.8%	0.7%	63.7	-	82	176	380	100
Towne Centre Driveway to La Jolla Village Drive	4	5	21,734	40	0.5	1.8%	0.7%	63.7	-	82	176	378	100
Judicial Drive													
Executive Drive to Judicial Driveway	4	20	9,028	40	0.5	1.8%	0.7%	60.0	-	-	100	215	100
Judicial Driveway to Golden Haven Drive/Brook Lane	4	20	9,320	40	0.5	1.8%	0.7%	60.1	-	-	102	219	100
Executive Drive													
Towne Centre Drive to Project Driveway "B"	4	5	6,489	30	0.5	1.8%	0.7%	56.1	-	-	55	119	100
Project Driveway "B" to Judicial Drive	4	5	6,489	30	0.5	1.8%	0.7%	56.1	-	-	55	119	100

¹ Distance is from the centerline of the roadway segment to the receptor location.

"-" = contour is located within the roadway right-of-way.

TRAFFIC NOISE LEVELS AND NOISE CONTOURS

Project Number: 181315 Project Name: ARE Science Village Scenario: Opening Year 2027

Background Information

Model Description: Source of Traffic Volumes:	FHWA Highway Nois Urban Systems Asso	e Predictioı ciates, Inc.	n Model (F (2021)	HWA-RD-77-108) with California Vehicle Noise (CALVENO) Emission Lev
Community Noise Descriptor:	L _{dn} :	CNEL:	x	_
Assumed 24-Hour Traffic Distribution:	Day	Evening	Night	
Total ADT Volumes	77.50%	12.90%	9.60%	-
Medium-Duty Trucks	84.80%	4.90%	10.30%	
Heavy-Duty Trucks	86.50%	2.70%	10.80%	

				Design		Vehic	le Mix	Di	stance fror	n Centerlin	e of Roadw	/ay	
Analysis Condition		Median	ADT	Speed	Alpha	Medium	Heavy	CNEL at		Distance	to Contour		Calc
Roadway, Segment	Lanes	Width	Volume	(mph)	Factor	Trucks	Trucks	100 Feet	70 CNEL	65 CNEL	60 CNEL	55 CNEL	Dist
Towne Centre Drive													•
Eastgate Mall to Project Driveway "A"	4	0	18,262	40	0.5	1.8%	0.7%	62.9	-	72	156	335	100
Project Driveway "A" to Executive Drive	4	20	18,541	40	0.5	1.8%	0.7%	63.1	-	75	161	347	100
Executive Drive to Towne Centre Driveway	4	5	26,140	40	0.5	1.8%	0.7%	64.5	-	92	199	428	100
Towne Centre Driveway to La Jolla Village Drive	4	5	25,988	40	0.5	1.8%	0.7%	64.4	-	92	198	426	100
Judicial Drive													
Executive Drive to Judicial Driveway	4	20	10,179	40	0.5	1.8%	0.7%	60.5	-	-	108	233	100
Judicial Driveway to Golden Haven Drive/Brook Lane	4	20	10,473	40	0.5	1.8%	0.7%	60.6	-	-	110	237	100
Executive Drive													
Towne Centre Drive to Project Driveway "B"	4	5	7,832	30	0.5	1.8%	0.7%	56.9	-	-	62	135	100
Project Driveway "B" to Judicial Drive	4	5	7,832	30	0.5	1.8%	0.7%	56.9	-	-	62	135	100

¹ Distance is from the centerline of the roadway segment to the receptor location.

"-" = contour is located within the roadway right-of-way.

TRAFFIC NOISE LEVELS AND NOISE CONTOURS

Project Number: 181315 Project Name: ARE Science Village Scenario: Opening Year 2027 + Project

Background Information

Model Description: Source of Traffic Volumes:	FHWA Highway Nois Urban Systems Asso	e Predictior ciates, Inc.	n Model (Fl (2021)	HWA-RD-77-108) with California Vehicle Noise (CALVENO) Emission Le
Community Noise Descriptor:	L _{dn} :	CNEL:	x	-
Assumed 24-Hour Traffic Distribution:	Day	Evening	Night	
Total ADT Volumes	77.50%	12.90%	9.60%	•
Medium-Duty Trucks	84.80%	4.90%	10.30%	
Heavy-Duty Trucks	86.50%	2.70%	10.80%	

