STRUCTURE FOUNDATION REPORT PROPOSED TORREY MEADOWS DRIVE OVERCROSSING AT STATE ROUTE 56 POST MILE 5.6, DISTRICT 11 SAN DIEGO, CALIFORNIA

Prepared for:

T.Y. Lin International 404 Camino Del Rio South, Suite 700 San Diego, California 92108

March 24, 2015

Copyright 2015 Kleinfelder All Rights Reserved

ONLY THE CLIENT OR ITS DESIGNATED REPRESENTATIVES MAY USE THIS DOCUMENT AND ONLY FOR THE SPECIFIC PROJECT FOR WHICH THIS REPORT WAS PREPARED.

March 24, 2015 Project No. 20151065.001A

Mr. Jeff Burdick, P.E. **T.Y. Lin International** 404 Camino Del Rio South, Suite 700 San Diego, California 92108

Subject: Structure Foundation Report Proposed Torrey Meadows Drive Overcrossing at State Route 56 Post Mile 5.6, Caltrans District 11 San Diego, California

Dear Mr. Burdick:

Kleinfelder is pleased to present this Structure Foundation Report for the proposed Torrey Meadows Drive Overcrossing bridge project at State Route 56 in San Diego, California.

This report is to be used for foundation design for the proposed bridge.

We appreciate the opportunity to be of service on this project. Please do not hesitate to contact the undersigned if you have any questions, comments, or require additional information.

Respectfully submitted,

KLEINFELDER

Moi Arzamendi, GE 2275 Senior Geotechnical Engineer

Reviewed By:

Lawrence N. Perko, PE, GE 2136 Senior Principal Engineer

Dale Hamelehle CEG 1760 Senior Engineering Geologist

Epite

Eren Koprulu, EIT Staff Engineer

TABLE OF CONTENTS

1.2 BACKGROUND REVIEW 1 2 2.1 2.2 3 3.1 3.2 4 4.1 4.2 TOPOGRAPHY AND DRAINAGE6 MAN-MADE AND NATURAL FEATURES OF ENGINEERING AND 4.3 REGIONAL GEOLOGY7 4.4 4.5 4.6 4.7 4.8 POTENTIAL GEOLOGIC HAZARDS......12 5 5.1 5.2 5.3 LIQUEFACTION AND SEISMIC COMPACTION...... 14 5.45.5 SLOPE STABILITY......15 5.6 5.7 6 6.1 6.2 6.2.3 Abutment 3 Foundations......19 6.3 6.4

Section

1.1

1

Page 1

	6.4.1 Soil Characteristics	
	6.4.2 Site Preparation	
	6.4.3 Excavation Sloping and Shoring	
	6.4.4 Fills and Backfills	
6.5	SOIL CORROSIVITY	-
	ERENCES	-

TABLES

7 8

Table 1	Site Characteristics and Governing Fault Parameters	13
Table 2	Summary of Soil Engineering Parameters - Slope Stability Analysis	18
Table 3	Results of Slope Stability Analysis	18
Table 4	Foundation Design Recommendations for Spread Footings (Abutment 1	
	and bent 2 R/L)	19
Table 5	Drilled Shaft Static Axial Capacity Parameters	21
Table 6	Soil Input Parameters for LPILE under Static Condition	21
Table 7	Soil Aggresivity Test Results	26
Table 8	Corrosion Potential based on Minimum Resistivity (NACE, 1984)	27

FIGURES

Figure 1	Site Vicinity Map
----------	-------------------

- Figure 2 Site Plan (Existing Conditions)
- Figure 3 Boring Location Plan (Proposed Improvements)
- Figure 4 Regional Geologic Map
- Figure 5 Regional Fault Map and Earthquake Epicenters
- Figure 6 Cross-Section A-A'
- Figure 7 Topo/Geologic Map
- Figure 8 Design 2013 Caltrans ARS Curves
- Figure 9 Design 2013 Caltrans ARS Table
- Figure 10 LRFD Axial Resistance (Downward) Strength Limit State Abutment 3
- Figure 11 LRFD Axial Resistance (Uplift) Strength Limit State Abutment 3
- Figure 12 LRFD Axial Resistance (Downward) Extreme Event Case Abutment 3
- Figure 13 LRFD Axial Resistance (Uplift) Extreme Event Case Abutment 3

APPENDICES

- Appendix A As-Built and Proposed Improvement Plans
- Appendix B Field Exploration
- Appendix C Laboratory Testing
- Appendix D Log of Test Borings (LOTBs)
- Appendix E Calculations and Analysis

1 INTRODUCTION

1.1 GENERAL

California State Route 56 (SR-56) is a four lane highway that serves the northern communities of the City of San Diego. SR-56 runs approximately 9 miles from Interstate 5 (I-5) in the Carmel Valley neighborhood of San Diego to Interstate 15 (I-15). SR-56 serves as an important connector between I-5 and I-15, being the only east–west freeway between SR-78 and SR-52 in north San Diego County.

We understand that the project consists of the design of a 337-foot long overcrossing bridge to connect Torrey Meadows Drive over SR-56. The project is located in the Carmel Valley area of the City of San Diego, California as presented on Figure 1, Site Vicinity Map. Figure 2 presents the Site Plan along with existing conditions.

The bridge will consist of a two-span structure with a single bent within the existing median of SR-56. We understand that cast-in-place post-tensioned reinforced concrete box girder construction will be used. Some minor grading and paving may be required in the approach areas.

This report presents our evaluation of anticipated geologic and geotechnical conditions associated with the proposed bridge. Foundation recommendations are provided based on review of available reports and documents associated with the site.

This report has been prepared in general accordance with American Association of State Highway and Transportation Officials (AASHTO) Load & Resistance Factor Design (LRFD) Specifications, 6th Edition with amendments by California Department of Transportation [Caltrans] (Memo to Designers dated March 2014)

1.2 BACKGROUND REVIEW

Geologic and geotechnical literature reviewed for this study included reports, maps, and other documents prepared by the California Geological Survey, the U. S. Geological Survey and the City of San Diego. We have reviewed consultant reports and design drawings containing geologic and geotechnical geologic data for the Camino Ruiz/Camino Del Sur Undercrossing (#57-1083 L/R) located approximately 2,700 feet to the southwest and the McGonigle Creek Bridge (#57-1082) located approximately 650 feet to the northwest.

As-built plans for construction on SR-56 containing geologic data relevant to the site were also reviewed. Per the referenced as-built plans the proposed bridge site is located approximately at Station 100+15 of SR-56. The as-built plans for the Camino Del Sur Undercrossing and McGonigle Creek Bridge were present in the above referenced 2005 as-built plans.

A site reconnaissance was performed by a Kleinfelder engineering geologist as part of the background review.

Documents reviewed and referenced for this study are listed in Section 8 of this report.

Unless otherwise noted, elevation data presented in this report are in feet above Mean Sea Level (MSL) based on the National Geodetic Vertical Datum of 1929 (NGVD 29).

2 EXISTING FACILITIES AND PROPOSED IMPROVEMENTS

2.1 EXISTING FACILITIES

Existing bridges in the vicinity of the proposed bridge include the Camino Del Sur Undercrossing (Bridge No. 57-1083 R/L) located approximately 2,700 feet southeast of the proposed bridge. The existing McGonigle Creek Bridge (Bridge No. 57-1082 R/L) is located approximately 650 feet northwest of the proposed bridge. The northern bridge abutment will be located approximately 100 feet northeast of the westbound shoulder of SR-56. The southern bridge abutment will be located approximately 90 feet southwest of the eastbound shoulder of SR-56. The existing median and slope areas in the vicinity of the proposed bridge are unpaved. Fill was placed in the abutment areas as part of a mass grading operation for the residential subdivision developments in the area. We understand that the future construction of this bridge was foreseen during the original construction of SR-56 and the alignment of Torrey Meadows Drive was established to facilitate the construction of this bridge.

Other existing facilities in the vicinity include residential developments to the north and south of the proposed bridge site. In addition, existing water and sewer lines are located within the alignment on Torrey Meadows Drive. No utilities are expected to traverse the central portion of the bridge.

2.2 PROPOSED IMPROVEMENTS

Based on the General Plan sheets prepared by T.Y. Lin International, the proposed Torrey Meadows Drive Overcrossing Bridge will have a length of approximately 337 feet measured along the center line of Torrey Meadows Drive. The bridge will carry two lanes, one in northbound direction and the other in southbound direction. The bridge will consist of two spans constructed with cast-in-place post-tensioned concrete box girders. The span lengths will be approximately 168 ½ feet and will have a width of approximately 54 feet. The roadway will have a width of approximately 40 feet.

Abutments of the two-span structure were originally proposed to be supported on castin-drilled-hole (CIDH) concrete piles. However, foundations for south Abutment 1 could be supported on shallow foundations. The center bent (Bent 2) will have two columns supported by spread footings located within the existing median of SR-56.

Bridge deck elevations will range from approximately +361 feet at Abutment 3 (north

abutment), to +359 feet at Abutment 1 (south abutment). The bridge alignment plan and profile is shown on project drawings included in Appendix B. Design recommendations for bridge approaches and pavements associated with the project are addressed in a separate Geotechnical Design Report.

3 METHODS OF STUDY

The methods of study included both intrusive field explorations consisting of drilled boreholes. In addition, laboratory testing of selected samples of encountered soils were performed.

3.1 FIELD INVESTIGATION

The field investigation consisted of the excavation of 5 hollow-stem-auger (HSA) borings performed between July 22 and 25, 2014. Exploration locations are presented on Figures 2 and 3. A detailed description of the exploration activities with corresponding borehole logs records are presented in Appendix B. A geologist or geotechnical engineer from Kleinfelder coordinated the field exploration activities, logging of the boreholes, and collected samples for further examination and laboratory testing. A log-of-test-borings (LOTB) sheet per Caltrans standards is presented in Appendix D. The field exploration program is described in Appendix B.

3.2 LABORATORY TESTING

The materials observed in the boreholes were visually classified and evaluated with respect to strength, swelling, compressibility, density, and moisture content. The material physical/mechanical properties and classifications were substantiated by performing selected laboratory tests. Laboratory testing performed consisted of the following tests:

- Moisture content
- Dry density
- Particle size distribution
- Atterberg limits
- Modified proctor compaction
- R-Value
- Direct shear tests
- pH
- Electrical resistivity
- Water soluble sulfate
- Water soluble chloride

Laboratory testing procedures and test results are provided in Appendix C.

4.1 CLIMATE

The overall climate for San Diego is considered semi-arid with an average annual precipitation of approximately 10-inches. Precipitation records are available from the National Weather Service which date back to 1914. The site is located approximately 6 miles from the Pacific Ocean. Due to this relative close proximity to the ocean and bay, temperatures are cooler during the summer and warmer during the winter compared to the areas east of the site. The average monthly high ranges from 57 degrees in January to 76 degrees in August. The average low temperature ranges from 49 degrees in January to 67 in August. Annual precipitation generally increases as you move further east towards the foothills and mountains. Nearly 90 percent of the precipitation occurs between the months of November and April.

4.2 TOPOGRAPHY AND DRAINAGE

Prior to the construction of SR-56 and the adjacent residential northern and southern subdivisions, the site consisted of a northwest facing hillside on McGonigle Canyon dissected by two small northwest flowing tributary drainage features. The tributary drainages were filled during grading of these subdivisions and construction related activities of SR-56.

The existing ground surface elevation along the alignment is approximately +357 feet at the south abutment, approximately +335 feet near the center, and +361 feet at the north abutment.

Based on the current topographic maps for the project and our site reconnaissance, the existing topography descends slightly downward to the west. Each abutment has a graded slope descending toward the SR-56 centerline at an approximate inclination of 2:1 (horizontal to vertical). The south Abutment 1 and north Abutment 3 slopes are approximately 25 to 30 feet in height. It should be noted that Kleinfelder did not perform a precise survey of the geometry of these slopes.

4.3 MAN-MADE AND NATURAL FEATURES OF ENGINEERING AND CONSTRUCTION SIGNIFICANCE

Torrey meadows Drive Overcrossing involve the construction of a bridge over highway

SR-56. Construction of the overpass will not require any new cut/fill slopes, fill soils of significant thickness, approach embankments or retaining walls (with the exception of the bridge abutments).

The existing highway SR-56 is a fully developed and functional transportation corridor with drainage control, buried utilities, lane separation barriers, signage and landscaped slopes.

The existing residential street of Torrey Meadows Drive approaches the project site from both the northeast and the southwest. Both segments of Torrey Meadows Drive are paved and have buried utilities within and adjacent to them.

4.4 REGIONAL GEOLOGY

San Diego County resides within the Peninsular Ranges Geomorphic Province (California Geologic Survey (CGS), 2002; Norris and Webb, 1990). This geomorphic province encompasses an area that extends approximately 900 miles from the Transverse Ranges north of the Los Angeles Basin and south to the southern tip of Baja California, Mexico. It varies in width from approximately 30 to 100 miles (Norris and Webb, 1990) and is characterized by mountainous terrain on the east composed mostly of Mesozoic igneous and metamorphic rocks, and relatively low-lying coastal terraces (coastal plain) to the west underlain by late Cretaceous, Tertiary, and Quaternary age sedimentary rocks.

The coastal plain which encompasses the site ranges from approximately ¼ mile wide in northern San Diego County and up to approximately 14 miles wide in the central and southern county regions. It is underlain by relatively undeformed, near shore marine sedimentary rocks, deposited during intermittent intervals between late Mesozoic through Quaternary time. These sedimentary units are comprised of a westward thickening clastic wedge deposited on bedrock of Cretaceous to Jurassic age igneous and metamorphic rocks. They are divided into three packages of deposits based on their sequence and age of deposition. The oldest sequence consists of claystone, siltstone, sandstone, and conglomerate deposited during late Cretaceous time as an apparent submarine fan. These units crop out on Mt. Soledad in La Jolla, Point Loma and Carlsbad.

The second sequence of sediments was deposited during the Tertiary period (Eocene and Pliocene) within an embayment that stretched from at least northern San Diego County and into Mexico (Kennedy, 1975; Kennedy and Tan, 2008). The sediments

consist of a variety of claystone, siltstone, sandstone and conglomerate. The third sequence is associated with Pleistocene marine terrace deposits and consists of weakly to moderately consolidate conglomerates, sandstone, siltstone and claystone.

The regional geologic map for the area by Kennedy (1975) shown on Figure 4, Regional Geologic Map, indicates the project site is underlain by material of the second sedimentary sequence consisting of Eocene-age Mission Valley Formation and possibly Eocene-age Stadium Conglomerate at the north abutment approach area. The slope areas near both bridge abutments are underlain by artificial fill.

4.5 REGIONAL FAULTING

Southern California is cut by a system of numerous active faults associated with the San Andreas Fault. The San Andreas fault delineates the boundary between two global tectonic plates consisting of the North American Plate on the east and the Pacific Plate on the west. The San Andreas fault stretches from the Gulf of California in Mexico along a northwest alignment through the desert region of Southern California up to Northern California, where it eventually trends offshore north of San Francisco. Right lateral slip movement along the plate boundary of the San Andreas fault is by far the most dominant factor controlling the seismicity throughout northern and southern California (Wallace, 1990; Weldon and Sieh, 1985). Within Southern California, the strain associated with the plate boundary movement extends well westward for up to 150 miles from the main San Andreas fault strand in the Imperial Valley to well offshore of San Diego (CDMG, 1999).

The major faults east of San Diego (from east to west) include the San Andreas Fault, the San Jacinto fault and the Elsinore fault (see Regional Fault Map and Earthquake Epicenters, Figure 5). Major faults west of San Diego include the Palos Verdes-Coronado Bank fault, the San Diego Trough fault, and the Santa Clemente fault (Kennedy and Welday, 1980). The dominant zone of faulting within the San Diego region is several faults associated with the Rose Canyon Fault Zone (RCFZ). Most of the seismic energy and associated fault displacement occurs along the fault structures closest to the plate boundary on the Elsinore, San Jacinto, and San Andreas faults, which account for up to 85% of the total displacement. The remaining 15% is accommodated across the various offshore faults and Rose Canyon fault. Studies within Rose Canyon (east of Mt. Soledad) have revealed fault strands that have clearly displaced Holocene soil horizons with slip rates from 1 to 2.4 mm/yr. (Lindvall et al., 1990, Lindvall and Rockwell, 1995, Rockwell, 2010).

The Rose Canyon fault is part of a more extensive fault zone that includes the Offshore Zone of Deformation and the Newport-Inglewood fault to the north, and several possible extensions southward, both onshore and offshore (Treiman, 1993). The Rose Canyon fault zone is made of predominantly right-lateral strike-slip faults that extend southwest-southeast through the San Diego metropolitan area. Various fault strands display strike slip, normal, oblique, or reverse components of displacement (Treiman, 1993). The fault zone extends offshore at La Jolla and continues north-northwest subparallel to the coastline. To the south in the San Diego downtown area the fault zone appears to splay out into a group of generally right-normal oblique faults extending into San Diego Bay (Treiman, 1993; Kennedy and Clarke, 1999).

4.6 LOCAL FAULTING

The local onshore portion of the RCFZ extends from La Jolla along a south-southeast alignment over Mt Soledad and along the general trend of Interstate 5 into downtown San Diego. Through downtown, the fault appears to branch and is expressed southward across San Diego Bay as three faults consisting of the Silver Strand fault, the Coronado fault and the Spanish Bight fault. The California Geologic Survey has designated portions of the fault zone in the Mount Soledad, Rose Canyon, Port of San Diego, Coronado, and downtown San Diego areas as active Earthquake Fault Zones. An active fault is a fault which has undergone movement within the last 11,000 years which spans the Holocene period. The closest active fault of this zone to the Torrey Meadows Drive Overcrossing site is located approximately 8 miles west.

Approximately 5,400 feet to the north and 5,600 to the east of the site are two un-named faults. These faults have been classified by the referenced City of San Diego Seismic Safety Study (2008) as *"Potentially Active, Inactive, Presumed Inactive or Activity Unknown*". These faults are likely pre-Holocene in age and are likely related to an earlier incipient phase of development of the Rose Canyon Fault. Caltrans (2013) does not consider these faults as seismogenic for design purposes.

4.7 SUBSURFACE CONDITIONS

The subsurface conditions were appraised based on review of published geologic maps, the results of our field explorations, laboratory testing and visual on-site observations. A geologic section depicting conditions at the site is presented in Figure 6.

4.7.1 Artificial Fill

During construction of SR-56 and the adjacent subdivisions, fill was placed within the tributary drainage in the area below the proposed north bridge abutment. The grading on the north abutment area resulted in a west-facing fill slope which descends approximately 90 feet to the slope toe within the bottom of the drainage. Due to the lack of existing borings in this area or as-graded reports, it is unknown whether colluvium and/or alluvium were removed prior to placement of the fill. Extrapolation of native slopes suggests that the fill depth may be in the order of 60 to 65 feet at the north abutment/approach area (approximate project Station 14+00). Note that the fill thickness is estimated to be approximately 10 to 20 feet thick between proposed Stations 6+00 to 8+00. Fill thickness between Stations 15+00 to 16+00 is estimated to be up to approximately 80 feet and is expected to decrease to approximately 40 to 45 feet thick at Station 17+00. The estimated fill thickness at Station 18+00 is approximately 15 feet. See Figure 6 for graphical representations of fill thicknesses along the proposed bridge alignment.

Borehole A-14-003 located near southerly Abutment 1 encountered fill soils to a depth of 17 feet. The fill soils generally consisted of medium stiff to stiff sandy lean clay and loose to medium dense clayey sand. Blow counts ranged from 5 to 17 blows per foot (bpf).

Boreholes A-14-005 and A-14-006 near northerly Abutment 3 encountered fill soils to depths of 61 and 65 feet, respectively. Fine grained fill soils generally consisted of stiff to very stiff lean clay to sandy lean clay with gravel and sandy silt with blow counts ranging from 17 to 40 bpf. Granular fill soils generally consisted of medium dense to very dense silty to clayey sand little gravel with blow counts ranging from 21 to 86 bpf.

4.7.2 Mission Valley Formation

The geologic maps by Kennedy (1975) and Kennedy and Tan (2008) indicate that the project site is underlain by sandstone and claystone of the Eocene-age Mission Valley Formation. This unit is characteristically described as soft and friable sedimentary rock with the potential of having occasional cobble conglomerate beds. This unit is present at the ground surface at the central Bent 2 and below the fill soils at the north and south abutment locations.

The Mission Valley Formation encountered in the boreholes generally consisted of silty to clayey sandstone and sandy claystone. The color ranged from light brownish grey to dark reddish brown with variable levels of mica and iron staining. The material is highly weathered with weak to strong cementation associated with non-plastic to moderate

plasticity. In the area of central Bent 2, borehole A-14-004 encountered a stiff layer of sandy lean clay at a depth of about 40 feet.

4.7.3 Stadium Conglomerate

Although not encountered in any of the borehole explorations, the Eocene-age Stadium Conglomerate is anticipated to underlie the Mission valley Formation below approximately elevation +300 feet MSL at the northern end of the site project limits. This unit typically consists of massive cobble conglomerate with a coarse grained sandstone matrix.

4.8 GROUNDWATER

Groundwater was not encountered within the depths of the borehole explorations performed. A search of the California Department of Water Resources website (http://www.water.ca.gov/waterdatalibrary) did not identify any state monitored wells located within the vicinity of the proposed structure. Based on previous experience in this area, the regional groundwater table depth is anticipated to be in excess of 100 feet below ground surface. However, it is possible that perched groundwater may be present near the bottom of the in-filled canyons. Groundwater levels are subject to seasonal fluctuations.

5 POTENTIAL GEOLOGIC HAZARDS

Potential geologic hazards evaluated include ground surface rupture, seismic shaking, tsunami, seiche and flood, liquefaction, seismic compaction, ground compressibility, slope stability and expansive soils.

5.1 CITY OF SAN DIEGO SEISMIC SAFETY STUDY

The referenced City of San Diego Seismic Safety Study, Geologic Hazards and Faults (2008), has designated the area of the south abutment as a Zone No. 52- "*Other level areas, gently sloping to steep terrain, favorable geologic structure, Low Risk*". The north abutment has been designated as a Zone No. 53 "*Level or sloping terrain, unfavorable geologic structure, Low to Moderate Risk*".

5.2 CALTRANS SEISMIC DESIGN PARAMETERS

Since the structure will be constructed within California Department of Transportation (Caltrans) right-of-way, it is anticipated that the structure will be designed in accordance with Caltrans seismic design criteria. Based on mapping by the California Geologic Survey (Bryant and Hart, 2007) and on the Caltrans ARS Online website (http://dap3.dot.ca.gov/ARS_Online Caltrans, 2013), the Rose Canyon Fault Zone (Del Mar section, fault database ID No. 401) is mapped approximately 8 miles west of the proposed structure and is the governing fault for deterministic seismic hazard analysis. For development of design ground motion parameters, Caltrans (2013) has assigned this fault as right-lateral strike slip dipping 90 degrees with a Maximum Moment Magnitude (M_{Max}) of 6.8. Additional fault characteristics are summarized in Table 1.

Our estimate of the shear wave velocity in the upper 100 feet (30 meters) (V_{S30}) for the site is based on USGS Earthquake Hazard website, and our field investigation. The site is not located within a California deep soil basin region as defined by Caltrans (2013). Site characteristics and governing fault parameters are summarized in Table 1.

Site Coordinates	Latitude = 32.9627 degrees, Longitude = -117.1604 degrees		
Shear Wave Velocity, V _{s30}	1,340 ft/s (400 m/s)		
Depth to V _s =1.0 km/s, Z1.0	Not Applicable (Not located in a basin)		
Depth to V_s =2.5 km/s, Z2.5	Not Applicable (Not located in a basin)		
Fault Name and Identification Number	Rose Canyon Fault Zone (Del Mar section), Identification Number. 401		
Maximum Magnitude (M _{Max})	6.8		
Fault Type	Right Lateral Strike Slip		
Fault Dip	90 degrees		
Dip Direction	Vertical		
Bottom of Rupture Plane	5.0 miles (8 km)		
Top of Rupture Plane (Ztor)	0 mile (0 km)		
R _{RUP} ¹	8 miles (12.9 km)		
R _{JB} ²	8 miles (12.9 km)		
R _x ³	8 miles (12.9 km)		
F _{norm} ⁴ (1 for normal, 0 for others)	0		
F _{rev} ⁵ (1 for reverse, 0 for others)	0		
Design Peak ground Acceleration (PGA)	0.32		

Notes: V_{s30} = shear wave velocity in the upper 100 feet (30 meters);

 ${}^{1}R_{RUP}$ = Closest distance from the site to the fault rupture plane.

 ${}^{2}R_{JB}$ = Joyner-Boore distance; the shortest horizontal distance to the surface projection of the rupture area. ${}^{3}R_{X}$ = Horizontal distance from the site to the fault trace or surface projection of the

 ${}^{3}R_{X}$ = Horizontal distance from the site to the fault trace or surface projection of the top of the rupture plane.

 ${}^{4}F_{norm}$ = Faults identified as a Normal Fault in the Caltrans Fault Database.

⁵F_{rev} = Faults identified as a Reverse Fault in the Caltrans Fault Database.

The deterministic response spectrum was calculated using ARS Online and checked using the Caltrans Deterministic Spreadsheet (version dated February 21, 2012).

The probabilistic response spectrum was developed using ARS Online and compared with results from the 2009 USGS Interactive Deaggregation (Beta) website (USGS 2008) with $V_{s30} = 1,340$ ft/s (400 m/s) using the Caltrans Probabilistic Spreadsheet (version dated January 16, 2013).

The upper envelope of the deterministic and probabilistic spectral values determines the design response spectrum. The probabilistic spectral values were found to control

the design response spectrum for the project site. The recommended acceleration and displacement design response spectra are presented graphically on Figure 8 and numerically on Figure 9.

5.3 GROUND SURFACE FAULT RUPTURE

Based on CGS (1991), a State of California active Earthquake Fault Zones (EFZ) is not present within or nearby the bridge site. As previously discussed in Section 4.6, the closest active fault that has been identified in the area of the proposed bridge is approximately 8 miles west of the site. Based on this data, the surface fault rupture hazard at the proposed site is considered very low.

5.4 LIQUEFACTION AND SEISMIC COMPACTION

Soil liquefaction is a phenomenon in which saturated, cohesionless soils lose stiffness and strength due to the build-up of excess pore water pressure during cyclic loading such as that induced by earthquakes. The primary factors affecting the liquefaction potential of a soil deposit are: 1) intensity and duration of earthquake shaking, 2) soil type and relative density, 3) overburden pressures, and 4) depth to groundwater. Soils most susceptible to liquefaction are saturated, loose sands, and low to non-plastic silts.

Based on the expected lack of significant groundwater and the predominance of dense sandstone (Mission Valley Formation) materials at the site, the liquefaction hazard at the site is expected to be nil. This should be confirmed in the final design through field exploration, laboratory testing and analysis.

Seismic compaction is a phenomenon in which loose, unsaturated sands tend to densify and settle during strong earthquake shaking. Our research into historical aerial photographs indicates that the residential subdivisions on both sides of SR-56 were constructed sometime around 2002 and 2003. Based on the standard of care and City of San Diego grading permit requirements in place during construction, it is anticipated the fill soils were compacted to a minimum of 90% relative compaction and loose native surficial soils were either removed or adequately compacted in-place prior to new fill placement. However, during the writing of this report no grading reports for these residential developments could be located. The condition of the fill will need to be verified as part of the planned geotechnical field investigation.

Based on the anticipated condition of the fill, we expect the seismic compaction hazard

to be low to moderate. The sandstone materials present outside of the canyon fill have a low potential for seismic compaction.

5.5 SLOPE STABILITY

The north side of the project site is within a hillside area consisting of a manmade fill slope, and natural slopes. The south side appears to be comprised of a smaller fill slope and possible cut slopes. The existing natural slopes and cut slopes are comprised of the Mission Valley Formation. The existing slopes adjacent to the planned abutment areas have gradients of 2H:1V (or flatter) with heights on the order of 26 feet each. Evidence of instability in the existing slopes was not observed during the Kleinfelder site reconnaissance. The results of slope stability analyses for the abutment areas are presented in Section 6.1.

5.6 FLOODING AND SCOUR POTENTIAL

The flood hazard potential at the site was evaluated based on flood hazard maps available through the Federal Emergency Management Agency (FEMA) Map Service Center website. Based on review of FEMA Map No. 06073C1335G, flood hazard zones are not present along the bridge alignment. The proposed bridge will not cross over rivers, creeks, channels, or other water bodies. Therefore, the potential for scour is not considered a design issue.

5.7 SOIL CORROSIVITY POTENTIAL

Preliminary soil corrosivity screening was performed on six samples obtained from borings. The results of soil corrosivity are presented in Section 6.5.

6 CONCLUSIONS AND RECOMMENDATIONS

Geotechnical engineering conclusions and recommendations for the support of the structural elements associated of the proposed Torrey Meadows Drive Overcrossing are presented in the following sections. These recommendations are based on Kleinfelder's understanding of the project, and the results of Kleinfelder's field explorations and laboratory testing and professional judgment.

6.1 SLOPE STABILITY

6.1.1 Methodology

Limit equilibrium slope stability analyses were performed using the computer program Slope/W by Geo-Slope International (Version 8.12, 2012) for existing/permanent and temporary construction conditions that will be near Abutments 1 and 3. For our analyses it has been assumed that existing and permanent conditions will have essentially the same geometry and soil conditions.

Spencer's method of slices was used, which satisfies both moment and force equilibrium. The analysis employed circular and critical slip surface search routines. Slope stability analyses require assumptions, including development of soil strength parameters and geometry of subsurface conditions. These are developed based on results of field and laboratory investigations, review of existing published information, and previous experience in the site vicinity. The Mohr-Coulomb failure criteria were used to model the soil strengths.

Per Caltrans (2004), slopes should have a calculated static safety factor for temporary and long-term conditions in excess of 1.3 and 1.5, respectively. A minimum pseudo-static safety factor of 1.1 is also required.

Slope stability strength parameters are presented in Table 2. The results of slope stability analyses are described in the following sections of this report, presented in Table 3 and in Appendix E as Figures E-3 through E-14.

6.1.2 Abutment 1

The southerly Abutment 1 area has an existing slope approximately 26 feet high at a uniform inclination of about 2H:1V (Figure 7). The upper half of this slope consists of

compacted fill soils. The lower half of the slope consists of an excavated cut into natural soils of the very dense Mission Valley Formation. No evidence of ground instability was observed during the field exploration phase of this investigation.

The slope stability analyses results for existing/permanent conditions indicate safety factors in excess of 1.5 and 1.1 for static and pseudo-static cases, respectively. For the pseudo-static case a seismic acceleration coefficient of 0.2 g was used.

It is anticipated that Abutment 1 will consist of a spread footing supported directly on the Mission Valley Formation. It is anticipated that the temporary excavation for construction in this area will consist extend approximately 15 feet below the existing ground surface. Analyses were performed for temporary slope inclinations of 1H:1V, $1\frac{1}{2}$ H:1V, and 2H:1V. In all cases the calculated minimum safety factor is in excess of 1.3.

6.1.3 Abutment 3

The norther Abutment 3 area has an existing slope approximately 26 feet high at a maximum inclination of about 2½H:1V which consists of compacted fill soils in its entirety (Figure 7). The ground surface inclination decreases to about 3H:1V near the top and bottom of the slope. No evidence of ground instability was observed during the field exploration phase of this investigation.

The slope stability analyses results for existing/permanent conditions indicate safety factors in excess of 1.5 and 1.1 for static and pseudo-static cases, respectively. For the pseudo-static case a seismic acceleration coefficient of 0.2 g used.

It is anticipated that Abutment 3 will consist of a deep CIDH piers embedded into the Mission Valley Formation. It is anticipated that the temporary excavation for construction in this area will consist extend down approximately 15 feet below the existing ground surface. Analyses were performed for temporary slope inclinations of 1H:1V, 1½H:1V, and 2H:1V. In all cases the calculated minimum safety factor is in excess of 1.3.

Table 2. Summary of Soil Engineering Parameters Used in Slope StabilityAnalysis

GEOLOGIC UNIT	FRICTION ANGLE (DEGREES)	COHESION (PSF)	TOTAL UNIT WEIGHT (PCF)
Existing Fill (South Abutment 1)	32	200	115
Existing Fill (North Abutment 3)	36	400	130
Mission Valley Formation	34	600	125

Table 3. Results of Slope Stability Analysis

SLOPE		PERMANENT	TEMPORARY EXCAVATION (APPROX. 15 FEET DEEP)			
AREA	STATIC SAFETY FACTOR	PSEUDO- STATIC SAFETY FACTOR	SLOPE INCLINATION (H:V)	STATIC SAFETY FACTOR		
South		2.09 (2.28)	1:1	1.78		
Abutment 1	3.25 (3.59)		1½:1	2.18		
(entire slope)	(0.00)	(2.20)	2:1	2.64		
			1:1	2.62		
North Abutment 3	4.44	2.45	1½:1	3.23		
			2:1	3.75		

6.2 FOUNDATION DESIGN RECOMMENDATIONS

6.2.1 General Considerations

The foundation recommendations provided in this section are based on the American Association of State Highway and Transportation Officials (AASHTO) LRFD Bridge Design Specifications, 6th Edition (2012) with amendments by Caltrans (2014c).

According to the Torrey Meadows Drive Overcrossing draft foundation plan prepared by T.Y. Lin International and dated October 24, 2014, the Torrey Meadows Drive Overcrossing will be supported on spread footings at Abutment 1 and Bents 2 L/R and CIDH piles at Abutment 3.

6.2.2 Abutment 1 and Bent 2 L/R Foundations

Abutment 1 and Bent 2 will be founded on undisturbed native Mission Valley Formation materials. The Strength and Service Limit design analysis for shallow foundations was completed per the AASHTO LRFD method. Resistance factors for shallow foundations were selected from Table 10.5.5.2.2-1 per the Caltrans Amendments. The footings can be designed for the bearing resistance listed in Table 4.

Table 4. Foundation Design Recommendations for Spread Footings (Abutment 1 and Bent 2 R/L)

SUPPORT LOCATION	FOOTING WIDTH (FT)		SERVICE PERMISSIBLE NET CONTACT STRESS (SETTLEMENT)	STRENGTH/ CONSTRUCTION FACTORED GROSS NOMINAL BEARING RESISTANCE	EXTREME EVENT FACTORED GROSS NOMINAL BEARING RESISTANCE
	L	В		φ _B = 0.45	φ _B = 1.0
Abutment 1	56	12	10 ksf (1 inch)	11 ksf	25 ksf
Bent 2 L and R	18	18	10 ksf (1 inch)	29 ksf	65 ksf
Abutment 3			CIDH Piles R	ecommended	

6.2.3 Abutment 3 Foundations

Cast-in-drilled-hole (CIDH) pile foundations are planned to be utilized at Abutment 3. The ground surface in the Abutment 3 area will not be changed. The following sections provide detailed recommendations.

6.2.3.1 Vertical Load Resistance

The strength and service limit site design analysis for drilled shafts was completed per the AASHTO LRFD method. Resistance factors for drilled shafts shall be selected from Table 10.5.5.2.4-1 per the California Amendments.

The factored shaft resistance, R_R, for strength limit state design was determined using the nominal shaft side resistance R_s, computed per Sections 10.8.3.5.2c and 10.8.3.5.2b, respectively, of the AASHTO LRFD Bridge Design Specifications – 6th edition, and the corresponding resistance factor, ϕ_{qs} , of 0.70 from Section 10.5.5.2.4 of the Caltrans Amendments. End bearing (or tip) resistance factor, ϕ_{qs} , of 0.50 was used from Section 10.5.5.2.4 of the Caltrans

Amendments. The soil parameters used for the vertical load resistance analyses are presented in Table 5.

The Strength Limit State axial resistance curve showing the factored axial resistance versus depth for a single CIDH pile is presented in Figures 10 and 11 for downward and uplift resistances, respectively. Settlements were estimated per Section 10.8.2.2 of AASHTO (2012) and the Caltrans (2014c) Amendments. Estimated total settlements of the abutment supported by CIDH piles due to the bridge dead and live load are estimated to be less than 1 inch. Static downdrag is not anticipated.

The Extreme Event 1 (earthquake case) axial resistance curves showing the axial resistance versus depth for a single CIDH pile are presented in Figures 12 and 13 for downward and uplift resistances, respectively. A resistance factor of 1.0 was used for both tension and compression per the Caltrans (2014c) Amendments. If the drilled shaft being designed is non-redundant, AASHTO recommends reducing the values of the resistance factors by 20 percent. Conversely, the structural engineer can increase the loads by 20 percent and then enter the provided axial resistance charts with the increased load. Based on the multiple CIDH piles located at the abutment, it is anticipated that the piles can be considered redundant. However, this should be evaluated by the bridge designer.

6.2.3.2 Lateral Load Resistance

Lateral load analysis and design of the piles will be performed by the structural designer using the geotechnical parameters presented in this report. Table 6 present recommended geotechnical parameters for static soil conditions for use within the LPILE soil-pile interaction computer program developed by Ensoft. Note that a soil resistance factor of 1.00 should be used in accordance with the Caltrans (2014b) Amendments (2014).

For closely spaced drilled shafts, the p-y curves developed using the recommended parameters should be adjusted using a P-multiplier, Pm, with the values determined per Section 10.7.2.4 of AASHTO (2012) and the Caltrans (2014b) Amendments.

LAYER	SOIL TYPE	ELEVATION (FT)			FRICTION ANGLE,	COHESION	ADHESION FACTOR,
LATER		FROM	то	Γ_{T} (PCF)	Φ'	(PSF)	ACTOR,
1	Sand (FHWA Spec.)	360	295	130	36	400	n/a
2	Sand (FHWA Spec.)	295	260	125	34	600	n/a

Table 5. Drilled Shaft Static Axial Capacity Parameters

Notes:_n/a = not applicable

Design groundwater was assumed to be at an elevation of +250 feet MSL.

Table pertains to pile design for Abutment 3 only.

LAYER			P-Y CURVE	EFFECTIVE UNIT WEIGHT, Γ	FRICTION ANGLE, Φ'	UNDRAINED COHESION (PSF)	$\begin{array}{c} \text{STRAIN} \\ \text{FACTOR}, \\ \boldsymbol{\epsilon}_{50} \end{array}$	HORIZONTAL SUBGRADE REACTION MODULUS, K
	TOP	BOTT.		(PCF)	(DEG)			(PCI)
1	360	295	Sand (Reese)	130	36	n/a	n/a	90
2	295	260	Silt (cemente d c-phi)	125	34	600	0.004	225

Table 6. Soil Input Parameters for LPILE under Static Condition

Notes: n/a = not applicable

Design groundwater was estimated to be at an elevation of +250 feet MSL. Table pertains to pile design for Abutment 3 only.

6.2.3.3 Estimated Fill Settlements

Compacted fill soils typically increase in moisture and compress due to their own weight sometime during their lifetime. Experience has shown that the compression may be on the order of 0.2 percent of the fill thickness for granular soils and 0.5 percent of the fill thickness for clayey soils even when soils are compacted in accordance with local standards. Based on our experience with select fill materials that have been recommended for the project, these soils may undergo an ultimate compression on the order of 0.3 percent of the total fill depth. We estimate that compacted fills on the order of 65 feet thick will be subject to total long-term areal settlements of about 1.5 to 3 inches. Although some of this settlement has probably occurred because the fills were constructed several years ago, the remaining amount of settlement is still likely to be in excess of tolerable limits for the proposed bridge. CIDH pile foundation for Abutment 3 is therefore recommended. Excessive landscaping irrigation or leakages from tanks and

pipes may contribute to increased settlements, hence routine active maintenance is recommended on any such system.

Competent formational materials at the Abutment 1 area are expected to have negligible settlement due to the placement of compacted fill soils.

6.3 RETAINING WALLS

This section presents design recommendations for the Caltrans Type 1 and Type 5 (possibly modified for special design conditions) retaining walls behind the abutments.

6.3.1 Lateral Earth Pressures

Standard Caltrans Type 1 and Type 5 retaining walls are designed with the following parameters:

- Total unit weight: 120 pcf
- Internal friction angle: 34°
- Horizontal seismic coefficient: 0.2 g
- Vertical seismic coefficient: 0.0 g
- Live load surcharge (horizontal component): 240 psf

Lateral earth pressures for Caltrans Type 1 and Type 5 retaining walls provided below are appropriate when new Caltrans Structure Backfill fill is present in the active zone. Retaining walls backfilled with Caltrans Structure Backfill should be designed to resist an active equivalent fluid earth pressure of 35 pcf for level backfill conditions (K_a=0.25). The active equivalent earth pressure assumes the wall is free to rotate at least 0.002 times the height of the wall to mobilize the active condition. Walls restrained against movement at the top should be designed for an at-rest equivalent fluid earth pressure of 55 pcf for level backfill conditions (K₀=0.45). For passive resistance of the structure, a nominal equivalent fluid weight of 500 pcf (K_p = 4.2) can be used 2 feet below ground surface at wall line. An allowable base friction value of 0.55 for soil against concrete can also be used in conjunction with the passive pressure.

Surcharge pressures (dead or live) should be added to the lateral pressures where such loads (e.g., traffic) may occur adjacent to the wall and should be estimated by multiplying the surcharge load by a coefficient of 0.25 or 0.45 for active (K_a) or at-rest

 (K_0) conditions, respectively. As a minimum, we recommend that a traffic surcharge equivalent to 2 feet of soil backfill be assumed as a surcharge for the at-rest condition. For this condition a pressure of 120 psf may be assumed to act as a uniform horizontal pressure over the entire height of the retaining walls behind the abutments, H.

Seismic wall pressures are estimated using the Mononobe-Okabe method (AASHTO, 2012). The Design Earthquake peak ground acceleration (PGA) value of 0.33g was calculated for this site using Caltrans ARS Online (2013b). Based on the design peak horizontal ground acceleration of 0.33g, the resultant seismic force (in pounds) for each linear foot of wall can be estimated as $7.0^{*}H^{2}$ within fill soils, where H is the height of the wall (in feet) above its base. The resultant seismic force acts at H/3 above the wall base. The seismic earth pressure has an upright triangular distribution. This dynamic incremental earth pressure should be added to the static earth pressure.

6.3.2 Drainage

Recommendations for the lateral earth pressures assume that walls have adequate drainage provisions to prevent the buildup of hydrostatic pressures in the soil backfill. The drainage system may be designed in accordance with Caltrans Standard Plan BO 3, Detail 3-1. Pervious backfill material shall consist of gravel, crushed gravel, crushed rock, natural sands, manufactured sand, or combinations thereof. Pervious backfill (other than sacked material at wall drain outlets) shall conform to the grading requirements in Section 19 of the Caltrans Standard Specifications. Sacked pervious backfill at wall drain outlets shall conform to the grading for 1½" x ¾" primary aggregate size specified in Section 90 of Caltrans Standard Specifications (Caltrans, 2010c). As an alternate, a geocomposite drain, as shown in Bridge Design Details page 6-22, may be used in lieu of the pervious backfill.

6.4 EARTHWORK AND GRADING

6.4.1 Soil Characteristics

Based on the field and laboratory data, the soils within the anticipated excavation depths generally consist of compacted fill soils and very dense and cemented soils of the Mission Valley Formation as described in Section 4.7.2. The excavation of these soils should be possible using moderate to strong effort with conventional heavy-duty grading and excavating equipment. Nevertheless, due to the cemented nature of the Mission Valley Formation, difficult excavation may be encountered during the CIDH

excavation.

6.4.2 Site Preparation

Site preparation should be performed in accordance with Section 16 and 19 of the Caltrans Standard Specifications (Caltrans 2010c).

6.4.3 Excavation Sloping and Shoring

Temporary trench excavations should be laid back or shored in accordance with the U.S. Occupational Safety and Health Administration (OSHA), Caltrans, and any other applicable regulations. For planning purposes, fill soils can be considered OSHA Type C soil and the Mission Valley Formation OSHA Type B. The actual OSHA soil type should be determined by the contractor's responsible person in the field at the time of construction. Type C soils should have 1½H:1V temporary construction excavation slopes. Type B soils should have 1:1 temporary construction excavation slopes. If stability of an excavation becomes questionable during construction, the excavation should be evaluated promptly by the geotechnical engineer.

The soil classifications presented in this report may be used for the planning of excavations and trench slopes in accordance with OSHA requirements or for the design of shoring and/or the use of trench boxes. Construction personnel should be aware that soil conditions may change rapidly if soil moisture conditions change or if soils that have been disturbed by previous excavations are encountered. Measures should be taken to protect construction personnel from raveling of trench sidewalls. If sloughing or free water is encountered, it may be necessary to reduce trench slopes beyond OSHA requirements or provide shoring. All excavations should comply with current OSHA safety requirements.

No surcharge loads, such as the weight of heavy equipment, should be placed within 10 feet from the top of excavations. Care should be taken during excavation to avoid removing support for any existing improvements, such as foundations, pavements, and buried utilities.

The contractor is responsible for selecting, designing, and constructing temporary shoring systems that adequately protect the existing structures, utilities, and other improvements. The contractor should be required to submit shoring plans to the geotechnical consultant and bridge engineer for review and comment at least two

weeks prior to the beginning of construction. The shoring plans should clearly define construction sequencing, particularly the sequence of excavation and tieback installation, if needed.

6.4.4 Fills and Backfills

Any areas of loose or yielding soils should be overexcavated and replaced with compacted Structural Backfill in accordance with Caltrans Standard Specifications Section 19. Any soils that cannot be compacted, or are otherwise unsuitable for the planned use, should be excavated and disposed of from the project site. The exposed surface should be scarified and compacted to the specified density before placement of new fill. New fill placed on or adjacent to existing slopes should be properly benched into the existing fill in accordance with Caltrans Standard Specifications Section 19. Footing excavations for Abutment 1 and Bent 2 are intended to expose Mission Valley Formation. This formation should be undisturbed during excavation below the proposed footing. The geotechnical engineer should be called to verify the complete exposure of the formation within the footing excavations to verify compliance with design assumptions.

All earthwork should be performed in accordance with Caltrans Standard Specifications Section 19. All materials to be placed as fill should be free of vegetation, organics, debris, and other deleterious materials. All fill placed around foundations and behind walls should be placed in thin loose lifts, moisture-conditioned, and compacted to Caltrans Standard Specifications.

Embankments within 150 feet of bridge abutments should be considered structure approach fills and should conform to the Caltrans Standard Specifications as such. Materials with a dimension greater than 3 inches should not be used in structure approach fills. Abutment backfill shall be structural backfill according to Caltrans standard specifications. Expansive soils, defined as soils with Expansion Index greater than 50 and/or soils with Sand Equivalent less than 20, should be excluded from the bridge abutments as required by Caltrans guidelines. Expansion Index should be determined in accordance with ASTM D 4829. Sand Equivalent should be determined in accordance structure at Method 217. Fills should be compacted to meet Caltrans specifications.

6.5 SOIL CORROSIVITY

Preliminary soil corrosivity screening on six samples obtained from borings to aid in the evaluation of attack to concrete and ferrous metals was performed. Laboratory test results for pH, minimum electrical resistivity, and soluble chloride and sulfate content are presented in Table 7 and included in Appendix C.

BORING	DEPTH (FEET)	РН	SULFATE (PPM)	CHLORIDE (PPM)	MINIMUM RESISTIVITY (OHM-CM)
A-14-003	3.5	8.4	120	260	500
A-14-004	2.0	8.4	30	32	1100
A-14-005	2.5	8.6	150	160	460
A-14-005	66.5	8.0	350	110	420
A-14-006	13.5	8.8	120	420	350
A-14-006	76.5	7.4	150	1340	250

For reference, Caltrans (2012d) considers a site to be corrosive if one or more of the following conditions exist for the representative soil samples taken at the site: chloride concentration is 500 parts per million (ppm) or greater, sulfate concentration is 2,000 ppm or greater, or the pH is 5.5 or less.

With the exception of the soil sample from Boring A-14-006 at a depth of 76.5 feet in the Mission Valley Formation, the soils at the site may be considered non-corrosive with respect to sulfate and chloride content. The subject exception samples indicated a chloride content of 1,340 ppm which may be considered to have moderate attack potential.

The minimum resistivity tests performed indicated that the soil is considered to be corrosive to severely corrosive to buried unprotected metal objects. A commonly accepted correlation between soil resistivity and corrosivity towards unprotected ferrous metals (National Association of Corrosion Engineers, 1984) is provided in Table 8.

MINIMUM RESISTIVITY (OHM-CM)	CORROSION POTENTIAL
0 to 1,000	Severely Corrosive
1,000 to 2,000	Corrosive
2,000 to 10,000	Moderately Corrosive
Over 10,000	Mildly Corrosive

Table 8. Corrosion Potential based on Minimum Resistivity (NACE, 1984)

The preliminary corrosion tests are only an indicator of potential soil corrosivity for the sample tested. It is recommended that the corrosivity test results be reviewed and evaluated by the project designers considering the improvements and project lifespan requirements. Kleinfelder's scope-of-work does not include corrosion engineering and the purpose of the tests is only to provide a preliminary screening. Additional sampling and testing may be performed after completion of grading for the site improvements. A qualified corrosion engineer should be contacted to for detailed evaluation of corrosion potential with respect to construction materials at this site and review the proposed design.

7 LIMITATIONS

This report has been prepared for the exclusive use of T.Y. Lin International, and the project design team for specific application to the proposed Torrey Meadows Drive Overcrossing bridge project. It is intended solely for their use in the design of the project as described herein. It may not contain sufficient information for other uses or purposes of other parties. This report is presented with the understanding that a design-level Structure Foundation Report will be prepared for the subject project in the future.

The findings, conclusions, and recommendations presented in this report were prepared in a manner consistent with the standards of care and skill ordinarily exercised by members of the geotechnical profession practicing under similar conditions in the same geographic vicinity and at the time the services were performed. No warranty or guarantee, express or implied, is made. If any change (i.e., structure type, location, etc.) is implemented which materially alters the project, additional geotechnical services may be required, which could include revisions to the geotechnical recommendations presented herein.

Hazardous materials and solid waste evaluations performed by Kleinfelder Inc. (Kleinfelder) for this project are to be summarized in separate reports. Kleinfelder will assume no responsibility or liability whatsoever for any claim, damage, or injury which results from pre-existing hazardous materials being encountered or present on the project site, or from the discovery of such hazardous materials.

This report may be used only by T.Y. Lin International, and the project design team, and only for the purposes stated within a reasonable time from its issuance, but in no event later than two years from the date of the report. Land or facility use, on and off-site conditions, regulations, design criteria, procedures, or other factors may change over time, which may require additional work. Any party other than the client who wishes to use this report shall notify Kleinfelder of such intended use. Based on the intended use of the report, Kleinfelder may require that additional work be performed and that an updated report be issued. Non-compliance with any of these requirements by the client or anyone else will release Kleinfelder from any liability resulting from the use of this report by any unauthorized party and client agrees to defend, indemnify, and hold Kleinfelder harmless from any claim or liability associated with such unauthorized use or non-compliance.

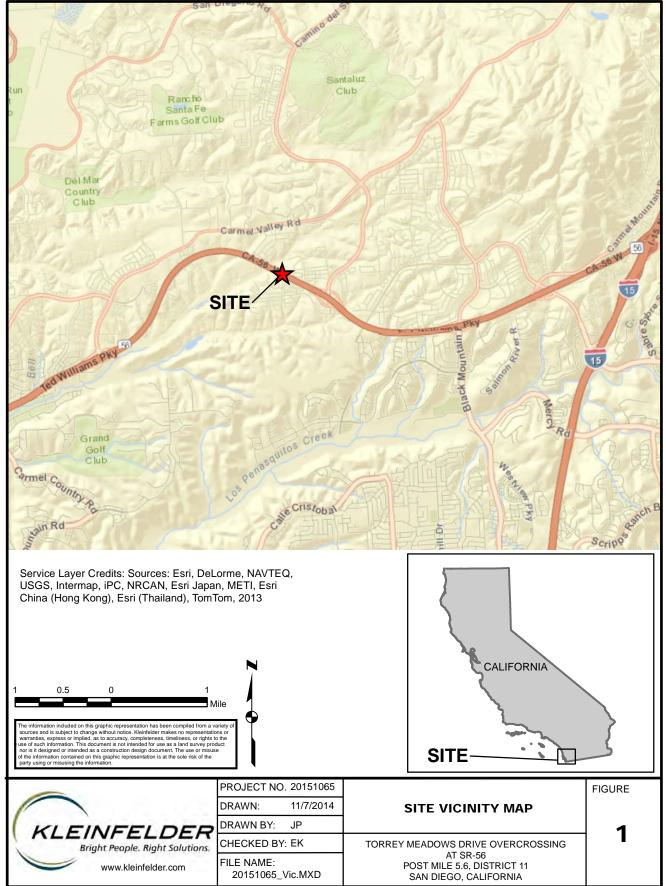
8 REFERENCES

- American Association of State Highway and Transportation (AASHTO), 2012, Load and Resistance Factor Design (LRFD) Bridge Design Specifications, January 2012, 6th edition.
- Bryant, W.A. and E.W. Hart. 2007, Fault-Rupture Hazard Zones in California, Alquist-Priolo Earthquake Fault Zoning Act with Index to Earthquake Fault Zones Maps, California Geological Survey, Special Publication 42, interim revision.
- California Department of Water Resources, http://www.water.ca.gov/waterdatalibrary/
- California Division of Mines and Geology (CDMG), 1999, Seismic Shaking Hazard Maps of California: Map Sheet 48.
- California Geological Survey (CGS), 1991 (revised 2003), State of California Special Studies Zones (Alquist-Priolo Earthquake Fault Map), Point Loma Quadrangle, 1:24,000 Scale, Effective November 1, 1991.
- California Geologic Survey (CGS), 2002, California Geomorphic Provinces, Note 36, 4p.
- California Department of Transportation (Caltrans), 2013, Caltrans ARS Online,v2.2.06, http://dap3.dot.ca.gov/ARS_Online
- California Department of Transportation (Caltrans), 2013c, Caltrans Probabilistic Spreadsheet, January 6, 2013, http://dap3.dot.ca.gov/ARS_Online/technical.php.
- California Department of Transportation (Caltrans), 2012a, Methodology for Developing Design Response Spectrum for Use in Seismic Design Recommendations, November 2012, Division of Engineering Services, Geotechnical Services.
- California Department of Transportation (Caltrans), 2012b, Fault Database Spreadsheet, Version 2b, dated December 13, 2012, http://dap3.dot.ca.gov/ARS_Online/technical.php.
- California Department of Transportation (Caltrans), 2012c, Caltrans Deterministic Spreadsheet, February 21, 2012, http://dap3.dot.ca.gov/ARS_Online/technical.php.

- Caltrans, 2009e, Guidelines for Structures Foundation Reports, Version 2.0, Updated December 2009.
- Caltrans, 2005, As-Built Plans for: Construction on State Highway 56, From Carmel Country Road Overcrossing to Carmel Mountain Road Overcrossing, State of California, Department of Transportation, As-Built Stamp dated June 21, 2005.
- Caltrans, 2002, As-Built Plans for: Camino Ruiz/Camino Del Sur Undercrossing (Bridge #57-1083 L), revised per Addendum No. 2 dated June 11, 2002.
- Caltrans, 2002, As-Built Plans for: Camino Ruiz/Camino Del Sur Undercrossing (Bridge #57-1083 R), April 1, 2002.
- City of San Diego, 2008, Seismic Safety Study, Geologic Hazards and Faults, prepared by the City of San Diego Developmental Services Department, Updated 2008; Map #43.
- Federal Emergency Management Agency (FEMA), Flood Insurance Rate Maps (FIRM), San Diego County, California and Incorporated Areas, Panel 1614 of 2375, FEMA Map Service Center, Map No. 06073C1335G, available at: , http://msc.fema.gov.

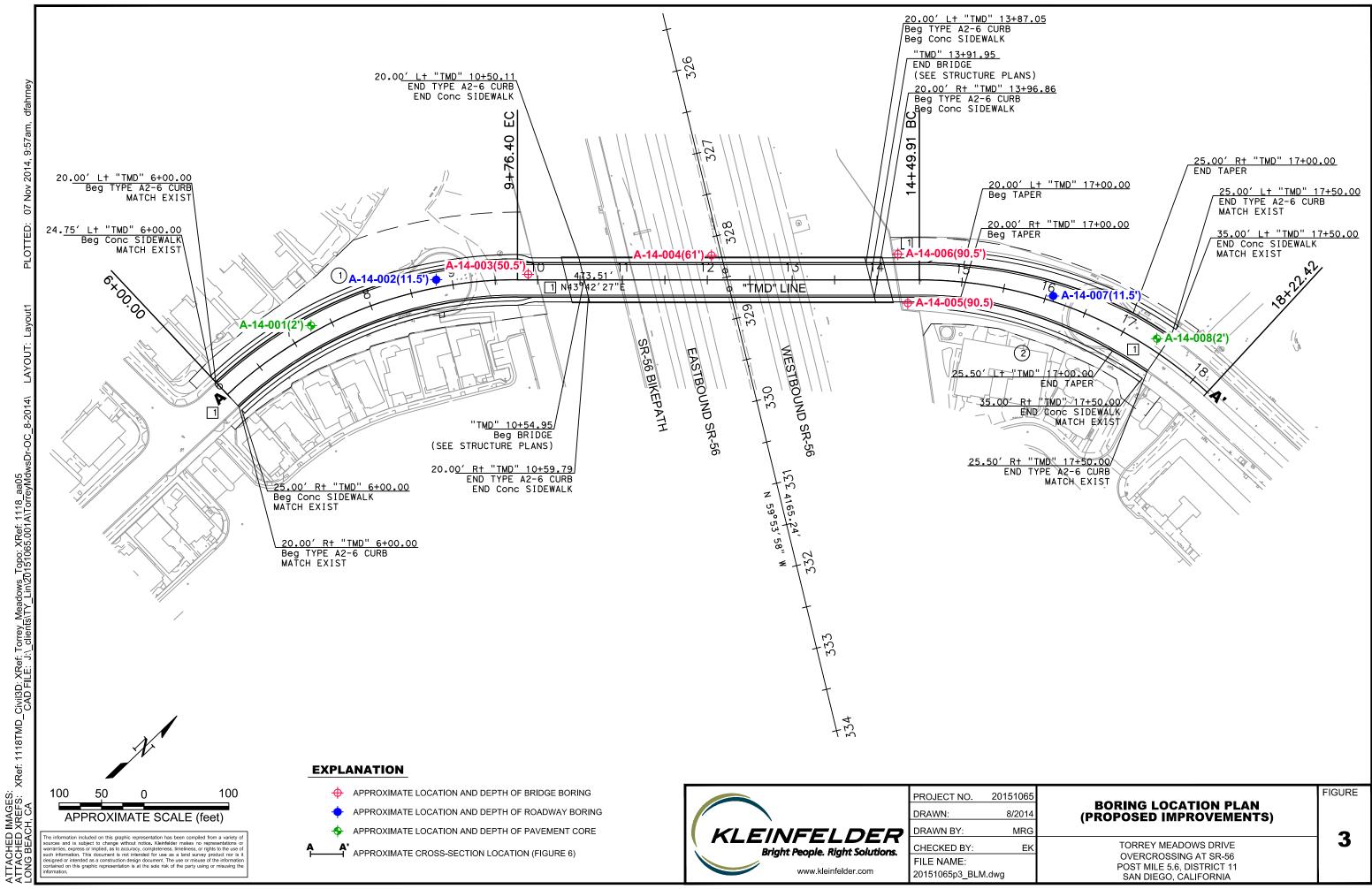
Geo-Slope International, Ltd., 2001, SLOPE/W Version 4.24, Calgary, Alberta, Canada.

- Group Delta Consultants, January 28, 1999, Draft Type Selection Report, McGonigle Creek Bridge, Middle Segment, State Route 56, San Diego, California, 11-SD-56-KP 3.3 to 10.5, EA172820.
- Kennedy, M. P., 1975, Geology of the Del Mar Quadrangle, California Division of Mines and Geology, Bulletin 200, Geology of the San Diego Metropolitan Area, California, 1:24,000 scale.
- Kennedy, M.P., and Welday, E.E., 1980, Recency and Character of Faulting Offshore Metropolitan San Diego, California, California Division of Mines and Geology, Map Sheet 40.
- Kennedy M.P. and Tan S.S., 2008, Geologic Map of the San Diego 30'x60' Quadrangle, Regional Geologic Map Series, 1:100,000, Map No. 3, California Geological Survey.

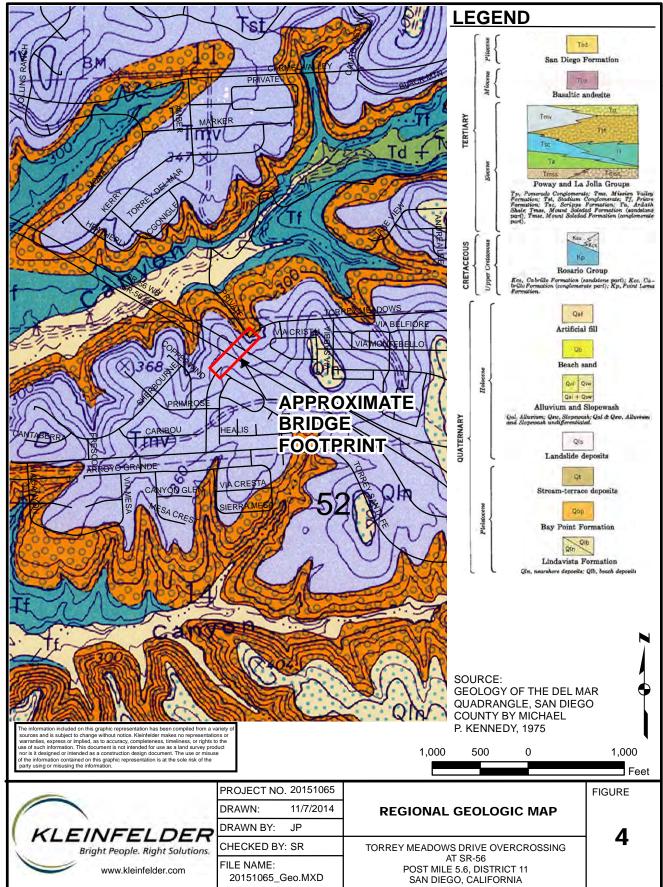


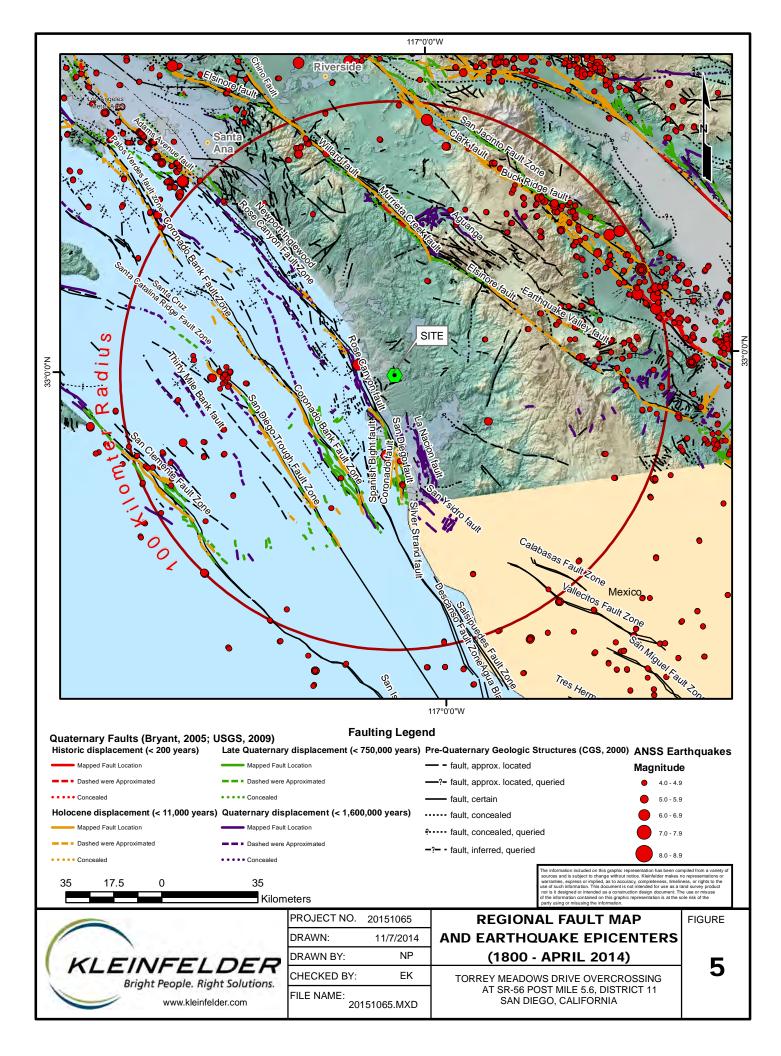
- Kennedy, M.P. and Clarke, S.H., 1999, Analysis of Late Quaternary Faulting in San Diego Bay and Hazards to the Coronado Bridge: California Division of Mines and Geology, Open File Report 97-10A.
- Lindvall, S.C., Rockwell, T.K., and Lindvall, C.E., 1990, The Seismic Hazard of San Diego Revised: New Evidence of Magnitude 6+ Holocene Earthquakes on the Rose Canyon Fault Zone, in Proceedings of U.S. National Conference on Earthquake Engineering, Palm Springs, California, Vol. 1: Earthquake Engineering Research Institution, p. 679-688.
- Lindvall, S.C., and Rockwell, T.K., 1995, Holocene Activity of the Rose Canyon Fault Zone in San Diego, California, Jour. Geophysical Research, vol. 100, no. B12, Pages 24,121-24-132.
- Norris, R.M., and Webb, R.W., 1990, Geology of California, Second Edition: John Wiley & Sons, Inc.
- Petersen, M.D., Frankel, A.D., Harmsen, S.C., Mueller, C.S., Haller, K.M., Wheeler, R.L., Wesson, R.L., Zeng, Y., Boyd, O.S., Perkins, D.M., Luco, N., Field, E.H., Wills, C.J., and Rukstales, K.S. (2008), "Documentation for the 2008 Update of the United States National Seismic Hazard Maps," U.S. Geological Survey Open-File Report 2008–1128, 61 p.
- Portland Cement Association, 1988, Design and Control of Concrete Mixtures, Portland Cement Association, Skokie, Illinois.
- Rockwell, T.K., 1998, Use of Soil Geomorphology in Fault Studies; in Quaternary Geochronology: Applications in Quaternary Geology and Paleoseismology: Nuclear Regulatory Commission publication, pp. 2-421 2-251.
- Rockwell, T.K. 2010 "The Rose Canyon Fault Zone in San Diego," 5th International Conference on Recent Advancements in Geotechnical Earthquake Engineering and Soil Dynamics, San Diego, California.
- Treiman, J.A., 1993, The Rose Canyon Fault Zone, Southern California, California Division of Mines and Geology, Open File Report 93-02.
- U.S. Geological Survey, 1999, Newport-Inglewood-Rose Canyon Quaternary Fault Zone Maps, Del Mar Section.

- United States Geological Survey, 2008, Interactive Deaggregation website, http://eqint.cr.usgs.gov/deaggint/2008/index.php.
- USGS, Earthquake Hazard website: http://earthquake.usgs.gov/.
- Wallace, R.E., 1990, The San Andreas Fault System. California, U.S.G.S. Professional Paper 1515, 283 p.
- Weldon, R.J. and Sieh, K.E., 1985, "Holocene Rate of Slip and Tentative Recurrence Interval for Large Earthquakes of the San Andreas Fault, Cajon Pass, Southern California, Geological Society of America Bulletin, vol. 96, no. 6, pp.793-812.


