Preliminary Drainage Study for

Campus Point NDP

PTS 651935

Prepared For:

Alexandria Estate Equities, Inc. San Diego, CA 92121 (858) 638-2800

Project Location:

10290 Campus Point Drive San Diego, CA 92121 APN No. 343-230-38, 42 ,43 14 in the City of San Diego, County of San Diego, CA

Prepared By: Michael Baker

INTERNATIONAL 9755 Clairemont Mesa Blvd San Diego, CA 92124 (858) 614-5000 Christopher Leary, PE

Michael Baker JN: 174310 Prepared: April 30, 2020

Table of Contents

SECTIO	ON 1 PROJECT INFORMATION	1
1.1	PROJECT DATA	1
1.2	SCOPE OF REPORT	1
1.3	PROJECT DESCRIPTION	
1.4	EXISTING CONDITIONS	2
1.5	PROPOSED CONDITIONS	2
SECTIO	ON 2 STUDY OBJECTIVES	5
SECTIO	ON 3 METHODOLOGY	6
3.1	Hydrology	
3.2	Hydraulics	6
SECTIO	DN 4 RESULTS	7
4.1	Hydrologic Results	7
4.2	HYDRAULIC RESULTS	8
SECTIO	DN 5 CONCLUSIONS	8
SECTIO	ON 6 DECLARATION OF RESPONSIBLE CHARGE	9
SECTIO	DN 7 BIBLIOGRAPHY1	0

List of Tables

TABLE 4-1 - HYDROLOGIC SUMMARY	. 7
TABLE 4-2 – HYDRAULIC SUMMARY STORAGE VAULT 10	8

List of Appendices

APPENDIX A – SITE INFORMATION APPENDIX B –EXISTING HYDROLOGY APPENDIX C – PROPOSED HYDROLOGY

Section 1 Project Information

1.1 Project Data

Project Owner:	ARE-SD Region No. 57, LLC		
	10996 Torreyana Rd, Suite 250		
Project Site Address:	Campus Point Court, San Diego, CA 92121		
APN Number(s):	343-230-38, 42 ,43 14		
Parcel Area:	19.43-acres		
Project Disturbed Area:	19.43-acres		

1.2 Scope of Report

This report includes analyses of 100-year project-site peak flow under existing and proposed conditions. This report documents the hydrologic impact of the proposed improvements, as compared to the existing condition; and includes preliminary sizing for attenuation measures required to mitigate peak flow.

This report does not address temporary Best Management Practices (BMPs) required during construction, refer to the project Storm Water Pollution Prevention Plan (SWPPP). Post Construction BMPs are addressed in the project Storm Water Quality Management Plan (SWQMP).

1.3 Project Description

Proposed improvements include the demolition of two existing structures and the surrounding parking lot. A total of seven new structures are proposed along with accompanying parking area and hardscape. Total project-site impervious area will be slightly increased as a result of the proposed improvements; however, peak flow will not be diverted and will be mitigated to existing rates through proposed sub-terranean detention vaults.

Based on the Natural Resources Conservation Service's (NRCS) Websoil Survey, the project site is comprised of approximately 26.6-percent Chesterton fine sandy loam (CfB), with slopes ranging from 5 to 9 percent (hydrologic soil type D); and approximately 73.4-percent Altamont Clay (AtF) (hydrologic soil type C).

During surface exploration Geocon Inc. encountered man-made fill material across the project site. Due to this material it is recommended that the site be considered Hydrologic Soil Type D.

The Federal Emergency Management Agency (FEMA) has not mapped a Special Flood Hazard Area (SFHA) within the project site vicinity. The entire project site lies within un-shaded Zone X, which correlates with areas determined to be outside the 500-year floodplain. An exhibit is provided in Appendix A of this report.

1.4 Existing Conditions

The project site is entirely built out in the existing condition and has been hydrologically analyzed as three drainage basins.

Basin 1 is approximately 2.25-acres and includes a portion of the parking lot on the northern edge of the site. Runoff is collected by curb inlets and conveyed north. Runoff ultimately exits the project area through a 24" PVC pipe, which discharges into the canyon just west of the site.

