VOLUME II Application Parts 1 – 3

Part 1: Basis of the Application Part 2: NPDES Application Forms Part 3: Antidegradation Analysis

> City of San Diego Public Utilities Department

LIST OF VOLUMES

Volume I	Executive Summary				
	Part 1: Basis of Application				
Volume II	Part 2: NPDES Application Forms				
	Part 3: Antidegradation Analysis				
Volume III	Large Applicant Questionnaire				
Volumo IV	Appendix A: Existing Metro System Facilities and Operations				
volume iv	Appendix B: Planned Metro System Facilities Improvements				
	Appendix C: Ocean Benthic Conditions				
	Appendix C1: Benthic Sediments, Invertebrates and Fishes				
VolumeV	Appendix C2: San Diego Benthic Tolerance Intervals				
volume v	Appendix C3: San Diego Sediment Quality Assessments				
	Appendix C4: Assessment of Macrobenthic Communities off Point Loma				
	Appendix C5: Bioaccumulation Assessment				
	Appendix D: Point Loma Plume Behavior & Tracking Summary				
	Appendix E: 2014-2020 Kelp Forest Ecosystem Monitoring Summary				
Volume VI	Appendix F: 2014-2020 Coastal Remote Sensing Summary				
	Appendix G: 2016-2020 Summary of Remotely Operated Vehicle Surveys				
	for Outfall Integrity				
	Appendix H: Beneficial Use Assessment				
VolumeVII	Appendix I: Endangered Species Evaluation				
volume vii	Appendix J: Essential Fish Habitats				
	Appendix K: Proposed Monitoring Program				
Volume VIII	Appendix L: 2020 Annual Biosolids Report				
Volumo IV	Appendix M: 2020 Annual Pretreatment Report				
volume IX	Appendix N: 2020 Annual Local Limits Reevaluation Report				
	Appendix O: Re-entrainment				
Volume X	Appendix P: Oceanography				
	Appendix Q: Initial Dilution Simulation Models				
	Appendix R: Dissolved Oxygen Demand				
	Appendix S: Analysis of Ammonia				
	Appendix T: California Ocean Plan (2020 or most recent, 2019)				
	Appendix U: Correspondence				

PART 1: DISCHARGE OVERVIEW AND BASIS OF APPLICATION NPDES CA0107409

City of San Diego Public Utilities Department

March 2022

Table of Contents

Section Page	
SUMMARY	.1
PURPOSE OF SUBMITTAL	2
REQUESTED 301(h) MODIFIED REQUIREMENTS	2
COMMITMENT TO PURE WATER SAN DIEGO	2
ALIGNMENT WITH STATE AND LOCAL RECYCLED WATER POLICIES	6
Consistency with the State Recycled Water Policy	6
Consistency with the Regional Board's Practical Vision	6
METRO SYSTEM FACILITIES AND OPERATIONS	8
North City Water Reclamation Plant 1	0
Metropolitan Biosolids Center 1	0
South Bay Water Reclamation Plant and South Bay Ocean Outfall	0
Pump Stations 1 and 2 10	0
Point Loma Wastewater Treatment Plant1	0
Point Loma Ocean Outfall10	0
IMPLEMENTATION OF PURE WATER SAN DIEGO PHASE 11	2
PURE WATER INTERFACE WITH THE PLWTP1	2
BASIS OF THE APPLICATION1	4
PROPOSED TOTAL SUSPENDED SOLIDS MASS EMISSION RATES1	4
DISCHARGE COMPLIANCE1	5
TSS Percent Removal1	5
TSS Concentration Limit	6
TSS Mass Emissions1	7
BOD Percent Removal	8
Flow and Load Projections	9
COMPLIANCE WITH REQUIREMENTS FOR A MODIFIED DISCHARGE PERMIT2	21
ORGANIZATION OF APPLICATION	2
SUMMARY OF FINDINGS 2	3

List of Figures

Figure 1: Metro System Facilities	9
Figure 2: Flow Schematic of Metro System Operations	11
Figure 3: PLWTP Discharge of TSS	13
Figure 4: Average Annual PLOO TSS MERs (mt/yr) During Effective Periods of Current and Prior Modified NPDES Permits1	18
Figure 5: 10-Year Running Average of Annual Average PLOO TSS MERs (mt/yr)1	18

List of Tables

Table 1: Summary of Pure Water San Diego Supporters
Table 2: Pure Water San Diego Potable Reuse Tasks for the Period of 2022-2028
Table 3: Flow Reductions in PLWTP Discharge*
Table 4: Proposed TSS MER rates (Expressed as mt/yr)14
Table 5: System-Wide TSS Removal 2017-2020: Compliance with 80% TSS Removal Requirement
Table 6: Facility TSS Removal 2017-2020: Compliance with 75% TSS Removal Requirement 16
Table 7: PLWTP Effluent TSS Concentrations 2017-2020: Compliance with 60 mg/L TSSEffluent Limitation
Table 8: System-Wide BOD Removal, 2017-2020: Compliance with 58% BOD RemovalRequirement
Table 9: Flow and load Projections for the Point Loma Outfall Discharge ^{1, 2, 3}
Table 10: Technical Appendices to the 301(h) Renewal Application, Volumes IV through X 23
Table 11: Summary of Key Discharge Issues Addressed in this Application 25

Acronyms and Abbreviations

BIP	balanced indigenous population
BOD	biochemical oxygen demand
CFR	Code of Federal Regulations
City	City of San Diego
CWA	Clean Water Act
DDT	dichlorodiphenyltrichoroethane
EPA	United States Environmental Protection Agency
JPA	Joint Powers Authority
MBC	Metropolitan Biosolids Center
MER	mass emissions rate
Metro System	San Diego Metropolitan Sewerage System
mg/L	milligrams per liter
mgd	million gallons per day
mt/yr	metric tons per year
NCDPWF	North City Demonstration Pure Water Facility
NCPWF	North City Pure Water Facility
NCWRP	North City Water Reclamation Plant
NPDES	National Pollutant Discharge Elimination System
OPRA	Ocean Pollution Reduction Act
PCBs	polychlorinated biphenyls
PLOO	Point Loma Ocean Outfall
PLWTP	Point Loma Wastewater Treatment Plant
Practical Vision	San Diego Water Board Practical Vision (2013)
Regional Board	California Regional Water Quality Control Board, San Diego Region
ROV	remotely operated (submersible) vehicle
SBOO	South Bay Ocean Outfall
SBWRP	South Bay Water Reclamation Plant
TSS	total suspended solids
ZID	zone of initial dilution

SUMMARY

The City of San Diego (City) requests renewal of National Pollutant Discharge Elimination System (NPDES) CA0107409 for the discharge of treated wastewater from the E.W. Blom Point Loma Wastewater Treatment Plant (PLWTP) to the Pacific Ocean via the Point Loma Ocean Outfall (PLOO). Within the renewed NPDES permit, the City requests reissuance of modified requirements for biochemical oxygen demand (BOD) and total suspended solids (TSS) per requirements established in Sections 301(h)and 301(j)(5) of the Clean Water Act (CWA). As documented herein, the Point Loma discharge meets all CWA Section 301(h) and Section 301(j)(5) criteria for issuance of modified TSS and BOD standards. The 301(h)-renewal application presented herein requests no changes in the existing modified permit requirements for TSS and BOD effluent concentration limits or percent removal requirements.

As part of this application, the City is including updated information relative to the implementation of the joint water/wastewater facilities plan called "Pure Water San Diego" that was introduced in the last renewal application. Pure Water San Diego has the goal of producing water suitable for potable use for the San Diego Region from wastewater that would otherwise be directed to the PLWTP. The Pure Water San Diego plan envisions producing 83 million gallons per day (mgd) of potable reuse water by December 31, 2035. As a result, it is anticipated that nearly 50% of the City's potable water demand will be supplied by this source of highly purified wastewater by year 2036.

To demonstrate the City's continued commitment to the Pure Water San Diego Program, as well as advancing the State's water recycling goals and the California Regional Water Quality Control Board, San Diego Region (Regional Board) Practical Vision (Practical Vision), this NPDES renewal application presents an updated schedule of activities for the implementation of Pure Water San Diego that will occur during the upcoming NPDES permit term. These activities will focus on the construction and start-up of the initial 30-mgd potable reuse component, as well as planning studies and demonstration plant construction and operation activities necessary to finalize specific plans to complete the final 53-mgd potable reuse component. With implementation of this final 53-mgd component, the City will have achieved an ultimate production of 83 mgd by December 31, 2035. As part of the Pure Water San Diego concept, the PLWTP discharge flow and loads will be significantly reduced due to diversions to the upstream reclamation activities. Ultimately permitted TSS mass emissions can be reduced to 9,942 metric tons per year (mt/yr), which is equivalent to what would be permitted if the PLWTP were operating at its full capacity of 240 mgd and achieving secondary treatment.

Federal legislation has been introduced that recognizes the goal of Pure Water San Diego to significantly reduce the ocean discharge while producing water suitable for potable use. Supported by local environmental groups, citizen and government organizations, as well as scientists from Scripps Institution of Oceanography, the federal legislation would simplify the permitting process by providing a different pathway than the 301(h)/301(J)(5) process. Titled the Ocean Pollution Reduction Act II (OPRA II), the legislation passed the House of Representatives in June 2021 and was forwarded to the Senate for action during this congressional session.

The NPDES application presented herein demonstrates compliance with CWA sections 301(h)and 301(j)(5). The application also provides information necessary to demonstrate compliance with the provisions of OPRA II should it be enacted during the approval process for the application. This includes the reduction of the permitted TSS mass emissions as specified in OPRA II.

PURPOSE OF SUBMITTAL

The San Diego Metropolitan Sewerage System (Metro System) provides wastewater service for the City of San Diego and 12 participating agencies. The PLWTP serves as the terminal Metro System treatment facility. The discharge of treated wastewater from the PLWTP to the Pacific Ocean via the PLOO is currently regulated by a joint permit issued by the Regional Board and the United States Environmental Protection Agency (EPA). Regional Board Order No. R9–2017–0007 (NPDES CA0107409) establishes modified secondary treatment requirements for the PLOO discharge in accordance with Sections 301(h) and 301(j)(5) of the CWA.

Order No. R9–2017–0007 was originally adopted by the Regional Board on April 12, 2017. EPA issued final approval of the joint NPDES permit on August 4, 2017 and the permit became effective on October 1, 2017. Order No. R9–2017–0007 expires on September 30, 2022, and the City is required to file a Report of Waste Discharge requesting renewal of the NPDES permit 180 days in advance of this expiration date.

The City of San Diego, as the owner of the PLWTP and the operating agency of the Metro System, requests renewal of NPDES CA0107409 and renewal of modified secondary treatment standards for TSS and BOD established under Sections 301(h) and 301(j)(5) of the CWA.

REQUESTED 301(h) MODIFIED REQUIREMENTS

In requesting renewal of 301(h) modified discharge limits for TSS and BOD, this NPDES application does not propose any increase (e.g., relaxation) of the NPDES effluent flow rate, concentration limits, performance goals, or mass emission limits established in Order No. R9-2017-0007. Additionally, this NPDES application requests continuation of the following TSS and BOD percent removal requirements established in Order No. R9-2017-007 pursuant to requirements of CWA Section 301(j)(5):

- monthly average system-wide removal of TSS of 80%
- annual average system-wide removal of BOD of 58%

COMMITMENT TO PURE WATER SAN DIEGO

In the prior NPDES permit renewal application, the City introduced its goal of implementing a comprehensive water reuse program called Pure Water San Diego. Pure Water San Diego is a long-term program that would provide a safe, reliable and cost-effective potable water supply for San Diego through the application of advanced treatment technology to purify recycled water. As such the Pure Water San Diego Program is a joint water and wastewater facilities plan with the goal of producing water suitable for potable reuse, while significantly reducing and improving the discharge to the ocean from the PLWTP. As part of this plan, wastewater normally directed to the PLWTP will be diverted to upstream treatment facilities where

purified water will be produced. By December 31, 2035, it is anticipated that approximately 50% of San Diego's potable water demand will be met by this system of purifying wastewater. Additionally, the flows and loads to the PLWTP will be reduced resulting in less flow, as well as the associated pollutants, being discharged to the ocean. The City's commitment to implement Pure Water San Diego is reflected in Order No. R9-2017-0007, as the Order includes a schedule of proposed Pure Water San Diego implementation tasks.

Pure Water San Diego is being implemented in two phases: Phase 1, the North City Pure Water Project and Phase 2, the Central Area Project.

Phase 1 advanced treatment facilities, the North City Pure Water Facility (NCPWF), will be colocated with the North City Water Reclamation Plant (NCWRP). Construction of Phase 1 facilities, including pipelines, pump stations, and treatment processes, has begun. Purified water will eventually be delivered to Miramar Reservoir and is regulated under a separate NPDES Permit, Order No. R9-2020-0001. Full operation of Phase 1 is expected to begin by December 31, 2027. At that time, it will remove 52 mgd of wastewater that would otherwise have been directed to the PLWTP and produce 30 mgd of purified water suitable for potable reuse, as well as 12 mgd of recycled water for irrigation and other uses.

Phase 2 (Central Area Project) is in the planning stages. This project includes siting of facilities, selecting the discharge location, determining regulatory requirements and the construction and operation of a demonstration facility. The Central Area Project is being designed to produce up to 53 mgd of purified water, for a cumulative total of 83 mgd by December 31, 2035. This NPDES application package will primarily address the Phase 1 project and its interface with the PLWTP. However, a schedule of tasks that are estimated to occur during the renewed permit period and that will lead to the ultimate production of 83 mgd of water suitable for potable reuse by December 31, 2035, is also included.

The Pure Water San Diego Program is the result of collaboration between the City of San Diego, Metro Wastewater Joint Powers Authority (JPA), and a diverse array of regional stakeholders (see Table 1). This regional collaboration was intended to address joint regional water and wastewater facilities needs to (1) provide a safe, reliable, and cost-effective potable water supply, (2) reduce ocean discharge flows and mass emissions, and (3) support future CWA 301(h) modified permits for the PLWTP while also supporting efforts seeking administrative or legislative actions to achieve a streamlined permitting process for the PLOO discharge, such as OPRA II.

Table 1:
Summary of Pure Water San Diego Supporters

Category	Pure Water San Diego Supporters ^{1,2}			
Cities and Districts (Members of the Metro Wastewater JPA)	 City of San Diego City of Chula Vista City of La Mesa City of Del Mar City of El Cajon City of Lemon Grove City of Poway City of Coronado City of Imperial Beach 			
	 City of National City Padre Dam Municipal Water District Otay Water District 			
Environmental Organizations	 Coastal Environmental Rights Foundation Surfrider Foundation, San Diego County Chapter San Diego Coastkeeper San Diego Audubon Society 			
Water Supply, Business, and Community Organizations and others	 San Diego Regional Chamber of Commerce San Diego Taxpayers Association San Diego County Water Authority Industrial Environmental Association Water Reliability Coalition Equinox Center San Diego Business Leadership Alliance San Diego Economic Development Corporation Building Industry Association of San Diego (San Diego BIA) CONNECT WateReuse Association San Diego Chapter San Diego River Park Foundation BIOCOM San Diego Port Tenants Association, San Diego County Chapter San Diego County Apartment Association Scientists from Scripps Institution of Oceanography 			

Table 1 Notes:

1. Regional supporters involved in coordinating with the City of San Diego to address joint regional water and wastewater facilities needs to (1) provide a safe, reliable, and cost-effective potable water supply, (2) reduce ocean discharge flows and mass emissions, and (3) support future CWA 301(h) modified permits for the PLWTP while also supporting efforts seeking administrative or legislative actions to achieve a streamlined permitting process for the PLOO discharge such as OPRA II.

2. Table 1 is not inclusive of all regional supporters as it is a compilation of those providing written correspondence in support of OPRA II. Many others have verbally expressed their support.

The City, Metro Wastewater JPA, and regional stakeholders identified within Table 1 have agreed to cooperate to:

- implement a comprehensive potable reuse program using state-of-the-art advanced treatment technology to achieve an ultimate goal of 83 mgd of potable reuse by December 31, 2035,
- sufficiently reduce influent flows and solids loads to the PLWTP so that ultimate permitted discharge of TSS mass emissions are reduced and capped at levels that would have occurred if the 240-mgd PLWTP were to achieve permitted secondary treatment TSS concentration standards,
- support the City's application for renewed 301(h) modified TSS and BOD limits for the PLWTP, and
- support the City's pursuit of administrative or legislative efforts to codify that, as a result of implementing the comprehensive Pure Water San Diego Program, the permitting process for the PLOO discharge is streamlined such that arduous 301(h) is no longer required. Legislation (OPRA II) passed the U.S. House of Representatives in June 2021 and at the time of this application is awaiting Senate approval.

To demonstrate the City's commitment to regulators and stakeholders for moving forward with Pure Water San Diego plans, this NPDES application proposes that the following schedule of tasks for implementation of Pure Water San Diego be incorporated into in the renewed PLWTP 301(h) permit (Table 2). These are tasks that are expected to occur during the period for which it is anticipated that the renewed permit will be effective. Successor permits can contain updated schedules of tasks that will ultimately lead to the full implementation of Pure Water San Diego, resulting in production of 83 mgd of water suitable for potable reuse and a significant reduction in PLOO discharge flows and loads to the ocean.

Table 2:

Pure Water San Diego Potable Reuse Tasks for the Period of 2022-2028

Category	Task	Implementation Date ^{1,2,3}
Pure Water Phase 1 North	Complete construction for North City potable reuse facility and pipelines	June 30, 2027
City Pure Water Project ⁴	Produce a cumulative total of at least 30 mgd of potable reuse	December 31, 2027
	Complete design of a central area small-scale facility at the PLWTP	June 30, 2023
	Begin Central Area Small-Scale Facility Operation ⁷	June 30, 2025
Pure Water Phase 2 Central Area Project ^{5,6}	Issue Notices to Proceed (NTPs) for pre-design of potable reuse facility and pipelines ⁷	June 30, 2025
	Issue Notice of Preparation for Central Area Project EIR ⁷	December 31, 2026
	Issue NTPs for full design of potable reuse facility and pipelines ⁷	June 30, 2027

Table 2 Notes:

1. The listed milestones are those that are expected to occur during the effective period of the renewed permit that is anticipated to potentially extend until the end of 2028.

2. This schedule is based on the current progress as of the date of submission of the permit renewal application.

3. Task completion dates may require modification in the future based on issues related to the regulatory approval schedule, environmental review issues, supply chain interruptions, legal challenges to the proposed program or projects, or other unforeseen circumstances.

4. Phase 1 Pure Water implements an ultimate annual average daily production of 30 mgd of water suitable for potable reuse.

5. Phase 2 Pure Water implements an ultimate annual average daily production of an additional 53 mgd of water suitable for potable reuse resulting in a cumulative total of 83 mgd. The tasks listed in Table 2 represent the work necessary during the renewed permit period to allow for the ultimate production of 83 mgd of water suitable for potable reuse by December 31, 2035.

6. Future permit applications prior to December 31, 2035, may also contain a schedule of tasks necessary to ensure completion and full operation of Phase 2 by December 31, 2035.

7. These tasks are dependent upon future approval by the Mayor and City Council of San Diego.

ALIGNMENT WITH STATE AND LOCAL RECYCLED WATER POLICIES

Consistency with the State Recycled Water Policy

The State Water Resources Control Board adopted Resolution No. 2009-011 on February 3, 2009, which was subsequently amended on December 11, 2018, (becoming effective April 8, 2019) that established a statewide Recycled Water Policy. The Recycled Water Policy establishes goals and implementation policies for increasing statewide recycled water use. Implementation of the Pure Water San Diego Program will help achieve Recycled Water Policy goals by increasing regional recycled water use by 83 mgd by December 31, 2035.

Consistency with the Regional Board's Practical Vision

The San Diego Regional Board on November 13, 2013 adopted Resolution No. R9-2013-0153, which endorsed and supported implementation of the Practical Vision for achieving a sustainable water supply. Excerpts from the 2013 Practical Vision are below.

"A Vision for Achieving a Sustainable Local Water Supply

In order to maintain and improve water quality and provide sufficient waterto meet the demands of the Region, the San Diego Water Board must use its leadership and regulatory authority to achieve a sustainable local water supply while concurrently ensuring that water quality supports beneficial uses. Reducing the Region's dependence on imported water is needed to improve water quality within and outside of our Region and to reduce greenhouse gas emissions associated with the transport of water. The creation of a sustainable local water supply includes three aspects: the environmentally responsible use of groundwater and surface water, the creation of new sources of fresh water such as, desalination, indirect potable reuse and direct use of recycled water, and conservation efforts to reduce water demand.

This Practical Vision describes the means by which the San Diego Water Board will help water and wastewater agencies achieve the goal of a sustainable local water supply. A multi-phase approach will be used to increase the supply of local water and decrease the Region's water demand. Specific activities include taking appropriate actions to protect and restore groundwater and surface water quality, developing approaches to increase the Region's use of recycled water while maintaining high water quality, and taking actions to encourage conservation to reduce our Region's demand for water."

"Practical Vision Statement

An ample, diverse, and sustainable local water supply for the San Diego Region that, combined with conservation and water reuse, minimizes dependence on imported water while maintaining and improving water quality."

"Mission Statement

To use the San Diego Water Board's leadership and regulatory authority to encourage, promote, and facilitate development of new and diverse sustainable local water supplies in an environmentally responsible manner."

On September 8, 2021, the Regional Board adopted a resolution No. R9-2021-00071 in support of a Regional Board Practical Vision update. Part of the 2021 Practical Vision is intended to "Support a sufficient, diverse, and sustainable local water supply for the San Diego Region that, combined with conservation and water reuse, minimizes dependence on imported water while maintaining and improving water quality." Chapter 6 of the 2021 Practical Vision identifies a number of strategies for achieving a resilient local water supply. Among these strategies are:

- Efficiently permit indirect potable reuse projects for potable reuse projects for surface water and groundwater.
- Increase non-potable recycled water reuse.

The 301(h)-application submitted herein and the City of San Diego's commitment to implement the Pure Water San Diego Program align with the Regional Board's 2013 and 2021 Practical Vision. As documented within this application, the current PLOO discharge and comprehensive monitoring program ensures healthy waters off the coast of Point Loma. The Regional Board's sustainable water supply vision is implemented by the Pure Water San Diego approach of decreasing future PLOO discharge flows and solids loads by developing upstream potable reuse facilities. In accordance with the 2013 Practical Vision "sustainable water supply" and the 2021 "resilient local water supply" elements, City's proposed reuse program reduces the region's dependence on imported water, improves mineral concentrations in local water supplies, maximizes reuse and resiliency of local water resources, and maintains and promotes the quality of ocean water and environment.

¹ Regional Board, 2021. San Diego Water Board Practical Vision. Available at: https://www.waterboards.ca.gov/sandiego/water_issues/programs/practical_vision/docs/practicalvision_2021_fin al_09082021.pdf. Last visited 2/12/2022.

METRO SYSTEM FACILITIES AND OPERATIONS

Appendix A presents a detailed description of current Metro System facilities and operations. Metro System facilities include sewer interceptors, pump stations, wastewater treatment and water recycling plants, ocean outfalls, sludge pipelines, and biosolids handling facilities. Key Metro System facilities and boundaries of participating agencies are presented in Figure 1. Figure 2 presents a flow schematic of Metro System facilities and operations. As shown in Figures 1 and 2, primary Metro System facilities include:

- NCWRP
- Metropolitan Biosolids Center (MBC)
- South Bay Water Reclamation Plant (SBWRP)
- South Bay Ocean Outfall (SBOO)
- Pump Station 1
- Pump Station 2
- PLWTP and PLOO

Figure 2 also identifies the modifications to the system that will be completed with the implementation of Pure Water Phase 1. The North City Pure Water Project is identified in red in the figure. Pure Water Phase 1 and its relationship to the PLWTP and the discharge through the PLOO will be discussed in detail later in the new facilities section in this document.

Each of these Metro System facilities plays a key role in PLWTP operations and NPDES permit compliance. To augment system performance, the City has implemented an integrated chemical addition approach whereby chemical addition at both upstream collection facilities and treatment facilities is utilized to maximize odor control while at the same time enhancing solids removal performance at the PLWTP. The result of this program is that the PLWTP continues to achieve a high level of solids removal. Brief descriptions of primary Metro System facilities are presented below.

North City Water Reclamation Plant

The 30-mgd NCWRP develops recycled water for delivery to customers in the North City region. Excess NCWRP treated wastewater is returned to the system for transport to the PLWTP. Waste solids are directed to the MBC for digestion and dewatering.

Metropolitan Biosolids Center

MBC digests and dewaters waste biosolids from the NCWRP and dewaters digested biosolids received from the PLWTP.

South Bay Water Reclamation Plant and South Bay Ocean Outfall

The 15-mgd SBWRP produces recycled water for customers within the South Bay region. Excess SBWRP treated wastewater is directed to the SBOO. Waste solids are directed to the PLWTP through the South Metro Interceptor and Pump Stations 1 and 2. Discharges of wastewater are regulated by a separate NPDES Permit, Order No. R9-2021-0011. Recycled water at the SBWRP is regulated by Waste Discharge Requirements contained within the SBWRP's Master Recycling Permit, Order No R9-2021-0015. Both renewed permits were adopted by the Regional Board in 2021.

The SBOO discharges wastewater approximately 3.5 miles off the coast of the International Border at a depth of approximately 95 feet.

Pump Stations 1 and 2

Pump Station 1 conveys wastewater from the southern portion of the Metro System through the South Metro Interceptor to Pump Station 2. Pump Station 2 conveys Metro System wastewater to the PLWTP. Pump Station 2 also provides initial screening and chemical addition.

Point Loma Wastewater Treatment Plant

The PLWTP is the terminal treatment facility in the Metro System. The PLWTP provides 240 mgd of chemically enhanced primary treatment capacity. Treatment processes include:

- screening
- grit removal
- chemically enhanced primary treatment to achieve at least 80% removal of influent suspended solids
- partial disinfection using sodium hypochlorite
- final screening

Point Loma Ocean Outfall

Treated wastewater from the PLWTP is discharged to the PLOO. The PLOO discharges wastewater approximately 4.5 statute miles off the coast of Point Loma at an average discharge depth of 310 feet. The PLOO diffuser system includes two diffuser legs each 2,496 feet long and 416 ports – 208 ports per each diffuser leg. The City employs a comprehensive discharge program to protect Point Loma receiving waters. This comprehensive program includes:

- an industrial and non-industrial toxics control program (Urban Area Pretreatment Program) to prevent harmful constituents from entering the sewer system
- development and marketing of recycled water supplies at the 30-mgd NCWRP to lessen solids loads directed to the PLWTP and to reduce the amount of wastewater discharged to the ocean
- development and marketing of recycled water supplies at the 15-mgd SBWRP to lessen PLWTP hydraulic loads and to reduce the amount of wastewater discharged to the ocean
- chemically enhanced primary treatment at the PLWTP to achieve a minimum of 80% removal (system-wide) of TSS and 58% removal (system-wide) of BOD,
- comprehensive monitoring to assess PLWTP influent and effluent quality
- discharge to the ocean through a highly efficient ocean outfall that achieves a high initial dilution, discharges the wastewater far offshore (beyond the three nautical mile limit of State of California waters), and discharges the wastewater at a sufficient depth to trap the waste plume below the surface
- comprehensive monitoring of ocean receiving waters, sediments, fish, and benthic species

Figure 2: Flow Schematic of Metro System Operations

Note: Red indicates facilities under construction and flows associated with the Phase 1 NCPWF, expected to be in operation by the end of calendar year 2027.

IMPLEMENTATION OF PURE WATER SAN DIEGO PHASE 1

Phase 1 of the Pure Water San Diego Program (North City Pure Water Project) is currently under construction with initiation of full operation anticipated by December 27, 2027. The NCWRP is permitted by Waste Discharge requirements contained in Order No. R9–2015–0091, adopted by the Regional Board on December 16, 2015. This permit will be updated in the future to accommodate the additional flows required to support the NCPWF as well as the recycled water customers. Discharge to Miramar Reservoir from the NCPWF is regulated by Order No. R9–2020–0001, as amended by R9–2020–0183, (NPDES CA0109398) adopted by the Regional Board on May 13, 2020 and amended on August 12, 2020.

The specific projects to be completed to implement Phase 1 include:

- NCWRP expansion of existing facilities nearly doubles the amount of recycled water produced to meet the needs of the NCPWF and the Recycled Water system
- Morena Pump Station: to pump additional wastewater to the NCWRP expansion
- Two 10.5-mile pipelines from the Morena Pump Station to the NCWRP expansion
 - A 48-inch pipeline to convey wastewater to the NCWRP
 - A 36-inch pipeline to convey residuals from the NCWRP to the sewer
- Improvements to MBC to handle the increased biosolids
- NCPWF Advanced treatment processes to produce purified water, including:
 - Ozonation
 - Biological Activated Carbon Filtration
 - Membrane Filtration
 - Reverse osmosis
 - UV Disinfection and Advanced Oxidation
- Pure Water pipeline, 8 miles, to Miramar Reservoir
- Dechlorination facilities at Miramar Reservoir
- Underwater discharge pipe within the Reservoir
- Miramar Reservoir pump station upgrades

PURE WATER INTERFACE WITH THE PLWTP

As indicated in Figure 2, the northern area water reclamation activities remove flow that is normally influent to the PLWTP. Historically, a small return stream of dewatering and thickening centrate from biosolids processing at MBC, as well as excess secondary effluent from the NCWRP have been returned to the sewer and co-mingled with wastewater influent to the PLWTP. With the implementation of Pure Water Phase 1 these return streams will also include reverse osmosis brine generated at the NCPWF.

San Diego has operated the North City Demonstration Pure Water Facility (NCDPWF) for nearly 10 years, helping to collect data for the design of the Phase 1 facilities and to define regulatory requirements. The NCDPWF has also provided an understanding of the potential characteristics of the treatment process efficiencies, return stream characteristics and how this upstream advanced treatment will improve the PLWTP discharge. A detailed discussion of the interface between Pure Water Phase 1 and the PLWTP is presented in Appendix B. A comprehensive model has been developed to estimate flow and TSS reductions that will occur in the PLWTP discharge as a result of upstream diversions to the reclamation activities. Table 3 presents the reduction in the PLWTP discharge flow and Figure 3 presents TSS mass emission reductions, including demonstrating compliance with the limits established in the proposed OPRA II legislation.

	Pt. Loma discharge	Pt. Loma Discharge with Pure Water (mgd)	Reduction in Flow	
Phase/Year	without Pure Water (mgd)		mgd	percent
Phase 1: 2028	159	129	30	19%
Phase 2: 2036	166	82	84	50%

Table 3: Flow Reductions in PLWTP Discharge*

*Flow estimates based on conservative facilities planning projections and may overstate what is actually observed.

Figure 3: PLWTP Discharge of TSS

Note: These planning projections are conservative and overstate what the actual values are likely to be. This method is used to ensure that planning for future system improvements are initiated such that adequate facilities are always in place to meet the wastewater system needs and regulatory requirements.

The implementation of Pure Water San Diego demonstrates the City's commitment to not only develop a local source of potable drinking water; but to also reverse the historical methodology of disposing of treated wastewater into the ocean.

BASIS OF THE APPLICATION

This application for renewal of 301(h)/301(J)(5) requirements is submitted on the basis of a "current discharge", as defined in Title 40, Section 125.58 of the *Code of Federal Regulations* (40 CFR 125.58). However, as described in this document the current discharge described herein will become significantly improved by the implementation of Pure Water Phase 1 that will occur during the effective period of the renewed permit (see Implementation of Pure Water Phase 1, including Table 3 and Figure 3).

The application will demonstrate compliance with the requirements of 301(h) and 301(J)(5).

It will also demonstrate compliance with the provisions of OPRA II should it be enacted prior to the final action on the renewed permit.

PROPOSED TOTAL SUSPENDED SOLIDS MASS EMISSION RATES

Table 4 presents the proposed permitted TSS mass emissions rates (MER) for the renewed NPDES CA0107409.

Year of NPDES Permit	Existing TSS MER Established in Order No. R9-2017-0007 ¹ (effective October 1, 2017)	Proposed TSS MER Renewal of NPDES CA0107409 ^{1, 2}	TSS MER Renewal of NPDES CA0107409 ^{1,3} To Be Effective Upon Enactment of OPRA II
Year 1	12,000	11,999	11,500 Commonging on
Year 2	12,000	11,999	December 31, 2025
Year 3	12,000	11,999	9.9/24
Year 4	12,000	11,999	Commencing on
Year 5	11,999	11,998	December 31, 2027

Table 4: Proposed TSS MER rates (Expressed as mt/yr)

Table 4 Notes:

1 Not to include solids contributions from (1) Tijuana, Mexico via the emergency connection, (2) federal facilities in excess of solids contributions received in calendar year 1995, (3) Metro System flows treated in the City of Escondido, (4) SBWRP flows discharged to the SBOO, and (5) emergency use of the Metro System participating agencies over their capacity allotment

2 PLWTP TSS MERs proposed as part of this application for renewal of NPDES CA0107409. TSS MER limits of 11,999 mt/year are proposed for years 1 through 4 of the renewed NPDES permit, and a TSS MER of 11,998 mt/year is proposed for year 5 of the permit.

3 PLWTP TSS MERs to be effective on the listed dates should the OPRA II or equivalent federal legislation be enacted during the renewal process or effective period of this permit.

4 The 9,942 mt/yr TSS MER rate is equivalent to what the PLWTP would be allowed to discharge at its present full permitted capacity under secondary treatment standards.

DISCHARGE COMPLIANCE

The PLOO discharge has achieved 100% compliance with the 301(h) modified TSS and BOD limits established in Order No. R9-2017-0007.

TSS Percent Removal

The PLOO discharge achieved 100% compliance with the minimum monthly TSS system-wide percent removal requirement of 80% and the facility removal requirement for the minimum monthly removal requirement of 75%. Since Order No. R9-2017-0007 became effective in October 2017, system-wide TSS removal rates have ranged from 85% to more than 90%. In the absence of a 301(h) modification, federal secondary treatment standards (40 CFR 133.102) mandate 85% removal of TSS. To date, the PLWTP has achieved 85% TSS removal or better during each month since Order No. R9-2017-0007 became effective on October 1, 2017. As shown in Tables 5 and 6, 100% compliance was achieved with the 80% system-wide TSS removal requirement and the Ocean Plan2 75% facility removal requirement established in Order No. R9-2017-0007.

Table 5 summarizes monthly average Metro System system-wide TSS removal and Table 6 summarizes the average monthly facility removal during 2017-2020.

	System-Wide TSS Percent Removal ^{1,2}			
Month	2017 ³	2018	2019	2020
Jan	90.4	89.8	85.8	90.0
Feb	90.4	89.7	87.6	88.9
Mar	91.0	89.7	88.3	89.5
Apr	91.1	91.2	89.4	89.0
May	90.5	90.1	90.1	91.2
Jun	89.6	86.9	90.3	90.9
Jul	89.7	89.5	90.6	91.1
Aug	88.6	89.3	90.4	90.8
Sep	91.0	89.6	89.9	91.1
Oct	90.7	89.5	87.7	91.1
Nov	89.8	89.6	88.2	89.7
Dec	85.5	86.6	89.8	89.7
Annual Average	89.9	89.3	89.0	90.3
Maximum Month	91.1	91.2	90.6	91.2
Minimum Month	85.5	86.6	85.8	88.9

 Table 5:

 System-Wide TSS Removal 2017-2020: Compliance with 80% TSS Removal Requirement

Table 5 Notes:

1 TSS percent removal computed on a system-wide basis. Data from PLOO annual monitoring reports submitted to the Regional Board for 2017-2020. Calendar year 2020 is the most recent year for which a complete 12-month data set was available at the time of preparation of this report. Data for calendar year 2021 can be electronically transmitted to regulators under separate cover when available in 2022.

2 Permit compliance standards is 80% removal on an average monthly basis.

3 Order No. R9-2017-0007 became effective on October 1, 2017. Data are presented for the entire 2017 calendar year.

² Water Quality Control Plan Ocean Waters of California (State Water Resources Control Board, 2019).

Facility 155 Removal 2017-2020: Compliance with 75% 155 Removal Requirement				
	Facility TSS Percent Removal ^{1,2}			
Month	2017 ³	2018	2019	2020
Jan	90.0	90.0	84.7	89.5
Feb	89.9	90.0	87.1	88.2
Mar	90.7	89.6	87.7	88.9
Apr	90.8	90.8	88.9	88.9
May	90.0	89.6	89.9	90.6
Jun	88.9	87.0	89.8	90.3
Jul	89.2	89.0	90.4	90.6
Aug	88.0	88.9	90.0	90.4
Sep	90.8	89.3	89.6	90.8
Oct	90.2	89.1	87.0	91.1
Nov	89.4	89.2	87.6	89.3
Dec	84.8	85.6	89.3	89.2
Annual Average	89.4	89.0	88.5	89.8
Maximum Month	90.8	90.8	90.4	91.1
Minimum Month	84.8	85.6	84.7	88.2

Table 6: Facility TSS Removal 2017-2020: Compliance with 75% TSS Removal Requirement

Table 6 Notes:

1 TSS percent removal computed on a PLWTP basis. Data from PLOO annual monitoring reports submitted to the Regional Board for 2017–2020. Calendar year 2020 is the most recent year for which a complete 12-month data set was available at the time of preparation of this report. Data for calendar year 2021 can be electronically transmitted to regulators when available in 2022.

2 Permit standard is 75% removal for the PLWTP on an average monthly basis.

3 Order No. R9-2017-0007 became effective on October 1, 2017. Data are presented for the entire 2017 calendar year.

TSS Concentration Limit

In addition to establishing percent removal requirements, Order No. R9-2017-0007 established a TSS monthly average effluent concentration limit of 60 milligrams per liter (mg/L). Table 7 summarizes monthly average TSS concentrations during 2017-2020. As shown in the table, the PLWTP attained 100% compliance with the TSS effluent concentration limit. Monthly average PLWTP TSS concentrations during 2017-2020 ranged from 30 mg/L to 52 mg/L.

Table 7:

PLWTP Effluent TSS Concentrations 2017-2020: Compliance with 60 mg/L TSS Effluent Limitation

	Monthly Average PLWTP TSS Concentration ^{1,2}					
Month	2017 ³	2018	2019	2020		
Jan	30	35	48	35		
Feb	34	35	41	40		
Mar	30	36	42	34		
Apr	32	35	42	33		
May	34	36	38	32		
Jun	40	45	38	33		
Jul	40	39	38	33		
Aug	42	38	38	34		
Sep	34	38	39	32		
Oct	34	38	46	31		
Nov	37	40	44	36		
Dec	52	45	34	36		
Annual Average	37	38	41	34		
Maximum Month	52	45	48	40		
Minimum Month	30	35	34	31		

Table 7 Notes:

1 Data from PLOO annual monitoring reports submitted to the Regional Board for 2017-2020. Calendar year 2020 is the most recent year for which a complete 12-month data set was available at the time of preparation of this report. Data for calendar year 2021 can be electronically transmitted to regulators when available in 2022.

2 Permit requirement is not to exceed 60 mg/L on an average monthly basis.

3 Order No. R9-2017-0007 became effective on October 1, 2017. Data are presented for the entire 2017 calendar year.

TSS Mass Emissions

The PLOO effluent discharge has also achieved 100% compliance with TSS mass emission limits established in Order No. R9-2017-0007. Further, TSS mass emissions have been reduced during the period of record for modified 301(h) TSS and BOD requirements (1995 to present). Figure 4 presents the average annual TSS mass emissions during each modified permit period since the approval of the first modified permit, Order No. 95-06, in 1995. Figure 5 further demonstrates the consistent reduction in TSS mass emissions achieved by improvements in PLWTP performance and the diversions to upstream water recycling facilities, as prescribed by the original OPRA legislation.

Figure 4: Average Annual PLOO TSS MERs (mt/yr) During Effective Periods of Current and Prior Modified NPDES Permits

Figure 5: 10-Year Running Average of Annual Average PLOO TSS MERs (mt/yr), 2000-2020

BOD Percent Removal

Table 8 summarizes system-wide BOD removal achieved by Metro System facilities during 2017–2020. As shown in Table 8, 100% compliance was achieved with both the system-wide annual average 58% BOD removal requirement.

Table 8:

	System-Wide BOD Percent Removal ¹					
Month	2017 ²	2018	2019	2020		
Jan	65.2	60.3	60.6	62.8		
Feb	64.4	60.5	57.0	60.4		
Mar	65.3	62.1	61.8	62.0		
Apr	64.4	62.6	62.0	64.1		
May	63.0	61.9	62.5	64.5		
Jun	61.3	60.3	61.1	62.9		
Jul	60.4	64.4	60.8	63.3		
Aug	60.5	61.6	60.5	64.1		
Sep	62.9	62.7	61.7	64.7		
Oct	64.8	62.9	59.0	63.4		
Nov	63.2	63.4	61.7	61.7		
Dec	58.3	59.2	63.4	63.4		
Annual Average ³	62.8	61.8	61.0	63.1		
Maximum Month	65.3	64.4	63.4	64.7		
Minimum Month	58.3	59.2	57.0	60.4		

System-Wide BOD Removal, 2017-2020: Compliance with 58% BOD Removal Requirement

Table 8 Notes:

1 BOD percent removal (5-day BOD) computed on a system-wide basis. Data from PLOO annual monitoring reports submitted to the Regional Board for 2017-2020. Calendar year 2020 is the most recent year for which a complete 12-month data set was available at the time of preparation of this report. Data for calendar year 2021 can be electronically transmitted to regulators when available in 2022.

2 Order No. R9-2017-0009 became effective on October 1, 2017. Data are presented for the entire 2017 calendar year.

3 Permit standard is 58% removal on an annual average basis.

Flow and Load Projections

Table 9 present the flow and loads projections for a future facility planning period of 20 years (2021 – 2041). The table presents both facilities planning projections as well as most probable projections. Facilities planning projections are conservative and overstate what actual values are projected to be. However, this conservative methodology ensures that adequate facilities are always in place. Recent actual values are included to put the projections into perspective with one another.

In either case, both the facilities planning, and the most probable projections presented in Table 9, demonstrate continued and future compliance with the provisions of 301(h), 301(j)(5) (OPRA I), and the potential OPRA II requirements. Table 9 also illustrates the significant improvement in the PLOO discharge as a result of upstream diversion to the Pure Water San Diego Program facilities.

Table 9:
Flow and load Projections for the Point Loma Outfall Discharge ^{1, 2, 3}

Actual I	Actual Measured Values ⁴								
	Total								
	Metro								
	System ⁵		PLOO Discharge ⁶						
Year	Flow ³	Fl	OW ³	Annual 7	rss mer ³	TSS Concentration ³		Biochemical	
	(mgd)	(m	igd)	(mt	z/yr)	(mg/L)		Oxygen Demand –	
								$5-\text{day}(\text{BOD}_5)$	
								Concentration ³	
0.045	1(2.2	10	<u> </u>			27		(m	g/L)
2017	103.3	13	9.3	7,	112	37		124	
2018	103.1	13	<u>9.0</u>	7,2	293 155	38		133	
2019	100.1	14	. <u>3.9</u>	0,	155	41		1	31
2020	108.0	14	. <u>4.3</u>	0,	/ <u>44</u> 2771	3	<u>4</u>	1	32
Drojecte	103./ d Values47	13	9.7	0,	3/1	3	3	I	37
riojecte	Total								
	Metro				PLOO 1)ischarge ⁶			
	System ⁵				1 100 1				
	Flow ³	Fl	OW ³	Annual 7	TSS MER³	TSS Conc	entration ³	BC	DD ₅
	(mgd)	(m	igd)	(mt	/vr)	(mg	g/L)	Concer	tration ³
Year			0 /	·		(0/-)		(mg/L)	
		(0, 50)	∞	(0, b0)	∞	(0, b0)	×	(0, b0	8
		ties d7	st ble	tie: d7	st ble	trie.	st ble	tie uing	st ble
		cili ann ase	Mo	cili ann ase	Mo	cili ann ase	Mo	cili ann ase	Mo
		Fa Pla B	Pre	Fa Pla B	Pre	Fa Pli B	Pro	Fa Pli B	Pro
2021	178.4	154.0	140.0	9,853	7,159	46	37	142	132
2022	179.2	154.7	140.6	9,944	7,192	46	37	143	133
2023	180.0	155.4	144.2	10,035	7,415	47	38	144	134
2024	180.8	156.1	141.8	10,126	7,447	47	38	145	135
2025	181.7	156.8	142.4	10,217	7,664	47	38	145	135
2026	182.5	157.7	143.3	10,308	7,691	47	38	145	135
2027	183.5	158.5	144	10399	7,761	48	39	146	137
20289	184.5	128.8 ⁹	114.3 ⁹	8,6689	6,161 ⁹	49	39	149	140
2029	185.5	129.7	115.1	8,754	6,204	49	39	149	140
2030	186.4	130.6	115.8	8,841	6,241	49	39	150	141
2031	187.3	131.4	110.0	8,927	0,285	49	39	150	141
2032	188.3	132.3	117.4	9,014	6,490	50	40	151	142
2033	189.3	133.0	118.4	9,100	6,545	50	40	151	141
2034	190.3	134.0	119.0	9,187	0,578	50	40	152	142
2035	191.3	134.9 91 9 10	119.ð 66 010	9,273	0,023	50	40	152	142
2030**	191.8	81.8 ¹⁰	67.2	5,151°°	3,323"	40	<u> </u>	130	120
2037	192.4	02.3 82.0	67.7	5,199	<u>3,343</u>	40	<u> </u>	130	120
2030	193.0	82.9	68 1	5,24/ 5,205	3,300	40	<u>ن</u> کر	131	121
2039	193.0	8/0	68.6	5,295	5,505 2/12	40	30 26	122	121
2040	194.3	8/ 5	60.0	5 201	2/22	40	26	122	122
2041	194.9	04.7	09.0	7,391	2,433	40	<u>ر</u>	∠ز ۱	122

Table 9 Notes:

These projections cover a 20-year planning period that extends to 2041.
 Projections based on the SANDAG Series 13 population projections.
 All flows reported as annual average daily flows; TSS & BOD₅ concentrations as annual daily averages. Actual 2021 data were preliminary at the time this application was compiled and may be subject to change.

- 4 Actual values are presented for several years preceding the projected values in order to put them into context with the projections. This illustrates the necessity for expressing both planning projections, as well as flows and loads most probable to be realized.
- 5 Total Metro System flows are all wastewater generated within the Metropolitan Wastewater System Service area.
- 6 Flows discharged through the PLOO are the remaining total Metro System flows treated at the PLWTP after having been reduced by (1) upstream recycled water production and use, (2) diversion of flows to the SBWRP, City of Del Mar, Otay Water District, Padre Dam Municipal Water District, and (3) upstream production and use of purified water. Projected PLOO flows include reverse osmosis reject (brine) from upstream advanced water purification facilities constructed as part of the Pure Water San Diego Program and centrate from the MBC facilities, and sludge from the SBWRP that are comingled with influent flow to the PLWTP.
- 7 Planning flow and load projections are conservative and although overstating what the actual flows and loads will be, this method is used to insure that planning for future system improvements are initiated such that adequate facilities are always in place to meet the wastewater system needs and regulatory requirements.
 Planning flow and load projections are expressed as annual average daily flows and include wet weather impacts expressed as an I & I component reflective of 10-year storm events.

- Planning flow projections were determined by the same modeling procedure that has been used for future facilities planning and the Pure Water Program.

- Planning load projections are conservatively based on the highest waste strengths observed during the last 5 years. TSS and BOD₅ concentrations are projected to increase in future years as ongoing conservation reduces per capita flow; but per capita TSS and BOD₅ contributions remain unchanged.

8 Most probable flow projections are derived from the average of recent actual flow and load values and propagated using the same incremental adjustments as the facilities planning flow and load projections.

9 PLOO discharge flows and loads reduced by the implementation of 30 mgd of upstream potable reuse.

10 PLOO discharge flows and loads reduced by the implementation of an additional 53 mgd of upstream potable reuse (for a total of 83 mgd of potable reuse).

COMPLIANCE WITH REQUIREMENTS FOR A MODIFIED DISCHARGE PERMIT

The 301(h)-renewal application demonstrates compliance with the following provisions:

• Compliance with 301(h) requirements

This application is organized to provide significant detail demonstrating compliance with the 301(h) requirements for approval of modified discharge standards for TSS and BOD. See the organization of the application in Table 10 and the summary of findings and the key discharge issues addressed in the application in Table 11.

- Compliance with specific 301(J)(5) requirements (OPRA)
 - \checkmark 100% compliance with 80% removal of TSS (monthly average)
 - \checkmark 100% compliance with 58% removal of BOD (annual average)
 - $\checkmark~$ 100% compliance with reducing the emissions of TSS during the period of modification
 - ✓ Completed construction of the 30-mgd NCWRP and the 15-mgd SBWRP by 2010 for a total of 45 mgd.
- Compliance with specific OPRA II requirements should it be enacted during the renewal process for this permit
 - \checkmark 100% compliance with 80% removal of TSS (monthly average)
 - \checkmark 100% compliance with 58% removal of BOD (annual average)
 - $\checkmark~$ 100% compliance with the total suspended effluent limit of 60 mg/L
 - ✓ Compliance with current and projected mass emissions of TSS

- ✓ 10 consecutive years of ocean monitoring required of a 301(h) modified permit
- Continuation of an ocean monitoring program equivalent to what is required of a 301(h) modified permit
- Continuation of the Urban Area Pretreatment Program as would be required by a 301(h) modified permit
- ✓ Compliance will all appropriate anti-degradation regulations

ORGANIZATION OF APPLICATION

This application for modification of secondary treatment requirements has been prepared in accordance with Title 40, Part 125, Subpart G of the *Code of Federal Regulations*, as promulgated in the *Federal Register* by EPA on August 23, 1994. This application is also prepared in accord with *Amended Section 301(h) Technical Support Document* published by EPA in September 1994. This application consists of the following volumes:

• Volume I: Executive Summary.

An executive summary of the proposed discharge is presented, along with a summary of how the discharge complies with applicable regulations.

• Volume II: Basis of Application, NPDES Application, and Antidegradation Analysis.

The basis of the NPDES and 301(h) renewal request is presented in Part 1 of Volume II, along with a description of the requested permit modifications. NPDES permit application forms are presented in Part 2 of Volume II. Part 3 of Volume II compares PLOO mass emissions with mass emission benchmarks established in Order No. R9-2017-0007. For constituents that exceed the benchmarks, Part 3 evaluates the significance of the exceedances pursuant to requirements established by EPA within Special Provision VI.C.2.e of Order No. R9-2009-0001 that was further referenced in R9-2017-0007 (NPDES CA0107409).

• Volume III: Large Applicant Questionnaire.

Volume III follows the format established in the Large Applicant Questionnaire, 40 CFR 125, Subpart G, Appendix B. Text responses to individual questions are presented with supporting tables and graphics. As necessary, the responses refer to technical appendices presented in Volumes IV through X of the submittal package.

• Volumes IV-Volume X: Technical Appendices.

Volumes IV through X of the application present technical appendices that support responses to questions of the large applicant questionnaire. Technical appendices to these 301(h) applications are summarized in Table 10.

Table 10:

Technical Appendices to the 301(h) Renewal Application, Volumes IV through X

Volume	Appendix	Description and Sub-Appendices			
Volumo IV	Appendix A	Existing Metro System Facilities and Operations			
volume iv	Appendix B	Planned Metro System Facilities Improvements			
		Ocean Benthic Conditions:			
		Appendix C.1 Benthic Sediments, Invertebrates and Fishes			
Volume V	Appendix C	Appendix C.2 San Diego Benthic Tolerance Intervals			
volume v	Appendix C	Appendix C.3 San Diego Regional Sediment Quality Assessments			
		Appendix C.4 Assessment of Macrobenthic Communities			
		Appendix C.5 Bioaccumulation Assessment			
	Appendix D	2017-2020 Pt. Loma Plume Behavior & Tracking Summary			
Volume VI	Appendix E	2017–2020 Kelp Forest Ecosystem Monitoring Summary			
volume vi	Appendix F	2017–2020 Coastal Remote Sensing Summary			
	Appendix G	Summary of 2017-2020 ROV Surveys for Outfall Integrity			
Appendix I		Beneficial Use Assessment			
Volume VII	Appendix I	Endangered Species Assessment			
volume vii	Appendix J	Essential Fish Habitat Assessment			
	Appendix K	Proposed Monitoring Program			
Volume VIII	Appendix L	2020 Annual Biosolids Report			
Volumo IV	Appendix M	2020 Annual Pretreatment program Report			
volume IX	Appendix N	2020 Pretreatment Program Local Limits Update			
	Appendix O	Re-entrainment			
	Appendix P	Oceanography			
	Appendix Q	Initial Dilution Simulations Models			
Volume X	Appendix R	Dissolved Oxygen Demand			
	Appendix S	Analysis of Ammonia			
	Appendix T	2019 California Ocean Plan			
	Correspondence				

SUMMARY OF FINDINGS

The attached application for renewal of NPDES CA0107409 demonstrates that maintaining the existing modified 301(h) requirements for TSS and BOD provide full protection of the ocean environment and beneficial uses. This NPDES renewal application documents that:

- The PLWTP has achieved 100% compliance with concentration, percent removal, and mass emission limits for TSS and BOD established in Order No. R9-2017-0007.
- The Point Loma discharge meets the statutory requirements of CWA Sections 301(h) and 301(j)(5) for receiving modified TSS and BOD requirements.
- The PLOO discharge has complied with applicable State of California receiving water standards and federal water quality criteria for the protection of beneficial uses.
- The TSS and BOD concentration and percent removal limits established in the current Point Loma NPDES permit are consistent with maintaining the existing high quality of ocean waters off the coast of Point Loma.
- The PLOO provides a high degree of initial dilution and effectively disperses the discharged wastes.

- Plume modeling demonstrates that the PLOO maintains the diluted waste field more than 100 feet below the ocean surface 99% of the time and maintains the waste field 180 feet below the surface under typical conditions.
- Effluent disinfection at the PLWTP ensures compliance with Ocean Plan body contact recreational standards throughout all depths in State-regulated waters and ensures compliance with federal recreational bacteriological criteria outside the State-regulated three-nautical mile limit.
- A balanced indigenous population (BIP) of fish, shellfish, and wildlife exists beyond the zone of initial dilution (ZID).
- The PLOO discharge does not create any discernible negative impacts on beneficial uses, fishing, habitats of special significance, recreation, or public water supplies.
- Sediment chemistry monitoring and inspections of the PLOO discharge zone by remotely operated vehicles (ROVs) during the over 20-year operating history of the extended PLOO demonstrate that solids are not accumulating in ocean sediments.
- Sediment data collected since 1994 demonstrate that no trends in sediment chemistry or deposition have been observed since the outfall was placed in operation that would degrade marine life. Sediment concentrations of metals in and near the outfall discharge zone continue to be near background concentrations. Sediment concentrations of toxic organic compounds are typically less than the corresponding analytical detection limits. Exceptions to this include polychlorinated biphenyls (PCBs), dichlorodiphenyltrichoroethane (DDT), and polyaromatic hydrocarbons, but elevated concentrations of these compounds are centered around a dredge disposal site south of the outfall and an area north of the outfall near the mouth of the San Diego River and are not related to operation of the PLOO.
- The City of San Diego's Industrial Wastewater Control Program's enhanced source control program complies with the requirements of the Urban Area Pretreatment Program and has been effective in reducing and controlling the discharge of toxic constituents to the sewer system.
- Mass emissions of TSS have been reduced during the period of 301(h) modification, and the City proposes additional reduction in allowable TSS mass emissions from the PLOO.
- The City continues efforts to expand recycled water production at the two water reclamation plants. Additionally, the City is moving forward with the proposed Pure Water San Diego Program, implementing two large-scale potable water reuse projects which create a safe, reliable, and cost-effective source of potable supply while significantly offloading PLWTP inflows and solids loads and further reducing TSS, and associated pollutant mass emissions discharged to the ocean through the PLOO.

Category	Finding from 2017 EPA Final Decision Document ¹	Key Questions Addressed in Attached Application	Conclusions from Attached Application
Level of Treatment	1. The applicant's discharge will comply with primary treatment standards. (Finding #1 of the 2017 EPA Final Decision)	Does the level of treatment comply with 301(h) primary treatment requirements?	The City complies with the 301(h) requirement that a minimum 30% removal of TSS and BOD must be achieved. As documented in this application, the City achieved a system-wide average TSS removal of approximately 89% and BOD removal of approximately 61% during the effective period of Order No. R9-2017-0007.
Water Quality Standards	2. The applicant's proposed 301(h)– modified discharge will comply with the State of California's water quality standards for natural light and dissolved oxygen. (Finding #2 from the 2017 EPA Final Decision)	Does the outfall discharge discernibly impact receiving water light transmittance or dissolve oxygen?	The Point Loma discharge complies with Ocean Plan requirements that prohibit discharges from reducing light transmittance or dissolved oxygen by more than 10% below ambient levels. Receiving waters are not currently stressed, nor will the continued discharge lead to such stressed conditions.
Water Quality Standards	3. The applicant has demonstrated it can consistently achieve State water quality standards and federal 304(a)(1) water quality criteria beyond the zone of initial dilution. (Finding #3 of the 2017 EPA Final Decision)	Does the discharge comply with applicable water quality standards?	The PLOO discharge complies with all applicable Ocean Plan receiving water standards and federal water quality criteria for the protection of marine aquatic life and human health. The discharge complies with the majority of these standards by multiple orders of magnitude.
Public Water Supplies	4. The applicant's proposed discharge, alone or in combination with pollutants from other sources, will not adversely impact public water supplies or interfere with the protection and propagation of a BIP of fish, shellfish and wildlife, and will allow for recreational activities. (Finding #4 of the 2017 EPA Final Decision)	No public water supplies are endangered.	No impact on existing or planned water supplies. The Carlsbad Desalination Facility is located more than 30 miles north of the Point Loma outfall and will not be affected in any discernible way by the Point Loma discharge.

Table 11: Summary of Key Discharge Issues Addressed in this Application

Table 11 summarizes the overall findings of the comprehensive scientific studies on which this

Category	Finding from 2017 EPA Final Decision Document ¹	Key Questions Addressed in Attached Application	Conclusions from Attached Application
Balanced, Indigenous Population (BIP)	4. The applicant's proposed discharge, alone or in combination with pollutants from other sources, will not adversely impact public water supplies or interfere with the protection and propagation of a balanced, indigenous population (BIP) of fish, shellfish and wildlife, and will allow for recreational activities. (Finding #4 of the 2017 EPA Final Decision)	Will retention of existing modified 301(h) limits for TSS and BOD impact benthic species, fish, or the propagation of a balanced indigenous population?	A BIP is maintained beyond the PLOO ZID. Key species parameters such as infaunal abundance, species diversity, Benthic Response Index, and the numbers and populations of indicator species are maintained within the limits of variability that typify natural benthic communities of the Southern California Bight. Infaunal communities off Point Loma have remained stable from year to year in terms of number of species, number of individuals, and dominance. Values for these parameters in the outfall area are similar to elsewhere in the Southern California Bight. While several trends are evident from comparing pre-discharge and post- discharge conditions, these trends are not indicative of environmental degradation. As an example, there is a general increase in the total abundance and number of benthic infauna species nearest the outfall since the discharge was initiated, contrary to what would be expected if environmental degradation were occurring. Additionally, increases in infaunal abundance have occurred near the outfall, another pattern contrary to known pollution effects. The PLOO provides a high degree of initial dilution, and the waste field is efficiently and rapidly dispersed. The erosional environment at the extended outfall site and the location of the outfall adjacent to the shelf break prevent the accumulation of solids in ocean sediments. While small increases in sulfide and BOD concentrations have occurred in sediments nearest the outfall diffusers, sediment data collected since 1994 do not indicate any trends in sediment chemistry or deposition that would degrade marine life. Because of these factors, benthic species, fish, and marine aquatic life continue to be protected, and a BIP is maintained beyond the PLOO ZID.

Category	Finding from 2017 EPA Final Decision Document ¹	Key Questions Addressed in Attached Application	Conclusions from Attached Application
Bacteriological Standards and Recreation	4. The applicant's proposed discharge, alone or in combination with pollutants from other sources, will not adversely impact public water supplies or interfere with the protection and propagation of a balanced, indigenous population (BIP) of fish, shellfish and wildlife, and will allow for recreational activities. (Finding #4 of the 2017 EPA Final Decision)	Will the PLOO discharge comply with State of California body- contact recreational standards throughout the water column in State-regulated waters?	Regional Board Order No. R9-20017-0007, which became effective on October 1, 2017, implemented Ocean Plan recreational body contact bacteriological standards that apply to all depths in all state-regulated waters (waters within three miles of the coast). The Point Loma discharge is partially disinfected, and the outfall extends approximately 4.5 miles offshore (outside the three nautical mile state- regulated limit). Receiving water data collected during 2017-2020 indicate no outfall-related exceedances of Ocean Plan body contact recreational standards that are applicable within the state- regulated three nautical mile limit. Data also demonstrate compliance with federal recreational water quality criteria outside the three nautical mile state-regulated limit. Further, as demonstrated in the attached application, no recreational water contact uses are known to exist off the coast of Point Loma beyond State- regulated waters.
Monitoring Program	5. The applicant has a well- established monitoring program and has demonstrated it has adequate resources to continue the program. (Finding #5 of the 2017 EPA Final Decision)	Is the monitoring program effective in assessing potential impacts?	The City's ocean discharge monitoring program is one of the (if not the) most comprehensive in the world, and includes influent monitoring, effluent monitoring, receiving water monitoring, sediment chemistry monitoring, benthic monitoring, and fish and fish tissue monitoring. The program includes a comprehensive array of reference and outfall stations to (1) demonstrate compliance with applicable requirements, and (2) allow for analysis of how the discharge affects the environment.
Impacts on Other Discharges	6. The adoption by the Regional Water Board of a NPDES permit which incorporates both the federal 301(h) variance and State permit requirements will serve as the State's determination, pursuant to 40 CFR 125.59(f)(4), that the requirements under 40 CFR 125.64 are achieved (e.g., the discharge will not result in any additional treatment requirements on any other source). (Finding #6 of the 2017 EPA Final Decision)	Will retention of existing modified 301(h) limits for TSS and BOD affect other point or non-point dischargers?	The discharge does not and will not affect any other point or nonpoint dischargers. The offshore distance of the outfall sufficiently separates the Point Loma discharge from point and nonpoint sources along the shore. Other regional offshore (outfall) discharges are sufficiently distant so as to not interfere with each other.

Category	Finding from 2017 EPA Final Decision Document ¹	Key Questions Addressed in Attached Application	Conclusions from Attached Application
Source Control and Toxics	 7. The applicant's existing pretreatment program was approved by EPA Region 9 on June 29, 1982 and remains in effect. 8. The applicant has complied with urban area pretreatment requirements by demonstrating that it has an applicable pretreatment requirement in effect for each toxic pollutant introduced by an industrial discharger. 9. The applicant will continue to develop and implement both its existing nonindustrial source control program, in effect since 1985, and existing comprehensive public education program to minimize the amount of toxic pollutants that enter the treatment system from nonindustrial sources. (Findings #7, #8, and #9 of the 2017 EPA Final Decision) 	Has the City complied with applicable source control requirements?	The City implemented and received EPA approval for an Urban Area Pretreatment Program in 1996. The City continues to implement public education and non- industrial source control actions, such as the City's Household Hazardous Waste Program. The Point Loma discharge continues to comply with Ocean Plan water quality standards for toxics and with applicable federal water quality criteria. Mass emissions of chromium, lead, nickel, silver, and zinc have been reduced by an order of magnitude or more from mass emissions of 25 years ago.
Mass Emissions	10. There will be no new or substantially increased discharges from the point source of the pollutants to which the 301(h) variance applies above those specified in the permit. The discharge will not result in new or substantially increased mass emissions. (Finding #10 of the 2017 EPA Final Decision)	Will the discharge result in increased mass emissions?	The City is not requesting any increase in mass emission limits as part of this application for renewal of 301(h) NPDES requirements for the PLOO. Existing MERs are in keeping with maintaining compliance with State water quality standards, federal water quality criteria, and protecting beneficial uses. Additionally, the City is requesting a reduction in allowable TSS mass emissions discharged from the PLWTP within the renewed 301(h) NPDES permit.