FIGURES

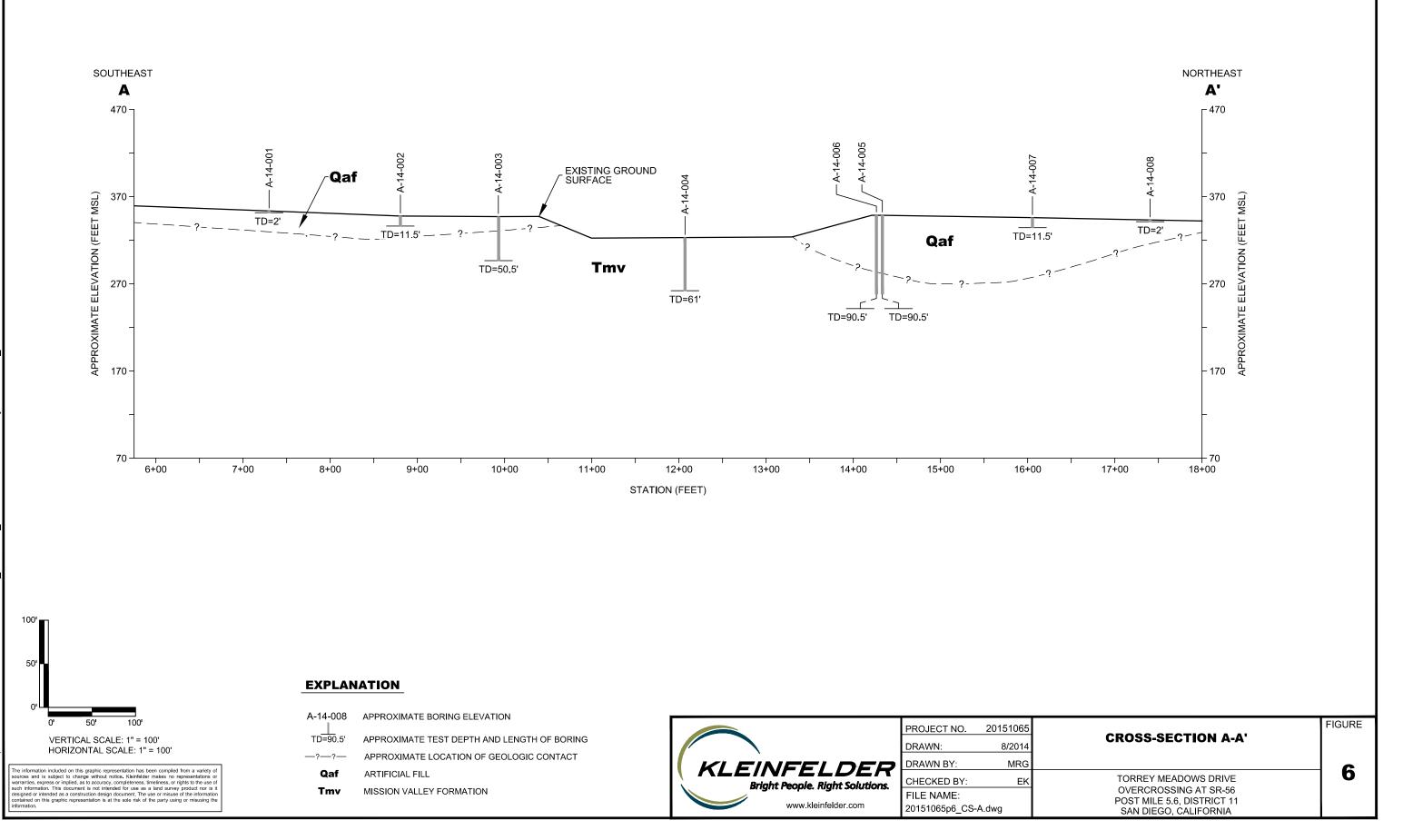
Path: J:_clients\TY_Lin\20151065.001A\20151065_Vic.mxd

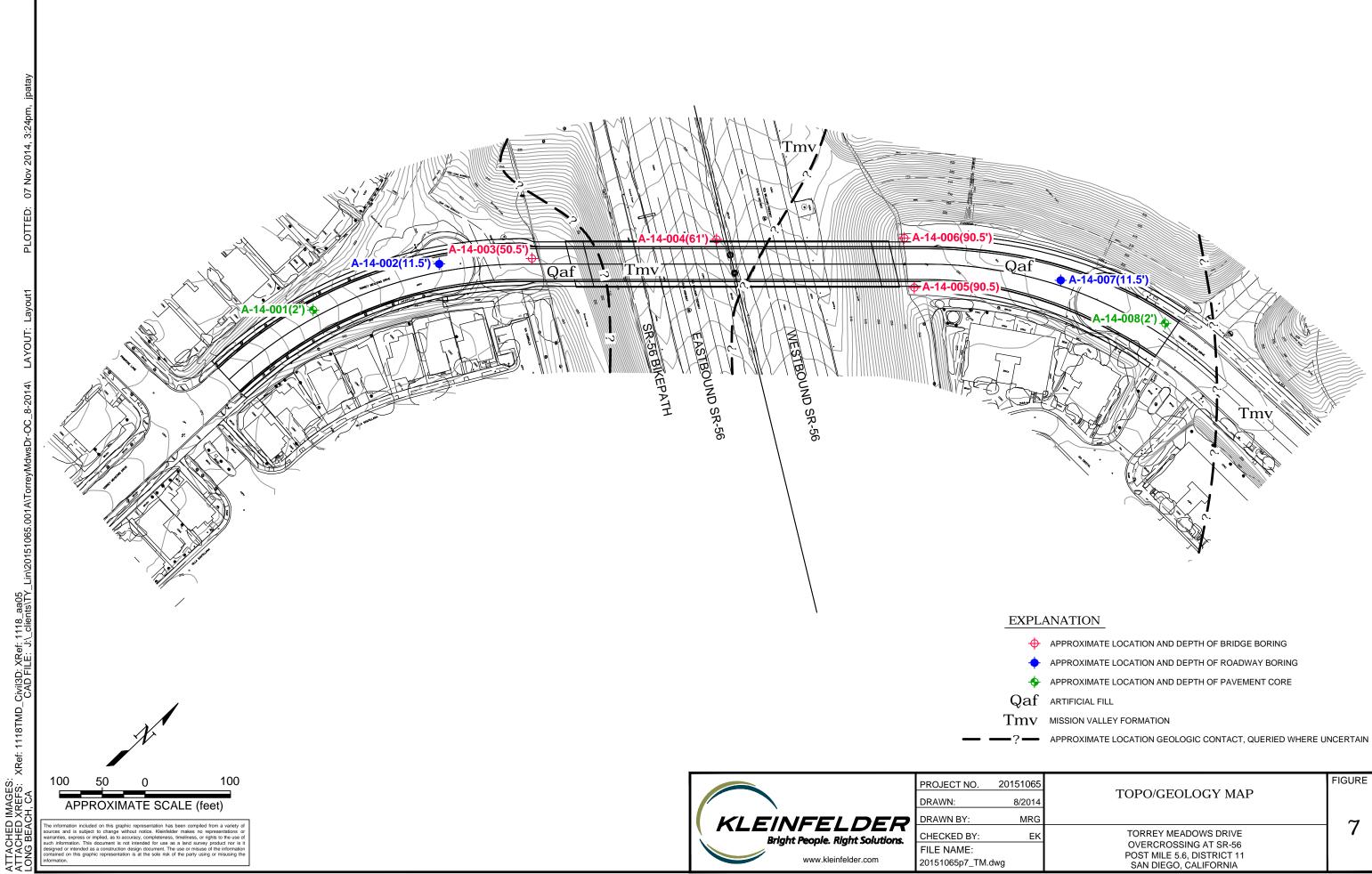



Path: J:_clients\TY_Lin\20151065.001A\20151065_Site.mxd

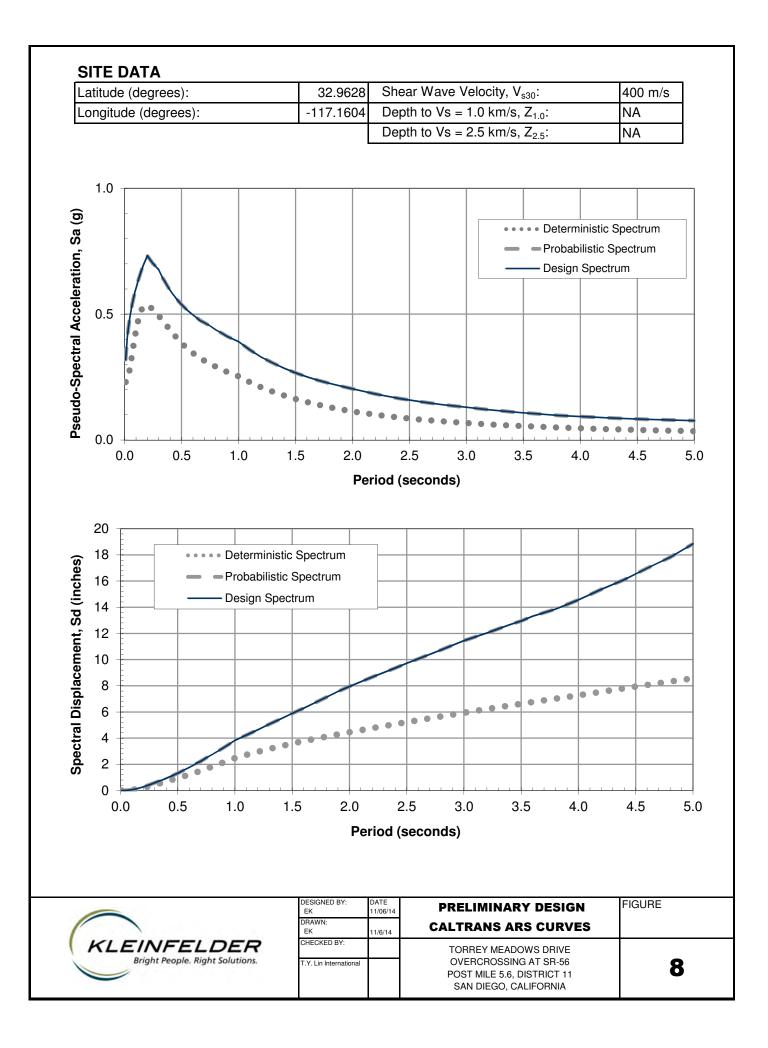
AC AC

ĘĘ



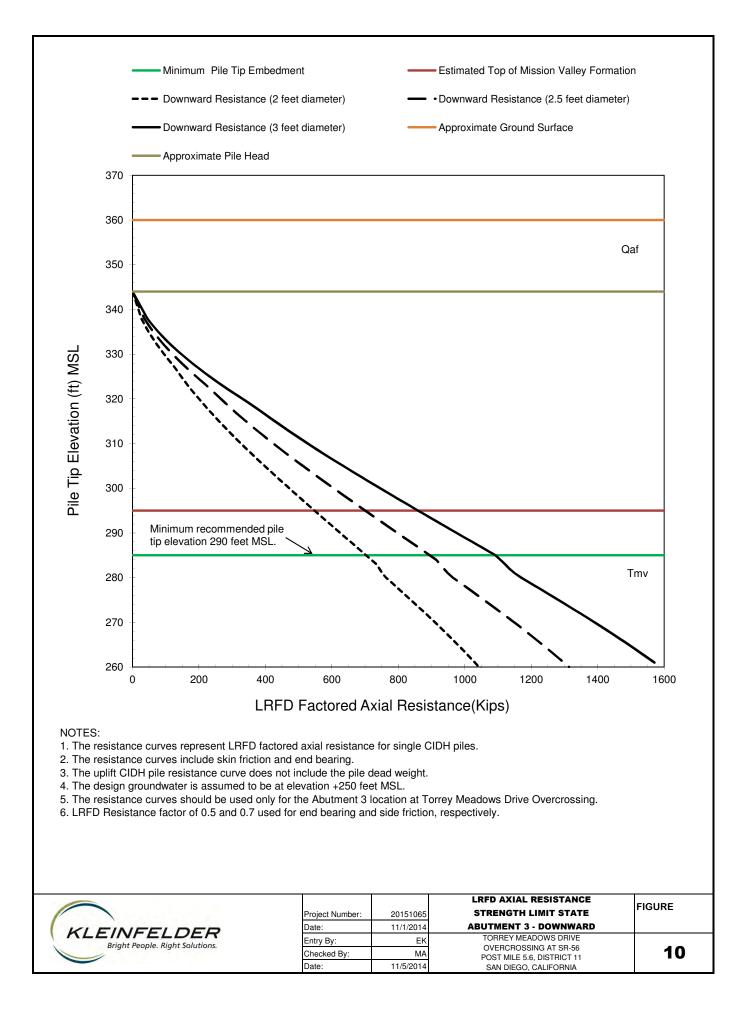


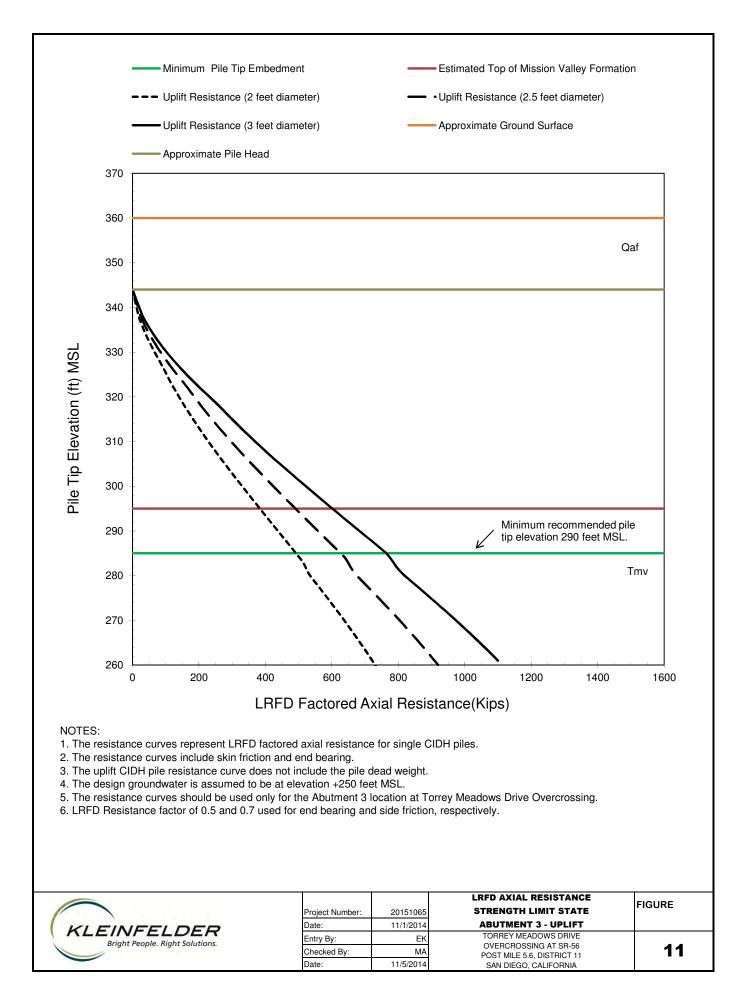
Images: td_Plate6_bottom.jpg Images: td_Plate6_top.jpg Images: td_Plate7_1of2.jpg Images: td_Plate7_2of2.jpg ~ LAYOUT -2014\ α 00 č 14 .001A\Tc J:_clients\TY_Lin\20151065 CAD FILE:

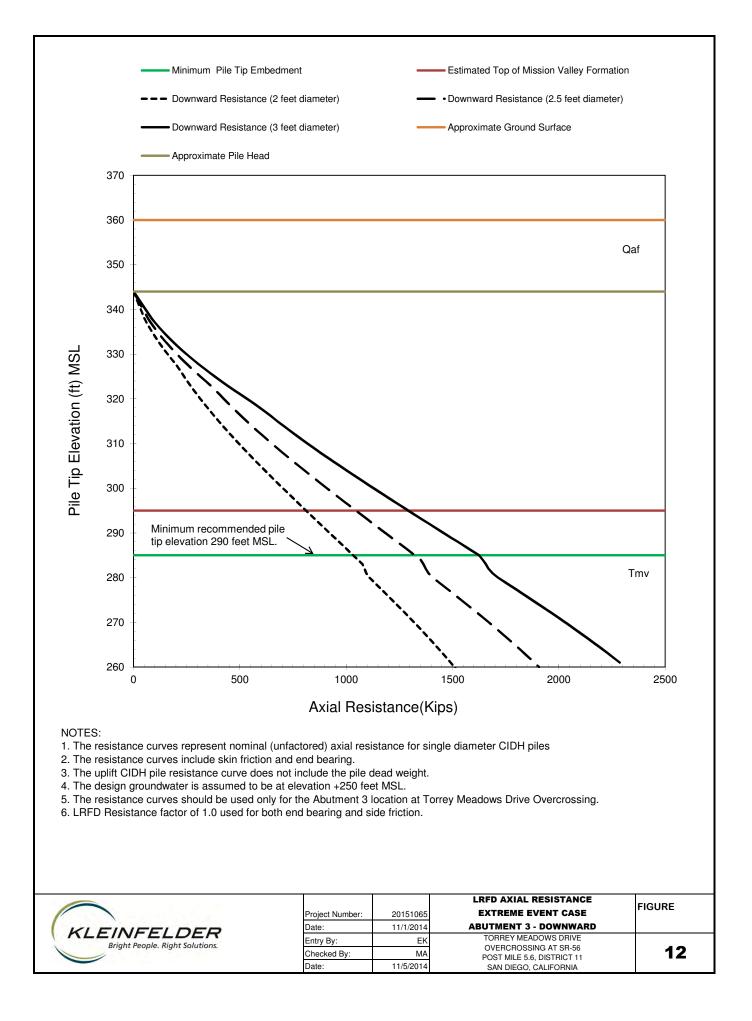

IMAGES: XREFS:

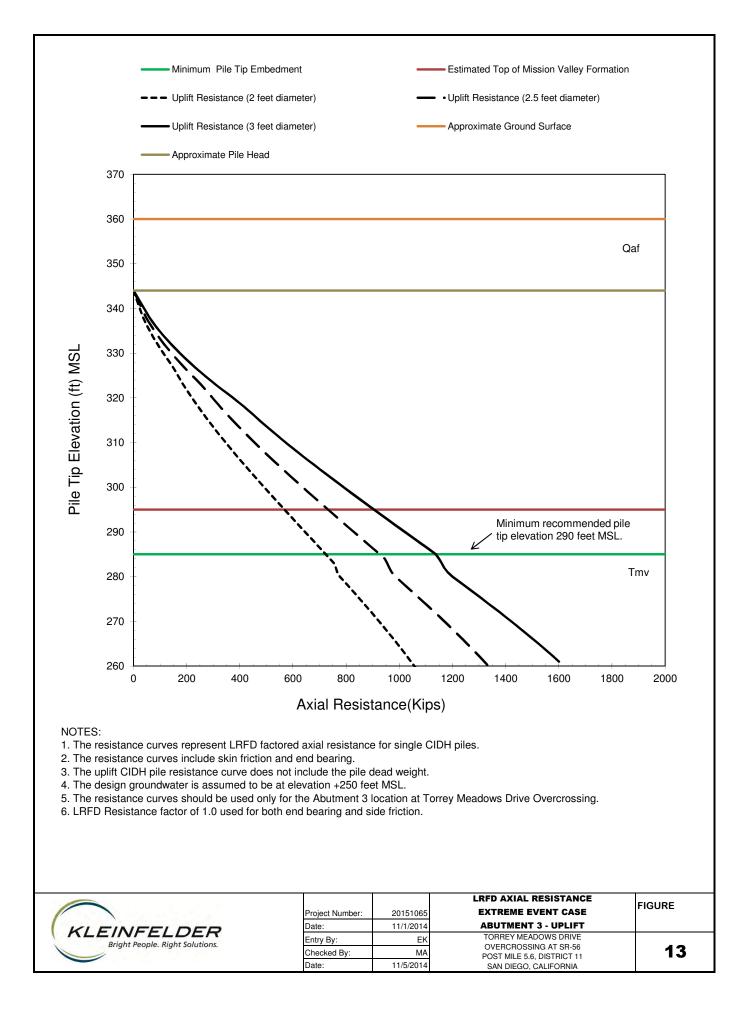
ATTACHED II ATTACHED X

1065		FIGURE
2014	TOPO/GEOLOGY MAP	
MRG		~
ΕK		/
	OVERCROSSING AT SR-56 POST MILE 5.6, DISTRICT 11	
	SAN DIEGO, CALIFORNIA	

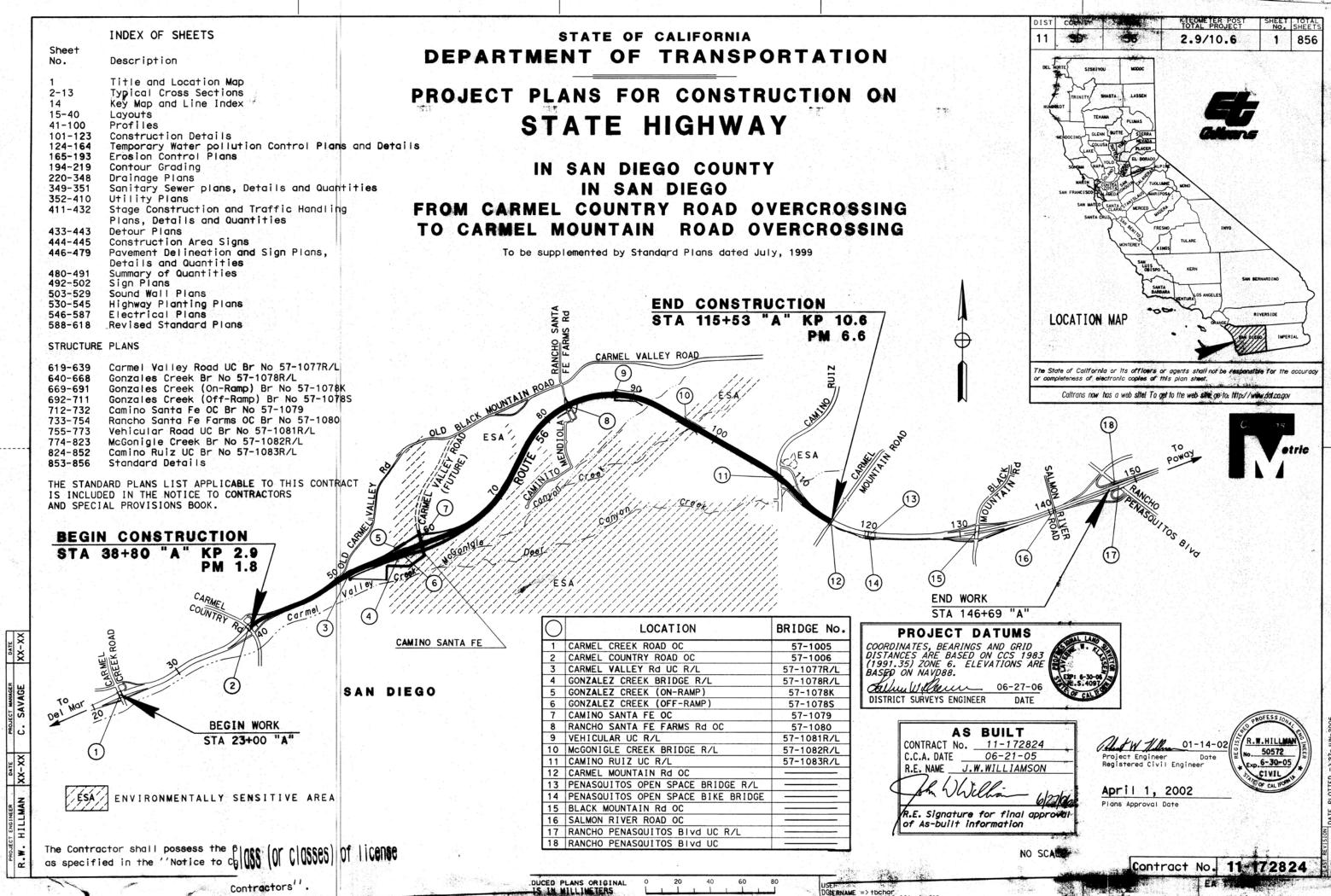



DESIGN ARS CURVE ORDINATES


DESIGN					
Period (s)	Sa (g)	Sd (inches)	Period (s)	Sa (g)	Sd (inches
0.010	0.319	0.000	0.360	0.624	0.792
0.020	0.386	0.002	0.380	0.609	0.861
0.022	0.397	0.002	0.400	0.595	0.932
0.025	0.411	0.003	0.420	0.582	1.005
0.029	0.428	0.004	0.440	0.570	1.080
0.030	0.432	0.004	0.450	0.564	1.118
0.032	0.440	0.004	0.460	0.559	1.158
0.035	0.451	0.005	0.480	0.548	1.236
0.036	0.454	0.006	0.500	0.538	1.316
0.040	0.468	0.007	0.550	0.516	1.528
0.042	0.474	0.008	0.600	0.497	1.751
0.044	0.480	0.009	0.650	0.480	1.985
0.045	0.483	0.010	0.667	0.475	2.068
0.046	0.486	0.010	0.700	0.466	2.235
0.048	0.492	0.011	0.750	0.454	2.500
0.050	0.498	0.012	0.800	0.438	2.744
0.055	0.511	0.015	0.850	0.425	3.005
0.060	0.523	0.018	0.900	0.412	3.266
0.065	0.535	0.022	0.950	0.401	3.542
0.067	0.540	0.024	1.000	0.391	3.827
0.070	0.546	0.026	1.100	0.358	4.240
0.075	0.557	0.031	1.200	0.329	4.637
0.080	0.567	0.036	1.300	0.306	5.062
0.085	0.576	0.041	1.400	0.285	5.467
0.090	0.586	0.046	1.500	0.267	5.880
0.095	0.594	0.052	1.600	0.251	6.289
0.100	0.603	0.059	1.700	0.237	6.704
0.110	0.619	0.073	1.800	0.225	7.135
0.120	0.635	0.089	1.900	0.214	7.561
0.130	0.649	0.107	2.000	0.203	7.948
0.133	0.653	0.113	2.200	0.183	8.669
0.140	0.663	0.127	2.400	0.166	9.359
0.150	0.676	0.149	2.500	0.159	9.726
0.160	0.688	0.172	2.600	0.152	10.057
0.170	0.700	0.198	2.800	0.140	10.743
0.180	0.711	0.225	3.000	0.130	11.452
0.190	0.722	0.255	3.200	0.120	12.027
0.200	0.732	0.287	3.400	0.112	12.672
0.220	0.719	0.341	3.500	0.108	12.949
0.240	0.707	0.399	3.600	0.105	13.319
0.250	0.701	0.429	3.800	0.098	13.851
0.260	0.696	0.461	4.000	0.093	14.564
0.280	0.686	0.526	4.200	0.089	15.366
0.200	0.681	0.561	4.400	0.085	16.107
0.230	0.677	0.596	4.600	0.082	16.983
0.320	0.658	0.659	4.800	0.082	17.815
0.340	0.640	0.039	5.000	0.079	18.841



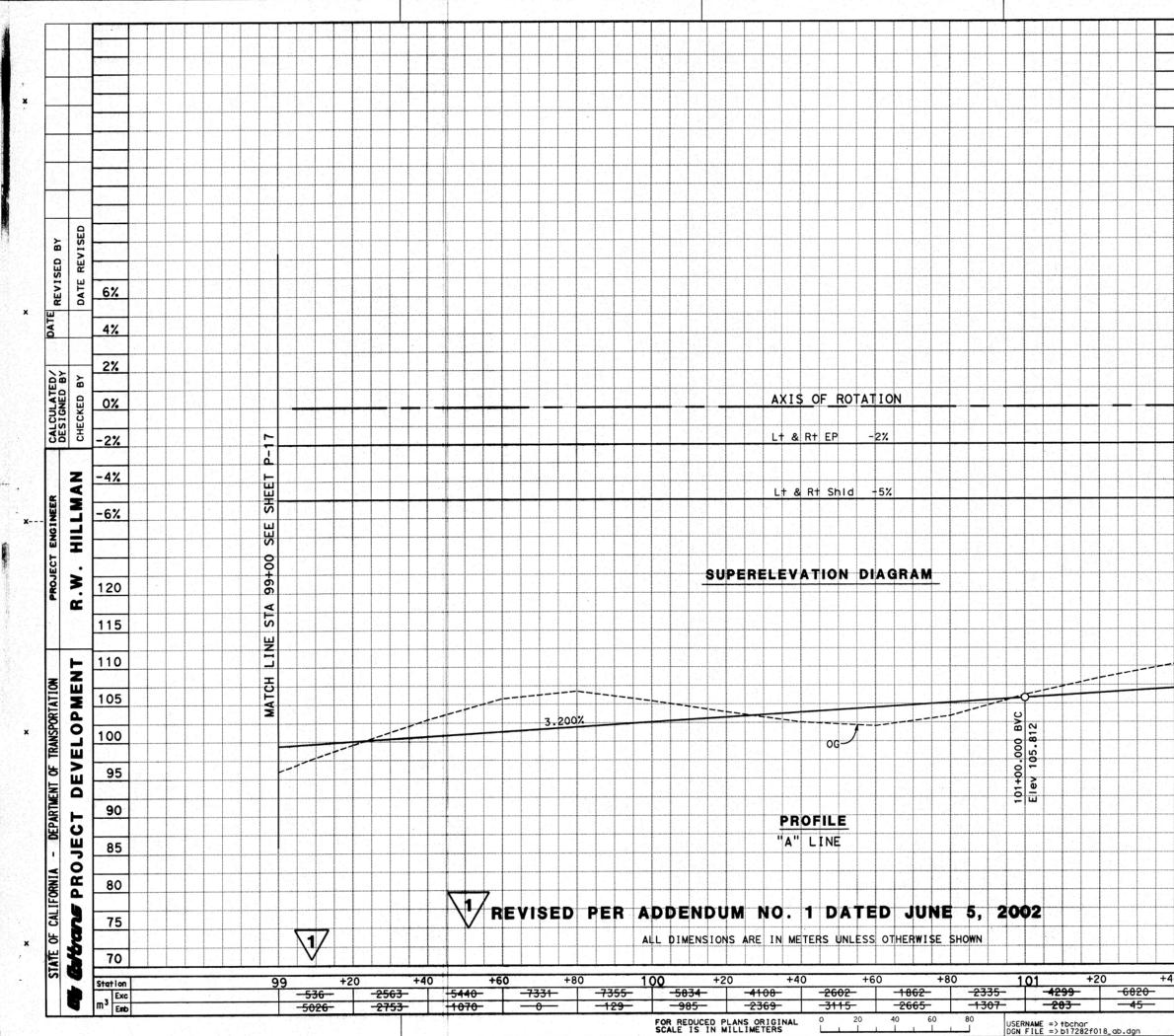
DESIGNED BY: EK	DATE 11/06/14	PRELIMINARY DESIGN	FIGURE
DRAWN: EK	11/6/14	CALTRANS ARS TABLE	
CHECKED BY: T.Y. Lin Internationa	al	TORREY MEADOWS DRIVE OVERCROSSING AT SR-56 POST MILE 5.6, DISTRICT 11 SAN DIEGO, CALIFORNIA	9


APPENDIX A

AS BUILT AND PROPOSED IMPROVEMENT PLANS

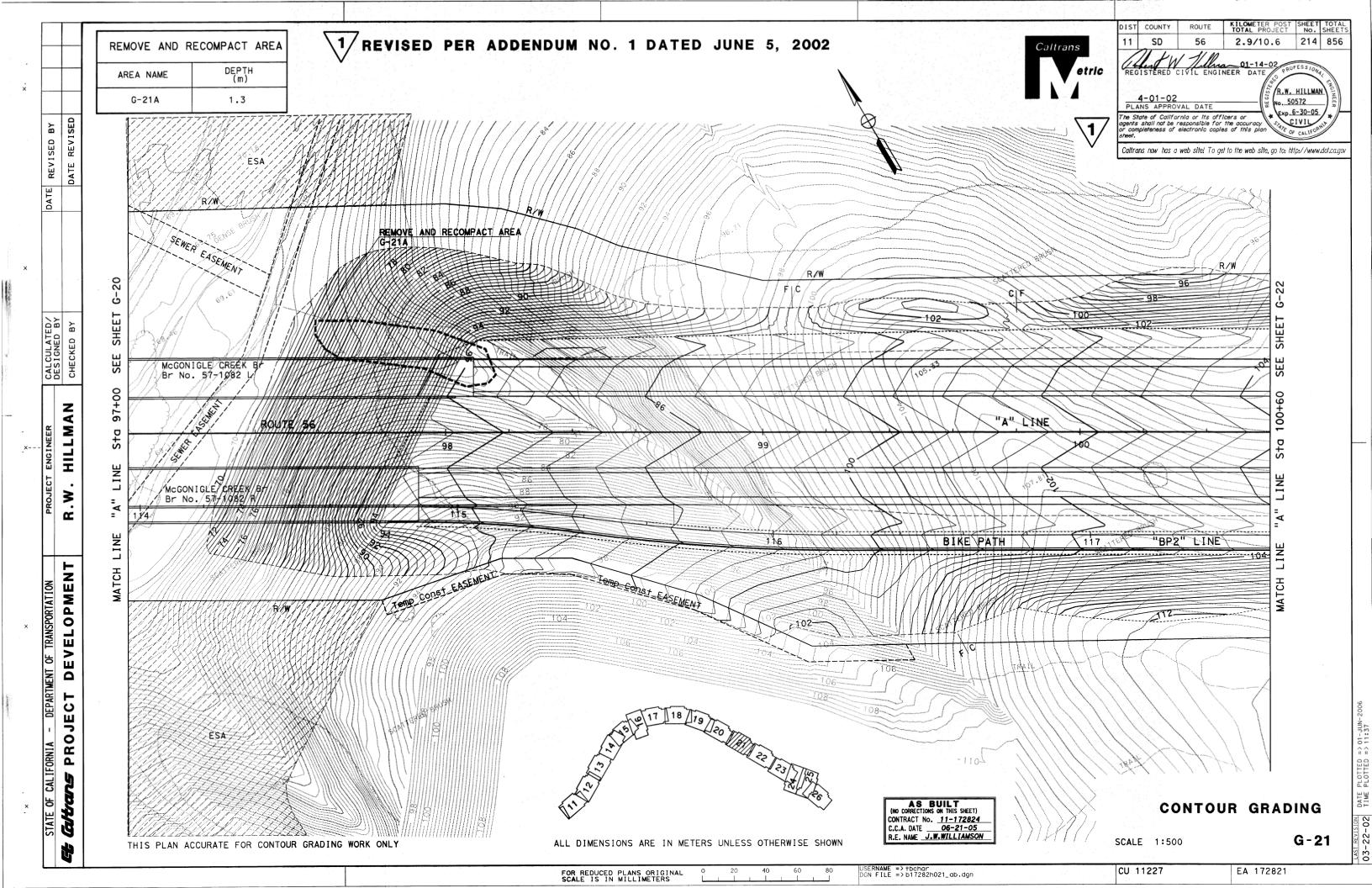
APPENDIX A

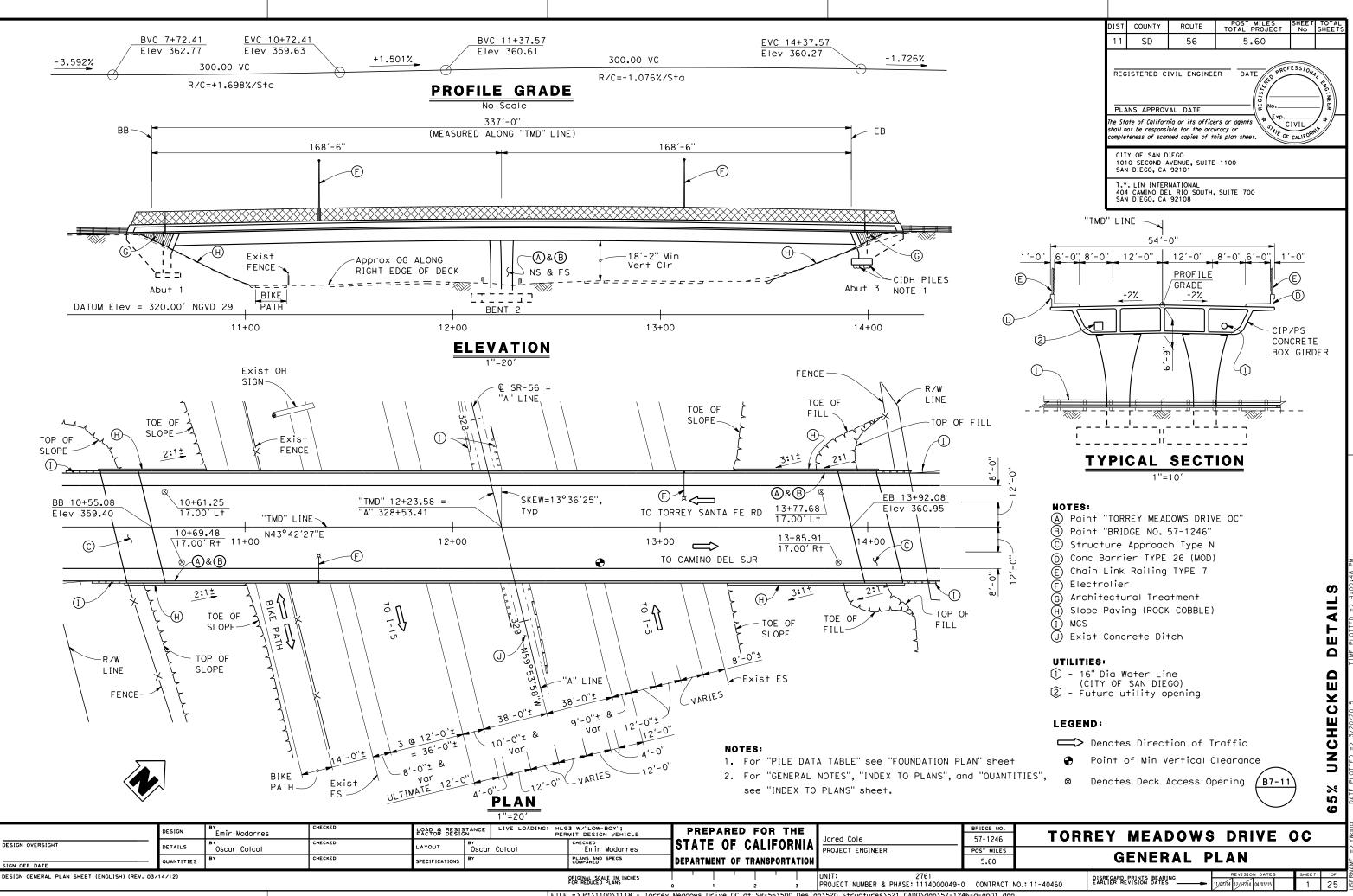
AS-BUILT AND PROPOSED IMPROVEMENT PLANS


AS-BUILT PLANS

-

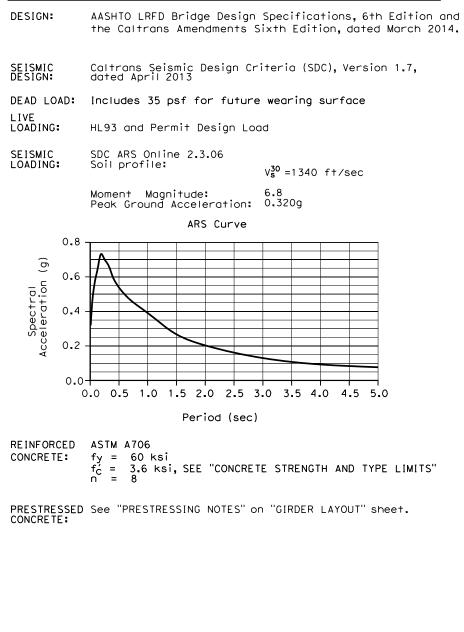
1.4


÷.;	80			115	A start		- 22	25.2	1
			 		183	1	1	Sec.	4
					8.47		÷.,		
					11.0				
		-	 						

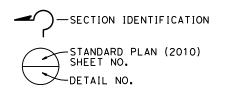

USERNAME => tbchar DGN FILE => b17282f018_ab.dgn

Cottrans 11 50 56 2.9/10.6 58 Interview Cottrans 01-11-02 01-11-02 01-11-02 Redistree 01-11-02 01-11-02 01-11-02 01-11-02 Redistree 01-01-02 01-11-02 01-11-02 01-11-02 Lanss APROVAL DATE Date 0.9000 01-11-02 01-11-02 Participation Cottrans for Collarity of the offlines of the openantial for the ope	SHEE
A-01-02 PLANS APPROVAL DATE The State of Cultering or file of theorem or integration of the accuracy of the base of the accuracy of the base of t	856
on on d t	GINEER +
Image: Second	.dot.ca.g
PROFILE GRADE	
PROFILE GRADE	
PROFILE GRADE	
PROFILE GRADE	1000
PROFILE GRADE	
PROFILE GRADE	[c.
PROFILE GRADE	6%
PROFILE GRADE	
Image: Second	4%
Image: Second	
Image: Second	2%
Image: Second	
PROFILE GRADE	0%
	-27
PROFILE GRADE	
PROFILE GRADE	-47
PROFILE GRADE	
PROFILE GRADE	-67
PROFILE GRADE	
PROFILE GRADE	
PROFILE GRADE	
	120
	214
	115
PROFILE GRADE	1993
PROFILE GRADE	110
PROFILE GRADE	1.1.1
AS BUIL T (w convections on this sket) (w convections on this sket) CONTRACT NO. 11-172824 C.C.A. DATE 06-21-05 R.E. NAME J.W.WTLLIAMSON PROFILE PROFILE	105
CONTRACT No. <u>11-172824</u> C.C.A. DATE <u>06-21-05</u> R.E. NAME <u>J.W. W/LL/AMSON</u> PROFILE	
CONTRACT No. <u>11-172824</u> C.C.A. DATE <u>06-21-05</u> R.E. NAME <u>J.W. W/LL/AMSON</u> PROFILE	100
CONTRACT No. <u>11-172824</u> C.C.A. DATE <u>06-21-05</u> R.E. NAME <u>J.W. W/LL/AMSON</u> PROFILE	
CONTRACT No. <u>11-172824</u> C.C.A. DATE <u>06-21-05</u> R.E. NAME <u>J.W. W/LL/AMSON</u> PROFILE	95
CONTRACT No. <u>11-172824</u> C.C.A. DATE <u>06-21-05</u> R.E. NAME <u>J.W. W/LL/AMSON</u> PROFILE	1
CONTRACT No. <u>11-172824</u> C.C.A. DATE <u>06-21-05</u> R.E. NAME <u>J.W. W/LL/AMSON</u> PROFILE	90
CONTRACT No. <u>11-172824</u> C.C.A. DATE <u>06-21-05</u> R.E. NAME <u>J.W. W/LL/AMSON</u> PROFILE	
C.C.A. DATE <u>06-21-05</u> R.E. NAME J.W.W/LLIAMSON PROFILE	85
PROFILE	
	80
그는 것 잘 그 그 것 같아. 가 것 것 것 것 것 것 것 것 것 것 것 것 것 것 것	1. 1.
Uor 17 11 500	75
SCALE Hor Z 1: 500 P-18	Sugar S
	70
+60 +80 102	
- 8701 - 9772 - 10823 	

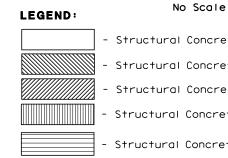
01-14-02 TIME PLOTTED => 25-MAY-2006



PROPOSED PLANS



FILE => P:\1100\1118 - Torrey Meadows Drive OC at SR-56\500_Design\520_Structures\521_CADD\dgn\57-1246-a-gp01.dgn


GENERAL NOTES LOAD AND RESISTANCE FACTOR DESIGN

PLAN SYMBOLS

CONCRETE STRENGTH AND TYPE LIMITS

- · Structural Concrete, Bridge (4000 psi @ 28 days)
- · Structural Concrete, Bridge (3600 psi @ 28 days)
- Structural Concrete, Bridge Footing (3600 psi @ 28 days)
- Structural Concrete, Approach Slab
- Structural Concrete, CIDH Piles (3,600 psi @ 28 days)

STANDARD PLANS (DATED 2010)

RSP	A10A A10B A10C A10D A10E A62C	ABBREVIATIONS (SHEET 1 OF 2) ABBREVIATIONS (SHEET 2 OF 2) LINES AND SYMBOLS (SHEET 1 OF 3) LINES AND SYMBOLS (SHEET 2 OF 3) LINES AND SYMBOLS (SHEET 2 OF 3) LIMITS OF PAYMENT FOR EXCAVATION AND BACKFILL BRIDGE
	B0-1 B0-3	BRIDGE DETAILS
	B0-5 B0-13	BRIDGE DETAILS
	B7-1 B7-10	UTILITY OPENING - BOX GIRDER
RSP	B7-11 B8-5	
RSP		CHAIN LINK RAILING TYPE 7
	B11-56 ES-6A	CONCRETE BARRIER TYPE 736
	ES-6B	TYPES 15 AND 21)
		AND GROUTING FOR TYPES 15 AND 21, BARRIER RAIL MOUNTED)

-		_	_		_
- 1	Ν	D	Ε	Х	T

SHEET NO.

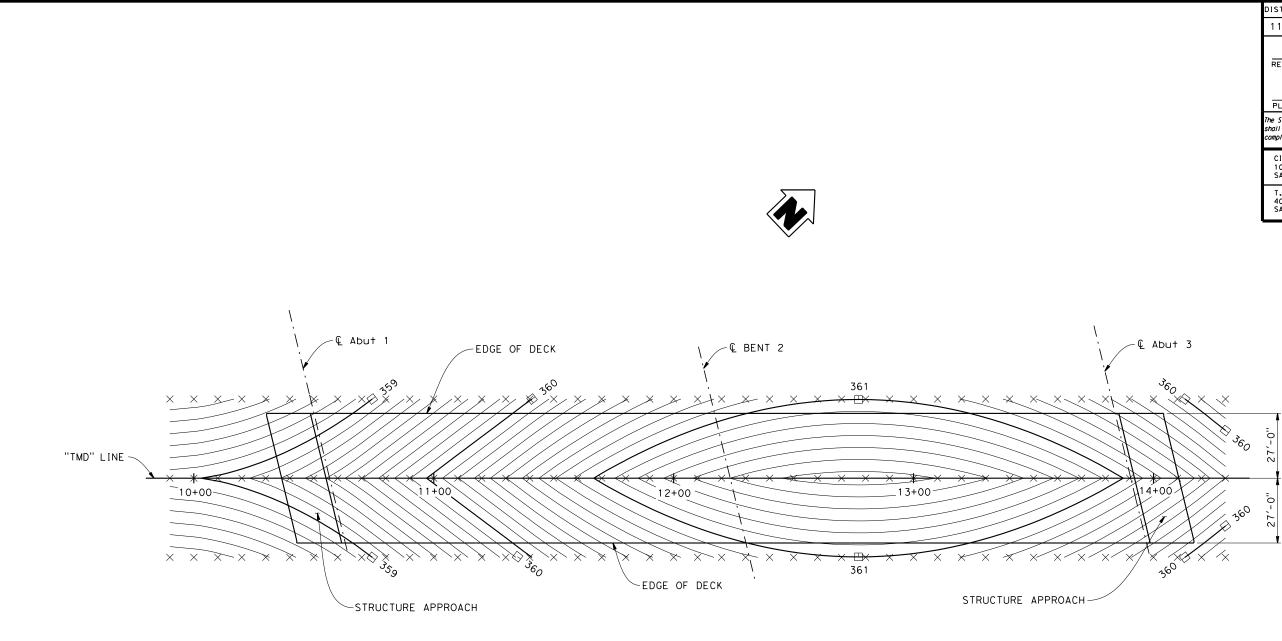
	· .
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	GIDFAAABBBFGGZRASSSSZLLLL
22 23 24 25	L L L

							_
	DESIGN	Emir Modarres	CHECKED	PREPARED FOR THE		BRIDGE NO.	
DESIGN OVERSIGHT		BY	CHECKED		Jared Cole	57-1246	
DESIGN OVERSIGNT	DETAILS	Yihong Wang	/	STATE OF CALIFORNIA	PROJECT ENGINEER	POST MILES	
SIGN OFF DATE	QUANTITIES	5 ^{BY}	CHECKED	DEPARTMENT OF TRANSPORTATION		5.60	
DESIGN DETAIL SHEET (ENGLISH) (REV. 03/14/12)		•	ORIGINAL SCALE IN INCHES FOR REDUCED PLANS		UNIT: 2761		
			FOR REDUCED PLANS	0 1 2 3	PROJECT NUMBER & PHASE: 1114000049-0	O CONTRACT N	NO.:
		F	ILE => P:\1100\1118 - Torrey	Meadows Drive OC at SR-56\500_Desig	gn\520_Structures\521_CADD\dgn\57-12	46-b-i+p01.dg	Jn

DIST	COUNTY	ROUTE	POST MILES TOTAL PROJECT	SHEET No	TOTAL SHEETS	
11	SD	56	5.60			
REGISTERED CIVIL ENGINEER PLANS APPROVAL DATE The State of California or its officers or agents shall not be responsible for the accuracy or completeness of scanned copies of this plan sheet.						
101	Y OF SAN D O SECOND A I DIEGO, CA	VENUE, SUITE	1100			
404	. LIN INTER CAMINO DE DIEGO, CA	L RIO SOUTH,	SUITE 700			

TO BRIDGE PLANS

<u>title</u>


GENERAL PLAN GENERAL PLAN INDEX TO PLANS DECK CONTOURS FOUNDATION PLAN ABUTMENT 1 LAYOUT ABUTMENT 3 LAYOUT ABUTMENT DETAILS NO. 1 ABUTMENT DETAILS NO. 2 BUTMENT DETAILS NO. 2 ABUIMENT DETAILS NO. 2 BENT LAYOUT BENT DETAILS NO. 1 BENT DETAILS NO. 2 TYPICAL SECTION GIRDER DETAILS MISCELLANEOUS DETAILS RAILING & BARRIER DETAILS RAILING & BARRIER DETAILS ARCHITECTURAL TREATMENT D RCHITECTURAL TREATMENT DETAILS SLOPE PAVING (ROCK COBBLE) STRUCTURE APPROACH TYPE N STRUCTURE APPROACH DRAINAGE DETAILS STRUCTURE APPROACH DRAINAGE DETAILS STRIP JOINT SEAL ASSEMBLY MAXIMUM MOVEMENT RATING = 4" LOG OF TEST BORINGS NO. 1 OF 4 LOG OF TEST BORINGS NO. 2 OF 4 LOG OF TEST BORINGS NO. 3 OF 4 LOG OF TEST BORINGS NO. 4 OF 4

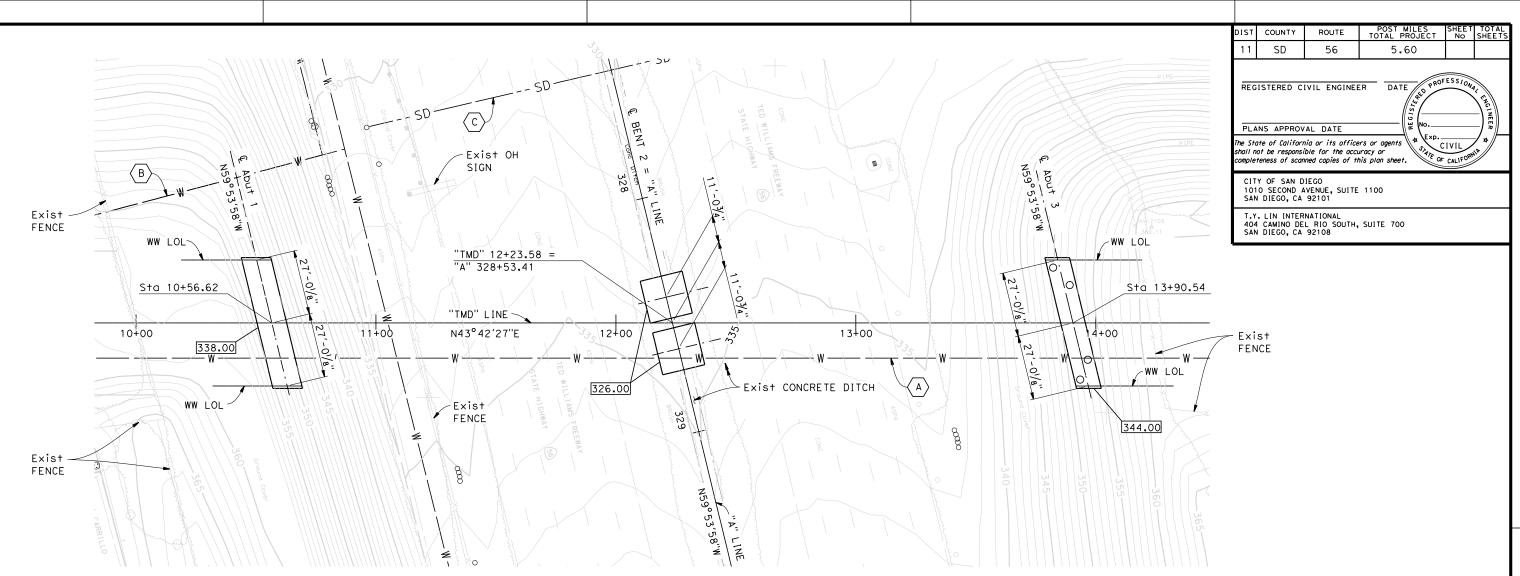
NO.			~ ~		
46	TOR	REY MEADOWS DRIVE (C		
ILES					
)		INDEX TO PLANS			
		REVISION DATES	SHEET	OF	
RACT NO.: 11-40460					
01 do	<u>,</u>				

AIL DET UNCHECKED

65%

S

PLAN 1"=20'-0"


DESIGN OVERSIGHT	DESIGN	Emir Modorres	CHECKED CHECKED	PREPARED FOR THE STATE OF CALIFORNIA		BRIDGE NO. 57-1246	ORREY MEADOWS DRIVE OC
SIGN OFF DATE	DETAILS	Yihong Wang BY		DEPARTMENT OF TRANSPORTATION		POST MILES 5.60	DECK CONTOURS
DESIGN DETAIL SHEET (ENGLISH) (REV. 03/14/12)			ORIGINAL SCALE IN INCHES FOR REDUCED PLANS		UNIT: 2761 PROJECT NUMBER & PHASE: 1114000049-() CONTRACT NO.: 11-404	DISREGARD PRINTS BEARING EARLIER REVISION DATES REVISION DATES SHEET OF 04/03/15 3 25

ŀ	DIST	COUNTY	ROUTE	POST MILES TOTAL PROJECT	SHEET No	TOTAL SHEETS						
	11 SD 56 5.60											
k	REGISTERED CIVIL ENGINEER PLANS APPROVAL DATE The State of California or its officers or agents shall not be responsible for the accuracy or completeness of scanned copies of this plan sheet.											
	CITY OF SAN DIEGO 1010 SECOND AVENUE, SUITE 1100 SAN DIEGO, CA 92101											

NOTES:

- Contour interval = 0.10 Ft.
 Contours do not include camber.
 X Indicates 10' intervals.
 U Indicates even foot contour.

1

	SPREAD FOOTING DATA TABLE										
Support Location	Service Permissible Net Contact stress (Settlement) (Ksf)	Strength/Construction Factored Gross Nominal Bearing Resistance φb = 0.45 (Ksf)	Extreme Event Factored Gross Nominal Bearing Resistance φb = 1.00 (Ksf)								
Abutment 1	TBD	TBD	NZA								
Bent 2 L	TBD	TBD	TBD								
Bent 2 R	TBD	TBD	TBD								

UTILITIES:

- $\langle A \rangle$ 16" Dia Water Line (CITY OF SAN DIEGO) $\langle B \rangle$ 24" Recycled Water (CITY OF SAN DIEGO)
- $\langle C \rangle$ 24" Storm Drain (CITY OF SAN DIEGO)

LEGEND:

- XXX.XX - Indicates bottom of footing elevation
- 0 - Indicates XXX Piles, not all piles shown

Pile Type Location Abutment 3 36" CIDH

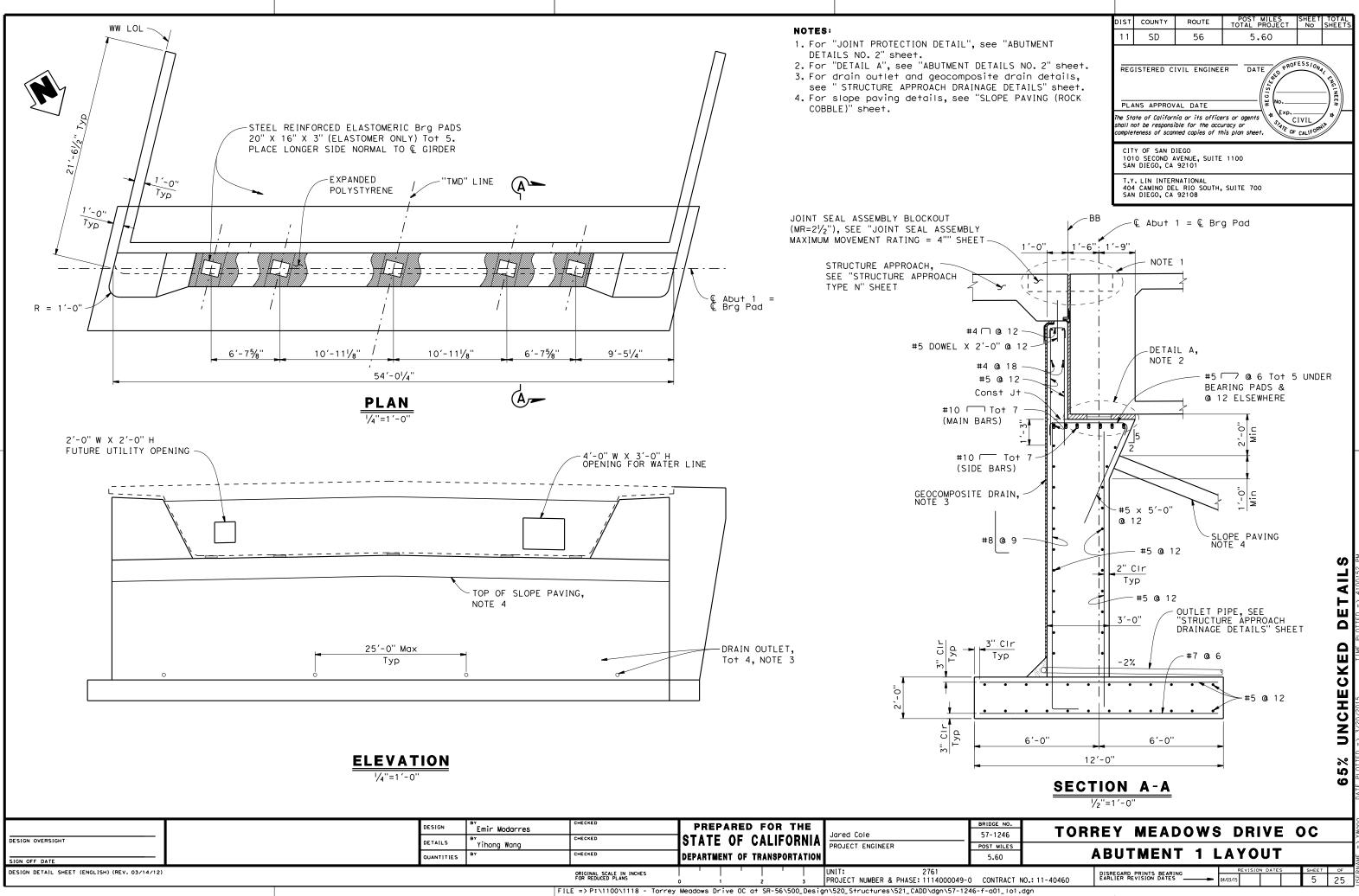
NOTE:

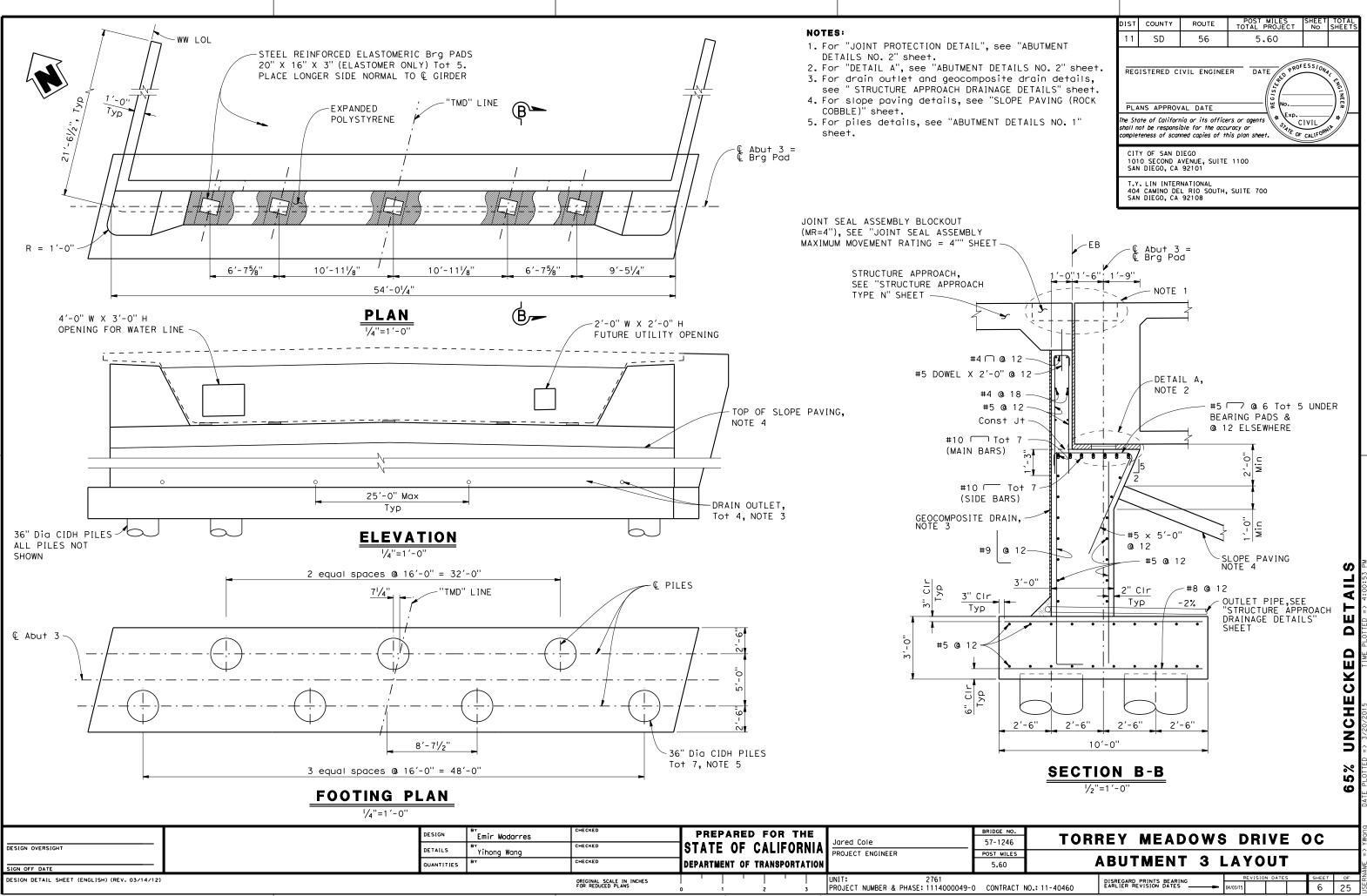
(c) Settlement; (d) Lateral Load.

BENCHMARK:	
------------	--

DESCRIPTION:	Brass pin Carmel Mo
ELEVATION:	538.805 f

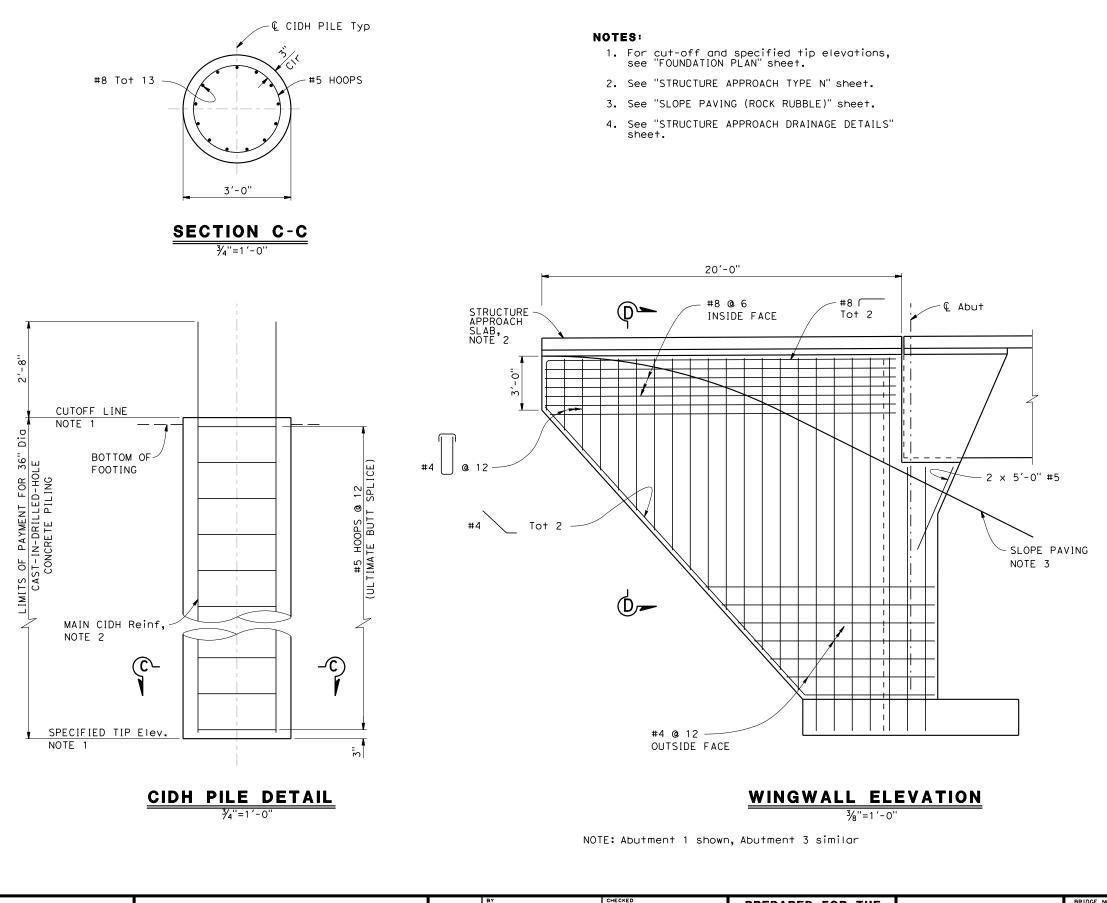
	SCALE: AS SHOW	N VERT.DATUM NG	'D 29 I	HORZ.DATUM NAD 83	DESIGN	Emir Modarres	CHECKED	PRI	EPAR	ED	FOR T	HE		BRIDGE NO
X DESIGN OVERSIGHT	PHOTOGRAMME TRY	AS OF: 01/06/10	ALIGNMENT	TIES		BY	CHECKED						Jared Cole PROJECT ENGINEER	57-1246
	SURVEYED	^{BY} Forrest Youngs	DRAF TED	Вү	DETAILS	Oscar Colcol					ALIEVE	MINIA	PROJECT ENGINEER	POST MILE
X SIGN OFF DATE	FIELD CHECKED	BY	CHECKED	BY	QUANTITIES	BY	CHECKED	DEPART	MENT (OF TR	ANSPORT	ATION		5.60
FOUNDATION PLAN SHEET (ENGLISH) (REV	. 03/14/12)						ORIGINAL SCALE IN INCHES FOR REDUCED PLANS			۱	'		UNIT: 2761 PROJECT NUMBER & PHASE: 1114000049-(
							FILE => P:\1100\1118 - Torre	rey Meadows	Drive (DC at	2 SR-56\500	-	gn\520_Structures\521_CADD\dgn\57-124	

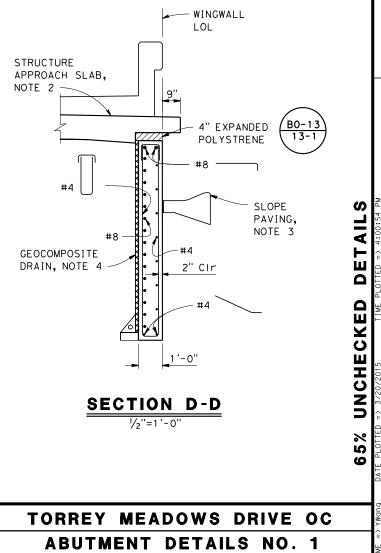

PILE DATA TABLE										
Nominal Resis [.]	tance (kips)	Design Tip	Specified							
Compression Tensic		Elev. (f+)	Tip Elev. (ft)							
xx.x	0	+XX.X (Q) +XX.X (C) +XX.X (d)	+XX.X							


1. Design tip elevations are controlled by: (a) Compression; (b) Tension;

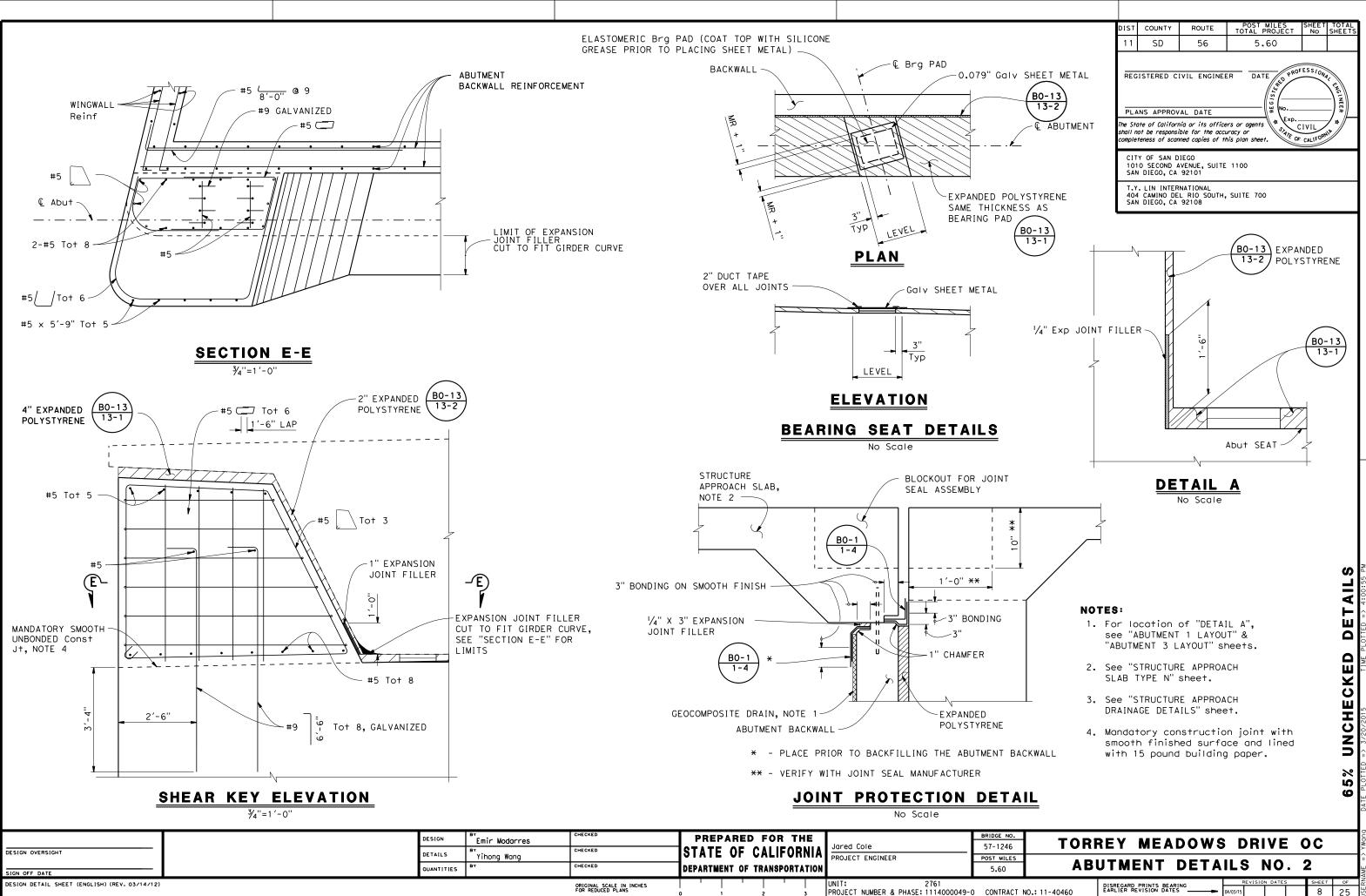
n located in southwest curb return of ountain Rd. and Black Mountain Rd. feet NGVD 29

246	TOR	REY	MEADOWS	DRIVE	00	
AILES		FO	UNDATION	PLAN		
0				REVISION DATES	SHEET	OF
	NO 11-40460	DISREGAR EARLIER	D PRINTS BEARING	11/07/14 12/17/14 04/03/15	A	25

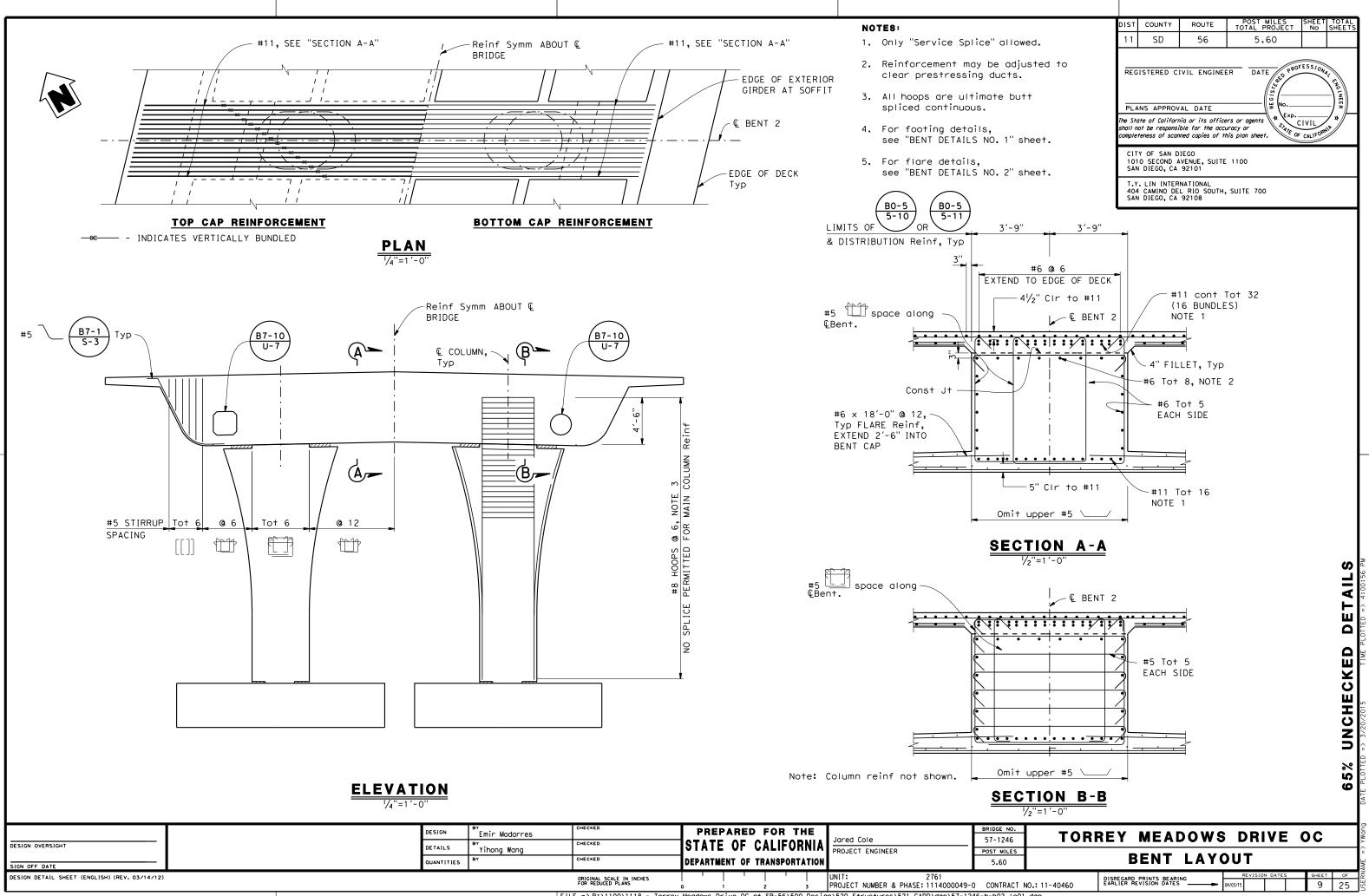

DETAILS

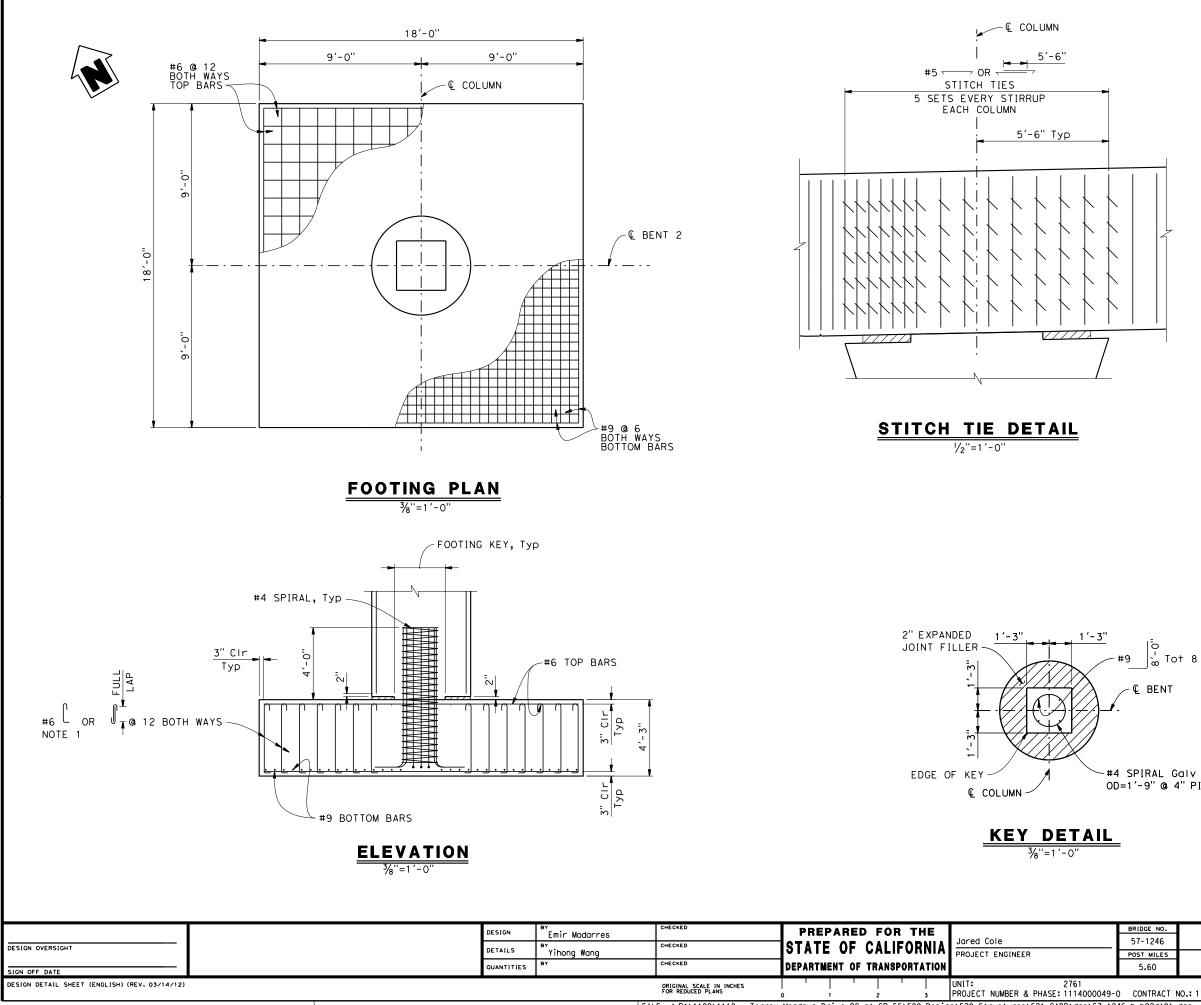

FILE => P:\1100\1118 - Torrey Meadows Drive OC at SR-56\500_Design\520_Structures\521_CADD\dgn\57-1246-f-a01