Basin 2 is approximately 14.50-acres and includes both existing structures with a majority of the existing parking lot. Runoff is collected via area drains and is conveyed west. Runoff ultimately exits the project area through a 36" RCP, which discharges into the canyon just west of the site.

Basin 3 is approximately 2.68-acres and includes existing parking area. Runoff is collected by drains and is routed to an existing partial infiltration basin constructed by PTS# 526897, 39001-D.

Impervious area is comprised of the concrete walkways, parking stalls, drive isles and roofing. Pervious area is comprised of landscape located within parking islands and adjacent to the existing building. Refer to Appendix B for an exhibit detailing the existing condition.

1.5 Proposed Conditions

The proposed structures will be located close to the property lines on all sides of the project site. Roof leaders, area drains, and new on-site private storm drain will direct project site runoff to proposed storage vaults, described in more detail below. The project site is entirely built out in the proposed condition and has been hydrologically analyzed as 17 drainage basins.

Basin 1 is approximately 0.83-acres and includes a portion of the northern parking lot, CP4 and access road. Runoff is collected via curb inlets and routed to a concrete storage vault (Storage Vault 1). The vault has a volume of 8,320 cubic feet at the weir height, with a weir 3.5' above the vault bottom and a 1.4" orifice.

Basin 2 is approximately 3.96-acres and includes some parking lot, and CP5. Runoff is collected via inlets and routed to a concrete storage vault (Storage Vault 2). The vault has a volume of 13,246 cubic feet at the weir height, with a weir 4' above the vault bottom and a 1.9" orifice.

Basin 3 is approximately 0.98-acres and includes a portion of the southwest access road as well as part of the roof of CP6. Runoff is collected via inlets and routed to a concrete storage vault (Storage Vault 3). The vault has a volume of 4,163 cubic feet at the weir height, with a weir 4' above the vault bottom and a 0.9" orifice.

Basin 4 is approximately 0.58-acres and includes a portion of the southwest access road as well as a portion of the roof of CP6. Runoff is collected via inlets and routed to a concrete storage vault (Storage Vault 4). The vault has a volume of 2,965 cubic feet at the weir height, with a weir 6' above the vault bottom and a 0.6" orifice.

Basin 5 is approximately 1.29-acres and includes the southern portion of the access road as well as the roof of CP7. Runoff is collected via roof leaders and area drains and routed to a concrete storage vault (Storage Vault 5) located within the subterranean parking structure. The vault has a volume of 5,760 cubic feet at the weir height, with a weir 6' above the vault bottom and a 1" orifice.

Basin 6 is approximately 0.65-acres and includes the parts of the southern access road and associated parking lot. Runoff is collected via inlets and routed to a biofiltration basin (Biofiltration Basin 1). The basin has a footprint of 1,816 square feet and a 0.8" orifice

Basin 7 is approximately 1.03-acres and includes the portion of the access road in the middle of the site and a portion of CP7. Runoff is collected via inlets and routed to a biofiltration basin (Biofiltration Basin 2). The basin has a footprint of 2,440 square feet and a 1" orifice

Basin 8 is approximately 0.27-acres and includes the main access road onto Campus Point. Runoff is collected via inlets and routed to a biofiltration basin (Biofiltration Basin 3). The basin has a footprint 6,520 square feet and a 1.0" orifice.

Basin 9 is approximately 1.47-acres and includes the portion of the access road in the middle of the site and portions of the roof of CP6. Runoff is collected via inlets and routed to a Biofiltration basin (Biofiltration Basin 4). The basin has a footprint of 3,668 square feet and a 1.2" orifice.

Basin 10 is approximately 2.12-acres and includes the parking structure located on the eastern side of the site. Runoff is collected via inlets and routed to a separate concrete storage vault (Storage Vault 6). The vault has a volume of 10,100 cubic feet at the weir height, with a weir 4' above the vault bottom and a 1.3" orifice.

Basin 11 is approximately 1.92-acres and includes the parking structure located on the eastern side of the site. Runoff is collected via inlets and routed to a separate concrete storage vault (Storage Vault 7). The vault has a volume of 8,800 cubic feet and a 0.75" orifice.