Category	Finding from 2017 EPA Final Decision Document ¹	Key Questions Addressed in Attached Application	Conclusions from Attached Application
Conflict with Other State or Federal Laws	11. The issuance of a final 301(h)– modified permit is contingent upon receipt of determinations that the issuance of such permit does not conflict with applicable provisions of federal and State laws. (Finding #11 of the 2017 EPA Final Decision)	Does the Point Loma discharge conflict with any applicable state or federal laws?	As documented in the attached application, the Point Loma discharge complies with applicable state and federal laws. The discharge is consistent with protecting receiving water beneficial uses and endangered and threatened species. Correspondence will be submitted to EPA from the U.S. Fish and Wildlife Service, National Marine Fisheries Service, and Regional Board indicating no such conflict with applicable state or federal laws. The State of California Coastal Commission will render such a compliance determination after adoption of the renewed Point Loma NPDES permit by the Regional Board.
Compliance with Section 301(j)(5) of the Clean Water Act	 12. In its operation of the PLWTP, the applicant will continue to: achieve a monthly average system-wide percent removal for TSS of not less than 80 percent and an annual average system-wide percent removal for BOD of not less than 58 percent; and has implemented a water reclamation program that will result in a reduction in the quantity of suspended solids discharged into the marine environment during the period of the 301(h) modification. In addition, the applicant has constructed a system capacity of 45 mgd of reclaimed water, thereby meeting this January 1, 2010 requirement. (Finding #12 of the 2017 EPA Final Decision) 	Does the Point Loma discharge comply with TSS and BOD removal requirements of Section 301(j)(5) of the Clean Water Act?	As required within Section 301(j)(5) of the CWA, the City of San Diego achieves a minimum 58% removal of BOD (annual average) and 80% removal of TSS (monthly average) on a system-wide basis. The City has achieved a system-wide average TSS removal of approximately 89% and average BOD removal of approximately 61% during the effective period of Order No. R9-2017-0007. Since the approval of the initial modified permit in 1995 there has been a significant reduction in the quantify of TSS discharged into the marine environment when compared to the previous permit periods. As further required within CWA Section 301(j)(5), the City has constructed 45 mgd of recycled water production capacity.

Table 11 Notes:

1 Findings presented within: Final Decision of the Regional Administrator Pursuant to 40 CFR Part 125, Subpart G, City of San Diego's PLWTP, Application for a Modified NPDES Permit Under Section 301(h) and 301(J)(5) of the CWA. U.S. EPA, Region IX, August 4, 2017. EPA final approval of the City's 301(h) modified permit (NPDES CA0107409) was issued on August 4, 2017 and became effective October 1, 2017.

PART 2: NPDES APPLICATION FORMS

City of San Diego Public Utilities Department

March 2022

NPDES Application Forms

Table of Contents

Application Certification Statement

EPA Form 2A

EPA Form 2S

Figures and Maps

State of California Form 200

Contributions Disclosure Statement

Note: EPA Form 3150 (EPA Form 1) is no longer required for Publicly Owned Treatment Works.

Application Certification Statement

Renewal of NPDES CA0107409

Signatory and Certification Statement to the NPDES CA0107409 Permit Renewal Application

I certify that: I am the principal executive officer or ranking official.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Signature	hhi
Name	Juan Guerreiro
Title	Interim Director, Public Utilities Department
Date	3/17/2022
Organization	City of San Diego, Public Utilities Department
Address	9192 Topaz Way, MS 901
	San Diego, CA 92123
Phone Number	858-292-6401

Renewal of NPDES CA0107409

EPA	Identificatio	n Number	NPDES Pe	rmit Numb	er	E 14/	Facility Name		Form Approved 03/05/19
			CA01	07409		E.W. Wastewa	ater Treatment Plant		OMB No. 2040-0004
Form					U.S. En	vironme	ental Protection Ag	ency	
2A	.0	FPA		A	oplication for	NPDES	Permit to Discharg	e Was	tewater
NPDES				NEW	AND EXISTIN	G PUBLI	ICLY OWNED TRE		NT WORKS
SECTIO	N 1. BAS	IC APPLICAT	ION INFORMATIO	on for	ALL APPLICA	NTS (40	CFR 122.21(i)(1) a	nd (9)	
	1.1	Facility name	<u>j</u>				······································		
		E.W. Blom P	oint Loma Wastev	vater Tre	atment Plant				
		Mailing addr	ess (street or P O	hox)					
		City of San D	iego Public Utilitie	s Depart	ment: 9192 To	opaz Way	v. MS 901		
		City or town			,		State		7IP code
ч		San Diego					CA		92123
nati		Contact nam	(first and last)	Titlo			Phone number		Email address
forn		Juan Guerre	iro	The	Interim Directo	or	(858) 292-6401		IGuerreiro@sandiego.gov
v In		Juan Guerre		Put	blic Utilities Depa	artment			souch choice surface bollow
acilit		Location add 1902 Gatche	lress (street, route Il Road	number	or other speci	fic identi	fier) 🕑 Same a	is maili	ng address
<u> </u>		City or town					State		ZIP code
		San Diego					CA		92105
-	1.2	Is this applic	ation for a facility t	hat has y	et to commen	ce discha	arge?		•
		☐ Yes	→ See instruction	is on dat	a submission	٠	No		
			requirements f	for new c	lischargers.				
	1.3	Is applicant of	different from entity	/ listed u	nder Item 1.1 a	above?			
		☐ Yes				[to Item	1.4.
		Applicant na	me			-			
		See above S	ection 1.1						
			dress (street or P () hov)					
tion		See above		0. 007)					
rma		City or town					State		7IP code
Info		See above					Oldie		
ant		Contact nam	o (first and last)	Titlo			Phone number		Email address
plic		See above		Thic			Thome number		
Ap	1 /	Is the applic	ant the facility's ow	inor ono	rator or both?	(Chock (only one response)		
	1.4						only one response.		Dath
-		L Owne				101		V	BOIU
	1.5	To which ent	ity should the NPE	DES perr	nitting authority	y send co	orrespondence? (Ch	leck on	ly one response.)
		🔲 Facilit	y		Appli Appli	cant		~	Facility and applicant
		la dia ata la ala	, 		tal				(they are one and the same)
ts	1.6	number for e	w any existing enverse)	/ironmen	tal permits. (C	neck all t	nat apply and print	or type	the corresponding permit
ermi					Existing E	Invironm	ental Permits		
al Pe		NPDE	S (discharges to s	urface	RCR	A (hazar	dous waste)		UIC (underground injection
enta		water)							control)
mno			S CA0107409		Not	applicab		_	
nvirc			air emissions)		V Nona	attainmer	nt program (CAA)	~	NESHAPS (CAA)
g Er		See A	ttached - Page 1a		See	<u>Attachec</u>	- Page 1a		See Attached Page 1a
stinç		Ocear	n dumping (MPRS)	A)	Dred	ge or fill	(CWA Section		Other (specify)
Exi					404)				
		Not a	pplicable		Not	applicab	ie		Not applicable

EPA Form 3510-2A – Section 1, Part 1.6 Air Quality Permits Issued by the San Diego County Air Pollution Control District Point Loma Wastewater Treatment Plant and Metro Biosolids Center

Type of Permit Clean Air Act	San Diego County Air Pollution Control District (APCD) Permit Number
Non-Attainment Program ¹	 APCD2002-PTO-961008 (Title V permit)² APCD2002-PTO-960190 (Boiler 1) APCD2002-PTO-960191 (Boiler 2) APCD2002-PTO-960192 (Boiler 3) APCD2002-PTO-960193 (Boiler 4) APCD2008-PTO-961125 (GUF emergency engine) APCD2004-PTO-961168 (GUF Engine 1 South) APCD2004-PTO-961169 (GUF Engine 2 North) APCD2015-PTO-002381 (Five prime diesel engines) APCD2016-PTO-002650 (Dewatering pump 1) APCD2016-PTO-950315 (Flares and Digesters) APCD2006-PTO-930297 (Odor systems 1, 2, 3, 4, 5, 7, and 8) APCD2006-PTO-940189 (Odor system 9)
National Emission Standards for Hazardous Air Pollutants (NESHAP) Equipment under 40 CFR Part 63 Subpart ZZZZ (Stationary Reciprocating Internal Combustion Engines) ³	 APCD2008-PTO-961215 (GUF emergency engine) APCD2004-PTO-961168 (GUF Engine 1 South) APCD2004-PTO-961169 (GUF Engine 2 North)
National Emission Standards for Hazardous Air Pollutants (NESHAP) Equipment under 40 CFR Part 63 Subpart DDDDD (Boilers and Process Heaters) ⁴	 APCD2002-PTO-960190 (Boiler 1) APCD2002-PTO-960191 (Boiler 2) APCD2002-PTO-960192 (Boiler 3) APCD2002-PTO-960193 (Boiler 4

1 Operating permits issued by the San Diego County Air Pollution Control District (APCD) for reducing pollutant loads in accordance with the Attainment Plan adopted by the APCD.

2 Operating permits issued by the San Diego County APCD pursuant to Title V of the Clean Air Act, which regulates facilities that meet regulatory designations as a major source of pollutants.

3 Permits issued by the San Diego County APCD pursuant to Title 40, Part 63, Subpart ZZZZ (40 CFR 63, Subpart ZZZZ) of the *Code of Federal Regulations* to implement national emission limitation and standards for hazardous air pollutants (HAPs) emitted from stationary reciprocating internal combustion engines.

4 Permits issued by the San Diego County APCD pursuant to Title 40, Part 63, Subpart DDDDD (40 CFR 63, Subpart DDDDD) of the *Code of Federal Regulations* to implement national emission limitation and standards for HAPs emitted from industrial, commercial and institutional boilers and process heaters.

EPA	Identificatio	on Number	NPDES Permit Nu	mber	Facility Nam	lê t Loma		Form Approve	ed 03/05/19
			CA0107409)	Wastewater Treatn	nent Plant		OIVID INU.	2040-0004
	1.7	Provide the collect	ction system information	ation reque	sted below for the treatm	nent works.			
		Municipality Served	Population Served		(indicate percentage)	De	Ow	nership Statu	JS
rved		City of San	1.454 million	<u>100</u> 0	% separate sanitary sewer % combined storm and sar	nitary sewer	Own Own		Vaintain Vaintain
lation Se		Metro System	0.849 million*	<u>100</u> 0	% separate sanitary sewer % combined storm and sar	nitary sewer	□ Own □ Own		Vaintain Vaintain Vaintain
ind Popu		*See attached page 2a for agencies and population p years. The listed populatic	a list of Metro System rojections for future ns are based on SANDAG		% separate sanitary sewer % combined storm and sar	nitary sewer	Own Own Own		<u>Maintain</u> Maintain Maintain
System a		population estimates for 2 sewer collection facilities a sewer (0% combined storn agencies contributing flow	020. All contributing re 100% separate sanitary sanitary sewer) for all to the Metro System.		Unknown % separate sanitary sewer % combined storm and sar	nitary sewer	□ Own □ Own □ Own		<u>Maintain</u> Maintain Maintain
Collection		Total Population	2.303 million		Unknown		U Own		Vlaintain
Ũ				Sepa	arate Sanitary Sewer Sy	rstem	Comb Sa	oined Storm a Initary Sewer	nd
		Total percentage sewer line (in mile	of each type of es)		10	0 %		0	%
ountry	1.8	Is the treatment v	vorks located in Indi	an Country	/?				
an Co	1.9	Does the facility of	lischarge to a receiv	ving water	that flows through Indian	Country?			
India		Yes	-	-	✓ No	-			
	1.10	Provide design a	nd actual flow rates	in the desi	gnated spaces.	-	Des	sign Flow Rat	e
_							432 mgc 240 m	i (peak wet weather) gd (average annual)	mgd
ctua is				Annua	Average Flow Rates (A	Actual)			
ld A Rate		Two Ye	ars Ago		Last Year			This Year	
gn ar Iow I		2018:	139.0 mgd	201	9: 143	3.9 mgd	2020:	144	1.3 mgd
)esi(F				Maxim	um Daily Flow Rates (A	Actual)			
		Two Ye	ars Ago		Last Year			This Year	
		2018:	216.3 mgd	20:	19: 23	0.6 mgd	2020:	29	3.3 mgd
nts	1.11	Provide the total	number of effluent o	lischarge p	oints to waters of the Un	ited States I	oy type.		
Poir 3e			lota	II NUMDEr	of Effluent Discharge P	oints by Ty	/ре	Constru	ucted
charge by Typ		Treated Efflue	nt Untreated	Effluent	Combined Sewer Overflows	Вура	asses	Emerge	ency Dws
Dis		1	0		0		0	0	

Note: See table on attached page 2b for breakdown of monthly flows during 2018-2020.

Portion of Metropolitan Sewerage System	Estir	nated Populatio (pop	on Served withir pulation in millio	n the Metro Systons ons)	tem ¹
Service Area	2020	2021	2022	2023	2025
Portion of City of San Diego that contributes flows to the Metro System ²	1.454	1.468	1.482	1.496	1.524
Combined estimated population within the following member agencies served by the Metro System: City of Chula Vista City of Coronado City of Del Mar City of Imperial Beach City of La Mesa City of Lemon Grove City of National City City of Poway County of San Diego Otay Water District Padre Dam Municipal Water District	0.849	0.855	0.862	0.888	0.880
Total estimated population served by the Metro System	2.303	2.323	2.344	2.384	2.404
Total population served by the South Bay WRP ³	0.11	0.11	0.11	0.12	0.12
Estimated Metro System population served by the North City WRP and PLWTP	2.19	2.21	2.23	2.26	2.28

EPA Form 3510-2A – Section 1, Part 1.7 Estimated Populations Served by the Metro System, 2020-2025

1 Metro System population projections developed by the San Diego Public Utilities Department from adopted SANDAG (San Diego Association of Governments) Series 13 population projections.

2 Excludes portions of the City of San Diego that are served by the City of Escondido Hale Avenue Resource Recovery Facility.

3 Approximate 2020 population tributary to the South Bay WRP was 0.11 million, per 2020 Annual Pretreatment Report for the South Bay Water Reclamation Plant.

4 Includes portions of the Metro System tributary to the North City WRP and PLWTP.

EPA Form 3510-2A – Section 1, Part 1.10 Point Loma Wastewater Treatment Plant Effluent Flows by Month, 2018-2020^{1,2}

		Monthly	Average Point	t Loma Effluer	nt Flow ^{1,2}	
Month	201	18	20	19	20	20
	mgd	m³/sec	mgd	m³/sec	mgd	m³/sec
January	138.2	6.06	138.3	6.06	149.8	6.57
February	135.8	5.95	177.0	7.76	148.8	6.52
March	141.4	6.20	157.2	6.89	159.6	7.00
April	135.2	5.93	140.9	6.18	173.0	7.58
Мау	135.4	5.94	140.2	6.15	138.6	6.08
June	133.7	5.86	137.1	6.01	138.2	6.06
July	135.7	5.95	133.1	5.84	136.3	5.98
August	139.2	6.10	132.4	5.80	137.2	6.02
September	138.0	6.05	133.3	5.84	138.5	6.07
October	142.1	6.23	132.5	5.81	138.7	6.08
November	141.4	6.20	142.1	6.23	137.7	6.04
December	151.8	6.66	162.7	7.13	135.6	5.95
Annual Average ³	139.0	6.09	143.9	6.30	144.3	6.33
Maximum Daily Flow ⁴	216.3	8.02	230.6	10.11	298.3	13.08

Section 1, Part 1.1 of EPA NPDDS Form 2A requires flow data from within 3 months of the date of application. This table shows Point Loma Wastewater Treatment Plant (PLWTP) effluent flows for calendar years 2018-2020, as calendar year 2020 is the most recent year for which a complete 12-month data set was available at the time of preparation of this report. Data for calendar year 2021 will be electronically transmitted to regulators per reporting requirements of Order No. R9-2017-0007.

2 From monthly monitoring reports submitted to the Regional Board during 2018 through 2020.

3 Average annual PLWTP flows during 2018-2020 were lower than flows projected in the City's prior NPDES application due to drought conditions, increased recycled water use, and expanded local water conservation efforts.

4 Maximum observed daily flow during the listed calendar year.

EPA	Identificat	ion Number	NPDES	Permit Number 0107409		E.W Wastev	Facility Na J. Blom Poi Water Treat	ime nt Loma tment P	lant		Form Approved 03/05/19 OMB No. 2040-0004
	Outfall	s Other Than t	o Waters of the	United State	es						
	1.12	Does the POT discharge to v	W discharge wave waters of the Uni	astewater to b ited States?	oasins, po	onds, or ot 고 No ·	her surfac → SKIP te	ce impo o Item ⁻	oundme	ents that	do not have outlets for
	1 1 3	Provide the Io	cation of each s	urface impou	ndment a	nd associ	ated disch	arne ir	format	tion in th	e table below
	1.15			Surface In	npoundr	nent I oca	tion and	Discha	arge D	ata	
					Av	erage Dai	lv Volum	e		••••	
			Location		Dis	scharged	to Surfac	e		Contin	(aback and)
						Impound	dment				(CHECK OHE)
			Not applicable			Not app	Not applicable gpd			Contin Intermi	uous ittent
			Not applicable			Not app	licable	gpd		Contin Intermi	uous ittent
<u></u>			Not applicable			Not app	licable	gpd		Contin Intermi	uous ittent
hod	1.14	Is wastewater	applied to land?	?	1						
al Met	1 1 -	Yes	• • • • • • • • • • • • • • • • • • •	1]	No No	→ SKIP	to Item	1.16.		
sod	1.15	Provide the la	nd application si	ite and discha	arge data	requested	Delow.	harao [Data		
Dis				Lallu				larger	Jala		Continuous or
arge or		Loca	ation		Size		Avera	age Da Appl	ily Vol lied	ume	Intermittent (check one)
Dischi		Not ap	plicable		NA	acres			NA	gpd	Continuous Intermittent
Other		Not ap	plicable		NA	acres			NA	gpd	Continuous
s and		Not ap	plicable		NA	acres			NA	gpd	Continuous Intermittent
Dutfall	1.16	Is effluent trar	nsported to anot	her facility for	treatmer	nt prior to a	lischarge' ⊃ ➔ SKIF	? ? to Iter	n 1.21		
0	1.17	Describe the r	means by which	the effluent is	s transpo	rted (e.g.,	tank truck	, pipe).			
		Not applicable - Note: Digested	- all Point Loma W PLWTP sludge is t	astewater Trea transported via	tment Pla pipeline t	int (PLWTP) to the Metro	treated ef Biosolids	fluent is Center f	discha for trea	rged to th tment an	ne Point Loma Ocean Outfall. d dewatering.
	1.18	Is the effluent	transported by a	a party other t	than the :	applicant?	→ SKIP t	o Item	1 20		
	1 10	Provide inform	nation on the tra	nsnortar halo	\\/			o nom	1.20.		
	1.17	T TOVICE INION				Transport	er Data				
		Entity name Not applicabl	e			runoport	Mailing a	address	s (stree	et or P.O	. box)
		City or town	e				State				ZIP code
		Contact name Not applicabl	e (first and last) e				Title Not app	licable			
		Phone numbe Not applicabl	e				Email ac	dress			

EPA	Identificat	ion Number	NF	DES Permit Nur CA0107409	nber	E.	F W. E	acility Name Blom Point Loma	9		Form Approved 03 OMB No. 204	3/05/19 0-0004	
	1.20	In the table bel	ow, indicat	e the name, a	address, conta	act inforn	ewa natio	on, NPDES nu	imber, a	and a	verage daily flow rate of	the	
			y		Rec	eiving F	acil	ity Data					
ned		Facility name Not applicable					N 1	lailing address Not applicable	s (stree	t or P	P.O. box)		
Contir		City or town Not applicable					S	State			ZIP code		
) spoy		Contact name Not applicable	(first and la	ist)			T N	itle Not applicable					
al Metl		Phone number Not applicable					E	imail address					
ispos		NPDES numbe	er of receiv	ing facility (if a	any) □N	lone	Average daily flow rate NA mgd						
ge or D	1.21	Is the wastewa have outlets to	ter dispose waters of	ed of in a mar the United Sta	ner other than ates (e.g., und	n those a lerground	alrea d pe	ady mentioned ercolation, und	l in Iten ergroui	ns 1.1 nd inj	4 through 1.21 that do no ection)?	ot	
schar	1 22	Yes	ation in the	tabla balaw	en these other		10 -	SKIP to Iter	n 1.23.				
ir Di	I.ZZ				Information	on Othe	r Di	sposal Metho	ods				
and Othe		Disposal Method Description	Lo Dis	cation of posal Site	Size Dispos	e of al Site		Annual Ave Daily Disch Volume	erage large	C	Continuous or Intermitte (check one)	ent	
Outfalls		Not applicable	e Not	applicable	NA	a acre	es	NA	gpd		Continuous Intermittent		
0		Not applicabl	e Not	applicable	NA	a acro	es	NA	gpd		Continuous Intermittent		
		Not applicabl	e Not	applicable	NA	a acro	es	NA	gpd		Continuous Intermittent		
e S	1.23	Do you intend Consult with yo	o request	or renew one permitting au	or more of the uthority to dete	e varianc ermine w	:es ; /hat	authorized at 4 information ne	40 CFR eeds to	2 122. be si	21(n)? (Check all that ap ubmitted and when.)	ply.	
Varianc Reques		Discharg	ges into ma 301(h))	arine waters (^{CWA}	□ Wa 302	ter 2(b)	quality related (2))	effluer	nt limit	tation (CWA Section		
	1.24	Are any operat	ional or ma	aintenance as	pects (related	to waste	ewa	ter treatment	and effl	uent	quality) of the treatment v	works	
		the responsibil	ty of a con	tractor?	'`` Г	고 No	•	SKIP to Section	nn 2				
	1.25	Provide locatio and maintenan	n and cont	act informatic sibilities.	on for each co	ntractor i	n a	ddition to a de	scriptio	n of tl	he contractor's operation	al	
				-	Con	tractor I	nfo	rmation					
_		Contractor nan		Сог	ntractor 1			Contractor	r 2		Contractor 3		
natio		(company nam	e)	Not	applicable								
Inforr		Mailing addres (street or P.O.	s box)	Not	applicable								
ractor		City, state, and code	ZIP	Not	applicable								
Conti		Contact name last)	(first and	Not	applicable								
		Phone number		Not	applicable								
		Email address	-1	Not	applicable								
		operational an maintenance responsibilities	a of	Not	applicable								
	<u> </u>	contractor											

EPA	Identificat	ion Number	NPDES Permit Num	nber	Faci	ity Name	Fo	rm Approved 03/05/19
			CA0107409		E.W. Blo Wastewater	m Point Loma		OMB No. 2040-0004
SECTIO	N 2. AD	DITIONAL INFOR	RMATION (40 CFR 122	.21(j)(1) and	(2))	in catinent i lant		
MO	Outfall	Is to Waters of th	e United States			Sewe	r system models used by the	City currently estimate I&I
Jn Fl	2.1	Does the treatm	ent works have a desig	n flow greate	r than or equal	to 0.1 mgd? at 5%	of annual flow, but I&I durin nding on hydrologic condition	ng any given time can vary ns. PLWTP flows during
Desiç		✓ Yes			No ➔ SKIP t	o Section 3. weat	2020 averaged 14.6 mgd hig ner days. See tables on attac	her on rain days than dry hed page 5a.
on	2.2	Provide the trea	tment works' current av	verage daily v	olume of inflow	Average Da	aily Volume of Inflow	v and Infiltration
Itrati		and infiltration.	Differences between flows on rai higher) in 2018 to 21.7 mgd (15%	n and dry days range higher) in 2020. Se	ed from 4.3 mgd (3.1% e tables on page 5a.	Based on 2018 See tables on a	2020 flow data. ttached page 5a	14.6 mgd
l Infi		Indicate the step	os the facility is taking to	o minimize inf	low and infiltrat	tion.		
/ anc		The City maintains interceptors, ongo	a program for reducing in ing evaluation and prioriti	iflow and infiltr	ation (I&I) that i ies upgrades, an	ncludes visual and ongoing program	television inspection for rehabilitating and	of sewer mains and upgrading sewers,
low		and a program for	inspecting and sealing ma	inholes. Additi	onally, the City n	naintains an extens	ive flow metering and	d modeling system
- -	2.2	to assess system fi	ows and capacity needs.	ta thia annlian	tion that contai	no all the require	d information? (Ca	o instructions for
aphi p	2.3	Have you attack specific requirer	nents.)	to this applica	lion inal conta	ins all the require	a information? (Se	e instructions for
ogra Maj		· ·	,					
Тор		✓ Yes			No			
am	2.4	Have you attach	ed a process flow diag	ram or schem	atic to this app	lication that cont	ains all the required	information?
Flov iagra			s for specific requireme	nis.)	Na			
0		Yes			NO			
	2.5	Are improvemer	nts to the facility schedu	iled?				
		L Yes		~	No ➔ SKIP	to Section 3.		
Ľ		Briefly list and d	escribe the scheduled i	mprovements	5.			
tatio		Ongoing operatio	ns at the Point Loma Wast	tewater Treatm	ent Plant (PLWT	P) include routine	replacement and/or r	ehabilitation of
men		equipment and fa	acilities, but no major chai / treatment) or solids proc	nges are propos cessing (anaero	sed that affect th bic digestion) at	e nature of wastev the PLWTP. Furthe	water treatment (e.g., er, no compliance sch	, chemically edule
nple		improvements ha	ve been imposed for the F	PLWTP.				
of Ir		See Appendix B fo	or a description of future N	/letro System o	perations and fa	cilities (including N	orth City Water Recla	mation Plant
ules		improvements an with the Point Lor	d San Diego Pure Water fa na Ocean Outfall concent	acilities) that ar	e proposed for o	ffloading PLWTP fl	ows to ensure continu	ued compliance
ched								
id Si								
ts aı	2.6	Provide schedul	ed or actual dates of co	mpletion for i	mprovements.	etion for Improv	vements	
men		Cabadulad	Affected				Desin	Attainment of
ove		Improvement	Outfalls	Constru	n ction C	onstruction	Discharge	Operational
Idml		(from above)	(list outfall number)	(MM/DD/Y	YYY) (M	M/DD/YYYY)	(MM/DD/YYYY)	Levei (MM/DD/YYYY)
luled		1.	Not applicable	NA		NA	NA	NA
Scher		2.	Not applicable	NA		NA	NA	NA
		3.	Not applicable	NA		NA	NA	NA
		4.	Not applicable	NA		NA	NA	NA
	2.7	Have appropriat response.	e permits/clearances co	oncerning oth	er federal/state	e requirements be	een obtained? Brief	ly explain your
		☐ Yes		No		~	None required o	or applicable
		Explanation: Ongoing operations at th	ne Point Loma Wastewater Treatm	ent Plant (PLWTP) in	clude routine replace	ment and/or rehabilitation	on of equipment and facilitie	s, but no major changes are
		proposed that affect the compliance schedule im	nature of wastewater treatment (provements have been imposed fo	e.g., chemically enhant r the PLWPT.	anced primary treatmo	ent) or solids processing	anaerobic digestion) at the I	PLWTP. Further, no

EPA Form 3510-2A – Section 2, Part 2.2 Summary of Point Loma Wastewater Treatment Plant Flows, 2018-2020 Wet Weather and Dry Weather Conditions

Point Loma Wastewater Treatment Plant (PLWTP)		Time	Period	
Flow Parameter	2018	2019	2020	Average 2018-2020
Average Annual PLWTP Flows, mgd	139.0	143.9	144.3	142.3
PLWTP Flows during Dry Weather, mgd ¹	138.3	139.0	140.5	139.3
PLWTP Flows during Wet Weather, mgd ²	142.6	156.8	162.2	153.9
Difference between wet weather days and dry weather days, mgd	4.3	17.8	21.7	14.6
Percent Difference Wet Weather Flows to Dry Weather Flows	3.1%	12.8%	15.4%	10.5%

1 PLWTP flows from monthly reports submitted to the Regional Water Quality Control Board (RWQCB). Wet weather flows are computed on the basis of average daily PLWTP flows during days on which precipitation is recorded.

2 Dry weather flows are computed on the basis of average daily PLWTP flows during days on which no precipitation is recorded.

EPA Form 3510-2A – Section 2, Part 2.2 Summary of Point Loma Wastewater Treatment Plant Flows, 2018-2020 Breakdown by Time of Week

Point Loma Wastewater Treatment Plant (PLWTP)		Time	Period	
Flow Parameter	2018	2019	2020	Average 2018-2020
PLWTP Flows during Weekdays, mgd ¹	139.2	144.0	144.2	142.5
PLWTP Flows during Weekends & Holidays, mgd ²	138.6	143.0	144.4	142.0
Percent Difference, Weekday to Weekend/Holiday	-0.4%	-0.7%	0.1%	-0.3%

1 PLWTP flows from monthly reports submitted to the RWQCB. Weekday flows are flows during Monday through Friday, excluding major holidays (New Years Day, Memorial Day, Independence Day, Labor Day, Thanksgiving and Christmas).

2 PLWTP flows during weekends (Saturday and Sunday) and major holidays (New Years Day, Memorial Day, Independence Day, Labor Day, Thanksgiving and Christmas).

EPA	A Identificat	tion Number	NPDES CA	CA0107409 DISCHARGES (40 CFR 122.2				Facility l V. Blom P water Tre	Name oint Loma eatment Pla	nt		Form Approved 03/05/19 OMB No. 2040-0004			
SECTIO	ON 3. INF	ORMATION ON E	FFLUENT D	DISCHAR	RGES (40	0 CFR 1	22.21(j)	(3) to (5)) pots if you	havo mo	ro thar	n throo	outfalls	١	
	5.1		wing informa	Outf	all Num	ber0)1	Out	fall Numb	er		Outfall	Numbe) er	
		State			Califo	ornia									
falls		County			San D	iego									
of Out		City or town			San D	iego									
ption 6		Distance from sh	nore			23,472	ft.				ft.			ft.	
Jescrij		Depth below surf	face		3	806-313	ft.	Note: Liste	d range of dept diffuser ports is	ths represent approximatel	the depth ly 310 fee	ns of diffuse t. Depth of	r ports. Av water at th	verage depth of he end of the	
		Average daily flo	w rate	23,472 1 306-313 1 144.3 mg 32° 39' 55" 117° 19' 25" W oed under Item 3.1 have seaso 1 1 formation for each applicable 001 1 Not applicable 1 1				diffu	iser is approxim	ately 320 feet	t below N	ILLW.			
		Latitude		32°	39'	55"	Ν	٥	,	"		o	,	"	
		Longitude		117 [°]	19'	25″	W	٥	,	"		o	,	"	
ata	3.2	Do any of the out \Box	tfalls describ	ed under	r Item 3.7	1 have s	easona	or peric ا احتا	dic discha	rges? ➤ skip t	o Itom	3 1			
arge D	3.3	If so, provide the	following inf	formation	for each	n applica	able out	Fall.		SKIF U		5.4.			
Ë			0												
Disch				Ou	tfall Nur	nber _0	01	Οι	utfall Num	ber	_	Outfa	ll Numb	oer	
iodic Disch		Number of times discharge occurs	per year	Ou	tfall Nur Not ap _l	nber plicable	01	01	utfall Num	ber	_	Outfa	ll Numt	oer	
or Periodic Disch		Number of times discharge occurs Average duratior discharge (specil	per year s n of each fy units)	Ou	tfall Nur Not app Not app	mber plicable plicable	01	01	utfall Num	ber	_	Outfa	ll Numt	oer	
sonal or Periodic Disch		Number of times discharge occurs Average duratior discharge (speci Average flow of e discharge	per year S n of each fy units) each	Ou	tfall Nur Not app Not app	mber _0 plicable plicable NA	01 mgd	0	utfall Num	ber	 mgd	Outfa	ll Numb	per mgd	
Seasonal or Periodic Disch		Number of times discharge occurs Average duration discharge (specil Average flow of e discharge Months in which occurs	per year s n of each fy units) each discharge	Ou	tfall Nur Not app Not app Not app	mber0 plicable plicable NA plicable	<u>01</u>		utfall Num	ber	_ mgd	Outfa	ll Numb	per mgd	
Seasonal or Periodic Disch	3.4	Number of times discharge occurs Average duration discharge (specif Average flow of e discharge Months in which occurs Are any of the ou	per year s of each fy units) each discharge utfalls listed u	Ou under Iter	tfall Nur Not app Not app Not app m 3.1 eq	nber _0 plicable plicable NA plicable uipped v	01 mgd with a di	Ou ffuser?	utfall Num	ber	mgd	Outfa	ll Numb	per mgd	
Seasonal or Periodic Disch	3.4	Number of times discharge occurs Average duratior discharge (specif Average flow of e discharge Months in which occurs Are any of the ou Yes Briefly describe t	per year s n of each fy units) each discharge utfalls listed u	Ou under Iter	tfall Nur Not app Not app Mot app m 3.1 eq	nber _0 plicable plicable NA plicable uipped v	01 mgd with a di	ffuser?	u tfall Num No → Sł	ker		Outfa	ll Numb	per mgd	
Type Seasonal or Periodic Disch	3.4	Number of times discharge occurs Average duratior discharge (specif Average flow of e discharge Months in which occurs Are any of the ou Yes Briefly describe t	per year s n of each fy units) each discharge utfalls listed u	Ou under Iter	tfall Nur Not app Not app m 3.1 eq ch applic	nber plicable plicable NA plicable uipped v cable ou nber	01 mgd with a di tfall. 01	ffuser?	No → Sł	ber <ip iter<br="" to="">ber</ip>		Outfa	II Numb	ber	
Diffuser Type Seasonal or Periodic Disch	3.4	Number of times discharge occurs Average duration discharge (specif Average flow of e discharge Months in which occurs Are any of the ou Image: Yes Briefly describe t	per year of each fy units) each discharge utfalls listed u	Our under Iter ype at ea Our Wye (Y-s 2,496-fo 208 disc spaced a (24 feet)	tfall Nur Not app Not app Mot app m 3.1 eq ch applid tfall Nun shaped) d oot-long le harge por approxima) apart.	nber _0 plicable NA plicable uipped v cable ou nber _0 liffuser w egs. Each rts that an ately 7.33	01 mgd with a di tfall. 01 ith two leg has re 3 meters	Ou ffuser?	No → Sł	ber		Outfa	II Numb	Der	
rs of Diffuser Type Seasonal or Periodic Disch	3.4 3.5 3.6	Number of times discharge occurs Average duration discharge (specif Average flow of e discharge Months in which occurs Are any of the ou Image: Yes Briefly describe t	per year s of each fy units) each discharge utfalls listed u he diffuser ty he diffuser ty	Ou under Iter ype at ea Out Wye (Y-s 2,496-fo 208 disc spaced a (24 feet) scharge o	tfall Nur Not app Not app Mot app m 3.1 eq ch applic tfall Nur shaped) d oot-long le harge por approxima) apart.	mber _0 plicable NA plicable uipped v cable ou nber _0 liffuser w egs. Each rts that an ately 7.33	01 mgd with a di tfall. 01 ith two leg has re 3 meters ge wast	ffuser?	No → Sł tfall Numl	ber <ip iter<br="" to="">ber f the Unit</ip>		Outfa Outfa	II Numb	per mgd	

EPA	A Identificat	tion Number	NPDES CA	S Permit Ni 1010740	umber 9	E. Wast	Fa .W. Blo .ew <u>ate</u>	cility Name om Point Loma er Treatme <u>nt Plant</u>	Facility Name E.W. Blom Point Loma stewater Treatment Plant		Form Approved 03/0 OMB No. 2040-	05/19 -0004
	3.7	Provide the re	ceiving water a	nd relate	ed information	n (if known) for (each outfall.				
				Out	fall Number	001	C	Dutfall Number		0	utfall Number	
		Receiving wat	er name		Pacific Ocea	n						
uo		Name of wate or stream sys	rshed, river, tem	Not applicable								
Descript		U.S. Soil Conservation Service 14-digit watershed code		Not applicable								
g Water		Name of state management/river basin			Not applicab	le						
Receiving		U.S. Geological Survey 8-digit hydrologic cataloging unit code			Not applicab	le						
		Critical low flow (acute)			NA	cfs			cfs			cfs
		Critical low flow (chronic)			NA	cfs			cfs			cfs
		Total hardnes low flow	s at critical		NA	mg/L of CaCO₃		m C	g/L of aCO₃		mg. Ca	/L of CO ₃
	3.8	Provide the fo	llowing information	tion desc	cribing the tre	eatment pr	ovide	d for discharges fro	m each	outfa	ıll.	
				Out	fall Number	001	C	Dutfall Number		0	utfall Number	
E		Highest Leve Treatment (cl apply per outf	I of heck all that all)	 ✓ ✓ Fill Set Set Set A O 	rimary (chemica quivalent to econdary econdary dvanced ther (specify)	ally enhanced)		Primary Equivalent to secondary Secondary Advanced Other (specify)			Primary Equivalent to secondary Secondary Advanced Other (specify)	
scriptio		Design Remo Outfall	oval Rates by									
ient De		BOD₅ or CBO	D ₅		> 58	%			%			%
Treatm		TSS			> 80	%			%			%
		Phosphorus		Ŀ	I Not applica	ible %		□ Not applicable	%		□ Not applicable	%
		Nitrogen		Ŀ	▲ Not applica	ible %		□ Not applicable	%		□ Not applicable	%
		Other (specify)	<u> </u>	▲ Not applica	ible %		□ Not applicable	%		□ Not applicable	%

EPA	EPA Identification Number NPDES Permit Number Fac			Facility N	Vame		Form Appr	oved 03/05/19		
			CA010	07409	E.w. Wastew	. Blom Po vater Tre	oint Loma atment Plar	nt	OWB	No. 2040-0004
pər	3.9	Describe the t season, descr Partial disinfec	ype of disinfection i ibe below. tion using sodium h	used for the effl hypochlorite for	uent from each	n outfall	in the table	e below. If disi	nfection varies	by water
ntinu		Dacteriological	Stanuarus establisi	ned within Orde	er NO. R9-2017	-0007.				
ion Con				Outfall Num	oer _001	Ou	tfall Numb	oer	Outfall Num	iber
Jescript		Disinfection ty	pe	Chlorinatio sodium hype	n using ochlorite					
Itment [Seasons used		Year-ro	und					
Trea		Dechlorination	used?	 Not applicable ✓ Yes No 		Not applicable Yes No		cable	Not applicable Yes No	
	3.10	Have you com	pleted monitoring f	or all Table A p	arameters and	attache	ed the resu No	Its to the appli	cation package	e?
	3.11	1 Have you conducted any WET tests during the 4.5 years prior to the date of the application on any of the facility's discharges or on any receiving water near the discharge points? ✓ Yes ✓ No → SKIP to Item 3.13.								ity's
3.12 Indicate the number of acute and chronic WET tests conducted since the last permit reissuance of the discharges by outfall number or of the receiving water near the discharge points.								e of the facility'	S	
				Outfall Nur	nber _001_	Out	fall Numb	er	Outfall Num	ber
				Acute	Chronic	Ac	cute	Chronic	Acute	Chronic
		Number of tes water	ts of discharge	0*	106	* Acute t Order N	oxicity testing n No. R9-2017-000	ot required per the C)7 requires chronic to	alifornia Ocean Plan. xicity testing.	
		Number of tes	ts of receiving	0*	106**	** All effl seawat	uent tests are co ter (filtered) tha	ompared with refere t is supplied by the S	nce toxicant samples cripps Institution of C	that are natural ceanography.
a	3.13	Does the treatment works have a design flow greater than or equal to 0.1 mgd? Image: State of the treatment works have a design flow greater than or equal to 0.1 mgd? Image: State of the treatment works have a design flow greater than or equal to 0.1 mgd? Image: State of the treatment works have a design flow greater than or equal to 0.1 mgd? Image: State of the treatment works have a design flow greater than or equal to 0.1 mgd? Image: State of the treatment works have a design flow greater than or equal to 0.1 mgd? Image: State of the treatment works have a design flow greater than or equal to 0.1 mgd? Image: State of the treatment works have a design flow greater than or equal to 0.1 mgd? Image: State of the treatment works have a design flow greater than or equal to 0.1 mgd? Image: State of the treatment works have a design flow greater than or equal to 0.1 mgd? Image: State of the treatment works have a design flow greater than or equal to 0.1 mgd? Image: State of the treatment works have a design flow greater than or equal to 0.1 mgd? Image: State of the treatment works have a design flow greater than or equal to 0.1 mgd? Image: State of the treatment works have a design flow greater than or equal to 0.1 mgd? Image: State of the treatment works have a design flow greater than or equal to 0.1 mgd? Image: State of the treatment works have a design flow greater than or equal to 0.1 mgd? Image: State of the treatment works have a design flow gr								
ing Dat	3.14	Does the POT reasonable po	W use chlorine for tential to discharge	disinfection, us e chlorine in its e	e chlorine else effluent?	where i	n the treatr	ment process,	or otherwise h	ave
Test		✓ Yes →	Complete Table B	3, including chlo	rine.		No 🗲 Co	omplete Table	B, omitting ch	lorine.
luent	3.15	Have you com package?	pleted monitoring f	for all applicable	e Table B pollut	tants an	nd attached	I the results to	this applicatio	n
Eff		✓ Yes					No			
	3.16	Does one or n	nore of the following	g conditions ap	oly?					
		I he facili The DOT	ty has a design flow	w greater than o	or equal to 1 mg	gd. oguirod	to dovelop	such a progr	m	
		The POTThe NPD	ES permitting auth	ority has inform	ed the POTW	that it m	iust sample	e for the paran	neters in Table	C, must
		sample o each of it	ther additional para s discharge outfalls	ameters (Table s (Table E).	D), or submit th	ne resul	ts of WET	tests for acute	or chronic tox	icity for
		₽ ^{Yes}	 Complete Table applicable. 	es C, D, and E a	IS		No 🗲 Sł	KIP to Section	4.	
	3.17	7 Have you completed monitoring for all applicable Table C pollutants and attached the results to this application								n
		раскаде? Уes					No			
	3.18	Have you com attached the re	pleted monitoring f esults to this applic	or all applicable ation package?	e Table D pollu	tants re	quired by y	our NPDES p	ermitting autho	ority and
		Yes					No addition permitting	onal sampling g authority.	required by NI	PDES

EPA	EPA Identification Number		NPDES Permit Number	E W	Facility Name		Form Approved 03/05/19				
			CA0107409	Wastev	water T	reatment Plant	UMB NO. 2040-0004				
	3.19	Has the POT or (2) at least	V conducted either (1) minimum four annual WET tests in the past	of four quarterly st 4.5 years?	WET	tests for one year	preceding this permit application				
		🗹 Yes				No → Comple Item 3.2	te tests and Table E and SKIP to 26.				
	3.20	Have you prev	viously submitted the results of th	he above tests to) your	NPDES permitting	authority?				
		🖌 Yes				No → Provide Item 3.2	results in Table E and SKIP to 6.				
	3.21	Indicate the da	Indicate the dates the data were submitted to your NPDES permitting authority and provide a summary of the results.								
		U	(MM/DD/YYYY)			Summary of	Results				
ontinued				See tables on pa Test results sub	age 25 mittec	a-25d for a summ I monthly per Ord	ary of chronic toxicity test results. er No. R9-2017-0007.				
a C	3.22	Regardless of	how you provided your WET tes	sting data to the	NPDE	S permitting autho	rity, did any of the tests result in				
Dat		toxicity?			_						
ting		🔲 Yes			~	No ➔ SKIP to	Item 3.26.				
Tes	3.23	Describe the o	cause(s) of the toxicity:								
Effluent		Not applicat	ole. All TST test results during th	e effective perio	d of O	rder No. R9-2017-	0002 have been "pass".				
	3.24	Has the treatment works conducted a toxicity reduction evaluation?									
		🔲 Yes	,		~	No ➔ SKIP to	Item 3.26.				
	3.25	Provide detail	s of any toxicity reduction evalua	ations conducted							
		Not applicabl	e - all TST test results have been	ı "pass".							
	3.26	Have you com	pleted Table E for all applicable	outfalls and atta	ched t	he results to the a	pplication package?				
		Yes				Not applicable information to t	because previously submitted he NPDES permitting authority.				
SECTIC	on 4. Inc	OUSTRIAL DISC	CHARGES AND HAZARDOUS	WASTES (40 CF	R 122	.21(j)(6) and (7))					
	4.1	Does the POT	W receive discharges from SIUs	s or NSCIUs?	_						
		Yes				No \rightarrow SKIP to It	em 4.7.				
Istee	4.2	Indicate the hi	Number of SIUs and NSCIUS that	discharge to the	POIN	V. Num	her of NSCIIIs				
s Wa			29			Num					
snop	4.2	Dece the DOT	38	ant program?			30				
ızar	4.3	Does the POT	w nave an approved pretreatme	ent program?	_						
d Hs		Yes				No					
larges an	4.4	Have you sub identical to tha application or	mitted either of the following to tl at required in Table F: (1) a pretr (2) a pretreatment program?	he NPDES perm reatment progran	itting a n annu	authority that conta al report submitte	ains information substantially d within one year of the				
lisch		Yes				No $ ightarrow$ SKIP to It	em 4.6.				
ial C	4.5	Identify the titl	e and date of the annual report of	or pretreatment p	orograi	m referenced in Ite	em 4.4. SKIP to Item 4.7.				
ustr		E.W. Blom Point Lon	na Metropolitan Wastewater Treatment Plant Pr	retreatment Annual Repo	ort, Janua	ry 1, 2020 - December 31, 3	2020.				
Ind	4.6	Have vou com	pleted and attached Table F to t	this application n	ackan	e?					
	Note: Completion of Part F is not required for 301(h) applicants per <u>40-C</u> FR 125.59(c)(1), which requires that NPDES permit application forms only										
		THS be the Qu	e submitted for Section I (Applicant and Facility prior EPA Standard Form A. For 301(h) and sectionnaire (LAQ). Descriptions of the Metri	ny Description), Section oplicants, industrial disconstruction of System pretreatment	<u>n III</u> (Bas charger i t program	ntormation is required to nformation is required to n and contributing SIUs a	be submitted as part of the Large Applicant and CIUs is presented in Section III.H of the				
		att	ached LAQ. For review purposes, Metro Sy ges 29a and 29b of EPA Form 3510-2A.	stem SIU/CIU discharg	gers for c	calendar year 2020 are a	lso summarized in tables shown on attached				

EPA	Identificat	ion Number	NPDES CAG	Permit Number 0107409	Facil E.W. Blor Wastewater	ity Name n Point Loma Treatment Plant	Form Appr OMB	oved 03/05/19 No. 2040-0004
	4.7	Does the POTW regulated as RCI	receive, or ha RA hazardous	as it been notified tha s wastes pursuant to	at it will receive, b 40 CFR 261?	by truck, rail, or dedication	ated pipe, any waste	s that are
	1.0						14.9.	
	4.8	Hazardous Wa	e following inf	Waste Transport Method (check all that apply)			Annual Amount of Waste Received	Units
Continued		Not applicabl	e	Truck Dedicated pipe		Rail Other (specify)	Not applicable –	
lous Wastes (Not appl		le	Truck Dedicated pipe		Rail Other (specify)	Not applicable –	
es and Hazarc		Not applicabl	le 🗌	Truck Dedicated pipe		Rail Other (specify)	Not applicable	
ial Discharg	4.9	Does the POTW including those u Yes See Ap	receive, or ha indertaken pu ppendix M for a list o argers of remedial w	as it been notified tha rsuant to CERCLA a of and description of permitted aste and/or extracted groundw	It it will receive, v nd Sections 300 Class 2 Vater.	vastewaters that origi 4(7) or 3008(h) of RC No ➔ SKIP to Se	nate from remedial a RA? ction 5.	ctivities,
Industr	4.10	Does the POTW specified in 40 C ✓ Yes → S	receive (or e: FR 261.30(d) KIP to Sectio	xpect to receive) less and 261.33(e)? n 5.	than 15 kilograms per month of non-acute hazardous wastes as As shown in Appendix M, during 2020 a total of 6 permitted Class 2 dischargers of remedial groundwater contributed flow to the Metro System. See Appendix M for details.			
	4.11	Have you reporte site(s) or facility(i the extent of trea	ed the followir ies) at which t atment, if any,	ng information in an a he wastewater origin the wastewater rece	attachment to this nates; the identition ives or will receive	application: identificates of the wastewater's ve before entering the	ation and description s hazardous constitu e POTW?	of the ents; and
		Yes Yes discha	ppendix M for a list argers of remedial w	of and description of permitted vaste and/or extracted groundv	d Class 2 vater.	No		
SECTIO	N 5. CO	MBINED SEWER	OVERFLOW	S (40 CFR 122.21(j)((8))			
agram	5.1	Does the treatme	ent works hav No	e a combined sewer t applicable	system?	No →SKIP to Se	ction 6.	
id Di	5.2	Have you attache	ed a CSO sys	tem map to this appl	ication? (See ins	tructions for map req	uirements.)	
ap ar		Yes	No	t applicable		No		
W O	5.3	Have you attache	ed a CSO sys	tem diagram to this a	application? (See	e instructions for diagr	am requirements.)	
cs		The Yes	Nc	t applicable		No		

EPA	A Identifica	tion Number	NPDE (ES Permit Number CA0107409	W	Facility Name E.W. Blom Point Lom astewater Treatment F	a Plant	Form Approved 03/05/19 OMB No. 2040-0004		
	5.4	For each CSC) outfall, provid	de the following informa	tion. (A	ttach additional shee	ets as neces	sary.)		
				CSO Outfall Number	• NA	CSO Outfall Num	ber	CSO Outfall Nu	mber	
5		City or town		Not applicable						
criptic		State and ZIP code		Not applicable						
ll Des		County		Not applicable						
Outfa		Latitude		o / "		o /	"	o /	"	
cso		Longitude		o / "		o /	"	o /	"	
		Distance from	shore	NA	ft.		ft.		ft.	
		Depth below s	surface	NA	ft.		ft.		ft.	
	5.5	Did the POTV	V monitor any	of the following items in	the following items in the past year for its CSO outfalls?					
				CSO Outfall Number	NA	CSO Outfall Num	ber	CSO Outfall Nu	mber	
5		Rainfall		🗆 Yes 🗖 No		🗆 Yes 🗆	l No	□ Yes	🗆 No	
litorin		CSO flow volu	ume	🗆 Yes 🗆 No		🗆 Yes 🗆	l No	□ Yes	🗆 No	
O Mon		CSO pollutant concentrations		□ Yes □ No		□ Yes □ No		Yes No		
cs		Receiving water quality		□ Yes □ No		🗆 Yes 🗖 No		🗆 Yes 🗖 No		
		CSO frequency		🗆 Yes 🗖 No		🗆 Yes 🗖 No		🗆 Yes 🗖 No		
		Number of storm events		🗆 Yes 🗖 No		□ Yes □ No		Yes No		
	5.6	Provide the fo	ollowing inform	ation for each of your C	SO out	falls.				
				CSO Outfall Number	• <u>NA</u>	CSO Outfall Num	nber	CSO Outfall N	umber	
ast Year		Number of CS the past year	SO events in	NA e	events		NA events	events		
s in Pa		Average dura	tion per	NA	hours		hours		hours	
/ents		event		□ Actual or □ Estin	nated	□ Actual or □ E	stimated	□ Actual or □	Estimated	
Ш С		Average volur	me per event	NA million g	allons	mill	ion gallons	r	nillion gallons	
cs			•	□ Actual or □ Estin	nated	\Box Actual or \Box E	stimated	□ Actual or □	l Estimated	
		Minimum rain	fall causing	NA inches of r	ainfall	inche	s of rainfall	inch	nes of rainfall	
		a USU eveni	in last year	□ Actual or □ Estim	nated	□ Actual or □ E	Estimated	□ Actual or □	I Estimated	

EF	EPA Identification Number		nber NPI	NPDES Permit Number CA0107409			Facility Name E.W. Blom Point Loma Jastewater Treatment Plan	t	Form Approved 03/05/19 OMB No. 2040-0004
	5.7	Prov	ide the information in t	he table be	low for	each of your	CSO outfalls.		
		1.5.0		CSO Ou	tfall N	umber	CSO Outfall Numbe	r	CSO Outfall Number
		Rece	eiving water name	No	ot appl	icable			
		Nam strea	e of watershed/ m system	No	Not applicable				
aters		U.S.	Soil Conservation] Unki	nown	Unknown		Unknown
eiving W		wate (if kn	rshed code own)	No	ot app	licable			
) Rece		Name mana	Name of state management/river basin U.S. Geological Survey 8-Digit Hydrologic Unit Code (if known) Description of known		ot appl	icable			
csc		U.S. 8-Dig] Unki	icable	Unknown		
1		Desc			or uppi				
		water receiv (see i	water quality impacts on receiving stream by CSO (see instructions for		Not applicable				
		exam	iples)					Contract In the	T TANGA STATISTICS
SECTIO	DN 6. CH	IECKL	IST AND CERTIFICA	TION STAT	EMEN	T (40 CFR 12	2.22(a) and (d))		a with your employed in For
e Real	0.1	each eall ap	section, specify in Co pplicants are required	lumn 2 any to provide a	or For attach ttachn	m 2A that you ments that yo nents.	bu are enclosing to alert	the permitti	ing authority. Note that not
			Column 1			76,024,024	Colun	nn 2	
			Section 1: Basic Ap Information for All A	plication pplicants		w/ variance	request(s)	\checkmark	w/ additional attachments
			Section 2: Additiona	1		w/ topograp	ohic map	\checkmark	w/ process flow diagram
					w/ Table A			V	w/ Table D
			Section 3: Informati	on on	n on 🕢 w/ Table B				w/ Table E
ment			Emuent Discharges	yes		✓ w/ Table C		\checkmark	w/ additional attachments
itate			Section 4: Industrial		W/ SIU and NSCIU attachments			√	w/ Table F
ion S			Discharges and Haz Wastes	zardous		w/ additiona	al attachments		
ficat			Section 5: Combine	d Sewer		w/ CSO ma	p		w/ additional attachments
Certi			Overflows			w/ CSO sys	stem diagram		
it and			Section 6: Checklist Certification Statem	and ent	V	w/ attachme	ents		
cklis	6.2	Certi	fication Statement						
Che		I certify under penalty of law that this document and all attachments were preparacordance with a system designed to assure that qualified personnel properly submitted. Based on my inquiry of the person or persons who manage the system for gathering the information, the information submitted is, to the best of my know complete. I am aware that there are significant penalties for submitting false informations.						d under my ther and ev , or those p edge and b nation, inclu	v direction or supervision in valuate the information persons directly responsible pelief, true, accurate, and uding the possibility of fine tle
Contra St		Juan	Guerreiro					Public	nterim Director Utilities Department
		Signa	ature	2				Date sign	ned //7/2022

EPA Identification Number	NPDES Permit Number	Facility Name	Outfall Number	Form Approved 03/05/19
	CA0107409	E.W. Blom Point Loma		OMB No. 2040-0004
	CA0107409	Wastewater Treatment Plant		

TABLE A. EFFLUENT PARAMETE	ABLE A. EFFLUENT PARAMETERS FOR ALL POTWS									
	Maximum Da	ily Discharge	A	verage Daily Dischar	Analytical	ML or MDI				
Pollutant	Value	Units	Value Units		Number of Samples	Method ¹	(include units)			
Biochemical oxygen demand ☐ BOD₅ or ☐ CBOD₅ (report one)	257	mg/L	132	mg/L	366	SM 5210DS	2.0 □ ML ☑ MDL			
Fecal coliform	See pages 13t	-13e for a summary of P	oint Loma effluent path	ogen indicator organism	s during 2020					
Design flow rate	432	mgd	240	mgd		See attached page 13a for a monthly				
pH (minimum)	7.0	pH units				breakdown of pH, tem TSS data for calendar y	perature, BOD and /ear 2020.			
pH (maximum)	7.4	pH units				See attached pages 13	b-13e for a summary			
Temperature (winter)	27.9	degrees C	27.9	degrees C		of Point Loma effluent organism data during 2	pathogen indicator 2020.			
Temperature (summer)	29.4	degrees C	29.4	degrees C						
Total suspended solids (TSS)	59	mg/L	34	mg/L	366	SM 2450D	12.5 ☑ ML □ MDL			

¹ Sampling shall be conducted according to sufficiently sensitive test procedures (i.e., methods) approved under 40 CFR 136 for the analysis of pollutants or pollutant parameters or required under 40 CFR chapter I, subchapter N or O. See instructions and 40 CFR 122.21(e)(3).

Note: The above data is for 2020, the last complete calendar year available at the time of preparation of this application. Data for 2021 will be transmitted to regulators per requirements of Order No. R9-2017-0007. Sampling of the final PLWTP effluent occurs at Monitoring Location EFF-001. See pages 13a-13e for details.

EPA Form 3510-2A – Table A
Summary of Point Loma Wastewater Treatment Plant Effluent Data
Physical/Chemical Parameters, 2020 ¹

		Point Loma Wa	stewater Treatm	ent Plant Efflue	nt Quality, 2020	
Parameter	pH (pH units)	Effluent Settleable Solids ² (ml/L)	Effluent BOD ³ (mg/L)	Effluent Total Suspended Solids (mg/L)	Effluent Temperature (° Centigrade)	Effluent Turbidity (NTU)⁴
January	7.19	0.3	129	34	23.6	31
February	7.21	0.2	138	40	23.5	35
March	7.19	0.2	123	34	23.5	30
April	7.21	0.2	102	33	23.4	24
Мау	7.21	0.1	123	32	25.5	37
June	7.22	0.1	138	33	26.8	45
July	7.24	0.2	143	33	27.8	50
August	7.25	0.1	137	34	28.6	52
September	7.26	0.2	129	32	28.8	52
October	7.23	0.2	137	31	29.5	51
November	7.23	0.2	145	36	26.8	41
December	7.24	0.2	137	36	26.0	44
Annual Average	7.22	0.2	132	34	26.2	41
Maximum Daily Value	7.38	2.2	257	59	29.4	88
Minimum Daily Value	7.01	0.1	53	22	20.6	11
Average - Nov. thru April	7.21	0.24	129	35	24.3	34
Maximum - Nov. thru April	7.38	2.20	222	57	27.9	66
Average - May thru Oct.	7.24	0.16	135	32	27.7	489
Maximum - May thru Oct.	7.35	0.50	257	59	29.4	88

1 Data from monthly effluent monitoring reports submitted to the RWQCB for calendar year 2020, which is the most recent complete year for which data were available at the time of preparation of this application. See Section 5.4 of Appendix M (Annual Pretreatment Report) for monthly PLWTP influent and effluent data for 2020. Data for calendar year 2021 will be electronically submitted to regulators per reporting requirements of Order No. R9-2017-0007.

2 Settleable solids in milliliters per liter (ml/L).

3 Five-day biochemical oxygen demand (BOD₅).

4 Turbidity expressed in Nephelometric Turbidity Units (NTU).

EPA Form 3510-2A – Table A

Point Loma Wastewat	Point Loma Wastewater Treatment Plant Effluent Bacteriological Monitoring, 2020 ¹										
Parameter	Total Coliform MPN/100ml	Fecal Coliform MNP/100 ml	Enterococcus CFU/100 ml								
Maximum Value	35,000,000	24,000,000	210,000								
90 th Percentlle	35,000,000	7,900,000	109,000								
75 th Percentile	22,000,000	7,000,000	60,000								
50 th Percentile	13,000,000	4,600,000	45,000								
25 th Percentile	7,900,000	3,025,000	30,000								
10 th Percentile	4,900,000	1,700,000	5,600								
Minimum Value	490,000	68,000	2,100								

1 Data collected at Monitoring Location EFF-001 during calendar year 2020. See table on page 13c for 2020 bacteriological sampling data.

Point Loma Wastewater Treatment Plant Effluent Bacteriological Monitoring, 2020 ¹										
Date	Time	Total Coliform MPN/100ml	Fecal Coliform MNP/100 ml	Enterococcus CFU/100 ml						
01/06/2020	11:45 AM	13,000,000	7,900,000	12,000						
01/14/2020	12:45 PM	13,000,000	7,900,000	38,000						
01/21/2020	1:45 PM	7,900,000	3,300,000	23,000						
01/27/2020	10:55 AM	17,000,000	4,900,000	22,000						
02/03/2020	10:56 AM	17,000,000	7,900,000	54,000						
02/10/2020	11:50 AM	4,900,000	790,000	5,600						
02/18/2020	1:55 PM	9,400,000	3,300,000	59,000						
02/24/2020	11:00 AM	35,000,000	4,600,000	39,000						
03/02/2020	7:41 AM	22,000,000	7,000,000	100,000						
03/09/2020	10:28 AM	13,000,000	4,900,000	60,000						
03/16/2020	8:30 AM	6,300,000	1,700,000	30,000						
03/23/2020	9:05 AM	13,000,000	940,000	3,600						
03/30/2020	8:19 AM	490,000	68,000	2,100						
04/06/2020	8:53 AM	3,300,000	3,300,000	70,000						
04/13/2020	11:32 AM	3,300,000	2,300,000	2,600						
04/20/2020	11:03 AM	2,200,000	490,000	3,000						
04/27/2020	9:40 AM	17,000,000	3,300,000	35,000						
05/04/2020	12:10 PM	4,900,000	790,000	5,600						
05/11/2020	9:37 AM	7.900.000	3.300.000	47.000						
05/18/2020	9:05 AM	22.000.000	2.300.000	60.000						
05/26/2020	10:30 AM	4.900.000	4.900.000	50.000						
06/01/2020	11:54 AM	13,000,000	3,300,000	47,000						
06/08/2020	9:10 AM	35.000.000	7.000.000	43.000						
06/15/2020	10:38 AM	7.900.000	1.700.000	45.000						
06/22/2020	8:42 AM	17.000.000	4.600.000	26.000						
06/29/2020	11:23 AM	24.000.000	1.700.000	17.000						
07/06/2020	9:32 AM	4.900.000	3.300.000	2.100						
07/13/2020	12:35 PM	35.000.000	4.900.000	49.000						
07/20/2020	10:35 AM	35.000.000	3.300.000	50.000						
07/27/2020	12:40 PM	24.000.000	7.900.000	60.000						
08/03/2020	10:15 AM	13.000.000	7.900.000	90.000						
08/10/2020	12:22 PM	17.000.000	7.900.000	120.000						
08/17/2020	9:42 AM	17.000.000	4.900.000	100.000						
08/24/2020	9:45 AM	22.000.000	3.100.000	32.000						
08/31/2020	9:10 AM	7.900.000	2.800.000	57.000						
09/08/2020	10:30 AM	24.000.000	24.000.000	36.000						
09/14/2020	9:15 AM	22.000.000	11.000.000	45.000						
09/21/2020	10:19 AM	28.000.000	6.300.000	30.000						
09/28/2020	8:30 AM	22.000.000	7.000.000	40.000						
10/06/2020	12:55 PM	11.000.000	7.000.000	110.000						
10/13/2020	1:50 PM	7.900.000	7.900.000	120.000						
10/19/2020	10:30 AM	35.000.000	13.000.000	56.000						
10/26/2020	9:30 AM	11.000.000	7.000.000	45.000						
11/02/2020	10:05 AM	35.000.000	4.900.000	51.000						
11/09/2020	1:30 PM	7.900.000	3,300.000	210.000						
11/16/2020	9:05 AM	13.000.000	7.900.000	80.000						
11/23/2020	1:35 PM	35.000.000	7,000.000	120.000						
11/30/2020	1:05 PM	11.000.000	4,600.000	180.000						
12/07/2020	10:54 AM	7.900.000	2,300.000	31.000						
12/14/2020	11:25 AM	7,900,000	3.300.000	35.000						
12/21/2020	7:53 AM	4,900,000	2.300.000	80.000						
12/28/2020	8:59 AM	7,000,000	4,600,000	44,000						

EPA Form 3510-2A – Table A

1 Data collected at Monitoring Location EFF-001 during calendar year 2020. Data from monthly monitoring reports.

This page intentionally left blank.