<u>е NO.</u> 246	TOR	REY MEADOW	S DI	RIVE	oc		jubWY .
WILES				<u></u>			- îî
50		ABUTMENT 3	LAY	OUT			AME
		DISREGARD PRINTS BEARING	REV	ISION DATES	SHEET	OF	ΞĒ
TRACT N	NO.: 11-40460	EARLIER REVISION DATES	04/03/15		6	25	USE
1_102.	dgn						-



		DESIGN	Emir Modorres	CHECKED	PREF					lared Cole	BRIDGE 57-12	
DESIGN OVERSIGHT		DETAILS	BY Yihong Wang	CHECKED	STATE	OF	CAL	FOR	NIA	Jared Cole PROJECT ENGINEER	POST M	
SIGN OFF DATE		QUANTITIES	BY	CHECKED	DEPARTM	ENT OF	TRANS	PORTA	TION		5.6	,0
DESIGN DETAIL SHEET (ENGLISH) (REV. 03/14/12)				ORIGINAL SCALE IN INCHES FOR REDUCED PLANS	0	 1	2	I		UNIT: 2761 PROJECT NUMBER & PHASE: 1114000049	-0 CONT	RACT NO
			F	ILE => P:\1100\1118 - Tor	rrey Meadows Dr	rive OC	at SR-	56\500_	Desig	n\520_Structures\521_CADD\dgn\57-1	246-f-a01	1d+01.d


DIST	COUNTY	ROUTE	POST MILES TOTAL PROJECT	SHEET No	TOTAL SHEETS							
11 SD 56 5.60												
REGISTERED CIVIL ENGINEER DATE PLANS APPROVAL DATE The State of California or its officers or agents shall not be responsible for the accuracy or completeness of scanned copies of this plan sheet.												
101	CITY OF SAN DIEGO 1010 SECOND AVENUE, SUITE 1100 SAN DIEGO, CA 92101											
SAN DIEGO, CA 92101 T.Y. LIN INTERNATIONAL 404 CAMINO DEL RIO SOUTH, SUITE 700 SAN DIEGO, CA 92108												

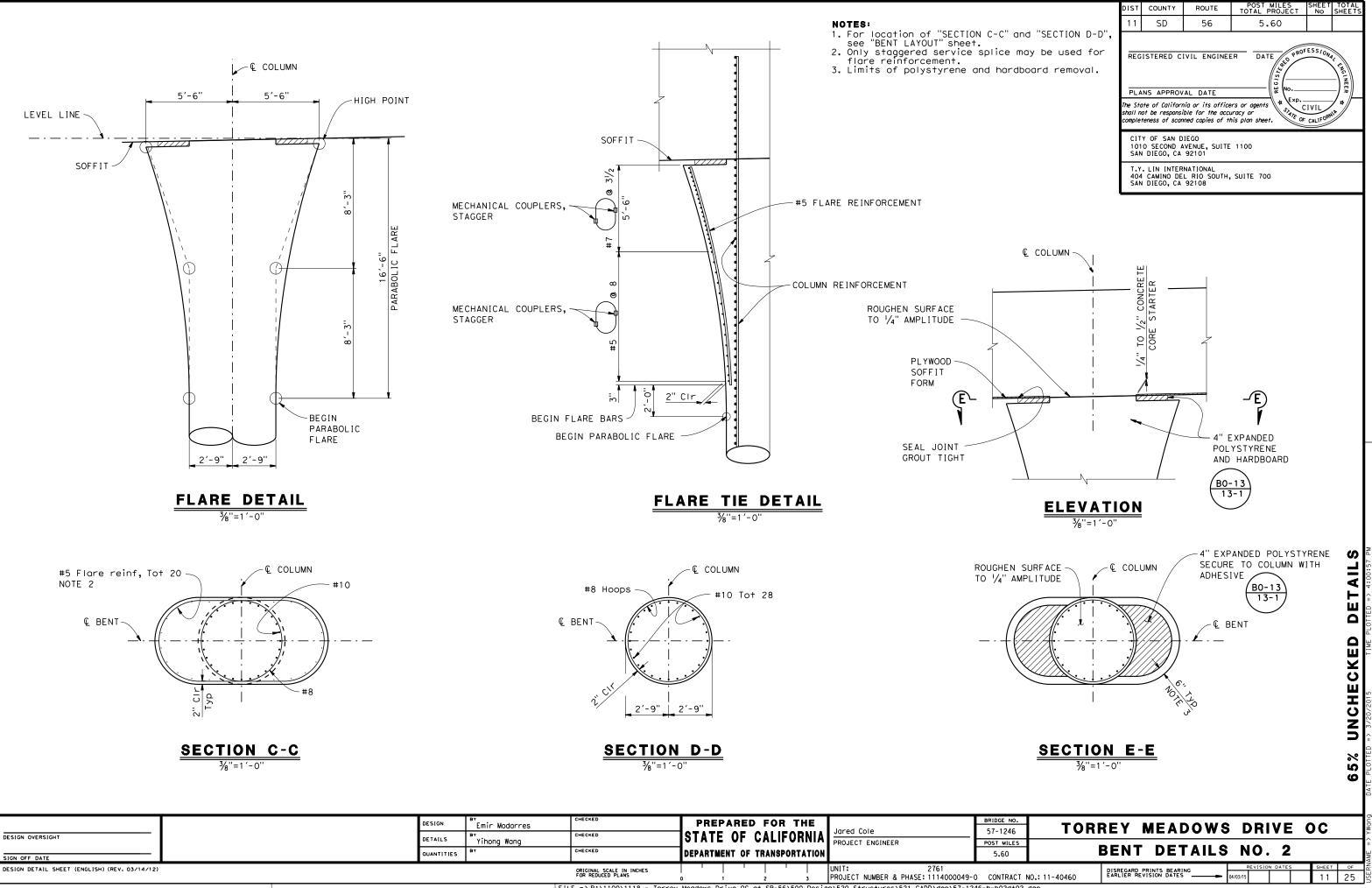

ACT NO.: 11-40460 DISPECARD PRINTS BEARING DATES SHEET OF 04/03/15 7 25

FILE => P:\1100\1118 - Torrey Meadows Drive OC at SR-56\500_Design\520_Structures\521_CADD\dgn\57-1246-f-a01dt02.dgn

FILE => P:\1100\1118 - Torrey Meadows Drive OC at SR-56\500_Design\520_Structures\521_CADD\dgn\57-1246-h-b02_1001.dgn

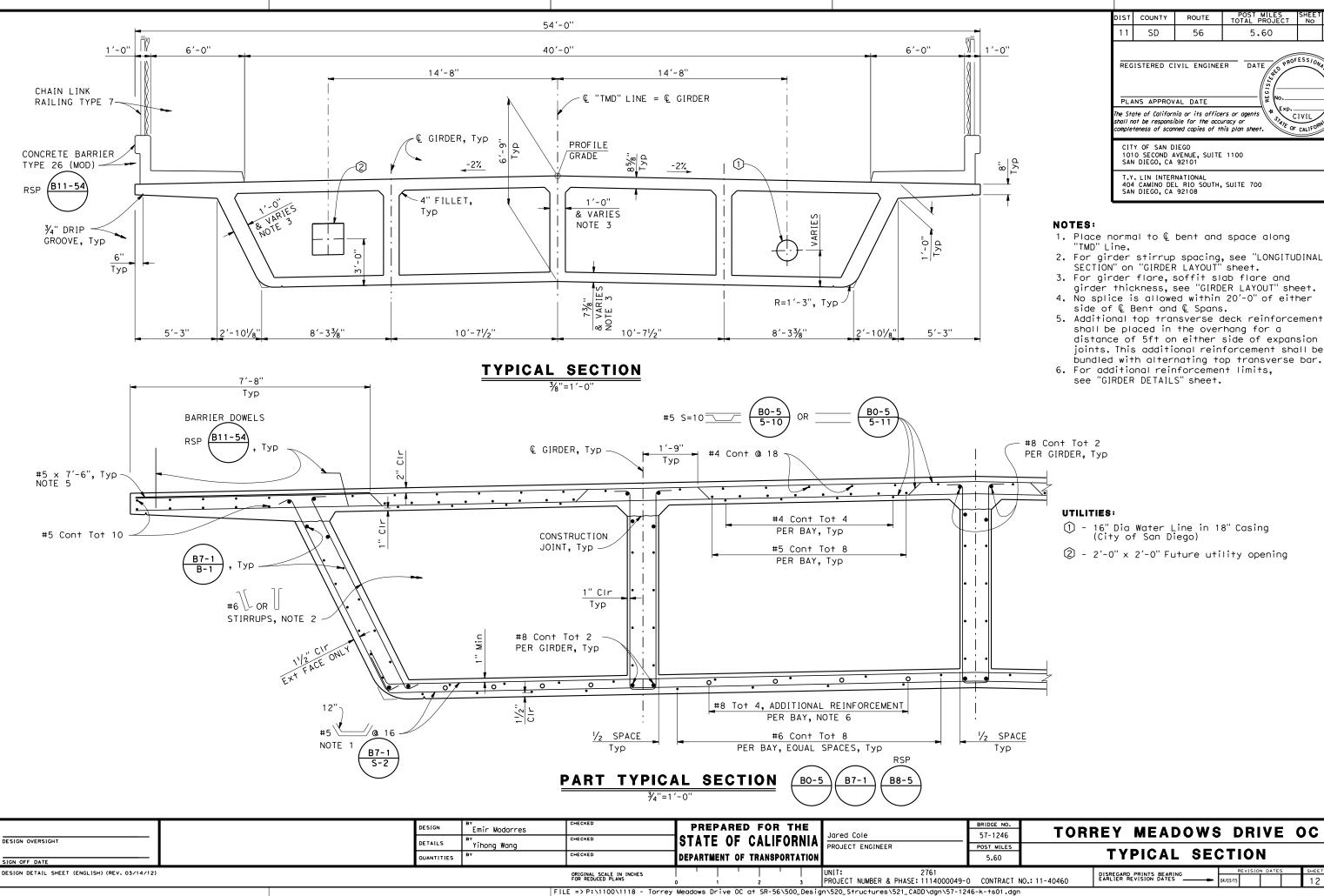
FILE => P:\1100\1118 - Torrey Meadows Drive OC at SR-56\500_Design\520_Structures\521_CADD\dgn\57-1246-h-b02

	DIST	COUNTY	ROUTE	POST MILES TOTAL PROJECT	SHEET No	TOTAL SHEETS						
	11 SD 56 5.60											
	REGISTERED CIVIL ENGINEER PLANS APPROVAL DATE The State of California or its officers or agents shall not be responsible for the accuracy or completeness of scanned copies of this plan sheet.											
	CITY OF SAN DIEGO 1010 SECOND AVENUE, SUITE 1100 SAN DIEGO, CA 92101											
	T.Y. LIN INTERNATIONAL 404 CAMINO DEL RIO SOUTH, SUITE 700 SAN DIEGO, CA 92108											
1												


NOTE:

Hook around top & bottom mat bars. Omit beneath column key and within 6" edge of column key.

,¦ Tot 8 Galv


OD=1'-9" @ 4" PITCH

E NO.		/						-		
246	I TORI	REY	MEAC)	5 D	R	VE	0)C	
MILES										
60		BEN	T DEI	AILS	5 N		. 1			
		DISPECAR	D PRINTS BEARIN	IC.	R	EVISIO	N DATES		SHEET	OF
TRACT I	NO.: 11-40460	EARLIER	REVISION DATES		04/03/15				10	25
)2d+01.	dgn									

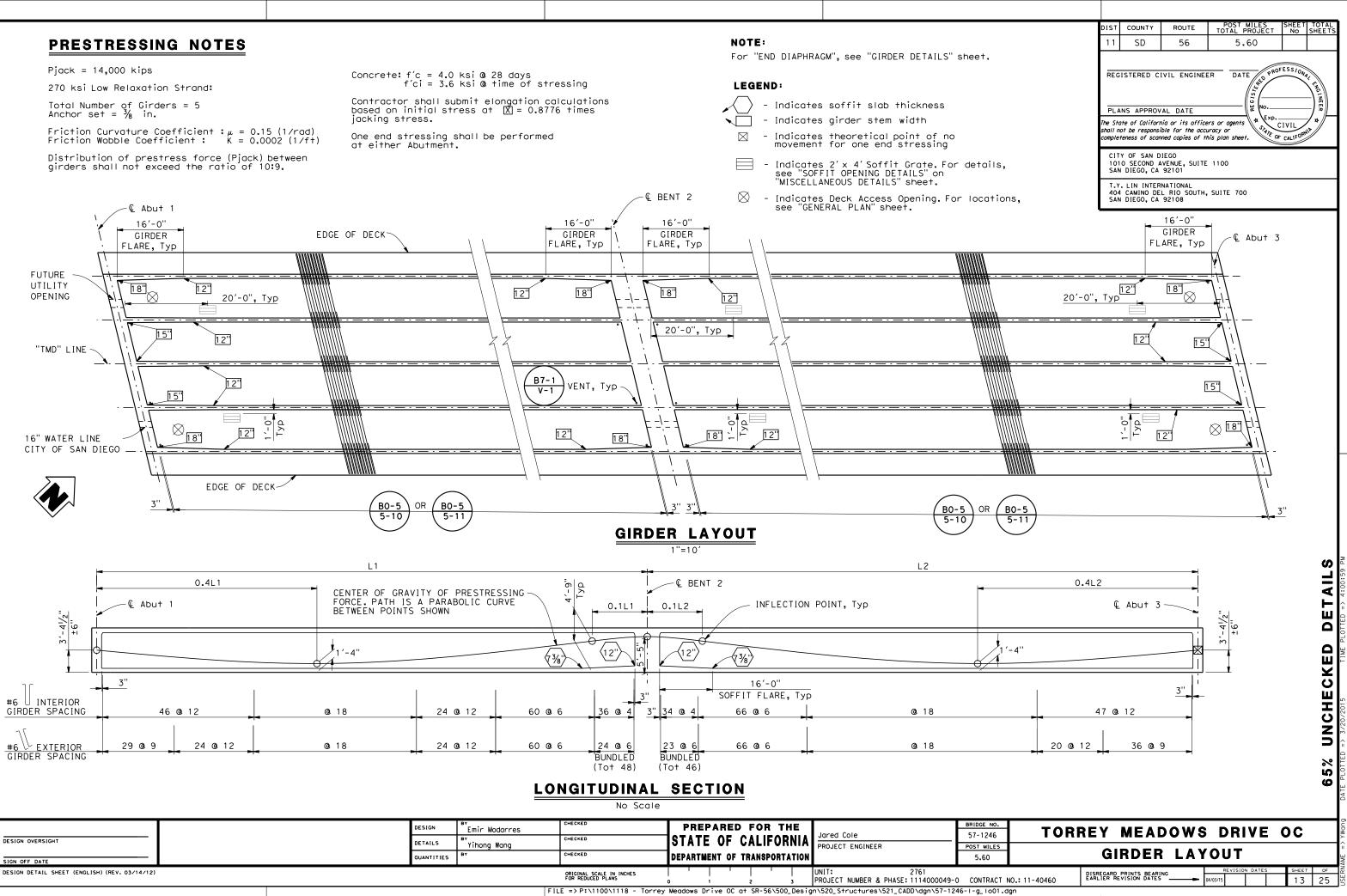
FILE => P:\1100\1118 - Torrey Meadows Drive OC at SR-56\500_Design\520_Structures\521_CADD\dgn\57-1246-h-b02dt02.dgn

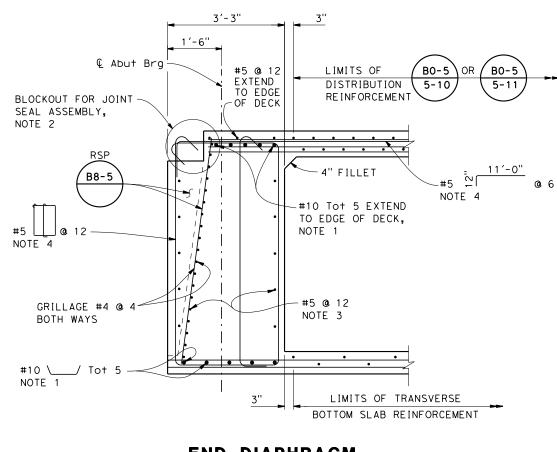
DIST	COUNTY	ROUTE	POS TOTA	TOTAL SHEETS			
11	SD	56					
REGISTERED CIVIL ENGINEER PLANS APPROVAL DATE The State of California or its officers or agents shall not be responsible for the occuracy or completeness of scanned copies of this plan sheet.							
CITY OF SAN DIEGO 1010 SECOND AVENUE, SUITE 1100 SAN DIEGO, CA 92101							
T.Y. LIN INTERNATIONAL 404 CAMINO DEL RIO SOUTH, SUITE 700 SAN DIEGO, CA 92108							

	DIST	COUNTY	ROUTE	POST MILES TOTAL PROJECT	SHEET No	TOTAL SHEETS	
	11	SD	56	5.60			
<u>- 0''</u>	REGISTERED CIVIL ENGINEER PLANS APPROVAL DATE The State of California or its officers or agents shall not be responsible for the accuracy or completeness of scanned copies of this plan sheet.						
8". ک	101	Y OF SAN D O SECOND A I DIEGO, CA	VENUE, SUITE	1100			
	T.Y. LIN INTERNATIONAL 404 CAMINO DEL RIO SOUTH, SUITE 700 San Diego, Ca 92108						

- 1. Place normal to & bent and space along
- 2. For girder stirrup spacing, see "LONGITUDINAL SECTION" on "GIRDER LAYOUT" sheet.
- girder thickness, see "GIRDER LAYOUT" sheet.
- shall be placed in the overhang for a distance of 5ft on either side of expansion joints. This additional reinforcement shall be bundled with alternating top transverse bar.

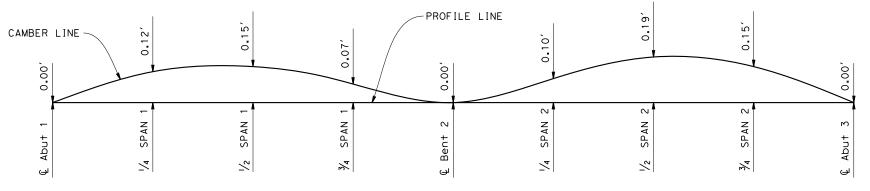
DETAILS


UNCHECKED


65%

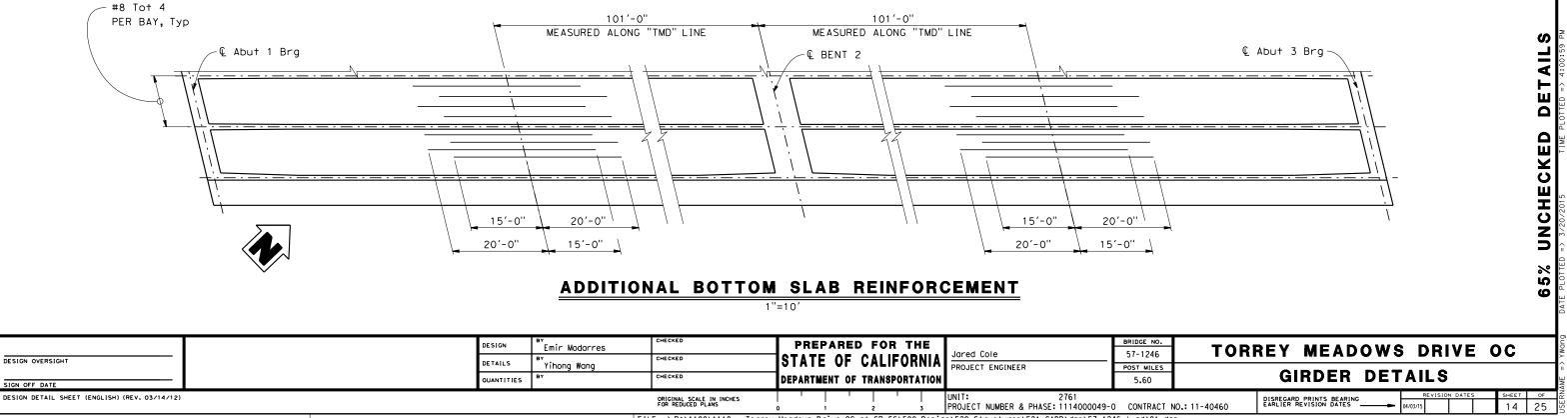
E NO.									
246	TOR	REY	MEAD	ows	5 D	RIVE	Ξ ()C	
MILES				_		<u></u>			
60	TYPICAL SECTION								
		DISREGARD PRINTS BEARING			REVISION DATES		SHEET	OF	
TRACT NO.: 11-40460				04/03/15			12	25	
s01.dgn	1								

jacking stress.

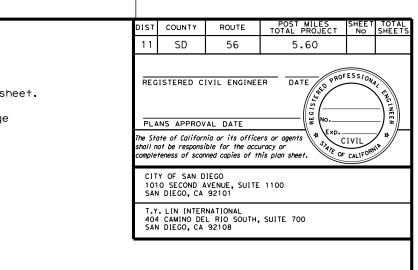

- Indicates theoretical point of no movement for one end stressing
- 'MISCELLANEOUS DETAILS" sheet.

NOTES:

- 1. Place parallel to € abutment and space equally.
- 2. See "JOINT SEAL ASSEMBLY MAXIMUM MOVEMENT RATING = 4" " sheet.
- 3. Bars may be spliced or bent to clear prestress anchorage as directed by the Engineer.
- 4. Place parallel to & Girders and space along & Abutment.


END DIAPHRAGM ³⁄₄"=1′−0"

CAMBER DIAGRAM


No Scale

NOTES:

2. Camber valves shown above are based on stressing at Abutment 1 end.

FILE => P:\1100\1118 - Torrey Meadows Drive OC at SR-56\500_Design\520_Structures\521_CADD\dgn\57-1246-I-gdt01.dgn

1. Does not include allowance for falsework settlement.

1'-8"

CONCRETE BARRIER TYPE 26(Mod)

(B11-54)

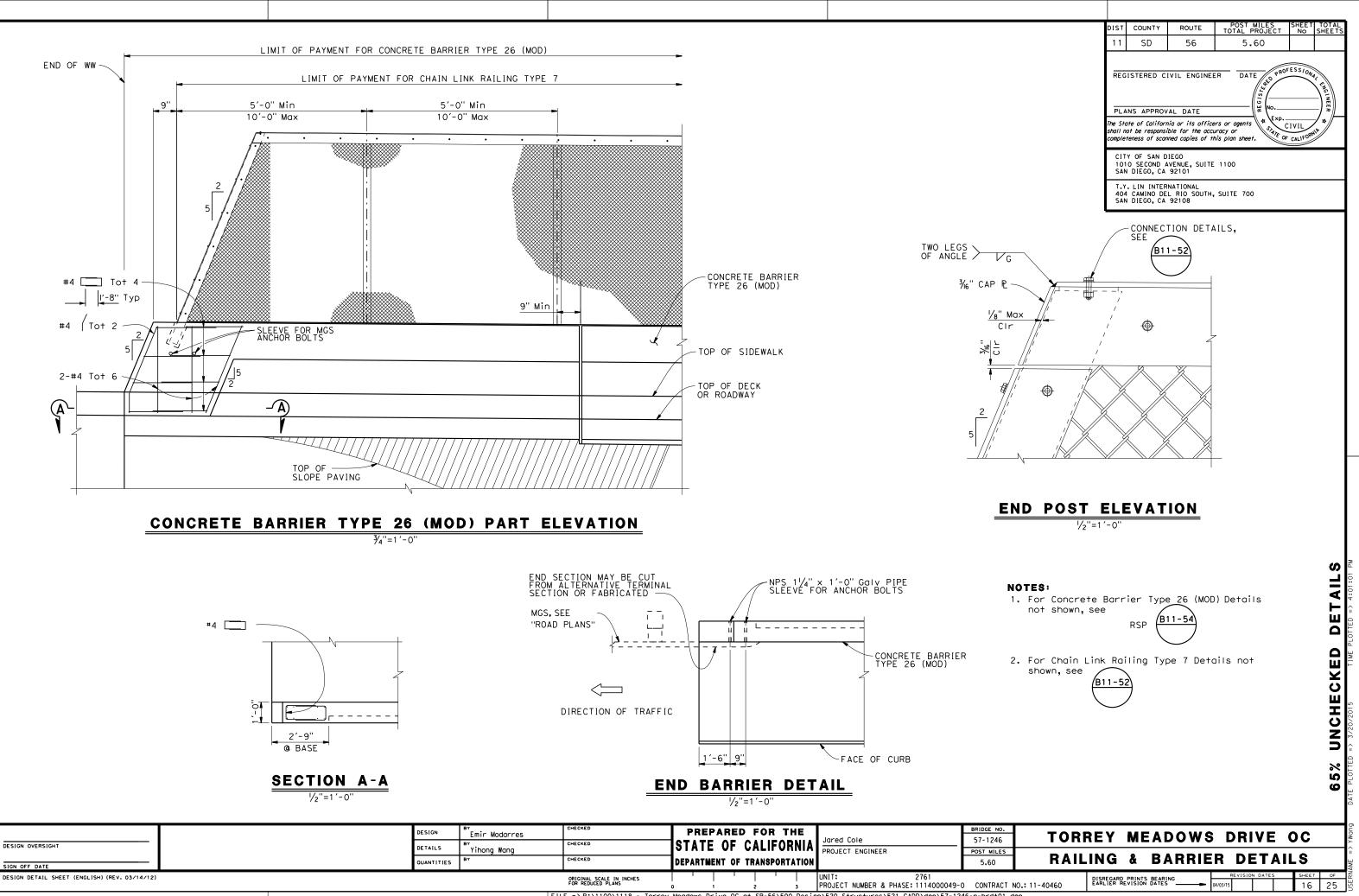
RSP

9"

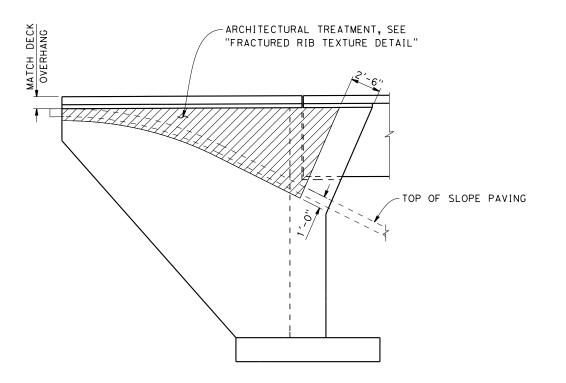
-CITY STREET LIGHT,

FOR CONNECTION DETAILS

SEE "ROAD PLANS"

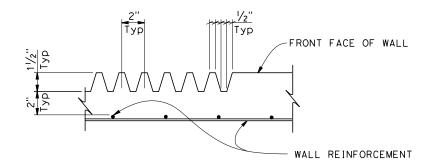

PULL BOX

اب *I |*


DIST	T COUNTY ROUTE		POST MILES TOTAL PROJECT	SHEET No	TOTAL SHEETS		
11	SD	56	5.60				
REGISTERED CIVIL ENGINEER PLANS APPROVAL DATE The State of California or its officers or agents shall not be responsible for the accuracy or completeness of scanned copies of this plan sheet.							
CITY OF SAN DIEGO 1010 SECOND AVENUE, SUITE 1100 SAN DIEGO, CA 92101							
T.Y. LIN INTERNATIONAL 404 CAMINO DEL RIO SOUTH, SUITE 700 SAN DIEGO, CA 92108							

65%

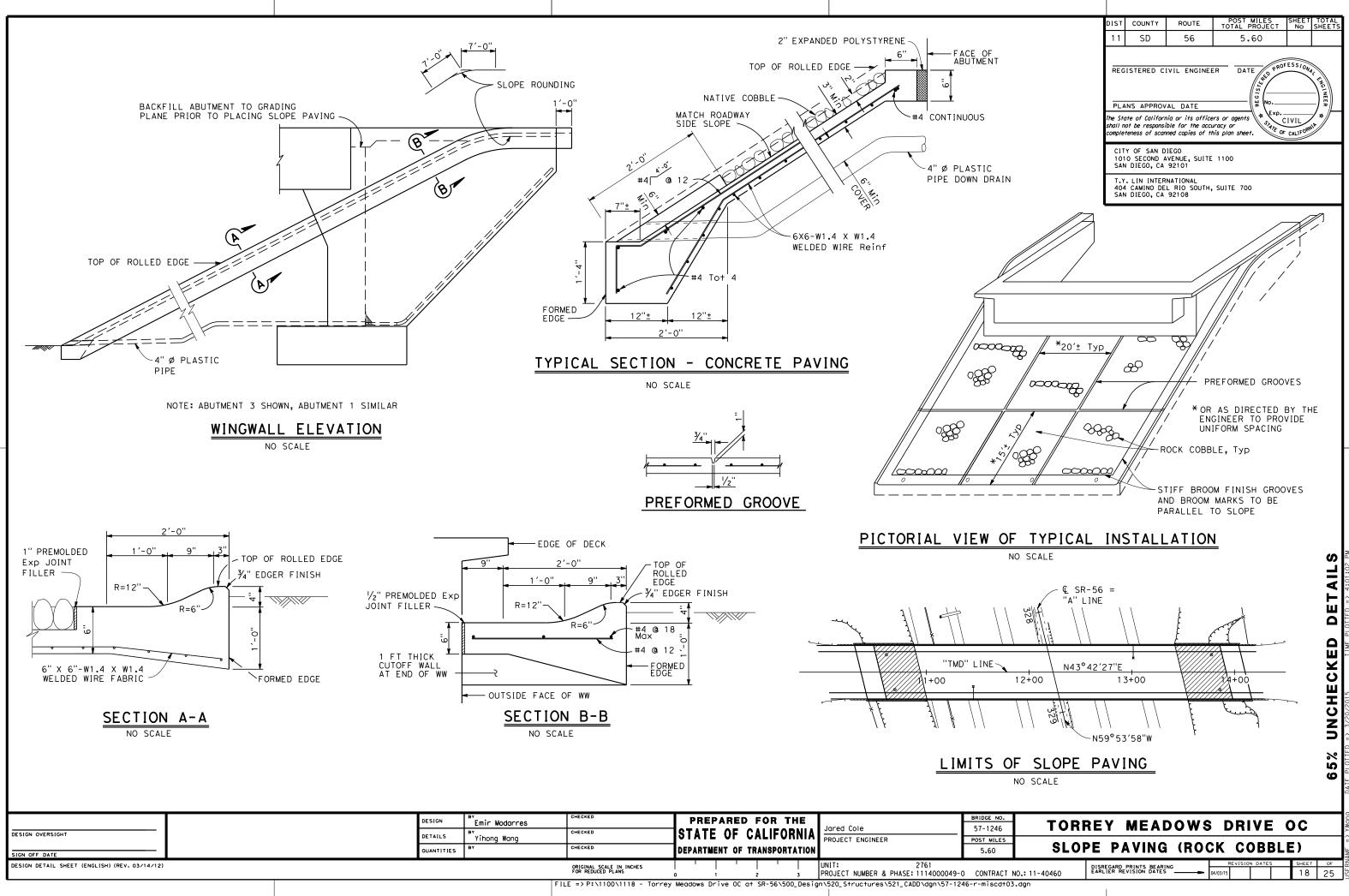
NО. 146	TORREY MEADOWS DRIVE OC							
	MISCELLANEOUS DETAILS							
,	DISREGARD PRINTS BEARING REVISION DATES SHEET OF							
RACT NO.: 11-40460		EARLIER REVISION DATES 04/03/15	15	25				

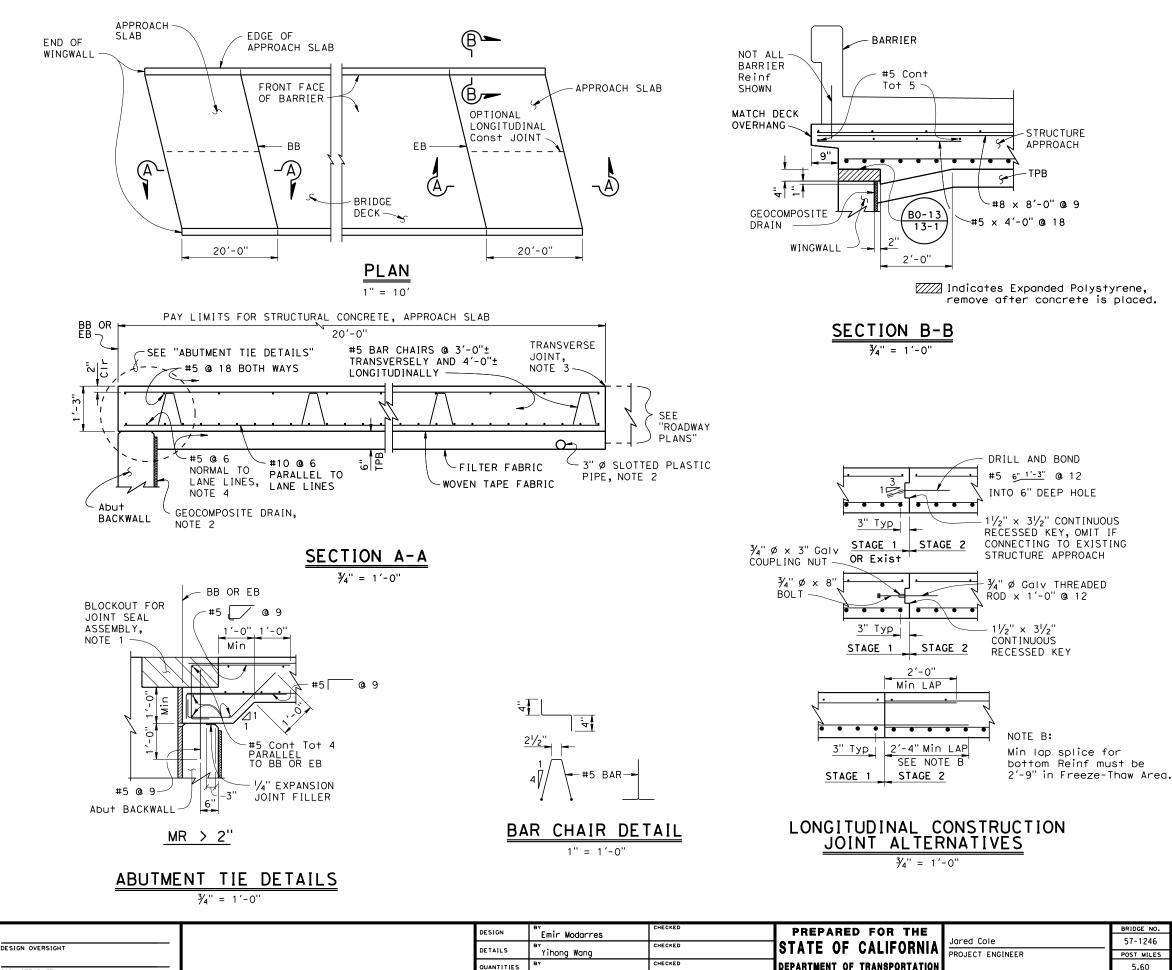

FILE => P:\1100\1118 - Torrey Meadows Drive OC at SR-56\500_Design\520_Structures\521_CADD\dgn\57-1246-n-brdt01.dgn

ABUTMENT ARCHITECTURAL TREATMENT

No Scale

NOTE: ABUTMENT 1 SHOWN, ABUTMENT 3 SIMILAR.




FRACTURED RIB TEXTURE DETAIL

DESIGN OVERSIGHT		DESIGN BY Emir Modarres DETAILS BY Yihong Wang	CHECKED CHECKED CHECKED	PREPARED FOR THE STATE OF CALIFORNIA		BRIDGE NO. 57-1246 POST MILES		REY ME	DOWS D	RIVE O	
SIGN OFF DATE DESIGN DETAIL SHEET (ENGLISH) (REV. 03/14/12)			ORIGINAL SCALE IN INCHES FOR REDUCED PLANS		UNIT: 2761 PROJECT NUMBER & PHASE: 1114000049	5100	ANCHIII	DISREGARD PRINTS BE EARLIER REVISION DA		ENI DE	
			FILE => P:\1100\1118 - Torr	ey Meadows Drive OC at SR-56\500_Desig					1		

DIST	COUNTY	ROUTE	POST MILES TOTAL PROJECT	SHEET No	TOTAL SHEETS	
11	SD	56	5.60			
PLA The Sto shall n	NS APPROV ate of Californ ot be response	AL DATE The for the accurate of the accurate o	Uno.	IVIL CALIFORN		
CITY OF SAN DIEGO 1010 SECOND AVENUE, SUITE 1100 SAN DIEGO, CA 92101						
T.Y. LIN INTERNATIONAL 404 CAMINO DEL RIO SOUTH, SUITE 700 SAN DIEGO, CA 92108						

65% E PLOTTED

DESIGN DETAIL SHEET (ENGLISH) (REV. 03/14/12) ORIGINAL SCALE IN INCHES FOR REDUCED PLANS UNIT 2761 PROJECT NUMBER & PHASE: 1114000049-0 CONTR

QUANTITIES

SIGN OFF DATE

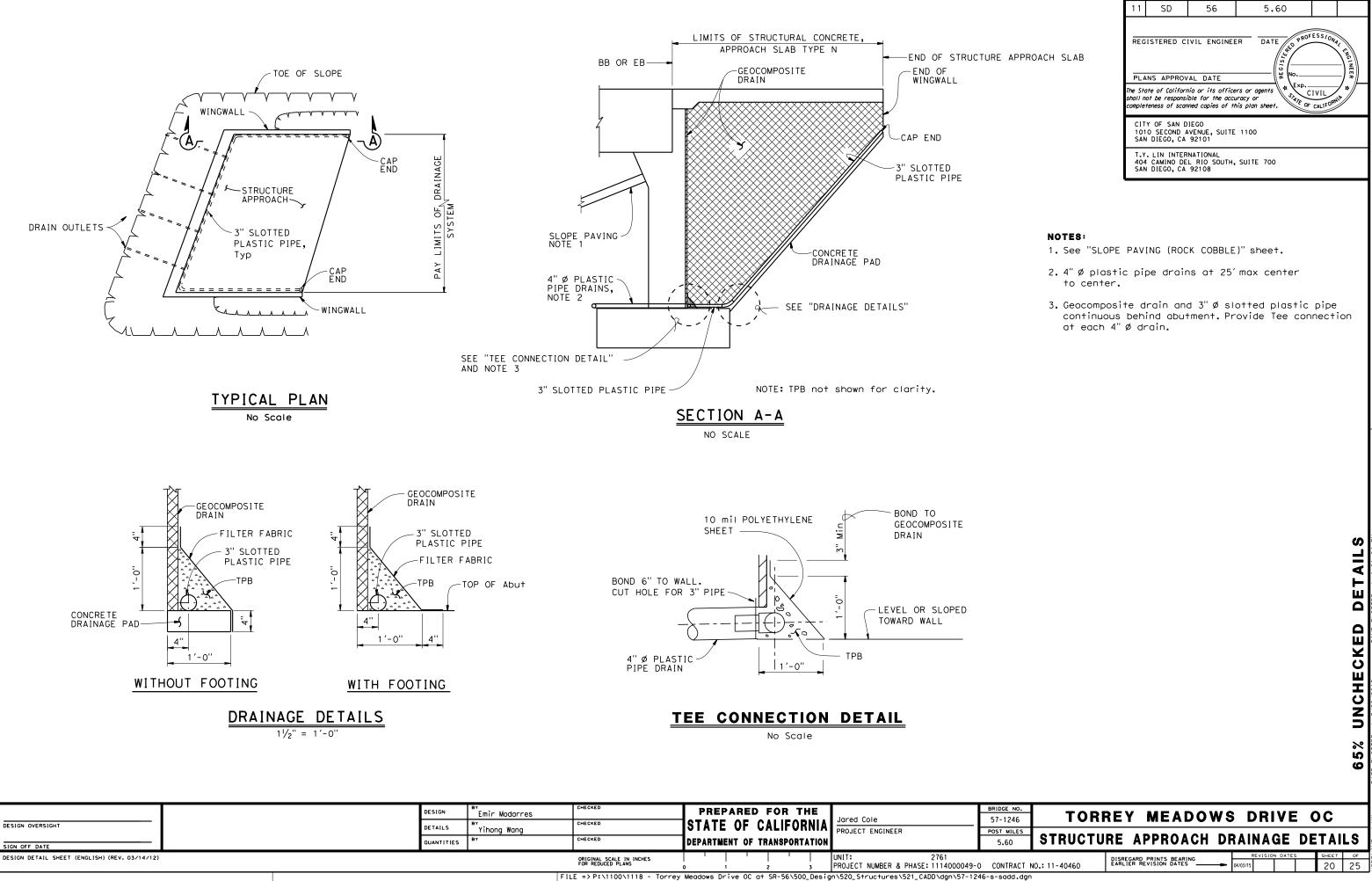
FILE => P:\1100\1118 - Torrey Meadows Drive OC at SR-56\500_Design\520_Structures\521_CADD\dgn\57-1246-r-sasd.dg

DIST	COUNTY	ROUTE	POST MILES TOTAL PROJECT	SHEET No	TOTAL SHEETS				
11	SD	D 56 5.60							
PL4 The Sta shall n	ANS APPROV ate of Californ	IVIL ENGINEE AL DATE his or its office ble for the accu ned copies of th	Uno.	ESS/ONA IVIL CALIFORN	/*/H				
CITY OF SAN DIEGO 1010 SECOND AVENUE, SUITE 1100 SAN DIEGO, CA 92101									
T.Y. LIN INTERNATIONAL 404 CAMINO DEL RIO SOUTH, SUITE 700 SAN DIEGO, CA 92108									

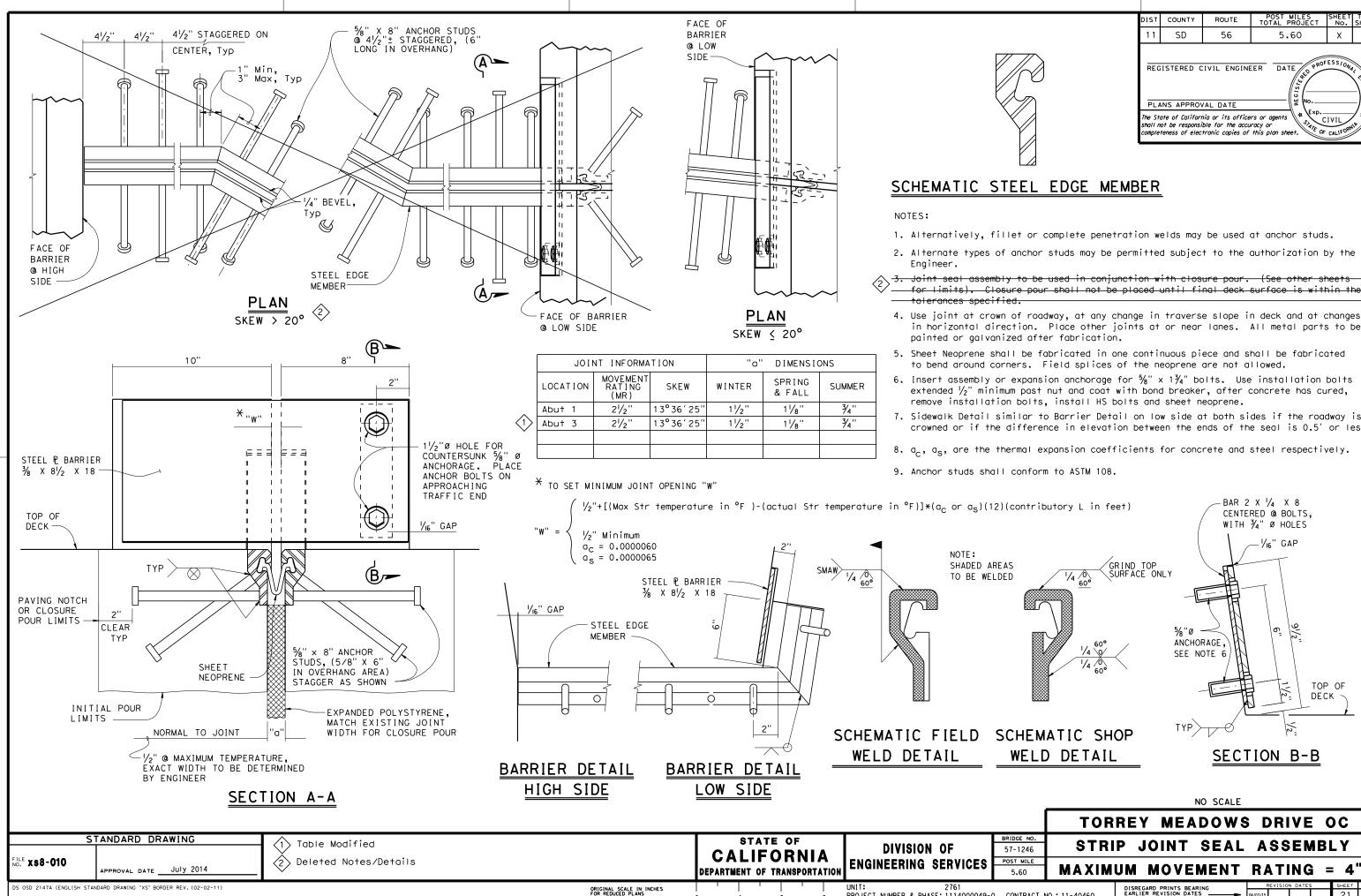
NOTES:

- For joint protection details, blockout dimensions for joint seal assembly, and other details not shown, see other plan sheets. Haunch reinforcement placed for joint seal assembly blockout must be normal to BB or EB and spaced to avoid joint seal assembly anchorage.
 - 2. For drainage details, see "STRUCTURE APPROACH DRAINAGE DETAILS" sheet.
 - 3. Transverse Joint must be a minimum of 5'-0" from an existing or constructed weakened plane joint in approach PCC roadway pavement. Refer to Standard Plans P10 and P14.
 - 4. At the Contractor's option, approach slab transverse reinforcement may be placed parallel to BB or EB. Spacing of transverse reinforcement is measured along € roadway.

RIDGE NO.						- 4		
57-1246	TORF	REY ME	EADOWS	5 D	RIVI	= (JC	
OST MILES								
5.60	STRUC	CTURE	APPRO	AC	H T	Y P E	EN	
		DISREGARD PRINTS	PEADING	R	EVISION DATE	s	SHEET	OF
CONTRACT N	NO.: 11-40460	EARLIER REVISION		04/03/15			19	25
-sasd.don								


S

AIL


DET

UNCHECKED

65%

	DIST	COUNTY	ROUTE	POST MILES TOTAL PROJECT	SHEET No	TOTAL SHEETS			
	11	SD	56	5.60					
APPROACH SLAB	REGISTERED CIVIL ENGINEER DATE PLANS APPROVAL DATE DATE The State of California or its officers or agents shall not be responsible for the accuracy or completeness of scamed copies of this plan sheet. CIVIL								
	CITY OF SAN DIEGO 1010 SECOND AVENUE, SUITE 1100 SAN DIEGO, CA 92101								
	404	. LIN INTER I CAMINO DE I DIEGO, CA	L RIO SOUTH,	SUITE 700					

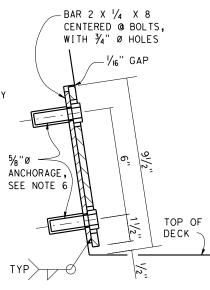
PROJECT NUMBER & PHASE: 1114000049-0 CONTR

D1:	SТ	COUNT
1	1	SD
F	EG	ISTEREI
Ē	PL A	NS APP
sha	ll n	ate of Cal ot be resp teness of
•		

DIST	COUNTY	ROUTE	POST MILES TOTAL PROJECT	SHEET No.	TOTAL SHEETS		
11	SD	56	5.60	х	х		
REGISTERED CIVIL ENGINEER DATE							
The State of California or its officers or agents shall not be responsible for the accuracy or completeness of electronic copies of this plan sheet.							

1. Alternatively, fillet or complete penetration welds may be used at anchor studs. 2. Alternate types of anchor studs may be permitted subject to the authorization by the

for limits). Closure pour shall not be placed until final deck surface is within the


4. Use joint at crown of roadway, at any change in traverse slope in deck and at changes in horizontal direction. Place other joints at or near lanes. All metal parts to be

5. Sheet Neoprene shall be fabricated in one continuous piece and shall be fabricated to bend around corners. Field splices of the neoprene are not allowed.

6. Insert assembly or expansion anchorage for $\frac{5}{16}$ " x 1 $\frac{3}{4}$ " bolts. Use installation bolts extended $\frac{1}{2}$ " minimum past nut and coat with bond breaker, after concrete has cured,

7. Sidewalk Detail similar to Barrier Detail on low side at both sides if the roadway is crowned or if the difference in elevation between the ends of the seal is 0.5' or less.

8. ac, as, are the thermal expansion coefficients for concrete and steel respectively.

S

AIL

DET

UNCHECK

25

				NO SCALE				9
	TOR	REY	MEA	DOWS	S DR	IVE	00	
NO.	етрі			SEAL	AC			
246	9141	P JU		SEAL	AS		DLI	
MILE								
50	MAXIM	UM N	IOVE	MENI	RAI	ING	= 4	-
		DISREGARD	PRINTS BEA	RING	REVISI	ON DATES	SHEET	OF
TRACT N	NO.: 11-40460		EVISION DAT		04/03/15		21	25

FILE => P:\1100\1118 - Torrey Meadows Drive OC at SR-56\500_Design\520_Structures\521_CADD\dgn\57-1246-t-intdt01.dgn

APPENDIX B FIELD EXPLORATION

APPENDIX B FIELD EXPLORATION

The subsurface exploration program included drilling and sampling five hollow stem auger borings for subsurface characterization purposes. The field explorations were performed between July 22 and 25, 2014. Prior to any subsurface exploration, Kleinfelder notified Underground Service Alert (USA) was notified to clear proposed boring locations of conflicts with utilities. The service of Cable Pipe and Leak, a private utility locator, was retained to perform additional utility locating. The borings were advanced by Pacific Drilling and Cascade Drilling utilizing truck mounted drill rigs. The borings were advanced to depths ranging from approximately 2 to 90½ feet below the existing ground surface.

The first five feet of the boreholes were advanced by manual hand augering, and the material encountered in this initial penetration was collected in a large plastic bag. Additional relatively undisturbed soil samples were obtained from the borings using either a Standard Penetration Test (SPT) sampler (2-inch O.D., 1.5 inches I.D.) or California sampler (3-inch O.D., 2.4 inches I.D.) driven a total of 18-inches (or until practical refusal) into the undisturbed soil at the bottom of the boring. The soil samples were returned to Kleinfelder's laboratory for testing. The in-situ drive samples were driven 18 inches into the soil using a 140 pound automatic hammer falling 30 inches in general accordance with ASTM D1586. The total number of hammer blows required to drive the sampler the final 12 inches is termed the "N" value and is recorded on the Logs of Borings. Blow counts shown on the Log of Borings have not been adjusted for the effects of overburden pressure, input driving energy, rod length, sampler size, or boring diameter. Borings were drilled at the site to obtain relatively undisturbed drive samples and SPT blow counts in the fill and weakly cemented materials.

Borings were logged by a Kleinfelder geologist or geotechnical engineer using methods outlined in the Unified Soil Classification System (USCS) and general procedures established in ASTM D 2488. Boundaries between soil types shown on the logs are approximate because the transition between different soil layers may be gradual. Selected bulk, disturbed, and intact samples were retrieved from the borings, sealed, and transported to Kleinfelder's laboratory for further evaluation. Logs of Borings are presented in Appendix B. Logs of Borings describe the earth materials encountered, samples obtained, and show field and laboratory tests performed. The logs also show the general location, boring number, drilling date, and drilling subcontractor.

	GROUP SYMBC	<u>DLS AI</u>	ND NAN	IES	_ FIELD AND LABORATORY TESTS		
phic / Symbol	Group Names	Graphi	c / Symbol	Group Names	C Consolidation (ASTM D 2435-04)		
	Well-graded GRAVEL	V////		Lean CLAY	CL Collapse Potential (ASTM D 5333-03)		
GW	Well-graded GRAVEL with SAND	V////		Lean CLAY with SAND Lean CLAY with GRAVEL	CP Compaction Curve (CTM 216 - 06)		
र्षु	Poorly graded GRAVEL	¥////	CL	SANDY lean CLAY SANDY lean CLAY with GRAVEL	CR Corrosion, Sulfates, Chlorides (CTM 643 - 99;		
}° GP ∣		V////		GRAVELLY lean CLAY	CTM 417 - 06; CTM 422 - 06)		
	Poorly graded GRAVEL with SAND			GRAVELLY lean CLAY with SAND	CU Consolidated Undrained Triaxial (ASTM D 4767-02		
GW-GM	Well-graded GRAVEL with SILT			SILTY CLAY SILTY CLAY with SAND	DS Direct Shear (ASTM D 3080-04)		
	Well-graded GRAVEL with SILT and SAND		CL-ML	SILTY CLAY with GRAVEL SANDY SILTY CLAY	EI Expansion Index (ASTM D 4829-03)		
	Well-graded GRAVEL with CLAY (or SILTY CLAY)			SANDY SILTY CLAY SANDY SILTY CLAY with GRAVEL	M Moisture Content (ASTM D 2216-05)		
GW-GC	Well-graded GRAVEL with CLAY and SAND (or SILTY CLAY and SAND)			GRAVELLY SILTY CLAY GRAVELLY SILTY CLAY with SAND	OC Organic Content (ASTM D 2974-07)		
	Poorly graded GRAVEL with SILT	K AIII		SILT	P Permeability (CTM 220 - 05)		
₿ [¢] GP-GM	Poorly graded GRAVEL with SILT and SAND				PA Particle Size Analysis (ASTM D 422-63 [2002])		
		4	ML	SILT with GRAVEL SANDY SILT	PI Liquid Limit, Plastic Limit, Plasticity Index		
GP-GC	Poorly graded GRAVEL with CLAY (or SILTY CLAY)			SANDY SILT with GRAVEL GRAVELLY SILT	(AASHTO T 89-02, AASHTO T 90-00)		
	Poorly graded GRAVEL with CLAY and SAND (or SILTY CLAY and SAND)			GRAVELLY SILT with SAND	PL Point Load Index (ASTM D 5731-05)		
	SILTY GRAVEL	171	1	ORGANIC lean CLAY	PM Pressure Meter		
GM	SILTY GRAVEL with SAND	K	1	ORGANIC lean CLAY with SAND ORGANIC lean CLAY with GRAVEL	PP Pocket Penetrometer		
اللالي		\mathcal{V}	OL	SANDY ORGANIC lean CLAY SANDY ORGANIC lean CLAY with GRAVEL	R R-Value (CTM 301 - 00)		
S GC		12	1	GRAVELLY ORGANIC lean CLAY	SE Sand Equivalent (CTM 217 - 99)		
	CLAYEY GRAVEL with SAND	KA	1	GRAVELLY ORGANIC lean CLAY with SAND	SG Specific Gravity (AASHTO T 100-06)		
OC-GM	SILTY, CLAYEY GRAVEL	177		ORGANIC SILT ORGANIC SILT with SAND	SL Shrinkage Limit (ASTM D 427-04)		
	SILTY, CLAYEY GRAVEL with SAND	$ \rangle\rangle\rangle$	~	ORGANIC SILT with GRAVEL	SW Swell Potential (ASTM D 4546-03)		
*** ***	Well-graded SAND	1555	OL	SANDY ORGANIC SILT SANDY ORGANIC SILT with GRAVEL	TV Pocket Torvane		
sw sw	Well-graded SAND with GRAVEL	$ \langle\langle\langle$		GRAVELLY ORGANIC SILT GRAVELLY ORGANIC SILT with SAND	UC Unconfined Compression - Soil (ASTM D 2166-06		
* • 1	-			Fat CLAY	Unconfined Compression - Rock (ASTM D 2938-9		
SP	Poorly graded SAND			Fat CLAY with SAND	UU Unconsolidated Undrained Triaxial (ASTM D 2850-03)		
	Poorly graded SAND with GRAVEL		сн	Fat CLAY with GRAVEL SANDY fat CLAY	UW Unit Weight (ASTM D 4767-04)		
SW-SM	Well-graded SAND with SILT			SANDY fat CLAY with GRAVEL	VS Vane Shear (AASHTO T 223-96 [2004])		
JUI 300-310	Well-graded SAND with SILT and GRAVEL			GRAVELLY fat CLAY GRAVELLY fat CLAY with SAND			
	Well-graded SAND with CLAY (or SILTY CLAY)	ΠÍ	1	Elastic SILT	1		
sw-sc	Well-graded SAND with CLAY and GRAVEL			Elastic SILT with SAND Elastic SILT with GRAVEL	SAMPLER GRAPHIC SYMBOLS		
	(or SILTY CLAY and GRAVEL)	┤╏┃┃	мн	SANDY elastic SILT			
SP-SM	Poorly graded SAND with SILT			SANDY elastic SILT with GRAVEL GRAVELLY elastic SILT	Standard Penetration Test (SPT)		
	Poorly graded SAND with SILT and GRAVEL	↓↓,↓,	ļ	GRAVELLY elastic SILT with SAND			
SP-SC	Poorly graded SAND with CLAY (or SILTY CLAY)	K/I	1	ORGANIC fat CLAY ORGANIC fat CLAY with SAND			
	Poorly graded SAND with CLAY and GRAVEL (or SILTY CLAY and GRAVEL)	$\mathcal{O}\mathcal{I}$		ORGANIC fat CLAY with GRAVEL	Standard California Sampler		
	SILTY SAND	VI	ОН	SANDY ORGANIC fat CLAY SANDY ORGANIC fat CLAY with GRAVEL			
SM	SILTY SAND with GRAVEL	K/I	1	GRAVELLY ORGANIC fat CLAY GRAVELLY ORGANIC fat CLAY with SAND			
	CLAYEY SAND	556	65	656	1	ORGANIC elastic SILT	Modified California Sampler
sc]{{(ORGANIC elastic SILT with SAND			
	CLAYEY SAND with GRAVEL	4000	он	ORGANIC elastic SILT with GRAVEL SANDY elastic ELASTIC SILT	Shelby Tube Piston Sampler		
SC-SM	SILTY, CLAYEY SAND	$ \rangle\rangle\rangle$		SANDY ORGANIC elastic SILT with GRAVEL GRAVELLY ORGANIC elastic SILT			
	SILTY, CLAYEY SAND with GRAVEL		1	GRAVELLY ORGANIC elastic SILT GRAVELLY ORGANIC elastic SILT with SAND			
<u> </u>			1	ORGANIC SOIL	NX Rock Core HQ Rock Core		
<u>, 1/</u> PT	PEAT		1	ORGANIC SOIL with SAND ORGANIC SOIL with GRAVEL			
	COBBLES	ד <i>ורק</i> א	OL/OH	SANDY ORGANIC SOIL			
	COBBLES and BOULDERS	F.F.	1	SANDY ORGANIC SOIL with GRAVEL GRAVELLY ORGANIC SOIL	Bulk Sample Other (see remarks		
	BOULDERS	Vr-JF-		GRAVELLY ORGANIC SOIL with SAND			
	DRILLING MET	HOD	SYMB	OLS	WATER LEVEL SYMBOLS		
\square		, 🖂	Dunami				
Auger	r Drilling Rotary Drilling	Ж¦	Dynamic or Hand	Driven	⊥ ∑ Static Water Level Reading (short-term)		
		Ľ					
				REPORT TITLE			
-					BORING RECORD LEGEND		
				DIST. COUNTY	ROUTE POSTMILE EA		
					ao SR-56 5.6		
KI	EINFELDER			11 San Die			
KL	EINFELDER Bright People. Right Solutions.			PROJECT OR BRID	GE NAME		
KL				PROJECT OR BRID			

CONSISTENCY OF COHESIVE SOILS								
Descriptor	Unconfined Compressive Strength (tsf)	Pocket Penetrometer (tsf)	Torvane (tsf)	Field Approximation				
Very Soft	< 0.25	< 0.25	< 0.12	Easily penetrated several inches by fist				
Soft	0.25 - 0.50	0.25 - 0.50	0.12 - 0.25	Easily penetrated several inches by thumb				
Medium Stiff	0.50 - 1.0	0.50 - 1.0	0.25 - 0.50	Can be penetrated several inches by thumb with moderate effort				
Stiff	1.0 - 2.0	1.0 - 2.0	0.50 - 1.0	Readily indented by thumb but penetrated only with great effort				
Very Stiff	2.0 - 4.0	2.0 - 4.0	1.0 - 2.0	Readily indented by thumbnail				
Hard	> 4.0	> 4.0	> 2.0	Indented by thumbnail with difficulty				

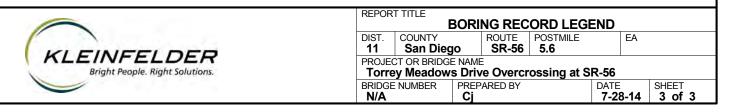
APPARENT DENSITY OF COHESIONLESS SOILS					
Descriptor	SPT N_{60} - Value (blows / foot)				
Very Loose	0 - 4				
Loose	5 - 10				
Medium Dense	11 - 30				
Dense	31 - 50				
Very Dense	> 50				

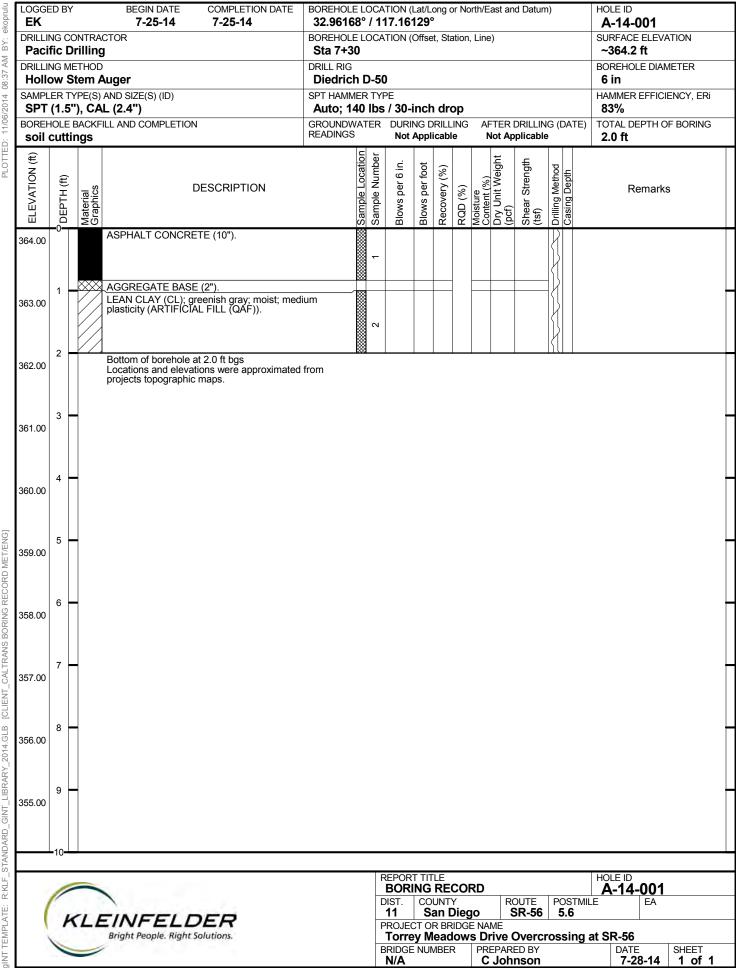
MOISTURE						
Descriptor	Criteria					
Dry	Absence of moisture, dusty, dry to the touch					
Moist	Damp but no visible water					
Wet	Visible free water, usually soil is below water table					

PERCEN	T OR PROPORTION OF SOILS		SOIL	PARTICLE SIZE
Descriptor	Criteria	Descriptor		Size
Trace	Particles are present but estimated	Boulder		> 12 inches
	to be less than 5%	Cobble		3 to 12 inches
Few	5 to 10%	Gravel	Coarse	3/4 inch to 3 inches
		Glaver	Fine	No. 4 Sieve to 3/4 inch
Little	15 to 25%		Coarse	No. 10 Sieve to No. 4 Sieve
Some	30 to 45%	Sand	Medium	No. 40 Sieve to No. 10 Sieve
Mostly	50 to 100%		Fine	No. 200 Sieve to No. 40 Sieve
WOStry	30 10 100 %	Silt and Cla	У	Passing No. 200 Sieve

	PLASTICITY OF FINE-GRAINED SOILS
Descriptor	Criteria
Nonplastic	A 1/8-inch thread cannot be rolled at any water content.
Low	The thread can barely be rolled, and the lump cannot be formed when drier than the plastic limit.
Medium	The thread is easy to roll, and not much time is required to reach the plastic limit; it cannot be rerolled after reaching the plastic limit. The lump crumbles when drier than the plastic limit.
High	It takes considerable time rolling and kneading to reach the plastic limit. The thread can be rerolled several times after reaching the plastic limit. The lump can be formed without crumbling when drier than the plastic limit.

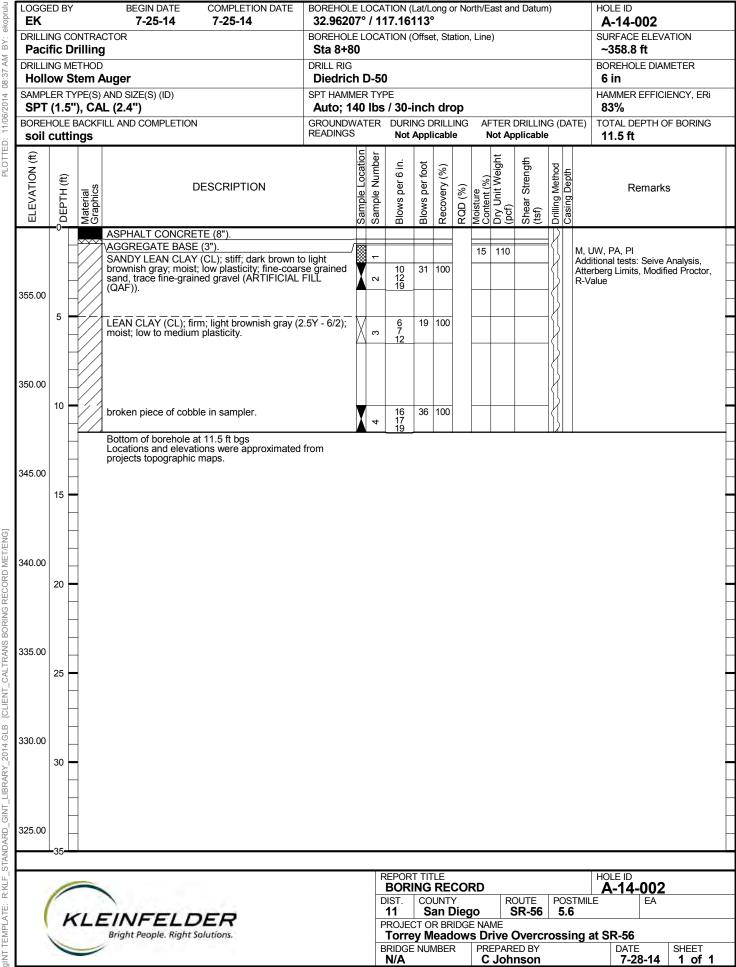
	CEMENTATION
Descriptor	Criteria
Weak	Crumbles or breaks with handling or little finger pressure.
Moderate	Crumbles or breaks with considerable finger pressure.
Strong	Will not crumble or break with finger pressure.



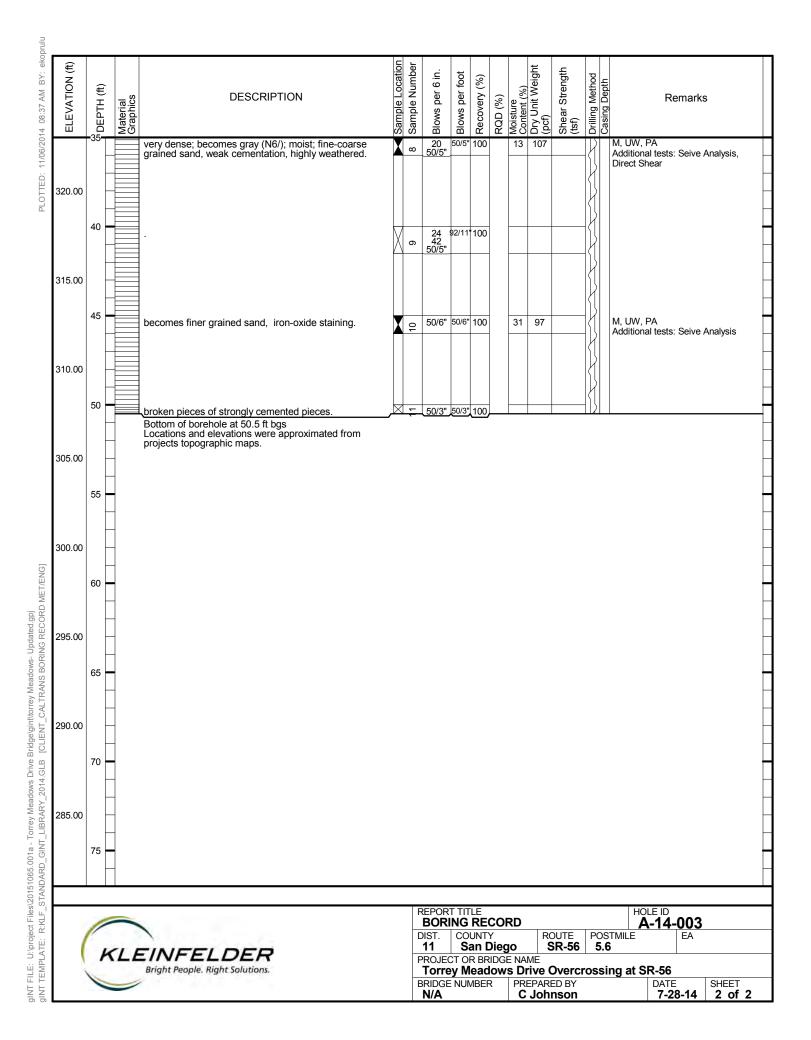

NOTE: This legend sheet provides descriptors and associated criteria for required soil description components only. Refer to Caltrans Soil and Rock Logging, Classification, and Presentation Manual (2010), Section 2, for tables of additional soil description components and discussion of soil description and identification.