Basin 12 is approximately 1.85-acres and located in the north easterly portion of the site. Runoff is collected via inlets and routed to a separate concrete storage vault (Storage Vault 8). The vault has a volume of 7,965 cubic feet at the weir height, with a weir 4" above the vault bottom and a 0.8" orifice.

Basin 13 is approximately 1.08-acres and includes portions of the plaza. Runoff is collected via inlets and routed to a biofiltration basin (Biofiltration Basin 5). The basin has a footprint of 1,946 square feet and a 1" orifice

Basin 14 is approximately 3.86-acres and includes the northern portion of the site and part of CP4 and the soccer fields. Runoff is collected via inlets and routed to a storage vault (Storage Vault 9). The vault has a volume of 7,965 cubic feet and a 2" orifice.

Basin 15 is approximately 2.43-acres and includes the eastern portion of the site and all of CP3. Runoff is collected via inlets and routed to a vault (Storage Vault 10). The basin has a volume of 7,965 cubic feet and a 1.5" orifice Basin 16 is approximately 0.28-acres and includes the access road on the eastern portion of the site. Runoff is collected via inlets and routed to a vault (Storage Vault 11). The basin has a volume of 7,965 cubic feet and a 0.5" orifice

Basin 17 is approximately 0.26-acres and includes a landscaped slope adjacent to CP7. Runoff is collected via a brow ditch and conveyed to the discharge location.

Refer to Appendix C for an exhibit detailing the proposed condition.

Section 2 Study Objectives

The specific objectives of this study are as follows:

- Quantify 100-year peak flow rates under existing and proposed conditions to all discharge points;
- Develop measures to mitigate any increase in peak flow associated with proposed improvements;
- Demonstrate the proposed improvements will not increase the potential for erosion on the project site or downstream area.
- Demonstrate that the tributary area for the existing infiltration basin is reduced by the proposed improvements.

Section 3 Methodology

3.1 Hydrology

The Rational Method has been utilized to perform the hydrologic analyses. The following formula conforms to the hydrologic methodologies outlined in the City of San Diego Drainage Design Manual (January 2017).

$$Q = C * I * A$$

Where, **Q** = Peak Discharge - (cfs)

C = Runoff Coefficient

I = Average Rainfall Intensity - (in/hr)

A = Drainage Area - (acres)

A weighted runoff coefficient has been calculated for the existing and proposed conditions per Section A.1.2 of the City of San Diego Drainage Design Manual. The tabulated impervious area chosen for the project site is 80% (commercial use) for existing condition and 90% (industrial use) for the proposed condition. In this preliminary study the assumption of 90% impervious cover in the proposed condition is a conservative estimate as the land-use will remain commercial. Final engineering will revise this percentage to more accurately the impervious areas on-site.

Intensity has been calculated per the IDF Curve in Figure A-1 of the City of San Diego Drainage Design Manual. A time in concentration of 5 minutes has been assumed for the project area under existing and proposed conditions.

3.2 Hydraulics

The Hydraflow Hydrographs Extension within AutoCAD has been used to model peak flows from the project as they are mitigated by the proposed detention vaults. Hydrographs generated by Rick Engineering Company's RatHydro software have been routed through storage vaults modeled in Hydraflow Hydrographs. Refer to Appendix C for the modelling input and output.

-

.

Section 4 Results

4.1 Hydrologic Results

The table below summarizes the hydrologic results under existing and proposed conditions. Calculations are included in Appendices B (existing) and C (proposed).