EPA Identification Number	NPDES Permit N CA010740	umber)9 v	Facility Name E.W. Blom Point Loma Wastewater Treatment Plant		utfall Number]	Form Approved 03/05/19 OMB No. 2040-0004
TABLE B. EFFLUENT PARAMETE	RS FOR ALL POTWS	S WITH A FLOW EQ	UAL TO OR GREATE	R THAN 0.1 MGD			
	Maximum Da	ily Discharge	Av	/erage Daily Discha	Analytical	ML or MDI	
Pollutant	Value	Units	Value	Units	Number of Samples	Method ¹	(include units)
Ammonia (as N)	46.9	mg/L	41.7	mg/L	53	EPA 335.4/SM 4500G	0.3 □ ML ☑ MDL
Chlorine (total residual, TRC) ²	1.4*	mg/L	< 0.008*	mg/L	1464**	SM 4500 Cl G	0.03-0.065 □ ML ☑ MDL
Dissolved oxygen	Not sampled	Not sampled	Not sampled	Not sampled	Not sampled	Not sampled	NA ☑ ML ☑ MDL
Nitrate/nitrite	4.0****	mg/L	< 0.9****	mg/L	50	EPA 300.0	0.24-0.93 □ ML ☑ MDL
Kjeldahl nitrogen	52.1	mg/L	49.1	mg/L	4	SM 4500 N	1.2 - 1.5 □ ML ☑ MDL
Oil and grease	50.6	mg/L	12.4	mg/L	366	EPA 1644A	3.2 □ ML ☑ MDL
Phosphorus	7.36	mg/L	4.8	mg/L	3	EPA 200.8	0.25-0.38 □ ML ☑ MDL
Total dissolved solids	2,380	mg/L	1,747	mg/L	366	SM 2540C	12 ☐ ML ☑ MDL

¹ Sampling shall be conducted according to sufficiently sensitive test procedures (i.e., methods) approved under 40 CFR 136 for the analysis of pollutants or pollutant parameters or required under 40 CFR chapter I, subchapter N or O. See instructions and 40 CFR 122.21(e)(3).

² Facilities that do not use chlorine for disinfection, do not use chlorine elsewhere in the treatment process, and have no reasonable potential to discharge chlorine in their effluent are not required to report data for chlorine.

Note: The above data is for 2020, the last complete calendar year available at the time of preparation of this application. Data for 2021 will be transmitted to regulators electronically per reporting requirements established in Order No. R9-2017-0007. See attached page 15a for monthly breakdown of calendar year 2020 sampling.

- * Anomalous instantaneous chlorine residual value at 6:04 am on April 13, 2020 resulted in a daily average chlorine residual on that date of 1.4 mg/L.
- ** The chlorine residual MDL for PLWTP effluent samples was 0.030 mg/L during January through July 2020 and September 2020, and was 0.065 mg/L during August 2020 and October through December 2020.
- *** Four or more chlorine residual grab samples were collected each day throughout 2020 in lieu of continuous chlorine residual sampling, as allowed under Order No. R9-2017-0007.
- **** Listed values are for nitrate as N. Nitrate was detected in 8 of 50 PLWTP effluent samples during 2020. Nitrate concentrations exceeded 1 mg/L in 2 of the samples. The nitrate MDL for PLWTP effluent samples ranged from 0.24 mg/L to 0.93 mg/L.

EPA Form 3510-2A – Table B Summary of Point Loma Wastewater Treatment Plant Effluent Data Conventional and Nonconventional Compounds, 2020¹

	Point Loma Wastewater Treatment Plant Effluent Quality, 2020 Concentrations in mg/L										
Parameter	Ammonia (as N) Monthly Average ²	Total Kjeldahl Nitrogen ³	Nitrate as Nitrogen ²	Oil and Grease⁴ Monthly Average	Total Chlorine Residual ⁵ Monthly Average	Total Dissolved Solids⁴ Monthly Average					
January	39.5	Not sampled	<0.247	13.6	ND	1720					
February	43.0	52.1	<0.247	17.5	<0.0657	1750					
March	39.5	Not sampled	2.0	15.0	< 0.0657	1520					
April	40.3	Not sampled	ND	15.4	0.097 ⁶	1530					
Мау	44.8	47.9	ND	11.2	ND	1870					
June	43.4	Not sampled	ND	11.0	< 0.0657	1770					
July	43.3	Not sampled	ND	10.1	ND	1850					
August	41.6	50.1	< 0.907	11.8	ND	1840					
September	45.0	Not sampled	ND	9.1	ND	1800					
October	40.3	46.1	ND	11.2	ND	1810					
November	38.9	Not sampled	ND	10.1	ND	1740					
December	40.7	Not sampled	ND	12.3	ND	1730					
Annual Average Value	41.7	49.1	< 0.17 ⁷	12.4	0.008	1747 ⁸					
Maximum Observed Value ⁹	46.9	52.1	4.0	50.6	1.296	2380					

1 Data from monitoring reports submitted to the RWQCB for calendar year 2020, which is the most recent complete year for which data were available at the time of preparation of this application. See Section 5.4 of Appendix M (Annual Pretreatment Report) for monthly PLWTP influent and effluent data for 2020. Data for calendar year 2021 will be electronically submitted to regulators per reporting requirements of Order No. R9-2017-0007.

- 2 Ammonia as nitrogen and nitrate as nitrogen are sampled on weekly basis. The above values represent monthly averages of samples collected during the listed month.
- 3 Total Kjeldahl Nitrogen (TKN) is sampled on a quarterly basis.
- 4 Oil and grease and Total Dissolved Solids (TDS) are sampled on a daily basis. The listed values represent monthly averages of samples collected during the listed month.
- 5 Order No. R9-2017-0007 provides that chlorine is to be sampled on a continuous basis, but that four grab samples per day may be used in lieu of continuous sampling until a reliable method of continuous chlorine residual analysis is implemented. Chlorine residual data for the Point Loma Wastewater Treatment Plant (PLWTP) during 2020 were collected using this four-grab-samples per day methodology. The above listed values represent monthly averages of all four-times-daily grab samples collected during 2020.
- 6 Anomalous chlorine residual value of 8.4 mg/L occurred at 6:04 am on April 13, 2020, resulting in a daily average chlorine residual on that date of 1.4 mg/L. The PLOO discharge complied with the instantaneous maximum, daily average and 6-month median chlorine residual limits established in Order No. R9-2017-0007 during all days of 2020.
- 7 Estimated upper bound monthly average value. Actual monthly average would be less than this upper bound, as concentrations were below detection limits within almost all daily samples collected during the month.
- 8 Annual average of daily TDS values was 1747 mg/L. Annual average of monthly average TDS values was 1744 mg/L.
- 9 The listed value represents the maximum PLWTP effluent value observed in any sample collected during calendar year 2020.

This page intentionally left blank.

EPA Identification Number	NPDES Permit N CA010740	umber 19 Wa	Facility Name E.W. Blom Point Loma stewater Treatment Plar	Facility Name Ou V. Blom Point Loma water Treatment Plant			Form Approved 03/05/19 OMB No. 2040-0004
TABLE C. EFFLUENT PARAMETER	S FOR SELECTED Maximum Da	POTWS nily Discharge	A	verage Daily Dischar	Analytical	ML or MDL	
Ponutant	Value	Units	Value	Units	Number of Samples	Method ¹	(include units)
Metals, Cyanide, and Total Phenols	;						
Hardness (as CaCO ₃)	See ta	able on page 17a for PLW	TP 2020 effluent data fo	r metals, cyanide, pheno	lic compounds and harc	ness	
Antimony, total recoverable							
Arsenic, total recoverable	See ta	able on page 17a for PLW	TP 2020 effluent data fo	r metals, cyanide, pheno	lic compounds and hard	ness	
Beryllium, total recoverable							
Cadmium, total recoverable	See ta	able on page 17a for PLW	TP 2020 effluent data fo	r metals, cyanide, pheno	lic compounds and hard	ness	
Chromium, total recoverable							
Copper, total recoverable	See t	able on page 17a for PLW	TP 2020 effluent data fo	or metals, cyanide, pheno	lic compounds and hard	ness	
Lead, total recoverable							
Mercury, total recoverable	See ta	able on page 17a for PLW	TP 2020 effluent data fo	r metals, cyanide, pheno	lic compounds and harc	ness	
Nickel, total recoverable							
Selenium, total recoverable	See t	able on page 17a for PLW	TP 2020 effluent data fo	r metals, cyanide, phen	plic compounds and hard	ness	
Silver, total recoverable							
Thallium, total recoverable	See ta	able on page 17a for PLW	TP 2020 effluent data fo	r metals, cyanide, pheno	lic compounds and hard	ness	
Zinc. total recoverable							
Cvanide	See ta	able on page 17a for PI W	/TP 2020 effluent data fo	r metals, cvanide, pheno	lic compounds and hard	ness	
				, metals, cyamae, prieri			
Volatile Organic Compounds							
Acrolein		See table on page	17b for PLWTP 2020 eff	uent data for volatile or	ganic compounds		
Acrylonitrile							
Benzene		See table on page	17b for PLWTP 2020 eff	uent data for volatile or	anic compounds		
Bromoform							

EPA Form 3510-2A – Table C Point Loma Wastewater Treatment Plant Metals, Cyanide, Phenols and Hardness¹

	Highest Daily 2	2020 Value	Average 202	0 Value	Maximum	Total Number of	Analytical
Constituent	Concentration ² (µg/L)	Mass ³ (mt/yr)	Concentration⁴ (µg/L)	Mass⁵ (mt/yr)	2020 MDL ⁶ (μg/L)	2020 Samples	Method
Antimony	2.52	0.47	0.39	0.08	2.43	53	200.8
Arsenic	1.86	0.36	0.76	0.15	3.21	53	200.8
Barium	41.4	8.0	29.4	5.9	0.095	53	200.8
Beryllium	ND 7	ND ⁷	ND ⁷	ND 7	0.4	53	200.8
Cadmium	3.39	0.74	0.10	0.02	0.484	52	200.8
Chromium, total	1.86	0.35	0.77	0.15	7.17	53	200.8
Cobalt	1.27	0.25	0.7	0.14	0.618	53	200.8
Copper	22.7	4.8	12.7	2.5	9.37	53	200.8
Lead	8.59	1.7	0.7	0.14	5.93	53	200.8
Lithium	56	12	35	7.0	3.0	53	200.8
Mercury	0.034	0.006	0.0076	0.002	0.001	53	1631E
Molybdenum	8.58	1.6	5.3	1.1	0.742	53	200.8
Nickel	5.64	1.2	4.41	0.88	3.35	53	200.8
Selenium	1.79	0.33	0.67	0.13	5.78	53	200.8
Silver	0.123	0.025	0.03	0.006	1.57	52	200.8
Thallium	ND 7	ND ⁷	ND ⁷	ND ⁷	3.37	53	200.8
Vanadium	1.84	0.45	1.20	0.9	0.18	53	200.8
Zinc	48.1	9.7	26.1	5.2	10.4	53	200.8
Cyanide	ND 7	ND ⁷	ND ⁷	ND 7	4.0	53	335.4
Total phenolic compounds ⁸	113	23.7	74.1	14.8	1.93	53	625.1
Hardness ⁹ (as CaCO ₃)	457,000	105,000	431,000	86,200	195	53	2340B

1 Data from monitoring reports submitted to the RWQCB for calendar year 2020, which is the most recent complete year for which data were available at the time of preparation of this application. See Section 5.4 of Appendix M (Annual Pretreatment Report) for monthly PLWTP influent and effluent data for 2020. Data for calendar year 2021 will be electronically submitted to regulators per reporting requirements of Order No. R9-2017-0007.

2 Highest daily value during calendar year 2020.

3 Maximum daily mass emission rates (metric tons per year) are computed using the maximum sample value observed during 2020 and the PLWTP flow on the day the maximum value occurred.

4 Arithmetic average of individual daily samples collected during 2020. ND samples are assumed to have concentration of zero, and DNQ samples are presumed to have a concentration of the listed DNQ value. Data are from 2020 annual report (see Section 5.4 of Appendix M).

5 Average mass emissions (metric tons per year) are computed using the average annual concentration and the 2020 average annual PLWTP flow of 144.3 mgd.

6 Maximum Method Detection Limit (MDL) during 2020, as reported in Section 5.4 of Appendix M (Annual Pretreatment Report).

7 ND indicates the constituent was not detected at the listed MDL in any PLWTP effluent sample during 2020. As a result, maximum and average annual mass emissions for the constituent cannot be computed.

8 Sum of total chlorinated phenols and total non-chlorinated phenols.

9 Computed as sum of calcium hardness and magnesium hardness. Totals rounded to three significant figures.

EPA Form 3510-2A – Table C Point Loma Wastewater Treatment Plant Volatile Organic Compounds¹

	Highest Daily	2020 Value	Average 20	020 Value	Maximum	Numbor	
Constituent	Concentration ² (μg/L)	Mass Emissions ³ (mt/yr)	Concentration⁴ (µg/L)	Mass Emissions⁵ (mt/yr)	2020 MDL ⁶ (μg/L)	of 2020 Samples	Analytical Method
Acrolein	ND 7	ND 7	ND 7	ND 7	1.24	12	624.1
Acrylonitrile	ND 7	ND 7	ND 7	ND 7	0.585	12	624.1
Benzene	0.516 DNQ ⁸	ND ⁹	0.04 DNQ 10	ND 11	0.354	12	624.1
Bromodichloromethane	0.476 DNQ ⁸	ND ⁹	0.04 DNQ 10	ND 11	0.445	12	624.1
Bromoform	ND 7	ND 7	ND 7	ND 7	0.447	12	624.1
Bromomethane (methyl bromide)	ND 7	ND 7	ND 7	ND 7	1.02	12	624.1
Carbon tetrachloride	ND 7	ND 7	ND 7	ND 7	0.442	12	624.1
Chlorobenzene	ND 7	ND 7	ND 7	ND 7	0.309	12	624.1
Chloroethane	1.12 12	0.21 12	0.1 DNQ ¹⁰	ND 11	0.405	12	624.1
Chloroform	4.10 12	0.77 12	2.7 DNQ ¹⁰	ND 11	0.446	12	624.1
Chloromethane (methyl chloride)	6.52 ¹²	1.2 12	1.9 DNQ ¹⁰	ND 11	0.729	12	624.1
Dibromochloromethane	0.47 DNQ ⁸	ND ⁹	0.04 DNQ ¹⁰	ND 11	0.545	12	624.1
1,2-dichlorobenzene	ND 7	ND 7	ND 7	ND 7	0.327	12	624.1
1,3-dichlorobenzene	ND 7	ND 7	ND 7	ND 7	0.328	12	624.1
1,4-dichlorobenzene	ND 7	ND 7	ND 7	ND 7	0.319	12	624.1
1,1-dichloroethane	ND 7	ND 7	ND 7	ND 7	0.381	12	624.1
1,2-dichloroethane	ND 7	ND 7	ND 7	ND 7	0.652	12	624.1
1,1-dichloroethylene	ND 7	ND 7	ND 7	ND 7	0.375	12	624.1
Trans-1,2-dichloroethylene	ND 7	ND 7	ND 7	ND 7	0.364	12	624.1
1,2-dichloropropane	ND 7	ND 7	ND 7	ND 7	0.392	12	624.1
Cis-1,3-dichloropropene	ND 7	ND 7	ND 7	ND 7	0.392	12	624.1
Trans-1,3-dichloropropene	ND 7	ND 7	ND 7	ND 7	0.526	12	624.1
Ethylbenzene	0.878 DNQ 8	ND ⁹	0.1 DNQ ¹⁰	ND 11	0.26	12	624.1
Methylene chloride	0.895 DNQ 8	ND ⁹	0.5 DNQ ¹⁰	ND 11	0.563	12	624.1
1,1,2,2-tetrachloroethane	ND 7	ND 7	ND 7	ND 7	0.39	12	624.1
Tetrachloroethylene	ND 7	ND 7	ND 7	ND 7	0.482	12	624.1
Toluene	3.84 ¹³	0.75 13	1.8 DNQ ¹⁰	ND 11	0.245	12	624.1
1,1,1-trichloroethane	ND 7	ND 7	ND 7	ND 7	0.335	12	624.1
1,1,2-trichloroethane	ND 7	ND 7	ND 7	ND 7	0.363	12	624.1
Trichloroethylene	ND 7	ND 7	ND 7	ND 7	0.337	12	624.1
Trichlorofluoromethane	ND 7	ND 7	ND 7	ND 7	0.411	12	624.1
Vinyl chloride	ND 7	ND 7	ND 7	ND 7	0.948	12	624.1

1 Data from monitoring reports submitted to the RWQCB for calendar year 2020, which is the most recent complete year for which data were available at the time of preparation of this application. See Section 5.4 of Appendix M (Annual Pretreatment Report) for monthly PLWTP influent and effluent data for 2020. Data for calendar year 2021 will be electronically submitted to regulators per reporting requirements of Order No. R9-2017-0007.

2 Highest daily average sample value during calendar year 2020.

3 Maximum mass emission rates (metric tons per year) are computed using the highest daily sample value observed during 2020 and the PLWTP flow on the day the maximum value occurred.

4 Arithmetic average of individual daily samples collected during 2020. ND samples are assumed to have concentration of zero, and DNQ samples are presumed to have a concentration of the listed DNQ value. Data are from 2020 annual report (see Section 5.4 of Appendix M).

5 Average mass emissions (metric tons per year) are computed using the average annual concentration and the average annual 2020 PLWTP flow of 144.3 mgd.

- 6 Maximum MDL achieved during 2020 for the listed constituent, as reported in Section 5.4 of Appendix M.
- 7 The constituent was not detected (ND) at the listed MDL in any PLWTP effluent sample during 2020.
- 8 Highest daily value during 2020 was detected not quantifiable (DNQ).
- 9 The constituent was never detected above the reporting limit (RL) during 2020 and no average annual mass emission is computed.
- 10 Data from the PLWTP annual report for 2020 (see Section 5.4 of Appendix M). Average annual value was reported as DNQ.
- 11 The reported average annual concentration was DNQ and no average annual mass emission is computed.
- 12 Highest daily value occurred on December 3, 2020 where the PLWTP flow was 136.1 mgd.
- 13 Highest daily value occurred on May 5, 2020 where the PLWTP flow was 141.5 mgd.

EPA Identification Number	NPDES Permit N CA010740	lumber 09	Wa	Facility NameOutfall NumberE.W. Blom Point Loma001Wastewater Treatment Plant001]	Form Approved 03/05/19 OMB No. 2040-0004	
ABLE C. EFFLUENT PARAMETE	Maximum Daily Discharge			A	verage Daily Dis	Analytical	ML or MDL	
Fonutant	Value	Units		Value	Units	Number of Samples	Method ¹	(include units)
Carbon tetrachloride		See table o	on page	17b for PLWTP 2020 eff	uent data for volati	le organic compounds		
Chlorobenzene								
Chlorodibromomethane		See table c	on page	17b for PLWTP 2020 eff	luent data for volati	le organic compounds		
Chloroethane								
2-chloroethylvinyl ether		See table c	on page	17b for PLWTP 2020 eff	luent data for volati	le organic compounds		
Chloroform								
Dichlorobromomethane		See table o	on page	17b for PLWTP 2020 eff	luent data for volati	le organic compounds		
1,1-dichloroethane								
1,2-dichloroethane		See table o	on page	17b for PLWTP 2020 eff	uent data for volati	le organic compounds		
trans-1,2-dichloroethylene								
1,1-dichloroethylene		See table o	n page	17b for PLWTP 2020 eff	uent data for volati	le organic compounds		
1,2-dichloropropane								
1,3-dichloropropylene		See table c	on page	17b for PLWTP 2020 eff	uent data for volati	le organic compounds		
Ethylbenzene								
Methyl bromide		See table o	n page	17b for PLWTP 2020 eff	uent data for volati	le organic compounds		
Methyl chloride								
Methylene chloride		See table o	n page	17b for PLWTP 2020 eff	uent data for volati	le organic compounds		
1,1,2,2-tetrachloroethane			-					
Tetrachloroethylene		See table c	on page	17b for PLWTP 2020 eff	luent data for volati	le organic compounds		
Toluene			-					
1.1.1-trichloroethane		See table o	n page	17b for PLWTP 2020 eff	uent data for volati	le organic compounds		
1,1,2-trichloroethane			1.01			* F * * *		

EPA Identification Number	NPDES Permit Numb CA0107409	er Wa	Facility Name E.W. Blom Point Loma stewater Treatment Plar	C nt	Outfall Number 001		Form Approved 03/05/19 OMB No. 2040-0004
Pollutant	Maximum Daily	Discharge	A	verage Daily Discha	Analytical	ML or MDL	
i onutant	Value	Units	Value	Units	Number of Samples	Method ¹	(include units)
Trichloroethylene		See table on page	17b for PLWTP 2020 effl	uent data for volatile o	organic compounds		
Vinyl chloride		See table on page	17b for PLWTP 2020 effl	uent data for volatile o	organic compounds		
Acid-Extractable Compounds							·
p-chloro-m-cresol		See table on page	19a for PLWTP 2020 eff	uent data for acid-extr	ractable compounds		
2-chlorophenol							
2,4-dichlorophenol		See table on page	19a for PLWTP 2020 effl	uent data for acid-extr	actable compounds		
2,4-dimethylphenol							
4,6-dinitro-o-cresol		See table on page	19a for PLWTP 2020 eff	uent data for acid-extr	ractable compounds		
2,4-dinitrophenol							
2-nitrophenol		See table on page	19a for PLWTP 2020 eff	uent data for acid-extr	actable compounds		
4-nitrophenol							
Pentachlorophenol		See table on page	19a for PLWTP 2020 eff	uent data for acid-extr	ractable compounds		
Phenol							
2,4,6-trichlorophenol		See table on page	19a for PLWTP 2020 eff	uent data for acid-extr	actable compounds		
Base-Neutral Compounds							
Acenaphthene		See table on pag	e 19b for PLWTP 2020 ef	fluent data for base-ne	eutral compounds		
Acenaphthylene							I ML MDL
Anthracene		See table on pag	e 19b for PLWTP 2020 e	ffluent data for base-ne	eutral compounds		
Benzidine							
Benzo(a)anthracene		See table on pag	e 19b for PLWTP 2020 e	ffluent data for base-ne	eutral compounds		
Benzo(a)pyrene							
3,4-benzofluoranthene		See table on pag	e 19b for PLWTP 2020 e	ffluent data for base-n	eutral compounds		I ML MDL

EPA Form 3510-2A – Table C Point Loma Wastewater Treatment Plant Acid Extractable Compounds¹

	Highest Daily 2020 Value		Average 20	020 Value	Maximum	Number of	Analutical	
Constituent	Concentration ² (µg/l)	Mass Emissions ³ (mt/yr)	Concentration⁴ (µg/l)	Mass Emissions⁵ (mt/yr)	2020 MDL ⁶ (µg/l)	2020 Samples	Method	
2-chlorophenol	ND 7	ND 7	ND 7	ND 7	0.451	53	625.1	
4-chloro-3-methylphenol	ND 7	ND 7	ND 7	ND 7	0.443	53	625.1	
2,4-dichlorophenol	ND 7	ND 7	ND 7	ND 7	0.517	53	625.1	
2,4-dimethylphenol	ND 7	ND 7	ND 7	ND 7	1.93	53	625.1	
2,4-dinitrophenol	ND 7	ND 7	ND 7	ND 7	1.72	53	625.1	
2-methyl-4,6-dinitro phenol	ND 7	ND 7	ND 7	ND 7	1.28	53	625.1	
2-nitrophenol	ND 7	ND 7	ND 7	ND 7	0.526	53	625.1	
4-nitrophenol	ND 7	ND 7	ND 7	ND 7	0.603	53	625.1	
Pentachlorophenol	ND 7	ND 7	ND 7	ND 7	0.88	53	625.1	
Phenol	47.1 ⁸	9.2 ⁸	32.8	6.5	0.482	53	625.1	
2-methylphenol	ND 7	ND 7	ND 7	ND 7	0.26	53	625.1	
4-methylphenol	70.2 ⁹	14.7 ⁹	41.3	8.2 ⁹	0.398	53	625.1	
2,4,5-trichlorophenol	ND 7	ND 7	ND 7	ND 7	0.608	53	625.1	
2,4,6-trichlorophenol	2.21 DNQ ¹⁰	ND 11	0.04 DNQ ¹²	ND ¹³	0.583	53	625.1	

1 Data from monitoring reports submitted to the RWQCB for calendar year 2020, which is the most recent complete year for which data were available at the time of preparation of this application. See Section 5.4 of Appendix M (Annual Pretreatment Report) for monthly PLWTP influent and effluent data for 2020. Data for calendar year 2021 will be electronically submitted to regulators per reporting requirements of Order No. R9-2017-0007.

2 Maximum sample value during calendar year 2020.

- 3 Mass emission (metric tons per year) computed using the maximum sample value observed during 2020 and the PLWTP flow on the day the maximum value occurred.
- 4 Arithmetic average of calendar year 2020 samples. ND samples are assumed to have concentration of zero, and DNQ samples are presumed to have a concentration of the listed DNQ value. Average annual data are from 2020 annual report (see Section 5.4 of Appendix M).
- 5 Average mass emissions (mt/yr) computed using the average annual concentration and the average annual 2020 PLWTP flow of 144.3 mgd.
- 6 Maximum Method Detection Limit (MDL) during 2020, as reported in Section 5.4 of Appendix M (Annual Pretreatment Report).
- 7 ND indicates the constituent was not detected at the listed MDL in any PLWTP effluent sample during 2020 and that no mass emission value can be computed for the non-detected value.
- 8 Highest daily value occurred on June 29, 2020 where the PLWTP daily flow was 140.8 mgd.
- 9 Highest daily value occurred on February 24, 2020 where the PLWTP daily flow was 151.2 mgd.
- 10 Highest daily value during 2020 was detected not quantifiable (DNQ).
- 11 The constituent was never detected above the reporting limit (RL) during 2020 and no average annual mass emission is computed.
- 12 Data from the PLWTP annual report for 2020 (see Section 5.4 of Appendix M). Average annual value was reported as DNQ.
- 13 The reported average annual concentration was DNQ and no average annual mass emission is computed.

EPA Form 3510-2A – Table C Point Loma Wastewater Treatment Plant Base Neutral Compounds¹

	Highest Daily 2	2020 Value	Average 202	20 Value	Maximum	Number	Amalatical
Constituent	Concentration ² (µg/l)	Mass ³ (mt/yr)	Concentration ⁴ (µg/l)	Mass⁵ (mt/yr)	2020 MDL ⁶ (μg/l)	of 2020 Samples	Method
Acenaphthene	ND 7	ND 7	ND 7	ND 7	0.507	12	625.1
Acenaphthylene	ND 7	ND 7	ND 7	ND 7	0.62	12	625.1
Anthracene	ND 7	ND 7	ND 7	ND 7	0.668	12	625.1
Benzidine	ND 7	ND 7	ND 7	ND 7	2.96	12	625.1
Benzo(a)anthracene	ND 7	ND 7	ND 7	ND 7	0.728	12	625.1
Benzo(a)pyrene	ND 7	ND 7	ND 7	ND 7	0.64	12	625.1
3,4-benzo(b) fluoranthene	ND 7	ND 7	ND 7	ND 7	0.652	12	625.1
Benzo(g,h,i) perylene	ND 7	ND 7	ND 7	ND 7	0.62	12	625.1
Benzo(k) fluoranthene	ND 7	ND 7	ND 7	ND 7	0 .675	12	625.1
Bis (2-chloroethoxy) methane	ND 7	ND 7	ND 7	ND 7	0.44	12	625.1
Bis (2-chloroethyl) ether	ND 7	ND 7	ND 7	ND 7	0.523	12	625.1
Bis (2-chloroisopropyl) ether	ND 7	ND 7	ND 7	ND 7	0.568	12	625.1
Bis (2-ethylhexyl) phthalate	9.95 ⁸	2.07 ⁸	3.95 DNQ ⁹	ND 10	3.58	12	625.1
4-bromophenyl phenyl ether	ND 7	ND 7	ND 7	ND 7	0.601	12	625.1
Butyl benzyl phthalate	ND 7	ND 7	ND 7	ND 7	0.723	12	625.1
2-chloronaphthalene	ND 7	ND 7	ND 7	ND 7	0.577	12	625.1
4-chlorophenyl phenyl ether	ND 7	ND 7	ND 7	ND 7	0.498	12	625.1
Chrysene	ND 7	ND 7	ND 7	ND 7	0.57	12	625.1
di-n-butyl phthalate	ND 7	ND 7	ND 7	ND 7	1.28	12	625.1
di-n-octyl phthalate	ND 7	ND 7	ND 7	ND 7	0.688	12	625.1
Dibenzo(a,h) anthracene	ND 7	ND 7	ND 7	ND 7	0.574	12	625.1
3,3-dichlorobenzidene	ND 7	ND 7	ND 7	ND 7	3.27	12	625.1
Diethyl phthalate	3.83 ¹¹	0.71 11	2.93	0.58 12	1.63	12	625.1
Dimethyl phthalate	ND 7	ND 7	ND 7	ND 7	0.49	12	625.1
2,4-dinitrotoluene	ND 7	ND 7	ND 7	ND 7	0.526	12	625.1
2,6-dinitrotoluene	ND 7	ND 7	ND 7	ND 7	0.461	12	625.1
1,2-diphenylhydrazine	ND 7	ND 7	ND 7	ND 7	0.775	12	625.1
Fluoranthene	ND 7	ND 7	ND 7	ND 7	0.822	12	625.1
Fluorene	ND 7	ND 7	ND 7	ND 7	0.568	12	625.1
Hexachlorobenzene	ND 7	ND 7	ND 7	ND 7	0.666	12	625.1
Hexachlorobutadiene	ND 7	ND 7	ND 7	ND 7	0.453	12	625.1
Hexachlorocyclopentadiene	ND 7	ND 7	ND 7	ND 7	0.48	12	625.1
Hexachloroethane	ND 7	ND 7	ND 7	ND 7	0.424	12	625.1
Ideno(1,2,3-cd) pyrene	ND 7	ND 7	ND 7	ND 7	0.597	12	625.1
Isophorone	ND 7	ND 7	ND 7	ND 7	0.489	12	625.1
1-methylnaphthalene	ND 7	ND 7	ND 7	ND 7	0.767	12	625.1
2-methylnaphthalene	0.575 13	0.11 ¹³	0.1	0.02 12	0.59	12	625.1
Naphthalene	ND 7	ND 7	ND 7	ND 7	0.513	12	625.1
Nitrobenzene	ND 7	ND 7	ND 7	ND 7	0.62	12	625.1
n-nitrosodi-n-propylamine	ND 7	ND 7	ND 7	ND 7	1.0	12	625.1
n-nitrosodi-methylamine	ND 7	ND 7	ND 7	ND 7	0.512	12	625.1
n-nitrosodi-phenylamine	ND 7	ND 7	ND 7	ND 7	0.524	12	625.1
Phenanthrene	ND 7	ND 7	ND 7	ND 7	0.512	12	625.1
Pyrene	ND 7	ND 7	ND 7	ND 7	0.649	12	625.1
1,2,4-trichlorobenzene	ND 7	ND 7	ND 7	ND 7	0.561	12	625.1

1 Data from monitoring reports submitted to the RWQCB for calendar year 2020, which is the most recent complete year for which data were available at the time of preparation of this application. See Section 5.4 of Appendix M (Annual Pretreatment Report) for monthly PLWTP influent and effluent data for 2020. Data for calendar year 2021 will be electronically submitted to regulators per reporting requirements of Order No. R9-2017-0007.

2 Maximum sample value during calendar year 2020.

3 Maximum mass emission rates (metric tons per year) are computed using the maximum sample value observed during 2020 and the PLWTP flow on the day the maximum value occurred.

4 Arithmetic average of individual daily samples collected during 2020. ND samples are assumed to have concentration of zero, and DNQ samples are presumed to have a concentration of the listed DNQ value. Data from 2020 annual report (see Section 5.4 of Appendix M.)

5 Average mass emissions (metric tons per year) are computed using the average annual concentration and the average annual 2020 PLWTP flow of 144.3 mgd.

6 Maximum Method Detection Limit (MDL) during 2020, as reported in Section 5.4 of Appendix M (Annual Pretreatment Report).

7 The constituent was not detected (ND) at the listed MDL in any PLWTP effluent sample during 2020.

8 Maximum value occurred on January 6, 2020 where the PLWTP daily flow was 150.6 mgd.

9 Data from the PLWTP annual report for 2020 (see Section 5.4 of Appendix M). Average annual value was reported as DNQ.

10 The reported average annual concentration was DNQ and no average annual mass emission is computed.

11 Maximum value occurred on November 2, 2020 where the PLWTP flow was 134.3 mgd.

12 Average mass emissions (mt/yr) computed using the average annual concentration and the average annual 2020 PLWTP flow of 144.3 mgd.

13 Maximum value occurred on June 1, 2020 where the PLWTP daily flow was 137.0 mgd.

EPA Identification Number	NPDES Permit I CA01074	Number 09 v	Facility Name E.W. Blom Point Loma Jastewater Treatment Pla	Ou	utfall Number 001		Form Approved 03/05/19 OMB No. 2040-0004
ABLE C. EFFLUENT PARAMETE	Maximum Daily Discharge		A	Average Daily Discharge			ML or MDL
ronatant	Value	Units	Value	Units	Number of Samples	Method ¹	(include units)
Benzo(ghi)perylene		See table on pa	ge 19b for PLWTP 2020 e	ffluent data for base-ne	utral compounds		ML MDL
Benzo(k)fluoranthene							
Bis (2-chloroethoxy) methane		See table on pa	ge 19b for PLWTP 2020 e	ffluent data for base-ne	utral compounds		
Bis (2-chloroethyl) ether							
Bis (2-chloroisopropyl) ether		See table on pa	ge 19b for PLWTP 2020 e	ffluent data for base-ne	utral compounds		
Bis (2-ethylhexyl) phthalate							
4-bromophenyl phenyl ether		See table on pa	ge 19b for PLWTP 2020 e	ffluent data for base-ne	utral compounds		
Butyl benzyl phthalate							
2-chloronaphthalene		See table on pa	ge 19b for PLWTP 2020 e	fluent data for base-ne	utral compounds		
4-chlorophenyl phenyl ether							
Chrysene		See table on pa	ge 19b for PLWTP 2020 e	fluent data for base-ne	utral compounds		
di-n-butyl phthalate							
di-n-octyl phthalate		See table on pa	ge 19b for PLWTP 2020 e	ffluent data for base-ne	utral compounds		
Dibenzo(a,h)anthracene							
1,2-dichlorobenzene		See table on pa	ge 19b for PLWTP 2020 e	ffluent data for base-ne	utral compounds		
1,3-dichlorobenzene							
1,4-dichlorobenzene		See table on pa	age 19b for PLWTP 2020	affluent data for base-ne	utral compounds		
3,3-dichlorobenzidine							
Diethyl phthalate		See table on pa	ge 19b for PLWTP 2020 e	ffluent data for base-ne	utral compounds		
Dimethyl phthalate			-				
2,4-dinitrotoluene		See table on pa	ge 19b for PLWTP 2020 e	fluent data for base-ne	utral compounds		
2,6-dinitrotoluene							
EPA Identification Number	NPDES Permit N CA010740	lumber 09 Wa	Facility Name E.W. Blom Point Loma astewater Treatment Pla	Ou	tfall Number 001		Form Approved 03/05/19 OMB No. 2040-0004
----------------------------	----------------------------	-------------------	--	----------------------------	---------------------	-----------------	---
ABLE C. EFFLUENT PARAMETER	Maximum Da	aily Discharge	A	verage Daily Discha	harge Analytica		ML or MDL
Pollutant	Value Units	Value	Units	Number of Samples	Method ¹	(include units)	
1,2-diphenylhydrazine		See table on pag	ge 19b for PLWTP 2020 e	fluent data for base-neu	tral compounds		
Fluoranthene							
Fluorene		See table on pa	ge 19b for PLWTP 2020 e	ffluent data for base-nei	tral compounds		
Hexachlorobenzene							
Hexachlorobutadiene		See table on pag	ge 19b for PLWTP 2020 e	effluent data for base-net	tral compounds		
Hexachlorocyclo-pentadiene							
Hexachloroethane		See table on pag	ge 19b for PLWTP 2020 e	fluent data for base-neu	tral compounds		
Indeno(1,2,3-cd)pyrene							
Isophorone		See table on pag	2e 19b for PLWTP 2020 e	fluent data for base-neu	itral compounds		
Naphthalene							
Nitrobenzene		See table on page	ge 19b for PLWTP 2020 e	effluent data for base-neu	tral compounds		
N-nitrosodi-n-nronylamine					•		
N nitrosodimothylamino		Coo table on no	70 10h for DI WITD 2020 a	fluent data far base nou	tral compounds		
		See table on pa	ge 190 for PLWTP 2020 e	and at a for base-net			
N-millosouphenylamine							
Phenaninrene		See table on pa	ge 19b for PLWTP 2020 e	fluent data for base-nei	tral compounds		
Pyrene							
1,2,4-trichlorobenzene		See table on pa	ge 19b for PLWTP 2020 e	effluent data for base-nei	tral compounds		

¹ Sampling shall be conducted according to sufficiently sensitive test procedures (i.e., methods) approved under 40 CFR 136 for the analysis of pollutants or pollutant parameters or required under 40 CFR Chapter I, Subchapter N or O. See instructions and 40 CFR 122.21(e)(3).

This page intentionally left blank.

EPA Identification Number	NPDES Permit N	Jumber	Facility Name E.W. Blom Point Loma	Οι	tfall Number		Form Approved 03/05/19 OMB No. 2040-0004
	TANTS AS REQUIRED		Vastewater Treatment Pla	nt			
	Maximum Da	aily Discharge	А	verage Daily Dischar	ge		
(list)	Value	Units	Value	Units	Number of Samples	Method ¹	(include units)
□ No additional sampling is	required by NPDES perr	mitting authority.					
	See tables on pages 23a	23c for PLWTP 2020 ef	ffluent data for pesticides	, PCBs, tributyltin and dic	xins/furans		
	See tables on pages 23a	-23c for PLWTP 2020 ef	fluent data for pesticides,	PCBs, tributyltin and dio	xins/furans		
	See tables on pages 23a	-23c for PLWTP 2020 ef	fluent data for pesticides,	PCBs, tributyltin and dio	xins/furans		
	See tables on pages 23a	23c for PLWTP 2020 ef	ffluent data for pesticides	PCBs, tributyltin and dio	xins/furans		
	See tables on pages 23a	23c for PLWTP 2020 ef	ffluent data for pesticides	, PCBs, tributyltin and dic	xins/furans		
	See tables on pages 23a	-23c for PLWTP 2020 et	ffluent data for pesticides	, PCBs, tributyltin and dic	xins/furans		
	See tables on pages 23a	-23c for PLWTP 2020 ef	ffluent data for pesticides	PCBs, tributyltin and dio	kins/furans		
	See tables on pages 23a-	-23c for PLWTP 2020 ef	fluent data for pesticides,	PCBs, tributyltin and dio	xins/furans		
	See tables on pages 23a	-23c for PLWTP 2020 ef	ffluent data for pesticides	PCBs, tributyltin and dio	xins/furans		ML MDL

¹ Sampling shall be conducted according to sufficiently sensitive test procedures (i.e., methods) approved under 40 CFR 136 for the analysis of pollutants or pollutant parameters or required under 40 CFR chapter I, subchapter N or O. See instructions and 40 CFR 122.21(e)(3).

EPA Form 3510-2A – Table D
Point Loma Wastewater Treatment Plant
Chlorinated Pesticides and PCBs ¹

	Highest Daily	2020 Value	Average 20	20 Value	Maximum		
Constituent	Concentration ² (µg/l)	Mass Emission ³ (mt/yr)	Concentration⁴ (µg/l)	Mass Emission⁵ (mt/yr)	MDL ⁶ (μg/l)	2020 Samples	Analytical Method
Aldrin	ND 7	ND 7	ND 7	ND 7	0.0068	53	608.3
Dieldrin	ND 7	ND 7	ND 7	ND 7	0.00517	53	608.3
BHC alpha	ND 7	ND 7	ND 7	ND 7	0.00608	53	608.3
BHC beta	ND 7	ND 7	ND 7	ND 7	0.00478	53	608.3
BHC delta	ND 7	ND 7	ND 7	ND 7	0.00668	53	608.3
BHC gamma (Lindane)	0.103 ⁸	0.019 ⁸	0.002	0.0004	0.00632	53	608.3
Chlordane (alpha)	ND 7	ND 7	ND 7	ND 7	0.00648	53	608.3
Chlordane (gamma)	ND 7	ND 7	ND 7	ND 7	0.00489	53	608.3
2,4' -DDD	ND 7	ND 7	ND 7	ND 7	0.00615	53	608.3
2,4' -DDE	ND 7	ND 7	ND 7	ND 7	0.00497	53	608.3
2,4' -DDT	ND 7	ND 7	ND 7	ND 7	0.00852	53	608.3
4,4' -DDD	ND 7	ND 7	ND 7	ND 7	0.00728	53	608.3
4,4' -DDE	ND 7	ND 7	ND 7	ND 7	0.0065	53	608.3
4,4' -DDT	ND 7	ND 7	ND 7	ND 7	0.00753	53	608.3
Endosulfan (alpha)	ND 7	ND 7	ND 7	ND 7	0.00763	53	608.3
Endosulfan (beta)	ND 7	ND 7	ND 7	ND 7	0.0128	53	608.3
Endosulfan Sulfate	ND 7	ND 7	ND 7	ND 7	0.00868	53	608.3
Endrin	ND 7	ND 7	ND 7	ND 7	0.00872	53	608.3
Endrin aldehyde	ND 7	ND 7	ND 7	ND 7	0.00824	53	608.3
Heptachlor	ND 7	ND 7	ND 7	ND 7	0.00928	53	608.3
Heptachlor epoxide	ND 7	ND 7	ND 7	ND 7	0.00792	53	608.3
Methoxychlor	ND 7	ND 7	ND 7	ND 7	0.00881	53	608.3
Nonachlor (cis)	ND 7	ND 7	ND 7	ND 7	0.00936	53	608.3
Nonachlor (trans)	ND 7	ND 7	ND 7	ND 7	0.00915	53	608.3
PCB 1016	ND 7	ND 7	ND 7	ND 7	0.763	53	608.3
PCB 1221	ND 7	ND 7	ND 7	ND 7	0.763	53	608.3
PCB 1232	ND 7	ND 7	ND 7	ND 7	0.763	53	608.3
PCB 1242	ND 7	ND 7	ND 7	ND 7	0.763	53	608.3
PCB 1248	ND 7	ND 7	ND 7	ND 7	0.763	53	608.3
PCB 1254	ND 7	ND 7	ND 7	ND 7	0.763	53	608.3
PCB 1260	ND 7	ND 7	ND 7	ND 7	0.763	53	608.3
PCB 1262	ND 7	ND 7	ND 7	ND 7	0.763	53	608.3
Toxaphene	ND 7	ND 7	ND 7	ND 7	0.586	53	608.3

1 Data from monitoring reports submitted to the RWQCB for calendar year 2020, which is the most recent complete year for which data were available at the time of preparation of this application. See Section 5.4 of Appendix M (Annual Pretreatment Report) for monthly PLWTP influent and effluent data for 2020. Data for calendar year 2021 will be electronically submitted to regulators per reporting requirements of Order No. R9-2017-0007.

2 Maximum sample value during calendar year 2020.

3 Maximum mass emission rates (metric tons per year) are computed using the maximum sample value observed during 2020 and the PLWTP flow on the day the maximum value occurred.

4 Arithmetic average of individual daily samples collected during 2020. ND samples are assumed to have concentration of zero, and DNQ samples are presumed to have a concentration of the listed DNQ value. Data are from 2020 annual report (see Section 5.4 of Appendix M).

5 Average mass emissions (metric tons per year) are computed using the average annual concentration and the average annual 2020 PLWTP flow of 144.3 mgd.

6 Maximum Method Detection Limit (MDL) during 2020, as reported in Section 5.4 of Appendix M (Annual Pretreatment Report).

7 The constituent was not detected (ND) at the listed MDL in any PLWTP effluent samples during 2020.

8 Detectable concentrations were observed in one of 53 gamma-BHC samples during 2020. Detectable concentration occurred in PLWTP effluent sample of October 21, 2020 where the daily PLWTP effluent flow was 137.0 mgd.

	Highest Daily	2020 Value	Average 20	20 Value	Maximum	Number of		
Constituent	Concentration ² (µg/l)	Mass Emission ³ (mt/yr)	Concentration⁴ (µg/l)	Mass Emission⁵ (mt/yr)	MDL ⁶ (μg/l)	2020 Samples ⁷	Analytical Method	
Chlorpyrifos	7.6 DNQ ⁸	ND ⁹	0.6 DNQ 10	ND 11	0.095	12	614	
Coumaphos	ND 12	ND 12	ND 12	ND 12	0.121	12	614	
Demeton-O	ND 12	ND 12	ND 12	ND 12	0.075	12	614	
Demeton-S	ND 12	ND 12	ND 12	ND 12	0.522	12	614	
Diazinon	59 DNQ ⁸	ND ⁹	4.9 DNQ ¹⁰	ND 11	0.125	12	614	
Dichlorvos	ND 12	ND 12	ND 12	ND 12	0.075	12	614	
Disulfoton	ND 12	ND 12	ND 12	ND 12	0.101	12	614	
Guthion	ND 12	ND 12	ND 12	ND 12	0.532	12	614	
Malathion	0.495 13	0.12 13	0.06	0.012	0.097	12	614	
Parathion	ND 12	ND 12	ND 12	ND 12	0.042	12	614	
Stirophos	ND 12	ND 12	ND 12	ND 12	0.091	12	614	

EPA Form 3510-2A – Table D Point Loma Wastewater Treatment Plant Organophosphorus Pesticides/Insectisides¹

1 Data from monitoring reports submitted to the RWQCB for calendar year 2020, which is the most recent complete year for which data were available at the time of preparation of this application. See Section 5.4 of Appendix M (Annual Pretreatment Report) for monthly PLWTP influent and effluent data for 2020. Data for calendar year 2021 will be electronically submitted to regulators per reporting requirements of Order No. R9-2017-0007.

2 Highest daily value during calendar year 2020.

3 Highest daily mass emission rates (metric tons per year) are computed using the maximum sample value observed during 2020 and the PLWTP flow on the day the maximum value occurred.

- 4 Arithmetic average of individual daily samples collected during 2020. ND samples are assumed to have concentration of zero, and DNQ samples are presumed to have a concentration of the listed DNQ value. Unofficial computed average values not reported in the 2020 annual report.
- 5 Average mass emissions (metric tons per year) are computed using the average annual concentration and the average annual 2020 PLWTP flow of 144.3 mgd.
- 6 Maximum MDL achieved during 2020. See Section 5.4 within Appendix M.
- 7 Number of monthly samples collected and analyzed in 2020.
- 8 Highest daily value during 2020 was detected not quantifiable (DNQ).
- 9 The constituent was never detected above the reporting limit (RL) during 2020 and no average annual mass emission is computed.
- 10 Data from the PLWTP annual report for 2020 (see Section 5.4 of Appendix M). Average annual value was reported as DNQ.
- 11 The reported average annual concentration was DNQ and no average annual mass emission is computed.
- 12 The constituent was not detected (ND) at the listed MDL in any PLWTP effluent samples during 2020.
- 13 Maximum value occurred on April 15, 2020 where the PLWTP daily flow was 175.8 mgd.

EPA Form 3510-2A – Table D Point Loma Wastewater Treatment Plant

Tributyltin¹

Constituent	Highest Dail	y 2020 Value	Average 2	020 Value	Maximum	Number of	Analytical
	Concentration ² (µg/l)	Mass Emission ³ (mt/yr)	Concentration ⁴ Mass Emission ⁵ (µg/l) (mt/yr)		MDL ⁶ (µg/l)	2020 Samples	Method
Monobutyltin	ND 7	ND 7	ND 7	ND 7	0.0147	12	In-house
Tributyltin	ND 7	ND 7	ND 7	ND 7	0.0143	12	In-house

1 Data from monitoring reports submitted to the RWQCB for calendar year 2020, which is the most recent complete year for which data were available at the time of preparation of this application. See Section 5.4 of Appendix M (Annual Pretreatment Report) for monthly PLWTP influent and effluent data for 2020. Data for calendar year 2021 will be electronically submitted to regulators per reporting requirements of Order No. R9-2017-0007.

2 Maximum sample value during calendar year 2020.

3 Maximum mass emission rates (metric tons per year) are computed using the maximum sample value observed during 2020 and the PLWTP flow on the day the maximum value occurred.

4 Arithmetic average of individual daily samples collected during 2020.

5 Average mass emissions (metric tons per year) are computed using the average annual concentration and the average annual 2020 PLWTP flow of 144.3 mgd.

6 Maximum Method Detection Limit (MDL) during 2020, as reported in Section 5.4 of Appendix M (Annual Pretreatment Report).

7 The constituent was not detected (ND) at the listed MDL in any PLWTP effluent samples during 2020.

	Total Number	Number of 2020 Samples with	Number of 2020 Samples	Maximum 2020 MDL ⁶	T	TCDD Equ (picogram	uivalents ² is per liter)
Constituent	of Samples During 2020 ³	Concentrations Less than the MDL ⁴	with Concentrations that are DNQ ⁵	(picograms per liter)	Factor ²	2020 Highest Daily Value ⁷	2020 Annual Median ⁸
2,3,7,8-tetra CDD	12	12	0	0.448	1.0	ND ⁹	ND ⁹
1,2,3,7,8-penta CDD	12	12	0	0.575	0.5	ND ⁹	ND ⁹
1,2,3,4,7,8-hexa CDD	12	12	0	0.687	0.1	ND ⁹	ND ⁹
1,2,3,6,7,8-hexa CDD	12	12	0	0.715	0.1	ND ⁹	ND ⁹
1,2,3,7,8,9-hexa CDD	12	12	0	0.663	0.1	ND ⁹	ND ⁹
1,2,3,4,6,7,8-hepta CDD	12	6	6	0.793	0.01	3.47 DNQ ¹⁰	1.3 DNQ ¹¹
1,2,3,4,6,7,8,9-octa CDD	12	1	11	0.112	0.001	23.0 DNQ ¹⁰	12.5 DNQ ¹⁰
2,3,7,8-tetra CDF	12	12	0	0.41	0.1	ND ⁹	ND ⁹
1,2,3,7,8-penta CDF	12	12	0	0.552	0.05	ND ⁹	ND ⁹
2,3,4,7,8-penta CDF	12	12	0	0.491	0.5	ND ⁹	ND ⁹
1,2,3,4,7,8-hexa CDF	12	12	0	0.506	0.1	ND ⁹	ND ⁹
1,2,3,6,7,8-hexa CDF	12	12	0	0.52	0.1	ND ⁹	ND ⁹
1,2,3,7,8,9-hexa CDF	12	12	0	0.618	0.1	ND ⁹	ND ⁹
2,3,4,6,7,8-hexa CDF	12	12	0	0.524	0.1	ND ⁹	ND ⁹
1,2,3,4,6,7,8-hepta CDF	12	12	0	0.548	0.01	ND ⁹	ND ⁹
1,2,3,4,7,8,9-hepta CDF	12	12	0	0.735	0.01	ND ⁹	ND ⁹
1,2,3,4,6,7,8,9-octa CDF	12	12	0	0.992	0.001	ND ⁹	ND ⁹

EPA Form 3510-2A – Table D

Point Loma Wastewater Treatment Plant Dioxins and Furans, 2020¹

EPA Method 1613

1 Data from monitoring reports submitted to the RWQCB for calendar year 2020, which is the most recent complete year for which data were available at the time of preparation of this application. See Section 5.4 of Appendix M (Annual Pretreatment Report) for monthly PLWTP influent and effluent data for 2020. Data for calendar year 2021 will be electronically submitted to regulators per reporting requirements of Order No. R9-2017-0007.

2 TCDD equivalents are in concentrations of picograms per liter (10⁻⁶ μg/L), and represent the concentration of the constituent multiplied by the respective toxicity factors. Toxicity factors are as listed in Attachment A of Order No. R9-2017-0007.

3 Total number of samples during 2020 for the listed constituent.

4 Number of samples during 2020 where the constituent was not detected (ND).

5 Number of samples during 2020 where the constituent was detected but not quantifiable (DNQ), e.g., a concentration above the Method Detection Limit (MDL) but below the Reporting Limit (RL).

6 Maximum Method Detection Limit (MDL) during 2020, as reported in Section 5.4 of Appendix M (Annual Pretreatment Report).

7 Highest daily sample value reported during calendar year 2020.

8 Median value during calendar year 2020.

9 ND indicates the constituent was not detected at the listed MDL in any PLWTP effluent sample during 2020.

10 Value was detected but not quantifiable (DNQ). Mass emissions are not computed for DNQ values.

11 Six of twelve 2002 samples were ND. The median value is between ND and the lowest observed DNQ value.

This page intentionally left blank.

EPA Identification Number	NPDES Permit Number CA0107409	Facility Name E.W. Blom Point I Wastewater Treatme	e Loma ent Plant	Outfall Number 001	Form Approved 03/05/19 OMB No. 2040-0004			
TABLE E. EFFLUENT MONITORING	FOR WHOLE EFFLUENT TOXIC	CITY						
The table provides response space for	one whole effluent toxicity sampl	ie. Copy the table to repr	ort additional te	est results.				
Test Information								
	Test Numb	er	Те	st Number	Test Number			
Test species	See pages 25a-25d for c	hronic toxicity results						
Age at initiation of test	See pages 25a-25d for c	hronic toxicity results						
Outfall number	001	1						
Date sample collected	e sample collected See attached pages 25a-25d							
Date test started	tarted See attached pages 25a-25d							
Duration								
Toxicity Test Methods								
Test method number	Point Loma chronic toxicity testing is	s performed in accordance with:						
Manual title	- Short-Term Methods for Estimatir	Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms. U.S. Environmental Protection Agency, Environmental Monitoring						
Edition number and year of publication - National Pollutant Discharge Elimination System Test of Significant Toxicity Implementation Document, U.S. Environmental Protection Agency, Office of Wastewater Management, Washington, DC.								
Page number(s)	EPA 833-R-10-004.				······································			
Sample Type								
Check one:	Grab		Grab		Grab Grab			
	✓ 24-hour composite		24-hour co	omposite	24-hour composite			
Sample Location								
Check one:	Before Disinfection		Before Dis	sinfection	Before disinfection			
	After Disinfection		After Disin	fection	After disinfection			
	After Dechlorinatior	1	After Dech	nlorination	After dechlorination			
Point in Treatment Process								
Describe the point in the treatment prod at which the sample was collected for e test.	Final Effluent: Monitorir as defined within Order (NPDES CA0107409).	ng Location EFF-001 No. R9-2017-0007						
	See attached pages 25a- chronic toxicity results	·25d for						
Toxicity Type			_					
Indicate for each test whether the test to			Acute					
or both. (Check one response.)	Chronic		Chronic		Chronic Chronic			
	Both		Both		Both			

EPA Form 3510-2A – Table E Point Loma Ocean Outfall Discharge Chronic Toxicity Testing - Giant Kelp January 2017-August 2017 Testing Conducted Pursuant to Order No. R9-2009-0001¹

Species	Test	Date of Sample	Chronic Toxicity (TUc) ²	No Observed Effects Level ³ (NOEC)	EC254	EC50⁵
		1/17/2017	114	32	85.4	278
		2/6/2017	< 64.1	32	138	EC50 ⁵ 278 362 338 377 193 359 347 450 331 156 91.4 104 165 143 156 143 156 180 286
		3/6/2017	< 64.1	32	91.5	338
Macrocystis		4/10/2017	< 64.1	32	122	377
<i>pyrifera</i> (Giant Kelp)	Germ Tube Length (Growth)	5/15/2017	< 64.1	10	46.1	377 193 359 347 450 331 156
((,	6/5/2017	< 64.1	32	90.4	359
		7/17/2017	113.6	32	108	347
		8/7/2017	< 64.1	< 10	56.1	450
		9/18/2017	113.6	10	86.8	331
		1/17/2017	< 64.1	32	NA	156
		2/6/2017	< 64.1	32	NA	91.4
		3/6/2017	< 64.1	10	NA	104
Macrocystis		4/10/2017	113.6	32	NA	165
<i>pyrifera</i> (Giant Kelp)	Germination	5/15/2017	< 64.1	32	NA	143
		6/5/2017	< 64.1	32	NA	156
		7/17/2017	113.6	32	NA	180
		8/7/2017	< 64.1	32	NA	286
		9/18/2017	< 64.1	32	NA	120

1 From monthly toxicity monitoring reports submitted to the Regional Water Quality Control Board through August 2017 pursuant to RWQCB Order No. R9-2009-0001. Order No. R9-2009-0001 required the City to conduct chronic toxicity monitoring of the PLOO effluent in accordance with Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms (EPAI600/R-95/136, 1995). Under this methodology, chronic toxicity results are expressed in terms of chronic toxicity units (TUc). PLOO chronic toxicity testing subsequent to August 2017 was performed in accordance with Test of Significant Toxicity (TST) protocols required under Order No. R9-2017-0007.

2 Order No. R9-2009-0001 established a chronic toxicity limit of 204 TUc for the Point Loma Wastewater Treatment Plant discharge to the PLOO.

3 NOEC (No Observed Effects Concentration) is the maximum percent of effluent that causes no observable effects on the test species.

4 EC25 is the dilution at which 25 percent of test organisms display an observable effect.

5 EC50 is the dilution at which 50 percent of test organisms display an observable effect.

EPA Form 3510-2A – Table E Point Loma Ocean Outfall Discharge Biannual Sensitive Species Chronic Toxicity Testing, 2018 and 2020 Testing Conducted using Test of Significant Toxicity (TST) Protocols required under Order No. R9-2017-0007¹

Species	Test	Date of Sample	TST Result ²	No Observed Effects Concentration ³ (NOEC)	EC254	EC50⁵	Percent Effect ⁶
	Dovelopment	1/23/2018	Pass	18	39.3	52.2	-0.2
Red Abalone	Development	1/21/2020	Pass	18	36	48.6	-0.9
Growth	Crowth	1/23/2018	Pass	56	67.2	109	-28.4
	Growth	1/21/2020	Pass	56	64.6	88.4	-0.9 -28.4 -14.8 -7.4 -3.5
ropsmen	с ·	1/23/2018	Pass	32	60.9	100	-7.4
	Survival	1/21/2020	Pass	56	86.5	121	-3.5
	Germ Tube	1/23/2018	Pass	< 10	52.7	273	6.8
Macrocystis pyrifera	Length	1/21/2020	Pass	10	102	206	7.8
(Giant Kelp)	Completion	1/23/2018	Pass	32	75.2	140	4.0
	Germination	1/21/2020	Pass	10	51	110	1.4

1 From monthly toxicity monitoring reports submitted to the Regional Water Quality Control Board pursuant to RWQCB Order No. R9-2017-0007. Order No. R9-2017-0007 requires the City to conduct chronic toxicity monitoring of the PLOO effluent using the Test of Significant Toxicity (TST) statistical t-test approach described in National Pollutant Discharge Elimination System Test of Significant Toxicity Implementation Document (EPA 833-R-10-003, 2010). Biannual sensitive species screening tests are conducted to identify the most sensitive species which are to be subjected to TST chronic toxicity during the ensuring 24-month period.

2 Under the TST approach, the null hypothesis (Ho) is that the mean discharge "in-stream" waste concentration (IWC) response is less than 75 percent of the response in a control sample. A test result that rejects this null hypothesis is reported as "Pass", and a test result that does not reject this null hypothesis is reported as "Fail".

3 NOEC (No Observed Effects Concentration) is the maximum percent of effluent that causes no observable effects on the test species.

4 EC25 is the dilution at which 25 percent of test organisms display an observable effect.

5 EC50 is the dilution at which 50 percent of test organisms display an observable effect.

6 Percent effect of the effluent sample compared to a control sample.

EPA Form 3510-2A – Table E Point Loma Ocean Outfall Discharge - Chronic Toxicity Testing, 2017-2020 Giant Kelp (*Macrocystis pyrifera*) Germ Tube Length (Growth) Testing Conducted using Test of Significant Toxicity (TST) Protocols required under Order No. R9-2017-0007¹

Date of Sample Giant Kelp Growth	TST Result ²	No Observed Effects Concentration ³ (NOEC)	EC25⁴	EC50⁵	Percent Effect ⁶
10/16/2017	Pass	32	145	254	-6.4
11/6/2017	Pass	23	74.1	312	-0.9
12/4/2017	Pass	< 10	48.5	228	0.8
1/23/2018	Pass	< 10	52.7	273	6.8
2/26/2018	Pass	10	61.5	454	7.0
3/5/2018	Pass	32	152	441	2.2
4/16/2018	Pass	32	77.1	441	-9.6
5/22/2018	Pass	32	114	371	-4.3
6/18/2018	Pass	10	76.7	307	7.3
7/23/2018	Pass	32	87.2	245	0.4
8/6/2018	Pass	23	67.9	364	0.8
9/10/2018	Pass	10	62.1	244	7.2
10/2/2018	Pass	10	47.7	204	-5.9
11/5/2018	Pass	10	58.4	201	-6.1
12/3/2018	Pass	< 10	64.4	256	-2.8
1/17/2019	Pass	10	102	281	-4.8
2/19/2019	Pass	< 10	74.3	366	-7.7
3/4/2019	Pass	32	69.4	203	2.6
4/19/2019	Pass	32	65.3	174	-0.4
5/13/2019	Pass	32	100	236	-2.3
6/3/2019	Pass	10	54.5	226	1.5
7/15/2019	Pass	32	79	245	2.4
8/5/2019	Pass	10	52.2	227	2.7
9/2/2019	Pass	< 10	94.5	189	-5.4
10/7/2019	Pass	10	69.4	198	-0.4
11/4/2019	Pass	10	70.3	162.5	1.1
12/2/2019	Pass	10	59.1	184	-3.1
1/7/2020	Pass	32	55.7	158	-2.3
1/21/2020	Pass	10	102	206	7.8
2/3/2020	Pass	10	85	312	-0.8
3/9/2020	Pass	32	112	266	-3.1
4/5/2020	Pass	10	55.9	236	-2.5
5/5/2020	Pass	10	66	197	-0.8
6/1/2020	Pass	32	70	262	3.7
7/6/2020	Pass	< 10	58.9	193	-3.3
8/3/2020	Pass	32	67.2	238.6	0
9/1/2020	Pass	10	70.5	292	-0.4
11/2/2020	Pass	32	61.3	208	-5.3
12/7/2020	Pass	10	60.9	218	-2.4

1 From monthly toxicity monitoring reports submitted to the Regional Water Quality Control Board pursuant to Order No. R9-2017-0007. Order No. R9-2017-0007 requires the City to conduct chronic toxicity monitoring of the PLOO effluent using the Test of Significant Toxicity (TST) statistical t-test approach described in *National Pollutant Discharge Elimination System Test of Significant Toxicity Implementation Document* (EPA 833-R-10-003, 2010). Biannual sensitive species screening tests are conducted to identify the most sensitive species which are to be subjected to TST chronic toxicity during the ensuring 24-month period. This biannual screening determined that giant kelp (*Macrocystis pyrifera*) was the most sensitive of the tested species.

2 Under the TST approach, the null hypothesis (Ho) is that the mean discharge "in-stream" waste concentration (IWC) response is less than 75 percent of the response in a control sample. A test result that rejects this null hypothesis is reported as "Pass", and a test result that does not reject this null hypothesis is reported as "Fail".

3 NOEC (No Observed Effects Concentration) is the maximum percent of effluent that causes no observable effects on the test species.