-						
	REPOR	T TITLE				
		F	BORING REG	CORDIEG	END	
		L				
	DIST.	COUNTY	ROUTE	POSTMILE	EA	
					1.0.1	
	11	San Dieg	o SR-56	5.6		
	PROJEC	T OR BRIDGE				
				receipe of C	D EC	
	Torre	y weadow:	s Drive Overc	rossing at a	06-20	
	BRIDGE	NUMBER	PREPARED BY		DATE	SHEET
	N/A		Cj		/-28-14	2 01 3
	N/A		Cj		7-28-14	2 of 3

ROC	K GRAPHIC SYMBOLS				BEDDI	NG SPACING	i	
			De	escriptor		Thickne	ss or Spacing	
\bigotimes	IGNEOUS ROCK			assive ery thickly b	bedded	> 10 ft 3 to 10	ft	
	SEDIMENTARY ROCK		Th	ickly bedde oderately b	ed	1 to 3 ft 3-5/8 in	ches to 1 ft	
	METAMORPHIC ROCK		Ve	iinly beddeo ery thinly be minated			3-5/8 inches to 1-1/4 inches ch	
		WFATH	FRING	DESCRI	PTORS FO	R INTACT RO	OCK	
				ostic Feat				
	Chemical Weathering-Discol	oration-Oxi	dation	Mechanica	al Weathering	Texture a	nd Solutioning	
Descriptor	Body of Rock	Fracture Su	urfaces	and Grai Con	n Boundary ditions	Texture	Solutioning	General Characteristics
Fresh	No discoloration, not oxidized	No discolor or oxidation		No separat (tight)	tion, intact	No change	No solutioning	Hammer rings when crystalline rocks are struck.
Slightly Weathered	Discoloration or oxidation is limited to surface of, or short distance from, fractures; some feldspar crystals are dull	Minor to con discoloratio oxidation of surfaces	n or	No visible s intact (tight	separation, :)	Preserved	Minor leaching of some soluble minerals may be noted	Hammer rings when crystalline rocks are struck. Body of rock not weakened.
Moderately Weathered	Discoloration or oxidation extends from fractures usually throughout; Fe-Mg minerals are "rusty"; feldspar crystals are "cloudy"	All fracture surfaces and discolored of oxidized	e	Partial sepa boundaries		Generally preserved	Soluble minerals may be mostly leached	Hammer does not ring when rock is struck. Body of rock is slightly weakened.
Intensely Weathered	Discoloration or oxidation throughout; all feldspars and Fe-Mg minerals are altered to clay to some extent; or chemical alteration produces in situ disaggregation (refer to grain boundary conditions)	All fracture surfaces an discolored o oxidized; su are friable	or	is friable; ir	granitics are	Altered by chemical disintegration such as via hydration or argillation	Leaching of soluble minerals may be complete	Dull sound when struck with hammer; usually can be broker with moderate to heavy manual pressure or by light hammer blow without reference to planes of weakness such as incipient or hairline fractures or veinlets. Rock is significantly weakened.
Decomposed	Discolored of oxidized throughout, but resistant minerals such as quartz may be unaltered; all feldspars and Fe-Mg minerals are completely altered to clay			Complete s grain bound (disaggrega		Resembles a complete rem structure may leaching of so usually complete usually complete usually	nant rock be preserved; luble minerals	Can be granulated by hand. Resistant minerals such as guartz may be present as "stringers" or "dikes".
over significar where significa descriptor for	nation descriptors (such as "sli ti intervals or where characteri ant identifiable zones can be d "decomposed to intensely wea STRENGTH OF INTACT	stics present elineated. O thered".	t are "in only two	i between" th adjacent de	he diagnostic escriptors sha	feature. Howev Il be combined.	"Very intensely we	active should not be used athered" is the combination
Descriptor	Uniaxial		Des	criptor	Criteria			
Extremely Str	Compressive Streng rong > 30,000	un (psi)	Extre	emely Hard	طلاشيد اممصطناطم	annot be scratch	hannan ar blauva	e or sharp pick; can only be
Very Strong	14,500 - 30,000		Very	/ hard	Specimen ca	•	ed with pocket knif	e or sharp pick; breaks with
Strong	7,000 - 14,500		Hard	- I		,		r sharp pick with heavy
Medium Stror	°				pressure; he	eavy hammer blo	ws required to brea	ak specimen
Weak	700 - 3,500		Mod	lerately d	moderate pr	essure; breaks v	with moderate ham	r sharp pick with light or mer blows
Very Weak	150 - 700		Mod Soft	erately				nife or sharp pick with moderate ow or heavy hand pressure
Extremely We	eak < 150		Soft		Specimen ca		et knife or sharp pick with light	
CORE R	ECOVERY CALCULATIO	N (%)	Ver	y Soft		essure gouged with fingernail, or I pressure		
Σ Lenath of	the recovered core pieces (in.)						
Tota	I length of core run (in.)	—́ x 100	Dec	orintor			NE DENGIT	
				scriptor		Criteria		
R	QD CALCULATION (%)		Ver	ractured y Slightly Fra	actured L	lo fractures engths greater 3		
	of intact core pieces > 4 in.		Mod	htly Fracture derately Fracture	ctured L	engths mostly in	•	ft, with most lengths about 8 in.
<u>Z</u> Length Total	length of core run (in.)	x 100	Inte	nsely Fractu	ured L	engths average ntervals with leng	vith scattered fragmented	

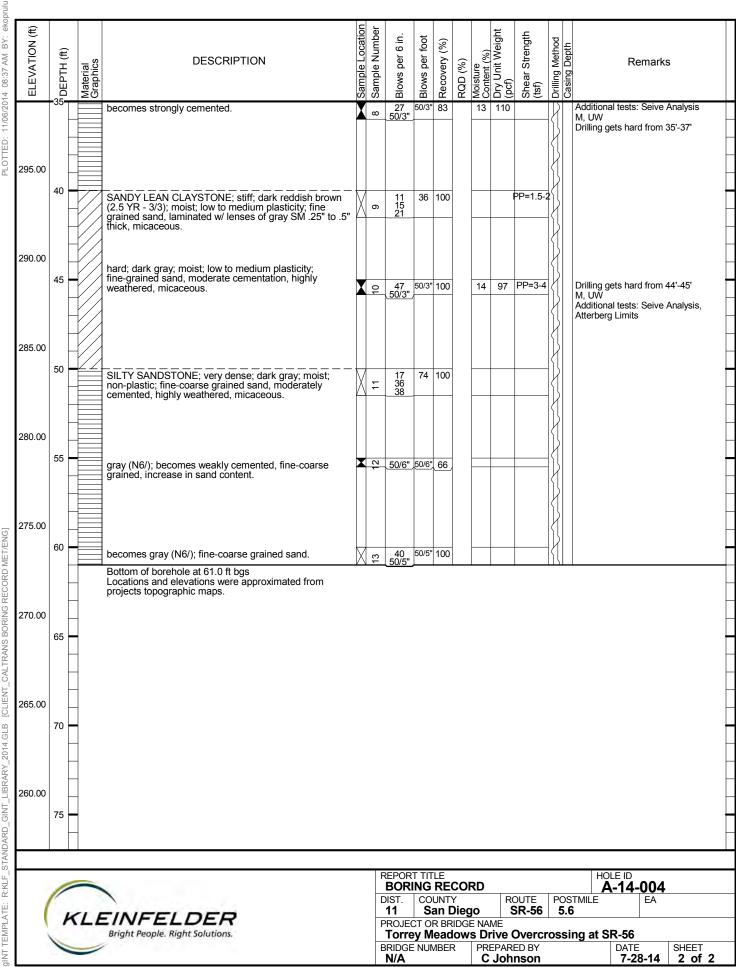

Very Intensely Fractured Mostly chips and fragments with few scattered short core lengths

.. Ч 08:37 AM PLOTTED: 11/06/2014


[CLIENT_CALTRANS BORING RECORD MET/ENG] U:\project Files\20151065.001a - Torrey Meadows Drive Bridge\gint\torrey Meadows- Updated.gpj R:KLF_STANDARD_GINT_LIBRARY_2014.GLB TEMPLATE: gINT FILE:

.. Ч 08:37 AM 11/06/2014 PLOTTED:

CALTRANS BORING RECORD MET/ENG] U:\project Files\20151065.001a - Torrey Meadows Drive Bridge\gint\torrey Meadows- Updated.gpj [CLIENT STANDARD GINT LIBRARY 2014.GLB R:KLF TEMPLATE: gINT FILE:


LOGGE EK	ED BY	(BEGIN DATECOMPLETION DATE7-25-147-25-14	BOREHOLE 32.9623						or No	rth/E	ast and	d Datum)		HOLE ID A-14-003
		ontra Drilling		BOREHOLE Sta 9+8		CA	TION (Offse	t, Sta	ition,	Line)				SURFACE ELEVATION ~358.0 ft
		IETHOD		DRILL RIG	h D	-50)									BOREHOLE DIAMETER 6 in
SAMPL	ER T	YPE(S)	•	SPT HAMM Auto; 14	IER	TYF	ΡE	nch	dro	р						HAMMER EFFICIENCY, ERI
BOREH				GROUNDW READINGS		ER		NG D Appli					DRILLIN plicable		DATE)	TOTAL DEPTH OF BORING 50.5 ft
ELEVATION (ft)	DEPTH (ft)	Material Graphics	DESCRIPTION		Sample Location	Sample Number	Blows per 6 in.	Blows per foot	Recovery (%)	RQD (%)	Moisture Content (%)	Dry Unit Weight (pcf)	Shear Strength (tsf)	Drilling Method	Casing Depth	Remarks
355.00			SANDY LEAN CLAY (CL); brown (7.5 YR - 5/3 brown (7.5 YR - 3/4); moist; low plasticity; fine grained sand, some fine-grained gravel (ARTI FILL (QAF)).	e-coarse FICIAL		1										ditional tests: Corrosion
	5		CLAYEY SAND (SC); medium dense; light bro gray (2.5 Y - 6/2); moist; low plasticity; fine-coa grained sand.	ownish arse	X	2	8 8 9	17	100		11	104	PP=>4.5	2	Ad	UW, PA, PI ditional tests: Seive Analysis, erberg Limits
350.00	10		CLAYEY SAND (SC); loose; light brownish gra 6/2),; moist; non-plastic; fine-coarse grained s some caliche.	 ay (2.5 Y - and,	X	3	3 2 3	5	77					2	Dri	lling gets hard @ 11-12'
345.00	15 •				X	4	5 6 8	14	89		12	102			M,	UW
340.00	20		(MISSION VALLEY FORMATION (TMV)). SANDY CLAYSTONE; hard; light brownish gra 6/2); moist; non-plastic; fine-coarse grained sa	ay (2.5 Y -		5	14 22 32	54	100							
335.00	-		micaceous, weak cementation, highly weather hard; becomes reddish brown to light brownish moist; moderate cementation, moderately wea	ed. n grav;			32									
330.00	25 •		SILTY SANDSTONE; very dense; becomes br gray (2.5 Y - 6/2); moist; increase in sand cont	rownish	X	9	50/5"	50/5"	100		20	108				UW, PA ditional tests: Seive Analysis
	30				X	7	11 23 38	61	100						ver	y hard drilling from 31-33'
325.00	-35															
			(continued)			R	REPOR	т тіт	LE							HOLE ID
(F	KLE	EINFELDER			D	BOR IST. 11 ROJE	NG CO Sa CT O	RE UNT an [R BR	r)ieg IDGE	jo E nai	S NE	DUTE R-56	5)STMI . 6	LE EA
		/	Bright People. Right Solutions.			В		уM	ead	ow	s Dr	ive (Epare	Dvercr ED BY Nson	os	sing	at SR-56 DATE SHEET 7-28-14 1 of 2

LOGGE EK	ED B'	Y	BEGIN DATE COMPLETION DATE 7-22-14 7-22-14	BOREHOLE 32.9627						or No	rth/E	ast an	d Datum	1)		HOLE ID A-14-004		
DRILLI Paci		: Ontr/		BOREHOLE		CA	TION (Offse	t, Sta	ition,	Line)				SURFACE ELEVATION		
DRILLI	NG M	IETHO	-	DRILL RIG	-	-50)									BOREHOLE DIAMETER 6 in		
			AND SIZE(S) (ID)	SPT HAMM Auto; 14				nch	dro	р						HAMMER EFFICIENCY, ERI 83%		
BOREH bent			TILL AND COMPLETION	GROUNDW READINGS		ER	DURII Not						DRILLIN plicable		DA	TE) TOTAL DEPTH OF BORING 61.0 ft		
ELEVATION (ft)	DEPTH (ft)	Material Graphics	DESCRIPTION		Sample Location	Sample Number	Blows per 6 in.	Blows per foot	Recovery (%)	RQD (%)	Moisture Content (%)	Dry Unit Weight (pcf)	Shear Strength (tsf)	Drilling Method	Casing Depth	Remarks		
330.00			CLAYEY SAND (SC); light brownish gray (2.5 moist; non-plastic; fine-medium grained sand, rootlets (MISSION VALLEY FORMATION (TM	Y - 6/2); some IV)).		-										Additional tests: Corrosion		
	5		CLAYEY SANDSTONE; very dense; light brow (2.5Y - 6/2); moist; non-plastic; fine-medium g sand, weak cementation, highly weathered.	wnish gray Irained	X	5	20 37 47	84	100		10	116				M, UW Drilling gets hard @ 7'		
325.00	10	becomes micaceous, increase in fines content.													-			
320.00	15		becomes moderately cemented, intermixed co light brownish gray (2.5YR - 6/2) to brown (7.5 5/3).	o brown (7.5 YR - <u>50/5</u>										M, UW, PA Additional tests: Seive Analysis, Direct Shear				
315.00	20		becomes coarser grained, fine-coarse grainec abundent iron-oxide staining.	d sand,	X	5	19 50/2"	50/2"	66							Some rig shatter @ 18' Added water to hole to ease drilling		
310.00	25		light brownish gray (2.5Y - 6/2); fine to coarser sand, abundant mica flakes.	r grained	X	9	20 50/4"	50/4"	100		13	109				conditions @ 20' M, UW		
305.00	30		CLAYEY SANDSTONE; very dense; light brov (2.5Y - 6/2); moist; non-plastic; fine-coarse gra	ained	X	7	40 25 35	60	100							- - - -		
300.00	-35		sand, micaceous, moderately cemented highly weathered.	y														
KLEINFELDER BOI Bright People. Right Solutions. Tor BRIDC N/A										í Dieg IDGE OW:	jo E nai S Di	ME Vive C	DUTE SR-56 Dverci ED BY	5	5.6	HOLE ID A-14-004 IMILE EA Ing at SR-56 DATE SHEET 7-28-14 1 of 2		

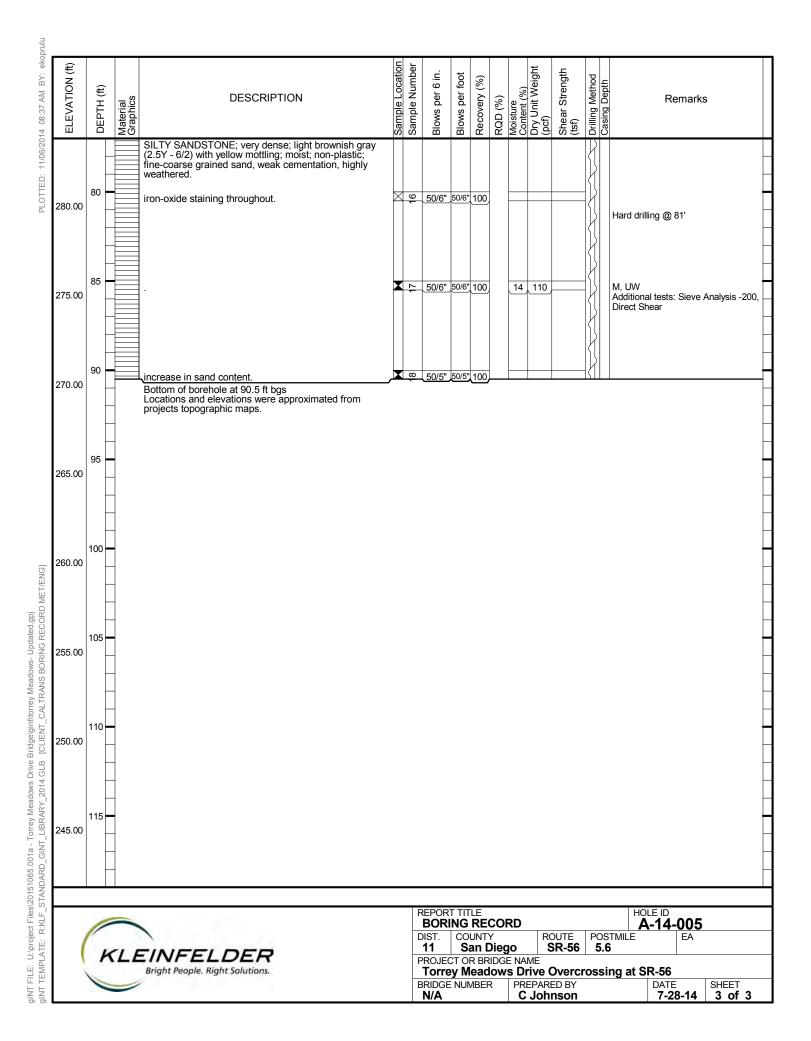
PLOTTED: 11/06/2014 08:37 AM BY: ekoprulu

gINT FILE: U:\project Files\20151065.001a - Torrey Meadows Drive Bridge\ginttorrey Meadows- Updated.gpj gINT TEMPLATE: R:kLF_STANDARD_GINT_LIBRARY_2014.GLB [CLIENT_CALTRANS BORING RECORD MET/ENG]

PLOTTED: 11/06/2014 08:37 AM BY:

[CLIENT_CALTRANS BORING RECORD MET/ENG] U:\project Files\20151065.001a - Torrey Meadows Drive Bridge\gint\torrey Meadows- Updated.gpj 2014.GLB R:KLF_STANDARD_GINT_LIBRARY TEMPLATE: gINT FILE:

LOGGE EK	ED B'	Y		BEGIN DATE COMPLETION DATE 7-24-14 7-24-14	BOREHOLE 32.9631						or No	orth/E	ast an	d Datum	1)		HOLE ID			
DRILLIN Pacit					BOREHOLE		DCA	tion (Offse	et, Sta	ation,	, Line)				SURFAC ~360.		ATION	
DRILLIN Hollo					DRILL RIG	h C)-50)									BOREH	OLE DIA	METER	l
SAMPL	ER 1 (1.5	TYPE 5"), ((S) A Cal	AND SIZE(S) (ID) _ (2.4")	SPT HAMM Auto; 14	40	lbs	/ 30-			-						HAMME 83%			
BOREH bent			KFIL		GROUNDW READINGS		ER			RILL icabl				DRILLIN plicable		ATE)	TOTAL I 90.5 f		of Bor	RING
ELEVATION (ft)	DEPTH (ft)	Material	Graphics	DESCRIPTION		Sample Location	Sample Number	Blows per 6 in.	Blows per foot	Recovery (%)	RQD (%)	Moisture Content (%)	Dry Unit Weight (pcf)	Shear Strength (tsf)	Drilling Method		ł	Remark	S	
360.00				SANDY CLAY with GRAVEL (CL); yellowish bi (10YR - 5/6); moist; low plasticity; fine-coarse (sand, angular to subrounded gravel (ARTIFIC) (QAF)).	arained		1									Addit	ional test	ts: Corro	sion	
355.00	5		/	CLAYEY SAND (SC); dense; light brownish gr. 6/2) to yellowish brown (10YR - 5-6); moist; lov plasticity; fine-grained sand, some rootlets.	ay (2.5Y - v	X	2	12 20 27	47	100						Addit	ional test	ts: Sieve	Analysi	is -200
350.00	10			SILTY SAND to SANDY SILT (SM); firm; light gray (2.5Y - 6/2); moist; low plasticity; fine-grai pieces of broken gravel in sampler, trace coars grained sand.	ned sand.		ю	7 9 13	22	100										
345.00	15			CLAYEY SAND (SC); dense; light brownish gr 6/2); moist; non-plastic; fine-coarse grained sa micaceous.	ay (2.5Y - Ind,	X	4	10 23 28	51	100						Addit	ional test	ts: Sieve	Analysi	is -200
340.00	20			SANDY SILT (ML); firm; brown (7.5 YR - 5/3) t brownish gray (2.5Y - 6/2); moist; non-plastic to plasticity; fine-medium grained sand.	 o H o low	X	5	6 8 12	20	100										
335.00	25			SILTY SAND (SM); dense; light brownish gray 6/2); moist; non-plastic; fine-coarse grained sa micaceous.	(2.5Y - Ind,	X	9	11 21 32	53	66		15	114				<i>N</i> ional tesi t Shear	ts: Sieve	Analysi	is -200,
330.00	30			CLAYEY SAND (SC); medium dense; light bro gray (2.5Y - 6/2); moist; non-plastic; fine-coars sand, micaceous.	wnish grained	X	7	6 9 12	21	100										
(continued)																				
(-	KL		SINFELDER Bright People. Right Solutions.			D	EPOR BOR IST. 11 ROJE	ING CO S CT O	RE UNT an [R BR	Y Dieg IDGE	jo E NAI	S ME	DUTE SR-56 Dverci	5.	STMILE 6		1-005 EA	;	
BRIDGE NUMBER PREPARED BY DATE SHEET												PRE	EPARE			<u> </u>	DA			∃⊺ of 3


PLOTTED: 11/06/2014 08:37 AM BY: ekoprulu

gINT FILE: U: project Files/20151065.001a - Torrey Meadows Drive Bridge ginttorrey Meadows- Updated.gpj gINT TEMPLATE: R: R: RE_STANDARD_GINT_LIBRARY_2014.GLB [CLIENT_CALTRANS BORING RECORD MET/ENG]

ELEVATION (ft)	DEPTH (ft)	Material Graphics	DESCRIPTION	Sample Location	Sample Number	Blows per 6 in.	Blows per foot	Recovery (%)	RQD (%)	moisture Content (%) Dry Unit Weight (pcf)	Shear Strength (tsf)	Drilling Method	Remarks
325.00	-35		SILTY SAND (SM); dense; light brownish gray (2.5Y - 6/2); moist; non-plastic; fine-coarse grained sand, pockets of dark brown CLAY throughout, trace of angular gravel.		8	8 17 34	51	89	_				
320.00	40 -		pockets of dark brown and gray CLAY throughout.	X	6	6 10 13	23	77	-				
315.00	45		no recovery.	X		9 13 17	30	NR	-				easier drilling effort between 40' and 50'
310.00	50		CLAYEY SAND (SC); dense; light brownish gray to dark browin; moist; low plasticity; intermixed material and color with varying thicknesses, trace gravel.	X	10	12 24 40	64	89	-				Additional tests: Sieve Analysis -200, Atterberg Limits
305.00	55 -		CLAYEY SAND (SC); medium dense; dark brown (7.5YR - 3/4); moist; low plasticity; fine-coarse grained sand, trace fine-coarse grained gravel, angular to rounded, 3" thick black colored organic smelling CLAY, few pockets of gray Silty SAND.	X	11	11 20 17	37	83	-				Drilling gets hard @ 57'
300.00	60 -		decrease in sand content. CLAYSTONE; very dense; light brownish gray (2.5Y - 6/2); moist; low plasticity; fine-grained sand, abundent reddish brown iron oxide staining, micaceous, weak cementation, highly weathered (MISSION VALLEY FORMATION (TMV)).	-X	12	17 38 48	86	44	-		PP=4		Additional tests: Sieve Analysis -200, Atterberg Limits
295.00	65 -			X	13	10 16 20	36	100	-		PP=3		Additional tests: Corrosion
290.00	70 -		decrease in sand content.	X	14	50/3"	50/3"	100	-		PP=>4.5		Added water to hole to ease drilling @ 71'
285.00	75 -		SILTY SANDSTONE; very dense; light brownish gray (2.5Y - 6/2) with yellow mottling; moist; non-plastic; fine-coarse grained sand, weak cementation, highly weathered.		15	36 50/3"	50/3"	100	_				Drilling gets very hard @ 73'
			(continued)		R	EPOR	т тіт	LE					HOLE ID
1	1					BORI IST. 11	NG CO			R	DUTE SR-56	PO: 5 .	A-14-005
	P		EINFELDER Bright People, Right Solutions.		P	ROJE	CT OI	R BR	IDGE	NAME			-
Bright People. Right Solutions. Torrey Meadows Drive Overcrossing at SR-56												200	DATE SHEET 7-28-14 2 of 3

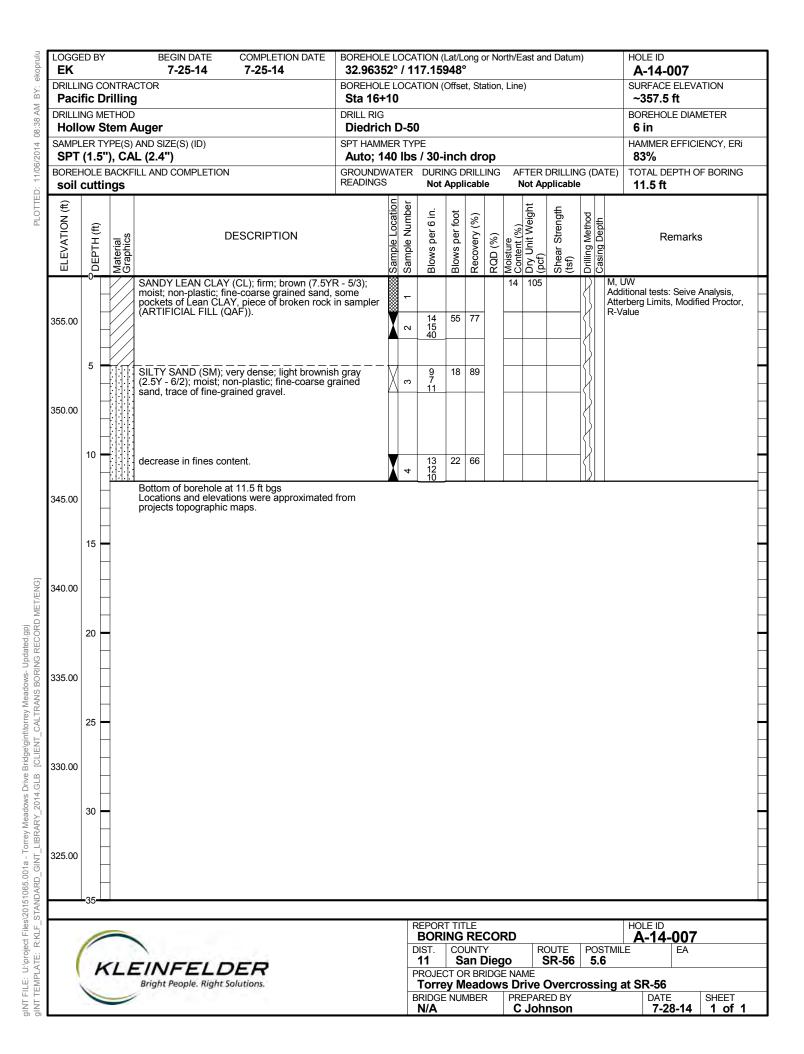
PLOTTED: 11/06/2014 08:37 AM BY: ekoprulu

gINT FILE: U:\project Files\20151065.001a - Torrey Meadows Drive Bridge\gint\torrey Meadows- Updated.gpj gINT TEMPLATE: R:KLF_STANDARD_GINT_LIBRARY_2014.GLB [CLIENT_CALTRANS BORING RECORD MET/ENG]

LOGGE EK	ED BY	(BEGIN DATECOMPLETION DATE7-23-147-23-14	BOREHOLE 32.9632						r Noi	rth/Ea	ast and	Datum)		HOLE	D 4-006	
DRILLIN Pacif		ontra Drilling		BOREHOLE		CA	TION (Offse	t, Sta	ition,	Line)					ACE ELEVA).1 ft	TION
DRILLI	NG M	ETHOD		DRILL RIG		50											HOLE DIAN	IETER
SAMPL	ER T		AND SIZE(S) (ID) L (2.4'')	Diedrick SPT HAMM Auto; 14	IER ⁻	TYF	Έ	nch	dra							6 in HAMM 83%	ER EFFICIE	ENCY, ERi
	IOLE	BACKF	LL AND COMPLETION	GROUNDW READINGS	/ATE			NG D	RILL	ING			RILLIN		DATE		DEPTH O	F BORING
(ft)					ion	ber	÷					ht	£					
ELEVATION	DEPTH (ft)	Material Graphics	DESCRIPTION		Sample Location	Sample Number	Blows per 6 in.	Blows per foot	Recovery (%)	RQD (%)	Moisture Content (%)	Dry Unit Weight (pcf)	Shear Strength (tsf)	Drilling Method	Casing Depth		Remarks	;
	-		SANDY CLAY with GRAVEL (CL); brown (7.5 moist; low plasticity; fine-coarse grained sand gravel, angular to subangular gravel (ARTIFIC (QAF)).	and		-												
355.00	5 -		LEAN CLAY with GRAVEL (CL); stiff; brown (5/3); moist; low plasticity; fine-coarse grained fine-grained gravel, pockets of light brownish	sand,		2	9 12 23	35	100		16	113 F	P=1.5		Ac	, UW, PA, Iditional te terberg Lii	sts: Sieve A	Analysis,
350.00	10 -		SANDY LEAN CLAY (CL); firm; light brownish (2.5Y - 6/2) to brown (7.5YR - 5/3); moist; low	gray	M		9	21	100				PP=1					
	-		(2.5Y - 6/2) to brown (7.5YR - 5/3); moist; low fine-coarse grained sand.	plasticity;	A	ς Γ	9 10 11							$\left\{ \right\}$			sts: Corrosi	ION
345.00	15 •		CLAYEY SAND (SC); dense; brown (7.5YR - moist; medium to high plasticity; some rootlets SILTY SAND (SM); medium dense; light brow (2.5Y - 6/2); moist; non-plastic; fine-coarse gra sand, micaceous.	s^ /nish qrav		4	13 17 35	52	100		12	121			At	lditional te terberg Lii , UW, PA,	sts: Sieve A nits Pl	Analysis,
340.00	20 •		SANDY LEAN CLAY (CL); stiff; brown (7.5YR moist; low to medium plasticity; fine-coarse gr sand, fine-grained gravel, broken pieces of ca	ained	X	ى ا	11 13 15	28	100			PI	P=1.5-2					
335.00	25 -		CLAYEY SAND (SC); medium dense; brown (5/3); moist; non-plastic; fine-coarse grained sa fine-grained gravel, micaceous.			9	9 11 15	26	100		13	115			M,	, UW		
330.00	30		SANDY LEAN CLAY (CL); firm; gray (6N/); m plasticity; fine-coarse grained sand, some roo of fine-grained gravel.	oist; low tlets, trace	X	7	6 8 9	17	100			Pl	P=1-1.5					
	-35-													ł				
			(continued)			R	EPOR	г тіт	LE							HOLE	ID	
1	-		INFELDER			D	BORI IIST. 11	NG CO Si	RE UNT an C	⁄)ieg	0	S	ute R-56		остм 5. 6	A-1	4-006	
	r		Bright People. Right Solutions.					уM	ead	ows	s Dr	ive O		os	sing	at SR-	56	
	1	1	90794,90712N			В	ridge N/A				PRE	PAREI John	D BY		J	D	ATE 7-28-14	SHEET 1 of 3

PLOTTED: 11/06/2014 08:38 AM BY: ekoprulu

gINT FILE: U:\project Files\20151065.001a - Torrey Meadows Drive Bridge\ginttorrey Meadows- Updated.gpj gINT TEMPLATE: R:KLF_STANDARD_GINT_LIBRARY_2014.GLB [CLIENT_CALTRANS BORING RECORD MET/ENG]


ELEVATION (ft)	DEPTH (ft)	Material Graphics	DESCRIPTION	Sample Location	Sample Number	Blows per 6 in.	Blows per foot	Recovery (%)	RQD (%)	Moisture Content (%)	Dry Unit Weight (pcf)	Shear Strength (tsf)	Drilling Method	Casing Depth Casing Depth Casing Depth
	-35		SILTY SAND (SM); dense; gray (6N/); moist; low plasticity; increase in moisture content and sand content.											Sampler bouncing, drilled 2' more to re-sample DS
	-			X	80	10 17 35	52	100		15	114			Additional tests: Sieve Analysis, Atterberg Limits, Direct Shear M, UW, PA, PI
320.00	40 -		CLAYEY SAND (SC); medium dense; light brownish gray (2.5Y - 6/2); moist; non-plastic to low plasticity; fine-coarse grained sand, micaceous.	X	0	7 11 14	25	100						
315.00	45		SANDY LEAN CLAY (CL); firm; brown (7.5YR - 5/3) to dark brown (7.5YR - 3/4); moist; low plasticity; intermixxed coloration, fine-coarse grained sand, trace coarse grained gravel, concretion inside half of sampler.	X	10	11 17 32	49	100		15	117			M, UW
310.00	50		LEAN CLAY (CL); firm; dark brown (7.5YR - 3/4) to black; moist; medium plasticity; trace fine-coarse grained sand, organic smell, abundent rootlets.	X	11	11 12 15	27	77				PP=1.5		
305.00	55 -		CLAYEY SAND (SC); medium dense; brown (7.5YR - 5/3) to yellowish brown (10YR - 5/6); moist; low plasticity; fine-coarse grained sand, micaceous.	X	12	8 14 18	32	66		16	110			Additional tests: Sieve Analysis M, UW, PA
300.00	60		becomes gray (6N/) to light gray-brown (2.5Y - 4/2).	X	13	9 10 13	23	100						
295.00	65 -		SILTY SANDSTONE; very dense; gray (6N/) with abundant reddish brown iron-oxide; moist; low plasticity; fine-grained sand, weakly cemented, highly weathered (MISSION VALLEY FORMATION (TMV)).	X	14	27 50/4"	50/4"	100		12	114	PP=>4		Additional tests: Sieve Analysis, Atterberg Limits M, UW, PA, PI
290.00	70		no recovery.											Very hard layer (concretion @ 70')
285.00	75			X	15	14 17 50/5"	67/11	'100						Additional tests: Corrosion
		·	(continued)											
	T	<li.< td=""><td>EINFELDER Bright People. Right Solutions.</td><td></td><td>F</td><td>REPOR BORI DIST. 11 PROJEC Torre</td><td>NG COI Sa CT OF Y M</td><td>RE UNT an C R BR ead</td><td>í Dieg IDGE OWS</td><td>o E NAI S Dr</td><td>ME ive (</td><td>DUTE SR-56 Dvercr</td><td>5</td><td>HOLE ID A-14-006 OSTMILE EA 5.6 Ssing at SR-56 DATE SHEET</td></li.<>	EINFELDER Bright People. Right Solutions.		F	REPOR BORI DIST. 11 PROJEC Torre	NG COI Sa CT OF Y M	RE UNT an C R BR ead	í Dieg IDGE OWS	o E NAI S Dr	ME ive (DUTE SR-56 Dvercr	5	HOLE ID A-14-006 OSTMILE EA 5.6 Ssing at SR-56 DATE SHEET

PLOTTED: 11/06/2014 08:38 AM BY: ekoprulu

gINT FILE: U:\project Files\20151065.001a - Torrey Meadows Drive Bridge\gint\torrey Meadows- Updated.gpj gINT TEMPLATE: R:KLF_STANDARD_GINT_LIBRARY_2014.GLB [CLIENT_CALTRANS BORING RECORD MET/ENG]

prulu																
PL011ED: 11/06/2014 08:38 AM BY: ekoprulu	ELEVATION (ft)	DEPTH (ft)		Material Graphics	DESCRIPTION Sample Location Sample Number	Blows per 6 in.	Blows per foot	Recovery (%)	Moisture	Content (%) Dry Unit Weight (pcf)	Shear Strength (tsf)	Drilling Method	Casing Depth		Remarl	s
PLOTTED: 11/06/20	280.00	80			CLAYEY SANDSTONE; very dense; reddish brown, gray, yellowish brown, laminated with layers of 1/4" thick; moist; non-plastic; moderate cementation,highly weathered, abundant sulfur and iron-oxide staining. no recovery.											-
:	275.00	85			SILTY SANDSTONE; very dense; gray (6N/) with orange/reddish brown mottling; moist; non-plastic; fine-coarse grained sand, micaceous, moderate cementation, highly weathered.	50/6"	50/6"	100	1:	3 115				Additional Atterberg I M, UW, P/	tests: Siev imits A, Pl	e Analysis,
:	270.00	90			becomes moderately cemented. Bottom of borehole at 90.5 ft bgs Locations and elevations were approximated from projects topographic maps.	50/5"	50/5"	100								-
:	265.00	95														-
_	260.00	100														-
	255.00	105														-
	250.00	110														-
R:KLF_STANDARD_GINT_LIBRARY_2014.GLB	245.00	115														-
SIANL		1			1_		T TIT	-								
K:KLF		1				EPOR BOR		REC	ORD		OUTE	P	787		E ID 14-006 EA	6
gint template:	(1	K	LE	EINFELDER	11 ROJE	Sa CT OR	n Die BRID	GE N	AME	SR-56	5	5.6			
IN LEV		1	_	/	В	i orre Ridge N/A			P	Drive (Repari C Joh	ED BY	OS	sin	ig at SR	-56 Date 7-28-14	SHEET 3 of 3
ົ																

gINT FILE: U: project Files/20151065.001a - Torrey Meadows Drive Bridge/gint/torrey Meadows- Updated.gpj

LOGGE EK	D B	Y	BEGIN D/ 7-25-		COMPL 7-25-	ETION DA • 14		REHOLE LO					Nor	th/East	and Datu	m)		DLE ID 4-14-008	
						BOREHOLE LOCATION (Offset, Station, Line) Sta 17+40 DRILL RIG								SURFACE ELEVATION ~355.0 ft					
DRILLING METHOD I													DRII	BC	BOREHOLE DIAMETER 6 in HAMMER EFFICIENCY, ERI				
Hollow Stem Auger SAMPLER TYPE(S) AND SIZE(S) (ID)						Diedrich D-50 SPT HAMMER TYPE Auto; 140 lbs / 30-inch drop													
SPT (1.5"), CAL (2.4")														Αι	8	83%			
BOREHOLE BACKFILL AND COMPLETION Soil cuttings						GROUNDWATER DURING DRILLING AFTER DRILLING (DATE) READINGS Not Applicable Not Applicable													
ELEVATION (ft)	Z DEPTH (ft)	Material Graphics			ESCRIP	TION		Sample Location	Sample Number	Blows per 6 in.	Blows per foot	Recovery (%)	RQD (%)	Moisture Content (%) Dry Unit Weight	(pct) Shear Strength (tsf)	Drilling Method Casing Depth		Remai	'ks
			ASPHALT CO										-						
354.00	1	-)))	SANDY LEAI	N CLAY m plastic	(CL); bro ity (ARTI	wn to darl FICIAL FI	k brown; m ILL (QAF))	noist;	-				-						
]						7							X			
353.00	2		Bottom of bor Locations and projects topo	d elevation	ons werĕ		nated from				L			I					
352.00	3	-																	
351.00	4	_																	
350.00	5																		
349.00	6	-																	
040.00	7																		
348.00	7																		
347.00	8	-																	
346.00	9	_																	
	-10-	\sim							E	EPOR BORI	NG	REC						DLE ID 4-14-00	8
(ł	KL	EINFE Bright People						PF	ist. 11 Rojec Forre	Sa T OF	JNTY an D R BRI eado	iego DGE	D NAME	ROUTE SR-56	POST 5.6 crossin		EA SR-56	
`	1	-	1						BF	RIDGE				PREPA	RED BY			DATE 7-28-14	SHEET

PLOTTED: 11/06/2014 08:38 AM BY: ekoprulu

gINT FILE: U:\project Files\20151065.001a - Torrey Meadows Drive Bridge\ginttorrey Meadows- Updated.gpj gINT TEMPLATE: R:kLF_STANDARD_GINT_LIBRARY_2014.GLB [CLIENT_CALTRANS BORING RECORD MET/ENG]

APPENDIX C LABORATORY TESTING

APPENDIX C

LABORATORY TESTING

GENERAL

The materials observed in the borings were visually classified and evaluated with respect to strength, swelling, compressibility, compaction density, and moisture content. Material physical/mechanical properties and classifications were substantiated by performing selected laboratory tests. Testing was performed in general accordance with procedures outlined by the American Society for Testing and Materials (ASTM) and the California Department of Transportation (Caltrans).

CLASSIFICATION

Soils were visually described and classified in accordance with the Unified Soil Classification System (USCS) in accordance with ASTM D2487 and/or ASTM D2488. Soil classifications are indicated on the boring logs in Appendix B.

MOISTURE AND DENSITY DETERMINATIONS

Natural moisture content and dry density tests were performed on relatively undisturbed samples in accordance with ASTM D2216 and D7263. These results are presented in the table shown on Figures C-1 through C-2 and on the boring logs.

GRAIN SIZE DISTRIBUTION

Twelve sieve analyses were performed on selected samples from the site to evaluate grain size distribution and to aid in soil classification. The tests were performed in general accordance with ASTM D422. Results of the tests are presented on Figures C-3 through C-18.

ATTERBERG LIMITS

Atterberg limits tests were performed on selected soil samples to assist in classification. Testing was performed in general accordance with ASTM D4318. Test results are presented on Figures C-19 through C-24.

COMPACTION TESTS

Selected soil samples were tested for compaction characteristics in accordance with ASTM Standard Test Method D1557 (modified Proctor). The results are presented on Figures C-25 and C-26.

DIRECT SHEAR

Direct shear testing was performed on three undisturbed and inundated soil samples and tested for shear strength and cohesion values in accordance with ASTM D3080. The results are presented on Figures C-27 through C-31.

R-VALUE TEST

Resistance value (R-value) tests were performed on selected bulk soil samples to evaluate pavement support characteristics of the near-surface onsite soils. R-value testing was performed in accordance with ASTM Test Method D2844. The test results are summarized in Table C-1 below and on Figures C-32 and C-33.

BORING ID	DEPTH (FEET)	R-VALUE	SOIL DESCRIPTION		
A-14-002	1 to 2	11	Sandy lean CLAY (CL)		
A-14-007	0 to 2	6	Sandy lean CLAY (CL)		

Table C-1 R-value Test Results

AGGRESIVITY

Selected soil samples were tested by Clarkson Laboratory and Supply Inc. to evaluate the soil corrosion potential. Soil pH was determined in accordance with California Test (CT) 643. Minimum electrical resistivity tests were performed on in accordance with AASHTO test T288-12. The water soluble sulfate and water soluble chloride contents of the selected samples were evaluated in accordance with CT 417 and CT 422, respectively. Kleinfelder's boring logs and the test results should be reviewed by a qualified corrosion engineer to evaluate the general soil corrosion potential with respect to construction materials to evaluate whether further testing is warranted. The results are presented on Figures C-34 and C-39.

APPENDIX C

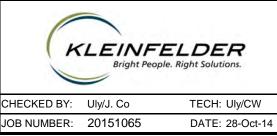
Laboratory Testing

Boring #	Sample #	Depth (ft)	Dry Density (pcf)	Moisture Content (%)	Description
A-14-002	1	1-2	-	14.6%	brown sandy clay with recycled asphalt
A-14-003	2	5-6.5	104.2	10.6%	light brownish gray clayey sand
A-14-003	4	15-16.5	102.3	12.3%	light brown clayey sand
A-14-003	6	25-26.5	108.3	19.5%	yellowish brown sandy lean clay
A-14-003	8	35-36	107.4	13.4%	white silty sand
A-14-003	10	45-45.5	97.3	30.6%	light yellowish brown silty sand
A-14-004	2	5-6.5	116.4	9.8%	light yellowish brown silty sand
A-14-004	4	15-16	104.2	13.6%	light olive brown clayey sand
A-14-004	6	25-26	109.4	13.5%	light brown silty sand
A-14-004	8	35-36	110.3	12.5%	light olive brown clayey sand
A-14-004	10	45-46	96.8	13.7%	gray sandy lean clay
A-14-005	2	5-6.5	-	10.2%	light olive clayey sand
A-14-005	4	15-16.5	-	12.7%	olive brown clayey sand
A-14-005	6	25-26.5	113.9	15.0%	olive brown clayey sand
A-14-005	8	35-36.5	-	14.6%	brown clayey sand
A-14-005	10	50-51.5	-	15.1%	brown clayey sand
A-14-005	12	60-61.5	-	13.2%	yellowish brown clayey sand
A-14-005	15	75-76	-	15.0%	yellow clayey sand

Performed in General Accordance with ASTM D7263 and D2216

Dry Density and Moisture Content

TORREY MEADOWS DRIVE OVERCROSSING AT SR-56 POST MILE 5.6, DISTRICT 11

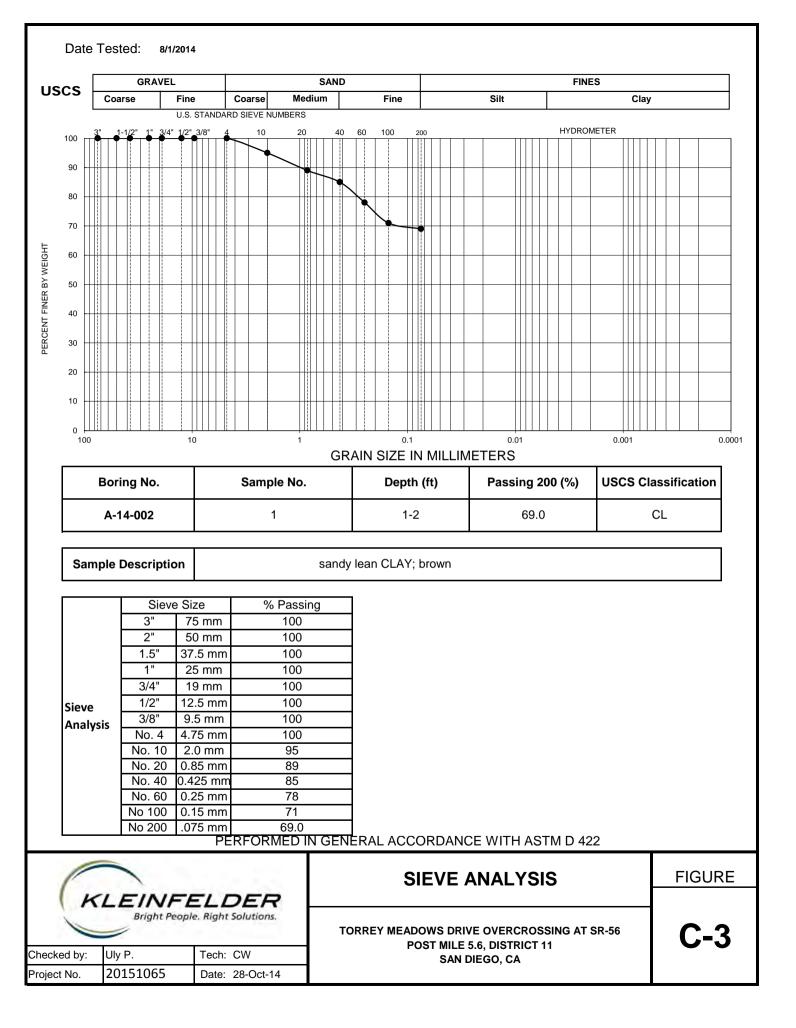

SAN DIEGO, CA

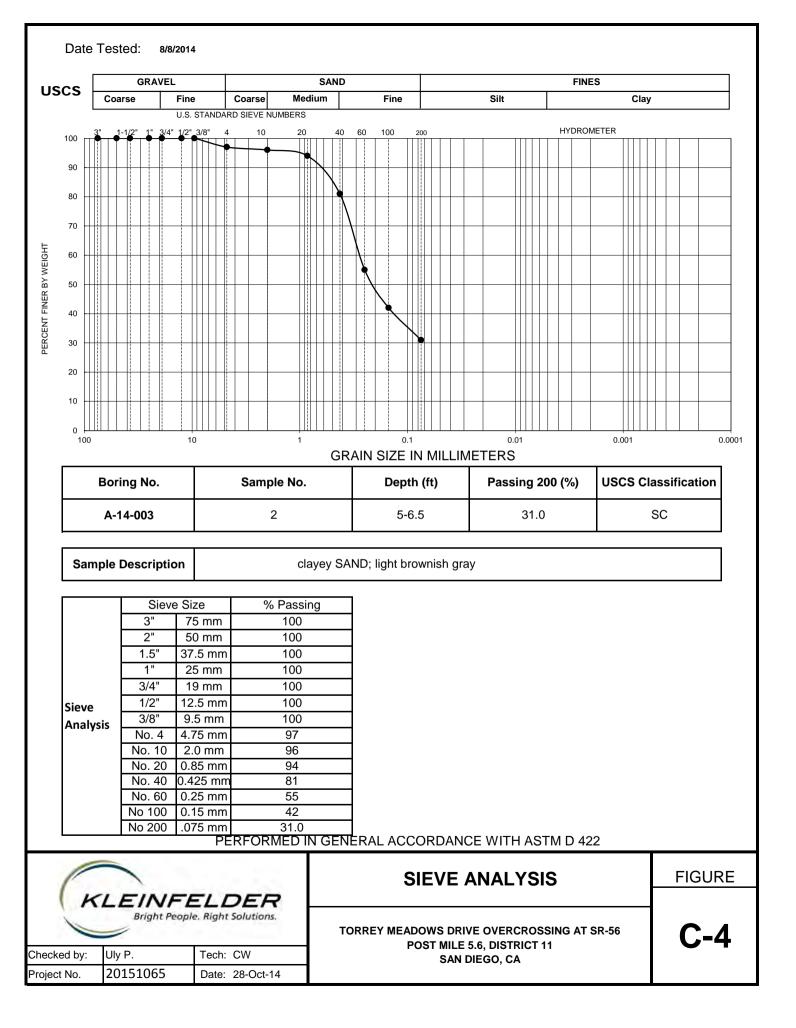
FIGURE

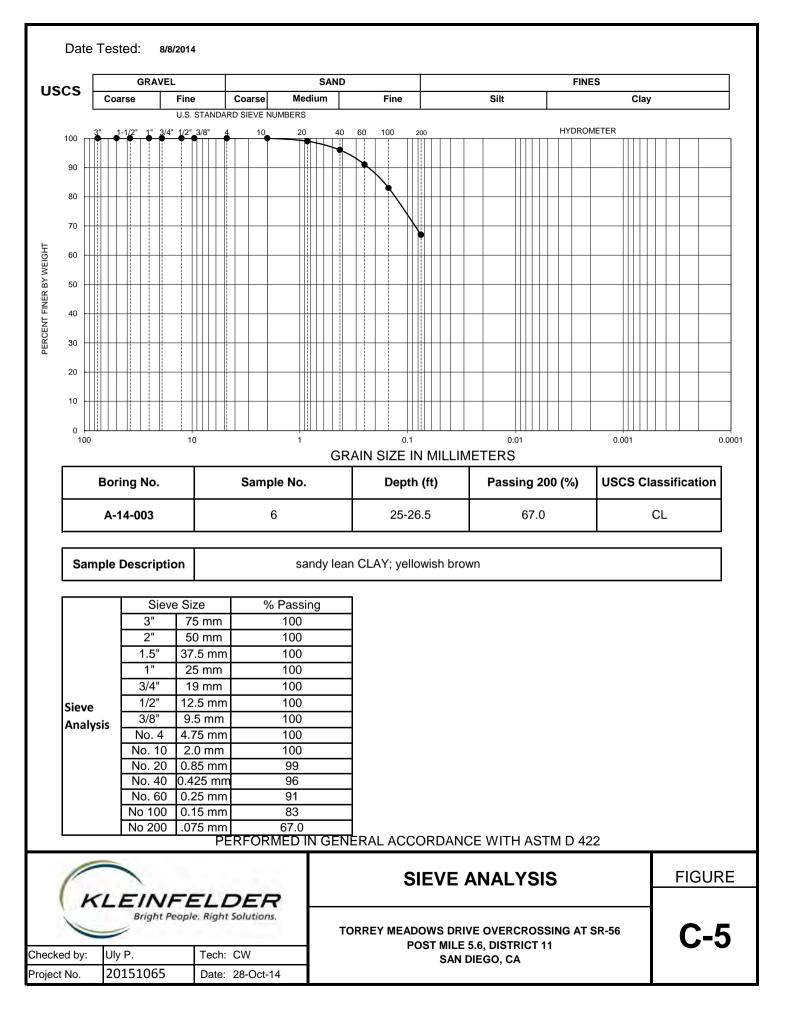
C-1

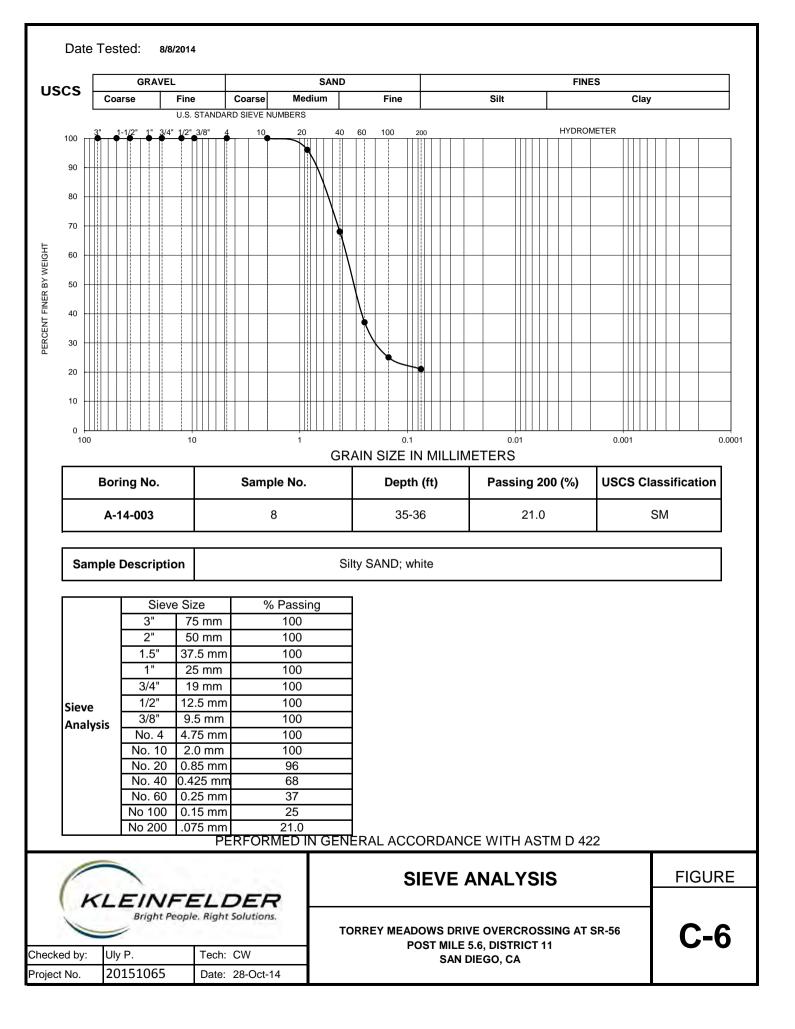
Boring #	Sample #	Depth (ft)	Dry Density (pcf)	Moisture Content (%)	Description	
A-14-005	17	85-86.5	110.3	14.5%	brownish yellow clayey sand	
A-14-006	2	5-6.5	112.8	16.0%	brown lean clay with sand	
A-14-006	4	15-16.5	121.4	12.1%	light olive brown clayey sand	
A-14-006	6	25-26.5	114.9	12.9%	light olive brown clayey sand	
A-14-006	8	37-38.5	114.5	15.5%	yellowish brown silty sand	
A-14-006	10	45-46.5	117.5	15.0%	yellowish brown sandy clay wit 1 1/2" gravel	
A-14-006	12	55-56.5	109.8	16.0%	brown clayey sand	
A-14-006	14	65-66	114.2	11.9%	white silty sand	
A-14-006	16	85-85.5	114.6	13.1%	very light brown silty sand	
A-14-007	1	0-2	-	14.5%	light brown sandy lean clay	

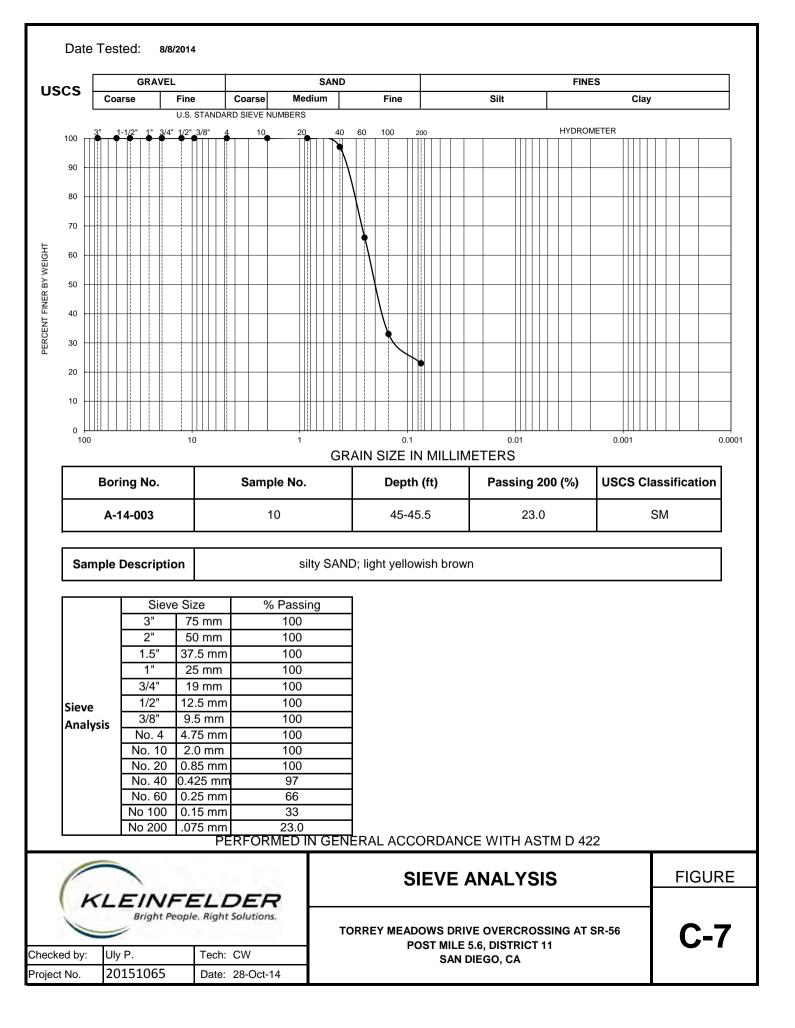
Performed in General Accordance with ASTM D7263 and D2216