Table 4-1 - Hydrologic Summary				
Discharge Point	Basin ID	0		

Discharge Point	Basin ID	С	۱*	Α	Q 100	
Discharge Folint	Dasinin	-	(in/hr)	(ac)	(cfs)	
Existing Condition						
1	Basin 1	0.85	4.5	2.02	7.7	
2	Basin 2	0.85	4.5	23.26	89	
3	Basin 3	0.85	4.5	0.69	2.6	
	Proposed Cor	ndition (Unm	nitigated)			
1	Basin 1	0.83	4.5	1.93	7.2	
	Total			1.93	7.2	
	Basin 2	0.71	4.5	3.96	12.7	
	Basin 3	0.82	4.5	0.98	3.6	
	Basin 4	0.93	4.5	0.58	2.4	
	Basin 5	0.85	4.5	1.29	4.9	
	Basin 6	0.63	4.5	0.65	1.8	
	Basin 7	0.80	4.5	1.03	3.7	
2	Basin 8	0.71	4.5	0.27	0.9	
2	Basin 9	0.80	4.5	1.47	5.3	
	Basin 10	0.89	4.5	2.12	8.5	
	Basin 11	0.87	4.5	1.92	7.5	
	Basin 12	0.83	4.5	1.85	6.9	
	Basin 13	0.66	4.5	1.08	3.2	
	Basin 14	0.88	4.5	3.86	15.3	
	Basin 17	0.35	4.5	0.26	0.4	
	Total			21.32	77.1	
2	Basin 15	0.89	4.5	2.43	9.7	
3	Basin 16	0.61	4.5	0.28	0.8	
	Total			2.71	10.5	
	Proposed Condition	Discharge Po	int 3 (Mitigate	ed)		
3	Basin 15	0.89	4.5	2.43	1.4	
3	Basin 16	0.61	4.5	0.28	0.8	
	Total			2.71	2.2	

A time in concentration of 5 minutes has been assumed for each basin. Per Figure A-1 of the Drainage Design Manual this will result in a similar intensity for all basins. Refer to Appendices B and C for hydrologic calculations.

4.2 Hydraulic Results

Discharge Point 1 - The peak flow rate at discharge location 1 is reduced by diverting a portion of the drainage area to discharge 2 as well a reduction in impervious area. No additional peak flow attenuation is required.

Discharge Point 2 - The peak flow rate at discharge location 1 is reduced by diverting a portion of the drainage area to discharge 2 and a reduction in impervious area. No additional peak flow attenuation is required.

Discharge Point 3 – The peak flow rate at this location increase due to an increase in impervious area along with additional flow that has been diverted from the other discharge locations. The table below summarizes the hydraulic performance of the proposed storage vault for Basin 15 used for mitigating the peak flow rate. Calculations are included in Appendix C.

Vault ID	Volume at weir elevation Weir Height		Q100 (in)	Q100 (out)
	(ft^3)	(ft)	(cfs)	(cfs)
Vault 10	12,075	3.5	9.7	1.4

Table 4-2 – Hydraulic Summary Storage Vault 10

* 1-foot ponding depth above surface of the biofiltration basin and a standard sub-base section.

Section 5 Conclusions

Proposed improvements will not result in an increase to 100-year peak flow discharge from the site, as compared to the existing condition. The increases in peak flow at discharge point 3 is associated with an increase in impervious area and additional flow from the other two basins that has been diverted to it. This increase has been mitigated below existing conditions using the storage vault10 located at Basin 15. This vault BMP also provide hydromodification mitigation which is discussed in more detail within the SWQMP.

This project will not discharge, dredge, or fill material into any Water of The United States, thus the project is not required to obtain a Section 401 certification or Section 404 permit from the State or U.S. Army Corps of Engineers.

Section 6 Declaration of Responsible Charge

I, hereby declare that I am the Civil Engineer of work for this project, that I have exercised responsible charge over the design of the project as defined in Section 6703 of the Business and Professions Code, and that the design is consistent with current design.

I understand that the check of project drawings and specifications by the City of San Diego is confined to a review only and does not relieve me, as Engineer of Work, of my responsibilities for the project design.

Section 7 Bibliography

City of San Diego. (January 2017). Drainage Design Manual. San Diego.

City of San Diego. (January 2018). Storm Water Standards. San Diego.

FEMA. (1997). Flood Insurance Rate Map. San Diego.