4 EC25 is the dilution at which 25 percent of test organisms display an observable effect.

5 EC50 is the dilution at which 50 percent of test organisms display an observable effect.

6 Percent effect of the effluent sample compared to a control sample.

EPA Form 3510-2A – Table E Point Loma Ocean Outfall Discharge - Chronic Toxicity Testing, 2017-2020 Giant Kelp (*Macrocystis pyrifera*) Germination Testing Conducted using Test of Significant Toxicity (TST) Protocols required under Order No. R9-2017-0007¹

-			-		
Date of Sample Giant Kelp Germination	TST Result ²	No Observed Effects Concentration ³ (NOEC)	EC25⁴	EC50⁵	Percent Effect ⁶
10/16/2017	Pass	32	NA	152	-0.7
11/6/2017	Pass	32	NA	115	-1.3
12/4/2017	Pass	32	NA	119	-0.9
1/23/2018	Pass	32	75.2	140	4.0
2/26/2018	Pass	10	67.2	127	-0.9
3/5/2018	Pass	10	65.4	129	-2.6
4/16/2018	Pass	10	75.1	132	-1.9
5/22/2018	Pass	32	107	178	2.1
6/18/2018	Pass	10	51.4	112	-3.7
7/23/2018	Pass	10	64.1	128	-1.9
8/6/2018	Pass	32	103	156	0.7
9/10/2018	Pass	10	48.4	95	-5.1
10/2/2018	Pass	10	58.5	123	-2.8
11/5/2018	Pass	10	74	134	-2.7
12/3/2018	Pass	< 10	53.1	120	-2.3
1/17/2019	Pass	10	59.6	120	-1.8
1/21/2020	Pass	10	51	110	1.4
2/19/2019	Pass	< 10	59.2	125	0
3/4/2019	Pass	32	75	147	-2.0
4/19/2019	Pass	32	65.3	126	-3.6
5/13/2019	Pass	10	52.3	113	-1.8
6/3/2019	Pass	10	59.1	119	0.2
7/15/2019	Pass	< 10	62.4	126	-2.3
8/5/2019	Pass	10	51.8	107	-1.3
9/2/2019	Pass	10	52.9	113	-1.1
10/7/2019	Pass	32	50.3	96.2	-0.5
11/4/2019	Pass	10	49.5	119.6	-1.4
12/2/2019	Pass	10	51.4	102.7	-3
1/7/2020	Pass	32	56.6	114	-1.9
2/3/2020	Pass	10	48.9	131	-0.2
3/9/2020	Pass	< 10	64.1	139	-8.5
4/5/2020	Pass	10	48.6	102	-1.6
5/5/2020	Pass	10	45.6	104	-0.2
6/1/2020	Pass	32	59.4	115	-0.7
7/6/2020	Pass	10	55.9	112	0
8/3/2020	Pass	10	54.9	129.6	0
9/1/2020	Pass	32	61	138	-2.6
10/6/2020	Pass	10	58.5	116	4
10/6/2020	Pass	32	63.6	208	4.2

1 From monthly toxicity monitoring reports submitted to the Regional Water Quality Control Board pursuant to Order No. R9-2017-0007. Order No. R9-2017-0007 requires the City to conduct chronic toxicity monitoring of the PLOO effluent using the Test of Significant Toxicity (TST) statistical t-test approach described in *National Pollutant Discharge Elimination System Test of Significant Toxicity Implementation Document* (EPA 833-R-10-003, 2010). Biannual sensitive species screening tests are conducted to identify the most sensitive species which are to be subjected to TST chronic toxicity during the ensuring 24-month period. This biannual screening determined that giant kelp (*Macrocystis pyrifera*) was the most sensitive of the tested species.

2 Under the TST approach, the null hypothesis (Ho) is that the mean discharge "in-stream" waste concentration (IWC) response is less than 75 percent of the response in a control sample. A test result that rejects this null hypothesis is reported as "Pass", and a test result that does not reject this null hypothesis is reported as "Fail".

3 NOEC (No Observed Effects Concentration) is the maximum percent of effluent that causes no observable effects on the test species.

4 EC25 is the dilution at which 25 percent of test organisms display an observable effect.

5 EC50 is the dilution at which 50 percent of test organisms display an observable effect.

6 Percent effect of the effluent sample compared to a control sample.

EPA Identification Number	NP	DES Permit Number CA0107409	Facility Nar E.W. Blom Point Wastewater Treatm	ne Loma nent Plant	Outfall Number 001		Form Approved 03/05/19 OMB No. 2040-0004		
TABLE E. EFFLUENT MONITORIN	IG FOR WI	HOLE EFFLUENT TO	DXICITY						
The table provides response space	for one who	ole effluent toxicity sa	mple. Copy the table to re	port additional test	results.				
		Test Nu	mber	Test	Number	Test N	umber		
Test Type				•		·			
Indicate the type of test performed. response.)	(Check one	Static o	rder No. R9-2017-002 requires static enewal tests for topsmelt. Static on-renewal tests are required for and dollar, red abalone, and giant	Static Static-renew	al	Static Static-renewal			
Source of Dilution Water			eip.						
Indicate the source of dilution water one response.)	. (Check	Laboratory wate	۲	Laboratory V	vater ater	Laboratory wat	Laboratory water Receiving water		
If laboratory water, specify type.									
If receiving water, specify source.									
Type of Dilution Water				•		•			
Indicate the type of dilution water. If water, specify "natural" or type of ar sea salts or brine used.	salt tificial	Fresh water Salt water (specific seawater provided by)	y) the Scripps Institution of	Fresh water	pecify)	Fresh water	sify)		
		occanography intered using 1.	o un uno o.2 un mers.						
Percentage Effluent Used				T					
Specify the percentage effluent user concentrations in the test series.	d for all	Instream waste co	oncentration of 0.49%						
Parameters Tested									
Check the parameters tested.		 ☑ pH ☑ Salinity ☑ Temperature 	Ammonia Dissolved oxygen	□ pH □ Salinity □ Temperature	Ammonia Dissolved oxygen e	pH Salinity Temperature	Ammonia Dissolved oxygen		
Acute Test Results		•		•					
Percent survival in 100% effluent		Not applicable. Ac	cute toxicity testing not		%		%		
LC ₅₀		required per Californi	a Ocean Plan or Order No.						
95% confidence interval		R9-2017-0007, each	of which require chronic		%	% %			
Control percent survival		toxicity testing in	i neu ol acute testing.		%	%			

EPA Identification Number	NPDES Permit Number CA0107409	Facility Nan E.W. Blom Poin Wastewater Treatr	ne t Loma nent Plant		Outfall Number 001		Form Approved 03/05/19 OMB No. 2040-0004	
TABLE E. EFFLUENT MONITORIN	IG FOR WHOLE EFFLUENT TOXI	CITY						
The table provides response space	for one whole effluent toxicity samp	le. Copy the table to re	port additional t	est results). 			
	Test Num	oer	T	est Numb	er	Test Num	ber	
Acute Test Results Continued								
Other (describe)	Not applicable. Acute	t applicable. Acute toxicity testing not						
	required per California C	a Ocean Plan or Order No.						
	R9-2017-0007, each of	ach of which require chronic						
Chronic Test Results		eu of acute testing.						
NOEC	See attached pa	ges 25a-25d %		%		%		
IC ₂₅	See attached pa	See attached pages 25a-25d %			%		%	
Control percent survival	See attached pa	See attached pages 25a-25d %			%		%	
Other (describe)	TST "pass" f See attached tables	or all tests. on pages 25a-25d.		Not appl	licable	Not ap	plicable	
Quality Control/Quality Assurance	e							
Is reference toxicant data available	? Yes	No No	🗆 Ye	S	🗆 No	Yes	🗆 No	
Was reference toxicant test within acceptable bounds?	☑ Yes	□ No	🗆 Ye	s	🗆 No	☐ Yes	🗆 No	
What date was reference toxicant te (MM/DD/YYYY)?	Tests conducted both on effluer attached tables	it and reference toxicants. See for test dates.						
Other (describe)	Not app	licable		Not appl	licable	Not applicable		

This page intentionally left blank.

EPA Identification Number	NPDES Permit Number CA0107409		Facility Name E.W. Blom Point Loma Wastewater Treatment Plant				Form Approved 03/05/ OMB No. 2040-00			
TABLE F. INDUSTRIAL DISCHARGE INFORMA	TION									
Response space is provided for three SIUs. Copy	the table to report information for addit	ional SIUs.								
	SIU			SIU	_		SIL	J		
Name of SIU	See Section III.H of the Large Applicant Questionnaire	and								
Mailing address (street or P.O. box)	summary tables on attached pages 29	a and 29b								
City, state, and ZIP code										
Description of all industrial processes that affect or contribute to the discharge.	See Section III.H of the Large Applicant Questionnaire summary tables on attached pages 29	and a and 29b								
List the principal products and raw materials that affect or contribute to the SIU's discharge.	See Section III.H of the Large Applicant Questionnaire a summary tables on attached pages 29	ind a and 29b								
Indicate the average daily volume of wastewater discharged by the SIU.		gpd				gpd			gpd	
How much of the average daily volume is attributable to process flow?		gpd				gpd			gpd	
How much of the average daily volume is attributable to non-process flow?		gpd				gpd			gpd	
Is the SIU subject to local limits?	Yes No			/es	🗆 No		T Yes	□ No		
Is the SIU subject to categorical standards?	Yes No			/es	□ No		☐ Yes	□ No		

Note: Completion of Part F is not required for 301(h) applicants per 40 CFR 125.59(c)(1), which requires that NPDES permit application forms only be submitted for Section I (Applicant and Facility Description), Section II (Basic Discharge Information) and Section III (Scheduled Improvements) of the prior EPA Standard Form A. For 301(h) applicants, industrial discharger information is required to be submitted as part of the Large Applicant Questionnaire (LAQ). Descriptions of the Metro System pretreatment program and contributing SIUs and CIUs is presented in Section III. H of the attached LAQ. For review purposes, Metro System SIU/CIU dischargers for calendar year 2020 are also summarized in tables shown on attached pages 29a and 29b of EPA Form 3510-2A.

EPA Form 3510-2A – Table F Categorical Industrial Users (CIUs) Discharging to the Metro System, 2020¹

Permit Class ²	Name of Industry	Discharge Permit Number	Industrial Processes	Applicable Categorical Requirements ³	Average 2020 Flow (gpd)	Address of Industry
1	Action Powder Coating LLC	03-0717 08-A	Coating and cleaning	40 CFR 433.17	1,949	7949 Stromesa Court Suite D; San Diego
1	Alphacoat Finishing LLC	03-0920 06-A	Metal finishing	40 CFR 433.17	492	9352 Cabot Drive; San Diego
1	Anocote Metal Finishing Inc	03-1017 04-A	Etching, anodizing, cleaning	40 CFR 433.17	110	7550 Trade Street; San Diego
1	AP Precision Metals	12-0144 05-A	Metal coating, iron phosphating	40 CFR 433.17	128	1215 30th Street; San Diego
1	ATK Space Systems Inc	03-0115 07-A	Abrasive jet machining	40 CFR 433.17	190	9603 Distribution Avenue; San Diego
1	Chromalloy San Diego	05-0985 05-A	Fluorescent penetrant testing	40 CFR 433.17	308	7007 Consolidated Way; San Diego
1	Coating Services Group LLC	21-0331 03-A	Metal parts cleaning	40 CFR 433.17	35	11649 Riverside Drive Suite 139; Lakeside
1	Compucraft Industries Inc	21-0252 05-A	Metal finishing, fabrication, machining	40 CFR 433.17	0	8787 Olive Lane; Santee
1	Creative Metal Industries	21-0248 06-A	Silkscreen cleaning	40 CFR 433.17	90	10039 Prospect Avenue Suite E; Santee
1	Garvin Industries	16-0033 06-A	Cleaning, iron phosphating, sealing	40 CFR 433.17	37	316 Millar Avenue; El Cajon
1	General Dynamics NASSCO	11-0051 07-A	Wastewater plant effluent/ship construction	40 CFR 433.17	73,101	2798 Harbor Drive; San Diego
1	GKN Aerospace Chem-tronics Inc	16-0520 06-A	Metal finishing, cleaning, penetrant testing	40 CFR 433.17	35,850	1150 W Bradley Avenue; El Cajon
1	Golden State Metal Finishing	34-0070 04-A	Treated metal finishing	40 CFR 433.17	373	2737 Via Orange Way #104; Spring Valley
1	Harcon Precision Metals Inc	12-0244 03-A	Conversion coating	40 CFR 433.17	70	1790 Dornoch Court; San Diego
1	IriSys LLC	03-0779 05-A	Elixir tank cleaning, equipment cleaning	40 CFR 439.47	285	6828 Nancy Ridge Drive, #100; San Diego
1	Johnson Matthey Medical Products	03-1070 05-A	Parts cleaning and tumbling	40 CFR 433.17	280	12205 World Trade Drive; San Diego
1	K-Tube Corporation	20-0122 05-A	Power washing, tube manufacturing	40 CFR 433.17	911	13400 Kirkham Way; Poway
1	Kyocera International Inc	06-0058 07-A	Nickel plating and cleaning	40 CFR 433.17	23,650	8611 Balboa Avenue; San Diego
1	L & T Precision Corporation	20-0109 06-A	Silkscreen cleaning	40 CFR 433.17	35	12105 Kirkham Road; Poway
1	nVent - Schroff Inc	03-1203 02-A	Tumble deburring, passivation, silk screening	40 CFR 433.17	352	7328 Trade Street; San Diego
1	Otay Mesa Energy Center LLC	36-0001 03-A	Blowdown, turbine washing	40 CFR 423.17	33,375	606 De La Fuente Court; San Diego
1	Pacira Pharmaceuticals Inc	02-0762 06-A	Pharmaceutical manufacturing	40 CFR 439.47	32,690	10450 Science Center Drive; San Diego
1	PrimaPharm Inc	02-0439 03-В	Pharmaceutical manufacturing	40 CFR 439.46	250	3443 Tripp Court; San Diego
1	Rohr Inc a UTC Aerospace Systems Company	13-0161 06-A	Metal finishing	40 CFR 433.17	9,974	850 Lagoon Drive; Chula Vista
1	Santier Incorporated	03-1380 01-A	Metal finishing, surface treatment	433.17/471.45/471.55	139	10103 Carroll Canyon Road; San Diego
1	Somacis Inc	20-0043 07-A	PCB mfg.; gold plating and immersion	40 CFR 433.17	32,108	13500 Danielson Street; Poway
1	Spec-Built Systems Inc	12-0202 04-A	Iron phosphating	40 CFR 433.17	26	2150 Michael Faraday Drive; San Diego
1	Stallergenes Greer dba Allermed Laboratories Inc.	05-0684 06-A	Glassware and tube washing/sterilization	40 CFR 439.26	30	7203 Convoy Court; San Diego
1	Suneva Medical Inc	02-0518 06-A	Pharmaceutical manufacturing	439.27/439.47	979	5870 Pacific Center Blvd.; San Diego
1	Sungear	03-0347 05-В	Etching rinsing	40 CFR 433.17	20	8535 Arjons Drive Suite G; San Diego
1	The Argen Corporation	02-0582 07-A	Precious metals forming	40 CFR 471.45	110	5855 Oberlin Drive San Diego
1	TTM Technologies Inc - San Diego Division	05-0997 06-A	PCB mfg.; gold electroplating and immersion	40 CFR 433.17	10,100	5037 Ruffner Street San Diego
1	USN; Naval Base Coronado - NASN	08-0018 06-A	Test cell/pad cleaning, testing, oil recovery	40 CFR 433.17/433.15	98,410	NAS North Island San Diego
1	Valley Metals	20-0108 06-A	Metal forming/finishing, X-ray processing	433.17/471.35/471.65	897	13125 Gregg Street Poway
1	Veridiam Inc	16-0348 05-A	Metal forming and cleaning	433.15/433.17/468.15 471.35/471/65/471/95	2,378	1717 Cuyamaca Street El Cajon
1	Vision Systems Inc	21-0288 01-B	Etching and chem film	40 CFR 433.17	1,100	11322 N Woodside Avenue Santee

1 Industries subject to federal categorical pretreatment standards under Title 40, Section 403 of the *Code of Federal Regulations* (40 CFR 403) and 40 CFR Chapter I, Subchapter N. See Appendix N details on individual CIUs during 2020, including monitoring, inspection and compliance.

2 Class 1 dischargers are defined as users with industrial processes that are subject to federal categorical pretreatment standards (CIUs). CIUs are regulated under Class 1 permits that require source control, pretreatment, or both in accordance with local regulations and federal technology-based regulations established for individual industrial categories within the *Code of Federal Regulations*.

3 Section within Title 40 of the Code of Federal Regulations (40 CFR) where categorical requirements are established that are applicable to the industry.

EPA Form 3510-2A – Table F Non-Categorical Significant Industrial Users (SIUs) Discharging to the Metro System, 2020¹

Permit Class ²	Designation	Name of Industry	Permit No.	Industrial Process/Nature of Discharge	Address of Industry
2	SIU	Cintas Corporation	11-0189 07-A	Industrial laundry	675 32nd Street San Diego
2	SIU	CP Kelco	11-0444 06-A	Pilot plant and cogeneration plant	2025 E Harbor Drive San Diego
2	SIU	Otay Landfill Inc	36-0012 01-A	Landfill leachate	1700 Maxwell Road Chula Vista
2	SIU	Pall Filtration & Separations Group Inc	02-0332 06-A	Membrane manufacturing	4116 Sorrento Valley Blvd. San Diego
2	SIU	Unifirst Corporation	11-0398 07-A	Industrial laundry	4041 Market Street San Diego
2	SIU	University of California San Diego	02-0112 06-B	Medical and research facilities	9500 Gilman Drive 0089 La Jolla
2	SIU	USN; Marine Corps Air Station Miramar	05-1019 05-A	Aircraft maintenance	45249 Miramar Way San Diego
2	SIU	USN; Naval Base San Diego	11-0016 06-B	Medical, piers, maint., oily waste treatment	32nd St @ Harbor Drive San Diego
2	SIU	UT; Ametek Inc	16-0785 06-A	Groundwater remediation	790 Greenfield Drive El Cajon
2	SIU	UT; Brenntag Pacific Inc	13-0549 02-A	Groundwater remediation	1888 Nirvana Avenue Chula Vista
2	SIU	UT; Holland Partner Group	09-1018 01-A	Construction process water	225 W B Street San Diego
2	SIU	UT; Innovative Environmental Solutions	13-0454 07-C	Groundwater remediation	1330 3rd Av Chula Vista
2	SIU	UT; KTA Construction Inc	08-0620 01-A	Construction dewatering	4301 Pacific Hwy San Diego
2	SIU	UT; Ortiz Corporation	04-0513 02-A	Construction dewatering	2750 Grand Avenue San Diego
2	SIU	UT; Phillips 66 Site 1467	07-0170 08-A	Groundwater remediation	7121 Park Ridge Blvd. San Diego
2	SIU	UT; San Diego Gas and Electric	05-1284 01-B	Construction dewatering	9211 Kearny Mesa Road San Diego
2	SIU	UT; SDSU Mission Valley Site Development	06-0414 02-A	Construction dewatering	9449 Friars Road San Diego
2	SIU	UT; Sukut Construction	16-0817 03-A	Construction dewatering	1620 Joe Crosson Drive El Cajon
2	SIU	UT; Thrifty Oil Company # 043	16-0565 11-A	Groundwater remediation	1092 E Washington Avenue El Cajon
2	SIU	UT; Thrifty Oil Company # 420	16-0727 07-A	Groundwater remediation	398 El Cajon Blvd. El Cajon
2	SIU	UT; USN NBPL Defense Fuel Support Point	08-0008 07-A	Groundwater remediation	199 Rosecrans Street San Diego
3	SIU	Ajinomoto Foods North America Inc	12-0220 05-A	Food processing and manufacturing	8411 Siempre Viva Road San Diego
3	SIU	Alsco Inc	09-0001 06-A	Commercial laundry	705 W Grape Street San Diego
3	SIU	Atlas Pumping	33-0069 01-A	Grease dewatering	12740 Vigilante Road Lakeside
3	SIU	Ballast Point Brewery Miramar	03-0270 04-A	Brewing	9045 Carroll Way San Diego
3	SIU	Emerald Textiles LLC	12-0065 05-A	Commercial laundry	1725 Dornoch Court Suite 100 San Diego
3	SIU	JDZ Inc DBA AleSmith Brewing Company	03-1300 02-A	Brewing	9990 AleSmith Court San Diego
3	SIU	Jensen Meat Company Inc	12-0275 03-A	Meat processing; cleansing and cleaning	2550 Britannia Bld. Suite 101 San Diego
3	SIU	Kraft Heinz Foods Company	12-0154 05-A	Food manufacturing	7878 Airway Road San Diego
3	SIU	Pio Pico Energy Center	36-0009 02-A	Gas turbine power plant	7363 Calzada de la Fuente San Diego
3	SIU	RJ Donovan Correctional Facility	12-0038 06-A	Prison wastes	480 Alta Road San Diego
3	SIU	Saint Archer Brewing Company	03-1338 02-A	Brewing	9550 Distribution Avenue San Diego
3	SIU	Spectex Inc dba Specialty Textile Services	12-0283 03-A	Commercial laundry	1333 30th Street Suite A San Diego
3	SIU	Star Laundry Services	11-0321 04-A	Commercial laundry	3410 Main Street San Diego
3	SIU	Tarantino Wholesale Food Distributors	12-0212 02-A	Sausage manufacturing	7651 Saint Andrews Avenue San Diego
3	SIU	US General Services Administration - SYLPOE	12-0285 03-A	Treated and untreated wastewater	720 E San Ysidro Blvd. San Diego
3	SIU	UT; City of San Diego - Storm Water Division	11-0534 04-A	Groundwater dewatering	111 W Harbor Drive San Diego
3	SIU	WC IPA LLC	03-0966 04-A	Brewing	6550 Mira Mesa Blvd. San Diego

1 Industries not subject to federal categorical pretreatment standards under Title 40, of the Code of Federal Regulations (40 CFR 126), but subject to designation as Significant Industrial Users (SIUs). This includes (1) industries that discharge more than 25,000 gallons per day (gpd), (2) industries with discharges that comprise more than five percent of the hydraulic or organic loading of public owned treatment works, or (3) industries that have the potential to adversely impact wastewater treatment or have a reasonable potential to violate pretreatment standards or requirements. See Appendix N details on individual SIUs during 2020, including monitoring, inspection and compliance.

2 Class 2 permits are issued by the City of San Diego to industrial sectors which have some toxic constituents in their discharge but are not subject to federal categorical pretreatment standards. Class 2 permits may impose numeric limits or required Best Management Practice requirements (BMPs). Groundwater remediation projects receive Class 2 permits.

3 Class 3 permits are issued to industrial sectors to regulate conventional pollutants. Class 3 permits may impose numeric limits or required BMPs. Construction dewatering projects receive Class 3 permits.

EPA Identification Number		NPDES Permit Number CA0107409		Facility Name E.W. Blom Point Loma Wastewater Treatment Plant		Form Approved 03/05/19 OMB No. 2040-0004
TABLE F. INDUSTRIAL DISCHARGE INFO	ORMATIO	ON				
Response space is provided for three SIUs.	Copy the	e table to report information for addition	onal SIUs.			
		SIU		SIU		SIU
Under what categories and subcategories is SIU subject?	the					
Note: Completion of Part F is not req (Applicant and Facility Description), S industrial discharger information is rec contributing SIUs and CIUs is present tables shown on attached pages 29a	uired for section II quired to ted in Se and 29b	301(h) applicants per 40 CFR 125.59 (Basic Discharge Information) and Sec be submitted as part of the Large App ction III.H of the attached LAQ. For re of EPA Form 3510-2A.	c)(1), whic ction III (So licant Que view purpo	h requires that NPDES permit appli- theduled Improvements) of the prior stionnaire (LAQ). Descriptions of th ses, Metro System SIU/CIU discha	cation form EPA Stand e Metro Sy rgers for ca	s only be submitted for Section I ard Form A. For 301(h) applicants, atem pretreatment program and lendar year 2020 are also summarized in
Has the POTW experienced problems (e.g., upsets, pass-through interferences) in the payears that are attributable to the SIU?	ast 4.5	Yes No		🗆 Yes 🛛 No	1	🗆 Yes 🗖 No
If yes, describe.						

EPA Form 2S

Renewal of NPDES CA0107409

EP	A Identificatior	Number NPDES Perm	it Number	Facility Name	Form Approved 03/05/19
		CA0107	409	E.W. Blom Point Loma Wastewater Treatment Plant and Metro Biosolids Center	OMB No. 2040-0004
Form 2S	Э.F	-PA	Application	U.S Environmental Protection Agence for NPDES Permit for Sewage Sludge	≎y 9 Management
NPDES		NEW A	ND EXISTIN	G TREATMENT WORKS TREATING D	DOMESTIC SEWAGE
PRELIM	INARY INF	ORMATION			
Does yo	ur facility cu	urrently have an effective NPDES	S permit or ha	ive you been directed by your NPDES p	permitting authority to submit a
F Ye	es 🗲 Com	plete Part 2 of application package	ge (begins p.	7).	of application package (below).
	PART ²	1	LIMITED BA	CKGROUND INFORMATION (40 CFR	122.21(c)(2)(ii))
Complet	e this part o	only if you are a "sludge-only" fac	cility (i.e., a fa	cility that does not currently have, and is	s not applying for, an NPDES
PART 1.	SECTION	1. FACILITY INFORMATION (4	0 CFR 122.2	1(c)(2)(ii)(A))	
	1.1	Facility name			
		Not applicable - See Part 2 Mailing address (street or P.O.	box)		
	ļ	Not applicable - See Part 2	bony		
io		City or town Not applicable - See Part 2		State	ZIP code
ormat		Contact name (first and last) Not applicable - See Part 2	Title	Phone number	Email address
ty Inf		Location address (street, route	e number, or o	other specific identifier)	□ Same as mailing address
Facili		City or town		State	ZIP code
	1.2	Ownership Status			
		Public—federal	Public—s	tate Dther public (s	specify)
		Private	Other (sp	ecify)	
PART 1	SECTION	2. APPLICANT INFORMATION	(40 CFR 122	2.21(c)(2)(ii)(B))	
	2.1	Is applicant different from entit	y listed under	Item 1.1 above?	
		Yes		No → SKIP to Ite	em 2.3 (Part 1, Section 2).
_	2.2	Applicant name Not applicable - See Part 2			
atior		Applicant address (street or P.	O. box)		
Inform		City or town Not applicable - See Part 2		State	ZIP code
licant		Contact name (first and last) Not applicable - See Part 2	Title	Phone number	Email address
App	2.3	Is the applicant the facility's ov	vner, operato	r, or both? (Check only one response.)	
		Owner		Operator 🗹	Both
	2.4	To which entity should the NPI	DES permittir	ig authority send correspondence? (Che	eck only one response.)
				Applicant	(they are one and the same)
PART 1	, SECTION	3. SEWAGE SLUDGE AMOUN	T (40 CFR 12	22.21(c)(2)(ii)(D))	
ŧ	3.1	Provide the total dry metric tor disposed of:	is per the late	est 365-day period of sewage sludge ge	nerated, treated, used, and
Amou			Prac	tice	Dry Metric Tons per 365-Dav Period
ndge		Amount generated at the facili	ty		Not applicable
ge Sl		Amount treated at the facility			Not applicable
Sewa		Amount used (i.e., received fro	om off site) at	the facility	Not applicable
		Amount disposed of at the fact	ility		Not applicable

EP	EPA Identification Number		NPDES	Permit Number		Facility Name	Form	Approved 03/05/19			
			CA	0107409	E.W. Blom Po Plant a	int Loma Wastewater Treatment Ind Metro Biosolids Center	C	0MB No. 2040-0004			
CA0107409 CA0107409 Plant and Metro Biosolids Center PART 1, SECTION 4. POLLUTANT CONCENTRATIONS (40 CFR 122.21(c)(2)(ii)(E))											
	4.1	Using the table below or a separate attachment, provide existing sewage sludge monitoring data for the polluta for which limits in sewage sludge have been established in 40 CFR 503 for your facility's expected use or disportant practices. If available, base data on three or more samples taken at least one month apart and no more than 4.5 years old.									
		Pollu	tant	Concentrat (mg/kg dry wei	ion ght)	Analytical Metho	d Det	tection Level or Analysis			
		Arsenic		Not applicable - S	ee Part 2			•			
		Cadmium									
		Chromium		Not applicable - S	ee Part 2						
		Copper									
		Lead		Not applicable - S	ee Part 2						
su		Mercury									
itratio		Molybdenum		Not applicable - S	ee Part 2						
oncen		Nickel									
ant C		Selenium		Not applicable - S	ee Part 2						
Pollut		Zinc									
		Other (specif	ý)	Not applicable - S	ee Part 2						
		Other (specif	y)								
		Other (specif	y)								
		Other (specif	<u>y</u>)								
		Other (specif	y)								
		Other (specif	y)								
		Other (specif	y)								
		Other (specif	<u>y)</u>								
		Other (specif	 jy)								
				1			1				

EPA	A Identification	Number	NPDES Permit Numbe	r	Fa	acility Na	ame		Form Approved 03/05/19	
			CA0107409		E.W. Blom Point L	oma Wa	stewater Treatment	Treatment OMB No. 2040-0004		
PART 1	SECTION	5. TREATMENT PROVIDED AT YOUR FACILITY (40 CFR 122.21(c)(2)(ii)(C))								
		For each set	wage sludge use or dispo	sal nra	rtico indicato	tho ar		nhula ar	a used or disposed of the	
	5.1	applicable p	athonen class and reduct	ion alte	native and the	ne ann	licable vector a	attraction	reduction option Attach	
		additional pa	ages, as necessary.	ion alto		io app				
		Use or	Disposal Practice		Amount	Pa	athogen Class	and	Vector Attraction	
			(check one)	(dry	metric tons)	Re	duction Altern	ative	Reduction Option	
		□ Land app	lication of bulk sewage				lot applicable		□ Not applicable	
		□ Land app	lication of biosolids			ΠC	lass A, Alterna	tive 1	□ Option 1	
		(bulk)					lass A, Alterna	tive 2	□ Option 2	
			lication of biosolids				lass A, Alterna	tive 3	□ Option 3	
lity		(Dags)	licnocal in a landfill				lass A, Alterna	live 4	Option 4 Option 5	
aci			face disnosal				lass Α, Alleina lass Δ Δlterna	tive 5		
느			nn				lass R. Alterna	tive 1	\Box Option 7	
Yoı							lass B, Alterna	tive 2	\Box Option 8	
lat						ΠC	lass B, Alterna	tive 3	□ Option 9	
ded		Not app	olicable - See Part 2			ΠC	lass B, Alterna	tive 4	Option 10	
ovi						DD	omestic septag	je, pH	Option 11	
t Pr						а	djustment			
nen	5.2	For each of	the use and disposal prac	ctices s	pecified in Iter	n 5.1,	identify the trea	atment p	process(es) used at your	
eatn		facility to red	luce pathogens in sewage	e sludg	e or reduce th	ie vect	or attraction pr	operties	of sewage sludge. (Check	
Tre		all that apply	(.)	cludad		Not a	pplicable - See	Part 2		
			nding and degritting)	, sludge		Th	ickening (conc	entration	ו)	
		□ Sta	abilization			Ar	naerobic digesti	on		
		Co	mposting			Сс	onditioning			
		Dis gar	sinfection (e.g., beta ray in mma ray irradiation, paste	radiatio eurizatio	n, 🗆 🗆	De be	ewatering (e.g., eds, sludge lage	centrifu oons)	gation, sludge drying	
		🔲 He	at drying			Th	ermal reductio	n		
		П Ме	thane or biogas capture	and rec	overy 🗖	Ot	her (specify) _			
PART 1.	SECTION	6. SEWAGE S	SLUDGE SENT TO OTH	ER FAC	ILITIES (40 (CFR 1	22.21(c)(2)(ii)(C))		
,	61	Doos the se	wago sludgo from vour fa	cility m	ot the colling	conce	ontrations in Ta	blo 1 of	10 CED 503 13 tho	
	0.1	pollutant cor	centrations in Table 3 of	40 CEF	2 503 13 Clas	s A n	athogen reduct	ion requ	irements at 40 CFR	
		503.32(a), a	<i>nd</i> one of the vector attra	ction re	duction requir	remen	ts at 40 CFR 50)3.33(b)	(1)–(8)?	
			s 🔺 SKID to Dart 1. Soc	tion Q (I	Cortification)		No	()	.,.,	
Ś							INU			
litie	6.2	Is sewage sl	udge from your facility pr	ovided	o another fac	ility fo	r treatment, dis	tribution	, use, or disposal?	
Faci		🔲 Ye	S				No 🗲 SKIP	to Part	1, Section 7.	
ther	6.3	Receiving fa	cility name ble - See Part 2							
10 10		Mailing addr	ess (street or P.O. box)							
ent		Not applical	ble - See Part 2							
e N		City or town	ala Cao Dart 2				State		ZIP code	
6pr		Contact nam	one - See Part 2	Titlo			Phone numb	or	Email addross	
SIL		Not applical	ble - See Part 2	Thic			T HONG HUILD			
/age	6.4	Which activit	ties does the receiving fa	cility pro	vide? (Check	c all th	at apply.)			
Sew			eatment or blending	2.1			Sale or give	-awav in	bag or other container	
			nd application				Surfaco disr	-, -, -, -, -, -, -, -, -, -, -, -, -, -	<u>.</u>	
			cineration			Ш	Uther (desci	nbe)		
		Co	omposting		Not app	olicable	e - See Part 2			

EPA	A Identification	Number	NPDES Permit I	Number		Facility	Name	Form Approve	d 03/05/19
	CA0107409			E.W. Blom Po Plant a	Point Loma Wastewater Treatment OIVID NO. 2040- : and Metro Biosolids Center Image: Context Con				
PART 1,	SECTION	7. USE AND [DISPOSAL SITES (40 CFR 12	2.21(c)(2)(ii	(C))			
	Provide th	ne following inf	ormation for each si	ite on whic	h sewage slu	udge fro	om this facility is u	sed or disposed of.	
		Check here i	if you have provided	l separate	attachments	with thi	s information.		
	7.1	Site name or Not applical	r number ble - See Part 2						
		Mailing addr Not applical	ess (street or P.O. b ble - See Part 2	ox)			1		
s		City or town Not applical	ble - See Part 2				State	ZIP code	
al Site		Contact nam Not applicat	ne (first and last) ple - See Part 2	Title			Phone number	Email address	
spose		Location add Not applicat	dress (street, route r ble - See Part 2	number, or	other specifi	c identi	fier)	□ Same as maili	ng address
nd Di		City or town Not applical	ble - See Part 2				State	ZIP code	
Use a		County Not applica	ble - See Part 2				County code	□ N	ot available
	7.2	Site type (ch	eck all that apply)						
		🔲 Agr	ricultural		Lawn or hon	ne gard	en	Forest	
		Sur Sur	Surface disposal Dublic contact					Incineration	
		Re Re	clamation		Municipal sc	lid was	te landfill	Other (describe)	
			Not applicable	- See Part 2	2				
PART 1,	SECTION	8. CHECKLIS	T AND CERTIFICA	TION STA	TEMENT (4) CFR 1	l22.22(a) and (d)		
	8.1	In Column 1	below, mark the sec	ctions of Fo	orm 2S, Part	1, that	you have comple	ted and are submitting	with your
		application. I	For each section, sp ate that not all applic	ecify in Co ants are re	olumn 2 any a	attachm ovide at	ients that you are tachments	enclosing to alert the p	ermitting
ţ		dutionty. No	Column 1			Svide at		Column 2	
temer		Section	1: Facility Informati	on		v	v/ attachments		
on Sta		Section	2: Applicant Inform	ation		r v	v/ attachments		
ficatio		Section	3: Sewage Sludge	Amount		~ v	v/ attachments		
d Certi		Section	4: Pollutant Concer	ntrations		V V	v/ attachments		
ist and		Section	5: Treatment Provid	ded at You	r Facility	D v	v/ attachments		
Checkl		Section Facilitie	6: Sewage Sludge	Sent to Otl	her	D v	v/ attachments		
		□ Section	7: Use and Disposa	al Sites		D v	v/ attachments		
		□ Section	8: Checklist and Ce	ertification	Statement		Part 1 is not	applicable - See Part 2	

8.2 Certification Statement <i>I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluat the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.</i>	EPA	EPA Identification Number NPDES Permit CA01074		NPDES Permit Number CA0107409	Facility Name E.W. Blom Point Lona Wastewater Treatment	Form Approved 03/05/19 OMB No. 2040-0004
Not applicable Date signed	Checklist and Certification Statement Continued	8.2	Certification I certify under supervision of the informati persons dire knowledge a false information Name (print Not application Signature	CA0107409 n Statement er penalty of law that this docume in accordance with a system des ion submitted. Based on my inque ectly responsible for gathering the and belief, true, accurate, and con- ation, including the possibility of for or type first and last name) ble	E.W. Blom Point Loma Wastewater Treatment Plant and Metro Biosolids Center ent and all attachments were prepa igned to assure that qualified pers iry of the person or persons who n e information, the information subm mplete. I am aware that there are s ine and imprisonment for knowing Official title	ared under my direction or connel properly gather and evaluate hanage the system, or those hitted is, to the best of my significant penalties for submitting violations. Phone number Date signed

PART 1 APPLICANTS STOP HERE.

Submit completed application package to your NPDES permitting authority.

This page intentionally left blank.

EP	A Identifica	tion Number	NPDES Pern	nit Numb	er		Facility Na	me		Fo	orm Approved 03/05/19
			CA010	7409		E.W. Blom Poir Plant an	nt Loma Wast d Metro Bios	ewater Tre olids Cente	atment r		OMB No. 2040-0004
	PAR	Т 2		PE	RMIT AF	PLICATIO	n infor	MATIO	N (40 CFR 12	22.21(q)	
Complete	e this pa	rt if you have an e	effective NPDES	permit	or have l	peen directe	ed by the	NPDES	S permitting a	uthority	to submit a full
permit a	oplication	n. In other words,	complete this par	rt if you	Ir facility	has, or is a	pplying fo	or, an N	PDES permit.	nondo e	an your faaility/a
Part 2 is	uiviaea siudae u	into rive sections. se or disposal pra	Section T pertain	is io ali hstructi	ons to de	its. The app etermine wh	nich secti	OF Sections you	are required	to comi	on your raciiity's
PART 2.	SECTIO	DN 1. GENERAL		40 CF	R 122.21	(a)(1 7) Al	ND (a)(13	3))	arcrequireu	to com	
	All Par	t 2 applicants mus	st complete this s	ection.				- //			
	Facilit	y Information	-								
	1.1	Facility name E.W. Blom Poin	t Loma Wastewa	ter Tre	atment F	Plant and M	etro Bios	olids Ce	enter		
		Mailing address City of San Dieg	(street or P.O. bo o Public Utilities	ox) Depart	:ment; 9	192 Topaz V	Way, MS	901			
		City or town San Diego			State CA			9	ZIP code 2123		Phone number (858) 292-6401
		Contact name (f Juan Guerreiro	irst and last)	1	Title Interim Di	rector, Public	c Utilities (Dept.	Email address JGuerreiro	S o@sand	iego.gov
		Location Address:	Metro Biosoli	ids Cent	ter	E.	W. Blom P	oint Lorr	na Wastewater	Treatme	ent Plant
			5240 Convoy	Street		19	02 Gatche	ell Road			
			Sun Diego, er	~ JZIZI		54	n blego, e		,		
	1.2	Is this facility a (Class I sludge ma	anagen	nent facil	ity?	_				
		Yes					N	lo			
tion	1.3	Facility Design	Flow Rate		(Avera	age annual flo	ow)		240 ľ	nillion g	allons per day (mgd)
rma	1.4	Total Population	on Served	(based	on 2020 s	SANDAG pop	ulation es	timates)		2.3	million
Info	1.5	Ownership Sta	tus								
eral		Public—fed	eral		Public—s	state		ビ Ot	her public (sp	ecify)	Municipality
iene		Private			Other (sp	ecify)		_			
G	Applic	ant Information									
	1.6	Is applicant diffe	erent from entity li	sted u	nder Item	n 1.1 above	?				
		L Yes					~	No 🚽	SKIP to Item	ו 1.8 (Pa	art 2, Section 1).
	1.7	Applicant name	See Section 1.1	ahove							
		Applicant mailin	g address (street	or P.O). box)						
		Not applicable	See Section 1.1	above	,						
		City or town	See Section 1.1 :	ahove			State			ZIP	code
		Contact name (f	first and last)	Title			Phone I	number		Ema	ail address
	1.8	Is the applicant	the facility's owne	er, opei	rator, or l	both? (Cher	ck only or	ne respo	onse.)	l	
			or	, , , , , , , , , , , , , , , , , , , ,		Owner			। ।	Both	
	1.9	To which entity	should the NPDE	S perm	nittina au	thority send	correspo	ondence	e? (Check onl	y one re	esponse.)
		Facility	···· ··	1		Applicant	h.			Facil (they a	ity and applicant

EPA Identifi	ication Number	NPDES Permit Num	nber	Facil	ity Name		Form Approved 03/05/19				
		CA0107409		E.W. Blom Point Lom Plant and Met	na Wastewater Treatmen ro Biosolids Center	t	OMB No. 2040-0004				
1.10	Facility's NPDE	S permit number									
	to submit	ere if you do not have a t Part 2 of Form 2S.	an NPDES	permit but are	otherwise requir	ed	CA0107409				
1.11	Indicate all othe	r federal, state, and loc	cal permits	or construction	n approvals recei	ved or appli	ed for that regulate this				
	facility's sewage	e sludge management	ement practices below.								
	 California Reg the Point Lom 	ional Water Quality Control Board a Wastewater Treatment Plant) a	ורמ טרמפר אס. אש-2015-0091 establishes requirements for the North City Water Reclamation Plant, which (along with) also discharges biosolids to the Metro Biosolids Center								
	RCRA (haz	zardous wastes)	🗆 No	nattainment pro	D NESH	APs (CAA)					
	, , , , , , , , , , , , , , , , , , ,	,			3 (/						
	Not applicable			ot applicable		Not a	pplicable				
	□ PSD (air emissions)			edge or fill (CW	A Section	Other	(specify)				
	Not applicable			4) ht applicable							
					inication of						
		nping (MPRSA)		z (underground ds)	injection of						
	Not applic	able	No	ot applicable							
India	Indian Country										
1.12	Does any gener	ation, treatment, stora	ge, applica	ation to land, or	disposal of sewa	ige sludge f	rom this facility occur in				
	Indian Country?					to Itom 1 1/	(Dart 2 Saction 1)				
	Yes Vi Yes below.										
1.13	13 Provide a description of the generation, treatment, storage, land application, or disposal of sewage sludge that										
	OCCUIS. Not a	applicable									
Торо	graphic Map										
1.14	Have you attach	ned a topographic map	containin	g all required inf	formation to this	application?	(See instructions for				
	specific requirer	nents.)		_							
	Yes				No						
	Drawing	ad a line drawing and	lar a parra	tive dependention	that identifies all		udae prestiese that will be				
1.15	employed during	g the term of the perminents.)	t containir	ing all the require	ed information to	this applica	tion? (See instructions for				
	Yes		□ No								
Cont	ractor Information	1									
1.16	Do contractors h	nave any operational o	r maintena	ance responsibi	lities related to se	ewage slud	ge generation, treatment,				
	use, or disposal	at the facility?									
	✓ Yes		No → SKIP to Item 1.18 (Part 2, Section 1)								
1.17	Provide the follo	wing information for ea	ach contra	ctor.	DEIOW.						
		ere if vou have attache	d addition	al sheets to the	application pack	ade.					
			Conf	ractor 1	Contract	or 2	Contractor 3				
	Contractor com	De	enali Water	Solutions, LLC	Western Express	Transporters					
		ak	ka Solids So	lutions, LLC	aka AG Tech, LLC						
	Mailing address P.O. box)	(street or 3	031 Frankli	n Ave., Suite A	4464 E. 30th Place	e					
	City, state, and	ZIP code R	iverside, CA	92507	Yuma, AZ 85365						
	Contact name (f	first and last) C	hris Mark	5	Cal Mullanix						
	Telephone num	ber (7	760) 801-31	75	(602) 377-7250						
	Email address										

		CA0107	7409	E.W. Blom Point Lo Plant and Me	ma Wastewater Treatment etro Biosolids Center		OMB No. 204				
1.17	and the second second		Co	ntractor 1	Contracto	r 2	Contracto				
cont.	Responsibilit	ties of contractor	Hauling a applicatio Arizona.	auling and direct land Hauling and direct land application at sites in Arizona. Arizona.		t land es in					
Polluta	Int Concentrations										
Using the sewage based of the second of the	he table below e sludge have b on three or mor Check here i	or a separate attach een established in 4 e samples taken at I if you have attached	ment, provide 0 CFR 503 fo east one mor additional sh	e sewage sludge or this facility's e oth apart and mu eets to the appli	e monitoring data for xpected use or disp ist be no more than cation package.	the pollutants for the pollutants for osal practices. <i>A</i> 4.5 years old.	or which lin All data mu				
1.18		Pollutant	Aver Col	rage Monthly ncentration /kg dry weight)	Analytical M	lethod [Detection				
	Arsenic		See at	tached page 9a							
	Cadmium			1 0							
	Chromium		See at	tached page 9a							
	Copper			1							
	Lead		See at	tached page 9a							
	Mercury										
	Molybdenum		See at	tached page 9a							
	Nickel										
	Selenium		See at	tached page 9a							
	Zinc										
Checkli	st and Certific	ation Statement				and the second					
1.19	application. F	For each section, spe e required to comple	nents that you are e chments. See Exhil	nclosing. Note the line of the	hat not all nstructions						
	Section Section	on 1 (General Inform		w/ attachments							
	☑ Section Derive	on 2 (Generation of S ed from Sewage Slu	Sewage Sludo dge)	ge or Preparation	n of a Material	W attachments					
	Section Section	on 3 (Land Application	on of Bulk Sev	wage Sludge)		✓ w/ attachments					
	Section Section	on 4 (Surface Dispos	sal)			🗹 w/ attachr	nents				
	Section Section	on 5 (Incineration)				w/ attachr	nents				
1.20	Certification Statement										
	I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and even the information submitted. Based on my inquiry of the person or persons who manage the system, or those directly responsible for gathering the information, the information submitted is, to the best of my knowledge belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information for knowing violations. Name (print or type first and last name) Official title Juan Guerreiro Interim Director, Public Utilities Depared Signature Date signed										
	Juan Guerrein Signature	h			Date signed	5/17/20	22				

EPA Form 3510-2S – Part 2, Section 1.18 Metro Biosolids Center

Summary of Sludge Pollutant Concentrations, Centrifuged Dewatered Sludge

Calendar Year 2020

	MBC Sludge Concentration during 2020 ^{1,2} (mg/kg dry weight)														
Constituent	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ave. Value ³	Max Value	503.13 Limit⁴
Antimony	6.37	6.31	6.13	5.83	4.85	4.89	5.41	5.69	6.81	7.36	7.12	6.23	6.08	7.36	41
Arsenic	4.09	2.96	2.23	4.61	< 0.315	<0.315	<0.315	<0.315	<0.315	<0.315	<0.315	<0.315	<1.26 ⁶	4.61	NS ⁷
Barium	256	275	316	273	270	274	265	268	273	313	310	305	283	316	NS ⁷
Beryllium	0.03	0.070	0.06	0.120	0.089	0.08	0.069	0.07	<0.015	0.06	0.03	0.047	0.06	0.12	NS ⁷
Cadmium	0.27	0.840	<0.045	<0.045	0.761	<0.035	0.626	1.38	<0.045	<0.045	<0.0365	0.226	< 0.3046	1.38	39
Chromium	60.1	50.6	54.1	52.4	52.0	51.3	51.8	51.0	51.0	59.4	57.0	56.9	54.0	60.1	1200
Cobalt	3.19	2.99	3.56	3.13	3.53	80.1	3.06	4.0	3.05	3.83	3.52	3.27	9.77	80.10	NS ⁷
Copper	564	556	589	550	569	671	598	610	645	654	609	614	602	671	1500
Lead	9.60	10.6	12.7	11.2	12.4	13.8	12.6	11.4	11.6	11.5	11.2	12.1	11.7	13.8	300
Mercury	0.552	0.695	0.921	0.603	0.618	0.677	0.445	0.95	0.62	0.69	0.67	0.63	0.67	0.95	17
Molybdenum	15.3	14.2	15.2	14.6	15.3	15.9	17.4	17.3	19.3	20.5	17.9	18.5	16.8	20.5	75
Nickel	26.4	22.1	24.1	21.0	24.1	25.1	23.7	24.0	24.0	27.9	26.3	21.1	24.2	27.9	420
Selenium	6.43	6.09	5.99	6.46	6.16	6.42	6.44	3.09	2.82	7.26	6.39	4.24	5.65	7.26	100
Silver	2.98	3.00	3.49	2.94	2.66	18.6	2.56	2.67	2.81	3.22	2.49	2.62	4.17	18.60	NS ⁷
Thallium	0.247 ⁸	<0.25	2.15	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	0.28 ⁶	2.15	NS ⁷
Vanadium	26.9	22.3	24.2	35.7	34.6	26.4	23.0	21.3	20.9	20.7	21.2	20.8	24.8	35.7	NS ⁷
Zinc	913	878	1010	880	904	937	951	936	976	1010	963	944	942	1010	2800
Percent Solids	29.2	29.6	29.2	28.8	28.5	27.3	26.7	26.8	27.2	27.2	27.5	28.4	28.0	29.6	NS ⁷
Percent Volatile Solids	60.2	61.6	61.6	58.4	59.5	60.4	61.4	61.4	61.9	62.3	62.3	62.3	61.1	62.3	NS ⁷

1 Monthly average values, as listed in Annual Biosolids Beneficial Use and Disposal Report, Point Loma Wastewater Treatment Plant & Metro Biosolids Center, 2020 (presented as Appendix L to this NPDES application). Calendar year 2020 is the most recent year for which a complete 12-month data set is available. Data for calendar year 2021 will be electronically transmitted to regulators under separate cover in 2022.

2 Based on samples of daily dewatered sludge from each of the Metro Biosolids Center (MBC) centrifuges that are composited during each calendar month. Centrifuged MBC sludge includes solids from both the E.W. Blom Point Loma Wastewater Treatment Plant and the City of San Diego North City Water Reclamation Plant.

3 Computed average of 12 monthly average composite samples.

4 Federal ceiling concentration standards established in Table 3 of 40 CFR 503.13. Also conforms to State of Arizona biosolids standards for arsenic, cadmium, copper, lead, mercury, nickel, selenium and zinc established in Table 2 (Monthly Average Pollutant Concentrations) of Article 10, Title 18, Chapter 9 of the Arizona Administrative Code.

5 A "<x" value indicates that the constituent was detected at a Method Detection Limit (MDL) of "x" mg/kg.

6 Average computed assuming that non detected values have a concentration of no more than one half the listed MDL.

7 No federal sludge standard has been established within 40 CFR 503.

8 Estimated value for thallium in January 2020. Listed value is DNQ (detected not quantifiable).

EP	EPA Identification Number		NPDES F	NPDES Permit Number		Facility I	Vame	t	Form Approved 03/05/19 OMB No. 2040-0004		
			CA0	107409		Plant a	and Metro B	iosolids Center			
PART 2	, SECTI E (40 Cl	ON 2. GENERATI FR 122.21(q)(8) TI	ON OF SEWA HROUGH (12)	GE SLU)	DGE OR	PREPAR	ATION C	OF A MAIER	IAL DER	IVED FROM SEWAGE	
	2.1	Does your facility	y generate sev	age slu	dge or der	ive a mate	erial from	n sewage slu	dge?		
		Yes	•					No → SKIP	to Part 2,	Section 3.	
	Amou	Int Generated Ons	site	av porio	daoporati	od at vour	facility				
	2.2	Total dry metric tons pro Wastewater Treatment F	duced at the Metro E Plant (PLWTP) and ray	ay period liosolids Cen v sludge fron	ter (MBC). Tot	al includes dige	Sted sludge City Water F	from the Point Lor eclamation Plant (na NCWRP).	31,646 dry metric tons*	
	Amou	int Received from	Off Site Faci	lity	·	-					
	2.3	Does your facility	receive sewa	ge sludg	e from an	other facil	ity for tre	eatment use	or dispos	al?	
		Yes MBC a	also receives raw slud	ge piped from	n the NCWRP			No → SKIP	to Item 2	.7 (Part 2, Section 2) below.	
	2.4	Indicate the total treatment, use, c	number of fac or disposal:	ilities fro	m which y	ou receive	e sewag	e sludge for		1**	
	Provid	le the following info	ormation for ea	ch of the	e facilities	from whicl	h you re	ceive sewage	e sludge.		
dge	~	Check here if you	I have attache	d additio	nal sheets	s to the ap	plication	package.			
je Sluc	2.5	Name of facility City of San Diego	o North City W	ater Rec	lamation	Plant					
ewag		9192 Topaz Way	(street of P.U. /, MS 901	DOX)							
om Se		City or town San Diego					State CA			ZIP code 92123	
ed fr		Contact name (fi	rst and last)	Title II	nterim Dire	ctor	Phone (858) 2	number		Email address	
l Deriv		Location address 4949 Eastgate M	s (street, route fall	number	or other	specific ide	entifier)	52 0401		□ Same as mailing address	
lateria		City or town San Diego					State CA			ZIP code 92121	
of a N		County San Diego					County	/ code		□ Not available	
ration	2.6	Indicate the amo applicable vector	unt of sewage reduction opt	sludge r ion provi	ge received, the applicable pathogen class and re provided at the offsite facility.					tion alternative, and the	
repa		A	mount	Pathogen Class and Reduction				Vector Attraction Reduction			
or P		(dry m	netric tons)		নি Not a	Alterr	native		নি Not a	Option policable	
lge (A, Alterna	ative 1			n 1	
Sluc		See table on page	e 10a for ABC cludgo		□ Class	A, Alterna	ative 2		Option 2		
ige (processing flows	and tonnage.			A, Alterna	ative 3			n 3	
ewa		p				A, Allema	ative 5			n 5	
of S						A. Alterna	ative 6			n 6	
ouo					Class	B, Alterna	ative 1		D Optio	n 7	
rati						B, Alterna	ative 2		□ Optio	n 8	
iene						B, Alterna	ative 3			n 9 n 10	
G						estic septa	ae. pH a	diustment		n 11	
	2.7	Identify the treat	ment process(es) that a	are known	to occur a	at the off es. (Che	site facility, i ck all that ap	ncluding I	blending activities and	
		Preliminal degritting	ry operations (e.g., sluc	dge grindi	ng and		Thickening	(concent	ration)	
		Stabilizati	ON Not app NCWRF	olicable. Praw slu	dge is pip	ed to the		Anaerobic	digestion		
		Composti	ng MBC fo	r digesti	on and de	watering.		Conditionin	g		
		Disinfection	on (e.g., beta r , pasteurizatio	ay irradia n)	ation, gam	nma ray		Dewatering beds, sludg	j (e.g., ce je lagoon	ntrifugation, sludge drying s)	
		Heat dryir	ng					Thermal re	duction		
		Methane	or biogas capt	ure and i	ecovery			Other (spe	cify)		
	I		norted within Enclose			2020) (11 1	1.81		10: 10		

EPA Form 3510-2S (Revised 3-19)

As reported within Enclosure 1 (Solids Production for 2020) of the Annual Biosolids Beneficial Use and Disposal Report, Point Loma Wastewa: Treatment Plant and Metro Biosolids Center, a total of 31,646 dry metric tons (34,883 wet metric tons) of biosolids were generated during calendar year 2020. The 2020 Annual Biosolids Report is attached as Appendix L. Also see attached page 10a for a breakdown of calendar year 2020 sludge production at the Point Loma Wastewater Treatment Plant (PLWTP) and Metro Biosolids Center (MBC).
 ** This permit application addresses the PLWTP and the MBC. In addition to receiving sludge from the PLWTP, MBC also receives sludge from one other facility - the City of San Diego NCWRP.

EPA Form 3510-25 – Part 2 Summary of Facilities Discharging to Metro Biosolids Center (MBC)

Facility ¹	Location	Description of Flow Directed to MBC				
Point Loma Wastewater Treatment Plant (PLWTP)	1902 Gatchell San Diego, CA 92106	Anaerobically digested advanced primary sludge				
North City Water Reclamation Plant (NCWRP)	4949 Eastgate Mall San Diego, CA 92121	Waste activated sludge				

1 Facility owned and operated by the City of San Diego. Facility contact information: San Diego Public Utilities Department, 9192 Topaz Way, San Diego, CA 92123, (858) 292-6441.

EPA Form 3510-2S – Part 2, Section 2.6 Summary of Monthly Solids Reports Metro Biosolids Center Calendar Year 2020

	Average Monthly Values during 2020 ¹											
Month	Point L	oma Digest	ed Sludge ²	Cer	Combined N htrifuge Cen	/IBC trate ^{2,3}	MBC Centrifuge Dewatered Biosolids ^{2,3}					
	mgd	Percent Solids	Dry Tons/Day⁴	mgd	Percent Solids	Dry Tons/Day⁴	Percent Solids	Dry Tons/Day⁴	Dry Metric Tons/Month⁵			
Jan	1.114	2.3	109	2.140	0.23	20.3	29.6	95.39	2,683			
Feb	1.113	2.2	102	2.100	0.26	23.0	29.4	96.64	2,542			
Mar	1.120	2.4	113	2.233	0.21	20.0	29.1	91.73	2,580			
Apr	1.118	2.4	114	1.961	0.24	19.1	29.2	92.26	2,511			
Мау	1.082	2.3	103	2.191	0.23	21.1	28.6	88.94	2,501			
Jun	1.191	2.4	119	2.217	0.26	24.2	27.5	99.03	2,695			
Jul	1.182	2.4	115	2.258	0.28	26.4	26.6	96.28	2,708			
Aug	1.118	2.3	107	2.198	0.30	27.5	26.9	78.30	2,202			
Sep	1.061	2.4	106	2.377	0.31	30.7	26.9	107.87	2,936			
Oct	1.189	2.4	117	2.244	0.32	29.6	26.7	101.50	2,854			
Nov	1.187	2.3	114	2.295	0.30	28.2	27.2	92.83	2,526			
Dec	1.219	2.2	113	2.274	0.30	28.0	28.3	103.96	2,924			
Annual Ave.	1.144	2.3	111 ⁵	2.207	0.27	24.8 ⁶	28.0	95.39	2,640			
Annual Total (dry tons/year)			40,8005			9,100 ⁵		34,919 ⁶	31,646 ⁶			

1 Monthly average values, as listed in Enclosure 1 (Solids Production for 2020) within *Annual Biosolids Beneficial Use and Disposal Report, Point Loma Wastewater Treatment Plant & Metro Biosolids Center, 2020.* The 2020 Annual Biosolids Report is presented as Appendix L to this NPDES application. Calendar year 2020 is the most recent year for which a complete 12-month data set is available. Data for calendar year 2021 will be transmitted to regulators per reporting requirements of Order No. R9-2017-0007.

2 Daily average values.

3 Includes digested sludge from PLWTP and biosolids from NCWRP that are digested onsite at MBC. Mechanical condition of cake pumps and variability of sludge concentrations can affect the overall accuracies of the reported values.

4 Listed ton/day values are short tons (2000 pounds). Values rounded to nearest 0.01 ton per day.

5 Estimated value converted from short tons per day to metric tons per month using a conversion factor of 1.10231 and the applicable number of days in each month.

6 Total reported solids production as reported in the 2020 Annual Biosolids Report (presented as Appendix L). Note that this total may vary slightly from the sum monthly totals due to rounding errors, conversion factors and number of days in each month.