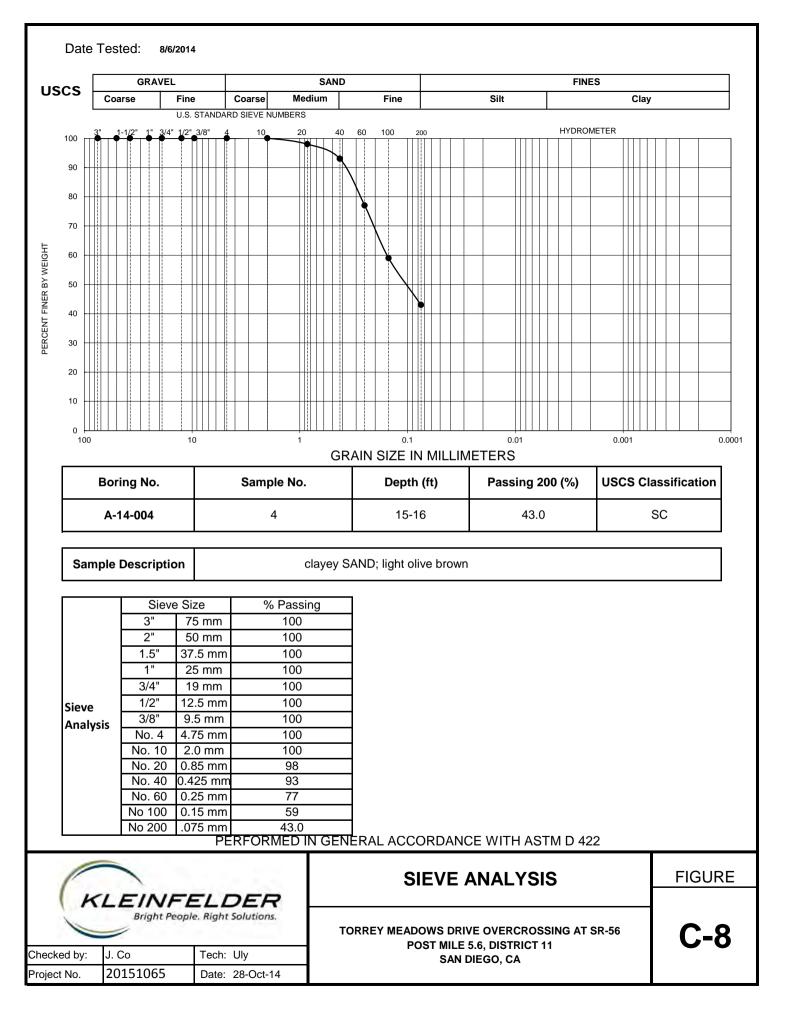


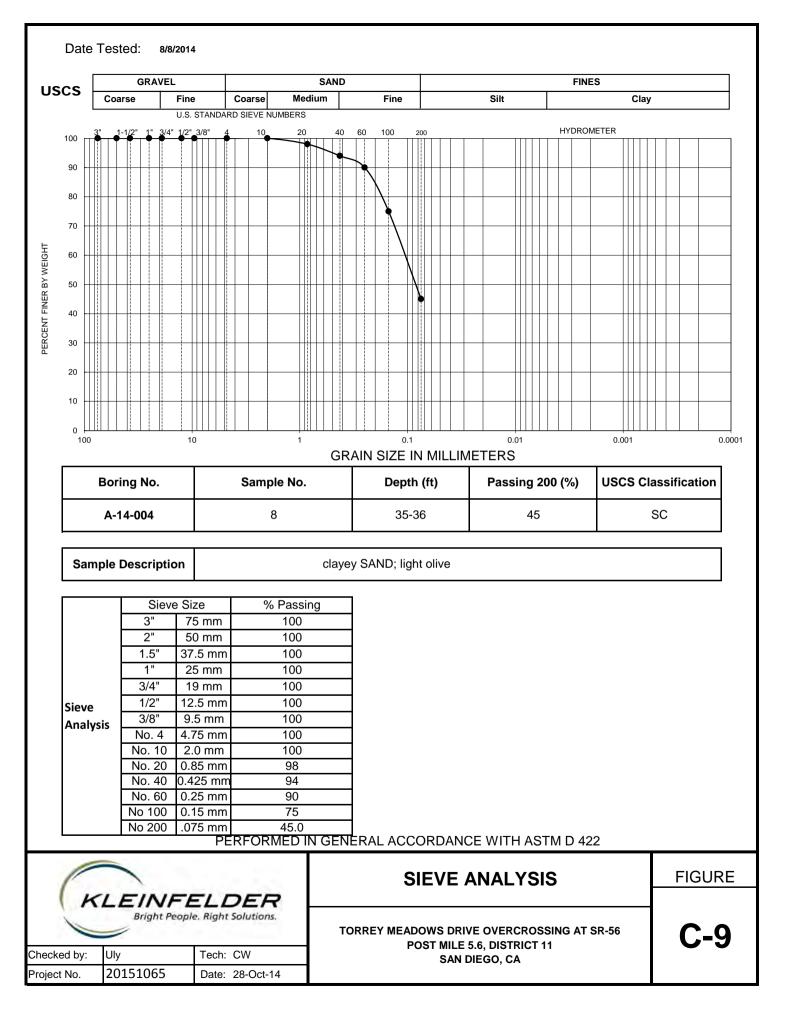

TORREY MEADOWS DRIVE OVERCROSSING AT SR-56 POST MILE 5.6, DISTRICT 11 SAN DIEGO, CA

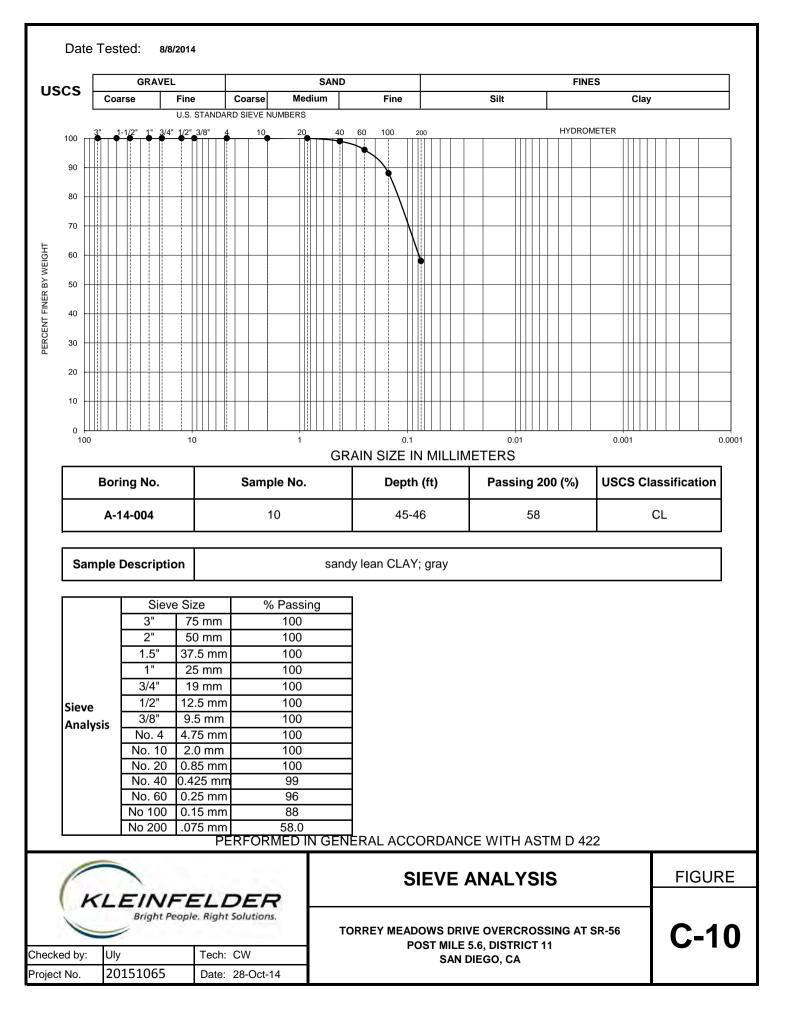

Dry Density and Moisture Content

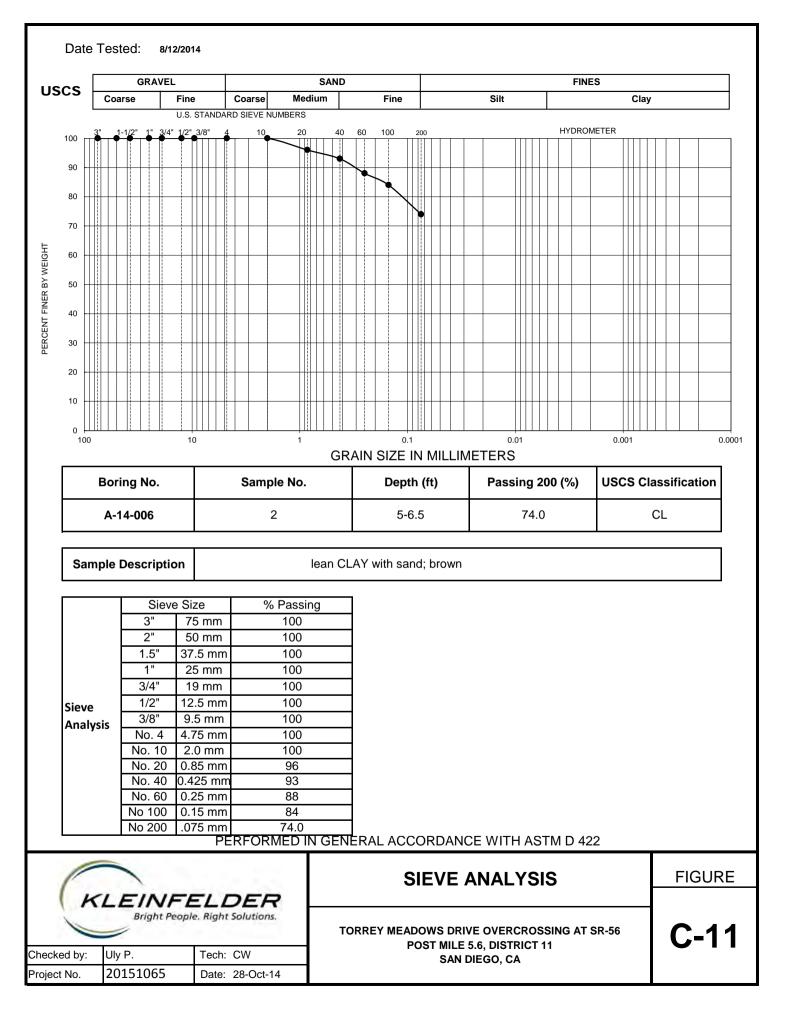

C-2

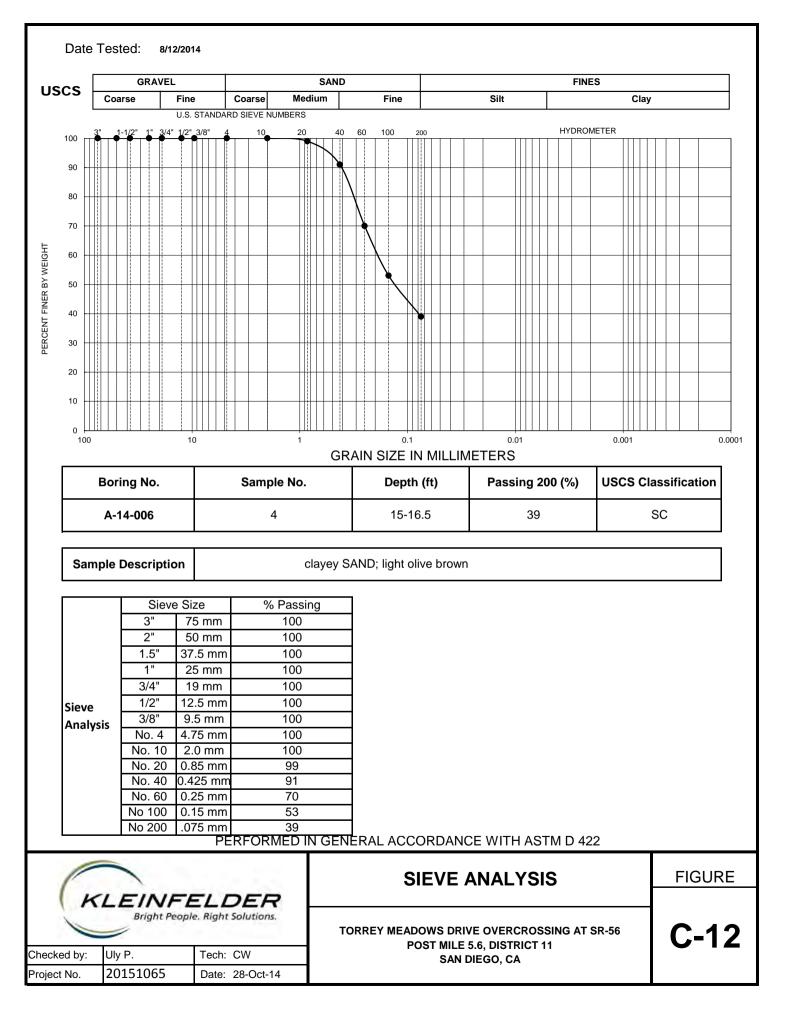

FIGURE

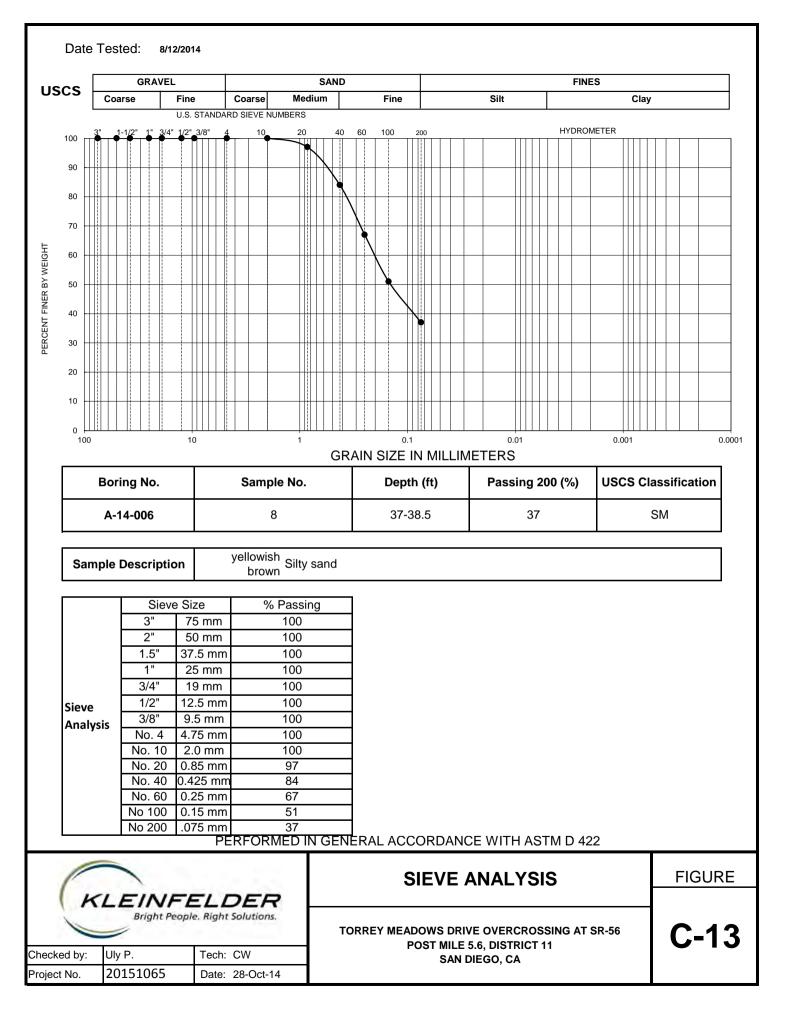


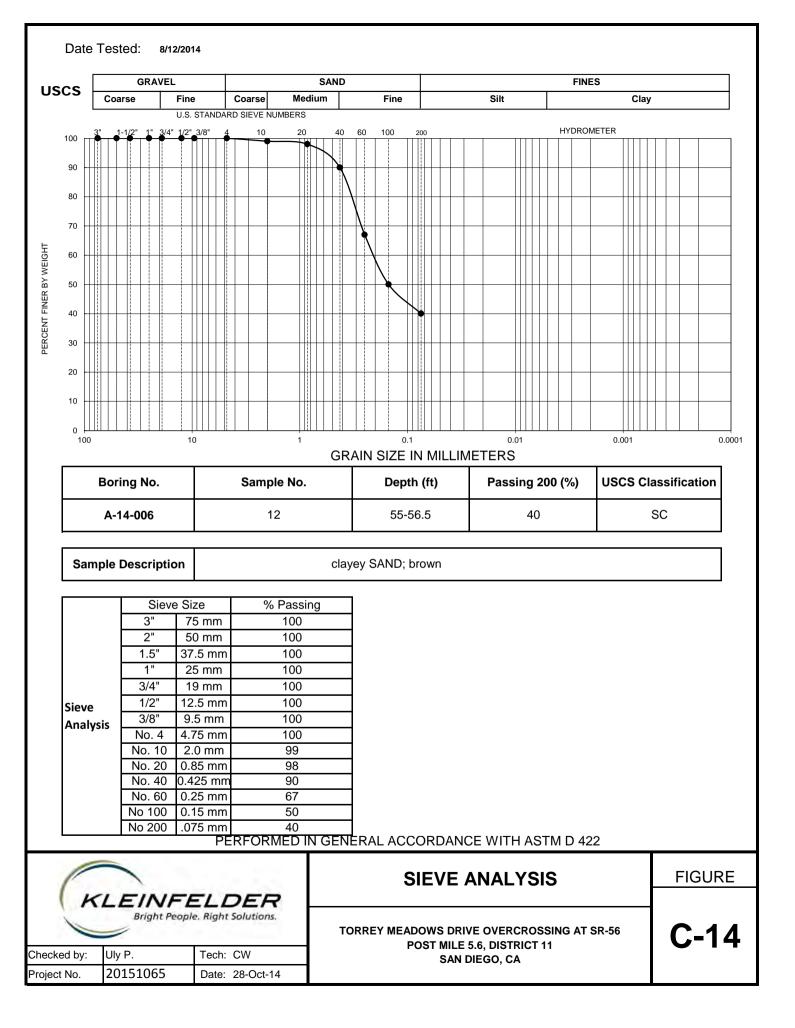


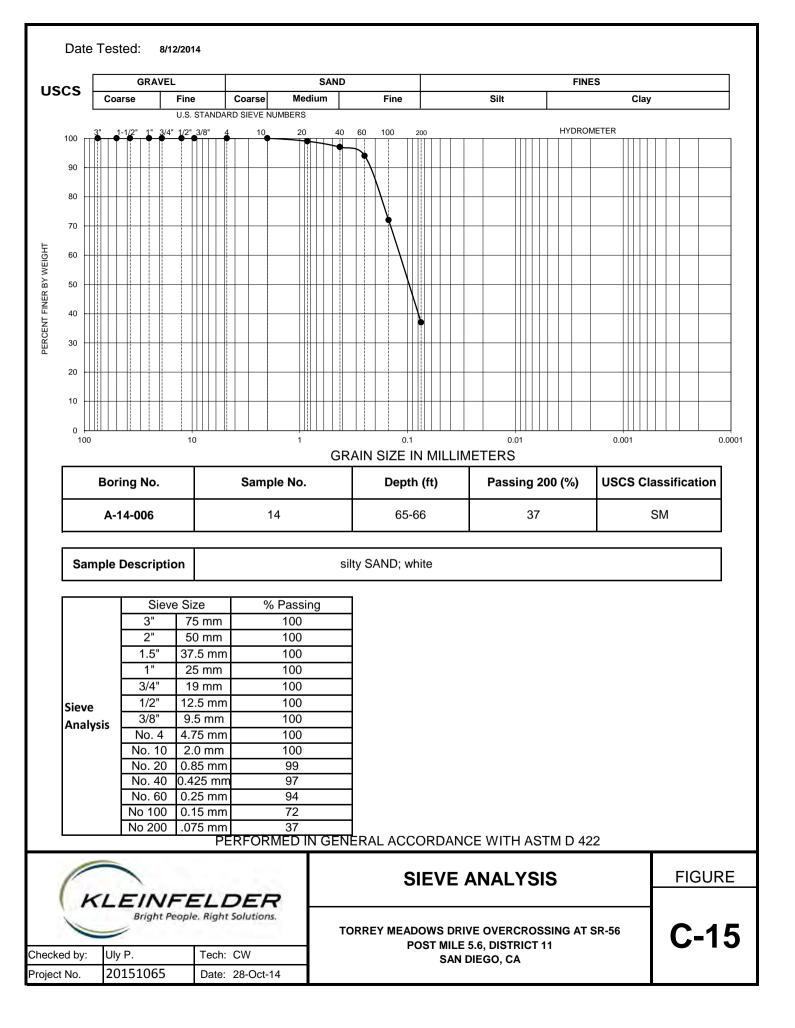


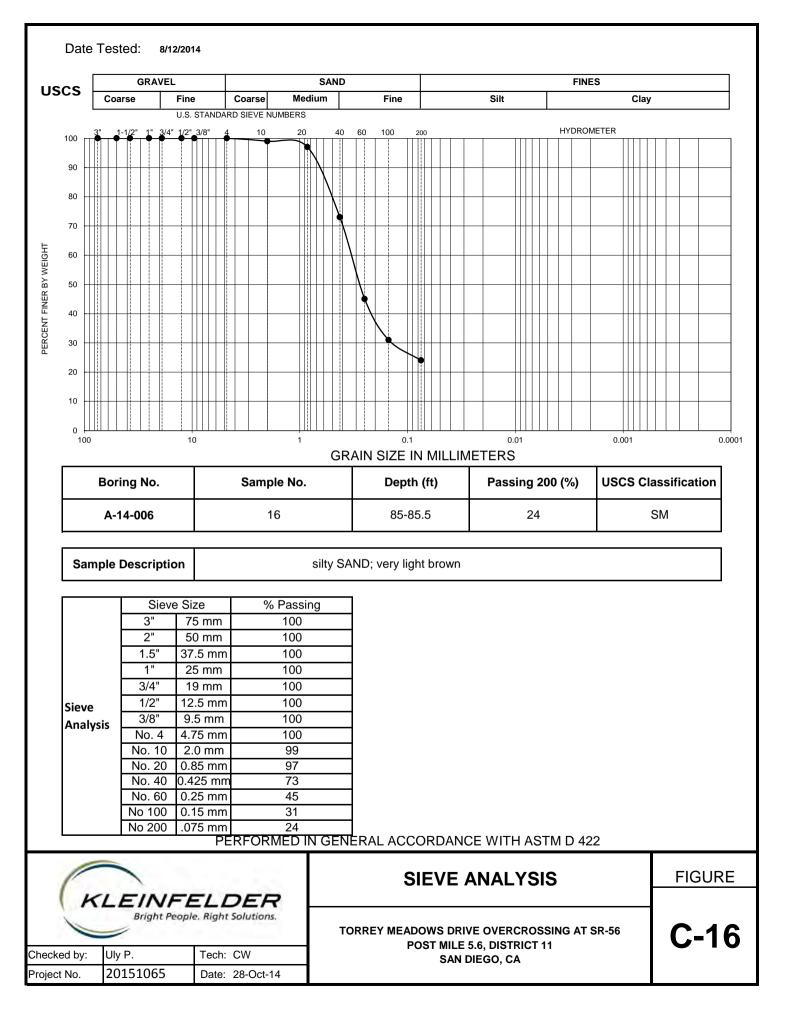


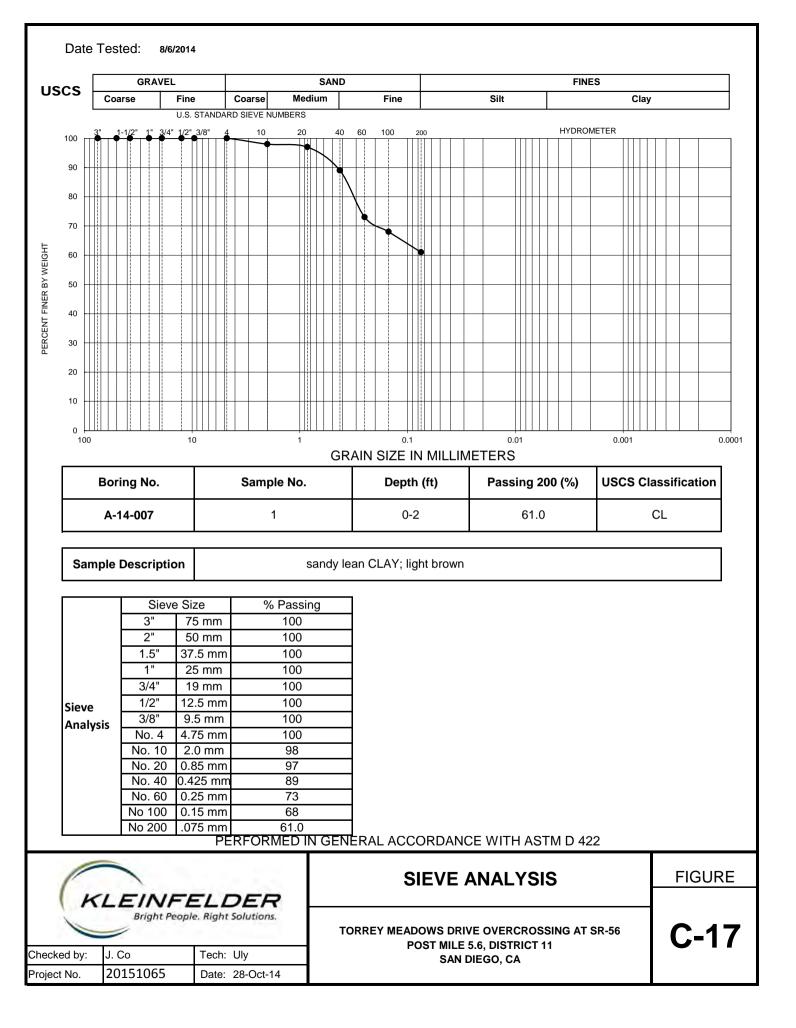






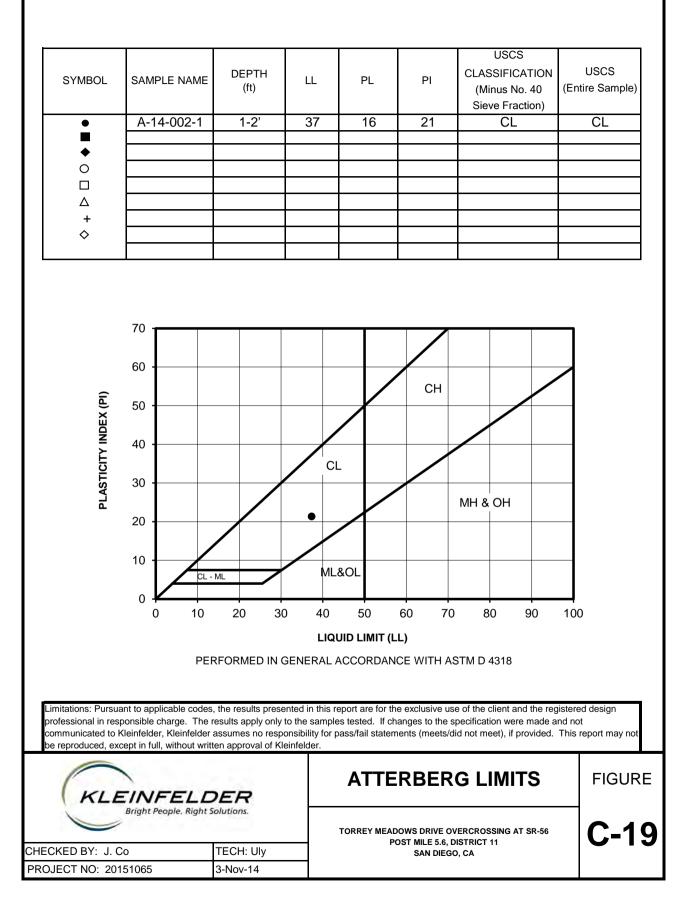




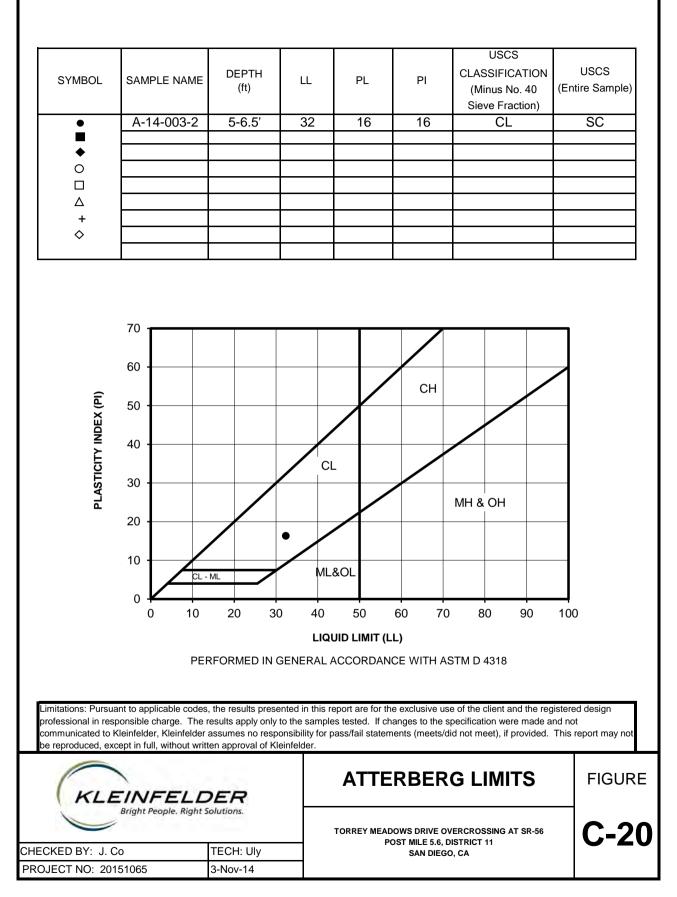


Date Tested 8/6-11/2014

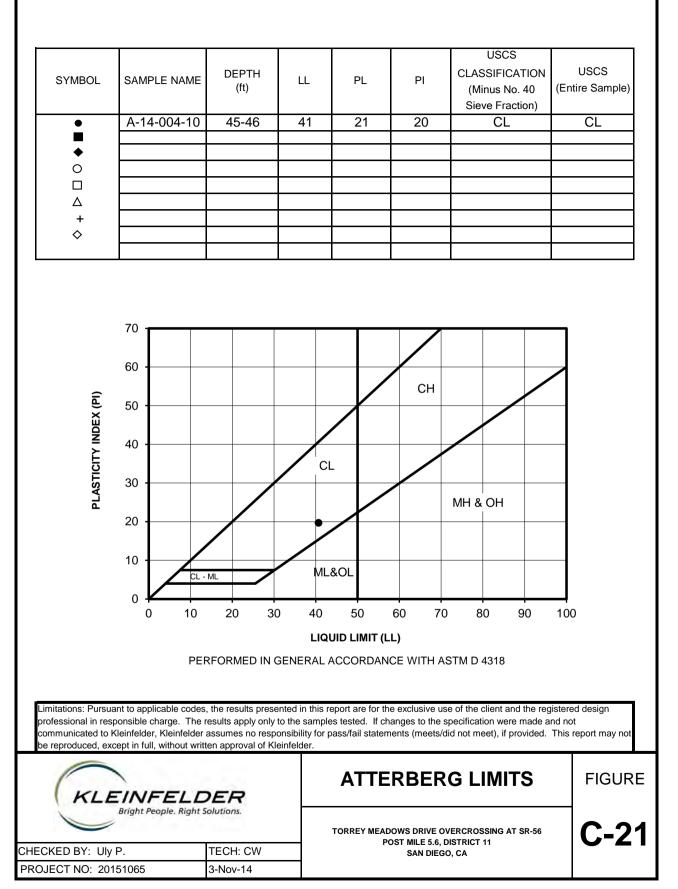
Boring No		A-14-005	A-14-005	A-14-005
Sample No.		2	4	6
Depth, ft.		5-6.5	15-16.5	25-26.5
Original Dry Mass of sample, g	В	265.9	192.3	292.9
Dry Mass of Sample After Washing,g	С	198.3	134.2	215.4
Material Finer than a 75 um (No 200), %	А	25.4	30.2	26.5
Description		light olive clayey sand	olive brown clayey sand	olive brown silty sand


Boring No		A-14-005	A-14-005	A-14-005
Sample No.		10	12	17
Depth, ft.		50-51.5	60-61.5	85-86.5
Original Dry Mass of sample, g	В	181.5	204.5	301.1
Dry Mass of Sample After Washing,g	С	110.3	127.4	227.0
Material Finer than a 75 um (No 200), %	А	39.2	37.7	24.6
Description		brown clayey sand	yellowish brown clayey sand	brownish yellow clayey sand

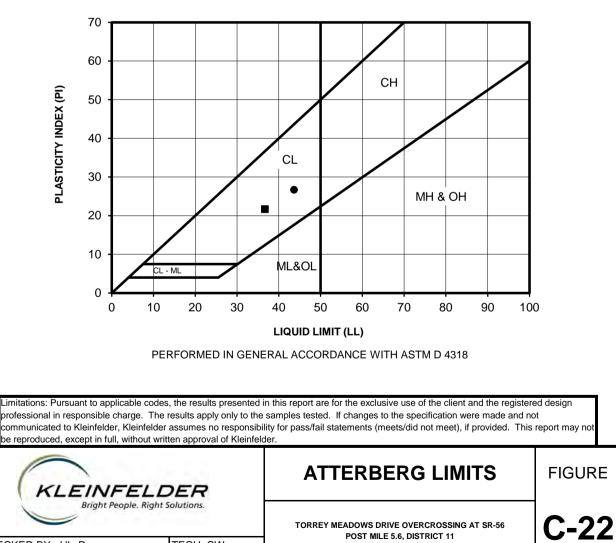
 $A = [(B-C)/B] \times 100$


Limitations: Pursuant to applicable codes, the results presented in this report are for the exclusive use of the client and the registered design professional in responsible charge. The results apply only to the samples tested. If changes to the specification were made and not communicated to Kleinfelder, Kleinfelder assumes no responsibility for pass/fail statements (meets/did not meet), if provided. This report may not be reproduced, except in full, without written approval of Kleinfelder.

	TEST PERFORM	ED IN ACCORDANCE WITH ASTM D 1140	
KLEINF	ELDER	SIEVE ANALYSIS Materials Finer than 75 um (No 200) Sieve	FIGURE
Bright People. Right Solutions.		TORREY MEADOWS DRIVE OVERCROSSING AT SR-56 POST MILE 5.6, DISTRICT 11	C-18
CHECKED BY: Uly	Tech CW	SAN DIEGO, CA	
JOB NUMBER: 20151065	DATE: 28-Oct-14		


Date Tested : 8/6/2014

Date Tested : 8/9/2014



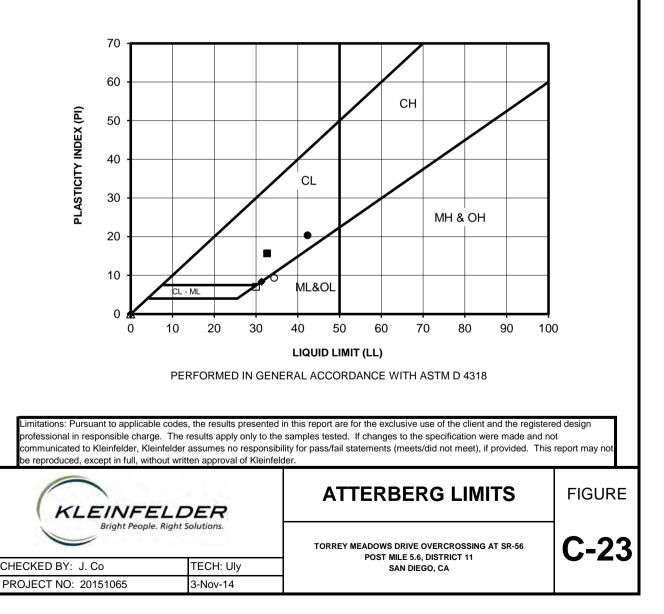
Date Tested : 8/9/2014

Date Tested : 8/10/2014

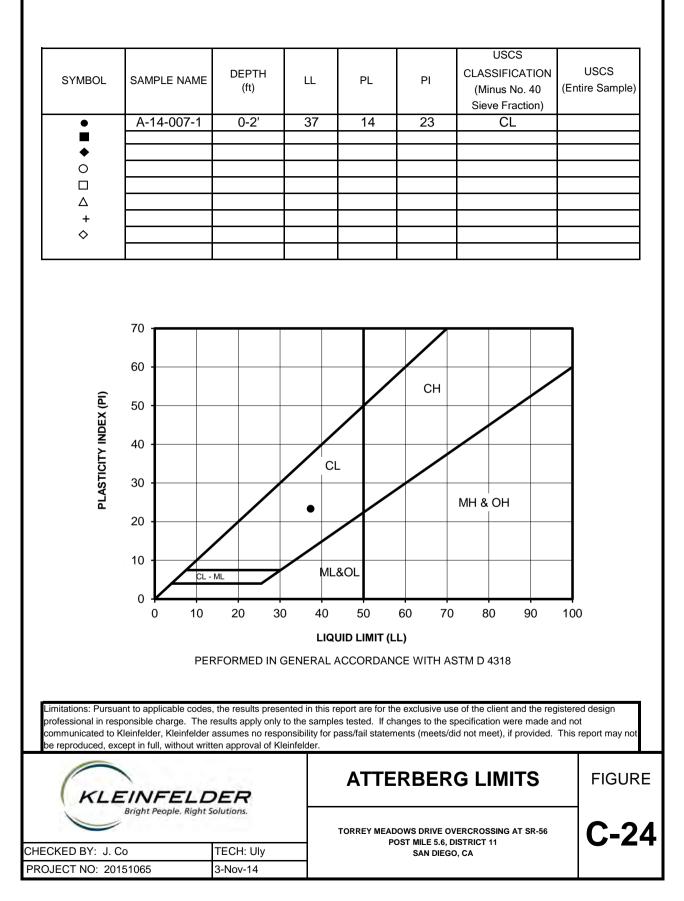
SYMBOL	SAMPLE NAME	DEPTH (ft)	LL	PL	PI	USCS CLASSIFICATION (Minus No. 40 Sieve Fraction)	USCS (Entire Sample)
•	A-14-005-10	50-51.5	44	17	27	CL	
	A-14-005-12	60-61.5	37	15	22	CL	
•							
0							
Δ							
+							
\diamond							

POST MILE 5.6, DISTRICT 11 SAN DIEGO, CA

TECH: CW


3-Nov-14

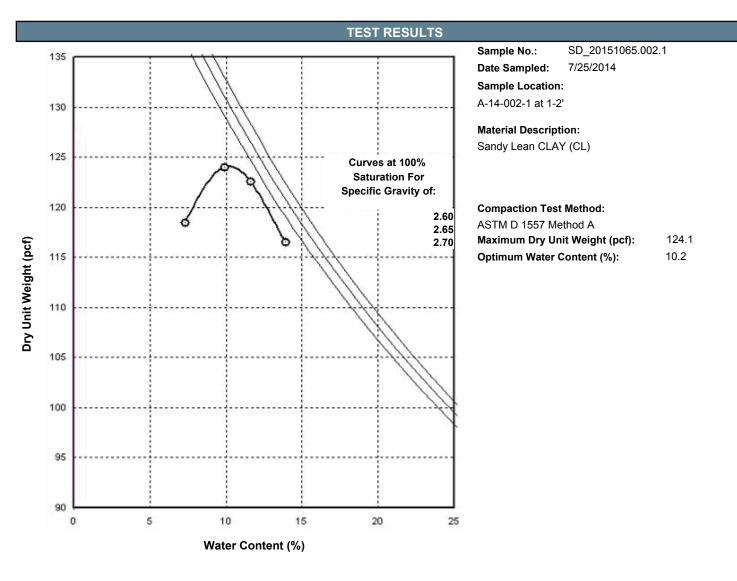
CHECKED BY: Uly P.


PROJECT NO: 20151065

Date Tested : 8/11-12/2014

SYMBOL	SAMPLE NAME	DEPTH (ft)	LL	PL	PI	USCS CLASSIFICATION (Minus No. 40 Sieve Fraction)	USCS (Entire Sample)
•	A-14-006-2	5-6.5	42	22	20	CL	CL
	A-14-006-4	15-16.5	33	17	16	CL	SC
•	A-14-006-8	37-38.5	31	23	8	ML	SM
0	A-14-006-14	65-66	34	25	9	ML	SM
	A-14-006-16	85-85.5	30	23	7	ML	SM
Δ							
+							
\diamond							

Date Tested : 8/6/2014



5015 Shoreham Place San Diego, CA 92122 Phone: (858) 320-2000 Fax: (858) 320-2001

Laboratory Compaction Characteristics of Soil Using Modified Effort ASTM D 1557

Report To:

Report Date:8/12/2014Project No.:20151065.001AProject:Torrey Meadows Drive OvercrossingTask:05-000L Laboratory Testis

Remarks:

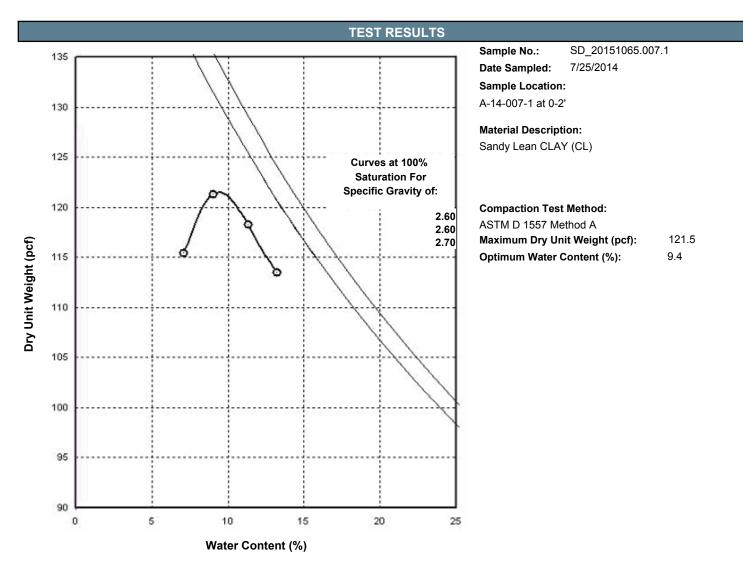
anto

Ulysses Panuncialman Laboratory Manager

Limitations: Pursuant to applicable building codes, the results presented in this report are for the exclusive use of the client and the registered design professional in responsible charge. The results apply only to the samples tested. If changes to the specifications were made and not communicated to Kleinfelder, Kleinfelder assumes no responsibility for pass/fail statements (meets/did not meet), if provided. This report may not be reproduced, except in full, without written approval of Kleinfelder.

Reviewed on 8/12/2014 by:

Page 1 of 1



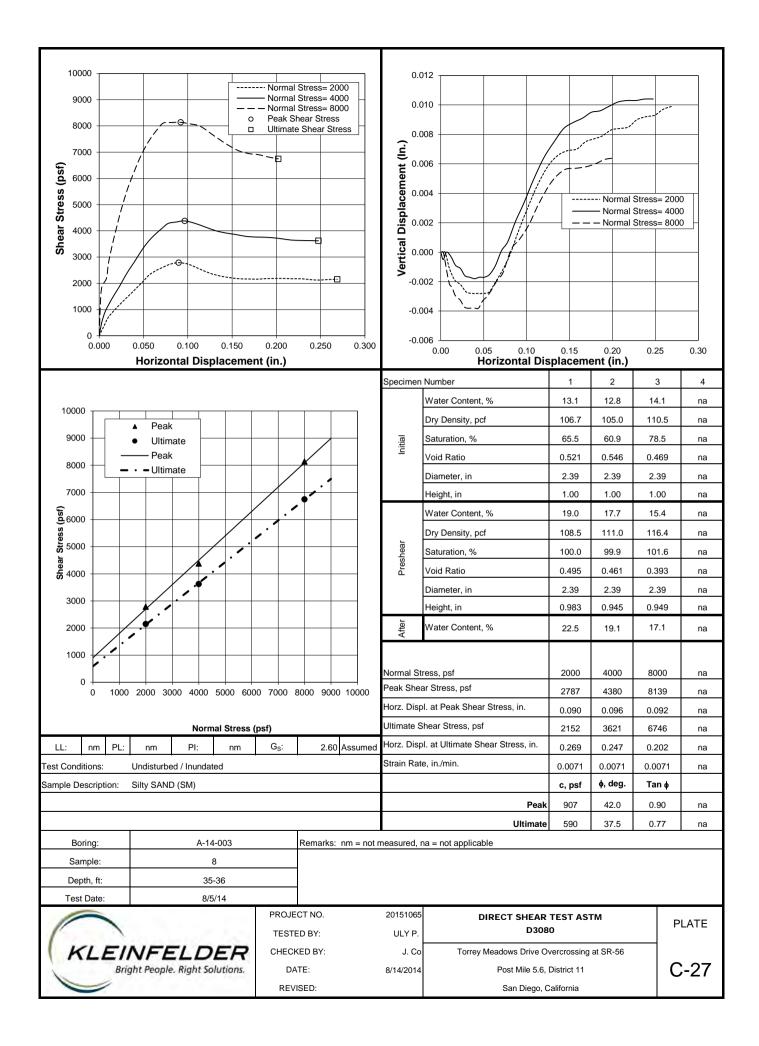
5015 Shoreham Place San Diego, CA 92122 Phone: (858) 320-2000 Fax: (858) 320-2001

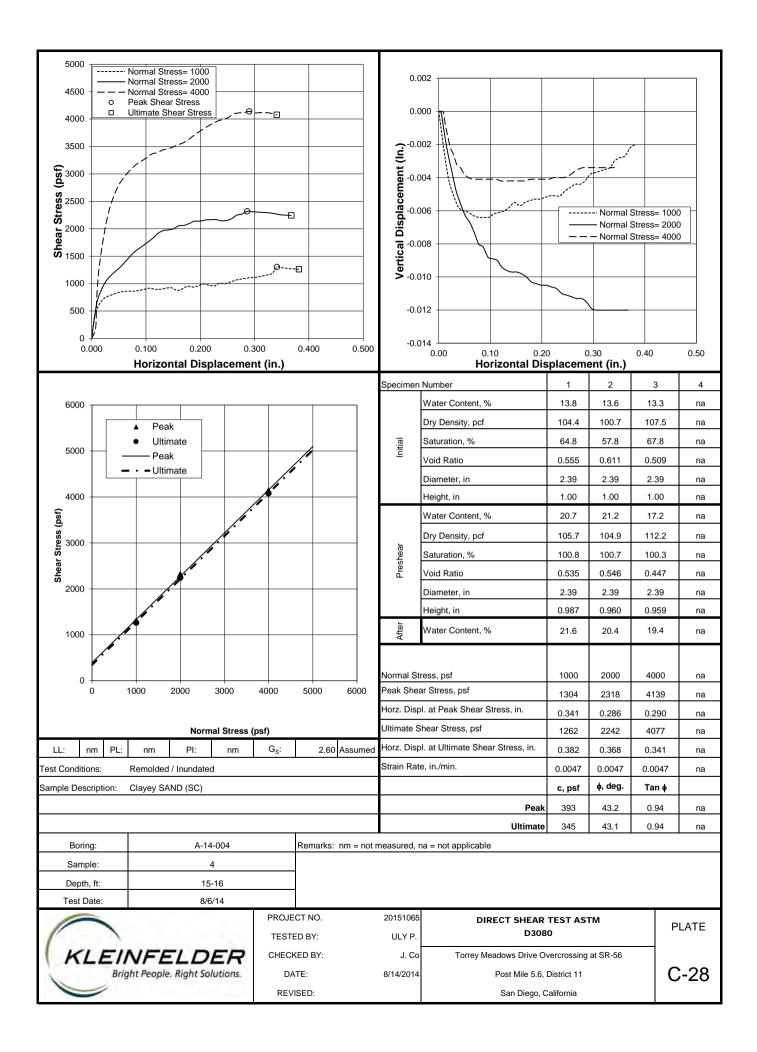
Laboratory Compaction Characteristics of Soil Using Modified Effort ASTM D 1557

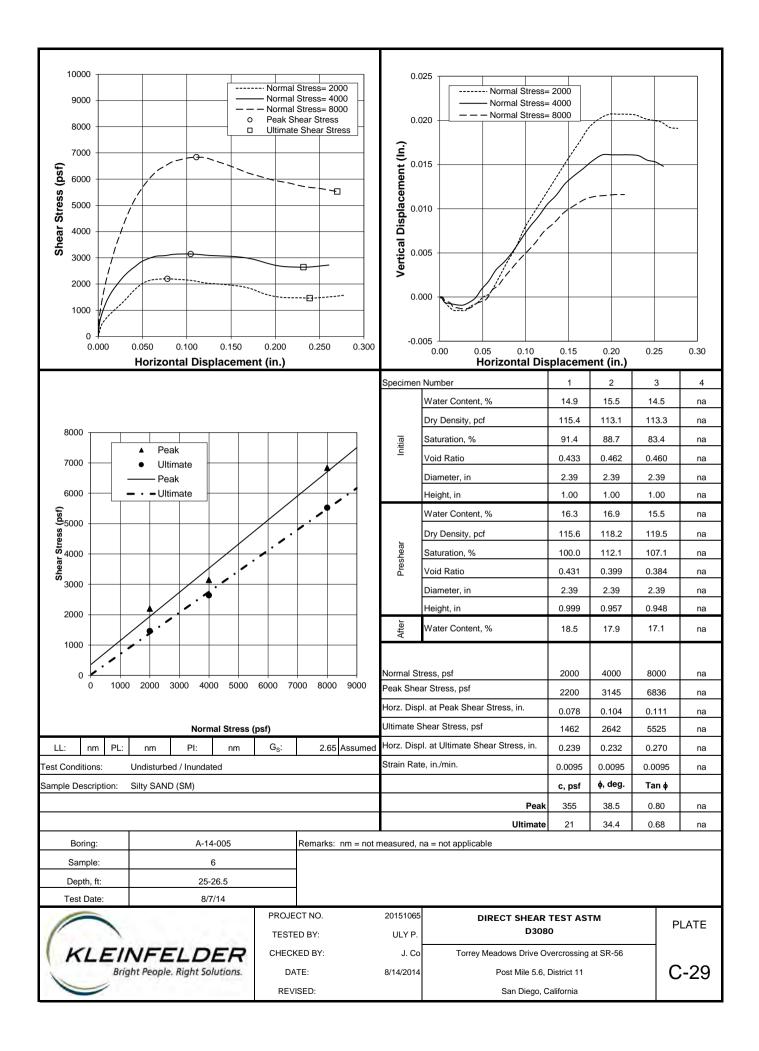
Report To:

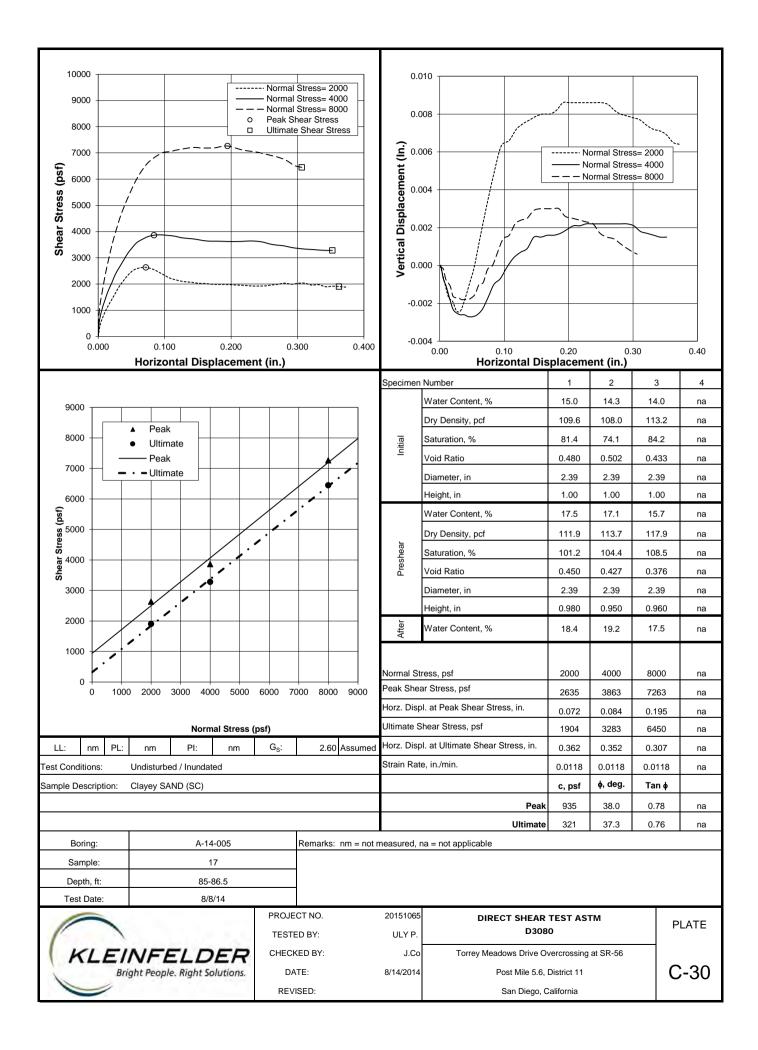
Report Date:8/12/2014Project No.:20151065.001AProject:Torrey Meadows Drive OvercrossingTask:05-000L Laboratory Testis

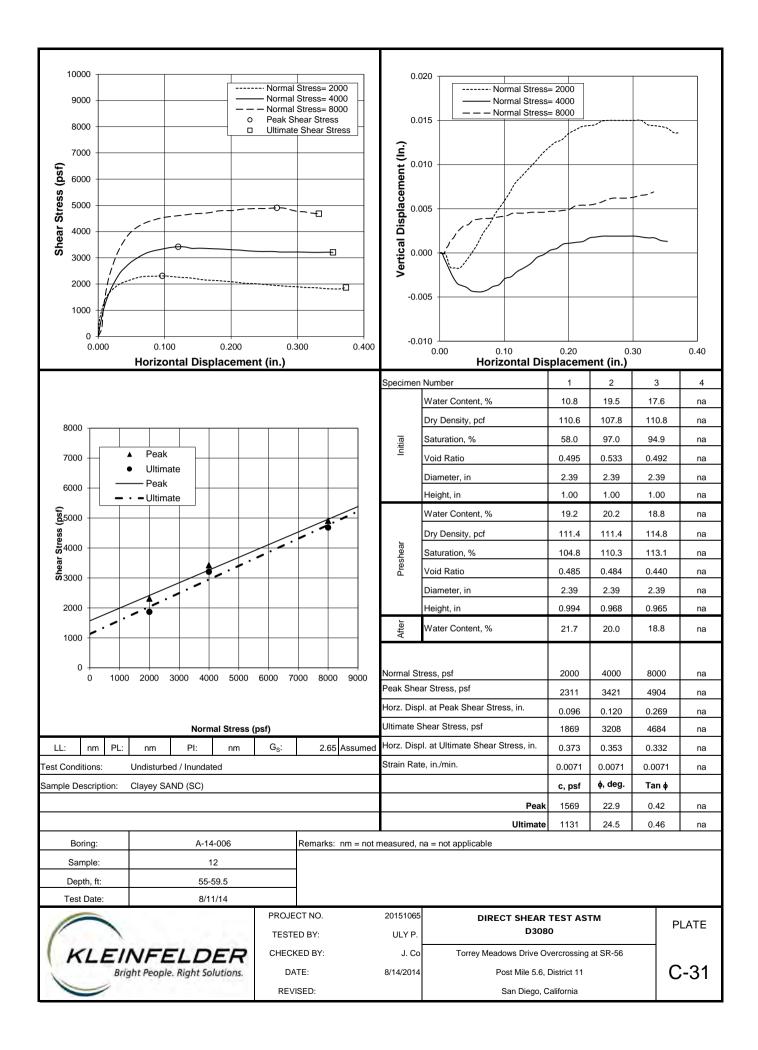
Remarks:


unto


Ulysses Panuncialman Laboratory Manager


Limitations: Pursuant to applicable building codes, the results presented in this report are for the exclusive use of the client and the registered design professional in responsible charge. The results apply only to the samples tested. If changes to the specifications were made and not communicated to Kleinfelder, Kleinfelder assumes no responsibility for pass/fail statements (meets/did not meet), if provided. This report may not be reproduced, except in full, without written approval of Kleinfelder.


Reviewed on 8/12/2014 by:


Page 1 of 1

Boring No.	Sample No.	Depth		Description		Date Test	ted
A-14-002	1	1-2'	S	Sandy Lean CLAY	8/4-5/201	14	
				5			
TEST SPECIM	EN						
MOLD NO.	EIN		5	4	3		
FOOT PRESSU	DE noi		<u> </u>	80	50		
INITIAL MOIS	*		14.5	14.5	14.5		
"AS-IS" WEIGI			14.3	1200	14.5		
	-		1048.0	1048.0	1048.0		
DRY WEIGHT WATER ADDE	-		1048.0	30	50		
	MOISTURE, %		15.9	17.4	19.3		
HEIGHT OF BI			2.5	2.52	2.6		
	UETTE/MOLD,		3182.6	3192.3	3183.3		
WEIGHT OF M	-		2107.9	2113	2105.4		
WEIGHT OF B	*		1074.7	1079.3	1077.9		
DRY DENSITY	· · · · · · · · · · · · · · · · · · ·		1074.7	110.7	1077.9		
STABILOMET	*		55	54	62		
STADILOWET	2000lbs		134	135	146		
DISPLACEME			3.58	3.95	3.95		
EXUDATION I			4485	3439	2063		
EXUDATION I			357.1	273.8	164.3		
R-VALUE			12	10	6		
CORRECTE	D R-VALUE		12	10	7		
DIAL READIN			0.0395	0.0210	0.0300		
DIAL READIN			0.0400	0.0200	0.0300		
DIFFERENCE	0, 51/11(1		-0.0005	0.0010	0.0000		
	RESSURE, PSF		0.0	43.7	0.0		
	,					50	
INITIAL M	OISTURE					50	
WET WEIGHT	σ		749.1			40	
DRY WEIGHT	· ·		654.2				
WEIGHT OF W			001.2				
WEIGHT OF S						30 円	
MOISTURE CO			14.5			20 20	
						20 2	
R-VALUE:	11						
K-VALUE.	**						
	I					10	
Limitations: Pursuant to	applicable codes, the re	sults presented in this	report are for the exclusive				
use of the client and the	e registered design profes	sional in responsible c	harge. The results apply			0	
	ed. If changes to the spe r assumes no responsibilit		nts (meets/did not meet), if	800 700 600 50	0 400 300 200 100 0		
provided. This report r Kleinfelder.	nay not be reproduced, ex	xcept in full, without w	ritten approval of	EXUDA	TION PRESSURE		
Kielineidet.		PROJECT NO.	20454025	1			
\cap			20151065		ue (ASTM D2844)	PLA	ΤE
KIEIN	FELDER	TESTED BY:	ULY P.				
	People. Right Solutions.	CHECKED BY:	J. Co	Torrey Meadows	Drive Overcrossing at SR-56		
	and the second second second	DATE:	8/15/2015	Post M	Vile 5.6, District 11	C-3	32

Boring No.	Sample No.	Depth		Description		Date Test	ted
A-14-007	1	0-2'	S	andy Lean CLAY	(CL)	8/6-7/20	14
TEST SPECIMI	EN						
MOLD NO.			3	4	5		
FOOT PRESSU	RE, psi		60	50	40		
INITIAL MOIS	TURE, %		14.3	14.3	14.3		
"AS-IS" WEIGH	HT, g		1200	1200	1200		
DRY WEIGHT,	, g		1050.1	1050.1	1050.1		
WATER ADDE	D, ml		30	50	90		
COMPACTION	MOISTURE, %		17.1	19.0	22.8		
HEIGHT OF BE	RIQUETTE, in.		2.51	2.55	2.55		
WEIGHT BRIQ	UETTE/MOLD,		3172.2	3171.2	3141.1		
WEIGHT OF M	lOLD, g		2105.4	2113	2107.9		
WEIGHT OF B	RIQUETTE, g		1066.8	1058.2	1033.2		
DRY DENSITY	, pcf		110.1	105.7	100.0		
STABILOMET	ER, 1000 lbs		54	60	68		
	2000lbs		137	140	152		
DISPLACEMEN	NT, in		3.38	3.34	4.38		
EXUDATION I	LOAD, lbs		6877	5317	2967		
EXUDATION F	PRESSURE, psi		547.5	423.3	236.2		
R-VALUE			11	10	3		
CORRECTE	D R-VALUE		11	10	3		
DIAL READIN	G, END		0.0296	0.0298	0.0394		
DIAL READIN	· · · · · · · · · · · · · · · · · · ·		0.0300	0.0300	0.0400		
DIFFERENCE			-0.0004	-0.0002	-0.0006		
	RESSURE, PSF		0.0	0.0	0.0		
						-0	
INITIAL MO	OISTURE					50	
	JISTORE						
WET WEIGHT.	α		580.5			40	
DRY WEIGHT,			508.0				
WEIGHT OF W	· ·		500.0				
WEIGHT OF SA						30 巴	
MOISTURE CO			14.3			3 R-VALUE	
WOISTORE CC			14.5			20 Å	
DALLE	6						
R-VALUE:	6						
Location:						10	
Limitations: Dursuant to	applicable order, the re-	ulto presented in this	report are for the exclusive				
	e registered design profess	-					
	red. If changes to the spec		and not communicated to nts (meets/did not meet), if	800 700 600 50	0 400 300 200 100 0	J	
	nay not be reproduced, ex				TION PRESSURE		
Kleinfelder.							
		PROJECT NO.	20151065	D_V/alı	ue (ASTM D2844)	PLA	TE
		TESTED BY:	ULY P.	K-val	10 (AJ I WI D2044)	PLA	ιC
KLEIN	FELDER	CHECKED BY:	J. Co	Torrey Meadows	Drive Overcrossing at SR-56		
	People. Right Solutions.	DATE:	8/15/2015	-	Mile 5.6, District 11	C-3	33
\checkmark		REVISED:	0,10,2010		Diego, California		
		REVIOLD.		Gun			

Telephone (619) 425-1993 Fax 425-7917 Established 1928 CLARKSON LABORATORY AND SUPPLY INC. 350 Trousdale Dr. Chula Vista, Ca. 91910 www.clarksonlab.com ANALYTICAL AND CONSULTING CHEMISTS Date: August 12, 2014 Purchase Order Number: PROJECT#20151065.001A Sales Order Number: 23461 Account Number: KLE To: *_____* Kleinfelder Inc. 550 West C Street Ste 1200 San Diego, CA 92101 Attention: Uly Panuncialman Laboratory Number: S05371-3 Customers Phone: 831-4600 Fax: 831-4619 Sample Designation: *_____* One soil sample received on 08/08/16 at 1:00pm, marked as follows: Project: Torrey Meadows Drive Overcrossing Project #: 20151065.001A Boring #: A-14-003 Sample #: 1 Depth: 0.5-3.5' Date Shipped: 08/08/14 Analysis By California Test 643, 1999, Department of Transportation Division of Construction, Method for Estimating the Service Life of Steel Culverts. pH 8.4 Water Added (ml) Resistivity (ohm-cm) 10 2200 5 800 5 550 5 500 5 510 5 540 23 years to perforation for a 16 gauge metal culvert. 30 years to perforation for a 14 gauge metal culvert. 41 years to perforation for a 12 gauge metal culvert. 53 years to perforation for a 10 gauge metal culvert. 64 years to perforation for a 8 gauge metal culvert. Water Soluble Sulfate Calif. Test 417 0.012% (120 ppm) Water Soluble Chloride Calif. Test 422 0.026% (260 ppm)

Laura Torres

Laura Torre LT/ram

Telephone (619) 425-1993 Fax 425-7917 Established 1928 CLARKSON LABORATORY AND SUPPLY INC. 350 Trousdale Dr. Chula Vista, Ca. 91910 www.clarksonlab.com ANALYTICAL AND CONSULTING CHEMISTS Date: August 12, 2014 Purchase Order Number: PROJECT#20151065.001A Sales Order Number: 23461 Account Number: KLE To: *_____ Kleinfelder Inc. 550 West C Street Ste 1200 San Diego, CA 92101 Attention: Uly Panuncialman Laboratory Number: S05371-1 Customers Phone: 831-4600 Fax: 831-4619 Sample Designation: *_____* One soil sample received on 08/08/16 at 1:00pm, marked as follows: Project: Torrey Meadows Drive Overcrossing Project #: 20151065.001A Boring #: A-14-004 Sample #: 1 Depth: 0-2' Date Shipped: 08/08/14 Analysis By California Test 643, 1999, Department of Transportation Division of Construction, Method for Estimating the Service Life of Steel Culverts. pH 8.4 Water Added (ml) Resistivity (ohm-cm) 10 2300 5 1500 5 1100 5 1100 5 1200 5 1500 32 years to perforation for a 16 gauge metal culvert. 41 years to perforation for a 14 gauge metal culvert. 57 years to perforation for a 12 gauge metal culvert. 73 years to perforation for a 10 gauge metal culvert. 89 years to perforation for a 8 gauge metal culvert. Water Soluble Sulfate Calif. Test 417 0.003% (30 ppm) Water Soluble Chloride Calif. Test 422 0.003% (32 ppm)

Laura Torres

LT/ram

Fax 425-7917 Telephone (619) 425-1993 Established 1928 CLARKSON LABORATORY AND SUPPLY INC. 350 Trousdale Dr. Chula Vista, Ca. 91910 www.clarksonlab.com ANALYTICAL AND CONSULTING CHEMISTS Date: August 12, 2014 Purchase Order Number: PROJECT#20151065.001A Sales Order Number: 23461 Account Number: KLE To: *_____* Kleinfelder Inc. 550 West C Street Ste 1200 San Diego, CA 92101 Attention: Uly Panuncialman Laboratory Number: S05371-2 Customers Phone: 831-4600 Fax: 831-4619 Sample Designation: *_____* One soil sample received on 08/08/16 at 1:00pm, marked as follows: Project: Torrey Meadows Drive Overcrossing Project #: 20151065.001A Boring #: A-14-005 Sample #: 1 Depth: 0-2.5' Date Shipped: 08/08/14 Analysis By California Test 643, 1999, Department of Transportation Division of Construction, Method for Estimating the Service Life of Steel Culverts. pH 8.6 Water Added (ml) Resistivity (ohm-cm) 10 2200 1100 5 5 550 5 470 5 460 5 470 5 510 5 22 years to perforation for a 16 gauge metal culvert. 29 years to perforation for a 14 gauge metal culvert. 40 years to perforation for a 12 gauge metal culvert. 51 years to perforation for a 10 gauge metal culvert. 62 years to perforation for a 8 gauge metal culvert. Water Soluble Sulfate Calif. Test 417 0.015% (150 ppm) Water Soluble Chloride Calif. Test 422 0.016% (160 ppm)

Laura Torres

LT/ram

Telephone (619) 425-1993 Fax 425-7917 Established 1928 CLARKSON LABORATORY AND SUPPLY INC. 350 Trousdale Dr. Chula Vista, Ca. 91910 www.clarksonlab.com ANALYTICAL AND CONSULTING CHEMISTS Date: August 14, 2014 Purchase Order Number: PROJECT#20151065.001A Sales Order Number: 23461 Account Number: KLE To: *_____ Kleinfelder Inc. 550 West C Street Ste 1200 San Diego, CA 92101 Attention: Uly Panuncialman Laboratory Number: S05371-5 Customers Phone: 831-4600 Fax: 831-4619 Sample Designation: *_____* One soil sample received on 08/08/16 at 1:00pm, marked as follows: Project: Torrey Meadows Drive Overcrossing Project #: 20151065.001A Boring #: A-14-005 Sample #: 13 Depth: 65-66.5' Date Shipped: 08/08/14 Analysis By California Test 643, 1999, Department of Transportation Division of Construction, Method for Estimating the Service Life of Steel Culverts. pH 8.0 Water Added (ml) Resistivity (ohm-cm) 10 2100 1100 5 5 800 5 490 5 420 5 430 5 470 21 years to perforation for a 16 gauge metal culvert. 28 years to perforation for a 14 gauge metal culvert. 39 years to perforation for a 12 gauge metal culvert. 49 years to perforation for a 10 gauge metal culvert. 60 years to perforation for a 8 gauge metal culvert. Water Soluble Sulfate Calif. Test 417 0.035% (350 ppm) Water Soluble Chloride Calif. Test 422 0.011% (110 ppm)

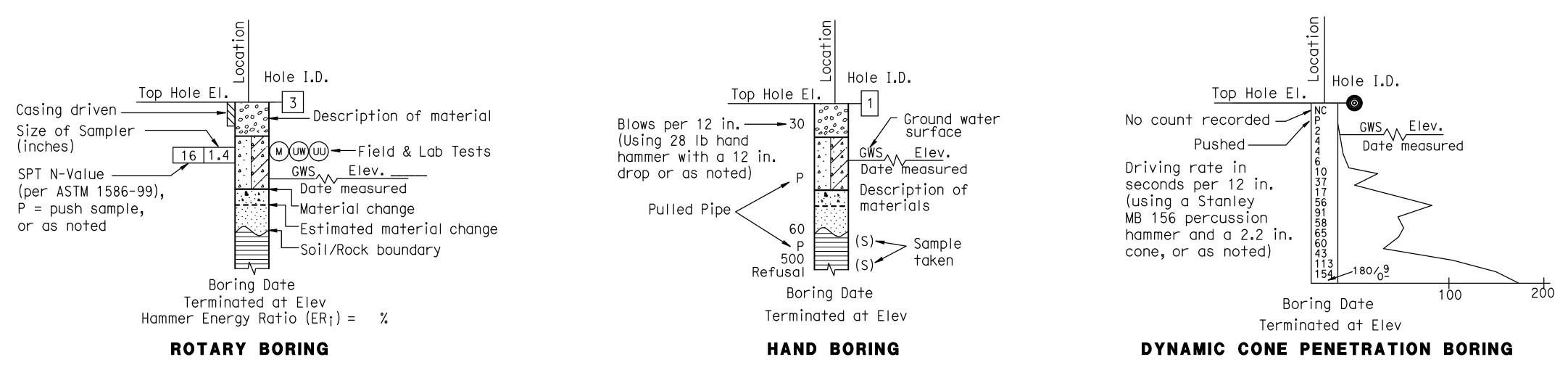
Laura Torres LT/ram

Fax 425-7917 Telephone (619) 425-1993 Established 1928 CLARKSON LABORATORY AND SUPPLY INC. 350 Trousdale Dr. Chula Vista, Ca. 91910 www.clarksonlab.com ANALYTICAL AND CONSULTING CHEMISTS Date: August 12, 2014 Purchase Order Number: PROJECT#20151065.001A Sales Order Number: 23461 Account Number: KLE To: *_____* Kleinfelder Inc. 550 West C Street Ste 1200 San Diego, CA 92101 Attention: Uly Panuncialman Laboratory Number: S05371-4 Customers Phone: 831-4600 Fax: 831-4619 Sample Designation: *_____* One soil sample received on 08/08/16 at 1:00pm, marked as follows: Project: Torrey Meadows Drive Overcrossing Project #: 20151065.001A Boring #: A-14-006 Sample #: 3 Depth: 12-13.5' Date Shipped: 08/08/14 Analysis By California Test 643, 1999, Department of Transportation Division of Construction, Method for Estimating the Service Life of Steel Culverts. pH 8.8 Water Added (ml) Resistivity (ohm-cm) 10 2000 1100 5 5 550 5 370 5 350 5 370 5 380 20 years to perforation for a 16 gauge metal culvert. 26 years to perforation for a 14 gauge metal culvert. 36 years to perforation for a 12 gauge metal culvert. 46 years to perforation for a 10 gauge metal culvert. 56 years to perforation for a 8 gauge metal culvert. Water Soluble Sulfate Calif. Test 417 0.012% (120 ppm) Water Soluble Chloride Calif. Test 422 0.042% (420 ppm)

Laura Torres LT/ram

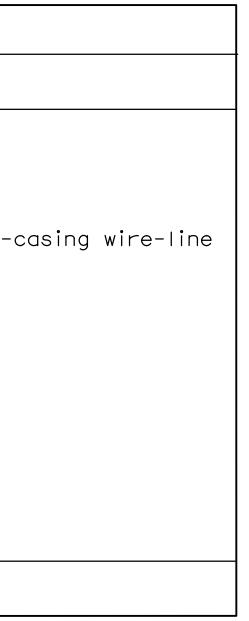
Telephone (619) 425-1993 Fax 425-7917 Established 1928 CLARKSON LABORATORY AND SUPPLY INC. 350 Trousdale Dr. Chula Vista, Ca. 91910 www.clarksonlab.com ANALYTICAL AND CONSULTING CHEMISTS Date: August 14, 2014 Purchase Order Number: PROJECT#20151065.001A Sales Order Number: 23461 Account Number: KLE To: *_____ Kleinfelder Inc. 550 West C Street Ste 1200 San Diego, CA 92101 Attention: Uly Panuncialman Laboratory Number: S05371-6 Customers Phone: 831-4600 Fax: 831-4619 Sample Designation: *_____* One soil sample received on 08/08/16 at 1:00pm, marked as follows: Project: Torrey Meadows Drive Overcrossing Project #: 20151065.001A Boring #: A-14-006 Sample #: 15 Depth: 75-76.5' Date Shipped: 08/08/14 Analysis By California Test 643, 1999, Department of Transportation Division of Construction, Method for Estimating the Service Life of Steel Culverts. pH 7.4 Water Added (ml) Resistivity (ohm-cm) 10 1600 670 5 5 350 5 250 5 260 5 270 5 17 years to perforation for a 16 gauge metal culvert. 23 years to perforation for a 14 gauge metal culvert. 31 years to perforation for a 12 gauge metal culvert. 40 years to perforation for a 10 gauge metal culvert. 48 years to perforation for a 8 gauge metal culvert. Water Soluble Sulfate Calif. Test 417 0.015% (150 ppm) Water Soluble Chloride Calif. Test 422 0.134% (1340 ppm)

Laura Torres LT/ram

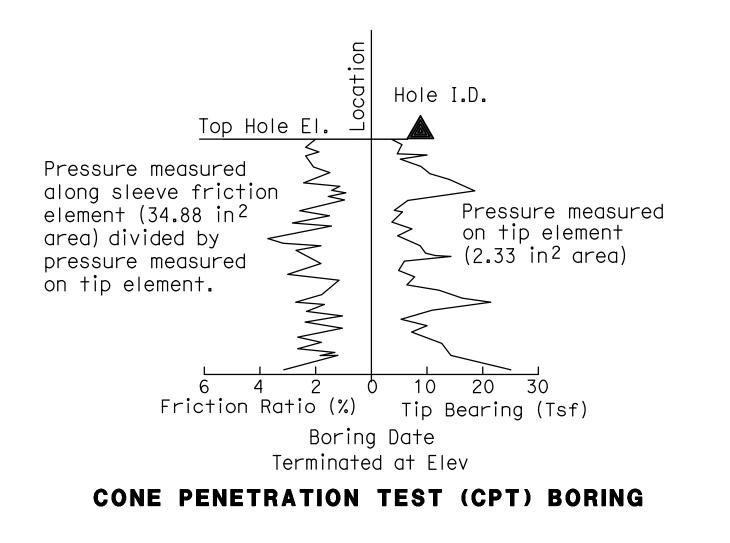

APPENDIX D LOG OF TEST BORINGS (LOTBs)

APPENDIX D

Log of Test Borings (LOTBs)


<u>REFERENCE:</u> CALTRANS SOIL & ROCK LOGGING, CLASSIFICATION, AND PRESENTATION MANUAL (2010)

Symbol	НоІе Туре	Description
Size	А	Auger Boring (hollow or solid stem bucket)
Size	R RW RC P	Rotary drilled boring (conventional) Rotary drilled with self-casing wire-line Rotary core with continuously-sampled, self- Rotary percussion boring (air)
Size	R	Rotary drilled diamond core
Size	HD HA	Hand driven (1-inch soil tube) Hand Auger
•	D	Dynamic Cone Penetration Boring
	СРТ	Cone Penetration Test (ASTM D 5778)
	Ο	Other (note on LOTB)
		Note: Size in inches.


 DESIGN OVERSIGHT	D. FAHRNEY	E. KOPRULU FIELD INVESTIGATION BY:		PREPARED FOR THE STATE OF CALIFORNIA	X	BRIDGE NO. 57-XXXX TOR	REY MEADOWS DRIVE OC
X SIGN OFF DATE	CHECKED BY M. ARZAMENDI	DATE: 07/22/14 TO 07/25/14		DEPARTMENT OF TRANSPORTATION		XX.X LOG OF	TEST BORINGS - SOIL LEGEND 1
GS GEOTECHNICAL LOG OF TEST BORINGS S	SHEET (ENGLISH) (REV. 03/14/12)		ORIGINAL SCALE IN INCHES FOR REDUCED PLANS	0 1 2 3	UNIT: PROJECT NUMBER & PHASE:	CONTRACT NO.:	DISREGARD PRINTS BEARING EARLIER REVISION DATES
					FILE => \$REQUEST		

	CEMENTATION						
Description	Criteria						
Weak	Crumbles or breaks with handling or little finger pressure.						
Moderate	Crumbles or breaks with considerable finger pressure.						
Strong	Will not crumble or break with finger pressure.						

	CONSISTENCY OF COHESIVE SOILS									
Description	Shear Strength (tsf)	Pocket Penetrometer Measurement, PP, (tsf)	Torvane Measurement, TV, (tsf)	Vane Shear Measurement, VS, (tsf)						
Very Soft	Less than 0.12	Less than 0.25	Less than 0.12	Less than 0.12						
Soft	0.12 - 0.25	0.25 - 0.5	0.12 - 0.25	0.12 - 0.25						
Medium Stiff	0.25 - 0.5	0.5 - 1	0.25 - 0.5	0.25 - 0.5						
Stiff	0.5 - 1	1 - 2	0.5 - 1	0.5 - 1						
Very Stiff	1 - 2	2 - 4	1 - 2	1 - 2						
Hard	Greater than 2	Greater than 4	Greater than 2	Greater than 2						

DIST	COUNTY	ROUTE	POST MILES TOTAL PROJECT	SHEET No	TOTAL SHEETS		
11	SD	56	XX.X				
PLA The Sta shall n	NS APPROV ate of Californ of be responsi	AL DATE Na or its office ble for the accu ned copies of th	rs or agents	Arzamend 2275 26/30/15 ECHNICAL CAL IFORN	ENG INEER		
T.Y. LIN INTERNATIONAL 404 CAMINO DEL RIO SOUTH, SUITE 700 SAN DIEGO, CA 92101							
550	INFELDER WEST C S DIEGO, C/	TE 1200					

<u>REFERENCE:</u> CALTRANS SOIL & ROCK LOGGING, CLASSIFICATION, AND PRESENTATION MANUAL (2010)

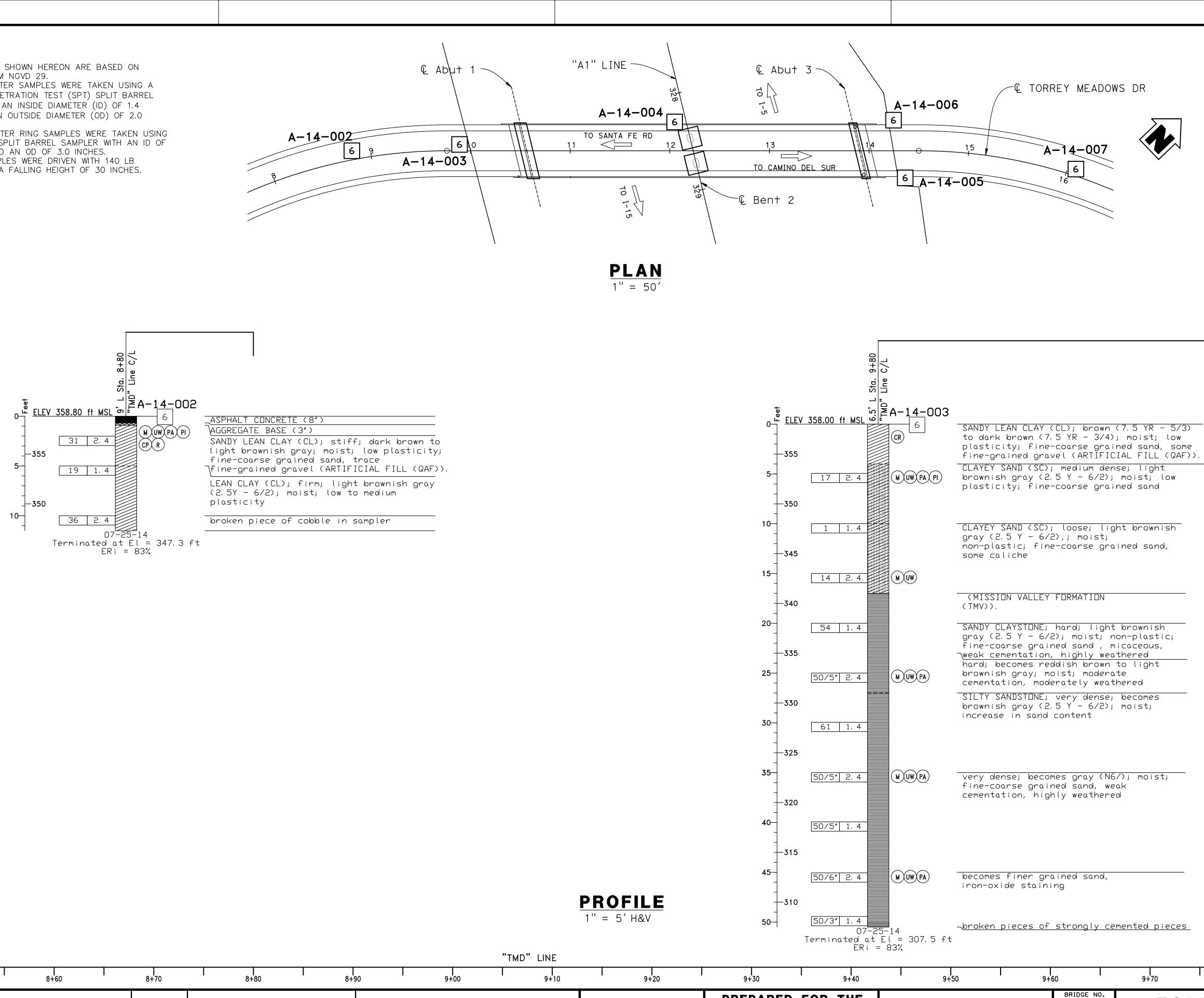
				ROUP SYMBOLS				
	c/Symbol		Group	Names	Grap	hic/Symbol		up Names
	GW GP	Well-graded Well-graded Poorly-grad Poorly-grad	GRAVEL ed GRAVE			CL	Lean CLAY Lean CLAY with S Lean CLAY with G SANDY lean CLAY SANDY lean CLAY GRAVELLY lean CL GRAVELLY lean CL	RAVEL with GRAVEL Ay
	GW-GM	Ŭ	GRAVEL	with SILT and SAND		CL-ML	SILTY CLAY SILTY CLAY with S SILTY CLAY with O SANDY SILTY CLAY	SAND GRAVEL
	GW-GC	Well-graded (or SILTY C Well-graded (or SILTY C	GRAVEL GRAVEL LAY and	with CLAY and SAND SAND)			SANDY SILTY CLAY GRAVELLY SILTY C GRAVELLY SILTY C	LAY
	GP-GM	Poorly-grad	ed GRAVE	EL with SILT EL with SILT and SAND EL with CLAY)	ML	SILT SILT with SAND SILT with GRAVEL SANDY SILT	
	GP-GC	Poorly-grad SAND (or SI	ed GRAVE LTY CLAY	L with CLAY and and SAND)		<u> </u>	SANDY SILT with (GRAVELLY SILT GRAVELLY SILT wi ORGANIC lean CLA	th sand
	GM	SILTY GRAVE	L with S	AND		OL	ORGANIC lean CLAY ORGANIC lean CLAY SANDY ORGANIC lea	(with SAND (with GRAVEL an CLAY
	GC	CLAYEY GRAV CLAYEY GRAV	'EL with				GRAVELLY ORGANIC GRAVELLY ORGANIC	an CLAY with GRAVEL lean CLAY lean CLAY with SAN
	GC-GM	SILTY, CLAYE	ey grave				ORGANIC SILT ORGANIC SILT with ORGANIC SILT with SANDY ORGANIC SII SANDY ORGANIC SII	GRAVEL _T
$\begin{array}{c} \cdot & \cdot \\ \cdot & \cdot \\ \Delta & \cdot \\ \cdot \\$	SW	Well-graded Well-graded	SAND wi	th GRAVEL)	GRAVELLY ORGANIC GRAVELLY ORGANIC GRAVELLY ORGANIC Fat CLAY	SILT
	SP SW-SM	Poorly-grad Poorly-grad Well-graded	ed SAND	with GRAVEL th SILT		СН	Fat CLAY with SA Fat CLAY with GR SANDY fat CLAY SANDY fat CLAY w GRAVELLY fat CLA	AVEL ith gravel
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SW-SC	Well-graded (or SILTY C	ded SAND with SILT and GRAVEL ded SAND with CLAY Y CLAY) ded SAND with CLAY and GRAVEL Y CLAY and GRAVEL)				GRAVELLY fat CLA Elastic SILT Elastic SILT with Elastic SILT with	Y with SAND SAND
	SP-SM	Poorly-grad	ed SAND		— MH	SANDY elastic SIL SANDY elastic SIL GRAVELLY elastic GRAVELLY elastic	.T .T with GRAVEL SILT	
	SP-SC	Poorly-graded SAND with CLAY			ОН		with SAND with GRAVEL t CLAY t CLAY with GRAVEL	
	SM	SILTY SAND Clayey sand		VEL			ORGANIC elastic S	fat CLAY with SAN SILT
	SC	CLAYEY SAND CLAYEY SAND with GRAVEL SILTY, CLAYEY SAND) ОН	SANDY ORGANIC elastic SILT wit	SILT with GRAVEL astic SILT astic SILT with GRA	
	SC-SM PT	SILTY, CLAYEY SAND with GRAVEL				GRAVELLY ORGANIC GRAVELLY ORGANIC ORGANIC SOIL ORGANIC SOIL with	elastic SILT with	
	ΓΙ	PEAT COBBLES COBBLES and BOULDERS	BOULDER	۲S		OL/OH	ORGANIC SOIL with ORGANIC SOIL with SANDY ORGANIC SO GRAVELLY ORGANIC GRAVELLY ORGANIC	n GRAVEL IL IL with GRAVEL SOIL
			DRAWN BY					
IT				D. FAHRNEY	- 1	E. KOPRULU	ION BY:	— I
					1			

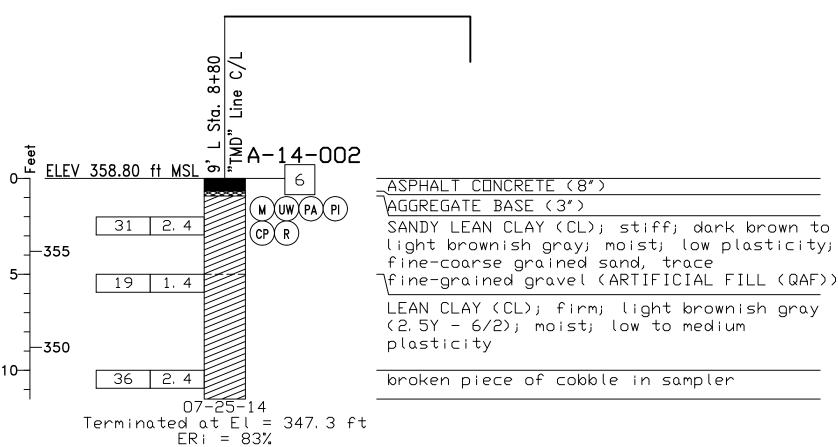
GS GEOTECHNICAL LOG OF TEST BORINGS SHEET (ENGLISH) (REV. 03/14/12)	GS	GEOTECHNICAL	LOG OF	TEST	BORINGS	SHEET	(ENGLISH)	(REV.	03/14/12)
---	----	--------------	--------	------	---------	-------	-----------	-------	-----------

FIELD AND LABORATORY TESTING

	TESTING
С	Consolidation (ASTM D 2435)
CL	Collapse Potential (ASTM D 5333)
CP	Compaction Curve (CTM 216)
CR	Corrosivity Testing (CTM 643, CTM 422, CTM 417)
CU	Consolidated Undrained Triaxial (ASTM D 4767)
DS	Direct Shear (ASTM D 3080)
EI	Expansion Index (ASTM D 4829)
M	Moisture Content (ASTM D 2216)
00)	Organic Content-% (ASTM D 2974)
P	Permeability (CTM 220)
PA	Particle Size Analysis (ASTM D 422)
PI	Plasticity Index (AASHTO T 90) Liquid Limit (AASHTO T 89)
PL	Point Load Index (ASTM D 5731)
PM	Pressure Meter
R	R-Value (CTM 301)
SE	Sand Equivalent (CTM 217)
SG	Specific Gravity (AASHTO T 100)
SL	Shrinkage Limit (ASTM D 427)
SW	Swell Potential (ASTM D 4546)
UC	Unconfined Compression-Soil (ASTM D 2166) Unconfined Compression-Rock (ASTM D 2938)
	Unconsolidated Undrained Triaxial (ASTM D 2850)
(UW)	Unit Weight (ASTM D 4767)

E. KOPRULU FIELD INVESTIGATION BY:		PREPARED FOR THE STATE OF CALIFORNIA	X	BRIDGE NO. 57-XXXX	TOR	REY MEADOWS	S DRIVE (C
DATE: 07/22/14 TO 07/25/14		DEPARTMENT OF TRANSPORTATION		POST MILES XX.X	LOG OF	TEST BORINGS -	SOIL LEG	END 2
	ORIGINAL SCALE IN INCHES FOR REDUCED PLANS	0 1 2 3	UNIT: PROJECT NUMBER & PHASE:	CONTRACT NO.:	:	DISREGARD PRINTS BEARING EARLIER REVISION DATES	REVISION DATES	SHEET OF
			FILE => \$REQUEST			· · · · · · · · · · · · · · · · · · ·		


DIST	COUNTY	ROUTE	POST MILES TOTAL PROJECT	SHEET No	TOTAL SHEETS		
11	SD	56 XX.X ·					
GEOTECHNICAL PROFESSIONAL X DATE PROFESSIONAL PLANS APPROVAL DATE The State of California or its officers or agents shall not be responsible for the accuracy or completeness of scanned copies of this plan sheet.							
T.Y. LIN INTERNATIONAL 404 CAMINO DEL RIO SOUTH, SUITE 700 SAN DIEGO, CA 92101							
KLEINFELDER 550 WEST C STREET, SUITE 1200 SAN DIEGO, CA 92101							


APPARENT DENSI	TY OF COHESIONLESS SOILS
Description	SPT N ₆₀ (Blows / 12 in.)
Very Loose	0 - 5
Loose	5 - 10
Medium Dense	10 - 30
Dense	30 - 50
Very Dense	Greater than 50

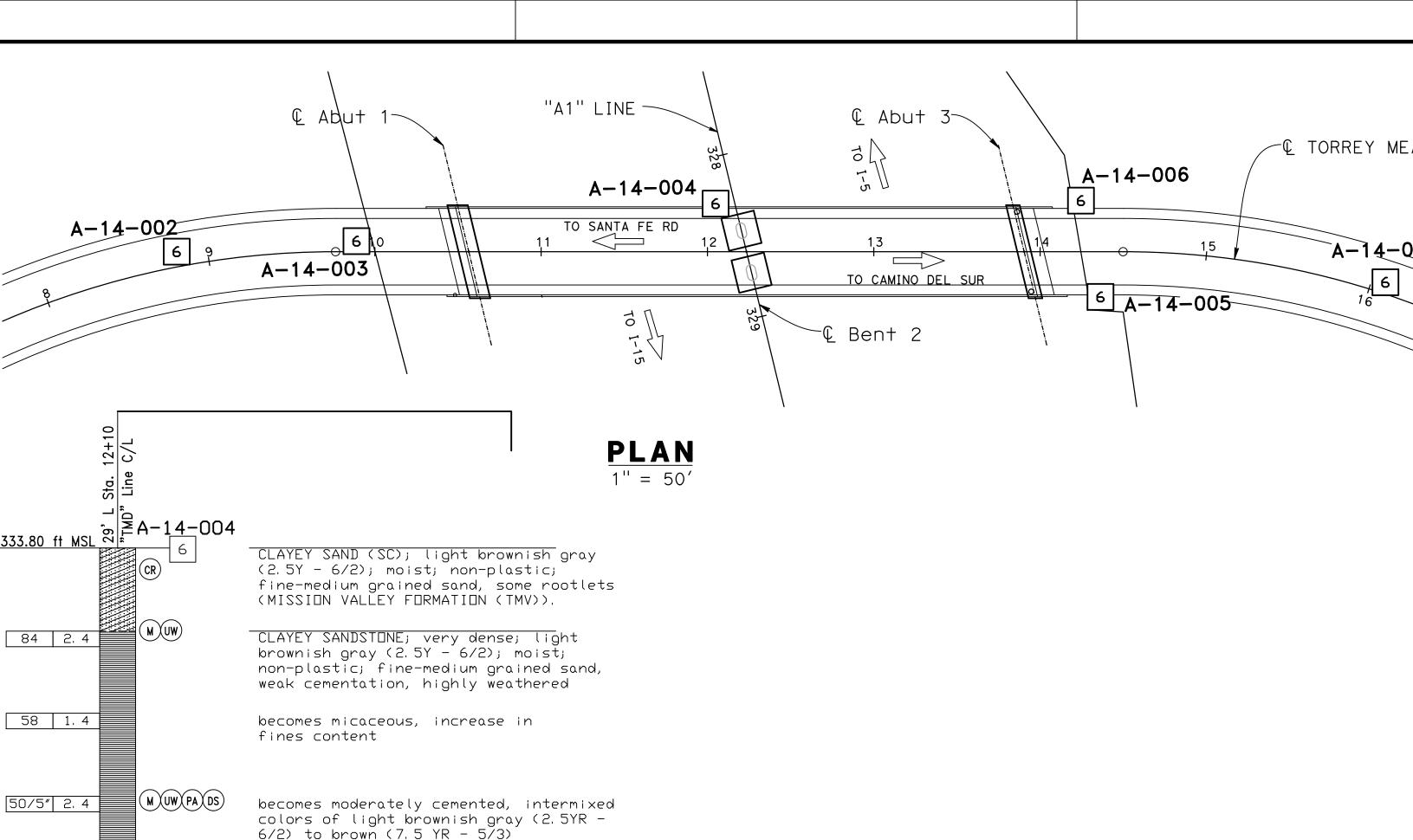
MOISTURE					
Description	Criteria				
Dry	No discernable moisture				
Moist	Moisture present, but no free water				
Wet	Visible free water				

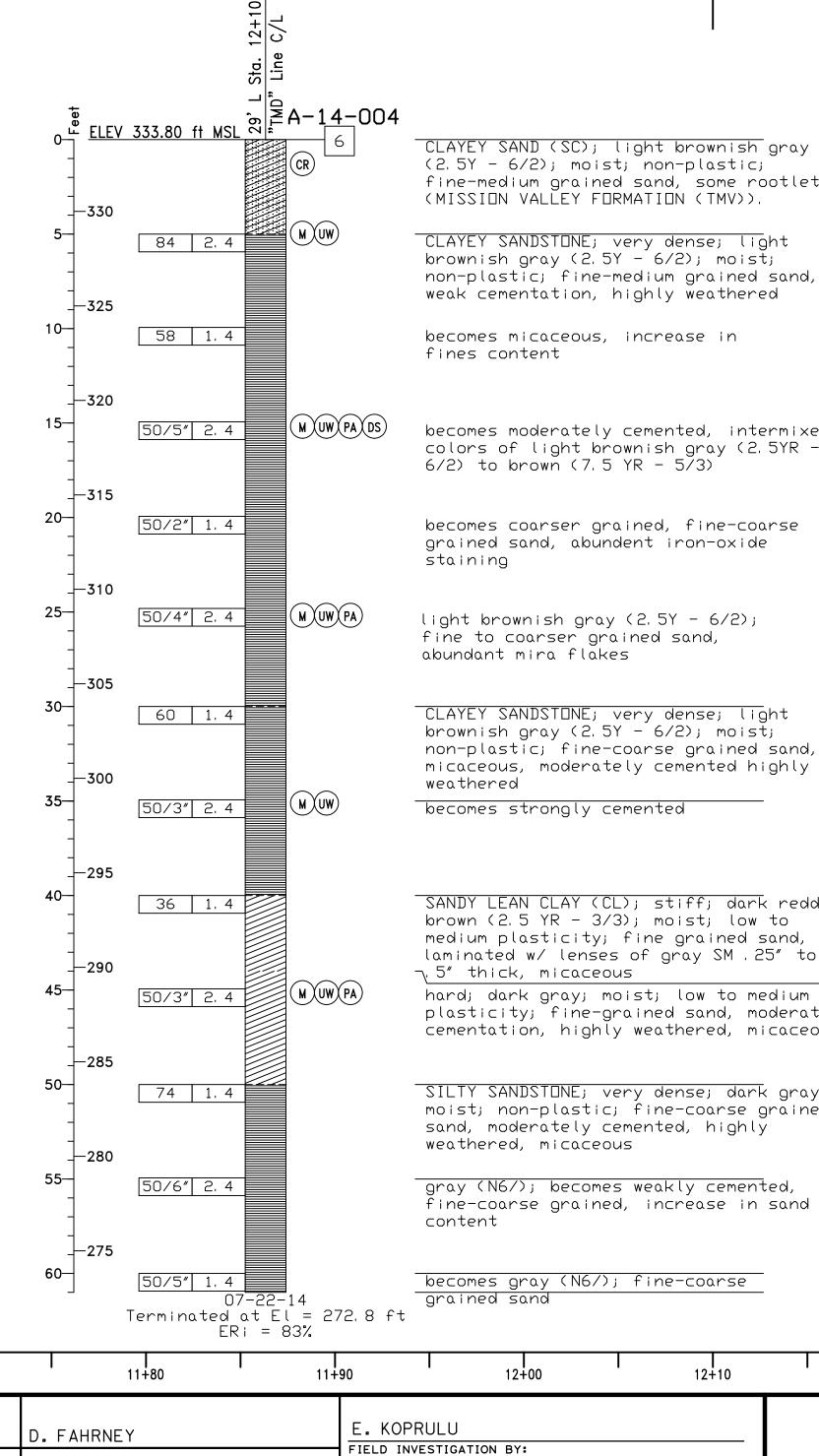
PERCENT OR PROPORTION OF SOILS					
Description	Criteria				
Trace	Particles are present but estimated to be less than 5%				
Few	5% - 10%				
Little	15% - 25%				
Some	30% - 45%				
Mos†ly	50% - 100%				

	PARTICLE SIZE				
Des	scription	Size (in.)			
Boulder		Greater than 12			
Cobble		3 - 12			
Gravel	Coarse	3/4 - 3			
SI UVEI	Fine	1/5 - 3/4			
	Coarse	1/16 - 1/5			
Sand	Medium	1/64 - 1/16			
	Fine	1/300 - 1/64			
Silt and C	lay	Less than 1/300			

8+50	8+	-60	I	 8+70	T	 8+80	I	 8+9	90	9-	 +00
DESIGN OVERSIGHT				DRAWN BY	D.F	AHRNEY			E. KOPRU		
X SIGN OFF DATE				CHECKED BY	M. A	RZAMENDI				22/14 TO	
GS GEOTECHNICAL LOG OF	TEST BORINGS	SHEET (ENGLI	ISH) (RE	EV. 03/14/12)							

NOTES:


- 1. THE ELEVATIONS SHOWN HEREON ARE BASED ON PROJECT DATUM NGVD 29.
- 2. 1.4-INCH DIAMETER SAMPLES WERE TAKEN USING A STANDARD PENETRATION TEST (SPT) SPLIT BARREL SAMPLER WITH AN INSIDE DIAMETER (ID) OF 1.4 INCHES AND AN OUTSIDE DIAMETER (OD) OF 2.0 INCHES
- 3. 2.4-INCH DIAMETER RING SAMPLES WERE TAKEN USING A CALIFORNIA SPLIT BARREL SAMPLER WITH AN ID OF 2.4 INCHES AND AN OD OF 3.0 INCHES.
- 4. ALL DRIVE SAMPLES WERE DRIVEN WITH 140 LB HAMMER WITH A FALLING HEIGHT OF 30 INCHES.