Soil Survey Staff, N. R. (2018, September 24). *Web Soil Survey*. Retrieved from Web Soil Survey: https://websoilsurvey.sc.egov.usda.gov/

<u>Appendix A – Site Information</u>

Vicinity Map Rainfall Isopluvials FEMA FIRM NRCS WebSoil Survey Stormwater Standards Appendix B.1.1 from City DDM (Jan. 2017)

VICINITY MAP

NO SCALE

National Flood Hazard Layer FIRMette

Legend

National Flood Hazard Layer FIRMette

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT Without Base Flood Elevation (BFE) With BFE or Depth Zone AE, AO, AH, VE, AR SPECIAL FLOOD HAZARD AREAS **Regulatory Floodway** 0.2% Annual Chance Flood Hazard, Areas of 1% annual chance flood with average depth less than one foot or with drainage areas of less than one square mile Zone X Future Conditions 1% Annual Chance Flood Hazard Zone X Area with Reduced Flood Risk due to Levee. See Notes. Zone X OTHER AREAS OF FLOOD HAZARD Area with Flood Risk due to Levee Zone D NO SCREEN Area of Minimal Flood Hazard Zone X 15S R03W.S Effective LOMRs OTHER AREAS Area of Undetermined Flood Hazard Zone D GENERAL - -- - Channel, Culvert, or Storm Sewer STRUCTURES LITITIC Levee, Dike, or Floodwall 20.2 Cross Sections with 1% Annual Chance 17.5 Water Surface Elevation AREA OF MINIMALES ROOM HAZARD SANDIEGO, CITY OF **Coastal Transect** Base Flood Elevation Line (BFE) vn 513 mm Limit of Study Jurisdiction Boundary --- Coastal Transect Baseline OTHER **Profile Baseline** 06073C1339G FEATURES Hydrographic Feature eff. 5/16/2012 Digital Data Available No Digital Data Available MAP PANELS Unmapped The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location. This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 2/12/2020 at 5:19:39 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time. TR S0 This map image is void if the one or more of the following map T1(-1 R03W, S9) elements do not appear: basemap imagery, flood zone labels, USGS The National Map: Orthoimagery, Data refreshed April, 2019 16"∿ legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for 1:6,000 32°53'25.30"N Feet unmapped and unmodernized areas cannot be used for regulatory purposes. 250 500 1,000 1,500 2,000 n

National Cooperative Soil Survey

Conservation Service

9/18/2019 Page 1 of 4

Hydrologic Soil Group

	Manual Anna is AOL			D (() O
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
AtF	Altamont clay, 30 to 50 percent slopes, warm MAAT, MLRA 20	С	19.3	66.2%
CfC	Chesterton fine sandy loam, 5 to 9 percent slopes	D	9.9	33.8%
Totals for Area of Interest			29.2	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

Appendix B: Storm Water Pollutant Control Hydrologic Calculations and Sizing Methods

B.1.1 Runoff Factor

Estimate the area weighted runoff factor for the tributary area to the BMP using runoff factor (from Table B.1-1) and area of each surface type in the tributary area and Equation B.1-2.

where:		$C = \frac{\sum C_x A_x}{\sum A_x}$
C _x	=	Runoff factor for area X
A _x	=	Tributary area X (acres)

Equation B.1-2: Estimating Runoff Factor for Area

These runoff factors apply to areas receiving direct rainfall only. For conditions in which runoff is routed onto a surface from an adjacent surface, see Section B.2 for determining composite runoff factors for these areas.

Surface	Runoff Factor
Roofs ¹	0.90
Concrete or Asphalt ¹	0.90
Unit Pavers (grouted) ¹	0.90
Decomposed Granite	0.30
Cobbles or Crushed Aggregate	0.30
Amended, Mulched Soils or Landscape ²	0.10
Compacted Soil (e.g., unpaved parking)	0.30
Natural (A Soil)	0.10
Natural (B Soil)	0.14
Natural (C Soil)	0.23
Natural (D Soil)	0.30

¹Surface is considered impervious and could benefit from use of Site Design BMPs and adjustment of the runoff factor per Section B.2.1.