PA Identifi	ication Number	NPDES Permit Num	nber		Facility I	Name	Form Approved 03/05/19
		CA0107409		E.W. Blom Poin Plant and	t Loma W d Metro B	/astewater Treatme Biosolids Center	OMB No. 2040-0004
Treat	tment Provided at	Your Facility			-		
2.8	For each sewag	e sludge use or dispos	al practice	, indicate th	e appl	icable patho	gen class and reduction alternative
	and the applicat	ele vector attraction red	uction opt	ion provided	l at yo	ur facility. Att	ach additional pages, as necessary.
	Use or Dis	sposal Practice	Patho	gen Class a	and Re	eduction	Vector Attraction Reduction
	(CIII	tion of bulk seware					
	□ Land applicat	tion of biosolids		A. Alternati	ve 1		Option 1
	(bulk)		□ Class	A, Alternati	ve 2		Option 2
	□ Land applicat	ion of biosolids	□ Class	A, Alternati	ve 3		Option 3
	(bags)	and the sector of CIL		A, Alternati	ve 4		Option 4
		osal in a landiili Adisposal		A, Allernali			Option 5
		usposa		B. Alternati	ve 0 ve 1		\Box Option 7
	Class B solids were produ	ced using Alternative 3, Process		B, Alternati	ve 2		Option 8
	3 (anaerobic digestion for 15-35 degrees C) for path	r 15 days at a temperature of	☑ Class	B, Alternati	ve 3		Option 9
	attraction requirements	were met using Option 1	Class	B, Alternati	ve 4		Option 10
	(reducing volatile solids b	by a minimum of 38%).		estic septage	е, рн а	adjustment	
2.9	attraction proper	ties of sewade sludde?	r ar your fa ? (Check a	icility to redu III that apply	uce pa .)	ulogens in s	ewaye shudye of reduce the vector
	Prelimina	ry operations (e.g., slue	dge grindi	ng and	., 	Thickoning	(concentration)
	degritting					(concentration)	
					Anderopic	a	
		ation, gamma ray Dewatering				ng	
						g (e.g., centrifugation, sludge drying	
		i, pasteurization)					je lagours)
		ng				auction	
	Methane	or biogas capture and	recovery				
2.10	Describe any oth	her sewage sludge trea	tment or b	plending acti	vities	not identified	in Items 2.8 and 2.9 (Part 2, Section
	2) above.						
	Спеск пе	ere if you have attached	a the desc	ription to the	e appii	сатоп раска	ge.
	Not applicable						
Prepa	aration of Sewage	Sludge Meeting Ceili	ng and P	ollutant Co	ncent	rations, Clas	ss A Pathogen Requirements, and
	of vector Attractic	on Reduction Options	1 10 8		noont	ations in Tak	No. 1 of 40 CED 502 12 the pollutant
2 11	Does the source	a sludad trom vour tacil	$\Delta C \Delta m n n n C \Delta C$	111.171	2010 0 L > 0 L - L / L		
2.11	Does the sewage concentrations in	e sludge from your facil 1 Table 3 of 40 CFR 50	3.13, Clas	ie ceiling co s A pathoae	ncentr en redu	uction require	ements at 40 CFR 503.32(a). and one
2.11	Does the sewage concentrations in of the vector attra	e sludge from your facil 1 Table 3 of 40 CFR 50 action reduction require	3.13, Clas ements at	s A pathoge 40 CFR 503	ncentr en redu 3.33(b)	uction require (1)–(8) and in	ements at 40 CFR 503.32(a), and one sit land applied?
2.11	Does the sewage concentrations in of the vector attra	e sludge from your facil 1 Table 3 of 40 CFR 50 action reduction require	a.13, Clas ements at	e ceiling co s A pathoge 40 CFR 503 آ•	ncentr en redu 5.33(b) 2	uction require (1)–(8) and in No → SKIP	ements at 40 CFR 503.32(a), <i>and</i> one s it land applied? to Item 2.14 (Part 2, Section 2)
2.11	Does the sewage concentrations in of the vector attra Yes	e sludge from your facil 1 Table 3 of 40 CFR 50 action reduction require	ay meet tr 3.13, Clas ements at	s A pathoge 40 CFR 503	ncentr en redu 3.33(b)	uction require (1)–(8) and in No → SKIP below.	ements at 40 CFR 503.15, the politikant ements at 40 CFR 503.32(a), <i>and</i> one s it land applied? to Item 2.14 (Part 2, Section 2)
2.11 2.12	Does the sewage concentrations in of the vector attra Ves Total dry metric t subsection that is	e sludge from your facil a Table 3 of 40 CFR 50 action reduction require ons per 365-day period s applied to the land:	a figure and the second	s A pathoge 40 CFR 503 [] ge sludge su	bject t	(1)–(8) and in (1)–(8) and in No → SKIP below. o this	ements at 40 CFR 503.32(a), <i>and</i> one s it land applied? to Item 2.14 (Part 2, Section 2)
2.11 2.12 2.13	Does the sewage concentrations in of the vector attra Ves Total dry metric t subsection that is Is sewage sludge	e sludge from your facil a Table 3 of 40 CFR 50 action reduction require ons per 365-day period s applied to the land: e subject to this subsec	a of sewac	A pathoge 40 CFR 503 Je sludge su d in bags or	bject t	(1)–(8) and is (1)–(8) and is No → SKIP below. o this containers fo	ements at 40 CFR 503.32(a), <i>and</i> one s it land applied? to Item 2.14 (Part 2, Section 2) 0 or sale or give-away for application to
2.11 2.12 2.13	Does the sewage concentrations in of the vector attra Yes Total dry metric t subsection that is Is sewage sludge the land?	e sludge from your facil a Table 3 of 40 CFR 50 action reduction require ons per 365-day period s applied to the land: e subject to this subsec	a of sewaç	A pathoge 40 CFR 503 ge sludge su d in bags or	bject t	(1)–(8) and in (1)–(8) and in No → SKIP below. o this	ements at 40 CFR 503.32(a), <i>and</i> one s it land applied? to Item 2.14 (Part 2, Section 2) 0 or sale or give-away for application to

EPA Identifi	cation Number	NPDES Permit Number	Facility Name	Form Approved 03/05/19							
		CA0107409	E.W. Blom Point Loma Wastewater Treatment Plant and Metro Biosolids Center	OMB NO. 2040-0004							
Sale	or Give-Away in a	Bag or Other Container for A	pplication to the Land								
2.14	Do you place sev	wage sludge in a bag or other co	ontainer for sale or give-away for la	nd application?							
	🔲 Yes		below.	item 2.17 (Part 2, Section 2)							
2.15	Total dry metric t other container a	tons per 365-day period of sewa at your facility for sale or give-aw	ge sludge placed in a bag or ay for application to the land:	0							
2.16	Attach a copy of container for app	all labels or notices that accomp	pany the sewage sludge being sold	or given away in a bag or other							
	Check he	ere to indicate that you have atta	iched all labels or notices to this ap	pplication package.							
Пc	heck here once yo	u have completed Items 2.14 to	2.16, then → SKIP to Part 2, Sect	ion 2, Item 2.32.							
Shipr	nent Off Site for T	Freatment or Blending									
2.17	7 Does another facility provide treatment or blending of your facility's sewage sludge? (This question does not pertain to dewatered sludge sent directly to a land application or surface disposal site.) All biosolids are treated at the Point Loma Wastewater Treatment No → SKIP to Item 2.32 (Part 2, Section 2)										
	Ves Plant (PLWTP) and/or Metro Biosolids Center (MBC). No biosolids treatment occurs offsite from these two facilities. Ves Sector 2 - Sector 2										
2.18	Indicate the total sewage sludge. I for each facility.	Indicate the total number of facilities that provide treatment or blending of your facility's sewage sludge. Provide the information in Items 2.19 to 2.26 (Part 2, Section 2) below for each facility. All biosolids are treated at the Point Loma Wastewater Treatment Plant (PLWTP) and/or Metro 0 Image: Check here if you have attached additional sheets to the application package. 0									
2.19	Name of receivin Not applicable -	ig facility no treatment offsite from the P	LWTP and Metro Biosolids Center	(MBC)							
	Mailing address Not applicable	(street or P.O. box)		· · · ·							
	City or town Not applicable		State	ZIP code							
	Contact name (fi Not applicable	rst and last) Title	Phone number	Email address							
	Location address Not applicable	s (street, route number, or other	specific identifier)	□ Same as mailing address							
L	City or town Not applicable		State	ZIP code							
2.20	Total dry metric t facility:	ons per 365-day period of sewa Not applicable	ge sludge provided to receiving								
2.21	Does the receivir reduce the vecto	ng facility provide additional trea r attraction properties of sewage	tment to reduce pathogens in sewa s sludge from your facility?	nt to reduce pathogens in sewage sludge from your facility or dge from your facility?							
	☐ Yes	Not applicable	□ No → SKIP to below.	b Item 2.24 (Part 2, Section 2)							
2.22	Indicate the path sludge at the rec	ogen class and reduction altern eiving facility.	ative and the vector attraction redu	ction option met for the sewage							
	Pathogen	Class and Reduction Alternat	ive Vector Attra	action Reduction Option							
	 □ Not applicable □ Class A, Alter □ Class B, Alter □ Class B, Alter □ Class B, Alter 	e native 1 native 2 native 2 native 3 native 4 native 5 native 6 Not applicable native 1 native 2	 Not applicable Option 1 Option 2 Option 3 Option 4 Option 5 Option 6 Option 7 Option 8 	Not applicable							
	Class B, Alter	native 3 native 4 tage, pH adjustment	Option 9 Option 10 Option 11								

EP	A Identific	cation Number	NPDES Permit Number	Fa	acility	Name	Form Approved 03/05/19				
			CA0107409	E.W. Blom Point Plant and	Loma \ Metro	Wastewater Treatment Biosolids Center	OMB No. 2040-0004				
	2.23	Which treatment	process(es) are used at the rece	eiving facility t	to rec	duce pathogens i	n sewage sludge or reduce the				
		Vector attraction	properties of sewage sludge from	n your facility	? (CI	neck all that apply	y.)				
		degritting)	y operations (e.g., sludge grindin			Thickening (con	centration)				
		Stabilizatio	Not applicable	Γ		Anaerobic diges	tion				
		Compostin	ng			Conditioning					
		Disinfectio irradiation,	n (e.g., beta ray irradiation, gami , pasteurization)	^{ma ray} [Dewatering (e.g beds, sludge lag	., centrifugation, sludge drying joons)				
		Heat drying	g	C		Thermal reduction	on				
		Methane o	or biogas capture and recovery	C		Other (specify) _					
nued	2.24	Attach a copy of information" requ	any information you provide the r irement of 40 CFR 503.12(g).	lity to	o comply with the	"notice and necessary					
onti		Check he	ere to indicate that you have atta	ched materia	l.	No	ot applicable				
Idge C	2.25 Does the receiving facility place sewage sludge from your facility in a bag or other container for sale or give-away application to the land?										
age Slu		Yes	Not applicable	C]	No ➔ SKIP to below.) Item 2.32 (Part 2, Section 2)				
n Sewa	2.26	Attach a copy of all labels or notices that accompany the product being sold or given away. Check here to indicate that you have attached material.									
fror	DCr	Check here once you have completed Items 2.17 to 2.26 (Part 2, Section 2), then → SKIP to Item 2.32 (Part 2, Section 2)									
ived	be	low.		•			. ,				
Dei	Land	Application of Bu	Ilk Sewage Sludge								
rial	2.27	Is sewage sludge	e from your facility applied to the	land?	_		tom 2.22 (Part 2 Section 2)				
Mate		res st	ables attached on page 16a-16b.	iai y		below.					
on of a	2.28	Total dry metric t application sites:	ons per 365-day period of sewag	je sludge app	olied	to all land	31,646*				
ratio	2.29	Did you identify a	all land application sites in Part 2,	, Section 3 of	this	application?					
. Prepa		✓ Yes ta	ee Attachment L. Also see sumn ables attached on page 16a-16b.	^{nary}	^{Iry} \square No \rightarrow Submit a copy of the land application plan with your application.						
dge or	2.30	Are any land app material from sev	lication sites located in states oth wage sludge?	ner than the s	state	where you gener	rate sewage sludge or derive a				
ige Slu		✔ Yes]	No → SKIP to below.	ltem 2.32 (Part 2, Section 2)				
Sewa	2.31	Describe how you	u notify the NPDES permitting au	Ithority for the	e sta dix L fo	tes where the lar	nd application sites are located.				
) of			re if you have attached the explain	Department	nt of Er	nvironmental Quality dur	ing calendar year 2020.				
atior			re if you have attached the potific	ration to the a	appil	ration package.					
aner	Surfa	ce Disposal			аррік	cation package.					
Ğ	2.32	Is sewage sludge	e from your facility placed on a su	urface dispos	al sit	e?					
		Yes		L.	2	No ➔ SKIP to below.	ltem 2.39 (Part 2, Section 2)				
	2.33	Total dry metric t disposal sites per	ons of sewage sludge from your r 365-day period:	facility placed	d on	all surface	0				
	2.34	Do you own or op	perate all surface disposal sites t	o which you s	send	sewage sludge f	for disposal?				
		☐ Yes → S below.	SKIP to Item 2.39 (Part 2, Section	^{n 2)} C]	No					
	2.35	Indicate the total	number of surface disposal sites	s to which you	ı ser	nd your sewage					
		siuage. (Provide the infor	rmation in Items 2.36 to 2.38 of P	Part 2. Section	n 2 f	for each facility)					
			if you have attached additional st	neets to the a	n 2, 1 Ipplic	cation package					
			J		۳٣ ۲	passago.					

*

As reported in Annual Biosolids Beneficial Use and Disposal Report, Point Loma Wastewater Treatment Plant and Metro Biosolids Center (see Appendix L), a total of 31,646 metric tons of biosolids were applied to land during calendar year 2020. Elsewhere in the 2020 Annual Biosolids Report (e.g., Tables 1B and 1C), annual biosolids land applications during 2020 were reported at 31,655 metric tons per year. Differences between these two numbers (less than 0.03% difference) result from rounding errors and significant figures used for units conversions.

EP	EPA Identification Number		NPDES Permit Number CA0107409		E.W. Blom Plar	Facility Name Point Loma Wastewater T t and Metro Biosolids Cer	reatment iter	Form Approved 03/05/19 OMB No. 2040-0004					
	2.36	Site name or nu	mber of surfac	ce disposal site you	u do not o	wn or operate							
		Mailing address (street or P.O. box)											
		City or Town				State		ZIP Code					
		Contact Name (f	first and last)	Title		Phone Number		Email Address					
eq	2.37	Site Contact (Ch	tor										
Continu	2.38	Total dry metric disposal site per											
ge C	Incine	ineration											
rage Slud	2.39	Is sewage sludge from your facility fired in a sewage sludge incinerator? □ Yes Vo → SKIP to Item 2.46 (Part 2, Section 2) below.											
om Sew	2.40	Total dry metric tons of sewage sludge from your facility fired in all sewage sludge incinerators per 365-day period:0											
f a Material Derived fro	2.41	Do you own or operate all sewage sludge incinerators in which sewage sludge from your facility is fired? □ Yes → SKIP to Item 2.46 (Part 2, Section 2) □ No											
	2.42	Indicate the total number of sewage sludge incinerators used that you do not own or operate. (Provide the information in Items 2.43 to 2.45 directly below for each facility.) □ Check here if you have attached additional sheets to the application package.											
ration o	2.43	.43 Incinerator name or number Not applicable											
Prepa		Mailing address (street or P.O. box) Not applicable											
lge or l		City or town Not applicable				State		ZIP code					
e Sluc		Contact name (f	irst and last)	Title		Phone number		Email address					
wag		Not applicable	s (Sileei, Toule		specific it	ientiner)							
n of Se		City or town Not applicable				State		ZIP code					
eration	2.44	Contact (check a	all that apply) tor owner				rator operate	Dr					
Gen	2.45	Total dry metric sludge incinerate	tons of sewag or per 365-day	e sludge from you / period:	r facility fi	red in this sewage	e 0						
	Dispo	sal in a Municipa	al Solid Wast	e Landfill									
	2.46	Is sewage sludg	e from your fa	cility placed on a r	municipal	solid waste landfi	l?						
		✓ Yes* Se	e note below		-	□ No →	SKIP to Pa	rt 2, Section 3.					
	2.47	Indicate the tota information in Ite	I number of m ems 2.48 to 2.	unicipal solid wast 52 directly below f	e landfills or each fa	used. (Provide th cility.)	e	0*					
		Check here package.	if you have at	tached additional s	sheets to t	he application							

* No digested and dewatered Metro System biosolids were hauled to a landfill during 2020 (see table on page 16a), but Otay Landfill represents an alternative site where Metro System biosolids could potentially be applied as alternative daily cover. See Appendix L and the table on page 10a for monthly totals for the disposition of Metro System biosolids during 2020. While no Metro System sludge was disposed of at landfills during 2020, scum, rags and screenings were hauled to Otay Landfill and Copper Mountain Landfill. Additionally, grit was hauled to Miramar Landfill. The table on page 14a summarizes the disposition of Metro System scum, grit, rags and screenings during 2020.
EPA Form 3510-25 – Part 2, Section 2.46-2.59 Disposal of Scum, Grit, Rags/Screenings Metro Biosolids Center and Point Loma Wastewater Treatment Plant Calendar Year 2020

	Scum, Grit, Rags and Screenings during 2020 ¹ (wet tons) ²									
Month	Sc	um	Digester	Cleanings	Grit	Rags and Screenings				
	Copper Mountain Landfill	Otay Landfill	Copper Mountain Landfill	Otay Landfill	Miramar Landfill	Miramar Landfill				
January	19.09	0	0	0	847.6	772.7				
February	14.37	0	0	0	125.5	693.8				
March	17.32	10.19	0	0	126.8	716.9				
April	20.61	0	0	0	143.7	668.6				
May	32.67	0	0	0	135.3	651.5				
June	48.91	0	0	0	156.6	674.1				
July	36.74	0	1,229	0	111.8	700.1				
August	15.92	0	0	0	137.6	686.7				
September	16.49	5.46	1,026	0	131.1	586.7				
October	18.31	0	2,766	0	115.0	699.5				
November	15.68	0	0	0	121.5	306.6				
December	37.75	0	0	0	103.7	380.3				
Total	293.9	15.65	5,091	0	2,256.2	7,538.0				
Monthly Average	24.49	1.74	1,273 ³	0	188.0	628.2				

1 Monthly average values rounded to four significant figures. Data from Table 1D of *Annual Biosolids Beneficial Use and Disposal Report, Point Loma Wastewater Treatment Plant & Metro Biosolids Center, 2020* (presented as Appendix L to this NPDES application). Calendar year 2020 is the most recent year for which a complete 12-month data set is available. Data for calendar year 2021 will be electronically transmitted to regulators under separate cover in 2022.

2 Listed ton/day values are short tons (2000 pounds).

3 Annual total of 5,091 wet tons per year corresponds to a monthly average of approximately 424 tons per month over the 12-month period. During 2020, digester cleanings were disposed of during three months. The monthly average digester cleaning total during this three-month period was 1,273 tons per month. See Appendix L.

EP	EPA Identification Number		NPDES Permit Number		Facility Name	Form Approved 03/05/19	
			CA0107409	E.W. Blom Po Plant a	nt Loma Wastewater Treatme nd Metro Biosolids Center	OMB No. 2040-0004	
Je	2.48	Name of landfill Otay Landfill					
Sludç		Mailing address (stre 8514 Mast Bouleva	et or P.O. box) d				
wage		City or town Santee			State CA	ZIP code 92071	
om Se		Contact name (first a Allied Waste, Inc.	nd last) Title	d last) Title Phone number (619) 449-4053			
/ed fro		Location address (str 1700 Maxwell Road	_ocation address (street, route number, or other specific identifier) 1700 Maxwell Road				
l Deriv		County San Diego		County code		Not available	
aterial		City or town Chula Vista		State CA		ZIP code 91911	
n of a Ma inued	2.49	Total dry metric tons municipal solid waste	of sewage sludge from landfill per 365-day pe	ed in this below*	0*		
aration Contir	2.50	List the numbers of a landfill.	ll other federal, state, a	nd local permits	that regulate the op	eration of this municipal solid waste	
rep		Permit Number			Type of Permit		
e or F		Order No. 90-09 and Addenda 1-4 thereto	State of California W	aste Discharge	Requirements (Regio	onal Water Quality Control Board)	
ludg		Order No.	State Water Resource	ces Control Boar	d general permit for	storm	
age S		2014-0057-DWQ	water discharges as	sociated with inc	iustrial activities		
of Sew	2.51	Attach to the applicat	ion information to deter	rmine whether th	e sewage sludge me	eets applicable requirements for	
ation		Check here t	o indicate you have atta	ached the reque	sted information.	נ חונטי ווקטועס נכסו מווע דסבד נכסון.	
nene	2.52	Does the municipal s	olid waste landfill comm	ly with applicabl	e criteria set forth in	40 CFR 258?	
Ğ		Yes		,	No No		

* No digested and dewatered Metro System biosolids were hauled to a landfill during 2020 (see table on page 16a), but Otay Landfill represents an alternative site where Metro System biosolids could potentially be applied as alternative daily cover. See Appendix L and the table on page 10a for monthly totals for the disposition of Metro System biosolids during 2020. While no Metro System sludge was disposed of at landfills during 2020, scum, rags and screenings were hauled to Otay Landfill and Copper Mountain Landfill. Additionally, grit was hauled to Miramar Landfill. The table on page 14a summarizes the disposition of Metro System scum, grit, rags and screenings during 2020.

EP	EPA Identification Number		NPDES Permit Num	ber	F	acility	Name	Form Approved 03/05/19	
			CA0107409		E.W. Blom Point Plant and	t Loma V I Metro I	Nastewater Treatment Biosolids Center		OMB NO. 2040-0004
PART 2,	, SECTI	ON 3 LAND API	PLICATION OF BULK	SEWAGE	SLUDGE (40 CF	FR 122.21(q)(9))		
	3.1	Does your facility	y apply sewage sludge	to land?					
		₽ Yes	5 11 5 5 5			П	No ➔ SKIP to	o Part 2	Section 4.
	3.2	Do any of the fel	lowing conditions apply	0					
	J.Z		nowing conditions apply	· ·				10 46 -	
		 The sewage Table 3 of A 	e sludge meets the cell 10 CER 503-13 Class A	ng conce Nathore	ntrations in n reduction i	i able requir	1 01 40 CFR 503 ements at /0 CF	0.12, IN€ ₽ 503 3	e pollulant concentrations in 32(a) and one of the vector
		attraction re	eduction requirements a	at 40 CFR	503.33(b)(1)_(8);		N 303.0	
		• The sewage	e sludge is sold or giver	n away in	a bag or oth	ier co	ntainer for applic	ation to	the land; or
		You provide	e the sewage sludge to	another fa	acility for tre	atmer	nt or blending.		
			SKIP to Part 2 Section	ו 4	5	Г	No		
	2.2	Complete Sectio	n 3 for every site on wh	For every site on which the sewage sludge is applied.					
	0.0		if you have attached ch		o opplication	0 .0 u	kaga far ana ar n	oro lon	annligation sites
	l d a n t i		I you have allached sh			i paci			iu application sites.
		Sito name or pur	mbor						
	J.4	See Appendix L	for land application site	location	s. See table	on pa	age 16a-16b for a	summa	ary of land application sites.
		Location address	s (street, route number,	or other	specific iden	tifier)		[□ Same as mailing address
		See Appendix L1	for land application site	locations	See table	on pa	age 16a-16b for a	summa	ary of land application sites.
		See Appendix L				C	Jounty code		
ge		City or town		State			Z	ZIP cod	е
Slud		See Appendix L	ude of Land Applicati	on Sita (s	soo instructio	nc)			
ige			Latitude			лт <u>э</u> ј		Longi	itude
ewa			° NA' "				0	, <u>, , , , , , , , , , , , , , , , , , </u>	"
lk s			NA						
fBu		Method of Dete	rmination						
o uc		USGS map		□ Field	survey			Other	(specify)
catio	3.5	Provide a topogr	aphic map (or other ap	propriate	map if a top	ograp	hic map is unava	ilable) t	that shows the site location.
ppli		Check h	here to indicate you hav	ve attache	d a topogra	phic n	nap for this site.		
d A	Owne	r Information					•		
Lan	3.6	Are you the own	er of this land application	on site?					
		□ Yes →	SKIP to Item 3.8 (Part	2, Section	1 3) below.		No		
	3.7	Owner name							
		See Appendix L 1	for land application site	location	See table	on pa	age 16a-16b for a	summa	ary of land application sites.
		See Appendix L	(Street of P.U. DOX) for land application site	location	s. See table	on pa	age 16a-16b for a	summa	ary of land application sites.
		City or town	••				State	Z	ZIP code
		See Appendix L							
		Contact name (fi	irst and last)	litle			Phone number	Ŀ	-mail address
	Annlie	er Information							
	3.8	Are you the pers	on who applies, or who	is respor	sible for ap	olicati	on of, sewage slu	udge to	this land application site?
			SKID to Itom 2 10 (Dar	t 2 Soctiv	an 3) holow	Г	T No	J	· · · · · · · · · · · · · · · · · · ·
	2.0								
	3.9	See Appendix L	for land application site	e location	s. See table	on pa	age 16a-16b for a	a summ	ary of land application sites.
		Mailing address	(street or P.O. box)						
		See Appendix L1	for land application site	locations	See table	on pa	age 16a-16b for a	summa	ary of land application sites.
		See Appendix L					Sidle	2	
		Contact name (fi	irst and last)	Title			Phone number	E	Email address
		See Appendix L							

EPA Form 3510-2S – Part 2, Sections 2.27-2.30 Biosolids Beneficial Use and Landfill Disposal Metro Biosolids Center and Point Loma Wastewater Treatment Plant¹ Calendar Year 2020

	Otay Landfill (wet tons) ²		Land App	lication Bene (wet tons) ²	ficial Use	Biosolids Totals for Calendar Year 2020 PLWTP and MBC			
Month	Alternative Daily Cover Beneficial Use	Landfill Disposal	Yuma County, AZ ³	Maricopa County, AZ ³	Totals	Wet Tons ²	Percent Solids ⁴	Dry Tons ^{2,5}	Dry Metric Tons⁵
January	0	0	9,986	0	9,986	9,986	29.6	2,954	2,677
February	0	0	9,572	0	9,572	9,572	29.4	2,815	2,553
March	0	0	6,543	3,188.12	9,731	9,731	28.9	2,815	2,553
April	0	0	9,511	0	9,511	9,511	29.2	2,777	2,519
May	0	0	9,677	0	9,677	9,677	28.6	2,768	2,511
June	0	0	10,789	0	10,789	10,789	27.5	2,974	2,962
July	0	0	11,273	0	11,273	11,273	26.6	2,999	2,720
August	0	0	8,874	0	8,874	8,874	27.0	2,396	2,174
September	0	0	11,995	0	11,995	11,995	26.9	3,227	2,927
October	0	0	11,792	0	11,972	11,972	26.3	3,149	2,856
November	0	0	10,248	0	10,248	10,248	27.3	2,798	2,538
December	0	0	11,415	0	11,415	11,415	28.3	3,231	2,931
Annual Total	0 ⁶	0 ⁶	121,674	3,188	124,863 ⁷	124,862 ⁷	27.9	34,893 ⁵	31,656 ⁵
Monthly Average ⁷	0 ⁶	06	10,140	266	10,405	10,405	27.5	2,908	2.638

Note: All values short ton and metric ton values are rounded to the nearest wet or dry ton.

1 Monthly average values, as listed in Table 1B (Annual Biosolids Beneficial Use &Landfill Disposal Summary) within Annual Biosolids Beneficial Use and Disposal Report, Point Loma Wastewater Treatment Plant & Metro Biosolids Center, 2020 (presented as Appendix L to this NPDES application). Calendar year 2020 is the most recent year for which a complete 12-month data set is available. Data for calendar year 2021 will be electronically transmitted to regulators under separate cover in 2022.

- 2 Listed ton/day values are short tons (2000 pounds).
- 3 See page 16b for the disposition of land applied biosolids within Arizona during 2020.
- 4 Monthly average percent solids values are computed from the listed monthly average wet ton and dry ton values.

5 Slight differences (less than 0.03%) exist between the above sludge totals (which are reported in Table 1B of the 2020 Annual Biosolids Report) and sludge production totals reported in Enclosure 1 (Solids Production for 2020) of the 2020 Annual Biosolids Report. These small differences are due to the number of significant figures reported, differences in rounding, and the number of significant figures utilized in units conversions. As shown on page 10a, the total reported Metro System biosolids production and land application during 2020 was 31,646 metric dry tons per year (34,919 dry short dry tons per year).

6 No PLWTP or MBC dewatered biosolids were sent to landfills during 2020, as reported on page 14, (Part 2, Section 2.47 of EPA Form 3510-2S). See page 14a for scum, grit, rags and screenings that were directed to landfills.

7 Monthly average values for calendar year 2020 are computed as the annual total divided by 12 months.

EPA Form 3510-25 – Part 2, Section 2.27-2.30 Distribution of Land Applied Biosolids Metro Biosolids Center and Point Loma Wastewater Treatment Plant¹ Calendar Year 2020

		Land Applied Biosolids during 2020											
				Dry tons ²									
Month		Y	uma County, A	Maricopa County, AZ ³		Dry Metric							
	Cullison Farms	Rutgers Farms	Anderson Farms	Skousen Farms	Tule Ranch	Harquahala Valley Farms	Totals⁴	10115					
January	0	493	326	456	1,679	0	2,954	2,680					
February	0	0	0	0	1,877	937	2,814	2,553					
March	100	322	92	0	2,302	0	2,815	2,554					
April	71	0	0	0	2,707	0	2,777	2,519					
Мау	0	0	0	0	2,768	0	2,768	2,511					
June	0	0	0	0	2,967	0	2,967	2,962					
July	0	0	96	0	2,903	0	2,999	2,720					
August	0	0	0	0	2,396	0	2,396	2,174					
September	0	0	165	0	3,061	0	3,227	2,927					
October	0	0	164	0	2,985	0	3,149	2,856					
November	0	0	54	0	2,743	0	2,798	2,538					
December	0	0	50	0	3,181	0	3,231	2,931					
Total	170	814	947	456	31,568	937	34,815 ⁴	31,6554					
Monthly Ave.⁵	14.2	67.9	78.9	38.0	2,631	78.1	2,908	2,638					

1 Monthly average values, as listed in Annual Biosolids Beneficial Use and Disposal Report, Point Loma Wastewater Treatment Plant & Metro Biosolids Center, 2020 (presented as Appendix L to this NPDES application). Calendar year 2020 is the most recent year for which a complete 12-month data set is available. Data for calendar year 2021 will be electronically transmitted to regulators under separate cover in 2022. See Appendix L for details.

2 Listed values are short tons (2000 pounds).

3 See Appendix L for a description of individual land disposal sites for Point Loma Wastewater Treatment Plant and Metro Biosolids Center during calendar year 2020.

4 Slight differences (less than 0.03%) exist between the above totals (which are reported in Table 1C (Biosolids Land Application) of the 2020 Annual Biosolids Report) and sludge production totals reported in Enclosure 1 (Solids Production for 2020) of the 2020 Annual Biosolids Report. These small differences are due to the number of significant figures reported, differences in rounding, and the number of significant figures utilized in units conversions. As shown on page 10a, the total Metro System biosolids production and land application during 2020 was 31,646 metric dry tons per year (34,919 dry short tons per year).

5 Monthly average computed as the annual total divided by 12.

EPA	EPA Identification Number		NPDES Permi	t Number	Fac	ility N	ame	Form Approved 03/05/19
			CA0107	409	E.W. Blom Point Lo Plant and Me	ma Wa	astewater Treatment	OMB No. 2040-0004
	Site T	уре						
	3.10	Type of land app	olication:					
		Agricult	ural land				Forest	
		Reclam	ation site		Г	٦	Public contact site	2
			doscribo)		_	-		-
	Cron	Citier (ion Grown on Site					
	3 11	What type of cro	n or other vegetati	on is arown or	n this site?			
	5.11	Alfalfa, sudan gi	rass and other feed	d crops. See A	ppendix L for d	letai	ls.	
	3.12	What is the nitro	gen requirement fo	or this crop or	vegetation?			
		Varies from app	roximately 10 to 5	00 pounds pe	r acre (depend	s on	the crop). See App	endix L for details.
	Vector	r Attraction Redu	iction					
	3.13	Are the vector at applied to the lat	ttraction reduction nd application site	requirements ?	at 40 CFR 503.	.33(b	b)(9) and (b)(10) me	et when sewage sludge is
		Yes					No → SKIP to Ite below.	em 3.16 (Part 2, Section 3)
	3.14	Indicate which v	ector attraction rec	luction option	is met. (Check	only	one response.)	
		Option	9 (injection below	and surface)	Ľ		Option 10 (incorp	oration into soil within 6 hours)
pe	3.15	Describe any tre	atment processes	used at the la	nd application s	site t	o reduce vector att	raction properties of sewage
inue		sludge.	Not applica	able				
ont		Check he	re if you have attac	ched your des	cription to the a	pplic	cation package.	
Je C	Cumu	lative Loadings a	and Remaining A	lotments				
ìpnl	3.16	Is the sewage sl	udge applied to thi	s site since Ju	ly 20, 1993, su	bjec	t to the cumulative	pollutant loading rates
je S		(CPLRs) in 40 C	R 503.13(b)(2)? All applied biosolids meet 40 CFR 503 requirements for Exceptional Quality (EQ) slu					
waç		□ Yes ✓ No → SKIP to Part 2, Section 4.						
of Bulk Se	3.17 Have you contacted the NPDES permitting authority in the state where the bulk be applied to ascertain whether bulk sewage sludge subject to CPLRs has bee July 20, 1993? All applied biosolids meet 40 CFR 503 requirements for Exceptional							e sludge subject to CPLRs will d to this site on or since EQ) sludge.
lication		Yes	Not applic	able	C		not be app Section 4.	blied to this site. SKIP to Part 2,
lqq/	3.18	Provide the follo	wing information a	bout your NP[DES permitting	auth	ority:	
d br		NPDES permitti	ng authority name					
Laı		Contact person	<u> </u>					
		Telephone numb	per					
		Email address						
	3.19	Based on your in	nguiry, has bulk se	wage sludge s	subiect to CPLF	Rs be	een applied to this	site since July 20, 1993?
	0117	Yes	Not applic	able			No \rightarrow SKIP to Pa	art 2, Section 4.
	3.20	Provide the follo subject to CPLR attach additional	wing information for s to this site since pages as necessa re to indicate that a	or every facility July 20, 1993. ary. Idditional page	other than you If more than o es are attached	urs th ne s	nat is sending, or h uch facility sends s Not applicable	as sent, bulk sewage sludge ewage sludge to this site,
		Facility name						
		Not applicable -	all applied biosolic	ls meet 40 CFI	R 503 requirem	ents	for Exceptional Qu	uality (EQ) sludge.
		Mailing address (street or P.O. box)						
		Not applicable		() 				
		City or town Not applicable				Sta	ate	ZIP code
		Contact name (f Not applicable	irst and last)	Title		Ph	one number	Email address

EP	A Identifica	ation Number	NPDES Permit Number		Facility Name		Form Approved 03/05/19				
			CA0107409	E.W. Blom Poi Plant a	nt Loma Wastewa nd Metro Biosolids	iter Treatment s Center	0101B 110. 2040-0004				
PART 2	, SECTION	ON 4 SURFACE	DISPOSAL (40 CFR 122	2.21(q)(10))							
	4.1	\square $\nabla_{\Theta S}$	erate a surface disposal	Sile?	L.		P to Part 2 Section 5				
	12	Complete all item	s in Section / for each ar	tive seware slud	ne unit that y		rate				
	4.Z		e to indicate that you have	e attached materia	al to the app	lication packag	e for one or more active				
		sewage slu	idge units.	Not applicable							
		nation on Active S	ewage Sludge Units								
	4.3	Not applicable	libel								
		Mailing address (Not applicable	(street or P.O. box)								
		City or town Not applicable				State	ZIP code				
		Contact name (fir Not applicable	rst and last)	Title		Phone numbe	r Email address				
		Location address Not applicable	s (street, route number, or	other specific ide	entifier)		□ Same as mailing address				
		County Not applicable				County code	□ Not available				
		City or town Not applicable				State	ZIP code				
		Latitude/Longitu	ude of Active Sewage S	ludge Unit (see in	nstructions)						
			Latitude			Lo	ongitude				
osal			Not applicable	plicable			t applicable				
Dispo		Method of Determination									
Ice [USGS map Field survey Other (specify)									
Surfa	4.4	Provide a topogra	aphic map (or other appro	opriate map if a to	pographic m	nap is unavailat	ole) that shows the site				
		Check here	e to indicate that you have	e completed and a	attached a to	pographic map).				
	4.5	Total dry metric to per 365-day perio	ons of sewage sludge pla od:	iced on the active	sewage slu	dge unit	Not applicable				
	4.6	Total dry metric to over the life of the	ons of sewage sludge pla e unit:	iced on the active	sewage slu	dge unit	Not applicable				
	4.7	Does the active s	sewage sludge unit have a	a liner with a max	imum perme	eability of 1×10^{10}	D-7 centimeters per second				
		Yes	Not appli	cable		No \rightarrow SK 4) below.	IP to Item 4.9 (Part 2, Section				
	4.8	Describe the line	r.			,					
		Check here	e to indicate that you have	e attached a desc	ription to the	application pa	ckage.				
			Not appli	cable							
	49	Does the active s	eware sludge unit have:	a leachate collect	ion system?						
	1.7	Yes	Not appl	icable		No → SK 4) below	IP to Item 4.11 (Part 2, Section				
	4.10	Describe the lead	chate collection system ar	nd the method us	ed for leacha	ate disposal and	d provide the numbers of any				
		Check here	e to indicate that you have	e attached the des	scription to t	he application p	backage.				

EPA Identification Number		ation Number	NPDES Permit Number CA0107409	E.W. Blo	Facility Na m Point Loma Was	ame stewater T	reatment	Fo	rm Approved 03/05/19 OMB No. 2040-0004	
	4.11	Is the boundary	of the active sewage slud	ge unit less that	an 150 mete	rs fron	n the proper	ty line of th	e surface disposal	
		Yes	Not applicab	e			No → SK Section 4)	IP to Item 4 below.	4.13 (Part 2,	
	4.12	Provide the actu	al distance in meters:				ĺ		meters	
	4.13	Remaining capa	city of active sewage slud	ge unit in dry	metric tons:			NA	NA dry metric tons	
	4.14	Anticipated closu	re date for active sewage	YYY):	NA					
	4.15	Attach a copy of	Attach a copy of any closure plan that has been developed for this active sewage sludge unit.							
		Check here to indicate that you have attached a copy of the closure plan to the							backage.	
	Sewag	Sludge from Other Facilities								
	4.16	Is sewage sludge	e sent to this active sewage	other than y	our facility?) A 01 (Dant 0. Castian				
		Yes	Not applica	ble			4) below.	IP to item 4	F.21 (Part 2, Section	
	4.17	Indicate the total sludge to this action below for each s	number of facilities (othe tive sewage sludge unit. (uch facility.)	r than your fac Complete Iten	ility) that se ns 4.18 to 4.	nd sew 20 dire	vage ctly		ΝΔ	
		Check here the applicat	to indicate that you have ion package.	ach fac	ility to					
eq	4.18	Facility name Not applicable								
ontinu		Mailing address Not applicable	(street or P.O. box)							
sal Co		City or town Not applicable				State		ZIP co	ode	
Dispo		Contact name (fi Not applicable	rst and last)	Title		Phon	e number	Email	address	
rface	4.19	Indicate the path sludge before lea	ogen class and reduction aving the other facility.	alternative an	d the vector	r attraction reduction option met for the sewage				
Su		Patho	gen Class and Reductio	on Alternative			Vector Attra	action Rec	duction Option	
		□ Not applicable	9			🗆 No	ot applicable			
		Class A, Alter	native 1				otion 1			
			native 2				otion 2			
			native 3				ntion 4			
		Class A, Alter	native 5				otion 5			
		Class A, Alter	native 6 N	ot applicable			otion 6	Not	t applicable	
		Class B, Alter	native 1				otion 7			
			native 2 native 2				otion 0			
		Class B. Alter	native 3				otion 10			
		Domestic sep	tage, pH adjustment				otion 11			
	4.20	Which treatment	process(es) are used at	he other facili	y to reduce	pathog	ens in sewa	ige sludge	or reduce the vector	
		attraction proper	ties of sewage sludge bef	ore leaving the	e other facili	ty? (Cł	eck all that	apply.)		
			operations (e.g., sludge	grinding and o	legritting)		Thickening	(concentra	ation)	
		Stabilizatio	n Not a	nnlicable			Anaerobic	digestion		
		Compostin	g	μμιταριε			Conditionir	ng		
		Disinfection irradiation,	n (e.g., beta ray irradiation pasteurization)	n, gamma ray			Dewatering drying bed	g (e.g., cen s, sludge la	trifugation, sludge agoons)	
		Heat drying	д ј				Thermal re	duction		
		Methane o	r biogas capture and reco	overy			Other (spe	cify)		

EF	PA Identific	cation Number	NPDES Permit Number	Facility Nar	me	Form Approved 03/05/19				
			CA0107409 E.W. Blom Point Loma Was Plant and Metro Bio:		ewater Trea olids Center	r OMB No. 2040-0004				
	Vecto	r Attraction Redu	ction							
	4.21	Which vector attr	action reduction option, if any, is	s met when sewage s	sludge is	s placed on this active sewage sludge				
		unit?	Not applicable							
		Option 9	(Injection below and surface)			Option 11 (Covering active sewage sludge unit daily)				
		Option 1() (Incorporation into soil within 6	bours)		Nono				
	1 22		atmost processes used at the ac	tivo sowado sluddo i		roluce vector attraction properties of				
	4.22	sewage sludge.	aimeni processes useu ai me ai	Live sewaye sludye		educe vector attraction properties of				
			e if you have attached your desc	cription to the applica	tion pac	ckage.				
			Not applicable							
	Grour	ndwater Monitorin	1 <u>g</u>							
	4.23	is groundwater n otherwise availal	nonitoring currently conducted a ble for this active sewage sludge	t this active sewage s e unit?	sludge u	unit, or are groundwater monitoring data				
		Yes	Not applicable			No \rightarrow SKIP to Item 4.26 (Part 2, Section 4) below.				
ð	4.24	Provide a copy o	f available groundwater monitor	ing data.						
inue		Check here to indicate you have attached the monitoring data.								
al Cont	4.25	Describe the wel to obtain these d	l locations, the approximate dep ata.	th to groundwater, ar	nd the g	proundwater monitoring procedures used				
ispose		Check he	ere if you have attached your de	scription to the applic	cation pa	ackage.				
rface D		Not applicable								
Sui	4.26	Has a groundwater monitoring program been prepared for this active sewage sludge unit?								
		☐ Yes	Not applicable			No \rightarrow SKIP to Item 4.28 (Part 2, Section 4) below.				
	4.27	Submit a copy of	the groundwater monitoring pro	ogram with this permi	it applica	ation.				
		Check he	ere to indicate you have attached	I the monitoring prog	ram.	Not applicable				
	4.28	Have you obtain sludge unit has r	ed a certification from a qualified not been contaminated?	I groundwater scienti	ist that th	he aquifer below the active sewage				
		Yes	Not applicable			No → SKIP to Item 4.30 (Part 2, Section 4) below.				
	4.29	Submit a copy of	the certification with this permit	application.						
		Check he	ere to indicate you have attached	the certification to th	he applie	cation package.				
	Site-S	pecific Limits								
	4.30	Are you seeking	site-specific pollutant limits for th	he sewage sludge pla	aced on	the active sewage sludge unit?				
		Yes	Not applicable			No \rightarrow SKIP to Part 2, Section 5.				
	4.31	Submit information	on to support the request for site	e-specific pollutant lim	nits with	this application.				
		Check he	ere to indicate you have attached	the requested inform	mation.	Not applicable				

EF	EPA Identification Number		NPDES Permit Number Facility Name		acility Name	Form Approved 03/05/19 OMB No. 2040-0004				
			CA0107409	E.W. Blom Point Plant and	Loma Wastewater Treatment Metro Biosolids Center	OMD N0. 2040-0004				
PART 2	, SECTIO	ON 5 INCINERA	TION (40 CFR 122.21(q)(11))						
		rator Information								
	5.1	Do you fire sewa	ge sludge in a sewage sludg	e incinerator?						
		L Yes			NO → SKIP TO EN	U.				
	5.2	Indicate the total of Section 5 for e	number of incinerators used each such incinerator.)	at your facility.	(Complete the remaind	ler				
		Check here incinerators	to indicate that you have atta	ached informatio	on for one or more					
	5.3	Incinerator name or number Not applicable								
		Location address Not applicable	s (street, route number, or oth	ner specific iden	tifier)					
		County Not applicable			County code	□ Not available				
		City or town Not applicable			State	ZIP code				
		Latitude/Longit	ude of Incinerator (see instru	uctions)		•				
			Latitude			Longitude				
			Not applicable			Not applicable				
		Method of Deter	rmination							
		USGS map		eld survey		Other (specify)				
	Amou	nt Fired								
	5.4	Dry metric tons p	per 365-day period of sewage	sludge fired in	the sewage sludge	0				
Ę	Bonulli	incinerator:								
ratio	5.5	Submit information	on test data and a descriptic	on of measures t	taken that demonstrate	whether the sewage sludge				
ncine	0.0	incinerated is be	ryllium-containing waste and	will continue to	remain as such.					
_		Check her	e to indicate that you have at	tached this mat	erial to the application	package.				
	5.6	Is the sewage slu	udge fired in this incinerator "	beryllium-contai	ning waste" as defined	l at 40 CFR 61.31?				
		🔲 Yes	Not applicable		No ➔ SKIP to Iter	n 5.8 (Part 2, Section 5) below.				
	5.7	Submit with this ongoing incinera will continue to b	application a complete report tor operating parameters indi be met.	of the latest be cating that the N	ryllium emission rate te IESHAP emission rate	esting <i>and</i> documentation of limit for beryllium has been and				
		Check her	re to indicate that you have at	tached this info	rmation.	Not applicable				
	Mercu	ry NESHAP								
	5.8	Is compliance wi	th the mercury NESHAP bein	g demonstrated	I via stack testing?					
		🔲 Yes	Not applicable		No ➔ SKIP to Iter	n 5.11 (Part 2, Section 5) below.				
	5.9	Submit a comple that the incinerat	te report of stack testing and or has met and will continue	documentation to meet the mer	of ongoing incinerator cury NESHAP emissio	operating parameters indicating n rate limit.				
		Check her	re to indicate that you have at	tached this info	rmation.					
	5.10	Provide copies o	f mercury emission rate tests	for the two mos	st recent years in which	n testing was conducted.				
		Check her	e to indicate that you have at	tached this info	rmation.	Not applicable				
	5.11	Do you demonst	rate compliance with the mer	cury NESHAP b	y sewage sludge sam	oling?				
		Yes	Not applicable		below.					
	5.12	Submit a comple indicating that the	te report of sewage sludge sate incinerator has met and will	ampling and doo continue to me	cumentation of ongoing et the mercury NESHA	g incinerator operating parameters AP emission rate limit.				
		Check her	re to indicate that you have al	tached this info	rmation.	Not applicable				

EF	PA Identifica	ation Number	NPDES Permit Number	Facility E.W. Blom Point Loma	y Name Wastewater Treatme	Form Approved 03/05/19 OMB No. 2040-0004			
	Disner	sion Factor	CA0107403	Plant and Metro	Biosolids Center				
	5.13	Dispersion facto	r in micrograms/cubic meter pe	er gram/second:		Net ever Perkle			
				3		Not applicable			
	5.14	Name and type of	of dispersion model:	Not applicable					
	5.15	Submit a copy of	f the modeling results and sup	porting documenta	tion.				
		Check he	re to indicate that you have atta	ached this informat	tion.	Not applicable			
	Contro	I Efficiency							
	5.16	Provide the cont	rol efficiency, in hundredths, fo	r each of the pollu	tants listed bel	OW.			
			Pollutant	Control Efficiency, in Hundredths					
		Arsenic			Not	applicable			
		Cadmium			Not	applicable			
		Chromium			Not	applicable			
		Lead			Not	applicable			
		Nickel			Not	applicable			
	5.17	Attach a copy of	the results or performance tes	ting and supporting	g documentati	on (including testing dates).			
		Check he	re to indicate that you have atta	ached this informat	tion.				
	Risk-S	pecific Concentr	ation for Chromium						
_	5.18	Provide the risk- micrograms per	specific concentration (RSC) u cubic meter:	sed for chromium i	in	Not applicable			
nec	5.19	Was the RSC de	etermined via Table 2 in 40 CF	R 503.43?	·				
Contir		□ Yes	Not applicable		No ➔ SKIP	to Item 5.21 (Part 2, Section 5) below.			
0 uo	5.20	Identify the type	of incinerator used as the basi	S.					
erati		Fluidized	bed with wet scrubber	Other types with wet scrubber					
Incine		Fluidized	bed with wet scrubber and wet tic precipitator	wet Other types with wet scrubber and wet electro					
	5.21	Was the RSC de	etermined via Table 6 in 40 CF	CFR 503.43 (site-specific determination)?					
		□ Yes	Not applicable	No \rightarrow SKIP to Item 5.23 (Part 2, Section 5)					
	5.22	 Provido the doci	mal fraction of boyayalant chro	mium concontratio	below.				
	0.22	chromium conce	entration in stack exit gas:		וו נט נטנמו	Not applicable			
	5.23	Attach the result	s of incinerator stack tests for l	nexavalent and tota	al chromium co	oncentrations, including the date(s) of			
		any test(s), with	this application.			_			
		Check he	re to indicate that you have att	ached this informat	tion.	Not applicable			
	Incine	rator Parameters							
	5.24	Do you monitor t	total hydrocarbons (THC) in the	e exit gas of the se	wage sludge i	ncinerator?			
		☐ Yes	Not applicable		No				
	5.25	Do you monitor	carbon monoxide (CO) in the e	xit gas of the sewa	age sludge inci	nerator?			
		🔲 Yes	Not applicable		No				
	5.26	Indicate the type	e of sewage sludge incinerator.			Not applicable			
	5.27	Incinerator stack	cheight in meters:			Not applicable			
	5.28	Indicate whether	the value submitted in Item 5.	27 is (check only o	one response):				
		Actual sta	ick height		Creditable st	ack height			

Part and Metro BioSolids Center Performance Test Operating Parameters 5.29 Maximum performance test combustion temperature: Not applicable 5.30 Performance test sewage sludge feed rate, in dry metric tons/day Not applicable 5.31 Indicate whether value submitted in Item 5.30 is (check only one response): Not applicable 5.31 Indicate whether value submitted in Item 5.30 is (check only one response): Not applicable 5.32 Attach supporting documents describing how the feed rate was calculated. Not applicable 5.32 Attach supporting documents describing how the feed rate was calculated. Not applicable 5.33 Submit information documenting the performance test operating parameters for the air pollution control device used for this sewage sludge incinerator. Not applicable 5.33 Check here to indicate that you have attached this information. Not applicable 5.34 List the equipment in place to monitor the listed parameters. Not applicable 5.34 List the equipment in place to monitor the listed parameters. Equipment in Place for Monitoring	40-0004				
5.29 Maximum performance test combustion temperature: Not applicable 5.30 Performance test sewage sludge feed rate, in dry metric tons/day Not applicable 5.31 Indicate whether value submitted in Item 5.30 is (check only one response): Not applicable 5.31 Indicate whether value submitted in Item 5.30 is (check only one response): Not applicable 5.31 Indicate whether value submitted in Item 5.30 is (check only one response): Not applicable 5.32 Attach supporting documents describing how the feed rate was calculated. Not applicable 5.32 Attach supporting documents describing how the feed rate was calculated. Not applicable 5.33 Submit information documenting the performance test operating parameters for the air pollution control device used for this sewage sludge incinerator. Not applicable 5.33 Check here to indicate that you have attached this information. Not applicable 5.34 List the equipment in place to monitor the listed parameters. Equipment in Place for Monitoring Equipment in Place for Monitoring					
5.30 Performance test sewage sludge feed rate, in dry metric tons/day Not applicable 5.31 Indicate whether value submitted in Item 5.30 is (check only one response): Not applicable 5.31 Average use Maximum design Not applicable 5.32 Attach supporting documents describing how the feed rate was calculated. Not applicable 5.33 Submit information documenting the performance test operating parameters for the air pollution control device used for this sewage sludge incinerator. Not applicable 5.33 Submit information documenting the performance test operating parameters for the air pollution control device used for this sewage sludge incinerator. Not applicable 5.34 List the equipment Indicate that you have attached this information. Not applicable 5.34 List the equipment in place to monitor the listed parameters. Equipment in Place for Monitoring					
5.31 Indicate whether value submitted in Item 5.30 is (check only one response): Not applicable Average use Maximum design Not applicable 5.32 Attach supporting documents describing how the feed rate was calculated. Not applicable Check here to indicate that you have attached this information. Not applicable 5.33 Submit information documenting the performance test operating parameters for the air pollution control device used for this sewage sludge incinerator. Not applicable Check here to indicate that you have attached this information. Not applicable Monitoring Equipment Not applicable 5.34 List the equipment in place to monitor the listed parameters. Parameter Equipment in Place for Monitoring					
5.32 Attach supporting documents describing how the feed rate was calculated. Not applicable 5.33 Check here to indicate that you have attached this information. Not applicable 5.33 Submit information documenting the performance test operating parameters for the air pollution control device used for this sewage sludge incinerator. Not applicable 6 Check here to indicate that you have attached this information. Not applicable 7 Submit information documenting the performance test operating parameters for the air pollution control device used for this sewage sludge incinerator. Not applicable 7 Check here to indicate that you have attached this information. Not applicable 8 Monitoring Equipment Not applicable 7 List the equipment in place to monitor the listed parameters. Equipment in Place for Monitoring					
5.32 Attach supporting documents describing how the feed rate was calculated. Not applicable					
5.33 Submit information documenting the performance test operating parameters for the air pollution control device used for this sewage sludge incinerator. Not applicable Image: Check here to indicate that you have attached this information. Not applicable Monitoring Equipment 5.34 List the equipment in place to monitor the listed parameters. Equipment in Place for Monitoring					
Monitoring Equipment Not applicable 5.34 List the equipment in place to monitor the listed parameters. Parameter Equipment in Place for Monitoring	∋(s)				
Monitoring Equipment 5.34 List the equipment in place to monitor the listed parameters. Parameter Equipment in Place for Monitoring					
5.34 List the equipment in place to monitor the listed parameters. Parameter Equipment in Place for Monitoring					
Parameter Equipment in Place for Monitoring					
Total hydrocarbons or carbon monoxide Not applicable					
Percent oxygen Not applicable					
Percent moisture Not applicable					
Combustion temperature Not applicable					
Other (describe)					
E Air Pollution Control Equipment					
5.35 List all air pollution control equipment used with this sewage studge incinerator.					
Not applicable					

END of PART 2

Submit completed application package to your NPDES permitting authority.

Click to go back to the beginning of Form

Renewal of NPDES CA0107409

1	HANNING MAN
7	
LEC	
7	FUTURE DRIED BIOSOLIUS HEAT DRIING BUILDING
6	BIOGAS ELARE FACILITY
	BIOGAS HOLDING TANK AND COMPRESSOR
12	LIQUID WASTE RECEIVING STATION
16	DIGESTED BIOSOLIDS STORAGE TANK
17	EMERGENCY STORAGE TANK
18	DIGESTER
[19]	ELECTRIC YARD
20	RAW SOLIDS RECEIVING TANK
23	FUTURE COGENERATION FACILITY
25	LIME STORAGE AND CONVEYANCE SYSTEM
26	ODOR CONTROL SYSTEM FOR W.W. P.S.
27	FUTURE COMPOSTING BIOSOLIDS FACILITY
51	OPERATIONS BUILDING
60	CHEMICAL BUILDING
70	ENERGY BUILDING
73	RECEIVING TANK COMPLEX
76	CENTRIFUGE BUILDING
80	DIGESTER COMPLEX
86	DEWATERED BIOSOLIDS STORAGE BUILDING
87	TRUCK WASH FACILITY
94	WASTEWATER PUMP STATION (W.W. P.P.)

All

Metro Biosolids Center Topographic Map Figure 9

2

State of California Form 200

Renewal of NPDES CA0107409

CALIFORNIA ENVIRONMENTAL PROTECTION AGENCY State of California

Regional Water Quality Control Board APPLICATION/REPORT OF WASTE DISCHARGE GENERAL INFORMATION FORM FOR WASTE DISCHARGE REQUIREMENTS OR NPDES PERMIT

Page 1

I. FACILITY INFORMATION

A. Facility:

Name : E.W. Blom Point Loma Wastewater Treatment Plant (PLWTP) and Metro Biosolids Center (MBC)				
PLWTP Address: MBC 1902 Gatchell Road 5240	Address:) Convoy Street, San	Diego, CA 92121		
City: San Diego	County: San Diego	state: CA	Zip Code: 92106	
Contact Person: Juan Guerreiro, Interim Director, Public Utilities Departmer	nt	Telephone Numb	er: (858) 292-6401	

B. Facility Owner:

Name : City of San Diego, Public Utilities Department			Owner 1.	Type (Check One) Individual 2. Corporation
Address: 9192 Topaz Way, Mail Station 901			з. 🗸	Governmental 4. Partnership Agency
City: San Diego	state: CA	Zip Code: 92123	5.	Other:
Contact Person: Juan Guerreiro, Interim Director, Public Utilities Departmen	t	Telephone Numbe (858) 292-640	r:)1	Federal Tax ID:

C. Facility Operator (The agency or business, not the person):

Name : City of San Diego, Public Utilities Department			Operator Type (Check One) 1. Individual 2. Corporation
Address: 9192 Topaz Way, Mail Station 901			3. Governmental 4. Partnership Agency
City: San Diego	state: CA	Zip Code: 92123	5. Other:
Contact Person: Juan Guerreiro, Interim Director, Public Utilities Department		Telephone Numbe	(858) 292-6401

D. Owner of the Land:

Name : City of San Diego, Public Utilities Department			Owner Type (Check One) 1. Individual 2. Corporation
Address: 9192 Topaz Way, Mail Station 901			3. Governmental 4. Partnership Agency
city: San Diego	state: CA	Zip Code: 92123	5. Other:
Contact Person: Juan Guerreiro, Interim Director, Public Utilities Department	-	Telephone Numbe	er: (858) 292-6401

E. Address Where Legal Notice May Be Served:

Address: 9192 Topaz Way, Mail Station 901		
city: San Diego	state: CA	Zip Code: 92123
Contact Person: Juan Guerreiro, Interim Director, Public Utilities Department		Telephone Number: (858) 292-6401

F. Billing Address:

Address: 9192 Topaz Way, Mail Station 901		
city: San Diego	state: CA	Zip Code: 92123
Contact Person: Juan Guerreiro, Interim Director, Public Utilities Department		Telephone Number: (858) 292-6401