						7 Q
I	9+10 9+20	9+30 9+40	9+50 9+	60 9+70	9+80 9+	90 10+00
		PREPARED FOR THE STATE OF CALIFORNIA	X	BRIDGE NO. 57-XXXX TOR	REY MEADOWS	S DRIVE OC
7/25/14		DEPARTMENT OF TRANSPORTATION		POST MILES XX.X	OG OF TEST	BORINGS
	ORIGINAL SCALE IN INCHES FOR REDUCED PLANS	0 1 2 3	UNIT: PROJECT NUMBER & PHASE:	CONTRACT NO.:	DISREGARD PRINTS BEARING EARLIER REVISION DATES	REVISION DATES SHEET OF ₩
			FILE => \$REQUEST			

	DIST	COUNTY	ROUTE	POST MILES TOTAL PROJECT	SHEET No	TOTAL SHEETS			
	11	SD	56	XX.X					
IEADOWS DR	GEOTECHNICAL PROFESSIONAL X DATE PROFESSIONAL PLANS APPROVAL DATE The State of California or its officers or agents shall not be responsible for the accuracy or completeness of scanned copies of this plan sheet.								
	404			TH, SUITE 700					
	550	INFELDER WEST C S DIEGO, C	STREET, SUI A 92101	TE 1200					

NOTES:

- 1. THE ELEVATIONS SHOWN HEREON ARE BASED ON PROJECT DATUM NGVD 29.
- 2. 1.4-INCH DIAMETER SAMPLES WERE TAKEN USING A STANDARD PENETRATION TEST (SPT) SPLIT BARREL SAMPLER WITH AN INSIDE DIAMETER (ID) OF 1.4 INCHES AND AN OUTSIDE DIAMETER (OD) OF 2.0 INCHES
- 3. 2.4-INCH DIAMETER RING SAMPLES WERE TAKEN USING A CALIFORNIA SPLIT BARREL SAMPLER WITH AN ID OF 2.4 INCHES AND AN OD OF 3.0 INCHES.
- 4. ALL DRIVE SAMPLES WERE DRIVEN WITH 140 LB HAMMER WITH A FALLING HEIGHT OF 30 INCHES.

GS	GEOTECHNICAL	LOG OF	TEST	BORINGS	SHEET	(ENGLISH)	(RFV.	03/14/12
•••	0201201110112	200 0.			0	(2.10210.1.)		

11+60

11+70

DRAWN BY

CHECKED BY

M. ARZAMENDI

11+50

DESIGN OVERSIGHT

SIGN OFF DATE

becomes coarser grained, fine-coarse grained sand, abundent iron-oxide

light brownish gray (2.5Y - 6/2); fine to coarser grained sand,

CLAYEY SANDSTONE; very dense; light brownish gray (2,5Y - 6/2); moist; non-plastic; fine-coarse grained sand, micaceous, moderately cemented highly

SANDY LEAN CLAY (CL); stiff; dark reddish brown (2.5 YR - 3/3); moist; low to medium plasticity; fine grained sand, laminated w/ lenses of gray SM .25" to

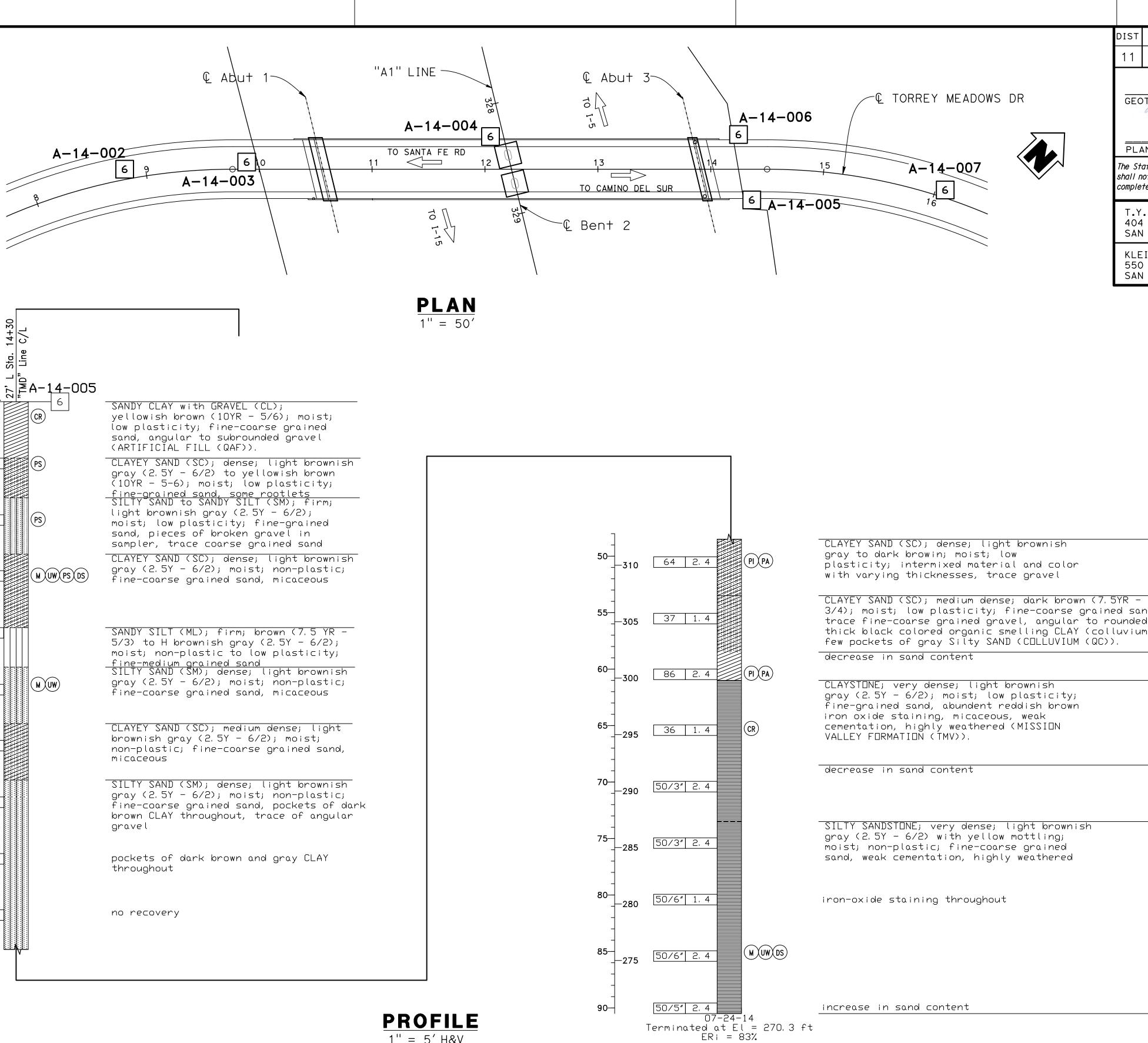
plasticity; fine-grained sand, moderate cementation, highly weathered, micaceous

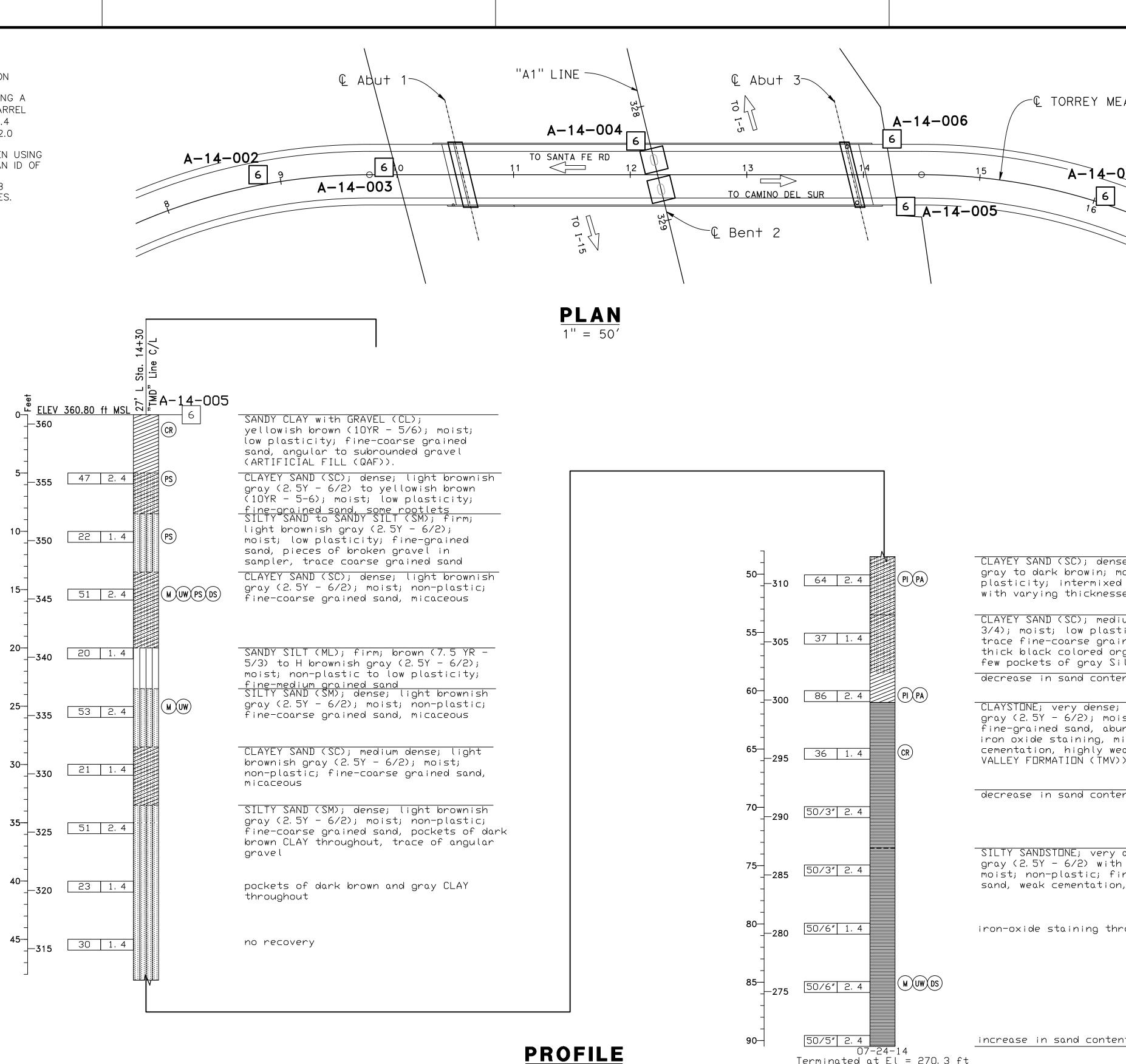
SILTY SANDSTONE; very dense; dark gray; moist; non-plastic; fine-coarse grained sand, moderately cemented, highly

gray (N6/); becomes weakly cemented, fine-coarse grained, increase in sand

PROFILE

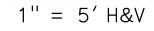
1" = 5' H&V


	"TMD" LINE			
90 12+00 12+	10 12+20	12+30 12+40	12+50	1 2+60
		PREPARED FOR THE		BRIDGE
E. KOPRULU		STATE OF CALIFORNIA	X	57-X
FIELD INVESTIGATION BY:		STATE OF CALIFORNIA	PROJECT ENGINEER	POST M
DATE: 07/22/14 TO 07/25/14		DEPARTMENT OF TRANSPORTATION		XX.
	ORIGINAL SCALE IN INCHES FOR REDUCED PLANS		UNIT: PROJECT NUMBER & PHASE:	CONT
			FILE => \$REQUEST	


	DIST	COUNTY	ROUTE	POST MILES TOTAL PROJECT	SHEET No	TOTAL SHEETS			
	11	SD	56	XX.X					
eadows dr	X X A GEOTECHNICAL PROFESSIONAL X DATE PLANS APPROVAL DATE No. 2275 The State of California or its officers or agents shall not be responsible for the accuracy or completeness of scanned copies of this plan sheet. No. 2275								
	404			TH, SUITE 700					
	550	INFELDER WEST C S DIEGO, C	STREET, SUI ⁻ A 92101	TE 1200					

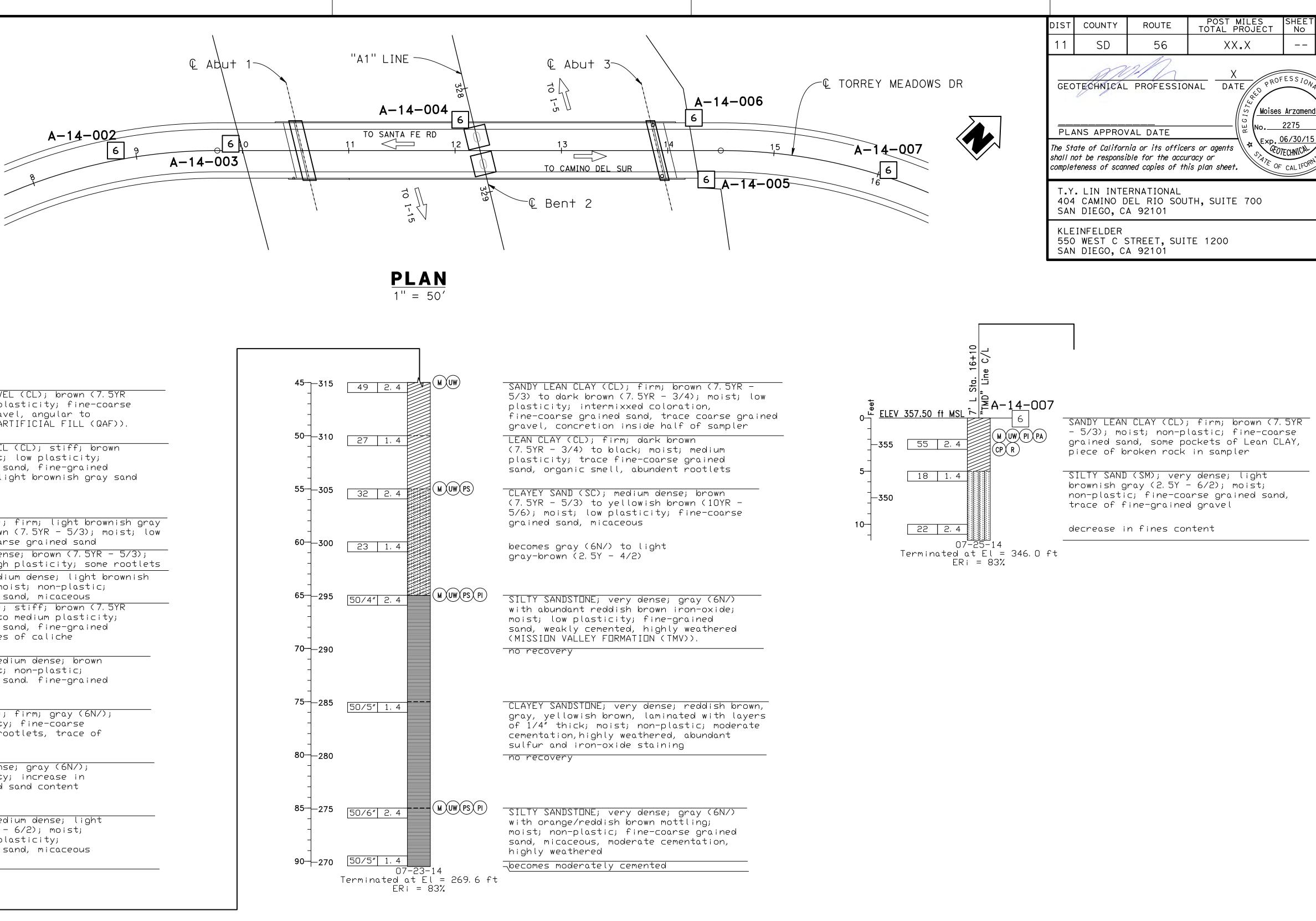
1	 12+70	 12+80	12+90	I 13	7 +00	
GE NO.	TAD					
XXXX	ΙΟΚ	REY MEA	DOWS	DRIVE	00	
MILES						
ά.Χ	L	OG OF T	E21 B	ORING5		
		DISREGARD PRINTS BE		REVISION DATES	SHEET	OF
TRACT N	NO.:	EARLIER REVISION DA		. X		
					-	

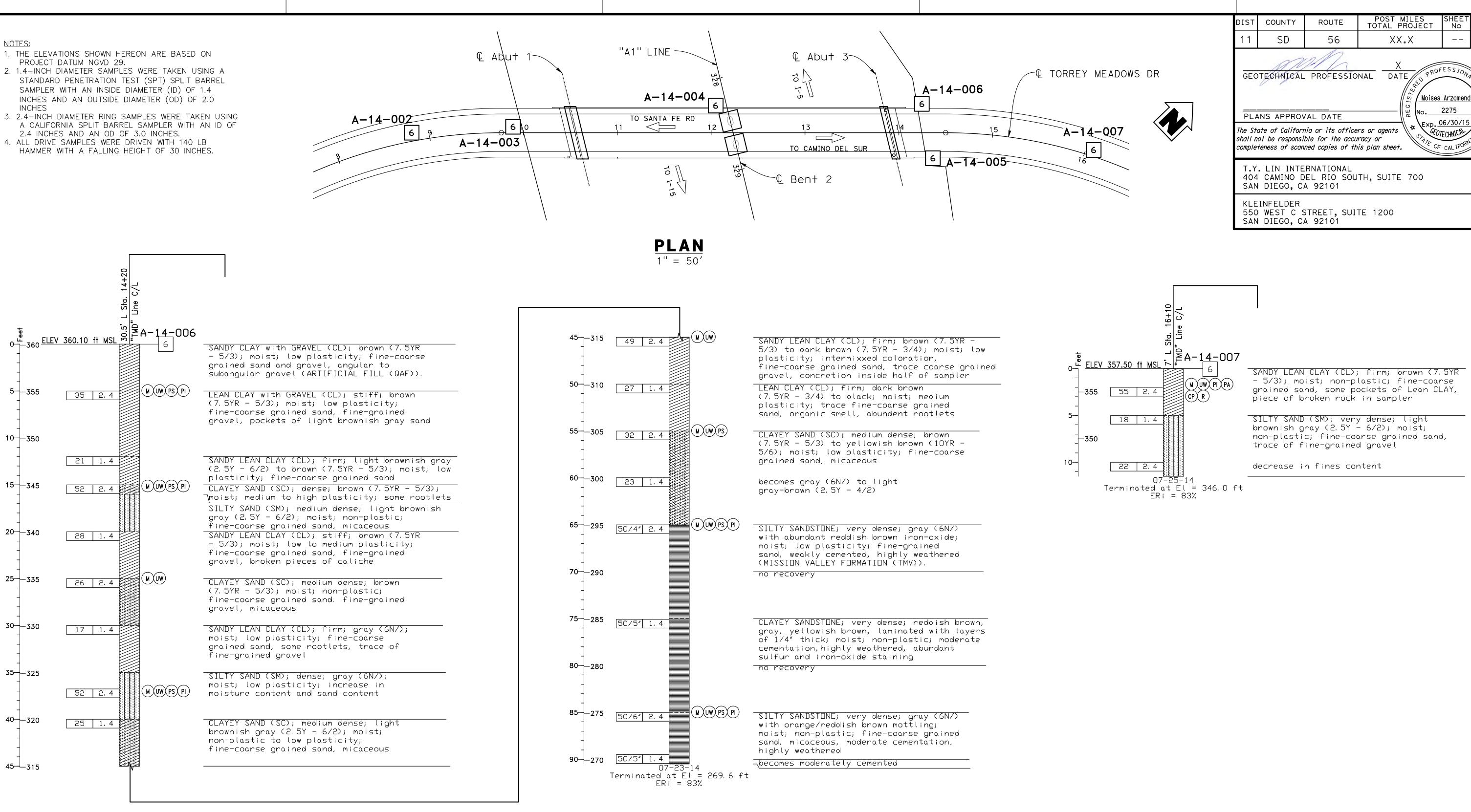
NOTES:


- 1. THE ELEVATIONS SHOWN HEREON ARE BASED ON PROJECT DATUM NGVD 29.
- 2. 1.4-INCH DIAMETER SAMPLES WERE TAKEN USING A STANDARD PENETRATION TEST (SPT) SPLIT BARREL SAMPLER WITH AN INSIDE DIAMETER (ID) OF 1.4 INCHES AND AN OUTSIDE DIAMETER (OD) OF 2.0 INCHES
- 3. 2.4-INCH DIAMETER RING SAMPLES WERE TAKEN USING A CALIFORNIA SPLIT BARREL SAMPLER WITH AN ID OF 2.4 INCHES AND AN OD OF 3.0 INCHES.
- 4. ALL DRIVE SAMPLES WERE DRIVEN WITH 140 LB HAMMER WITH A FALLING HEIGHT OF 30 INCHES.

13+80	13+90	 14+00	 14+10	14+20	 14+30
 DESIGN OVERSIGHT		DRAWN BY	D. FAHRNEY	E. KOPR	
X SIGN OFF DATE		CHECKED BY	M. ARZAMENDI		22/14 TO 07

GS GEOTECHNICAL LOG OF TEST BORINGS SHEET (ENGLISH) (REV. 03/14/12)

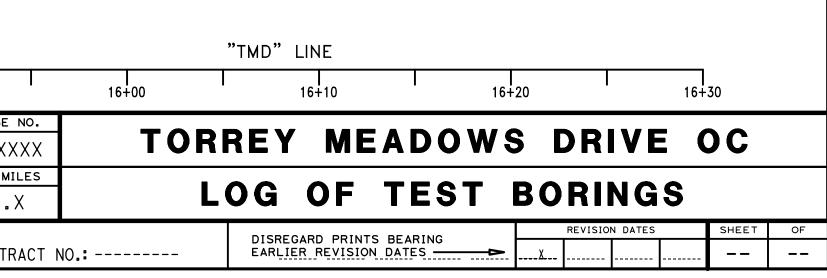



	"TMD" LINE											DATE
30	 14+40	 14+50	 14+60	14+70	14+80	 14+90	15+00	 15+10	 15+20	15+30		
				FOR THE		BRIDGE NO.						SER
					X	57-XXXX	IORR	EY MEAD	OWS DR	IVE O	C	\$N\$
			JUNIE VF		X PROJECT ENGINEER	POST MILES						
07/25/14			DEPARTMENT OF	TRANSPORTATION		XX.X	LO	G OF TE	ST BORI	NGS		AME
		OPICINAL SCALE IN INCHES			UNIT:	_		DISREGARD PRINTS BEARIN	G REVISI	ION DATES SH	HEET OF	Т Х Х
		ORIGINAL SCALE IN INCHES FOR REDUCED PLANS	0 1	2 3	PROJECT NUMBER & PHASE:	CONTRACT NO		EARLIER REVISION DATES		-		USE
					FILE => \$REQUEST							

	DIST	COUNTY	ROUTE	POST MILES TOTAL PROJECT	SHEET No	TOTAL SHEETS			
	11	SD	56	XX.X					
IE ADOWS DR	GEOTECHNICAL PROFESSIONAL X DATE PROFESSIONAL PLANS APPROVAL DATE The State of California or its officers or agents shall not be responsible for the accuracy or completeness of scanned copies of this plan sheet.								
	404			TH, SUITE 700					
	550	INFELDER WEST C S DIEGO, C	STREET, SUI A 92101	TE 1200					

3/4); moist; low plasticity; fine-coarse grained sand, trace fine-coarse grained gravel, angular to rounded, 3" thick black colored organic smelling CLAY (colluvium), few pockets of gray Silty SAND (COLLUVIUM (QC)).

- STANDARD PENETRATION TEST (SPT) SPLIT BARREL SAMPLER WITH AN INSIDE DIAMETER (ID) OF 1.4 INCHES AND AN OUTSIDE DIAMETER (OD) OF 2.0 INCHES
- 2.4 INCHES AND AN OD OF 3.0 INCHES.
- HAMMER WITH A FALLING HEIGHT OF 30 INCHES.



14+00 14+10	"TME 14+20	0" LINE 14+30	1] 14+40 14+50				15+90
DESIGN OVERSIGHT	DRAWN BY	D. FAHRNEY	E. KOPRULU Field investigation by:		PREPARED FOR THE STATE OF CALIFORNIA	X PROJECT ENGINEER	BRIDGE N 57-XXX Post Mil
A SIGN OFF DATE GS GEOTECHNICAL LOG OF TEST BORINGS SHEET (ENGLIS	CHECKED BY H) (REV. 03/14/12)	M. ARZAMENDI	DATE: 07/22/14 TO 07/25/14	ORIGINAL SCALE IN INCHES FOR REDUCED PLANS	DEPARTMENT OF TRANSPORTATION	UNIT:	XX.X
				FOR REDUCED PLANS	0 1 2 3	PROJECT NUMBER & PHASE: FILE => \$REQUEST	CONTRA

	DIST	COUNTY	ROUTE	POST MILES TOTAL PROJECT	SHEET TOTAL NO SHEETS			
	11	SD	56	XX.X				
-007	GEOTECHNICAL PROFESSIONAL X DATE PROFESSIONAL PLANS APPROVAL DATE The State of California or its officers or agents shall not be responsible for the accuracy or completeness of scanned copies of this plan sheet.							
	404			TH, SUITE 700				
	550	INFELDER WEST C S I DIEGO, C	STREET, SUI A 92101	TE 1200				

APPENDIX E CALCULATIONS & ANALYSIS

APPENDIX E

Calculations and Analysis

2013 Caltrans Seismic Design ARS

Calculations Package

Calculation Performed:

2013 Caltrans Seismic Design ARS

Project Name	Torrey Meadows Drive Overcrossing
Project Number	20151065
Client	TY Lin International
Originator	Eren Koprulu
Calculation Type	□Hand Calculation IMS Excel I Other Computer Program
Checker	
Checker's comments	
Checker's Signature	

Procedure:

Objective Given	To develop preliminary ARS curves in accordance with 2013 Caltrans Seismic Design standards for the Torrey Meadows Drive Overcrossing at SR-56 $V_{s30} = 400$ m/s based on correlations of blow counts to Vs.
Equation/Formula Used	Excel spreadsheets were used (attached). Spreadsheets were developed by Kleinfelder or Caltrans.
Assumptions	V_{s30} (Fill) = 316 m/s based on correlations of blow counts to V_s . V_{s30} (Tmv) = 500 m/s based on correlations of blow counts to V_s . Average of the two V_{s30} was used in the analysis.
Reference:	Caltrans ARS online, Appendix B of Caltrans Seismic Design Criteria (version 1.6), and USGS deaggregations (from website)
Calculations	Calculations were performed in Kleinfelder approved spreadsheets as shown in the attached documents.
Attached documents	 Design ARS curves Deterministic Probabilistic curves ARS online results
Results	Attached

Vs30 Calculations

PROJECT: Torrey Meadows Drive OC	
PROJECT NO. 20151065.001A	DATE: <u>11/5/2014</u>
SUBJECT: Estimation of Vs30	PEFORMED BY: E. Koprulu
(65 feet Fill)	REVIEWED BY:

OBJECTIVE: Estimate shear wave velocity (Vs) on a layer-by-layer basis, then compute average shear wave velocity in the upper 30 meters (100 feet), Vs30. Calcluations is performed in accordance with Caltrans (2012) methods.

GIVEN: Boring data not available. Blow counts are estimated based on previous experience in simular materials.

EQUATIONS USED: See summary of equations on page 2 which are excerpted from Caltrans (2012).

ASSUMPTIONS: Indicate any assumptions.

Sampler	C _{sampler}
Cal	0.60
Mod Cal	0.75
SPT	1.00

 $\begin{array}{l} \textbf{Sampler Correction Coef's:} \\ \textbf{N}_{60} = \textbf{N}^{*}\textbf{C}_{sampler}^{*}\textbf{C}_{ER} \\ \textbf{where } \textbf{C}_{ER} = \textbf{ER}_{hmr}/60\% \\ \textbf{ER}_{hmr} = \textbf{75\%} \end{array}$

Enter Depth (0 to 100 ft only); wheter below GW; Material Type; N, Su, qt or Vs; and Sampler Type in the Table:

Depth	to (ft)	Ytot	Below	Thkns	Material Type for	N, Su	, qt or Vs	Samler	N ₆₀	Vs	Vs	D_i/V_{si}
Тор	Bot.	(pcf)	GW?	D, (ft)	Vs Correlation	(bpf, p	sf, tsf or ft/s)	Туре	(bpf)	(m/s)	(ft/s)	
0	5	120	No	5	Cohesive; N =	30	blows/ft	SPT	37.5	194	636	0.00787
5	10	120	No	5	Cohesive; N =	35	blows/ft	Cal	26.3	214	701	0.00713
10	15	120	No	5	Cohesive; N =	21	blows/ft	SPT	26.3	232	762	0.00656
15	20	120	No	5	Cohesionless Sand; N =	52	blows/ft	Cal	39.0	241	791	0.00632
20	25	120	No	5	Cohesive; N =	28	blows/ft	SPT	35.0	273	897	0.00557
25	30	120	No	5	Cohesionless Sand; N =	26	blows/ft	Cal	19.5	251	823	0.00608
30	35	120	No	5	Cohesive; N =	17	blows/ft	SPT	21.3	259	849	0.00589
35	40	120	No	5	Cohesionless Sand; N =	52	blows/ft	Cal	39.0	289	946	0.00528
40	45	120	No	5	Cohesionless Sand; N =	25	blows/ft	SPT	31.3	291	954	0.00524
45	50	120	No	5	Cohesive; N =	49	blows/ft	Cal	36.8	313	1,025	0.00488
50	55	120	No	5	Cohesive; N =	27	blows/ft	SPT	33.8	312	1,022	0.00489
55	60	120	No	5	Cohesionless Sand; N =	32	blows/ft	Cal	24.0	305	999	0.00500
60	65	120	No	5	Cohesionless Sand; N =	23	blows/ft	SPT	28.8	316	1,037	0.00482
65	70	120	No	5	Young Sedimentary Rock; N =	100	blows/ft	SPT	125.0	509	1,668	0.00300
70	75	120	No	5	Young Sedimentary Rock; N =	100	blows/ft	SPT	125.0	509	1,668	0.00300
75	80	120	No	5	Young Sedimentary Rock; N =	100	blows/ft	SPT	125.0	509	1,668	0.00300
80	85	120	No	5	Young Sedimentary Rock; N =	100	blows/ft	SPT	125.0	509	1,668	0.00300
85	90	120	No	5	Young Sedimentary Rock; N =	100	blows/ft	SPT	125.0	509	1,668	0.00300
90	95	120	No	5	Young Sedimentary Rock; N =	100	blows/ft	SPT	125.0	509	1,668	0.00300
95	100	120	No	5	Young Sedimentary Rock; N =	100	blows/ft	SPT	125.0	509	1,668	0.00300

(Maximum number of depth intervals is 22)

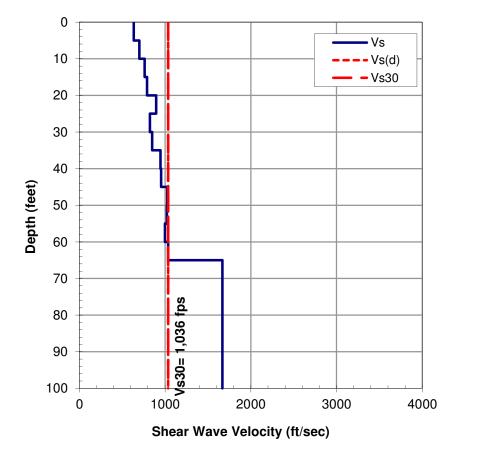
Avg. V_s of soil profile, $V_{s(d)}$:

 $V_{s(d)} = d/[\Sigma(D_i/V_{si})]$

 $V_{s(d)}$ = 1,036 feet/sec $V_{s(d)}$ = 316 m/sec

Average $\rm V_s$ in upper 30 meters:

 $V_{s30} = (1.45 - 0.015^*d)^*V_{s(d)}$


	(- /	
V _{s30} =	1,036	ft/sec	
V _{s30} =	316	m/sec	
Site Class =	D		

REFERENCES:

Caltrans (2012). *Methodology for Developing Design Response Spectrum for Use in Seismic Design Recommendations*, Caltrans Division of Engineering Services, Geotechnical Services .

PROJECT: Torrey Meadows Drive OC		\bigcirc
PROJECT NO. 20151065.001A	DATE: <u>11/5/2014</u>	
SUBJECT: Estimation of Vs30	PEFORMED BY: <u>E. Koprulu</u>	· · · · · · · · · · · · · · · · · · ·
(65 feet Fill)	REVIEWED BY:	Bright People, Right Solutions.
SUBJECT: Estimation of Vs30	PEFORMED BY: E. Koprulu	KLEINFELDE Bright People. Right Soluti

PLOT OF RESULTS

Material Type Equation (Vs in m/s) Cohesionless Sand (N) : $V_s = \exp(4.045 + 0.096(\ln(N_{60})) + 0.236(\ln(\sigma'_v)))$ (N60<=100)</td> Cohesionless Silt (N) : $V_s = \exp(3.783 + 0.178(\ln(N_{60})) + 0.231(\ln(\sigma'_v)))$ (N60<=100)</td> Cohesionless (CPT qt) : $V_s = 277(q_t)^{0.13}(\sigma'_{vo})^{0.27}$ (qt and σ'_{v0} in MPa) Cohesive (Su) : $V_s = 203(S_u / p_a)^{0.475}$ (Su and pa in same units) Cohesive (CPT qt) : $V_s = 1.75(q_t)^{0.627}$ Cohesive (N) : $V_s = \exp(3.996 + 0.230(\ln(N_{60})) + 0.164(\ln(\sigma'_v)))$ (N60>=3) Young Sedimentary Rock (N) : $V_s = 109(N_{60})^{0.319}$ (Vs<=560 m/s)</td> User Defined Vs : Vs = user defined Vs value in ft/sec

Note that the xsheet automatically converts units as-needed before the equations are applied.

PROJECT: Torrey Meadows Drive OC	
PROJECT NO. 20151065.001A	DATE: <u>11/5/2014</u>
SUBJECT: Estimation of Vs30	_ PEFORMED BY: <u>E. Koprulu</u>
(0 feet Fill)	REVIEWED BY:

OBJECTIVE: Estimate shear wave velocity (Vs) on a layer-by-layer basis, then compute average shear wave velocity in the upper 30 meters (100 feet), Vs30. Calcluations is performed in accordance with Caltrans (2012) methods.

GIVEN: Boring data not available. Blow counts are estimated based on previous experience in simular materials.

EQUATIONS USED: See summary of equations on page 2 which are excerpted from Caltrans (2012).

ASSUMPTIONS: Indicate any assumptions.

Sampler	C_{sampler}
Cal	0.60
Mod Cal	0.75
SPT	1.00

 $\begin{array}{l} \textbf{Sampler Correction Coef's:} \\ \textbf{N}_{60} = \textbf{N}^{*}\textbf{C}_{sampler}^{*}\textbf{C}_{ER} \\ \textbf{where } \textbf{C}_{ER} = \textbf{ER}_{hmr}/60\% \\ \textbf{ER}_{hmr} = \frac{75\%}{75\%} \end{array}$

Enter Depth (0 to 100 ft only); wheter below GW; Material Type; N, Su, qt or Vs; and Sampler Type in the Table:

Depth	to (ft)	γ_{tot}	Below	Thkns	Material Type for	N, Su	, qt or Vs	Samler	N ₆₀	Vs	Vs	D_i/V_{si}
Тор	Bot.	(pcf)	GW?	D, (ft)	Vs Correlation	(bpf, p	sf, tsf or ft/s)	Туре	(bpf)	(m/s)	(ft/s)	
0	5	125	No	5	Young Sedimentary Rock; N =	50	blows/ft	SPT	62.5	408	1,337	0.00374
5	10	120	No	5	Young Sedimentary Rock; N =	84	blows/ft	Cal	63.0	409	1,341	0.00373
10	15	120	No	5	Young Sedimentary Rock; N =	58	blows/ft	SPT	72.5	427	1,402	0.00357
15	20	120	No	5	Young Sedimentary Rock; N =	100	blows/ft	Cal	75.0	432	1,417	0.00353
20	25	120	No	5	Young Sedimentary Rock; N =	100	blows/ft	SPT	125.0	509	1,668	0.00300
25	30	120	No	5	Young Sedimentary Rock; N =	100	blows/ft	Cal	75.0	432	1,417	0.00353
30	35	120	No	5	Young Sedimentary Rock; N =	60	blows/ft	SPT	75.0	432	1,417	0.00353
35	40	120	No	5	Young Sedimentary Rock; N =	100	blows/ft	Cal	75.0	432	1,417	0.00353
40	45	120	No	5	Young Sedimentary Rock; N =	36	blows/ft	SPT	45.0	367	1,204	0.00415
45	50	120	No	5	Young Sedimentary Rock; N =	100	blows/ft	Cal	75.0	432	1,417	0.00353
50	55	120	No	5	Young Sedimentary Rock; N =	74	blows/ft	SPT	92.5	462	1,515	0.00330
55	60	120	No	5	Young Sedimentary Rock; N =	100	blows/ft	Cal	75.0	432	1,417	0.00353
60	65	120	No	5	Young Sedimentary Rock; N =	100	blows/ft	SPT	125.0	509	1,668	0.00300

(Maximum number of depth intervals is 22)

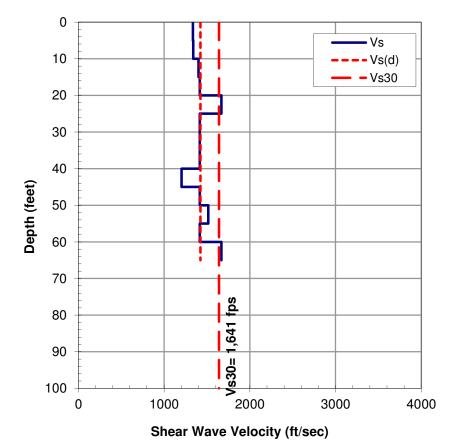
Avg. V_s of soil profile, $V_{s(d)}$:

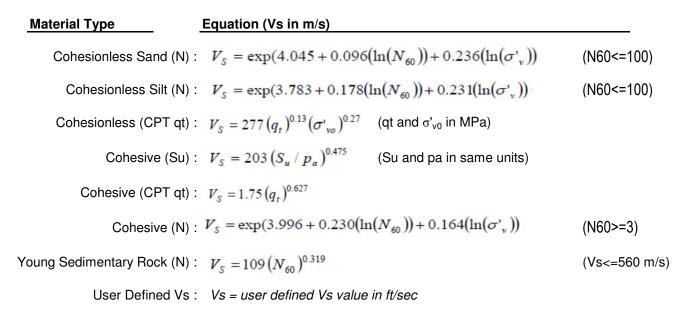
 $V_{s(d)} = d/[\Sigma(D_i/V_{si})]$

 $V_{s(d)} = 1,424$ feet/sec $V_{s(d)} = 434$ m/sec

Average V_{s} in upper 30 meters:

 $V_{s30} = (1.45 - 0.015^* d)^* V_{s(d)}$


V_{s30} = 1,641 ft/sec V_{s30} = 500 m/sec Site Class = C


REFERENCES:

Caltrans (2012). Methodology for Developing Design Response Spectrum for Use in Seismic Design Recommendations, Caltrans Division of Engineering Services, Geotechnical Services.

PROJECT: Torrey Meadows Drive OC		\bigcirc
PROJECT NO. 20151065.001A	DATE: <u>11/5/2014</u>	
SUBJECT: Estimation of Vs30	PEFORMED BY: <u>E. Koprulu</u>	KLEINFELDER
(0 feet Fill)	REVIEWED BY:	Bright People. Right Solutions.

PLOT OF RESULTS

Note that the xsheet automatically converts units as-needed before the equations are applied.

ARS Online Results

SITE DATA (ARS Online Version 2.3.06)

Shear Wave Velocity, Vs30:	400 m/s
Latitude:	32.962700
Longitude:	-117.160400
Depth to $Vs = 1.0$ km/s:	N/A
Depth to $Vs = 2.5 \text{ km/s}$:	N/A

DETERMINISTIC

Rose Canyon fault zone (Del Mar section)

Fault ID:	401
Maximum Magnitude (MMax):	6.8
Fault Type:	SS
Fault Dip:	90 Deg
Dip Direction:	V
Bottom of Rupture Plane:	8.00 km
Top of Rupture Plane(Ztor):	0.00 km
Rrup	12.93 km
Rjb:	12.93 km
Rx:	12.93 km
Fnorm:	0
Frev:	0

Period	SA(Base Spectrum)	Basin Factor	Near Fault Factor (Applied)	SA(Final Spectrum)
0.01	0.230	1.000	1.000	0.230
0.05	0.292	1.000	1.000	0.292
0.1	0.435	1.000	1.000	0.435
0.15	0.519	1.000	1.000	0.519
0.2	0.537	1.000	1.000	0.537
0.25	0.518	1.000	1.000	0.518
0.3	0.493	1.000	1.000	0.493
0.4	0.438	1.000	1.000	0.438
0.5	0.385	1.000	1.000	0.385
0.6	0.332	1.000	1.040	0.345
0.7	0.292	1.000	1.080	0.315
0.85	0.246	1.000	1.140	0.280
1	0.211	1.000	1.200	0.254
1.2	0.175	1.000	1.200	0.210
1.5	0.136	1.000	1.200	0.164
2	0.095	1.000	1.200	0.114
3	0.056	1.000	1.200	0.068
4	0.039	1.000	1.200	0.047
5	0.029	1.000	1.200	0.035

Rose Canyon fault zone (San Diego section)

Fault ID:	405
Maximum Magnitude (MMax):	6.8
Fault Type:	SS
Fault Dip:	90 Deg
Dip Direction:	V
Bottom of Rupture Plane:	8.00 km
Top of Rupture Plane(Ztor):	0.00 km
Rrup	15.10 km
Rjb:	15.10 km
Rx:	14.10 km
Fnorm:	0
Frev:	0

Period	SA(Base Spectrum)	Basin Factor	Near Fault Factor (Applied)	SA(Final Spectrum)
0.01	0.204	1.000	1.000	0.204
0.05	0.259	1.000	1.000	0.259
0.1	0.388	1.000	1.000	0.388
0.15	0.464	1.000	1.000	0.464
0.2	0.479	1.000	1.000	0.479
0.25	0.460	1.000	1.000	0.460
0.3	0.438	1.000	1.000	0.438
0.4	0.387	1.000	1.000	0.387
0.5	0.339	1.000	1.000	0.339
0.6	0.292	1.000	1.040	0.304
0.7	0.257	1.000	1.079	0.277
0.85	0.216	1.000	1.139	0.246
1	0.186	1.000	1.198	0.222
1.2	0.153	1.000	1.198	0.184
1.5	0.120	1.000	1.198	0.143
2	0.083	1.000	1.198	0.100
3	0.049	1.000	1.198	0.059
4	0.034	1.000	1.198	0.041
5	0.026	1.000	1.198	0.031

Rose Canyon fault zone (Oceanside section)

v	•
Fault ID:	396
Maximum Magnitude (MMax):	6.8
Fault Type:	SS
Fault Dip:	90 Deg
Dip Direction:	V
Bottom of Rupture Plane:	11.00 km
Top of Rupture Plane(Ztor):	0.00 km
Rrup	16.87 km
Rjb:	16.87 km
Rx:	7.57 km
Fnorm:	0
Frev:	0

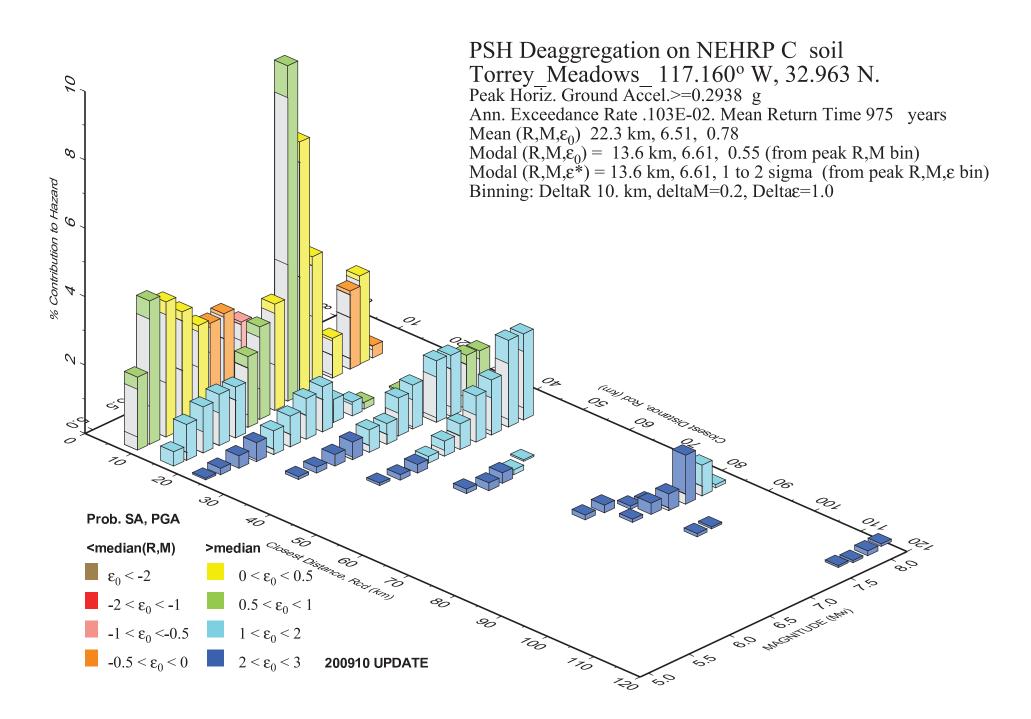
Period	SA(Base Spectrum)	Basin Factor	Near Fault Factor (Applied)	SA(Final Spectrum)
0.01	0.187	1.000	1.000	0.187
0.05	0.236	1.000	1.000	0.236
0.1	0.355	1.000	1.000	0.355
0.15	0.426	1.000	1.000	0.426
0.2	0.439	1.000	1.000	0.439
0.25	0.421	1.000	1.000	0.421
0.3	0.400	1.000	1.000	0.400
0.4	0.353	1.000	1.000	0.353
0.5	0.309	1.000	1.000	0.309
0.6	0.266	1.000	1.033	0.274
0.7	0.233	1.000	1.065	0.248
0.85	0.196	1.000	1.114	0.219
1	0.168	1.000	1.163	0.196
1.2	0.139	1.000	1.163	0.162
1.5	0.109	1.000	1.163	0.126
2	0.076	1.000	1.163	0.088
3	0.045	1.000	1.163	0.052
4	0.031	1.000	1.163	0.036
5	0.023	1.000	1.163	0.027

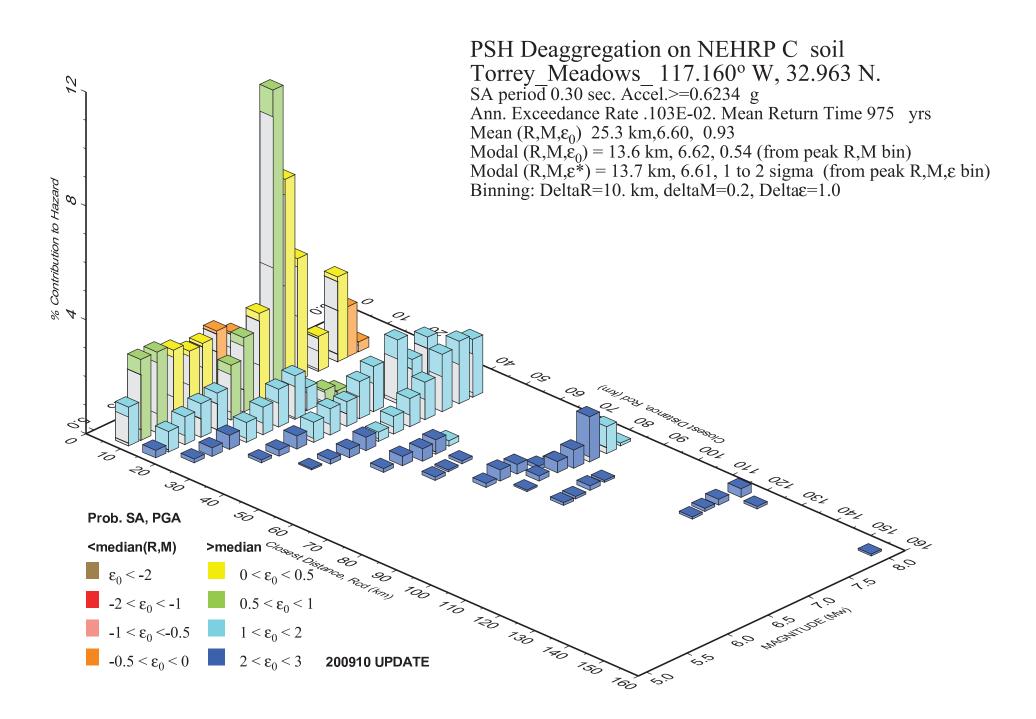
PROBABILISTIC

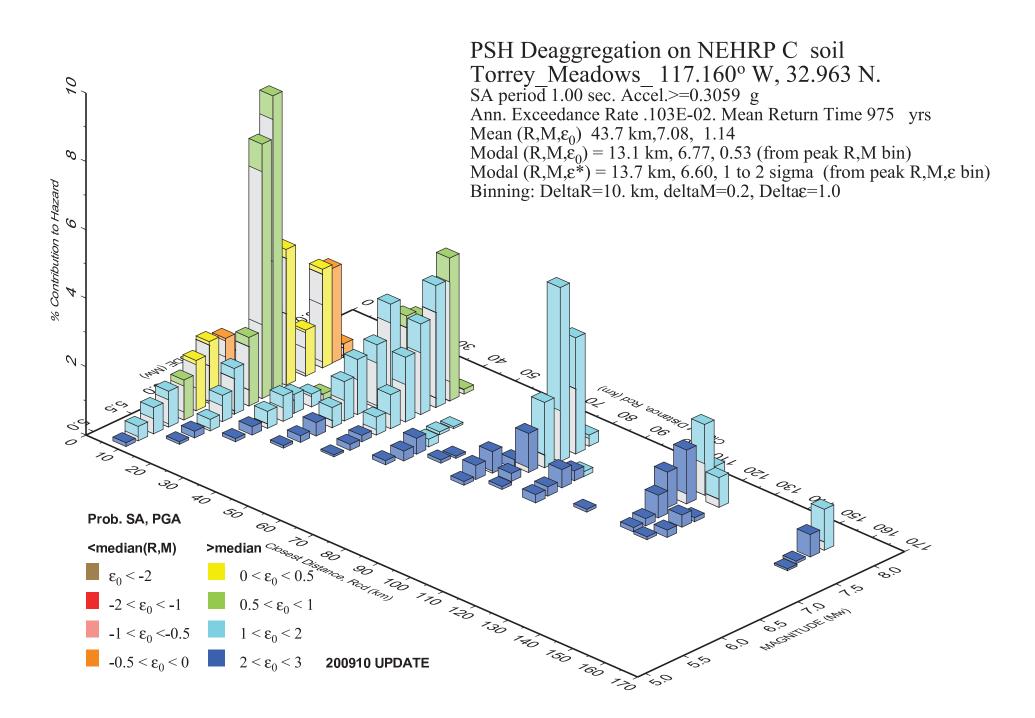
	USGS Seismic H	azard Map(2008)	975 Year Retur	n Period
Period	SA(Base Spectrum)	Basin Factor	Near Fault Factor (Applied)	SA(Final Spectrum)
0.01	0.319	1.000	1.000	0.319
0.05	0.498	1.000	1.000	0.498
0.1	0.603	1.000	1.000	0.603
0.15	0.676	1.000	1.000	0.676
0.2	0.732	1.000	1.000	0.732
0.25	0.701	1.000	1.000	0.701
0.3	0.677	1.000	1.000	0.677
0.4	0.595	1.000	1.000	0.595
0.5	0.538	1.000	1.000	0.538
0.6	0.478	1.000	1.040	0.497
0.7	0.432	1.000	1.080	0.466
0.85	0.372	1.000	1.140	0.425
1	0.326	1.000	1.200	0.391
1.2	0.275	1.000	1.200	0.329
1.5	0.222	1.000	1.200	0.267
2	0.170	1.000	1.200	0.203

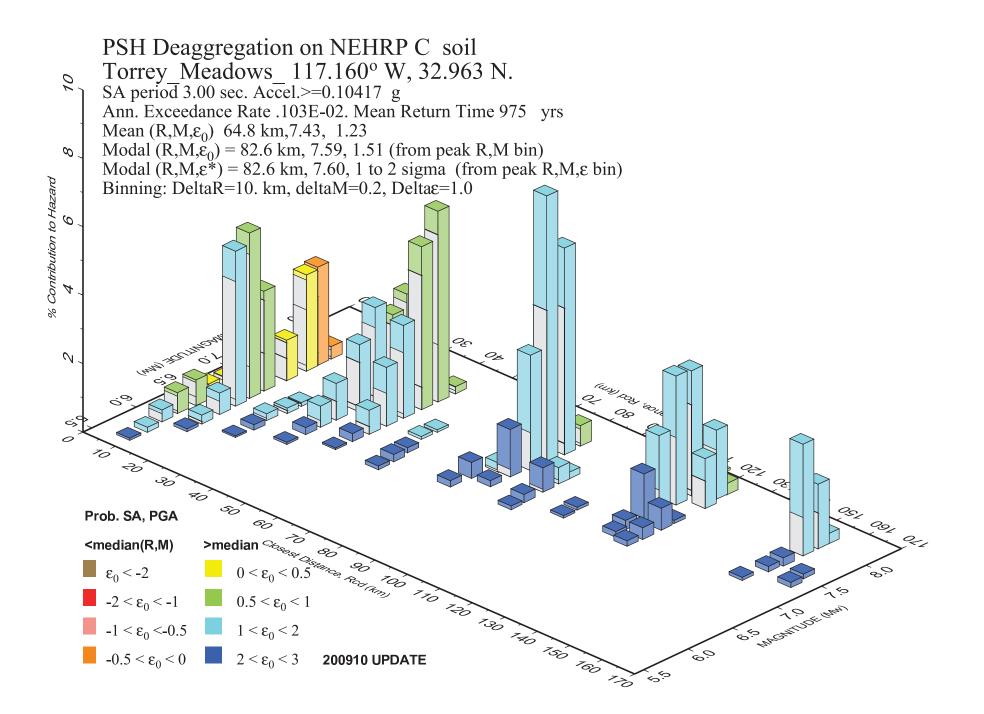
Probabilistic Model USGS Seismic Hazard Map(2008) 975 Year Return Period

3	0.108	1.000	1.200	0.130
4	0.077	1.000	1.200	0.093
5	0.064	1.000	1.200	0.077

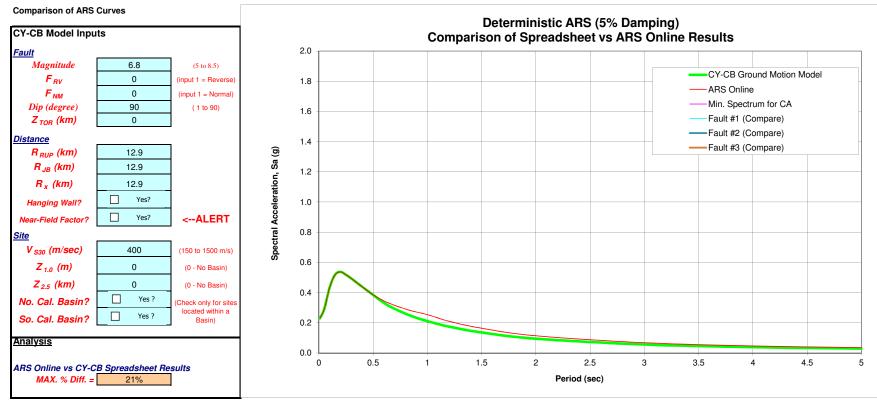

MINIMUM DETERMINISTIC SPECTRUM


Period	SA
0.01	0.223
0.05	0.284
0.1	0.426
0.15	0.507
0.2	0.523
0.25	0.501
0.3	0.475
0.4	0.420
0.5	0.362
0.6	0.307
0.7	0.267
0.85	0.221
1	0.187
1.2	0.152
1.5	0.116
2	0.079
3	0.045
4	0.031
5	0.023

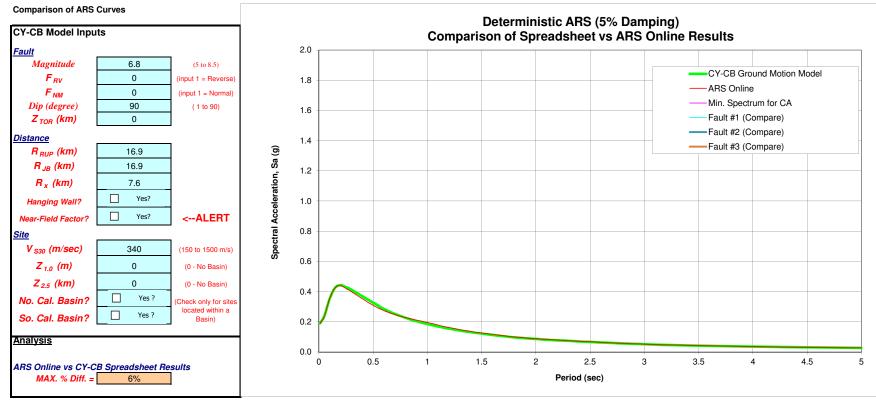

Envelope Data


Period	SA
0.01	0.319
0.05	0.498
0.1	0.603
0.15	0.676
0.2	0.732
0.25	0.701
0.3	0.677
0.4	0.595
0.5	0.538
0.6	0.497
0.7	0.466
0.85	0.425
1	0.391
1.2	0.329
1.5	0.267
2	0.203
3	0.130

4	0.093
5	0.077



Deterministic and Probabilistic Curves

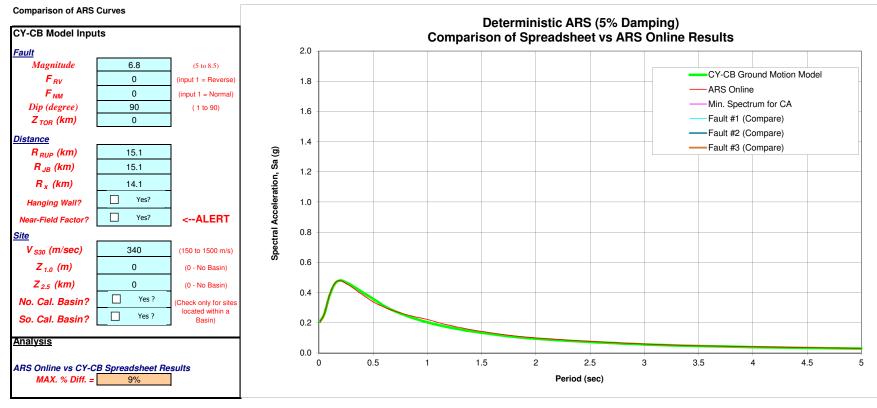


Graph legend titles can be changed with green cells

CY-CB Groun	d Motion Model
	Spectral
	Acceleration,
T (sec)	S(a)
0.010	0.23004
0.050	0.29201
0.100	0.43525
0.150	0.51895
0.200	0.53712
0.250	0.51746
0.300	0.49287
0.400	0.43821
0.500	0.38476
0.600	0.33180
0.700	0.29193
0.850	0.24587
1.000	0.21117
1.200	0.17454
1.500	0.13600
2.000	0.09466
3.000	0.05614
4.000	0.03870
5.000	0.02916

Place	ARS C	Online	Determi	nistic Dat	а			
Into Cells Located Below								
T (sec)	Base S(a)	Basin Factor	Near Fault Factor	Final Adj. S(a)	Diff. (%)			
0.01	0.23	1	1	0.23	0%			
0.05	0.292	1	1	0.292	0%			
0.1	0.435	1	1	0.435	0%			
0.15	0.519	1	1	0.519	0%			
0.2	0.537	1	1	0.537	0%			
0.25	0.518	1	1	0.518	0%			
0.3	0.493	1	1	0.493	0%			
0.4	0.438	1	1	0.438	0%			
0.5	0.385	1	1	0.385	0%			
0.6	0.332	1	1.04	0.345	4%			
0.7	0.292	1	1.08	0.315	8%			
0.85	0.246	1	1.14	0.28	14%			
1	0.211	1	1.2	0.254	20%			
1.2	0.175	1	1.2	0.21	20%			
1.5	0.136	1	1.2	0.164	21%			
2	0.095	1	1.2	0.114	20%			
3	0.056	1	1.2	0.068	21%			
4	0.039	1	1.2	0.047	21%			
5	0.029	1	1.2	0.035	20%			

						the graph abo es" into cells I		
n. Spectru	um for CA	Fault #1 (Compare)	Fault #2 (Compare)	Fault #3 (Fault #3 (Compa	
(sec)	S (a)	T (sec)	S (a)	T (sec)	S (a)	T (sec)	s	



Graph legend titles can be changed with green cells

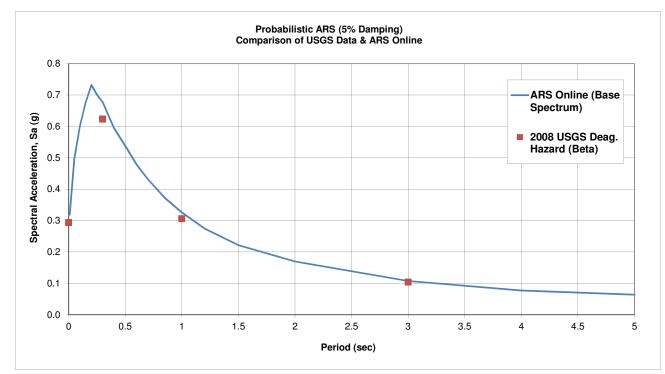
CY-CB Groun	CY-CB Ground Motion Model					
	Spectral Acceleration,					
T (sec)	S(a)					
0.010	0.19046					
0.050	0.23722					
0.100	0.35298					
0.150	0.42520					
0.200	0.44243					
0.250	0.42985					
0.300	0.41286					
0.400	0.36940					
0.500	0.32731					
0.600	0.28474					
0.700	0.25238					
0.850	0.21438					
1.000	0.18538					
1.200	0.15459					
1.500	0.12185					
2.000	0.08591					
3.000	0.05141					
4.000	0.03552					
5.000	0.02680					

Place	ARS C	Online	Determi	nistic Dat	а		
Into Cells Located Below							
	Near						
	Base	Basin	Fault	Final	Diff.		
T (sec)	S(a)	Factor	Factor	Adj. S(a)	(%)		
0.01	0.187	1	1	0.187	2%		
0.05	0.236	1	1	0.236	1%		
0.1	0.355	1	1	0.355	1%		
0.15	0.426	1	1	0.426	0%		
0.2	0.439	1	1	0.439	1%		
0.25	0.421	1	1	0.421	2%		
0.3	0.4	1	1	0.4	3%		
0.4	0.353	1	1	0.353	4%		
0.5	0.309	1	1	0.309	6%		
0.6	0.266	1	1.033	0.274	4%		
0.7	0.233	1	1.065	0.248	2%		
0.85	0.196	1	1.114	0.219	2%		
1	0.168	1	1.163	0.196	6%		
1.2	0.139	1	1.163	0.162	5%		
1.5	0.109	1	1.163	0.126	3%		
2	0.076	1	1.163	0.088	2%		
3	0.045	1	1.163	0.052	1%		
4	0.031	1	1.163	0.036	1%		
5	0.023	1	1.163	0.027	1%		

сору	data from ea	ch CY-CB Re	sult (A33:B51) then "Paste S	Special - Valu	es" into cells I	below
Min. Spect	trum for CA	Fault #1 ((Compare)	Fault #2 (Compare)	Fault #3 (Compa
T (sec)	S (a)	T (sec)	S (a)	T (sec)	S (a)	T (sec)	S (
	ļ!	 '	 	ļ/	 		—
	┝───┦	'	───	ĮĮ		┣────	┣───
	├───┦	'		∤ ────┦		l	
				ł +			
							Ē
	ļļ	 '	───	ļ!	 		<u> </u>
	├───┦	'	───	┨────┤		ł	──
	├───┦	'	├	┨────┤		 	
				ł +			
	ļļ	 '	───	Į/	 	 	
	ļ/	 '	───	Į/	ł	I	<u> </u>

Graph legend titles can be changed with green cells

CY-CB Groun	CY-CB Ground Motion Model					
	Spectral Acceleration,					
T (sec)	S(a)					
0.010	0.20780					
0.050	0.25884					
0.100	0.38364					
0.150	0.46118					
0.200	0.48037					
0.250	0.46733					
0.300	0.44928					
0.400	0.40339					
0.500	0.35819					
0.600	0.31199					
0.700	0.27679					
0.850	0.23538					
1.000	0.20370					
1.200	0.16998					
1.500	0.13406					
2.000	0.09458					
3.000	0.05662					
4.000	0.03911					
5.000	0.02948					

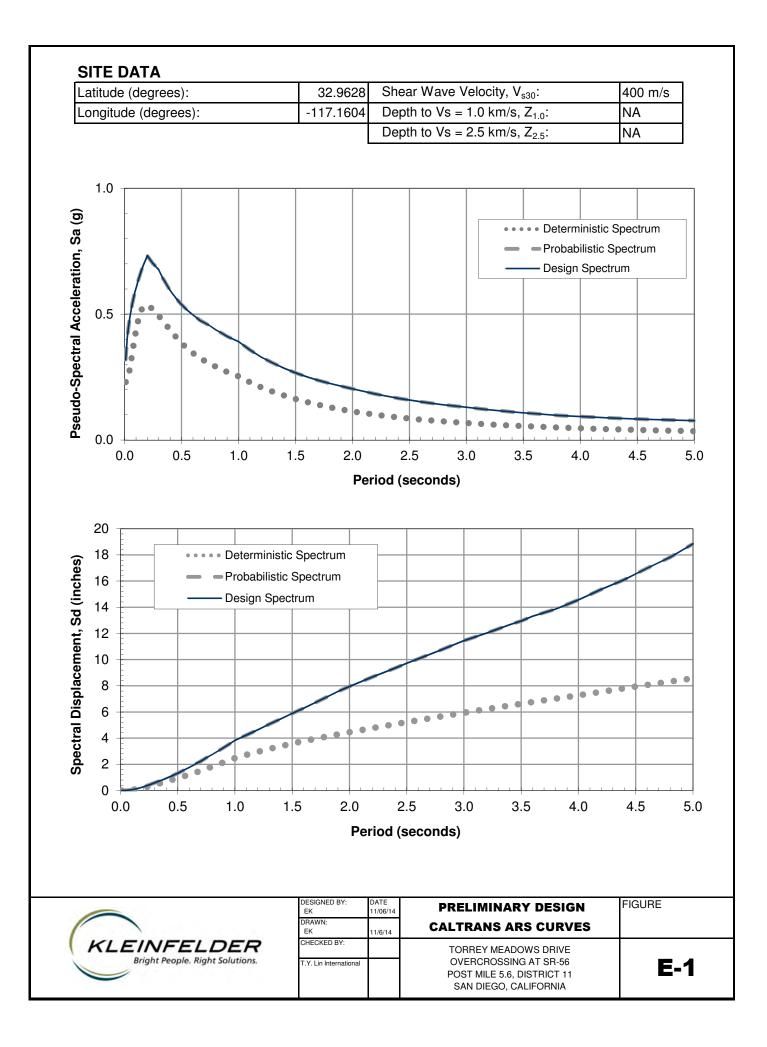

Place	ARS C	Online	Determi	nistic Dat	а	
	Into C	ells Loc	ated Belo	w		Ī
T (sec)	Base S(a)	Basin Factor	Near Fault Factor	Final Adj. S(a)	Diff. (%)	
0.01	0.204	1	1	0.204	2%	Î
0.05	0.259	1	1	0.259	0%	ſ
0.1	0.388	1	1	0.388	1%	
0.15	0.464	1	1	0.464	1%	
0.2	0.479	1	1	0.479	0%	
0.25	0.46	1	1	0.46	2%	
0.3	0.438	1	1	0.438	3%	
0.4	0.387	1	1	0.387	4%	
0.5	0.339	1	1	0.339	5%	
0.6	0.292	1	1.04	0.304	3%	
0.7	0.257	1	1.079	0.277	0%	
0.85	0.216	1	1.139	0.246	5%	I
1	0.186	1	1.198	0.222	9%	
1.2	0.153	1	1.198	0.184	8%	
1.5	0.12	1	1.198	0.143	7%	
2	0.083	1	1.198	0.1	6%	
3	0.049	1	1.198	0.059	4%	
4	0.034	1	1.198	0.041	5%	
5	0.026	1	1.198	0.031	5%	

copy data from each CY-CB Result (A33:B51) then "Paste Special - Values" into cells below									
Min. Spect	rum for CA	Fault #1 (Compare)	Fault #2 (Compare)	Fault #3 (0	Compa		
T (sec)	S (a)	T (sec)	S (a)	T (sec)	S (a)	T (sec)	s		

Comparison spreadsheet of the 2008 USGS Probabilistic Seismic Hazard Data and ARS Online Probabilistic Data

- This spreadsheet facilitates a data check of the ARS Online base spectrum vs the USGS Data. This spreadsheet does not perform a deaggregation.