				Design		Vehic	le Mix	Di	stance fror	n Centerlin	e of Roadw	ay	
Analysis Condition		Median	ADT	Speed	Alpha	Medium	Heavy	CNEL at		Distance	to Contour		Calc
Roadway, Segment	Lanes	Width	Volume	(mph)	Factor	Trucks	Trucks	100 Feet	70 CNEL	65 CNEL	60 CNEL	55 CNEL	Dist
Towne Centre Drive													
Eastgate Mall to Project Driveway "A"	4	0	19,151	40	0.5	1.8%	0.7%	63.1	-	75	161	346	100
Project Driveway "A" to Executive Drive	4	20	19,430	40	0.5	1.8%	0.7%	63.3	-	77	166	358	100
Executive Drive to Towne Centre Driveway	4	5	26,709	40	0.5	1.8%	0.7%	64.6	-	94	202	434	100
Towne Centre Driveway to La Jolla Village Drive	4	5	26,557	40	0.5	1.8%	0.7%	64.5	-	93	201	433	100
Judicial Drive													
Executive Drive to Judicial Driveway	4	20	10,890	40	0.5	1.8%	0.7%	60.8	-	-	113	243	100
Judicial Driveway to Golden Haven Drive/Brook Lane	4	20	11,184	40	0.5	1.8%	0.7%	60.9	-	-	115	248	100
Executive Drive													
Towne Centre Drive to Project Driveway "B"	4	5	8,384	30	0.5	1.8%	0.7%	57.2	-	-	65	141	100
Project Driveway "B" to Judicial Drive	4	5	8,384	30	0.5	1.8%	0.7%	57.2	-	-	65	141	100

¹ Distance is from the centerline of the roadway segment to the receptor location.

"-" = contour is located within the roadway right-of-way.

Report date:	12/9/2021
Case Description:	Buliding Construction, Paving, Architectural Coating

				Re	ceptor #1		
		Baselines	(dBA)				
Description	Land Use	Daytime	Evening	Night			
Residential Sensitive Receptors to the Southwest	Residential		1 :	1	1		
				Equipr	nent		
				Spec	Actual	Receptor	Estimated
		Impact		Lmax	Lmax	Distance	Shielding
Description		Device	Usage(%)	(dBA)	(dBA)	(feet)	(dBA)
Crane		No	16	5	80.6	5 220	0
Impact Pile Driver		Yes	20	C	101.3	3 220	0
Tractor		No	40	C	84	220	0
Paver		No	50	C	77.2	2 220	0
Pavement Scarafier		No	20	C	89.5	5 220	0
Roller		No	20	C	80	220	0
Compressor (air)		No	40	C	77.7	7 220	0

			Results											
	Calculated	(dBA)		Noise Li	mits (dBA)					Noise L	mit Exceeda	ince (dBA)		
			Day		Evening		Night		Day		Evening		Night	
Equipment	*Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq
Crane	67.7		59.7 N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Impact Pile Driver	88.4		81.4 N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Tractor	71.1		67.2 N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Paver	64.4		61.3 N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Pavement Scarafier	76.6		69.6 N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Roller	67.1		60.1 N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Compressor (air)	64.8		60.8 N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total	88.4		82 N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	*Calculate	d Lmax	is the Loudes	t value.										

Report date:	12/9/2021	L															
Case Description:	Demolition, Grading																
				Re	ceptor #1												
		Baseline	s (dBA)														
Description	Land Use	Daytime	Evenii	ng Night													
Residential Sensitive Receptors to the Southwest	Residential	,	1	1	1												
				Equip	nent												
				Spec	Actu	Jal	Receptor	- Est	timated								
		Impact		Lmax	Lma	X	Distance	Shi	ielding								
Description		Device	Usage	(%) (dBA)	(dBA	4)	(feet)	(dE	BA)								
Excavator		No	-	40		80.7	22	20	0								
Dozer		No		40		81.7	22	20	0								
Grader		No		40	85		22	20	0								
Scraper		No		40		83.6	22	20	0								
Tractor		No		40	84		22	20	0								
				Result	s												
		Calculate	ed (dBA)		Nois	se Limit	ts (dBA)						Noise Li	mit Exceeda	ance (dBA)		
				Day			Evening			Night		Day		Evening		Night	
Equipment		*Lmax	Leq	Lmax	Leq		Lmax	Leo	q	Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq
Excavator		67	.8	63.9 N/A	N/A		N/A	N/.	/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Dozer		68	.8	64.8 N/A	N/A		N/A	N/.	/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Grader		72	.1	68.2 N/A	N/A		N/A	N/.	/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Scraper		70	.7	66.7 N/A	N/A		N/A	N/.	/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Tractor		71	.1	67.2 N/A	N/A		N/A	N/.	/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Total	72	.1	73.4 N/A	N/A		N/A	N/.	/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		*Calcula	ted Lmax	is the Loud	est value												