State of California Regional Water Quality Control Board APPLICATION/REPORT OF WASTE DISCHARGE GENERAL INFORMATION FORM FOR TE DISCHARGE REQUIREMENTS OR NPDES PERMIT I. TYPE OF DISCHARGE cribed in this Application (A or B): TE TO LAND B. WASTE DISCHARGE TO SURFACE WATER Animal Waste Solids Animal or Aquacultural Wastewater Animal Waste Solids Animal or Aquacultural Wastewater Vater Animal Waste Solids Animal or Aquacultural Wastewater UT Dredge Material Disposal Animal or Aquacultural Wastewater Surface Impoundment Andustrial Process Wastewater Not applicable III. LOCCATION OF THE FACILITY T the facility. 2. Latitude 3. Longitude	IPORNIA ENVIRONMENTAL PROTECTION AGENCY State of California Regional Water Quality Control Board APPLICATION/REPORT OF WASTE DISCHARGE GENERAL INFORMATION FORM FOR WASTE DISCHARGE REQUIREMENTS OR NPDES PERMIT Iformation for Waste Discharge(s) Permit II. TYPE OF DISCHARGE Check Type of Discharge(s) Described in this Application (A or B): A. WASTE DISCHARGE TO LAND B. WASTE DISCHARGE TO SURFACE WATER Check all that apply: B. WASTE DISCHARGE TO SURFACE WATER Check all that apply: B. Waste Discharge (s) Described in this Application (A or B): Omestic/Municipal Wastewater Animal Waste Solids Cooling Water Animal Waste Solids Cooling Water Deredge Material Disposal Waste Water Surface Impoundment Waste Pile Surface Impoundment Wastewater Reclamation Industrial Process Wastewater Other, please describe: Not applicable I. Assessor's Parcel Number(s) Surface Impoundment Facility: S32 40 45'N State Pile State Pile Industrial Process Parcel Store Waster					Page 2
Regional Water Quality Control Board APPLICATION/REPORT OF WASTE DISCHARGE GENERAL INFORMATION FORM FOR TE DISCHARGE REQUIREMENTS OR NPDES PERMIT II. TYPE OF DISCHARGE Cribed in this Application (A or B): E TO LAND Image: Solids Image: Solids <t< th=""><th>PROTECTION AGENCY Regional Water Quality Control Board APPLICATION/REPORT OF WASTE DISCHARGE GENERAL INFORMATION FORM FOR WASTE DISCHARGE REQUIREMENTS OR NPDES PERMIT II. TYPE OF DISCHARGE Check Type of Discharge(s) Described in this Application (A or B): A. WASTE DISCHARGE TO LAND B. WASTE DISCHARGE TO SURFACE WATER Check all that apply: Optimized and Disposal Land Treatment Unit Mining Dredge Material Disposal Surface Impoundment Waste Pile Wastewater Reclamation Industrial Process Wastewater Other, please describe: Not applicable III. LOCCATION OF THE FACILITY Bis Constructions Storm Water III. LOCATION OF THE FACILITY</th><th>LIFORNIA ENVIRONMENTAL</th><th>State</th><th>of California</th><th></th><th>2ESOURCES</th></t<>	PROTECTION AGENCY Regional Water Quality Control Board APPLICATION/REPORT OF WASTE DISCHARGE GENERAL INFORMATION FORM FOR WASTE DISCHARGE REQUIREMENTS OR NPDES PERMIT II. TYPE OF DISCHARGE Check Type of Discharge(s) Described in this Application (A or B): A. WASTE DISCHARGE TO LAND B. WASTE DISCHARGE TO SURFACE WATER Check all that apply: Optimized and Disposal Land Treatment Unit Mining Dredge Material Disposal Surface Impoundment Waste Pile Wastewater Reclamation Industrial Process Wastewater Other, please describe: Not applicable III. LOCCATION OF THE FACILITY Bis Constructions Storm Water III. LOCATION OF THE FACILITY	LIFORNIA ENVIRONMENTAL	State	of California		2ESOURCES
APPLICATION/REPORT OF WASTE DISCHARGE GENERAL INFORMATION FORM FOR TE DISCHARGE REQUIREMENTS OR NPDES PERMIT I. TYPE OF DISCHARGE cribed in this Application (A or B): E TO LAND P B. WASTE DISCHARGE TO SURFACE WATER Vater Animal Waste Solids Animal or Aquacultural Wastewater Land Treatment Unit Biosolids/Residual Dredge Material Disposal Surface Impoundment Industrial Process Wastewater Storm Water Not applicable III. LOCATION OF THE FACILITY f the facility. 2. Latitude 3. Longitude	APPLICATION/REPORT OF WASTE DISCHARGE GENERAL INFORMATION FORM FOR WASTE DISCHARGE REQUIREMENTS OR NPDES PERMIT I. TYPE OF DISCHARGE Check Type of Discharge(s) Described in this Application (A or B): A. WASTE DISCHARGE TO LAND B. WASTE DISCHARGE TO SURFACE WATER Check all that appl: A. WASTE DISCHARGE TO LAND B. WASTE DISCHARGE TO SURFACE WATER Check all that appl: Domestic/Municipal Wastewater Teatment and Disposal Domestic/Municipal Wastewater Check all that appl: Domestic/Municipal Wastewater Domestic/Municipal Wastewater Domestic/Municipal Wastewater Domestic/Municipal Wastewater Discover describe: Not applicable Discover Scheme Neith Source Scheme Neith Discover Scheme Neith	PROTECTION AGENCY	Regional Water	Quality Control Bo	ard	All former and
GENERAL INFORMATION FORM FOR TE DISCHARGE REQUIREMENTS OR NPDES PERMIT III. TYPE OF DISCHARGE cribed in this Application (A or B): IMAGE TO SURFACE WATER Vater Animal Waste Solids Land Treatment Unit Dredge Material Disposal Surface Impoundment Industrial Process Wastewater Not applicable III. LOCATION OF THE FACILITY the facility. 2. Latitude	Section Section Section Section In type of Discharge(s) Described in this Application (A or B): Image: Section of Discharge(s) Described in this Application (A or B): Image: Section of Discharge(s) Described in this Application (A or B): A. WASTE DISCHARGE TO LAND Image: Section of Discharge(s) Described in this Application (A or B): Image: Section of Discharge(s) Described in this Application (A or B): Section A. WASTE DISCHARGE TO LAND Image: Section of Discharge(s) Described in this Application (A or B): Section Image: Section of Discharge(s) Described in this Application (A or B): Image: Section of Application (A or B): Section Image: Section of Discharge(s) Described in this Application (A or B): Image: Section of Application (A or B): Section Image: Section of Discharge(s) Discharge(s) Section (A or C): Image: Section (A or C): Image: Section (A or C): Waste Pile Image: Section (A or C): Waste Pile Image: Section (A or C): Image: Section (A or C): Image: Section (A or C): Section (A or C): Image: Section Image: Section (A or C): Image: Section (A or C): Image: Section (A or C): Section (A or C): Image: Section (A or C): Image: Section (A or		'LICATION/REPO	RT OF WASTE	DISCHARGE	
TE DISCHARGE REQUIREMENTS OR NPDES PERMIT II. TYPE OF DISCHARGE cribed in this Application (A or B): IF TO LAND Image: Solids Image: Solids <t< th=""><th>WASTE DISCHARGE REQUIREMENTS OR NPDES PERMIT II. TYPE OF DISCHARGE Check Type of Discharge(s) Described in this Application (A or B): A. WASTE DISCHARGE TO LAND B. WASTE DISCHARGE TO SURFACE WATER Domestic/Municipal Wastewater B. WASTE DISCHARGE TO SURFACE WATER Observe the disposal Animal Waste Solids Animal or Aquacultural Wastewater Domestic/Municipal Wastewater Animal Waste Solids Biosolids/Residual Mining Dredge Material Disposal Hazardous Waste (see instructions) Waste Pile Surface Impoundment Landfill (see instructions) Wastewater Reclamation Industrial Process Wastewater Storm Water Other, please describe: Not applicable Storm Water III. LOCATION OF THE FACILITY Describe the physical location of the facility: 1. Assessor's Parcel Number(s) 2. Latitude 32 40' 45' N Facility: 532-520-66 Deschare Review Termer Biosolity: 1. Assessor's Parcel Number(s) Eachilty: 32 40' 45' N Deschare Review Termer Parcelity: 532-520-66 Deschare Review Termer Deschare Review Termer Deschare Review Termer</th><th></th><th>GENERAL INFC</th><th>RMATION FOR</th><th></th><th>HAN A</th></t<>	WASTE DISCHARGE REQUIREMENTS OR NPDES PERMIT II. TYPE OF DISCHARGE Check Type of Discharge(s) Described in this Application (A or B): A. WASTE DISCHARGE TO LAND B. WASTE DISCHARGE TO SURFACE WATER Domestic/Municipal Wastewater B. WASTE DISCHARGE TO SURFACE WATER Observe the disposal Animal Waste Solids Animal or Aquacultural Wastewater Domestic/Municipal Wastewater Animal Waste Solids Biosolids/Residual Mining Dredge Material Disposal Hazardous Waste (see instructions) Waste Pile Surface Impoundment Landfill (see instructions) Wastewater Reclamation Industrial Process Wastewater Storm Water Other, please describe: Not applicable Storm Water III. LOCATION OF THE FACILITY Describe the physical location of the facility: 1. Assessor's Parcel Number(s) 2. Latitude 32 40' 45' N Facility: 532-520-66 Deschare Review Termer Biosolity: 1. Assessor's Parcel Number(s) Eachilty: 32 40' 45' N Deschare Review Termer Parcelity: 532-520-66 Deschare Review Termer Deschare Review Termer Deschare Review Termer		GENERAL INFC	RMATION FOR		HAN A
II. TYPE OF DISCHARGE cribed in this Application (A or B): E TO LAND		WASTE	DISCHARGE REQ	UIREMENTS O	R NPDES PERMIT	101
II. TYPE OF DISCHARGE cribed in this Application (A or B): Colspan="2">Colspan="2">B. WASTE DISCHARGE TO SURFACE WATER Vater Animal Waste Solids Land Treatment Unit Animal or Aquacultural Wastewater Dredge Material Disposal Hazardous Waste (see instructions) Surface Impoundment Landfill (see instructions) Industrial Process Wastewater Storm Water Not applicable Not applicable	II. TYPE OF DISCHARGE Check Type of Discharge(s) Described in this Application (A or B): A. WASTE DISCHARGE TO LAND B. WASTE DISCHARGE TO SURFACE WATER Check all that apply: B. WASTE DISCHARGE TO SURFACE WATER Omestic/Municipal Wastewater Animal Waste Solids Animal or Aquacultural Wastewater Domestic/Municipal Wastewater Animal Waste Solids Animal or Aquacultural Wastewater Domestic/Municipal Wastewater Animal Waste Solids Biosolids/Residual Mining Dredge Material Disposal Hazardous Waste (see instructions) Waste Pile Surface Impoundment Landfill (see instructions) Wastewater Reclamation Industrial Process Wastewater Storm Water Other, please describe: Not applicable Not applicable III. LOCCATION OF THE FACILITY Describe the physical location of the facility: 1. Assessor's Parcel Number(s) 2. Latitude 32 40/ 45' N Storgitude Facility: 532-520-06 Encility: 32 40/ 45' N Storgitude Storgitude Bracility: 532-520-06 Encility: 32 40/ 45' N Storgitude Storgitude Storgitude Storgitude<					ALIFORT
II. TYPE OF DISCHARGE cribed in this Application (A or B): E TO LAND	II. TYPE OF DISCHARGE Check Type of Discharge(s) Described in this Application (A or B): A. WASTE DISCHARGE TO LAND B. WASTE DISCHARGE TO SURFACE WATER Obmestic/Municipal Wastewater Treatment and Disposal Land Treatment Unit Mining Dredge Material Disposal Mining Dredge Material Disposal Mining Dredge Material Disposal Material Disposal Mining Dredge Material Disposal Hazardous Waste (see instructions) Surface Impoundment Industrial Process Wastewater Other, please describe: Not applicable III. LOCATION OF THE FACILITY Describe the physical location of the facility. 1. Assessor's Parcel Number(s) Facility: 532-520-06 Facility: 532 40' 45' N Brechty Reprint 117 14' 46' W Dischere Reprint 10' 00' 0''' W	<u> </u>			D	
Animal Waste Solids Animal Waste Solids Land Treatment Unit Dredge Material Disposal Surface Impoundment Industrial Process Wastewater Not applicable III. LOCATION OF THE FACILITY f the facility. 2. Latitude 3. Longitude	Check Type of Discharge(s) Described in this Application (A or B): A. WASTE DISCHARGE TO LAND		II. TYPE OF	DISCHARG	<u>E</u>	
Water Animal Waste Solids Land Treatment Unit Biosolids/Residual Dredge Material Disposal Hazardous Waste (see instructions) Surface Impoundment Landfill (see instructions) Industrial Process Wastewater Storm Water Not applicable Not applicable	A. WASTE DISCHARGE TO LAND	Check Type of Discharge(s) Describe	ed in this Application (A	A <u>or</u> B):		
vater Animal Waste Solids Land Treatment Unit Dredge Material Disposal Surface Impoundment Industrial Process Wastewater Not applicable III. LOCATION OF THE FACILITY f the facility. 2. Latitude 3. Longitude				R WASTED	Ις CHADCE ΤΟ SUDEA	CE WATED
vater Animal Waste Solids Land Treatment Unit Biosolids/Residual Dredge Material Disposal Hazardous Waste (see instructions) Surface Impoundment Landfill (see instructions) Industrial Process Wastewater Storm Water Not applicable III. LOCATION OF THE FACILITY f the facility. 2. Latitude 3. Longitude	Check all that apply: Domestic/Municipal Wastewater Treatment and Disposal Cooling Water Land Treatment Unit Mining Dredge Material Disposal Hazardous Waste (see instructions) Waste Pile Surface Impoundment Industrial Process Wastewater Storm Water Other, please describe: Not applicable IL. LOCATION OF THE FACILITY Describe the physical location of the facility. Latitude Facility: 32 40' 45" N Surgbarge Pairty = 00' 57" N Dirabarge Pairty = 00' 57" N Dirabarge Pairty = 00' 57" N Dirabarge Pairty = 00' 57" N	A. WASTE DISCHARGE I	U LAND	V D. WASTED	ISCHARGE TO SURFA	CE WAIEN
vater Animal Waste Solids Land Treatment Unit Biosolids/Residual Dredge Material Disposal Hazardous Waste (see instructions) Surface Impoundment Landfill (see instructions) Industrial Process Wastewater Storm Water Not applicable III. LOCATION OF THE FACILITY f the facility. 2. Latitude 3. Longitude	Domestic/Municipal Wastewater Treatment and Disposal Cooling Water Land Treatment Unit Mining Dredge Material Disposal Waste Pile Dredge Material Disposal Wastewater Reclamation Industrial Process Wastewater Storm Water Other, please describe:	Check all that apply:				
Animal Waste Solids Animal or Aquacultural Wastewater Animal or Aquacultural Wastewater Biosolids/Residual Hazardous Waste (see instructions) Surface Impoundment Industrial Process Wastewater Not applicable III. LOCATION OF THE FACILITY f the facility. 2. Latitude 3. Longitude	Domession // united part waste water Treatment and Disposal Cooling Water Mining Waste Pile Waste Water Reclamation Mustrial Process Wastewater Other, please describe: Not applicable III. LOCATION OF THE FACILITY Describe the physical location of the facility. 1. Assessor's Parcel Number(s) Facility: 532-520-06 Facility: 532-520-06 Facility: 532-520-06 Direbrare Reint Output: Direbrare Reint Direbrare Reint Animal or Aquacultural Wastewater Biosolids/Residual Hazardous Waste (see instructions) Landfill (see instructions) Storm Water Not applicable Storm Water Not applicable Storm Water Not applicable Storm Water Not applicable Storm Water	Domostic/Municipal Wastewater	.	_		
□ Land Treatment Unit ✓ Biosolids/Residual □ Dredge Material Disposal Hazardous Waste (see instructions) □ Surface Impoundment □ Landfill (see instructions) □ Industrial Process Wastewater □ Storm Water Not applicable Image: Not applicable Image: Not applicable 1 Image: Not applicable Image: Not ap	Cooling Water □ Land Treatment Unit ✓ Biosolids/Residual □ Mining □ Dredge Material Disposal □ Hazardous Waste (see instructions) □ Waste Pile □ Surface Impoundment □ Landfill (see instructions) □ Wastewater Reclamation □ Industrial Process Wastewater □ Storm Water □ Other, please describe: Not applicable	Treatment and Disposal	Animal Waste	Solids	Animal or Aquacultural	Wastewater
Dredge Material Disposal Hazardous Waste (see instructions) Surface Impoundment Landfill (see instructions) Industrial Process Wastewater Storm Water Not applicable III. LOCATION OF THE FACILITY f the facility. 2. Latitude 3. Longitude	Mining Mining Dredge Material Disposal Hazardous Waste (see instructions) Waste Pile Surface Impoundment Landfill (see instructions) Wastewater Reclamation Industrial Process Wastewater Storm Water Other, please describe: Not applicable III. LOCATION OF THE FACILITY Describe the physical location of the facility. 1. Assessor's Parcel Number(s) Facility: 532-520-06 Displorate Paint 117 14' 46" W Displorate Paint 117 14' 46" W	Cooling Water	Land Treatmer	nt Unit 🔽	Biosolids/Residual	
Image: Industrial Disposal Image: Landfill (see instructions) Industrial Process Wastewater Storm Water Not applicable Not applicable IIII. LOCATION OF THE FACILITY f the facility. 2. Latitude 3. Longitude	Waste Pile Surface Impoundment Landfill (see instructions) Wastewater Reclamation Industrial Process Wastewater Storm Water Other, please describe: Not applicable III. LOCATION OF THE FACILITY Describe the physical location of the facility. 1. Assessor's Parcel Number(s) Facility: 532-520-06 Discharge Raint 2. Latitude Facility: 532-520-06 Discharge Raint 0 201 55" N Discharge Raint 10 201 55" N	Mining	Dredge Materi	al Disposal	Hazardous Waste (see	instructions)
Industrial Process Wastewater Storm Water Not applicable III. LOCATION OF THE FACILITY f the facility. 2. Latitude 3. Longitude	Wastewater Reclamation Industrial Process Wastewater Storm Water Other, please describe: Not applicable III. LOCATION OF THE FACILITY Describe the physical location of the facility. 1. Assessor's Parcel Number(s) Facility: 532-520-06 Discharge Reint: Not applicable 3. Longitude Facility: 117 14' 46" W Discharge Reint: Not applicable	Waste Pile	Surface Impor	indment	Landfill (see instruction	ıs)
Industrial Freess Wase water Not applicable III. LOCATION OF THE FACILITY f the facility. 2. Latitude 3. Longitude	Wastewater Reclamation Industrial Process Wastewater Line Formula Other, please describe: Not applicable III. LOCATION OF THE FACILITY Describe the physical location of the facility. 1. Assessor's Parcel Number(s) Facility: 532-520-06 Discharge Reint: 20 20175" N Discharge Reint: 20 20175" N	Westernsten Deelemetien	Industrial Proc	ess Wastewater	Storm Water	,
III. LOCATION OF THE FACILITY f the facility. 2. Latitude 3. Longitude	Other, please describe: Not applicable III. LOCATION OF THE FACILITY Describe the physical location of the facility. 1. Assessor's Parcel Number(s) 2. Latitude Facility: 532-520-06 Discharge Beint 32 40' 45" N Discharge Beint 32 40' 45" N Discharge Beint 117 14' 46" W					
III. LOCATION OF THE FACILITY f the facility. 2. Latitude 3. Longitude	III. LOCATION OF THE FACILITY Describe the physical location of the facility. 1. Assessor's Parcel Number(s) 2. Latitude Facility: 532-520-06 Discharge Baint 0.2 20' 45" N Discharge Baint 0.2 20' 55" N	Other, please describe:		Not applicable		
III. LOCATION OF THE FACILITY f the facility. 2. Latitude 3. Longitude	III. LOCATION OF THE FACILITY Describe the physical location of the facility. 1. Assessor's Parcel Number(s) 2. Latitude Facility: 532-520-06 Discharge Paint NA					
III. LOCATION OF THE FACILITY f the facility. 2. Latitude 3. Longitude	III. LOCATION OF THE FACILITY Describe the physical location of the facility. 1. Assessor's Parcel Number(s) 2. Latitude Facility: 532-520-06 Discharge Beint: 22 40' 45" N Discharge Beint: 22 20' 55" N					
III. LOCATION OF THE FACILITY f the facility. 2. Latitude 3. Longitude	III. LOCATION OF THE FACILITY Describe the physical location of the facility. 1. Assessor's Parcel Number(s) Facility: 532-520-06 Discharge Baint: 22 40' 45" N Discharge Baint: 20 20' 55" N					
f the facility.	Describe the physical location of the facility. 1. Assessor's Parcel Number(s) Facility: 532-520-06 Discharge Beint: 20 20' 55" N Discharge Beint: 117 14' 46" W Discharge Beint: 20 20' 55" N	II	I. LOCATION (OF THE FAC	LITY	
2. Latitude 3. Longitude	1. Assessor's Parcel Number(s) 2. Latitude Facility: 532-520-06 Discharge Beint: 20 20' 55" N Discharge Beint: 20 20' 55" N	Describe the physical location of the	e facility.			
	Facility: 532-520-06 Facility: 32 40' 45" N Facility: 117 14' 46" W Discharge Beint: NA Discharge Beint: 20 20' 55" N Discharge Beint: 117 14' 46" W	1. Assessor's Parcel Number(s)	2. Latitude		3. Longitude	
Facility: 32 40' 45" N Facility: 117 14' 46" W	Discharge Deint: NA Discharge Deint: 00.001 FCT NI Discharge Deint: 447.401 OFT NI	Facility: 532-520-06	Facility:	32 40' 45" N	Facility: 117	14' 46" W
Discharge Point: 32 39' 55" N Discharge Point: 117 19' 25" W	Discharge romt, NA Discharge romt: 32 39 55"N Discharge romt: 117 19 25"W	Discharge Point: NA	Discharge Point	: 32 39' 55" N	Discharge Point: 117	19' 25" W
Facility:32 40' 45" NFacility:117 1Discharge Point:32 39' 55" NDischarge Point:117 1	Discharge rount: NA Discharge rount: 32 39 55 N Discharge Point: 117	II Describe the physical location of the 1. Assessor's Parcel Number(s) Facility: 532-520-06 Discharge Point: NA	I. LOCATION (facility. 2. Latitude Facility: Discharge Point	32 40' 45" N : 32 39' 55" N	LITY 3. Longitude Facility: 117 Discharge Point: 117	' 1 ' 1
		Note:	Listed facility location is o	enter of the Point Lor	na Wastewater Treatment Plan	it (PLWTP) site.
te: Listed facility location is center of the Point Loma Wastewater Treatment Plant (PLWTP) site.	Note: Listed facility location is center of the Point Loma Wastewater Treatment Plant (PLWTP) site.		Listed discharge point is i	ntersection of the "Y"	diffuser of the Point Loma Oc	ean Outfall.
te: Listed facility location is center of the Point Loma Wastewater Treatment Plant (PLWTP) site. Listed discharge point is intersection of the "Y" diffuser of the Point Loma Ocean Outfall.	Note: Listed facility location is center of the Point Loma Wastewater Treatment Plant (PLWTP) site. Listed discharge point is intersection of the "Y" diffuser of the Point Loma Ocean Outfall.		IV. REASON	FOR FILING	r L	
te: Listed facility location is center of the Point Loma Wastewater Treatment Plant (PLWTP) site. Listed discharge point is intersection of the "Y" diffuser of the Point Loma Ocean Outfall. IV. REASON FOR FILING	Note: Listed facility location is center of the Point Loma Wastewater Treatment Plant (PLWTP) site. Listed discharge point is intersection of the "Y" diffuser of the Point Loma Ocean Outfall. IV. REASON FOR FILING					
te: Listed facility location is center of the Point Loma Wastewater Treatment Plant (PLWTP) site. Listed discharge point is intersection of the "Y" diffuser of the Point Loma Ocean Outfall. IV. REASON FOR FILING	Note: Listed facility location is center of the Point Loma Wastewater Treatment Plant (PLWTP) site. Listed discharge point is intersection of the "Y" diffuser of the Point Loma Ocean Outfall. IV. REASON FOR FILING	New Discharge or Facility	Changes	s in Ownership/Oper	ator (see instructions)	
te: Listed facility location is center of the Point Loma Wastewater Treatment Plant (PLWTP) site. Listed discharge point is intersection of the "Y" diffuser of the Point Loma Ocean Outfall. IV. REASON FOR FILING ty Changes in Ownership/Operator (see instructions)	Note: Listed facility location is center of the Point Loma Wastewater Treatment Plant (PLWTP) site. Listed discharge point is intersection of the "Y" diffuser of the Point Loma Ocean Outfall. IV. REASON FOR FILING New Discharge or Facility Changes in Ownership/Operator (see instructions)	Change in Design or Organit		licoharga Daguirama	nte Undete er NDDEC Deme	it Doissuance
	Note: Listed facility location is center of the Point Loma Wastewater Treatment Plant (PLWTP) site. Listed discharge point is intersection of the "Y" diffuser of the Point Loma Ocean Outfall. IV. REASON FOR FILING New Discharge or Facility Changes in Ownership/Operator (see instructions) Changes in Design or Operation Vesto Discharge Requiremente Undate or NUDDES Descrit Reiscurge	Change in Design of Operati	ion waste D	nscharge Requireme	ins opuate of NPDES Perm	n Keissualice

V. CALIFORNIA ENVIRONMENTAL QUALITY ACT (CEQA)

Change in Quantity/Type of Discharge Other:_

Name of Lead Agency: Not applicab	ble - renewal of NPDES permit for existing facility
Has a public agency determined that the propose	d project is exempt from CEQA? Yes No
If Yes, state the basis for the exemption and the r	name of the agency supplying the exemption on the line below.
Basis for Exemption/Agency: Not ap	oplicable - renewal of NPDES permit for existing facility
Has a "Notice of Determination" been filed unde If Yes, enclose a copy of the CEQA document, E expected type of CEQA document and expected of	r CEQA? Yes No Invironmental Impact Report, or Negative Declaration. If no, identify the date of completion.
Expected CEQA Documents:	Not applicable - renewal of NPDES permit for existing facility
EIR Negative Declaration	Expected CEQA Completion Date: Not applicable

Page 3

L State of California Regional Water Quality Control Board APPLICATION/REPORT OF WASTE DISCHARGE GENERAL INFORMATION FORM FOR WASTE DISCHARGE REQUIREMENTS OR NPDES PERMIT

VI. OTHER REQUIRED INFORMATION

Please provide a COMPLETE characterization of your discharge. A complete characterization includes, but is not limited to, design and actual flows, a list of constituents and the discharge concentration of each constituent, a list of other appropriate waste discharge characteristics, a description and schematic drawing of all treatment processes, a description of any Best Management Practices (BMPs) used, and a description of disposal methods.

Also include a site map showing the location of the facility and, if you are submitting this application for an NPDES permit, identify the surface water to which you propose to discharge. Please try to limit your maps to a scale of 1:24,000 (7.5' USGS Quadrangle) or a street map, if more appropriate.

VII. OTHER

Attach additional sheets to explain any responses which need clarification. List attachments with titles and dates below:

See attached multi-volume application for renewal of NPDES permit and renewal of modified 301(h) requirements for BOD and total suspended solids.

You will be notified by a representative of the RWQCB within 30 days of receipt of your application. The notice will state if your application is complete or if there is additional information you must submit to complete your Application/Report of Waste Discharge, pursuant to Division 7, Section 13260 of the California Water Code.

VIII. CERTIFICATION

"I certify under penalty of law that this document, including all attachments and supplemental information, were prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment."

Print Name:	Juan Guerreiro	Title: Interim Director, Public U	Itilities Department
Signature:	h h:	Date: <u>3/(7/2022</u>	

FOR OFFICE USE ONLY

Date Form 200 Received:	Letter to Discharger:	Fee Amount Received:	Check #:

Contributions Disclosure Statement

Renewal of NPDES CA0107409

<u>Contributions Disclosure Statement</u> (per Cal. Gov. Code §84308(d))

Check the appropriate response:

√	I certify that <u>Juan Guerreiro</u> (name of appli has not made contributions a of the current Regional Board months of the date of this ap or local election.	icant) amounting to \$250 or more to any d members within twelve (12) pplication for use in a federal, state,
	I certify that(name of appli has made contributions amore following current Regional B months of the date of this ap or local election.	icant) unting to \$250 or more to the oard members with in twelve (12) oplication for use in a federal, state,
Regional Board Mem Celeste Cantú, Chair Betty Olson, Vice Cha Henry Abarbanel Eric Anderson Henry Abarbanel Megan Blair Gary Strawn Stefanie Warren	<u>ber</u> .ir	Amount of Contribution \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0
Signature	-Afri	
Name	Juan Guerreiro	
Title	Interim Director, Public Utilities Department	
Date	3/17/2022	
Organization	City of San Diego, Public Utili	ities Department
Address	<u>9192 Topaz Way MS 901</u>	
	San Diego, CA 92123	
Phone Number	858-292-6401	

PART 3: ANTIDEGRADATION ANALYSIS

City of San Diego Public Utilities Department

March 2022

Table of Contents

Section Page INTRODUCTION1 1 1.1 NPDES Requirements......1 2 2.2 Compliance with Table 7 Mass Emission Performance Goals...... 14 3

ATTACHMENTS:

ATTACHMENT 1: PLWTP Effluent Data, 2017-2020 Non-Chlorinated Phenolics and	
Ammonia-Nitrogen	A1-1

List of Figures

Figure 1: PLWTP Annual Average Effluent MERs for Phenol, 2010-2020
Figure 2: PLWTP Annual Average Effluent MERs for 4-Methylphenol, 2010-202022
Figure 3: PLWTP Annual Average Effluent MERs for Non-Chlorinated Phenolic Compounds, 2010-2020
Figure 4: PLWTP Annual Average Effluent MERs for Ammonia-Nitrogen, 2010-202024
Figure 5: Per Capita Loads for Non-Chlorinated Phenolic Compounds - PLWTP Influent, 2010-2020
Figure 6: Per Capita Ammonia Loads - PLWTP Influent, 2010-2020
Figure 7: Projected Range of Future PLOO Mass Emissions of Non-Chlorinated Phenolic Compounds
Figure 8: Projected Range of Future PLOO Mass Emissions of Ammonia-Nitrogen

List of Tables

Table 1: Comparison of PLWTP Effluent Quality with Water Quality-Based Performance Goals Table 6 of Order No. R9-2017-0007 - Ocean Plan Objectives for the Protection of Marine Aquatic Life
Table 2: Comparison of PLWTP Effluent Concentrations with Water Quality-Based Performance Goals Table 6 of Order No. R9-2017-0007 Ocean Plan Objectives for the Protection of Public Health – Noncarcinogens
Table 3: Comparison of PLWTP Effluent Concentrations with Water Quality-Based Performance Goals Table 6 of Order No. R9-2017-0007 Ocean Plan Objectives for the Protection of Public Health - Carcinogens
Table 4: Comparison of PLOO Mass Emissions with Performance Goals Established withinTable 7 of Order No. R9-2017-0007
Table 5: Comparison of Estimated PLOO Mass Emissions Computed Using Daily Average and Annual Average Values17
Table 6: Non-Chlorinated Phenol Compliance with Water Quality-Based Performance Goal Concentrations Established in Table 6 of Order No. R9-2017-0007
Table 7: Ammonia-Nitrogen Compliance with Water Quality-Based Performance GoalConcentrations Established in Table 6 of Order No. R9-2017-0007
Table 8: PLWTP Influent and Effluent Concentrations Phenol and 4-Methylphenol, 2010-2020 A
Table 9: PLWTP Influent and Effluent Concentrations Non-Chlorinated Phenolic Compounds and Ammonia-Nitrogen, 2010-2020 ^A
Table 10: Summary of PLWTP Chronic Toxicity Monitoring, 2017–2020 ^A
Table 11: EPA Ambient Saltwater Criteria for Ammonia-Nitrogen (Criteria for Salinity of 30 Grams of Salt per Kilogram of Water)
Table 12: Summary of SIU Sampling for Non-Chlorinated Phenol, 2015-2021
Table 13: Per Capita Contribution of Non-Chlorinated Phenolic Compounds and Ammonia- Nitrogen, 2010-2020
Table 14: PLOO Non-Chlorinated Phenol Compliance with Ocean Plan Daily Maximum Receiving Water Standard
Table 15: PLOO Non-Chlorinated Phenol Compliance with Ocean Plan 6-Month MedianReceiving Water Standard39

List of Tables (continued)

Table 16: Projected Year 2028 Compliance with Tier 1 Receiving Water Level of SignificanceCriteria Non-Chlorinated Phenolic Compounds41
Table 17: PLOO Ammonia-Nitrogen Compliance with Ocean Plan Daily Maximum ReceivingWater Standard
Table 18: PLOO Ammonia-Nitrogen Compliance with Ocean Plan 6-Month Median ReceivingWater Standard
Table 19: Projected Year 2028 Compliance with Tier 1 Receiving Water Level of SignificanceCriteria Ammonia-Nitrogen
Table 20: PLWTP Effluent Concentrations Required to Approach Tier 1 Level of Significance Threshold

Acronyms and Abbreviations

°C	degrees Celsius
APU	Administrative Procedures Update
BMP	Best Management Practice
CFR	Code of Federal Regulations
City	City of San Diego
DNQ	detected not quantifiable
EPA	United States Environmental Protection Agency
IWCP	Industrial Wastewater Control Program
g	grams
gpcd	gallons per capita per day
MDL	method detection limit
MER	mass emission rate
Metro System	San Diego Metropolitan Sewerage System
mg	milligram
mg/L	milligrams per liter
mgd	million gallons per day
mt	metric tons
mt/yr	metric tons per year
NA	not available or not applicable
ND	not detected
NPDES	National Pollutant Discharge Elimination System
Ocean Plan	Water Quality Control Plan Ocean Waters of California
PAHs	polynuclear aromatic hydrocarbons
PCBs	polychlorinated biphenyls
PLOO	Point Loma Ocean Outfall
PLWTP	Point Loma Wastewater Treatment Plant
Pure Water	Pure Water San Diego Program
RWQCB	California Regional Water Quality Control Board, San Diego Region

SANDAG	San Diego Association of Governments
SIU	significant industrial user
SWRCB	California State Water Resources Control Board
TCDD	Tetrachlorodibenzo-p-dioxin
TOMPs	toxic organic management plans
TST	Test of Significant Toxicity
ТТО	total toxic organics
TUc	chronic toxicity units
UAPP	Urban Area Pretreatment Program
µg/L	micrograms per liter
WQBEL	water quality-based effluent limitation
ZID	zone of initial dilution

1 INTRODUCTION

1.1 NPDES Requirements

Overview

The City of San Diego (City), as operator of the Metropolitan Sewerage System, discharges treated wastewater from the E.W. Blom Point Loma Wastewater Treatment Plant (PLWTP) to the Pacific Ocean through the Point Loma Ocean Outfall (PLOO). The PLOO discharge is regulated by requirements established in Order No. R9-2017-0007, National Pollutant Discharge Elimination System (NPDES) Permit No. CA0107409. Order No. R9-2017-0007 was jointly issued by the California Regional Water Quality Control Board, San Diego Region (RWQCB) and the United States Environmental Protection Agency (EPA).¹

Water Quality-Based NPDES Performance Goals

Table 6 of Order No. R9–2017–0007 establishes water quality–based concentration and mass emission performance goals for toxic pollutant loads discharged to the ocean via the PLOO. The performance goals are established for parameters that do not have a reasonable potential to cause or contribute to an exceedance of water quality objectives, or parameters for which the reasonable potential to exceed a water quality objective cannot be determined.² The performance goals established in Table 6 of Order No. R9–2017–0007 serve to ensure that existing treatment levels and effluent quality are sufficient to support state and federal antidegradation policies. Additionally, the performance goals provide information regarding the expected levels of pollutants that should not be exceeded in order to implement receiving water standards established within Table 3 of the *Water Quality Control Plan Ocean Waters of California* (Ocean Plan).^{3,4}

The performance goals established in Table 6 of Order No. R9-2017-0007 are not water quality-based effluent limitations (WQBELs) and are not enforceable as such.⁵ Since the Table 6 performance goals are based on Ocean Plan receiving water quality objectives, exceedance of performance goals established within Table 6 of Order No. R9-207-0007 may indicate the potential for exceedance of Ocean Plan water quality-based receiving water standard.^{6,7}

¹ Order No. R9-2017-0007 (NPDES CA0107409) was jointly issued by EPA and the RWQCB, and serves as (1) a federal National Pollutant 1 Discharge Elimination System (NPDES) permit issued by EPA pursuant to the Clean Water Act and (2) State of California Waste Discharge Requirements issued by the RWQCB pursuant to Article 4, Chapter 4, Division 7 of the California Water Code. Although the PLOO discharge point is beyond the 3-nautical-mile limit of marine waters regulated by the State of California, the potential for effluent plume migration into state-regulated waters warrants joint regulation of the discharge by EPA and the RWQCB. The RWQCB adopted Order No. R9-2017-0007 on April 12, 2017. The EPA Final Decision approving Order No. R9-2017-0007 was issued on August 4, 2017. Order No. R9-2017-0007 became effective on October 1, 2017.

² See Section IV.A.2 (page 8) or Order No. R9-2017-0007.

³ See Section IV.C.4.g (page F-30) of Attachment F to Order No. R9-2017-0007.

⁴ The current version of the Ocean Plan was adopted by the State Water Resources Control Board (SWRCB) on August 7, 2018 and became effective on February 4, 2019.

⁵ See Section IV.A.2 (page 8) of Order No. R9-2017-0007.

⁶ Excluding exceedances caused by laboratory error, sample contamination, or sample collection error.

⁷ Reopener Provision VI.C.1.a of Order No. R9-2017-0007 provides that the Order may be reopened for modification
Antidegradation-Based NPDES Performance Goals

Table 7 of Order No. R9-2017-0007 establishes EPA Toxics Emission Performance Goals for toxic and carcinogenic parameters that apply to the undiluted PLWTP effluent. Performance goals established within Table 7 of Order No. R9-2017-0007:

- Address uncertainty due to potential increases in toxic pollutant loadings during the NPDES permit term.
- Establish a framework for evaluating the need for antidegradation analysis to determine compliance with water quality standards at the time of permit issuance.⁸

It should be noted that PLWTP mass emissions may exceed a performance goal benchmark within Table 7 of Order No. R9-2017-0007, yet remain significantly below water quality-based effluent standards or the Table 6 performance goals established within Order No. R9-2017-0007 to protect aquatic life or human health.

Mass emission performance goals within Table 7 of Order No. R9–2017–0007 have been carried over from mass emission performance goals originally established for the PLOO discharge within Order No. 95–106 (NPDES CA0107409) which was jointly issued by EPA and the RWQCB in 1995.^{9,10} Toxic mass emission performance goals were established within Order No. 95–06 based on 95th percentile performance data from the PLWTP from January 1990 through April 1995. These mass emission goals reflect benchmark mass emissions that occurred during the period 1990–1995, prior to issuance of the original PLWTP 301(h) modified NPDES permit. Exceedance of any of the toxic mass emissions goals established within Table 7 thus indicates that PLOO mass emissions to the ocean have increased compared to the early 1990s. Consistent with state and federal antidegradation policies, the Table 7 benchmarks are intended to serve as triggers for assessing conformance with antidegradation regulations during each renewal cycle of the PLOO NPDES permit.¹¹

Historical PLOO Compliance with Performance Goals

The PLOO discharge has complied with all water quality-based NPDES mass emission performance goals since the original PLWTP 301(h) modified NPDES permit was issued in 1995. Additionally, since 1995 the PLOO discharge has complied with all antidegradation-based mass emission performance goals except for non-chlorinated phenolic compounds and

to include an effluent limitation if monitoring demonstrates that a discharge causes or has reasonable potential to cause an exceedance of performance goals established within Table 6 of Order No. R9-2017-0007.

⁸ See Section IV.D.3 (page F-41) of Attachment F to Order No. R9-2017-0007.

⁹ Order No. 95-06 was jointly issued by the RWQCB and EPA in 1995 and represented the initial PLWTP NPDES permit that contained modified secondary treatment standards (pursuant to Section 301(h) of the Clean Water Act) for total suspended solids and biochemical oxygen demand.

¹⁰ Toxics mass emission benchmark performance goals from Order No. 95-06 were carried over to subsequent PLOO NPDES permits, including Order Nos. R9-2002-0025, R9-2009-0001 and R9-2017-0007. An exception to this is that mass emission performance goals for copper and selenium were recalculated within Order No. R9-2002-0025 (which replaced Order No. 95-06) using 95th percentile data from calendar year 1994.

¹¹ See page 43 "Toxics Mass Emission Benchmarks and Antidegradation" within the EPA Final Decision Document (EPA, 2017).

ammonia-nitrogen. This is due to the fact that PLOO mass emissions for virtually all regulated toxic compounds (except non-chlorinated phenol and ammonia) have been reduced compared to 1990-1995 levels.

Post-1995 PLOO mass emissions for non-chlorinated phenols have consistently been above the 1990-1995 levels on which the antidegradation-based mass emission performance goals are based.¹² Historically, two non-chlorinated phenolic compounds have been consistently present in the PLWTP influent and effluent: phenol and 4-methylphenol. All other nonchlorinated phenolic compounds¹³ are almost never present in the PLWTP influent or effluent, and when detected are at concentrations near the detection limit.

To address this post-1995 increase in mass emissions of non-chlorinated phenolic compounds, in reissuing NPDES CA0107409 in 2009, Provision VI.C.2.e of Order No. R9-2009-0001 established the following requirement:

VI.C.2.e. Antidegradation Analysis

USEPA and the San Diego Water Board have concluded that a full antidegradation analysis justifying that the continued increase in effluent loading of phenolic compounds (non-chlorinated) to a Tier 2 waterbody may be necessary. For phenolic compounds (non-chlorinated), the Discharger shall conduct a thorough analysis of the projected effluent load above the mass emission benchmark level, the resulting impact to receiving water quality of the total effluent load, and opportunities for effluent load reduction through additional treatment or controls (including local limits) and pollution prevention. If this analysis shows that the total effluent load for phenolic compounds (non-chlorinated) produces either (1) a receiving water concentration at the boundary of the zone of initial dilution (ZID) that is less than ten percent above the ambient (farfield) concentration, or (2) the receiving water concentration at the boundary of the ZID is less than 50% of the Ocean Plan water quality objectives for phenolic compounds (non-chlorinated), then the resulting impact to water quality is not considered "significant" and further analysis is not required at this time. However, if the change in receiving water quality is found to be "significant" upon review by USEPA and the San Diego Water Board, then the Discharger must conduct a socioeconomic analysis considering the full benefits and costs of the increased effluent loading of phenolic compounds (non-chlorinated), including environmental impacts. Specifically, this analysis must assess whether allowing these increased loadings is necessary to accommodate important social and economic development in the San Diego service area.

These two evaluations (i.e., the analysis [to] determine "significance" and the socioeconomic analysis) shall be conducted by the Discharger in coordination with USEPA and the San Diego Water Board. Within 90 days of the permit effective date, the Discharger shall submit study plans for these two analyses – and implementation schedules to USEPA and San Diego Water Board for review and approval. These plans and schedules shall be modified and implemented as directed by USEPA and the San Diego Water

¹² The benchmark for non-chlorinated phenolics established in Table 7 of Order No. R9-2017-0007 was computed using 1990-1995 PLWTP data for phenol, but excluding data from 4-methylphenol. As a result, the benchmark (computed only on the basis of phenol) significantly underestimates actual PLOO mass emissions of nonchlorinated phenolic compounds during 1990-1995.

¹³ Other non-chlorinated phenolic compounds include 2,4-dimethylphenol, 4,6-dinitro-2-methylphenol, 2,4dinitrophenol, 2-nitrophenol, 4-nitrophenol, and 2-methylphenol. These compounds are rarely detected in the PLWTP influent or effluent.

Board. A final report analyzing "significance" is due within 1 year of the permit effective date. A final Tier 2 antidegradation analysis report, including a socioeconomic analysis considering the full benefits and costs of the increased effluent loading of phenolic compounds (non-chlorinated) and environmental impacts, is due within 6 months of a determination by USEPA that the increased loadings are significant.¹⁴

2011 Level of Significance Study

In response to this requirement, the City in 2011 submitted the required "level of significance" evaluation entitled: *Point Loma Wastewater Treatment Plant, Non-Chlorinated Phenol Antidegradation Special Study, Evaluation of Significance* (2011 Significance Study). The 2011 Significance Study evaluated PLWTP data for the period 2002–2010 using the second of the significance assessment methods (e.g., demonstrating that receiving water concentrations upon completion of initial dilution were less than 50% of the Ocean Plan receiving water standards for non-chlorinated phenolic compounds). The 2011 Significance Study concluded that:

- A trend of increased PLOO mass emissions of non-chlorinated phenolic compounds has occurred during the past several decades.
- The PLWTP achieved 100% compliance with NPDES water quality-based effluent concentration limits and performance goals for non-chlorinated phenolic compounds during 2002–2010, and the highest observed values were less than one-half of one percent of the NPDES permit requirement or goal.
- The PLWTP effluent achieved 100% compliance with acute and chronic toxicity limits during 2002–2010, and no phenol-related effects were observed on acute or chronic toxicity. Further, bioassay analyses of PLWTP effluent during 2002–2010 did not indicate any increasing trends.
- Commercial/domestic sources were significant contributors to the PLWTP loads of non-chlorinated phenolic compounds, and Metro System phenol loads appeared to be related to population.
- Industrial contributions of phenolic compounds were limited by existing categorical pretreatment limits for surrogate parameters and air quality rules which have resulted in a phase-out of volatile phenol-based solvents and cleaners.
- The City will need to continue to monitor future mass emission trends in nonchlorinated phenolic compounds and evaluate the need for a local limit for phenolic compounds.
- During 2002-2010, the PLOO discharge complied with Ocean Plan receiving water standards for non-chlorinated phenolic compounds by a wide margin. Receiving water concentrations after initial dilution were less than one-quarter of one percent of the allowable Ocean Plan receiving water limits for non-chlorinated phenolic compounds.

¹⁴ See pages 34-35 of Order No. R9-2009-0001. Order No. R9-2009-0001 (NPDES CA0107409) was the PLOO NPDES permit in effect prior to Order No. R9-2017-0007.

• The PLOO discharge was within the test limits for significance established within Provision VI.C.2.e of Order No. R9-2009-0001 by more than two orders of magnitude. As a result, the discharge of non-chlorinated phenolic compounds from the PLOO did not result in significant adverse water quality effects.

On the basis of these conclusions, the 2011 Significance Assessment determined that the PLOO discharge resulted in water quality effects that were "not significant", as defined within Provision VI.C.2.e of Order No. R9-2009-0001. Accordingly, on the basis of the 2002-2010 data, the 2011 Significance Assessment concluded that the PLOO discharge complied with EPA Tier 1 antidegradation regulations, and that no Tier 2 socioeconomic antidegradation analysis was required.

EPA in the August 4, 2017 Final Decision Document (EPA, 2017) concurred with these conclusions, stating:

Even if future Point Loma WWTP nonchlorinated phenol concentrations were to increase by fifty percent above current values to 30 µg/l, the PLOO discharge would maintain compliance with this Tier 1 fifty percent threshold requirement by two orders of magnitude. This is consistent with Provision VI.C.2.e of Order No. R9-2009-0001 that establishes a level of significance test where water quality impacts are deemed "not significant" if projected receiving water quality beyond the zone of initial dilution is less than 50 percent of the California Ocean Plan receiving water standard. As described immediately above the applicant's antidegradation analysis demonstrated in Chapter 3, the existing PLOO discharge complies with this "significance" test by two orders of magnitude (102) or more for non-chlorinated phenolic compounds. In addition to complying with California Ocean Plan receiving water standards, the PLOO discharge ensures compliance with federal water quality criteria for the protection of human health (consumption of organisms).¹⁵

1.2 Antidegradation Overview

Federal Antidegradation Regulations

Discharge Specifications and Provisions are established in Order No. R9-2017-0007 to implement federal antidegradation regulations, as established within Title 40, Section 131.12 of the *Code of Federal Regulations* (40 CFR 131.2). The federal antidegradation regulations require states to adopt policies and implementation practices consistent with the following Tier 1 and Tier 2 antidegradation requirements:

- 1) Existing instream water uses [includes marine and ocean waters] and the level of water quality necessary to protect the existing uses shall be maintained and protected. (Tier 1 requirement)
- 2) Where the quality of the waters exceed [are better than] levels necessary to support propagation of fish, shellfish, and wildlife and recreation in and on the water, that quality shall be maintained and protected unless the State finds, after full satisfaction of the intergovernmental coordination and public participation provisions of the State's continuing planning process, that allowing lower water quality is necessary to accommodate important economic or social development in the area in which the waters are located. In allowing such degradation or lower

¹⁵ See page 45 of the EPA Final Decision Document (EPA, 2017).

water quality, the State shall assure water quality adequate to protect existing uses fully. Further, the State shall assure that there shall be achieved the highest statutory and regulatory requirements for all new and existing point sources and all cost-effective and reasonable best management practices for nonpoint source control. (Tier 2 requirement)

State Antidegradation Policy

On October 28, 1968, the California State Water Resources Control Board (SWRCB) adopted Resolution No. 68–16, *Statement of Policy with Respect to Maintaining High Quality of Waters in California*. Resolution No. 68–16 established the following policy (non-degradation policy) that requires maintenance of high-quality waters:

Whenever the existing quality of water is better than the quality established in policies as of the date on which such policies become effective, such existing high quality will be maintained until it has been demonstrated to the State that any change will be consistent with maximum benefit to the people of the State, will not unreasonably affect present and anticipated beneficial uses of such water and will not result in water quality less than that prescribed in the policies.

The State of California antidegradation policy (which preceded the 1972 Clean Water Act) applies to inland surface waters and groundwaters as well as state-regulated ocean waters. The State of California antidegradation policy requires that the existing water quality be maintained unless it is demonstrated that the benefits associated with the proposed water quality degradation outweigh the detriments associated with the degradation.

The SWRCB has interpreted Resolution No. 68–16 as incorporating federal antidegradation regulations. Administrative procedures for antidegradation analysis were issued by the SWRCB in 1990 in "Administrative Procedures Update, Antidegradation Policy Implementing for NPDES Permitting" (Administrative Procedures Update (APU) 90–004, July 2, 1990). This SWRCB guidance allows the RWQCBs to make a determination of Tier 1 antidegradation compliance (e.g., no significant water quality impacts and beneficial uses will be fully supported) if:

- 1. A RWQCB determines that the reduction in water quality will be spatially localized or limited with respect to the waterbody; e.g., confined to the mixing zone; or
- 2. A RWQCB determines the reduction in water quality is temporally limited and will not result in any long-term deleterious effects on water quality; e.g., will cease after a storm event, or
- 3. A RWQCB determines that proposed action will produce minor effects which will not result in a significant reduction in water quality; e.g., a POTW has a minor increase in the volume of discharge subject to secondary treatment.¹⁶

The SWRCB administrative procedures require a complete socioeconomic antidegradation analysis (Tier 2) if the Tier 1 analysis demonstrates water quality necessary to support beneficial uses is not maintained.

¹⁶ See Items 1, 2, and 3 on page 2 of SWRCB (1990).

1.3 Purpose of Report

Order No. R9-2017-0007 became effective on October 1, 2017. To address antidegradation issues associated with performance goals established within Order No. R9-2017-0007, this report compares PLWTP mass emissions during 2017-2020 with EPA mass emission performance goals established within Table 7 of Order No. R9-2017-0007 and identifies constituents which exceed the performance goals. For constituents which exceed the Table 7 performance goals, a Tier 1 assessment of the level of significance of water quality impacts is performed to determine if a Tier 2 analysis is required.

To this end, this report evaluates and identifies parameters that exceed (or threaten to exceed) the water quality-based performance goals established within Table 6 of Order No. R9-2017-0007 or the mass emission performance goals established in Table 7 of Order No. R9-2017-0007. For parameters that exceed or threaten to exceed the performance goals, this report:

- Evaluates trends in mass emissions and treatment removal.
- Reviews potential sources of constituents within the PLWTP influent.
- Assesses conformance with applicable water quality standards, objectives and criteria.
- Assesses the compliance of the parameters with a level of significance¹⁷ test where water quality impacts are deemed to be "not significant" if the projected receiving water quality beyond the ZID is less than 50% of the corresponding Ocean Plan water quality objective.
- Presents conclusions regarding compliance with Tier 1 federal antidegradation regulations and the State of California antidegradation policy.

¹⁷ Provision VI.C.2.3 of the prior PLOO NPDES permit (Order No. R9-2009-0001, NPDES CA0107409) established a "level of significance" test where water quality impacts are deemed to be "not significant" if the projected receiving water quality beyond the ZID is less than 50% of the corresponding Ocean Plan water quality objective.

2 NPDES PERMIT PERFORMANCE GOALS

2.1 Compliance with Table 6 Performance Goals

As noted in Chapter 1, Table 6 of Order No. R9-2017-0007 establishes concentration and mass emission performance goals that are based on ensuring compliance with receiving water quality objectives that are established in the Ocean Plan. Performance goals are established within Order No. R9-2017-0007 to implement Ocean Plan standards for the protection of:

- Marine aquatic life
- Human health (non-carcinogens)
- Human health (carcinogens)

Data Period Evaluated

Year 2020 represents the most current complete year for which data are available at the time of preparation of this report. As a result, this analysis is based on data from the period 2017-2020 for assessing compliance with the concentration and mass emission performance goals in Table 6 of Order No. R9-2017-0007.¹⁸

Performance Goals for the Protection of Marine Aquatic Life

Table 1 compares maximum reported PLWTP effluent concentrations during 2017–2020 with concentration performance goals for the protection of marine aquatic life that are established within Table 6 of Order No. R9–2017–0007. As shown in Table 1, the maximum observed PLWTP effluent concentrations during 2017–2020 were less than the corresponding Table 6 performance goal concentrations for the protection of marine aquatic life by a comfortable margin.

Since a number of the maximum observed PLWTP effluent concentrations were outlier values (values which occurred only once and at concentrations significantly above normal values), the PLWTP effluent typically complied with the Table 6 performance goals by a number of orders of magnitude. Copper and ammonia were the only two parameters where maximum daily PLWTP effluent concentrations were within an order of magnitude (factor of ten) of the 6-month median performance goal for the protection of marine aquatic life, but PLWTP copper and ammonia concentrations achieved compliance with the 6-month median water quality-based performance goals by more than a factor of two in 100% of the samples collected during 2017-2020.

¹⁸ Order No. R9-2017-0007 (NPDES CA0107409) became effective on August 1, 2017. For purposes of assessing compliance, data for calendar years 2017-2020 are used herein. Year 2020 represents the most complete calendar year of data that were available at the time of preparation of this report. This 2017-2020 data base includes 9 months of data collected in 2017 under the prior NPDES permit (Order No. R9-2009-0001) and 39 months of data collected under Order No. R9-2017-0007.

Table 1:

Comparison of PLWTP Effluent Quality with Water Quality-Based Performance Goals Table 6 of Order No. R9-2017-0007 - Ocean Plan Objectives for the Protection of Marine Aquatic Life

	Concentration (µg/L) 2017-2020					
Table 6 Parameter Ocean Plan Objectives for the Protection of Human Health: Noncarcinogens	Highest Reported Daily Average PLWTP Effluent Concentration ^A	Highest Reported MDL Achieved ^B	6-Month Median Performance Goal ^c	Daily Maximum Performance Goal ^c		
Arsenic	2.14	3.21	1,000	5,900		
Cadmium	5.05 ^D	0.484	210	820		
Chromium VI ^E	5.88 ^{E,F}	7.17 ^E	410 ^E	1,600 ^E		
Copper	30.6	9.37	210	2,100		
Lead	13.6	5.93	410	1,600		
Mercury	0.1 ^G	0.008	8.1	33		
Nickel	7.01	3.35	1,000	4,100		
Selenium	2.41	5.78	3,100	12,000		
Silver	6.12 ^H	1.57	190	540		
Zinc	54.6	10.4	2,500	15,000		
Cyanide	4	5	210	820		
Ammonia (as nitrogen)	48,100	300	120,000	490,000		
Non-Chlorinated Phenolic Compounds ^{I,J}	141 ^{I,J}	150 ^к	6,200	25,000		
Chlorinated Phenolics	ND ^L	32 ^K	210	820		
Endosulfan	ND ^L	0.88 ^M	1.8	3.7		
Endrin	ND ^L	0.2 ^M	0.41	0.82		
Hexachlorocyclohexane (HCH)	0.103	0.4 ^M	0.82	1.6		

Table 1 Notes:

A. Highest daily average PLWTP effluent concentration value reported during the 4-year period 2017-2020. Includes portion of 2017 where the PLWTP was regulated under Order No. R9-2009-0001. Daily average concentrations represent the arithmetic mean concentration of all samples for a given constituent that were collected on a given date.

Maximum reported method detection limits (MDLs) achieved during analysis for the listed constituent during 2017-2020. B.

Ocean Plan-based performance goal (concentration in micrograms per liter ($\mu g/L$)) established within Table 6 of Order No. R9-2017-0007 for the protection of marine aquatic life.

Outlier value that occurred on March 28, 2018. Daily average cadmium concentrations on all other days during 2017-2020 were <0.4 D. μg/L.

E. Table 6 of Order No. R9-2017-0007 establishes an annual mass emission performance goal for chromium VI (hexavalent chromium). Since chromium VI is a subset of total chromium, Order No. R9-2017-0007 conservatively allows compliance with the chromium VI performance goal to be determined on the basis of data for total chromium.

- F. The highest daily average recorded PLWTP effluent concentration for total chromium during 2017-2020 was 5.88 µg/L, which occurred on September 17, 2018. Daily average total chromium concentrations on all other days during were <2.15 µg/L.
- G. Outlier value occurred on June 26, 2017. Daily average mercury concentrations on all other sample dates were <0.034 μ g/L.
- H. Outlier value occurred on May 24, 2017. Daily average silver concentrations on all other sample dates were <0.109 µg/L.
- Two non-chlorinated phenolic compounds are consistently detected in the PLWTP influent and effluent: 4-methylphenol and phenol. Other non-chlorinated phenolic compounds (i.e., 2,4-dimethylphenol, 2,4-dinitrophenol, 4,6-dinitro-2-methylphenol, 2 methylphenol, 2-nitrophenol and 4-nitrophenol) are rarely detected in the PLWTP influent or effluent.
- During the effective period of Order No. R9-2009-0001 (and prior PLOO NPDES permits), PLWTP influent and effluent monitoring was not required for 4-methylphenol. Accordingly, prior to August 1, 2017 (the effective date of Order No. R9-2017-0007), PLWTP I. concentrations and mass emissions for non-chlorinated phenolic compounds were reported as the sum of 2,4-dimethylphenol, 2,4 dinitrophenol, 4-methyl-4,6-dinitrophenol, 2-nitrophenol, 4-nitrophenol and phenol. Order No. R9-2017-0007 required PLWTP influent and effluent monitoring for 4-methylphenol (a compound not regulated within the Ocean Plan), and defined non-chlorinated phenolics as including 4-methylphenol ("non-chlorinated phenolics" are not specifically defined within the Ocean Plan). As a result, during the effective period of Order No. R9-2017-0007, PLWTP influent and effluent non-chlorinated phenolic compounds have been computed to include detected concentrations of 4-methylphenol. Concentrations of non-chlorinated phenolic compounds reported after August 1, 2017 are thus not comparable to values reported prior to that date.
- K. Listed maximum MDLs during 2017-2020 for chlorinated and non-chlorinated phenolic compounds occurred in November 2019 and were atypical. Typical MDLs for non-chlorinated phenols during 2017-2020 were <3 μg/L. Typical MDLs for chlorinated phenols were <2 µg/L.
- L. Note: ND indicates that the constituent was not detected during 2017-2020 at the listed range of MDLs.
 M. Listed maximum MDLs for endosulfan, endrin and HCH during 2017-2020 were atypical and occurred in October 2017. MDLs for these compounds during 2017-2020 were typically two orders of magnitude less.

PLWTP copper concentrations during 2017–2020 averaged 12.7 μ g/L during 2017–2020, which is below the 6-month median performance goal by more than a factor of 15. PLWTP ammonia concentrations during 2017–2020 averaged 41.7 milligrams per liter (mg/L) (41,700 μ g/L) which is approximately a factor of three below the corresponding Table 6 performance goal for the protection of marine aquatic life.

Table 6 performance goals also include mass emission limits which are based on a 205 mgd PLWTP effluent flow. PLWTP effluent flows averaged 141.6 mgd during 2017–2020, and flows were in excess of 160 mgd less than 10% of the time during 2017–2020.^{19,20} It is evident that the PLOO discharge complied with the Table 6 mass emission performance goals for the protection of marine aquatic habitat by a considerable margin, as:

- Maximum PLWTP effluent concentration values were significantly below the Table 6 performance daily maximum and 6-month median goals for the protection of marine aquatic life (see Table 1).
- Typical PLWTP effluent concentration values were below (and for some constituents significantly below) the maximum values observed during 2017–2020.
- PLWTP flows were consistently less than the 205 mgd flows used to establish the Table 6 EPA mass emission performance goals.

Performance Goals for the Protection of Human Health

Table 2 compares maximum recorded PLWTP effluent concentrations during 2017–2020 with water quality-based performance goals for the protection of human health for non-carcinogens that are established within Table 6 of Order No. R9–2017–0007. As shown in Table 2, none of the maximum recorded PLWTP effluent concentrations during 2017–2020 were remotely close to the Table 6 performance goals for the protection of human health for non-carcinogens.

Table 3 compares maximum reported PLWTP effluent concentrations during 2017–2020 with performance goals established in Table 6 of Order No. R9–2017–0007 for the protection of human health for carcinogens. As shown in Table 3, only a small percentage of the carcinogenic compounds addressed within Table 6 of Order No. R9–2017–0007 were detected in the PLWTP effluent during 2017–2020. Concentrations of all detected toxic inorganic and organic compounds in the PLWTP effluent during 2017–2020 were significantly below (by a number of orders of magnitude) the corresponding Ocean Plan-based performance goals established within Table 6 of Order No. R9–02017–0007. All in all, the PLOO discharge complies with the water quality-based performance goals established in Table 6 of Order No. R9–2017–0007 by a significant margin.

¹⁹ PLWTP 90th percentile daily flows during 2017–2020 were 159.4 mgd.

²⁰ For comparison, the 2021 PLOO discharge flow averaged 139.7 mgd. Thus, average PLOO discharge flows during 2017-2021 were 141.2 mgd. As noted, data for 2017-2020 are used throughout this 301(h) application, since a complete set of calendar year 2021 data were not available at the time of preparation of this application.

Table 2:

Comparison of PLWTP Effluent Concentrations with Water Quality-Based Performance Goals Table 6 of Order No. R9-2017-0007 Ocean Plan Objectives for the Protection of Public Health - Noncarcinogens

Table 6 Darameter	Concentration (µg/L) 2017-2020				
Ocean Plan Objectives for the Protection of Human Health: Noncarcinogens	Highest Reported Daily Average PLWTP Effluent Concentration ^A	Highest Reported MDL Achieved ^B	Monthly Average Performance Goal ^c		
Acrolein	ND ^D	1.24	45,000		
Antimony	2.76	2.44	250,000		
Bis (2–chloroethoxy) methane	ND ^D	1.13	900		
Bis (2-chloroisopropyl) ether	ND ^D	1.3	45,000		
Chlorobenzene	ND ^D	0.46	120,000		
Chromium ^E	5.88 ^E	0.332 ^E	3.9 E+07 ^F		
Di-n-butyl phthalate	ND ^D	4.43	720,000		
Dichlorobenzenes	ND ^D	0.47	1.0 E+06		
Diethyl phthalate	47.4 ^F	3.42	6.8 E+06		
Dimethyl phthalate	ND ^D	1.61	1.7 E+08		
4,6-dinitro-2-methylphenol	ND ^D	14 ^G	45,000		
2,4-dinitrophenol	3.0 ^H	19 ^G	820		
Ethylbenzene	0.878 DNQ ¹	0.43	840,000		
Fluoranthene	ND ^D	1.49	3,100		
Hexachlorocyclopentadiene	ND ^D	1.4	12,000		
Nitrobenzene	ND ^D	1.79	1,000		
Thallium	ND ^D	3.37	410		
Toluene	18	0.45	1.7 E+07		
Tributyltin	ND ^D	0.0143	0.29		
1,1,1-trichloroethane	ND ^D	0.4	1.1 E+08		

Table 2 Notes:

A. Highest (maximum) daily average PLWTP effluent concentration value reported during the 4-year period 2017-2020. Includes portion of 2017 where the PLWTP was regulated under Order No. R9-2009-0001. Daily average concentrations represent the arithmetic mean concentration of all samples for a given constituent that were collected on a given date.

B. Maximum reported Method Detection Limits (MDLs) achieved during analysis for the listed constituent during 2017-2020. See Attachment 1 for a summary of monthly PLWTP influent and effluent data for 2017-2020.

C. Ocean Plan-based performance goal (concentration in µg/L) established within Table 6 of Order No. R9-2017-0007 for the protection of human health – noncarcinogens.

D. ND indicates that the constituent was not detected during 2017-2020 at the listed range of MDLs.

E. Table 6 of Order No. R9-2017-0007 establishes an annual mass emission performance goal for chromium III (trivalent chromium). Since chromium III is a subset of total chromium, Order No. R9-2017-0007 conservatively allows compliance with the chromium III performance goal to be determined on the basis of data for total chromium.

F. Outlier Value that occurred on November 6, 2018. All but two diethyl phthalate samples during 2017–2020 were less than 7 µg/L.

G. Listed maximum MDL during 2017-2020 was atypical and is from PLWTP monitoring reports for November 2019. Higher maximum MDLs that were listed in the 2019 annual report appear to be in error. Typical MDLs for 4,6-dinitro-2-methylphenol during 2017-2020 were at or less than 2 µg/L. Typical MDLs for 2,4-dinitrophenol during 2017-2020 were at or less than 1 µg/L.

H. Outlier value that occurred on June 8, 2017. All other 2,4-dinitrophenol results during 2017-2020 were nondetected.

I. Value was detected not quantifiable (DNQ). Concentration was below the reporting limit but above the MDL.

Table 3:

Comparison of PLWTP Effluent Concentrations with Water Quality-Based Performance Goals Table 6 of Order No. R9-2017-0007 Ocean Plan Objectives for the Protection of Public Health - Carcinogens

	Concentration (µg/L) 2017-2020					
Table 6 Parameter Ocean Plan Objectives for the Protection of Human Health: Carcinogens	Highest Reported Daily Average PLWTP Effluent Concentration ^A	Highest Reported MDL Achieved ^B	Monthly Average Performance Goal ^c			
Acrylonitrile	ND ^D	0.66	21			
Benzene	0.52 DNQ ^E	0.47	1200			
Benzidene	ND ^D	11 ^F	0.014			
Beryllium	0.085 ^G	0.4	6.8			
Bis (2-chloroethyl) ether	ND ^D	1.55 ^F	9.2			
Bis (2-ethylhexyl) phthalate	9.95 ^H	10	720			
Carbon tetrachloride	ND ^D	0.4	180			
Chlordane	ND ^D	0.9 ^{I,J}	0.0047			
Chlorodibromomethane (dibromochloromethane)	1.2	1.55	1800			
Chloroform	7.2	0.446	27,000			
DDT	ND ^D	0.1 ^I	0.035			
1,4-dichlorobenzene	ND ^D	0.46	3700			
3,3'-dichlorobenzidene	ND ^D	3.27	1.7			
1.2-dichloroethane	ND ^D	0.652	5700			
1,1-dichloroethylene	ND ^D	0.39	180			
Dichlorobromomethane (bromodichloromethane)	1.6	0.445	1300			
Dichloromethane (methylene chloride)	5.69	0.563	92,000			
1,3-dichloropropene	ND ^D	0.526	1800			
Dieldrin	ND ^D	0.2 ^I	0.0082			
2,4-dinitrotoluene	ND D	1.52	0.053			
1,2-diphenylhydrazine	ND ^D	1.53	3300			
Halomethanes ^K	16.2	1.02	27,000			
Heptachlor	ND ^D	0.2 ^{I,J}	0.01			
Heptachlor epoxide	ND ^D	0.2 ^{I,J}	0.0041			
Hexachlorobenzene	ND ^D	1.66 ^F	0.043			
Hexachlorobutadiene	ND ^D	1.84 ^F	2900			
Hexachloroethane	ND ^D	1.48 ^F	510			
Isophorone	ND ^D	1.71 ^F	150,000			
N-nitrosodimethylamine	ND ^D	1.42	1500			
N-nitrosodi-N-propylamine	ND ^D	1.3	78			
N-nitrosodiphenylamine	ND ^D	3.9	510			
Polynuclear aromatic hydrocarbons (PAHs) ^L	ND ^D	5.5 ^F	1.8			

	Concentration (µg/L) 2017-2020				
Table 6 Parameter Ocean Plan Objectives for the Protection of Human Health: Carcinogens	Highest Reported Daily Average PLWTP Effluent Concentration ^A	Highest Reported MDL Achieved ^B	Monthly Average Performance Goal ^c		
Polychlorinated biphenyls (PCBs)	ND ^D	2.5 ^I	0.0039		
Tetrachlorodibenzo-p-dioxin (TCDD) equivalents	ND ^D	1.12 E-6 ^M	8.0 E-7		
1,1,2,2-tetrachloroethane	ND ^D	0.39	470		
Tetrachloroethylene	0.6 DNQ ^E	0.5	410		
Toxaphene	ND ^D	10 ^{I,J}	0.043		
Trichloroethylene	ND ^D	0.43	5500		
1,1,2-trichloroethane	ND ^D	0.363	1900		
2,4,6-trichlorophenol	2.2 DNQ ^E	2.2 ^F	59		
Vinyl chloride	ND ^D	0.948	7400		

Table 3 Notes:

A. Highest (maximum) daily average PLWTP effluent concentration value reported during the 4-year period 2017-2020. Includes portion of 2017 where the PLWTP was regulated under Order No. R9-2009-0001. Daily average concentrations represent the arithmetic mean concentration of all samples for a given constituent that were collected on a given date.

B. Maximum reported Method Detection Limits (MDLs) achieved during analysis for the listed constituent during 2017-2020.

C. Ocean Plan-based performance goal (concentration in μg/L) established within Table 6 of Order No. R9-2017-0007 for the protection of human health – carcinogens.

- D. ND indicates that the constituent was not detected during 2017-2020 at the listed range of MDLs.
- E. Value was detected not quantifiable (DNQ). Concentration was below the reporting limit but above the MDL.
- F. The listed maximum MDL is from monthly PLOO monitoring reports. The 2019 PLOO annual report lists a higher maximum MDL for the constituent than what is listed in the monthly reports. More stringent MDLs were achieved during 2017-2018 and 2020.
- G. Beryllium was detected in only 2 samples collected during 2017-2020.
- H. Concentrations of bis (2-ethylhexyl) phthalate were less than 5 μ g/L in all but three samples during 2017-2020.
- I. The listed maximum MDL is from monthly PLOO monitoring reports. The 2017 PLOO annual report lists a higher maximum MDL for the constituent than what is listed in the monthly reports. More stringent MDLs were achieved during 2018–2020.
- J. Listed maximum MDL occurred only once during 2017–2020. MDLs for remaining samples were significantly lower.
- K. Sum of bromoform, bromomethane (methyl bromide) and chloromethane (methyl chloride).
- L. The sum of acenaphthylene, anthracene, 1,2-benzanthracene, 3,4-benzo fluoranthene, benzo[k]fluoranthene, 1,12-benzo perylene, benzo[a]pyrene, chrysene, dibenzo[ah]anthracene, fluorene, indeno[1,2,3-cd] pyrene, phenanthrene and pyrene.
- M. Listed MDL for TCDD equivalents is for hepta CDD and hepta CDF, which have a toxicity equivalence factor of 0.5. Other CDD and CDF isomers have smaller toxicity equivalence factors and less influence on the computation of TCDD equivalents.

2.2 Compliance with Table 7 Mass Emission Performance Goals

EPA Mass Emission Performance Goals

As discussed on page 1–2, Table 7 of Order No. R9–2017–0007 established mass emission rate (MER) performance goals for the PLOO discharge to establish a framework for evaluating the need for antidegradation analysis.²¹ Performance goals established in Table 7 of Order No. R9–2017–0007 are based on a PLOO flow of 205 mgd and 95th percentile PLOO effluent concentrations during 1990–1995.^{22,23}

The Table 7 performance goals represent a tool for comparing present-day PLOO MERs with MERs allowed under Order No. 95-60, the original 1995 PLOO 301(h) NPDES modified permit. Exceedance of any of the Table 7 MER performance goals for any constituent may indicate the need for an assessment of compliance with state and federal antidegradation requirements.