- Spectral acceleration points may be obtained from USGS Website at https://geohazards.usgs.gov/deaggint/2008/


Place ARS Online Probabilistic Data Here (Use 19 Period Data Option in ARS Online)						
T (sec)	Base Spectrum S(a)	Basin Factor	Near Fault Factor	Final Adj. Spectrum S(a)		
0.01	0.319	1	1	0.319		
0.05	0.498	1	1	0.498		
0.1	0.603	1	1	0.603		
0.15	0.676	1	1	0.676		
0.2	0.732	1	1	0.732		
0.25	0.701	1	1	0.701		
0.3	0.677	1	1	0.677		
0.4	0.595	1	1	0.595		
0.5	0.538	1	1	0.538		
0.6	0.478	1	1.04	0.497		
0.7	0.432	1	1.08	0.466		
0.85	0.372	1	1.14	0.425		
1	0.326	1	1.2	0.391		
1.2	0.275	1	1.2	0.329		
1.5	0.222	1	1.2	0.267		
2	0.17	1	1.2	0.203		

Input USGS Deaggregation Hazard Data for a Exceedance Probability of 5% in 50yr							
Period (sec)	INPUT USGS Deagg. Spec Accel	ARS Online Base Sa(g)	% Difference (bet. USGS & ARS Online)				
0	0.2938	0.319	7.9%				
0.3	0.6234	0.677	7.9%				
1	0.3059	0.326	6.2%				
3	0.10417	0.108	3.5%				

Max % Difference = 7.9%

3	0.108	1	1.2	0.13
4	0.077	1	1.2	0.093
5	0.064	1	1.2	0.077

Design ARS Curves

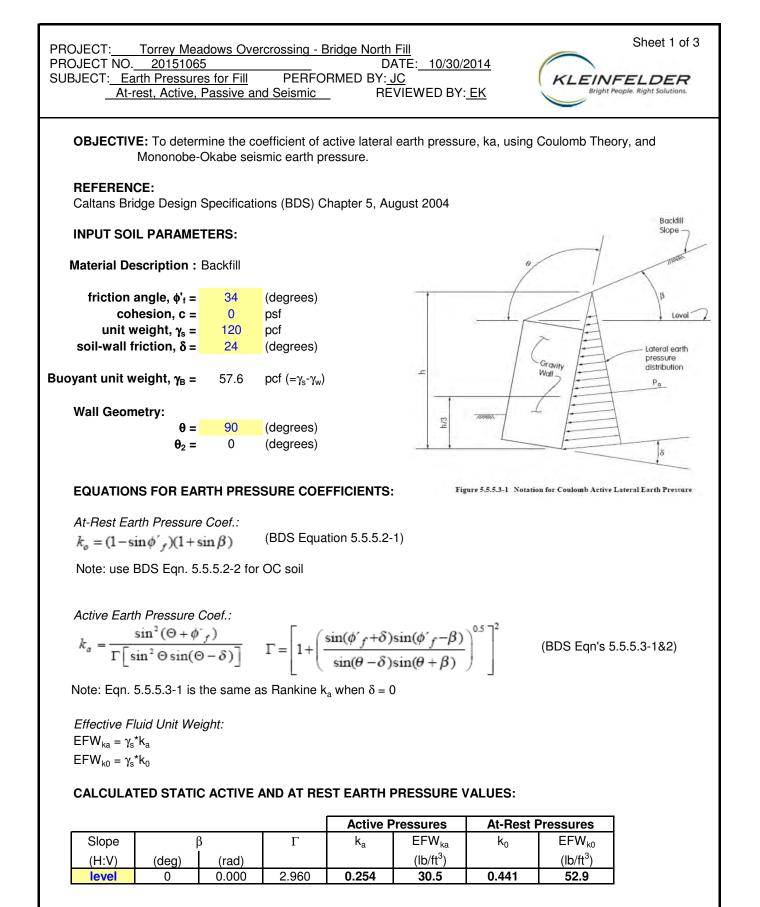
DESIGN ARS CURVE ORDINATES

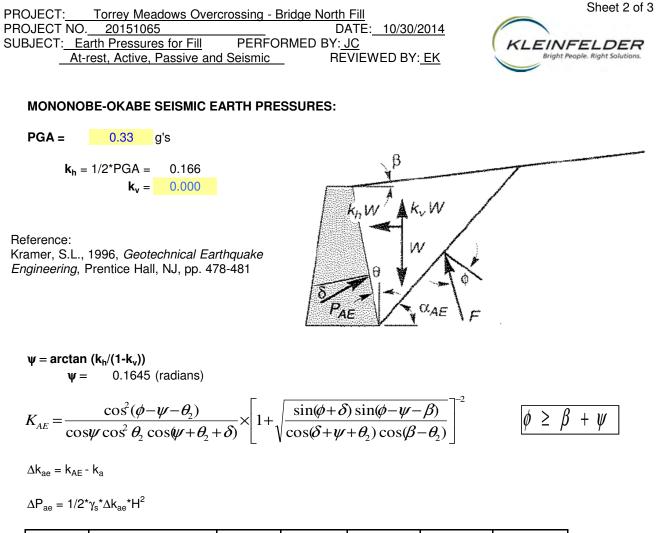
DESIGN					
Period (s)	Sa (g)	Sd (inches)	Period (s)	Sa (g)	Sd (inches)
0.010	0.319	0.000	0.360	0.624	0.792
0.020	0.386	0.002	0.380	0.609	0.861
0.022	0.397	0.002	0.400	0.595	0.932
0.025	0.411	0.003	0.420	0.582	1.005
0.029	0.428	0.004	0.440	0.570	1.080
0.030	0.432	0.004	0.450	0.564	1.118
0.032	0.440	0.004	0.460	0.559	1.158
0.035	0.451	0.005	0.480	0.548	1.236
0.036	0.454	0.006	0.500	0.538	1.316
0.040	0.468	0.007	0.550	0.516	1.528
0.042	0.474	0.008	0.600	0.497	1.751
0.044	0.480	0.009	0.650	0.480	1.985
0.045	0.483	0.010	0.667	0.475	2.068
0.046	0.486	0.010	0.700	0.466	2.235
0.048	0.492	0.011	0.750	0.454	2.500
0.050	0.498	0.012	0.800	0.438	2.744
0.055	0.511	0.015	0.850	0.425	3.005
0.060	0.523	0.018	0.900	0.412	3.266
0.065	0.535	0.022	0.950	0.401	3.542
0.067	0.540	0.024	1.000	0.391	3.827
0.070	0.546	0.026	1.100	0.358	4.240
0.075	0.557	0.031	1.200	0.329	4.637
0.080	0.567	0.036	1.300	0.306	5.062
0.085	0.576	0.041	1.400	0.285	5.467
0.090	0.586	0.046	1.500	0.267	5.880
0.095	0.594	0.052	1.600	0.251	6.289
0.100	0.603	0.059	1.700	0.237	6.704
0.110	0.619	0.073	1.800	0.225	7.135
0.120	0.635	0.089	1.900	0.214	7.561
0.130	0.649	0.107	2.000	0.203	7.948
0.133	0.653	0.113	2.200	0.183	8.669
0.140	0.663	0.127	2.400	0.166	9.359
0.150	0.676	0.149	2.500	0.159	9.726
0.160	0.688	0.172	2.600	0.152	10.057
0.170	0.700	0.198	2.800	0.140	10.743
0.180	0.711	0.225	3.000	0.130	11.452
0.190	0.722	0.255	3.200	0.120	12.027
0.200	0.722	0.287	3.400	0.112	12.672
0.220	0.719	0.341	3.500	0.108	12.949
0.220	0.713	0.399	3.600	0.105	13.319
0.240	0.707	0.399	3.800	0.098	13.851
0.260	0.696	0.429	4.000	0.098	14.564
0.280	0.696	0.461	4.000	0.093	15.366
0.280	0.681	0.526	4.400	0.085	16.107
	0.681				16.983
0.300		0.596	4.600	0.082	
0.320	0.658	0.659	4.800	0.079	17.815
0.340	0.640	0.724	5.000	0.077	18.841

DESIGNED BY: EK	DATE 11/06/14	PRELIMINARY DESIGN	FIGURE
DRAWN: EK	11/6/14	CALTRANS ARS TABLE	
CHECKED BY: T.Y. Lin Internation	al	TORREY MEADOWS DRIVE OVERCROSSING AT SR-56 POST MILE 5.6, DISTRICT 11 SAN DIEGO, CALIFORNIA	E-2

Abutment Earth Pressures

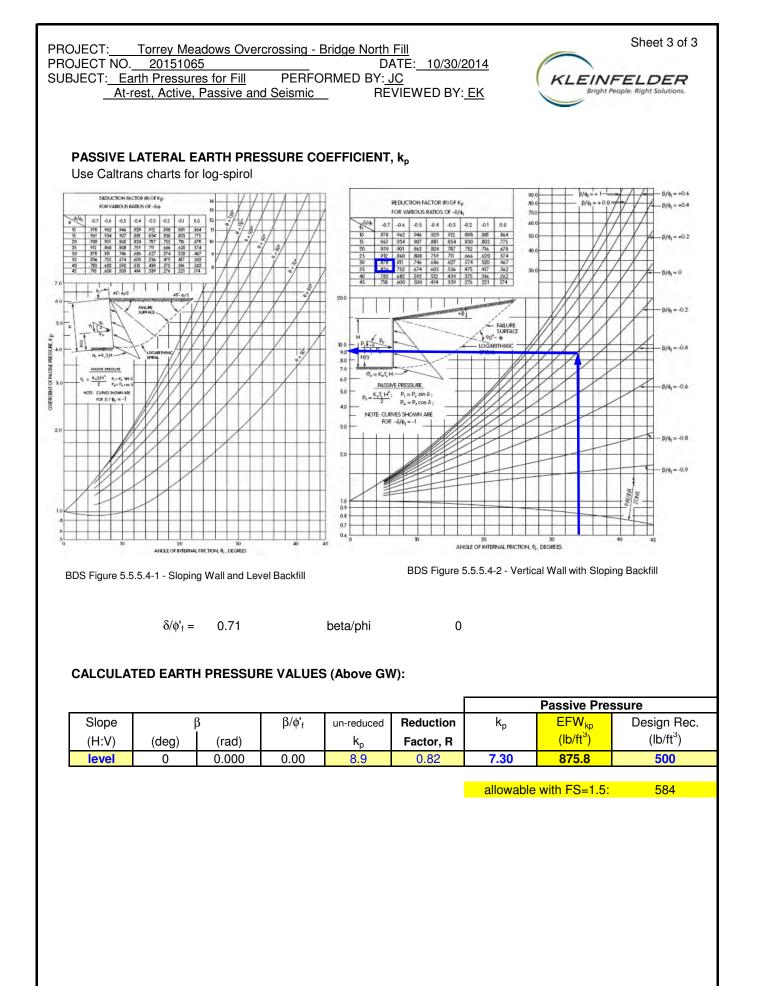
Calculations Package


Calculation Performed:


Earth Pressures

Project Name	Torrey Meadows Drive Overcrossing
Project Number	20151065
Client	TY Lin International
Originator	John Co
Calculation Type	□Hand Calculation IMS Excel □Other Computer Program
Checker	E. Koprulu
Checker's comments	
Checker's Signature	Eu Stopenta

Procedure:


Objective	To estimate earth pressures for Torrey Meadows Overpassing South and North Abutment Walls and Retaining Walls
Given	1. $c' = 0^{\circ}$ and phi' = 34° based on new fill requirements
Equation/Formula Used	Coulomb, log-spiral, and Mononobe-Okabe equations (see attached calculations for full equations).
Assumptions	n/a
Reference:	Caltrans Bridge Design Specifications (BDS) Chapter 5, August 2004.
Calculations	Calculations were performed in Kleinfelder approved spreadsheets as shown in the attached documents.
Attached documents	Calculations on spreadsheets are attached.
Results	See Attached spreadsheets

Slope	β		β		k _a	k _{AE}	Δk_{ae}	ΔP_{ae}	EFW _{∆Kae}
(H:V)	(deg)	(rad)				(lb/ft)	(pcf)		
level	0	0.000	0.254	0.369	0.115	6.9*H^2	7.0		

 ΔP_{ae} = is a line load applied at 2/3*H or distributed as an inverted triangular distribution over H

Bearing Resistance

Calculations Package

Calculation Performed:

LRFD Bearing Resistance

Project Name	Torrey Meadows Drive Overcrossing
Project Number	20151065
Client	TY Lin International
Originator	John Co
Calculation Type	□Hand Calculation IMS Excel □Other Computer Program
Checker	Moi Arzamendi
Checker's comments	
Checker's Signature	man

Procedure:

Objective	To estimate earth pressures for Torrey Meadows Overpassing South and North Abutment Walls and Retaining Walls						
Given	1. Torrey Meadows Drive Overcrossing Soil Strength Parameters						
Equation/Formula Used	Vesic's bearing capacity formula and Kleinfelder approved spreadsheet.						
Assumptions	South Existing Fill: friction angle of 32 degrees and cohesion of 200 psf. North Existing Fill: friction angle of 36 degrees and cohesion of 400 psf for. Mission Valley Formation: friction angle of 34 degrees and cohesion of 600 psf.						
Reference:	Caltrans Bridge Design Specifications (BDS) Chapter 5, August 2004.						
Calculations	Calculations were performed in Kleinfelder approved spreadsheets as shown in the attached documents.						
Attached documents	Calculations on spreadsheets are attached.						
Results	Results are shown attached.						

BJECT: <u>Bearing capacity ca</u> Bent 2		PEFC	<u>5</u> :: <u>3/23/2015</u> DRMED BY: <u>J</u> EWED BY: <u>N</u>		KLEINFELDE Bright People. Right Solu
OBJECTIVE: Perform be	aring capacity	calculation.	Calculations a	assumes no grou	ndwater present.
INPUT SOIL PARAMETE	RS:		Γ	P	
Unit weight,	$\gamma_{\rm m} = 125$	pcf			β
Friction angle,	$\phi = 34$	deg	\		
	c = 600	psf			+
-	N = 50			α	\sim
FOOTING DIMENSIONS:					\sim
Footing width,		feet		$\beta = 0.0$ c	leg
Footing Length,		feet			leg
Footing depth,		feet			-
VESIC BEARING CAPAC	ITY FORMU	LA:			
$q_{ult} = cN_cs_cd_ci_cb_cg_c + \sigma'_{zD}N_c$	_q s _q d _q i _q b _q g _q + (Ͻ.5γ'BN _γ s _γ i _γ b _γ ς	g _γ (Eq.	6.13, p. 183, Co	duto 2001)
shape factors:			dep	th factors:	
$s_c = 1+(B/L)^*(Nq/N)$	lc) = 1.698		k = (D/B) for D/B	<=1 or = tan-1(D/B) fo	or D/B>1 = 0.50
s _q = 1+(B/L)ta	$n\phi = 1.675$			d _c	= 1+0.4k 1.20
s _γ = 1-0.4(B/I			d	$a = 1 + 2^{k} \tan \phi(1)$	$-\sin\phi)^2 = 1.13$
	,			ч · · ·	
					$d_{\gamma} = 1.00$
base inclination factors	around	inclination f	actors.	load inicli	I
base inclination factors: $b_{0} = 1.0$	•	inclination for $f_{0} = 1 - \frac{\beta}{147}$			nation factors:
b _c = 1.0	($g_{c} = 1 - \beta / 147$	1.00	i _c =	nation factors:
$b_{c} = 1.0$ $b_{q} = 1.0$	($g_{c} = 1 - \beta / 147$ = (1-tan β) ² =	1.00 1.00	i _c = i _q =	nation factors: 1.0 1.0
b _c = 1.0	($g_{c} = 1 - \beta / 147$	1.00	i _c =	nation factors:
$b_{c} = 1.0$ $b_{q} = 1.0$ $b_{\gamma} = 1.0$ <i>Bearing factors:</i>	($g_{c} = 1 - \beta / 147$ = (1-tan β) ² =	1.00 1.00	i _c = i _q =	nation factors: 1.0 1.0
$b_{c} = 1.0$ $b_{q} = 1.0$ $b_{\gamma} = 1.0$	($g_{c} = 1 - \beta / 147$ = (1-tan β) ² =	1.00 1.00	i _c = i _q =	nation factors: 1.0 1.0
$b_{c} = 1.0$ $b_{q} = 1.0$ $b_{\gamma} = 1.0$ Bearing factors: Nq = e ^{πtanϕ*tan²(45+ϕ/2)}	g _q = Nq =	$g_c = 1 - \beta/147$ = $(1 - \tan \beta)^2 =$ $g_\gamma = g_q =$ 29.44	1.00 1.00	$i_c = i_q = i_\gamma = i_\gamma =$	nation factors: 1.0 1.0
$b_{c} = 1.0$ $b_{q} = 1.0$ $b_{\gamma} = 1.0$ <i>Bearing factors:</i>	g _q =	$g_{c} = 1 - \beta/147$ $= (1 - \tan\beta)^{2} =$ $g_{\gamma} = g_{q} =$	1.00 1.00 1.00 Reference	$i_{c} = i_{q} = i_{\gamma} = i_{\gamma} =$ ence: o, D.P., 2001, <i>Fc</i>	nation factors: 1.0 1.0 1.0 1.0 bundation Design,
$b_{c} = 1.0$ $b_{q} = 1.0$ $b_{\gamma} = 1.0$ Bearing factors: Nq = e ^{πtanϕ*tan²(45+ϕ/2)}	g _q = Nq =	$g_c = 1 - \beta/147$ = $(1 - \tan \beta)^2 =$ $g_\gamma = g_q =$ 29.44	1.00 1.00 1.00 Reference	$i_c = i_q = i_\gamma = i_\gamma =$	nation factors: 1.0 1.0 1.0 1.0 bundation Design,
$b_{c} = 1.0$ $b_{q} = 1.0$ $b_{\gamma} = 1.0$ Bearing factors: $Nq = e^{\pi tan\phi} * tan^{2}(45 + \phi/2)$ $Nc = (Nq-1)/tan\phi$	g _q = Nq = Nc =	$g_c = 1 - \beta/147$ = $(1 - \tan \beta)^2 =$ $g_\gamma = g_q =$ 29.44 42.16	1.00 1.00 1.00 Reference	$i_{c} = i_{q} = i_{\gamma} = i_{\gamma} =$ ence: o, D.P., 2001, <i>Fc</i>	nation factors: 1.0 1.0 1.0 1.0 bundation Design,
$b_{c} = 1.0$ $b_{q} = 1.0$ $b_{\gamma} = 1.0$ Bearing factors: $Nq = e^{\pi tan\phi} * tan^{2}(45 + \phi/2)$ $Nc = (Nq-1)/tan\phi$	g _q = Nq = Nc = Ng =	$g_c = 1 - \beta/147$ = $(1 - \tan \beta)^2 =$ $g_\gamma = g_q =$ 29.44 42.16	1.00 1.00 1.00 Reference	$i_{c} = i_{q} = i_{\gamma} = i_{\gamma} =$ ence: o, D.P., 2001, <i>Fc</i>	nation factors: 1.0 1.0 1.0 1.0 bundation Design,
$b_{c} = 1.0$ $b_{q} = 1.0$ $b_{\gamma} = 1.0$ Bearing factors: Nq = e ^{πtanϕ*tan²(45+ϕ/2) Nc = (Nq-1)/tanϕ Ng = 2(Nq+1)tanϕ $\sigma'_{z} = \gamma^{*}D = 1125$ psf}	g _q = Nq = Nc = Ng = (for no g	$g_c = 1 - \beta/147$ = $(1 - \tan \beta)^2 =$ $g_\gamma = g_q =$ 29.44 42.16 41.06 yroundwater)	1.00 1.00 1.00 Refere Codut <i>Princi</i>	$i_{c} = i_{q} = i_{\gamma} = i_{\gamma} =$ ence: o, D.P., 2001, <i>Fc</i>	<i>nation factors:</i> 1.0 1.0 1.0 <i>bundation Design,</i> s, Prentice Hall
$b_{c} = 1.0$ $b_{q} = 1.0$ $b_{\gamma} = 1.0$ Bearing factors: Nq = e ^{πtanϕ*tan²(45+ϕ/2) Nc = (Nq-1)/tanϕ Ng = 2(Nq+1)tanϕ}	g _q = Nq = Nc = Ng = (for no g	$g_c = 1 - \beta/147$ = $(1 - \tan \beta)^2 =$ $g_\gamma = g_q =$ 29.44 42.16 41.06	1.00 1.00 1.00 Reference	$i_{c} = i_{q} = i_{\gamma} = i_{\gamma} =$ ence: o, D.P., 2001, <i>Fc</i>	nation factors: 1.0 1.0 1.0 1.0 bundation Design,
$b_c = 1.0$ $b_q = 1.0$ $b_\gamma = 1.0$ Bearing factors: $Nq = e^{\pi tan\phi *} tan^2(45+\phi/2)$ $Nc = (Nq-1)/tan\phi$ $Ng = 2(Nq+1)tan\phi$ $\sigma'_z = \gamma^*D = 1125$ psf $q_{ult} = 142,001$ psf	g _q = Nq = Nc = Ng = (for no g	$g_c = 1 - \beta/147$ = $(1 - \tan \beta)^2 =$ $g_\gamma = g_q =$ 29.44 42.16 41.06 yroundwater)	1.00 1.00 1.00 Reference Codut <i>Princi</i>	$i_c = i_q = i_q = i_\gamma =$ ence: to, D.P., 2001, For ples and Practice	nation factors: 1.0 1.0 1.0 29.25
$b_{c} = 1.0$ $b_{q} = 1.0$ $b_{\gamma} = 1.0$ Bearing factors: Nq = e ^{πtanϕ*tan²(45+ϕ/2) Nc = (Nq-1)/tanϕ Ng = 2(Nq+1)tanϕ $\sigma'_{z} = \gamma^{*}D = 1125$ psf}	g _q = Nq = Nc = Ng = (for no g	$g_c = 1 - \beta/147$ = $(1 - \tan \beta)^2 =$ $g_\gamma = g_q =$ 29.44 42.16 41.06 yroundwater)	1.00 1.00 1.00 Refer Codut <i>Princi</i>	$i_c = i_q = i_q = i_\gamma =$ ence: to, D.P., 2001, For ples and Practice	<i>pundation Design,</i> 29.25 ate bearing pressure
$b_c = 1.0$ $b_q = 1.0$ $b_\gamma = 1.0$ Bearing factors: $Nq = e^{\pi tan\phi *} tan^2(45+\phi/2)$ $Nc = (Nq-1)/tan\phi$ $Ng = 2(Nq+1)tan\phi$ $\sigma'_z = \gamma^*D = 1125$ psf $q_{ult} = 142,001$ psf	g _q = Nq = Nc = Ng = (for no g	$g_c = 1 - \beta/147$ = $(1 - \tan \beta)^2 =$ $g_{\gamma} = g_q =$ 29.44 42.16 41.06 groundwater) esign Rec.=	1.00 1.00 1.00 Refere Codut <i>Princi</i> 65 ksf	i _c = i _q = i _γ = ence: to, D.P., 2001, Fo ples and Practice SAND: approxima	<i>pundation Design,</i> 29.25 ate bearing pressure

Design Rec.=

29

ksf

Design Rec.=

10

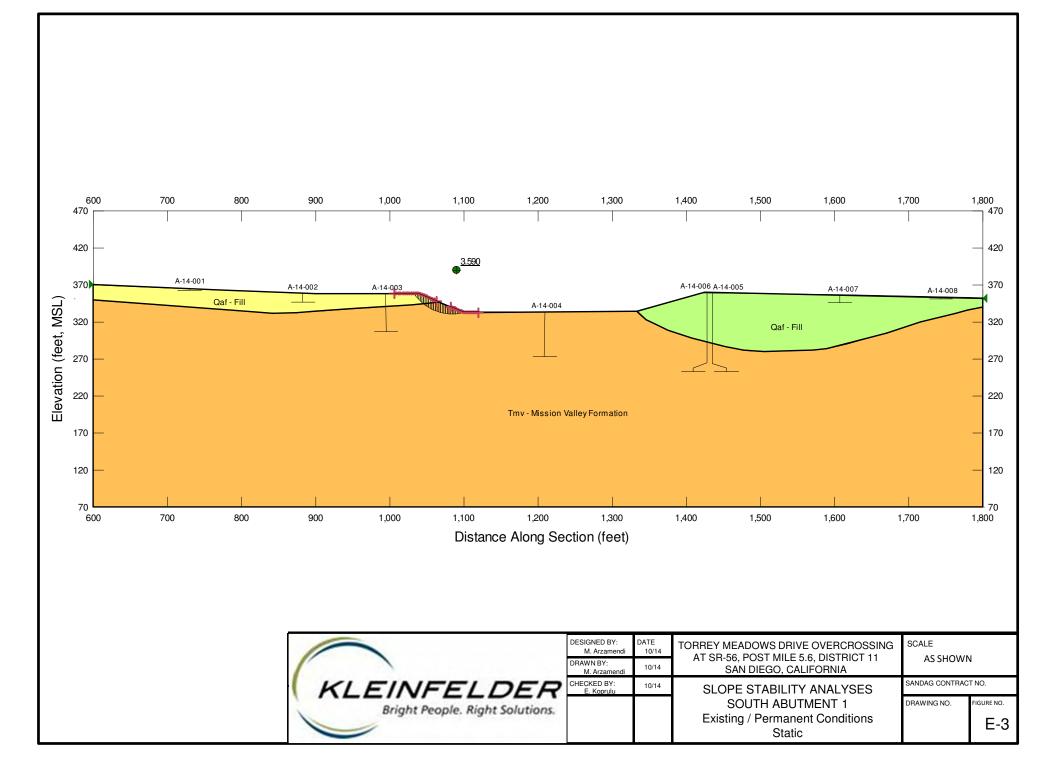
ksf

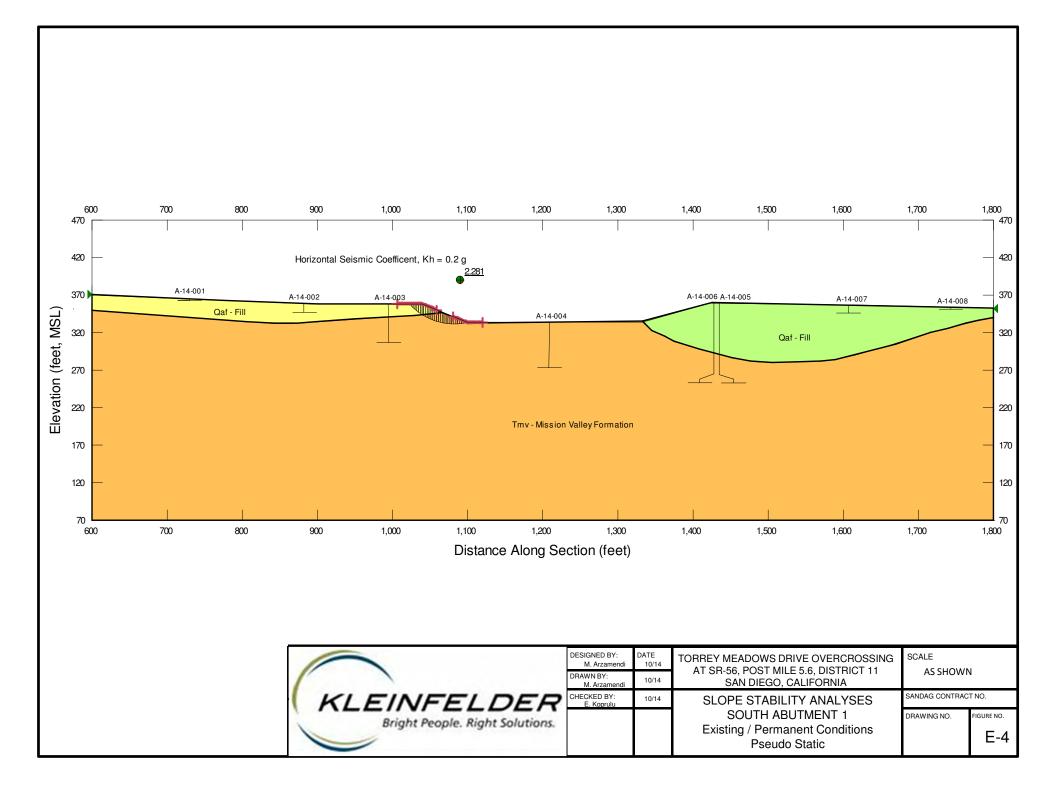
PROJECT: <u>Torrey Meadows Drive Overcrossing at SR-56</u> PROJECT NO. <u>20151065</u> DATE: DATE: 3/23/2015 SUBJECT: Bearing capacity calculation for South Abutment 1 PEFORMED BY: JC KLEINFELDER Bright People. Right Solutions. REVIEWED BY: MA 1

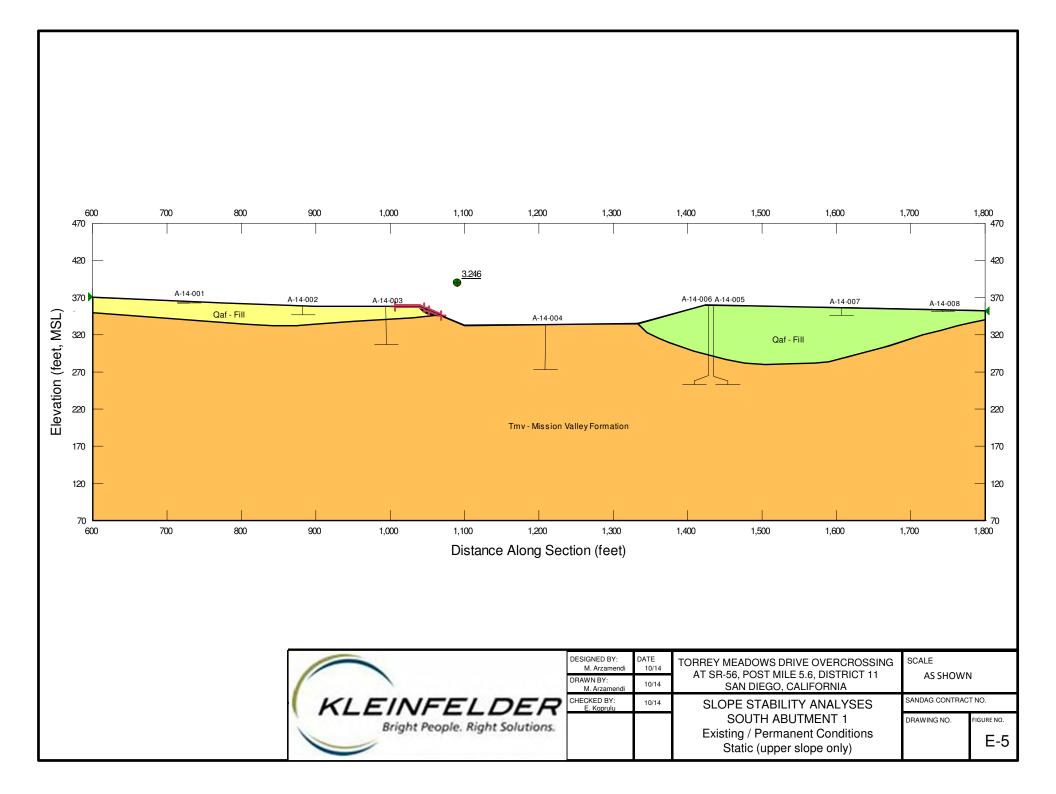
INPUT SOIL PARAME	TERS:			P	
Unit weight,	$\gamma_{\rm m} = 125$	pcf		β	
Friction angle,	φ = <mark>34</mark>	deg			D
Cohesion,	c = 600	psf	~		_*
Average Blow Count,	N = 50		\	α	
FOOTING DIMENSION	IS:				
Footing wid		feet		$\beta = 26.6$ deg	
Footing Leng		feet		$\alpha = 0$ deg	
Footing dep	th, D = <u>10</u>	feet			
VESIC BEARING CAP		JLA:			
$q_{ult} = cN_cs_cd_ci_cb_cg_c + \sigma'_z$	_{:D} N _q s _q d _q i _q b _q g _q +	· 0.5γ'BN _γ s _γ i _γ b _γ ς	\mathbf{J}_{γ}	(Eq. 6.13, p. 183, Coduto 2007	1)
shape facto	rs:			depth factors:	
s _c = 1+(B/L)*(N		C	k = (D/B)	for D/B<=1 or = $\tan(D/B)$ for D/B>1 =	0.83
s _α = 1+(B/L	.)tan∳ = 1.14	5		d _c = 1+0.4k	1.33
	(B/L) = 0.91			$d_{a} = 1+2^{*}k^{*}tan\phi(1-sin\phi)^{2} =$	1.22
1	``			$d_{v} =$	
base inclination facto				la a diviativa tia a fa	-1
$b_c = 1.0$	rs. groun	d inclination f g _c = 1-β/147	0.82	load inlclination fa i _c = 1.0	CIUIS.
	a		0.02		
$b_{q} = 1.0$ $b_{y} = 1.0$	9q	$g_{\gamma} = g_{q} =$		$i_q = 1.0$ $i_r = 1.0$	
ογ - 1.0		9γ - 9q -	0.20	ι _γ – 1.0	
Bearing factors:					
$Nq = e^{\pi tan\phi} * tan^2 (45 + \phi/2)$) Nq =	29.44			
No (Na 1)/tont	No	40.46		Reference:	
Nc = (Nq-1)/tan∳	Nc =	42.16		Coduto, D.P., 2001, Foundation	
Ng = 2(Nq+1)tan∳	Ng =	41.06		Principles and Practices, Prentic	ce Hall
	-				
σ' _z = γ*D = 1250 ps	f (for no	groundwater)			
q _{ult} = 51,570 ps	f	Design Rec.=	25	ksf	
FS = 2.2				For SAND: approximate bearir	
				to produce 1 inch of settlemen	

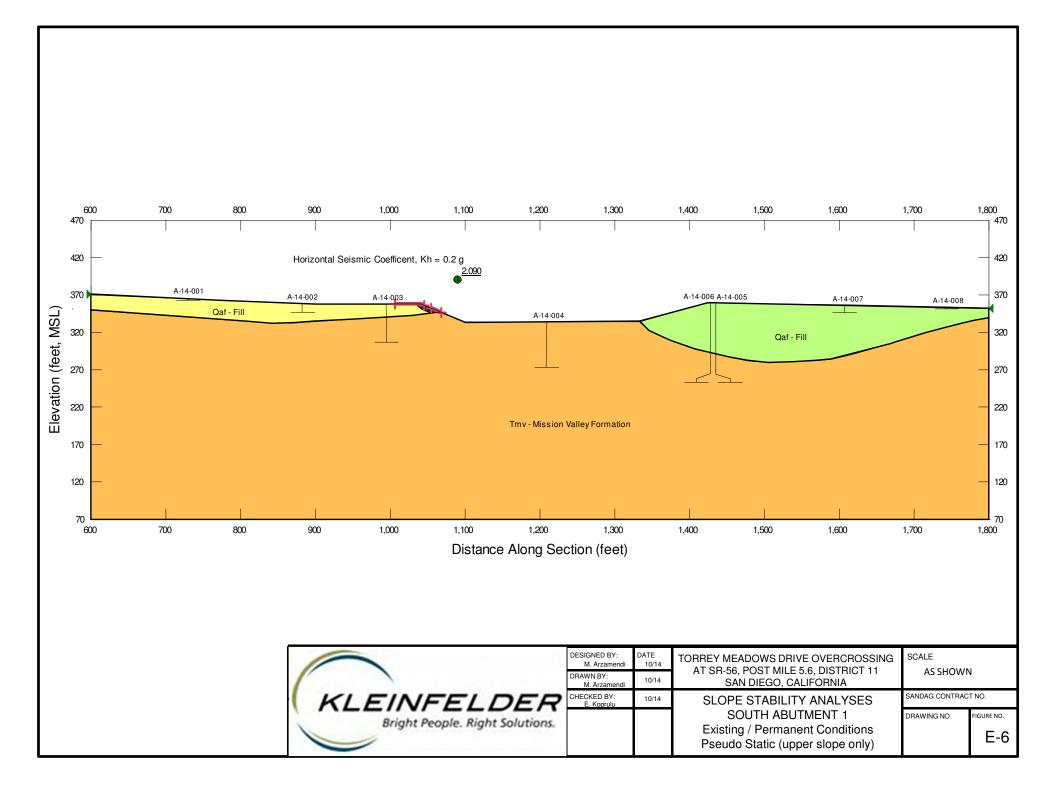
Slope Stability Analyses

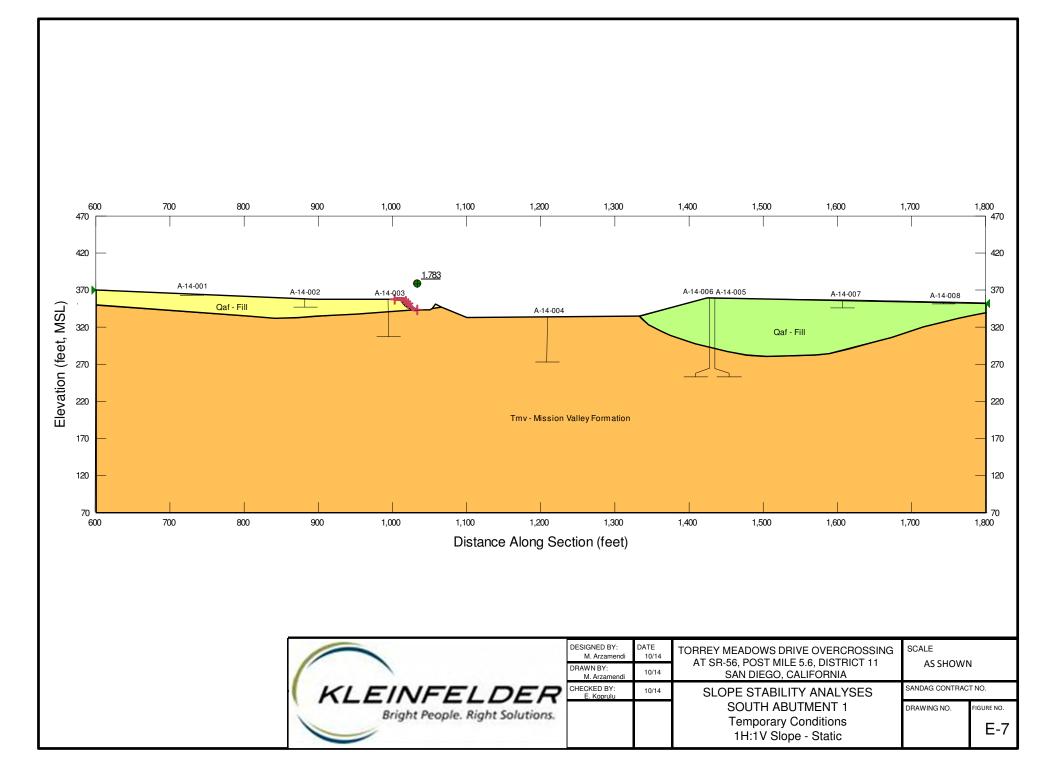
Calculations Package

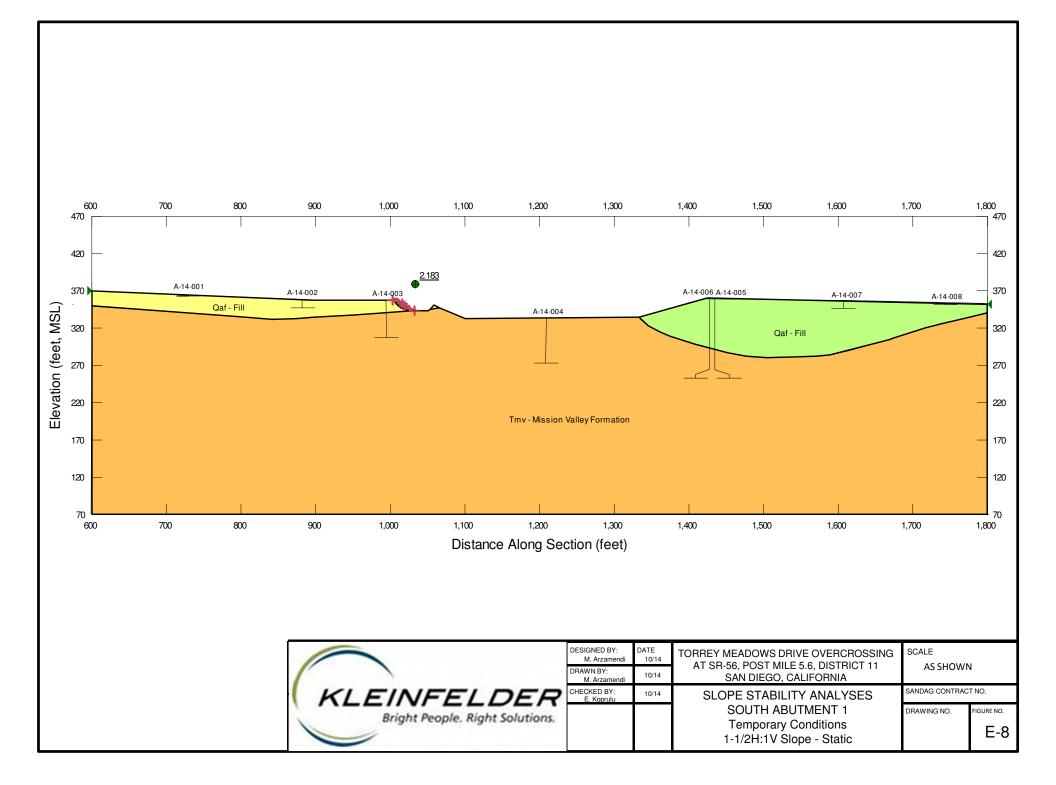

Calculation Performed:

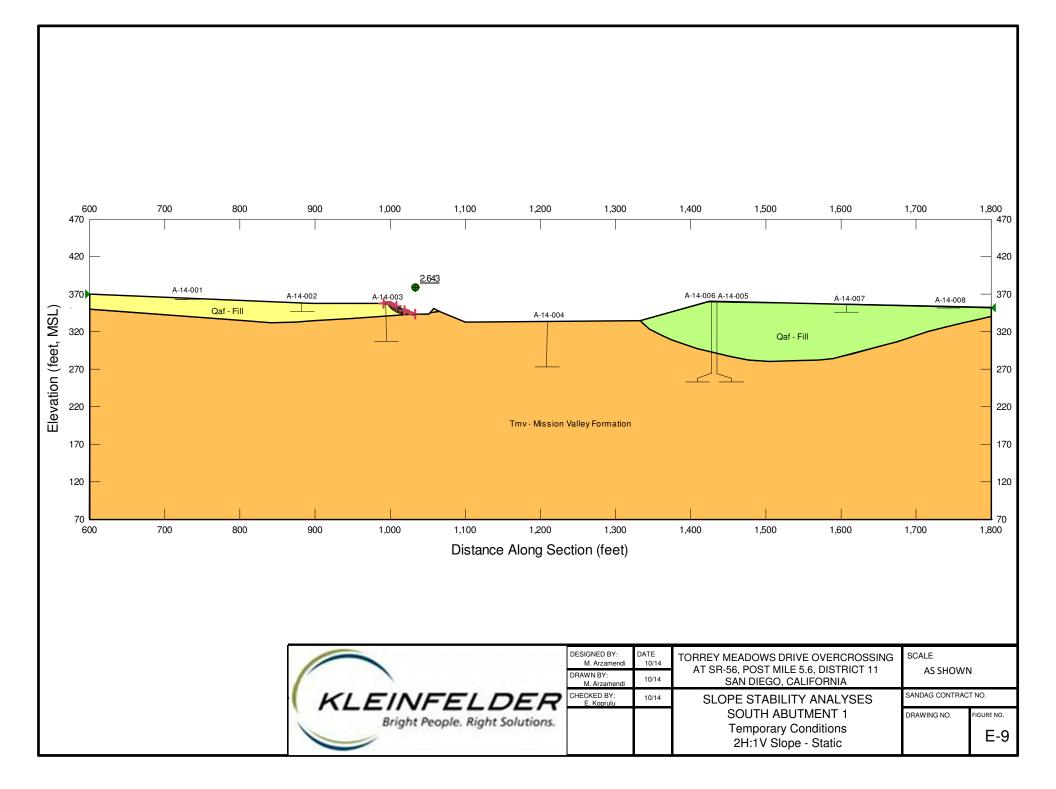

Slope Stability

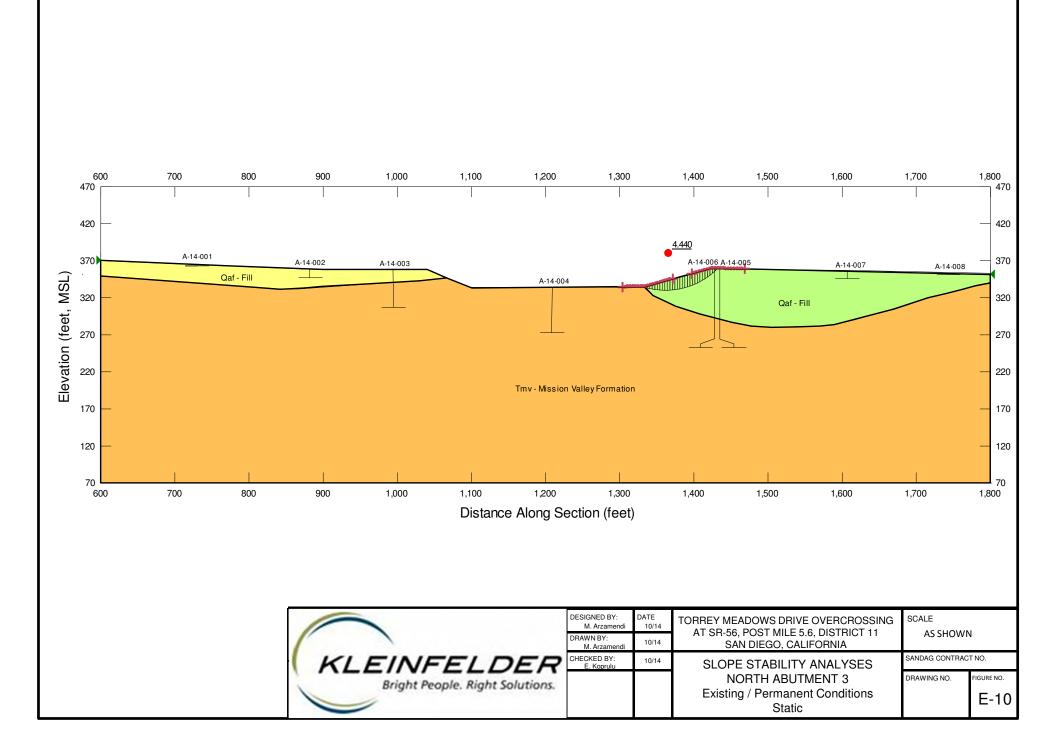

Project Name	Torrey Meadows Drive Overcrossing
Project Number	20151065
Client	TY Lin International
Originator	Moises Arzamendi
Calculation Type	\Box Hand Calculation \Box MS Excel \boxtimes Other Computer Program
Checker	Eren Koprulu
Checker's comments	
Checker's Signature	Erus Kapeula

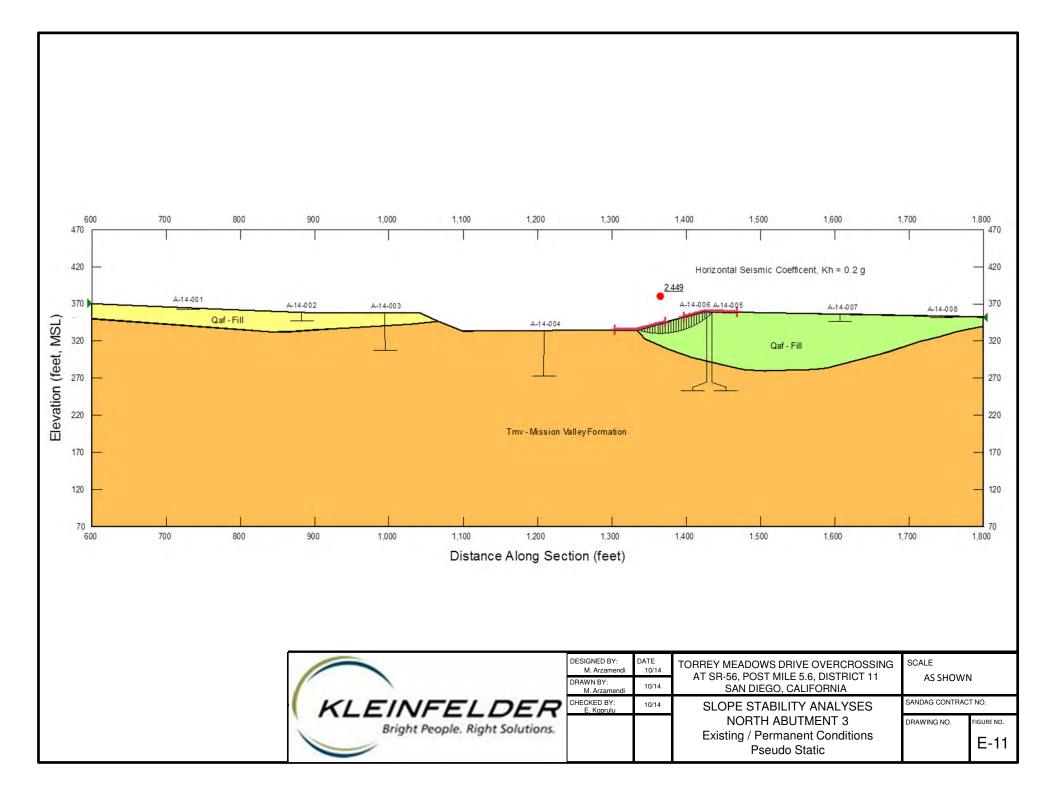

Procedure:

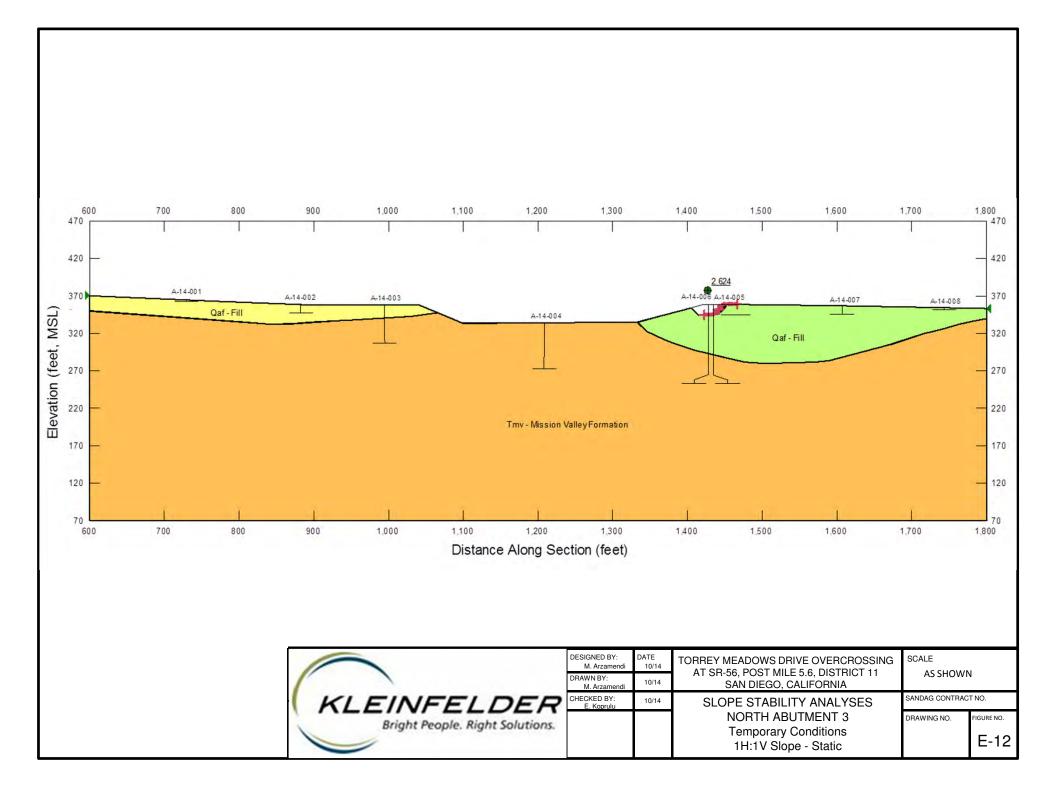

Objective	To evaluate the stability of north and south abutments at Torrey Meadows Dr OC during static and seismic events.
Given	 Explorations: A-14-003, A-14-005, and A-14-006 Slope dimensions through existing topographic maps. Design response spectrum developed per Caltrans ARS (see Caltrans ARS calc package) V_{s30} is approximately 340 m/s (see Shear Wave Velocity Profile calc package)
Equation/Formula Used	 SLOPE/W and spencer's method type of analysis. Site period, Ts = 4H/Vs for circular failure surfaces
Assumptions	 Strength parameters for soil conditions found at this site are presented in the Strength Parameters New fill soil parameters are based on Caltrans guidelines
Reference:	 Geostudio, SLOPE/W, 2012 Caltrans ARS Online V. 2.3.06
Calculations	Calculations were performed using SLOPE/W, 2012 software
Attached documents	 Summary of slope stability results. SLOPE/W PDF outputs of slope failures.
Results	1. See attached.

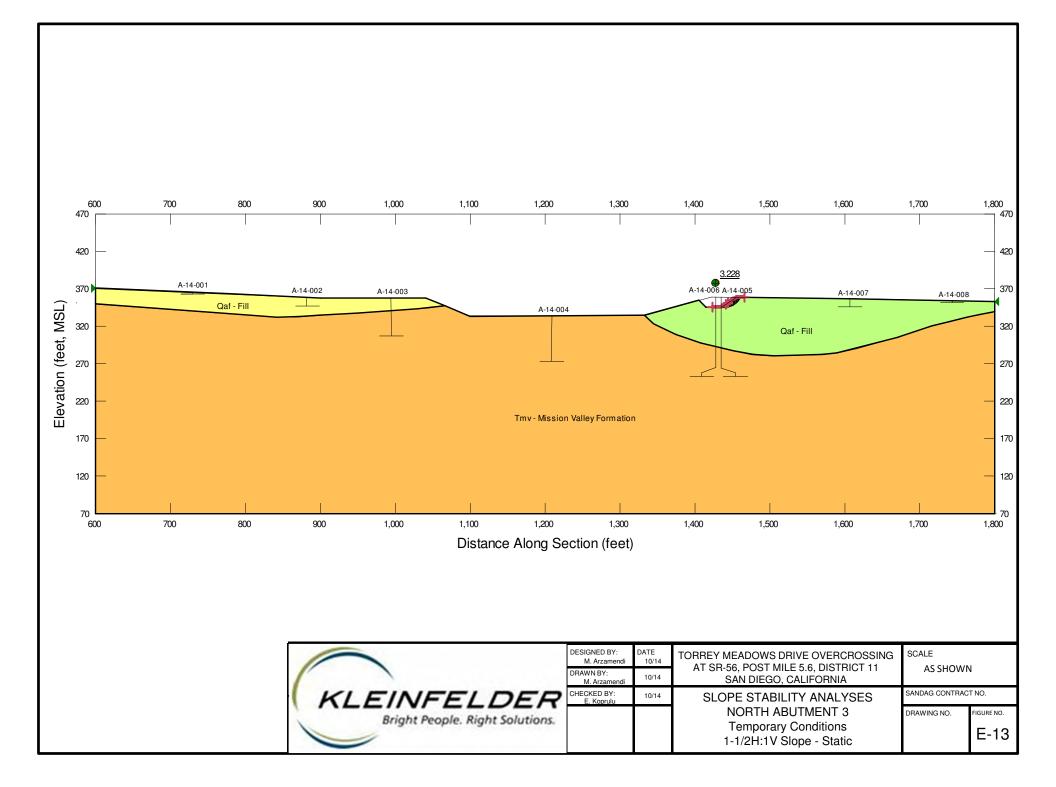


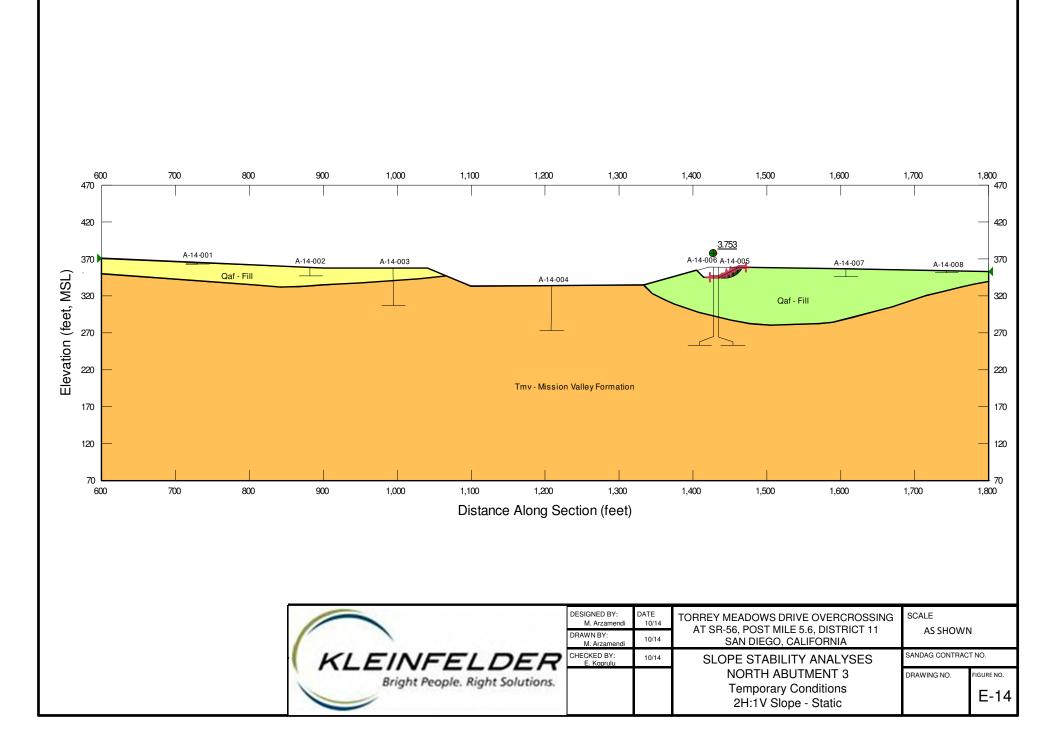












Pile Foundation Design

Axial Pile Foundation Design

Calculations Packages

Calculation Performed:

BRIDGE FOUNDATION ANALYSIS

Torrey Meadows Drive Overcrossing Project
20151065
T.Y. Lin International
Eren Koprulu
□Hand Calculation □MS Excel I Other Computer Program (Shaft 2012 –
Ensoft)
Moises Arzamendi, P.E, G.E

Procedure:

Objective	To evaluate CIDH Pile capacities for the proposed bridge.
Given	 Bridge Geometry Pile diameters (2, 2.5, 3 feet)
Calculations	The calculations were performed with software Shaft. SHAFT 2012 is a special- purpose program based on rational procedures for analyzing a drilled shaft under axial loading. The program is used to compute settlement of the top and base of the shaft as a function of axial loading, along with the distribution of axial load along the length of the shaft.
Assumptions	 The resistance curves represent LRFD factored axial resistance for single CIDH piles. The resistance curves include skin friction and end bearing. The uplift CIDH pile resistance curve does not include the pile dead weight. The design groundwater is assumed to be at elevation +250 feet MSL.
References:	AASHTO guidelines for pile capacity and design.
Attached documents	Input parameters for Abut3.
Results	Results are presented on Plates 10 through 13.
Additional Notes	None

Input Parameters for SHAFT LRFD Analysis

Project: Subject:	Torrey Meadows Dr. (CIDH (Extreme Event)		By: Reviewed by:		Date: Date:	10/28/2014	-			
·	iven and Assumptions: Pile head elevation = Design ground surface Deisgn groundwater is SHAFT PROPERTIES			4.0 ft						
	Shaft Diameter: Ratio of Base Diameter to Shaft Diameter : Angle of Bell w/ Respect to Vertical : Length of Upper Exclusive Zone w/o Skin Friction (Lue): Length of Bottom Portion of Shaft w/o Skin Friction (Lle): Modulus of Elasticity of 24-inch/30-inch/36-inch Shaft : Uplift Reduction Factor:					ft (straight) Shaf degree ft ksi	t			
							c	[LRFD Resistanc	LRFD Resistanc
Layer	ER DATA Soil Type	Depth at E From	Bottom (ft) To	γ _t (pcf)	φ' (deg)	Cohesion (psf)	S _u (psf)	α	e Factor (Side Friction)	e Factor (End Bearing)
1	Sand (Fill)	0	65	130	36	400	na	na	1.00	1.00
2	Sand (Sandstone)	65	90	125	34	600	na	na	1.00	1.00

LOAD DATA

No specific loads are provided at the moment. The axial capacity curves are rather provided to elevation 260 feet (i.e., 10 feet embedment into Tmv).

RESULTS

Reference: 1. AASHTO LRFD Bridge Construction Specifications, 3rd Edition, 2010 Interim Revisions
 2. Fellenius, B.H. 2004, Unified Design of Piled Foundations with Emphasis on Settlement Analysis. Honoring George G. Goble -Current Practice and Future Trends in Deep Foundations, Geo-Institute Geo-TRANS Conference, Los Angeles, Jly 27-30, Edited by J.A. DiMaggio and M.H. Hussein. ASCE Geotechnical Special Publication, GSP 125, pp. 253-275.
 3. California Amendments to the AASHTO LRFD Bridge Design Specifications - Fourth Edition, Caltrans, 2011

ft

Recommended minimum shaft tip elevation = 290

Input Parameters for SHAFT LRFD Analysis

Project: Subject:	Torrey Meadows Dr. (CIDH (Static Case) for		By: Reviewed by:		Date Date	: <u>10/28/2014</u> :	-			
·	iven and Assumptions: Pile head elevation = Design ground surface Deisgn groundwater is SHAFT PROPERTIES Shaft Diameter:			4.0 ft	2, 2.5, or 3) ff				
	Shart Diameter: Ratio of Base Diameter to Shaft Diameter : Angle of Bell w/ Respect to Vertical : Length of Upper Exclusive Zone w/o Skin Friction (Lue): Length of Bottom Portion of Shaft w/o Skin Friction (Lle): Modulus of Elasticity of 24-inch/30-inch/36-inch Shaft : Uplift Reduction Factor:					(straight) Shafi degree ft ksi	:			
									LRFD Resistance	LRFD Resistanc
SOIL LAY	ER DATA	Depth at B	ottom (ft)				Su		Factor	e Factor
Layer	Soil Type	From	То	γ _t (pcf)	φ' (deg)	Cohesion (psf)	(psf)	α	(Side Friction)	(End Bearing)
1	Sand (Fill)	0	65	130	36	400	na	na	0.70	0.50
2	Sand (Sandstone)	65	90	125	34	600	na	na	0.70	0.50

LOAD DATA

No specific loads are provided at the moment. The axial capacity curves are rather provided to elevation 260 feet (i.e., 10 feet embedment into Tmv).

RESULTS

Reference: 1. AASHTO LRFD Bridge Construction Specifications, 3rd Edition, 2010 Interim Revisions
 2. Fellenius, B.H. 2004, Unified Design of Piled Foundations with Emphasis on Settlement Analysis. Honoring George G. Goble -Current Practice and Future Trends in Deep Foundations, Geo-Institute Geo-TRANS Conference, Los Angeles, Jly 27-30, Edited by J.A. DiMaggio and M.H. Hussein. ASCE Geotechnical Special Publication, GSP 125, pp. 253-275.
 3. California Amendments to the AASHTO LRFD Bridge Design Specifications - Fourth Edition, Caltrans, 2011

ft

Recommended minimum shaft tip elevation = 290

Abut 3 Downward_(Static).sfo _____ ______ SHAFT for Windows, Version 2012.7.9 Serial Number : 297192525 VERTICALLY LOADED DRILLED SHAFT ANALYSIS (c) Copyright ENSOFT, Inc., 1987-2012 All Rights Reserved ______ Path to file locations : U:\PROJECT FILES\20151065.001A - Torrey Meadows Drive Bridge\Calculations\Foundations\Shaft\ Name of input data file : Abut 3 Downward_(Static).sfd Name of output file : Abut 3 Downward_(Static).sfo Name of plot output file : Abut 3 Downward_(Static).sfp Name of runtime file : Abut 3 Downward_(Static).sfr _____ Time and Date of Analysis _____ Date: November 04, 2014 Time: 14:41:29 Torrey Meadows Dr. OC - Abut 3 (Static) PROPOSED DEPTH = 90.0 FT _____ NUMBER OF LAYERS = 2 _____ 110.0 FT. WATER TABLE DEPTH = _____ SOIL INFORMATION _____ LAYER NO 1----SAND AT THE TOP = 0.120E+01SKIN FRICTION COEFFICIENT- BETA = 0.000E+00UNDRAINED SHEAR STRENGTH, LB/SQ FT INTERNAL FRICTION ANGLE, DEG. = 0.360E+02BLOWS PER FOOT FROM STANDARD PENETRATION TEST = 0.350E+02SOIL UNIT WEIGHT, LB/CU FT = 0.130E+03MAXIMUM LOAD TRANSFER FOR SOIL, LB/SQ FT = 0.100E+11= 0.000E+00DEPTH, FT AT THE BOTTOM = 0.412E+00SKIN FRICTION COEFFICIENT- BETA Page 1

Abut 3 Downward_(Static).sfo UNDRAINED SHEAR STRENGTH, LB/SQ FT INTERNAL FRICTION ANGLE, DEG. BLOWS PER FOOT FROM STANDARD PENETRATION TEST SOIL UNIT WEIGHT, LB/CU FT MAXIMUM LOAD TRANSFER FOR SOIL, LB/SQ FT DEPTH, FT		0.000E+00 0.360E+02 0.350E+02 0.130E+03 0.100E+11 0.650E+02
LRFD RESISTANCE FACTOR (SIDE FRICTION) LRFD RESISTANCE FACTOR (TIP RESISTANCE)	=	0.700E+00 0.500E+00
LAYER NO 2SAND		
ΑΤ ΤΗΕ ΤΟΡ		
SKIN FRICTION COEFFICIENT- BETA UNDRAINED SHEAR STRENGTH, LB/SQ FT INTERNAL FRICTION ANGLE, DEG. BLOWS PER FOOT FROM STANDARD PENETRATION TEST SOIL UNIT WEIGHT, LB/CU FT MAXIMUM LOAD TRANSFER FOR SOIL, LB/SQ FT DEPTH, FT		0.412E+00 0.000E+00 0.340E+02 0.100E+03 0.125E+03 0.100E+11 0.650E+02
AT THE BOTTOM		
SKIN FRICTION COEFFICIENT- BETA UNDRAINED SHEAR STRENGTH, LB/SQ FT INTERNAL FRICTION ANGLE, DEG. BLOWS PER FOOT FROM STANDARD PENETRATION TEST SOIL UNIT WEIGHT, LB/CU FT MAXIMUM LOAD TRANSFER FOR SOIL, LB/SQ FT DEPTH, FT		0.250E+00 0.000E+00 0.340E+02 0.100E+03 0.125E+03 0.100E+11 0.900E+02
LRFD RESISTANCE FACTOR (SIDE FRICTION) LRFD RESISTANCE FACTOR (TIP RESISTANCE)	=	0.700E+00 0.500E+00

DRILLED SHAFT INFORMATION

DIAMETER OF STEM DIAMETER OF BASE	= =	2.000	
END OF STEM TO BASE	=		FT.
ANGLE OF BELL IGNORED TOP PORTION	=	5.000	
IGNORED BOTTOM PORTION		0.000	
AREA OF ONE PERCENT STEEL			SQ.IN.
ELASTIC MODULUS, EC	=	0.360E+07	
VOLUME OF UNDERREAM	=	0.000	CU.YDS.