²Surface shall be designed in accordance with SD-F (Amended soils) fact sheet in Appendix E

<u>Appendix B – Existing Hydrology</u>

On-Site Hydrologic Work Map Figure A-1 from the City DDM (Jan. 2017)

LEGEND

POINT DRIVE

OVERALL BASIN LIMIT

BASIN ID NUMBER

FLOW DIRECTION EXISTING STORM DRAIN DISCHARGE POINT

CAMPUS POINT NDP On-Site Hydrologic Work Map Existing

Figure A-1. Intensity-Duration-Frequency Design Chart

INTENTIONALLY BLANK

Basin 1 Existing		
Impervious Area	74,792 SF	1.72 ac
Pervious Area	13,199 SF	0.30 ac
Total	87,991 SF	2.02 ac
C Value		

Per City of San Diego DDM Section A.1.2

C= 0.85

Peak Flow Calculation Q=CIA Intensity determined using Figure A.1 of the DDM

Q₁₀₀ = C*I*A

Q₁₀₀ = 7.7

Basin 2 Existing				
Impervious Area	861,224 SF	19.77 ac		
Pervious Area	151,981 SF	3.49 ac		
Total	1,013,205 SF	23.26 ac		
C Value				
Per City of San Diego	DDM Section A.	1.2		
C= 0.85				
Peak Flow Calculatio	'n			
Q=CIA	11			
Intensity determined using Figure A.1 of the DDM				
$ C^{*1*A}$				
$Q_{100} = C^* I^* A$				
Q ₁₀₀ = 89.0				

ac ac ac
ac
ас

<u>Appendix C – Proposed Hydrology</u>

On-Site Hydrologic Work Map Figure A-1 from the City DDM (Jan. 2017) Hydraulic Routing Input and Output INTENTIONALLY BLANK

LEGEND

OVERALL BASIN LIMIT

BASIN ID NUMBER

FLOW DIRECTION EXISTING STORM DRAIN

DISCHARGE POINT

CAMPUS POINT NDP On-Site Hydrologic Work Map Proposed

INTENTIONALLY BLANK

Basin 1 Pr	oposed				
Imperviou	us Area	67,383	SF	1.55	ас
Pervious <i>i</i>	Area	16,846	SF	0.39	ас
Total		84,229	SF	1.93	ас
C Value					
Per City o	f San Diego DD	M Sectio	on A.1.2		
C	= 0.83				
Peak Flow	/ Calculation				
Q ₁₀₀ = C*I	*A				
Intensity d	etermined using	Figure A.	1 of the	DDM	
Q = C*I*A					
Q ₁₀₀	= 7.2				
P-					

Basin 2 Proposed			
Impervious Area	103,485 SF	2.38 ac	
Pervious Area	68,990 SF	1.58 ac	
Total	172,475 SF	3.96 ac	
C Value			
Per City of San Diego	DDM Section A.1	2	
C= 0.71			
Peak Flow Calculatio	n		
	11		
Q ₁₀₀ = C*I*A			
Intensity determined u	sing Figure A.1 of th	ie DDM	
Q = C*I*A			
Q ₁₀₀ = 12.7			

Basin 3 Proposed			
Impervious Area	33,820 SF	0.78 ac	
Pervious Area	8,990 SF	0.21 ac	
Total	42,810 SF	0.98 ac	
C Value			
Per City of San Diego	DDM Section A.1	2	
C= 0.82			
Peak Flow Calculation	I		
Q ₁₀₀ = C*I*A			
Intensity determined us	ing Figure A.1 of th	ne DDM	
0 0****			
Q = C*I*A			
$Q_{100} = 3.6$			

Basin 4 Proposed			
Impervious Area	24,662 SF	0.57 ac	
Pervious Area	763 SF	0.02 ac	
Total	25,425 SF	0.58 ac	
C Value			
Per City of San Diego D	DM Section A.:	1.2	
C= 0.93			
Peak Flow Calculation			
Q ₁₀₀ = C*I*A			
Intensity determined usin	ng Figure A.1 of t	he DDM	
Q = C*I*A			
Q ₁₀₀ = 2.4			

Basin 5 Proposed				
Impervious Area	46,767 SF	1.07 ac		
Pervious Area	9,579 SF	0.22 ac		
Total	56,346 SF	1.29 ac		
C Value Per City of San Diego DD	M Section A.1.2			
C= 0.85				
Peak Flow Calculation Q=CIA				
Intensity determined using	Figure A.1 of the D	DM		
Q ₁₀₀ = C*I*A				
Q ₁₀₀ = 4.9				