Detected Constituents with Table 7 MER Performance Goals

MER performance goals are established within Table 7 of Order No. R9–2017–0007 for a variety of toxic inorganic and organic compounds. Toxic inorganic compounds listed within Table 7 that were typically detected in the PLWTP effluent during 2017–2020 included: ammonia, antimony, arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, and zinc. Thallium was never detected in the PLWTP effluent during 2017–2020, and beryllium and cyanide were rarely detected. Few toxic organic compounds listed in Table 7 of Order No. R9–2017–0007 were detected in the PLWTP effluent during 2017–2020. Exceptions to this include:

- Non-chlorinated phenolic compounds (both phenol and 4-methylphenol were detected in 100% of the PLWTP effluent samples)
- Diethyl phthalate (typically detected in the PLWTP effluent)
- 2,4-dinitrophenol (detected only once in the PLWTP effluent during 2017-2020)
- Toluene (occasionally detected in the PLWTP effluent)
- Bis (2-ethylhexyl) phthalate (occasionally detected in the PLWTP effluent)

²¹ See Section IV.D.3 (page F-41) of Attachment F to Order No. R9-2017-0007.

²² Exceptions to this are the Table 7 performance goals for copper and selenium, which are based on 95th percentile PLOO mass emissions from calendar year 1994.

²³ It should be noted that the MER benchmark for non-chlorinated phenol was based on 95th percentile PLWTP effluent concentration values for phenol during the period January 1990 through April 1995. Concentrations of 4-methylphenol were not included in the non-chlorinated phenol MERs for this 1990-1995 period, as (1) the Ocean Plan did not establish a specific receiving water objective for 4-methylphenol, (2) PLOO monitoring for 4-methylphenol was not required at that time, and (3) non-chlorinated compounds were not specifically defined within either the PLOO NPDES permits or the Ocean Plan. In accordance with definitions now specified within Order R9-2017-0007, concentrations of 4-methylphenol (which are typically higher than concentrations of phenol, sometimes by a factor of two) are now included in the reported PLWTP influent and effluent concentrations of non-chlorinated phenolic compounds. Because MERs for non-chlorinated phenolic compounds are (per requirements in Order No. R9-2017-0007) computed differently than the EPA mass emission performance goals established in Table 7 of Order No. R9-2017-0007, direct comparison between present day MERs for non-chlorinated phenolic compounds and the Table 7 MER benchmarks is misleading.

Exceedance of Table 7 MERs for Phenol and Ammonia

Table 4 compares MER performance goals established within Table 7 of Order No.R9-2017-0007 with PLWTP MERs for the period 2017-2020.

As shown Table 4, PLOO MERs during 2017–2020 were substantially below Table 7 MER benchmarks for all constituents except for ammonia and non-chlorinated phenol. The PLOO discharge also exceeded the Table 7 mass emission performance goal for ammonia-nitrogen during years 2018, 2019 and 2020.

Change in Computation of Non-Chlorinated Phenolic Compounds. It should be noted that the MER performance goals established in Table 7 of Order No. R9-2017-0007 are based on historic PLOO MERs from 1990-1995. The intent was to establish a baseline mass emission threshold representative of 1990-1995 conditions against which to compare future PLOO mass emissions. In this way, it could be easily determined if PLOO mass emissions have increased relative to 1990-1995 levels.

Order No. R9–2017–0007, however, implements a significant change in the computation of MERs for non-chlorinated phenolic compounds which does not allow for a direct one-to-one comparison of MERS for non-chlorinated phenolic compounds between present-day and 1990–1995. The Table 7 MER is based on PLWTP data for phenol from 1990–1995, as phenol was the only non-chlorinated phenolic compound commonly detected in the PLWTP effluent for which monitoring was required at that time. During 1990–1995, monitoring for 4-methylphenol was not required and prior PLOO NPDES permits and the Ocean Plan did not define how to compute or report chlorinated phenolics.

Nonetheless, historically the City has monitored the PLWTP influent and effluent for a variety of non-chlorinated phenolic compounds including 4-methylphenol. Until 2019, however, the City did not include concentrations of 4-methylphenol in the computed totals for non-chlorinated phenolic compounds. This allowed computed PLOO MERs for non-chlorinated phenolic compounds to be compared to antidegradation-based MERs that were established using 1990-1995 data that omitted the inclusion of 4-methylphenol.

Attachment A to Order No. R9-2017-0007, however, defines non-chlorinated phenolic compounds as including 4-methylphenol. In accordance with requirements of Order No. R9-2017-0007, the City now includes concentrations of 4-methylphenol in determining total non-chlorinated phenolic compounds. This change in computational procedures has resulted in a significant increase in reported PLOO concentrations and MERs for non-chlorinated phenolic compounds, compared to those reported in prior years and compared to those used to compute the Table 7 mass emission benchmarks. During 2017-2020, for example, concentrations of phenol in the PLWTP effluent averaged 33 µg/L, while concentrations of 4-methylphenol averaged approximately 45 µg/L. As a result of this computational difference, present-day PLOO MERs for non-chlorinated phenolic compounds have more than doubled compared to MERs reported within prior PLOO NPDES permit applications. Direct comparison of present-day PLOO MERS for non-chlorinated phenolic compounds with prior reported values is thus misleading.

Table 4: Comparison of PLOO Mass Emissions with Performance Goals Established within Table 7 of Order No. R9-2017-0007

Detected Constituents for which Mass Emission	Estimated A	c tons/year)	Annual Mass Emission		
Performance Goals are Established in Table 7 of Order No. R9-2017-0007 ^A	2017 (139.3 mgd)	2018 (139.0 mgd)	2019 (143.9 mgd)	2020 (144.3 mgd)	Benchmark ^c (mt/yr)
Arsenic	0.10	0.26	0.26	0.15	0.88
Cadmium	ND ^D	0.021	ND ^D	0.020	1.4
Chromium VI	< 0.25 ^E	< 0.22 ^E	< 0.22 ^E	< 0.15 ^E	14.2
Copper	2.85	2.05	2.50	2.53	26
Lead	0.137	0.09	0.07	0.139	14.2
Mercury	0.0023	0.0018	0.0017	0.0015	0.19
Nickel	0.883	0.75	0.76	0.879	11.3
Selenium	0.22	0.20	0.14	0.13	0.44
Silver	0.03	0.00	0.00	0.01	2.8
Zinc	5.19	3.38	4.13	5.20	18.3
Cyanide	< 0.04 ^F	< 0.04 ^F	< 0.04 ^F	< 0.04 ^F	1.57
Ammonia	7,750	8,270 ^G	8,290 ^G	8,310 ^G	8,018
Non-chlorinated phenolic compounds ^H	15.3 ^{G,H}	16.1 ^{G,H}	15.0 ^{G,H}	14.8 ^{G,H}	2.57 ^F
Antimony	0.04	0.12	0.13	0.08	56.6
Diethyl phthalate	1.17	0.94	0.36	0.58	6.23
2,4-dinitrophenol	< 0.21 ^I	ND ^D	ND ^D	ND ^D	11.9
Toluene	< 0.37 ^J	< 0.65 ¹	< 0.32 ^J	< 0.36 ¹	3.31
Beryllium	< 0.005 ^K	ND ^D	ND ^D	ND ^D	1.42
Bis (2-ethylhexyl) phthalate	ND ^D	ND ^D	ND ^D	0.79	2.89

Table 4 Notes:

A. Constituents that were detected in the PLWTP effluent during 2017-2020 for which annual mass emission performance goal benchmarks are established by EPA within Table 7 Order No. R9-2017-0007.

B. The above-listed annual mass emissions are estimated by multiplying the average annual concentration, as reported in PLWTP annual reports, by the listed annual average PLWTP flow. As part of this estimate, any non-detected (ND) results for the listed constituent are assumed to represent a zero concentration for purposes of determining annual mass emissions.
 C. Annual mass emission performance goal benchmarks in metric tons per year (mt/yr) established in Table 7.

D. The listed constituent was reported as ND (not detected) as a monthly average value during each month of the listed year and no annual MER can be computed.

E. The listed estimated annual average MER is for total chromium. Chromium VI MERs are less than the listed MER for total chromium.

F. Cyanide was largely undetected during 2017-2020 and when detected was detected a concentration at or near the MDL. The listed upper bound MER is computed assuming an average cyanide concentration of 0.2 μg/L, which is the cyanide MDL achieved during 2017-2020.

G. Red font indicates exceedance of the MER performance goal established in Table 7 of Order No. R9-2017-0007.

H. The Table 7 MER is based on PLWTP data for phenol from 1990-1995, as phenol was the only non-chlorinated phenolic compound commonly detected in the PLWTP effluent for which monitoring was required. During 1990-1995, monitoring for 4-methylphenol was not required and prior NPDES permits (or the Ocean Plan) did not define how to compute or report chlorinated phenolics. In accordance with definitions established in Order No. R9-2017-0007, however, present-day MERs for non-chlorinated phenolic compounds are based on PLWTP effluent concentrations of phenol plus concentrations of 4-methylphenol (the two non-chlorinated phenolic compounds routinely found in the PLWTP influent and effluent). As a result of this difference in computational methods, comparison of present-day PLOO MERs for non-chlorinated phenolic compounds (which include phenol plus 4-methylphenol) with the Table 7 performance goal benchmarks (which were based on 1990-1995 PLWTP concentrations of phenol) are misleading.

 2,4-dinitrophenol was detected in only 1 of 96 samples during 2017. The listed MER is computed assuming an annual 2,4dinitrophenol concentration of less than one-half the 2.16 μg/L MDL.

J. Many of the detected concentrations for toluene were DNQ (detected not quantifiable). The listed estimated MERs for toluene are based on both quantifiable and DNQ values, and are considered to represent upper bound estimates for toluene annual mass emissions.

K. Beryllium was not detected in 80 of 82 samples during 2017. The upper bound annual average MER of < 0.005 mt/yr is computed assuming PLWTP effluent beryllium concentrations averaged less than 0.025 µg/L during 2017.

Estimated annual mass emissions presented in Table 4 were computed on the basis of the average annual concentrations and the average annual flows. A more accurate means of computing MERs is to use daily sample results and daily flows. Table 5 presents a comparison of MERs for non-chlorinated phenolic compounds and ammonia-nitrogen during 2017-2020 using these two methods. As shown in Table 5, ammonia and phenol MERS during 2017-2020 were higher than corresponding 95th percentile PLOO MERS in 1990-1994 using both computational methods, indicating that the mass of both ammonia and non-chlorinated phenolics discharged to the ocean via the PLOO has increased in the past quarter century.

Table 5:

Comparison of Estimated PLOO Mass Emissions Computed Using Daily Average and Annual Average Values

	PLOO Mass Emissions (mt/yr)						
	Non-Chlorinated	Phenolics	Ammonia-Nitrogen				
Year	Estimated Using Daily Averages ^A	Estimated Using Annual Averages ^B	Estimated Using Daily Averages ^A	Estimated Using Annual Averages ^B			
2017	15.3 ^c	15.3 ^c	7,610	7,750			
2018	16.1 ^c	16.1 ^C	8,250 ^c	8,270 ^c			
2019	15.6 ^c	15.0 ^C	8,120 ^c	<mark>8,290</mark> ^c			
2020	14.9 ^c	14.8 ^c	<mark>8,250</mark> ^c	8,310 ^c			
Table 7 Performance Goal ^D	2.57		8,0	018			

Table 5 Notes:

A. Average of daily MERs during each sample date of the listed year, converted to units of mt/yr. Daily MERs computed as the product of the average daily PLOO discharge flow for each sampling day and the average daily PLWTP effluent concentration on that day. Values rounded to three significant figures.

B. Annual MER estimated as the product of the average annual PLOO discharge flow and the average annual PLWTP effluent concentration, converted to units of mt/yr. Values rounded to three significant figures. Value from Table 4.

C. Red font indicates exceedance of the MER performance goal established in Table 7 of Order No. R9-2017-0007.

D. EPA Mass emission performance goal established in Table 7 of Order No. R9-2017-0007 on the basis of a permitted PLOO average annual discharge flow of 205 mgd and 95th percentile PLWTP effluent concentration levels from January 1990 to April 1995. The Table 7 performance goal is established to establish a benchmark against which to assess whether mass emissions have increased beyond those permitted in 1990-1995.

As documented in Table 4, non-chlorinated phenolic compounds and ammonia are the only parameters that exceeded benchmark mass emissions established in Order No. R9-2017-0007. PLOO mass emissions for all other parameters (except for non-chlorinated phenolics and ammonia) were within the Table 7 performance goals. Since no increase in mass emissions is requested as part of this NPDES renewal, a Tier 1 antidegradation analysis not required for any of the parameters that remain compliance with mass emission performance goal benchmarks established within Table 7 of Order No. R9-2017-0007. Exceedance of the Table 7 performance goal benchmarks by non-chlorinated phenolics and ammonia, however, indicate that mass emission of these two parameters have increased relative to 1990-1995 levels. Assessment is required to demonstrate that this increase in MERs (compared to 1990-1995 conditions) is

consistent with State of California antidegradation regulations and federal Tier 1 antidegradation regulations. $^{\rm 24}$

Conformance with Water Quality-Based Performance Goals

As noted, mass emission performance goals established in Table 7 of Order No. R9-2017-0007 are based on historic PLOO mass emissions and are used as benchmarks for indicating the potential need for antidegradation assessment. Water quality-based performance goals in Table 6 of Order No. R9-2017-0007, on the other hand, are established to ensure compliance with Ocean Plan receiving water quality objectives and to protect beneficial uses.

Water Quality-Based Performance Goals for Phenol. While non-chlorinated phenolic compounds exceeded the mass emission benchmark established within Table 7 of Order No. R9-2017-0007, the Point Loma discharge has consistently complied with the water quality-based effluent concentration and mass emission performance goals established within Table 6 of Order No. R9-2017-0007. Table 6 summarizes non-chlorinated phenol concentrations in the PLWTP effluent during 2017-2020 and compares the data with effluent concentration performance goals established within Table 6 of Order No. R9-2017-0007.

Continuing a historic trend of achieving 100% compliance, the PLOO discharge complied with effluent concentration performance goals for non-chlorinated phenolic compounds by a wide margin during 2017-2020. Table 6 of Order No. R9-2017-0007, for example, establishes a 6-month median non-chlorinated phenol limit of 6,200 µg/L. For comparison, the maximum 6-month median non-chlorinated phenol concentration observed during 2017-2020 was 41.3 µg/L – a value that is only two-thirds of one percent of the 6-month median water quality-based performance goal. Similarly, the maximum observed concentration for non-chlorinated phenol during 2017-2020 was 64.4 µg/L – a value approximately one-quarter of one percent of the corresponding daily maximum Table 6 performance goal for non-chlorinated phenolics.

The PLOO discharge also consistently complied with water quality-based mass emission performance goals established in Table 6 of Order No. R9–2017–0007. The water quality-based MER performance goals for phenol are based on a PLOO discharge flow of 205 mgd. Since PLOO discharge flows were less than this 205 mgd value during 2017–2020, the PLOO discharge complied with Table 6 mass emission performance goals for non-chlorinated phenolics by an even greater margin than with the Table 6 concentration performance goals.²⁵

Performance goals for non-chlorinated phenolic compounds established in Table 6 of Order No. R9-2017-0007 implement Ocean Plan water quality receiving water objectives established for the protection of marine aquatic life. By achieving compliance with the water quality-based

²⁴ Antidegradation-based MERs have been established within Order Nos. 95-106, R9-2002-0025, R9-2009-0001 and R9-2017-0007 on the basis of 95th percentile data for 1990-1995. The 1990-1995 data establishes a baseline set of conditions against which to compare future MERs to determine if MERs have risen relative to 1990-1995.

²⁵ PLOO discharge flows averaged 139.3 mgd in 2017, 139.0 mgd in 2018, 143.9 mgd in 2019 and 144.3 mgd in 2020. Maximum daily PLOO discharge flows exceeded 205 mgd on only one sampling day during 2017-2020 (a storm event on January 23, 2017), and non-chlorinated phenol concentrations during this day were the lowest of the year resulting in lower-than-average non-chlorinated phenol MERs on this date. As a result, all computed daily MERS during 2017-2020 were consistently and significantly below the Table 6 MER performance goal.

performance goals for non-chlorinated phenolics (both concentration and mass emission goals) established in Table 6 of Order No. R9-2017-0007, the PLOO discharge complies with all applicable Ocean Plan receiving water objectives for non-chlorinated phenolics for the protection of marine aquatic life.

Table 6: Non-Chlorinated Phenol Compliance with Water Quality-Based Performance Goal Concentrations Established in Table 6 of Order No. R9-2017-0007

	Number	Р	LOO Non-Chlor	entrations	tions 2017-2020 ^A			
Year	Sampling Dates During Listed Year ^B	Maximum Observed Daily Value ^c (µg/L)	Percent of Daily Maximum Performance Goal ^D	Maximum Observed 6-Month Median ^E (µg/L)	Percent of 6-Month Median Performance Goal ^F	Mean Annual Value ^G (µg/L)	Median Annual Value ^H (µg/L)	Percent of Samples in Compliance ¹
2017 ^J	52	128	0.5%	111	1.8%	80	76	100%
2018	52	141	0.6%	104	1.7%	83	84	100%
2019	43 ^ĸ	130	0.5%	100	1.6%	79	78	100%
2020	53	113	0.5%	105	1.7%	75	78	100%
Table 6 Pe Go	erformance al ^L	25,000		6,200				

Table 6 Notes:

A. PLOO effluent concentrations monitored at Monitoring Location EFF-001 as reported in monthly, quarterly and annual monitoring reports submitted to the RWQCB during 2017-2020. Year 2020 was the last year for which an entire calendar year of data are available at the time of preparation of this report. Year 2021 data will be electronically transmitted to regulators when available in 2022.

B. Total number of days during the listed year when samples were collected for non-chlorinated phenolic compounds. Multiple samples may be collected and analyzed on each sampling date.

- C. Maximum observed daily concentration value for non-chlorinated phenol during the listed year. See Attachment 1 for daily PLWTP effluent data for non-chlorinated phenolics for the period 2017-2020.
- D. Maximum observed non-chlorinated phenol concentration during the listed year as a percentage of the 25,000 µg/L daily maximum effluent concentration limit established in Table 6 of Order No. R9-2017-0007.

E. Maximum observed 6-month median non-chlorinated phenol concentration during the listed year. See Attachment 1 for daily PLWTP effluent data for ammonia-nitrogen for the period 2017-2020.

F. Maximum observed 6-month median non-chlorinated phenol concentration during the listed year as a percentage of the 6,200 μg/L 6-month median effluent concentration limit established in Table 6 of Order No. R9-2017-0007.

G. Arithmetic average of daily average non-chlorinated phenol concentrations during the listed year. See Attachment 1 for support data.

H. Median value for daily average non-chlorinated phenol concentrations during the listed year. See attachment 1 for support data.

I. Percent of samples during the year that complied with both the daily maximum and 6-month median effluent concentration performance goals established in Table 6 Order No. R9-2017-0007.

J. Order No. R9-2009-001 became effective on August 1, 2017. The above table presents non-chlorinated phenol data for the entire calendar year 2017.

K. Samples for non-chlorinated phenolic compounds were not analyzed during October and November 2019.

L. Water quality-based performance goal established within Table 6 of Order No. R9-2017-0007. The listed performance goals implement Ocean Plan receiving water standards and are based on an assigned minimum average month initial dilution of 204:1.

Water Quality-Based Performance Goals for Ammonia. Table 7 summarizes ammonia-nitrogen concentrations in the PLWTP effluent during 2017–2020, and compares the data with effluent concentration performance goals established within Table 6 of Order No. R9–2017–0007. As shown in Table 7, the PLOO discharge complied with all water quality-based concentration performance goals established in Table 6 of Order No. R9–2017–0007 by a significant margin.

Maximum PLWTP daily ammonia-nitrogen effluent concentrations were consistently an order of magnitude below the maximum daily concentration performance goal established in Table 7 of Order No. R9-2017-0007. The PLOO discharge during 2017-2020 consistently complied with the water quality-based 6-month median performance goal for ammonia-nitrogen by a factor of nearly three.

Table 7: Ammonia-Nitrogen Compliance with Water Quality-Based Performance Goal Concentrations Established in Table 6 of Order No. R9-2017-0007

	Number of	PLOO Ammonia-Nitrogen Effluent Concentrations 2					017-2020	A
Year	Sampling Dates During the Listed Year ^B	Maximum Observed Daily Value ^c (mg/L)	Percent of Daily Maximum Performance Goal ^D	Maximum Observed 6-Month Median ^E (mg/L)	Percent of 6-Month Median Performance Goal ^F	Mean Annual Value ^G (mg/L)	Median Annual Value ^H (mg/L)	Percent of Samples in Compliance
2017 ^J	52	44.5	9.1%	42.2	35%	40.3	41.6	100%
2018	52	48.1	9.8%	43.7	36%	43.0	43.1	100%
2019	52	46.4	9.5%	44.4	37%	41.8	42.9	100%
2020	53	47.1	9.6%	44.1	37%	41.7	42.0	100%
Table 6	Performance Goal ^ĸ	490		120				

Table 7 Notes:

- A. PLOO effluent concentrations monitored at Monitoring Location EFF-001 as reported in monthly, quarterly and annual monitoring reports submitted to the RWQCB during 2017-2020. Year 2020 was the last year for which an entire calendar year of data are available at the time of preparation of this report. Year 2021 data will be electronically transmitted to regulators when available in 2022.
- B. Total number of days during the listed year when samples were collected for ammonia-nitrogen. Multiple samples may be collected and analyzed on each sampling date.
- C. Maximum observed daily concentration value for ammonia-nitrogen during the listed year. See Attachment 1 for daily PLWTP effluent ammonia data for 2017-2020.
- D. Maximum observed ammonia-nitrogen concentration during the listed year as a percentage of the 490 mg/L daily maximum effluent concentration performance goal established in Table 6 of Order No. R9-2017-0007.
- E. Maximum observed 6-month median ammonia-nitrogen concentration during the listed year. See Attachment 1 for daily ammonia data.
- F. Maximum observed 6-month median ammonia-nitrogen concentration during the listed year as a percentage of the 120 mg/L 6-month median effluent concentration performance goal established in Table 6 of Order No. R9-2017-0007.
- G. Arithmetic average ammonia-nitrogen concentration during the listed year.
- H. Median observed ammonia-nitrogen concentration during the listed year.
- I. Percent of samples during the year that complied with both the daily maximum and 6-month median effluent concentration standards established in Table 6 of Order No. R9-2017-0007.
- J. Order No. R9-2009-001 became effective on August 1, 2017. As part of the 2017-2020 data base, the above table presents ammonia data for the entire calendar year 2017.
- K. Water quality-based performance goal established within Table 6 of Order No. R9-2017-0007. The listed performance goals implement Ocean Plan receiving water standards and are based on an assigned minimum average month initial dilution of 204:1.

Performance goals for ammonia-nitrogen established in Table 6 of Order No. R9-2017-0007 implement Ocean Plan water quality receiving water objectives established for the protection of marine aquatic life. By achieving compliance with the Table 6 water quality-based

performance concentration and mass emission goals for ammonia-nitrogen, the PLOO discharge complies with all applicable Ocean Plan receiving water standards for ammonianitrogen for the protection of marine aquatic life.

Influent and Effluent Trends

Influent and effluent data for non-chlorinated phenolic compounds and ammonia during the past decade are useful in identifying general trends in influent concentrations and treatment effectiveness.

Non-Chlorinated Phenolic Compounds. Table 8 presents influent and effluent concentrations for the two non-chlorinated phenolic compounds (phenol and 4-methylphenol) commonly present in the PLWTP influent and effluent. As shown in Table 8, 4-methylphenol typically comprises roughly two-thirds of the MERs for non-chlorinated phenolic compounds.

			Phenol ^A		4-	Methylphenol ^A	
Year	PLWTP Average Annual Flow (mgd)	PLWTP Average Annual Influent Concentration (μg/L)	PLWTP Average Annual Effluent Concentration (µg/L)	% Removal ^B	PLWTP Average Annual Influent Concentration (mg/L)	PLWTP Average Annual Effluent Concentration (mg/L)	% Removal ^B
2010	156.6	17.6	14.8	16%	37.5	29.3	22%
2011	155.8	20.3	16.3	20%	45.1	35.9	20%
2012	147.5	22.7	18.7	18%	48.6	43.1	11%
2013	143.8	24.0	21.6	10%	53.2	51.3	4%
2014	139.2	26.3	21.8	17%	54.3	52.3	4%
2015	131.6	34.3	23.0	33%	67.2	47.3	30%
2016	136.1	44.0	29.8	32%	71	51.2	28%
2017	139.3	41.7	32.3	23%	64.9	47.5	27%
2018	139.0	54.4	36.5	33%	75.1	47.2	37%
2019	143.9	41.8	30.5	27%	65.2	44.9	31%
2020	144.3	47.1	32.8	30%	66.0	41.3	37%
Average 2010-2020	143.4	34.0	25.3	26%	58.9	44.7	23%

Table 8:PLWTP Influent and Effluent Concentrations Phenol and 4-Methylphenol, 2010-2020^A

Table 8 Notes:

A. Average annual concentrations for phenol and 4-methylphenol are from annual PLWTP monitoring reports submitted to the RWQCB for the period 2017–2020. Average annual values are the average of monthly average values reported during each year and may differ slightly from values computed as arithmetic averages of daily values during the year.

B. Percent removals are computed from average annual influent and effluent values, as reported in PLWTP annual reports.

As also shown in Table 8, the PLWTP has achieved varying rates of removal of non-chlorinated phenolics during the past decade. Removal rates, however, have averaged more than 30% for both phenol and 4-methylphenol during the effective period of Order No. R9-2017-0007.

Figures 1 and 2 graphically compare PLWTP effluent MERS for phenol and 4-methylphenol.

As shown in the figures, phenol (on which the Table 7 performance goals are based) comprises approximately one-third of the PLOO MERs for total non-chlorinated phenolic compounds. As also shown in the figures, MERs for phenol appear to exhibit a rising trend during the past decade, where this trend is less evident for 4-methylphenol.

Figure 1: PLWTP Annual Average Effluent MERs for Phenol, 2010-2020

Figure 2: PLWTP Annual Average Effluent MERs for 4-Methylphenol, 2010-2020

Figure 3 presents average annual PLWTP effluent MERs for total non-chlorinated phenolic compounds. As depicted in Figure 3, the upward trend in PLWTP effluent mass emissions of non-chlorinated phenolic compounds that existed in the early portion of the decade appears to have leveled.

Figure 3: PLWTP Annual Average Effluent MERs for Non-Chlorinated Phenolic Compounds, 2010-2020

Ammonia–Nitrogen. Table 9 presents average annual PLWTP influent and effluent concentrations for ammonia–nitrogen for the period 2010–2020. As shown in the table, concentrations of ammonia–nitrogen are not significantly reduced through treatment at the PLWTP.

Figure 4 presents average annual PLWTP effluent MERs for ammonia-nitrogen. As shown in Figure 4, average annual MERs for ammonia-nitrogen remained relatively level in the first half of the decade, but have increased slightly in the latter half of the decade. This increase in ammonia-nitrogen MERs appears to correlate with an increase in PLWTP influent ammonia-nitrogen concentrations which is likely resulting from the implementation of successful water conservation efforts within the Metro System service area. MER rates for both non-chlorinated phenolics and ammonia-nitrogen have decreased slightly over the past 2 years but it is not known whether this trend will be sustained.

Table 9:

PLWTP Influent and Effluent Concentrations Non-Chlorinated Phenolic Compounds and Ammonia-Nitrogen, 2010-2020 ^A

	DI W/ТD	Ammonia-Nitrogen				
Year	Average Annual Flow (mgd)	PLWTP Average Annual InfluentPLWTP Average Annual EffluentConcentration (mg/L)Concentration (mg/L)		% Removal ^B		
2010	156.6	31.6	31.3	0.9%		
2011	155.8	33.7	32.8	2.7%		
2012	147.5	36.4	35.2	3.3%		
2013	143.8	37.0	35.7	3.5%		
2014	139.2	34.9	34.5	1.1%		
2015	131.6	37.8	37.8	0.0%		
2016	136.1	39.9	39.6	0.8%		
2017	139.3	40.9	40.3	1.5%		
2018	139	43.9	43.1	1.8%		
2019	143.9	42.3	41.7	1.4%		
2020	144.3	40.9	40.3	1.5%		
Average 2010-2020	143.4	38.1	37.5	1.7%		

Table 9 Notes:

A. Average annual concentrations for non-chlorinated phenolic compounds and ammonia-nitrogen are from annual PLWTP monitoring reports submitted to the RWQCB for the period 2019-2020. Percent removals are computed from average annual influent and effluent values.

B. Percent removals are computed from average annual influent and effluent values, as reported in PLWTP annual reports.

Figure 4: PLWTP Annual Average Effluent MERs for Ammonia-Nitrogen, 2010-2020

Compliance with Toxicity Standards

Since PLWTP effluent concentrations of non-chlorinated phenolic compounds and ammonianitrogen consistently comply with Ocean Plan receiving water thresholds for the protection of aquatic habitat, it would be expected that neither compound is contributing to toxicity in the PLWTP effluent. PLWTP effluent toxicity data collected to date support this conclusion. Table 10 presents toxicity monitoring of the PLWTP effluent during 2017–2020. As shown in the table, the PLWTP discharge achieved 100% compliance with the chronic toxicity effluent limitation established within Table 5 of Order No. R9–2017–0007.

Test Species	Test Endpoint	Statistical Approach	Number of Tests Conducted during 2017-2020	Percent Compliance with Chronic Toxicity Effluent Limit ^B
Giant Kelp (Macrocystis pyrifera)	Germination	NOEC ^c	9	100%
	Germination	TST D	39	100%
	Growth	NOEC ^c	9	100%
	Germ Tube Length	TST D	39	100%
Red abalone (Haliotis rufescens)	Development	TST ^D	2	100%
Topsmelt	Larval Survival	TST ^D	2	100%
(Atherinops affinis)	Growth	TST D	2	100%

Table 10:Summary of PLWTP Chronic Toxicity Monitoring, 2017-2020 A

Table 10 Notes:

A. Tests during January-September 2017 were conducted pursuant to requirements established in Order No. R9-2009-0001. Tests during October 2017 through December 2020 were conducted pursuant to requirements established in Order No. R9-2017-0007. See support tables on pages 25a-25c within EPA Form 2A.

B. Includes compliance with the 205 TUc effluent limit established in Order No. R9-2009-0001 and the Test of Significant Toxicity (TST) "pass" effluent limit established in Order No. R9-2017-0007.
C. Tests and computations conducted pursuant to the No Observed Effects Concentration (NOEC)

- C. Tests and computations conducted pursuant to the No Observed Effects Concentration (NOEC) methodology described in the first edition of Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms (EPA 600-R-95/136, 1995), as required by Order No. R9-2009-0001.
- D. Tests and computations conducted pursuant to the TST statistical t-test approach described in National Pollutant Discharge Elimination System Test of Significant Toxicity Implementation Document (EPA 833-R-10-003, 2010), as required by Order No. R9-2017-0007.

While an increase in PLWTP effluent mass emissions for non-chlorinated phenol and ammonia have occurred during the past decade, chronic toxicity data during this period demonstrate consistent compliance with the effluent limits of Order No. R9-2017-0007. Consequently, it is concluded that neither non-chlorinated phenol or ammonia concentrations present in the PLWTP effluent cause or represent a threat regarding compliance with Ocean Plan receiving water standards for toxicity.

Compliance with Federal Water Quality Criteria

EPA publishes national water quality criteria for the protection of aquatic life and human health pursuant to Section 304(a) of the Clean Water Act. Current EPA water quality criteria are established for approximately 150 pollutants.

Criteria for Non-Chlorinated Phenol. EPA does not establish criteria for phenol or 4-methylphenol (the two non-chlorinated phenolic compounds found in the PLWTP effluent) for the protection of saltwater aquatic habitat.²⁶ EPA, however, establishes a criterion for phenol for the protection of human health (consumption of organisms).²⁷ In 2015, EPA updated the water quality criterion for phenol for the consumption of organisms and lowered the criterion from 860 mg/L to 300 mg/L.²⁸ Concentrations of phenol in the PLWTP effluent are typically four orders of magnitude (10⁴) below this EPA receiving water quality criterion for phenol for the protection of human health (consumption of organisms). As a result, the PLOO discharge has not potential to approach or exceed the federal water quality criterion for phenol for the protection of public health.

Criteria for Ammonia–Nitrogen. EPA water quality criteria for ammonia for the protection of saltwater habitat are dependent on pH and temperature.²⁹ Maximum and minimum temperatures in receiving waters in the vicinity of the PLOO range from approximately 10 degrees Celsius (°C) to 25 °C, with temperatures typically remaining between 15 °C and 20 °C. Maximum and minimum receiving water pH values range from 7.6 to 8.4 pH units, with pH values typically remaining between 7.8 and 8.0 pH units. Table 11 presents EPA water quality criteria for the protection of marine aquatic life for this range of temperature and pH values.

For comparison, at the assigned minimum average month initial dilution of 204:1, receiving water ammonia-nitrogen concentrations at the edge of the PLOO ZID translate to approximately 0.3 mg/L. Such a 0.3 mg/L receiving water ammonia concentration at the edge of the ZID is well below the corresponding range of federal saltwater ammonia criteria under maximum temperature and pH conditions, and is significantly below the federal saltwater ammonia criterion for typical PLOO temperature and pH conditions.^{30,31}

²⁶ EPA establishes water quality criteria for the protection of aquatic life for two phenolic compounds: nonylphenol and pentachlorophenol. The PLWTP effluent is not monitored for nonylphenol, and pentachlorophenol was not detected in the PLWTP effluent during 2017-2020.

²⁷ The EPA criteria is for phenol (chemical formula C6H6O). EPA also establishes water quality criteria for the protection of human health (consumption of organisms) for a variety of chlorinated and non-chlorinated phenolic compounds typically not present in the PLWTP effluent, including: 2-chlorophenol, 2,4-dichlorophenol, dinitrophenols, 2,4-dimethylphenol, 2,4-dinitrophenol, 2-methyl-4,6-dinitrophenol, 3-methyl-4-chlorophenol, pentachlorophenol, 2,4,5-trichlorophenol and 2,4,6-trichlorophenol.

²⁸ See EPA (2015a, 2015b, 2015c).

²⁹ Total ammonia is speciated into un-ionized ammonia (NH3) and ionized ammonium (NH4+) on basis of pH and temperature. EPA criteria for total ammonia are based on ensuring that concentrations of un-ionized ammonia (which is toxic to fish) are maintained at concentrations not to exceed 0.035 mg/L (4-day average) or 0.233 mg/L (one hour average).

³⁰ The maximum PLWTP effluent concentration of ammonia-nitrogen during 2017-2020 was 48.1 mg/L. This maximum effluent concentration translates to a receiving water concentration of approximately 0.2 mg/L at the assigned PLOO minimum average month initial dilution of 204:1.

³¹ Receiving water temperatures at depth in the vicinity of the PLOO are almost always between 10 °C and 15 °C,

Table 11: EPA Ambient Saltwater Criteria for Ammonia-Nitrogen (Criteria for Salinity of 30 Grams of Salt per Kilogram of Water)

Period	pН	Ammonia Concentration Criteria ^{A, B} (mg/L NH3-N)				
	-	10° C	15º C	20° C	25°C	
	7.6	37	25	21	12	
Criteria Maximum Concentration	7.8	23	16	11	7.9	
	8.0	15	10	7.3	5.0	
С	8.2	9.6	6.7	4.6	3.3	
	8.4	6.0	4.2	2.9	2.1	
Critoria	7.6	5.6	3.7	3.1	1.7	
Continuous	7.8	3.4	2.4	1.7	1.0	
Concentration	8.0	2.2	1.6	1.1	0.66	
	8.2	1.4	1.0	0.69	0.44	

Table 11 Notes:

A. From EPA (1989). Criteria are listed for the range of pH and temperatures common to the PLOO outfall waste field. Ammonia criteria become more relaxed with increasing salinity. The typical ocean salinity near San Diego is approximately 33 to 34 g/kg, so the above values based on a 30 g/kg salinity are conservative.

B. The above water quality criteria are not enforceable standards but are presented by EPA as guidance to states and tribes in developing enforceable water quality standards.

C. The criteria maximum concentration is the maximum concentration to which an aquatic community can be briefly exposed without an unacceptable impact.

D. The criteria continuous concentration is the maximum concentration that an aquatic community can be continuously and indefinitely exposed to without an unacceptable impact.

with typical mean pH values of 7.8 to 8.0. A PLOO concentration at the edge of the ZID of 0.3 mg/L is approximately a factor of 30 below the ammonia criterion for 15 C and a pH of 8.0, and a factor greater than 30 below the EPA ammonia criterion for lower temperatures and lower pH values.

2.3 Sources of Phenol and Ammonia

Sources of Phenol

Phenol is a common and prevalent chemical, and is used in both industrial and nonindustrial applications. Phenol also has a variety of uses in the medical and dental professions as a germicide and fungicide. Phenol can be used in industrial or research applications as a solvent, disinfectant, or cleaning compound. In addition, phenol is a constituent in many industrial chemicals, including paints, inks, and photographic chemicals. Phenol may also be found in a variety of household products, including:

- disinfectants
- antiseptics
- skin lotions
- cosmetics
- shampoos
- mouthwash
- toothpastes
- hand soaps
- cleansers
- solvents
- pharmaceuticals

1996 Urban Area Pretreatment Program. Prior to 1996, the Metro System enforced a nonchlorinated phenol local limit of 25 mg/L on industries tributary to the PLWTP. In 1996, a Local Limits Study conducted as part of developing the City's Urban Area Pretreatment Program (UAPP) concluded that phenol was consistently present in domestic and commercial wastewater and that high background levels of phenol were present in the Metro System wastewater.³²

Wastewater collection system sampling conducted as part of the 1996 UAPP determined that the average concentration of phenol in domestic wastewater was 6.5 μ g/L, but that phenol concentrations were highly variable.³³ The presence of phenol (and high background concentration) in commercial and domestic wastewater was attributed to its ubiquitous presence in home and personal care products. As a result of this finding, the increase in phenol mass emissions to the Metro System was considered to result from increasing population and perhaps an increase in the per capita commercial/domestic phenol use in homes and

³² See Table 7-1 of the 1996 UAPP (City of San Diego and Malcolm Pirnie, Inc., 1996)

³³ The 1996 UAPP (City of San Diego and Malcolm Pirnie, Inc., 1996) reported (see Table 4.2 of the 1996 UAPP) an average phenol concentration of 6.5 μg/L in Metro System domestic wastewater, but that the standard deviation of domestic wastewater samples for phenol was 16 μg/L.

commercial establishments.

Additionally, two areas of regulation have combined to limit potential phenol contributions from industrial sources. First, air quality rules implemented within California phased out the use of industrial organic solvent vapor degreasers (based on phenols) in favor of non-organic solvents. Second, phenol discharges from many industrial sources are subject to phenol regulation through the imposition of requirements for surrogate parameters. For example, electroplating and metal finishing industries are subject to categorical pretreatment standards for total toxic organics (TTO). Other federal categorical dischargers, hospitals, and laboratories are regulated by the City's existing "toxic organic management plans" (TOMPs).

As a result of the findings of increased commercial/domestic contribution and limited industrial contribution, the 1996 UAPP recommended that the non-chlorinated phenol local limit be eliminated in favor of local limits for individual phenol compounds where appropriate. Since then, all Metro System industrial permits have been revised to eliminate the specific limit for phenolic compounds.

Assessments of Industrial Sources. To confirm that industrial sources do not represent a significant source of non-chlorinated phenol within the Metro System, the City of San Diego's Industrial Wastewater Control Program (IWCP) implements comprehensive monitoring within the Metro System collection system and at specific industrial dischargers. Table 12 summarizes the results of this industrial sampling program for phenol during 2015–2021.³⁴ As shown in Table 12, only 21 significant industrial users (SIUs) have been identified that discharge detectable concentrations of phenol. Further, phenol was not detected in 92% of the SIU samples collected during 2015–2021.

Estimated SIU mass emission projections presented within Table 12 demonstrate that phenol mass emissions from Metro System SIUs (estimated to range from 0.009 to 0.11 mt/yr) represent a small fraction of the total PLOO phenol mass emissions (approximately 15 mt/yr) within the Metro System collection area.³⁵

In addition to monitoring non-chlorinated phenol concentrations in wastewater from SIUs, the IWCP monitors concentrations of phenol at key locations within the Metro System to assess the geographic contribution of phenol. A total of 15 locations within the Metro System tributary area are monitored. Demonstrating the transitory occurrence of phenol within the Metro System, each sampling location has historically registered at least one occurrence where phenol concentrations exceeded $30 \mu g/L.^{36}$

Annual Local Limits Assessments. Phenol loads within the Metro System continue to be assessed as part of IWCP annual updates to Metro System local limits. As documented within the 2020 annual local limits update (presented as Appendix N), the widely varying phenol analytical

³⁴ Sampling is conducted by the City's IWCP as part of regulating SIUs, assessing compliance, and evaluating sources of discharged pollutants.

³⁵ As shown in Table 12-2, the range of SIU phenol mass loads are estimated on the basis of 1.7 mgd of flow contributed by SIUs that have detectable concentrations of phenol and estimated upper bound (47 μg/L) and lower bound (4 μg/L) phenol concentrations that are based on SIU discharge monitoring data from 2015–2021.

³⁶ As reported within Table 9, Volume II, Antidegradation Analysis, City of San Diego (2015).

results in domestic background flows remains unexplained. Total PLWTP influent loads of non-chlorinated phenolic compounds in 2020 were 89.2 pounds per day (14.8 mt/yr).³⁷ Phenol loads from industrial sources, however, remain low and all industrial dischargers of phenol remain in compliance with EPA TTO limitations and requirements established in industry TOMPs.

Parameter	Value	
Number of SIUs Sampled, 2015-2021	71 ^A	
Number of SIUs that had detectable concentrations of phenol	21 ^A	
Number of SIU samples collected from SIUs	628 ^A	
Percent of SIU samples with non-detected phenol concentrations	92 % ^A	
Average annual flows from SIUs, 2015-2021	1.85 mgd ^A	
Total annual flows from SIUs with detectable phenol concentrations	1.7 mgd ^A	
Median phenol concentration in SIU samples from 2015-2021	ND ^B	
Average phenol concentration among SIU samples that have detectable concentrations	47 μg/L ^c	
Average phenol concentration in SIU samples if all ND samples are assumed to have a phenol concentration of zero	4 μg/L ^c	
Estimated range of annual phenol mass emissions from SIUs, 2015-2021	0.009 – 0.11 mt/yr ^D	

Table 12:
Summary of SIU Sampling for Non-Chlorinated Phenol, 2015-2021

Table 12 Notes:

A. SIU sampling results for 2015–2021 provided by the IWCP.

B. Phenol was not detected in approximately 92% of the SIU samples during 2015-2021. The median value is thus ND.

C. Average phenol concentrations among SIU samples with detectable concentrations was 47 ug/L. If all not detected (ND) SIU samples (92% of the samples) were assumed to have a phenol concentration of zero, the average phenol concentration in SIU samples during 2015-2021 is $4 \mu g/L$.

D. Estimated upper bound value is computed on the basis of a 1.7 mgd SIU flow and average phenol concentration of $47 \mu g/L$. Estimated lower bound value is computed on the basis of a 1.7 mgd SIU flow and average phenol concentration of $4 \mu g/L$.

Given the high level of compliance that has been achieved with water quality-based effluent concentration and mass emission limits for phenol established within Table 6 of Order No. R9-2017-0007 (see Tables 2-2 and 2-3), and the limited industrial contributions of non-chlorinated phenol, no need for a phenol Local Limit has been identified in any of the City's recent Local Limits updates.³⁸ The City, however, continues to assess phenol contributions from Metro System SIUs as part of ongoing IWCP industrial discharge monitoring operations and pollutant source assessment activities.

³⁷ Based on an annual average PLWTP flow of 144.3 mgd and an average annual PLWTP influent concentration of non-chlorinated phenolics of 74.1 μg/L, which included an annual average phenol influent concentration of 32.8 μg/L and an average annual 4-methylphenol concentration of 41.3 μg/L.

³⁸ Appendix N of this NPDES application presents the 2020 update to the Metro System local limits.

Sources of Ammonia

Ammonia is a common constituent in domestic wastewater that predominantly occurs as component of urea and other human waste and from the breakdown of organic matter (food and garbage disposal particulates) that are discharged to the sewer. Ammonia is also a component of a number of household cleaning products. No significant industrial sources of ammonia have been identified within the Metro System service area, but ammonia can be used in metals finishing operations and as part of pharmaceutical manufacturing.

As shown in Table 8, PLWTP influent ammonia levels have risen during the past decade. Influent PLWTP ammonia concentrations of 31–32 mg/L were common in the early portion of the decade, while concentrations in excess of 40 mg/L have occurred in the latter portion of the decade. The increase in PLWTP ammonia influent concentrations is attributed to water conservation.³⁹

- While ammonia continues to be assessed as part of annual local limits update, no ammonia local limit has been proposed, as:
- Ammonia is a common constituent within domestic wastewater.
- No significant industrial sources of ammonia have been identified within the Metro System.
- The PLOO discharge continues to comply with applicable water quality-based receiving water standards for ammonia.

Per Capita Contributions

In addition to the trends of increased concentrations of PLWTP influent phenol and ammonia, PLWTP phenol and ammonia mass loads may also trend upward as a result of population increase. Table 13 compares Metro System estimated populations with PLWTP influent phenol and ammonia concentrations during the past decade.

Non-Chlorinated Phenolic Compounds. As shown in Table 12, concentrations of non-chlorinated phenolic compounds in the PLWTP influent have increased during the past decade. Increases in the PLWTP influent phenol concentrations can, in part, be attributed to the successful water conservation programs implemented by the City of San Diego and Metro System member agencies within the past decade. As a result of this water conservation, pollutant mass loads are being concentrated in a lower volume of flow. Demonstrating these flow reductions, the per capita flow contributions within the Metro System during 2005 were in excess of 90 gallons per capita per day (gpcd).⁴⁰ During 2010, per capital Metro System flow contributions had decreased to approximately 75 gpcd (see Table 14). Per capita Metro System flow contributions were further reduced by year 2020 to approximately 63 gpcd.⁴¹

³⁹ See Appendix N, page 15.

⁴⁰ Average annual PLWTP flows during 2005 were 183 mgd from an estimated Metro System population of approximately 2 million.

⁴¹ Average annual PLWTP flows during 2020 were 144.3 mgd from an estimated Metro System population of 2.303 million.

Table 13: Per Capita Contribution of Non-Chlorinated Phenolic Compounds and Ammonia-Nitrogen, 2010-2020

Year	Mean Annual PLWTP Flow (mgd) ^A	Estimated Metro System Population ^B (millions)	Mean Annual PLWTP Influent Concentration (µg/L) ^A		Estimated Per Capita Contribution ^D	
			Non- Chlorinated Phenolic Compounds ^c	Ammonia- Nitrogen	Non- Chlorinated Phenolics (mg/person/ day)	Ammonia- Nitrogen (g/person/day)
2010	156.6	2.07	55.1	31,600	15.8	9.0
2011	155.8	2.09	65.4	33,700	18.4	9.5
2012	147.5	2.12	71.3	36,400	18.8	9.6
2013	143.8	2.14	77.2	37,000	19.6	9.4
2014	139.2	2.16	80.6	34,900	19.6	8.5
2015	131.6	2.19	101.5	37,800	23.1	8.6
2016	136.1	2.21	115	39,900	26.8	9.3
2017	139.3	2.23	106.6	40,900	25.2	9.7
2018	139	2.26	129.5	43,900	30.2	10.2
2019	143.9	2.28	107	42,300	25.6	10.1
2020	144.3	2.30	113.1	40,900	26.8	9.7

Table 13 Notes:

A. From annual reports submitted to the RWQCB, 2010–2020. Annual averages are the average of monthly average values for the year.

B. Annual population is interpolated from 2010 and 2020 census data and population projections for the Metro System service area that have been developed by the City of San Diego Public Utilities Department using San Diego Association of Governments (SANDAG) population forecasts.

C. Per the requirements of Order No. R9-2017-0007, the above-listed non-chlorinated phenolic compounds are the sum of 2,4 dimethylphenol, 4,6-dinitro 2 methylphenol, 2,4 dinitrophenol, 2 methylphenol, 4 methylphenol and phenol. Of these compounds, phenol and 4 methylphenol are commonly detected in the PLWTP influent and effluent.

D. Computed by dividing the daily computed mass emissions (mass/day) by the population.

During the early part of the past decade, mass emissions of non-chlorinated phenolic compounds appeared to track closely to population increases.⁴² PLWTP influent loads of non-chlorinated phenolics appeared, however, to increase at a rate slightly in excess of the population increase. Demonstrating this, Figure 5 presents per capita loads of non-chlorinated phenolic compounds in the PLWTP influent during the past decade. As shown in Figure 5, per capita loads of non-chlorinated phenolic compounds in the PLWTP influent during the PLWTP influent have increased

⁴² Correlation (r2 values) between population and PLWTP influent loads for non-chlorinated phenolic compounds was approximately 0.95 for 2010–2014.

during the past 10 years.

Figure 5:

Per Capita Loads for Non-Chlorinated Phenolic Compounds - PLWTP Influent, 2010-202043

As noted, data from the City's ongoing industrial user monitoring do not show any significant phenol contributions from SIUs (or any significant increases in the minor industrial loads) during the past 10 years. Given this, it is likely that the per capita increase in phenol loads to the Metro System results from increased per capita household and commercial use of the plethora of personal care and cleansing products that contain phenol. In summary, data from the past decade show three trends regarding non-chlorinated phenolics in Metro System wastewater:

PLWTP influent concentrations of non-chlorinated phenolic compounds have increased and, in part, appear to correlate to the implementation of successful water conservation efforts on the part of the City of San Diego and Metro System member agencies.

Per capita contributions of non-chlorinated phenolic compounds to the sewer system are increasing, and are likely from non-industrial sources (e.g., domestic or commercial).

Slight improvements in treatment removals of non-chlorinated phenolics have been achieved during the past decade, but mass emissions of non-chlorinated phenolic compounds have increased.

It is probable that many of the water conservation gains achieved during the past decade will be permanent.⁴⁴ As a result, water conservation-related effects on PLWTP influent phenol concentrations are likely to continue. It is unknown, however, whether the trend of increased

⁴³ Per capita loads for non-chlorinated phenolic compounds are computed as the average daily mass of influent phenol and 4-methylphenol (computed on the basis of the influent PLWTP concentrations and average daily PLWTP influent flows) divided by the estimated Metro System population for the given year.

⁴⁴ Water conservation gains resulting from the installation of water-efficient appliances and fixtures are likely to be permanent. It is also likely that water conservation gains resulting from public education and changes in personal habitats will be sustained.

per capita phenol loads to the Metro System will be sustained in future years. As shown in Table 4, data from 2018–2020 appear to indicate a leveling in the per capita loads of non-chlorinated phenolic compounds.

Ammonia. While concentrations of ammonia-nitrogen in the PLWTP influent have increased during the past decade, per capita contributions of ammonia within the PLWTP influent have remained reasonably consistent during the past decade, and have typically ranged from approximately 9–10 grams of ammonia per person per day.

Figure 6 presents estimated per capita ammonia loads in the PLWTP influent during the past decade. As shown in the figure, per capita ammonia loads remained relatively stable during the decade, although a slight decline in per capita ammonia contributions occurred during 2014 and 2015.

Figure 6: Per Capita Ammonia Loads - PLWTP Influent, 2010-2020

With these relatively stable per capita ammonia contributions within the Metro System, reasonable correlation ($r^2=0.93$) exists between population increase and PLWTP influent ammonia loads during the past decade. It is thus projected that PLWTP ammonia-nitrogen influent loads will continue to increase in proportion to population in the near future. As described in Appendix B, however, future planned improvements within the Metro System include:

- Upgrades to treatment facilities at the North City Water Reclamation Plant
- Implementation of Phases 1 and 2 of the Pure Water San Diego Program (Pure Water)
- Upgrades to solids handling facilities and reductions in solids residual flows to the PLWTP

While many of the planned Metro System improvements are to support the Pure Water operations, some of the planned improvements may allow for improved management of system-wide ammonia and nitrogen loads.

3 EVALUATION OF SIGNIFICANCE

3.1 Approach

Criteria for Compliance with Tier 1 Antidegradation Regulations

As noted in Chapter 1, the EPA mass emission performance goals established in Table 7 of Order No. R9–2017–0007 are intended to represent benchmarks against which to compare current PLOO mass emissions to mass emissions allowed during prior PLOO NPDES permits.⁴⁵ Specifically, the Table 7 EPA mass emission performance goals were based on PLWTP effluent data from January 1990 through April 1995, and were established below (more stringent than) the levels prescribed for water quality-based effluent limits. The Table 7 benchmarks were designed to provide an early measure of changes in mass emissions and are intended to serve as triggers for antidegradation analysis during renewal of the PLOO NPDES permit.⁴⁶

- In issuing the prior PLOO NPDES permit (Order No. R9-2009-0001), EPA concluded that:
- PLOO mass emission of phenolic compounds exceeded the benchmarks based on PLWTP 1990-1995 effluent data.
- The PLOO discharge was likely to continue to exceed the mass emission benchmarks.
- A Tier 1 antidegradation analysis justifying PLOO mass emissions of non-chlorinated phenolic compounds was necessary.
- A Tier 2 socioeconomic antidegradation is necessary if the water quality degradation is deemed to be "significant".⁴⁰

Antidegradation Findings in Prior NPDES Permit

Provision VI.C.2.e of Order No. R9–2009–0001 set forth criteria for a Tier 1 antidegradation assessment, and established that water quality impacts are not considered significant (thus no Tier 2 antidegradation analysis is required) if either of the following is demonstrated:

- 1) the receiving water concentration at the boundary of the ZID is less than 10% above the ambient (farfield) concentration, or
- 2) the receiving water concentration at the boundary of the ZID is less than 50% of the Ocean Plan water quality objectives.

As documented in Order No. R9-2017-0007, PLOO MERs for phenolic compounds during the effective period of Order No. R9-2002-0001 met the criteria for non-significance, as receiving water concentrations at the boundary of the ZID were less than 50% of the Ocean Plan objective. As a result, no Tier II analysis for non-chlorinated phenolic compounds was required.

⁴⁵ Includes Order No. 95-60, Order No, R9-2002-0025 and Order No. R9-2009-0001.

⁴⁶ See "Toxics Mass Emissions Benchmarks and Antidegradation" section on pages 43–46 of the 2017 EPA Final Decision Document (EPA, 2017).

Antidegradation-Based MERs in Order No. R9-2017-0007

Order No. R9-2017-0007 carried over the antidegradation-based MERS established in Order No. R9-2009-0001.

Non-Chlorinated Phenolic Compounds. As noted, the EPA antidegradation-based MER benchmark for non-chlorinated phenolic compounds that was established in Table 7 of Order No. R9-2017-0007 is based on 95th percentile PLWTP phenol concentrations from 1990-1995 and PLOO discharge flows of 205 mgd. PLOO discharge flows during the past 25 years have been consistently below 205 mgd, but PLWTP influent and effluent concentrations of non-chlorinated phenolic compounds have increased. As a result, mass emissions of non-chlorinated phenolic compounds have consistently exceeded the Table 7 mass emission benchmark throughout the effective period of Order No. R9-2017-0007.

Additionally, Order No. R9-2017-0007 defines non-chlorinated phenolic compounds as including 4-methylphenol. Since Order No. R9-2017-0007 became effective, the City has included 4-methylphenol in the reported non-chlorinated phenol concentrations. This has resulted in concentrations and mass emissions for non-chlorinated phenolic compounds that significantly exceed the Table 7 mass emission performance goal that was based on 1990-1995 PLWTP effluent phenol concentrations.⁴⁷ This consistent level of PLOO mass emissions for non-chlorinated phenolic compounds warrants assessment with federal Tier 1 antidegradation regulations and the State of California antidegradation policy.

Ammonia-Nitrogen. Since 2018, the PLOO discharge has exceeded the EPA mass emission performance goal benchmark established in Table 7 of Order No. R9-2017-0007. As shown in Table 5, this exceedance occurs regardless of whether PLOO ammonia-nitrogen MERs are computed using annual averages or daily sample and flow results. Further, trends in PLOO since mass emissions of ammonia-nitrogen indicate that exceedance of the Table 7 mass emission benchmark is likely to continue to occur in future years. For these reasons, PLOO mass emissions of ammonia-nitrogen warrant an assessment of compliance with federal Tier 1 antidegradation regulations and the State of California antidegradation policy.

General Approach

This chapter assesses compliance for non-chlorinated phenolic compounds and ammonianitrogen with federal Tier 1 antidegradation regulations using the PLWTP data from 2017-2020 (the effective period of Order No. R9-2017-0007) and the "level of significance" criteria established within Provision VI.C.2.e of Order No. R9-2009-0001. Additionally, to evaluate future projected Tier 1 compliance, future PLWTP mass loads of non-chlorinated phenolic compounds and ammonia-nitrogen are projected for the next 5-year NPDES permit period and are compared with the Tier 1 "level of significance" criteria.

⁴⁷ During the January 1990 to April 1995 data period used for computing 95th percentile concentrations of nonchlorinated phenolic compounds in the PLWTP effluent, concentrations of 4-methylphenol were not included in the reported values for non-chlorinated phenolic compounds.

The approach presented herein is consistent with the PLOO antidegradation and level of significance assessments presented within:

- The City's 2011 Level of Significance Study
- The City's 2015 antidegradation analysis presented as part of the 2015 301(h) NPDES application for renewal of modified secondary treatment requirements for the PLWTP

Both of these assessments compared receiving water concentrations at the boundary of the ZID with Ocean Plan water quality objectives and demonstrated that receiving water concentrations after initial dilution were less than 50% of the Ocean Plan objectives.

Additionally, the antidegradation assessment approach utilized herein is consistent with findings and conclusions presented by EPA in the 2017 Final Decision Document that granted renewal of the PLOO NPDES permit with 301(h) modified secondary treatment requirements.

3.2 Significance Assessment

As documented in Appendix Q, the PLOO is projected to achieve a median initial dilution of 338:1 at the ultimate 240 mgd design flow of the PLWTP. Order No. R9–2017–0007 assigns a minimum average month initial dilution of 204:1 for purposes of assessing compliance with Ocean Plan receiving water standards, and reassessments conducted to date have confirmed that the 204:1 assigned initial dilution remains applicable and appropriate. The Ocean Plan-based minimum average month initial dilution of 204:1 is thus used herein for assessing receiving water concentrations at the boundary of the PLOO ZID.

Non-Chlorinated Phenolic Compounds

Table 14 presents maximum observed concentrations of non-chlorinated phenolic compounds during 2017-2020 and compares projected receiving water concentrations with daily maximum water quality objectives for non-chlorinated phenolic compounds established in Table 3 of the Ocean Plan. As shown in Table 14, the highest observed concentration of non-chlorinated phenolic compounds in the PLWTP effluent during 2017-2020 was 141 μ g/L.⁴⁸ This maximum daily concentration corresponds to a receiving water concentration at the edge of the ZID that is less than 0.6% of the Ocean Plan daily maximum receiving water standard of 120 μ g/L.

⁴⁸ This maximum value occurred on May 21, 2018, where two daily samples showed phenol concentrations of 64.4 and 54.0 μg/L (daily average of 59.2 μg/L) and two daily 4-methylphenol samples showed concentrations of 91.1 and 73.2 μg/L (daily average of 82.2 μg/L).
Table 14: PLOO Non-Chlorinated Phenol Compliance with Ocean Plan Daily Maximum Receiving Water Standard

	Non-Chlorin Concentra	nated Phenol tion (μg/L)	Receiving Water Concentration as a	Compliance with Tier 1
Year	Daily Maximum PLWTP Effluent Concentration ^{A,B}	Projected Daily Maximum Receiving Water Concentration After Initial Dilution ^c	Percent of the Ocean Plan Daily Maximum Receiving Water Standard of 120 µg/L ^D	Requirement that Receiving Water Quality is Less than 50% of Ocean Plan Standard? ^E
2017	128	0.62	0.52%	Yes
2018	141	0.69	0.57%	Yes
2019	130	0.63	0.53%	Yes
2020	113	0.55	0.46%	Receiving Water Quality is Less than 50% of Ocean Plan Standard? ^E Yes Yes Yes Yes

Table 14 Notes:

A. PLOO effluent concentrations monitored at Monitoring Location EFF-001 for the period 2017-2020. Year 2020 was the last year for which an entire calendar year of data are available at the time of preparation of this report. The 2017-2020 data base includes days on which two daily samples were collected and analyzed.

B. Maximum sample value observed during the listed year. See Table 6.

C. Computed receiving water concentration upon completion of initial dilution, as computed using a minimum month initial dilution of 204:1 in accordance with Ocean Plan computational procedures (e.g., Ocean Plan Equation No. 1).

D. Projected receiving water concentration after initial dilution as a percent of the Ocean Plan daily maximum phenol receiving water standard of 120 µg/L to be achieved upon completion of initial dilution.

E. Pursuant to Section IV.D.2 (page F-40) of Appendix F to of Order No. R9-2017-0007 and the 2017 EPA Final Decision Document (EPA, 2017), water quality effects are defined as "non-significant" if receiving water concentrations remain 50% below the corresponding Ocean Plan receiving water standard.

Table 15 presents maximum observed 6-month median values for non-chlorinated phenolic compounds in the PLWTP effluent during 2017-2020 and compares the 6-month median receiving water concentrations with 6-month median water quality objectives of the Ocean Plan.

The maximum value for the 6-month median PLWTP effluent concentration for nonchlorinated phenolic compounds during 2017-2020 was 94 μ g/L.⁴⁹ At a minimum month initial dilution of 204:1, this maximum 6-month median concentration for non-chlorinated phenolic compounds corresponds to a receiving water concentration at the ZID boundary that is a factor of more than 70 below the Ocean Plan 6-month median standard.⁵⁰

⁴⁹ This maximum 6-month median value occurred on July 2, 2018, and included the 6-month period January 3, 1018 through July 2, 2019. It should be noted that all 6-month median values computed on the basis of complete calendar months (as reported to the RWQCB) were slightly less than this 94 µg/L maximum 6-month median value. Computing the maximum 6-month median value on the basis of daily data (running 6-month median) thus represents a more conservative approach for assessing compliance.

⁵⁰ It should be noted that minimum PLOO initial dilutions have historically occurred during times when plume trapping depths are greatest in the late fall or early winter. The maximum observed 6-month median

Table 15: PLOO Non-Chlorinated Phenol Compliance with Ocean Plan 6-Month Median Receiving Water Standard

	Non-Chlorinated P (µ٤	henol Concentration g/L)	Receiving Water Concentration as a	Compliance with Tier 1
Year	Maximum Observed 6-Month Median PLWTP Effluent Concentration ^{A, B}	Projected 6- Month Median Receiving Water Concentration After Initial Dilution ^c	Percent of the Ocean Plan 6-Month Median Receiving Water Standard of 30 µg/L ^D	Requirement that Receiving Water Quality is Less than 50% of Ocean Plan Standard? ^E
2017	91.5	0.45	1.49%	Yes
2018	94.0	0.46	1.53%	Yes
2019	87.3	0.43	1.42%	Yes
2020	83.1	0.41	1.35%	Yes

Table 15 Notes:

A. PLOO effluent concentrations monitored at Monitoring Location EFF-001 for the period 2017-2020. Year 2020 was the last year for which an entire calendar year of data are available at the time of preparation of this report. The 2017-2020 data base includes days on which two daily samples were collected and analyzed.

B. Maximum 6-month median value observed during the listed year. See Table 7.

C. Computed receiving water concentration upon completion of initial dilution, as computed using a minimum month initial dilution of 204:1 in accordance with Ocean Plan computational procedures (e.g., Ocean Plan Equation No. 1).