Report date:	12/9/202:	1														
Case Description:	Demolition															
				Rec	ceptor #1											
		Baselines	(dBA)													
Description	Land Use	Daytime	Evening	. Night												
Residential Sensitive Receptors to the Southwest	Residential		1	1	1											
				Equipm	nent											
				Spec	Actual	Recept	or E	Estimated	ł							
		Impact		Lmax	Lmax	Distanc	e S	Shielding								
Description		Device	Usage(S	%) (dBA)	(dBA)	(feet)	((dBA)								
Concrete Saw		No		20	89.	6	220		0							
Excavator		No		40	80.	7	220		0							
Dozer		No		40	81.	7	220		0							
				Results	S											
		Calculate	d (dBA)		Noise Lim	its (dBA)						Noise L	imit Exceeda	nce (dBA)		
				Day		Evenin	3		Night		Day		Evening		Night	
Equipment		*Lmax	Leq	Lmax	Leq	Lmax	L	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq
Concrete Saw		76	.7 6	9.7 N/A	N/A	N/A	١	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Excavator		67.	.8 6	3.9 N/A	N/A	N/A	١	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Dozer		68.	.8 6	4.8 N/A	N/A	N/A	١	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Total	76	.7 7	1.7 N/A	N/A	N/A	٢	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		*Calculat	ed Lmax i	s the Loude	est value.											

Report date:	12/9/202	1														
Case Description:	Grading															
				R	ecepto	r #1										
		Baselines	(dBA)		cocpio											
Description	Land Use	Daytime	Eveni	ng Night												
Residential Sensitive Receptors to the Southwest	Residential	,	1	1	1											
				Equip	ment											
				Spec	A	Actual	Receptor	Estima	ted							
		Impact		Lmax	L	Lmax	Distance	Shield	ng							
Description		Device	Usage	e(%) (dBA)	((dBA)	(feet)	(dBA)								
Excavator		No		40		80.7	220)	0							
Grader		No		40	85		220)	0							
Dozer		No		40		81.7	220)	0							
Scraper		No		40		83.6	220)	0							
Tractor		No		40	84		220)	0							
				Resul	ts											
		Calculate	d (dBA)		1	Noise Limit	ts (dBA)					Noise L	imit Exceeda	nce (dBA)		
				Day			Evening		Night		Day		Evening		Night	
Equipment		*Lmax	Leq	Lmax	L	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq
Excavator		67	.8	63.9 N/A	1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Grader		72	.1	68.2 N/A	1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Dozer		68	.8	64.8 N/A	1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Scraper		70	.7	66.7 N/A	1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Tractor		71	.1	67.2 N/A	1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Total	72	.1	73.4 N/A	1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

*Calculated Lmax is the Loudest value.

Report date:	12/9/202	1														
Case Description:	Paving															
				Rec	entor #1											
		Raceline	c (dBA)	hee												
Description	Land Lise	Davtime	5 (UDA) Eveni	ng Night												
Posidential Sensitive Recenters to the Southwest	Posidontial	Daytime	1	1	1											
Residential sensitive receptors to the southwest	Residential		1	1	I											
				Equipm	nent											
				Spec	Actual	Rece	ptor Est	timated								
		Impact		Lmax	Lmax	Dista	ince Shi	ielding								
Description		Device	Usage	e(%) (dBA)	(dBA)	(feet	:) (dE	BA)								
Paver		No	0	50	77.	.2	220	, 0								
Pavement Scarafier		No		20	89.	.5	220	0								
Roller		No		20	8	80	220	0								
				Results												
		Calculate	ed (dBA)		Noise Lin	nits (dB	A)					Noise L	imit Exceeda	nce (dBA)		
				Day		Even	ing	Nigl	ht	Da	y		Evening		Night	
Equipment		*Lmax	Leq	Lmax	Leq	Lmax	k Lee	q Lma	ax Le	q Lm	nax	Leq	Lmax	Leq	Lmax	Leq
Paver		64	.4	61.3 N/A	N/A	N/A	N/	'A N/A	N/	'A N/2	A	N/A	N/A	N/A	N/A	N/A
Pavement Scarafier		76	6.6	69.6 N/A	N/A	N/A	N/	'A N/A	N/	Ά Ν/2	A	N/A	N/A	N/A	N/A	N/A
Roller		67	.1	60.1 N/A	N/A	N/A	N/	'A N/A	N/	'A N/2	A	N/A	N/A	N/A	N/A	N/A
	Total	76	i.6	70.6 N/A	N/A	N/A	N/	'A N/A	N/	'A N/2	A	N/A	N/A	N/A	N/A	N/A
		*Calcula	ted Lma	x is the Loude	est value.											