Basin 6 Proposed		
Impervious Area	12,977 SF	0.30 ac
Pervious Area	15,234 SF	0.35 ac
Total	28,211 SF	0.65 ac

C Value

Per City of San Diego DDM Section A.1.2

C= 0.63 "90% impervious is conisdered to be a conservative estimate for the site and may be revised during final Peak Flow Calculation Q=CIA

Intensity determined using Figure A.1 of the DDM

Q₁₀₀ = C*I*A

Q₁₀₀ = 1.8

Basin 7 Proposed				
Impervious Area	33,512 SF	0.77 ac		
Pervious Area	11,171 SF	0.26 ac		
Total	44,683 SF	1.03 ac		
C Value				
Per City of San Diego DDN	1 Section A.1.2			
C= 0.80				
Peak Flow Calculation				
Q ₁₀₀ = C*I*A				
Intensity determined using Figure A.1 of the DDM				
Q = C*I*A				
Q ₁₀₀ = 3.7				

Basin 8 Proposed		
Impervious Area	6,974 SF	0.16 ac
Pervious Area	4,650 SF	0.11 ac
Total	11,624 SF	0.27 ac
C Value		
DMA is entirely natural	land cover Type D	
,		
C= 0.71		
Peak Flow Calculation		
Q ₁₀₀ = C*I*A		
Intensity determined using	g Figure A.1 of the D	DM
Q = C*I*A		
Q ₁₀₀ = 0.9		

Basin 9 Proposed		
Impervious Area	48,007 SF	1.10 ac
Pervious Area	16,002 SF	0.37 ac
Total	64,009 SF	1.47 ac
C Value DMA is entirely natural	land cover Type D	
C= 0.80		
Peak Flow Calculation		
$Q_{100} = C^* I^* A$		
Intensity determined usin	a Figuro A 1 of the D	
	S I BULE ALT OF THE D	
Q = C*I*A		
Q ₁₀₀ = 5.3		

Basin 10 Proposed		
Impervious Area	83,030 SF	1.91 ac
Pervious Area	9,226 SF	0.21 ac
Total	92,256 SF	2.12 ac
C Value		
Per City of San Diego D	DM Section A.1.2	
C= 0.89		
Peak Flow Calculation		
Q ₁₀₀ = C*I*A		
Intensity determined usin	g Figure A.1 of the D	DM
Q = C*I*A		
Q ₁₀₀ = 8.5		

Basin 11 Proposed		
Impervious Area	71,916 SF	1.65 ac
Pervious Area	11,707 SF	0.27 ac
Total	83,623 SF	1.92 ac
C Value		
DMA is entirely natural	land cover Type D	
C= 0.87		
Peak Flow Calculation		
Q ₁₀₀ = C*I*A		
Intensity determined using	g Figure A.1 of the DI	DM
Q = C*I*A		
Q ₁₀₀ = 7.5		

Basin 12 Proposed		
Impervious Area	64,480 SF	1.48 ac
Pervious Area	16,120 SF	0.37 ac
Total	80,600 SF	1.85 ac

C Value

DMA is entirely natural land cover Type D

C= 0.83

Peak Flow Calculation Q=CIA Intensity determined using Figure A.1 of the DDM

Q₁₀₀ = C*I*A

Q₁₀₀ = 6.9

Basin 13 Proposed		
Impervious Area	24,098 SF	0.55 ac
Pervious Area	23,153 SF	0.53 ac
Total	47,251 SF	1.08 ac
C Value		
Per City of San Diego D	DM Section A.	1.2
C= 0.66		
Peak Flow Calculation		
Q=CIA		
Intensity determined usir	ng Figure A.1 of 1	the DDM
$Q_{100} = C^* I^* A$		
Q ₁₀₀ = 3.2		