PREDICTED RESULTS

QS	= ULTIMATE SIDE RESISTANCE;
QB	= ULTIMATE BASE RESISTANCE;
	Page 2

LRFD QB	= TOTAL = TOTAL TO THI = TOTAL TO THI	Ab T OF DRILI ULTIMATE SIDE FRIC E ULTIMATE BASE BEAF E ULTIMATE CAPACITY	LED SHAFT RESISTAN CTION USI SIDE RE RING USIN E BASE RE	(UPLIFT CE; NG LRFD SISTANCE G LRFD R SISTANCE	RESISTANC ; ESISTANCE	ONLY); E FACTOR FACTOR	
$\begin{array}{c} 6.0\\ 7.0\\ 8.0\\ 9.0\\ 10.0\\ 11.0\\ 12.0\\ 13.0\\ 14.0\\ 15.0\\ 16.0\\ 17.0\\ 18.0\\ 19.0\\ 20.0\\ 21.0\\ 22.0\\ 23.0\\ 24.0\\ 25.0\\ 24.0\\ 25.0\\ 24.0\\ 25.0\\ 26.0\\ 27.0\\ 28.0\\ 29.0\\ 30.0\\ 31.0\\ 32.0\\ 33.0\\ 34.0 \end{array}$	3.03 3.14 3.26 3.37 3.49 3.61 3.72 3.84 3.96 4.07 4.19 4.31 4.42	2.63 5.66 9.09 12.89 17.05 21.57 26.41 31.59 37.07 42.86 48.94 55.30 61.92 68.81 75.95 83.33 90.94 98.78 106.83 115.09 123.54 132.18 141.01 159.17 168.49 177.97 187.58 197.34	30.53 33.04 35.55 38.07 40.58 43.10 45.61 48.12 49.74 50.28 5	25.61 31.16 37.10 43.41 50.09 57.12 64.48 72.17 80.17 88.47 97.06 105.04 112.20 119.09 126.23 133.61 141.22 149.06 157.11 165.36 173.82 182.46 191.29 200.28 209.45 218.77 228.25 237.86 247.62 257.50 267.51 277.63 287.85	$\begin{array}{c} 1.84\\ 3.96\\ 6.36\\ 9.02\\ 11.94\\ 15.10\\ 18.49\\ 22.11\\ 25.95\\ 30.00\\ 34.26\\ 38.71\\ 43.35\\ 48.17\\ 53.17\\ 58.33\\ 63.66\\ 69.15\\ 74.78\\ 80.56\\ 86.48\\ 92.53\\ 98.70\\ 105.00\\ 111.42\\ 117.95\\ 124.58\\ 131.31\\ 138.14\\ 145.06\\ 152.06\\ 159.14\\ 166.30\\ \end{array}$	14.01 15.26 16.52 17.78 19.03 20.29 21.55 22.80 24.06 24.87 25.14 2	28.46 32.87 37.52 42.40 47.50 52.81 58.32 63.58 68.49 73.31 78.31 83.47 88.80 94.28 99.92 105.70 111.62 117.67 123.84 130.14 136.56 143.08 149.72 156.455 163.28 170.19 177.20 184.28 191.44

		ļ	Abut 3 Dow	nward (St	tatic).sfo		
59.0	6.87	466.18	50.28	516. 4 6	326.33	25.14	351.46
60.0	6.98	477.22	50.28	527.50	334.05	25.14	359.19
61.0	7.10	488.23	50.28	538.51	341.76	25.14	366.90
62.0	7.21	499.21	44.29	543.50	349.45	22.15	371.59
63.0	7.33	510.15	37.11	547.26	357.10	18.56	375.66
64.0	7.45	521.04	33.52	554.56	364.73	16.76	381.49
65.0	7.56	531.89	33.52	565.40	372.32	16.76	389.08
66.0	7.68	542.67	33.52	576.19	379.87	16.76	396.63
67.0	7.80	553.39	33.52	586.91	387.37	16.76	404.13
68.0	7.91	564.04	33.52	597.56	394.83	16.76	411.59
69.0	8.03	574.61	33.52	608.13	402.23	16.76	418.99
70.0	8.15	585.10	33.52	618.62	409.57	16.76	426.33
71.0	8.26	595.51	33.52	629.03	416.86	16.76	433.62
72.0	8.38	605.83	33.52	639.34	424.08	16.76	440.84
73.0	8.50	616.05	33.52	649.57	431.23	16.76	447.99
74.0	8.61	626.17	33.52	659.69	438.32	16.76	455.08
75.0	8.73 8.84	636.19 646.10	33.52 33.52	669.71 679.62	445.33	16.76	462.09
76.0 77.0	8.96	655.90	33.52	689.42	452.27 459.13	16.76 16.76	469.03 475.89
77.0	9.08	665.58	33.52	699.10	465.90	16.76	475.89
79.0	9.08	675.14	33.52	708.66	472.60	16.76	482.00
80.0	9.31	684.57	33.52	718.09	479.20	16.76	495.96
81.0	9.43	693.87	33.52	727.39	485.71	16.76	502.47
82.0	9.54	703.04	33.52	736.56	492.13	16.76	508.89
83.0	9.66	712.06	33.52	745.58	498.45	16.76	515.20
84.0	9.78	720.95	33.52	754.47	504.66	16.76	521.42
85.0	9.89	729.68	33.52	763.20	510.78	16.76	527.54

RESULT FROM TREND (AVERAGED) LINE

TOP LOAD	TOP MOVEMENT	TIP LOAD	TIP MOVEMENT
ton	IN.	ton	IN.
0.4093E+00	0.2016E-03	0.4888E-03	0.1000E-04
0.2046E+01	0.1008E-02	0.2444E-02	0.5000E-04
0.4093E+01	0.2016E-02	0.4888E-02	0.1000E-03
0.1868E+03	0.9835E-01	0.2444E+00	0.5000E-02
0.2509E+03	0.1394E+00	0.3666E+00	0.7500E-02
0.3019E+03	0.1752E+00	0.4888E+00	0.1000E-01
0.4749E+03	0.3214E+00	0.1222E+01	0.2500E-01
0.5876E+03	0.4473E+00	0.2444E+01	0.5000E-01
0.6357E+03	0.5184E+00	0.3666E+01	0.7500E-01
0.6635E+03	0.5709E+00	0.4888E+01	0.1000E+00
0.7070E+03	0.7680E+00	0.1196E+02	0.2500E+00
0.7128E+03	0.1026E+01	0.1929E+02	0.5000E+00
0.7151E+03	0.1154E+01	0.2208E+02	0.6250E+00
0.7182E+03	0.1315E+01	0.2575E+02	0.7812E+00
0.7250E+03	0.1743E+01	0.3402E+02	0.1200E+01

RESULT FROM UPPER-BOUND LINE

TOP LOAD	TOP MOVEMENT	TIP LOAD	TIP MOVEMENT
ton	IN.	ton	IN.
0.8008E+00	0.3539E-03	0.6983E-03	0.1000E-04
0.4004E+01	0.1770E-02	0.3492E-02	0.5000E-04
0.8008E+01	0.3539E-02	0.6983E-02	0.1000E-03
0.2998E+03	0.1566E+00	0.3492E+00	0.5000E-02
0.3737E+03	0.2101E+00	0.5237E+00	0.7500E-02
0.4276E+03	0.2536E+00	0.6983E+00	0.1000E-01
0.5904E+03	0.4121E+00	0.1746E+01	0.2500E-01
		Page 4	

	Abut 3 D	ownward_(Static)	.sfo
0.6811E+03	0.5289E+00	0.3492E+01	0.5000E-01
0.7101E+03	0.5848E+00	0.5237E+01	0.7500E-01
0.7227E+03	0.6234E+00	0.6983E+01	0.1000E+00
0.7399E+03	0.7940E+00	0.1662E+02	0.2500E+00
0.7475E+03	0.1054E+01	0.2422E+02	0.5000E+00
0.7493E+03	0.1181E+01	0.2603E+02	0.6250E+00
0.7525E+03	0.1341E+01	0.2918E+02	0.7812E+00
0.7595E+03	0.1769E+01	0.3620E+02	0.1200E+01

RESULT FROM LOWER-BOUND LINE

TOP LOAD	TOP MOVEMENT	TIP LOAD	TIP MOVEMENT
ton	IN.	ton	IN.
0.1771E+00	0.1025E-03	0.2793E-03	0.1000E-04
0.8856E+00	0.5123E-03	0.1397E-02	0.5000E-04
0.1771E+01	0.1025E-02	0.2793E-02	0.1000E-03
0.8879E+02	0.5169E-01	0.1397E+00	0.5000E-02
0.1292E+03	0.7663E-01	0.2095E+00	0.7500E-02
0.1661E+03	0.1004E+00	0.2793E+00	0.1000E-01
0.3280E+03	0.2186E+00	0.6983E+00	0.2500E-01
0.4715E+03	0.3516E+00	0.1397E+01	0.5000E-01
0.5490E+03	0.4429E+00	0.2095E+01	0.7500E-01
0.5984E+03	0.5136E+00	0.2793E+01	0.1000E+00
0.6742E+03	0.7419E+00	0.7290E+01	0.2500E+00
0.6781E+03	0.9984E+00	0.1436E+02	0.5000E+00
0.6809E+03	0.1127E+01	0.1813E+02	0.6250E+00
0.6840E+03	0.1288E+01	0.2232E+02	0.7812E+00
0.6905E+03	0.1717E+01	0.3184E+02	0.1200E+01

DRILLED SHAFT INFORMATION

IGNORED TOP PORTION IGNORED BOTTOM PORTION AREA OF ONE PERCENT STEEL ELASTIC MODULUS, EC		2.500 0.000 5.000 0.000 7.069 0.360E+07	FT. DEG. FT. FT. SQ.IN. LB/SQ IN
VOLUME OF UNDERREAM	=		CU.YDS.
AREA OF ONE PERCENT STEEL ELASTIC MODULUS, EC		7.069 0.360E+07	SQ.IN. LB/SQ IN

PREDICTED RESULTS

QU LRFD QS LRFD QB	= TOTAL U = TOTAL S TO THE = TOTAL U TO THE	TE BASE R OF DRILL JLTIMATE SIDE FRIC ULTIMATE BASE BEAR ULTIMATE	ESISTANC ED SHAFT RESISTAN TION USI SIDE RE ING USIN BASE RE	E; (UPLIFT CE; NG LRFD SISTANCE G LRFD R SISTANCE	ESISTANCE	E FACTOR	
LENGTH (FEET)	VOLUME (CU.YDS)	QS (TONS)	QB (TONS)	QU (TONS) Page 5	LRFD QS (TONS)	LRFD QB (TONS)	LRFD QU (TONS)

			Abut 2 Day	university (Ca			
$\begin{array}{c} 6.0\\ 7.0\\ 8.0\\ 9.0\\ 10.0\\ 11.0\\ 12.0\\ 13.0\\ 14.0\\ 15.0\\ 16.0\\ 17.0\\ 18.0\\ 19.0\\ 20.0 \end{array}$	1.09 1.27 1.45 1.64 1.82 2.00 2.18 2.36 2.55 2.73 2.91 3.09 3.27 3.45 3.64	3.28 7.08 11.36 16.11 21.32 26.96 33.02 39.48 46.34 53.58 61.17 69.12 77.41 86.02 94.94	30.57 33.71 36.85 39.99 43.14 46.28 49.42 52.56 55.71 58.85 61.99 65.13 68.28 71.42 74.56	33.85 40.79 48.21 56.10 64.45 73.24 82.44 92.05 102.05 112.42 123.16 134.25 145.68 157.43 169.50	27.64 32.44 37.50 42.82 48.38 54.18 60.21 66.46	$15.28 \\ 16.85 \\ 18.43 \\ 20.00 \\ 21.57 \\ 23.14 \\ 24.71 \\ 26.28 \\ 27.85 \\ 29.42 \\ 31.00 \\ 32.57 \\ 34.14 \\ 35.71 \\ 37.28 \\ \end{cases}$	17.58 21.81 26.38 31.27 36.49 42.01 47.82 53.92 60.29 66.93 73.82 80.95 88.32 95.92 103.74
$\begin{array}{c} 21.0\\ 22.0\\ 23.0\\ 24.0\\ 25.0\\ 26.0\\ 27.0\\ 28.0\\ 29.0\\ 30.0\\ 31.0\\ 32.0\\ 31.0\\ 32.0\\ 34.0\\ 35.0\\ 34.0\\ 35.0\\ 36.0\\ 37.0\\ 38.0\\ 39.0\\ 40.0\\ 41.0 \end{array}$	3.82 4.00 4.18 4.55 4.73 4.91 5.09 5.27 5.64 5.64 6.36 6.55 6.73 6.73 7.09 7.27 7.45	104.16 113.68 123.47 133.54 143.86 154.42 165.23 176.26 187.51 198.96 210.62 222.46 234.48 246.67 259.03 271.53 284.18 296.97 309.88 322.92 336.06	76.85 78.13 78.56	$181.01 \\ 191.81 \\ 202.03 \\ 212.10 \\ 222.42 \\ 232.98 \\ 243.79 \\ 254.82 \\ 266.07 \\ 277.52 \\ 289.18 \\ 301.02 \\ 313.04 \\ 325.23 \\ 337.59 \\ 350.09 \\ 362.74 \\ 375.53 \\ 388.44 \\ 401.48 \\ 414.62 \\ $	72.92 79.58 86.43 93.48 100.70 108.10 115.66 123.38 131.25 139.27 147.43 155.72 164.14 172.67 181.32 190.07 198.93 207.88 216.92 226.04 235.24	38.42 39.07 39.28	111.34 118.64 125.71 132.76 139.98 147.38 154.94 162.66 170.53 178.55 186.71 195.00 203.42 211.95 220.60 229.35 238.21 247.16 256.20 265.32 274.52
42.0 43.0 44.0 45.0 46.0 47.0 48.0 49.0 50.0 51.0 52.0 53.0 54.0 55.0 55.0 55.0 57.0 58.0 59.0 60.0 61.0 62.0 63.0	7.64 7.82 8.00 8.18 8.36 8.55 8.73 8.91 9.09 9.27 9.46 9.64 9.82 10.00 10.18 10.36 10.55 10.73 10.91 11.09 11.27 11.46	349.30 362.64 376.07 389.57 403.15 416.79 430.48 444.23 458.01 471.83 485.67 499.54 513.41 527.29 541.17 555.04 568.89 582.72 596.52 610.29 624.01 637.68	78.56 7	427.86 441.20 454.63 468.13 481.71 495.35 509.04 522.79 536.57 550.39 564.23 578.10 591.97 605.85 619.73 633.60 647.45 661.28 675.08 681.71 687.10 693.63	244.51 253.85 263.25 272.70 282.21 291.75 301.34 310.96 320.61 330.28 339.97 349.68 359.39 369.11 378.82 388.53 398.23 407.91 417.57 427.20 436.81 446.38	39.28 3	$\begin{array}{c} 283.79\\ 293.13\\ 302.53\\ 311.98\\ 321.49\\ 331.03\\ 340.62\\ 350.24\\ 359.89\\ 369.56\\ 379.25\\ 388.96\\ 398.67\\ 408.38\\ 418.10\\ 427.81\\ 437.51\\ 447.19\\ 456.85\\ 462.91\\ 468.35\\ 474.35\\ \end{array}$
64.0 65.0 66.0 67.0 68.0	11.64 11.82 12.00 12.18 12.36	651.30 664.86 678.34 691.74 705.05	52.37 52.37 52.37 52.37 52.37 52.37	703.68 717.23 730.71 744.11 757.42 Page 6	455.91 465.40 474.84 484.22 493.53	26.19 26.19 26.19 26.19 26.19	482.10 491.59 501.02 510.40 519.72

Page 6

		A	Abut 3 Dow	nward_(St	tatic).sfo		
69.0	12.55	718.26	52.37	770.64	502.78	26.19	528.97
70.0	12.73	731.38	52.37	783.75	511.96	26.19	538.15
71.0	12.91	744.39	52.37	796.76	521.07	26.19	547.26
72.0	13.09	757.28	52.37	809.66	530.10	26.19	556.28
73.0	13.27	770.06	52.37	822.43	539.04	26.19	565.23
74.0	13.46	782.71	52.37	835.09	547.90	26.19	574.09
75.0	13.64	795.24	52.37	847.61	556.67	26.19	582.85
76.0	13.82	807.62	52.37	860.00	565.34	26.19	591.52
77.0	14.00	819.87	52.37	872.25	573.91	26.19	600.10
78.0	14.18	831.97	52.37	884.35	582.38	26.19	608.57
79.0	14.36	843.92	52.37	896.29	590.74	26.19	616.93
80.0	14.55	855.71	52.37	908.08	599.00	26.19	625.18
81.0	14.73	867.34	52.37	919.71	607.14	26.19	633.32
82.0	14.91	878.80	52.37	931.17	615.16	26.19	641.34
83.0	15.09	890.08	52.37	942.45	623.06	26.19	649.24
84.0	15.27	901.19	52.37	953.56	630.83	26.19	657.02

RESULT FROM TREND (AVERAGED) LINE

TOP LOAD	TOP MOVEMENT	TIP LOAD	TIP MOVEMENT
ton	IN.	ton	IN.
0.2567E+00	0.9605E-04	0.6110E-03	0.1000E-04
0.1284E+01	0.4803E-03	0.3055E-02	0.5000E-04
0.2567E+01	0.9605E-03	0.6110E-02	0.1000E-03
0.1298E+03	0.4859E-01	0.3055E+00	0.5000E-02
0.1895E+03	0.7227E-01	0.4583E+00	0.7500E-02
0.2433E+03	0.9491E-01	0.6110E+00	0.1000E-01
0.4655E+03	0.2054E+00	0.1528E+01	0.2500E-01
0.6411E+03	0.3191E+00	0.3055E+01	0.5000E-01
0.7264E+03	0.3912E+00	0.4583E+01	0.7500E-01
0.7748E+03	0.4438E+00	0.6110E+01	0.1000E+00
0.8707E+03	0.6539E+00	0.1510E+02	0.2500E+00
0.8836E+03	0.9143E+00	0.2675E+02	0.5000E+00
0.8865E+03	0.1042E+01	0.3014E+02	0.6250E+00
0.8894E+03	0.1169E+01	0.3352E+02	0.7500E+00
0.9064E+03	0.1934E+01	0.5316E+02	0.1500E+01

RESULT FROM UPPER-BOUND LINE

TOP LOAD	TOP MOVEMENT	TIP LOAD	TIP MOVEMENT
ton	IN.	ton	IN.
0.4514E+00	0.1507E-03	0.8729E-03	0.1000E-04
0.2257E+01	0.7534E-03	0.4364E-02	0.5000E-04
0.4514E+01	0.1507E-02	0.8729E-02	0.1000E-03
0.2213E+03	0.7574E-01	0.4364E+00	0.5000E-02
0.3093E+03	0.1103E+00	0.6547E+00	0.7500E-02
0.3807E+03	0.1415E+00	0.8729E+00	0.1000E-01
0.6297E+03	0.2763E+00	0.2182E+01	0.2500E-01
0.7883E+03	0.3934E+00	0.4364E+01	0.5000E-01
0.8498E+03	0.4575E+00	0.6547E+01	0.7500E-01
0.8764E+03	0.4998E+00	0.8729E+01	0.1000E+00
0.9141E+03	0.6764E+00	0.2112E+02	0.2500E+00
0.9288E+03	0.9381E+00	0.3588E+02	0.5000E+00
0.9308E+03	0.1065E+01	0.3784E+02	0.6250E+00
0.9328E+03	0.1191E+01	0.3980E+02	0.7500E+00
0.9495E+03	0.1954E+01	0.5656E+02	0.1500E+01

Abut 3 Downward_(Static).sfo RESULT FROM LOWER-BOUND LINE

TOP LOAD	TOP MOVEMENT	TIP LOAD	TIP MOVEMENT
ton	IN.	ton	IN.
0.1258E+00	0.5601E-04	0.3492E-03	0.1000E-04
0.6292E+00	0.2801E-03	0.1746E-02	0.5000E-04
0.1258E+01	0.5601E-03	0.3492E-02	0.1000E-03
0.6361E+02	0.2817E-01	0.1746E+00	0.5000E-02
0.9535E+02	0.4232E-01	0.2619E+00	0.7500E-02
0.1260E+03	0.5632E-01	0.3492E+00	0.1000E-01
0.2844E+03	0.1343E+00	0.8729E+00	0.2500E-01
0.4618E+03	0.2363E+00	0.1746E+01	0.5000E-01
0.5784E+03	0.3164E+00	0.2619E+01	0.7500E-01
0.6573E+03	0.3816E+00	0.3492E+01	0.1000E+00
0.8271E+03	0.6312E+00	0.9078E+01	0.2500E+00
0.8383E+03	0.8906E+00	0.1763E+02	0.5000E+00
0.8422E+03	0.1019E+01	0.2243E+02	0.6250E+00
0.8461E+03	0.1147E+01	0.2723E+02	0.7500E+00
0.8633E+03	0.1913E+01	0.4975E+02	0.1500E+01

DRILLED SHAFT INFORMATION

N

PREDICTED RESULTS

LRFD QB	= ULTIMA = WEIGHT = TOTAL = TOTAL TO THE = TOTAL TO THE	TE SIDE F TE BASE F OF DRILL ULTIMATE SIDE FRICE ULTIMATE BASE BEAF ULTIMATE CAPACITY	RESISTANC LED SHAFT RESISTAN CTION USI E SIDE RE RING USIN E BASE RE	E; (UPLIFT CE; NG LRFD SISTANCE G LRFD R SISTANCE	RESISTANC ; ESISTANCE	E FACTOR	
7.0 8.0 9.0 10.0 11.0	(CU.YDS) 1.57 1.83 2.09 2.36 2.62 2.88 3.14 3.40 3.67	19.33 25.58 32.35	38.85 42.62 46.39 50.16	42.79 51.11 60.02 69.50 79.51 90.05 101.10 112.63 124.63	(TONS) 2.76 5.94 9.54 13.53 17.90 22.64 27.74 33.17 38.93	(TONS) 19.43 21.31 23.20 25.08 26.97 28.85 30.74 32.62 34.51 36.39	22.18 27.26 32.74 38.61 44.87 51.50 58.47 65.79

$\begin{array}{c} 17.0\\ 18.0\\ 19.0\\ 20.0\\ 21.0\\ 22.0\\ 23.0\\ 25.0\\ 24.0\\ 25.0\\ 27.0\\ 28.0\\ 31.0\\ 33.0\\ 35.0\\ 37.0\\ 31.0\\ 33.0\\ 37.0\\ 33.0\\ 37.0\\ 39.0\\ 41.0\\ 43.0\\ 44.0\\ 44.0\\ 50.0\\ 51.0\\ 55.0\\ 56.0\\ 57.0\\ 59.0\\ 61.0\\ 66.0\\ 66.0\\ 66.0\\ 66.0\\ 66.0\\ 66.0\\ 66.0\\ 66.0\\ 66.0\\ 66.0\\ 66.0\\ 66.0\\ 66.0\\ 71.0\\ 72.0\\ 73.0\\ \end{array}$	$\begin{array}{c} 4.45\\ 4.71\\ 4.97\\ 5.24\\ 5.50\\ 6.02\\ 6.28\\ 6.55\\ 6.77\\ 7.33\\ 7.59\\ 7.86\\ 8.38\\ 8.90\\ 9.43\\ 9.95\\ 10.21\\ 10.74\\ 11.06\\ 11.25\\ 11.78\\ 12.67\\ 10.74\\ 11.06\\ 11.25\\ 11.78\\ 12.67\\ 10.74\\ 11.06\\ 11.25\\ 15.71\\ 15.71\\ 15.97\\ 16.23\\ 13.88\\ 14.14\\ 14.66\\ 14.92\\ 15.45\\ 15.71\\ 15.97\\ 16.23\\ 16.56\\ 17.02\\ 17.28\\ 17.54\\ 17.80\\ 18.33\\ 18.59\\ 18.85\\ 19.11\\ \end{array}$	82.95 92.89 103.22 113.93 125.00 136.42 146.24 172.63 185.31 198.27 211.51 225.01 238.76 252.74 266.95 281.38 296.01 310.83 325.84 341.02 356.36 371.86 371.86 403.27 419.16 435.17 455.275 516.58 533.07 549.61 566.20 582.81 566.20 582.67 775.83 748.82 765.226 797.65 893.26 908.74 924.07		163.28 176.99 191.09 205.57 220.41 235.60 251.12 266.97 282.33 297.06 311.06 324.64 338.13 351.88 365.87 380.08 394.50 409.13 423.96 438.97 454.15 469.49 454.15 469.49 500.62 516.40 532.29 548.30 564.41 580.62 596.91 613.27 629.71 646.20 662.74 679.32 679.32 679.32 679.32 679.32 679.32 679.32 679.32 679.32 629.71 646.20 662.74 679.32 679.32 679.32 679.32 729.22 745.88 779.17 795.80 820.96 828.33 834.52 844.07 853.25 873.25 895.50 921.47 937.33 968.68 984.16 999.49	$\begin{array}{c} 112.17\\ 120.84\\ 129.72\\ 138.79\\ 148.06\\ 157.51\\ 167.13\\ 176.92\\ 186.87\\ 196.96\\ 207.21\\ 217.58\\ 228.09\\ 238.71\\ 249.45\\ 260.30\\ 271.25\\ 282.29\\ 293.41\\ 304.62\\ 315.90\\ 327.24\\ 338.65\\ 350.10\\ 361.61\\ 373.15\\ 384.73\\ 396.34\\ 407.97\\ 419.61\\ 431.27\\ 442.93\\ 454.58\\ 466.23\\ 477.87\\ 489.49\\ 501.08\\ 512.64\\ 524.17\\ 535.66\\ 547.09\\ 558.48\\ 569.80\\ 581.06\\ 547.09\\ 558.48\\ 569.80\\ 581.06\\ 592.24\\ 603.34\\ 614.36\\ 625.28\\ 636.12\\ 646.85\\ \end{array}$	40.17 42.094 45.889 53.889 55.56.566 56.566.566 55.5766.566 55.5766.566 55.566 55.566.566	98. 107. 116. 125. 145. 155. 175. 175. 175. 185. 204. 223. 263. 274. 206. 3127. 3349. 362. 3395. 418. 4291. 464. 452. 554. 557. 5597
69.0 70.0 71.0 72.0	18.07 18.33 18.59 18.85	861.92 877.65 893.26 908.74	75.42 75.42 75.42 75.42 75.42	937.33 953.07 968.68 984.16	603.34 614.36 625.28 636.12	37.71 37.71 37.71 37.71 37.71	641. 652. 662. 673.

			Abut 3 Do	wnward_(S	tatic).sfo		
80.0	20.95	1026.85	75.42	1102.27	718.80	37.71	756.51
81.0	21.21	1040.81	75.42	1116.22	728.56	37.71	766.27
82.0	21.47	1054.56	75.42	1129.97	738.19	37.71	775.90
83.0	21.73	1068.10	75.42	1143.51	747.67	37.71	785.38

TOP LOAD	TOP MOVEMENT	TIP LOAD	TIP MOVEMENT
ton	IN.	ton	IN.
0.1937E+00	0.5850E-04	0.7332E-03	0.1000E-04
0.9685E+00	0.2925E-03	0.3666E-02	0.5000E-04
0.1937E+01	0.5850E-03	0.7332E-02	0.1000E-03
0.9800E+02	0.2944E-01	0.3666E+00	0.5000E-02
0.1471E+03	0.4424E-01	0.5499E+00	0.7500E-02
0.1946E+03	0.5893E-01	0.7332E+00	0.1000E-01
0.4300E+03	0.1398E+00	0.1833E+01	0.2500E-01
0.6543E+03	0.2373E+00	0.3666E+01	0.5000E-01
0.7830E+03	0.3079E+00	0.5499E+01	0.7500E-01
0.8586E+03	0.3605E+00	0.7332E+01	0.1000E+00
0.1023E+04	0.5755E+00	0.1818E+02	0.2500E+00
0.1051E+04	0.8399E+00	0.3423E+02	0.5000E+00
0.1055E+04	0.9672E+00	0.3934E+02	0.6250E+00
0.1063E+04	0.1247E+01	0.4827E+02	0.9000E+00
0.1088E+04	0.2161E+01	0.7655E+02	0.1800E+01

RESULT FROM UPPER-BOUND LINE

	TOR MOVEMENT		
TOP LOAD		TIP LOAD	TIP MOVEMENT
ton	IN.	ton	IN.
0.3179E+00	0.8495E-04	0.1047E-02	0.1000E-04
0.1589E+01	0.4248E-03	0.5237E-02	0.5000E-04
0.3179E+01	0.8495E-03	0.1047E-01	0.1000E-03
0.1617E+03	0.4298E-01	0.5237E+00	0.5000E-02
0.2391E+03	0.6433E-01	0.7856E+00	0.7500E-02
0.3111E+03	0.8505E-01	0.1047E+01	0.1000E-01
0.6181E+03	0.1904E+00	0.2619E+01	0.2500E-01
0.8524E+03	0.2997E+00	0.5237E+01	0.5000E-01
0.9626E+03	0.3695E+00	0.7856E+01	0.7500E-01
0.1014E+04	0.4162E+00	0.1047E+02	0.1000E+00
0.1084E+04		0.2560E+02	0.2500E+00
0.1106E+04	0.8600E+00	0.4735E+02	0.5000E+00
0.1111E+04		0.5213E+02	0.6250E+00
0.1116E+04	0.1265E+01	0.5732E+02	0.9000E+00
0.1140E+04	0.2179E+01	0.8145E+02	0.1800E+01

RESULT FROM LOWER-BOUND LINE

TOP LOAD	TOP MOVEMENT	TIP LOAD	TIP MOVEMENT
ton	IN.	ton	IN.
0.1027E+00	0.3754E-04	0.4190E-03	0.1000E-04
0.5133E+00	0.1877E-03	0.2095E-02	0.5000E-04
0.1027E+01	0.3754E-03	0.4190E-02	0.1000E-03
0.5160E+02	0.1881E-01	0.3142E+00	0.5000E-02
0.7759E+02	0.2825E-01	0.3142E+00	0.7500E-02
0.1036E+03	0.3771E-01	0.1047E+01	0.1000E-01
0.2493E+03	0.9311E-01	0.2095E+01	0.2500E-01
0.4345E+03	0.1727E+00	0.2095E+01	0.5000E-01
		Page 10	

	Abut 3	Downward_(Stati	c).sfo
0.5735E+03	0.2408E+00	0.3142E+01	0.7500E-01
0.6784E+03	0.2995E+00	0.4190E+01	0.1000E+00
0.9601E+03	0.5524E+00	0.1077E+02	0.2500E+00
0.9968E+03	0.8199E+00	0.2112E+02	0.5000E+00
0.9995E+03	0.9467E+00	0.2654E+02	0.6250E+00
0.1010E+04	0.1228E+01	0.3922E+02	0.9000E+00
0.1036E+04	0.2144E+01	0.7165E+02	0.1800E+01

Abut 3 Downward_(Extreme Event Case) _____ _____ ______ SHAFT for Windows, Version 2012.7.9 Serial Number : 297192525 VERTICALLY LOADED DRILLED SHAFT ANALYSIS (c) Copyright ENSOFT, Inc., 1987-2012 All Rights Reserved _____ Path to file locations : U:\PROJECT FILES\20151065.001A - Torrey Meadows Drive Bridge\Calculations\Foundations\Shaft\ Name of input data file : Abut 3 Downward_(Extreme Event Case).sfd Name of output file : Abut 3 Downward_(Extreme Event Case).sfo Name of plot output file : Abut 3 Downward_(Extreme Event Case).sfp Name of runtime file : Abut 3 Downward_(Extreme Event Case).sfr _____ Time and Date of Analysis _____ Date: November 05, 2014 Time: 09:58:43 Torrey Meadows Dr. OC - Abut 3 (Extreme Event) PROPOSED DEPTH = 90.0 FT _____ NUMBER OF LAYERS = 2 _____ 110.0 FT. WATER TABLE DEPTH = _____ SOIL INFORMATION _____ LAYER NO 1----SAND AT THE TOP = 0.120E+01SKIN FRICTION COEFFICIENT- BETA = 0.000E+00UNDRAINED SHEAR STRENGTH, LB/SQ FT INTERNAL FRICTION ANGLE, DEG. = 0.360E+02BLOWS PER FOOT FROM STANDARD PENETRATION TEST = 0.350E+02SOIL UNIT WEIGHT, LB/CU FT = 0.130E+03MAXIMUM LOAD TRANSFER FOR SOIL, LB/SQ FT = 0.100E+11= 0.000E+00DEPTH, FT AT THE BOTTOM = 0.412E+00SKIN FRICTION COEFFICIENT- BETA Page 1

Abut 3 Downward_(Extreme Event UNDRAINED SHEAR STRENGTH, LB/SQ FT INTERNAL FRICTION ANGLE, DEG. BLOWS PER FOOT FROM STANDARD PENETRATION TEST SOIL UNIT WEIGHT, LB/CU FT MAXIMUM LOAD TRANSFER FOR SOIL, LB/SQ FT DEPTH, FT	<u> </u>
LRFD RESISTANCE FACTOR (SIDE FRICTION) LRFD RESISTANCE FACTOR (TIP RESISTANCE)	= 0.100E+01 = 0.100E+01
LAYER NO 2SAND	
AT THE TOP	
SKIN FRICTION COEFFICIENT- BETA UNDRAINED SHEAR STRENGTH, LB/SQ FT INTERNAL FRICTION ANGLE, DEG. BLOWS PER FOOT FROM STANDARD PENETRATION TEST SOIL UNIT WEIGHT, LB/CU FT MAXIMUM LOAD TRANSFER FOR SOIL, LB/SQ FT DEPTH, FT	= 0.412E+00 = 0.000E+00 = 0.340E+02 = 0.100E+03 = 0.125E+03 = 0.100E+11 = 0.650E+02
AT THE BOTTOM	
SKIN FRICTION COEFFICIENT- BETA UNDRAINED SHEAR STRENGTH, LB/SQ FT INTERNAL FRICTION ANGLE, DEG. BLOWS PER FOOT FROM STANDARD PENETRATION TEST SOIL UNIT WEIGHT, LB/CU FT MAXIMUM LOAD TRANSFER FOR SOIL, LB/SQ FT DEPTH, FT	= 0.250E+00 = 0.000E+00 = 0.340E+02 = 0.100E+03 = 0.125E+03 = 0.100E+11 = 0.900E+02
LRFD RESISTANCE FACTOR (SIDE FRICTION) LRFD RESISTANCE FACTOR (TIP RESISTANCE)	= 0.100E+01 = 0.100E+01
DRILLED SHAFT INFORMATION	
DIAMETER OF STEM = 2.000 FT.	

DIAMETER OF STEM	=	2.000	FT.
DIAMETER OF BASE	=	2.000	FT.
END OF STEM TO BASE	=	0.000	FT.
ANGLE OF BELL	=	0.000	DEG.
IGNORED TOP PORTION			
		0.000	
AREA OF ONE PERCENT STEEL			
ELASTIC MODULUS, EC	=	0.360E+07	LB/SQ IN
VOLUME OF UNDERREAM	=	0.000	CU.YDS.

PREDICTED RESULTS

QS	= ULTIMATE SIDE RESISTANCE;
QB	= ULTIMATE BASE RESISTANCE;
	Page 2

QU = TOTA LRFD QS = TOTA TO T LRFD QB = TOTA	HT OF DRILL L ULTIMATE L SIDE FRIC HE ULTIMATE L BASE BEAF HE ULTIMATE	ED SHAFT RESISTAN TION USI SIDE RE NG USIN BASE RE	(UPLIFT CE; NG LRFD SISTANCE G LRFD R SISTANCE	RESISTANC ; ESISTANCE	ONLY); E FACTOR FACTOR	
LENGTHVOLUME(FEET)(CU.YD6.00.707.00.818.00.939.01.0510.01.1611.01.2812.01.4013.01.5114.01.6315.01.7516.01.8617.01.9818.02.0919.02.2120.02.3321.02.4422.02.5623.02.6824.02.7925.02.9126.03.0327.03.1428.03.2629.03.3730.03.4931.03.6132.03.7233.03.8434.03.9635.04.0736.04.1937.04.3138.04.4239.04.5440.04.6541.04.7742.04.8943.05.0044.05.1245.05.2446.05.3547.05.4748.05.5949.05.7050.05.8251.05.9352.06.0553.06.1754.06.2855.06.4056.06.2557.06.6358.06.75	S) (TONS) 2.63 5.66 9.09 12.89 17.05 21.57 26.41 31.59 37.07 42.86 48.94 55.30 61.92 68.81 75.95 83.33 90.94 98.78 106.83 115.09 123.54 132.18 141.01 159.17 168.49 177.97 187.58 197.34 207.22 217.23 227.35 237.58	28.01 30.53 33.04	25.61 31.16 37.10 43.41 50.09 57.12 64.48 72.17 80.17 88.47 97.06 105.04 112.20 119.09 126.23 133.61 141.22 149.06 157.11 165.36 173.82 182.46 191.29 200.28 209.45 218.77 228.25 237.86 247.62 257.50 267.51 277.63 287.85	9.09 12.89 17.05 21.57 26.41 31.59 37.07 42.86 48.94 55.30 61.92 68.81 75.95 83.33 90.94 98.78 106.83 115.09 123.54 132.18 141.01 159.17 168.49 177.97 187.58 197.34 207.22 217.23 227.35 237.58	38.07 40.58 43.10 45.61 48.12 49.74 50.28 50.58 50.58 50.59 5	37.10 43.41 50.09 57.12 64.48 72.17 80.17 88.47 97.06 105.04 112.20 119.09 126.23 133.61 141.22 149.06 157.11 165.36 173.82 182.46 191.29 200.28 209.45 218.77 228.25 237.86 247.62 257.50 267.51 277.63 287.85

59.0 60.0 61.0 62.0 63.0 64.0 65.0 66.0 67.0 68.0 69.0 70.0 71.0 72.0	6.87 6.98 7.10 7.21 7.33 7.45 7.56 7.68 7.68 7.80 7.91 8.03 8.15 8.26 8.38	Abut 3 466.18 477.22 488.23 499.21 510.15 521.04 531.89 542.67 553.39 564.04 574.61 585.10 595.51 605.83	B Downwar 50.28 50.28 50.28 44.29 37.11 33.52 33.52 33.52 33.52 33.52 33.52 33.52 33.52 33.52 33.52 33.52 33.52 33.52 33.52 33.52 33.52 33.52 33.52	d_(Extrem 516.46 527.50 538.51 543.50 547.26 554.56 565.40 576.19 586.91 597.56 608.13 618.62 629.03 639.34	me Event 466.18 477.22 488.23 499.21 510.15 521.04 531.89 542.67 553.39 564.04 574.61 585.10 595.51 605.83	Case) 50.28 50.28 50.28 44.29 37.11 33.52 33.52 33.52 33.52 33.52 33.52 33.52 33.52 33.52 33.52 33.52 33.52	516.46 527.50 538.51 543.50 547.26 554.56 565.40 576.19 586.91 597.56 608.13 618.62 629.03 639.34
74.0 75.0 76.0 77.0 78.0 79.0 80.0 81.0 82.0 83.0 84.0 85.0	8.61 8.73 8.84 9.08 9.19 9.31 9.43 9.54 9.66 9.78 9.89	626.17 636.19 646.10 655.90 665.58 675.14 684.57 693.87 703.04 712.06 720.95 729.68	33.52 33.52 33.52 33.52 33.52 33.52 33.52 33.52 33.52 33.52 33.52 33.52 33.52 33.52	659.69 669.71 679.62 689.42 699.10 708.66 718.09 727.39 736.56 745.58 754.47 763.20	626.17 636.19 646.10 655.90 665.58 675.14 684.57 693.87 703.04 712.06 720.95 729.68	33.52 33.52 33.52 33.52 33.52 33.52 33.52 33.52 33.52 33.52 33.52 33.52 33.52 33.52	659.69 669.71 679.62 689.42 699.10 708.66 718.09 727.39 736.56 745.58 754.47 763.20

TOP LOAD	TOP MOVEMENT	TIP LOAD	TIP MOVEMENT
ton	IN.	ton	IN.
0.4093E+00	0.2016E-03	0.4888E-03	0.1000E-04
0.2046E+01	0.1008E-02	0.2444E-02	0.5000E-04
0.4093E+01	0.2016E-02	0.4888E-02	0.1000E-03
0.1868E+03	0.9835E-01	0.2444E+00	0.5000E-02
0.2509E+03	0.1394E+00	0.3666E+00	0.7500E-02
0.3019E+03	0.1752E+00	0.4888E+00	0.1000E-01
0.4749E+03	0.3214E+00	0.1222E+01	0.2500E-01
0.5876E+03	0.4473E+00	0.2444E+01	0.5000E-01
0.6357E+03	0.5184E+00	0.3666E+01	0.7500E-01
0.6635E+03	0.5709E+00	0.4888E+01	0.1000E+00
0.7070E+03	0.7680E+00	0.1196E+02	0.2500E+00
0.7128E+03	0.1026E+01	0.1929E+02	0.5000E+00
0.7151E+03	0.1154E+01	0.2208E+02	0.6250E+00
0.7182E+03	0.1315E+01	0.2575E+02	0.7812E+00
0.7250E+03	0.1743E+01	0.3402E+02	0.1200E+01

RESULT FROM UPPER-BOUND LINE

TOP	LOAD	TOP MOVEMENT	TIP LOAD	TIP MOVEMENT
t	on	IN.	ton	IN.
0.800	8e+00	0.3539E-03	0.6983E-03	0.1000E-04
0.400	4E+01	0.1770E-02	0.3492E-02	0.5000E-04
0.800	8E+01	0.3539E-02	0.6983E-02	0.1000E-03
0.299	8E+03	0.1566E+00	0.3492E+00	0.5000E-02
0.373	7E+03	0.2101E+00	0.5237E+00	0.7500E-02
0.427	6E+03	0.2536E+00	0.6983E+00	0.1000E-01
0.590	4E+03	0.4121E+00	0.1746E+01	0.2500E-01
			Page 4	
			-	

	Abut 3 Downw	vard_(Extreme Ever	t Case)
0.6811E+03	0.5289E+00	0.3492E+01	0.5000E-01
0.7101E+03	0.5848E+00	0.5237E+01	0.7500E-01
0.7227E+03	0.6234E+00	0.6983E+01	0.1000E+00
0.7399E+03	0.7940E+00	0.1662E+02	0.2500E+00
0.7475E+03	0.1054E+01	0.2422E+02	0.5000E+00
0.7493E+03	0.1181E+01	0.2603E+02	0.6250E+00
0.7525E+03	0.1341E+01	0.2918E+02	0.7812E+00
0.7595E+03	0.1769E+01	0.3620E+02	0.1200E+01

RESULT FROM LOWER-BOUND LINE

TOP LOAD	TOP MOVEMENT	TIP LOAD	TIP MOVEMENT
ton	IN.	ton	IN.
0.1771E+00	0.1025E-03	0.2793E-03	0.1000E-04
0.8856E+00	0.5123E-03	0.1397E-02	0.5000E-04
0.1771E+01	0.1025E-02	0.2793E-02	0.1000E-03
0.8879E+02	0.5169E-01	0.1397E+00	0.5000E-02
0.1292E+03	0.7663E-01	0.2095E+00	0.7500E-02
0.1661E+03	0.1004E+00	0.2793E+00	0.1000E-01
0.3280E+03	0.2186E+00	0.6983E+00	0.2500E-01
0.4715E+03	0.3516E+00	0.1397E+01	0.5000E-01
0.5490E+03	0.4429E+00	0.2095E+01	0.7500E-01
0.5984E+03	0.5136E+00	0.2793E+01	0.1000E+00
0.6742E+03	0.7419E+00	0.7290E+01	0.2500E+00
0.6781E+03	0.9984E+00	0.1436E+02	0.5000E+00
0.6809E+03	0.1127E+01	0.1813E+02	0.6250E+00
0.6840E+03	0.1288E+01	0.2232E+02	0.7812E+00
0.6905E+03	0.1717E+01	0.3184E+02	0.1200E+01

DRILLED SHAFT INFORMATION

PREDICTED RESULTS

QU LRFD QS LRFD QB	= TOTAL U = TOTAL S TO THE = TOTAL U TO THE	TE BASE R OF DRILL JLTIMATE SIDE FRIC ULTIMATE BASE BEAR ULTIMATE	ESISTANC ED SHAFT RESISTAN TION USI SIDE RE ING USIN BASE RE	E; (UPLIFT CE; NG LRFD SISTANCE G LRFD R SISTANCE	ESISTANCE	E FACTOR	
LENGTH (FEET)	VOLUME (CU.YDS)	QS (TONS)	QB (TONS)	QU (TONS) Page 5	LRFD QS (TONS)	LRFD QB (TONS)	LRFD QU (TONS)

$\begin{array}{c} 7.0\\ 8.0\\ 9.0\\ 10.0\\ 11.0\\ 12.0\\ 13.0\\ 14.0\\ 15.0\\ 16.0\\ 17.0\\ 22.0\\ 23.0\\ 24.0\\ 25.0\\ 26.0\\ 27.0\\ 28.0\\ 29.0\\ 26.0\\ 27.0\\ 28.0\\ 29.0\\ 27.0\\ 28.0\\ 29.0\\ 27.0\\ 28.0\\ 29.0\\ 27.0\\ 28.0\\ 29.0\\ 27.0\\ 28.0\\ 29.0\\ 27.0\\ 28.0\\ 29.0\\ 27.0\\ 28.0\\ 29.0\\ 27.0\\ 28.0\\ 29.0\\ 27.0\\ 28.0\\ 29$
1.275422222222222222222222222222222222222
Abut 3 3.28 7.08 11.36 16.11 21.32 26.96 33.02 39.48 453.58 61.17 69.12 77.41 86.02 94.94 103.68 123.47 133.54 143.68 123.47 133.54 154.42 165.23 176.26 187.51 198.96 210.62 234.48 259.03 322.92 336.06 349.30 362.64 376.07 389.57 403.15 416.79 430.48 444.23 458.01 471.83 459.54 153.49 541.17 555.04 557.54 557.54 557.54 558.89 552.72 561.29 551.27 555.04 552.72 561.29 551.27 555.04 552.72 561.29 551.27 555.04 552.72 561.29 561.29 561.29 561.20 561
Downwart 30.57 33.71 36.85 39.99 43.14 46.285 55.71 58.85 65.13 68.28 74.56 78
d_(Extreme 33.85 40.79 48.21 56.10 64.45 73.24 82.05 102.05 112.42 123.16 134.25 145.68 157.43 169.50 181.01 191.81 202.03 212.10 222.42 232.98 243.79 254.82 266.07 277.52 289.18 301.02 313.04 325.23 337.59 362.74 375.53 388.44 401.48 414.62 427.86 441.20 454.63 468.13 481.71 495.35 509.04 522.79 536.57 550.39 564.23 578.10 591.85 619.73 633.60 647.45 661.28 675.08 611.23 730.71 744.11 757.42 Page 6
3.28 7.08 11.36 16.11 21.32 26.96 33.02 39.48 46.34 53.58 61.17 69.12
$\begin{array}{c} \text{Case} \\ 30.57 \\ 33.71 \\ 36.85 \\ 39.99 \\ 43.14 \\ 46.28 \\ 49.42 \\ 52.56 \\ 55.71 \\ 58.85 \\ 61.99 \\ 65.13 \\ 68.28 \\ 71.42 \\ 74.56 \\ 78.56$
33.85 40.79 48.21 56.10 64.45 73.24 92.05 112.42 123.16 134.25 145.68 157.43 169.50 191.81 202.02 222.42 232.98 254.827 277.5289.182 313.024 325.59 362.74 325.59 362.74 441.20 454.63 481.71 509.04 522.79 550.39 564.23 575.57 564.23 595.64 237.65 595.64 237.65 595.64 237.65 595.64 237.65 595.64 237.65 595.64 237.60 661.28 661.28 675.08 675.08 675.63 577.44 107.27 77.42

		Abut	3 Downwar	d_(Extre	ne Event (Case)	
69.0	12.55	718.26	52.37	770.64	718.26	52.37	770.64
70.0	12.73	731.38	52.37	783.75	731.38	52.37	783.75
71.0	12.91	744.39	52.37	796.76	744.39	52.37	796.76
72.0	13.09	757.28	52.37	809.66	757.28	52.37	809.66
73.0	13.27	770.06	52.37	822.43	770.06	52.37	822.43
74.0	13.46	782.71	52.37	835.09	782.71	52.37	835.09
75.0	13.64	795.24	52.37	847.61	795.24	52.37	847.61
76.0	13.82	807.62	52.37	860.00	807.62	52.37	860.00
77.0	14.00	819.87	52.37	872.25	819.87	52.37	872.25
78.0	14.18	831.97	52.37	884.35	831.97	52.37	884.35
79.0	14.36	843.92	52.37	896.29	843.92	52.37	896.29
80.0	14.55	855.71	52.37	908.08	855.71	52.37	908.08
81.0	14.73	867.34	52.37	919.71	867.34	52.37	919.71
82.0	14.91	878.80	52.37	931.17	878.80	52.37	931.17
83.0	15.09	890.08	52.37	942.45	890.08	52.37	942.45
84.0	15.27	901.19	52.37	953.56	901.19	52.37	953.56

TOP LOA	D TOP MO	VEMENT	TIP LOAD	TIP	MOVEMENT
ton	I	Ν.	ton		IN.
0.2567E+0	0.960	5e-04	0.6110E-03	0.10	00E-04
0.1284E+0	0.480	3e-03	0.3055E-02	0.50	00E-04
0.2567E+0		5E-03	0.6110E-02	0.10	00E-03
0.1298E+0	0.485	9E-01	0.3055E+00	0.50	00E-02
0.1895E+C	0.722	7E-01	0.4583E+00	0.75	00E-02
0.2433E+0	0.949	1E-01	0.6110E+00	0.10	00E-01
0.4655E+C	0.205	4E+00	0.1528E+01	0.25	00E-01
0.6411E+C	0.319	1E+00	0.3055E+01	0.50	00E-01
0.7264E+0	0.391	2E+00	0.4583E+01	0.75	00E-01
0.7748E+0	0.443	8E+00	0.6110E+01	0.10	00E+00
0.8707E+0	0.653	9E+00	0.1510E+02	0.25	00E+00
0.8836E+0	0.914	3E+00	0.2675E+02	0.50	00E+00
0.8865E+C	0.104	2E+01	0.3014E+02	0.62	50E+00
0.8894E+0	0.116	9E+01	0.3352E+02	0.75	00E+00
0.9064E+0	0.193	4E+01	0.5316E+02	0.15	00E+01

RESULT FROM UPPER-BOUND LINE

TOP L	OAD	TOP MOVEMENT	TIP LOAD	TIP	MOVEMENT
tor	า	IN.	ton		IN.
0.4514E	E+00	0.1507E-03	0.8729E-03	0.10	00e-04
0.2257E	E+01	0.7534E-03	0.4364E-02	0.50	00e-04
0.4514E	E+01	0.1507E-02	0.8729E-02	0.10	00e-03
0.2213E	E+03	0.7574E-01	0.4364E+00		00e-02
0.3093E	E+03	0.1103E+00	0.6547E+00	0.75	00e-02
0.3807E	E+03	0.1415E+00	0.8729E+00	0.10	00E-01
0.6297E	E+03	0.2763E+00	0.2182E+01	0.25	00E-01
0.7883E	E+03	0.3934E+00	0.4364E+01	0.50	00E-01
0.8498E	E+03	0.4575E+00	0.6547E+01	0.75	00E-01
0.8764E	E+03	0.4998E+00	0.8729E+01	0.10	00e+00
0.9141E	E+03	0.6764E+00	0.2112E+02	0.25	00e+00
0.9288E	E+03	0.9381E+00	0.3588E+02	0.50	00e+00
0.9308E	E+03	0.1065E+01	0.3784E+02	0.62	50e+00
0.9328E	E+03	0.1191E+01	0.3980E+02	0.75	00e+00
0.9495E	E+03	0.1954E+01	0.5656E+02	0.15	00E+01

Abut 3 Downward_(Extreme Event Case) RESULT FROM LOWER-BOUND LINE

TOP LOAD	TOP MOVEMENT	TIP LOAD	TIP MOVEMENT
ton	IN.	ton	IN.
0.1258E+00	0.5601E-04	0.3492E-03	0.1000E-04
0.6292E+00	0.2801E-03	0.1746E-02	0.5000E-04
0.1258E+01	0.5601E-03	0.3492E-02	0.1000E-03
0.6361E+02	0.2817E-01	0.1746E+00	0.5000E-02
0.9535E+02	0.4232E-01	0.2619E+00	0.7500E-02
0.1260E+03	0.5632E-01	0.3492E+00	0.1000E-01
0.2844E+03	0.1343E+00	0.8729E+00	0.2500E-01
0.4618E+03	0.2363E+00	0.1746E+01	0.5000E-01
0.5784E+03	0.3164E+00	0.2619E+01	0.7500E-01
0.6573E+03	0.3816E+00	0.3492E+01	0.1000E+00
0.8271E+03	0.6312E+00	0.9078E+01	0.2500E+00
0.8383E+03	0.8906E+00	0.1763E+02	0.5000E+00
0.8422E+03	0.1019E+01	0.2243E+02	0.6250E+00
0.8461E+03	0.1147E+01	0.2723E+02	0.7500E+00
0.8633E+03	0.1913E+01	0.4975E+02	0.1500E+01

DRILLED SHAFT INFORMATION

DIAMETER OF STEM	=	3.000	FT.
DIAMETER OF BASE	=	3.000	FT.
END OF STEM TO BASE	=	0.000	FT.
ANGLE OF BELL			DEG.
IGNORED TOP PORTION	=	5.000	FT.
IGNORED BOTTOM PORTION	=	0.000	FT.
AREA OF ONE PERCENT STEEL	=	10.180	SQ.IN.
ELASTIC MODULUS, EC	=	0.360E+07	LB/SQ IN
VOLUME OF UNDERREAM	=	0.000	CU.YDS.

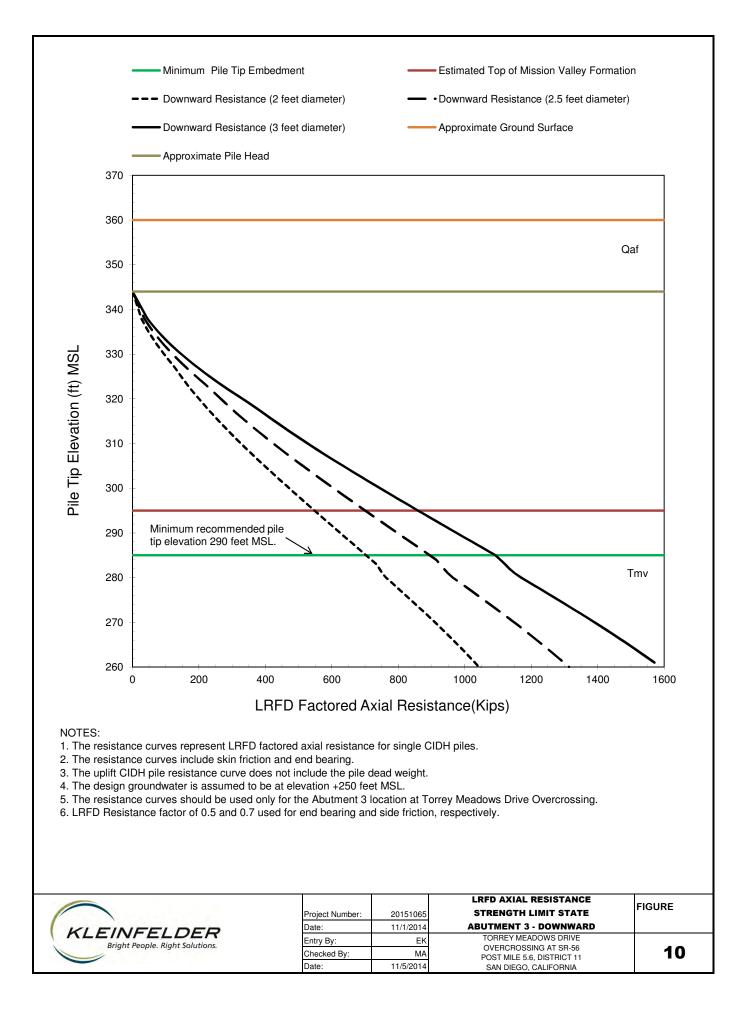
PREDICTED RESULTS

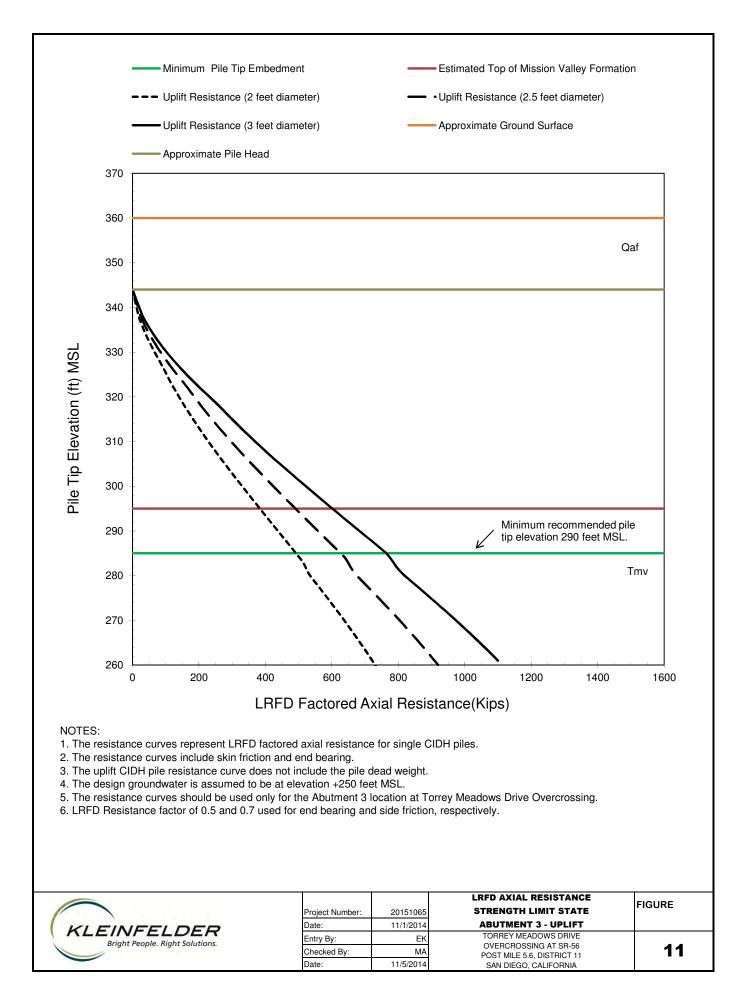
LRFD QB	= ULTIMA = WEIGHT = TOTAL = TOTAL TO THE = TOTAL TO THE	TE SIDE F TE BASE F OF DRILL ULTIMATE SIDE FRICE ULTIMATE BASE BEAF ULTIMATE CAPACITY	RESISTANC ED SHAFT RESISTAN TION USI SIDE RE RING USIN BASE RE	E; (UPLIFT CE; NG LRFD SISTANCE G LRFD R SISTANCE	RESISTANC ; ESISTANCE	E FACTOR	
7.0 8.0 9.0	1.57 1.83 2.09 2.36 2.62 2.88 3.14 3.40 3.67	8.49	38.85 42.62 46.39 50.16	42.79	3.94 8.49 13.63 19.33 25.58 32.35 39.62 47.38 55.61	(TONS) 38.85 42.62 46.39 50.16 53.93 57.71 61.48 65.25 69.02 72.79	42.79 51.11 60.02 69.50 79.51 90.05 101.10 112.63

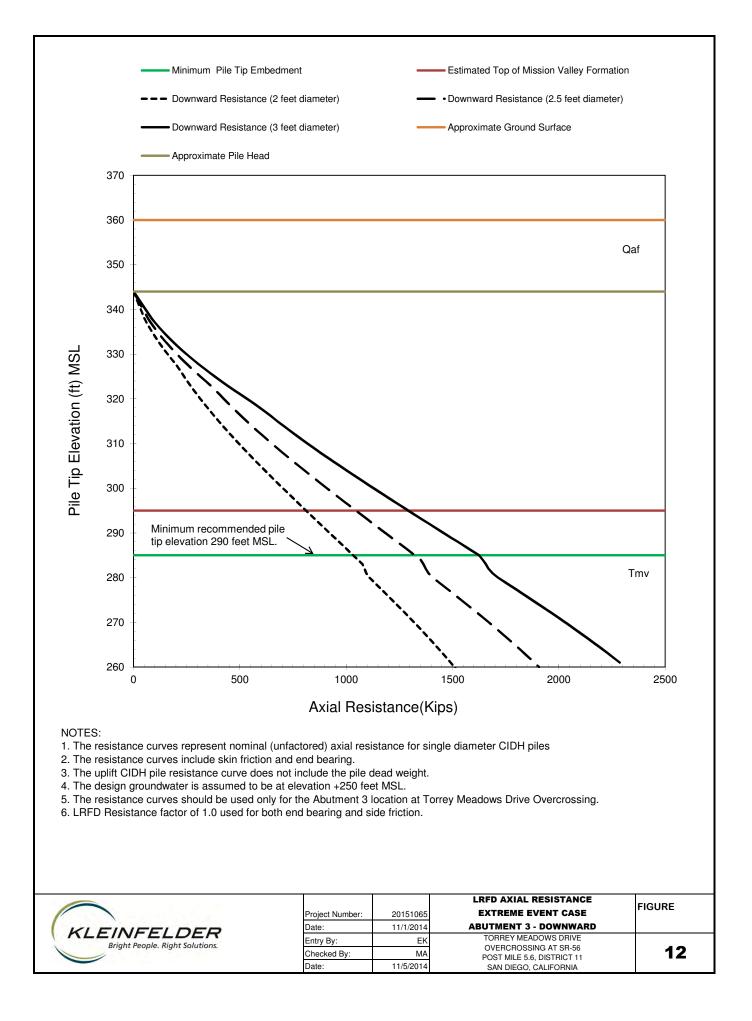
17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 34.0 35.0 34.0 35.0 33.0 34.0 35.0 37.0 38.0 39.0 39.0	4.45 4.71 4.97 5.24 5.50 6.02 6.28 6.55 6.81 7.07 7.33 7.59 7.86 8.12 8.38 8.64 8.90 9.16 9.43 9.95 10.21	Abut 82.95 92.89 103.22 113.93 125.00 136.42 148.17 160.24 172.63 185.31 198.27 211.51 225.01 238.76 252.74 266.95 281.38 296.01 310.83 325.84 341.02 356.36 371.86	3 Downwa 80.33 84.10 87.87 91.64 95.41 99.19 102.96 106.73 109.70 111.75 112.78 113.13 113.13 113.13 113.13 113.13 113.13 113.13 113.13 113.13 113.13 113.13 113.13 113.13	rd_(Extre 163.28 176.99 191.09 205.57 220.41 235.60 251.12 266.97 282.33 297.06 311.06 324.64 338.13 351.88 365.87 380.08 394.50 409.13 423.96 438.97 454.15 469.49 484.99	me Event 82.95 92.89 103.22 113.93 125.00 136.42 148.17 160.24 172.63 185.31 198.27 211.51 225.01 238.76 252.74 266.95 281.38 296.01 310.83 325.84 341.02 356.36 371.86	Case) 80.33 84.10 87.87 91.64 95.41 99.19 102.96 106.73 109.70 111.75 112.78 113.13 113.1	163.2 176.9 191.0 205.5 220.4 235.6 251.1 266.9 282.3 297.0 311.0 324.6 3381.8 365.8 380.0 394.5 409.1 423.9 438.9 454.1 469.4 484.9
$\begin{array}{c} 49.0\\ 50.0\\ 51.0\\ 52.0\\ 53.0\\ 54.0\\ 55.0\\ 56.0\\ 57.0\\ 58.0\\ 59.0\\ 60.0\\ 61.0\\ 62.0\\ 63.0\\ 64.0\\ 63.0\\ 64.0\\ 65.0\\ 66.0\\ 67.0\\ 68.0\\ 69.0\\ 71.0\\ 72.0\\ 71.0\\ 73.0\\ 74.0\\ 75.0\\ 76.0\\ 77.0\\ 78.0\\ 79.0\end{array}$	12.83 13.09 13.35 13.62 13.88 14.14 14.40 14.66 14.92 15.19 15.45 15.71 15.97 16.23 16.50 16.76 17.02 17.28 17.54 17.80 18.33 18.59 18.33 19.38 19.38 19.64 19.90 20.16 20.42 20.68	533.07 549.61 566.20 582.81 599.44 616.10 632.75 649.41 666.05 682.67 699.27 715.83 732.35 748.81 765.22 781.56 797.83 814.01 830.09 846.06 861.92 877.65 893.26 908.74 924.07 939.26 908.371 012.71	$\begin{array}{c} 113.13\\ 113.13\\ 113.13\\ 113.13\\ 113.13\\ 113.13\\ 113.13\\ 113.13\\ 113.13\\ 113.13\\ 113.13\\ 113.13\\ 105.13\\ 95.99\\ 85.70\\ 78.85\\ 75.42\\ 75.$	646.20 662.74 679.32 695.94 712.57 729.22 745.88 762.53 779.17 795.80 812.39 820.96 828.33 834.52 844.07 856.98 873.25 889.42 905.50 921.47 937.33 953.07 968.68 984.16 999.49 1014.67 1029.70 1044.57 1059.26 1073.78 1088.12 Page 9	533.07 549.61 566.20 582.81 599.44 616.10 632.75 649.41 666.05 682.67 699.27 715.83 732.35 748.81 765.22 781.56 797.83 814.01 830.09 846.06 861.92 877.65 893.26 908.74 924.07 939.26 908.74 924.07 939.26 908.37 1012.71	$113.13 \\113.$	646.2 662.7 679.3 712.5 729.2 745.8 762.5 779.1 795.8 812.3 820.3 828.3 824.0 828.3 834.5 834.5 834.5 834.5 921.4 937.3 953.0 968.6 984.1 999.4 1014.6 1029.7 1044.5 1073.7 1088.1

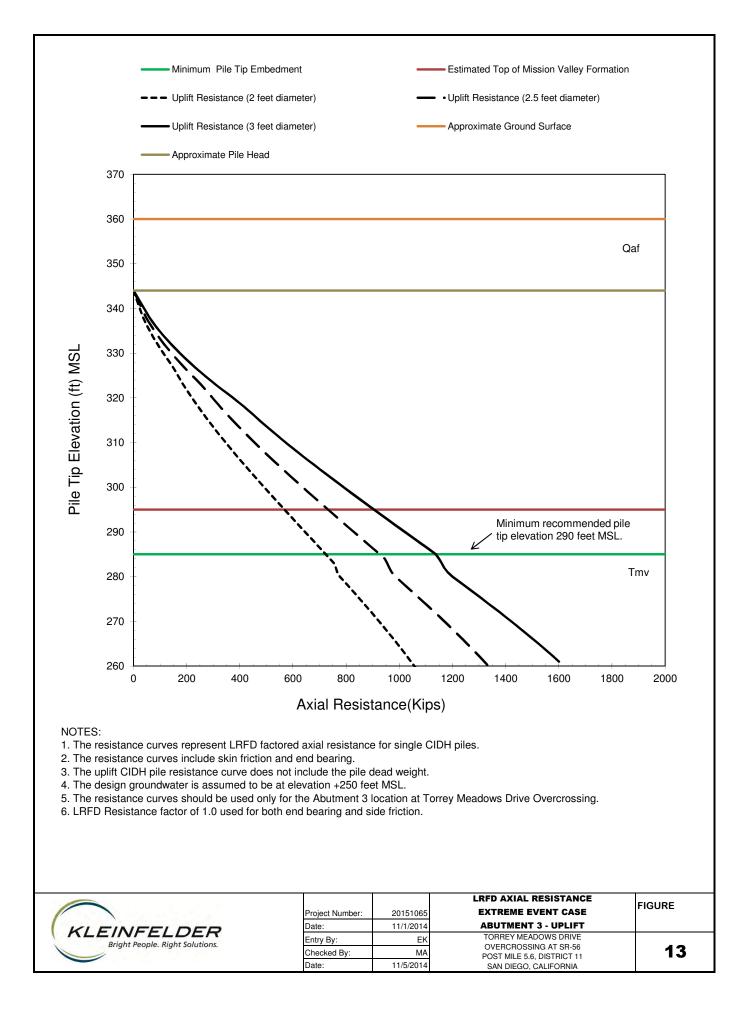
		Abut	3 Downwa	rd_(Extre	me Event	Case)	
80.0	20.95	1026.85	75.42	1102.27	1026.85	75.42	1102.27
81.0	21.21	1040.81	75.42	1116.22	1040.81	75.42	1116.22
82.0	21.47	1054.56	75.42	1129.97	1054.56	75.42	1129.97
83.0	21.73	1068.10	75.42	1143.51	1068.10	75.42	1143.51

TOP LOA	AD TOP	MOVEMENT	Т	IP LOAD	TIP	MOVEMENT
ton		IN.		ton		IN.
0.1937E+0	0.5	5850e-04	0.7	332E-03	0.10	00e-04
0.9685E+0	0.2	2925e-03	0.3	666E-02	0.50	00e-04
0.1937E+0)1 0.5	5850E-03	0.7	332E-02	0.10	00e-03
0.9800E+0	0.2	2944E-01	0.3	666E+00	0.50	00e-02
0.1471E+0)3 0.4	424E-01	0.5	499E+00	0.75	00e-02
0.1946E+0)3 0.5	5893E-01	0.7	332E+00	0.10	00E-01
0.4300E+0)3 0.1	.398e+00	0.1	833E+01	0.25	00E-01
0.6543E+0)3 0.2	2373E+00	0.3	666E+01	0.50	00E-01
0.7830E+0)3 0.3	8079e+00	0.5	499E+01	0.75	00E-01
0.8586E+0	0.3	8605e+00	0.7	332E+01	0.10	00e+00
0.1023E+0)4 0.5	5755E+00	0.1	818E+02	0.25	00e+00
0.1051E+0)4 0.8	3399e+00		423E+02	0.50	00e+00
0.1055E+0	0.9)672E+00	0.3	934E+02	0.62	50E+00
0.1063E+0)4 0.1	247E+01	0.4	827E+02	0.90	00e+00
0.1088E+0	0.2	2161E+01	0.7	655E+02	0.18	00E+01


RESULT FROM UPPER-BOUND LINE


	TOD MOVEMENT		
TOP LOAD	TOP MOVEMENT	TIP LOAD	TIP MOVEMENT
ton	IN.	ton	IN.
0.3179E+00	0.8495E-04	0.1047E-02	0.1000E-04
0.1589E+01	0.4248E-03	0.5237E-02	0.5000E-04
0.3179E+01	0.8495E-03	0.1047E-01	0.1000E-03
0.1617E+03	0.4298E-01	0.5237E+00	0.5000E-02
0.2391E+03	0.6433E-01	0.7856E+00	0.7500E-02
0.3111E+03	0.8505E-01	0.1047E+01	0.1000E-01
0.6181E+03	0.1904E+00	0.2619E+01	0.2500E-01
0.8524E+03	0.2997E+00	0.5237E+01	0.5000E-01
0.9626E+03	0.3695E+00	0.7856E+01	0.7500E-01
0.1014E+04	0.4162E+00	0.1047E+02	0.1000E+00
0.1084E+04	0.5982E+00	0.2560E+02	0.2500E+00
0.1106E+04	0.8600E+00	0.4735E+02	0.5000E+00
0.1111E+04	0.9876E+00	0.5213E+02	0.6250E+00
0.1116E+04	0.1265E+01	0.5732E+02	0.9000E+00
0.1140E+04	0.2179E+01	0.8145E+02	0.1800E+01


RESULT FROM LOWER-BOUND LINE


TOP LOAD	TOP MOVEMENT	TIP LOAD	TIP MOVEMENT
ton	IN.	ton	IN.
0.1027E+00	0.3754E-04	0.4190E-03	0.1000E-04
0.5133E+00	0.1877E-03	0.2095E-02	0.5000E-04
0.1027E+01	0.3754E-03	0.4190E-02	0.1000E-03
0.5160E+02	0.1881E-01	0.3142E+00	0.5000E-02
0.7759E+02	0.2825E-01	0.3142E+00	0.7500E-02
0.1036E+03	0.3771E-01	0.1047E+01	0.1000E-01
0.2493E+03	0.9311E-01	0.2095E+01	0.2500E-01
0.4345E+03	0.1727E+00	0.2095E+01	0.5000E-01
		Page 10	

	Abut 3 Downwa	ard_(Extreme Eve	nt Case)
0.5735E+03	0.2408E+00	0.3142E+01	0.7500E-01
0.6784E+03	0.2995E+00	0.4190E+01	0.1000E+00
0.9601E+03	0.5524E+00	0.1077E+02	0.2500E+00
0.9968E+03	0.8199E+00	0.2112E+02	0.5000E+00
0.9995E+03	0.9467E+00	0.2654E+02	0.6250E+00
0.1010E+04	0.1228E+01	0.3922E+02	0.9000E+00
0.1036E+04	0.2144E+01	0.7165E+02	0.1800E+01

Lateral Pile Foundation Design

	(ration ft)		Effective Unit Weight, γ	Friction Angle, φ'	Undrained Cohesion (psf)	Strain Factor, ε ₅₀	Horizontal Subgrade Reaction Modulus, k
Layer	Тор	Bott.	p-y Curve	(pcf)	(deg)			(pci)
1	360	295	Sand (Reese)	130	36	n/a	n/a	90
2	295	260	Silt (cemented c- phi)	125	34	600	0.004	225

Table XX - Soil Input Parameters for LPILE under Static Condition

Source: User's manual for LPile, Version 2012-06 Notes:

n/a = not applicable Design groundwater is assumed to be below elevation of +260 feet MSL.