D. Projected receiving water concentration after initial dilution as a percent of the *Ocean Plan* 6-month median non-chlorinated phenol receiving water standard of 30 µg/L to be achieved upon completion of initial dilution.

E. Pursuant to Section IV.D.2 (page F-40) of Appendix F to of Order No. R9-2017-0007 and the 2017 EPA Final Decision Document (EPA, 2017), water quality effects are defined as "non-significant" if receiving water concentrations remain 50% below the corresponding Ocean Plan receiving water standard.

Projected Future Concentrations and Mass Emissions. While per capita influent loads of non-chlorinated phenolic compounds appear to have leveled out in the past several years (see Figure 5), it is uncertain whether the current per capita loads for non-chlorinated phenolic compounds will be sustained or will increase. Even if existing per capita influent loads of non-chlorinated phenolic compounds are sustained, future PLOO mass emissions of phenolics are likely to continue to rise as a result of population growth. Annual MERs for non-chlorinated phenolic compounds will also be subject to variation in treatment removal at the PLWTP.

Figure 7 presents estimated future PLOO effluent MERs for non-chlorinated phenolic compounds for two cases:

Most Probable Estimate: This "most probable" estimate is based on future population increases which maintain the approximate 1.0% annual population growth rate that has occurred during the past 5 years. The estimate is also based on an average per capita load for non-chlorinated phenolic compounds of 27 milligrams per person per day, which is the per capita load that

concentration for non-chlorinated phenolic compounds occurred in July, when initial dilutions would be expected to be higher than the 204:1 minimum average month initial dilution assigned within Order No. R9-2017-0007.

occurred during 2018–2020, the most recent 3-year period. The most probable estimate also is based on a treatment removal at the PLWTP of 33%, which is the average PLWTP treatment removal rate for non-chlorinated phenolic compounds achieved during 2018–2020.

Upper Bound Estimate: The upper bound estimate assumes that the annual per capita load factor for non-chlorinated phenolic compounds increases to 30 mg per person per day, and the San Diego Metropolitan Sewerage System (Metro System) population grows at a rate of 1.5% per year. The upper bound estimate is also based on a 25% treatment removal at the PLWTP, which is the lowest annual PLWTP percent removal observed for non-chlorinated phenolic compounds during the past 6 years.

As shown in Figure 7, future PLOO mass emissions of non-chlorinated phenolic compounds during 2022-2028 (which will likely encompass the effective life of the renewed PLOO NPDES permit) are likely to increase. Under most likely conditions, PLOO MERs for non-chlorinated phenolic compounds are projected to increase to over 17 mt/yr by 2028. Under "upper bound" assumed conditions, the PLOO MERs for non-chlorinated phenolic compounds could exceed 21 mt/yr by 2028.

Table 16 presents projected PLOO receiving water conditions for year 2028 (the presumed expiration year for the renewed PLWTP NPDES permit) under for the above-described "most probable" and "upper bound" scenarios. As shown in Table 16, projected year 2028 receiving water non-chlorinated phenol concentrations at the ZID boundary under both scenarios represent less than 2% of the Ocean Plan 6-month median receiving water quality objective for non-chlorinated phenolic compounds.

As a result, receiving water concentrations during the upcoming 5-year NPDES period are projected to comply with Tier 1 Level of Significance criterion of not exceeding 50% of the allowable Ocean Plan water quality objective. Continued compliance with the Tier 1 Level of Significance criteria for non-chlorinated phenolic compounds is thus assured during the next 5-year NPDES period under both the "most probable" and "upper bound" scenarios. As also shown in Table 16, PLWTP effluent concentrations of non-chlorinated phenolic compounds would have to increase by almost two orders of magnitude in order to approach the 50% Level of Significance criterion.

Table 16: Projected Year 2028 Compliance with Tier 1 Receiving Water Level of Significance Criteria Non-Chlorinated Phenolic Compounds

	Scer	nario
Year 2028 Parameter ^A	Most Probable Conditions ^B	Upper Bound Estimate ^c
Estimated 2028 Metro System population (millions) ^{D}	2.48 million	2.58 million
Projected 2028 PLWTP annual flow (mgd) E	156 mgd	163 mgd
Projected 2028 PLWTP effluent MER for non-chlorinated phenolic compounds ^F	17.1 mt/yr	21.2 mt/yr
Projected 2028 PLWTP effluent concentration of non-chlorinated phenolic compounds ^F	79.3 μg/L	94.5 μg/L
Projected 2028 receiving water concentration at the ZID boundary after 204:1 initial dilution	0.39 µg/L	0.46 µg/L
Projected 2028 receiving water concentration as a percent of the Ocean Plan 6-Month median receiving water quality objective of 30 µg/L	1.3 %	1.5 %
Is the projected receiving water quality within the Tier 1 Level of Significance requirement that receiving water quality concentrations at the boundary of the ZID are less than 50% of the Ocean Plan objective?	Yes	Yes

Table 16 Notes:

A. Year 2028 is used in the above example, as it is presumed that the renewed NPDES 301(h) modified secondary treatment permit for the PLWTP will be adopted in 2023 and the 5-year NPDES permit term will expire in 2028.

B. Most probable conditions estimated for year 2028 are based on future Metro System population increases of 1.0% per year, per capita loads for non-chlorinated phenolic compounds of 27 mg per person per day, and a PLWTP treatment removal rate for non-chlorinated phenolic compounds of 33%.

C. Upper bound estimate for year 2028 is based on future Metro System population increases of 1.5% per year, per capita loads for non-chlorinated phenolic compounds of 30 mg per person per day, and a PLWTP treatment removal rate for non-chlorinated phenolic compounds of 25%.

D. Based on a year 2020 estimated Metro System population of 2.303 million and the listed annual population percent increases for the most probable conditions (1% growth per year) and upper bound conditions (1.5% growth per year). Values rounded to three significant figures.

E. Based on a 63 gpcd flow contribution (which assumes the year 2020 per capita flow contribution will be sustained) and the listed estimated Metro System populations for year 2028. Values rounded to three significant figures.

F. Based on the listed Metro System flows and the above-listed per capita loads and above-listed PLWTP treatment removals for non-chlorinated phenolic compounds.

Ammonia-Nitrogen

Table 17 presents maximum PLWTP effluent concentrations of ammonia-nitrogen during 2017-2020 and compares projected receiving water concentrations with daily maximum performance goals established in Table 3 of the Ocean Plan. Table 18 presents maximum observed 6-month median values for ammonia-nitrogen in the PLWTP effluent during 2017-2020 and compares projected 6-month median receiving water concentrations with 6-month median standards established in the Ocean Plan.

The highest observed concentration of ammonia–nitrogen in the PLWTP effluent during 2017–2020 was 48.1 mg/L. At a minimum average month dilution of 204:1, this maximum daily concentration corresponds to a receiving water concentration at the edge of the ZID that approximately 235 μ g/L – a value that is less than 10% of the Ocean Plan daily maximum receiving water quality objective of 2400 μ g/L.

The highest observed 6-month median values for ammonia-nitrogen during 2017-2020 was 44.1 mg/L. At a minimum average month dilution of 204:1, this maximum 6-month median concentration corresponds to a receiving water concentration at the edge of the ZID that approximately 215 μ g/L – a value that is roughly one-third of the Ocean Plan 6-month median receiving water quality objective.

Year	Ammonia-Nitro (µ Daily Maximum PLWTP Effluent Concentration _{A,B}	gen Concentration g/L) Projected Daily Maximum Receiving Water Concentration After Initial Dilution ^c	Receiving Water Concentration as a Percent of the Ocean Plan Daily Maximum Receiving Water Standard of 2400 µg/L ^D	Compliance with Tier 1 Requirement that Receiving Water Quality is Less than 50% of Ocean Plan Standard? ^E	
2017	44,500	217	9.0%	Yes	
2018	48,100	235	9.8%	Yes	
2019	46,400	226	9.4%	Yes	
2020	46,900	229	9.5%	Yes	

Table 17: PLOO Ammonia-Nitrogen Compliance with Ocean Plan Daily Maximum Receiving Water Standard

Table 17 Notes:

A. PLOO effluent concentrations monitored at Monitoring Location EFF-001 for the period 2017-2020. Year 2020 was the last year for which an entire calendar year of data are available at the time of preparation of this report. The 2017-2020 data base includes days on which two daily samples were collected and analyzed.

B. Maximum sample value observed during the listed year. See Table 2.

C. Computed receiving water concentration upon completion of initial dilution, as computed using a minimum month initial dilution of 204:1 in accordance with Ocean Plan computational procedures (e.g., Ocean Plan Equation No. 1).

D. Projected receiving water concentration after initial dilution as a percent of the Ocean Plan daily maximum ammonia-nitrogen receiving water standard of 2400 µg/L to be achieved upon completion of initial dilution.

E. Pursuant to Section IV.D.2 (page F-40) of Appendix F to of Order No. R9-2017-0007 and the 2017 EPA Final Decision Document (EPA, 2017), water quality effects are defined as "non-significant" if receiving water concentrations remain 50% below the corresponding Ocean Plan receiving water standard.

Table 18: PLOO Ammonia-Nitrogen Compliance with Ocean Plan 6-Month Median Receiving Water Standard

	Ammonia-Nitro (µ	gen Concentration g/L)	Receiving Water	Compliance with
Year	Maximum ObservedPVear6-MonthMaximum MaximumPLWTP EffluentAA,BA		Percent of the Ocean Plan 6-Month Median Receiving Water Standard of 600 µg/L ^D	Requirement that Receiving Water Quality is Less than 50% of Ocean Plan Standard? ^E
2017	42,100	205	34%	Yes
2018	43,700	213	36%	Yes
2019	44,100	215	36%	Yes
2020	43,900	214	36%	Yes

Table 18 Notes:

- A. PLOO effluent concentrations monitored at Monitoring Location EFF-001 for the period 2017-2020. Year 2020 was the last year for which an entire calendar year of data are available at the time of preparation of this report. The 2017-2020 data base includes days on which two daily samples were collected and analyzed.
- B. Maximum 6-month median value observed during the listed year. See Table 6.
- C. Computed receiving water concentration upon completion of initial dilution, as computed using a minimum month initial dilution of 204:1 in accordance with Ocean Plan computational procedures (e.g., Ocean Plan Equation No. 1).
- D. Projected receiving water concentration after initial dilution as a percent of the *Ocean Plan* 6-month median ammonia-nitrogen receiving water standard of 600 µg/L to be achieved upon completion of initial dilution.
- E. Pursuant to Section IV.D.2 (page F-40) of Appendix F to of Order No. R9-2017-0007 and the 2017 EPA Final Decision Document (EPA, 2017), water quality effects are defined as "non-significant" if receiving water concentrations remain 50% below the corresponding Ocean Plan receiving water standard.

Projected Future Concentrations and Mass Emissions. While per capita influent loads of ammonianitrogen are relatively stable, future population increases are projected to result in increased Metro System loads of ammonia-nitrogen. Figure 8 presents estimated future PLOO effluent MERs for ammonia-nitrogen for the previously-described "most probable" conditions and "upper bound" conditions.

Figure 8: Projected Range of Future PLOO Mass Emissions of Ammonia-Nitrogen

As shown in Figure 8, under the "most probable" scenario, PLOO MERs for ammonia-nitrogen are projected to increase to over 8500 mt/yr by 2028. Under "upper bound" assumed conditions, the PLOO MERs for ammonia-nitrogen could exceed 9500 mt/yr by 2028.

Table 19 presents projected ammonia-nitrogen concentrations in PLOO receiving waters for year 2028 under for the above-described "most probable" and "upper bound" scenarios. As shown in Table 19, projected year 2028 receiving water concentrations at the ZID boundary under both scenarios are projected to be within the Tier 1 Level of Significance criterion (e.g., less than 50% of the Ocean Plan water quality objective for ammonia-nitrogen).

Table 19:

Projected Year 2028 Compliance with Tier 1 Receiving Water Level of Significance Criteria Ammonia-Nitrogen

	Scer	nario
Year 2028 Parameter ^A	Most Probable Conditions ^B	Upper Bound Estimate ^c
Estimated 2028 Metro System population (millions) $^{\scriptscriptstyle \mathrm{D}}$	2.48 million	2.58 million
Projected 2028 PLWTP annual flow (mgd) ^E	156 mgd	163 mgd
Projected 2028 PLWTP effluent MER for ammonia-nitrogen ^F	8,650 mt/yr	9600 mt/yr
Projected 2028 PLWTP effluent concentration of ammonia- nitrogen ^F	40.1 mg/L	42.8 mg/L
Projected 2028 receiving water concentration of ammonia- nitrogen at the ZID boundary after 204:1 initial dilution	196 µg/L	209 µg/L
Projected 2028 receiving water concentration as a percent of the Ocean Plan 6-Month median receiving water quality objective of 600 µg/L	32.6 %	34.8 %
Is the projected receiving water quality within the Tier 1 Level of Significance requirement that receiving water quality concentrations at the boundary of the ZID are less than 50% of the Ocean Plan objective?	Yes	Yes

Table 19 Notes:

A. Year 2028 is used in the above example, as it is presumed that the renewed NPDES 301(h) modified secondary treatment permit for the PLWTP will be adopted in 2023 and the 5-year NPDES permit term will expire in 2028.

B. Most probable conditions estimated for year 2028 are based on future Metro System population growth of 1.0% per year, per capita loads for ammonia-nitrogen of 27 mg per person per day, and a PLWTP treatment removal rate for ammonia-nitrogen of 2%, which is the average ammonia-nitrogen removal rate achieved in 2018-2020.

C. Upper bound estimate for year 2028 is based on future Metro System population increases of 1.5% per year, per capita loads for ammonia-nitrogen of 30 mg per person per day, and a PLWTP treatment removal rate for ammonia-nitrogen of 0%.

D. Based on a year 2020 estimated Metro System population of 2.303 million and the listed annual population percent increases for the most probable conditions (1% growth per year) and upper bound conditions (1.5% growth per year). Values rounded to three significant figures.

E. Based on a 63 gpcd flow contribution (which assumes the year 2020 per capita flow contribution will be sustained) and the listed estimated Metro System populations for year 2028. Values rounded to three significant figures.

F. Based on the listed Metro System flows and the above-listed per capita loads and above-listed PLWTP treatment removals for ammonia-nitrogen.

It should be noted the ammonia-nitrogen mass emission projections depicted in Figure 8 and presented in Table 19 are based on continuation of recent trends in ammonia-nitrogen loads. The projected future increased mass loads of ammonia-nitrogen may, in part, be offset by planned upgrades to Metro System treatment and solids handling operations as part of Pure Water. As documented within Appendix B, improvements associated with Phase 1 of Pure Water includes expansion and upgrades to the North City Water Reclamation Plant and upgrades to Metro System solids handling facilities and operations. Additional Metro System improvements will also be implemented as part of Phase 2 of Pure Water.

Effluent Concentrations Required to Trigger Tier 1 Analysis

As noted, the Ocean Plan establishes daily maximum and 6-month median receiving water quality objectives for non-chlorinated phenolic compounds at 120 μ g/L and 30 μ g/L, respectively. Ocean Plan receiving water quality objectives for ammonia-nitrogen are established at 2400 μ g/L (daily maximum) and 600 μ g/L (6-month median). The Ocean Plan objectives apply to state-regulated waters outside of the designated ZID and to be achieved upon completion of initial dilution.

Table 20 compares maximum observed PLWTP effluent concentrations with effluent concentrations required to cause receiving waters at the boundary of the ZID to reach 50% of the Ocean Plan receiving water quality objectives. As shown in the table, at the assigned PLOO minimum month initial dilution of 204:1, a sustained PLWTP effluent concentration for non-chlorinated phenolic compounds of 3,075 μ g/L would be required to reach the Tier 1 Level of Significance criterion of 50% of the Ocean Plan 6-month median objective. A sustained PLWTP effluent ammonia-nitrogen concentration of 61.5 mg/L would be required to reach 50% of the Ocean Plan 6-month median objective.

Table 20: PLWTP Effluent Concentrations Required to Approach Tier 1 Level of Significance Threshold

		Concentration (µg/L)					
Parameter	neterTime PeriodOcean Plan Receiving Water Quality Objective APLWTP E Concentration Reach 50% of t Receiving Water Objectorinated ompoundsDaily Maximum12012,3-NitrogenDaily Maximum303,0°-NitrogenDaily Maximum2400246,06-month Median60061,5	PLWTP Effluent Concentration Required to Reach 50% of the Ocean Plan Receiving Water Quality Objective ^B	Maximum Observed PLWTP Effluent Concentration 2017-2020				
Non-Chlorinated	Daily Maximum	120	12,300	141 ^c			
Phenolic Compounds	6-month Median	30	3,075	94 ^D			
Ammonia-Nitrogen	Daily Maximum	2400	246,000	48,100 ^E			
Annionia-Nitrogen	6-month Median	600	61,500	44,100 ^F			

Table 20 Notes:

A. Ocean Plan receiving water quality objective to be achieved upon completion of initial dilution. From Table 3 (page 9) of the Ocean Plan (SWRCB, 2019).

B. Based on the 204:1 initial dilution value assigned in Order No. R9-2017-0007 (NPDES CA0107409).

C. Maximum daily PLWTP effluent concentration for non-chlorinated phenolic compounds during 2017–2020. From Table 14.

D. Maximum 6-month median PLWTP effluent concentration for non-chlorinated phenolic compounds during 2017-2020. From Table 15.

E. Maximum daily PLWTP effluent ammonia-nitrogen concentration during 2017-2020. From Table 17.

F. Maximum 6-month median PLWTP ammonia-nitrogen concentration during 2017-2020. From Table 18.

4 TIER 1 CONCLUSIONS

4.1 Tier 1 Compliance – Existing Discharge

Compliance with Performance Goals

As noted, EPA established mass emission performance goals within Table 7 of Order No. R9–2017–0007 to set forth a framework for evaluating the need to assess compliance with federal antidegradation requirements at the time of permit reissuance. Tier 1 antidegradation compliance is presumed for constituents that comply with the EPA mass emission performance goals.

As documented in Table 1, the PLOO discharge complied with the EPA Table 7 mass emission performance goals during 2017-2020 for all constituents except non-chlorinated phenolic compounds and ammonia. As a result, no Tier 1 analysis is required for any parameters other than non-chlorinated phenolic compounds and ammonia.

The PLOO discharge exceeded the Table 7 EPA mass emission performance goals for nonchlorinated phenol and ammonia-nitrogen. As a result, a Tier 1 "level of significance" analysis is presented herein (see Chapter 3) to evaluate whether or not the PLOO discharge of nonchlorinated phenolic compounds and ammonia result significant water quality impacts which would require a Tier 2 antidegradation analysis.

While concentrations of non-chlorinated phenolic compounds and ammonia-nitrogen exceeded the EPA mass emission performance goal benchmarks established in Table 7 of Order No. R9-2017-0007, PLOO concentrations and mass emissions of non-chlorinated phenolic compounds and ammonia-nitrogen were significantly less than the water quality-based performance goals established in Table 6 of Order No. R9-2017-0007.

Additionally, PLOO concentration and MERs were such that the PLOO complied with applicable federal water quality criteria for non-chlorinated phenolic compounds and ammonia-nitrogen by a considerable margin. Further, the PLOO discharge during 2017-2020 achieved 100% compliance with chronic toxicity WQBELs established within Table 5 of Order No. R9-2017-0007.

Pollutant Sources

As documented herein, monitoring of Metro System SIUs consistently shows that industrial dischargers are not contributing any significant loads of non-chlorinated phenolic compounds or ammonia-nitrogen. Electroplating and metal finishing industries with the potential to discharge non-chlorinated phenolic compounds are regulated through federal TTO limits, and other potential phenol dischargers are regulated through approved TOMPs. Overall, these existing practices have proven effective in limiting industrial discharges of non-chlorinated phenolic compounds.

Because of the lack of industrial sources, loads of non-chlorinated phenolic compounds and ammonia-nitrogen are predominantly from domestic/commercial sources. PLWTP influent concentrations of each have increased in recent years, in part due to effects of water conservation. Per capita mass loads of ammonia have remained relatively stable over the past decade. A trend of increased per capita loads for non-chlorinated phenolic compounds, however, has been observed during the past two decades, likely as a result of increased consumer use of the large array of personal care and home products that contain non-chlorinated phenol.

Loads from non-chlorinated phenolic compounds and ammonia-nitrogen are annually assessed as part of Metro System Local Limits assessments. Because of the lack of industrial sources and the existence of existing regulation of potential sources (e.g., TTO limits, TOMPs or Best Management Practices (BMPs)), each of the annual local limits studies have determined that no need exists for establishing a local limit for either non-chlorinated phenolic compounds or ammonia-nitrogen. As part of annual local limits updates, however, the City updates and assesses sewer collection system and industrial user monitoring information to determine if any specific industrial users or groups of dischargers warrant additional monitoring or sewer discharge regulation.

Level of Significance Analysis

Provision VI.C.2.e of Order No. R9-2009-0001 (the PLOO NPDES permit that preceded Order No. R9-2017-0007) establishes a level of significance test where water quality impacts are deemed "not significant" if projected receiving water quality beyond the ZID is less than 50% of the Ocean Plan receiving water objective.

As demonstrated in Chapter 3, the existing PLOO discharge complies with this "significance" test by nearly two orders of magnitude (10²) for non-chlorinated phenolic compounds. The PLOO discharge also complies with this Level of Significance test for ammonia-nitrogen.

Because existing and projected mass emissions of non-chlorinated phenolic compounds and ammonia-nitrogen conform to the Tier 1 50% threshold criterion, water quality effects associated with the increased mass emissions of non-chlorinated phenolic compounds are deemed not significant. The PLOO discharge complies with all water quality standards to protect beneficial uses and complies with Tier 1 antidegradation requirements in that the discharge ensures that:

- Receiving water quality is better than necessary to fully protect and support beneficial uses, including body contact and non-contact recreation and the propagation of fish, shellfish and wildlife.
- Receiving water quality concentrations of non-chlorinated phenolic compounds and ammonia-nitrogen are maintained at least 50% below applicable Ocean Plan water quality standards.

On this basis, the existing PLOO discharge complies with Tier 1 antidegradation regulations, and no Tier 2 socioeconomic analysis is required for non-chlorinated phenolic compounds or ammonia-nitrogen.

Conformance with State Antidegradation Provisions

By complying with NPDES permit concentration and mass emission WQBELs and performance goals that implement Ocean Plan receiving water quality objectives, the PLOO discharge is consistent with maintaining the existing high quality of water necessary to support beneficial use. Further, the PLOO discharge will not unreasonably affect present or anticipated beneficial uses. The PLOO discharge is thus in conformance with antidegradation provisions established within SWRCB Resolution No. 68-16.

4.2 Tier 1 Compliance – Projected Future Conditions

Trends in Mass Loads

As discussed in Chapter 3, per capita mass loads of ammonia-nitrogen appear to remain relatively level, but increases in future Metro System ammonia-nitrogen loads are likely to occur as a result of projected population increase. Per capita mass loads of non-phenolic compounds appear to have increased over the past 10 years, although these per capita loads appear relatively stable during the past 3 years. Even if per capita loads remain level, future Metro System mass loads of non-chlorinated phenolic compounds are likely to increase as a result of population.

While mass emissions of non-chlorinated phenolic compounds and ammonia-nitrogen are projected to increase, the PLOO discharge is projected to continue to comply with applicable water quality objectives. By the end of the next decade, PLOO concentrations of non-chlorinated phenolic compounds (see Table 16) may average 80 to 90 μ g/L, but these concentrations would continue to comply with applicable Ocean Plan receiving water quality objectives by nearly two orders of magnitude. As shown in Table 19, sustained PLWTP effluent concentrations of non-chlorinated phenolic compounds of more than 3,000 μ g/L would be required to cause receiving water concentrations to reach 50% of the Ocean Plan 6-month median receiving water standard.

Other than a slight increase in the middle of the past decade due water conservation effects, PLWTP effluent concentrations of ammonia-nitrogen have increased only slightly in proportion to estimated population gains. As a result, no significant increase is forecast for PLWTP influent or effluent concentrations of ammonia-nitrogen. Sustained PLWTP effluent ammonia-nitrogen concentrations in excess of 60,000 μ g/L would be required to cause receiving water concentrations to reach 50% of the Ocean Plan 6-month median objective for ammonia-nitrogen, and the gradual projected rise in ammonia-nitrogen mass loads at the PLWTP is not projected to near this threshold.

It should be noted that future Metro Systems improvements and upgrades implemented as part of Pure Water, may offer the potential for partially offsetting or reducing PLWTP ammonia loads. Improvements proposed as part of Phase 1 of Pure Water (see Appendix B) may be implemented within the effective period of the renewed PLOO NPDES permit.

Continued Projected Conformance with Tier 1 Thresholds

Projected future increases in PLOO mass emissions of non-chlorinated phenolic compounds and ammonia-nitrogen are projected to remain protective of water quality and ensure that receiving water concentrations remain below 50% of applicable Ocean Plan water quality objectives. Thus, the PLOO discharge is projected to remain in conformance with Tier 1 antidegradation requirements under the anticipated range of future mass loads of nonchlorinated phenolic compounds and ammonia-nitrogen.

As documented herein, both the current and projected future PLWTP effluent concentrations of phenolic compounds (non-chlorinated) and ammonia are projected to remain far below the

Tier 1 threshold of 50% below the Ocean Plan receiving water standard. It is thus concluded that:

- 1) no realistic potential exists for the PLWTP effluent to approach anywhere near the Tier 1 "level of significance" threshold for non-chlorinated phenolic compounds or ammonia-nitrogen, either on a near-term or long-term basis, and
- 2) compliance with the Tier 1 "level of significance" criteria is projected to continue throughout all foreseeable future conditions (including future projected population growth and future projected increases in PLOO mass emissions of non-chlorinated phenolic compounds and ammonia-nitrogen).

REFERENCES

- San Diego, City of, 2011. Point Loma Wastewater Treatment Plant, Non-Chlorinated Phenol Antidegradation Special Study, Evaluation of Significance.
- San Diego, City of, Public Utilities Department. 2015. Application for Renewal of NPDES CA0107409 & 301(h) Modified Secondary Treatment Requirements, City of San Diego Point Loma Ocean Outfall.
- San Diego, City of, Public Utilities Department, 2017–2020. PLWTP monthly, quarterly and annual monitoring reports submitted to the RWQCB.
- Sam Diego, City of, Industrial Waste Control Program, 2009–2020. E.W. Blom Point Loma Metropolitan Wastewater Treatment Plant Annual Pretreatment Report.
- San Diego, City of., and Malcom Pirnie, Inc., 1996. Urban Area Pretreatment Program, City of San Diego metropolitan Wastewater Department, Metropolitan Industrial Waste Program.
- State Water Resources Control Board (SWRCB), 2019. Water Quality Control Plan, Ocean Waters of California (Ocean Plan).
- State Water Resources Control Board (SWRCB), 1990. "Administrative Procedures Update, Antidegradation Policy Implementing for NPDES Permitting" (APU 90-004). July 2, 1990.
- State Water Resources Control Board (SWRCB), 1968. Resolution No. 68–16, Statement of Policy with Respect to Maintaining High Quality of Waters in California.
- United States Environmental Protection Agency, Region IX, 2017. Final Decision of the Regional Administrator Pursuant to 40 CFR Part 125, Subpart G, City of San Diego's Point Loma Wastewater Treatment Plant Application for a Modified NPDES Permit Under Sections 301(h) and (j)(5) of the Clean Water Act. August 4, 2017.
- United States Environmental Protection Agency (EPA), 2015a. Water Quality Standards Regulatory Revisions. Federal Register. Volume 80, Number 162. August 21, 2015.
- United States Environmental Protection Agency (EPA), 2015b. Update of Human Health Ambient Water Quality Criteria: Phenol 1089-95-2. EPA Publication 820-R-15-061. June 2015.
- United States Environmental Protection Agency (EPA), 2015c. Final Updated Ambient Water Quality Criteria for the Protection of Human Health. Federal Register. Volume 80, No. 124, June 29, 2015.

- United States Environmental Protection Agency (EPA), 2010. National Pollutant Discharge Elimination System Test of Significant Toxicity Implementation Document. EPA Publication 833-R-10-003.
- United States Environmental Protection Agency (EPA), 1995. Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms, EPA Publication 600-R-95/136.
- United States Environmental Protection Agency (EPA), 1989. Ambient Aquatic Life Water Quality Criteria for Ammonia (Saltwater). EPA Publication 440/5-888-004. April 1989.
- United States Environmental Protection Agency (EPA). Federal antidegradation regulations, Title 40, Section 131.12, Code of Federal Regulations.
- U.S. Environmental Protection Agency (EPA) and Regional Water Quality Control Board, San Diego Region (RWQCB), 2017. Order No. R9–2017–0007 (NPDES NO. CA0107409) Waste Discharge Requirements and National Pollutant Discharge Elimination System Permit for the City of San Diego E.W. Blom Point Loma Metropolitan Wastewater Treatment Plant Discharge to the Pacific Ocean through the Point Loma Ocean Outfall, San Diego County.
- U.S. Environmental Protection Agency (EPA) and Regional Water Quality Control Board, San Diego Region (RWQCB). 2009. Order No. R9–2009–0001 (NPDES NO. CA0107409) Waste Discharge Requirements and National Pollutant Discharge Elimination System Permit for the City of San Diego E.W. Blom Point Loma Metropolitan Wastewater Treatment Plant Discharge to the Pacific Ocean through the Point Loma Ocean Outfall, San Diego County.
- U.S. Environmental Protection Agency (EPA) and Regional Water Quality Control Board, San Diego Region (RWQCB), 2002. Order No. R9–2002–0025 (NPDES NO. CA0107409) Waste Discharge Requirements and National Pollutant Discharge Elimination System Permit for the City of San Diego E.W. Blom Point Loma Metropolitan Wastewater Treatment Plant Discharge to the Pacific Ocean through the Point Loma Ocean Outfall, San Diego County.
- U.S. Environmental Protection Agency (EPA) and Regional Water Quality Control Board, San Diego Region (RWQCB), 1995. Order No. 95-06 (NPDES NO. CA0107409) Waste Discharge Requirements and National Pollutant Discharge Elimination System Permit for the City of San Diego E.W. Blom Point Loma Metropolitan Wastewater Treatment Plant Discharge to the Pacific Ocean through the Point Loma Ocean Outfall, San Diego County.

ATTACHMENT 1: PLWTP EFFLUENT DATA, 2017-2020 Non-Chlorinated Phenolics and Ammonia-Nitrogen

Year	Number of Sample Dates	Parameter	Average Daily Phenol Concentration (µg/L)	Average Daily 4-Methylphenol Concentration (µg/L)	Average Daily Concentration Total Non- Chlorinated Phenols (µg/L)	Daily MERs for Non-Chlorinated Phenolic Compounds (lbs/day)	Average Daily Ammonia-N Concentration (mg/L)	Daily MERs for Ammonia-N (lbs/day)
		Maximum Value	46.7	81.0	127.6	153.2	44.5	51,827
2017		Minimum Value	7.1	21.4	40.6	54.0	24.4	39,491
2017	52	Average Value ^A	32.4	47.4	79.9	92.0	40.3	46,088
		Median Value	32.5	47.5	80.2	93.6	41.6	45,991
Year I 2017 I 2018 I 2019 I		Maximum 6-Month Median			89.7		42.2	
		Maximum Value	59.5	82.2	141.4	166.5	48.1	58,047
		Minimum Value	15.7	20.7	44.1	51.2	39.6	43,274
2018	52	Average Value ^A	36.3	47.0	83.3	96.2	43.0	49,800
		Median Value	36.6	48.2	83.8	95.7	43.1	49,941
		Maximum 6-Month Median			91.3		43.7	
		Maximum Value	53.4	76.1	129.5	142.6	46.4	54,620
		Minimum Value	5.5	20.0	35.2	57.3	27.2	40,309
2019	52 ^B	Average Value ^A	30.3	45.0	79.1	93.6	41.8	49,011
		Median Value	30.6	44.0	77.7	91.6	42.9	49,632
		Maximum 6-Month Median			87.3		44.1	

Summary Table for Daily Non-Chlorinated Phenolic Compounds and Ammonia-Nitrogen, 2017-2020

Year	Number of Sample Dates	Parameter	Average Daily Phenol Concentration (µg/L)	Average Daily 4-Methylphenol Concentration (µg/L)	Average Daily Concentration Total Non- Chlorinated Phenols (µg/L)	Daily MERs for Non-Chlorinated Phenolic Compounds (lbs/day)	Average Daily Ammonia-N Concentration (mg/L)	Daily MERs for Ammonia-N (lbs/day)
		Maximum Value	47.1	70.2	113.0	142.5	47.1	55,660
		Minimum Value	18.4	19.0	40.9	45.8	36.5	42,208
2020	53	Average Value ^A	33.4	41.8	75.2	90.1	41.7	49,713
Year No. 2020 - 2017 - -2020 -		Median Value	33.9	43.9	77.9	93.1	42.0	50,281
		Maximum 6-Month Median			85.4		44.1	
		Maximum Value	59.5	82.2	141.4	166.5	48.1	58,047
		Minimum Value	5.5	19.0	40.6	45.8	24.4	39,491
2017	209 ^c	Average Value ^A	33.1	45.3	79.4	92.9	41.7	48,658
-2020		Median Value	33.0	45.8	78.7	92.9	42.3	48,910
		Maximum 6-Month Median			91.3		44.4	

Notes:

A. Annual average computed as the arithmetic average of daily values during the listed year. Listed values may differ from annual averages computed as the average of twelve monthly averages.

B. A total of 53 samples for phenol and ammonia-nitrogen were collected and analyzed during 2019. A total of 44 samples during 2019 were analyzed for 4-methylphenol. See following table.

C. Total number of phenol and ammonia-nitrogen samples during 2017-2020. A total of 200 samples during 2017-2020 were analyzed for 4-methylphenol.

Daily PLWTP Effluent Concentrations and Computed Mass Emissions for Non-Chlorinated Phenolic Compounds and Ammonia-Nitrogen, 2017-2020

Sample Date	PLWTP Flow (mgd)	Average Daily Effluent Phenol Concentration (µg/L)	Average Daily Effluent 4-Methylphenol Concentration (µg/L)	Average Daily Effluent Concentration for Non-Chlorinated Phenolics (µg/L)	Running 6-Month Median Concentration for Non-Chlorinated Phenolics (µg/L)	Daily MER for Non- Chlorinated Phenolic Compounds (lbs/day)	Average Daily Effluent Ammonia-N Concentration (mg/L)	Running 6-Month Median Ammonia-N Concentration (mg/L)	Daily MER for Ammonia-N (lbs/day)
3-Jan-17	158.7	31.9	56.0	87.9	85.0 ^A	116 ^B	36.2	39.8	47,913
9-Jan-17	152.4	38.2	72.3	110.5	86.5 ^A	140 ^B	37.9	39.8	48,172
18-Jan-17	153.2	30.9	59	89.9	87.9 ^A	115 ^B	38.3	39.6	48,935
23-Jan-17	231.4	16.6	33.2	49.8	86.5 ^A	96.1 ^B	24.4	39.6	47,089
1-Feb-17	155.6	28.0	47.1	75.1	85.0 ^A	97.5 ^в	38.1	39.3	49,443
7-Feb-17	162.0	27.2	47.1	74.3	80.7 ^A	100 ^B	36.1	39.0	48,774
15-Feb-17	151.2	29.5	45.8	75.3	78.0 ^A	95.0 ^B	37.4	38.8	47,162
20-Feb-17	167.2	23.4	47.9	71.3	75·3 ^A	99.4 ^B	33.1	38.6	46,156
2-Mar-17	189.4	7.1	33.5	40.6	75.2 ^A	64.1 ^B	30.3	38.6	47,862
6-Mar-17	173.1	29.5	60.2	89.7	75·3 ^A	130 ^B	35.9	38.3	51,827
15-Mar-17	153.2	38.0	57.9	95.9	75·3 ^A	123 ^B	38.7	38.2	49,447
20-Mar-17	148.9	40.4	73.3	113.7	78.0 ^A	141 ^B	38.1	38.1	47,314
27-Mar-17	144.0	46.6	81.0	127.6	80.7 ^A	153 ^B	39.6	38.1	47,558
3-Apr-17	144.5	38.6	59.7	98.3	84.3 ^A	119 ^B	40.8	38.1	49,169
12-Apr-17	140.0	34.1	57.4	91.5	88.8 ^A	107 ^B	42.4	38.1	49,506
17-Apr-17	139.8	34.4	58.6	93.0	89.7 ^A	108 ^B	42.2	38.1	49,202
26-Apr-17	138.4	31.5	44.5	76.0	88.8 ^A	87.7 ^в	43.6	38.1	50,326
2-May-17	136.4	28.9	55.3	84.2	87.9 ^A	95.8 ^в	43.5	38.1	49,485
10-May-17	143.8	26.3	38.1	64.4	87.9 ^A	77.2 ^B	39.7	38,1	47,612
15-May-17	141.8	36.8	63.1	99.9	88.8 ^A	118 ^B	40.5	38.1	47,896
24-May-17	135.6	35.4	59.5	94.9	89.7 ^A	107 ^B	43.3	38.2	48,968
1-Jun-17	127.3	25.0	37.2	62.2	88.8 ^A	66.0 ^B	44.5	38.5	47,245
8-Jun-17	127.6	26.5	44.8	74.3 ^c	88.8 ^A	79.1 ^B	42.0	38.5	44,696
14-Jun-17	127.3	27.6	44.2	71.8	87.9 ^A	76.2 ^B	41.6	38.5	44,166
19-Jun-17	125.6	37.9	54.4	92.3	88.8 ^A	96.7 ^B	41.7	39.2	43,681
26-Jun-17	130.8	43.1	58.8	101.9	89.7 ^A	111 ^B	43.1	39.7	47,017

Sample Date	PLWTP Flow (mgd)	Average Daily Effluent Phenol Concentration (µg/L)	Average Daily Effluent 4-Methylphenol Concentration (µg/L)	Average Daily Effluent Concentration for Non-Chlorinated Phenolics (µg/L)	Running 6-Month Median Concentration for Non-Chlorinated Phenolics (µg/L)	Daily MER for Non- Chlorinated Phenolic Compounds (lbs/day)	Average Daily Effluent Ammonia-N Concentration (mg/L)	Running 6-Month Median Ammonia-N Concentration (mg/L)	Daily MER for Ammonia-N (lbs/day)
4-Jul-17	124.8	32.1	48.2	80.3	87.9 ^A	83.6 ^B	42.1	40.1	43,819
12-Jul-17	129.7	26.9	30.9	57.8	84.2 ^A	62.5 ^в	42.6	40.7	46,080
17-Jul-17	126.8	38.5	68.1	106.6	84.2 ^A	113 ^B	43.3	41.2	45,790
26-Jul-17	129.6	26.3	40	66.3	80.3 ^A	71.7 ^B	40.3	41.2	43,559
1-Aug-17	129.9	26.5	36.4	62.9	80.3 ^A	68.1 ^B	42.5	41.7	46,043
9-Aug-17	127.1	28.9	25.1	54.0	78.2 ^A	57.2 ^B	43.0	41.9	45,581
14-Aug-17	126.6	46.7	64.4	111.1	84.2 ^A	117 ^B	41.9	42.0	44,240
23-Aug-17	125.6	30.0	31.9	61.9	84.2 ^A	64.8 ^B	37.7	42.0	39,491
28-Aug-17	132.0	44.8	56.2	101.0	89.7 ^A	111 ^B	40.8	41.9	44,916
5-Sep-17	132.8	32.9	36.3	69.2	89.7 ^A	76.6 ^B	39.5	42.0	43,748
13-Sep-17	130.4	30.5	21.4	51.9	84.2 ^A	56.4 ^B	40.9	42.0	44,480
18-Sep-17	119.3	44.0	48.9	92.9	84.2 ^A	92.4 ^B	41.4	42.0	41,191
28-Sep-17	125.9	31.5	39	70.5	80.3 ^A	74.0 ^в	42.2	41.9	44,310
3-Oct-17	125.9	28.0	40.9	68.9	76.0 ^A	72.3 ^B	42.7	42.2	44,835
9-0ct-17	126.5	41.4	55.6	97.0	78.2 ^A	102 ^B	42.1	42.1	44,416
18-Oct-17	129.3	36.8	27.5	64.3	75.2 ^A	69.3 ^в	42.6	42.1	45,938
23-Oct-17	127.4	34.7	46.4	81.1	75.2 ^A	86.2 ^B	43.1	42.1	45,794
1-Nov-17	122.5	37.8	32.9	70.7	73.1 ^A	72.2 ^B	40.8	42.1	41,683
6-Nov-17	127.8	31.1	23.7	54.8	70.7 ^A	58.4 ^B	41.9	42.1	44,659
15-Nov-17	132.4	21.3	29.9	51.2	70.7 ^A	56.5 [₿]	42.8	42.1	47,260
20-Nov-17	125.2	33.2	49.6	82.8	70.7 ^A	86.5 ^B	41.4	42.1	43,229
29-Nov-17	126.7	36.7	68.1	104.8	70.7 ^A	111 ^B	42.1	42.1	44,486
4-Dec-17	128.6	35.4	40.5	75.9	71.8 ^A	81.4 ^B	40.9	42.0	43,866
13-Dec-17	125.7	19.2	32.3	51.5	70.7 ^A	54.0 ^в	41.8	42.0	43,821
18-Dec-17	120.9	31.8	38.3	70.1	70.5 ^A	70.7 ^в	41.6	42.0	41,946
27-Dec-17	129.1	45.2	43.9	89.1	70.5 ^A	95.9 ^B	41.6	41.9	44,790
1-Jan-18	121.8	37.7	65.3	103.0	70.5 ^A	105 ^B	42.6	41.9	43,274
8-Jan-18	133.7	41.6	55.9	97.5	70.5 ^A	109 ^B	42.0	41.9	46,832
17-Jan-18	134.8	38.6	51.1	89.7	70.7 ^A	101 ^B	41.6	41.9	46,768

Sample Date	PLWTP Flow (mgd)	Average Daily Effluent Phenol Concentration (µg/L)	Average Daily Effluent 4-Methylphenol Concentration (µg/L)	Average Daily Effluent Concentration for Non-Chlorinated Phenolics (µg/L)	Running 6-Month Median Concentration for Non-Chlorinated Phenolics (µg/L)	Daily MER for Non- Chlorinated Phenolic Compounds (lbs/day)	Average Daily Effluent Ammonia-N Concentration (mg/L)	Running 6-Month Median Ammonia-N Concentration (mg/L)	Daily MER for Ammonia-N (lbs/day)
22-Jan-18	139.0	39.5	61.3	100.8	70.7 ^A	117 ^B	39.6	41.9	45,907
30-Jan-18	132.0	32.7	49.8	82.5	78.5 ^A	90.8 ^B	43.8	41.9	48,219
6-Feb-18	136.1	32.0	57.8	89.8	81.8 ^A	102 ^B	43.2	41.9	49,035
12-Feb-18	141.6	45.7	58.3	104.0	82.5 ^A	123 ^B	42.5	41.9	50,190
21-Feb-18	139.6	43.1	53.7	96.8	82.5 ^A	113 ^B	44.8	42.0	52,159
26-Feb-18	135.9	53.2	80.7	133.9	82.8 ^A	152 ^B	44.4	42.1	50,323
5-Mar-18	146.0	41.0	46.6	87.6	82.8 ^A	107 ^B	41.3	42.1	50,289
14-Mar-18	144.7	32.2	20.7	52.9	82.8 ^A	63.8 ^в	48.1	42.1	58,047
19-Mar-18	148.1	45.5	61.5	107.0	87.6 ^A	132 ^B	41.2	42.1	50,888
28-Mar-18	141.2	43.4	73.5	116.9	87.6 ^A	138 ^B	43.0	42.1	50,637
2-Apr-18	137.3	36.5	38.6	75.1	88.4 ^A	86.0 ^B	43.5	42.1	49,811
11-Apr-18	133.5	32.2	39.3	71.5	85.2 ^A	79.6 ^в	43.8	42.3	48,766
16-Apr-18	134.7	45.2	70.2	115.4	88.4 ^A	130 ^B	43.7	42.3	49,092
25-Apr-18	152.9	29.6	56.9	86.5	88.4 ^A	110 ^B	44.0	42.3	56,108
2-May-18	135.1	34.8	49.1	83.9	88.4 ^A	94.5 ^в	41.7	42.3	46,985
7-May-18	131.8	42.8	49.9	92.7	89.1 ^A	102 ^B	43.5	42.6	47,816
16-May-18	137.6	31.0	30.2	61.2	89.1 ^A	70.0 ^B	42.1	42.3	48,313
21-May-18	141.2	59.2	82.2	141.4	89.7 ^A	167 ^в	44.0	42.6	51,815
30-May-18	131.0	33.6	35.2	68.8	89.7 ^A	75.2 ^B	41.1	42.6	44,903
4-Jun-18	138.2	43.7	39.9	83.6	89.1 ^A	96.4 ^в	40.8	42.6	47,026
13-Jun-18	134.5	30.3	37	67.3	89.1 ^A	75.5 [₿]	41.5	42.6	46,552
18-Jun-18	134.4	52.7	69.1	121.8	89.7 ^A	137 ^B	45.1	42.8	50,552
27-Jun-18	128.2	41.6	55.4	97.0	89.8 ^A	104 ^B	46.1	43.1	49,290
2-Jul-18	131.4	40.5	53.6	94.1	91.3 ^A	103 ^B	44.5	43.4	48,766
10-Jul-18	133.8	20.9	28.6	49.5	89.8 ^A	55.2 ^B	44.9	43.5	50,104
16-Jul-18	137.7	35.4	47.3	82.7	89.7 ^A	95.0 ^в	43.6	43.6	50,071
25-Jul-18	127.3	32.8	45.4	78.2	87.6 ^A	83.0 ^B	44.5	43.7	47,245
30-Jul-18	138.4	15.7	28.7	44.4	86.5 ^A	51.2 ^B	42.1	43.6	48,594
7-Aug-18	140.8	25.3	21.4	46.7	86.5 ^A	54.8 ^в	43.6	43.6	51,198

Sample Date	PLWTP Flow (mgd)	Average Daily Effluent Phenol Concentration (µg/L)	Average Daily Effluent 4-Methylphenol Concentration (µg/L)	Average Daily Effluent Concentration for Non-Chlorinated Phenolics (µg/L)	Running 6-Month Median Concentration for Non-Chlorinated Phenolics (µg/L)	Daily MER for Non- Chlorinated Phenolic Compounds (lbs/day)	Average Daily Effluent Ammonia-N Concentration (mg/L)	Running 6-Month Median Ammonia-N Concentration (mg/L)	Daily MER for Ammonia-N (lbs/day)
13-Aug-18	136.8	29.7	25.4	55.1	83.9 ^A	62.9 ^B	41.6	43.6	47,462
22-Aug-18	139.3	21.3	29.3	50.6	83.6 ^A	58.8 ^B	44.2	43.6	51,350
27-Aug-18	134.5	44.2	50.8	95.0	83.6 ^A	107 ^B	43.3	43.6	48,571
3-Sep-18	136.3	39.8	40.1	79.9	82.7 ^A	90.8 ^B	43.8	43.6	49,789
12-Sep-18	137.2	33.0	37.5	70.5	79.9 ^A	80.7 ^B	42.7	43.6	48,859
17-Sep-18	133.8	36.6	40.3	76.9	79.9 ^A	85.8 ^B	42.4	43.6	47,314
26-Sep-18	143.0	28.9	36.4	65.3	78.2 ^A	77.9 ^B	42.9	43.6	51,163
2-0ct-18	138.7	32.1	42.9	75.0	76.9 ^A	86.8	44.9	43.6	51,938
8-Oct-18	151.3	51.9	60.4	112.3	77.6 ^A	142 ^B	42.6	43.6	53,754
17-Oct-18	150.4	21.1	26.1	47.2	77.6 ^A	59.2 ^B	43.1	43.4	54,062
22-Oct-18	143.1	42.5	50.7	93.2	79.1 ^A	111 ^B	43.1	43.2	51,438
31-Oct-18	139.4	27.0	31.3	58.3	77.6 ^A	67.8 ^в	43.9	43.4	51,038
5-Nov-18	143.5	42.0	57.6	99.6	76.9 ^A	119 ^B	43.8	43.5	52,419
14-Nov-18	133.2	59.5	41.6	101.1	76.9 ^A	112 ^B	43.7	43.6	48,546
18-Nov-18	142.7	15.8	51.0	66.8	76.9 ^A	79.5 ^в	42.9	43.5	51,056
28-Nov-18	146.4	36.3	30.4	66.7	75.0 ^A	81.4 ^B	42.3	43.5	51,647
3-Dec-18	152.7	41.3	54.2	95.5	76.9 ^A	122 ^B	41.3	43.5	52,596
12-Dec-18	155.8	18.7	25.4	44.1	75.0 ^A	57.3 ^B	41.7	43.5	54,184
17-Dec-18	149.3	20.4	31.3	51.7	75.0 ^A	64.4 ^B	42.1	43.2	52,421
26-Dec-18	134.5	37.3	66.7	104.0	75.0 ^A	117 ^B	39.6	43.1	44,421
2-Jan-19	128.7	28.9	56.4	85.3	75.0 ^A	91.6 ^в	40.1	43.0	43,042
7-Jan-19	138.4	30.7	43.7	74.4	74.4 ^A	85.8 ^в	38.7	42.9	44,654
16-Jan-19	153.0	18.4	44.0	62.4	74.4 ^A	79.6 ^в	34.8	42.8	44,411
22-Jan-19	139.3	29.3	41.9	71.2	71.2 ^A	82.7 ^B	38.4	42.7	44,624
30-Jan-19	132.7	32.1	55.2	87.3	71.2 ^A	96.6 ^в	41.3	42.7	45,690
5-Feb-19	195.3	15.2	20.0	35.2	71.2 ^A	57.3 ^B	27.2	42.5	44,303
11-Feb-19	158.1	32.6	56.3	88.9	74.4 ^A	117.2 ^B	38.6	42.5	50,896
20-Feb-19	159.2	18.9	30.8	49.7	74.4 ^A	66.0 ^B	35.7	42.4	47,400
25-Feb-19	172.8	32.5	56.7	89.2	75.0 ^A	129 ^B	37.9	42.3	54,620

Sample Date	PLWTP Flow (mgd)	Average Daily Effluent Phenol Concentration (µg/L)	Average Daily Effluent 4-Methylphenol Concentration (µg/L)	Average Daily Effluent Concentration for Non-Chlorinated Phenolics (µg/L)	Running 6-Month Median Concentration for Non-Chlorinated Phenolics (µg/L)	Daily MER for Non- Chlorinated Phenolic Compounds (lbs/day)	Average Daily Effluent Ammonia-N Concentration (mg/L)	Running 6-Month Median Ammonia-N Concentration (mg/L)	Daily MER for Ammonia-N (lbs/day)
6-Mar-19	155.6	18.5	34	52.5	74.4 ^A	68.1 ^B	39.8	42.1	51,649
11-Mar-19	150.7	36.9	56.4	93.3	74.4 ^A	117 ^B	40.3	41.7	50,651
20-Mar-19	156.1	30.5	42.4	72.9	74.4 ^A	94.9 ^B	41.1	41.3	53,507
26-Mar-19	150.8	25.2	33.2	58.4	72.9 ^A	73.4 ^B	39.2	41.3	49,301
3-Apr-19	141.5	25.9	48.9	74.8	73.7 ^A	88.3 ^B	42.4	41.3	50,044
8-Apr-19	144.6	41.1	60.6	101.7	73.7 ^A	123 ^B	42.3	41.3	51,012
17-Apr-19	139.8	26.6	25.6	52.2	73.7 ^A	60.9 ^B	42.8	41.3	49,902
22-Apr-19	139.4	37.7	59.4	97.1	73.7 ^A	113 ^B	42.8	41.3	49,759
1-May-19	137.1	33.5	45.2	78.7	74.6 ^A	90.0 ^B	43.9	41.3	50,196
7-May-19	142.2	31.6	51.7	83.3	74.6 ^A	98.8 ^B	42.5	41.3	50,403
13-May-19	138.2	45.6	60.3	105.9	74.8 ^A	122 ^B	42.3	41.3	48,754
22-May-19	143.2	28.9	31.8	60.7	74.4 ^A	72.5 ^B	41.2	41.2	49,205
29-May-19	141.3	29.6	35.4	65.0	74.4 ^A	76.6 ^B	44.4	41.2	52,323
3-Jun-19	137.5	53.4	76.1	129.5	74.8 ^A	149 ^B	44	41.2	50,457
12-Jun-19	135.9	39.0	47.7	86.7	74.8 ^A	98.3 ^в	43	41.2	48,736
17-Jun-19	134.2	50.9	64.3	115.2	78.7 ^A	129 ^B	43.7	41.2	48,910
26-Jun-19	136.8	41.2	58.2	99.4	83.3 ^A	113 ^B	44.3	42.3	50,542
1-Jul-19	138.9	45.0	63.5	108.5	83.3 ^A	126 ^в	43.6	42.3	50,507
11-Jul-19	129.6	34.3	38.3	72.6	78.7 ^A	78.5 [₿]	45.1	42.3	48,747
15-Jul-19	128.3	45.2	55.8	101.0	83.3 ^A	108 ^B	43.3	42.4	46,332
24-Jul-19	134.7	34.5	36.1	70.6	83.3 ^A	79⋅3 ^в	42.3	42,4	47,520
29-Jul-19	131.5	40.5	46.8	87.3	86.7 ^A	95.7 ^в	44.1	42.5	48,365
6-Aug-19	133.3	42.0	35.7	77.7	83.3 ^A	86.4 ^B	45.6	42.8	50,695
12-Aug-19	133.0	51.1	47.8	98.9	86.7 ^A	110 ^B	45.7	42.8	50,691
21-Aug-19	133.1	33.0	30.1	63.1	83.3 ^A	70 ^B	46.2	42.9	51,284
26-Aug-19	130.6	46.3	51.3	97.6	86.7 ^A	106 ^B	45.7	43.2	49,777
2-Sep-19	135.5	32.7	25.4	58.1	83.3 ^A	65.7 ^в	44.1	43.3	49,836
11-Sep-19	130.2	24.6	29	53.6	83.3 ^A	58.2 ^B	45.8	43.6	49,733
16-Sep-19	133.4	51.3	47.7	99.0	83.3 ^A	110 ^B	43.3	43.6	48,174

Sample Date	PLWTP Flow (mgd)	Average Daily Effluent Phenol Concentration (µg/L)	Average Daily Effluent 4-Methylphenol Concentration (µg/L)	Average Daily Effluent Concentration for Non-Chlorinated Phenolics (µg/L)	Running 6-Month Median Concentration for Non-Chlorinated Phenolics (µg/L)	Daily MER for Non- Chlorinated Phenolic Compounds (lbs/day)	Average Daily Effluent Ammonia-N Concentration (mg/L)	Running 6-Month Median Ammonia-N Concentration (mg/L)	Daily MER for Ammonia-N (lbs/day)
25-Sep-19	133.6	27.6	36.1	63.7	83.3 ^A	70.9 ^B	43.7	43.7	48,673
1-0ct-19	128.2	5.5	NA	NA	NA	NA	44.4	43.8	47,472
7-0ct-19	134.6	7.7	NA	NA	NA	NA	44.4	44.0	49,842
16-Oct-19	134.6	12.0	NA	NA	NA	NA	46.4	44.1	52,087
21-Oct-19	134.0	15.0	NA	NA	NA	NA	43.9	44.1	49,061
30-Oct-19	134.0	7.5	NA	NA	NA	NA	43.3	44.1	48,390
4-Nov-19	133.7	15.6	NA	NA	NA	NA	46	44.1	51,293
13-Nov-19	125.6	10.2	NA	NA	NA	NA	46	44.2	48,185
18-Nov-19	133.8	19.8	NA	NA	NA	NA	45.2	44.4	50,438
25-Nov-19	140.5	16.3	NA	NA	NA	NA	34.4	44.2	40,309
2-Dec-19	153.0	35.7	43.9	79.6	87.0	102	38.4	44.2	48,999
11-Dec-19	156.7	26.5	41.8	68.2	83.2	89.1	37.9	44.2	49,531
16-Dec-19	148.7	28.7	37	65.7	78.7	81.5	38.1	44.2	47,250
23-Dec-19	179.9	29.8	33.5	63.3	75.2	94.9	33.6	44.1	50,398
1-Jan-20	144.3	20.3	45.8	66.1	63.5	79.5	36.5	44.1	43,911
6-Jan-20	150.6	34.4	54.8	89.2	63.6	112	38.4	44.1	48,215
15-Jan-20	148.0	44.2	38.9	83.1	63.5	103	40.0	44.0	49,359
20-Jan-20	145.7	33.2	56.9	90.1	63.5	109	41.0	44.0	49,814
29-Jan-20	147.8	38.1	65	103	78.7	127	41.6	43.8	51,261
04-Feb-20	146.8	26.2	24.8	51.0	63.2	62.4	42.2	43.5	51,666
10-Feb-20	162.7	31.5	46.4	77.9	63.2	106	39.1	43.3	53,055
19-Feb-20	142.3	36.7	35.3	72.0	63.5	85.4	46.9	43.3	55,660
24-Feb-20	151.2	42.8	70.2	113	63.5	142	43.7	43.3	55,106
02-Mar-20	145.1	39.7	61.3	101	64.7	122	43.1	43.2	52,157
11-Mar-20	156.7	33.1	44.6	77.7	65.9	102	38.2	42.7	49,923
16-Mar-20	168.8	37.0	59.3	96.3	65.9	136	36.9	41.9	51,948
25-Mar-20	156.2	28.5	52.2	80.7	67.2	105	39.9	41.3	51,978
01-Apr-20	153.6	23.4	22.9	46.3	67.2	59.3	42.1	41.3	53,931

Sample Date	PLWTP Flow (mgd)	Average Daily Effluent Phenol Concentration (µg/L)	Average Daily Effluent 4-Methylphenol Concentration (µg/L)	Average Daily Effluent Concentration for Non-Chlorinated Phenolics (µg/L)	Running 6-Month Median Concentration for Non-Chlorinated Phenolics (µg/L)	Daily MER for Non- Chlorinated Phenolic Compounds (lbs/day)	Average Daily Effluent Ammonia-N Concentration (mg/L)	Running 6-Month Median Ammonia-N Concentration (mg/L)	Daily MER for Ammonia-N (lbs/day)
06-Apr-20	157.2	38.8	50.7	89.5	70.1	117	38.8	40.5	50,869
15-Apr-20	175.8	24.5	31.8	56.3	70.1	82.5	37.0	40.0	54,248
20-Apr-20	160.6	32.7	50.3	83.0	74.9	111	41.0	40.0	54,916
29-Apr-20	143.1	35.7	51.9	87.6	77.8	105	42.4	40.0	50,602
05-May-20	141.5	26.4	26.4	52.8	77.8	62.3	46.1	40.0	54,403
11-May-20	142.0	41.0	55.5	96.5	78.8	114	44.0	40.0	52,108
20-May-20	135.4	33.2	29.9	63.1	78.8	71.3	45.6	40.0	51,493
25-May-20	134.3	43.2	59.8	103	80.2	115	43.5	40.5	48,723
01-Jun-20	137.0	38.9	48.8	87.7	81.9	100	42.0	41.0	47,988
10-Jun-20	136.4	23.3	22.7	46.0	81.9	52.3	44.2	41.3	50,281
15-Jun-20	137.9	41.6	48.7	90.3	83.1	104	42.6	41.8	48,994
24-Jun-20	142.7	39.4	38.8	78.2	83.1	93.1	44.2	42.1	52,603
29-Jun-20	140.8	47.1	56.1	103	85.4	121	43.9	42.2	51,551
06-Jul-20	142.0	33.6	42.9	76.5	83.1	90.6	42.8	42.3	50,687
15-Jul-20	134.4	21.9	19.0	40.9	81.9	45.8	45.4	42.5	50,889
20-Jul-20	135.5	38.3	46.8	85.1	81.9	96.2	42.2	42.5	47,689
29-Jul-20	132.4	31.7	34.3	66.0	79.5	72.9	42.9	42.7	47,371
04-Aug-20	139.8	26.4	35.8	62.2	79.5	72.5	43.9	42.9	51,184
10-Aug-20	136.5	35.5	47.7	83.2	81.9	94.7	42.4	42.9	48,269
19-Aug-20	140.9	28.7	29.6	58.3	81.9	68.5	39.8	42.7	46,769
24-Aug-20	140.2	35.4	43.3	78.7	79.7	92.0	40.2	42.5	47,005
02-Sep-20	135.3	26.5	19.2	45.7	78.5	51.6	46.0	42.5	51,906
09-Sep-20	141.7	30.1	20.3	50.4	78.5	59.6	44.4	42.7	52,471
14-Sep-20	139.8	33.9	43.9	77.8	78.0	90.7	42.9	42.9	50,018
23-Sep-20	138.8	27.9	20.8	48.7	77.2	56.4	45.3	42.9	52,439
28-Sep-20	140.6	35.2	46.2	81.4	78.0	95.4	46.2	43.2	54,174
06-0ct-20	137.4	18.7	36.3	55.0	77.2	63.0	38.3	43.2	43,889

Sample Date	PLWTP Flow (mgd)	Average Daily Effluent Phenol Concentration (µg/L)	Average Daily Effluent 4-Methylphenol Concentration (µg/L)	Average Daily Effluent Concentration for Non-Chlorinated Phenolics (µg/L)	Running 6-Month Median Concentration for Non-Chlorinated Phenolics (µg/L)	Daily MER for Non- Chlorinated Phenolic Compounds (lbs/day)	Average Daily Effluent Ammonia-N Concentration (mg/L)	Running 6-Month Median Ammonia-N Concentration (mg/L)	Daily MER for Ammonia-N (lbs/day)
12-Oct-20	144.6	27.5	35.7	63.2	77.2	76.2	41.9	43.2	50,530
21-Oct-20	137.0	29.1	23.7	52.8	71.3	60.3	41.0	43.2	46,846
26-Oct-20	139.2	37.6	48.4	86.0	71.3	99.8	40.0	43.2	46,437
02-Nov-20	134.3	43.3	23.4	66.7	71.6	74.7	41.1	42.9	46,035
09-Nov-20	145.3	35.4	27.7	63.1	66.4	76.5	37.5	42.9	45,443
18-Nov-20	132.8	30.6	28.6	59.2	66.4	65.6	39.3	42.7	43,527
23-Nov-20	134.6	38.7	53.2	91.9	66.4	103	37.6	42.5	42,208
02-Dec-20	136.0	18.4	30.9	49.3	64.6	55.9	42.2	42.5	47,865
07-Dec-20	133.9	44.9	62.8	108	66.0	120	41.3	42.3	46,121
16-Dec-20	131.1	30.0	31.5	61.5	64.6	67.2	41.5	42.2	45,375
21-Dec-20	135.9	37.4	57.8	95.2	63.2	111	41.2	42.1	46,696
28-Dec-20	148.4	35.5	55.5	91.0	63.2	113	37.3	41.7	46,165

Notes:

A Estimated 6-month median concentration value. Prior to October 2019, City monitoring reports did not include 4-methylphenol concentrations as part of the computed totals for non-chlorinated phenolic compounds. The above-listed 6-month means are unofficial (i.e., not shown in any submitted PLOO/PLWTP monitoring reports submitted by the City during 2017-2019) and are presented above for purposes of showing estimated 6-month median concentration values for this time period.

B Estimated 6-MERs are based on reported PLWTP phenol and 4-methylphenol concentrations and daily PLWTP flow values for the respective sampling dates. The listed estimated MERS are unofficial and (i.e., not shown in any submitted PLOO/PLWTP monitoring reports submitted by the City during 2017-2019) and are presented above for purposes of showing estimated MERs for this time period. Values rounded to three significant figures.

C Total computed non-chlorinated phenolic compounds during June 8, 2017 includes a 3.0 mg/L concentration for 2,4-dinitrophenol in addition to the 26.5 mg/L concentration of phenol and 44.8 mg/L concentration of 4-methylphenol.