Basin 14 Proposed		
Impervious Area	147,970 SF	3.40 ac
Pervious Area	20,178 SF	0.46 ac
Total	168,148 SF	3.86 ac
C Value		
DMA is entirely natura	al land cover Ty	pe D
,		
C= 0.88		
Peak Flow Calculation		
$Q_{100} = C^* I^* A$		
Intensity determined us	ing Figure A.1 of	the DDM
Q = C*I*A		
Q ₁₀₀ = 15.3		

Basin 15 Proposed		
Impervious Area	95,250 SF	2.19 ac
Pervious Area	10,583 SF	0.24 ac
Total	105,833 SF	2.43 ac
C Value		
DMA is entirely natura	l land cover Ty	pe D
C= 0.89		
Peak Flow Calculation		
Q ₁₀₀ = C*I*A		
Intensity determined using	ng Figure A 1 of	the DDM
Q = C*I*A		
$Q_{100} = 9.7$		
\sim_{100} 5.7		

Basin 16 Proposed		
Impervious Area	5,276 SF	0.12 ac
Pervious Area	6,994 SF	0.16 ac
Total	12,270 SF	0.28 ac
C Value Per City of San Diego DI	DM Section A.	1.2
C= 0.61		
Peak Flow Calculation $Q_{100} = C^*I^*A$		
Intensity determined using	g Figure A.1 of	the DDM
$Q = C^*I^*A$		
Q ₁₀₀ = 0.8		

-		
Basin 17 Proposed		
Impervious Area	0 SF	0.00 ac
Pervious Area	11,434 SF	0.26 ac
Total	11,434 SF	0.26 ac
C Value		
DMA is entirely natural	land cover Ty	pe D
C= 0.35		
Peak Flow Calculation		
Q ₁₀₀ = C*I*A		
Intensity determined using	Figure A.1 of	the DDM
Q = C*I*A		
Q ₁₀₀ = 0.4		

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.5

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	Manual	9.700	5	245	19,290				Basin 15 - Q100 PR. Un-Mitigated
2	Reservoir	1.366	5	260	19,285	1	4.55	12,228	Discharge Location 3
Ne	w.gpw				Return F	Period: 100	Year	Thursday,	04 / 30 / 2020

Hydrograph Report

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.5

Hyd. No. 2

Discharge Location 3

Hydrograph type	= Reservoir	Peak discharge	= 1.366 cfs
Storm frequency	= 100 yrs	Time to peak	= 4.33 hrs
Time interval	= 5 min	Hyd. volume	= 19,285 cuft
Inflow hyd. No.	= 1 - Basin 15 - Q100 PR	. Un-Mi li/gas teEllevation	= 4.55 ft
Reservoir name	= Storage Vaullt 10	Max. Storage	= 12,228 cuft

Storage Indication method used.

Pond Report

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.5

Pond No. 1 - Storage Vaullt 10

Pond Data

UG Chambers -Invert elev. = 1.00 ft, Rise x Span = 4.00 x 23.00 ft, Barrel Len = 150.00 ft, No. Barrels = 1, Slope = 0.00%, Headers = No

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	1.00	n/a	0	0
0.40	1.40	n/a	1,380	1,380
0.80	1.80	n/a	1,380	2,761
1.20	2.20	n/a	1,380	4,141
1.60	2.60	n/a	1,380	5,521
2.00	3.00	n/a	1,380	6,901
2.40	3.40	n/a	1,380	8,282
2.80	3.80	n/a	1,380	9,662
3.20	4.20	n/a	1,380	11,042
3.60	4.60	n/a	1,380	12,422
4.00	5.00	n/a	1,380	13,803

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 24.00	1.50	0.00	0.00	Crest Len (ft)	= 6.28	0.00	0.00	0.00
Span (in)	= 24.00	1.50	0.00	0.00	Crest El. (ft)	= 4.50	0.00	0.00	0.00
No. Barrels	= 1	1	0	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 1.00	0.00	0.00	0.00	Weir Type	= Rect			
Length (ft)	= 0.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 0.00	0.00	0.00	n/a	-				
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	/Wet area)		
Multi-Stage	= n/a	Yes	No	No	TW Elev. (ft)	= 0.00	,		

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Weir Structures