Report date:	12/9/2021	L														
Case Description:	Building Construction															
				Po	conto	r #1										
		Bacolinos		Ne	cepto	1 #1										
Description	land lice	Dasetime	(UDA)	Night												
		Daytime	Evening													
Residential Sensitive Receptors to the Southwest	Residential		1	1	1											
				Equipr	nent											
				Spec	A	Actual	Receptor	Estimate	d							
		Impact		Lmax	L	max	Distance	Shielding								
Description		Device	Usage(%	%) (dBA)	(dBA)	(feet)	(dBA)	,							
Crane		No		16	`	80.6	220)	0							
Impact Pile Driver		Yes		20		101 3	220)	0							
Tractor		No		40	84		220)	0							
				Result	s											
		Calculate	d (dBA)		1	Noise Limi	ts (dBA)					Noise Lin	nit Exceedar	nce (dBA)		
				Day			Evening		Night		Day		Evening		Night	
Equipment		*Lmax	Leq	Lmax	L	eq	Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq
Crane		67.	7 5	9.7 N/A	1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Impact Pile Driver		88.	4 8	1.4 N/A	1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Tractor		71.	1 6	7.2 N/A	1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Total	88.	4 8	1.6 N/A	1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		*Calculat	ed Lmax i	s the Loud	est va	lue.										

Report date:	12/9/2021														
case Description.	Architectural coating														
				Recept	or #1										
		Baselines (dB	BA)												
Description	Land Use	Daytime Ev	vening	Night											
Residential Sensitive Receptors to the Southwest	Residential	1	1	1											
				Equipmen	t										
				Spec	Actual	Receptor	Estimated								
		Impact		Lmax	Lmax	Distance	Shielding								
Description		Device U	Jsage(%)	(dBA)	(dBA)	(feet)	(dBA)								
Compressor (air)		No	40		77.7	220	C)							
				Results											
		Calculated (d	BA)		Noise Limit	ts (dBA)					Noise Limi	t Exceedance	ce (dBA)		
				Day		Evening		Night		Day		Evening		Night	
Equipment		*Lmax Le	eq	Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq
Compressor (air)		64.8	60.8	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Total	64.8	60.8	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		*Calculated L	Lmax is th	ne Loudest v	value.										

"Science Village" Trip Generation

Land Use	Intensity	D-4-*	ADT			AM					PM		
	Intensity	Kate	ADI	Peak%*	Vol.	In % Out%	In	Out	Peak%*	Vol.	In % Out%	In	Out
			Existin	g Land	Uses								
Scientific Research and Development	138.4 KSF	8 /KSF	1,107	16%	177	90% : 10%	159	18	14%	155	10% : 90%	16	140
Existing Sub-T	<u>`otal</u>		1,107		177		159	18		155		16	140
			Propose	ed Land	Uses								
Scientific Research and Development	369.878 KSF	8 /KSF	2,959	16%	473	90% : 10%	426	47	14%	414	10% : 90%	41	373
Specialty Retail / Strip Commercial***	24.256 KSF	Non-Trip Generating											
Proposed Sub-7	-	2,959		473		426	47		414		41	373	
			Transi	t Reduct	tions								
Transit Reduction % (Scientific Research a	nd Development	- Industrial)**	4%		15%		15%	15%		15%		15%	15%
Transit Reduction (Scientific Research an Existing Use	d Development - s	Industrial) of	44		27		24	3		23		2	21
Transit Reduction (Scientific Research an Proposed Use	d Development - es	Industrial) of	118		71		64	7		62		6	56
Existing Sub-Total With		1,063		151		136	15		132		13	119	
Proposed Sub-Total With		2,841		402		362	40		352		35	317	
Net Increa	Net Increase						227	25		220		22	198

Source: *Rates taken from the City of San Diego Trip Generation Manual, May 2003

Note: ADT= Average Daily Trips KSF = 1,000 Square Feet

This page intentionally left blank

Michael Baker